
 i

A PHYSICAL IMPLEMENTATION WITH CUSTOM LOW POWER EXTENSIONS OF
A RECONFIGURABLE HARDWARE FABRIC

by

Gerold Joseph Dhanabalan

B.E.(Hons.), Birla Institute of Technology and Science, Pilani, 2002

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

University of Pittsburgh

2008

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Gerold Joseph Dhanabalan

It was defended on

March 05, 2008

and approved by

Dr.Alex K. Jones, Assistant Professor, Electrical and Computer Engineering Department

Dr. Steven P. Levitan, John A. Jurenko Professor, Electrical and Computer Engineering

Department

Dr.Jun Yang, Assistant Professor, Electrical and Computer Engineering Department

 Thesis Advisor: Dr.Alex K. Jones, Assistant Professor, Electrical and Computer Engineering

Department

 ii

A PHYSICAL IMPLEMENTATION WITH CUSTOM LOW POWER EXTENSIONS

OF A RECONFIGURABLE HARDWARE FABRIC

Gerold Joseph Dhanabalan, M.S.

University of Pittsburgh, 2008

The primary focus of this thesis is on the physical implementation of the SuperCISC

Reconfigurable Hardware Fabric (RHF). The SuperCISC RHF provides a fast time to market

solution that approximates the benefits of an ASIC (Application Specific Integrated Circuit)

while retaining the design flow of an embedded software system. The fabric which consists of

computational ALU stripes and configurable multiplexer based interconnect stripes has been

implemented in the IBM 0.13um CMOS process using Cadence SoC Encounter.

As the entire hardware fabric utilizes a combinational flow, glitching power consumption

is a potential problem inherent to the fabric. A CMOS thyristor based programmable delay

element has been designed in the IBM 0.13um CMOS process, to minimize the glitch power

consumed in the hardware fabric. The delay element was characterized for use in the IBM

standard cell library to synthesize standard cell ASIC designs requiring this capability such as the

SuperCISC fabric. The thesis also introduces a power-gated memory solution, which can be used

to increase the size of an EEPROM memory for use in SoC style applications. A macromodel of

the EEPROM has been used to model the erase, program and read characteristics of the

EEPROM. This memory is designed for use in the fabric for storing encryption keys, etc.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... xvii

1.0 INTRODUCTION .. 1

1.1 STATEMENT OF THE PROBLEM ... 6

2.0 SUPERCISC RECONFIGURABLE HARDWARE FABRIC 7

2.1 ARCHITECTURE OF THE SUPERCISC RHF .. 8

2.2 ARITHMETIC AND LOGIC UNIT (ALU) .. 9

2.3 INTERCONNECT MULTIPLEXER STRUCTURE (MUX) 10

2.4 FINAL MULTIPLEXER STRUCTURE (FINALMUX) 11

3.0 POWER ESTIMATION .. 13

3.1 POWER DISSIPATION TERMINOLOGIES ... 13

3.1.1 Static Power Consumption ... 15

3.1.2 Dynamic Power Consumption .. 16

3.2 PRIMEPOWER POWER ESTIMATION FLOW ... 17

3.2.1 Prime Power’s Event Based Power Estimation Flow 18

3.2.2 Calculation of Static Power Dissipated using Prime Power 20

3.2.3 Calculation of Dynamic Power Dissipated using Prime Power 21

3.3 POWER ESTIMATION USING HSPICE .. 23

3.3.1 Calculation of Rise Power ... 24

3.3.2 Calculation of Fall Power.. 25

3.3.3 Calculation of On-State Leakage ... 26

3.3.4 Calculation of Off-State Leakage ... 26

 iv

4.0 ASIC DESIGN FLOW ... 28

4.1 PHYSICAL DESIGN FLOW ... 30

4.1.1 Floorplanning ... 30

4.1.2 Powerplanning ... 33

4.1.3 Partitioning a design .. 34

4.1.4 Routing Feedthrough .. 34

4.1.5 Pin Assignment .. 36

4.1.6 Placement ... 36

4.1.7 Routing ... 37

5.0 PHYSICAL IMPLEMENTATION OF THE SUPERCISC RHF 38

5.1 DESIGN OF THE ALU STRIPE ... 38

5.1.1 ALU Module Specifications .. 38

5.1.2 ALU Stripe Specifications ... 40

5.1.3 ALU Stripe Automation Scripts ... 42

5.2 DESIGN OF THE MULTIPLEXER STRIPE .. 48

5.2.1 MUX Module Specifications ... 49

5.2.2 MUX Stripe Specifications .. 50

5.2.3 MUX Stripe Automation Scripts .. 52

5.3 DESIGN OF THE FINALMUX STRIPE .. 56

5.3.1 FINALMUX Module Specifications... 56

5.3.2 FINALMUX Stripe Specifications ... 58

5.3.3 FINALMUX Stripe Automation Scripts ... 59

5.4 DESIGN OF THE BIGFABRIC .. 61

 v

5.4.1 BIGFABRIC Chip Specifications... 61

5.4.2 BIGFABRIC Automation Scripts .. 63

5.5 POWER ANALYSIS OF THE CHIP .. 69

5.5.1 Power Results for ADPCM Encoder Bench Mark 73

5.5.2 Power Results for ADPCM Decoder Bench Mark 74

5.5.3 Power Results for IDCT Row Bench Mark... 75

5.5.4 Power Results for IDCT Column Bench Mark ... 76

5.5.5 Power Results for Sobel Bench Mark .. 77

5.5.6 Power Results for Laplace Bench Mark .. 78

6.0 DELAY ELEMENTS FOR LOW POWER FABRIC .. 79

6.1 DELAY ELEMENT TOPOLOGIES ... 79

6.2 LOW POWER FABRIC USING DELAY ELEMENTS 89

6.3 THYRISTOR BASED DELAY ELEMENT ... 91

6.3.1 CMOS Thyristor Concept .. 91

6.3.2 Dynamic Triggering Scheme .. 93

6.3.3 Static Triggering Scheme .. 94

6.3.4 Delay Analysis of the Thyristor Based Delay Element 96

6.4 MODIFIED CMOS THYRISTOR DELAY ELEMENT 99

6.5 CUSTOM CMOS THYRISTOR DELAY ELEMENT FOR FABRIC 102

6.5.1 Programmability .. 104

6.5.2 Layout of the Programmable Delay Element .. 107

6.5.3 Parasitic Extraction of the Delay Element .. 108

6.5.4 Cell Characterization and HSPICE Post-Processing 108

 vi

6.5.5 Characterization Results for a 4ns delay element 114

6.5.6 Characterization Results for a 5ns delay element 115

6.5.7 Characterization Results for a 7ns delay element 116

7.0 EEPROM CIRCUIT DESIGN ... 117

7.1 EEPROM CELL .. 117

7.1.1 Erase Operation ... 119

7.1.2 Write Operation ... 121

7.2 EEPROM MEMORY ARCHITECTURE .. 123

7.2.1 Ramp Generator .. 129

7.2.2 High Voltage Generation Using Charge Pump ... 130

7.2.3 Word Line Level Shifter ... 130

7.2.4 Column Latch for Bitlines .. 131

7.2.5 Power Multiplexer ... 133

7.2.6 Sense Amplifier .. 134

7.2.7 Memory Bank Architecture .. 137

7.2.8 Memory Bank Simulation ... 139

8.0 POWER GATED EEPROM DESIGN .. 140

8.1 ARCHITECTURE OF THE POWER GATED MEMORY 140

8.1.1 Memory Block with Power Gate .. 142

8.1.2 Dynamic Decoder ... 143

8.2 MEMORY BLOCK POWER CONSUMPTION ... 143

8.3 POWER-ON RESET ... 145

8.4 RESULTS ... 148

 vii

9.0 CONCLUSION ... 151

APPENDIX A .. 152

APPENDIX B .. 155

APPENDIX C .. 170

APPENDIX D .. 184

BIBLIOGRAPHY ... 194

 viii

 LIST OF TABLES

Table 5-1: ALU Module Specifications .. 39

Table 5-2: Specification of the ALU Stripe .. 41

Table 5-3: ALU Initialization Parameters... 43

Table 5-4: ALU Module Pin Placement Parameters ... 45

Table 5-5: ALU Horizontal Routing Feedthrough Specification ... 47

Table 5-6: MUX Module Specification .. 50

Table 5-7: MUX Stripe Specifications ... 52

Table 5-8: MUX Module Pin Placement Parameters ... 53

Table 5-9: MUX Stripe Feedthrough Specifications .. 54

Table 5-10: MUX Stripe Pin Placement Parameters .. 55

Table 5-11: FINALMUX Module Specification .. 56

Table 5-12: Final MUX Stripe Specifications .. 59

Table 5-13: BIGFABRIC Module Specifications ... 62

Table 5-14: Reconfigurable Hardware Fabric Chip Specifications .. 63

Table 5-15: BIGFABRIC VRF for FINALMUX stripe ... 68

Table 5-16: BIGFABRIC VRF for ALU and MUX stripe ... 68

Table 5-17: ADPCM Encoder Post Layout Power Simulation .. 73

Table 5-18: ADPCM Decoder Post Layout Power Simulation .. 74

Table 5-19: IDCT Row Post Layout Power Simulation ... 75

Table 5-20: IDCT Col Post Layout Power Simulation ... 76

Table 5-21: Sobel Post Layout Power Simulation .. 77

 ix

Table 5-22: Laplace Post Layout Power Simulation .. 78

Table 8-1: Power Gated Memory Simulation Results .. 148

Table D 1: Characterization data for 4ns delay element using 160fF buffer...............................184

Table D 2: Characterization data for 4ns delay element using 640fF buffer 185

Table D 3: Characterization data for 4ns delay element using 80fF buffer 186

Table D 4: Characterization data for a 5ns delay element using 160fF buffer 187

Table D 5: Characterization data for a 5ns delay element using 640fF buffer 188

Table D 6: Characterization data for a 5ns delay element using 80fF buffer 190

Table D 7: Characterization data for a 7ns delay element using 160fF buffer 191

Table D 8: Characterization data for a 7ns delay element using 640fF buffer 192

Table D 9: Characterization data for a 7ns delay element using 80fF buffer 193

 x

LIST OF FIGURES

Figure 1-1: SuperCISC Reconfigurable Hardware Fabric Triangle ... 2

Figure 1-2: SuperCISC RHF System Integration Diagram .. 5

Figure 2-1: Architecture of SuperCISC Reconfigurable Hardware Fabric 8

Figure 2-2: ALU Logical Diagram ... 10

Figure 2-3: 5:1 MUX Interconnect Structure .. 11

Figure 2-4: FINALMUX Stripe Logical Diagram .. 12

Figure 3-1: Power Dissipation Terminology Tree .. 14

Figure 3-2: Schematic of an Inverter .. 16

Figure 3-3: Prime Power Event Based Simulation Flow .. 18

Figure 3-4: Leakage Power definition of a NAND Standard Cell .. 21

Figure 3-5: NLPM definition of Internal Power ... 23

Figure 3-6: Rise Power Measurement window ... 24

Figure 3-7: HSPICE Rise Power Calculation command .. 25

Figure 3-8: Fall Power Measurement window .. 25

Figure 3-9: On-state leakage Power Measurement window ... 26

Figure 3-10: Off-state leakage Power Measurement window .. 27

Figure 4-1 : Typical ASIC Design Flow ... 29

Figure 4-2: ASIC Physical Design Flow .. 31

Figure 4-3: Floorplan specifications ... 32

Figure 4-4: ALU Stripe Floor plan ... 32

Figure 4-5: Power Planning .. 33

 xi

Figure 4-6: Routing in the absence of Routing Feedthroughs .. 35

Figure 4-7: Routing in the presence of Routing Feedthroughs ... 35

Figure 4-8: Placed ALU Module .. 36

Figure 4-9: Routed ALU Module ... 37

Figure 5-1: Placed and Routed ALU Module ... 39

Figure 5-2: Logical ALU Stripe ... 40

Figure 5-3: Floorplan of ALU Stripe .. 40

Figure 5-4: Placed and Routed ALU Stripe .. 41

Figure 5-5: Zoomed-in view of Placed and Routed ALU Stripe ... 42

Figure 5-6: Default ALU Module Pin alignment ... 46

Figure 5-7: Early Exit ALU Module Pin alignment ... 46

Figure 5-8: Normal ALU Stripe Pin assignment .. 48

Figure 5-9: Specialized ALU Stripe Pin assignment .. 48

Figure 5-10: MUX Module Logical Diagram ... 49

Figure 5-11: Placed and Routed MUX Module .. 50

Figure 5-12: MUX Stripe Logical Diagram.. 51

Figure 5-13: MUX Stripe Floorplan ... 51

Figure 5-14: Placed and Routed MUX Stripe ... 52

Figure 5-15: FINALMUX Module Logical Diagram ... 57

Figure 5-16: Placed and Routed FINALMUX Module .. 57

Figure 5-17: Final MUX Stripe Logical Diagram .. 58

Figure 5-18: Final MUX Stripe Floorplan .. 58

Figure 5-19: Placed and Routed FINALMUX Stripe ... 59

 xii

Figure 5-20: BIGFABRIC Logical Diagram .. 65

Figure 5-21: Top-level routing of the BIGFABRIC ... 66

Figure 5-22: Place and Routed BIGFABRIC in OKI 0.16um .. 67

Figure 5-23: Modelsim Command for SDF back annotation ... 70

Figure 5-24: SPEF Annotation in Prime Power .. 72

Figure 5-25: Summary of Power Analysis Flow .. 72

Figure 6-1: Transmission gate based delay element ... 81

Figure 6-2: Transmission Gate with Schmitt Trigger ... 81

Figure 6-3 Cascaded inverter based delay element ... 82

Figure 6-4: NP-Voltage Controlled delay element ... 83

Figure 6-5: NP-Voltage Controlled delay element with Schmitt Trigger 84

Figure 6-6: N-Voltage Controlled delay element ... 85

Figure 6-7: P-Voltage Controlled delay element .. 86

Figure 6-8: Current Starved Cascaded Inverter .. 86

Figure 6-9: m-Transistor Cascaded Inverter ... 87

Figure 6-10: Staged Cascaded Inverter ... 88

Figure 6-11: Combinational switching without delay elements ... 90

Figure 6-12: Combinational switching with delay elements .. 90

Figure 6-13: CMOS Thyristor structure ... 92

Figure 6-14: CMOS Thyristor Dynamic Triggering Scheme ... 93

Figure 6-15: CMOS Thyristor Static Triggering Scheme ... 94

Figure 6-16: CMOS Thyristor Shunt current when D transitions to a high 95

Figure 6-17: CMOS Thyristor shunt current when D transitions to a logic low 96

 xiii

Figure 6-18: CMOS Thyristor showing Parasitic Capacitances ... 100

Figure 6-19: CMOS Modified Thyristor Delay Element .. 101

Figure 6-20: Timing diagram of the modified CMOS delay element .. 102

Figure 6-21: Custom CMOS Thyristor based Delay Element .. 103

Figure 6-22: Programmable delay element ... 106

Figure 6-23: AND gate to generate Dctrl ... 107

Figure 6-24: Layout of the Programmable Delay Element ... 107

Figure 6-25: Layout of a 640fF drive Buffer .. 109

Figure 6-26: Layout of a 160fF drive buffer ... 109

Figure 6-27: Layout of a 80fF drive buffer ... 110

Figure 6-28: Cell Rise Delay Measurement .. 111

Figure 6-29: Cell Fall Delay Measurement .. 112

Figure 6-30: Rise Time Measurement Waveform .. 112

Figure 6-31: Fall Time Measurement Waveform ... 113

Figure 6-32: Input and Delayed waveforms for 4ns delay element .. 114

Figure 6-33: Q and Q~ discharge waveforms for 4ns delay element ... 114

Figure 6-34: Input and delayed waveforms for a 5ns delay element .. 115

Figure 6-35: Q and Q~ discharge waveforms of a 5ns delay element .. 115

Figure 6-36: Input and delayed waveforms of a 7ns delay element ... 116

Figure 6-37: Q and Q~ waveforms of a 7ns delay element .. 116

Figure 7-1: Structure of the FLOTOX Transistor ... 118

Figure 7-2: Symbol of a FLOTOX transistor ... 118

Figure 7-3: IV Characteristics of a virgin FLOTOX transistor ... 119

 xiv

Figure 7-4: EEPROM Erase Physical Operation .. 120

Figure 7-5: Charge on Floating Gate after erase operation ... 120

Figure 7-6: IV Characteristics of an erased FLOTOX transistor .. 121

Figure 7-7: EEPROM Write Physical Operation .. 122

Figure 7-8: Charge on floating gate after write operation .. 122

Figure 7-9: IV Characteristics of a written FLOTOX transistor... 123

Figure 7-10: FLOTOX EEPROM Macromodel Schematic .. 126

Figure 7-11: HSPICE Description of the FLOTOX EEPROM Macromodel 127

Figure 7-12: FLOTOX EEPROM Cell HSPICE Simulation .. 128

Figure 7-13: Ramp Generator Schematic ... 130

Figure 7-14: Schematic of Voltage Level Shifter ... 131

Figure 7-15: Data Latch Schematic of Column Latch .. 132

Figure 7-16: Level Shifter and Pass Transistor for Column Latch ... 133

Figure 7-17: Power Multiplexer Schematic .. 134

Figure 7-18: Sense Amplifier Schematic .. 135

Figure 7-19: Sense Amplifier Reading a Logic ‘1’ .. 136

Figure 7-20: Sense Amplifier Reading a Logic ‘0’ .. 136

Figure 7-21: Memory Bank Architecture ... 138

Figure 7-22: EEPROM Bank Simulation ... 139

Figure 8-1: Memory Block with power gate ... 141

Figure 8-2: Power Gated Memory Design .. 142

Figure 8-3: Simulation of Power on condition ... 145

Figure 8-4: Dynamic Decoder with power-on reset ... 146

 xv

Figure 8-5: Power-on reset timing diagram .. 147

Figure 8-6: Power-on reset circuit .. 147

Figure 8-7: Inverter with power gate. ... 149

Figure 8-8: Power Enable Ramp-up simulation .. 150

 xvi

ACKNOWLEDGEMENTS

“Many, O Jehovah my God, are the wonderful works which You have done, and Your thoughts

toward us; There is none to compare with You. If I would declare and speak of them, they would

be too numerous to count”

 Psalm 40:5

As I pen this down, I think of all the great works God has done in my life. As a Father

cares for his child, so has He protected and cared for me. All glory and honor be to God who has

blessed every work of my hand and has made this education possible. I dedicate this thesis to

Lord Jesus Christ who has been my strength throughout my life.

I like to express my sincere gratitude to Dr.Alex K. Jones for giving me an opportunity to

work with him on my thesis. He has been a constant source of encouragement throughout the

course of the research and has constantly supported my interests in analog circuit design. My

sincere thanks for all the help and support he has given throughout the course of my study.

I like to express my thanks to Dr. Steven P. Levitan who has given me a strong

foundation for a career in VLSI. The design basics that he has given have taken me a long way . I

like to express my thanks to Dr.Jun Yang for being a part of my thesis defense committee and

helping me out in my courses. I consider it a great previlege to be a student in many of her

classes.

 xvii

 xviii

I like to express my sincere thanks to my parents Dhanabalan, Alphonse Mary and my

wife Pio Clara who have shared my burden and have always encouraged me in my difficult

times. Apart from her motivation, I also thank Pio for her valuable technical suggestions. I also

like to thank my brothers Charles Daniel and Richard Carol, who have always helped me keep

up with the stresses of graduate studies. I also like to thank my uncle Gnanasekar and aunt

Anthuvan Grace for their constant support.

I also like to thank Dr.J.T. (Tom) Cain and Sandy Weisberg for their help with all my

academic related issues. My special thanks to Sam Dickerson for his help with all HSPICE

simulations. I like to thank Bill McGahey who has been the key person to contact customer

support to get many CAD tool related issues solved. I also like to thank Gayatri Mehta for her

help with the Prime Power simulations and Hariram for his help with the documentation.

I like to thank my friends Suresh and Gopinath who have helped me in my studies. I also

like to thank Ajay Ogirala who has always been my “academic yellow pages”. I also like to

thank my friends Anish, Gladys, Anand, Christy, Joshua, Manoj, Jasmine, Ben, Mekha,

Ratnakar, Sabrina, Pastor Dave, Laura, Pastor Prabhu Isaac and family who have always prayed

for me.

1.0 INTRODUCTION

Technological advances in multimedia have increased the demand on high performance systems.

Hardware acceleration has become a necessity to cope with the challenges in processing speed

especially for signal processing applications. On the other hand, market trends have shown that

the economic success of a product is primarily determined by its time to market. Design of

ASICs (Application Specific Integrated Circuits) based on a standard ASIC flow has always

shown better performance and power characteristics at the expense of increased time-to-market.

ASICs are the choice when huge design times can be tolerated [1]. However, with the

market for many applications, especially the consumer electronic products being very volatile, it

is necessary that these products reach the market faster for a huge return on investment. Such a

market driven by design time has led to the increased use of reconfigurable devices. FPGAs

(Field Programmable Gate Arrays) are the most commonly used reconfigurable devices.

Although FPGAs reduce the design time tremendously, the power consumed by the FPGAs

prevents them from being used for battery-powered applications, which demand low power.

 The wireless and mobile market has made the highest impact on the low-power design

space. With consumer demands increasing at an exponential rate for low-power electronic

gadgets, the research community has interesting opportunities to explore high performance low-

power designs. This interest in developing a high-performance, low-power, reconfigurable

hardware device led to the birth of an energy efficient SuperCISC Reconfigurable Hardware

 1

fabric. The objective of the SuperCISC RHF research is to develop a hardware design that has a

reconfigurable architecture, high performance and low power [2] [3]. The RHF triangle as shown

in Figure 1-1 below illustrates the three key design parameters that have been optimized by the

design of the SuperCISC RHF.

RECONFIGURABILITY LOW - POWER

HIGH-PERFORMANCE

Figure 1-1: SuperCISC Reconfigurable Hardware Fabric Triangle

The work described in the document is about the physical implementation of the

SuperCISC reconfigurable hardware fabric of a specific instance called 20X18. However,

automation scripts have been developed to implement other instances of the hardware fabric. The

physical implementation of the design is the final stage in the SuperCISC reconfigurable

hardware design flow and is one of the most crucial stages in the design flow. The physical

design of the SuperCISC RHF is essential to fabricate and commercialize the IP (Intellectual

 2

Property) block. The physical design flow actually transforms the synthesized design into the

layout that gets fabricated. Proper design considerations at the layout level are of utmost

importance for the commercial success of the IP block.

The pre-layout power characteristics of the IP block, estimated after synthesizing the

Verilog/VHDL netlist can use wireload models to model the interconnect parasitics. Such a

model could be pessimistic or optimisitic dependent on the vendor library. For an accurate power

estimation it is necessary to calculate the power consumed by the chip after placement and

routing of the chip has been completed. Also, as the RHF has interconnects which are

reconfigurable, it is necessary to understand the power consumed by the interconnects. Hence it

is of prime importance to do a post-layout power analysis.

As the objective of the SuperCISC reconfigurable hardware fabric (RHF) is to achieve a

low power reconfigurable solution, it is necessary to use custom circuit design techniques to

reduce any source of wasteful power consumption in the fabric. As the SuperCISC RHF uses a

complete combinational flow, glitching power is inherent to the fabric. The key design technique

that has been adopted is to freeze the inputs to the computational units using latches until all the

inputs to the computational unit have arrived. The latches are transparent (allow data to pass

through) when enabled and hold the previous value when disabled. The ‘enable’ input to these

latches is controlled by a delay element, which times the enabling of the latches. The value of the

delay element to be used is determined using STA (Static Timing Analysis) at the mapping stage

in the reconfigurable hardware fabric design flow. Hence, delay elements can be used to self-

time the design. However, conventional delay elements, like the inverter chain, transmission

gate, n or p-voltage controlled delay elements have a limitation on the range of delay that can be

obtained. Also the signal integrity of these delay elements is significantly degraded because of

 3

the RC characteristics of the delay elements. More importantly, the power consumed by these

delay elements is significant because of the short circuit power consumed by the degraded signal

integrity or because of the large number of delay elements that are needed to obtain the delay.

Hence it is necessary to use a delay element that can suite the delay range requirements as

well as have a low power characteristic. The CMOS thyristor based delay element is such a

circuit that possesses good signal integrity properties with a wide delay range and low power.

Circuit level changes to minimize the on-state and sub-threshold leakage power consumed by the

CMOS thyristor based delay element have been suggested. Also, design techniques to minimize

the number of delay elements used in the SuperCISC RHF are essential. So the design has been

improved to make the delay element programmable for a specific range of delays.

EEPROMs have become an integral part of modern SoCs to store non-volatile

information such as cryptographic keys etc. EEPROMs can be integrated with the SuperCISC

reconfigurable hardware fabric to store such non-volatile information. However, the EEPROM

needs to have a low power characteristic to save the power gained by the SuperCISC RHF. This

thesis proposes a power gated EEPROM architecture level optimization which enables an

increase in the size of the EEPROM with a minimum power overhead. A FLOTOX EEPROM

macromodel described in HSPICE has been used to simulate the AC and DC characteristics of

the EEPROM. Power simulations were then performed on a 2, 4, 8 bank EEPROM architecture

to show the minimum power overhead in using the power-gated design.

Thus the objective of this thesis is to do a physical implementation of the SuperCISC

reconfigurable hardware fabric and estimate its power characteristics after placement and

routing. The thesis also shows the implementation of a CMOS thyristor based delay element that

can be programmed for specific delay values to be used in the SuperCISC RHF. The final part of

 4

the thesis proposes a power gated memory architectural solution for use with non-volatile

memories such as EEPROMs. Figure 1-2 shows the system-level diagram where the SuperCISC

RHF, the delay elements and the EEPROM are integrated as part of the SuperCISC architecture.

The glue logic interface shown in the figure is used to interface the processor core with the

SuperCISC RHF and the power gated EEPROM. The control bits for programming the delay

elements are a part of the control bus input to the RHF. Chapters 2, 6 and 8 contain the details of

the SuperCISC RHF, delay elements and the power-gated EEPROM respectively.

Figure 1-2: SuperCISC RHF System Integration Diagram

 5

1.1 STATEMENT OF THE PROBLEM

The physical implementation of the SuperCISC Reconfigurable Hardware Fabric is important for

the RHF design to be fabricated and commercialized. Also for an accurate power estimation of

the IP block, post layout power analysis needs to be performed. As the objective of the

SuperCISC RHF is to consume minimum power, it is necessary that any source of unwanted

power consumption be eliminated. As the SuperCISC RHF uses a combinational flow, glitching

power is inherent to the fabric. So, specialized circuits like the delay element are needed to time

the design to minimize the glitching power. Also for SoCs that use an EEPROM integrated with

the SuperCISC RHF, increasing the size of the EEPROM while keeping the active power low is

essential. The work described in this thesis shows the methodology used for the physical

implementation of the fabric. Also, the design of the CMOS delay element has been described

along with the power gating technique used to increase the size of the EEPROM.

My contributions to the thesis have been on the physical implementation of the

SuperCISC RHF in the IBM 0.13um CMOS technology. The parasitics extracted from the layout

have been annotated to the design to estimate the post layout power consumption. I have also

implemented a programmable delay element with delays of 4ns, 5ns and 7ns to be used as a

standard cell in the IBM cell library. The standard cell has been characterized for various loads

and transition times. To increase the size of the EEPROM while keeping the active power

consumption low, a power gated memory solution has been proposed. Power measurements were

conducted to show that the power-gated memory solution enables an increase in the size of the

memory with a minimum power overhead.

 6

2.0 SUPERCISC RECONFIGURABLE HARDWARE FABRIC

The SuperCISC Reconfigurable Hardware Fabric is a hardware acceleration unit, which can be

embedded into the SuperCISC processor architecture [2]. The fundamental idea behind the

SuperCISC architecture is to use a processor core to handle the control-intensive part of the code,

while the SuperCISC RHF handles the computation intensive parts of the code, called kernels

[2]. The kernels are converted into an entirely combinational hardware function generated

automatically from C using a design automation flow. Using hardware predication, a Control

Data Flow Graph (CDFG) can be converted into a Super Data Flow Graph (SDFG) [3] [4].

SDFG based hardware functions are asynchronous with respect to the processor core. The

hardware functions generated by the SDFG get mapped onto the hardware fabric using a mapper.

The entire SuperCISC RHF is a purely combinational data flow unit. Removing the sequential

logic simplifies the implementation of the SDFG on the hardware fabric. Removal of sequential

logic also saves operating power by avoiding clock trees and local storage elements [2]. The

objective of the SuperCISC RHF is to provide a reconfigurable device which consumes low

energy. The low energy consumed by the device partly comes from the limited programmability

available.

 7

2.1 ARCHITECTURE OF THE SUPERCISC RHF

The architecture of the SuperCISC RHF comprises an array of ALUs with interconnects between

the rows of the ALU array. Each row in the reconfigurable fabric is called a stripe. The stripe of

ALUs is called the Computational Stripe and the stripe of multiplexers which form the

interconnect logic is called the Interconnect Stripe. The multiplexers in the Interconnect Stripe

can be configured to select the appropriate operands to the ALU [3]. Figure 2-1 shows the

architecture of the reconfigurable hardware fabric with computational and interconnect stripes

alternating.

Figure 2-1: Architecture of SuperCISC Reconfigurable Hardware Fabric

 8

The specifications of the hardware fabric are the number of ALUs per stripe and the

number of Computational (ALU) stripes. A 20X18 configuration represents a RHF with 20

ALUs per stripe and 18 ALU stripes. The number of multiplexer stripes is one less than the

number of the ALU stripes, as the ALU and MUX stripes alternate each other. The final ALU

stripe in the design is followed by a special interconnect stripe called the FINALMUX stripe.

The FINALMUX stripe has its inputs from the last ALU stripe and from specialized ALU stripes

called “early exit” ALU stripes. The FINALMUX stripe multiplexes these inputs to the get the

final output of the hardware fabric.

2.2 ARITHMETIC AND LOGIC UNIT (ALU)

The ALU performs conventional arithmetic and logical operations. In addition to the normal

operations, a specialized hardware predication function is implemented within the ALU for

implementing SDFGs [3] [4]. This operation requires a third single-bit operand called

predicator input to be included in the ALU. The predicator input acts as a selector to choose one

of the two operands INP1 and INP2 [3]. Figure 2-2 below shows the logical diagram of the ALU

used in the hardware fabric. The control pins of the ALU select the logical operation performed

by the ALU.

 9

DATA INPUT DATA INPUT

PREDICATOR
INPUT

CONTROL
PINS

INP1[31:0] INP2[31:0]

OUTPUT[31:0]

DATA OUTPUT

ALU MODULE

Figure 2-2: ALU Logical Diagram

2.3 INTERCONNECT MULTIPLEXER STRUCTURE (MUX)

The multiplexer implements the interconnect structure used to connect the computational stripes.

One possible interconnect structure called 5:1 is shown in Figure 2-3. The 5:1 interconnect

structure is basically a 5:1 multiplexer that is emulated using 4:1 multiplexers. The 5:1

multiplexer is undesirable from a power and performance perspective. Hence it is good to

emulate the behavior using 4:1 multiplexers. The ALU has three operands, INP1, INP2 and the

predicator input. Each operand of the ALU has a multiplexer associated with it. The multiplexer

for operand INP1 selects from ALU0, ALU1, ALU2 or ALU3. The multiplexer for operand

 10

INP2 selects from ALU1, ALU2, ALU3 or ALU4. The multiplexer for the predicator input is

similar to the one for operand INP2.

Figure 2-3: 5:1 MUX Interconnect Structure

2.4 FINAL MULTIPLEXER STRUCTURE (FINALMUX)

The third component of the hardware fabric is the FINALMUX stripe which is again a

multiplexer stripe. The output of the fabric is physically connected to the output of the FINAL

MUX stripe. A 4:1 FINALMUX stripe selects one out of four outputs. Let us consider a 20X18

RHF configuration with a 4:1 FINALMUX stripe and an ALU Stripe spacing of 4 as an example.

For a 20X18 configuration having 18 computational stripes, the outputs can actually be derived

from ALU stripe 6, ALU stripe 10, ALU stripe 14 and ALU stripe 18 for an ALU stripe spacing

 11

of 4. These connections are termed “early exits” and are a hardware provision to bypass the

remaining computational stripes, for applications that need not use the remaining computational

stripes. The ALU Stripe spacing determines the spacing between the “early exits” in the fabric.

Figure 2-4 below shows the logical functionality of the FINALMUX stripe with inputs

connected to the outputs of the respective early exits.

From
ALU

Stripe-6

From
ALU

Stripe-10

From
ALU

Stripe-14

From
ALU

Stripe-18

4:1 Final Mux

Final Output

Control
Input

Figure 2-4: FINALMUX Stripe Logical Diagram

 12

3.0 POWER ESTIMATION

The need for electronic gadgets to be mobile has driven the electronics industry for low-power

design techniques, starting all the way from architecture level improvements down to transistor

layout optimization. As the goal of the SuperCISC reconfigurable hardware fabric is to achieve

high performance and low-power, it is necessary to estimate the power consumed by the fabric

after synthesis at the pre-layout level as well as after the physical design at the post-layout level

stage. This section of the document discusses the power consumption terminologies, the power

estimation flow using Synopsys Prime Power and transistor level power estimation techniques

for the delay element used in the fabric.

3.1 POWER DISSIPATION TERMINOLOGIES

The power consumed by a circuit can be broadly classified into two categories [5]:

(i) Static Power Consumption

(ii) Dynamic Power Consumption

Static Power Consumption in a CMOS circuit can be due to variety of sources, sub-threshold

leakage, gate tunneling leakage and junction leakage. Dynamic power consumption can be

classified into switching power and internal power. The power dissipation terminology tree

 13

shown in Figure 3-1 shows the various components of power that gets dissipated in a CMOS

circuit [5]. The subsections discuss in detail about the various terminologies used in the design.

Figure 3-1: Power Dissipation Terminology Tree

 14

3.1.1 Static Power Consumption

Static power is the power dissipated when the gate or circuit is not switching. In other words, the

power consumed when the device is static or inactive can be called static power. The primary

source of static power comes from the leakage of current from the supply rail to ground through

various paths within the circuit. Hence, it has become conventional to refer static power as

leakage power.

Sub-threshold leakage has been one of the main sources of leakage in nanometer CMOS

technologies. Consider an NMOS transistor as an example. The sub-threshold leakage is due to

the current flow from the drain to source of the transistor, even when the gate voltage is set

below the threshold voltage of the transistor. This is because of the weak inversion layer that

exists in the channel at voltages close to the threshold voltage of the transistor. Sub-threshold

leakage has been shown to be the major leakage source in nanometer CMOS technologies. The

other sources of leakage include gate tunneling leakage and junction tunneling leakage. Gate

tunneling leakage is the current flow into or out of the gate terminal of a MOSFET. Gate

tunneling leakage has become an issue with nanometer CMOS technologies because of the

reduced gate oxide thickness. Junction leakage is the current flow from the drain or source

diffusion region to the body (substrate) terminal of a MOSFET. This leakage current is because

of the reverse biased junctions between the source/drain diffusion region and the substrate or the

well [6].

 15

3.1.2 Dynamic Power Consumption

Dynamic Power is the power dissipated when the circuit is active and switches. Dynamic power

can be visualized to be the sum of two components:

(i) Switching Power

(ii) Internal Power

Switching Power

Switching power is the power dissipated by the charging and discharging of the load

capacitance of the circuit. The switching power of an inverter shown in Figure 3-2 driving a load

CL is given by Equation 3-1 where f is the frequency of operation in Hz, CL is the load

capacitance in F, and Vdd is the supply voltage in V [7].

Figure 3-2: Schematic of an Inverter

Power (W) = f *CL *Vdd
2

Equation 3-1: Dynamic Power of an Inverter

 16

Internal Power

Internal Power is the power dissipated by the cell because of the charging and

discharging of the nodes internal to the cell. In addition to that, short-circuit current that results

when both the PMOS and NMOS transistors are ON (as in the case of an inverter) dissipates

short-circuit power. This power is also accounted in the internal power consumption. Short-

circuit power is a function of the input transition time. For slow transition times, the short circuit

power is high as compared with fast transition times because the NMOS and PMOS transistors

are simultaneously ON for a longer duration of time. Short circuit power is also influenced by

the sizes of the transistors.

3.2 PRIMEPOWER POWER ESTIMATION FLOW

Prime power is gate-level power analysis tool for analyzing the power dissipation of standard-

cell based designs [5]. Prime power supports event-based and statistical activity based power

analysis at the gate level.

Event based power analysis uses event driven simulation to calculate the power

consumed at every event. Event based power analysis is actually dependent on the input vector

and when averaged over a large number of input vectors can give a very accurate estimate of the

power consumed by the chip.

Statistical Activity based power analysis uses a probabilistic and statistical estimation

algorithm to calculate the average power. It is mostly vector free or has weak vector dependence

[5].

 17

As event based power analysis was adopted as the design flow for the power estimation

of the SuperCISC reconfigurable hardware fabric as it provides accurate time based information

[5].

3.2.1 Prime Power’s Event Based Power Estimation Flow

Figure 3-3 shows the event-based simulation flow used by Synopsys Prime Power.

PrimePower’s simulation flow is comprised of two distinct phases [5]:

(i) Switching activity Generation

(ii) Power Profile Generation.

Figure 3-3: Prime Power Event Based Simulation Flow

 18

Switching activity Generation

Switching activity generation is an important step in event based power estimation.

