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 Abstract: 

The disease signature of major depressive disorder is distributed across multiple 

physical scales and investigative specialties, including genes, cells and brain regions. No single 

mechanism or pathway currently implicated in depression can reproduce its diverse clinical 

presentation, which compounds the difficulty in finding consistently disrupted molecular 

functions. We confront these key roadblocks to depression research - multi-scale and multi-

factor pathology - by conducting parallel investigations at the levels of genes, neurons and brain 

regions, using transcriptome networks to identify collective patterns of dysfunction. Our findings 

highlight how the collusion of multi-system deficits can form a broad-based, yet variable 

pathology behind the depressed phenotype. For instance, in a variant of the classic lethality-

centrality relationship, we show that in neuropsychiatric disorders including major depression, 

differentially expressed genes are pushed out to the periphery of gene networks. At the level of 

cellular function, we develop a molecular signature of depression based on cross-species 

analysis of human and mouse microarrays from depression-affected areas, and show that these 

genes form a tight module related to oligodendrocyte function and neuronal growth/structure. At 

the level of brain-region communication, we find a set of genes and hormones associated with 

the loss of feedback between the amygdala and anterior cingulate cortex, based on a novel 

assay of interregional expression synchronization termed “gene coordination”. These results 

indicate that in the absence of a single pathology, depression may be created by dysynergistic 

effects among genes, cell-types and brain regions, in what we term the “floodgate” model of 
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depression. Beyond our specific biological findings, these studies indicate that gene interaction 

networks are a coherent framework in which to understand the faint expression changes found 

in depression and complex neuropsychiatric disorders.   
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1.0  INTRODUCTION 

Fueled by high rates of major depressive disorder world-wide (Holden, 2000; Kessler et al, 

2003), treatment response rates barely above placebo levels (Kirsch et al, 2008; Turner et al, 

2008; Warden et al, 2007), and by the inability of any single molecule or pathway to account for the 

repertoire of depression symptoms (Lewis et al, 2010; Mehta et al, 2010), there is increasing 

pressure for depression researchers to find a coherent basis for depression pathology that unites 

the many hypothesized mechanisms (Covington et al, 2010; Holsboer, 2008; Krishnan and Nestler, 

2010). Using gene coexpression networks to infer molecular relationships based on repeated 

microarrays, it is possible to create a literal framework for thousands of molecular interactions that 

recapitulates cellular dynamics in healthy and disease states. These networks have already been 

useful in understanding the transcriptome organization of several diseases (Horvath et al, 2006; 

Ray and Zhang, 2010; Torkamani et al, 2010; Wang et al, 2009). Here, we apply related network 

techniques to the highly debated and only faintly detectable transcriptome signature of major 

depressive disorder. We conduct these network-based investigations of major depression at the 

levels of genes, cell-types, and brain regions, because all of these physical scales show evidence 

of pathology. Our results implicate simultaneous multi-system deficits in depression, which may 

exert a cooperative effect in creating observed symptoms and pathology. Through these biological 

investigations we also demonstrate the power of network-based techniques for understanding the 

diffuse impact of neuropsychiatric disorders.  

Because we take a relatively novel approach in the search for the biological basis of major 

depression, we first review evidence for and against several mainstream theories of depression 
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pathogenesis (Chapter 1.2), stressing combinatorial pathology. Then we review developments in 

coexpression network analysis which are relevant to understanding transcriptome-wide disease 

impact (Chapter 1.3). While coexpression network links are taken as a generic marker of related 

cellular function, because these links are fundamental to our analysis, we also include a review of 

specific biological processes that are represented by coexpression networks (Chapter 1.4).  

Since coexpression networks (based on synchronized gene expression fluctuations) 

encapsulate thousands of biological processes (Ihmels et al, 2004; Nayak et al, 2009; Obayashi 

and Kinoshita, 2009; Pavlidis et al, 2004; Tsaparas et al, 2006), in Chapters 2-4 we use 

coexpression networks extracted from depression-affected regions of postmortem brains to infer 

strategically important biological processes and trends associated with depression. We then 

discuss the ramification of our specific findings for depression pathology and their concerted 

meaning for depression research at large (Chapter 5), advocating a new “floodgate” model of 

depression that is based on simultaneous dysregulation in several linked systems.  

1.1 EPIDEMIOLOGY OF MAJOR DEPRESSIVE DISORDER 

Major depressive disorder (MDD or depression) is distinct from transient mood swings and 

immediate reactions to stress. It involves a minimum two-week continuous period of at least five of 

the following symptoms: lowered mood for the majority of the day, diminished pleasure in daily 

activities, weight loss or gain, sleep disturbance, agitation or lethargy, fatigue, feelings of 

worthlessness or helplessness, impaired thought or memory, and recurring thoughts of self-harm or 

death (DSM-IV 2000). Depression is a common human psychiatric disorder and the leading cause 

of disability in North America, afflicting an estimated 18% of the population with an approximate 

lifetime incidence of 12% in men and 20% in women (Kessler et al, 2003). This distribution is 

subject to significant international variation – with the lowest rates generally in Asia and the highest 
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in Europe (Weissman et al, 1993), but in all instances, rates of depression are higher in females. 

