
A CUSTOM ARCHITECTURE FOR DIGITAL LOGIC SIMULATION

by

Jiyong Ahn

B.S in E. E., Chung-Ang University, Seoul, Korea, 1985

M.S in E. E., Chung-Ang University, Seoul, Korea, 1987

M.S. in E. E., University of Pittsburgh, 1994

Submitted to the Graduate Faculty

of the School of Engineering

in partial fulfillment of

the requirements for the degree of

Doctor

of

Philosophy

University of Pittsburgh

2002

The author does not grant permission

to reproduce single copies

Signed

COMMITTEE SIGNATURE PAGE

This dissertation was presented

by

Jiyong Ahn

It was defended on

January 30, 2002

and approved by

(Signature)___
Committee Chairperson
Raymond R. Hoare, Assistant Professor, Department of Electrical Engineering

(Signature)___
Committee Member
Marlin H. Mickle, Professor, Department of Electrical Engineering

(Signature)___
Committee Member
James T. Cain, Professor, Department of Electrical Engineering

(Signature)___
Committee Member
Ronald G. Hoelzeman, Associate Professor, Dept. of Electrical Engineering

(Signature)___
Committee Member
Mary E. Besterfield-Sacre, Assistant Professor, Dept. of Industrial Engineering

ii

ACKNOWLEDGMENTS

I would like to express my thanks to my advisor, Prof. Ray Hoare for his guidance

and friendship. I would also like to thank to all of my committee members Prof. Mickle,

Prof. Cain, Prof. Hoelzeman and Prof. Sacre for their insights.

I would like to express my appreciation to my friends, Yee-Wing, Tim, Majd, and

Jose, Michael Grumbine and Sandy for their long term friendship. And I also thank to

my office mates. Special thanks to Dave Reed and Sung-Hwan Kim who provided me

valuable help and encouragement. I also owe thanks to my colleagues over at Pittsburgh

Simulation Corporation, Jess, Mike, Dave, Harry and Gary. I would like to thank to Mr.

and Mrs. Paul and Colleen Carnaggio for their support and understanding.

Lastly, I would like to express my most sincere appreciation and affection to my

family. My parents and my sisters had to endure for a very long time. I especially thank

to my wife Okhwan for her patience and encouragement. They are my inspiration to

reach the destination of this long and frustrating journey.

iii

ABSTRACT

Signature_____________________
 Raymond R. Hoare

A CUSTOM ARCHITECTURE FOR DIGITAL LOGIC SIMULATION

Jiyong Ahn, Ph. D.

University of Pittsburgh

As VLSI technology advances, designers can pack larger circuits into a single

chip. According to the International Technology Roadmap for Semiconductors, in the

year 2005, VLSI circuit technology will produce chips with 200 million transistors in

total, 40 million logic gates, 2 to 3.5 GHz clock rates, and 160 watts of power-

consumption. Recently, Intel announced that they will produce a billion-transistor

processor before 2010. However, current design methodologies can only handle tens of

millions of transistors in a single design.

iv

In this thesis, we focus on the problem of simulating large digital devices at the

gate level. While many software solutions to gate-level simulation exist, their

performance is limited by the underlying general-purpose workstation architecture. This

research defines an architecture that is specifically designed for gate-level logic

simulation that is at least an order of magnitude faster than software running on a

workstation.

We present a custom processor and memory architecture design that can simulate

a gate level design orders of magnitude faster than the software simulation, while

maintaining 4-levels of signal strength. New primitives are presented and shown to

significantly reduce the complexity of simulation. Unlike most simulators, which only

use zero or unit time delay models, this research provides a mechanism to handle more

complex full-timing delay model at pico-second accuracy. Experimental results and a

working prototype will also be presented.

DESCRIPTORS

Behavioral Modeling Discrete Event Simulation

Hardware Logic Emulator Hardware Logic Simulator

I/O-path and State Dependent Delay Multi-level Signal Strength

v

TABLE OF CONTENTS

 Page

ABSTRACT... IV

LIST OF FIGURES ... X

LIST OF TABLES ... XIV

1.0 INTRODUCTION... 1

1.1 System on a Chip ...3

1.2 Design Verification through Simulation..3

1.3 Intellectual Property Blocks ..6

1.4 Time to Market ..7

1.5 Test Coverage and Fault Modeling ...8

1.6 Power Consumption Computation...8

2.0 LOGIC SIMULATION.. 11

2.1 Logic Simulation Algorithms ..12

2.1.1 Compiled Approach ... 12

2.1.2 Discrete Event Driven Approach ... 13

2.2 Related Work ...15

2.2.1 Parallel Discrete Event Logic Simulation Algorithms..................................... 16

2.2.2 Synchronous Algorithm. .. 17

2.2.3 Asynchronous Algorithm: Conservative and Optimistic Approaches............. 18

vi

2.2.4 Scheduling Algorithm for Discrete Event Logic Simulation........................... 19

2.2.5 Hardware Accelerators... 20

2.3 Performance Analysis of the ISCAS’85 Benchmark Circuits.................................24

2.3.1 Analysis of Peak Software Performance.. 27

2.4 Limitations of the Von Neuman Architecture ...31

3.0 HARDWARE SIMULATION ENGINE ARCHITECTURE............................... 33

3.1 Statement of the Problem...34

3.2 Overview..35

3.3 Logic Engine..38

3.3.1 Mapping into Hardware Memory .. 39

3.3.2 Test Coverage and Stuck-at Fault Simulation ... 41

3.3.3 Power Consumption Estimation .. 42

3.4 Future Event Generator..43

3.5 Scheduler ...44

3.6 Experimental Results and Scalability ..45

4.0 LOGIC EVALUATION ARCHITECTURE ... 47

4.1 Inverter and Buffer Cells ...52

4.2 AND/NAND and OR/NOR Cells..55

4.3 XOR/XNOR Cells ...61

4.4 AO/AOI and OA/OAI Cells ..66

4.5 Universal Gate ...69

vii

4.5.1 Any/All Simulation Primitives .. 69

4.5.2 Universal AND/NAND/OR/NOR ... 75

4.5.3 Universal XOR/XNOR .. 79

4.5.4 Universal AO/AOI/OA/OAI .. 81

4.6 Multiplexer Primitive ..82

4.7 Full Adder..87

4.8 Flip-Flop Evaluation..89

4.9 Scalability of Primitives and Experimental Results ..95

4.10 Altera’s Logic Element..97

5.0 GATE DELAY AND FUTURE EVENT GENERATION ARCHITECTURE .. 99

5.1 Delay Types ...100

5.2 Net-list Update and Future Event Generation ...105

5.3 Delay Simulation Architecture ..105

5.4 Fixed Delay Memory Architecture..106

5.5 Path Dependent Delay Memory Architecture..108

5.6 State Dependent Delay Memory Architecture...110

5.7 Generic Delay Memory Architecture ..110

5.8 Delay Architecture Conclusion..114

6.0 SCHEDULER ARCHITECTURE.. 116

6.1 Linear Scanning...117

6.2 Parallel Linear Scanning..118

viii

6.3 Parallel Linear Scanning with Binary Tree ...120

6.4 Summary..123

7.0 EXPERIMENTAL RESULTS AND PROTOTYPE ... 127

7.1 Prototype..128

7.2 Overall Architecture ..130

7.2.1 Net-list and Configuration Memory and Delay Memory............................... 134

7.2.2 Logic Evaluation Block ... 134

7.2.3 Pending Event Queue and Future Event Queue... 135

7.2.4 Delay Address Computation Block ... 136

7.2.5 Performance of Prototype .. 137

7.2.6 Pre-processing Software and Data Structure ... 139

7.3 Scalability of the Architecture ...140

7.4 Performance Comparison ..143

8.0 CONCLUSIONS ... 149

8.1 Summary..149

8.2 Contributions ...150

8.3 Future Work...152

BIBLIOGRAPHY... 154

ix

LIST OF FIGURES

Figure No. Page

1. Y-Chart ... 2

2. Design Flow.. 5

3. The Discrete Event Logic Simulation... 14

4. Event Wheel for Event Scheduling... 20

5. Algorithm for Discrete Event Logic Simulation... 25

6. Run Time Profile of Various Benchmark Circuits (ISCAS’85) 26

7. Data Structure Used for Circuit Elements in Software Simulation 29

8. Data Structure for Event Queue.. 29

9. Run-Time Profile of Benchmark Circuit C1355... 34

10. Hardware Accelerated Simulation .. 36

11. Overview of the Architecture.. 38

12. Mapping Circuit Net-list into Logic Engine Memory .. 40

13. Use of Output Change Count.. 42

14. Two-Input AND Gate ... 47

15. Lookup Table Size Growth... 50

16. Inverter Design.. 54

17. Buffer Design.. 54

18. AND Gate Evaluation Design Using Any and All Primitives.............................. 56

19. NAND Gate Evaluation Design Using Any and All Primitives 57

20. OR Gate Evaluation Design Using Any and All Primitives 59

x

21. NOR Gate Evaluation Design Using Any and All Primitives 60

22. XOR Gate Evaluation and Emulation Logic .. 63

23. XNOR Gate Evaluation and Emulation Logic.. 64

24. AO22 Gate .. 66

25. Implementation of AO22 Using AND/OR Evaluation Logic............................... 67

26. Circuit for Any and All Functions for a Single Signal ... 70

27. Any and All Based 2-Input AND Gate Evaluation Example 73

28. Any and All Primitives for 2-Input AND Gate Example 74

29. An 8-Input Any/All Design .. 76

30. An 8-Input AND Gate Simulation Engine Core ... 77

31. An 8-Input OR Gate Simulation Engine Core .. 77

32. NAND Gate with Some Inputs Inverted... 78

33. Implementation of 8-Input AND/NAND Gates.. 78

34. Implementation of 8-Input OR/NOR gates... 79

35. A Universal 8-Input AND/NAND/OR/NOR Evaluation Logic 79

36. Implementation of 8-Input XOR/XNOR Gates .. 80

37. A Universal Implementation of AO/AOI/OA/OAI Evaluation Logic.................. 81

38. Equivalence Checker for 2-to-1 MUX.. 84

39. A 2-to-1 MUX Design .. 85

40. A 4-to-1 MUX Design .. 86

41. Full Adder Design... 89

42. D-type Flip-Flop ... 90

xi

43. Clock Event Detection Design.. 92

44. D Flip-Flop Evaluation Core Design .. 93

45. Design for Checking Clear and Preset .. 94

46. Implementation of D Flip-Flop with Asynchronous Clear and Preset 95

47. Growth Rate of Resource Usage for Lookup Table.. 96

48. A Logic Element (LE) Architecture ... 98

49. Path Dependent Delay of 2-Input XOR Gate ... 101

50. Delay Models .. 102

51. Distributed Delay Modeling Using Lumped Delay Model................................. 103

52. The Delay Architecture... 104

53. A Linear Array of Delay Memory .. 107

54. Delay Address Computation by Adding ... 108

55. A 2-D Array Delay Memory... 109

56. Bit-Wise OR to Compute Delay Address for State Dependent Delay................ 111

57. Delay Address Map... 112

58. Delay Memory Map.. 114

59. A Linear Memory Scanning.. 118

60. An Architecture for Parallel Linear SubScanning .. 119

61. Comparator and Multiplexer in a Binary Tree.. 121

62. Comparator and Multiplexer for Finding Minimum... 121

63. Resource Growth Rate for Binary Tree .. 123

64. Performance Graph ... 125

xii

65. Parity Checker Test Circuit... 129

66. System Architecture for Logic Simulation Engine... 132

67. Logic Evaluation Block .. 135

68. Simulation Waveform for Prototype Circuit... 138

69. Data structure for Hardware and Software ... 139

70. Performance Comparison between Our Design and IKOS................................. 147

xiii

LIST OF TABLES

Table No. Page

1. CPU Comparison .. 3

2. ISCAS'85 Benchmark Circuits ... 24

3. Run Time Profile of Various Benchmark Circuits (ISCAS'85) 27

4. Read-Modify-Write Memory Performance of Pentium-III 450MHz 30

5. Net-list and Configuration Memory Map ... 40

6. Delay Memory Map.. 44

7. One Hot Encoded Signals ... 48

8. Lookup Table for 2-Input AND Gate ... 49

9. Lookup Table Size Computation .. 49

10. Function Group and Number of Gates for Each Group.. 51

11. Behavioral Modeling of 2-Input AND Gate ... 51

12. Standard Lookup Table for Inverter/Buffer Gates.. 53

13. Priority Lookup Table for Inverter/Buffer Gates.. 53

14. Lookup table for 2-Input AND/NAND Gates .. 55

15. Priority Lookup table for AND/NAND Gates .. 56

16. Any/All Function for a 4-Input AND Gate... 58

17. Lookup Table for 2-Input OR/NOR Gates ... 58

18. Priority Lookup Table for OR/NOR Gates... 59

19. Lookup Table Size Comparison for AND/NAND/OR/NOR Gates 61

20. Lookup Table for 2-Input XOR/XNOR Gates.. 62

xiv

21. Priority Lookup Table for XOR/XNOR Gates ... 63

22. Lookup Table Size Comparison for XOR/XNOR Gates...................................... 65

23. Lookup Table Size for AO Gate ... 67

24. Priority Lookup Table Size for AO Gate.. 68

25. The Lookup Table for 2-to-1 MUX.. 83

26. Priority Lookup Table for 2-to-1 MUX Primitive .. 84

27. Priority Lookup Table for 4-to-1 MUX Primitive .. 85

28. Lookup Table Size Comparison for MUX.. 87

29. Lookup Table for Full Adder.. 88

30. Behavior of Positive-Edge Triggered D Flip-Flop ... 91

31. Priority Lookup Table for D Flip-Flop ... 92

32. Behavior Model of Clear and Preset... 93

33. Resource Usage Comparison .. 96

34. Resource Usage for Any/All Primitives ... 97

35. Resource Usage for Logic Evaluation Primitives... 97

36. 4-Input Gate with Various Delay Types ... 113

37. Resource Usage for Multiplexer Component Using 16-Bit Words 120

38. Quartus-II Synthesis Report for Resource Usage of Binary Tree....................... 122

39. Size and Performance Comparison between Scheduler Algorithm.................... 124

40. Initial Events ... 129

41. Simulation Event Flow of Prototype Running Test Circuit Simulation 130

42. Data Structure of Net-list and Configuration Memory 134

xv

43. Pending Event Queue Structure .. 136

44. Future Event Queue Structure... 136

45. Resource Usage and Speed for Logic Primitives.. 141

46. Data Width for 100,000 Gate Simulation ... 142

47. Event Memory Depth vs. Performance... 146

48. Performance and Feature Comparison.. 147

xvi

1

1.0 INTRODUCTION

As VLSI technology advances, designers can pack larger circuits into a single

chip. According to the International Technology Roadmap for Semiconductors(1)*, VLSI

circuit technology in the year 2005 will produce chips with 200 million transistors in

total, 40 million logic gates, 2 to 3.5 GHz clock rates and 160 watts of power-

consumption. At this rate, a one billion-transistor chip may be less than ten years away;

however, current design methodologies can only handle tens of millions of transistors in a

single design.

The final output of the Electronic Design Automation (EDA) software is a

synthesized circuit layout that can be fabricated. Figure 1 shows the design automation

domains. The design automation process starts with a high-level design specification that

is transformed into a physical design that can be fabricated. The upper right branch of

the design automation Y Chart(2) is the behavioral domain. In this domain, the circuit

design and fabrication technologies are described. Synthesis turns these descriptions into

components in the Structural Domain, shown as the left branch of the Y Chart. Structural

components can be transformed into the physical domain for fabrication. This research

focuses at chip simulation in the structural domain at the gate and flip-flop level.

* Parenthetical references placed superior to the line of text refer to the bibliography.

2

Behavioral
Domain

Structural
Domain

Physical
Domain

System Synthesis

Register-transfer Synthesis

Logic Synthesis

Circuit Synthesis

Transistor Functions

Boolean Expressions

Register transfers
Flowcharts, algorithms

Transistors

Gates, flip-flops

Registers, ALUs, MUXs
Processors, Memories, Buses

Transistor layouts

Cells

Chips

Boards, MCMs

Figure 1 Y-Chart(2)

This research is motivated by the desire to create large devices that encapsulate

entire systems on a single chip. These “System on a Chip” (SoC) designs typically

incorporate a processor, memory, a bus, and peripheral devices. Due to the large design

task, portions of the SoC may be purchased as Intellectual Property (IP) blocks and are

typically described at the behavior level and at the gate (or mask) level. Once

incorporated into the design, the entire design must be verified for correctness in

functionality and in timing. Gate-level simulation is required for design verification at

the pico-second level. Power consumption and thermal topology analysis are also

required for modern high-speed IC design. Such simulation can require many hours to

many days to complete. This adversely affects the design cycle time and thus, the time to

market.

3

1.1 System on a Chip

Due to the complexity of a System on a Chip (SoC), there can be several million

logic gates in a single design. Table 1 summarizes the size of current top of the line

processors manufactured by AMD(3) and INTEL(4). These growing number of transistors

and gates in a single design will severely impact every aspect of the design automation

process, simply because the size of data that the design automation tools have to handle

becomes prohibitively large. This is because EDA tools normally rely on generic

workstations for their platform. Therefore, even the highly efficient EDA algorithms are

limited to the performance and the capacity of the workstation on which they are running.

Table 1 CPU Comparison(3,4)

Core K7 K75 Thunderbird P-III Katmai P-III Coppermine
Clock Speed 500-700MHz 750-1100MHz 750-1100MHz 450-600MHz 500-1133MHz

L1 Cache 128KB 128KB 128KB 32KB 32KB
L2 Cache 512KB 512KB 256KB 512KB 256KB

L2 Cache speed 1/2 core 2/5 or 1/3 core core 1/2 core core
Process Tech 0.25 micron 0.18 micron 0.18 micron 0.25 micron 0.18 micron

Die Size 184 mm2 102mm2 120mm2 128mm2 106mm2
TR count 22 million 22 million 37 million 9.5 million 28 million

1.2 Design Verification through Simulation

Logic simulation is one of the fields in EDA that the hardware designers depend

on for the design verification and gate-level timing analysis. As designs get complex,

designers rely on the performance of the logic simulation to verify the design’s

correctness at the various levels of abstraction. Logic level is the preferred level for the

4

designers to test their design because levels higher than the logic level (i.e., Register-

transfer level and above) are not accurate enough to extract the performance of the design

and the level below the logic level (i.e., transistor level and below) requires too much

computing time. Designers can simulate their design before they synthesize the design

(i.e., pre-synthesis simulation), after the design has been synthesized (i.e., post-synthesis

simulation), and/or after the gates have been placed in particular locations of the chip (i.e.,

post place-and-route).

Pre-synthesis simulation typically uses a hardware description language (HDL)

(e.g. VHDL, Verilog) to describe the circuit. Simulation at this level uses a delta-delay

model that assumes that the gate delays are a delta-time that is so small as to not be

noticeable except in the ordering of events. Wire and gates delays are ignored. These

assumptions greatly increase the speed of the simulation but they do not give the design

accurate timing information. This level of simulation is used to verify accuracy of the

high-level design and control mechanisms.

As shown in Figure 2, synthesis transforms the HDL into a gate-level description

of the circuit. This design step can be lengthy because a single line of HDL can be

synthesized into hundreds of gates (e.g. arithmetic operations). However, at the gate-

level there is a one-to-one relationship between each gate and its standard-cell transistor

layout. Each gate or flip-flop represents from two to fifty transistors, but the layout of

these groupings of transistors is known. Thus, once a design is at the gate level, a

technology can be specified and accurate timing information can be achieved.

5

Behavioral
HDL

Gate Level
Logic

Gate Level
Logic

with Timing

Layout

Requirements

Chip Fabrication

Synthesis

Selecting Fabrication Technology

Place & Route

Emulation for Functional
Verification

(zero delay logic)

Simulation
(intrinsic + extrinsic delay;

pico-second accuracy)

Behavioral Simulation
(delta time delays)

Simulation
(intrinsic + extrinsic + wire delay;

pico-second accuracy)

Net-list

Net-list

Net-list with
Back Annotation

Technology
Dependent

Technology
Independent

HDL

Figure 2 Design Flow

Before a technology is chosen, the circuit’s functional behavior can be emulated.

In this design phase, the gate-level design is mapped to a reconfigurable architecture that

emulates the circuit’s behavior. Emulation can be used to verify the functional behavior

of a circuit, but does not accurately represent the actual timing of the circuit, because

emulation is technology independent.

Gate-level simulation can also be used to determine the functional behavior of a

circuit, but is slower than emulation, because simulation incorporates technology-specific

gate delay to determine a circuit’s behavior. The advantage of gate-level simulation is its

accuracy. This level of simulation is useful in determining the technology that is required

for each level of circuit performance.

6

After the circuit’s functional behavior is verified and the technology is chosen, the

location of each gate within the circuit is determined. This phase is called place-and-

route because each gate’s VLSI implementation is placed within the chip area and wires

are routed among the different gates to implement the specified circuit. After this phase

is performed, the wire delay between the gates can be incorporated into the simulation.

At this point, the timing of the circuit can be estimated in pico-seconds (10-12 seconds).

The problem with simulating gates at this level of accuracy is performance. This

research focuses on increasing the speed of this level of simulation.

1.3 Intellectual Property Blocks

Some circuit elements are now made as a package and are being sold separately in

the form of Intellectual Property (IP) blocks. There are two types of IP blocks. One is

called Hard IP, which is in the form of mask layout, and the other is Soft IP, which is in

the form of gate-level description called a net-list. In either case, the designers need to

test/simulate these IP blocks along with their own design to verify its functionality and

timing. Therefore, the speed of the logic simulation becomes more critical in design

automation when the size of the design grows larger and IP blocks are incorporated.

One of the hurdles in using IP blocks from another company is verification.

When IP is purchased, the customer typically gets a behavioral level description of the

block that describes the timing and functionality of the circuit. However, this description

typically can’t be synthesized to ensure the designer’s work is protected. The customer

7

also gets a gate-level description of the circuit that can be incorporated into their design.

However, the gate-level design is typically technology independent, and therefore the

timing information that describes the IP block is not accurate. Using technology-specific

gate-level simulation, this timing information can be obtained.

1.4 Time to Market

In modern digital system design, reducing the “time to market” is critical to

achieve success. Therefore, reducing the design cycle time is also critical. As previously

described, each level of the design cycle increases the accuracy of the results but also

increase the amount of time to achieve these results. If the design is not fully verified at

each level of the design cycle, errors will propagate to the next level and the design cycle

time will increase. Modern designers cannot tolerate this type of design cycle roll back,

because it wastes the designer’s time and increases the time-to-market.

One of the critical steps in the design phase is the verification of the entire chip

after it has been completed and is ready to be fabricated. If a timing glitch is not found

before fabrication, then months of design cycle is wasted, and the chip will still need to

be simulated to find the error. Thus, it is critical to improve the performance of post-

place-and-route simulation to decrease the time-to-market.

8

1.5 Test Coverage and Fault Modeling

In addition to the logic verification, designers need to know whether the set of

simulation input vectors cover the entire circuit testing. Without this information, it is

difficult to know if the design is fully tested with the given set of input vectors. If the

circuit design has a large number of inputs, then the total number of input vector

combination becomes astronomically large. In such cases, the designer wants to test the

design with only a subset of input vectors. Therefore, some mechanism to check if the

input vector set has covered the entire data path of the design must exist.

During circuit fabrication, a wire can be shorted to Vdd or to Ground. These

stuck-at faults cause circuits to behave in an unpredictable manner if the circuit is not

designed for such situations. To determine if these faults have occurred, test vectors need

to be developed. Verification of these test vectors is time consuming because the circuit

must be simulated thousands of times as these faults can occur for every wire network.