Switching activity of the circuit is estimated by running a Modelsim simulation of the design

using predetermined input vectors. The toggling of nets in the design is captured by the VCD

(Value Change Dump) file. While generating the VCD file, the delays after place and route of

the design can be annotated using the SDF (Standard Delay Format) file. The SDF file contains

the delays of all the cells and interconnects in the design. The SDF file can be generated by the

place and route tool like SoC Encounter using the command ‘delayCal’.

Although, the back-annotation of the SDF file is optional, back-annotation gives an

accurate estimate of the delays in the design and is therefore highly recommended. Before the

design has been placed and routed, an approximate estimate of the delay can be obtained by

using the synthesized netlist along with wire load models. The use of SDF file is much better

than using wire load models as the SDF file contains the actual calculated delays from the place

and route information [38].

Power Profile Generation

The power profile can be generated by running a prime power script on the design which

uses the VCD file. Using the VCD file which contains the information on all toggling nets in the

design, dynamic energy consumed in every transition is computed. The static power consumed

by every cell in the design is given by the standard cell library description provided by the

technology vendor. The total power consumed by the design is the sum of the dynamic and static

power consumed. The parasitic information extracted from the place and route tool can be

annotated using the SPEF (Standard Parasitic Extraction Format) file generated by the tool.

 19

3.2.2 Calculation of Static Power Dissipated using Prime Power

Prime Power computes the total leakage power of the design as the sum of the leakage power of

the design’s library cells [4] as shown in equation Equation 3-2.

∑
∀

=
i

gecell_leakaagetotal_leak P(i) P

Equation 3-2: Leakage Power Estimation using Prime Power

Ptotal_leakage = Total leakage power dissipation of the design

Pcell_leakage(i) = Leakage power dissipation of each cell “i”

The standard cells in a standard cell library contain the approximate total leakage power

dissipated by each cell. Leakage power models can be defined at the library level or at cell level.

The models can be state dependent or independent and can be defined to be a single value or can

be modeled using a polynomial equation. Figure 3-4 below shows the leakage power definition

of a NAND cell. The “leakage_power_unit” attribute is common to the entire library of standard

cells, while the “cell_leakage_power” attribute is defined for each standard cell. Figure 3-4

shows a state dependent leakage power definition. The cell leakage power is defined as the

maximum value in the state dependent leakage declaration. Depending on the analysis done by

the tool, either the “cell_leakage_power” value can be used or the state dependent leakage values

can be used. The “default_cell_leakage_power” attribute defined in the standard cell library is a

value used by the power analysis tool for standard cells that do not have a leakage power

definition.

 20

Figure 3-4: Leakage Power definition of a NAND Standard Cell

3.2.3 Calculation of Dynamic Power Dissipated using Prime Power

Dynamic power dissipated by a CMOS circuit is the sum of switching power and internal power

[5]. While performing an event based power analysis, PrimePower uses the switching

information available in the VCD file to note the nets that switch. The tool then sets the ramp-up

times of the input ports and calculates the propagation of the ramp based on the capacitance

annotation. Using the internal power table, the tool then estimates the switching power consumed

by the device [5].

Calculation of Switching Power

Prime Power calculates the total switching energy by summing the switching energy

associated with every rise transition [5]. Prime Power makes an assumption that switching

energy is consumed only when the capacitance gets charged (rise transition) [5]. The total

switching power is the total switching energy divided by the simulation time as shown in

 21

Equation 3-3. The switching energy is given by the product of the load capacitance Cload and the

square of the supply voltage Vdd. The capacitance Cload includes the parasitic capacitance of the

net and the gate and drain capacitances of all the devices connected on the net. The parasitic

capacitance can be obtained from the specified wire-load model or from the back-annotation

information specified by the SPEF file. The pin capacitance values are obtained from the

Synopsys library.

product of the load capacitance Cload and the

square of the supply voltage Vdd. The capacitance Cload includes the parasitic capacitance of the

net and the gate and drain capacitances of all the devices connected on the net. The parasitic

capacitance can be obtained from the specified wire-load model or from the back-annotation

information specified by the SPEF file. The pin capacitance values are obtained from the

Synopsys library.

(s) Time Simulation Total

Energy(J) Switching
 Power(W) Switching
∑

=

Equation 3-3: Prime Power Switching Energy Calculation Equation 3-3: Prime Power Switching Energy Calculation

Calculation of Internal Power Calculation of Internal Power

Internal power can be modeled using NLPM (non-linear power models) or SPPM

(Scalable Polynomial Power Model) [5]. NLPM allows designers to store the energy

consumption of the cell based on the input transition time and output load. State dependencies

and path dependencies can also be included as part of the model if desired. Figure 3-5 shows the

NLPM definition of internal power using the Synopsys Liberty Format. The NLPM shown in

Figure 3-5 uses a look-up table format. The first index, specified by “index_1” shows the input

transition times. The second index, specified by “index_2” shows the various load capacitances.

Internal power can be modeled using NLPM (non-linear power models) or SPPM

(Scalable Polynomial Power Model) [5]. NLPM allows designers to store the energy

consumption of the cell based on the input transition time and output load. State dependencies

and path dependencies can also be included as part of the model if desired. Figure 3-5 shows the

NLPM definition of internal power using the Synopsys Liberty Format. The NLPM shown in

Figure 3-5 uses a look-up table format. The first index, specified by “index_1” shows the input

transition times. The second index, specified by “index_2” shows the various load capacitances.

 22

The entire array contains information on the rise and fall power consumed by the cell for a

specific value of the transition time and load capacitance. The total power is the sum of

switching power, internal power and the leakage power consumed by the design.

Figure 3-5: NLPM definition of Internal Power

3.3 POWER ESTIMATION USING HSPICE

The delay element (discussed in Chapter 4) is a custom CMOS circuit which can be used as a

standard cell in a standard ASIC design flow. The delay element is used in the SuperCISC RHF

to minimize the glitching power consumed in the design as shown in Chapter 6. Circuit level

simulations were performed on the delay element to characterize its electrical properties. One of

 23

the prime metrics for the delay element is its power consumption, both dynamic and static. The

sections below describe the power measurement simulation procedures for the delay element.

3.3.1 Calculation of Rise Power

The objective of calculating rise power is to get an average value for the energy consumed when

the delay element makes a transition at its input from a logic low to a logic high value. The rise

power in the context of the delay element is defined as the power measured from time t=0 (the

input starts to rise) to t=delay + ∆. The ∆ value was chosen to be 10ns in our case as almost all

the transients settled within this time period even when the delay element was being overloaded.

Figure 3-6 shows the rise power measurement window.

Figure 3-6: Rise Power Measurement window

The rise power is the product of the average current and the supply voltage during the

measurement period. The rise energy is obtained by multiplying the rise power by the

measurement period. The HSPICE command to calculate the average current during a rise

transition is shown in Figure 3-7. The measurement was repeated many times to find the average

power consumed.

 24

Figure 3-7: HSPICE Rise Power Calculation command

3.3.2 Calculation of Fall Power

Fall Power in the context of the delay element is defined as the amount of power consumed when

the D input signal makes a transition from a logic high to a logic low value. Fall power is

calculated from the point where the Dinput begins to fall at t=0 to t= ∆. As the delay elements

does not delay the falling edge, the measurement needs to be done only from t=0 to t=∆. The

HSPICE command for measuring the rise power and fall power are identical except for the time

value. Figure 3-8 shows the fall power measurement window.

Din

Settling time

Delayed-Out

Measurement Window

Figure 3-8: Fall Power Measurement window

 25

3.3.3 Calculation of On-State Leakage

The leakage power measured when the Din input has a logic high value is defined as the on-state

leakage power. The leakage power is measured after all the transients settle down and the device

is in its steady state. On-state leakage is measured from the mid-point of the ON-time for about a

10ns duration. Figure 3-9 below shows the measurement window. The HSPICE command for

calculating leakage power is same as the rise power calculation command except for the

measurement window.

Figure 3-9: On-state leakage Power Measurement window

3.3.4 Calculation of Off-State Leakage

The leakage power measured when the Din input has a logic low value is defined as the off-state

leakage power. The leakage power is measured after all the transients settle down and the device

is in its steady state. For off-state leakage, the average power is measured from the mid-point of

the OFF-time for about a 10ns duration. Figure 3-10 below shows the measurement window for

off-state leakage. The HSPICE command similar to the on-state leakage can be used to measure

the off-state leakage.

 26

Figure 3-10: Off-state leakage Power Measurement window

 27

4.0 ASIC DESIGN FLOW

A standard ASIC design flow starts right from system specification definition. Once the

specifications of the system are clear, specifications are partitioned into logical modules. The

logical modules are then implemented using a hardware description language such as VHDL or

Verilog. The design is then tested for functional correctness using functional simulations. Once

the modules are implemented, the design is synthesized to obtain the gate level netlist [8]. The

design flow from specification definition to synthesis is typically called the front end design of

the ASIC.

Once the design has been synthesized, the next step in the design process is the physical

design including the placement and routing of the design to obtain the GDS file which contains

the polygon information of the layout. The GDS file is handed over to the foundary for the chip

to be fabricated. Once the chip has been manufactured, it is typically packaged. The packaged

chip is tested for its datasheet specifications before being shipped to the customer. The part of

the design flow from the synthesized netlist to the GDS file is called the backend design of an

ASIC. The test process once the chip is packaged is typically called the post-silicon validation

process. Figure 4-1 below shows the typical ASIC design flow right from input specifications all

the way to GDSII generation [8].

 28

Figure 4-1 : Typical ASIC Design Flow

 29

4.1 PHYSICAL DESIGN FLOW

The backend design of an ASIC called the ASIC Physical design involves placement and routing

of the synthesized netlist obtained through logic synthesis. SoC Encounter from Cadence is an

industry standard placement and routing tool. The physical design of the SuperCISC

reconfigurable hardware fabric was implemented using SoC Encounter. Figure 4-2 shows the

typical backend design flow using SoC Encounter.

4.1.1 Floorplanning

A typical ASIC design flow is hierarchical having a top level design and many modules and sub-

modules within the design. Hierarchical design is very crucial to the success of any product. It is

not only because of the reduced time to market but also because of CAD tools that limit them. A

hierarchical design reduces the burden on the CAD tool as compared to a flattened design.

Floorplanning is the process of deciding the position and size of modules in a hierarchical

design. A good floorplan is critical to ensure that the chip meets all the timing and power

specifications of the design. The floorplan specifications include the core width, core height, and

the DIE width and height. The part of the die where standard cells get placed is called the core of

the chip. The space between the core and the die is typically used for routing POWER nets and

for connecting the nets to the I/O (Input/Output).

 30

Figure 4-2: ASIC Physical Design Flow

 31

Figure 4-3 below shows the core width/height definition and DIE width/height

definitions. The core height has to be a multiple of the standard cell row height so that an integer

number of standard cell rows can be placed in the core area. The DIE Width and height are

defined using the CORE_TO_IO_LEFT, CORE_TO_IO_RIGHT, CORE_TO_IO_TOP and

CORE_TO_IO _BOTTOM specifications. Figure 4-4 below shows the ALU stripe floor plan

implemented for the SuperCISC reconfigurable hardware fabric.

DIE WIDTH

DIE HEIGHT

CORE HEIGHT

CORE WIDTH

VDD RAIL

GND RAIL

Figure 4-3: Floorplan specifications

VDD RAIL

GND RAIL
ALU MODULE (19) ALU MODULE (0)ALU MODULE (1)

Figure 4-4: ALU Stripe Floor plan

 32

4.1.2 Powerplanning

Power planning is the process of defining the power nets and the power ring around the core

which can be used to connect the power supply rails of the standard cell rows. The standard cells

have power and ground rails alternating which connect to the power ring on the left and right.

Additionally power stripes can be added to reduce the power bus resistance. A thick power ring

guarantees reduced power bus resistance and hence lesser IR drop on the power supply bus.

Figure 4-5 below shows the power ring and the power stripes in a design with a core

height of five standard cell rows. Figure 4-5 also shows the standard cell power rails connected

to the power ring.

Figure 4-5: Power Planning

 33

4.1.3 Partitioning a design

Partitioning the design is the process of breaking the top level design into modules which can be

placed and routed independently. Modules specified as partitions are designs which can be

worked upon independently. The place and routed partitions can be finally integrated into the top

level design to make the complete chip. Modules that are not specified as partitions are

automatically a part of the top level design and get placed and routed at the place and route phase

of the top level design.

4.1.4 Routing Feedthrough

After the design has been partitioned, the entire metal stack along with the transistor area is

reserved for the partition for its placement and routing. The top level design by default does not

have any metal area reserved for routing nets that cross the partitions. This leads to routing

congestions in a chip which has multiple partitions and the top level design has nets that run

across partitions.

Figure 4-6 shows nets from partition-A getting connected to partition-C. If an inter-

partition space is available as shown in Figure 4-6 the tool might route the nets around partition-

B. However, if there are too many nets that need to be routed, the inter-partition space might get

congested and may result in DRC violations. To avoid such disastrous situations, it is necessary

to have specific areas in the metal layers reserved for top level routing. Such reserved metal

areas are called routing feedthroughs. Figure 4-7 shows routing when routing feedthroughs are

 34

created in the design. Routing feedthroughs can minimize the length of the routes as well as

avoid congestion for cases with a minimum inter-partition space.

PARTITION A

PARTITION C

PARTITION B

VERTICAL NETS

INTER-PARTITION
SPACING

INTER-PARTITION
SPACING

Figure 4-6: Routing in the absence of Routing Feedthroughs

PARTITION A

PARTITION C

PARTITION B
VERTICAL

ROUTING FEED-
THROUGH

INTER-PARTITION
SPACING

INTER-PARTITION
SPACING

VERTICAL NETS

Figure 4-7: Routing in the presence of Routing Feedthroughs

 35

4.1.5 Pin Assignment

Pin assignment defines the interface between the partitioned modules and the top-level design.

Hence, it is mandatory that a partition is assigned all the necessary IO pins before being saved.

Not only the partitions but also the top level design needs to have all IO pins defined before the

partitions are saved.

4.1.6 Placement

During the placement phase, all standard cells in the design are placed within the core area. The

placement is an entirely CAD tool dependent process which uses sophisticated CAD algorithms

that determine the optimum placement of the standard cells to ensure minimum congestion while

being routed. Figure 4-8 below shows an ALU module after being placed in the IBM 0.13um

CMOS technology. The vertical columns on the left show the presence of vertical routing

feedthroughs that were created on Metal Layer 6.

Figure 4-8: Placed ALU Module

 36

4.1.7 Routing

Once the standard cells are placed, the next step in the physical design process is the routing of

the design which physically draws polygons on metal layers to connect all the nets as per the

netlist. Figure 4-9 below shows the placed and routed ALU designed in OKI 0.16um CMOS

technology.

Figure 4-9: Routed ALU Module

 37

5.0 PHYSICAL IMPLEMENTATION OF THE SUPERCISC RHF

The design of the SuperCISC reconfigurable hardware fabric can be divided into a number of

modules such as the design of the ALU Stripe, MUX Stripe, FINALMUX Stripe and the design

of the BIGFABRIC. The sections below describe the various implementation details of the

SuperCISC RHF.

5.1 DESIGN OF THE ALU STRIPE

In a homogeneous ALU configuration, the ALU stripe has multiple identical ALUs in the same

stripe. A 20X18 configuration has 20 ALUS in a row whereas a 13X18 configuration has 13

ALUs in a row. The fundamental component of the ALU stripe is the ALU Module.

5.1.1 ALU Module Specifications

The ALU Module specifications were derived from a place and route of the ALU module which

showed a high routing density and standard cell area utilization. Table 5-1 shows some important

specifications of the ALU Module. Figure 5-1 shows the placed and routed ALU Module

implemented in the IBM 0.13um CMOS process.

 38

Table 5-1: ALU Module Specifications

S.No. ALU Module Specifications Value

1 Width of ALU Module 500.8 um

2 Height of ALU Module 252 um

3 Die Area 0.126 sq.mm

Figure 5-1: Placed and Routed ALU Module

 39

5.1.2 ALU Stripe Specifications

The specifications of the ALU stripe were derived once the ALU module was designed. The

stripe specifications are based on the width of the power bus that would be required to minimize

drops on the power rail. Figure 5-2 shows a logical ALU stripe and Figure 5-3 shows the

floorplan of the ALU stripe.

Figure 5-2: Logical ALU Stripe

ALU MODULE (19) ALU MODULE (18) ALU_MODULE (17) ALU_MODULE (0)

Figure 5-3: Floorplan of ALU Stripe

 40

Table 5-2 shows the important specifications of the ALU stripe for a 20X18 hardware

fabric configuration. Figure 5-4 shows the placed and routed ALU Stripe and Figure 5-5 shows a

zoomed in view of the same. For the SuperCISC RHF, routing was done using the Nanoroute

tool available with SoC Encounter.

Table 5-2: Specification of the ALU Stripe

S.No. ALU Stripe Specifications Value

(20X18 Hardware Fabric)

1 Die Width of ALU Stripe 10,330.4 um

2 Die Height of ALU Stripe 285.6 um

3 Total Die Area 2.95 sq.mm

4 VDD/GND Power Bus Width 7.2um

Figure 5-4: Placed and Routed ALU Stripe

 41

Figure 5-5: Zoomed-in view of Placed and Routed ALU Stripe

5.1.3 ALU Stripe Automation Scripts

As placement and routing is an iterative process, automation is essential to meet design

deadlines. Also, the amount of manual work involved in designing the complete chip could be

large if automation of the design flow was not possible. The scripts were all written in TCL

(Tool Command Language).

The following scripts were written to automate the ALU Stripe design flow:

(i) ALU initialization routine

(ii) ALU Floorplanning routine

(iii) ALU Module Pin placement

(iv) ALU Stripe Pin placement

ALU initialization routine

The ALU Initialization routine initializes the die width and the die height of the ALU

stripe. The “ibm_alu_init.tcl” is used for this purpose. It specifies the core area by specifying the

distance between the core and the die on all the four sides. The core area is the actual area where

standard cells get placed. The core height has to be a multiple of the standard cell height. Once

 42

the basic parameters are specified, the script can be use to initialize the ALU stripe using the

“floorplan” command available with Encounter [9]. The routine also adds power rings in the

space between the core and the IO of the chip using the “addRing” command [9]. The important

parameters used in the script are described in Table 5-3.

Table 5-3: ALU Initialization Parameters

S.No. ALU Initialization Parameters Description

1 CORE_TO_LEFT Distance between core and IO on left/ right/ top/
bottom sides. Once the die width and height are
specified, these values determine the core width and
height

CORE_TO_RIGHT
CORE_TO_TOP
CORE_TO_BOTTOM

2 ALU_LEFT_DISTANCE
ALU_RIGHT_DISTANCE

Each ALU has a certain space to its left and to its right
to enable routing of wires.

3 INTER_ALU_DISTANCE_MIN The distance between two ALUs without power
stripes between them which is the sum of the
ALU_LEFT_DISTANCE and
ALU_RIGHT_DISTANCE

4 INTER_ALU_DISTANCE_MAX The distance between two ALUs those have power
stripes between them. The value is the sum of
ALU_LEFT_DISTANCE,
ALU_RIGHT_DISTANCE and
POWER_STRIPE_TOTAL_WIDTH

5 POWER_RING_TOTAL_LEFT
POWER_RING_TOTAL_RIGHT

The total width of the power ring on the left side. The
width of the power ring includes the wdith of the
VDD bus, GND bus, spacing between the VDD and
GND bus, spacing between the VDD bus and IO and
spacing between GND bus and the core

6 POWER_STRIPE_WIDTH Width of the power bus

7 POWER_STRIPE_TOTAL_WIDTH Sum of VDD Bus width, GND Bus width and spacing
between them

7 POWER_STRIPE_SPACING Spacing between the VDD bus and GND bus

 43

In addition to power rings, the power bus resistance can be minimized by the addition of

vertical power stripes connecting the power rings. The “addStripe” command can be used to add

power stripes [9]. The final part of the initialization routine uses the “sroute” command to route

the standard cell power and ground rails [9].

ALU Floor plan/ Power plan routine

The “ibm_setalumod.tcl” is used to floorplan the ALU modules. ALU modules are placed

at pre-determined locations using the “setObjFPlanBox” command [9]. The script automatically

calculates the X and Y co-ordinates of the ALU module. The parameter CUR_X and CUR_Y

describe the X and Y co-ordinate of the lower left corner of the bounding box of the ALU

module. The parameters NEXT_X and NEXT_Y describe the X and Y co-ordinate of the top

right corner of the bounding box of the ALU module. The parameters CUR_X, CUR_Y,

NEXT_X and NEXT_Y are internally generated based on the ALU module’s width and height

and need not be given as an input to the user.

ALU Module Pin assignment

Pins can be assigned to a partition using the “preassignPin” command by specifying the

X and Y co-ordinates of the pin location along with the layer on which the pin has to be assigned

[9]. The “ibm_pinassign_alu_module.tcl” is used to assign pins to the ALU module. The

important consideration during pin placement is that each process has a pre-defined horizontal

and vertical pin grid given by the technology vendor. Hence, all pins placed in the horizontal

 44

direction have to be aligned on the horizontal pin grid. All pins placed on the vertical direction

have to be aligned on the vertical pin grid. Also the grid spacing specification for the technology

can be different depending on the metal layer being used for the pin placement. The pin

placement routine assigns vertical and horizontal pins on a pin valid pin grid with proper spacing

for each metal layer. Table 5-4 shows the parameters used in the ALU module pin assignment

routine.

Table 5-4: ALU Module Pin Placement Parameters

S.No. Parameters Description

1 X_LOC X Co-ordinate of the pin

2 Y_LOC Y Co-ordinate of the pin

3 S1_OFFSET Start position of the INP1 input pins

4 S2_OFFSET Start position of the INP2 input pins

5 DOUT_OFFSET Start position of the DOUT output pins. The position is shifted to
the right for normal ALUs and is shifted to the left for ALUs that
act as early exits. This is done to minimize congestion while
routing at the top layer.

6 HOR_PIN_SPACING Spacing between two pins in the horizontal direction.

7 VERT_PIN_SPACING Spacing between two pins in the vertical direction.

The 20X18 SuperCISC RHF physical implementation uses five different ALU stripes, all

which have the same netlist except for the position of the pins. In a 20X18 implementation of the

design, ALU Stripe 6, ALU Stripe 10, ALU Stripe 14 and ALU Stripe 18 have specialized pin

positions. All other ALU stripes have a default pin position. The specialized pin assignment is to

avoid congestion while routing at the top layer and can be seen in the section that discusses the

design of the BIGFABRIC. Figure 5-6 below shows the pin position for a default ALU module.

 45

The default ALU module has its pins aligned to the right because the vertical feedthrough routes

are aligned to the left. Figure 5-7 shows the pin alignment for the ALU modules which are part

of the “early exits” in the reconfigurable hardware fabric. For a 20X18 configuration, ALU

Stripe 6, ALU Stripe 10, ALU Stripe 15 and ALU Stripe 18 are treated as “early exits”.

Figure 5-6: Default ALU Module Pin alignment

Figure 5-7: Early Exit ALU Module Pin alignment

 46

ALU Stripe Pin Assignment

The “ibm_pinassign_alu_stripe.tcl” is used to assign pins to the ALU stripe. The input

and output pins positioned at the top and bottom of the stripe are placed strategically so that they

are aligned with the pins of the respective ALU module.

The control pins placed to the left of the stripe need to be routed to the respective ALU

modules. To minimize the routing congestion, horizontal routing feedthroughs are inserted. The

specifications of the routing feedthrough are shown in Table 5-5. Figure 5-8 shows the normal

ALU stripe pin assignment and Figure 5-9 shows the pin assignment for ALUs that act as early

exits.

Table 5-5: ALU Horizontal Routing Feedthrough Specification

S.No. ALU Horizontal feedthrough Value

1 FEEDTHROUGH_WIDTH 4.8um

2 NUMBER OF FEETHROUGHS 20

3 FEEDTHROUGH METAL LAYER METAL 5

4 FEEDTHROUGH SPACING -TOP 3.6um

5 FEEDTHROUGH SPACING -

BOTTOM

3.6um

 47

Figure 5-8: Normal ALU Stripe Pin assignment

Figure 5-9: Specialized ALU Stripe Pin assignment

5.2 DESIGN OF THE MULTIPLEXER STRIPE

The design of the multiplexer stripe is slightly different from the design of ALU stripe. In

addition to the space for the multiplexer modules which form the core of the multiplexer stripe,

the stripe requires additional space for routing. As can be seen from the multiplexer architecture

in Figure 2-3, the multiplexer stripe is route intensive. So, a dedicated routing space needs to be

made available to avoid congestion.

 48

5.2.1 MUX Module Specifications

As the multiplexer forms the interconnect structure, the inputs to the MUX stripe and the MUX

modules are from the outputs of the ALU stripe. Figure 5-10 shows the MUX module’s logical

diagram. The MUX module specifications for the hardware fabric are shown in Table 5-6. Figure

5-11 shows the placed and routed MUX Module implemented in the IBM 0.13um CMOS

process.

Figure 5-10: MUX Module Logical Diagram

 49

Table 5-6: MUX Module Specification

S.No. MUX Module Specifications Value

1 Width of MUX Module 500.8 um

2 Height of MUX Module 36 um

3 Die Area 1802.88 sq.um

Figure 5-11: Placed and Routed MUX Module

5.2.2 MUX Stripe Specifications

The MUX stripe in addition to the space for the MUX module has additional space for routing.

The height of the routing space in the design is 50.4um. Figure 5-12 shows the MUX Stripe

logical diagram and Figure 5-13 shows the MUX stripe floorplan. The specifications of the

multiplexer stripe are shown in Table 5-7. Figure 5-14 below shows the placed and routed MUX

Stripe implemented in the IBM 0.13um CMOS process.

 50

Figure 5-12: MUX Stripe Logical Diagram

Figure 5-13: MUX Stripe Floorplan

 51

Table 5-7: MUX Stripe Specifications

S.No. MUX Stripe Specifications Value

(20X18 SuperCISC Hardware Fabric)

1 Die Width of MUX Stripe 10,330.4 um

2 Die Height of MUX Stripe 103.2 um

3 Total Die Area 1.066 sq.mm

4 VDD/GND Power Bus Width 7.2um

5 Routing Space within the Stripe 50.4um

Figure 5-14: Placed and Routed MUX Stripe

5.2.3 MUX Stripe Automation Scripts

The following scripts were written to automate the design of the MUX Stripe:

(i) MUX initialization routine

(ii) MUX Floorplanning routine

(iii) MUX Module Pin placement

(iv) MUX Stripe Pin placement

 52

MUX initialization routine

The MUX initialization routine initializes the die width and the die height of the MUX

Stripe. The “ibm_mux_init.tcl” is used to initialize the MUX Stripe. The parameters used in the

MUX Initialization routine are similar to the ALU initialization routine and are not repeated in

this section again.

MUX Floor plan/ Power plan routine

The “ibm_setmuxmod.tcl” script is used to floorplan the MUX Stripe by placing the

MUX modules within the core area.

MUX Module Pin placement

The “ibm_pinassign_mux_module.tcl” is used to place pins inside the MUX module.

Table 5-8 describes some implementation specific parameters used in the routine.

Table 5-8: MUX Module Pin Placement Parameters

S.No. MUX Module Pin Placement Parameters Description

1 INP1_OFFSET Start Position of INP1 pins

2 INP2_OFFSET Start Position of INP2 pins. INP3 pins are

placed after INP2 pins.

3 OUT1_OFFSET Start Position of OUTMUX1 pins

4 OUT2_OFFSET Start Position of OUTMUX2 pins.

OUTMUX3 pin is placed immediately after

OUTMUX2 pins.

 53

MUX Stripe Pin Assignment

The MUX Stripe is similar to the ALU Stripe and requires horizontal feedthroughs to route the

control pins. Table 5-9 below shows the specifications of the feedthroughs used for the MUX

Stripe. The ibm_pinassign_mux_stripe.tcl” is used to assign pins to the MUX Stripe. The

parameters used in the script are described in Table 5-10 below.

As the width of the MUX stripe is much less than the ALU stripe width, the number of

horizontal feedthroughs is less in case of the MUX stripe. The routing of the control pins is done

by selecting the nets using the “selectNet” command and then the routing is performed only on

the selected nets.

Table 5-9: MUX Stripe Feedthrough Specifications

S.No. MUX Horizontal feedthrough Value

1 FEEDTHROUGH_WIDTH 4.8um

2 NUMBER OF FEETHROUGHS 5

3 FEED THROUGH TYPE REPEATED FEEDTHROUGH

4 FEEDTHROUGH LAYER METAL 5

5 FEEDTHROUGH SPACING -TOP 1.2um

6 FEEDTHROUGH SPACING -

BOTTOM

1.2um

 54

Table 5-10: MUX Stripe Pin Placement Parameters

S.No. MUX Stripe Pin Placement Description

1 INPUT_OFFSET Offset for input pins to the MUX Stripe

2 INTEROUT1_OFFSET Offset for INTEROUT1 output pins of the MUX

Stripe.

3 INTEROUT2_OFFSET Offset for INTEROUT2 output pins of the MUX

Stripe. INTEROUT3 pin is placed after the

INTEROU2 pins.

4 INTEROUT1_BANK_SPACING Spacing between the INTEROUT1 pins of two

MUX modules

5 INTEROUT2_BANK_SPACING Spacing between the INTEROUT2 pins of two

MUX Modules

6 INPUT_PIN_SPACING Spacing between two input pins

7 OUTPUT_PIN_SPACING Spacing between two output pins

Similar to the ALU Stripe, the physical implementation of the MUX Stripe has five

specific implementations. The default MUX Stripe implements all the MUX Stripes except the

MUX Stripes connected to the ALUs which act as early exits. So, for a 20X18 configurations,

MUX Stripe 6, MUX Stripe 10, MUX Stripe 14 and MUX Stripe 18 are specialized stripes

which differ from the default MUX Stripes in their pin positions. The netlist of all the five

implementations are identical.

 55

5.3 DESIGN OF THE FINALMUX STRIPE

The FINALMUX stripe is different from the MUX Stripe, because the inputs to the final mux

stripe are from the “early exits” defined in the reconfigurable hardware fabric. For a 20X18

fabric, with a 4:1 Final MUX Stripe, ALU Stripe 6, Stripe 10, Stripe 14 and Stripe 18 are defined

as early exits. The early exits define dedicated routing highways from the specific ALUs to the

output through the FINALMUX Stripe.

5.3.1 FINALMUX Module Specifications

The FINALMUX stripe has a FINALMUX Module as its core logic. The logical diagram of the

final mux module is shown in Figure 5-15 and the specifications of the FINALMUX Module are

given in Table 5-11. Figure 5-16 shows the placed and routed FINALMUX Module implemented

in the IBM 0.13um CMOS process.

Table 5-11: FINALMUX Module Specification

S.No. FINALMUX Module Specifications Value

1 Width of FINALMUX Module 500.8 um

2 Height of FINALMUX Module 36 um

3 Die Area 1802.88 sq.um

 56

Figure 5-15: FINALMUX Module Logical Diagram

Figure 5-16: Placed and Routed FINALMUX Module

 57

5.3.2 FINALMUX Stripe Specifications

Figure 5-17 shows the FINALMUX stripe logical diagram and Figure 5-18 shows the floorplan

of the FINALMUX stripe. Table 5-12 shows the specifications of the FINALMUX stripe. Figure

5-19 shows the placed and routed FINALMUX Stripe implemented in the IBM 0.13um CMOS

process.

Figure 5-17: Final MUX Stripe Logical Diagram

FINAL MUX MODULE (19) FINAL MUX MODULE (18) FINAL MUX_MODULE (17) FINAL MUX_MODULE (0)

Figure 5-18: Final MUX Stripe Floorplan

 58

Table 5-12: Final MUX Stripe Specifications

S.No. Final MUX Stripe Specifications Value

(20X18 Hardware Fabric)

1 Die Width of FINALMUX Stripe 10,330.4 um

2 Die Height of FINALMUX Stripe 69.6 um

3 Total Die Area 0.7189 sq.mm

4 VDD/GND Power Bus Width 7.2um

Figure 5-19: Placed and Routed FINALMUX Stripe

5.3.3 FINALMUX Stripe Automation Scripts

The following scripts were written to automate the FINALMUX Stripe design:

(i) FINALMUX initialization routine

(ii) FINALMUX Floor planning routine

(iii) FINALMUX Module Pin placement

(iv) FINALMUX Stripe Pin placement

 59

FINALMUX initialization routine

The FINALMUX initialization routine initializes the die width and the die height of the

FINALMUX stripe. The script is similar to the initialization scripts for the ALU Stripe and the

MUX Stripe, except for the values specific to the FINALMUX module design. Also, the

FINALMUX Stripe does not have additional routing space like the MUX Stripe. This is because

the connections from the FINALMUX Stripe to the FINALMUX Module are straight without

any routing complexity.

FINALMUX Floorplan routine

The FINAMUX Floorplan routine places the FINALMUX modules inside the core of the

FINALMUX stripe. The “ibm_setfinalmuxmod.tcl” script is used to perform the floorplanning.

FINALMUX Module Pin placement

The “ibm_pinassign_finalmux_module.tcl” is used to place pins inside the FINALMUX

module. The pins of the FINALMUX module are aligned with the pins of the FINALMUX stripe

to avoid routing congestion.

FINALMUX Stripe Pin Assignment

The “ibm_pinassign_finalmux_stripe.tcl” is used to assign pins in the FINALMUX

Stripe. For a 20X18 configuration with 4:1 FINALMUX configuration and a spacing of 4, the

FINALMUX stripe has 4 inputs. The first input is routed from ALU Stripe 6, second from ALU

Stripe 10, third from ALU Stripe 14 and fourth from ALU Stripe 18. The position of the input

 60

pins in the FINALMUX stripe is placed in order with the pin positions from the respective ALU

stripe. If the pins are not aligned, it would increase the routing complexity tremendously.

The routes to the FINALMUX stripe are routed from the respective ALU Stripes using

the dedicated vertical routing feedthroughs. The vertical routing feedthroughs are discussed in

the section dealing with the design of the BIGFABRIC.

5.4 DESIGN OF THE BIGFABRIC

The BIGFABRIC is used to describe the top level design of the reconfigurable hardware fabric,

instantiating the ALU Stripes, MUX Stripes and the FINALMUX Stripe. The design of the ALU

Stripe, MUX Stripe and the FINALMUX Stripe followed a top-down design methodology

starting with the Verilog code for each of the stripes down to the place and route of the

individual stripes. The design of the “big_fabric” leverages the designed modules and follows a

bottom-up flow to integrate the modules that were designed. To accommodate the vertical

routing feedthroughs for connecting the early exits to the final mux stripe, dedicated physical

feedthroughs were added to the design.

5.4.1 BIGFABRIC Chip Specifications

As the “big_fabric” is built upon the ALU Stripes, MUX Stripes and the final MUX Stripes,

these components form the modules for the “big_fabric” design. Table 5-13 below summarizes

the “big_fabric” module specifications.

 61

As the BIGFABRIC is the SuperCISC reconfigurable hardware fabric, the specifications

of the design are very important. Table 5-14 summarizes the key specifications of the 20X18

SuperCISC reconfigurable hardware fabric.

Table 5-13: BIGFABRIC Module Specifications

S.No. BIG FABRIC Module Specifications Value

1 Height of ALU Stripe 285.6 um

2 Width of ALU Stripe 10,330.4 um

3 Height of MUX Stripe 103.2 um

4 Width of MUX Stripe 10,330.4 um

5 Height of Final MUX Stripe 69.6 um

6 Width of Final MUX Stripe 10,330.4 um

Figure 5-20 shows the “big_fabric” logical diagram and Figure 5-21 shows the top-level

routing of the “big_fabric” implemented in the IBM 0.13um CMOS technology. Figure 5-21 also

shows the vertical routing feedthroughs being used at the top-level to route the nets from the

“early exits” to the FINALMUX stripe. The FINALMUX Stripe is placed at the top to enable an

easy access of the IO pins of the fabric when integrated with the processor core/memory in a

 62

larger system. Figure 5-22 shows the place and routed BIGFABRIC implemented in OKI

0.16um technology. Figure 5-22 shows only the ALU and MUX Stripes and does not have the

FINALMUX Stripe.

Table 5-14: Reconfigurable Hardware Fabric Chip Specifications

S.No. 20X18 Reconfigurable Value

Hardware Fabric

1 Die Width of Chip 10.364 mm

2 Die Height of Chip 7.3164 mm

3 Total Die Area 75.827 sq.mm

4 VDD/GND Power Bus Width 7.2um

5.4.2 BIGFABRIC Automation Scripts

The BIGFABRIC automation scripts are similar to the automation scripts written to automate the

design of ALU, MUX, and FINALMUX Stripes. Appendix C contains the TCL (Tool

Command Language) scripts that were written to automate the design of the BIGFABRIC.

The following scripts were written to automate the BIGFABRIC design:

(i) BIGFABRIC initialization routine

(ii) BIGFABRIC Floorplanning routine

(iii) BIGFABRIC Module Pin placement

(iv) BIGFABRIC Stripe Pin placement

 63

BIGFABRIC initialization routine

The BIGFABRIC initialization routine initializes the die width and the die height of the

SuperCISC reconfigurable hardware fabric chip. The “ibm_bigfabric_init.tcl” is used for this

purpose.

BIGFABRIC Floorplan routine

The BIGFABRIC Floorplan routine is used to floor plan the various stripes within the top

level design. The “ibm_setbigfabricmod.tcl” is used to automate the floorplanning process.

