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ABSTRACT 

HYDRODYNAMICS, MASS TRANSFER AND MODELING OF THE TOLUENE OXIDATION PROCESS 

 

Romain Lemoine, Ph.D. 

University of Pittsburgh, 2005 

 

The equilibrium solubility (C*), Critical mixing speed (NCRE) and (NCRI), Induced gas flow rate (QGI),volumetric 

liquid-side mass transfer coefficient (kLa), liquid-side mass transfer (kL), gas-liquid interfacial area (a), gas holdup 

(εG), Sauter mean bubble diameter (dS), and the bubble size distribution of N2, O2 and air in liquid toluene and three 

mixtures of toluene, benzaldehyde and benzoic acid, aimed at simulating the continuous liquid phase toluene 

oxidation (LPTO), were measured in a 4-liter ZipperClave surface aeration (SAR), gas inducing (GIR) and gas 

sparging (GSR) reactors operating under wide ranges of mixing speed (N) (800-1200 rpm), liquid height (H) (0.171-

0.268 m in the SAR and GIR), superficial gas velocities (UG) (0.000-0.004 m/s in the GSR), temperature (T) (300-

453 K) and pressure (P) (1-15 bar). These parameters were also measured in a 1-ft diameter, 10-ft high bubble 

column reactor (BCR) under various pressures (P) (2-8 bar), gas velocities (UG) (0.06-0.15 m/s). 

The solubility values of N2, O2 and air in liquid toluene and the three mixtures were calculated using a modified 

Peng-Robinson equation of state. (kLa) data were determined using the transient physical absorption technique. The 

bubble size distributions as well as the Sauter mean bubble diameters were obtained from the photographic method 

and the gas disengagement technique in the agitated reactors and bubble column reactor, respectively. In the agitated 

reactor, the gas holdup values were measured through the dispersion height measurement technique, and the 

manometric method using two differential pressure (dP) cells was employed in the bubble column reactor. From the 

gas holdup, Sauter mean bubble diameter and kLa experimental values, a and kL were calculated under various 

operating conditions. NCRE and NCRI as well as aWave were estimated by analyzing the videos taken with an on-line 

high-speed Phantom camera through the reactor’s Jerguson windows. In the GIR, QGI was determined using a highly 

sensitive Coriolis mass flow meter. The Central Composite Statistical Design and analysis technique was used to 

study the effect of operating conditions on these hydrodynamic parameters. 

At constant temperature, the equilibrium solubilities (C*) of the three gases in all liquids used appeared to 

increase linearly with pressure and obey Henry’s Law, however, the values exhibited minima with increasing 

temperature. The C* values were found to increase with increasing gas molecular weight, and decrease with the 

addition of benzaldehyde and benzoic acid to pure toluene. A dimensionless form of Arrhenius-type equation, in 

which the activation energy was dependent of temperature, was developed to predict Henry’s law constant for the 

three gases in toluene and mixtures with a regression coefficient > 99%. 

In the SAR, increasing N, T or decreasing H increased aWave, εG, a, kL and kLa, and decreased dS and NCRE, 

whereas increasing P, decreased aWave, εG, a, kL and kLa and had no effect on dS and NCRE. In the GIR, increasing N or 
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decreasing H increased QGI, εG, a, kL, kLa and dS and decreased NCRI. Also, increasing T increased and then decreased 

QGI, εG and a; increased kL and kLa; and decreased dS and NCRI. In addition, increasing P decreased slightly QGI and 

εG but did not affect a, kL, kLa, dS and NCRI under the operating conditions used. In the GSR, increasing N, T and UG 

increased εG, a, kL and kLa. Also, increasing N and T, or decreasing UG decreased dS.  

The addition of benzaldehyde and benzoic acid to pure toluene was found to significantly affect the 

hydrodynamic parameters (dS and εG), in the GSR and GIR, especially at low temperature due to formation of froth, 

which led to the enhancement of kLa. The hydrodynamic and mass transfer parameters obtained indicated that the 

behavior of the SAR was mainly dependent on kL, whereas those of the GSR and GIR were strongly affected not 

only by kL, but also by a. In the bubble column reactor, under the operating conditions used, kLa, a and εG values 

were found to increase with increasing gas superficial velocity and pressure, whereas dS and kL values appeared to 

decrease with pressure and increase with superficial gas velocity. The effect of gas nature on the hydrodynamic and 

mass transfer parameters was found to be insignificant, whereas the effect of addition of benzaldehyde and benzoic 

acid to pure toluene, aimed at mimicking the actual continuous liquid-phase toluene oxidation process, appeared to 

have a strong impact on both parameters due to froth formation. 

Empirical, statistical and Back-Propagation Neural Network (BPNN) correlations were also developed to 

predict the hydrodynamic and mass transfer parameters obtained in this study in the agitated reactors (ARs) and 

bubble column reactor (BCR) along with a large data bank of literature data (7374 data points in ARS and 3881 data 

points in BCRs). These correlations were then incorporated in calculation algorithms for predicting both 

hydrodynamic and mass transfer parameters in ARs and BCRs.  

Using these algorithms, two comprehensive models, including the effects of mass and heat transfer, 

hydrodynamics, and kinetics were developed for bubble column reactors (BCRs) and series of gas sparging reactors 

(GSRs) to simulate the commercial Liquid-Phase Toluene Oxidation (LPTO) process. An intrinsic kinetic rate 

equation for the toluene oxidation was also developed using literature data. The effects of the reactor diameter (DC), 

reactor height (H), and superficial gas velocity (UG) or mixing speed (N) on the LPTO process performances 

(toluene conversion, benzaldehyde selectivity and yield) were investigated in a BCR and a cascade of GSRs. The 

pressure and temperature at the inlet of the reactors were set at 1.0 MPa and 420 K; the feed gas to the reactors was a 

mixture (50/50 by mole) of oxygen and nitrogen; and the liquid feed was toluene containing Co catalyst and a NaBr 

promoter at concentrations of 0.22 wt% and 1.76 wt%, respectively. The heat of reaction was removed from both 

reactor types using water in cooling pipes, representing 2% of the reactor volume; and the gas was sparged into the 

reactors through a multi-orifices gas distributor with an open area, representing 10% of the reactor cross-sectional 

area.  

The model predictions showed that under the operating conditions used, toluene conversion of about 12%, a 

benzaldehyde selectivity of 40% and a benzaldehyde production in the range of about 1500 tons/year could be 

achieved using a superficial gas velocity of 0.1 m/s in the BCR (10-m height, 2-m Inside diameter) and 0.002 m/s in 

the series of 5 GSRs (2-m inside diameter, and 2-m liquid height). The BCR selected was found to operate in the 

kinetically-controlled regime whereas the 5-GSRs appeared to operate in a regime controlled by both gas-liquid 
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mass transfer and reaction kinetics. Thus, due to its attractive economics in addition to the mechanical constraints of 

GSRs, the BCR seems to be the reactor of choice for the commercial-scale LPTO process. 
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NOTATION 

A numerical constants,- 

a Gas-liquid interfacial area per unit liquid volume, m-1 

aB Gas-liquid interfacial area of the gas bubbles per unit liquid volume, m-1 

aEntrained Gas-liquid interfacial area of the entrained bubbles per unit liquid volume, m-1 

aInduced Gas-liquid interfacial area of the induced bubbles per unit liquid volume, m-1 

apipes Cooling tube specific external area referred to the total reactor volume, m-1 

aSparged Gas-liquid interfacial area of the sparged bubbles per unit liquid volume, m-1 

awall Wall specific area referred to the total reactor volume, m-1 

B numerical constants,- 

C numerical constants,- 

C* Equilibrium gas solubility in the liquid, kmol.m-3 

Ci,G,Large Concentration of component i in the large bubbles, mol.m-3 

Ci,G,Small Concentration of component i in the small bubbles, mol.m-3 

Ci,L Concentration of component i in the liquid phase, mol.m-3 

CG Gas concentration, mol/m3 

CP,L Heat capacity of the liquid phase, J/kg/K 

DAB Diffusivity of the gases in toluene, m2.s-1 

dB Bubble diameter, m or mm (when specified) 

DC Diameter of the column, m 

DC,in Inside column diameter, m 

DC,out Outside column diameter, m 

DG Gas dispersion coefficient, m2s-1 

DG,W Gas dispersion coefficient of water in the vapor phase, m2s-1 

DIsol Diameter of the isolation, m 
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f Fugacity, bar 

f Fanning factor, - 

G Numerical parameter in the Grunberg and Nissan equation , - 

g Acceleration due to gravity, m s-2 

H Liquid height above the bottom of the reactor, m 

H Column Height, m 

HC Height of liquid circulation eddies , m 

HD Dispersion height, m 

He Henry’s constant, kJ.kmol-1 

He’ Modified Henry’s constant, atm/mole fraction 

HL Liquid height above the impeller of the reactor, m 

hL Heat transfer coefficient of the Liquid, W.m-2.K-1 

Ho Pre-exponential constant in Equation (6-2), kJ.kmol-1 

Hei Henry’s Law constant of gas component i, Pa.m3.mol-1 

He* Reduced Henry’s Law constant, - 

HeMAX Henry’s Law constant at turn around point of solubility data, Pa.m3.mol-1 
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ΔHR,i Heat of reaction, J/mol 

K Pseudo kinetic constant, s-1 

ki Rate constant of the oxidation reactions, - 

ki,Ref. Constants in the rate of the oxidation reactions, - 

kL Liquid-side mass transfer coefficient, m.s-1 

kLa Volumetric liquid-side mass transfer coefficient, s-1 

kL-B Liquid-side mass transfer coefficient of the induced gas bubbles, m.s-1 

mi Constant in the reaction rate equations, - 

Mw Molecular weight of toluene, kg.kmol-1 

M*Measured Total Induced gas flow rate of N2, kg.s-1 

N Mixing speed, rpm or Hz (when specified) 

n Numerical parameter, - 

NCR Critical mixing speed, rpm or Hz (when specified) 

N0 Number of Orifices in the gas distributor, - 

NP Power Number 

npipes Number of cooling tubes, - 

P* Total power input, W 

PG* Gassed power input, W 

P Pressure, bar 

PC Critical pressure, bar 

P1,F Equilibrium partial pressure of gas, bar 
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T Temperature, K 
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T* Reduced Temperature, - 

TC Critical temperature, K 

TL Liquid Temperature, K 
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Toutside Outside Temperature, K 

TRef. Constant in Equation (6-117), K 

TS Saturation temperature of water, K 

TW Water Temperature, K 

u0,i Bias of the ith hidden node 
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UG Superficial gas velocity, m.s-1 
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UL Superficial liquid velocity, m.s-1 
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Ut Bubble rising velocity m.s-1 

UT Terminal gas velocity, m.s-1 

UW Superficial Water velocity, m.s-1 

Uwall Heat transfer conductance for the wall, J/m2/s/K 

V Volume, m3 

v Phase molar volume, m3.kmol-1 

VB Gas bubble volume in the liquid, m3 
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1.0 INTRODUCTION AND BACKGROUND 

Toluene, also known as methylbenzene, is mainly produced by catalytic reforming of naphtha and by gasoline 

pyrolysis during ethylene and propylene production (1). As shown in Table 1, 90% of the 1940 millions of gallons of 

toluene produced per year by the US are recovered from catalytic reforming, while the remaining of the toluene 

production is either obtained by gasoline pyrolysis (7%) or as a by-product of the styrene process from ethyl-

benzene (3%). The US demand for toluene is growing at an annual rate of 2.5% as of today, however, the toluene 

demand is decreasing due to its environmental and health issues, which explain why no new toluene plants are being 

built and why the toluene current prices on the market is relatively stable at about $1.00 per gallon (2). While the 

major uses for toluene are for substitution to benzene, either as an additive to motor oil for better octane rate, or as a 

solvent, or as a chemical intermediate, toluene is the raw material for wide applications, including resins, polymers, 

explosive, fine chemicals and saccharin (3). 

The toluene oxidation process is primarily used to produce benzoic acid, benzaldehyde, benzoate salts and 

benzyl alcohols, which are widely employed in diverse industrial applications as can be seen in Figure 1. For 

instance, benzoic acid is used as a prime raw material to produce phenol (1,4,5,6,7,8), caprolactam (4), glycol dibenzoates 
(4, 9) and, benzoates salts (8,9,10), which are utilized in the food industry because of their flavoring characteristic (8, 10), 

and in the pharmaceutical industry to produce various aldehydes (1, 8, 10). In 1994, caprolactam, benzoic acid and 

benzaldehyde were among the most produced chemicals in the United States (11). Moreover, in 1997, the worldwide 

leader in benzoic acid (over 30%), DSM had its annual sales of fine chemicals reaching $700 millions, where the 

toluene phenol production process (TOLOX) represented a substantial part (3). Currently, however, the 

manufacturers of benzoic acid through the liquid-phase toluene oxidation are starting to shift the production to the 

high value by-products, benzyl alcohols and benzaldehydes due to the following reasons: (1) the environmental 

problems are making phenol production through benzoic acid uneconomical (55); (2) the overproduction of benzoic 

acid and the inability of finding attractive markets are steadily decreasing the price of benzoic acid (12,55); and (3) the 

relatively high operating costs and environmental problems are affecting the production of benzyl alcohols and 

benzaldehydes via the toluene chlorination/hydrolysis process (13). For these reasons, the toluene oxidation process is 

of great challenges through its unique multi-functionality.  

The toluene oxidation process can be carried out either in the liquid-phase (7,8,10) or in the gas-phase(1,6,7). Liquid-

phase oxidation, however, appeared to be more advantageous than the gas-phase due to the following reasons: 

1. The reaction takes place more easily in the liquid-phase (393-453 K) than in the gas-phase (673-800 K) (8,10) 

due to better temperature control and energy savings. 

2. The selectivity of valuable products in the liquid-phase is higher than in the gas-phase, as can be seen from 

Table 2 due to the formation of more by-products in the latter process (7,10). 
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Table 1: Toluene Producers and Plant Capacities in US in 2000 (2) 

Company Site 
Capacity 

106 Gal./y. 

BP Chemicals Alliance, Louisiana; Lima, Ohio; Texas City, Texas. 365 
Chevron Port Arthur, Texas. 50 
Citgo Corpus Christi, Texas; Lake Charles, Louisiana; Lemont, Illinois. 105 
Coastal Corpus Christi, Texas; Westville, New Jersey. 65 
Dow Plaquemine, Louisiana. 40 
Equilon,  El Dorado, Kansas. 10 
Equistar Chemicals Alvin, Texas; Channelview, Texas. 85 
Exxon Mobil Baton Rouge, Louisiana; Chalmette, Louisiana; Baytown, Texas, Beaumont, Texas. 330 
Fina Oil and Chemical Port Arthur, Texas. 100 
Hovensa St. Croix, Virgin Islands. 120 
Koch Industries Corpus Christi, Texas. 150 
Lyondell-Citgo Houston, Texas. 35 
Marathon Ashland Petroleum Catlettsburg, Kentucky; Texas City, Texas. 60 
Phillips Petroleum Sweeny, Texas; Guayama, Puerto Rico. 120 
Shell Chemical Deer Park, Texas. 45 
Sunoco Marcus Hook, Pennsylvania; Philadelphia, Pennsylvania; Toledo, Ohio 145 
Ultramar Diamond Shamrock Three Rivers, Texas. 45 
Valero Energy Houston, Texas. 15 
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Table 2: Comparison between Gas and liquid-Phase Selectivity 

Reaction 
Phase 

Conversion of Toluene, % Yield to Benzoic Acid, % Yield to Benzaldehyde, % 

Gas 
Low (1) 
≤ 15 (10) 

50-60 (1) 85 (1) 

Liquid 10-15 (55)-30-40 (1) 10-40 (55), 90 (1) 40-70 (10), 10-30 (55) 
 

Table 3: Comparison between Gas and liquid-Phase Operating Conditions 

Reaction 
Phase 

Temperature range, K Pressure range, bar Catalyst wt % of toluene, % 

Gas 670-800 (1) 300 (1) - 
Liquid 350-440 (1) 1-20 (1) 0.02-5.0 (1) 

 

 

The industrial liquid-phase toluene oxidation is a continuous process in which a mixture of toluene, 

homogeneous cobalt-based catalyst and air (or oxygen) is fed to a vessel under pressures of 0.1-2.0 MPa and 

temperatures of 350-440 K (10,13,14,55) as shown in Table 3. Typically, this process is carried out either in modified 

cascade of agitated reactors (15,16,17,18,19) or in a bubble column reactor (13,14,20) (BCR). The two desirable products of 

the oxidation are benzoic acid and benzaldehyde; however, since these are highly reactive intermediates in the free 

radical chain reaction, numerous undesirable by-products are also formed (7,8,10,21). Thus, controlling the 

oxygen/toluene ratio in the feed to the reactor will affect the kinetics, hydrodynamics, and heat as well as mass 

transfer, which in turn will impact the selectivity, yield of the desirable products, i.e., the performance of the 

oxidation process (8,9). 



 

 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Toluene Oxidation Products Tree (3) 
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1.1 INDUSTRIAL LIQUID-PHASE OXIDATION PROCESSES 

Several liquid-phase processes have been developed and modified since its first commercial introduction in the 

1950s. Different routes can be employed during liquid-phase toluene oxidation process, in order to obtain a good 

selectivity of the desirable products. The oldest process, i.e. Dow process, uses metal catalyst (1), which is either 

cobalt acetate in aqueous solution or cobalt heptanoate. No promoter is added and the operation is performed 

continuously, by recycling the major by-products, toluene, and chain initiators, assuring an optimum reaction rate 

without any induction period. The oxidation reactors operate at temperatures between 410-420 K and pressures 

between 6-8 bars. The air is usually fed through a sparger and the reactor’s oxidizing medium is circulating through 

an external heat exchanger as shown in Figure 2. The reactor effluent produces benzoic acid with an average 

conversion of 35 %. This effluent is then stripped of toluene and other light compounds or simply distillated 

fractionally. 

In another process, promoters are added such as: 

 -Sodium Bromide 

 -AIBN (2-2’-azo-bis-isobutyrylnitrile) 

 -Aldehydes 

This promoted oxidation process is essentially used to increase the yield towards benzaldehyde (1, 21). The promoters 

are used to protect benzaldehyde from further oxidation. However, the separation stage caused by the addition of the 

promoter appears obviously as a disadvantage in this process. The high peroxide oxidation process is also used in 

order to increase considerably the chain propagation (1, 4, 38). Benzyl-hydro-peroxides, which are the first 

intermediates produced, can enhance the reaction towards benzyl alcohol or acetate at lower temperature with 

catalyst such as Co, Cr or Fe. 
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Figure 2: The Dow Toluene Oxidation Process (1) 
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1.2 GAS-LIQUID TRANSPORT IN THE LIQUID PHASE TOLUENE OXIDATION 

From the gas absorption viewpoint, toluene oxidation in the liquid-phase is a typical example for an industrial 

process employing gas absorption with a chemical reaction, despite the lack of literature cited for this process. 

Hence, the mass and heat transfer parameters, hydrodynamics, and reaction kinetics can affect the course of the 

reaction, since the process involves the following steps (22,23): 

Step 1: Transport of oxygen from the gas phase bulk to the gas-liquid interface. 

Step 2: Transport of oxygen from the interface to the bulk liquid (toluene) through the liquid film. 

Step 3: Chemical reaction between the dissolved oxygen and liquid toluene. 

For steps 1 and 2 according to the two-film theory, a steady state mass transfer across a stagnant gas-liquid interface 

can be described for the gas-side and the liquid-side, as shown schematically in Figure 3, by the following 

equations: 

( ) ( )*CCHe ak
He

*P
He
PHe ak*PPakR GGGGS −=⎟

⎠
⎞

⎜
⎝
⎛ −=−=  (1-1) 

( )LLS C*CakR −=  (1-2) 

LK
m
Catalyst

m
TOL

m
LKineticsS CΦKCCCkR 321 ==  (1-3) 

with K the pseudo kinetic constant and ΦK is function of the oxygen concentration.  

The overall rate of mass transfer in terms of the bulk gas and liquid concentrations of oxygen or nitrogen can thus be 

expressed as: 

KLG

G
S

ΦK
1

ak
1

aHek
1

C
R

++
=  

(1-4) 

Generally, the partial pressure of toluene in the gas phase is so small that the gas phase resistance can be neglected. 

This assumption suggests that Equation (1-4) can be reduced to Equation (1-2) and accordingly, the knowledge of 

the solubility (C*) and the volumetric liquid-side mass transfer coefficient (kLa) is essential in order to determine the 

rate of mass transfer in the oxidation process. Besides, if both mass transfer and kinetic parameters control the 

process, the knowledge of the mass transfer coefficient (kL) and the gas-liquid interfacial area (a) in addition to the 

kinetic model and its constants are needed in order to elucidate their effects on the products composition and yield. 

For step 3, there are several kinetic models in the literature, as described in Table 5, in order to describe the 

catalyzed toluene auto-oxidation process. Despite the different number of steps suggested by the reaction 

mechanism reported in the literature (5-10,22,38-50), all models indicate the nature of free radical autocatalytic chain 

reaction in such a process, and the existence of an induction period, representing the time required to form a benzyl 

radical. This, also called lag time, is often reduced by the addition of a promoter (1). Thus, depending on how fast or 



 

 8

slow the chemical reaction involved is, the overall rate of the process may be controlled by liquid-side mass transfer, 

kinetics or both. 

The mass and heat transfer, hydrodynamics, and reaction kinetics can affect the course of the reaction, and 

subsequently the selection and design of the reactor for any oxidation processes is essential. Stirred tanks, such as 

gas sparging reactors (GSR), are commonly used in chemical and petroleum industries, and often preferred over 

bubble column reactors (BCRs). This is generally attributed to the better knowledge of the design constraints such as 

mass transfer and hydrodynamic parameters in the case of stirred tanks. Nevertheless, depending on the gas-liquid 

process, BCRs could be a viable alternative to stirred tank reactors for both economic and operating reasons. The 

design and scale-up of both gas-liquid contactors require, among others, precise knowledge of the kinetics, 

hydrodynamics, and heat as well as mass transfer characteristics.  
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Figure 3: Gas Concentration Profile in the Toluene Oxidation Process
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2.0 LITERATURE REVIEW 

The knowledge of thermodynamic, mass transfer, heat transfer and hydrodynamic characteristics, as well as the 

reaction kinetics involved is of crucial importance in the design and modeling of gas-liquid processes (8, 24). In fact, 

the selectivity and productivity of the process are affected by the reactor type, configuration and operating mode 

through these parameters. Hence, the main thermodynamic, mass transfer and hydrodynamic as well as kinetic 

characteristics of the liquid-phase toluene oxidation process are discussed below. 

2.1 GAS SOLUBILITY IN LIQUIDS, C* 

The gas equilibrium solubility C* in liquids is required as shown in Equations (1-2) and (1-4) to design and 

determine the process rates in gas-liquid reactors. The equilibrium solubility C* of N2 and O2 in toluene is scarcely 

reported in the literature, as shown in Table 4. Also, available studies were usually limited by the operating 

conditions at which they were carried out, since several of them were conducted under atmospheric pressure and 

ambient temperature. This raises serious concerns for the industrial uses of such experimental data and correlations. 
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Table 4: Literature Survey on Solubility of N2 and O2 in Toluene 

References P, bar T, K Remarks 
Merck Handbook (25) 1 290-300 Solubility data 
Lachowicz et al. (26) 1 298 Molar fractions of N2 are measured in liquid phase. 
Prausnitz et al. (27) 20-50 323, 348 Molar fractions of N2, H2 and CO2 are measured in gas phase. 
Stephen et al. (28) 1 293 Solubility of O2 is reported. 
Wilhem and Battino (29) 1 298 Molar fractions of N2 and O2 are measured in liquid phase. 

Field et al. (30) 1 280-315 Molar fractions, Ostwald and Bunsen coefficients, partial molar Gibbs 
energy of solution of N2 and O2 are measured. 

Battino et al. (31) 15-400 480-550 Molar fractions of toluene in N2 and O2 gas phase are obtained. 
Battino et al. (32) 15-400 480-550 Molar fractions of N2 in toluene are reported. 

Liave et al. (33) 35-355 320-350 Molar fractions of toluene in liquid phase are measured as function of 
temperature and pressure (N2). 

Richon et al. (34) 100-1000 310-475 Molar fractions of N2 are measured in gas and liquid phase. 
Schlichting et al. (35) 15-105 240-285 Molar fractions of toluene in N2 gas phase are obtained. 

Lin et al. (36) 50-155 423-545 Molar fractions of N2 and He are measured in both phases, as well as 
equilibrium constants. 

Ashcroft and Ben Isa (37) 1.013 298 Mole fraction of N2 and O2 are reported. 
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2.2 KINETICS OF TOLUENE OXIDATION 

Currently, air oxidation of toluene is the main source of most of the world’s synthetic benzaldehyde, benzyl alcohol, 

benzoic acid, benzoic salts and phenol as reviewed in Section 1.0. Both vapor- and liquid-phase air oxidation 

processes have been used. The vapor-phase oxidation was the dominant process in the 1950s and early 1960s, but 

due to its high cost, the liquid-phase process had emerged. The process was introduced and developed in the late 

1950s by Dow Chemicals Company (5,6) and DSM (5). 

2.2.1 Toluene Oxidation Reactions 

Despite several studies over the years on the kinetics of toluene oxidation, few data are available. Nevertheless, 

toluene oxidation is usually described as a free radical autocatalytic chain reaction mechanism involving three 

different steps: 

 -Chain initiation 

 -Chain propagation 

 -Chain termination 

According to Sheldon et al. (21), the three steps involved take place as follow: 

Chain initiation: 
C6H5CH3 + CoIII → C6H5CH2* + CoII + H+ 

Chain propagation: 
C6H5CH2* + O2 → C6H5CH2O2* 

C6H5CH2O2* + C6H5CH3 → C6H5CH2O2H + C6H5CH2* 

Chain termination: 
C6H5CH2* + C6H5CH2O2* → C6H5CH2O2CH2C6H5 

2 C6H5CH2O2* → C6H5CH2O4CH2C6H5 

C6H5CH2O4CH2C6H5 → non radical products + O2 

Sheldon et al. (21) described also a mechanism based on promoter decomposition in the chain initiation as follow: 

Chain initiation: 
In2 → 2 In* 

In* + C6H5CH3 → InH + C6H5CH2* 

In addition, a mechanism of non-catalytic oxidation of toluene was proposed by Emmanuel et al. (38) and Sheldon et 

al. (21): 

Chain initiation: 
C6H5CH3 + O2 → C6H5CH2* + HO2* 

Chain propagation: 
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C6H5CH2* + O2 → C6H5CH2O2* 

C6H5CH2O2* + C6H5CH3 → C6H5CH2O2H + C6H5CH2* 

Degenerate Chain-Branching: 
C6H5CH2O2H → C6H5CH2O2* + OH* 

Chain termination: 
C6H5CH2* + C6H5CH2* → C6H5CH2CH2C6H5 

C6H5CH2O2* + C6H5CH2* → C6H5CH2O2CH2C6H5 

2 C6H5CH2O2* → non radical products + O2 

During all these mechanisms, the oxidation process starts with a chain initiation, which generates free radicals. After 

the formation of the free radicals, the process propagates via hydro-peroxide formations. This chain propagation 

process is relatively rapid due to low activation energy of reaction (21) (E=85kcal/mol). Finally, the chain terminates 

as a result of reactions between free radicals.  

Several authors’ proposed diverse mechanisms for the liquid-phase toluene oxidation and the result of their studies 

are listed in Table 5. Sheldon et al. (7), Borgaonkar et al. (10), as well as Vasvari and Gal (39) and Quiroga et al. (40) 

noted the existence of an induction period also called lag time. This period is usually defined as the time required to 

produce the benzyl radicals. This finding is of great importance in order to perform the measurement of the reaction-

free mass transfer parameters during the process. According to these authors, the induction period could range 

between 20 minutes to 6 hours, depending on the temperature, catalyst and promoter used. 
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Table 5: Literature Survey on the Kinetic Mechanisms of the Toluene Oxidation 

Reference Scheme Remarks 
Dewar (41) Pb(OAc)4 → Pb(OAc)2 + 2 OAc* Free chain auto-catalytic 

Cavill et al. (42) 

OAc* + Ph-CH3 → AcOH + Ph-CH2* 
OAc* → CH3* + CO2  
CH3* + Ph-CH3 → Ph-CH2* + CH4 
Ph-CH2* + Pb(OAc)4 → Ph-CH2 OAc + OAc* + Pb(OAc)2 
Ph-CH2* + OAc* → Ph-CH2 OAc 

Mechanism with lead tetra- 
acetate. (1st mechanism proposed 
for this process) 

Bacon et al (43) 
MnIV, MnIII, CeIV 
Ph-CH3 → Ph-CHO +H2O 
    S2O8

2-—Ag+ 

Direct free chain catalytic 
oxidation pathway (mechanism 
not described) 

Kaeding (5); 
Kaeding et al.(6) 

                      Cu salt 
Ph-CH3 + 3/2 O2 → Ph-CO2H + H2O 
Ph-CO2H + O2 → by-products: dimmers, phenol 

Overall chemical reaction, 
addition of benzoic acid enhances 
phenol production 

Howard et al. (44) Ph-CH2O2* + Ph-CH3 → Ph-CO2H + Ph-CH2* 
Ph-CH2O2* + Ph-CH2O2* → inactive products 

Rate of termination and 
propagation at 303 K 

Morimoto et al. (9) 

Ph-CH3 + Co3+ → Ph-CH2* + Co2+ + H+ 
Ph-CH2* + O2 → Ph-CH2O2* 
Ph-CH2O2* + Co2+  → Ph-CHO + Co3+ + OH- 

Ph-CHO + Co3+ → Ph-CO* + Co2+ + H+ 

Ph-CO* + O2 → Ph-CO3* 
Ph-CO3* + Ph-CH3 → Ph-CH2* + Ph-CO3H 
Ph-CO3* + Ph-CHO → Ph-CO3H + Ph-CO* 
Ph-CO3H + Co2+ → Ph-CO2* + OH- + Co3+ 

Ph-CO2* + Ph-CH3 → Ph-CH2* + Ph-CO2H 
Ph-CO2* + Ph-CHO → Ph-CO* + Ph-CO2H 

Rate constants and induction 
times are given at 360 K for the 
autocatalytic oxidation of toluene 
in soluble cobaltic salt. The effect 
of promoter was also studied in 
the same conditions: 
benzaldehyde 
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Table 5 (Cont’d) 

Reference Scheme Remarks 

Gadelle et al (45) 

Promoter → r* 
r* + O2 → rO2* 
rO2* + Ph-CH3 → rO2H + Ph-CH2* 
Ph-CH2* + O2 → Ph-CH2O2* 
Ph-CH2O2* + Ph-CH3 → Ph-CH2O2H + Ph-CH2* 
Ph-CH2O2* + Ph-CH2O2*→ 
Ph-CH2O2* + rO2*           → inactive products + O2 
rO2* + rO2*                      → 

Rate constants for initiation 
propagation and termination are 
provided as well as the activation 
energies for the auto-oxidation of 
toluene 

Sakota et al. (46) 

                                k1’ 
Ph-CH3 + Co(III)Br → Ph-CH2OO* + Co(II)BrH 
                                k3 
Ph-CH2OO* + Co(II)BrH → Ph-CHO + Co(III)Br + H2O 
                                k4 
Ph-CH2OO* + Ph-CH3 → Ph-CH2OOH + Ph-CH2* 
                                k5 
Ph-CH2OO* + Ph-CHO → Ph-CH2OOH + Ph-CO* 
                                k6’ 
Ph-CHO + Co(III)Br → Ph-CO3* + Co(II)BrH 
                                k8 
Ph-CO3* + Co(II)BrH → Ph-COOOH + Co(III)Br 
                                k9 
Ph-CO3* + Ph-CH3 → Ph-COOOH + Ph-CH2* 
                                k10 
Ph-CO3* + Ph-CHO → Ph-COOOH + Ph-CO* 
                                k12 
Ph-CO3H + Co2 → Radical → 2 Co(III)Br 
                                k13 
Ph-CO3H + Ph-CHO → 2 Ph-CO2H 
                                k14 
2 Ph-CH2OO* → Ph-CHO + Ph-CH2OH 
                                k15 
2 Ph-CO3* → (Ph-COO)2 + O2 
                                k16 
Ph-CO3* + Ph-CH2OO* → Ph-CHO + Ph-CO2H + O2 

Determination of the mechanism 
of the autoxidation of toluene 
catalyzed with cobalt 
monobromide. Apparent zero and 
first-order in toluene 
concentration for long duration 
and initial conditions 
respectively. Second-order in 
cobalt ion concentration. 
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Table 5 (Cont’d) 

Reference Scheme Remarks 

Scott et al. (47) Ph-CH3 + O2 → Ph-CO2H 
                    CoIII 

Overall rate for the auto- catalytic 
oxidation of toluene by cobalt 
acetate 

Bhattacharya et al. 
(48) 

HBr + O2 → Br* + HO2* 
Ph-CH3 + Br* → Ph-CH2* + HBr  
Ph-CH2* + O2 → Ph-CH2O2* 
Ph-CH2O2* + Ph-CH3 → Ph-CH2O2H + Ph-CH2* 
Ph-CH2O2H + Co2+ → Ph-CH2O* + OH- + Co3+ 

2 Ph-CH2O* → Ph-CHO + Ph-CH2OH 
Co3+ + HBr → Co2+ + H+ + Br* 
2 Ph-CH2O2* → chain termination products 

Free radical chain reaction 
mechanism is proposed. An 
overall rate is given for the 
process at 415 K 

Ivanov et al. (49) 

Co(Oac)2 + Br2 → Co(Oac)2Br- + Br+ 

Co(Oac)2Br- + Ph-CH3 → Co(Oac)2HBr + Ph-CH2* 
Ph-CH2* + O2 → Ph-CH2OO* 
Ph-CH2OO* +Co(Oac)2HBr →Ph-CH2OOH+Co(Oac)2Br- 
Ph-CH2OOH → Ph-CHO + H2O 
Ph-CHO + O2 → Ph-CO2H + ½ O2 

3 steps mechanism of free chain 
catalytic reaction in presence of 
bromine as promoter in methanol. 
Overall rate and kinetic constants 
are given between 403-423 K 

Panneerselvam et 
al. (240) 

             Catalyst, Promoter 
Ph-CH3 + ½ O2 → Ph-CHO + H2O  
Ph-CHO + ½ O2 → Ph-CO2H 

Provide 2 kinetics rates including 
mass transfer resistance. 

Quiroga et al. (40) 
Ph-CH3 → Ph-CHO → Ph-COOH 
                      ↑ 
             Ph-CH2OH 

An auto-catalytic scheme for the 
toluene oxidation and a kinetic 
model 

Borgaonkar et al. 
(10) 

Ph-CH3 → Ph-CHO → Ph-COOH 
                ↓             ↓             ↓ 
                 by-product formation 

The effect of T, P and promoter 
on product yields and induction 
period  
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Table 5 (Cont’d) 

Reference Scheme Remarks 

Emmanuel et al. 
(38) 

Ph-CH3 + O2 → Ph-CH2O2H  
Ph-CH2O2H + Co2+ → Ph-CH2O* + Co3+ + OH- 
Ph-CH2O2H + Co3+ → Ph-CH2O2* + Co2+ + H+ 

Ph-CH2O2* + Ph-CH3 → Ph-CH2O2H + Ph-CH2*  
Ph-CH2* + O2 → Ph-CH2O2* 
Ph-CH2O2H + Co2+ → Ph-CH2O* + Co3+ + OH- 
Ph-CH2O* + OH- → Ph-CHO + H2O 
Ph-CHO + Co3+ → Ph-CO* + Co2+ + H+  
Ph-CO* + O2 → Ph-CO3* 
Ph-CO3* + Ph-CHO → Ph-CO3H + Ph-CO* 
Ph-CO3H + Ph-CHO → Ph-CO2H 
Ph-CH2O* + Ph-CH3 → Ph-CH2OH + Ph-CH2* 

Mechanism of the hydro-
peroxide route. The hydro-
peroxide are believed to have a 
slow decomposition due the 
energy required to break O-O 
bond 

Taqui Khan et al. 
(50) 

Ph-CH3 → Ph-CHO 
                     ↓ 
              Ph-CH2OH 

Rate and activation parameter of 
toluene oxidation. Catalyst: RuIII-
EDTA complex 

Vasvari et al. (39) 

   AIBN 
O2 → 2rO2* + N2* 
                    2rO2* 
Ph-CH3  + O2 → rOOH + Ph-CH2O*2 
Ph-CH2O*2 + Ph-CH3 → Ph-CH2OOH + Ph-CH2O*2 

2 Ph-CH2O*2 → Ph-CHO + Ph-CH2OH + O2 
2 Ph-CH2O*2 → 2 Ph-CH2O* + O2 
2 Ph-CH2O*2 → 2 Ph-C*HOOH 
2 Ph-CH2O*2 → 2 Ph-CHO + H2O2 
Ph-CH2O* + Ph-CH3  → Ph-CH2OH + Ph-CH2O*2 
Ph-C*HOOH → Ph-CHO + OH* 
OH* + Ph-CH3  → Ph-CH2O*2 + H2O 
2 Ph-CHO + H2O2 → Ph-CHO + Ph-COOH + H2O 
Ph-CH2O2H + Ph-COOH → Ph-COOH + Ph-CHO + H2O 

Rate constants for the liquid 
phase toluene oxidation are given 
between 350-365 K. The free 
chain reaction was initiated by 
AIBN. This study stressed out the 
importance of radicals for the 
mechanism proposed. 
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Table 5 (Cont’d) 

Reference Scheme Remarks 

Gardner et al. (51) 

                 KMnO4 in water 
Ph-CH3  + MnO4

- → Ph-CH2H2O+
  + HOMnO3

2- 
           nBu4NMnO4 in neat toluene 
Ph-CH3  + MnO4

- → Ph-CH2*  + HOMnO3
- 

Kinetic data for the toluene 
oxidation by permanganate. 
Initiation chain mechanism for 
two different solvents. 

Lee et al. (52) 

Ph-CH3  + Ag++ → Ph-CH2* + Ag+ 
Ph-CH2* + Ag++ → Ph-CH2

+ + Ag+ 
Ph-CH2

+ + H2O → Ph-CH2OH2
+ 

Ph-CH2OH2
+ + 2 Ag++ → Ph-CHOH+ + 2 Ag+ + 2 H+ 

Ph-CHOH+ → Ph-CHO + 2 H+ 

Mechanism and rate constant are 
provided for the anodic oxidation 
of toluene catalyzed by AgI/AgII 

Fereydoon et al. 
(53) 

Ph-CH3 + O2 → Ph-CO2H 
                    Co(Oac)2 

Overall reaction rate function of 
the toluene, catalyst 
concentrations and PO2. Diffusion 
control the reaction 

Bejan et al. (241) 

Ph-CH3  + Co3+ → [Ph-CH3 ]+* + Co2+ 
[Ph-CH3 ]+* → Ph-CH2* + H+ 
Ph-CH2* + O2 → Ph-CH2O2* 
Ph-CH2O2* + Co2+ → Ph-CHO + [HOCo]2+ 

Ph-CHO + O2 → Ph-CO2H 

Mechanism of the electro-
chemical assistance of catalytic 
oxidation. Conversion and yields  

Bahranowski et al. 
(54) 

     H2O2, catalyst 
Ph-CH3 → Ph-CHO + OH-Ph-CH3 

Study of Cu-doped alumina-
pilllared as catalyst 
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Table 5 (Cont’d) 

Reference Scheme Remarks 

Mills et al. (8) 

Free Radical Chain Mechanism: 
Ph-CH3 → Ph-CH2* 
Ph-CH2* + O2 → Ph-CH2O2* 
Ph-CH2O2* + Ph-CH3 → Ph-CH2* + Ph-CH2O2H 
Ph-CH2O2H + Mn+ → Ph-CH2O2* + M(n-1)+ + H+ 
Ph-CH2O2H + M(n-1)+ → Ph-CH2O* + M(n-1)+OH 
Ph-CH2O* + Ph-CH3 → Ph-CH2* + Ph-CH2OH 
Ph-CH2O* + Ph-CH2O2H → Ph-CH2* + Ph-CH2OH 
Ph-CH2O2* → Ph-CH2O* + O2 
2 Ph-CH2O2* → Ph-CH2OH* + Ph-CHO* ⏐O2 
2 Ph-CH2* → Ph-CH2- CH2-Ph 
Catalytic Oxygen transfer: 
                    M: Metal Catalyst 
Ph-CH2O2H + S → Ph-CH2OH + SO 
Mars-van Krevelen Mechanism: 
MO + S → M + SO 
2 M + O2 → 2 MO 

General study of hydrocarbon 
oxidation process and modeling 
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Table 5 (Cont’d) 

Reference Scheme Remarks 

Kantam et al. (55) 

 

Study on the reaction mechanism 
of toluene oxidation with 
manganese acetate as initiator to 
improve conversion and yields 
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2.3 REACTORS UTILIZED 

As pointed out in Section 1.0, agitated reactors (8, 15-19) and bubble column reactors (1, 4, 13, 14, 20, 56) have been used in 

the liquid-phase toluene oxidation processes. Despite obvious geometrical dissimilarities between agitated reactors 

and bubble column reactors, the critical operating difference is the mean of mixing. While in agitated reactors, 

mixing can easily be controlled by one or several agitators, in bubble column reactors, mixing is provided through 

gas sparging. Due to these fundamental differences, each reactor has a specific range of application. In the 

following, reactor modes, configuration, characteristic and applicability will be briefly discussed. 

2.3.1 Stirred Reactors 

Stirred reactors are commonly used in gas-liquid processes as their low initial cost, flexibility and simple mixing 

control offer great advantages. Their use in large throughput processes, however, is limited due to geometrical 

restrictions. Stirred tank or series of stirred tanks are employed in several commercial gas-liquid processes, such as 

cyclohexane and benzoic acid oxidations (11,23), vegetable oil hydrogenations (349). While the basic geometrical ratios 

of agitated reactors, summarized in Table 6 have been accepted as the standard geometry, the design of the impeller, 

sparger, baffles, cooling coil, sampling and feeding ports are critical, and particular attention should be paid to these 

design criteria during the scale-up of the reactor. The stirred tank reactors are flexible, hence different and multiple 

modes of dispersion can be successfully used depending on the gas-liquid process. The three modes depicted in 

Figure 4, in which the stirred reactor can be operated, are: 

1. Gas-sparging reactor (GSR) 

2. Gas-inducing reactor (GIR) 

3. Surface-aeration reactor (SAR) 

 

Table 6: Geometrical Ratios of Agitated reactors 

Ratios Ranges (57) 
H/dT 1 
dImp./dT 1/4-1/2 
HL/dT 1/2-5/6 
dW/dImp, 1/4-1/6 
W/dT 1/10-1/12 

 

 

In gas-sparging reactor, the gas is bubbled through the liquid at a given superficial velocity from a distributor 

located at the bottom of the reactor underneath the impeller, which is used to mix the gas and liquid. In gas-inducing 
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reactor, holes, located in the gas and liquid phases, are machined in the hallow shaft of the impeller. The angular 

velocity of the impeller creates a pressure drop between the top and bottom of the shaft, which induces the gas into 

the liquid phase. In surface-aeration reactor, the mixing is provided by the impeller and the only contact between the 

two phases is the flat surface, where the gas is absorbed. The volumetric rate of mass transfer and the hydrodynamic 

parameters are expected to be different for each of these three reactors. Obviously, the rate of absorption in the SAR 

is much lower than in the GIR and GSR, but this mode of operation has the advantage of being simple. The GIR has 

higher rate of absorption and higher gas holdup without any additional costs to the SAR, providing commercial 

advantages. In the GSR, the increase of gas-holdup and interfacial area through higher power consumption causes, 

however, the highest rate of absorption, but economically adds substantial costs to the process as a compressor is 

often required to sparge the gas into the reactor. 

2.3.2 Bubble Column Reactors 

The mode of operation in bubble column reactors is rather simple as the gas is sparged through the liquid using a 

compressor at high superficial gas velocity from a distributor located at the bottom of the reactor and thus liquid 

mixing is achieved by the turbulent hydrodynamic regime developed in the reactor. Due to lack of knowledge on the 

scale-up methodologies in bubble column reactors, chemical processes (56) are often carried out in agitated reactors. 

Bubble column reactors, however, offer several advantages, such as high reaction rate, high gas-liquid mass transfer 

and gas holdup, high volume of reactors, temperature control and flexibility of operations. Nevertheless, inherent 

back-mixing, causing low conversion is usually seen as a major disadvantage for scale-up. While the standard 

geometrical ratios in bubble column reactors, H/DC ≈ 4-6 and the minimum DC = 0.15-0.30m, have been accepted (56, 

190, 217), the design of the sparger, internals, cooling coil, sampling and feeding ports can have a critical impact on the 

design and scale-up of the reactor.  
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Figure 4: Operation Modes of Agitated Reactors 
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2.4 HYDRODYNAMIC PARAMETERS 

Valuable studies on the hydrodynamic parameters have been reported in the literature as shown in Tables 7 and 10. 

As pointed out by these studies, the hydrodynamic parameters in BCR and agitated reactors are affected by different 

factors. For instance in the BCR, the gas and liquid properties, gas and liquid superficial velocities, gas distributor 

design, reactor internals, geometry, and size have been reported to influence the hydrodynamic parameters 
(56,176,181,186,190,194). In agitated reactors, the impeller type and design, cooling coil, number of baffles, gas distributor, 

position of the impeller and liquid height have been known to impact the hydrodynamic (60,64,69,73-

80,92,106,108,113,120,122,125,126,130). It is also critical to mention that some of these factors could affect the rate-limiting step 

of the process (56). Most of the literature studies, however, were conducted with air and aqueous media, or used small 

diameter columns or tanks under atmospheric conditions. This raises concerns and controversy on their applicability 

for the scale-up of industrial processes often carried out under high pressures and temperatures in large scale 

reactors. Hence, the main hydrodynamic parameters, i.e., the flow regimes, the bubbles sizes and the gas holdup will 

be reviewed for each type of reactors in the following. 

2.4.1 Hydrodynamic Regimes in Agitated reactors 

As described in Section 2.3.1, agitated stirred reactors can be operated as SAR, GIR or GSR. The hydrodynamic 

regimes existing in each of these reactors will be described in the following. 

In the SAR, different hydrodynamic regimes can occur depending on the mixing speed, relative position of the 

impeller to the gas-liquid surface, impeller and reactor sizes and baffles height and width (60, 63-65, 67-78, 80-83). At low 

mixing speed, the gas is absorbed at the gas-liquid interface and is distributed throughout the tank due to the radial-

downward flow created by the impeller. When the mixing speed is sufficiently increased, gas bubbles start to be 

entrained from the free surface of the liquid whether or not the stirred vessel is equipped with baffles as reported by 

Albal et al. (67), Tanaka and Izumi (77) and Patwardhan et al. (84). In the absence of baffles, a vortex, which was 

studied by Nagata (480), Tanaka and Izumi (77), Smit and During (481), and Ciofano et al. (82), is formed around the shaft 

at the liquid surface due to the circulatory motion of the liquid created by the impeller. Further increase in the 

mixing speed increases the depth of the vortex until it reaches the impeller, where gas bubbles entrapment occurs. In 

the presence of baffles, however, the circular motion of the liquid is disturbed, which causes turbulences at the 

surface and creates a wavy gas-liquid surface, observed by Boerma and Lankester (63), Van Dierendonck et al. (65), 

Miller (126), Nagata (480), Matsumura et al. (457), Albal et al. (67), Greaves and Kobbacy (68), Heywood et al. (73), Tanaka 

and Izumi (74) and Patwardhan et al. (84). Under sufficient mixing, Clark and Verneulen (60) and Greaves and Kobbacy 
(68) observed that surface vortices entrapped gas bubbles in the liquid phase, due to the oscillatory random waves 

generated at the gas-liquid surface by the agitation. As the mixing speed increases, more gas bubbles are entrained 
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and dispersed throughout the liquid (67, 77, 84), leading to an increase of the gas holdup near the surface, which could 

eliminate the need for a compressor to recycle the gas. A sudden drop in the power input was reported to 

characterize this region (60), where the gas bubbles are entrained in the liquid. The surface entrainment can therefore 

be summarized as a two-step mechanism (84): 

-Entrapment of the gas bubbles at the liquid surface due to turbulences; and 

-Dispersion of the gas bubbles throughout the vessel 

In the GIR, different hydrodynamic regimes could occur depending on the mixing speed, relative position of the 

impeller to the gas-liquid surface, impeller and reactor sizes and design (89, 92-94, 103, 106, 108, 109, 112). At low mixing 

speed, gas-inducing reactors behave as surface aeration reactors, since no gas is induced into the liquid. As the 

mixing speed increases the pressure near the impeller decreases until at a critical mixing speed, the pressure around 

the impeller becomes so small that gas bubbles are induced into the reactor. Further increase of the mixing speed 

increases the pumping capacity of the impeller, which results in an increase of the induced gas flow rate. Thus, more 

gas bubbles are induced and dispersed throughout the liquid. Under these conditions, Aldrich and van Deventer (101) 

and Patwardhan et al. (114) reported that the circular motion of the impeller creates a flow separation, which forms a 

wake region below the impeller. Consequently, gas cavities appear behind the impeller, which reduce subsequently 

the average density of the mixture and decrease the power input. These cavities can also be perceived as a local gas 

holdup in the vicinity of the impeller. In fact, when such cavities are observed behind the blades, the impeller is 

considered flooded. Thus, the gas inducing regimes can be summarized as follow: 

 -Surface aeration regime until the critical mixing speed for gas induction 

 -At the critical mixing speed, bubbling (111) commences 

 -Continuous bubbling (111) occurs as the mixing speed is increased 

 -Gas jet (111) or flooding at very high mixing speeds, i.e. high gas induction rate 

In the GSR, Several hydrodynamic regimes (64, 81, 120-122, 125, 130, 135-138, 148) were observed depending on the mixing 

speed, gas flow rate, relative position and type of the impeller, gas distributor and reactor size. The control of the 

superficial gas flow rate is the most important difference and advantage of the GSR over the SAR and GIR, although 

it can complicate the understanding of the hydrodynamic regime. At low mixing speed regardless of the gas flow 

rate, the gas is not well dispersed as it moves upward due to the poor mixing achieved under those conditions (131, 135, 

136, 58). Increasing mixing speed causes better dispersion of the gas bubbles, which occurs first in the upper part of 

the reactor in the loading regime and then as the agitation is further increased, the gas bubbles disperse throughout 

the tank (131, 135, 136, 148, 58). Under higher mixing, the reactor reaches a fully dispersed regime where re-circulation 

loops are created in the upper and lower part of the vessel. It is also important to mention that under high agitation, 

surface entrainment takes place in small-scale GSR reactors (118, 119, 125, 126, 129-131, 141, 143), and is negligible in pilot and 

industrial scale reactors (125, 126, 130). Under constant mixing, when the gas flow rate is further increased, impeller 

flooding can occur (122, 135, 136, 140, 148, 58), where ragged or clinging cavities (131, 136) are observed behind the blades of 

the impeller. Thus, the GSR regimes are as follow: 

 -Loading regime with no gas re-circulation 
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 -Fully dispersed regime with gas re-circulation 

 -Under intensive mixing, surface entrainment takes place. 

-Flooding regime 

2.4.2 Critical Mixing speeds and Gas Flow Rates in Agitated Reactors 

Since mixing speeds and gas flow rates influence the different hydrodynamic regimes in agitated reactors, it is 

essential to investigate the effect of process variables on these parameters as well as their measuring techniques.  

In the SAR, gas bubbles can be entrapped at the liquid surface due to the turbulences created by the impeller. 

Patwardhan and Joshi (84) divided the surface entrainment mechanism into an entrapment of gas bubbles followed by 

the dispersion of the entrapped gas bubbles throughout the vessel. Therefore, two critical mixing speeds can be 

defined: 

 -NCRE: corresponding to the mixing speed at which the first bubble is being entrapped 

 -NCRIE: corresponding to the mixing speed at which bubbles start to to be dispersed in the liquid 

As can be seen in Tables A-1 and A-3, various studies have reported empirical correlations for predicting the critical 

mixing speed of gas entrainment in the SAR (60, 63, 65, 68-71, 73-77, 83) and in the GSR (120, 126, 143). In the SAR, while 

Tanaka et al. (74) and Wichterle and Sverak (83) reported a decrease of the critical mixing speed of entrainment with 

liquid surface tension, Tanaka and Izumi (77) found an opposite effect. Controversial effect of liquid viscosity and 

liquid density were also reported as can be seen in Table A-1. The effects of impeller and reactor diameters as well 

as liquid height on the critical mixing speed, however, are unanimous. As shown in Table A-1, NCR generally 

increases with both the reactor diameter (60, 63, 65, 68, 70, 71, 73-77) and the liquid height (60, 65, 68, 71, 73-77) and decreases with 

the impeller diameter (60, 63, 65, 68, 70, 71, 73-77). In the GSR, however, liquid surface tension (120, 126) was found to increase 

the critical mixing speed of gas entrainment while liquid density (120, 126) and viscosity (126) were found to decrease 

NCR. Also, the effect of impeller and reactor dimensions (120, 126, 143) appears to be similar to the one reported for the 

SAR. 
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Table 7: Hydrodynamic Studies in Surface Aeration Reactors 

Authors Reactor Gas/Liquid Reactor characteristics Remarks 

Chandrasekhar (59) SAR - - “Kelvin-Helmohtz” instability at the G-L 
interface 

Clark and 
Verneulen (60) SAR Water, CCl4 

dT: 0.254/4 Baffles 
4-B Pa: 0.051-0.153 Effect of dImp. on P* and NCRE 

Muenz and 
Marchello (61) RT O2, He, CO2, C3H6/Water dT: 0.15x0.51 

Wave damper Wave amplitude attenuation 

Muenz and 
Marchello (62) RT O2, He, CO2, C3H6/Water dT: 0.15x0.51 

Wave damper 
Effect ripples frequency on the effective 
diffusivity 

Boerma and 
Lankester (63) SAR CO2/Sodium carbonate dT: 0.194/4 Baffles 

6-B RT: 0.04-0.10 Effect of impeller diameter on NCRE 

Mehta and Sharma 
(64) 

GSR 
SAR 

Air,CO2,O2/H2O+MEA,+DIPA 
 +DEG,+NAOH,+Na2S2O4, 
 CuCl+HCl,+NaCl,+CuCl2 

dT: 0.125-0.700/4-Baffles 
6-B DT: 0.04-0.33 
4-B, 6-B curved T, 5-B DT 

Effect of reactor mode, impeller type, dT, dImp., 
H, viscosity, surface tension, ionic strength, N 
and UG on a. 

van Dierendonck et 
al. (65) SAR - dT: 0.165, 2.6 

6-B RT: 0.13-0.7 dT 
Effect of liquid properties and reactor geometry 
on NCRE 

Bossier et al. (66) SAR O2/alkyl+p-xylene, nujol, 
tetradecane 

dT: 0.1016/4 Baffles 
6-B DT: 0.0508 Determination of a 

Albal et al. (67) SAR He, O2/Water, CMC, glycerin dT: 0.10/4 Baffles 
6-B RT: 0.45-0.57 dT Flow regimes in the SAR 

Greaves and 
Kobbacy (68) SAR Water, electrolytic solution dT: 0.20 Bubble size and NCRE as a function of N and H 

Sverak and Hruby 
(69) SAR H2O, glycerin, CCl4, tenside, 

ethylioside 
dT: 0.06-1.00/4-B DT 
4 Baffles Effect of dT and liquid density on NCRE 

Joshi et al. (70) SAR - - Review on agitated gas-liquid contactors 
Matsumura et al. 
(71) SAR Water+sodium alginate dT: 0.242 

6-B DT+6-B DT: 0.2-0.57dT Effect of liquid properties on NCRE and P* 

Matsumura et al. 
(72) SAR Water+sodium alginate dT: 0.19, 0.242, 0.316 

6-B DT+6-B DT: 0.2-0.57 dT Effect of liquid properties on NCRE, a and εG 

Heywood et al. (73) SAR Aqu. polyvinyl alcohol dT: 0.21-0.54/Baffles 
6-B RT, PT, P: 0.13-0.40 

Effect of impeller and reactor design in order to 
minimize gas entrainment 
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Table 7 (Cont’d) 
Authors Reactor Gas/Liquid Reactor characteristics Remarks 

Tanaka et al. (74) SAR Aqu. polyvinyl alcohol dT: 0.10, 0.15, 0.20/4 Baffles 
6-B DT: 0.05, 0.075, 0.10 Effect of dT, dImp., HL on NCRE 

Ram Mohan (75) 
and Kobbe (76) SAR Water, sodium chloride, CMC, 

isopropanol 
dT: 0.57/dImp./dt:0.3-0.5/Baffles 
Vaned DT, Conical Impeller Effect of impeller design on εG 

Tanaka and Izumi 
(77) SAR H2O dT:0.12-0.20/Baffles,draught tubes 

6-B RT/4-B PT/3-B P: 0.05 Effect of impeller type, dT and HL on NCRE 

Bittins and Zehner 
(78) SAR - DT, Pa/4 Baffles Effect of dImp., dT, H and baffles height on P* 

Kamen et al. (79) SAR O2/Water + sulfite -(3.5, 16 liters)/3 Baffles Effect of N on aSAR, kL-SAR and kLaSAR 

Wichterle (80) SAR H2O, glycerin, CCl4, tenside, 
ethylioside 

dT: 0.06-1.00/4 Baffles 
4-B DT 

Effect of dT, dImp., baffles, liquid viscosity and 
density on P* and εG 

Wu (81) SAR, 
GSR Air/H2O dT: 0.202, 0.305/4 Baffles 

6-B DT: 0.6 dT 
Effect of HL/dT on kLa in surface aeration and 
NCRE 

Ciofao et al. (82) SAR - dT: 0.19/4-B RT: 0.095 Prediction of vortex amplitude 
Wichterle and 
Sverak (83) SAR H2O, glycerin, CCl4, tenside, 

ethylioside 
dT: 0.06- 1.00/4 Baffles 
4-B DT 

Effect of dT, dImp., baffles, liquid viscosity and 
density on NCRE and P* 

Patwardhan and 
Joshi (84) SAR - - Review of hydrodynamic studies in agitated 

reactors 
Roberts and Chang 
(85) WC - - Enhancement of mass transfer due to turbulent 

waves 
Vazquez-Una et al. 
(86) RT CO2/Water - Effect of wave frequency on kL. Negligible 

effect of waves on a 
      B: Blade, DT: Disk turbine, RT: Rushton turbine, PT: Pitched turbine, P: Propeller, Pa: Paddles; WC: Wetted Column 
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Table 8: Hydrodynamic Studies in Gas Inducing Reactors 

Authors Reactor Gas/Liquid Reactor characteristics Remarks 

Zlokarnik (87) GIR Air/Water dT: 0.15-1.00/Hollow Shaft 
4 types: 0.06 Effect of N on QGI 

Zlokarnik (88) GIR Air/Water dT /dImp.:2.42-5.00/hollow shaft 
4 types: 0.06, 0.12 

Effect of mixing speed, liquid height and 
impeller submergence on QGI 

Martin (89) GIR Air/water dT: 0.28/Baffles/Hollow Shaft 
Flat, angles T: 0.254 

QGI is function of the contact angle. Scale-up of 
GIR 

Topiwala and 
Hamer (90) GIR O2/K2SO4 sol., bacterial broth dT: 0.158/4-Baffles 

Hollow T: 0.075 
QGI increases with N and decreases with K2SO4. 
Effect of liquid properties on dS , εG 

White and de 
Villiers (91) GIR Air/Tap water, glycerin-water-

teepol 
dT: 0.29/Stator, Hollow shaft 
12-vanes rotor: 0.056 QGI increases with μL 

Joshi and Sharma 
(92) GIR Air/water, DEG, Sodium 

dithionite 

dT:0.41-1.00/4-Baffles, Hollow 
shaft/Pipe T: 0.2-0.5 
Flat cylind. T: 0.250-0.395 

QGI increases with orifice area, N, dImp., and 
decreases with H and μL. No effect of σL on QGI 

Sawant and Joshi 
(93) GIR Air/water, isopropanol, PEG 

Denver dT: 0.1-0.172 , dImp.: 0.070-
0.115 
Wenco dT: 0.3 dImp.: 0.050 

QGI increases with N and dImp., decreases with H 
and μL, and is independent of σL and ρL. NCRI 
affected by μL 

Zundelevich (94) GIR Air/Water dT: 0.4/Stator, Hollow shaft 
Rotor Stator: 0.08, 0.10, 0.12 Effect of dImp. and H on QGI and PG* 

Sawant et al. (95) GIR Air/Water, PEG/dolomite dT: 0.30/ Stator, Hollow shaft 
Wenco: 0.10 

QGI increases with N and decreases with H, and 
μL 

Sawant et al. (96) GIR Air/Water, PEG/dolomite dT: 0.1-0.172, 0.380 
dImp.: 0.070-0.115/Stator 

QGI increases with N and dImp., decreases with H 
and μL 

Joshi et al. (70) GIR - - Review on agitated gas-liquid contactors 

Raidoo et al. (97) GIR Air/Water 
dT: 0.57/Stator, Hollow shaft 
6-B DT: 0.15-0.25 
6-B T/6-B PT: 0.25 

QGI increases with ΔP, dImp. and N. At high N, 
QGI flattens off 

Chang (249) GIR H2,N2, CO,CH4/n-C6H14,n-
C10H22, n-C14H30, c-C6H12 

dT: 0.127/4 Baffles 
6-B RT: 0.0635, Hollow shaft Determination of NCR  

He et al. (98) GIR Air/Water+CMC, water+triton-
X-114 

dT: 0.075/4 Baffles 
6-B DT: 0.032 

NCR increases with μL, H and σL,; a, εG increases 
with N, and decreases with H, σL. εG increases 
and decreases with μL 
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Table 8 (Cont’d) 
Authors Reactor Gas/Liquid Reactor characteristics Remarks 

Rielly et al. (99) GIR Air/Water 
dT: 0.30, 0.45, 0.60/4 Baffles 
2-B Flat Pa: 0.215 
2-B Concave T: 0.215 

Bubble coalescence increases with QGI. Model 
to determine NCR and QGI 

Aldrich and van 
Deventer (100) GIR Air/H2O,resin, brine sol., 

sucrose/nylon,polystyrene 

dT: 0.19/Baffles, Draft tube 
6, 12-B RT: 0.05, 0.057 
4-B Pipe T: 0.065 

QGI decreases with μL and ρL 

Aldrich and van 
Deventer (101) GIR Air/Water, aqueous ethyl 

alcohol,sucrose,glycerin 
dT: 0.19/Baffles, Draft tube 
6, 12-B RT: 0.05, 0.057 

At low μL, QGI increases with μL, and decreases 
with μL at high μL. QGI decreases with ρL 

Saravanan et al. 
(102) GIR Air/H2O dT: 0.57, 1.0, 1.5/Baffles 

6-B DT: 0.19-0.55, Draft tube Scale-up effect on NCRI and QGI. 