The symptoms of depression are the greatest contributor to the “global burden of disease,” 

(Holden, 2000) as calculated by total days lived with the disorder. It remains the fourth leading 

cause of worldwide disability, after accounting for higher mortality in other diseases. This ranking is 

expected to rise to second place by the year 2020, as current effective treatment for other diseases 

become more globally accessible.   

Risk factors for depression Major risk factors for depression include the sex of an individual, 

previous history of the illness, genetic predisposition/family history, and chronic or acute stress 

(Fava and Kendler, 2000). Some combination of these can prompt a depressive episode, but the 

requisite combination varies by individual. The threshold for depression is sensitive to social 

support, religiosity, age, and life stressors (Caspi et al, 2003; Kendler et al, 2003a; Kendler et al, 

2003b). These environmental factors interact with the genetics of depression – estimated at 33% 

heritance (Fava et al, 2000). This is a lower heritability than bipolar disorder, or schizophrenia, 

which adds to the difficulty in teasing apart contributory factors. Depression itself is a risk factor for 

the disorder, as untreated depression is likely to reoccur (Mueller et al, 1999). This is particularly 

problematic as a significant percentage of patients (varying from placebo levels of 30%, up to 40% 

depending on the study) never meet the criteria for complete remission and will commonly endure 

increasingly lengthy bouts of depression (Gaynes et al, 2008; Kirsch et al, 2008). 

Personal and economic costs of depression Mortality estimates for depression vary from 5-

15 percent, but 60 percent of suicide cases are associated with some combination of mood 

disorders (Mann 2003). In addition, depression is significantly comorbid with a variety of 

neurological and non-neurological diseases (Schultz et al, 2003). The cost of depression-related 

disability and death is over $40 billion annually in the U.S alone (Berto et al, 2000; Hu, 2006). 

While numerous trials and meta-analyses indicate the relatively low rate of response to 

antidepressant (AD) medication (Kirsch et al, 2008; Trivedi et al, 2007), the economic cost of the 

disorder is so great that every major therapeutic intervention other than Freudian psychoanalyses 
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is justified, even if the therapies themselves are rarely successful (Donohue and Pincus, 2007). 

Limited pharmacological mechanisms in depression treatment:  For the past fifty years, the 

vast majority of depression research has revolved around the various monoamine hypotheses of 

depression (see Chapter 1.2.1). However, recent meta-analysis shows that monoaminergic drug 

therapies are only slightly more effective than placebo and, in fact, fail FDA measures for clinical 

efficacy (Kirsch et al, 2008) when the severity of side-effects is included in the efficacy calculation. 

Numerous alternative hypotheses have been suggested for depression, but these are hampered 

by conflicting evidence and limited scope (see Chapter 1.2). Microarray studies have the potential 

to circumvent historical limitations on depression targets (Drigues et al, 2003; Takahashi et al, 

2006). However, microarray results do not necessarily translate to depressed humans because 

they often lack naturalistic depression induction protocols or administer drugs to non-depressed 

populations. Furthermore, microarray analysis of human post-mortem data do not paint a 

consistent picture of the nature of the disease (Bezchlibnyk et al, 2001; Kang et al, 2007; Mehta et 

al, 2010; Sibille et al, 2004) potentially due to multifactorial multi-system nature of depression 

(Chapter 1.2). 

The continued prominence of depression, the lack of effective pharmacological therapy 

(Gaynes et al, 2008) and the diversity of opinion on fundamental depression pathology present a 

substantive challenge to science. Depression symptoms have evaded a range of therapies through 

variable clinical presentation and diverse neural mechanisms (Nestler et al, 2002) in which the 

individual contribution of single elements is relatively small (Bosker et al; Uher et al). In a vicious 

cycle, the disease complexity makes it difficult to model, and thus models for disease are based on 

“serendipitous discovery of antidepressant treatment” (Vaidya and Duman, 2001). Because these 

models are mechanistically limited, the field of depression research is often left optimizing 

inadequate therapies to artificially framed questions (Nutt, 2006). Microarrays and graph theory of 

large biological networks may offer a way to place putative mechanisms of depression within a 

larger unbiased transcriptome-based perspective on the neuropathology of depression, based on 
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their success in bringing coherence to similarly complex disease networks (Guye et al, 2010; 

Micheloyannis et al, 2006; Smit et al, 2008; Srinivas et al, 2007; Stam et al, 2007; van Nas et al, 

2009). 

