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ABSTRACT 

 
 

A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR FINITE STRAIN 
DEFORMATION 

 
 

Roxana Cisloiu, PhD 
 
 

University of Pittsburgh, 2006 
 
 
 

When improving the current state of technology in the finite element method, element 

formulation is a very important area of investigation. The objective of this dissertation is to 

develop a robust low-order tetrahedral element that is capable of meshing complicated 

geometries which cannot be meshed with standard brick elements. This element will be 

applicable to a large class of nonlinear materials that include nearly incompressible and 

incompressible materials and capable of analyzing small and large deformation as well as large 

rotations. Development of such an element will particularly benefit large strain metal-forming 

applications. 

 Linear tetrahedral elements are very practical for several reasons including their simplicity 

and efficiency. Despite their advantages, these elements have known shortcomings in their 

performance when applied to incompressible or nearly incompressible materials because of their 

tendency to lock. To overcome this problem a stabilized mixed formulation is proposed for 

tetrahedral elements that can be utilized in solid mechanics and large deformation problems.  
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 An enhanced strain derived from a bubble function is added to the element to provide the 

necessary stabilization. The uniqueness of the proposed formulation lies within the fact that it 

does not require any geometric or material dependent parameters and no specific material model 

so that the formulation is completely general.  

 The element was implemented through a user-programmable element into the commercial 

finite element software, ANSYS. Using the ANSYS platform, the performance of the element 

was evaluated by different numerical investigations encompassing both small and large 

deformation, linear and nonlinear materials as well as near and fully incompressible conditions. 

 The element formulation was tested with several standard metal forming problems such as 

metal extrusion and punch forging that are known to experience difficulties during large 

deformations. The results were compared with analytical results or other available finite element 

results in the literature.  

 Finally, conclusions are drawn and possible future investigations are discussed such as the 

application of the new element in 3D rezoning, dynamic problems and anisotropic materials.  
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1. 0 INTRODUCTION 

 

1.1 SIGNIFICANCE 

 
Tetrahedral elements are very attractive because the most powerful mesh generators used today 

produce these elements. They are simple and less sensitive to distortion and their implementation 

leads to lower memory requirements and computational costs. Because of advances in hardware 

and parallel computations techniques, more complicated geometries are now being modeled.    

Meshing of these geometries becomes extremely difficult using quadrilateral and brick elements. 

The stringent necessity of a finite model that can easily interface with CAD models, together 

with the fact that triangular and tetrahedral meshes are very robust and fast, has brought about 

the need for developing high quality tetrahedral elements.   

  As noted in the literature, none of these elements developed to date perform well in all 

situations. Herein lies the main motivation of the proposed research. Standard displacement 

based finite elements lock in two different situations:  bending (shear locking) and 

incompressible or near incompressible materials (volumetric locking). Constant strain tetrahedral 

elements show severe volumetric locking and stiff behavior in bending. Locking can generally be 

defined as the tendency for the finite element solution to approach zero because of restrictions in 

the medium being modeled (shear strain or incompressibility constraints). When expressed in a 

discrete form, locking is a condition of an over constrained system. In these situations the  

interpolation functions are incapable of representing the deformations that develop.  
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 The interpolation functions should ensure that any anticipated constraints are handled without 

over restricting the system. Failure to do so causes solutions to lock which ultimately leads to 

erroneous results. Displacements are under predicted by factors of 5 to 10, making these 

elements completely useless [6]. Thus, in bending dominated problems, constant strain elements 

don’t have the capacity to represent the curvature because of their lack of deformation modes 

resulting in a very stiff answer. This effect can be alleviated if the mesh is refined or if higher 

order elements are used; both of these solutions are detrimental to the computational time. The 

most difficult situation that cannot be solved by refining the mesh is the volumetric locking. 

 Under nearly incompressible (Poisson’s ratio close to 0.5 or bulk modulus approaches 

infinity) and incompressible conditions, the displacements are not accurately predicted. The 

volumetric strain, which is determined from the derivatives of the displacements, will therefore 

not be accurately predicted. Any small error in the volumetric strain will transform into a larger 

error in the stresses and hydrostatic pressures, which in turn will have a detrimental effect on the 

displacements [4]. This is due to the fact that external loads are at any moment balanced by 

stresses via the principle of virtual work. To eliminate volumetric locking, two different 

techniques have evolved [6]. The first uses multi-field elements in which the pressures or the 

stresses and strain fields are considered as independent variables. The second uses the reduced 

integration procedures in which certain terms of the internal forces are under integrated. Both of 

these techniques have their own shortcomings.  When multi-field methods are used, the resulting 

elements possess instabilities in the additional fields. The same shortcoming emerges from the 

reduced integration techniques as well. Over the last several years different strategies have been 

developed for reducing and avoiding the volumetric locking and pressure oscillations in finite 

element solutions.   
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 Unfortunately, very few contributions in the area of element technology were sought to 

improve the performance of the linear tetrahedral elements. The focus has always been on 

stabilizing the low-order quadrilateral and hexahedral elements and it seems that only in the last 

three-four years some attention has been directed towards the simplex elements. Therefore there 

are very few publications related to the stabilization of triangular and tetrahedral elements and 

most of them are directed towards fluid elements [1, 7, 9-10, 17, 25, 29, 35-36, 41-42]. Among 

the few works of stabilizing these elements, some formulations address the problem of small 

deformations [14-16,30-33] and other apply only to hyperelastic materials [11-12, 27, 44] or J2 

plasticity [15, 33, 38]. At present there is no formulation applicable to both general finite strain 

deformation and to a large class of nonlinear materials.  

 

1.2 MOTIVATION AND OBJECTIVES 

 
 
The increasing use of automated mesh generators and remeshers has triggered the need for 

accurate and efficient triangular and tetrahedral elements. This is especially true in the modeling 

of metal forming processes. At the present time, there is not a meshing program available that 

can discretize complex geometrical shapes of formed parts without using triangular and 

tetrahedral elements. Finite element models used in analyses of metal forming processes must be 

able to represent the nearly incompressible nature of elasto-plastic deformation of materials 

during forming. For this to be possible, the issue of volumetric locking has to be addressed since 

it can cause severe artificial stiffness that limits the flow of the material. Because linear triangles 

and tetrahedral elements developed with mixed formulations still suffer from volumetric locking 

and pressure instabilities, simulation of metal forming is somewhat limited [39-40].  
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 As discussed in 1.1, special stabilizing techniques must be developed to avoid locking in these 

elements.   

 In this study a mixed enhanced strain formulation is proposed to specifically address the 

above issue. Hence, the following objectives will be attained in the present research project: 

1. Develop a stabilization technique for the four-node tetrahedral element that will allow 

large deformation analyses to be performed with a large variety of nonlinear materials 

and in nearly incompressible and incompressible conditions. The stabilizing procedure 

will be based on the enhanced strain approach of R.Taylor [47] derived from a bubble 

function.  

2. Implement the new formulation into a user programmable element that interfaces with the 

commercial finite element software, ANSYS. 

3. Perform numerical investigations to assess the convergence and accuracy of the new 

element. 

4. Use the developed elements to simulate metal forming processes. 

 

1.3 NONLINEAR FINITE ELEMENT METHODS 

 

For more than a decade, nonlinear finite element techniques have become popular in the analysis 

of metal forming, fluid-solid interaction and fluid flow problems. In recent years, the areas of 

biomechanics and electromagnetics have started to use nonlinear finite elements. Despite these 

efforts, there are still numerous intractable nonlinear problems for which solutions have not been 

obtained. A large segment of these problems can be categorized as large deformation problems 

that are applied to very complicated geometries and highly nonlinear materials.  
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 A problem is defined as nonlinear if the force-displacement relationship depends on the 

current deformation state. Nonlinearities can arise from three different sources: material, 

geometry and nonlinear boundary conditions. Material nonlinearity results from the nonlinear 

relationship between stresses and strains. Nonlinearities caused by boundary conditions or loads 

can be found in contact and friction problems such as metal forming, gears, crash, and the 

interference of mechanical components. These problems are nonlinear because instantaneous 

changes in stiffness occur over time. Geometric nonlinearity results from the nonlinear 

relationship between strains and displacements on one hand, and the nonlinear relationships 

between stresses and forces on the other hand. This type of nonlinearity is mathematically well 

defined but quite difficult to solve numerically and includes problems such as large strain 

manufacturing, crash and impact phenomenon. As stated in section 1.2, the present research 

work will focus on a formulation for general finite strain deformation. This type of nonlinearity 

can be solved by three approaches: Lagrangian Formulation, Eulerian Formulation and Arbitrary 

Lagrangian-Eulerian Formulation (ALE) [6]. In the Lagrangian method the finite element mesh 

is attached to the material and moves through space along with it. It usually describes the 

deformation of structural elements. A shortcoming of this method is that the mesh distortion is as 

severe as the deformation of the object. Recent advances in adaptive meshing and rezoning have 

improved this problem. The Lagrangian approach can be classified into two categories: the Total 

Lagrangian method (TL) and the Updated Lagrangian method (UL). In TL the equilibrium is 

expressed with respect to the original undeformed state, which is the reference configuration. In 

the UL the current configuration acts as the reference state. Since the formulation being proposed 

in the present study applies to large deformations involving element distortions within ANSYS, 

the Updated Lagrangian formulation will be used.  

 5



 
 

 

2.0 LITERATURE REVIEW 

 

2.1 MIXED FORMULATION METHODS 

 
2.1.1 General Aspects 

 

It was emphasized in section 1.1 that the main disadvantage of the low-order triangular and 

tetrahedral elements is the tendency to lock. One way to overcome volumetric locking is by 

employing multi-fields elements in which the pressures or stress and strain fields are considered 

as independent variables, and thus they are interpolated independently of the displacements. 

 Multi-field elements are formulated based on multi-field weak forms or variational principles, 

also known as mixed variational principles. These elements are designed only when specific 

constraints exist, such as incompressibility, and they are ineffective in the absence of such 

constraints.  

 In most cases including this study, the hydrostatic pressure is used as an additional 

independent field. This type of formulation is also known as a mixed u/p formulation. In the 

mixed u/p formulation, the pressure is obtained at global level instead of being calculated from 

volumetric strain. In such an approach the solution accuracy is independent of Poisson’s ratio or 

bulk modulus.  
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 The main features of a mixed formulation according to [49] are: 

1) The continuity requirements on the shape functions are different. The additional variable 

can be discontinuous in or between elements as no derivatives of this are present. 

2) If the focus is more on the additional variable then an improved approximation can result 

in a higher accuracy than was obtained for the pure displacement formulation. 

3) The equations resulting from mixed formulations often have zero diagonal terms. This 

constitutes a significant problem since the Gaussian elimination process used in element 

solution becomes unstable.  

4) The additional number of variables enlarges the size of the algebraic problem but this 

disadvantage can be dealt with by suitable iterative methods. 

The greatest concern of these mixed methods that was not mentioned above is their stability. 

This will be discussed in the next section. 

 

2.1.2 Stability of Mixed Methods: The Patch Test. 

 
 
The main problem of the mixed methods is choosing the interpolation function for the additional 

variable, which in our case is the hydrostatic pressure. It was shown mathematically [4] that for 

certain choices of the shape functions, the mixed formulations do not yield meaningful results. 

 This mathematical criterion, which expresses the requirement related to the shape functions in 

mixed formulations, is often called the Ladyzhenskaya-Babuška-Brezzi condition (LBB 

condition) [4]. To establish if this condition is satisfied for an element is a very difficult task 

because the formulation of this condition has a very mathematical character. Thus, experts in this 

area tried to replace this condition with a more simple procedure for determining whether the 

condition is satisfied. One such condition, called the constraint count condition, has proven to be 
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very effective in determining if an element performs well in incompressible and nearly 

incompressible situations [26]. It is not a precise mathematical condition but rather a quick and 

simple way of verifying an element. 

 According to [49], if we consider the displacement variable as the primary variable and the 

additional variable as the constraint variable then the stability of an element can be obtained if 

this condition is satisfied for any isolated patch on the boundaries of which we constrain the 

maximum number of primary variables and the minimum number of constraint variables. 

 If represent the total number of displacement equations after imposing the boundary 

conditions and  represents the total number of incompressibility constraints then the 

constrained ratio is defined as 

un

pn

p

u

n
n

r = . This ratio should mimic the behavior of the ratio between 

the number of equilibrium equations and the number of incompressibility conditions for the 

governing system of partial differential equations.  In two dimensions the ideal value would be r 

=2/1=2, and for three dimensions r =3/1=3. A value of r less than the ideal value indicates the 

tendency to lock. If 1≤r  there are more constraints of the pressure than there are displacements 

degrees of freedom available and severe locking is anticipated. A value much larger than the 

ideal value indicates that not enough incompressibility constraints are present so this condition 

will be poorly approximated.  

 Mixed displacement-pressure formulations with equal order of interpolation for both u and p 

do not pass the Babuška-Brezzi conditions unless special stabilization techniques are used.  The 

main goal in the element technology is to produce more efficient codes and this is possible only 

if the interpolation spaces of displacement and pressure coincide.  
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 This motivated an extensive research effort to find formulations which would make it possible 

to circumvent the LBB condition and use equal order interpolation functions. This category is 

called stabilized mixed methods and is treated extensively in 2.3.  

 For shortness reasons, only the linear elastic mixed u/p and u/p/ε v formulations of Zienkwicz 

and Taylor [49] will be presented in the next sections as they serve as a basis of the mixed 

enhanced strain formulation developed in this study. 