Thus, hardware acceleration for logic simulation with stuck-at faults would reduce the

development time for fault detection.

1.6 Power Consumption Computation

Power consumption in modern VLSI design is an important issue. Portable

and/or hand-held electronic equipments are continuously emerging in the market. The

power consumption of these devices will not only determine the battery life, but also

decide the heat characteristics of a chip. As mentioned earlier, modern digital circuits are

9

getting smaller in size and faster in speed. The clock frequency of the chip plays a major

role in power dissipation. When a chip consumes a lot of power, it inevitably becomes

hot. Due to the thermal characteristics of a silicon device, over-heated chips will not

function correctly. Modern high-speed processors all require a solid cooling mechanism

to operate properly.

If the thermal topology can be pre-determined (before the chip is fabricated), the

layout generation process can reference the thermal characteristics so that “hot spots” can

be evenly distributed over the chip area. Such chips will run much cooler and less erratic

when used in extreme conditions. Designers are now facing another problem of this heat

issue. Due to the “time to market” constraint, thermal topology analysis cannot be done

after the chip is fabricated. Therefore, it is important to extract the thermal characteristics

of the design at both pre- and post-place-and-route steps.

Power consumption of a chip is described as the sum of static dissipation and

dynamic dissipation. Static dissipation is due to the leakage current that is caused by the

reverse bias between the diffusion region and the substrate. Static dissipation is small in

value, and can be treated as a constant if the target technology is known.

Dynamic dissipation is due to the load capacitance and the transition activity of

the output transistor. When a gate changes its output state (either from ‘0’ to ‘1’ or ‘1’ to

‘0’), both p- and n-transistors are on for a short period of time. This results in a path

from Vdd to GND such that power and ground is electrically shorted for a brief period of

time, and power is consumed through this path. Current flow is also needed to charge

and discharge the output capacitive load.

10

Dynamic dissipation is formulated(5) as:

pddLd fVCP 2=

Where is the load capacitance, V is supply voltage and is the switching

frequency.

LC dd pf

Assuming supply voltage is constant, the dynamic power dissipation depends on

the number of output changes of a gate and its capacitive load. Therefore, accurate

simulation and recording of a circuit’s switching behavior would provide critical insight

into a circuit’s thermal and power characteristics.

11

2.0 LOGIC SIMULATION

The current design process relies on a software-based logic simulator running on

high performance workstations. Advanced processor and system architectures with

generous amounts of memory can increase the performance of logic simulation to a

degree, but eventually hit a performance barrier due to their memory access bottleneck

and due to their general purpose design. Software benchmarks will demonstrate this

point in Section 2.3 .

Logic simulators, especially software-based logic simulators(35), have been around

for decades. Logic simulators are widely used tools to analyze the behavior of digital

circuits, to verify logical correctness, and to verify timing of the logic circuits. Logic

simulators are also used for fault analysis when a test engineer wants to determine the

information about faults that are detected by a proposed test sequence(6).

Unlike circuit simulators (e.g. SPICE), which compute continuous time character-

istics of the transistor-level devices, logic simulators rely on abstract models of digital

systems that can be described using Boolean algebra. Logic simulators model a gate as a

switching element with an intrinsic time delay that remains in steady-state when its inputs

remain constant. They yield discrete output values as opposed to analog output (e.g.,

SPICE simulation)(6). However, current gate models have timing characteristics that

specify timing down to 10-12 seconds.

For gate-level simulation, circuits are described in terms of primitive logic gates

and their connectivity information. Such gate-level circuit descriptions are called net-

12

lists because they describe a network of interconnected gates. The primitive logic gates

are typically evaluated by table look-up or by calling a software function.

2.1 Logic Simulation Algorithms

There are two main categories of algorithms in logic simulation. They are the

compiled approach and the discrete event-driven approach.

2.1.1 Compiled Approach

To determine the logic behavior of a circuit, the compiled approach transforms

the net-list into a series of executable machine-level instructions. Since the “Arithmetic

and Logic Unit” (ALU) of a general-purpose processor is usually equipped with logical

computation functionality, a net-list can be mapped directly into the machine code to

perform logic simulation. The problem of this approach is that all the gates in the circuit

are evaluated regardless of the input change. In addition, the compiled approach can only

handle a zero- or unit-delay model, with a limited number of fan-in and fan-out due to the

width of the instruction set.

13

2.1.2 Discrete Event Driven Approach

Instead of evaluating every gate as in the compiled approach, event-driven

simulation considers a change in an input signal as an event. Gates are only evaluated

when an event occurs.

Figure 3 illustrates how the algorithm works. Gates are labeled G1 through G10,

and events are labeled E1 through E3. Consider a change in the input signal c from ‘0’ to

‘1’. This event triggers the evaluation of G1, which generates an output change from ‘0’

to ‘1’. The output change of G1 becomes a new event E1, which triggers the evaluation

of G4 and G6. The evaluation of G6 generates an output change that will generate

another new event E2. Event E2 triggers the evaluation of G8 that in turn generates the

output change and a new event E3. Notice that the new event in G4 is evaluated but does

not generate any new event, because the input i is ‘0’, which forces G4 to hold the output

value unchanged.

14

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

a

b

c

d

e

f

g

h

i

j

1

0 1

0 1

1

1
1

0 1
0 1

0

0
1

0 1

No New Event

E1
E2

E3

E1

E1
0 1

Figure 3 The Discrete Event Logic Simulation

A change in the output signal of a gate at time t will generate a future event that

will occur at time t+ δ, where δ = intrinsic_delay + extrinsic_delay + wire_delay.

Intrinsic_delay is based on the type of gate being implemented. For example, an inverter

has a smaller intrinsic_delay than an exclusive-or gate because it can be implemented

with fewer transistors. Extrinsic_delay is the delay due to the capacitive load that must

be overcome to change the logic level. A gate with a high fan out will have a higher

extrinsic_delay than a gate with a smaller fan out. The wire_delay is due to the

capacitive load placed on the circuit due to the output wire length.

These future events are usually stored in a separate data structure to keep track of

the correct time ordering of events. Thus, the simulation algorithm can safely access the

events without executing them out of order(6, 7). If a gate G is simulated due to an event

15

E, and it is determined that the output has changed its state, then all the gates that are

driven by this output signal have to be simulated at the future time instance t + δ, as

described above. Logic gates usually have more than one fan-out, and thus, multiple

future events can be generated as a result of evaluating one gate. These future events

have to be managed/scheduled according to their timing information so that all the events

can be evaluated in correct time order.

2.2 Related Work

There are several research projects that speed up discrete event logic simulation.

Depending on the approach, we can classify them in two distinct groups. One is

approaching from the parallel computing environment and the other is using the a custom

hardware accelerator.

The use of a parallel computer can also be classified as compiled approach and

discrete-event approach. There are parallel-compiled approach and parallel discrete

event simulations. The parallel compiled approach still maintains its weakness as in the

single processor case, that is, they can only handle unit- or zero-delay models(6). Such

delay models do not provide enough information about the circuit being simulated,

therefore the compiled approach will not be covered in detail.

16

2.2.1 Parallel Discrete Event Logic Simulation Algorithms

In a parallel computing environment, each processor is called a Processing

Element (PE). Each PE may have its own memory (distributed memory model) or may

share one big memory (shared memory model). Both models require that PE’s

communicate with each other to ensure the correctness of the task they are processing

(e.g. data dependency).

A major difference in parallel discrete event simulation is in the mechanism of

managing the simulated time. In a parallel computing environment, the input net-list is

partitioned and mapped into each of the Processing Elements (PE’s). In such a case, the

new events generated as a result of logic evaluation in one PE can affect the event

execution order in other PE’s. For example, if PE0 generates a future event E0 with time

stamp t0, that has to be sent to PE1 (because the gate that this event is connected to is

stored in PE1), and if PE1 is currently simulating an event E5 with time stamp t5, then it is

called the violation of causality constraint, because E0 should execute before E5. This

violation occurs when the events are executed out of order. In such case, it is possible

that all of the work that has been done until current simulation time becomes void.

Simulation time has to be rolled back to consider the propagated past event and the

circuit has to be re-simulated.

Since each PE has no way of knowing when the new events will be propagated

from other PE’s, PE’s cannot perform the simulation tasks independently from each other.

The simulation time has to be controlled globally to ensure the correctness of the

17

simulation task. To control the simulation time across all PE’s, the concept of Global

Virtual Time (GVT)(12) is used for global synchronization. GVT is a notion of simulation

time that all PE’s must follow. If one PE is lagging behind the GVT due to the load, all

other PE’s must wait to be synchronized.

The parallel discrete event logic simulation can be classified in two categories:

synchronous and asynchronous. They are both based on the mechanism to control the

simulation time so that the causality constraint can be satisfied.

2.2.2 Synchronous Algorithm.

The synchronous approach follows the sequential simulation algorithm for each

PE. It performs updates in parallel and evaluation in parallel(8). Global synchronization

is needed for each time instance. In other words, GVT can advance only when all the

PE’s agree on it. Soule et. al.(8) have implemented the synchronous parallel algorithms

on an Encore Multimax shared memory multiprocessor using a centralized event queue

for all PE’s and reported a speedup of 2 on eight processors. When they used distributed

event queues, they were able to achieve a speedup up to 5 on eight processors.

Banerjee(6) states that synchronous parallel logic simulation algorithms typically achieve

speedups of 5 or 6 on eight processors even though the inherent concurrency is quite

high. This is because the load balancing of the parallel system and the synchronization

overhead.

18

2.2.3 Asynchronous Algorithm: Conservative and Optimistic Approaches

Unlike the synchronous approach, the asynchronous approach allows the

simulation time to be advanced for each PE locally without global synchronization.

Since the simulation time is advanced independently, the algorithm is prone to a deadlock

situation(9). As an example, suppose 3 processors, A, B and C, are sending and receiving

messages to and from each other and from the external world. If A is processing a

message from C with time stamp 12, and B is processing a message from A with time

stamp 8, and C is processing a message from B with time stamp 10, and each processors

received a message with higher time stamp (e.g. 20, 30, 40 each) from the external world,

then each processor cannot determine whether it is safe to process the external messages

due to the gap in time stamp, and they block themselves waiting for messages from each

other to fill the time stamp gap.

Based on the methods used to handle this deadlock situation, asynchronous

approaches fall into two categories: conservative and optimistic. The conservative

approach strictly avoids the possibility of violating the causality constraint by relying on

a mechanism to determine when it is safe to process an event. If a processor contains an

unprocessed event E with time stamp T and no other event with a smaller time stamp, and

that processor can determine that it is impossible for it to receive another event with a

time stamp smaller than T, then that processor can safely process E because it can

guarantee that doing so will not later cause a violation of the causality constraint(6). This

requires a lot of inter-processor communication for querying each other’s state. This can

19

potentially cause a deadlock. Some conservative algorithms use a NULL message to

avoid deadlock situations(10, 11). And are classified as deadlock avoidance algorithms.

Speed up of 5.8 to 8.5 were reported by Soule et. al. using Encore Multimax

Multiprocessor with 14 PE’s(8).

The optimistic approach allows causality errors to occur, and then detects and

recovers from these errors by using a rollback mechanism. Time Warp, proposed by

Jefferson(12), is the most well known optimistic algorithm. In Time Warp, a causality

error is detected when an event message is received that contains a time stamp smaller

than that of the current event being processed. A recovery process is accomplished by

undoing the effects of all events that have been processed prematurely by the processor.

An event might have done two things that have to be rolled back. It might have changed

the output of a logic gate, and/or it might have sent an event to the other processors.

The optimistic approach has better CPU utilization as compared to the

conservative approach, but when there are rollbacks, some of the CPU cycles previously

used for computation are wasted. A speed up from 6.5 to 20 on 32 processors was

achieved by using this approach(13).

2.2.4 Scheduling Algorithm for Discrete Event Logic Simulation

As mentioned in the previous section, the future events have to be managed

according to their time stamp. One way of scheduling these events in software is to use a

list of lists data structure called an event wheel(7). In this data structure, a fixed number of

20

time slots are assigned in a circular structure to store the list of events with the same time

stamp, as shown in Figure 4. After the new events are generated, they are inserted into

the proper time slot in the event wheel. The size of the event wheel is typically 64 and a

special mechanism is used to monitor the overflow of the scheduler(6).

t

t + 1

t + 2

t + N

t + 3

Figure 4 Event Wheel for Event Scheduling

As was show in Table 1 in Section 1.1 , the clock frequency of modern digital

systems is already reaching over 1 GHz (sub-nano-second). If the timing grain ranges

from pico seconds for high-speed designs to micro seconds for slow-speed designs, the

event wheel described above will not be able to handle the situation. If the size of the

event wheel has to be increased, then it becomes inefficient because most of the event

wheel time slots will be empty.

2.2.5 Hardware Accelerators

Several researchers have investigated the use of dedicated hardware accelerators

for logic simulation. Hardware accelerators can be classified into two categories. One is

when the actual simulation is performed by custom hardware, and the other is functional

emulation. A hardware simulator runs the simulation algorithm on a dedicated hardware,

21

and provides fast and accurate simulation results. Emulation only replicates a circuit’s

gate-level functionality and does not provide any mechanism for timing-based simulation

of individual gates. The focus of this thesis is on hardware simulation accelerator and not

on hardware emulator.

Recently, commercial vendors such as Quickturn and IKOS introduced the

hardware logic emulator. A hardware logic emulator usually utilizes an array of

Programmable Logic Devices (PLDs), especially Field Programmable Gate Arrays

(FPGAs) as a platform, and programs the entire net-list into the array of PLDs. The

Quickturn RPM emulation system(21) and IKOS Virtual Logic Emulator(22) both use a

large number of FPGAs on a printed circuit board. In the Quickturn RPM board, each

FPGA is connected to all its nearest neighbors in a regular array of signal routing

channels. Several such boards are connected together in a system.

In general, emulators are more powerful than simulation engines in terms of speed

since the logic elements inside of the PLD literally execute the logic function given by

the input net-list. But as the name implies, hardware emulators can only emulate, not

simulate. They lack the functionality of simulating the circuit’s characteristics correctly

given by the designer’s intention and/or the target technology. In other words, the

hardware emulators can only be used to perform the circuit’s functional verification (i.e.

logical correctness). This is a natural phenomenon because the design is mapped into the

FPGA and actually run on the FPGA system, the actual circuit behavior on the target

technology cannot be modeled. Therefore losing all the delay-timing information of the

design.

22

IBM has done the most significant work on a compiler driven logic simulator.

IBM has three generations of logic simulation parallel machines, all three of which are

using the parallel compiled approach(6). They are the Logic Simulation Machine (LSM),

Yorktown Simulation Engine (YSE) and Engineering Verification Engine (EVE)(14, 15, 16).

All machines use same basic architecture, consisting of 64 to 256 processors connected

by cross-bar switch for inter-processor communication.

LSM is IBM’s first generation of custom designed simulation machine. It can

handle 5 inputs with 3 logic signal levels and has a 63K gate capacity. YSE is the second

generation of IBM’s effort. It can handle 4 different signal levels (0, 1, undefined, high-

impedance) and up to 4 inputs, with a 64K gate capacity. YSE is distinguished from its

predecessor by its simulation mode, general-purpose function unit, a more powerful

switch communication mechanism, and an alternate host attachment. YSE hardware

consists of identical logic processors, each running pre-partitioned piece of the net-list.

Each logic processor can accomplish a complete function evaluation in every 80 nano-

second period (12.5 million gates per second)(17). EVE is the final enhancement of YSE,

it uses more than 200 processors. EVE handles 4 signal levels and 4 inputs, with 2M gate

capacity with peak performance of 2.2 billion gates per second(6). All three of IBM’s

simulation engines can only handle zero- or unit-delay model, which is only suitable for

verification of logical correctness.

Another commercial accelerator for logic simulation is the Logic Evaluator LE-

series offered by ZyCAD Corporation(18). It uses a synchronous approach and a bus-

based multiprocessor architecture with up to 16 processors, that implements scheduling

23

and evaluation in hardware. It exhibits a peak performance of 3.75 million gate

evaluations per second on each processor, and 60 million gate evaluations per second on

16-processor model(6, 18).

The MARS hardware accelerator exploits function parallelism by partitioning the

simulation procedure into pipelined stages(20). The MARS partitions the logic simulation

task through functional decomposition, such as signal update phase and gate evaluation

phase. Both phases are further divided into 15 sub-task blocks, such as input and output

signal management unit, fan-out management unit, signal scheduler, and housekeeper

unit, etc. They employ exhaustive truth table as their gate evaluation primitives (up to

256 primitives with 4 inputs maximum). MARS is designed and built as an add-on board

to the workstation. It can process 650 thousand gate evaluations per second at 10 MHz.

A commercial vendor, IKOS, builds the hardware logic simulation engine named

“NSIM”, which is currently the top of the line in the market. They claim that they can

provide the simulation performance approximately 100 times faster than that of software

simulation(19). IKOS NSIM is a true full-timing simulator. But it requires that users to

use its own primitives, and forces the designer to model their design in terms of IKOS

primitives. This is a big limiting factor of IKOS. When a library cell vendor creates a

new type of cells, the designer has to find a way to model this new cell using IKOS

primitives. It also adds more loads to the simulation engine because each library cell is

modeled using multiple IKOS primitives and those primitives have to be evaluated by the

simulation engine.

24

2.3 Performance Analysis of the ISCAS’85 Benchmark Circuits

In order to obtain the performance bottleneck of software, a simple C program for

logic simulation was made and tested on the benchmark circuits. ISCAS’85 benchmark

circuits(23) were initially designed for fault simulation, but have been widely used by the

logic simulation community. This is because there are no benchmarks specifically made

for logic simulation. The size of this benchmark set is relatively small, and various

researchers have noted the need for the standardized logic simulation benchmark circuits

in various sizes. Unfortunately, the new benchmark circuit is not available yet.

Table 2 ISCAS'85 Benchmark Circuits(23)

 Function Total Gates Input Lines Output Lines
C7552 ALU and Control 3,512 207 108
C6288 16-bit Multiplier 2,416 32 32
C5315 ALU and Selector 2,307 178 123
C3540 ALU and Control 1,669 50 22
C2670 ALU and Control 1,193 233 140
C1908 ECAT 880 33 25
C1355 ECAT 546 41 32
C880 ALU and Control 383 60 26

25

FOR each elements with time stamp t

 WHILE (elements left for evaluation with t) DO

 EVALUATE element

 IF (change on output) then

 UPDATE input & output values in memory

 SCHEDULE connected elements

 ELSE

 UPDATE input values in memory

 END IF

 END WHILE

 Advance time t

END FOR

Figure 5 Algorithm for Discrete Event Logic Simulation

The algorithm shown in Figure 5 can be divided into 3 phases. They are evaluate,

update and schedule. The evaluation phase can be carried out by a simple table lookup

of each Boolean primitive. The lookup table normally contains predefined sets of

input/output signals. The update phase handles the output value change. After the

evaluation, if the output signal changes due to the input signal change, the output value

stored in the memory has to be modified accordingly. The schedule phase deals with the

execution ordering of the events. Since the algorithm deals with a non-unit-delay model

of simulation, the newly generated events have different time stamps, depending on the

type of the gate. These new events should be placed in the execution schedule according

to its time stamp. Otherwise, the simulation will violate the causality constraint and

produce incorrect simulation results.

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Schedule Updat e Evaluat e

Figure 6 Run Time Profile of Various Benchmark Circuits (ISCAS’85)(23)

Figure 6 and Table 3 show the run time profile of the ISCAS’85 benchmark

circuits. To extract the run time profile of software based logic simulation performance,

we have implemented a simple C program with a generic synchronous algorithm and

measured the CPU cycle of each subtasks. We have found that evaluate phase only spent

2% to 4% of the total run time, update used 16% to 32% and schedule phase, especially

execution schedule management task that runs a “quick-sort” routine, used up most of run

time (64% to 82%).

27

Table 3 Run Time Profile of Various Benchmark Circuits (ISCAS'85)(23)

Circuit Schedule Update Evaluate
C7552 81% 17% 2%
C6288 82% 16% 2%
C5315 80% 18% 2%
C3540 78% 20% 2%
C2670 78% 20% 2%
C1908 73% 24% 3%
C1355 64% 32% 4%
C880 76% 21% 3%

To ensure the temporal correctness of the simulation, events, that are stored in

scheduler, have to be ordered in time according to the time stamp. Whenever the new

events are generated due to the evaluate phase, the scheduler sorts the events according to

the time stamp. The schedule sorting involves major memory movement. Like many

other application, memory bandwidth is the major bottleneck of the logic simulation

algorithm. To handle finer timing resolution (discussed in Section 2.2.4), the event

wheel algorithm was discarded, and sorting directly on the schedule was applied.

2.3.1 Analysis of Peak Software Performance

Not only logic simulation, but most Electronic Design Automation (EDA)

problems are extremely memory intensive tasks. EDA problems usually do not benefit

from cache memory due to the enormous memory space requirement and random

memory access behavior. For example, most of the engineering problems generally work

on numbers that are usually represented as an array/matrix of numbers. When the

problem or application (e.g. MATLAB) requires a large memory space, they usually

28

exhibit temporal and spatial locality fairly well. In such cases, the speed and the amount

of the cache memory will greatly improve the speed of computation.

In the case of EDA problems, the software performs operations on a group of data

primitives that represents a circuit element. The circuit elements are represented as a

record within a data structure, and the record usually contains multiple numbers and

characters grouped as one record per circuit element. The record also contains some

number of pointers to store the connectivity information of each circuit element (fan-in

and fan-out). The size of a record is usually much larger than the system memory bus

width, and EDA algorithms are often forced to perform a multiple memory access to

retrieve the information of a single circuit element.

Since every circuit design is unique in its contents, the circuit’s connection

information varies from design to design. Therefore, logic simulation exhibits random

memory access patterns, especially for highly complex circuit designs. Figure 7 shows

the data structure for a logic gate and Figure 8 shows the data structure for the event

queue of the logic simulation software. One circuit element takes up six 32-bit integers

for a single record. To read the information about one circuit element, the 32-bit

processor has to initiate six memory references.

29

that

mem

miss

struct ram_struct {
 unsigned int function_type:5;
 unsigned int num_fanin:2;
 unsigned int input_val1:4;
 unsigned int input_val2:4;
 unsigned int input_val3:4;
 unsigned int input_val4:4;
 unsigned int current_output:4;
 unsigned int next_output:4; // 31 bits 32-bit integer

 unsigned int output_change_count:8;
 unsigned int delay:20;
 unsigned int num_fanout:4; //32 bits 32-bit integer

 unsigned int dest1:24;
 unsigned int dpid1:2; // 26 bits 32-bit integer

 unsigned int dest2:24;
 unsigned int dpid2:2; // 26 bits 32-bit integer

 unsigned int dest3:24;
 unsigned int dpid3:2; // 26 bits 32-bit integer

 unsigned int dest4:24;
 unsigned int dpid4:2; // 26 bits 32-bit integer
};
Figure 7 Data Structure Used for Circuit Elements in Software Simulation

After the net-list fo

the next pointer will

ory location very far

es than cache hits. T
struct _q_struct {
 unsigned time_stamp;
 unsigned gate_id:24;
 unsigned pin_id:2;
 unsigned val:4;
};
Figure 8 Data Structure for Event Queue

r a design has been parsed into the memory, it is more likely

 point to the non-adjacent memory location (possibly to a

away). In such cases, cache memory will exhibit more cache

he operating system then has to spend more cycles for cache

30

management. Since the sequential software algorithm is run on a generic workstation,

the performance of the algorithm is inevitably bound to the workstation’s internal

architecture. Most workstations are based on a fixed-width memory bus architecture,

which severely limits the performance of the memory access, especially for the

applications like logic simulation. Also, the processors in the work-station contain extra

circuits such as floating point ALUs and pipelines that are not needed for logic

simulation. It is obvious that in order to get a better performance on logic simulation

task, we need to get a better memory performance than that of a workstation.