Aldrich and van 
Deventer (103) GIR Air/water, sucrose, ethanol, 

brine solution  
dT: 0.19/Baffles, Draft tube 
6, 12-B RT: 0.05, 0.057 Effect of H, dImp., μL and ρL on FrC and Ae 

Al Taweel and 
Cheng (104) GIR Air/water+PGME  dT: 0.19/Baffles, Draft tube 

8-B RT: 0.096 
Effect of liquid properties on a and εG. 
Additives retards the coalescence 

Hsu and Huang (105) GIR Ozone/water dT: 0.170/Baffles, Draft tube 
6-B PT: 0.060 Bubble coalescence Increases with QGI 

Heim et al. (106) GIR Air/water-fermentation mixture 
dT: 0.30/4-Baffles/hollow shaft 
4-B Pipe/6-B Pipe T: 0.125 
6-B DT: 0.100, 0.150 

QGI is a function of N, dImp., H, μL, and increases 
with μL 

Saravanan and 
Joshi (107) GIR Air/H2O dT: 0.57, 1.0, 1.5/Baffles 

6-B DT: 0.19-0.55, Draft tube 
Review on modeling and experimental studies 
of NCR, εG and QGI in GIR 

Hsu and Huang (108) GIR Ozone/water dT: 0.29/4-Baffles 
2 6-B PT: 0.09-0.12 

Effect of impeller submergence on NCR and the 
mixing time 

Hsu et al. (109) GIR Ozone/water dT: 0.170/Baffles, Draft tube 
6-B PT: 0.35-0.50 dT Effect of N and dImp. on NCR, εG, dS, QGI and a 

Patwardhan and 
Joshi (110) GIR Air/H2O dT: 1.5/Baffles, Draft tube 

2 6-B DT: 0.50 
Review on modeling and experimental studies 
of NCR, εG and QGI in GIR 

Tekie (23) GIR N2, O2/Cyclohexane dT: 0.1154-Baffles 
6-B RT: 0.0508, Hollow shaft 

No effect of pressure, temperature, mixing 
speed and liquid height on dS 

Forrester et al. (111) GIR Air/Water dT: 0.45/4 Baffles,hollow Shaft 
26-B Concave T: 0.154 QGI increases with number of gas outlets 

Hsu et al. (112) GIR Ozone/water dT: 0.29/4-Baffles 
2 6-B PT: 0.09-0.12 Effect of N and dImp. on NCR, and PG* 

Patwardhan and 
Joshi (84) 

GIR 
GSR - - Review of hydrodynamic studies in agitated 

reactors 
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Table 8 (Cont’d) 
Authors Reactor Gas/Liquid Reactor characteristics Remarks 

Patil and Joshi (113) GIR Air/H2O dT: 1.0/Baffles, Draft tube 
12-B PT: -/4-24 vanes Stator T:- 

QGI exhibit a hysteresis behavior. Effect of 
impeller design on QGI 

Patwardhan and 
Joshi (114) GIR - - Review of experimental and modeling studies 

on GIR 

Fillion (349) GIR 
GSR H2, N2/Soybean oil dT: 0.115/4-Baffles hollow shaft 

6-B RT: 0.0508/Spider sparger Effect of P, T, N, H and QGI on dS and εG 

      B: Blade, DT: Disk turbine, RT: Rushton turbine, PT: Pitched turbine, P: Propeller, Pa: Paddles 
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In the GIR, several correlations have been proposed in the literature in order to predict NCR (349, 93, 94, 102, 103, 106, 

108-110), as shown in Table A-2. Using a hollow shaft, Evans et al. (115, 116) extended the earlier model proposed by 

Martin (89) and employed the theory of flow past immersed body along with Bernoulli’s equation to obtain the 

critical mixing speed for gas induction in GIRs as follows:  

( ) ( ) ( ) ( )
2
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PLLLT K1

2
d

Nπ2θCρ
2
1gHρPθP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×−+=  (2-1) 

Where P(θ) and CP(θ) are defined as the pressure and the pressure coefficient at any angular position, respectively, 

and K is a factor accounting for the slip between the impeller and the fluid. Therefore, the critical speed of induction 

is: 

( ) ( )( )2
.pImP

L
CR K1dπθC

gH2N
−××

=  (2-2) 

With the values of Cp(θ) is calculated from the potential flow theory for inviscid flow around a cylinder in an 

infinite medium: 

( ) ( )θsin 4θC 2
P =  (2-3) 

Saravanan and Joshi (107) and White and de Villiers (91) used a similar model in a hollow shaft stator-diffuser type 

impeller. Increasing liquid viscosity has been reported to increase the critical mixing speed of gas induction (349, 93, 

103) to a power ranging from 0.1 to 0.13, while negligible effects of liquid density and surface tension were reported. 

On the other hand, increasing liquid height or decreasing impeller diameter was found (349, 93, 103) to increase the 

critical mixing speed of gas induction. 

In the GSR, as shown in Table A-3, van Dierendonck et al. (150) determined the critical speed of gas dispersion 

using gas holdup measurements, which correspond to the beginning of the loading regime (135, 136). Warmoeskerken 

and Smith (136) calculated the critical speed of flooding at given gas flow rates, and Westerterp et al. (120) reported the 

critical speed of surface aeration in a GSR. 

As can be seen in Table A-4, scarce studies (71, 129, 141, 143, 117) have reported the rate of surface entrainment, 

which can be attributed to the complexity, and inconsistency of the measurement method. In the SAR, only 

Matsumara et al. (71) reported the rate of gas entrainment, and found that increasing liquid viscosity and surface 

tension resulted in a decrease of the superficial gas entrainment velocity, UE, while increasing the mixing speed, 

impeller diameter or decreasing the tank diameter, enhanced UE. In the GSR, similar effect of physical properties, 

operating conditions, and impeller and reactor dimensions on the gas flow rate of entrainment was reported (129, 141, 

143, 117, 457). 
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Table 9: Hydrodynamic Studies in Gas Sparging Reactors 

Authors Reactor Gas/Liquid Reactor characteristics Remarks 

Calderbank (118) GSR 
Air/Water, toluene, alcohols, 
glycols, CCl4, nitrobenzene, 
ethyl acetate 

dT: 0.19, 0.51/4-Baffles 
6-B DT: dT /3 

Effect of liquid properties on εG, dS and a and of 
gas entrainment on the total a 

Calderbank (119) GSR 
Air/Water,toluene,alcohols,glyc
ols,CCl4,nitrobenzene, ethyl 
acetate 

dT: 0.3, 0.375, 0.51/4-Baffles 
6-B DT: dT /3 

Effect of liquid properties on NCRE under 
sparged conditions 

Westerterp et al. 
(120) GSR Air/Sulphite solution 

dT: 0.14- 0.90/4-Baffles 
6-B DT, 4-B Pa, 2-B Pa, 3-B P: 0.2-
0.7 dT 

Effect of impeller design and reactor sizes on a 
and NCRD 

Westerterp (121) GSR Air/Sulphite solution 
dT: 0.14- 0.90/4 Baffles 
6-B DT, 4-B Pa, 2-B Pa, 3-B P: 0.2-
0.7 dT 

Determination of the optimum agitator design 
and operating conditions 

Rushton and 
Bimbinet (122) GSR Air/Water + corn syrup 

dT: 0.23, 0.29, 0.46, 0.61, 0.91/4-
Baffles/Orifice sparger 
6-B RT: 0.0.051-0.305 

Characterization of flooding. Effect of dT, dimp., 
UG and μL on εG 

Lee and Meyrick 
(123) GSR Air/ Solutions of sodium 

chloride and sulphate 
dT: 0.191/4-Baffles, Orifice 
6-B DT: 0.10 

Effect of mixing speed and superficial gas 
velocity on εG 

Reith and Beek (124) GSR Air/Water, sulphite solution dT:0.30/4-Baffles/ring sparger 
6-B T: 0.076 

Statistical determination of the bubbles 
coalescence rate 

Fuchs et al. (125) GSR O2/Water -(1-51,000 liters) Effect of reactor size on gas entrainment 

Mehta and Sharma 
(64) 

GSR 
SAR 

Air,CO2,O2/H2O+MEA,+DIPA,
+DEG,+NAOH,+Na2S2O4,CuCl
+HCl,+NaCl,+CuCl2 

dT: 0.125-0.700/4-Baffles 
6-B DT: 0.04-0.33 
4-B, 6-B curved T, 5-B DT 

Effect of reactor mode and diameter, impeller 
type, H, viscosity, surface tension, ionic 
strength, N and UG on a 

Miller (126) GSR CO2,Air / Aqueous solution 
dT: 0.1524, 0.305, 0.686 
4-B Pa: 0.1016, 0.203, 0.457 
4-Baffles, Ring sparger 

Minimum N to get a significant increase in a 
due to the mechanical agitation. Effect P* and 
UG on dS and εG 

Hassan and 
Robinson (127) GSR 

Air/H2O,propionic 
acid,methylacetate,ethylene 
glycol,glycerol,sodium sulfate 

dT: 0.152, 0.291/4-Baffles 
6-B RT, 6-B Pa: dT /3 
4-B Pa: dT /3, Orifice sparger 

Effect of liquid properties on εG. 

Loiseau et al. (128) GSR Air/Water,glycol,water alcohols, 
sodium sulfite 

dT: 0.22/4-Baffles 
6-B RT: dT /3, Orifice and ring 

Effect of foaming and non-foaming systems on 
P*G and εG. 

Matsumura et al. 
(129) GSR Water, alcohols dT: 0.218/3-Baffles 

6-B DT: 0.487 dT Effect of gas entrainment on P* and εG 



 

 

34 

Table 9 (Cont’d) 
Authors Reactor Gas/Liquid Reactor characteristics Remarks 
Lopes de 
Figueiredo and 
Calderbank (130) 

GSR O2/Water dT: 0.91/4 Baffles 
6-B RT: 0.27 

Effect of reactor size on gas dS, a, εG, 
entrainment, and P* for scale-up 

Nienow et al. (131) GSR Air/Water dT: 0.61/4 Baffles 
6-B RT: 0.305 

Evaluation of surface gassing under sparging 
conditions 

Sridhar and Potter 
(132) GSR Air/Cyclohexane dT:0.13/4-Baffles,Nozzle sparger 

6-B RT: 0.045 Effect of pressure on dS and εG 

Sridhar and Potter 
(133) GSR Air/Cyclohexane dT: 0.13/4-Baffles,Nozzle sparger 

6-B RT: 0.045 Effect of temperature, pressure, N and UG on a 

Hughmark (134) GSR - 12 publications Review of correlations on a, dS and εG 

Joshi et al. (70) GSR - - Review on agitated gas-liquid contactors 

Chapman et al. (135) GSR Air/Water dT: 0.56/4-Baffles 
6-B DT: 0.28 

Characterization of the conditions for total gas 
dispersion 

Warmoeskerken et 
al. (136) GSR Air/Water dT:0.44,0.64,1.20/4-Baffles/Ring 

6-B RT: 0.176, 0.256, 0.480 Characterization of the onset of Flooding 

Hudcova et al.(137) GSR Air/Water dT: 0.44, 0.56/Various sparger No effect of HL on flooding-loading 

Greaves and 
Barigou (138) GSR Air/Water, NaCl sol. dT:1.0/4 Baffles/orifice sparger 

6-B DT: 0.250, 0.333, 0.500 Effect of cavity type on εG 

Oyevaar et al. (139) GSR CO2+N2/DEA dT: 0.088/4 Baffles/Orifice  
6-B DT: 0. dT 

Effect of pressure, mixing speed and superficial 
gas velocity on εG 

Lu and Ju (140) GSR Air/Water 
dT: 0.288/4 Baffles/Ring sparger 
6-B DT: 0.072 
4-B DT, 8-B DT: 0.096 

Characterization of the cavity configuration and 
flooding 

Veljkovic and 
Skala (141) GSR N2/Water dT: 0.22/4 Baffles 

1 or 2 6-B DT 
Effect of gas entrainment on P*, under sparged 
conditions 

Oyevaar et al. (142) GSR CO2+N2/DEA dT: 0.081/4 Baffles 
6-B DT:0.4,0. dT, Orifices 

Effect of pressure, mixing speed and superficial 
gas velocity on a 

Veljkovic et al. (143) GSR N2/Water dT: 0.20, 0.30, 0.45, 0.675 
4 Baffles/6-B DT: dT /3 

Effect of gas entrainment on P*, under sparged 
and unsparged conditions 

Barigou and 
Greaves (144) GSR Air/Water, NaCl sol. dT:1.0/4 Baffles/orifice sparger 

6-B DT: 0.333 
Effect of UG and N on the bubble size at 
different locations in the vessel 

Takahashi and 
Nienow (145) GSR He, air, CO2/Deionized water, 

saturated CO2 water 
dT: 0.29/4 Baffles/Ring sparger 
6-B RT: dT /3  

Effect of gas density on PG* and on the 
flooding-loading transition 
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Table 9 (Cont’d) 
Authors Reactor Gas/Liquid Reactor characteristics Remarks 
Parthasarathy and 
Ahmed (146) GSR Air/Water+methyl isobuthyl 

carbinol 
dT: 0.195/4 Baffles 
6-B RT: 0.065/Sintered plate 

Effect of mixing speed on the equilibrium 
bubble size 

Khare and Niranjan 
(147) GSR Air/CMC, castor oil, rapeseed 

oil 
dT: 0.3/4 Baffles/Ring sparger 
6-B DT: dT /3 

Effect of N and UG on small, large and total 
bubbles holdup 

Wu (81) SAR, 
GSR Air/H2O dT: 0.202, 0.305/4 Baffles 

6-B DT: 0.6 dT 
Effect of HL/dT on kLa in surface aeration and 
NCRE 

Roman and Tudose 
(148) GSR - dT: 0.25/4 Baffles 

Modified RT: dT /3 Effect of impeller height and type on P* 

Murugesan (149) GSR Air/Water, Toluene, glycerol dT:0.15/4-Baffles/Plate sparger 
6-B RT: 0.05, 0.07 Correlation of εG 

Patwardhan and 
Joshi (84) 

GIR 
GSR - - Review of hydrodynamic studies in agitated 

reactors 

Fillion (349) GIR 
GSR H2, N2/Soybean oil dT: 0.115/4-Baffles/hollow shaft 

6-B RT: 0.0508, Spider sparger Effect of P, T, N, H and QG on dS and εG 

      B: Blade, DT: Disk turbine, RT: Rushton turbine, PT: Pitched turbine, P: Propeller, Pa: Paddles 
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In the GIR, extensive quantitative studies on the rate of gas induction can be found in the literature (349, 89-91, 94-97, 

100-103, 106, 107-109, 151). While the effect of liquid surface tension on the induction rate appears to be negligible, the 

impact of liquid viscosity is critical. In fact, several investigators reported a decrease of the gas flow rate with 

increasing liquid viscosity (349, 92, 94-96), whereas others reported an increase (91, 103). Furthermore, recent studies found 

that the rate of gas induction was first increased and then decreased with increasing liquid viscosity (100, 101, 151). 

Liquid density, however, has been reported to decrease the gas induction rate (100, 101, 103), due to the increase of the 

buoyancy. While the effects of temperature and pressure on the induced gas flow rate have been scarcely reported 
(349, 151), the effects of mixing speed, liquid height, impeller and reactor diameter are well established as shown in 

Table A-4. In fact, Fillion et al. (151) found that the effect of increasing temperature on gas induction rate was similar 

to the effect of decreasing viscosity, whereas an increase of pressure decreases the induction rate by influencing the 

cavities structure. Decreasing the liquid height, vessel diameter or increasing the impeller diameter increases the 

pumping capacity of the impeller, hence the induction rate as generally reported (89, 91, 94-97, 102, 106). 

Several techniques have been developed to determine critical mixing speeds in agitated reactors. The most 

commonly used method is the photographic technique, which had been successfully carried out in the SAR (68, 75, 76) 

and GIR (349, 103, 92). Methods for the determination of the impeller speed at which kLa or a values increase sharply 

have also been used in the GSR (118, 126, 141, 143) and in the GIR (249). Another commonly accepted technique developed 

by Clark and Vermulen (60), resides in monitoring the mixing speed at which the power input decreases steeply. In 

the GSR, van Dierendonck et al. (150) determined the gas bubbles dispersion critical speed by plotting the mixing 

speed versus εG and extrapolating it towards εG = 0. In the GSR, Matsumura et al. (129), Veljkovic et al. (141) and 

Veljkovic et al. (143) determined the ratio of surface aeration rate to sparged rate and the intensification of surface 

aeration by using a gas tracer. In the GIR, Fillion (349) and Fillion et al. (151) used a sealed bearing device and re-

circulation loop to measure the gas flow rate with a Coriolis mass flow meter. 

2.4.3 Hydrodynamic Parameters in Bubble Column Reactors (BCR) 

In bubble column reactor, as reported in the literature presented in Table 10, different hydrodynamic regimes can 

occur depending on the gas flow rate, column diameter and system pressure (173, 176, 178, 186, 188, 192, 193). Specifically, 

three different hydrodynamic regimes were reported (152). The first regime is the bubbly flow regime, or 

homogeneous regime, which is characterized by rising gas bubbles without significant interactions among them. As 

a result, the gas bubbles residence time is constant and is expressed as a function of the bubble rise velocity. The gas 

velocity mainly dictates this regime, and the reactor diameter was not found to play a critical role. The maximum 

gas linear velocity in this regime is low; usually less than 0.05 m/s, and the mean bubble velocity defined by 

Equation (2-4) is lower than 0.3 m/s (152): 

G

G
b ε

U
u =  (2-4) 
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The liquid phase can be considered stationary, since no major re-circulation of the liquid occurs in the reactor. As 

the velocity increases, the drag force increases due to bubbles rise, which induces mixing in the liquid phase. In 

small diameter columns, this increase of the gas velocity leads to a slug flow regime, which prevails when gas 

bubbles are flowing upward. Gas bubbles tend to grow to sizes close to the reactor diameter and rise pushing the 

liquid in slugs. Thus, this regime is characterized by the presence of large gas bubbles; hence low mass and heat 

transfer coefficients, which result in severe concentration profiles of the reactants. In large columns, however, as the 

gas velocity increases, the heterogeneous or churn-turbulent regime appears. In this regime, the rising gas bubbles 

tend to create circulation patterns in the whole reactor, and accordingly the gas holdup does not linearly increase 

with the gas velocity as expected in the homogeneous regime. Large gas bubbles rise in the reactor in a plug flow 

mode whereas small bubbles re-circulate in the liquid phase. Thus, high gas-liquid mass transfer coefficients, and 

intensity of mixing characterize such a regime.  

Several flow regime maps were proposed to delineate the hydrodynamic flow regimes in BCRs as the one by 

Oshinowo and Charles (153), which identifies six different flow regimes in an upward flow; and that by Deckwer et 

al. (154) based on the reactor diameter and gas velocity for air/water system. In BCRs operating at superficial gas 

velocities ≤ 0.05 m/s, the bubbly or homogenous flow regime prevails, which is characterized by a homogeneous 

gas bubbles distribution, weak interactions among gas bubbles, and almost constant gas bubbles residence time. In 

this regime, the gas injection point was reported to have a strong impact on the gas bubbles formation, whereas the 

reactor diameter was not as important (186, 193). In small BCRs with internal diameters less than 0.15 m, increasing the 

superficial gas velocity could lead to the formation of large gas bubbles in the form of slugs, which is designated as 

a slug flow regime. In this regime, the wall effect (155, 156) is important and has a strong impact on the hydrodynamic 

and mass transfer parameters. In large-scale BCRs, however, increasing the superficial gas velocity leads the reactor 

to operate in the heterogeneous or churn-turbulent flow regime. In this regime, large and fast-rising gas bubbles 

induce strong circulations and create back-mixing or re-circulation zones in the reactor where small bubbles are 

entrained (157, 219, 344). In the churn-turbulent flow regime, visual observations and photographic methods revealed the 

coexistence of small and large (two-bubble class) bubbles in BCRs and SBCRs (157, 158, 188) and therefore the 

knowledge of the hydrodynamic and mass transfer of these bubbles is required (159, 160, 161) for modeling BCRs. It 

should be mentioned that although these three flow regimes are often defined in terms of reactor diameter and 

superficial gas velocity (154, 219), the transition between any two regimes was reported to be strongly dependent on the 

sparger design (162, 203); reactor length to diameter ratio (H/DC) (163); system pressure (183, 184, 188, 223) and temperature 
(207, 223). The development of non-intrusive measuring techniques, such as Computer-Automated Radioactive Particle 

Tracking (CARPT) (164, 165), Particle Image Velocimetry (PIV) (164, 166, 167), Laser Doppler Anemometry (LDA) (162, 

168) and Computed Tomography (CT) (164, 479), allowing the determination of the liquid, gas, and solid averaged 

velocities/profiles, turbulent kinetic energy, Reynolds stresses and void fraction distribution, could be used in 

Computational Fluid Dynamic (CFD) to establish more accurate flow regime maps. Unfortunately, these techniques 

are currently being tested in relatively small diameter reactors, usually operating with air-water system under 

ambient conditions. Thus, to date flow-regime maps in large-scale BCRs operating under industrial conditions 
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(high-pressures, high-temperatures, and organic media) are not available despite the fact that they are needed for 

proper understanding of the hydrodynamic behavior of these reactors. Fair et al. (504), Yoshida and Akita (218), and 

Shah et al. (219) pointed out the lack of experimental data on the hydrodynamics of BCRs and SBCRs operating under 

typical commercial process conditions; and more recently, Behkish et al. (158) gave a comprehensive survey of 

available literature data on the gas holdup in BCRs and SBCRs and concluded that the gas holdup data obtained in 

large-scale reactors under industrial conditions are scanty.  
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Table 10: Hydrodynamic Studies Using Bubble Columns Larger than 0.15 m 

Authors Gas-Liquid Column, m Sparger Conditions 
UG, m/s Remarks 

Argo and Cova (169) N2+H2 / Water DC =0.45, H = 8.1 SO UG < 0.16 No effect of P 

Akita and Yoshida 
(170) 

He, Air, O2, CO2 / Water + 
Sol. 

DC = 0.15, 0.3, 0.6 
H = 2 SO Atm. Effect of ρG 

Godbole et al. (171) Air/Sotrol,Turpentine 5 DC = 0.305, H = 2.6 PP UG <0.32 Small and large bubbles 

Tarmy et al. (172) N2/C7H16 DC = 0.61, H = 8.5 BC UG <0.20 Effect of P 

Molerus and Kurtin 
(173) Air / Water + butanol DC = 0.19, H = 2.5 PP, PoP - In the bubbly regime, bubble sizes deduced 

from gas throughput and εG 

Guy et al. (198) Air / Water, glycerol, 
cellulose,polyacrylamide DC = 0.254, H = 0.9 Several PP UG <0.10 Effect of µL and sparger plate on εG 

Daly et al. (174) N2/FT-300 paraffin, 
SASOL wax 

DC = 0.05/0.20, H = 
3 PP UG <0.14 Effect of axial position, column diameter 

and temperature 

Grund et al. (175) Air/H2O,Oils,CH3OH DC = 0.15, H =4.3 PP UG <0.2 Effect of liquid properties 

Wilkinson et al. (176) N2/n-Heptane, water, 
mono-ethylene glycol 

DC = 0.16, 0.23 
HL = 1.5, 1.2 - UG <0.55 Effect of DC, H, sparger design, ρG and 

liquid properties on εG and flow regime 
Chabot and de Lasa 
(177) 

N2 / paraffinic oil (LP-
100) DC = 0.2, H = 2.4 PP UG <0.15 Effect of T, z and UG on εG and dB 

Reilly et al. (178) 
He, N2, Air, Ar, CO2 / 
Water, varsol, TCE, isopar 
G / M 

DC = 0.15, H = 2.7 X-type 
sparger UG <0.23 Effect of MG on εG under bubbly and churn-

turbulent flow regimes 

De Swart (179) Air / Oil,H2O,alcohol DC = 0.05, 0.174, 
0.19, 0.38; H =4  

SP50,200 
μm UG <0.55 - 

Stegeman et al. (180) CO2,N2/H2O,DEA,ETG DC = 0.156 PP 0.4mm UG <0.06 Effect of P, UG, µL on εG and a 

Laari et al. (181) Air / Water +phenol DC = 0.19, 0.97 
H = 0.67-4.64 T-nozzle UG <0.03 Effect of DC, UG, additives on εG, dB 

Letzel et al. (182) N2 / Water DC = 0.15, H = 1.2 PP UG <0.30 Effect of P on flow regimes and Utrans 

Letzel et al. (183) N2 / Water DC = 0.15, H = 1.2 PP UG <0.30 Effect of P on flow regimes and Utrans 



 

 

40 

Table 10 (Cont’d) 

Authors Gas-Liquid Column, m Sparger Conditions 
UG, m/s Remarks 

Letzel et al. (184) N2 / Water DC =0.15, H = 1.2 PP UG <0.30 Effect of ρG on εG of large bubble 

Kang et al. (185) Air / CMC  DC =0.152, H = 2.0 PP UG <0.20 Effect of pressure on εG 

Sarrafi et al. (186) Air / Water 0.10x0.15x1.50 
DC = 0.08, 0.155 PP UG <0.08 Effect of column geometry, sparger on 

transition velocity and εG 

Pohorecki et al. (187) N2 / Water DC = 0.3, H = 4 Several O UG <0.020 No effect of P, T, z and sparger on dS, εG 
only dependent on UG 

Krishna et al. (188) Air / Water +alcohol DC = 0.15, H = 4 SP UG <0.5 Effect of P on the flow regime, εG, dB. 

Bouaifi et al. (189) Air / Water DC = 0.15,0.20, H = 
2 PP,SP,PM UG <0.04 Effect of power input on εG 

Jordan and Schumpe 
(190), Jordan et al. 
(191) 

He, N2, Air / C2H5OH, 
C4H9OH, decalin, C7H8 

DC = 0.1, 0.115 
H = 1.3, 1 Several PP UG < 0.21 Effect of DC, distributors, gas velocity, ρG 

and T on εG 

Kemoun et al. (192) Air / Water DC = 0.162, H = 2.5 PP UG <0.18 P delayed the churn –turbulent regime 

Magaud et al. (193) Air / Water,polarograhic 
sol. 0.1x0.3x4 PP UG <0.07 

UL <0.125 
Study of the wall and core region in the 
homogeneous regime 

Moustiri et al. (194) Air / Water DC = 0.15, 0.20 
H = 4.25, 4.5 PM UG <0.055 

UL <0.022 Effects of DC on εG and liquid mixing 

Pohorecki et al(195) N2 / cyclohexane DC = 0.3, H = 4 Several O UG <0.055 Effects of P and T on dS and εG 

Pohorecki et al(196) 
Air/C6H12,C7H8,CH3OH,n-
C7H16 ,CH3COH, 
CH2O,iso-C3H7OH 

DC = 0.09, 0.3, H = 
2, 4 SO UG <0.027 Effects of UG on dS 

     PP= Perforated Plate, SO= Single Orifice, BC= Bubble Cap, SP= Sintered Plate, PM= Perforated Menbrane, PoP: Porous plate, O= Orifice 
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2.4.4 Gas Bubbles in Agitated Reactors 

The gas phase quality in the liquid is often characterized by the bubble size and distribution, which along with the 

gas holdup control the gas-liquid interfacial area, the bubble rise velocity, and the contact time. In agitated reactors, 

as described in Section 2.4.1, the gas bubbles are formed at the surface in the SAR, under the impeller in the GIR, 

and at the bottom of the reactor in the GSR. Therefore, depending on the type of reactor the gas bubble size can be 

controlled by the energy of the gas stream, impeller type and size, sparger size and spacing as well as liquid 

properties. In fact, for a single bubble formation, the forces controlling the bubble size are: 

1. the forces of buoyancy: 

gρΔd
6
πF 3

bbuoyancy =  (2-5) 

2. the surface tension forces: 

fθcosσdπF .oriftension surface ×=  (2-6) 

where f is the shape factor which equals 1 for a sphere and, θ, the contact angle equals 0 for a perfectly wet orifice. 

Under these conditions the spherical bubble diameter is: 
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In agitated reactors, however, this approach is rather simple due to the formation of multiple bubbles, which can 

collide, break up, coalesce or be consumed by reaction. Therefore, the effect of physical properties, operating 

conditions and reactor design reported in the literature on dS will be discussed in the following. 

From Table A-5 dS has been unanimously found to increase with liquid surface tension (349, 72, 118, 125, 132, 134, 458, 

459), and decrease with increasing liquid viscosity as reported by Vermulen et al. (458) and Matsumura et al. (72). On 

the other hand, liquid and gas (132) densities have been reported to decrease the bubble diameter as can be observed 

in Table A-5. The effect of gas viscosity reported by Vermulen et al. (458), however, should be taken as a fitting 

parameter rather than as an actual physical effect. Also, it should be mentioned that the effect of gas holdup on the 

bubble diameter reported by Calderbank (119), Miller (126), Shridhar and Potter (132) and Hughmark (134) reflects the 

coalescing behavior of the liquid employed. 

The mixing speed and superficial gas velocity, i.e. the mixing power input, have been reported to decrease the 

bubbles diameter (72, 349, 119, 126, 132, 134, 458, 459), whereas the effect of temperature and pressure on the gas bubble sizes 

has been scarcely reported. It seems, however, that increasing temperature, which decreases the liquid viscosity, 

decreases the bubble diameter. Fillion (349) reported negligible effect of pressure up to 4 bar on the Sauter mean 

bubble diameter, whereas Shridhar and Potter (132) found that increasing pressure from 1 to 10 atmospheres resulted 

in a slight decrease of the bubble diameter in a GSR. While the Sauter mean bubble diameter was found to decrease 
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with the number of impellers and their diameters (72), the effect of sparger design in the GSR has been found to have 

tremendous impact on the Sauter mean bubble diameter (118, 119). This can directly be related to Equation (2-6), which 

underlines the critical role of the orifice diameter during the bubble formation. Fillion (349) reported that the reactor 

type has an important impact on the bubble size, which is the result of different modes of bubble formation in the 

different reactor types. It should be mentioned that few studies have been carried out under typical industrial 

conditions for the toluene-N2 and -O2 systems, and it is therefore necessary to investigate the effect of process 

variable on the bubbles size in agitated reactors. 

2.4.5 Gas Bubbles in Bubble Column Reactors 

In BCRs, the gas phase quality in the reactor is also characterized by the bubbles size and distribution. The bubbles 

size formed at the bottom of the reactor is controlled by the energy of the gas streams, sparger size and spacing as 

well as liquid properties as described by Equations (2-5) and (2-6). The bubble formation at an orifice or a nozzle 

depends on the linear gas velocity; hence low velocities allow the formation of consecutive individual bubbles, 

while at higher gas velocities jets are created generating a turbulent zone in the liquid located at the vicinity of the 

nozzle. The bubble size generated at the gas sparger may not remain the same along the column, since it may grow 

due to coalescence or may decrease in size due to reaction or rupture with turbulence. The equilibrium bubble size 

depends then on the gas and liquid properties as well as the turbulence in the reactor. A number of pertinent studies 

to predict bubble sizes are given in Table A-6. Several correlations to predict the bubble rise velocity are given in 

Table A-7 and most of them follow the Davies-Taylor (197) relationship, Equation (2-8): 

( )βbb gdαu =  (2-8) 

One of the limitations of these correlations, however, is that they were proposed for one single bubble in a steady 

liquid, which is not the case in a BCR operating in the churn-turbulent flow regime. In this regime, the large bubbles 

travel upward creating swarms which increase the small bubbles back-mixing. The liquid circulation velocity uc 

created by the rise of these bubbles is added to the terminal velocity of the bubbles (ub,∞) as in Equation (2-9): 

c,bb uuu += ∞  (2-9) 

Although this complicates the problem, the common approach is to separate each velocity component and assess 

each one independently. In the homogeneous flow regime, however, the bubbles rise can be estimated from Stokes 

law (198) as given in Table A-7. 

dS has been reported to increase with liquid surface tension (119, 461-465) and decrease with liquid viscosity as 

reported by Peebles and Garber (460), Akita and Yoshida (462) and Wilkinson (465). On the other hand, the bubble 

diameter appeared to decrease with both increasing liquid and gas density (199, 465). Wilkinson et al. (200) developed a 

Kelvin-Helmholtz stability analysis in order to explain the effect of gas density on the bubbles. 

While the superficial gas velocity has been reported (195, 196, 199, 200, 462, 465) to decrease the bubble diameter at low 

superficial gas velocity, Gaddis and Vogelpoohl (463), Inga (56) and Behkish et al. (214) observed an increase of the 

bubble size at high superficial gas velocity, which was attributed the increase of the coalescence rate with UG in the 
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churn-turbulent flow regime. Increasing temperature has been reported (177) to decrease the gas bubbles size, 

whereas increasing pressure was commonly found to decrease the bubbles size (56, 214, 188, 199, 235, 468, 469, 478). 

It seems obvious from Section 2.3.2 that the column diameter and height to diameter ratio have a critical impact 

on the bubble size. In fact, due to their influence on the hydrodynamic regime they are expected to play a critical 

role. For instance, at small column diameter, since slug flow regime is governing, the bubbles size is enhanced due 

to wall effect (201). The gas distributor design can also have an important effect on the Sauter mean bubble diameter. 

In fact, according to Mersmann (473) and Neubauer (202), the Weber number has to be greater than two in order to 

insure bubble breakage and axial mixing in the liquid: 
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where d0 is the orifice diameter and NS the number of orifices. The types of gas distributor have also been shown to 

have a significant impact on the bubble diameter as reported by Bouafi et al. (189) as well as Camarasa et al. (203). 

2.4.6 Bubble Size Measurement Techniques in gas-Liquid Contactors 

The bubble size measurement techniques can be classified into two main categories (23): 

 -Direct optical techniques 

 -Indirect techniques 

Several direct techniques have been used to measure the gas bubble sizes in both agitated and bubble column 

reactors. High speed flash photography (23, 349, 144, 146, 154, 175, 186, 189, 194, 195, 204, 205, 206, 207, 459, 235, 238, 462, 318) as well as 

light scattering (119, 208) have been used in order to evaluate statistically the Sauter mean bubble diameter and the 

bubble size distribution in gas-liquid contactors. Indirect techniques such as ultra-sound (209), electrical resistivity 

probe (210, 177, 211, 230), photoelectric capillary (212), acoustic (213), capillary probe (144) and gas disengagement (56, 174, 175, 

214, 215) have also been carried out to measure the gas bubble size. Since most of these techniques provide local 

measurement of the bubble size, it should be mentioned that unless tedious study of the entire reactor at different 

positions is carried out, extreme care should be taken to use these measurement in overall calculations. It is also 

important to point out that most of these techniques have been extensively used at atmospheric pressure and room 

temperature, but due to the lack of adequate instrumentation only few studies have been completed under typical 

industrial conditions, i.e. high temperatures and pressures (216). 

2.4.7 Gas Holdup in Agitated Reactors 

The gas holdup, εG, defined as the gas volume fraction present in the expanded volume of the reactor, has 

tremendous impact on the hydrodynamics and heat as well as mass transfer, since it can control the gas-liquid 

interfacial area (56). Thus, it is necessary to study the effect of operating conditions, physical properties and reactor 

design on εG in order to assess the parameters influencing the gas-liquid interfacial area. In the following, different 
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techniques used to determine the gas holdup in gas-liquid contactors will first be reviewed. Then, the effect of 

physical properties, operating conditions and reactor design on the gas holdup will be discussed. 

As shown in Table A-8, εG has been reported to decrease with increasing liquid surface tension (72, 75, 76, 104, 118, 126, 

128, 129, 132, 134, 149) and decreasing liquid density (72, 106, 107, 118, 126, 129, 132, 149) in the three types of agitated reactors. The 

effect of liquid viscosity on εG, on the other hand, appears to be controversial, since Matsumura et al. (72) in the SAR, 

Saravanan and Joshi (107), Heim et al. (106) and Tekie (23) in the GIR, and Loiseau et al. (128) in the GSR found that εG 

decreases with increasing liquid viscosity, whereas Murugesan found that εG values increase with increasing liquid 

viscosity in the GSR. Furthermore, He et al. (98) in the GIR and Rushton and Bimbenet (122) in the GSR found that εG 

first increases and then decreases with increasing liquid viscosity, revealing a maximum. In addition, Shridhar and 

Potter (132) reported an increase of εG with increasing gas density, which was attributed to the increase of gas 

momentum (178). 

The mixing speed (23, 349, 72, 80, 104, 106, 134, 149), superficial gas velocity (72, 107, 118, 122, 126, 128, 129, 132, 134, 149) and power 

input (75, 76, 96, 98, 107, 118, 122, 126, 128, 130, 132) have been reported to increase εG whereas the effect of temperature on εG 

appeared to be reactor dependent. Fillion (349) found that εG decreases with temperature in the GIR and increases in 

the GSR. Few and controversial studies on the effect of pressure on εG can be found, since for instance, Fillion (349) 

reported negligible effect of pressure on εG, while Shridhar and Potter (132) found an increase of εG with pressure in 

agitated reactor.  

The effect of impeller and reactor types and diameter has been reported to have an important influence on the 

gas holdup (72, 75, 76, 106, 107, 120, 121, 134, 149). An increase of the number of impellers and diameter has been observed to 

increase εG, whereas an increase of reactor diameter was found to decrease εG. The sparger design in the GSR has 

also been found (70, 84, 134) to have a tremendous impact on the gas holdup, due to the critical role played by the orifice 

during the bubble formation. Although extensive studies on εG have been carried out, it should be stressed that Table 

A-8 clearly shows a lack of experimental data under typical industrial conditions, i.e. high pressures (349, 132, 145) and 

temperatures (349, 132). 

2.4.8 Gas Holdup in Bubble Column Reactors 

Effect of physical properties on εG in bubble column reactors: In Table A-9, εG has commonly been found to 

decrease with increasing liquid surface tension (178, 187, 190, 191, 470, 471, 473-475, 477, 478) and viscosity (190, 191, 472, 474, 476-478). The 

effect of liquid density on εG, however, is questionable since εG has been reported to increase (190, 191, 471, 473, 476, 477) and 

decrease (178, 470, 472, 475, 478) with increasing liquid density. This controversial behavior appeared to be linked to the 

coalescing nature of the liquid employed. The gas density, on the other hand, was generally found to increase εG (178, 

190, 191, 474, 475, 478). It should also be mentioned that a number of investigators (182-184, 190, 191, 238, 217), using the dynamic 

gas disengagement technique, characterized the fraction of total εG that corresponds to small and large gas bubbles. 

Krishna and Ellenberger (217) found that the fraction that corresponded to small gas bubbles was strongly dependent 
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on the system physical properties, whereas the fraction corresponding to large bubbles was independent of the liquid 

properties. 

The superficial gas velocity (176, 178, 190, 191, 195, 470-478) has been reported to increase εG. The effect of temperature 

has been found to increase εG (177, 187, 195, 477) due to the decrease of both liquid surface tension and viscosity. Also, 

increasing pressure appeared to significantly increase εG (172, 180, 182, 183, 185, 188, 192), which was generally attributed to an 

increase of gas density.  

The effect of column geometry has a major influence on εG. In fact, as can be observed the hydrodynamic 

parameters in Table A-9 are only reported for column diameter greater than 0.15 m. Fair et al. (504) and Yoshida and 

Akita (218) reported a strong effect of column diameter below 0.15 m on εG, and this was further inferred by Shah et 

al. (219) who showed that εG was independent of column diameter if the column diameter was above 0.1-0.15 m. 

Moustiri et al. (194) and Eickenbusch et al. (320) also reported, that no noticeable effect of column diameter and column 

height on εG could be observed in the churn turbulent flow regime for diameters greater than 0.15 m and height to 

diameter ratio between 6 and 11. Nonetheless, Moustiri et al. (194) reported a pronounced effect of column diameter 

on εG at low gas velocity. Pino et al. (220) and Guy et al. (198) found that εG was unaffected by the column dimensions 

for height to diameter ratio between 6 and 12 and 3 and 12, respectively. The design of the gas distributor has also 

been reported to have a tremendous effect on εG values (221), especially at low gas velocities. In fact, depending on 

the gas sparger design, orifices number and diameters, the energy consumption changes and can affect considerably 

the bubble size, flow regime and εG (189, 195, 202, 203, 473). εG has been extensively studied, as shown in Table A-9, using 

air/water system, under atmospheric conditions and in small diameter columns. There are obviously serious 

limitations of these studies, when using them for scale-up purposes of organic chemical processes operating under 

high pressures and temperatures in large reactors. Numerous publications concerning εG in BCRs are available, but 

unfortunately only few were obtained in large diameter columns (≥0.15m) under typical industrial conditions (177, 187, 

195, 207, 222, 223). Therefore, it is essential to investigate εG behavior under typical industrial conditions.  

2.4.9 Gas Holdup Measurement Techniques in gas-Liquid Contactors 

Several methods have been developed in order to measure the gas holdup in gas-liquid contactors. The dispersion 

height technique is a direct method, where the liquid height is measured under gassed and ungassed conditions (224). 

This method, however, has been reported to lack accuracy when waves or foam are formed at the liquid surface (216). 

An alternative to this technique is the manometric method or gas disengagement technique (23, 56, 118, 174, 214, 225, 281), 

which indirectly measures the gas holdup. In fact, by using high accuracy differential pressure cells (DP), the 

pressure difference between two points in the reactor is measured. The gas holdup is then calculated precisely even 

under high temperatures and pressures. Other techniques such as ultrasound and real time neutron radiography (209), 

X- and γ-ray (226) and electrical resistivity probe (227) have also been employed but less frequently in gas-liquid 

contactors to measure the gas holdup.  
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Table 11: Comparison of Small and Large Bubble Diameters in the BCR 

Authors Distributor Gas/Liquid Remarks 

Quicker and Deckwer (228) S-ON / PoP / PP 
do = 0.9mm. N2 / Vestowax db = 0.5-0.6 mm.  

Godbole et al. (171) PP / 1.66mm Air / Sotrol ub,small = 0.1m/s 

Molerus and Kurtin(173) PP/Porous plate 
do = 0.5, 1mm Air / Water + butanol Bubble sizes deduce from gas throughput and mean void fraction 

in the homogeneous bubbly regime 
Fan et al. (229) Packed Bed Air / Alcohol Solutions db =0 .5-1.5 mm 
Fukuma et al. (230) M-ON / 2.6 mm Air / Water glycerol db = 0.01m, uG = 0.1 m/s, 0 wt.% / db = 0.03m, ~20 wt.% 
Patel et al. (231, 232) PP / 2 mm N2 / Waxes FT300 db,small = 0.3-0.9mm/db,large = 9-58mm 
Daly et al. (174) PP /do =2 mm N2 / Wax db = 0.5-2mm 

Grund et al. (175) PP / 2.3 mm 
SP /0.2 mm 

Air / Water, methanol, toluene, 
ligroin ub,small = 0.2m/s, ub,large = 0.6m/s db,small = 2-3 mm. 

Solanki et al. (233) Filter cloth / 
2mm Air / Solutions db,small = 1mm, db,large = 11 mm. 

Hyndman and Guy (234) PP / 1mm Air / Water Bubbly Flow ub = 0.2 m/s Churn-turbulent ub = 0.35 m/s 
Jiang et al. (235) M-ON / 3mm N2 / Paratherm Oil Effect of Pressure can reduce db from 5mm to 0.7 mm 
Kundakovic and 
Novakovic (236) S-ON / 4mm Air / Water db,small = 0.5 mm, db,large = 3-5 mm, dP = 2.5 mm. 

Smith et al. (237) PP / 3 mm Air / Water glycerol db = 16.5 mm, 1bar, 10wt%/db = 7 mm, 8 bar, 10 wt.% 
De Swart (179) SP / 0.2 mm Air / Oil db = 1 mm, 0 wt.% / db = 0.1 m, 32 wt.% 

Inga (56) Spider / 5 mm H2,N2, CO,CH4 / C6 
db,small= 3mm ub,small = 0.2m/s,db = 4-10mm 0 wt.%,  
db = 20-40mm 50wt.% 

Krishna et al. (238) S-ON Air / water  Estimation of large bubble swarm velocity 
Large et al. (239) PP / 0.5 mm Air / Aqueous isopropanol  Homogeneous regime for velocity lower than 0.05 m.s-1 
Krishna et al. (188) SP / 0.5mm Air / Water + alcohol Pressure promotes the break up of large bubbles 
Kemoun et al. (192) PP / 0.4mm  Air / Water  Churn-turbulent regime delayed by pressure  

    PP=Perforated Plate, S-ON=Single Orifice, SP=Sintered Plate, PM=Perforated Menbrane, M-ON=Multiple Orifices, PoP:Porous Plate 
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2.5 MASS TRANSFER CHARACTERISTICS 

Despite the known impact of mass transfer on the liquid-phase toluene oxidation process (8, 240, 241), few data are 

available in the literature. Bejan et al. (241) studied the electrochemically- assisted liquid-phase oxidation of toluene in 

acetic acid in the presence of cobalt catalyst, and pointed out the major impact of the oxygen flow rate and mass 

transfer rate on the yield of benzoic acid. Mills et al. (8), who underlined the importance of mass and heat transfer in 

oxidation processes, also reported the importance of a critical oxygen ratio in the reactor inlet in order to achieve 

maximum efficiency under steady state for liquid-phase catalytic oxidation following red-ox mechanism. 

Panneerlvam et al. (240) studied the kinetics of liquid-phase oxidation of toluene to benzoic acid in a packed bed 

reactor and noticed the importance of the mass transfer and hydrodynamic characteristics of the system in order to 

model and optimize the process. Based on a correlation from Mohunta et al. (242), their model provided an overall 

rate for the process; including both kinetic and mass transfer resistance. Alternatively, in the BCR Ozturk et al. (243), 

Grund at al. (175) as well as Jordan and Schumpe (190) and Jordan et al. (191) reported mass transfer parameters for air 

and nitrogen in toluene. In the following, a review of the different techniques used to measure the gas-liquid 

interfacial area, volumetric mass transfer coefficient and mass transfer coefficient will be presented. Then, through 

the analysis of physical models, the effect of physical properties, operating conditions and reactor geometrical 

parameters on a, kLa and kL reported in the literature will be discussed for the agitated reactors and the BCR. 

2.5.1 Mass Transfer Measurement Techniques in Gas-Liquid Contactors 

Several methods have been developed in order to measure the gas-liquid interfacial area, a in gas-liquid contactors. 

The gas-liquid interfacial area can be measured using physical or chemical methods. Optical methods, such as 

photographic (118), light reflection (118, 244) and light scattering (245) were used as physical techniques, however, they 

were restricted to transparent contactors having low gas holdup (209). Other physical methods including γ–ray 

radiography (209) and real time neutron radiography (209) have also been used to estimate a. The chemical techniques, 

on the other hand, were used to measure the gas-liquid interfacial area. Midoux and Charpentier (246) reviewed 

various chemical reactions, where it is possible to measure a. The limitation of this method is that the reaction 

kinetics are needed before measuring a. While these previous procedures mainly help to reveal the bubble 

contributions to a, other measuring techniques have been used in ripple tank to determine a at the gas-liquid 

interface. Muenz and Marchello (61, 62), measured the wave frequency using a stroboscope and determined the 

amplitude through the analysis of the refractive surface properties via a Photovolt photometer and densitometer. 

Recently, Vazquez-Una et al. (86) used a CDD camera viewing the surface at a 45° angle to calculate through 

digitized images analysis the wavelength λ. The surface peak-to-peak amplitude and frequency were determined 

from the surface displacement recorded using a vertically oriented laser triple-range distance-measuring device. 
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Depending on the systems used, likewise a, both the chemical or physical method (247, 248) have been employed to 

measure kLa in gas-liquid contactors. In the physical methods, the physical gas absorption or desorption is monitored 

by pressure transducers or gas probes (23) as a function of time under defined conditions. The transient pressure 

decline technique appears to be the most successful method used (11, 23; 249). For instance, Chang and Morsi (250, 251, 252) 

developed a powerful model to describe the transient pressure decline, based on a modified Peng-Robinson EOS and 

mass balance. The improvement brought by this model is discussed elsewhere (249). In the chemical methods, 

reviewed by Danckwert et al. (253), kLa data are obtained by combining known kinetics and mass transfer under 

chemical reaction conditions. The difficulty of temperature control, as well as the lack of kinetics data, however, 

seem to set the boundaries of the chemical method. The direct determination of kL is only possible through the 

chemical method (224), but can, however, be indirectly calculated from the measurement of kLa and a (118, 133, 224, 247, 253). 

2.5.2 Gas-liquid Interfacial Area in Gas-Liquid Contactors, a 

The gas-liquid interfacial area, a strongly affect the volumetric mass transfer coefficient, kLa. Thus, it is critical to 

study the effect of operating conditions, physical properties and reactor geometry on a to evaluate the criteria 

influencing the mass transfer parameters. In the following, the different techniques used to determine a in gas-liquid 

contactors will be reviewed and the effect of physical properties, operating conditions and reactor design on a 

reported in the literature will then be discussed. 

In the SAR, a has been usually calculated as the reciprocal of the liquid height, by assuming that the liquid 

surface remains flat (11, 23, 56, 349, 67). However, as discussed in Section 2.4.1, under specific conditions gas bubbles are 

entrained from the surface and therefore can have a significant impact on the total interfacial area (72, 79, 120). 

Matsumura et al. (72) found an increase of a with the number of impellers and a decrease with the impeller height 

below the surface. While these previous investigators studied the effect of gas entrainment in the SAR, recently 

Vazquez-Una et al. (86) discussed the effect of ripples at the surface of rippled tanks. This study is important since it 

is well accepted that the agitator creates ripples at the liquid surface of agitated reactors even equipped with baffles. 

Vazquez-Una et al. (86), however, concluded that the wavy interface had more influence on the enhancement of the 

mass transfer coefficient than on the increase of a, which could be considered unaffected by the ripples. Under 

sparged conditions, it was found that a increases with the number of impellers (129, 138). Calderbank (118), Fuchs et al. 
(125) and Miller (126) also reported an unexpected increase of a under elevated agitation, due to gas bubbles 

entrainment from the surface. Fuchs et al. (125) and Miller (126), who studied the impact of gas entrainment on the 

GSR scale-up, concluded, however, that the effect of gas entrainment diminishes significantly with the reactor size, 

becoming negligible for tanks greater than 0.2 m3 in volume. Although the effect of reactor geometry on a in the 

GIR (23, 349) and BCR (142) has been scarcely studied, Filion (349) and Tekie (23) observed an increase of a with 

decreasing liquid height in the GIR. From the literature data shown in Table A-10, it can be concluded that a is 

expected to follow: 

BCR > GSR > GIR >> SAR (2-11) 
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While a has been reported to decrease with both the liquid surface tension (72, 118, 120, 126, 133, 134, 462) and viscosity 
(72, 142, 171, 462, 506), the liquid density (72, 118, 120, 126, 133, 134, 462) seemed to increase a in all reactor types. a was also found 

to increase with gas density in the GSR and BCR (133). 

a has been reported to increase with increasing mixing speed (72, 104, 120, 134), superficial gas velocity (72, 104, 118, 126, 

130, 133, 134, 171, 506) and power input (95, 96, 104, 118, 126, 130, 133), while the effect of temperature has been scarcely reported (23, 

349). In fact, Fillion (349) reported a decrease of a with temperature in the GIR, and an increase in the GSR. Tekie (23), 

on the other hand, found that temperature had negligible effect on a. Fillion (349) also reported negligible effect of 

pressure on a in both the GSR and GIR, whereas Shridhar and Potter (132) found that increasing pressure resulted in 

an increase of a in the GSR. Few studies have reported the gas-liquid interfacial area in the BCR, SAR or GIR under 

typical industrial conditions as clearly shown in Table A-10. Thus, it is essential to investigate the effect of process 

variable on the gas-liquid interfacial area behavior under typical industrial conditions for the liquid-phase toluene 

oxidation process. 

2.5.3 Volumetric Mass Transfer Coefficient, kLa 

Empirical, statistical and phenomenological correlations have been used to predict the volumetric mass transfer 

coefficient in agitated reactors. In the SAR, it appears that kLa follows essentially the trend of the mass transfer 

coefficient, kL (11, 23, 67, 249, 349), since the absorption takes place at the free gas-liquid interface. Thus, an increase in 

mixing speed, power input, impeller diameter or a decrease in the liquid height and vessel diameter, will result in an 

increase of the volumetric mass transfer coefficient (11, 23, 67, 249, 349). The diffusivity, on the other hand, has been 

reported in all correlations to be proportional to kLa to power ranging between 0.5 and 1, which is in good agreement 

with the penetration theory and film model, respectively. While it appears that there is a good agreement on the 

effect of liquid viscosity on kLa, the effect of liquid density and surface tension are controversial. In fact, increasing 

liquid viscosity is generally found in Table A-11 to decrease kLa, whereas increasing liquid density and surface 

tension were reported to increase or decrease (11, 23, 67, 266, 457, 482) kLa. Additional controversial findings on the effect of 

pressure were reported kLa. In contrast, the temperature was generally reported to increase kLa in the SAR (11, 23, 67, 

349). 

In the GIR, below the critical mixing for gas induction, the reactor performs exactly as an SAR, since no gas 

bubbles are induced in the liquid phase. Therefore, under such conditions kLa behaves as in the SAR. When the 

critical mixing for gas induction is reached, however, gas bubbles start to be induced and dispersed in the liquid 

phase, increasing considerably a and therefore kLa. Consequently, both a and kL can influence kLa values. Increasing 

the mixing speed, power input, impeller diameter or decreasing the liquid height and vessel diameter increases the 

turbulences inside the reactor and the pumping capacity of the impeller. Thus, both a and kL increase and 

subsequently kLa as often found (23, 349, 92, 96, 106, 111¸249-252, 271, 272, 485-488).On the other hand, the effect of physical 

properties on kLa appears to be system-dependent since the overall trends of kLa as shown in Table A-12 with liquid 

viscosity, density and surface tension are different. It appears also that increasing temperature leads to a decrease of 
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kLa (23, 349) in the GIR, whereas the effect of pressure seems more complex and was generally found to be negligible 
(23, 349). 

In the GSR, since the gas is being sparged into the liquid, a has a crucial impact on kLa. kLa was found to 

increase substantially with the gas superficial velocity, mixing speed, total power input and impeller diameter (81, 130, 

247, 276, 281, 283, 285, 286, 289, 349). The liquid viscosity, on the other hand, was clearly (349, 280, 288) reported to decrease kLa in 

the GSR, while the density showed an increasing effect (280,288). Unlike the GIR, it appears that in the GSR, kLa 

increases with temperature (349, 284). The diffusivity was also reported to be proportional to kLa to a power n ranging 

between 0.5 and 1. Thus, despite the fact that extensive studies on kLa have been reported in the literature for 

agitated reactors, as shown in Tables A-11 through A-13, the majority of these studies were usually carried out in 

aqueous media under ambient conditions. 

The behavior of BCRs has been reported to be controlled by the gas-liquid interfacial area (56, 254), hence it is 

expected that kLa values follow the trend of the gas-liquid interfacial area. While increasing liquid viscosity and 

decreasing liquid density were found to reduce the volumetric mass transfer coefficient (170, 171, 175, 504, 489, 491), the 

effect of surface tension on kLa appears to be controversial or somewhat system-dependent (170, 294, 490). The 

superficial gas velocity (254-495), pressure (254, 175, 494, 495) and temperature (190, 191), on the other hand, have been reported 

to increase kLa. The column diameter and sparger design have also been reported to have a tremendous impact on 

kLa. In fact, Jordan and Schumpe (190) in different diameter columns using a single orifice, sintered plate and 

perforated plate, reported changes in kLa values of O2 in toluene emphasizing the impact of gas distributors and 

column diameters on the mass transfer parameters. Although the volumetric mass transfer coefficients have been 

extensively reported in the BCR, most of the literature studies were carried out with air and aqueous media, and 

were usually limited by the operating conditions under which they were obtained, i.e. under atmospheric pressure 

and ambient temperature (175, 243). In fact, most of the experiments reported in Table A-14 were obtained in small-

scale reactors, increasing the risk of wall effects and limiting the applications of mass transfer values to small 

diameter columns (190, 191, 462). 
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Table 12: Literature Survey on Mass Transfer in Surface Aeration Reactors 

References Gas/Liquid Operating Conditions Remarks 

Eldib and Albright (255) H2/Cottonseed oil 2-11 bar/388-433 K G-L mass transfer negligible at high 
N 

Albright et al. (256) H2/Cottonseed oil 3-8 bar /408-418 K G-L mass transfer negligible at high 
N 

Muenz and Marchello (62) O2, He, CO2, C3H6/Water Atm. Effect of wavy interface on DE 
Yoshida et al. (257) O2/H2O, KCl 1-20 bar / 310 K kL decreases with P, increases with N 
van Dierendonck et al.(65) - - Effect of reactor geometry on kL 
Kataoka et al. (258) O2,He,CO2,H2/Water,ethanol, toluene,benzene - Effect of liquid properties, N on kL 
Teramoto et al. (259) H2,He,Ar,CO2,N2/H2O,ethanol,p-xylene 2-101 bar / 298 K kL decreases with P for p-xylene 
Farritor and 
Hughnark(260) Air/Water 294.5 K / 0.7 Hz Effect of energy dissipation on kLa 

Zwicky and Gut (261) H2/o-cresol 10-60 bar/363-433 K kLa increases with N 
Takase et al. (262) Air/Water 298 K / 1.6-41.6 Hz Effect of HL on kLa 
Hozawa et al. (263) O2,N2/Methanol,CCl4,benzene,nitrobenzene,H2O 298 K / 2-4 Hz Effect of surface tension on kL 

Albal et al. (67) O2,He,CO,H2,N2/wax,H2O,glycerin,CMC,soltrol-
130,sodium sulfite 6-97 bar/295-523 K kLa independent of P, decreases with 

kL and increases with T and N 
Ledakowicz et al. (264) CO, H2, CO2, N2/Vestowax 5-60 bar/354-554 K kLa increases with N 

Deimling et al. (265) CO,H2/F-T liquids 10-40 bar/373-523 K kLa increases with P, T decreased 
with CN. kL was independent of P 

Versteeg et al. (266) CO2,N2O/H2O,H2SO4,alkanolamine 1-10 bar/291-355 K kL increases with N and T 

Tekie et al. (267) N2, O2/Cyclohexane 7-35 bar/330-430 K 
6-20 Hz/0.171-0.268m 

kLa increases with N, decreases with 
H. independent of P and T 

Mohammad (11) N2, O2/Benzoic acid 1-5 bar /423-523 K 
100-23.3 Hz 

kLa increases with N, and with T and 
P 

Fillion and Morsi (268) N2, H2/Soybean Oil 
1-5 bar/373-473 K 
10-23 Hz/0.171-
0.268m 

kLa increases with N and T, 
decreased with H, no effect of P 

Vazquez-Una et al. (86) CO2/Water  Effect of wave frequency on kL 
Woodrow and Duke 
(269) O2/Water  Waves increase kL by half a fold 
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Table 13: Literature Survey on Mass Transfer in Gas Inducing Reactor 

References Gas /Liquid Operating Conditions Remarks 
Topiwala et al. (90) Air /K2SO4 (aq.) 303 K kLa increases with N 
Joshi and Sharma (92) Air/Sodium dithionite sol. Atm./dImp.0.2-0.5/dT 0.41-1 Effect of reactor size and impeller design on a and kLa 
Pawlowski and 
Kricsfalussy (270) H2/DNT 41 bar / 393-433 K kLa is a function of P*/VL  

Kara et al. (271) H2/Tetralin, coal liquid 70-135 bar / 606-684 K kLa increases with and decreases with  

Karandikar et al. (272) CO, CH4, CO2, H2/ F-T 
liquids containing water 10-50 bar / 373-573 K kLa increases with P, N, P*/VL, decreases with H/dT 

Eiras (273) H2, C2H4, C3H6/n-Hexane 1-40 bar / 313-353 K kLa increased with N. Effect of P and T was not clear 

Lee and Foster (58, 274) O2, CH4/Silicon fluid, 
perfluoroalkyl,polyether 10-70 bar / 293-573 K kLa increased with N, P and T, (kLa)O2> (kLa)CH4 

Zlokamik et al. (275) O2,N2/Water, Na2SO4, 
NaCl 2 bar / 293 K kLa increases with (P*/VL)0.8 

Chang (249) 
H2, N2, H2O, CO, CH4/n-
C6H14, n-C10H22, n-C14H30, 
c-C6H12 

1-60 bar 
328-528 K 

kLa increases with N, decreases with H. Effect of P and T 
on kLa is system dependent 

Al Taweel et al. (104) Air/Water+ propylene 
glycol methyl ether 298 K / Atm. Effect of surface tension on a 

Hsu et al. (109) Ozone/Water 298 K kLa increases with N, due to the increase of εG 

Tekie et al. (267) N2, O2/Cyclohexane 7-35 bar /330-430 K 
6-20 Hz/0.171-0.268m 

kLa increases with N, decreases with H. Effect of P on kLa 
is system dependent. Effect of T is not clear 

Mohammad (11) N2, O2/Benzoic acid 1-5 bar /423-523 K 
100-23.3 Hz kLa increases with N, and slightly with T and P 

Fillion and Morsi (268) N2, H2/Soybean Oil 1-5 bar / 373-473 K 
10-23 Hz / 0.171-0.268m 

kLa increases with N, decreases with H and T. kLa is 
independent of P. 
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Table 14: Literature Survey on Mass Transfer in Gas-Sparged Reactors 

References Gas /Liquid Operating Conditions Remarks 

Calderbank (118) 
Air/Water, toluene, alcohols, 
glycols,CCl4, 
nitrobenzene,ethylaceate  

298 K / Re>10-4 
0.003-0.02 m.s-1  

Determination of a and effect of surface entrainment on 
the total a 

Yoshida et al. (276) O2, air /H2O, Na2SO3, 
Na2SO4 

1 bar / 280-313 K kLa increases with N but independent of T, kL increases 
with N 

Wisniak and Albright(277) H2/Cottonseed oil 11-105 bar / 373-403 K G-L mass transfer resistance negligible at high N 

Westerterp et al. (120) Air/Sulphite solution 303 K / 100-3600 rpm 
0.001-0.035 m.s-1 Effect of impeller type on a and kL 

Brian et al. (278) Pivalic acid/H2O - Effect of power input on kL 

Mehta and Sharma (64) Air/Cupruous clhoride - Effect of reactor design, liquid properties on kLa, kL and 
a 

Bossier et al. (66) N2, O2/Tetradecane, p-xylene, 
Nujol, alkyl 293 K / Atm. Determination of kLa, kL and a 

Prasher and Wills (279) CO2/Water - Effect of P* on kL 
Miller (126) CO2,Air/Aq. solution - Effect of reactor size and impeller design on kLa 

Perez and Sandall (280) CO2/Carbopol solution Atm./297-308 K/3-9 Hz 
0.162-0.466 m.s-1 kLa of non-Newtonian fluids in sparged vessels 

 Robinson and Wilke(281) N2, CO2/Aq. solutions 303 K / Atm. Effect of P*, N on kL and a 

Yagi and Yoshida (282) O2, N2/Glycerol-water, Millet 
–jelly-water 

303 K/ 300-600 rpm 
0.002-0.08 m.s-1 Effect of liquid properties on kLa 

Bern et al. (283) Fat 1.2-1.5 bar / 453 K kLa increases with N, dImp.,UG, decreases with VL 
Marangozis et al. (284) H2/Cottonseed oil 2-8 bar / 393-433 K kLa increases with N and T but decreases with P 

Lopes de Figueiredo and 
Calderbank (130) O2/Water 

Atm./ 300-500 rpm 
0.41-4.8 kW.m-3 
0.006-0.013 m.s-1 

Effect of reactor size on gas entrainment, P* and kLa for 
scale-up 

Matsamura et al. (285) O2,CO2,H4,C8H8/Sodium 
sulfite,H2O 

303 K / 500-800 rpm 
0.0005-0.003 m.s-1 

Chemical and physical method used to measure kLa. No 
effect of flow rates under high P* 

Meister et al. (286) Air/Aqueous solutions 400-1200 rpm 
0.005-0.03 m.s-1 Effect of multi-impeller on kLa. 

