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ABSTRACT 

Signature_____________________ 
        Raymond R. Hoare 

A CUSTOM ARCHITECTURE FOR DIGITAL LOGIC SIMULATION 

Jiyong Ahn, Ph. D. 

University of Pittsburgh 

As VLSI technology advances, designers can pack larger circuits into a single 

chip. According to the International Technology Roadmap for Semiconductors, in the 

year 2005, VLSI circuit technology will produce chips with 200 million transistors in 

total, 40 million logic gates, 2 to 3.5 GHz clock rates, and 160 watts of power-

consumption.  Recently, Intel announced that they will produce a billion-transistor 

processor before 2010. However, current design methodologies can only handle tens of 

millions of transistors in a single design. 
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In this thesis, we focus on the problem of simulating large digital devices at the 

gate level. While many software solutions to gate-level simulation exist, their 

performance is limited by the underlying general-purpose workstation architecture.  This 

research defines an architecture that is specifically designed for gate-level logic 

simulation that is at least an order of magnitude faster than software running on a 

workstation.   

We present a custom processor and memory architecture design that can simulate 

a gate level design orders of magnitude faster than the software simulation, while 

maintaining 4-levels of signal strength.  New primitives are presented and shown to 

significantly reduce the complexity of simulation. Unlike most simulators, which only 

use zero or unit time delay models, this research provides a mechanism to handle more 

complex full-timing delay model at pico-second accuracy.  Experimental results and a 

working prototype will also be presented.   
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1.0 INTRODUCTION 

As VLSI technology advances, designers can pack larger circuits into a single 

chip.  According to the International Technology Roadmap for Semiconductors(1)*, VLSI 

circuit technology in the year 2005 will produce chips with 200 million transistors in 

total, 40 million logic gates, 2 to 3.5 GHz clock rates and 160 watts of power- 

consumption.  At this rate, a one billion-transistor chip may be less than ten years away; 

however, current design methodologies can only handle tens of millions of transistors in a 

single design.   

The final output of the Electronic Design Automation (EDA) software is a 

synthesized circuit layout that can be fabricated.  Figure 1 shows the design automation 

domains.  The design automation process starts with a high-level design specification that 

is transformed into a physical design that can be fabricated.  The upper right branch of 

the design automation Y Chart(2) is the behavioral domain.  In this domain, the circuit 

design and fabrication technologies are described.  Synthesis turns these descriptions into 

components in the Structural Domain, shown as the left branch of the Y Chart.  Structural 

components can be transformed into the physical domain for fabrication.  This research 

focuses at chip simulation in the structural domain at the gate and flip-flop level. 

 

 

                                                 
* Parenthetical references placed superior to the line of text refer to the bibliography. 
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Figure 1 Y-Chart(2) 

This research is motivated by the desire to create large devices that encapsulate 

entire systems on a single chip.  These “System on a Chip” (SoC) designs typically 

incorporate a processor, memory, a bus, and peripheral devices.  Due to the large design 

task, portions of the SoC may be purchased as Intellectual Property (IP) blocks and are 

typically described at the behavior level and at the gate (or mask) level.  Once 

incorporated into the design, the entire design must be verified for correctness in 

functionality and in timing.  Gate-level simulation is required for design verification at 

the pico-second level.  Power consumption and thermal topology analysis are also 

required for modern high-speed IC design.  Such simulation can require many hours to 

many days to complete.  This adversely affects the design cycle time and thus, the time to 

market.   
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1.1  System on a Chip 

Due to the complexity of a System on a Chip (SoC), there can be several million 

logic gates in a single design.  Table 1 summarizes the size of current top of the line 

processors manufactured by AMD(3) and INTEL(4).  These growing number of transistors 

and gates in a single design will severely impact every aspect of the design automation 

process, simply because the size of data that the design automation tools have to handle 

becomes prohibitively large.  This is because EDA tools normally rely on generic 

workstations for their platform.  Therefore, even the highly efficient EDA algorithms are 

limited to the performance and the capacity of the workstation on which they are running.   

Table 1 CPU Comparison(3,4) 

Core K7 K75 Thunderbird P-III Katmai P-III Coppermine 
Clock Speed 500-700MHz 750-1100MHz 750-1100MHz 450-600MHz 500-1133MHz 

L1 Cache 128KB 128KB 128KB 32KB 32KB 
L2 Cache 512KB 512KB 256KB 512KB 256KB 

L2 Cache speed 1/2 core 2/5 or 1/3 core core 1/2 core core 
Process Tech 0.25 micron 0.18 micron 0.18 micron 0.25 micron 0.18 micron 

Die Size 184 mm2 102mm2 120mm2 128mm2 106mm2 
TR count 22 million 22 million 37 million 9.5 million 28 million 

 
 
 

1.2  Design Verification through Simulation 

Logic simulation is one of the fields in EDA that the hardware designers depend 

on for the design verification and gate-level timing analysis.  As designs get complex, 

designers rely on the performance of the logic simulation to verify the design’s 

correctness at the various levels of abstraction.  Logic level is the preferred level for the 
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designers to test their design because levels higher than the logic level (i.e., Register-

transfer level and above) are not accurate enough to extract the performance of the design 

and the level below the logic level (i.e., transistor level and below) requires too much 

computing time.  Designers can simulate their design before they synthesize the design 

(i.e., pre-synthesis simulation), after the design has been synthesized (i.e., post-synthesis 

simulation), and/or after the gates have been placed in particular locations of the chip (i.e., 

post place-and-route).   

Pre-synthesis simulation typically uses a hardware description language (HDL) 

(e.g. VHDL, Verilog) to describe the circuit.  Simulation at this level uses a delta-delay 

model that assumes that the gate delays are a delta-time that is so small as to not be 

noticeable except in the ordering of events.  Wire and gates delays are ignored.  These 

assumptions greatly increase the speed of the simulation but they do not give the design 

accurate timing information.  This level of simulation is used to verify accuracy of the 

high-level design and control mechanisms.   

As shown in Figure 2, synthesis transforms the HDL into a gate-level description 

of the circuit.  This design step can be lengthy because a single line of HDL can be 

synthesized into hundreds of gates (e.g. arithmetic operations).  However, at the gate-

level there is a one-to-one relationship between each gate and its standard-cell transistor 

layout.  Each gate or flip-flop represents from two to fifty transistors, but the layout of 

these groupings of transistors is known.  Thus, once a design is at the gate level, a 

technology can be specified and accurate timing information can be achieved.    
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Figure 2 Design Flow 

Before a technology is chosen, the circuit’s functional behavior can be emulated.  

In this design phase, the gate-level design is mapped to a reconfigurable architecture that 

emulates the circuit’s behavior.  Emulation can be used to verify the functional behavior 

of a circuit, but does not accurately represent the actual timing of the circuit, because 

emulation is technology independent.   

Gate-level simulation can also be used to determine the functional behavior of a 

circuit, but is slower than emulation, because simulation incorporates technology-specific 

gate delay to determine a circuit’s behavior.  The advantage of gate-level simulation is its 

accuracy.  This level of simulation is useful in determining the technology that is required 

for each level of circuit performance.   
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After the circuit’s functional behavior is verified and the technology is chosen, the 

location of each gate within the circuit is determined.  This phase is called place-and-

route because each gate’s VLSI implementation is placed within the chip area and wires 

are routed among the different gates to implement the specified circuit.  After this phase 

is performed, the wire delay between the gates can be incorporated into the simulation.  

At this point, the timing of the circuit can be estimated in pico-seconds (10-12 seconds).  

The problem with simulating gates at this level of accuracy is performance.  This 

research focuses on increasing the speed of this level of simulation.   

 
 

1.3  Intellectual Property Blocks 

Some circuit elements are now made as a package and are being sold separately in 

the form of Intellectual Property (IP) blocks.  There are two types of IP blocks.  One is 

called Hard IP, which is in the form of mask layout, and the other is Soft IP, which is in 

the form of gate-level description called a net-list.  In either case, the designers need to 

test/simulate these IP blocks along with their own design to verify its functionality and 

timing.  Therefore, the speed of the logic simulation becomes more critical in design 

automation when the size of the design grows larger and IP blocks are incorporated.   

One of the hurdles in using IP blocks from another company is verification.  

When IP is purchased, the customer typically gets a behavioral level description of the 

block that describes the timing and functionality of the circuit.  However, this description 

typically can’t be synthesized to ensure the designer’s work is protected.  The customer 
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also gets a gate-level description of the circuit that can be incorporated into their design.  

However, the gate-level design is typically technology independent, and therefore the 

timing information that describes the IP block is not accurate.  Using technology-specific 

gate-level simulation, this timing information can be obtained.   

 
 

1.4  Time to Market  

In modern digital system design, reducing the “time to market” is critical to 

achieve success.  Therefore, reducing the design cycle time is also critical.  As previously 

described, each level of the design cycle increases the accuracy of the results but also 

increase the amount of time to achieve these results.  If the design is not fully verified at 

each level of the design cycle, errors will propagate to the next level and the design cycle 

time will increase.  Modern designers cannot tolerate this type of design cycle roll back, 

because it wastes the designer’s time and increases the time-to-market.   

One of the critical steps in the design phase is the verification of the entire chip 

after it has been completed and is ready to be fabricated.  If a timing glitch is not found 

before fabrication, then months of design cycle is wasted, and the chip will still need to 

be simulated to find the error.  Thus, it is critical to improve the performance of post-

place-and-route simulation to decrease the time-to-market.   
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1.5  Test Coverage and Fault Modeling 

In addition to the logic verification, designers need to know whether the set of 

simulation input vectors cover the entire circuit testing.  Without this information, it is 

difficult to know if the design is fully tested with the given set of input vectors.  If the 

circuit design has a large number of inputs, then the total number of input vector 

combination becomes astronomically large.  In such cases, the designer wants to test the 

design with only a subset of input vectors.  Therefore, some mechanism to check if the 

input vector set has covered the entire data path of the design must exist. 

During circuit fabrication, a wire can be shorted to Vdd or to Ground.  These 

stuck-at faults cause circuits to behave in an unpredictable manner if the circuit is not 

designed for such situations.  To determine if these faults have occurred, test vectors need 

to be developed.  Verification of these test vectors is time consuming because the circuit 

must be simulated thousands of times as these faults can occur for every wire network.  

Thus, hardware acceleration for logic simulation with stuck-at faults would reduce the 

development time for fault detection.   

 
 

1.6  Power Consumption Computation 

Power consumption in modern VLSI design is an important issue.  Portable 

and/or hand-held electronic equipments are continuously emerging in the market.  The 

power consumption of these devices will not only determine the battery life, but also 

decide the heat characteristics of a chip.  As mentioned earlier, modern digital circuits are 
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getting smaller in size and faster in speed.  The clock frequency of the chip plays a major 

role in power dissipation.  When a chip consumes a lot of power, it inevitably becomes 

hot.  Due to the thermal characteristics of a silicon device, over-heated chips will not 

function correctly.  Modern high-speed processors all require a solid cooling mechanism 

to operate properly.   

If the thermal topology can be pre-determined (before the chip is fabricated), the 

layout generation process can reference the thermal characteristics so that “hot spots” can 

be evenly distributed over the chip area.  Such chips will run much cooler and less erratic 

when used in extreme conditions.  Designers are now facing another problem of this heat 

issue.  Due to the “time to market” constraint, thermal topology analysis cannot be done 

after the chip is fabricated.  Therefore, it is important to extract the thermal characteristics 

of the design at both pre- and post-place-and-route steps. 

Power consumption of a chip is described as the sum of static dissipation and 

dynamic dissipation.  Static dissipation is due to the leakage current that is caused by the 

reverse bias between the diffusion region and the substrate.  Static dissipation is small in 

value, and can be treated as a constant if the target technology is known.   

Dynamic dissipation is due to the load capacitance and the transition activity of 

the output transistor.  When a gate changes its output state (either from ‘0’ to ‘1’ or ‘1’ to 

‘0’), both p- and n-transistors are on for a short period of time.  This results in a path 

from Vdd to GND such that power and ground is electrically shorted for a brief period of 

time, and power is consumed through this path.  Current flow is also needed to charge 

and discharge the output capacitive load. 
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Dynamic dissipation is formulated(5) as: 

pddLd fVCP 2=  

Where  is the load capacitance, V  is supply voltage and  is the switching 

frequency. 

LC dd pf

Assuming supply voltage is constant, the dynamic power dissipation depends on 

the number of output changes of a gate and its capacitive load.  Therefore, accurate 

simulation and recording of a circuit’s switching behavior would provide critical insight 

into a circuit’s thermal and power characteristics.   
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2.0 LOGIC SIMULATION 

The current design process relies on a software-based logic simulator running on 

high performance workstations.  Advanced processor and system architectures with 

generous amounts of memory can increase the performance of logic simulation to a 

degree, but eventually hit a performance barrier due to their memory access bottleneck 

and due to their general purpose design.  Software benchmarks will demonstrate this 

point in Section 2.3 .   

Logic simulators, especially software-based logic simulators(35), have been around 

for decades.  Logic simulators are widely used tools to analyze the behavior of digital 

circuits, to verify logical correctness, and to verify timing of the logic circuits.  Logic 

simulators are also used for fault analysis when a test engineer wants to determine the 

information about faults that are detected by a proposed test sequence(6).   

Unlike circuit simulators (e.g. SPICE), which compute continuous time character-

istics of the transistor-level devices, logic simulators rely on abstract models of digital 

systems that can be described using Boolean algebra.  Logic simulators model a gate as a 

switching element with an intrinsic time delay that remains in steady-state when its inputs 

remain constant.  They yield discrete output values as opposed to analog output (e.g., 

SPICE simulation)(6).  However, current gate models have timing characteristics that 

specify timing down to 10-12 seconds.   

For gate-level simulation, circuits are described in terms of primitive logic gates 

and their connectivity information.  Such gate-level circuit descriptions are called net-
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lists because they describe a network of interconnected gates.  The primitive logic gates 

are typically evaluated by table look-up or by calling a software function.   

 
 

2.1  Logic Simulation Algorithms 

There are two main categories of algorithms in logic simulation.  They are the 

compiled approach and the discrete event-driven approach. 

 
 

2.1.1  Compiled Approach 

To determine the logic behavior of a circuit, the compiled approach transforms 

the net-list into a series of executable machine-level instructions.  Since the “Arithmetic 

and Logic Unit” (ALU) of a general-purpose processor is usually equipped with logical 

computation functionality, a net-list can be mapped directly into the machine code to 

perform logic simulation.  The problem of this approach is that all the gates in the circuit 

are evaluated regardless of the input change.  In addition, the compiled approach can only 

handle a zero- or unit-delay model, with a limited number of fan-in and fan-out due to the 

width of the instruction set.   
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2.1.2  Discrete Event Driven Approach 

Instead of evaluating every gate as in the compiled approach, event-driven 

simulation considers a change in an input signal as an event.  Gates are only evaluated 

when an event occurs.   

Figure 3 illustrates how the algorithm works.  Gates are labeled G1 through G10, 

and events are labeled E1 through E3.  Consider a change in the input signal c from ‘0’ to 

‘1’.  This event triggers the evaluation of G1, which generates an output change from ‘0’ 

to ‘1’.  The output change of G1 becomes a new event E1, which triggers the evaluation 

of G4 and G6.  The evaluation of G6 generates an output change that will generate 

another new event E2.  Event E2 triggers the evaluation of G8 that in turn generates the 

output change and a new event E3.  Notice that the new event in G4 is evaluated but does 

not generate any new event, because the input i is ‘0’, which forces G4 to hold the output 

value unchanged.   
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Figure 3 The Discrete Event Logic Simulation 

A change in the output signal of a gate at time t will generate a future event that 

will occur at time t+ δ, where δ = intrinsic_delay + extrinsic_delay + wire_delay.  

Intrinsic_delay is based on the type of gate being implemented.  For example, an inverter 

has a smaller intrinsic_delay than an exclusive-or gate because it can be implemented 

with fewer transistors.  Extrinsic_delay is the delay due to the capacitive load that must 

be overcome to change the logic level.  A gate with a high fan out will have a higher 

extrinsic_delay than a gate with a smaller fan out.  The wire_delay is due to the 

capacitive load placed on the circuit due to the output wire length.   

These future events are usually stored in a separate data structure to keep track of 

the correct time ordering of events.  Thus, the simulation algorithm can safely access the 

events without executing them out of order(6, 7).  If a gate G is simulated due to an event 
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E, and it is determined that the output has changed its state, then all the gates that are 

driven by this output signal have to be simulated at the future time instance t + δ, as 

described above.  Logic gates usually have more than one fan-out, and thus, multiple 

future events can be generated as a result of evaluating one gate.  These future events 

have to be managed/scheduled according to their timing information so that all the events 

can be evaluated in correct time order. 

 
 

2.2  Related Work 

There are several research projects that speed up discrete event logic simulation.  

Depending on the approach, we can classify them in two distinct groups.  One is 

approaching from the parallel computing environment and the other is using the a custom 

hardware accelerator.   

The use of a parallel computer can also be classified as compiled approach and 

discrete-event approach.  There are parallel-compiled approach and parallel discrete 

event simulations.  The parallel compiled approach still maintains its weakness as in the 

single processor case, that is, they can only handle unit- or zero-delay models(6).  Such 

delay models do not provide enough information about the circuit being simulated, 

therefore the compiled approach will not be covered in detail.   
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2.2.1  Parallel Discrete Event Logic Simulation Algorithms 

In a parallel computing environment, each processor is called a Processing 

Element (PE).  Each PE may have its own memory (distributed memory model) or may 

share one big memory (shared memory model).  Both models require that PE’s 

communicate with each other to ensure the correctness of the task they are processing 

(e.g. data dependency).   

A major difference in parallel discrete event simulation is in the mechanism of 

managing the simulated time.  In a parallel computing environment, the input net-list is 

partitioned and mapped into each of the Processing Elements (PE’s).  In such a case, the 

new events generated as a result of logic evaluation in one PE can affect the event 

execution order in other PE’s.  For example, if PE0 generates a future event E0 with time 

stamp t0, that has to be sent to PE1 (because the gate that this event is connected to is 

stored in PE1), and if PE1 is currently simulating an event E5 with time stamp t5, then it is 

called the violation of causality constraint, because E0 should execute before E5.  This 

violation occurs when the events are executed out of order.  In such case, it is possible 

that all of the work that has been done until current simulation time becomes void.  

Simulation time has to be rolled back to consider the propagated past event and the 

circuit has to be re-simulated.   

Since each PE has no way of knowing when the new events will be propagated 

from other PE’s, PE’s cannot perform the simulation tasks independently from each other.  

The simulation time has to be controlled globally to ensure the correctness of the 
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simulation task.  To control the simulation time across all PE’s, the concept of Global 

Virtual Time (GVT)(12) is used for global synchronization.  GVT is a notion of simulation 

time that all PE’s must follow.  If one PE is lagging behind the GVT due to the load, all 

other PE’s must wait to be synchronized. 

The parallel discrete event logic simulation can be classified in two categories: 

synchronous and asynchronous.  They are both based on the mechanism to control the 

simulation time so that the causality constraint can be satisfied.   

 
 

2.2.2  Synchronous Algorithm.  

The synchronous approach follows the sequential simulation algorithm for each 

PE.  It performs updates in parallel and evaluation in parallel(8).  Global synchronization 

is needed for each time instance.  In other words, GVT can advance only when all the 

PE’s agree on it.  Soule et. al.(8) have implemented the synchronous parallel algorithms 

on an Encore Multimax shared memory multiprocessor using a centralized event queue 

for all PE’s and reported a speedup of 2 on eight processors.  When they used distributed 

event queues, they were able to achieve a speedup up to 5 on eight processors.  

