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CONTRIBUTIONS TO STRUCTURAL MODELING AND ESTIMATION
Wayne-Roy Gayle, PhD

University of Pittsburgh, 2006

The first chapter of my thesis develops and estimates a dgnsimictural partial equilibrium
model of schooling and work decisions. The estimated maodalaitly accounts for the simulta-
neous choice of enrolling in school and working. It alsowidor endogenous leisure choices,
intertemporal nonseparabilities in preferences, agdeeglall specific productivity shocks, aggre-
gate consumption price effects, and individual heteroggn&mes spent on schooling, working,
and leisure are treated as continuous choice variables.e3tmated model is solved and two
counterfactual simulation exercises are performed. Thei$ithe case where a subsidy is given to
individuals who enroll in school and do not participate ie thbor market. The second is the case
where the demands of the school curriculum are increasdths@a tyoung man enrolled in school
necessarily spends more time studying. The conclusioratghie latter policy is more effective in

enhancing educational achievements and future wages.

The second chapter of my thesis develops a semiparameintagsr for a dynamic nonlinear
single index panel data model. Flexibility of the model ifi@ged by assuming that the index
function is unknown. Flexibility in individual heterogeteis achieved by assuming that the
individual effect is an unknown function of some observahledom variable. The paper proposes
an algorithm that estimates each of the finite and infinitestisional parameters. In particular, the
full data generating process is estimated. This is importahe predicted outcomes are used as
plug-in estimators, as in the multistage estimation of adyieastructural models.

The final chapter of my thesis develops a powerful new algorito solve single object first
price auctions where bidders draw independent privateegaitom heterogeneous distributions.

The algorithm allows for the scenario in which groups of syetmc and asymmetric bidders may



collude, and for the auctioneer to set a reserve price. Tper@dso provides operational univariate
guadratures to evaluate the probabilities of winning as agethe expected revenues for the bidders
and the auctioneer. The expected revenue function is usk tcompute optimal reserve under

asymmetric environments.
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1.0 INTRODUCTION

This thesis simultaneously extends the literatures onauoetric theory, applied microeconomics
and computational economics. These extensions are guidétekincreasingly recognized, yet
still largely untapped complementarities between theseetbranches of economics. This com-
plementarity can be explained by a simple philosophy. Dmyial models to analyze and solve
interesting economic puzzles require understanding apceajation of the available theoretical
tools. The level of realism achieved when estimating a muadidl available data is constrained
by the existing econometric technology and the computatif@asibility of the solution. The abil-
ity to understand and compute existing estimators, andieldp new ones, therefore allows the
investigator greater flexibility in thinking about and chetrerizing economic puzzles.

Two key economic puzzles are addressed in this thesis. Hididis essentially in the educa-
tional attainment and returns to education literature. Sé¢eond lies in the literature of asymmetric
first price auctions with applications to the sustainapit collusions.

The first chapter of this thesis investigates the effectdnoé tallocation between the labor
market and the classroom on educational attainment ancefutages. Over the last three decades
more young individuals are participating in the US labor ke&vhile actively remaining enrolled
in school. Young individuals are increasing both theirdesice of work, as well as the amount of
hours worked while enrolled in school. This trend has gdedrgrowing interest in its possible
immediate and long run effects on young individuals.

It is not obvious how working while enrolled in school affeetyoung individual’s educational
attainment and future labor market opportunities. On ome hthere is valid concern that an inten-
sive amount of working while in school may hinder academidgrenance and increase drop-out
rates. This is known in the literature is the crowding-ouypdiyesis. On the other hand, working

while in school may improve a young individual’s organinatl skills, sense of responsibility and



self esteem. This is known as the congruence hypothesis.

Along with the congruence effect other positive effects afrking while enrolled in school
include the human capital effect and the cash effect. Theamurapital effects states that working
while enrolled in school gives the student immediate waglemperience that is directly rewarded
in the labor market. The cash effect states that workingemirolled in school provides income
for the student that can be used to further finance educadéiading to higher educational attain-
ment and thus increased future labor market success.

The objective of the first paper, therefore, is to disentatigkse different avenues of effects of
working on educational attainment and future wages. | faruseparating these different effects

because their significance may vary over different groupsdividuals.

The key issue then in the first paper is the optimal time atlonabetween time spent in the
labor market, time spent on school activities, and time spaneisure. Previous work on the
effects of working on educational attainment has esséniigthored the important fact that in-
dividuals also choose the number of hours they spend onisdyd other in school activities
(SeeEckstein and Wolpin1999for example). The difficulty with such an analysis is that auth
increase in the number of time spent in the labor market erpnéted as an hour decrease in
leisure. In reality, the individual could choose to redure time spent on school activities instead
of leisure. Such analysis can therefore lead to imprecidaaarrect estimates of the effect of
working on educational attainment and future labor marketsss.

The abstraction away from time spent on schooling is lardely to insufficient information
on the time use of students. The dataset used in this studies from the National Longitudinal
Survey of Youth (NLSY79), which is a comprehensive panehdsdt that follows individuals
who were 14 to 21 years of age as at January 1, 1979. This tataseontains a single wave of
schooling time use data collected in 1981. This data is misfor measurement error, and since it
is a single wave, investigators have typically abstractemlydrom employing this data. | show that
with a suitable method for controlling for measurementierio study time and also controlling for
permanent individual unobserved heterogeneity, we cageiddet precise estimates of study time.
The estimation of study time is also augmented by includaggéd enrollment and labor supply
decisions. This helps tremendously in improving the egtsial he estimated study time function

is then used to predict study time for all individuals in tlaenple over all applicable years. This



strategy however creates a difficult econometric problem.

In a dynamic modelling framework, current decisions dependhe expectation future out-
comes, including future study time. The estimation techaignplemented is a modified version
of the Conditional Choice Probability (CCP) estimatoHuftz and Miller[1993 and extended by
Altug and Miller [1998. In this technique, the expectation of future outcomesajstared in the
probability of future decisions conditioned on the redli@a of future states of the world. These
probabilities have to be estimated. Direct estimation ap@sed byAltug and Miller[1998 would
inadvertently result in conditioning on functions of thersadependent variable that is being used
to estimate the probabilities. In the first paper | proposaltarnative method of estimating these
probabilities that avoid this severe endogeneity problem.

Another technical contribution of the first paper is therastion method and corrected stan-
dard errors. The estimation method combines an efficierated GMM (GMMI) with a variation
of the Nested Pseudo Likelihood Algorithm (NPL) proposedAgyiirregabiria and Mirg2003.
This method of estimation results is improved small samptgp@rties of the estimator coming
from both stepsHansen et al[1999 shows that iterating over the optimal weighting matrix re-
sults in improved small sample properties of the estimalesating over the CCP’s eliminates
the initial nonparametric estimates and hence also imgrtive small sample properties of the
estimator.

This process however results in nonstandard correct staedars of the estimates. | propose
an alternative representation of the corrected standandseo that ofAltug and Miller[1999 by
employing a technique developeditewey and McFaddefi1994, and Newey[1994. Further-
more, the structure of the state space implies that the latei@ted expectations can be used to
greatly simplify the form of the standard errors. In par@uno post estimation is required to
compute these standard errors. This greatly reduces theutation burden of the CCP estimator.

The estimated results indicate that crowding-out effetveighs the positive effects for whites
while the congruence and human capital effect outweighstteding-out effect of blacks and
Hispanics. A related conclusion found in the same analgsibat modest increases in school
curriculum results in significant increases in the educai@ttainment and hourly wage rate of
whites and blacks, but only modest increases for Hispanics.

Another exercise performed with this model is to analyzeefifects of equating the quality of



schools of blacks and Hispanics to that of whites. The resaotticate that policy would lead to
significant increases the educational attainment of bottorty groups. This policy also leads to
significant increases in the hourly wage rate of blacks ancemmdest increases for Hispanics.
Although this policy leads to a significant narrowing of taee education gap, it does not eliminate
the gap.

The analysis of the effects of increasing the school culrious repeated under this new envi-
ronment. The result indicates even larger increases indheational attainment and hourly wage
rate of blacks. Also in this environment we see the most 8aamt increases in the educational
attainment and hourly wage rates of Hispanics. In other sjdrtispanics become significantly
more responsive to policies that increases the time theydspe school activities if the quality of

the school they attend is improved to the quality of the sthatites attend.

In estimating the dynamic structural model, a multistagecedure was implemented. The
potential problem with the multistage procedure is thatspegification of the first stage estima-
tor typically introduces bias in the final stage estimatdexible specification of pre-estimators
therefore becomes an important goal. The second chapteisdhesis addresses this problem by
developing a new semiparametric estimator for a dynamitimeesr single index panel data model

with small T.

In moving away from a fully parameterized nonlinear singidex panel data model, there
are trade-offs between which assumptions can be relaxedjeneral, relaxing the parametric
assumption on the unobserved heterogeneity requires airadt parametric assumptions about
the index function. Under the assumption that the individurae specific shocks are independent
and if covariates are unbounded, the finite dimensionalnpei@rs can be estimated consistently
with the parametric convergence rate without specifyirgdistribution of the individual-specific
effects conditional on the covariates if and only if the dlttion of the individual-time specific
shocks is logistic flagnac 2004. On the other handyWlanski[1987 has shown that the finite
dimensional parameters can be consistently estimatedonltha strict monotonicity assumption
on the index function. However, this estimator does not eqgw at the parametric rate.

The second chapter of this theses therefore adds to thiatlite by showing that under the
strict monotonicity assumption on the index function andeaifile assumption of the form of

the individual specific effect, one can still obtain estiesaof the finite dimensional parameters



that converge at the parametric rate. Also the estimatqrgs®d also produces estimates of the
index function and the individual specific effects. In othards, the full data generating process
is recovered. This is important if the intention of the invgator is to perform counterfactual
simulations.

The assumption made on the individual specific effects isitia an unknown function of
a known random variable. This restriction extends the sstige of Newey[1994 and arises
naturally in the discrete choice framework. Our own interesvever goes beyond the discrete
choice framework. We prove that the resulting estimatoratsanly /n consistent, but that it
achieves the semi-parametric efficiency bound. Thus uhéesame assumption no other estimator
can obtain a smaller asymptotic variance. The method usednpute the estimator is the back-
fitting algorithm proposed byuja et al.[1989. This algorithm has the advantage that it does
not depend on the type of smoother chosen to compute theagstwhthe index function. The
investigator can therefore implement a sieve estimatorkafrael estimator.

A small simulation exercise shows that the proposed estinpatrforms very well in recovering
both the finite dimensional parameters and the index functibhis is the case for even small
numbers of observations. The method is also implementedtimate a wage regression. An
interesting result is that the function recovered resesiihle exponential function, which suggests
that the error made by assuming a log-linear wage regreshkioud be relatively small.

The final chapter of this thesis proposes a powerful numiealgarithm to solve independent
private values asymmetric first price auctions where thei@ueer sets a reserve price. Asym-
metry arises from the specification of ex-ante heterogenelatributions of private values, as
well as from collusion among subsets of bidders. Our algorigeneralizes the seminal work
of Marshall et al.[1994 who consider the special case wher@layers draw their values from
uniform distributions on [0,1] and a subgrouplaf< n bidders form a coalition.

We also derive operational univariate quadratures to coetpe probability that the auctioneer
retains the item, the probabilities that a particular bidudi@s the item as well as expected revenues
for bidders and auctioneer under asymmetric first and sepand auctions. Embedding these
calculations within a simplex optimization algorithm efexbus to compute an optimal reserve
price under either auction scheme.

These techniques provide us with a powerful tool to numéyicgavestigate whether results



derived under symmetry extend to the asymmetric case asawdhe (single auction) viability
of collusion among subsets of bidders. lllustrative exas@re provided with and without the

assumption of stochastic dominance.



2.0 ADYNAMIC STRUCTURAL MODEL OF LABOR SUPPLY AND EDUCATION AL
ATTAINMENT

2.1 INTRODUCTION

Over the last three decades, there has been an increasidgofrgoung individuals participating
in the US labor market while actively enrolled in school. ¥gundividuals are increasing their
incidence of labor market participation, and the amounioaire worked while enrolled in schobl.
This trend has generated growing interest in the possibieddiate and long run effects of working
while enrolled in school on educational attainment and reutabor market opportunities. On
one hand, there is the concern that an intensive amount dingpwhile in school may hinder
academic performance and increase drop-out rates, thparjdining future opportunitiesOn the
other hand, working while in school may improve a young imdinal’s time organizational skills,
sense of responsibility and self esteem, which in turn aiéstthat may be rewarded in the labor
market in the future. Furthermore, working while in schomguces immediate work experience
and cash that may be used to finance their stutlless not obvious which of these two opposing
effects dominate. It may be that the net effect of these dpgdsrces varies over different groups
of young individuals.

This article develops and estimates a dynamic structuraeiaf schooling and work deci-
sions to investigate the process by which a cohort of younigsreccumulate human capital over

their life cycle. The theoretical model provides a detatledtment of the economic costs and ben-

LA recent documentation of this phenomena is foBadolod and Hotf2009.

2This apprehension is reflected in the article entitled “Ldwogrs taking toll on youths, studies say,” by Paloma
McGregor, The Plain Dealer, March 5, 2001.

3This opinion was expressed in the article entitled “Teemsl FRrofit and Loss in Work: Part time jobs bring
experience and cash, but can hinder studies,” by Jacqugdilneon, The Washington Post, March 28, 1998.



efits associated with the schooling and labor supply alteesmfaced by individuals. Specifically,
the estimated model explicitly accounts for the simultarsachoice of enrollment in school and la-
bor force participation, endogenous leisure choicestterngporal nonseparabilities in preferences,
aggregate skill specific productivity shocks, aggregatesamption price effects, and individual
heterogeneity.

In addition to accounting for the simultaneous choice ofknammd schooling, the model treats
hours spent on schooling, working, and leisure as contiswbwice variable$. This approach
is in contrast to other models (s&eane and Wolpin1997, andEckstein and Wolpirp1999 for
examples) that treat leisure time as exogenous to the ghdiliwhere an increase in labor supply
is equivalent to a decrease in time spent on schooling &esvif the individual is enrolled in
school. In this framework, an individual may optimally clseato sacrifice leisure and increase
time spent on both schooling and labor market activitieshisisense the model is one of optimal
intra- and inter-temporal allocation of time among schagliworking and leisure. The model
also allows for flexible specification of preferences witbpgect to time allocation. The additional
flexibility comes from the specification of intertemporahseparabilities in leisure.

Recent studies of the life-cycle models of labor supply hsivessed the importance of in-
tertemporally non-separable preferengddotz, Kydland, and Sedlacdk 989 found that the as-
sumption of intertemporally separable preferences faule is inconsistent with data for prime-
age males. Given that hours schooling activities and leisue related by the time constraint of
the individual, such nonseparabilities are also likelyffec their enroliment and study patterns.
The estimation results indicate that leisure choices aestemporal complements. Increases in
current hours of leisure increases the future demand afrkisn other words, an increase in hours
of current schooling activities decreases the future maiglisutility of schooling. This evidence
of intertemporal complimentarity suggests habit formatiy young men.

The primary data used in this study comes from the Nationalgitadinal Survey of Youth

(NLSY79), which is a comprehensive panel data set thatvdlndividuals who were 14 to

“While some studies model these alternatives as mutuallylusixe [Keane and Wolpin 1994
Cameron and Heckmari999, the growing trend is to allow for interior solution to cltes where individuals
simultaneously participate in the labor market and attatdal (seeD’Amico, 1984 Ruhm 1997 Oettinger 1999
andEckstein and Wolpin1999for examples)

5SeeHotz et al, 1988 Eichenbaum et 811988 Altug and Miller, 1998 Imai, 200Q andGayle and Miller 2003
for examples.



21 years of age as at January 1, 1979. The estimation teehmagpiemented is a modified
version of the Conditional Choice Probability (CCP) estionaof Hotz and Miller [1993 and
Altug and Miller [1998. This estimation technique allows for unobserved indinldspecific ef-
fects to be arbitrarily correlated with the observed chiaréstics in the model. The model employs
a fixed effects method of controlling for unobserved hetensgty. Other models of education,
such asEckstein and Wolpir§1999 control for individual-specific effects by way of a random-
effects, finite mixture specification. These techniquescslfy require that the investigator make
strong independence assumptions on the relationship batilie unobserved covariates, and their
observed counterparts. The cost of the flexibility allowgdlfixed effects specification is the re-
sulting incidental parameters problem. We argue, usingigus results Altug and Miller, 1998
Gayle and Miller 2003 and evidence from the data used in this paper that thesesas likely

to be small.

The incidence of working, the number of hours worked, andntlmaber of years that young
men spend working while enrolled in school varies acrossgagacolod and Hot#2009 docu-
ments that the number of years working while in high schomleased the most for young Hispanic
men, followed by young black men. Young black men experidiie largest increase in working
while in college. In estimating the parameters of the modelpay special attention to racial dif-
ferences in outcomes that are not accounted for by the ricbf sdserved background variables
found in the NLSY79, nor by estimated individual specificefs. The theoretical model provides
a natural separation of these unexplained racial varigirmo preference differences and statistical

discrimination Altonji and Blank 1999.

The empirical results indicate that, conditional on emngll young black males are likely to
spend more time on school activities than white males. Yddisganic males are likely to spend
less time on school activities white males. Furthermorengoblack and Hispanic males are less
likely to be promoted from the grade level than young whitdesaThese young minority males
either repeat the grade level or drop out of school duringti®ol year. These racial differences
remain significant after the inclusion of the rich set of dgnaphic variables and measures of
ability that are found in the NLSY79, as well as measures obgerved individual specific char-
acteristics. The lower probability of grade promotion féadks and Hispanics is interpreted as

capturing race specific differences in the school envirartm8pecifically, in the paper we argue



that this grade promotion probability gap is a measure ofitfierences in the quality of schools

that blacks and Hispanics attend as against the qualityhaiads that whites attend.

Controlling for racial differences in wages, and the afoeationed racial differences in study
patterns and grade promotion propensities, the resulisatelthat there are no race specific dif-
ferences in the propensity of participate in the labor miartkee propensity to enroll in school,
nor in the choice of leisure. These results are in contragtday previous results in structural
estimation that find significant race indicators in theirgfied utility functions. The result is this
paper suggests that racial disparity in outcomes are dueetmatial differences in the school and

work environment, and not to racial differences in tastaeb@meferences.

The model is solved and simulated in order to analyze thetsfa various hypothetical poli-
cies. The first policy analyzed is one where the governmebgidizes students who decide not to
participate in the labor market. The simulated resultsdaid that this policy does very little in
affecting the level of education, labor market experiermeca wages on young men. The second
policy analyzed is one where the school administrationsdjiine school curriculum so that young
men who enroll necessarily spend more time on school aesviSuch a policy can be achieved
by increasing the number of hours in school, increasing thelyer or difficulty of assignments,
after school programs, or Saturday (Sunday) classes. Huétgendicate that such a policy has
significant positive effects on wages and education of wshated blacks, and more modest positive
effects on Hispanics.

The third simulation exercise analyzes a situation wheneaajuality of blacks and Hispanics
are equated to those of whites. The results indicate thapthlicy has significant positive effects
on the level of education and wages of blacks. The effecti®pblicy on Hispanic are positive but
much more modest than that for blacks. The final simulati@i@se evaluates the same policy of
increasing time spent on school activities of blacks angh&hgcs after equating the school quality
of minorities to to those of whites. It is in this environmaevtiere we find significant increases in
wages and education for Hispanics. We find also significaoreases in wages and education of
blacks. The results indicate therefore that policies thaamed at increasing the time minorities
spend on school activities are significantly more effecifitke school environment of minorities

are improved to match those of white.

The rest of the paper is organized as follows. In the nexi@golve present the basic behav-
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ioral model. We then discuss the solution of the model inise¢R.3) and describe the first order
necessary conditions for optimality that will be used inraation. SectionZ.4) discusses the con-
struction of the sample used in estimation, and Secfdb) (iscusses the empirical methodology
implemented in estimation of the parameters of interestti@e (2.6) describes the estimation of
the consumption function and discusses the empirical fgalirSectionZ.7) discusses the esti-
mation of the wage equation and the empirical findings. 8ed#.8) discusses the estimation of
the time spent on schooling activities and the transitiavbpbilities. Section4.9) presents the
methodology used to estimate the conditional choice pritibeb and their corresponding deriva-
tives, which are needed to estimate the preference paresn&iection2.10 presents the moment
conditions and corresponding sample analogs that are nsstimating the preference parameters
of the model, as well as discuss the empirical findings of tlheleh SectionZ.11) presents the
method of solving the dynamic programming model and disssifise policy simulations. Section
(2.12 concludes.

2.2 THE THEORETICAL MODEL

This section develops the theoretical framework that isl igénvestigate how individuals allocate

time between human capital accumulation, labor marketgyaation, and leisure.

2.2.1 Environment

The model is set in discrete tintes {0,1,---,T}. We assume that there exists a continuum of
individuals on the unit interval [0,1]. Associated with Baadividual is aK-dimensional vector
of exogenous covariates, denotgg which is assumed to be independently distributed over the
population with known cumulative distribution functi@(znt+1|z+). In each period, individual
n € [0,1] is endowed with a fixed amount of time normalized to one. Hetroheose how to
allocate this unit of time between leisug, the time spent on labor market activitigg, and the

time spent on school activities;:

1=Int + hnt + St (2.2.1)

11



Definedfy = 1¢,~0y andd = 15,0y Where L, is the indicator function equal to one if the
event in parentheses occurs and zero otherwise. Therengla sbomposite consumption good in
the economy which is consumed and traded by all individuadscy; denote this composite good.
We assume the model has a Markov structure, in which theitohaiy does not need to remem-
ber the full history to solve this problem, but only a summsitatisticx,;, belonging to a finite
vector spaceX. In particular, definghn_p,---,hnt—1) as thep-dimensional vector of past labor
supply outcomes(syt—p, - - - ,Snt—1) as thep-dimensional vector of past time spent on schooling
activities,Sy as the highest grade completed by individuak at the beginning @f andEy; as the
total years of labor market experience accumulated by iddal n as at the beginning of peridd
Define alsqCnt—p, - - -, Cnt—1) t0 be thep-dimensional vector of past consumption. Then the typical

observed state vector for individuaht timet is given by the(3p + k+ 1)-dimensional vectér

Xt = (hnt—p, -+, Mnt—1,Snt—ps++* » Snt—1, Sht—p+1,** » Sty Cnt—ps ** * » Cnt—1, Ent—p, Zt )(2.2.2)
Given that individuah has chosen to enroll in school, he may or may not completegtiaaie
level. If he does complete the grade he is currently enrafiedis level of education increases by
one grade. Otherwise, his level of education remains urggwanT he probability that an individual
advances a grade level given that he has enrolled in schtw &ieginning of periodis denoted
by F (Xnt)-

2.2.2 Technology

We assume that the individual has access to a sector speoifiagiion technology in each period
where, if he works in sector=1,---,J, he produces a quantity of the outpukjhne. Here,wi;j
is marginal product of labor of individual at timet with skill level j. Itis assumed thay;
is composed of exogenously determined time specific aggregate skill pagg, an individual
specific, time invariant productivity effedt,, and a skill specific function of his stock of human

capital, his socio-economic characteristics and othée s&ctorsy; (Xnt):

Wntj = @, jHnY;j (Xnt), (2.2.3)

Thuspnyj (Xnt) is the number of efficiency units of labor supplied by the veoner unit of time in

sectorj, while oy j is the time specific aggregate price of skill in segtor

5To conserve on notation in what follows, we will ugg to denote any subset of this vector.
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2.2.3 Choice Set

This model falls within the class of mixed continuous anccoite Markov decision processes.
The continuous choice variables in this model afghnt,andsy. If hyt = 0, individualn does
not work at timet. Otherwise, the individual works for the fraction of tirhg > 0. Likewise if
sat = O, individualn does not attend school at time Otherwise, the individual studies for the
fraction of timesy; > 0. Define the discrete choice variables for each individual[0, 1] at time

te{0,1,---, T}

1 ifdf=0andd$ =0
Onto = _ : (2.2.4)
0 otherwise
1 ifdf=1andd$ =0
dntl = . 5
0 otherwise
dntz = . 5
0 otherwise
1 ifdlh=1andd$ =1
dnt3 = ] .
0 otherwise

2.2.4 Preferences

Similar to models such adeckman[1976 and Eckstein and Wolpii1999, we assume that at-
tending school provides some consumption value to theiehgdt. Learning may be directly val-
ued by the individual, and social interaction within the @ahenvironment may provide positive
consumption value. However, in this specification, thisstonption value of attending school is
not confounded with the loss in leisure due to schoolingais since leisure is modelled directly.

We specify the contemporaneous utility of attending sclagdbllows:
Untr = uz(die Xnt)- (2.2.5)

Similarly, we assume that there is a utility associated Vabor market participation. We specify

this contemporaneous utility of labor force participatamfollows:
Untz = Uz(df}, Xnt)- (2.2.6)
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Preferences are assumed to be additive in consumption isndeebut not separable with respect

to leisure over time. The contemporaneous utility of legsisrtherefore given by:

Unta = Uz(Xnt, Int)- (2.2.7)

The utility of leisure is specified to be dependent on curteisure level and the level of leisure
consumed over the lagtperiods’. We assume thats is increasing and concavelip. The utility
derived from the consumption good in tirhés also assumed to be increasing and concawg;in

and is denoted by
Unta = U4(Cnt, Znt)- (2.2.8)

We introduce a vector of choice specific utility shiftéeso, - - - ,€n3)’, which are assumed to
be independent ovén,t) and drawn from a population with a distribution function
Qi(&nto, -+ ,€nt3)- They are interpreted to be choice specific, time-varyingratteristics that
partially determine the utility associated with the cop@sding alternatives and unobserved to
the econometrician. Ld} € (0,1) denote the common subjective discount factor, Badienote
expectation conditional on the information set at date Oe &kpected discounted lifetime utility

of individual n is given by:

T 4
Eof 3 B] 3 colUnn+ Uiz + Una + Une + &} (2:2.9)

"The lags in leisure are not specified explicitly here siné®é subset of the state vectof by equation2.2.1)
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2.3 THE OPTIMIZATION PROBLEM

The inclusion of an aggregate component in marginal proditabor 2.2.3, complicates esti-
mation. To make the model empirically tractable, we assumae markets are competitive and
complete. Agents are price takers and there are no disterirothe market for the consumption
good, labor supply and loans, a common interest rate facngWwers and lenders, and that a rich
set of financial securities exists to hedge against uncgytal his assumption incorporates uncer-
tainty in a sufficiently simple manner that leads to a traet@eonometric model. Competitive and
complete capital market assumption was usedbg-Porath1967, Blinder and Weis§1974,
Heckman[19764, and Shaw[1989 to analyze life cycle models of human capital accumulation
This assumption was also recently useddityig and Miller[199Q, Altug and Miller[1999, and
Gayle and Miller[2003 to estimate life-cycle models of consumption, labor sypotd fertility
decisions with aggregate shock.

