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CONTRIBUTIONS TO STRUCTURAL MODELING AND ESTIMATION

Wayne-Roy Gayle, PhD

University of Pittsburgh, 2006

The first chapter of my thesis develops and estimates a dynamic structural partial equilibrium

model of schooling and work decisions. The estimated model explicitly accounts for the simulta-

neous choice of enrolling in school and working. It also allows for endogenous leisure choices,

intertemporal nonseparabilities in preferences, aggregate skill specific productivity shocks, aggre-

gate consumption price effects, and individual heterogeneity. Times spent on schooling, working,

and leisure are treated as continuous choice variables. Theestimated model is solved and two

counterfactual simulation exercises are performed. The first is the case where a subsidy is given to

individuals who enroll in school and do not participate in the labor market. The second is the case

where the demands of the school curriculum are increased so that a young man enrolled in school

necessarily spends more time studying. The conclusion is that the latter policy is more effective in

enhancing educational achievements and future wages.

The second chapter of my thesis develops a semiparametric estimator for a dynamic nonlinear

single index panel data model. Flexibility of the model is achieved by assuming that the index

function is unknown. Flexibility in individual heterogeneity is achieved by assuming that the

individual effect is an unknown function of some observablerandom variable. The paper proposes

an algorithm that estimates each of the finite and infinite dimensional parameters. In particular, the

full data generating process is estimated. This is important if the predicted outcomes are used as

plug-in estimators, as in the multistage estimation of dynamic structural models.

The final chapter of my thesis develops a powerful new algorithm to solve single object first

price auctions where bidders draw independent private values from heterogeneous distributions.

The algorithm allows for the scenario in which groups of symmetric and asymmetric bidders may

iv



collude, and for the auctioneer to set a reserve price. The paper also provides operational univariate

quadratures to evaluate the probabilities of winning as well as the expected revenues for the bidders

and the auctioneer. The expected revenue function is used tothe compute optimal reserve under

asymmetric environments.
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1.0 INTRODUCTION

This thesis simultaneously extends the literatures on econometric theory, applied microeconomics

and computational economics. These extensions are guided by the increasingly recognized, yet

still largely untapped complementarities between these three branches of economics. This com-

plementarity can be explained by a simple philosophy. Developing models to analyze and solve

interesting economic puzzles require understanding and appreciation of the available theoretical

tools. The level of realism achieved when estimating a modelwith available data is constrained

by the existing econometric technology and the computational feasibility of the solution. The abil-

ity to understand and compute existing estimators, and to develop new ones, therefore allows the

investigator greater flexibility in thinking about and characterizing economic puzzles.

Two key economic puzzles are addressed in this thesis. The first lies essentially in the educa-

tional attainment and returns to education literature. Thesecond lies in the literature of asymmetric

first price auctions with applications to the sustainability of collusions.

The first chapter of this thesis investigates the effects of time allocation between the labor

market and the classroom on educational attainment and future wages. Over the last three decades

more young individuals are participating in the US labor market while actively remaining enrolled

in school. Young individuals are increasing both their incidence of work, as well as the amount of

hours worked while enrolled in school. This trend has generated growing interest in its possible

immediate and long run effects on young individuals.

It is not obvious how working while enrolled in school affects a young individual’s educational

attainment and future labor market opportunities. On one hand, there is valid concern that an inten-

sive amount of working while in school may hinder academic performance and increase drop-out

rates. This is known in the literature is the crowding-out hypothesis. On the other hand, working

while in school may improve a young individual’s organizational skills, sense of responsibility and
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self esteem. This is known as the congruence hypothesis.

Along with the congruence effect other positive effects of working while enrolled in school

include the human capital effect and the cash effect. The human capital effects states that working

while enrolled in school gives the student immediate working experience that is directly rewarded

in the labor market. The cash effect states that working while enrolled in school provides income

for the student that can be used to further finance education,leading to higher educational attain-

ment and thus increased future labor market success.

The objective of the first paper, therefore, is to disentangle these different avenues of effects of

working on educational attainment and future wages. I focuson separating these different effects

because their significance may vary over different groups ofindividuals.

The key issue then in the first paper is the optimal time allocation between time spent in the

labor market, time spent on school activities, and time spent on leisure. Previous work on the

effects of working on educational attainment has essentially ignored the important fact that in-

dividuals also choose the number of hours they spend on studying and other in school activities

(SeeEckstein and Wolpin, 1999for example). The difficulty with such an analysis is that an hour

increase in the number of time spent in the labor market is interpreted as an hour decrease in

leisure. In reality, the individual could choose to reduce the time spent on school activities instead

of leisure. Such analysis can therefore lead to imprecise orincorrect estimates of the effect of

working on educational attainment and future labor market success.

The abstraction away from time spent on schooling is largelydue to insufficient information

on the time use of students. The dataset used in this study is taken from the National Longitudinal

Survey of Youth (NLSY79), which is a comprehensive panel data set that follows individuals

who were 14 to 21 years of age as at January 1, 1979. This dataset also contains a single wave of

schooling time use data collected in 1981. This data is notorious for measurement error, and since it

is a single wave, investigators have typically abstracted away from employing this data. I show that

with a suitable method for controlling for measurement errors in study time and also controlling for

permanent individual unobserved heterogeneity, we can indeed get precise estimates of study time.

The estimation of study time is also augmented by including lagged enrollment and labor supply

decisions. This helps tremendously in improving the estimates. The estimated study time function

is then used to predict study time for all individuals in the sample over all applicable years. This

2



strategy however creates a difficult econometric problem.

In a dynamic modelling framework, current decisions dependon the expectation future out-

comes, including future study time. The estimation technique implemented is a modified version

of the Conditional Choice Probability (CCP) estimator ofHotz and Miller[1993] and extended by

Altug and Miller [1998]. In this technique, the expectation of future outcomes is captured in the

probability of future decisions conditioned on the realization of future states of the world. These

probabilities have to be estimated. Direct estimation as proposed byAltug and Miller[1998] would

inadvertently result in conditioning on functions of the same dependent variable that is being used

to estimate the probabilities. In the first paper I propose analternative method of estimating these

probabilities that avoid this severe endogeneity problem.

Another technical contribution of the first paper is the estimation method and corrected stan-

dard errors. The estimation method combines an efficient iterated GMM (GMMI) with a variation

of the Nested Pseudo Likelihood Algorithm (NPL) proposed byAguirregabiria and Mira[2002].

This method of estimation results is improved small sample properties of the estimator coming

from both steps.Hansen et al.[1996] shows that iterating over the optimal weighting matrix re-

sults in improved small sample properties of the estimates.Iterating over the CCP’s eliminates

the initial nonparametric estimates and hence also improves the small sample properties of the

estimator.

This process however results in nonstandard correct standard errors of the estimates. I propose

an alternative representation of the corrected standard errors to that ofAltug and Miller [1998] by

employing a technique developed inNewey and McFadden[1994], andNewey[1994]. Further-

more, the structure of the state space implies that the law ofiterated expectations can be used to

greatly simplify the form of the standard errors. In particular, no post estimation is required to

compute these standard errors. This greatly reduces the computation burden of the CCP estimator.

The estimated results indicate that crowding-out effect outweighs the positive effects for whites

while the congruence and human capital effect outweighs thecrowding-out effect of blacks and

Hispanics. A related conclusion found in the same analysis is that modest increases in school

curriculum results in significant increases in the educational attainment and hourly wage rate of

whites and blacks, but only modest increases for Hispanics.

Another exercise performed with this model is to analyze theeffects of equating the quality of

3



schools of blacks and Hispanics to that of whites. The results indicate that policy would lead to

significant increases the educational attainment of both minority groups. This policy also leads to

significant increases in the hourly wage rate of blacks and more modest increases for Hispanics.

Although this policy leads to a significant narrowing of the race education gap, it does not eliminate

the gap.

The analysis of the effects of increasing the school curriculum is repeated under this new envi-

ronment. The result indicates even larger increases in the educational attainment and hourly wage

rate of blacks. Also in this environment we see the most significant increases in the educational

attainment and hourly wage rates of Hispanics. In other words, Hispanics become significantly

more responsive to policies that increases the time they spend on school activities if the quality of

the school they attend is improved to the quality of the schools whites attend.

In estimating the dynamic structural model, a multistage procedure was implemented. The

potential problem with the multistage procedure is that misspecification of the first stage estima-

tor typically introduces bias in the final stage estimator. Flexible specification of pre-estimators

therefore becomes an important goal. The second chapter of this thesis addresses this problem by

developing a new semiparametric estimator for a dynamic nonlinear single index panel data model

with small T.

In moving away from a fully parameterized nonlinear single index panel data model, there

are trade-offs between which assumptions can be relaxed. Ingeneral, relaxing the parametric

assumption on the unobserved heterogeneity requires maintained parametric assumptions about

the index function. Under the assumption that the individual-time specific shocks are independent

and if covariates are unbounded, the finite dimensional parameters can be estimated consistently

with the parametric convergence rate without specifying the distribution of the individual-specific

effects conditional on the covariates if and only if the distribution of the individual-time specific

shocks is logistic [Magnac, 2004]. On the other hand,Manski [1987] has shown that the finite

dimensional parameters can be consistently estimated withonly a strict monotonicity assumption

on the index function. However, this estimator does not converge at the parametric rate.

The second chapter of this theses therefore adds to this literature by showing that under the

strict monotonicity assumption on the index function and a flexible assumption of the form of

the individual specific effect, one can still obtain estimates of the finite dimensional parameters
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that converge at the parametric rate. Also the estimator proposed also produces estimates of the

index function and the individual specific effects. In otherwords, the full data generating process

is recovered. This is important if the intention of the investigator is to perform counterfactual

simulations.

The assumption made on the individual specific effects is that it is an unknown function of

a known random variable. This restriction extends the suggestion of Newey [1994] and arises

naturally in the discrete choice framework. Our own interest however goes beyond the discrete

choice framework. We prove that the resulting estimator is not only
√

n consistent, but that it

achieves the semi-parametric efficiency bound. Thus under the same assumption no other estimator

can obtain a smaller asymptotic variance. The method used tocompute the estimator is the back-

fitting algorithm proposed byBuja et al.[1989]. This algorithm has the advantage that it does

not depend on the type of smoother chosen to compute the estimate of the index function. The

investigator can therefore implement a sieve estimator of akernel estimator.

A small simulation exercise shows that the proposed estimator performs very well in recovering

both the finite dimensional parameters and the index function. This is the case for even small

numbers of observations. The method is also implemented to estimate a wage regression. An

interesting result is that the function recovered resembles the exponential function, which suggests

that the error made by assuming a log-linear wage regressionshould be relatively small.

The final chapter of this thesis proposes a powerful numerical algorithm to solve independent

private values asymmetric first price auctions where the auctioneer sets a reserve price. Asym-

metry arises from the specification of ex-ante heterogeneous distributions of private values, as

well as from collusion among subsets of bidders. Our algorithm generalizes the seminal work

of Marshall et al.[1994] who consider the special case wheren players draw their values from

uniform distributions on [0,1] and a subgroup ofk1 < n bidders form a coalition.

We also derive operational univariate quadratures to compute the probability that the auctioneer

retains the item, the probabilities that a particular bidder wins the item as well as expected revenues

for bidders and auctioneer under asymmetric first and secondprice auctions. Embedding these

calculations within a simplex optimization algorithm enables us to compute an optimal reserve

price under either auction scheme.

These techniques provide us with a powerful tool to numerically investigate whether results
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derived under symmetry extend to the asymmetric case as wellas the (single auction) viability

of collusion among subsets of bidders. Illustrative examples are provided with and without the

assumption of stochastic dominance.
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2.0 A DYNAMIC STRUCTURAL MODEL OF LABOR SUPPLY AND EDUCATION AL

ATTAINMENT

2.1 INTRODUCTION

Over the last three decades, there has been an increasing trend of young individuals participating

in the US labor market while actively enrolled in school. Young individuals are increasing their

incidence of labor market participation, and the amount of hours worked while enrolled in school.1

This trend has generated growing interest in the possible immediate and long run effects of working

while enrolled in school on educational attainment and future labor market opportunities. On

one hand, there is the concern that an intensive amount of working while in school may hinder

academic performance and increase drop-out rates, thus jeopardizing future opportunities.2 On the

other hand, working while in school may improve a young individual’s time organizational skills,

sense of responsibility and self esteem, which in turn are traits that may be rewarded in the labor

market in the future. Furthermore, working while in school produces immediate work experience

and cash that may be used to finance their studies.3 It is not obvious which of these two opposing

effects dominate. It may be that the net effect of these opposing forces varies over different groups

of young individuals.

This article develops and estimates a dynamic structural model of schooling and work deci-

sions to investigate the process by which a cohort of young males accumulate human capital over

their life cycle. The theoretical model provides a detailedtreatment of the economic costs and ben-

1A recent documentation of this phenomena is foundBacolod and Hotz[2005].
2This apprehension is reflected in the article entitled “Longhours taking toll on youths, studies say,” by Paloma

McGregor, The Plain Dealer, March 5, 2001.
3This opinion was expressed in the article entitled “Teens Find Profit and Loss in Work: Part time jobs bring

experience and cash, but can hinder studies,” by JacquelineSalmon, The Washington Post, March 28, 1998.

7



efits associated with the schooling and labor supply alternatives faced by individuals. Specifically,

the estimated model explicitly accounts for the simultaneous choice of enrollment in school and la-

bor force participation, endogenous leisure choices, intertemporal nonseparabilities in preferences,

aggregate skill specific productivity shocks, aggregate consumption price effects, and individual

heterogeneity.

In addition to accounting for the simultaneous choice of work and schooling, the model treats

hours spent on schooling, working, and leisure as continuous choice variables.4 This approach

is in contrast to other models (seeKeane and Wolpin, 1997, andEckstein and Wolpin[1999] for

examples) that treat leisure time as exogenous to the individual, where an increase in labor supply

is equivalent to a decrease in time spent on schooling activities if the individual is enrolled in

school. In this framework, an individual may optimally choose to sacrifice leisure and increase

time spent on both schooling and labor market activities. Inthis sense the model is one of optimal

intra- and inter-temporal allocation of time among schooling, working and leisure. The model

also allows for flexible specification of preferences with respect to time allocation. The additional

flexibility comes from the specification of intertemporal nonseparabilities in leisure.

Recent studies of the life-cycle models of labor supply havestressed the importance of in-

tertemporally non-separable preferences.5 Hotz, Kydland, and Sedlacek[1988] found that the as-

sumption of intertemporally separable preferences for leisure is inconsistent with data for prime-

age males. Given that hours schooling activities and leisure are related by the time constraint of

the individual, such nonseparabilities are also likely to affect their enrollment and study patterns.

The estimation results indicate that leisure choices are intertemporal complements. Increases in

current hours of leisure increases the future demand of leisure. In other words, an increase in hours

of current schooling activities decreases the future marginal disutility of schooling. This evidence

of intertemporal complimentarity suggests habit formation by young men.

The primary data used in this study comes from the National Longitudinal Survey of Youth

(NLSY79), which is a comprehensive panel data set that follows individuals who were 14 to

4While some studies model these alternatives as mutually exclusive [Keane and Wolpin, 1994,
Cameron and Heckman, 1999], the growing trend is to allow for interior solution to choices where individuals
simultaneously participate in the labor market and attend school (seeD’Amico, 1984, Ruhm, 1997, Oettinger, 1999,
andEckstein and Wolpin, 1999for examples)

5SeeHotz et al., 1988, Eichenbaum et al., 1988, Altug and Miller, 1998, Imai, 2000, andGayle and Miller, 2003
for examples.
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21 years of age as at January 1, 1979. The estimation technique implemented is a modified

version of the Conditional Choice Probability (CCP) estimator of Hotz and Miller [1993] and

Altug and Miller [1998]. This estimation technique allows for unobserved individual-specific ef-

fects to be arbitrarily correlated with the observed characteristics in the model. The model employs

a fixed effects method of controlling for unobserved heterogeneity. Other models of education,

such asEckstein and Wolpin[1999] control for individual-specific effects by way of a random-

effects, finite mixture specification. These techniques typically require that the investigator make

strong independence assumptions on the relationship between the unobserved covariates, and their

observed counterparts. The cost of the flexibility allowed by a fixed effects specification is the re-

sulting incidental parameters problem. We argue, using previous results [Altug and Miller, 1998,

Gayle and Miller, 2003] and evidence from the data used in this paper that these biases are likely

to be small.

The incidence of working, the number of hours worked, and thenumber of years that young

men spend working while enrolled in school varies across races. Bacolod and Hotz[2005] docu-

ments that the number of years working while in high school increased the most for young Hispanic

men, followed by young black men. Young black men experienced the largest increase in working

while in college. In estimating the parameters of the model,we pay special attention to racial dif-

ferences in outcomes that are not accounted for by the rich set of observed background variables

found in the NLSY79, nor by estimated individual specific effects. The theoretical model provides

a natural separation of these unexplained racial variations into preference differences and statistical

discrimination [Altonji and Blank, 1999].

The empirical results indicate that, conditional on enrolling, young black males are likely to

spend more time on school activities than white males. YoungHispanic males are likely to spend

less time on school activities white males. Furthermore, young black and Hispanic males are less

likely to be promoted from the grade level than young white males. These young minority males

either repeat the grade level or drop out of school during theschool year. These racial differences

remain significant after the inclusion of the rich set of demographic variables and measures of

ability that are found in the NLSY79, as well as measures of unobserved individual specific char-

acteristics. The lower probability of grade promotion for blacks and Hispanics is interpreted as

capturing race specific differences in the school environment. Specifically, in the paper we argue
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that this grade promotion probability gap is a measure of thedifferences in the quality of schools

that blacks and Hispanics attend as against the quality of schools that whites attend.

Controlling for racial differences in wages, and the aforementioned racial differences in study

patterns and grade promotion propensities, the results indicate that there are no race specific dif-

ferences in the propensity of participate in the labor market, the propensity to enroll in school,

nor in the choice of leisure. These results are in contrast tomany previous results in structural

estimation that find significant race indicators in their specified utility functions. The result is this

paper suggests that racial disparity in outcomes are due to the racial differences in the school and

work environment, and not to racial differences in tastes and preferences.

The model is solved and simulated in order to analyze the effects of various hypothetical poli-

cies. The first policy analyzed is one where the government subsidizes students who decide not to

participate in the labor market. The simulated results indicate that this policy does very little in

affecting the level of education, labor market experience,and wages on young men. The second

policy analyzed is one where the school administration adjusts the school curriculum so that young

men who enroll necessarily spend more time on school activities. Such a policy can be achieved

by increasing the number of hours in school, increasing the number or difficulty of assignments,

after school programs, or Saturday (Sunday) classes. The results indicate that such a policy has

significant positive effects on wages and education of whites and blacks, and more modest positive

effects on Hispanics.

The third simulation exercise analyzes a situation where school quality of blacks and Hispanics

are equated to those of whites. The results indicate that this policy has significant positive effects

on the level of education and wages of blacks. The effects of this policy on Hispanic are positive but

much more modest than that for blacks. The final simulation exercise evaluates the same policy of

increasing time spent on school activities of blacks and Hispanics after equating the school quality

of minorities to to those of whites. It is in this environmentwhere we find significant increases in

wages and education for Hispanics. We find also significant increases in wages and education of

blacks. The results indicate therefore that policies that are aimed at increasing the time minorities

spend on school activities are significantly more effectiveif the school environment of minorities

are improved to match those of white.

The rest of the paper is organized as follows. In the next section, we present the basic behav-
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ioral model. We then discuss the solution of the model in section (2.3) and describe the first order

necessary conditions for optimality that will be used in estimation. Section (2.4) discusses the con-

struction of the sample used in estimation, and Section (2.5) discusses the empirical methodology

implemented in estimation of the parameters of interest. Section (2.6) describes the estimation of

the consumption function and discusses the empirical findings. Section (2.7) discusses the esti-

mation of the wage equation and the empirical findings. Section (2.8) discusses the estimation of

the time spent on schooling activities and the transition probabilities. Section (2.9) presents the

methodology used to estimate the conditional choice probabilities and their corresponding deriva-

tives, which are needed to estimate the preference parameters. Section (2.10) presents the moment

conditions and corresponding sample analogs that are used in estimating the preference parameters

of the model, as well as discuss the empirical findings of the model. Section (2.11) presents the

method of solving the dynamic programming model and discusses the policy simulations. Section

(2.12) concludes.

2.2 THE THEORETICAL MODEL

This section develops the theoretical framework that is used to investigate how individuals allocate

time between human capital accumulation, labor market participation, and leisure.

2.2.1 Environment

The model is set in discrete timet ∈ {0,1, · · · ,T}. We assume that there exists a continuum of

individuals on the unit interval [0,1]. Associated with each individual is aK-dimensional vector

of exogenous covariates, denotedznt, which is assumed to be independently distributed over the

population with known cumulative distribution functionQ0(znt+1|znt). In each period, individual

n ∈ [0,1] is endowed with a fixed amount of time normalized to one. He must choose how to

allocate this unit of time between leisurelnt, the time spent on labor market activitieshnt, and the

time spent on school activitiessnt:

1 = lnt +hnt +snt. (2.2.1)
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Definedh
nt ≡ 1{hnt>0} andds

nt ≡ 1{snt>0} where 1{·} is the indicator function equal to one if the

event in parentheses occurs and zero otherwise. There is a single composite consumption good in

the economy which is consumed and traded by all individuals.Let cnt denote this composite good.

We assume the model has a Markov structure, in which the individual does not need to remem-

ber the full history to solve this problem, but only a summarystatisticxnt, belonging to a finite

vector spaceX . In particular, define(hnt−ρ, · · · ,hnt−1) as theρ-dimensional vector of past labor

supply outcomes,(snt−ρ, · · · ,snt−1) as theρ-dimensional vector of past time spent on schooling

activities,Snt as the highest grade completed by individualn as at the beginning oft, andEnt as the

total years of labor market experience accumulated by individualn as at the beginning of periodt.

Define also(cnt−ρ, · · · ,cnt−1) to be theρ-dimensional vector of past consumption. Then the typical

observed state vector for individualn at timet is given by the(3ρ+k+1)-dimensional vector6

xnt ≡ (hnt−ρ, · · · ,hnt−1,snt−ρ, · · · ,snt−1,Snt−ρ+1, · · · ,Snt,cnt−ρ, · · · ,cnt−1,Ent−ρ,z
′
nt)

′.(2.2.2)

Given that individualn has chosen to enroll in school, he may or may not complete thatgrade

level. If he does complete the grade he is currently enrolledin, his level of education increases by

one grade. Otherwise, his level of education remains unchanged. The probability that an individual

advances a grade level given that he has enrolled in school atthe beginning of periodt is denoted

by F(xnt).

2.2.2 Technology

We assume that the individual has access to a sector specific production technology in each period

where, if he works in sectorj = 1, · · · ,J, he produces a quantity of the outputwnt jhnt. Here,wnt j

is marginal product of labor of individualn at time t with skill level j. It is assumed thatwnt j

is composed ofJ exogenously determined time specific aggregate skill prices ωt j , an individual

specific, time invariant productivity effect,µn, and a skill specific function of his stock of human

capital, his socio-economic characteristics and other state vectors,γ j(xnt):

wnt j = ωt, jµnγ j(xnt), (2.2.3)

Thusµnγ j(xnt) is the number of efficiency units of labor supplied by the worker per unit of time in

sectorj, while ωt, j is the time specific aggregate price of skill in sectorj.

6To conserve on notation in what follows, we will usexnt to denote any subset of this vector.
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2.2.3 Choice Set

This model falls within the class of mixed continuous and discrete Markov decision processes.

The continuous choice variables in this model arecnt,hnt,andsnt. If hnt = 0, individualn does

not work at timet. Otherwise, the individual works for the fraction of timehnt > 0. Likewise if

snt = 0, individualn does not attend school at timet. Otherwise, the individual studies for the

fraction of timesnt > 0. Define the discrete choice variables for each individualn∈ [0,1] at time

t ∈ {0,1, · · · ,T}:

dnt0 ≡





1 if dh
nt = 0 andds

nt = 0

0 otherwise
, (2.2.4)

dnt1 ≡





1 if dh
nt = 1 andds

nt = 0

0 otherwise
,

dnt2 ≡





1 if dh
nt = 0 andds

nt = 1

0 otherwise
,

dnt3 ≡





1 if dh
nt = 1 andds

nt = 1

0 otherwise
.

2.2.4 Preferences

Similar to models such asHeckman[1976] and Eckstein and Wolpin[1999], we assume that at-

tending school provides some consumption value to the individual. Learning may be directly val-

ued by the individual, and social interaction within the school environment may provide positive

consumption value. However, in this specification, this consumption value of attending school is

not confounded with the loss in leisure due to schooling activities since leisure is modelled directly.

We specify the contemporaneous utility of attending schoolas follows:

Unt1 = u1(d
s
nt,xnt). (2.2.5)

Similarly, we assume that there is a utility associated withlabor market participation. We specify

this contemporaneous utility of labor force participationas follows:

Unt2 = u2(d
h
nt,xnt). (2.2.6)
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Preferences are assumed to be additive in consumption and leisure, but not separable with respect

to leisure over time. The contemporaneous utility of leisure is therefore given by:

Unt3 = u3(xnt, lnt). (2.2.7)

The utility of leisure is specified to be dependent on currentleisure level and the level of leisure

consumed over the lastρ periods.7. We assume thatu3 is increasing and concave inlnt. The utility

derived from the consumption good in timet is also assumed to be increasing and concave incnt

and is denoted by

Unt4 = u4(cnt,znt). (2.2.8)

We introduce a vector of choice specific utility shifters(εnt0, · · · ,εnt3)
′, which are assumed to

be independent over(n, t) and drawn from a population with a distribution function

Q1(εnt0, · · · ,εnt3). They are interpreted to be choice specific, time-varying characteristics that

partially determine the utility associated with the corresponding alternatives and unobserved to

the econometrician. Letβ ∈ (0,1) denote the common subjective discount factor, andE0 denote

expectation conditional on the information set at date 0. The expected discounted lifetime utility

of individual n is given by:

E0

{ T

∑
t=0

βt
[ 4

∑
k=1

dntk(Unt1+Unt2+Unt3 +Unt4+ εntk)
]}

. (2.2.9)

7The lags in leisure are not specified explicitly here since itis a subset of the state vectorxnt by equation (2.2.1)
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2.3 THE OPTIMIZATION PROBLEM

The inclusion of an aggregate component in marginal productof labor (2.2.3), complicates esti-

mation. To make the model empirically tractable, we assume that markets are competitive and

complete. Agents are price takers and there are no distortions in the market for the consumption

good, labor supply and loans, a common interest rate facing borrowers and lenders, and that a rich

set of financial securities exists to hedge against uncertainty. This assumption incorporates uncer-

tainty in a sufficiently simple manner that leads to a tractable econometric model. Competitive and

complete capital market assumption was used byBen-Porath[1967], Blinder and Weiss[1976],

Heckman[1976], andShaw[1989] to analyze life cycle models of human capital accumulation.

This assumption was also recently used byAltug and Miller [1990], Altug and Miller [1998], and

Gayle and Miller[2003] to estimate life-cycle models of consumption, labor supply and fertility

decisions with aggregate shock.

One key restriction that the assumption of competitive and complete markets places on the

model is the lack of any binding borrowing constraint. Borrowing constraints are popular consid-

erations in the study of educational choice. It is a widespread postulation that borrowing constraints

critically restricts economically disadvantaged individuals from obtaining the level of formal edu-

cation that they would have attained otherwise. However, the empirical evidence does not support

this view.Cameron and Heckman[1999, 1998] conclude that it is the long-term influences of fam-

ily and environment that account for ethnic and racial disparities in school attendance, and not

short term liquidity constraints.Keane[2002] conclude that borrowing constraints have little ef-

fect on college attendance decisions. In the light of these and other evidences, we abstract from

any considerations of liquidity constraints and thus the assumption of competitive and complete

markets presents itself as an appealing approximation.

Under the assumptions of competitive and complete markets,we appeal to the fundamental

welfare theorems which allows us to recast the optimizationproblem as a social planner problem.

The objective function of the social planner is the weightedaverage of the expected discounted

utilities of each individual n given in (2.2.9). The social weight attached to an individual is given

by η−1
n . The optimization problem of the social planner is subject to the time allocation constraint

for each individual (2.2.1), as well as the production technology available to each individual as
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reflected in (2.2.3). DefineL to be the lebesgue measure that integrates over the population. The

aggregate feasibility condition is given by:

∫ 1

0
[cnt +ant +πnt −wnthnt]dL(n) ≤ 0, t ∈ {0,1, · · · ,T}. (2.3.1)

whereant is the individual savings at timet, or the value of claims to periodt +1 consumption net

of the claims to timet consumption.πnt is the direct schooling expenses incurred by the individual

if he chooses to enroll in periodt.

The Pareto optimal allocations are found by maximizing

E0

{∫ 1

0

T

∑
t=0

βtη−1
n

[ 4

∑
k=1

dntk(Unt1+Unt2+Unt3 +Unt4+ εntk)
]
dL(n)

}
, (2.3.2)

subject to (2.3.1) and (2.2.1) with respect to sequences for consumption, schooling, andlabor

supply{cnt,snt,hnt}T
t=0 for all individualsn∈ [0,1].