 

2.1.3 Two-Field Mixed Formulation 

 
The main problem in the application of a pure displacement formulation to incompressible and 

nearly incompressible problem lies in the determination of the hydrostatic pressure, which is 

related to the volumetric part of the strain (for isotropic materials).  Mixed formulations are 

based on decomposing the stress tensor into its deviatoric and hydrostatic components. 

ijijij ps δσ +=
+= pIsσ

                          (2.1) 

 where  is the deviatoric stress and ijs )(
3
1 σtrp = .              (2.2) 

 The constitutive relation linking  and the strain tensor is supplemented by a constraint 

equation relating the pressure and the volumetric strain

ijs

ijijiiv εδεε == .        (2.3) 

In the case of elastic materials,  

K
p

v =ε                              (2.4) 

where K is the bulk modulus of the material related with Poisson’s ratio by  

)21(3 ν−
= EK                           (2.5) 
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In the incompressible limit, ν=0.5 and K= ∞ and the equation (2.4) becomes   

0=vε                             (2.6) 

The deviatoric strain is expressed as vijij
dev
ij εδεε

3
1−=             (2.7) 

Equilibrium and Virtual Work 

Many engineering problems can be solved by finding an approximate (finite element) solution 

for the displacements, deformations, stresses, forces, and other state variables in a solid body that 

is subjected to a loading history. The exact solution of such a problem requires that both force 

and moment equilibrium be maintained at all times over any arbitrary volume of the body.   

 Let V be the volume occupied by a part of the body in the current configuration and S the 

surface bounding this volume. Let the surface traction at any point on S be the force t per unit of 

current area and let the body force at any point in the volume be b per unit current volume. Force 

equilibrium for the volume is then: 

 0                         (2.8) =+ ∫∫ dVdS
VS

bt

The true or Cauchy stress matrix σ is defined by              (2.9) σnt ⋅=

where n is the unit outward normal to S at the point. Using (2.9) and applying the Green’s 

theorem we can rewrite (2.8) as  

0=+⋅⎟
⎠
⎞⎜

⎝
⎛
∂
∂ bσ
x

                         (2.10) 

The moment equilibrium equation leads to the results that the true Cauchy stress matrix must be 

symmetric: . Tσσ =

 The basis for the development of any finite element formulation is the introduction of some 

locally based spatial approximations to parts of the solution.  
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 To develop such an approximation we replace the equilibrium equation (2.10) by an 

equivalent “weak form”- a single scalar equation over the entire body which is obtained by 

multiplying the point wise differential equation by an arbitrary, vector-valued “test function” and 

integrate it. The test function can be imagined as an arbitrary “virtual” displacement field, uδ , 

which is completely arbitrary except that it must obey any prescribed kinematic constraints and 

have sufficient continuity. The dot product of this test function with the equilibrium equation 

results in a single scalar equation that is integrated over the entire body to represent the principle 

of virtual work.  This statement has a very simple physical interpretation: the work done by the 

external forces subjected to any virtual displacement field is equal to the work done by the 

equilibrating stresses on the deformation of the same displacement field.  

0=−− ∫∫∫ dSdVdV tδubδuσδε
S

T

V

T

V

T                   (2.11) 

with  as the constitutive relation and the deviatoric part as   Cεσ = dev
klijklij Ds ε=

Now the equilibrium equation is rewritten using (2.1) and treating p as an independent variable 

3,2,1,0 ==−−+ ∫∫∫∫ idStudVbupdVdVs i
S

ii
V

i
V

v
V

ijij δδδεδε          (2.12)  

and in addition we shall impose a weak form of (2.4), i.e. the pressure constitutive equation: 

0)( =−∫ dV
K
pp

V
vεδ                        (2.13) 

Matrix Formulation 

Substituting now the independent approximations of u, p, δu, δp  as 

       and                  (2.14) ee uNuuNu δδ uu ≈≈ , e
p

e
p pNppNp δδ ≈≈ ,
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where are the interpolation functions for displacements and pressures and 

 

[ TNBA NNN ,...=N ]

]

]

[ ] [ ] [ ] [ TNBAeTNBAeNBAeNBAe ,...δ.δpδpδp,,...ppppu,...uuu,...uuuu ==== ,, TT δδδδ

are the displacements, virtual displacements, pressure, and virtual pressures at each node. 

 If we insert the above relations in the weak form (2.12) and (2.13) and make use of the 

Lemma of calculus of variations we get the element wise linear equations system: 

eee

pppu

upuu

0
R

p
u

KK
KK

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
  where                 (2.15) 

                          (2.16) ∫=
V

Te
uu DBdVBK

 is the element stiffness matrix that connects the displacements through the differential operator 

of the shape functions, B, and the deviatoric part of the material constitutive matrix D, 

( )∫ ∇==
V

p
Te

pu
e
up dVN)(KK uN                              (2.17) 

are the mixed terms depending on displacements as well as on the pressures, with 

[ T
ND21 ...N,N,N,=∇ uN                       (2.18) 

∫=
V

p
T

p
e
pp dVNNK

K
1                                (2.19) 

is the term which depends only on the pressure.  

tdSNbdVNR
S

T
u

V

T
u ∫∫ +=                               (2.20) 

If incompressibility exists, the pressure term becomes zero.  

 The fundamental problem now relates to finding effective interpolation functions for both 

displacements and pressures so that accurate finite element solutions are obtained.   
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2.1.4 Three-Field Mixed Formulation 

 
For many constitutive models such as hyperelasticity that can have multiple deformation states 

for the same stress level it is more convenient to use a three-field variational form [47, 49].  

 This formulation is more general and more suitable for anisotropic, inelastic materials and 

finite deformation problems. It employs approximations of displacement, pressure and strain. 

 The use of this type of approximation has led to successful lower-order quadrilateral or 

hexahedral elements that can be used in nearly incompressible cases for a large class of 

materials. 

 Assuming an independent approximation for the hydrostatic pressure, p, and the volumetric 

strain, εv, the same problem as in 2.1.3 can be formulated by introducing two constraint 

equations with two Lagrange multipliers in the principle of virtual work. Thus, if the two 

constraints are: 

ε1T=++= zyxv εεεε  where                   (2.21) [ T0,0,0,1,1,1=1 ]

K
p

v =ε                             (2.22) 

the principle of virtual work can be expressed by (2.12) and the two additional weak statements 

of equations (2.21) and (2.22) written as: 

0)(

0)(

=−

=−

∫

∫
dVpK

dVp

v
V

v

v
V

εδε

εδ ε1T

 (2.23) 

Then, using finite element approximations for u and p fields from (2.14) and 

e
vvv N εε ≈                                        (2.24) 

a mixed approximation is obtained in the following matrix formulation: 
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⎣

⎡
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vvv

v                              (2.25) 

where Kuu, Kup  and R are the same as in (2.16), (2.17) and (2.19) and, 

dV

dV

vv

v

v
V

T
v

p
V

T
vp

KNNK

NNK

∫

∫
=

=
                                     (2.26) 

Usually Nv is identical with Np so that Kpv  is symmetric positive definite. In the case when p is 

continuous and εv is discontinuous the volumetric strain can be eliminated from the third 

equation leading to a system of equations in only two unknowns, u and p. 

 

2.2 REVIEW OF STABILIZED MIXED METHODS 

 

Stabilized finite element methods were initially developed for application in the Galerkin finite 

element method to solve problems in engineering and mathematics that produce numerical 

approximations that didn’t have the stability properties of the continuous problem. Stabilized 

methods attempt to improve the stability behavior without compromising accuracy. 

 Incompressible fluid dynamics have always been the front line of research in this area. 

Several approaches have achieved success and have been extended to the solid mechanics as 

well. Some of them are demonstrated to be related under specific conditions [30] but they can be 

generally classified into the following categories: 
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1) Stabilization by employing finite element approximations enriched with so-called 

“bubble” functions.  

2) Stabilization by adding mesh-dependent perturbation terms, which depend on the 

residuals of the governing equation.  

3) Mixed-enhanced strain stabilization 

4) Orthogonal sub-grid scale method (OSGS) 

5) Finite increment calculus (FIC) 

 All the methods, with the exception of 1) and 3), utilize a weighting parameter that is applied 

to the additional terms. Other approaches are average nodal pressures [21-22], average nodal 

deformation gradient techniques [15], or composite elements [48] but they are not of great 

interest to the proposed research since they will be hard to implement into commercial finite 

element software. Each of these methods will be discussed in the next sections. 

 

2.2.1 Bubble Stabilization 

The first effort to stabilize the low–order elements was the “MINI” element introduced by 

Arnold, Brezzi and Fortin in [3]. This is an attractive linear triangle with a displacement 

interpolation enhanced with a cubic bubble function. This element has three external degrees of 

freedom per vertex (two displacements and one pressure) and an equivalent internal node due to 

the bubble function with two degrees of freedom (displacements) (see Figure 1). The bubble 

function is a higher order polynomial that vanishes on the boundary of the element and is equal 

to unity in the center of the triangle. Such a bubble function can be written in terms of area 

coordinates as:                           32127)( ξξξξ =eN                 (2.27) 
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Figure 1. Linear displacement/linear pressure triangle with bubble function  

 

 The displacement field with the bubble function can be approximated as: 

 ee
i

ii uNuN +≈ ∑u                         (2.28) 

where ui are the nodal displacements and ue are internal parameters. Similarly, the pressures are 

interpolated as: 

∑≈
i

ii pNp                           (2.29) 

For the linear triangle and tetrahedral element the shape functions are the area, respectively the 

volume coordinates iiN ξ=                      (2.30) 

 Because the internal parameters are defined separately for each element, a partial solution can 

be performed at the element level to obtain a set of equations in terms of external degrees of 

freedom as discussed in the mixed u/p formulation. 

Advantages of using bubble function: 

- Satisfies LBB condition and the mixed patch test  

- Few degrees of freedom 

- Easy to implement in large strain deformation because it does not require the introduction 

of other parameters 
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Disadvantages: 

- Only marginally stable 

- This element might not be robust enough since in many tests the pressure solution still 

had small amplitude oscillations. 

- In transient problems, the accelerations will also involve the bubble mode and will affect 

the inertial terms. 

 

2.2.2 Stabilization by Adding Mesh-Dependent Terms 

The idea of this method is to modify the discrete equations instead of the interpolation functions. 

 The simplest form of this type of stabilization is to add a non-zero diagonal term through a 

penalty-like term in the pressure constitutive equation. This was first introduced by Brezzi and 

Pitkaranta in [11] for stabilizing the finite element approximation of Stokes problem. Numerous 

other alternatives of this method have been developed [23-25, 29-30, 43-44]. Recalling from 

section 2.1.3, the splitting of the Cauchy stress into the deviatoric and volumetric parts as:  

ijijij ps δσ +=
+= pIsσ

                         (2.31) 

 and noting that the deviatoric stress is related to the deviatoric strain through the relation: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂
∂

−
∂
∂

+
∂
∂

==
k

k
ij

i

j

j

idev
ijij x

u
x
u

x
u

GGs δε
3
22                  (2.32) 

The equilibrium equations in the absence of inertial forces are: 

0=+
∂
∂+

∂
∂

i
ij

ij b
x
p

x
s

                        (2.33) 

Substituting the constitutive equation for the deviatoric part (2.32) into (2.33) 
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or in tensor form:     

0)(
3
1 2 =+∇+⎟

⎠
⎞⎜

⎝
⎛ ∇+⋅∇∇ buu pG        

where   is the Laplacian operator and ∇   is the gradient operator. 2∇

The pressure constitutive equation in terms of displacement is: 

K
p

v =⋅∇= uε                                 (2.35) 

Taking the divergence of the equilibrium equation (2.34) and using (2.35) we obtain: 

0
3
41 2 =⋅∇+∇⎟

⎠
⎞⎜

⎝
⎛ + bp

K
G                       (2.36) 

 This equation was used to construct the additional term for the weak form, which would 

otherwise be zero. Brezzi and Pitkaranta [11] added a weighted form and set the body force to 

zero for simplicity. Then, they integrated by parts and ignored the boundary terms to obtain a 

more attractive form of the pressure constitutive equation: 

 0=
∂
∂

∂
∂+⎟

⎠
⎞⎜

⎝
⎛ − ∫∫ dV

x
p

x
pdV

K
pp

iV iV e

δβδ ε1T                  (2.37) 

From dimensional considerations with the first term, the parameter β should have a value 

proportional to L4/F where L is length and F is force.  

 In the work of Hughes et al.[29], β is given in terms of the characteristic element length h and 

a non negative, non dimensional stability parameter, α as: 

G
h

2

2αβ −=                            (2.38) 
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This method and alternatives to it have been applied to incompressible linear elasticity and to the 

Stokes flow [9-10, 12, 23-25, 29-30, 43]. The above formulation was extended to finite 

deformation by O. Klaas et al [31] and applied to a linear displacement, linear pressure 

tetrahedral element. They provide a formulation for finite elasticity in both reference and current 

configuration, which is then linearized to allow an implementation in a Newton-Raphson 

scheme. Their formulation can be used for the hyperelastic materials. 

Advantages 

- No oscillations in the stress field 

- Stress concentrations are well approximated 

Disadvantages 

- Addition of the non-zero diagonal terms does not have a strong theoretical foundation 

- Requires the choice of a parameter  

- Depends on the element length (maximum edge length) which also changes under the 

large deformation assumption 

- Depends also on the material through the shear modulus 

 

2.2.3 Mixed Enhanced Strain Stabilization 

  

This method is presented in Zienkiewicz and Taylor [49] and applied by R. Taylor [47] to a low-

order tetrahedral element in both small deformation and finite deformation. It uses a three-field 

approximation involving continuous u, p and discontinuous volume change εv together with an 

enhanced strain formulation. The enhanced strains are added to the regular strains to provide the 

necessary stabilization for the nearly incompressible case. His formulation starts from the 

functional and takes into consideration a hyperelastic material for which a strain energy function 
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exists. This approach though is no longer valid for materials for which we cannot define a strain 

energy function. 

Small deformation case 

Splitting the strain into their deviatoric and volumetric components, the mixed strain can be 

written as:                            

vε1εε dev

3
1+=                          (2.39) 

The functional, its variation and then linearization are given as: 
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Matrix Formulation 

The displacement, pressure, and volume change in each element are written using the 

interpolation functions in terms of volume coordinates,ξ , and corresponding nodal values as:                     

                       (2.40) 

vεN

pN

uNuu

ˆˆ)(

ˆˆ)(

ˆˆ)(

==

==

==

α
α

α
α

α
α

εξξε

ξξ
ξξ

vv

pp

Strains are computed using the strain-displacement matrix as:         (2.41) αξ u(ξBε α ˆ))( =

An enhanced strain formulation is considered as  

e
ee u(ξBε ˆ))( =ξ                              (2.42) 

where  are the enhanced strain parameters and is obtained from the derivatives of a 

bubble mode                        

eû )(ξBe

4321)( ξξξξξ =eN                (2.43) 
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Thus, the mixed strain is:           

vε1)uBu(BIε e
eu

dev

3
1ˆˆ ++=                      (2.44) 

Replacing all these approximations in the linearized variation of the functional we obtain a linear 

system of equations with four unknown increments of displacements, enhanced strain 

parameters, pressures and volumetric changes.  