Banerjee(6) states that synchronous parallel logic simulation algorithms typically achieve 

speedups of 5 or 6 on eight processors even though the inherent concurrency is quite 

high.  This is because the load balancing of the parallel system and the synchronization 

overhead.   
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2.2.3  Asynchronous Algorithm: Conservative and Optimistic Approaches 

Unlike the synchronous approach, the asynchronous approach allows the 

simulation time to be advanced for each PE locally without global synchronization.  

Since the simulation time is advanced independently, the algorithm is prone to a deadlock 

situation(9).  As an example, suppose 3 processors, A, B and C, are sending and receiving 

messages to and from each other and from the external world.  If A is processing a 

message from C with time stamp 12, and B is processing a message from A with time 

stamp 8, and C is processing a message from B with time stamp 10, and each processors 

received a message with higher time stamp (e.g. 20, 30, 40 each) from the external world, 

then each processor cannot determine whether it is safe to process the external messages 

due to the gap in time stamp, and they block themselves waiting for messages from each 

other to fill the time stamp gap.   

Based on the methods used to handle this deadlock situation, asynchronous 

approaches fall into two categories: conservative and optimistic.  The conservative 

approach strictly avoids the possibility of violating the causality constraint by relying on 

a mechanism to determine when it is safe to process an event.  If a processor contains an 

unprocessed event E with time stamp T and no other event with a smaller time stamp, and 

that processor can determine that it is impossible for it to receive another event with a 

time stamp smaller than T, then that processor can safely process E because it can 

guarantee that doing so will not later cause a violation of the causality constraint(6).  This 

requires a lot of inter-processor communication for querying each other’s state.  This can 
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potentially cause a deadlock.  Some conservative algorithms use a NULL message to 

avoid deadlock situations(10, 11).  And are classified as deadlock avoidance algorithms.  

Speed up of 5.8 to 8.5 were reported by Soule et. al. using Encore Multimax 

Multiprocessor with 14 PE’s(8). 

The optimistic approach allows causality errors to occur, and then detects and 

recovers from these errors by using a rollback mechanism.  Time Warp, proposed by 

Jefferson(12), is the most well known optimistic algorithm.  In Time Warp, a causality 

error is detected when an event message is received that contains a time stamp smaller 

than that of the current event being processed.  A recovery process is accomplished by 

undoing the effects of all events that have been processed prematurely by the processor.  

An event might have done two things that have to be rolled back.  It might have changed 

the output of a logic gate, and/or it might have sent an event to the other processors.   

The optimistic approach has better CPU utilization as compared to the 

conservative approach, but when there are rollbacks, some of the CPU cycles previously 

used for computation are wasted.  A speed up from 6.5 to 20 on 32 processors was 

achieved by using this approach(13).   

 
 

2.2.4  Scheduling Algorithm for Discrete Event Logic Simulation 

As mentioned in the previous section, the future events have to be managed 

according to their time stamp.  One way of scheduling these events in software is to use a 

list of lists data structure called an event wheel(7).  In this data structure, a fixed number of 
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time slots are assigned in a circular structure to store the list of events with the same time 

stamp, as shown in Figure 4.  After the new events are generated, they are inserted into 

the proper time slot in the event wheel.  The size of the event wheel is typically 64 and a 

special mechanism is used to monitor the overflow of the scheduler(6).   

t

t + 1

t + 2

t + N

t + 3

 

Figure 4 Event Wheel for Event Scheduling 

As was show in Table 1 in Section 1.1 , the clock frequency of modern digital 

systems is already reaching over 1 GHz (sub-nano-second).  If the timing grain ranges 

from pico seconds for high-speed designs to micro seconds for slow-speed designs, the 

event wheel described above will not be able to handle the situation.  If the size of the 

event wheel has to be increased, then it becomes inefficient because most of the event 

wheel time slots will be empty.   

 
 

2.2.5  Hardware Accelerators 

Several researchers have investigated the use of dedicated hardware accelerators 

for logic simulation.  Hardware accelerators can be classified into two categories.  One is 

when the actual simulation is performed by custom hardware, and the other is functional 

emulation.  A hardware simulator runs the simulation algorithm on a dedicated hardware, 
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and provides fast and accurate simulation results.  Emulation only replicates a circuit’s 

gate-level functionality and does not provide any mechanism for timing-based simulation 

of individual gates.  The focus of this thesis is on hardware simulation accelerator and not 

on hardware emulator.   

Recently, commercial vendors such as Quickturn and IKOS introduced the 

hardware logic emulator.  A hardware logic emulator usually utilizes an array of 

Programmable Logic Devices (PLDs), especially Field Programmable Gate Arrays 

(FPGAs) as a platform, and programs the entire net-list into the array of PLDs.  The 

Quickturn RPM emulation system(21) and IKOS Virtual Logic Emulator(22) both use a 

large number of FPGAs on a printed circuit board.  In the Quickturn RPM board, each 

FPGA is connected to all its nearest neighbors in a regular array of signal routing 

channels.  Several such boards are connected together in a system.   

In general, emulators are more powerful than simulation engines in terms of speed 

since the logic elements inside of the PLD literally execute the logic function given by 

the input net-list.  But as the name implies, hardware emulators can only emulate, not 

simulate.  They lack the functionality of simulating the circuit’s characteristics correctly 

given by the designer’s intention and/or the target technology.  In other words, the 

hardware emulators can only be used to perform the circuit’s functional verification (i.e. 

logical correctness).  This is a natural phenomenon because the design is mapped into the 

FPGA and actually run on the FPGA system, the actual circuit behavior on the target 

technology cannot be modeled.  Therefore losing all the delay-timing information of the 

design. 
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IBM has done the most significant work on a compiler driven logic simulator.  

IBM has three generations of logic simulation parallel machines, all three of which are 

using the parallel compiled approach(6).  They are the Logic Simulation Machine (LSM), 

Yorktown Simulation Engine (YSE) and Engineering Verification Engine (EVE)(14, 15, 16).  

All machines use same basic architecture, consisting of 64 to 256 processors connected 

by cross-bar switch for inter-processor communication.   

LSM is IBM’s first generation of custom designed simulation machine.  It can 

handle 5 inputs with 3 logic signal levels and has a 63K gate capacity.  YSE is the second 

generation of IBM’s effort.  It can handle 4 different signal levels (0, 1, undefined, high-

impedance) and up to 4 inputs, with a 64K gate capacity.  YSE is distinguished from its 

predecessor by its simulation mode, general-purpose function unit, a more powerful 

switch communication mechanism, and an alternate host attachment.  YSE hardware 

consists of identical logic processors, each running pre-partitioned piece of the net-list.  

Each logic processor can accomplish a complete function evaluation in every 80 nano-

second period (12.5 million gates per second)(17).  EVE is the final enhancement of YSE, 

it uses more than 200 processors.  EVE handles 4 signal levels and 4 inputs, with 2M gate 

capacity with peak performance of 2.2 billion gates per second(6).  All three of IBM’s 

simulation engines can only handle zero- or unit-delay model, which is only suitable for 

verification of logical correctness.   

Another commercial accelerator for logic simulation is the Logic Evaluator LE-

series offered by ZyCAD Corporation(18).  It uses a synchronous approach and a bus-

based multiprocessor architecture with up to 16 processors, that implements scheduling 
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and evaluation in hardware.  It exhibits a peak performance of 3.75 million gate 

evaluations per second on each processor, and 60 million gate evaluations per second on 

16-processor model(6, 18).   

The MARS hardware accelerator exploits function parallelism by partitioning the 

simulation procedure into pipelined stages(20).  The MARS partitions the logic simulation 

task through functional decomposition, such as signal update phase and gate evaluation 

phase.  Both phases are further divided into 15 sub-task blocks, such as input and output 

signal management unit, fan-out management unit, signal scheduler, and housekeeper 

unit, etc.  They employ exhaustive truth table as their gate evaluation primitives (up to 

256 primitives with 4 inputs maximum).  MARS is designed and built as an add-on board 

to the workstation.  It can process 650 thousand gate evaluations per second at 10 MHz.   

A commercial vendor, IKOS, builds the hardware logic simulation engine named 

“NSIM”, which is currently the top of the line in the market.  They claim that they can 

provide the simulation performance approximately 100 times faster than that of software 

simulation(19).  IKOS NSIM is a true full-timing simulator.  But it requires that users to 

use its own primitives, and forces the designer to model their design in terms of IKOS 

primitives.  This is a big limiting factor of IKOS.  When a library cell vendor creates a 

new type of cells, the designer has to find a way to model this new cell using IKOS 

primitives.  It also adds more loads to the simulation engine because each library cell is 

modeled using multiple IKOS primitives and those primitives have to be evaluated by the 

simulation engine.   
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2.3  Performance Analysis of the ISCAS’85 Benchmark Circuits 

In order to obtain the performance bottleneck of software, a simple C program for 

logic simulation was made and tested on the benchmark circuits.  ISCAS’85 benchmark 

circuits(23) were initially designed for fault simulation, but have been widely used by the 

logic simulation community.  This is because there are no benchmarks specifically made 

for logic simulation.  The size of this benchmark set is relatively small, and various 

researchers have noted the need for the standardized logic simulation benchmark circuits 

in various sizes.  Unfortunately, the new benchmark circuit is not available yet.   

Table 2 ISCAS'85 Benchmark Circuits(23) 

  Function Total Gates Input Lines Output Lines 
C7552 ALU and Control 3,512 207 108 
C6288 16-bit Multiplier 2,416 32 32 
C5315 ALU and Selector 2,307 178 123 
C3540 ALU and Control 1,669 50 22 
C2670 ALU and Control 1,193 233 140 
C1908 ECAT 880 33 25 
C1355 ECAT 546 41 32 
C880 ALU and Control 383 60 26 
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FOR each elements with time stamp t  

   WHILE (elements left for evaluation with t) DO 

      EVALUATE element 

      IF (change on output) then 

         UPDATE input & output values in memory 

         SCHEDULE connected elements 

      ELSE 

         UPDATE input values in memory 

      END IF 

   END WHILE 

   Advance time t 

END FOR 

 

 

 

 

 

 

 

 

 

Figure 5 Algorithm for Discrete Event Logic Simulation 

The algorithm shown in Figure 5 can be divided into 3 phases.  They are evaluate, 

update and schedule.  The evaluation phase can be carried out by a simple table lookup 

of each Boolean primitive.  The lookup table normally contains predefined sets of 

input/output signals.  The update phase handles the output value change.  After the 

evaluation, if the output signal changes due to the input signal change, the output value 

stored in the memory has to be modified accordingly.  The schedule phase deals with the 

execution ordering of the events.  Since the algorithm deals with a non-unit-delay model 

of simulation, the newly generated events have different time stamps, depending on the 

type of the gate.  These new events should be placed in the execution schedule according 

to its time stamp.  Otherwise, the simulation will violate the causality constraint and 

produce incorrect simulation results.   
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Figure 6 Run Time Profile of Various Benchmark Circuits (ISCAS’85)(23) 

Figure 6 and Table 3 show the run time profile of the ISCAS’85 benchmark 

circuits.  To extract the run time profile of software based logic simulation performance, 

we have implemented a simple C program with a generic synchronous algorithm and 

measured the CPU cycle of each subtasks.  We have found that evaluate phase only spent 

2% to 4% of the total run time, update used 16% to 32% and schedule phase, especially 

execution schedule management task that runs a “quick-sort” routine, used up most of run 

time (64% to 82%).   
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Table 3 Run Time Profile of Various Benchmark Circuits (ISCAS'85)(23) 

Circuit Schedule Update Evaluate
C7552 81% 17% 2% 
C6288 82% 16% 2% 
C5315 80% 18% 2% 
C3540 78% 20% 2% 
C2670 78% 20% 2% 
C1908 73% 24% 3% 
C1355 64% 32% 4% 
C880 76% 21% 3% 

 
To ensure the temporal correctness of the simulation, events, that are stored in 

scheduler, have to be ordered in time according to the time stamp.  Whenever the new 

events are generated due to the evaluate phase, the scheduler sorts the events according to 

the time stamp.  The schedule sorting involves major memory movement.  Like many 

other application, memory bandwidth is the major bottleneck of the logic simulation 

algorithm.  To handle finer timing resolution (discussed in Section 2.2.4 ), the event 

wheel algorithm was discarded, and sorting directly on the schedule was applied.   

 
 

2.3.1  Analysis of Peak Software Performance 

Not only logic simulation, but most Electronic Design Automation (EDA) 

problems are extremely memory intensive tasks.  EDA problems usually do not benefit 

from cache memory due to the enormous memory space requirement and random 

memory access behavior.  For example, most of the engineering problems generally work 

on numbers that are usually represented as an array/matrix of numbers.  When the 

problem or application (e.g. MATLAB) requires a large memory space, they usually 
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exhibit temporal and spatial locality fairly well.  In such cases, the speed and the amount 

of the cache memory will greatly improve the speed of computation.   

In the case of EDA problems, the software performs operations on a group of data 

primitives that represents a circuit element.  The circuit elements are represented as a 

record within a data structure, and the record usually contains multiple numbers and 

characters grouped as one record per circuit element.  The record also contains some 

number of pointers to store the connectivity information of each circuit element (fan-in 

and fan-out).  The size of a record is usually much larger than the system memory bus 

width, and EDA algorithms are often forced to perform a multiple memory access to 

retrieve the information of a single circuit element.   

Since every circuit design is unique in its contents, the circuit’s connection 

information varies from design to design.  Therefore, logic simulation exhibits random 

memory access patterns, especially for highly complex circuit designs.  Figure 7 shows 

the data structure for a logic gate and Figure 8 shows the data structure for the event 

queue of the logic simulation software.  One circuit element takes up six 32-bit integers 

for a single record.  To read the information about one circuit element, the 32-bit 

processor has to initiate six memory references.   
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struct  ram_struct { 
   unsigned int function_type:5; 
   unsigned int num_fanin:2; 
   unsigned int input_val1:4; 
   unsigned int input_val2:4; 
   unsigned int input_val3:4; 
   unsigned int input_val4:4; 
   unsigned int current_output:4; 
   unsigned int next_output:4; // 31 bits  32-bit integer 
 
   unsigned int output_change_count:8; 
   unsigned int delay:20; 
   unsigned int num_fanout:4; //32 bits  32-bit integer 
 
   unsigned int dest1:24; 
   unsigned int dpid1:2; // 26 bits  32-bit integer 
 
   unsigned int dest2:24; 
   unsigned int dpid2:2; // 26 bits  32-bit integer 
 
   unsigned int dest3:24; 
   unsigned int dpid3:2; // 26 bits  32-bit integer 
 
   unsigned int dest4:24; 
   unsigned int dpid4:2; // 26 bits  32-bit integer 
}; 
Figure 7 Data Structure Used for Circuit Elements in Software Simulation 

 

 

 

 

After the net-list fo

the next pointer will

ory location very far 

es than cache hits.  T
struct _q_struct { 
   unsigned time_stamp; 
   unsigned gate_id:24; 
   unsigned pin_id:2; 
   unsigned val:4; 
}; 
Figure 8 Data Structure for Event Queue 

r a design has been parsed into the memory, it is more likely 

 point to the non-adjacent memory location (possibly to a 

away).  In such cases, cache memory will exhibit more cache 

he operating system then has to spend more cycles for cache 
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management.  Since the sequential software algorithm is run on a generic workstation, 

the performance of the algorithm is inevitably bound to the workstation’s internal 

architecture.  Most workstations are based on a fixed-width memory bus architecture, 

which severely limits the performance of the memory access, especially for the 

applications like logic simulation.  Also, the processors in the work-station contain extra 

circuits such as floating point ALUs and pipelines that are not needed for logic 

simulation.  It is obvious that in order to get a better performance on logic simulation 

task, we need to get a better memory performance than that of a workstation.   

Table 4 Read-Modify-Write Memory Performance of Pentium-III 450MHz  

Amount of 
Memory in Bytes

Time in nano 
second 

240 761 
480 762 

2,496 765 
5,016 763 

25,152 780 
50,328 793 

251,640 807 
1,258,272 924 
2,516,568 955 

12,582,912 1,027 
25,165,824 1,049 
50,331,648 1,075 
75,497,472 1,097 

100,663,296 1,107 
125,829,120 1,255,746 

 
To simulate the memory access behavior of logic simulation, a simple C program 

was written to extract the memory performance.  From the viewpoint of memory access, 

the logic simulation task is equivalent to the series of memory read-modify-writeback 

operations.  To imitate this read-modify-writeback behavior, we used the identical data 

 



31 

structure that is used in logic simulation software, and created a block of memory with 

this data structure.  Then using a random number generator, we accessed a memory 

location for read and modified the contents and then wrote back the data into the same 

memory location.  From Table 4, we found that the memory access speed for this task 

takes about 1000 nano-second on average.   

 
 

2.4  Limitations of the Von Neuman Architecture 

As discussed in this chapter, the software solution running even on the highest 

performance workstations will not be able to provide the performance needed by large 

circuit logic simulation.  This is because the modern workstations are based on the “Von 

Neuman” architecture.  The characteristics of Von Neuman architecture are:  

• Load/Store 

• Fixed Width Instruction/Data 

• General Purpose 

• Single Memory (Virtual memory concept) 

• Cache Hierarchy 

Having a single narrow memory architecture forces the simulation task to perform 

multiple memory accesses to obtain related information for a single gate.  Cache memory 

does not usually help for large circuit simulations because cache misses causes overhead.  

Therefore, a traditional Von Neuman architecture cannot provide the performance 
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required for logic simulation task.  A new custom architecture will be described in the 

next chapter.   
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3.0 HARDWARE SIMULATION ENGINE ARCHITECTURE 

As was shown in previous chapter, the bottleneck of software-based simulation 

performance is caused by the poor performance of memory.  Logic simulation can be 

divided into three tasks: Evaluate, Update and Schedule.  Evalutate and Update are 

normally carried out as a single task and modeled as read-modify-writeback because each 

event affects a particular gate that must be read from memory, the gate’s inputs and 

possibly its outputs are modified, and the gate’s information must be written back to 

memory.  As shown earlier, a read-modify-writeback operation in software requires 

between 1200 and 1400ns.  The Schedule task determines the order in which events 

occur.  This is essentially a sorting problem and again is memory intensive.   

By dividing the entire logic simulation task into Evaluation, Update and Schedule 

subtasks, a performance profile of a benchmark circuit with such division can be graphed, 

as shown in Figure 9.  Based on the results of the performance analysis of a software 

simulation algorithm, we designed a custom architecture to perform an event driven logic 

simulation algorithm in hardware.  The goal is to overcome the performance bottleneck 

found in software simulation by implementing the simulation in hardware.   
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Figure 9 Run-Time Profile of Benchmark Circuit C1355 

 

 

3.1  Statement of the Problem 

The problem that the hardware logic simulation architecture should solve can be 

summarized as following three categories:  

1. Accuracy: A Full-Timing, Gate-Level Simulation at the pico-second accuracy is 

the most important feature for the modern digital logic simulators.  Without the 

full-timing information, timing problems cannot be seen.   

2. Capacity: Due to modern CMOS technology, the size of the VLSI chips reaches 

to millions of gates.  Therefore, the capacity of the simulation hardware should be 

large enough to process these large designs.  This work targets design sizes from 
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100,000 to millions of gates.  Common in EDA area, a large size design is 

computationally complex due to its large memory space requirement.   

3. Speed: The software simulators running on a high speed workstation consumes 

weeks to months of simulation run time when processing a large design.  

Hardware logic simulation needs to be an order of magnitude faster than the 

software to shorten the design cycle time and speed time-to-market. 