BIGFABRIC Module Pin placement

As the ALU Stripe, MUX Stripe and FINALMUX Stripes are modules in the

“big_fabric”, assignment of pins to the various modules is done using the pin assignment

routines of the respective stripes. However, vertical routing feedthroughs (VRF) need to be

added to the modules after they are partitioned.

 64

Figure 5-20: BIGFABRIC Logical Diagram

 65

Figure 5-21: Top-level routing of the BIGFABRIC

Four vertical feedthrough start points are specified. Each feedthrough is repeated across

the length of the entire chip to provide feedthroughs for every module in the “early exit” stripe.

Table 5-15 shows the position of the start points for the four vertical feedthroughs with the

spacing for the FINALMUX Stripe. Table 5-16 shows the position of the start points for the

vertical feedthroughs for the ALU and MUX stripes in the BIGFABRIC partitions.

 66

Figure 5-22: Place and Routed BIGFABRIC in OKI 0.16um

 67

Table 5-15: BIGFABRIC VRF for FINALMUX stripe

 I II III IV

Start Point 56.4um 306.4um 564.4um 814.4

Feedthrough width 59.2um 59.2um 59.2um 59.2um

Feedthrough

Spacing

972um 972um 972um 972um

Type Repeated Repeated Repeated Repeated

Table 5-16: BIGFABRIC VRF for ALU and MUX stripe

 I II III IV

Start Point 22um 93.2 164.4um 235.6um 530.0um 601.2um 672.4um 743.6um

Feedthrough

width

66um 66um 66um 66um 66um 66um 66um 66um

Feedthrough

Spacing

965.2um 965.2um 965.2um 965.2um 965.2um 965.2um 965.2um 965.2um

Type Repeated Repeated Repeated Repeated Repeated Repeated Repeated Repeated

 68

BIGFABRIC Stripe Pin Assignment

As the “big_fabric” is the top level chip which gets integrated into a system, it is

necessary that the RHF interface is easier. To make it easier the input and output pins are made

accessible from the top of the chip. The placement of the FINALMUX stripe is near the top of

the chip, making the output pins easier to access. The “ibm_pinassign_chip_alu_ctrl.tcl” is used

to assign the ALU related control pins to the top level chip. The

“ibm_pinassign_chip_alu_data.tcl” is used to assign ALU related data pins which act as inputs to

the SuperCISC reconfigurable hardware fabric. The “ibm_pinassign_chip_mux_ctrl.tcl” is used

to assign MUX related control pins to the fabric. The “ibm_pinassign_chip_finalmux_ctrl.tcl” is

used to assign FINALMUX related control pins. The “ibm_pinassign_chip_finalmux_data.tcl” is

used to assign the output related pins of the FINALMUX stripe which are actually the outputs of

the hardware fabric.

5.5 POWER ANALYSIS OF THE CHIP

Power Analysis was completed using Synopsys Prime Power to estimate the power consumed by

the chip after placement and routing. As described in section 4, post place and route information

was captured using the SDF (Standard Delay Format) and the SPEF (Standard Parasitic

Extraction Format) files. The SDF captures the delay incurred due to interconnects in the design.

The SPEF captures the parasitic capacitance and resistance of the nets.

 69

To simulate the chip, the design is broken down into a series of ALU stripes and MUX

Stripes. The first ALU stripe is simulated using a set of input vectors. The toggling information

in the ALU stripe is captured using the VCD (Value Change Dump) file. The next step is the

simulation of the design containing the first ALU stripe and the first MUX stripe. In this

simulation, the entire ALU stripe is replaced with the toggling information available in the VCD

file generated by the first simulation. This second simulation generates the VCD file containing

the toggling information of the MUX stripe. The procedure is continued until all the stripes in the

design are simulated. While generating the VCD file, the design needs to be annotated with the

SDF file to capture the delays due to the placement and routing of the chip.

The SDF file can be generated using the “delayCal –sdf filename.sdf” command

available in SoC Encounter [11]. The tool uses the default delay calculation engine to calculate

the delays [12]. The delays are calculated for the interconnect and the cells.

Figure 5-23 shows the Modelsim command used to simulate the ALU stripe with SDF

back annotation. The “.do” files contain the necessary Modelsim commands for the VCD file

generation along with the input vectors for the simulation.

Figure 5-23: Modelsim Command for SDF back annotation

 70

The SPEF file can be generated using the “rcOut –spef filename.spef” command

available in SoC Encounter [10]. The command essentially reads the parasitic database and

outputs the parasitics in the SPEF format. The parasitic database has to be created before issuing

the “rcOut” command. The “extractRC –outfile design.cap” extracts the parasitic capacitance for

the interconnects and outputs the results to a file. The extraction command uses the

CPERSQDIST and EDGECAPACITANCE values specified in the LEF file for capacitance

calculation. The parasitic estimates are based on the METAL layer used, the length and width of

the routed wires [9] [10]. Similarly, the resistance extraction uses the resistivity coefficients for

the layers and via resistance specified in the LEF file.

Prime Power uses the switching information available in the VCD file to generate power

characteristics of every stripe. The total power consumed by the chip is the sum of the power

consumed by every stripe. Figure 5-24 shows a sample prime power script along with parasitic

annotation to read the SPEF file. Figure 5-25 summarizes the power analysis flow that has been

used to simulate the post placement and routed power characteristics of the design.

A number of signal processing benchmarks have been mapped to the SuperCISC RHF to

analyze its power characteristics. The benchmarks that have been mapped are ADPCM Encoder,

ADPCM Decoder, IDCT Row, IDCT Column, Sobel and Laplace.

 71

Figure 5-24: SPEF Annotation in Prime Power

Place & Route
Design

Save SDF
Save SPEF

Generate VCD

Annotate SPEF
Generate power

report

Figure 5-25: Summary of Power Analysis Flow

 72

5.5.1 Power Results for ADPCM Encoder Bench Mark

Table 5-17 summarizes the power consumed by the chip for every stripe in the Super-CISC

reconfigurable hardware fabric design when the ADPCM (Adaptive Differential Pulse Code

Modulation) Encoder bench mark kernel was mapped to the fabric. The table clearly shows that

parasitic annotation of the design has increased the power. The pre-layout power consumption of

the chip was 5.948mW and the post-layout power consumption was 7.869mW.

Table 5-17: ADPCM Encoder Post Layout Power Simulation

ALU Stripe MUX Stripe

Stripe Number Pre-Layout
Power (uW)

Post-Layout
Power(uW)

Pre-Layout
Power (uW)

Post-Layout
Power(uW)

S1 292 370.8 139.2 220.1
S2 500.2 621.9 145 215.4
S3 444.4 582.6 170.5 251.2
S3 463.8 599.7 176.9 271.1
S5 341.3 425.2 142 215.4
S6 379.3 473.3 130.8 191
S7 240.5 300.4 105 156.9
S8 348.3 430.6 133.6 203.9
S9 219.7 270.2 87.03 126.5

S10 210.6 257.6 64.28 92.01
S11 131.4 166.1 65.43 96.33
S12 157.6 181.6 67.1 102.7
S13 85.59 102.1 48.14 73.34
S14 130.9 158.8 46.66 68.02
S15 70.58 84.15 49.66 76.24
S16 73.39 87.22 36.36 52.99
S17 94.05 121 36.36 52.99
S18 94.05 121 26.7 49.29

Total Power 4277.6 5354.27 1670.72 2515.41

 73

5.5.2 Power Results for ADPCM Decoder Bench Mark

Table 5-18 summarizes the power consumed by the chip for every stripe in the SuperCISC

reconfigurable hardware fabric design when the ADPCM (Adaptive Differential Pulse Code

Modulation) decoder bench mark was run on the fabric. The pre-layout power consumption of

the chip was 0.917mW and the post-layout power consumption was 1.168mW.

Table 5-18: ADPCM Decoder Post Layout Power Simulation

 ALU Stripe MUX Stripe
Stripe

Number
Pre-Layout
Power (uW)

Post-Layout
Power(uW)

Pre-Layout
Power (uW)

Post-Layout
Power(uW)

S1 81.3 101.9 29.35 41.75

S2 62.69 75.06 25.48 37.41

S3 66.42 80.55 27.78 41.62

S4 51.45 61.23 24.75 34.72

S5 50.17 60.9 23.86 35.46

S6 43.38 52.16 18.9 27.41

S7 41.86 50.89 17.9 26.88

S8 35.37 42.55 17.27 24.29

S9 48.63 57.21 26.61 38.42

S10 31.19 34.65 19.68 28.95

S11 36.02 41.96 12.64 18.61

S12 22.66 25.72 10.23 14.49

S13 21.29 24.03 15.09 21.08

S14 26.89 32.6 10.52 14.75

S15 6.849 6.901 0.1199 0.1199

S16 2.307 2.307 0.1199 0.1199

S17 2.307 2.307 0.1199 0.1199

S18 2.307 2.307 3.536 6.929
Total
Power
(uW) 633.09 755.232 283.9557 413.1287

 74

5.5.3 Power Results for IDCT Row Bench Mark

Table 5-19 summarizes the power consumed by the chip for every stripe in the SuperCISC

reconfigurable hardware fabric design when the IDCT (Inverse Discrete Cosine Transform) Row

bench mark was run on the fabric. The pre-layout power consumption of the chip was 10.82mW

and the post-layout power consumption was 16.204mW.

Table 5-19: IDCT Row Post Layout Power Simulation

 ALU Stripe MUX Stripe
Stripe
Number

Pre-Layout
Power (uW)

Post-Layout
Power(uW)

Pre-Layout
Power (uW)

Post-Layout
Power(uW)

S1 1023 1371 184.8 281

S2 987.3 1833 192.9 297.8

S3 527 631.4 205 305.7

S4 660 770 256.7 390.7

S5 699.7 830.9 213.3 326.2

S6 1425 3085 232.5 356.1

S7 647.1 822.3 256.3 393

S8 695.9 910.6 268 412.9

S9 764.6 934.4 254.1 373.8

S10 794.4 1053 292.1 406.5

S11 141.7 143.3 0.1199 0.1199

S12 2.307 2.307 0.1199 0.1199

S13 2.307 2.307 0.1199 0.1199

S14 2.307 2.307 0.1199 0.1199

S15 2.307 2.307 0.1199 0.1199

S16 2.307 2.307 0.1199 0.1199

S17 2.307 2.307 0.1199 0.1199

S18 2.307 2.307 82.31 259.3
Total
Power
(uW) 8381.849 12401.05 2438.849 3803.839

 75

5.5.4 Power Results for IDCT Column Bench Mark

Table 5-20 summarizes the power consumed by the chip for every stripe in the SuperCISC

reconfigurable hardware fabric design when the IDCT (Inverse Discrete Cosine Transform)

Column bench mark was run on the fabric. The pre-layout power consumption of the chip was

13.995mW and the post-layout power consumption was 19.979mW.

Table 5-20: IDCT Col Post Layout Power Simulation

 ALU Stripe MUX Stripe
Stripe
Number

Pre-Layout
Power (uW)

Post-Layout
Power(uW)

Pre-Layout
Power (uW)

Post-Layout
Power(uW)

S1 1109 1607 168.5 247.2

S2 938.1 1511 164.1 251.1

S3 504.3 638.9 193.1 294.2

S4 505.6 595.7 163.1 234.7

S5 455.2 599.1 165.5 248.2

S6 495.4 629.9 179.7 272

S7 550 657.6 214.3 314.5

S8 617 734.1 188.6 288.9

S9 1537 3000 202.5 309

S10 605.2 764.2 253.2 378.2

S11 682.3 892.5 290.5 426.6

S12 820.7 993.7 329.7 492.1

S13 911.6 1197 366.9 532.7

S14 808.6 1041 321.1 451.7

S15 153.8 155.5 0.1199 0.1199

S16 2.307 2.307 0.1199 0.1199

S17 2.307 2.307 0.1199 0.1199

S18 2.307 2.307 93.26 213.5
Total Power
(uW) 10700.72 15024.12 3294.42 4954.96

 76

5.5.5 Power Results for Sobel Bench Mark

Table 5-21 summarizes the power consumed by the chip for every stripe in the SuperCISC

reconfigurable hardware fabric design when the Sobel benchmark was run on the fabric. The pre-

layout power consumption of the chip was 1.512mW and the post-layout power consumption

was 2.099mW.

Table 5-21: Sobel Post Layout Power Simulation

 ALU Stripe MUX Stripe
Pre-Layout
Power

Post-Layout
Power

Pre-Layout
Power

Stripe Number (uW) (uW) (uW)

Post-Layout
Power
(uW)

S1 313.9 571.5 71.69 107.3

S2 126.6 142.4 30.09 44.22

S3 93.7 110.5 55.86 85.19

S4 224.9 270.8 86.44 123.4

S5 152.5 190 57.77 82.56

S6 107 122.6 38.32 58.34

S7 36.28 40.19 11.16 17.29

S8 32.64 38.7 8.296 13.45

S9 15.46 17.96 5.804 8.818

S10 14.64 18.06 4.077 6.096

S11 4.632 4.666 0.1199 0.1199

S12 2.307 2.307 0.1199 0.1199

S13 2.307 2.307 0.1199 0.1199

S14 2.307 2.307 0.1199 0.1199

S15 2.307 2.307 0.1199 0.1199

S16 2.307 2.307 0.1199 0.1199

S17 2.307 2.307 0.1199 0.1199

S18 2.307 2.307 3.465 8.921
Total Power
(uW) 1138.401 1543.525 373.8113 556.4243

 77

5.5.6 Power Results for Laplace Bench Mark

Table 5-22 summarizes the power consumed by the chip for every stripe in the SuperCISC

reconfigurable hardware fabric design when the Laplace benchmark was run on the fabric. The

pre-layout power consumption of the chip was 1.296mW and the post-layout power consumption

was 1.623mW.

Table 5-22: Laplace Post Layout Power Simulation

 ALU Stripe MUX Stripe
Pre-Layout
Power

Post-Layout
Power

Pre-Layout
Power Stripe

Number (uW) (uW) (uW)

Post-Layout
Power
(uW)

S1 276.4 323.6 80.77 120.3

S2 169.7 196 59.17 89.53

S3 116 134.3 42.71 67.25

S4 88.91 100.3 29.75 45.98

S5 76.71 88.63 57.37 85.86

S6 119.9 139.9 38.09 55.56

S7 35.62 39.22 9.6 14.77

S8 16.22 18.88 7.233 10.88

S9 17.44 21.67 7.233 10.88

S10 17.44 21.67 5.136 7.551

S11 5.135 5.175 0.1199 0.1199

S12 2.307 2.307 0.1199 0.1199

S13 2.307 2.307 0.1199 0.1199

S14 2.307 2.307 0.1199 0.1199

S15 2.307 2.307 0.1199 0.1199

S16 2.307 2.307 0.1199 0.1199

S17 2.307 2.307 0.1199 0.1199

S18 2.307 2.307 3.191 8.585
Total Power
(uW) 955.624 1105.494 341.0923 517.9853

 78

6.0 DELAY ELEMENTS FOR LOW POWER FABRIC

Delay elements are circuits that introduce a specific delay between the input and the output.

Delay elements are widely used in asynchronous or self-timed digital systems. For a self-timed

system, the delay element generates a task-complete signal to flag the completion of the task

[11][12].Delay elements are also used in circuits that perform mathematical computations like

the Discrete Cosine Transform [11] [13]. Delay elements are also used in Phase Locked

Loops(PLLs) and Delay Locked Loops (DLL) [11] [14].

Circuits can be designed to provide the specific delay as required. The challenge in

designing delay element circuits is to have circuits that show good signal integrity and low

power consumption. Also the circuits should show very little variation across supply voltage,

temperature and process. An exhaustive study on delay elements has been conducted in the past

to analyze the pros and cons of various delay elements. Some of the conventional delay elements

are the Transmission gate, Cascaded inverter chain, Voltage-Controlled delay elements, and

transmission gate with Schmitt trigger [15][16].

6.1 DELAY ELEMENT TOPOLOGIES

A wide variety of delay element topologies have been described in [15] [16]. Each of the delay

element topology has a unique delay, area, power and signal integrity characteristic.

 79

Transmission Gate Based Delay Element

A transmission gate (TG) based delay element has a NMOS and a PMOS connected in

parallel. The gates of the PMOS and NMOS are connected to GND and VDD respectively. The

delay in a TG based delay element is from the on-resistance of the parallel combination of the

PMOS and NMOS through which a load capacitance CL is charged and discharged. The on-

resistance of the delay element can be varied by adjusting the transistor sizes appropriately. The

reason for using both PMOS and NMOS in the structure is that a PMOS passes a logic high

value without degradation and a NMOS passes a logic low value without degradation.

The power consumed by the transmission gate delay element is from the charging and

discharging of the load capacitance. Hence the power consumed by the delay element is minimal.

However, because of the slow rise and fall times, the signal integrity of the delay element is

considerably degraded. In this context, signal integrity is said to be good when the rise and fall

times measured from 10% to 90% of the output is considerably small [15]. The delay element

cannot be used to generate large delay values because of the slow rise times. The slow rise and

fall times will cause a huge short circuit current consumption on the logic gate that is being

driven. The TG based delay element has shown to vary considerably with supply voltage

variations [11]. The TG can be used for delays in the range from 200-300ps [11]. Figure 6-1

shows the schematic of a transmission gate based delay element.

 80

S=Vss

VoutVin

S=Vdd

Figure 6-1: Transmission gate based delay element

Transmission gate with Schmitt Trigger

The signal integrity of the TG based delay element can be improved by placing a Schmitt

trigger in series with the TG. The Schmitt trigger circuit produces a fast rising edge signal from a

noisy and slow varying signal [15]. Apart from making the output signal clean, the Schmitt

Trigger minimizes the short-circuit current consumption due to a slowly rising signal. However,

the short-circuit current from the input transistor cannot be avoided. Hence, the use of TG always

costs significant amount of power. The delay of a TG with Schmitt trigger circuit can be changed

by varying the sizes of the TG or by changing the switching threshold of the Schmitt Trigger

[15].

Figure 6-2: Transmission Gate with Schmitt Trigger

 81

Cascaded Inverter Based Delay Element

A series of inverters can be used as a delay element. Such a delay element uses the

propagation delay of the inverters in the chain to obtain the specified delay value. The

propagation delay of an inverter is dependent upon the time to charge and discharge the load

capacitance. The cascaded inverter chain is the simplest delay element topology and is the most

common delay element because of the ease of design. However, such delay elements are

sensitive to environmental variations such as supply voltage and temperature.

The inverter chain shows considerably less supply voltage variation compared to a TG

based delay element [11]. However, the number of inverters in series increases tremendously for

large delay values. With the increase in the number of inverters, the power consumption also

increases. The inverter chain can be used for delays in the range between 1ns to 3ns [16]. Figure

6-3 below shows the schematic of the inverter based delay chain.

Figure 6-3 Cascaded inverter based delay element

NP- Voltage Controlled

A NP-voltage controlled delay element consists of a cascaded inverter pair with a series

connected NMOS and PMOS transistor in the pull-up and pull-down path [15]. The NMOS and

 82

PMOS transistors have their gate inputs connected to a control voltage designated as Vn and Vp

respectively. The control voltage together with the transistor sizes control the charging and

discharging time of the load capacitance and hence the total delay between the input and the

output.

Figure 6-4 shows the schematic of a NP-voltage controlled delay element. The N-Voltage

controlled and P-Voltage controlled delay elements are different flavors of this design. The

signal integrity of the NP voltage controlled delay element is poor because of the slow rise and

fall times associated with the output.

Figure 6-4: NP-Voltage Controlled delay element

 83

NP-Voltage controlled with Schmitt Trigger

The signal integrity of a NP-voltage controlled delay element can be improved by using a

Schmitt trigger in series which converts the slow edges to fast edges [15]. However, as in many

other delay elements, the slow edges due to the NP voltage controlled delay element will cause

short circuit power dissipation at the input stage of the Schmitt trigger.

Figure 6-5: NP-Voltage Controlled delay element with Schmitt Trigger

N-Voltage Controlled

For an N-Voltage controlled delay element, varying the control voltage Vn changes the

delay by changing the discharging current. When there is a rise transition at the input, the first

inverter discharges through the control transistor path while the second inverter charges the

 84

output normally. The signal integrity is similar to a cascaded inverter case. The power

consumption will be similar to the cascaded inverter case, except for the additional control

voltage transistors, which contribute additional power due to the additional diffusion capacitance

[15]. Figure 6-6 below shows the N-voltage controlled delay element.

Figure 6-6: N-Voltage Controlled delay element

P-Voltage Controlled

Another variant of the NP-voltage controlled delay element is the P-voltage controlled

delay element. The control voltage Vp changes the delay by changing the charging current. The

analysis of the P-voltage controlled delay element is similar to the N-voltage and NP-voltage

controlled delay elements. Figure 6-7 below shows the P-voltage controlled delay element.

 85

Figure 6-7: P-Voltage Controlled delay element

Current Starved Cascaded Inverter

The structure is similar to a NP-voltage controlled transistor with the modification that

the PMOS control voltage is generated using a current mirror structure. The signal integrity of

this delay element is also poor because of the slow rise and fall times at the output.

Vdd

Vin Vout

Vss

Vn

Figure 6-8: Current Starved Cascaded Inverter

 86

m-Transistor Cascaded Inverter

This delay element has a cascode like structure with series connected PMOS and NMOS

in its pull-up and pull-down path respectively [15]. The gates of all these PMOS and NMOS

transistors are connected to the input. The cascode like structure has an increased ON-resistance

and capacitance. The additional capacitance arises from the diffusion capacitances of the source

and drain regions of the additional series transistors [15].

The m-transistor cascade has poor signal integrity because of the increased charging and

discharging resistance [15]. The power consumption is slightly higher than a simple inverter

chain because of the additional node capacitances in this structure.

Vout

Vdd

Vin

Vss

Figure 6-9: m-Transistor Cascaded Inverter

 87

Staged Cascaded Inverter

The Staged cascaded inverter based delay element has stages of inverters. The first stage

has two inverters and the second stage has a single inverter. The first stage is called the input

stage and the second stage the output stage. The output of the first stage of inverters controls the

transistors of the next stage [15].

The primary advantage of this design is that the short circuit power dissipated on the

output stage when both the transistors are ON can be virtually eliminated by sizing the input

transistors appropriately [15]. The sizing of the input transistors can ensure that the output

PMOS is turned OFF before turning ON the output NMOS and vice versa. The input stage

inverters primarily control the delay of the delay element. The range of delay that can be

obtained with this delay element topology is minimal.

Figure 6-10: Staged Cascaded Inverter

 88

6.2 LOW POWER FABRIC USING DELAY ELEMENTS

Delay elements can be used in the SuperCISC Reconfigurable Hardware Fabric to save a

significant amount of glitching power. As the entire hardware fabric uses a combinational flow,

timing differences between two paths can cause glitches at the output of the combinational block.

These glitches contribute significant amount of power in the operation of the device. Delay

elements are used to enable the latches at the data inputs to the functional unit. The latches are

enabled at time t0 which is the maximum of the all the data path delays to the functional unit.

Thus freezing of the gate inputs until all data inputs become available minimizes the glitch

power. Thus delay elements can be used to minimize the power.

For an example consider the combinational circuit shown in Figure 6-11 . The adders

have a propagation delay of 1.2ns, multipliers have a delay of 4ns and subtractors have a delay of

1.25ns. The critical path on the left side of the final multiplier M1 is 5.25ns and on the right side

is 4ns. The final multiplier switches continuously during the entire duration of 9.25ns,which is

the sum of the maximum critical path delay of the operands (5.25ns) and the propagation delay

of the multiplier M1(4ns) itself.

Figure 6-12 shows the latches (L) that are introduced at the inputs to the operands of the

multiplier M1. The latches L are enabled by a 5ns delay element. As the inputs to the multiplier

M1 are enabled only after 5ns, M1 switches for 0.25ns due to the left input operand and for 4ns

due to its own propagation delay. Thus the total switching time is only 4.25ns. As shown, the

delay element has reduced the switching time from 9.25ns to 4.25ns, hence reducing the

glitching power consumption of the system.

 89

Figure 6-11: Combinational switching without delay elements

1.2ns

1.25ns

4ns 4ns

4ns

L L

5ns
Delay

Element

9.25ns

5ns 4.25ns

t=0
Multiplier M1

Switching
M1

Figure 6-12: Combinational switching with delay elements

 90

The use of delay elements in the hardware fabric requires that the delay elements have a

wide delay range. Also, as the delay elements are used to enable latches, which are in the critical

path of the design, increase in the delay value can cause performance degradation while a

decrease in the delay value can cause an increase in the glitch power. Variations in delay values

are considerable with supply voltage, temperature and process variations. Hence, a delay element

which is less sensitive to these variations is essential to reduce power in the hardware fabric with

minimal performance degradation.

6.3 THYRISTOR BASED DELAY ELEMENT

The need for a delay element with a low power characteristic and low supply and temperature

variation was the driving factor in the use of the CMOS thyristor based delay element. In

addition, this delay element also possesses good signal integrity. The thyristor based delay

element as proposed by [17] is less sensitive to voltage and temperature variations as the major

component of the delay is controlled by the current source.

6.3.1 CMOS Thyristor Concept

The working of the thyristor based delay element is based on the principle described below.

Consider the circuit as shown in Figure 6-13. Let node Q~ be charged to Vdd and node Q be

discharged to ground in the beginning. This assumption is valid as can be seen in the dynamic

triggered delay element design. Let Penable be asserted high and Nenable be asserted low. When

 91

the input signal D transitions, node Q~ begins to discharge with current Ictrl. Once the voltage at

node Q~ drops below the threshold voltage of the PMOS transistor M3, the transistor M3 turns

on and begins to charge node Q. Once node Q has charged to the threshold voltage of the NMOS

transistor M2, the transistor turns on and discharges node Q~ faster. The transistors M3 and M2

now form a positive feedback which makes the switching action faster. As the delay in the

positive feedback action is small, the total delay is dominated by the delay due to discharge of

Q~ using the discharge current Ictrl and the charging of Q. The signal integrity of the thyristor

based delay element is good because of the positive feedback action which causes the output

edges to be sharp [16].

Figure 6-13: CMOS Thyristor structure

 92

6.3.2 Dynamic Triggering Scheme

A dynamic triggering scheme [17] based delay element using the CMOS Thyristor is shown in

Figure 6-14. The delay element uses two CMOS thyristors, the left half and the right half. The

left half CMOS thyristor ensures delay on the rising edge of D and the right half ensures the

delay on the falling edge of D considering Q as the output. Also the two CMOS thyristors help to

restore the charge on the nodes Q and Q~. To be specific, let us consider Figure 6-13. Once node

Q~ gets discharged, the standalone CMOS thyristor does not have a way to restore the charge on

node Q~ for the next cycle. The two CMOS thyristors help to avoid this situation. Also the

signals PENABLE and NENABLE help to avoid the shunt current condition during activation

[17].

Figure 6-14: CMOS Thyristor Dynamic Triggering Scheme

 93

Dynamic triggering prevents shunt current that would cause higher power consumption

and spike noise on the power line [17]. But this requires an internal delay element τ for dynamic

timing generation [17]. The delay τ is required for disconnecting the path between Vdd and

ground using the Penable and Nenable signals. The delay τ can be generated using an inverter

chain. The delay between the input and output is not affected by the internal delay τ required for

generating the Penable and Nenable signals [17].

6.3.3 Static Triggering Scheme

A simpler version of the dynamic triggering scheme is the static triggering scheme [17] shown in

Figure 6-15. The static triggering scheme avoids the generation of Penable and Nenable signals

and this causes shunt current in the design.

D

Q Q

VDD

Ictrl

Figure 6-15: CMOS Thyristor Static Triggering Scheme

 94

Figure 6-16 shows the shunt current condition when the D transitions from a logic low to

a logic high state. When D transitions from a logic low to a logic high, the left thyristor turns on

while the right thyristor turns off. These simultaneous actions cause a shunt current path from

Vdd to ground. This shunt current can be avoided by turning off the right thyristor once node Q~

reaches Vdd. The Penable signal is delayed version of signal Q~ which can be used to turn of the

right thyristor and turn on the left thyristor for the next cycle. Figure 6-17 shows the shunt

current condition when D transitions from a logic high to a logic low state. The Nenable signal is

a delayed version of signal Q which can be used to turn off the left thyristor and turn on the right

thyristor. The Nenable prevents the shunt current during a transition from a high state to a low

state on the D input.

Figure 6-16: CMOS Thyristor Shunt current when D transitions to a high

 95

VDD

Ishunt

D

Q Q

Ictrl

Figure 6-17: CMOS Thyristor shunt current when D transitions to a logic low

6.3.4 Delay Analysis of the Thyristor Based Delay Element

The total delay using the thyristor based delay element can be split into three components and an

analytical model has been derived by [17][18]. Let us consider the rising edge of the input

signal. The first component of the delay can be attributed to the delay in discharging node Q~

from Vdd to Vdd-Vtp, where Vtp is the threshold voltage of the PMOS. The second component

of the delay can be attributed to the delay in charging node Q from 0V to Vtn, where Vtn is the

threshold voltage of the NMOS. The third component of the delay is from the regeneration time

of the CMOS thyristor during positive feedback. Equation 6-1 shows the total delay in the delay

element.

t21 δ t ty Total Dela dd ++=

Equation 6-1: Thyristor Delay Components

 96

td1 is the delay in discharging node Q~ from Vdd to Vdd-Vtp. td2 is the delay in charging

node Q from 0V to Vtn and δt is the regeneration time of the CMOS thyristor. The delay in

discharging node Q~ from Vdd to Vdd-Vtp is determined by the capacitance at node Q~ and the

value of the current source used for discharging. Using a current value of Ictrl the delay td1 is

given by Equation 6-2.

ctrl

tp
d I

 VC
 t

1
1 =

Equation 6-2: Delay due to Control Current

After discharging node Q~ to Vdd-Vtp ,transistor M3 as shown in Figure 6-13 turns on.

As transistor M3 is in saturation when it turns on, the drain current Id1 is given by Equation 6-3.

2
1

22
ctrloxp

2
tpgs1

oxp
d1

1

ctrl
tp

dd~Qgs1

C
tI

L
W

2
Cμ

)V(V
L

W
2
Cμ

 I

C
t I V

V - V V

=

−=

+=

=

Equation 6-3: Drain Current in CMOS Thyrsitor

 97

The delay td2 in charging the node Q from ground to Vtn using the drain Id1 is given by

Equation 6-4. The total thyristor delay td is given by Equation 6-5.

3

oxp

tn2
2

1
d2

td1

0
2tnd1

(W/L)Cμ
VC6Ct

CVdtI

=

=∫

Equation 6-4: Delay in charging node Q

t3 tnV2
ctrl(W/L)IoxCpμ

2C
2

16C

ctrlI

tpV1C
td δ ++=

Equation 6-5: Total Thyristor Delay

 98

δt is the regeneration time of the CMOS thyristor and is a minor component of the delay

value but is sensitive to the variation in the supply voltage. Since the major components of the

delay values are insensitive to the supply voltage, the characteristic of this delay element is less

sensitive to the variation in the supply voltage.

As shown in Equation 6-5, with smaller Ictrl, i.e., larger delay value, the delay element

gets less sensitive to the supply voltage variation. Equation 6-5 clearly shows that the delay

value is controlled by the control current Ictrl. The second term in the equation shows the

temperature dependency of the delay with mobility μp.

6.4 MODIFIED CMOS THYRISTOR DELAY ELEMENT

The CMOS thyristor based delay element as suggested by [17] suffers from some drawbacks.

The fundamental drawback arises from charge sharing between the nodes. The assumption that

node Q~ is at Vdd before being discharged by the current source is not valid. This is because the

rising edge of the D input and the signal Penable cause the charge stored on the parasitic

capacitance C0 (shown in Figure 6-18) to be shared with capacitances C1 and C2. The charge

sharing effect causes the voltage at node Q~ to drop from Vdd to Vdd * (C0/(C0+C1+C2)). This

reduction in voltage affects the delay because the node Q~ instead of getting discharged from

Vdd , gets discharged from a lower voltage. Thus the charge sharing phenomenon causes a

decrease in the delay value.

 99

P
en

ab
le

N
 eable

Figure 6-18: CMOS Thyristor showing Parasitic Capacitances

Also mismatches between the current sources Ictrl and Ictrl` can cause the delays

between the rising edge to be different from the falling edge. As the delay element used for

timing the SuperCISC reconfigurable hardware fabric does not use a delay on the falling edge of

the signal, this effect is not pertinent to the application in hand.

An architecture modified to solve the above issues has been proposed by [18]. The

schematic of the modified CMOS thyristor delay element is shown in Figure 6-19. The signals

Qcharge and Q~charge are used to cancel the charge sharing effect. Qcharge is generated by the

NAND of inputs D and Nenable. Q~charge is generated by the NAND of inputs Dbar and PEN.

The prime motive in having signal Q~charge is to enable the PMOS transistor that can be used to

replenish the charge on node Q~ when PEN gets enabled. The signal Q~ charge needs to be

asserted low only as long as the D input is low. Hence, a NAND of inputs PEN and Dbar

accomplishes this purpose. Similarly Qcharge gets activated to replenish the charge on node Q

when NEN gets enabled. As the Qcharge and Q~charge are driving the gates of PMOS

 100

transistors, they are active low signals. Figure 6-20 below shows the timing diagram of the

modified CMOS thyristor based delay element.

Figure 6-19: CMOS Modified Thyristor Delay Element

 101

Figure 6-20: Timing diagram of the modified CMOS delay element

6.5 CUSTOM CMOS THYRISTOR DELAY ELEMENT FOR FABRIC

The original circuit of Figure 6-19 has been modified to suit the application needs of the

SuperCISC Reconfigurable Hardware Fabric. The circuit schematic of the delay element used in

the fabric is shown in Figure 6-21.

The delay element to be used in the SuperCISC reconfigurable hardware fabric, drives

the enable inputs of the latches. The latches when disabled, freeze the inputs to the

computational unit. The latches when enabled pass the inputs to the computational unit. The time

between the input to the hardware fabric and the valid output from the hardware fabric can be

considered as one processing cycle of the fabric. All latches used in the hardware fabric for

delaying the inputs are to disabled at the beginning of the processing cycle and need to be

enabled at the time points when they start the computation. All latches used in the context of

 102

delay elements are enabled on a logic high and disabled on a logic low. As can be inferred from

this application, only the rising edge of latches should be delayed while the falling edge should

not be delayed. Hence, the delay elements that drive these latches need to have the same

property.

Figure 6-21: Custom CMOS Thyristor based Delay Element

 103

To meet the design requirement of having an undelayed falling edge, the current source

required to discharge Q has been replaced with an NMOS transistor. The NMOS transistor M17

gets enabled when D input makes a transition from a logic high to a logic low. The NMOS

transistor discharges node Q at a fast rate and hence the delay element does not have a delay on

the falling edge of the signal.

Input Vctrl of transistor M11 acts as the current source for the delay element. The signal

Vctrl is generated from a constant gm based current source circuit and the transistor M11 mirrors

the current. The current source used in the design is based on a 100nA current source.

6.5.1 Programmability

For a 20X18 ALU configuration of the hardware fabric, there would be 360 ALU nodes

(assuming homogeneous ALU configuration).The delay elements that are used can have value of

4ns, 5ns and 7ns, which totals to 3 delay elements per ALU node. Use of 3 delay elements per

ALU node makes the number of delay elements used in the fabric to be around 3*360. The use

of so many delay elements is prohibitive from an area perspective. So the idea of using a

programmable delay element based on scaling the current source helps to overcome the overhead

in having multiple delay elements. This programmability reduces the number of delay elements

from 1080 to 360.

One possible configuration would be to scale the input current mirror transistor

connecting to signal Vtrl by having multiple PMOS transistors in parallel with enable switches

connected to them in series. The major drawback behind this application is from the fact that the

sizes of the input current mirror transistors are large. So, when the D input is off, charge gets

stored on the drains of the large current mirror transistors and when the D input gets turned ON

 104

charge sharing happens between the drain of the current mirror transistor and the drain of the

diode connected NMOS transistor. This charge sharing causes a huge current to be mirrored on

the path that discharges Q~. This limits the range of delay that can be achieved with the

programmable delay element.

An alternative solution that has been used is to scale the current mirror transistors in the

path that discharges Q~. The inputs C0,C1,C2 connected to the gates of the NMOS transistors

M22,M24 and M26 as shown in Figure 6-22 act as control switches that can be turned ON to

scale the discharging current. As the switches are statically configured before the start of

operation, the appropriate switches are always ON or always OFF. Using this approach, a well-

controlled delay range has been obtained.

The use of programmable current mirrors comes at the expense of an increase in the gate

capacitance seen at the gate of the diode connected NMOS transistor M13. Under normal

operating conditions, when D is turned ON, the gate of the diode-connected transistor rises to a

potential depending on the charging current. When D gets turned OFF, the gate gets discharged

to the threshold voltage of the diode connected NMOS transistor. With the increase in the gate

capacitance, the time to discharge the node to Vtn (threshold voltage of NMOS) becomes higher.

Also, during this time as Q~ gets replenished through Q~charge transistor M9, a static current

path exists between node Q~ and ground because of the potential being above the Vtn of the

NMOS transistors. Even under normal operating conditions, when D is OFF, the Vtn voltage on

the diode-connected NMOS causes sub-threshold current leakage from node Q~ to ground. To

alleviate this problem, an additional NMOS transistor M19 has been added with the drain

connected to the gate of the diode-connect NMOS and the source connected to ground. The gate

of transistor M19 is connected to dbar (D after inverted). So, when D is OFF, dbar gets enabled

 105

and discharges the gate of the diode-connected NMOS to ground. Thus the circuit eliminates

static power consumption. Appendix D which contains the characterization data for the delay

elements shows the off-state leakage power consumed by the device.