One key restriction that the assumption of competitive amthfete markets places on the
model is the lack of any binding borrowing constraint. Baritog constraints are popular consid-
erations in the study of educational choice. It is a widesgpostulation that borrowing constraints
critically restricts economically disadvantaged indivédis from obtaining the level of formal edu-
cation that they would have attained otherwise. Howevergethpirical evidence does not support
this view. Cameron and Heckmdt999 1999 conclude that it is the long-term influences of fam-
ily and environment that account for ethnic and racial digigs in school attendance, and not
short term liquidity constraintsKeane[2004 conclude that borrowing constraints have little ef-
fect on college attendance decisions. In the light of theskaher evidences, we abstract from
any considerations of liquidity constraints and thus theuagption of competitive and complete
markets presents itself as an appealing approximation.

Under the assumptions of competitive and complete marketisappeal to the fundamental
welfare theorems which allows us to recast the optimizgti@ilem as a social planner problem.
The objective function of the social planner is the weighagdrage of the expected discounted
utilities of each individual n given in22.9. The social weight attached to an individual is given
by n, 1. The optimization problem of the social planner is subjedhe time allocation constraint

for each individual 2.2.1), as well as the production technology available to eaclviddal as
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reflected in 2.2.3. DefinelL to be the lebesgue measure that integrates over the papuldine

aggregate feasibility condition is given by:
1
/0 [Cot + Bnt + Tht —WechndL(n) <0, t€{0,1,---, T} 2.3.1)

whereay; is the individual savings at time or the value of claims to peridd+ 1 consumption net
of the claims to timé consumptionTt,; is the direct schooling expenses incurred by the individual
if he chooses to enroll in periad

The Pareto optimal allocations are found by maximizing

1T 4
t—1
Eo{ /0 t;B Nn [k;dmk(uml+Umz+Um3+um4+smk)]dL(n>}, (2.3.2)

subject to 2.3.1) and @.2.1) with respect to sequences for consumption, schooling, |aipor

supply{cnt, S, hnt }{_, for all individualsn € [0, 1].

2.3.1 Optimal consumption

Definep'A; as the Lagrange multiplier associated with the aggregassifiity constraint in equa-
tion (2.3.1). Given the assumption of an interior solution for consumpallocation, the set of
necessary conditions characterizing optimal consumgiiiocation are given by

ouz(Cnt, Xnt)

I = NnAt, (2.3.3)

for all n € [0,1] andt € {0,---,T}. Under the assumption of contemporaneous separability of
consumption from education and labor supply choic28.8 can be used to solve for individuals’
Frisch demand functions which determines optimal consiomgatllocation in terms of the time-
varying characteristicg,; and the shadow value of consumptigm\;. Assume that the utility
derived from consumption takes on the following augmentB&RA& specification:

(0]
Cnt

us(Cnt, Xnt) = g(xnt)? (2.3.4)
Then condition2.3.3 takes the form
g(Xnt)Co - = NnAt. (2.3.5)

16



Multiplying (2.3.5 by a~'c, gives the following alternative representation of the iadi contem-

poraneous utility derived from consumption:

NnAt

. 2.3.
o o (2.3.6)

u3(Cnt, Xnt) =

The empirical strategy comprises of estimating the pararaeff the utility functioruz from (2.3.3
and @.3.4 to obtain estimates of the individual specific weightsas well as the Lagrange multi-
plier A;. These estimates are then substitute®iB.9, which is in turn substituted into the social
planner’s objective functior2(3.2.

Under the assumption that none of the consumption good ited/as the optimal allocation,
the first order necessary condition with respect to the tipatage multiplieB!A; gives the optimal

consumption allocation for each individual

Cnt = Wnthnt — @nt — Tht. (2.3.7)

2.3.2 Optimal schooling and labor supply

Characterizing the optimal labor supply, leisure and sthgalecision is more complicated. The
optimal schooling and work allocations are confounded lgydbnstraint imposed by (2.7). In
particular, in any period, increasing both schooling armmbfssupplied by individuah necessarily
leads to a decline in the level of leisure enjoyed by thatviddial. Consequently, the optimal
allocation of labor supply, education and leisure cannosdygarately solved for as in the case
of optimal consumption allocation. Followingtug and Miller [1999, the conditional valuation

functions associated with the discrete choices on indalidun periodt is defined as:

T_ r—t 37 d U —|—U
Vntj+3ntj5 max Et Zr_tB [ZK_O nrk( o nrl . (238)

{snrshar s ‘Hx_lr]n)\r(Wnthnt — 8nt — Tht) + Enrk) [ Ontj = 1
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Let dr?tj be the socially optimal decision by individuain periodt. The termVyj + €ntj denotes the

social value from individuah choosing alternativg at timet. Accordingly, individualn’'s choice

of alternativej at timet is optimal if

1, if Vitj+entj>Vitk+Enk VK# |

dd = (2.3.9)

0, otherwise

Leth%, andsg; be the optimal interior choice of labor supply and study ti@&en that it is socially

optimal for individualn to work in timet, h%, must satisfy

aVntj _
Ohnt

0, for j=1,3. (2.3.10)

Likewise, given that it is socially optimal for individualto enroll in timet, 3, must satisfy

%V—S”:tj =0, for j=2,3. (2.3.112)
In order to express the conditional valuation function remely, definepn; to be the probability
of individual n choosing optiorj in periodt conditional on the information set available to him in
periodt
o Vntj—Vhtot+Entj Vhtj—Vnt3+Ent;
pui=[ [ - dQu(emo, +++ma): (2:3.12)

The information set available to individualat periodt is composed of the observed state vector
Xnt, and the unobserved individual specific and aggregate stogkroductivity and consumption.
Define this state vector a8t = (X, n, Nn, At, 01, - -+ ,6xy)’. Define alsczﬂl,i1t to be the set of all
possible realizations of the state vector for individoal i periods aftet given the realization of
the state vectowy at periodt. Correspondingly, leF; (w,93|wm> is the probability that the state
vector of individualn in periodt +1i is ll—'ﬁ,it), given that his state vector in peridds W,; and he
chooses alternativein periodt. Then from equation.3.9, the conditional probability that alter-

native j is chosen by in periodt in equation 2.3.12 has the following alternative representation
Prtj = Pj(Wnt) = Efdyj[Whd, (2.3.13)
andHotz and Miller[1993 prove the existence of a mappig : [0,1] — [ such that

¢k(pk(wnt>) - E[£ntk|wnt7dgtk - 1]7 k S 07 e 73' (2314)
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Therefore, the conditional valuation function has thedwihg recursive representation:

Vhtj = Ma¥y,>0 {Unto +Unt1 + O(_lr]n}\t (Wnthnt — 8nt — Tht) (2.3.15)
1 1 o

+B[Zw§#>€% [Zﬁzo P 1k(Vor L+ Ok(PR(WH ) [ F (Wit |wnt>} |Ontj = l}-
Finally, the optimality conditions for interior solution tabor supplyh% (2.3.1Q and study time
2. (2.3.19) are given by

(1)
WUni y Nndeyy, 3 O(Voer k(W)
ahr:t + ?1 Wnt = _B{ ng%)e/q%t |:2k:0 [pntk+1 Ohnt o

OB (e Ok W) F (WY | W) (2.3.16)

@
+ 380 Pt (Vi 1+ 0P W ) LAY ey = 1, and,

3(Va wiy
Bho — —B{ ngpeggt[ii’:o[pmkﬂ( t+17k+g>;<tpk( )
+ OB (Vo ke D P WhE)))] F (PR | Wit) (2.3.17)

4570 Prec Vo Ou(p(WE)) T 00— ),

for j = 1,3, andj = 2,3 respectively. The first condition ir2(3.19 says that the net current
benefit from an additional hour of work is equal to the preskstounted value of future utility
costs of that additional hour. The current marginal utilityn an additional hour of work is equal
to the net of the utility cost of leisure forgone, and the eonption value of the additional goods
and services produced. The future value of an additionat bbwork is decomposed into three
main components. The first term on the RHS captures the difesstt of an increase in hours
worked on future productivity and future utitily. Futurdlity is directly affected because of the
assumption that current and future leisure are interteatlyaronseparable. Future productivity is
affected by the assumption that current labor force padicdbn enhances human capital, which is
reflected in higher future marginal productivity of labohél'second term on the RHS captures the
indirect effect on future utility by current hours workeddhgh its effect on future probability of
employment. The third term on the RHS accounts for the ictliefect of current hours worked
on future utility through its effect on the transition praliay. The probability of being promoted

a grade level given that the individual is currently enrdlis assumed to be dependent on hours

worked.
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2.4 DATA

The data is taken from the 1979 youth cohort of the Nationalgitmdinal Survey of Labor Market
Experience (NLSY79), a comprehensive panel data set thlatM® individuals over the period
1979 to 2000, who were 14 to 21 years of age as of January 1, TBé3ata set initially consisted
of 12,686 individuals: a representative sample of 6,11ividdals, a supplemental sample of 5,295
Hispanics, non-Hispanic blacks, and economically disathged, non-black, non-Hispanics, and
a supplemental sample of 1,280 military youth. Interviewerevconducted on an annual basis
though 1994, after which they adopted a biennial intervieheslule. This study makes use of
the first 16 years of interviews, from 1979 to 1997 he data is restricted to include males and to
exclude respondents with missing observations on the kigjtade level completed that cannot be
recovered with high confidence from other data informatifist and description of the variables
used in the model is presented in Table 1. Table 2 presenthagstatistics of the sample used
in this study. Attrition accounts for a loss of approximgt2P percent of the individuals between
1979 and 1994. However, the largest loss occurred betwe@d 48d 1991, late in the sample

period.

2.5 ESTIMATION METHOD

The empirical analysis employs a multi-stage version ofcthraditional choice probability (CCP)
estimator developed iHotz and Miller[1993 and extended byltug and Miller[199]. We out-
line the estimation strategy of each stage in turn. The pat@ms of the model can be estimated
from the optimality conditions derived in sectidh ). First, there is contemporaneous separability
between consumption and labor supply in the utility functiGiven that consumption is measured
with error and that the measurement error is uncorrelatédtive information set of the individual,
the consumption function can be estimated separately frenetjuations characterizing optimal
discrete choice to provide first stage estimates of the ogkimelow price of consumption. Sim-

ilarly, assuming that observed wages are noisy measurd® aharginal product of labor, where

8Appendix 1 provides a detailed discussion of the data coctstm and sample restrictions.
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the measurement error is assumed to be independent of trenation set of the individual over
time, the parameters of the marginal product of labor canstienated separately from the other
parameters of the model.

Examination of equation®(3.19 and @.3.10Q in section 2.3) suggest that estimation of the
conditional choice probabilitiepxn; and their derivatives with respect to hours workegd and
study times,; are required. These quantities are estimated nonparaaitiand substituted into
the necessary conditions for optimal choice and hours ailoc. The technique employed here
also requires that the transition probabilities be es&thal he remaining parameters of the model
are estimated by nonlinear GMM, where the moment condittmagormed as sample analogs of
equations2.3.9, (2.3.16 and @.3.17. Since the first stage regressions are of interest in thgir o

right, we discuss them in separate sections.

2.6 CONSUMPTION

Estimation of the marginal utility of consumption requifagther parametrization of the utility of

consumption given by equatio.8.4. We assume thaj(xn) has the following parametrization:

9(zt) = exp(x,:B1), (2.6.1)

The first order necessary conditions for optimal consunmgitocation are then given by:

exp(XyB1)chy = Nnht. (2.6.2)

The necessary condition2.6.2 and @.3.7) provide the key equations for the estimation of the
shadow value of consumption and the individual specific effecf,. Taking the natural log of

equation 2.6.2 and rearranging results in the following equation

In(cnt) = (1—a) B1— (1—a) " tIn(nn) — (1—a) " tIn(Ay). (2.6.3)
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Assuming that observed consumptigy iS measured with error so thaf = cye’™, wherecy; is
the true level of consumption, arvnt|Xnt, Nn, At] = 0. LetA denote the first-difference operator.

Taking first difference of equatior2(6.3 and rearranging, we have that
Ayt = AIn(Ey) — (1—a) 1AX,B1+ (1—a) 1AIn(Ay). (2.6.4)

Equation R.6.9 is estimated by the efficient GMM. The estimated resultsahl@4 indicate that
consumption increases with the size of the family, averagaly income, and the average age of
the family. Consumption decreases with the level of unegmmknt local to the residence of the
individual. Table4 also suggests that for a given level of education, consumjgiincreasing and
concave in the age of the individual. For a given age of theviddal, consumption is decreasing
and convex in the level of education.

The first panel of Tablé reports the estimated log change in aggregate prices weticdh
responding standard errors. The graph along with the 95%dsmte interval are also presented
in Figure 1. These figures show that the changes in aggregeaés are estimated precisely. The
figure also show that there are significant variation in threeteffects. The simple F-test reject the

restriction tha{1—a)~tIn(Az) = --- = (1—a)~tIn(A1) at the 99% confidence level.

2.7 WAGES

Assume that the time varying component of the individuat&lpctivity function has the represen-

tation:

Yj (Xnt) = exp(XyB2;). (2.7.1)

Observed wages are assumed to be noisy measures of the ahprguotuctivity of labor, where the
multiplicative error term is assumed to be conditionallggpendent over individuals, the covari-

ates in the wage equation, and the labor supply decision

Whtj = cqjunexp(xﬁnsz)exp(Snt). (2.7.2)
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The individual specific effects captures absolute advantdghe individual in the labor market
[Willis, 1986. Assume that human capital comes in two types, an unskiyipd (j = 1) and a
skilled type ( = 2). The skilled group is defined as having at least 16 yearsraidl education.
All occupations in the economy are sorted across these gracgording to the level of education
required to carry out the task. Workers are assumed to begtedibstitutes within, but not across
efficiency units. Since the model is in the panel data franmeywwe do not need to assume that
schooling and employment choices are independent of theidoel’s ability as captured by the
individual specific effect. This is in contrast to the modedgosed inWillis [1986. The absence
of this restriction serves to eliminate the problem of sangalection caused by ability bias.

Another key consideration in the estimation of equat@®i7 @ is whether there is the need to
estimate separate models for the different racial group® résults oNeal and Johnsof199qg
and Altonji and Blank[1999 indicate that the large majority of the wage gap betweeesan
the NLSY is due to differences in measures of abilities (AF§Zbres) and family background
(parents education). Since these measures are time iniyaxiauitable transformation of a single
wage equation provides accurate estimate in the pooled data

Taking logs of both sides of equatio.7.2 and taking first difference gives the following

equation:
Agnt = AIN(Wntj) — Aln(oxj) — AxyB2j (2.7.3)

Defineen1 to be equal one if individuah is belongs to efficiency unit 1 in peridd Likewise,
defineey2 to be equal one if individuah is belongs to efficiency unit 2 in periad Equation
(2.7.3 is estimated by the efficient GMM. The skill specific coetfitis are obtained by interacting
the explanatory variables with these indicator variabtasefach skill group. The skill specific
aggregate effects are also obtained by interacting thedum@mies with these indicator variables.
The estimated results for the wage equation are reportedhle®. The positive coefficients
on lagged hours indicate that there are positive returnsitthe job training. Also, the effect
of past hours worked on current wages decline with furthgs.laThe declining magnitude and
significance of lagged hours worked is consistent with th@estiure of depreciation in human
capital. The returns to on the job training are higher folle#tiworkers than for unskilled workers.

At 2000 hours per year, the wage elasticity of the first laggmars is 0.04 for low skilled workers
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and 0.06 for high skilled workers. However, the wage eléstiof the second lagged hours is
0.01 and 0.02. These gqualitative results are in line witls¢hfound inMiller and Sander§1997,
Altug and Miller[1998 and Gayle and Millef2003.

The coefficients on the education and experience varialéealbestimated highly precisely,
with the exception of education squared for low skilled vesg@ The coefficient of squared edu-
cation is positive and significant at the 1% level for the rsghled group, indicating nonlinearity
in marginal returns to education. We find that the coeffic@nthe interaction term between edu-
cation and experience is positive for low skilled workerd argative for high skilled workers, both
significant at the 1% level. This suggests that in terms optieeluctivity of young males, formal
education and labor market experience are complimentseitoth skilled sector, and substitutes
in the high skilled sector.

The flexibility of the specification of the wage equation atdlows for some heterogeneity
in the returns to education. It allows for comparative ad@ga with respect to human capital in
the labor market to be manifested through differences itepa of schooling and employment.
At first glance marginal return to education for both thelskiland unskilled sector seem very
low. Indeed, the calculation would produce a marginal rdtesturn of 0.024 for low skilled
workers and 0.069 for high skilled workers of age 30 in the @amTable5 of Card[1999 lists
the estimated marginal returns to education found in a narobstudies. The marginal returns
to education found here are lower than these other estimidtesever, these other studies do not
account for growth in skill specific aggregate wages. Whenaterage growth in log aggregate
wages in included in the calculation, the estimated matgetarn to log wages increases to 0.044
for low skilled workers and 0.217 for high skilled workers afe 30. The estimated marginal
returns to education in Tabteof Card[1999 all fall within the range.

The last two panels of Tablé report the estimated changes in unskilled and skilled piece
rates. These series are also plotted in Figures 2 and 3 alahgheir 95% confidence bands.
The changes in unskilled piece rates ar less precisely a&&tdrithan the changes in skilled piece
rates. Two separate hypothesis tests are performed. Thésfias F-test of the restriction of

equality of all the aggregate effed$n(wp1) =--- =Aln(wr1) =Aln(wypz) =--- =Aln(wr2). The

9Because most individuals in the sample have no breaks iroingantil they have completed their total level,
identification of level of schooling in a first difference medds fragile at best and is excluded from the specification.
We exclude the level of experience for the same reason.
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second is an F-test of the restriction of a single set of tiamying aggregate effectsin(wyp1) =

Aln(uyy),---,Aln(wr1) = Aln(wrz). Both restrictions are rejected at the 99% level.

2.7.1 Individual-specific Effects

To estimate preference parameters of the model we neednmagsthe individual specific effects
Nn andy,. They are estimated from the residuals in the log-lineasives of consumption and
wage equation2(6.3 and @.7.3 respectively. These estimators are subject to small sabipé
whenT is small. HoweverHotz et al.[198§ provide Monte Carlo evidence that the small sample
bias caused by using such fixed-effects estimates in conpilte remaining parameters of interest
are quite small for moderate to large sample sizdtig and Miller[199§ and Gayle and Miller
[2003 estimate the parameters of their structural model underassumptions on the fixed ef-
fects. The first is the traditional definition. The secondiasss that fixed effects can be written as
functionals of observed covariates. Under the second gasamconsistency of the other param-
eters of the model is achieved. In their studies, the regp#stimates of the structural parameters
were very similar, and lead to the same conclusions. Thasialficates that the bias induced by
employing estimates of the traditional fixed effects is gginall in these models. The estimates of
MU, andnp are calculated from samples whd@ke= 15 andT, = 12 respectivelyHahn et al[200]]
suggests that these sample sizes are actually large, mypilyat the bias of these estimates are
expected to be small.

The fixed effects estimators of(lm,) and Innn) are obtained as simple time averages of the

estimated residuals of the consumption and wage equations.

2.8 STUDY PATTERNS AND THE PROBABILITY OF GRADE PROMOTION.

2.8.1 Study Patterns

In 1981, the NLSY79 collected information on the patternsaifool activities of the respondents
that are enrolled in school. In particular, the NLSY79 askexirespondent about the amount of

hours they spent in school during the week before the irterdate. They also asked whether or
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not the time they reported is typical or not, and if no, to meploe typical hours spent in school.
The respondents also reported the number of hours they spahying outside of school during
the week before the interview date. These responses argaisedstruct yearly measures of the
time spent by individuals on school activities. We show tiva can get reliable estimates of time
spent on schooling activities from this data. We call thasetispent on schooling activities study
time. Clearly this includes not only the time the individspkends actually studying, but also time
the student allocates to activities related to school, dating regular hours of school and outside
of school.

Assume that the study time of an individuain periodt is an exponential function of ob-
served demographic characteristics and literacy indisatbthe individual, as well as unobserved

individual-specific characteristics ,

Assume further that observed study time is a noisy measurtheirue study patterns of the

individual, where the measurement error is assumed to lepardient of the regressors.
St = exp(XyBa) explent). (2.8.1)

Under these assumptions, we can consistently estimatetttig 8me of individuals enrolled in
school using OLS on the log-linearized version of equatib8.().

To estimate the preference parameters of the model, we needséstent estimate of study
time given that an individual has enrolled in school. Thusit#sue of sample selection bias does
not affect the estimation of equatio@.8.1). Another consideration is the fact that individuals
were questioned about their study patterns for only one wpeek to the interview period. If the
interview is taken at a time where there are generally acaddeadlines such as exams, then
the reported time spent studying may be overstated. Howeterviews were administered to
different individuals at different times of the year. Thiskes plausible the assumption that on
average, one does not expect to observe over nor underirgpofstudy time in the data.

Table7 reports the regression of the time spent on school actvifidhe number of observa-
tions in estimation is 2253. All variables included in theesification are significant at the 5%
level. The F-statistic for the model is 20.47, and the Adjd<® is 11.24%. These statistics show

that the instruments do well, both individually and as a gtao capturing variation in log study
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time. In particular there is no problem of weak instrumentghis estimation of study time. This
issue of weak instruments is important since the predicédales of study time serve as first stage
estimates in all the estimators that follow.

The results in Tabl& show that lagged enroliment decisions are positively aatest with
study time, with further lags becoming less important. Tize sf the coefficients indicate also
that lagged enrollments decisions are also quite relewagtplaining current study time. Lagged
hours of work are negatively correlated with current stuahet with diminishing impact for further
lags. The magnitude of these effects are also considerbatal&iduals with higher AFQT scores
spend more time on school activities. Since the AFQT test acimsinistered in 1980 and the
data on schooling activities were collected in 1981, thereoiissue of feedback effects of current
study time on AFQT scores. The results also indicate thatithe spent on schooling activities
is approximately 11% higher for blacks and 10% lower for hrgps compared to time spent by
whites. These differences are quite large, working out tadpFoximately 154 more hours per year
for blacks and 140 less hours per year for hispanics at arageesf 1400 hours, approximately

what is in the sample.

2.8.2 The Probability of Grade Promotion

An individual who decides to enroll in a particular gradedemay or may not be promoted from
the grade. This probability of promotion is of interest imvn right, and is also a key ingredient

in the final stage estimation. Assume that this probabiikes the logit form:

exXp(XntBa1) h eXp(XyBaz)

_(1_dh
F0O) = (1= ) 1+expBar) " 1+exp(XBa)’

(2.8.2)

Similar to the study time regression. What is needed for isterst estimates of the prefer-
ence parameters of the model is a consistent estimate ofabalmlity of grade promotion given
enrollment. Estimation of equatio2.8.2 provides us with this. In principle, if the enrollment
decision is correlated with the error term defining equati8.2, then the coefficient estimates
obtained would be biased and inconsistent and not condiwidéect interpretation. However,
the inclusion of AFQT in the regression should at least rategthe level of biased induced by

regressing only on the subset of individuals that choosetolle
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Another issue is the choice of separate regressions foetha students who choose to work
while enrolled in school and the set who choose not to workendmrolled in school. This main
reason for this specification is to improve the flexibilitytbé resulting estimated transition prob-
abilities. However, if the decision to work is correlatediwihe error term that defines equation
(2.8.2, then the coefficient estimates are expected to be biagkdhaansistent. The inclusion
of our measure of labor market ability, the estimated fixddat$ from the wage regression are
included to reduce the bias of the estimated coefficientshévery least however, the coefficients

in equation 2.8.2 can certainly be interpreted for the relevant groups oddals.

A third issue involves the appropriateness of includingenir period decision variables in
equation 2.8.2. The theoretical model assumes that the individual malkesdmnooling and em-
ployment decisionsi;, sqt, d%, hy) at the beginning of each period conditioned on the inforomat
set available to him at that point in time. The grade prommopombability function is known by
the individual, and he has control over it in so far as he hadrobover the decision variables.
However, the uncertainty is not resolved until the begigrohthe following year. The timing of

the model thus makes the peribdecision variables predetermined in equati:8 (2.

Table 7 reports the result of the logit regression of the @bty of completing a grade and
Table 8.1 reports the corresponding average derivatives. Thelatdrerrors reported are cor-
rected for the inclusion of predicted study time. Compuotabf the corrected standard errors is
complicated by the nonlinear specification of the study tiorestion and the probability of grade
transformation. The details are presented in Appendix 2darpleteness. The number of observa-
tions used in estimation for the two groupi§,(= 0, anddf}, = 1) are 2216 and 56086, the Likelihood
ratio statistics are 400.65 and 1350.78, and the PsedidcaRe 15% and 17%. Furthermore, all
coefficients except for the constant term are significanhatli0% level, and slope parameters,
except for 2 are significant at the 5% level. Note that sommlbas are dropped from estimation

in either groups because of their low precision and stasiktirelevance.

The results in Tabl@& indicate that lagged labor market participation decisiarespositively
correlated with the probability of grade promotion. Thigyides evidence for the congruence
hypotheses. However, the effect is a lagged effect, andhtleepretation varies slightly from that
proposed byD’Amico [1984. The decision to participate in the labor market in eithiethe last

two periods increases the current probability of grade tton by approximately 5%. The full
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model will have to simulated to see exactly how large thigafturns out to be on completed
education. However, at this stage it is clear that a 5% irser@athe probability of completing a

grade level is a significant magnitude.