2.3.1 Optimal consumption

Defineβtλt as the Lagrange multiplier associated with the aggregate feasibility constraint in equa-

tion (2.3.1). Given the assumption of an interior solution for consumption allocation, the set of

necessary conditions characterizing optimal consumptionallocation are given by

∂u3(cnt,xnt)

∂cnt
= ηnλt , (2.3.3)

for all n ∈ [0,1] and t ∈ {0, · · · ,T}. Under the assumption of contemporaneous separability of

consumption from education and labor supply choices, (2.3.3) can be used to solve for individuals’

Frisch demand functions which determines optimal consumption allocation in terms of the time-

varying characteristicsxnt and the shadow value of consumptionηnλt . Assume that the utility

derived from consumption takes on the following augmented CRRA specification:

u3(cnt,xnt) = g(xnt)
cα

nt

α
. (2.3.4)

Then condition (2.3.3) takes the form

g(xnt)c
α−1
nt = ηnλt . (2.3.5)
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Multiplying (2.3.5) by α−1cnt gives the following alternative representation of the indirect contem-

poraneous utility derived from consumption:

u3(cnt,xnt) =
ηnλt

α
cnt. (2.3.6)

The empirical strategy comprises of estimating the parameters of the utility functionu3 from (2.3.3)

and (2.3.4) to obtain estimates of the individual specific weightsηn as well as the Lagrange multi-

plier λt . These estimates are then substituted in (2.3.6), which is in turn substituted into the social

planner’s objective function (2.3.2).

Under the assumption that none of the consumption good is wasted at the optimal allocation,

the first order necessary condition with respect to the the lagrange multiplierβtλt gives the optimal

consumption allocation for each individual

cnt = wnthnt −ant −πnt. (2.3.7)

2.3.2 Optimal schooling and labor supply

Characterizing the optimal labor supply, leisure and schooling decision is more complicated. The

optimal schooling and work allocations are confounded by the constraint imposed by (2.2.1). In

particular, in any period, increasing both schooling and labor supplied by individualn necessarily

leads to a decline in the level of leisure enjoyed by that individual. Consequently, the optimal

allocation of labor supply, education and leisure cannot beseparately solved for as in the case

of optimal consumption allocation. FollowingAltug and Miller [1998], the conditional valuation

functions associated with the discrete choices on individual n in periodt is defined as:

Vnt j + εnt j ≡ max
{snr ,hnr}T

r=t

Et





∑T
r=t βr−t[∑3

k=0dnrk(Unr0+Unr1

+α−1ηnλr(wnthnt −ant −πnt)+ εnrk)|dnt j = 1]



 . (2.3.8)
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Let d0
nt j be the socially optimal decision by individualn in periodt. The termVnt j +εnt j denotes the

social value from individualn choosing alternativej at timet. Accordingly, individualn’s choice

of alternativej at timet is optimal if

d0
nt j =





1, if Vnt j + εnt j > Vntk+ εntk ∀ k 6= j

0, otherwise
. (2.3.9)

Let h0
nt ands0

nt be the optimal interior choice of labor supply and study time. Given that it is socially

optimal for individualn to work in timet, h0
nt must satisfy

∂Vnt j

∂hnt
= 0, for j = 1,3. (2.3.10)

Likewise, given that it is socially optimal for individualn to enroll in timet, s0
nt must satisfy

∂Vnt j

∂snt
= 0, for j = 2,3. (2.3.11)

In order to express the conditional valuation function recursively, definepnt j to be the probability

of individualn choosing optionj in periodt conditional on the information set available to him in

periodt

pnt j ≡
∫ ∞

−∞

∫ Vnt j−Vnt0+εnt j

−∞
· · ·
∫ Vnt j−Vnt3+εnt j

−∞
dQ1(εnt0, · · · ,εnt3). (2.3.12)

The information set available to individualn at periodt is composed of the observed state vector

xnt, and the unobserved individual specific and aggregate shocks to productivity and consumption.

Define this state vector asΨnt ≡ (x′nt,µn,ηn,λt ,ωt1, · · · ,ωtJ)
′. Define alsoA i

nt to be the set of all

possible realizations of the state vector for individualn at i periods aftert given the realization of

the state vectorΨnt at periodt. Correspondingly, letFj(Ψ
(i)
nt |Ψnt) is the probability that the state

vector of individualn in periodt + i is Ψ(i)
nt , given that his state vector in periodt is Ψnt and he

chooses alternativej in periodt. Then from equation (2.3.9), the conditional probability that alter-

native j is chosen byn in periodt in equation (2.3.12) has the following alternative representation

pnt j ≡ p j(Ψnt) ≡ E[d0
nt j|Ψnt], (2.3.13)

andHotz and Miller[1993] prove the existence of a mappingϕk : [0,1] → ℜ such that

ϕk(pk(Ψnt)) = E[εntk|Ψnt,d
0
ntk = 1], k∈ 0, · · · ,3. (2.3.14)
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Therefore, the conditional valuation function has the following recursive representation:

Vnt j = maxhnt>0

{
Unt0+Unt1+α−1ηnλt(wnthnt −ant −πnt)

+β
[

∑Ψ(1)
nt ∈A1

nt

[
∑3

k=0 pnt+1,k(Vnt+1,k +ϕk(pk(Ψ
(1)
nt )))

]
Fj(Ψ

(1)
nt |Ψnt)

]
|dnt j = 1

}
.

(2.3.15)

Finally, the optimality conditions for interior solution to labor supplyh0
nt (2.3.10) and study time

s0
nt (2.3.11) are given by

∂Unt1
∂hnt

+ ηnλt
α wnt = −β

{
∑Ψ(1)

nt ∈A1
nt

[
∑3

k=0

[
pntk+1

∂(Vnt+1,k+ϕk(pk(Ψ
(1)
nt )))

∂hnt

+
∂pnt+1,k

∂hnt
(Vnt+1,k +ϕk(pk(Ψ

(1)
nt )))

]
Fj(Ψ

(1)
nt |Ψnt)

+∑3
k=0 pnt+1,k(Vnt+1,k +ϕk(pk(Ψ

(1)
nt )))

∂Fj(Ψ
(1)
nt |Ψnt)

∂hnt

]
|dnt j = 1

}
, and,

(2.3.16)

∂Unt1
∂snt

= −β
{

∑Ψ(1)
nt ∈A1

nt

[
∑3

k=0

[
pntk+1

∂(Vnt+1,k+ϕk(pk(Ψ
(1)
nt )))

∂snt

+
∂pnt+1,k

∂snt
(Vnt+1,k +ϕk(pk(Ψ

(1)
nt )))

]
Fj(Ψ

(1)
nt |Ψnt)

+∑3
k=0 pnt+1,k(Vnt+1,k +ϕk(pk(Ψ

(1)
nt )))

∂Fj(Ψ
(1)
nt |Ψnt)

∂snt

]
|dnt j = 1

}
,

(2.3.17)

for j = 1,3, and j = 2,3 respectively. The first condition in (2.3.16) says that the net current

benefit from an additional hour of work is equal to the presentdiscounted value of future utility

costs of that additional hour. The current marginal utilityfrom an additional hour of work is equal

to the net of the utility cost of leisure forgone, and the consumption value of the additional goods

and services produced. The future value of an additional hour of work is decomposed into three

main components. The first term on the RHS captures the directeffect of an increase in hours

worked on future productivity and future utitily. Future utility is directly affected because of the

assumption that current and future leisure are intertemporally nonseparable. Future productivity is

affected by the assumption that current labor force participation enhances human capital, which is

reflected in higher future marginal productivity of labor. The second term on the RHS captures the

indirect effect on future utility by current hours worked through its effect on future probability of

employment. The third term on the RHS accounts for the indirect effect of current hours worked

on future utility through its effect on the transition probability. The probability of being promoted

a grade level given that the individual is currently enrolled is assumed to be dependent on hours

worked.
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2.4 DATA

The data is taken from the 1979 youth cohort of the National Longitudinal Survey of Labor Market

Experience (NLSY79), a comprehensive panel data set that follows individuals over the period

1979 to 2000, who were 14 to 21 years of age as of January 1, 1979. The data set initially consisted

of 12,686 individuals: a representative sample of 6,111 individuals, a supplemental sample of 5,295

Hispanics, non-Hispanic blacks, and economically disadvantaged, non-black, non-Hispanics, and

a supplemental sample of 1,280 military youth. Interviews were conducted on an annual basis

though 1994, after which they adopted a biennial interview schedule. This study makes use of

the first 16 years of interviews, from 1979 to 1994.8 The data is restricted to include males and to

exclude respondents with missing observations on the highest grade level completed that cannot be

recovered with high confidence from other data information.A list and description of the variables

used in the model is presented in Table 1. Table 2 presents summary statistics of the sample used

in this study. Attrition accounts for a loss of approximately 22 percent of the individuals between

1979 and 1994. However, the largest loss occurred between 1990 and 1991, late in the sample

period.

2.5 ESTIMATION METHOD

The empirical analysis employs a multi-stage version of theconditional choice probability (CCP)

estimator developed inHotz and Miller[1993] and extended byAltug and Miller [1998]. We out-

line the estimation strategy of each stage in turn. The parameters of the model can be estimated

from the optimality conditions derived in section (2.3). First, there is contemporaneous separability

between consumption and labor supply in the utility function. Given that consumption is measured

with error and that the measurement error is uncorrelated with the information set of the individual,

the consumption function can be estimated separately from the equations characterizing optimal

discrete choice to provide first stage estimates of the of theshadow price of consumption. Sim-

ilarly, assuming that observed wages are noisy measures of the marginal product of labor, where

8Appendix 1 provides a detailed discussion of the data construction and sample restrictions.
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the measurement error is assumed to be independent of the information set of the individual over

time, the parameters of the marginal product of labor can be estimated separately from the other

parameters of the model.

Examination of equations (2.3.15) and (2.3.10) in section (2.3) suggest that estimation of the

conditional choice probabilitiespknt and their derivatives with respect to hours workedhnt and

study timesnt are required. These quantities are estimated nonparametrically and substituted into

the necessary conditions for optimal choice and hours allocation. The technique employed here

also requires that the transition probabilities be estimated. The remaining parameters of the model

are estimated by nonlinear GMM, where the moment conditionsare formed as sample analogs of

equations (2.3.9), (2.3.16) and (2.3.17). Since the first stage regressions are of interest in their own

right, we discuss them in separate sections.

2.6 CONSUMPTION

Estimation of the marginal utility of consumption requiresfurther parametrization of the utility of

consumption given by equation (2.3.4). We assume thatg(xnt) has the following parametrization:

g(znt) = exp(x′ntB1), (2.6.1)

The first order necessary conditions for optimal consumption allocation are then given by:

exp(x′ntB1)c
α−1
nt = ηnλt . (2.6.2)

The necessary conditions (2.6.2) and (2.3.7) provide the key equations for the estimation of the

shadow value of consumptionλt and the individual specific effectηn. Taking the natural log of

equation (2.6.2) and rearranging results in the following equation

ln(cnt) = (1−α)−1x′ntB1− (1−α)−1 ln(ηn)− (1−α)−1 ln(λt). (2.6.3)
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Assuming that observed consumption ˜cnt is measured with error so that ˜cnt = cnteνnt , wherecnt is

the true level of consumption, andE[νnt|xnt,ηn,λt] = 0. Let∆ denote the first-difference operator.

Taking first difference of equation (2.6.3) and rearranging, we have that

∆νnt = ∆ ln(c̃nt)− (1−α)−1∆x′ntB1+(1−α)−1∆ ln(λt). (2.6.4)

Equation (2.6.4) is estimated by the efficient GMM. The estimated results in Table4 indicate that

consumption increases with the size of the family, average family income, and the average age of

the family. Consumption decreases with the level of unemployment local to the residence of the

individual. Table4 also suggests that for a given level of education, consumption is increasing and

concave in the age of the individual. For a given age of the individual, consumption is decreasing

and convex in the level of education.

The first panel of Table6 reports the estimated log change in aggregate prices with the cor-

responding standard errors. The graph along with the 95% confidence interval are also presented

in Figure 1. These figures show that the changes in aggregate prices are estimated precisely. The

figure also show that there are significant variation in the time effects. The simple F-test reject the

restriction that(1−α)−1 ln(λ2) = · · · = (1−α)−1 ln(λT) at the 99% confidence level.

2.7 WAGES

Assume that the time varying component of the individuals productivity function has the represen-

tation:

γ j(xnt) ≡ exp(x′ntB2 j). (2.7.1)

Observed wages are assumed to be noisy measures of the marginal productivity of labor, where the

multiplicative error term is assumed to be conditionally independent over individuals, the covari-

ates in the wage equation, and the labor supply decision

w̃nt j = ωt jµnexp(x′ntB2 j)exp(εnt). (2.7.2)
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The individual specific effects captures absolute advantage of the individual in the labor market

[Willis , 1986]. Assume that human capital comes in two types, an unskilledtype (j = 1) and a

skilled type (j = 2). The skilled group is defined as having at least 16 years of formal education.

All occupations in the economy are sorted across these groups according to the level of education

required to carry out the task. Workers are assumed to be perfect substitutes within, but not across

efficiency units. Since the model is in the panel data framework, we do not need to assume that

schooling and employment choices are independent of the individual’s ability as captured by the

individual specific effect. This is in contrast to the model proposed inWillis [1986]. The absence

of this restriction serves to eliminate the problem of sample selection caused by ability bias.

Another key consideration in the estimation of equation (2.7.2) is whether there is the need to

estimate separate models for the different racial groups. The results ofNeal and Johnson[1996]

andAltonji and Blank [1999] indicate that the large majority of the wage gap between races in

the NLSY is due to differences in measures of abilities (AFQTscores) and family background

(parents education). Since these measures are time invariant, a suitable transformation of a single

wage equation provides accurate estimate in the pooled data.

Taking logs of both sides of equation (2.7.2) and taking first difference gives the following

equation:

∆εnt = ∆ ln(w̃nt j)−∆ ln(ωt j)−∆x′ntB2 j (2.7.3)

Defineent1 to be equal one if individualn is belongs to efficiency unit 1 in periodt. Likewise,

defineent2 to be equal one if individualn is belongs to efficiency unit 2 in periodt. Equation

(2.7.3) is estimated by the efficient GMM. The skill specific coefficients are obtained by interacting

the explanatory variables with these indicator variables for each skill group. The skill specific

aggregate effects are also obtained by interacting the timedummies with these indicator variables.

The estimated results for the wage equation are reported in Table 4. The positive coefficients

on lagged hours indicate that there are positive returns to on the job training. Also, the effect

of past hours worked on current wages decline with further lags. The declining magnitude and

significance of lagged hours worked is consistent with the conjecture of depreciation in human

capital. The returns to on the job training are higher for skilled workers than for unskilled workers.

At 2000 hours per year, the wage elasticity of the first laggedhours is 0.04 for low skilled workers
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and 0.06 for high skilled workers. However, the wage elasticity of the second lagged hours is

0.01 and 0.02. These qualitative results are in line with those found inMiller and Sanders[1997],

Altug and Miller [1998] andGayle and Miller[2003].

The coefficients on the education and experience variables are all estimated highly precisely,

with the exception of education squared for low skilled workers.9 The coefficient of squared edu-

cation is positive and significant at the 1% level for the highskilled group, indicating nonlinearity

in marginal returns to education. We find that the coefficienton the interaction term between edu-

cation and experience is positive for low skilled workers and negative for high skilled workers, both

significant at the 1% level. This suggests that in terms of theproductivity of young males, formal

education and labor market experience are compliments in the low skilled sector, and substitutes

in the high skilled sector.

The flexibility of the specification of the wage equation alsoallows for some heterogeneity

in the returns to education. It allows for comparative advantage with respect to human capital in

the labor market to be manifested through differences in patterns of schooling and employment.

At first glance marginal return to education for both the skilled and unskilled sector seem very

low. Indeed, the calculation would produce a marginal rate of return of 0.024 for low skilled

workers and 0.069 for high skilled workers of age 30 in the sample. Table5 of Card[1999] lists

the estimated marginal returns to education found in a number of studies. The marginal returns

to education found here are lower than these other estimates. However, these other studies do not

account for growth in skill specific aggregate wages. When the average growth in log aggregate

wages in included in the calculation, the estimated marginal return to log wages increases to 0.044

for low skilled workers and 0.217 for high skilled workers ofage 30. The estimated marginal

returns to education in Table5 of Card[1999] all fall within the range.

The last two panels of Table6 report the estimated changes in unskilled and skilled piece

rates. These series are also plotted in Figures 2 and 3 along with their 95% confidence bands.

The changes in unskilled piece rates ar less precisely estimated than the changes in skilled piece

rates. Two separate hypothesis tests are performed. The first is an F-test of the restriction of

equality of all the aggregate effects∆ ln(ω21) = · · ·= ∆ ln(ωT1) = ∆ ln(ω22) = · · ·= ∆ ln(ωT2). The

9Because most individuals in the sample have no breaks in schooling until they have completed their total level,
identification of level of schooling in a first difference model is fragile at best and is excluded from the specification.
We exclude the level of experience for the same reason.
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second is an F-test of the restriction of a single set of time varying aggregate effects∆ ln(ω21) =

∆ ln(ω22), · · · ,∆ ln(ωT1) = ∆ ln(ωT2). Both restrictions are rejected at the 99% level.

2.7.1 Individual-specific Effects

To estimate preference parameters of the model we need to estimate the individual specific effects

ηn andµn. They are estimated from the residuals in the log-linear versions of consumption and

wage equations (2.6.3) and (2.7.3) respectively. These estimators are subject to small sample bias

whenT is small. However,Hotz et al.[1988] provide Monte Carlo evidence that the small sample

bias caused by using such fixed-effects estimates in computing the remaining parameters of interest

are quite small for moderate to large sample sizes.Altug and Miller [1998] andGayle and Miller

[2003] estimate the parameters of their structural model under two assumptions on the fixed ef-

fects. The first is the traditional definition. The second assumes that fixed effects can be written as

functionals of observed covariates. Under the second assumption, consistency of the other param-

eters of the model is achieved. In their studies, the resulting estimates of the structural parameters

were very similar, and lead to the same conclusions. This also indicates that the bias induced by

employing estimates of the traditional fixed effects is quite small in these models. The estimates of

µn andηn are calculated from samples whereT1 = 15 andT2 = 12 respectively.Hahn et al.[2001]

suggests that these sample sizes are actually large, implying that the bias of these estimates are

expected to be small.

The fixed effects estimators of ln(µn) and ln(ηn) are obtained as simple time averages of the

estimated residuals of the consumption and wage equations.

2.8 STUDY PATTERNS AND THE PROBABILITY OF GRADE PROMOTION.

2.8.1 Study Patterns

In 1981, the NLSY79 collected information on the patterns ofschool activities of the respondents

that are enrolled in school. In particular, the NLSY79 askedthe respondent about the amount of

hours they spent in school during the week before the interview date. They also asked whether or
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not the time they reported is typical or not, and if no, to report the typical hours spent in school.

The respondents also reported the number of hours they spentstudying outside of school during

the week before the interview date. These responses are usedto construct yearly measures of the

time spent by individuals on school activities. We show thatone can get reliable estimates of time

spent on schooling activities from this data. We call this time spent on schooling activities study

time. Clearly this includes not only the time the individualspends actually studying, but also time

the student allocates to activities related to school, bothduring regular hours of school and outside

of school.

Assume that the study time of an individualn in period t is an exponential function of ob-

served demographic characteristics and literacy indicators of the individual, as well as unobserved

individual-specific characteristics ,

snt ≡ exp(x′ntB3).

Assume further that observed study time is a noisy measure onthe true study patterns of the

individual, where the measurement error is assumed to be independent of the regressors.

s̃nt ≡ exp(x′ntB3)exp(εnt). (2.8.1)

Under these assumptions, we can consistently estimate the study time of individuals enrolled in

school using OLS on the log-linearized version of equation (2.8.1).

To estimate the preference parameters of the model, we need aconsistent estimate of study

time given that an individual has enrolled in school. Thus the issue of sample selection bias does

not affect the estimation of equation (2.8.1). Another consideration is the fact that individuals

were questioned about their study patterns for only one weekprior to the interview period. If the

interview is taken at a time where there are generally academic deadlines such as exams, then

the reported time spent studying may be overstated. However, interviews were administered to

different individuals at different times of the year. This makes plausible the assumption that on

average, one does not expect to observe over nor under reporting of study time in the data.

Table7 reports the regression of the time spent on school activities. The number of observa-

tions in estimation is 2253. All variables included in the specification are significant at the 5%

level. The F-statistic for the model is 20.47, and the Adjusted R2 is 11.24%. These statistics show

that the instruments do well, both individually and as a group, in capturing variation in log study
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time. In particular there is no problem of weak instruments in this estimation of study time. This

issue of weak instruments is important since the predicted values of study time serve as first stage

estimates in all the estimators that follow.

The results in Table7 show that lagged enrollment decisions are positively associated with

study time, with further lags becoming less important. The size of the coefficients indicate also

that lagged enrollments decisions are also quite relevant in explaining current study time. Lagged

hours of work are negatively correlated with current study time, with diminishing impact for further

lags. The magnitude of these effects are also considerable.Individuals with higher AFQT scores

spend more time on school activities. Since the AFQT test wasadministered in 1980 and the

data on schooling activities were collected in 1981, there is no issue of feedback effects of current

study time on AFQT scores. The results also indicate that thetime spent on schooling activities

is approximately 11% higher for blacks and 10% lower for hispanics compared to time spent by

whites. These differences are quite large, working out to beapproximately 154 more hours per year

for blacks and 140 less hours per year for hispanics at an average of 1400 hours, approximately

what is in the sample.

2.8.2 The Probability of Grade Promotion

An individual who decides to enroll in a particular grade level may or may not be promoted from

the grade. This probability of promotion is of interest in itown right, and is also a key ingredient

in the final stage estimation. Assume that this probability takes the logit form:

F(xnt) ≡ (1−dh
nt)

exp(x′ntB41)

1+exp(x′ntB41)
+dh

nt
exp(x′ntB42)

1+exp(x′ntB42)
. (2.8.2)

Similar to the study time regression. What is needed for consistent estimates of the prefer-

ence parameters of the model is a consistent estimate of the probability of grade promotion given

enrollment. Estimation of equation (2.8.2) provides us with this. In principle, if the enrollment

decision is correlated with the error term defining equation(2.8.2), then the coefficient estimates

obtained would be biased and inconsistent and not conduciveto direct interpretation. However,

the inclusion of AFQT in the regression should at least mitigate the level of biased induced by

regressing only on the subset of individuals that choose to enroll.
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Another issue is the choice of separate regressions for the set of students who choose to work

while enrolled in school and the set who choose not to work while enrolled in school. This main

reason for this specification is to improve the flexibility ofthe resulting estimated transition prob-

abilities. However, if the decision to work is correlated with the error term that defines equation

(2.8.2), then the coefficient estimates are expected to be biased and inconsistent. The inclusion

of our measure of labor market ability, the estimated fixed effects from the wage regression are

included to reduce the bias of the estimated coefficients. Atthe very least however, the coefficients

in equation (2.8.2) can certainly be interpreted for the relevant groups of individuals.

A third issue involves the appropriateness of including current period decision variables in

equation (2.8.2). The theoretical model assumes that the individual makes his schooling and em-

ployment decisions (ds
nt,snt,dh

nt,hnt) at the beginning of each period conditioned on the information

set available to him at that point in time. The grade promotion probability function is known by

the individual, and he has control over it in so far as he has control over the decision variables.

However, the uncertainty is not resolved until the beginning of the following year. The timing of

the model thus makes the periodt decision variables predetermined in equation (2.8.2).

Table 7 reports the result of the logit regression of the probability of completing a grade and

Table 8.1 reports the corresponding average derivatives. The standard errors reported are cor-

rected for the inclusion of predicted study time. Computation of the corrected standard errors is

complicated by the nonlinear specification of the study timefunction and the probability of grade

transformation. The details are presented in Appendix 2 forcompleteness. The number of observa-

tions used in estimation for the two groups (dh
nt = 0, anddh

nt = 1) are 2216 and 5606, the Likelihood

ratio statistics are 400.65 and 1350.78, and the Pseudo R2’s are 15% and 17%. Furthermore, all

coefficients except for the constant term are significant at the 10% level, and slope parameters,

except for 2 are significant at the 5% level. Note that some variables are dropped from estimation

in either groups because of their low precision and statistical irrelevance.

The results in Table8 indicate that lagged labor market participation decisionsare positively

correlated with the probability of grade promotion. This provides evidence for the congruence

hypotheses. However, the effect is a lagged effect, and the interpretation varies slightly from that

proposed byD’Amico [1984]. The decision to participate in the labor market in either of the last

two periods increases the current probability of grade promotion by approximately 5%. The full
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model will have to simulated to see exactly how large this effect turns out to be on completed

education. However, at this stage it is clear that a 5% increase in the probability of completing a

grade level is a significant magnitude.

We find that blacks have a lower probability of being promoteda grade level than their white

counterparts. For the group that works, hispanics also havea lower probability of being promoted

than their white counterparts. This result is not simply theclassical drop-out story of minorities.

The interpretation of these coefficients are that: given twomales, one black and the other white,

with the same abilities (as measured by AFQT scores and the estimated fixed effects), the same

hours studied, the same hours worked, and in the same grade level, along with other conditioned

covariates, the black male has a significantly lower probability of being promoted from that grade

level. To understand what may be driving this result, one must also look at what in not included

in the regression, that is, what factors are not controlled for and may be correlated with race.

The primary excluded factor in the regression would be the quality of the schools attended. It

is well known that the quality of schools attended by blacks are on average lower than those

attended by their white counterparts. I argue therefore that the negative coefficient of blacks in the

grade advancement regression captures the lower schoolingopportunities and qualities available

to these racial groups. The quality of schooling is typically measured by, among other factors,

the level of funding that school receives, class size, in particular the student-teacher ratio, and the

socio-economics conditions of the community surrounding the school. The available data does not

contain information on these measures of school quality. However, if one is only interested in the

difference in schooling opportunities across races, as this study is, and not to identify the sources

of these differences, then the estimated regression is sufficient.

The results in Table8 also indicate that the probability of grade level promotionis increasing

in time spent on schooling activities for both groups, and concave for the group that works. Con-

versely, this probability is decreasing and convex in hoursspent in the labor market. Students in

grades 11 and 12 have a larger probability of being promoted than college students.
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2.9 CONDITIONAL CHOICE PROBABILITIES

Estimation of conditions characterizing labor supply and schooling decisions also requires that

estimates of the conditional choice probabilities defined in equation (2.3.12). Inclusion of the

individual-specific effect, and time-specific effects as explanatory variables allows us to treat the

sample as pooled cross-section and time series data that is independently distributed over individual

and time. This implies straightforward nonparametric estimation of (2.3.13).

To estimate the preference parameters, we also need to estimate the conditional choice proba-

bilities conditional on all the states that remain feasible. This is done by taking advantage of the

finite state dependence of the model. In particular, we need to estimate the probability that individ-

ual n chooses alternativej in periodt + i conditional on observing statek in that periodp j(Ψ
(i)
ntk).

We achieve this by estimating the probability that an observationally equivalent individual chooses

alternativej in the current period conditional on observing the statek in the current period. The va-

lidity of this method depend on the inclusion of the individual-specific effects and the time-specific

effects in these regressions. These auxiliary CCP’s are estimated using nonparametric techniques.

The technical details of these estimators are outlined in AppendixA.1.3.

Table10 presents the means and standard deviations of these estimated probabilities and the

required derivatives. The sample average of the CCP’s are equal to the sample average of their

corresponding indicator functions with 4 decimal places. This indicates that the bias in these

estimates are small. The relative magnitudes of the conditional state probabilities are also plausible.

The probability that an individual chooses home productiongiven that he enrolled in school last

period and did not get promoted the grade level is larger thanthe probability of choosing home

production if he was promoted.

The average derivatives of the conditional state probabilities are also empirically plausible.

An additional hour of work in the past reduces the probability that the individual will choose

home production in the current period. An additional hour ofschool activity in the past increases

the probability of choosing home production in the current period if the individual did not get

promoted the grade level. On the other hand, an additional hour of school activity in the past

decreases the probability of choosing home production in the current period if the individual was

promoted the grade level.
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2.10 SCHOOLING, PARTICIPATION, AND HOURS

2.10.1 The moment conditions.

Estimation of the remaining parameters of the model makes use of an alternative representation of

the conditional valuation function derived inHotz and Miller[1993]. This requires that parametric

restrictions be placed on the utility functions. Let the components of the utility of schooling, labor

supply in equation (2.2.6), and utility of leisure in equation (2.2.7) take the form

u1(xnt,d
s
nt) = ds

ntx
′
ntB5, (2.10.1)

u2(xnt,d
h
nt) = dh

ntx
′
ntB6, (2.10.2)

u3(xnt,gnt) = lntz
′
ntB7+

ρ

∑
i=0

δi lntlnt−i . (2.10.3)

The utility of leisure is assumed to be quadratic. Economic theory suggests that the utility of leisure

is concave in leisure,δ0 < 0. The parametersδi , i = 1, · · · ,ρ capture intertemporal nonseparabilities

in the preference for leisure. Fori > 0, δi < 0 implies that current leisure and leisure laggedi

periods are intertemporal substitutes. On the other hand,δi > 0 implies that current leisure and

leisure laggedi periods are intertemporal complements.

Defineθ ≡ (B′
5,B

′
6,B

′
7,δ0, · · · ,δρ,α)′, γ ≡ (B′

1, · · · ,B′
4)

′, P ≡ (Pnt0, · · · ,Pnt3)
′. Let F denote

the set of conditional state probabilities and their relevant derivatives and letΘ ≡ (θ′,γ′,P′,F ′)′.