The tangent tensor is:    
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The terms involving the enhanced modes are similar to Kuu , Kup, Kuv but they have Be  instead of 

Bu. 

Finite Elasticity Case 

[ ]

0)()(:

)()(

=Π+⎥⎦
⎤

⎢⎣
⎡ −+−+
∂
∂=Π

=Π+−+=Π

∫

∫

ext
V

vv

ext
V

v

dVpJJpW

StationarydVJpW

δδεεδδδ

ε

δC
C

C

           (2.47) 

 21



( )

0)(

)()(:::)(
2

=Π+∆−+

+∆−∆+∆+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂∆+∆

∂∂
∂=Π∆

∫

∫ ∫∫

ext
V

v

V V
v

V

ddVpJ

dVJpdVJpdVWW

δδε

εδδδδδ

δ

C
CC

CC
C

   

The tangent terms resulting from the first two integrals can be split into a constitutive part and a 

geometric part. The terms involving the enhanced strains will be replaced with the appropriate 

terms and will have the same form as those involving regular strains. 
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(2.48) 

If the interpolation for u and p is continuous in the whole domain and the volumetric change is 

piece wise continuous, the solution can be performed by using static condensation at the element 

level. After eliminating ue and εv, a system of equations in incremental nodal displacements and 

pressures has to be solved. 

Advantages 

- Results are free of pressure oscillations 

- Enhanced terms are material and  mesh independent 

- Applies to incompressible elastic, hyperelastic materials and to both small and large 

deformations 
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Disadvantages 

- Increased computational cost due to the introduction of the additional variables but 

compensated by the possibility of performing static condensation 

- Behaves poorer in bending than mixed hexahedral elements with discontinuous pressure 

and volume change 

- Exhibits some locking tendency in bending 

 
2.2.4 Orthogonal Sub-Grid Scale Method 

 

The sub-grid scale approach was proposed first by Hughes [30]. More recently the method of 

orthogonal sub-grid scale was introduced by Codina [20] and has been applied to incompressible 

fluid dynamics. Chiumenti et al. extended this method to solid mechanics in the context of 

incompressible elasticity [19] and J2 plasticity [17-18]. An equal order interpolation is used for 

both the displacement and pressure. The basic idea of the method is to decompose the continuous 

fields into a coarse component and a fine component, corresponding to different scales. Since the 

solution of the problem contains components from both scales it is necessary that the finite 

element approximation include the effect of both scales. The coarse scale can be solved by a 

standard finite element interpolation, which cannot solve the fine scale. For the problem to be 

stable the effect of the fine scale has to be taken into consideration.  

 Thus, the displacement field can be approximated as; 

uuu h
~+=                            (2.49) 

and the deviatoric stresses can be split into two corresponding contributions as:           

sss h
~+=                                                                            (2.50) 

This results in the following mixed formulation in the weak form as: 
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         (2.51) 
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   (2.52) 

The first equation solves the balance of momentum and includes a stabilization term which 

depends on the sub-grid stresses. For linear elements this term is zero. The third equation 

enforces the incompressibility condition and has a stabilization term that depends on the sub-grid 

scale. The second equation is completely defined in the sub-grid scale and cannot be solved by 

the finite element mesh. To find the sub-grid displacements that are introduced in the second 

stabilization term, Codina proposed to look in the space orthogonal to the finite element space. 

 Such a method has already been applied with success in fluid mechanics. From the second 

equation, it should be noted that these displacements are driven by the residual of the coarse 

scale and thus they can be expressed as: 

 ( ))(~ pPp hee ∇−∇= τu                        (2.53) 

where  )( pPhh ∇=π is the projection of the gradient of pressure onto the finite element space 

and τ e is the same as β from section 2.2.2. Thus the final formulation becomes: 
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It is important to note that no stabilization term appears in the first equation for low-order 

elements and the only stabilization term appears in the incompressibility equation.  

 

The tangent stiffness matrix is: 

                    (2.55) 
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Advantages: 

- Circumvents the strict LBB condition 

- Results are free of volumetric locking and pressure oscillations and comparable 

qualitatively to the mixed quadrilateral and hexahedron. 

- Correct failure mechanisms with localized patterns of plastic deformations are obtained 

which show that the method is not influenced by the mesh directional bias. 

Disadvantages: 

- The formulation is applicable only for small deformation. 

- Requires a parameter depending on element length and shear modulus which makes the 

formulation hard to extend to finite deformation case. 

- Introduces a new field variable, Πh which is continuous and therefore the static 

condensation procedure cannot be performed at element level.  
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2.2.5 Finite Increment Calculus Method 

 

The FIC method is a completely different approach in stabilizing the mixed u/p elements, but 

yields the same formulation as the previous discussed method (OSGS). The basis of the FIC 

formulation is the satisfaction of the standard equations of equilibrium in a domain of finite size 

by expressing the different terms of the differential equation using a Taylor expansion series and 

retaining the higher order terms.  

 The resulting equations are enhanced with some additional terms, which introduce the 

necessary stability to overcome the volumetric locking. This method was first developed by 

Onate for advective-diffusive and fluid flow problems [33] and was later applied to 

incompressible solids in [34-36]. 

  This method allows the use of linear triangle and tetrahedral in quasi-incompressible and fully 

incompressible solid problems.  For any problem in mechanics, the equations expressing balance 

of momentum, mass, heat, etc. can be written in a domain of finite size with h as the 

characteristic length. By expanding the balance equation in Taylor expansion and retaining the 

lower order term, we get:      

  0
2

=
∂
∂

−
k

ik
i x

rh
r                          (2.56) 

where ri  is the standard form of the i th differential equation for the infinitesimal problem and hk 

is the characteristic length of the domain. This method is not useful for obtaining an analytical 

solution but proves to be very useful for finding an approximate solution, which converges to the 

analytical one when the grid size tends to zero. 

 If we consider the mixed u/p formulation as in (2.12) and (2.13) and replacing ri by the 

equilibrium equation first and then by the incompressibility equation, we obtain the following: 
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where τ i are coefficients referred as intrinsic time parameters with the following value:
G
hi

i 8
3 2

=τ , 

which is very similar with the heuristically value of 
G

h
2

2

=τ  chosen in the previous works.  

 Since the last terms form the first equation and the second equation are not relevant for solid 

mechanics problems they are omitted in the final formulation. Also introducing the notation 
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π i is the part of the differential equation not containing the pressure gradient This term, once 

introduced, has to be weakly enforced by means of a Lagrange multiplier (δπi ) yielding the final 

set of governing equations as: 
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             (2.59) 

Matrix formulation is similar with the one obtained in the OSGS methods. 
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Advantages 

- FIC method is based on a very strong theoretical foundation because it emerges naturally 

from the governing equations 

- Results are accurate and free of pressure oscillations 

- Can be used in a simpler form by neglecting the effect of the projected pressure gradient 

terms. 

- It is applicable to non-linear dynamics. 

Disadvantages 

- Stabilization parameters are a function of the material properties and characteristic length  

- Extension to finite deformation is impeded by the characteristic length parameters whose 

consistent definition remains still an open question. 

 

2.2.6 Equivalence between bubble methods and pressure stabilized methods 

 
It can be concluded from the previous sections that the OSGS method produces the same 

additional terms in the pressure constitutive equation as FIC method and both results are very 

similar with the terms produced by the pressure stabilized methods with the only difference in 

the term π, the projected gradient of pressure, which is not so significant for the case of static 

analyses. Having established that these three methods are similar, the normal question to ask is 

whether the ‘bubble methods’ are equivalent or not to these methods. Answering this question 

will lead us immediately to the most efficient and stable method to adopt for our tetrahedral 

element. Several authors proved the equivalence between the bubbles and stabilized methods. 

Hughes [30] establishes a relationship between ‘bubble function’ methods and stabilized 
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methods and then of both methods to subgrid scale methods. He also identifies the origin of the 

τ i parameters that could have never been explained before as being derived from the element 

Green’s function. Another equivalence proof is offered by R. Pierre in [38] who has shown that 

by eliminating the cubic bubble using static condensation we recover the stabilized methods.  

 If we write the displacement field as in the OSGS methods:    

kKhh uxxuxuxuxu ~)()()(~)()( ∑+=+= φ                  (2.60) 

where uh  is an approximation of u  

      are the internal d.o.f. with corresponding bubble function ϕk. ku~

 The next simplifying conditions were used for static condensation: 
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By replacing (2.60) in the discrete governing equations (equilibrium and constraint) and using 

(2.61) we obtain a system of three equations as in the OSGS method out of which the second one 

refers only to the internal degrees of freedom or ‘bubble’ parameters. Solving this equation for        

the bubble parameters and substituting them in the pressure equation by using a very well known 

formula  

k
K

K hKmeasdx ==∫ )(
20
9φ                       (2.62) 

we get the equivalent form of the  pressure equation of the ‘bubble method’ as: 
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It is easy to observe now the by the process of static condensation and under some conditions the 

method of enriching the displacement field with a cubic bubble function produces the same 

additional terms in the pressure equation as the pressure stabilized methods. The only difference 

is that the ‘bubble methods’ do not produce the projection of pressure gradient that appears in the 

OSGS and FIC methods. 

 Therefore, if all methods are equivalent under certain conditions, it seems natural to choose 

the method that would be the most efficient and easiest to implement.  

 We chose to implement a mixed u/p enhanced strain approach with the enhanced strain 

derived from a bubble function for the following reasons: 

– Reasonably stable 

– Consistent in nonlinear (large deformation) analysis  

– No material or mesh dependent parameters 

– Computationally efficient (less degrees of freedom per element). 
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3.0 THEORETICAL DEVELOPMENT 

 
 

In the present work, a mixed enhanced strain formulation is introduced for a lower-order 

tetrahedral solid element that is applicable to small and large deformations and large rotations. 

 The uniqueness of the formulation lies within the fact that no specific geometric or material 

model parameters are required and no specific material model is chosen which makes the 

formulation as general as possible. The theoretical formulation is developed from the principle of 

virtual work and it has a three-field form. The proposed element has a node in each corner with 

displacement and pressure as external degrees of freedom and a center node with the volumetric 

strain and displacement as internal degrees of freedom. The stabilization term comes from an 

enhanced strain derived from a bubble function. Two bubble functions, conforming and 

nonconforming, are studied for obtaining optimal results. Two formulations, a general three-field 

formulation and its reduction to a two-field form are presented in the next sections. For 

efficiency reasons, the reduced two-field form was implemented through a user-programmable 

element into the commercial finite element software, ANSYS. 
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3.1 OVERALL APPROACH 

 
Since the proposed formulation is applicable to general finite strain deformation, it has to take 

into consideration the following factors [6]: 

•  Geometry changes during deformation; the current configuration is different from the 

reference configuration and different from the configurations at any other time. 

•  A large strain definition has to be used. 

•  Cauchy stress cannot be updated by simply adding its increment due to straining of the 

material. Cauchy stresses at time t+∆t have to take into account the rigid body rotations. 

•  Implementation of the non-linear behavior should be based on an incremental approach. 

•  The equilibrium of the body must be established in the current configuration. 

 The basic idea of the nonlinear finite element formulation is to linearize the weak form of the 

governing equations of the problem and to solve these equations for the finite elements 

discretized domain. This leads to an incremental approach, according to which the solution at 

each step is obtained from the solution at the previous step. A step is considered a load increment 

in a static analysis and a time step in transient analysis.  

 The proposed three-field formulation follows the mixed enhanced strain formulation of Taylor 

[47] with the difference that it starts from the weak form instead of an energy functional ( the 

weak form is more general-it applies to problems that don’t have a variational principle) and uses 

the Jaumann rate of Cauchy stress with its conjugate deformation rate instead of second Piola-

Kirchhoff stress conjugated with Green-Lagrange strain.  In his formulations for both small and 

large deformation problems it is assumed that there exists a stored energy function for the 

material, expressed in terms of the right Green deformation tensor, which is not always the case. 

 32



 The present formulation does not assume the existence of such a function but employs a rate 

form of the constitutive equation which is suitable for both rate-dependent and rate-independent 

material constitutive laws. This is due to the fact that the Jaumann rate of Cauchy stress is 

employed as an objective stress rate in the constitutive law. An Updated Lagrangian Jaumann 

(ULJ) procedure is employed to solve for geometric nonlinearities because of its ability to handle 

large displacements, large rotations, and large strain analyses. For the finite element 

implementation, a similar approach to Bathe [6] will be used. 

 

3.2 DEVELOPMENT OF THE THREE-FIELD MIXED ENHANCED FORMULATION 

 

3.2.1 Formulation of the Principle of Virtual Work 

 

Formulating the principle of virtual work constitutes the basis of the theoretical development 

since obtaining the set of linearized equations is the main goal of an element formulation. They 

are obtained by differentiating the principle of virtual work and retaining only the linear terms 

(all higher order terms are ignored). The principle of virtual work, which is the weak form of the 

equations of equilibrium, is used as the basic equilibrium statement for the proposed formulation 

[16]. This weak form expresses the equilibrium state in the form of an integral over the entire 

volume of the body and provides a stronger mathematical basis for studying the approximation 

than directly discretizing the differential equations of equilibrium and requiring them to be 

satisfied point wise.  

 Since the first formulation has three independent variables, displacement, pressure and 

volumetric strain, the Cauchy stresses have to be modified with the corresponding independent 
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pressure field and the strains have to be modified with the corresponding independent volumetric 

strain as [2]: 
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where ijσ  is the Cauchy stress from constitutive law, 

dev
ijσ is the deviatoric part of the Cauchy stress, 

P  is the pressure derived from Cauchy stress, 

P  is the interpolated pressure,  

enh
ijε  is the modified enhanced strain with the stabilizing term from the bubble function 

dev
ijε is the deviatoric part of the strain, 

vε  is the interpolated volumetric strain and  

ijδ  is the Kronecker delta.  