Sridhar and Potter(132,133) N2/Cyclohexane 1-10 bar / 297-423 K db decreases with N and P, both εG and a increases with 
N and P 
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Table 14 (Cont’d) 
References Gas /Liquid Operating Conditions Remarks 

Nishikawa et al. (287) Air/Water 303 K / 0-1000 rpm 
0.085-1.13 m.s-1 Effect of reactor design on kLa 

Judat (288) Data from 13 publications - Review on gas-liquid mass transfer in stirred vessels 

Gibilaro et al. (289) Air/Water Atm./ 0.4-7 kW.m-3 
0.005-0.025 m.s-1 Initial response analysis on mass transfer coefficient 

Oyevaar et al. (139) N2, CO2/DEA 0-20 bar/ 298 K a and εG increases with N, independent of P. 
Oyevaar et al. (142) N2, CO2/DEA 0-80 bar / 298 K a independent of P till 17 bar, then increases 
Reisener et al. (290) N2/Electrolyte sol. - Use of ANN to model kLa. 

Stegeman et al. (291) N2, CO2/DEA 0-66 bar / 298 K a decreases with P at low pressures, increases with P at 
higher pressures 

Wu (81) Air/Water Atm. / 0.2-10 kW.m-3 
0.003-0.007m.s-1 Comparison of SAR and GSR in terms of kLa 

Yoshida et al. (292) Air/Water Atm. / 150-400 rpm 
0.004-0.06 m.s-1  Effect of sparger design, N and UG on kLa and εG 

Yang et al. (293) O2/- 16 publications Use of ANN to correlate kLa. 

Fillion (349) N2, H2/Soybean Oil 373-473 K/ 10-23.3 Hz 
1-5 bar / 10.4-51.9cm3.s-1 kLa increases with N, QG and T. No effect of P 
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Table 15: Literature Survey on Mass Transfer in Bubble Column Reactors 

References Gases 
UG Max, m/s Liquids DC , m H, m Sparger Remarks 

Akita and 
Yoshida (462) Air, O2 / 0.07 H2O,Glycol, Methanol, glycerol, 

Na2SO3, CCl4 
0.077, 0.15,0.30 2.5 PP, PG, S-ON Effect of DCon kLa and dS 

Hikita et al. (294) Air,H2,CO2, 
CH4,C3H8/0.38 H2O, 30, methanol, n-butanol 0.10, 0.19 1.5, 2.4 2 and 3 S-ON Effect of UG on kLa 

Kawase et al. 
(295) Air/ 0.07 Water/CMC 0.23, 0.76 

Draft tube 1.22, 3.71 OP, 3 PR Effect of kLa in Newtonian 
and non-Newtonian systems 

Moo Young and 
Kawase (296) CO2 / 0.07 Water/Poly-acrylamide, 0.2 -0.6 % 0.23 

Conical bottom 1.22 PP Elasticity increases εG but not 
kLa 

Ozturk et al. (243) Air, N2,CO2, 
He, H2 / 0.1 

Xylene,Tetralin,H2O,C7H8, 
Ethylacetate, decalin,Ligroin A,B 0.095 0.85 S-ON εG and kLa increases with ρG 

Popovic et al. 
(297) Air / 0.1 Water/ Na2SO3 

0.15, 0.1, 0.05 
Down-comer 1.88 1mm S-ON kLa in Newtonian Fluids 

Popovic et al. 
(298) Air / 0.09 Water/CMC, Na2SO3 

0.15, 0.10, 0.05 
Down-comer 1.88 1mm S-ON Effect of viscosity in re-

circulating BCR 
Cho et al. (299) N2/0.054 Aq. sol.C6H6,CCl4,CHCl3,(CH2Cl)2 0.11 0.4 SO, 3 PG kLa measured by desorption 
Akita (300) Air Water and electrolytes sol. 0.155 3 PP kLa is system dependant 
Allen et al.(301)  Air     kLa in fermentation sol. 
Halard et al.(302) Air / 0.053 Water/CMC O.D. 0.76, 0.35  3.2 PR/Draft tube kLa in viscous solutions 
Medic et al.(303) Air / 0.045 Na2SO3/CoCl2 solution Rect. 1x2 6 Aeration pad kLa decreases with H  
Popovic and 
Robinson (304) Air / 0.26 Water/CMC 0.15,0.05&0.075 

Down-comer 1.88  Down-comer is a dead zone 
for mass transfer 

Uchida et al(305) Air Water, glycerol butanol sol. 0.046 1.36 PG, S-ON kLa not f (gas sparger) 
Vatai and Tekic 
(306) CO2 Water/CMC 0.05, 0.1, 0.15, 0.2 2.5 SO kLa decreases with DC in 

pseudo-plastic systems 
Seno et al. (307) Air Water, glycerol butanol 0.046 1.36 PG, S-ON kLa f(UG, UL, system) 
Huynh et al.(308) Air / 0.25 Water 0.095 0.79  kLa proportional to εG 
Kawase et 
al.(309) Air / 0.075 Water/ carboxypoly-methylene 0.23 1.22 PP - 

Rodemerck and 
Seidel(310) Air n-pentadecane 0.04 2 SP - 

Suh et al. (311) Air / 0.32 Water/Sucrose/Xantan P.A.A. 0.15 2.9  Effect of elastic fluids on kLa.
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Table 15 (Cont’d) 

References Gases 
UG Max, m/s Liquids DC , m H, m Sparger Remarks 

Terasaka and 
Tusge (312) Air Water/ glycerol 0.1 / 0.2 1.21, 2.48 Several Effect of viscosity and 

sparger design on kLa. 
Goto et al.(313) Air Water 0.1 3.7 Static mixer Mixer increases kLa 
Merchuk and 
Ben Zvi (314)  Air / 0.1 Water 0.19 2.4 PR Analysis is based on the 

Power per unit volume 
Muller and 
Davidson (315) Air / 0.08 Water 0.14 2.5  kLa of small bubbles is 20-

50% of total 
Kawasaki et al. 
(316) Air Water 0.157 2.03 S-ON kLa proportional to �G 

Kawasaki et al. 
(317) Air / 0.05 Water 0.15 

Draft tube 2  Number of tubes increases 
kLa 

Wilkinson et 
al.(318) Air / 0.2 Water, Hydrocarbons 0.158/ 0.25  PP Effect of Pressure 

Zhao et al. (319) CO2 / 0.06 Water, Hydrocarbons 0.14/ 0.09 2.5 PP Internals increases kLa 
Eickenbusch et 
al. (320) O2 / 0.10 Xanthan, hydroxypropyl guar sol. 0.19, 0.29, 0.60 2.8, 4.5, 

5.75 PP, PP, PR Effect of pseudoplastic liquid 
on kLa 

Laari et al.(181) Air / 0.03 Water, water+phenol 0.19, 0.97 0.67-4.64 T-nozzle Effect of H, UG, C on kLa 
Terasaka et 
al.(321) Air/ 0.15 water, xanthan, gellan 0.06, 0.114 - PP Effect of UG on kLa 

Vazquez et al. 
(322, 323) CO2/0.002 NaHCO3, Na2CO3 +surfactants 0.113 1.086 PG kL, a decrease with addition 

of surfactant 

Jordan et al.(191) He, N2, 
Air/0.21 C2H5OH,C4H9OH,decalin, C7H8 0.1, 0.115 1.3, 1.0 Several PP Effect of DAB, distributors, 

UG, ρG and T on kLa 
      PP=Perforated Plate, PR=Perforated Ring, S-ON=Single Orifice, BC=Bubble Cap, SP= Sintered Plate, PG= Porous Glass,OP= Orifice Plate 
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2.5.4 Mass Transfer Coefficient, kL 

The two film model: “Whitemans model” was first introduced by Whiteman in 1923 (497), and considers that the gas 

is being absorbed by molecular diffusion alone across a stagnant liquid film of thickness δ. While the liquid 

composition is assumed constant due to mixing in the bulk, the resistance is concentrated in the film and results in a 

concentration gradient (C*-CL) between its two edges. This model leads to the following equation of kL: 

δ
Dk AB

L =  
(2-12) 

Despite the simplistic physical meaning of this model, it integrates important aspects of the real behavior of the gas-

liquid absorption, which are the dissolution and molecular diffusion of the gas into the liquid before its transport by 

convection. This simplistic model predicts results similar to more complex and realistic model (253, 208, 500). It is also 

worth mentioning that the effects of the hydrodynamic parameters on kL are described by the behavior of the film 

thickness, whereas the effect of physical properties could have an impact on both the diffusivity and the film 

thickness. For instance, increasing the viscosity or decreasing the temperature decreases the diffusivity, which 

reduces kL. The effects of pressure, liquid surface tension and density on kL are more complex and appeared to be 

system dependent (23, 349). 

In 1935, Higbie (498) proposed the penetration theory or “Higbies model” based on the postulate that transfer 

occurs by a penetration process, which in fact overlooks the assumption of steady-state transfer. In this model, it is 

assumed that all liquid surface elements are exposed to the gas for the same amount of time before being replaced. 

During this exposure time, also called contact time, the element absorbs the same amount of gas per unit area as if it 

was stagnant and infinitely deep. The contact time is related to kL as: 

C

AB
L tπ

D2k
×

×=  (2-13) 

Assuming that the bubbles slip through the stationary liquid, the contact time in gas-liquid contactors is usually 

calculated (324, 490) as follows:  

T

B
C U

dt =  (2-14) 

Thus, the effects of physical properties, operating conditions and reactor design on kL are the resulting consequence 

on their effects on dB, UT and DAB. 

The Danckwerts model also called “surface renewal theory” proposed in 1951 (499) is similar to Higbies model 
(498). In fact, instead of assuming that all surface elements are exposed to the gas for the same amount of time tC, it 

assumes that there is a stationary distribution of the surface exposure. Hence, an element of surface being replaced 

by a fresh liquid element is independent of the exposure time. The only parameter taking into account the 

hydrodynamics is in this case s, which is the fractional rate of surface renewal. 
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sDk ABL ×=  (2-15) 

Several investigators have introduced empirical and semi-empirical models based on the previously discussed 

theory, such as “film-renewal model” (325, 326). Kishinevskii et al. (327) and King (500) have proposed a different 

approach where the turbulences were extended to the liquid surface and in which the gas absorption was a 

combination of molecular and eddy-diffusivity. The correlations shown in Tables A-15 and A-16 have been 

developed based (126, 260, 278, 279, 295, 502, 508) or not (62, 72, 462, 323, 208, 504, 501, 503, 506, 507) on these models using experimental 

data. From these studies, it appears that in all reactor types, the mass transfer coefficient increases with the degree of 

turbulences, i.e. with increasing superficial velocity, mixing speed, impeller diameter and power input. kL values 

were also found to increase with liquid density and decrease with liquid viscosity, while the effect of liquid surface 

tension is not clear (462, 323, 490). kL was always found to be proportional to the diffusivity to a power ranging between 

0.5 and 1, which corresponds to the penetration theory and the film model, respectively. It should also be mentioned 

that kL values were commonly found to increase with the bubble size in all gas-liquid contactors (208). Nevertheless, 

no experimental data on the mass transfer coefficient have been reported in the literature under typical industrial 

conditions for the liquid-phase toluene oxidation process. 
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3.0 OBJECTIVES 

The preceding literature review reveals that the design, modeling, scale-up and optimization of the liquid-phase 

toluene oxidation process require, among others, precise knowledge of the kinetics, hydrodynamics and mass as well 

as heat transfer parameters. Section 2.1 showed that several mechanisms, reaction rates and kinetic data are available 

in the literature for this process and therefore the kinetics of this process will not be investigated in this study. 

Sections 2.1, 2.4 and 2.5, on the other hand, showed the lack of experimental thermodynamic, hydrodynamic and 

mass transfer data for the liquid-phase toluene oxidation process. In addition, the extensive literature studies on 

these parameters in agitated and bubble column reactors were obtained in narrow ranges of operating conditions, 

where the effect of temperature and pressure were frequently ignored and the gas-liquid used were surrogate to the 

real systems. Therefore, the objectives of this study are: 

 1. To measure, study and correlate the thermodynamic, hydrodynamic and mass transfer parameters 

of O2, N2 and air in liquid toluene and liquid mixture of toluene, benzoic acid and benzaldehyde under typical 

industrial conditions in agitated and bubble column reactors, 

 2. To compare the hydrodynamic and mass transfer performances of the different gas-liquid 

contactors used under the typical industrial conditions; and 

 3. To model and design gas-liquid contactors for the toluene oxidation process using available 

literature kinetic data. 

Thus, the data to be obtained in this work could be employed to optimize and scale-up the liquid-phase toluene 

oxidation process. 
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4.0 EXPERIMENTAL 

4.1 GAS-LIQUID SYSTEMS AND OPERATING VARIABLES 

The gas-liquid systems and ranges of the operating variables studied are: 

 

Reactors  : SAR, GIR, GSR and BCR 

Gases  : N2 (SAR, GIR, GSR, BCR), O2 (SAR, GIR) and Air (GIR, BCR) 

Liquids  : Toluene, 3 Mixtures of Toluene-Benzaldehyde-Benzoic Acid 

Pressure  : 1-14 bar (SAR, GIR, GSR), 2-8 bar (BCR) 

Temperature : 300-453 K (SAR, GIR, GSR), 300 K (BCR) 

Mixing Speed  : 800-1200 rpm (SAR, GIR, GSR) 

Liquid Height  : 0.171-0.316 m (SAR, GIR), 0.171 m (GSR) 

Superficial Gas velocity : 0-0.004 m.s-1 (GSR), 0.06-0.14 m.s-1 (BCR) 

 

Pre-purified N2, O2 and air with a purity of 99.99%, 99.96% and 99.9%, respectively, from Valley National Gas and 

toluene, benzaldehyde and benzoic acid with purities of 98+%, 99.99% and 99+% from Velsicol Chemical 

Corporation and Sigma-Aldrich, respectively, were used in the agitated reactors and the bubble column reactor. 

4.2 PROPERTIES OF THE GAS-LIQUID SYSTEMS USED 

Some thermodynamic properties (328) of the gas-liquid systems used are listed in Table 16. It is also important to 

mention that the three different mixtures of toluene-benzoic acid-benzaldehyde with compositions given in Table 17 

were selected based upon typical industrial yields obtained during the continuous liquid-phase toluene oxidation 

process (10, 13, 14, 15, 16, 17, 18, 55). 
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Table 16: Thermodynamics properties of toluene, benzoic acid, benzaldehyde, nitrogen and oxygen (328) 

Component Mol wt. kg.kmol-1 TC 
K 

PC 
bar 

ω 
- 

[P]i 
- 

[P]i
(a)(329, 330) 

- 
δi (298K) 

(MPa)1/2 
Toluene 92.141 593.10 42.10 0.263 245.1 264.1 (b) 18.346 
Benzaldehyde 106.124 695.00 44.70 0.305 255.6 - 21.610 
Benzoic Acid 122.123 751.00 46.50 0.604 263.4 - 22.432 
Mixture #1 94.72 607.17 42.38 0.291 246.7 - 18.81 
Mixture #2 94.28 605.85 42.46 0.282 246.5 - 18.77 
Mixture #3 93.84 604.57 42.53 0.273 246.3 - 18.74 
Air 29.00 132.16 36.85 0.036 36.1 58(a) 11.43 

Oxygen 31.999 154.60 50.40 0.025 40.0 55.7 (b), 
53.5 (a) 14.7 

Nitrogen 28.013 126.20 33.90 0.039 35.0 60.2 (b), 
60 (a) 10.8 

(a) Experimental value reported by Lefrancois and Bourgeois (329) 
(b) Experimental value reported by Broseta and Ragil (330) 

 

 

Table 17: Composition of the Different Liquid Mixtures Used 

Liquid Toluene Benzoic Acid Benzaldehyde 
Pure Toluene 100 wt.% 0 wt.% 0 wt.% 
Mixture # 1 88 wt.% 10 wt.% 2 wt.% 
Mixture # 2 88 wt.% 6 wt.% 6 wt.% 
Mixture # 3 88 wt.% 2 wt.% 10 wt.% 

 

 

4.2.1 Vapor Pressure of Toluene 

The vapor pressure of toluene and benzaldehyde were calculated using the Wagner’s Equation (328), which are valid 

between 306K and 593K and 405K and 695K, respectively. 

for toluene: 

( )631.5

C

S X79168.2X83433.2X1.38091X28607.7
X1

1
P
P

 Ln ×−×−×+×−×⎟
⎠
⎞

⎜
⎝
⎛

−
=  (4-1) 

for benzaldehyde: 

( )631.5

C

S X9291.7X5148.1X5271.0X1653.7
X1

1
P
P

 Ln ×−×−×+×−×⎟
⎠
⎞

⎜
⎝
⎛

−
=  (4-2) 

where X = 1- TR and TR = T/TC.  

For benzoic acid, the following equation (328) was used to calculate the vapor pressure between 405K and 560K: 

⎟
⎠
⎞

⎜
⎝
⎛

−
−=

2.125T
7.41905432.10expPS  (4-3) 
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Figure 5 compares the calculated vapor pressure of toluene using Equation (4-1) with the measured values and a very 

good agreement can be reported. 

For the three mixtures experimental vapor pressure data were collected and were fitted using a Wagner type of 

equation, which were valid between 293 and 460K. As can be seen in Figure 5, the experimental values were well 

predicted by Equations (4-4) for the mixture #1, 2 and 3. 

( )631.5

C

S dXcXbXXa
X1

1
P
P

 Ln +++×⎟
⎠
⎞

⎜
⎝
⎛

−
=  (4-4) 

Where a, b, c and d are shown in Table 18. 

4.2.2 Density of Toluene 

The density values of toluene, benzaldehyde and benzoic acid in kg.m3 were correlated with the Rackett Equation 

(4-5) (328) in the temperature range of 178 to 591K, 247 to 695K and 395 to 751K, respectively. 

for toluene: 

( ) 7/2
RT1

L 265.06.290ρ −−×=  (4-5) 

for benzaldehyde: 

( ) 285.0
RT1

L 2578.059.327ρ −−×=  (4-6) 

and for benzoic acid: 

( ) 7/2
RT1

L 25.01.353ρ −−×=  (4-7) 

For the three mixtures the modified Rackett Equation (328) for liquid mixtures was used to calculate the liquid 

densities between 293 to 460 K as follows: 

7/2

MixtureCT
T1

MixtureRA

MixtureRA

3

1i Ci

Cii

3

1i
Wii

Mixture Z
Z

P
TxR

Mx
ρ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−

−
=

=
−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∑

∑
 (4-8) 

With: 

∑
=

− =
3

1i
RAiiMixtureRA ZxZ   (4-9) 

With xi the liquid molar fraction and ZRAi defined in the Rackett Equation for pure liquids: 
7/2

CiT
T1

RAii ZAρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×=  (4-10) 

It is also important to mention that the following Chueh-Prausnitz mixing rules were used in the calculation as 

recommended by Reid et al. (328): 
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∑∑
= =

− =
3

1j

3

1i
CijjiMixtureC TφφT  (4-11) 

( )( ) 2
1

CjCiijCij TTk1T −=  (4-12) 

∑
=

= 3

1i
Cii

Cii
i

Vx

Vx
φ  

(4-13) 

( )
3

3
1

Cj
3

1

Ci

2
1

CjCi
ij

VV

VV8
k1

⎟
⎠
⎞⎜

⎝
⎛ +

=−  (4-14) 

For the three mixtures using the statistical software package, MINITAB Version 9.1 for the Mainframe, the densities 

values were best fitted using the Rackett Equation as: 

( ) 7/2
RT1

Mixture BAρ −−×=  (4-15) 

Where A and B are shown in Table 18. 

The toluene and three mixtures density are shown in Figure 6. 
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Figure 5: Effect of Temperature on Toluene and Toluene Mixtures Vapor Pressure 
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Table 18: Physical Properties of the Liquid Systems Used 

Reference Physical Properties Liquid Parameters 
PS , bar a b c d 

Toluene -7.29 1.38 -2.83 -2.79 
Mixture #1 -6.34 -7.75 10-3 -1.48 -4.03 
Mixture #2 -6.52 0.24 -1.70 -3.79 

Reid et al. (1987) 
( )631.5

C

S dXcXbXaX
X1

1
P
P

 ln +++×⎟
⎠
⎞

⎜
⎝
⎛

−
=  

with 
CT

T1X −= , Wagner type of equation 
Mixture #3 -6.67 0.45 -1.87 -3.58 

ρL , kg/m3 A B 
Toluene 290.6 0.2650 
Mixture #1 290.4 0.2529 
Mixture #2 292.4 0.2555 

Reid et al. (1987) 

( )2/7
RT1

L BAρ −−×=  

with 
C

R T
TT = , and Rackett equation for mixtures 

Mixture #3 292.7 0.2564 
μL , Pa.s a b c×103 d×106 

Toluene -5.88 1287 4.56 -4.5 
Mixture #1 -3.23 1285 -6.19 6.8 
Mixture #2 -6.3 1487 4.6 -4.06 

Perry et al. (1997) 
and Reid et al. 
(1987) 

)TdTc
T
b(a exp0.001μ 2

L ×+×++×=  with for the mixtures 

( ) ( ) ∑∑∑
= ==

+=
3

1i

3

1j
ijji

3

1i
iiMix Gxx

2
1μlnxμln , Grunberg and Nissan method 

Mixture #3 -6.02 1327 4.78 -4.05 
σL , N/m A n 

Toluene 0.0668 1.2456 

Mixture #1 0.0672 1.2389 

Mixture #2 0.0671 1.2372 

Perry et al. (1997) 
and Reid et al. 
(1987) 

n

cT
T1Aσ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×=  and for the mixtures Winterfeld, David and Scriven Method 

( )( )( ) 2
1

LLLjLi

n

1i

n

1j
2n

1k
Lk

Mix jiji

k

σσvxvx

vx

1σ ∑∑
∑

= =

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Mixture #3 0.0671 1.2355 

VA , m3.kmol-1 DAB , m2/s ψ 
N2 O2 Air 

Toluene 1.0 0.0347 0.0280 0.0329 
Mixture #1 1.0 0.0347 0.0280 0.0329 
Mixture #2 1.0 0.0347 0.0280 0.0329 

Reid et al. (1987) 
( )

0.6
AB

0.5
B16

AB Vμ
TψM101.1728D −×=  

Wilke and Chang’s correlation Mixture #3 1.0 0.0347 0.0280 0.0329 
 



 

 66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Effect of Temperature on Toluene and the three Mixtures Density 
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Figure 7: Effect of Temperature on Toluene and the three Mixtures Viscosity 
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Figure 8: Effect of Temperature on Toluene and the three Mixtures Surface Tension 
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Figure 9: Effect of Pressure and Temperature on Toluene Surface Tension 
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4.2.3 Viscosity of Toluene 

The viscosity of toluene, benzaldehyde and benzoic acid (328), μ in Pa.s were calculated as: 

for toluene: 

⎟
⎠
⎞

⎜
⎝
⎛ ×−×++−×= −− 263 T104.499T104.575

T
12875.878 exp001.0μ  (4-16) 

for benzaldehyde: 

( )⎟
⎠
⎞

⎜
⎝
⎛ ×++−= TLn14846.0

T
929.1563.10expμ  (4-17) 

and for benzoic acid: 

⎟
⎠
⎞

⎜
⎝
⎛ +−×=

T
602778.14exp001.0μ  (4-18) 

For the 3 mixtures, the Grunberg and Nissan method (328) was used: 

( ) ( ) ∑∑∑
= ==

+=
3

1i

3

1j
ijji

3

1i
iiMix Gxx

2
1μlnxμln  (4-19) 

With xi the liquid molar fraction and Gij (328) an interaction parameter defined at any temperature as 

( ) ( )[ ]
275

T573298G11TG ijij
−

−−=  (4-20) 

And Gij obtained at 298K from group contribution (328). 

Thus, for the three mixtures using the statistical software package, MINITAB Version 9.1 for the Mainframe, the 

viscosity values were best fitted using the following Equation as: 

)TdTc
T
b(a exp0.001μ 2

L ×+×++×=  (4-21) 

Where a, b, c and d are shown in Table 18. 

A plot of the viscosity of toluene and the tree mixtures as a function of temperature is illustrated in Figure 7. 

4.2.4 Surface Tension of Toluene 

The surface tension of pure toluene, benzaldehyde and benzoic acid, σ, in N.m-1 were calculated as a function of 

temperature (328) in the temperature range of 293.2K to 591K, 247K to 695K and 395K to 751K, respectively. The 

values obtained are plotted in Figure 8. For the toluene, the following equation was used: 
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Where σ1 is the surface tension at T1, for toluene σ1 is equal to 0.02852N.m-1 at 293.2K; and for benzaldehyde and 

benzoic acid, Equation (4-23) was used: 
n

cT ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

T1Aσ  (4-23) 

With A equals 0.07468 and 0.0734 N.m-1 and n 1.193 and 1.106 for benzaldehyde and benzoic acid, respectively.  

For the 3 mixtures, the Winterfeld, David and Scriven Method (328) was used: 
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With viL is the liquid molar volume and xi the liquid molar fraction. 

Thus, for the three mixtures using the statistical software package, MINITAB Version 9.1 for the Mainframe, the 

surface tension values were best fitted using the following Equation as: 
n
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Where A and n are shown in Table 18. 

A plot of the surface tension of toluene and the tree mixtures as a function of temperature is illustrated in Figure 8. 

The surface tension of toluene containing a dissolved gas was determined using the Macleod-Sugden correlation 
(328): 
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Where vL and vG the molar volumes in the gas and liquid phases in mol.cm-3 and [P]i is the parachor of each 

component. The parachors shown in Table 16 were either obtained from the structure contributions or experimental 

values reported in the literature (329, 330). Figure 9 shows the effect of dissolved gas on the toluene surface tension for 

the different Parachor values of O2 and N2, and it appears that the mixture surface tension is not affected 

significantly by the different [P]i values, as Reid and Prausnitz (328) stated. In this figure the values of xi and yi, 

shown in Table 19, were obtained under a thermodynamic equilibrium at a given temperature and pressure using a 

modified Peng-Robinson equation of state as it will be discussed in Section 5.1.1. Under these conditions from the 

Gibbs phase rules: 

22222PCNF =+−=+−=  (4-27) 

with C the number of component, P the number of phase and NF the degree of freedom. Hence, since both 

temperature and pressure are fixed all other properties can be calculated. 
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Table 19: Phase molar fraction for O2 and N2 in toluene 

Systems T, K P, bar x1, - x2, - y1, - y2, - 

C7H8-N2 300 0.05 1.0000 0.0000 1.000 0.0000 

C7H8-N2 300 2.54 0.9986 0.0014 0.0156 0.9844 

C7H8-N2 300 5.76 0.9967 0.0033 0.0077 0.9923 

C7H8-N2 300 8.38 0.9952 0.0048 0.0056 0.9944 

C7H8-N2 300 10.17 0.9942 0.0058 0.0050 0.9950 

C7H8-N2 300 13.06 0.9926 0.0074 0.0042 0.9958 

C7H8-O2 400 1.58 1.0000 0.0000 1.000 0.0000 

C7H8-O2 400 2.99 0.9953 0.0047 0.3641 0.6359 

C7H8-O2 400 4.59 0.9932 0.0068 0.2759 0.7241 

C7H8-O2 400 6.45 0.9909 0.0091 0.2140 0.7860 

C7H8-O2 400 9.08 0.9872 0.0128 0.1668 0.8332 

C7H8-O2 400 12.56 0.9828 0.0172 0.1299 0.8701 

C7H8-N2 453 5.19 1.0000 0.0000 1.000 0.0000 

C7H8-N2 453 9.83 0.9931 0.0069 0.4712 0.5288 

C7H8-N2 453 12.08 0.9905 0.0095 0.4521 0.5479 

C7H8-N2 453 13.78 0.9885 0.0115 0.4006 0.5994 

C7H8-N2 453 15.33 0.9865 0.0135 0.3669 0.6331 

C7H8-N2 453 16.89 0.9849 0.0151 0.3399 0.6601 

                      with 1: Liquid: toluene and 2: Gas: nitrogen or oxygen 

 

4.2.5 Gas Diffusivity in Toluene 

The Wilke-Chang (328; 331) equation was used to predict the diffusivity, DAB (m2.s-1) of N2 and O2 in toluene as a 

function of temperature, as given below: 

( )
6.0

AB

5.0
B16

AB Vμ
TMψ101728.1D −×=  (4-28) 

In this Equation, VA is the molar volume of the diffusing gas (m3.kmol-1) at its normal boiling point, which is 

0.034707 for N2 and 0.028041 for O2. ψ is the association factor of the solvent which characterizes its polarity and 

has a value of 1.0 for toluene (328). The calculated diffusivities of N2 and O2 in toluene are presented in Figure 10. 
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4.2.6 Gas viscosity in Toluene 

The gas viscosity at low pressures, 0
Gμ , in μP is calculated using the Lucas equation (328): 
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The effect of pressure on the gases viscosity was estimated through the Reichenberg method (328), Equation (4-30): 
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Where: 

-0.5767
RT5.2683

R

e
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0.0019824A ×=  (4-31) 

-79.8678
RT3.7035

R

e
T

0.1319B ×=  (4-32) 

-16.6169-
RT9190.2

R

e
T

2.9496C ×=  (4-33) 

As can be seen in Figure 11, the effect of pressure on gas viscosity is negligible, whereas increasing temperature 

significantly increases the gas viscosity. 
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Figure 10: Effect of Temperature on Gas Diffusivity in Toluene and the three Mixtures 
 

 

T , K

250 300 350 400 450 500

D
A
.1

09  , 
m

2 .s-1

0

10

20

30

40
N2

(328)

O2
(328)

Air(328)

T , K

250 300 350 400 450 500

D
N

2.1
09  , 

m
2 .s-1

0

10

20

30

40
Toluene (328)

Mixture #2(328)

Mixture #1(328)

Mixture #3(328)



 

 

75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Effect of Temperature and Pressure on Gas Viscosity (328) 
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4.3 EXPERIMENTAL SET-UP 

The experimental set-ups used in this study are described in the following. 

4.3.1 Agitated Reactors 

The two identical agitated reactors were used in this study are schematically shown in Figures 12 and 13. They 

consist of the following main units: 

 1. Reactor 

2. Preheater 

3. Vacuum system 

 4. Computer data acquisition system 

A 4-liter ZipperClave reactor with an effective volume of 4.03 10-3 m3 which can be operated in gas-inducing or 

surface-aeration mode was used to determine both the mass transfer and thermodynamic parameters. The reactor 

dimensions are given in Figure 14. For safety reasons, 3 Lexan shields as well as 2 stainless steal doors were 

installed at the top and bottom of the frames of the reactor, respectively. The reactor is rated at a maximum 

allowable pressure of 137 bars for a temperature of 505 K. The reactor is equipped with four symmetrically located 

baffles, a cooling coil, a specially designed heating jacket, a thermo-well and an agitator with a six flat blades 

impeller and a hollow shaft. Four holes of 0.0015 m diameter each located at the upper and lower end of the shaft 

allow the reactor to operate in a gas-inducing and surface-aeration mode. Details of the impeller are given in Figure 

15. The agitator is driven by a magnetic drive that has enough capacity of dumping any eccentricity. Two K-type 

chromel alumel thermocouples are used to measure the gas and liquid phase temperature, whereas the pressure 

inside the reactor is measured using a Setra Model No. 205-2 pressure transducer rated at 0-250 psig. For safety 

purposes, the reactor is fitted with a relief valve and a rupture disk rated at 71 bar at 295K. Another 4-liter Zipper-

Clave, see-through reactor equipped with two Jerguson windows, as shown in Figure 13, was used in order to 

measure the hydrodynamic parameters under the operating conditions employed. This reactor is identical to the one 

used for the mass transfer measurements with the exception of the two sight-windows whose details are given in 

Figure 16. As also illustrated in Figure 13, a leak-free special device was mounted on the shaft and an external re-

circulation loop was designed to measure in the GIR the induced gas flow rate through the agitator hollow shaft. 

Also, some modifications were introduced in order to operate the reactor in a gas-sparging mode, and thus a gas re-

circulation loop as shown in Figure 16 was mounted on the unit. The gas was re-circulated externally by means of a 

gas booster type AGD-4, manufactured by Haskel, Burbank, CA., USA; and the gas sparger used was a cross-

shaped distributor, having 12 holes of 1-mm in diameter drilled in the four legs and were oriented downward to 
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achieve good gas distribution (349). It is important to mention that the gas phase is cooled down at the reactor outlet in 

order to condense any possible liquid vapors, which could damage the compressor.  

A CCD camera was used to record the gas bubbles and measure the gas holdup through the Jerguson sight-

windows shown in Figure 16. Also, the gas flow rate was measured during the experiment with the re-circulation 

loop illustrated in Figure 16, using a Coriolis mass flow meter type CMF-010M, manufactured by Micro Motion 

Inc., Boulder CO. USA. 

A high-pressure bomb with an effective volume of 2.237 10-3 m3 is used to heat the gas to the desired 

temperature before it is charged to the reactor. The preheater is maintained at a constant temperature by means of 

electrical heating tapes and temperature controllers. A K-type shielded thermocouple and a pressure transducer Setra 

1000 psig are installed to record both temperature and pressure readings during the experiments. 

The vacuum pump used is a Welch duo-seal model 1399, which is an oil sealed mechanical vacuum pump that 

can reach down to 1000 Pa. The system is used to degas the liquid in the reactor before the start of the experiment. A 

liquid trap is connected between the reactor outlet and the vacuum pump inlet to collect any possible condensed 

vapor. The gas from the vacuum pump is then vented to the exhaust. 

All pressure transducers and thermocouples used in the setup are interfaced with an on-line personal computer 

through an interfacing board from Metra Byte Corporation and Keithley, respectively, for the two agitated reactors, 

used for the mass transfer and hydrodynamic measurements. User-friendly computer programs developed in our 

laboratory were used to assign the channels for the interface board and to monitor on-line the system pressures and 

temperatures. At any given condition, the pressures and temperatures of both phases are displayed on the computer 

screen. During gas absorption, the pressure decline is recorded and displayed as a function of time. Also, the 

pressures and temperatures in the preheater are recorded before and after the gas is charged into the reactor to build 

a mass balance in the gas phase. 
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Figure 12: Schematic of the Experimental Setup for Mass Transfer Measurements 
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Figure 13: Schematic of the Experimental Setup for Hydrodynamic Measurements 
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Figure 14: Details of the Agitated Reactors Dimensions 
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All dimensions are in mm unless otherwise indicated 

 

Figure 15: Impeller and Shaft Design in the Agitated Reactors 
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Figure 16: Design of the Jerguson Windows and Position of the Impeller 
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Figure 17: Bottom View of the Gas Distributor in The GSR 
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4.3.2 Bubble Column Reactor (BCR) 

A schematic diagram of the BCR used in this study is shown in Figure 18. The setup is identical to that used by Inga 
(56) and Bekhish et al. (214), and consists of the following main units: 

1. Reactor 

2. Damper 

3. Demister 

4. Compressor 

5. Supply Vessel 

6. Vacuum System 

7. DP Cells 

8. Data Acquisition System 

9. Orifice Meter 

10. Sparger 

The reactor (column) is constructed from SS 304L, SCH 5 with a maximum pressure rating of 10.3bar 

(150psig). The reactor inside diameter is 0.316m and its height is 2.811 m. The column consists of two parts 

provided with flanges. The gas enters from the bottom of the column through a sparger shown in Figure 19 (56). 

There are two thermocouples and two pressure transducers on the column itself. The hydrostatic pressure is 

measured through nine lines connected to two ultra-sensitive dP cells manufactured by Foxboro Co. with ratings of 

15 and 18.5 inches of water. All thermocouples are type J and pressure transducers are manufactured by Setra model 

205-2 rated at 0-100 psig. 

The damper has a 0.101m diameter and a length of 0.305m and is constructed from SS 316 SCH 40. It is used to 

absorb the pressure fluctuations created by the compressor and reduce the noises in the pressure readings.  

The demister uit has the same size as the damper. It is placed between the column and the compressor and its 

purpose is to trap any liquid droplets or mists, which can be carried with the exit gas stream from entering the 

compressor. 

The compressor is model 8 AGD-1 manufactured by Haskel Inc. It is a double-acting, single-stage gas booster 

operating with house air at 90psig. The maximum output pressure is 300psig. 

The supply vessel is a high-pressure unit made of 4″ SCH 80 SS 304L with an inside diameter of 0.0984 m and 

a height of 0.965 m. One Setra model pressure transducer and one J-type thermocouple are connected to this unit in 

order to calculate the number of moles of gas before and after charging the reactor. 

The two vacuum pumps used are model Cit-Alcatel type 2012A, which are oil sealed mechanical vacuum 

pumps with a 0.75HP motor that can reach pressures down to 1000Pa in the reactor. 

The two dP cells used in the reactor are manufactured by Foxboro Co. and have ratings of 15 and 18.5 inches of 

water, respectively. They are connected to the column through the nine lines as illustrated in Figure 20. 



 

 85

The gas being introduced at the bottom of the column is sparged in the liquid through a six-arm spider type 

sparger with 5 mm ID holes as shown in Figure 19. 

All the pressure transducers, dP cells and thermocouples are connected to a personal computer through a 

Keithley Data Acquisition Interface, model KDAC 500. This unit allows the storage of data at a very high 

frequency.  

The gas superficial velocity is measured using two different calibrated orifice meters. The orifice used in our 

study for N2 has a 16 mm diameter. 
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Figure 18: Schematic of the Bubble Column Reactor 
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Figure 19: Spider Type Sparger Design (56) 
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Figure 20: dP Legs Position along the BCR (56) 
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4.4 EXPERIMENTAL PROCEDURES 

4.4.1 Mass Transfer and Thermodynamic Parameters in the Agitated Reactors 

In the agitated reactors, the multi-step physical gas absorption method was used to obtain the equilibrium 

solubility and the mass transfer coefficient values of N2, O2 and air in the liquid used. This experimental procedure 

used is similar to that reported by Chang (249); Chang et al. (250); Chang and Morsi (251, 252); and Tekie et al. (267). It 

should also be mentioned that the toluene was changed at regular time intervals in order to avoid any changes in the 

chemical and physical properties. The experimental procedures followed are given below: 

1. A predetermined volume of liquid is charged at room temperature into the reactor. 

2. The reactor is closed and the liquid is degassed using the vacuum pump in order to reach the saturation 

pressure of the liquid. 

3. N2 or O2 gas is charged into the preheater after purging the remaining air. 

4. The contents of the reactor and the preheater were heated to a desired temperature. 

5. The initial pressure (PI,P) and temperature (TI,P) in the preheater were recorded. 

6. The gas was charged to the reactor at the same temperature and at an initial predetermined pressure (PI). 

In the SAR and GIR: 

8. The reactor content was stirred at a given mixing speed until the thermodynamic equilibrium, characterized 

by a constant final pressure in the reactor (PF), was reached. The pressure decline (Pt) was recorded as a 

function of time. 

In the GSR: 

8. The gas booster is turned on and the gas flowrate is regulated with a needle valve. The gas is recycled trough 

a bypass. Once the desired gas flowrate is achieved, the reactor is stirred at a predetermined mixing speed. The 

bypass loop is then closed and the gas is thus sparged into the liquid. The reactor content is stirred until it 

reaches the thermodynamic equilibrium which is characterized by a constant final pressure (PF). The pressure 

decline (Pt) as well as the temperatures as a function of time in each section of the bypass loop are recorded. 

9. Steps 5 through 8 were repeated to collect multiple data points at different pressures as shown in Figure 21. 

This experimental procedure was followed at each run with different temperature, mixing speed, superficial gas 

velocity and liquid height. After each run, C* and kLa were calculated using a modified Peng-Robinson Equation of 

State. Detailed calculations of these two values are given in Sections 4. The computer programs developed by Chang 
(249), to calculate C* and kLa were modified for the present gas-liquid systems. The computer programs were 

designed to: 

1. Setup the interfacing channels for data collection. 

2. Calibrate the pressure transducers at atmospheric conditions. 
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3. Record all the operating conditions including temperature, mixing speed, liquid height, etc. of the system in 

both phases. 

4. Monitor the reactor and the preheater temperatures, induced gas flow rate, superficial gas velocity and 

pressures on a continuous basis. 

5. Collect the pressure decline data during the gas absorption on a real time basis. 

6. Calculate C*, xi, yi, and K values at equilibrium conditions. 

7. Calculate kLa values during the transient period. 

4.4.2 Mass Transfer and Thermodynamic Parameters in the BCR 

In the BCR the physical gas absorption technique was also employed to measure the gas volumetric mass transfer 

coefficient in toluene under the operating conditions used. The experimental procedure to obtain kLa is described 

below: 

1. 98 liters of liquid toluene were charged to the reactor. 

2. The system was vacuumed to remove any dissolved gases in the liquid. Once the pressure reached the vapor 

pressure of toluene, the vacuum was stopped. 

3. The gas was then charged to the supply vessel and a mass balance was built around it. 

4. The gas was then charged to the reactor until the desired pressure was reached. 

5. The compressor was started to provide a predetermined superficial gas velocity and the computer started 

collecting pressure data as a function of time during the gas absorption in the liquid until thermodynamic 

equilibrium was reached. 

6. Once the system reaches equilibrium, data collection was stopped. 

7. The C* was calculated from the reactor initial and final conditions and kLa from the transient part of the 

pressure-time data, i.e. P-t curve. 

In order to obtain C* and kLa at different pressures, Steps 3-5 were repeated. This experimental procedure was 

followed at each run with different superficial gas velocity. After each run, C* and kLa were calculated following the 

multi-step procedure described previously at constant gas velocity. The computer programs developed by Inga (56) 

were modified for the present gas-liquid system. The computer programs were designed to: 

1. Setup the interfacing channels for data collection. 

2. Calibrate the pressure transducers at atmospheric conditions. 

3. Record all the operating conditions of the system in both gas and liquid phases. 

4. Monitor the reactor temperature and pressure on a continuous basis. 

5. Collect the pressure decline data during the gas absorption on a real time basis. 
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4.4.3 Hydrodynamic Parameters in the Agitated Reactors 

The gas induction and surface entrainment critical mixing speed were estimated by visual observation. For each 

operating conditions, the mixing speed was increased gradually until the first bubble was induced through the 

hollow shaft or entrained from the surface into the liquid. In the GIR, the gas induction commences when the 

reduction in the static pressure near the impeller, caused by its acceleration, is sufficient enough to overcome all the 

resistances in the path of the gas as described in Section 2.4.2. This mixing speed was designated as the critical 

mixing for gas induction. In the SAR, the critical mixing speed of gas entrainment was determined when the first gas 

bubble is entrained from the surface into the liquid. Due to the difficulty of such measurements, the determination of 

both critical speeds was enhanced by the use of a CDD high-speed video camera in order to achieve more accurate 

and reproducible values of NCR. 

A Coriolis mass flow meter was used to measure the induced gas flow rate by determining the mass flow rate 

through the agitator hollow shaft under different operating conditions in the GIR. The measurements and recordings 

of the gas mass flow rate was made possible because of the special design of a leak-free device and external re-

circulation loop mounted on the shaft and reactor as illustrated in Figure 13. The corresponding QGI values were then 

calculated, as it will be described in the next section. Also, using the same Coriolis mass flow meter, the superficial 

gas velocity was measured in the GSR under the different operating conditions used.  

The photographic method, similar to that employed by Fillion and Morsi (268), was used to measure the bubble 

size. The bubbles were recorded through the Jerguson sight window with a CDD camera, manufactured by SONY, 

during the SAR, GIR and GSR experiments and under the desired operating conditions. The camera was focused on 

the cooling coil, located above the impeller; and a light source was mounted over the camera in order to provide an 

optimal lighting. The cooling coil of known outside diameter of 0.00635m, was used to calibrate the bubble size 

analysis software. The focus of the camera on the cooling coil was essential to avoid and prevent interferences 

among bubbles, and only discernable bubbles in the focus plan were taken into consideration. The recorded images 

were then selected and transferred through an image Grabber Software, Snappy 4.0, to a PC. Using Adobe 

Photoshop 7.0 software, the cooling coil and over 200 bubbles were selected. Their contours were then treated and 

converted in a black and white image, where the selection appeared in white. A typical image of the gas bubbles is 

shown in Figure 22. Particle analysis software, Optimas Version 4.1 from Bioscan, was then used to analyze the 

digitized images.  

In the agitated reactors, the dispersion height technique was used to measure the gas holdup under the designed 

operating conditions. A CCD video camera was located in front of the Jerguson glass window of the reactor, and 

focused at the gas-liquid interface. As a reference, a ruler was placed along the sight window and the enlarged 

images on the TV screen were used to precisely measure the dispersion height. Therefore, at any given mixing 

speed, the gas holdup was determined from the difference between the dispersion height, HD, and the clear liquid 

height, H. 
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Figure 21: Schematic of the Multi-Step Procedure at Constant Temperature, Mixing Speed and Liquid Height 
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In the agitated reactors, the bubble contributions to the gas-liquid interfacial area were estimated using the gas 

holdup and the Sauter mean bubble diameter. The enhancement of the gas-liquid area at the surface due to ripples or 

waves formation was assessed via the measurement of both wave frequencies and amplitudes. From these 

measurements, using the small-amplitude wave theory reviewed by Faber (332), the wave surface was estimated and 

subsequently the wavy surface contribution to the gas-liquid interfacial area. The frequencies and amplitudes of the 

surface wave were measured by the analysis of digitized images taken from a high-speed video Phantom camera 

unit, which enabled the recording of the surface every 3333 μs, insuring as such a high accuracy of the measured 

parameters. The unit was provided with a software analysis package especially designed for the measurement of 

distances, speeds and accelerations, which facilitated the treatment of the recorded images. 

4.4.4 Hydrodynamic Parameters in the BCR 

In the BCR, the dynamic gas disengagement technique was used to obtain the bubble size and the bubble size 

distribution. The procedure for the bubble size distribution measurement is as follows: 

1. The dP cell legs at a given position were opened. 

2. When the compressor was stopped, the dP readings were recorded until all the gas was completely 

disengaged and the pressure leveled off. 

The dP data points recorded were then analyzed and used for both the determination of the bubble size distribution 

and the Sauter mean bubble diameter, which will be described in Section 5.2.8. 

In the BCR, the manometric method was used to obtain the gas holdup values under the operating conditions 

used. The experimental procedure to obtain εG in the BCR is described below: 

1. The dP cell legs were purged of liquid. 

2. At the predetermined gas velocity, the hydrostatic pressure was measured at different positions along the 

height of the reactor by opening and closing the corresponding valves. 

3. The computer collected the dP cell readings and calculated εG at given position. 

In order to obtain εG at different gas velocities, Steps 1-3 were repeated. The dP readings were then treated to 

calculate the gas holdup along the column using a computer program developed by Inga (56) which was modified for 

the present gas-liquid system. The computer program was designed to: 

1. Collect the temperature and pressure along the reactor. 

2. Calculate the superficial gas velocity and the gas holdup along the reactor from the differential pressure cells. 
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Figure 22: Typical Image of Gas Bubbles before and after Processing in Agitated Reactors 
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4.5 SAFETY ISSUES 

In order to insure safe operation, due to the combustible nature of O2-toluene mixtures, the explosion limits were 

investigated under the present experimental conditions. Tables 18 and 19 show the ignition temperatures for the air-

toluene system, as well as several experimental flammability limits, reported by Goethals et al. (333), Burgoyne et al. 
(334), Norrish et al. (335) and Rozlovskii et al. (336). Unfortunately, no experimental values were found for the O2-

toluene mixtures. Therefore, calculations were made in order to evaluate the risk of explosion for the O2-toluene 

system, using air-toluene experimental data along with a modified equation for the upper limit described by 

Bodurtha (337): 

( )( )321.1CLog70UFL =% UFL
22 OAirO −×+  (4-34) 

Figure 23 shows the flammability limits for the O2-toluene system under different conditions as a function of the 

volumetric percentage of toluene and O2 pressure. As can be seen, under the operating conditions of this study, only 

at the highest temperatures, the mixture will be used inside the flammability range. Therefore, a particulate care was 

taken during those experiments, insuring that the stirred tank is perfectly grounded, in order to avoid any 

accumulation of static charges at the gas-liquid surface. 

 

Table 20: Ignition temperature for air-toluene mixture (334, 335, 336) 

P , bar T , K 
2 830 
2.5 820 
4.7 770 
6 730 
10 720 

 

4.6 OXIDATION ISSUES 

In order to insure both safe operation as discussed above and “non reactive” mass transfer measurements, the liquid 

phase of each run in the case of O2 under high temperature was systematically analyzed using a gas chromatograph. 

As can be seen from the GC and GC-MS analysis provided in Appendix A, the measurements were carried out 

during the induction period, estimated to be 40 minutes in our study, and accordingly the chemical reaction did not 

occur during the time of experiments. However, as can be seen in Figure B-1, the run OTS5329 was deliberately 

carried out for more than 40 minutes, and as expected chemical reaction started to take place, leading to the 

formation of benzaldehyde shown in Figure B-2. 
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Table 21: Flammability limits of air and O2-toluene mixtures in the vapor phase 

Operating Conditions Air Pure O2 

P , (bar) T , (K) Vol % Toluene MOC ,  
(Vol %) 

LFL , 
(Vol %) 

UFL , (Vol 
%) 

LFL , 
(Vol %) 

UFL , 
(Vol %) 

1 523   0.8 8.1 0.8 55.63 
1 503   0.9 8 0.9 55.53 
1 473   1 7.8 1 55.33 
1 423   1 7.5 1 55.03 
1 393   1.1 7.3 1.1 54.83 
1 373   1.1 7.2 1.1 54.73 
1 333   1.15 7.1 1.15 54.63 
1 323   1.2 7 1.2 54.53 
8 473 95.4 4.9 0.8 26.6 0.8 74.13 
8 463 79.3 5.1 0.8 26.5 0.8 74.03 
8 453 65.4 5.3 0.8 26.5 0.8 74.03 
8 443 59.6 5.4 0.8 26.4 0.8 73.93 
8 433 43.1 5.6 0.9 26.4 0.9 73.93 
8 423 34.4 5.8 0.9 26.3 0.9 73.83 
8 413 27.1 6 0.9 26.3 0.9 73.83 
8 408 24 6.1 0.9 26.2 0.9 73.73 
8 403 21.3 6.2 0.9 26.2 0.9 73.73 
8 393 16.3 6.3 0.9 26.1 0.9 73.63 
8 383 12.4 6.5 1 26.1 1 73.63 
8 373 9.1 6.7 1 26 1 73.53 
8 363 6.8 6.9 1 26 1 73.53 
8 353 4.8 7.1 1 25.9 1 73.43 
8 343 2.3 7.2 1.1 25.9 1.1 73.43 
8 333 3.4 7.4 1.1 25.8 1.1 73.33 
8 323 1.5 7.6 1.1 25.7 1.1 73.23 
8 313 1 7.8 1.1 25.7 1.1 73.23 
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Table 21 (Cont’d) 
Operating Conditions Air Pure O2 

P , (bar) T , (K) Vol % TolueneMOC ,  
(Vol %) 

LFL , 
(Vol %) 

UFL , (Vol 
%) 

LFL , 
(Vol %) 

UFL , 
(Vol %) 

8 303 0.6 8 1.2 25.6 1.2 73.13 
8 293 0.4 8.1 1.2 25.6 1.2 73.13 
8 283 0.3 8.3 1.2 25.5 1.2 73.03 
20 523 85.9 3.4 0.6 35.1 0.6 82.63 
20 513 74.1 3.6 0.6 35 0.6 82.53 
20 503 63.4 3.8 0.7 35 0.7 82.53 
20 493 54 3.9 0.7 34.9 0.7 82.43 
20 483 45.6 4.1 0.7 34.8 0.7 82.33 
20 473 38.2 4.3 0.7 34.8 0.7 82.33 
20 463 31.7 4.5 0.7 34.7 0.7 82.23 
20 453 26.2 4.7 0.8 34.7 0.8 82.23 
20 443 21.4 4.8 0.8 34.6 0.8 82.13 
20 433 17.3 5 0.8 34.6 0.8 82.13 
20 423 13.8 5.2 0.8 34.5 0.8 82.03 
20 413 10.9 5.4 0.9 34.5 0.9 82.03 
20 403 8.5 5.6 0.9 34.4 0.9 81.93 
20 393 6.5 5.7 0.9 34.3 0.9 81.83 
20 383 5 5.9 0.9 34.3 0.9 81.83 
20 373 3.7 6.1 1 34.2 1 81.73 
20 363 2.7 6.3 1 34.2 1 81.73 
20 353 1.9 6.5 1 34.1 1 81.63 
20 343 1.4 6.6 1 34.1 1 81.63 
20 333 0.9 6.8 1 34 1 81.53 
20 323 0.6 7 1.1 33.9 1.1 81.43 
20 313 0.4 7.2 1.1 33.9 1.1 81.43 
20 303 0.3 7.4 1.1 33.8 1.1 81.33 
20 293 0.2 7.5 1.1 33.8 1.1 81.33 
20 283 0.1 7.7 1.2 33.7 1.2 81.23 
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Figure 23: Flammability Limits of O2 in Toluene as Function of % V/V Toluene and O2 Partial Pressure 
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5.0 CALCULATIONS 

In the following, the methods for the calculations of thermodynamic, mass transfer and hydrodynamic parameters 

are reviewed. 

5.1 THERMODYNAMIC PARAMETERS 

5.1.1 Calculation of C* in the SAR and GIR 

The calculations of C* were carried out under the following assumptions: 

1. Non-ideal behavior of the liquid and gas phases. 

2. The liquid phase is well mixed. 

3. The amount of gas-absorbed prior to the agitation was also accounted which made the calculation of C* more 

rigorous and accurate compared with previous studies (23, 249). 

The Peng-Robinson Equation of State (PR-EOS)(249, 328, 338) can be written as: 

b)-b(v+b)+v(v
a(T) - 

b-v
RT = P  (5-1) 

This equation can be expressed in terms of the compressibility factor, Z as:  

0= )B-B-(AB-2B)Z-3B-(A+B)Z-(1- Z 32223  (5-2) 

where 

22TR
aPA =  (5-3) 

RT
bPB =  (5-4) 

RT
Pvz =  (5-5) 

For a single-component, two-phase system the solution of Equation (5-2) results in three roots with the largest 

positive root corresponding to the vapor phase and the smallest positive root greater than “b” corresponding to the 

liquid phase. At the critical point: 

P
TR0.45724 = )Ta(
C

2
C

2

C  (5-6) 
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P
RT

 0.07780 = )b(T
C

C
C  (5-7) 

At any temperature: 

)ωT(α)a(T = a(T) RC  (5-8) 

)b(T = b(T) C  (5-9) 

)T1(κ+1 = 2/1
R

2/1 −α     with (5-10) 

2ωω 26992.0 5422.1+37464.0 = κ −  (5-11) 

The fugacity of a pure component is written as: 

B)21(+Z
B)2+1(+ Zln

B22
A)BZ(ln1Z = )

P
f(ln

−
−−−−  (5-12) 

For a binary system, the binary interaction parameter δij is required in order to use the PR-EOS. The mixing rules are 

defined as follows: 

a x x =a ji,jiji ∑∑  (5-13) 

∑i iibx=b  (5-14) 

a a)δ1( = a 2/1
j

2/1
iijij −  (5-15) 

The fugacity of each component in the liquid phase is calculated from: 

B)21(+Z
B)2+1(+Zln )

a
ax( 

B22
A)Bz(ln)1Z(

b
b = 

Px
f

ln ikiik

k

k

−
∑−−−−  (5-16) 

If the values of xi and xj are replaced by yi and yj, Equations (5-13), (5-14) and (5-16) can be used for the vapor phase. 

The PR-EOS was selected to calculate the liquid and gas phase densities of the system used, as well as the 

solubility of the gases, C*, the concentration of the gases in the liquid, CL, and the total liquid volume, VL, which 

were subsequently used in the kLa calculations. In order to check the accuracy of the PR-EOS, the following steps 

were followed: 

1. The saturated liquid density of the liquid was calculated using the Rackett Equation (4-15). 

2. The PR-EOS was used to calculate the saturated liquid density of the liquid, where the pressure of the 

saturated liquid is the vapor pressure estimated from the Wagner’s Equation (4-4). 

3. These density values were compared, as shown in Figure 24, and a significant difference can be observed. 

Since the Rackett equation provides accurate estimates of the saturated liquid density of toluene, two parameters Ψ1 

and Ψ2 were introduced in the sub-functions of the PR-EOS in order to correct the predicted liquid-phase density of 

the PR-EOS as previously reported by Enick et al. (339), Chang (249) and Tekie (23). The two corrections factors, Ψ1 and 

Ψ2, were introduced into the two sub-functions in the PR-EOS as Enick et al. (339): 

)T-(1κΨ+1 = α 1/2
R1

1/2  (5-17) 
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P
RT

 07780.0 Ψ= )(Tb
C

C
2C  (5-18) 

Ψ1 and Ψ2 were then optimized during an iteration process in which the squared error between the saturated liquid 

densities obtained by the modified PR-EOS and the Rackett Equation (4-15) was minimized. The optimized values 

of Ψ1 and Ψ2 were then correlated as a function of temperature with the following equations: 
38263

1 T10 DT10 CT10 B+A = Ψ −−− ++  (5-19) 

263
2 T10 GT10 F+E = Ψ −− +  (5-20) 

with T in K in Equations (5-19) and (5-20) and ranging from 290 to 460K. The Values of the constants A, B, C, D, E 

and F can be found in for each liquid. 

 

Table 22: Constants in Equations (5-19) and (5-20) 

Liquid A B C D E F G 
Pure Toluene 0.72 1.78 -2.07 - 0.83 1.06 -1.40 
Mixture # 1 0.49 2.29 -3.45 - 0.82 0.92 -1.15 
Mixture # 2 1.66 -7.24 22.81 -2.37 0.81 0.95 -1.19 
Mixture # 3 1.71 -7.50 23.60 -2.43 0.81 0.95 -1.21 

 

 

Figure 24 shows the saturated liquid density of toluene from the Rackett equation, the PR-EOS without correction 

and the modified PR-EOS, and as can be seen in this figure, a very good agreement was found between the modified 

PR-EOS and the Rackett equation. 

The modified Peng-Robinson Equation of State (PR-EOS) coupled with components mole and volume balances 

were used for the calculation of the equilibrium solubility of the gases in toluene. For a two-component, two-phase 

system at equilibrium, the fugacities of each component in each phase are equal: 

f = f G
i

L
i  (5-21) 

The fugacities were calculated using Equation (5-16). From the mass balance equation, the total number of moles in 

the reactor stays the same as: 

N + N = N LGT  (5-22) 

The component balance could be written as: 

x N + y N = N 1L1G1  (5-23) 

x N + y N = N 2L2G2  (5-24) 

The overall volume balance is: 

V + V = V GLR  (5-25) 

VL and VG were calculated using the number of moles and the molar volumes (vG and vL) obtained from the modified 

PR-EOS as: 

v N = V GGG  (5-26) 
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v N = V LLL  (5-27) 

In addition to these equations, the number of moles charged to the reactor, N1, is calculated from the difference 

between the initial and final conditions in the preheater, using the PR-EOS. The equations used for the calculation of 

the initial and final molar volumes are: 

P
ZRT = v
I

I
GII

G  (5-28) 

P
ZRT = v

F

F
GFF

G  (5-29) 

Subsequently, the number of moles charged becomes: 

) 
v
1  

v
1 (V = N F

G
I
G

preh1 −  (5-30) 

where Vpreh is the volume of the preheater. The initial number of moles of liquid in the reactor was determined from 

the amount of liquid charged and its molar volume at ambient conditions as: 

v
V = N

L

L
2  (5-31) 

The liquid molar volume can be calculated from: 

T

L
L P

RTZ = v  (5-32) 
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Figure 24: Validation of the Modified PR-EOS by Density Calculation 
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Based on the above equations, an iterative calculation algorithm of C* initially developed by Chang (249) was 

modified for the present systems and used. The main steps of this algorithm are depicted in Figure 26 and are 

summarized in the following. 

1. The vapor pressure PS of toluene is calculated using Wagner Equation (4-4); and the initial values of y2 = 

PS/PT and x1 = 0 are assumed. 

2. A value of the binary interaction parameter, δij is assumed. 

3. y1 is calculated as y1 = 1-y2. 

4. ZG is calculated using Equations (5-2) to (5-5), (5-13) and (5-14). 

5. The molar volume of the gas phase vG is calculated from: 

T

G
G P

RTZ = v  (5-33) 

6. The vapor phase fugacities of both components are calculated using Equation (5-16). 

7. x2 is calculated from x2 = 1-x1. 

8. ZL is calculated using Equations (5-2) to (5-5), (5-13) and (5-14). 

9. The molar volume of the liquid phase vL is calculated from: 

P
RTZ = v
T

L
L  (5-34) 

10. At equilibrium, f1
L = f1

G from which a new value of x1, 1x is obtained.  

11. If the error calculated from Δx = 11 xx −  is not less than the specified accuracy (10-6), steps 7 to 11 are 

repeated with the new value of x1 = 1x . 

12. f2
L is obtained from Equation (5-16), since x1 is fixed. 

13. At equilibrium, f2
L = f2

G must be true, and a new value of y2, 2y  is obtained. 

14. Again, if the error calculated from Δy = 22 yy −  is not less than the specified accuracy (10-6), steps 3 to 13 

are repeated with the new value y2 = 2y . 

15. From Equations (5-23) and (5-24), NL and NG are calculated. 

16. The gas and liquid phase volumes are determined from VG = (vG×NG) and VL = (vL×NL), respectively. 

17. A volume balance is confirmed if VR = VG+VL, otherwise a new value of the interaction parameter δij is 

assumed and steps 2 through 15 are repeated. 

18. If the volume balance is confirmed, the equilibrium values of x1, y1, vL and vG are obtained at the 

corresponding pressure and temperature. Finally C* is calculated from: 

v
x = C

L

1*  (5-35) 

Using these data, an expression of the gas solubility C* as a function of pressure can be developed at a constant 

temperature as: 
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PE+PE = *C 2
1F11Fo  (5-36) 

with E1=0 if the gas-liquid system obeys Henry’s law. 

5.1.2 Calculation of C* in the GSR 

In the GSR, the number of mole of the gaseous component in the gas phase at any instant, t, was obtained from a 

mass balance built on the reactor and the re-circulation loop units (Figure 25) as: 

t2,Preheater#tFlowmeter,tDamper,tBooster,Gast,Exchangers HeattReactor,GtG, NNNNNNN +++++= −−  (5-37) 

( )

2Preheater#

2Preheater#2Preheater#

Flowmeter

FlowmeterFlowmeter

Damper

DamperDamper

BoosterGas

BoosterGasBoosterGas

Exchangers Heat

Exchangers HeatSR

ReactorG

LRSR
tG,

ZRT
VP

ZRT
VP

           

ZRT
VP

ZRT
VP

ZRT
VPP

ZRT
)V)(VP(P

N

++

++
−

+
−−

=
−

−−

−  (5-38) 

Since the gas phase is cooled down at the reactor exit and all vapors are condensed in the liquid trap, the gas 

entering the gas booster can be considered dry. The solubility at the equilibrium final gas partial pressure, P1,f, and 

temperature in the reactor can therefore be calculated at thermodynamic equilibrium from: 

L

fG,T*

V
NN

C
−

=  (5-39) 

NT is the initial number of gas moles charged in the unit, which is calculated through a mass balance on the preheater 

#1 (Figure 13).  