We find that blacks have a lower probability of being promategtade level than their white
counterparts. For the group that works, hispanics also adweer probability of being promoted
than their white counterparts. This result is not simply ¢ressical drop-out story of minorities.
The interpretation of these coefficients are that: givenwades, one black and the other white,
with the same abilities (as measured by AFQT scores and timatsd fixed effects), the same
hours studied, the same hours worked, and in the same gragledng with other conditioned
covariates, the black male has a significantly lower prditgloif being promoted from that grade
level. To understand what may be driving this result, onetrals® look at what in not included
in the regression, that is, what factors are not controltadahd may be correlated with race.
The primary excluded factor in the regression would be thalityuof the schools attended. It
is well known that the quality of schools attended by blacks @n average lower than those
attended by their white counterparts. | argue thereforettiganegative coefficient of blacks in the
grade advancement regression captures the lower schappaytunities and qualities available
to these racial groups. The quality of schooling is typicatleasured by, among other factors,
the level of funding that school receives, class size, iti@dar the student-teacher ratio, and the
socio-economics conditions of the community surroundiregschool. The available data does not
contain information on these measures of school qualityvé¥er, if one is only interested in the
difference in schooling opportunities across races, asstiidy is, and not to identify the sources

of these differences, then the estimated regression igiguifi

The results in Tabl8 also indicate that the probability of grade level promot®mcreasing
in time spent on schooling activities for both groups, andcawe for the group that works. Con-
versely, this probability is decreasing and convex in haent in the labor market. Students in

grades 11 and 12 have a larger probability of being promdtaxa tollege students.
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2.9 CONDITIONAL CHOICE PROBABILITIES

Estimation of conditions characterizing labor supply ando®ling decisions also requires that
estimates of the conditional choice probabilities defineequation 2.3.19. Inclusion of the
individual-specific effect, and time-specific effects aplaratory variables allows us to treat the
sample as pooled cross-section and time series data thdejgendently distributed over individual
and time. This implies straightforward nonparametricreation of .3.13.

To estimate the preference parameters, we also need taagstine conditional choice proba-
bilities conditional on all the states that remain feasifdlais is done by taking advantage of the
finite state dependence of the model. In particular, we needttimate the probability that individ-
ualn chooses alternativgin periodt +i conditional on observing stakein that periodp; (wfjt)k).
We achieve this by estimating the probability that an obet@nally equivalent individual chooses
alternativej in the current period conditional on observing the skdtethe current period. The va-
lidity of this method depend on the inclusion of the indivédhspecific effects and the time-specific
effects in these regressions. These auxiliary CCP’s ama&®d using nonparametric techniques.
The technical details of these estimators are outlined ipefplixA.1.3.

Table 10 presents the means and standard deviations of these estiprababilities and the
required derivatives. The sample average of the CCP’s aral ¢g the sample average of their
corresponding indicator functions with 4 decimal placesisTindicates that the bias in these
estimates are small. The relative magnitudes of the camditistate probabilities are also plausible.
The probability that an individual chooses home producgmen that he enrolled in school last
period and did not get promoted the grade level is larger tharprobability of choosing home
production if he was promoted.

The average derivatives of the conditional state proliasliare also empirically plausible.
An additional hour of work in the past reduces the probapifitat the individual will choose
home production in the current period. An additional housdtfool activity in the past increases
the probability of choosing home production in the curreatigd if the individual did not get
promoted the grade level. On the other hand, an additionad bbschool activity in the past
decreases the probability of choosing home productionercthrent period if the individual was

promoted the grade level.
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2.10 SCHOOLING, PARTICIPATION, AND HOURS

2.10.1 The moment conditions.

Estimation of the remaining parameters of the model make®tian alternative representation of
the conditional valuation function derivedliotz and Miller[1993. This requires that parametric
restrictions be placed on the utility functions. Let the gaments of the utility of schooling, labor

supply in equationZ.2.9, and utility of leisure in equatior(2.7) take the form

U (Xnt,dny) = dXeBs, (2.10.1)

Up(Xnt, dfy) = dfixBe, (2.10.2)
p

Us(Xnt, Ont) = IntZyB7+ Zjéilntlnt—i- (2.10.3)
i=

The utility of leisure is assumed to be quadratic. Econoimaoty suggests that the utility of leisure
isconcave in leisuréy < 0. The parametei,i =1,-- -, p capture intertemporal nonseparabilities
in the preference for leisure. For- 0, & < O implies that current leisure and leisure lagged
periods are intertemporal substitutes. On the other hgnd,0 implies that current leisure and
leisure lagged periods are intertemporal complements.

Define® = (B, By, B,, 8o, -+ ,8p,0)', Y= (B, ,B})’, P= (Pno,---,Pu3)’. LetF denote
the set of conditional state probabilities and their reté\derivatives and le® = (6',y, P, F')’.
Define alsdr(]t) =1, I( ) =1— hnt, Ir(]t) =1-sq, andlr(,t) = 1— hy — St. By substituting these
functional forms for the utility functions into the Eulermdition for hours 2.3.16, we derive the

following moment condition:

Mia(©) = dout [a Mhewioe — Z4yBs — 280lt’ — 5018 (I + B)
ool
_Z| 1BI ( nt1> 1%4“1)
g [0 oAeWn; — Z4yBs — 280l — 37 8i(Ine-i + B)

opo(wl) )
—5P 16'[ o(Why) e F () 4 po( W)~ 1M<l F (X))

Po( fn)s) OF (Xnt)
+|n(po(WfJ34) O ||
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Likewise, we substitute the utility functions in to the apélity condition for study timeZ.3.17

to obtain the following moment condition:
Mh2(©) = chiz | ~ZBs — 280ly — 3§18 (Ini + B)
~ 5P 1B { o) BRI () po(Wiy) 2B (1 F (i)
+In (2 ii::ﬁj) "Zg’;’;‘)_ _ + O3 [—Z§1t35—250|r(\?) — 3018 (ne-i +B)
— 5708 [ o Wil 1O )+ po Wiy 1Y) (1 F ()

Snt
u'J“))) 9F (X)) | |
+|n pO( nit5 Xnt )
(pO(qJ(t)4) Ot 1]

n

= | =

Additional moment conditions are formed from the optimaladete choice conditions in equation
(2.3.9. In particular, we obtain the following moment conditidinem the optimality condition

for choosing alternatives 1,2, and 3:

M3(0) = dn [In (g”té) XuBo + XiB7(1 —15) +Bo(In” — 1)
. ©
+ 30 &8 1) (nei 4+ B — Mo (i) — Ziple'm(EO(i?;?))}’

o( ntl)

Ms(O) = dne2 [In( ) X Bs + X B7(18) — 1))
+50( nt _lnt )+Z| 5|(nt —|r(1f))(|ntfi+|3i)+nn—)\tm
=57 1B |InPo(Wio) — N Po( Wi, F (xe) — In Po(Wiga) (1~ F (xw)) ||

)19

Cnta ['n< ) — XBs — XBs + Xy Br(Ihy) — Iy
+50( nt _lnt )+Z| ( nt _llgt))(ntf +B - (Wnthnt—T[nt)

— 501 B [In po(WSip) — I Po(Wiga)F (a) — I po(W ”)(1 F )]

Myts(©)

Definemp:(©) = (Mmy(0©), - -+ ,my5(@))" and letT denote the set of periods for which the working
and schooling hours, enrollment and participation coodgiare valid. Letn, = (m),---,m
denote the vector of empirical moments for a given individueer time. We further define the
weighting matrixQ = E[m,, m;] and note that this matrix is block diagonal sirf&émyimng = 0
fors<t.

In order to increase the finite sample precision of the esémaf the remaining parameters

of the model, we implement a iterated GMM (GMMI) variationtbeé Nested Pseudo Likelihood
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Algorithm (NPL) proposed byAguirregabiria and Mird2003. This algorithm consists of two
steps. The first step is where GMMI is implemented to obtaiimedes of the preference param-
eters, give an initial estimated of the CCP’s. The secong istavhere the CCP’s are updated
using the estimates of the preference parameters. To begrdefinedX = (¢',7, (P)’,F’)’, and

o5 = ((8%),¥,P',F’)'. AtiterationK > 1 of the outer algorithm, we apply the following steps

Step 1:0btain new estimates & 6%, from the following iteration inj > 1:
" N Ty .
i _ _ i1 -
O —agmad (@Y | @)t el (2.10.4)

whereQI~1 is the weighting matrix evaluated @ %, in which 8 = 8X:J~1. This iteration is
repeated until convergence@ris achieved, which is denotef
Step 2:UpdateP using the estimate8< as follows:
PK = exp(V;(©) —Vo(©))P5 *
=exp(m2(@5))PE 1, j>1, (2.10.5)
PY =1-3],PC

Iterate inK until convergence if? and® is reached.

The convergence of the CCP’s is stated in PropositionAgufirregabiria and Mirg2003, while
the convergence of the GMMI is discussedHansen et al[199§. From our experience, it seems
that the iteration in step 1 of the algorithm improves gretite stability of the overall algorithm.
The nature of the iteration in the CCP’s along with the inidosof the pre-estimate§), F)’
make the correct standard errors of the estimaté&smainstandard. To derive the correct standard
errors, we implement the technique proposeN@wey and McFaddef1994 andNewey[1994.
Interestingly, because of the structure of the state spatieei model, repeated use of the law of
iterated expectations results in significant simplificatdd the asymptotic variance. In particular,
no post estimation is required to correct the standardriidris greatly reduces the computational
burden of the CCP estimator. The key effect of the iteratiotihé CCP’s is an alternative specific
re-weighting of the influence functions of the pre-estimstd his re-weighting is such that a larger
weight is assigned to alternatives with a higher probafidlitoccurring. The asymptotic properties

of this estimator are discussed in apperdik.5.
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2.10.2 Consumption Value of School Attendance

Tablell reports the estimated psychic value of enrollment. Theltesdicate that the consump-
tion value of schooling is increasing and concave in thellef’/education. For a given age, the
consumption value is decreasing in level of education. &s&gns capture the decreasing rate of
enrollment in school for higher levels of education and olddividuals.

The coefficients oBLACK andHISPANICin the consumption value of schooling are positive
by not significantly different from zero. This result holdgmand without the inclusion of AFQT.
This implies that after controlling for racial differenceswages, hours worked, time spent of
schooling, and school quality, black and Hispanic malemanemore likely to enroll in school than

their white counterparts.

2.10.3 Fixed Utility of Participation

Table 12 presents the estimate fixed utility of participating in thbdr market. We find that the
consumption value of labor force participation is incregsand concave in the level of labor
market experience. However, these coefficients are imgelycestimate. We find also that for a
given age, the consumption value of labor force particgrats decreasing in the level of labor
market experience. The coefficients BbACK andHISPANICin the consumption value of labor
force participation are negative, but imprecisely estedat This results the racial disparity in
the employment rates is not explained by differences in tbpgnsity of participate in the labor

market.

2.10.4 Utility of Leisure

The estimates of the utility of leisure are reported in Tal8eThe results indicate that the utility
of leisure is (weakly) decreasing and convex in age. Thigltess also found irAltug and Miller
[1998 andGayle and Millef2003. The results also indicate that the utility of leisure inr@asing
and concave in leisure. However, the parameter capturimgdhcavity is imprecisely estimated.
We find also that the coefficients on the black and Hispaniiods are not statistically different

from zero. In other words we find no evidence of racial diffexes in the utility of leisure. In other
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words, the observed racial differences in hours worked &udlygime are not explained by racial

differences in the preferences for leisure.

2.10.5 Intertemporal Nonseparabilities in Leisure

The results in tabld4 indicate that preferences are intertemporally nonseparaleisure. The
positive coefficients on the interaction between currentlagged leisure in the utility of leisure
indicate that for males in the sample, current and futusautei are complements in intertemporal
preferences. This indicates a habit formation pattern /liwcreases in current hours worked
decreases the future marginal disutility of work. Likewiggreases in current hours spent on
school activities decreases the future marginal disyiitstudying.

Intertemporal nonseparabilities in leisure is estimatecimong otherg:ckstein and Wolpin
[1989, Miller and Sanderg1997, Altug and Miller [1999, and Gayle and Miller[2003. The
results concerning the intertemporal substitutabilitycomplimentarity of leisure varies across
these studiesAltug and Miller [199§ conjecture that employing data sampled over shorter time
intervals result in the finding of complementarity betwearrent and past leisure choices, while
data sampled over longer (yearly) intervals result in theifig of substitutability between current
and past leisure. However, the results in table 11 run inrashto this conjecture, since in this

study, hours are measured annually.

2.11 SOLUTION AND SIMULATION EXERCISES

2.11.1 Solving the model

Given the estimated parameters, the model is solved by nuddmagkward induction from age 65
to age 15. Ideally, we would like to treat hours worked andligtti completely symmetrical, as
done in the estimation. However, solving for both hours wdrknd studied on a fine enough grid
is infeasible. To bypass this problem, we use the estimatectibn for study time to approximate
optimal study time in the solution. This approximation malselution of the model tractable.

However, this function is valid only for males that choosemwoll. While this was not a problem
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for estimating the model, it may cause biases in the sinariagsults.

With the use of the study time function, optimal hours camthe solved for on a fine grid.
The problem of interpolating off this grid then arises. tptation is carried out by a third order
polynomial regression of the value at each point of the gricttee corresponding state space.
The parametric regression is preferred over nonparanietrieel techniques because it allows for
a finer grid on hours and avoids the corresponding curse oémkionality that nonparametric
techniques face. In solving the baseline model, the smdtfeat age 40 is 0.994, indicating that
the third order polynomial approximation is expected tovje very precise approximations of
the value functions off the grid of hours. We also assume énsibiution that nobody enrolls in
school after the age of 36. This is justified as in the data anlgry small fraction of the sample

enrolls in school past the age of 36.

The baseline model is solved assuming that the economy iguilil@ium where aggregate
components grow at an equilibrium rate of the average in #meptée period. These aggregate
components are the shadow price of consumption, the slatliBp piece rates, and tuition costs.
The assumption of zero growth rate in aggregate skill pneasid result in unrealistic predictions
of wages over the life cycle. The baseline model is solvedl@®00 replications separately for
whites, blacks, and Hispanics. Talld reports the baseline simulation by age along with the
corresponding sample averages from the data. The basebidel nmder-predicts the level of labor
market experience and the average hourly wage rate. It mapssble to improve the fit of the
model to the data by adding dummies to capture the large dfifdp-enrollment and increase in
working of 18 and 19 year old males that is found in the datawéler, there is no economic
intuition for such dummies, and they are not necessary feratalysis to come. Furthermore,
given that we we do not have the full profile of the growth inalggregate variables, the simulation
results are not expected to closely fit the sample averagasyatate. Not withstanding this, the
model predicts remarkably well the general patterns wiglgich race group. Moreover, the model
also gets exactly the relative patterns in the reportedoougs across races.

The first two counterfactual simulations performed evalypaticies that are aimed at affecting
working while enrolled in school. First the government sdizes individuals who choose to
enroll in school and not participate in the labor market. ddelcthe government increases the

school curriculum so that individuals who enroll in schoetassarily spend more time on school
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activities. The Third set of counterfactual simulationsli@$ses the issue of equating the quality
of schooling across races. The final set addresses the issneraase in time spent on school

activities when school quality is held constant acrosssace

2.11.2 Cash Subsidy

For the first counterfactual simulation exercise, we cagrsacsubsidy of 1000 dollars, which grows
yearly at the same rate as the aggregate component of thenadarglity of consumption (which
is the same as the growth rate in tuition). The results froisghmulation exercise are reported
in table 15 under the column labeled “Pol. 1”. The baseline simulatiesutts are included for
comparison under the column labeled “Base”.

The results indicate that this policy does very little ineafing the outcomes of young men.
We see very modest increases in education, and reductiengerience. There are also modest

overall increases in wages due to this policy. The effechefdolicy is the same for all races.

2.11.3 Increased time spent on school activities

In practice, the second policy can be achieved by increabmgumber of hours school is in ses-
sion for, summer classes, or Saturday (or Sunday) claskescdn also be achieved my increasing
the number of, or level of difficulty of homework assignmeaitsl projects. In the simulation ex-
ercise, this policy is achieved by increasing the study tiometion. The amount by which the
constant is increased is chosen to make the magnitudesgfdhcy and the subsidy policy above
comparable. In particular, if at age 16, the individual wasvbrk for $1000 at $4 hourly wage
rate, he would work for 250 hours. The study time functiorhisréfore increased by 250. Since
the average wage at age 16 in the baseline simulations iexippately $3.50, the results from this
simulation are considered to be lower bound comparisonsg@bove simulation exercise. The
findings are reported in tables under the columns labeled “Pol 2”.

The findings indicate that this policy significantly increagducation and wages for white and
black men, with moderate increases for Hispanics. By the8agthe completed level of education
increases by 15% for whites and 12.3% for blacks, but only %yfar Hispanics. Also we find

that the level of labor market experience for whites andlbtiecreases as a result of the policy,
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while it increases for Hispanics.

Analysis of the change in the choices young men make due todiey shows that Hispanics
are the least responsive. Further more, while the fracticdhepopulation that enroll in school
and not work increase significantly for whites and black 824.and 16.4%), it increases only
modestly for Hispanics (1%). Another difference in the gats of choices is that while the faction
of the white population that works and attends school deesfy 5%), it increases for blacks
(0.5%) and Hispanics (1.8%). Furthermore, Hispanics aeotily group in which the decline in
young men where the percentage increase in those workingtéeding school outweighs the
percentage decline in those who choose to exclusivelygiaate in the labor market.

The conclusion therefore is that the crowding-out hypdthéslds most significantly for
whites, followed by blacks and Hispanics. This conclusiomes from the fact that a manda-
tory increase in the time spent on school activities has thstsignificant negative effect on the
employment rate of whites, and the most significant posgiffect on completed education and
future wages of whites. This result is also empirically keried by the fact that in the data a larger
fraction of whites enroll in school and work at the same tildence intuitively, one would expect
that they may be most subject to the crowding out effect okimgywhile attending school. Hence
policies that are aimed at increasing the time studentsdsparschool activities has significant

positive effects on whites and blacks, but less so on Higgani

2.11.4 Equating school quality

The next policy experiment equalizes the quality of schacl®ss races. Technically, this is done
by setting the coefficients @LACK andHISPANICin the grade transition probability equation

to zero. The results from this exercise are presented ie teblnder the columns labeled “Pol 3”.

We also present the results from the baseline simulatioemuhé columns labeled “Base”.

The results in tabld7 indicate that the policy has significant impacts on both kdaand
Hispanics. For blacks, by the age of 35, the completed lelvetiacation increases by 11%, the
years of labor market experience increase by 1%, and théyhwage rate increases by 15%. For
Hispanics, by the age of 35, the completed level of educatioreases by 7%, the years of labor

market experience increase by 3%, and the hourly wage retteases by 4%.
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For both blacks and Hispanics, the policy has the effect aieasing enroliment rates. How-
ever, the pattern of enrollment is quite different for botbups. For blacks, the policy has an
effect of increasing the fraction of those who enroll exslaky in school by 12%, and 13% for
those who enroll and work. For Hispanics however, the paialy increases the fraction of those
who enroll exclusively in school by 2%, but by 14% for thoseowdmroll and work. Since the
chances of completing a grade level is smaller if the studesdso working, this results in a more
modest increase in completed education, and thus a morestiadeease in hourly wage rate.

We conclude therefore that policies aimed at improving thality of schools for minorities
results in significantly increased education for both ggyugut a more modest increase in hourly

wage rates for Hispanics.

2.11.5 Equating school quality and increasing time spent oschool activities

Given that equating school quality results in a significactease in the education level of His-
panics, it is interesting to know if the magnitude of the efffef an increase in study time changes
in magnitude under this new environment. Therefore we steuhis environment and the results
are reported in tabl28 under the columns labeled “Pol 4”. Again, the baseline satioih results
are presented for comparison under the columns labele®”Bas

The results under the new environment, the choices and mesdor Hispanics are far more
responsive to the exogenous increase in study time. Thdai@ducompleted level of education
increases by 23% and the hourly wage rate increases by 23%sjoanics by age 35. Furthermore,
the fraction of the Hispanic population that exclusivelyahin school increase by 23% and the
fraction that enroll and work increase by 18%. Thus underetiheronment where the quality of
schools are equated across race, the responsiveness ahldsfp an exogenous increase in study
time increases significantly.

For blacks in this new environment, the exogenous increastuiy time increases the com-
pleted level of education by 28% and the hourly wage rate ¥ B9 age 35. The fraction on
blacks that enroll in school exclusively increases by 38@4l the fraction that enrolls and work

increases by 8%.

These results indicate that policies aimed that increabimtjme spent on school activities has
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a positive effect on minority students; magnitudes thatarmaparable to their white counterparts.

2.12 CONCLUSIONS

The paper has developed and estimated a dynamic structadal mof educational attainment and
labor supply. The main focus of the analysis has been to stallocation of time between
labor supply, formal schooling activities and leisure,lbwiithin a year and over the life cycle.
The model allows for skill specific productivity and piecées as well as intertemporal nonsepa-
rabilities in the utility of leisure. It also allows for radivariation in wages, consumption, school
quality, study patterns, the fixed cost of labor market pgodtion, the fixed utility of schooling,
and the utility of leisure. The estimated results indicia tcurrent and future leisure choices
are intertemporal complements. The results also indid¢etethe observed racial differences in
outcomes come from a variety of sources that interact in Blfigonlinear fashion, but not from
racial differences in tastes.

The estimated model is used to evaluate two policies thatiared at affecting the allocation
of time between schooling and working. The first policy sdizgs young students that do not
participate in the labor market. The results indicate thet subsidy does little in changing the
patterns of enroliment and labor supply on either the extere the intensive side. The second
policy increases the school curriculum so that young men gffumse to enroll in school neces-
sarily spend more time on schooling activities. The resualiécate that this policy would have
significant positive effects on white and blacks, but morelest effects on Hispanics.

A third exercise was performed to evaluate the effects oatag school qualities of blacks
and Hispanics to that of whites. The results indicate thel supolicy would have a large positive
effect on education and wages for blacks, but a smalleripestfect on Hispanics. We also show
that under this environment, Hispanics become signifigantire responsive to policies aimed at
increasing the school curriculum.

This study was motivated by the increasing number of stigdimatt decide to also participate
in the labor market. The results indicate that the effechaf trend varies across races. Policy

focused on changing this trend to improve the level of edasand labor market outcomes may
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have only modest effects on some racial groups. As a mattpolafy, the results indicate that
equating school quality across races may be a more pro@uatst step for improving the out-

comes of minorities. Of course, our measure of school qualiagnostic about exactly what are
the parameters in the school system that needs to be adilr@$se would require an understand-
ing of the key variables that affect students’ grade proamofirobabilities.

One of the main limitations of the model presented in thisgpag that it is set in a partial
equilibrium framework. In a general equilibrium framewpdhe would expect that the aggregate
skill specific wages will also be affected by a policy thatmipas the distribution of the labor force
over these groups. A policy that increases the level of aducwill result in more labor supplied
to the high skilled sector and less to the low skilled sechora general equilibrium framework,
this will drive down the price of high skilled labor and pusp the price of low skilled labor,
thus reducing the incentive to acquire higher educatiomcésthis general equilibrium effect is
not accounted for in the model presented in this paper, teetsfof policies that increase the
level of education may be overstated. How far the partialldxgjium effects are from the general

equilibrium effects is an important issue for future resbar
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Table 1: List and Description of Variables Used

AGEqy
WHITE
BLACK
HISPANIC
FAM_INCyy
FAM_SIZEy
FAM_AGEq
SIBLINGS
USBORN
AFQT
ASSETS
UNEMP
RURAL
TUITION

Indicator variable equal to 1 if individualenrolls in yeat
Indicator variable equal to 1 if individualworks in yeatt
Fraction of time spent on school activities in yéar
Fraction of time spent working in ye#r

Completed level of education

Level of experience

Age at yeat

Indicator variable equal to 1 if White and O otherwise
Indicator variable equal to 1 if Black and O otherwise
Indicator variable equal to 1 if Hispanic and O otherwise
level of family income at yeair

size ofn's household at yedr

average age af's household at year

number of siblings oh as at age 14

indicator variable equal to 1 ifwas born in the US

The Armed Force Qualification Test score for individoal
Level of asset holdings by the householdchah yeart

Level of the unemployment rate localndn yeart
Indicator variable equal to 1 if lives in a rural area in yedr

Level of college tuition that individual is subject to in year
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Table 2: Summary Statistics

Year

Observations

do
dy
d2
ds
ds

S
dh

E
Wl
AGE
WHITE
BLACK
HISPANIC
FAM_INC?!
FAM_SIZE
FAM_AGE
SIBLINGS
USBORN
AFQT
ASSETS
UNEMP
RURAL

TUITION!

1979

3749
0.0205
0.0381
0.5644
0.3769
0.9413
1436.5
9.7967
0.4150
710.90
1.2107
4.3872
16.743
0.5727
0.2625
0.2648
17647
4.8434
26.225
3.6220
0.9306
42.024

2.5646
0.2125
813.19

1980

3512
0.0529
0.1452
0.3809
0.4208
0.8018
1354.6
10.730
0.5660
972.82
1.6136
4.1601
17.653
0.5769
0.2640
0.1592
19086
4.5948
26.823
3.5899
0.9328
43.186

2.8476
0.20871
793.04

1981

3595
0.1115
0.2842
0.2439
0.3602
0.6041
1276.0
11.335
0.6445
1080.5
2.1655
4.3383
18.695
0.5713
0.2651
0.1635
20011
4.3171
26.978
3.6069
0.9310
42.793

3.1652
0.1997
809.79

1982
3575
0.1325
0.4215
0.1367
0.3090
0.4458
1203.3
11.842
0.7306
1159.8
2.8036
4.6541
19.697
0.5757
0.2626
0.1617
21168
3.9625
26.665
3.6204
0.9311
42.835

3.7848
0.1932
865.54

1983
3594
0.1719
0.5158
0.0951
0.2170
0.3121
1149.7
12.198
0.7328
1310.0
3.5166
4.8560
20.706
0.5759
0.2613
0.1627
21398
3.7045
26.699
3.6165
0.9315
42.774

1984
3549

0.1541
0.6198
0.0617
0.1642
0.2259
1139.3
12.416
0.7841
1477.6
4.2310
5.1220
21.699
0.5711
0.2646
0.1643
21785
3.3722
26.653
3.6238
0.9323
42.606

1985
3504
0.1435
0.6889
0.0345
0.1329
0.1675
1114.6
12.578
0.8219
1577.7
4.9877
5.5749
22.690
0.5736
0.2606
0.1658

23577

3.1726
26.538
3.6204
0.9326
42.545

1986
3413
0.1300
0.7380
0.0240
0.1078
0.1318
1077.3
12.708
0.8458
1694.5
5.8025
6.0788
23.688
0.5722
0.2625
0.1653

25319

2.9856
26.175
3.6024
0.9326
42.565

4141.2 4278.8 4998.8
41978 3.4356 3.2919 3.1693
0.1830 0.1718 0.1680 0.1614
916.18 960.77 1029.0 1087.4

1ln 1981 dollars

43



Table 3: Summary Statistics (Contd.)