 
 

3.2  Overview 

Figure 10 illustrates the task flow of the hardware accelerated logic simulation 

system.  The logic simulation task on a hardware accelerated simulation system is carried 

out in four phases.  First, pre-processing software is run on a workstation to construct the 

data structure for the simulation hardware using following inputs: circuit’s gate level 

description, circuit’s gate-level timing information and the cell function of the selected 

technology.  Second, the constructed data structure is downloaded into the simulation 

hardware.  Third, the actual simulation is carried out in the hardware.  Fourth, the results 

from the hardware are uploaded into the workstation for the user to examine the 

simulation results.  The focus of this thesis is to design the logic simulation hardware to 

provide the simulation results faster than is possible on a Von Neuman workstation.   
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Figure 10 Hardware Accelerated Simulation 

 
Our simulation hardware is divided into three task blocks: the Logic Engine, 

Future Event Generator, and the Scheduler, as shown in Figure 11.  The Logic Engine 

performs logic evaluation due to an input-change event received from the Scheduler and 

computes the output using the information stored in the Net-list and Configuration 

Memory.  The Logic Engine computes the output of the gate without considering the 

delay of the gate.  If the output value is changed, the Future Event Generator performs the 

delay computation using the data in delay memory and generates new event called a 

future event.  A future event is an event that is to occur some time in the future.  The 

future event is passed to the scheduler through the future event queue.  This new event is 

passed back to the Logic Engine at the proper future simulation time.  If the output does 

not change, no future events are generated and logic computation terminates.  When the 

logic computation completes, the Logic Engine writes the new input values and possible 

new output values back into the net-list and configuration memory.  The Scheduler 
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manages new incoming events that are generated as a result of logic evaluation.  All 

future events are stored in the event memory.  The Scheduler determines when to 

increment the simulation time and examines its list of future events.  A pending event is a 

former future event whose execution time is equal to the simulation time and should be 

executed.  The Scheduler retrieves pending events from the Event Memory and forwards 

them to the Logic Engine for evaluation.  This process is continues until the pre-

determined simulation time.   

Each of the main function blocks in our hardware (i.e., the Logic Engine, Future 

Event Generator and the Scheduler) can be viewed as a processor with one instruction, 

which only performs logic simulation task.  This removes extra overhead caused by 

fetch-decode-execute cycles of a Von Neuman architecture, since our architecture does 

not rely on any general purpose instructions.  The remainder of this chapter discusses 

each block in more detail and outlines this work.   

Our design also distinguishes itself from the others in that new features such as 

power consumption measure are built into the simulation hardware.  This architecture 

will not only provide the logical verification and performance, but will be able to guide 

the place-and-route process to evenly distribute the thermal “hot spots.”  Our design also 

targets a wider range of delay timing resolution (finer timing grain) compared to existing 

simulators so that it can be used in a co-simulation environment, for example, logic gates 

mixed with software running on a built in processor such as System on Chip (SOC) 

environment.  For such applications, the timing grain spans from a few pico-seconds to 

several micro-seconds, and this makes the traditional event wheel approach inefficient.   
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Figure 11 Overview of the Architecture 

 
 

3.3  Logic Engine 

In Chapter 4, we demonstrate the computation of various logic primitives with 

minimal hardware resources.  We then introduce a new concept and primitives to perform 

this logic computation more efficiently.  One of the issues is that modern digital logic 

simulation requires multi-level signal strengths such as logic-Low (‘0’), logic-High (‘1’), 

High-Impedance (‘Z’), and Unknown (‘X’).  Having these multi-level signals, not just 
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Boolean 1’s and 0’s, makes the logic simulation task more complex.  The software 

simulation uses a lookup table to compute these multi-level signal strengths through 

multiple table lookup activities.  Using a large lookup table, hardware requires only one 

lookup to achieve the result.  To gain this performance, the amount of hardware resource 

grows exponentially with the gate input size.  We illustrate the concept of behavioral 

modeling by introducing Any and All primitives to reduce the size of the lookup table and 

perform the logic simulation task faster and more efficiently than a single lookup table.  

We then introduce a “Universal Gate” to perform four-level logic evaluation for 

numerous Boolean logic gates.  In addition to the Boolean logic gates, we present a group 

of frequently used macro cells as single primitives such as a Multiplexer, Full Adder and 

Flip-Flop.  A detailed description of the Logic Engine can be found in Chapter 4.   

 
 

3.3.1  Mapping into Hardware Memory 

The pre-processing software generates the memory map according to the input 

circuit design.  Figure 12 shows an example circuit.  The pre-processing software reads 

the circuit description written and cross-links the gates according to the circuit’s fan-out 

information.  It then generates the net-list and configuration memory map as shown in 

Table 5.  All of the input and output values are initialized as Unknown (‘X’) state.  The 

delay memory mapping will be discussed in the next section.   
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Figure 12 Mapping Circuit Net-list into Logic Engine Memory 

 
The Net-list and Configuration Memory stores all information about a gate that is 

necessary for it to be evaluated and stores all information about the state of the gate.  

Each location in memory corresponds to a particular gate, and thus, the gate's 

identification number is a physical memory address.  This drastically increases 

performance by removing virtual memory.   

Table 5 Net-list and Configuration Memory Map 

 
Address 

Delay Base 
Address 

Power 
Count 

Input 
Values 

Output 
Values 

Destination 
Gate ID 

Destination 
Pin ID 

Gate 
Type 

4 7 0 X X - - INVERT 
3 5 0 X X X - - OR 
2 3 0 X X X - - AND 
1 1 0 X X X 2, 3, 4 2, 1, 1 AND 

 

The first column in Table 5 stores the memory address which holds the delay 

values of each gate.  The second column stores the power count and the third and fourth 

column store the input and output states of the gate, respectively.  These values are 

initialized as Unknown (‘X’).  The Fifth and the sixth columns store the fan-out 
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information for each gate and the last column stores the gate type information for 

configuration.   

 
 

3.3.2  Test Coverage and Stuck-at Fault Simulation 

In addition to the accurate simulation of a logic circuit design, the architecture can 

be applied to test coverage, false path detection and stuck-at fault simulation.  To do this, 

an output change count (called power count) mechanism is built into the architecture 

design.  A power count is associated with each gate and is incremented each time the 

output transitions.  Test engineers can simulate the circuit under test with a partial set of 

input vectors, and can determine whether the input vector has exercised the data paths by 

examining each gate’s output change count.  For example, if the gate’s output change 

count stays unchanged after a series of input vector applications, the test engineer can 

conclude that either the design contains a false path, or the input vector set applied is not 

enough to exercise all of the data paths.  This example is illustrated in Figure 13 in Gate 

G6.   

Another application of the logic engine design is stuck-at fault detection.  Stuck-at 

fault simulation can be performed by replacing the gate model with a faulty gate model in 

the evaluation block, which is described in the previous section.  Test engineers can run 

the simulation and compare the results for the case with a faulty gate model to the normal 

gate model.  This is shown in Figure 13 with Gate G8.   
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Figure 13 Use of Output Change Count 

 
 

3.3.3  Power Consumption Estimation 

The output change count can also be used to estimate power consumption.  As 

was discussed in Section 1.6, dynamic power dissipation is a function of output change 

frequency.  By counting the output state changes of the logic gates, we can extract the 

estimated power consumption for each gate.  As gates consuming more power naturally 

generate more heat, this power count can also be used as a measure for thermal topology.  

If the design being simulated is post-synthesis, we can determine which part of the design 

will consume more power and therefore run hotter.  If the design is pre-layout, we can 

predict which area will be hot, which can then be utilized in the place and route process.  

The place and route tool can take this information and distribute the thermal “hot spots” 

more evenly.  As an example, the gates G7 and G10 shown in Figure 13 have the highest 
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output change counts among other gates in the circuit.  Therefore, designers can examine 

these values and conclude that gates G7 and G10 will consume the most power and these 

two gates are not recommended to be placed close together for the thermal distribution.   

 

 

3.4  Future Event Generator 

After the logic evaluation is performed and the new output is acquired, the Logic 

Engine compares the new output value and the current output value.  If the output value 

has changed, then future events will be generated.  To generate these future events, the 

proper delay value associated with the cell currently being simulated has to be added to 

the simulation time so that the new event can be scheduled, and passed back to the logic 

engine for evaluation in the appropriate future simulation time.   

Delays of logic cells can be classified as intrinsic and extrinsic delays.  An 

Intrinsic delay refers to the cell’s own delay when the cell does not drive any load.  

Extrinsic delay refers to the external capacitive load caused by the interconnecting wire 

and other cell’s input gate capacitance.  Furthermore, depending on the cell type, there 

are 3 different delay types: fixed delay, path dependent delay, and state dependent delay.  

In Chapter 5, we illustrate the differences between these delay models.  These delay types 

require an increasing and variability amount of storage for the delay values.  Therefore, 

storing and addressing these delay value becomes a problem.  For example, in the fixed 

delay model, the only variable is whether the output changed to high or low.  The path 

dependent delay model adds input-to-output path information to the equation.  The state 
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dependent delay model adds the state of the input value to the path dependent model.  We 

will address gates with such delay characteristics, and explore different delay memory 

architectures and mechanisms to handle these delay models, and discuss the pros and 

cons of each.   

The pre-processing software also reads the delay information provided by SDF 

file and creates the delay memory map for the circuit.  Table 6 shows the generated delay 

memory map for this example.   

Table 6 Delay Memory Map 

Delay Address Delay  
1 Rise Time = 8 
2 Fall Time = 6 
3 Rise Time = 7 
4 Fall Time = 5 
5 Rise Time = 9 
6 Fall Time = 8 
7 Rise Time = 4 
8 Fall Time = 3 

 
 
 

3.5  Scheduler 

As was shown in Chapter 2, scheduling events consumes a major portion of logic 

simulation.  In Chapter 6, we discuss the performance of various sorting algorithms and 

identify the characteristics of the schedule task.  We also discuss the problems related 

with co-simulation and discuss why the current event-wheel based scheduling will not be 

applicable to a scheduling problem with a wide variety of timing resolution.  We will 

illustrate how a parallel sub-memory scanning mechanism can be used to avoid the high 

cost for a linear search and yet be able to provide efficient memory usage and improved 
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speed for scheduling.  The design space will be explored with event memory sizes, and 

their performance will be computed and discussed.  The design space to be explored 

includes the following: 

• A Single memory with one linear search algorithm. 

• Multiple memories and linear search sub-blocks in parallel. (2-level) 

• Multiple memories and a linear search with combinational global search. 

A comparison of these three approaches and the software approach will be made.   

 

 

3.6  Experimental Results and Scalability 

To demonstrate that our design is feasible, a proof-of-concept implementation of 

our architecture has been created.  Its performance was measured and is reported in detail 

in Chapter 7.  Through out this thesis, the logic element of FPGA has been used for unit 

of measure for size comparison.   

We also discuss net-list pre-processing software and its data structure.  The pre-

processing software plays a crucial role in generating the correct memory image to be 

loaded into our hardware design.  We then demonstrate our design with a simple test 

circuit, and discuss the performance related issues.   

Scalability issues will also be discussed with a 100,000 gate capacity design, and 

show how each field of the data structure has to be scaled.  Our prototype also 

demonstrates extra features we have implemented, such as power count (as discussed in 

Section 3.2 and 3.3).  Finally, the performance and feature comparison between our 
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design and existing hardware and software simulators will be presented and discussed.  In 

order to make a fair comparison between our architecture and others, we have quantified 

our experimental results in terms of FPGA Logic Elements.  These Logic Elements 

(LE’s) are created using a 4-input lookup table, a flip-flop, and a number of other AND 

and OR gates that are used to interconnect the LE with other LE’s.  As an approximation, 

a single FPGA LE can be implemented in an ASIC using 1-10 standard cell gates.   
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4.0 LOGIC EVALUATION ARCHITECTURE 

Logic evaluation of a gate can be performed in two ways.  One is to use Boolean 

primitives to compute the logic value.  The other is to rely on a table lookup that lists 

every possible input and output combination.  The problem with using Boolean logic 

primitives is that it only works with two-level signals such as Logic Low (‘0’) and Logic 

High (‘1’).  When the input contains four or more level signals such as Hi-Impedance 

(‘Z’) or Unknown (‘X’), the input signal has to be encoded into 2 or more bits, which 

makes it difficult to compute with generic Boolean logic primitives.   

Evaluating a two-input AND gate is seemingly simple in its Boolean equation 

form, as shown in Figure 14, but using this Boolean equation is not enough to extract its 

behavior, since it only deals with logic ‘0’ and logic ‘1’ for computation.  Simulators for 

modern digital systems must handle multi-level signals such as ‘Z’ and ‘X’ in addition to 

the logic ‘0’ and logic ‘1’ in order to provide accurate simulation results at pico-second 

precision.   

B
A

Output
Output = A * B  

Figure 14 Two-Input AND Gate 

IEEE standard logic 1164(24) defines 9 different signal strengths and describes 

how the Boolean logic should be evaluated for various input signal strengths for VHDL.  

IEEE standard 1364(31) for Verilog defines 4 signal strengths as 0, 1, Z (High Impedance) 
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and X (Unknown).  This research is focused on the Verilog standard, and shows how 

logic gates can be efficiently simulated with 4 signal strengths.   

A two-bit encoding scheme is required to express four signal strengths.  While 

this two-bit representation is good for saving the storage space, it is difficult to 

manipulate within the hardware.  Instead, a “one-hot encoded” (4-bit) notation is used to 

represent these four level signal strengths.  Table 7 shows the encoded signals that our 

design will use to represent different signal strengths.  Logic Low (‘0’) will be 

represented as “0001” (decimal 1), Logic High (‘1’) will be represented as “0010” 

(decimal 2), Hi-Impedance (‘Z’) will be noted as “0100” (decimal 4), and Unknown (‘X’) 

will be represented as “1000” (decimal 8).   

Table 7 One Hot Encoded Signals 

Signal Meaning One Hot Encoded Decimal Number 
0 or L Logic Low "0001" 1 
1 or H Logic High "0010" 2 

Z High Impedance "0100" 4 
X Unknown "1000" 8 

 

One mechanism that can handle multi-level signal strength (‘0’, ‘1’, ‘Z’, and ‘X’) 

is a standard lookup table.  The problem with a lookup table is that the size of the table 

grows exponentially with number of inputs, and quickly becomes unmanageable.  As 

shown in Table 8, a simple 2-input AND gate can have up to 16 entries in lookup table.  

In general, a gate with N input signals will have up to 4N entries in its lookup table 

representation.  Table 9 and Figure 15 show this exponential-size problem.  Therefore, 

evaluating a logic gate using the lookup table often requires a large memory.   
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Table 8 Lookup Table for 2-Input AND Gate 

A B Output 
0 0 0 
0 1 0 
0 Z 0 
0 X 0 
1 0 0 
1 1 1 
1 Z X 
1 X X 
Z 0 0 
Z 1 X 
Z Z X 
Z X X 
X 0 0 
X 1 X 
X Z X 
X X X 

 

Table 9 Lookup Table Size Computation 

Number of 
input 

Truth Table 
entries 

1 4 
2 16 
3 64 
4 256 
5 1,024 
6 4,096 
7 16,384 
8 65,536 
9 262,144 

10 1,048,576 
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Figure 15 Lookup Table Size Growth 

ASIC libraries tend to grow in its size and items so that it becomes difficult for 

these growing libraries to be simulated efficiently with a fixed logic simulation engine 

design.  Therefore, flexibility becomes a major issue.  To make simulation engines 

flexible and yet simple, logic gates are grouped based on their functionality and behavior.  

Table 10 lists the function group along with the number of gates for a particular vendor 

cell library.  The library contains many gates with same functionality, but with different 

driving capabilities.   
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Table 10 Function Group and Number of Gates for Each Group 

Name Quantity 
INVERTER 62 

BUFFER 56 
AND/NAND 42 

OR/NOR 42 
AND-OR/AND-OR-INVERT/OR-AND/OR-AND-INVERT 320 

XOR/XNOR 18 
MUX 34 

FULL ADDER 16 
FLIP FLOP 66 

 
When we examine the behavior of the AND gate shown in Table 8, we can 

simplify this 16-entry table into the 3-entry table shown in Table 11 by creating two 

functions Any( ) and All( )(36, 37).  Furthermore, when we model the behavior, the table 

size remains unchanged regardless of the number of inputs.  Regardless of the number of 

inputs, the behavior of the AND gate does not change.   

Table 11 Behavioral Modeling of 2-Input AND Gate 

Inputs Output 
Any 0 0 
All 1 1 
ELSE X 

 
The above discussion motivates the need for behavioral modeling of logic gates 

and the need for new hardware primitives.  From Section 4.1 through Section 4.4 , we 

will discuss the behavioral modeling of the inverter/buffer, AND/OR, XOR, and AO/OA 

cells. 

There are 3 function groups that have to be modeled individually because their 

input pins have special meaning and they have a unique behavior.  For example, a clock 

input pin for the flip-flop can only be connected to the clock signals.  And a select input 
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pin of a multiplexer (MUX) can only be connected to the proper signals.  Contrary to the 

generic AND and OR gates, in which we can interchange the inputs without causing 

functional change, certain gates contain these special I/O pins that have to be connected 

to proper signals to guarantee the functionality.  For example, if a clock input and a data 

input of a flip-flop are interchanged, then that flip-flop will not function as the designer 

intended.   

Multiplexers are frequently used items in the digital system design.  Although, 

they can be expressed as a collection of Boolean primitives, they require multiple layers 

of AND and OR gates to express a complex multiplexer (MUX).  Therefore, its 

behavioral modeling is motivated and defined as a MUX primitive in Section 4.6 .  A Full 

adder gate is also defined as its own primitive and discussed in Section 4.7 .  Finally, a D 

Flip-Flop’s behavior is modeled and defined as primitives in Section 4.8 .  Scalability is 

discussed in Section 4.9 .   

 
 

4.1  Inverter and Buffer Cells 

Table 12 shows the lookup table of Inverter and Buffer cells.  Table 13 illustrates 

the functional behavior of Inverter and Buffer cells based on the lookup table shown in 

Table 12.  An inverter will invert the input value when the input is ether Logic-High (‘1’) 

or Logic-Low (‘0’), but will generate Unknown (‘X’) as output when the inputs are High-

Impedance (‘Z’) or Unknown (‘X’) according to the definition given in IEEE standard 

1164(24).  Similarly, the Buffer cell will pass the input to its output when the input is 
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either Logic-High or Logic-Low, but will generate Unknown as its output value when the 

input value is either High-Impedance or Unknown.   

Table 12 Standard Lookup Table for Inverter/Buffer Gates 

A Inverter Buffer 
0 1 0 
1 0 1 
Z X X 
X X X 

 

Table 13 Priority Lookup Table for Inverter/Buffer Gates 

Input Pattern Inverter Buffer 
0 1 0 
1 0 1 

ELSE X X 
 

The inverter can be attached to other gate evaluation logic to form the negated 

gate design.  For example, the AND gate evaluation engine design actually contains both 

normal output and negated output for NAND design.  The OR gate evaluation design also 

has the inversion logic of the out to obtain NOR functionality.  Notice that we are using 

“ELSE” clause in the table.  The “ELSE” clause means that our lookup table contains a 

“priority”.  Using priority can introduce performance penalty for a large lookup table, but 

as was shown in Table 13, the size of our lookup table is only 3.   
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Figure 16 Inverter Design 
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Figure 17 Buffer Design 

Our design of the inverter and buffer can handle four level signal strengths 

whereas normal Boolean logic can handle only two.  By using the “ELSE” to the lookup 

table, we were able to optimize the size of the lookup table by 25% (by grouping ‘Z’ and 

‘X’ inputs, therefore 4 down to 3).  Optimization results are a function of the number of 

inputs and therefore, larger cells will show better improvements.   
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4.2  AND/NAND and OR/NOR Cells 

Table 14 describes the behavior of a 2-input AND gate and a 2-input NAND gate 

in lookup table form.  From this table, we can see that the output of the 2-input AND gate 

becomes Logic-Low (‘0’) when any one of the input value is Logic-Low (‘0’).  Also the 

output of the 2-input AND gate will be Logic-High (‘1’) when all of the input values are 

Logic-High (‘1’).  If any one of the inputs becomes High-Impedance (‘Z’) or Unknown 

(‘X’), then the output of the AND gate will generate the Unknown (‘X’) value.   