5.1.3 Calculation of C* in the Bubble Column Reactor 

The solubility of air and N2 in the liquids used is not the main objective of the design experiments in the BCR; 

however, for the sake of comparison with the stirred reactor data, the equilibrium solubility values in the BCR were 

calculated. The calculation was carried out using the PR-EOS, which was modified for the different liquid used as 

described previously. The details of the calculation of C* and the general assumptions made are given below: 

1. In the feed tank, a non-ideal gas was assumed and the PR-EOS was used. 

2. In the BCR, the binary mixture behavior was assumed to be ideal. 

3. The gas and liquid were assumed well mixed, i.e., the concentration of the gas component in the liquid phase 

was assumed to be homogeneous. 

4. There is no change in the liquid volume due to gas absorption. 

5. The compression heat is negligible. 

6. There is a negligible absorption prior to the start of the compressor 



 

 

106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Flow Diagram of the re-circulation Path in the GSR 
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Since the pressure in the feed tank was high, the first assumption was essential to insure better accuracy in the mass 

balance. The second assumption was justified from the operating conditions, since both pressure and temperature 

were low. The homogeneity of the liquid phase was validated by the churn turbulent flow regime under which the 

BCR was operated. The fourth assumption was based on the analysis of the solubility values obtained in the stirred 

reactor and the maximum pressure used in the bubble column. The calculated increase of the liquid phase volume in 

the BCR was found to be negligible and equal to 2.5%. The fifth assumption was experimentally verified, since the 

absorption process lasted less than 40 seconds and subsequently the time for the compressor to heat and increase the 

gas temperature was very small, maintaining the gas and liquid temperatures constant. The last assumption was also 

experimentally verified, since the pressure was found to be independent of time until the compressor startup. 

The calculation method of C* in the BCR was based upon a material balance on the gas charged in the reactor, 

which was calculated from: 

( )
RTz

VVP
N

edargCh

LiquidctorReedargCh
0

−
=  (5-40) 

The PR-EOS was used to calculate the compressibility factors of the gas, zCharged. In the column, the solute gas mole 

balance can be expressed as: 

N0 = Ni,G + Ni,L (5-41) 

At equilibrium: 

PT = Pv+PI (5-42) 

Since Pv is known from Equation (4-4), the partial pressure of the solute gas can be calculated from the total 

pressure. The material balance of the solute in the gas phase is then: 

∑∑ −=
j

jV

j

jjT,
Gi, RT

VP
RT

VP
N  (5-43) 

The measurement of the pressure and temperature at different points across the system allows the calculation of the 

number of moles in the entire system. It should be mentioned that, when comparing the volume of each part of the 

setup, we concluded that more than 90% of the total gas moles is in the reactor. Thus, it is reasonable to assume that: 

ΣPiVi = PΣVi = PVG, and the concentration of the solute gas in the liquid phase can then be calculated from: 

L

GvT0

L

G,i0
L,i V

RTV)PP(N
V

NN
C

−−
=

−
=  (5-44) 

At equilibrium, the solubility C* is calculated as: 

( )
L

GVFT,0

V
RTVPPN

C*
−−

=  (5-45) 

where PT,F is the final total equilibrium pressure. 
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Figure 26: Algorithm for C* Calculation in the Agitated Reactors(249) 
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5.2 HYDRODYNAMIC PARAMETERS 

In the following, the critical mixing speed, induced gas flow rate, bubble size and gas holdup calculation procedures 

are reviewed in details for the gas-liquid contactors used in this study. It should be mentioned, that the critical 

mixing speed, induced gas flow rate, gas hold up and bubbles size, in the agitated reactors were initially carried out 

in another reactor, with identical geometry to the one employed for kLa measurements, and therefore systematic 

checks and calculations were performed in order to detect any differences or changes in the kLa values. In fact, as 

shown in Figure 27, a very good agreement, in the order of the experimental error, was found, which validates our 

experimental data. 

5.2.1 Critical Mixing Speed Measurement, NCR, in the Agitated Reactors 

The critical mixing speed for gas induction was measured under wide ranges of operating conditions, following the 

procedure described in Section 4.4.3. Using a high-speed video camera, the mixing speed was simply increased until 

the appearance of the first gas bubble in the liquid toluene in the SAR and GIR. In the SAR, the gas was entrained 

into the liquid and therefore special care was taken to monitor the gas-liquid surface, whereas in the GIR since the 

gas was induced from the hollow shaft, the impeller region was examined carefully. 

5.2.2 Calculation of the Gas Flow Rate, QGI, in the Agitated Reactors 

In the GIR, a Coriolis mass flow meter Type CMF-010M manufactured by Micro Motion Inc., Boulder, CO was 

used to measure the induced gas mass flow rate, M*Measured through the agitator hollow shaft under different 

operating conditions. QGI was calculated as follows assuming ideal mixture in the gas phase: 

T

Tol.
Tol.

T

Gas
Gas P

P
y  ;  

P
P

y ==  (5-46) 

RT
MP

y
RT

MP
yρ Tol.WT

Tol.
asGWT

Gasmixture
−− +=  then: (5-47) 

mixture

Measured
GasIG ρ

*M
yQ ×=  (5-48) 

5.2.3 Calculation of the Gas Flow Rate, QG, in the BCR 

In the BCR, using the theory of flow through orifices and nozzles (340), the volumetric flow rate was calculated using 

the following equation: 
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( )
G

Gas ρ
ΔP1442gΩCYQ ××

×××=  (5-49) 

where Ω is the orifice cross section area in ft2, Y is the expansion factor and C is the flow coefficient, and P is in Psi 

and ρG in lb.ft-3. Since two pressure transducers measured the ΔP across the orifice, the values of C and Y were 

computed through iterative calculations of the gas Reynolds number (340) for a pipe to orifice diameter ratio of 0.6, 

and pressure ratio (340), respectively. The iterative programs developed by Inga (56) were used and modified for the 

present gas-liquid system. 

5.2.4 Calculation of the Superficial Gas Velocity, UG, in both Contactors 

The superficial, terminal and orifice gas velocity were respectively calculated as: 

( )2
T

GI
G dπ

Q
4U =  (5-50) 

( ) 2
dg

ρρd
σ2U B

GLB

L
T +

+
=  (5-51) 

( )2
orifice

G
orifice dπ

Q
4

n
1U ×=  (5-52) 

where n is the number of orifices. Equation (5-51) was taken from Jamialahmadi et al. (341) who developed this 

general correlation for the prediction of the terminal bubble rise velocity using air-toluene as part of the systems 

investigated. In the both gas-liquid contactors, the superficial gas velocity was calculated through the measurement 

of the gas flow rate at the orifice meter using Equation (5-50). The contact time, tC, was define as follows, assuming 

that the bubble is a cylinder of length dS rising vertically through the liquid at the velocity UG as follows: 

( )GLG

GLS

T

S
C ε1HQ

εVd
U
d

t
−

==  (5-53) 

5.2.5 Gas Holdup in the Agitated Reactors, εG 

In the agitated reactors, the dispersion height technique was used to measure the gas holdup under the designed 

operating conditions, since the manometric method was reportedly unsuccessful by Tekie (23) due to considerable 

turbulences created by the impeller, affecting the dP cells signal. Therefore, at any given mixing speed using the 

experimental method described in Section 4.4.3, εG was determined from the difference between the dispersion 

height, HD, and clear liquid height, H, as: 

D

D
G H

HHε −
=  (5-54) 



 

 111

5.2.6 Gas Holdup in the BCR, εG 

The gas holdup εG in the BCR was determined using the hydrostatic head method, also called manometric method. 

This method is based on the measurement of the gas volume fraction in the reactor under given operating conditions 

with the following assumptions: (1) the reactor is operating under steady-state condition; (2) the liquid and gas 

phases are well mixed; and (3) the impacts of the frictional effects on the pressure drop are negligible. In the 

experiments, enough time was allowed for the gas-liquid system to reach steady state, which was confirmed by 

plotting the gas holdup in the column as a function of time for each dP positions, as shown in Figure 28. The gas 

holdup values between position 1 (dP1) and the bed height (between dP3 and dP4) shown in Figure 29 are almost 

the same, indicating that large gas bubbles have created strong liquid circulation and bubbles back-mixing 

throughout the entire reactor (56) and subsequently the liquid and gas phases can be assumed well mixed. Also, 

Gharat and Joshi (342) and Boyer et al. (343) reported slight impact of the frictional effects on the pressure drop in the 

Manometric method under both the homogeneous and churn-turbulent regime in BCRs, which confirms the third 

assumption. Essentially, the εG at two different positions in the BCR is measured using the two dP cells. Since the 

distance between the dP legs (ΔLdP) and the density of the phases are known, εG can be calculated for each dP leg 

positions using the following equation: 

⎥
⎦

⎤
⎢
⎣

⎡
−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
gLΔρ

PΔ
1

ρρ
ρε

dPL

Cell

GL

L
G  (5-55) 

An average gas holdup was then calculated in the column. In addition, in the BCR, large bubbles with high gas 

holdup are expected to rise quickly through the liquid and create back-mixing, whereas the smaller ones, entrained 

in the re-circulation path (56), rise slowly to the surface. The coexistence of small and large gas bubbles in bubble 

column reactors have been reported using visual observations and photographic methods (179, 229, 235, 462, 465, 344). 

Rupture and coalescence of the bubbles may take place at any point inside the reactor, and could be explained by 

two competing forces, namely the surface tension and inertia. The surface tension force tends to maintain the gas 

bubbles in a spherical shape, whereas the inertial force tends to elongate the gas bubbles. Therefore, due to the 

existence of these two classes of bubbles in BCRs, the gas holdup of small and large bubbles was determined based 

on an arbitrary bubble diameter of: 

 mm5.1d SmallB ≤−  (5-56) 

The corresponding gas holdups were calculated by analyzing the dP cell signal after the sudden interruption of the 

compressor, using the Dynamic Gas Disengagement technique, which will be discussed in the following section. It 

should also be mentioned that the gas and liquid were assumed well mixed and enough time was given to reach 

steady state, which was confirmed by the actual plot of the axial profile of the gas holdup. In fact, as can be seen in 

Figure 28, the actual readings from the dP cells were not affected by time and the gas holdup values compared well 

at each positions on the column. Figure 29 also indicates that the liquid circulation was present along the entire 

column, since a small increase of the gas holdup values with the column height was observed. This was attributed to 
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the bubble expansion and high gas momentum of the large bubble, which was able to carry circulating bubbles 

through the re-circulation zone. 

5.2.7 Bubble Size Distribution and Sauter Mean Bubble Diameter in the Agitated Reactors, dS 

The photographic method reviewed in Section 4.4.3 was employed to measure the gas bubbles size in the agitated 

reactors under wide range of operating conditions as outlined earlier. The mechanical factors affecting the bubble 

measurement were optimal lighting and proper focus on the cooling coil, which insured an accurate calibration of 

the bubble size analysis software. It should be mentioned that the bubble sizes and dS were determined for each run 

using one shot, however, several shots were taken during each experiment with sufficient elapsed time to check the 

reproducibility of the results. 200 bubbles were also assumed to be sufficient from a statistical point of view to 

insure accurate results and reproducibility of the experimental data. Assuming spherical bubbles, the size was 

determined and found to follow a log-normal distribution as shown in Figure 30. Forrester et al. (111) observed similar 

distribution for the air-water system in the GIR. The log-normal density function distribution is given by: 

( )
( )

( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

××
=

2
B

B
B σln

μlndln
2
1exp

π2dσln
1df  (5-57) 

where μ  is the geometric mean bubble diameter and σ the standard deviation. These two parameters can be 

calculated from the plot of dB with the cumulative density in a log-normal probability graph. dS was then calculated 

from the bubble volume to area ratio as (23, 349): 

∑

∑

=

== k

1i

2
iB

k

1i

3
iB

S

d

d
d  (5-58) 
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Figure 27: Comparison Between kLa Values Obtained in the Two Agitated Reactors Used 
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5.2.8 Bubble Size Distribution and Sauter Mean Bubble Diameter in the BCR, dS 

The Dynamic Gas Disengagement technique (215) was used to determine the bubble size distribution in the BCR. 

This method is based on the determination of the bubbles size in the expanded bed as they leave by monitoring the 

rate of gas disengagement as a function of the bubble rise velocity of a given gas fraction. This is usually carried out 

using two approaches: 

1. Measuring the actual drop of the bed height (215, 231, 345, 346). 

2. Measuring the hydrostatic pressure change with time (56, 174, 215, 347). 

The limitation of the first approach is related to the method of monitoring the change of the bed height, which may 

be carried out by visual observations or floating devices. The second approach relies on the dP cells and is only 

limited by their specifications. Using the second approach, from the position of the dP cell taps and the recorded 

time after the compressor has been stopped, the bubble rise velocity was calculated from the following expression: 

⎟
⎠

⎞
⎜
⎝

⎛=
t

Lu T
b  (5-59) 

Using this value, the bubble diameter was determined from the following equation (230): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

g
u

0.5917d
2
b

b  (5-60) 

As can be seen in Figure 28, the pressure drop across the two dP taps increases as the gas disengages due to the 

decrease of εG. Therefore, using Equation (5-55), εG was calculated leading to the estimation of the rate of 

disengagement of each “size” of bubbles as a function of ub. In fact, If at time t = 0 the compressor is stopped and a 

homogenous distribution of bubbles along the column is assumed, then εG at time t can be coupled with ub,i, LT/t, 

assuming that the bubbles affecting the dP reading are exactly the bubbles disengaging at t. This leads to the 

assumption that the large bubbles would disengage first from t1 to t2, while the small bubbles would take longer time 

to disengage with velocities ub,Small ranging from LT/t2 to LT/t3. Thus, the observed decrease of εG at t, represents the 

volume of bubbles leaving the dP zone at LT, hence the following equations apply: 

dt
dt
εd

εΔ
i

1i

t

t

G
i,G ∫

−

=  (5-61) 

i

T
i,b t

Lu =  (5-62) 

∑
=

=
n

1i
i,GG εε  (5-63) 

In order to obtain ΔεG,i, ub,i and εG, the following four assumptions were made: 

1. The rate of gas disengagement of each bubble type i is constant throughout the experiment, meaning that ub,i 

does not change, therefore dεG/dt is replaced by ΔεG /Δt. 
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2. Once the gas flow is stopped, there is no coalescence or rupture of gas bubbles, meaning that the bubbles size 

remains constant as they disengage. 

3. There is no interaction between the different bubbles as they rise. 

4. The liquid circulation does not affect the bubble rise velocity. 

Sriram and Mann (215) pointed that if the last assumption is not true, its effect on the final results is not significant. 

Once ub,i are calculated, dB can be estimated using one of the correlations listed in Table A-7. It should be noted, 

however, that the estimated dB might vary from one correlation to the other as described by Inga (56). In this study, 

the correlation proposed by Fukuma et al. (230), given in Table A-7, was selected. Their study was conducted in a 

0.15m diameter BCR operating under atmospheric pressures and using an air/water/glass beads system with solid 

concentrations from 0 to 50 % by volume, which validated the use of their correlation in this study. dS of the small, 

large and total bubble population were then calculated using the volume to area ratio commonly accepted (118, 124, 144) 

shown in Equation (5-58). 
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Figure 28: Dynamic Gas Disengagement Technique and dP Cells Position for the Bubble Size Measurement in the BCR 
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Figure 29: Effect of the dP Cells Position and Gas Velocity on Axial Distribution of the Gas Holdup 
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Figure 30: Bubble Size Distribution for N2 in Toluene in the Agitated Reactors 
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5.3 MASS TRANSFER PARAMETERS 

In this section, the mass transfer parameters calculation methods in both gas-liquid contactors are described. 

5.3.1 Calculation of the Gas-Liquid Interfacial Areas, a, in the Agitated Reactors 

In the SAR, it is generally assumed from the flat surface model that the enhancement of interface due to the wavy 

motion is negligible and subsequently gas-liquid interface area, aSAR, is estimated using Equation (5-64) (11, 23, 349).  

H
1

/4Hππ
/4πd

V
A

a 2
T

2
T

L

Interface
SAR =≈=  (5-64) 

In this study, in order to estimate and assess the contribution of the wavy surface to the gas-liquid interfacial area, 

the small-amplitude wave theory reviewed by Faber (332) was employed. Under steady-state conditions, the 

commonly accepted relations (61, 62, 86, 332) for the displacement, ξ(r), and the wave frequency,ωWave are as follow: 

( ) ( )tωkrsinξtr,ξ WaveMax −=  (5-65) 

( )kHtanh
ρρ

kσgk
ρρ
ρ-ρω

GL

3
L

GL

GL2
Wave ⎥

⎦

⎤
⎢
⎣

⎡
+

+
+

=  (5-66) 

In these equations, k is the wave number, r is the radial coordinate, and ξMax is the wave amplitude. Under given 

operating conditions, ωWave and ξMax were measured in liquid toluene by analyzing the digitized images taken by the 

high-speed video Phantom camera unit, which enabled recording of the surface every 3333 μs. By inserting ωWave 

values in Equation (5-66), k was computed. It was also assumed that no damping effect occurred, due to the 

relatively low toluene viscosity, and subsequently aWave was estimated by the following integral: 

( )

L

2
d

0

222
Max

Wave V

dr    kr coskξ1r2π
a

T

∫ ×+×

=  
(5-67) 

In the SAR, GIR and GSR, the interfacial area of the entrained, induced and sparged bubbles was calculated from εG 

and dS values measured under identical operating conditions as:  

( )SARGSARS

SARG
Entrained ε1d

6ε
a

−−

−

−
=  (5-68) 

( )GIRGGIRS

GIRG
Induced ε1d

6ε
a

−−

−

−
=  (5-69) 

( )GSRGGSRS

GSRG
Sparged ε1d

6ε
a

−−

−

−
=  (5-70) 

Using aWave and Equations (5-68), (5-69) and (5-70)), aSAR, aGIR and aGSR were calculated as: 
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WaveEntrainedSAR aaa +=  (5-71) 

WaveInducedGIR aaa +=  (5-72) 

WaveSpargedGSR aaa +=  (5-73) 

5.3.2 Calculation of the Gas-Liquid Interfacial Areas, a, in the BCR 

The average εG and dS in the column were coupled to obtain the gas-liquid interfacial area, a as: 

( )GS

G

ε1d
ε6

a
−

=  (5-74) 

Since the contribution of the flat gas-liquid interface to the total aBCR can be assumed negligible in the BCR, the 

following equation was used: 

( )GS

G
BCR ε1d

ε6
aa

−
==  (5-75) 

Similarly, the gas-liquid interfacial areas of small and large gas bubbles were calculated: 

( )GSmallS

SmallG
Small ε1d

ε6
a

−
=

−

−  (5-76) 

( )GeargLS

eargLG
eargL ε1d

ε6
a

−
=

−

−  (5-77) 

5.3.3 Calculation of the Volumetric Mass Transfer Coefficient, kLa, in the Agitated Reactors 

In the SAR and GIR, the calculation of kLa was carried out under the following assumptions: 

1. Non-ideal behavior of the liquid and gas phases. 

2. The liquid phase is well mixed 

3. The mass transfer resistance of the gas phase is negligible compared to the liquid phase. 

The transient physical gas absorption technique, where the decline of the total pressure of the system with time is 

recorded, in conjunction with total mole and volume balances was used to calculate kLa values of O2 and N2 in 

toluene. The rate of mass transfer from the solute gas to the liquid phase is calculated using the two-film model as: 

( ) LLL
1L VC -*C ak= 

dt
dn

×  (5-78) 

where n1L is the number of moles of component i transferred from the gas phase into the liquid phase, C* is the 

concentration of the solute gas at the gas-liquid interface, CL is the concentration of the gas in liquid bulk, and VL is 

the volume of liquid toluene. In order to calculate kLa from Equation (5-78), C*, CL, VL and n1L were determined as a 

function of the solute gas partial pressure P1. At the gas-liquid interface, the liquid is assumed to be in instantaneous 

equilibrium with the partial pressure P1 of the gas phase, hence P1F is replaced by P1 in Equation (5-36) to obtain 

C*. CL, VL and n1L were calculated using the flash vaporization method described by Chang et al. (249-252). The 
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calculation algorithm is shown in Figure 31. At any pressure P(t) between the initial pressure Pi and equilibrium 

pressure PF, Δn number of moles of solute gas is assumed to vaporize from the liquid phase to the gas phase and the 

binary interaction parameter δij, optimized at the corresponding equilibrium temperature and pressure PF, is used in 

the calculation. It should be mentioned that δij was assumed to be independent of pressure. The essential steps in the 

calculation are: 

1. When Δn of the solute gas is vaporized back to the gas phase at time t, the composition of the solute gas 

(component 1) in the gas and liquid phases becomes: 

( )
ΔnN
Δnn tx

L

1L
1 −

−
=  (5-79) 

( )
ΔnN
Δnn

 ty
G

1G
1 −

−
=  (5-80) 

2. ZG and ZL are calculated using Equation (5-2). 

3. vG and vL are calculated using Equations (5-33) and (5-34), respectively. 

4. VL = (NL-Δn) vL and VG = (NG+Δn) vG are calculated. 

5. The volume balance VR = VL+VG is checked. If the volume balance is not confirmed, steps 1 to 4 are 

repeated. 

6. The values of CL and VL are calculated from the following equations: 

L

1
L v

xC =  (5-81) 

( )nΔ-NvV LLL =  (5-82) 

The calculations shown in Figures 26 and 31, were executed at every tested pressure from PF to PI, and the values of 

CL and VL obtained at each operating condition were correlated as a function of P1: 

PC+PC+C = C 2
13121L  (5-83) 

PF+PF+F = V 2
1211oL  (5-84) 

Ultimately, n1L is calculated from 

LL1L VCn ×=  (5-85) 

Coupling Equations (5-36), (5-83), (5-84) and (5-85) with (5-78) and integrating: 

( )
( )

( ) ( ) ∫∫ ×−
dtak = dt

β+Pβ+Pβ+Pβ+P
ξ+Pξ+P

CE F
ξ

L
4f1,3

2
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2
f1,

4
2

f1,2
3

f1,

312

1  where: (5-86) 

C-E
C-E = β

31

20
1  (5-87) 

C-E
C- = β

31

1
2  (5-88) 

F
F = β

2

1
3  (5-89) 
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F
F = β

2

o
4  (5-90) 

231 F4C = ξ  (5-91) 

ξ
)FC+FC3( = ξ

1

1322
2  (5-92) 

ξ
)FC+FC+FC2( = ξ

1

o31221
3  (5-93) 

ξ
FC+FC = ξ

1

0211
4  (5-94) 

Equation (5-86) could be expressed as: 

∫∫ ⎪⎭

⎪
⎬
⎫
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(5-96) 
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 (5-97) 

γ-1 = γ 13  (5-98) 

β
βγ-ξ = γ

2

424
4  (5-99) 

Equation (4-60) can be simplified as: 

∫∫∫∫∫ dtak =
Λ

dPγ + dP
Λ
Pγ + 

Λ
dPγ + dP

Λ
Pγ L

2

1t
41t

2

1t
3

1

1t
21t

1

1t
1  (5-100) 

where: β+Pβ+P = Λ 21t1
2
1f1  and β+Pβ+P = Λ 41t3

2
1f2  (5-101) 

The first and third terms of Equation (5-100) are: 

( ) ∫∫ −⎥⎦
⎤

⎢⎣
⎡

Λ
dP

2
β

 Λln
2
1 = dP 

Λ
P

1

1t1
11t

1

1t  (5-102) 

( ) ∫∫ −⎥⎦
⎤

⎢⎣
⎡

Λ
dP

2
β

Λln
2
1 = dP 

Λ
P

2

1t3
21t

2

1t  (5-103) 

Assigning values to: 

∫ Λ
dP = I

1

1t
1  and ∫ Λ

dP = I
2

1t
2  (5-104) 

Substituting Equations (5-102), (5-103), (5-104) and (5-101) into Equation (5-100) gives: 
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( )[ ] ( )[ ] ∫ dtak=I2
γβγ

+I2
γβγ

+Λln
2
γ

+Λln
2
γ

L2
334

1
112

2
3

1
1  (5-105) 

The integration of I1 and I2 depends on the value of the discriminant 4ac-b2 in ∫=
c+bx+xa

dxI
2

 

∫=
b-4ac
b+2ax

tan
b-4ac

2I
2

1-

2
 for (4ac-b2) > 0 (5-106) 

2
bax

1I
+

−=  for (4ac-b2) = 0 (5-107) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−++

−−+
×

−
=

4acbb2ax

4acbb2axln
4acb

1I
2

2

2
 for (4ac-b2) < 0 (5-108) 

Using Equations (5-106) to (5-108), the expressions of I1 can be re-written: 

ββ

β

ββ 2
12

11f1

2
12

1
4

+P2
 tan 

4

2 = I
−−

−  for 4β2 > β1
2 (5-109) 

2
β+P

-1 = I
1

1f

1  for 4 β2 = β1
2 

(5-110) 

β4β+β+P2

β4ββ+P2
ln

β4β

1 = I
2

2
111f

2
2
111f

2
2
1

1
−

−−

−
 for 4β2 < β1

2 (5-111) 

Similarly, I2 is determined by the value of the discriminant (4β4-β3
2): 

ββ4

β+P2
 tan 

ββ4

2 = I
2
34

31f1

2
34

2
−−

−  for 4β4-β3
2 > 0 (5-112) 

2
β

+P

-1 = I
3

1f

2  for 4β4-β3
2 = 0 

(5-113) 

β4β+β+P2

β4ββ+P2
ln

β4β

1 = I
4

2
331f

4
2
331f

4
2
3

2
−

−−

−
 for 4β4-β3

2 < 0 (5-114) 

Thus, Equation (5-105) can be integrated from time t = 0 (P1t = P1I) to anytime t (P1f  = P1t ): 

| ta k=   I2
βγγ

 +I2
βγγ

+Δln
2
γ

+Δln
2
γ

 
)C-E(F

ξ t
0L2

334
1

112
2

3
1

1
P

P312

1
1t

1I

×⎥
⎦

⎤
⎢
⎣

⎡  (5-115) 

The above equation can also be written as: 

( ) taktF L ×=  (5-116) 

Finally, the left hand side of the Equation (5-116) was plotted versus time, and if a straight line is obtained, its slope 

will correspond to kLa, as shown in Appendix C. 
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Figure 31: Algorithm for CL and VL Calculation in the Agitated Reactors (249) 
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In the GSR, using the two-film model, the rate of mass transfer from the solute gas into the liquid phase can be 

expressed as: 

LtL,
*

L
tG,tL, )VCa(Ck

dt
dN

dt
dN

−=−=  (5-117) 

The solubility, C*, is calculated from Equation (5-39), and the gas concentration in the liquid at any time, t, is 

defined as: 

L

tG,T
tL, V

NN
C

−
=  (5-118) 

Assuming no volume change due to gas solubility, Equation (5-118) could be simplified as: 

( ) dt  ak
CC

dC
L

tL,
*

tL, =
−

 (5-119) 

The integration of Equation (5-119) between the limits from CL,0 at t = 0 to CL,t at any time t, gives:   

t ak
CC
CC

ln L
tL,

*
L,0

*

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
 (5-120) 

The above equation can also be rewritten as: 

t akF(t) L=  (5-121) 

When F(t) values are plotted against time, t, and a straight line is found, kLa will be its slope.  

5.3.4 Calculation of the Volumetric Mass Transfer Coefficient, kLa, in the BCR 

The physical gas absorption technique was also used to obtain kLa in the BCR. The calculation details and 

assumptions made are described below: 

1. The binary mixture behavior was assumed to be ideal. The operating conditions justified such an assumption 

since both pressure and temperature were low. 

2. The gas and liquid were assumed well mixed: the liquid and gas concentration in the liquid phase were 

assumed to be homogeneous. 

The rate of mass transfer from the solute gas to the liquid phase is calculated using the two-film model as in 

Equation (5-78). Inga (56) developed three methods for the kLa calculation in the slurry bubble column reactor 

(SBCR): the integral, the differential, and the multiple linear regression method. These three methods gave similar 

results; however, the selection of one of them should be based upon the mathematical stability of the final function.  

In the integral method, the solubility values can be modeled by Henry’s Law as:  

( ) HePPC* vT −=  (5-122) 

Using Equations (5-44) and (5-122), Equation (5-78) is rewritten as: 
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⎟
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⎟
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⎝

⎛ −
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−−×=−
L

GVT
0

vT
LL

TG

V
RT

)VP(PN

He
P

He
PakV

dt
dP

RT
V

 (5-123) 

separating the variables: 

( )
.dtakV

V
NPPθ

dP
RT
V

LL

L

0
VT

TG −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

 with 
RTV

V
He
1θ

L

G+=  
(5-124) 

by integrating both sides, the following relation is obtained: 

( ) Ctak
V
N

PPθln
θ
1

RTV
V

L
L

0
VT

L

G +×−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−××  (5-125) 

If the left-hand side of the Equation (5-125) is plotted vs. time t, and gives a straight line the slope of this line equals 

kLa. This method was used to obtain kLa in the present study. 

In the differential method, Equation (5-123) is solved by approximating dP as ΔP and dt as Δt. Since the 

readings were taken at Δt <0 .05s, this assumption seems reasonable. Hence, it gives: 

ΔtakVΔPA LLL ××−=×  (5-126) 

If the ratio between ALΔP and -VLΔt is constant, the resulting value will correspond to kLa. 

The multiple linear regression method is based on the linearization of Equation (5-123), which can be rewritten 

as a linear expression: 

43T21 AtΔAtΔPAPΔA +×+××=×  where: (5-127) 

akRTV
V

A
LL

G
1

−
=  (5-128) 

θA2 =  (5-129) 

θP
V
N

A V
L

0
3 −

−
=  (5-130) 

A4= constant (5-131) 

Using multiple linear regressions, the coefficients A1, A2, A3 and A4 can be found.  

5.3.5 Calculation of the Gas-Liquid Mass Transfer Coefficient, kL, in the Agitated Reactors 

The mass transfer coefficients, kL in the SAR, GIR and GSR can be deduced from a and kLa data as: 
( )

SAR

SARL
SARL a

ak
k =−  (5-132) 

( )
GIR

GIRL
GIRL a

ak
k =−  (5-133) 
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GSR

GSRL
GSRL a

a)(k
k =−  (5-134) 

5.3.6 Calculation of the Gas-Liquid Mass Transfer Coefficient, kL, in the BCR 

The gas-liquid mass transfer coefficient, kL can be obtained by dividing kLa by Equation (5-75): 

( )
G

GS
L

L
L ε6

ε1d
ak

a
akk

−
==  (5-135) 

In the BCR, the contribution of the flat gas-liquid interface to the total gas-liquid interfacial area, a can be assumed 

negligible and accordingly: 

BubblesLL kk −≈  (5-136) 
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6.0 RESULTS AND DISCUSSION 

In this section, the effects of operating variables on the thermodynamic, hydrodynamic and mass transfer parameters 

are discussed. Details of the statistical design and analysis techniques used in this study are given in Appendix E. 

The experimental conditions used in the agitated and bubble column reactors are given in Tables 23 and 24, 

respectively, with the corresponding coded variables of the Central Composite Statistical Design shown in Tables 24 

and 25. It is important to mention that in the agitated reactors, the effect of pressure, P, temperature, T, mixing 

speed, N, and liquid height, H, on the hydrodynamic and mass transfer parameters were statistically investigated in 

the SAR and GIR, whereas in the GSR the effect of liquid height was replaced by the superficial gas velocity, UG,.  
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Table 23: Operating variables and their ranges for the agitated reactors 

T , K 
No. N , Hz P , bar H , m 

(SAR, GIR) 
UG , cm.s-1 

(GSR) All gas-liquid systems used All gas-liquid systems used, except 
Air-Toluene 

1 15.0 4.5 0.195 0.1 325 408 
2 15.0 4.5 0.244 0.3 325 408 
3 15.0 11.5 0.195 0.1 325 408 
4 15.0 11.5 0.244 0.3 325 408 
5 18.3 4.5 0.195 0.1 325 408 
6 18.3 4.5 0.244 0.3 325 408 
7 18.3 11.5 0.195 0.1 325 408 
8 18.3 11.5 0.244 0.3 325 408 
9 15.0 4.5 0.195 0.1 375 438 

10 15.0 4.5 0.244 0.3 375 438 
11 15.0 11.5 0.195 0.1 375 438 
12 15.0 11.5 0.244 0.3 375 438 
13 18.3 4.5 0.195 0.1 375 438 
14 18.3 4.5 0.244 0.3 375 438 
15 18.3 11.5 0.195 0.1 375 438 
16 18.3 11.5 0.244 0.3 375 438 
17 16.7 8.0 0.219 0.2 300 393 
18 16.7 8.0 0.219 0.2 400 453 
19 13.3 8.0 0.219 0.2 350 423 
20 20.0 8.0 0.219 0.2 350 423 
21 16.7 1.0 0.219 0.2 350 423 
22 16.7 15.0 0.219 0.2 350 423 
23 16.7 8.0 0.171 0.0 350 423 
24 16.7 8.0 0.268 0.4 350 423 
25 16.7 8.0 0.219 0.2 350 423 
26 16.7 8.0 0.219 0.2 350 423 
27 16.7 8.0 0.219 0.2 350 423 
28 16.7 8.0 0.219 0.2 350 423 
29 16.7 8.0 0.219 0.2 350 423 
30 16.7 8.0 0.219 0.2 350 423 
31 16.7 8.0 0.219 0.2 350 423 
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Table 24: Operating, Coded variables and their Ranges for the BCR 

No. P , MPa UG , m.s-1 x1 , - x2 , - 
1 0.29 0.072 -1 -1 

2 0.29 0.128 -1 1 

3 0.71 0.072 1 -1 
4 0.71 0.128 1 1 
5 0.20 0.100 - 2  0 

6 0.80 0.100 2  0 

7 0.50 0.060 0 - 2  
8 0.50 0.140 0 2  
9 0.50 0.100 0 0 

10 0.50 0.100 0 0 

11 0.50 0.100 0 0 
12 0.50 0.100 0 0 
13 0.50 0.100 0 0 

 

 

Table 25: Experimental conditions and coded variables for the agitated reactors 

Toluene and Organic Mixtures 

Operating Variables Value of the Variable 
Matrix 1: Air-Toluene;  N2-Toluene; and  N2-Toluene mixtures 1, 2, and 3  

 Coded Variables -2 -1 0 1 2 
Temperature, K x1 300 325 350 375 400 

Mixing speed, rpm x2 800 900 1000 1100 1200 
Pressure, bar x3 1.0 4.5 8.0 11.5 15.0 

Liquid height, m x4 0.171 0.195 0.219 0.244 0.268 
Superficial gas 
velocity, cm/s x4 0 0.1 0.2 0.3 0.4 

Matrix 2: N2-Toluene ; and  N2-Toluene mixtures 1, 2, and 3 
 Coded Variables -2 -1 0 1 2 

Temperature, K x1 393 408 423 438 453 
Mixing speed, rpm x2 800 900 1000 1100 1200 

Pressure, bar x3 4.0 6.0 8.0 10.0 12.0 
Liquid height, m x4 0.171 0.195 0.219 0.244 0.268 
Superficial gas 
velocity, cm/s x4 0 0.1 0.2 0.3 0.4 

 

 

Factorial points 

Axial points 

Central points 
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6.1 THERMODYNAMIC PARAMETERS 

6.1.1 Gas Solubility in the Liquids Studied 

The effect of pressure, temperature gas and liquid nature on the solubility values, obtained in the temperature range 

of 300-453 K and pressure range of 1-15 bars and covering the industrial operating conditions of the process, are 

described in the following. The reproducibility of C* data for gases in the different liquids used shown in Figure 33 

is with an average deviation of less than 10%. A comparison between the solubility data obtained in this study and 

those given in Table 4 is shown in Figure 34, and a reasonably good agreement with literature data within ±10% 

deviation can be reported. Also, the solubility data obtained in the agitated reactors and those in the BCR were 

plotted in Figure 32 for the sake of comparison. As can be seen in this figure, a very good agreement can be found 

and thus the solubility data obtained in the agitated reactors are the one to be used for modeling purposes due to 

larger ranges of operating conditions and better accuracy. 

Figure 33 shows that in the pressure and temperature ranges investigated, C* values of the O2, N2 and air in the 

liquids used vary linearly with pressure at constant temperature and accordingly Henry’s law was used to model C* 

values as: 

He
P

 =* C f1,  (6-1) 

He is the Henry’s constant and P1,f is the equilibrium (final) partial pressure of the gas. 

The regressed Henry’s law constant (He) values within the entire operating conditions used are listed in Table 26. 

The experimental values of He are listed in under the entire operating conditions used in this study. Similar effect of 

pressure on the gas solubility in liquids has been reported in the literature (11, 23, 56, 249) for various systems. In fact, 

increasing pressure increases the concentration gradient of the gas species between the two phases, which leads to an 

increase of the gas solubility in the liquid. Furthermore, in the “low” pressure ranges usually investigated for the 

design of gas-liquid processes, Henry’s law generally describes rather well the pressure dependency of gas 

solubility, assuming ideal solutions. The most important characteristic of Henry’s law is that it implies linearity 

between the gas solubility and the gas partial pressure. While Henry’s law is commonly used in the design of 

chemical processes, it should be mentioned that its applicability is usually restricted to low pressure systems. In fact, 

under elevated pressures, Henry’s law fails to describe the system behavior due to the high gas concentration, which 

results in a non-linearity between the gas solubility and pressure. 
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Figure 32: Comparison Between the C* Values Obtained in the Bubble Column and the Agitated Reactors 
 

C*BCR , kmol.m-3

0.00 0.02 0.04 0.06 0.08

C
* C

S
TR

 , 
km

ol
.m

-3

0.00

0.02

0.04

0.06

0.08
3.25 bar
6.35 bar
7.90 bar

+10 % -10 %



 

 

133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Reproducibility and Effect of Pressure, Temperature, and Gas and Liquid Nature on C* Values 
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Figure 34: Effect of Temperature on Henry Constants for N2 and O2 in Toluene 
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The effect of temperature on C* values, on the other hand, has been reported to be system dependent (486, 348) and 

is generally studied through the Henry’s law constants and apparent activation energy of absorption (11, 23, 349, 350, 351, 

352, 26, 29, 30, 31, 32, 36). In a small temperature range, an Arrhenius-type, Equation (6-2), is usually used to predict the 

effect of temperature on He, assuming that the apparent activation energies of absorption (ΔE) are constant (11, 23, 349, 

350, 351, 352, 353, 354, 355, 29, 30, 31, 32, 249). 

⎟
⎠
⎞

⎜
⎝
⎛ −

×=
RT
ΔEexpHHe o  (6-2) 

In a wide temperature range, however, ΔE might not be constant and accordingly Equation (6-3) can be used (350-353, 

355, 29-32): 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
−=

T1
(He) ln

R
ΔE  (6-3) 

In fact, for numerous gas-liquid systems (356, 357), as reported by Hilmmelblau (350), Schulze and Prausnitz (351) and 

Carroll et al. (352), it appears that there is a turn-around point where the temperature dependency of the gas solubility 

changes. It is clear from these studies that C* first decreases until its reaches a minimum, i.e. turn around point, and 

then increases with temperature. In the present study, as Figure 34 shows, He appears to increase with T, until TMAX, 

the turn-around point, and then decreases with further increase of temperature. Figure 35 shows a comparison 

between our data and those reported by Himmelblau (350), for N2-water and O2-water, where a similar behavior was 

found, when the modified Henry’s law constants, defined in Equation (6-4), were plotted versus the reciprocal 

temperature. 

1

f,1
.Mod x

P
 = He  (6-4) 

Hilmmelblau (350), Schulze and Prausnitz (351), Battino et al. (31) and Carroll et al. .(352) used polynomial functions of 

temperature or inverse temperature in order to represent the temperature dependency of the gas solubility under 

these conditions. Following a similar procedure developed by Himmelblau (350), the behavior of C* with temperature 

was described using a dimensionless equation for O2, N2 and air in the toluene and mixtures used as: 

( ) 2*T
C

*T
BA*He ln ++=  with: (6-5) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

CMAX

C

T
1

T
1

T
1

T
1

*T
1  (6-6) 

MAXHe
HeHe* =  (6-7) 

TC represents the toluene critical temperature; TMAX and HeMAX (see Table 27) are the temperature and Henry’s Law 

constant corresponding to the turn around point for each gas-liquid system used. The coefficients in Equation (6-5) 

were estimated with a regression coefficient > 99.5 % as can be seen in the parity plot of Figure 36. 
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The effect of gas nature on C* was studied through the solubility parameters, since Prausnitz and Lichtenthaler 
(358) suggested that the gas molar fraction in liquids, x1 can be expressed by: 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ×−×
−×=

RT
ΦδδvexpfFx

2
2

2
21

L
1

1  (6-8) 

Where F(f) is a function of the fugacity, v1
L is the gas molar volume, δ1 and δ2 are the solubility parameters of 

component 1 and 2, respectively, and Φ2 is the volume fraction of the liquid. As can be seen in Equation (6-8), when 

the difference between δ1 and δ2 is small, x1 becomes large and thus a high C* is expected. The solubility parameters 

of liquids and gases for organic and inorganic compounds are ascertained at any temperature from the data of heat of 

vaporization, HV, and liquid volume, VL, as shown in the following equation (359): 

2
1

L

V

V
RTH

δ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=  (6-9) 

Although the solubility parameters are function of temperature as shown from Equation (6-9) and the values listed in 

Table 16 were reported at 298 K, Prausnitz and Lichtenthaler (358) reported that the difference between the solubility 

parameters of two components is independent of temperature. In fact, these findings are in agreement with the 

regular solution theory (328), which assumes that the excess entropy equals 0. Thus, it can be concluded that: 

Cst)f( LnRT 1 =×  (6-10) 

Thus, it can be shown using Equation (6-8) that for any temperature: 

( )    Cstδδ 2
21 =−  (6-11) 

Since the gas-liquid systems used in this study are considered non-polar, the theory of regular solution is applicable, 

which leads to the findings of Prausnitz and Lichtenthaler (358). Hence, from Equation (6-8) and the solubility 

parameter data given in Table 16, both C* of gases in toluene and C* of N2 in liquids should follow inequalities 

(6-12) and (6-13), respectively: 

( ) ( ) ( )Toluene
N

Toluene
Air

Toluene
O C*C*C*

22
>>

 
(6-12) 

( ) ( ) ( ) ( ) 123
2222

Mixture #
N

Mixture #
N

Mixture #
N

Toluene
N C*C*C*C* >>>

 
(6-13) 

Figure 33 shows that these two inequalities hold for the gases and liquids used in this study, and accordingly the 

effects of gas and liquid natures on C* appeared to follow Equation (6-8) suggested by Prausnitz and Lichtenthaler 
(358). At temperatures close to the liquid critical temperature, however, Beutier and Renon (360) showed that it is 

impossible to predict the gas solubility without any experimental data under these conditions. In addition, as 

commonly accepted in the literature (350, 351, 352, 353, 354, 355, 358, 26, 27, 30, 31), Beutier and Renon (360) reported that the 

solubilities of all gases in a specific solvent converge at the critical temperature towards the same value. 
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6.1.2 Activation Energy of Air, N2 and O2 in Toluene 

The apparent activation energies of absorption for N2, O2 and air in toluene and toluene mixtures were obtained by 

Equation (6-3) (350-353, 355, 29-32). Table 26 shows ΔE values of both gases in toluene in the temperature range of 300-

453 K. The apparent activation energy values were also correlated using Equations (6-3) and (6-5): 

⎟
⎠
⎞

⎜
⎝
⎛ +×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

*T
C2B

T
1

T
1

RΔE

CMAX

 
(6-14) 

The knowledge of the apparent activation energy of absorption (ΔE) is important to verify the occurrence of 

chemical reaction during the physical absorption in the range of temperature studied. In fact, Doraiswamy and 

Sharma (361) reported that ΔE for mass transfer without chemical reaction should be < 21000 kJ.kmol-1, which is in 

agreement with the values listed in Table 26, hence no chemical reaction took place during the absorption 

experiments conducted in this study. 
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Table 26: Henry’s law constant and apparent activation energy of absorption 

Gas/Liquid Nitrogen/Toluene 
T , K 300 325 350 375 400 393 408 423 438 453 

He , bar.m3/kmol 172.80 175.01 160.70 144.38 125.1 132.48 120.57 110.01 104.24 98.02 
ΔE , kJ/kmol 391 -1832 -3737 -5389 -6834 -6448 -7259 -8012 -8714 -9370 
Gas/Liquid Oxygen/Toluene 

He , bar.m3/kmol 104.91 108.44 104.10 101.21 91.91 96.05 87.78 78.64 71.87 66.34 
ΔE , kJ/kmol 3810 631 -2093 -4454 -6520 -5968 -7128 -8205 -9208 -10146
Gas/Liquid Air/Toluene 

He , bar.m3/kmol 166.47 166.74 153.83 140.45 113.84 - - - - - 
ΔE , kJ/kmol 1482 -1544 -3449 -5158 -7195 - - - - - 
Gas/Liquid Nitrogen/Mixture #1 

He , bar.m3/kmol 185.83 179.44 168.15 156.78 147.65 143.28 141.86 135.40 131.78 128.36
ΔE , kJ/kmol 1680 -791 -2910 -4745 -5923 -6352 -6824 -7662 -8443 -9171 
Gas/Liquid Nitrogen/Mixture #2 

He , bar.m3/kmol 182.66 - - - - 139.58 136.53 135.24 126.46 122.25
ΔE , kJ/kmol 1125 - - - - -6030 -6878 -7666 -8400 -9086 
Gas/Liquid Nitrogen/Mixture #3 

He , bar.m3/kmol 176.77 - - - - 142.85 132.15 128.85 119.50 114.19
ΔE , kJ/kmol 631 - - - - -6113 -6912 -7655 -8348 -8994 

 

 

Table 27: Parameters for the General Solubility Correlation Equation (6-5) 

 N2-Toluene O2-Toluene Air-Toluene N2-Mixture #1 N2-Mixture #2 N2-Mixture #3 
A -1.328 -1.328 -1.328 -0.722 -0.922 -0.968 
B 2.635 2.635 2.635 1.047 1.603 1.791 
C -1.310 -1.310 -1.310 -0.349 -0.706 -0.834 

HeMAX , 
bar.m3/kmol 175.50 110.40 169.50 185.00 184.00 178.00 

TMAX , K 304 330 312 317 313 308 
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Figure 35: Turn Around Temperature Effect on C* Values in Water (350) and Toluene 
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Figure 36: Comparison Between Experimental and Predicted Henry Constants from Equation (6-5) 
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6.2 HYDRODYNAMIC AND MASS TRANSFER PARAMETERS IN AGITATED REACTORS 

In this section, the effects of operating variables on the critical mixing speeds, induced gas flow rate, bubble size, 

gas holdup, gas-liquid interfacial area, volumetric mass transfer coefficient and mass transfer coefficient are 

discussed. The reproducibility of kLa, NCR, QGI, dS, εG, aWave, a and kL values presented in Figures 37 through 52 were 

obtained with an average deviation of < 15, 10, 15, 15, 15, 10, 15 and 15 %, respectively. 

6.2.1 Effect of Mixing Speed on the Hydrodynamic and Mass Transfer Parameters 

Figure 37 indicates that in the SAR, GIR and GSR, increasing mixing speed from 13.33 to 20.00 Hz appears to 

increase kLa values by about 200, 500 and 100%, respectively. This behavior is in agreement with various literature 

findings (267, 268, 483), and can be explained by the effect of N on both kL and a. 

In fact, increasing mixing speed increases the gas entrainment rate in the SAR, gas induction rate in the GIR 

(Figure 39) or gas re-circulation rate in the GSR and thus εG-SAR, εG-GIR and εG-GSR increases by about 100, 400 and 

60%, respectively when mixing speed is increased from 13.33 to 20.00 Hz as shown in Figure 38. This behavior is 

due to the increase of turbulence at the gas-liquid surface in the SAR (72, 75, 76, 106, 107, 120, 121, 134, 149), the increase of the 

pumping capacity of the impeller in GIRs (89, 103, 111, 114), and the increase of gas bubbles re-circulation and dispersion 

in the GSR, which is in agreement with several literature findings (72, 107, 120, 121, 122, 128, 139, 149). It is also important to 

notice that in all reactor types at high mixing speeds, εG values level off due to the establishment of a fully 

developed hydrodynamic regime. 

Furthermore, increasing mixing speed from 13.33 to 20.00 Hz appears to slightly decrease dS-SAR and dS-GSR by 

15 and 10%, respectively, which can be attributed to the increase of the bubble breakup probability with increasing 

N, as more and more entrained gas bubbles became dispersed throughout the vessel in the SAR (72, 349, 119, 126, 132, 134, 

458, 459), and as sparged gas bubbles rising from the distributor reach the impeller blades in the GSR (118, 126, 132, 146).  

Thus, as shown in Figure 40, a increases by about 275 and 80% with increasing mixing speed in the SAR and 

GSR from 13.33 to 20.00 Hz, which is expected from Equations (5-71) and (5-73) and the reported behavior of 

aWave. In fact, Figure 39 shows the effect of mixing speed on the wavy gas-liquid interfacial area; and as can be seen 

increasing mixing speed increases aWave, which can be quantified in terms of the enhancement of the gas-liquid 

interfacial area E(a). Increasing mixing speed increases the turbulence at the gas-liquid interface, which increases 

the frequency as well as the amplitude of the surface waves created, leading to the observed increase of aWave.  

In the GIR, however, dS-GIR values appear to increase by about 30% with increasing mixing speed, which is 

similar to the findings by Fillion and Morsi (268) and Hsu and Huang (109). These data suggest that the reactor has 

reached its fully developed hydrodynamic or flooding regime, and consequently an increase of the bubble 

coalescence probability is expected due to the presence of large population of induced gas bubbles. Nonetheless, 
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aGIR and aInduced appear to increase by about 250% with increasing N, as the gas holdup values seem to control the 

behavior of the gas-liquid interfacial area in the GIR under such conditions.  

It is also important to notice that in both the GIR and GSR, the trends of dS and a were less pronounced in the 

organic mixtures than in toluene, as the presence of benzaldehyde and benzoic acid appears to have decreased the 

toluene coalescence tendency.  

In the SAR, GIR and GSR, kL is found to increase by about 10, 30 and 5%, respectively, with increasing mixing 

speed as can be seen in Figure 40, which can be related to the reduction of the film thickness with increasing 

turbulence  (267, 483). It is also important to mention that the increase of kL with N is stronger in the GIR than in the 

SAR and GSR, which can be attributed to a greater increase of dS with N in the GIR, since Calderbank and Moo-

Young (1961) reported that kL is directly proportional to dS. At high mixing speeds in all three types of reactor, 

however, kL tends to become almost independent of N, which is in agreement with the findings by Ganguli and van 

den Berg (362). Thus, since in the three reactor types used, both a and kL were found to increase with N, increasing 

mixing speed was expected to increase kLa values. 

6.2.2 Effect of Liquid Height on the Hydrodynamic and Mass Transfer Parameters 

Figure 41 shows that increasing liquid height from 0.171 to 0.268m decreases kLa values in both the SAR and GIR 

by up to 90 and 80%, respectively.  

In fact, increasing H decreases the turbulence at the gas-liquid surface and as a result NCRE increases (60, 65, 68, 71, 

73-77) in the SAR, as shown in Figure 42. In the GIR, the decreas of turbulence increases the hydrostatic head above 

the impeller, which increases the pressure drop needed to induce the gas into the liquid, and thus reduces the 

pumping capacity of the impeller (349, 93, 103), and subsequently increasing the liquid height increases NCRI (89, 92, 111) , as 

shown in Figure 42.  

Therefore, both rate of gas entrainment and induced gas flow rate, QGI, (Figure 42) decrease, respectively, in the 

SAR and GIR, leading to a sharp decrease of εG-SAR and εG-GIR (95, 96, 98, 106, 109, 114, 267, 483) as illustrated in Figure 43. At 

mixing speeds > 16 Hz in the GIR, however, QGI becomes independent of liquid height, as shown in Figure 42, and 

could be attributed to the fully developed hydrodynamic regime reached by the reactor under such conditions.  

Figure 43 also shows that increasing liquid height from 0.171 to 0.219m increases dS-SAR by 20%, as the 

decrease of turbulence and population of entrained gas bubbles led to a decrease of the bubble breakup probability. 

This behavior is different in the GIR, as the reactor under the operating conditions used reached a fully developed 

hydrodynamic regime, where increasing liquid height decreases QGI as well as the rate of gas bubbles coalescence. 

Also, as bubbles coalescence appears to dominate the gas bubble sizes distribution in pure toluene, the presence of 

benzaldehyde and benzoic acid seems to have hindered coalescence, since the decrease of dS-GIR with H in toluene 

mixtures is only 5% when compared with 30% in toluene as can be observed in Figure 43.  
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Figure 37: Effect of Mixing Speed, Pressure and Liquid Nature on kLa values in the SAR, GIR and GSR 
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Figure 38: Effect of Mixing Speed, Pressure and Liquid Nature on dS and εG values in the SAR, GIR and GSR 
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Figure 39: Effect of Mixing Speed, Pressure and Liquid Nature on QGI and aWave values in the SAR, GIR and GSR 
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Figure 40: Effect of Mixing Speed, Pressure and Liquid Nature on a and kL values in the SAR, GIR and GSR 
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Figure 41: Effect of Liquid Height, Pressure and Liquid Nature on kLa values in the SAR and GIR 
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Figure 42: Effect of Liquid Height, Pressure and Liquid Nature on NCRE, NCRI, QGI and aWave values in the 
SAR and GIR 
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Figure 43: Effect of Liquid Height, Pressure and Liquid Nature on dS and εG values in the SAR and GIR 
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Figure 44: Effect of Liquid Height, Pressure and Liquid Nature on a and kL values in the SAR and GIR 
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The aWave, on the other hand, appears to decrease with liquid height, H, as can be observed in Figure 42. In fact, 

increasing H decreases the turbulence, which results in a decrease of the aWave and subsequently E(a) by about 25%. 

From Equation (5-71) and (5-72), and the behavior of aWave, aSAR is expected to decrease by about 20% with 

increasing liquid height from 0.171 to 0.219m, whereas for aGIR, the observed decrease with H is not that obvious, as 

it appears to be predominantly due to the decrease of QGI and subsequently εG-GIR. This signifies that the gas holdup 

in the GIR controls the gas-liquid interfacial area, as it is shown in Figure 44.  

Increasing the liquid height also decreases the power input per unit volume and the degree of turbulence, and 

thus decreases both kL-SAR and kL-GIR by about 50 and 25%, respectively as depicted in Figure 44. Therefore, since 

increasing H decreases both a and kL the observed decrease of kLa values with increasing liquid height are expected. 

6.2.3 Effect of Superficial Gas Velocity on the Hydrodynamic and Mass Transfer Parameters 

The effect of superficial gas velocity, UG, on kLaGSR is shown in Figure 45, and it appears that kLaGSR increases by 

about 30 % with increasing UG from 0.002 to 0.004m/s, which was expected due to the observed increase of εG-GSR, 

aGSR and kL-GSR with UG.  

In fact, on one hand, εG-GSR increases by 50% with increasing superficial gas velocity, since increasing UG 

increases the bubble population, gas dispersion and re-circulation zone in the reactor. On the other hand, increasing 

UG increases the bubbles coalescence probability and decreases the mixing power input per unit volume (128), which 

subsequently decreases the bubbles breakup rate, and thus increases dS-GSR values. Therefore, due to these combined 

effects, an increase by 35% of dS-GSR values with increasing UG occurs in the GSR, as observed in Figure 45. It is, 

however, important to mention that this behavior is less pronounced in mixture #1 (only 20%), due to the non-

coalescence (frothing) nature of this mixture.  

This increase of dS-GSR values with UG appears, however, to be minor as aGSR increases by about 20% with UG, 

indicating that εG-GSR has a controlling effect on aGSR under these conditions.  

Increasing the superficial gas velocity UG decreases the energy dissipated, and according to the “eddy” cell 

model (279, 363) kL-GSR is expected to decrease which disagrees with our experimental findings. Linek et al. (363), on the 

other hand, recently pointed out that the “slip velocity” model predicts a decrease of kL with increasing the 

dissipated power, which is in contradiction with the predictions of the “eddy” cell model. In this study, however, 

increasing UG appeared to increase dS-GSR and hence kL-GSR should a priori increase as suggested by Calderbank and 

Moon-Young (208), Miller et al., (126) and Linek et al. (364). Thus, increasing UG increases both aGSR and kL-GSR and 

consequently kLaGSR.  

6.2.4 Effect of Temperature on the Hydrodynamic and Mass Transfer Parameters 

The temperature effect on kLaSAR is usually related to the changes of the physicochemical properties of the gas-liquid 

system used (11, 23, 349, 224, 249). In this study, as shown in Figure 46, kLa increases by about 400 and 300% with 

increasing T from 300 to 453 K, respectively for all gases in toluene in the SAR and GSR, and by 20% in mixture #1 
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in the GSR, whereas in the GIR, kLa is observed to increase and then slightly decrease in toluene and appears to 

systematically decrease in the organic mixtures. This effect of T on kLa in the SAR, GIR and GSR can be explained 

by the effect of temperature on a and kL.  

In toluene, increasing temperature from 300 to 453 K appears to decrease dS-SAR, dS-GIR and dS-GSR, by 15, 30 and 

20 %, respectively as can be observed in Figure 49. This effect can be directly attributed to the decrease of liquid 

viscosity (72, 458) and surface tension (349, 72, 118, 125, 132, 134, 458, 459) with T, as similar findings have been reported in the 

literature (71, 118, 126, 132, 134, 146, 458). In the organic mixtures, however, dS-GIR and dS-GSR values seem to behave differently 

with increasing temperature. In fact, dS-GIR and dS-GSR values in the liquid mixtures first increase and then decrease 

with increasing temperature. This trend closely matches the behavior of the mixtures frothing characteristics, since 

at temperatures < 380 K, it was observed that froth was formed at the gas-liquid interface; and as the temperature 

was increased the froth started to slowly diminish and completely disappeared for T > 410 K. Consequently, since 

smaller bubble sizes are expected in the presence of froth, dS-GIR and dS-GSR values started to increase with 

temperature until the froth disappeared (between 380 to 410 K), then with further temperature increase, dS values in 

the mixtures decreased as in pure toluene.  

Increasing temperature decreases both liquid viscosity and surface tension, and led, in the SAR, to the decrease 

of NCRE due to the increase of the surface turbulence. Similar findings were observed and reported by Tanaka et al. 
(74) and Tanaka and Izumi (77). Thus, the rate of gas entrainment in the SAR and the re-circulation rate (122) in the GSR 

increase, resulting in an increase with T of εG-SAR and εG-GSR by 25 and 50%, respectively in toluene, as it was 

confirmed in Figure 49. In the GIR, Figure 47 shows that NCRI slightly decreases with increasing temperature, which 

can be related to the decrease of liquid viscosity as previously reported by several investigators (349, 93, 103). 

Furthermore, using the experimental data by Fillion (349) obtained in a geometrically identical GIR (see Table 28) 

along with those obtained in this study, the effect of physicochemical properties on the critical mixing speed was 

investigated as depicted in Figure 48. It appears, from this figure that increasing liquid viscosity or density increases 

NCRI, which is in agreement with the finding by Patwardhan and Joshi (114).  

However, as illustrated in Figure 47, the induced gas-flow rate for toluene and mixtures in the GIR appears to 

increase and then decreases with temperature. This behavior is analogous to the effect of liquid viscosity on the gas 

induction flow rate found by Aldrich and van Deventer (100, 101), and could be the result of the formation of different 

types of cavities around the impeller, revealing a transition of flow regime as reported by van’t Riet and Smith (365) 

and Bruijn et al. (366). They studied this behavior in terms of cavity formation and observed that at low viscosity 

(corresponding to high temperatures) small cavities designated “clinging cavities” are formed around the impeller. 

As the viscosity increases, i.e., temperature decreases, these cavities become bigger, leading to a decrease of the 

pressure behind the blade and consequently the pumping capacity of the impeller increases. Bruijn et al. (366) also 

showed that with further increase in liquid viscosity (corresponding to very low temperatures), more stable cavities 

are formed and the impeller suction efficiency diminishes. To further verify this effect of liquid viscosity on QGI 

values, QGI of N2 in soybean oil and toluene were compared in Figure 48. As can be observed in this figure 

increasing liquid viscosity first increases and then decreases QGI, which is confirming the literature findings (101, 365, 

366) as well as the effect of temperature on QGI observed in toluene. Figure 48 also shows that increasing liquid 
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density decreases QGI, which again is in agreement with the results by Aldrich and van Deventer (101), who observed 

a decrease of QGI with increasing liquid density from 798 to 998 kg/m3. Thus, it can be concluded that a maximum 

in QGI values as function of temperature, i.e. liquid viscosity is expected. This explanation in terms of cavity 

formations provided by van’t Riet and Smith (365) and Bruijn et al. (366) to interpret the flow regime transition could 

also be perceived as a consequence of the impeller flooding. In fact, Warmoeskerken and Smith (136) observed 

similar cavities structure in the “loading-flooding” transition in a gas-sparging reactor (GSRs). Hence, the effect of 

temperature could be attributed to the impeller flooding, and be explained as a transition of flow regime with 

changes in liquid viscosity as observed by Aldrich and van Deventer (100, 101). At mixing speeds >16 Hz, however, the 

induced gas flow rate appears to be independent of temperature, meaning that the reactor seems to have reached a 

fully developed hydrodynamic regime. Consequently, due to the effect of temperature or “viscosity” on QGI, εG-GIR 

appears to increase and then decrease with temperature in toluene, which is in agreement with the findings of He et 

al. (98) and Aldrich and van Deventer (101) in GIRs.  

In the organic mixtures, however, the presence of froth and the effect of temperature on its stability affected the 

gas holdup, and thus different behaviors were observed. In fact, at low T, the froth led to an enhancement of εG-GIR 

values, which disappeared at high T as the froth faded. Therefore, εG-GIR values in the mixtures were affected and 

controlled by both the froth and QGI, as a systematic decrease with temperature can be seen in Figure 49. In the 

GSR, εG-GSR trend in mixture #1 is only controlled by the presence of froth, as εG-GSR values in mixture # 1 were 

found to decrease and increase with T. In fact, as temperature increased the froth decayed, thus εG-GSR decreased until 

T > 410 K, where the organic mixture started to behave like toluene, resulting in an increase of εG-GSR with T.  

Furthermore, under the conditions used, aWave and E(a) appear to increase with increasing temperature as 

illustrated in Figure 47. This effect of temperature can be attributed to the decrease of liquid viscosity and surface 

tension with increasing T, which leads to the increase of the amplitude of aWave (86) resulting in an increase of E(a) by 

40% at 5.5 bar.  