The internal virtual work can be expressed now as: 
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The two constraints imposed by the two additional variables are: 

0=− vv εε                           (3.4) 

0=− PP                            (3.5) 

The introduction of the two additional field variables has to be weakly enforced in the principle 

of virtual work by means of two Lagrange multipliers as: 
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 The augmented principle of virtual work is differentiated again to obtain the incremental 

principle of virtual work, which yields, by substituting the variables with their finite element 

approximations, the matrix formulation or the linearized system of equations that has to be 

solved. During the differentiation process we will obtain the rates of the Cauchy stress and of 

strains and therefore we need to appropriately define them. This is done in the next section. 

 

3.2.2 Selection of Appropriate Stress and Strain Measures 

 

When a small strain approximation is no longer valid we have to use appropriate measures of 

stress and strain. The approach that we will follow is to use stress and strain measures that are 

conjugate so that the principle of virtual work can be expressed as in (3.6).  

 Many of the materials we wish to model are history dependent and therefore it is common for 

the constitutive equations to appear in rate form. We therefore need to define the rate of the 

Cauchy stress for use in the material constitutive law which relates the increments of stress with 

the increments of strain. One of the objective stresses that can be applied is the Jaumann rate of 

Cauchy stress expressed by McMeeking and Rice in [32]. 

 The issue that arises when using the second Piola - Kirchhoff stress, which is a materially-

based stress, is that it remains constant during the rotation because its components are associated 

with a material basis. The problem is that the components of the Cauchy stress,σ, are associated 

with the current directions in space and, therefore, the Cauchy stress rate, Dσ, will be nonzero if 

there is pure rigid body rotation even though from a constitutive point of view the material is 

unchanged. Thus, the increment of Cauchy stress, Dσ, must be divided into two different parts: 

one due to the rigid body motion only and one associated to the rate form of the stress-strain law.  
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  According to [1], if at time t we attach to a material point a set of base vectors, ei, i=1, 2, 3 

they cannot stretch but they can spin with the same spin as the material, 
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Therefore, their motion can be described as: 

eΩe ⋅=&                            (3.8) 

Thus, if we consider the Cauchy stress tensor in the current configuration as  

jiij eeσ=σ                            (3.9) 

Taking the time derivative we obtain: 

)Ωσσ(Ωσσ TJ ⋅+⋅+= &&                       (3.10) 

where  is the rate of Cauchy stress associated with the constitutive response, also called the 

Jaumann rate of Cauchy stress. The Jaumann stress rate is an objective stress rate tensor that is 

related to the rate of straining as: 
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with as the components of material constitutive tensor,  ijklC

⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂

+
∂
∂

==
k

l

l

k
klkl x

v
x
v

dD
2
1ε as the components of the rate of deformation tensor,  

and   is the velocity. iv

 Since the Jaumann stress rate is defined in terms of both rate of deformation and past history 

this equation provides a link between the material model and the overall change in Cauchy stress. 

Written in indicial notation [28], 

ikjkjkikij
J
ij ωσωσσσ &&&& −−=  where                  (3.12) 
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 Then the Cauchy stress rate becomes: 
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This means that an integration process is always required to evaluate the Cauchy stresses. Thus is 

suitable for an analysis of path-dependent materials [32]. 

 Under these circumstances the differentiated or linearized principle of virtual work with 

respect to the current configuration can be used to formulate the Updated Lagrangian Jaumann 

finite element method. The complete derivation of the differentiation process is presented in the 

next section and Appendix A. 

 

3.2.3 Linearization of the Principle of Virtual Work 

 
Using the augmented internal virtual work from (3.6) we can formulate the principle of virtual 

work as:                            (3.14) 
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where the differentiation of dVDdV
x

Du
dVD v

k

k ε=
∂
∂

=)( . This term is usually insignificant in 

most deformation cases and is ignored. Also this term will yield an unsymmetrical stiffness 

matrix [2]. The same observations can be made for the terms involving vDPD εδδ , which are 

very small and can be ignored. 

 After making these simplifying assumptions, the linearized augmented principle of virtual 

work becomes: 
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The first four integrals in (3.17) produce the so-called constitutive stiffness term, , because it 

comes from the material constitutive law directly or from the straining; the fifth integral which 

will be extended in the next section produces the so-called stress stiffness term or geometric 

stiffness,   (due to geometric nonlinearities). 
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Rewriting (3.16) using the obtained formulas for terms A and B we get the linearized principle of 

virtual work as: 
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 The final expression for the linearized internal virtual work is: 
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The derivation of the geometric stiffness term (second integral) can be found in Appendix A. The 

final result for this term is: 
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Returning now to the linearized principle of virtual work and replacing the nonlinear geometric 

term with the above formula written in terms of enhanced strains, we obtain the final 

formulation: 
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From here it can be seen that each of the integrals produces the specific stiffness term associated 

with the corresponding variable yielding a symmetric system of incremental equations. 
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3.3 REDUCTION OF THE THREE-FIELD TO A TWO-FIELD FORMULATION  

 

For efficiency reasons and easiness of implementation, the above formulation was reduced to a 

mixed displacement pressure form.  

 For the two-field form the principle of virtual work has to be modified accordingly by taking 

out the constraint  0=− v
enh
v εε  that corresponds to the volumetric strain variable as: 
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and by expressing the interpolated volumetric strain  from the second term as a function of the 

interpolated pressure as: 
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where klijklijCK δδ
9
1=  is the instantaneous bulk modulus. 

 Under these circumstances the linearized principle of virtual work for the mixed u/p 

formulation becomes:  
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But, enh
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3
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If we substitute (3.26) in (3.25) we get: 
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The above formula represents the final expression for the rate of internal virtual work from 

which the incremental system of equations can be deduced by substituting the variables with 

their finite element interpolations. For this to be possible, (3.27) has to be converted in a matrix 

formulation which can be easily implemented in a FORTRAN program that interfaces with 

ANSYS solver capabilities. 
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3.4 UPDATED LAGRANGIAN JAUMANN FORMULATION 

 
In ANSYS an Updated Lagrangian Jaumann (ULJ) procedure is employed to solve geometric 

nonlinearities and therefore the same procedure will be used in the proposed formulation and 

implementation. According to [6], this is a typical formulation for large displacements, large 

rotations, and large strain analyses.  The ULJ formulation is applicable to general elastic-plastic 

analyses and it is very effective in large strain analysis, because the stress and strain measures 

used are those to describe the material response in a natural way. According to this procedure the 

variables at time t are considered solved and known and they are used to calculate the solution at 

time t+∆t by solving a set of linearized simultaneous equations. ANSYS uses the Newton-

Raphson method as an iterative numerical algorithm for solving the nonlinear equilibrium 

equations. Details regarding the nonlinear iterative algorithm will be given in chapter 4. 

 Introduction of this nonlinear procedure at this point is useful only for setting the current 

configuration (t+∆t ) as the time when all the stiffness matrices together with internal forces are 

evaluated. The basic equations employed in the U.L.J. formulation are the Jaumann stress rate 

equation defined according to (3.13) and the incremental virtual work equation (3.27) from 

which we can obtain the following two equations: 
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Constraint Equation 
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where  is the incremental material property tensor at time t+∆t, referred to the 

configuration at time t+∆t ; 

)1( −∆+ k
ijkl

tt C

)1( −∆+ k
ij

tt σ  is the modified Cauchy stress at time t+∆t; and  

and 

ij
tt Dε∆+

PDtt ∆+  are the incremental strains  and pressures which are referred to the configuration at 

time t+∆t. All the quantities with (k-1) superscript mean that they are evaluated at t+∆t using the 

value of the displacements obtained from the previous iteration. 

 Since we are interested in finding the solution in current configuration in terms of the solution 

of previous configuration the key term that will provide this is the deformation gradient tensor.  

 

3.5 ENHANCED DEFORMATION GRADIENT 

 

In most structural problems we are interested in finding the deformation of the structure 

throughout the loading history in terms of a reference configuration that is given. Suppose a 

particle is located at position X initially and moves to position x. The location of the particle in 

current configuration is related to the location in the reference configuration by the displacement 

u and is given by: 

uXx +=                            (3.30) 

The deformation gradient matrix is defined as: 
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 Since the proposed formulation is based on enhancing the deformation mode such that it will 

prevent volumetric locking it is necessary to relate this deformation mode to a modification of 

the deformation gradient. This approach has been applied successfully by Taylor [47] to 

tetrahedral elements. 

 The incremental deformation gradient can expressed as: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

==∆

∆+∆+∆+

∆+∆+∆+

∆+∆+∆+

∆+

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

FF

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

t

tt

tt
t                 (3.32) 

or in indicial notation  
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The enhanced deformation gradient is enhanced with a term, F∆ , obtained from the derivatives 

of the bubble function as: 

ijij
enh

ij FFF ∆+∆=∆                         (3.34) 

The total enhanced deformation gradient from the initial configuration to the current 

configuration is computed in terms of deformation gradient at previous time step and incremental 

deformation gradient as: 

enhtenhtt
t

enhtt FFF 00 ⋅∆= ∆+∆+                      (3.35) 

The volume has to be modified consistently as: 

tenhenhtttt dVFdVFdV ⋅∆== ∆+∆+ 0
0                   (3.36) 
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3.6 FINITE ELEMENT APPROXIMATION. MATRIX FORMULATION 

 
The finite element approximation for the developed formulation is based on assuming a linear 

interpolation for both the displacement and pressure fields. Generally, the interpolation can be 

written as: 

ααaNa =                            (3.37) 

where a is a vector-valued function at any point; Nα is a set of interpolation functions also called 

shape functions and aα is a set of nodal variables. 

 If we use an isoparametric concept for our four-node tetrahedral element then the coordinates 

of any point in the tetrahedron can be expressed as: 
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and the same shape functions are used to define the displacement and pressure variables as: 
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3.6.1 Shape Functions 

 

The 4-node tetrahedral element is defined by a set of volume coordinates, ξ 1, ξ 2, ξ 3, ξ 4 which 

represent the ratio of the shaded volume to the total volume (see Figure 2) 
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necessary stabilization. Our element is based on the same approach and therefore it will have a 

node in each corner and an internal node located in the center. Two bubble functions, 

conforming and nonconforming, are studied for an optimal selection.  

Conforming Bubble Functions 

 These functions are a family of high order polynomials that are zero on the boundary of the 

element. A standard conforming bubble function is the cubic bubble function. The cubic bubble 

function was used in the development of MINI element and also in the available literature related 

to triangular and tetrahedral elements [5, 9-10, 12, 23-25, 29-30]. If, for any tetrahedral element 

we denote the volumetric coordinates by ξ i, i=1,2,3,4, the conforming bubbles are according to 

[39]: 

)1(64 321321 ξξξξξξ −−−=c
eN                     (3.42) 

This bubble function was used by Taylor [47] in the formulation of his mixed-enhanced 

tetrahedral element. Taylor’s results indicate that the conforming bubble function in (3.52) does 

not eliminate all oscillations for problems where strong pressure gradients occur. Accordingly, in 

this research, we will also consider other choice for bubble functions. 

Non-Conforming Bubble Functions 

 R. Pierre showed in 1995 [39], that the conforming bubbles satisfy the LBB condition as long 

as the mesh is regular. He demonstrated that this happens only if the triangle is equilateral. 

Hence, he proposed an optimal bubble function for which the local stabilizing effect is the 

greatest.  

 This optimal bubble function is a quadratic non-conforming one which means that it does not 

vanish on the perimeter but it is unity in the center node. This function is defined for any 

tetrahedron as: 
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This function was also used in our formulation due to the following advantages: 

•  It has the highest stabilizing factor, especially in three dimensions.. 

•  Since it is a quadratic function it will yield linear strains which are fully consistent with 

the linear interpolations of u and p.  

•  Implies a lower computational cost due to the fact that we use a quadratic function 

instead of a cubic (2D) or a quartic one (3D).  

•  Numerical integration is also less costly. 

•  In every other aspect the nonconforming bubble is as simple to use as the conforming 

one. 

3.6.2 Matrix Formulation 

Using the same interpolation functions for all variables, the displacements and pressures can be 

represented as: 
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 where the nodal displacements and  pressures together with their variations and increments are: 
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and the discretized strains are expressed with the help of an enhanced strain-displacement matrix 

Benh as :                                
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The enlarged strain-displacement matrix has three additional columns corresponding to the three 

additional internal displacements and it has to be evaluated with respect to the current 

configuration. It has the form:                    (3.47) 
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Evaluation of the Cartesian derivatives of the shape functions at time t+∆t can be done using the 

derivatives at time t and incremental deformation gradient defined in (3.32): 

j
t

Tenh
kj

tt
t

j
tt

enh
kj

tt
t

k
tt

j
t

k
tt

k
tt

j
t x

N
F

x
N

F
x

N
x
x

x
N

x
N

∂
∂
⋅∆=

∂
∂

⇒∆⋅
∂
∂

=
∂
∂
⋅

∂
∂

=
∂
∂ −∆+

∆+
∆+

∆+

∆+

∆+
ααααα )()(     (3.48) 

 Using the above finite element approximations and by placing the variations in the left hand 

side and the increments in the right hand side, each of the integrals from (3.27) yields the 

specific stiffness matrix associated with the corresponding variable as: 
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1. Constitutive stiffness matrix: 

dV
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T

V
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2. Displacement pressure stiffness matrices: 

dV
K enht

V

enh
pu

enh
up NICB)(KK TTT ⋅⋅== ∫ 3

1                  (3.50) 

3. Pressure stiffness matrix:  
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KV

pp NNK T ⋅−= ∫
1     (3.51) 

where the Voigt matrix notation was used (each second rank tensor is written as a vector and 

each fourth rank tensor as a matrix). 