Table 14 Lookup table for 2-Input AND/NAND Gates 

A B AND NAND 
0 0 0 1 
0 1 0 1 
0 Z 0 1 
0 X 0 1 
1 0 0 1 
1 1 1 0 
1 Z X X 
1 X X X 
Z 0 0 1 
Z 1 X X 
Z Z X X 
Z X X X 
X 0 0 1 
X 1 X X 
X Z X X 
X X X X 
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This behavior is modeled in Table 15.  The size of lookup table has been reduced 

from 16 (= 42) down to 3.  This size reduction can be generalized to the AND/NAND 

gates with any number of inputs.   

Table 15 Priority Lookup table for AND/NAND Gates 

Input Pattern AND NAND 
Any(‘0’) 0 1 
All(‘1’) 1 0 

Else X X 
 

Therefore, if we have the Any and All primitives as readily available functions, 

then AND/NAND gate evaluation with any number of inputs becomes extremely simple, 

as illustrated in Figure 18.  This is not the case for the standard lookup table.  As shown 

in Figure 15, the table size grows exponentially.  The size of LUT in Figure 18 and 

Figure 19 do not change for any number of inputs.  Scalability of Any( ) and All( ) is 

discussed in later section.   

Any & All
Function

Any(0)

All(1)
outputinput

Input AND
Any(0) 0
All(1) 1
Else X

AND LUT
 

Figure 18 AND Gate Evaluation Design Using Any and All Primitives 
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Any & All
Function

Any(0)

All(1)
outputinput

NAND LUT

Input NAND
Any(0) 1
All(1) 0
Else X

 

Figure 19 NAND Gate Evaluation Design Using Any and All Primitives 

Again, notice that our lookup table contains a priority.  Any(‘0’) has higher 

priority than All(‘1’), and All(‘1’) has higher priority than the “ELSE” part of the lookup 

table.  To illustrate this point, assume that we have 4-input AND gate with the values 

shown in Table 16 (a).  Input B will cause the Any(‘0’) function to be TRUE, and it will 

also cause All(‘1’) to be FALSE.  When we evaluate this result, Any(‘0’) has higher 

priority and is already TRUE, the output of the AND gate becomes ‘0’.  But in the case 

shown in Table 16 (b), the Any(‘0’) function will be FALSE because none of the inputs 

are ‘0’.  And the input D will cause the All(‘1’) function to be FALSE.  Therefore, our 

priority lookup table will match the “ELSE” part of the table, and the result of the AND 

gate evaluation will be ‘X’.   
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Table 16 Any/All Function for a 4-Input AND Gate 

(a) Any(‘0’)=True and   
All(‘1’)=False 

Inputs Value 
A 1 
B 0 
C 1 
D X 

  

(b) Any(‘0’)=False and   
All(‘1’)=False 

Inputs Value 
A 1 
B 1 
C 1 
D X 

 

Table 17 Lookup Table for 2-Input OR/NOR Gates 

A B OR NOR 
0 0 0 1 
0 1 1 0 
0 Z X X 
0 X X X 
1 0 1 0 
1 1 1 0 
1 Z 1 0 
1 X 1 0 
Z 0 X X 
Z 1 1 0 
Z Z X X 
Z X X X 
X 0 X X 
X 1 1 0 
X Z X X 
X X X X 
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Table 17 shows the standard lookup table for 2-input OR/NOR gates.  The output 

of 2-input OR gate will produce Logic-High (‘1’) when any one of the input value is 

Logic-High (‘1’).  The output of the 2-input OR gate will be Logic-Low (‘0’) when all of 

the input values are Logic-Low (‘0’).  If any one of the inputs becomes High-Impedance 

(‘Z’) or Unknown (‘X’), then the output of the OR gate will generate Unknown (‘X’) 

value.   

Table 18 Priority Lookup Table for OR/NOR Gates 

Input Pattern OR NOR 
Any(‘1’) 1 0 
All(‘0’) 0 1 
ELSE X X 

 
 

This behavior is modeled in Table 18.  Again, we reduced the size of lookup table 

down to 3 with the Any( ) and All( ) function pair with any number of inputs.  Figure 20 

and Figure 21 shows the OR/NOR logic evaluation design.   

Any & All
Function

Any(0)

All(1)
outputinput

OR LUT

Input OR
Any(1) 1
All(0) 0
Else X

 

Figure 20 OR Gate Evaluation Design Using Any and All Primitives 
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Any & All
Function

Any(0)

All(1)
outputinput

NOR LUT

Input NOR
Any(1) 0
All(0) 1
Else X

 

Figure 21 NOR Gate Evaluation Design Using Any and All Primitives 

In summary, we have shown that with Any( ) and All( ) primitives, we can 

achieve the AND/NAND/OR/NOR gate evaluation design.  This is a significant 

improvement in the size of lookup table because we were able to reduce the size down to 

a 3-entry priority lookup table for any number of inputs.  As for standard lookup table 

approach, the size of the table grows exponentially as the number of input grows.  Table 

19 shows the size comparison for a various number of inputs.  The “Number of Primitive 

Functions” column shows how many primitives are being using. Since we are using 

Any(‘0’)/All(‘1’) for the AND gate or Any(‘1’)/All(‘0’) for the OR gate, the value for the 

column is 2.  The “Function Width” column shows how many primitive functions are 

needed to implement the design.  Since our Any( ) and All( ) primitives work in pairs and 

should be applied on each input values, it is a function of total number of inputs.  As a 

conclusion, we can see that as the number of inputs for AND/OR gates grows, our 

approach can reduce the size of table.  It should be noted that the function width grows 

linearly with input size and will consume resources proportional to the number of inputs.   

For an n input AND/NAND/OR/NOR operation, the width of Any/All function 

will be ( size of Any/All function) because the Any/All function is applied to each ×n
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input signals.  Section 4.5  will describe this in detail.  The size of our priority lookup 

table is a constant with a value of 3.   

Table 19 Lookup Table Size Comparison for AND/NAND/OR/NOR Gates 

Using Any/All 

Number of Inputs for 
AND/NAND/OR/NOR

Lookup 
Table Size

Number of 
Primitive 
Functions 

Function 
Width 

Priority 
LUT Size 

LUT 
Reduction 

Factor 
2 16 2 2 3 5 
3 64 2 3 3 21 
4 256 2 4 3 85 
5 1,024 2 5 3 341 
6 4,096 2 6 3 1,365 
7 16,384 2 7 3 5,461 
8 65,536 2 8 3 21,845 
9 262,144 2 9 3 87,381 

10 1,048,576 2 10 3 349,525 
N 4^N 2 N 3 (4^N) / 3

 
 
 

4.3  XOR/XNOR Cells 

Table 20 shows the lookup table for a 2-input XOR/XNOR gates.  The output of 

the 2-input XOR gate will be Unknown (‘X’) when any of the input values is High-

Impedance (‘Z’) or any of the input values is Unknown (‘X’).  Otherwise, the XOR gate 

will follow the normal Boolean logic function for XOR gate behavior.  In other words, 

XOR will output Logic-High (‘1’) when the number of Logic-High (‘1’) inputs is ODD 

number and output Logic-Low (‘0’) when the input has an EVEN number of Logic-High 

(‘1’) values.   
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Table 20 Lookup Table for 2-Input XOR/XNOR Gates 

A B XOR XNOR 
0 0 0 1 
0 1 1 0 
0 Z X X 
0 X X X 
1 0 1 0 
1 1 0 1 
1 Z X X 
1 X X X 
Z 0 X X 
Z 1 X X 
Z Z X X 
Z X X X 
X 0 X X 
X 1 X X 
X Z X X 
X X X X 

 

The XNOR gate will behave the same as XOR for any High-Impedance and 

Unknown input case.  For Logic-Low (‘0’) and Logic-High (‘1’) case, XNOR will output 

Logic-High (‘1’) when the input has an EVEN number of Logic-High (‘1’) values and 

will output Logic-Low (‘0’) otherwise.  When the input values only contain Logic-High 

and Logic-Low values, the behavior of the XOR/XNOR can be emulated using a 

programmable logic device as shown in Table 21, which captures the behavior of 

XOR/XNOR gates.  The lookup table size is also reduced down to 3, but XOR/XNOR 

requires extra emulation hardware.   
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Table 21 Priority Lookup Table for XOR/XNOR Gates 

Input XOR XNOR 
Any(Z,X) X X 

ELSE Emulate Emulate
 

Figure 22 (a) illustrates XOR gate evaluation design using an Any( ) function and 

Figure 22 (b) shows the actual hardware XOR gate operation.  As with AND/OR gates, 

the lookup table size for XOR evaluation does not change for any number of inputs.  

Figure 23 (a) and (b) show XNOR gate evaluation and how the emulation circuit is used.   
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Figure 22 XOR Gate (a) Evaluation Design Using Any Primitives, (b) Emulation Logic 
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Figure 23  XNOR Gate (a) Evaluation Design Using Any Primitives, (b)  Emulation Logic 

 

Table 22 shows the size of the lookup table for both a conventional lookup table 

and our priority lookup table.  The second column indicates the size of standard truth 

table.  For 4-level signal strength with N inputs, the table size is 4N.  The third column 

states how many Any/All primitives are used to make our priority lookup table.  As 

shown in Figure 22 (a), we are relying on only one primitive Any(‘Z’, ‘X’).  The fourth 

column indicates how many of the primitives being used to implement the design and it 
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follows the number of input.  As we can see from the table, if we have an Any( ) function 

which can perform multiple match, e.g. Any(‘Z’, ‘X’), then we can reduce the size of our 

lookup table to a 2 entry table.   

Table 22 Lookup Table Size Comparison for XOR/XNOR Gates 

Using Any/All 
Number of 
Inputs for 

XOR/XNOR 
Lookup 

Table size

Number of 
Primitive 
Functions

Function 
Width 

Priority 
LUT Size 

LUT 
Reduction 

Factor 
2 16 1 2 2 8 
3 64 1 3 2 32 
4 256 1 4 2 128 
5 1024 1 5 2 512 
6 4096 1 6 2 2048 
7 16384 1 7 2 8192 
8 65536 1 8 2 32768 
9 262144 1 9 2 131072 

10 1048576 1 10 2 524288 
N 4^N 1 N 2 (4^N)/2 

 

In summary, we have introduced the concept of multiple-match Any( ) function.  

We have shown how to incorporate Boolean emulation when input signals are (0 and 1).  

Experimental results including the XOR gate size and the function width are given in 

Section 4.9 .   
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4.4  AO/AOI and OA/OAI Cells 

AO gate is a 2-level logic macro cell.  The first level gates are composed of 

multiple AND gates and the second level logic is implemented as a single OR gate.  

Likewise, OA is a 2-level logic macro cell with multiple OR gates in the first level logic 

and a single AND gate as second level logic which takes first level OR gate’s outputs as 

its input signals.  Figure 24 shows a simple AO22 and gate.   

B

D

A

C Z

 

Figure 24 AO22 Gate 

There are numerous combinations of AO and OA gates depend on how many first 

level gates are used and how many inputs per first level gates have, we can build different 

type of AO and OA gates.  AO22 is a particular vendor’s cell naming convention.  A 

general form of naming is AOabcd, where the variables abcd indicates the number of 

inputs in the first level logic gates.  For example, when we have AO432 gate, it means 

that there are 3 AND gates with 4-inputs, 3-inputs, and 2 inputs, respectively, in the first 

level logic and their output signals are connected to 3-input OR gate.  Therefore, AO22 

stands for 2-level AND-OR gates with two 2-input AND gates in the first level and 2-

input OR gate in the second level.   

AO/OA gate evaluation logic can be implemented using AND/OR evaluation 

logic as basic building blocks, as discussed in Section 4.2 .  The design of AO22 is 
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illustrated in Figure 25.  Notice that the first level gates are AND and the second level 

logic is the OR gate.   
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Figure 25 Implementation of AO22 Using AND/OR Evaluation Logic 

Since AO/OA cells are built with AND/OR cells, the lookup table size depends on 

the number of AND/OR gates used to build the AO/OA cells.  Table 23 and Table 24 

summarize the comparison between standard lookup table and our approach.  In Table 

23, the first column indicates the type of AO/OA cells.  The first item in the first column 

is for AO22, which contains two 2-input AND gates in the first level.  The last entry is 

for the general case with AOkkk…k.  It contains n AND gates in the first level logic and 

each AND gate contains k inputs.   

Table 23 Lookup Table Size for AO Gate 

Name 
Encoding 

Number of 
AND/OR 

Gates 
Number 
of Inputs

Lookup Table 
Size 

Using one 
Lookup Table 

per Gate 
22 3 4 256 48  

222 4 6 4096 64  
333 4 9 262144 256  

3333 5 12 16777216 320  
4444 5 16 4294967296 1,280  

55555 6 25 1.1259E+15 6,144  
88888888 9 64 3.40282E+38 589,824  

kkk…k n+1 k * n 4^(k*n) (n+1) * (4^k) 
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The priority lookup table size for a single AND/OR gate is 3, as was discussed in 

Section 4.2.  There are n gates in the first level logic and 1 extra gate in the second level 

logic, for a total of (n+1) gates.  Therefore, our lookup table size for general AO cell case 

is 3× (n+1).  The standard lookup table still requires exponential size.  Since AO cells 

contain multiple gates, the total number of inputs is quite large (k×n).  Thus the size of 

the lookup table is 4(k n)×  for 4 signal strengths.  As a result, we were able to achieve 

linear size growth of the lookup table with 3× (n+1).   

Table 24 Priority Lookup Table Size for AO Gate 

Using Any/All 
Name 

encoding 
Number of 
Functions 

Function 
Width LUT Size LUT Reduction Factor 

22 2 6 9 5.33 
222 2 9 12 5.33 
333 2 12 12 21.33 

3333 2 16 15 21.33 
4444 2 20 15 85.33 

55555 2 30 18 341.33 
88888888 2 72 27 21,845.33 

kkk…k 2 k*(n+1) 3*(n + 1) (n+1)*(4^k) / (3*(n + 1))
 

By using Any/All function, we have made a large improvement in the size of the 

lookup table.  Since we are combining AND/OR cells as primitives to construct more 

complex cells, our priority lookup table size grows linearly as a function of the number of 

first level gates.  But it still is much smaller than the standard lookup table size.   
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4.5  Universal Gate 

As discussed in previous sections, the Any/All functions constitute the basis of 

our design, and can reduce the size of the lookup table considerably.  In this section, we 

will discuss the implementation of the Any/All functions using a “one-hot encoding” 

scheme.  A simple example will be presented for illustration.  By combining the Any/All 

functions and reduced lookup table, we will construct a “Universal Gate” design.   

The properties of Any/All function are given below: 

• Any(i): TRUE if any input has a value i.   

• Any(i, j,): TRUE if any input has the value either i or j.   

• All(i): TRUE if all inputs are of value i.   

• All(i, j,): TRUE if all inputs are of value i or j.   

 
 

4.5.1  Any/All Simulation Primitives 

Previous sections motivate the need for the Any/All detection circuit.  The idea is 

to mask off the input patterns that we don’t want to see and only pass the pattern that we 

want.  We can implement this with simple circuitry and a 4-bit one-hot encoding scheme.  

In Any/All circuit design, all of the input signals are expanded to 4-bit one-hot encoding 

as shown in Table 7 and then masked with appropriate values that we wish to look for.   

For example, an ‘X’ is encoded as “1000”.  The Any(‘X’) function is defined as 

“Does any input match 1000?”.  Similarly, All(‘X’) function can be rewritten as “Do all 
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inputs match 1000?”  Figure 26 shows a logic circuit that implements Any( ) and All( ) 

by bit-wise ANDing a mask (e.g. “1000”) with the encoded input and then ORing all of 

the AND results.  Labeled as “match”, the output of the OR gate indicates that the input 

does or does not match the mask.  For the Any( ) function, only one match has to be 

TRUE for Any( ) to be TRUE.  Thus the match signals are OR’ed together.  For the All( ) 

function, all inputs must match and the match signals are AND’ed together.   
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Figure 26 Circuit for Any and All Functions for a Single Signal 

Since we employed a one-hot encoding scheme for our signal representation, one 

of the properties of our Any/All function is that we can mix the multiple patterns that we 

are interested in into one mask.  For example, to examine Z and X matches from the input 

signal simultaneously, we can mix Z-mask (“0100”) and X-mask (“1000”) by applying 

bit-wise OR operation to those two masks resulting a ZX-mask (“1100”).  Therefore, one 

implementation of Any/All circuit can perform Any(‘Z’, ‘X’) and All(‘Z’, ‘X’) functions 

simultaneously.   
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As a usage example, assume that we are evaluating a two-input AND gate with 

the first input (input_1) value set to logic ‘0’ and the second input (input_2) set to logic 

‘1’ as shown in Figure 27 (a).  The input_1 (value set as 2-bit encoded to “00”) will be 

expanded as “0001” and the input_2 (2-bit encoded as “01”) will be expanded to one-hot-

encoded value of “0010”.  Then the appropriate mask value is applied to remove the 

unwanted input patterns as shown in Figure 27 (c).  For AND gate evaluation, we are 

interested in Any(‘0’) and All(‘1’) patterns.  To perform Any(‘0’) function, the zero-

mask (“0001”) is applied to the mask input port of the circuit shown in Figure 28 (a).  

The input_1[0] and mask[0] both contain ‘1’, therefore the top AND gate (A11) will 

produce a ‘1’ output, that drives the OR gate (O11), generating a ‘1’ output.  It then passes 

the value to final gates (A15 and O12).  The output of the AND gate (A15) will produce a 

‘1’ and it is interpreted as All(‘0’) is TRUE.  The output of the last OR gate (O2) will 

also generate a ‘1’ which is interpreted as Any(‘0’) is TRUE.  These values will be 

passed to the input_2 evaluation phase.   

When we apply the zero-mask (“0001”) to the input_2 (“0010”), the bit-wise 

AND will set all the AND gates (A21 to A24) to ‘0’, and the output of the OR gate (O21) 

will also be ‘0’. This will be AND’ed with previous All(‘0’) result (which was ‘1’) in 

gate A25, resulting All(‘0’) as FALSE, and OR’ed with previous Any(‘0’) result in gate 

O22, setting Any(‘0’) as TRUE.  Therefore, we conclude that the 2-input AND gate we 

are evaluating contains at least one zero in its inputs.   

At the same time, the one-mask (“0010”) will be applied to the Any/All circuit as 

in Figure 28 (b).  For input_1, the bit-wise AND operation performed by gates A31 to A34 
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will generate all ‘0’s as their outputs.  Therefore, the output of the OR gate (O31) will 

produce ‘0’ as output.  This in turn will set the All(‘1’) output to FALSE and Any(‘1’) 

output to FALSE.  For input_2, the second AND gate (A42) will generate ‘1’ as output 

while the others will be set to ‘0’.  The output of the OR gate (O41) will therefore be set to 

1 and AND’ed with the previous All(‘1’) output, which is FALSE.  Therefore the final 

value of All(‘1’) for this example will be FALSE.  The output of the OR gate (O41) will 

be OR’ed with previous Any(‘1’) value (FALSE) in the last OR gate (O42) and the result 

will be set to TRUE, which is the final result for Any(‘1’).  Therefore, this example 

contains at least one Logic High (‘1’) as its inputs.  Figure 27 (c) shows the inputs and 

mask values for this example.  Our Any/All design has successfully detected All(‘0’) is 

FALSE, Any(‘0’) is TRUE, All(‘1’) as FALSE, and Any(‘1’)” as TRUE for the given 2-

input AND gate.  With these results and the priority lookup table shown in Figure 27 (b), 

the final result for the given 2-input AND gate will be Logic Low (‘0’) because Any(‘0’) 

was TRUE and All(‘1’) was FALSE.   
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Figure 27 Any and All Based 2-Input AND Gate Evaluation Example 
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Figure 28 Any and All Primitives for 2-Input AND Gate Example 
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4.5.2  Universal AND/NAND/OR/NOR 

The Universal gates work in pairs for performing Any( ) and All( ) function.  