Year

Observations

do
dy
d>
d3
dS
s

S
dh

E
Wl
AGE
WHITE
BLACK
HISPANIC
FAM_INC!
FAM_SIZE
FAM_AGE
SIBLINGS
USBORN
AFQT
ASSETS
UNEMP
RURAL

TUITION?

1987

3338
0.1207
0.8001
0.0155
0.0635
0.0790
1043.2
12.833
0.8636
1836.4
6.6363
7.0968
24.680
0.5733
0.2657
0.1609
26572
2.8406
26.154
3.6096
0.9340
42.789
7107.8
2.9331
0.1791
1153.1

1988

3357
0.0965
0.8394
0.0071
0.0568
0.0640
977.74
12.890
0.8963
2016.8
7.4566
7.6098
25.684
0.5737
0.2654
0.1609
29047
2.7768
25.624
3.6136
0.9368
42.565
7132.9
2.6094
0.1805
1170.5

1989

3389
0.0994
0.8574
0.0023
0.0407
0.0430
970.54
12.917
0.8982
2078.7
8.2912
7.6038
26.686
0.5716
0.2653
0.1632
46666
2.7722
25.707
3.6208
0.9350
42.270
20246
2.3865
0.1844
1181.5

1990
3328
0.0943
0.8647
0.0006
0.0402
0.0408
962.93
12.962
0.9050
2025.0
9.1908
8.0964
27.687
0.5736
0.2644
0.1620
34705
2.7641
25.814
3.6283
0.9353
42.422
10064
2.4002
0.1850
1234.6

1991
2931
0.1044
0.8614
0
0.0341
0.0341
976.60
13.050
0.8955
2072.1
10.022
7.7159
28.624
0.5165
0.2972
0.1863
36938
2.8161
26.108
3.6349
0.9344
42.089
11688
2.9512
0.1641
1351.1

1992
2936
0.1226
0.8474

0
0.0299
0.0299
1006.7
13.049
0.8773
2126.6
10.853
7.8402
29.620
0.5150
0.2973
0.1877
59830
2.8692
26.231
3.6294
0.9335
41.905
13922
3.1757
0.1665
1404.9

1993
2937
0.1113
0.8593

0.0292
0.0292
1118.6
13.073
0.8886
2076.2
11.676
8.2973
30.621
0.5138
0.3006
0.1856
41624

2.9240
24.292
3.6275
0.9342
41.869
13488

3

0.1722
1490.2

1994
2896
0.1142
0.8649

0
0.0207
0.0207
1128.3

13.08
0.8857
2111.7
12.548
8.4466
31.611
0.5162
0.2987
0.1851
43778
2.9229
24.610
3.6339
0.9350
41.965
12195

2.9499
0.1833
1504.5

1In 1981 dollars
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Table 4: The Consumption Equation.

Variable Parameter Estimate Std. Err.

Demographic Variables

AFAM SIZEy Bi1 0.1466  0.0022
AFAM INGy Bi»  8.00E-06 0.08E-06
AFAM AGEqy Bis  4.00E-06 2.00E-06
AUNEMRy B4 -0.0010  0.0005
ASy Bis -0.0091  0.0008
A(AGE x Sy) Bis 0.0089  0.0008
AAGE? B17 -0.0008  0.0004
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Table 5: The Wage Equation.

Low Skill High Skill
Variable Parameter Estimate Parameter Estimate
Lags of Enroliment
Ady, B211 -0.0309 B221 -0.0701
(0.0382) (0.0266)
A, B212 -0.0198 B222 -0.01239
(0.0421) (0.02707)
Lags of Participation
Adh B213 0.0198  Baas -0.1513
(0.0431) (0.0175)
AdY Bo14 0.0319 B22.4 -0.1272
(0.0460) (0.0193)
Lags of Hours Worked
Ahne_1 By1s  0.20E-04 Bp,s  0.28E-04
(0.02E-04) (0.01E-04)
Ahpi—2 Bo16 0.07E-04 Boos 0.10E-04
(0.02E-04) (0.01E-04)
Socio-Economic Variables
A, Bis  -0.29E-04 Bjog 0.0040
(1.37E-04) (0.0001)
AEZ B217 -0.0010 B227 -0.0011
(0.0003) (0.0002)
A(SwxEn2)  Baig 0.0027 B2.2.0 -0.0072
(0.0003) (0.0002)

46



Table 6: Estimated changes in aggregate prices and wages

Aggregate Prices Aggregate Wages
Year (1—a) AIn(A;) Unskilled(Alnoy ) Skilled (Alnwy2)
1984 0.0345 0.0287 0.1127
(0.0199) (0.0393) (0.0162)
1985 -0.0423 0.0449 0.2320
(0.0200) (0.0381) (0.0177)
1986 0.0288 0.0526 0.2303
(0.0206) (0.0402) (0.0204)
1987 0.0713 0.0584 0.2831
(0.0218) (0.0384) (0.0212)
1988 -0.0102 0.0556 0.1421
(0.0226) (0.0363) (0.0210)
1989 0.1111 -0.0228 0.1781
(0.0228) (0.0375) (0.0221)
1990 -0.0186 0.0133 0.1652
(0.0232) (0.0366) (0.0219)
1991 0.0230 -0.0360 0.1610
(0.0237) (0.0368) (0.0219)
1992 0.2044 -0.0101 0.1713
(0.0246) (0.0392) (0.0237)
1993 -0.0260 0.0290 0.1770
(0.0250) (0.0411) (0.0252)
1994 -0.0056 0.0120 0.1587
(0.0251) (0.0351) (0.0218)

1 Standard errors in parentheses
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Table 7: Estimate of time spent on school activities.

Variable Parameter Estimate  Std.Err
Constant Bso 7.2383 0.1829
Lags of Enrollment

ds 1 Bs1 0.2602 0.0463
ds o B3> 0.2037 0.0789
Lags of Hours Worked

hnt—1 B33 -0.77E-04 0.17E-04
hnt—2 B34 -0.50E-04 0.26E-04
Socio-Economic Variables

BLACK Bss 0.1063 0.0265
HISPANIC Bs -0.0996  0.0304
AGE; x Syt B3 7 -0.0045  0.0013
(AGExxSw)>  Bsg  0.76E-05 0.26E-05
US BORN B10 -0.1261 0.0417
FAM SIZE; Bz 11 0.0135 0.0050
RURAL B1o 0.0647 0.0250
UNEMBRy Bs.13 -0.0244 0.0100
AFQT Bs 15 0.0037 0.0004
In(p) Bs.17 -0.1435  0.0273
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Table 8: Probability of Grade Promotion.

di =0 di =1
Variable Parameter Estimate Parameter Estimate
Constant Bsio  0.0807  Baap 0.0482
(0.7734) (0.5499)
Time Use Variables
Snt Bs11  0.0025  Bjo: 0.0036
(0.0003) (0.0008)
2 Biz2»  -0.15E-05
(0.03E-05)
hnt Bu23 -0.0006
(0.0001)
h2, Bs2sa  0.10E-06
(0.03E-06)
Participation Variables
dh Ba2s 0.2185
(0.0873)
dh Bs14  0.2771
(0.1203)
Socio-Economic Variables
BLACK Biis -0.2296 Bs29 -0.3751
(0.1305) (0.0925)
HISPANIC B2  -0.4627
(0.0928)
AGEy Ba16 -0.1468  Bs211 -0.0824
(0.0268) (0.0147)
AFQT Bi17 0.0058  Ba213 0.0100
(0.0027) (0.0017)
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Table 9: Marginal Effects Probability of Grade Promotion.

diy =0 diy =1
Variable Parameter Estimate Parameter Estimate
Time Use Variables
Snt Bs11  0.0005  Bazi 0.0008
% Bs22  -0.26E-06
hnt Ba 23 -0.0001
h2, Bs24  0.02E-06
Enrollment Variables
ds 1 Ba2s 0.0915

GRADE 11  Bsi»  0.1136  Bspe  0.0717
GRADE 12 Bji3 01109  Bp;  0.2235

Participation Variables

dh B2 0.0487
dh Bs14  0.0542

Socio-Economic Variables

BLACK Biis  -0.0449 B9  -0.0837
HISPANIC B210  -0.1032
AGEq Bs1s  -0.0365 Bspin  -0.0184
Sht Ba2.12 -0.0232
AFQT Bii7  0.0011 Bgpiz  0.0022
In(n) Bi1g  -0.1247 Bgpi4  -0.0985
In(W) Bsiio  -0.0508 Bsois  -0.1216
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Table 10: Sample Averages of Nonparametric Estimates

Variable Sample Sample Variable Sample Sample

Mean Std. Dev Mean Std. Dev
Pnto 0.1197 0.2145 %“’:3) .0.1988 2.0533
Pri1 0.7076  0.3427 %“’f@ -0.3520 5.2983
Pri2 0.0489  0.1303 %"’:3) -0.6092  4.5189
Pnt3 0.1232  0.2307 %“’:3) -0.5044  5.2893
Po(Wp) 0.3870  0.2398 %:::3) -0.0391 4.1811
po(Ww2) 05709 0.1835 %;’:3) 04081 6.9457
po(Wy) 0.0995 0.1503 %:fﬂ) 0.8412 5.5360
po(Ws)) 0.3659  0.2446 %:fg) -0.5360 6.3767
po(WwY) 00283 0.1095
po(W) 02616 0.3736
po(W) 00370 0.1504
po(W) 01436 0.3166

Table 11: Psychic Value of School Attendance.

Variable Parameter Estimate Std.Err.
Constant Bso -20.8502 10.0810
St Bs1 3.6935 1.6900
S Bs -0.0654  0.0619
AGEqy x Syt Bsa -0.0635 0.0093
BLACK Bsa 14361 1.3736
HISPANIC Bs 0.0667  1.8812
AFQT Bss 0.0165 0.0343

51



Table 12: Fixed Utility of Labor Force Participation.

Variable Parameter Estimate Std.Err.
Constant Bso -0.8174 2.3807
Ent Bes1 1.2834 1.2741
EZ Be2 -0.0270  0.2294
AGEqt x Ent Bs3 -0.0645 0.0176
BLACK Bs4 -0.4961 1.4026

HISPANIC Bs -0.0351 2.4603

Table 13: Utility of Leisure and the CRRA parameter.

Variable Parameter Estimate  Std.Err.
Int B7o 0.0043 0.0114
AGEy X Int B71 -0.0009  0.0010
AGE x It B> 0.27E-04 0.24E-04
BLACK X Iyt B73 0.0009 0.0008
HISPANICX | B74 0.0003 0.0021
1% %  -0.58E-07 0.68E-07
Intlnt—1 01 2.87E-07 1.15E-07
Intlnt—2 02 3.86E-07 0.11E-07
CRRA parameter a 0.1067 0.0060
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Table 14: Results from baseline simulation by race.

Age Education Experience Hours Wages

Actual Sim. Actual Sim. Actual Sim. Actual Sim.

White

20 1196 1037 332 290 1257 1708 4.89 3.77
25 13.16 12.21 6.96 5.19 1957 1812 937 6.71
30 13.52 13.43 10.70 750 2198 2092 13.77 11.57
35 14.37 9.93 2338 15.85

Black

20 11.71 9.69 267 265 1129 1521 435 3.35
25 1236 1090 590 461 1830 1711 7.38 5.73
30 1253 1158 9.62 6.52 1963 2023 10.36 8.84
35 11.91 8.60 2275 11.67

Hispanic

20 11.33 969 3.04 284 1320 1773 5.00 3.82
25 1199 1089 6.71 5.03 1817 1960 9.15 6.57
30 12.28 11.56 10.57 7.20 2107 2219 12.26 10.03
35 11.90 9.61 2403 13.20
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Table 15: Effect of cash subsidy to students who do not work.

Age | Education | Experience Hours Wages

Base Poll| Base Poll Base Poll Base Poll

White

20 | 10.37 10.38 2.90 2.88|1708 1709 3.77 3.77
25 1221 12.24 5.19 5.14|1812 1810 6.71 6.71
30 | 13.43 13.48 7.50 7.41| 2092 2094| 11.57 11.68
35 | 14.37 14.44 9.93 9.78| 2338 2336| 15.85 16.08

Black

20 | 9.69 9.71| 265 2.63|1521 1522 3.35 3.35
25 | 10.90 10.95 4.61 455 1711 1708 5.73 5.72
30 | 11.58 11.63 6.52 6.41| 2023 2020 8.84 8.85
35 | 11.91 11.98 8.60 8.41| 2275 2274|11.67 11.78

Hispanic

20 | 969 9.71| 284 1283|1773 1771 3.82 3.81
25 |10.89 10.92 5.03 4.99|1960 1958 6.57 6.56
30 |11.56 11.61 7.20 7.10|2219 2222 10.03 10.02
35 | 11.90 11.96 9.61 9.44| 2403 2402 13.20 13.21
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Table 16: Effects of mandatory increases in time spent ooddctivities.

Age | Education | Experience Hours Wages

Base Pol2| Base Pol2 Base Pol2 Base Pol?2
White
20 |10.37 10.66 290 2.89|17/08 1722 3.77 3.78
25 11221 1295 5.19 5.09|1812 1827 6.71 7.05
30 | 1343 14.78 7.50 7.23| 2092 2185 11.57 14.99
35 | 1437 16.52 9.93 9.38| 2338 2412 15.85 23.28
Black
20 9.69 9.96| 2.65 2.64| 1521 1528 3.35 3.35
25 11090 11.62 461 4521711 1704 573 5.84
30 |11.58 12.68 6.52 6.35|2023 2070| 8.84 10.50
35 | 1191 13.38 8.60 8.39|2275 2325/ 11.67 15.15

Hispanic
20 9.69 9.76| 2.84 2.84| 1773 1771 3.82 3.81
25 110.89 10.98 5.03 5.04|1960 1958| 6.57 6.58
30 | 1156 11.66 7.20 7.23|2219 2222| 10.03 10.07
35 | 1190 12.00 9.61 9.67| 2403 2402 13.20 13.24
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Table 17: Equating school quality.

Age | Education | Experience Hours Wages
Base Pol3| Base Pol3 Base Pol3 Base Pol3

Black

20 | 9.69 10.03) 2.65 2.65|1521 1501 3.35 3.34
25 | 1090 11.62 461 4.60| 1711 1654 5.73 5.82
30 | 11.58 12.60 6.52 6.65| 2023 2000 8.84 9.80
35 | 11.91 13.20 8.60 8.71| 2275 2297 11.67 13.47

Hispanic

20 | 969 9097|284 286|1773 1771 3.82 3.82
25 |10.89 11.39 5.03 5.11|1960 1958 6.57 6.63
30 | 11.56 12.21) 7.20 7.40| 2219 2222| 10.03 10.35
35 | 11.90 12.68 9.61 9.94| 2403 2402| 13.20 13.67
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Table 18: Effects of mandatory increases in time spent onddctivities after equating school

quality.

Age | Education | Experience Hours Wages
Base Pol4| Base Pol4 Base Pol4 Base Pol4
Black
20 | 9.69 10.28/ 2.65 2.63| 1521 1509 3.35 3.34
25 11090 12.38 4.61 4.49|1711 1648 5.73 6.06
30 |11.58 13.96/ 6.52 6.26| 2023 2118 8.84 13.50
35 | 1191 15.26 8.60 8.31|2275 2393 11.67 20.9]
Hispanic
20 9.69 10.35 2.84 2.84| 1773 1737 3.82 3.81
25 110.89 12.29 5.03 5.04|1960 1884| 6.57 6.82
30 | 1156 13.58 7.20 7.25|2219 2215/ 10.03 12.45
35 | 1190 14.56 9.61 9.70| 2403 2432 13.20 17.05
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Changes in Aggregate Prices

Figure 1: Changes in Shadow Price of Consumpfipfi — o) ~tInA;)
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Changes in unskilled piece rates

Figure 2: Changes in Unskilled Aggregate Waé o 1)
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Changes in skilled piece rates

Figure 3: Changes in Skilled Aggregate Waén ox2)
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3.0 SEMIPARAMETRIC ESTIMATION OF A NONLINEAR PANEL DATAMOD EL
WITH PREDETERMINED VARIABLES AND SEMIPARAMETRIC INDIVIDU AL
EFFECTS
(WITH SOILIOU NAMORO)

3.1 INTRODUCTION

Panel data models are important in econometrics, primbgbause of their capacity to capture
facets of agent behavior in ways that cannot be accounteith fonoss-sectional and time-series
data models. Furthermore, detailed and relatively redipbihel data sets have become increasingly
available. As a consequence, there is a growing demand for sophisticated panel data models
by applied researchers.

A major advantage of the linear panel data model is its ghtditjointly account for perma-
nent unobservable individual effects, time specific agategffects, and (structural) dynamics
in agent behaviot. Though at a slower rate, progress has been made by econciaredrin de-
veloping nonlinear panel data model that allow for indiatlspecific effects, aggregate time ef-
fects, and dynamics in behavior. Indeed, the most signifidevelopment in nonlinear panel data
models has been spurred by the limited dependent variataeseWwork (sedHonoré 1992 and
Honoré and Kyriazido2000for examples). Typically however, the estimation of theselimear
models rely heavily on the logit specification of the inderdtion. The model we consider in this
paper is complementary to these nonlinear index modelsaivile impose a stronger restriction
on the form of the unobserved individual specific effect,weatrelax the assumption that the index

function is known.

For comprehensive summary of the advances in linear partal madels and estimation techniques, see
Chamberlaif1984 andArellano and Honor§2001].
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This paper considers semiparametric estimation of a neatisingle index panel data model

of the following form:

Yie = P(ayit 1+ X B+ f(z)+At) + &t (3.1.1)

wherex;; is aK x 1 vector of strictly exogenous and/or predetermined véggh is anL x 1 vector

of exogenous individual specific time invariant randomahlés? B is aK x 1 vector of unknown
parametersp(-) is a real valued unknown functiori(-) is an unknown real valued functioh

is an unobservable time-specific effect, agdis an unobservable error term assumed to have a
conditional mean of zero. The purpose of this paper is to fm@stimator of3 with the usual
parametric convergence rate’/2 without assuming thab and f belong to some parametric class
of functions. We are particularly interested in constmgtstimators fo and f because the goal

is to be able to simulate and predict the dependent vanable

This restriction on the individual-specific effects extenlde suggestion dflewey[1994, pp.
1354-1355. In the binary choice framework, the model preeskim equation3.1.]) arises natu-
rally under the assumption that the individual specificeffe of the formp; = f(z) — u;. Papers
that provide estimators of the finite dimensional paramieténese binary choice models include
Chen[199] and Gayle and Millef2003. The former paper suggests implementing a series esti-
mator of the index function and estimating by OLS, where #tiet suggests estimating by GMM.
Our own interest goes beyond the discrete choice framevan#t,our estimator is an efficient
semi-parametric least squares estimator that can be ineplih using either series expansions or
the investigators favorite Kernel estimator. Furthermane index function is easily recoverable
in our estimation framework. This is important since we grec#fically interest in estimating the
full data-generating process for the purpose of predidiwoth simulation.

A variety of models used in empirical studies fall withinglzlass of single index models. The
model proposed here is in some sense an extension of the sidgk models proposedichimura
[1993 and Klein and Spadyf1993 to panel data and pre-determined variables. The cost sf thi
extension relative to these models is that we assume thatdle& function is strictly increasing

over its support. In many cases, the assumption of strictateorncity of the index function may

°Note thatz could be made of the vector of strictly exogenous randomabdeix1,- - - ,%T)’, in which case this
is a generalization of the Mundlak specification.
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be informed by economic theory. One such example is in cageseanhe index function is a
cumulative distribution function (cdf) as in the case oflpability models. Indeed, discrete choice

models also falls within the class of models specified in #qud3.1.7).

In the sub-class of discrete choice models, the literatasedeveloped by taking two dominant
paths: the case where the index functibns assumed to belong to a parametric class of cdf’s,
and the case where the nonparametric assumption in placdeanlf. In the former case, most
progress have been made under the assumption that the untioh® is the cdf of the logistic
distribution. Rasch[196(d, Anderson[197(Q, and Chamberlaif198(J show that these models
can be estimated by conditional maximum likelihoodTor 2. Chamberlairf1985 andMagnac
[1997 show that this model can be estimated with both individs@écific effects and lagged
dependent variables, but without any other explanatorialbbes. Honoré and Kyriazido(i200Q

expand the estimation of these models to include explapatsiables.

Despite these rapid advancements, the method of identiicased in these studies relies
crucially on the logit assumption. Indeed, under the assiamghat the individual-time spe-
cific shocks are independent and if covariates are unbourtdedinite dimensional parameters
can be estimated consistently with & convergence rate without specifying the distribution of
the individual-specific effects conditional on the covigaif and only if the distribution of the
individual-time specific shocks is logistidagnac 2004. However, the logit assumption raises
the question of robustness of these estimators to violafitimat crucial assumption. This leads us
then to find other methods of estimating these dynamic paaalrdodels that allow for sufficiently

general individual heterogeneity.

Another class of estimators for discrete choice models lawset that do not make paramet-
ric assumptions on index functionMlanski[1987 derives a maximum score estimator for the
single-index model with exogenous regressors, and indalidpecific effects based on that, un-
der weak regularity conditions, the sign of difference ie finst conditional probabilities is equal
to the sign of the first difference in the indelkorowitz [19927 extends this model by maximiz-
ing a smoothed version of Manski’s score function. This rficdiion results in Horowitz being
able to prove asymptotic normality coefficighta property that Manski's model does not enjoy.
Honoré and Kyriazido(i200(q further extends this estimation technique to include &fygepen-

dent variables. They show that this estimator is consistertdid not derive the asymptotic dis-
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tribution for this estimator. These estimators typicaliyreerge at a rate slower than'/2. More
importantly, since the index function is not estimated iasth models, the full data generating
process is not estimated and thus these models are incagfggagforming predictions.

The proposed method to estimate the nonlinear panel datelmoesented in this paper es-
sentially mimics that of the linear case. It starts with theersion of the unknown function that
links the conditional expectations (or the predicted ontepto the explanatory variables. In fact
this alternative representatiod.{.1) can be viewed as a generalized linear model (GLM) with the
link function given by the index functio® 1 (see for exampl€hen 1995. In this literature, the
link function is typically assumed to be known. In this resfde proposed model can be seen as
a extension of the GLM.

The inversion is then followed by a differentiation, whidlppresses the fixed effects from
the regressors. The predicted outcomes are themselvesatsdi nonparametrically, prior to the
computation of the estimator. The method proceeds withexatite back fitting algorithm, which
yields the estimates of the slopes as well the unknown inglestion. Estimates of the fixed effects
are readily obtained from the first estimates.

The rest of paper is organized as follows: the following isectlescribes the class of models
considered in this paper. Section (3) discusses identditathile section (4) presents the estima-
tor. Section (5) presents the algorithm used to computedtimate, and section (6) discusses the
large sample properties of the estimator. Section (7) istgeMo the monte carlo simulations and
section (8) concludes. All the proofs, as well as the lemnmaw/loich these proofs are based, are

to be found in the appendix of the paper.

3.2 THE MODEL

The underlying data is a vector valued cross-section
(Vi,%i,z) € M(T x1) x M(T xK) x M(L x 1) =: X,

whereM (a x b) denotes the set of real-entry matriceaobws ando columns. More precisely, we

havey; := (Yi1,...,YiT)", X := (Xi1,...,%7)’, wherex; := (X 1,. .., Xt k) andz is an L dimensional
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vector of time invariant regressors. Since we consider Ipdai@a with predetermined variables,
we haveT > 3. The basic assumption regarding the data is that the segurny;,z) is an
independent and identically distributédtvalued random process, whekeis endowed with its
Borel sigma-fieldB. We shall denote the probability law of the vectwr, X, z) by Q. We assume
that at least one column of contains a random variable that is strictly exogenous. déatinat
for notational convenience, we have suppressed the ex@priesentation of the lagged dependent
variable and the aggregate shock. Since we allowkfatio include predetermined variables and
discrete variables, we can assume that these lagged depesmdi@ble and the aggregate shocks

are indeed included in the vectarWe define the conditioning vectas; as
Wi = (X, Z)-
The model considered in this paper is given by:
yit = P(xBo+ fo(z)) + €t (3.2.1)

The following assumption will be maintained through the grap
Assumptior8.2.1 @ : [0 — [J is a strictly increasing function.

This assumption arises naturally in discrete choice moakkre® is a cdf. For purposes of
estimating the finite dimensional parameter, this asswnptan be weakened to the assumption
that® is strictly increasing on an interval of its index, and the humber of observations within
that interval of the support increases with the sample size.

By taking the conditional expectation wf we obtain®
I3"10 = E(ylt | WI) = CD(XIlIBO-i_ f0(2|>)7 I = 17 7N7 t= 17T (322)
Assumptior3.3allows us to express the relatioB.2.2 as

bel(plto) — X{tBO‘i_ fo(z), i=1,---,N, t=1,---T, (3.2.3)

3We shall assume that the unconditional and conditional e®giens that we write are all defined and we shall
most of the time omit to add the label “almost surely” to riglas involving conditional expectations, unless we want
to stress the underlying probability.
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which in turn implies
A[@ H(Pro)] == D H(Pro) — @ H(Pr_1,0) = A% Bo 1= (X Bo— Xy _1B0) (3.2.4)

Relation @.2.4 will be the starting point in the definition of our semipartnic (SP) estimators.
In particular, definingpo := @t and¢(P) := [6(P1),---,d(P1)], relation 8.2.4 can be written

as

AXiBo— Aldo(Po)] = 0. (3.2.5)

Our estimation technique is to find the coupfe¢) that minimizes the mean squared deviation
betweenAx; B andA[¢p(Pto)]. This, of course, relies oflp and$g being the unique solution to
equation 8.2.5. Therefore, we first impose identification restrictionsl atate the identification

theorem.

3.3 IDENTIFICATION

We make the following assumptions:

Assumptior8.3.1 1. ||Bo| = 1.