Table 4 Read-Modify-Write Memory Performance of Pentium-III 450MHz

Amount of
Memory in Bytes

Time in nano
second

240 761
480 762

2,496 765
5,016 763

25,152 780
50,328 793

251,640 807
1,258,272 924
2,516,568 955

12,582,912 1,027
25,165,824 1,049
50,331,648 1,075
75,497,472 1,097

100,663,296 1,107
125,829,120 1,255,746

To simulate the memory access behavior of logic simulation, a simple C program

was written to extract the memory performance. From the viewpoint of memory access,

the logic simulation task is equivalent to the series of memory read-modify-writeback

operations. To imitate this read-modify-writeback behavior, we used the identical data

31

structure that is used in logic simulation software, and created a block of memory with

this data structure. Then using a random number generator, we accessed a memory

location for read and modified the contents and then wrote back the data into the same

memory location. From Table 4, we found that the memory access speed for this task

takes about 1000 nano-second on average.

2.4 Limitations of the Von Neuman Architecture

As discussed in this chapter, the software solution running even on the highest

performance workstations will not be able to provide the performance needed by large

circuit logic simulation. This is because the modern workstations are based on the “Von

Neuman” architecture. The characteristics of Von Neuman architecture are:

• Load/Store

• Fixed Width Instruction/Data

• General Purpose

• Single Memory (Virtual memory concept)

• Cache Hierarchy

Having a single narrow memory architecture forces the simulation task to perform

multiple memory accesses to obtain related information for a single gate. Cache memory

does not usually help for large circuit simulations because cache misses causes overhead.

Therefore, a traditional Von Neuman architecture cannot provide the performance

32

required for logic simulation task. A new custom architecture will be described in the

next chapter.

33

3.0 HARDWARE SIMULATION ENGINE ARCHITECTURE

As was shown in previous chapter, the bottleneck of software-based simulation

performance is caused by the poor performance of memory. Logic simulation can be

divided into three tasks: Evaluate, Update and Schedule. Evalutate and Update are

normally carried out as a single task and modeled as read-modify-writeback because each

event affects a particular gate that must be read from memory, the gate’s inputs and

possibly its outputs are modified, and the gate’s information must be written back to

memory. As shown earlier, a read-modify-writeback operation in software requires

between 1200 and 1400ns. The Schedule task determines the order in which events

occur. This is essentially a sorting problem and again is memory intensive.

By dividing the entire logic simulation task into Evaluation, Update and Schedule

subtasks, a performance profile of a benchmark circuit with such division can be graphed,

as shown in Figure 9. Based on the results of the performance analysis of a software

simulation algorithm, we designed a custom architecture to perform an event driven logic

simulation algorithm in hardware. The goal is to overcome the performance bottleneck

found in software simulation by implementing the simulation in hardware.

34

C1355
Evaluation
Update
FEQ Generation
36%

Schedule
64%

Figure 9 Run-Time Profile of Benchmark Circuit C1355

3.1 Statement of the Problem

The problem that the hardware logic simulation architecture should solve can be

summarized as following three categories:

1. Accuracy: A Full-Timing, Gate-Level Simulation at the pico-second accuracy is

the most important feature for the modern digital logic simulators. Without the

full-timing information, timing problems cannot be seen.

2. Capacity: Due to modern CMOS technology, the size of the VLSI chips reaches

to millions of gates. Therefore, the capacity of the simulation hardware should be

large enough to process these large designs. This work targets design sizes from

35

100,000 to millions of gates. Common in EDA area, a large size design is

computationally complex due to its large memory space requirement.

3. Speed: The software simulators running on a high speed workstation consumes

weeks to months of simulation run time when processing a large design.

Hardware logic simulation needs to be an order of magnitude faster than the

software to shorten the design cycle time and speed time-to-market.

3.2 Overview

Figure 10 illustrates the task flow of the hardware accelerated logic simulation

system. The logic simulation task on a hardware accelerated simulation system is carried

out in four phases. First, pre-processing software is run on a workstation to construct the

data structure for the simulation hardware using following inputs: circuit’s gate level

description, circuit’s gate-level timing information and the cell function of the selected

technology. Second, the constructed data structure is downloaded into the simulation

hardware. Third, the actual simulation is carried out in the hardware. Fourth, the results

from the hardware are uploaded into the workstation for the user to examine the

simulation results. The focus of this thesis is to design the logic simulation hardware to

provide the simulation results faster than is possible on a Von Neuman workstation.

36

Circuit’s Gate-Level
Timing InformationCircuit’s Gate Level

Description

1. Create Circuit Data Structure with
Timing

Selected Technology’s
Cell Functions

2. Download Circuit’s Data Structure and
Input Vectors into Hardware Accelerator

4. Receive Simulation Results and Format for the User

Bay Networks

3. Simulate Circuit
in Hardware

Input

Software Pre and Post Processing

Simulation Hardware

Figure 10 Hardware Accelerated Simulation

Our simulation hardware is divided into three task blocks: the Logic Engine,

Future Event Generator, and the Scheduler, as shown in Figure 11. The Logic Engine

performs logic evaluation due to an input-change event received from the Scheduler and

computes the output using the information stored in the Net-list and Configuration

Memory. The Logic Engine computes the output of the gate without considering the

delay of the gate. If the output value is changed, the Future Event Generator performs the

delay computation using the data in delay memory and generates new event called a

future event. A future event is an event that is to occur some time in the future. The

future event is passed to the scheduler through the future event queue. This new event is

passed back to the Logic Engine at the proper future simulation time. If the output does

not change, no future events are generated and logic computation terminates. When the

logic computation completes, the Logic Engine writes the new input values and possible

new output values back into the net-list and configuration memory. The Scheduler

37

manages new incoming events that are generated as a result of logic evaluation. All

future events are stored in the event memory. The Scheduler determines when to

increment the simulation time and examines its list of future events. A pending event is a

former future event whose execution time is equal to the simulation time and should be

executed. The Scheduler retrieves pending events from the Event Memory and forwards

them to the Logic Engine for evaluation. This process is continues until the pre-

determined simulation time.

Each of the main function blocks in our hardware (i.e., the Logic Engine, Future

Event Generator and the Scheduler) can be viewed as a processor with one instruction,

which only performs logic simulation task. This removes extra overhead caused by

fetch-decode-execute cycles of a Von Neuman architecture, since our architecture does

not rely on any general purpose instructions. The remainder of this chapter discusses

each block in more detail and outlines this work.

Our design also distinguishes itself from the others in that new features such as

power consumption measure are built into the simulation hardware. This architecture

will not only provide the logical verification and performance, but will be able to guide

the place-and-route process to evenly distribute the thermal “hot spots.” Our design also

targets a wider range of delay timing resolution (finer timing grain) compared to existing

simulators so that it can be used in a co-simulation environment, for example, logic gates

mixed with software running on a built in processor such as System on Chip (SOC)

environment. For such applications, the timing grain spans from a few pico-seconds to

several micro-seconds, and this makes the traditional event wheel approach inefficient.

38

Future
Event
Queue

Pending
Event
Queue

Logic Evaluation Future Event
Generation

Scheduler

Netlist &
Configuration

Memory
Delay

Memory

Event
Memory

Figure 11 Overview of the Architecture

3.3 Logic Engine

In Chapter 4, we demonstrate the computation of various logic primitives with

minimal hardware resources. We then introduce a new concept and primitives to perform

this logic computation more efficiently. One of the issues is that modern digital logic

simulation requires multi-level signal strengths such as logic-Low (‘0’), logic-High (‘1’),

High-Impedance (‘Z’), and Unknown (‘X’). Having these multi-level signals, not just

39

Boolean 1’s and 0’s, makes the logic simulation task more complex. The software

simulation uses a lookup table to compute these multi-level signal strengths through

multiple table lookup activities. Using a large lookup table, hardware requires only one

lookup to achieve the result. To gain this performance, the amount of hardware resource

grows exponentially with the gate input size. We illustrate the concept of behavioral

modeling by introducing Any and All primitives to reduce the size of the lookup table and

perform the logic simulation task faster and more efficiently than a single lookup table.

We then introduce a “Universal Gate” to perform four-level logic evaluation for

numerous Boolean logic gates. In addition to the Boolean logic gates, we present a group

of frequently used macro cells as single primitives such as a Multiplexer, Full Adder and

Flip-Flop. A detailed description of the Logic Engine can be found in Chapter 4.

3.3.1 Mapping into Hardware Memory

The pre-processing software generates the memory map according to the input

circuit design. Figure 12 shows an example circuit. The pre-processing software reads

the circuit description written and cross-links the gates according to the circuit’s fan-out

information. It then generates the net-list and configuration memory map as shown in

Table 5. All of the input and output values are initialized as Unknown (‘X’) state. The

delay memory mapping will be discussed in the next section.

40

G1
G3

G2

G4

P1

P1

P1

P1

P2

P2

P2

Figure 12 Mapping Circuit Net-list into Logic Engine Memory

The Net-list and Configuration Memory stores all information about a gate that is

necessary for it to be evaluated and stores all information about the state of the gate.

Each location in memory corresponds to a particular gate, and thus, the gate's

identification number is a physical memory address. This drastically increases

performance by removing virtual memory.

Table 5 Net-list and Configuration Memory Map

Address

Delay Base
Address

Power
Count

Input
Values

Output
Values

Destination
Gate ID

Destination
Pin ID

Gate
Type

4 7 0 X X - - INVERT
3 5 0 X X X - - OR
2 3 0 X X X - - AND
1 1 0 X X X 2, 3, 4 2, 1, 1 AND

The first column in Table 5 stores the memory address which holds the delay

values of each gate. The second column stores the power count and the third and fourth

column store the input and output states of the gate, respectively. These values are

initialized as Unknown (‘X’). The Fifth and the sixth columns store the fan-out

41

information for each gate and the last column stores the gate type information for

configuration.

3.3.2 Test Coverage and Stuck-at Fault Simulation

In addition to the accurate simulation of a logic circuit design, the architecture can

be applied to test coverage, false path detection and stuck-at fault simulation. To do this,

an output change count (called power count) mechanism is built into the architecture

design. A power count is associated with each gate and is incremented each time the

output transitions. Test engineers can simulate the circuit under test with a partial set of

input vectors, and can determine whether the input vector has exercised the data paths by

examining each gate’s output change count. For example, if the gate’s output change

count stays unchanged after a series of input vector applications, the test engineer can

conclude that either the design contains a false path, or the input vector set applied is not

enough to exercise all of the data paths. This example is illustrated in Figure 13 in Gate

G6.

Another application of the logic engine design is stuck-at fault detection. Stuck-at

fault simulation can be performed by replacing the gate model with a faulty gate model in

the evaluation block, which is described in the previous section. Test engineers can run

the simulation and compare the results for the case with a faulty gate model to the normal

gate model. This is shown in Figure 13 with Gate G8.

42

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

a

b

c

d

e

f

g

h

i

j

count = 1

count = 3

count = 9

count = 3

count = 5

count = 0

count = 39

count = 0

count = 1

count = 21

x

y

z

Figure 13 Use of Output Change Count

3.3.3 Power Consumption Estimation

The output change count can also be used to estimate power consumption. As

was discussed in Section 1.6, dynamic power dissipation is a function of output change

frequency. By counting the output state changes of the logic gates, we can extract the

estimated power consumption for each gate. As gates consuming more power naturally

generate more heat, this power count can also be used as a measure for thermal topology.

If the design being simulated is post-synthesis, we can determine which part of the design

will consume more power and therefore run hotter. If the design is pre-layout, we can

predict which area will be hot, which can then be utilized in the place and route process.

The place and route tool can take this information and distribute the thermal “hot spots”

more evenly. As an example, the gates G7 and G10 shown in Figure 13 have the highest

43

output change counts among other gates in the circuit. Therefore, designers can examine

these values and conclude that gates G7 and G10 will consume the most power and these

two gates are not recommended to be placed close together for the thermal distribution.

3.4 Future Event Generator

After the logic evaluation is performed and the new output is acquired, the Logic

Engine compares the new output value and the current output value. If the output value

has changed, then future events will be generated. To generate these future events, the

proper delay value associated with the cell currently being simulated has to be added to

the simulation time so that the new event can be scheduled, and passed back to the logic

engine for evaluation in the appropriate future simulation time.

Delays of logic cells can be classified as intrinsic and extrinsic delays. An

Intrinsic delay refers to the cell’s own delay when the cell does not drive any load.

Extrinsic delay refers to the external capacitive load caused by the interconnecting wire

and other cell’s input gate capacitance. Furthermore, depending on the cell type, there

are 3 different delay types: fixed delay, path dependent delay, and state dependent delay.

In Chapter 5, we illustrate the differences between these delay models. These delay types

require an increasing and variability amount of storage for the delay values. Therefore,

storing and addressing these delay value becomes a problem. For example, in the fixed

delay model, the only variable is whether the output changed to high or low. The path

dependent delay model adds input-to-output path information to the equation. The state

44

dependent delay model adds the state of the input value to the path dependent model. We

will address gates with such delay characteristics, and explore different delay memory

architectures and mechanisms to handle these delay models, and discuss the pros and

cons of each.

The pre-processing software also reads the delay information provided by SDF

file and creates the delay memory map for the circuit. Table 6 shows the generated delay

memory map for this example.

Table 6 Delay Memory Map

Delay Address Delay
1 Rise Time = 8
2 Fall Time = 6
3 Rise Time = 7
4 Fall Time = 5
5 Rise Time = 9
6 Fall Time = 8
7 Rise Time = 4
8 Fall Time = 3

3.5 Scheduler

As was shown in Chapter 2, scheduling events consumes a major portion of logic

simulation. In Chapter 6, we discuss the performance of various sorting algorithms and

identify the characteristics of the schedule task. We also discuss the problems related

with co-simulation and discuss why the current event-wheel based scheduling will not be

applicable to a scheduling problem with a wide variety of timing resolution. We will

illustrate how a parallel sub-memory scanning mechanism can be used to avoid the high

cost for a linear search and yet be able to provide efficient memory usage and improved

45

speed for scheduling. The design space will be explored with event memory sizes, and

their performance will be computed and discussed. The design space to be explored

includes the following:

• A Single memory with one linear search algorithm.

• Multiple memories and linear search sub-blocks in parallel. (2-level)

• Multiple memories and a linear search with combinational global search.

A comparison of these three approaches and the software approach will be made.

3.6 Experimental Results and Scalability

To demonstrate that our design is feasible, a proof-of-concept implementation of

our architecture has been created. Its performance was measured and is reported in detail

in Chapter 7. Through out this thesis, the logic element of FPGA has been used for unit

of measure for size comparison.

We also discuss net-list pre-processing software and its data structure. The pre-

processing software plays a crucial role in generating the correct memory image to be

loaded into our hardware design. We then demonstrate our design with a simple test

circuit, and discuss the performance related issues.

Scalability issues will also be discussed with a 100,000 gate capacity design, and

show how each field of the data structure has to be scaled. Our prototype also

demonstrates extra features we have implemented, such as power count (as discussed in

Section 3.2 and 3.3). Finally, the performance and feature comparison between our

46

design and existing hardware and software simulators will be presented and discussed. In

order to make a fair comparison between our architecture and others, we have quantified

our experimental results in terms of FPGA Logic Elements. These Logic Elements

(LE’s) are created using a 4-input lookup table, a flip-flop, and a number of other AND

and OR gates that are used to interconnect the LE with other LE’s. As an approximation,

a single FPGA LE can be implemented in an ASIC using 1-10 standard cell gates.

47

4.0 LOGIC EVALUATION ARCHITECTURE

Logic evaluation of a gate can be performed in two ways. One is to use Boolean

primitives to compute the logic value. The other is to rely on a table lookup that lists

every possible input and output combination. The problem with using Boolean logic

primitives is that it only works with two-level signals such as Logic Low (‘0’) and Logic

High (‘1’). When the input contains four or more level signals such as Hi-Impedance

(‘Z’) or Unknown (‘X’), the input signal has to be encoded into 2 or more bits, which

makes it difficult to compute with generic Boolean logic primitives.

Evaluating a two-input AND gate is seemingly simple in its Boolean equation

form, as shown in Figure 14, but using this Boolean equation is not enough to extract its

behavior, since it only deals with logic ‘0’ and logic ‘1’ for computation. Simulators for

modern digital systems must handle multi-level signals such as ‘Z’ and ‘X’ in addition to

the logic ‘0’ and logic ‘1’ in order to provide accurate simulation results at pico-second

precision.

B
A

Output
Output = A * B

Figure 14 Two-Input AND Gate

IEEE standard logic 1164(24) defines 9 different signal strengths and describes

how the Boolean logic should be evaluated for various input signal strengths for VHDL.

IEEE standard 1364(31) for Verilog defines 4 signal strengths as 0, 1, Z (High Impedance)

48

and X (Unknown). This research is focused on the Verilog standard, and shows how

logic gates can be efficiently simulated with 4 signal strengths.

A two-bit encoding scheme is required to express four signal strengths. While

this two-bit representation is good for saving the storage space, it is difficult to

manipulate within the hardware. Instead, a “one-hot encoded” (4-bit) notation is used to

represent these four level signal strengths. Table 7 shows the encoded signals that our

design will use to represent different signal strengths. Logic Low (‘0’) will be

represented as “0001” (decimal 1), Logic High (‘1’) will be represented as “0010”

(decimal 2), Hi-Impedance (‘Z’) will be noted as “0100” (decimal 4), and Unknown (‘X’)

will be represented as “1000” (decimal 8).

Table 7 One Hot Encoded Signals

Signal Meaning One Hot Encoded Decimal Number
0 or L Logic Low "0001" 1
1 or H Logic High "0010" 2

Z High Impedance "0100" 4
X Unknown "1000" 8

One mechanism that can handle multi-level signal strength (‘0’, ‘1’, ‘Z’, and ‘X’)

is a standard lookup table. The problem with a lookup table is that the size of the table

grows exponentially with number of inputs, and quickly becomes unmanageable. As

shown in Table 8, a simple 2-input AND gate can have up to 16 entries in lookup table.

In general, a gate with N input signals will have up to 4N entries in its lookup table

representation. Table 9 and Figure 15 show this exponential-size problem. Therefore,

evaluating a logic gate using the lookup table often requires a large memory.

49

Table 8 Lookup Table for 2-Input AND Gate

A B Output
0 0 0
0 1 0
0 Z 0
0 X 0
1 0 0
1 1 1
1 Z X
1 X X
Z 0 0
Z 1 X
Z Z X
Z X X
X 0 0
X 1 X
X Z X
X X X

Table 9 Lookup Table Size Computation

Number of
input

Truth Table
entries

1 4
2 16
3 64
4 256
5 1,024
6 4,096
7 16,384
8 65,536
9 262,144

10 1,048,576

50

0

200000

400000

600000

800000

1000000

1200000

0 2 4 6 8 10
Number of inputs

Tr
ut

h
Ta

bl
e

en
tri

es

12

Figure 15 Lookup Table Size Growth

ASIC libraries tend to grow in its size and items so that it becomes difficult for

these growing libraries to be simulated efficiently with a fixed logic simulation engine

design. Therefore, flexibility becomes a major issue. To make simulation engines

flexible and yet simple, logic gates are grouped based on their functionality and behavior.

Table 10 lists the function group along with the number of gates for a particular vendor

cell library. The library contains many gates with same functionality, but with different

driving capabilities.

51

Table 10 Function Group and Number of Gates for Each Group

Name Quantity
INVERTER 62

BUFFER 56
AND/NAND 42

OR/NOR 42
AND-OR/AND-OR-INVERT/OR-AND/OR-AND-INVERT 320

XOR/XNOR 18
MUX 34

FULL ADDER 16
FLIP FLOP 66

When we examine the behavior of the AND gate shown in Table 8, we can

simplify this 16-entry table into the 3-entry table shown in Table 11 by creating two

functions Any() and All()(36, 37). Furthermore, when we model the behavior, the table

size remains unchanged regardless of the number of inputs. Regardless of the number of

inputs, the behavior of the AND gate does not change.

Table 11 Behavioral Modeling of 2-Input AND Gate

Inputs Output
Any 0 0
All 1 1
ELSE X

The above discussion motivates the need for behavioral modeling of logic gates

and the need for new hardware primitives. From Section 4.1 through Section 4.4 , we

will discuss the behavioral modeling of the inverter/buffer, AND/OR, XOR, and AO/OA

cells.

There are 3 function groups that have to be modeled individually because their

input pins have special meaning and they have a unique behavior. For example, a clock

input pin for the flip-flop can only be connected to the clock signals. And a select input

52

pin of a multiplexer (MUX) can only be connected to the proper signals. Contrary to the

generic AND and OR gates, in which we can interchange the inputs without causing

functional change, certain gates contain these special I/O pins that have to be connected

to proper signals to guarantee the functionality. For example, if a clock input and a data

input of a flip-flop are interchanged, then that flip-flop will not function as the designer

intended.

Multiplexers are frequently used items in the digital system design. Although,

they can be expressed as a collection of Boolean primitives, they require multiple layers

of AND and OR gates to express a complex multiplexer (MUX). Therefore, its

behavioral modeling is motivated and defined as a MUX primitive in Section 4.6 . A Full

adder gate is also defined as its own primitive and discussed in Section 4.7 . Finally, a D

Flip-Flop’s behavior is modeled and defined as primitives in Section 4.8 . Scalability is

discussed in Section 4.9 .

4.1 Inverter and Buffer Cells

Table 12 shows the lookup table of Inverter and Buffer cells. Table 13 illustrates

the functional behavior of Inverter and Buffer cells based on the lookup table shown in

Table 12. An inverter will invert the input value when the input is ether Logic-High (‘1’)

or Logic-Low (‘0’), but will generate Unknown (‘X’) as output when the inputs are High-

Impedance (‘Z’) or Unknown (‘X’) according to the definition given in IEEE standard

1164(24). Similarly, the Buffer cell will pass the input to its output when the input is

53

either Logic-High or Logic-Low, but will generate Unknown as its output value when the

input value is either High-Impedance or Unknown.

Table 12 Standard Lookup Table for Inverter/Buffer Gates

A Inverter Buffer
0 1 0
1 0 1
Z X X
X X X

Table 13 Priority Lookup Table for Inverter/Buffer Gates

Input Pattern Inverter Buffer
0 1 0
1 0 1

ELSE X X

The inverter can be attached to other gate evaluation logic to form the negated

gate design. For example, the AND gate evaluation engine design actually contains both

normal output and negated output for NAND design. The OR gate evaluation design also

has the inversion logic of the out to obtain NOR functionality. Notice that we are using

“ELSE” clause in the table. The “ELSE” clause means that our lookup table contains a

“priority”. Using priority can introduce performance penalty for a large lookup table, but

as was shown in Table 13, the size of our lookup table is only 3.

54

input

4

output

InverterLUT

4

Input Inverter
0 1
1 0

ELSE X

Figure 16 Inverter Design

input

4

output

BufferLUT

4

Input Buffer
0 0
1 1

ELSE X

Figure 17 Buffer Design

Our design of the inverter and buffer can handle four level signal strengths

whereas normal Boolean logic can handle only two. By using the “ELSE” to the lookup

table, we were able to optimize the size of the lookup table by 25% (by grouping ‘Z’ and

‘X’ inputs, therefore 4 down to 3). Optimization results are a function of the number of

inputs and therefore, larger cells will show better improvements.