AND/OR gates require a universal gate with zero and one masks, XOR gates require a 

universal gate with Z mask and X mask.   

Most vendor libraries have fan-in limits.  At the time of this writing, a typical 

maximum fan-in for a particular library we are using allows up to 5-inputs for logic 

primitives.  For future expansion, we will allow up to 8-inputs for one level logic 

primitives such as AND/OR gates.  The circuit for an 8-input Any/All primitives is 

shown in Figure 29.   
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Figure 29 An 8-Input Any/All Design 
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Figure 30 and Figure 31 show the implementation of 8-input AND gate and 8-

input OR gate evaluation engine cores, respectively.  The universal gate will generate the 

Any( ) and All( ) outputs for the given input and then corresponding evaluation logic will 

determine the final output value based on the priority lookup table described in previous 

sections.  Note that each input has 32-bits as input because each of the 8 inputs are 4-bit 

wide, due to the one-hot-encoding.   
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Figure 30 An 8-Input AND Gate Simulation Engine Core 
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Figure 31 An 8-Input OR Gate Simulation Engine Core 

To make these AND and OR evaluation logics more versatile, inversion logic, 

which was described in Section 4.1 , is added to the input and output ports.  The output 

inversion will allow us to handle NAND evaluation based on AND logic, and NOR 

evaluation with OR logic circuits.  It will also allow us to deal with more diverse forms of 
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Boolean logic gate evaluation, such as logic gates with partially inverted inputs as shown 

in Figure 32.   

 

Figure 32 NAND Gate with Some Inputs Inverted 

Figure 33 shows our implementation of a universal AND/NAND evaluation logic 

circuit.  Figure 34 describes the universal implementation for OR/NOR evaluation logic 

circuitry.   
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Figure 33 Implementation of 8-Input AND/NAND Gates 
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Figure 34 Implementation of 8-Input OR/NOR gates 

 
The evaluation logic for AND/NAND and OR/NOR circuit can be merged into 

one to form a universal AND/NAND/OR/NOR evaluation logic.  Figure 35 is the final 

form of our universal logic evaluation circuit for 8-input AND/NAND/OR/NOR gates.   

8
Universal
Circuits

zero_mask
one_mask

AND/NAND
OR/NOR

LUT
Evaluation

Logic

32
32

all_zero

any_zero

all_one

any_one

4

and/nand
output

0

1

Function Group
select

Output4

4 or/nor
output

32

Input
Inversion

Flags

8

Inversion
Logicinputs

 

Figure 35 A Universal 8-Input AND/NAND/OR/NOR Evaluation Logic 

 
 

4.5.3  Universal XOR/XNOR 

The XOR/XNOR gate can be evaluated as shown in Figure 36. We use our 

Universal circuit to detect Any(‘Z’) and Any(‘X’) for the given input vector set and when 
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either one of them becomes TRUE, we choose Unknown (X) as the XOR gate’s output.  

Otherwise, we can use the built-in XOR logic circuit (emulation) from our hardware 

platform, because any input vector combination that generates both Any(‘Z’) = FALSE 

and Any(‘X’) = FALSE means that all the inputs are either 0 or 1.  Using XOR emulation 

will avoid implementing EVEN and ODD detection circuits.   
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Figure 36 Implementation of 8-Input XOR/XNOR Gates 
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4.5.4  Universal AO/AOI/OA/OAI 
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Figure 37 A Universal Implementation of AO/AOI/OA/OAI Evaluation Logic 

When we use the universal AND/NAND/OR/NOR logic (shown in Figure 35) for 

a basic building block, we can implement a universal form of AO/AOI/OA/OAI 

evaluation logic.  Figure 37 illustrates this universal AO/AOI/OA/OAI evaluation logic.  

The second level evaluation circuit is arranged in such a way that if the first level 

performs the AND function evaluation, then the second level logic will evaluate the OR 

function.  Likewise, if the first level circuit is evaluating the OR function, then the second 

level circuit will perform the AND function evaluation.  The “Inversion flag” and 

“Function Group Select” inputs were omitted in the figure for brevity.   
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4.6  Multiplexer Primitive 

A Boolean equation of 2-to-1 Multiplexer (MUX) can be simply written as:  

OUTPUT = D0 ∗ SD’ + D1 ∗ SD.   

The lookup table for the 2-to-1 MUX is shown in Table 25 using 4-level logic.  If 

we are only dealing with simple Boolean logic levels (1’s and 0’s), then the 

implementation of any MUX becomes simple.  However, the Boolean equation shown 

above does not handle multi-level signal strengths such as Unknown (‘X’) and Hi-

Impedance (‘Z’).  Furthermore, if we model a Multiplexer with a higher number of inputs 

(4-to-1 or 8-to-1 MUX, e.g.) with a lookup table, then the number of entries in the lookup 

table becomes large.  Specifically, a N-to-1 MUX has N N2log+  inputs and the lookup 

table has  entries for 4-level signal strength.   )log( 24 NN +

Table 25 shows the lookup table for a 2-to-1 MUX containing 64 entries.  This is 

surprisingly large for a 2-to-1 MUX.  Since it has 3 inputs, the possible combinations of 

signal strength is 43 (= 64).  But if we observe the Table 25, the behavior model of 2-to 1 

MUX can be summarized as following. 

• When SD = ‘0’, output is D0 

• When SD = ‘1’, output is D1 

• When SD = ‘Z’ or ‘X’, and D0 = D1, output is D0 

• When SD = ‘Z’ or ‘X’, and D0 ≠  D1, output is ‘X’ 
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Table 25 The Lookup Table for 2-to-1 MUX 

Input Output Output 
D0 D1 SD Z D1 SD Z 
0 0 0 Z 0 0 X 
0 1 D1 Z 0 1 D1 

Input 
D0 

D0 
0 

0 0 Z X Z 0 Z X 
0 0 X X Z 0 X X 
0 1 0 D0 Z 1 0 X 
0 1 1 D1 Z 1 1 D1 
0 1 Z X Z 1 Z X 
0 1 X X Z 1 X X 
0 Z 0 X Z Z 0 X 
0 Z 1 D1 Z Z 1 X 
0 Z Z X Z Z Z X 
0 Z X X Z Z X X 
0 X 0 X Z X 0 X 
0 X 1 X Z X 1 X 
0 X Z X Z X Z X 
0 X X X Z X X X 
1 0 0 D0 X 0 0 X 
1 0 1 D1 X 0 1 D1 
1 0 Z X X 0 Z X 
1 0 X X X 0 X X 
1 1 0 D0 X 1 0 X 
1 1 1 D1 X 1 1 D1 
1 1 Z D0 X 1 Z D1 
1 1 X D0 X 1 X X 
1 Z 0 D0 X Z 0 X 
1 Z 1 X X Z 1 X 
1 Z Z X X Z Z X 
1 Z X X X Z X X 
1 X 0 D0 X X 0 X 
1 X 1 X X X 1 X 
1 X Z X X Z X 
1 X X X X X X X 

X 

 

The assumption of the above observation is that Hi-Impedance (‘Z’) input signals 

are treated as Unknown (‘X’).  Table 26 shows this summary of a 2-to-1 Multiplexer’s 

behavior.  The third item of Table 26 requires a circuit for checking equivalence.  If D0 

 

http://www.amd.com/
http://www.intel.com/
http://www.ikos.com/
http://www.ikos.com/
http://ftp.cbl.ncsu.edu/www/benchmarks
http://www.altera.com/
http://www.mentor.com/
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and D1 are the same, then 2-to-1 MUX will choose D0.  Otherwise our MUX will output 

“X” if SD = ‘X’.  Figure 38 shows this equivalence checking circuit design.   

Table 26 Priority Lookup Table for 2-to-1 MUX Primitive (d = don’t care) 

Input Output
D0, D1 SD Z 

d 0 D0 
d 1 D1 

D0 = D1 Any(Z,X) D0 
ELSE X 

 
 

input2_0

input2_1

input2_2

input2_3

input1_0

input1_1

input1_2

input1_3 X4

X1

X2

X3
O1

Not
Equivalent

1

0input1

"X" Output

 

Figure 38 Equivalence Checker for 2-to-1 MUX 

Figure 39 shows the implementation of our 2-to-1 MUX design.  The circuit 

contains the actual 2-to-1 MUX and our equivalence checker design.  Based on the result 

of Any(‘Z’) and Any(‘X’), the proper circuit’s output will be chosen by the final 2-to-1 

MUX.  Notice that a buffer (as was shown in Figure 17) was inserted to filter out the “Z” 

input and transform it into “X”.   
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Figure 39 A 2-to-1 MUX Design 

A 2-to-1 MUX is the basic building block of all the MUX primitives.  A 4-to-1 

MUX uses three 2-to-1 MUXes as its components.  Table 27 shows the behavior of a 4-

to-1 MUX, which is built using three 2-to-1 MUX’es.   

Table 27 Priority Lookup Table for 4-to-1 MUX Primitive (d = don’t care) 

Inputs Output 
D0 D1 D2 D3 SD1 SD2 Z 
d d d d 0 0 D0 
d d d d 1 0 D1 
d d d d 0 1 D2 
d d d d 1 1 D3 

D0=D2 d D0=D2 d 0 Z/X D0 
d D1=D3 d D1=D3 1 Z/X D1 

D0=D1 D0=D1 d d Z/X 0 D0 
d d D2=D3 D2=D3 Z/X 1 D2 

D0 = D1 = D2 = D3 Z/X Z/X D0 
ELSE X 
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Figure 40 shows the implementation of a 4-to-1 MUX design.  It uses three 2-to-1 

MUXes designed previously as building blocks.  An 8-to-1 MUX can easily be designed 

using two 4-to-1 MUXes and one 2-to-1 MUX as its components.   

SD1

D0
D1

D2
D3

SD2

Output

2-to-1 MUX
Evaluation Logic

2-to-1 MUX
Evaluation Logic

2-to-1 MUX
Evaluation Logic

 

Figure 40 A 4-to-1 MUX Design 

In summary, the lookup table for a Multiplexer design can grow very large.  But 

we have reduced the size of the lookup table by behavior modeling and designed a 2-to-1 

MUX primitive.  This primitive can be used to construct larger Multiplexers.  Table 28 

shows the size comparison between the standard lookup table and our lookup table.  As 

we can see from the second column, the standard lookup table’s size grows exponentially, 

while our approach grows linearly.   
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Table 28 Lookup Table Size Comparison for MUX 

Using Any/All Number of 
Inputs 

Using Standard 
Lookup Table # of Functions Function Width LUT Size 

LUT Reduction 
Factor 

2 16 4 2 2 8 
4 256 12 6 6 43 
8 65536 28 14 14 4681 

16 4294967296 60 30 30 143165577 
N 4^N 4 * (N-1) 2 * (N-1) 2 * (N-1) (4^N) / (2 * (N-1))

 
 
 

4.7  Full Adder 

A Full Adder has two outputs.  They are Sum, and CarryOut.  Both can be 

expressed in the combinational Boolean equations. 

Sum = A ⊕ B ⊕ C 

Cout = (A • B) + (B • C) + (C • A) 

Where, A and B are the inputs for the Adder, C is Carry-in, Cout is Carry-out. 

Table 29 shows the exhaustive list of the full adder cell in lookup table form.  The 

size of standard lookup table is 43.  A single Full Adder gate has 64 entries due to its 3 

input lines.  But from the equations shown above, we can observe that Sum is simply a 

three input XOR gate and Cout is also a simple AO gate, which we have already modeled 

in previous sections.  Therefore the lookup table calculations from Table 21 and Table 23 

can be used to compute lookup table for our design.   
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Table 29 Lookup Table for Full Adder 

A B C Sum  A B C Sum A B C Cout A B C Cout
L L L L  Z L L X L L L L Z L L L 
L L H H  Z L H X L L H L Z L H X 
L L Z X  Z L Z X L L Z L Z L Z X 
L L X X  Z L X X L L X L Z L X X 
L H L H  Z H L X L H L L Z H L X 
L H H L  Z H H X L H H H Z H H H 
L H Z X  Z H Z X L H Z X Z H Z X 
L H X X  Z H X X L H X X Z H X X 
L Z L X  Z Z L X L Z L L Z Z L X 
L Z H X  Z Z H X L Z H X Z Z H X 
L Z Z X  Z Z Z X L Z Z X Z Z Z X 
L Z X X  Z Z X X L Z X X Z Z X X 
L X L X  Z X L X L X L L Z X L X 
L X H X  Z X H X L X H X Z X H X 
L X Z X  Z X Z X L X Z X Z X Z X 
L X X X  Z X X X L X X X Z X X X 
H L L H  X L L X H L L L X L L L 
H L H L  X L H X H L H H X L H X 
H L Z X  X L Z X H L Z X X L Z X 
H L X X  X L X X H L X X X L X X 
H H L L  X H L X H H L H X H L X 
H H H H  X H H X H H H H X H H H 
H H Z X  X H Z X H H Z H X H Z X 
H H X X  X H X X H H X H X H X X 
H Z L X  X Z L X H Z L X X Z L X 
H Z H X  X Z H X H Z H H X Z H X 
H Z Z X  X Z Z X H Z Z X X Z Z X 
H Z X X  X Z X X H Z X X X Z X X 
H X L X  X X L X H X L X X X L X 
H X H X  X X H X H X H H X X H X 
H X Z X  X X Z X H X Z X X X Z X 
H X X X  X X X X H X X X X X X X 
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Figure 41 illustrates the design of the Full Adder gate.  A universal XOR and a 

universal AO cells are reused to implement this design.   

Sum

Cout

A

B

C

Universal AO

Universal XOR

 

Figure 41 Full Adder Design 

From the Table 22 and Table 24, the priority lookup table size for XOR in Figure 

41 is 2 and the priority lookup table size of Universal AO222 is 12.  Therefore our lookup 

table size for Full Adder implementation is 13.  In summary, for our Full Adder primitive 

design, we were able to achieve a lookup table size reduction of 64/13 = 4.9 times smaller 

without creating additional primitives.   

 
 

4.8  Flip-Flop Evaluation 

Flip-Flops contain special inputs such as “clock”, “clear”, and “preset”.  The 

“clear” and “preset” inputs are asynchronous inputs and will be discussed in the end of 

 



90 

this section.  The “Clock” input is a special signal that triggers the action on its signal 

level transitions (on its edges).   

The cells discussed in previous sections rely only on its signal events, but the 

clock signal requires edge-event.  The clock edge event in essence is also a signal event, 

except that the signal needs to be compared with its previous value.  Otherwise, this clock 

edge event will increase the number of event types and complicates our signal-encoding 

scheme (i.e.in addition to 0, 1, Z, X signals, we need to encode a rising event, a falling 

event, etc.).  If we include this clock value comparison mechanism inside of the Flip-Flop 

evaluation hardware, our current encoding scheme can still be used.  This will reduce the 

scheduler’s load because the scheduler does not have to process different event types.  

Table 30 lists the possible clock signal transitions for the Flip-Flop shown in Figure 42.   

Q

Q
SET

CLR

DD
CLK

CLEAR

PRESET

Q

QN

 

Figure 42 D-type Flip-Flop 

Table 30 illustrates the behavior of a positive edge triggered D Flip-Flop on a 

various clock signal transitions.  The behavior of the Flip-Flop falls into two groups.  

When the current clock value Logic-High (‘1’) and the previous clock value was not 

Logic-High (‘0’, ‘Z’, ‘X’), then the data input (‘D’) will be latched in.  Anything else will 

not cause the Flip-Flop to react.  All we need is to detect the clock signal has been risen.  
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To detect this clock rising event, we can use Any/All primitive that we developed in 

previous section.  If Any(‘1’) for current clock is TRUE and if Any(0, Z, X) of previous 

clock is TRUE then clock rising event is true.  Figure 43 shows this design.   

Table 30 Behavior of Positive-Edge Triggered D Flip-Flop 

Previous 
CLK 

Current 
CLK 

Transition 
Notation 

CLK Event 
Type 

0 0 (00) No change
0 1 (01) Trigger 
0 Z (0Z) No change
0 X (0X) No change
1 0 (10) No change
1 1 (11) No change
1 Z (1Z) No change
1 X (1X) No change
Z 0 (Z0) No change
Z 1 (Z1) Trigger 
Z Z (ZZ) No change
Z X (ZX) No change
X 0 (X0) No change
X 1 (X1) Trigger 
X Z (XZ) No change
X X (XX) No change

 
As shown in Table 30, there are 16 different clock transitions.  If we implement 

this in a lookup table, all the possible clock transitions have to be enumerated as well.  To 

do this, the clock signal needs to be encoded in four bits rather than two bits (one for 

current clock and the other for previous clock) and it will make the table size even bigger.  

Therefore, the Flip-Flop shown above figure has 4-inputs total, but it appears as 5-inputs 

due to the clock signal encoding.  The lookup table size of D Flip-Flop will be 45 = 1024.   
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Figure 43 Clock Event Detection Design 

When we examine the behavior of the Flip-Flop with data input (‘D’), we can 

characterize the behavior in lookup table format as in Table 31.  Notice that the table 

contains the priority.  The first item in the table takes highest priority over other items.  

By using the equivalence checker circuit described in Figure 38, the data input value and 

the Q_OLD value are checked first.  The rest of the items in the table are considered 

when the equivalence check becomes FALSE.   

Table 31 Priority Lookup Table for D Flip-Flop 

Condition Output 
CLK rising D 

ELSE Q_OLD 
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Figure 44 D Flip-Flop Evaluation Core Design 

The Clear and Preset inputs are asynchronous inputs. They take the highest 

priority over any other input signals, so the Flip-Flop evaluation algorithm should always 

check these values first.  Table 32 lists the “Clear” and “Preset” behavior.  Notice that 

“Clear” and “Preset” should never be enabled together.   

Table 32 Behavior Model of Clear and Preset 

Clear Preset Async. Info 
0 0 Normal Op 
0 1 Preset 
0 Z No change 
0 X No change 
1 0 Clear 
1 1 Illegal 
1 Z Clear 
1 X Clear 
Z 0 No change 
Z 1 Preset 
Z Z No change 
Z X No change 
X 0 No change 
X 1 Preset 
X Z No change 
X X No change 
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If they are enabled together, then the Flip-Flop falls into an illegal state and the 

output value becomes the Unknown (‘X’) state.  When “Clear” or “Preset” is either Hi-

Impedance (‘Z’) or Unknown (‘X’), then they are not considered strong enough to cause 

the action to happen.  Again, using the Any/All primitives, we can implement this 

asynchronous behavior of the Flip-Flop.  Figure 45 shows this behavior.  Each Any/All 

function will detect Any(‘1’) for each input.  They are then merged into a 2-bit signal 

(Asynchronous information), which selects desired output.   

Clear

Preset

Any & All
Function All( )

Any & All
Function

Any(1)

All( )

Any(1)

Async info[1..0]

2
Merge

4

4

 

Figure 45 Design for Checking Clear and Preset 

Combining all the components together with a 4-to-1 MUX, we can model the D-

type Flip-Flop with asynchronous “Clear” and “Preset”.  Figure 46 shows the design 

implementation.  When Any(‘1’) for “Clear” and Any(‘1’) for “Preset” are both TRUE 

then the 4-to-1 MUX will select ‘X’ as its output.  When Any(‘1’) for “Clear” is TRUE 

and Any(‘1’) of “Preset” is FALSE, then the MUX will select ‘L’ as its output and vice 

versa.   
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Figure 46 Implementation of D Flip-Flop with Asynchronous Clear and Preset 

For D Flip-Flop modeling, we have used 4 Any/All primitives and a 4-to-1 MUX 

to implement the evaluation logic. This is approximately equivalent to the size of 4-input 

AND gate evaluation design.   