Define alsol (0)
nt ≡ 1, l (1)

nt ≡ 1−hnt, l (2)
nt ≡ 1− snt, and l (3)

nt ≡ 1−hnt − snt. By substituting these

functional forms for the utility functions into the Euler condition for hours (2.3.16), we derive the

following moment condition:

mnt1(Θ) ≡ dnt1

[
α−1ηnλtwnt −z′ntB5−2δ0l (1)

nt −∑ρ
i=1 δi(lnt−i +βi)

−∑ρ
i=1βi p0(Ψ

(i)
nt1)

−1∂p0(Ψ
(i)
nt1)

∂hnt

]

+dnt3

[
α−1ηnλtwnt −z′ntB5−2δ0l (3)

nt −∑ρ
i=1δi(lnt−i +βi)

−∑ρ
i=1βi

[
p0(Ψ

(i)
nt4)

−1∂p0(Ψ
(i)
nt4)

∂hnt
F(xnt)+ p0(Ψ

(i)
nt5)

−1∂p0(Ψ
(i)
nt5)

∂hnt
(1−F(xnt))

+ ln

(
p0(Ψ

(i)
nt5)

p0(Ψ
(i)
nt4)

)
∂F(xnt)

∂hnt

]]
.
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Likewise, we substitute the utility functions in to the optimality condition for study time (2.3.17)

to obtain the following moment condition:

mnt2(Θ) ≡ dnt2

[
−z′ntB5−2δ0l (2)

nt −∑ρ
i=1δi(lnt−i +βi)

−∑ρ
i=1βi

[
p0(Ψ

(i)
nt2)

−1∂p0(Ψ
(i)
nt2)

∂snt
F(xnt)+ p0(Ψ

(i)
nt3)

−1∂p0(Ψ
(i)
nt3)

∂snt
(1−F(xnt))

+ ln

(
p0(Ψ

(i)
nt3)

p0(Ψ
(i)
nt2)

)
∂F(xnt)

∂snt

]]
+dnt3

[
−z′ntB5−2δ0l (3)

nt −∑ρ
i=1δi(lnt−i +βi)

−∑ρ
i=1βi

[
p0(Ψ

(i)
nt4)

−1∂p0(Ψ
(i)
nt4)

∂snt
F(xnt)+ p0(Ψ

(i)
nt5)

−1∂p0(Ψ
(i)
nt5)

∂snt
(1−F(xnt))

+ ln

(
p0(Ψ

(i)
nt5)

p0(Ψ
(i)
nt4)

)
∂F(xnt)

∂snt

]]
.

Additional moment conditions are formed from the optimal discrete choice conditions in equation

(2.3.9). In particular, we obtain the following moment conditionsfrom the optimality condition

for choosing alternatives 1,2, and 3:

mnt3(Θ) ≡ dnt1

[
ln
(

pnt1
pnt0

)
−x′ntB6+x′ntB7(l

(0)
nt − l (1)

nt )+δ0(l
(0)2
nt − l (1)2

nt )

+∑ρ
i=1 δi(l

(0)
nt − l (1)

nt )(lnt−i +βi)− ηnλt
α (wnthnt)−∑ρ

i=1βi ln

(
p0(Ψ

(s)
nt0)

p0(Ψ
(s)
nt1)

)]
,

mnt4(Θ) ≡ dnt2

[
ln
(

pnt2
pnt0

)
−x′ntB5+x′ntB7(l

(0)
nt − l (2)

nt )

+δ0(l
(0)2
nt − l (2)2

nt )+∑ρ
i=1δi(l

(0)
nt − l (2)

nt )(lnt−i +βi)+ ηnλt
α πnt

−∑ρ
i=1 βi

[
ln p0(Ψ

(i)
nt0)− ln p0(Ψ

(i)
nt2)F(xnt)− ln p0(Ψ

(i)
nt3)(1−F(xnt))

]]
,

mnt5(Θ) ≡ dnt3

[
ln
(

pnt3
pnt0

)
−x′ntB5−x′ntB6+x′ntB7(l

(0)
nt − l (3)

nt )

+δ0(l
(0)2
nt − l (3)2

nt )+∑ρ
i=1δi(l

(0)
nt − l (3)

nt )(lnt−i +βi)− ηnλt
α (wnthnt −πnt)

−∑ρ
i=1 βi

[
ln p0(Ψ

(i)
nt0)− ln p0(Ψ

(i)
nt4)F(xnt)− ln p0(Ψ

(i)
nt5)(1−F(xnt))

]]
.

Definemnt(Θ)≡ (mnt1(Θ), · · · ,mnt5(Θ))′ and letT denote the set of periods for which the working

and schooling hours, enrollment and participation conditions are valid. Letmn ≡ (m′
n1, · · · ,m′

nT

denote the vector of empirical moments for a given individual over time. We further define the

weighting matrixΩ ≡ E[mn,m′
n] and note that this matrix is block diagonal sinceEt [mntmns] = 0

for s< t.

In order to increase the finite sample precision of the estimates of the remaining parameters

of the model, we implement a iterated GMM (GMMI) variation ofthe Nested Pseudo Likelihood
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Algorithm (NPL) proposed byAguirregabiria and Mira[2002]. This algorithm consists of two

steps. The first step is where GMMI is implemented to obtain estimates of the preference param-

eters, give an initial estimated of the CCP’s. The second step is where the CCP’s are updated

using the estimates of the preference parameters. To be precise, defineΘk
1 ≡ (θ′, γ̂′,(Pk)′, F̂ ′)′, and

Θk
2 ≡ ((θk)′, γ̂′,P′, F̂ ′)′. At iterationK ≥ 1 of the outer algorithm, we apply the following steps

Step 1:Obtain new estimates ofθ, θK, from the following iteration inj ≥ 1:

θK j = argmax
θ∈Θ

N

∑
n=1

[
mn(ΘK−1

1 )
]′

(Ω j−1)−1
[
mn(ΘK−1

1 )
]
, (2.10.4)

whereΩ j−1 is the weighting matrix evaluated atΘK−1
1 , in whichθ = θK, j−1. This iteration is

repeated until convergence inθ is achieved, which is denotedθK

Step 2:UpdateP using the estimatesθK as follows:

PK
j = exp

(
Vj(ΘK

2 )−V0(ΘK
2 )
)
PK−1

0

= exp
(
mj+2(ΘK

2 )
)
PK−1

0 , j ≥ 1,

PK
0 = 1−∑J

j=1PK
j .

(2.10.5)

Iterate inK until convergence inP andθ is reached.

The convergence of the CCP’s is stated in Proposition 1 ofAguirregabiria and Mira[2002], while

the convergence of the GMMI is discussed inHansen et al.[1996]. From our experience, it seems

that the iteration in step 1 of the algorithm improves greatly the stability of the overall algorithm.

The nature of the iteration in the CCP’s along with the inclusion of the pre-estimates(γ̂, F̂)′

make the correct standard errors of the estimates ofθ nonstandard. To derive the correct standard

errors, we implement the technique proposed inNewey and McFadden[1994] andNewey[1994].

Interestingly, because of the structure of the state space in the model, repeated use of the law of

iterated expectations results in significant simplification of the asymptotic variance. In particular,

no post estimation is required to correct the standard errors. This greatly reduces the computational

burden of the CCP estimator. The key effect of the iteration in the CCP’s is an alternative specific

re-weighting of the influence functions of the pre-estimators. This re-weighting is such that a larger

weight is assigned to alternatives with a higher probability of occurring. The asymptotic properties

of this estimator are discussed in appendixA.1.5.
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2.10.2 Consumption Value of School Attendance

Table11 reports the estimated psychic value of enrollment. The results indicate that the consump-

tion value of schooling is increasing and concave in the level of education. For a given age, the

consumption value is decreasing in level of education. These signs capture the decreasing rate of

enrollment in school for higher levels of education and older individuals.

The coefficients onBLACKandHISPANICin the consumption value of schooling are positive

by not significantly different from zero. This result holds with and without the inclusion of AFQT.

This implies that after controlling for racial differencesin wages, hours worked, time spent of

schooling, and school quality, black and Hispanic males areno more likely to enroll in school than

their white counterparts.

2.10.3 Fixed Utility of Participation

Table12 presents the estimate fixed utility of participating in the labor market. We find that the

consumption value of labor force participation is increasing and concave in the level of labor

market experience. However, these coefficients are imprecisely estimate. We find also that for a

given age, the consumption value of labor force participation is decreasing in the level of labor

market experience. The coefficients onBLACK andHISPANICin the consumption value of labor

force participation are negative, but imprecisely estimated. This results the racial disparity in

the employment rates is not explained by differences in the propensity of participate in the labor

market.

2.10.4 Utility of Leisure

The estimates of the utility of leisure are reported in Table13. The results indicate that the utility

of leisure is (weakly) decreasing and convex in age. This results is also found inAltug and Miller

[1998] andGayle and Miller[2003]. The results also indicate that the utility of leisure in increasing

and concave in leisure. However, the parameter capturing the concavity is imprecisely estimated.

We find also that the coefficients on the black and Hispanic indictors are not statistically different

from zero. In other words we find no evidence of racial differences in the utility of leisure. In other
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words, the observed racial differences in hours worked and study time are not explained by racial

differences in the preferences for leisure.

2.10.5 Intertemporal Nonseparabilities in Leisure

The results in table14 indicate that preferences are intertemporally nonseparable in leisure. The

positive coefficients on the interaction between current and lagged leisure in the utility of leisure

indicate that for males in the sample, current and future leisure are complements in intertemporal

preferences. This indicates a habit formation pattern where increases in current hours worked

decreases the future marginal disutility of work. Likewise, increases in current hours spent on

school activities decreases the future marginal disutility of studying.

Intertemporal nonseparabilities in leisure is estimated in, among others,Eckstein and Wolpin

[1989], Miller and Sanders[1997], Altug and Miller [1998], and Gayle and Miller[2003]. The

results concerning the intertemporal substitutability ofcomplimentarity of leisure varies across

these studies.Altug and Miller [1998] conjecture that employing data sampled over shorter time

intervals result in the finding of complementarity between current and past leisure choices, while

data sampled over longer (yearly) intervals result in the finding of substitutability between current

and past leisure. However, the results in table 11 run in contrast to this conjecture, since in this

study, hours are measured annually.

2.11 SOLUTION AND SIMULATION EXERCISES

2.11.1 Solving the model

Given the estimated parameters, the model is solved by meansof backward induction from age 65

to age 15. Ideally, we would like to treat hours worked and studied completely symmetrical, as

done in the estimation. However, solving for both hours worked and studied on a fine enough grid

is infeasible. To bypass this problem, we use the estimated function for study time to approximate

optimal study time in the solution. This approximation makes solution of the model tractable.

However, this function is valid only for males that choose toenroll. While this was not a problem
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for estimating the model, it may cause biases in the simulation results.

With the use of the study time function, optimal hours can then be solved for on a fine grid.

The problem of interpolating off this grid then arises. Interpolation is carried out by a third order

polynomial regression of the value at each point of the grid on the corresponding state space.

The parametric regression is preferred over nonparametrickernel techniques because it allows for

a finer grid on hours and avoids the corresponding curse of dimensionality that nonparametric

techniques face. In solving the baseline model, the smallest R2 at age 40 is 0.994, indicating that

the third order polynomial approximation is expected to provide very precise approximations of

the value functions off the grid of hours. We also assume in the solution that nobody enrolls in

school after the age of 36. This is justified as in the data onlya very small fraction of the sample

enrolls in school past the age of 36.

The baseline model is solved assuming that the economy is in equilibrium where aggregate

components grow at an equilibrium rate of the average in the sample period. These aggregate

components are the shadow price of consumption, the skill specific piece rates, and tuition costs.

The assumption of zero growth rate in aggregate skill priceswould result in unrealistic predictions

of wages over the life cycle. The baseline model is solved for10,000 replications separately for

whites, blacks, and Hispanics. Table14 reports the baseline simulation by age along with the

corresponding sample averages from the data. The baseline model under-predicts the level of labor

market experience and the average hourly wage rate. It may bepossible to improve the fit of the

model to the data by adding dummies to capture the large drop-off in enrollment and increase in

working of 18 and 19 year old males that is found in the data. However, there is no economic

intuition for such dummies, and they are not necessary for the analysis to come. Furthermore,

given that we we do not have the full profile of the growth in theaggregate variables, the simulation

results are not expected to closely fit the sample averages atany rate. Not withstanding this, the

model predicts remarkably well the general patterns withineach race group. Moreover, the model

also gets exactly the relative patterns in the reported outcomes across races.

The first two counterfactual simulations performed evaluate policies that are aimed at affecting

working while enrolled in school. First the government subsidizes individuals who choose to

enroll in school and not participate in the labor market. Second the government increases the

school curriculum so that individuals who enroll in school necessarily spend more time on school
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activities. The Third set of counterfactual simulations addresses the issue of equating the quality

of schooling across races. The final set addresses the issue an increase in time spent on school

activities when school quality is held constant across races.

2.11.2 Cash Subsidy

For the first counterfactual simulation exercise, we consider a subsidy of 1000 dollars, which grows

yearly at the same rate as the aggregate component of the marginal utility of consumption (which

is the same as the growth rate in tuition). The results from this simulation exercise are reported

in table15 under the column labeled “Pol. 1”. The baseline simulation results are included for

comparison under the column labeled “Base”.

The results indicate that this policy does very little in affecting the outcomes of young men.

We see very modest increases in education, and reductions inexperience. There are also modest

overall increases in wages due to this policy. The effect of the policy is the same for all races.

2.11.3 Increased time spent on school activities

In practice, the second policy can be achieved by increasingthe number of hours school is in ses-

sion for, summer classes, or Saturday (or Sunday) classes. This can also be achieved my increasing

the number of, or level of difficulty of homework assignmentsand projects. In the simulation ex-

ercise, this policy is achieved by increasing the study timefunction. The amount by which the

constant is increased is chosen to make the magnitudes of this policy and the subsidy policy above

comparable. In particular, if at age 16, the individual was to work for $1000 at $4 hourly wage

rate, he would work for 250 hours. The study time function is therefore increased by 250. Since

the average wage at age 16 in the baseline simulations is approximately $3.50, the results from this

simulation are considered to be lower bound comparisons to the above simulation exercise. The

findings are reported in table16 under the columns labeled “Pol 2”.

The findings indicate that this policy significantly increases education and wages for white and

black men, with moderate increases for Hispanics. By the age35, the completed level of education

increases by 15% for whites and 12.3% for blacks, but only by 1% for Hispanics. Also we find

that the level of labor market experience for whites and black decreases as a result of the policy,
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while it increases for Hispanics.

Analysis of the change in the choices young men make due to thepolicy shows that Hispanics

are the least responsive. Further more, while the fraction of the population that enroll in school

and not work increase significantly for whites and black (21.8% and 16.4%), it increases only

modestly for Hispanics (1%). Another difference in the patterns of choices is that while the faction

of the white population that works and attends school decreases (by 5%), it increases for blacks

(0.5%) and Hispanics (1.8%). Furthermore, Hispanics are the only group in which the decline in

young men where the percentage increase in those working andattending school outweighs the

percentage decline in those who choose to exclusively participate in the labor market.

The conclusion therefore is that the crowding-out hypothesis holds most significantly for

whites, followed by blacks and Hispanics. This conclusion comes from the fact that a manda-

tory increase in the time spent on school activities has the most significant negative effect on the

employment rate of whites, and the most significant positiveeffect on completed education and

future wages of whites. This result is also empirically bolstered by the fact that in the data a larger

fraction of whites enroll in school and work at the same time.Hence intuitively, one would expect

that they may be most subject to the crowding out effect of working while attending school. Hence

policies that are aimed at increasing the time students spend on school activities has significant

positive effects on whites and blacks, but less so on Hispanics.

2.11.4 Equating school quality

The next policy experiment equalizes the quality of schoolsacross races. Technically, this is done

by setting the coefficients ofBLACK andHISPANICin the grade transition probability equation

to zero. The results from this exercise are presented in table 15 under the columns labeled “Pol 3”.

We also present the results from the baseline simulation under the columns labeled “Base”.

The results in table17 indicate that the policy has significant impacts on both blacks and

Hispanics. For blacks, by the age of 35, the completed level of education increases by 11%, the

years of labor market experience increase by 1%, and the hourly wage rate increases by 15%. For

Hispanics, by the age of 35, the completed level of educationincreases by 7%, the years of labor

market experience increase by 3%, and the hourly wage rate increases by 4%.
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For both blacks and Hispanics, the policy has the effect of increasing enrollment rates. How-

ever, the pattern of enrollment is quite different for both groups. For blacks, the policy has an

effect of increasing the fraction of those who enroll exclusively in school by 12%, and 13% for

those who enroll and work. For Hispanics however, the policyonly increases the fraction of those

who enroll exclusively in school by 2%, but by 14% for those who enroll and work. Since the

chances of completing a grade level is smaller if the studentis also working, this results in a more

modest increase in completed education, and thus a more modest increase in hourly wage rate.

We conclude therefore that policies aimed at improving the quality of schools for minorities

results in significantly increased education for both groups, but a more modest increase in hourly

wage rates for Hispanics.

2.11.5 Equating school quality and increasing time spent onschool activities

Given that equating school quality results in a significant increase in the education level of His-

panics, it is interesting to know if the magnitude of the effect of an increase in study time changes

in magnitude under this new environment. Therefore we simulate this environment and the results

are reported in table18 under the columns labeled “Pol 4”. Again, the baseline simulation results

are presented for comparison under the columns labeled “Base”.

The results under the new environment, the choices and outcomes for Hispanics are far more

responsive to the exogenous increase in study time. The simulated completed level of education

increases by 23% and the hourly wage rate increases by 29% forHispanics by age 35. Furthermore,

the fraction of the Hispanic population that exclusively enroll in school increase by 23% and the

fraction that enroll and work increase by 18%. Thus under theenvironment where the quality of

schools are equated across race, the responsiveness of Hispanics to an exogenous increase in study

time increases significantly.

For blacks in this new environment, the exogenous increase in study time increases the com-

pleted level of education by 28% and the hourly wage rate by 79% by age 35. The fraction on

blacks that enroll in school exclusively increases by 38%, and the fraction that enrolls and work

increases by 8%.

These results indicate that policies aimed that increasingthe time spent on school activities has
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a positive effect on minority students; magnitudes that arecomparable to their white counterparts.

2.12 CONCLUSIONS

The paper has developed and estimated a dynamic structural model of educational attainment and

labor supply. The main focus of the analysis has been to studythe allocation of time between

labor supply, formal schooling activities and leisure, both within a year and over the life cycle.

The model allows for skill specific productivity and piece rates, as well as intertemporal nonsepa-

rabilities in the utility of leisure. It also allows for racial variation in wages, consumption, school

quality, study patterns, the fixed cost of labor market participation, the fixed utility of schooling,

and the utility of leisure. The estimated results indicate that current and future leisure choices

are intertemporal complements. The results also indicate that the observed racial differences in

outcomes come from a variety of sources that interact in a highly nonlinear fashion, but not from

racial differences in tastes.

The estimated model is used to evaluate two policies that areaimed at affecting the allocation

of time between schooling and working. The first policy subsidizes young students that do not

participate in the labor market. The results indicate that this subsidy does little in changing the

patterns of enrollment and labor supply on either the extensive or the intensive side. The second

policy increases the school curriculum so that young men whochoose to enroll in school neces-

sarily spend more time on schooling activities. The resultsindicate that this policy would have

significant positive effects on white and blacks, but more modest effects on Hispanics.

A third exercise was performed to evaluate the effects of equating school qualities of blacks

and Hispanics to that of whites. The results indicate that such a policy would have a large positive

effect on education and wages for blacks, but a smaller positive effect on Hispanics. We also show

that under this environment, Hispanics become significantly more responsive to policies aimed at

increasing the school curriculum.

This study was motivated by the increasing number of students that decide to also participate

in the labor market. The results indicate that the effect of this trend varies across races. Policy

focused on changing this trend to improve the level of education and labor market outcomes may
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have only modest effects on some racial groups. As a matter ofpolicy, the results indicate that

equating school quality across races may be a more productive first step for improving the out-

comes of minorities. Of course, our measure of school quality is agnostic about exactly what are

the parameters in the school system that needs to be addressed. This would require an understand-

ing of the key variables that affect students’ grade promotion probabilities.

One of the main limitations of the model presented in this paper is that it is set in a partial

equilibrium framework. In a general equilibrium framework, one would expect that the aggregate

skill specific wages will also be affected by a policy that changes the distribution of the labor force

over these groups. A policy that increases the level of education will result in more labor supplied

to the high skilled sector and less to the low skilled sector.In a general equilibrium framework,

this will drive down the price of high skilled labor and push up the price of low skilled labor,

thus reducing the incentive to acquire higher education. Since this general equilibrium effect is

not accounted for in the model presented in this paper, the effects of policies that increase the

level of education may be overstated. How far the partial equilibrium effects are from the general

equilibrium effects is an important issue for future research.
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Table 1: List and Description of Variables Used

ds
nt Indicator variable equal to 1 if individualn enrolls in yeart

ds
nt Indicator variable equal to 1 if individualn works in yeart

snt Fraction of time spent on school activities in yeart

hnt Fraction of time spent working in yeart

Snt Completed level of education

Ent Level of experience

AGEnt Age at yeart

WHITE Indicator variable equal to 1 if White and 0 otherwise

BLACK Indicator variable equal to 1 if Black and 0 otherwise

HISPANIC Indicator variable equal to 1 if Hispanic and 0 otherwise

FAM INCnt level of family income at yeart

FAM SIZEnt size ofn’s household at yeart

FAM AGEnt average age ofn’s household at yeart

SIBLINGS number of siblings ofn as at age 14

US BORN indicator variable equal to 1 ifn was born in the US

AFQT The Armed Force Qualification Test score for individualn

ASSETS Level of asset holdings by the household ofn in yeart

UNEMP Level of the unemployment rate local ton in yeart

RURAL Indicator variable equal to 1 ifn lives in a rural area in yeart

TUITION Level of college tuition that individualn is subject to in yeart
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Table 2: Summary Statistics

Year 1979 1980 1981 1982 1983 1984 1985 1986

Observations 3749 3512 3595 3575 3594 3549 3504 3413

d0 0.0205 0.0529 0.1115 0.1325 0.1719 0.1541 0.1435 0.1300

d1 0.0381 0.1452 0.2842 0.4215 0.5158 0.6198 0.6889 0.7380

d2 0.5644 0.3809 0.2439 0.1367 0.0951 0.0617 0.0345 0.0240

d3 0.3769 0.4208 0.3602 0.3090 0.2170 0.1642 0.1329 0.1078

ds 0.9413 0.8018 0.6041 0.4458 0.3121 0.2259 0.1675 0.1318

s 1436.5 1354.6 1276.0 1203.3 1149.7 1139.3 1114.6 1077.3

S 9.7967 10.730 11.335 11.842 12.198 12.416 12.578 12.708

dh 0.4150 0.5660 0.6445 0.7306 0.7328 0.7841 0.8219 0.8458

h 710.90 972.82 1080.5 1159.8 1310.0 1477.6 1577.7 1694.5

E 1.2107 1.6136 2.1655 2.8036 3.5166 4.2310 4.9877 5.8025

w1 4.3872 4.1601 4.3383 4.6541 4.8560 5.1220 5.5749 6.0788

AGE 16.743 17.653 18.695 19.697 20.706 21.699 22.690 23.688

WHITE 0.5727 0.5769 0.5713 0.5757 0.5759 0.5711 0.5736 0.5722

BLACK 0.2625 0.2640 0.2651 0.2626 0.2613 0.2646 0.2606 0.2625

HISPANIC 0.2648 0.1592 0.1635 0.1617 0.1627 0.1643 0.1658 0.1653

FAM INC1 17647 19086 20011 21168 21398 21785 23577 25319

FAM SIZE 4.8434 4.5948 4.3171 3.9625 3.7045 3.3722 3.1726 2.9856

FAM AGE 26.225 26.823 26.978 26.665 26.699 26.653 26.538 26.175

SIBLINGS 3.6220 3.5899 3.6069 3.6204 3.6165 3.6238 3.6204 3.6024

US BORN 0.9306 0.9328 0.9310 0.9311 0.9315 0.9323 0.9326 0.9326

AFQT 42.024 43.186 42.793 42.835 42.774 42.606 42.545 42.565

ASSETS1 4141.2 4278.8 4998.8

UNEMP 2.5646 2.8476 3.1652 3.7848 4.1978 3.4356 3.2919 3.1693

RURAL 0.2125 0.20871 0.1997 0.1932 0.1830 0.1718 0.1680 0.1614

TUITION1 813.19 793.04 809.79 865.54 916.18 960.77 1029.0 1087.4

1In 1981 dollars
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Table 3: Summary Statistics (Contd.)

Year 1987 1988 1989 1990 1991 1992 1993 1994

Observations 3338 3357 3389 3328 2931 2936 2937 2896

d0 0.1207 0.0965 0.0994 0.0943 0.1044 0.1226 0.1113 0.1142

d1 0.8001 0.8394 0.8574 0.8647 0.8614 0.8474 0.8593 0.8649

d2 0.0155 0.0071 0.0023 0.0006 0 0 0 0

d3 0.0635 0.0568 0.0407 0.0402 0.0341 0.0299 0.0292 0.0207

ds 0.0790 0.0640 0.0430 0.0408 0.0341 0.0299 0.0292 0.0207

s 1043.2 977.74 970.54 962.93 976.60 1006.7 1118.6 1128.3

S 12.833 12.890 12.917 12.962 13.050 13.049 13.073 13.08

dh 0.8636 0.8963 0.8982 0.9050 0.8955 0.8773 0.8886 0.8857

h 1836.4 2016.8 2078.7 2025.0 2072.1 2126.6 2076.2 2111.7

E 6.6363 7.4566 8.2912 9.1908 10.022 10.853 11.676 12.548

w1 7.0968 7.6098 7.6038 8.0964 7.7159 7.8402 8.2973 8.4466

AGE 24.680 25.684 26.686 27.687 28.624 29.620 30.621 31.611

WHITE 0.5733 0.5737 0.5716 0.5736 0.5165 0.5150 0.5138 0.5162

BLACK 0.2657 0.2654 0.2653 0.2644 0.2972 0.2973 0.3006 0.2987

HISPANIC 0.1609 0.1609 0.1632 0.1620 0.1863 0.1877 0.1856 0.1851

FAM INC1 26572 29047 46666 34705 36938 59830 41624 43778

FAM SIZE 2.8406 2.7768 2.7722 2.7641 2.8161 2.8692 2.9240 2.9229

FAM AGE 26.154 25.624 25.707 25.814 26.108 26.231 24.292 24.610

SIBLINGS 3.6096 3.6136 3.6208 3.6283 3.6349 3.6294 3.6275 3.6339

US BORN 0.9340 0.9368 0.9350 0.9353 0.9344 0.9335 0.9342 0.9350

AFQT 42.789 42.565 42.270 42.422 42.089 41.905 41.869 41.965

ASSETS1 7107.8 7132.9 20246 10064 11688 13922 13488 12195

UNEMP 2.9331 2.6094 2.3865 2.4002 2.9512 3.1757 3 2.9499

RURAL 0.1791 0.1805 0.1844 0.1850 0.1641 0.1665 0.1722 0.1833

TUITION1 1153.1 1170.5 1181.5 1234.6 1351.1 1404.9 1490.2 1504.5

1In 1981 dollars
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Table 4: The Consumption Equation.

Variable Parameter Estimate Std. Err.

Demographic Variables

∆FAM SIZEnt B1,1 0.1466 0.0022

∆FAM INCnt B1,2 8.00E-06 0.08E-06

∆FAM AGEnt B1,3 4.00E-06 2.00E-06

∆UNEMPnt B1,4 -0.0010 0.0005

∆Snt B1,5 -0.0091 0.0008

∆(AGE×Snt) B1,6 0.0089 0.0008

∆AGE2
nt B1,7 -0.0008 0.0004
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Table 5: The Wage Equation.

Low Skill High Skill

Variable Parameter Estimate Parameter Estimate

Lags of Enrollment

∆ds
nt−1 B2,1,1 -0.0309 B2,2,1 -0.0701

(0.0382) (0.0266)

∆ds
nt−2 B2,1,2 -0.0198 B2,2,2 -0.01239

(0.0421) (0.02707)

Lags of Participation

∆dh
nt−1 B2,1,3 0.0198 B2,2,3 -0.1513

(0.0431) (0.0175)

∆dh
nt−2 B2,1,4 0.0319 B2,2,4 -0.1272

(0.0460) (0.0193)

Lags of Hours Worked

∆hnt−1 B2,1,5 0.20E-04 B2,2,5 0.28E-04

(0.02E-04) (0.01E-04)

∆hnt−2 B2,1,6 0.07E-04 B2,2,6 0.10E-04

(0.02E-04) (0.01E-04)

Socio-Economic Variables

∆S2
nt B2,1,8 -0.29E-04 B2,2,8 0.0040

(1.37E-04) (0.0001)

∆E2
nt−2 B2,1,7 -0.0010 B2,2,7 -0.0011

(0.0003) (0.0002)

∆(Snt ×Ent−2) B2,1,9 0.0027 B2,2,9 -0.0072

(0.0003) (0.0002)
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Table 6: Estimated changes in aggregate prices and wages1

Aggregate Prices Aggregate Wages

Year (1−α)−1∆ ln(λt) Unskilled(∆ lnωt,1) Skilled (∆ lnωt,2)

1984 0.0345 0.0287 0.1127

(0.0199) (0.0393) (0.0162)

1985 -0.0423 0.0449 0.2320

(0.0200) (0.0381) (0.0177)

1986 0.0288 0.0526 0.2303

(0.0206) (0.0402) (0.0204)

1987 0.0713 0.0584 0.2831

(0.0218) (0.0384) (0.0212)

1988 -0.0102 0.0556 0.1421

(0.0226) (0.0363) (0.0210)

1989 0.1111 -0.0228 0.1781

(0.0228) (0.0375) (0.0221)

1990 -0.0186 0.0133 0.1652

(0.0232) (0.0366) (0.0219)

1991 0.0230 -0.0360 0.1610

(0.0237) (0.0368) (0.0219)

1992 0.2044 -0.0101 0.1713

(0.0246) (0.0392) (0.0237)

1993 -0.0260 0.0290 0.1770

(0.0250) (0.0411) (0.0252)

1994 -0.0056 0.0120 0.1587

(0.0251) (0.0351) (0.0218)

1 Standard errors in parentheses
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Table 7: Estimate of time spent on school activities.