55

4.2 AND/NAND and OR/NOR Cells

Table 14 describes the behavior of a 2-input AND gate and a 2-input NAND gate

in lookup table form. From this table, we can see that the output of the 2-input AND gate

becomes Logic-Low (‘0’) when any one of the input value is Logic-Low (‘0’). Also the

output of the 2-input AND gate will be Logic-High (‘1’) when all of the input values are

Logic-High (‘1’). If any one of the inputs becomes High-Impedance (‘Z’) or Unknown

(‘X’), then the output of the AND gate will generate the Unknown (‘X’) value.

Table 14 Lookup table for 2-Input AND/NAND Gates

A B AND NAND
0 0 0 1
0 1 0 1
0 Z 0 1
0 X 0 1
1 0 0 1
1 1 1 0
1 Z X X
1 X X X
Z 0 0 1
Z 1 X X
Z Z X X
Z X X X
X 0 0 1
X 1 X X
X Z X X
X X X X

56

This behavior is modeled in Table 15. The size of lookup table has been reduced

from 16 (= 42) down to 3. This size reduction can be generalized to the AND/NAND

gates with any number of inputs.

Table 15 Priority Lookup table for AND/NAND Gates

Input Pattern AND NAND
Any(‘0’) 0 1
All(‘1’) 1 0

Else X X

Therefore, if we have the Any and All primitives as readily available functions,

then AND/NAND gate evaluation with any number of inputs becomes extremely simple,

as illustrated in Figure 18. This is not the case for the standard lookup table. As shown

in Figure 15, the table size grows exponentially. The size of LUT in Figure 18 and

Figure 19 do not change for any number of inputs. Scalability of Any() and All() is

discussed in later section.

Any & All
Function

Any(0)

All(1)
outputinput

Input AND
Any(0) 0
All(1) 1
Else X

AND LUT

Figure 18 AND Gate Evaluation Design Using Any and All Primitives

57

Any & All
Function

Any(0)

All(1)
outputinput

NAND LUT

Input NAND
Any(0) 1
All(1) 0
Else X

Figure 19 NAND Gate Evaluation Design Using Any and All Primitives

Again, notice that our lookup table contains a priority. Any(‘0’) has higher

priority than All(‘1’), and All(‘1’) has higher priority than the “ELSE” part of the lookup

table. To illustrate this point, assume that we have 4-input AND gate with the values

shown in Table 16 (a). Input B will cause the Any(‘0’) function to be TRUE, and it will

also cause All(‘1’) to be FALSE. When we evaluate this result, Any(‘0’) has higher

priority and is already TRUE, the output of the AND gate becomes ‘0’. But in the case

shown in Table 16 (b), the Any(‘0’) function will be FALSE because none of the inputs

are ‘0’. And the input D will cause the All(‘1’) function to be FALSE. Therefore, our

priority lookup table will match the “ELSE” part of the table, and the result of the AND

gate evaluation will be ‘X’.

58

Table 16 Any/All Function for a 4-Input AND Gate

(a) Any(‘0’)=True and
All(‘1’)=False

Inputs Value
A 1
B 0
C 1
D X

(b) Any(‘0’)=False and
All(‘1’)=False

Inputs Value
A 1
B 1
C 1
D X

Table 17 Lookup Table for 2-Input OR/NOR Gates

A B OR NOR
0 0 0 1
0 1 1 0
0 Z X X
0 X X X
1 0 1 0
1 1 1 0
1 Z 1 0
1 X 1 0
Z 0 X X
Z 1 1 0
Z Z X X
Z X X X
X 0 X X
X 1 1 0
X Z X X
X X X X

59

Table 17 shows the standard lookup table for 2-input OR/NOR gates. The output

of 2-input OR gate will produce Logic-High (‘1’) when any one of the input value is

Logic-High (‘1’). The output of the 2-input OR gate will be Logic-Low (‘0’) when all of

the input values are Logic-Low (‘0’). If any one of the inputs becomes High-Impedance

(‘Z’) or Unknown (‘X’), then the output of the OR gate will generate Unknown (‘X’)

value.

Table 18 Priority Lookup Table for OR/NOR Gates

Input Pattern OR NOR
Any(‘1’) 1 0
All(‘0’) 0 1
ELSE X X

This behavior is modeled in Table 18. Again, we reduced the size of lookup table

down to 3 with the Any() and All() function pair with any number of inputs. Figure 20

and Figure 21 shows the OR/NOR logic evaluation design.

Any & All
Function

Any(0)

All(1)
outputinput

OR LUT

Input OR
Any(1) 1
All(0) 0
Else X

Figure 20 OR Gate Evaluation Design Using Any and All Primitives

60

Any & All
Function

Any(0)

All(1)
outputinput

NOR LUT

Input NOR
Any(1) 0
All(0) 1
Else X

Figure 21 NOR Gate Evaluation Design Using Any and All Primitives

In summary, we have shown that with Any() and All() primitives, we can

achieve the AND/NAND/OR/NOR gate evaluation design. This is a significant

improvement in the size of lookup table because we were able to reduce the size down to

a 3-entry priority lookup table for any number of inputs. As for standard lookup table

approach, the size of the table grows exponentially as the number of input grows. Table

19 shows the size comparison for a various number of inputs. The “Number of Primitive

Functions” column shows how many primitives are being using. Since we are using

Any(‘0’)/All(‘1’) for the AND gate or Any(‘1’)/All(‘0’) for the OR gate, the value for the

column is 2. The “Function Width” column shows how many primitive functions are

needed to implement the design. Since our Any() and All() primitives work in pairs and

should be applied on each input values, it is a function of total number of inputs. As a

conclusion, we can see that as the number of inputs for AND/OR gates grows, our

approach can reduce the size of table. It should be noted that the function width grows

linearly with input size and will consume resources proportional to the number of inputs.

For an n input AND/NAND/OR/NOR operation, the width of Any/All function

will be (size of Any/All function) because the Any/All function is applied to each ×n

61

input signals. Section 4.5 will describe this in detail. The size of our priority lookup

table is a constant with a value of 3.

Table 19 Lookup Table Size Comparison for AND/NAND/OR/NOR Gates

Using Any/All

Number of Inputs for
AND/NAND/OR/NOR

Lookup
Table Size

Number of
Primitive
Functions

Function
Width

Priority
LUT Size

LUT
Reduction

Factor
2 16 2 2 3 5
3 64 2 3 3 21
4 256 2 4 3 85
5 1,024 2 5 3 341
6 4,096 2 6 3 1,365
7 16,384 2 7 3 5,461
8 65,536 2 8 3 21,845
9 262,144 2 9 3 87,381

10 1,048,576 2 10 3 349,525
N 4^N 2 N 3 (4^N) / 3

4.3 XOR/XNOR Cells

Table 20 shows the lookup table for a 2-input XOR/XNOR gates. The output of

the 2-input XOR gate will be Unknown (‘X’) when any of the input values is High-

Impedance (‘Z’) or any of the input values is Unknown (‘X’). Otherwise, the XOR gate

will follow the normal Boolean logic function for XOR gate behavior. In other words,

XOR will output Logic-High (‘1’) when the number of Logic-High (‘1’) inputs is ODD

number and output Logic-Low (‘0’) when the input has an EVEN number of Logic-High

(‘1’) values.

62

Table 20 Lookup Table for 2-Input XOR/XNOR Gates

A B XOR XNOR
0 0 0 1
0 1 1 0
0 Z X X
0 X X X
1 0 1 0
1 1 0 1
1 Z X X
1 X X X
Z 0 X X
Z 1 X X
Z Z X X
Z X X X
X 0 X X
X 1 X X
X Z X X
X X X X

The XNOR gate will behave the same as XOR for any High-Impedance and

Unknown input case. For Logic-Low (‘0’) and Logic-High (‘1’) case, XNOR will output

Logic-High (‘1’) when the input has an EVEN number of Logic-High (‘1’) values and

will output Logic-Low (‘0’) otherwise. When the input values only contain Logic-High

and Logic-Low values, the behavior of the XOR/XNOR can be emulated using a

programmable logic device as shown in Table 21, which captures the behavior of

XOR/XNOR gates. The lookup table size is also reduced down to 3, but XOR/XNOR

requires extra emulation hardware.

63

Table 21 Priority Lookup Table for XOR/XNOR Gates

Input XOR XNOR
Any(Z,X) X X

ELSE Emulate Emulate

Figure 22 (a) illustrates XOR gate evaluation design using an Any() function and

Figure 22 (b) shows the actual hardware XOR gate operation. As with AND/OR gates,

the lookup table size for XOR evaluation does not change for any number of inputs.

Figure 23 (a) and (b) show XNOR gate evaluation and how the emulation circuit is used.

outputinput

1 4

XOR
emulation

n

4

X

Z
1

0
1

Slicer

4

X

Z
1

0
1

Slicer

1
0"0001"

"0010"

(a)

(b)

XOR
emulation

logic

Any
Function

XOR-LUT

Input XOR
Any(Z,X) X

Else Emulate

Any(Z,X)

Figure 22 XOR Gate (a) Evaluation Design Using Any Primitives, (b) Emulation Logic

64

1 4

XNOR
emulation

4

X

Z
1

0
1

Slicer

4

X

Z
1

0
1

Slicer

1
0"0001"

"0010"n

outputinput

(a)

(b)

XNOR
emulation

logic

Any
Function

XNOR-LUT

Any(Z,X) Input XNOR
Any(Z,X) X

Else Emulate

Figure 23 XNOR Gate (a) Evaluation Design Using Any Primitives, (b) Emulation Logic

Table 22 shows the size of the lookup table for both a conventional lookup table

and our priority lookup table. The second column indicates the size of standard truth

table. For 4-level signal strength with N inputs, the table size is 4N. The third column

states how many Any/All primitives are used to make our priority lookup table. As

shown in Figure 22 (a), we are relying on only one primitive Any(‘Z’, ‘X’). The fourth

column indicates how many of the primitives being used to implement the design and it

65

follows the number of input. As we can see from the table, if we have an Any() function

which can perform multiple match, e.g. Any(‘Z’, ‘X’), then we can reduce the size of our

lookup table to a 2 entry table.

Table 22 Lookup Table Size Comparison for XOR/XNOR Gates

Using Any/All
Number of
Inputs for

XOR/XNOR
Lookup

Table size

Number of
Primitive
Functions

Function
Width

Priority
LUT Size

LUT
Reduction

Factor
2 16 1 2 2 8
3 64 1 3 2 32
4 256 1 4 2 128
5 1024 1 5 2 512
6 4096 1 6 2 2048
7 16384 1 7 2 8192
8 65536 1 8 2 32768
9 262144 1 9 2 131072

10 1048576 1 10 2 524288
N 4^N 1 N 2 (4^N)/2

In summary, we have introduced the concept of multiple-match Any() function.

We have shown how to incorporate Boolean emulation when input signals are (0 and 1).

Experimental results including the XOR gate size and the function width are given in

Section 4.9 .

66

4.4 AO/AOI and OA/OAI Cells

AO gate is a 2-level logic macro cell. The first level gates are composed of

multiple AND gates and the second level logic is implemented as a single OR gate.

Likewise, OA is a 2-level logic macro cell with multiple OR gates in the first level logic

and a single AND gate as second level logic which takes first level OR gate’s outputs as

its input signals. Figure 24 shows a simple AO22 and gate.

B

D

A

C Z

Figure 24 AO22 Gate

There are numerous combinations of AO and OA gates depend on how many first

level gates are used and how many inputs per first level gates have, we can build different

type of AO and OA gates. AO22 is a particular vendor’s cell naming convention. A

general form of naming is AOabcd, where the variables abcd indicates the number of

inputs in the first level logic gates. For example, when we have AO432 gate, it means

that there are 3 AND gates with 4-inputs, 3-inputs, and 2 inputs, respectively, in the first

level logic and their output signals are connected to 3-input OR gate. Therefore, AO22

stands for 2-level AND-OR gates with two 2-input AND gates in the first level and 2-

input OR gate in the second level.

AO/OA gate evaluation logic can be implemented using AND/OR evaluation

logic as basic building blocks, as discussed in Section 4.2 . The design of AO22 is

67

illustrated in Figure 25. Notice that the first level gates are AND and the second level

logic is the OR gate.

OR-LUT

Any & All
Function

Any & All
Function

Input AND
Any(0) 0
All(1) 1
Else X

Any(0)

All(1)

Any(0)

All(1)

Any & All
Function

4

4

AND-LUT

AND-LUT

Input OR
Any(1) 1
All(0) 0
Else X

Input AND
Any(0) 0
All(1) 1
Else X

Any(1)

All(0) Output

4

AO22 input_1 8

AO22 input_2
8

Figure 25 Implementation of AO22 Using AND/OR Evaluation Logic

Since AO/OA cells are built with AND/OR cells, the lookup table size depends on

the number of AND/OR gates used to build the AO/OA cells. Table 23 and Table 24

summarize the comparison between standard lookup table and our approach. In Table

23, the first column indicates the type of AO/OA cells. The first item in the first column

is for AO22, which contains two 2-input AND gates in the first level. The last entry is

for the general case with AOkkk…k. It contains n AND gates in the first level logic and

each AND gate contains k inputs.

Table 23 Lookup Table Size for AO Gate

Name
Encoding

Number of
AND/OR

Gates
Number
of Inputs

Lookup Table
Size

Using one
Lookup Table

per Gate
22 3 4 256 48

222 4 6 4096 64
333 4 9 262144 256

3333 5 12 16777216 320
4444 5 16 4294967296 1,280

55555 6 25 1.1259E+15 6,144
88888888 9 64 3.40282E+38 589,824

kkk…k n+1 k * n 4^(k*n) (n+1) * (4^k)

68

The priority lookup table size for a single AND/OR gate is 3, as was discussed in

Section 4.2. There are n gates in the first level logic and 1 extra gate in the second level

logic, for a total of (n+1) gates. Therefore, our lookup table size for general AO cell case

is 3× (n+1). The standard lookup table still requires exponential size. Since AO cells

contain multiple gates, the total number of inputs is quite large (k×n). Thus the size of

the lookup table is 4(k n)× for 4 signal strengths. As a result, we were able to achieve

linear size growth of the lookup table with 3× (n+1).

Table 24 Priority Lookup Table Size for AO Gate

Using Any/All
Name

encoding
Number of
Functions

Function
Width LUT Size LUT Reduction Factor

22 2 6 9 5.33
222 2 9 12 5.33
333 2 12 12 21.33

3333 2 16 15 21.33
4444 2 20 15 85.33

55555 2 30 18 341.33
88888888 2 72 27 21,845.33

kkk…k 2 k*(n+1) 3*(n + 1) (n+1)*(4^k) / (3*(n + 1))

By using Any/All function, we have made a large improvement in the size of the

lookup table. Since we are combining AND/OR cells as primitives to construct more

complex cells, our priority lookup table size grows linearly as a function of the number of

first level gates. But it still is much smaller than the standard lookup table size.

69

4.5 Universal Gate

As discussed in previous sections, the Any/All functions constitute the basis of

our design, and can reduce the size of the lookup table considerably. In this section, we

will discuss the implementation of the Any/All functions using a “one-hot encoding”

scheme. A simple example will be presented for illustration. By combining the Any/All

functions and reduced lookup table, we will construct a “Universal Gate” design.

The properties of Any/All function are given below:

• Any(i): TRUE if any input has a value i.

• Any(i, j,): TRUE if any input has the value either i or j.

• All(i): TRUE if all inputs are of value i.

• All(i, j,): TRUE if all inputs are of value i or j.

4.5.1 Any/All Simulation Primitives

Previous sections motivate the need for the Any/All detection circuit. The idea is

to mask off the input patterns that we don’t want to see and only pass the pattern that we

want. We can implement this with simple circuitry and a 4-bit one-hot encoding scheme.

In Any/All circuit design, all of the input signals are expanded to 4-bit one-hot encoding

as shown in Table 7 and then masked with appropriate values that we wish to look for.

For example, an ‘X’ is encoded as “1000”. The Any(‘X’) function is defined as

“Does any input match 1000?”. Similarly, All(‘X’) function can be rewritten as “Do all

70

inputs match 1000?” Figure 26 shows a logic circuit that implements Any() and All()

by bit-wise ANDing a mask (e.g. “1000”) with the encoded input and then ORing all of

the AND results. Labeled as “match”, the output of the OR gate indicates that the input

does or does not match the mask. For the Any() function, only one match has to be

TRUE for Any() to be TRUE. Thus the match signals are OR’ed together. For the All()

function, all inputs must match and the match signals are AND’ed together.

mask[0]

mask[1]

mask[2]

mask[3]

input[0]

input[1]

input[2]

input[3]

al
l_

ou
t

an
y_

ou
t

all_in any_in

A4

A1

A2

A3
O1

A5 O2

match

Figure 26 Circuit for Any and All Functions for a Single Signal

Since we employed a one-hot encoding scheme for our signal representation, one

of the properties of our Any/All function is that we can mix the multiple patterns that we

are interested in into one mask. For example, to examine Z and X matches from the input

signal simultaneously, we can mix Z-mask (“0100”) and X-mask (“1000”) by applying

bit-wise OR operation to those two masks resulting a ZX-mask (“1100”). Therefore, one

implementation of Any/All circuit can perform Any(‘Z’, ‘X’) and All(‘Z’, ‘X’) functions

simultaneously.

71

As a usage example, assume that we are evaluating a two-input AND gate with

the first input (input_1) value set to logic ‘0’ and the second input (input_2) set to logic

‘1’ as shown in Figure 27 (a). The input_1 (value set as 2-bit encoded to “00”) will be

expanded as “0001” and the input_2 (2-bit encoded as “01”) will be expanded to one-hot-

encoded value of “0010”. Then the appropriate mask value is applied to remove the

unwanted input patterns as shown in Figure 27 (c). For AND gate evaluation, we are

interested in Any(‘0’) and All(‘1’) patterns. To perform Any(‘0’) function, the zero-

mask (“0001”) is applied to the mask input port of the circuit shown in Figure 28 (a).

The input_1[0] and mask[0] both contain ‘1’, therefore the top AND gate (A11) will

produce a ‘1’ output, that drives the OR gate (O11), generating a ‘1’ output. It then passes

the value to final gates (A15 and O12). The output of the AND gate (A15) will produce a

‘1’ and it is interpreted as All(‘0’) is TRUE. The output of the last OR gate (O2) will

also generate a ‘1’ which is interpreted as Any(‘0’) is TRUE. These values will be

passed to the input_2 evaluation phase.

When we apply the zero-mask (“0001”) to the input_2 (“0010”), the bit-wise

AND will set all the AND gates (A21 to A24) to ‘0’, and the output of the OR gate (O21)

will also be ‘0’. This will be AND’ed with previous All(‘0’) result (which was ‘1’) in

gate A25, resulting All(‘0’) as FALSE, and OR’ed with previous Any(‘0’) result in gate

O22, setting Any(‘0’) as TRUE. Therefore, we conclude that the 2-input AND gate we

are evaluating contains at least one zero in its inputs.

At the same time, the one-mask (“0010”) will be applied to the Any/All circuit as

in Figure 28 (b). For input_1, the bit-wise AND operation performed by gates A31 to A34

72

will generate all ‘0’s as their outputs. Therefore, the output of the OR gate (O31) will

produce ‘0’ as output. This in turn will set the All(‘1’) output to FALSE and Any(‘1’)

output to FALSE. For input_2, the second AND gate (A42) will generate ‘1’ as output

while the others will be set to ‘0’. The output of the OR gate (O41) will therefore be set to

1 and AND’ed with the previous All(‘1’) output, which is FALSE. Therefore the final

value of All(‘1’) for this example will be FALSE. The output of the OR gate (O41) will

be OR’ed with previous Any(‘1’) value (FALSE) in the last OR gate (O42) and the result

will be set to TRUE, which is the final result for Any(‘1’). Therefore, this example

contains at least one Logic High (‘1’) as its inputs. Figure 27 (c) shows the inputs and

mask values for this example. Our Any/All design has successfully detected All(‘0’) is

FALSE, Any(‘0’) is TRUE, All(‘1’) as FALSE, and Any(‘1’)” as TRUE for the given 2-

input AND gate. With these results and the priority lookup table shown in Figure 27 (b),

the final result for the given 2-input AND gate will be Logic Low (‘0’) because Any(‘0’)

was TRUE and All(‘1’) was FALSE.

73

(b)

Any & All
Function

Any(0)

All(1)
outputinput

Input AND
Any(0) 0
All(1) 1
Else X

AND LUT

(a)

B = "0010"
A = "0001"

Output = "0001"

Input 1 0 0 0 1 Input 1 0 0 0 1
Mask 1 0 0 0 1 Mask 2 0 0 1 0
Input 2 0 0 1 0 Input 2 0 0 1 0
Mask 1 0 0 0 1 Mask 2 0 0 1 0

Any(0)/All(0) Any(1)/All(1)

(c)

Figure 27 Any and All Based 2-Input AND Gate Evaluation Example

74

A
ll(

0)

A
ny

(0
)

Input_1

Input_2

mask[0] = '1'

mask[1] = '0'

mask[2] = '0'

mask[3] = '0'

input_2[0] = '0'

input_2[1] = '1'

input_2[2] = '0'

input_2[3] = '0'

mask[0] = '1'

mask[1] = '0'

mask[2] = '0'

mask[3] = '0'

input_1[0] = '1'

input_1[1] = '0'

input_1[2] = '0'

input_1[3] = '0'

Masking with Zero("0001")

A11

A21

A12

A13

A24

A22

A23

A14
A15

A25

O12

O11

O21

O22

(a)

(b)

A
ll(

1)

A
ny

(1
)

Input_1

Input_2

A31

A41

A32

A33

A44

A35

A42

A43

A34

A45

O32

O31

O41

O42

mask[0] = '0'

mask[1] = '1'

mask[2] = '0'

mask[3] = '0'

input_1[0] = '1'

input_1[1] = '0'

input_1[2] = '0'

input_1[3] = '0'

mask[0] = '0'

mask[1] = '1'

mask[2] = '0'

mask[3] = '0'

input_2[0] = '0'

input_2[1] = '1'

input_2[2] = '0'

input_2[3] = '0'

Masking with One("0010")

Figure 28 Any and All Primitives for 2-Input AND Gate Example

75

4.5.2 Universal AND/NAND/OR/NOR

The Universal gates work in pairs for performing Any() and All() function.

AND/OR gates require a universal gate with zero and one masks, XOR gates require a

universal gate with Z mask and X mask.

Most vendor libraries have fan-in limits. At the time of this writing, a typical

maximum fan-in for a particular library we are using allows up to 5-inputs for logic

primitives. For future expansion, we will allow up to 8-inputs for one level logic

primitives such as AND/OR gates. The circuit for an 8-input Any/All primitives is

shown in Figure 29.

76

mask0

mask1

mask2

mask3

input0

input1

input2

input3

mask0

mask1

mask2

mask3

input0

input1

input2

input3

A
ll(

0)

A
ny

(0
)

input_1
&

Zero
Mask

input_8
&

Zero
Mask

mask0

mask1

mask2

mask3

input0

input1

input2

input3

mask0

mask1

mask2

mask3

input0

input1

input2

input3

A
ll(

1)

A
ny

(1
)

input_1
&

One
Mask

input_8
&

One
Mask

Any/All function for Zero

Any/All function for One

Figure 29 An 8-Input Any/All Design

77

Figure 30 and Figure 31 show the implementation of 8-input AND gate and 8-

input OR gate evaluation engine cores, respectively. The universal gate will generate the

Any() and All() outputs for the given input and then corresponding evaluation logic will

determine the final output value based on the priority lookup table described in previous

sections. Note that each input has 32-bits as input because each of the 8 inputs are 4-bit

wide, due to the one-hot-encoding.

zero_mask

one_mask

and8_input
AND-LUT
Evaluation

Logic

32

32

32

8-input
Any-All
Circuits

Any(0)

All(1) 4

and8_out

Figure 30 An 8-Input AND Gate Simulation Engine Core

zero_mask

one_mask

or8_input
OR-LUT

Evaluation
Logic

32

32

32

8-input
Any-All
Circuits 4

or8_out

Any(1)

All(0)

Figure 31 An 8-Input OR Gate Simulation Engine Core

To make these AND and OR evaluation logics more versatile, inversion logic,

which was described in Section 4.1 , is added to the input and output ports. The output

inversion will allow us to handle NAND evaluation based on AND logic, and NOR

evaluation with OR logic circuits. It will also allow us to deal with more diverse forms of

78

Boolean logic gate evaluation, such as logic gates with partially inverted inputs as shown

in Figure 32.