 
 

4.9  Scalability of Primitives and Experimental Results 

This section presents the size comparison for the lookup table based 

implementation of evaluation and our approach, which is based on Any/All primitives 

and a priority lookup table.  Altera’s EP20K200EFC672-1X was used to synthesize both 

implementations.  The compilation report for resource usage is summarized in Table 33 

in terms of Logic Elements (LEs) used by the FPGA manufacturer.  The concept of 

Altera’s Logic Element (LE) will be briefly described in the following section.  As we 
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can see from the table, our design grows linearly as the number of inputs grows.  On the 

other hand, the size of the standard lookup table approach grows exponentially, as we 

expected from previous discussions, while our priority lookup table size grows nearly 

negligible.  Figure 47 shows this behavior.  Notice that the standard lookup table 

approach for 8-input AND gate has failed to synthesize for the target platform.   

Resource Usage vs. Number of Inputs for AND Gates
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Figure 47 Growth Rate of Resource Usage for Lookup Table 

 
Table 33 Resource Usage Comparison 

  LUT PLUT 
AND2 2 12 
AND3 33 15 
AND4 117 19 
AND5 348 24 
AND6 1049 26 
AND8 FAILED 43  
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Table 34 lists the resource usage for Any/All primitives with different number of 

inputs.  Table 35 shows the size of logic evaluation primitives.  The logic primitives are 

pre-scaled to handle up to maximum allowed inputs.  As a conclusion, the universal gate 

and other primitives with priority lookup table approach have optimized the hardware 

resource usage within a linear growth to the number of inputs.   

Table 34 Resource Usage for Any/All Primitives 

Number of Input LE 
1 4 
2 8 
3 10 
4 14 
5 17 
6 20 
7 24 
8 27 

 

Table 35 Resource Usage for Logic Evaluation Primitives 

Altera's EP20K200EFC672-1X 
Primitive LE 

Univ_AndOr8 145 
Univ_AoOa8x8 686 

Univ_XOR8 143 
MUX41 95 

FA 48 
D-FF 21 

Priority LUT with Size 3 2 
INVERTER 3 

 
 
 

4.10  Altera’s Logic Element 

A Logic Element (LE) is a basic functional building block of Altera’s FPGA chip 

(30).  Within each LE is a four input lookup table (LUT), a D-type flip-flop with 
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programmable control logic, cascade chain interconnects, and routing multiplexers.  The 

usage of the LUT and cascade chain allows LUTs from different LEs to be connected in 

such a fashion as to allow large Boolean functions or special purpose logic to be 

implemented.  Further discussion about FPGA is out of scope of this work, and will not 

be discussed any further.  Figure 48 shows the Logic Element Architecture provided by 

Altera (30).   

Figure 48 A Logic Element (LE) Architecture 
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5.0 GATE DELAY AND FUTURE EVENT GENERATION ARCHITECTURE 

Circuit designs start at a high-level of abstraction and go through a series of 

transformations until the final mask layout is obtained.  One of the synthesis steps is 

“technology mapping”, which decides the CMOS technology to be applied to the design 

(e.g., 0.25 µ-process, 0.16 µ-process, etc.).  Technology mapping determines switching 

characteristics, such as rise and fall time delay of the cells, capacitive load of wire, etc., 

which are defined by the cell library.   

To simulate the logic design accurately, a full-timing simulation must be 

performed.  Full-timing simulation requires that accurate gate delay models be 

incorporated into the logic simulation.  The problem with full-timing simulation is that it 

requires extra operations to the simulation procedure, and the logic evaluation process 

slows down.   

There are two categories of delays to consider in the logic design.  One is intrinsic 

delay, caused by the gate itself. And the other is the extrinsic delay due to the fan-out 

gate load and wire load.  Also, there are three types of delays to be considered depending 

on the gate’s operating condition.  They are fixed delay, path dependent delay, and state 

dependent path delay.  In this chapter, we discuss these different delay types and describe 

the architecture required to utilize each type of delay.  The major issue with this portion 

of the design is efficiently storing the delay information such that it can be accessed by 

dedicated hardware in the shortest time possible.   
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5.1  Delay Types 

There are three types of gate delays defined by the IEEE Standard Delay Format 

(SDF) (32).  They are (1) fixed delay, (2) input-to-output path delay (I/O-path delay), and 

(3) state dependent input-to-output path delay.  The SDF standard also defines the delay 

format in the form of 3-tuple as (minimum:typical:maximum).  These three numbers are 

based on the fabrication condition and operating condition.   

Fixed delay is given as a rise/fall time pair for an entire gate depending on the 

output change.  Most simple logic primitives are defined using this fixed format.  Fixed 

delays require only 2 values per gate, as the gate delay is modeled as a function of output 

rise and fall.   

Path dependent delay is modeled as a function of input-to-output path and the 

output rise/fall.  Based on how the ASIC cell vendors implement their cells (i.e. transistor 

size, and layout), the delay value can vary based on which input caused the output change 

(I/O-path).  An N input gate with path dependent delay will have N pairs of rise/fall time 

delay information.   

Furthermore, in the state dependent delay model, path dependent delays can be 

further differentiated depending on the state of the other input signals.  State dependent 

delay allows more accurate delay modeling according to the input-to-output path and the 

state of the input combination.  For example, on a XOR gate, a delay path formed by an 

input to the output will be determined by other input signal’s value at that moment.  The 

state dependent delay is illustrated in Figure 49.  Figure 49 (a) shows the delay path from 
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input A to the output port when the other input B is ‘0’.  Input B will force the AND gate 

(A1) to stay at ‘0’, which will not affect the OR gate (O1), therefore the output change 

through this AND gate (A1) will not affect any further signal propagation.  The only 

signal path that will affect the output signal change is from the input signal A to the AND 

gate (A2) and through the OR gate (O1).  Likewise, as shown in Figure 49 (b), when B is 

‘1’, the AND gate (A2) will remain at ‘0’ and will not affect the output of OR gate (O1).  

The only signal path is from the input A to the inverter (I1) through the AND gate (A1), 

and then through the OR gate (O1).   

A

OutputB = '0'

I1

I2

A1

A2

O1

'0'

(a)

A

OutputB = '1'

I1

I2

A1

A2

O1
'0'

(b)  

Figure 49 Path Dependent Delay of 2-Input XOR Gate (a) When B = '0'; (b) When B = '1' 

In general, an N input gate with state dependent delay can have N  state 

dependent delay values, because for each of N inputs, there are (N-1) other inputs whose 

binary combination value will determine the state.  For example, a 4-input XOR contains 

 = 32 different states; each state has set of rise and fall time delay information.  

Therefore, a 4-input XOR gate contains a total of 64 different delay values when 

)1(2 −× N

324×
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accounting for the rise/fall time delays.  Thus, the total number of delays for an N input 

gate with state dependent delay is .   NN 2×

In addition to the gate delays, in the full-timing delay model, the delay value is 

divided into intrinsic and extrinsic delays.  The intrinsic delay value is the logic gate’s 

own delay caused by internal transistors when the gate is not driving anything.  The 

extrinsic delay is caused by the wire that connects from the output to the other logic 

gate’s input and the capacitive load of the other gates being driven by the logic gate.   

 

(a)

(b)

Figure 50 Delay Models (a) Lumped Delay; (b) Distributed Delay 

The extrinsic delay can be modeled as “lumped delay model”, where the wire and 

input gate load is lumped into one large capacitive load, or can be modeled as 

“distributed delay model” where the output wire is segmented into regions and different 

capacitance values are assigned to the wire segments.  Figure 50 illustrates these delay 

models.  This work is focused on the “lumped delay model”.  Distributed delay can be 

modeled with the lumped delay model by using “zero delay buffers” to model each wire.  
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Zero delay buffers have no intrinsic delay but can have extrinsic delay.  Figure 51 shows 

how to model “distributed delay” using “lumped delay modeling.”   

zero delay buffers  

Figure 51 Distributed Delay Modeling Using Lumped Delay Model 

As discussed in previous chapter, most of the existing logic simulation only 

handle the zero-delay or the unit-delay model, where the delay through each gate is 

treated as either zero or a single abstract time unit.  These zero-delay and unit-delay 

models can only be used for pre-technology mapping to check the design correctness 

(logical correctness) and cannot be used for post place and route (post-technology 

mapping) where the actual delay can cause serious timing malfunction.   
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Figure 52 The Delay Architecture 

As shown in Figure 52, the scheduler determines when the events are to be 

processed and in what order.  The events to be processed in the future are labeled “Future 

Events” and are stored within the scheduler.  Also previously discussed, the current 

simulation time is called Global Virtual Time (GVT).  The events whose execution time 

stamp is equal to current GVT are labeled as Pending Events and are sent to the Logic 

Engine for immediate processing.  The Logic Engine evaluates each Pending Event on 

the specified gate, and, if the output of the gate changes, a Future Event is generated.  

While the Scheduler (described in Chapter 6) performs an important role in the ordering 

of events, this chapter is on efficiently determining the delay value that should be 

associated with each gate.   
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5.2  Net-list Update and Future Event Generation 

The simulation engine updates the net-list memory whenever there is an 

evaluation action triggered by the pending event queue (PEQ).  The update is performed 

whether the output of the gate being simulated is changed or not, because the net-list has 

to maintain the current input value.  Therefore, when the output value has been changed 

due to the event evaluation of the gate, the logic engine updates both the input and output 

of the gate in the net-list. If an output change does not occur, the engine still performs the 

net-list update with the current input change only.   

When the result of a functional evaluation indicates that there has been a change 

in the output value, then the logic engine will generate a future event and pass it to the 

scheduler so that it can be arranged in the proper future time.  The contents of the future 

event queue (FEQ) passed to the scheduler, are the fan-out Gate ID, fan-out Pin ID, time 

offset from the current GVT, and the output value.  These items are assembled into one 

piece of data and passed to the scheduler.  The scheduler then assigns this future event 

data in the proper time slot and sends back to the engine in the form of Gate ID, Pin ID, 

and Value when GVT rolls into the appropriate future time.   

 
 

5.3  Delay Simulation Architecture 

The delay values of a Future Event are given by an SDF file for each gates used 

in a design.  Pre-processing software will parse the delay information and organize it into 
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the Delay Memory.  The problem is to determine the index of the delay memory for a 

given gate, if and only if the output value has changed.   

The base address of the Delay Memory is known statically at the pre-processing 

software run time.  However, there are two pieces of dynamic information that cannot be 

pre-determined until the logic evaluation is performed.  The first is the output change 

information, which can only be known after the evaluation task is performed.  The other 

is delay information, which is a function of (1) the output change, (2) the input that 

triggered the output to change, and (3) the values of the other inputs.  The output change 

will determine the rise/fall time, the information on “which input” will determine the path, 

and the value of other inputs will determine the state.  All of these pieces of information 

will be used for delay evaluation based on the delay type to be applied to the gate.  The 

following sections will describe different delay memory architectures and discuss their 

strengths and weaknesses.   

 
 

5.4  Fixed Delay Memory Architecture 

A fixed delay can be expressed as a function: DELAY(BaseAddress, Rise/Fall).  

The Base Address can be determined at the pre-processing time for each gate, but the 

rise/fall information cannot be determined until the actual evaluation takes place and the 

output value is obtained and compared with its previous value.  Therefore, the rise/fall is 

dynamic information.  We can arrange this delay information on a linear memory space 

(1-dimensional memory) as shown in Figure 53.  This linear array scheme can utilize the 
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memory with 100% efficiently, without any fragmentation, because the delay values are 

stacked up on top of each other and every gate is dependent on the output rise/fall.   

BaseAddress 0

BaseAddress 1

BaseAddress n rise time

rise time
fall time
rise time

fall time

rise timeBaseAddress 2

 

Figure 53 A Linear Array of Delay Memory 

When the gate has either path dependent or state dependent delay, then computing 

the delay address becomes more costly because the dynamic information has to be added 

to the Base Address.  On a linear array of memory, the delay values are stored as a stack 

of rise-time and fall-time pairs.  Since the circuit design normally contains all three gate 

delay types, the delay address computation has to handle all three situations.  As 

mentioned earlier, the base address is pre-determined by the pre-processing software; the 

problem now is to compute the offset amount from the base address.   

A fixed delay is a function of base address and rise/fall time information.  Path 

dependent delay is a function of address, rise/fall and input-to-output path information.  
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State dependent delay is a function of base address, rise/fall time, I/O-path, and the state 

of other output values.   

1. Fixed Delay Address = (Base Address + rise/fall) 

2. Path dependent Delay Address = (Base Address + path + rise/fall) 

3. State dependent Daly Address = (Base Address + path + state + rise/fall) 

We can generalize the delay computation with case 3 (state dependent) given 

above by setting the state to 0 for path dependent delay and both state and path to 0 for 

fixed delay.  Figure 54 shows our generalized delay address computation scheme. 

Delay
Base

Address
Delay

Addresspath
state

rise/fall

ADD

 

Figure 54 Delay Address Computation by Adding 

The problem of this method is that it requires the ADD operation to determine the 

delay address.  Performing these ADD operations can impact the performance of the 

system.   

 
 

5.5  Path Dependent Delay Memory Architecture 

A path dependent delay is expressed as a function is: DELAY(BaseAddress, I/O-

path, Rise/Fall).  I/O-path and rise/fall information is not known until the gate evaluation 

is finished.  If we organize the memory into a 2-dimensional array using I/O-path and the 
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rise/fall on each axis, and treat that 2-D array as a page of memory (each page is identical 

in size), then the delay lookup becomes simple.  Figure 55 shows this scheme.  A fixed 

delay is shown in the bottom layer (with Base Address 0) of Figure 55. Base Address 1 

and Base Address n-1 in the figure denote the path dependent delays.   

rise rise rise

fall

I/O-path

Rise/Fall

rise

fall fall fall fall

riserise rise

BaseAddress 0
BaseAddress 1

BaseAddress n-1

 

Figure 55 A 2-D Array Delay Memory 

The problem with the 2-D array is that it can become fragmented and less 

efficient, because the page size of the 2-D array is fixed therefore the memory is not fully 

utilized.   

In addition to that, if the gate has a state dependent delay property, the memory 

configuration has to be either multiple of 2-D arrays or use a large page size of single 2-D 

array.  Either configuration forces the system to perform extra operations to obtain the 

address of the delay information.   

 

 

 

 



110 

5.6  State Dependent Delay Memory Architecture 

A state dependent delay expressed as a function is: DELAY(BaseAddress, I/O-

path, State, Rise/Fall).  The dynamic information is therefore, I/O-path, state, and rise/fall 

information.  The easiest memory organization would be to use a 3-dimemsional memory 

for each Base Address by using I/O-path, state, and rise/fall information on each axis.  

However, this 3-dimensional memory configuration will waste even more memory, 

especially when all of three delay types are mixed in the design, the delay memory will 

be severely fragmented.  Memory is wasted when we are dealing with fixed delay cells or 

path dependent cells, the state and path axes are not used for the fixed delay and the state 

axis is not used for the path dependent delay case.   

 
 

5.7  Generic Delay Memory Architecture 

To overcome the extra operation overhead discussed earlier, the pre-processing 

software can organize the widths of base address, state and path information so that the 

delay address can be obtained by simply combining the pre-arranged information.   

If we allow the width of the base address as a variable, then we can assemble the 

delay address without having to perform the ADD operation.  Since the information for 

base address, the width of I/O-path, and the number of states can be pre-processed, 

software can perform this width computation for the base address, path, and state 

information fields.   
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The path information encoding requires ceiling(log2(N)) bits, and state 

information encoding requires (N-1) bits, where N is the number of inputs.  Then, we can 

segment the linear memory into a formulated size of ceiling(log2(N))+(N-1), when we are 

dealing with the state dependent delay gates.  Then the software arranges the base address 

to point to each segments and clears the lower bits so that base address can be computed 

with the rest of the information.  Now, rather than using adders, we can compute the 

delay memory address with a simple bit-wise OR operation, as shown in Figure 56, for 

state dependent delay model.   

Base 0 0 0

0 Rise/
Fall 0 0

0 0 State 0

0 0 0 Path

Bit-Wise OR

Delay Address
 

Figure 56 Bit-Wise OR to Compute Delay Address for State Dependent Delay 
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I/O-path dependent delay can be arranged the same way as state dependent delay 

except the state information is not used.  Fixed delay only require one extra bit for 

rise/fall information.   

As mentioned previously, the total number of delay values is given by N , 

where N is the total number of inputs (equivalent to number of I/O-paths) and the second 

term is the total number of states per I/O-path.  It is obvious that the second term 2

N2×

N will 

be much larger than the number of inputs N.  The number of states is always given as a 

power of 2, but total number of inputs are not so.  This indicates that if we order the path 

variable in front of the state variable in the address field, we will have much larger 

fragmentation.  Therefore, we are placing the path variable behind the state variable.  

Figure 57 (b) and (c) show the location of the “Path” variable in the delay address map.   

 

Base Address Rise/Fall State Path

(a)

(b)

Base Address Rise/Fall Path

Base Address Rise/Fall

(c)  
Figure 57 Delay Address Map (a) Fixed Delay, (b) Path Dependent, (c) State Dependent 

As an example, assume that we are given a 4-input gate and the delay address 

space is 1M (20 bits).  If the gate is an AND gate with a fixed delay, then the software 

generates a 19-bit base address with the rise/fall bit cleared.  When the rise/fall 
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information becomes available after the evaluation of the gate, the base address and the 

rise/fall information are bit-wise OR’ed to form a delay address.   

If the given gate is XOR with a state dependent delay, the software generates 14-

bit base address with rise/fall bit, path bits and state bits cleared.  The path variable can 

be determined based on input PinID and state can be determined based on the value of 

other inputs.  Again, when the rise/fall information is available, all four variables are bit-

wise OR’ed to generate delay address.   

If the gate contains path dependent delay, software generates 17-bit base address 

with rise/fall bit and path bits cleared.  After the gate’s output is computed, the base 

address, path and rise/fall variables are bit-wise OR’ed to generate delay address.  Table 

36 summarizes the bit widths for each delay case.   

 
Table 36 4-Input Gate with Various Delay Types 

  size (bit) Fixed delay Path dep. State dep. 
Base Address 14 to 19 19 17 14 

State 0 or 3 0 0 3 
Path 0 or 2 0 2 2 

rise/fall 1 1 1 1 
 

Also, if we place the delay information in any order (any mix of fixed, path and 

state dependent delay) then the memory can be further fragmented.  This is because we 

require each base address to start at a power of 2 for path and state dependent delays.   

To avoid this fragmentation, the pre-processing software will start placing fixed 

delay information in the bottom of the memory.  Then the path dependent and the state 

dependent delay information will be placed on top of the fixed delay information.  Figure 
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58 shows this arrangement.  The splitting line between the fixed-delay area and path and 

state dependent area is the nearest address to the power of 2 after the fixed delay 

information area.   
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Figure 58 Delay Memory Map 

 
 
 

5.8  Delay Architecture Conclusion 

Wasted memory cannot be tolerated because it reduces the capacity of the system.  

Therefore, the only viable solution is to rely on a linear array and to design a memory 

layout with the least amount of wasted memory space.  Delay lookup is not just a simple 
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memory lookup because there are 3 different types of delays stored in a single memory.  

Due to this mixture of different delay types, computing the delay address requires some 

operations.  State dependent delay will limit the capacity of delay memory, which in turn 

will limit the capacity of the entire architecture.  Therefore, we have decided to choose a 

normal linear array with the ADD operation.  Although the segmented linear memory 

idea seems appealing, it still fragments the memory.  The trade off here is the 

performance versus space.  Space is chosen over performance to accommodate the 

growing size of modern digital design.  The performance penalty of using a four input 

adder is expected to be minimal and could be pipelined to further minimize the 

performance cost.   
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6.0 SCHEDULER ARCHITECTURE 

When new events (future events) are generated as a result of logic evaluation 

activity, the scheduler manages these new events according to their time stamp.  This is 

to ensure that the execution order does not violate the causality constraint discussed in 

Chapter 2.  The problem of the scheduler task is that new events have to be ordered 

according to their time stamp, and this ordering of events consumes a large number of 

cycles.  As was shown in Figure 6, the scheduler takes up a major portion of run time for 

the logic simulation software.  This is because the nature of scheduling involves a large 

amount of memory activity (i.e. searching for the events with the smallest simulation 

time stamp), and this memory activity causes a bottleneck in the scheduling task.   