After the delay has been accomplished, the current path from Vdd to ground through

transistors M11,M12 and M13 when D is ON is a source of unwanted power consumption. So

the use of a control signal Dctrl to turn OFF the input to transistor M12 after the delay happens,

eliminates the unwanted current consumption. Dctrl is generated using the AND of inputs D and

PEN as shown in Figure 7. The circuit schematic of a programmable delay element is shown in

Figure 6-22. Figure 6-23 shows the AND gate to generate the Dctrl signal. The control bits for

programming the delay value can be set during the configuration phase of the reconfigurable

hardware fabric.

Q

NEN

NEN PENPEN

D

QchargeQcharge~

D

VCTRL

Q~

~

M1

M2

M3

M4

M5

M6

M7

M8

M9
M10

M11

M12

M13

M15

M16

M17
CTRLC0 C1 C2

dbar

Vdd

Vdd

M20M22M24M26

M21

M23M25M27
M19

Figure 6-22: Programmable delay element

 106

Figure 6-23: AND gate to generate Dctrl

6.5.2 Layout of the Programmable Delay Element

The layout of the programmable delay element was implemented in Cadence Virtuoso XL using

the IBM 0.13um CMOS process design kit. The delay element has a size of about 97.8um X

3.6um giving a total area of about 352.08sq.um. This area does not include the buffers used to

characterize the delay cell. Figure 6-24 below shows the layout of the programmable delay

element. The design was DRC checked and LVS verified using Mentor Graphics Calibre.

Figure 6-24: Layout of the Programmable Delay Element

 107

6.5.3 Parasitic Extraction of the Delay Element

To annotate the design with parasitics from the layout, parasitic extraction was done using

Mentor Graphics Calibre xRC. The parasitic capacitance annotated HSPICE netlist was used for

characterizing the complete design. The tool annotates both the wire capacitance to ground as

well as the coupling capacitance between nets.

6.5.4 Cell Characterization and HSPICE Post-Processing

The objective of building the delay element is to characterize its power characteristics for various

delay values. The characterized data can be transformed into Synopsys Liberty Format to be used

in the standard cell based ASIC design flow. The HSPICE post-processing script automates the

cell characterization procedure. Appendix B contains the HSPICE post-processing script written

in Perl to automate the cell characterization. The delay element cell was characterized for various

values of load capacitance and input transition times. The HSPICE post-processor reads the

HSPICE netlist and changes the load capacitance and transition times appropriately and the

measurement commands suited for the simulation. The netlist is simulated in HSPICE after the

post-processing step. The measurement data is written into a “netlist.mt0” file by HSPICE. The

simulated data is read and the data format is changed to be readable by the user.

Three different versions of the standard cell were created with different drive strengths.

These delay elements differ only in the output buffer used to drive the load. The first version of

the delay element has the capability to drive a 80fF load. The next has the capability to drive a

160fF load and third has the capability to drive a 640fF load. Figure 6-25 shows the layout of a

 108

buffer with a drive capacity of 640fF. Multi-finger transistors were used to fit the width of the

transistors within the standard cell height. Figure 6-26 shows a buffer with a drive capacity of

160fF. Figure 6-27 shows a buffer with a drive capacity of 80fF. The appropriate delay element

can be chosen under a given load condition.

Figure 6-25: Layout of a 640fF drive Buffer

Figure 6-26: Layout of a 160fF drive buffer

 109

Figure 6-27: Layout of a 80fF drive buffer

The Liberty Format description of a delay element includes its rise power, fall power, cell

rise delay, cell fall delay, rise transition time, fall transition time, leakage power during ON state,

leakage power during OFF state. The Synopsys Liberty Format terminologies are described

below.

Rise Power

Energy Consumed by the cell when the input makes a transition from a logic low to a

logic high value.

Fall Power

Energy Consumed by the cell when the input makes a transition from a logic high to a

logic low value.

 110

Cell Rise Delay

The Cell Rise Delay is measured when the output makes a transition from a logic low to a

logic high. Delay measured between the input reaching 50% of its final value to the output

reaching 50% of its final value is defined as the Cell Rise Delay. Figure 6-28 shows the Cell Rise

delay measurement waveform.

Figure 6-28: Cell Rise Delay Measurement

Cell Fall Delay

The Cell Fall Delay is measured when the output makes a transition from a logic low to a

logic high. Delay measured between the input reaching 50% of its final value to the output

reaching 50% of its final value is defined as the Cell Rise Delay. Figure 6-29 shows the Cell Fall

delay measurement waveform.

 111

Figure 6-29: Cell Fall Delay Measurement

Rise Transition Time

The time taken for the output to reach from 10% of its final value to 90% of its final

value is defined as the rise transition time. Figure 6-30 below shows the rise transition time

measurement waveform.

Figure 6-30: Rise Time Measurement Waveform

 112

Fall Transition Time

The time taken for the output to reach from 90% of its final value to 10% of its final

value is termed the fall transition time. Figure 6-31 below shows the fall transition time

measurement waveform.

Figure 6-31: Fall Time Measurement Waveform

Leakage Power during ON State

The ON-state leakage power is measured after the input has transitioned to a logic high

value and is in its steady state.

Leakage Power during OFF State

The OFF-state leakage power is measured after the input has transitioned to a logic low

value and is in its steady state.

 113

6.5.5 Characterization Results for a 4ns delay element

Figure 6-32 shows the input and the delayed waveforms for a 4ns delay element. Figure 6-33

shows the Q and Q~ nodes of the internal CMOS thyristor. Appendix D shows the

characterization data collected for the 4ns delay element with different drive strengths.

Figure 6-32: Input and Delayed waveforms for 4ns delay element

Figure 6-33: Q and Q~ discharge waveforms for 4ns delay element

 114

6.5.6 Characterization Results for a 5ns delay element

Figure 6-34 shows the input and the delayed waveforms for a 4ns delay element. Figure 6-35

shows the Q and Q~ nodes of the internal CMOS thyristor. Appendix D shows the

characterization data collected for the 5ns delay element with different drive strengths.

Figure 6-34: Input and delayed waveforms for a 5ns delay element

Figure 6-35: Q and Q~ discharge waveforms of a 5ns delay element

 115

6.5.7 Characterization Results for a 7ns delay element

Figure 6-36 shows the input and the delayed waveforms for a 4ns delay element. Figure 6-37

shows the Q and Q~ nodes of the internal CMOS thyristor. Appendix D shows the

characterization data collected for the 7ns delay element with different drive strengths.

Figure 6-36: Input and delayed waveforms of a 7ns delay element

Figure 6-37: Q and Q~ waveforms of a 7ns delay element

 116

7.0 EEPROM CIRCUIT DESIGN

EEPROM (Electrically Erasable/Programmable Read Only Memory) is a non-volatile memory

device which has the capability to be read like an ordinary ROM as well as to be erased

/programmed electrically to a new data value that needs to be stored. The fundamental

component in the EEPROM cell is the FLOTOX (Floating Gate Tunnel Oxide) transistor. The

following sections describe the implementation of the EEPROM design in a 0.35um process.

7.1 EEPROM CELL

The FLOTOX transistor is a device, which can be used to store a “bit” value. The EEPROM cell

operates by changing the threshold voltage of the FLOTOX transistor [19]. When the transistor’s

threshold voltage is increased, the transistor does not conduct for normal applied voltages and is

said to be erased. When the transistor’s threshold voltage is reduced, the transistor begins to

conduct even for a zero gate to source voltage and is said to be written. The structure of the

FLOTOX shown in Figure 7-1 shows the gate oxide and tunnel oxide regions of the transistor.

 117

Control Gate

Floating Gate

Tunnel Oxide
Gate Oxide

Channel Region Drain

Oxide

Source

Figure 7-1: Structure of the FLOTOX Transistor

Source Drain

Control Gate
Floating Gate

Figure 7-2: Symbol of a FLOTOX transistor

Figure 7-2 shows the symbol of a FLOTOX transistor. The EEPROM FLOTOX

transistor has a Control Gate (CG) terminal, a Floating gate terminal (FG), a Source (S), a Drain

(D) and a Substrate (B) terminal. The FLOTOX transistor is fundamentally an n-channel double-

poly transistor in which the middle layer is floating and is called the floating gate [19]. The

FLOTOX EEPROM has a region where the oxide thickness is very low and is called the

tunneling window. The oxide at the tunneling window region is called the tunnel oxide. Figure

7-3 shows the IV characteristics of the FLOTOX transistor in its virgin state [19]. Virgin state of

the FLOTOX transistor is the state when the transistor has neither been erased nor written.

 118

Figure 7-3: IV Characteristics of a virgin FLOTOX transistor

7.1.1 Erase Operation

An ERASE operation is said to be performed when a positive pulse is applied to the CG terminal

while the S,B and D are grounded. The positive pulse causes a large electric filed across the

tunneling oxide region. Fowler-Nordheim (FN) tunneling causes electrons to flow from the drain

to the floating gate where they are stored. The negative charge on the floating gate attracts holes

in the channel between the drain and the source. This effectively increases the threshold voltage

of the device. Under this condition, conduction will not occur between the drain and source

terminals for normal voltages that are applied to the gate terminal. The device is then said to be

in an erased state. Figure 7-4 shows the physical operation using FN tunneling when the

EEPROM cell is erased [19] and Figure 7-5 shows the charge on the floating gate after an erase

operation [19].

 119

Control Gate

Floating Gate

Electric Field

Tunneling Electrons
Gate Oxide

Channel Region
Drain

Vd=0V

e

Vg=+18V

Figure 7-4: EEPROM Erase Physical Operation

Control Gate

Tunnel Oxide
Gate Oxide

Channel Region

Oxide

Source

Vg

- - - - - - -
- - - -

Floating Gate

Figure 7-5: Charge on Floating Gate after erase operation

Figure 7-6 below shows the IV characteristics of the EEPROM in the erased state [19].

The figure shows an increase in the threshold voltage of the FLOTOX transistor after an erase

operation.

 120

Figure 7-6: IV Characteristics of an erased FLOTOX transistor

7.1.2 Write Operation

A write operation is said to be performed when a positive pulse is applied to the drain while the

source, bulk and control gate are grounded. Under such a condition, electrons flow from the

floating gate to the drain because of Fowler-Nordheim tunneling. Thus the floating gate

accumulates more positive charge and thus induces electrons to be attracted to the oxide -

substrate interface. This causes a decrease in the threshold voltage of the transistor. Under such a

state, the device allows conduction between the drain and the source for normal voltages applied

to the gate terminal of the device. Figure 7-7 shows the physical operation using FN tunneling

when the EEPROM cell is written [19] and Figure 7-8 shows the charge on the floating gate after

the write operation [19].

 121

Control Gate

Floating Gate

Electric Field

Tunneling Electrons
Gate Oxide

Channel Region
Drain

Vd=+18V

e

Vg=0V

Oxide

Source
Vs=0V

Figure 7-7: EEPROM Write Physical Operation

Control Gate

Tunnel Oxide
Gate Oxide

Channel Region

Oxide

Source

Vg

+ + + + + + + + + + + + + + + + + +

+ + + + + + +

Floating Gate

Figure 7-8: Charge on floating gate after write operation

Figure 7-9 shows the IV characteristics of the cell when the FLOTOX transistor is written

[19]. The characteristic shows a decrease in the threshold voltage of the FLOTOX transistor

when the cell is written.

 122

Figure 7-9: IV Characteristics of a written FLOTOX transistor

During the erase operation, the voltage on the floating gate node follows the gate control

voltage until electrons get injected because of Fowler-Nordheim tunneling [20]. At the onset of

tunneling, the floating gate voltage begins to decrease. Once the erase operation is completed by

setting the gate control voltage to zero volts, the floating gate potential reaches a negative value

depending on the amount of charges trapped on the floating gate [20]. The floating gate behavior

is similar during a write operation.

7.2 EEPROM MEMORY ARCHITECTURE

The EEPROM memory in addition to the FLOTOX transistor requires special circuits for its

operation. Some components of the design are similar to the SRAM (Static Random Access

Memory) array while most of them are different. The following components are a part of the

EEPROM array:

 123

1. EEPROM cell

2. Sense Amplifier

3. High Voltage Generator Using Charge Pump

4. Ramp Generator

5. Word Line Level shifter

6. Column Latch for the bit lines

7. Power multiplexer

EEPROM Cell

Practical implementation of the EEPROM requires a memory process design kit with

FLOTOX transistor models. In the absence such a design kit, EEPROM macromodels which

model the DC and transient characteristics can be used to simulate the EEPROM. The EEPROM

model used in the design has been based on the macromodel described in [21].

Macromodel Description

The macromodel description is entirely based on the model proposed by the paper [21].

The Figure 7-10 shows the circuit schematic of the macromodel description. Transistor M1 is an

NMOS transistor. The Fowler-Nordheim tunneling current is modeled as a voltage-controlled

current source GFN. The value of GFN is given by the expression shown in Equation 7-1 [21].

)exp(.
)(

A GFN tun
tfg

tun

tun

tfg

tun

tfg

VV
t

t
VV

t
VV

−
−

−−
= βα

Equation 7-1: Fowler-Nordheim Tunneling Current

 124

The current source IFN, resistor RT and capacitor CT are used to model the charge

storage and retention capabilities of the EEPROM [21]. The IFN is a current-controlled current

source which senses the tunneling current GFN with a gain of unity. RT is chosen to be a very

high value, so that most of the current IFN is supplied to the capacitor CT [21].

The floating gate is modeled by the controlled source EFG. The value of the floating gate

voltage is given by Equation 7-2 [21].

t

fg

t

initialfg,
tuntunbbcgcgssddfg C

ΔQ
C

Q
 V V V V V V ++++++= ααααα

Equation 7-2: Expression for Floating Gate Voltage

 The remaining part of the circuit is used to model Φsi, the surface potential of silicon

under the tunnel oxide. The original description of the SPICE code as shown in the paper has

been translated to HSPICE for use in HSPICE simulations. The HSPICE description of the

macromodel is shown in Figure 7-11.

The low-voltage and high voltage device models are based on the description given in

[22]. The high voltage devices had an effective length of 1um and a tox (oxide thickness) of 275

Angstrom [22]. The low voltage devices had an effective length of 0.35um and a thickness of 75

Angstrom [22].

 125

SPHI2

EPSI3

RPSI3

DPHI_LO

VDEP

DPHI_HI

VPHISAT1

VPHISAT2

EPHIDD

RPHI2

VDFG

ROX

RD VTH
EPHI2

VQF

FFN

CT

CGD

EPHI
EFGCOX

VFN

VFG
Cpp

GFN
Ctun

B D

M1

CG

Vt

100 101 200 201 300

400 401

402

403

404

Figure 7-10: FLOTOX EEPROM Macromodel Schematic

Figure 7-12 shows the simulation results of the macromodel. The figure shows the

control gate voltage during an erase operation. The figure shows the drain voltage during a write

operation, the Fowler-Nordheim tunneling current and the charge on the floating gate during the

erase and write operations.

 126

Figure 7-11: HSPICE Description of the FLOTOX EEPROM Macromodel

 127

Figure 7-12: FLOTOX EEPROM Cell HSPICE Simulation

 128

7.2.1 amp Generator

en implemented based on the description given in patent number US

6,650,153 B2 [23]. The schematic of the ramp generator is shown in Figure 7-13. The ramp

urrent source is constant and so the voltage across the capacitor

ramps w

R

The ramp generator has be

generator design consists of a differential pair powered by the voltage Vpp, generated using a

charge pump. The differential pair acts as an OPAMP with a high gain which forces the inputs

IN+ and IN- to be virtually at the same potential. The IN+ terminal of the OPAMP is connected

to Vref. Vref used in the design is 1.33V (bandgap reference voltage). The IN- terminal of the

OPAMP is connected to the feedback node. Feedback ensures that the voltage at the feedback

node stays close to 1.33V. The presence of a constant current source forces a constant current

through the ramp capacitor C.

The current through the capacitor and the voltage across the capacitor are related as

shown in Equation 7-3. The c

ith the slope of I/C as shown in Equation 7-4. The slope can be varied by varying C or I.

dT

dV
C I =

Equation 7-3: Capacitor Current Equation

 C
Itdt I

C

V == ∫

ion 7-4: Capacitor Voltage Ramp

Equat

 129

Figure 7-13: Ramp Generator Schematic

7.2.2 igh Voltage Generation Using Charge Pump

The high voltage Vpp required for erase and programming operations is typically generated

uit is one of the common charge pump

circuits used for this purpose [24].

The level shifter circuit shown in Figure 7-14 has been designed based on [25]. Asserting the

s p2 signal low. This action pulls node X low and Y to Vpp.

Pulling node X low, enables the pass transistor M5 which drives the high voltage at the output.

H

using a charge pump. The Dickson II Charge Pump circ

7.2.3 Word Line Level Shifter

input, ets inp1 signal high and in

On the other hand, de-asserting the input, pulls node Y low and X to Vpp which sets the gate

voltage of the pass transistor M5 at Vpp. This effectively turns off the pass transistor and the

ouput is tri-stated.

 130

Vout

Vpp

M3 M4

Vdd

in2 in1inp

in1 in2
M1 M2

M5
X

Y

Figure 7-14: Schematic of Voltage Level Shifter

7.2.4 Column Latch for Bit

The column latch is a circuit within the EEPROM memory array to store the data that needs to be

ry array. The FLOTOX transistor that gets activated in the

selected row gets programmed through the new data value available on the column bit lines.

ess,

lines

written into the column of the memo

The design of the column latch to drive the drain of the FLOTOX transistor with the

programming voltage is based on the design described in US Patent US6,859,391[26] with minor

modifications to the design. Data is written into the EEPROM cell through a three step proc

consisting of loading the data, followed by erasing the data and finally programming the data. To

load the data into the column latch, the LOAD signal as shown in

 131

Figure 7-15 is asserted for a short duration of time. When LOAD gets asserted, the new

data value that needs to be written into the EEPROM cell gets loaded into the latch and the value

is stored at node X by the cross coupled inverter even after LOAD gets de-asserted. Under

normal conditions, DIS_BL_CTRL gets asserted and signal IN2 is asserted and signal IN1 is de-

asserted pulling the output of the level shifter to Vpp. This effectively turns off the pass

transistor connected to the bit line. When the data needs to be programmed into the EEPROM

cell, DIS_BL_CTRL gets de-asserted and DATA_CTRL is asserted. This loads the data into

nodes IN2 and IN1. Depending on the value of IN2 and IN1, the level shifter either discharges or

charges to enable the pass transistor as shown in Figure 7-16. The enabling of the pass transistor

connects the programming voltage to the bit line and the disabling of the pass transistor tri-states

the bitline. For an EEPROM cell to be programmed the pass transistor is enabled and the bit line

is connected to the programming ramp generated by the ramp generator as described in the

section 7.2.2. The DIS_BL, shown in Figure 7-16 is asserted to pull the BL node to ground

during an erase operation. The DIS_BL can also be asserted during a read operation to discharge

any unwanted voltages that get coupled to the bit line.

Figure 7-15: Data Latch Schematic of Column Latch

 132

Figure 7-16: Level Shifter and Pass Transistor for Column Latch

7.2.5 Power Multiplexer

The design of the power multiplexer is based on the patent US 7,005,911 [27]. As the EEPROM

erase and program operations are high voltage operations, and the read being a low voltage

operation, it is necessary to have a power multiplexer which could choose between the high and

low voltages depending on the operation performed.

Such c e level shifter

would receive a high voltage from the power multiplexer for an erase and program operation and

v ation.

Power multiplexers are also used to connect to the column gates, which output a high

e input.

ircuits are essential at the input to the word-line level shifter. Th

a low oltage for a read oper

voltage during the erase operation, a ground voltage during program operation and a low voltage

during a read operation. Figure 7-17 shows the schematic of the power multiplexer used in the

design. The LS1 and Vdd_switch as shown in Figure 7-17 are essentially level shifters used to

shift the output to Vpp or Vdd depending on the enabl

 133

Figure 7-17: Power Multiplexer Schematic

7.2.6 Sense Amplifier

The sense amplifier is the circuit that senses the voltage at the output of the EEPROM cell during

a read operation. The design of the sense amplifier is based on the voltage sensing scheme as

proposed by [24]. Under erase or program conditions, signal C1 is asserted pulling the source of

the FLOTOX transistor to ground. C2 is asserted under normal conditions. During a read

operation, C1 gets de-asserted rising the voltage at node “ee_cs” to the supply Vdd. The control

voltage is set to the supply voltage Vdd. The wordline is enabled, effectively turning on the

select transistor and the control gate transistor. If the FLOTOX transistor is programmed, the

e al of the FLOTOX transistor, causes the transistor to conduct, raising

the voltage of the bit line from 0V to Vx. The value of Vx dpends on the wordline voltage. If the

voltag at the gate termin

voltage at the wordline is high because of use the of wordline boosters, the select transistor

would not incur a Vth drop across it. Otherwise the voltage at the bit line would be reduced by

the threshold voltage drop across the select transistor.

 134

The inverter pair connected to the bit line senses the bit line voltage to produce a logic

high or a logic low. Figure 7-19 shows the sense amplifier reading a logic ‘1’ when the FLOTOX

transistor has been programmed. If the FLOTOX transistor had not been programmed, then the

transistor would not conduct and the bit line voltage would not rise. Figure 7-20 shows the sense

amplifier reading a logic ‘0’ when the FLOTOX transistor has not been programmed.

Figure 7-18: Sense Amplifier Schematic

 135

Figure 7-19: Sense Amplifier Reading a Logic ‘1’

Figure 7-20: Sense Amplifier Reading a Logic ‘0’

 136

7.2.7 Memory Bank Architecture

Figure 7-21 shows the schematic of the memory bank architecture that has been implemented.

The implementation has two power multiplexer configurations, wordline power multiplexer and

control gate power multiplexer. The wordline power multiplexer is used to multiplex between the

high voltage (Vpp), boosted voltage (Vdd_boost) and ground (gnd). This is because the wordline

output is Vpp during erase and program operations, Vdd_boost during a read operation and gnd

when the memory is disabled. The wordline is asserted for the appropriate row that gets selected

from the address decoding action of the row address decoder. The level shifter in the wordline

path asserts the appropriate voltages only to the wordline that is activated. All other wordlines

are disconnected and are not e

he control gate power multiplexer is used to multiplex Vpp, Vdd and gnd voltages to

the control gate of the EEPROM cells. The multiplexer outputs Vpp when the device needs to be

, nd gnd when the device needs to be programmed or when

the device is disabled. The Vpp to the control gate multiplexer is generated by the erase ramp

generator circuit to meet the appropriate ramp conditions.

The column data latch is used to latch the data value that needs to be written into the

memory. Depending on the latched value, the column latch outputs either a Vpp or a tri-state

select lines “col0,”, “col1” are used to select the appropriate column during a read operation. The

column select lines are activated by a column address decoder. The sense amplifier finally reads

the voltage on the bit lines and decides the logic value of the voltage that is being read out. The

“bl_s” generator circuit is used to generate the precharge voltages that are necessary to precharge

nabled.

T

erased Vdd during a read operation a

output. The Vpp to the column latch is generated by the program ramp generator. The column

the sources of the EEPROM cells.

 137

Figure 7-21: Memory Bank Architecture

 138

7.2.8 Memory Bank Simulation

Figure 7-22 shows the erase and programming of two bits in the memory bank. The first bit gets

erased and is not programmed while the second bit gets erased and is programmed. Figure 7-22

shows the floating gate voltage of the EEPROM cell that’s has been programmed and that been

only erased.

Figure 7-22: EEPROM Bank Simulation

 139

8.0 POWER GATED EEPROM DESIGN

High power consumption has always been an issue with EEPROM design because of the

inherent nature of the FLOTOX memory processes that use a high voltage to program these

devices. Many circuit level optimizations have been made in the past to reduce the power

consumption of the basic EEPROM block. The thesis proposes an architectural level power

optimization using power gating technique to increase the size of the memory while keeping the

active power low. The power-gated memory design minimizes both the dynamic and leakage

power associated with memories. Simulations have been performed using HSPICE models for a

0.35um CMOS process.

Our solution is to build a hierarchical low-power memory block using power-gating

technique for the non-accessed memory block. The concept of multi-block architecture [28] is a

common low power technique used in memory design. However, the use of power gating

reduces the power consumption si mode techniques.

8.1 ARCHITECTURE OF THE POWER GATED MEMORY

A ``power enable'' PMOS device is added in series with the memory block as shown in

Figure 8-1. This allows only the block that is actually addressed to be powered, while the

remaining blocks remain disconnected from power. As the EEPROM uses both a high voltage

gnificantly as compared to other sleep

 140

(Vpp) and a normal voltage (Vdd), the “power enable” voltage depends on the power supply that

the device is connected to. For normal voltage sections, the “power enable” signal voltage is

normal (Vdd) to disable the memory block. For high voltage sections, the “power enable” signal

voltage is high (Vpp) to disable the memory block. To select the bank that needs to be activated,

an address decoder is required that decodes the address and asserts the corresponding power

enable signal. As the address decoder output is a low voltage output, a level shifter is required to

translate the low voltage to a high voltage for the high power sections of the memory block. An

overview of this architecture is shown in Figure 8-2 N is the number of memory blocks and M is

the number of inputs to the decoder. Typically, the higher order address bits of the memory are

connected as inputs to the block decoder.

Figure 8-1: Memory Block with power gate

 141

Figure 8-2: Power Gated Memory Design

8.1.1 Memory Block with Power Gate

The primary benefit of the ``power gated'' implementation is that both the static and dynamic

power can be eliminated from all but the active memory block. The addition of a series power

enable PMOS device does not affect the average power consumed by the device, but reduces the

peak power consumed by the device. This technique has been previously applied to I/O buffers

to reduce the SSN (simultaneous switching noise) produced on the supply lines when the output

buffers switch [29]. The design implication with the reduction of peak power consumed by the

device is the on-chip regulator’s efficiency can be improved. As EEPROMS typically operate at

a low frequency, the addition of the PMOS device does not have an adverse impact on the speed

of the memory. However, the wi hould be large enough to

l ough current during the normal operation of the memory.

dth of the power enable PMOS device s

supp y en

 142

8.1.2 Dynamic Decoder

The address decoder to select the memory bank that needs to be enabled can be constructed using

static or dynamic CMOS circuits. Our design uses a dynamic CMOS gate with a pre-charge

transistor acting as the pull up network [6]. The dynamic decoder is a low-power alternative [30].

The pre-charge signal is driven by a periodic signal elated to the clock. In our case we can use

the system clock directly as th triggered memory, when

pre-charge is `1' the pre-charge PMOS transistor is off and the pre-charge NMOS transistor is on,

n ion network to pull the appropriate power enable line

to ground, thus turning on the associated memory block. On the back half of the cycle, pre-

udes the power required to

precharge the source terminal of the FLOTOX transistor, the power consumed by the sense

amplifier circuitry, and the row and column decoder power. The read operation is typically a low

voltage operation mode except for the word line boosting and bit line boosting schemes are used

to decrease the read time.

 r

e pre-charge signal. For a rising edge

allowi g the pull down network or evaluat

charge is '0' turning on the pre-charge PMOS and disconnecting the power enable line from

ground, thus turning off all the memory blocks.

8.2 MEMORY BLOCK POWER CONSUMPTION

Many advanced low power circuit design techniques for Embedded EEPROMS have been

reported [24] [25]. The EEPROM power consumption can be categorized as 1) read power

consumption and 2) write power consumption.

The read power consumed during a read operation incl

 143

The write power consumption dominates the read power consumption because of the high

voltage used to program the device. The major power consuming component during a write

bytes, for example, an architectural decision to

increase the number of rows or the number of columns is required. Increasing the number of

columns increases the page width, which in turn necessitates an increase in the current required

to program the device. This design choice mandates an increase in the size of the charge pump

and hence a proportionate increase in power. On the other hand, an increase in the number of

rows, increases the bit line capacitance that needs to be charged during a write operation. Hence,

scaling the memory while keeping the dynamic power low is a design challenge. Hence, a power

gated memory solution enables to expand the memory size with minimal penalty because the

expanded memory block is disabled and is enabled only when required.

operation is the high voltage charge pump which generates the voltage required to erase and

program the devices [24]. Many circuit level optimizations have been proposed by [24] to keep

the charge pump power low during the write operation. Apart from the charge pump, power is

consumed in charging and discharging the word lines and the control gate line to Vpp during the

erase operation and in charging the bit lines to Vpp during a write operation, where Vpp is the

high voltage supplied by the charge pump.

During a write operation, the choice of the programming voltage is dominated by the

EEPROM process rather than by the designer. Hence, to keep the dynamic power low it becomes

necessary to keep the charging capacitance low at a fixed operating frequency. With the increase

in size of the memory from 128 bytes to 256

 144

8.3 POWER-ON RESET

One problem with the power-gating technique occurs in particular when the supply voltage is

being ramped up to Vdd. Initially, the power enable lines are low because of the power up delay

of the decoder. This effectively allows each of the memory blocks to power up as if they were

not power gated, which causes a tremendous amount of power consumption during power up.

This is particularly problematic for EEPROMs in passive RFID (Radio Frequency Identification

Devices) tags because the power up time for Vdd from RF energy harvesting is long. Figure 8-3

shows the assumptions for our power on condition of the power supply and the power enable

input lines. The power supply charges to Vdd linearly in time tP (100us) and the power enable

lines are delayed by a time tD (40us) where tD << tP.

Figure 8-3: Simulation of Power on condition

 145

To solve this problem nsistor is added to each of the

decoder lines to rise all the power enable lines high and effectively block any of the memory

 a ``Power-on Reset'' PMOS tra

blocks from charging until Vdd has fully powered up. This is shown for the power enable 0 line

in Figure 8-4 below.

Figure 8-4: Dynamic Decoder with power-on reset

The Power-on Reset transistor is enabled with the “Power-on-Reset” signal held low until

the power on reset circuit shuts off the transistor by setting “Power-on-Reset” high. This is

assumed to happen well after the power supply is fully charged as shown in Figure 8-5 where

Vdd is activated well after the power supply has powered up. This circuit causes all the power

enable lines to rise at approximately the same speed as the power supply. Thus, the power

enable transistor from Figure 8-1 has a Vgs ≈ 0 during power up and does not turn on.

s POR (power-on-reset) circuits are a part of any digital system, the use of POR circuit

does not cost additional power during the normal operation of the circuit. Ramos et.al. [31]

gives an example of a low power power-on-reset circuit.

A

 146

Figure 8-6 shows the modified charge capacitor circuit as proposed by [31] which uses an

injection capacitor Cinj. When Vdd ramps up, the input to the power-on-reset inverter becomes

high because of the capacitive coupling through Cinj. Hence the power-on-reset output is held

low. After a certain amount of delay (power-on-reset delay), the Ctiming capacitor gets charged

through the PMOS pull-up path, which pulls the node connected to the Cinj to ground. This

causes the power-on-reset ouput to reach Vdd. The delay is primarily controlled by the PMOS

pull-up path and the value of the Ctiming capacitor.

Figure 8-5: Power-on reset timing diagram

Figure 8-6: Power-on reset circuit

 147

8.4 RESULTS

For our fundamental memory building block, we used the model of a 64 byte EEPROM memory

built in a 0.35 um CMOS process operating at 5.0V. Table 8-1 shows the power-gated memory

power simulation results. The table compares the power consumed by the active memory bank

and the power-gated memory banks in a power-gated design. The address decoder overhead is

also shown in the table. The total read power overhead is 298.12nW for a 2-bank memory,

390.71nW for a 4-bank memory and 570.7nW for an 8-bank memory. The total write power

overhead is 143.55nW for a 2-bank memory, 203.69nW for a 4-bank memory and 339.67nW for

an 8-bank memory.

Table 8-1: Power Gated Memory Simulation Results

 2 Bank

(Bank Size 64 Bytes) (Bank Size 64 Bytes)

8 Bank

(Bank Size 64 bytes)

4 Bank

 Act e

Bank

Idle

Bank

(nW)

Decoder

Overhead

(nW)

Active

Bank

Idle

Banks

(nW)

Decoder

Overhead

(nW)

Active

Bank

Idle

Banks

(nW)

Decoder

Overhead

(nW)

iv

Read

Power

700.68uW 9.77 288.35 700.68uW 29.30 361.41 700.68uW 68.37 502.33

Erase

Power

12.51uW 4.03 135.53 12.51uW 12.09 179.62 12.51uW 28.22 283.49

Write

Power

10.0 W 3.99 10.08mW 11.98 10.08mW 27.96 8m

 148

To study the impact of the power consumed during the power-on condition, an inverter

with an approximated load capacitance CL of 4.44 pF was used. Any device that allows

switching could be used to model the dynamic power of the device; however, the inverter was

selected due to its simplified modeling. To this device the power enable PMOS device was

added in series. The circuit diagram is shown in Figure 8-7.

 8-7: Inverter er ga

The pow nd in particular e s a significant im o power

mo wer up time, tP = 100 us and an ideal ramp up

of the power enable inputs, t = 0, the average power consumption is approximately 25.5 nW.

However, as the power enable delay increases linearly, the power consumption increases

p to h 25.4 uW f ed on the sim s ted in Figure

. tD was varied between 26us and 40us to study the peak currents in more detail. The results

are shown in Figure 8-8. For delays exceeding 30 us, there are big spikes initially in supply

Figure with pow

lay ha

te.

er-up time a the d pact n the

consumed by the me ry. For example, with a po

D

ex

8-3

onentially reac or tD = 40 us bas ulations a indica

 149

current because the power enable transistor is turned on causing the internal memory block node

capacitances to draw current from the supply. With delays lower than 30 us the power enable

transistors do not turn on very much and draw a much lower current.

Figure 8-8: Power Enable Ramp-up simulation

 150

9.0 CONCLUSION

For this thesis, I have completed the placement and routing of the SuperCISC reconfigurable

hardware fabric including the ALU, MUX and the FINALMUX Stripe in the IBM 0.13um

CMOS technology using Cadence SoC Encounter. The post place and route SDF and parasitic

SPEF file have been generated from the design to be annotated in the power analysis flow using

Prime Power. The post parasitic annotated power analysis numbers have been generated for a

variety of benchmarks.

 CMOS thyristor based delay element with a programmable feature has been

implemented in the IBM 0.13um ent consumes very

little on-state and sub-threshold leakage power. The design has been characterized for use as a

standard cell in an ASIC design flow as well as in the SuperCISC design flow to minimize the

glitching power consumption.

An EEPROM design using a 0.35um, 20V technology has been implemented to show

that power gating can be used to increase the memory size with a minimum power overhead for

use in the SuperCISC architecture. The macromodel of the FLOTOX transistor has been

implemented in HSPICE. The design shows that the power gated memory block consumes very

little static power and hence can be used to increase the size of the memory.

A

 CMOS process. The improved delay elem

 151

A PENDIX A P

e-art CAD tools.

The im

ormat (*.lib)

(v)

 define the elements

of the technology as well the standard cells being used for the design. From a technology

perspective, LEF contains descriptions on the various routing layers, design rules for routing, via

PHYSICAL DESIGN CAD TOOL FORMATS

As place and route is an automated CAD tool process, there are some significant industry

standard file formats and standards. A basic understanding of these file formats is essential to

work with the state-of-th

portant file formats are

 (i) LEF (Library Exchange Format)

 (ii) DEF (Design Exchange Format)

(iii) Cadence Timing Library Format (*.tlf)

(iv) Synopsys Liberty F

Standard Delay Format (SDF)

(vi) Standard Parasitic Extraction Format (SPEF)

Library Exchange Format (LEF)

 LEF is an ASCII data format standard from Cadence and is used to

 152

definitions, metal layer resistance and capacitance. For defining the standard cell library, LEF

contains the abstract layout of the cells, cell dimensions, layout of pins and pin capacitances.

However, LEF does not contain information about the internal netlist of the cells [32].

Design Exchange Format (DEF)

 DEF is also an sical layout.

ents the netlist and the circuit layout information. DEF is used in

plete physical layout of the integrated circuit being

representation of the timing and power parameters associated with

ontains timing models and data

lays [34]. A TLF file is used

Synopsys Liberty File Format (.lib)

Synopsys Liberty Form ation about the standard

cell library for a particular technology. The .lib file contains descriptions of the standard cell’s

ing information specific to cell delays,

ASCII data format from Cadence for representing the phy

The DEF data repres

conjunction with LEF to represent the com

designed [33]

Cadence Timing Library Format (TLF)

 TLF is an ASCII

any standard cell in a particular technology [34]. The TLF file c

to calculate I/O path delays, timing check values and interconnect de

as an input to the Cadence tools.

at is an industry standard way to represent inform

input and output pins, logical function of every cell, tim

rise and fall transitions times at the outputs, energy information specific to the energy consumed

when the input makes a rise transition or a fall transition and cell’s leakage power. In addition to

 153

that, the file also contains environmental statistics such as certain process information, operating

temperature and supply voltage variations [35].

Standard Delay Format (SDF)

Standard Delay Format (SDF) files store timing information generated by the EDA tools

 the SDF is represented in a tool-independent way and can

 the design while an SDF generated after placement and routing contains post-

layout timing information.

by a timing calculator based on the design netlist and

ormat (SPEF)

he SPEF is an IEEE Standard for representing the parasitic information in the design in

ication is a part of the 1481-1999 IEEE Standard for

for a particular design. The data in

describe module path delays, device delays, interconnect and port delays. It can also include

timing constraints such as set-up, hold and skew. The SDF file can be used at various stages in

the design process. An SDF generated after synthesis represents the pre-payout timing

information in

The SDF file is typically generated

pre or post layout information. The SDF data that is generated is used by the annotator which

uses the SDF information for performing various timing and power analysis [36].