Figure 32 NAND Gate with Some Inputs Inverted

Figure 33 shows our implementation of a universal AND/NAND evaluation logic

circuit. Figure 34 describes the universal implementation for OR/NOR evaluation logic

circuitry.

8
Universal
Circuits

zero_mask
one_mask

AND
LUT

Evaluation
Logic

32
32

all_zero

any_zero

all_one

any_one
4

and8_out
0

1

nand8_out

Output
Inversion

Flag

Output432and8_input

Input
Inversion

Flags

8

Inversion
Logic

Inversion
Logic

Figure 33 Implementation of 8-Input AND/NAND Gates

79

8
Universal
Circuits

zero_mask
one_mask

OR
LUT

Evaluation
Logic

32
32

all_zero

any_zero

all_one

any_one
4

or8_out
0

1

nor8_out

Output
Inversion

Flag

Output432

Input
Inversion

Flags

8

Inversion
Logicor8_input

Inversion
Logic

Figure 34 Implementation of 8-Input OR/NOR gates

The evaluation logic for AND/NAND and OR/NOR circuit can be merged into

one to form a universal AND/NAND/OR/NOR evaluation logic. Figure 35 is the final

form of our universal logic evaluation circuit for 8-input AND/NAND/OR/NOR gates.

8
Universal
Circuits

zero_mask
one_mask

AND/NAND
OR/NOR

LUT
Evaluation

Logic

32
32

all_zero

any_zero

all_one

any_one

4

and/nand
output

0

1

Function Group
select

Output4

4 or/nor
output

32

Input
Inversion

Flags

8

Inversion
Logicinputs

Figure 35 A Universal 8-Input AND/NAND/OR/NOR Evaluation Logic

4.5.3 Universal XOR/XNOR

The XOR/XNOR gate can be evaluated as shown in Figure 36. We use our

Universal circuit to detect Any(‘Z’) and Any(‘X’) for the given input vector set and when

80

either one of them becomes TRUE, we choose Unknown (X) as the XOR gate’s output.

Otherwise, we can use the built-in XOR logic circuit (emulation) from our hardware

platform, because any input vector combination that generates both Any(‘Z’) = FALSE

and Any(‘X’) = FALSE means that all the inputs are either 0 or 1. Using XOR emulation

will avoid implementing EVEN and ODD detection circuits.

Z_mask

X_mask

32

32

8-Input
Universal

Gate

any_Z
any_X

4

xor8_out

0
1

"X"

xnor8_out

1
0

Output

Output
Inversion

Flag

8-input
XOR
circuit

xor8_input 32

slicer 8
One
Hot

Encode 41 Inversion
Logic

4

Figure 36 Implementation of 8-Input XOR/XNOR Gates

81

4.5.4 Universal AO/AOI/OA/OAI

Universal
OR/AND

Universal
AND/OR

zero_mask
32

AO/OA_input_1
32

one_mask
32

Universal
AND/OR

zero_mask
32

AO/OA_input_2
32

one_mask
32

Universal
AND/OR

zero_mask
32

AO/OA_input_8
32

one_mask
32

Output

Figure 37 A Universal Implementation of AO/AOI/OA/OAI Evaluation Logic

When we use the universal AND/NAND/OR/NOR logic (shown in Figure 35) for

a basic building block, we can implement a universal form of AO/AOI/OA/OAI

evaluation logic. Figure 37 illustrates this universal AO/AOI/OA/OAI evaluation logic.

The second level evaluation circuit is arranged in such a way that if the first level

performs the AND function evaluation, then the second level logic will evaluate the OR

function. Likewise, if the first level circuit is evaluating the OR function, then the second

level circuit will perform the AND function evaluation. The “Inversion flag” and

“Function Group Select” inputs were omitted in the figure for brevity.

82

4.6 Multiplexer Primitive

A Boolean equation of 2-to-1 Multiplexer (MUX) can be simply written as:

OUTPUT = D0 ∗ SD’ + D1 ∗ SD.

The lookup table for the 2-to-1 MUX is shown in Table 25 using 4-level logic. If

we are only dealing with simple Boolean logic levels (1’s and 0’s), then the

implementation of any MUX becomes simple. However, the Boolean equation shown

above does not handle multi-level signal strengths such as Unknown (‘X’) and Hi-

Impedance (‘Z’). Furthermore, if we model a Multiplexer with a higher number of inputs

(4-to-1 or 8-to-1 MUX, e.g.) with a lookup table, then the number of entries in the lookup

table becomes large. Specifically, a N-to-1 MUX has N N2log+ inputs and the lookup

table has entries for 4-level signal strength.)log(24 NN +

Table 25 shows the lookup table for a 2-to-1 MUX containing 64 entries. This is

surprisingly large for a 2-to-1 MUX. Since it has 3 inputs, the possible combinations of

signal strength is 43 (= 64). But if we observe the Table 25, the behavior model of 2-to 1

MUX can be summarized as following.

• When SD = ‘0’, output is D0

• When SD = ‘1’, output is D1

• When SD = ‘Z’ or ‘X’, and D0 = D1, output is D0

• When SD = ‘Z’ or ‘X’, and D0 ≠ D1, output is ‘X’

83

Table 25 The Lookup Table for 2-to-1 MUX

Input Output Output
D0 D1 SD Z D1 SD Z
0 0 0 Z 0 0 X
0 1 D1 Z 0 1 D1

Input
D0

D0
0

0 0 Z X Z 0 Z X
0 0 X X Z 0 X X
0 1 0 D0 Z 1 0 X
0 1 1 D1 Z 1 1 D1
0 1 Z X Z 1 Z X
0 1 X X Z 1 X X
0 Z 0 X Z Z 0 X
0 Z 1 D1 Z Z 1 X
0 Z Z X Z Z Z X
0 Z X X Z Z X X
0 X 0 X Z X 0 X
0 X 1 X Z X 1 X
0 X Z X Z X Z X
0 X X X Z X X X
1 0 0 D0 X 0 0 X
1 0 1 D1 X 0 1 D1
1 0 Z X X 0 Z X
1 0 X X X 0 X X
1 1 0 D0 X 1 0 X
1 1 1 D1 X 1 1 D1
1 1 Z D0 X 1 Z D1
1 1 X D0 X 1 X X
1 Z 0 D0 X Z 0 X
1 Z 1 X X Z 1 X
1 Z Z X X Z Z X
1 Z X X X Z X X
1 X 0 D0 X X 0 X
1 X 1 X X X 1 X
1 X Z X X Z X
1 X X X X X X X

X

The assumption of the above observation is that Hi-Impedance (‘Z’) input signals

are treated as Unknown (‘X’). Table 26 shows this summary of a 2-to-1 Multiplexer’s

behavior. The third item of Table 26 requires a circuit for checking equivalence. If D0

http://www.amd.com/
http://www.intel.com/
http://www.ikos.com/
http://www.ikos.com/
http://ftp.cbl.ncsu.edu/www/benchmarks
http://www.altera.com/
http://www.mentor.com/

84

and D1 are the same, then 2-to-1 MUX will choose D0. Otherwise our MUX will output

“X” if SD = ‘X’. Figure 38 shows this equivalence checking circuit design.

Table 26 Priority Lookup Table for 2-to-1 MUX Primitive (d = don’t care)

Input Output
D0, D1 SD Z

d 0 D0
d 1 D1

D0 = D1 Any(Z,X) D0
ELSE X

input2_0

input2_1

input2_2

input2_3

input1_0

input1_1

input1_2

input1_3 X4

X1

X2

X3
O1

Not
Equivalent

1

0input1

"X" Output

Figure 38 Equivalence Checker for 2-to-1 MUX

Figure 39 shows the implementation of our 2-to-1 MUX design. The circuit

contains the actual 2-to-1 MUX and our equivalence checker design. Based on the result

of Any(‘Z’) and Any(‘X’), the proper circuit’s output will be chosen by the final 2-to-1

MUX. Notice that a buffer (as was shown in Figure 17) was inserted to filter out the “Z”

input and transform it into “X”.

85

SD

ZX mask

D0

D1 1

0

Equivalent

1

0

Output

Buffer

Buffer

Any(Z,X)

Figure 39 A 2-to-1 MUX Design

A 2-to-1 MUX is the basic building block of all the MUX primitives. A 4-to-1

MUX uses three 2-to-1 MUXes as its components. Table 27 shows the behavior of a 4-

to-1 MUX, which is built using three 2-to-1 MUX’es.

Table 27 Priority Lookup Table for 4-to-1 MUX Primitive (d = don’t care)

Inputs Output
D0 D1 D2 D3 SD1 SD2 Z
d d d d 0 0 D0
d d d d 1 0 D1
d d d d 0 1 D2
d d d d 1 1 D3

D0=D2 d D0=D2 d 0 Z/X D0
d D1=D3 d D1=D3 1 Z/X D1

D0=D1 D0=D1 d d Z/X 0 D0
d d D2=D3 D2=D3 Z/X 1 D2

D0 = D1 = D2 = D3 Z/X Z/X D0
ELSE X

86

Figure 40 shows the implementation of a 4-to-1 MUX design. It uses three 2-to-1

MUXes designed previously as building blocks. An 8-to-1 MUX can easily be designed

using two 4-to-1 MUXes and one 2-to-1 MUX as its components.

SD1

D0
D1

D2
D3

SD2

Output

2-to-1 MUX
Evaluation Logic

2-to-1 MUX
Evaluation Logic

2-to-1 MUX
Evaluation Logic

Figure 40 A 4-to-1 MUX Design

In summary, the lookup table for a Multiplexer design can grow very large. But

we have reduced the size of the lookup table by behavior modeling and designed a 2-to-1

MUX primitive. This primitive can be used to construct larger Multiplexers. Table 28

shows the size comparison between the standard lookup table and our lookup table. As

we can see from the second column, the standard lookup table’s size grows exponentially,

while our approach grows linearly.

87

Table 28 Lookup Table Size Comparison for MUX

Using Any/All Number of
Inputs

Using Standard
Lookup Table # of Functions Function Width LUT Size

LUT Reduction
Factor

2 16 4 2 2 8
4 256 12 6 6 43
8 65536 28 14 14 4681

16 4294967296 60 30 30 143165577
N 4^N 4 * (N-1) 2 * (N-1) 2 * (N-1) (4^N) / (2 * (N-1))

4.7 Full Adder

A Full Adder has two outputs. They are Sum, and CarryOut. Both can be

expressed in the combinational Boolean equations.

Sum = A ⊕ B ⊕ C

Cout = (A • B) + (B • C) + (C • A)

Where, A and B are the inputs for the Adder, C is Carry-in, Cout is Carry-out.

Table 29 shows the exhaustive list of the full adder cell in lookup table form. The

size of standard lookup table is 43. A single Full Adder gate has 64 entries due to its 3

input lines. But from the equations shown above, we can observe that Sum is simply a

three input XOR gate and Cout is also a simple AO gate, which we have already modeled

in previous sections. Therefore the lookup table calculations from Table 21 and Table 23

can be used to compute lookup table for our design.

88

Table 29 Lookup Table for Full Adder

A B C Sum A B C Sum A B C Cout A B C Cout
L L L L Z L L X L L L L Z L L L
L L H H Z L H X L L H L Z L H X
L L Z X Z L Z X L L Z L Z L Z X
L L X X Z L X X L L X L Z L X X
L H L H Z H L X L H L L Z H L X
L H H L Z H H X L H H H Z H H H
L H Z X Z H Z X L H Z X Z H Z X
L H X X Z H X X L H X X Z H X X
L Z L X Z Z L X L Z L L Z Z L X
L Z H X Z Z H X L Z H X Z Z H X
L Z Z X Z Z Z X L Z Z X Z Z Z X
L Z X X Z Z X X L Z X X Z Z X X
L X L X Z X L X L X L L Z X L X
L X H X Z X H X L X H X Z X H X
L X Z X Z X Z X L X Z X Z X Z X
L X X X Z X X X L X X X Z X X X
H L L H X L L X H L L L X L L L
H L H L X L H X H L H H X L H X
H L Z X X L Z X H L Z X X L Z X
H L X X X L X X H L X X X L X X
H H L L X H L X H H L H X H L X
H H H H X H H X H H H H X H H H
H H Z X X H Z X H H Z H X H Z X
H H X X X H X X H H X H X H X X
H Z L X X Z L X H Z L X X Z L X
H Z H X X Z H X H Z H H X Z H X
H Z Z X X Z Z X H Z Z X X Z Z X
H Z X X X Z X X H Z X X X Z X X
H X L X X X L X H X L X X X L X
H X H X X X H X H X H H X X H X
H X Z X X X Z X H X Z X X X Z X
H X X X X X X X H X X X X X X X

89

Figure 41 illustrates the design of the Full Adder gate. A universal XOR and a

universal AO cells are reused to implement this design.

Sum

Cout

A

B

C

Universal AO

Universal XOR

Figure 41 Full Adder Design

From the Table 22 and Table 24, the priority lookup table size for XOR in Figure

41 is 2 and the priority lookup table size of Universal AO222 is 12. Therefore our lookup

table size for Full Adder implementation is 13. In summary, for our Full Adder primitive

design, we were able to achieve a lookup table size reduction of 64/13 = 4.9 times smaller

without creating additional primitives.

4.8 Flip-Flop Evaluation

Flip-Flops contain special inputs such as “clock”, “clear”, and “preset”. The

“clear” and “preset” inputs are asynchronous inputs and will be discussed in the end of

90

this section. The “Clock” input is a special signal that triggers the action on its signal

level transitions (on its edges).

The cells discussed in previous sections rely only on its signal events, but the

clock signal requires edge-event. The clock edge event in essence is also a signal event,

except that the signal needs to be compared with its previous value. Otherwise, this clock

edge event will increase the number of event types and complicates our signal-encoding

scheme (i.e.in addition to 0, 1, Z, X signals, we need to encode a rising event, a falling

event, etc.). If we include this clock value comparison mechanism inside of the Flip-Flop

evaluation hardware, our current encoding scheme can still be used. This will reduce the

scheduler’s load because the scheduler does not have to process different event types.

Table 30 lists the possible clock signal transitions for the Flip-Flop shown in Figure 42.

Q

Q
SET

CLR

DD
CLK

CLEAR

PRESET

Q

QN

Figure 42 D-type Flip-Flop

Table 30 illustrates the behavior of a positive edge triggered D Flip-Flop on a

various clock signal transitions. The behavior of the Flip-Flop falls into two groups.

When the current clock value Logic-High (‘1’) and the previous clock value was not

Logic-High (‘0’, ‘Z’, ‘X’), then the data input (‘D’) will be latched in. Anything else will

not cause the Flip-Flop to react. All we need is to detect the clock signal has been risen.

91

To detect this clock rising event, we can use Any/All primitive that we developed in

previous section. If Any(‘1’) for current clock is TRUE and if Any(0, Z, X) of previous

clock is TRUE then clock rising event is true. Figure 43 shows this design.

Table 30 Behavior of Positive-Edge Triggered D Flip-Flop

Previous
CLK

Current
CLK

Transition
Notation

CLK Event
Type

0 0 (00) No change
0 1 (01) Trigger
0 Z (0Z) No change
0 X (0X) No change
1 0 (10) No change
1 1 (11) No change
1 Z (1Z) No change
1 X (1X) No change
Z 0 (Z0) No change
Z 1 (Z1) Trigger
Z Z (ZZ) No change
Z X (ZX) No change
X 0 (X0) No change
X 1 (X1) Trigger
X Z (XZ) No change
X X (XX) No change

As shown in Table 30, there are 16 different clock transitions. If we implement

this in a lookup table, all the possible clock transitions have to be enumerated as well. To

do this, the clock signal needs to be encoded in four bits rather than two bits (one for

current clock and the other for previous clock) and it will make the table size even bigger.

Therefore, the Flip-Flop shown above figure has 4-inputs total, but it appears as 5-inputs

due to the clock signal encoding. The lookup table size of D Flip-Flop will be 45 = 1024.

92

CLK_previous

CLK_current

Any & All
Function

Any(0,Z,X)

All()

Any & All
Function

Any(1)

All()

CLK
rising

Figure 43 Clock Event Detection Design

When we examine the behavior of the Flip-Flop with data input (‘D’), we can

characterize the behavior in lookup table format as in Table 31. Notice that the table

contains the priority. The first item in the table takes highest priority over other items.

By using the equivalence checker circuit described in Figure 38, the data input value and

the Q_OLD value are checked first. The rest of the items in the table are considered

when the equivalence check becomes FALSE.

Table 31 Priority Lookup Table for D Flip-Flop

Condition Output
CLK rising D

ELSE Q_OLD

93

4

output

D-FF
Evaluation

Lookup table

CLK rising

D

4
Q_OLD

4

Condition Output
CLK rising D

ELSE Q_OLD

Figure 44 D Flip-Flop Evaluation Core Design

The Clear and Preset inputs are asynchronous inputs. They take the highest

priority over any other input signals, so the Flip-Flop evaluation algorithm should always

check these values first. Table 32 lists the “Clear” and “Preset” behavior. Notice that

“Clear” and “Preset” should never be enabled together.

Table 32 Behavior Model of Clear and Preset

Clear Preset Async. Info
0 0 Normal Op
0 1 Preset
0 Z No change
0 X No change
1 0 Clear
1 1 Illegal
1 Z Clear
1 X Clear
Z 0 No change
Z 1 Preset
Z Z No change
Z X No change
X 0 No change
X 1 Preset
X Z No change
X X No change

94

If they are enabled together, then the Flip-Flop falls into an illegal state and the

output value becomes the Unknown (‘X’) state. When “Clear” or “Preset” is either Hi-

Impedance (‘Z’) or Unknown (‘X’), then they are not considered strong enough to cause

the action to happen. Again, using the Any/All primitives, we can implement this

asynchronous behavior of the Flip-Flop. Figure 45 shows this behavior. Each Any/All

function will detect Any(‘1’) for each input. They are then merged into a 2-bit signal

(Asynchronous information), which selects desired output.

Clear

Preset

Any & All
Function All()

Any & All
Function

Any(1)

All()

Any(1)

Async info[1..0]

2
Merge

4

4

Figure 45 Design for Checking Clear and Preset

Combining all the components together with a 4-to-1 MUX, we can model the D-

type Flip-Flop with asynchronous “Clear” and “Preset”. Figure 46 shows the design

implementation. When Any(‘1’) for “Clear” and Any(‘1’) for “Preset” are both TRUE

then the 4-to-1 MUX will select ‘X’ as its output. When Any(‘1’) for “Clear” is TRUE

and Any(‘1’) of “Preset” is FALSE, then the MUX will select ‘L’ as its output and vice

versa.

95

1
0

2
3"X"

"H"
"L" output

D-FF
evaluation

LUT

4

4
4
4
4

Async
Info 2

CLK rising

D 4

Q_OLD 4

Clear

4

Preset 4

Clock
Event

Detection

Current
Clock

4

4Previous
Clock

Figure 46 Implementation of D Flip-Flop with Asynchronous Clear and Preset

For D Flip-Flop modeling, we have used 4 Any/All primitives and a 4-to-1 MUX

to implement the evaluation logic. This is approximately equivalent to the size of 4-input

AND gate evaluation design.

4.9 Scalability of Primitives and Experimental Results

This section presents the size comparison for the lookup table based

implementation of evaluation and our approach, which is based on Any/All primitives

and a priority lookup table. Altera’s EP20K200EFC672-1X was used to synthesize both

implementations. The compilation report for resource usage is summarized in Table 33

in terms of Logic Elements (LEs) used by the FPGA manufacturer. The concept of

Altera’s Logic Element (LE) will be briefly described in the following section. As we

96

can see from the table, our design grows linearly as the number of inputs grows. On the

other hand, the size of the standard lookup table approach grows exponentially, as we

expected from previous discussions, while our priority lookup table size grows nearly

negligible. Figure 47 shows this behavior. Notice that the standard lookup table

approach for 8-input AND gate has failed to synthesize for the target platform.

Resource Usage vs. Number of Inputs for AND Gates

0

200

400

600

800

1000

1200

0 2 4 6 8
Number of Inputs

LE
's

10

Figure 47 Growth Rate of Resource Usage for Lookup Table

Table 33 Resource Usage Comparison

 LUT PLUT
AND2 2 12
AND3 33 15
AND4 117 19
AND5 348 24
AND6 1049 26
AND8 FAILED 43

97

Table 34 lists the resource usage for Any/All primitives with different number of

inputs. Table 35 shows the size of logic evaluation primitives. The logic primitives are

pre-scaled to handle up to maximum allowed inputs. As a conclusion, the universal gate

and other primitives with priority lookup table approach have optimized the hardware

resource usage within a linear growth to the number of inputs.

Table 34 Resource Usage for Any/All Primitives

Number of Input LE
1 4
2 8
3 10
4 14
5 17
6 20
7 24
8 27

Table 35 Resource Usage for Logic Evaluation Primitives

Altera's EP20K200EFC672-1X
Primitive LE

Univ_AndOr8 145
Univ_AoOa8x8 686

Univ_XOR8 143
MUX41 95

FA 48
D-FF 21

Priority LUT with Size 3 2
INVERTER 3

4.10 Altera’s Logic Element

A Logic Element (LE) is a basic functional building block of Altera’s FPGA chip

(30). Within each LE is a four input lookup table (LUT), a D-type flip-flop with

98

programmable control logic, cascade chain interconnects, and routing multiplexers. The

usage of the LUT and cascade chain allows LUTs from different LEs to be connected in

such a fashion as to allow large Boolean functions or special purpose logic to be

implemented. Further discussion about FPGA is out of scope of this work, and will not

be discussed any further. Figure 48 shows the Logic Element Architecture provided by

Altera (30).

Figure 48 A Logic Element (LE) Architecture

99

5.0 GATE DELAY AND FUTURE EVENT GENERATION ARCHITECTURE

Circuit designs start at a high-level of abstraction and go through a series of

transformations until the final mask layout is obtained. One of the synthesis steps is

“technology mapping”, which decides the CMOS technology to be applied to the design

(e.g., 0.25 µ-process, 0.16 µ-process, etc.). Technology mapping determines switching

characteristics, such as rise and fall time delay of the cells, capacitive load of wire, etc.,

which are defined by the cell library.

To simulate the logic design accurately, a full-timing simulation must be

performed. Full-timing simulation requires that accurate gate delay models be

incorporated into the logic simulation. The problem with full-timing simulation is that it

requires extra operations to the simulation procedure, and the logic evaluation process

slows down.

There are two categories of delays to consider in the logic design. One is intrinsic

delay, caused by the gate itself. And the other is the extrinsic delay due to the fan-out

gate load and wire load. Also, there are three types of delays to be considered depending

on the gate’s operating condition. They are fixed delay, path dependent delay, and state

dependent path delay. In this chapter, we discuss these different delay types and describe

the architecture required to utilize each type of delay. The major issue with this portion

of the design is efficiently storing the delay information such that it can be accessed by

dedicated hardware in the shortest time possible.