Variable Parameter Estimate Std.Err

Constant B3,0 7.2383 0.1829

Lags of Enrollment

ds
nt−1 B3,1 0.2602 0.0463

ds
nt−2 B3,2 0.2037 0.0789

Lags of Hours Worked

hnt−1 B3,3 -0.77E-04 0.17E-04

hnt−2 B3,4 -0.50E-04 0.26E-04

Socio-Economic Variables

BLACK B3,5 0.1063 0.0265

HISPANIC B3,6 -0.0996 0.0304

AGEnt ×Snt B3,7 -0.0045 0.0013

(AGEnt ×Snt)2 B3,8 0.76E-05 0.26E-05

US BORN B3,10 -0.1261 0.0417

FAM SIZEnt B3,11 0.0135 0.0050

RURAL B3,12 0.0647 0.0250

UNEMPnt B3,13 -0.0244 0.0100

AFQT B3,15 0.0037 0.0004

ln(µ) B3,17 -0.1435 0.0273
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Table 8: Probability of Grade Promotion.

dh
nt = 0 dh

nt = 1

Variable Parameter Estimate Parameter Estimate

Constant B4,1,0 0.0307 B4,2,0 0.0482

(0.7734) (0.5499)

Time Use Variables

snt B4,1,1 0.0025 B4,2,1 0.0036

(0.0003) (0.0008)

s2
nt B4,2,2 -0.15E-05

(0.03E-05)

hnt B4,2,3 -0.0006

(0.0001)

h2
nt B4,2,4 0.10E-06

(0.03E-06)

Participation Variables

dh
nt−1 B4,2,8 0.2185

(0.0873)

dh
nt−2 B4,1,4 0.2771

(0.1203)

Socio-Economic Variables

BLACK B4,1,5 -0.2296 B4,2,9 -0.3751

(0.1305) (0.0925)

HISPANIC B4,2,10 -0.4627

(0.0928)

AGEnt B4,1,6 -0.1468 B4,2,11 -0.0824

(0.0268) (0.0147)

AFQT B4,1,7 0.0058 B4,2,13 0.0100

(0.0027) (0.0017)
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Table 9: Marginal Effects Probability of Grade Promotion.

dh
nt = 0 dh

nt = 1

Variable Parameter Estimate Parameter Estimate

Time Use Variables

snt B4,1,1 0.0005 B4,2,1 0.0008

s2
nt B4,2,2 -0.26E-06

hnt B4,2,3 -0.0001

h2
nt B4,2,4 0.02E-06

Enrollment Variables

ds
nt−1 B4,2,5 0.0915

GRADE 11 B4,1,2 0.1136 B4,2,6 0.0717

GRADE 12 B4,1,3 0.1109 B4,2,7 0.2235

Participation Variables

dh
nt−1 B4,2,8 0.0487

dh
nt−2 B4,1,4 0.0542

Socio-Economic Variables

BLACK B4,1,5 -0.0449 B4,2,9 -0.0837

HISPANIC B4,2,10 -0.1032

AGEnt B4,1,6 -0.0365 B4,2,11 -0.0184

Snt B4,2,12 -0.0232

AFQT B4,1,7 0.0011 B4,2,13 0.0022

ln(η) B4,1,8 -0.1247 B4,2,14 -0.0985

ln(µ) B4,1,9 -0.0508 B4,2,15 -0.1216
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Table 10: Sample Averages of Nonparametric Estimates

Variable Sample Sample Variable Sample Sample

Mean Std. Dev. Mean Std. Dev

pnt0 0.1197 0.2145
∂p0(Ψ

(1)
nt1)

∂hnt
-0.1988 2.0533

pnt1 0.7076 0.3427
∂p0(Ψ

(2)
nt1)

∂hnt
-0.3520 5.2983

pnt2 0.0489 0.1303
∂p0(Ψ

(1)
nt4)

∂hnt
-0.6092 4.5189

pnt3 0.1232 0.2307
∂p0(Ψ

(1)
nt5)

∂hnt
-0.5044 5.2893

p0(Ψ
(1)
nt0) 0.3870 0.2398

∂p0(Ψ
(1)
nt2)

∂snt
-0.0391 4.1811

p0(Ψ
(2)
nt0) 0.5709 0.1835

∂p0(Ψ
(1)
nt3)

∂snt
0.4081 6.9457

p0(Ψ
(1)
nt1) 0.0995 0.1503

∂p0(Ψ
(1)
nt4)

∂snt
0.8412 5.5360

p0(Ψ
(2)
nt1) 0.3659 0.2446

∂p0(Ψ
(1)
nt5)

∂snt
-0.5360 6.3767

p0(Ψ
(1)
nt2) 0.0283 0.1095

p0(Ψ
(1)
nt3) 0.2616 0.3736

p0(Ψ
(1)
nt4) 0.0370 0.1504

p0(Ψ
(1)
nt5) 0.1436 0.3166

Table 11: Psychic Value of School Attendance.

Variable Parameter Estimate Std.Err.

Constant B50 -20.8502 10.0810

Snt B51 3.6935 1.6900

S2
nt B52 -0.0654 0.0619

AGEnt ×Snt B53 -0.0635 0.0093

BLACK B54 1.4361 1.3736

HISPANIC B55 0.0667 1.8812

AFQT B56 0.0165 0.0343
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Table 12: Fixed Utility of Labor Force Participation.

Variable Parameter Estimate Std.Err.

Constant B60 -0.8174 2.3807

Ent B61 1.2834 1.2741

E2
nt B62 -0.0270 0.2294

AGEnt ×Ent B63 -0.0645 0.0176

BLACK B64 -0.4961 1.4026

HISPANIC B65 -0.0351 2.4603

Table 13: Utility of Leisure and the CRRA parameter.

Variable Parameter Estimate Std.Err.

lnt B70 0.0043 0.0114

AGEnt × lnt B71 -0.0009 0.0010

AGE2
nt × lnt B72 0.27E-04 0.24E-04

BLACK× lnt B73 0.0009 0.0008

HISPANIC× lnt B74 0.0003 0.0021

l2
nt δ0 -0.58E-07 0.68E-07

lntlnt−1 δ1 2.87E-07 1.15E-07

lntlnt−2 δ2 3.86E-07 0.11E-07

CRRA parameter α 0.1067 0.0060
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Table 14: Results from baseline simulation by race.

Age Education Experience Hours Wages

Actual Sim. Actual Sim. Actual Sim. Actual Sim.

White

20 11.96 10.37 3.32 2.90 1257 1708 4.89 3.77

25 13.16 12.21 6.96 5.19 1957 1812 9.37 6.71

30 13.52 13.43 10.70 7.50 2198 2092 13.77 11.57

35 14.37 9.93 2338 15.85

Black

20 11.71 9.69 2.67 2.65 1129 1521 4.35 3.35

25 12.36 10.90 5.90 4.61 1830 1711 7.38 5.73

30 12.53 11.58 9.62 6.52 1963 2023 10.36 8.84

35 11.91 8.60 2275 11.67

Hispanic

20 11.33 9.69 3.04 2.84 1320 1773 5.00 3.82

25 11.99 10.89 6.71 5.03 1817 1960 9.15 6.57

30 12.28 11.56 10.57 7.20 2107 2219 12.26 10.03

35 11.90 9.61 2403 13.20
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Table 15: Effect of cash subsidy to students who do not work.

Age Education Experience Hours Wages

Base Pol 1 Base Pol 1 Base Pol 1 Base Pol 1

White

20 10.37 10.38 2.90 2.88 1708 1709 3.77 3.77

25 12.21 12.24 5.19 5.14 1812 1810 6.71 6.71

30 13.43 13.48 7.50 7.41 2092 2094 11.57 11.68

35 14.37 14.44 9.93 9.78 2338 2336 15.85 16.08

Black

20 9.69 9.71 2.65 2.63 1521 1522 3.35 3.35

25 10.90 10.95 4.61 4.55 1711 1708 5.73 5.72

30 11.58 11.63 6.52 6.41 2023 2020 8.84 8.85

35 11.91 11.98 8.60 8.41 2275 2274 11.67 11.78

Hispanic

20 9.69 9.71 2.84 2.83 1773 1771 3.82 3.81

25 10.89 10.92 5.03 4.99 1960 1958 6.57 6.56

30 11.56 11.61 7.20 7.10 2219 2222 10.03 10.02

35 11.90 11.96 9.61 9.44 2403 2402 13.20 13.21
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Table 16: Effects of mandatory increases in time spent on school activities.

Age Education Experience Hours Wages

Base Pol 2 Base Pol 2 Base Pol 2 Base Pol 2

White

20 10.37 10.66 2.90 2.89 1708 1722 3.77 3.78

25 12.21 12.95 5.19 5.09 1812 1827 6.71 7.05

30 13.43 14.78 7.50 7.23 2092 2185 11.57 14.99

35 14.37 16.52 9.93 9.38 2338 2412 15.85 23.28

Black

20 9.69 9.96 2.65 2.64 1521 1528 3.35 3.35

25 10.90 11.62 4.61 4.52 1711 1704 5.73 5.84

30 11.58 12.68 6.52 6.35 2023 2070 8.84 10.50

35 11.91 13.38 8.60 8.39 2275 2325 11.67 15.15

Hispanic

20 9.69 9.76 2.84 2.84 1773 1771 3.82 3.81

25 10.89 10.98 5.03 5.04 1960 1958 6.57 6.58

30 11.56 11.66 7.20 7.23 2219 2222 10.03 10.07

35 11.90 12.00 9.61 9.67 2403 2402 13.20 13.24
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Table 17: Equating school quality.

Age Education Experience Hours Wages

Base Pol 3 Base Pol 3 Base Pol 3 Base Pol 3

Black

20 9.69 10.03 2.65 2.65 1521 1501 3.35 3.34

25 10.90 11.62 4.61 4.60 1711 1654 5.73 5.82

30 11.58 12.60 6.52 6.65 2023 2000 8.84 9.80

35 11.91 13.20 8.60 8.71 2275 2297 11.67 13.47

Hispanic

20 9.69 9.97 2.84 2.86 1773 1771 3.82 3.82

25 10.89 11.39 5.03 5.11 1960 1958 6.57 6.63

30 11.56 12.21 7.20 7.40 2219 2222 10.03 10.35

35 11.90 12.68 9.61 9.94 2403 2402 13.20 13.67
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Table 18: Effects of mandatory increases in time spent on school activities after equating school

quality.

Age Education Experience Hours Wages

Base Pol 4 Base Pol 4 Base Pol 4 Base Pol 4

Black

20 9.69 10.28 2.65 2.63 1521 1509 3.35 3.34

25 10.90 12.38 4.61 4.49 1711 1648 5.73 6.06

30 11.58 13.96 6.52 6.26 2023 2118 8.84 13.50

35 11.91 15.26 8.60 8.31 2275 2393 11.67 20.91

Hispanic

20 9.69 10.35 2.84 2.84 1773 1737 3.82 3.81

25 10.89 12.29 5.03 5.04 1960 1884 6.57 6.82

30 11.56 13.58 7.20 7.25 2219 2215 10.03 12.45

35 11.90 14.56 9.61 9.70 2403 2432 13.20 17.05
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Figure 1: Changes in Shadow Price of Consumption∆((1−α)−1 lnλt)

1980 1982 1984 1986 1988 1990 1992 1994
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Year

C
ha

ng
es

 in
 A

gg
re

ga
te

 P
ric

es

 

 
Estimates
CI

58



Figure 2: Changes in Unskilled Aggregate Wage∆(lnωt1)
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Figure 3: Changes in Skilled Aggregate Wage∆(lnωt2)
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3.0 SEMIPARAMETRIC ESTIMATION OF A NONLINEAR PANEL DATA MOD EL

WITH PREDETERMINED VARIABLES AND SEMIPARAMETRIC INDIVIDU AL

EFFECTS

(WITH SOILIOU NAMORO)

3.1 INTRODUCTION

Panel data models are important in econometrics, primarilybecause of their capacity to capture

facets of agent behavior in ways that cannot be accounted forin cross-sectional and time-series

data models. Furthermore, detailed and relatively reliable panel data sets have become increasingly

available. As a consequence, there is a growing demand for more sophisticated panel data models

by applied researchers.

A major advantage of the linear panel data model is its ability to jointly account for perma-

nent unobservable individual effects, time specific aggregate effects, and (structural) dynamics

in agent behavior.1 Though at a slower rate, progress has been made by econometricians in de-

veloping nonlinear panel data model that allow for individual specific effects, aggregate time ef-

fects, and dynamics in behavior. Indeed, the most significant development in nonlinear panel data

models has been spurred by the limited dependent variables framework (seeHonoré, 1992and

Honoré and Kyriazidou, 2000for examples). Typically however, the estimation of these nonlinear

models rely heavily on the logit specification of the index function. The model we consider in this

paper is complementary to these nonlinear index models in that we impose a stronger restriction

on the form of the unobserved individual specific effect, butwe relax the assumption that the index

function is known.

1For comprehensive summary of the advances in linear panel data models and estimation techniques, see
Chamberlain[1984] andArellano and Honoré[2001].
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This paper considers semiparametric estimation of a nonlinear single index panel data model

of the following form:

yit = Φ(αyit−1+x′it β+ f (zi)+λt)+ εit (3.1.1)

wherexit is aK×1 vector of strictly exogenous and/or predetermined variables,zi is anL×1 vector

of exogenous individual specific time invariant random variables,2 β is aK×1 vector of unknown

parameters,Φ(·) is a real valued unknown function,f (·) is an unknown real valued function,λt

is an unobservable time-specific effect, andεit is an unobservable error term assumed to have a

conditional mean of zero. The purpose of this paper is to find an estimator ofβ with the usual

parametric convergence raten−1/2 without assuming thatΦ and f belong to some parametric class

of functions. We are particularly interested in constructing estimators forΦ and f because the goal

is to be able to simulate and predict the dependent variableyit .

This restriction on the individual-specific effects extends the suggestion ofNewey[1994], pp.

1354-1355. In the binary choice framework, the model presented in equation (3.1.1) arises natu-

rally under the assumption that the individual specific effect is of the formµi = f (zi)−ui . Papers

that provide estimators of the finite dimensional parameterin these binary choice models include

Chen[1998] andGayle and Miller[2003]. The former paper suggests implementing a series esti-

mator of the index function and estimating by OLS, where the latter suggests estimating by GMM.

Our own interest goes beyond the discrete choice framework,and our estimator is an efficient

semi-parametric least squares estimator that can be implemented using either series expansions or

the investigators favorite Kernel estimator. Furthermore, the index function is easily recoverable

in our estimation framework. This is important since we are specifically interest in estimating the

full data-generating process for the purpose of predictionand simulation.

A variety of models used in empirical studies fall within this class of single index models. The

model proposed here is in some sense an extension of the single index models proposed inIchimura

[1993] and Klein and Spady[1993] to panel data and pre-determined variables. The cost of this

extension relative to these models is that we assume that theindex function is strictly increasing

over its support. In many cases, the assumption of strict monotonicity of the index function may

2Note thatzi could be made of the vector of strictly exogenous random variable(xi1, · · · ,xiT )′, in which case this
is a generalization of the Mundlak specification.
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be informed by economic theory. One such example is in cases where the index function is a

cumulative distribution function (cdf) as in the case of probability models. Indeed, discrete choice

models also falls within the class of models specified in equation (3.1.1).

In the sub-class of discrete choice models, the literature has developed by taking two dominant

paths: the case where the index functionΦ is assumed to belong to a parametric class of cdf’s,

and the case where the nonparametric assumption in placed onthe cdf. In the former case, most

progress have been made under the assumption that the index functionΦ is the cdf of the logistic

distribution. Rasch[1960], Anderson[1970], and Chamberlain[1980] show that these models

can be estimated by conditional maximum likelihood forT ≥ 2. Chamberlain[1985] andMagnac

[1997] show that this model can be estimated with both individual-specific effects and lagged

dependent variables, but without any other explanatory variables.Honoré and Kyriazidou[2000]

expand the estimation of these models to include explanatory variables.

Despite these rapid advancements, the method of identification used in these studies relies

crucially on the logit assumption. Indeed, under the assumption that the individual-time spe-

cific shocks are independent and if covariates are unbounded, the finite dimensional parameters

can be estimated consistently with a
√

n convergence rate without specifying the distribution of

the individual-specific effects conditional on the covariates if and only if the distribution of the

individual-time specific shocks is logistic (Magnac, 2004). However, the logit assumption raises

the question of robustness of these estimators to violationof that crucial assumption. This leads us

then to find other methods of estimating these dynamic panel data models that allow for sufficiently

general individual heterogeneity.

Another class of estimators for discrete choice models are those that do not make paramet-

ric assumptions on index function.Manski [1987] derives a maximum score estimator for the

single-index model with exogenous regressors, and individual-specific effects based on that, un-

der weak regularity conditions, the sign of difference in the first conditional probabilities is equal

to the sign of the first difference in the index.Horowitz [1992] extends this model by maximiz-

ing a smoothed version of Manski’s score function. This modification results in Horowitz being

able to prove asymptotic normality coefficientβ, a property that Manski’s model does not enjoy.

Honoré and Kyriazidou[2000] further extends this estimation technique to include lagged depen-

dent variables. They show that this estimator is consistent, but did not derive the asymptotic dis-

63



tribution for this estimator. These estimators typically converge at a rate slower thann−1/2. More

importantly, since the index function is not estimated in these models, the full data generating

process is not estimated and thus these models are incapableof performing predictions.

The proposed method to estimate the nonlinear panel data model presented in this paper es-

sentially mimics that of the linear case. It starts with the inversion of the unknown function that

links the conditional expectations (or the predicted outcome) to the explanatory variables. In fact

this alternative representation (3.1.1) can be viewed as a generalized linear model (GLM) with the

link function given by the index functionΦ−1 (see for exampleChen, 1995). In this literature, the

link function is typically assumed to be known. In this respect the proposed model can be seen as

a extension of the GLM.

The inversion is then followed by a differentiation, which suppresses the fixed effects from

the regressors. The predicted outcomes are themselves estimated nonparametrically, prior to the

computation of the estimator. The method proceeds with an iterative back fitting algorithm, which

yields the estimates of the slopes as well the unknown index function. Estimates of the fixed effects

are readily obtained from the first estimates.

The rest of paper is organized as follows: the following section describes the class of models

considered in this paper. Section (3) discusses identification while section (4) presents the estima-

tor. Section (5) presents the algorithm used to compute the estimate, and section (6) discusses the

large sample properties of the estimator. Section (7) is devoted to the monte carlo simulations and

section (8) concludes. All the proofs, as well as the lemmas on which these proofs are based, are

to be found in the appendix of the paper.

3.2 THE MODEL

The underlying data is a vector valued cross-section

(yi ,xi ,zi) ∈ M(T ×1)×M(T ×K)×M(L×1) =: X ,

whereM(a×b) denotes the set of real-entry matrices ofa rows andb columns. More precisely, we

haveyi := (yi1, . . . ,yiT )′, xi := (xi1, . . . ,xiT )′, wherex′it := (xit ,1, . . . ,xit ,K) andzi is an L dimensional
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vector of time invariant regressors. Since we consider panel data with predetermined variables,

we haveT ≥ 3. The basic assumption regarding the data is that the sequence (xi ,yi ,zi) is an

independent and identically distributedX -valued random process, whereX is endowed with its

Borel sigma-fieldB. We shall denote the probability law of the vector(yi ,xi ,zi) by Q. We assume

that at least one column ofxi contains a random variable that is strictly exogenous. Notice that

for notational convenience, we have suppressed the explicit representation of the lagged dependent

variable and the aggregate shock. Since we allow forxit to include predetermined variables and

discrete variables, we can assume that these lagged dependent variable and the aggregate shocks

are indeed included in the vectorx. We define the conditioning vectorwit as

w′
it := (x′it ,z

′
i).

The model considered in this paper is given by:

yit = Φ(x′it β0+ f0(zi))+ εit . (3.2.1)

The following assumption will be maintained through the paper:

Assumption3.2.1. Φ : ℜ −→ ℜ is a strictly increasing function.

This assumption arises naturally in discrete choice modelswhereΦ is a cdf. For purposes of

estimating the finite dimensional parameter, this assumption can be weakened to the assumption

thatΦ is strictly increasing on an interval of its index, and that the number of observations within

that interval of the support increases with the sample size.

By taking the conditional expectation ofyit we obtain:3

Pit0 := E(yit | wi) = Φ(x′it β0+ f0(zi)), i = 1, · · · ,N, t = 1, · · ·T. (3.2.2)

Assumption3.3allows us to express the relation (3.2.2) as

Φ−1(Pit0) = x′it β0+ f0(zi), i = 1, · · · ,N, t = 1, · · ·T, (3.2.3)

3We shall assume that the unconditional and conditional expectations that we write are all defined and we shall
most of the time omit to add the label “almost surely” to relations involving conditional expectations, unless we want
to stress the underlying probability.
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which in turn implies

∆[Φ−1(Pit0)] := Φ−1(Pit0)−Φ−1(Pit−1,0) = ∆x′it β0 := (x′it β0−x′it−1β0) (3.2.4)

Relation (3.2.4) will be the starting point in the definition of our semiparametric (SP) estimators.

In particular, definingϕ0 := Φ−1 andϕ(Pi) := [ϕ(Pi1), · · · ,ϕ(PiT )], relation (3.2.4) can be written

as

∆x′iβ0−∆[ϕ0(Pi0)] = 0. (3.2.5)

Our estimation technique is to find the couple(β,ϕ) that minimizes the mean squared deviation

between∆x′it β and∆[ϕ(Pit0)]. This, of course, relies onβ0 andϕ0 being the unique solution to

equation (3.2.5). Therefore, we first impose identification restrictions and state the identification

theorem.

3.3 IDENTIFICATION

We make the following assumptions:

Assumption3.3.1. 1. ‖β0‖ = 1.

2. The random vectorxi contains at least one continuous regressor that is not contained inzi.

3. E[∆xit ∆x′it ] is invertible.

4. The unconditional mean of the nonparametric individual effect is zero:E[ f0(zi)] = 0

Assumption (3.3.1.1) is frequent in single index models (seeManski, 1987for example). An

alternative normalization (seeHorowitz, 1992andIchimura, 1993) is to assume that the fist compo-

nent ofx′it has a probability distribution conditional on the remaining components that is absolutely

continuous with respect to the Lebesgue measure, and then assume that|β1| = 1. In our case, un-

der the assumption that the index function is strictly increasing, assumption (3.3.1.1) allows us to

determine the signs of all the coefficients as in linear regression models. Assumption (3.3.1.3) is

the traditional full rank condition on the regressors. Of course this condition can be relaxed by

considering pseudo-inverses. Assumption (3.3.1.4) is a limit version of the traditional zero aver-

age assumption in fixed effects models. This assumption is what gives location identification of
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the nonparametric functions in our model. This assumption is appealing in applications, but is

not necessary for the theoretical model because in most nonlinear and limited dependent variables

theoretical models, identification up to location is usually sufficient.

The model (3.2.3) introduced in section3.2 is specified by the tripletπ0 = (β0,ϕ0, f0(zi)).

Consider another modelπ1 = (β1,ϕ1, f1(zi)). We say that the modelsπ0 andπ1 are observationally

equivalent ifπ1 also satisfies:

ϕ1(Pit0) = x′it β1+ f1(zi), i = 1, · · · ,N, t = 1, · · ·T. (3.3.1)

Then under assumptions (3.3.1.1)-(3.3.1.4) we can prove the following theorem.

Theorem3.3.2. (Identification) If

i. π0 andπ1 are observationally equivalent,

ii. π1 satisfies assumptions (3.3.1.1) - (3.3.1.3), and

iii. ϕ1 is strictly increasing,

then

β0 = β1 (3.3.2)

ϕ0 = ϕ1+c (3.3.3)

f0(zi) = f1(zi)+c (3.3.4)

for some constantc. Furthermore, if assumption (3.3.1.4) also holds, thenc = 0.

3.4 THE ESTIMATOR

In this section, we define the estimator and describe the algorithm. For ease of exposition we first

define the unfeasible estimator and discuss the properties of such an estimator. Then we discuss

the feasible estimator. The following estimator is unfeasible because of the fact that the predicted

outcome,P0 is not observed.
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Definition3.4.1. The unfeasible estimator(β∗,ϕ∗) of (β0,Φ−1) is the solution to the minimization

problem

inf
(β,ϕ)∈{β | ‖β‖=1}×S

1
N

N

∑
i=1

T

∑
t=2

(
∆x′it β−∆[ϕ(Pit0)]

)2
, (3.4.1)

s.t.
1

NT

N

∑
i=1

T

∑
t=1

(ϕ(Pit0)−x′it β) = 0, (3.4.2)

whereS is the set of strictly increasing real-valued functions.

The constraint in (3.4.2) fixes the location of the estimate ofϕ0. It imposes that the unfeasible

estimator of the fixed effect is of mean zero. This is similar to the restriction imposed in linear

models (seeBaltagi, 2001).

Typically, the predicted outcomesPit0 = E[yit |wit ] is unknown and must be estimated. Non-

parametric procedures can be used to estimate these quantities. Since this is a conditional expec-

tation, the density of the data, that is found in the denominator, must be bounded away from zero.

We therefore impose a fixed trimming condition by defining a closed and bounded subsetW of

the support of the density and assume that the density only affects the estimator through its values

on this set. Define the function,Jδ(wnt) := δ−DwJ(δ−1wnt), whereDw is the dimension ofw, and

J is a Kernel which integrates to 1 overW . The scalarδ ∈ R+ is the band-width associated with

the kernel estimator. Then the kernel estimator for the predicted outcomes is given by:

P̂nt =
∑N

m=1,m6=n ∑T
r=1,r 6=t ymrJδ (wmr−wnt)

∑N
m=1,m6=n ∑T

r=1,r 6=t Jδ (wmr−wnt)
(3.4.3)

SubstitutingP̂it for Pit0 in equations (3.4.1), the feasible estimator is obtained as follows:

Definition 3.4.2. The feasible estimator(β̂, ϕ̂) of (β0,Φ−1) is the solution to the minimization

problem

inf
(β,ϕ)∈{β | ‖β‖=1}×S

1
N

N

∑
i=1

T

∑
t=2

(
∆x′it β−∆[ϕ(P̂it)]

)2
, (3.4.4)

s.t.
1

NT

N

∑
i=1

T

∑
t=1

(ϕ(P̂it )−x′it β) = 0, (3.4.5)
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Once the problem (3.4.4) is solved, and denoting the solution by(β̂, ϕ̂), an estimator̂f (zi) for the

individual-specific effectsf (zi) is given by the following definition:

Definition3.4.3. The estimatorf̂ (zi) for the individual-specific effectsf (zi) is given by

f̂ (zi) =
∑T

t=2[ϕ̂(P̂it )−x′it β̂]

T
(3.4.6)

However, these estimates are not useful if the goal is to perform simulation exercises or to simply

make out of sample predictions. A straightforward solutionto this problem is a simple kernel

estimator of the projection of̂f (zi) on zi as in the estimation of̂Pit . This then gives a smooth

estimatorf̂ (zi) of the functionf (zi).

3.5 COMPUTATION OF THE SP ESTIMATORS

3.5.1 The Algorithm

An analytic solution of the problem (3.4.4) hardly exists, due to the presence of a functional compo-

nentϕ. The computation of the SP estimator requires, therefore, the use of a numerical algorithm.

Several such algorithms are conceivable. The one that we present here is a back fitting algorithm

(Buja, Hastie, and Tibshirani, 1989). It starts with an arbitrarily chosen functionϕ, and computes

and estimate ofβ, sayβ̂. The algorithm proceeds by setting the value ofβ to β̂ and then updating

the previous estimate ofϕ, and so on, in a cyclical way until convergence. The SP estimator is

chosen to be any couple(β̂, ϕ̂) that corresponds to the asymptotic fixed point.

The algorithm involves two additional complications abovewhat is discussed inBuja et al.

[1989]. The first is that the estimate ofβ is in fact a constrained estimate. The second is that the

estimate ofϕ involves an (inner) contraction mapping. Define

ϕ(P) := (ϕ(P12), · · · ,ϕ(PNT))′

ϕ(P)t := (ϕ(P13), · · · ,ϕ(PNT))′

ϕ(P)t−1 := (ϕ(P12), · · · ,ϕ(PNT−1))
′.

∆[ϕ(P)] := ϕ(P)t −ϕ(P)t−1

The following back fitting algorithm can therefore be used:
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1. Initialization. The parameters to be initialized are below.

a. ϕ1: An initial value of ϕ can be arbitrarily chosen. For example, one may choose the

mappingϕ1(x) = x3.

b. P̂it : As stated above, the algorithm requires that estimates ofPit be obtained before hand.

These empirical quantities can readily be obtained from equation (3.5.4).

c. (ε1,ε2): Two small positive numbers to be used in the evaluation of our convergence

criteria.

2. Numerical Evaluation. Given ϕs at iterations of the algorithm, approximate values for the

pairs(βs+1,ϕs+1) are computed recursively as follows:

a. Compute the constrained regression of∆[ϕs(P̂)] on ∆x to obtain the approximate value

βs+1.

To perform this estimation, we present a general technique which is probably standard, but

we describe it in detail here since we are unable to find a reference for it. So to the best

of our knowledge, this constrained estimation technique isnovel. Consider the standard

problem of estimating the(K×1) dimensional parameterβ in the model:

yi = x′iβ+ εi, E[εi |xi] = 0 (3.5.1)

under the constraint that||β||= 1. The solution to this problem can be written as follows:

β̂ = arg min
{β:||β||=1}

(−y+xβ)′(−y+xβ). (3.5.2)

To solve this problem, we propose solving the auxiliary problem for estimates of the(K +

1)×1 dimensional parameter parametersδ = (δ1,δ′2)
′:

δ̂ = arg min
{δ:‖δ‖=1}

(−yδ1+xδ2)
′(−yδ1 +xδ2)

⇔ δ̂
‖δ‖ = argmin

δ
‖δ‖

δ
‖δ‖

′
B

δ
‖δ‖ (3.5.3)

whereδ1 > 0, the(K +1) dimensional square matrixB is given byB= C′C and we define

C := (−y,x). Then it is well known that the solution to this problem is the(normalized)

eigenvector corresponding to the smallest eigenvalue ofB. There are numerous efficient

softwares available for computing these eigenvectors. We adopt the subroutine “jacobi”
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from Press et al.[1996] for our purposes. This algorithm computes the solution in milli-

seconds. Once we have the solutionδ
||δ|| =(δ̃1, δ̃′2)′ our solution for the original problem is

easily recovered by the equalityβ̂ = (1− δ̃2
1)

−1/2δ̃2. This process is very fast on standard

computers, even for quite large values ofK. Indeed, there is no observable difference in

the time this process takes to estimateβ and the time that would be taken by OLS. This

makes this constrained estimation technique quite appealing.

b. Perform the regression of the vector∆x′it βs+1 +ϕs(P̂)t−1 on P̂ to obtain the approximate

valueϕs+1.