Standard Parasitic Extraction F

T

an ASCII format. The SPEF specif

Integrated Circuit(IC) Power and Delay Calculation System standard [37]. The SPEF contains

parasitic resistance, capacitance and inductance of wires on the chip. The SPEF information can

be used by the delay calculation engine to generate timing data or can be used by an analysis tool

to estimate power after the design has been annotated with the parasitic information.

 154

APPENDIX B

cterization is shown below.

#Outputs two files:measurement.out contains the raw current measurement output
#energy.out contains the actual energy measurements

 print "U
 exit(1);

@loadarray = ("9.48f","24.648f","56.88f","121.344f","250.272f","506.232f","1023.84f");

#@loadarray = ("121.344f");

$i=0;

HSPICE POST PROCESSOR SCRIPT

The Perl (Practical Extraction and Report Language) script that was used automate the delay

element standard cell chara

#!/usr/bin/perl -w

#Enter the name of the spice netliost that needs to be processed

if(!$ARGV[0]) {

sage Enter the spice netlist to be processed>\n";

}

#this is based on CLKBUFX12TS template

@trarray = ("0.028e-9","0.044e-9","0.076e-9","0.138e-9","0.264e-9","0.516e-9","1.02e-9");

#@trarray = ("1.02e-9");

open IN, $ARGV[0];

 155

while(<>)
 {
 $original_spice_array[$i] = $_;
 $modified_spice_array[$i] = $_;
 $i++;
 }

close (IN);

 open(MEASHANDLE,">measurement.out");
 open(ENERGYHANDLE,">energy.out");
 print MEASHANDLE "CAPACITIVE_LOAD TRANSTION_TIME RISE_POWER1 RISE_POWER2
RISE_POWER3 RISE_POWER4 RISE_POWER5 RISE_POWER6 RISE_POWER7
RISE_POWER8 RISE_ OWER11 RISE_POWER12
FALL_POWER1 FALL_POWER2 FALL_POWER3 FALL_POWER4 FALL_POWER5 FALL_POWER6
FALL_POWER7 FALL_POWER8 FALL_POWER9 FALL_POWER10 FALL_POWER11 FALL_POWER12
RISE_TR1 RISE_TR2 RISE_TR3 RISE_TR4 RISE_TR5 RISE_TR6 RISE_TR7 RISE_TR8 RISE_TR9
RISE_TR10 RISE_TR11 RISE_TR12 FALL_TR1 FALL_TR2 FALL_TR3 FALL_TR4 FALL_TR5 FALL_TR6
FALL_TR7 FALL_TR8 FALL_TR9 FALL_TR10 FALL_TR11 FALL_TR12 CELL_RISE_DELAY1

AY12 CELL_FALL_DELAY_1
_FALL_DELAY4 CELL_FALL_DELAY5

CELL_FALL_DELAY6 CELL_FALL_DELAY7 CELL_FALL_DELAY8 CELL_FALL_DELAY9
CELL_F LL_DELAY10 CELL_FALL_DELAY11 CELL_FALL_DELAY12 ILEAK_HI1 ILEAK_HI2
ILEAK_HI3 ILEAK_HI4 ILEAK_HI5 ILEAK_HI6 ILEAK_HI7 ILEAK_HI8 ILEAK_HI9 ILEAK_HI10

AK_HI12 ILEAK_LO1 ILEAK_LO2 ILEAK_LO3 LEAK_LO4 ILEAK_LO5 ILEAK_LO6
EAK_LO7 ILEAK_LO8 ILEAK_LO9 ILEAK_LO10 ILEAK_LO11 ILEAK_LO12

EFERENCE_CURRENT\n";

OWER1 RISE_POWER2
SE_POWER5 RISE_POWER6 RISE_POWER7

SE_POWER10 RISE_POWER11 RISE_POWER12
ALL_POWER1 FALL_POWER2 FALL_POWER3 FALL_POWER4 FALL_POWER5 FALL_POWER6

FALL_POWER8 FALL_POWER9 FALL_POWER10 FALL_POWER11 FALL_POWER12
ISE_TR1 RISE_TR2 RISE_TR3 RISE_TR4 RISE_TR5 RISE_TR6 RISE_TR7 RISE_TR8 RISE_TR9

_TR2 FALL_TR3 FALL_TR4 FALL_TR5 FALL_TR6
7 FALL_TR8 FALL_TR9 FALL_TR10 FALL_TR11 FALL_TR12 CELL_RISE_DELAY1

SE_DELAY2 CELL_RISE_DELAY3 CELL_RISE_DELAY4 CELL_RISE_DELAY5
LL_RISE_DELAY6 CELL_RISE_DELAY7 CELL_RISE_DELAY8 CELL_RISE_DELAY9
LL_RISE_DELAY10 CELL_RISE_DELAY11 CELL_RISE_DELAY12 CELL_FALL_DELAY_1

_DELAY3 CELL_FALL_DELAY4 CELL_FALL_DELAY5
CELL_FALL_DELAY9

_HI1 ILEAK_HI2
K_HI9 ILEAK_HI10

I12 ILEAK_LO1 ILEAK_LO2 ILEAK_LO3 LEAK_LO4 ILEAK_LO5 ILEAK_LO6
8 ILEAK_LO9 ILEAK_LO10 ILEAK_LO11 ILEAK_LO12 BUF_RISE_DELAY1

UF_RISE_DELAY2 BUF_RISE_DELAY3 BUF_RISE_DELAY4 BUF_RISE_DELAY5 BUF_RISE_DELAY6
 BUF_RISE_DELAY8 BUF_RISE_DELAY9 BUF_RISE_DELAY10

ISE_DELAY11 BUF_RISE_DELAY12 BUF_FALL_DELAY1 BUF_FALL_DELAY2
FALL_DELAY3 BUF_FALL_DELAY4 BUF_FALL_DELAY5 BUF_FALL_DELAY6

UF_FALL_DELAY7 BUF_FALL_DELAY8 BUF_FALL_DELAY9 BUF_FALL_DELAY10
UF_FALL_DELAY11 BUF_FALL_DELAY12 \n";

POWER9 RISE_POWER10 RISE_P

CELL_RISE_DELAY2 CELL_RISE_DELAY3 CELL_RISE_DELAY4 CELL_RISE_DELAY5
CELL_RISE_DELAY6 CELL_RISE_DELAY7 CELL_RISE_DELAY8 CELL_RISE_DELAY9
CELL_RISE_DELAY10 CELL_RISE_DELAY11 CELL_RISE_DEL
CELL_FALL_DELAY2 CELL_FALL_DELAY3 CELL

A

ILEAK_HI11 ILE
IL
R

 print ENERGYHANDLE "CAPACITIVE_LOAD TRANSTION_TIME RISE_P
RISE_POWER3 RISE_POWER4 RI

ISE_POWER8 RISE_POWER9 RIR
F
FALL_POWER7
R
RISE_TR10 RISE_TR11 RISE_TR12 FALL_TR1 FALL
FALL_TR

ELL_RIC
CE

EC
CELL_FALL_DELAY2 CELL_FALL
CELL_FALL_DELAY6 CELL_FALL_DELAY7 CELL_FALL_DELAY8
CELL_FALL_DELAY10 CELL_FALL_DELAY11 CELL_FALL_DELAY12 ILEAK

LEAK_HI5 ILEAK_HI6 ILEAK_HI7 ILEAK_HI8 ILEAILEAK_HI3 ILEAK_HI4 I
ILEAK_HI11 ILEAK_H

EAK_LO7 ILEAK_LOIL
B
BUF_RISE_DELAY7
BUF_R

UF_B
B
B

 156

$k=-1;
$j=-1;

load (@loadarray)

print "HELLO WORLD1\n";

 $j++;

$i=-1;

foreach $
 {

 $k++;
 $j=-1;
 $i=-1;
 foreach $searchstring (@modified_spice_array) {
 $i++;
 @cap = grep(/cload/,$searchstring);
 if ($#cap == -1) {

 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[3] = $loadarray[$k];
 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $temp2."\n";

 }
 }
 foreach $tr (@trarray)
 {

 $i=-1;
 print "CAPACITANCE : $load ";
 print "TRANSIENT TIME : $tr\n";

 $PW = 50e-9;
 $PERIOD = 100e-9;

 $ONTIME = $PW + $tr;
 $OFFTIME = $PERIOD - $ONTIME;

 $OFFSET1 = 10e-6;
 $OFFSET2 = 11e-6;
 $OFFSET3 = 12e-6;
 $OFFSET4 = 13e-6;
 $OFFSET5 = 14e-6;
 $OFFSET6 = 15e-6;
 $OFFSET7 = 16e-6;
 $OFFSET8 = 17e-6;
 $OFFSET9 = 18e-6;
 $OFFSET10 = 19e-6;
 $OFFSET11 = 20e-6;
 $OFFSET12 = 21e-6;

 157

 $SETTLING_TIME = 10e-9;
Y_VALUE = 4e-9;

SE_DUR = $DELAY_VALUE + $SETTLING_TIME;
 $FALL_DUR = $SETTLING_TIME;

$RISE_START_1 = $OFFSET1;
 $RISE_STOP_1 = $OFFSET1 + $RISE_DUR;

ET2;
STOP_2 = $OFFSET2 + $RISE_DUR;

ART_3 = $OFFSET3;
STOP_3 = $OFFSET3 + $RISE_DUR;

STOP_4 = $OFFSET4 + $RISE_DUR;

FFSET5 + $RISE_DUR;
$RISE_START_6 = $OFFSET6;

E_STOP_6 = $OFFSET6 + $RISE_DUR;
_START_7 = $OFFSET7;

E_DUR;
;
$RISE_DUR;

E_STOP_9 = $OFFSET9 + $RISE_DUR;
ISE_START_10 = $OFFSET10;
ISE_STOP_10 = $OFFSET10 + $RISE_DUR;

11;
ISE_STOP_11 = $OFFSET11 + $RISE_DUR;

 $RISE_START_12 = $OFFSET12;
STOP_12 = $OFFSET12 + $RISE_DUR;

 $FALL_START_1 = $OFFSET1 + $ONTIME;
_1 = $FALL_START_1 + $FALL_DUR;

 $FALL_START_2 = $OFFSET2 + $ONTIME;
L_START_2 + $FALL_DUR;

 $FALL_START_3 = $OFFSET3 + $ONTIME;
 $FALL_STOP_3 = $FALL_START_3 + $FALL_DUR;

$OFFSET4 + $ONTIME;
ALL_START_4 + $FALL_DUR;

$OFFSET5 + $ONTIME;
ALL_START_5 + $FALL_DUR;

$OFFSET6 + $ONTIME;
ALL_START_6 + $FALL_DUR;

OFFSET7 + $ONTIME;
LL_START_7 + $FALL_DUR;

 $DELA
 $RI

 $RISE_START_2 = $OFFS
 $RISE_
 $RISE_ST
 $RISE_
 $RISE_START_4 = $OFFSET4;
 $RISE_
 $RISE_START_5 = $OFFSET5;
 $RISE_STOP_5 = $O

 $RIS
 $RISE
 $RISE_STOP_7 = $OFFSET7 + $RIS
 $RISE_START_8 = $OFFSET8
 $RISE_STOP_8 = $OFFSET8 +
 $RISE_START_9 = $OFFSET9;
 $RIS
 $R
 $R
 $RISE_START_11 = $OFFSET
 $R

 $RISE_

 $FALL_STOP

 $FALL_STOP_2 = $FAL

 $FALL_START_4 =
 $FALL_STOP_4 = $F

 $FALL_START_5 =
 $FALL_STOP_5 = $F

 $FALL_START_6 =
 $FALL_STOP_6 = $F

 $FALL_START_7 = $
 $FALL_STOP_7 = $FA

 158

 $FALL_START_8 = $OFFSET8 + $ONTIME;
START_8 + $FALL_DUR;

NTIME;
 $FALL_STOP_9 = $FALL_START_9 + $FALL_DUR;

 $FALL_STOP_10 = $FALL_START_10 + $FALL_DUR;

1 + $ONTIME;
LL_DUR;

RT_12 + $FALL_DUR;

per rise and fall transition time
pice_array) {

g);

rchstring;

 print $modified_spice_array[$i];
 print "\n";
 }

f ($#rise_power_one == -1) {

se {

$temp1[6] = "TO="."$RISE_STOP_1"."\n";

print $modified_spice_array[$i];

ring);

 $FALL_STOP_8 = $FALL_

 $FALL_START_9 = $OFFSET9 + $O

 $FALL_START_10 = $OFFSET10 + $ONTIME;

 $FALL_START_11 = $OFFSET1
 $FALL_STOP_11 = $FALL_START_11 + $FA

 $FALL_START_12 = $OFFSET12 + $ONTIME;
 $FALL_STOP_12 = $FALL_STA

#######Replacing the V1 pulse source with the pro
 foreach $searchstring (@modified_s
 $i++;
 @risetime = grep(/v7/,$searchstrin
 if ($#risetime == -1) {
 $modified_spice_array[$i] = $sea
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[7] = $trarray[$j];
 $temp1[8] = $trarray[$j];
 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $temp2."\n";

 @rise_power_one = grep(/rise_power1\s/,$searchstring);
 i

 }
 el
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RISE_START_1";

 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $temp2;

 print "\n";
 }

 @rise_power_two = grep(/rise_power2/,$searchst
 if ($#rise_power_two == -1) {

 }

 159

 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RISE_START_2";

$modified_spice_array[$i] = $temp2;

 }

 if ($#rise_power_3 == -1) {

lse {
 @temp1 = split(/\s/,$searchstring);

(" ",@temp1);

array[$i];

earchstring);

] = $searchstring;

;
 "FROM="."$RISE_START_4";

temp1[6] = "TO="."$RISE_STOP_4"."\n";
(" ",@temp1);

i];
print "\n";

earchstring);

;
 "FROM="."$RISE_START_5";

p1[6] = "TO="."$RISE_STOP_5"."\n";
 $temp2 = join(" ",@temp1);

i];
print "\n";

 @rise_power_6 = grep(/rise_power6/,$searchstring);

 $temp1[6] = "TO="."$RISE_STOP_2"."\n";
 $temp2 = join(" ",@temp1);

 print $modified_spice_array[$i];
 print "\n";

 @rise_power_3 = grep(/rise_power3/,$searchstring);

 }
 e

 $temp1[5] = "FROM="."$RISE_START_3";
 $temp1[6] = "TO="."$RISE_STOP_3"."\n";
 $temp2 = join
 $modified_spice_array[$i] = $temp2;
 print $modified_spice_
 print "\n";
 }

 @rise_power_4 = grep(/rise_power4/,$s
 if ($#rise_power_4 == -1) {
 # $modified_spice_array[$i
 }
 else {
 @temp1 = split(/\s/,$searchstring)
 $temp1[5] =
 $
 $temp2 = join
 $modified_spice_array[$i] = $temp2;
 print $modified_spice_array[$

 }

 @rise_power_5 = grep(/rise_power5/,$s
 if ($#rise_power_5 == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring)
 $temp1[5] =
 $tem

 $modified_spice_array[$i] = $temp2;
 print $modified_spice_array[$

 }

 160

 if ($#rise_power_6 == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RISE_START_6";

$RISE_STOP_6"."\n";
p2 = join(" ",@temp1);

 $modified_spice_array[$i] = $temp2;
 print $modified_spice_array[$i];

_power_7 = grep(/rise_power7/,$searchstring);

rise_power_7 == -1) {
hstring;

ing);
T_7";

P_7"."\n";
in(" ",@temp1);

fied_spice_array[$i] = $temp2;
 print $modified_spice_array[$i];

_power_8 = grep(/rise_power8/,$searchstring);
rise_power_8 == -1) {

hstring;

ing);
T_8";

P_8"."\n";
in(" ",@temp1);

fied_spice_array[$i] = $temp2;
 print $modified_spice_array[$i];

ng);
$#rise_power_9 == -1) {

fied_spice_array[$i] = $searchstring;

E_START_9";
."\n";

spice_array[$i] = $temp2;
t $modified_spice_array[$i];

 }

 $temp1[6] = "TO="."
 $tem

 print "\n";
 }

 @rise
 if ($#
 # $modified_spice_array[$i] = $searc
 }
 else {
 @temp1 = split(/\s/,$searchstr
 $temp1[5] = "FROM="."$RISE_STAR
 $temp1[6] = "TO="."$RISE_STO
 $temp2 = jo
 $modi

 print "\n";
 }

 @rise
 if ($#
 # $modified_spice_array[$i] = $searc
 }
 else {
 @temp1 = split(/\s/,$searchstr
 $temp1[5] = "FROM="."$RISE_STAR
 $temp1[6] = "TO="."$RISE_STO
 $temp2 = jo
 $modi

 print "\n";
 }
 @rise_power_9 = grep(/rise_power9/,$searchstri
 if (
 # $modi
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RIS
 $temp1[6] = "TO="."$RISE_STOP_9"
 $temp2 = join(" ",@temp1);
 $modified_
 prin
 print "\n";

 161

er10/,$searchstring);

modified_spice_array[$i] = $searchstring;

;
STOP_10"."\n";

p2;
fied_spice_array[$i];

t "\n";
 }

er11/,$searchstring);

modified_spice_array[$i] = $searchstring;

;
STOP_11"."\n";

p2;

t $modified_spice_array[$i];
 print "\n";

ring);
$#rise_power_12 == -1) {

fied_spice_array[$i] = $searchstring;

_START_12";
"."\n";

spice_array[$i] = $temp2;

ower_one = grep(/fall_power1\s/,$searchstring);

START_1";
$FALL_STOP_1"."\n";

p2 = join(" ",@temp1);

 @rise_power_10 = grep(/rise_pow
 if ($#rise_power_10 == -1) {
 # $
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RISE_START_10"
 $temp1[6] = "TO="."$RISE_
 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $tem
 print $modi
 prin

 @rise_power_11 = grep(/rise_pow
 if ($#rise_power_11 == -1) {
 # $
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RISE_START_11"
 $temp1[6] = "TO="."$RISE_
 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $tem

 prin

 }

 @rise_power_12 = grep(/rise_power12/,$searchst
 if (
 # $modi
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$RISE
 $temp1[6] = "TO="."$RISE_STOP_12
 $temp2 = join(" ",@temp1);
 $modified_

 print $modified_spice_array[$i];
 print "\n";
 }

 @fall_p
 if ($#fall_power_one == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FALL_
 $temp1[6] = "TO="."
 $tem

 162

 $modified_spice_array[$i] = $temp2;
 print $modified_spice_array[$i];

$searchstring);

;

_STOP_2"."\n";

odified_spice_array[$i] = $temp2;
 $modified_spice_array[$i];

hstring);
 if ($#fall_power_3 == -1) {

rchstring;

 @temp1 = split(/\s/,$searchstring);

_STOP_3"."\n";

odified_spice_array[$i] = $temp2;
 $modified_spice_array[$i];

hstring);
 if ($#fall_power_4 == -1) {

rchstring;

 @temp1 = split(/\s/,$searchstring);

STOP_4"."\n";

odified_spice_array[$i] = $temp2;
 $modified_spice_array[$i];

5/,$searchstring);
 if ($#fall_power_5 == -1) {

 print "\n";
 }

 @fall_power_two = grep(/fall_power2/,
 if ($#fall_power_two == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring)

 $temp1[5] = "FROM="."$FALL_START_2";
 $temp1[6] = "TO="."$FALL
 $temp2 = join(" ",@temp1);
 $m
 print
 print "\n";
 }

 @fall_power_3 = grep(/fall_power3/,$searc

 # $modified_spice_array[$i] = $sea
 }
 else {

 $temp1[5] = "FROM="."$FALL_START_3";
 $temp1[6] = "TO="."$FALL
 $temp2 = join(" ",@temp1);
 $m
 print
 print "\n";
 }

 @fall_power_4 = grep(/fall_power4/,$searc

 # $modified_spice_array[$i] = $sea
 }
 else {

 $temp1[5] = "FROM="."$FALL_START_4";
 $temp1[6] = "TO="."$FALL_
 $temp2 = join(" ",@temp1);
 $m
 print
 print "\n";
 }

 @fall_power_5 = grep(/fall_power

 163

spice_array[$i] = $searchstring;

 else {

_START_5";

emp2 = join(" ",@temp1);
dified_spice_array[$i] = $temp2;

 print "\n";
 }

ring;

mp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FALL_START_6";
 $temp1[6] = "TO="."$FALL_STOP_6"."\n";

emp2;

int "\n";

$searchstring;

split(/\s/,$searchstring);
mp1[5] = "FROM="."$FALL_START_7";

 $temp1[6] = "TO="."$FALL_STOP_7"."\n";
 $temp2 = join(" ",@temp1);

[$i];

wer_8 = grep(/fall_power8/,$searchstring);

START_8";
$FALL_STOP_8"."\n";

p2 = join(" ",@temp1);
 $modified_spice_array[$i] = $temp2;

 }

 # $modified_
 }

 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FALL
 $temp1[6] = "TO="."$FALL_STOP_5"."\n";
 $t
 $mo
 print $modified_spice_array[$i];

 @fall_power_6 = grep(/fall_power6/,$searchstring);

 if ($#fall_power_6 == -1) {
 # $modified_spice_array[$i] = $searchst
 }
 else {
 @te

 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $t
 print $modified_spice_array[$i];
 pr
 }

 @fall_power_7 = grep(/fall_power7/,$searchstring);
 if ($#fall_power_7 == -1) {
 # $modified_spice_array[$i] =
 }
 else {
 @temp1 =
 $te

 $modified_spice_array[$i] = $temp2;
 print $modified_spice_array
 print "\n";
 }
 @fall_po
 if ($#fall_power_8 == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FALL_
 $temp1[6] = "TO="."
 $tem

 print $modified_spice_array[$i];
 print "\n";

 164

 @fall_power_9 = grep(/fall_power9/,$searchstring);

$#fall_power_9 == -1) {
fied_spice_array[$i] = $searchstring;

LL_START_9";
"."\n";

spice_array[$i] = $temp2;

 print $modified_spice_array[$i];

wer_10 = grep(/fall_power10/,$searchstring);

START_10";
$FALL_STOP_10"."\n";

p2 = join(" ",@temp1);
 $modified_spice_array[$i] = $temp2;

wer_11 = grep(/fall_power11/,$searchstring);

START_11";
$FALL_STOP_11"."\n";

p2 = join(" ",@temp1);

[$i];

archstring);

;
OM="."$FALL_START_12";

 if (
 # $modi
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FA
 $temp1[6] = "TO="."$FALL_STOP_9
 $temp2 = join(" ",@temp1);
 $modified_

 print "\n";
 }

 @fall_po
 if ($#fall_power_10 == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FALL_
 $temp1[6] = "TO="."
 $tem

 print $modified_spice_array[$i];
 print "\n";
 }

 @fall_po
 if ($#fall_power_11 == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring);
 $temp1[5] = "FROM="."$FALL_
 $temp1[6] = "TO="."
 $tem
 $modified_spice_array[$i] = $temp2;
 print $modified_spice_array
 print "\n";
 }

 @fall_power_12 = grep(/fall_power12/,$se
 if ($#fall_power_12 == -1) {
 # $modified_spice_array[$i] = $searchstring;
 }
 else {
 @temp1 = split(/\s/,$searchstring)
 $temp1[5] = "FR

 165

 $temp1[6] = "TO="."$FALL_STOP_12"."\n";

emp2;

int "\n";

 the proper values so that they measure correctly

 open(OUTFILE,">spice_lr_temp.ckt");
 foreach $printstring (@modified_spice_array)
 {

UTFILE;
 print $loadarray[$k];

 "SIMULATION IN PROGRESS..\n";
 spice_lr_temp.ckt`;

");

HANDLE $load."F";
ERGYHANDLE " ";

 print MEASHANDLE ($tr/1e-9)."ns";

s";

NDLE>) {

nt <= 45)

nt = 0; $count < 4; $count++) {
(-*\d+\.\d+e-*\d+)/g;

 $number[$count] = $1;

R);
p10[1] = ($number[1] *-1.5 * $RISE_DUR);
p10[2] = ($number[2] *-1.5 * $RISE_DUR);

ISE_DUR);

 $temp2 = join(" ",@temp1);
 $modified_spice_array[$i] = $t
 print $modified_spice_array[$i];
 pr
 }
 } ##end of foreach of mystring
############Replacing the measure command with

 print OUTFILE $printstring;
 }
 close O

 print " ";
 print $trarray[$j];
 print " ";
 print
 `hspice
 open(MTHANDLE,"spice_lr_temp.mt0
 $line_count=0;

 print MEASHANDLE $load."F";
 print MEASHANDLE " ";
 print ENERGY
 print EN

 print MEASHANDLE " ";
 print ENERGYHANDLE ($tr/1e-9)."n
 print ENERGYHANDLE " ";

 while(<MTHA
 $line_count++;
 chop();

 if($line_count >=40 && $line_cou

 {
 for($cou
 /

 }
 $temp10[0] = ($number[0] *-1.5 * $RISE_DU
 $tem
 $tem
 $temp10[3] = ($number[3] *-1.5 * $R
 $energy_string = join(" ",@temp10);

 166

ergy_string;

 {

for($count = 0; $count < 4; $count++) {

 $temp10[0] = ($number[0] /1e-12);
$number[1] /1e-12);

ber[2] /1e-12);
[3] = ($number[3] /1e-12);

 join(" ",@temp10);

nergy_string;

YHANDLE " ";
}

t <= 54)

count++) {

 $temp10[0] = ($number[0] /1e-9);
1] /1e-9);

umber[2] /1e-9);
0[3] = ($number[3] /1e-9);

 $energy_string = join(" ",@temp10);

 print MEASHANDLE $_;
rint ENERGYHANDLE $energy_string;

 prin
 prin ";

line_count <= 57)

 print MEASHANDLE $_;
 print ENERGYHANDLE $en
 print MEASHANDLE " ";
 print ENERGYHANDLE " ";
 }

 if($line_count >=46 && $line_count <= 51)

 /(-*\d+\.\d+e-*\d+)/g;
 $number[$count] = $1;

 }

 $temp10[1] = (
 $temp10[2] = ($num
 $temp10
 $energy_string =

 print MEASHANDLE $_;
 print ENERGYHANDLE $e
 print MEASHANDLE " ";
 print ENERG

if($line_count >=52 && $line_coun

 {
 for($count = 0; $count < 4; $
 /(-*\d+\.\d+e-*\d+)/g;
 $number[$count] = $1;

 }

 $temp10[1] = ($number[
 $temp10[2] = ($n
 $temp1

 p
 t MEASHANDLE " ";
 t ENERGYHANDLE "
 }
if($line_count >=55 && $
 {
 for($count = 0; $count < 4; $count++) {
 /(-*\d+\.\d+e-*\d+)/g;
 $number[$count] = $1;

 }

 167

 $temp10[0] = ($number[0] /1e-12);
 $temp10[1] = ($number[1] /1e-12);

2);
($number[3] /1e-12);

 $energy_string = join(" ",@temp10);

 prin nergy_string;
 prin

HANDLE " ";

3)

++) {
 /(-*\d+\.\d+e-*\d+)/g;

;

9);
$number[1] /-1e-9);

 $temp10[2] = ($number[2] /-1e-9);

 $energy_string = join(" ",@temp10);

 prin
 prin nergy_string;
 prin

HANDLE " ";

 69)

for($count = 0; $count < 4; $count++) {

$number[0] /1e-12);

temp10[2] = ($number[2] /1e-12);
 $te
 $en emp10);

ANDLE $_;
HANDLE $energy_string;

 $temp10[2] = ($number[2] /1e-1
 $temp10[3] =

 print MEASHANDLE $_;

 t ENERGYHANDLE $e
 t MEASHANDLE " ";
 print ENERGY
 }

if($line_count >=58 && $line_count <= 6

 {
 for($count = 0; $count < 4; $count

 $number[$count] = $1

 }
 $temp10[0] = ($number[0] /-1e-
 $temp10[1] = (

 $temp10[3] = ($number[3] /-1e-9);

 t MEASHANDLE $_;
 t ENERGYHANDLE $e
 t MEASHANDLE " ";
 print ENERGY
 }

if($line_count >=64 && $line_count <=

 {

 /(-*\d+\.\d+e-*\d+)/g;
 $number[$count] = $1;

 }
 $temp10[0] = (
 $temp10[1] = ($number[1] /1e-12);
 $
 mp10[3] = ($number[3] /1e-12);
 ergy_string = join(" ",@t

 print MEASH
 print ENERGY

 168

 print MEASHANDLE " ";

 print ENERGYHANDLE "\n";
 print "HELLO WORLD\n";

y
 #closing of load array

xit;

 print ENERGYHANDLE " ";
 }

 }

 print MEASHANDLE "\n";

close (MTHANDLE);
} #closing of tr arra
}

e

 169

APPENDIX C

SUPECISC RHF AUTOMATION SCRIPTS

is Appendix contains the scripts for the automation of the BIGFABRIC placement and

routing.

C.1 BIGFABRIC INITIALIZATION SCRIPT

This Appendix contains the TCL scripts for “ibm_bigfabric_init.tcl”. It is used to initialize the

top-level chip with its die size and power ring details.

setImportMode -syncRelativePath 1
#loadCo g bigfabric.conf 1
set CORE_TO_LEFT 16.8
set CORE_TO_RIGHT 16.8
set CORE_TO_TOP 16.8
set CORE_TO_BOTTOM 16.8

set MODULE_WIDTH 500.8
set NUM ER_OF_MODULES_PER_STRIPE 20
set MODULE_LEFT_DISTANCE 3.6
set MODULE_RIGHT_DISTANCE 3.6

set INTER_MODULE_DISTANCE_MIN 7.2
set INTER_MODULE_DISTANCE_MAX 22.4

set POWER_RING_TOTAL_LEFT 16.8
set POWER_RING_TOTAL_RIGHT 16.8

Th

nfi

B

 170

set VAL [expr "$NUMBER_OF_MODULES_PER_STRIPE % 2"]
if {$VAL ==1} {
 set DIE_WIDTH [expr {($MODULE_WIDTH *$NUMBER_OF_MODULES_PER_STRIPE) +
((($NUMBER_OF_MODULES_PER_STRIPE-1)/2)*$INTER_MODULE_DISTANCE_MIN) +
(((($NUMBER_OF_MODULES_PER_STRIPE-1)/2)-1)*$INTER_MODULE_DISTANCE_MAX) +
$MODULE_LEFT_DISTANCE + $MODULE_ $POWER_RING_TOTAL_LEFT +
$POWER_RING_TOTAL_RIGHT}]
} else {
 set DIE_WIDTH [expr {($MODULE_WIDTH *$NUMBER_OF_MODULES_PER_STRIPE) +
((($NUMBER_OF_MODULES_PER_STRIPE)/2)*$INTER_MODULE_DISTANCE_MIN) +
(((($NUMBER_OF_MODULES_PER_STRIPE)/2)-1)*$INTER_MODULE_DISTANCE_MAX) +
$MODULE_LEFT_DISTANCE + $MODULE_RIGHT_DISTANCE + $POWER_RING_TOTAL_LEFT +
$POWER_RING_TOTAL_R
}

t POWER_RING_WIDTH_TOP 7.2
t POWER_RING_WIDTH_BOTTOM 7.2
t POWER_RING_WIDTH_LEFT 7.2

set POWER_RING_WIDTH_RIGHT 7.2

_RING_SPACING_BOTTOM 0.8
_RING_SPACING_LEFT 0.8

set POWER_RING_SPACING_RIGHT 0.8

#this power_ring_offset_left is the distance between the IO and the power ring and the distance between the power
ring and core
set POWER_RING_OFFSET_TOP 0.8
set POWER_RING_OFFS OT
set POWER_RING_OFFSET
set POWER_RING_OFFSET_RIGHT 0.8

set FINAL_MUX_STRIPE_ROUTING_OFFSET 40

set DIE_HEIGHT_MUX_STRIPE 103.2
t DIE_HEIGHT_FINAL_MUX_STRIPE 69.6

expr {$DIE_HEIGHT_ALU_STRIPE + $DIE_HEIGHT_MUX_STRIPE}]

ht
LU_MUX_TOTAL_HEIGHT*17) + ($INTER_STRIPE_SPACING*34) +

+ $INTER_STRIPE_SPACING + $DIE_HEIGHT_FINAL_MUX_STRIPE + (2 *
INAL_MUX_STRIPE_ROUTING_OFFSET + 2.4 + 14.4 + 7.2 + 2.0}]

T $CORE_TO_LEFT $CORE_TO_BOTTOM $CORE_TO_RIGHT

nstanceBasename * -all -override -verbose
anceBasename * -all -override -verbose

-follow core -center 0 -offset_top $POWER_RING_OFFSET_TOP -
OTTOM -offset_left $POWER_RING_OFFSET_LEFT -offset_right

RIGHT_DISTANCE +

IGHT}]

se
se
se

set POWER_RING_SPACING_TOP 0.8
set POWER
set POWER

ET_B TOM 0.8
_LEFT 0.8

#The 0.8 is distance between alu and mux
set INTER_STRIPE_SPACING 7.2

set DIE_HEIGHT_ALU_STRIPE 285.6

se
set CHIP_POWER_OFFSET 16.8

GHT [set ALU_MUX_TOTAL_HEI

#20.8 for additional mux heig

Aset DIE_HEIGHT [expr {($
$DIE_HEIGHT_ALU_STRIPE

CHIP_POWER_OFFSET) + F

puts "DH $DIE_HEIGHT"

floorplan -d $DIE_WIDTH $DIE_HEIGH

CORE_TO_TOP -fplanOrigin l $
globalNetConnect vdd -type pgpin -pin VDD -i
globalNetConnect gnd -type pgpin -pin VSS -inst

addRing -nets {gnd vdd} -type core_rings
offset_bottom $POWER_RING_OFFSET_B

 171

$POWER_RING_OFFSET_RIGHT -layer_top M3 -layer_bottom M3 -layer_left M2 -layer_right M2 -width_top
IDTH_BOTTOM -width_left

WIDTH_LEFT -width_right $POWER_RING_WIDTH_RIGHT -snap_wire_center_to_grid
_BOTTOM -
T

t TOP_IO_TO_CORE 16.8

t TOP_CORE_TO_MODULE 0.0

RIPE_SPACING 7.2

ET 40

t DIE_HEIGHT_FINAL_MUX_STRIPE 69.6

 {$DIE_HEIGHT_ALU_STRIPE + $DIE_HEIGHT_MUX_STRIPE}]

3.6

t INTER_MODULE_DISTANCE_MIN 7.2
CE_MAX 22.4

are added to the die height are to make the core height a multiple of the standard cell
eight

 $INTER_STRIPE_SPACING + $DIE_HEIGHT_FINAL_MUX_STRIPE +
4.4 + 7.2 + 2.0}]

t VAL [expr "$NUMBER_OF_MODULES_PER_STRIPE % 2"]

$POWER_RING_WIDTH_TOP -width_bottom $POWER_RING_W
$POWER_RING_
Grid -spacing_top $POWER_RING_SPACING_TOP -spacing_bottom $POWER_RING_SPACING
spacing_left $POWER_RING_SPACING_LEFT -spacing_right $POWER_RING_SPACING_RIGH

C.2 FLOORPLANNING SCRIPT

set LEFT_IO_TO_CORE 16.8
set RIGHT_IO_TO_CORE 16.8
se
set BOTTOM_IO_TO_CORE 16.8

set LEFT_CORE_TO_MODULE 0.0
set RIGHT_CORE_TO_MODULE 0.0
se
set BOTTOM_CORE_TO_MODULE 0.0
set INTER_ST

set FINAL_MUX_STRIPE_ROUTING_OFFS
set DIE_HEIGHT_ALU_STRIPE 213.6
set DIE_HEIGHT_MUX_STRIPE 103.2
se
set CHIP_POWER_OFFSET 16.8
set POWER_RING_TOTAL_LEFT 16.8
set POWER_RING_TOTAL_RIGHT 16.8
set ALU_MUX_TOTAL_HEIGHT [expr

set MODULE_WIDTH 500.8
set MODULE_LEFT_DISTANCE
set MODULE_RIGHT_DISTANCE 3.6
se
set INTER_MODULE_DISTAN

set NUMBER_OF_MODULES_PER_STRIPE 20

#The additional numbers that
h
set DIE_HEIGHT [expr {($ALU_MUX_TOTAL_HEIGHT*17) + ($INTER_STRIPE_SPACING*34) +
($DIE_HEIGHT_ALU_STRIPE)+
(2*$CHIP_POWER_OFFSET) + $FINAL_MUX_STRIPE_ROUTING_OFFSET + 2.4 + 1

se
if {$VAL ==1} {

 172

 set DIE_WIDTH_STRIPE [expr {($MODULE_WIDTH *$NUMBER_OF_MODULES_PER_STRIPE) +
((($NUMBER_OF_MODULES_PER_STRIPE-1)/2)*$INTER_MODULE_DISTANCE_MIN) +
(((($NUMBER_OF_MODULES_PER_STRIPE-1)/2)-1)*$INTER_MODULE_DISTANCE_MAX) +
$MODULE_LEFT_DISTANCE + $MODULE_RIGHT_DISTANCE + $POWER_RING_TOTAL_LEFT +
$POWER_RING_TOTAL_RIGHT}]
} else {

 set DIE_WIDTH_STRIPE [expr {($MODULE_WIDTH *$NUMBER_OF_MODULES_PER_STRIPE) +
((($NUMBER_OF_MODULES_PER_STRIPE-1)/2)*$INTER_MODULE_DISTANCE_MIN) +
(((($NUMBER_OF_MODULES_PER_STRIPE)/2)-1)*$INTER_MODULE_DISTANCE_MAX) +
$MODULE_LEFT_DISTANCE + $MODULE_RIGHT_DISTANCE + $POWER_RING_TOTAL_LEFT +
$POWER_RING_TOTAL_RIGHT}]
}

set WIDTH_ALU_STRIPE $DIE_WIDTH_STRIPE
set WIDTH_MUX_STRIPE $DIE_WIDTH_STRIPE
set FINAL_MUX_STRIPE_STRING "I18_m"