 According to this notation we have: 
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[ T
zxyzxyzzyyxx εεεεεε 222=ε                  (3.53) 

[ T000111=I                       (3.54) 

The elastic moduli are written also in terms of a matrix as: 
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 When large deformations are expected the geometric stiffness matrix is added to the 

constitutive stiffness matrix to form the final stiffness matrix which is a square symmetric matrix 

having the dimension of the total number of degrees of freedom.  

 51



Converting the formulation of this term into a matrix having the same size as the constitutive 

stiffness matrix is a rather complicated task since the Voigt notation cannot be used in this case 

due to the discrepancies in the sizes of the matrices. The procedure used in this work is outlined 

in the next paragraph. 

4. Geometric stiffness matrix: 
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where [ ]enh
i,N is the enhanced matrix formed by the derivatives of the shape functions together 

with the derivatives of the bubble function, obtained by writing  the gradient of the virtual 

displacement matrix as a vector of nine components as follows: 
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where 
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, δδδδδδδδδδδδδδδδ α =  

is the enhanced vector of degrees of freedom formed by the twelve external displacement 

degrees of freedom and the three internal displacement degree of freedom. 

 Using the above arrangement of vectors the matrix of the derivatives of shape functions can 

be written as a 9x15 matrix as: 
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The Cauchy stress matrix that appears in both terms is written as a 9x9 diagonal matrix as: 
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The same procedure is used for the second term of the geometric stiffness matrix. 

The linear system of equations in matrix format will be: 
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where   is a square matrix of size 15x15,          (3.61) genh
uu

cenh
uu

enh
uu KKK ,, +=

enhDu  is the vector of external and internal degrees of freedom of size 15,  
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enh
uF  is the internal force resulting from the equilibrium equation and, 

h
pF  is the internal force resulting from the constraint equation. 

5. Internal Forces 

From the first term of the principle of virtual work the internal force due to the displacement 

degrees of freedom can be computed as: 
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V
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u σ⋅= ∫ )(                        (3.62) 

where )( PP −+= Iσσ  is the  modified Cauchy stress at time t+∆t obtained from the strain 

increment using the Jaumann stress rate and integrated numerically over the substep.  

  

From the second term of the principle of virtual work,  
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we can compute the fictitious internal force due to the mixed u/p formulation as: 
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where ( ) ( tttttttttttt PPDP 321321 3
1

3
1 σσσσσσ ++−++=−= ∆+∆+∆+∆+ )        (3.64) 

and the Cauchy stresses at time t are stored from the previous substep. 
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4.0 ELEMENT IMPLEMENTATION ASPECTS 

 
 

The finite element method is accompanied by a large number of numerical procedures such as 

numerical integration, numerical algorithms for solving nonlinear problems, methods for solving 

a linear system of equations and other methods not related to the scope of our research topic. 

Since the commercial finite element code ANSYS will be used for implementation, all the 

numerical methods related to this code will be used. 

  

4.1 INTEGRATION RULES 

In the case of distorted elements and non-linear behavior numerical integration is needed. For the 

proposed tetrahedral element a four point Gauss numerical integration rule was used. 

dVfwdVf
i

V

n

l
i )(

6
1)(

1

ξξ∫ ∑
=

=                      (4.1) 

The factor 1/6 was required because the weighting coefficients always add up unity whereas the 

volume of the tetrahedron in volume coordinates equals 1/6. The weighting factors and the 

location of the Gauss integration points are listed in Table1 and shown in Figure 3.  

 

Figure 3. Integration Point Location for Tetrahedral Element [2] 
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Table 1. Numerical Integration for Tetrahedral Element [2] 

 
 
Type  Integration Point Location Weighting Factor 
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 Since stiffness matrices and internal forces are all expressed as integrals over the volume of 

the element we need an expression for the volume of the tetrahedral element. This is given by the 

determinant of the Jacobian transformation matrix between volume and Cartesian coordinates as: 
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which can be derived from:  
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                    (4.3) 

where are the Cartesian coordinates of node α. α
ix

 This volume is a signed quantity which means that it is positive if the corner nodes are 

numbered in a special way. To avoid problems with negative volumes, a special subroutine was 

inserted at the beginning of the user element subroutine in which the volumes for each element 

were calculated and checked for negative values.  

 56



 If the volume was found to be negative the sign was changed and stored so it would be 

accessible at each iteration. Inside the Gauss integration loop the element volume was always 

multiplied with the sign saved. 

 

4.2 NONLINEAR ITERATIVE ALGORITHM 

It was shown in chapter 3 that by using an Updated Lagrangian Formulation the element 

matrices and load vectors were derived. They can be arranged as a linear system of equations of 

the form expressed in (3.61) or in an expanded form as: 
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    (4.4) 

where the second row and second column  in the element stiffness matrix are actually the last 

three rows and last three columns of the enhanced stiffness matrix. In other words  

matrices are just parts of the enhanced (15,15) matrix. The sizes of the partitioned matrices 

and vectors are shown in the parentheses.  

eepeue KKK ,,

uuK

 Since the proposed interpolations for u and p  are continuous in the whole domain, and the 

enhanced strain parameters are introduced only internally in the element, the solution can be 

performed in two steps. In the first step the internal displacements ue are eliminated at the 

element level by static condensation. In the second step the reduced stiffness matrix obtained 

from the first step, together with the residuals, are assembled into the global equations to be 

solved using the Newton- Raphson iterative algorithm. 
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4.2.1 Static Condensation Procedure 

 

In order to solve for the internal displacements, we first need to swap the rows and columns 

corresponding to the internal parameters with the rows and columns corresponding to the 

pressure variables. This is done so the final element arrays will have only the displacement and 

pressure degrees of freedom. The final size of the stiffness matrix, load vector and the vector of 

the external degrees of freedom has to be 12+4=16. The following steps were performed in the 

static condensation procedure: 

1. Introduce one row and one column of zeros in the 16th place of the enhanced stiffness 

matrix which will be now (20, 20). 

2. Swap the rows and columns corresponding to  and eu p  such that the internal parameters 

will be arranged the last and the pressures in the middle. The last row and the last column 

of the matrix will be all zeros and will be eliminated together with the residuals. The 

system will now have the form:  
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3.  Partition the matrices as: 
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[ ](3x4)K(3x12)KK epeu21 =                    (4.9) 
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4. Store  and retrieve them at the beginning of the next iteration 

to calculate the iterative value of the internal displacement degrees of freedom. 

                (4.12) 

eF*)(K,K*)(K 1
ee21

1
ee

−−

[ ] )DuK(FKDu iter
21e

1
eee

iter ⋅−−= −

The increment of the internal displacements is obtained as an accumulation of each 

iteration value and is stored if the iteration converged. 

∑= iter
e

substep
e DuDu                      (4.13) 

5. Substitute in the first equation to get the final stiffness matrix of size (16,16): 

         (4.14) 1finalfinal21
1

ee1211finalfinal FDu)K*K*K(KuK =⋅−=⋅ −D

6. Calculate reduced internal force as:         (4.15) eF*)(KFF 1
ee11final

−−=

7. From here the assembly of final element matrix and residual into global equations 

proceeds to find out the incremental values of nodal displacements and pressures. 
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4.2.2 Newton – Raphson Procedure 

 

The basic approach in an incremental step-by-step solution is to assume that the solution at time t 

is known and to solve for the solution at time t+∆t using the balance between the externally 

applied forces Fext and the restoring forces that correspond to element stresses [6]: 

intFFext tttt ∆+∆+ =                          (4.16) 

where 

FFF +=∆+ ttt int                          (4.17) 

and F is the increment in nodal point forces that can be approximated using a tangent stiffness 

matrix  Kt which corresponds to the geometric and material conditions at time t . 

KDuF t=                             (4.18) 

where  is the vector of incremental nodal point displacements. Du

Thus we obtain, 

FFKDu text∆ttt −= +                         (4.19) 

Solving for Du we can calculate an approximation to the displacements at time t+∆t as: 

 Duuu t∆tt +=+                           (4.20) 

From the above expression, the strains, stresses and nodal point forces can be calculated at time 

t+∆t, and the procedure can move to the next time increment. Since this procedure may be very 

unstable the widely used full Newton-Raphson iteration technique (stiffness matrix is updated at 

each iteration) is utilized in ANSYS to solve the global system.  
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 The equations used in the Newton-Raphson iteration are: 
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with the initial conditions:       

                           (4.22) 
FF
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t(0)∆tt
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=
=
=

+

+

+

The general algorithm for a substep at iteration (i) is illustrated in Figure 4 and can be described 

as follows[2]: 

1. Assume u0 which is usually the converged solution from previous time step and for the 

first iteration of the first substep is just zero. 

2. Compute the updated element stiffness matrix, strains and stresses, which in inelastic 

analysis are obtained by an integration process, and using (3.63) compute the restoring 

load. 

3. Check equilibrium and if the restoring load is not equal (or at least to within some 

tolerance) to the applied force then compute Du(i)  using  first equation of (4.20). 

4. Update the displacement to obtain the next approximation using second equation of 

(4.20). 

5. Repeat steps 2 to 4 until convergence is achieved. 
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Figure 4. Newton-Raphson Procedure[2] 

 
 Convergence in our case is assumed when  

refR RεR <  and  ( ) refu
(i) uεDu <  and  ( ) refp

(i) PεPD <           (4.23) 

where R=Fext
 – Fint  is the residual vector and , ,  are tolerances and the corresponding   

R

Rε uε pε

ref, uref, Pref are reference values and the norm used is the Euclidean norm that is the scalar 

measure of the magnitude of the vector as: 

∑= 2
iRR                            (4.24) 

The tolerance used for the out-of-balance convergence for displacement degree of freedom is 

0.05 and 0.000125 for the pressure degree of freedom. The default out-of-balance reference 

value used was extF , for displacement u  and for pressure a reference value of 1 was used. 

      

4.3 STRESS AND STRAIN UPDATE ALGORITHM 

 

When a Newton-Raphson iterative algorithm is applied to a history-dependent problem, as in our 

case, the nonconverged solution obtained from the iteration process is usually not on the actual 
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path and thus, the strain and stress which are history-dependent variables have to be integrated 

over the increment each iteration [1]. They cannot be computed as the sum of the integrations 

performed in each iteration. We assume though that the primary variables are varying linearly 

over the increment. 

 In our formulation the strain is defined as the integral of the strain rate. This integration has to 

take into account the fact that the principal axes of strain rotate during the deformation. 

 Therefore the strain at the beginning of the increment must be rotated with the amount of rigid 

body rotation that occurs during that increment. This is done using the Hughes-Winget [27] 

algorithm. According to Hughes-Winget, any tensor associated with a rate constitutive equation 

is integrated as: 

)(Dεa∆∆Ra∆Ra T
t∆tt

(+⋅⋅=+                     (4.25) 

where  a is the tensor, a∆(  is the increment associated with the material’s constitutive behavior 

which depends on the strain increment, , defined by the central difference formula as: Dε

)(
2/ttx

DusymD
∆+∂

∂=ε                         (4.26)  

where 

 )(
2
1

2/ ttttt xxx ∆+∆+ +=                        (4.27) 

and  is the rotation matrix computed from the polar decomposition of the deformation 

gradient at the midpoint configuration: 

∆R

2/12/12/1 URF ∆⋅∆=∆                        (4.28) 
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 The displacement increment at midpoint configuration, 

∆t/2t

∆tt

∆tt∆t/2t x
x

x
Du

x
Du

+

+

++ ∂
∂

⋅
∂
∂=

∂
∂                        (4.29) 

is computed from the increment of deformation gradient evaluated at the midpoint configuration: 
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If  and the strains, ,  are known then we proceed to calculate the stresses 

 which in inelastic analysis are obtained by  the above described integration process as 

in (4.25). 

)1( −∆+ it Ut )1( −∆+ it εt

)1( −∆+ it σt
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5.0 NUMERICAL INVESTIGATIONS OF LINEAR INCOMPRESSIBLE MATERIALS 

 

The mixed enhanced strain formulation proposed was implemented through a user-

programmable element into the commercial finite element software ANSYS. Using the ANSYS 

platform, the performance of the stabilized formulation was tested considering several 3D 

problems using the newly developed tetrahedral element. The results of problems were compared 

to either analytical results in the literature or well known solutions with mixed hexahedral 

elements with B-bar formulation [2]. The user-programmable element was implemented with 

four key options such that four formulations are allowed. This was done to show the 

improvement of the proposed formulation as compared to the pure displacement and mixed u/p 

without stabilization formulations. The four formulations were: mixed u/p enhanced stabilized 

with cubic bubble function, mixed enhanced with quadratic bubble function, mixed u/p without 

stabilization and pure displacement.  

 Four different tests were developed for linear elastic materials, each of them being carried out 

at different Poisson’s ratios and different mesh sizes: homogeneous deformation tests, thick-

walled cylinder under pressure, Cook’s membrane problem and two cantilever beam tests for 

testing the capability of the element in bending.  Two different meshes were used in these 

problems. Whenever the problem permitted (bending tests), the mesh was created by generating, 

in three directions, blocks of six tetrahedral elements such that the comparison with the 

hexahedral elements would be more meaningful. In this manner, the number of nodes was the 
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same in both hexahedral and tetrahedral meshes. It is important to note, however, that the 

number of elements in the tetrahedral meshes is six times greater than the number of hexahedral 

elements that were modeled. Therefore, some minor differences in element solutions were 

expected since the mesh size has an influence on the strain and stress values. 

 

5.1 HOMOGENEOUS DEFORMATION TESTS 

 
 
Two homogeneous deformation tests were carried out to check the capability of the element to 

sustain constant strain states. The patch tests were also a very useful tool for the finite element 

developer to assess the correctness of their formulation and eventual mistakes in programming. 