2. The random vectof; contains at least one continuous regressor that is noticeditan z.

3. E[AxtAX; ] is invertible.

4. The unconditional mean of the nonparametric individdéfelot is zero:E|[fo(z)] = 0

Assumption 8.3.11) is frequent in single index models (sk&anski 1987for example). An

alternative normalization (sé#orowitz, 1992andlichimurg 1993 is to assume that the fist compo-
nent ofx;; has a probability distribution conditional on the remagaomponents that is absolutely
continuous with respect to the Lebesgue measure, and teemaghatp;| = 1. In our case, un-
der the assumption that the index function is strictly iasrag, assumptior8(3.11) allows us to
determine the signs of all the coefficients as in linear regjosn models. Assumptiol.3.13) is
the traditional full rank condition on the regressors. Ofitse this condition can be relaxed by
considering pseudo-inverses. Assumpti8r8(14) is a limit version of the traditional zero aver-

age assumption in fixed effects models. This assumption & gilres location identification of
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the nonparametric functions in our model. This assumptoappealing in applications, but is
not necessary for the theoretical model because in mosin@amnland limited dependent variables
theoretical models, identification up to location is usyalifficient.

The model 8.2.3 introduced in sectior8.2 is specified by the triplety = (o, do, fo(z)).
Consider another modat = (B1,91, f1(z)). We say that the modetg andry are observationally

equivalent ifry also satisfies:

d1(Pro) =X B1+ f1(z), i=1,---,N, t=1,---T. (3.3.1)

Then under assumption3.8.11)-(3.3.14) we can prove the following theorem.

TheorenB.3.2 (Identification) If

I. Th andTy are observationally equivalent,
il. Ty satisfies assumption8.8.11) - (3.3.13), and

iii. ¢1 is strictly increasing,

then

Bo = B2 (3.3.2)
bo = ¢1tc (3.3.3)
fo(z) = fi(z)+c (3.3.4)

for some constart. Furthermore, if assumptio33.14) also holds, thee = 0.

3.4 THE ESTIMATOR

In this section, we define the estimator and describe theitlgn For ease of exposition we first
define the unfeasible estimator and discuss the propefft&sch an estimator. Then we discuss
the feasible estimator. The following estimator is unfeksbecause of the fact that the predicted

outcome Py is not observed.
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Definition3.4.1 The unfeasible estimatdB*, ¢*) of (Bo, @ 1) is the solution to the minimization

problem

1 N T )
B oi-es N 2 2, (P~ Al (Rol)”, (34.1)

1 N T

st o Zi Zi Pro) =0, (3.4.2)

wheres is the set of strictly increasing real-valued functions.

The constraint in3.4.2 fixes the location of the estimate ¢f. It imposes that the unfeasible
estimator of the fixed effect is of mean zero. This is simitathe restriction imposed in linear
models (se®altagi 2007).

Typically, the predicted outcomé%o = E|[yit|wit] is unknown and must be estimated. Non-
parametric procedures can be used to estimate these gegn8ince this is a conditional expec-
tation, the density of the data, that is found in the denotomanust be bounded away from zero.
We therefore impose a fixed trimming condition by defining@sed and bounded subspt of
the support of the density and assume that the density ciggtatthe estimator through its values
on this set. Define the functiods(Wrt) := 6 P%J(8 1wy), whereD,, is the dimension ofv, and
J is a Kernel which integrates to 1 ovét. The scalad € R' is the band-width associated with

the kernel estimator. Then the kernel estimator for theipted outcomes is given by:

B — Zr,\rl1:1,m7én z-rrzl,r;ét YmrJs (Winr — Wht)
nt —
Zr’\rl1:1,m7én ZLU# J5 (Wimr — Wht)

(3.4.3)

Substitutingf‘.t for Pto in equations3.4.1), the feasible estimator is obtained as follows:

Definition 3.4.2 The feasible estimato(lﬁ,di) of (Bo,®~1) is the solution to the minimization

problem

T

1N A2
N2, 2 (D B—A[0(R)])", (3.4.4)

(B, ¢)€{B \ HBH 1}xs

1 T
N2 Z _o, (3.4.5)
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Once the problem3(4.4) is solved, and denoting the solution @,(ﬁ), an estimatorf/(z\i) for the
individual-specific effectd (z) is given by the following definition:

—

Definition3.4.3 The estimatoff (z) for the individual-specific effect§(z) is given by

However, these estimates are not useful if the goal is t@operEimulation exercises or to simply

make out of sample predictions. A straightforward solutiorthis problem is a simple kernel

estimator of the projection of (z) on z as in the estimation dﬁt. This then gives a smooth

estimatorf (z) of the functionf (z).

3.5 COMPUTATION OF THE SP ESTIMATORS

3.5.1 The Algorithm

An analytic solution of the problen3(4.4 hardly exists, due to the presence of a functional compo-
nent¢. The computation of the SP estimator requires, therefbesuse of a numerical algorithm.
Several such algorithms are conceivable. The one that veeprdéere is a back fitting algorithm
(Buja, Hastie, and Tibshiran1989. It starts with an arbitrarily chosen functign and computes
and estimate o, sayf3. The algorithm proceeds by setting the valugad B and then updating
the previous estimate df, and so on, in a cyclical way until convergence. The SP estima
chosen to be any coup{é,dﬁ) that corresponds to the asymptotic fixed point.

The algorithm involves two additional complications abavieat is discussed iBuja et al.
[1989. The first is that the estimate @fis in fact a constrained estimate. The second is that the

estimate of involves an (inner) contraction mapping. Define

O(P) = (¢(Pr2),--,0(PnT))’
O(P)t = (¢(P13),---,d(PnT))’
O(P)t-1 = ($(Pr2),---,d(PnT-1))"

Alo(P)] = ¢(P)—¢(P)-1

The following back fitting algorithm can therefore be used:
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1. Initialization. The parameters to be initialized are below.
a. ¢1: An initial value of ¢ can be arbitrarily chosen. For example, one may choose the
mappingds (x) = x°.
b. P;: As stated above, the algorithm requires that estimat® bf obtained before hand.
These empirical quantities can readily be obtained fromatgu 3.5.4.
c. (€1,€2): Two small positive numbers to be used in the evaluation of cmnvergence
criteria.
2. Numerical Evaluation Given ¢s at iterations of the algorithm, approximate values for the
pairs(Bsi1,Ps+1) are computed recursively as follows:
a. Compute the constrained regressiom\fifs(P)] on Ax to obtain the approximate value
Bst1.
To perform this estimation, we present a general techniquetws probably standard, but
we describe it in detail here since we are unable to find aerte for it. So to the best
of our knowledge, this constrained estimation techniqueoigel. Consider the standard

problem of estimating thé&K x 1) dimensional parametrin the model:
yi =XB+¢, Elgix]=0 (3.5.1)

under the constraint th@B|| = 1. The solution to this problem can be written as follows:

B=arg {B:ﬁg‘ip: l}(—y+x£3) (—y+xB). (3.5.2)

To solve this problem, we propose solving the auxiliary peobfor estimates of theK +

1) x 1 dimensional parameter paramet&rs (61,9,)":

5 = arg _min (—yd;+x82)'(—yd1 +x3,)

{&:]18]=1}
3 5’
& — = argmin— B— (3.5.3)
13 2 sl el

whered; > 0, the(K 4 1) dimensional square matr&is given byB = C'C and we define
C:=(-y,X). Then itis well known that the solution to this problem is thermalized)
eigenvector corresponding to the smallest eigenvalug dfhere are numerous efficient

softwares available for computing these eigenvectors. tléptathe subroutine “jacobi”
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from Press et al[1999 for our purposes. This algorithm computes the solution iti-m
seconds. Once we have the solutjéﬁu = (81, 5’2)’ our solution for the original problem is
easily recovered by the equalfﬁy: (1- 8%)—1/252. This process is very fast on standard
computers, even for quite large valueskaf Indeed, there is no observable difference in
the time this process takes to estim@tand the time that would be taken by OLS. This
makes this constrained estimation technique quite apygali

. Perform the regression of the vectog, Bs; 1 + ¢s(P )t 1 on P to obtain the approximate
valueds, 1.

Recall that we assume that the index functjois strictly increasing. This assumption is
not necessary for the algorithm to converge. Indeed it iBcseifit that the index function
be in the class of functions of bounded variation. Furtheenthe current technology
in isotonic regression when the data set is large is unaatwfy, because of the com-
putational time required to implement any of these techesquAs such, we relax the
strict monotonicity assumption afn in the algorithm. Besides the ease of computation,
dropping this constraint allows one to test the assumptfananotonicity of the index
function.

The regression akx, Bs: 1+ ¢s(P);_1 onP is itself a fixed point algorithm. The algorithm
accommodates either kernel or series estimators, but gemiréhe kernel estimator here.
The procedure goes as follows. Giwg= ¢sj, we Construchx, Bs1+¢sj(Pe—1). Then,
adopting the notation of the kernel estimator given in sec(8.4), for any valueP,; the

kernel estimator focl)sHl(If’nt) is given by:

Zr’\rllzl,m;én ZrT::s,r7ét s (Prr — Prt) (A% Bsr1+ dsj(Pmr—1))

¢sj+1(|§nt) = 5 3
Z#':Lm;én Z;r:&r;ét J5 (Pmr — Pot)

(3.5.4)

This process is repeated (jih until convergence. The proof that equati@S.4 defines
a contraction mapping is presented in Appendli.6. The convergence criterion for this

inner contraction mapping is provided by the following inafity:

1 T

NT £

—¢s1(P))* < et (3.5.5)

Mz

t=
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If (3.5.9 holds at iteration) then we takeps; to be our projection estimatis,; for
iterations+ 1 of the outer contraction. Our experience is that this pathe algorithm

converges within 6 iterations and is extremely stable.

3. Outer ConvergenceStep 2. is repeated until the process converges. The genes criterion

is provided by the following inequality:

IBs — Bs-1/|Z < €3 (3.5.6)

If (3.5.5 and B.5.9 hold, then the corresponding valuf3s, ¢s) constitute our numerical
solution (f3,¢). Otherwise, step 2. is repeated until the conditio®$.§ and @.5.9 are

simultaneously satisfied.

The corresponding estimates of the individual-specifiect# is then computed from equation
(3.4.6.

An important point to note is that if the investigator is wity to assume the form of the index
function @, for example, a logit or probit specification, then the comagion of the estimatofS
is simply to Regres@_l(lf’) on Ax. The asymptotic properties of this estimator will typigdbe
the same as that of the more general estimator which asshataié¢ index function is unknown.

This property illustrates the power of the estimator présgm this paper.

3.6 ASYMPTOTIC PROPERTIES OF THE SP ESTIMATOR

In order to derive the asymptotic properties of the SP estimsome regularity conditions must be
imposed. We turn first to the nuisance parameter, the firgedtarnel estimator d#:o = E|yit |Wit].
Following Newey and McFaddef1994 we impose conditions that ensures uniform convergence
of the nonparametric estimafgy. Following the notation oNewey and McFaddefi1994, define
y:= (V1,¥2) Whereyy := f(wi) andy, := f(wit)E[yit|wi]. ClearlyPy = v2/y1. Define alsagy :=
(1,yit)’. Then the numerator and denominator of the first stage kestihator can be conveniently

written asy(w) = SN ST 5t Js(W— Wit ). We make the following assumptions
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Assumptior8.6.1 1. J(u) is differentiable of orded, the derivatives d are boundeliy) is zero
outside a bounded sef,J(u)du = 1, there is a positive integer m such that for pk m,
J3(w[@}_y)du=0

2. There is a version of(w) that is continuously differentiable to ordéwith bounded deriva-
tives on an open set containigga set contained in the supportwef
3. There iz > 4 such thag[||q||"] < « andE[||q||"|w] fo(w) is bounded.
4. The bandwidtt® = 3(N) satisfies
N1-(@/N8K/INN — o, /N&™ — 0, andy/NInN/(N&+2d) — 0
Under these assumptioriéewey and McFaddef1994 shows that

VN[[§—vol| -0, (3.6.1)

where the norm here is the Sobolev norm.

We now impose conditions for consistency of our estimatdab@the pair(Bo, ¢o). First, the
fixed trimming condition along with assumptioB<$.1 and3.6.2 imply that there is a compact set
K in which all the P’s lie. We therefore define the restrictidithe setS to X asSx. Define also
the distancel on the cartesian produBk [0, 1] x S« (whereB is the close unit ball inJk) as

follows:

di(B,9), (a, )] :=[|B—afl +Sgp|<P(P) —W(P)|

where||.||k is the Euclidean norm oflX. In what follows we assume that the conditions on the
kernel in assumption are also satisfied by the kernel usestito&ted.
Assumptior8.6.2 1. ||[AXi||} <Ry >0 Vi > 1 Q-almost surely.
2. Each element of is differentiable.
3. There exist (unknowny such that for every € S, and for anyx € KX°, whereX° denotes
the interior of K, ¢’(x) <y < co.

4. There is a (unknown) functiamin § such that for alk € [

sup|¢ (x)| = [n(x)|
S

Assumption3.6.21 is weaker than assuming that the covariates are uniformiyded almost

surely. We now state the consistency and asymptotic naiyritbkorems.
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TheorenB.6.3 Let the assumption3.3.], 3.6.1, and3.6.2be satisfied. Then

B Bo

sup|®(P) — do(P)| == 0
Pe X

TheorenB.6.4 If the assumption8.3.1, 3.6.1, and3.6.2are satisfied, then

A

VN(B—Bo) = N(O,V),

whereV = E[AXAX 1E[AXR|QE[RAXE[AXAX] L, Q = Var(g), and

—0p(R1) ¢(R2) O - 0 0
R — 0 _%.(PIZ) %(.PIS) 0 O
0 0 0 —0p(Rr-1) $(Pr)

3.6.1 Semiparametric Efficiency Bound

We now tackle the question of whether the proposed estinshtbe finite dimensional parameter
B is efficient. The model for which we compute the efficiency mais the implied model given in
equation 8.2.5, and not the conditional independence model of equa8dhl). In general these
bounds are different, and in many cases that of equadidnlf may not be sharp, in that there may
be no estimator that can attain the bound. The variance bibahd/e compute for equatio.@.5

is the one that would be attained within an GMM framework. Jlour estimation framework is
as efficient as any competing extremum estimator for the idbondgiven in 3.2.9, but retains
the property that it is independent of the choice of smoothaed that a consistent estimator of
the infinite dimensional nuisance parameters are compuotactdiately, and ready for simulations

and predictions. We state the following theorem:

Theorem3.6.5 The estimator of the finite dimensional parameietteveloped in sectio.4is

semiparametric efficient with variance bound given in teeo8.6.4
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3.7 MONTE CARLO RESULTS

In this section we examine the small sample properties ghtbposed estimator via a Monte Carlo

experiment. Consider the following data generating preices
yit:q)(ayit_1+BXit+f(Zi)>+Vit, i:17"'7n7 t:17273

In this model the index function is chosen to be asymmetrauab with range between 0 and 10.

Specifically the index function is given by:

10
PM = e
0.35

The individual specific effect is given by:

f(z)=4 e’ g e* (3.7.2)
4)= l+ea Nigl-l—eﬂi o

This specification results in the the functiérto be of mean zero and ranges between -2 and 2.
The strictly exogenous random variableis distributed N(1,7), and is distributed N(0,3). The
error termvy is distributed N(0,0.5). The initial valugg are distributed N(0,6). Finallyp( ) =
(0.6,0.8). We perform 50 Monte carlo replications of the elddr four sample sizes: 200, 500,
1000, and 1500. The mean bias and the root mean squaredRKM&HE) are calculated for each
sample size.

The computation was done on a 3GHz Pentium 4 laptop compiitee. algorithm take 30
seconds of CPU time to compute the estimates for a samplefsiz®0. Table reft181 reports the
results from the Monte Carlo study. The results indicaté the estimator performs remarkably

well, even so for the index functioh.
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Table 19: Small sample properties of estimator. Monte Cairtaulation of 50 trials.

a B o]
Sample Size Mean Bias RMSE | Mean Bias RMSE | RMSE?
200 0.0235 0.0355| -0.0189 0.0283| 0.2735
500 0.0133  0.0201] -0.0104 0.0157| 0.1721
1000 0.0153  0.0185] -0.0118  0.0143| 0.1435
1500 0.0128 0.0159; -0.0098 0.0123| 0.1165

@ Root mean square error.

Figures4 to 8 presents plots of the estimated and true index func®dior sample the four
sample sizes 200, 500, 1000, and 1500. The estimated indetidn tracks very well the true one
even for the sample size of 200. For the sample size of 15@0wb plots are largely indistin-

guishable. This again shows that the proposed cyclicaéption algorithm performs remarkably

well.

3.8 EMPIRICAL EXAMPLE

In this section, we implement the algorithm developed inghper to estimate a wage equatfon.

The wage equation has the following specification
Wi = D(x B+ f(z)) + &, (3.8.1)

where the assumptions on the data are as in seBtbMhe vectorx;; is composed of the first two
lags of hours workedh; 1, h;;_») and labor force participatiord{_1,di_»), highest grade level
completed &), and squared ageAGE?). As is well established in the literature on returns to

education, this equation is subject to selectivity biasolvlis typically called ability bias. The idea

4The executables panel.exe for WINDOWS and panel.out foXUMed for estimation of these models is available
upon request from the authors.
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is that both wage and level of education are partially deteechby the ability of the individual,
which is unobserved, creating a correlation with the exgiary variableS; and the error term.
In this exercise however, we control for ability bias by untihg AFQT scores as a time invariant
explanatory variable irz;. The other time invariant covariates includedznare the indicators
BLACK and HISPANIC.

The data is taken from the 1979 youth cohort of the Nationalditndinal Survey of Labor
Market Experience (NLSY79), a comprehensive panel datéghs¢tfollows individuals over the
period 1979 to 2000, who were 14 to 21 years of age as of Jaiydg79. The data set initially
consisted of 12,686 individuals: a representative sam@eld 1 individuals, a supplemental sam-
ple of 5,295 Hispanics, non-Hispanic blacks, and econdigidésadvantaged, non-black, non-
Hispanics, and a supplemental sample of 1,280 militarylyotUhis study makes use of 9 years of
interviews, from 1982 to 1990. The data is restricted toudelmales.

The estimates are presented in Table 1. The signs and eclaignitude of lagged hours
worked are consistent with the hypothesis of returns to enjab training, and depreciation in
human capital. Furthermore, the coefficient&ns positive and significant at the 5 percent level.
The only coefficient that does not conform to a-priori expéon is the coefficient AGE2, which
is positive and significant. However, considering that treximum age in the sample is 37, it is
unlikely that the declining effect on wages would be capdunethis estimation, since this typically
begins in early to mid forties.

The isotonic estimate of the index functidnis presented in figure 5. It is interesting to note
that the shape of the index function roughly resembles th#teexponential function. This is

notable since it is common practice to express the wage ieguatiog linear form.

3.9 CONCLUSION

Over recent years, the specifications of econometric mddele undergone a rapid increase in
complexity. An important stimulus for this transformatiisrthat applied economists have become
more sensitive to the issue of specification bias and robastof the estimation techniques used

in practice. The relaxation of parametric assumptions lveweomes at the cost of less tractable
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estimators, increased computational time, and limitetdtalbo perform post-estimation analysis
such as out of sample predictions and Monte-Carlo studiesceé] there is a need for the develop-
ment of estimators that allow for flexible specification, Atithe same time estimates the full data
generating process at cheap computational cost.

This paper attempts to contribute to the semi-parametrgisindex panel data framework by
presenting an estimator and algorithm to achieve the aboaks gin particular, we develop an ef-
ficient semiparametric method for estimating nonlineamgbdata index models with small-T. The
estimation technique allows for the inclusion of predeiasd variables, in particular lagged de-
pendent variables, aggregate time-specific unobservedigffand a semiparametric specification
of the individual-specific effects. The paper provides a-daonsistent, asymptotically normal
and efficient estimator for the slope parameter, a congistamparametric estimator of the index
function as well as its convergence rate, and an estimatthreoihdividual specific effects. Thus
with our estimator, one can predict and simulate the dependeiable. The algorithm presented
is straightforward and is found to be quite stable in practitimmediately provides an estimate of
the index function, and the the investigator may implemieiifavorite series or kernel smoother
in estimation. To the best of our knowledge, this propertgiasel in this framework. Further-
more, the algorithm can estimate an extension of the gepedalinear model (GLM) where the
link function is unspecified and not assumed to be monotomerefore our implied model (i.e.
assuming that the ananlysis begins with equat®@.4) can be used to test the assumption of
monotonicity, linearity, or simply that the index functitelongs to a specific parametric family
such as the logistic. Excellent references for testing afi@banicity in nonparametric regression

includeBowman et al[1994, van der Vaart et a[1998, andGibjels[2003.
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Table 20: The Semiparametric Wage Equation

Variable Estimate
Lags of Hours Worked
Ahit 1 0.000282
(0.0000006)
Ahi > 0.000163
(0.0000001)
Lags of employment
Adit -1 -0.8528
(0.0017)
Adit 2 -0.4451
(0.0010)
Education
ASt 0.2732
(0.0015)
Demographic Variable
AAGE? 0.0035
(0.00004)
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Figure 4: True and estimated index function for sample siZ060
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Figure 7: True and estimated index function for sample siZ&60
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Figure 8: Estimate of index function from wage regression
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4.0 NUMERICAL SOLUTIONS OF ASYMMETRIC FIRST PRICE INDEPEND ENT
PRIVATE VALUES AUCTIONS
(WITH JEAN-FRANCOIS RICHARD)

4.1 INTRODUCTION

In this paper, we propose a powerful numerical algorithnoteesfirst price single object auctions
where bidders draw Independent and Private Values (herel&V/) from heterogeneous distri-
butions, allowing for subsets of bidders to collude and faetareserve price. We also provide
operational univariate quadratures to evaluate prohesilof winning as well as expected rev-
enues for the bidders and the auctioneer. The latter is wsedmpute optimal reserves under
asymmetric environments. This also enables us to provilghis as to whether collusion among
subsets of bidders are sustainable.

We first review some of the relevant literature. Much of théieaauction literature as-
sumed that bidders draw their signals from a common undaeylglistribution. Pioneering con-
tributions includeRiley and Samuelsofi981], Milgrom and Webef1983 , Mathews[1983 and
Maskin and Riley1984. Important theoretical results such as revenue equicalémeorems ob-
tain under symmetry. However, the assumption of symmetoften far too restrictive for many
empirical applications.

Relaxing the symmetry assumption prevents analyticaldgoin of (first price) bid functions
and, therefore, considerably complicates revenue cosmasi Nevertheless, important results
have been derived under asymmetry. For example, existerceracity results under asymmetry
can be found inLebrun[1996 1999 2005 or Maskin and Riley[2000ab]. Furthermore, un-
der stochastic dominanddaskin and Riley[20004 show that the high bid auction dominates

the open bid auction in terms of seller revenue and that tteagtbidder (with the stochasti-
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cally dominant distribution) shades his bid more than thakveidder. They also provide ex-
amples of situations where the seller revenue is higher enguctions than in high auctions.
From a numerical viewpoint, a pioneering contribution whiead to the present paper is found
in Marshall et al[1994 (hereafter MMRS) who proposed a numerical algorithm to pata first
price equilibrium bid functions in a two (subgroups of) pay asymmetric environment under
uniform distributions. Actually, MMRS framework also imgtly assumes stochastic dominance.
Marshall and Schulenbefd998 modified MMRS to accommaodate reserve prices set by the auc-

tioneer.

In the present paper we generalize MMRS algorithm to a muoldar class of first price
asymmetric IPV auction and procurement problems allowargfbitrary numbers of (subgroups
of) players independently drawing their valuations fromiary distributions. Common distribu-
tions (Exponential, Weibull, Beta, Normal, Lognormal,are offered as options in the program.
Additional distributions can easily be added by users inftimen of a subroutine. Our program
takes care of constructing Taylor Series Expansions faetlgstributions. The only (standard)
restriction is that these distributions have common sup8iochastic dominance is not required.
This will enable us to investigate whether existing resgéiseralize when stochastic dominance no
longer holds. As in MMRS we are actually computing numerszdlitions to a system of Ordinary
Differential Equations (ODES) characterizing the firsterdonditions for a Nash equilibrium. The
solution belongs to a class of two-points boundary valubleros and is evaluated by recursive
application of (low order) Taylor series expansions. Slagty of the system at the origin requires

backward extrapolation from an iterated end-point.

For ease of implementation our algorithm currently relipemu equal spacing subdivisions
of the support of the component distributions. While this peoved to be numerically stable for
most distributions, occasional pathologies (specificadigessive local curvature or densities which
are not bounded away from zero on their supports) would re@marter adaptative selection of
step size. Such robustification goes beyond the objectitheopresent paper and are currently

addressed by increasing the number of points in the grid ahrasineeded.

The key advantage offered by our algorithm relative to MMRS in its capability to accom-
modate a wide range of arbitrary distributions, providirsgwith a powerful tool to investigate

whether classic results (revenue equivalence, a.s.oenéxb situations where symmetry and/or
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stochastic dominance are no longer assumed. This feakoeadvides broad flexibility for the
analysis of (sub)coalitions.

The paper is organized as follows. The baseline model arsblliéon algorithm are described
in Section 2; Expected revenue calculations are provideéskition 3 for first price auctions and
in Section 4 for second price auctions; Numerical exampiepeesented in Section 5 and Section

6 concludes.

4.2 THE ALGORITHM

4.2.1 Baseline Model

We are considering here a single object IPV first price anctRisk neutral bidders submit sealed
bids. The highest bidder wins and pays his bid. ThereNapotential bidders. Only those with
private valuations above the reserve piiget by the auctioneer submit competitive bids. Bidders
are ex-ante heterogeneous. Each bidder belongs to ang/pés. Each type is characterized by a
distribution functionf on a common suppof¥, v]. There arek; bidders in group for a total of

N =S,k (potential) bidders.

Bid functions are denoted by the Gregki = 1,---n. Bidders are assumed to be risk neutral
with utility from winning the auction with a bit given a typev defined adJ;(v—b) =v—b. The
generalization to constant risk aversion is fairly trivéald will not be discussed here. Clearly,
utility from winning the auction is increasing in the indilial’s signal. Under these assumptions,
Proposition 5 oMaskin and Riley{20004 establishes the existence of a monotonic pure-strategy
equilibrium in the standard first price auction. Indekdprun[1994 has shown that these bid
functions are strictly monotone and increasing, thereforeertible. Inverse bid functions are
denoted by the Greek lettar,i = 1,--- ,n. Uniqueness of such equilibrium is well established in
the case with two typed gbrun 1996. However in the generdll player game, equilibrium may
not be unique in that we may end up with “non-essential” élopug [Briesmer and ShubjKL967.