Consequently, as dS-SAR, dS-GIR and dS-GSR decrease, and aWave increases with T in toluene, aSAR, aGIR and aGSR are 

expected to follow the behavior exhibited by the gas holdup in the SAR, GIR and GSR, which is confirmed by 

comparing Figures 49 and 50. In the liquid mixtures, the froth controls the gas holdup behavior which dominates the 

trends of a in both the GIR and GSR. Thus, aGIR, decrease in liquid mixtures, and aGSR first decrease and then 

increase with increasing T, as can be seen in Figure 50.  

Increasing temperature was also found to increase kL values by about 75, 100 and 100 %, respectively in the 

SAR, GIR and GSR in all systems studied, as can be seen in Figure 50. This effect was expected, as increasing T 

increases the gas diffusivity, DAB, and subsequently kL, because it is well accepted that kL is directly proportional to 

DAB to a power n (Equation (6-15)) ranging from 0.5 for the penetration theory to 1.0 for the two-film model (367).  
n
ABL Dk ∝  (6-15) 

From the balance effect of T on both a and kL, it appears that in toluene kLa increases in the SAR and GSR, and 

increase and slightly decreases in the GIR. In the organic mixtures, however, kLa appears to systematically decrease 

in the GIR and decrease and then increase in the GSR. These trends seem to imply that the SAR is controlled mostly 

by kL, and the GIR and GSR by both kL and a, especially under frothing conditions. 
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Table 28: Geometrical and Operating Parameters Used by Fillion (349) 

Systems 
Gas H2, N2 
Liquid Soybean Oil 

Physical Properties 
ρL , kg.m-3 800-866 
μL , Pa.s 0.0023-0.0067 
σL , N.m-1 0.024-.030 

Operating Conditions 
T, K 373-473 
P , bar 1-5 
H , m 0.146-0.268 
N , Hz 11.7-28.3 

Reactor Geometry 
Inducing Type Hollow shaft 
dImp. , m 0.0508 
dorif , m 0.0024 
dT ,m 0.114 
HImp. , m 0.0635 
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Figure 45: Effect of Superficial Gas Velocity, Pressure and Liquid Nature on kLa, dS, εG, a and kL in the GSR 
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Figure 46: Effect of Temperature, Pressure and Gas Nature on kLa in the SAR, GIR and GSR 
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Figure 47: Effect of Temperature, Pressure, Gas and Liquid Nature on NCRE, NCRI, QGI and aWave in the SAR, GIR and GSR 
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Figure 48: Effect of Viscosity and Density on NCRI and QGI in the GIR  
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Figure 49: Effect of Temperature and Pressure on dS and εG in the SAR, GIR and GSR 
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Figure 50: Effect of Temperature and Pressure on a and kL in the SAR, GIR and GSR 
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6.2.5 Effect of Pressure on the Hydrodynamic and Mass Transfer Parameters 

In Figures 37, 41, 45, 46 and 51, kLaSAR values appear to be independent of pressure at low T and to decrease with P 

at high T, while kLaGIR and kLaGSR values appear to be almost independent of P. These behaviors can be interpreted in 

the light of the dependency of kL and a on P, as the effect of P on kLa have been reported to be controversial (23).  

Figures 38, 43, 45, 49 and 51 illustrate that dS-SAR, dS-GIR and dS-GSR are not affected by pressure, indicating that 

the bubbles are small enough to resist the force generated by P (23, 349). In Figure 42, it also appears that the pressure 

does not significantly affect NCRE values within the experimental conditions used, as the liquid not the gas 

physicochemical properties, seem to control the NCRE behavior in the SAR. Similar findings in the GIR can be 

observed in Figure 42. This figure indicates that within the range investigated, pressure has no effect on NCRI, which 

can be explained by the behavior of the pumping mechanism in the GIR. At low mixing speeds, the hollow shaft is 

full or partially full of liquid, and as the mixing speed increases, the liquid level inside the hollow shaft decreases 

until the first gas bubbles exits through the orifice, indicating NCRI. Thus, at mixing speeds below NCRI, the pumping 

capacity of the impeller is mainly dependent on the liquid and not the gas properties as discussed by Patwardhan and 

Joshi (114).  

In the SAR, it can also be noticed in Figures 38, 43, 45, 49 and 51, that εG-SAR values decrease by about 40% 

with increasing pressure at high temperatures (> 350 K), while εG-GIR and εG-GSR values are almost independent of P. 

Increasing pressure can alter the gas-liquid physical properties, such as liquid viscosity and surface tension, or create 

a smoother liquid surface (force/area). Since in all reactor types, very little change was observed by increasing 

pressure on the Sauter mean bubble diameter or critical mixing speeds, it can be concluded that the change of 

physicochemical properties with pressure is negligible.  

In the SAR, however, it seems that increasing P reduced the degree of turbulence inside the reactor as in 

Figures 39, 42 and 47 the values of aWave and E(a) decrease with increasing P, especially at high temperature. This 

behavior could be attributed to the increase of the forces applied on the gas-liquid surface with increasing pressure, 

which might have flattened the wavy surface. In fact, increasing pressure tends to decrease the waves’ amplitude and 

squeeze the gas-liquid surface leading to a decrease of aWave
 (151)

. Thus, a decrease in aWave can be expected, 

especially at low liquid viscosity and surface tension, i.e. high temperature. In these figures, it also appears that 

depending on the operating conditions used, aWave could increase reaching an E(a) of about 40%, which means that 

its determination is critical in calculating and assessing the true mass transfer coefficient, kL. Also, the knowledge of 

aWave values could have a strong impact on the scale-up of SARs, if taken into account, as suggested by Miller (126). 

Consequently, the overall bubble population decreases with pressure, leading to the observed decrease of gas holdup 

especially at high temperature. In fact, at high T, lower values of liquid viscosity and surface tension are expected, 

and as pressure increases, the gas-liquid surface tends to smooth out leading to less and less entrainment of gas 

bubbles, i.e. εG-SAR.  

It is also important to mention that even though small effect of P on εG-GIR can be seen, a meticulous study of the 

gas holdup values shows a slight decrease, which can be explained by the effect of pressure on QGI. In fact, the 
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induced gas flow rate is observed to decrease with pressure as illustrated in Figure 42, and can be related to the 

change of density. Increasing pressure increases the local density of the gas-liquid system, and therefore the 

hydrostatic head above the impeller as well as the pressure drop across the orifices increase, leading to a decrease of 

QGI. This behavior is in accordance with the findings for H2-, N2-soybean oil systems reported by Fillion (349), who 

found that QGI values decreased with increasing gas density. Consequently, since very little effect of pressure on the 

Sauter mean bubble diameter was observed, it is expected that the gas-liquid interfacial area follow the behavior 

exhibited by the gas holdup in all reactor types, as can be seen in Figures 40, 44, 45, 50 and 52.  

Also, kL-SAR has been reported to be independent (265, 267), decrease (257, 259) or increase (67) with P, depending on the 

gas-liquid physicochemical properties and the operating conditions used. In this study, kL-SAR appears to decrease by 

40% with pressure, particularly at temperatures > 350 K, whereas kL-GIR and kL-GSR appear to be independent of 

pressure in Figures 40, 44, 45, 50 and 52. Increasing pressure increases C*, which reduces both liquid viscosity and 

surface tension. Decreasing liquid viscosity increases kL, since DAB is inversely proportional to the liquid viscosity; 

however, decreasing liquid surface tension decreases kL by decreasing the rate of surface renewal. Thus, increasing 

pressure has two opposite effects on kL, nonetheless since no effect of pressure were found on dS, kL-GIR and kL-GSR, it 

is likely that increasing pressure did not sufficiently change the physical properties to affect both hydrodynamic and 

mass transfer parameters. However, it seems that increasing P reduces the degree of turbulence in the SAR by 

stabilizing the gas-liquid surface, which decreases the overall bubble population and led to the observed decrease of 

kL-SAR, which is in accordance with the relationship between kL and dS reported by Calderbank and Moon-Young (208). 

This phenomenon did not occur in both the GIR and GSR, and consequently, the effect of pressure on kL is 

negligible, as the gas-liquid physicochemical properties were unchanged. Therefore, both kL-SAR and aSAR decrease 

with increasing pressure, which resulted in the observed decrease of kLaSAR values, whereas kLaGIR and kLaGSR values 

remained unchanged by increasing P as both gas holdups and Sauter mean bubble diameters in these two reactor 

types were unchanged by the pressure. 

6.2.6 Effect of Gas Nature on the Hydrodynamic and Mass Transfer Parameters 

As depicted in Figures 46 and 51, the effect of gas nature on kLa values is in agreement with the available literature 
(11, 23, 56, 349, 249), as in the SAR, kLaSAR values of O2 are similar or greater than those obtained for N2, following the 

diffusivity trend, i.e. kL, and as in the GIR, kLaGIR values of N2 are slightly greater than those of air, which are greater 

than those of O2. In the GIR, the trend does not follow that of the diffusivity, but follows that of aGIR (23), indicating 

the strong effect of a values on kLa in the GIR. In order to explain these different behaviors, the effect of gas nature 

on dS, εG and thus on both a and kL is clarified in the following for the GIR.  

As can be observed in Figure 51, no change between dS-GIR values of N2 and air was found, which is expected 

since their molecular weights; hence gas densities, are almost the same. An increase of about 10% between εG-GIR 

values of N2 and of air is, however, shown in Figure 51, and can be attributed to the effect of gas nature on QGI. In 

fact, in Figure 39 QGI values are slightly higher for N2 than for air in toluene. This behavior could be attributed to the 
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closeness of their molecular weights and subsequently their densities. Consequently, the effect of gas nature on aGIR 

can be correlated with the εG-GIR behavior as no change in bubble diameter was observed.  

The difference, however, in the gas-liquid interfacial area between the two gases is so small that it can be 

considered within the experimental error range, which is more likely since N2 and air have close molecular weights. 

The effect of gas nature on kL-GIR, which can be seen in Figure 52, shows that kL-GIR values of air are 5% greater than 

those of N2, which is in agreement with literature findings (Tekie et al., 1997; Fillion and Morsi, 2000) since air has 

slightly higher diffusivity values than N2 under the same operating conditions. Thus, from a and kL values in the 

GIR, it appears that kLaGIR values of N2 are slightly greater than those of air, greater than those of O2. While the 

difference between N2 and air values is small and probably within the experimental error, it seems that the small 

difference is due to the effect of gas nature on the gas holdup, thus aGIR has an important impact in the control of 

kLaGIR values. 
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Figure 51: Effect of Liquid, Gas Nature and Pressure on kLa, dS and εG in the GIR 
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Figure 52: Effect of Liquid, Gas Nature and Pressure on a and kL in the GIR 
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6.2.7 Effect of Froth, Liquid Nature on the Hydrodynamic and Mass Transfer Parameters 

The effect of liquid nature on kLa values in the GIR and GSR is shown in Figures 45 and 51; and as can be deduced 

the addition of benzaldehyde and benzoic acid to toluene, aimed at mimicking the continuous LPTO process, 

strongly increases both kLaGIR (60-70%) and kLaGSR (100-120%) values at low T. At higher T, however, negligible 

effect and even a reduction of 15 % in kLaGIR can be reported in the GIR, whereas in the GSR an enhancement (up to 

30%) in kLaGSR can be seen in Figures 45 and 51. The effect of benzaldehyde and benzoic acid concentration on kLa 

can be elucidated by the behaviors of both a and kL.  

The addition of benzaldehyde and benzoic acid to toluene decreased dS-GIR values by up to 50 % at low T 

whereas at high T, a decrease of 0-10% occurs as shown in Figure 51. Figure 45 shows that dS-GSR values decrease 

with the addition of benzaldehyde and benzoic acid to toluene by almost 50 % at low T and by 5-10% at high T. This 

behavior can be directly related to the presence of stable froth at low temperature because the addition of 

benzaldehyde and benzoic acid to toluene appears to strongly decrease the coalescence tendency of gas bubbles. As 

temperature increases the froth stability steadily decreases till it vanishes at high T (> 410 K). The reduction of the 

bubble size is also dependent on the degree of turbulences, i.e., UG, N, and H, which affect the coalescence 

probability. Thus, depending on the degree of turbulence, larger or smaller differences between dS values in pure 

toluene and those in its mixtures can be expected in both the GIR and GSR, as depicted in Figures 38, 43, 45, 49 and 

51. The effect of additives concentrations within the range used, however, did not appear to influence dS-GIR values 

as similar trends and values were observed in mixture # 1, 2 and 3 in the GIR.  

The effect of liquid nature at low T (< 380 K) on εG values is illustrated in Figures 45 and 51, where an increase 

of up to 75 % and 110 % can be seen in the GIR and GSR, respectively. As temperature increases, the froth stability 

decreases resulting only in an enhancement of εG values, of 15% in the GIR and 30% in the GSR. At low T, the 

presence of froth had a tremendous impact on the gas holdup as smaller gas bubbles with larger re-circulation 

pattern were formed. At high temperature the froth tend to disappear resulting in a weaker effect on the gas holdup 

in both reactor types.  

Furthemore, in Figure 48, it can be seen that NCRI is higher in the mixtures than in toluene, which is explained 

by the higher liquid viscosity and density of the liquid mixtures (114).  

Also, in Figures 42 and 48, the effect of liquid nature on QGI is presented, and as can be seen, the values are 

always higher in toluene than those in toluene mixtures. This is in good agreements with the findings by Aldrich and 

van Deventer (101), and can be attributed to the higher liquid density and viscosity of the mixtures (see Section 4.2) 

when compared with those of pure toluene under identical operating conditions.  

Therefore, εG-GIR values in the mixtures were affected and controlled by both the froth and QGI, as the 

enhancement of εG values diminishes substancially with temperature. Thus, as the Sauter mean bubble diameter 

decreases with the presence of benzaldehyde and benzoic acid; and as the gas holdup increases in both the GIR and 

GSR, larger values of gas-liquid interfacial area, a were expected as shown in Figures 45 and 52.  
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In the same figures it can also be observed that larger values of kL-GIR and kL-GSR are obtained in toluene than in 

the liquid mixtures which can be attributed to the increase of liquid viscosity and decrease of diffusivity with the 

addition of benzaldehyde and benzoic acid to toluene, and to the presence of small gas bubbles size in the organic 

mixtures (208). Thus, from the behavior of both a and kL, it appears that a strong increase of kLa values was possible at 

low T and high mixing characteristics, i.e. high N and UG or low H, in both the GIR and GSR due to the presence of 

froth created by the addition of benzaldehyde and benzoic acid to toluene. On the other hand, as temperature 

increases or the degree of mixing decreases, the froth stability decreases leading to almost negligible impact on kLa 

values. It is also important to mention that in the presence of froth, the gas-liquid interfacial area is controlling the 

behavior of the GIR and GSR, as the enhancement is strong enough to overcome the behavior displayed by kL. 

Quantitatively, the effect of the addition of benzoic acid and benzaldehyde to toluene on ds, εG and kLa is 

summarized in Tables 29 and 30. It is also important to mention that the LPTO process is usually carried out 

between 350 and 440K (10, 13, 55), which corresponds exactly to the range where the froth was observed to disappear.  
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Table 29: Quantitative Effect of Benzaldehyde and Benzoic Acid Addition to Toluene on dS, εG, and kLa in the GIR 

T , K N , Hz P , bar H , m Liquid dS-Tol., m εG-Tol. , % kLa Tol. , s-1 
300 16.7 10 0.219 Toluene 0.0016 2.15 0.113 
400 16.7 10 0.219 Toluene 0.0012 1.69 0.162 
300 13.3 10 0.219 Toluene 0.0014 1.25 0.019 
300 20.0 10 0.219 Toluene 0.0019 3.38 0.233 
300 16.7 1 0.219 Toluene 0.0016 2.18 0.089 
300 16.7 10 0.219 Toluene 0.0016 2.15 0.113 
350 16.7 10 0.171 Toluene 0.0018 3.14 0.276 
350 16.7 10 0.268 Toluene 0.0015 1.25 0.051 
T , K N , Hz P , bar H , m Liquid E(dS-Mixture), % E(εG-Mixture), % E(kLaMixture), % 

Mixture #1 -43 60 54 
Mixture #2 -47 63 60 300 16.7 10 0.219 
Mixture #3 -46 58 67 
Mixture #1 -1 14 -18 
Mixture #2 5 12 -25 400 16.7 10 0.219 
Mixture #3 3 1 -22 
Mixture #1 -37 75 240 
Mixture #2 -28 74 259 300 13.3 10 0.219 
Mixture #3 -42 79 275 
Mixture #1 -48 51 135 
Mixture #2 -63 40 121 300 20.0 10 0.219 
Mixture #3 -50 58 116 
Mixture #1 -43 77 29 
Mixture #2 -47 89 42 300 16.7 1 0.219 
Mixture #3 -46 65 35 
Mixture #1 -43 60 54 
Mixture #2 -47 63 60 300 16.7 10 0.219 
Mixture #3 -46 58 67 
Mixture #1 -46 21 26 
Mixture #2 -41 14 26 350 16.7 10 0.171 
Mixture #3 -45 17 29 
Mixture #1 -26 25 23 
Mixture #2 -21 28 26 350 16.7 10 0.268 
Mixture #3 -16 22 31 
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Table 30: Quantitative Effect of Benzaldehyde and Benzoic Acid Addition to Toluene on dS, εG, and kLa in the GSR 

T , K N , Hz P , bar UG , m.s-1 Liquid dS-Tol., m εG-Tol. , % kLa Tol. , s-1 
300 16.7 10 0.002 Toluene 0.0016 2.15 0.113 
400 16.7 10 0.002 Toluene 0.0012 1.69 0.162 
300 13.3 10 0.002 Toluene 0.0014 1.25 0.019 
300 20.0 10 0.002 Toluene 0.0019 3.38 0.233 
300 16.7 1 0.002 Toluene 0.0016 2.18 0.089 
300 16.7 10 0.002 Toluene 0.0016 2.15 0.113 
350 16.7 10 0.001 Toluene 0.0018 3.14 0.276 
350 16.7 10 0.004 Toluene 0.0015 1.25 0.051 
T , K N , Hz P , bar UG , m.s-1 Liquid E(dS-Mixture), % E(εG-Mixture), % E(kLaMixture), % 
300 16.7 10 0.002 Mixture #1 -33 107 112 
400 16.7 10 0.002 Mixture #1 -15 30 29 
300 13.3 10 0.002 Mixture #1 -36 106 116 
300 20.0 10 0.002 Mixture #1 -30 89 107 
300 16.7 1 0.002 Mixture #1 -32 76 85 
300 16.7 10 0.002 Mixture #1 -33 107 112 
350 16.7 10 0.001 Mixture #1 -19 95 98 
350 16.7 10 0.004 Mixture #1 -33 31 72 
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6.2.8 Effect of Reactor Mode on the Hydrodynamic and Mass Transfer Parameters 

Even though an identical 6-blades Rushton type impeller provided the mixing in the SAR, GIR and GSR, the 

performance of these agitated reactors were found to be different due to their distinct gas dispersion characteristics. 

Entraining, inducing or sparging the gas into the liquid-phase led to different hydrodynamic and mass transfer 

characteristics of the gas-liquid contactors studied. Using the mixing power input per unit liquid volume, a 

comparison among the three operating modes was made. In the SAR, the impeller power input (W/m3) was 

calculated using the commonly accepted Equation (30) (23, 349): 

3
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SAR ΝρdN
V

*P
=  (6-16) 

In the GIR, the gassed power input per unit liquid volume was calculated using Equation (31) reported by Heim et 

al. (106), which was developed in a GIR equipped with a six-pipe impeller and a hollow shaft: 
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In the GSR, Equation (32) from Loiseau et al. (128) was used: 
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With C = 0.83 and n = 0.45 for non-foaming system, and for foaming system C = 0. 65, n = 0.45 if M < 2.103, and 

1.88, 0.83, respectively if M ≥ 2.103.   

As can be seen in Figure 53, at the same power input per unit liquid volume, kLa values obtained in the GSR are 

greater than those in the GIR and SAR. The difference between kLa values in the GSR and GIR can be attributed to 

higher εG, and thus higher a values in the GSR, because of the relatively similar kL and dS data between the two 

reactor types, as depicted in Figure 53. In the SAR, however, not only εG and a, but also kL and dS were found to be 

smaller than those obtained in the GSR and GIR. Thus, the difference among the three reactor types indicates that 

the mass transfer behavior of the SAR is controlled by kL, whereas those of the GIR and GSR are controlled by both 

a and kL. It should, however, be mentioned that the effect of gas-liquid interfacial area on kLa becomes more 

important with increasing the power input per unit liquid volume and with the presence of froth as additional gas-

liquid interfacial areas are created. 
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Figure 53: Comparison of the Hydrodynamic and Mass Transfer Parameters in the SAR, GIR and GSR 
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6.3 HYDRODYNAMIC AND MASS TRANSFER PARAMETERS IN THE BCR 

6.3.1 Effect of Pressure on the Hydrodynamic and Mass Transfer Parameters 

The effect of pressure on kLa values can be directly related to its effect on a and kL. Inga and Morsi (368) and Behkish 

et al. (254) reported that kLa values in BCRs, operating in a fully developed churn-turbulent regime, were controlled 

by the gas-liquid interfacial area, a (369, 254). Figure 62 shows that kLa values increase with pressure, which is similar 

to the behavior exhibited by a. These data indicate that the gas-liquid interfacial area is controlling the behavior of 

the BCR because kL values could increase, decrease or be independent of pressure as mentioned by numerous 

investigators (208, 371, 498, 499).  

Figure 54 shows that the Sauter mean bubble diameter, dS decreases with increasing pressure for all gas-liquid 

systems studied, and Figure 55 indicates that at any given superficial gas velocity, increasing pressure gradually 

shifts the bubble size distribution toward smaller gas bubbles. These findings are in agreement with those by Inga 
(56), Letzel et al. (184), Lin et al. (207) and Behkish et al. (214), who suggested that increasing pressure increases gas 

density and shrinks gas bubbles, which exhibit a more rigid shape. 

At constant superficial gas velocity, UG, Figure 57 shows that εG values in toluene and its mixtures are doubled 

when the pressure is increased by 0.6 MPa, indicating that εG is a strong function of gas density (172, 176, 178). Similar 

findings were reported for various systems by a number of investigators (56, 184, 172, 176, 180, 185, 188, 192, 195, 196, 214). Figures 

57 and 58 illustrate that the increase of the total gas holdup with pressure can be related to the increase of εG of the 

small gas bubbles because their behavior with pressure are similar, i.e. εG of large gas bubble remains almost 

unchanged. Thus, increasing pressure leads to the formation of a large number of small rigid gas bubbles, 

contributing to the increase of the total εG. These results are in agreement with data previously reported by Inga (56), 

Krishna et al. (188) and Behkish et al. (214).  

As previously described, dS values decreased whereas εG values increased with pressure and subsequently the 

gas-liquid interfacial area, a is expected to increase with pressure by simply inspecting Equation (5-75). Figure 60 

actually shows that the gas-liquid interfacial areas for air and N2 increase with pressure at constant gas superficial 

velocity, UG, which is in agreement with previous literature findings (56, 142, 214, 254, 370).  

At constant superficial gas velocity, increasing pressure slightly decreased dS and kL as depicted in Figures 54 

and 63, respectively. These results are in agreement with previous findings by Calderbank and Moo-Young (208), 

who reported for various systems and reactor types that kL was dependent on the bubble size and by Marrucci (371), 

who reported that kL was proportional to dS to a power 1/2. 
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Figure 54: Effect of Pressure and Superficial Gas velocity on dS of N2 and Air in the Liquids Studied 
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Figure 55: Effect of Pressure and Superficial Gas Velocity on the Bubble Size Distribution 
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Figure 56: Effect of Pressure and Superficial Gas Velocity on dS and dS-Small of N2 and Air in the Liquids Studied 
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Figure 57: Effect of Pressure and Superficial Gas velocity on εG of N2 and Air in the Liquids Studied
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Figure 58: Effect of Pressure and Superficial Gas velocity on εG-Small of N2 and Air in the Liquids Studied 
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Figure 59: Effect of Pressure and Superficial Gas Velocity on εG and εG-Small of N2 and Air in the Liquids Studied 
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Figure 60: Effect of Pressure and Superficial Gas velocity on a of N2 and Air in the Liquids Studied 
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Figure 61: Effect of Pressure and Superficial Gas Velocity on a and aSmall of N2 and Air in the Liquids Studied 
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Figure 62: Effect of Pressure and Superficial Gas velocity on kLa of N2 and Air in the Liquids Studied 
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Figure 63: Effect of Pressure and Superficial Gas velocity on kL of N2 and Air in the Liquids Studied 
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6.3.2 Effect of Superficial Gas Velocity on the Hydrodynamic and Mass Transfer Parameters 

Figure 62 shows that kLa values increase with the superficial gas velocity, UG, which is in agreement with the 

findings by Ozturk et al. (243), Grund et al. (175), Inga (56), Jordan and Schumpe (190), Jordan et al. (191) and Behkish et al. 
(254). This behavior can be explained by the effect of increasing gas velocity on the gas-liquid interfacial area, a, and 

the liquid-side mass transfer coefficient, kL. Since the gas-liquid interfacial area, a was found to increase with UG, 

and kL values are also expected to increase with UG due to the increase of turbulences and the decrease of the film 

thickness (309, 322, 504, 506).  

Figure 55 depicts the effect of the superficial gas velocity, UG on the bubble size distribution at constant 

pressure; and as can be observed, the volume fraction of large bubbles increases with increasing UG, while the 

volume fraction of small bubbles remains almost constant. This trend is also confirmed by Figure 56, where dS 

values of the small bubbles appear to remain constant with increasing superficial gas velocity, while the overall dS 

values increases. This increase, attributed to the increase of the large bubbles population, can be related to a higher 

probability of bubble collisions, which leads to more bubble coalescence as previously reported by Inga (56), Letzel et 

al. (184), Lin et al. (207) and Behkish et al. (214). 

At constant pressure, Figure 59 shows that εG values increase with UG and this increase is strongly due to the 

increase of εG of the large gas bubbles, since that corresponding to small bubbles appears to be almost independent 

of UG. These data are in accordance with those shown in Figure 55, since the volume fraction of the large gas 

bubbles appears to significantly increase with UG at constant P, whereas that of small bubbles remains almost 

constant. Similar results for different systems were reported in the literature (56, 175, 188, 190, 214). 

At constant pressure, increasing the superficial gas velocity, UG, increased both εG and dS values, which means 

that the resulting effect on the gas-liquid interfacial area, a would not be obvious. Figure 61, however, shows that at 

constant pressure, the gas-liquid interfacial areas increase with UG, which is in agreement with available literature (56, 

142, 214, 254, 372). These results clearly indicate that εG controls the behavior of a, even though the Sauter mean bubble 

diameter, dS appeared to slightly increase with increasing UG under the operating conditions used. Figure 61 also 

shows that the increase of the gas-liquid interfacial area can be related to the presence of small gas bubbles which is 

in agreement with earlier findings (56, 188, 214, 254).  

At constant pressure, Figure 63 illustrates that kL values increase with superficial gas velocity, UG, which could 

be related to the increase of dS and εG-Large. Increasing the superficial gas velocity increases dS and is supposed to 

increase kL according to their direct proportionality as reported by Calderbank and Moo-Young (208) and Marrucci 

(371). Also, increasing the superficial gas velocity increases the holdup of large gas bubbles, which enhances the 

liquid back-mixing and turbulence and consequently kL.  
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6.3.3 Effect of Gas Nature on the Hydrodynamic and Mass Transfer Parameters 

The effect of gas nature on kLa was negligible as its effect on the gas holdup, Sauter mean bubble diameter and gas-

liquid interfacial area. 

Figure 54 also shows the effect of gas nature (nitrogen vs. air) on dS, and as can be seen the values seem to be 

independent of the gas nature, which was expected due to the relatively close molecular weights of N2 and air. 

Figure 57 indicates that the effect of gas nature on εG values in toluene and mixtures is negligible. Reilly et al. 

(1994), Inga (1997) and Jordan and Schumpe (2001) reported that the gas holdup in BCRs is a strong function of the 

gas momentum. Thus, the observed behavior was expected, since under the same pressure (density) and gas 

velocity, the difference between air and nitrogen momentums is negligible due to the closeness of their molecular 

weights. 

Figure 60 indicates a negligible effect of gas nature (nitrogen vs. air) on the gas liquid interfacial area, which 

was expected since the gas holdup and the Sauter mean bubble diameter were not affected by the gas nature due to 

the negligible difference between the molecular weights of the two gases. 

Figure 63 also shows that kL values obtained for air were slightly higher when compared with those for nitrogen 

under similar operating conditions. This can be attributed to the fact that air has slightly higher diffusivity than N2 

under these conditions. 

6.3.4 Effect of Liquid Nature on the Hydrodynamic and Mass Transfer Parameters 

The presence of benzaldehyde and benzoic acid in toluene, however, appears to strongly affect kLa values as shown 

in Figure 62. Quantitatively, kLa data for nitrogen in toluene mixtures were found to increase by 50-70 % at low 

pressure (0.2 MPa) for UG = 0.06 m/s and by 40-60 % at high pressure (0.5 MPa) for UG = 0.10 m/s when compared 

with those obtained in pure toluene. This behavior can be attributed to the fact that the presence of benzaldehyde and 

benzoic acid in toluene led to the formation of froth, particularly under low pressure, which increased the gas-liquid 

interfacial area and subsequently kLa.  

The effect of benzaldehyde and benzoic acid presence, on the other hand, appeared to slightly decrease dS 

values for nitrogen by approximately 10 % when compared with the data obtained in toluene at low pressure (0.2 

MPa); and no effect was estimated at higher pressure (0.5 MPa) as can be seen in Figure 54. This behavior can be 

attributed to the observed frothing when using toluene mixtures under, particularly, low pressures. Actually, the 

presence of froth with toluene containing benzaldehyde and benzoic acid was observed in our laboratory using a 4-

liter see-through agitated reactor. The decrease of liquid nature impact at high pressures indicates that pressure has a 

greater effect on the size of gas bubbles in toluene as a coalescing system (characterized by the formation of large 

gas bubbles) when compared with that in toluene mixtures as a non-coalescing system (characterized by the 

presence of froth) where the bubbles are already small. 

The effect of benzaldehyde and benzoic acid presence in toluene, on the other hand, appears to strongly affect 

the total gas holdup. Quantitatively, the gas holdup data for nitrogen in toluene mixtures were found to increase by 
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30-35 % at low pressure (0.2 MPa) and by 25-30 % at high pressure (0.5 MPa) when compared with those obtained 

in pure toluene. This behavior can be attributed to the fact that toluene is a coalescing system and the presence of 

benzaldehyde and benzoic acid in toluene resulted in a non-coalescing system. It should be mentioned that in 

Figures 58 and 59, as the pressure increases, the gas holdup of small gas bubbles becomes almost the same for 

toluene and its mixtures. This means that increasing pressure decreases the froth stability of the toluene mixtures and 

under these conditions the holdup of small gas bubbles becomes similar for toluene and its mixtures. 

The effect of benzaldehyde and benzoic acid presence in toluene, on the other hand, appears to strongly affect 

the gas-liquid interfacial area as can be seen in Figure 60. This significant increase of the gas-liquid interfacial area 

can be attributed to the presence of froth when using toluene-benzaldehyde-benzoic acid mixtures. It also should be 

mentioned that in Figure 60 as the pressure increases, its effect on the gas-liquid interfacial area diminishes, which 

can be attributed to the decrease of the froth stability exhibited with toluene mixtures under high pressures. 

Figure 63 also demonstrates that kL values for N2 are higher in toluene than in the three toluene mixtures 

particularly at low pressures. This can be related to the increase of liquid viscosity (see Section 4.2), which resulted 

in a decrease of the diffusivity and consequently kL upon the addition of benzaldehyde and benzoic acid to toluene. 

Also, the decrease of froth stability with increasing pressure can explain the negligible effect of addition of 

benzaldehyde and benzoic acid to toluene on dS and consequently kL since kL and dS are directly related (208, 371). 

Thus, the effect of benzaldehyde and benzoic acid addition to toluene on dS, εG, and kLa for nitrogen can be 

summarized in Table 31. 

 

Table 31: Quantitative Effect of Benzaldehyde and Benzoic Acid Addition to Toluene on dS, εG, and kLa in the 

BCR 

UG , m/s P , MPa Liquid dS-Tol., m εG-Tol. , - kLa Tol. , s-1 
0.2 Toluene 0.00292 0.19 0.22 0.06 
0.5 Toluene 0.00203 0.26 0.28 
0.2 Toluene 0.00306 0.24 0.32 0.10 0.5 Toluene 0.00214 0.32 0.41 

UG , m/s P , MPa Liquid E(dS-Mixture), % (εG-Mixture), % (kLaMixture), % 
Mixture #1 -9 33 67 
Mixture #2 -10 34 70 0.2 
Mixture #3 -11 36 74 
Mixture #1 ≈ 0 31 57 
Mixture #2 ≈ 0 32 60 

0.06 

0.5 
Mixture #3 ≈ 0 33 62 
Mixture #1 -8 28 49 
Mixture #2 -9 29 51 0.2 
Mixture #3 -10 30 53 
Mixture #1 ≈ 0 23 42 
Mixture #2 ≈ 0 24 44 

0.10 

0.5 
Mixture #3 ≈ 0 25 46 
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6.4 CORRELATIONS AND CALCULATION ALGORITHM IN THE AGITATED REACTORS 

While understanding the effect of process variables on the hydrodynamic and mass transfer parameters of a gas-

liquid contactor is essential for scale-up purposes (373), it is as critical to be able to calculate these parameters for a 

given geometry. In the following, a comparison between the data obtained in this study and those reported in the 

literature is first presented. Then, as obvious differences are found due to limitations in literature correlations, novel 

hydrodynamic and mass transfer correlations are developed. Three types of correlations were derived: Empirical, 

Statistical and Back-Propagation Neural Network correlations, and were used to predict a large data bank (7374 data 

points) of experimental data obtained in this study and in the literature. Finally, calculation algorithms based on the 

empirical and BPNN correlations developed in this study were introduced in order to determine all the 

hydrodynamic and mass transfer parameters for the liquid-phase toluene oxidation process in agitated and bubble 

column reactors.  

6.4.1 Empirical Correlations of the Hydrodynamic and Mass transfer Parameters in the Agitated Reactors 

A total of 7374 experimental points, shown in Table 32, obtained in our laboratories as well as from the literature on 

hydrodynamic and mass transfer parameters were used to develop empirical correlations for predicting the critical 

mixing speed for entrainment, NCRE, in the SAR and induction, NCRI, in the GIR, the induced gas flow rate, QGI, and 

the wavy surface, aWave, the gas holdup, εG, the Sauter mean bubble diameter, dS and the volumetric mass transfer 

coefficient, kLa in SARs, GIRs, and GSRs. Table 33 lists the ranges of operating variables, physical properties and 

reactor geometry used in these correlations. As can be seen in these tables, these ranges were wide enough to cover 

various industrial processes. It should also be pointed out that large reactor sizes (up to 3.6-m) were included in the 

data bank, which validates the scale-up capability of such correlations. 

In the SAR, NCRE values can be predicted using Equation (6-19): 
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In the GIR, Equation (6-20) can be used to predict NCRI with a regression coefficient of 96%, as can be seen in 

Figure 64. 
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In the GIR, QGI values can be predicted using Equation (6-21), with a regression coefficient of 70% as depicted in 

Figure 64. 
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A regression coefficient of 92% was obtained as seen in Figure 65 to predict awave using Equation (6-22): 
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For predicting the gas holdup in the SARs: 
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For predicting the gas holdup in the GIRs: 
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For predicting the gas holdup in the GSRs: 
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It should be mentioned that the quantity (P*/VL) is the total energy dissipated which corresponds to the sum of the 

power input (impeller and gas sparged) per unit liquid volume (374). Several correlations to predict the impeller and 

gas power input per unit liquid volume for SARs (23), GIRs (92, 106, 102, 375, 376) and GSRs (126, 128, 132, 134, 377, 378) can be 

found: 

The power input per unit volume in SARs was calculated as follows: 
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Np, the power number, is function of the impeller type and geometry as well as the Reynolds number (23) 

The gassed power input per unit liquid volume in GIRs equipped with a hollow shaft was calculated from Heim et 

al. (106): 
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A, a1 and a2 are constants which are function of the impeller design. 

For GIRs equipped with a draft tube, the expression developed by Saravanan et al. (376) was used: 
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W is the impeller width, CDO* and CDY* are the impeller drag coefficients in the gas-liquid dispersion conveying and 

central zone, respectively, Φ is the vortexing constant, FS is he Froude number based on submergence, and τrg is the 

torque representing the effect of recycled fluid on the power input. 

In GSRs, the power input per unit volume was calculated from Loiseau et al. (128): 
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A and B are constants. 

Also, the power of the sparged gas from the compressor was calculated according to Sridhar and Potter (132) as: 

gρU LG  (6-36) 

It is also important to point out that in GIRs and GSRs, XW was introduced in Equations (6-26) and (6-52) in order to 

account for the liquid composition and its foamability (214). XW represents the concentration of the primary liquid in 

the mixture, and its value lies between 0.50 and 1. Consequently, for a single-component and for a complex organic 

liquid mixture composed of more than three hydrocarbons, such as oils and waxes, XW equals 1.  

For predicting the Sauter mean bubble diameter in SARs: 
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For predicting the Sauter mean bubble diameter in GIRs: 
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For predicting the Sauter mean bubble diameter in GSRs: 
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Also, for predicting the volumetric mass transfer coefficient in SARs: 
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For predicting the volumetric mass transfer coefficient in GIRs: 
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For predicting the volumetric mass transfer coefficient in GSRs: 
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Table 32: Data Base on ARs used in this Study 

References Parameters Gas/Liquid Reactor Operating Conditions Legend 

Rushton and 
Bimbinet (122)  εG Air/ Water + corn syrup GSR 

Atm. 
UG: 3-30 10-3m/s 
dT: 0.23-0.91m 

 

Fuchs et al. (125) NCRE, kLa Air, N2, O2/Water SAR 
GSR 

Atm. 
UG: 0-53 10-3m/s 
dT: 0.13-3.33m 

 

Martin (89) NCRI, QGI Air /Water GIR (HS) 
Atm.  
N: 4.3-6.0Hz 
dT: 0.280m 

 

Miller (126)  εG, dS, kLa CO2, Air/Aqueous sol. GSR 

Atm. 
N: 0.4-7Hz 
UG: 8-150 10-3m/s 
dT: 0.15-0.67m 

 

Robinson and 
Wilke (281) εG, dS, kLa N2, O2, CO2/Water, 

alkaline sol. GSR 

Atm. 
303 K 
N: 6.7-36.7Hz 
UG: 1-4.6 10-3m/s 
dT: 0.1524m 

 

Bern et al. (283) kLa H2/Fat GSR 

P: 0.12-0.14MPa 
T: 453 K 
N: 3-12.5Hz 
UG: 35-300 10-3m/s 
dT: 0.25,0.65,2.4m 

 

Loiseau (378) εG, dS, kLa 
Air, O2/Water, glycol, 
ethanol, sugar, acetic 
acid, CuCl, sodium sulfite 

GSR 

Atm. 
N: 6.7-50.0 Hz 
UG: 0.75-85.0 10-3 m/s 
dT: 0.225m 

 

Joshi and 
Sharma (92) 

NCRI, QGI, 
εG, dS (a), 
kLa 

CO2, Air / Water, sodium 
dithionite,Na2CO3+ 
NaHCO3 

GIR (HS) 
Atm. 
N: 3-11.7 Hz 
dT: 0.41,0.57,1.0m 

 

Lopes de 
Figueiredo and 
Calderbank (130) 

εG, dS, kLa O2/Water GSR 

Atm. 
N: 5-8 Hz 
UG: 6-13 10-3m/s 
dT: 0.91m 
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Table 32 (Cont’d) 
References Parameters Gas/Liquid Reactor Operating Conditions Legend 

Botton et al. (379) NCRE, εG, 
kLa 

Air /Water, glycol, 
Sodium sulphite 

SAR 
GSR 

Atm.  
N: 0-50Hz 
UG: < 0.1m/s 
dT: 0.085,0.12,0.25,0.60 

 

Sridhar and 
Potter (132) εG, dS Air/Cyclohexane GSR 

P: 0.1-1.0 MPa 
N: 8-30Hz 
UG: <0.032 m/s 
dT: 0.13m 

 

Matsumura et 
al. (129)  NCRE, dS 

Air, O2/Water + sodium 
alginate SAR 

Atm. 
N: 7-16.5Hz 
dT: 0.190,0.242,0.316m 

 

Greaves and 
Barigou (138) εG Air/Water GSR 

Atm. 
N: 0.6-8.33Hz 
UG: 6.3-10.7 10-3m/s 
dT: 1.0m 

 

Chang (249) kLa 
H2, N2, CO, CH4/Water, 
n-hexane, n-decane, n-
tetradecane, cyclohexane 

GIR (HS) 

P: 0.5-5.96MPa 
T: 328-378K 
N: 13.3-20.0Hz 
dT: 0.127m 

 

He et al. (98) NCRI, εG Air/Water + CMC, 
water+triton-X-114 GIR (HS) 

Atm. 
N: 3.3-33.3Hz 
dT: 0.075m 

 

Smith et al. (380) εG Air/Water GSR 

Atm. 
N: 0.45-4.0Hz 
UG: 8.8-28.7 10-3m/s 
dT: 1.2,1.6,1.8,1.8,2.7m 

 

Koneripalli (381) kLa N2, CO, H2, CH4, 
CO2/Methanol, ethanol GIR (HS) 

P: 0.33-5.48MPa 
T: 328-428K 
N: 13.3-23.3Hz 
dT: 0.127m 

 

Mizan (382) kLa H2, C2H4, C3H6/n-hexane, 
propylene SAR 

P: 0.16-3.16MPa 
T: 297-353 K 
N: 13.3-20.0Hz 
dT: 0.125m 

 

Rielly et al. (99) NCRI, QGI Air /Water GIR (HS) 
Atm.  
N: 3.4-9.0Hz 
dT: 0.3-0.6 m 
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Table 32 (Cont’d) 
References Parameters Gas/Liquid Reactor Operating Conditions Legend 

Rewatkar et al. 
(383) εG Air/Water GSR 

Atm. 
N: 0.85-8.0Hz 
UG: 6.3-30.0 10-3m/s 
dT: 1.0,1.5m 

 

Aldrich and van 
Deventer (100) NCRI, QGI 

Air / Water, ethyl 
alcohol, sucrose sol. GIR (DT) 

Atm.  
N: 9.2-20.0Hz  
dT: 0.19 m 

 

Nienow et al. 
(384) εG Air/Water, dirty water GSR 

Atm. 
N: 0.67-2.5Hz 
UG: 10-75 10-3m/s 
dT: 1.98m 

 

Saravanan et al. 
(102) NCRI, QGI Air /Water GIR (DT) 

Atm.  
N: 0.13-13.5Hz 
dT: 0.57,1,1.5m 

 

Aldrich and van 
Deventer (103) QGI 

Air /Water, brine, 
alcohol, sucrose sol. GIR (DT) 

Atm. 
T: 291-350K 
N: 13.3-16.3Hz 
dT: 0.19m 

 

Al Taweel and 
Cheng (104) εG Air/water + PGME GIR (DT) 

Atm. 
N: 12.5-25Hz 
dT: 0.19m 

 

Li (385) kLa H2, C3H8, C2H4, 
C3H6/propane, n-hexane SAR 

P: 0.14-5.8MPa 
T: 297-353 K 
N: 13.3-20.0Hz 
dT: 0.125m 

 

Saravanan and 
Joshi (386) NCRI, QGI Air /Water GIR (DT) 

Atm.  
N: 0.3-15.45Hz 
dT: 0.57,1,1.5m 

 

Saravanan and 
Joshi (107)  

εG Air/H2O GIR (DT) 
Atm. 
N: 0.3-15.5Hz 
dT: 0.57,1,1.5m 

 

Yoshida et al. 
(292)  εG, kLa Air/Water GSR 

Atm. 
N: 2.5-6.7Hz 
UG: 4-60 10-3m/s 
dT: 0.25m 
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Table 32 (Cont’d) 
References Parameters Gas/Liquid Reactor Operating Conditions Legend 

Tekie (23)  dS, kLa N2, O2/Cyclohexane SAR 
GIR (HS) 

P: 0.7-3.5MPa 
T: 330-430K 
N: 6.7-20Hz 
dT: 0.11 

 

Forrester et al. 
(111) QGI, dS, kLa Air /Water GIR (HS) 

Atm. 
N: 5.0-10.0Hz 
dT: 0.45m 

 

Murugesan (149)  εG Air/Water, Toluene, 
glycerol GSR 

Atm. 
N: 3.3-23.3Hz 
UG: 1-66 10-3m/s 
dT: 0.15m 

 

Solomakha and 
Tarasova (387)  εG, kLa - GSR 

Atm. 
UG: 2-87 10-3m/s 
dT: 0.2-3.6m 

 

Mohammad (11)  kLa O2, N2/Benzoic acid SAR 
GIR (HS) 

P: 0.09-0.5MPa 
T: 473K 
N: 16.7Hz 
dT: 0.076 

 

Patil and Joshi 
(113)  NCRI, QGI Air /Water GIR (DT) 

Atm.  
N: 3.5-10.0Hz 
dT: 1.0m 

 

Vrabel et al. (388)  εG Air /Water, NaCl GSR 

Atm. 
N: 1.5-2.5Hz 
UG: 10-40 10-3m/s 
dT: 1.876,2.09m 

 

Bouaifi et al. 
(377) εG, dS, kLa Air /Water GSR 

Atm. 
N: 1.66-11.67Hz 
UG: 0.54-2.63 10-3m/s 
dT: 0.43m 

 

Fillion (349) NCRI, QGI, 
εG, dS, kLa N2, H2/Soybean oil 

SAR  
GIR (HS) 
GSR 

P: 0.1-0.5 MPa  
T: 373-473 K 
N: 10-23.3 Hz 
H: 0.171-0.268m 
QG: 10.4-51.9 10-6m3/s 
dT: 0.115m 

 

Poncin et al. (375) NCRI, QGI, 
εG, kLa Air /Water SAR  

GIR (HS) 
Atm.  
dT: 0.6m  
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Table 32 (Cont’d) 
References Parameters Gas/Liquid Reactor Operating Conditions Legend 

Yawalkar et al. 
(389) εG Air /Water GSR 

Atm. 
N: 1.0-11.0Hz 
UG: 3.9-15.7 10-3m/s 
dT: 0.57m 

 

Alves et al. (390) 
[72] εG, dS, kLa Air O2/Water, sodium 

sulphate, PEG GSR 

Atm. 
N: 4.2-10.0Hz 
UG: 2.5-5.0 10-3m/s 
dT: 0.292m 

 

Lemoine et al. 
(391) [73] 

NCRE, NCRI, 
QGI 

Air, N2/Toluene, 
benzaldehyde, benzoic 
acid 

SAR  
GIR (HS) 

P: 0.1-1.5 MPa 
T: 300-453K 
N: 10.3-12.3 Hz 
dT: 0.125 m 

 

Linek et al. (363)  εG, kLa Air, O2/Water, 
water+NaSO4 

GSR 

Atm. 
N: 4.17-14.17 Hz 
UG: 2.12-8.48 10-3m/s 
dT: 0.29 m 

 

Heintz (392)  NCRI, QGI, 
εG, dS, kLa 

N2, CO2/Fluorinated 
liquids GIR(HS) 

P: 0.2-3.0 MPa 
T: 300-500K 
N: 10-12.3 Hz 
dT: 0.115 m 

 

Lemoine and 
Morsi (393)  εG, dS, kLa 

Air, N2/Toluene, 
benzaldehyde, benzoic 
acid 

SAR  
GIR (HS) 
GSR 

P: 0.1-1.5 MPa 
T: 300-453K 
N: 10.3-12.3 Hz 
UG: 0-4 10-3m/s 
dT: 0.125 m 

 

Soriano (394)  kLa CO, N2, H2, He/PAO-8, 
Sasol wax GIR (HS) 

P: 0.7-3.5 MPa 
T: 423-523K 
N: 13.3-20.0 Hz 
dT: 0.076 m 

 

 



 

 

195 

Table 33: Upper and Lower limits of the variables used in Equations (6-19) through (6-54)  

Variables Minimum value Maximum value 

UG, m/s 0 0.3 
N, Hz 0 54.0 
H, m 0.064 6.542 
HL, m 1.15 10-2 4.97 
dT, m 0.075 3.600 

dImp., m 0.032 1.370 
ρL, kg/m3 310 2042 
μL, Pa s 5.00 10-5 0.09 
σL, N/m 1.20 10-3 0.077 
ρG, kg/m3 0.05 194.90 
Xw, wt. 0.5589 1.0000 

DAB, 109.m2/s 0.08 153.94 
nImp. , - 1 8 

MW-Gas , kg/kmol 2 44 
 



 

 

196 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 64: Comparison between Experimental and Predicted NCR, QGI, εG and dS Values using Empirical Correlations 
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Figure 65: Comparison between Experimental and Predicted kLa and aWave Values using Empirical 
Correlations 
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6.4.2 Statistical Correlations of the Hydrodynamic and Mass transfer Parameters in the Agitated Reactors 

Statistical correlations were also developed for each system investigated in this study using the statistical software 

package, Minitab Version 9.1 for Mainframe, since statistical correlations, though limited to the systems used, were 

reported to enjoy high confidence levels and much greater regression coefficients when compared with those of 

dimensionless correlations (11, 23, 349, 385). The following general statistical correlation was found for NCRE, NCRI, QGI, 

awave, dS, εG, a, kLa and kL. 

)xζ)xxλ)xγ)
4

1i
ii

4

1i

4

ij
1j

jiijij

4

1i
iii

4

1i

4

1j
ji

4

1i
ii0 exp( ξexp(κexp(αxxβxββln(Y ij ∑

==
≠
=== ==

×+∑ ∑ ×+∑+∑ ∑+∑+=  (6-55) 

The coefficients in Equation (6-55) are given in Tables 34 through 39, and the parity plot between the experimental 

and predicted NCRE, NCRI, QGI, awave, dS, εG, a, kLa and kL values are illustrated in Figures 66 and 67. As can be noticed 

in this figure, the predictions using the statistical correlations are with average regression coefficients of 97, 98, 90, 

96, 97, 96, 98, 97 and 96%, respectively which are much greater than those obtained for the empirical correlations 

developed above. It should be mentioned that the coded variables, x1, x2, x3 and x4, in Equation (6-55) were 

calculated based on the gas-liquid system and the reactor types used as follows: 

For air-toluene in the GIR:  

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−

+−
=

300400
300400T 22 x1  (6-56) 

For all other systems used, except air-toluene in the SAR, GIR, and GSR: 
( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

+−
=

300453
300453T 22 x1  (6-57) 

For all gas-liquid systems used in the SAR, GIR, and GSR: 
( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

+−
=

8001200
8001200N 22 x2  (6-58) 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−

+−
=

115
115P 22 x3  (6-59) 

For all gas-liquid systems used in the SAR and GIR: 
( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

+−
=

0.1710.268
0.1710.268H 22 x4  (6-60) 

For all gas-liquid systems used in the GSR: 

⎥⎦

⎤
⎢⎣

⎡ −
=

0.004
0.004U 2

2 x G
4  (6-61) 
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Table 34: Coefficients of the Statistical Correlations for NCR, aWave and QGI 

 Toluene-N2  Toluene-N2 

Confidence Level 95% Confidence 
Level 95% 

β0 6.31 β0 4.34 10-1 
β1 -8.48 10-2 β1 6.98 10-3 
β3 -3.40 10-2 β2 -1.09 10-1 
β4 7.92 10-2 β3 -4.65 10-3 
ξ 3.82 10-1 β4 -2.43 10-1 
ζ1 1.13 10-1 β22 -1.03 10-2 
ζ3 1.15 10-1 β44 -2.25 10-3 

NCRE 

ζ4 2.83 10-3 α1 2.31 10-4 
γ1 3.06 
α2 5.06 10-1 
γ2 2.17 10-1 
α3 8.38 10-2 
γ3 -1.17 10-3 
α4 5.00 10-1 

 

aWave 

γ4 2.22 10-1 
 Toluene-N2 Toluene-air Mixture #1-N2 Mixture #2-N2 Mixture #3-N2 

Confidence Level 95% 95% 95% 95% 95% 
β0 9.64 10-1 6.50 5.09 5.89 5.87 
β1 -4.83 10-1 -4.30 10-2 -2.28 10-1 -1.10 10-1 -1.40 10-1 
β3 -2.90 10-3 -1.79 10-3 1.22 10-4 3.50 10-4 -1.14 10-4 
β4 7.54 10-2 7.65 10-2 7.36 10-2 7.47 10-2 7.70 10-2 
ξ 5.52 1.95 10-4 1.42 6.42 10-1 6.42 10-1 

NCRI 

ζ1 8.47 10-2 2.81 1.45 10-1 1.41 10-1 1.88 10-1 
Confidence Level 85% 90% 90% 90% 90% 

β0 -1.20 103 -1.19 101 -1.60 101 -1.16 101 -1.06 101 
β1 -2.20 -9.36 10-1 -2.12 -1.72 10-1 -2.83 10-1 
β2 -4.09 101 9.03 10-2 -2.97 10-1 6.23 10-1 2.18 10-1 
β3 2.10 10-2 -4.14 10-1 -3.31 10-1 -6.36 10-1 -3.30 10-1 
β4 -3.13 3.11 10-1 4.47 10-2 -2.74 10-1 -3.69 10-1 
β11 -2.04 10-1 -4.11 10-1 -6.29 10-1 -2.00 10-1 -3.54 10-1 
β22 -8.53 10-1 -9.16 10-2 -1.45 10-1 -1.15 10-1 -2.37 10-1 
ξ 1.19 103 1.71 5.81 8.84 10-1 1.15 10-1 
ζ1 1.72 10-3 5.16 10-1 3.15 10-1 7.92 10-2 9.86 10-1 
ζ2 3.47 10-2 6.85 10-2 1.05 10-1 -4.73 10-3 7.45 10-1 
ζ3 -2.55 10-4 3.21 10-2 1.51 10-2 3.81 10-1 1.32 10-1 

QGI 

ζ4 2.35 10-3 -1.74 10-1 -3.23 10-2 1.31 10-2 1.88 10-1 
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Figure 66: Comparison between Experimental and Predicted NCRE, NCRI, QGI and aWave Values Using the Statistical Correlations 
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Table 35: Coefficients of the Statistical Correlations for dS 

dS Toluene-N2 Toluene-N2 Toluene-air Mixture #1-N2 Mixture #2-N2 Mixture #3-N2 Toluene-N2 Mixture #1-N2

Reactor 
Mode SAR GIR GIR GIR GIR GIR GSR GSR 

β0 -1.62 102 -7.50 -4.26 101 5.27 1.74 101 1.03 101 -6.91 -6.79 
β1 -1.17 - -5.17 10-1 8.66 10-1 1.78 1.50 -6.77 10-2 3.06 10-2 
β2 - 5.73 10-2 1.35 10-1 3.06 10-3 -5.88 10-1 8.45 10-2 -2.91 10-2 -1.81 10-2 
β3 -1.48 10-4        
β4 -9.60 10-1 -3.43 10-1 1.57 6.79 10-1 5.80 10-1 6.34 10-1 1.50 10-1 9.44 10-2 
β22 5.69 10-3 - - - - - - - 
ξ 1.55 102 8.45 10-1 3.61 101 -1.20 101 -2.41 101 -1.70 101 3.93 10-1 6.48 10-2 
ζ1 7.30 10-3 -1.20 10-1 1.26 10-2 6.66 10-2 7.10 10-2 8.44 10-2 1.66 10-2 1.54 10-2 
ζ2 -5.65 10-5 1.32 10-2 -1.75 10-3 -2.03 10-3 -2.35 10-2 3.65 10-3 -9.62 10-3 1.20 10-1 
ζ3 - -2.53 10-3 8.51 10-5 4.08 10-4 2.25 10-4 2.56 10-4 5.14 10-2 2.11 10-1 
ζ4 6.58 10-3 2.95 10-1 -4.49 10-2 5.71 10-2 2.46 10-2 3.64 10-2 -2.27 10-2 -1.94 10-1 

Confidence Level 95% 95% 95% 95% 95% 95% 95% 95% 
 
 

Table 36: Coefficients of the Statistical Correlations for εG 

εG Toluene-N2 Toluene-N2 Toluene-air Mixture #1-N2 Mixture #2-N2 Mixture #3-N2 Toluene-N2 Mixture #1-N2

Reactor 
Mode SAR GIR GIR GIR GIR GIR GSR GSR 

β0 -6.22 2.07 101 -8.78 10-1 -2.41 -1.26 -4.90 -2.92 101 -5.25 10-2 
β1 5.47 10-2 1.52 1.22 10-1 6.87 10-2 1.33 10-1 -4.38 10-1 -5.18 10-2 -5.07 10-1 
β2 3.37 10-1 -4.14 10-1 -8.51 10-2 1.13 10-1 -8.32 10-2 1.32 10-1 5.70 10-1 6.21 10-1 
β3 -2.54 10-1 -1.04 10-1 2.03 10-1 -4.26 10-2 -7.30 10-2 -3.66 10-2 -2.06 10-1 2.51 10-1 
β4 -3.23 10-1 5.49 10-1 5.58 10-2 3.67 10-2 1.68 10-1 -1.33 10-1 -7.77 -5.72 
ξ -5.69 10-3 -2.46 101 -3.14 -1.33 -2.50 9.79 10-1 1.03 101 -4.76 101 
ζ1 -8.59 10-2 6.85 10-2 6.10 10-2 2.55 10-1 1.66 10-1 2.05 10-1 1.56 10-2 -9.14 10-3 
ζ2 7.75 10-1 -3.09 10-2 -1.51 10-1 -1.23 10-1 -1.53 10-1 1.27 10-1 -4.32 10-2 1.05 10-2 
ζ3 -2.61 10-1 -4.57 10-3 6.67 10-2 2.98 10-3 -5.78 10-3 2.10 10-2 1.85 10-2 4.39 10-3 
ζ4 -2.91 10-1 3.33 10-2 1.11 10-1 2.26 10-1 1.64 10-1 -1.00 10-1 1.56 10-1 1.18 10-1 
α4 - - - - - - 1.61 101 4.52 101 
γ4 - - - - - - 3.85 10-1 2.53 10-1 
β44 - - - - - - -1.65 -1.34 

Confidence Level 95% 95% 95% 95% 95% 95% 95% 95% 
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Table 37: Coefficients of the Statistical Correlations for kLa 

kLa Toluene-N2 Toluene-O2 Toluene-N2 Toluene-O2 Toluene-air Mixture #1-N2 Mixture #2-N2 Mixture #3-N2 Toluene-N2 Mixture #1-N2

Reactor 
Mode SAR SAR GIR GIR GIR GIR GIR GIR GSR GSR 

β0 -6.17 -8.61 7.35 101 -1.71 1.06 101 -2.24 -2.06 -2.13 -1.46 101 2.54 
β1 2.75 10-1 -1.13 3.96 10-1 1.89 10-1 1.42 10-1 -2.82 10-2 -1.45 10-1 -1.44 10-1 4.62 10-1 1.26 
β2 2.02 10-1 1.45 10-1 1.14 101 1.41 1.30 5.56 10-1 5.29 10-1 5.72 10-1 1.84 10-1 3.51 10-1 
β3 -6.06 10-1 -3.26 10-1 -2.86 10-1 1.64 10-1 9.51 10-2 1.63 10-1 1.31 10-1 1.73 10-1 3.37 10-1 1.20 
β4 -8.30 10-1 -2.18 10-1 -1.25 -5.30 10-1 -6.49 10-2 -4.52 10-1 -4.50 10-1 -4.27 10-1 -5.18 -7.59 
β11 2.74 10-2 -2.48 10-1 - - - - - - - - 
β33 -7.54 10-2 7.58 10-2 - - - - - - -3.83 10-2 -1.59 10-2 
β44 4.47 10-2 5.80 10-2 - - - - - - -1.45 -1.51 
β13 -2.32 10-1 -1.64 10-1 - - - - - - - - 
β14 -1.21 10-1 8.31 10-2 - - - - - - - - 
β34 -7.32 10-2 1.27 10-2 - - - - - - - - 
ξ 7.26 10-1 3.01 1.02 102 1.18 1.33 101 1.60 10-1 1.07 10-1 1.87 10-1 1.29 101 -3.56 101 
ζ1 1.55 10-1 4.71 10-1 -2.51 10-3 -2.05 10-2 -2.99 10-3 -7.50 10-2 -7.46 10-2 -3.48 10-2 -8.35 10-3 3.09 10-2 
ζ2 -3.89 10-2 3.66 10-3 1.52 10-1 6.55 10-1 6.41 10-1 1.41 1.32 1.33 -3.21 10-3 6.43 10-3 
ζ3 4.41 10-1 6.53 10-2 3.70 10-3 2.91 10-4 2.18 10-3 3.84 10-3 9.78 10-2 1.66 10-2 -1.79 10-2 3.10 10-2 
ζ4 2.82 10-1 -7.94 10-2 9.28 10-3 1.16 10-1 1.32 10-2 1.48 10-1 3.15 10-1 1.55 10-1 4.12 10-1 3.83 10-2 
α1 - - - - - 7.08 10-2 5.01 10-4 5.64 10-4 - - 
γ1 - - - - - -5.36 10-1 3.11 2.91 - - 
α2 - - -2.64 102 -4.38 -1.51 101 -3.19 10-1 -2.22 10-1 -4.03 10-1 - - 
γ2 - - 1.00 10-1 4.03 10-1 6.15 10-1 1.16 1.08 1.04 - - 
α4 - - -4.98 10-2 1.21 -1.10 101 2.61 10-1 7.01 10-2 2.60 10-1 - 3.24 101 
γ4 - - 9.94 10-1 1.12 10-2 4.74 10-2 -3.71 10-4 -1.35 10-1 -7.73 10-2 - 2.81 10-1 
κ23 - - 8.63 101 1.40 - - - - - - 
λ23 - - -6.85 10-4 -6.92 10-3 - - - - - - 
κ34 - - - - - - - - 5.94 10-1 - 
λ34 - - - - - - - - 2.11 10-1 - 

Confidence 
Level 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 
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Table 38: Coefficients of the Statistical Correlations for a 

a Toluene-N2 Toluene-N2 Toluene-air Mixture #1-N2 Mixture #2-N2 Mixture #3-N2 Toluene-N2 Mixture #1-N2

Reactor 
Mode SAR GIR GIR GIR GIR GIR GSR GSR 

β0 4.43 4.39 4.31 9.19 3.00 101 1.87 101 -4.94 3.29 
β1 7.80 10-1 -5.25 10-2 -2.97 10-2 - - - - - 
β2 1.80 10-1 3.15 10-1 3.37 10-1 1.78 10-1 1.12 10-1 -1.41 10-1 2.45 10-1 1.06 10-1 
β3 1.98 10-1 - - - - - - - 
β4 -2.78 10-1 -1.83 10-1 -2.26 10-1 -1.02 10-1 -1.46 10-1 4.82 10-1 -3.39 -6.16 10-1 
β22 - - - - - - -3.98 10-2 -2.40 10-2 
β44 - - - - - - -1.00 -1.29 10-1 
ξ -1.58 7.66 10-3 5.39 10-4 -3.52 10-1 -6.17 10-1 -9.09 7.81 -3.74 10-3 
ζ1 3.36 10-1 -4.51 10-1 -9.79 10-1 2.29 10-1 5.27 10-2 3.32 10-2 -4.32 10-3 -1.50 10-1 
ζ2 -5.21 10-2 -1.66 -2.41 -1.67 10-1 -2.95 10-1 -4.97 10-2 -1.27 10-2 -6.08 10-2 
ζ3 1.91 10-1 1.54 10-1 -1.81 10-1 1.25 10-1 6.76 10-2 5.19 10-3 1.15 10-3 -6.63 10-1 
ζ4 -5.92 10-2 -2.00 10-1 -2.44 10-2 4.55 10-1 1.11 10-1 7.77 10-2 4.38 10-1 -2.53 
α1 - - - -3.94 -2.45 101 -4.80 2.60 2.68 
γ1 - - - 6.30 10-2 1.23 10-2 7.68 10-3 9.59 10-2 2.73 10-1 
α2 -1.56 10-1 - - - - - - - 
γ2 5.01 10-1 - - - - - - - 
α4 4.14 10-1 - - - - - - - 
γ4 -3.55 10-1 - - - - - - - 

Confidence 
Level 95% 95% 95% 95% 95% 95% 95% 95% 
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Table 39: Coefficients of the Statistical Correlations for kL 

kL Toluene-N2 Toluene-N2 Toluene-air Mixture #1-N2 Mixture #2-N2 Mixture #3-N2 Toluene-N2 Mixture #1-N2

Reactor 
Mode SAR GIR GIR GIR GIR GIR GSR GSR 

β0 -6.01 -2.32 101 -7.93 -4.12 4.88 3.59 2.32 101 8.38 
β1 1.35 4.35 -1.83 10-1 1.65 2.12 1.96 1.28 1.32 
β2 2.08 10-2 -1.58 10-1 5.93 10-1 3.37 10-1 7.00 10-1 6.53 10-1 -5.21 10-3 1.03 10-1 
β3 2.20 10-1 -2.78 10-1 8.28 10-2 2.59 10-1 4.16 10-1 4.67 10-1 9.05 10-1 1.05 10-1 
β4 - 4.75 10-2 -1.57 10-1 -1.35 10-1 -3.26 10-1 -3.89 10-1 9.26 10-1 6.39 10-1 
β11 3.37 10-1 -4.86 10-1 6.56 10-2 3.45 10-1 1.33 10-1 1.36 10-1 - - 
β22 - -9.17 10-2 -7.93 10-2 -2.92 10-2 1.07 10-2 -9.21 10-3 - - 
β33 5.32 10-2 -1.00 10-2 -8.28 10-2 -1.08 10-2 1.50 10-2 2.17 10-2 - - 
β44 - 2.60 10-2 7.99 10-2 6.27 10-2 4.00 10-2 7.72 10-2 - - 
ξ -2.43 1.68 101 1.16 -2.78 -1.17 101 -1.05 101 -2.98 101 -1.52 101 
ζ1 4.41 10-1 -2.43 10-1 1.52 10-1 4.60 10-1 1.59 10-1 1.62 10-1 3.85 10-2 7.34 10-2 
ζ2 -2.29 10-3 2.23 10-2 -3.08 10-1 4.65 10-2 4.23 10-2 4.56 10-2 -1.66 10-5 5.99 10-3 
ζ3 1.36 10-1 2.13 10-2 1.15 10-1 2.77 10-2 1.90 10-2 2.37 10-2 2.72 10-2 4.08 10-3 
ζ4 8.37 10-2 -1.07 10-2 3.12 10-2 -3.38 10-2 -1.75 10-2 -2.78 10-2 2.67 10-2 3.41 10-2 

Confidence 
Level 95% 95% 95% 95% 95% 95% 95% 95% 
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Figure 67: Comparison between Experimental and Predicted dS, εG, a, kLa and kL Values Using the Statistical Correlations 
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6.4.3 BPNN Correlations of the Hydrodynamic and Mass transfer Parameters in the Agitated Reactors 

In the SAR, GIR and BCR, the PITTNET software package was then used to build the BPNN correlations. The 

same database (7374 experimental points) shown in Table 32 was also used to develop BPNN correlations for 

predicting the critical mixing speed, induced gas flow rate, wavy gas-liquid surface, gas holdup, Sauter mean bubble 

diameter and volumetric mass transfer coefficients for the corresponding reactor types. The BPNNs developed were 

validated using 25% of the total number of data points and the cross validation technique decribed in Appendix E. 