100

5.1 Delay Types

There are three types of gate delays defined by the IEEE Standard Delay Format

(SDF) (32). They are (1) fixed delay, (2) input-to-output path delay (I/O-path delay), and

(3) state dependent input-to-output path delay. The SDF standard also defines the delay

format in the form of 3-tuple as (minimum:typical:maximum). These three numbers are

based on the fabrication condition and operating condition.

Fixed delay is given as a rise/fall time pair for an entire gate depending on the

output change. Most simple logic primitives are defined using this fixed format. Fixed

delays require only 2 values per gate, as the gate delay is modeled as a function of output

rise and fall.

Path dependent delay is modeled as a function of input-to-output path and the

output rise/fall. Based on how the ASIC cell vendors implement their cells (i.e. transistor

size, and layout), the delay value can vary based on which input caused the output change

(I/O-path). An N input gate with path dependent delay will have N pairs of rise/fall time

delay information.

Furthermore, in the state dependent delay model, path dependent delays can be

further differentiated depending on the state of the other input signals. State dependent

delay allows more accurate delay modeling according to the input-to-output path and the

state of the input combination. For example, on a XOR gate, a delay path formed by an

input to the output will be determined by other input signal’s value at that moment. The

state dependent delay is illustrated in Figure 49. Figure 49 (a) shows the delay path from

101

input A to the output port when the other input B is ‘0’. Input B will force the AND gate

(A1) to stay at ‘0’, which will not affect the OR gate (O1), therefore the output change

through this AND gate (A1) will not affect any further signal propagation. The only

signal path that will affect the output signal change is from the input signal A to the AND

gate (A2) and through the OR gate (O1). Likewise, as shown in Figure 49 (b), when B is

‘1’, the AND gate (A2) will remain at ‘0’ and will not affect the output of OR gate (O1).

The only signal path is from the input A to the inverter (I1) through the AND gate (A1),

and then through the OR gate (O1).

A

OutputB = '0'

I1

I2

A1

A2

O1

'0'

(a)

A

OutputB = '1'

I1

I2

A1

A2

O1
'0'

(b)

Figure 49 Path Dependent Delay of 2-Input XOR Gate (a) When B = '0'; (b) When B = '1'

In general, an N input gate with state dependent delay can have N state

dependent delay values, because for each of N inputs, there are (N-1) other inputs whose

binary combination value will determine the state. For example, a 4-input XOR contains

 = 32 different states; each state has set of rise and fall time delay information.

Therefore, a 4-input XOR gate contains a total of 64 different delay values when

)1(2 −× N

324×

102

accounting for the rise/fall time delays. Thus, the total number of delays for an N input

gate with state dependent delay is . NN 2×

In addition to the gate delays, in the full-timing delay model, the delay value is

divided into intrinsic and extrinsic delays. The intrinsic delay value is the logic gate’s

own delay caused by internal transistors when the gate is not driving anything. The

extrinsic delay is caused by the wire that connects from the output to the other logic

gate’s input and the capacitive load of the other gates being driven by the logic gate.

(a)

(b)

Figure 50 Delay Models (a) Lumped Delay; (b) Distributed Delay

The extrinsic delay can be modeled as “lumped delay model”, where the wire and

input gate load is lumped into one large capacitive load, or can be modeled as

“distributed delay model” where the output wire is segmented into regions and different

capacitance values are assigned to the wire segments. Figure 50 illustrates these delay

models. This work is focused on the “lumped delay model”. Distributed delay can be

modeled with the lumped delay model by using “zero delay buffers” to model each wire.

103

Zero delay buffers have no intrinsic delay but can have extrinsic delay. Figure 51 shows

how to model “distributed delay” using “lumped delay modeling.”

zero delay buffers

Figure 51 Distributed Delay Modeling Using Lumped Delay Model

As discussed in previous chapter, most of the existing logic simulation only

handle the zero-delay or the unit-delay model, where the delay through each gate is

treated as either zero or a single abstract time unit. These zero-delay and unit-delay

models can only be used for pre-technology mapping to check the design correctness

(logical correctness) and cannot be used for post place and route (post-technology

mapping) where the actual delay can cause serious timing malfunction.

104

Delay
RAM

Gate ID

Pin ID

Value
Pending
Event
Queue

Netlist
Info

Config
Info

Delay
RAM

Address

Delay
Info

Fan-out Info
Time Offset
Value

Future
Event
Queue

Netlist and Config
RAM

Logic Engine Future Event
Generation

Scheduler

Figure 52 The Delay Architecture

As shown in Figure 52, the scheduler determines when the events are to be

processed and in what order. The events to be processed in the future are labeled “Future

Events” and are stored within the scheduler. Also previously discussed, the current

simulation time is called Global Virtual Time (GVT). The events whose execution time

stamp is equal to current GVT are labeled as Pending Events and are sent to the Logic

Engine for immediate processing. The Logic Engine evaluates each Pending Event on

the specified gate, and, if the output of the gate changes, a Future Event is generated.

While the Scheduler (described in Chapter 6) performs an important role in the ordering

of events, this chapter is on efficiently determining the delay value that should be

associated with each gate.

105

5.2 Net-list Update and Future Event Generation

The simulation engine updates the net-list memory whenever there is an

evaluation action triggered by the pending event queue (PEQ). The update is performed

whether the output of the gate being simulated is changed or not, because the net-list has

to maintain the current input value. Therefore, when the output value has been changed

due to the event evaluation of the gate, the logic engine updates both the input and output

of the gate in the net-list. If an output change does not occur, the engine still performs the

net-list update with the current input change only.

When the result of a functional evaluation indicates that there has been a change

in the output value, then the logic engine will generate a future event and pass it to the

scheduler so that it can be arranged in the proper future time. The contents of the future

event queue (FEQ) passed to the scheduler, are the fan-out Gate ID, fan-out Pin ID, time

offset from the current GVT, and the output value. These items are assembled into one

piece of data and passed to the scheduler. The scheduler then assigns this future event

data in the proper time slot and sends back to the engine in the form of Gate ID, Pin ID,

and Value when GVT rolls into the appropriate future time.

5.3 Delay Simulation Architecture

The delay values of a Future Event are given by an SDF file for each gates used

in a design. Pre-processing software will parse the delay information and organize it into

106

the Delay Memory. The problem is to determine the index of the delay memory for a

given gate, if and only if the output value has changed.

The base address of the Delay Memory is known statically at the pre-processing

software run time. However, there are two pieces of dynamic information that cannot be

pre-determined until the logic evaluation is performed. The first is the output change

information, which can only be known after the evaluation task is performed. The other

is delay information, which is a function of (1) the output change, (2) the input that

triggered the output to change, and (3) the values of the other inputs. The output change

will determine the rise/fall time, the information on “which input” will determine the path,

and the value of other inputs will determine the state. All of these pieces of information

will be used for delay evaluation based on the delay type to be applied to the gate. The

following sections will describe different delay memory architectures and discuss their

strengths and weaknesses.

5.4 Fixed Delay Memory Architecture

A fixed delay can be expressed as a function: DELAY(BaseAddress, Rise/Fall).

The Base Address can be determined at the pre-processing time for each gate, but the

rise/fall information cannot be determined until the actual evaluation takes place and the

output value is obtained and compared with its previous value. Therefore, the rise/fall is

dynamic information. We can arrange this delay information on a linear memory space

(1-dimensional memory) as shown in Figure 53. This linear array scheme can utilize the

107

memory with 100% efficiently, without any fragmentation, because the delay values are

stacked up on top of each other and every gate is dependent on the output rise/fall.

BaseAddress 0

BaseAddress 1

BaseAddress n rise time

rise time
fall time
rise time

fall time

rise timeBaseAddress 2

Figure 53 A Linear Array of Delay Memory

When the gate has either path dependent or state dependent delay, then computing

the delay address becomes more costly because the dynamic information has to be added

to the Base Address. On a linear array of memory, the delay values are stored as a stack

of rise-time and fall-time pairs. Since the circuit design normally contains all three gate

delay types, the delay address computation has to handle all three situations. As

mentioned earlier, the base address is pre-determined by the pre-processing software; the

problem now is to compute the offset amount from the base address.

A fixed delay is a function of base address and rise/fall time information. Path

dependent delay is a function of address, rise/fall and input-to-output path information.

108

State dependent delay is a function of base address, rise/fall time, I/O-path, and the state

of other output values.

1. Fixed Delay Address = (Base Address + rise/fall)

2. Path dependent Delay Address = (Base Address + path + rise/fall)

3. State dependent Daly Address = (Base Address + path + state + rise/fall)

We can generalize the delay computation with case 3 (state dependent) given

above by setting the state to 0 for path dependent delay and both state and path to 0 for

fixed delay. Figure 54 shows our generalized delay address computation scheme.

Delay
Base

Address
Delay

Addresspath
state

rise/fall

ADD

Figure 54 Delay Address Computation by Adding

The problem of this method is that it requires the ADD operation to determine the

delay address. Performing these ADD operations can impact the performance of the

system.

5.5 Path Dependent Delay Memory Architecture

A path dependent delay is expressed as a function is: DELAY(BaseAddress, I/O-

path, Rise/Fall). I/O-path and rise/fall information is not known until the gate evaluation

is finished. If we organize the memory into a 2-dimensional array using I/O-path and the

109

rise/fall on each axis, and treat that 2-D array as a page of memory (each page is identical

in size), then the delay lookup becomes simple. Figure 55 shows this scheme. A fixed

delay is shown in the bottom layer (with Base Address 0) of Figure 55. Base Address 1

and Base Address n-1 in the figure denote the path dependent delays.

rise rise rise

fall

I/O-path

Rise/Fall

rise

fall fall fall fall

riserise rise

BaseAddress 0
BaseAddress 1

BaseAddress n-1

Figure 55 A 2-D Array Delay Memory

The problem with the 2-D array is that it can become fragmented and less

efficient, because the page size of the 2-D array is fixed therefore the memory is not fully

utilized.

In addition to that, if the gate has a state dependent delay property, the memory

configuration has to be either multiple of 2-D arrays or use a large page size of single 2-D

array. Either configuration forces the system to perform extra operations to obtain the

address of the delay information.

110

5.6 State Dependent Delay Memory Architecture

A state dependent delay expressed as a function is: DELAY(BaseAddress, I/O-

path, State, Rise/Fall). The dynamic information is therefore, I/O-path, state, and rise/fall

information. The easiest memory organization would be to use a 3-dimemsional memory

for each Base Address by using I/O-path, state, and rise/fall information on each axis.

However, this 3-dimensional memory configuration will waste even more memory,

especially when all of three delay types are mixed in the design, the delay memory will

be severely fragmented. Memory is wasted when we are dealing with fixed delay cells or

path dependent cells, the state and path axes are not used for the fixed delay and the state

axis is not used for the path dependent delay case.

5.7 Generic Delay Memory Architecture

To overcome the extra operation overhead discussed earlier, the pre-processing

software can organize the widths of base address, state and path information so that the

delay address can be obtained by simply combining the pre-arranged information.

If we allow the width of the base address as a variable, then we can assemble the

delay address without having to perform the ADD operation. Since the information for

base address, the width of I/O-path, and the number of states can be pre-processed,

software can perform this width computation for the base address, path, and state

information fields.

111

The path information encoding requires ceiling(log2(N)) bits, and state

information encoding requires (N-1) bits, where N is the number of inputs. Then, we can

segment the linear memory into a formulated size of ceiling(log2(N))+(N-1), when we are

dealing with the state dependent delay gates. Then the software arranges the base address

to point to each segments and clears the lower bits so that base address can be computed

with the rest of the information. Now, rather than using adders, we can compute the

delay memory address with a simple bit-wise OR operation, as shown in Figure 56, for

state dependent delay model.

Base 0 0 0

0 Rise/
Fall 0 0

0 0 State 0

0 0 0 Path

Bit-Wise OR

Delay Address

Figure 56 Bit-Wise OR to Compute Delay Address for State Dependent Delay

112

I/O-path dependent delay can be arranged the same way as state dependent delay

except the state information is not used. Fixed delay only require one extra bit for

rise/fall information.

As mentioned previously, the total number of delay values is given by N ,

where N is the total number of inputs (equivalent to number of I/O-paths) and the second

term is the total number of states per I/O-path. It is obvious that the second term 2

N2×

N will

be much larger than the number of inputs N. The number of states is always given as a

power of 2, but total number of inputs are not so. This indicates that if we order the path

variable in front of the state variable in the address field, we will have much larger

fragmentation. Therefore, we are placing the path variable behind the state variable.

Figure 57 (b) and (c) show the location of the “Path” variable in the delay address map.

Base Address Rise/Fall State Path

(a)

(b)

Base Address Rise/Fall Path

Base Address Rise/Fall

(c)
Figure 57 Delay Address Map (a) Fixed Delay, (b) Path Dependent, (c) State Dependent

As an example, assume that we are given a 4-input gate and the delay address

space is 1M (20 bits). If the gate is an AND gate with a fixed delay, then the software

generates a 19-bit base address with the rise/fall bit cleared. When the rise/fall

113

information becomes available after the evaluation of the gate, the base address and the

rise/fall information are bit-wise OR’ed to form a delay address.

If the given gate is XOR with a state dependent delay, the software generates 14-

bit base address with rise/fall bit, path bits and state bits cleared. The path variable can

be determined based on input PinID and state can be determined based on the value of

other inputs. Again, when the rise/fall information is available, all four variables are bit-

wise OR’ed to generate delay address.

If the gate contains path dependent delay, software generates 17-bit base address

with rise/fall bit and path bits cleared. After the gate’s output is computed, the base

address, path and rise/fall variables are bit-wise OR’ed to generate delay address. Table

36 summarizes the bit widths for each delay case.

Table 36 4-Input Gate with Various Delay Types

 size (bit) Fixed delay Path dep. State dep.
Base Address 14 to 19 19 17 14

State 0 or 3 0 0 3
Path 0 or 2 0 2 2

rise/fall 1 1 1 1

Also, if we place the delay information in any order (any mix of fixed, path and

state dependent delay) then the memory can be further fragmented. This is because we

require each base address to start at a power of 2 for path and state dependent delays.

To avoid this fragmentation, the pre-processing software will start placing fixed

delay information in the bottom of the memory. Then the path dependent and the state

dependent delay information will be placed on top of the fixed delay information. Figure

114

58 shows this arrangement. The splitting line between the fixed-delay area and path and

state dependent area is the nearest address to the power of 2 after the fixed delay

information area.

fall
rise

fall
rise

fall
rise

BaseAddress 0

BaseAddress 1

fall
riseBaseAddress n

fall
rise

fall
rise

rise

BaseAddress n+1

Unused

Path & State
dependent

Fixed

Figure 58 Delay Memory Map

5.8 Delay Architecture Conclusion

Wasted memory cannot be tolerated because it reduces the capacity of the system.

Therefore, the only viable solution is to rely on a linear array and to design a memory

layout with the least amount of wasted memory space. Delay lookup is not just a simple

115

memory lookup because there are 3 different types of delays stored in a single memory.

Due to this mixture of different delay types, computing the delay address requires some

operations. State dependent delay will limit the capacity of delay memory, which in turn

will limit the capacity of the entire architecture. Therefore, we have decided to choose a

normal linear array with the ADD operation. Although the segmented linear memory

idea seems appealing, it still fragments the memory. The trade off here is the

performance versus space. Space is chosen over performance to accommodate the

growing size of modern digital design. The performance penalty of using a four input

adder is expected to be minimal and could be pipelined to further minimize the

performance cost.

116

6.0 SCHEDULER ARCHITECTURE

When new events (future events) are generated as a result of logic evaluation

activity, the scheduler manages these new events according to their time stamp. This is

to ensure that the execution order does not violate the causality constraint discussed in

Chapter 2. The problem of the scheduler task is that new events have to be ordered

according to their time stamp, and this ordering of events consumes a large number of

cycles. As was shown in Figure 6, the scheduler takes up a major portion of run time for

the logic simulation software. This is because the nature of scheduling involves a large

amount of memory activity (i.e. searching for the events with the smallest simulation

time stamp), and this memory activity causes a bottleneck in the scheduling task.

Researchers were able to solve this problem by employing the event wheel (7)

algorithm, which removes the need for sorting. It was successful in zero-delay or unit-

delay model simulations, where a relatively small event wheel can handle the scheduling

task. However, in hardware/software co-simulation environment, where the granularity

of delay timing changes from pico-seconds to milli-seconds, the size of the event wheel

has to be increased to handle large amount of timing grains. In such cases, the event

wheel cannot perform efficiently, as was discussed in Section 2.2.4 , because most

hardware simulation events use fine timing grains such as pico- to nano-seconds but

software simulation events will use coarse grains such as micro- to milli-seconds.

Therefore, the event wheel becomes sparsely populated. Three architectures for

the scheduler task, which can be used in co-simulation environment, will be explored and

117

discussed in this chapter. Section 6.1, discusses a plain linear scanning architecture. In

Section 6.2, we explore parallel linear scanning by dividing memory space into sub-

sections. In section 6.3, we examine parallel linear scanning with a binary tree by

replacing a global minimum search circuit with a combinational binary tree

configuration.

6.1 Linear Scanning

One alternative is to store the future event in linear memory and perform a sort

operation. This approach can handle large time grains, but requires a large number of

CPU cycles as a trade off, as was shown in Chapter 2 by our quick sort software

scheduler benchmark results. The performance of the sorting algorithm on a workstation

is well defined. The bubble sort and insertion sort algorithms run with O(N2) (33), quick

sort and merge sort requires O(N× log(N)) (33) for the same task. Each time the scheduler

increments the simulation time (GVT), the scheduler must perform a sort operation with

both new and existing events. Performing a sort operation simply requires too many

CPU cycles. Even after the sort operation, only the events with the smallest time stamp

are passed to the logic evaluation block, and when the GVT increments, remaining events

must be sorted again.

Instead of sorting inefficiently, the scheduler can perform a search (scan)

operation, continuously searching for events with minimum time stamp in the memory.

The scan operation requires O(N) cycles, given N elements in memory. When we

118

perform the scan operation, regardless of GVT, the event with minimum GVT is searched

and passed to evaluation block. We can formulate the performance of scanning as:

C×O(N) O(N), where C is the number of events with the same minimum time stamp. ≈

Therefore, in comparison, the sort algorithm can produce multiple events with the

same time stamp in one sort operation with O(N× log(N)) cycles, but scanning has to run

O(N) cycles to find the first event with smallest time stamp and then another O(N) to find

all other events with the same time stamp. Thus memory scanning is faster than memory

sorting, since O(N) < O(N× log(N)).

A dedicated hardware can be designed to scan the memory at peak speed. Figure

59 shows a linear scanning scheme.

Min Finder Global
MinimumN elements

Figure 59 A Linear Memory Scanning

6.2 Parallel Linear Scanning

To speed up the scheduling task and maintain large timing grain, the new

architecture with parallel linear memory sub-scanning has been considered to utilize the

concurrency in memory space search. Figure 60 illustrates this architecture. We divide

the memory of size N into p segments, each with a depth of k (= N/p) and attach a

minimum finder circuit to each memory segment. Each segment will require k cycles to

119

find a local minimum in parallel, and all of the resulting p local minimums will be

searched again for a global minimum, consuming another p cycles. The run time for the

architecture will be O(k)+O(p). Our hardware uses p pieces of k (=N/p) deep memory,

one p:1 multiplexer, and (p+1) minimum finder circuits. The size of the design can be

computed as:

Size = (p+1)×sizeof(min finder) + sizeof(p:1 Multiplexer).

p elements

N/p elements

N/p elements

N/p elements

Min_p

Min_1

Min_2

p:1 MUX Global
Minimum

Min Finder

Min Finder

Min Finder

segment 1

segment 2

segment p

Min Finder

Figure 60 An Architecture for Parallel Linear SubScanning

Table 37 shows the resource usage of different sized multiplexers as a size

measure. Synthesis result by Quartus-II reports that our min finder design uses 301 (out

of 8,320 possible resources) Logic Elements (LEs).

120

Table 37 Resource Usage for Multiplexer Component Using 16-Bit Words

 Logic Elements
2:1 MUX 16
4:1 MUX 32
8:1 MUX 87

16:1 MUX 153
32:1 MUX 340
64:1 MUX 666

100:1 MUX 1,040
128:1 MUX 1,332
256:1 MUX 2,663
512:1 MUX 5,327

1024:1 MUX 10,653

Unlike software sorting or scanning, which is limited by the memory architecture

(single, narrow, sequential), our design can perform the task concurrently using multiple

small segments of memory. The design is composed of a simple minimum search circuit

(controller and comparator) attached to the memory. And this simple design is repeated

(p + 1) times (p for local min, 1 for global min).

6.3 Parallel Linear Scanning with Binary Tree

We can further improve the previous design by replacing the global minimum

finder with a group of comparators and multiplexers in a binary tree configuration as

shown in Figure 61. In this design, the local minimum searching is identical to the

previous design, but we use (p–1) comparators and multiplexers in the form of binary

tree, thereby removing the last stage (the global scanning mechanism). Instead, the

global minimum searching is performed by a purely combinational circuit, which can

perform its minimum searching task in a few cycles, yielding the performance of O(k),

121

where k = N/p. Each circle in the Figure 61 represents a comparator and a 2-to-1

multiplexer, as shown in Figure 62.

N/p elements

N/p elements

N/p elements

Min_p

Min_1

Min_2

Min Finder

Min Finder

Min Finder

segment 1

segment 2

segment p

Global
Minimum

Min

Min

Min

Figure 61 Comparator and Multiplexer in a Binary Tree

1

0

A < B ?

A

B

Minimum

Figure 62 Comparator and Multiplexer for Finding Minimum

The problem with this design is its resource usage. The number of resources

required grows exponentially as the depth of binary tree grows. When the binary tree

122

depth reaches 9, it becomes larger than our target device. Therefore, the design shown in

Figure 61 will perform faster, but, as a trade off, it becomes impractical for a large sized

binary tree. Table 38 and Figure 63 illustrate this problem. In Table 38, Altera’s

EP20KE200 device (total resource is 8,320) was chosen as a target platform. When the

number of input reaches to 256, the binary tree approach nearly depletes the resource. If

the number of input is 512 or more, the design does not fit into a single chip.

Table 38 Quartus-II Synthesis Report for Resource Usage of Binary Tree

Number of
Inputs

Number of
Resources

Resource
Usage Altera
EP20KE200

2 32 0.38%
4 96 1.15%
8 224 2.69%

16 480 5.77%
32 992 11.92%
64 2016 24.23%

128 4064 48.85%
256 8160 98.08%
512 16352 196.54%

1024 32736 393.46%

123

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

Binary Tree Depth

L
E

Figure 63 Resource Growth Rate for Binary Tree

6.4 Summary

We choose the normal parallel linear scanning scheme (shown in Figure 60) for

our scheduler, since the binary tree approach will require a nearly impossible amount of

resources for a large sized event queue. Our design will still out-perform the software

approach by utilizing concurrency in the minimum value search algorithm. Table 39

summarizes the architectures we have explored in this chapter. A simple linear scanning

consumes the least amount of resources while it requires a large number of cycles to find

a minimum value in the memory. Parallel linear scanning with binary tree will perform

124

faster than any scheme given in the table, but it consumes too much resource. Normal

parallel linear scanning optimizes the performance and cost.