Here we assume further thigtis twice continuously differentiable with a densitybounded

away from zero onv,V]. Under these assumptionsbrun[1999 proves in the generd\l bidder

87



case that the equilibrium is unique, and that the inversefumdtions have a common support
[R t.], wheret, is the bid associated with the valuatisnandR is the reserve price set by the
auctioneer. We show in this paper that this equilibrium iaable to numerical analysis, and
presents itself as a natural extension to the methods pedposMMRS. As such the (numerical)

determination of, is a critical component of the problem to be solved.

4.2.2 The differential equations

Lett = ¢;(v) denote the equilibrium bid submitted by biddewith private signal € |v,v|. For

the ease of notation, bidders with signals lower than therve®R are assumed to bid their signal,
whencedi(v) = vfor v< R. Letv= A;(t) denote inverse bid functions. Followihg@brun[1999,
theA;'s share a common suppdwtt,]. For the ease of presentation, we momentarily assume that
t. is known. Bidderi with signalv € [R,V] submits a bid which is solution of the optimization

problem

t=arg max(v—u)- [F(h()]5 1 [F () (W)]9. 1)

ue(RV)
The Ordinary Differential Equations (ODES) associatedhigyFirst Order Conditions (FOCs) are
given by

n

Ma1Fss(t)) = i) =) - [ 3 K (A (0)A; ()M FAs(L))], (2)

=1

wherek’; = ki —1 andk’; = kj for j #1i,i:1—n. Let/i(t) = F(Ai(t)). Equation (2) is rewritten

as
1=[FY(t) —t]- ikﬁ‘@ i=1l—n (3)
| =1 )|
The boundary conditions fay; and/; are given by
MR =R Aj(ty)=v, i:1—n (4)
ti(R)=FK(R), 4t)=1 i:1—n (5)



respectively. As noted earlier by MMRS under unifofg, the system (3) of ODEs is ill behaved
at the lower boundary. If, for exampl® = v then a recursive application of 'Hospital rule for

t — v produces the result that the right derivative/cétv is given by

N

b = fi(‘l)'m,

i:l—n (6)
and, most importantly, that all higher order right derivas atv are zero. If instea® > v, then
tir%zi’(t) =+4o, i:1—n (7)

as inMarshall and Schulenbefd99g9. Whence, following MMRS, we shall solve the ODEs (3)

backward starting from the right boundafyt,) = 1, assuming momentarily thatis known.

4.2.3 The baseline algorithm

Our algorithm amounts to constructing piecewise polyndaparoximations to thés from which
(as discussed in Section 2.4 below) approximations fokhandp;s immediately follow. Assum-
ing we just computes o = /i(to) wheretp € (R, t.), we describe next how to construct Taylor series
expansions for thgs attg which are then used to compugg = /(1) at the next point; = to— At

wherelt denotes the selected step size. The relevant expansiodsrasted as follows:

L= &y (t—to), ®)
];alj 0
HO/EO = 5 by (=10 ©
J:
FLG) —t= prjlt—to), (10
j;p j 0
Fi0= S dj(x— o). (11
X j; j(X—Xo

Our baseline algorithm relies upon three recursive ralatigps among the above expansions to
construct theg; js from thed; js. The relationships between these coefficients and thosthef
functions of interest such as thgs (input) and theb;’s (output) are discussed in Section 2.4 below.

Let Jy denote the selected order of approximations. 3tdp 0 — Jy) consists of three parts:
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e The computation of & 3 given {(a; j,bi j); j < J}. The corresponding recurrence relationship
obtains from the identitie& (t) = ¢;(t). ¢{(t)/¢i(t) which together with formulae (8) and (9)
imply the identities

Z)a”t_to ] [%b.st—to ] (12)

Equating the coefficients of ordér 1 produces the following relationship

1J 1
Jzoairle r—1, (:1—-nJ:1—Ju) (13
with initial conditions
a0=/{(to), bio="/(to)/li(to), i:1—n. (14)

e The computation of p; 3 given {(& jdi ); j < J}. The corresponding relationship obtains by
application of Lemma 1 in Appendix A to the compositionl—?;ﬂ‘1 (input) and¢; (output from

(13)), accounting for the additional factoe [to+ (t —to)]. Whence we have

J

pa=3 di/Bira—z, (i:1—-mI:1—Ju) (15
=1
J-r41
Biry= Z ai $Bir—13-s, (r:1—17J) (16)
=1

with zp = z1 = 1,z; = 0 for J > 1, and initial conditions

pio=F *(%o0), Boo=1 (i:1—n) (17)
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e The computation of bj j given {pi j;j < J);(bij;j < J)}. The corresponding relationships
originate from the ODEs themselves. Substituting expanss(®) and (10) into equation (3)

produces the identities

1= [ipi,r(t—to)r] Liki*x ibe,s(t—to)sl , (18)

fori:1— nand/:1— nEquation (18) can be rewritten as

1= ji Liki*f <ripi,rb€,jr>] (t—to) . (19)

Equating the coefficients ¢f —tp)? to 0 forJ > 1 and rearranging the corresponding identities

into matrix form produces the following vectorial recurcerrelationship
Po(ln — ink,)b.] =Gy, (20)

wherePy = diag(p1.0,- -, Pno), In is the identity matrix of orden, i, = (1---1),
k/ — (k17 U kn>7 b‘/] — (b17\]7 U 7bn7J>7CO - —in and

CG=| 31Ky (5iibegr) [9>0 (21)

Standard formulae for partitioned matrices produce theviohg expressions for the determi-
nant and inverse dfi, —ink'):

ink’

In—ink|=1—N (Ih—iK) t=1,— .
|n |n| (n |n> n"TN_1

(22)
Formulae (12) to (22) fod : 0 — Jyv define our baseline recurrences algorithm for the evalu-

ation of Taylor Series expansions at an arbitrary base pemt(R t.), from which function

values at a new point = tg — At are approximated.
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4.2.4 Additional details

A number of additional details need be addressed next to letenan operational implementation

of our baseline algorithm.

4.2.4.1 Numerical Search fot, With very few exceptions, one of which is found in Appendix
A of MMRS, t, cannot be found analytically. Instead, we shall rely upaa uhicity result in
Lebrun[1999 together with the initial conditions (5) to defiheas

n

t=arg min 5 [4(Rt) ~RR]" (23)

where/j(-|tf) denotes the solutions to the ODEs in (3) under a tentatingined condition?;(ts) =
1. Note that since

lim [F4(6(1) 1] =0 (24

the coefficientg pi o;i : 1 — n) should be zero foip = R. This prevents us from solving the system
(20) attp = R but we do not need to do so. Instead we compit®|-) from the Taylor series
expansions aty = R+ At. Substituting these approximate values in the objectivetion (23)
suffices to produce very accurate estimatets &r At small enough. Alternatively, once we have
an estimate ok o = /i(tg), we can also computpj o = Fi‘l(xho) and use as obijective function
Sty pﬁo. As for the actual minimization, we rely upon the simplex sukine AMOEBA which

is numerically very efficient for our problem.

4.2.4.2 Additional Taylor Series Expansions As described in Section 2.4.4 below, our algo-
rithm constructs Taylor Series expansionsl;:iﬁfL to compute those df,i : 1 — n. Very little work
is required to reformulate it in terms of the primitives oétproblem, the distributioR; and the

bid functionsd;. First, note that the inverse bid functiokisare given by
At =t+ S pij(t—to)! (25)
2

Next, we can rely upon Lemma 2 in Appendix A to transform Taygeries expansions &f and

Aj into those oﬂ:i‘1 andd;, respectively.
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4.2.4.3 Support Conditions As expected from the formulation of equation (3), our altjon
can become numerically unstable if ths get too close to zero. This can occur on regions of
very low probability. Our current program implementati@yuires that tail areas of (very) low
probability be truncated away. Note that such truncatiamscammonly imposed in empirical
applications since most estimation techniques for auatiodels critically rely upon the invert-
ibility of bid functions and lack robustness relative tol @iea behavior of the latter. See e.g.,
Donald and Paarsdi99q, Laffont et al.[1995 or Florens et al[2004. See alsdVarshall et al.
[2009 for an empirical application where truncation of an assdméibull distribution had to be
imposed for estimation purposes. Note, however, thatibligions of interest for the tractability of
their order statistics (e.g. exponential, Weibull or extesvalue distribution) have unbounded sup-
port. In practice any such distributidfi with unbounded support will be replaced by a truncated

vesion thereof
_ FR(v)—F(v)

F'(V) = ——=———, Vv<V<V 26
YRy Ry Y 29
Transforming the Taylor Series expansioanT1 into that of Fi*‘1 follows by application of

Lemma 1 in Appendix to the following composite function

F i) =R YR +UR©) -FRE)), 0<u<i (7

Such transformations are automated in our computer pragram

4.2.4.4 Automated Taylor Series Expansions Analytical Taylor Series expansions for inverse
cdf's are available for a number of standard distributiamshsas the extreme value distributions
which are commonly assumed in empirical applications. Harehere are situations where this
is not the case. One such important situation is discuss8dation 2.4.5 below where we analyze
non-inclusive coalitions. Other important examples wdugdapplications where empirical and/or
non-parametric cdf’'s have been numerically evaluated.
In order to accommodate such situations our program insladiilly automated numerical

procedure for the computation of (piecewise) Taylor Sezigsansions for the inverses of arbitrary

cdf’'s. This procedure incorporates the following steps:

1. We construct an equally spaced gfig; j : 1 — J} for the intervall0, 1];
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2. Using a standard root finder we compute the correspondinggially spaced) grid for the
inverse cdF 1 {vj;vj = F1(u));j: 1— J};

3. Next, we construct B-spline interpolator foF ~. Specifically, we invoke the IMSL subrou-
tines DBSNAK (to construct a knot sequence) and DBSINT (topoteB-spline coefficients),

see e.g., de Boor (1978) for numerical details.

4. Finally, we invoke the IMSL subroutine BSCPP to conved Bispline interpolator into a
piecewise polynomial approximation, which provides thgldaSeries expansion needed for

our algorithm.

4.2.4.5 Non-inclusive Coalitions The object of our paper is not that of providing a theoretical
investigation of the stability of non-inclusive coalit®within a first price asymmetric framework
(which in many cases would likely required repeated gamesejuts). Nevertheless, we can use
our algorithm to numerically investigate whether such nariusive coalitions could potentially be
incentive compatible and also whether a strategic auatior@uld reduce the profitability of collu-
sions. Pioneering examples of such computations undearfexsymmetric) uniform distributions
can be found in MMRS antflarshall and Schulenbef@99g. See alsdMarshall and Marf2003

for an in-depth discussion of incentive compatible mecérasifor non-inclusive cartels as well as
an extensive list of related references.

Short of such theoretical analysis our algorithm can be tsedmerically evaluate bid func-
tions and expected revenues in the presence of non-inelgaitels, as long as one treats such a
cartel as a single representative bidder. At minimum, soohprtations can provide useful insight
on potential incentives to defect and on the auctioneepsloiity to reduce cartels’ profitability.
For example, MMRS had already illustrated the fact that miln ex-ante uniform symmetric
framework outsiders benefit more than insiders (on a petaapsis) from the presence of a non-
inclusive cartel. One would not expect such findings to gaimr to asymmetric scenarios. In
particular, there exist numerous real-life illustratiafighe viability of non-inclusive cartels con-
sisting, for example, of better informed players. One sutlason was recently highlighted by
the conviction of seven leading stamp dealers and auctisiéeo, for several years, had agreed
not to compete against one another at estate auctions gp staliactions.

Specifically, in the context of our program, an arbitranteszonsisting ofi= S, u; players,
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wereu; denotes the number of players of tyips treated as a single player drawing her signal from
the corresponding highest order statistics cdf.
Fi(v) —Fj(v) 1"
- [

Taylor Series expansions for the inversé6fare automatically produced by application of the
numerical procedure described in Section 2.4.4 abovealststrivial to verify that all probability
and expected revenue calculations described below renadich wnder such scenarios with the
only modification that the revenue computed represents dhiels total expected revenue. As
discussed above, we do not discuss allocation rules amatef'€members and only provide per

capita comparisons between insiders and outsiders.

4.3 PROBABILITIES OF WINNING, EXPECTED REVENUES AND OPTIMA L
RESERVE PRICE

In this section we demonstrate that expected revenues abdlgtities of winning when the auc-
tioneer sets a reserve pri€ecan all be expressed as simple univariate integrals (qtuads) of
products of the functions evaluated by our algorithm overittierval(R;t.), wheret, itself is an
implicit function of R.

The following conditions have to be met for a bidder from groto win
R<vi<Vv and vj<Aj(A\t(w)) for j#i (29)
Whence the probability that groupvins is given by
PR =k [ HOOMIAlF 8y (8 ) dv (30)

wherek’; =k — 1 andk’; =k; for j #1, as in Section 2 above. Introducing the change of variable
t= )\i‘l(v) and rearranging terms yields the following operationalregpion

© 4

My ¢ (1)t (31)

95



Note that

n t.
P R:/ O[O
i; I( ) i:1k| |() 1_1[ J( )]
_ A e 19 dt=1-nn, R RS 32
= [ [Meal6®]°] dt=1-n7 [Fi(R)] (32)
confirming the obvious result that the probability that theteoneer retains the item is given by
Po(R) = M7y [F(R)]" (33)
Groupi’s expected revenue is given by
v n VLY
(R =k [ =il v My [F 2] v (34
which can be rewritten as

MR =k [ [ w1 i ) (35)

Per capita expected revenue within graigpaccounting for subcoalition@s > 1) is then given
by Vi(R)/(ki - u;). Finally, assuming that the auctioneer receives a fixedgm¢age of all winning

bids, her revenue is proportional to

ValR)= 3 k[ i 0T [0y 1) (36
ts 7
_ /R t [0y [0 ot (37)
Integration by parts produces the following expression
. t. .
Va(R) = t, —RM7_, [F(R)]" - N [£;(®)]" dt (38)

Note that formulae (31), (35) and (38) all depend upon urataintegrals of products of the func-
tions which are being evaluated by our algorithm over a fingafrvalues ot in (R,t.). Therefore,
these integrals can be evaluated by univariate quadragumaaediate byproducts of our algorithm.
As we typically use grids with anywhere froihi = 500 toN = 10,000 equally spaced points,
we can rely upon the extended Simpson’s rule -Resss et alf1986 or Abramowitz and Segun
[196§[formula 2.5,4.5] (formula 4.1.13) - with remainder prapional toN~* to compute numer-

ically highly accurate estimates of all relevant probaiei and expected revenues.

96



Moreover, the use of a fixed number of equally spaced gridtpaimplies that these numerical
integrals will be continuous functions offt Whence numerical simplex maximization\¢f(R)
w.r.t Rwill itself be numerically very accurate. Note thatin formulae (31) to (38) is an implicit

function of R so that our algorithm has to be rerun for each valuR sélected by AMOEBA.

4.4 ASYMMETRIC SECOND PRICE AUCTIONS

One of the immediate intended use of our new algorithm isahainning comparisons between
first and second price auctions under a variety of asymmetri@onments. In order to do so we
need to derive operational expressions for expected regamuder second price auctions. While
Vickrey’s logic still applies whereby bidders bid theiryate values, expected revenue calculations
are more complex than under first price due to a wider rangeasfagios for the price paid by the
winner.

Several pricing scenarios need to be considered. Focusmgti@ntion on group, letvy > v»
denote the two highest order statistics in groonplicitly assuming thak; > 1, but one verifies
that the formulae derived below also apply kpe= 1) and letw; denote the highest order statistic

ingroupj (j #1). The following pricing scenarios are relevant:
Eir: priceisR; i.e.,,vi >R v» <R wj <R, for j #Ii

Eiji: priceisvy; i.e.,v2 >R, vo > wj, for j #i
Ei,j: price iswj;i.e.,wj >R, wj > vz, Wj > W, for £ # j,i.

Probabilities and expected revenues are indexed conflytritale relevant densities are
ki(v1,v2) = ki(ki — 1) fi(va) fi (v2) [Fi (v2)]“ %, va > v (39)

ki (w) = k; ;(w) [Fy (w)] ™ (40)
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Note that by relying upon thleffj notation introduced in formula (2), a common treatment iggpl

to scenarids j andE; j(j # i). The probability that groupwins and pays either, or w; is given

by
> PR~ {Z‘“ [t [ )

=1
Mo [Fg(v)]'%v} dvl} (41)
wherev denotess, for j =i andw; for j #i. As in Section 3 above, we first apply integration by

parts to the outer integral and regroup terms obtainingaheing expression
n \Y « 1/
S RiR =k [ =R [MFWS] av (42)
=1

A second integration by part produces the result

ip. m/ fi(v R (v)]% dv

=1
—ki[1- R (RN [Fi(R)]* (43)

Note that the second term in the right hand side of formula (dBresent® r(R). Whence the
probability that group wins is given by

AR =R+ 3 AR =k [ M (A av (4a)
j=
Note that
_iF’.(R) = /RV (n'j‘:l [F (v)]ki)’dv: 1-N"; [F(R]Y =1-Ry(R) (45)

Next, we derive the auctioneer expected revenue which enday

— ii{H,R(R)—i-ki {élk‘*vi /RV fi(v)1 [/vaf,- V)

()] ™ M [Fe()S7 dv] dva | (46)
The same integration by parts sequence as for the prolygibtduces the following expression

paralleling formula (44)

~ 3 K L R lF (0w (47)
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_/ I'I 1 [Fi(v k]) dv— Zk,/ [1—F( )]|‘| L [F j(v)}ki*.jdv (48)

or, equivalently after a third integration by parts

Va(R) = / nn )] dv

__iki/: [1-FR(v)]Ni_; [F ()] dv (49)

The expected revenue for grous derived in the same way. We first have

*

Mi(R) =k { {/V(V— R) fi(v)dv} N [F(R)]

R

+glki*,j/R fi(v1) |:/RV1(V1—V>fj(V) [F; (V)}ki*.rl Meyj [F(v)]kie dv} dvl} (50)

Integration by parts of the first integral inand of the outer integral im produces the simpler

V(R =k { [(v— R)- [ AWy M 7R |
+/RV(\7—V) (M [F dv+/ ) [M91F; (01K — MR (R dv} (5)

Integration by parts of the second factor in the right hawi@ sif formula (51) and cancellations

expression

produce the following operational expression¥or

AL RCTOEY (52

As above, per capita expected revenue in griasmiven byV;(R) / (ki - u;).

As was the case for the first price auction, formulae (44)) @ (52) are numerically evalu-
ated by quadrature. All probabilities and expected revemaéulations for first price and second
price auctions have been incorporated in our algorithmaafig for automated comparisons be-
tween first and second price auctions under a wide varietgyohanetric scenarios. Examples are

provided below.

99



4.5 EXAMPLES

In this section we present three numerical illustrationshef capabilities of our program. The
parameters and, in particular, the truncation rafyge) were selected to produce graphically well
separated bid functions. For the first two examples, all tipibutions are truncated Weibull of

the form given in formula (27) together with

F(v) = 1—exp| ~ (v/a)"] (53)

4.5.1 Example 1 (3 individual bidders)

We first consider 3 individual bidders (low, high, medianggpand compute their first price asym-
metric bid functions without reserve as well as with optimederve. We also compute bidder’s
expected revenues (per capita), bidder’s probabilitiewiohing, auctioneer’s expected surplus
and probability of retaining the item (under a reserve). $ame statistics are also computed for
second price auctions. Graphs of the first price asymmattituinctions with and without reserve
are provided in Figure 1. Relevant statistics are regroupd@ble21. We note that the reserve
price impacts the bidders differently, the larger impaahg@bviously felt by the high-type bidder.
We also note that in the absence of reserve first price is nrofggible for the auctioneer (by about
5%) but that the ordering is reversed under optimal resefte. high-type bidder always prefers

second price, especially obviously in the absence of aveser

4.5.2 Example 2 (2 individiual bidders)

This example illustrates the fact that asymmetric bid fioms can cross one another once stochas-
tic dominance no longer applies. Hazard functions are noyreofor Weibull distributions. Our
choice of shape parameters for this example implies thdtdkard function of bidder 1 is increas-
ing (by = 1.5) and that of bidder 2 is decreasinigp (= 0.5). With means close to one another
it implies that the distribution functions cross one anotiey = 1.45. It also implies that as il-

lustrated by Figure 2, the two bid functions cross one anathe= 1.7. Expected revenues and
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surpluses together with probabilities of winning with andhwut reserve prices are regrouped
in Table22. We note that first and second price auctions are virtualhgmae equivalent even
though, in the absence of reserve, second price favorsilddesystematic numerical investiga-
tion of whether revenue equivalence holds under parti@aggmmetric scenario goes beyond the

objectives of the present paper but belongs to our resegeatda.

4.5.3 Example 3 (non inclusive cartels)

MMRS offer a numerical investigation of incentive compdii within subcoalitions when indi-
vidual bidders all draw their valuations from a common uniiaistribution. Within this (single
object) framework they find that bidders outside the camlgibenefit more than those inside. Here
we consider instead an asymmetric scenario where high tigiglets collude together in order to
protect their informational advantage over low type bidder

This example is inspired by a recent court case where a griopminent stamp auctioneers
and dealers were found guilty of collusion at estate austi@vhile their cartel operated for several
years, our example illustrates the fact that such noninauwsrtels could be incentive compatible
even within a single object framework (ignoring, howeveioxy defections as analyzed &y
We consider two bidders of high type (H) against four (norusive) bidders of low type (L).
Signals are lognormally distributed with a common standidation 0.35 and means 1.35 and
0.75, respectively. The common support for signals is therwal [1.5, 6.0]. Results for the non
collusive benchmark scenario are reported in T&3leGraphs of the corresponding bid functions
with and without optimal reserves are provided in figure 3sus for subcoalitiongH,H} and
{H,H,L} are reported in Tabl24, and figures 4 and 5.

The impact of the collusion among high types is greatest useleond price auction. Under
first price, low types also benefit from the presence of theetéeven more than high types per-
centage wise). Reserve is most effective under second {aicewould be even more effective
if items kept by the auctioneer had a resale value). In thadéyutwe plan to investigate whether
the effectiveness of optimal reserve requires precise letye of the cartel composition by the

auctioneer.
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4.6 NUMERICAL ACCURACY AND COMPUTATIONAL TIME

Accuracy of the numerical approximation of the equilibribid functions depend primarily on two

variables. The first is how fine a grid is chosen on which towa& the component distributions.
A finer grid leads to higher accuracy of the numerical apprations. The second variable is
the order of the Taylor Series approximations chosen ajpete these distributions. A higher
order Taylor series expansion does not necessarily leatjheihaccuracy. Indeed, an order of
approximation that is too high can lead to significant nuoampathologies.

A reliable method for evaluating accuracy consists of catimgupointwise best response for
each individual bidder and comparing them to the NE stragegsiven bidder's signal, his best
response depends on the distribution functions and (iaydid functions of his competitors. His
best response function does not depend on his own distiibédinction. This is seen clearly in
equation (3). Thus, given his competitors equilibriumtgigées and distribution functions, we can
use equation (3) to compute pointwise the best responsaldéhi His best response function
can then be matched against the equilibrium function coetpby the algorithm and difference
between these two functions provides a measure of the amcafdhe algorithm. A reasonable
metric, and the one we use in this paper is the root of the nipzared deviation (RMSE) between
the equilibrium bid function and the best response function

An important illustration of the usefulness of such comgams is provided by example 3.
Figure 5 reveals a curious “blip” in the bid function of theatibon. The bid function dips down
between private values of 2.0 and 2.5. This gives rise to tiestipn of whether this is the result
of a numerical error, or if the blip is a rational response lg tollusion to the strategies of the
outsiders. This question can be answered by the method ibica&on we just described. Fig-
ure 6 reproduces the equilibrium bid function of the coafitand also plots the best response of
the coalition computed as described in section 5. The @adtinction (bold dotted line) coin-
cides exactly with the computed bid function (solid linehig confirms that the blip is indeed an
equilibrium reaction by the coalition to the strategiestsfcompetitors.

Higher accuracy of the numerical approximations to the ldgium bid functions comes at
the cost of increased computational time. For a small nurobéypes of bidders, one can be

liberal with the size of the grid and the order of the Taylori&eexpansions. However, for models
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with a large number of types of bidders, the computatioma¢tincreases potentially significantly.
Though this is not a significant obstacle in our current agpions, computational time can quickly
become a problem in others. An important example is that qfiecal applications where the
algorithm would be instrumental in the estimation of the enying private values distributions. In
this case, the model would have to be solved for each triakevaf the vector of parameters of the
private values distributions. and one might have to be awasige with the size of the chosen grid.
In this section we present a small study of the trade off betwaccuracy and speed as controlled

by these two variables.

Table25reports the computational time and the RMSE between thdilequim bids and reac-
tion functions of two bidders. The first panel fixes the ordefaylor series expansions to 5, and
evaluates these statistics for the number of grid pointsgh®00, 1000, 1500, and 2000. The table
reveals that the computational time increases linearlly thie number of grids. The computational
time increases by 0.11 seconds with a one point increase inumber of grid points. The RMSE
for each bidder is decreasing and concave in the numberafpgints. However, the decrease in
the RMSE is very small for large increases in the number af gaints. This suggests that there
is not a lot to gain in terms of accuracy by increasing the nemalb grid points. A relative small
number of grid points like 500 provides almost the same nigakaiccuracy as a larger number of
grid points like 2000.

The second panel of TabRb fixes the number of grid points to 500 and increases order of
Taylor series expansions incrementally from 2 to 5. The asatponal time increases linearly
by approximately 7 seconds with each increase in the orddreoTaylor series expansions. In-
terestingly, the numerical accuracy of the bid functioresiavariant to the order of Taylor series

expansion. The third panel of Tal®2& bolsters this conclusion.

The conclusion of this exercise is that the investigatosésovery little in terms of numerical
accuracy by using a relatively small number of grid pointd arder of Taylor series expansions.