CORE + $LEFT_CORE_TO_MODULE}]
U_STRIPE + $LEFT_IO_TO_CORE +$LEFT_CORE_TO_MODULE}]

t NEXT_Y [expr {$DIE_HEIGHT - $TOP_IO_TO_CORE - $TOP_CORE_TO_MODULE - 7.2}]
OP_IO_TO_CORE - $TOP_CORE_TO_MODULE - 7.2}]

RING
HEIGHT_FINAL_MUX_STRIPE"]

_Y $NEXT_X $NEXT_Y

R $CUR_X $CUR_Y $NEXT_X $NEXT_Y"

SPACING - $FINAL_MUX_STRIPE_ROUTING_OFFSET"]
NTER_STRIPE_SPACING - $DIE_HEIGHT_FINAL_MUX_STRIPE -

 puts "HELLO WORLD $i"

R_MODULE+1"]
_HEIGHT_ALU_STRIPE"]

 append CUR_STR "_s"
 setObjFPlanBox Module $CUR_STR $CUR_X $CUR_Y $NEXT_X $NEXT_Y

UR_X $CUR_Y $NEXT_X $NEXT_Y"
Placement of Mux stripe

 NEXT_Y [expr "$NEXT_Y -$INTER_STRIPE_SPACING - $DIE_HEIGHT_ALU_STRIPE"]

 setObjFPlanBox Module $CUR_STR $CUR_X $CUR_Y $NEXT_X $NEXT_Y
EXT_X $NEXT_Y"

xpr {$NEXT_Y - $INTER_STRIPE_SPACING -$DIE_HEIGHT_MUX_STRIPE}]
 set CUR_Y [expr {$CUR_Y - $INTER_STRIPE_SPACING}]

set CURR_MODULE 0
set CUR_X [expr {$LEFT_IO_TO_
set NEXT_X [expr {$WIDTH_AL

se
set CUR_Y [expr {$DIE_HEIGHT - $T

#Placement of Final Mux stripe
set CUR_STR $FINAL_MUX_STRIPE_ST
set CUR_Y [expr "$CUR_Y - $DIE_

setObjFPlanBox Module $CUR_STR $CUR_X $CUR
puts "setObjFPlanBox Module $CUR_ST

set CUR_Y [expr "$CUR_Y -$INTER_STRIPE_
set NEXT_Y [expr "$NEXT_Y - $I
$FINAL_MUX_STRIPE_ROUTING_OFFSET"]

for {set i 1} {$i<18} {incr i} {

#Placement of ALU Stripe
 set CURR_MODULE [expr "$CUR
 set CUR_Y [expr "$CUR_Y - $DIE
 set CUR_STR "I"
 append CUR_STR $CURR_MODULE

 puts "setObjFPlanBox Module $CUR_STR $C
#
 set CUR_Y [expr "$CUR_Y - $INTER_STRIPE_SPACING - $DIE_HEIGHT_MUX_STRIPE"]
 set
 set CUR_STR "I"
 append CUR_STR $CURR_MODULE
 append CUR_STR "_m"

 puts "setObjFPlanBox Module $CUR_STR $CUR_X $CUR_Y $N
 set NEXT_Y [e

 173

}

 #Placement of last ALU Stripe
 puts "HELLO WORLD $i"
 set CURR_MODULE [expr "$CURR_MODULE+1"]

UR_Y [expr "$CUR_Y - $DIE_HEIGHT_ALU_STRIPE"]

UR_STR $CUR_X $CUR_Y $NEXT_X $NEXT_Y"

C.3 ALU STRIPE PIN ASSIGNMENT SCRIPT

 22.4

.92 + 5.2 is aligned on a 0.4um pin grid

 set C
 set CUR_STR "I"
 append CUR_STR $CURR_MODULE
 append CUR_STR "_s"
 setObjFPlanBox Module $CUR_STR $CUR_X $CUR_Y $NEXT_X $NEXT_Y
 puts "setObjFPlanBox Module $C

set CLEARANCE 0.0

t NUMBER_OF_MODULES 20 se

#Set input pins
set WIDTH_ALU 500.8

#set DIE_HEIGHT_ALU_STRIPE 213.6
set DIE_HEIGHT_ALU_STRIPE 285.6

set DIE_WIDTH_ALU_STRIPE 10330.0
set PIN_BANK_SPACING [expr {$WIDTH_ALU}]
#16.8 for the power ring

t CHIP_OFFSET [expr {16.8 + 3.6}] se

#10.4 to accomodate the spacing

E_MAXset INTER_ALU_DISTANC
set INTER_ALU_DISTANCE_MIN 7.2
set INPUT_PIN_SPACING 1.6

CING 1.6 set OUTPUT_PIN_SPA

n position after offset + 23#its taken care such that the pi
set INP1_OFFSET 40.0
set INP2_OFFSET 290.0
set DOUT_OFFSET 340.0

OP 0 set RIGHT_OFFSET_T
set RIGHT_OFFSET_BOTTOM 0

 174

#*************************PLACING inp1 ************************#
Placing Pins inp1

F_MODULES -1}]
_STRIPE

_SPACING}]

MBER_OF_MODULES*32)-1}]

 if {$FLAG == 0} {
 set X_LOC [expr {($X_LOC - (31*$INPUT_PIN_SPACING)) + $PIN_BANK_SPACING +

$INTER_ALU_DISTANCE_MIN}]
 set FLAG 1
 } else {
 set X_LOC [expr {($X_LOC - (31*$INPUT_PIN_SPACING)) + $PIN_BANK_SPACING +
$INTER_ALU_DISTAN A
 set FLAG 0
 }
 set PINS_PER_ALU_COUNT 2

LOC + $INPUT_PIN_SPACING}]

 "inp1\\\[$i\\\]"
OC $Y_LOC"
NAME -loc $X_LOC $Y_LOC -layer 2

d sel bus pins************************#

)-1}]

HIP_OFFSET -$INPUT_PIN_SPACING}]

MODULES -1}]
} {

UT_PIN_SPACING}]

K_COUNT\\\]"

OC - (32*$INPUT_PIN_SPACING)) + $PIN_BANK_SPACING +
INTER_ALU_DISTANCE_MIN}]

2*$INPUT_PIN_SPACING)) + $PIN_BANK_SPACING +
INTER_ALU_DISTANCE_MAX}]
 set FLAG 0
 }
set PINS_PER_ALU_COUNT 2
 else {

#
set BANK_NO [expr {$NUMBER_O
set Y_LOC $DIE_HEIGHT_ALU
#The subtraction of the input pin spacing is necessary
set X_LOC [expr {$INP1_OFFSET + $CHIP_OFFSET - $INPUT_PIN
set FLAG 0
set PINS_PER_ALU_COUNT 1
set PIN_COUNT [expr {($NU
for {set i $PIN_COUNT} {$i > -1} {decr i 1} {
 if {$PINS_PER_ALU_COUNT == 33} {

CE_M X}]

 } else {
 set X_LOC [expr {$X_
 incr PINS_PER_ALU_COUNT 1
 }
set PIN_NAME
puts "$PIN_NAME $X_L
preassignPin stripe $PIN_
}

#**************PLACING inp2 pins an
#Placing Pins inp2
set PIN_COUNT [expr {($NUMBER_OF_MODULES*32
set Y_LOC $DIE_HEIGHT_ALU_STRIPE
set X_LOC [expr {$INP2_OFFSET + $C
set FLAG 0
set PINS_PER_ALU_COUNT 1
set BANK_COUNT [expr {$NUMBER_OF_
for {set i $PIN_COUNT} {$i > -1} {decr i 1
if {$PINS_PER_ALU_COUNT == 33} {
 set X_LOC [expr {$X_LOC + $INP
 set PIN_NAME "sel_bus\\\[$BAN
 puts "$PIN_NAME"
 preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2
 decr BANK_COUNT 1
 if {$FLAG == 0} {
 set X_LOC [expr {($X_L
$
 set FLAG 1
 } else {
 set X_LOC [expr {($X_LOC - (3
$

 }

 175

 set X_LOC [expr {$X_LOC + $INPUT_PIN_SPACING}]
 incr PINS_PER_ALU_COUNT 1

us[0]

_SPACING}]

 $X_LOC $Y_LOC -layer 2

T [expr {($NUMBER_OF_MODULES*32)-1}]
_LOC 0

 +$CHIP_OFFSET -$OUTPUT_PIN_SPACING}]
 0

R_OF_MODULES -1}]

-1} {decr i 1} {

t X_LOC [expr {$X_LOC + $INPUT_PIN_SPACING}]
set PIN_NAME "l_dout_bus\\\[$BANK_COUNT\\\]"

 $PIN_NAME -loc $X_LOC $Y_LOC -layer 2

PACING +
U_DISTANCE_MIN}]

T_PIN_SPACING)) + $PIN_BANK_SPACING +

COUNT 2

OC + $OUTPUT_PIN_SPACING}]
COUNT 1

E"
n stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2

g section of code places the l_dout_bus[0]
_LOC [expr {$X_LOC + $OUTPUT_PIN_SPACING}]

]"
N_NAME"

 }
set PIN_NAME "inp2\\\[$i\\\]"
puts "$PIN_NAME"
preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2
}

#******************************Placing of sel bus 0 pins**
##The following section of code places the sel_b
 set X_LOC [expr {$X_LOC + $INPUT_PIN
set PIN_NAME "sel_bus\\\[0\\\]"
puts "$PIN_NAME"
preassignPin stripe $PIN_NAME -loc

#*****************************PLACING dout pins************************#
#Placing Pins dout
set PIN_COUN
set Y
set X_LOC [expr {$DOUT_OFFSET
set FLAG
set PINS_PER_ALU_COUNT 1
set BANK_COUNT [expr {$NUMBE

for {set i $PIN_COUNT} {$i >
if {$PINS_PER_ALU_COUNT == 33} {

 se

 puts "$PIN_NAME"
 preassignPin stripe
 decr BANK_COUNT 1
 if {$FLAG == 0} {
 set X_LOC [expr {($X_LOC - (32*$OUTPUT_PIN_SPACING)) + $PIN_BANK_S
$INTER_AL
 set FLAG 1
 } else {
 set X_LOC [expr {($X_LOC - (32*$OUTPU
$INTER_ALU_DISTANCE_MAX}]
 set FLAG 0
 }
 set PINS_PER_ALU_
 } else {
 set X_LOC [expr {$X_L
 incr PINS_PER_ALU_
 }
set PIN_NAME "dout_bus\\\[$i\\\]"
puts "$PIN_NAM
preassignPi
}

##The followin
 set X
set PIN_NAME "l_dout_bus\\\[0\\\
puts "$PI

 176

preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2

he Y location is set so that the pin is assigned near the top
t Y_LOC [expr {$DIE_HEIGHT_ALU_STRIPE - 16.8 - $HOR_FEEDTHROUGH_OFFSET}]

ODULES-1}]

r {set i $LAST_MODULE_NUMBER} {$i > -1} {decr i 1} {

lo_hi_bus\\\[$i\\\]"

NAME"

*5)-1)]

 puts $PIN_NAME
NG]

_LOC $Y_LOC -layer 5

_NAME -loc $X_LOC $Y_LOC -layer 5

SEL_CNT\\\]"
ME

C [expr $Y_LOC - $VERT_PIN_SPACING]

CNT 1
 PIN_NAME "op_sel_bus\\\[$OPSEL_CNT\\\]"

OC [expr $Y_LOC - $VERT_PIN_SPACING]
er 5

ecr OPSEL_CNT 1
PSEL_CNT\\\]"

preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 5

}]

#****************************

##Assignment of control pins
set X_LOC 0
set HOR_FEEDTHROUGH_OFFSET 3.6
T
se
set VERT_PIN_SPACING 0.4
set SET_TO_SET_OFFSET 0.8
set LAST_MODULE_NUMBER [expr {$NUMBER_OF_M

puts $X_LOC
puts $Y_LOC

fo

 set PIN_NAME "
 set Y_LOC [expr $Y_LOC - $VERT_PIN_SPACING]
 puts "$PIN_
 preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 5

 set OPSEL_CNT [expr ((($i+1)
 set PIN_NAME "op_sel_bus\\\[$OPSEL_CNT\\\]"

 set Y_LOC [expr $Y_LOC - $VERT_PIN_SPACI
 preassignPin stripe $PIN_NAME -loc $X

 decr OPSEL_CNT 1
 set PIN_NAME "op_sel_bus\\\[$OPSEL_CNT\\\]"
 puts $PIN_NAME
 set Y_LOC [expr $Y_LOC - $VERT_PIN_SPACING]
 preassignPin stripe $PIN

 decr OPSEL_CNT 1
 set PIN_NAME "op_sel_bus\\\[$OP
 puts $PIN_NA
 set Y_LO
 preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 5

 decr OPSEL_
 set
 puts $PIN_NAME
 set Y_L
 preassignPin stripe $PIN_NAME -loc $X_LOC $Y_LOC -lay

 d
 set PIN_NAME "op_sel_bus\\\[$O
 puts $PIN_NAME
 set Y_LOC [expr $Y_LOC - $VERT_PIN_SPACING]

 set Y_LOC [expr {$Y_LOC - $SET_TO_SET_OFFSET
}

 177

C.4 MUX STRIPE PIN ASSIGNMENT SCRIPT

UX 500.8

UX_STRIPE 103.2

2

ET 40

mpensate for the distance between the mux and the power stripe

********PLACING interout1*************************
 *32)-1}]

TPUT_PIN_SPACING}]

 $INTEROUT1_BANK_SPACING +

} else {

set NUMBER_OF_MODULES 20

 + 3.6}] set CHIP_OFFSET [expr {16.8

Set input pins #
set WIDTH_M

et HEIGHT_Ms

set WIDTH_MUX_STRIPE 10330.0

set LEFT_OFFSET_TOP 340.00
set LEFT_OFFSET_BOTTOM 0

OP 0 set RIGHT_OFFSET_T
set RIGHT_OFFSET_BOTTOM 0

#INPUT PINS ARE DOUT
#OUTPUT PINS ARE INTEROUT1 and INTEROUT

LEFT_OFFSET_TOP set INPUT_OFFSET $
#set INTEROUT1_OFFSET 78
#set INTEROUT2_OFFSET 328

set INTEROUT1_OFFS
set INTEROUT2_OFFSET 290

set DOUT_BANK_SPACING [expr {$WIDTH_MUX}]
set INTEROUT1_BANK_SPACING [expr {$WIDTH_MUX}]
et INTEROUT2_BANK_SPACING [expr {$WIDTH_MUX}] s

#The 10.4 is added to co
set INTER_MUX_DISTANCE_MAX 22.4

TANCE_MIN 7.2 set INTER_MUX_DIS
set INPUT_PIN_SPACING 1.6
set OUTPUT_PIN_SPACING 1.6

#*********************
set PIN_COUNT [expr {($NUMBER_OF_MODULES
set Y_LOC 0
set FLAG 0
set X_LOC [expr {$INTEROUT1_OFFSET + $CHIP_OFFSET -$OU
et PINS_PER_BANK 1 s

set BANK_NO 19

T} {$i > -1} {decr i 1} { for {set i $PIN_COUN
if {$PINS_PER_BANK == 33} {
 if {$FLAG ==0} {
 set X_LOC [expr {($X_LOC -(31*$OUTPUT_PIN_SPACING)) +

$INTER_MUX_DISTANCE_MIN}]
 set FLAG 1

 178

 set X_LOC [expr {($X -(SPACING +
$INTER_MUX_DISTANCE_MAX}]
 set FLAG 0
 }

 set PINS_PER_BANK 2
} else {

TPUT_PIN_SPACING}]

 "interout1\\\[$i\\\]"

e $PIN_NAME -loc $X_LOC $Y_LOC -layer 2

PLACING interout2 and interout3 pins******
OF_MODULES *32)-1)}]

SET +$CHIP_OFFSET -$OUTPUT_PIN_SPACING}]

TPUT_PIN_SPACING}]
BANK_NO\\\]"

_NAME -loc $TEMP_X_LOC $Y_LOC -layer 2

 (31*$OUTPUT_PIN_SPACING)) + $INTEROUT2_BANK_SPACING +
IN]

)) + $INTEROUT2_BANK_SPACING +

e $PIN_NAME -loc $X_LOC $Y_LOC -layer 2

T_PIN_SPACING}]

NAME -loc $TEMP_X_LOC $Y_LOC -layer 2

ACING dout_bus_big1************************#
PUT_OFFSET

 $HEIGHT_MUX_STRIPE
set PIN_COUNT [expr {($NUMBER_OF_MODULES*32)-1}]

_LOC 31*$OUTPUT_PIN_SPACING)) + $INTEROUT1_BANK_

 set X_LOC [expr {$X_LOC + $OU
 incr PINS_PER_BANK 1
 }

set PIN_NAME
puts $PIN_NAME

reassignPin mux_instancp
}

******************************#
set PIN_COUNT [expr {(($NUMBER_
set Y_LOC 0

T2_OFFset X_LOC [expr {$INTEROU
set PINS_PER_BANK 1
et BANK_NO 19 s

set FLAG 0
for {set i $PIN_COUNT} {$i > -1} {decr i 1} {
if {$PINS_PER_BANK == 33} {

_LOC + $OU set TEMP_X_LOC [expr {$X
 set PIN_NAME "interout3\\\[$

 preassignPin mux_instance $PIN
 if {$FLAG ==0} {
 set X_LOC [expr ($X_LOC -

INTER_MUX_DISTANCE_M$
 set FLAG 1
 } else {
 set X_LOC [expr ($X_LOC - (31*$OUTPUT_PIN_SPACING
$INTER_MUX_DISTANCE_MAX]
 set FLAG 0
 }
 set PINS_PER_BANK 2
 decr BANK_NO 1
} else {

 set X_LOC [expr {$X_LOC + $OUTPUT_PIN_SPACING}]
 incr PINS_PER_BANK 1
 }

set PIN_NAME "interout2\\\[$i\\\]"
puts "$PIN_NAME"

instancpreassignPin mux_
 }

 set TEMP_X_LOC [expr {$X_LOC + $OUTPU
NK_NO\\\]" set PIN_NAME "interout3\\\[$BA

tance $PIN_ preassignPin mux_ins

******************PL#***********
 $INset X_LOC

set Y_LOC

 179

set FLAG 0
set PINS_PER_BANK 1
set X_LOC [expr {$LEFT_OFFSET_TOP +$CHIP_OFFSET - $INPUT_PIN_SPACING}]

ANK_NO 19

$i > -1} {decr i 1} {

$X_LOC +$INPUT_PIN_SPACING}]
t PIN_NAME "l_dout_bus_big\\\[$BANK_NO\\\]"

puts $PIN_NAME
AME -loc $TEMP_X_LOC $Y_LOC -layer 2

et X_LOC [expr $X_LOC - {31*$INPUT_PIN_SPACING} + $DOUT_BANK_SPACING +
INTER_MUX_DISTANCE_MIN]

xpr $X_LOC - {31*$INPUT_PIN_SPACING} + $DOUT_BANK_SPACING +

R_BANK 2

UT_PIN_SPACING}]

INPUT_PIN_SPACING}]
ME "l_dout_bus_big\\\[0\\\]"

E -loc $X_LOC $Y_LOC -layer 2

_LOC 0
at the pin is assigned near the top

3.2
RANCE [expr "50.4 + 1.2"]

4
 NUMBER_OF_MODULES 20

NUMBER_OF_MODULES *6)-1)}]

set PIN_NAME "sel_mux_bus_big\\\[$i\\\]"

$X_LOC $Y_LOC -layer 5

set B

for {set i $PIN_COUNT} {
if {$PINS_PER_BANK == 33} {
 set TEMP_X_LOC [expr {
 se

 preassignPin mux_instance $PIN_N
 decr BANK_NO 1
 if {$FLAG == 0} {
 s
$
 set FLAG 1
 } else {
 set X_LOC [e
$INTER_MUX_DISTANCE_MAX]
 set FLAG 0
 }
 set PINS_PE
 } else {
 set X_LOC [expr {$X_LOC + $INP
 incr PINS_PER_BANK 1
 }
set PIN_NAME "dout_bus_big\\\[$i\\\]"
puts "$PIN_NAME"
preassignPin mux_instance $PIN_NAME -loc $X_LOC $Y_LOC -layer 2
}
 set X_LOC [expr {$X_LOC + $
set PIN_NA
puts $PIN_NAME
preassignPin mux_instance $PIN_NAM

set X
The Y location is set so th
set DIE_HEIGHT 10
set CLEA
set Y_LOC [expr {$DIE_HEIGHT - $CLEARANCE}]
set VERT_PIN_SPACING 0.
set

set X_LOC 0
set COUNT [expr {(($
for {set i $COUNT} {$i > -1} {decr i 1} {

 puts "$PIN_NAME"
 preassignPin mux_instance $PIN_NAME -loc
 set Y_LOC [expr $Y_LOC - $VERT_PIN_SPACING]
}

 180

C.5 FINAL FUX STRIPE PIN ASSIGNMENT SCRIPT

NALMUXES 20

AME "dout_bus_big6"
E "dout_bus_big10"

bus_big18"

ns

X_STRIPE_HEIGHT 69.6
INALMUX_STRIPE_WIDTH 10330.0

_MODULE_SPACING_MIN 7.2

 Y_LOC 0

NG_BOTTOM 2.0

4 dout_bus_big18*******#

ON 24.0
ER 1} {

 set X_LOC $START_POSITION
PIN_NUMBER [expr "$MOD_NUMBER*32"]

R -1"]

 $i"]
PUT_NAME\\\[$PIN_NUMBER\\\]"

 preassignPin final_mux_stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2
[expr "$X_LOC + $HOR_PIN_SPACING_TOP"]

ncr i 1} {

UMBER\\\]"
puts "$PIN_NAME"

 preassignPin final_mux_stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2
 set X_LOC [expr "$X_LOC + $HOR_PIN_SPACING_TOP"]
 }
set X_LOC [expr "$X_LOC + 7.2"]
for {set i 0} {$i < 32} {incr i 1} {

#Module related details
set NUMBER_OF_MODULES 20
set NUMBER_OF_FI

set FIRST_INPUT_N
set SECOND_INPUT_NAM
set THIRD_INPUT_NAME "dout_bus_big14"
set FOURTH_INPUT_NAME "dout_

#Set input pi
set FINALMUX_WIDTH 500.8
#set FINALMUX_HEIGHT 14.4
set FINALMU
set F

set INTER
set INTER_MODULE_SPACING_MAX 22.4

set
set HOR_PIN_SPACING_TOP 2.0
set HOR_PIN_SPACI
set VERT_PIN_SPACING 0.4

#*PLACING dout_bus_big6 dout_bus_big10 dout_bus_big1

set START_POSITI
for {set MOD_NUMBER 20} {$MOD_NUMBER >0} {decr MOD_NUMB

 set START_
 set START_PIN_NUMBER [expr "$START_PIN_NUMBE

for {set i 0} {$i < 32} {incr i 1} {
 set PIN_NUMBER [expr "$START_PIN_NUMBER -
 set PIN_NAME "$FIRST_IN
 puts "$PIN_NAME"

 set X_LOC
 }

set X_LOC [expr "$X_LOC + 7.2"]
for {set i 0} {$i < 32} {i
 set PIN_NUMBER [expr "$START_PIN_NUMBER - $i"]
 set PIN_NAME "$SECOND_INPUT_NAME\\\[$PIN_N

 181

 set PIN_NUMBE r "
 set PIN_NAME "$THIRD_INPUT_NAME\\\[$PIN_NUMBER\\\]"
 puts "$PIN_NAME"
 preassignPin final_mux_stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 2

 set X_LOC [expr "$X_LOC + $HOR_PIN_SPACING_TOP"]

t X_LOC [expr "$X_LOC + 7.2"]

ncr i 1} {
T_PIN_NUMBER - $i"]

_NAME\\\[$PIN_NUMBER\\\]"
 puts "$PIN_NAME"

oc $X_LOC $Y_LOC -layer 2
CING_TOP"]

t val [expr "$MOD_NUMBER %2"]

$START_POSITION + $INTER_MODULE_SPACING_MIN +

 set START_POSITION [expr "$START_POSITION + $INTER_MODULE_SPACING_MAX +

t START_POSITION 400

r {set MOD_NUMBER $NUMBER_OF_FINALMUXES} {$MOD_NUMBER >0} {decr MOD_NUMBER 1} {
ION

START_PIN_NUMBER -1"]

 set PIN_NUMBER [expr "$START_PIN_NUMBER - $i"]
$PIN_NUMBER\\\]"

 -layer 2
_LOC + $HOR_PIN_SPACING_BOTTOM"]

$val == 0} {
 set START_POSITION [expr "$START_POSITION + $INTER_MODULE_SPACING_MIN +

ER_MODULE_SPACING_MAX

R [exp $START_PIN_NUMBER - $i"]

 }
se
for {set i 0} {$i < 32} {i
 set PIN_NUMBER [expr "$STAR
 set PIN_NAME "$FOURTH_INPUT

 preassignPin final_mux_stripe $PIN_NAME -l
 set X_LOC [expr "$X_LOC + $HOR_PIN_SPA
 }

se
if {$val == 0} {
 set START_POSITION [expr "
$FINALMUX_WIDTH"]
 puts "MIN_SPACING\n"
} else {

$FINALMUX_WIDTH"]
 puts "MAX_SPACING\n"
}

}
#End of outer for loop

se
set Y_LOC $FINALMUX_STRIPE_HEIGHT
fo
 set X_LOC $START_POSIT
 set START_PIN_NUMBER [expr "$MOD_NUMBER*32"]
 set START_PIN_NUMBER [expr "$

for {set i 0} {$i < 32} {incr i 1} {

 set PIN_NAME "final_output\\\[
 puts "$PIN_NAME"
 preassignPin final_mux_stripe $PIN_NAME -loc $X_LOC $Y_LOC
 set X_LOC [expr "$X
 }
set val [expr "$MOD_NUMBER %2"]
if {

$FINALMUX_WIDTH"]
} else {
 set START_POSITION [expr "$START_POSITION + $INT
+$FINALMUX_WIDTH"]

}
}

 182

set X_LOC 0
set Y_LOC 41.2
for {set i 39} {$i > -1} {decr i 1} {

reassignPin final_mux_stripe $PIN_NAME -loc $X_LOC $Y_LOC -layer 5
RT_PIN_SPACING"]

 set PIN_NAME "final_sel_bus\\\[$i\\\]"
 puts "$PIN_NAME"
 p
 set Y_LOC [expr "$Y_LOC - $VE
}

 183

APPENDIX D

able D 1: Characterization data for 4ns delay element using 160fF buffer

Load Ca
Transitio
n Time

Rise
Energ
y
(pJ)

Fall
Energy
(pJ)

Rise
Time
(ps)

Fall
Time
(ps)

Rise
Cell
Delay
(ns)

Fall
Cell
Delay
(ns)

Ileak-
hi
(nW)

Ileak-
lo
(nW)

Bufer
rise
delay
(ps)

Buffer
fall
delay
(ps)

T

p
9.48fF 0.028ns 0.2195 0.2374 69.16 58.55 3.49 0.35 3.68 4.34 93.28 117.93
9.48fF 0.044ns 0.2216 0.2369 59.36 58.27 3.52 0.35 1.73 4.71 106.4 117.92
9.48fF 0.076ns 0.2201 0.2375 66.71 58.76 3.51 0.36 3.64 3.58 96.40 118.12
9.48fF 0.138ns 0.2222 0.2372 61.01 58.09 3.55 0.38 2.68 4.56 103.1 117.62
9.48fF 0.264ns 0.2242 0.2376 59.19 57.35 3.65 0.40 3.59 3.60 106.6 117.63
9.48fF 0.516ns 0.2282 0.2386 59.17 58.69 3.84 0.45 2.72 5.12 106.4 117.94
9.48fF 1.02ns 0.2277 0.2388 58.22 56.99 3.95 0.50 3.24 5.60 107.5 117.48
24.648fF 0.028ns 0.2538 0.2382 95.10 88.23 3.52 0.37 2.97 4.05 118.3 140.56
24.648fF 0.044ns 0.2561 0.2381 91.36 88.60 3.54 0.38 4.10 4.32 128.3 140.18
24.648fF 0.076ns 0.2544 0.2377 94.78 88.63 3.54 0.38 2.86 3.71 119.2 140.58
24.648fF 0.138ns 0.2568 0.2377 91.05 87.38 3.57 0.40 2.62 5.04 122.1 139.61
24.648fF 0.264ns 0.2582 0.2377 90.79 88.07 3.65 0.42 3.65 4.75 125.4 139.73
24.648fF 0.516ns 0.2621 0.2391 89.81 88.04 3.85 0.47 2.56 4.97 127.4 140.29
24.648fF 1.02ns 0.2620 0.2413 88.92 86.75 3.96 0.53 3.34 5.29 128.8 139.86
56.88fF 0.028ns 0.3250 0.2387 161.86 148.88 3.56 0.41 3.75 5.28 156.2 179.15
56.88fF 0.044ns 0.3263 0.2385 161.37 148.56 3.57 0.41 2.58 3.92 158.8 179.22
56.88fF 0.076ns 0.3260 0.2381 162.18 147.89 3.57 0.42 3.05 4.15 157.0 178.94
56.88fF 0.138ns 0.3280 0.2384 160.58 148.30 3.60 0.44 3.22 4.25 158.1 178.73
56.88fF 0.264ns 0.3302 0.2384 159.45 148.38 3.68 0.46 2.56 4.54 163.7 178.59
56.88fF 0.516ns 0.3342 0.2394 158.90 148.24 3.88 0.51 3.82 4.14 165.6 179.18
56.88fF 1.02ns 0.3346 0.2423 158.73 147.33 4.02 0.58 3.42 5.42 166.9 178.38
121.344fF 0.028ns 0.4668 0.2390 308.81 273.18 3.63 0.48 3.08 3.59 227.4 249.81
121.344fF 0.044ns 0.4682 0.2388 307.38 272.62 3.64 0.49 2.58 3.92 234.1 249.84
121.344fF 0.076ns 0.4692 0.2386 307.02 272.88 3.65 0.49 2.56 4.18 230.0 249.73
121.344fF 0.138ns 0.4687 0.2387 307.97 272.67 3.67 0.51 3.89 4.26 225.7 249.58
121.344fF 0.264ns 0.4723 0.2388 306.78 273.29 3.75 0.54 3.13 4.06 234.9 249.49
121.344fF 0.516ns 0.4773 0.2399 306.61 273.36 3.97 0.58 3.91 1.81 239.4 249.77
121.344fF 1.02ns 0.4778 0.2420 307.18 273.04 4.09 0.64 3.76 5.41 239.4 249.49
250.272fF 0.028ns 0.7558 0.2392 612.40 537.60 3.77 0.62 3.82 4.76 368.1 388.60
250.272fF 0.044ns 0.7595 0.2394 612.53 532.37 3.79 0.62 2.99 4.22 382.2 389.11
250.272fF 0.076ns 0.7576 0.2392 609.36 534.35 3.79 0.63 2.86 3.89 374.2 389.00
250.272fF 0.138ns 0.7582 0.2392 608.67 535.33 3.82 0.65 2.14 3.10 369.7 388.39
250.272fF 0.264ns 0.7628 0.2390 607.29 535.17 3.89 0.67 3.81 4.63 382.2 388.44
250.272fF 0.516ns 0.7663 0.2404 608.51 535.72 4.04 0.72 3.55 4.55 384.1 389.19
250.272fF 1.02ns 0.7659 0.2419 607.96 535.25 4.22 0.77 3.19 4.58 385.5 388.70
506.232fF 0.028ns 1.3316 0.2396 1218.50 1046.00 4.07 0.90 3.09 1.69 668.1 664.70
506.232fF 0.044ns 1.3347 0.2396 1208.83 1045.00 4.08 0.90 2.55 4.55 668.1 665.21

 184

Table D 1 (Continued)

506.232fF 0.076ns 1.3337 0.2393 1211.17 1045.50 4.09 0.91 2.84 4.91 668.9 665.24
506.232fF 0.138ns 1.3348 0.2396 1209.58 1045.50 4.12 0.92 3.61 4.14 666.2 664.85
506.232fF 0.264ns 1.3348 0.2391 4.18 0.95 3.38 4.79 669.2 664.881211.08 1045.17
506.232fF 0.516ns 1.3406 0.2406 4.44 1.00 3.54 4.01 673.0 665.361211.50 1045.67
506.232fF 1.02ns 1.3390 0.2422 1210.08 1045.25 4.50 1.05 3.52 4.71 674.8 664.82
1023.84fF 0.028ns 2.5018 0.2396 2430.17 2082.08 4.65 1.46 3.01 3.84 1247. 1223.00
1023.84fF 0.044ns 2.5043 0.2392 2429.67 2081.25 4.66 1.46 2.65 5.30 1256. 1222.92
1023.84fF 0.076ns 2.5018 0.2390 2429.67 2082.50 4.67 1.46 1.75 5.20 1253. 1222.67
1023.84fF 0.138ns 2.5053 0.2396 2428.92 2080.17 4.70 1.48 2.31 3.47 1257. 1222.25
1023.84f 1.79 4.65 1258. 1222.50F 0.264ns 2.5067 0.2395 2428.50 2082.00 4.77 1.51
1023.84f 2.76 5.37 1259. 1223.00F 0.516ns 2.5125 0.2405 2427.58 2082.58 5.03 1.56
1023.84f 1.02ns 2.5111 0.2418 2427.17 2082.17 5.08 1.60 3.60 5.12 1258. 1222.42F

s del en 64 ffe

p
io

R
T
(

F
T
(

R
C
D
(n

F
C
D
(n

Il
h
(n

Table D 2: Characterization data for 4n ay elem t using 0fF bu r

Load Ca
Transit
n Time

Rise
Energ
y
(pJ)

Fall
Energy
(pJ)

ise
ime

ps)

all
ime

ps)

ise
ell
elay
s)

all
ell
elay
s)

eak-
i
W)

Ileak-
lo
(nW)

Bufer
rise
delay
(ps)

Buffer
fall
delay
(ps)

9.48fF 0.028ns 0.2813 0.3213 30.26 34.41 3.53 0.43 11.88 -9.74 129.2 200.60
9.48fF 0.044ns 0.2840 0.3209 29.73 34.53 3.56 0.44 -2.05 -5.75 146.3 200.27
9.48fF 0.076ns 0.2821 0.3215 30.54 35.17 3.55 0.44 0.49 -1.07 136.4 200.55
9.48fF 0.138ns 0.2809 0.3219 35.06 34.62 3.58 0.46 -1.88 18.79 131.3 200.28
9.48fF 0.264ns 0.2848 0.3226 29.82 35.47 3.66 0.49 2.23 -1.16 141.6 200.53
9.48fF 0.516ns 0.2854 0.3228 29.62 35.24 3.63 0.53 -3.93 -5.19 144.2 200.61
9.48fF 1.02ns 0.2890 0.3252 29.89 35.39 3.97 0.60 -6.22 1.87 146.0 200.85
24.648fF 0.028ns 0.3155 0.3237 39.63 41.82 3.54 0.44 2.53 -3.75 140.3 206.64
24.648fF 0.044ns 0.3186 0.3231 39.36 41.76 3.57 0.44 8.17 2.80 153.8 206.84
24.648fF 0.076ns 0.3172 0.3227 39.49 41.90 3.56 0.45 5.67 -6.56 142.9 207.17
24.648fF - 0.138ns 0.3178 0.3224 40.05 41.82 3.60 0.46 12.86 5.74 147.1 207.20
24.648fF 0.264ns 0.3195 0.3234 39.05 42.28 3.66 0.49 -8.81 -0.56 150.7 207.12
24.648fF 0.516ns 0.3231 0.3241 39.21 41.86 3.85 0.54 -0.17 5.45 153.0 207.10
24.648fF 1.02ns 0.3239 0.3265 39.14 42.11 4.00 0.60 -1.96 -5.27 153.6 207.04
56.88fF 0.028ns 0.3903 0.3237 60.47 54.86 3.56 0.45 -1.67 5.99 155.3 218.12
56.88fF 0.044ns 0.3914 0.3236 60.53 54.94 3.58 0.45 -3.13 9.28 165.1 217.83
56.88fF 0.076ns 0.3897 0.3244 60.46 54.79 3.57 0.46 -0.66 -0.40 151.0 218.10
56.88fF 0.138ns 0.3896 0.3245 61.21 54.99 3.60 0.48 -0.40 2.59 154.3 218.07
56.88fF 0.264ns 0.3919 0.3248 59.95 55.30 3.69 0.50 -3.63 9.15 162.5 218.01
56.88fF 0.516ns 0.3955 0.3253 59.94 54.88 3.86 0.55 0.75 -2.27 164.4 218.32
56.88fF 1.02ns 0.3972 0.3288 60.42 55.22 4.00 0.62 3.30 5.30 165.7 218.75
121.344fF -0.028ns 0.5344 0.3260 105.23 81.83 3.58 0.47 11.56 177.4 236.29
121.344fF 0.044ns 0.5350 0.3257 105.25 82.29 3.59 0.47 4.66 8.90 184.4 236.31
121.344fF 0.076ns 0.5356 0.3259 104.93 82.13 3.59 0.48 -4.60 -3.37 170.2 236.27
121.344fF 0.138ns 0.5336 0.3263 105.15 81.41 3.62 0.49 -1.19 5.12 179.2 236.43
121.344fF 0.264ns 0.5367 0.3260 104.96 81.52 3.71 0.52 8.65 5.26 184.5 236.65
121.344fF 0.516ns 0.5407 0.3273 104.52 82.20 3.93 0.57 -1.08 -3.38 186.7 236.33
121.344fF 1.02ns 0.5409 0.3286 104.33 81.85 4.00 0.63 -1.40 2.79 188.3 236.93
250.272fF 0.028ns 0.8217 0.3275 194.67 135.10 3.62 0.50 1.53 4.53 217.2 268.10