Researchers were able to solve this problem by employing the event wheel (7) 

algorithm, which removes the need for sorting.  It was successful in zero-delay or unit-

delay model simulations, where a relatively small event wheel can handle the scheduling 

task.  However, in hardware/software co-simulation environment, where the granularity 

of delay timing changes from pico-seconds to milli-seconds, the size of the event wheel 

has to be increased to handle large amount of timing grains.  In such cases, the event 

wheel cannot perform efficiently, as was discussed in Section 2.2.4 , because most 

hardware simulation events use fine timing grains such as pico- to nano-seconds but 

software simulation events will use coarse grains such as micro- to milli-seconds.   

Therefore, the event wheel becomes sparsely populated.  Three architectures for 

the scheduler task, which can be used in co-simulation environment, will be explored and 
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discussed in this chapter.  Section 6.1, discusses a plain linear scanning architecture.  In 

Section 6.2, we explore parallel linear scanning by dividing memory space into sub-

sections. In section 6.3, we examine parallel linear scanning with a binary tree by 

replacing a global minimum search circuit with a combinational binary tree 

configuration.   

 
 

6.1  Linear Scanning 

One alternative is to store the future event in linear memory and perform a sort 

operation.  This approach can handle large time grains, but requires a large number of 

CPU cycles as a trade off, as was shown in Chapter 2 by our quick sort software 

scheduler benchmark results.  The performance of the sorting algorithm on a workstation 

is well defined.  The bubble sort and insertion sort algorithms run with O(N2) (33), quick 

sort  and merge sort requires O(N× log(N)) (33) for the same task.  Each time the scheduler 

increments the simulation time (GVT), the scheduler must perform a sort operation with 

both new and existing events.  Performing a sort operation simply requires too many 

CPU cycles.  Even after the sort operation, only the events with the smallest time stamp 

are passed to the logic evaluation block, and when the GVT increments, remaining events 

must be sorted again.   

Instead of sorting inefficiently, the scheduler can perform a search (scan) 

operation, continuously searching for events with minimum time stamp in the memory.  

The scan operation requires O(N) cycles, given N elements in memory.  When we 
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perform the scan operation, regardless of GVT, the event with minimum GVT is searched 

and passed to evaluation block.  We can formulate the performance of scanning as: 

C×O(N) O(N), where C is the number of events with the same minimum time stamp.   ≈

Therefore, in comparison, the sort algorithm can produce multiple events with the 

same time stamp in one sort operation with O(N× log(N)) cycles, but scanning has to run 

O(N) cycles to find the first event with smallest time stamp and then another O(N) to find 

all other events with the same time stamp.  Thus memory scanning is faster than memory 

sorting, since O(N) < O(N× log(N)).   

A dedicated hardware can be designed to scan the memory at peak speed.  Figure 

59 shows a linear scanning scheme.   

Min Finder Global
MinimumN elements

 

Figure 59 A Linear Memory Scanning 

 
 

6.2  Parallel Linear Scanning 

To speed up the scheduling task and maintain large timing grain, the new 

architecture with parallel linear memory sub-scanning has been considered to utilize the 

concurrency in memory space search.  Figure 60 illustrates this architecture.  We divide 

the memory of size N into p segments, each with a depth of k (= N/p) and attach a 

minimum finder circuit to each memory segment.  Each segment will require k cycles to 
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find a local minimum in parallel, and all of the resulting p local minimums will be 

searched again for a global minimum, consuming another p cycles.  The run time for the 

architecture will be O(k)+O(p).  Our hardware uses p pieces of k (=N/p) deep memory, 

one p:1 multiplexer, and (p+1) minimum finder circuits.  The size of the design can be 

computed as: 

Size = (p+1)×sizeof(min finder) + sizeof(p:1 Multiplexer).   

p elements

N/p elements

N/p elements

N/p elements

Min_p
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Min Finder

Min Finder

Min Finder

segment 1

segment 2
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Figure 60 An Architecture for Parallel Linear SubScanning 

Table 37 shows the resource usage of different sized multiplexers as a size 

measure.  Synthesis result by Quartus-II reports that our min finder design uses 301 (out 

of 8,320 possible resources) Logic Elements (LEs).   
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Table 37 Resource Usage for Multiplexer Component Using 16-Bit Words 

  Logic Elements 
2:1 MUX 16 
4:1 MUX 32 
8:1 MUX 87 

16:1 MUX 153 
32:1 MUX 340 
64:1 MUX 666  

100:1 MUX 1,040  
128:1 MUX 1,332  
256:1 MUX 2,663  
512:1 MUX 5,327  

1024:1 MUX 10,653  
 

Unlike software sorting or scanning, which is limited by the memory architecture 

(single, narrow, sequential), our design can perform the task concurrently using multiple 

small segments of memory.  The design is composed of a simple minimum search circuit 

(controller and comparator) attached to the memory. And this simple design is repeated 

(p + 1) times (p for local min, 1 for global min).   

 
 

6.3  Parallel Linear Scanning with Binary Tree 

We can further improve the previous design by replacing the global minimum 

finder with a group of comparators and multiplexers in a binary tree configuration as 

shown in Figure 61.  In this design, the local minimum searching is identical to the 

previous design, but we use (p–1) comparators and multiplexers in the form of binary 

tree, thereby removing the last stage (the global scanning mechanism).  Instead, the 

global minimum searching is performed by a purely combinational circuit, which can 

perform its minimum searching task in a few cycles, yielding the performance of O(k), 
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where k = N/p.  Each circle in the Figure 61 represents a comparator and a 2-to-1 

multiplexer, as shown in Figure 62.   
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Figure 61 Comparator and Multiplexer in a Binary Tree 
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Figure 62 Comparator and Multiplexer for Finding Minimum 

 

The problem with this design is its resource usage.  The number of resources 

required grows exponentially as the depth of binary tree grows.  When the binary tree 
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depth reaches 9, it becomes larger than our target device.  Therefore, the design shown in 

Figure 61 will perform faster, but, as a trade off, it becomes impractical for a large sized 

binary tree.  Table 38 and Figure 63 illustrate this problem.  In Table 38, Altera’s 

EP20KE200 device (total resource is 8,320) was chosen as a target platform.  When the 

number of input reaches to 256, the binary tree approach nearly depletes the resource.  If 

the number of input is 512 or more, the design does not fit into a single chip.   

Table 38 Quartus-II Synthesis Report for Resource Usage of Binary Tree 

Number of 
Inputs 

Number of 
Resources 

Resource 
Usage Altera 
EP20KE200

2 32 0.38% 
4 96 1.15% 
8 224 2.69% 

16 480 5.77% 
32 992 11.92% 
64 2016 24.23% 

128 4064 48.85% 
256 8160 98.08% 
512 16352 196.54% 

1024 32736 393.46% 
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Figure 63 Resource Growth Rate for Binary Tree 

 
 

6.4  Summary 

We choose the normal parallel linear scanning scheme (shown in Figure 60) for 

our scheduler, since the binary tree approach will require a nearly impossible amount of 

resources for a large sized event queue.  Our design will still out-perform the software 

approach by utilizing concurrency in the minimum value search algorithm.  Table 39 

summarizes the architectures we have explored in this chapter.  A simple linear scanning 

consumes the least amount of resources while it requires a large number of cycles to find 

a minimum value in the memory.  Parallel linear scanning with binary tree will perform 
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faster than any scheme given in the table, but it consumes too much resource.  Normal 

parallel linear scanning optimizes the performance and cost.   

Table 39 Size and Performance Comparison between Scheduler Algorithm 

  Linear Scanning Parallel Linear Scanning
Parallel Linear Scanning with 

Binary Tree 

Size sizeof(min finder)
(p+1)*sizeof(min finder) 

+ sizeof(p:1 MUX) 
p*sizeof(min finder) + 

sizeof((p-1) binary tree cells)
Speed O(N) O(k) + O(p) O(k) 

 

The performance of our design depends on the size of the segment, k and the total 

number of segments p.  If k >> p, then the performance depends on O(k), i.e. the local 

minimum search will dominate the overall run time.  In general, if k >> p, then it can be 

written as O(k) + O(p)  O(k).  The software scanning algorithm performs O(N), 

therefore, we have a speedup of 

≈

)(
)(

kO
NO  = )/(

)(
pNO

NO  ≈  p   

On the other hand, if k << p, then O(p) dominates the overall performance (global 

minimum search will dictate the run time).  The overall performance can be expressed as 

O(k) + O(p)  O(p).  And the speedup will be: ≈

)(
)(

pO
NO  = )/(

)(
kNO

NO  ≈  k   

If p = k, then the performance will be 2×O(k) ≈ O(k); this will be the optimal 

performance for our linear scanning scheduler.  Figure 64 (a) and (b) shows the 

performance graph in terms of k and number of CPU cycles when N = 1024 and N = 

4096, respectively.  The peak performance point is when p = k, with k = N , because, k 

= N/p and k2 = N.   
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Figure 64 Performance Graph (a) N = 1024; (b) N = 4096 

 

In practice, since our target capacity is 100,000 gate design, a scheduler would 

have approximately 10,000 events pending if 10% of the circuitry is active at any given 
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time.  Thus, if we compute optimal p and k for N = 10,000 then, p = k = N = 100.  

From Table 39, the size of the design is computed as (p+1) ×  sizeof(min_finder) + 

sizeof(p:1 MUX).  Since p = 100 and size of minimum finder circuit is 301 (given in 

Section 6.2 ), we have (100+1) ×  301 + 1,040 = 31,441 Logic Elements.  The speed of 

our scheduler would be approximately 200 cycles (O(k) + O(p)).   
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7.0 EXPERIMENTAL RESULTS AND PROTOTYPE 

In this chapter, we will describe how all the materials we have discussed in 

previous chapters fit together as a logic simulation system.  A simple test circuit is 

presented in Section 7.1 as a proof-of-concept to demonstrate that our design performs as 

we expected.   

In Section 7.2 implements this circuit and shows all of the functional blocks 

described from Chapter 4 to Chapter 6 (logic evaluation, delay architecture, and the 

scheduler blocks) are put together to form a logic simulation hardware system.  The test 

circuit is parsed through the pre-processing software, which creates the memory image of 

the net-list and the delay values.  These values are then loaded into the design.  Initial 

input events are loaded into the scheduler.  As the simulator is started, the logic 

evaluation block and the scheduler block process the data according to the event order.   

Section 7.3 discusses scalability.  The proof-of-concept prototype has a very 

limited gate capacity due to the limitation of the FPGA used.  When we expand our 

design to a 100,000 gate capacity, the memory depth will be significantly increased to 

accommodate the capacity growth and require off-chip memory.  However, the width of 

memory address signal grows using a log scale, and most of the items such as "list of 

input" and "list of output" remain unchanged.  Since our design references the memory in 

a single access, this growth of width will not affect the performance.  The performance of 

the prototype is measured and extrapolated for a 100,000 gate capcity design.   
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The performance and feature of our design are then compared with the existing 

hardware and software logic simulators in Section 7.4.  We will show that our design will 

out-perform existing logic simulators of comparable timing accuracy.  Additionally, there 

are features in our design that are not found in other simulators.   

In order to make a fair comparison between our architecture and others, we have 

quantified our experimental results in terms of FPGA Logic Elements.  These Logic 

Elements (LE’s) are created using a 4-input lookup table, a flip-flop, and a number of 

other AND and OR gates that are used to interconnect the LE with other LE’s.  As an 

approximation, a single FPGA LE can be implemented in an ASIC using 1-10 standard 

cell gates.   

 
 

7.1  Prototype 

To prove the design concept, we made a small circuit to test various types of 

universal gate components.  Figure 65 shows this circuit, a parity checker and a D-type 

Flip-Flop.  One of the XOR gates was intentionally “unwrapped” into AND, OR, and 

INVERTER cells to demonstrate our universal gate, and cause enough event propagation 

throughout the circuit to exercise our design.  The circuit was kept small so that the entire 

hardware simulator could be tested inside a single FPGA so that the event execution 

order could be visually verified.  Scalability to a 100,000 gate design is also addressed in 

this chapter.   
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Figure 65 Parity Checker Test Circuit 

In the prototype shown in Figure 65, we assume that all of the initial input events 

are started at the same simulation time (GVT).  G1 through G9 represent gates, N1 to N14 

represent wire, P0 and P1 represent input pins.  And A, B, C, D are primary inputs to the 

circuit.  Since the input signal A is connected to G1 and G3, input signal B is connected to 

G2 and G4, and the inputs C and D are driving G5, there are total of six initial events, as 

listed in Table 40.   

Table 40 Initial Events 

Event Number Gate ID Pin ID Value GVT 
1 1 0 0 1 
2 4 0 0 1 
3 2 0 1 1 
4 3 1 1 1 
5 5 0 0 1 
6 5 1 1 1 

 

Table 41 shows the order of the simulation event flow when our design simulates 

the test circuit.  All of the initial events are assumed to be started at the same time, with a 

simulation time (GVT) of 1.  All of the inputs and outputs of the gates in the test circuit 

are initialized to the unknown (‘X’) state.  Notice that in events 4, 5, 7, 8, 10, the output 

does not change, and therefore a future event is not generated.  The event number 15 
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represents when the clock input signal became a ‘1’, therefore our flip-flop design has 

detected a rising edge and latched the data input stored at event 14.   

Table 41 Simulation Event Flow of Prototype Running Test Circuit Simulation 

Event 
Number Function 

Current 
GVT 

GATE 
Number

PIN 
Number 

Input 
Value

Current 
Output 

New 
Output 

Destination 
Gate ID 

Destination 
Pin ID Delay

Future 
GVT 

1 INV 1 1 0 0 X 1 3 0 10 11 
2 AND 1 4 0 0 X 0 6 1 9 10 
3 INV 1 2 0 1 X 0 4 1 7 8 
4 AND 1 3 1 1 X X 3 1 - - 
5 XOR 1 5 0 0 X X 7 1 - - 
6 XOR 1 5 1 1 X 1 7 1 10 11 
7 AND 8 4 1 0 0 0 6 1 - - 
8 OR 10 6 1 0 X X 7 0 - - 
9 AND 11 3 0 1 X 1 6 0 12 23 
10 XOR 11 7 1 1 X X 8 0 - - 
11 OR 23 6 0 1 X 1 7 0 8 31 
12 XOR 31 7 0 1 X 0 8 0 9 40 
13 INV 40 8 0 0 X 1 9 0 9 49 
14 FF 49 9 0 1 0 0 - - - - 
15 FF 100 9 1 1 0 1 - - 11 - 

 
 
 

7.2  Overall Architecture 

All of the design units described in previous chapters are put together as a system 

as shown in Figure 66.  The design contains a logic evaluation block, input assembler, 

delay address computation block, output comparator, future event generator, scheduler, 

pending event queue, future event queue, net-list and configuration memory, and delay 

memory.  The functionality of each blocks are:  

• Logic evaluation block: computes the output of a gate with a given input vector.   

• Input assembler: generates the input vector of a gate before evaluation.   
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• Output compare block: compares newly computed output and existing output.  If 

they are different, raises output change flag and computes whether the new output 

has risen or fallen.   

• Delay address computation block: computes the address with rise/fall value and 

gate’s delay type given by function group variable.   

• Future event generator: creates the future event based on delay value acquired and 

the fan-out information of a gate.   

• Scheduler: orders incoming future events according to the simulation time (GVT).   

• Pending event queue: stores events to be processed by the logic evaluation block.   

• Pending Event: each pending event is comprised of Gate ID, Pin ID, and input 

value. 

• Future event queue: stores new events generated due to the logic evaluation.   

• Future Event: future event is comprised of destination Gate ID, destination Pin 

ID, delay value, and the signal value.   

• Net-list and configuration memory: stores net-list information such as list of input 

values, list of output values, fan-out information.  Also stores the configuration 

information such as mask values, input and output inversion flag, and function 

group variable, etc. 

• Delay memory: stores rise and fall time values for each gates in the design.   
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The data flow of the logic simulation algorithm is summarized below: 

1. A pending event is read from pending event queue.   

2. Reads the net-list and configuration memory using the Gate ID, given by pending 

event, as an address.   

3. Input vector is assembled using the value and Pin ID (from pending event) and the 

current input (from net-list memory).   

4. Logic evaluation is performed and new output value is computed.   

5. New out and current out is compared.  If they are different, output change flag is 

set and rise/fall information is acquired.   

6. If output change did not occur, go to step 1.   

7. If output change has occurred, delay memory address is computed and delay 

memory is referenced. 

8. Future event is generated with new output value, fan-out information, delay value.   

9. Future event is sent to future event queue 

10. Scheduler is continuously searching for the events with minimum time stamp.   

11. When all of the pending events with current simulation time stamp (GVT) have 

been processed, the scheduler advances GVT and sends new set of pending events 

to pending event queue. 
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7.2.1  Net-list and Configuration Memory and Delay Memory 

The width of the net-list and configuration memory is shown in Table 42.  For the 

prototype, we limited the maximum number of inputs to four and the maximum number 

of outputs and fan-outs to two.   

Table 42 Data Structure of Net-list and Configuration Memory 

Data Item Bits Comments 
Delay Base Address 4 16 delay location 

Power Count 4 counts upto 16 
Number of Inputs 2 4 input maximum 

List of Input Value 8 2 bits/input, 4 inputs 
L1 Input Invert 4 1 bit per input 

Number of Output 1 2 outputs 
List of Output Value 4 2 bits/output, 2 outputs 

Output Invert 2 1 bit per output 
Mask1 2 mask for 0, 1, Z, X 
Mask2 2 mask for 0, 1, Z, X 

Function Group 3 8 different functions 
Fan-out Information 12 (4 bit GateID + 2 bit PinID) * 2 fan-outs 

TOTAL 48   
 

The delay value is stored in a simple linear memory, as was discussed in Chapter 

5.  For simplicity, only 8 bits were used for prototype design.   

 
 

7.2.2  Logic Evaluation Block 

The logic evaluation block, shown in Figure 67, contains all of the universal gate 

primitives described in Chapter 4.  The input signals are organized by the input assembler 

block, and fed into the logic evaluation block.  All of the primitives receives this input 

signal and produces the output.  The output of each primitive is connected to the 
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multiplexer, and the proper output value is selected by the “Function Group” parameter 

associated with that gate.  This function group parameter is stored in the net-list and 

configuration memory.  The result of logic evaluation will determine the output change, 

delay address computation, and future event generation tasks.   

UG XOR/XNOR

UG AND/NAND
UG OR/NOR

UG AO/AOI
UG OA/OAI

MUX

Full Adder

FlipFlop

Inverter
Buffer

Function Group

Output

 

Figure 67 Logic Evaluation Block 

 
 

7.2.3  Pending Event Queue and Future Event Queue 

The logic evaluation block and the scheduler communicate through the queue 

structure.  The scheduler sends a pending event, which contains a Gate ID, Pin ID, and 

Value.  The evaluation block then sends a future event, which consists of Delay, 

Destination Gate ID, Destination Gate’s Pin ID, and the Value.   
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Table 43 illustrates the data structure of the Pending Event Queue used for the 

prototype.  The Pending Event is sent from the scheduler to the logic evaluation engine, 

which conveys the message “which pin of what gate has the change of value event” at 

current simulation time (GVT).   