The time saving is however significant.
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4.7 PROCUREMENTS

The proposed algorithm is modified to the procurement prohleder the same environment as
that of the auctions problem. We provide all the options #énatprovided in the auctions problem,
including asymmetry, collusion, the calculation of optlmeserve price, expected revenue to the
auctioneer, expected surplus to the bidders, probakilifevinning, and the reaction functions.
The necessary modifications are minor and are describetfliylirighis section. For the procure-
ments problem bidderwith signalv € |v,R] submits a bid which is solution of the optimization
problem

t=arg max(u—v)- [Hi(hi(u)] 2 i Hj (3 (w))%, (54)

ue(v,R)
whereH;(x) = 1—F(x). The Ordinary Differential Equations (ODESs) associatethe/first Order
Conditions (FOCs) are given by

—1=[H 1) -1 %ki*- @ i=1—n (55)
I =1 L))
where/;(t) = Hi(Ai(t)). The boundary conditions fov and/¢; are given by
MR =R Ai(ty)=v, i:1—n (56)
4(R)=Hi(R), 4i(t.) =1, i:1—n (57)

respectively. Under this setup, the algorithm to computelidgium bids here mimics exactly the
one derived in section 2 to compute equilibrium bids in thetimans environment, except for two
changes. The first is that the RHS of equation (21) is nowstead of—i,. The second is that the
recursion on the grid dfis a forward iteration instead of a backward iteration. Trabgbilities of

winning and expected revenues in the first price procuresremtironment are given as follows:

RA®) —n _
RIRI=—k [ gl M [0, 58
Ro(R) = M7y [H(R)] (59)
R -1 gi/(t) n Kj
(R =k [ W) g M (6w, (60)
Va(R) = t. — RM"_; [H; (R)]ki + an”:l [ﬁj(t)}ki dt. (61)



The corresponding probabilities of winning and expectegmees in the second price procure-
ments environment are given as follows:
R4

PI(R) =N L0 (t) ) I_I?zl [El(t)]k]dt (62)

Po(R) = M7_y [Hj(R)]" (63)

Va(R) =y RR(R) + [ 117 [ dv
n R kl*
+;k| /v [1—Hi(V)] |_|T:1 [Hj(v)} Jdv (64)

V(R =k [ (1~ My Hy (v (69

4.8 DISCUSSION OF THE ALGORITHM

With all the described ingredients put together, we haveognam that is fully automated and very
flexible. The program includes several candidate privalgegdistributions, namely the two pa-
rameter Weibull, the Beta, the Normal and the Lognormatithstions. These distributions can be
combined to produce hybrid distributions, and other dsiiions can be trivially added. The nec-
essary Taylor series expansions of the inverse distribsittoe also fully automated. Furthermore,
the program allows for the analysis of a wide variety of caile arrangements. As an illustration
of how user friendly the program is, we present verbatimwele input sequence from example
3 where the two high types and one low type collude to compgaénat the remaining three low

types.

Enter 1 if you want auctions, 2 if you want procurements: 1

Enter number of types: 2

Enter order of Taylor series expansion (5 recommended): 5

Enter the number of subintervals of (t0,t*) to consider: @00
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Enter number of coalitions of each type, separating by

space For example, if you entered 2 for number of types and you
want 3 coalitions in the first and 2 in the second, then enteri3?
Enter lower bound of the support of the distribution of ptevaalues: 1.5
Enter upper bound of the support of the distribution of gewaalues: 6.0
Enter reserve price: 1.5

Here is a menu of cdfs to choose from

1 - two parameter Weibull

2 - Beta

3 - Normal

4 - Lognormal

Please enter the number of cdfs to be used: 2

Enter the index of the cdfs you choose to use: 4 4

Enter scale and shape parameter of Lognormal distributicd® 0.35
Enter scale and shape parameter of Lognormal distribufiots 0.35
For type 1 Enter sequence of zeros and ones corresponding tsé of the cdfs: 2 1

For type 2 Enter sequence of zeros and ones corresponding tsé of the cdfs: 0 1
TYPE MEAN STD.DEV

1 4.3793 0.8563

2 24353 0.7241
Enter 1 if you wish to compute the optimal reserve

Enter 2 if you wish to keep your reserve price: 1
Enter output file name: illustration.txt

Time taken: 290.000s

Writing grid points and bids to file: illustration.txt
Enter 1 for expected revenue and bidder surplus
Enter 2 if not: 1

Enter output file: rillustration.txt

Enter 1 to compute the best response function

Enter 2 if not: 1
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Enter best response file name: brillustration.txt

The input sequence is quite self-explanatory, except blydsir the input sequences 5 (humber
of coalitions), 11 and 12 (sequences of zeros and ones) eAiftihinput point the program asks the
user to provide the number coalitions for each type. Thisesmonds to the parametdssi = 1,2
in section 2. In this example, we specify that there is 1 ¢tioalimaking up type one group, and
there are 3 coalitions making up the type two group. Inpubtsoll and 12 are where the user
provides the structure of the coalitions. The numbers edtat these points corresponduoin
section 2.4.5 of this paper. Input sequence 11 specifieghbdirst coalition consists of the two
high types, and one low type player. Input sequence 12 seedhat the other three coalitions
are simply the rest of the low type bidders competing indieity. The format of the program
therefore allows for the construction of a wide variety opbthetical collusive environments. The

program used in this paper, “bidfunc.exe” is available upquest from the first author.
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Table 21: 3 bidders (median, low, high).

Type Auctioneer
1 2 3
ki 1 1 1
Ui 1 1 1
aj 2.0 1.0 3.39
b; 1.0 1.0 2.20
mean 155 0.966 2.71

std. dev. 1.25 0.911 1.15
First price, no reserve

E(revenue) 0.344 0.111 0.912
Prob ‘win® 0.29 0.13 0.58

First price, optimal reserve=2.016
E(revenue) 0.225 0.061 0.622
Prob ‘win’ 0.22 0.08 0.51

Second price, no reserve
E(revenue) 0.246 0.069 1.16
Prob ‘win” 0.22 0.08 0.70

Second price, optimal reserve=2.016

E(revenue) 0.181 0.045 0.692
Prob ‘win’ 0.18 0.06 0.58

1.65

1.851

0.18

1.57

1.858
0.18

F(v)=1-— e*(%)bi ,truncated orf0, 5|.
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Table 22: 2 bidders.

Type Auctioneer

hazard
ki

Ui

g

bi
mean

std. dev.

1 2

increasing decreasing

1 1

1 1
1.11 1.50
1.50 0.50
1.00 0.84
0.67 1.01

First price, no reserve

E(revenue)

Prob ‘win’

0.481 0.463 0.440
0.58 0.42 —

First price, optimal reserve=0.98

E(revenue)

Prob ‘win’

0.211 0.297 0.656
0.33 0.28 0.39

Second price, no reserve

E(revenue)

Prob ‘win’

0.55 0.40 0.44
0.64 0.36 —

Second price, optimal reserve=0.93

E(revenue)

Prob ‘win’

0.230 0.303 0.660
0.37 0.27 0.36

F(v)=1-— e*(%)bi ,truncated o0, 4].

109



Table 23: No collusion, 2 high types (H) and 4 Low types (L).

First Price Second Price

Mean Std.dev. Prob. Rev. Res. Prob. Rev. Res.

H 3.756 1.030 0.393 0.385 0.415 0.413
L 2435 0.724 0.053 0.031 0.042 0.025
Auc. 0.000 3.557 0.000 3.536
H 3.756 1.030 0.394 0.386 0.415 0.411
L 2435 0.724 0.053 0.031 0.042 0.024
Auc. 0.000 3.558 2.170 0.001 3.537 2.395

vl ~ LN(1.35,0.35),v- ~ LN(0.75,0.35) truncated orj1.5, ).
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Table 24: Collusion exercise between 2 high types (H) andw types (L).

First Price Second Price

Mean Std.dev. Prob. Rev. Res. Prob. Rev. Res.

HH 4346 0.880 0.668 0.906 0.832 1.227

L 2435 0.724 0.083 0.050 0.042 0.025

Auc. 0.000 3.287 0.000 3.135

HH 4346 0880 0.675 0.857 0.801 0.998

L 2435 0.724 0.073 0.044 0.038 0.021

Auc. 0.026 3.297 2.972 0.048 3.237 3.134
HHL 4.379 0.856 0.706 1.019 0.874 1.398

L 2435 0.724 0.098 0.060 0.042 0.025

Auc. 0.000 3.181 0.000 2.989

HHL 4.379 0.856 0.709 0.902 0.815 0.977

L 2435 0.724 0.077 0.045 0.035 0.020

Auc. 0.048 3.225 3.134 0.079 3.185 3.300

v ~ LN(1.35,0.35),v- ~ LN(0.75,0.35) truncated or1.5, ).
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Table 25: Study of the trade off between numerical accuradycamputational.

Order of Expansion, J=5

Grid Time (sec.) RMSE 1 RMSE 2
500 37.1880 0.4000 0.0882
1000  95.3590 0.3988 0.0868
1500 146.1250 0.3984 0.0864
2000 202.2500 0.3982 0.0862

Number of grid points = 500

J Time (sec.) RMSE 1 RMSE 2
2 18.1880 0.4000 0.0882
3 32.2810 0.4000 0.0882
4 38.7030 0.4000 0.0882
5 46.4690 0.4000 0.0882

Number of grid points = 2000

J Time (sec.) RMSE 1 RMSE 2
2 93.4530 0.3982 0.0862
3 139.4530  0.3982 0.0862
4 173.8120  0.3982 0.0862
5 202.2500 0.3982 0.0862

Vv

F(v) = 1— eV, F(v) = 1— e (39)*? truncated orf0,5).
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Figure 9: Three Bidders
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Figure 11: No collusion
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Bids

Figure 12: Two high types colluding
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Bids

Figure 13: Two high types and one low type colluding
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Bids

Figure 14: Comparison of equilibrium bid function and réacfunction
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A.1 APPENDIX TO CHAPTER 2

A.1.1 Data and Sample Construction

The data is taken from the 1979 youth cohort of the Nationalditmdinal Survey of Labor Market
Experience (NLSY79), a comprehensive panel data set thlatM® individuals over the period
1979 to 2000, who were 14 to 21 years of age as of January 1, TBé3ata set initially consisted
of 12,686 individuals: a representative sample of 6,11ividdals, a supplemental sample of 5,295
Hispanics, non-Hispanic blacks, and economically disathged, non-black, non-Hispanics, and
a supplemental sample of 1,280 military youth. Interviewesavconducted on an annual basis
though 1994, after which they adopted a biennial intervielesdule. This study makes use of the
first 16 years of interviews, from 1979 to 1994. By 1990, theSNIZ9 experienced attrition of
2,250 sample members, of which 1,097 were from the supplehsample of military youth. |

discuss briefly the construction of some of the key variabses] in estimation

Employment

The NLSY79 collects detailed work history data for indivédisiin the sample. The work history
data includes beginning and ending dates for all of 5 posgatls, a maximum of 5 possible gaps
in employment with each of the 5 possible jobs, the usual$auarked per day or per week on
each job, and the hourly rate of pay on each job. The biggespbcation in calculating hours
worked is the fact that it must be calculated for the relewaaar, which is the school year in
this case. Since the actual weeks that comprise the schaplgey from state to state, the dates
chosen for the school year are somewhat arbitrary. Follp&okstein and Wolpip1999, the year
for those not attending school starts at Octol&irilyear t and ends September®36f year t+1.
For those attending school the school year instead endsat3luof year t+1. Weeks employed is
then calculated based on these calendar dates. Hours woekeeeek or per day and hourly rate
of pay is reported retrospectively back to the previousriiésy date. These variables were also
adjusted to the above specified calendar dates. From thesbew construct hours worked for the
relevant years, as well as average hourly rate of pay and ptogment rate variable, which is the

fraction of the relevant year in which the respondent waiselgtemployed.

Education
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The NLSY79 also collects information on the respondentsication. In particular, the NLSY79
collects , among others, enrollment status, highest geadg tompleted, current grade level, and
degree held. The primary variables used in the paper aresiginade completed and enroliment
status. In 1981, the NLSY collected information on the patef school activities of the respon-
dents that are enrolled in school. In particular, the NLSkedshese respondent about the amount
of hours they spent in school during the week before thevigerdate. They asked whether or
not the time the reported is typical or not, and if no, to réplbe typical hours spent in school.
The NLSY also asked the respondents to report the numberwshbey spent studying outside
of school during the week before the interview date. Thearsp to these questions are used in

the paper to estimate the study pattern of individuals é&dah school.

There are a number of missing observations on highest gadpleted. Many of these miss-
ing observations could be recovered from the informati@mvigled by enroliment status and high-
est grade completed in other years by the respondent. Siaceddel relies very much on the data
on highest grade completed, we decide not to impute thoss {teat are not recoverable with very

high confidence.

The model construction and estimation requires data ondkeaf schooling for an individ-
ual who decides to enroll in school. The yearly in-stateidnitand required fees for four-year
institutions and two-year institutions are taken from theB$ web site. Also, to identify the the
aggregate shocks in wages and consumption, all nominahlas have to normalized to the same
base year. To do this, the CPlI is taken from the BLS web sitécanverted to have a base year of
1981.

Asset holdings

Beginning in 1985, the NLSY79 began collecting compreheanisiformation on the asset holdings
of the respondents. This information was collected angugdito and including 1994, except for
the year 1991 where asset data is missing. The best way tavithahese missing observations
on asset holdings depends on exactly how the data will be isedtimation. In the case of
Keane and Wolpif200] andImai [2004, asset holding itself plays a central role in their model.
Their method of imputation was therefore to model and assleliigs as normally distributed,
and the estimate the mean and variance, from which they enpet missing years. In my case

however, | require savings balance to impute total familgszomption. For years in which the
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data is available, this is simply the difference betweenARset holding from one year to the
next. For the years in which the data is missing, | take savbajance to be zero. For the early
years of the cohort, net savings is relatively small andareataround zero. This suggests that the
bias induced by this imputation is small. Furthermore, itingsting the consumption equation,
savings is one the right hand side of the equation. The densig of parameter estimates in the
case where the left hand side variable is measured with a @exarerror is well documented in
classical econometric textbooks. Finally, if there wergdsbiases introduced by this imputation,
they would show up in the estimated aggregate prices, Thaszunusual visible discrete change
in estimated aggregate prices for these periods. All theasons lead me to believe that such

imputations results in minimal biases in the parameteratefést.

Consumption

The NLSY79 does not collect data on individual consumptiblowever, the unique advantage
of this data set that it collects detailed information onividbial asset holding. To estimate the
parameters in the above equation, family consumption isutegbfrom family income, family
savings, four year schooling costs, and two year schoobstsc The way this is done is a follows.
Subtracting family savings is taken from family income gi\an estimate of the total resources
available to the family in that year, net of savings. If thdiuddual goes to high school, then his
cost of schooling is assumed to be 0. If he goes to a two-ydkgen his cost of schooling is the
two-year tuition cost, and if he goes to a four-year colldge,cost of schooling is the four-year
tuition cost. The individual’s cost of schooling is subtext from his individual resources. The

yearly averages of the imputed consumption is given in Table

Demographics

Demographic and family background variables collectedigyNLSY79 and used in this study
include age, race, mother’s education, Father’s educaonly income, and year of experience
working. Experience is calculated from the employmenidnissection of the data set, which gives
complete employment status for each year. Missing obgensain family income are imputed by

first using a three year moving average smoothing techniglieywed by regressing family income

on other covariates, some of which not listed here, and ubmgredicted income for the cases in
which family income is missing. The resulting distributiohimputed family income match the

distribution of actual (observed) family remarkably well.
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Sample Restriction

As stated above, the data employed in this paper span the gea879 though 1994. The model
specified in section3(2) does not include the decision to enter the military, and tsi the first
restriction on the data we drop all males who enter the myiita1979. This restriction reduces the
sample size to 11406. As stated above, we drop respondemades where missing observations
in highest grade completed cannot be recovered with vetydogfidence. This reduces the sample
to 7814 respondents. This is clearly are somewhat severecties on the data, and it may pay
to invest is less restrictive imputation rules. This howdsgenot pursued here. In the literature,
female members are treated differently from male sample lmeesn The choice set of a female
is generally considered larger than that of a male. The @dait decisions usually included in
the choice set for women are marriage decisions and fegrtiétisions. To avoid these additional
complications, the data is restricted to include males.omhis results in a sample size of 3916

male respondents. The summary statistics and all estinsatiake use of this sample.

A.1.2 Standard Errors for the Probability of Grade Promotion

Letyn: be in indicator variable equal to 1 if the individual advasieegrade level, and 0 otherwise.

Define:

eXiBa
9(x4,B4,B3) = m(y—m> (A.1.1)
h(x3,B3) = x3(In(s) —x3Ba) (A.1.2)
f(x,8) = [9(x4,B3,B4)’,h(x3,B3)"]’ (A.1.3)

where® = (B}, Bj;)’. Equation A.1.1) is the score contribution of a single individual from the
likelihood function constructed from equatioR.8.2. Equation A.1.2) is the moment condition
derived from the study time equatio®.8.1). | assume that these two moments are uncorrelated,

and we have by construction thats , f (x,8) = 0. The proof thad > 6 is straightforward and
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therefore omitted. Let

Gs = E[Ag,0(x4,B4,B3)] = —E [xa%; eXZB:‘ ! ; (A.1.4)
1Bl e
Gs = E[Dg,g(x4,Ba,Bs)] = —E | XaX3(SBy1+25By ) eXZBf L ; (A.1.5)
’ 1+ 4B 14 eeBe
Hs = E[Ag;h(xs,Bs)] = —E[xeXy] (A.1.6)

Since f(x, 0) satisfies condition&) — (v) of Theorem 3.4 oNewey and McFaddef1994, B, is

asymptotically normal an¢/n(B4 — By) Lt N(0,V), where

V = G, E[g(x4)9(x4)|G; ¥ + G4 GgH3 *E[h(xs)h(xs) |Hs Y G5G, V (A.1.7)

Thus the variance can be consistently estimated by regjabim jacobian terms in the equation

(A.1.7) with their sample averages.

A.1.3 The estimation method for the CCP’s and the conditionbstate probabilities

Let K[5H(WN, — WN)] be a kernel, wher&y is an appropriately chosen bandwidth. Then the

nonparametric estimate @f;j is computed using the kernel estimator

o = 5 et 3 =1 e K [By (Wi — YR
ntj = — .
J S o1 Y- KIS (W — W)

(A.1.8)
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To define the conditional state probabilities we first defime ¢et of possible histories that will

become relevant in the model. Accordingly, {2p + K + 1)-dimensional vectors

(Pnt—p+i -+

Sht—pti+1s

(Pnt—p+i -+

Sht—ptitls-

(Pnt—pis -

St—ptsti,

(Pnt—p+i -+

Sht—pti+1s

(Pnt—pis -+

Sht—ptitls

(Pnt—p+i -+

St—ptsti,

;Pnt-1,0,--+,0,Snt—p+is -+, Snt-1,0,---, 0,
St Shts -+ S, Ent—pis Zat+i )
hnt—1,hne, -0, Sne—ptiy+ , Snt-1,0,+ -+, 0,
St S Ent—pti Znt i)
nt=1,0,++,0,Snt—pti, s St—1,Shts -+ 5 0,
5SS+, S+ 1 Ent—pi, Zntts) s
nt—1,0,+ -+, 0, Snt—p+i, s Snt—1,Sht, -+ 5 0,

< St Sty St Ent—pis Zat+i )

hnt—1, 050,80t —priy 5 St-1, S0+ 0,
SSSt+ L S+ L Entprin Zntti),
1,5+, 0,8t pris - Sht-1,She -5 0,
St Snts -+ St Ent—ptis Zntts)

(A.1.9)

fori=1,---,p, wherehy; ands; is the fraction of time individuah devotes to working and school-

(i) (i)

ing conditional on participating and enrolling. Define thate vectorst = (X, FnNnWnt+iAt1i),

k=0, ,5, wherewy = wiwH2. For exampleW is the state of a young man who has accu-

mulated the history

(hnt—p, ) hnt—17 S’]t—pa o, Snt—1, Sﬂ:—p-ﬁ-la T 7S1t7 Ent—p+1)

up to period, chooses not to enroll in school and to wak hours in period, and not to enroll nor

(i)

work fori—1 periods following. Similarly, W5 is the state of a young man who has accumulated

the same history up to peridd chooses not to work, to and stud} hours in periodt, gets

promoted a grad at the end of yeéaand chooses not to enroll nor work fior 1 periods following

t.

Define p; (¥

ntk

9 ), j=0,---,3, k=0,---,5, as the the probability that individualchooses

alternativej in periodt +i conditioned on realizing the state vectd},, in periodt +i. The
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intuition for estimating these future state probabiliiget condition on observationally equivalent

men in the current period. To do this, define the indicatoiades:

dn—i,j [1}—1 Gnt—r.0: for j=0,1,
A =9 Voitheij M idro,  forj=24, (A1.10)
(1—Ynt—i)0nti,j |_|Ir_:11 dnt—ro, for j=3,5,

whereyy: is equal to one if the individual is promoted a grade levehat ¢nd of period, and
(i)

ntj
estimators of the state probabllltua@(q—'nt ;), which are computed as

zero otherwise. Thereford,.: allows us to condition of the appropriate history for conpgthe

SN 3 5T ekl K S (W — W]

N T d(i)_K 5-L(wN N (A-L11)
Zm:er:l mr j [ N ( mr nt)]

pﬁ‘ (Wgt)ﬁ

Estimation of the parameters characterizing prefererszeraluire that the derivatives of the prob-
abilities with respect th be estimated. The methodology employed to estimate thes#itias is
found inAltug and Miller[199§.

A.1.4 Derivation of the moment conditions for the final stageestimation

Hotz and Miller[1993 prove the existence of a mapping [0, 1] — [0 such that

a(pk(Wnt)) = Vj(Wnt) —Vk(Wnt), (A.1.12)

EquationsA.1.12) and @.3.149 are used to derive the alternative representation of thditonal

valuation functionVy for the finite dependence case. To do so, define

;

U1(Sht, 0) + Uz(Xnt, 0) + Ug(Xnt, 1) + a~Inphicnt forj=0,
u .0 Xnt, 1 Xnt, L —h) +a~tnnAc forj=1,

0y (W) = 1(Sht, 0) + U2(Xnt, 1) + Uz (Xnt t) NnAtCnt J (A1.13)
U1 (Sht, 1) + Uz(Xnt, 0) + U(Xnt, L — Snt) + A pAeCat forj=2,
U1(Sht, 1) + Up(Xnt, 1) + Us(Xnt, L — Ny — Snt) + 0 InnAccne forj = 3.

\

Recall thatFj(LIJgt)NJnt) is the probability that the state vector of individualn periodt +i is

w,&?, given that his state vector in peribis W,; and he chooses alternatiyén periodt. Then by
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recursive application of the law of iterated expectatiahs,conditional valuation function can be

expressed as

V(W) =m0%o+a{zﬁﬁﬂz%n@dwﬁwwmmdwﬁw
+zk1m<ﬁbm<< ) + 0k(pe(WH))
—do(Po(Wi)))|Fi (W |Wn)

_|_[3p+1 [VO P+1 +¢< ( (P+1)))

+Zi1m<( ) @p W) + ok pe(WiE ™))
~o(Po(¥ “”»ﬂa<‘”ﬂwmﬂ}

Notice that the recursive substitution employed to obtagretiternative representation is only valid

(A.1.14)

up to Wherepo(LIJintj) > 0. In the context of this paper, this condition is true at2 for j =0, 1,
andi =1for j=2,---,5. Equation A.1.14) gives the following alternative representation of the

Euler equations for labor supply and schooling

Ot J ognt
(i)
+Zk—1p( ) pe(Wh ))+¢k(pk( )~ 0o(Po(Whi)))]

00nt
+zb[<<kw'»+¢«m<<b>
—do(po(WY)

)] kagt ] i(Wn |Wnt)] (A.1.15)
+Zﬂnpj+1 [Uo(qJ )+ do(po(W))

+ 31 [P Wh) (AP Wh)) + b pr(WR))

~fo(po(WiY))) Y] |

wheregnt = {hnt,Snt}. Assume thakon, -+ ,€ntz are identically and independently distributed

' (i) (i)
0= M+Et{2f)— [z t |:6[U0(Wnt)+¢o(po(lpm))]

(
)

over (n,t) as Type 1 extreme value random variables. This assumptials [® convenient rep-
resentations for the differences in the conditional vatuafunctions, and the expected values
of the alternative specific unobservables when their cpoeding alternative have been cho-
sen. Specifically we have thafp(Wnt)) = In [p" (¥ } dr(p(Wnt)) = Y — In(p(Wnt)), and
1P Wn0) — Bo(Pof W) = —In [ B4].

Note that the transition matrix is degenerate conditiomaltte individual choosing not to

enroll in school. If he chooses to enroll in school, the ptolitg of advancing a grade level is

F (Xnt). This implies that the transition probabilities fio 1, - - - , p are given b)F(LIJE]iaj W) =1,

133



for j =0,1, F(W r]tJ|LIJm) = F(xp) for j = 2,4, andF (¥ ml|wnt) (1—F(xp)) for j = 2,4.
Define&nt = (1—a)~tIn(nuA). Then we marginal utility of consumption can be expressed as
NnAt = exp((1—a)&nt).

The parametric assumptions on the utility functions andidiesyncratic taste shifters, and

the Euler conditions for work and schooling from equatiénl(16) are used to form population
moment conditions. We can then define

M1(0) = dnu [u‘lnnmwm — Z,Bs— 250l — 5P &i(lni + BY)
apo ()
5018 po(Whih) - 1%}
g [0 AeWn; — Z4yBs — 280l — 3 8i(Ine-i + B)
apo(w i)\ 10
5P 13'[ o(WLy) OB E () 1 po(WilL)1000s) (1))
Po( gt)s) OF (Xnt)
+|n(po(W£:34> O | ]
_ (2) P [
Me(©) = dhe [—4t85—260|nt 5018 +B)

()
570 W) B o)+ (i P (1 F )

(i) [
+'”<$E$Wf§) T }+dnts [—4t85—26o|,2?>—zf’ & (Int-i +B')

nt2

Ipo(Wh 0
5P 16'[ (W) PR (¢ ) 1 g -12Re) (1 ()

Po(Wi) ) OF (xay) |
+|n<p0(q)(it)5)) aSqtt_ .