 185

Table D 2 (Continued)

250.272fF 0.044ns 0.8259 0.3275 194.51 134.80 3.64 0.50 -3.54 1.66 229.8 267.88
250.272fF 0.076ns 0.8204 0.3272 194.90 134.73 3.64 0.51 3.95 4.67 220.8 267.97
250.272fF 0.138ns 0.8216 0.3275 194.58 134.52 3.68 0.53 6.76 -1.76 228.0 268.30
250.272fF 0.264ns 0.8243 0.3275 194.69 134.15 3.74 0.55 -9.42 7.49 227.0 268.49
250.272fF s 0.516n 0.8276 0.3280 194.62 134.19 3.93 0.60 -2.26 -4.49 233.2 268.21
250.272fF 1.02ns 0.8291 0.3301 194.78 133.72 4.07 0.66 6.37 5.34 233.6 268.85
506.232fF 0.028ns 1.4053 0.3293 379.60 239.82 3.71 0.56 -2.37 6.62 303.7 327.97
506.232fF 0.044ns 1.3999 0.3291 377.55 240.20 3.72 0.56 1.77 4.69 316.0 327.43
506.232fF 0.076ns 1.4026 0.3290 377.93 240.24 3.72 0.57 -1.72 2.08 308.3 327.67
506.232fF 0.138ns 1.3937 0.3286 377.64 240.90 3.76 0.59 -3.68 -6.67 311.1 328.15
506.232fF 0.264ns 1.4009 0.3289 378.52 240.51 3.84 0.62 -6.02 -1.61 317.8 328.34
506.232fF s 0.516n 1.4059 0.3299 378.99 240.73 4.08 0.66 -4.98 -3.57 320.3 327.98
506.232 .02ns 1.4071 0.3323 378.47 240.50 4.17 0.73 4.19 -0.34 320.8 328.84fF 1
1023.84fF 0.028ns 2.5534 0.3293 748.43 459.73 3.89 0.68 4.06 7.19 487.4 447.34
1023.84 .044ns 2.5505 0.3299 749.67 460.08 3.90 0.68 2.93 -2.98 496.5 447.23fF 0
1023.84 .076ns 2.5492 0.3297 747.78 461.27 3.90 0.69 0.24 6.73 484.8 447.48fF 0
1023.84fF 0.138ns 2.5536 0.3295 745.13 461.70 3.95 0.71 3.71 0.51 498.9 448.00
1023.84fF 0.264ns -5.48 495.1 447.80 2.5520 0.3293 747.48 464.20 4.01 0.73 -6.59
1023.84fF 0.516ns 2.5529 0.3307 747.93 462.15 4.21 0.78 -3.08 -3.85 497.7 447.71
1023.84 .02ns 2.5534 0.3337 747.02 463.94 4.33 0.84 1.77 -0.03 498.5 448.39fF 1

Tab C teriza for 4ns dela en g 80 er

ap

F
E
(

Ri
Ti
(p

Fa
Ti
(p

Ri
Ce
De
(n

Fa
Ce
De
(n

Ile
h
(n

I

(

B
fa
d
(p

le D 3: harac tion data y elem t usin fF buff

Load C
Transitio
n Time

Rise
Energ
y
(pJ)

all
nergy

pJ)

se
me
s)

ll
me
s)

se
ll
lay

s)

ll
ll
lay

s)

ak-
i
W)

leak-
lo
nW)

Bufer
rise
delay
(ps)

uffer
ll

elay
s)

9.48fF 0.028ns 0.2136 0.2274 80.76 61.17 3.48 0.33 5.58 6.82 78.37 98.03
9.48fF 0.044ns 0.2151 0.2273 72.26 60.74 3.50 0.33 5.58 6.83 90.49 97.95
9.48fF 0.076ns 0.2145 0.2270 76.79 61.08 3.50 0.34 5.59 6.85 82.55 98.21
9.48fF 0.138ns 0.2147 0.2274 100.77 60.64 3.52 0.36 5.60 6.88 73.75 98.21
9.48fF 0.264ns 0.2162 0.2273 71.33 60.54 3.60 0.38 5.64 6.92 89.81 98.19
9.48fF 0.516ns 0.2200 0.2279 67.96 60.81 3.75 0.43 5.71 7.03 94.54 98.26
9.48fF 1.02ns 0.2208 0.2313 66.83 59.69 3.94 0.50 5.83 7.25 95.95 98.13
24.648fF 0.028ns 0.2469 0.2278 1 140.13 14.85 3.51 0.36 5.58 6.82 115.1 131.39
24.648fF 0.044ns 0.2484 0.2276 1 136.86 14.67 3.52 0.37 5.58 6.83 119.7 131.29
24.648fF 1 10.076ns 0.2484 0.2277 39.58 14.90 3.54 0.37 5.59 6.84 116.7 131.34
24.648fF 1 10.138ns 0.2490 0.2276 36.73 15.02 3.56 0.39 5.60 6.87 119.6 131.33
24.648fF 1 10.264ns 0.2519 0.2279 31.86 14.93 3.65 0.42 5.64 6.92 128.3 131.38
24.648fF 1 10.516ns 0.2537 0.2287 32.10 14.93 3.80 0.47 5.71 7.03 127.0 131.54
24.648fF 1 11.02ns 0.2555 0.2307 32.04 14.78 3.96 0.52 5.82 7.24 129.6 131.67
56.88fF 0.028ns 0.3191 0.2279 2 277.96 34.58 3.59 0.43 5.59 6.82 183.7 196.98
56.88fF 0.044ns 0.3202 0.2277 278.51 233.56 3.61 0.43 5.59 6.83 196.0 197.08
56.88fF 0.076ns 0.3203 0.2277 277.08 233.68 3.61 0.44 5.60 6.84 193.5 197.02
56.88fF 0.138ns 0.3210 0.2275 277.79 234.01 3.64 0.45 5.60 6.87 192.1 197.16
56.88fF 0.264ns 0.3230 0.2279 275.56 233.93 3.72 0.48 5.65 6.92 196.8 197.21
56.88fF 0.516ns 0.3272 0.2284 275.23 233.27 3.93 0.53 5.73 7.03 199.0 197.18
56.88fF 1.02ns 0.3266 0.2305 275.30 233.07 4.04 0.59 5.83 7.25 199.9 197.28
121.344fF 0.028ns 0.4647 0.2276 569.58 477.78 3.74 0.56 5.59 6.82 331.5 327.34
121.344fF 0.044ns 0.4651 0.2279 568.98 478.53 3.74 0.56 5.59 6.83 336.6 327.41

Table D 3 ued)(Contin

 186

121.344fF 0.076ns 0.4634 0.2277 570.15 8.51 3.74 0.57 5.59 6.84 324.6 327.3747
121.344fF 0.138ns 0.4653 0.2279 570.78 479.59 3.78 0.59 5.61 6.87 329.2 327.38
121.344fF 0.264ns 0.4681 0.2280 569.47 478.42 3.88 0.61 5.65 6.93 340.2 327.48
121.344fF 0.516ns 0.4706 0.2288 569.72 478.53 4.02 0.66 5.72 7.03 340.2 327.55
121.344fF 1.02ns 0.4711 0.2317 569.38 478.92 4.19 0.72 5.83 7.25 340.3 327.63
250.272fF 0.028ns 0.7527 0.2281 1158.67 968.94 4.01 0.82 5.58 6.82 610.8 587.51
250.272fF 0.044ns 0.7533 0.2281 1163.17 967.63 4.03 0.82 5.58 6.83 619.9 587.74
250.272fF 0.076ns 0.7546 0.2282 1160.92 970.78 4.04 0.83 5.60 6.84 617.6 587.50
250.272fF 0.138ns 0.7545 0.2283 1159.83 966.67 4.06 0.85 5.61 6.87 613.0 588.03
250.272fF 0.264ns 0.7566 0.2282 1162.17 966.90 4.15 0.87 5.64 6.92 622.6 587.78
250.272fF 0.516ns 0.7561 0.2292 1162.08 969.48 4.16 0.92 5.68 7.03 622.4 587.80
250.272fF 1.02ns 0.7592 0.2318 1161.50 969.47 4.48 0.98 5.83 7.25 626.2 587.73
506.232fF 0.028ns 1.3317 0.2281 2 1 1338.08 920.17 4.57 1.34 5.59 6.82 1169. 104.00
506.232fF 0.044ns 1.3328 0.2281 2 1 1333.50 920.58 4.59 1.34 5.59 6.83 1183. 104.08
506.232fF 0.076ns 1.3325 0.2279 2 1 1336.33 920.67 4.59 1.35 5.59 6.84 1178. 104.08
506.232fF 0.138ns 1.3319 0.2277 2 1 1337.08 920.83 4.61 1.36 5.60 6.87 1168. 103.83
506.232fF 0.264ns 1.3358 0.2283 2 1 1334.08 921.08 4.71 1.39 5.64 6.92 1183. 104.25
506.232fF 0.516ns 1.3369 0.2292 2 1 1333.58 921.00 4.77 1.44 5.69 7.03 1185. 104.25
506.232fF 1.02ns 1.3392 0.2303 2 1 1334.67 920.92 5.01 1.49 5.82 7.25 1188. 104.50
1023.84fF 0.028ns 2.4808 0.2277 4 3 2689.75 877.83 5.71 2.38 8.42 6.82 2308. 148.00
1023.84fF 0.044ns 2.4838 0.2279 4 3 2689.25 878.67 5.73 2.38 8.47 6.83 2323. 148.00
1023.84fF 0.076ns 2.4826 0.2281 4 3 2691.83 878.25 5.73 2.39 8.37 6.84 2315. 148.00
1023.84 .138ns 2.4829 0.2281 4689.50 3878.42 5.76 2.41 8.50 6.87 2314. 2148.00fF 0
1023.84 .264ns 2.4843 0.2280 4689.92 3877.50 5.83 2.43 8.63 6.92 2314. 2147.67fF 0
1023.84fF 0.516ns 7.03 2323. 2148.002.4868 0.2292 4688.08 3878.50 5.96 2.48 9.01
1023.84fF 1.02ns 7.25 2324. 2148.252.4882 0.2310 4690.25 3878.75 6.17 2.53 9.54

bl ha ti a fo del en 16 ffe

R
En
y
(p

l
n

se
me
s)

e

se
ll
lay

s)

ll
ll
la

s)

-

fer

ay
)

Ta e D 4: C racteriza on dat r a 5ns ay elem t using 0fF bu r

Load Cap

Transit
ion
Time

ise Fa
erg E

J) (pJ

l
er Ri

gy
) (p

Ti
Fall
Tim
(ps)

Ri
Ce
De
(n

Fa
Ce
De
y
(n

Ileak
hi
(nW)

Ileak-
lo
(nW)

Bufer
rise
delay
(ps)

Buf
fall
del
(ps

9.48fF 0.028ns 0.23 0 .2 59 3.87 .35 6 .37 36.25 59 3 .36 0 3.2 2.39 108 118.
9.48fF 0.044ns 0.22 0 .8 57 3.87 .35 4 .08 81.25 59 6 .95 0 3.7 2.44 109 117.
9.48fF 0.076ns 0.22 0 .0 58 3.88 .36 6 .17 97.25 60 5 .50 0 3.3 3.65 109 117.
9.48fF 0.138ns 0.23 0 .3 57 3.90 .37 9 .90 20.25 60 4 .57 0 3.7 2.50 109 117.
9.48fF 0.264ns 0.23 0 .0 57 3.97 .40 7 .52 29.25 59 8 .79 0 3.3 3.10 109 117.
9.48fF 0.516ns 0.23 0 .3 58 4.15 .45 1 .16 77.25 59 6 .03 0 3.5 4.04 106 117.
9.48fF 1.02ns 0.23 0 .2 57 4.29 .51 9 .90 37.25 59 7 .04 0 3.7 2.94 107 117.
24.648fF 0 .7 88 3.89 .37 6 .33 700.028ns 0.26 .25 90 5 .62 0 2.8 3.41 131 140.
24.648fF 0 .8 88 3.88 .38 6 .69 210.044ns 0.26 .25 90 8 .53 0 2.4 4.48 129 140.
24.648fF 0 .4 88 3.90 .38 0 .59 510.076ns 0.26 .25 89 9 .65 0 3.7 3.86 130 140.
24.648fF 0 .0 87 3.93 .40 8 .03 440.138ns 0.26 .25 90 8 .81 0 3.1 3.27 130 139.
24.648fF 0 .5 88 3.95 .43 3 .45 430.264ns 0.26 .25 90 7 .22 0 3.2 3.09 130 139.
24.648fF 0 .5 88 4.20 .47 6 .98 190.516ns 0.26 .25 89 5 .12 0 3.6 3.75 128 140.
24.648fF 1.02ns 0.26 0 .7 86 4.31 .53 9 .90 41.26 89 4 .62 0 3.6 3.08 129 139.

Table D 4 ued)(Contin

 187

56.88fF 0.028ns 0.33 0 9.8 9. 3.93 .41 8 .75 20.25 15 8 14 10 0 2.8 4.32 168 179.
56.88fF 0.044ns 0.33 0 9.9 7. 3.93 .41 2 .00 07.25 15 1 14 87 0 3.2 3.18 168 179.
56.88fF 0.076ns 0.33 0 9.3 7. 3.94 .42 6 .33 99.25 15 2 14 64 0 3.7 3.38 168 178.
56.88fF 0.138ns 0.33 0 9.2 8. 3.96 .44 6 .82 65.25 15 3 14 40 0 3.7 2.30 166 178.
56.88fF 0.264ns 0 9.5 7. 4.02 .46 1 .19 650.33 .25 15 3 14 94 0 3.7 3.58 169 178.
56.88fF 0.516ns 0.33 0 9. 8. 4.19 .51 6 .50 10.25 15 68 14 08 0 3.5 4.15 166 179.
56.88fF 1.02ns 0.34 0 9. 7. 4.36 .57 5 .18 48.26 15 44 14 66 0 3.7 3.94 168 178.
121.344fF 0.028ns 0.47 0 7. 2. 4.00 .48 3 .13 93.25 30 47 27 90 0 3.9 2.56 241 249.
121.344fF 0.044ns 0.47 0 6. 4. 4.00 .49 4 .75 88.25 30 30 27 03 0 2.9 2.93 240 249.
121.344fF 0.076ns 0.47 0 6. 3. 4.01 .49 9 .78 88.25 30 63 27 38 0 4.4 3.17 239 249.
121.344fF 0.138ns 0.47 0 6. 2. 4.04 .51 3 .12 73.25 30 69 27 43 0 2.8 3.70 241 249.
121.344fF 0.264ns 0 6. 3. 4.11 .53 6 .83 310.47 .25 30 68 27 36 0 2.5 3.43 240 249.
121.344fF 0.516ns 0.48 0 6. 4.37 .58 0 .41 8.25 30 30 273.43 0 3.4 2.76 239 249. 0
121.344fF 1.02ns 0.48 0 6. 4.43 .64 7 .51 3.26 30 95 273.23 0 3.8 3.55 240 249. 3
250.272fF 0.028ns 0.76 0 8. 4.15 .62 0 .13 2.25 60 93 531.50 0 3.5 1.53 387 389. 0
250.272fF 0.044ns 0.76 0 8. 4.14 .62 4 .77 2.25 60 67 533.90 0 3.6 3.80 386 389. 8
250.272fF 0.076ns 0.76 0 8. 4.15 .63 8 .37 6.25 60 92 536.78 0 2.8 4.05 382 388. 7
250.272fF 0.138ns 0.76 0 9. 4.18 .65 6 .24 4.25 60 58 530.93 0 2.8 2.49 384 388. 3
250.272fF 0.264ns 0 0. 4.26 .67 5 .13 60.77 .25 61 36 534.90 0 3.1 2.95 387 388. 4
250.272fF 0.516ns 0.77 0 8. 4.50 .72 3 .12 1.26 60 04 535.37 0 3.9 3.94 383 389. 3
250.272fF 1.02ns 0.77 0 0. 4.59 .78 4 .12 5.26 61 47 535.43 0 3.6 2.93 384 388. 1
506.232fF 0.028ns 1.34 0 1 4 4.44 .90 6 .08 6.25 12 0.5 10 3.92 0 2.5 4.88 676 665. 2
506.232fF 0.044ns 1.34 0 1 4 4.43 .90 3 .48 3.25 12 0.6 10 4.50 0 3.9 3.09 676 665. 3
506.232fF 0.076ns 1.34 0 1 4 4.45 .91 5 .08 8.25 12 0.5 10 3.83 0 3.9 3.38 676 664. 2
506.232fF 0.138ns 1.34 0 1 4 4.47 .92 2 .22 5.25 12 0.5 10 4.92 0 4.0 2.97 673 664. 8
506.232fF 0.264ns 0 1 4 4.52 .95 8 .90 91.34 .25 12 1.7 10 4.42 0 4.1 3.62 675 664. 8
506.232 0.516ns 1.34 0.25 1209.4 1044.50 4.67 1.00 3.67 2.84 672.18 665.31fF
506.232 F 1.02ns 1.34 0.26 1213.4 1045.08 4.86 1.06 3.22 3.41 675.93 664.83f
1023.84 0.028ns 2.51 0.25 2429.5 2081.17 5.02 1.45 2.74 3.32 1261.50 1222.8fF
1023.84 0.044ns 2.51 0.25 2429.6 2080.75 5.02 1.46 2.00 2.18 1262.00 1223.0fF
1023.84fF 0.076ns 2.51 0.25 2430.7 2080.33 5.03 1.46 3.67 2.58 1260.92 1222.4
1023.84fF 0.138n 256.00 1222.4s 2.51 0.25 2429.4 2082.67 5.06 1.48 3.99 3.75 1
1023.84fF 0.264ns 2.51 0.25 2430.5 2082.00 5.13 1.51 3.23 4.82 1260.17 1222.3
1023.84 0.516ns 2.51 0.26 2429.1 2081.00 5.32 1.56 3.10 2.85 1257.92 1222.9fF
1023.84 1.02ns 2.51 0.26 2432.0 2082.42 5.46 1.62 3.41 3.99 1261.67 1222.0fF

Table D 5: Character a 5ns y ele u 0f r

T
si
T
(n

se
nergy
J)

ll
er

J)

Ri
Ti
(p

Fal
Tim
(ps)

Ris
Cel
Del
(ns)

e
e

n

Ile
hi
(n

Ile
lo
(n

B
r
d
(p

ization data for dela ment sing 64 F buffe

Load
Cap
(fF)

ran
tion Ri
ime E
s) (p

 En
Fa

gy
(p

se
me
s)

l
e

e Fa
l C
ay D
 (

ll
ll
lay

s)

ak-

W)

ak-

W)

ufer
ise
elay
s)

Buffer
fall
delay
(ps)

9.48 0. .2886 .3 3 4. 0 -1028 0 0 393 29.81 4.43 59 .43 5.7 -8.73 148.47 200.50
9.48 0. .2885 .3 3 4. 0 -2044 0 0 387 30.13 4.55 59 .44 .66 -5.00 145.73 200.22
9.48 0. .2893 .3 3 4. 0 -1076 0 0 390 29.58 5.00 61 .44 2.8 7.29 148.19 200.56
9.48 0. .2885 .3 3 4. 0 -6138 0 0 404 29.97 5.00 63 .46 .43 4.32 144.72 200.18
9.48 0. .2884 .3 3 4. 0 -6 -2264 0 0 413 31.94 6.14 69 .49 .77 1.60 133.34 200.86

 188

Table D 5 (Continued)

0. .2939 .3 4. 0 -59.48 516 0 0 408 29.83 34.67 95 .53 .29 1.57 147.64 200.31
9.48 1. .2938 .3 5. 0 -502 0 0 452 29.88 35.35 03 .60 .49 -5.21 148.13 200.88
24.648 0. .3235 .3 4. 0 -8028 0 0 417 39.33 41.74 60 .44 .45 -0.82 155.18 206.90
24.648 0. 0.3233 .3 4. 0 -1044 0 404 38.96 41.61 60 .44 2.1 0.13 154.88 206.93
24.648 0. .3230 .3 4. 0 -1076 0 0 408 40.38 41.75 61 .45 3.1 -5.17 151.83 206.78
24.648 0. .3222 .3 4. 0 -5 -1138 0 0 415 40.21 42.09 63 .46 .70 2.34 151.09 206.65
24.648 0. .3224 .3 4. 0 -4264 0 0 413 40.33 41.89 70 .49 .91 -7.46 145.94 207.22
24.648 0. .327 .3 4. 0 3516 0 9 0 417 39.26 41.82 93 .54 .66 -7.93 154.28 207.00
24.648 1. .3281 .3 5. 0 -202 0 0 449 39.29 41.76 02 .60 .78 -1.80 153.38 207.33
56.88 0. .3964 .3 4. 0 -7028 0 0 424 60.80 55.10 61 .45 .42 5.25 167.23 217.82
56.88 0. .3972 .3 4. 0 -4044 0 0 417 60.50 54.93 61 .45 .94 -5.68 166.81 217.82
56.88 0. .3963 .3 4. 0 -2076 0 0 419 60.56 55.07 62 .46 .64 -3.91 165.14 217.97
56.88 0. .3963 .3 4. 0 -1138 0 0 428 60.96 55.02 65 .48 5.0 -5.98 164.36 217.87
56.88 0. .3977 .3 4. 0 -3264 0 0 430 60.39 55.05 71 .51 .47 -6.93 164.93 218.13
56.88 0. .399 .3 4. 0 3516 0 7 0 433 59.98 54.98 89 .55 .38 -3.84 163.20 217.99
56.88 1. .400 .3 5. 0 302 0 7 0 467 60.49 55.35 02 .61 .83 5.19 166.02 218.59
121.344 0. 0.5399 0.3 4. 0 -1028 443 105.23 81.73 63 .47 1.3 6.21 187.80 236.30
121.344 0. .5396 0.3 4. 0 -1 -1044 0 444 104.67 82.13 63 .47 7.2 1.51 186.85 236.33
121.344 0. .5391 0.3 4. 0 -1 -1076 0 441 104.99 81.96 64 .48 3.4 3.86 183.08 236.34
121.344 0. .5390 0.3 4. 0 -2138 0 448 104.96 80.94 66 .49 .02 -5.91 172.88 236.45
121.344 0. .5401 0.3 4. 0 -1264 0 448 104.80 81.64 74 .52 .05 -3.30 187.15 236.63
121.344 0. .545 .3 4. 0 2516 0 4 0 452 104.67 81.93 98 .57 .08 -6.67 188.36 236.48
121.344 1. 0.545 .3 5. 0 002 4 0 481 104.68 81.83 09 .63 .72 -4.29 188.97 236.88
250.272 0. .8276 0.3 4. 0 -1 1028 0 460 194.12 134.27 68 .50 1.9 1.91 234.44 268.52
250.272 0. .8308 0.3 4. 0 -4 1044 0 457 194.65 134.81 68 .50 .01 1.89 234.55 267.86
250.272 0. .8276 0.3 4. 0 -1076 0 454 194.53 134.89 69 .51 .51 5.25 234.05 267.96
250.272 0. .8256 0.3 4. 0 -9138 0 455 194.44 133.60 72 .53 .59 6.57 233.83 268.67
250.272 0. .8278 0.3 4. 0 -1264 0 459 194.33 133.98 79 .55 1.6 -0.66 229.23 268.74
250.272 0. .8319 0.3 5. 0 -6516 0 469 194.60 133.47 01 .60 .88 0.53 233.09 268.36
250.272 1.0 0.8296 0.3495 1 5.0 0 -32 94.43 133.78 8 .67 .59 0.60 230.58 269.14
506.232 0.028 1.4012 0.3476 376.16 240.08 4.77 0.56 -7.19 13.20 322.46 327.68
506.232 0.044 1.4062 0.3474 380.70 240.13 4.76 0.56 -6.15 -5.21 321.98 327.41
506.232 0.076 1.4055 0.3473 379.37 240.53 4.78 0.57 0.25 -5.37 319.94 327.72
506.232 0.138 1.4012 0.3473 378.05 240.49 4.80 0.59 -14.6 -4.80 318.33 328.17
506.232 0.264 317.21 328.31 1.3999 0.3475 377.08 240.42 4.88 0.62 -7.72 -3.29
506.232 0.516 1.4098 0.3484 378.50 240.62 5.16 0.66 -9.73 -2.86 322.02 327.87
506.232 1.02 1.4078 0.3515 378.19 240.06 5.18 0.73 -0.78 -3.96 318.03 328.67
1023.84 0.028 2.5498 0.3480 748.90 460.93 4.94 0.68 -2.76 -21.33 500.31 447.31
1023.84 2.5539 0.3482 745.98 460.11 -7.32 -0.81 3 0.044 4.94 0.68 493.0 447.24
1023.84 17 80 88 .94 .14 0.076 2.55 0.34 749. 460 4.96 0.69 -8.80 -0.50 500 447.44
1023.84 2 3 .33 3.21 4 0.138 2.5506 0.3475 748.2 462.7 4.98 0.71 -3 498.8 447.78
1023.84 08 83 .08 .57 .23 0.264 2.55 0.34 748 463 5.05 0.73 -3.92 -2.06 499 447.90
1023.84 7 40.516 2.5584 0.3491 49.33 61.40 5.32 0.78 -5.24 -2.58 499.68 447.61
1023.84 7 41.02 2.5583 0.3533 48.41 64.42 5.36 0.85 5.20 -3.65 495.97 448.08

 189

Table D 6: Characterizati lement using 80fF buffer

ap

sit

e

g R
T
(p

Fa
Ti
(p

I
lo
(

B
r
d
(

on data for a 5ns delay e

Load C Tim

Tran
ion

Rise
Ener
y
(pJ)

Fall
Ener
gy
(pJ)

ise
ime
s)

ll
me
s)

Rise
Cell
Delay
(ns)

Fall
Cell
Dela
y
(ns)

Ileak-
hi
(nW)

leak-

nW)

ufer
ise
elay
ps)

Buffer
fall
delay
(ps)

9.48fF 0.028ns 6 4 0.220 0.238 68.94 61.31 4.5 0.33 6.05 4.45 97.43 98.22
9.48fF 0.044ns 6 4 0.220 0.238 68.57 61.28 4.5 0.33 6.06 4.46 96.74 97.93
9.48fF 0.076ns 8 5 0.220 0.238 69.47 61.48 4.5 0.34 6.07 4.47 97.22 98.17
9.48fF 0.138ns 1 8 0.221 0.238 70.36 60.95 4.5 0.36 6.08 4.48 96.81 98.33
9.48fF 0.264ns 7 5 0.221 0.238 76.31 60.43 4.6 0.38 6.13 4.52 88.50 98.28
9.48fF 6ns 2 9 0.51 0.226 0.239 69.70 60.90 4.8 0.43 6.24 4.60 96.77 98.09
9.48fF ns 9 1.02 0.224 0.242 73.17 59.91 4.97 0.49 6.35 4.75 92.86 98.14
24.648fF 8ns 8 1 0.02 0.254 0.239 31.43 114.68 4.57 0.36 6.06 4.45 131.53 131.29
24.648fF 4ns 7 1 0.04 0.254 0.239 32.40 114.50 4.57 0.37 6.05 4.46 131.00 131.30
24.648fF 6ns 9 1 0.07 0.254 0.239 32.38 114.65 4.59 0.37 6.07 4.47 130.96 131.28
24.648fF 8ns 8 1 0.13 0.254 0.238 32.60 115.10 4.61 0.39 6.08 4.49 131.04 131.40
24.648fF s 8 1 0.264n 0.255 0.238 34.48 115.03 4.69 0.42 6.12 4.52 128.31 131.45
24.648fF 6ns 3 0.51 0.260 0.240 132.51 114.73 4.94 0.47 6.24 4.59 131.62 131.49
24.648fF ns 0 1.02 0.259 0.242 133.95 114.57 4.98 0.53 6.34 4.74 128.96 131.61
56.88fF 0.028ns 1 5 0.326 0.239 277.58 234.95 4.6 0.43 6.05 4.45 202.09 196.84
56.88fF 0.044ns 6 4 0.325 0.238 274.20 233.50 4.6 0.43 6.06 4.46 201.70 196.80
56.88fF 0.076ns 1 6 0.326 0.238 276.89 234.27 4.6 0.44 6.07 4.47 201.91 196.92
56.88fF 0.138ns 7 8 0.325 0.239 276.87 233.86 4.6 0.45 6.08 4.49 201.35 196.94
56.88fF 0.264ns 4 6 0.327 0.239 276.95 233.38 4.7 0.48 6.12 4.52 199.87 197.03
56.88fF 0.516ns 2 9 0.329 0.240 276.01 234.00 4.8 0.53 6.20 4.59 201.83 197.24
56.88fF 1.02ns 6 5 0.330 0.243 276.64 233.56 5.0 0.60 6.33 4.75 200.28 197.28
121.344fF 8ns 7 8 0.02 0.470 0.239 569.23 475.87 4.7 0.56 6.05 4.45 343.62 327.31
121.344fF 4ns 7 9 0.04 0.470 0.239 569.63 476.98 4.7 0.56 6.05 4.46 343.40 327.33
121.344fF 6ns 8 0 0.07 0.470 0.239 569.89 477.38 4.8 0.57 6.07 4.47 343.26 327.37
121.344fF 8ns 9 3 0.13 0.470 0.239 570.13 479.33 4.8 0.58 6.09 4.49 341.08 327.35
121.344fF 4ns 4 7 0.26 0.471 0.239 570.23 479.12 4.8 0.61 6.12 4.52 341.97 327.25
121.344fF 6ns 8 7 0.51 0.476 0.240 569.89 478.24 5.1 0.66 6.25 4.59 342.46 327.58
121.344fF 2ns 4 0 1.0 0.475 0.242 569.37 479.17 5.2 0.72 6.35 4.75 339.33 327.46
250.272fF 8ns 0 0.02 0.762 0.239 1160.0 963.83 5.07 0.82 6.06 4.45 627.22 587.48
250.272fF 4ns 4 0.04 0.758 0.239 1165.6 963.63 5.07 0.82 6.05 4.46 627.33 587.53
250.272fF 6ns 4 0.07 0.759 0.239 1161.9 962.83 5.07 0.83 6.07 4.47 613.89 587.56
250.272fF 8ns 0 0.13 0.760 0.239 1162.1 963.16 5.11 0.85 6.09 4.48 623.44 587.85
250.272fF 4ns 1 0.26 0.762 0.239 1162.0 963.18 5.17 0.87 6.12 4.52 626.70 587.81
250.272fF 6ns 3 0.51 0.766 0.240 1162.2 962.93 5.40 0.92 6.24 4.59 627.32 587.61
250.272fF ns 6 0 1.02 0.765 0.242 1161.5 963.05 5.5 0.98 6.35 4.74 627.06 587.58
506.232fF s 8 3 10.028n 1.339 0.239 2336.8 1921.50 5.6 1.34 6.06 4.45 188.25 1103.9
506.232fF 4ns 1 3 10.04 1.339 0.239 2337.0 1922.08 5.6 1.34 6.06 4.46 188.25 1104.0
506.232fF 6ns 7 4 10.07 1.338 0.239 2335.0 1921.00 5.6 1.35 6.07 4.47 185.17 1104.0
506.232fF 8ns 1 7 10.13 1.339 0.239 2337.5 1921.50 5.6 1.36 6.08 4.48 184.58 1104.0
506.232fF 4ns 4 4 10.26 1.340 0.239 2335.1 1921.42 5.7 1.39 6.12 4.52 186.83 1104.0
506.232fF 6ns 6 5 10.51 1.344 0.239 2332.4 1921.00 5.9 1.44 6.23 4.59 188.67 1104.0
506.232fF ns 8 2 11.02 1.343 0.242 2333.5 1920.92 6.0 1.49 6.34 4.74 183.92 1104.0
1023.84fF s 5 7 20.028n 2.488 0.239 4686.3 3881.92 6.7 2.38 9.96 4.45 325.83 2147.9
1023.84fF 44ns 5 7 20.0 2.488 0.238 4694.6 3882.00 6.7 2.38 9.97 4.46 325.00 2148.0
1023.84fF 0.076ns 2.4885 0.239 4688.0 3882.25 6.78 2.39 9.97 4.47 2324.92 2148.0
1023.84fF 0.138ns 2.4885 0.239 4686.0 3879.00 6.81 2.41 10.07 4.48 2325.00 2148.0
1023.84fF 0.264ns 2.4900 0.239 4691.3 3882.00 6.86 2.43 10.19 4.52 2325.33 2147.8
1023.84fF 0.516ns 2.4934 0.240 4693.2 3882.25 7.06 2.48 10.65 4.59 2323.58 2148.0
1023.84 F 1.02ns 2.4921 0.242 4694.7 3881.25 7.17 2.54 11.22 4.75 2323.83 2148.0f

 190

Table D 7: Characterization data for a 7ns delay element using 160fF buffer

Load T
o

ergy ergy
se

e
s)

ll
e

s)

Rise
F
C
D y
(n

Bu
fal
de
(psCap

ransiti
n Time

Rise
En
(pJ)

Fall
En

Ri
Tim

(pJ)

Cell
DelaFa

Tim y
(p (p (ns)

all
ell
ela
s)

Ileak-
hi
(nW)

Ileak-
lo
(nW)

Bufe
r rise
delay
(ps)

ffer
l
lay
)