Table 39 Size and Performance Comparison between Scheduler Algorithm

 Linear Scanning Parallel Linear Scanning
Parallel Linear Scanning with

Binary Tree

Size sizeof(min finder)
(p+1)*sizeof(min finder)

+ sizeof(p:1 MUX)
p*sizeof(min finder) +

sizeof((p-1) binary tree cells)
Speed O(N) O(k) + O(p) O(k)

The performance of our design depends on the size of the segment, k and the total

number of segments p. If k >> p, then the performance depends on O(k), i.e. the local

minimum search will dominate the overall run time. In general, if k >> p, then it can be

written as O(k) + O(p) O(k). The software scanning algorithm performs O(N),

therefore, we have a speedup of

≈

)(
)(

kO
NO =)/(

)(
pNO

NO ≈ p

On the other hand, if k << p, then O(p) dominates the overall performance (global

minimum search will dictate the run time). The overall performance can be expressed as

O(k) + O(p) O(p). And the speedup will be: ≈

)(
)(

pO
NO =)/(

)(
kNO

NO ≈ k

If p = k, then the performance will be 2×O(k) ≈ O(k); this will be the optimal

performance for our linear scanning scheduler. Figure 64 (a) and (b) shows the

performance graph in terms of k and number of CPU cycles when N = 1024 and N =

4096, respectively. The peak performance point is when p = k, with k = N , because, k

= N/p and k2 = N.

125

0

200

400

600

800

1000

1200

1 10 100 1000 10000

k

n
u
m

b
e
r

o
f
c
yc

le
s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 10 100 1000 10000

k

n
u
m

b
e
r

o
f
c
yc

le
s

(a)

(b)

32

64

Figure 64 Performance Graph (a) N = 1024; (b) N = 4096

In practice, since our target capacity is 100,000 gate design, a scheduler would

have approximately 10,000 events pending if 10% of the circuitry is active at any given

126

time. Thus, if we compute optimal p and k for N = 10,000 then, p = k = N = 100.

From Table 39, the size of the design is computed as (p+1) × sizeof(min_finder) +

sizeof(p:1 MUX). Since p = 100 and size of minimum finder circuit is 301 (given in

Section 6.2), we have (100+1) × 301 + 1,040 = 31,441 Logic Elements. The speed of

our scheduler would be approximately 200 cycles (O(k) + O(p)).

127

7.0 EXPERIMENTAL RESULTS AND PROTOTYPE

In this chapter, we will describe how all the materials we have discussed in

previous chapters fit together as a logic simulation system. A simple test circuit is

presented in Section 7.1 as a proof-of-concept to demonstrate that our design performs as

we expected.

In Section 7.2 implements this circuit and shows all of the functional blocks

described from Chapter 4 to Chapter 6 (logic evaluation, delay architecture, and the

scheduler blocks) are put together to form a logic simulation hardware system. The test

circuit is parsed through the pre-processing software, which creates the memory image of

the net-list and the delay values. These values are then loaded into the design. Initial

input events are loaded into the scheduler. As the simulator is started, the logic

evaluation block and the scheduler block process the data according to the event order.

Section 7.3 discusses scalability. The proof-of-concept prototype has a very

limited gate capacity due to the limitation of the FPGA used. When we expand our

design to a 100,000 gate capacity, the memory depth will be significantly increased to

accommodate the capacity growth and require off-chip memory. However, the width of

memory address signal grows using a log scale, and most of the items such as "list of

input" and "list of output" remain unchanged. Since our design references the memory in

a single access, this growth of width will not affect the performance. The performance of

the prototype is measured and extrapolated for a 100,000 gate capcity design.

128

The performance and feature of our design are then compared with the existing

hardware and software logic simulators in Section 7.4. We will show that our design will

out-perform existing logic simulators of comparable timing accuracy. Additionally, there

are features in our design that are not found in other simulators.

In order to make a fair comparison between our architecture and others, we have

quantified our experimental results in terms of FPGA Logic Elements. These Logic

Elements (LE’s) are created using a 4-input lookup table, a flip-flop, and a number of

other AND and OR gates that are used to interconnect the LE with other LE’s. As an

approximation, a single FPGA LE can be implemented in an ASIC using 1-10 standard

cell gates.

7.1 Prototype

To prove the design concept, we made a small circuit to test various types of

universal gate components. Figure 65 shows this circuit, a parity checker and a D-type

Flip-Flop. One of the XOR gates was intentionally “unwrapped” into AND, OR, and

INVERTER cells to demonstrate our universal gate, and cause enough event propagation

throughout the circuit to exercise our design. The circuit was kept small so that the entire

hardware simulator could be tested inside a single FPGA so that the event execution

order could be visually verified. Scalability to a 100,000 gate design is also addressed in

this chapter.

129

C
D

N3

N4

N9

N12N11N10

G5

G7 G8
P0

P1

P0

P1

P0

A

B

N1

N2
P0

P0

G1

G2

G3

P0

P1

P0

P1

G4

P0

P1
G6

N5

N6

N7

N8

N13

CLOCK

G9

N14

0 ->

1 ->

0 ->
1 -> Q

Q
SET

CLR

D

Figure 65 Parity Checker Test Circuit

In the prototype shown in Figure 65, we assume that all of the initial input events

are started at the same simulation time (GVT). G1 through G9 represent gates, N1 to N14

represent wire, P0 and P1 represent input pins. And A, B, C, D are primary inputs to the

circuit. Since the input signal A is connected to G1 and G3, input signal B is connected to

G2 and G4, and the inputs C and D are driving G5, there are total of six initial events, as

listed in Table 40.

Table 40 Initial Events

Event Number Gate ID Pin ID Value GVT
1 1 0 0 1
2 4 0 0 1
3 2 0 1 1
4 3 1 1 1
5 5 0 0 1
6 5 1 1 1

Table 41 shows the order of the simulation event flow when our design simulates

the test circuit. All of the initial events are assumed to be started at the same time, with a

simulation time (GVT) of 1. All of the inputs and outputs of the gates in the test circuit

are initialized to the unknown (‘X’) state. Notice that in events 4, 5, 7, 8, 10, the output

does not change, and therefore a future event is not generated. The event number 15

130

represents when the clock input signal became a ‘1’, therefore our flip-flop design has

detected a rising edge and latched the data input stored at event 14.

Table 41 Simulation Event Flow of Prototype Running Test Circuit Simulation

Event
Number Function

Current
GVT

GATE
Number

PIN
Number

Input
Value

Current
Output

New
Output

Destination
Gate ID

Destination
Pin ID Delay

Future
GVT

1 INV 1 1 0 0 X 1 3 0 10 11
2 AND 1 4 0 0 X 0 6 1 9 10
3 INV 1 2 0 1 X 0 4 1 7 8
4 AND 1 3 1 1 X X 3 1 - -
5 XOR 1 5 0 0 X X 7 1 - -
6 XOR 1 5 1 1 X 1 7 1 10 11
7 AND 8 4 1 0 0 0 6 1 - -
8 OR 10 6 1 0 X X 7 0 - -
9 AND 11 3 0 1 X 1 6 0 12 23
10 XOR 11 7 1 1 X X 8 0 - -
11 OR 23 6 0 1 X 1 7 0 8 31
12 XOR 31 7 0 1 X 0 8 0 9 40
13 INV 40 8 0 0 X 1 9 0 9 49
14 FF 49 9 0 1 0 0 - - - -
15 FF 100 9 1 1 0 1 - - 11 -

7.2 Overall Architecture

All of the design units described in previous chapters are put together as a system

as shown in Figure 66. The design contains a logic evaluation block, input assembler,

delay address computation block, output comparator, future event generator, scheduler,

pending event queue, future event queue, net-list and configuration memory, and delay

memory. The functionality of each blocks are:

• Logic evaluation block: computes the output of a gate with a given input vector.

• Input assembler: generates the input vector of a gate before evaluation.

131

• Output compare block: compares newly computed output and existing output. If

they are different, raises output change flag and computes whether the new output

has risen or fallen.

• Delay address computation block: computes the address with rise/fall value and

gate’s delay type given by function group variable.

• Future event generator: creates the future event based on delay value acquired and

the fan-out information of a gate.

• Scheduler: orders incoming future events according to the simulation time (GVT).

• Pending event queue: stores events to be processed by the logic evaluation block.

• Pending Event: each pending event is comprised of Gate ID, Pin ID, and input

value.

• Future event queue: stores new events generated due to the logic evaluation.

• Future Event: future event is comprised of destination Gate ID, destination Pin

ID, delay value, and the signal value.

• Net-list and configuration memory: stores net-list information such as list of input

values, list of output values, fan-out information. Also stores the configuration

information such as mask values, input and output inversion flag, and function

group variable, etc.

• Delay memory: stores rise and fall time values for each gates in the design.

132

In
pu

t
A

ss
em

bl
er

O
ut

pu
t C

om
pa

re

Fu
tu

re
Ev

en
t

G
en

er
at

io
n

D
el

ay
 A

dd
re

ss
C

om
pu

ta
tio

n

Lo
gi

c
Ev

al
ua

tio
n

N
ew

O
ut

pu
t

In
pu

ts

M
as

ks

Fu
nc

tio
n

G
ro

up

D
el

ay
 R

A
M

D
el

ay
 A

dd
re

ss

Fu
nc

tio
n

G
ro

up

O
ut

pu
t C

ha
ng

e
Fl

ag

D
el

ay

Fa
no

ut
 In

fo
N

ew
 O

ut
pu

t
Fu

tu
re

Ev
en

t

N
ew

 O
ut

pu
t

C
ur

re
nt

 O
ut

pu
t

N
et

lis
t &

 C
on

fig
R

A
M

C
ur

re
nt

 In
pu

ts

M
as

ks

In
pu

ts
C

ur
re

nt
In

pu
ts

C
ur

re
nt

 O
ut

pu
t

Fu
nc

tio
n

G
ro

up

Fa
no

ut
 In

fo

PE
Q

FE
Q

Pe
nd

in
g

Ev
en

t
G

at
e

ID
Pi

n
ID

N
ew

 V
al

ue

G
at

e
ID

Sc
he

du
le

r

R
is

e/
Fa

ll
?

Fi
gu

re
 6

6
Sy

st
em

 A
rc

hi
te

ct
ur

e
fo

r
L

og
ic

 S
im

ul
at

io
n

E
ng

in
e

133

The data flow of the logic simulation algorithm is summarized below:

1. A pending event is read from pending event queue.

2. Reads the net-list and configuration memory using the Gate ID, given by pending

event, as an address.

3. Input vector is assembled using the value and Pin ID (from pending event) and the

current input (from net-list memory).

4. Logic evaluation is performed and new output value is computed.

5. New out and current out is compared. If they are different, output change flag is

set and rise/fall information is acquired.

6. If output change did not occur, go to step 1.

7. If output change has occurred, delay memory address is computed and delay

memory is referenced.

8. Future event is generated with new output value, fan-out information, delay value.

9. Future event is sent to future event queue

10. Scheduler is continuously searching for the events with minimum time stamp.

11. When all of the pending events with current simulation time stamp (GVT) have

been processed, the scheduler advances GVT and sends new set of pending events

to pending event queue.

134

7.2.1 Net-list and Configuration Memory and Delay Memory

The width of the net-list and configuration memory is shown in Table 42. For the

prototype, we limited the maximum number of inputs to four and the maximum number

of outputs and fan-outs to two.

Table 42 Data Structure of Net-list and Configuration Memory

Data Item Bits Comments
Delay Base Address 4 16 delay location

Power Count 4 counts upto 16
Number of Inputs 2 4 input maximum

List of Input Value 8 2 bits/input, 4 inputs
L1 Input Invert 4 1 bit per input

Number of Output 1 2 outputs
List of Output Value 4 2 bits/output, 2 outputs

Output Invert 2 1 bit per output
Mask1 2 mask for 0, 1, Z, X
Mask2 2 mask for 0, 1, Z, X

Function Group 3 8 different functions
Fan-out Information 12 (4 bit GateID + 2 bit PinID) * 2 fan-outs

TOTAL 48

The delay value is stored in a simple linear memory, as was discussed in Chapter

5. For simplicity, only 8 bits were used for prototype design.

7.2.2 Logic Evaluation Block

The logic evaluation block, shown in Figure 67, contains all of the universal gate

primitives described in Chapter 4. The input signals are organized by the input assembler

block, and fed into the logic evaluation block. All of the primitives receives this input

signal and produces the output. The output of each primitive is connected to the

135

multiplexer, and the proper output value is selected by the “Function Group” parameter

associated with that gate. This function group parameter is stored in the net-list and

configuration memory. The result of logic evaluation will determine the output change,

delay address computation, and future event generation tasks.

UG XOR/XNOR

UG AND/NAND
UG OR/NOR

UG AO/AOI
UG OA/OAI

MUX

Full Adder

FlipFlop

Inverter
Buffer

Function Group

Output

Figure 67 Logic Evaluation Block

7.2.3 Pending Event Queue and Future Event Queue

The logic evaluation block and the scheduler communicate through the queue

structure. The scheduler sends a pending event, which contains a Gate ID, Pin ID, and

Value. The evaluation block then sends a future event, which consists of Delay,

Destination Gate ID, Destination Gate’s Pin ID, and the Value.

136

Table 43 illustrates the data structure of the Pending Event Queue used for the

prototype. The Pending Event is sent from the scheduler to the logic evaluation engine,

which conveys the message “which pin of what gate has the change of value event” at

current simulation time (GVT).

Table 43 Pending Event Queue Structure

Item Bits Comments
Gate ID 4 16 gates capacity
Pin ID 2 4 input pins per gate
Value 2 4-level signal strength value

Table 44 shows the data structure of the Future Event Queue for the prototype.

The Future Event is sent from the evaluation engine to the scheduler with “which pin of

what gate will have a value change event at Time Offset from the current GVT”.

Table 44 Future Event Queue Structure

Item Bits Comments
Delay Time Offset 4 gate delay limited to 16 delay units

Destination Gate ID 4 16 gates capacity
Destination Gate's Pin ID 2 4 input pins per gate

Value 2 4-level signal strength value

7.2.4 Delay Address Computation Block

When the scheduler sends a Pending Event to the Logic Engine, the net-list

information is read in from the memory location specified by its Gate ID. The input

signals are assembled and fed into the evaluation block, and the new output is computed.

The new output and current output are then compared to acquire the information about

whether or not they are different. If they are different, the output change flag goes high.

137

Also, if the output has changed, the output rise/fall information is obtained at the same

time. If the output has not changed (output change flag becomes low), then no future

event is generated and the input and output values are updated in the net-list memory.

Detailed description about delay memory address computation was presented in Chapter

5.

7.2.5 Performance of Prototype

Our prototype was implemented on Altera’s EP20K200EFC672-1X FPGA. The

compilation report states that the design runs at 39.8 MHz, consuming 1054 Logical

Elements and 952 Embedded System Blocks. This represents 12% of the FPGA logic

elements and 1% of the FPGA internal RAM. shows the simulation results of the

prototype design. The “Gate ID” is highlighted to compare with Table 41. We can see

that the gates in the design are being processed in exactly the same order as the table.

Evaluation of a pending event takes 8 cycles before a future event is generated.

The scheduler can provide new event in every 36 cycles in the worst case. The worst

case happens when the scheduler memory is empty and just received a new future event.

The scheduler will go through all of the empty location to find a minimum time stamp

and pick up the event just received. Therefore the worst-case performance of our design

is 44 cycles per event.

138

Fi
gu

re
 6

8
Si

m
ul

at
io

n
W

av
ef

or
m

 fo
r

Pr
ot

ot
yp

e
C

ir
cu

it

139

7.2.6 Pre-processing Software and Data Structure

The pre-processing software parses the verilog file for net-list information and the

SDF file for delay information. The parser software reads the net-list input file (verilog

file) and organizes the connectivity information by matching the output name of a gate to

the input name, which the current gate drives (cross-linking). It then looks up the delay

information file (SDF file) to assign the delay values to each gate.

The software then generates the initial memory map of the hardware according to

the input files. The data structure of the software follows the memory architecture of the

hardware so that the output of the software can be directly loaded into the memory of the

hardware design. Figure 69 shows the data structure used by the hardware and parser

software.

struct {
 unsigned int Delay_Base_Address;
 unsigned int Power_Count;
 unsigned int Number_of_Inputs;
 unsigned int List_of_Input_Values[i];
 unsigned int Level_1_Input_Inversion_Flag[l];
 unsigned int Level_2_Input_Inversion_Flag[l];
 unsigned int Number_of_Outputs;
 unsigned int List_of_Output_Values[o];
 unsigned int Output_Inversion_Flag;
 unsigned int List_of_Dest_GateID[n];
 unsigned int List_of_Dest_PinID[n]
 unsigned int Mask1;
 unsigned int Mask2;
 unsigned int FunctionGroup;
};

Figure 69 Data structure for Hardware and Software

140

Delay values are organized as rise/fall time pairs and stacked up in the Delay

memory, as described in Chapter 5. Most of the gates in the library only use one rise/fall

time pair as their delay information (fixed delay), but some gates such as XORs contain

multiple entries of rise/fall pairs since they exhibit state dependent I/O-path delays.

Multiple delay entries are also linearly stacked in the delay memory, and the SDF parsing

software provides the pre-computed starting address of the delay memory (Delay Base

Address).

7.3 Scalability of the Architecture

There are two aspects of the scalability. One is the scalability of the gate model,

which addresses the gate size. The other is system scalability, which determines the

capacity of the logic simulation system.

Our components are pre-scaled to support up to 8 inputs for single level logic

gates, and up to 64 inputs for two level logic cells such as AO/OA gates. Table 45 shows

the resource usage report by the Quartus-II compiler. Speed was measured by inserting

registers on input and output ports (register to register delay) so that the IO port delay

does not hinder the performance of the primitives. Every component runs at 10ns or

faster, except the UG_AoOa8x8 primitive. This is because our UG_AoOa8x8 primitive

is implemented as 2-level logic.

Notice that our prototype design runs at 39.8 MHz (shown in Section 7.2.2). This

is a normal phenomenon for chip design due to the place and route process. This

141

becomes more severe when we use an FPGA as target platform, because unlike ASIC

designs, where the transistors can be physically placed and resized, FPGAs only deal

with assigning the functionality to the existing hardware resources (Logic Elements), and

connecting these hardware resources. The numbers shown in Table 45 can be changed

when different chips with different technologies are used and will not be discussed any

further.

Table 45 Resource Usage and Speed for Logic Primitives

Altera's EP20K200EFC672-1X
Primitive LE Speed

Univ_AndOr8 145 112.98MHz
Univ_AoOa8x8 686 77.17MHz

Univ_XOR8 143 138.29MHz
MUX41 95 103.98MHz

FA 48 117.08MHz
D-FF 21 161.34MHz

Table 46 shows the width of each component when our design scales to a

100,000-gate capacity. The assumptions made are:

• Maximum number of inputs for 1-level logic cells: 8

• Maximum number of inputs for 2-level logic cells: 8×8 = 64

• Maximum number of outputs for any cells: 2

• Average number of fan-out per gate: 5

• Average number of rise/fall delay value pair per gate: 5

• Total delay memory space: 500,000 (rise/fall time pair)

142

Based on above assumptions, the items in Table 46 were computed. For example,

the width of “Gate ID” is computed as ceiling(log2(100,000)) = 17, therefore the gate

address space is 17 bits wide. To support up to 64 inputs for 2-level gates, 6-bits

(ceiling(log2(64)) = 6) are required to encode the input Pin ID. Also, the “List of Input

Value” item grows quite large, (2×64 = 128 bits). With the maximum fan-out of 5, the

“List of destination gate ID” has to be 85-bits (5×17 = 85), and the “List of destination

Pin ID” should be 30-bits (= 5×6).

Table 46 Data Width for 100,000 Gate Simulation

Data item Bits Comments
Mask1 2 Mask values for 0, 1, Z, X
Mask2 2 Mask values for 0, 1, Z, X

Function Group 4 16 different functions
number of inputs 6 total 64 inputs

number of outputs 1 total 2 outputs
Level 1 output inversion flag 8 1 flag bit for level-1 gates, 8 total
Level 1 input inversion flag 8 1 flag bit for each input or level-1 gate

Level 2 output inversion flag 2 1 flag bit for each output
Delay RAM base address 19 ceiling(log(delay space))

List of Input Value 128 64 total inputs, 2 bits total
List of Output Value 4 2 outputs, 2 bits each

Power Count 20 1 million switching count
List of destination Gate ID 170 GateID * average fan-out * max output
List of destination Pin ID 60 encoded input * average fan-out * max output

TOTAL 434

As was shown from the Table 46, 434 bits are required to perform a 100,000 gate

design logic simulation task. This is about 13.5 times wider than the memory bus width

of a 32-bit generic workstation. And therefore, workstations require multiple memory

accesses to read and write this wide data. On the other hand, our design performs this

434-bit wide memory access in one shot, and achieves the performance gain.

143

7.4 Performance Comparison

As was shown in Figure 68, our experimental results for the prototype show that

our design can process one event every 44 cycles. If our system runs at 200MHz, then

for every 220 ns we can process one event. This is equivalent to 1/(220×10-9) = 4.55

million events per second.

As a comparison, we have measured the software performance of Modelsim (34).

To acquire simple performance numbers in full-timing mode, we supplied 100 inverters

in series and measured the run time. We have also measured the performance with 3,000

inverters in series in the same manner. In the 100 inverter case, Modelsim reported a

time of 62.84 micro-seconds per event, which is equivalent to 1/(62.84×10-6) ≈ 16,000

events per second. In the 3,000 inverter case, Modelsim reported 75 micro-seconds per

event, which is equivalent to 1/(75×10-6) ≈ 13,333 events per second. As an average, we

will use 70 micro-second per event (≈ 14,000 events per second) as a software

performance measure. In comparison, our architecture achieved a speed up of 325 (=

4.55 million / 14,000) over a software logic simulation.

Our performance can be further improved if we employ a multi-port memory and

pipeline the architecture. The logic evaluation task endemically involves a read-modify-

writeback to the same memory location. Memory pipelining is not possible if we have to

“lock” the memory location unless we use a multi-port memory, so that memory-read and

memory-write can be performed independently.

144

Our bottleneck also comes from slow memory performance on both the scheduler

block and logic evaluation block, because logic simulation is a memory intensive task.

Having a faster memory will benefit both hardware and software approaches. But our

performance comes from a wide memory access and a simplified hardware structure by

avoiding overheads caused by the operating system, virtual memory management, and

multiple instructions run on a general purpose processors.

IBM’s LSM and YSE (14, 15) have 63,000 and 64,000 gate capacity, respectively,

with a speed of 12.5 M gates/sec. They can handle 4-level signal strength, but cannot

handle full-timing simulation. IBM’s last product, EVE (16), uses 200 processors with a

top speed of 2.2 billion gates/sec (assumed linear) and a two million gate capacity, but

they still cannot handle full-timing simulation. All of IBM’s accelerators limit the

maximum number of inputs to four. In comparison, IBM’s accelerator is 275% faster

than our design because their lack of full-timing capability simplifies the hardware and

therefore, improves the speed. Also, limiting the number of inputs require that a single

cell with more than 4 inputs has to be broken up into multiple pieces before each piece

can be evaluated and merged. This will drop the actual event per second performance

number. As a conclusion, our hardware will out-feature IBM’s design with a trade off of

speed.

ZyCAD’s LE system performs 3.75 million gates per second per processor and

has a top speed of 60 million gates per second (assumed linear) with 16 processors (18). It

can also handle 4-level signal strength without full-timing simulation. In comparison, our

design out-performs ZyCAD by 21%.

145

The most recent product is NSIM, developed by IKOS (19). Their performance

claim is 40 to 100 times faster than software. The reason for varying performance is due

to the IKOS primitive. In the IKOS simulation environment, the circuit under test (CUT)

has to be mapped according to the IKOS provided primitives, while our approach is

based on modeling the cell on an “as is” basis, as was shown in Chapter 4. Therefore, re-

mapping the CUT into IKOS primitives consumes time and reduces the capacity

(complex cells have to be broken into tens of IKOS primitives). This re-mapping of

IKOS primitives also causes complex cells to generate more events, which reduces the

performance. NSIM does handle full-timing simulation. As discussed above, the

average software performance (Modelsim) is approximately 70 micro-second per event

(14,000 events/second) for full-timing simulation. When NSIM is 40 times faster than

software, then its performance is 14000×40 = 560,000 events per second. If NSIM is

100 times faster than software, then its performance is 14000×100 = 1.4 million events

per second. Therefore, our design out-performs NSIM with similar features. Our design

is 4.55/0.56 = 8.125 times faster than NSIM if NSIM is 40 times faster than software, and

4.55/1.4 = 3.25 times faster if NSIM is 100 times faster than software.