The parametric assumptions on the utility functions, theritiution of the idiosyncratic taste

shifters, equationA.1.12) and equationA.1.14) are used to obtain the following additional mo-
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ment condition’

Ma(©) = dml[ln(pml) XBo + XuBr (1) — 1) + Bo(10 ~ 14)

#3080 181 )~ ) - 3040m (250)
Mua(©) = dhio [ln (p 0) —x:, B+ X Br () —1i7)

3ot~ 1) + 51 81 =150 ) (i + B) + 22T

~3B [Inp( Whio) = I Po(Wi)F Oxn) — I po(Wis) (1= F ()|
Ms(©) = na [ln(pms) (Bs — XiyBo + X Br (1Y) ~117)

+50( nt )+Z| 5|( nt _lr(\\t?)))(lntfi‘f’Bi)_nn—)\t(Wnthnt—T[nt)

~30.8 [lnpo< Wio) = I Po(Wi)F () = In po(Whs) (1= F ()| |

A.1.5 Consistent Asymptotic Variance Estimation

Some preliminary results are in needed. The first is condewith the estimation of the CCP’s
themselves. In estimation, a the data was trimmed to enlsatéte density is bounded away from
zero. This fixed trimming condition defines a compact subséte support of the density over
which the density affects the estimator. Assumptions 8.3,-a&hd the assumptions in Lemma 8.10
of Newey and McFadde[1994 ensures the resulting kernel density estimators of the’€am

their derivatives converge uniformly:
VNN W) - (W) )12 B o, (A.1.16)

where the norm is the Sobolev norm. Assume tt is the unique solution to:

P4

M(Xn, 8, &n(BY), sn(BY)Fn(sn(BY), BY). pR)- (A.1.17)
1

Zl -

n

Assume also thdly € ©, a compact set. Inspection of the equations?®) €hows tham(x, 0) is

continuous in eacB. Further inspection along with the fixed trimming conditiom the data in

The construction of the moment conditions show that theaghof the normalizing alternative (alternative 0) is
not completely arbitrary. This alternative has to suffithesaturate the state space so thag > 0 andpo (W}, J—) > 0.
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estimation implies thah(z, 0) is uniformly bounded ove. These conditions ensures tedt-" 6,

as shown in Theorem 2.6 dfewey and McFaddefi994.

Define the following influence functions from equatiofi8)(and from the definitions in section
A.l.2

b1(xan) = —E[AX A, Axan] AX A AV, B3(Xan) = —Hg th(xan),

0a(xan) = —H, *h(xan). (A.1.18)

Define the following matrices

(dnta + 0nes) (252) exp( (1 — o) Ent) )Wt
0
1
M= | a5 expl(- bt | | 3 %o
(35%) exp((1— a)&n)) T
dna(152) exp((1— G)Ent))(Wnthnt—T[nt) |
Mln( ) = (Ming, -+, Miq7)’, and,as(%n) = E[Mun]d1(Xan). (A.1.19)

dntz

Ont1 3050+ _ i
G} 0 d X 92
s [280+ 3 (i — B ( (& S — oL %ot T+ n(g) G ) )

Ponta : Ponts OSnt Ponta zahmas“
ap 1 0p OF (Xnt) Pontz \ 9°F (Xat)
d |:26 . (dS i ( 1 ont2 oma) In( Ponts
nt2 0+ i | One—i -B Pz gslﬂ Pons aasqt d5nt + ( Pomz) aﬁt +
= OF (Xat) Ponts \ 9°F (Xnt)
Mopt = d [25 . <d i (( _1 OPonss _ _1 poms) In( Ponts .
2nt nt3 o+ Zl nt—i B Ponta 0Snt o, ms 0Snt T 0S| + ( p0m4) 052, [S'ﬁ 3nt] 9

le. I(r?t I3 )drsn i

%dm%ww+ammzﬂwmfmﬂ

- ch [XBo + 280 + 31 Slow 33 [In( B T | _
Man(%n) = (M/2nl7"' >M/2nT)/a and,o2(X,) = E[Man|02(Xan)- (A.1.20)

. il 1 OPwa 1 9Pus Pons \ 02F (Xat)
Ont3 Z|B [ N P Ohnt +In('p'0m4) oh2,

- op 1 opl Pont3 \ 92F (Xat)
—d ni [ 1 ont2 __ ont3 | ( Ponts _
nt2 ZI B ont2 0snt ploma 6311 * ( )

ap, 1 9p p 0°F (Xut)
d i [ 1 onta 0nt5 | |y (Sonts
Mant = i3 2 B Ponia 95t p'oms Ont ( Pon 4) ohntdF

[F(Xnt)(l_ F(Xnt))ximt] )

2 3 B [In(%ﬁﬁ)}
iz 3 B ['n(Blfm)}

L Ponts -
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M4n(xn) = (Mﬁlnlv e ’MﬁlnT)lv and,cx4(xn) = E[M4n]¢4(x4n)- (A.l.21)

0 _
Dno=E [a;nm |qJnt] = _pnté(ov 0, Pnt1, Prt2, Pnta)’
Dno( ) ( nios - D;]To)/, and,ds(xn) = Dno[dno — pno] (A122)
D1 =E | 9™ 1w | = (0,0,1,0,0)

_apntl i

Dn1(%n) = (Dp1, -+, Dpr1)’s @and,0g(Xn) = Dpa[dnt — pra)- (A.1.23)
o =E | 2™ 1w ] = (0.0.0.1,0)’

apnt2 ]
Dn2(%n) = (Dra2,- -+, Dnr2)’, @nd,o7(X) = Dz[dh2 — pra- (A.1.24)
Dy = E [am“ \wm] (0,0,0,0,1)’

apnt3
Dn3(xn) = (D;]ls, cee 7D;]T3)/7 and,dg(xn) = Dn3[dn3 — pn3]. (A125)

Fori=1,--- pdefine.

(i) )

(i) !
_ am"lt p p p
Do = [ wiy| = (o 0, o P Pong
pomo Ponto  Ponto pomo
Do (Xﬂ) = ( :110'7' o 7D:1T0i)/> and,ag (Xﬂ) = Dnoi [an - pr(:C))] (A'1'26)
) (i) () !
Dntli = E arnm | nlt]_ BI plntl hpé%t1707 M,0,0
Y0 2 0
pOntl pOntl pOntl _
Dn1i (%) = (Dpagi, -+ Diryi)’, @and, o1 (Xn) = Diifdns — pgi]- (A.1.27)
_ () _ () (i) ’
Dnia = E | 140, | — @1 (0,292 1.0 F () — P21 (1), 0, P22 (1), 0
n (i) \2 n (i) (i)
omz (Pontz2) Pont2 Pont2
Drai (%0) = (Dhazis -+ - Dyri)’s @nd, aiagi (Xn) = Drai[tho — PU)- (A.1.28)
0 (i) (i) '
d - -
D = E |2 140 | =@ (0,218 1,00 (1 F () + P20 (), 0. 222 (1. F 3x)).0
() 2 (i) (i)
poms (Ponta) Pont3 Pontz
Drsi (%n) = (Djng, - Diyra)', @nd,a12i(Xn) = Dy (o — Pipe)- (A.1.29)
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nt j

( p3m4) h pg)r)1t4F (Xnt) Esm4 0,F (Xnt)
Ont4 nt4
p(snm D () = p3r114 0.F
Myt i) N IEORT sPontaF (Xnt) — ol (Xnt)
— nt Nt
Dniai = E 3 0 Whia| =B 0
Ont4 0
(i)
%DSF (Xt
L ont4 ) .
Drai (¥n) = (Djpyais -+, Dyrai)’, @nd, a1 (¥n) = Drui [cho — Py (A.1.30)
psms 0 p() (1 F(Xn )) pams DhF(X ) 1
(Pous)2 onts t Pbus "
p N p N
anht . (p<i3> ts)z Dspér)ns F (Xat) + pﬁ)ﬁ" OsF (Xnt)
Dus =€ | v iy | =g | (o o
a 0nt5 0
pgr)ns
ol OsF (Xnt
L ont5 .
Dnsi (%1) = (Drysi> -+, D)’y @nd, 141 (Xn) = Drsi[dno — pS,ZS]. (A.1.31)
;) be the density o j=1,--- 5, i=1,--,p. Define alsad}; = (f(¥iy;))" 1"fghnnu).
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Fori=1---,plet

. /
B My . ) p(')
thtli =E [a 0 |qu(1lt)1] = Bl (%70707070

Uh Pont Pont1
(i) !
0
hhMnei = E [*I ntl] B < Pt 06 1,0.0,0 o)
aDh pomlahnt _ ( pOntl)
hDntti = — [ hiMntai + 2 M2 O e | (A.1.32)
hDni(%n) = (#Djyzis-~- » hDjyrs)'s @Nd,0l15 (n) = hDiti[cho — Py (A.1.33)
amnt p(i> /
SMI’ltzi = E ‘Lpntz - B 07 (2ir;t2 F (XI"It)a 07 07 O
Sp0nt2 Pont2
oMy Pz ) P2 '
SSIVll’ltzi =E T ‘ nt2 Bl 7I’lt DSpOntlF (Xnt) (il’)lt DSF (Xnt)7 07 07 0
0UsPont205nt _ (pomz) Pont2
sDntai = — [ sMintzi + 2 sMntZi’Slntz] (A.1.34)
sDn2i (%) = (sDp1ais -+ sDprai)’s and,aue(Xn) = sDn2i[dno — pé',lz]- (A.1.35)
OMpyt p(i) /
sMnizi = E |qJnt3 = B 0, 3r)1t3(1_ F(xnt)),0,0,0
Dspoms Ponts
() () !
0
M =E [$| mgl g ( PoS (s (1~ F Oxw)) + D80 (), 0,0, 0>
0UsPont30Snt _ (pom3) Pont3
sDntai = — [ ssMntzi + 2 sMnt3i’9|nt3] (A.1.36)
<Drai (%) = ( Dz~ » sDhrai)’s @nd, 017 (%) = sDnilcho — Piyi- (A.1.37)

The construction of ,Dnisi and sDnwi are the same asDniy with the correct indexes. Likewise, the
construction of ,Dps and sDpwss are the same agDng with the correct indexes. This gives additional
influence functionstg, - - - , 021. Define alsa(x,) = z?zlo(nj(xn) + z,zig Zip:]_aji (Xn). The fixed trimming
condition, the smoothness propertiesna(x, -), and conditionA.1.16 ensures linearization is possible in
the necessary arguments, that the above matrices are \iiekdi€in particular, all expectations are well
defined), and that assumptions 5.1-5.0efvey[1994 are satisfied. Define

~ _ [om(xn,60)
Mg =E { T (A.1.38)
W = E[{m(xn,00) + & (Xn) H{M(Xn, 60) + a1 (%n) }] (A.1.39)
Therefore, by lemma 5.3 dlewey[1994, we have that
VN(Bn — 80) > N(O,V),
where
V = (M§Q Mg) IMpQ'WQ Mg (MQ Mg) 1 (A.1.40)
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A consistent estimator of jacobians with respect to thediditnensional parameters are obtained by replac-
ing the parameters (both finite and infinite dimensionaljlieir respective estimates and taking averages
over N. A consistent estimator jacobians with respect to the capt their derivatives are obtained by
replacing the parameters with their estimated countesaantl then performing nonparametric regression of
these quantities on their appropriate conditioning vesdﬂd,{j. The residuals needed to complete the for-
mation of G (x,) are readily obtained from all the parametric and nonpamamepte-estimates. By similar
substitutions and averaging consistent estimatééeah(x.:,8), andQ are formed, denoted bvig, mN(xn),
andQN, A consistent estimate &¥ is then obtained by

N
WN =N S [m(x0) + aN o) ] [mY ) + a ()] (A.1.41)
n=1

Putting all these estimated quantities together, a camisistimator for the asymptotic variance is given by

_ _ _ _ -1
VN = (MY (@)t M (@) TTwN (@) vy (MQ’(QN) lI\/Ié,“) . (A.1.42)
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A.2 APPENDIXTO CHAPTER 3

A.2.1 Proof of Theorem3.3.2

Proof. Inverting the index function$o andd, in equations 3.2.3 and @.3.1) respectively gives:
0o (%iBo+ fo(z)) = 1 (GBL+ fi(2)) &
XiBo+ fo(z) = o0 (xBr+ fi(2))), (A2.1)
since both sides of the first equality are equaig Also, since the index function is strictly increasingsit i
differentiable almost everywhere. Differentiating eqoat(A.2.1) with respect to the continuous regressor
Xitk gives:
o Boc_ 0601 0Pyt (@) _
B 93(01 (4 B1+ fi(z)))
where the positive sign follows trivially from the assunaptithat the index function is strictly increasing.
We have from equation’(2.2) that(Pio) = ad’ (Pro) which implies that:
do(Pro) = ad1(Pro) +C. (A.2.3)

Taking first difference of equation8..3, (3.3.7) and A.2.3) we have that:

Aldo(Pro)] = AXBo
Ald1(Pro)] = AXB1

(A.2.2)

Aldo(Pro)] = aA[a(Pro)] (A.2.4)
which implies that
aA[$1(Pro)] = A%PBo
al[¢1(Pro)] = alXPa. (A.2.5)
Equating the RHS of the equations i.2.5), pre-multiplying byAx; and taking expectations gives:
E[Ax A% |Bo = aE[Ax A% |B1. (A.2.6)
Then by the invertibility ofE [Ax;AX; ] we have
Bo = aPs. (A.2.7)

The assumption thatfBo|| = ||B1]| = 1 implies from equationA.2.7)that|a] = 1. Buta > 0, which implies
thata = 1. Thus equationsA(2.7) and @A.2.3) imply that:

Bo = B1 (A.2.8)
bo(Pt) = ¢a(Pe)+c (A.2.9)

From equationsA.2.8) and @A.2.9), (3.2.3 becomes:
01(Pro) +C = AxB1+ fo(z)

= DB+ f1(z) +¢ A% 1+ fo(z)
:>f1(Zi)—|-C = fo(Zj). (A.2.10)

This completes the first part of the proof. The fact that0, follows from assumptior3(3.11) and equation
(A.2.10 by taking the expectations of both sides of equatiar2 (10). O
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A.2.2 Finite Entropy Lemma

For any giverR > 0, let

G :={SxB,¢,Po) [ [IBllk <1,¢ € 5x}-
Then we have the following result:
LemmaA.2.1. If assumption 8.6.2 holds, then

1. The clasgj is uniformly bounded.
2. Foranyd > 0,

Ho(3,G) < Ciln <4C26+ 5) %,

for someC; > 0,C; > 0 andCs > 0, whereH« (8, G) is thed-entropy ofG for the supremum norm (See
Definition 2.3 ofvan de Geef200Q).

Proof. Sincen is continuous, it is bounded ovég, say with lower and upper bouné&s andR, respectively.
Thus the sefx is uniformly bounded. Thuss(x,B,,Po) < ([|AX[13.]IBll2+2(T —1)[|$]))? < (Ro+2(T —
1)R)? for someR > 0.

Note that the entropy of the clagkis at most that of the cartesian prod@g(0,1) x G. The ballBk (0, 1)

K
can be covered bﬁ%ﬁ) balls with radius3 (van de Geer, 2000). Since a ball of radéusan be covered

K
by a K-dimensional cube of lengtd2he ballBk (0,1) can be covered bQ%) cubes of diamete3. This

in turn implies thaH., (8,Bk (0,1)) < Kln (8%5) Furthermore, there is a constahsuch that the entropy

He (8, C:={g: K — [Ri,Re]| [ |g(X)[dx < M}) has the upper boun% for someC > 0, (van de Geer
[2000). G(R) is included inC. The entropy bound now results from the fact that the entafycartesian
product is the sum of the entropies of the sets in the product. O

Corollary A.2.2. If assumptions3.6.2 holds, then the following uniform convergence holds:

sup |Su(xB,9,Po) — So(x,B,,P)| — O, Q-almost surely
Bdeg

Proof. LemmaA.2.1 establishes that; has finite entropy in the sup-norm. Lemma 2.1vah de Geer
[200Q shows that the entropy in the sup-norm bounds above themntrith bracketing for the1(Q)-
metric, implying finite entropy with bracketing in thg (Q)-metric. Then apply Lemma 3.1 @&n de Geer
[200Q to see thatg satisfies the ULLN. O
A.2.3 Proof of Theorem3.6.3
Proof. Define
SXHB?q)?Pl) : m(X|7B7¢7P|)/m(X|7B7¢7F)|)
1 N
S\I(B,¢,P) T ngls(xl7[3>¢>Pl)
S(B,9.P) = E[SXB,¢.P)].
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Clearly, the pair(fB,dS) is defined to be minimizingy (B, ., P), and(Bo, o) minimizesS(B,d, ). In fact
S(Bo, $o, Po) = Su(Bo, o, Po) = 0. Thus

SNB.6.P) < Su(Bo.o,P) >0, (A.2.11)

by the continuous mapping theorem. Thus from equatfog.01) we have:

OS S()(Ba(ﬁaPO) = S\I(B,\?@?IS)"‘&)(BZ@?PO)_S\I(Ba(ﬁaﬁ)
< [S(B§:Po) — Su(B. 9, Po)l
+|Su(B,,Po) — Su(B.§, P)| + 0p(1) (A2.12)

The first term of the RHS of the last mequallty is q;{l ) by corollary A.2.2). To see that the last term is
also anop(1), we add and subtraah(x;, B,§, P)'m(x;, B.d, Po) to get the following:

Su(B.6,Po) — Su(B,6.P)|
N ~
<30 3 { (1m0, B8, ROIE-+ 1m0 B.6. o] 1m0 B.6.8) — mix, 8.6, Ro)l
< cﬁ_zl{umm,fs,cb,ﬁ)—mm,fs,qs,aowz}
< Cy ZNSG%EW ~0(Ro)l13. (A.2.13)

As discussed in the proof of Lemmnda2.1, the setSx has finite entropy in the sup-norm, and is thus totally
bounded in the sup-norm. Its closuBg is therefore a compact set of continuous functions definedon
SinceP, — P in probability, by the continuous mapping theorem, the sega(¢(P) — ¢(Po)) converges
pointwise (i.e., for eacly) to 0 overSx. Note also thaByx is equicontinuous by the Arzela-Ascoli theorem.
SinceSyk is compact, the sequence also converges uniform8dinmplying,

sup [6(R) — o (Po)|3 -0
beSk

asnh — oo, This in turn implies that the last term on the RHS of equai:2.13) goes to zero in probability.
Then from equationA.2.12) we have that

0< S(B,$,Po) < 0p(1). (A.2.14)
Since the model is identified, for a@l> 0 there exists > 0 such that

d[(B,9), (Bo,d0)] > 0= S(B,d,Po) > ¢

So we have that

Pr{d[(B.). (Bo.$0)] > 8} < Pr{(So(B.$,Po) > €} — O,

where the convergence comes from equatiar2(14). This proves thaB —> B and sup 4 |§(P) —
do(P)| - 0. O
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A.2.4 Proof of Theorem3.6.4

Proof. The proof of asymptotic normality (f:‘relies heavily on the results Mewey and McFaddefi994.

By consistency results, we hage= ¢o+ op(1). The consistency ¢ also implies3 = 3o+ op(1). Hence,
we have
Axif3 = Ald( |2] A A
= Albo(R)]+ (A[G(R)] - Aldo(R)))
= )] +0p(2). (A.2.15)

0% (B—Po) = Aldo(R)] —Aldo(Po)] +0p(1)
A% (B—Po) = R (R —Po) +0p(1),
DA% (B—Bo) = AXRi (P, — Po) +0p(1),
DGO (B—Bo) = OXR(R —Po)+0p(1),
S OO _ 1 S AR
R(ZRFE) Bp) = o3 MRE-PO+UV)  (A216)

The second equality is due to the mean value theorem, vidiéseas in the statement of the theorem, except
that the components;, are betwee®; andP;o. LinearizingP; aroundP;, and stacking it gives:

N AXYAX\ N
(P ) BB = 3 ARREH G ) ()

"‘C\/NH\A/(Wi)—VO(Wi)HZ-i-OP(%) (A.2.17)
where

f 1(Wi1) 0 0

cw=| 0 T
S
—Pwo 1 0 o - 0 0
0 0 —Ppo 1 - 0O oO
Gi: . . . . . . .
o o o o p
V1 (Wi1) — Yio(Wiz)
Yo (Wi1) — Yoo(Wi1)

V(W) — Yo(wi)] = :

\Zl(WiT ) — Yio(WiT)

Y2(Wi1) — Y20(Wi1)
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For notational convenience, define thiex 2T matrix M; := A)({Rifl(wi)Gi. As discussed in equation
(3.6.1), the second to term on the RHS of equatidn2(17) converges to zero in probability. Then from
equation A.2.17) we have:

N 'A%\
VN <%> (B-Bo) = VN [ Mw)[j(w) — yo(w) f(w)chw

1 N .
4 N i;I\A(wi)[y(vvi) — Yo(Wi)]

VN [ MOW)W) - Yo(w)] f (w)chw

+op(\/iﬁ) (A.2.18)

Equation 8.6.1) along with the triangle inequality results in the term imatkets on the RHS of equation
being anop(1/4/N). As for the first term on the RHS:

[ M) 5w) — yo(w) f(w)dw = Nl_i J MW)a3o(w—wi) f (w)chw (A2.19)
—/M(W)yof(w)dw

N
= N_l_;/[f(W)M(W)Qi—E[f(W)M(W)QHJU(W—Wi)dW.

As discussed ilNewey and McFaddef1994, the conditions in assumptid®6 ensures that this integral is
close to the empirical measure. This with equati&r2(18) implies that

N AYAX N
m(%) B-Bo) — %Zl[f(w)M(W)Qi—E[f(W)M(W)QH
1

+op(ﬁ) (A.2.20)

Substituting forM (w) and observing that by the law of iterated expectations,&fma bn the RHS in expec-
tations is zero, we have the following:

N / . ~ N
m(M) (B—PBo) = 1 ZlAXilRi(yi —P|o)+0p(i)

N P N
~ LS adRe+op(—n) (A2.21)
R *

The result then follows immediately from the Slutsky theoreombined with the WLLN and a multivariate
version of the Linberg-Levy CLT. O
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A.2.5 Proof of Theorem3.6.5

Proof. The proof of efficiency uses the results developetléwey[1994. To proceed, we first set up the
environment so that the results are directly applicable.
Notice that the model construction in secti®i2 implies the following equivalent moment condition

Eq[AX (Aldo(Po)] — AxiBo)] = Eq[M(xi,B,$,Po)] = 0.

This moment condition can be seen as the first order condifi®x;, B, ¢, P) with respect to beta. Further-
more, the limit of our estimaté maximizesEg[S(x;,3,$,P)]. Thus by proposition 2 dlewey[1994, the
estimation ofp can be ignored in calculating the asymptotic variance. Sward only with ¢ = ¢.

Let the distributionQ belong to a general family of distributionQ. Define the parametric sub-
model Q(0) := {Qp: Qs € Q, Qo =Qpatd =0}. We assumefg to be a probability density relative to
a fixed measurg, the mapd — /fg(w) is continuously differentiable in a neighborhood of 0, &he-

J [(0f9/08)?/fo] dtis finite and continuous in this neighborhood. Then by Lemngadf van der Vaart
[1998, 6+ Qg is a differentiable path. We use this differentiable patithuce parametric submodels for
the parameters th@tandP, are estimating. Thatis, we defipd) = u(Qp) :=plim Bandk (8) =R (Qp) :=

plim B, wherep(Qp) satisfies:

Eo[fM(x, 1, P(6))] =0 (A.2.22)

The rest of the proof involves finding the pathwise deriatiyw) satisfying e) = E[d(w)g(w)], where
g(w) = ae| ~Infg(w) is the corresponding score. Then the variance bound for dtnation ofu(6) is

Var(d(w)). Differentiating equationA.2.22) with respect td and solving for?i® ( ) gives

A = M e B p@) T |+ LRl ) (A229

where M = 6%E[rﬁ(x, BoPo)] = E[AXAX], which is invertible by assumptior3(3.13). From equation

(A.2.22), the last term on the RHS of equatioA.2.23) is zero. Definingd(x) := ai m(x, Bo,P(8)) and
applying the law of iterated expectationsRow, 0) = E[y|w| gives

A = M { Smlsmy - R}
= (M) (y— Ro))Sw) (2.28

Thus givingd(w) = —M~18(w)(y — Py). Noting thatd(w;) = AX'R;, we have that
Var(d(w)) = E[AXAX] E[AXRIQE[RAX|E[AXAX] 2 (A.2.25)

which is the asymptotic variance 6fderived in theoren3.6.4 O
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A.2.6 Contraction Mapping

Proof. Here we show that equatio3.b.4) indeed defines a contraction mapping. For simplicity wepdro
thes subscript. Recall that the usual kernel smoother is indgaojaction (sedlammen et al.2001). We
therefore write equatior8(5.4 as:

¢;+1(P) = PradxB+Prad;(R 1), (A.2.26)

Taking differences gives
0j11(P)—0;(P) = PrP&(I)j(FA)trl) — PrPtq)jfiL(lﬁt—l)- (A.2.27)
= Prg (0j(R-1) —¢j-1(R-1)). (A.2.28)

Computing these projections Bt 1 and norming both sides of this equation gives the inequality

0je1(R-1) —d;(R-0) | < [9j(R-1)—dj—2(R-1)ll, (A.2.29)

since the projection is a contraction mapping. O
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A.3 APPENDIXTO CHAPTER 4

We prove here two lemmas which are used in the paper to eedliagtor Series expansions for composite
and inverse functions. Lemma 1 is taken from MMRS but is idellihere for the ease of reference.

Lemma A.3.1. Let

fuy =5 filu—w)’, git)="y gjlt—to), (A1)
% %
together with gy = g(to). Then
(fog)(t) =Y aj(t—to)’ (A2)
,; j
where @ = fgand for j> 1
i
aj = Z fkek.j (A3)
K=1
and where thé@s are evaluated recursively as follows
j—k+1
Bkj= > Obk-1j-s 1<K<] (A4)
s=1

with 8pp = 1.
Proof: We have )
(fog)() =Y fi| ) gs(t—10)°
242

Whenceg; is given by formula (A3) wher@ ; denotes the coefficient ¢f —to)’ in the k-th power of the
factor in brackets. Formula (A4) follows from the identity

iek.j(t—to)j :[ 2 ekl.r(t—to)f] : [fgs(t—to)S] (A6)
= r=k—1 s=1

Lemma A.3.2. Let f~1 denote the inverse of f

(AS)

00

10 = 3 hj(x—xo)’ (A7)
,; j
with o = f(tp). Then
ho=x, hy=f"t (A8)
o1
h; :—fl_J' [Z hk9k7j] (A9)
K=1

Proof: We apply Lemma 1 together with= f 1, whence

(g tog)(t) =t=to+(t—to)

This implies thatag = a; = 1 anda; = 0 for j > 1 in Formula (A3). The proof follows from formulae (A3)

and (A4), with the latter implying tha; ; = ff.
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