Tables 40 and 43 through 48 presents the input variables, architecture and weights of the constructed BPNNs for 

predicting NCR, QGI, aWave, εG, dS and kLa. Also, Table 41 shows the regression coefficient (R2), standard deviation 

(σ) and average absolute relative error (AARE) for the empirical and BPNN correlations. These statistical errors 

prove that the developed BPNNs can predict the values of NCR, QGI, aWave, εG, dS and kLa with much higher 

accuracies than those of the empirical correlations as can be observed in Figures 68 and 69. It should also be 

mentioned that the reactor and gas dispersion mode were assigned in the BPNN correlations as shown in Table 42. 
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Table 40: Architecture and Input Variables of the NCR, QGI, εG, dS, aWave and kLa BPNN Correlations 

ln NCR ln QGI ln εG ln dS ln kLa ln aWave.H 
Max Min Max Min Max Min Max Min Max Min Max Min Parameters 
7.762 3.401 -3.324 -15.613 -0.528 -9.871 -4.720 -8.557 -0.265 -8.093 0.452 0 

Variables 
Position 

in 
BPNN 

Max Min 
Position 

in 
BPNN

Max Min 
Position 

in 
BPNN

Max Min 
Position 

in 
BPNN

Max Min 
Position 

in 
BPNN

Max Min 
Position 

in 
BPNN

Max Min 

Reactor 
Type, - 1 1 0 - - - 1 1 0 1 1 0 - - - - - - 

H, m 2 6.227 0.064 1 1.67 0.14 3 6.542 0.082 - - - - - - - - - 

HL, m 3 4.66 1.15 
10-2 2 1.000 0.083 12 4.97 3.75 

10-2 - - - - - - - - - 

UG, m/s - - - - - - 4 0.3 0.0 3 0.3 0 2 0.3 0.0 - - - 
N, rpm - - - 3 1729 36 2 3235 0.09 2 2400 0.09 1 2100 0 3 1400 75 
ρL, kg/m3 4 2042 310 4 2042 700 5 2042 429 4 2042 310 3 2042 310 6 1844 310 

μL, Pa s 5 0.09 5.00 
10-5 5 0.09 1.50 

10-4 6 0.09 5.00 
10-5 5 0.09 5.00 

10-5 4 0.09 5.00 
10-5 7 6.7 10-3 5.0 

10-5 

σL, N/m 6 0.077 1.20 
10-3 6 0.077 0.008 7 0.077 1.20 

10-3 6 0.074 1.20 
10-3 5 0.072 1.20 

10-3 8 0.072 1.20 
10-3 

ρG, kg/m3 7 194.90 0.05 7 53.86 0.05 8 53.86 0.06 7 55.27 0.05 6 55.27 0.05 9 55.17 0.05 
MW-gas, 
kg/kmol    8 44 2 11 44 2 8 44 2 - - - - - - 

dT, m 8 3.330 0.075 9 1.500 0.113 9 3.600 0.075 - - - 7 3.330 0.076 - - - 
dImp., m 9 1.370 0.032 10 0.5 0.05 10 1.350 0.032 - - - - - - - - - 

NCR , rpm - - - 12 1106 30 - - - - - - - - - - - - 
Xw, wt.% - - - - - - 13 100.00 55.89 9 100 88 - - - - - - 

DAB,.m2/s - - - - - - - - - - - - 8 1.5 10-7 8.4 10-

11 - - - 

Gas 
dispersion 

type, - 
10 1 0 11 1 0 - - - - - - - - - - - - 

εG, - - - - - - - - - - 10 0.59 5.30 
10-5 9 0.54 0 - - - 

dS, m - - - - - - - - - - - - 10 8.9 10-3 0 - - - 
T , K - - - - - - - - - - - - - - - 1 473 297 

P , MPa - - - - - - - - - - - - - - - 2 5.96 0.09 
dT/H , - - - - - - - - - - - - - - - - 4 1.00 0.39 

dImp./HL , - - - - - - - - - - - - - - - - 5 0.67 0.21 
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Table 41: Statistical Analysis of the Empirical and BPNN Correlations 

Regression Coefficient  
R2 , % 

Standard Deviation  
σ, % 

Average absolute relative error 
AARE, % Parameters 

Empirical BPNN Empirical BPNN Empirical BPNN 
NCR 96 97 14 4 7 3 
QGI 70 97 50 20 35 15 

aWave 92 97 5 2 3 2 
εG 87 92 48 27 24 16 
dS 92 97 23 12 13 8 
kLa 80 91 52 28 32 18 

 

Table 42: Input Variables for Gas distribution and Reactor Type used in the BPNN Correlations 

Gas distribution type Reactor Mode Values for the BPNN 
Surface aeration SAR 0 
Hollow shaft GIR 0.5 
Draft tube GSR 1 
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Table 43: Architecture, Weights of the NCR BPNN Correlation 

1st hidden Layer Weights ui,j 1 2 3 4 5 6 7 8 9 10 
1 8.35 26.78 -30.16 2.63 1.72 -5.37 0.54 3.64 -1.90 -13.24 
2 -28.29 -33.32 60.17 -4.83 4.48 7.00 -0.73 50.43 -69.38 32.63 
3 -12.15 34.83 -80.39 6.31 -7.04 -4.18 0.82 -55.17 60.85 0.24 
4 4.52 34.25 -73.91 -4.10 0.98 -3.50 -0.54 81.09 28.72 -3.49 
5 -6.21 -42.45 51.52 1.45 0.92 8.78 -2.19 -11.24 1.59 13.96 
6 -1.70 -27.57 -5.17 3.74 -1.58 -6.71 2.62 11.16 -20.47 2.79 
7 -14.74 -29.14 -44.81 3.12 -6.13 -2.07 1.28 20.15 -23.49 1.78 
8 -6.97 -6.54 -33.78 1.41 -0.68 -3.43 1.86 7.65 -10.75 0.91 

1 2 3 4 5 6 7 8 Bias of 1st hidden Layer u0,i 4.85 -3.93 3.75 6.92 -11.05 5.52 5.01 9.85 

1 2 3 4 5 6 7 8 Output Layer Weights wi 14.02 8.42 17.05 -33.35 4.38 4.07 -16.60 -4.15 

Bias of Output Neuron w0 19.89 
 

Table 44: Architecture, Weights of the QGI BPNN Correlation 

1st hidden Layer Weights ui,j 1 2 3 4 5 6 7 8 9 10 11 12 
1 -14.15 8.50 -7.38 -4.82 -7.26 -11.92 -2.60 4.68 2.29 -0.89 22.17 14.43 
2 -6.31 0.83 4.64 -9.98 -3.71 1.32 2.13 3.44 7.23 4.39 -9.67 20.24 
3 -9.90 9.56 -7.69 -3.34 -17.75 -0.80 0.05 2.85 4.80 -6.12 5.86 -0.30 
4 5.19 -5.30 -16.27 0.81 -16.10 0.65 1.44 0.88 0.96 2.20 -0.89 13.58 
5 18.75 -14.83 2.10 8.76 0.52 -0.92 2.20 0.07 -8.23 0.37 -3.11 0.56 
6 -14.27 3.30 -9.12 -3.73 -16.10 -5.30 -0.29 5.63 2.65 8.07 10.14 7.89 
7 -47.58 1.04 -5.45 -26.94 -21.08 18.79 0.37 9.25 -47.74 6.08 -11.01 11.30 
8 -0.66 9.05 -8.41 -1.13 0.97 -12.44 -0.11 -3.41 -12.49 -6.43 -3.67 0.59 

1 2 3 4 5 6 7 8 Bias of 1st hidden Layer u0,i -13.35 2.35 -0.48 -4.77 -1.94 -4.33 -13.89 5.79 

1 2 3 4 5 6 7 8 Output Layer Weights wi -4.95 8.09 -5.90 -7.91 -2.67 8.75 -28.30 -7.14 

Bias of Output Neuron w0 -6.36 
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Table 45: Architecture, Weights of the εG BPNN Correlation 

1st hidden Layer Weights ui,j 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 -18.65 13.91 -9.73 -2.87 2.46 -34.93 -10.02 -4.88 32.85 6.69 0.57 -17.83 3.04 
2 -17.66 14.99 3.83 5.82 6.51 -0.99 1.57 6.64 0.81 6.17 1.14 5.55 -1.68 
3 -1.52 1.94 0.90 -22.86 -5.65 0.19 3.81 3.09 6.38 -0.99 -3.10 -2.95 2.81 
4 -0.09 7.78 -12.13 -4.16 2.46 4.34 13.73 -2.41 10.69 -0.19 -0.92 -4.79 -0.79 
5 4.33 -1.52 -7.36 3.77 -1.03 -0.29 -3.72 1.61 -4.96 3.77 1.95 -4.53 0.61 
6 1.71 -10.63 -1.31 -29.96 4.46 -1.36 -7.26 -9.25 -0.03 -5.51 9.98 -16.02 1.86 
7 2.36 5.02 -0.81 6.96 7.03 -0.66 4.62 -2.82 16.71 7.23 -0.42 -12.60 -2.28 
8 -14.89 10.62 -10.55 3.45 0.73 -5.76 -8.67 -5.38 -15.38 1.08 0.67 -9.04 1.13 
9 -15.53 10.15 0.49 -6.09 11.92 1.88 6.77 -1.01 1.47 5.21 -2.00 7.93 -2.56 
10 2.97 -2.43 17.06 19.45 5.69 -2.78 1.32 4.15 -2.59 31.89 0.31 22.51 -1.76 

1 2 3 4 5 6 7 8 9 10 Bias of 1st hidden Layer u0,i -2.38 4.84 -5.78 -0.39 -5.13 -0.59 -5.00 0.72 0.10 -1.09 

1 2 3 4 5 6 7 8 9 10 Output Layer Weights wi 13.01 2.72 -8.58 6.90 8.73 -0.88 3.78 -12.50 -2.65 -3.76 

Bias of Output Neuron w0 -5.54 
 
 

Table 46: Architecture, Weights of the dS BPNN Correlation 

1st hidden Layer Weights ui,j 1 2 3 4 5 6 7 8 9 10 
1 -1.20 -2.69 -4.12 0.34 57.32 -0.29 1.11 -1.82 -1.33 5.16 
2 0.80 -1.39 3.99 -19.39 7.16 9.37 0.84 -1.84 -0.58 6.67 
3 -29.44 -3.44 24.54 0.42 -4.01 -3.18 0.08 1.05 0.15 -1.13 
4 -1.75 -1.80 37.87 24.52 23.66 -8.15 -0.75 0.59 0.83 -22.79 
5 12.89 -1.24 10.97 -90.95 66.59 32.98 0.18 -0.94 0.68 -25.47 
6 0.43 0.71 -4.85 17.89 -27.40 14.11 -0.04 -12.44 -6.12 -2.02 

1 2 3 4 5 6 Bias of 1st hidden Layer u0,i 6.58 1.63 16.31 1.47 9.83 -4.44 

1 2 3 4 5 6 Output Layer Weights wi -7.70 3.84 -1.42 2.63 -1.19 -2.09 

Bias of Output Neuron w0 5.57 
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Table 47: Architecture, Weights of the kLa BPNN Correlation 

1st hidden Layer Weights ui,j 1 2 3 4 5 6 7 8 9 10 
1 2.88 4.87 -0.58 -9.02 5.98 -0.17 -3.67 -0.67 -7.76 -22.32 
2 -2.09 9.11 3.01 8.08 -9.03 -0.09 -29.15 -18.32 3.53 -5.85 
3 9.81 -19.61 0.31 -17.34 -5.20 6.11 -0.32 -9.38 13.21 -20.79 
4 -1.20 -9.28 -15.05 8.45 1.68 -1.56 1.47 -4.67 1.07 1.38 
5 -9.35 2.52 6.38 -24.46 -1.51 -0.18 -7.52 3.38 -5.27 7.29 
6 -2.07 -12.16 38.68 -10.52 -15.93 -1.72 -0.70 -6.62 -6.22 0.68 
7 -0.10 7.14 -24.48 -22.50 7.56 -1.97 -3.66 -8.07 12.88 -3.50 
8 -9.56 6.55 -11.73 0.70 9.45 -6.24 0.58 8.97 81.82 -0.49 
9 0.95 5.94 -5.27 25.29 0.95 0.48 -3.14 -9.46 4.65 36.31 
10 1.78 -7.27 11.60 25.96 -19.65 -0.46 -21.74 1.35 11.97 3.81 

1 2 3 4 5 6 7 8 9 10 Bias of 1st hidden Layer u0,i 0.82 4.52 -2.16 5.09 0.72 -3.21 1.80 5.67 -1.96 -3.57 

2nd hidden Layer Weights vi,j 1 2 3 4 5 6 7 8 9 10 
1 1.27 -9.88 -0.42 1.58 -1.63 16.16 4.88 -3.03 8.32 5.63 
2 -7.05 -2.78 0.72 20.23 -19.60 1.37 9.44 -1.67 6.20 -26.30 
3 16.65 -12.39 -2.78 4.43 11.46 -8.95 -9.19 0.46 21.81 22.59 
4 7.31 -1.24 -5.42 2.73 -2.78 9.01 -3.16 -7.21 2.29 14.68 
5 7.55 -4.91 -0.20 5.70 1.45 -5.28 -2.31 -0.10 12.16 4.73 
6 1.75 -1.59 0.94 -1.45 1.51 4.43 -17.00 1.17 -0.05 -8.04 
7 4.46 3.24 -1.33 7.23 4.54 -7.43 0.51 -1.09 1.77 -0.62 
8 -8.50 -0.83 -22.08 6.93 -3.57 7.13 -11.62 -21.44 -5.45 -22.50 

1 2 3 4 5 6 7 8 Bias of 2nd hidden Layer v0,i -10.66 -12.17 -21.03 -7.88 -14.04 -1.62 -9.50 18.08 

1 2 3 4 5 6 7 8 Output Layer Weights wi 2.61 -1.25 -1.29 -3.12 2.51 -2.90 -3.51 -10.20 

Bias of Output Neuron w0 1.99 
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Table 48: Architecture, Weights of the aWave BPNN Correlation 

1st hidden Layer Weights ui,j 1 2 3 4 5 6 7 8 9 
1 1.73 14.79 -3.45 -5.05 7.50 2.72 8.19 12.41 -6.86 
2 -7.48 7.36 -0.88 33.75 -23.57 -14.92 7.99 -7.91 -6.53 
3 8.31 3.18 -1.56 -15.79 -10.94 20.27 2.21 26.92 -6.14 
4 4.56 -11.59 1.52 -7.97 -2.97 13.38 0.84 8.53 14.59 

1 2 3 4 Bias of 1st hidden Layer u0,i -1.48 10.15 -10.95 1.47 

1 2 3 4 Output Layer Weights wi -7.50 -11.14 -21.93 9.98 

Bias of Output Neuron w0 4.22 
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Figure 68: Comparison between Experimental and Predicted NCR, QGI, εG and dS Values using BPNN Correlations 
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Figure 69: Comparison between Experimental and Predicted kLa and aWave Values using BPNN Correlations 
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6.4.4 Calculation Algorithm of the Hydrodynamic and Mass transfer Parameters in the Agitated Reactors 

In this study, the empirical correlations and BPNNs were used in parallel to develop the calculation algorithm, 

which could be employed to predict the hydrodynamic and mass transfer parameters in agitated reactors as depicted 

in Figure 70. The calculation algorithm consists of the following steps: 

1. Calculate NCRE for SARs, Equation (6-19) or NCRI for GIRs, Equation (6-20), or the BPNN in Table 43. 

2. If NCRI < N, calculate QGI for GIRs, Equation (6-21) or Table 44, otherwise QGI = 0 and the reactor is an SAR. 

3. Obtain P*/VL in SARs, GIRs, and GSRs using the empirical literature correlation. If using BPNNs 

correlations, go to step 4. 

4. Calculate εG, Equations (6-23) for SARs, (6-26) for GIRs and (6-29) for GSRs, or Table 45. 

5. Calculate dS using Equations (6-37) for SARs, (6-40) for GIRs and (6-43) GSRs, or Table 46. 

6. Calculate kLa, Equations (6-46), (6-49) and (6-52) or the BPNN in Table 47. 

7. Calculate aWave from Equation (6-22) or the BPNN in Table 48.  

8. Calculate a, Equation (6-62): 

( ) Wave
SG

G a
dε1

6ε
a +

−
=  (6-62) 

9. Calculate kL, Equation (6-63): 

a
akk L

L =  (6-63) 

It should be mentioned that aWave was used in Equation (6-62) in order to take into account the effect of the wavy 

surface area, which can have a significant impact, particularly in small-scale agitated reactors (126). 
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Figure 70: Calculation Algorithm for the Hydrodynamic and Mass Transfer Parameters Using the Empirical and BPNN Correlations 
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6.5 CORRELATIONS AND CALCULATION ALGORITHM IN THE BCR 

As in the agitated reactors, empirical, statistical and BPNN correlations were developed to predict both hydrodynamic and 

mass transfer parameters in BCRs. The different types of correlations are first presented, and then because of the large data 

bank used (3881 data points), the developed the empirical and BPNN correlations were used to build a simple algorithm, 

enabling the calculation of the hydrodynamic and mass transfer parameters. 

6.5.1 Empirical Correlations of the Hydrodynamic and Mass Transfer Parameters in the BCR 

The correlation proposed by Behkish (395) was modified in order to take into account the foamility of the liquids, 

hence the following correlations for predicting the total gas holdup (εG) and the holdup of large gas bubbles (εG-Large) 

were developed using the 3881 data points shown in Table 49:  

( )WPPV
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( )Fεe
μ
ρ103.041εε 0.844.49C4.50X
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GLargeG
VW =⎟⎟

⎠
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⎝

⎛
×−= −−

−  (6-65) 

From the knowledge of the total gas holdup (εG), Equation (6-64) and the holdup of large gas bubbles, Equation 

(6-65), the holdup of small gas bubbles (εG-Small) can be deduced as: 

LargeGGSmallG εεε −− −=  (6-66) 

It should be noted that coupling Equations (6-64) and (6-65) leads to the following possibilities:  

1. If εG is ≤ (F) 25/4, small gas bubbles do not exist; and Equation (6-66) cannot be used to split εG into εG-Large and ε G-

Small. 

2. If εG is > (F) 25/4, small and large gas bubbles coexist; and Equations (6-65) and (6-66) can be used. 

In the Equation (6-67), Г represents the gas sparger type and is defined as: 

( )αOOd dNKΓ ×=  (6-67) 

Kd is the distributor coefficient, NO is the number of orifices in the sparger, and dO is the diameter of the orifice. The 

values of Kd and the exponent α for several distributors can be found in Table 50. For perforated plates, the exponent 

α depends on ζ, and can be expressed as: 

2

C

O
O D

d
Nζ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (6-68) 
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XW in Equation (6-64) designates the concentration of the primary liquid in a liquid mixture, and its value varies 

between 0.5 and 1. For a single-component or an organic liquid mixture, consisting of several hydrocarbons, such as 

oils and waxes, XW equals 1. It should also be mentioned that in the case of BCRs, CV, ρP, and dP are zeros. 

To predict the Sauter mean bubble diameter of all gas bubbles in the reactor, the following correlation was obtained: 

( ) PPVW d2.77ρ2.81C2.29X0.021.56
G

0.30

C

C0.14
G0.12

GasW
1.52
L

1.660.02
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S eΓε1
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D
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Mρ
Tρσμ

37.19d ++−−

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×=  (6-69) 

In the case where small and large gas bubbles coexist (εG > (F) 25/4), the Sauter mean bubble diameter of large gas 

bubbles was correlated as:  

( )2.74
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G
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L
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SLargeS εεUσμρ101dd −
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Also, for predicting the volumetric mass transfer coefficient, the following correlation was developed.  
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Table 51 presents the ranges of the conditions of applicability of Equations (6-64) through (6-71); and Table 53 

shows the regression coefficients and standard deviations of the correlations developed for each parameter.  

It should be noted that the above correlations are valid when the volume of internals, commonly used in BCRs and 

SBCRS for cooling or heating purposes, is ≤ 20% of the reactor volume. This is because several literature findings 
(155, 396, 397, 398, 399, 400, 401, 402, 403) showed limited or no effect of internals on the hydrodynamic and mass transfer 

parameters as long as their volume fraction remains under 20%. Also, these correlations should be valid for reactor 

height/diameter ratio (H/DC) from 4 to 20, hence a considerable number of data points available in the literature (194, 

198, 219, 220, 320) and used to develop these correlations cover such an H/DC range.  
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Table 49: Database used in this study on BCRs and SBCRs 

Authors Parameters Gas Liquid Solid Operating variable DC, m Sparger Legend 
Towell et 
al.(404) kLa CO2 Water - P: atm./T: 300 K//UG: 

0.07 m/s 0.407 S-ON 

Bhaga et al. 
(405)  εG N2 

n-octane+toluene, cumene+ams, 
toluene+ethanol, +ams, +cumene, 
+ethylbenzene, acetone+benezene 

- P: atm./T: 298, 333 K/ 
UG: 0.021-0.035 m/s 0.0382 PfP 

Botton et al. 
(406)  εG Air Water, water+glycol, 

+tensioactive+trisodium phosphate - P: atm./T: amb./ 
UG: 4.7 10-3-14.0 m/s 

0.02, 0.075, 
0.200, 0.480 

PfP, R, 
S 

Jackson and 
Shen (407) kLa Air Water+sodium sulfite - P: atm./T: 283-303 K/ 

UG: 0.001-0.004 m/s 
0.076, 
1.800, 7.600 

S-ON, 
M-ON 

Kataoka et al. 
(408) εG, dS, kLa CO2 Water - P: atm./T 0.05 m/s 5.5 M-ON 

Deckwer et al. 
(154)  εG N2 Wax Al2O3 

P: 0.4 M Pa/T: 523 K/ 
UG: 0.004-0.034 m/s/ 
CV: 0-1.21 vol.% 

0.1  SP 

Kastanek et al. 
(409)  kLa Air Water - P: atm./T: amb./ 

UG: 0.005-0.025 m/s 
0.15, 0.30, 
1.00 PfP 

Hikita et al. 
(294)  kLa 

Air, O2, 
H2, CO2, 
CH4, 
C3H8 

Water, +sucrose, +n-butanol, +methanol, 
+Na2SO4, +K2SO4, +K3PO4, +KNO3, 
+CaCl2, +AlCl3, +KCl, +NaCl 

- P: atm./T: 298 K/ 
UG: 0.042-0.38 m/s 0.10, 0.19 S-ON 

Vermeer and 
Krishna (157)  

εG, εG-Small,  
εG-Large, kLa Air Turpentine 5 - P: 0.1 MPa/T: 290 K/ 

UG: 0.1-0.3 m/s 0.19 Cross 

Godbole (410) εG, kLa Air 
Water, +CMC, +0.8 M sodium sulfite, 
+ethanol, +propanol, +butanol, +methanol, 
+glycerine, Sotrol-130 

Polystyrene, 
coal, oil 
shell, sand 

P: atm./T: 298 K/ 
UG: 0.017-0.57 m/s/ 
CV: 0-26.3 vol.% 

0.305 PfP 

Moujaes (411) εG, kLa N2, air Tetraline, water, ethylene glycol - P: atm./T: 275-293 K/ 
UG: 0.015-0.117 m/s 

0.127, 
0.3048, 
1.8288 

S-ON, 
M-ON 

Tarmy et al. 
(172)  εG N2 n-Heptane - 

P: 0.12-0.62 MPa/T: 
amb./ 
UG: 0.12 m/s 

0.61 S-ON  

Shah et al. (412)  εG Air Water+Ethanol - P: atm./T: amb./ 
UG: 0.106-0.208 m/s 0.1 SP 

Grover et al. 
(413)  εG Air Water - P: atm./T: 303-353 K/ 

UG: 0.012-0.041 m/s 0.1 SP 
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Table 49 (Cont’d) 
Authors Parameters Gas Liquid Solid Operating variable DC, m Sparger Legend 

Idogawa et al. 
(414)  εG, dS Air Water - 

P: 0.1-15.0 MPa/T: 
293 K/ 
UG: 0.005-0.050 m/s 

0.05 
S-ON, 
PfP, 
PoP 

Wezorke (415) εG Air Mono-ethylene glycol - P: atm./T: amb./ 
UG: 0.11-0.41 m/s 0.44 S-ON  

Bukur and 
Daly (416) εG O2 Wax - P: atm./T: 473, 538 K/ 

UG: 0.01-0.15 m/s 0.229 PfP 

Idogawa et al. 
(417)  εG, dS 

Air, He, 
H2 

Water, methanol, acetone, ethanol, isoamyl-
alcohol+water, ethanol+water - 

P: 0.1-15.0 MPa/T: 
293 K/ 
UG: 0.005-0.050 m/s 

0.05 PfP 

O’Dowd et al. 
(418)  εG N2 Water Glass 

beads 

P: atm./T: amb./ 
UG: 0.031-0.194 m/s/ 
CV: 4.17-10.74 vol.% 

0.108 PfP 

Ozturk et al. 
(243)  εG, kLa 

Air, H2, 
N2, He, 
CO2 

Xylene, p-xylene, aniline, toluene+ethanol, 
ligroin, ethylbenzene, ethylacetate, CCl4, 1,4-
dioxane, acetone, nitrobenzene, 1,2-
dichloroethane 

- P: atm./T: 293 K/ 
UG: 0.03-0.08 m/s 0.095 S-ON 

Zou et al. (419)  εG Air Water, ethanol - 

P: atm./T: 313-369.5 
K/ 
UG: 0.04-0.17 m/s/ 
UL: 0.007 m/s 

0.1 S-ON 

Halard et al. 
(420) εG, kLa Air Water-CMC sol. - P: atm/T: amb./ 

UG: 0.02-0.05 m/s 0.76 R 

Pino et al. (421) εG Air Kerosene - P: atm./T: 298 K/UG: 
0.1-0.175 0.29  PfP 

Daly et al. (174)  εG, dS Air Sasol wax - P: atm./T: 538 K/UG: 
0.02-0.12 0.05 PfP 

Grund et al. 
(175)  

εG, εG-Small, kLa, 
εG-Large, dS-Small, 
dS-Large 

Air Water, methanol, toluene, ligroin - P: atm./T: 293/ 
UG: 0.103-0.195 m/s 0.15 PfP 

Saxena et al. 
(422)  εG Air Water - P: atm./T: 343, 353 K/ 

UG: 0.01-0.3 m/s 0.305 BC 

Wilkinson et 
al. (176)  εG 

SF6, He, 
Ar, N2, 
CO2,  

Water, mono-ethylene glycol, n-heptane - 
P: 0.1-2 MPa/T: 293, 
313K/ 
UG: 0.03-0.28 m/s 

0.158, 0.23 R 

Chabot and 
Lasa (177)  εG N2 Paraffin oil - P: atm./T: 373, 448 K/ 

UG: 0.022-0.146 m/s 0.2 PfP 
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Table 49 (Cont’d) 
Authors Parameters Gas Liquid Solid Operating variable DC, m Sparger Legend 
Ellenberger 
and Krishna 
(423)  

εG, εG-Small,  
εG-Large 

Air, Ar, 
He, SF6 

Water, tetradecane, paraffin oil - P: atm./T: 298K/ 
UG: 0.06-0.7 m/s 

0.10, 0.19, 
0.38 SP 

Wilkinson et 
al. (200) εG, dS, kLa 

SF6, He, 
Ar, N2, 
CO2,  

0.8M sodium sulfite+water, water, mono-
ethylene glycol, n-heptane - P: 0.1-2 MPa/T: 293K/ 

UG: 0.03-0.28 m/s 
0.15, 0.158, 
0.23 R 

Dewes et al. 
(370)  εG, kLa Air Water+0.8M sodium sulfate - 

P: 0.1-0.8 MPa/T: 
amb./ 
UG: 0.03-0.08 m/s 

0.115 PfP 

Eickenbusch et 
al. (320) εG, kLa Air Water + hydroxypropyl guar - P: atm./T: amb./ 

UG: 0.009-0.09 m/s 
0.19, 0.29, 
0.60 PfP, R 

Jiang et al. (235)  εG, dS N2 Paratherm NF - 
P: 0.1-12.2 MPa/T: 
amb./ 
UG: 0.027-0.075 m/s 

0.0508 R 

Choi et al. 
(424) εG, kLa Air Water Glass 

beads 

P: atm./T: amb./ 
UG: 0.02-0.08 m/s/CV: 
3 vol.% 

Rect: 
0.456x0.153 PfP 

Hyndman et al. 
(425) 

εG, εG-Small, εG-

Large 
Air, Ar Water - P: atm./T: amb./ 

UG: 0.04-0.15 m/s 0.20 PfP 

Inga (56)  
εG, εG-Small, kLa, 
εG-Large, dS-Small, 
dS-Large 

H2, CO, 
CH4, N2 

Hexanes Iron 
oxides 

P: 0.126-0.767 MPa/T: 
amb. 
UG: 0.06-0.35 m/s/ 
CV: 0-21.76 vol.% 

0.316 S 

Krishna et al. 
(426)  εG Air Paraffin oil Silica 

P: atm./T: amb./ 
UG: 0.085-0.218 m/s/ 
CV: 0-36 vol.% 

0.38 SP 

Laari et al. (181)  εG, kLa Air Water - P: atm./T: amb./ 
UG: 0.018-0.038 m/s 0.98 S-ON 

Letzel et al. 
(182) εG N2 Water - 

P: 0.1-0.9 MPa/T: 
amb./ 
UG: 0.12-0.2 m/s 

0.15  PfP 

Camarasa et al. 
(203) εG, dS Air  Water - P: atm./T: amb./ 

UG: 0.013-0.15 m/s 0.1 PoP 

Gandhi et al. 
(427)  εG Air Water Glass 

beads 

P: atm./T: amb./ 
UG: 0.05-0.26 m/s 
CV: 10-35 vol.% 

0.15 S 
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Table 49 (Cont’d) 
Authors Parameters Gas Liquid Solid Operating variable DC, m Sparger Legend 

Inga and Morsi 
(368)  εG H2, CO, 

CH4, N2 
Hexanes Iron 

oxides 

P: 0.126-0.767 MPa/T: 
amb./ 
UG: 0.06-0.35 m/s/ 
CV: 0-21.76 vol.% 

0.316 S 

Kang et al. (185)  εG, kLa Air Water+CMC - 
P: 0.1-0.6 MPa/T: 
amb./ 
UG: 0.02-0.20 m/s 

0.152 M-ON 

Letzel et al. 
(183)  εG, kLa N2 Water - 

P: 0.1-1.3 MPa/T: 
amb./ 
UG: 0.12-0.5 m/s 

0.15  PfP 

Luo et al. (428)  εG N2 Paratherm NF Alumina 

P: 0.1-2.86 MPa/T: 
301 K/ 
UG: 0.04-0.333 m/s/ 
CV: 0-19.1 vol.% 

0.102 PfP 

Krishna et al. 
(429)  εG Air Water + ethanol Silica P: atm./T: amb./ 

UG: 0.01-0.5 m/s 0.15 PfP 

Shimizu et al. 
(430) εG, kLa Air Water - P: atm./T: 298 K/ 

UG: 0.008-0.033 m/s 0.155-0.200 PfP, R 

Chen et al. (431)  εG Air Water - P: atm./T: amb./ 
UG: 0.023-0.090 m/s 0.2, 0.4, 0.8 PfP 

Jamialahmadi  
et al. (432) dS Air Water, +methanol, +ethanol, +propanol, 

+isopropanol, +glycerol, +potassium chloride - P: atm./T: 295 K/ 
UG: 0.003-0.0086 m/s 

0.1, 
Rect: 
0.05x0.1 

S-ON  

Jordan and 
Schumpe (190)  εG, kLa N2, He, 

Air Ethanol, decalin, 1-butanol, toluene - 
P: 0.1- 4.0 MPa/T: 
293, 343 K/ 
UG: 0.02-0.22 m/s 

0.1 PfP 

Kluytmans et 
al. (433)  εG N2 Water Carbon 

P: atm./T: amb./ 
UG: 0.04-0.11 m/s/ 
CV: 0-1.429 10-3vol.% 

0.3 PfP 

Pohorecki et 
al. (195)  εG, dS N2 Cyclohexane - 

P: 1.1 MPa/T: 373-433 
K/ 
UG: 0.0035 m/s 

0.304  M-ON 

Veera et al. 
(434) εG Air Water, water + n-butanol - P: atm./T: amb./ 

UG: 0.06-0.29 m/s 0.385 PfP,  
S-ON 

Jordan et al. 
(191)  εG, kLa N2, He Ethanol, decalin, 1-butanol, toluene - 

P: 0.1- 4.0 MPa/T: 
293, 343 K/ 
UG: 0.02-0.22 m/s 

0.1 PfP 
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Table 49 (Cont’d) 
Authors Parameters Gas Liquid Solid Operating variable DC, m Sparger Legend 

Schäfer et al. 
(435) dS N2 

Water, ethanol, cyclohexane, cyclohexanone, 
cyclohexanol - 

P: 0.1-4.5 MPa/T: 293-
448 K/ 
UG: 0.65-2.5 10-3 m/s 

0.058 R, PoP  

Syeda et al. 
(436) εG Air Methanol+propanol, ethylene glycol+water, 

propanol+water - P: atm./T: amb./UG: 
0.32 m/s 0.09 PfP 

Jordan et al. 
(437)  

εG, εG-Small, εG-

Large 
N2, He Ethanol, decalin, 1-butanol, toluene - 

P: 0.1- 4.0 MPa/T: 
293K/ 
UG: 0.01-0.22 m/s 

0.1 PfP, 
PoP 

Li et al. (438) εG, εG-Small, εG-

Large 
Air Water Glass 

beads 
P: atm./T: amb./ 
UG: 0.05-0.3 m/s 0.28 S 

Behkish et al. 
(254)  

εG, εG-Small, εG-

Large, dS-Small, dS-

Large 
N2, He Isopar-M Al2O3 

P: 0.7-3.0 MPa/T: 300-
453 K/ 
UG: 0.07-0.39 m/s/ 
CV: 0-20 vol.% 

0.29 S 

Behkish (395)  
εG, εG-Small, εG-

Large, dS-Small, dS-

Large, kLa 

H2, N2, 
CO, He, 
CH4 

Isopar-M 
Glass 
beads, 
Al2O3 

P: 0.17-3.00 MPa/T: 
298 K/ 
UG: 0.06-0.39 m/s/ 
CV: 0-36 vol.% 

0.29, 0.316 S  

Lau et al. (439)  εG, kLa Air Paratherm NF - 

P: 0.1-4.24 MPa/T: 
298, 365 K/ 
UG: 0.019-0.039 m/s/ 
UL: 0.8-3.2 10-3 m/s 

0.1016 PfP 

Sehabiague et 
al. (440) 

εG,, kLa,  εG-Small, 
εG-Large, dS-Small, 
dS-Large 

H2, N2 Sasol wax, Isopar M Al2O3, Iron 
oxides 

P: 0.17-3.00 MPa/T: 
298-453 K 
UG: 0.06-0.39 m/s/ 
CV: 0-20 vol.% 

0.29 S  

Vandu and 
Krishna  (441) εG, kLa N2 

Water, tetradecane, paraffin oil, ethanol, 
tellus oil Silica 

P: atm./T: amb./ 
UG: 0.01-0.42 m/s/ 
CV: 0-25 vol.% 

0.10, 0.15, 
0.38, 0.63 S, PfP 

This Study (442)  
εG, εG-Small, εG-

Large, dS-Small, dS-

Large, kLa 
N2, air Toluene, toluene+benzoic 

acid+benzaldehyde - 
P: 0.18-0.82 MPa/T: 
amb./ 
UG: 0.056-0.15 m/s 

0.316 S 
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Table 50: Value of α used in Equation (6-67) 

Distributor ζ, % α, - Kd , m-α 
PfP < 0.055 0.017 1.364 
PfP ≥ 0.055 and ≤ 0.3 0.303 1.364 
PfP > 0.3 0.293 1.364 
M-ON  0.303 1.364 
S-ON  0.134 1.205 
R, S  0.015 1.000 
BC  0.500 1.553 
PoP, SP  0.650 1.533 

 

Table 51: Upper and Lower limits of the variables in Equations (6-64) through (6-71) 

Variables Minimum value Maximum value 
PT, MPa 0.1 19.8 
PS, MPa 0.0 0.7 
UG, m/s 3.5 10-3 0.574 
Cv, vol% 0 36 
Xw, wt.% 50 100 
T, K 275 538 
MB, kg/kmol 18 730 
MA, kg/kmol 2 44 
DAB, m2/s 2.78 10-8 1.25 10-11 
dp, m 4.2 10-5 0.0003 
ρP, kg/m3 700 4000 
ρG, kg/m3 0.06 223.77 
ρL, kg/m3 633 1583 
μL, 10-3 Pa s 0.16 398.80 
σL, 10-3 N/m 8.4 75 
DC, m 0.0382 7.6200 
Γ, - 0.06 143800 
ζ, % 0.0097 75 
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Figure 71: Comparison between εG, εG-Large, dS and dS-Large Experimental and Predicted values using Empirical Correlations 
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Figure 72: Comparison between kLa Experimental and Predicted values using Empirical Correlations 
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6.5.2 Statistical Correlations of the Hydrodynamic and Mass Transfer Parameters in the BCR 

In order to improve the predictions of the hydrodynamic and mass transfer parameters and incorporate the effect of 

benzoic acid and benzaldehyde presence during the liquid-phase toluene oxidation process, statistical correlations were 

developed. It should also be mentioned that despite the fact statistical correlations are valid exclusively for the systems used 

to obtain them; they are easier to develop and enjoy extremely high confidence levels when compared with conventional 

“empirical” correlations. In this study, statistical correlations were developed for the systems studied using the statistical 

software package, Minitab Version 9.1 for Mainframe. The correlations are in the form of Equation (6-72).  

∑+∑+∑ ∑+∑+=
=== ==

5

1i
iii

5

1i
ii

5

1i

5

1j
jiij

5

1i
ii0 )x(γexpα)xζ(expξ xxβxββLn(Y)  (6-72) 

where the coded variables are for Pressure: 

( )5.0P
3.0
2x1 −=  (6-73) 

for gas velocity 

( )1.0U
04.0
2x G2 −=  (6-74) 

for wt. % of Benzoic Acid added 

( )5% wt.
5
2x BZC3 −=  (6-75) 

for wt. % of Benzaldehyde added 

( )5% wt.
5
2x BZL4 −=  (6-76) 

for Molecular weight of the gas 

( )5.28M22x GasW5 −= −  (6-77) 

and the corresponding coefficients are given Table 52. Figures 73 and 74 present a comparison between experimental 

and predicted dS, εG, a, kLa and kL values, and as can be observed the predictions using the statistical correlations are 

more accurate (95% confidence levels) than those using empirical correlations. 
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Table 52: Coefficients of the Statistical Correlations for the Hydrodynamic and Mass Transfer Parameters 

Coefficients dS  dS-Small εG εG-Large a a-Small kLa kL 
β0 -9.92 -6.89 -8.42 10-1 -1.52 7.08 4.02 -9.08 10-1 -9.80 
β1 -6.80 10-1 -8.11 10-2 1.57 10-1 5.75 10-3 4.01 10-1 -4.88 10-1 1.65 10-1 -6.15 10-1

β2  1.88 10-2 1.49 10-1 1.05 10-1 1.63 10-1 5.79 10-3 2.63 10-1 9.66 10-2 
β3 -1.76 10-1 -1.55 10-2 9.76 10-2 - - - - -2.20 10-1

β4 -1.63 10-1 -1.64 10-2 1.04 10-1 - - - - -3.98 10-2

β11 - 2.42 10-2 -4.35 10-2 - - -6.88 10-1 - - 
β22 - - - -3.30 10-2 - -3.69 10-2 - - 
β12 - - - - - -2.62 10-2 - - 
ξ 3.82 -9.84 10-2 -4.01 10-2 4.22 10-1 9.23 10-2 5.51 10-1 5.23 10-1 1.80 
ζ1 1.44 10-1 4.43 10-3 2.53 10-1 6.68 10-2 -2.35 10-1 -6.02 10-1 -9.17 10-2 2.50 10-1 
ζ2 1.19 10-2 6.94 10-1 4.37 10-1 7.44 10-2 -9.94 10-2 -1.34 10-1 -1.80 10-1 -2.59 10-5

ζ3 5.15 10-2 2.51 2.44 1.65 2.41 1.29 1.08 1.10 10-1 
ζ4 4.53 10-2 1.99 2.44 1.68 2.38 1.23 1.11 4.94 10-2 
ζ5 7.42 10-3 1.83 1.74 10-1 1.28 1.60 10-2 6.21 10-1 6.80 10-1 2.26 10-2 
α1 - - - - - 1.55 - - 
γ1 - - - - - 7.05 10-1 - - 
α2 - - - - - 1.28 - - 
γ2 - - - - - 1.53 10-1 - - 
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Figure 73: Comparison between Experimental and Predicted dS, dS-Small, εG and εG-Large Values Using the Statistical Correlations
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Figure 74: Comparison between Experimental and Predicted a, aSmall, kLa and kL Values Using the Statistical Correlations 
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6.5.3 BPNN Correlations of the Hydrodynamic and Mass Transfer Parameters in the BCR 

The PITTNET software package was next used to build the BPNNs.The same database (3881 experimental points) as 

mentioned above was used to develop BPNN correlations for εG, εG-Large dS, dS-Large and kLa. The BPNNs developed 

for these parameters were validated using 25% of the total database and the cross validation technique. Table 53 

shows the regression coefficient (R2) and standard deviation (σ) and Tables 54 through 59 present the input 

variables, architecture and weights of the constructed BPNNs for predicting εG, εG-Large dS, dS-Large and kLa. This 

statistical analysis proves that the developed BPNNs can predict the values of εG, εG-Large dS, dS-Large and kLa with 

much higher accuracy than that of the corresponding empirical correlations as can be also observed in Table 53 and 

Figures 75 and 76. 

6.5.4 Calculation Algorithm of the Hydrodynamic and Mass Transfer Parameters in the BCR 

The empirical and BPNNs correlations developed in this study were used, in parallel, in the algorithm to predict the 

hydrodynamic and mass transfer parameters in BCRs and SBCRs as depicted in Figure 77. The algorithm consists of the 

following steps: 

1. Calculate εG, Equation (6-64) or Table 55 

2. Calculate dS, Equation (6-70) or Table 57 

3. Obtain a using Equation (6-78): 

( ) SG

G

dε1
6ε

a
−

=  (6-78) 

4. Calculate kLa, Equation (6-71) or Table 59 

5. Obtain kL using Equation (6-79(6-79): 

( )
G

SGLL
L 6ε

dε1ak
a
akk

−
==  (6-79) 

6. Calculate εG-Large, Equation (6-65) or Table 56 

7. If εG-Large is greater than or equal to εG, there is only one class of bubbles and calculations are complete. If εG-Large is 

less than εG, small and large gas bubbles coexist and proceed with the calculation. 

8. Calculate εG-Small, Equation (6-66) 

9. Calculate dS-Large, Equation (6-70) or Table 58 

10. Calculate dS-Small, Equation (6-80): 

LargeS

LargeG

S

G

SmallS

SmallG

d
ε

d
ε

d
ε

−

−

−

− −=  (6-80) 

11. Calculate aLarge, Equation (6-81): 
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( ) LargeSG

LargeG
Large dε1

6ε
a

−

−

−
=  (6-81) 

12. Calculate aSmall, Equation (6-82): 

LargeSmall aaa −=  (6-82) 

13. Calculate kLaLarge using Equation (6-71) or Table 59 by employing εG-Large and dS-Large instead of εG and dS 

14. Calculate kLaSmall using Equation (6-71) or Table 59 by inserting εG-Small and dS-Small instead of εG and dS 

15. Calculate kL-Large using Equation (6-79) by employing kLaLarge and aLarge 

16. Calculate kL-Small using Equation (6-79) by employing kLaSmall and aSmall. 

It should be mentioned that the use of Equation (6-71) to calculate kLa for small and large gas bubbles using their 

corresponding gas holdup and Sauter mean bubble diameter is an accurate approach; because it underscores the fact 

that the mass transfer behavior of BCRs and SBCRs is controlled by the gas-liquid interfacial area [35,65,84], which 

is a function of dS and εG as shown in Equation (6-71). de Swart and Krishna [94] estimated kLa for large and small 

gas bubbles by measuring the corresponding gas-liquid interfacial areas and calculating kL for large and small 

bubbles using the correlations for mobile and rigid gas bubbles developed by Calderbank and Moo-Young [82]. This 

indirect method by de Swart and Krishna [94] for estimating kLa of small and large gas bubbles, however, may result 

in inaccurate kLa values due to the compounded errors in both kL and a. Also, Grund et al. [49] reported that the 

Sauter mean bubble diameter is independent of the gas velocity; and proposed Equation (6-83) for calculating 

kLaSmall in the churn-turbulent flow regime: 

sHomogeneouG

L

SmallG

L

ε
ak

ε
ak

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 (6-83) 

If dS is constant, i.e. independent of the flow regime, Equation (6-83) gives that (kL)Small in the churn-turbulent flow 

regime = (kL)Homogeneous which is invalid given that the Churn-turbulent flow regime is characterized by strong 

turbulence and back-mixing which enhance both kL and a.   
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Table 53: Statistical Analysis of the Empirical and BPNN Correlations 

R2 , % Standard Deviation, % Parameters 
Empirical BPNN Empirical BPNN 

εG 75 90 21 19 
εG-Large 71 93 27 14 
dS 70 90 30 18 
dS-Large 79 95 18 12 
kLa 85 93 18 10 

 

Table 54: Architecture, Weights of the dS, dS-Large and kLa BPNN Correlations 

Ln εG  ln dS dS-Large ln kLa 
Max Min Max Min Max Min Max Min Max Min Parameters 

-0.094 -4.775 0.463 0 -3.244 -7.593 0.059 0.002 0.465 -6.725 

Variables Position 
in BPNN Max Min Position 

in BPNN Max Min Position 
in BPNN Max Min Position 

in BPNN Max Min Position 
in BPNN Max Min 

UG, m/s 1 0.75 0.003 1 0.75 0.04 1 0.3640 0.0003 1 0.3640 0.0569 1 0.4000 0.0015 
ρL, kg/m3 2 1583 633 2 1000 680 2 1113 633 2 1000 688 2 1583 680 
μL, Pa/s 3 0.3988 0.00019 3 0.0092 0.00032 3 0.04430 0.00016 3 0.00920 0.00047 3 0.10139 0.00031 
σL, N/m 4 0.075 0.0084 4 0.0728 0.0162 4 0.0750 0.0084 4 0.0728 0.0162 4 0.0750 0.0162 
MW-1, 
kg/kmol 5 730 18 5 567.38 18 5 730 18 5 567 18 - - - 

DAB, m2/s -   6 29.79 0.166 - - - - - - 5 2.78 10-8 1.25 10-11

ρG, kg/m3 6 178.44 0.07 7 29 2 6 223.77 0.09 6 29.10 0.14 6 46.00 0.08 
MW-2, 
kg/kmol 7 44 2 - - - 7 44 2 7 29 2 - - - 

DC, m 8 5.5 0.0382 - - - 8 5.5 0.05 - - - 7 7.6200 0.0508 
ζ, % 9 75 0.0096 8 75 0.07 9 75.00 0.015 - - - - - - 
dP, m 10 0.0003 0 9 4.2 10-5 0 10 4.2 10-5 0 8 4.2 10-5 0 8 0.0003 0 
ρP, kg/m3 11 4000 0 10 4000 0 11 4000 0 9 3218 0 9 4000 0 
εG, - - - - 11 0.66 0.03 12 0.62 0.03 10 0.62 0.08 10 0.62 0.01 
dS, m - - - - - - - - - 11 0.0336 0.0005 11 0.0336 0.0006 
εG-Small, - - - - - - - - - - 12 0.46 0 - - - 
εG-Large, - - - - - - - - - - 13 0.46 0.02 - - - 
XW, - 12 100 50 12 100 88 13 100.0 54.2 14 100 88 12 100.0 56.2 
CV, - 13 36 0 13 36 0 14 36 0 15 36 0 13 36 0 
Sparger 
type 14 1 0 14 1 0 15 1 0 - - - - - - 
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Table 55: Architecture, Weights of the εG BPNN Correlation 

1st hidden Layer 
Weights ui,j 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1.47 -4.20 3.26 -1.96 -4.41 -2.96 -1.90 0.88 -10.12 -4.90 0.13 -1.82 -1.02 -0.71 
2 1.06 -9.23 6.27 9.95 0.07 2.07 -1.59 -0.01 1.74 -0.52 1.65 0.54 -0.99 -3.06 
3 14.18 0.49 -0.81 -0.65 -0.18 0.02 -0.04 -0.19 -2.03 -0.68 0.44 0.66 0.26 0.32 
4 -1.64 2.84 11.05 -0.95 2.33 2.00 -0.30 -0.50 -1.97 -0.70 -0.59 3.37 4.60 0.98 
5 -0.28 10.57 -4.16 -7.79 -1.56 4.97 -2.34 -1.04 -8.91 5.06 0.83 -4.18 -0.36 -1.49 
6 -1.34 -0.01 -3.24 0.72 -0.92 23.85 0.82 1.13 9.97 -1.81 0.19 3.65 1.76 0.69 
7 -0.61 -7.85 2.56 8.49 -0.26 -11.05 -0.43 14.46 -1.02 2.34 3.23 -5.48 3.56 -4.73 
8 2.26 -2.16 -0.36 -12.22 1.45 -0.18 -0.04 3.27 6.14 -3.05 0.12 -5.30 3.70 -0.54 
9 2.50 -3.57 -6.63 -1.48 -4.43 -1.09 -0.09 0.13 3.33 3.42 -1.18 1.55 0.88 1.32 

1 2 3 4 5 6 7 8 9 Bias of 1st hidden 
Layer u0,ii 3.24 -1.93 1.17 -1.33 9.22 -3.49 3.24 6.98 -2.17 

2nd hidden Layer 
Weights vi,j 

1 2 3 4 5 6 7 8 9 

1 1.27 1.38 4.29 -5.43 0.61 -0.21 -6.03 1.04 -2.38 
2 -0.03 1.47 -7.95 3.24 0.49 0.00 -0.39 1.11 -4.56 
3 1.65 -1.88 -5.53 -1.43 4.24 3.36 1.81 -0.70 1.40 
4 -7.06 8.63 1.44 -13.57 5.72 12.61 -7.70 5.92 2.88 
5 0.28 -0.25 -2.25 -1.13 -2.09 -0.61 0.32 -0.04 5.23 
6 4.42 0.77 -8.85 6.78 0.40 6.13 -1.05 -0.91 -9.43 
7 5.03 1.56 0.49 4.14 -5.80 1.56 -8.90 6.10 -1.25 

1 2 3 4 5 6 7 Bias of 2nd hidden 
Layer v0,i 0.14 0.24 -1.57 -6.05 -1.61 -3.74 -0.47 

1 2 3 4 5 6 7 Output Layer 
Weights wi 2.42 -6.08 -2.34 2.08 -3.29 -1.92 -1.20 

Bias of Output 
Neuron w0 

0.93 
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Table 56: Architecture, Weights of the εG-Large BPNN Correlation 

1st hidden Layer 
Weights ui,j 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 3.37 -1.14 2.76 5.58 -7.47 1.00 3.27 2.94 2.69 -6.77 0.72 -0.69 -9.70 1.24 
2 4.64 1.71 -4.60 3.55 -8.14 0.74 0.89 0.57 0.63 3.06 -2.22 1.03 -3.09 0.30 
3 3.92 -7.68 -0.99 1.50 -0.20 -0.45 -0.10 0.87 -3.26 -2.94 2.87 -1.10 -5.07 1.68 
4 1.70 0.00 9.03 -1.94 -7.52 -0.14 -0.64 -1.21 -2.75 0.57 -4.37 0.24 10.34 -11.82 
5 1.55 -0.03 0.47 -0.44 0.13 0.16 0.08 -0.12 2.42 -2.92 -4.67 0.04 1.37 0.49 
6 -3.18 1.45 3.93 -5.07 2.77 6.64 -1.02 -0.73 0.85 -1.59 2.90 0.28 7.18 -1.70 
7 5.16 -0.99 1.96 1.01 -0.72 -0.04 0.20 1.44 4.30 -2.62 4.70 -1.06 3.10 -8.22 
8 1.45 1.13 -0.89 -3.88 0.19 0.60 0.31 2.28 -0.51 -2.00 3.60 0.58 -1.28 9.86 

1 2 3 4 5 6 7 8 Bias of 1st hidden Layer 
u0,i 0.13 -3.36 -1.20 14.23 -1.10 0.83 1.59 -7.96 

1 2 3 4 5 6 7 8 Output Layer Weights 
wi -1.47 -1.65 -1.61 2.45 -2.95 -1.89 1.82 3.11 

Bias of Output Neuron 
w0 

-1.53 
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Table 57: Architecture, Weights of the dS BPNN Correlation 

1st hidden Layer Weights 
ui,j 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 4.00 7.60 2.39 -2.67 2.20 -1.57 -4.37 4.21 3.58 -1.25 -0.07 1.80 0.58 1.41 -8.84 
2 -2.55 0.75 2.33 2.66 2.82 0.08 2.20 1.08 -0.29 -3.46 0.31 0.03 -2.11 3.38 12.98 
3 0.54 -5.00 8.17 -8.14 2.18 2.67 3.01 -3.63 -7.04 -3.78 7.72 3.15 -2.32 -8.97 -1.78 
4 2.28 -0.06 2.10 0.01 -3.90 -0.62 -3.12 6.90 -0.63 4.43 0.84 -5.36 -3.51 12.83 -1.45 
5 1.51 3.67 -4.44 -4.04 -1.03 -2.20 -0.58 5.32 -1.56 -2.98 -1.91 2.76 0.63 2.95 0.52 
6 -2.20 5.10 1.99 -1.24 -2.99 2.04 4.24 -3.13 -2.05 1.66 -3.29 3.46 -1.57 7.54 3.47 
7 2.41 -2.08 11.69 6.56 -0.01 -2.67 1.92 6.76 0.69 2.89 -0.30 2.46 -0.16 1.30 -5.32 
8 4.35 -0.98 0.74 -7.50 -10.18 -6.81 1.44 4.75 1.31 -0.21 -0.05 -2.56 2.50 0.20 -0.86 
9 1.22 -3.55 -5.48 -1.87 1.92 1.30 0.16 2.15 3.63 6.26 -3.08 2.22 -1.94 -2.92 -0.34 

1 2 3 4 5 6 7 8 9 Bias of 1st hidden Layer 
u0,i 2.17 -7.32 -1.14 -4.73 -2.50 -3.77 -3.55 -1.44 -0.54 

2nd hidden Layer Weights 
vi,j 

1 2 3 4 5 6 7 8 9 

1 -3.04 -0.33 2.49 -2.71 6.73 0.05 -2.63 -2.24 3.98 
2 1.44 0.31 1.85 -4.67 -4.09 -0.84 -3.53 0.11 -2.24 
3 -6.24 1.59 -0.29 2.78 -0.48 -2.54 2.21 -9.92 -2.48 
4 -3.85 6.43 -3.06 3.45 -4.58 -0.47 -2.58 -0.52 4.52 
5 2.69 0.05 0.50 -2.27 0.00 -0.77 1.23 1.40 -4.55 
6 -2.80 4.23 -7.59 2.72 -3.41 -9.87 7.09 0.43 -4.61 
7 -1.13 -6.93 -5.12 -1.59 -0.34 -4.73 2.06 -6.59 6.57 

1 2 3 4 5 6 7 Bias of 2nd hidden Layer 
v0,i -3.29 0.02 3.06 -2.50 -4.55 1.20 -1.48 

1 2 3 4 5 6 7 Output Layer Weights wi -2.59 -3.11 -2.63 1.93 -4.53 2.91 -0.69 

Bias of Output Neuron w0 0.74 
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Table 58: Architecture, Weights of the dS-Large BPNN Correlation 

1st hidden Layer 
Weights ui,j 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 -0.63 1.27 -1.52 -1.55 -1.01 0.23 0.36 0.93 -1.01 -0.09 8.60 -0.16 0.09 0.08 -5.31 
2 1.13 0.59 0.24 -1.04 0.95 0.62 -1.40 0.44 -1.26 -1.67 5.04 -22.03 0.01 -0.81 2.82 
3 2.85 -1.30 1.46 0.36 0.58 -3.08 1.03 2.14 2.11 -1.35 13.30 0.84 8.36 -2.72 -0.31 
4 0.18 -3.43 0.38 6.10 0.86 -0.19 -0.04 1.59 -1.73 -0.38 5.29 0.65 0.79 0.24 1.50 
5 0.75 -0.15 1.41 -3.98 -3.89 0.97 -0.73 0.94 -3.15 1.50 -5.09 -0.50 -6.98 0.94 -4.14 
6 -0.86 -0.95 5.20 -3.59 1.05 -1.52 4.11 -0.74 2.21 7.07 -14.70 1.13 3.77 2.04 7.36 
7 1.33 -0.36 -3.55 9.12 -0.76 0.69 -2.14 -1.92 3.01 -1.97 2.12 -8.48 -1.08 -1.65 2.57 

1 2 3 4 5 6 7 Bias of 1st hidden Layer 
u0,i 0.31 -1.61 -1.25 -3.96 4.07 -1.46 -0.93 

2nd hidden Layer 
Weights vi,j 

1 2 3 4 5 6 7 

1 -0.76 -16.00 0.28 6.75 -2.71 1.59 7.40 
2 -3.82 1.80 -0.72 0.98 -4.95 3.92 -0.01 
3 -2.17 0.74 -13.25 -11.13 7.11 9.33 -2.61 
4 0.75 -0.75 1.26 3.28 0.25 -0.15 0.61 
5 -3.50 -6.76 2.53 -4.50 3.90 -8.76 1.72 

1 2 3 4 5 Bias of 2nd hidden Layer 
v0,i 1.09 3.45 6.63 -4.35 7.29 

 
1 2 3 4 5 Output Layer Weights 

wi 0.23 0.46 -2.82 3.80 3.19 

Bias of Output Neuron 
w0 

-2.53 
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Table 59: Architecture, Weights of the kLa BPNN Correlation 

1st hidden Layer Weights 
ui,j 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 -0.66 0.83 3.23 -4.44 -10.51 -0.92 -0.34 -10.77 -0.49 5.48 4.85 -4.64 1.09 
2 -0.74 1.83 -17.81 -9.59 -11.60 -1.54 -3.90 4.37 -0.02 -0.79 -0.12 0.87 1.10 
3 -1.05 -0.48 2.10 3.26 -24.01 -1.76 3.84 2.51 2.10 5.13 2.14 1.30 0.43 
4 3.53 -0.53 -4.34 -4.83 -3.39 2.96 5.43 -7.05 4.21 -6.12 -1.93 -0.81 4.00 
5 -0.15 12.81 13.82 -1.07 3.94 -1.46 -7.81 0.71 3.47 -1.00 -9.26 -9.20 -0.79 
6 -0.38 -1.90 -0.23 0.37 -0.27 0.21 -2.18 -4.49 1.01 -4.18 -0.85 6.15 0.17 
7 -4.66 -4.47 9.93 -2.94 -5.15 -3.02 15.54 3.42 -0.01 -1.91 -8.21 1.58 16.53 
8 -0.81 5.35 -3.04 0.34 1.71 -1.26 -2.72 -0.58 3.10 1.72 -4.09 4.33 -1.04 

1 2 3 4 5 6 7 8 Bias of 1st hidden Layer 
u0,i 2.35 2.83 -5.31 4.33 9.52 -4.91 4.06 -4.07 

2nd hidden Layer Weights 
vi,j 

1 2 3 4 5 6 7 8 

1 0.34 -3.68 -2.94 -6.36 2.01 -5.40 3.26 6.42 
2 -8.13 -4.29 -1.08 3.02 -3.20 12.34 -3.59 -5.25 
3 0.01 -8.98 3.26 -2.80 -3.52 0.70 -1.60 3.62 
4 11.53 -13.66 -8.49 13.99 4.83 0.32 7.37 3.31 
5 4.22 -4.54 -12.72 -8.00 -7.81 3.00 0.27 3.26 
6 -1.28 -0.70 5.85 -8.48 8.08 5.41 3.88 -7.07 

1 2 3 4 5 6 Bias of 2nd hidden Layer 
v0,i -3.86 1.12 -1.00 -16.20 4.71 -1.31 

1 2 3 4 5 6 Output Layer Weights wi 1.73 -1.36 2.68 1.25 1.63 -2.60 

Bias of Output Neuron 
w0 

0.36 
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Figure 75: Comparison between εG, εG-Large, dS and dS-Large Experimental and Predicted values using BPNN Correlations 
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Figure 76: Comparison between kLa Experimental and Predicted values using BPNN Correlations 
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Figure 77: Algorithm for Calculating the Hydrodynamic and Mass Transfer Parameters in BCRs and SBCRs 
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6.6 SIMULATION 

The design and scale-up of Ars and BCRs requires, among others, precise knowledge of the kinetics, 

thermodynamics, hydrodynamics and heat as well as mass transfer parameters. The two desirable products of the 

LPTO process are benzoic acid and benzaldehyde, however, since these products are highly reactive intermediates in 

the free radical chain reaction, numerous undesirable by-products are also formed (7, 8, 10, 21). Thus, controlling the 

oxygen/toluene ratio in the feed to the reactor will affect the kinetics, hydrodynamics, and heat as well as mass 

transfer, which in turn will impact the performance of the oxidation process (8,9). Also, since the hydrodynamic, 

heat/mass transfer parameters in ARs and BCRs are different, the selection of the reactor type to carry out the 

oxidation process will impact the selectivity and yield of the desired products. In this section, the LPTO process is 

simulated in commercial-size BCRs and ARs using our correlations of the thermodynamics, hydrodynamics, and 

mass transfer parameters, along with literature data on the heat transfer and toluene oxidation reaction kinetics. Also, 

a comparison between the performances of these two reactor types is made. 