The emulation acceleration hardware (Quickturn and IKOS) cannot be directly

compared with simulation accelerators, because emulators directly map the circuit design

into the given platform (usually an array of FPGAs) and physically run the design in the

system. Therefore, they loose all the technology dependent information and ignore the

timing information. These emulators are extremely fast, but they can only be used for

146

verifying logical correctness, because they lack all the features that most circuit verifiers

need.

Since our design allows one to handle co-simulation with a large timing

resolution, the performance of our scheduler severely impacts the overall performance.

Table 47 shows the effect caused by different event memory configurations of the

scheduler. The memory depth indicates the depth of a single segment of event memory

for a local minimum search. As we can see from the table, our performance drops as the

depth of the event memory increases, because our scheduler is based on a linear search.

Table 47 Event Memory Depth vs. Performance

Memory Depth (k) M Events/sec
8 4.55

16 2.63
32 1.43
64 0.75

128 0.38
256 0.19

We have compared the performance of our design with the performance of IKOS

NSIM, which is currently available in the market. The result is shown in Figure 70. Up

to the memory depth (k) of 32, our performance is better or similar to their peak

performance (100 times faster than software), and from 32 to 64 our performance is still

better than their 40 times performance claim. However, when the memory depth is

increased to 128 or more, our performance drops below their performance.

147

0.00
0.50

1.00
1.50

2.00
2.50
3.00

3.50
4.00

4.50
5.00

0 20 40 60 80 100 120 140
Local memory depth

M
ill

io
n

Ev
en

ts
 /

se
co

nd

Linear Scanning IKOS 40 times IKOS 100 times

Figure 70 Performance Comparison between Our Design and IKOS

As discussed in a previous chapter, an event wheel can improve the scheduler’s

performance. IKOS uses the event wheel as their scheduler implementation and therefore

their scheduling capability is limited in nature.

As a conclusion, the performance of our design is faster than IKOS and similar to

ZyCAD, but slower than IBM. But our design out-features all hardware acceleration

systems. Table 48 summarizes the performance and feature comparison.

Table 48 Performance and Feature Comparison

 Capacity
Full

Timing

Multi-level
Signal

Strength
Co-

simulation
Power &

Heat Events/Sec
IBM 63K to 2M no Yes n/a no 12.5M

ZyCAD 1M yes Yes n/a no 3.75M
IKOS 8M yes Yes n/a no 560K to 1.4M

ModelSim scalable yes Yes n/a no 14K
Univ. Pitt 100K+ yes Yes possible yes 4.55M

148

As was shown in Figure 68, our design has a mechanism to record the power

count. This is a new feature built into our architecture, which can guide the designer to

isolate the thermal hot spots in the design. If our design is used in the pre-technology

mapping stage, this information can guide the layout process so that the hot- spots in the

chip can be more evenly distributed, allowing the chip to run cooler. Adding up all of the

output change counts will also provide the designer with a measure of power

consumption. The equation for dynamic power consumption was discussed in Chapter 1.

We have successfully demonstrated that our design can out perform the software

logic simulation. We also compared our performance and features to the existing

hardware simulation accelerators, and have shown that our design has better or equivalent

performance, and that our design provides more features than existing hardware

simulators.

149

8.0 CONCLUSIONS

8.1 Summary

With the increasing complexity of modern digital systems, and tight time to

market restrictions, design verification has become one of the most important steps in the

Electronic Design Automation (EDA) area. Design verification through full-timing logic

simulation has been relying on software running on a fast workstation with a general-

purpose architecture. Due to the growing complexity of circuits, this software solution

no longer provides sufficient performance.

In Chapter 1, the need for a fast and accurate logic simulation mechanism was

discussed. Chapter 2 described various algorithms used in the software approach. The

performance bottleneck was identified and discussed, as was related research. In Chapter

3, a new hardware architecture was proposed and its architectural component modules

and tasks were defined. Chapter 4 introduced the concept of behavioral modeling for

each of the logic cells and primitives. We introduced a new set of primitives called the

Any() and All() functions. With these new primitive functions, the logic cell evaluation

design was optimized and implemented. The size of the standard lookup table approach

was computed and compared with our approach. In an 8-input Universal Gate for

AND/OR/NAND/NOR implementation example, the size reduction factor of 21,845 was

achieved. To implement a full-timing simulation, various delay models were introduced

and different memory architectures were explored and compared in Chapter 5. In

150

Chapter 6, we analyzed the existing scheduling algorithm and identified the related

problems and the performance bottlenecks. We have proposed a parallel sub-scanning

scheduler design, which can handle mixed timing resolution so that it can be expanded

into the hardware/software co-simulation. In Chapter 7, a proof of concept prototype of

our architecture was implemented, and its performance was measured and compared to

the existing software and hardware simulators. Experimental results show that our

architecture can achieve a speed up of 325 over the software logic simulation.

8.2 Contributions

This thesis seeks an architecture design to enhance the performance of logic

simulation in hardware. The primary contributions of this work are as follows:

1. Software Performance Bottleneck Analysis: The logic simulation software

algorithm and performance were analyzed and the performance bottleneck was

identified as the memory activity of “read-modify-writeback”.

2. Hardware Concurrency: Each sub-task is designed in a designated hardware to

utilize parallelism within the logic simulation algorithm.

3. Behavioral Modeling and Universal Gate: A cell library was examined and cells

were modeled according to their behavior. Based on the behavioral model, the

concept of a “Universal Gate” was developed and implemented in hardware to

simplify the logic evaluation process. This Universal Gate was also used to

implement multilevel logic cells such as AO and OA logic cells. The new

151

hardware primitives designed for the behavioral modeling includes: Any/All

circuit, equivalence checker and edge detector circuits. Emulation is also

included into the evaluation to compute XOR and XNOR logic functions.

Universal gates are reused for evaluating multi-level logic cells.

4. The Scheduler: The scheduler circuit is designed and implemented to provide

more accurate timing (fine grain timing resolution). The memory structure of the

scheduler is divided to exploit the concurrency in the scheduling algorithm.

5. Multi-level Signal Strengths: The architecture handles the 4-level signal strengths

and a full-timing delay model.

6. Scalable Architecture: The architecture is capable of computing up to 8 inputs for

single level gates, and 64 inputs for two level gate cells. The architecture is also

designed to scale to over a 100,000 gate capacity to accommodate the complexity

of the modern digital systems.

7. Speedup: Our architecture has a speed up of 325 over a software logic simulator.

8. Power Count: The output change count mechanism is built into the architecture

so that it can be used in test coverage, stuck-at fault simulation, and thermal

topology analysis.

9. Pre-processing Software: Parsing software was implemented to provide accurate

memory map information for the architecture. The software shares the same data

structure with our architecture, and plays a crucial role in hardware logic

simulation.

152

8.3 Future Work

As was discussed in previous chapters, the performance bottleneck of the logic

simulation task comes from memory performance. In terms of memory activity, the logic

simulation task can be viewed as “read-modify-writeback” to the same memory location.

To enhance the system performance, a pipelined architecture can be employed. If a

pipeline is implemented, the architecture will have the performance benefit as long as the

system does not attempt to access the same gate information in the net-list and

configuration memory consecutively. In such cases, pipeline has to be stalled until the

net-list memory finishes its update phase (writeback). If successive pending event points

to the same gate frequently, the system will not gain any performance improvement.

Even with a multi-port memory, the pipeline architecture can still face the hazard

situation. If two or more events point to the same gate within the pipeline cycle, the

pipeline has to be stalled. Otherwise, the pipeline architecture can utilize the concurrency

in the simulation task.

Our architecture has been prototyped in an FPGA, on which the performance has

degraded considerably due to the nature of a PLD device. If the architecture is

implemented using ASIC technology, all of the functional blocks we have designed can

maintain the delay characteristic within the unit. Therefore, with an addition of a small

routing delay, the architecture can perform in a more predictable manner.

BIBLIOGRAPHY

154

BIBLIOGRAPHY

1. International Technology Roadmap for Semiconductors, http://public.itrs.net/

2. Gajski, Daniel D., Dutt, Nikkil D., Wu, Allen C-H, and Lin, Steve Y-L., “High-

Level Synthesis; Introduction to Chip and System Design,” Kluwer Academic

Publishers, Boston, 1992.

3. Advanced Micro Devices (AMD) Inc., “Athlon data sheet”, http://www.amd.com

4. Intel Corporation, “Pentium-III data sheet”, http://www.intel.com

5. N. Weste, et. al., “Principles of CMOS VLSI Design A Systems Perspective,”

Addison-Wesley Publishing Company, 1988.

6. Prithviraj Banerjee, “Parallel Algorithms for VLSI Computer-Aided Design,”

Prentice Hall, 1994.

7. M. A. Breuer and A. D. Friedman, “Diagnosis and Reliable Design of Digital

Systems,” Computer Science Press, 1976.

8. L. Soule and T. Blank, “Parallel logic simulation on General Purpose Machines,”

Proc. Design Automation Conference, pp. 166-171, June, 1988.

9. R. M. Fujimoto, “Parallel Discrete Event Simulation,” Communications of the

ACM, 33(3):30-53, Oct. 1990.

10. K. M. Chandy and J. Misra, “Asynchronous distributed simulation via a sequence

of parallel computations,” Communications of the ACM, 24(11), pp. 198-206,

April. 1981.

11. R. E. Bryant, “A Switch-level Model and Simulator for MOS Digital Systems,”

IEEE Transactions on Computers, C-33(2):160-177, Feb. 1984.

http://public.itrs.net/
http://www.amd.com/
http://www.intel.com/

155

12. D. Jefferson, “Virtual Time,” ACM Trans. Programming Languages Systems, pp.

404-425, July, 1985.

13. J. Briner, “Parallel Mixed Level Simulation of Digital Circuits using Virtual

Time,” Technical Report, Ph. D. Thesis, Department of Electrical Engineering,

Duke University, Durham, NC, 1990.

14. J. K. Haroward, et. al., “Introduction to the IBM Los Gatos Logic Simulation

Machine,” Proc. IEEE Int. Conf. Computer Design: VLSI in Computers, pp. 580-

583, Oct., 1983.

15. G. Pfister, “The Yorktown Simulation Engine,” Proc. 19th Design Automation

Conference, pp. 51-54, June, 1992.

16. L. N. Dunn, “IBM’s Engineering Design System Support for VLSI Design and

Verification,” IEEE Design and Test of Computers, pp. 30-40, Feb., 1984.

17. Fehr, Edward Scott, “An Array-based Hardware Accelerator for Digital Logic

Simulation”, Ph. D. Thesis, University of Texas at Austin, 1992.

18. ZYCAD Co., “Zycad Logic Evaluator LE-1000 series – Product Description,”

Technical Report, St. Paul, MN, 1987.

19. IKOS, “NSIM,” http://www.ikos.com

20. P. Agrawal, et. al., “Architecture and Design of the MARS Hardware

Accelerator,” Proc. 24th Design Automation Conference, pp. 108-113, June,

1987.

21. S. Walters, “Computer-Aided Prototyping for ASIC-based Systems,” IEEE

Design and Test of Computers, 8(2):4-10, June, 1991.

http://www.ikos.com/

156

22. IKOS, “Virtual Logic Emulator,” http://www.ikos.com

23. ISCAS Benchmark suite, http://ftp.cbl.ncsu.edu/www/benchmarks

24. IEEE std. 1164-1993, “IEEE standard multivalue logic system for VHDL model

interoperability (stdlogic1164),” May 1993.

25. Gary D. Hachtel, et. al., “Logic Synthesis and Verification Algorithms,” Kluwer

Academic Publishers, 1998.

26. Yunmo Chung, “Logic Simulation on Massively Parallel SIMD Machines,” Ph.

D. Thesis, Michigan State University, 1990.

27. John L. Hennessy and David A. Patterson, “Computer Architecture A

Quantitative Approach,” Morgan Kaufmann, 1996.

28. R. E. Bryant, “Simulation of Packet Communications Architecture Computer

Systems,” Technical Report MIT-LCS-TR-188, Laboratory of Computer Science,

Massachusetts Institute of Technology, Cambridge, MA, 1977.

29. Phillip Rens Prins, “Parallel Logic Simulation,” Ph. D. Thesis, Department of

Electrical Engineering, University of Idaho, 1995.

30. Altera Corporation, “Apex 20K data sheet”, http://www.altera.com

31. IEEE std 1364-1995, “IEEE Standard Hardware Description Language based on

the Verilog Hardware Description Language,” August 1996.

32. IEEE std P1497, “IEEE Draft Standard for Standard Delay Format (SDF) for the

Electronic Design Process,” June 2000.

33. T. H. Cormen, et. al., “Introduction to Algorithms,” McGraw-Hill, 1994.

34. Mentor Graphics Corporation, “ModelSim”, http://www.mentor.com

http://www.ikos.com/
http://ftp.cbl.ncsu.edu/www/benchmarks
http://www.altera.com/
http://www.mentor.com/

157

35. James T. Cain, Marlin H. Mickle, and Lawrence P. McNamee, “Compiler Level

Simulation of Edge Sensitive Flip-Flops,” AFIPS Conference Proceedings

Volume 30, April 1967.

36. W. E. Cohen, et. al., “Dynamic Barrier Architecture for Multi-Mode Fine-Grain

Parallelism Using Conventional Processors; Part I: Barrier Architecture,” Purdue

University School of Electrical Engineering, Technical Report TR-EE 94-9,

March 1994.

37. H. G. Dietz, et. al., “A Fine-Grain Parallel Architecture Based On Barrier

Synchronization,” Proceedings of the International Conference on Parallel

Processing, August 1996.

	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Figure 1 Y-Chart(2)
	System on a Chip

	Table 1 CPU Comparison(3,4)
	Design Verification through Simulation

	Figure 2 Design Flow
	Intellectual Property Blocks
	Time to Market
	Test Coverage and Fault Modeling
	Power Consumption Computation

	LOGIC SIMULATION
	Logic Simulation Algorithms
	Compiled Approach
	Discrete Event Driven Approach

	Figure 3 The Discrete Event Logic Simulation
	Related Work
	Parallel Discrete Event Logic Simulation Algorithms
	Synchronous Algorithm.
	Asynchronous Algorithm: Conservative and Optimistic Approaches
	Scheduling Algorithm for Discrete Event Logic Simulation

	Figure 4 Event Wheel for Event Scheduling
	
	Hardware Accelerators

	Performance Analysis of the ISCAS¡¯85 Benchmark

	Table 2 ISCAS'85 Benchmark Circuits(23)
	Figure 5 Algorithm for Discrete Event Logic Simulation
	Figure 6 Run Time Profile of Various Benchmark Ci
	Table 3 Run Time Profile of Various Benchmark Circuits (ISCAS'85)(23)
	
	Analysis of Peak Software Performance

	Figure 7 Data Structure Used for Circuit Elements in Software Simulation
	Figure 8 Data Structure for Event Queue
	Table 4 Read-Modify-Write Memory Performance of Pentium-III 450MHz
	Limitations of the Von Neuman Architecture

	HARDWARE SIMULATION ENGINE ARCHITECTURE
	Figure 9 Run-Time Profile of Benchmark Circuit C1355
	Statement of the Problem
	Overview

	Figure 10 Hardware Accelerated Simulation
	Figure 11 Overview of the Architecture
	Logic Engine
	Mapping into Hardware Memory

	Figure 12 Mapping Circuit Net-list into Logic Engine Memory
	Table 5 Net-list and Configuration Memory Map
	
	Test Coverage and Stuck-at Fault Simulation

	Figure 13 Use of Output Change Count
	
	Power Consumption Estimation

	Future Event Generator

	Table 6 Delay Memory Map
	Scheduler
	Experimental Results and Scalability

	LOGIC EVALUATION ARCHITECTURE
	Figure 14 Two-Input AND Gate
	Table 7 One Hot Encoded Signals
	Table 8 Lookup Table for 2-Input AND Gate
	Table 9 Lookup Table Size Computation
	Figure 15 Lookup Table Size Growth
	Table 10 Function Group and Number of Gates for Each Group
	Table 11 Behavioral Modeling of 2-Input AND Gate
	Inverter and Buffer Cells

	Table 12 Standard Lookup Table for Inverter/Buffer Gates
	Table 13 Priority Lookup Table for Inverter/Buffer Gates
	Figure 16 Inverter Design
	Figure 17 Buffer Design
	AND/NAND and OR/NOR Cells

	Table 14 Lookup table for 2-Input AND/NAND Gates
	Table 15 Priority Lookup table for AND/NAND Gates
	Figure 18 AND Gate Evaluation Design Using Any and All Primitives
	Figure 19 NAND Gate Evaluation Design Using Any and All Primitives
	Table 16 Any/All Function for a 4-Input AND Gate
	Table 17 Lookup Table for 2-Input OR/NOR Gates
	Table 18 Priority Lookup Table for OR/NOR Gates
	Figure 20 OR Gate Evaluation Design Using Any and All Primitives
	Figure 21 NOR Gate Evaluation Design Using Any and All Primitives
	Table 19 Lookup Table Size Comparison for AND/NAND/OR/NOR Gates
	XOR/XNOR Cells

	Table 20 Lookup Table for 2-Input XOR/XNOR Gates
	Table 21 Priority Lookup Table for XOR/XNOR Gates
	Figure 22 XOR Gate (a) Evaluation Design Using Any Primitives, (b) Emulation Logic
	Figure 23 XNOR Gate (a) Evaluation Design Using Any Primitives, (b) Emulation Logic
	Table 22 Lookup Table Size Comparison for XOR/XNOR Gates
	AO/AOI and OA/OAI Cells

	Figure 24 AO22 Gate
	Figure 25 Implementation of AO22 Using AND/OR Evaluation Logic
	Table 23 Lookup Table Size for AO Gate
	Table 24 Priority Lookup Table Size for AO Gate
	Universal Gate
	Any/All Simulation Primitives

	Figure 26 Circuit for Any and All Functions for a Single Signal
	Figure 27 Any and All Based 2-Input AND Gate Evaluation Example
	Figure 28 Any and All Primitives for 2-Input AND Gate Example
	
	Universal AND/NAND/OR/NOR

	Figure 29 An 8-Input Any/All Design
	Figure 30 An 8-Input AND Gate Simulation Engine Core
	Figure 31 An 8-Input OR Gate Simulation Engine Core
	Figure 32 NAND Gate with Some Inputs Inverted
	Figure 33 Implementation of 8-Input AND/NAND Gates
	Figure 34 Implementation of 8-Input OR/NOR gates
	Figure 35 A Universal 8-Input AND/NAND/OR/NOR Evaluation Logic
	
	Universal XOR/XNOR

	Figure 36 Implementation of 8-Input XOR/XNOR Gates
	
	Universal AO/AOI/OA/OAI

	Figure 37 A Universal Implementation of AO/AOI/OA/OAI Evaluation Logic
	Multiplexer Primitive

	Table 25 The Lookup Table for 2-to-1 MUX
	Table 26 Priority Lookup Table for 2-to-1 MUX Pri
	Figure 38 Equivalence Checker for 2-to-1 MUX
	Figure 39 A 2-to-1 MUX Design
	Table 27 Priority Lookup Table for 4-to-1 MUX Pri
	Figure 40 A 4-to-1 MUX Design
	Table 28 Lookup Table Size Comparison for MUX
	Full Adder

	Table 29 Lookup Table for Full Adder
	Figure 41 Full Adder Design
	Flip-Flop Evaluation

	Figure 42 D-type Flip-Flop
	Table 30 Behavior of Positive-Edge Triggered D Flip-Flop
	Figure 43 Clock Event Detection Design
	Table 31 Priority Lookup Table for D Flip-Flop
	Figure 44 D Flip-Flop Evaluation Core Design
	Table 32 Behavior Model of Clear and Preset
	Figure 45 Design for Checking Clear and Preset
	Figure 46 Implementation of D Flip-Flop with Asynchronous Clear and Preset
	Scalability of Primitives and Experimental Results

	Figure 47 Growth Rate of Resource Usage for Lookup Table
	Table 33 Resource Usage Comparison
	Table 34 Resource Usage for Any/All Primitives
	Table 35 Resource Usage for Logic Evaluation Primitives
	Altera¡¯s Logic Element

	Figure 48 A Logic Element (LE) Architecture
	GATE DELAY AND FUTURE EVENT GENERATION ARCHITECTURE
	Delay Types

	Figure 49 Path Dependent Delay of 2-Input XOR Gate (a) When B = '0'; (b) When B = '1'
	Figure 50 Delay Models (a) Lumped Delay; (b) Distributed Delay
	Figure 51 Distributed Delay Modeling Using Lumped Delay Model
	Figure 52 The Delay Architecture
	Net-list Update and Future Event Generation
	Delay Simulation Architecture
	Fixed Delay Memory Architecture

	Figure 53 A Linear Array of Delay Memory
	Figure 54 Delay Address Computation by Adding
	Path Dependent Delay Memory Architecture

	Figure 55 A 2-D Array Delay Memory
	State Dependent Delay Memory Architecture
	Generic Delay Memory Architecture

	Figure 56 Bit-Wise OR to Compute Delay Address for State Dependent Delay
	Figure 57 Delay Address Map (a) Fixed Delay, (b) Path Dependent, (c) State Dependent
	Table 36 4-Input Gate with Various Delay Types
	Figure 58 Delay Memory Map
	Delay Architecture Conclusion

	SCHEDULER ARCHITECTURE
	Linear Scanning

	Figure 59 A Linear Memory Scanning
	Parallel Linear Scanning

	Figure 60 An Architecture for Parallel Linear SubScanning
	Table 37 Resource Usage for Multiplexer Component Using 16-Bit Words
	Parallel Linear Scanning with Binary Tree

	Figure 61 Comparator and Multiplexer in a Binary Tree
	Figure 62 Comparator and Multiplexer for Finding Minimum
	Table 38 Quartus-II Synthesis Report for Resource Usage of Binary Tree
	Figure 63 Resource Growth Rate for Binary Tree
	Summary

	Table 39 Size and Performance Comparison between Scheduler Algorithm
	Figure 64 Performance Graph (a) N = 1024; (b) N = 4096
	EXPERIMENTAL RESULTS AND PROTOTYPE
	Prototype

	Figure 65 Parity Checker Test Circuit
	Table 40 Initial Events
	Table 41 Simulation Event Flow of Prototype Running Test Circuit Simulation
	Overall Architecture

	Figure 66 System Architecture for Logic Simulation Engine
	
	Net-list and Configuration Memory and Delay Memory

	Table 42 Data Structure of Net-list and Configuration Memory
	
	Logic Evaluation Block

	Figure 67 Logic Evaluation Block
	
	Pending Event Queue and Future Event Queue

	Table 43 Pending Event Queue Structure
	Table 44 Future Event Queue Structure
	
	Delay Address Computation Block
	Performance of Prototype

	Figure 68 Simulation Waveform for Prototype Circuit
	
	Pre-processing Software and Data Structure

	Figure 69 Data structure for Hardware and Software
	Scalability of the Architecture

	Table 45 Resource Usage and Speed for Logic Primitives
	Table 46 Data Width for 100,000 Gate Simulation
	Performance Comparison

	Table 47 Event Memory Depth vs. Performance
	Figure 70 Performance Comparison between Our Design and IKOS
	Table 48 Performance and Feature Comparison
	CONCLUSIONS
	Summary
	Contributions
	Future Work

	BIBLIOGRAPHY