Complexity and heterogeneity obscure the neuropathology of depression Depression’s 

continued toll on society is a function of multiple genetic and environmental susceptibilities that 

recruits a diverse cadre of further genetic factors to sustain the condition (Bauer et al, 2002). To 

date, most experiments have examined single aspects of the disease, but the complex causal 

factors in depression make it resistant to highly specific approaches. One immediate question is: 

Why not create sub-divisions of depression that have more homogeneous symptom groups that 

will be amenable to a pathology classification? However, clinical evidence does not strongly 

support this approach. In patients with repeated depressive episodes there is no correspondence 

of symptoms across episodes, preventing definitive clinical subdivisions that might have more 

consistent pathophysiology (Oquendo et al, 2004). There is some evidence to suggest that classes 

of antidepressants have distinct response rates in different DSM-IV classifications of depression 

(atypical, psychotic, bipolar etc) (Ayuso-Gutiérrezd, 2005). However, a meta-analysis of over 100 

antidepressant drugs trials found no difference in response rates as an interaction of drug class 

and putative subtype (Cipriani et al, 2005). 

Potential sub-populations in depression:  There are clusters of depressed patients with 

putative biomarkers suggesting greater involvement in certain affected subsystems (Mössner et al, 

2007).  For instance, Shelton (2007) found distinctly lower PKA levels in a sub-set of depressed 

patients.  However, these biological subdivisions do not map onto clinical subdivisions in a way 

that might allow a finer dissection of factors in depression. The STAR*D trial of 1500 MDD patients 

found that those with relapsing depression were more likely to have a family history of the disease 

(Hollon et al, 2006) and the depressive episodes of these patients are longer, more intense and 

incapacitating than non-familial depression cases (Fava et al, 2008). Thus, while there is some 

evidence for subtypes in depression, it is not coherent or significant enough to establish different 
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sub-groups for our analysis. Rather, depression continues to exhibit clinical and biochemical 

heterogeneity that contaminates analysis. 

1.2 PUTATIVE DEPRESSION PATHOLOGY 

A series of potential mechanisms of depression pathology (often identified as the “_______” 

hypothesis of depression) have been proposed to account for depression symptoms. A 

characteristic of depression research is that initial excitement is generated when some neural 

mechanism is found to be necessary for antidepressant efficacy, for instance the necessity of 

neurogenesis for SSRI efficacy (Santarelli et al, 2003; Surget et al, 2008a). However, several 

further tests are necessary to justify the validity of a hypothesized mechanism of depression, 

especially when evidence for that hypothesis comes from a drug intervention.  

The following criteria are a useful checklist when evaluating the many competing 

hypotheses of depression. The fundamental criterion for a molecular mechanism of depression is 

that effects of the putative mechanism match some known aspect of depression pathology or 

symptoms. This may appear to be an obvious criterion; however, it is frequently difficult to confirm 

a hypothesized mechanism directly in depressed humans, so the evidence must be drawn from 

(biological) disease model systems. Reversal of depression symptoms by a particular drug or 

antagonist might be thought to be the gold-standard of relevance to pathology. However, from a 

genetic and morphological perspective, the actions of antidepressants are not the inverse of 

depression pathology (Surget et al, 2009). Similarly, inducing a depressive-like state by ablating a 

particular factor does not mean it is responsible for naturally occurring depression, due to 

developmental interactions and the typically global/extreme nature of these interventions. Finally, 

while various theories of depression compete for research funding, in reality they likely cooperate, 

so success of any one theory does not dismiss possible contributions of other mechanisms to 
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depression. Each current hypothesis of depression has variable performance with regard to these 

criteria for a successful theory of depression. Since different hypotheses interact in neural 

substrates, one potential approach to depression research would be to focus on an integrated 

theory of depression pathology (covered in Chapter 1.2.8, 5.4 based on interactions shown in 

Figure 1). 
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Figure 1 Overview of mechanistic interactions between various hypotheses of depression.  

Because our findings emphasize the collective contribution of multiple deficits to the 

depressed phenotype, we include this schematic of direct interactions and the resulting depression 

effects. (A) Directed links between hypotheses are shown if there is a demonstrated endogenous 

pro-depressive interaction. (B) The chart should be read as: “The deficit in row x contributes 

to/interacts with the hypothesis in column y to create the following depression-related effect” (listed 

in bold). The main diagonal represents the contribution of a given hypothesis towards depression, 

in isolation from all other hypotheses. This is far from an exhaustive list of interactions, nor a 

replacement for Chapter 1.2 in describing the full effects and interactions of the hypotheses. We 

also attempt to limit these interactions to endogenous cases vs links driven by AD drugs – 

antidepressant drug actions do link many hypotheses, but would entail a separate different table of 

dozens of drugs and hundreds of molecular/downstream targets. 
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1.2.1 Monoamine hypotheses of depression 