6.6.1 Modeling of LPTO Process in a BCR 

Several investigators visually observed small and large gas bubbles in BCRs, where large ones move upward 

through the liquid in a plug-flow manner (157, 219, 344), whereas the small ones, which are entrained in the re-

circulations created by the rising large gas bubbles, are completely back-mixed. The dispersions of these small and 

large gas bubbles was described using the axial dispersion model (157, 160, 179, 219, 344), since this model in conjunction 

with the two-class (small + large) gas bubbles model was reported to be suitable for the assessment of the 

performance of BCRs (160, 179, 344, 443, 444). Actually, de Swart and Krishna (160) questioned the use of a single parameter 

to account for the flow and mixing characteristics of the gas and liquid phases. Also, Mills et al. (443), Deckwer and 

Schumpe (373) and Dudukovic et al. (445) questioned the correctness of using a single lumped axial dispersion 

coefficient to describe the circulation and mixing characteristics, i.e., the axial and radial flow of the liquid-phase 

and the behaviors of small and large gas bubbles. Shah et al. (398), Joseph (399) and Chen et al. (401) reported limited or 

no effect of internals on the hydrodynamics of BCR if their volume fraction were less than 20%, and Forret et al. 
(403) showed in a large-scale BCR that the internals significantly affect the bubbles recirculation and local dispersion 

when their volume was greater that 22% of the dispersed volume.  

In this study, the LPTO process in a BCR was modeled according to Figure 78, and as can be seen the reactor is 

equipped with a bundle of cooling tubes, a multiple-orifices gas distributor, external insulations, and gas as well as 

liquid inlet and outlet. The gas is sparged from the bottom of the reactor into the liquid-phase through a multiple-

orifice gas distributor. The BCR is operated continuously in a co-current upflow with respect to the gas and liquid 

phases. The heat of reaction is removed from the BCR using cooling tubes, which along with the external insulation 
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allow controlling the reactor temperature. The basic geometrical ratios of the BCR used are given in Table 60. The 

volume fraction of the internals in the BCR is selected to be less than 5% and accordingly the cooling tubes are 

assumed to have no effect on the axial dispersion coefficient as well as on the hydrodynamic, heat and mass transfer 

parameters. The BCR is assumed to operate in the churn-turbulent flow regime under steady-state conditions. Due to 

the considerable back-mixing anticipated in such a flow regime, the gas bubbles were classified in large and small 
(160, 179, 344, 442, 444) which behave differently in the reactor. In addition, the following assumptions, which are similar to 

those proposed by Mills et al. (443) and de Swart and Krishna (160), are made: (1) the mass transfer resistance is in 

liquid-side, (2) the gas-phase is in thermal equilibrium with the liquid-phase, (3) the liquid superficial velocity is 

constant, (4) no gas is dissolved in the liquid feed, (5) the change in gas flow rate is accounted for through mass 

balance, (6) the oxidation reaction is slow (10) and takes place in the liquid bulk, and (7) the BCR operates under 

steady state conditions. The dispersions of these small and large gas bubbles were described using the axial 

dispersion model. 

 

 

 

Table 60: Geometrical Ratios of Bubble Column Reactors 

Ratios Ranges  
H/DC , - 4-10 (56) 
DC , m >0.30 (56) 
ζ , % (M-ON) 0.01-0.10 (214) 
Internal volume ratio , % 1-16 (155, 396-403) 
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Figure 78: Geometry of the BCRs used 
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The mass and energy balances are derived over a differential element of the reactor and the resulting equations are 

given below. 

Oxygen or nitrogen mass balance in large gas bubbles: 
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Oxygen or nitrogen mass balance in small bubbles: 
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Oxygen, nitrogen, toluene, benzaldehyde and benzoic acid mass balance in the liquid phase: 
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 (6-86) 

The energy balance, which includes dispersion, convection, heat of reaction, and heat removal through the cooling 

tubes and reactor wall, is as follows: 
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 (6-87) 

The overall heat transfer coefficients through the pipes and the reactor wall were estimated as: 

pipespipes

in,pipes

out,pipes
R

pipesLpipespipes nλHπ2

D
D

lnV

ah
1

aU
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+=
 

(6-88) 

.isol

out,C

.isol
R

R

in,C

out,C
R

wallLwallwall λHπ2
D
DlnV

λHπ2
D
D

lnV

ah
1

aU
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+=  
(6-89) 

The variation of gas flow rate due to chemical reaction was calculated using the total gas-phase mass balance as: 
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The pressure profile was obtained from (446): 

0ρg)ε(ρg)ε1(
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The mass balance of the water in the cooling pipes was expressed by: 

0
z

)ρU( WW =
∂

∂
 (6-92) 

The pressure drop in each pipe was calculated using Equation (6-93) where f is the Fanning friction factor (447): 
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In this study, however, it is assumed that the friction loss in the pipe (ΔPF) defined in Equation (6-94) is negligible. 
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The energy balance on the cooling pipes was defined in Equations (6-95) through (6-97); and as can be seen it 

depends on the saturation temperature of water (TS) as steam can be formed in the pipe. The value of TS was 

obtained by computing the water phase equilibria using the procedure described by Fernandez-Prini and Dooley (448).  

If TW < TS: 
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If TW = TS, the steam mole fraction can be obtained as: 
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If TW > TS: 
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The boundary conditions at the inlet of the BCR were Danckwerts’ type, which account for the balance of dispersive 

and convective fluxes: 
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At the exit of the BCR, the following boundary conditions were assumed: 
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6.6.2 Modeling of LPTO Process in a Cascade of GSRs 

In this study, the cascade arrangement of GSRs was chosen in the simulation of the LPTO process as depicted in 

Figure 79, which shows that each GSR is insulated and equipped with three impellers, a gas distributor, cooling 

tubes, baffles, and gas as well as liquid inlet and outlet. The gas is sparged at the bottom of the reactor into the liquid 

through a multiple-orifices gas distributor. The gas/liquid mixing is insured using multiple impellers. The gas and 

liquid phases are fed continuously to the GSRs, which are operated in a co-current scheme. The same gas is 

introduced in each GSR, whereas the liquid exiting the nth reactor represents the feed for the (n+1)th reactor. The 

heat of reaction is removed from the GSRs using cooling tubes (coils), which along with the reactor insulation jacket 

allow controlling the reactor temperature. The “standard” geometrical ratios accepted in the literature (57) for such 

reactors are given in Table 6. 

In the proposed cascade of GSRs, the liquid phase was considered to be well mixed, whereas the gas phase was 

assumed to move through the liquid in a plug flow. This assumption can be justified considering the low mixing 

speed (poor mixing) often encountered in large-scale agitated reactors owing to their inherent mechanical 

limitations. In addition, the following assumptions were made: (1) the resistance to gas-liquid mass transfer is in the 

liquid-side, (2) the gas phase is in thermal equilibrium with the liquid phase, (3) the gas and liquid superficial gas 

velocities are constants, (4) no gas is dissolved in the liquid feed, (5) the oxidation reaction is slow (10) and takes 

place in the liquid bulk, and (6) the GSRs operate under steady state conditions. The mass and energy balance are 

written over a differential element of the reactor and the resulting equations are given in the following: 

Oxygen or nitrogen mass balance in the gas-phase is: 
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Oxygen, nitrogen, toluene, benzaldehyde and benzoic acid mass balance in the liquid-phase: 
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The energy balance, which includes convection, heat of reaction, and heat removal through the cooling tubes and 

reactor wall, is as follows: 
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Figure 79: Arrangement of n-GSRs in Series 
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The boundary conditions for these equations are: 

At 0z =   

0CUCU G,iR,GR,G,iR,G iii
=−  (6-109) 

0CUCU
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The BCR and GSRs models with their respective boundary conditions were solved using the modified Newton 

method included in the Athena Visual Workbench, Version 8.3, developed by Stewarts and Associates Engineering 

Software, Inc. and the results are discussed below. 

6.6.3 Kinetic Model and parameters 

The LPTO is usually described as a free radical autocatalytic chain reaction, involving three different steps: (1) 

chain initiation for generating free radicals, (2) rapid chain propagation via hydro-peroxide formations (21), and (3) 

chain termination as a result of reactions among free radicals, according to Emmanuel et al. (38) and Sheldon et al. 
(21). Several authors proposed different mechanisms for the LPTO as summarized in Table 5, which shows that the 

oxidation reaction typically occurs in an acetic acid medium with cobalt acetate as a catalyst and bromide as a 

promoter. The presence of acetic acid increases the catalyst solubility, which is critical in its recovery for reusability 
(10, 39, 55), and the bromide promoter reduces the induction period of the reaction (10, 55) and increases the benzaldehyde 

yield (10, 21, 55) by protecting it from further oxidation. It should be mentioned that the separation stage required in the 

LPTO process represents a disadvantage (10, 55) and underlines the need for process optimization. 

Despite the fact that numerous studies have been conducted on the kinetics of toluene oxidation, few data are 

available and no intrinsic kinetic models can be found in the literature. In this study, a simple intrinsic kinetic model 

based on the experimental data by Borgaonkar et al. (10) and Kantam et al. (55) was developed. Borgaonkar et al. (10) 

carried the toluene oxidation in acetic medium with cobalt acetate as catalyst and sodium bromide as a promoter. 

Their study covered wide ranges of temperature, pressure, toluene, cobalt acetate, and sodium bromide 

concentrations as can be seen in Table 5. During their experiments, however, they only identified toluene, 

benzaldehyde and benzoic acid; and therefore the overall scheme of the LPTO reaction can be described by 

Equation (6-112) and/or Equation (6-113). Kantam et al. (55) also carried out toluene oxidation in acetic medium with 

cobalt acetate as catalyst and sodium bromide as a promoter, aiming at improving the benzaldehyde and benzyl 

alcohol selectivities and the recovery process of a new Co/Mn/Br-composite catalyst. During their measurements, 

however, they identified benzyl alcohol and benzyl acetate in addition to toluene, benzaldehyde and benzoic acid; 

and as a result different and more complex scheme than Equations (6-112) and (6-113) was proposed as can be seen 

in Table 5. It should be mentioned that the experiments by Borgaonkar et al. (10) and Kantam et al. (55) were carried 

out in a small-scale apparatus, in which the mass transfer resistance was neglected and the oxygen concentration was 

maintained at the saturation. 
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The intrinsic kinetic model developed in this study does intend to delineate the precise effects of all the kinetic 

variables studied by Borgaonkar et al. (10) and Kantam et al. (55), such as temperature, pressure, toluene, cobalt 

acetate, and sodium bromide concentrations, but its main purpose is to predict with a good degree of accuracy the 

concentration profiles obtained by these authors. The rate equations for the disappearance of toluene and formation 

of benzoic acid formation and benzaldehyde, obtained based on the findings by Mills and Chaudhari (449), were as 

follows: 
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The reaction rate constant (ki) was assumed to follow an Arrhenius-type equation for the temperature dependency, 

and was expressed as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×=

T
TT

RT
ΔE

expkk Ref.

Ref.

i
Ref.i,i  (6-117) 

Where TRef is an arbitrary temperature set at 368.15K. 

The rate of oxygen consumption for producing benzaldehyde can be related to the toluene consumption given in 

Equation (6-118) as: 

2
r

r TOL
O2 =  (6-118) 

Also, the rate of oxygen consumption for producing benzoic acid can be related to toluene consumption given in 

Equation (6-119) as: 

TOLO2 rr =  (6-119) 

In general, the oxygen reaction rate can be expressed as: 

LK
'm

Catalyst
m
TOL

m
LKinetics2O CΦKCCCkr 321 ==  (6-120) 

Using the modified Newton method included in the Athena Visual Workbench, Version 8.3, developed by Stewarts 

and Associates Engineering Software, Inc., the least square error using 73 experimental data points was minimized, 

and the corresponding mi, ki,Ref and ΔEi can be found in Table 61. The kinetic model was validated using 25% of the 

data points; and a comparison between the experimental and predicted values is depicted in Figure 80. The figure 

shows that the toluene, benzaldehyde and benzoic acid concentration are predicted with a regression coefficient (R2) 

of 99%, a standard deviation (σ) of 25% and an average absolute relative error (AARE) of 14%. Figure 80 also 
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shows the reactant and product concentration profiles as a function of time, and a fairly good agreement between the 

predicted and experimental values can be observed. 

The enthalpies of the toluene oxidation reactions for benzaldehyde and benzoic acid production according to 

Equation (6-121) and (6-122), respectively were also obtained using Aspen +11.1 flash drum calculations; and the 

following equations were obtained 
52

TOL,R 10 846.1T493.0T102.0HΔ −×+×−=  (6-121) 

52
BZC,R 10 788.2T474.0T016.0HΔ −×+×−=  (6-122) 

 

Table 61: Kinetics Parameters 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 
1.67 5.00 7.57 5.10 2.95 5.92 1.88 5.00 2.87 5.00 1.04 7.24 1.37 5.00 1.71 
k1,Ref k2,Ref k3,Ref k4,Ref k5,Ref k6,Ref k7,Ref k8,Ref k9,Ref 
1.33 102 12.90 3.23 0.24 84.1 79.00 6.22 102 -1.00 10-2 2.06 10-2 
ΔE1 ΔE2 ΔE3 ΔE4 ΔE5 ΔE6 ΔE7 ΔE8 ΔE9 
-4.21 103 -1.92 103 -1.34 103 -1.75 103 -5.30 102 -2.69 10-1 -9.90 -1.12 103 -8.39 102 

 

 

6.6.4 Hydrodynamic and Mass transfer Parameters 

These calculation algorithms developed in Sections 6.4.4 and 6.5.4 were used to obtain the hydrodynamic and mass 

transfer parameters needed in the model equations for the LPTO process in ARS and BCR, respectively. 

6.6.5 Liquid and Gas-Phase Mixing Parameters 

The axial liquid dispersion coefficient was taken from Krishna et al. (450):  

CLL D)(V.D 0310 ×=  (6-123) 
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The small gas bubbles were assumed to have the same dispersion coefficient as that of the liquid as suggested by de 

Swart (179) and confirmed using CFD simulation (451). 

The axial dispersion coefficient of the large bubbles was taken from Deckwer and Schumpe (373): 

34
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The axial dispersion coefficient of the water in the cooling pipes DW was obtained from Shah et al. (219): 
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( ) 3
4

C
3

1
GW DgU35.0D ×=  (6-126) 

Wilkinson (465) measured the rise velocity of small gas bubbles and proposed Equation (6-127): 
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de Swart and Krishna (160) assumed that in the churn-turbulent flow regime, the superficial gas velocity of the small 

gas bubbles can be calculated from Equation (6-128): 

Small,RSmallGSmall,G U εU −=  (6-128) 

The superficial gas velocity of the large gas bubbles can be obtained as follows (160): 

SmallGGeLG UUU ,arg, −=  (6-129) 

6.6.6 Heat Transfer Parameters 

In this study, the correlation proposed by Karcz (452) in ARs, which takes into account the effect of multiple 

impellers and presence of gas on the heat transfer coefficients, as shown in Equation (6-130), was used. 
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In the BCR, the equations proposed by Schluter et al. (453), which takes into account the effect of internal geometry 

on the heat transfer coefficients, as shown in Equation (6-131) was employed. 
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Figure 80: Prediction of Literature Experimental Data using the Kinetic Model Developed 
 

  

time, min
0 20 40 60 80 100 120 140

C
 , 

m
ol

.l-1

0

1

2

3

4

5

Toluene
Benzaldehyde
Benzoic Acid

Borgaonkar et al. (1984)Model (This Study)

1.0 MPa, 383 K, CCo=0.02 mol.l-1, CBr=0.16 mol.l-1

CL, i Experimental , mol/l
0.1 1.0 10.0

C
L,

 i P
re

di
ct

ed
 , 

m
ol

/l

0.1

1.0

10.0

Toluene
Benzoic Acid
Benzaldehyde



 

 254

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×=
Sε41

175.0n  (6-136) 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=

−
−

L
3
L

4
L

8

L
3
L

4
L

2

2
L

2
L

3
C

C

pipes4
8

1

L
3
L

4
L

ρσ
gμ

10exp
ρσ
gμ

μ
ρgD

D
D

10 85.71
ρσ
gμ170ψ  (6-137) 

The thermal conductivity of the pipes and reactor wall in W/m.K was chosen to be (454): 

0.22λpipes =  (6-138) 

The thermal conductivity of the insulation material in W/m.K was selected from Pittsburgh Corning foam glass 

insulation (455) as: 

( ) ( ) ( ) ( ) 0.036T'10 1.2-T'10 4.3T'10 2.4-T'10 4.6λ -42-63-84-11
Isol. +××+××=  (6-139) 

The value of T’ in Equation (6-139) is in degrees Celsius. 

6.6.7 Gas-Liquid thermodynamic and Physicochemical Properties 

The Henry’s Law constant of O2 and N2 obtained in Section 6.1 and modified in order to take into account the effect 

of liquid concentration. The following dimensionless modified Arrhenius-type equation was obtained: 
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The physicochemical properties of the liquid oxidation medium were calculated as described in Section 4.2. Also, 

the heat capacity and heat conductivity of the liquid-phase were determined as follows (328): 
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6.6.8 Simulation Results on the BCR 

The design parameters of the BCR used for simulating the LPTO process are given in Table 62. The ranges of 

temperature, pressure, catalyst concentration used are within the typical operating conditions of the industrial LPTO 

given in Table 60. The superficial gas velocity and reactor height to diameter ratio (H/DC) are in agreement with the 

ranges used for commercial BCRs (56, 179, 443, 446). The liquid (toluene) superficial velocity is chosen to be 0.0005 m/s 

in order to achieve the desired toluene conversion and benzaldehyde selectivity shown in Table 1. The superficial 

gas velocity is varied from 0.05 to 0.20 m/s to maintain a churn-turbulent flow regime in BCR 446). Vertical internals 

(cooling tubes) having a volume fraction representing 2% of reactor volume are selected for removing the heat of 

reaction from the BCR, and since this percentage is less than 20%, these internals are expected to have no effect on 

the liquid back-mixing and the liquid-phase dispersion coefficient (155, 396, 397, 398, 399, 400, 401, 402, 403). Also, the gas is 

distributed at the bottom of the BCR through a multiple-orifices (M-ON) sparger with an open area (orifices total 

area/reactor cross-sectional area), ζ of 10%.  

Figure 81 shows the oxygen, toluene, benzaldehyde and benzoic acid concentrations as well as liquid-phase and 

water temperature profiles predicted using the developed model inside a 5-m ID and 15-m high BCR, operating with 

a superficial gas velocity of 0.1m/s. The gas entering the column consists of a mixture (50/50 by mole) of oxygen 

and nitrogen; and the oxidation is carried out at a temperature of about 437K, with an inlet reactor pressure of 1.0 

MPa, and a Co catalyst concentration of 0.22 wt% and a NaBr promoter concentration of 1.76 wt%. The gas is 

sparged into the liquid-phase using a gas distributor having 2777 orifices with a 0.03m ID. The heat of reaction 

generated under such conditions is removed using 127 cooling pipes of 0.0635 m OD, which corresponds to a 

surface area per unit reactor volume of 1.29 m-1. As can be seen in Figure 81, under steady-state, the oxygen 

concentration in the liquid-phase near the reactor inlet initially increases due to gas-liquid mass transfer; and then 

gradually decreases with reactor height due to the chemical reaction with toluene in the liquid-phase, which resulted 

in the increase of the liquid-phase temperature with reactor height. Figure 81 also shows that the toluene and liquid-
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phase oxygen concentrations decrease slightly, whereas the benzaldehyde and benzoic acid concentrations slightly 

increase with reactor height, indicating the back-mixed character of the liquid-phase in the BCR used. It should be 

mentioned that the temperature profile in the BCR suggests that the internals volume representing 2% of the reactor 

volume used was sufficient to remove the heat created in the LPTO process. 

The BCR model was also used to predict the effect of reactor geometry on the LPTO process toluene 

conversion as well as benzaldehyde selectivity and production. The production was based on 330 days of operation 

with 80% yield in the separation process of benzaldehyde from the rest of the products. Figure 82 depicts the effect 

of reactor height and height to diameter ratio on the performance of the process carried out in a BCR operating at 

420 K, 1.0 MPa, and inlet superficial gas velocity of 0.10 m/s. The internals volume fraction and the distributor open 

area were kept constant at 2%, and 10%, respectively. As can be seen in this figure, increasing reactor height up to 

10 m leads to the increase of the oxygen residence time, which increases the toluene conversion as well as 

benzaldehyde production, whereas it decreases the benzaldehyde selectivity. This behavior can be related to the 

increase of the oxygen concentration in the reactor, which resulted in increasing the benzoic acid concentration on 

the account of benzaldehyde in the liquid-phase. At reactor heights greater than 10 m, however, the decrease of the 

benzaldehyde selectivity is so important that it affects the benzaldehyde production.  

Figure 82 shows that at constant reactor height (H), increasing the reactor height to diameter ratio (H/DC) 

slightly increases the toluene conversion, increases the benzaldehyde production and slightly decreases the 

benzaldehyde selectivity. This is because increasing H/DC ratio at constant H means that the reactor diameter (DC) 

should decrease, which not only decreases the degree of backmixing, but also increases the rate of gas-liquid mass 

transfer which are expected to increase the toluene conversion and subsequently the benzaldehyde production 

(yield). Increasing the BCR size intuitively will increase the benzaldehyde production; however, the capital and 

operating costs, which should be taken into account for the reactor design, will also increase. The model predictions 

suggest that in order to obtain good toluene conversion, high benzaldehyde selectivity and high benzaldehyde 

production, a BCR having a height of 10 m with an H/DC ratio of 5, i.e., DC = 2 m could be a good compromise 

between the desired rector performance and economics (capital and operating cost) of the LPTO process. 

Using this BCR (10-m height and 2-m inside diameter), the effect of superficial gas velocity (UG) on the process 

performance was predicted as show in Figure 83. In this figure, increasing UG values from 0.05 to 0.20 m/s, which 

correspond to the churn-turbulent flow regime, decrease the toluene conversion and benzaldehyde production, but 

increase the benzaldehyde selectivity. Figure 83 also shows the effect of UG on the relevance of gas-liquid mass 

transfer (β’), represented by the ratio of the gas-liquid mass transfer resistance (1/kLa) and the total resistances 

(resistance due gas-liquid mass transfer resistance + resistance due to chemical reaction (1/K’ΦK), Equation (6-150). 

As can be seen in this figure at low UG (0.05m/s), the gas-liquid mass transfer is small, whereas the oxygen 

residence time is long enough to insure high chemical reaction rate. This means that the LPTO process could be 

controlled by the gas-liquid mass transfer. As the UG increases, however, the gas-liquid mass transfer increases and 

the residence time of the gas decreases, and the LPTO process could be controlled by the reaction kinetics. It 

appears that under kinetically-controlled conditions, the toluene conversion and benzaldehyde production decrease, 
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whereas the benzaldehyde selectivity constantly increases. Thus, a BCR having 10-m height and 2-m inside 

diameter operating with an inlet superficial gas velocity of 0.1 m/s could be used to obtain toluene conversion 

(~12%), benzaldehyde selectivity (40% ) and benzaldehyde production (~1500 ton/year), in the LPTO process. 
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Table 62: Operating Variables for the BCRs 

Ratios Ranges  
H/DC , - 3-10 
DC , m 0.5-5.0 
UG , m/s 0.05-0.20 
UL , m/s 0.0005 
P , MPa 1-2 
T , K 373-453 
CCO , wt% 0.22 
CNaBr , wt% 1.76 
Orifice type M-ON 
ζ , % 10 
Internal volume ratio , % 2 
O2 mol fraction, % 20-80 
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Figure 81: Typical Concentration and Temperature profiles in BCRs 

H/DC = 5m, H = 15m, T = 437K, P = 1.0MPa, UG = 0.10m/s 
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Figure 82: Effect of Column Height and Height to Diameter ratio on the Performances of BCRs 

T = 420K, P = 1.0MPa, UG = 0.10m/s 
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Figure 83: Effect of Superficial Gas Velocity on the Performances of the BCR 
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6.6.9 The Cascade of GSRs and Comparison with the BCR 

A comparison between BCRs and ARs was also conducted, where the reactor volume, liquid residence time and 

temperature as well as pressure were kept constant in the two contactors. The BCR used in the simulation has a 

volume of 31.416 m3, and constructing one mechanically agitated rector having identical volume to the BCR would 

be almost impossible. Therefore, a number of ARs arranged in series was determined based on the liquid-phase 

dispersion coefficient, Equation (6-123), using the following relationship (56, 456): 

( )LPe
2
LL

e1
Pe

2
Pe
2

n
1 −−−=  (6-151) 

The number of continuously stirred tank reactors (CSTRs) calculated based on the liquid-phase dispersion 

coefficient was one. This means that the liquid-phase is completely mixed, however, it is expected that the reactor 

internals would affect to some extent the degree of mixing even though negligible impact of internal on the mixing 

characteristics in ARs was reported (155, 396, 397, 398, 399, 400, 401, 402, 403). The number of CSTRs arranged in series was 

then calculated based on the gas dispersion coefficient, Equation (6-125); using Equation (6-152); and the number 

came to be about three (56, 456). Thus, in this study, it was then decided to simulate the BCR using 3 CSTRs arranged 

in series, and Table 63 shows the operating conditions used.  
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2
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Figure 84 shows the effect of superficial gas velocity (UG) on the performance of the 3-CSTRs in series; and 

can be seen at UG values less than 0.01m/s, the toluene conversion and production of benzaldehyde are slightly 

lower, whereas the selectivity of benzaldehyde is higher than those obtained in the BCR, operating at the same UG. 

At UG value of 0.01 m/s the values of toluene conversion, as well as selectivity and production of benzaldehyde 

become comparable in the BCR and the 3-CSTRs. At UG values greater than 0.01m/s, however, the toluene 

conversion, as well a selectivity and production of benzaldehyde are greater in the BCR when compared with those 

in the 3-CSTRs. Figure 84 also shows that the toluene conversion in the 3-CSTRs, exhibits a maximum at a 

superficial gas velocity about 0.01 m/s. This behavior can be attributed to the competing effect of the superficial gas 

velocity on the gas-liquid mass transfer and the rate of chemical reaction, hence increasing UG increases the rate of 

mass transfer while decreases the gas residence time and subsequently the rate of the chemical reaction. It should be 

mentioned that the increase of the superficial gas velocity in the 3-CSTRs above 0.01 m/s would not only increase 

the power input requirement and operating cost of the reactors, but also could lead to flooding of the impellers and 

poor gas-liquid mass transfer, which could control the LPTO process. 

In order to overcome the need for such a high superficial gas velocity in the 3-CSTR arrangement, 5 CSTRs 

arranged in series, where a mixture of 50/50 by mole of oxygen and nitrogen is sparged at the bottom of each 

reactor, were used. This arrangement may be similar to that used for the cyclohexane oxidation process (23), which 

similarly to the LPTO process requires low conversion in order to insure optimum selectivities of cyclohexanol and 
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cyclohexanone. Figure 85 illustrates that the proposed 5-CSTRs configuration gives comparable toluene conversion, 

as well selectivity and production of benzaldehyde to those obtained in the BCR under similar power input. Figure 

85 shows that increasing mixing speed (N) at constant liquid height/reactor diameter (H/dT) or decreasing H/dT at 

constant N increases the toluene conversion, increases the benzaldehyde production, but decreases the benzaldehyde 

selectivity. This behavior can be related to the increase of the gas-liquid mass transfer coefficient (kLa) with 

increasing N and/or decreasing H/dT, resulting in increasing the toluene conversion, which leads to the decrease of 

the benzaldehyde selectivity. Figure 85 shows also the relevance of the mass transfer (β’) in the LPTO process in the 

5-CSTRs, and as can be seen β’ appears to decrease with increasing N and/or decreasing H/dT, which indicates that 

the mass transfer coefficient (kLa) increases under these conditions as reported by Lemoine and Morsi [21].  

Figure 86 compares the performance of the BCR and GSRs as a function of the relevance of the mass transfer 

(β’); and as can be observed under similar power input per unit liquid volume, the BCR operates in a kinetically-

controlled regime (β’ < 0.42), whereas the GSRs operate in a regime controlled by both mass transfer and kinetics 

(0.4 < β’< 0.55). Thus, BCRs appear to be safer, economical, and more robust to carry out the industrial LPTO 

process than a cascade of GSRs. 

 

Table 63: Operating Variables for the GSRs 

Ratios Ranges  
H/dT , - 1-2 
dT , m 1.5-2.5 
dImp./dT , - 1/3 
UG , m/s 0.0005-0.02 
UL , m/s 0.0005 
P , MPa 1-2 
T , K 373-453 
CCO , wt% 0.22 
CNaBr , wt% 1.76 
O2 mol fraction, % 20-80 
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Figure 84: Effect of UG on the on the Performances of the 3-GSRs 

T = 420K, P = 1.0MPa, N= 1.67 Hz, dT = 2m, H = 10/3, 3 GSRs
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Figure 85: Effect of Height to Diameter Ratio and Mixing Speed on the Performances of the 5-GSRs 

T = 420K, P = 1.0MPa, UG = 0.002 m/s, VR = 31.416 m3, 5 GSRs
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Figure 86: Comparison between the Performances of BCRs and GSRs 
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CONCLUDING REMARKS 

The Central Composite Statistical Design technique was used to obtain the solubility, mass transfer and 

hydrodynamic parameters of O2, N2 and air in four organic liquids (toluene, mixtures of toluene-benzoic acid-

benzaldehyde), aimed at mimicking typical yields of the continuous liquid-phase toluene oxidation process, under 

wide ranges of operating variables in the SAR, GIR, GSR and BCR. From these experimental results, the following 

conclusions could be reached: 

 • The solubility values of the gases were found to increase linearly with P and therefore to obey Henry’s 

law at constant temperature. C* was also observed to first decrease and then increase with T, exhibiting minima in 

all systems studied. Increasing the gas molecular weight increased C* values in toluene, while C* values were found 

to decrease with the addition of benzaldehyde and benzoic acid. A dimensionless form of Arrhenius type of equation 

in which the activation energy was dependent of T was developed to predict Henry’s law constants with a regression 

coefficient greater than 99%.  

 • Increasing N, T or decreasing H was found to increase aWave, εG, a, kL as well as kLa, and decrease dS and 

NCRE values in the SAR, while increasing P appeared to decrease aWave, εG, a, kL as well as kLa. 

 • In the GIR, increasing N or decreasing H was found to increase QGI, dS, εG, a, kL as well as kLa, and to 

decrease NCRI. Also, increasing T appeared to increase and then decrease QGI, εG and a, and increase kL as well as kLa, 

while decreasing dS and NCRI values. QGI and εG appeared to slightly decrease with P in the GIR, whereas negligible 

effect was found on NCRI, dS, a, kL as well as kLa. The gas holdup appeared to decrease with the gas molecular 

weight, and so did kLa values in the GIR. 

 • In the GSR, increasing N, T and UG appeared to increase εG, a, kL as well as kLa values. dS values, in 

contrast, were found to decrease with N and T, while increasing with UG. 

 • The addition of benzaldehyde and benzoic acid in the GIR and GSR was found to significantly affect the 

hydrodynamic parameters (decrease dS and increase εG), especially at low temperature due to frothing, which led to a 

large increase of the volumetric mass transfer coefficient. Both mass transfer and hydrodynamic characteristics were 

found to be higher in the GSR than in the GIR, and respectively far greater than in the SAR, which further indicated 

that the SAR was mainly controlled by kL, whereas the GSR and GIR appeared to be not only controlled by kL, but 

also by a. 

 • In the BCR, the superficial gas velocity was found to increase the hydrodynamic and mass transfer 

parameters under the operating conditions studied. Increasing the system pressure, on the other hand, appeared to 

increase εG, a and kLa values, and decrease dS and kL values. Negligible effect of the gas nature on both the 

hydrodynamic and mass transfer parameters was observed and was attributed to the relatively close molecular 
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weight between N2 and air. The addition of benzaldehyde and benzoic acid to pure liquid toluene was found to have 

a strong impact on the hydrodynamic and mass transfer characteristics, since under these conditions froth was 

formed, enhancing both the gas holdup and volumetric mass transfer coefficients. 

 • Empirical, statistical and BPNN correlations in both ARs and BCRs using the data obtained in this study 

along with a large data bank of literature values were used to precisely predict both hydrodynamic and mass transfer 

parameters. The Empirical and BPNN correlations were then used to construct simple algorithms for predicting these 

parameters under industrial conditions. 

 • Using these algorithms, two comprehensive models were developed for a BCR and a series of GSRs to 

simulate the commercial LPTO process, where the effects of mass and heat transfer, hydrodynamics and kinetics 

were considered. The model predictions showed that a BCR having 10-m height and 2-m inside diameter operating 

with an inlet superficial gas velocity of 0.1 m/s could be used to obtain toluene conversion (~ 12%), benzaldehyde 

selectivity (40%) and benzaldehyde production (~ 1500 ton/year), in the LPTO process. Similar performances were 

predicted for a series arrangement of 5 GSRs (2-m inside diameter and 2-m liquid height), operating also with an 

inlet superficial gas velocity of 0.002 m/s. This BCR was found to operate in the kinetically-controlled regime 

whereas the 5-GSRs appeared to operate in a regime controlled by both gas-liquid mass transfer and reaction 

kinetics. For its attractive economics and mechanical constraints of GSRs, the BCR seems to be the reactor of choice 

for the commercial-scale LPTO process. 
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APPENDIX A:  

LITERATURE SURVEY ON THE HYDRODYNAMIC AND MASS TRANSFER CORRELATIONS 

 

Literature surveys on hydrodynamic and mass transfer correlations are presented in Tables A-1 through A-16. 
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Table A-1: Literature Correlations of Critical Mixing Speeds in the SAR 

Authors gas/liquid Reactors Correlations 

Clark and Verneulen 
(60) Water, CCl4 SAR 005.0

H
S

Hd
Wd

Fr
3

2

2
T

2
.pIm*

E =⎟
⎠
⎞

⎜
⎝
⎛  

Boerma and 
Lankester (63) CO2/Sodium carbonate SAR 

.pIm

T

b

CRE.pIm

d
dBA

U
Nd

+=
∞

 with A and B constants 

van Dierendonck et 
al. (65) - SAR 

2
1

T

L

.pIm

T
E d

H
d
d55.1Ncir ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=  and 

2
1

T

L

Imp.

T
IE d

H
d
d2.0Ncir ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=  

Greaves and Kobbacy 
(68) Water, electrolytic solution SAR 

( ) 13.0

.Atm

3
1

L
2

.pIm

3
122

T
CRE P

P
H

HH1
d
HdAN

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −
−=  A=0.476 for water  

( ) 13.0

.Atm

3
1

L
2

.pIm

3
122

T
CRIE P

P
H

HH1
d
HdBN

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −
−=  B=0.820 for water 

Sverak and Hruby (69) Water, glycerin, CCl4, 
tenside, ethylioside  SAR 

0.094

L

Ref
0.317

L

Ref0.228
E

0.614
Imp.

0.386
CRE V

V
ρ
ρ

UdgkN ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= − (a) 

Joshi et al. (70) - - 
625.0

.pIm

031.0

G

L
190.0

L

L125.0
P100.1

T

980.1
.pImCRE

d
W

μ
μ

ρ
σgN65.1

d
dN

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −  

Matsumura et al. (71) O2/Water +sodium alginate SAR 196.0
d

dN
2
T

3
.pImCRE =  N1 is the upper impeller mixing speed 

Tanaka et al. (74) Aqu. polyvinyl alcohol  SAR 
30.0

L

44.0

T

30.2

T

.pIm
94.0

L

L

H
H

d
H

d
d

σ
μAN ⎟

⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠
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⎝
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⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−

 (b) 

Heywood et al. (73) Aqu. polyvinyl alcohol SAR ( ) ED
L

C
.pIm

B
TCRE HHHddAN −×=  with A, B, C, D and E constants 

Ram Mohan (75) and 
Kolte (76) 

Water, sodium chloride, 
CMC, isopropanol SAR  ( ) 3

1

L
2

.pIm

3
122

T
CRE H

HH1
d
HdAN ⎟

⎠

⎞
⎜
⎝

⎛ −
−=  (c)

 

Tanaka and Izumi (77) Water SAR 
d

L

c

T

6.3

T

.pIm
6.3

Water

L*
E H

H
d
H

d
d

σ
σAFr ⎟

⎠
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Table A-1 (Cont’d) 

Authors gas/liquid Reactors Correlations 

Wichterle and Sverak 
(83) 

H2O, glycerin, CCl4, 
tenside, ethylioside SAR 

( ) 012.0064.0022.0064.0
E RpBs767.0336.9Ncir ±−±×±=  

( ) 012.0036.0023.0141.0
IE RpBs765.0211.8Ncir ±−±×±= (e) 

(a) VRef =1 m3, ρRef = 1000 kg.m-3, K=kg0.386, K= 4.8 (m.s-2)0.386 for turbine agitator and K= 9.4 (m.s-2)0.386 for agitator with 2 blades, (b) A=126 (NE), 

A=150 (NIE),(c) A, B, C, D, E and F constants, (d) A=0.023 c=0.88 and d=0.60, (e) 7<Bs<125.6 and 6<Bp<2500 
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Table A-2: Literature Correlations of Critical Mixing Speeds in the GIR 

Authors gas/liquid Reactors Correlations 
Zlokarnik (88) Air/Water GIR 156.0FrC =  for a 4-pipe impeller 

Sawant and Joshi 
(93) 

Air/water, isopropanol, 
PEG GIR 21.0

μ
μ

gH
dN 11.0

L

W

L

2
.pIm

2
CR =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

Zundelevich (94) Air/Water GIR 2
.pIm

2
L

CR dπK
gH2N =  (a) 

Saravanan et al. 
(102) Air/Water GIR ( )

2
1

2

.pIm

C
CCCLSP

.pIm
CR d

I2
ΦΦaHgf2

dπ
1N

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−×−= (b) 

Aldrich and van 
Deventer (103) 

Air/Water, sucrose, 
ethanol, brine sol. GIR 

938.0

.pIm

L

103.0

W

L
C d

H
μ
μ075.0Fr ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  (c), 

570.0

.pIm

L
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W

L
C d

H
μ
μ130.0Fr ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  (d) 

Heim et al. (106) Air/Water -fermen. 
mixt. GIR 155.0FrC = (e), 162.0FrC = (f), 230.0FrC = (g) 

Patwardhan and 
Joshi (110) Air/Water GIR 

Φ
gH2

dπ
1N L

.pIm
CR =  (h) 

Hsu et al. (109) Ozone/Water GIR 
87.0

T

04.2

T

.pIm
33.1

T

L*
C d

W
d

d
d
H92.3Fr ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−

 

Fillion (349) H2, N2/Soybean oil GIR 
13.0

W

L
C μ

μ289.0Fr ⎟
⎠
⎞⎜

⎝
⎛×=  

(a) K coefficient of head losses in aerator (-), (b) ΦC =1.065 (-), vortexting constant of PTD at critical condition, IC
2=0.00342m2 scale ineffective radius at impeller 

eye for gas induction, aC=0.0394m submergence correction at impeller periphery, fSP conformity factor,(c). 6-Bladed impeller, (d)  12-Bladed impeller, (e) 4-pipe 
impeller, (f) 6-pipe impeller, (g) disk impeller, (h) Φ constant for the slip between the impeller, the liquid and any pressure losses 
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Table A-3: Literature Correlations of Critical Mixing Speeds in the GSR 

Authors gas/liquid Reactors Correlations 

Westerterp et al. 
(120) Air/Sulphite solution GSR .pIm

T
25.0

L

L

CRE.pIm

d
dBA

ρ
σg

Nd
+=

⎟
⎠
⎞⎜

⎝
⎛

 with A = 1.22, and B = 1.25 for turbine. 

Miller (126) CO2,Air/Aqueous 
solution GSR 

L

LT
.pImL

CR

σ
ρddμ

01458.0N =  

Veljkovic et al. 
(143) N2/Water GSR  

732.0dN .pImCRE =  unsparged conditions 

.pImS.pImCRE dU1.2812732.0dN ×=−  sparged conditions 

( ) ( ) 1.104NaWeRe 158.0
E

792.0
EE =−−  for 10-4<US<4.10-3 m.s-1(a) 

( ) ( ) 250.18NaRe 3.0
SAR

7.0
SAR =  for 10-4<US<4.10-3 m.s-1(a) 

(a) sparged conditions 
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Table A-4: Literature Correlations of the Induced and Entrainment Gas Flow Rate 

Authors gas/liquid Reactors Correlations 

Martin (89) Air/Water GIR ( ) K00085.0
ρ
ρHg2KACQ

2
1

G

L
SGIR ×−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−×××= (a) 

Topilawa (117) Water, potassium 
sulfate GSR 

6.0
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5

SAR H
S

Q
NQ ⎟

⎠
⎞

⎜
⎝
⎛×⎟⎟
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⎜⎜
⎝
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∝  

Matsumura et al. 
(457) Water, alcohols GSR 
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T

.pIm07.038.110.020.210
2 d
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*FrWeReNa10913.1

η1
η
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⎠

⎞
⎜⎜
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⎛
×=

−
−  

White and de 
Villiers (91) 

Air/Tap water, 
glycerin-water-teepol GIR 
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22
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⎠
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⎠
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⎜⎜
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gρ
PΔHh

L
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Sawant et al. (95) Air/Water,PEG GIR ( )
2

1

L

.pIm83.0
CGIR H

d
FrFr2.51Q ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×=  

Sawant et al. (96) Air/Water,PEG GIR ( ) 3
.pIm

75.02
CR

2
GIR dNN0021.0Q −×=  

Zundelevich (94) Air/Water GIR 
)
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d
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Q
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L

2
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⎜
⎝

⎛

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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Matsumura et 
al.(71) 

O2/Water +sodium 
alginate SAR 

15.0

3
L

40.2

3
L50.2

T
95.3

.pIm
90.1

1
6

E 10
μ

10
σddN1015.7U

−

−

−

−
− ⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛×=  N1: upper impeller speed 

Warmoeskerken 
et al. (136) Air/Water GSR *Fr2.1Ae ×= (d), 

.pIm

T2.0
.pIm d

dd028.0Ae ×=  (e) 

Veljkovic et al. 
(143) N2/Water GSR  

5.2

L

*
5.1

S
15

E V
PU1076.2α ⎟⎟

⎠

⎞
⎜⎜
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⎛
×= −−

 (f), 67.0
S

4
SAR U1059.3α −−×=  (g) 

L

*
1

S
8

SAR V
PU1071.5α −−×=  (h)  
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Table A-4 (Cont’d) 
Authors gas/liquid Reactors Correlations 

Raidoo et al. (97) Air/Water GIR 

( ) 184.13
.pIm

42
GIR dPΔ1068.2Q ××= −  

with 
385.023

.pIm
2

L3
LL 2

Ndπρ
1012.0gHρPΔ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=+  for H/dT = 1 

and 
439.023

.pIm
2

L3
LL 2

Ndπρ
1006.0gHρPΔ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=+  for H/dT = 0.75 

and 
545.023

.pIm
2

L3
LL 2

Ndπρ
10016.0gHρPΔ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=+  for H/dT = 0.6 

Saravanan et al. 
(102) Air/Water GIR 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 2

tipG

GSPL

2

.pIm

G

2
.pIm*

G vΦ
afHg2

d
I2

1
2

d
NλQ (i) 

Aldrich and van 
Deventer (103) 

Air/Water, sucrose, 
ethanol, brine solution GIR 

( )
268.0

.pIm

T

129.0

W

L

735.0

W

L616.0
C d

d
μ
μ

ρ
ρFrFr39.45Ae ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=  

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×+−××

.pIm

T

W

L

W

L
C d

d302.1
μ
μ268.0

ρ
ρ501.0FrFr178.0exp  

Heim et al. (106) Air/Water -
fermentation mixture GIR 

( )788.1228.0 ReFr55.23e1
Ae
Ae −×−

∞

−= (j) ( )638.1503.0 ReFr50.592e1
Ae
Ae −×−

∞

−=  (k) 

( )901.2623.0 ReFr90.1792e1
Ae
Ae −×−

∞

−= (l) 

Saravanan and 
Joshi (107) Air/Water GIR 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×
−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××= 2

tip

L

2
.pIm

G v85.0
gH21

2
d

N95.129Q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××+

2
3

2
tip

L

3
.pIm

v85.0
gH2

30.01
2

d
N42.92  
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Table A-4 (Cont’d) 
Authors gas/liquid Reactors Correlations 

Hsu et al. (112) Ozone/Water GIR 
79.0

T

43.1

T

.pIm
52.0

T

L53.0*
CP d

W
d

d
d
HFr89.7N ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−
−

 

Fillion (349) H2, N2/Soybean oil GIR 
( )

62.1

L

.pIm17.189.1
C

30.0
WG H

d
ReFrFrM25.2Q

−

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=  for Fr<0.6 

( ) 34.0
C

30.0
W

5
G FrFrM1070.4Q −×= −−  for Fr>0.6 

(a) C the conventional orifice coefficient (-), A the orifice area (ft2), HS liquid head (ft), and K the experimental constant (-), (b) water, (c) water-teepol, (d) 
Flooding transition, (e) Transition between large and clinging cavities, (f) 10-4<US<4.10-3 m.s-1 gassed conditions, (g) P*/VL ≤ P*SAR/VL, (h) P*/VL > 
P*SAR/VL

 . (i) i.e. Table A-2, ΦG=1.101 IG=0.05828 m, λ* = 0.16937 m, (j) 4-pipe impeller Ae∞ = 0.0205, (k) 6-pipe impeller Ae∞ =0.0215, (l) disk impeller 
Ae∞ = 0.0300 
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Table A-5: Literature Correlations of the Sauter Mean Bubble Diameter in Agitated Reactors 

Authors gas/liquid Reactors Correlations 

Vermulen et al. 
(458) - GSR 75.0

G
50.0

L.pIm
5.1

25.0
LL

S μρdN
Φμσ00429.0d ×=  ( ) ( )( )[ ]2

GG εln0733.0εln626.0072.1expΦ ×+×+=  

Calderbank (118) 

Air/Water, C7H8, 
alcohols, glycols, CCl4, 
nitro-benzene, ethyl 
aceate 

GSR 
0009.0ε

ρV
*P

σ15.4d 2
1

G
2.0

C

4.0

L

6.0
L

S +×

⎟
⎠
⎞⎜

⎝
⎛

×=  

Miller (126) CO2,Air/Aqueous 
solution GSR 

0009.0ε
ρV

P

σ15.4d 2
1

G
2.0

L

4.0

L

*
G

6.0
L

S +×

⎟
⎠

⎞
⎜
⎝

⎛
×=  

Sridhar and Potter 
(132) Air/Cyclohexane GSR 

0009.0ε
E
P

ρ
ρ

ρV
P

σ15.4d 2
1

G
T

*
G

16.0

G

AIR

2.0
C

4.0

L

*
G

6.0
L

S +×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠

⎞
⎜
⎝

⎛
×=  

Hughmark (134) - GSR ( )
2

1
2

1

)
P/PgVd

dN
(ε5.5

σ
ρgd

3
2**

G
3

2

L.pIm

3
.pIm

2

G
L

LS
−

×=  

Matsumura et al. 
(72) 

O2/Water +sodium 
alginate SAR 

22.0

.pIm2

E

50.0

L

L
3

.pIm
3
2

10.0

L

L.pIm2
3

1

2
L

2
L2

S dN
U

gμ
ρdN

σ
μdN

ρg
μ1067.7d ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=

−

− (a) 

Parthasarathy et 
al. (459) 

Air/Water + methyl 
isobutyl carbinol GSR 

5
1

L

5
2

L

*
G

5
3

L
S

ρV
P

σ0.2d

⎟
⎠

⎞
⎜
⎝

⎛
×=

 

Fillion (349) H2, N2/Soybean oil GIR 
GSR 

20.0
L

04.0

L

*
G

38.0
G

60.0
L

S

ρV
P

Qσ
00.3d

⎟
⎠

⎞
⎜
⎝

⎛
×=  for GIR 

20.0
L

06.0

L

*
G

20.0
G

60.0
L01.0

WS

ρV
P

Qσ
M436.0d

⎟
⎠

⎞
⎜
⎝

⎛
×= −

 for GSR

 
 (a) N2 is the lower impeller mixing speed 
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Table A-6: Literature Correlations of the Sauter Mean Bubble Diameter in the BCR 

Authors Correlations 

Peebles and Garber (460) 59.0

78.0
,b

41.0

L

L
b g

u
ρ
μ76.4d ∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Hinze (461) ( ) 4.02.0

6.0

max V/Pρ
σJd =  with 

5
3

CRBWe
2
1J ⎟

⎠
⎞

⎜
⎝
⎛= − for homogeneous and isotropic 

turbulent field and WeB-CR critical bubbles Weber number  

Calderbank (118) 
0009.0ε

V
*Pρ

σ15.4d 5.0
G4.0

L

2.0

6.0

sm +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Akita and Yoshida (462) 12.012.05.0
b FrGaBo26d −−−×=  

Gaddis and Vogelpohl (463) 

4154

2

2
GG

43

L

0
b gπ4

Q135
gπ
Qν81

gρ
σd6

d
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

Pandit and Davidson (464) ( ) 27.053.0
0

2.0
bi

27.0
nm σDdPΔ75.0d −×=  

Wilkinson (465) 02.0
G

11.0
G

67.0
L

22.0
L

34.0
L

44.0
b Uρρμσg3d −−−−×=  

Grevskott et al. (466) 
ε

kkad
5.1

a
1b

2=  

Pohorecki et al. (195) 12.0
G

3
S U10658.1d −− ××=  
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Table A-7: Literature Correlations for the Bubble Rise Velocity in the BCR 

Authors Correlations 

Abou el Hassan (467) 
3/2

L
3/1

L

3/1
L

3/2
bb

v dσμ
ρdu

N =
               

3/1
L

3/4
L

GL
3/2

L
3/8

b
F σμ

)ρρ(ρgd
N

−
=

              2
Fv ))N(ln(75.0N =  

Guy et al. (198) (Stokes Law) 
L

2
bL

,b μ18
gdρ

u =∞  

Fukuma et al. (230) ( ) 5.0
bb gd3.1u =  

Fan and Tsuchiya (468) 
5.0

bL

Lb
2
bL

L1
b dρ

σc2
2
dg

gdρ
μku

−

−
⎥
⎦

⎤
⎢
⎣

⎡
++=  

Wilkinson et al. (176) 

03.0

G

L

273.0

4
L

L
3
L

L

L
.B.S ρ

ρ
μg
ρσ

μ
σ25.2u ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
×=

−

            ( )11.0
L

50.0
L

61.0
G.B.S.trans σμρ193expu5.0u −−××=  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×+×=

− 077.0

G

L

077.0

4
L

L
3
L

757.0

L

L.trans.G

L

L.B.S

L

L
.B.L ρ

ρ
μg
ρσ

σ
μuu

4.2
σ
μu

μ
σu  

De Swart and Krishna (469) ( ) 5.0
b

n
c0b gddφu =  

Krishna et al. (238) ( ) ( )( )AFSFgd71.0u 5.0
bLARGE,b =        with SF: Scale factor, AF: Acceleration factor 
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Table A-8: Literature Correlations of the Gas Holdup in Agitated Reactors 

Authors gas/liquid Reactors Correlations 

Calderbank (118) 

Air/Water, C7H8, 
alcohols, glycols, CCl4, 
nitro-benzene, ethyl 
aceate 

GSR 2
1

T

S
6.0

L

2.0
C

4.0

L
2

1

T

GS
G U

U
σ

ρV
*P

000216.0
U
εU

ε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠
⎞⎜

⎝
⎛

×+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Westerterp et al. 
(120) Air/Sulphite solution GSR ( )

L

LT
.pImCRE

G σ
ρddNNC

ε1
aH

−×=
−

   with C constants 

Rushton and 
Bimbinet (122) Air/Water +corn syrup GSR c

S

b

L

*
G

G U
V
Paε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=     a and b constants function of dimp./dT, c = 0.6 

Miller (126) CO2,Air/Aqueous 
solution GSR 2

1

ST

S
6.0

L

2.0
C

4.0

L

*
G

2
1

ST

GS
G UU

U
σ

ρV
P

000216.0
UU
εU

ε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×
⎟
⎠

⎞
⎜
⎝

⎛

×+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

Loiseau et al. (128) 
Air/Water, glucol, 
water+alcohols, sodium 
sulfite 

GSR ( )
270.0

TerargSpLG

GG

L

*
056.0

L
360.0

L
360.0

SG )
P/PlnVM

RTQρ
V
P(μσU011.0ε +×= −−  

Matsumura et 
al.(129) Water, alcohols GSR ( ) ( ) 335.0200.0250.0180.03

G *Fr*NaWeRe1086.6ε −−×=  (a) 

Lopes de 
Figueiredo and 
Calderbank (130) 

O2/Water GSR 4
3

S

4
1

L

*
G

G U
V
P

34.0ε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Sawant et al. (96) Air/Water, 
PEG/dolomite GIR 

5.0

L

*
G

G V
P0325.0ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=  

Sridhar and Potter 
(132) Air/Cyclohexane GSR 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠

⎞
⎜
⎝

⎛

×+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= *

G

T
16.0

AIR

G
2

1

T

S
6.0

L

2.0
C

4.0

L

*
G

2
1

T

SG
G P

E
ρ
ρ

U
U

σ

ρV
P

000216.0
U
Uε

ε
 

Hughmark (134) - GSR 
4

1

3
2

LL

S
4

.pIm
22

1

3
2

L.pIm

4
.pIm

22
1

L

G
G

Vσ

ddN

gVd

dN
NV
Q

74.0ε ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

 
 



 

 

280 

2Table A-8 (Cont’d) 
Authors gas/liquid Reactors Correlations 

Matsumura et al. 
(72) 

O2/Water+sodium 
alginate SAR 

05.1

.pIm2

E

30.0

L

L
3

.pIm
3
2

30.0

L

L.pIm2
G dN

U
gμ
ρdN

σ
μdN

16.2ε ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  (b) 

Ram Mohan (75) 
and Kolte (76) 

Water, sodium 
chloride, CMC, 
isopropanol 

SAR  ( ) F
.pIm

E
L

D
C

L

*
G

G dHHH
V
P

Bε −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= with A, B, C, D, E and F constants 

He et al. (98) Air/Water+CMC, 
water+triton-X-114 GIR 

90.1

L

*
G4

G V
P1019.3ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= − (c) 

95.0

L

*
G3

G V
P1085.5ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= − (d)  

Al Taweel and 
Cheng (104) Air/Water +PGME GIR 

15.0
G

68.282.7
G QN10ε −=  for air / water 

4.10
L

25.0
G

77.15.14
G σQN10ε −=  for air / water + additives 

Heim et al. (106) Air/Water -
fermentation mixture GIR 

176.0

L

.pIm644.0354.0968.0
G H

d
AeRe*Fr96.28ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= − (e) 

316.0

L

.pIm789.0458.0063.1
G H

d
AeRe*Fr70.199ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= − (f) 

255.0

L

.pIm634.0336.0947.0
G H

d
AeRe*Fr85.25ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= − (g) 

Wichterle (80) H2O, glycerin, CCl4, 
tenside, ethylioside  SAR 

0εG =  for Ncir<<1.4NcirE,  
( )EG Ncir4.1Ncir12.0ε ×−×=  for Ncir>1.4NcirE 

Saravanan and 
Joshi (107) Air/Water GIR 

51.0
G

31.0

L

*
G2

G U
V
P

1045.6ε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −  

48.0

L

LG
263.1

T

.pIm3
G gμ

ρQN
d

d
1067.2ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −  

Tekie (23) N2,O2/Cyclohexane GIR 

97.1

0L

L

82.0

L

G

74.0

L

G

19.1

0

02
G σ

σ
ρ
ρ

μ
μ

N
NN

1085.3ε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
××=

−

−  

with σL0 = 0.025 N.m-1, and N0 = 11.6 Hz 
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2Table A-8 (Cont’d) 
Authors gas/liquid Reactors Correlations 

Murugesan (149) Air/Water, Toluene, 
glycerol GSR 

65.0

T

.pIm
85.0

T

W08.045.0

5.025.0

LL

2
L

GG d
d

d
d

Mo*Fr
gρΔσ

ρU2.31ε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Fillion (349) H2, N2/Soybean oil GIR ( ) 52.041.0
C

07.0
WG AeFrFrM151.1ε −×=  

(a) gassed conditions, in Na* UG calculated from the rate of gas entrainment and the rate of gas sparged (b) N2 is the lower impeller mixing speed, (c) 
PG*/VL<20 kW.m-3, (d) PG*/VL>20 kW.m-3,(e) for a 4-pipe impeller, (f) for a 6-pipe impeller, (g) for a disk impeller 
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Table A-9: Literature Correlations of Gas Holdup in Bubble Column Reactors 

Authors System: gas/liquid Conditions Correlations 

Hughmark (470) Air/Water, kerosene, 
oil 

Patm 
UG:0.004-0.45m.s-1 

13/1
L

G
G 72

σρ
U

35.02ε
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  

Kumar et al. (471) Air/Water, glycerol, 
kerosene 

Patm, 
UG:0.0014-0.14m.s-1 

32
G U0975.0U485.0U728.0ε +−= with ( )[ ] 4/1

GL
2
LG gρρσρUU −=  

Bach and Pilhofer 
(472) 

Air/Alcohol, 
hydrocarbons UG: 0-0.2 m/s ( )

23.0

LGLL

3
G

G

G

ρρρgν
U

115.0
ε1
ε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

−
 

Mersmann (473) - - 
( ) ( )

41

GL

3
L

sg4
G

G

gρρσ
ρU14.0

ε1
ε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×=
−

 

Hikita et al. (474) 
Air,H2,CO2,CH4,C3H8
/Water,sucrose,anilin
e, CH3OH,C4H9OH 

Patm, 
UG:0.042-0.38m.s-1 

107.0

L

G
062.0

L

G

131.0

3
L

4
L

578.0
LG

G μ
μ

ρ
ρ

σρ
gμ

σ
μU672.0ε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=
−

 

Reilly et al. (475) Air/Water, Solvent, 
TCE/glass 

UG: 0.02-0.2m.s-1 
CV: up to 10 vol.% 009.0ρσρU296ε 19.0

G
16.098.0

L
44.0

GG += −−  

Sauer and Hempel 
(476) 

Air/Water/10 diff. 
Solids 

Patm, CV:0-20 vol.% 
UG: 0.01-0.08m.s-1 

0392.0

0S

s

136.0

rad,eff

sl

844.0

25.0
slG

G

G

G

C
C

ν
ν

)νgU(
U

0277.0
ε1
ε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

 (a)  

Wilkinson et al. 
(176) 

N2/n-Heptane, water, 
mono-ethylene glycol 

P: 0.1-2.0 MPa. 
UG<0.55m.s-1 .B.S

.trans
G u

u
ε =  (b,c) 

( )
.B.L

.transG

.B.S

.trans
G u

uU
u
u

ε
−

+=  (b,d) 

Renjun et al. (477) Air/Water, alcohol, 
NaCl 

P: Atm./T: 25-97°C 
UG<0.23m.s-1 
UL=0.007m.s-1 

6105.1
S

1544.0

3
L

4
L

5897.0
LG

G P
PP

σρ
gμ

σ
μU

17283.0ε ⎟
⎠

⎞
⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛×=
−

 

Reilly et al. (178) 

He, N2, Air, Ar, 
CO2/Water, varsol 
DX 3139, TCE, 
isopar G and M 

P: Atm.-1.1MPa 
UG<0.23 m.s-1 

MAεG ×=  in the Bubbly Flow Regime 
31

G MBε ×=  in the Churn-Turbulent Flow Regime 

( ) LG

GG

ρε1
Uρ

M
−

=
 with A,B=f(syst.,flow regime) 

Jordan and 
Schumpe (190), 
Jordan et al. (191) 

He,N2,Air/C2H5OH, 
C4H9OH, decalin, 
toluene 

ρG:0.19-46.7 kg.m-3 
UG < 0.21 m.s-1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+×=

−

58.0

L

G52.070.004.016.0
1

G

G

ρ
ρ

Fr0.271FrGaBob
ε1
ε (e)
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Table A-9 (Cont’d) 
Authors System: gas/liquid Conditions Correlations 

Fan et al. (478) N2/Paratherm 
NF/alumina 

P: 0.1-5.62 MPa 
UG < 0.45 m.s-1 
CV: 8.1-19.1vol.% 
T: 28 and 78 °C 

( ) ( )
( )[ ] 1.4054.0

Sl

β
SLG

α
G

4
G

G

G

Mocosh

ρρgσρU9.2
ε1
ε

=
−

 with 0079.0
SlMo21.0α =  

( )( ) 32
SL

4
LGSLSL σρξμρρgMo −=  and, 011.0

SlMo096.0β −=  

( )[ ]{ }1MolnC8.5exp71.0sinhC7.5C6.4ξLn 22.0
V

58.0
VV +−−=  

Pohorecki et al. 
(195) N2/Cyclohexane 

P: 0.2-1.2 MPa 
UG < 0.055 m.s-1 
UL 0.0014 m.s-1 
T: 30-160 °C 

65.0
G

52.0
G Uσ383.0ε −×=  

Wu et al. (479) Air/Water 
P: 0.1-1.0 MPa 
UG up to 0.60 m.s-1 
DC: 0.19-0.44 m 

( )[ ]n
Average,GRadial,G Rrc1

c22n
2nεε −⎟

⎠
⎞

⎜
⎝
⎛

−+
+

×=  

004.0
L

146.0
G

598.0
G MoFrRe2188n −−×=  and 2492.0

GRe0432.0c ×=  

(a) CS0 solid concentration at the bottom of column, kg/m3 [ ] SL
C6.162

VVLSl ρe00273.0C05.10C5.21μν V+++=  
8/1

L

3
G

CCrad,eff νg
U

gDD011.0ν ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (b) uS.B., 

uL.B., utrans. from Table A-7, (c) homogeneous bubble flow regime (d) transition and heterogeneous regime,(e) b1 f (D, distributor type) (0.153),  
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Table A-10: Literature Correlations of the Gas-Liquid Interfacial Area 

Authors gas/liquid Reactors Correlations 

Calderbank (118) 

Air/Water, toluene, 
alcohols, glycols, CCl4, 
nitrobenzene, ethyl 
aceate  

GSR 

2
1

T

S
6.0

L

2.0
C

4.0

L
0 U

U
σ

ρV
*P

44.1a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠
⎞⎜

⎝
⎛

×=  for 
3.0

S

.pIm7.0

U
Nd

Re ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<20000 (a) 

3.0

S

.pIm7.05

0 U
Nd

Re1095.1
a

a3.2log ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × −  for 
3.0

S

.pIm7.0

U
Nd

Re ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>20000 (b) 

Westerterp et al. 
(120) Air/Sulphite solution GSR ( )

L

LT
.pImCRE

G σ
ρddNNC

ε1
aH

−×=
−

 with C = (0.79 ± 0.16)μL (μL in cP). 