Recall that we assume that the index functionϕ is strictly increasing. This assumption is

not necessary for the algorithm to converge. Indeed it is sufficient that the index function

be in the class of functions of bounded variation. Furthermore, the current technology

in isotonic regression when the data set is large is unsatisfactory, because of the com-

putational time required to implement any of these techniques. As such, we relax the

strict monotonicity assumption onϕ in the algorithm. Besides the ease of computation,

dropping this constraint allows one to test the assumption of monotonicity of the index

function.

The regression of∆x′it βs+1+ϕs(P̂)t−1 on P̂ is itself a fixed point algorithm. The algorithm

accommodates either kernel or series estimators, but we present the kernel estimator here.

The procedure goes as follows. Givenϕs = ϕs j, we Construct∆x′it βs+1+ϕs j(P̂it−1). Then,

adopting the notation of the kernel estimator given in section (3.4), for any valueP̂nt the

kernel estimator forϕs j+1(P̂nt) is given by:

ϕs j+1(P̂nt) =
∑N

m=1,m6=n ∑T
r=3,r 6=t Jδ

(
P̂mr− P̂nt

)(
∆x′mrβs+1+ϕs j(P̂mr−1)

)

∑N
m=1,m6=n ∑T

r=3,r 6=t Jδ
(
P̂mr− P̂nt

) . (3.5.4)

This process is repeated (inj) until convergence. The proof that equation (3.5.4) defines

a contraction mapping is presented in AppendixA.2.6. The convergence criterion for this

inner contraction mapping is provided by the following inequality:

1
NT

N

∑
i=1

T

∑
t=2

(
ϕs(P̂it )−ϕs−1(P̂it )

)2 ≤ ε2
1. (3.5.5)
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If (3.5.5) holds at iterationJ then we takeϕsJ to be our projection estimateϕs+1 for

iterations+ 1 of the outer contraction. Our experience is that this part of the algorithm

converges within 6 iterations and is extremely stable.

3. Outer Convergence. Step 2. is repeated until the process converges. The convergence criterion

is provided by the following inequality:

‖βs−βs−1‖2
K ≤ ε2

2 (3.5.6)

If (3.5.5) and (3.5.6) hold, then the corresponding values(βs,ϕs) constitute our numerical

solution (β̂, ϕ̂). Otherwise, step 2. is repeated until the conditions (3.5.5) and (3.5.6) are

simultaneously satisfied.

The corresponding estimates of the individual-specific effects is then computed from equation

(3.4.6).

An important point to note is that if the investigator is willing to assume the form of the index

function Φ, for example, a logit or probit specification, then the computation of the estimator̂β

is simply to RegressΦ−1(P̂) on ∆x. The asymptotic properties of this estimator will typically be

the same as that of the more general estimator which assumes that the index function is unknown.

This property illustrates the power of the estimator presented in this paper.

3.6 ASYMPTOTIC PROPERTIES OF THE SP ESTIMATOR

In order to derive the asymptotic properties of the SP estimator, some regularity conditions must be

imposed. We turn first to the nuisance parameter, the first stage kernel estimator ofPit0 = E[yit |wit ].

Following Newey and McFadden[1994] we impose conditions that ensures uniform convergence

of the nonparametric estimatêPit0. Following the notation ofNewey and McFadden[1994], define

γ := (γ1,γ2) whereγ1 := f (wit ) andγ2 := f (wit )E[yit |wit ]. ClearlyPit = γ2/γ1. Define alsoqit :=

(1,yit )
′. Then the numerator and denominator of the first stage kernelestimator can be conveniently

written as ˆγ(w) = ∑N
i=1 ∑T

t=3qit Jδ(w−wit ). We make the following assumptions
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Assumption3.6.1. 1. J(u) is differentiable of orderd, the derivatives d are bounded,J(u) is zero

outside a bounded set,
∫

J(u)du = 1, there is a positive integer m such that for allj < m,
∫

J(u)[⊗ j
ℓ=1]du= 0

2. There is a version ofγo(w) that is continuously differentiable to orderd with bounded deriva-

tives on an open set containingS , a set contained in the support ofw.

3. There isr ≥ 4 such thatE[‖q‖r ] < ∞ andE[‖q‖r |w] f0(w) is bounded.

4. The bandwidthδ = δ(N) satisfies

N1−(2/r)δk/ lnN −→ ∞,
√

Nδ2m −→ 0, and
√

N lnN/(Nδr+2d) −→ 0

Under these assumptions,Newey and McFadden[1994] shows that

√
N‖γ̂− γ0‖

p−→ 0, (3.6.1)

where the norm here is the Sobolev norm.

We now impose conditions for consistency of our estimates ofthe the pair(β0,ϕ0). First, the

fixed trimming condition along with assumptions3.6.1 and3.6.2 imply that there is a compact set

K in which all the P’s lie. We therefore define the restriction of the setS to K asSK . Define also

the distanced on the cartesian productBK[0,1]× SK (whereBK is the close unit ball inℜK) as

follows:

d[(β,φ),(α,ψ)] := ‖β−α‖K +sup
P

|φ(P)−ψ(P)|

where‖.‖K is the Euclidean norm onℜK. In what follows we assume that the conditions on the

kernel in assumption are also satisfied by the kernel used to estimateϕ.

Assumption3.6.2. 1. ‖∆Xi‖T
2 ≤ R0 > 0 ∀i ≥ 1 Q-almost surely.

2. Each element ofS is differentiable.

3. There exist (unknown)γ such that for everyϕ ∈ SK , and for anyx∈ K ◦, whereK ◦ denotes

the interior ofK , ϕ′(x) ≤ γ < ∞.

4. There is a (unknown) functionη in S such that for allx∈ ℜ

sup
S

|ϕ(x)| = |η(x)|

Assumption3.6.2.1 is weaker than assuming that the covariates are uniformly bounded almost

surely. We now state the consistency and asymptotic normality theorems.
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Theorem3.6.3. Let the assumptions3.3.1, 3.6.1, and3.6.2be satisfied. Then

β̂ p−→ β0

sup
P∈K

|ϕ̂(P)−ϕ0(P)| p−→ 0

Theorem3.6.4. If the assumptions3.3.1, 3.6.1, and3.6.2are satisfied, then

√
N(β̂−β0)

d−→ N(0,V),

whereV = E[∆x′∆x]−1E[∆x′R]ΩE[R′∆x]E[∆x′∆x]−1, Ω = Var(ε), and

Ri =




−ϕ′
0(Pi1) ϕ′

0(Pi2) 0 · · · 0 0

0 −ϕ′
0(Pi2) ϕ′

0(Pi3) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −ϕ′
0(PiT−1) ϕ′

0(PiT )




.

3.6.1 Semiparametric Efficiency Bound

We now tackle the question of whether the proposed estimatorof the finite dimensional parameter

β is efficient. The model for which we compute the efficiency bound is the implied model given in

equation (3.2.5), and not the conditional independence model of equation (3.1.1). In general these

bounds are different, and in many cases that of equation (3.1.1) may not be sharp, in that there may

be no estimator that can attain the bound. The variance boundthat we compute for equation (3.2.5)

is the one that would be attained within an GMM framework. Thus our estimation framework is

as efficient as any competing extremum estimator for the condition given in (3.2.5), but retains

the property that it is independent of the choice of smoother, and that a consistent estimator of

the infinite dimensional nuisance parameters are computed immediately, and ready for simulations

and predictions. We state the following theorem:

Theorem3.6.5. The estimator of the finite dimensional parameterβ developed in section3.4 is

semiparametric efficient with variance bound given in theorem3.6.4.
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3.7 MONTE CARLO RESULTS

In this section we examine the small sample properties of theproposed estimator via a Monte Carlo

experiment. Consider the following data generating process:

yit = Φ(αyit−1+βxit + f (zi))+vit , i = 1, · · · ,n, t = 1,2,3.

In this model the index function is chosen to be asymmetric about 0 with range between 0 and 10.

Specifically the index function is given by:

Φ(x) =
10

1+e−λ(x)x
,

λ(x) = 0.5− 0.35
1−e−5x . (3.7.1)

The individual specific effect is given by:

f (zi) = 4

(
e−zi

1+e−zi
− 1

N

N

∑
i=1

e−zi

1+e−zi

)
(3.7.2)

This specification results in the the functionf to be of mean zero and ranges between -2 and 2.

The strictly exogenous random variablexit is distributed N(1,7), andzi is distributed N(0,3). The

error termvit is distributed N(0,0.5). The initial valuesyi0 are distributed N(0,6). Finally, (α,β) =

(0.6,0.8). We perform 50 Monte carlo replications of the model for four sample sizesn: 200, 500,

1000, and 1500. The mean bias and the root mean squared error (RMSE) are calculated for each

sample size.

The computation was done on a 3GHz Pentium 4 laptop computer.The algorithm take 30

seconds of CPU time to compute the estimates for a sample sizeof 1500. Table reft181 reports the

results from the Monte Carlo study. The results indicate that the estimator performs remarkably

well, even so for the index functionΦ.

75



Table 19: Small sample properties of estimator. Monte Carlosimulation of 50 trials.

α β Φ

Sample Size Mean Bias RMSEa Mean Bias RMSEa RMSEa

200 0.0235 0.0355 -0.0189 0.0283 0.2735

500 0.0133 0.0201 -0.0104 0.0157 0.1721

1000 0.0153 0.0185 -0.0118 0.0143 0.1435

1500 0.0128 0.0159 -0.0098 0.0123 0.1165

a Root mean square error.

Figures4 to 8 presents plots of the estimated and true index functionΦ for sample the four

sample sizes 200, 500, 1000, and 1500. The estimated index function tracks very well the true one

even for the sample size of 200. For the sample size of 1500, the two plots are largely indistin-

guishable. This again shows that the proposed cyclical projection algorithm performs remarkably

well.

3.8 EMPIRICAL EXAMPLE

In this section, we implement the algorithm developed in thepaper to estimate a wage equation.4

The wage equation has the following specification

wit = Φ(x′it β+ f (zi))+ εit , (3.8.1)

where the assumptions on the data are as in section3.4. The vectorxit is composed of the first two

lags of hours worked (hit−1,hit−2) and labor force participation (dit−1,dit−2), highest grade level

completed (Snt), and squared age (AGE2). As is well established in the literature on returns to

education, this equation is subject to selectivity bias which is typically called ability bias. The idea

4The executables panel.exe for WINDOWS and panel.out for UNIX used for estimation of these models is available
upon request from the authors.
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is that both wage and level of education are partially determined by the ability of the individual,

which is unobserved, creating a correlation with the explanatory variableSit and the error term.

In this exercise however, we control for ability bias by including AFQT scores as a time invariant

explanatory variable inzi. The other time invariant covariates included inzi are the indicators

BLACK and HISPANIC.

The data is taken from the 1979 youth cohort of the National Longitudinal Survey of Labor

Market Experience (NLSY79), a comprehensive panel data setthat follows individuals over the

period 1979 to 2000, who were 14 to 21 years of age as of January1, 1979. The data set initially

consisted of 12,686 individuals: a representative sample of 6,111 individuals, a supplemental sam-

ple of 5,295 Hispanics, non-Hispanic blacks, and economically disadvantaged, non-black, non-

Hispanics, and a supplemental sample of 1,280 military youth. This study makes use of 9 years of

interviews, from 1982 to 1990. The data is restricted to include males.

The estimates are presented in Table 1. The signs and relative magnitude of lagged hours

worked are consistent with the hypothesis of returns to on the job training, and depreciation in

human capital. Furthermore, the coefficient onSit is positive and significant at the 5 percent level.

The only coefficient that does not conform to a-priori expectation is the coefficient ofAGE2, which

is positive and significant. However, considering that the maximum age in the sample is 37, it is

unlikely that the declining effect on wages would be captured in this estimation, since this typically

begins in early to mid forties.

The isotonic estimate of the index functionΦ̂ is presented in figure 5. It is interesting to note

that the shape of the index function roughly resembles that of the exponential function. This is

notable since it is common practice to express the wage equation in log linear form.

3.9 CONCLUSION

Over recent years, the specifications of econometric modelshave undergone a rapid increase in

complexity. An important stimulus for this transformationis that applied economists have become

more sensitive to the issue of specification bias and robustness of the estimation techniques used

in practice. The relaxation of parametric assumptions however comes at the cost of less tractable
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estimators, increased computational time, and limited ability to perform post-estimation analysis

such as out of sample predictions and Monte-Carlo studies. Hence, there is a need for the develop-

ment of estimators that allow for flexible specification, butat the same time estimates the full data

generating process at cheap computational cost.

This paper attempts to contribute to the semi-parametric single index panel data framework by

presenting an estimator and algorithm to achieve the above goals. In particular, we develop an ef-

ficient semiparametric method for estimating nonlinear panel data index models with small-T. The

estimation technique allows for the inclusion of predetermined variables, in particular lagged de-

pendent variables, aggregate time-specific unobserved effects, and a semiparametric specification

of the individual-specific effects. The paper provides a root-N consistent, asymptotically normal

and efficient estimator for the slope parameter, a consistent nonparametric estimator of the index

function as well as its convergence rate, and an estimator ofthe individual specific effects. Thus

with our estimator, one can predict and simulate the dependent variable. The algorithm presented

is straightforward and is found to be quite stable in practice. It immediately provides an estimate of

the index function, and the the investigator may implement it his favorite series or kernel smoother

in estimation. To the best of our knowledge, this property isnovel in this framework. Further-

more, the algorithm can estimate an extension of the generalized linear model (GLM) where the

link function is unspecified and not assumed to be monotone. Therefore our implied model (i.e.

assuming that the ananlysis begins with equation (3.2.4)) can be used to test the assumption of

monotonicity, linearity, or simply that the index functionbelongs to a specific parametric family

such as the logistic. Excellent references for testing of monotonicity in nonparametric regression

includeBowman et al.[1996], van der Vaart et al.[1998], andGibjels[2003].
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Table 20: The Semiparametric Wage Equation

Variable Estimate

Lags of Hours Worked

∆hit−1 0.000282

(0.0000006)

∆hit−2 0.000163

(0.0000001)

Lags of employment

∆dit−1 -0.8528

(0.0017)

∆dit−2 -0.4451

(0.0010)

Education

∆Sit 0.2732

(0.0015)

Demographic Variable

∆AGE2
it 0.0035

(0.00004)
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Figure 4: True and estimated index function for sample size of 200
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Figure 5: True and estimated index function for sample size of 500
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Figure 6: True and estimated index function for sample size of 1000
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Figure 7: True and estimated index function for sample size of 1500
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Figure 8: Estimate of index function from wage regression

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0

5

10

15

20

25

30

Index

In
de

x 
F

un
ct

io
n

84



4.0 NUMERICAL SOLUTIONS OF ASYMMETRIC FIRST PRICE INDEPEND ENT

PRIVATE VALUES AUCTIONS

(WITH JEAN-FRANCOIS RICHARD)

4.1 INTRODUCTION

In this paper, we propose a powerful numerical algorithm to solve first price single object auctions

where bidders draw Independent and Private Values (hereafter IPV) from heterogeneous distri-

butions, allowing for subsets of bidders to collude and for aset reserve price. We also provide

operational univariate quadratures to evaluate probabilities of winning as well as expected rev-

enues for the bidders and the auctioneer. The latter is used to compute optimal reserves under

asymmetric environments. This also enables us to provide insights as to whether collusion among

subsets of bidders are sustainable.

We first review some of the relevant literature. Much of the earlier auction literature as-

sumed that bidders draw their signals from a common underlying distribution. Pioneering con-

tributions includeRiley and Samuelson[1981], Milgrom and Weber[1982] , Mathews[1983] and

Maskin and Riley[1984]. Important theoretical results such as revenue equivalence theorems ob-

tain under symmetry. However, the assumption of symmetry isoften far too restrictive for many

empirical applications.

Relaxing the symmetry assumption prevents analytical derivation of (first price) bid functions

and, therefore, considerably complicates revenue comparisons. Nevertheless, important results

have been derived under asymmetry. For example, existence and unicity results under asymmetry

can be found inLebrun [1996, 1999, 2005] or Maskin and Riley[2000a,b]. Furthermore, un-

der stochastic dominanceMaskin and Riley[2000a] show that the high bid auction dominates

the open bid auction in terms of seller revenue and that the strong bidder (with the stochasti-
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cally dominant distribution) shades his bid more than the weak bidder. They also provide ex-

amples of situations where the seller revenue is higher in open auctions than in high auctions.

From a numerical viewpoint, a pioneering contribution which lead to the present paper is found

in Marshall et al.[1994] (hereafter MMRS) who proposed a numerical algorithm to compute first

price equilibrium bid functions in a two (subgroups of) players asymmetric environment under

uniform distributions. Actually, MMRS framework also implicitly assumes stochastic dominance.

Marshall and Schulenberg[1998] modified MMRS to accommodate reserve prices set by the auc-

tioneer.

In the present paper we generalize MMRS algorithm to a much broader class of first price

asymmetric IPV auction and procurement problems allowing for arbitrary numbers of (subgroups

of) players independently drawing their valuations from arbitrary distributions. Common distribu-

tions (Exponential, Weibull, Beta, Normal, Lognormal,...) are offered as options in the program.

Additional distributions can easily be added by users in theform of a subroutine. Our program

takes care of constructing Taylor Series Expansions for these distributions. The only (standard)

restriction is that these distributions have common support. Stochastic dominance is not required.

This will enable us to investigate whether existing resultsgeneralize when stochastic dominance no

longer holds. As in MMRS we are actually computing numericalsolutions to a system of Ordinary

Differential Equations (ODEs) characterizing the first order conditions for a Nash equilibrium. The

solution belongs to a class of two-points boundary value problems and is evaluated by recursive

application of (low order) Taylor series expansions. Singularity of the system at the origin requires

backward extrapolation from an iterated end-point.

For ease of implementation our algorithm currently relies upon equal spacing subdivisions

of the support of the component distributions. While this has proved to be numerically stable for

most distributions, occasional pathologies (specificallyexcessive local curvature or densities which

are not bounded away from zero on their supports) would require smarter adaptative selection of

step size. Such robustification goes beyond the objective ofthe present paper and are currently

addressed by increasing the number of points in the grid as much as needed.

The key advantage offered by our algorithm relative to MMRS lies in its capability to accom-

modate a wide range of arbitrary distributions, providing us with a powerful tool to investigate

whether classic results (revenue equivalence, a.s.o.) extend to situations where symmetry and/or
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stochastic dominance are no longer assumed. This feature also provides broad flexibility for the

analysis of (sub)coalitions.

The paper is organized as follows. The baseline model and thesolution algorithm are described

in Section 2; Expected revenue calculations are provided inSection 3 for first price auctions and

in Section 4 for second price auctions; Numerical examples are presented in Section 5 and Section

6 concludes.

4.2 THE ALGORITHM

4.2.1 Baseline Model

We are considering here a single object IPV first price auction. Risk neutral bidders submit sealed

bids. The highest bidder wins and pays his bid. There areN potential bidders. Only those with

private valuations above the reserve priceRset by the auctioneer submit competitive bids. Bidders

are ex-ante heterogeneous. Each bidder belongs to one ofn types. Each type is characterized by a

distribution functionFi on a common support[v, v]. There areki bidders in groupi for a total of

N = ∑n
i=1ki (potential) bidders.

Bid functions are denoted by the Greekϕi , i = 1, · · ·n. Bidders are assumed to be risk neutral

with utility from winning the auction with a bidb given a typev defined asUi(v−b) = v−b. The

generalization to constant risk aversion is fairly trivialand will not be discussed here. Clearly,

utility from winning the auction is increasing in the individual’s signal. Under these assumptions,

Proposition 5 ofMaskin and Riley[2000b] establishes the existence of a monotonic pure-strategy

equilibrium in the standard first price auction. Indeed,Lebrun[1996] has shown that these bid

functions are strictly monotone and increasing, therefore, invertible. Inverse bid functions are

denoted by the Greek letterλi , i = 1, · · · ,n. Uniqueness of such equilibrium is well established in

the case with two types [Lebrun, 1996]. However in the generalN player game, equilibrium may

not be unique in that we may end up with “non-essential” equilibria [Briesmer and Shubik, 1967].

Here we assume further thatFi is twice continuously differentiable with a densityfi bounded

away from zero on[v,v]. Under these assumptions,Lebrun[1999] proves in the generalN bidder
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case that the equilibrium is unique, and that the inverse bidfunctions have a common support

[R, t∗], wheret∗ is the bid associated with the valuation ¯v, andR is the reserve price set by the

auctioneer. We show in this paper that this equilibrium is amenable to numerical analysis, and

presents itself as a natural extension to the methods proposed in MMRS. As such the (numerical)

determination oft∗ is a critical component of the problem to be solved.

4.2.2 The differential equations

Let t = ϕi(v) denote the equilibrium bid submitted by bidderi with private signalv ∈ [v,v]. For

the ease of notation, bidders with signals lower than the reserveR are assumed to bid their signal,

whenceϕi(v) = v for v≤ R. Let v = λi(t) denote inverse bid functions. FollowingLebrun[1999],

theλi ’s share a common support[v, t∗]. For the ease of presentation, we momentarily assume that

t∗ is known. Bidderi with signalv ∈ [R,v] submits a bidt which is solution of the optimization

problem

t = arg max
u∈(R,v)

(v−u) · [Fi(λi(u))]ki−1Π j 6=i [Fj(λ j(u))]k j . (1)

The Ordinary Differential Equations (ODEs) associated by the First Order Conditions (FOCs) are

given by

Πn
s=1Fs(λs(t)) = (λi(t)− t) · [

n

∑
j=1

k∗i, j f j(λ j(t))λ j(t)Πs6= jFsλs(t))], (2)

wherek∗i,i = ki −1 andk∗i, j = k j for j 6= i, i : 1→ n. Let ℓi(t) = Fi(λi(t)). Equation (2) is rewritten

as

1 = [F−1
i (ℓi(t))− t] ·

[
n

∑
j=1

k∗i, j
ℓ′j(t)

ℓ j(t)

]
, i = 1→ n (3)

The boundary conditions forλi andℓi are given by

λi(R) = R, λi(t∗) = v, i : 1→ n (4)

ℓi(R) = Fi(R), ℓi(t∗) = 1, i : 1→ n (5)
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respectively. As noted earlier by MMRS under uniformFis, the system (3) of ODEs is ill behaved

at the lower boundary. If, for example,R= v then a recursive application of l’Hospital rule for

t → v+ produces the result that the right derivative ofℓi at v is given by

ℓ◦i = fi(v) ·
N

N−1
, i : 1→ n (6)

and, most importantly, that all higher order right derivatives atv are zero. If insteadR> v, then

lim
t→R+

ℓ′i(t) = +∞, i : 1→ n (7)

as inMarshall and Schulenberg[1998]. Whence, following MMRS, we shall solve the ODEs (3)

backward starting from the right boundaryℓi(t∗) = 1, assuming momentarily thatt∗ is known.

4.2.3 The baseline algorithm

Our algorithm amounts to constructing piecewise polynomial approximations to theℓis from which

(as discussed in Section 2.4 below) approximations for theλis andϕis immediately follow. Assum-

ing we just computedxi,0 = ℓi(t0) wheret0∈ (R, t∗), we describe next how to construct Taylor series

expansions for theℓis att0 which are then used to computexi,1 = ℓi(t1) at the next pointt1 = t0−∆t

where∆t denotes the selected step size. The relevant expansions aredenoted as follows:

ℓi(t) =
∞

∑
j=0

ai, j · (t− t0)
j , (8)

ℓ′i(t)/ℓi(t) =
∞

∑
j=0

bi, j · (t− t0)
j , (9)

F−1
i (ℓi(t))− t =

∞

∑
j=0

pi, j(t − t0)
j , (10)

F−1
i (x) =

∞

∑
j=0

di, j(x−x0)
j . (11)

Our baseline algorithm relies upon three recursive relationships among the above expansions to

construct theai, js from thedi, js. The relationships between these coefficients and those ofother

functions of interest such as theFi ’s (input) and theϕi ’s (output) are discussed in Section 2.4 below.

Let JM denote the selected order of approximations. StepJ(J : 0→ JM) consists of three parts:
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• The computation ofai,J given{(ai, j ,bi, j); j < J}. The corresponding recurrence relationship

obtains from the identitiesℓ′i(t) = ℓi(t). ℓ′i(t)/ℓi(t) which together with formulae (8) and (9)

imply the identities

∞

∑
j=1

jai, j(t − t0)
j−1 =

[
∞

∑
r=0

ai,r(t− t0)
r

]
·
[

∞

∑
s=0

bi,s(t − t0)
s

]
. (12)

Equating the coefficients of orderJ−1 produces the following relationship

ai,J =
1
J

J−1

∑
r=0

ai,rbi,J−r−1, (i : 1→ n;J : 1→ JM) (13)

with initial conditions

ai,0 = ℓi(t0), bi,0 = ℓ′i(t0)/ℓi(t0), i : 1→ n. (14)

• The computation of pi,J given {(ai, jdi, j); j ≤ J}. The corresponding relationship obtains by

application of Lemma 1 in Appendix A to the composition ofF−1
i (input) andℓi (output from

(13)), accounting for the additional factort = [t0+(t − t0)]. Whence we have

pi,J =
J

∑
r=1

di,rθi,r,J−zJ, (i : 1→ n;J : 1→ JM) (15)

θi,r,J =
J−r+1

∑
s=1

ai,sθi,r−1,J−s, (r : 1→ J) (16)

with z0 = z1 = 1,zJ = 0 for J > 1, and initial conditions

pi,0 = F−1
i (xi,0), θi,0,0 = 1 (i : 1→ n) (17)
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• The computation of bi, j given {pi, j ; j ≤ J);(bi, j ; j < J)}. The corresponding relationships

originate from the ODEs themselves. Substituting expansions (9) and (10) into equation (3)

produces the identities

1 =

[
∞

∑
r=0

pi,r(t− t0)
r

][
n

∑
ℓ=1

k∗i,ℓ
∞

∑
s=0

bℓ,s(t − t0)
s

]
, (18)

for i : 1→ n andℓ : 1→ n Equation (18) can be rewritten as

1 =
∞

∑
j=0

[
n

∑
ℓ=1

k∗i,ℓ

(
j

∑
r=0

pi,rbℓ, j−r

)]
(t − t0)

j . (19)

Equating the coefficients of(t− t0)J to 0 forJ > 1 and rearranging the corresponding identities

into matrix form produces the following vectorial recurrence relationship

P0(In− ink′)bJ = cJ, (20)

whereP0 = diag(p1,0, · · · , pn,0), In is the identity matrix of ordern, i′n = (1· · ·1),

k′ = (k1, · · ·kn),b′J = (b1,J, · · · ,bn,J),c0 = −in and

cJ =




...

∑n
ℓ=1k∗i,ℓ

(
∑J

r=1bℓ,J−r
)

...


 ,J > 0 (21)

Standard formulae for partitioned matrices produce the following expressions for the determi-

nant and inverse of(In− ink′):

|In− ink′| = 1−N (In− ink′)−1 = In−
ink′

N−1
. (22)

Formulae (12) to (22) forJ : 0→ JM define our baseline recurrences algorithm for the evalu-

ation of Taylor Series expansions at an arbitrary base pointt0 ∈ (R, t∗), from which function

values at a new pointt1 = t0−∆t are approximated.
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4.2.4 Additional details

A number of additional details need be addressed next to complete an operational implementation

of our baseline algorithm.

4.2.4.1 Numerical Search fort∗ With very few exceptions, one of which is found in Appendix

A of MMRS, t∗ cannot be found analytically. Instead, we shall rely upon the unicity result in

Lebrun[1999] together with the initial conditions (5) to definet∗ as

t∗ = arg min
t f∈(R,v)

n

∑
i=0

[
ℓi(R|t f )−Fi(R)

]2
(23)

whereℓi(·|t f ) denotes the solutions to the ODEs in (3) under a tentative terminal conditionℓi(t f ) =

1. Note that since

lim
t→R+

[F−1
i (ℓi(t))− t] = 0 (24)

the coefficients(pi,0; i : 1→ n) should be zero fort0 = R. This prevents us from solving the system

(20) at t0 = R but we do not need to do so. Instead we computeℓi(R|·) from the Taylor series

expansions att0 = R+ ∆t. Substituting these approximate values in the objective function (23)

suffices to produce very accurate estimates oft∗ for ∆t small enough. Alternatively, once we have

an estimate ofxi,0 = ℓi(t0), we can also computepi,0 = F−1
i (xi,0) and use as objective function

∑n
i=1 p2

i,0. As for the actual minimization, we rely upon the simplex subroutine AMOEBA which

is numerically very efficient for our problem.