 

1. Uniaxial compression test  

 The finite element model for this test represents a cube with side length of 1 made up of  

six tetrahedral elements. Three of its adjacent faces are restrained to move only in their own 

planes. The cube is subjected to 4 forces (F1=F7=-1/6 and F5=F4=-1/3) that provide a uniform 

compressive stress of 1 MPa. The material properties used are E=1e6 MPa and υ=0.3. The 

expected results are: stress in the direction of loading is -1.0 MPa and strain in the same direction 

is -1.e-5. Results of the homogeneous deformation using the enhanced mixed u/p with both 

bubble functions are matching the expected ones and are identical. Therefore only results 

corresponding to the quadratic bubble functions are shown in Figure 5. 
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(a) Stress in loading direction        (b) Strain in loading direction 

 

Figure 5. Stress and strain in the direction of loading for the uniaxial compression test 

 

2.  Homogeneous deformation of a unit cube formed of 25-tetrahedra under linear applied 

displacement field 

 The finite element model consists of a 1x1x1 block meshed with 25 tetrahedral elements and 

subjected to a linearly varying displacement field applied to all nodes as given by the following: 

  z*1.5 y *0.75 x *1.5  0.5z
  z*0.75 y *1.0 x *2.5  0.75

*5.0*5.1*0.20.1

+++=
+++=
+++=

v
zyxu

 

 The material properties are E=1.e6MPa and the finite element model is presented in Figure 6. 

 

 

Figure 6.  Finite element model of unit cube formed by 25-tetrahedra 
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 The computed strains and stresses for this deformation field should be: 

800000.0   600000.0,   1600000.0,  

,   3000000.0   2600000.0,   3400000.0, 
2.0   1.5,   4.0,  

,   1.5   1.0,   2.0, 

zxyzxy
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===

===

σσσ
σσσ

εεε
εεε

 

 The mixed enhanced tetrahedral element passed this patch test since the results obtained are 

exactly as those expected. A part of the output files with strains and stresses for a few selected 

elements together with expected strains and stresses is presented in Appendix B.  

 

5.2 EXPANSION OF A THICK-WALL CYLINDER UNDER PRESSURE 

 

This test was proposed by R. Taylor in [47] to assess the behavior of a similar strain enhanced 

tetrahedral element in nearly incompressible materials. 

 

Description of the test 

 An infinitely long thick walled cylinder with inner radius of 3 units and outer radius of 9 units 

is subjected to an internal pressure of 1 unit. Due to the axisymmetric nature of the problem, the 

finite element model can be represented by a wedge of a 5 degree angle sector and a unit 

thickness. The material properties considered are linear elastic with E = 1.e6 and Poisson’s ratios 

were varied from 0, 0.25, 0.3, 0.49, 0.499 and 0.4999 to evaluate the robustness of the 

formulation.  The mesh is unstructured and the number of divisions per radial direction was 

varied from N=10, 20 to 30 elements.  Results of each formulation are compared with the 

theoretical results and errors are reported in Tables 2, 3 and 4.  
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Table 2.  Radial displacements for the thick wall cylinder, N=10 

 

Poisson 
Ratio Theory

Mixed u/p 
enhanced 

Tetra 
Error (%) Mixed u/p Error(%)

Pure 
Displace

ment
Error (%)

0.0000 3.7500 3.7275 0.5994 3.7274 0.6015 3.7235 0.7058
0.2500 4.4531 4.4242 0.6489 4.4237 0.6594 4.4124 0.9134
0.3000 4.5825 4.5520 0.6642 4.5513 0.6805 4.5365 1.0029
0.4900 5.0399 5.0008 0.7747 4.9701 1.3841 4.7941 4.8760
0.4990 5.0602 5.0204 0.7850 4.8935 3.2927 3.7532 25.8278
0.4999 5.0623 5.0224 0.7876 4.6940 7.2738 1.1884 76.5242
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Table 3.  Radial displacements for the thick wall cylinder, N=20 

 
 

Poisson 
Ratio Theory

Mixed u/p 
enhanced 

Tetra 
Error (%) Mixed u/p Error(%)

Pure 
Displace

ment
Error (%)

0.0000 3.7500 3.7381 0.3157 3.7382 0.3147 3.7374 0.3348
0.2500 4.4531 4.4388 0.3196 4.4390 0.3151 4.4370 0.3614
0.3000 4.5825 4.4568 0.3197 4.4568 0.3131 4.5654 0.3711
0.4900 5.0399 5.0255 0.2856 5.0305 0.1861 4.9800 1.1878
0.4990 5.0602 5.0462 0.2763 5.0408 0.3834 4.5809 9.4714
0.4999 5.0623 5.0482 0.2767 5.0035 1.1612 2.5048 50.5199

0.0000

20.0000

40.0000

60.0000
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Table 4.  Radial displacements for the thick wall cylinder, N=30 

 
 

Poisson 
Ratio Theory

Mixed u/p 
enhanced 

Tetra 
Error (%) Mixed u/p Error(%)

Pure 
Displace

ment
Error (%)

0.0000 3.7500 3.7746 0.1431 3.7446 0.1418 3.7444 0.1481
0.2500 4.4531 4.4470 0.1361 4.4472 0.1303 4.4464 0.1498
0.3000 4.5825 4.4576 0.1246 4.5767 0.1263 4.5755 0.1528
0.4900 5.0399 5.0328 0.1391 5.0341 0.1143 5.0021 0.7496
0.4990 5.0602 5.0528 0.1459 5.0413 0.3727 4.7522 6.0857
0.4999 5.0623 5.0547 0.1484 5.0088 1.0566 3.1105 38.5547
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Results and Discussions 

 Tables 2, 3 and 4 show results of radial displacements at a node located on the inner radius for 

all the Poisson’s ratios considered and for all formulations together with the errors with respect 

to the theoretical results. Contour plots of radial and tangential stresses for the case of N=20 for 

all three formulations are shown in Figure 7. 

 The choice of the bubble function is insignificant since results show that both of them 

eliminate volumetric locking and stabilize the element in the same manner. This can be assessed 

from the comparisons with the exact solutions for displacements, radial and tangential stresses. 

 Pure displacement formulation shows clear evidence of volumetric locking and the mixed u/p 

formulation improves the behavior in the incompressible limit.  
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 The error in the displacements is greatly reduced but still shows some volumetric locking 

because of high values of stresses as compared to the theoretical stresses.  

 As it can be seen from tables, the enhanced mixed u/p tetrahedral element shows errors less 

than 1% in radial displacement for both compressible and almost incompressible linear elastic 

materials. The improvement with respect to the other two formulations, is  more obvious for 

υ=0.4999 where the pure displacement formulation gives errors ranging between 38 and 76 % 

depending on the mesh size and respectively the mixed u/p formulation gives errors ranging 

between 1-7%. For compressible materials all formulations behave similarly which is expected. 

 Plots of stress distribution in radial(x) and tangential(y) directions presented in Figure 7(a-f) 

show that the mixed u/p and pure displacement formulations produce spurious and incorrect 

patterns with high stress values. In contrast to these formulations, the stress distributions of the 

stabilized mixed u/p tetrahedral are free of oscillations and the pattern shows clearly the variation 

of stresses as a function of radii. The reference values of stresses for this particular problem of an 

infinitely long cylinder were calculated analytically and they were found to be: 

25.1,0

25.0,1

00
==

=−=

==

==

rrrrrr

rrrrrr
ii

θθ

θθ

σσ

σσ
 

 As it can be seen form Figure 7, the stabilized tetrahedral predicted stresses are in good 

agreement with the above theoretical ones; the radial stresses are within 4 % and the tangential 

stresses are within 10% while the mixed u/p and pure displacement formulations’ errors are 

increasing over 100% and 500% respectively. 

 Another remark in favor of stabilized tetrahedral element is related to the fact that the errors 

are not varying too much from one Poisson’s ratio to another which proves that the developed 

element is robust. 
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   (d)Stabilized Mixed u/p Tetrahedral, tangential stress 

   
(b) Mixed u/p Tetrahedral, radial stress       (e) Mixed u/p Tetrahedral, tangential stress 

       
(c) Pure Displacement Tetrahedral, radial stress    (f) Pure Displacement Tetrahedral, tangential stress 

Figure 7. Thick walled cylinder stresses for N=20 

 (a) Stabilized Mixed u/p Tetrahedral, radial stress           
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5.3 COOK’S PROBLEM 

 
 
This problem has been frequently used to assess finite elements under combined bending and 

shear.  The problem represents a tapered panel clamped on one side while a shearing load acts on 

the opposite side (see Figure 8). The thickness was considered t =1 mm and a state of plane 

strain was simulated by restraining the plate to deform in the thickness direction. Material 

properties used are E=1000MPa and Poisson’s ratio was varied again between 0.3 and 0.4999. 

 Three mesh sizes were studied having N=10, 20 and 30 elements per edge. 

 

                                      

Figure 8. Cook’s problem geometry 

 

 

Results and Discussions 

 The results are compared for stabilized mixed u/p, mixed u/p and pure displacement 

formulations with the results of the well known mixed hexahedral elements with mixed enhanced 

formulation available in ANSYS. These elements are known to behave correctly in 

incompressibility and shear locking conditions.  

48 mm 

F = 100 N

P 

16 mm 

 44 mm
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 Tables 5 and 6 represent the vertical displacement of the top corner node P, the axial stresses 

for all formulations and the errors with respect to the hexahedral elements. Figures 9, 10 and 11 

show contour plots of the normal stresses in x and y direction and shear stresses for all 

formulations for the mesh size N=20 and Poisson ratio υ=0.4999. 

 The pure displacement formulation exhibits severe locking behavior as the error in the 

displacement of point P reaches 42 % and the stresses are highly overestimated. The mixed u/p 

elements show improved accuracy in displac ts (error is just 1.7%) but the stresses show 

spurious distribution and are overestimated.  

 The stabilized tetrahedral elements approach very closely the hexahedral element solution in 

both displacements and stress distribution. They yield accurate results even on coarse meshes 

with just 0.16% error in displacements and within 5% error in stresses. Also they yield a smooth 

stress distribution for all the situations considered. The difference that can be noted in axial 

compressive stresses   when compared to th xahedral elements is due to the unstructured 

e ents w he 

left top corner.  

 As for the shear stresses, the mixed u/p and stabilized mixed u/p yield similar results and 

istribution patterns which are very close to the hexahedral results. This is explained by the fact 

that the shear component of the stresses does not contain the volumetric part and therefore is not 

affected by the increasing pressures developed in cases of volumetric locking. 

 

 

 

 

emen

e he

mesh that was used for the tetrahedral el m hich produces highly distorted elements at t

d
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Table 5. Cook’s al displacement of top corner node for different mesh sizes 

 

 

 

 

 

problem, vertic

N=10 29.81 29.378 1.472 28.248 5.262 19.82 33.5
N=20 30.41 30.365 9 17.43 42.668
N=30 30.63 30.975 1.11 30.657 0.073 17.74 42.09

Stabilized 
Tetrahedral 

/p 
al 

Error(%)Mesh 
Size

Hexahedral 
element 

Mixed u
Tetrahedr

0.16 29.885 1.73

Pure 
Displacement 
Tetrahedral

Error (%) Error(%)

 

 Cook’s problem, axial tensile stress for different mesh size 

 

 
 

Table 6.

N=10 224.24 252.96 12.5 713.586 89.3 7473 Too large

N=20 221.4 229.77 3.6

Stabilized 
Tetrahedral 

Mixed u/p 
Tetrahedral 

Mesh 
Size

Hexahedral 
element 

341.365 54.3 28528 Too large

N

Error(%)
Pure 

Displacement 
Tetrahedral

=30 222.4 227.4 2.25 298.08 34.2 17178 Too large

Error (%) Error(%)
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 (a) Mixed u/p enhanced strain hexahedral    (b) Stabilized mixed u/p tetrahedral 

 

          
  
(c) Mixed u/p tetrahedral          (d) Pure Displacement Tetrahedral 
 
 
 

Figure 9. Cook’s Problem: Normal Stress in x direction 

 
 
 
 
 
 

 

 

 

 

 76



 77

 
 
 
 

        
 
(a) Mixed u/p enhanced strain hexahedral    (b) Stabilized mixed u/p tetrahedral 
       
 
 

       
 

(c) Mixed u/p tetrahedral         (d) Pure Displacement Tetrahedral 
  
 
 

Figure 10. Cook’s Problem: al Stress in y direction 

 
 
 
 
 
 

 
 

 Norm



 
 
 
 
 

       

   (b) Stabilized mixed u/p tetrahedral 

        

 (d) Pure Displacement tetrahedral 

 Problem: Shear Stresses 

 
(a) Mixed u/p enhanced strain hexahedral 
 
 
 

 
(c) Mixed u/p tetrahedral                
 
 
 

Figure 11. Cook’s
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5.4 TEST OF BENDING CAPABILITY 

 pure bending test of the newly developed tetrahedral element was performed to assess its 

ending capabilities in small deformation linear elastic problems. Since we are interested in 

ssessing the performance in shear locking and volumetric locking, only results for Poisson’s 

 

stresses are compared with the mixed u/p hexahedr

 This element is well known for its stabil

volumetric locking.  

 

Description of the test 

The test represents a cantilever beam with on with width of 10 mm 

hickness of 2 mm and length of 100 mm clamped at the left end. A bending moment is 

pplied through two opposite displacement loads along the right edges (top and bottom) such that 

an extreme pure bending case is simulated. The material properties are taken as E =1000 MPa 

and Poisson’s ratio was considered 0.3 and 0.49999. The mesh used was structured for direct 

comparison with hexahedral elements.  Geometry and finite element model are shown in 

Figure12.  

 Contour plots of normal and shear stresses for ν=0.3, N=6 are shown in Figures 13 and 14 

and for ν=0.49999 are shown in Figure 15 and 16. 

 

 

 

 

A

b

a

ratios of ν=0.3 and ν=0.49999 are reported. Results of maximum deflections, shear and axial

al element results with mixed enhanced strain. 

ity and good performance in both shear and 

 a rectangular cross secti

and t

a
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Figure 12. Finite element model of the pure bending test 

 
 
Results and Discussions 

 

From the two sets of plots it can be deduced that the tetrahedral element’s performance in 

ending. 

ven though the displacements are within errors of 1 % and the normal stresses are acceptable, 

the shear stresses have nced strain hexahedral 

lements. The shear stress distribution also shows evidence of locking.  When both shear and 

compressibility constraints exist, the stabilized tetrahedral brings some improvement as 

ompared to the mixed u/p and pure displacement formulation that is completely locked as it can 

e seen from Figure 15. This remark helps us conclude that the stabilized tetrahedron is 

erforming poorer than the mixed u/p enhanced strain hexahedral element in pure bending 

s. It is though necessary to note that in bending dominant problems, as it was seen for 

Cook’s problem, this limitation disappears and the performance is significantly improved. 