Muenz and 
Marchello (62) 

O2, He, CO2, 
C3H6/Water  RT 

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=

λ
Hπ2tanh

λρ
πσ2

π2
gλc

L

L2  and 
λ
c2πω =  ⎟

⎠
⎞

⎜
⎝
⎛ −×= txhh ω

λ
π2sin2  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= tω

λ
xπ2sinHy

λ
π2cosh

λ
Hπ2sinh

λ
hcπ2vx  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−= tω

λ
xπ2cosHy

λ
π2cosh

λ
Hπ2sinh

λ
hcπ2vy  (c) 

Miller (126) CO2,Air/Aqueous 
solution GSR 2

1

ST

S
6.0

L

2.0
C

4.0

L

*
G

UU
U

σ

ρV
P

44.1a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×
⎟
⎠

⎞
⎜
⎝

⎛

×=  

Akita and 
Yoshida (462) 

Air, O2/Water, aqueous 
glycol, glycerol, 
methanol 

BCR 13.1
G

10.0

2
L

2
L

3
C

50.0

L

L
2
C

C

ε
μ
ρgD

σ
ρgD

D3
1a ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

Lopes de 
Figueiredo and 
Calderbank (130) 

O2/Water GSR 4
3

S

4
1

L

*
G U

V
P

593a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

 

Sridhar and Potter 
(133) Air/Cyclohexane GSR 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠

⎞
⎜
⎝

⎛

×= *
G

T
16.0

AIR

G
2

1

T

S
6.0

L

2.0
C

4.0

L

*
G

P
E

ρ
ρ

U
U

σ

ρV
P

44.1a
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Table A-10 (Cont’d) 
Authors gas/liquid Reactors Correlations 

Nagata (480) - SAR 

2

.pIm

*
2

.pIm

1

.pIm.pIm

V

d
r2Fr

2
π

d
h

d
H

d
H

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=  for 

.Im.Im

22

p

C

p d
r

d
r

≤  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2
.pIm

2

T

.pIm
4

.pIm

C*
2

.pIm

2

.pIm.pIm

V

r2
d

d
d

d
r2

Fr
2
π

d
h

d
H

d
H

for
.pIm

C

.pIm d
r2

d
r2

〉  

Re43.11000
Ren

d
W

d
d

35.057.023.1
d

r2 116.0
B

036.0

TT

.pIm

.pIm

C

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×=  for Paddle (d) 

Hughmark (134) - GSR 

187.0

3
2

LL

S
4

.pIm
2

592.0

3
2

L.pIm

4
.pIm

23
1

L

G
2

1

L

L

Vσ

ddN

gVd

dN
NV
Q

σ
gρ38.1a ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Sawant et al. (95) Air/Water, 
PEG/dolomite GIR 

86.0

L

*
G

V
P

79a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Sawant et al. (96) Air/Water, 
PEG/dolomite GIR 

5.0

L

*
G

V
P75a ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=  

Matsumura et al. 
(72) 

O2/Water+sodium 
alginate SAR 

84.0

.pIm2

E

20.0

L

L
3

.pIm
3
2

40.0

L

L.pIm2
3

1

2
L

2
L2

e dN
U

gμ
ρdN

σ
μdN

ρg
μ1069.1a ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=

−−

 (e) 

Schumpe and 
Deckwer (506) 

Air/Carboxylmethyl, 
cellulose+Na2SO4 

BCR 51.0
eff

51.0
G μU0465.0a −×=  with 1n

eff γKμ −×=  and GU50γ ×=  (f) 

Godbole et al. (171) Air/Water, CMC 
/Sodium sulfate sol. BCR 76.0

eff
47.0

G μU2.19a −×=  

He et al. (98) Air/Water+CMC, 
water+triton-X-114 GIR 59.0

G

24.0

L

*
G ε

V
P

400a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Smit and During 
(481) - SAR 

*

.pIm

1 Fr20.2
d

h
×=  with rω825.0uθ ×=  for Crr ≤  

*

.pIm

2 Fr13.1
d

h
×=  with 

6.0
C

Cθ r
r

rω825.0u ⎟
⎠

⎞
⎜
⎝

⎛×=  for Crr〉  (g) 
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Table A-10 (Cont’d) 
Authors gas/liquid Reactors Correlations 

Al Taweel and 
Cheng (104) Air/Water +PGME GIR 

28.0
G

77.0 QN14.0a ×=  for air / water 
4.15

L
06.0

G
55.29.23 σQN10a −=  for air / water + additives 

Vazquez-Una et 
al. (86) CO2/Water RT 

( )kHtanh
ρg
kσ1gkω

L

2
L

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  with ( )kHtanh

ρ
kσ

k
gc

L

L2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  and 

( ) ( )tωkrsinP

ρg
kσ1g

ωt,rζ

L

2
L

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  where P is a constant 

(a) a0 the interfacial area due to the sparger, (b) a is the interfacial area accounting for gas entrainment, (c) h1 is the height of the wave above the mean 
surface level, y is the vertical distance above the mean level, (d) with rC radius of the vortex, h1 and h2 the depth and height of the vortex respectively 
below and above the mean elevation and HV mean vortex elevation, (e) N2 is the lower impeller mixing speed, (f) a in cm-1, UG in cm.s-1 and μL in Pa.s, (g) 
with uθ the tangential velocity and rC, h1, h2 defined in Nagata (480) 
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Table A-11: Literature Correlations of kLa in the SAR 

References Gas Liquid Operating Conditions Correlation 

Matsumura et 
al. (457)  Water, Various 

alcohols Atm. 6.0
G

6.0

L

*

O

L ε
V
P309

D
ak

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Albal et al. (67) O2 Water 13.8-96.5 bar, 298K 
13.3-20 Hz 

6.0
G

6.0

L

*
5.0

A
2

L ε
V
PD10579.2ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= −  

Albal et al. (67) O2 Water, CMC Atm. 29.167.05.02 WeReSc1041.1Sh −×=  

Versteeg et al. 
(266) 

CO2, 
N2O 

Water, aqueous 
alkanol-amine 

1-10bar, 291-356 K 
Re: 0.2-1.2 104 
Sc: 0.1-1.3 104 

72.05.0 ReSc064.0Sh ×=  

Mizan et al. 
(482) 

H2, 
C2H4 

C3H6 
Fr: 0.9-2.0,Re: 2-4.5 105 
We: 741-31060 

34.120.107.2 WeReFr2.55Sh −×=  

Wu (81) Air 
Water + 
Na2SO3 + 
CoSO4 

1.2<P*/VL<8.5 kW/m3 
65.0

L

*
2

L V
P1034.6ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= −  

Tekie et 
al.(267) N2,O2 Cyclohexane We: 2100-13300, Fr:1-3 92.021.03 FrWe1051.4Sh −×=  

Tekie et al. 
(483) N2, O2 Cyclohexane 

x1: 6.67 <N<20.0 Hz 
x2:  7<P<35 bar 
x3: 330<T<430 K 
x4: 0.171<H<0.268m 

( )
))x4)(3x(1.0())204.0x(2.0(2

4
2
3

2
2

2
14321NL

41
2

1

2

e04.0e90.2x063.0x04.0

x06.0x39.0x18.0x28.0x07.0x36.090.2akln
−+−− +−++

−−−+++−=  

( )
))x4)(3x(1.0())x(173.0(2

4
2
3

2
2

2
14321OL

41
2

1

2

e11.0e90.2x07.0x03.0x05.0

x38.0x12.0x23.0x10.0x11.093.2akln
−+− +−+−−

−−+++−=
 

Fillion and 
Morsi (268) N2, H2 Soybean Oil 

x1: 373<T<473 K 
x2: 10<N<23.3 Hz 
x3: 0.171<H<0.268m 
x4: 1<P<5 bar  

32

2
3321NL

xx0798.0

x053.0x407.0x474.0x177.050.6)akln(
2

−

+−++−=
 

32
2
3

2
1321HL

xx126.0x0524.0

x0445.0x473.0x417.0x229.099.5)akln(
2

−+

−−++−=
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Table A-12: Literature Correlations of kLa in the GIR 

References GIR Gas Liquid Operating Conditions Correlation 

Joshi and 
Sharma (92) 

HS + 
Hollow 
impeller 

CO2 Na2CO3+ NaHCO3 

3-11.7 Hz/dT:0.41-1.0 
dimp/dT:0.35-0.75 
UG:0.0003-0.032m.s-1 
P*/VL:1-15kW/m3 

For UG<0.005: 5.0
G

55.0

L

*
3

L U
V
P108.6ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= −  

For UG>0.005: 25.0
G

55.0

L

*
3

L U
V
P1026.3ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= −  

Kara (484) HS + RT H2 Tetralin SRCII 70-135 bar, 606-684K 
0.8-6.6 Hz, P*/VL<119  ( )

66.09.1

T

L

009.080.0

L

*
4

L D
H

V
P1013.142.3ak

±−±

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×±=  

Sawant et al. 
(96) 

Denver 
Agitator Air Water+ Soduim 

Sulfate 
5<N<36 rev/s 
0.5<H’/dimp<1.5 

5.0

L

*

L V
P0195.0ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=  

Karandikar et 
al. (272) HS + RT 

CO, 
H2 
CO2, 
CH4 

F-T Wax + water 7-45 bar, 423-498 K 
11.6-16.6 Hz 

( ) ( ) 046.0P108.0exp1000
N1607.0ak

42.3

L −××=  (a) 

( ) ( ) 00525.0P38.0exp1000
N0171.0ak

05.6

L +××= (b) 

Chang and 
Morsi (250) HS + RT N2 

CH4 
n-hexane 
Eau 

Eu:0.6-1104,We:0.7-7104 
Sc: 1.4-128,Re: 1-3 105 

34.0350.055.286.428 WeEuScRe1039.2Sh −×=  

Chang and 
Morsi (251) HS + RT N2,H2 

CH4 
n-decane We: 1.6-6.5 104 

Re: 0.6-2 105,Fr: 1-3 
32.174.441.114 WeFrRe1095.2Sh −−×=  

Chang (249) HS + RT CO2,
CH4 

n-C6, n-C10,  
n-C14 

Eu: 0.5-1 104,Sc: 8-500 
Re: 0.3-3 105, Fr 1-3 

73.128.063.118.212 FrEuScRe10114.5Sh −×=  

Chang (249) HS + RT H2 
n-C6, n-C10,  
n-C14 

Eu: 0.6-1 104,  
We: 1-7 104 
Sc: 10-150, Re:0.7-3 105 

29.142.021.200.318 WeEuScRe1074.2Sh −−×=  

Hichri et al. 
(485) 

HS + 
Turbine 
impeller 

H2 2-propanol, o-cresol 
Sh:0.1-5 105,VG/VL:1-2 

Re: 0.7-13×104 

Sc: 5-9 103,We: 2-6 103 

1.1

L

G27.15.044.0

V
VWeScRe123.0Sh ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=  

Tekie et 
al.(267) HS+ RT N2,O2 Cyclohexane We: 0.2-1 104,Fr: 1-3 )ε10867.11(FrWe1051.4Sh G

392.021.03 ×+×= −  

Chang and 
Morsi (486) HS + RT CO n-hexane,n-decane 

n-tetradecane 

Eu:0.7-1104, 
We:0.2-1104 
Sc: 8-500,Re: 0.4-3 105 

93.016.043.206.320 WeEuScRe1041.3Sh −×=  
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Table A-12 (Cont’d) 
References GIR Gas Liquid Operating Conditions Correlation 

Dietrich et al. 
(487) RT + HS H2 

H2O, Ethanol, 
hydrogenation mixt. 

dimp=0.032m, VR=500ml 
0.25<VL<0.38 dm3 

For H/DT=1: 5.05.045.14 WeScRe103Sh −×=  
For H/DT=1.4: 5.05.045.14 WeScRe105.1Sh −×=  

Koneripalli et 
al. (488) RT + HS 

H2, 
CO 
CO2 

Methanol, Ethanol 
Eu:0.3-10103,  
We:0.2-2104 
Sc: 7-200, Re: 0.6-4 105 

09.048.423.081.36 EuWeScRe1088.4Sh −×=  

Heim et al. 
(106) 

Hollow 
Pipe Air Water-fermentation 

mixture 
0.28<Fr*<1.49 
33,000<Re<260,000 

336.1*216.0 FrRe64.19
5

*

e1
105.9

Sh −−
− −=

×
 (c) 

207.1*234.0 FrRe63.21
4

*

e1
1006.1

Sh −−
− −=

×
(d) 

498.2*557.0 FrRe20.1331
4

*

e1
1004.1

Sh −−
− −=

×
(e) 

Tekie et al. 
(483) HS + RT N2 

O2 
Cyclohexane 

x1: 6.67 <N<20.0 Hz 
x2:  7<P<35 bar 
x3: 330<T<430 K 
x4: 0.171<H<0.268m 

( )
))x4)(3x(1.0())25.4x(04.0(e2

4
2
3

2
2

2
14321NL

41
2

1

2

e27.040.3x01.0x02.0x10.0

x72.0x05.0x27.0x10.0x92.101.0akln
−+− +−++−

+−++−=  

( )

))x4)(3x(1.0(

))60.1x(17.0(2
4

2
3

2
2

2
14321OL

41

2
1

2

e21.0

e75.3x06.0x01.0x04.0

x09.0x09.0x22.0x11.0x23.171.3akln

−+

−−

+

−++−

+−+++−=

 

Fillion et 
Morsi (268) HS + RT N2 

H2 
Soybean oil 

x1: 373<T<473 K 
x2: 10<N<23.3 Hz 
x3:0.171<H<0.268m 
x4: 1<P<5 bar  

))x42(1.0)x5.5(x3.0tanh(28.1

e)5.2x(0027.0x07.0xxx34.0xx08.0xx23.0

x12.0x08.0x60.0x71.0x18.086.4)akln(

3
2
32

x2
2

3
13213221

2
2

2
1321NL

3

2

−+−+

++−−−−

++−+−−=

 

))x62(1.0)x8(x3.0tanh(10.2

ex93.0e)3x(0038.0e33.0

e35.0x22.0x79.0x52.087.3)akln(

3
2
32

x
1

x5.2
2

x

x2
132HL

233

1

2

−+−+

−+−+

−+−+−=
−  

RT: Rushton turbine HS: Hollow Shaft, (a) CO and H2, (b) CO2 and CH4, (c) Four-pipe impeller, (d) Six-pipe impeller, (e) Disk impeller 



 

 

290 

Table A-13: Literature Correlations of kLa in the GSR 

References Sparger 
Type Gas Liquid Operating 

Conditions Correlation 

Yoshida et al. 
(276) Nozzle O2 Water 280-313K1-10Hz ( ) m

S
n2

T
3

L UdNcak ×=  (a)  

Robinson and 
Wilke (281) Nozzle N2, 

CO2 
Aqueous 
solutions 303 K 36.0

S

74.0

L

G3
L U

V
*P

1089.3ak ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××= −  

Perez and 
Sandall (280) Nozzle CO2 

Carbopol 
solution 

297-308K,3-8Hz 
0.162-0.466m.s-1 

694.0

eff

G
447.0

L

S.pIm
5.0

ABL

eff

11.1

eff

2
.pImL

AB

L
2

.pIm

μ
μ

σ
Ud

Dρ
μ

μ
dρN

2.21
D

akd
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=  (b) 

Bern et al. (283) - H2 Fat 12-14 bar, 453 K 
180-750 rpm 

m
S

n

41.1
L

35.5
T

15.3

L U
V

dNcak ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  (c) 

Lopes de 
Figueiredo and 
Calderbank (130) 

Nozzle O2 Water 
5-8 Hz 
0.41-4.8 kW.m-3 
0.006-0.013m.s-1 

( ) 75.0
S

58.03

T

LL U*P10
d
aVk

×= −  

Matsamura et 
al. (285)  

O2, 
CO2 
CH4 

Sodium 
sulfite,water 

303 K,8-13 Hz 
 0.5-3 10-4 m.s-1 

6.0
G

6.0

L

G2

AB

L ε
V

*P
1009.3

D
ak

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=  

Meister et al. 
(286) - Air Aqu. Sol. 400-1200 rpm 

0.005-0.03 m.s-1 
305.0

S

707.0

L

T
L U

V
E6.69ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= , 248.0

S

801.0

L

T
L U

V
E9.104ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= (d)  

Van’t Riet (247) - Air 
Ions and 
Ions-free 
water 

0.002<VL<4.4 
0.5-10 kW.m-3 

For ions-free water: 5.0
S

4.0

L

2
L U

V
*P106.2ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××= −  

For water with ions: 2.0
S

7.0

L

3
L U

V
*P100.2ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××= −  

Nishikawa et al. 
(287) 

Perforated 
Tubes Air Water 

303 K 
0-1000 rpm 
0.085-1.13 m.s-1 

Turbine: 
8.0

LL

3
1

L

G6
L ρV

*P
ρ

*P
1092.3ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××= −  (e) 

Paddle: 
75.0

LL

3
1

L

G6
L ρV

*P
ρ

*P
1069.5ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××= −  (e)
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Table A-13 (Cont’d) 

References Sparger 
Type Gas Liquid Operating 

Conditions Correlation 

Judat (288) Data from 13 publications - 
( )

3
1

2
L

L

4.0

3
14

LLL

1

B
65.0

6.05
L gρ

μ

gμρV

*P1081.0B108.9ak
−−−

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+×= (f)  

Gibilaro et al. 
(289) - Air Water 0.4-7 kW.m-3 

0.005-0.025m.s-1 
45.0

S

76.0

L
L U

V
*P49.0ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=  

Wu (81) Ring Air Water 0.2-10 kW.m-3 
0.003-0.007m.s-1 

56.0
S

67.0

L
L U

V
*P06.1ak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=  

Yoshida et al. 
(292) 

Ring, 
Nozzle, 
Spider 

Air Water 150-400 rpm 
0.004-0.06 m.s-1 

( ) 10.029.1
S

06.1107.15.1
L niUN5.2ak

niSU7−×××=  (g) 

Fillion (349) Spider N2 
H2 

Soybean oil 
373-473K, 1-5bar 
10-23.3 Hz 
10.4-51.9cm3.s-1 

58.0
G

31.0

L

G62.0
AB

10.0
LL Q

V
*P

DμT1226ak ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −  

(a)turbine with 12 vanes: c=1.10, m=n=2/3, kLa (hr-1),US (ft.hr-1),dT (ft) (b)

a

a
e γ

τγμ = , (c)c=0.326, n=0.37+_0.02, m=0.32+_0.10 dT(cm), US (cm.s-1), VL(cm3), (d)kLa (hr-

1) for 2 and 1 impellers, US (mm.s-1), ET/VL (W.l-1), (e)PG*=USg, (f) 
3

1

L

L
2
T gμ

ρ
d
QB ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= , (g) ni number of impeller 
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Table A-14: Literature Correlations of kLa in the BCR 

References System Conditions Correlation 

Fair (489) Air/Water Quiscent regime 
2/1

GL

GL32
3/1

ABL

L
2
32

GL
L εμ

Uρd
Dρ
μ

d
εD

31.3ak ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Akita and 
Yoshida (170) 

Air, O2/Water, Glycol, 
Methanol 

UG: 0.003-0.4 ms-1 
UL: 0-0.044 ms-1 
DC: 0.152-0.6 m 
HC: 1.26-3.5 m 

1.1
G

31.0

2
L

2
L

3
C

62.0

L
2
C

5.0

ABL

L

AB

2
CL ε

μ
ρgD

σ
ρgD

Dρ
μ6.0

D
aDk

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

Gestrich et al. 
(490) 

135 measurments of 7 
different groups - G

116.0

4
L

3
L

561.0

C

S21.0
GL ε

μg
σρ

D
H

U0424.0ak ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

 (a) 

Hikita et al. (294) Air,H2,CO2,CH4,C3H8/ 
Water, sucrose,alcohol 

Patm, 
UG: 0.042-0.38ms-1 

604.0

ABL

L

243.0

L

G

248.0

3
L

4
L

76.1
LGGL

Dρ
μ

μ
μ

σρ
gμ

σ
μU9.14

g
aUk

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=  

Godbole et al.(171) Air/Water,CMC,Na2SO4 Patm,UG <0.24ms-1 01.1
eff

44.0
G

4
L μU1035.8ak −−×=  

Koide et al. (491) 
N2/Water, glycerol, glycol, 
BaCl2, Na2SO4/Glass, 
bronze 

Patm 
UG: 0.03-0.15 ms-1 
CS: 0-200 kg/m3 

345.0

L

LGC
477.0

LC

486.0

C

t

612.0

S

S4

18.1
G

159.0

3
LL

4
L

5.0

ABL

L

LL

L

μ
ρUD

σ
ρgD

gD
U

ρ
C1047.11

ε
σρ
μg

Dρ
μ11.2

gDρ
σak

−−
∞

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
 

Kawase et al. (295) Air/Water, carbopol, CMC Semitheoretical 
5/3)n1(39

4n11
n22

n2
2/13/1

4
AB

2
CL BoFrReScn7.10

π
1C12

D
aDk +

−

+
+

=  

2/3
4 n0645.0C =  n=1 for Newtonian 

Ozturk et al. (243) Air, N2, He, CO2, H2/Pure 
organic liq.+ mixtures 

P atm,  
UG: 0.008-0.1 ms-1 

04.0

L

G68.029.033.05.0

AB

2
BL

ρ
ρFrGaBoSc62.0

D
adk

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= (b) 

Schumpe at al. 
(492) 

N2,O2/Water, Na2SO4/ 
Carbon, Kiselguhr, Al2O3 

Patm,UG: < 0.07ms-1 
CS: < 300kg/m3 

39.0
eff

82.0
GL μKUak −=

 (c)
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Table A-14 (Cont’d) 
References System Conditions Correlation 

Salvacion et al. 
(493) 

Air, N2/Water, alcohols/ 
Calcium alginate gel, 
polystyrene 

UG up to: 0.15 ms-1 
CV: 20 vol.% 

3.1
G

184.0159.05.0

ABL

L εBoMoSc9.12
gDρ
σak −−=

( ) 1
V

2/1
B

PL

1 C62.01Re
Uμ
kΠ4.41exp53.047.0 −−∞ +×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+×  

( )BB dCσdCΠ −=∞  and ( )( ) RTrD2rU3dCσdk B
2/1

BBPB1 −= (d) 

Dewes and 
Schumpe (494) 

He, N2, air, sulfur 
hexafluoride/0.8 M 
Na2SO4+Xantham/ 
Kieselghur, alumina 

P: 1 to 10 bar 
UG .01-0.08 ms-1 
CV: up to 18 vol.% 

46.0
G

55.0
eff

9.0
GL ρμUak −=  

Kojima et al. (495) N2, O2/Water, Enzyme 
solutions (CE) 

P: 0.1-1.1 Mpa 
UG: 0.005-0.15ms-1 
CE: 3-163 mg/dm3 

( ) ( )F
atm

E13
0

2
L

D
GL PPσdQρεCak −−=  C, D, E and F depend on (CE) 

Kang et al. (185) Air/CMC 
P: 0.1-0.6 Mpa 
UG: 0.02-0.2 ms-1 
μL: 1-38 mPa s 

254.0

L

GGC08.3
L μ

ρUD
10Kak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= −  K correlation dimension 

Chen and Leu 
(496) Air/Water/Nickel UG up to 0.04 m/s 

H up to 25000 A/m )H10477.1exp(UU40.0ak 526.0
L

625.0
GL

−×=  (e) 

Jordan and 
Schumpe (190), 
Jordan et al. (191) 

He, N2, Air/C2H5OH, 
C4H9OH, decalin, toluene 

ρG:0.19-46.7 kg.m-3 
UG < 0.21ms-1 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+×=

49.0

L

G37.072.027.034.050.0
1

'

ρ
ρ

Fr2.131FrGaBoScaSh (b, f) 

with a1 function of column diameter and distributor type (0.669) 
(a) HS: Slumped column height, m, (b) All dimensionless numbers in terms of dB (rather than DC), (c) K=0.063 (H2O/salt solution) K=0.042 (H2O, 0.8M 
Na2SO4),(d) CB=concentration of alcohol, mol/m3; DB: Diffusivity of alcohol in the liquid, m2/s, (e) H: Applied magnetic field, A/m, (f) Sh’ being the 
volumetric mass transfer coefficient referred to liquid volume 
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Table A-15: Literature Correlations of the Mass Transfer Coefficient in Agitated Reactors 

Authors System: gas/liquid Conditions Correlations 

Whitman (497) Film Theory 
δ

Dk AB
L =  

Higbie (498) Penetration Theory 
C

AB
L tπ

D4k =  

Danckwerts(499) Surface Renewal Theory sDk ABL =  

King (500) Eddy Diffusivity Theory ⎟
⎠
⎞

⎜
⎝
⎛=

−

n
πsinDa

π
nk n

11
AB

n
1

L  with nayE =  (a) 

Muenz and 
Marchello (62) 

O2, He, CO2, 
C3H6/Water RT 

3
1

L

L
2

6
1

AB

W

μ
ρfhSc74.2

D
D

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−  (b) 

Prasher and Wills 
(279) CO2/Water Stirred tank 

25.0

L

L5.0
ABL ρ

μεD592.0k ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  (c) 

Brian et al. (278) Pivalic acid/Water Stirred tank 
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

L

S
2
L

LLS
3
S

ABL

L
3
L

3
L

4
S

AB

SL

ρ
ρ

,
μ

ρρρgd
,

Dρ
μ,

μ
ερd

f
D

dk
 (c) 

Farritor and 
Hughmark (260) Air/Water Stirred tank 2

13
1

L

L
P

2
.pImL Sc

ρ
μNNd0256.0k −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=  

Miller (126) CO2, Air/Aq. Sol. GSR 
C

AB376.1
SL tπ

D4d683k ×=  

Matsumura et al. 
(72) 

O2/Water+sodium 
alginate SAR 

84.0

.pIm2

E

23.0

L

L
3

.pIm
3
2

3
2

L

ABL
3

1

L

L
SARL dN

U
gμ
ρdN

μ
Dρ

μg
ρ2.18k ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−−

−

 (d) 

Kawase et al. (309) Newtonian, non-
newtonian fluids Theoretical 

( )n121

L

G
ABL ρK

gU
D

π
2k

+

⎭
⎬
⎫

⎩
⎨
⎧

=  (e)

 
Kuthan and Broz 
(501) 

He, N2, C3H8/Ethylene 
glycol Wetted column 3

2

AB

306.0

ABL

L
3

1

L

L
L D

Dρ
μ

ρ
gμ2.0k ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=
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Table A-15 (Cont’d) 
Authors System: gas/liquid Conditions Correlations 

Yoshimura et al. 
(502) O2/Water Wetted column 

π
fD46.3

ξk WAB
L

×
×=  (f) 

Roberts and 
Chang (503) Wave Theory (Falling Film) 

2
1

2

2

2

9
7

9
2

9
2

3
2

L
9

11

0L

L

200
ν

Q

1α
3ν

gρQ4.13
16
91

k
k

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×+≈  for Q/ν<30 

2
1

0L

L
ν

Q3.15
k
k −

⎟
⎠
⎞⎜

⎝
⎛×≈  for Q/ν>40 

xν
Q002.0

k
k 3

2

0L

L ⎟
⎠
⎞⎜

⎝
⎛×≈  for Q/ν>300 (g)

 

(a) E is the Eddy diffusivity, y is the distance normal to the interface (b) f the wave frequency, h the wave amplitude (c) ε the total agitation power per unit 
mass of fluid (d) N2 is the lower impeller mixing speed (e) K the consistency index in a power-law model, Pa.sn  and n=1 for Newtonian fluid (f) fW the 
frequency of roll wave and ξ the parameter of waves sweeping high concentration layer (g) Q the inlet flow rate, ν the normal velocity and x the 
dimensional column length 
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Table A-16: Literature Correlations for the Mass Transfer Coefficient in the BCR 

Authors gas/liquid Conditions Correlation 

Calderbank and 
Moo-Young (208) 

O2, CO2/Glycol, water, 
brine, polyacrylamide 
sol. 

Sieve and sintered plate 

( ) 3
2

ABL

L
3

1

2
L

LGL
L Dρ

μ
ρ

gμρρ
31.0k

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×=  for dS < 1.0 mm 

( ) 3
2

ABL

L
3

1

2
L

LGL
L Dρ

μ
ρ

gμρρ
0031.0k

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×=  for dS < 2.5 mm 

( ) 2
1

ABL

L
3

1

2
L

LGL
L Dρ

μ
ρ

gμρρ
0042.0k

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×=  for dS > 2.5 mm 

Fair (504, 489) Air/Water Quiscent regime ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+×=

3/1

ABL

L
2/1

L

GLS

AB

SL

Dρ
μ

μ
Uρd

276.012
D

dk
 

Lamont and Scott 
(505) CO2/Water Column 2

14
1

L

L
L Sc

ρ
μ*P4.0k −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=  

Akita and 
Yoshida (462) 

Air,O2/Water, glycol, 
methanol, Na2SO3 

Atmosph.  
UG < 0.07m.s-1 

21
S

83
L

83
L

21
AB

85
L dσρDg5.0k −=  

Gestrich et al. (490) 135 data of 7 different 
groups - 

119.0

4
L

3
L

261.0

C

S21.0
GL μg

σρ
D
H

U00163.0k ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−

 

Schumpe at al. 
(506) 

Air/Carboxy methyl, 
cellulose and Na2SO4 

DC=0.14m 
0.004<UG<0.45 ms-1 
UL=0.0155 ms-1 

32.0
eff

05.0
GL μU0045.0k −×=  with kL and UG in cm.s-1 

Kawase et al. (309) Newtonian, non-
newtonian fluids Theoretical 

( )n121

L

G
ABL ρK

gU
D

π
2k

+

⎭
⎬
⎫

⎩
⎨
⎧

=  n=1 for Newtonian fluid (a) 

Cockx et al. (507) O2, O3/Water sodium 
sulfite 

DC=0.2/0.053m,H=4/8m 
0.025<UG<0.15 ms-1 
1.25<UL<1.8 ms-1 

02.010.0Sc
*U

k 5.0

I

L ±=  UI* is friction velocity at the interface
 

 

 

 



 

 

297 

Table A-16 (Cont’d) 

Authors System: 
gas/liquid/solid Conditions Correlation 

Tsuchiya et al. 
(508) CO2, O2/Water Column 

2
1

S

RTAB
L d

fUD
Re
89.21

π
2k

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

with 187.0
dlog9.3tanh5.0)flog( S

R −⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛×=  

Vazquez et al. (322) CO2/NaHCO3, 
Na2CO3+surfactants 

DC=0.113m,H=1.086m 
UG<0.002ms-1 

35.150.0
G4L σUKk ×=  with K4 function of the bubble plate size

 

(a) K the consistency index in a power-law model, Pa.sn 
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APPENDIX B: 

CHEMICAL ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1: Gas Chromatography of Run OTS5321 
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Figure B-2: Gas Chromatography and Mass Spectroscopy of Run OTS5329 
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APPENDIX C: 

ERROR ANALYSIS 

Let Y = f(x1,…xn) where x1,…,xn are n independent variables: 

∑
=

≠

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
n

1i
i

xi

dx
x
YdY

ij

 (C-1) 

Then, the error is estimated as: 

∑
=

≠
∂
∂

≈
n

1i

i

xi Y
Δx

x
Y

Y
ΔY

ij

 (C-2) 

Hence, expressions of the errors for the different measured parameters are derived in each contactor in the 

following. 

Solubility, C*: 

In the agitated reactors, the solubility C* is defined as follows: 

L

LRFF1,
T1, V

1
ZRT

)V(VPy
NC* ⎥

⎦

⎤
⎢
⎣

⎡ −
−=  (C-3) 

with 

preh
prehF,prehI,

T1, V
v

1
v

1N ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=  (C-4) 

and: 

P
ZRTv =  (C-5) 

Z, the root of the cubic equation (modified PR-EOS), Vpreh and VR, the preheater and reactor volume are assumed to 

be exact (ΔZ=0, ΔVpreh=0, ΔVR=0). The error on the gas molar fraction was held equal to the specified tolerance in 

Section 5.1.1. Therefore, the independent variables are: 

)VT,,P,y ,P ,T ,P ,(TfC* LFF1,prehF,prehF,prehI,prehI,=  (C-6) 

Thus, the error on the experimental solubility is approximated as follows: 
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L
L

F
F

F 1,
F 1,

prehF,
prehF,

prehI,
prehI,

prehF,
prehF,

prehI,
prehI,

ΔV
V

*CΔT
T
*CΔP

P
*CΔy

y
*C         

ΔP
P

*CΔP
P

*CΔT
T

*CΔT
T

*CΔC*

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

+

∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

=

 (C-7) 

with the partial derivatives: 

L
2

prehI,I

prehprehI,

prehI, VRTZ

VP
T

*C −
=

∂
∂  (C-8) 

LprehI,I

preh

prehI, VRTZ
V

P
*C

=
∂
∂  (C-9) 

L
2

prehF,F

prehprehI,

prehF, VRTZ

VP
T

*C
=

∂
∂  (C-10) 

LprehF,F

preh

prehI, VRTZ
V

P
*C

=
∂
∂  (C-11) 

L

LRF

F 1, ZRTV
)V(VP

y
*C −−

=
∂
∂  (C-12) 

L

LRF 1,

F ZRTV
)V(Vy

P
*C −−

=
∂
∂  (C-13) 

L
2

LRFF 1,

VZRT
)V(VPy

T
*C −

=
∂

∂  (C-14) 

LL V
*-C

V
*C

=
∂
∂  (C-15) 

In the BCR, C* was calculated using Equation (5-45), which leads to: 

)V,P ,T ,P ,(TfC* LF1,FI 1,I=  (C-16) 

Thus, the error on the experimental solubility is approximated as follows: 

L
L

F 1,
F 1,

I 1,
I 1,

F
F

I
I

ΔV
V

*CΔP
P

*CΔP
P

*CΔT
T

*CΔT
T

*CΔC*
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=  (C-17) 

With the partial derivatives: 

( )
L

2
II

LRI 1,

I VRTZ
VVP

T
*C −−

=
∂
∂  (C-18) 

( )
LII

LR

I 1, VRTZ
V-V

P
*C

=
∂
∂  (C-19) 

( )
L

2
FF

LRF 1,

F VRTZ
VVP

T
*C −

=
∂
∂  (C-20) 
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( )
LFF

LR

F 1, VRTZ
V-V

P
*C −

=
∂
∂  (C-21) 

2
L

R

FF

F 1,

II

I 1,

L V
V

RTZ
P

RTZ
P

V
*C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∂
∂  (C-22) 

Critical Mixing Speed, NCR: 

Since the critical mixing speed was read visually, the error on the experimental data was estimated as follows: 

rpm 10ΔNCR =  (C-23) 

Induced Gas Flow Rate, QGI: 

In the GIR, the Coriolis mass flow meter Type CMF-010M manufactured by Micro Motion Inc., Boulder, CO was 

used to measure the induced gas mass flow rate, M*Measured with the following accuracy: 

% 0.05
*M
*ΔM

=  (C-24) 

Hence, the error on the induced volumetric gas flow rate was calculated using Equation (5-48), assuming that PTol is 

exact in Equation (5-46): 

( )T ,P M*,fQ GasIG =  (C-25) 

TΔ
T

Q
PΔ

P
Q

*MΔ
*M

Q
QΔ IG

1
1

IGIG
IG ∂

∂
+

∂
∂

+
∂
∂

=  (C-26) 

with 

mixture

GasIG

ρ
y

*M
Q

=
∂
∂

 (C-27) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
=

∂
∂

TTol w,Tol1w,1

Tol w,Tol

1
IG

1

IG

P
1

MPPM
MP

P
1Q

P
Q

 (C-28) 

T
Q

T
Q IGIG =
∂

∂
 (C-29) 

In the BCR, using the theory on flow through orifices and nozzles (509), the volumetric flow rate was calculated using 

the following equation: 

( )
G

Gas ρ
ΔP1442gΩCYQ ××

×××=  (C-30) 

where Ω is the orifice cross section area, Y the expansion factor and C the flow coefficient. Since Y and C were 

iteratively computed from the Reynolds number, they were assumed exact. Hence, the error on QGas is as follows: 

( )1Gas P T, ΔP,fQ =  (C-31) 

( ) TΔ
T

Q
PΔ

P
Q

PΔΔ
PΔ

Q
QΔ Gas

1
1

GasGas
Gas ∂

∂
+

∂
∂

+
∂

∂
=  (C-32) 

with 
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ΔP

ρ
1442gΩCY

2
1

ΔP
Q GGas

×
×××

=
∂

∂  
(C-33) 

1G1

Gas

P
1

ρ
ΔP1442gΩCY

2
1

P
Q ××

×××−=
∂

∂
 (C-34) 

T
1

ρ
ΔP1442gΩCY

2
1

T
Q

G

Gas ××
×××=

∂
∂

 (C-35) 

Sauter Mean Bubble Diameter, dS: 

In the agitated reactors, the Sauter mean bubble diameter is calculated as follows: 

∑

∑

=

== n

1i

2
Bi

n

1i

3
Bi

S

d

d
d  (C-36) 

With dBi estimated from: 

π
4A

d i
Bi =  (C-37) 

Ai is the surface projection of the recorded bubble i determined photographically. From a statistical standpoint, we 

assumed for n ≥ 200 that the Sauter mean bubble diameter was independent of the number of bubbles; and the error 

on dS is estimated as follows: 

( )iS Afd =  (C-38) 

∑
= ∂

∂
=

n

1i
i

i

S
S ΔA

A
d

Δd  (C-39) 

with 

2
n

1j
j

n

1j

2
3

j

n

1j
j

2
1

i

i

S

A

AAA
2
3

π
4

A
d

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

=
∂
∂

∑

∑∑

=

==  (C-40) 

In the BCR, on the other hand, the dynamic gas disengagement method was used to calculate dBi and dS. 

Consequently, the bubble diameter was determined from the following equation as explained in Section 5.2.8: 

g
t
L

0.5917d

2

i

T

Bi

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

×=  
(C-41) 

and its associated error was estimated as follows: 

( )iBi tfd =  (C-42) 
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i
i

Bi
Bi Δt

t
d

Δd
∂

∂
=  (C-43) 

With 

i

Bi

i

Bi

t
d

2
t

d
−=

∂
∂

 (C-44) 

Since Equation (5-58) can be rewritten as: 

∑

∑

=

== k

1i

2
iBi

k

1i

3
iBi

S

dn

dn
d  (C-45) 

With: 

3
Bi

L

L

i

GL

L

L

i

GL

L

3
Bi

L

Gi

Gi

3
Bi

G
i

d
6
π
V

ghρ
ΔP1

ρρ
ρ1

ghρ
ΔP1

ρρ
ρ

d
6
π
V

ε1
ε

d
6
π
V

n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

−
==  (C-46) 

Thus, it follows: 

( )LiLiGiiBiS V ,P ,T  ,T ,ΔP ,dfd =  (C-47) 

( ) ( )∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
n

1i
L

L

S
i

i

S
i

i

S
Li

Li

S
Gi

Gi

S
Bi

Bi

S
S ΔV

V
d

PΔΔ
PΔ

d
ΔP

P
d

ΔT
T
d

ΔT
T
d

Δd
d
d

dΔ  (C-48) 

With: 

2k

1i

2
Bii

2
Bi

L

Gi

iL
k

1i

3
Bii

Bi

S

dn

d
6
π
V

ghρΔP
ΔPghρdn

d
d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

×−

=
∂
∂

∑

∑

=

=

 (C-49) 

( )

( ) ∑∑

∑

==

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
∂
∂

k

1i
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Bii

k

1i

2
BiiBi
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1i
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2
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2
Gi
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S
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1
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1

6
π

V
ghρ-ΔP
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ZRT

MPΔP-ghρ
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d  (C-50) 
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⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−×
⎟⎟
⎠

⎞
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∂
∂

k

1i

2
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k
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BiiBi

k

1i

3
Bii

L

Gi

L

7
5

C

Li

C

Li

S
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1

dnd
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1

6
π

V
ghρ-ΔP

ghρ
T
T1

T
)265.0ln(

7
2

T
d

 (C-51) 
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( )
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⎞

⎜⎜
⎜
⎜
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⎝

⎛

−×
−

=
∂
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k
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i
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1

6
π

V
ghρPΔ
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ZRT
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⎞
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⎜
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∂

∂
k
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k

1i
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k
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3
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L
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i

S
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L
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1

ghρPΔ
PΔghρ

V
d  (C-54) 

Gas Holdup, εG: 

In the agitated reactors, the gas holdup was determined using the dispersion height technique. Hence, εG was 

calculated from Equation (5-54) and consequently the error was estimated as follow: 

( )H ,Hfε DG =  (C-55) 

ΔH
H
ε

ΔH
H
ε

εΔ G
D

D

G
G ∂

∂
+

∂
∂

=  (C-56) 

With: 

2
DD

G

H
H

H
ε

=
∂
∂

 (C-57) 

D

G

H
1

H
ε −

=
∂
∂

 (C-58) 

In the BCR, on the other hand, the manometric method was used to calculate the gas holdup as shown in Equation 

(5-55). Thus, the error on εG was estimated as follows: 

( )PΔ ,P ,T ,Tfε GGLG =  (C-59) 

( ) ( )PΔΔ
PΔ
ε

ΔP
P
ε

ΔT
T
ε

ΔT
T
ε

εΔ G
G

G

G
G

G

G
L

L

G
G ∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

=  (C-60) 

With: 
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ghρghρ

ghρ
T
T1

T
)265.0ln(
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Gi2
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C

L
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⎝
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(C-61) 
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L
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−
=
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Gas-Liquid Interfacial Area, a: 

The gas-liquid surface area per unit of liquid volume was estimated by Equation (5-67) and accordingly its error was 

calculated as follows: 

)ξ ,Vk,(fa MAXLWave =  (C-65) 
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and the partial derivatives: 
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The gas-liquid interfacial area created by bubbles in the agitated reactors and BCR was always calculated as 

explained in Sections 5.3.1 and 5.3.2 and its associated error was calculated assuming dS and εG independent as 

follows: 

)d,ε(fa SGB =  (C-70) 
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With the partial derivatives: 
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Volumetric Mass Transfer Coefficient, kLa: 

In the agitated reactors, following the procedure described in Section 5.3.3 for the kLa calculation, an error analysis 

on Equation (5-115) was derived in the following: 
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)P,Pt,(fak I1,F1,L =  (C-74) 

Assuming C*, CL and VL only function of pressure at constant T. Hence: 
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The partial derivatives are: 
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With ΔI1 and ΔI2 depending on the value of 4β2-β1
2 and 4β4-β3

2 respectively. 
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In the BCR, kLa was calculated from Equation (5-125) and accordingly, assuming that the toluene vapor pressure 

and reactor volume are exact, He is one variable and the temperature is an average of TL and TG, the error was 

estimated as follows: 
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The partial derivatives are: 
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Mass Transfer Coefficient, kL: 

kL was calculated from Section 5.3, and its associated error was calculated accordingly: 
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With the partial derivatives: 
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Example 

In the GIR, under the following conditions: T=400 K, N=1000 rpm, VL=0.00247 m3 

ΔVL=10-6 m3, ΔP=0.004 bar, ΔT=0.1 K, Δt=0, ΔA=0.15 mm2, ΔHD=ΔHD=3 mm 

 

P1,F , 

bar 

C* , 

kmol.m-3 

ΔC*/C*, 

% 

kLa , 

s-1 

ΔkLa/kLa,

% 

NCR ,

rpm 

ΔNCR/NCR,

% 

QG , 

m3.s-1

ΔQG/QG,

% 

dS , 

m 

ΔdS/dS,

% 

εG ,

% 

ΔεG/εG,

% 

a , 

m-1 

Δa/a, 

% 

kL , 

m.s-1 

ΔkL/kL,

% 
2.30 0.0173 9.1 0.1489 20.4 680 1.5 42.9 0.3 0.00140 7.7 1.91 7.6 83.13 15.5 0.00179 35.8 
3.89 0.0292 8.5 0.1568 19.3 670 1.5 -  0.00141 7.7 1.74 7.4 72.70 15.4 0.00216 34.8 
6.48 0.0448 7.3 0.1765 15.2 679 1.5 -  0.00141 7.6 1.78 7.4 75.48 15.3 0.00234 30.5 
9.42 0.0648 6.5 0.1834 12.8 673 1.5 -  0.00142 7.6 1.85 7.5 77.24 15.5 0.00237 28.3 
13.16 0.0922 6.1 0.2029 12.5 682 1.5 26.3 0.5 0.00139 7.5 1.82 7.5 75.04 15.6 0.00270 28.1 

 

In the BCR, under the following conditions: T=300 K, UG=1000 m.s-1, VL=0.098 m3 

ΔVL=0.0001 m3, ΔP=0.004 bar, ΔT=0.1 K, Δ(ΔP)=0.1 Pa, Δt=0 

 

P1,F , 

bar 

C* , 

kmol.m-3 

ΔC*/C*, 

% 

kLa , 

s-1 

ΔkLa/kLa,

 % 

dS , 

m 

ΔdS/dS,

% 

εG ,

%

ΔεG/εG,

% 

a ,  

m-1 

Δa/a, 

% 

kL ,  

m.s-1 

ΔkL kL,

 % 
1.81 0.0089 6.2 0.208 3.9 0.00292 2.5 18 1.9 454.5 4.8 0.00046 8.7 
3.23 0.0176 5.9 0.263 3.8 0.00239 2.4 21 1.8 681.5 4.6 0.00039 8.4 
4.86 0.0207 5.7 0.337 3.7 0.00208 2.2 28 1.7 1117.8 4.6 0.00030 8.3 
6.31 0.0360 5.5 0.384 3.6 0.00190 2.1 32 1.7 1474.2 4.6 0.00026 8.2 
7.77 0.0378 5.5 0.429 3.6 0.00165 2.1 34 1.6 1854.1 4.5 0.00023 8.1 
 



 

 311

APPENDIX D: 

EXPERIMENTAL PROCEDURE 

An experimental P(t) curve of the nitrogen absorption into toluene at 423 K, 1000 rpm and 0.268 m as liquid height, 

in the GIR mode is depicted in Figure D-1. From these experimental data, the equilibrium solubility was calculated 

according to the calculation procedure discussed in section 5.1.1. The following results were found: 

  T = 423 K      Ps = 2.788 bar 

  N = rpm       δi,j = 0.125 

  P1,F = 11.59 bar      C* = 0.0988 kmol/m3 

  VR = 4.030 10-3 m3     VL,amp = 2.237 10-3 m3 

  x1 = 0.012592      x2 = 0.987408 

  y1 = 0.784956      y2 = 0.215044 

  f1
L = f1

G = 11.80      f2
L = f2

G = 2.68 

  NG = 0.409547 10-3 kmol     NL = 0.239887 10-1 kmol 

  VG = 0.956208 m3     VL = 0.305727 m3 

Then, F(t) in Equation (5-116) was calculated from the LHS of Equation (5-115). A plot of F(t) versus t produced a 

straight line with slope kLa, as can be seen in Figure D-2. kLa was found to be equal to 0.00587 s-1, and was then 

used to back-calculate the P(t)-t curve of the absorption. As depicted in Figure D-3, a very good agreement was 

found. 
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Figure D-1: Typical Experimental P(t)-t Curve For the Transient Gas-Absorption 
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Figure D-2: Plot of F(t) vs. t 
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Figure D-3: Comparison Between Experimental and Back-Calculated P(t) vs. t Curve 
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APPENDIX E: 

EXPERIMENTAL DESIGN AND ANALYSIS TECHNIQUES 

In this section, different experimental design procedures along with several analysis methodologies are reviewed and 

described. 

Dimensional Analysis 

In an attempt to optimize, design and scale-up a process, one should in theory look at the effect of each influencing 

element independently, which is often complex and impossible. In such situations, however, the theory of similarity is 

often used to facilitate planning and evaluation of the experimental data. In the following, a comprehensible listing of the 

variables, which appear to influence the hydrodynamic and mass transfer parameters, is provided. Then, using a 

dimensional analysis, relationships between the studied parameters and influencing variables will be reduced. 

The experimental data collected in this study were obtained in diverse systems, covering wide ranges of operating 

conditions, reactor types (SAR, GIR, GSR and BCR) and geometries as well as liquid and gas nature. Furthermore, these 

experimental data were designed to model an industrial process, namely the liquid-phase toluene oxidation process. Since 

the hydrodynamic and mass transfer parameters are affected by multiple factors, three independent major groups of 

parameters were first distinguished, allowing a better classification of the studied variables: 

Geometrical variables: reactor or column diameter (dT) or (DC), impeller diameter (dImp.) and (HL) liquid height above the 

impeller, i.e. liquid submergence. 

Operating variables: reactor mode (surface aeration reactor: SAR, gas inducing reactor: GIR, gas sparging: GSR), reactor 

type (BCR and agitated reactors), mixing speed (N), superficial gas velocity (UG), induced gas flow rate (QG-Gas), liquid 

height (H), temperature (T) and gas partial pressure (Pi). 

Physicochemical variables: liquid viscosity (μL), liquid and gas density (ρL et ρG), liquid surface tension (σL) and the gas 

diffusion coefficient in the liquid (DAB). 

A dimensional analysis (510) was performed for each studied parameters, where several dimensionless groups were 

identified depending on the gas-liquid contactors used: Ae, Eu, Fr, Ga, Mo, Re, Sc, We, ρG/ρL, HL/DImp.. In the agitated 

reactors, variables affecting the hydrodynamic and mass transfer parameters resulted in the following relationships (511): 
βα

CR Mo~GaFr ×  (E-1) 

( )δC
χβα Fr-FrEuReAe~Mo ×××  (E-2) 

εδχβ

L

S WeFrEuRe~
H
d

×××  (E-3) 
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( ) εδ
C

χβα
G WeFr-FrEuReAe~ε ××××  (E-4) 

εδχβα
Imp. WeFrEuReAe~ad ××××  (E-5) 

ηεδχβα AeWeFrEuReSh~Sc ×××××  (E-6) 

In the BCR, similar expressions were obtained without the critical Fround number and where the impeller diameter 

was replaced by the column diameter. 

It can be argued, however, that some of the dimensionless numbers used either have insignificant impact on the 

prediction by geometrical similarity or poorly reflect important design criteria. In fact, this is commonly accepted 

since, as it can be seen in the several dimensionless equations available in the literature, there is a lack of general 

applications for the developed correlations. It seems that the emerging trend consists of phenomenological 

correlations, which generate more practical and exploitable results. Therefore, such correlations will be employed 

when the predictions of dimensionless correlations seem inaccurate. 

Statistical Approach 

A statistical design and analysis is a powerful tool to study a multi-variable system through a statistically designed 

number of experiments. The advantages of this tool are reliable observation of variables, minimum number of 

experiments, and highly accurate statistical correlations (512). 

In this study, the central composite statistical design and analysis technique, similar to that employed by Li et al. 
(513), Kim et al. (514), Tekie et al. (23, 267, 483) and Inga (56) were used to construct an experimental mapping of the 

process parameters. Box and Wilson (515) first introduced this design in the 50’s as an alternative to 3k factorials in 

order to estimate quadratic response surface equations. In this technique, for k independent variables at five levels, 

the total number of experiments is 2k factorial points augmented by 2×k axial points, and with a number of replicates 

at the central point following Equation (E-7) in order to provide a design with uniform precision (515): 

( ) k2N2NγN F

2

FCentral ×−−+×=  (E-7) 

with NCentral the number of replicates at the central point, NF the number of factorial points, and γ being defined by 

the following equation: 

( )
( )2k4

714k9k3kγ
2

+×
−+++

=  (E-8) 

The factorial and axial points are equidistant from the central point to offer rotability properties of the design. In 

fact, this property becomes important in the examination of the response surface since the orientation of the design 

does not influence anymore the precision of estimated surfaces. The central composite matrix design was made 

rotatable by setting the axial point values as follows: 

( )4 k2α =  (E-9) 

In this study, four variables, temperature, pressure, mixing speed and liquid height were studied in the agitated 

reactors and hence k=4, NCentral=7, NF=16 and 2α = . The operating conditions used in the SAR, GIR and GSR are 
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given in Table 23, where two matrices were studied. The coded variables xi (i=1,2,3,4) as defined by Equation (E-

10) were used in the distribution and analysis of the experiments. 

i

Ci,i
i Δ

EE
x

−
=  (E-10) 

Where Ei and Ei,c are the value of the i-th variable at any point, and the central point, respectively; and Δi is the step 

size of the i-th variable. The distribution of experiments for k = 4 can be mathematically represented by Equation (E-

11): 

( ) 22
4

F

4

1i

2
i 2NX ==∑

=

 (E-11) 

The coordinates of the experiments with the coded variables are: (0,0,0,0) for the central point, (±1,±1,±1,±1) for the 

factorial points, and (±2,0,0,0), (0,±2,0,0,), (0,0,±2,0) and (0,0,0,±2) for the axial points. Table E-1 lists the spatial 

setting of all the experiments and Table 25 shows the range of each variable and its coded value. 

 

 

Table E-1: Distribution and spatial settings of the experiments according to the central composite statistical 

design 
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The operating conditions used in the bubble column reactor are given in Table 24. A similar central composite 

statistical design approach to the one used in the agitated reactors with 2 variables was followed in order to 

determine the number of experiments and assess the significance of the experimental findings The effect of pressure, 

P and gas velocity, UG on the measured experimental data were statistically investigated using this design of two 

variables at 5 levels, hence NC=5, NF=4 and 2α =  from Equations (E-7) through (E-9), leading to numerous 

combinations of the experimental conditions. Similarly to the agitated reactors design, the coded variables xi (i=1,2) 

as defined by Equation (E-10) were used in the distribution and analysis of the experiments. The distribution of 

experiments for k=2 can be mathematically represented by Equation (E-12): 

24

1i

2
i 2x =∑

=

 (E-12) 

The coordinates of the experiments with the coded variables are: (0,0) for the central point, (±1,±1) for the factorial 

points, and (±2,0) and (0,±2) for the axial points. Table 24 also lists the spatial setting of all the experiments and 

shows the range of each variable along with its coded value. 

Conventionally, experimental data obtained using 2k central composite design are correlated using the quadratic response 

surface model given in Equation (E-13): 

∑ ∑+∑+=
= ==

n

1i

n

1j

n

1i
Pred. )jxixijβ)ixiβ0βln( (()Y  (E-13) 

Where xi is the coded variable, β0, βi and βij are constants and n is the number of variables. In this study, however, the effects 

of the variables on the experimental output were often found to be non-linear and hence exponential terms were introduced 

into Equation (E-13) to account for this non-linearity. Therefore, the following general correlation was obtained for YPred.: 
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Where γi , αi, ζi, ξ, λ ij and κij are constants. The constants in the exponential terms were optimized based on the 

behavior of YPred. with respect to the variables studied. The linear constants were obtained by least-square technique 

with high confidence level using the statistical software package, Minitab Version 9.1 for Mainframe. However, it 

should be emphasized that since the central composite statistical design assumes linear quadratic polynomial 

response surface equation, the non-linearity effects of the process variables on the studied parameters invalidate the 

model design. Therefore, additional experiments, placed at the boundaries and critical points of the surface 

curvatures, were inserted in the design matrix in order to compensate for the non-linearity behaviors between the 

variables and parameters. It should also be mentioned that in the agitated reactors the coded variables were modified 

in order to obtain one unique statistical correlation for the two central composite statistical designs used. Thus, the 

new coded variables were determined as follows: 

4
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=  and 
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With Max(Ei) and Min(Ei) being the maximum and minimum values of each studied variables for the two central 

composite statistical design matrices used in this study. 

 

Artificial Neural Network 

Artificial neural networks were first introduced in the 1970’s and received an increasing attention in the late 1980’s 

and 1990’s in various applications, such as signal processing, process control, pattern recognition, medicine, speech 

recognition, business, and chemical engineering. Despite being traditionally used to model complex non-linear 

systems (516), artificial neural networks (ANN) appear to be a good alternative to conventional correlations. In fact, 

since their main advantage is to successfully describe non-linear input-output relationship (517), their manipulation 

should be much easier than traditional correlations such as empirical, phenomenological or statistical correlations, 

which frequently assume input-output relations by definition. In the following, after a short introduction on ANN, a 

precise review of the architecture, calculation and validation process of the back-propagation neural network used in 

this study is presented. 

An artificial neural network is an information-processing system that has certain similarities with the biological 

neural networks from the brain. As depicted in Figure E-12, the mathematical model of the neural network is based 

on the assumptions that: 

1. Information processing occurs at many simple elements called neurons. 

2. The information travels between neurons over connection links. 

3. Each connection link has an associated weight that amplifies or not the signal. 

4. Each neuron applies an activation function, usually non-linear, to its input to determine the output signal. 

 

 

 

 

 

 

 

 

 

 

Figure E-1: Schematic of a Simple Artificial Neural Network 
 

Their principal characteristics are as follow: 

1. Architecture: pattern of connections between the neurons. 

2. Learning Algorithm: iterative procedure to determine the weights between connections. 

3. Activation function at the neurons. 
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Due to their iterative learning abilities, neural networks are able to optimize, correlate and predict with high 

accuracy in a short period of time a considerable amount of experimental data. Unlike empirical correlations, neural 

networks are black boxes where no equations are a priori needed. The critical concept in building robust ANNs, 

However is to create architectures as simple as possible with a fast capacity of learning output data. The robustness 

of the ANN will therefore be the result of the complex interactions between topology and learning processes. 

Nonetheless, it is imperative to mention that the choice of the input variables is a key to insure complete description 

of the systems. It is also clear that the quality and the number of the training observations, i.e. experimental data, 

have a tremendous impact on both the reliability and performance of the ANN. 

One commonly employed neural network for data prediction is the Back-propagation Neural Net as described by 

Fausett, (517). The BPNNs used in this study were designed as follows: 

- One input layer 

- One output node 

- p hidden layers 

- All neurons are interconnected and all connections are weighted 

- Each neuron possess a bias 

- The transfer function is a sigmoid of the following from: 

( )xexp1
1)x(F

−+
=  (E-16) 

This basic architecture of the BPNNs is given in Figure E-2. The number of neurons and hidden layers were 

determined based on the error analysis during the training phase of the networks (516). In addition, the PITTNET 

software package developed at the University of Pittsburgh was used to build and validate the two created BPNNs. 

The commonly accepted (518, 519, 520) learning algorithm of Back-Propagation was used in this study. During the BPNN 

training process the gradient descent method is employed in order to adjust the connection weights, as described by 

Funahashi et al. (519) and Hornik et al. (520). The training was supervised by means of known output data set, where the 

squared error is minimized towards the greatest evolution possible. More precisely, the training data sets are feedforward 

leading to the availability of the calculated output and associated errors. The associated errors are then back-propagated 

and the adjustment of the weights is completed according to the errors. This process is repeated until satisfactory results 

are obtained, i.e. the error is lower than the chosen tolerance (10-7). As previously mentioned, the mean squared error 

between the experimental and calculated output values was the error used, whereas the mean absolute errors (MAE), the 

root mean squared errors (RMSE) and the R-squared values were also calculated and employed during the validation and 

construction procedures. 

The matrix formulation of the calculation method used in the BPNNs algorithm, depicted in Figure E-3 is 

summarized in the following. 

The net input to (Z1) is denoted (z1) and is calculated as follow: 

( ) ( ) [ ]( )l01 xuuz +=  (E-17) 
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The matrix [u] consists of n rows and l columns, corresponding to the number of nodes in the hidden layer and 

number of input variables: 
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The activation function is applied to (z1) to calculate the node output signal denoted (Z1): 

( ) ( )( )11 zFZ =  (E-19) 

The net input to (Z2) is denoted (z2) and is calculated from the output signal, (Z1): 

( ) ( ) [ ]( )102 Zvvz +=  (E-20) 

The matrix [v] consists of m rows and n column, corresponding to the number of nodes in the hidden layer 2 and 1: 
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As in 2., the activation function is applied to (z2) to calculate the node output signal of the hidden layer 2, denoted 

(Z2): 

( ) ( )( )22 zFZ =  (E-22) 

The net input to (Ypred) is denoted (ypred) and is calculated from the output signal, (Z2) and the weights, [w] as 

follow: 

[ ]( )20pred Zwwy +=  (E-23) 

Finally, the activation function is applied again to ypred to calculate the output value, Ypred: 

( )predpred yFY =  (E-24) 

During the learning algorithm of back-propagation the MSE is minimized for each epoch, i.e. iteration. In fact, a 

simultaneous analysis of the MSE and MAE as function of the number of hidden layer and neurons is performed in order 

to determine the BPNN topology. In order to validate the BPNNs, two approaches were followed. Since ANNs operate as 

“Black Boxes”, it is almost impossible to determine why a specific network will provide acceptable predictions. Therefore, 

cross validation methods were first used (521, 522) and several networks with identical architecture and parameters were 

consequently built and trained using all the experimental data set. On the other hand, simultaneously the BPNNs were 

tested and confirmed through the predictions of untaught output values. This procedure was carried out to ensure that an 

over- or under-training of the data set did not occur. This was critical to guarantee excellent prediction and interpolation of 

the training data set from the BPNNs. 
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Figure E-2: Basic Architecture of the Neural Networks Employed 
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Figure E-3: Training Algorithm of Back-Propagation Neural Networks 
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