4.2.4.2 Additional Taylor Series Expansions As described in Section 2.4.4 below, our algo-

rithm constructs Taylor Series expansions ofF−1
i to compute those ofℓi , i : 1→ n. Very little work

is required to reformulate it in terms of the primitives of the problem, the distributionFi and the

bid functionsϕi . First, note that the inverse bid functionsλi are given by

λi(t) = t +
∞

∑
j=0

pi, j(t− t0)
j (25)

Next, we can rely upon Lemma 2 in Appendix A to transform Taylor Series expansions ofFi and

λi into those ofF−1
i andϕi , respectively.
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4.2.4.3 Support Conditions As expected from the formulation of equation (3), our algorithm

can become numerically unstable if theℓis get too close to zero. This can occur on regions of

very low probability. Our current program implementation requires that tail areas of (very) low

probability be truncated away. Note that such truncations are commonly imposed in empirical

applications since most estimation techniques for auctionmodels critically rely upon the invert-

ibility of bid functions and lack robustness relative to tail area behavior of the latter. See e.g.,

Donald and Paarsch[1996], Laffont et al.[1995] or Florens et al.[2004]. See alsoMarshall et al.

[2005] for an empirical application where truncation of an assumed Weibull distribution had to be

imposed for estimation purposes. Note, however, that distributions of interest for the tractability of

their order statistics (e.g. exponential, Weibull or extreme value distribution) have unbounded sup-

port. In practice any such distributionFi with unbounded support will be replaced by a truncated

vesion thereof

F∗
i (v) =

Fi(v)−Fi(v)
Fi(v)−Fi(v)

, v < v < v (26)

Transforming the Taylor Series expansion ofF−1
i into that of F∗−1

i follows by application of

Lemma 1 in Appendix to the following composite function

F∗−1
i (u) = F−1

i (Fi(v)+u[Fi(v)−Fi(v)]), 0≤ u≤ 1 (27)

Such transformations are automated in our computer programs.

4.2.4.4 Automated Taylor Series Expansions Analytical Taylor Series expansions for inverse

cdf’s are available for a number of standard distributions such as the extreme value distributions

which are commonly assumed in empirical applications. However, there are situations where this

is not the case. One such important situation is discussed inSection 2.4.5 below where we analyze

non-inclusive coalitions. Other important examples wouldbe applications where empirical and/or

non-parametric cdf’s have been numerically evaluated.

In order to accommodate such situations our program includes a fully automated numerical

procedure for the computation of (piecewise) Taylor Seriesexpansions for the inverses of arbitrary

cdf’s. This procedure incorporates the following steps:

1. We construct an equally spaced grid{u j ; j : 1→ J} for the interval[0,1];
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2. Using a standard root finder we compute the corresponding (unequally spaced) grid for the

inverse cdfF−1,{v j ;v j = F−1(u j); j : 1→ J};

3. Next, we construct aB-spline interpolator forF−1. Specifically, we invoke the IMSL subrou-

tines DBSNAK (to construct a knot sequence) and DBSINT (to computeB-spline coefficients),

see e.g., de Boor (1978) for numerical details.

4. Finally, we invoke the IMSL subroutine BSCPP to convert the B-spline interpolator into a

piecewise polynomial approximation, which provides the Taylor Series expansion needed for

our algorithm.

4.2.4.5 Non-inclusive Coalitions The object of our paper is not that of providing a theoretical

investigation of the stability of non-inclusive coalitions within a first price asymmetric framework

(which in many cases would likely required repeated games concepts). Nevertheless, we can use

our algorithm to numerically investigate whether such non-inclusive coalitions could potentially be

incentive compatible and also whether a strategic auctioneer could reduce the profitability of collu-

sions. Pioneering examples of such computations under (ex-ante symmetric) uniform distributions

can be found in MMRS andMarshall and Schulenberg[1998]. See alsoMarshall and Marx[2005]

for an in-depth discussion of incentive compatible mechanisms for non-inclusive cartels as well as

an extensive list of related references.

Short of such theoretical analysis our algorithm can be usedto numerically evaluate bid func-

tions and expected revenues in the presence of non-inclusive cartels, as long as one treats such a

cartel as a single representative bidder. At minimum, such computations can provide useful insight

on potential incentives to defect and on the auctioneer’s capability to reduce cartels’ profitability.

For example, MMRS had already illustrated the fact that within an ex-ante uniform symmetric

framework outsiders benefit more than insiders (on a per capita basis) from the presence of a non-

inclusive cartel. One would not expect such findings to generalize to asymmetric scenarios. In

particular, there exist numerous real-life illustrationsof the viability of non-inclusive cartels con-

sisting, for example, of better informed players. One such situation was recently highlighted by

the conviction of seven leading stamp dealers and auctioneers who, for several years, had agreed

not to compete against one another at estate auctions of stamp collections.

Specifically, in the context of our program, an arbitrary cartel consisting ofu= ∑n
i=1ui players,
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wereui denotes the number of players of typei is treated as a single player drawing her signal from

the corresponding highest order statistics cdf.

F∗(v) = Πn
j=1

[
Fj(v)−Fj(v)

Fj(v)−Fj(v)

]u j

(28)

Taylor Series expansions for the inverse ofF∗ are automatically produced by application of the

numerical procedure described in Section 2.4.4 above. It isalso trivial to verify that all probability

and expected revenue calculations described below remain valid under such scenarios with the

only modification that the revenue computed represents the cartel’s total expected revenue. As

discussed above, we do not discuss allocation rules among cartel’s members and only provide per

capita comparisons between insiders and outsiders.

4.3 PROBABILITIES OF WINNING, EXPECTED REVENUES AND OPTIMA L

RESERVE PRICE

In this section we demonstrate that expected revenues and probabilities of winning when the auc-

tioneer sets a reserve priceR can all be expressed as simple univariate integrals (quadratures) of

products of the functions evaluated by our algorithm over the interval(R, t∗), wheret∗ itself is an

implicit function ofR.

The following conditions have to be met for a bidder from group i to win

R< vi < v and v j < λ j(λ−1
i (vi)) for j 6= i (29)

Whence the probability that groupi wins is given by

Pi(R) = ki

∫ v

R
fi(v)Πn

j=1[Fj(λ j(λ−1
i (v)))]k

∗
i, j dv (30)

wherek∗i,i = ki −1 andk∗i, j = k j for j 6= i, as in Section 2 above. Introducing the change of variable

t = λ−1
i (v) and rearranging terms yields the following operational expression

Pi(R) = ki

∫ t∗

R

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k jdt (31)
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Note that
n

∑
i=1

Pi(R) =
∫ t∗

i=1
kiℓ

′
i(t)Π

n
j=1[ℓ j(t)]

k∗i, j

=
∫ t∗

R

[
Πn

j=1

[
ℓ j(t)

]k j
]′

dt = 1−Πn
j=1

[
Fj(R)

]k j (32)

confirming the obvious result that the probability that the auctioneer retains the item is given by

P0(R) = Πn
j=1

[
Fj(R)

]k j (33)

Groupi’s expected revenue is given by

Vi(R) = ki

∫ v

R
[v−ϕi(v)] · fi(v) ·Πn

j=1

[
Fj(λ j(λ−1

i (v)))
]k∗i, j

dv (34)

which can be rewritten as

Vi(R) = ki

∫ t∗

R

[
F−1

i (ℓi(t))− t
]
· ℓ

′
i(t)

ℓi(t)
·Πn

j=1

[
ℓ j(t)

]k j (35)

Per capita expected revenue within groupi’s accounting for subcoalitions(ui ≥ 1) is then given

by Vi(R)/(ki ·ui). Finally, assuming that the auctioneer receives a fixed percentage of all winning

bids, her revenue is proportional to

Va(R) =
n

∑
i=1

ki

∫ v

R
ϕi(v) fi(v)Πn

j=1

[
Fj(λ j(λ−1

i (v)))
]k∗i, j

dv (36)

=

∫ t∗

R
t ·
[
Πn

j=1

[
ℓ j(t)

]k j
]′

dt (37)

Integration by parts produces the following expression

Va(R) = t∗−RΠn
j=1

[
Fj(R)

]k j −
∫ t∗

R
Πn

j=1

[
ℓ j(t)

]k j dt (38)

Note that formulae (31), (35) and (38) all depend upon univariate integrals of products of the func-

tions which are being evaluated by our algorithm over a fine grid of values oft in (R, t∗). Therefore,

these integrals can be evaluated by univariate quadrature as immediate byproducts of our algorithm.

As we typically use grids with anywhere fromN = 500 toN = 10,000 equally spaced points,

we can rely upon the extended Simpson’s rule - seePress et al.[1986] or Abramowitz and Segun

[1968][formula 2.5,4.5] (formula 4.1.13) - with remainder proportional toN−4 to compute numer-

ically highly accurate estimates of all relevant probabilities and expected revenues.
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Moreover, the use of a fixed number of equally spaced grid points implies that these numerical

integrals will be continuous functions of aR. Whence numerical simplex maximization ofVa(R)

w.r.t R will itself be numerically very accurate. Note thatt∗ in formulae (31) to (38) is an implicit

function ofR so that our algorithm has to be rerun for each value ofR selected by AMOEBA.

4.4 ASYMMETRIC SECOND PRICE AUCTIONS

One of the immediate intended use of our new algorithm is thatof running comparisons between

first and second price auctions under a variety of asymmetricenvironments. In order to do so we

need to derive operational expressions for expected revenues under second price auctions. While

Vickrey’s logic still applies whereby bidders bid their private values, expected revenue calculations

are more complex than under first price due to a wider range of scenarios for the price paid by the

winner.

Several pricing scenarios need to be considered. Focusing our attention on groupi, let v1 > v2

denote the two highest order statistics in groupi (implicitly assuming thatki > 1, but one verifies

that the formulae derived below also apply forki = 1) and letw j denote the highest order statistic

in group j ( j 6= i). The following pricing scenarios are relevant:

Ei,R : price isR; i.e.,v1 > R, v2 < R, w j < R, for j 6= i

Ei,i : price isv2; i.e.,v2 > R, v2 > w j , for j 6= i

Ei, j : price isw j ; i.e.,w j > R, w j > v2, w j > wℓ, for ℓ 6= j, i.

Probabilities and expected revenues are indexed conformally. The relevant densities are

ki(v1,v2) = ki(ki −1) fi(v1) fi(v2) [Fi(v2)]
ki−2 ,v1 > v2 (39)

k j(w) = k j f j(w)
[
Fj(w)

]k j−1
(40)
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Note that by relying upon thek∗i, j notation introduced in formula (2), a common treatment applies

to scenarioEi,i andEi, j( j 6= i). The probability that groupi wins and pays eitherv2 or w j is given

by
n

∑
j=1

Pi, j(R) = ki

{
n

∑
j=1

k∗i, j

∫ v

R
fi(v1) ·

{∫ v1

R
f j(v) ·

[
Fj(v)

]k∗i, j−1

Πℓ6= j [Fℓ(v)]
k∗i,ℓdv

}
dv1

}
(41)

wherev denotesv2 for j = i andw j for j 6= i. As in Section 3 above, we first apply integration by

parts to the outer integral and regroup terms obtaining the following expression

n

∑
j=1

Pi, j(R) = ki ·
∫ v

R
[1−Fi(v)] ·

[
Πn

j=1[Fj(v)]
k∗i, j
]′

dv (42)

A second integration by part produces the result

n

∑
j=1

Pi, j(R) = ki

∫ v

R
fi(v)Πn

j=1

[
Fj(v)

]k∗i, j dv

−ki [1−Fi(R)]Πn
j=1

[
Fj(R)

]k∗i, j (43)

Note that the second term in the right hand side of formula (43) representsPi,R(R). Whence the

probability that groupi wins is given by

Pi(R) = Pi,R(R)+
n

∑
j=1

Pi, j(R) = ki

∫ v

R
fi(v)Πn

j=1

[
Fj(v)

]k∗i, j dv (44)

Note that

n

∑
i=1

Pi(R) =

∫ v

R

(
Πn

j=1

[
Fj(v)

]k j
)′

dv= 1−Πn
j=1

[
Fj(R)

]k j = 1−P0(R) (45)

Next, we derive the auctioneer expected revenue which is given by

Va(R) =
n

∑
i=1

{
Pi,R(R)+ki

{
n

∑
j=1

k∗i, j

∫ v

R
fi(v)1

[∫ v1

R
v f j(v)

[
Fj(v)

]k∗i, j−1Πℓ6= j [Fℓ(v)]
k∗i,ℓ dv

]
dv1

}}
(46)

The same integration by parts sequence as for the probability produces the following expression

paralleling formula (44)

Va(R) = −
n

∑
i=1

ki

∫ v

R
(v[1−Fi(v)])

′Πn
j=1[Fj(v)]

k∗i, j dv (47)
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=

∫ v

R
v
(

Πn
j=1

[
Fj(v)

]k j
)′

dv−
n

∑
i=1

ki

∫ v

R
[1−Fi(v)]Πn

j=1

[
Fj(v)

]k∗i, j dv (48)

or, equivalently after a third integration by parts

Va(R) = v−RP0(R)−
∫ v

R
Πn

j=1

[
Fj(v)

]k j dv

−
n

∑
i=1

ki

∫ v

R
[1−Fi(v)]Πn

j=1

[
Fj(v)

]k∗i, j dv (49)

The expected revenue for groupi is derived in the same way. We first have

Vi(R) = ki

{[∫ v

R
(v−R) fi(v)dv

]
Πn

j=1

[
Fj(R)

]k∗i, j

+
n

∑
j=1

k∗i, j

∫ v

R
fi(v1)

[∫ v1

R
(v1−v) f j(v)

[
Fj(v)

]k∗i, j−1Πℓ6= j [Fℓ(v)]
k∗i,ℓ dv

]
dv1

}
(50)

Integration by parts of the first integral inv and of the outer integral inv1 produces the simpler

expression

Vi(R) = ki

{[
(v−R)−

∫ v

R
Fi(v)dv

]
Πn

j=1

[
Fj(R)

]k∗i, j
}

+
∫ v

R
(v−v)

(
Πn

j=1

[
Fj(v)

]k∗i, j
)′

dv+
∫ v

R
Fi(v)

[
Πn

j [Fj(v)]
k∗i, j −Πn

j [Fj(R)]k
∗
i, j

]
dv

}
(51)

Integration by parts of the second factor in the right hand side of formula (51) and cancellations

produce the following operational expression forVi

Vi(R) = ki

∫ v

R
[1−Fi(v)]Πn

j=1[Fj(v)]
k∗i, j dv (52)

As above, per capita expected revenue in groupi is given byVi(R)/(ki ·ui).

As was the case for the first price auction, formulae (44), (49) and (52) are numerically evalu-

ated by quadrature. All probabilities and expected revenues calculations for first price and second

price auctions have been incorporated in our algorithm allowing for automated comparisons be-

tween first and second price auctions under a wide variety of asymmetric scenarios. Examples are

provided below.
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4.5 EXAMPLES

In this section we present three numerical illustrations ofthe capabilities of our program. The

parameters and, in particular, the truncation range(v,v) were selected to produce graphically well

separated bid functions. For the first two examples, all typedistributions are truncated Weibull of

the form given in formula (27) together with

Fi(v) = 1−exp
[
−(v/a)bi

]
(53)

4.5.1 Example 1 (3 individual bidders)

We first consider 3 individual bidders (low, high, median types) and compute their first price asym-

metric bid functions without reserve as well as with optimalreserve. We also compute bidder’s

expected revenues (per capita), bidder’s probabilities ofwinning, auctioneer’s expected surplus

and probability of retaining the item (under a reserve). Thesame statistics are also computed for

second price auctions. Graphs of the first price asymmetric bid functions with and without reserve

are provided in Figure 1. Relevant statistics are regroupedin Table21. We note that the reserve

price impacts the bidders differently, the larger impact being obviously felt by the high-type bidder.

We also note that in the absence of reserve first price is more profitable for the auctioneer (by about

5%) but that the ordering is reversed under optimal reserve.The high-type bidder always prefers

second price, especially obviously in the absence of a reserve.

4.5.2 Example 2 (2 individiual bidders)

This example illustrates the fact that asymmetric bid functions can cross one another once stochas-

tic dominance no longer applies. Hazard functions are monotone for Weibull distributions. Our

choice of shape parameters for this example implies that thehazard function of bidder 1 is increas-

ing (b1 = 1.5) and that of bidder 2 is decreasing (b2 = 0.5). With means close to one another

it implies that the distribution functions cross one another at v = 1.45. It also implies that as il-

lustrated by Figure 2, the two bid functions cross one another at v = 1.7. Expected revenues and
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surpluses together with probabilities of winning with and without reserve prices are regrouped

in Table22. We note that first and second price auctions are virtually revenue equivalent even

though, in the absence of reserve, second price favors bidder 1. A systematic numerical investiga-

tion of whether revenue equivalence holds under particularasymmetric scenario goes beyond the

objectives of the present paper but belongs to our research agenda.

4.5.3 Example 3 (non inclusive cartels)

MMRS offer a numerical investigation of incentive compatibility within subcoalitions when indi-

vidual bidders all draw their valuations from a common uniform distribution. Within this (single

object) framework they find that bidders outside the coalitions benefit more than those inside. Here

we consider instead an asymmetric scenario where high type bidders collude together in order to

protect their informational advantage over low type bidders.

This example is inspired by a recent court case where a group of prominent stamp auctioneers

and dealers were found guilty of collusion at estate auctions. While their cartel operated for several

years, our example illustrates the fact that such noninclusive cartels could be incentive compatible

even within a single object framework (ignoring, however, proxy defections as analyzed by?.

We consider two bidders of high type (H) against four (non collusive) bidders of low type (L).

Signals are lognormally distributed with a common standarddeviation 0.35 and means 1.35 and

0.75, respectively. The common support for signals is the interval [1.5, 6.0]. Results for the non

collusive benchmark scenario are reported in Table23. Graphs of the corresponding bid functions

with and without optimal reserves are provided in figure 3. Results for subcoalitions{H,H} and

{H,H,L} are reported in Table24, and figures 4 and 5.

The impact of the collusion among high types is greatest under second price auction. Under

first price, low types also benefit from the presence of the cartel (even more than high types per-

centage wise). Reserve is most effective under second price(and would be even more effective

if items kept by the auctioneer had a resale value). In the future, we plan to investigate whether

the effectiveness of optimal reserve requires precise knowledge of the cartel composition by the

auctioneer.
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4.6 NUMERICAL ACCURACY AND COMPUTATIONAL TIME

Accuracy of the numerical approximation of the equilibriumbid functions depend primarily on two

variables. The first is how fine a grid is chosen on which to evaluate the component distributions.

A finer grid leads to higher accuracy of the numerical approximations. The second variable is

the order of the Taylor Series approximations chosen approximate these distributions. A higher

order Taylor series expansion does not necessarily lead to higher accuracy. Indeed, an order of

approximation that is too high can lead to significant numerical pathologies.

A reliable method for evaluating accuracy consists of computing pointwise best response for

each individual bidder and comparing them to the NE strategies. Given bidderi’s signal, his best

response depends on the distribution functions and (inverse) bid functions of his competitors. His

best response function does not depend on his own distribution function. This is seen clearly in

equation (3). Thus, given his competitors equilibrium strategies and distribution functions, we can

use equation (3) to compute pointwise the best response of bidder i. His best response function

can then be matched against the equilibrium function computed by the algorithm and difference

between these two functions provides a measure of the accuracy of the algorithm. A reasonable

metric, and the one we use in this paper is the root of the mean squared deviation (RMSE) between

the equilibrium bid function and the best response function.

An important illustration of the usefulness of such comparisons is provided by example 3.

Figure 5 reveals a curious “blip” in the bid function of the coalition. The bid function dips down

between private values of 2.0 and 2.5. This gives rise to the question of whether this is the result

of a numerical error, or if the blip is a rational response by the collusion to the strategies of the

outsiders. This question can be answered by the method of verification we just described. Fig-

ure 6 reproduces the equilibrium bid function of the coalition and also plots the best response of

the coalition computed as described in section 5. The reaction function (bold dotted line) coin-

cides exactly with the computed bid function (solid line). This confirms that the blip is indeed an

equilibrium reaction by the coalition to the strategies of its competitors.

Higher accuracy of the numerical approximations to the equilibrium bid functions comes at

the cost of increased computational time. For a small numberof types of bidders, one can be

liberal with the size of the grid and the order of the Taylor Series expansions. However, for models
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with a large number of types of bidders, the computational time increases potentially significantly.

Though this is not a significant obstacle in our current applications, computational time can quickly

become a problem in others. An important example is that of empirical applications where the

algorithm would be instrumental in the estimation of the underlying private values distributions. In

this case, the model would have to be solved for each trial value of the vector of parameters of the

private values distributions. and one might have to be conservative with the size of the chosen grid.

In this section we present a small study of the trade off between accuracy and speed as controlled

by these two variables.

Table25reports the computational time and the RMSE between the equilibrium bids and reac-

tion functions of two bidders. The first panel fixes the order of Taylor series expansions to 5, and

evaluates these statistics for the number of grid points being 500, 1000, 1500, and 2000. The table

reveals that the computational time increases linearly with the number of grids. The computational

time increases by 0.11 seconds with a one point increase in the number of grid points. The RMSE

for each bidder is decreasing and concave in the number of grid points. However, the decrease in

the RMSE is very small for large increases in the number of grid points. This suggests that there

is not a lot to gain in terms of accuracy by increasing the number of grid points. A relative small

number of grid points like 500 provides almost the same numerical accuracy as a larger number of

grid points like 2000.

The second panel of Table25 fixes the number of grid points to 500 and increases order of

Taylor series expansions incrementally from 2 to 5. The computational time increases linearly

by approximately 7 seconds with each increase in the order ofthe Taylor series expansions. In-

terestingly, the numerical accuracy of the bid functions are invariant to the order of Taylor series

expansion. The third panel of Table25bolsters this conclusion.

The conclusion of this exercise is that the investigator looses very little in terms of numerical

accuracy by using a relatively small number of grid points and order of Taylor series expansions.

The time saving is however significant.
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4.7 PROCUREMENTS

The proposed algorithm is modified to the procurement problem under the same environment as

that of the auctions problem. We provide all the options thatare provided in the auctions problem,

including asymmetry, collusion, the calculation of optimal reserve price, expected revenue to the

auctioneer, expected surplus to the bidders, probabilities of winning, and the reaction functions.

The necessary modifications are minor and are described briefly in this section. For the procure-

ments problem bidderi with signalv∈ [v,R] submits a bidt which is solution of the optimization

problem

t = arg max
u∈(v,R)

(u−v) · [Hi(λi(u))]ki−1Π j 6=i [H j(λ j(u))]k j , (54)

whereHi(x) = 1−Fi(x). The Ordinary Differential Equations (ODEs) associated bythe First Order

Conditions (FOCs) are given by

−1 = [H−1
i (ℓi(t))− t] ·

[
n

∑
j=1

k∗i, j
ℓ′j(t)

ℓ j(t)

]
, i = 1→ n (55)

whereℓi(t) = Hi(λi(t)). The boundary conditions forλi andℓi are given by

λi(R) = R, λi(t∗) = v, i : 1→ n (56)

ℓi(R) = Hi(R), ℓi(t∗) = 1, i : 1→ n (57)

respectively. Under this setup, the algorithm to compute equilibrium bids here mimics exactly the

one derived in section 2 to compute equilibrium bids in the auctions environment, except for two

changes. The first is that the RHS of equation (21) is nowin instead of−in. The second is that the

recursion on the grid oft is a forward iteration instead of a backward iteration. The probabilities of

winning and expected revenues in the first price procurements environment are given as follows:

Pi(R) = −ki

∫ R

t∗

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k j dt, (58)

P0(R) = Πn
j=1

[
H j(R)

]k j (59)

Vi(R) = −ki

∫ R

t∗

[
H−1

i (ℓi(t))− t
]
· ℓ

′
i(t)

ℓi(t)
·Πn

j=1

[
ℓ j(t)

]k j , (60)

Va(R) = t∗−RΠn
j=1

[
H j(R)

]k j +
∫ R

t∗
Πn

j=1

[
ℓ j(t)

]k j dt. (61)
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The corresponding probabilities of winning and expected revenues in the second price procure-

ments environment are given as follows:

Pi(R) = −ki

∫ R

t∗

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k j dt, (62)

P0(R) = Πn
j=1

[
H j(R)

]k j (63)

Va(R) = v−RP0(R)+
∫ R

v
Πn

j=1

[
H j(v)

]k j dv

+
n

∑
i=1

ki

∫ R

v
[1−Hi(v)]Πn

j=1

[
H j(v)

]k∗i, j dv (64)

Vi(R) = ki

∫ R

v
[1−Hi(v)]Πn

j=1[H j(v)]
k∗i, j dv (65)

4.8 DISCUSSION OF THE ALGORITHM

With all the described ingredients put together, we have a program that is fully automated and very

flexible. The program includes several candidate private values distributions, namely the two pa-

rameter Weibull, the Beta, the Normal and the Lognormal distributions. These distributions can be

combined to produce hybrid distributions, and other distributions can be trivially added. The nec-

essary Taylor series expansions of the inverse distributions are also fully automated. Furthermore,

the program allows for the analysis of a wide variety of collusive arrangements. As an illustration

of how user friendly the program is, we present verbatim below the input sequence from example

3 where the two high types and one low type collude to compete against the remaining three low

types.

Enter 1 if you want auctions, 2 if you want procurements: 1

Enter number of types: 2

Enter order of Taylor series expansion (5 recommended): 5

Enter the number of subintervals of (t0,t*) to consider: 2000
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Enter number of coalitions of each type, separating by

space For example, if you entered 2 for number of types and you

want 3 coalitions in the first and 2 in the second, then enter 3 2: 1 3

Enter lower bound of the support of the distribution of private values: 1.5

Enter upper bound of the support of the distribution of private values: 6.0

Enter reserve price: 1.5

Here is a menu of cdfs to choose from

1 - two parameter Weibull

2 - Beta

3 - Normal

4 - Lognormal

Please enter the number of cdfs to be used: 2

Enter the index of the cdfs you choose to use: 4 4

Enter scale and shape parameter of Lognormal distribution:1.35 0.35

Enter scale and shape parameter of Lognormal distribution:0.75 0.35

For type 1 Enter sequence of zeros and ones corresponding to the use of the cdfs: 2 1

For type 2 Enter sequence of zeros and ones corresponding to the use of the cdfs: 0 1

TYPE MEAN STD.DEV

1 4.3793 0.8563

2 2.4353 0.7241
Enter 1 if you wish to compute the optimal reserve

Enter 2 if you wish to keep your reserve price: 1

Enter output file name: illustration.txt

Time taken: 290.000s

Writing grid points and bids to file: illustration.txt

Enter 1 for expected revenue and bidder surplus

Enter 2 if not: 1

Enter output file: rillustration.txt

Enter 1 to compute the best response function

Enter 2 if not: 1
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Enter best response file name: brillustration.txt

The input sequence is quite self-explanatory, except possibly for the input sequences 5 (number

of coalitions), 11 and 12 (sequences of zeros and ones). At the fifth input point the program asks the

user to provide the number coalitions for each type. This corresponds to the parameterski , i = 1,2

in section 2. In this example, we specify that there is 1 coalition making up type one group, and

there are 3 coalitions making up the type two group. Input points 11 and 12 are where the user

provides the structure of the coalitions. The numbers entered at these points correspond toui in

section 2.4.5 of this paper. Input sequence 11 specifies thatthe first coalition consists of the two

high types, and one low type player. Input sequence 12 specifies that the other three coalitions

are simply the rest of the low type bidders competing individually. The format of the program

therefore allows for the construction of a wide variety of hypothetical collusive environments. The

program used in this paper, “bidfunc.exe” is available uponrequest from the first author.
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Table 21: 3 bidders (median, low, high).

Type Auctioneer

1 2 3

ki 1 1 1

ui 1 1 1

ai 2.0 1.0 3.39

bi 1.0 1.0 2.20

mean 1.55 0.966 2.71

std. dev. 1.25 0.911 1.15

First price, no reserve

E(revenue) 0.344 0.111 0.912 1.65

Prob ‘win’ 0.29 0.13 0.58 —-

First price, optimal reserve=2.016

E(revenue) 0.225 0.061 0.622 1.851

Prob ‘win’ 0.22 0.08 0.51 0.18

Second price, no reserve

E(revenue) 0.246 0.069 1.16 1.57

Prob ‘win’ 0.22 0.08 0.70 —-

Second price, optimal reserve=2.016

E(revenue) 0.181 0.045 0.692 1.858

Prob ‘win’ 0.18 0.06 0.58 0.18

Fi(v) = 1−e
−( v

ai
)bi

, truncated on[0,5].
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Table 22: 2 bidders.

Type Auctioneer

1 2

hazard increasing decreasing

ki 1 1

ui 1 1

ai 1.11 1.50

bi 1.50 0.50

mean 1.00 0.84

std. dev. 0.67 1.01

First price, no reserve

E(revenue) 0.481 0.463 0.440

Prob ‘win’ 0.58 0.42 —-

First price, optimal reserve=0.98

E(revenue) 0.211 0.297 0.656

Prob ‘win’ 0.33 0.28 0.39

Second price, no reserve

E(revenue) 0.55 0.40 0.44

Prob ‘win’ 0.64 0.36 —-

Second price, optimal reserve=0.93

E(revenue) 0.230 0.303 0.660

Prob ‘win’ 0.37 0.27 0.36

Fi(v) = 1−e
−( v

ai
)bi

, truncated on[0,4].
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Table 23: No collusion, 2 high types (H) and 4 Low types (L).

First Price Second Price

Mean Std. dev. Prob. Rev. Res. Prob. Rev. Res.

H 3.756 1.030 0.393 0.385 0.415 0.413

L 2.435 0.724 0.053 0.031 0.042 0.025

Auc. 0.000 3.557 0.000 3.536

H 3.756 1.030 0.394 0.386 0.415 0.411

L 2.435 0.724 0.053 0.031 0.042 0.024

Auc. 0.000 3.558 2.170 0.001 3.537 2.395

vH
i ∼ LN(1.35,0.35),vL

i ∼ LN(0.75,0.35) truncated on[1.5,6].
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Table 24: Collusion exercise between 2 high types (H) and 4 Low types (L).

First Price Second Price

Mean Std. dev. Prob. Rev. Res. Prob. Rev. Res.