100 

10 

2 

 

shear locking is not as good as it is in volumetric locking for this extreme case of pure b

E

larger values than those obtained using mixed enha

e

in

c

b

p

problem
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 (a) Mixed u/p enhanced strain hexahedral   
 

   

      (b) Stabilized Mixed u/p Tetrahedral 

         
 
 (c) Mixed u/p Tetrahedral         (d) Pure Displacement Tetrahedral 
 
 
 

Figure 13. Pure Bending Test: Axial  Stress for ν=0.3  
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   (b) Stabilized mixed u/p tetrahedral 

       
 
(c) Mixed u/p tetrahedral        (d) Pure Displacement tetrahedral 
 

 

 
Figure 14. Pure Bending Test: Shear Stress for ν=0.3 

 
 
 

 
(a) Mixed u/p enhanced strain hexahedral 
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    (b) Stabilized mixed Tetrahedral 

        

(c) Mixed u/p Tetrahedral         (d) Pure Displacement Tetrahedral  

 

Figure 15. Pure Bending Test: Axial Stress for  ν=0.49999. 

 

          
 
 
(a)Mixed enhanced strain Hexahedral  
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) Mixed enhanced strain Hexahedral     (b) Stabilized Mixed u/p Tetrahedral 

Figure 16. Pure Bending Test: Shear Stress for ν=0.49999. 

 

 

       

(a
 
 

        
  
(c) Mixed u/p Tetrahedral         (d) Pure Displacement Tetrahedral 
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6.0 NUMERICAL INVESTIGATIONS OF NONLINEAR MATERIALS IN LARGE 

DEFORMATIONS 

 

The behavior of the proposed formulation in large deformations and large rotations using  

nonlinear materials will be illustrated in a number of benchmark problems with emphasis on 

simulations of metal forming problems. These are usually very difficult nonlinear problems due 

to both excessive element distortions and contact conditions together with the presence of the 

incompressibility constraint. Performance of the stabilized mixed u/p tetrahedral element was 

 

problems where volumetric locking is prevalent or with enhanced strain in bending dominated 

problems. As in the previous chapter the behavior of the stabilized formulation was again 

compared to those of mixed u/p without stabilization and pure displacement for assessing the 

improved performance that the stabilization brings. It is important to note that analyses were 

carried out using both the cubic and the quadratic bubble functions. Since identical results were 

 for each bubble function, only the cu le function results are presented in this 

6.1 NONLI S 

he same two tests described in chapter 5.1 for linear testing were used to verify the correctness 

f coding for the finite strain deformation case. These patch tests were passed in the 

eometrically nonlinear case and brief results are presented in the next section.  

tested against the performance of the mixed u/p hexahedral element with B-bar formulation for

obtained bic bubb

section. 

 

NEAR HOMOGENEOUS DEFORMATION TEST

 
T

o

g
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1. Uniaxial Compression Test. 

Two materials were used for this test. The first material used for the uniaxial compression test 

 multi linear isotropic (MISO) defined by a four point stress-strain curve with the following 

properties: E=100e4, ν=0.3. The stress/strain curve of the elasto-plastic material is shown in 

Figure 17. The applied load is a uniform pressure in vertical direction such that the final height 

will be reduced to 50%. 

 Results are compared to the mixed u/p hexahedral with B-bar formulation and again with the 

other two formulations, the mixed u/p without stabilization and the pure displacement. 

 

is

 

Figure 17. Stress-Strain curve of MISO material 

 

 The predicted strain results in the loading direction are presented in Figure 18. The contour 

plots (see Figure 18 and 19) show both the und med geometry and the deformed geometry. 

ts, stresses, 

rains and pressures of the stabilized tetrahedral are in excellent agreement with the hexahedral 

lement. The displacements and strains of the mixed u/p without stabilization are very different 

from the reference mode s as 

etter as the stabilized formulation for this special case of deformation.  

efor

They show a homogeneous deformation as it was expected and the displacemen

st

e

l and even from the pure displacement formulation which perform

b
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) Mixed u/p Hexahedral Element                             (b) Stabilized Mixed Linear Tetrahedral  

 

          

(c) Mixed u/p Tetrahedral         (d) Pure Displacement Tetrahedral 

 

Figure 18. Nonlinear Uniaxial Compression Test: Strain in loading direction. 

(a
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) Mixed u/p hexahedral         (b) Stabilized Mixed Tetrahedral 

 

Figure 19. Nonlinear Uniaxial Compression Test: Hydrostatic Pressure. 

 
 
 The second material is modeled by a rate dependent visco-plasticity model in which the yield 

strength is introduced by an overstress power law (PERZYNA model) and the static yield 

strength is defined by using a bilinear isotropic model. The parameters introduced in the model 

are: E=2.0e5, ν=0.3, σ0 = 9000, m (strain rate hardening parameter) = 0.2,  

 (Viscosity parameter)=0.4 according to the m

(a
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The same boundary conditions as before are maintained and a uniform pressure in the vertical 

direction is applied in three load steps as follows: 

1. Apply a stress equal to the yield stress (9000). 

2. Apply a stress equal to 10800. 

3. Keep a constant stress at 10800. 

⎟⎠⎜⎝ γ
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 Figure 20 shows the equivalent stress for the stabilized tetrahedral compared to the hexahedral 

element with mixed u/p and B-bar formulation. As it can be observed the results are identical and 

they show a constant deformation. 

 

          

(a) Mixed u/p Hexahedral (B-bar)      (b) Stabilized Mixed Tetrahedral  

  

Figure 20. Rate-Dependent Uniaxial Compression Test: Equivalent Stress 

. Homogeneous deformation of a unit cube formed of 25-tetrahedra under linear applied 

displacement field

The same geometry as in the linear case (see section 5.1) was tested now with a bilinear 

otropic material and compared to a constant pressure tetrahedral (SOLID 187 in ANSYS). The 

aterial properties are taken as follows: E=100 e4, ν=0.3, σy =800 and ET = 10000. 

 l
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A inear displacement field is applied as: 

45.
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 Figure 21 shows the equivalent stress for the deformed geometry at the last step together with 

the initial geometry. As it can be seen the stabilized tetrahedral element passes the constant 

deformation test and the results are identical with the ones for constant pressure tetrahedral. 

   

(a)\Constant pressure Tetrahedral (SOLID187)     (b) Stabilized Mixed Tetrahedral 

 

 
Figure 21. Homogeneous Deformation Test with linear displacement: Equivalent Stress. 

6.2 UPSETTING OF A BILLET 

 
o initially assess the performance of the new mixed enhanced strain tetrahedral element under 

conditions of elasto-plastic finite deformation, a billet upsetting process was analyzed.   In the 

upsetting problem, the billet was modeled as in Figure 22 and it was subject to a distributed 

vertical displacement load applied over one third of its top cross-sectional area. This specific 

upsetting geometry and load was chosen because known results are available in the literature 

[26]. The overall objective of the forming process being modeled was to achieve a 65% 

compression of the height of the billet.   

T
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 In the simulation, a state of plane strain is considered and no contact pairs were defined and 

the material properties of the billet were given the following values: 

 The finite element model used in this simulation has a structured mesh that permits direct 

comparison with hexahedral element mesh. Results are compared with a hexahedral element 

with B-bar formulation. 

hedral elements and our 

ew formulation.  Examining the contour plots of all three formulations we can note that the 

abilized formulation is the only formulation that predicts the correct deformed shape and 

isplacement, as compared to the hexahedral mesh.  

 Elastic modulus (E): 200GPa   Poison’s ratio (ν): 0.3.   

Yield stress (σy): 250MPa   Tangent Modulus (ET):1.0GPa 

 

Figure 22. Finite element model of the upsetting problem 

 

 Figures 23 and 24 contain contour plots of the equivalent stress of the deformed billet and 

principal stress in the second direction. As shown in the figures, very good agreement was 

obtained between the predicted deformation and stress results of the hexa

n

st

d
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 The mixed u/p formulation without stabilization predicts close values of equivalent stress but 

when looking at the deformed shape it can be seen that the displacements are highly 

underestimated, indicating severe volumetric locking. In fact the deformation of the mixed u/p 

formulation predicts an upward direction of plastic flow which is totally different from the real 

one. The pure displacement formulation also shows clear evidence of locking by inspection of 

the deformed shape and high values of principal stress. The stabilization effect of the mixed 

enhanced strain formulation is very obvious from the plots of the second principal stress which 

show a smooth distribution in contrast to the polluted distribution of stresses obtained with the 

mixed formulation without stabilization.  

 Even though the results are improved a lot compared with the other formulations, there are 

still some differences when compared to the hexahedral ones. The only difference in the 

predicted results relates to the deformation of the billet around the punch corner where the 

tetrahedral model predicts a smaller slope between the punch face and the free surface than the 

hexahedral model. In that area the mesh is highly distorted and the compressive stress 

corresponding to that element is very high as compared to the hexahedral stress. We have to keep 

ore it is 

xpected that the stresses would have high values which consequently change the contour plot so 

that the comp ral elements. 

 Because of these reasons, in Figures 23 and 24, (c) the equivalent stress and second principal 

stress for hexahedral model was plotted using the same contour range as for the tetrahedral and 

as it can be seen, our supposition that the singularity at the sharp corner is the only area that 

differs from the reference plot was confirmed. The stabilized tetrahedral model shows a smooth 

distribution with values similar to the hexahedral one everywhere except at that corner. 

in mind though that any sharp corner represents a singularity for the stresses and theref

e

arison to hexahedral elements seems detrimental to the tetrahed
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(b) Mixed u/p Hexahedral ( same contour range)  

 
(c) Stabilized mix d u/p Tetrahedral 

 

 
) Pure Displacement Tetrahedral 

 

 

Figure 23. Upsetting of a billet: Equivalent Stress 

 
(a)Mixed u/p Hexahedral (automatic contour)     
 

e

      
(d) Mixed u/p Tetrahedral         (e
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(a) Mixed u/p Hexahedral (automatic contour)     (b) Mixed u/p Hexahedral (same contour range) 

                                        
 
         (c) Stabilized Mix  Tetrahedral 
 

        
(d)Mixed u/p Tetrahedral         (e) Pure Displacement Tetrahedral 
 
 

Figure 24. Upsetting of a billet: Principal stress in second direction 

ed u/p
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6.3 METAL EXTRUSION 

 
 
The second forming process used to assess the quality of the new tetrahedral element was a large 

strain extrusion process that was also studied in the literature [26]. Simulation of metal extrusion 

is another complicated metal forming problem in which large strains are expected. This process 

is usually very hard to be carried out to completion without using remeshing procedures. This is 

Description of the model 

 In the finite element model, the work-piece was defined with a rectangular cross-section with 

dimensions of 19.5 x 2 mm and an overall length of 45 mm.  As shown in Figure 25, the work-

piece was forced to pass between two rigid forming tools by imposing a lateral displacement of 

45mm in the horizontal direction. The upper tool was defined to be a rigid target surface and its 

shape was designed to ensure that the final height of the billet was reduced by 50%. A 

frictionless contact pair was defined between the upper rigid tool and the billet. The bottom 

contact pair was modeled by imposing symmetry boundary conditions along the centerline of the 

work-pie -piece, a 

ilinear isotropic model was defined for the material behavior with the following properties: 

Elastic Modulus (E): 200.0GPa 

ield Stress (σy ): 800MPa   Tangent Modulus (ET):  300MPa. 

due to three causes: the extreme distortion of the elements especially in the angled part of the die, 

the incompressible nature of the deformation and the existence of the boundary contact 

conditions.  

ce. An overall state of plane strain was assumed in the model.  For the work

b

 Poisson’s ration (ν): 0.3,  

Y
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 In order to reduce the excessive mesh distortion when the material enters the die and also to 

reduce the time taken to achieve steady-state conditions, a fillet was created on the right top 

corner. The mesh that was used is an unstructured mesh. 

 The reference results are again considered from a finite element model with hexahedral 

element with B-bar mixed u/p formulation.  

 

 
 

 

Figure 25.  Finite Element model of the metal extrusion 

 
 
Results and Discusssions 
 
 From the contours of equivalent stress we can see that the deformation reaches a steady state 

condition and mesh is homogeneous in this area.  As illustrated in the equivalent plastic stress 

and strain results presented in Figures 26 and 27, the stabilized tetrahedral model was found to 

have good agreement w ective, the tetrahedral 

ilar deformation pattern and strain distribution to the hexahedral 

model throughout the extrusion process.  Quantitatively, the overall displacements results 

between the two formulations were nearly identical.   

 Results of equivalent stress are plotted in Figure 26 and equivalent strain in Figure 27. 

 

 
 

  
 

 

 

ith the hexahedral model. From a qualitative persp

model exhibited a very sim
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 In fact, as listed in Table 7 for the nodes with an original height of 20 mm, the average 

difference in horizontal (ux) and vertical (uy) displacements were .4% and 1.1% respectively.  

 These results clearly indicate the quality of the new tetrahedral formulation. The differences 

found in minimum and maximum values of the effective stresses and strains can originate also 

Tetrahedral Hexahedral Difference Difference 

from the difference in mesh used, since the tetrahedral model uses an unstructured mesh as 

compared to the structured mesh of hexahedral elements even though the number of element 

divisions per each edge was the same. It is interesting to note that in this case of confined 

deformation the difference between the stabilized mixed formulation and the mixed formulation 

without stabilization are not as significant as it was observed in the upsetting process and in 

linear examples. The distribution of effective stress is smoother than the mixed u/p one. The 

results of pure displacement formulation are also not so far away but they show even more 

pollution in the effective stresses and a wrong deformation pattern of the right edge.  