9.48fF 0 97 3 6. 10 1.028ns 0.2385 0.27 69.5 59.16 49 0.35 5.25 1.12 5.0 18.20
9.48fF 0 97 2 6. 10 1.044ns 0.2384 0.27 67.3 59.11 49 0.35 3.14 0.47 6.1 18.08
9.48fF 0 92 7 6. 10 1.076ns 0.2390 0.27 68.5 58.53 49 0.36 3.60 1.10 4.3 18.01
9.48fF 0 88 4 6. 10 1.138ns 0.2395 0.27 66.0 57.79 52 0.37 4.73 1.59 6.1 17.49
9.48fF 0 89 2 6. 10 1.264ns 0.2396 0.27 70.5 57.62 56 0.40 4.31 1.31 2.0 17.13
9.48fF 0 07 8 6. 10 1.516ns 0.2438 0.28 66.6 58.06 79 0.45 4.21 0.71 4.1 17.57
9.48fF 1 28 0 6. 10 1.02ns 0.2433 0.28 65.9 57.25 89 0.50 4.14 1.63 7.0 17.76
24.648fF 0 06 6. 1.028ns 0.2717 0.28 101.88 88.55 50 0.37 5.02 2.08 22.7 140.63
24.648fF 0 02 4 6. 1.044ns 0.2718 0.28 98.0 88.57 51 0.38 4.36 1.58 28.1 140.17
24.648fF 0 99 6. 1.076ns 0.2716 0.27 101.26 88.49 51 0.38 4.54 1.38 24.0 140.28
24.648fF 0 95 2 6. 1.138ns 0.2726 0.27 97.8 87.45 53 0.40 4.18 1.44 23.6 139.45
24.648fF 0 02 3 6. 1.264ns 0.2738 0.28 95.5 87.96 61 0.43 3.46 0.85 27.6 139.50
24.648fF 0 15 8 6. 1.516ns 0.2779 0.28 95.0 87.63 85 0.47 3.76 0.80 27.6 139.87
24.648fF 1 34 2 6. 1.02ns 0.2767 0.28 96.3 86.98 89 0.53 4.15 1.34 24.5 139.93
56.88fF 0 12 6. 1.028ns 0.3429 0.28 165.73 148.2 55 0.41 4.90 0.78 60.4 179.03
56.88fF 0 11 6. 1.044ns 0.3442 0.28 163.13 148.0 54 0.41 4.00 1.11 65.9 179.08
56.88fF 0 09 6. 1.076ns 0.3414 0.28 170.67 148.4 54 0.42 4.10 1.76 54.1 179.05
56.88fF 0 05 6. 1.138ns 0.3436 0.28 164.20 148.4 57 0.44 3.86 1.16 62.7 178.67
56.88fF 0 08 6. 1.264ns 0.3454 0.28 161.91 147.8 64 0.47 4.18 1.41 66.6 178.37
56.88fF 0 20 6. 1.516ns 0.3488 0.28 163.24 148.7 85 0.51 4.45 1.86 64.9 178.96
56.88fF 1 29 6. 1.02ns 0.3504 0.28 160.38 147.8 95 0.56 3.95 1.34 69.1 178.65
121.344f 0 14 6. 2.028ns 0.4875 0.28 308.79 272.5 62 0.48 3.70 1.26 34.6 249.86
121.344f 0 14 6. 2.044ns 0.4858 0.28 308.00 273.2 61 0.49 4.48 1.16 37.4 249.86
121.344f 0 11 6. 2.076ns 0.4863 0.28 310.15 273.3 62 0.49 3.94 1.65 32.6 249.82
121.344f 0 11 6. 2.138ns 0.4877 0.28 308.90 272.0 64 0.51 3.56 1.40 37.2 249.25
121.344f 0 11 6. 2.264ns 0.4882 0.28 308.49 272.9 69 0.53 4.69 1.43 38.9 249.24
121.344f 0 28 6. 2.516ns 0.4917 0.28 307.83 272.6 85 0.59 3.56 1.15 39.9 249.61
121.344f 1 46 7. 2.02ns 0.4914 0.28 308.61 273.3 01 0.64 4.32 0.90 36.3 249.33
250.272f 0 19 6. 3.028ns 0.7756 0.28 608.58 532.9 77 0.62 4.03 1.82 80.0 389.22
250.272f 0 19 6. 3.044ns 0.7761 0.28 608.01 531.8 76 0.62 4.25 1.43 85.7 389.16
250.272f 0 16 6. 3.076ns 0.7741 0.28 609.25 535.3 76 0.63 4.44 1.21 75.1 389.19
250.272f 0 16 6. 3.138ns 0.7766 0.28 606.99 533.0 79 0.65 4.21 0.85 83.5 388.51
250.272f 0 17 6. 3.264ns 0.7772 0.28 611.08 537.1 85 0.68 4.37 1.68 82.8 388.64
250.272f 0 30 6. 3.516ns 0.7779 0.28 610.42 534.2 87 0.72 4.76 0.94 81.0 388.78
250.272f 1 63 7. 3.02ns 0.7813 0.28 610.01 534.7 17 0.79 5.40 1.29 83.3 388.75
506.232f 0 22 .9 7..028ns 1.3477 0.28 1211 1040. 05 0.90 3.99 0.88 670.6 665.31
506.232f 0 23 .0 7. -.044ns 1.3446 0.28 1208 1041. 05 0.90 2.30 1.55 675.4 665.10
506.232f 0 16 .0 7..076ns 1.3493 0.28 1210 1041. 06 0.91 5.34 1.08 671.4 665.13
506.232f 0 15 .9 7..138ns 1.3516 0.28 1209 1042. 08 0.92 4.53 1.19 673.6 664.23
506.232f 0 18 .5 7..264ns 1.3530 0.28 1211 1042. 15 0.95 4.70 1.28 672.6 664.83
506.232f 0 36 .2 7..516ns 1.3518 0.28 1211 1040. 16 1.00 4.39 1.03 673.2 665.24
506.232f 1 62 .1 7..02ns 1.3531 0.28 1211 1041. 46 1.06 4.70 1.66 669.2 664.76
1023.84f 0 22 .2 7. 1.028ns 2.5186 0.28 2429 2081. 64 1.45 3.96 1.17 1251. 222.75
1023.84f 0 22 .5 7. 1.044ns 2.5208 0.28 2428 2080. 64 1.46 3.21 0.32 1262. 223.00
1023.84f 0 17 .0 7. 1.076ns 2.5180 0.28 2428 2081. 64 1.47 4.73 1.04 1252. 222.75
1023.84f 0 16 .6 7. 1.138ns 2.5207 0.28 2428 2081. 66 1.48 3.95 1.11 1258. 222.25
1023.84f 0 15 .4 7. 1.264ns 2.5224 0.28 2428 2081. 73 1.51 4.82 1.09 1259. 222.08
1023.84f 0 36 .6 7. 1.516ns 2.5261 0.28 2425 2081. 87 1.56 3.74 0.62 1263. 222.42
1023.84f 1 48 .5 8. 1.02ns 2.5269 0.28 2428 2080. 06 1.62 5.48 1.01 1258. 221.92

 191

Table D 8: Characterization data for a 7ns delay element using 640fF buffer

Load
Cap

Transi
ti
T

Rise
Ene

y
J)

Fall
ner

J)

Rise

)

F
T
(

Rise

lay
-

Bufer
Buffe

on
ime

g
(p

r E
gy

 (p

Tim
e
(ps

all
ime

ps)

Cell
Delay
(ns)

Fall
Cell
De
(ns)

Ileak
hi
(nW)

Ileak-
lo
(nW)

rise
delay
(ps)

r
fall
delay
(ps)

9.48fF 0. 297 - 1028n 0. 0.381 33.7 34.96 6.52 0.43 4.04 0.71 37.59 200.4
9.48fF 0. 297 1044n 0. 0.382 32.1 35.85 6.52 0.44 6.56 -6.0 42.68 200.9
9.48fF 0. 298 - 1076n 0. 0.380 34.1 34.39 6.52 0.44 5.79 5.46 32.90 200.3
9.48fF 0. 299 1138n 0. 0.382 30.3 34.71 6.55 0.46 4.72 3.07 44.93 200.2
9.48fF 0. 300 1264n 0. 0.382 31.0 35.53 6.61 0.49 8.16 2.63 44.93 200.3
9.48fF 0. 304 - - 1516n 0. 0.384 30.0 35.18 6.72 0.54 4.15 1.39 49.14 200.1
9.48fF 1. 0.304 - - 102ns 0.385 31.1 35.35 6.93 0.60 1.73 0.51 43.45 200.8
24.648 0. 330 1 - 1028n 0. 0.383 40.5 41.65 6.53 0.44 0.75 4.94 47.00 206.9
24.648 0. 331 - 1044n 0. 0.383 42.0 41.73 6.52 0.44 5.57 5.20 47.01 207.2
24.648 0. 331 - 1076n 0. 0.383 41.4 41.72 6.53 0.45 9.57 4.65 48.06 206.7
24.648 0. 333 - - 1138n 0. 0.383 43.5 41.96 6.55 0.46 4.76 1.64 42.13 206.8
24.648 0. 333 1264n 0. 0.383 41.8 41.65 6.61 0.49 1.07 0.67 47.73 206.8
24.648 0. 338 - - 1516n 0. 0.384 39.6 41.65 6.81 0.54 6.16 5.13 53.18 206.9
24.648 1. 0.338 102ns 0.387 41.7 42.09 6.96 0.60 3.38 8.55 48.87 207.1
56.88f 0. 400 1 - 1028n 0. 0.384 61.2 54.93 6.54 0.45 4.48 9.49 56.03 217.8
56.88f 0. 403 - - 1044n 0. 0.385 59.8 54.93 6.54 0.45 0.92 8.58 63.58 218.4
56.88f 0. 402 1076n 0. 0.384 61.7 54.86 6.54 0.46 9.20 0.79 56.53 217.9
56.88f 0. 405 - 1138n 0. 0.385 60.6 54.88 6.57 0.48 4.22 5.24 63.06 218.0
56.88f 0. 404 - - 1264n 0. 0.385 62.0 55.08 6.61 0.50 1.86 1.57 59.64 217.9
56.88f 0. 410 - 1516n 0. 0.386 60.0 55.17 6.81 0.55 5.39 7.96 66.03 218.0
56.88f 1. 0.409 - - 102ns 0.388 62.2 55.31 6.95 0.60 4.27 6.16 58.41 218.2
121.34 0. 546 1 1028n 0. 0.386 104. 81.83 6.57 0.47 5.26 3.92 80.01 236.1
121.34 0. 549 1044n 0. 0.386 104. 82.34 6.56 0.47 7.82 0.96 86.88 236.4
121.34 0. 548 1 - 1076n 0. 0.386 105. 82.47 6.57 0.48 3.28 1.05 83.53 236.3
121.34 0. 548 1 - 1138n 0. 0.387 105. 81.50 6.59 0.49 0.74 1.84 80.00 236.6
121.34 0. 550 - 1264n 0. 0.387 105. 82.11 6.66 0.52 6.75 7.26 82.24 236.3
121.34 0. 554 - 1516n 0. 0.388 105. 81.82 6.80 0.57 0.13 2.41 84.44 236.3
121.34 1. 0.555 - - 102ns 0.391 104. 81.76 6.99 0.63 9.23 1.66 83.71 236.7
250.27 0. 834 1 2028n 0. 0.389 195. 135.12 6.61 0.50 6.71 4.98 25.71 267.8
250.27 0. 834 2 - 2044n 0. 0.389 194. 134.66 6.61 0.50 5.62 3.13 26.98 268.1
250.27 0. 832 - 2076n 0. 0.388 195. 134.29 6.62 0.51 1.03 4.98 23.88 268.1
250.27 0. 842 - 2138n 0. 0.388 193. 133.72 6.64 0.53 2.06 0.91 32.29 268.3
250.27 0. 837 - 2264n 0. 0.388 195. 133.78 6.71 0.55 4.19 5.20 27.11 268.6
250.27 0. 840 - - 2516n 0. 0.390 195. 134.30 6.81 0.60 7.38 6.56 32.28 268.2
250.27 1. 0.841 - - 202ns 0.392 195. 133.34 6.99 0.66 2.45 4.23 25.52 269.1
506.23 0. 408 - - 3028n 1. 0.390 376. 240.39 6.70 0.56 1.74 3.92 17.38 327.7
506.23 0. 410 1 - 3044n 1. 0.390 380. 240.22 6.69 0.56 3.89 9.41 11.65 328.0
506.23 0. 404 - 3076n 1. 0.389 377. 240.38 6.69 0.57 9.35 4.53 09.46 327.8
506.23 0. 412 - - 3138n 1. 0.390 377. 240.38 6.73 0.58 0.56 6.94 18.08 327.9
506.23 0. 405 - 3264n 1. 0.390 376. 240.15 6.76 0.62 2.97 2.35 13.60 328.4
506.23 0. 413 - - 3516n 1. 0.391 379. 240.37 6.88 0.66 0.24 4.48 18.85 327.5
506.23 1. 1.415 - 302ns 0.394 377. 240.25 7.10 0.72 0.52 2.28 19.32 328.7
1023.8 0. 558 1 4028n 2. 0.391 748. 462.08 6.87 0.68 1.27 0.06 96.41 447.3
1023.8 0. 559 4044n 2. 0.392 748. 461.23 6.87 0.68 7.92 1.94 93.83 447.7
1023.8 0. 558 1 - 4076n 2. 0.390 747. 462.27 6.87 0.69 5.13 3.86 85.15 447.3
1023.8 0. 562 4138n 2. 0.391 746. 462.17 6.90 0.71 2.31 1.69 91.92 447.5
1023.8 0. 560 - 4264n 2. 0.391 749. 463.63 6.95 0.73 8.59 7.02 90.86 447.7
1023.8 0. 567 - - 4516n 2. 0.392 748. 462.49 7.19 0.78 7.89 1.96 99.97 447.4
1023.8 1. 2.570 - - 402ns 0.395 748. 463.05 7.28 0.84 3.09 2.17 91.78 448.2

 192

Table D 9: Characterization data for a 7ns delay element using 80fF buffer

Load
Cap

Transi
tion
Time

Rise
Ener
gy
(pJ)

Fall
Ener
gy
(pJ)

Rise
Tim
e
(ps)

Fall
Time
(ps)

Rise
Cell
Delay
(ns)

Fall
Cell
Delay
(ns)

Ileak-
hi
(nW)

Ileak-
lo
(nW)

Bufer
rise
delay
(ps)

Buffe
r
fall
delay
(ps)

9.48fF 0.028n 0.231 0.267 82.9 61.24 6.47 0.33 6.76 3.27 86.79 98.21
9.48fF 0.044n 0.231 0.267 82.4 60.87 6.47 0.33 6.77 3.28 90.31 98.08
9.48fF 0.076n 0.231 0.267 78.5 61.07 6.48 0.34 6.76 3.28 91.38 98.11
9.48fF 0.138n 0.232 0.266 74.9 60.80 6.50 0.36 6.78 3.30 93.74 98.35
9.48fF 0.264n 0.232 0.266 83.8 60.45 6.54 0.38 6.83 3.33 89.87 98.40
9.48fF 0.516n 0.237 0.268 71.9 60.73 6.79 0.43 6.95 3.38 95.90 98.09
9.48fF 1.02ns 0.237 0.271 76.8 59.80 6.88 0.50 7.09 3.50 92.48 98.18
24.648 0.028n 0.265 0.268 138. 114.71 6.51 0.36 6.76 3.27 124.75 131.2
24.648 0.044n 0.265 0.267 140. 115.08 6.50 0.37 6.76 3.28 122.26 131.2
24.648 0.076n 0.265 0.267 138. 114.88 6.51 0.37 6.78 3.28 124.06 131.3
24.648 0.138n 0.265 0.267 137. 115.15 6.53 0.39 6.78 3.30 126.17 131.4
24.648 0.264n 0.266 0.267 135. 114.84 6.59 0.42 6.83 3.33 128.71 131.2
24.648 0.516n 0.269 0.268 133. 114.57 6.70 0.47 6.91 3.38 131.48 131.3
24.648 1.02ns 0.269 0.271 141. 114.64 6.91 0.52 7.09 3.49 122.41 131.6
56.88f 0.028n 0.337 0.268 278. 234.88 6.58 0.43 6.77 3.28 194.48 196.8
56.88f 0.044n 0.337 0.267 277. 232.97 6.58 0.43 6.77 3.28 199.43 197.0
56.88f 0.076n 0.335 0.267 284. 233.78 6.57 0.44 6.77 3.28 181.33 196.8
56.88f 0.138n 0.337 0.268 278. 234.43 6.61 0.45 6.78 3.30 200.74 196.9
56.88f 0.264n 0.338 0.267 279. 233.28 6.66 0.48 6.83 3.33 192.92 196.9
56.88f 0.516n 0.339 0.268 281. 233.76 6.75 0.53 6.91 3.38 189.88 197.1
56.88f 1.02ns 0.341 0.271 278. 233.42 6.98 0.58 7.10 3.50 194.62 197.2
121.34 0.028n 0.481 0.268 570. 476.85 6.72 0.56 6.76 3.27 336.06 327.4
121.34 0.044n 0.481 0.267 571. 478.83 6.72 0.56 6.76 3.28 339.22 327.3
121.34 0.076n 0.481 0.267 570. 478.05 6.72 0.57 6.77 3.28 333.25 327.4
121.34 0.138n 0.482 0.267 570. 479.48 6.75 0.58 6.79 3.30 340.05 327.4
121.34 0.264n 0.482 0.267 570. 479.00 6.80 0.61 6.82 3.33 338.16 327.1
121.34 0.516n 0.484 0.269 570. 477.28 6.87 0.66 6.90 3.38 339.06 327.3
121.34 1.02ns 0.486 0.271 570. 478.64 7.13 0.71 7.09 3.50 340.58 327.7
250.27 0.028n 0.770 0.268 1163 961.40 7.01 0.82 6.77 3.27 621.43 587.5
250.27 0.044n 0.767 0.267 1162 964.02 6.99 0.82 6.76 3.28 608.58 587.8
250.27 0.076n 0.770 0.267 1159 962.09 7.00 0.83 6.77 3.28 614.24 587.4
250.27 0.138n 0.770 0.267 1162 964.53 7.03 0.84 6.79 3.30 621.66 587.9
250.27 0.264n 0.770 0.267 1162 963.18 7.08 0.87 6.83 3.33 612.73 587.7
250.27 0.516n 0.777 0.269 1163 961.67 7.37 0.92 6.98 3.38 627.83 587.7
250.27 1.02ns 0.774 0.273 1162 962.10 7.38 0.99 7.08 3.50 617.60 587.6
506.23 0.028n 1.349 0.268 2334 1921.3 7.57 1.34 6.76 3.27 1182.8 1104.
506.23 0.044n 1.349 0.267 2336 1922.8 7.57 1.34 6.76 3.28 1186.0 1104.
506.23 0.076n 1.348 0.267 2334 1922.0 7.56 1.35 6.77 3.28 1177.0 1103.
506.23 0.138n 1.350 0.267 2335 1922.3 7.59 1.36 6.78 3.30 1185.0 1104.
506.23 0.264n 1.351 0.268 2333 1922.4 7.66 1.39 6.83 3.33 1184.9 1103.
506.23 0.516n 1.353 0.269 2334 1921.8 7.81 1.44 6.94 3.38 1179.3 1104.
506.23 1.02ns 1.354 0.270 2333 1921.8 7.97 1.49 7.09 3.50 1181.9 1104.
1023.8 0.028n 2.498 0.268 4686 3877.9 8.70 2.38 12.78 3.27 2319.5 2147.
1023.8 0.044n 2.498 0.267 4683 3879.5 8.70 2.38 12.69 3.28 2317.0 2148.
1023.8 0.076n 2.497 0.268 4684 3882.2 8.70 2.39 12.76 3.28 2314.5 2147.
1023.8 0.138n 2.499 0.267 4695 3881.5 8.73 2.40 12.98 3.30 2322.5 2147.
1023.8 0.264n 2.499 0.268 4693 3878.0 8.78 2.43 13.22 3.32 2321.4 2148.
1023.8 0.516n 2.504 0.269 4691 3876.2 9.01 2.48 13.84 3.38 2324.0 2148.
1023.8 1.02ns 2.503 0.272 4687 3882.2 9.11 2.53 14.44 3.49 2319.0 2148.

 193

B IO P

[:// co rtic 10 -s sic l

[2] A.K.Jones, R.Hoare, D.Kusic. G.Mehta, J. ka
in g rm w Su C M sa s o
Sy (T , 5 6,

[3] Gayatri Mehta, Justin Stander st z, B H ke A . E

 2007, Interconnect Customization ar ain co ra b

[Ho . K es u . nd c R

 VLIW ss to io r s ro ng ica us o io

 w c E I r Ap Si Pr in 6 e

 72 ag 06

[e r M l

[. ra d a ag Na ete OS h s nger,
20

[M ey A d and Borivoje Nikolic, D e cuits:
A n P ct r H 03 ed .

[n S n t o es lo AM Lib N 03

 te t C and Reference, Cadence

[C nt r , n

[11] An Analysis of the Robustness of CMOS y E n iva am and
N ah , L p 5 .

[k Pa a a hr ce rar me t ig ICE
T io In nd ms es 30 rc 7

IBL GRA HY

1] http www.us.design-reuse. m/a les/90 /fpga -vs-a -s.htm

Faze s and J.Foster, Reducing Power while
creasin perfo ance ith perCIS , AC Tran ction n Embedded Computing
stems ECS) 5(3): 6 8-68 2006

, Mu afa Ba rady unsa r and lex K Jones, I EE,

for a co se-gr ed re nfigu ble fa ric

4] R. are, A . Jon , D. K sic, J Fazekas, J. Foster, S. Tung, a M. M Cloud. apid

 proce or cus mizat n fo ignal p cessi appl tions ing c mbinat nal

 hard are fun tions. URAS P Jou nal on plied gnal ocess g, 200 :Articl ID

 464 , 23 p es, 20 .

5] Prim Powe anua

6] S. G Narend and A. Chan rakas n, Leak e in nom r CM Tec nologie , Spri
06

7] Jan . Raba and nantha Chan rakasan igital Integrat d Cir
 Desig erspe ive, P entice all, 20 , 2nd ition

8] Zha Guo, A hort I troduc tion t ASIC D ign F w in IS rary, ov 20

[9] SoC Encoun r Tex omm

10] So Encou er Use Guide Cade ce

Dela leme ts, Sr thsan Krishn ohan
ihar M apatra GLSV SI A ril, 200

12] Yu -Wah ng et l. An sync onous ll lib y for self-ti d sys em des ns. IE
ransact ns on formation a Syste , pag 296- 5, Ma h 199 .

 194

[13] M.F. Aburdene, J. Zheng, and R.J.Kozick., New recursive VLSI architectures for forward
and inverse discrete cosine transform. Proceedings of SPIE – The International Society
for Optical Engineering, 1996

[14] A.W.Buchwald, K.W.Martin and A.K.Oki. A 6GHz integrated phase-locked loop using
AlGaAs/GaAs heterojunction EE Journal of Solid-State Circuits,
pages 1752-1762, 1992.

[15] Comparison and Analysis of Delay Elements, Nihar R.Mahapatra, Alwin Tareen and Sriram
V.Garimella, Proc. IEEE Computer Society Annual Workshop on VLSI (WVLSI 2000),
pp. 81-86.

[16] An Empirical and analaytical comparison of delay elements and a new delay element

 [17] A delay element, Gyudong Kim, Min-Kyu Kim,
Byoung-Soo Chang and Wonchan Kim, IEEE Journal of Solid state circuits, Vol 31, July

IEEE,2004

[19] ST Microelectronics Application Note on EEPROMS

[20] J.M. Portal, L.Forli and D.Nee, Floating_gate EEPROM Cell Model based on MOS Model

ent for a FLOTOX EEPROM, Kenneth V. Noren and Ming Meng,

mory for
ine, 2006

ess time low voltage 2Mbits EEPROM memory for
al Workshop on Memory Technology, Design and

[26] M dat, EEPROM Architecture and Programming

bipolar transistors. IE

design, Nihar R. Mahapatra, Sriram V Garimella, and Alwin Tareen,

 Low-Voltage, Low-Power CMOS

1996

[18] A Low –Power Thyristor-Based CMOS Programmable delay element, Junmou Zhang et.al.,

9, IEEE,2002

[21] Macromodel Developm
IEEE, 1998.

[22] J.M.Daga et.al, Design Techniques for EEPROMs embedded in portable systems on chips,
IEEE Design and Test of Computers, 2003.

[23] Tommaso Zerilli, Maurizio Gaibotti, Generator Circuit for Voltage Ramps and
Corresponding Voltage Generation Method, US Patent, No: US 6,650,153 B2, Nov,
2003.

[24] L. Dong-Sheng, Z.Xue-Cheng, Z.Fan and D.Min, “New Design of EEPROM Me
RFID Tag IC,” IEEE Circuits and Devices Magaz

[25] J.M.Daga et.al., A 40ns random acc
embedded applications, Internation
Testing, IEEE, 2003

.Combe, J-M Daga, S. Ricard and M.Meran
Protocol, US Patent, Patent No US 6859391 B1, Feb 2005.

 195

 196

[28] A.Turier, L.B. Ammar and A.Amara, “An accurate Power and Timing Modeling Technique

[29] L.Yang and J. S. Yuan, Design of a new CMOS output buffer with low switching noise,
Proc. of the International Conference on Microelectronics (ICM)},pages 131-134,2003

[30] Jin
t-Mode Read/Write Operations, ACM, 1998

ers”, Proc. Of 9
EUROMICRO Conference on Digital System Design, 2006.

 [32] S
ides/ lect03_LEF.pdf

[34] Timing Library Format Reference

[35] Introduction to Cell Characterization, SimuCad

[36] Standard Delay Format Specification, Version 3.0

[38] http://www.vlsibank.com/sessionspage.asp?titl_id=13830

[27] Henry A. Om’mani, Power Multiplexer and Switch with Adjustable well bias for gate
breakdown and well protection, US 7,005,911 B1, Feb, 2006

Applied to a Low Power ROM Compiler”, PATMOS, pp. 181-190, 1998

n-Shyan Wang, Po-Hui Yang and Wayne Tseng, Low-Power Embedded SRAM Macros
with Curren

[31] R.Morales-Ramos, J.A.Montiel_nielson, R.Berenguer and A.Garcia-Alonso, “Voltage
Sensor for Supply Capacitor in Passive UHF RFID Transpond th

tandard Cell Library/Library Exchange Format, www.csee.umbc.edu/~cpatel2/links/
414/sl

[33] Wikipedia, http://en.wikipedia.org/wiki/Design_Exchange_Format

[37] www.wikipedia.org/wiki/SPEF

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 5-1: ALU Module Specifications
	Table 5-2: Specification of the ALU Stripe
	Table 5-3: ALU Initialization Parameters
	Table 5-4: ALU Module Pin Placement Parameters
	Table 5-5: ALU Horizontal Routing Feedthrough Specification
	Table 5-6: MUX Module Specification
	Table 5-7: MUX Stripe Specifications
	Table 5-8: MUX Module Pin Placement Parameters
	Table 5-9: MUX Stripe Feedthrough Specifications
	Table 5-10: MUX Stripe Pin Placement Parameters
	Table 5-11: FINALMUX Module Specification
	Table 5-12: Final MUX Stripe Specifications
	Table 5-13: BIGFABRIC Module Specifications
	Table 5-14: Reconfigurable Hardware Fabric Chip Specifications
	Table 5-15: BIGFABRIC VRF for FINALMUX stripe
	Table 5-16: BIGFABRIC VRF for ALU and MUX stripe
	Table 5-17: ADPCM Encoder Post Layout Power Simulation
	Table 5-18: ADPCM Decoder Post Layout Power Simulation
	Table 5-19: IDCT Row Post Layout Power Simulation
	Table 5-20: IDCT Col Post Layout Power Simulation
	Table 5-21: Sobel Post Layout Power Simulation
	Table 5-22: Laplace Post Layout Power Simulation
	Table 8-1: Power Gated Memory Simulation Results
	Table D 1: Characterization data for 4ns delay element using 160fF buffer
	Table D 2: Characterization data for 4ns delay element using 640fF buffer
	Table D 3: Characterization data for 4ns delay element using 80fF buffer
	Table D 4: Characterization data for a 5ns delay element using 160fF buffer
	Table D 5: Characterization data for a 5ns delay element using 640fF buffer
	Table D 6: Characterization data for a 5ns delay element using 80fF buffer
	Table D 7: Characterization data for a 7ns delay element using 160fF buffer
	Table D 8: Characterization data for a 7ns delay element using 640fF buffer
	Table D 9: Characterization data for a 7ns delay element using 80fF buffer

	LIST OF FIGURES
	Figure 1-1: SuperCISC Reconfigurable Hardware Fabric Triangle
	Figure 1-2: SuperCISC RHF System Integration Diagram
	Figure 2-1: Architecture of SuperCISC Reconfigurable Hardware Fabric
	Figure 2-2: ALU Logical Diagram
	Figure 2-3: 5:1 MUX Interconnect Structure
	Figure 2-4: FINALMUX Stripe Logical Diagram
	Figure 3-1: Power Dissipation Terminology Tree
	Figure 3-2: Schematic of an Inverter
	Figure 3-3: Prime Power Event Based Simulation Flow
	Figure 3-4: Leakage Power definition of a NAND Standard Cell
	Figure 3-5: NLPM definition of Internal Power
	Figure 3-6: Rise Power Measurement window
	Figure 3-7: HSPICE Rise Power Calculation command
	Figure 3-8: Fall Power Measurement window
	Figure 3-9: On-state leakage Power Measurement window
	Figure 3-10: Off-state leakage Power Measurement window
	Figure 4-1 : Typical ASIC Design Flow
	Figure 4-2: ASIC Physical Design Flow
	Figure 4-3: Floorplan specifications
	Figure 4-4: ALU Stripe Floor plan
	Figure 4-5: Power Planning
	Figure 4-6: Routing in the absence of Routing Feedthroughs
	Figure 4-7: Routing in the presence of Routing Feedthroughs
	Figure 4-8: Placed ALU Module
	Figure 4-9: Routed ALU Module
	Figure 5-1: Placed and Routed ALU Module
	Figure 5-2: Logical ALU Stripe
	Figure 5-3: Floorplan of ALU Stripe
	Figure 5-4: Placed and Routed ALU Stripe
	Figure 5-5: Zoomed-in view of Placed and Routed ALU Stripe
	Figure 5-6: Default ALU Module Pin alignment
	Figure 5-7: Early Exit ALU Module Pin alignment
	Figure 5-8: Normal ALU Stripe Pin assignment
	Figure 5-9: Specialized ALU Stripe Pin assignment
	Figure 5-10: MUX Module Logical Diagram
	Figure 5-11: Placed and Routed MUX Module
	Figure 5-12: MUX Stripe Logical Diagram
	Figure 5-13: MUX Stripe Floorplan
	Figure 5-14: Placed and Routed MUX Stripe
	Figure 5-15: FINALMUX Module Logical Diagram
	Figure 5-16: Placed and Routed FINALMUX Module
	Figure 5-17: Final MUX Stripe Logical Diagram
	Figure 5-18: Final MUX Stripe Floorplan
	Figure 5-19: Placed and Routed FINALMUX Stripe
	Figure 5-20: BIGFABRIC Logical Diagram
	Figure 5-21: Top-level routing of the BIGFABRIC
	Figure 5-22: Place and Routed BIGFABRIC in OKI 0.16um
	Figure 5-23: Modelsim Command for SDF back annotation
	Figure 5-24: SPEF Annotation in Prime Power
	Figure 5-25: Summary of Power Analysis Flow
	Figure 6-1: Transmission gate based delay element
	Figure 6-2: Transmission Gate with Schmitt Trigger
	Figure 6-3 Cascaded inverter based delay element
	Figure 6-4: NP-Voltage Controlled delay element
	Figure 6-5: NP-Voltage Controlled delay element with Schmitt Trigger
	Figure 6-6: N-Voltage Controlled delay element
	Figure 6-7: P-Voltage Controlled delay element
	Figure 6-8: Current Starved Cascaded Inverter
	Figure 6-9: m-Transistor Cascaded Inverter
	Figure 6-10: Staged Cascaded Inverter
	Figure 6-11: Combinational switching without delay elements
	Figure 6-12: Combinational switching with delay elements
	Figure 6-13: CMOS Thyristor structure
	Figure 6-14: CMOS Thyristor Dynamic Triggering Scheme
	Figure 6-15: CMOS Thyristor Static Triggering Scheme
	Figure 6-16: CMOS Thyristor Shunt current when D transitions to a high
	Figure 6-17: CMOS Thyristor shunt current when D transitions to a logic low
	Figure 6-18: CMOS Thyristor showing Parasitic Capacitances
	Figure 6-19: CMOS Modified Thyristor Delay Element
	Figure 6-20: Timing diagram of the modified CMOS delay element
	Figure 6-21: Custom CMOS Thyristor based Delay Element
	Figure 6-22: Programmable delay element
	Figure 6-23: AND gate to generate Dctrl
	Figure 6-24: Layout of the Programmable Delay Element
	Figure 6-25: Layout of a 640fF drive Buffer
	Figure 6-26: Layout of a 160fF drive buffer
	Figure 6-27: Layout of a 80fF drive buffer
	Figure 6-28: Cell Rise Delay Measurement
	Figure 6-29: Cell Fall Delay Measurement
	Figure 6-30: Rise Time Measurement Waveform
	Figure 6-31: Fall Time Measurement Waveform
	Figure 6-32: Input and Delayed waveforms for 4ns delay element
	Figure 6-33: Q and Q~ discharge waveforms for 4ns delay element
	Figure 6-34: Input and delayed waveforms for a 5ns delay element
	Figure 6-35: Q and Q~ discharge waveforms of a 5ns delay element
	Figure 6-36: Input and delayed waveforms of a 7ns delay element
	Figure 6-37: Q and Q~ waveforms of a 7ns delay element
	Figure 7-1: Structure of the FLOTOX Transistor
	Figure 7-2: Symbol of a FLOTOX transistor
	Figure 7-3: IV Characteristics of a virgin FLOTOX transistor
	Figure 7-4: EEPROM Erase Physical Operation
	Figure 7-5: Charge on Floating Gate after erase operation
	Figure 7-6: IV Characteristics of an erased FLOTOX transistor
	Figure 7-7: EEPROM Write Physical Operation
	Figure 7-8: Charge on floating gate after write operation
	Figure 7-9: IV Characteristics of a written FLOTOX transistor
	Figure 7-10: FLOTOX EEPROM Macromodel Schematic
	Figure 7-11: HSPICE Description of the FLOTOX EEPROM Macromodel
	Figure 7-12: FLOTOX EEPROM Cell HSPICE Simulation
	Figure 7-13: Ramp Generator Schematic
	Figure 7-14: Schematic of Voltage Level Shifter
	Figure 7-15: Data Latch Schematic of Column Latch
	Figure 7-16: Level Shifter and Pass Transistor for Column Latch
	Figure 7-17: Power Multiplexer Schematic
	Figure 7-18: Sense Amplifier Schematic
	Figure 7-19: Sense Amplifier Reading a Logic ‘1’
	Figure 7-20: Sense Amplifier Reading a Logic ‘0’
	Figure 7-21: Memory Bank Architecture
	Figure 7-22: EEPROM Bank Simulation
	Figure 8-1: Memory Block with power gate
	Figure 8-2: Power Gated Memory Design
	Figure 8-3: Simulation of Power on condition
	Figure 8-4: Dynamic Decoder with power-on reset
	Figure 8-5: Power-on reset timing diagram
	Figure 8-6: Power-on reset circuit
	Figure 8-7: Inverter with power gate
	Figure 8-8: Power Enable Ramp-up simulation

	1.0 INTRODUCTION
	1.1 STATEMENT OF THE PROBLEM

	2.0 SUPERCISC RECONFIGURABLE HARDWARE FABRIC
	2.1 ARCHITECTURE OF THE SUPERCISC RHF
	2.2 ARITHMETIC AND LOGIC UNIT (ALU)
	2.3 INTERCONNECT MULTIPLEXER STRUCTURE (MUX)
	2.4 FINAL MULTIPLEXER STRUCTURE (FINALMUX)

	3.0 POWER ESTIMATION
	3.1 POWER DISSIPATION TERMINOLOGIES
	3.1.1 Static Power Consumption
	3.1.2 Dynamic Power Consumption

	3.2 PRIMEPOWER POWER ESTIMATION FLOW
	3.2.1 Prime Power’s Event Based Power Estimation Flow
	3.2.2 Calculation of Static Power Dissipated using Prime Power
	3.2.3 Calculation of Dynamic Power Dissipated using Prime Power

	3.3 POWER ESTIMATION USING HSPICE
	3.3.1 Calculation of Rise Power
	3.3.2 Calculation of Fall Power
	3.3.3 Calculation of On-State Leakage
	3.3.4 Calculation of Off-State Leakage

	4.0 ASIC DESIGN FLOW
	4.1 PHYSICAL DESIGN FLOW
	4.1.1 Floorplanning
	4.1.2 Powerplanning
	4.1.3 Partitioning a design
	4.1.4 Routing Feedthrough
	4.1.5 Pin Assignment
	4.1.6 Placement
	4.1.7 Routing

	5.0 PHYSICAL IMPLEMENTATION OF THE SUPERCISC RHF
	5.1 DESIGN OF THE ALU STRIPE
	5.1.1 ALU Module Specifications
	5.1.2 ALU Stripe Specifications
	5.1.3 ALU Stripe Automation Scripts

	5.2 DESIGN OF THE MULTIPLEXER STRIPE
	5.2.1 MUX Module Specifications
	5.2.2 MUX Stripe Specifications
	5.2.3 MUX Stripe Automation Scripts

	5.3 DESIGN OF THE FINALMUX STRIPE
	5.3.1 FINALMUX Module Specifications
	5.3.2 FINALMUX Stripe Specifications
	5.3.3 FINALMUX Stripe Automation Scripts

	5.4 DESIGN OF THE BIGFABRIC
	5.4.1 BIGFABRIC Chip Specifications
	5.4.2 BIGFABRIC Automation Scripts

	5.5 POWER ANALYSIS OF THE CHIP
	5.5.1 Power Results for ADPCM Encoder Bench Mark
	5.5.2 Power Results for ADPCM Decoder Bench Mark
	5.5.3 Power Results for IDCT Row Bench Mark
	5.5.4 Power Results for IDCT Column Bench Mark
	5.5.5 Power Results for Sobel Bench Mark
	5.5.6 Power Results for Laplace Bench Mark

	6.0 DELAY ELEMENTS FOR LOW POWER FABRIC
	6.1 DELAY ELEMENT TOPOLOGIES
	6.2 LOW POWER FABRIC USING DELAY ELEMENTS
	6.3 THYRISTOR BASED DELAY ELEMENT
	6.3.1 CMOS Thyristor Concept
	6.3.2 Dynamic Triggering Scheme
	6.3.3 Static Triggering Scheme
	6.3.4 Delay Analysis of the Thyristor Based Delay Element

	6.4 MODIFIED CMOS THYRISTOR DELAY ELEMENT
	6.5 CUSTOM CMOS THYRISTOR DELAY ELEMENT FOR FABRIC
	6.5.1 Programmability
	6.5.2 Layout of the Programmable Delay Element
	6.5.3 Parasitic Extraction of the Delay Element
	6.5.4 Cell Characterization and HSPICE Post-Processing
	6.5.5 Characterization Results for a 4ns delay element
	6.5.6 Characterization Results for a 5ns delay element
	6.5.7 Characterization Results for a 7ns delay element

	7.0 EEPROM CIRCUIT DESIGN
	7.1 EEPROM CELL
	7.1.1 Erase Operation
	7.1.2 Write Operation

	7.2 EEPROM MEMORY ARCHITECTURE
	7.2.1 Ramp Generator
	7.2.2 High Voltage Generation Using Charge Pump
	7.2.3 Word Line Level Shifter
	7.2.4 Column Latch for Bitlines
	7.2.5 Power Multiplexer
	7.2.6 Sense Amplifier
	7.2.7 Memory Bank Architecture
	7.2.8 Memory Bank Simulation

	8.0 POWER GATED EEPROM DESIGN
	8.1 ARCHITECTURE OF THE POWER GATED MEMORY
	8.1.1 Memory Block with Power Gate
	8.1.2 Dynamic Decoder

	8.2 MEMORY BLOCK POWER CONSUMPTION
	8.3 POWER-ON RESET
	8.4 RESULTS

	9.0 CONCLUSION
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	BIBLIOGRAPHY