Table 43 Pending Event Queue Structure 

Item Bits Comments 
Gate ID 4 16 gates capacity 
Pin ID 2 4 input pins per gate 
Value 2 4-level signal strength value 

 

Table 44 shows the data structure of the Future Event Queue for the prototype.  

The Future Event is sent from the evaluation engine to the scheduler with “which pin of 

what gate will have a value change event at Time Offset from the current GVT”.   

Table 44 Future Event Queue Structure 

Item Bits Comments 
Delay Time Offset 4 gate delay limited to 16 delay units 

Destination Gate ID 4 16 gates capacity 
Destination Gate's Pin ID 2 4 input pins per gate 

Value 2 4-level signal strength value 
 
 
 

7.2.4  Delay Address Computation Block 

When the scheduler sends a Pending Event to the Logic Engine, the net-list 

information is read in from the memory location specified by its Gate ID.  The input 

signals are assembled and fed into the evaluation block, and the new output is computed.  

The new output and current output are then compared to acquire the information about 

whether or not they are different.  If they are different, the output change flag goes high.  
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Also, if the output has changed, the output rise/fall information is obtained at the same 

time.  If the output has not changed (output change flag becomes low), then no future 

event is generated and the input and output values are updated in the net-list memory.  

Detailed description about delay memory address computation was presented in Chapter 

5. 

 
 

7.2.5  Performance of Prototype 

Our prototype was implemented on Altera’s EP20K200EFC672-1X FPGA.  The 

compilation report states that the design runs at 39.8 MHz, consuming 1054 Logical 

Elements and 952 Embedded System Blocks.  This represents 12% of the FPGA logic 

elements and 1% of the FPGA internal RAM.   shows the simulation results of the 

prototype design.  The “Gate ID” is highlighted to compare with Table 41.  We can see 

that the gates in the design are being processed in exactly the same order as the table.   

Evaluation of a pending event takes 8 cycles before a future event is generated.   

The scheduler can provide new event in every 36 cycles in the worst case.  The worst 

case happens when the scheduler memory is empty and just received a new future event.  

The scheduler will go through all of the empty location to find a minimum time stamp 

and pick up the event just received.  Therefore the worst-case performance of our design 

is 44 cycles per event.   
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7.2.6  Pre-processing Software and Data Structure 

The pre-processing software parses the verilog file for net-list information and the 

SDF file for delay information.  The parser software reads the net-list input file (verilog 

file) and organizes the connectivity information by matching the output name of a gate to 

the input name, which the current gate drives (cross-linking).  It then looks up the delay 

information file (SDF file) to assign the delay values to each gate.   

The software then generates the initial memory map of the hardware according to 

the input files.  The data structure of the software follows the memory architecture of the 

hardware so that the output of the software can be directly loaded into the memory of the 

hardware design.  Figure 69 shows the data structure used by the hardware and parser 

software.   

 
struct { 
   unsigned int Delay_Base_Address; 
   unsigned int Power_Count; 
   unsigned int Number_of_Inputs; 
   unsigned int List_of_Input_Values[i]; 
   unsigned int Level_1_Input_Inversion_Flag[l]; 
   unsigned int Level_2_Input_Inversion_Flag[l]; 
   unsigned int Number_of_Outputs; 
   unsigned int List_of_Output_Values[o]; 
   unsigned int Output_Inversion_Flag; 
   unsigned int List_of_Dest_GateID[n]; 
   unsigned int List_of_Dest_PinID[n] 
   unsigned int Mask1; 
   unsigned int Mask2; 
   unsigned int FunctionGroup; 
}; 

 

 

 

 

 

 

 

Figure 69 Data structure for Hardware and Software 
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Delay values are organized as rise/fall time pairs and stacked up in the Delay 

memory, as described in Chapter 5.  Most of the gates in the library only use one rise/fall 

time pair as their delay information (fixed delay), but some gates such as XORs contain 

multiple entries of rise/fall pairs since they exhibit state dependent I/O-path delays.  

Multiple delay entries are also linearly stacked in the delay memory, and the SDF parsing 

software provides the pre-computed starting address of the delay memory (Delay Base 

Address).   

 
 

7.3  Scalability of the Architecture 

There are two aspects of the scalability.  One is the scalability of the gate model, 

which addresses the gate size.  The other is system scalability, which determines the 

capacity of the logic simulation system.   

Our components are pre-scaled to support up to 8 inputs for single level logic 

gates, and up to 64 inputs for two level logic cells such as AO/OA gates.  Table 45 shows 

the resource usage report by the Quartus-II compiler.  Speed was measured by inserting 

registers on input and output ports (register to register delay) so that the IO port delay 

does not hinder the performance of the primitives.  Every component runs at 10ns or 

faster, except the UG_AoOa8x8 primitive.  This is because our UG_AoOa8x8 primitive 

is implemented as 2-level logic.   

Notice that our prototype design runs at 39.8 MHz (shown in Section 7.2.2).  This 

is a normal phenomenon for chip design due to the place and route process.  This 
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becomes more severe when we use an FPGA as target platform, because unlike ASIC 

designs, where the transistors can be physically placed and resized, FPGAs only deal 

with assigning the functionality to the existing hardware resources (Logic Elements), and 

connecting these hardware resources.  The numbers shown in Table 45 can be changed 

when different chips with different technologies are used and will not be discussed any 

further.   

Table 45 Resource Usage and Speed for Logic Primitives 

Altera's EP20K200EFC672-1X 
Primitive LE Speed 

Univ_AndOr8 145 112.98MHz 
Univ_AoOa8x8 686 77.17MHz 

Univ_XOR8 143 138.29MHz 
MUX41 95 103.98MHz 

FA 48 117.08MHz 
D-FF 21 161.34MHz 

 

Table 46 shows the width of each component when our design scales to a 

100,000-gate capacity.  The assumptions made are: 

• Maximum number of inputs for 1-level logic cells: 8 

• Maximum number of inputs for 2-level logic cells: 8×8 = 64 

• Maximum number of outputs for any cells: 2 

• Average number of fan-out per gate: 5 

• Average number of rise/fall delay value pair per gate: 5  

• Total delay memory space: 500,000 (rise/fall time pair) 
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Based on above assumptions, the items in Table 46 were computed.  For example, 

the width of “Gate ID” is computed as ceiling(log2(100,000)) = 17, therefore the gate 

address space is 17 bits wide.  To support up to 64 inputs for 2-level gates, 6-bits 

(ceiling(log2(64)) = 6) are required to encode the input Pin ID.  Also, the “List of Input 

Value” item grows quite large, (2×64 = 128 bits).  With the maximum fan-out of 5, the 

“List of destination gate ID” has to be 85-bits (5×17 = 85), and the “List of destination 

Pin ID” should be 30-bits (= 5×6).   

Table 46 Data Width for 100,000 Gate Simulation 

Data item Bits Comments 
Mask1 2 Mask values for 0, 1, Z, X 
Mask2 2 Mask values for 0, 1, Z, X 

Function Group 4 16 different functions 
number of inputs 6 total 64 inputs 

number of outputs 1 total 2 outputs 
Level 1 output inversion flag 8 1 flag bit for level-1 gates, 8 total 
Level 1 input inversion flag 8 1 flag bit for each input or level-1 gate 

Level 2 output inversion flag 2 1 flag bit for each output 
Delay RAM base address 19 ceiling(log(delay space)) 

List of Input Value 128 64 total inputs, 2 bits total 
List of Output Value 4 2 outputs, 2 bits each 

Power Count 20 1 million switching count 
List of destination Gate ID 170 GateID * average fan-out * max output 
List of destination Pin ID 60 encoded input * average fan-out * max output

TOTAL 434   
 

As was shown from the Table 46, 434 bits are required to perform a 100,000 gate 

design logic simulation task.  This is about 13.5 times wider than the memory bus width 

of a 32-bit generic workstation.  And therefore, workstations require multiple memory 

accesses to read and write this wide data.  On the other hand, our design performs this 

434-bit wide memory access in one shot, and achieves the performance gain.   
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7.4  Performance Comparison 

As was shown in Figure 68, our experimental results for the prototype show that 

our design can process one event every 44 cycles.  If our system runs at 200MHz, then 

for every 220 ns we can process one event.  This is equivalent to 1/(220×10-9)  = 4.55 

million events per second.   

As a comparison, we have measured the software performance of Modelsim (34).  

To acquire simple performance numbers in full-timing mode, we supplied 100 inverters 

in series and measured the run time.  We have also measured the performance with 3,000 

inverters in series in the same manner.  In the 100 inverter case, Modelsim reported a 

time of 62.84 micro-seconds per event, which is equivalent to 1/(62.84×10-6) ≈ 16,000 

events per second.  In the 3,000 inverter case, Modelsim reported 75 micro-seconds per 

event, which is equivalent to 1/(75×10-6) ≈ 13,333 events per second.  As an average, we 

will use 70 micro-second per event ( ≈ 14,000 events per second) as a software 

performance measure.  In comparison, our architecture achieved a speed up of 325 (= 

4.55 million / 14,000) over a software logic simulation.   

Our performance can be further improved if we employ a multi-port memory and 

pipeline the architecture.  The logic evaluation task endemically involves a read-modify-

writeback to the same memory location.  Memory pipelining is not possible if we have to 

“lock” the memory location unless we use a multi-port memory, so that memory-read and 

memory-write can be performed independently.   
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Our bottleneck also comes from slow memory performance on both the scheduler 

block and logic evaluation block, because logic simulation is a memory intensive task.  

Having a faster memory will benefit both hardware and software approaches.  But our 

performance comes from a wide memory access and a simplified hardware structure by 

avoiding overheads caused by the operating system, virtual memory management, and 

multiple instructions run on a general purpose processors.   

IBM’s LSM and YSE (14, 15) have 63,000 and 64,000 gate capacity, respectively, 

with a speed of 12.5 M gates/sec.  They can handle 4-level signal strength, but cannot 

handle full-timing simulation.  IBM’s last product, EVE (16), uses 200 processors with a 

top speed of 2.2 billion gates/sec (assumed linear) and a two million gate capacity, but 

they still cannot handle full-timing simulation.  All of IBM’s accelerators limit the 

maximum number of inputs to four.  In comparison, IBM’s accelerator is 275% faster 

than our design because their lack of full-timing capability simplifies the hardware and 

therefore, improves the speed.  Also, limiting the number of inputs require that a single 

cell with more than 4 inputs has to be broken up into multiple pieces before each piece 

can be evaluated and merged.  This will drop the actual event per second performance 

number.  As a conclusion, our hardware will out-feature IBM’s design with a trade off of 

speed.   

ZyCAD’s LE system performs 3.75 million gates per second per processor and 

has a top speed of 60 million gates per second (assumed linear) with 16 processors (18).  It 

can also handle 4-level signal strength without full-timing simulation.  In comparison, our 

design out-performs ZyCAD by 21%.   
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The most recent product is NSIM, developed by IKOS (19).  Their performance 

claim is 40 to 100 times faster than software.  The reason for varying performance is due 

to the IKOS primitive.  In the IKOS simulation environment, the circuit under test (CUT) 

has to be mapped according to the IKOS provided primitives, while our approach is 

based on modeling the cell on an “as is” basis, as was shown in Chapter 4.  Therefore, re-

mapping the CUT into IKOS primitives consumes time and reduces the capacity 

(complex cells have to be broken into tens of IKOS primitives).  This re-mapping of 

IKOS primitives also causes complex cells to generate more events, which reduces the 

performance.  NSIM does handle full-timing simulation.  As discussed above, the 

average software performance (Modelsim) is approximately 70 micro-second per event 

(14,000 events/second) for full-timing simulation.  When NSIM is 40 times faster than 

software, then its performance is 14000×40 = 560,000 events per second.  If NSIM is 

100 times faster than software, then its performance is 14000×100 = 1.4 million events 

per second.  Therefore, our design out-performs NSIM with similar features.  Our design 

is 4.55/0.56 = 8.125 times faster than NSIM if NSIM is 40 times faster than software, and 

4.55/1.4 = 3.25 times faster if NSIM is 100 times faster than software.   

The emulation acceleration hardware (Quickturn and IKOS) cannot be directly 

compared with simulation accelerators, because emulators directly map the circuit design 

into the given platform (usually an array of FPGAs) and physically run the design in the 

system.  Therefore, they loose all the technology dependent information and ignore the 

timing information.  These emulators are extremely fast, but they can only be used for 
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verifying logical correctness, because they lack all the features that most circuit verifiers 

need.   

Since our design allows one to handle co-simulation with a large timing 

resolution, the performance of our scheduler severely impacts the overall performance.  

Table 47 shows the effect caused by different event memory configurations of the 

scheduler.  The memory depth indicates the depth of a single segment of event memory 

for a local minimum search.  As we can see from the table, our performance drops as the 

depth of the event memory increases, because our scheduler is based on a linear search.   

Table 47 Event Memory Depth vs. Performance 

Memory Depth (k) M Events/sec
8 4.55  

16 2.63  
32 1.43  
64 0.75  

128 0.38  
256 0.19  

 
We have compared the performance of our design with the performance of IKOS 

NSIM, which is currently available in the market.  The result is shown in Figure 70.  Up 

to the memory depth (k) of 32, our performance is better or similar to their peak 

performance (100 times faster than software), and from 32 to 64 our performance is still 

better than their 40 times performance claim.  However, when the memory depth is 

increased to 128 or more, our performance drops below their performance.   
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Figure 70 Performance Comparison between Our Design and IKOS 

 
As discussed in a previous chapter, an event wheel can improve the scheduler’s 

performance.  IKOS uses the event wheel as their scheduler implementation and therefore 

their scheduling capability is limited in nature. 

As a conclusion, the performance of our design is faster than IKOS and similar to 

ZyCAD, but slower than IBM.  But our design out-features all hardware acceleration 

systems.  Table 48 summarizes the performance and feature comparison.   

Table 48 Performance and Feature Comparison 

  Capacity 
Full 

Timing

Multi-level 
Signal 

Strength 
Co-

simulation
Power & 

Heat Events/Sec 
IBM 63K to 2M no Yes n/a no 12.5M 

ZyCAD 1M yes Yes n/a no 3.75M 
IKOS 8M yes Yes n/a no 560K to 1.4M

ModelSim scalable yes Yes n/a no 14K 
Univ. Pitt 100K+ yes Yes possible yes 4.55M 
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As was shown in Figure 68, our design has a mechanism to record the power 

count.  This is a new feature built into our architecture, which can guide the designer to 

isolate the thermal hot spots in the design.  If our design is used in the pre-technology 

mapping stage, this information can guide the layout process so that the hot- spots in the 

chip can be more evenly distributed, allowing the chip to run cooler.  Adding up all of the 

output change counts will also provide the designer with a measure of power 

consumption.  The equation for dynamic power consumption was discussed in Chapter 1.   

We have successfully demonstrated that our design can out perform the software 

logic simulation.  We also compared our performance and features to the existing 

hardware simulation accelerators, and have shown that our design has better or equivalent 

performance, and that our design provides more features than existing hardware 

simulators.   
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8.0 CONCLUSIONS 

 

8.1  Summary 

With the increasing complexity of modern digital systems, and tight time to 

market restrictions, design verification has become one of the most important steps in the 

Electronic Design Automation (EDA) area.  Design verification through full-timing logic 

simulation has been relying on software running on a fast workstation with a general-

purpose architecture.  Due to the growing complexity of circuits, this software solution 

no longer provides sufficient performance.   

In Chapter 1, the need for a fast and accurate logic simulation mechanism was 

discussed.  Chapter 2 described various algorithms used in the software approach.  The 

performance bottleneck was identified and discussed, as was related research.  In Chapter 

3, a new hardware architecture was proposed and its architectural component modules 

and tasks were defined.  Chapter 4 introduced the concept of behavioral modeling for 

each of the logic cells and primitives.  We introduced a new set of primitives called the 

Any( ) and All( ) functions.  With these new primitive functions, the logic cell evaluation 

design was optimized and implemented.  The size of the standard lookup table approach 

was computed and compared with our approach.  In an 8-input Universal Gate for 

AND/OR/NAND/NOR implementation example, the size reduction factor of 21,845 was 

achieved.  To implement a full-timing simulation, various delay models were introduced 

and different memory architectures were explored and compared in Chapter 5.  In 

 



150 

Chapter 6, we analyzed the existing scheduling algorithm and identified the related 

problems and the performance bottlenecks.  We have proposed a parallel sub-scanning 

scheduler design, which can handle mixed timing resolution so that it can be expanded 

into the hardware/software co-simulation.  In Chapter 7, a proof of concept prototype of 

our architecture was implemented, and its performance was measured and compared to 

the existing software and hardware simulators.  Experimental results show that our 

architecture can achieve a speed up of 325 over the software logic simulation.   

 
 

8.2  Contributions 

This thesis seeks an architecture design to enhance the performance of logic 

simulation in hardware.  The primary contributions of this work are as follows: 

1. Software Performance Bottleneck Analysis:  The logic simulation software 

algorithm and performance were analyzed and the performance bottleneck was 

identified as the memory activity of “read-modify-writeback”.   

2. Hardware Concurrency:  Each sub-task is designed in a designated hardware to 

utilize parallelism within the logic simulation algorithm.   

3. Behavioral Modeling and Universal Gate:  A cell library was examined and cells 

were modeled according to their behavior.  Based on the behavioral model, the 

concept of a “Universal Gate” was developed and implemented in hardware to 

simplify the logic evaluation process.  This Universal Gate was also used to 

implement multilevel logic cells such as AO and OA logic cells.  The new 
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hardware primitives designed for the behavioral modeling includes: Any/All 

circuit, equivalence checker and edge detector circuits.  Emulation is also 

included into the evaluation to compute XOR and XNOR logic functions.  

Universal gates are reused for evaluating multi-level logic cells.   

4. The Scheduler:  The scheduler circuit is designed and implemented to provide 

more accurate timing (fine grain timing resolution).  The memory structure of the 

scheduler is divided to exploit the concurrency in the scheduling algorithm.   

5. Multi-level Signal Strengths:  The architecture handles the 4-level signal strengths 

and a full-timing delay model.   

6. Scalable Architecture:  The architecture is capable of computing up to 8 inputs for 

single level gates, and 64 inputs for two level gate cells.  The architecture is also 

designed to scale to over a 100,000 gate capacity to accommodate the complexity 

of the modern digital systems.   

7. Speedup:  Our architecture has a speed up of 325 over a software logic simulator.   

8. Power Count:  The output change count mechanism is built into the architecture 

so that it can be used in test coverage, stuck-at fault simulation, and thermal 

topology analysis.   

9. Pre-processing Software:  Parsing software was implemented to provide accurate 

memory map information for the architecture.  The software shares the same data 

structure with our architecture, and plays a crucial role in hardware logic 

simulation.   
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8.3  Future Work 

As was discussed in previous chapters, the performance bottleneck of the logic 

simulation task comes from memory performance.  In terms of memory activity, the logic 

simulation task can be viewed as “read-modify-writeback” to the same memory location.  

To enhance the system performance, a pipelined architecture can be employed.  If a 

pipeline is implemented, the architecture will have the performance benefit as long as the 

system does not attempt to access the same gate information in the net-list and 

configuration memory consecutively.  In such cases, pipeline has to be stalled until the 

net-list memory finishes its update phase (writeback).  If successive pending event points 

to the same gate frequently, the system will not gain any performance improvement.  

Even with a multi-port memory, the pipeline architecture can still face the hazard 

situation.  If two or more events point to the same gate within the pipeline cycle, the 

pipeline has to be stalled.  Otherwise, the pipeline architecture can utilize the concurrency 

in the simulation task.   

Our architecture has been prototyped in an FPGA, on which the performance has 

degraded considerably due to the nature of a PLD device.  If the architecture is 

implemented using ASIC technology, all of the functional blocks we have designed can 

maintain the delay characteristic within the unit.  Therefore, with an addition of a small 

routing delay, the architecture can perform in a more predictable manner.   
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