 

Table 7. Extrusion: Comparison between tetrahedral and hexahedral mesh displacements 

 

  

Stabilized 

Model Model in Ux in Uy 

Ux Uy Ux Uy (%) (%) 
Initial 

Location (mm) 
Horizontal 

at h=20  mm mm  mm  mm      
5 45.167 -1.988 45.222 -2.066 0.121 3.755 
10 46.067 -4.351 46.102 -4.435 0.075 1.902 
15 47.169 -6.834 47.12 -6.849 0.103 0.219 
20 49.051 -9.373 49.319 -9.505 0.543 1.385 
25 53.442 -9.54 53.675 -9.489 0.434 0.537 
30 57.838 -9.504 58.251 -9.513 0.709 0.100 
35 62.706 -9.524 63.076 -9.525 0.586 0.015 
45 73 -9.669 72.515 -9.565 0.668 1.093 
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(a) Mixed u/p Hexahedral         (b) Stabilized Mixed u/p Tetrahedral 
 
 

       
 
(c) Mixed u/p Tetrahedral                  (d) Pure Displacement Tetrahedral 
 
 
 

Figure 26. Extrusion process: Equivalent Stress 
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 (b) Stabilized Mixed u/p Tetrahedral 

         

Pure Displacement Tetrahedral 

c

 
 
 
 

 

 

 
(a) Mixed u/p Hexahedral         
 
 

 
(c) Mixed u/p Tetrahedral         (d) 
 
 
 

Figure 27. Extrusion pro ess: Equivalent Strain 
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6.4 HYPERELASTIC CANTILEVER BEAM 

 
This test was designed to assess the performance of the new tetrahedron element in large 

deformations and large rotations in bending dominant problems where conditions of near 

incompressibility are present. This example was used by R. Taylor in [47] to verify his enhanced 

5 mm length and a whole length of 50 mm is 

edge in the z direction (see Figure 28). The 

ents along the three directions from a block made 

 
 

Figure 28. Hyperlastic Cantilever Beam: Finite Element model 

 

strain formulation for hyperelasticity. 

Description of the test 

 A square cross section cantilever beam with 

loaded with a displacement along the top left 

structured mesh is obtained by generating elem

of six tetrahedral elements.  
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 The material used is hyperelastic with a Neo-Hookean formulation defined by the following 

two constants:  

G=333.35MPa       

d= 1/K = 1.2e-6 

 The reference finite element model is constructed from mixed u/p hexahedral elements with 

an enhanced strain formulation because the problem is of a bending dominant type. As done 

previously the stabilized formulation is pres  together with the other two formulations, 

mixed u/p and pure displacement, for comparison reasons. Contours of equivalent stress, 

principal stress in the second direction and hydrostatic pressures are shown in Figures 29, 30 and 

31. As illustrated in the contour plots, the stabilized enhanced formulation is clearly predicting a 

deformed shape closest to the hexahedral finite element model (note that the final deformed 

shape is almost horizontal). The mixed u/p formulation, in contrast, shows a much stiffer 

n cking and 

correctly predicts twisting of the beam instead of bending. In fact, the pure displacement 

formulation in this erged substep are 

abilized tetrahedral are similar with those of 

hexahedral one and the values of these stresses are within 10 % error. It is noteworthy to mention 

at even though we have the same number of nodes for both models, the number of tetrahedral 

elements is six times larger than the number of hexahedral elements. In addition, the tetrahedral 

elements have 4 degrees of freedom at each node while the hexahedral ones have only three (the 

pressure is considered constant in this element). 

 As for the principal stress contour plots in Figure 30, the comparison is even more difficult 

because it can be observed that even for the hexahedral elements the mixed enhanced strain 

ented

response of the beam while the pure displaceme t formulation shows evidence of lo

in

 case did not even converge, so only results at the last conv

shown. The equivalent stress contours of the st

th
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formulation (Fig. 30(a)) and the B-bar (Fig. 30(b)) give different results, with the stabilized 

tetrahedral compressive stress being closer to the compressive stress of the mixed enhanced 

tress being closer to the B-bar formulation of the same elements. The 

icz 

ure distributions no longer 

 

 

 

 

 

 

hexahedral and the tensile s

hydrostatic pressures are the most sensitive variables when considering locking. A special note 

has to be made when examining those plots: due to the negative sign considered in the 

interpolated pressure of the stabilized tetrahedral element as compared to the pressure calculated 

from stresses of the hexahedral elements, the pressure degree of freedom is plotted with the signs 

reversed. Therefore when looking at the pressure plots, the minimum pressure of the tetrahedral 

model is -340 and the maximum pressure is 205. If compared to the hexahedral model, we can 

see that the maximum pressure is in very good agreement (202) while the minimum pressure 

shows a peak value. This peak value in the pressures induced by the compressive stresses was 

noted also by Onate in his results while applying the FIC method [36] and also by Zienkiew

and Taylor in [49]. 

 Overall the stability is improved since the principal stress and press

show the spurious oscillations observed in standard and mixed u/p formulations. 
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)Enhanced Strain Mixed u/p Hexahedral  (b) Stabilized Mixed Tetrahedral 

 

 

     
(a

 

       
 

(c) Mixed u/p Tetrahedral       (d) Pure Displacement Tetrahedral (not converged) 

Figure 29. Hyperelastic Cantilever Beam: Equivalent Stress 

 
 
 
 
 
 



       

(a) Mixed Enhanced Strain Hexahedral           (b) Mixed Hexahedral with B-bar formulation 
 

     
 
(c) Stabilized Tetrahedral   e trah
 

 
ent Tetrahedral (not converged) 

Figure 30. Hyperelastic Cantilever Beam: Principal Stress in second direction 

 

 

    

      (d) Mix d u/p Te edral 

(e) Pure Displacem
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   (b) Mixed Stabilized Tetrahedral 

        

  (d) Pure Displacement Tetrahedral  

 

 

Beam: Hydrostatic Pressure 

 

 
(a) Mixed Enhanced Strain Hexahedral 
 
 

 
(c ) Mixed Tetrahedral                 
 

Figure 31. Hyperelastic Cantilever 
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7.0 CONCLUSIONS 

 
 

7.1 SUMMARY 

trahedral element, exhibit the phenomenon of 

mpressibility are encountered during an analysis. 

 develop a robust and accurate low-order solid 

tter performance than the existing ones. This was 

t that could be used to solve general large 

ons that can incorporate a wide range of 

 in the fact that analysts are bringing more geometric 

quiring the development of algorithms that can 

 reasons, the newly developed element will be 

with complicated geometries which can not be 

 the immediate expected fields of applications will 

Reviewing the results presented in this dissertation, five different methods of stabilizing the 

mixed linear displacement/linear pressure tetrahedral element were reviewed in Chapter 2. It was 

concluded that under specific conditions they are all equivalent. The main question was which 

one to choose and why. In Chapter 3, a new general formulation applicable to small and large 

deformation and large rotations was presented.  

 
 

Many finite elements, such as the linear te

volumetric locking when situations of near inco

 The main goal of the present research was to

tetrahedral element that exhibits significantly be

primarily motivated by the absence of an elemen

deformation problems under incompressible conditi

nonlinear materials. Another motivation lies

details into finite element models, thereby re

readily interface with CAD models.  For these two

useful in solving large finite element models 

meshed with standard brick elements. One of

be metal forming.  
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 The new solid tetrahedral element was formulated based on the principle of virtual work and 

it was stabilized through an enhanced strain derived from a bubble function. Two bubble 

functions were studied and the results were found to be identical. This approach was chosen 

among the five choices for the following reasons: it does not require material or mesh dependent 

parameters, consistent in nonlinear analysis, reasonable stable and computationally efficient. The 

mixed stabilized formulation together with other two formulations, (a non-stabilized mixed and a 

standard pure displacement formulation), was implemented through a user-programmable 

element that interfaces with the commercial finite element software ANSYS. The finite element 

code uses the pre- and post- processing capabilities as well as the nonlinear solvers of ANSYS. 

Aspects of the implementation were discussed in Chapter 4. 

 Several numerical investigations were carried out to verify the element formulation. Some 

linear tests results were presented and discussed in Chapter 5 and some nonlinear tests with 

mphasis on simulation of metal forming applications were presented in Chapter 6. The 

hen they were available and in most cases by comparisons with a similar analysis carried out 

with well known stabilize  ANSYS. To assess the 

proved performance of the mixed stabilized formulation, the results were compared to two 

ther formulations. All numerical examples, both linear and nonlinear, demonstrated the 

bustness, accuracy and improved performance of the new element in quasi and fully 

compressible problems that involve large deformation. In these problems consistent 

improvement was obser  the pure displacement 

rmulations. This observation was motivated by the improved stress distributions, improved 

accuracy of the displacements, and closer results to the stabilized hexahedral elements. Even 

e

verification of the new formulation was assessed through comparisons with theoretical results 

w

d hexahedral element already existing in

im

o

ro

in

ved over the mixed u/p without stabilization and

fo
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though the new element behaved correctly in bending dominant problems in both linear and 

nonlinear analyses, it still showed shear locking in pure bending problems. 

e new lower order tetrahedral element lies within its ability to provide 

 are creating increasingly complex components. 

7.2 SUGGESTIONS FOR FUTURE WORK 

 
 

The robustness of the newly developed element needs to be further explored by performing 

various analyses using different deformation conditions and a wide range of nonlinear materials. 

 Four major research directions can be foreseen for a future development of the proposed 

element. 

1. An interesting future work would be the investigation of the new formulation when using 

anisotropic materials. The formulation should work since no specific assumptions were 

made on the 

2. The choice of bubble functions remains an open investigation area, since the only two 

 here produced identical results. Zienkiewicz and Taylor [49] recently used a 

unctions and obtained promising results. This indicates that 

stabilization can further be improved by the choice of bubble functions. 

3. Another issue that was not thoroughly studied in the present study is the influence of the 

mesh alignment on the results. This was detected in several papers and needs to be further 

 The importance of th

large deformation analysis capabilities for metal forming problems where the automatic 

generation of hexahedral elements is not possible, especially when rezoning procedures are 

applied.  Such technology could prove to be an important step in the advancement of simulating 

metal forming processes that

 

choice of the material constitutive law. 

 

investigated

set of three bubble f
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addressed since it can influence the results obtained after automatic generation of 

elements during different remeshing techniques. 

4. The present formulation was developed for static analyses but it can be extended to 

transient analyses as well. This can be accomplished because the enhanced term is a 

strain (not a displacement) which will not affect the inertial terms. It would be interesting 

to test the performance of the stabilized tetrahedral element in static analyses with body 

forces. 
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APPENDIX A 

 
 
 

DERIVATION OF THE GEOMETRIC STIFFNESS TERM 
 

 
The geometric stiffness term represented by the second integral in (3.20) is derived here for its 

 

future conversion to the matrix format that is used in the implementation of the element. 
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terchanging k with j in the first parenthesis and then k with i in the second one we obtain: 
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ow solve for the last term: 
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 Keeping in mind that in the Updated Lagrange formulation we always calculate the variables 

at time t+∆t in terms of the known variables at time t, we can write that 
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By using the chain rule, 
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Also the displacement increment Duk can be written as the difference between the displacement 

at time t+∆t and the displacement at time t: 
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Introducing (A4) and (A5) into (A6) we get: 
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troducing (A7) and (A8) back into (A1), reducing the similar terms and using the fact that the 

auchy stresses are symmetric (

S

In

jiij σσ = ) we obtain: C
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Interchanging i with j in the second, seventh and eighth terms and writing the third and the fourth 

as two terms minus one, then grouping them we obtain the final formula for the geometric 

stiffness term as: 
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APPENDIX B 

 
 
 

OUTPUT FILE FOR THE LINEAR HOMOGENEOUS DEFORMATION PROBLEM 
 

 
 
 
Results of strain (EPTO) and stress (S) compo  for three selected elements of the linear unit 

cube example subjected to a linearly varying displacement field are listed in the following 

ANSYS output file together with the analytical results. The new tetrahedral element is here 

SOLID 285. 

 

          ***** ANSYS RESULTS INTERPRETATION (POST1) ***** 
  
 ************************************************************ 
  

  The computed strains for this deformation field 
   should be: 
   
   EPTOX = 2.0, EPTOY = 1.0, EPTOZ = 1.5 
   EPTOXY = 4.0, EPTOYZ = 1.5, EPTOXZ = 2.0 
   
 ************************************************************ 
 
 ***** POST1 ELEMENT NODAL TOTAL STRAIN LISTING *****                           
  
 
  THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES                          
  
  ELEMENT=       1        SOLID285 
    NODE    EPTOX       EPTOY       EPTOZ       EPTOXY      EPTOYZ     EPTOXZ   

     4.0000      1.5000      2.0000     
      11   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
      12   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
  
 ELEMENT=       2        SOLID285 
   NODE    EPTOX       EPTOY       EPTOZ       EPTOXY      EPTOYZ      
PTOXZ   
      1   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     

nents

 
        TARGET STRAINS 
       --------------  
 

      10   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
       9   2.0000      1.0000      1.5000 

 
 
 
E
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       2   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
       4   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
      11   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
   
  ELEMENT=       3        SOLID285 
    NODE    EPTOX       EPTOY       EPTOZ       EPTOXY      EPTOYZ      
EPTOXZ   
      11   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
       4   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
       1   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
      12   2.0000      1.0000      1.5000      4.0000      1.5000      2.0000     
   
***** POST1 ELEMENT NODAL STRESS LISTING *****                                 
  
 
  THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES                          
  
   
 ELEMENT=       1        SOLID285 
   NODE    SX          SY          SZ          SXY         SYZ         SXZ      
      10  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
       9  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
      11  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
      12  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
   
  ELEMENT=       2        SOLID285 
    NODE    SX          SY          SZ          SXY         SYZ         SXZ      
      1  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 

 
.80000E+06 
      4  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
      11  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
   
  ELEMENT=       3        SOLID285 
    NODE    SX          SY          SZ          SXY         SYZ         SXZ      
      11  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
       4  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
       1  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 
      12  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06 
0.80000E+06 

 
0.80000E+06 
      2  0.34000E+07 0.26000E+07 0.30000E+07 0.16000E+07 0.60000E+06  
0
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