HH 4.346 0.880 0.668 0.906 0.832 1.227

L 2.435 0.724 0.083 0.050 0.042 0.025

Auc. 0.000 3.287 0.000 3.135

HH 4.346 0.880 0.675 0.857 0.801 0.998

L 2.435 0.724 0.073 0.044 0.038 0.021

Auc. 0.026 3.297 2.972 0.048 3.237 3.134

HHL 4.379 0.856 0.706 1.019 0.874 1.398

L 2.435 0.724 0.098 0.060 0.042 0.025

Auc. 0.000 3.181 0.000 2.989

HHL 4.379 0.856 0.709 0.902 0.815 0.977

L 2.435 0.724 0.077 0.045 0.035 0.020

Auc. 0.048 3.225 3.134 0.079 3.185 3.300

vH
i ∼ LN(1.35,0.35),vL

i ∼ LN(0.75,0.35) truncated on[1.5,6].

111



Table 25: Study of the trade off between numerical accuracy and computational.

Order of Expansion, J=5

Grid Time (sec.) RMSE 1 RMSE 2

500 37.1880 0.4000 0.0882

1000 95.3590 0.3988 0.0868

1500 146.1250 0.3984 0.0864

2000 202.2500 0.3982 0.0862

Number of grid points = 500

J Time (sec.) RMSE 1 RMSE 2

2 18.1880 0.4000 0.0882

3 32.2810 0.4000 0.0882

4 38.7030 0.4000 0.0882

5 46.4690 0.4000 0.0882

Number of grid points = 2000

J Time (sec.) RMSE 1 RMSE 2

2 93.4530 0.3982 0.0862

3 139.4530 0.3982 0.0862

4 173.8120 0.3982 0.0862

5 202.2500 0.3982 0.0862

F1(v) = 1−e−v,F2(v) = 1−e−( v
3.39)2.2

, truncated on[0,5].
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Figure 9: Three Bidders
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Figure 10: Two Bid Functions Crossing
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Figure 11: No collusion
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Figure 12: Two high types colluding
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Figure 13: Two high types and one low type colluding
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Figure 14: Comparison of equilibrium bid function and reaction function
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A.1 APPENDIX TO CHAPTER 2

A.1.1 Data and Sample Construction

The data is taken from the 1979 youth cohort of the National Longitudinal Survey of Labor Market

Experience (NLSY79), a comprehensive panel data set that follows individuals over the period

1979 to 2000, who were 14 to 21 years of age as of January 1, 1979. The data set initially consisted

of 12,686 individuals: a representative sample of 6,111 individuals, a supplemental sample of 5,295

Hispanics, non-Hispanic blacks, and economically disadvantaged, non-black, non-Hispanics, and

a supplemental sample of 1,280 military youth. Interviews were conducted on an annual basis

though 1994, after which they adopted a biennial interview schedule. This study makes use of the

first 16 years of interviews, from 1979 to 1994. By 1990, the NLSY79 experienced attrition of

2,250 sample members, of which 1,097 were from the supplemental sample of military youth. I

discuss briefly the construction of some of the key variablesused in estimation

Employment

The NLSY79 collects detailed work history data for individuals in the sample. The work history

data includes beginning and ending dates for all of 5 possible jobs, a maximum of 5 possible gaps

in employment with each of the 5 possible jobs, the usual hours worked per day or per week on

each job, and the hourly rate of pay on each job. The biggest complication in calculating hours

worked is the fact that it must be calculated for the relevantyear, which is the school year in

this case. Since the actual weeks that comprise the school year vary from state to state, the dates

chosen for the school year are somewhat arbitrary. FollowingEckstein and Wolpin[1999], the year

for those not attending school starts at October 1st in year t and ends September 30st of year t+1.

For those attending school the school year instead ends at June 30 of year t+1. Weeks employed is

then calculated based on these calendar dates. Hours workedper week or per day and hourly rate

of pay is reported retrospectively back to the previous interview date. These variables were also

adjusted to the above specified calendar dates. From these, we then construct hours worked for the

relevant years, as well as average hourly rate of pay and an employment rate variable, which is the

fraction of the relevant year in which the respondent was actively employed.

Education

126



The NLSY79 also collects information on the respondents’ education. In particular, the NLSY79

collects , among others, enrollment status, highest grade level completed, current grade level, and

degree held. The primary variables used in the paper are highest grade completed and enrollment

status. In 1981, the NLSY collected information on the patterns of school activities of the respon-

dents that are enrolled in school. In particular, the NLSY asked these respondent about the amount

of hours they spent in school during the week before the interview date. They asked whether or

not the time the reported is typical or not, and if no, to report the typical hours spent in school.

The NLSY also asked the respondents to report the number of hours they spent studying outside

of school during the week before the interview date. The response to these questions are used in

the paper to estimate the study pattern of individuals enrolled in school.

There are a number of missing observations on highest grade completed. Many of these miss-

ing observations could be recovered from the information provided by enrollment status and high-

est grade completed in other years by the respondent. Since the model relies very much on the data

on highest grade completed, we decide not to impute those years that are not recoverable with very

high confidence.

The model construction and estimation requires data on the cost of schooling for an individ-

ual who decides to enroll in school. The yearly in-state tuition and required fees for four-year

institutions and two-year institutions are taken from the NCES web site. Also, to identify the the

aggregate shocks in wages and consumption, all nominal variables have to normalized to the same

base year. To do this, the CPI is taken from the BLS web site, and converted to have a base year of

1981.

Asset holdings

Beginning in 1985, the NLSY79 began collecting comprehensive information on the asset holdings

of the respondents. This information was collected annually up to and including 1994, except for

the year 1991 where asset data is missing. The best way to dealwith these missing observations

on asset holdings depends on exactly how the data will be usedin estimation. In the case of

Keane and Wolpin[2001] andImai [2000], asset holding itself plays a central role in their model.

Their method of imputation was therefore to model and asset holdings as normally distributed,

and the estimate the mean and variance, from which they impute the missing years. In my case

however, I require savings balance to impute total family consumption. For years in which the
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data is available, this is simply the difference between theAsset holding from one year to the

next. For the years in which the data is missing, I take savings balance to be zero. For the early

years of the cohort, net savings is relatively small and centered around zero. This suggests that the

bias induced by this imputation is small. Furthermore, in estimating the consumption equation,

savings is one the right hand side of the equation. The consistency of parameter estimates in the

case where the left hand side variable is measured with a meanzero error is well documented in

classical econometric textbooks. Finally, if there were large biases introduced by this imputation,

they would show up in the estimated aggregate prices, These is no unusual visible discrete change

in estimated aggregate prices for these periods. All these reasons lead me to believe that such

imputations results in minimal biases in the parameters of interest.

Consumption

The NLSY79 does not collect data on individual consumption.However, the unique advantage

of this data set that it collects detailed information on individual asset holding. To estimate the

parameters in the above equation, family consumption is imputed from family income, family

savings, four year schooling costs, and two year schooling costs. The way this is done is a follows.

Subtracting family savings is taken from family income gives an estimate of the total resources

available to the family in that year, net of savings. If the individual goes to high school, then his

cost of schooling is assumed to be 0. If he goes to a two-year college, his cost of schooling is the

two-year tuition cost, and if he goes to a four-year college,his cost of schooling is the four-year

tuition cost. The individual’s cost of schooling is subtracted from his individual resources. The

yearly averages of the imputed consumption is given in Table2.

Demographics

Demographic and family background variables collected by the NLSY79 and used in this study

include age, race, mother’s education, Father’s education, family income, and year of experience

working. Experience is calculated from the employment history section of the data set, which gives

complete employment status for each year. Missing observations in family income are imputed by

first using a three year moving average smoothing technique,followed by regressing family income

on other covariates, some of which not listed here, and usingthe predicted income for the cases in

which family income is missing. The resulting distributionof imputed family income match the

distribution of actual (observed) family remarkably well.
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Sample Restriction

As stated above, the data employed in this paper span the years of 1979 though 1994. The model

specified in section (3.2) does not include the decision to enter the military, and thus as the first

restriction on the data we drop all males who enter the military in 1979. This restriction reduces the

sample size to 11406. As stated above, we drop respondents for cases where missing observations

in highest grade completed cannot be recovered with very high confidence. This reduces the sample

to 7814 respondents. This is clearly are somewhat severe restriction on the data, and it may pay

to invest is less restrictive imputation rules. This however is not pursued here. In the literature,

female members are treated differently from male sample members. The choice set of a female

is generally considered larger than that of a male. The additional decisions usually included in

the choice set for women are marriage decisions and fertility decisions. To avoid these additional

complications, the data is restricted to include males only. This results in a sample size of 3916

male respondents. The summary statistics and all estimations make use of this sample.

A.1.2 Standard Errors for the Probability of Grade Promotio n

Let ynt be in indicator variable equal to 1 if the individual advances a grade level, and 0 otherwise.

Define:

g(x4,B4,B3) ≡ x4

(
y− ex′4B4

1+ex′4B4

)
(A.1.1)

h(x3,B3) ≡ x3(ln(s)−x′3B3) (A.1.2)

f (x,θ) ≡ [g(x4,B3,B4)
′,h(x3,B3)

′]′ (A.1.3)

whereθ ≡ (B′
4,B

′
3)

′. Equation (A.1.1) is the score contribution of a single individual from the

likelihood function constructed from equation (2.8.2). Equation (A.1.2) is the moment condition

derived from the study time equation (2.8.1). I assume that these two moments are uncorrelated,

and we have by construction that1
N ∑n f (x, θ̂) = 0. The proof that̂θ p→ θ0 is straightforward and
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therefore omitted. Let

G4 ≡ E[∆B4g(x4,B4,B3)] = −E

[
x4x′4

ex′4B4

1+ex′4B4

1

1+ex′4B4

]
(A.1.4)

G3 ≡ E[∆B3g(x4,B4,B3)] = −E

[
x4x′3(sB4,1+2s2B4,2)

ex′4B4

1+ex′4B4

1

1+ex′4B4

]
(A.1.5)

H3 ≡ E[∆B3h(x3,B3)] = −E[x3x′3]. (A.1.6)

Since f (x,θ) satisfies conditions(i)− (v) of Theorem 3.4 ofNewey and McFadden[1994], B̂4 is

asymptotically normal and
√

n(B̂4−B4)
d→ N(0,V), where

V = G−1
4 E[g(x4)g(x4)

′]G−1′
4 +G−1

4 G3H−1
3 E[h(x3)h(x3)

′]H−1′
3 G′

3G−1′
4 (A.1.7)

Thus the variance can be consistently estimated by replacing the jacobian terms in the equation

(A.1.7) with their sample averages.

A.1.3 The estimation method for the CCP’s and the conditional state probabilities

Let K[δ−1
N (ΨN

mr −ΨN
nt)] be a kernel, whereδN is an appropriately chosen bandwidth. Then the

nonparametric estimate ofpnt j is computed using the kernel estimator

pN
nt j ≡

∑N
m=1∑T

r=1dmr jK[δ−1
N (ΨN

mr−ΨN
nt)]

∑N
m=1∑T

r=1K[δ−1
N (ΨN

mr−ΨN
nt)]

. (A.1.8)
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To define the conditional state probabilities we first define the set of possible histories that will

become relevant in the model. Accordingly, the(2ρ+K +1)-dimensional vectors

x(i)
nt0 ≡ (hnt−ρ+i , · · · ,hnt−1,0, · · · ,0,snt−ρ+i, · · · ,snt−1,0, · · · ,0,

Snt−ρ+i+1, · · · ,Snt,Snt, · · · ,Snt,Ent−ρ+i ,znt+i),

x(i)
nt1 ≡ (hnt−ρ+i , · · · ,hnt−1,h∗nt, · · · ,0,snt−ρ+i, · · · ,snt−1,0, · · · ,0,

Snt−ρ+i+1, · · · ,Snt,Snt, · · · ,Snt,Ent−ρ+i ,znt+i),

x(i)
nt2 ≡ (hnt−ρ+i , · · · ,hnt−1,0, · · · ,0,snt−ρ+i, · · · ,snt−1,s∗nt, · · · ,0,

Snt−ρ+s+1, · · · ,Snt,Snt +1, · · · ,Snt +1,Ent−ρ+i ,znt+s),

x(i)
nt3 ≡ (hnt−ρ+i , · · · ,hnt−1,0, · · · ,0,snt−ρ+i, · · · ,snt−1,s∗nt, · · · ,0,

Snt−ρ+i+1, · · · ,Snt,Snt, · · · ,Snt,Ent−ρ+i ,znt+i),

x(i)
nt4 ≡ (hnt−ρ+i , · · · ,hnt−1,h∗nt, · · · ,0,snt−ρ+i, · · · ,snt−1,s∗nt, · · · ,0,

Snt−ρ+i+1, · · · ,Snt,Snt +1, · · · ,Snt +1,Ent−ρ+i ,znt+i),

x(i)
nt5 ≡ (hnt−ρ+i , · · · ,hnt−1,h∗nt, · · · ,0,snt−ρ+i, · · · ,snt−1,s∗nt, · · · ,0,

Snt−ρ+s+1, · · · ,Snt,Snt, · · · ,Snt,Ent−ρ+i ,znt+s),

(A.1.9)

for i = 1, · · · ,ρ, whereh∗nt ands∗nt is the fraction of time individualn devotes to working and school-

ing conditional on participating and enrolling. Define the state vectorsΨ(i)
ntk≡ (x(i)

ntk,µnηnωnt+iλt+i),

k = 0, · · · ,5, whereωnt ≡ ωent1
t1 ωent2

t2 . For example,Ψ(i)
nt1 is the state of a young man who has accu-

mulated the history

(hnt−ρ, · · · ,hnt−1,snt−ρ, · · · ,snt−1,Snt−ρ+1, · · · ,Snt,Ent−ρ+1)

up to periodt, chooses not to enroll in school and to workh∗nt hours in periodt, and not to enroll nor

work for i−1 periods followingt. Similarly,Ψ(i)
nt3 is the state of a young man who has accumulated

the same history up to periodt, chooses not to work, to and studys∗nt hours in periodt, gets

promoted a grad at the end of yeart, and chooses not to enroll nor work fori−1 periods following

t.

Define p j(Ψ
(i)
ntk), j = 0, · · · ,3, k = 0, · · · ,5, as the the probability that individualn chooses

alternative j in period t + i conditioned on realizing the state vectorΨi
ntk in period t + i. The
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intuition for estimating these future state probabilitiesis to condition on observationally equivalent

men in the current period. To do this, define the indicator variables:

d(i)
nt j ≡





dnt−i, j ∏i−1
r=1dnt−r,0, for j = 0,1,

ynt−idnt−i, j ∏i−1
r=1dnt−r,0, for j = 2,4,

(1−ynt−i)dnt−i, j ∏i−1
r=1dnt−r,0, for j = 3,5,

(A.1.10)

whereynt is equal to one if the individual is promoted a grade level at the end of periodt, and

zero otherwise. Therefore,d(i)
nt j allows us to condition of the appropriate history for computing the

estimators of the state probabilitiespk(Ψ
(i)
nt j), which are computed as

pN
k (Ψ(i)

nt j) ≡
∑N

m=1 ∑T
r=1dmrkd

(i)
mr jK[δ−1

N (ΨN
mr−ΨN

nt)]

∑N
m=1 ∑T

r=1d(i)
mr jK[δ−1

N (ΨN
mr−ΨN

nt)]
. (A.1.11)

Estimation of the parameters characterizing preference also require that the derivatives of the prob-

abilities with respect toh be estimated. The methodology employed to estimate these quantities is

found inAltug and Miller [1998].

A.1.4 Derivation of the moment conditions for the final stageestimation

Hotz and Miller[1993] prove the existence of a mappingq : [0,1]→ ℜ such that

q(pk(Ψnt)) = Vj(Ψnt)−Vk(Ψnt), (A.1.12)

Equations (A.1.12) and (2.3.14) are used to derive the alternative representation of the conditional

valuation functionVntk for the finite dependence case. To do so, define

u j(Ψnt) ≡





u1(Snt,0)+u2(xnt,0)+u3(xnt,1)+α−1ηnλtcnt f or j = 0,

u1(Snt,0)+u2(xnt,1)+u3(xnt,1−h∗nt)+α−1ηnλtcnt f or j = 1,

u1(Snt,1)+u2(xnt,0)+u3(xnt,1−snt)+α−1ηnλtcnt f or j = 2,

u1(Snt,1)+u2(xnt,1)+u3(xnt,1−h∗nt −snt)+α−1ηnλtcnt f or j = 3.

(A.1.13)

Recall thatFj(Ψ
(i)
nt |Ψnt) is the probability that the state vector of individualn in period t + i is

Ψ(i)
nt , given that his state vector in periodt is Ψnt and he chooses alternativej in periodt. Then by

132



recursive application of the law of iterated expectations,the conditional valuation function can be

expressed as

Vj(Ψnt) = u j(Ψnt)+Et

{
∑ρ

i=1

[
βi ∑

A
(i)
nt j

[
u0(Ψ

(i)
nt )+ϕ0(p0(Ψ

(i)
nt ))

+∑3
k=1 pk(Ψ

(i)
nt )(q(pk(Ψ

(i)
nt ))+ϕk(pk(Ψ

(i)
nt ))

−ϕ0(p0(Ψ
(i)
nt )))

]
Fj(Ψ

(i)
nt |Ψnt)

+βρ+1 ∑
A

(ρ+1)
nt j

[
V0(Ψ

(ρ+1)
nt )+ϕ0(p0(Ψ

(ρ+1)
nt ))

+∑3
k=1 pk(Ψ

(ρ+1)
nt )(q(pk(Ψ

(ρ+1)
nt ))+ϕk(pk(Ψ

(ρ+1)
nt ))

−ϕ0(p0(Ψ
(ρ+1)
nt )))

]
Fj(Ψ

(ρ+1)
nt |Ψnt)

]}
,

(A.1.14)

Notice that the recursive substitution employed to obtain the alternative representation is only valid

up to wherep0(Ψi
nt j) > 0. In the context of this paper, this condition is true ati = 2 for j = 0,1,

andi = 1 for j = 2, · · · ,5. Equation (A.1.14) gives the following alternative representation of the

Euler equations for labor supply and schooling

0 =
∂u j (Ψnt)

∂gnt
+Et

{
∑ρ

i=1

[
∑

A
(i)
nt j

[
∂[u0(Ψ

(i)
nt )+ϕ0(p0(Ψ

(i)
nt ))]

∂gnt

+∑3
k=1 pk(Ψ

(i)
nt )

∂[(q(pk(Ψ
(i)
nt ))+ϕk(pk(Ψ

(i)
nt ))−ϕ0(p0(Ψ

(i)
nt )))]

∂gnt

+∑3
k=1[(q(pk(Ψ

(i)
nt ))+ϕk(pk(Ψ

(i)
nt ))

−ϕ0(p0(Ψ
(i)
nt )))]

pk(Ψ
(i)
nt )

∂gnt

]
Fj(Ψ

(i)
nt |Ψnt)

]

+∑
A

(ρ+1)
nt j

[
u0(Ψ

(i)
nt )+ϕ0(p0(Ψ

(i)
nt ))

+∑3
k=1[pk(Ψ

(i)
nt )(q(pk(Ψ

(i)
nt ))+ϕk(pk(Ψ

(i)
nt ))

−ϕ0(p0(Ψ
(i)
nt )))]

Fj(Ψ
(i)
nt |Ψnt)

∂gnt

]}
,

(A.1.15)

wheregnt = {hnt,snt}. Assume thatεont, · · · ,εnt3 are identically and independently distributed

over (n, t) as Type 1 extreme value random variables. This assumption leads to convenient rep-

resentations for the differences in the conditional valuation functions, and the expected values

of the alternative specific unobservables when their corresponding alternative have been cho-

sen. Specifically we have thatq(pk(Ψnt)) = ln
[

pk(Ψnt)
p0(Ψnt)

]
, ϕk(pk(Ψnt)) = γ − ln(pk(Ψnt)), and

ϕk(pk(Ψnt))−ϕ0(p0(Ψnt)) = − ln
[

pk(Ψnt)
p0(Ψnt)

]
.

Note that the transition matrix is degenerate conditional on the individual choosing not to

enroll in school. If he chooses to enroll in school, the probability of advancing a grade level is

F(xnt). This implies that the transition probabilities fori = 1, · · · ,ρ are given byF(Ψ(i)
nt, j |Ψnt) = 1,
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for j = 0,1, F(Ψ(i)
nt, j |Ψnt) = F(xnt) for j = 2,4, andF(Ψ(i)

nt, j |Ψnt) = (1− F(xnt)) for j = 2,4.

Defineξnt ≡ (1−α)−1 ln(ηnλt). Then we marginal utility of consumption can be expressed as

ηnλt ≡ exp((1−α)ξnt).

The parametric assumptions on the utility functions and theidiosyncratic taste shifters, and

the Euler conditions for work and schooling from equation (A.1.16) are used to form population

moment conditions. We can then define

mnt1(Θ) ≡ dnt1

[
α−1ηnλtwnt −z′ntB5−2δ0l (1)

nt −∑ρ
i=1 δi(lnt−i +βi)

−∑ρ
i=1βi p0(Ψ

(i)
nt1)

−1∂p0(Ψ
(i)
nt1)

∂hnt

]

+dnt3

[
α−1ηnλtwnt −z′ntB5−2δ0l (3)

nt −∑ρ
i=1δi(lnt−i +βi)

−∑ρ
i=1βi

[
p0(Ψ

(i)
nt4)

−1∂p0(Ψ
(i)
nt4)

∂hnt
F(xnt)+ p0(Ψ

(i)
nt5)

−1∂p0(Ψ
(i)
nt5)

∂hnt
(1−F(xnt))

+ ln

(
p0(Ψ

(i)
nt5)

p0(Ψ
(i)
nt4)

)
∂F(xnt)

∂hnt

]]
.

mnt2(Θ) ≡ dnt2

[
−z′ntB5−2δ0l (2)

nt −∑ρ
i=1δi(lnt−i +βi)

−∑ρ
i=1βi

[
p0(Ψ

(i)
nt2)

−1∂p0(Ψ
(i)
nt2)

∂snt
F(xnt)+ p0(Ψ

(i)
nt3)

−1∂p0(Ψ
(i)
nt3)

∂snt
(1−F(xnt))

+ ln

(
p0(Ψ

(i)
nt3)

p0(Ψ
(i)
nt2)

)
∂F(xnt)

∂snt

]]
+dnt3

[
−z′ntB5−2δ0l (3)

nt −∑ρ
i=1δi(lnt−i +βi)

−∑ρ
i=1βi

[
p0(Ψ

(i)
nt4)

−1∂p0(Ψ
(i)
nt4)

∂snt
F(xnt)+ p0(Ψ

(i)
nt5)

−1∂p0(Ψ
(i)
nt5)

∂snt
(1−F(xnt))

+ ln

(
p0(Ψ

(i)
nt5)

p0(Ψ
(i)
nt4)

)
∂F(xnt)

∂snt

]]
.

The parametric assumptions on the utility functions, the distribution of the idiosyncratic taste

shifters, equation (A.1.12) and equation (A.1.14) are used to obtain the following additional mo-

134



ment conditions1

mnt3(Θ) ≡ dnt1

[
ln
(

pnt1
pnt0

)
−x′ntB6+x′ntB7(l

(0)
nt − l (1)

nt )+δ0(l
(0)2
nt − l (1)2

nt )

+∑ρ
i=1 δi(l

(0)
nt − l (1)

nt )(lnt−i +βi)− ηnλt
α (wnthnt)−∑ρ

i=1βi ln

(
p0(Ψ

(s)
nt0)

p0(Ψ
(s)
nt1)

)]
,

mnt4(Θ) ≡ dnt2

[
ln
(

pnt2
pnt0

)
−x′ntB5+x′ntB7(l

(0)
nt − l (2)

nt )

+δ0(l
(0)2
nt − l (2)2

nt )+∑ρ
i=1δi(l

(0)
nt − l (2)

nt )(lnt−i +βi)+ ηnλt
α πnt

−∑ρ
i=1 βi

[
ln p0(Ψ

(i)
nt0)− ln p0(Ψ

(i)
nt2)F(xnt)− ln p0(Ψ

(i)
nt3)(1−F(xnt))

]]
,

mnt5(Θ) ≡ dnt3

[
ln
(

pnt3
pnt0

)
−x′ntB5−x′ntB6+x′ntB7(l

(0)
nt − l (3)

nt )

+δ0(l
(0)2
nt − l (3)2

nt )+∑ρ
i=1δi(l

(0)
nt − l (3)

nt )(lnt−i +βi)− ηnλt
α (wnthnt −πnt)

−∑ρ
i=1 βi

[
ln p0(Ψ

(i)
nt0)− ln p0(Ψ

(i)
nt4)F(xnt)− ln p0(Ψ

(i)
nt5)(1−F(xnt))

]]
.

A.1.5 Consistent Asymptotic Variance Estimation

Some preliminary results are in needed. The first is concerned with the estimation of the CCP’s

themselves. In estimation, a the data was trimmed to ensure that the density is bounded away from

zero. This fixed trimming condition defines a compact subset of the support of the density over

which the density affects the estimator. Assumptions 8.1 - 8.3, and the assumptions in Lemma 8.10

of Newey and McFadden[1994] ensures the resulting kernel density estimators of the CCP’s and

their derivatives converge uniformly:

√
N‖pN(Ψ)− p0(Ψ)‖2 p→ 0, (A.1.16)

where the norm is the Sobolev norm. Assume that ,θN is the unique solution to:

1
N

N

∑
n=1

m(xn,θ,ξn(B
N
1 ),sn(B

N
3 )Fn(sn(B

N
3 ),BN

4 ), pN
n ). (A.1.17)

Assume also thatθ0 ∈ Θ, a compact set. Inspection of the equations in (??) shows thatm(x,θ) is

continuous in eachθ. Further inspection along with the fixed trimming conditionon the data in

1The construction of the moment conditions show that the choice of the normalizing alternative (alternative 0) is
not completely arbitrary. This alternative has to sufficiently saturate the state space so thatpnt0 > 0 andp0(Ψi

nt j) > 0.
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estimation implies thatm(z,θ) is uniformly bounded overθ. These conditions ensures thatθN p→ θ0

as shown in Theorem 2.6 ofNewey and McFadden[1994].

Define the following influence functions from equations (??) and from the definitions in section

A.1.2

ϕ1(x1n) ≡ −E[∆x′1nA−1
n ∆x1n]

−1∆x′1nA−1
n ∆v1n, ϕ3(x3n) ≡−H−1

3 h(x3n),

ϕ4(x4n) ≡ −H−1
4 h(x4n). (A.1.18)

Define the following matrices

M1nt ≡




(dnt1+dnt3)(
1−α

α )exp((1−α)ξnt))wnt

0

−dnt1(
1−α

α )exp((1−α)ξnt))wnthnt

dnt2(
1−α

α )exp((1−α)ξnt))πnt

dnt3(
1−α

α )exp((1−α)ξnt))(wnthnt −πnt)




[
− 1

N ∑
n

x′1nt

]
,

M1n(xn) ≡ (M′
1n1, · · · ,M′

1nT)′, and,α1(xn) ≡ E[M1n]ϕ1(x1n). (A.1.19)

M2nt ≡




dnt1 ∑i d
s
nt−iδi+

dnt3

[
2δ0 + ∑i

(
ds

nt−iδi −βi
((

1
pi

0nt4

∂pi
0nt4

∂hnt
− 1

pi
0nt5

∂pi
0nt5

∂hnt

)
∂F(xnt)

∂snt
+ ln(

pi
0nt5

pi
0nt4

)∂2F(xnt)
∂hnt∂snt

))]

dnt2

[
2δ0 + ∑i

(
ds

nt−iδi −βi
((

1
pi

0nt2

∂pi
0nt2

∂snt
− 1

pi
0nt3

∂pi
0nt3

∂snt

)
∂F(xnt)

∂snt
+ ln(

pi
0nt3

pi
0nt2

)∂2F(xnt)

∂s2
nt

))]
+

dnt3

[
2δ0 + ∑i

(
ds

nt−iδi −βi
((

1
pi

0nt4

∂pi
0nt54

∂snt
− 1

pi
0nt5

∂pi
0nt5

∂snt

)
∂F(xnt)

∂snt
+ ln(

pi
0nt5

pi
0nt4

)∂2F(xnt)

∂s2
nt

))]

−dnt1 ∑i δi(l0
nt − l1

nt)d
s
nt−i

dnt2

[
x′6ntB6 +2δ0l2

nt + ∑i δi lnt−i ∑i βi
[
ln(

pi
0nt2

pi
0nt3

)∂F(xnt)
∂snt

]]

dnt3

[
x′6ntB6 +2δ0l3

nt + ∑i δi lnt−i ∑i βi
[
ln(

pi
0nt4

pi
0nt5

)∂F(xnt)
∂snt

]]




[
sntx

′
3nt

]
,

M2n(xn) ≡ (M′
2n1, · · · ,M′

2nT)′, and,α2(xn) ≡ E[M2n]ϕ2(x3n). (A.1.20)

M4nt ≡




−dnt3 ∑i βi
[

1
pi

0nt4

∂pi
0nt4

∂hnt
− 1

pi
0nt5

∂pi
0nt5

∂hnt
+ ln(

pi
0nt5

pi
0nt4

)∂2F(xnt)

∂h2
nt

]

−dnt2 ∑i βi
[

1
pi

0nt2

∂pi
0nt2

∂snt
− 1

pi
0nt3

∂pi
0nt3

∂snt
+ ln(

pi
0nt3

pi
0nt2

)∂2F(xnt)
∂hnt∂F

]
−

dnt3 ∑i βi
[

1
pi

0nt4

∂pi
0nt4

∂snt
− 1

pi
0nt5

∂pi
0nt5

∂snt
+ ln(

pi
0nt5

pi
0nt4

)∂2F(xnt)
∂hnt∂F

]

0

dnt2 ∑i βi
[
ln(

pi
0nt2

pi
0nt3

)
]

dnt3 ∑i βi
[
ln(

pi
0nt4

pi
0nt5

)
]




[
F(xnt)(1−F(xnt))x

′
4nt

]
,
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M4n(xn) ≡ (M′
4n1, · · · ,M′

4nT)′, and,α4(xn) ≡ E[M4n]ϕ4(x4n). (A.1.21)

Dnt0 ≡ E

[
∂mnt

∂pnt0
|Ψnt

]
= −p−1

nt0(0,0, pnt1, pnt2, pnt3)
′

Dn0(xn) ≡ (D′
n10, · · · ,D′

nT0)
′, and,α5(xn) ≡ Dn0[dn0− pn0]. (A.1.22)

Dnt1 ≡ E

[
∂mnt

∂pnt1
|Ψnt

]
= (0,0,1,0,0)′

Dn1(xn) ≡ (D′
n11, · · · ,D′

nT1)
′, and,α6(xn) ≡ Dn1[dn1− pn1]. (A.1.23)

Dnt2 ≡ E

[
∂mnt

∂pnt2
|Ψnt

]
= (0,0,0,1,0)′

Dn2(xn) ≡ (D′
n12, · · · ,D′

nT2)
′, and,α7(xn) ≡ Dn2[dn2− pn2]. (A.1.24)

Dnt3 ≡ E

[
∂mnt

∂pnt3
|Ψnt

]
= (0,0,0,0,1)′

Dn3(xn) ≡ (D′
n13, · · · ,D′

nT3)
′, and,α8(xn) ≡ Dn3[dn3− pn3]. (A.1.25)

For i = 1, · · · ,ρ define.

Dnt0i ≡ E

[
∂mnt

∂p(i)
0nt0

|Ψ(i)
nt0

]
= βi

(
0,0,

p(i)
1nt0

p(i)
0nt0

,
p(i)

2nt0

p(i)
0nt0

,
p(i)

3nt0

p(i)
0nt0

)′

Dn0i(xn) ≡ (D′
n10i , · · · ,D′

nT0i)
′, and,α9i(xn) ≡ Dn0i[dn0− p(i)

n0]. (A.1.26)

Dnt1i ≡ E

[
∂mnt

∂p(i)
0nt1

|Ψ(i)
nt1

]
= βi

(
p(i)

1nt1

(p(i)
0nt1)

2
∇hp(i)

0nt1,0,
p(i)

1nt1

p(i)
0nt1

,0,0

)′

Dn1i(xn) ≡ (D′
n11i , · · · ,D′

nT1i)
′, and,α10i(xn) ≡ Dn1i[dn1− p(i)

n1]. (A.1.27)

Dnt2i ≡ E

[
∂mnt

∂p(i)
0nt2

|Ψ(i)
nt2

]
= βi

(
0,

p(i)
2nt2

(p(i)
0nt2)

2
∇sp(i)

0nt2F(xnt)−
p(i)

2nt2

p(i)
0nt2

∇sF(xnt),0,
p(i)

2nt2

p(i)
0nt2

F(xnt),0

)′

Dn2i(xn) ≡ (D′
n12i , · · · ,D′

nT2i)
′, and,α11i(xn) ≡ Dn2i[dn0− p(i)

0n2]. (A.1.28)

Dnt3i ≡ E

[
∂mnt

∂p(i)
0nt3

|Ψ(i)
nt3

]
= βi

(
0,

p(i)
2nt3

(p(i)
0nt3)

2
∇sp(i)

0nt3(1−F(xnt))+
p(i)

2nt3

p(i)
0nt3

∇sF(xnt),0,
p(i)

2nt3

p(i)
0nt3

(1−F(xnt)),0

)′

Dn3i(xn) ≡ (D′
n13i , · · · ,D′

nT3i)
′, and,α12i(xn) ≡ Dn3i[dn0− p(i)

0n3]. (A.1.29)
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Dnt4i ≡ E

[
∂mnt

∂p(i)
0nt4

|Ψ(i)
nt4

]
= βi




p(i)
3nt4

(p(i)
0nt4)

2
∇hp(i)

0nt4F(xnt)− p(i)
3nt4

p(i)
0nt4

∇hF(xnt)

p(i)
3nt4

(p(i)
0nt4)

2
∇sp(i)

0nt4F(xnt)− p(i)
3nt4

p(i)
0nt4

∇sF(xnt)

0
0

p(i)
3nt4

p(i)
0nt4

∇sF(xnt




Dn4i(xn) ≡ (D′
n14i , · · · ,D′

nT4i)
′, and,α13i(xn) ≡ Dn4i[dn0− p(i)

0n4]. (A.1.30)

Dnt5i ≡ E

[
∂mnt

∂p(i)
0nt5

|Ψ(i)
nt5

]
= βi




p(i)
3nt5

(p(i)
0nt5)

2
∇hp(i)

0nt5(1−F(xnt))+
p(i)

3nt5

p(i)
0nt5

∇hF(xnt)

p(i)
3nt5

(p(i)
0nt5)

2
∇sp(i)

0nt5F(xnt)+
p(i)

3nt5

p(i)
0nt5

∇sF(xnt)

0
0

p(i)
3nt5

p(i)
0nt5

∇sF(xnt




Dn5i(xn) ≡ (D′
n15i , · · · ,D′

nT5i)
′, and,α14i(xn) ≡ Dn5i[dn0− p(i)

0n5]. (A.1.31)

Let f i
nt j ≡ f (Ψi

nt j) be the density ofΨi
nt j j = 1, · · · ,5, i = 1, · · · ,ρ. Define alsoϑi

nt j ≡ ( f (Ψi
nt j))

−1 ∂ f (Ψi
nt j)

∂hn
.

138



For i = 1, · · · ,ρ let

hMnt1i ≡ E

[
∂mnt

∂∇hp(i)
0nt1

|Ψ(i)
nt1

]
= βi

(
p(i)

1nt1

p(i)
0nt1

,0,0,0,0

)′

hhMnt1i ≡ E

[
∂mnt

∂∇hp(i)
0nt1∂hnt

|Ψ(i)
nt1

]
= βi

(
p(i)

1nt1

(p(i)
0nt1)

2
∇hp(i)

0nt1,0,0,0,0

)′

hDnt1i ≡−
[

hhMnt1i +2 hMnt1iϑi
nt1

]
(A.1.32)

hDn1i(xn) ≡ ( hD′
n11i , · · · , hD′

nT1i)
′, and,α15i(xn) ≡ hDn1i[dn0− p(i)

0n1]. (A.1.33)

sMnt2i ≡ E

[
∂mnt

∂∇sp
(i)
0nt2

|Ψ(i)
nt2

]
= βi

(
0,

p(i)
2nt2

p(i)
0nt2

F(xnt),0,0,0

)′

ssMnt2i ≡ E

[
∂mnt

∂∇sp(i)
0nt2∂snt

|Ψ(i)
nt2

]
= βi

(
0,

p(i)
2nt2

(p(i)
0nt2)

2
∇sp(i)

0nt1F(xnt)−
p(i)

2nt2

p(i)
0nt2

∇sF(xnt),0,0,0

)′

sDnt2i ≡−
[

ssMnt2i +2 sMnt2iϑi
nt2

]
(A.1.34)

sDn2i(xn) ≡ ( sD
′
n12i , · · · , sD

′
nT2i)

′, and,α16i(xn) ≡ sDn2i [dn0− p(i)
0n2]. (A.1.35)

sMnt3i ≡ E

[
∂mnt

∂∇sp
(i)
0nt3

|Ψ(i)
nt3

]
= βi

(
0,

p(i)
3nt3

p(i)
0nt3

(1−F(xnt)),0,0,0

)′

ssMnt3i ≡ E

[
∂mnt

∂∇sp(i)
0nt3∂snt

|Ψ(i)
nt3

]
= βi

(
0,

p(i)
3nt3

(p(i)
0nt3)

2
∇sp(i)

0nt1(1−F(xnt))+
p(i)

3nt3

p(i)
0nt3

∇sF(xnt),0,0,0

)′

sDnt3i ≡−
[

ssMnt3i +2 sMnt3iϑi
nt3

]
(A.1.36)

sDn3i(xn) ≡ ( sD
′
n13i , · · · , sD

′
nT3i)

′, and,α17i(xn) ≡ sDn3i [dn0− p(i)
0n3]. (A.1.37)

The construction of hDnt4i and sDnt4i are the same assDnt2i with the correct indexes. Likewise, the
construction of hDnt5i and sDnt45i are the same assDnt3i with the correct indexes. This gives additional
influence functionsα18i , · · · ,α21i . Define alsoα(xn)≡∑8

j=1αn j(xn)+∑21
j=9∑ρ

i=1 α ji (xn). The fixed trimming
condition, the smoothness properties ofm(x, ·), and conditionA.1.16 ensures linearization is possible in
the necessary arguments, that the above matrices are well defined (in particular, all expectations are well
defined), and that assumptions 5.1-5.6 ofNewey[1994] are satisfied. Define

Mθ ≡ E

[
∂m(xn,θ0)

∂θ

]
(A.1.38)

W ≡ E[{m(xn,θ0)+ α(xn)}{m(xn,θ0)+ α(xn)}′] (A.1.39)

Therefore, by lemma 5.3 ofNewey[1994], we have that

√
N(θN −θ0)

p→ N(0,V),

where

V ≡ (M′
θΩ−1Mθ)

−1M′
θΩ−1WΩ−1Mθ(M

′
θΩ−1Mθ)

−1 (A.1.40)
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A consistent estimator of jacobians with respect to the finite dimensional parameters are obtained by replac-
ing the parameters (both finite and infinite dimensional) with their respective estimates and taking averages
over N. A consistent estimator jacobians with respect to the ccp’sand their derivatives are obtained by
replacing the parameters with their estimated counterparts and then performing nonparametric regression of
these quantities on their appropriate conditioning vectors Ψi

n j. The residuals needed to complete the for-
mation ofα̂(xn) are readily obtained from all the parametric and nonparametric pre-estimates. By similar
substitutions and averaging consistent estimates ofMθ m(xnt,θ), andΩ are formed, denoted byMn

θ, mN(xn),
andΩN, A consistent estimate ofW is then obtained by

WN = N−1
N

∑
n=1

[
mN(xn)+ αN(xn)

][
mN(xn)+ αN(xn)

]′
. (A.1.41)

Putting all these estimated quantities together, a consistent estimator for the asymptotic variance is given by

VN ≡
(
MN′

θ (ΩN)−1MN
θ
)−1

MN′
θ
(
ΩN)−1

WN (ΩN)−1
MN

θ

(
MN′

θ
(
ΩN)−1

MN
θ

)−1
. (A.1.42)
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A.2 APPENDIX TO CHAPTER 3

A.2.1 Proof of Theorem3.3.2

Proof. Inverting the index functionsϕ0 andϕ1 in equations (3.2.3) and (3.3.1) respectively gives:

ϕ−1
0 (x′it β0 + f0(zi)) = ϕ−1

1 (x′it β1 + f1(zi)) ⇔
x′it β0 + f0(zi) = ϕ0(ϕ−1

1 (x′it β1 + f1(zi))), (A.2.1)

since both sides of the first equality are equal toPit0. Also, since the index function is strictly increasing, it is
differentiable almost everywhere. Differentiating equation (A.2.1) with respect to the continuous regressor
xitk gives:

a :=
β0k

β1k
=

ϕ′
0(ϕ

−1
1 (x′it β1 + f1(zi)))

ϕ′
1(ϕ

−1
1 (x′it β1 + f1(zi)))

> 0, (A.2.2)

where the positive sign follows trivially from the assumption that the index function is strictly increasing.
We have from equation (A.2.2) thatϕ′

0(Pit0) = aϕ′
1(Pit0) which implies that:

ϕ0(Pit0) = aϕ1(Pit0)+c. (A.2.3)

Taking first difference of equations (3.2.3), (3.3.1) and (A.2.3) we have that:

∆[ϕ0(Pit0)] = ∆x′it β0

∆[ϕ1(Pit0)] = ∆x′it β1

∆[ϕ0(Pit0)] = a∆[ϕ1(Pit0)] (A.2.4)

which implies that

a∆[ϕ1(Pit0)] = ∆x′it β0

a∆[ϕ1(Pit0)] = a∆x′it β1. (A.2.5)

Equating the RHS of the equations in (A.2.5), pre-multiplying by∆x′it and taking expectations gives:

E[∆xit ∆x′it ]β0 = aE[∆xit ∆x′it ]β1. (A.2.6)

Then by the invertibility ofE[∆xit ∆x′it ] we have

β0 = aβ1. (A.2.7)

The assumption that||β0|| = ||β1|| = 1 implies from equation (A.2.7)that |a| = 1. Buta > 0, which implies
thata = 1. Thus equations (A.2.7) and (A.2.3) imply that:

β0 = β1 (A.2.8)

ϕ0(Pit ) = ϕ1(Pit )+c. (A.2.9)

From equations (A.2.8) and (A.2.9), (3.2.3) becomes:

ϕ1(Pit0)+c = ∆x′it β1 + f0(zi)

⇒ ∆x′it β1 + f1(zi)+c = ∆x′it β1 + f0(zi)

⇒ f1(zi)+c = f0(zi). (A.2.10)

This completes the first part of the proof. The fact thatc= 0, follows from assumption (3.3.1.1) and equation
(A.2.10) by taking the expectations of both sides of equation (A.2.10).
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A.2.2 Finite Entropy Lemma

For any givenR> 0, let
G := {S(x,β,ϕ,P0) | ‖β‖K ≤ 1,ϕ ∈ SK }.

Then we have the following result:

LemmaA.2.1. If assumption (3.6.2) holds, then

1. The classG is uniformly bounded.
2. For anyδ > 0,

H∞(δ,G) ≤C1 ln

(
4C2 + δ

δ

)
+

C3

δ
,

for someC1 > 0,C2 > 0 andC3 > 0, whereH∞(δ,G) is theδ-entropy ofG for the supremum norm (See
Definition 2.3 ofvan de Geer[2000]).

Proof. Sinceη is continuous, it is bounded overK , say with lower and upper boundsR1 andR2 respectively.
Thus the setSK is uniformly bounded. Thus,S(x,β,ϕ,P0)≤ (‖∆Xi‖T

2 .‖β‖2 +2(T−1)‖ϕ‖)2 ≤ (R0+2(T−
1)R)2 for someR> 0.
Note that the entropy of the classG is at most that of the cartesian productBK(0,1)×G . The ballBK(0,1)

can be covered by
(

8+δ
δ

)K
balls with radiusδ

2 (van de Geer, 2000). Since a ball of radiusδ can be covered

by a K-dimensional cube of length 2δ, the ballBK(0,1) can be covered by
(

8+δ
δ

)K
cubes of diameterδ. This

in turn implies thatH∞ (δ,BK(0,1)) ≤ K ln
(

8+δ
δ

)
. Furthermore, there is a constantC such that the entropy

H∞(δ,C := {g : K → [R1,R2] |
∫

K |g′(x)|dx ≤ M}) has the upper boundCδ for someC > 0, (van de Geer
[2000]). G(R) is included inC . The entropy bound now results from the fact that the entropyof a cartesian
product is the sum of the entropies of the sets in the product.

Corollary A.2.2. If assumptions (3.6.2) holds, then the following uniform convergence holds:

sup
(β,ϕ)∈G

|SN(x,β,ϕ,P0)−S0(x,β,ϕ,P0)| → 0, Q-almost surely.

Proof. LemmaA.2.1 establishes thatG has finite entropy in the sup-norm. Lemma 2.1 ofvan de Geer
[2000] shows that the entropy in the sup-norm bounds above the entropy with bracketing for theL1(Q)-
metric, implying finite entropy with bracketing in theL1(Q)-metric. Then apply Lemma 3.1 ofvan de Geer
[2000] to see thatG satisfies the ULLN.

A.2.3 Proof of Theorem3.6.3

Proof. Define

m(xi ,β,ϕ,Pi) := ∆ϕ(Pi)−∆xiβ
S(xi ,β,ϕ,Pi) := m(xi ,β,ϕ,Pi)

′m(xi,β,ϕ,Pi)

SN(β,ϕ,P) :=
1
N

N

∑
i=1

S(xi ,β,ϕ,Pi)

S0(β,ϕ,P) := E[S(x,β,ϕ,P)].

142



Clearly, the pair(β̂, ϕ̂) is defined to be minimizingSN(β,ϕ, P̂), and(β0,ϕ0) minimizesS0(β,ϕ,P0). In fact
S0(β0,ϕ0,P0) = SN(β0,ϕ0,P0) = 0. Thus

SN(β̂, ϕ̂, P̂) ≤ SN(β0,ϕ0, P̂)
p−→ 0, (A.2.11)

by the continuous mapping theorem. Thus from equation (A.2.11) we have:

0≤ S0(β̂, ϕ̂,P0) = SN(β̂, ϕ̂, P̂)+S0(β̂, ϕ̂,P0)−SN(β̂, ϕ̂, P̂)

≤ |S0(β̂, ϕ̂,P0)−SN(β̂, ϕ̂,P0)|
+|SN(β̂, ϕ̂,P0)−SN(β̂, ϕ̂, P̂)|+op(1) (A.2.12)

The first term of the RHS of the last inequality is anop(1) by corollary (A.2.2). To see that the last term is
also anop(1), we add and subtractm(xi , β̂, ϕ̂, P̂i)

′m(xi , β̂, ϕ̂,Pi0) to get the following:

|SN(β̂, ϕ̂,P0)−SN(β̂, ϕ̂, P̂)|

≤ 1
N

N

∑
i=1

{[
‖m(xi , β̂, ϕ̂, P̂i)‖T

2 +‖m(xi, β̂, ϕ̂,Pi0)‖T
2

]
‖m(xi , β̂, ϕ̂, P̂i)−m(xi, β̂, ϕ̂,Pi0)‖T

2

}

≤ C
1
N

N

∑
i=1

{
‖m(xi , β̂, ϕ̂, P̂i)−m(xi, β̂, ϕ̂,Pi0)‖T

2

}

≤ C
1
N

N

∑
i=1

sup
ϕ∈SK

‖ϕ(P̂i)−ϕ(Pi0)‖T
2 . (A.2.13)

As discussed in the proof of LemmaA.2.1, the setSK has finite entropy in the sup-norm, and is thus totally
bounded in the sup-norm. Its closureSK is therefore a compact set of continuous functions defined onK .
SinceP̂i → Pi0 in probability, by the continuous mapping theorem, the sequence(ϕ(P̂i)−ϕ(Pi0)) converges
pointwise (i.e., for eachϕ) to 0 overSK . Note also thatSK is equicontinuous by the Arzela-Ascoli theorem.
SinceSK is compact, the sequence also converges uniformly inSK , implying,

sup
ϕ∈SK

‖ϕ(P̂i)−ϕ(Pi0)‖T
2

p−→ 0

asn→ ∞. This in turn implies that the last term on the RHS of equation(A.2.13) goes to zero in probability.
Then from equation (A.2.12) we have that

0≤ S0(β̂, ϕ̂,P0) ≤ op(1). (A.2.14)

Since the model is identified, for allδ > 0 there existsε > 0 such that

d[(β,ϕ),(β0,ϕ0)] > δ ⇒ S0(β,ϕ,P0) > ε.

So we have that
Pr{d[(β̂, ϕ̂),(β0,ϕ0)] > δ} ≤ Pr{(S0(β̂, ϕ̂,P0) > ε} −→ 0,

where the convergence comes from equation (A.2.14). This proves that̂β p−→ β and supP∈K |ϕ̂(P)−
ϕ0(P)| p−→ 0.
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A.2.4 Proof of Theorem3.6.4

Proof. The proof of asymptotic normality of̂β relies heavily on the results inNewey and McFadden[1994].
By consistency results, we haveϕ̂ = ϕ0 +oP(1). The consistency of̂β also impliesβ̂ = β0 +oP(1). Hence,
we have

∆xi β̂ = ∆[ϕ̂(P̂i)]

= ∆[ϕ0(P̂i)]+ (∆[ϕ̂(P̂i)]−∆[ϕ0(P̂i)])

= ∆[ϕ0(P̂i)]+oP(1). (A.2.15)

Identification of the model and the above implies the following equality

∆xi(β̂−β0) = ∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)]+oP(1)

∆xi(β̂−β0) = Ri(P̂i −Pi0)+oP(1),

∆x′i∆xi(β̂−β0) = ∆x′iRi(P̂i −Pi0)+oP(1),

∆x′i∆xi(β̂−β0) = ∆x′iRi(P̂i −Pi0)+oP(1),

√
N

(
∑N

i=1 ∆x′i∆xi

N

)
(β̂−β0) =

1√
N

N

∑
i=1

∆x′iRi(P̂i −Pi0)+oP(1/
√

N) (A.2.16)

The second equality is due to the mean value theorem, whereRi is as in the statement of the theorem, except
that the components̄Pit , are between̂Pit andPit0. LinearizingP̂it aroundPit0 and stacking int gives:

√
N

(
∑N

i=1 ∆x′i∆xi

N

)
(β̂−β0) =

1√
N

N

∑
i=1

∆x′iRi f
−1(wi)Gi [γ̂(wi)− γ0(wi)]

+C
√

N‖γ̂(wi)− γ0(wi)‖2 +oP(
1√
N

) (A.2.17)

where

f−1(wi) =




f−1(wi1) 0 · · · 0
0 f−1(wi2) · · · 0
...

...
...

...
0 0 · · · f−1(wiT )




Gi =




−Pi10 1 0 0 · · · 0 0
0 0 −Pi20 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −PiT0 1




[γ̂(wi)− γ0(wi)] =




γ̂1(wi1)− γ10(wi1)
γ̂2(wi1)− γ20(wi1)

...
γ̂1(wiT )− γ10(wiT )
γ̂2(wi1)− γ20(wi1)



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For notational convenience, define theT × 2T matrix Mi := ∆X′
i Ri f−1(wi)Gi . As discussed in equation

(3.6.1), the second to term on the RHS of equation (A.2.17) converges to zero in probability. Then from
equation (A.2.17) we have:

√
N

(
∑N

i=1 ∆x′i∆xi

N

)
(β̂−β0) =

√
N
∫

M(w)[γ̂(w)− γ0(w)] f (w)dw

+

[
1√
N

N

∑
i=1

M(wi)[γ̂(wi)− γ0(wi)]

−
√

N
∫

M(w)[γ̂(w)− γ0(w)] f (w)dw

]

+oP(
1√
N

) (A.2.18)

Equation (3.6.1) along with the triangle inequality results in the term in brackets on the RHS of equation
being anoP(1/

√
N). As for the first term on the RHS:

∫
M(w)[γ̂(w)− γ0(w)] f (w)dw = N−1

N

∑
i=1

∫
M(w)qiJσ(w−wi) f (w)dw (A.2.19)

−
∫

M(w)γ0 f (w)dw

= N−1
N

∑
i=1

∫
[ f (w)M(w)qi −E[ f (w)M(w)q]]Jσ(w−wi)dw.

As discussed inNewey and McFadden[1994], the conditions in assumption3.6ensures that this integral is
close to the empirical measure. This with equation (A.2.18) implies that

√
N

(
∑N

i=1 ∆x′i∆xi

N

)
(β̂−β0) =

1√
N

N

∑
i=1

[ f (w)M(w)qi −E[ f (w)M(w)q]]

+oP(
1√
N

) (A.2.20)

Substituting forM(w) and observing that by the law of iterated expectations, the term on the RHS in expec-
tations is zero, we have the following:

√
N

(
∑N

i=1∆x′i∆xi

N

)
(β̂−β0) =

1√
N

N

∑
i=1

∆x′iRi(yi −Pi0)+op(
1√
N

)

=
1√
N

N

∑
i=1

∆x′iRiεi +oP(
1√
N

) (A.2.21)

The result then follows immediately from the Slutsky theorem combined with the WLLN and a multivariate
version of the Linberg-Levy CLT.
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A.2.5 Proof of Theorem3.6.5

Proof. The proof of efficiency uses the results developed inNewey[1994]. To proceed, we first set up the
environment so that the results are directly applicable.

Notice that the model construction in section3.2 implies the following equivalent moment condition

EQ[∆x′i(∆[ϕ0(Pi0)]−∆xiβ0)] = EQ[m̃(xi ,β,ϕ,Pi0)] = 0.

This moment condition can be seen as the first order conditionof S(xi ,β,ϕ,Pi) with respect to beta. Further-
more, the limit of our estimatêϕ maximizesEQ[S(xi ,β,ϕ,Pi)]. Thus by proposition 2 ofNewey[1994], the
estimation ofϕ can be ignored in calculating the asymptotic variance. So wework only with ϕ = ϕ0.

Let the distributionQ belong to a general family of distributionsQ . Define the parametric sub-
model Q (θ) := {Qθ : Qθ ∈ Q , Qθ = Q0 at θ = 0}. We assumefθ to be a probability density relative to
a fixed measureµ, the mapθ 7→

√
fθ(w) is continuously differentiable in a neighborhood of 0, andθ 7→∫ [

(∂ fθ/∂θ)2/ fθ
]
dµ is finite and continuous in this neighborhood. Then by Lemma 1.9 of van der Vaart

[1998], θ 7→ Qθ is a differentiable path. We use this differentiable path toinduce parametric submodels for
the parameters thatβ̂ andP̂i are estimating. That is, we defineµ(θ) = µ(Qθ) := plim β̂ andPi(θ) = Pi(Qθ) :=
plim P̂i , whereµ(Qθ) satisfies:

Eθ[m̃(x,µ,P(θ))] = 0 (A.2.22)

The rest of the proof involves finding the pathwise derivative d(w) satisfying ∂µ(θ)
∂θ = E[d(w)g(w)], where

g(w) := ∂
∂θ|θ=0

ln fθ(w) is the corresponding score. Then the variance bound for the estimation ofµ(θ) is

Var(d(w)). Differentiating equation (A.2.22) with respect toθ and solving for∂µ(θ)
∂θ gives

∂µ(θ)

∂θ
= −M−1

{
E

[
∂

∂P
m̃(x,β0,P(θ))

∂P(w,θ)

∂θ

]
+

∂
∂θ

Eθ [m̃(x,β0,P0)]

}
, (A.2.23)

where M := ∂
∂βE[m̃(x,β0P0)] = E[∆x′∆x], which is invertible by assumption (3.3.1.3). From equation

(A.2.22), the last term on the RHS of equation (A.2.23) is zero. Definingδ(x) := ∂
∂Pm̃(x,β0,P(θ)) and

applying the law of iterated expectations toP(w,θ) = E[y|w] gives

∂µ(θ)

∂θ
= −M−1

{
∂

∂θ
Eθ[δ(w)(y−P0(w))]

}

= [−(M−1δ(w)(y−P0))S(w)] (A.2.24)

Thus givingd(w) = −M−1δ(w)(y−P0). Noting thatδ(wi) = ∆x′iRi, we have that

Var(d(w)) = E[∆x′∆x]−1E[∆x′R]ΩE[R′∆x]E[∆x′∆x]−1 (A.2.25)

which is the asymptotic variance ofβ̂ derived in theorem3.6.4.
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A.2.6 Contraction Mapping

Proof. Here we show that equation (3.5.4) indeed defines a contraction mapping. For simplicity we drop
thes subscript. Recall that the usual kernel smoother is indeed aprojection (seeMammen et al., 2001). We
therefore write equation (3.5.4) as:

ϕ j+1(P) = PrPt ∆xβ̂+PrPt ϕ j(P̂t−1). (A.2.26)

Taking differences gives

ϕ j+1(P)−ϕ j(P) = PrPt ϕ j(P̂t−1)−PrPt ϕ j−1(P̂t−1). (A.2.27)

= PrPt

(
ϕ j(P̂t−1)−ϕ j−1(P̂t−1)

)
. (A.2.28)

Computing these projections atP̂t−1 and norming both sides of this equation gives the inequality

‖ϕ j+1(P̂t−1)−ϕ j(P̂t−1)‖ < ‖ϕ j(P̂t−1)−ϕ j−1(P̂t−1)‖, (A.2.29)

since the projection is a contraction mapping.
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A.3 APPENDIX TO CHAPTER 4

We prove here two lemmas which are used in the paper to evaluate Taylor Series expansions for composite
and inverse functions. Lemma 1 is taken from MMRS but is included here for the ease of reference.

Lemma A.3.1. Let

f (u) =
∞

∑
j=0

f j(u−u0)
j , g(t) =

∞

∑
j=0

g j(t − t0)
j , (A1)

together with u0 = g(t0). Then

( f ◦g)(t) =
∞

∑
j=0

a j(t − t0)
j (A2)

where a0 = f0 and for j≥ 1

a j =
j

∑
k=1

fkθk, j (A3)

and where theθs are evaluated recursively as follows

θk, j =
j−k+1

∑
s=1

gsθk−1, j−s, 1≤ k≤ j (A4)

with θ0,0 = 1.

Proof: We have

( f ◦g)(t) =
∞

∑
k=0

fk

[
∞

∑
s=1

gs(t − t0)
s

]k

(A5)

Whencea j is given by formula (A3) whereθk, j denotes the coefficient of(t − t0) j in thek-th power of the
factor in brackets. Formula (A4) follows from the identity

∞

∑
j=k

θk, j(t − t0)
j =

[
∞

∑
r=k−1

θk−1,r (t − t0)
r

]
·
[

∞

∑
s=1

gs(t − t0)
s

]
(A6)

Lemma A.3.2. Let f−1 denote the inverse of f

f−1(x) =
∞

∑
j=0

h j(x−x0)
j (A7)

with x0 = f (t0). Then
h0 = x0, h1 = f−1

1 (A8)

h j = − f− j
1 ·

[
j−1

∑
k=1

hkθk, j

]
(A9)

Proof: We apply Lemma 1 together withg = f−1, whence

(g−1◦g)(t) = t = t0 +(t − t0)

This implies thata0 = a1 = 1 anda j = 0 for j > 1 in Formula (A3). The proof follows from formulae (A3)

and (A4), with the latter implying thatθ j, j = f g
1 .
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