The vast majority of AD (antidepressant) medications operate on serotonin, norepinephrine 

or dopamine neurotransmitter systems. The initial evidence from the 1950’s for neurotransmitter 

involvement in depression occurred in unrelated studies, when reserpine (which increases 

transport of several monoamines into the presynaptic cell) was found to increase depressive 

symptoms. The monoamine hypothesis became more entrenched in the 1960’s as researchers 

continued to pursue a pharmacologically driven search for the roots of depression and found that 

the TCA drug (tri-cyclic amine) imipramine prevented NE (norepinephrine) reuptake (Iversen, 

1965). In tracking down the exact mechanism of imipramine, researchers found it also inhibited 

serotonin reuptake, leading to the first SSRI’s (selective serotonin reuptake inhibitors) (Ross and 

Renyi, 1969). SSRI’s generally have fewer adverse side effects than the original non-selective TCA 

drugs (Freemantle and Mason, 2000) and nominally act to increase neurotransmission through 

increased serotonin levels in the synaptic cleft. In reality the exact mechanism of efficacy remains 

unclear because they operate through 15 receptor subtypes that mediate a combination of pre- 

and post-synaptic receptors and IP3 and cAMP mediated pathways, multiple ion channels, and 

serotonin synthesis, storage and transport (Belmaker and Agam, 2008). Related SNRI’s prevent 

reuptake in both serotonin and norepinephrine and seem to have efficacy that is closer to TCA 

medication, alongside the improved tolerability profile of SSRIs, as shown in a meta-analysis of 

clinical trials (Papakostas et al, 2007). 

Dopamine, the latest monoamine hypothesis:  A more recent addition to the monoamine 

depression theories is that dopamine-mediated effects are a component of observed depression 

symptoms (Willner and Mitchell, 2002). The clinical basis for this hypothesis is observation of high 

levels of depression in pre-Parkinsonian patients and the pro-hedonic effect of some Parkinson’s 

drugs (Gershon et al, 2007). It is also possible that symptoms of psychomotor retardation and lack 

of reward in social interactions could be related to decreased D2 receptor binding in the substantia 
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nigra and the ventral tegmental area (VTA) (Winter et al, 2007) and abnormal bursting patterns in 

VTA (Friedman et al, 2007). The basal ganglia’s influence on the prefrontal cortex and the 

amygdala also make it an attractive substrate for altered function in depression (Floresco and Tse, 

2007). Anhedonia's status as a core clinical feature of depression indicates that reward pathways 

may be affected in depression. Multiple assays of nucleus accumbens function indicate this 

dopaminergic reward-sensitive region may have depression-related function, as CREB levels, 

volumetric studies in depressed patients, animal social defeat models, and fMRI studies show 

accumbens activity is modulated by stress (for overview see Krishnan and Nestler (2010)). 

Collectively these findings implicate that nucleus accumbens and dopamine signaling may be 

involved in generating anhedonia observed depression.   

Contradictions and circularity in the monoamine hypotheses:  Despite its popularity, the 

monoamine hypothesis has relatively weak support from studies of actively depressed brains (as 

opposed to antidepressant mechanisms). One challenge to the monoamine hypotheses is that if 

depression simply consists of altered neurotransmitter levels, SSRI's should have effects within 

minutes (when synapses are saturated with serotonin) instead of the observed period of 2-4 weeks 

for clinical improvement (Duman et al, 1997), which implies synaptic connectivity changes are 

responsible for AD effects. Also, tryptophan depletion can induce depression in patients with a 

history of the disorder, but it does not do so in healthy subjects (Carpenter et al, 1998). A meta-

analysis of depletion studies for serotonin, norepinephrine and dopamine indicates that serotonin 

depletion can create temporarily depressed mood in subjects with a family history of MDD or (more 

severely) in those with a personal history of MDD (Ruhé et al, 2007). Conversely, these studies 

indicate that monoaminergic depletion by itself is not a sufficient causal factor in depression as 

healthy controls with no history of MDD do not exhibit depressed mood in response to monoamine 

depletion. PET studies in major depression have attempted to answer this key issue of whether 

there are deficits in serotonin or serotonin receptors. The largest study to date (Parsey et al, 2006) 

with over 100 subjects found greater density of bound serotonin 1A receptors in depressed vs 
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control subjects, which is the opposite of what would be expected under the monoamine 

hypothesis. A series of other studies on serotonin 2A/B receptor binding have only moderate and 

conflicting results (Smith and Jakobsen, 2009). The lack of convincing evidence does not appear to 

stem from a lack of sensitivity in PET scans, as they readily detected differences in SSRI treated 

and untreated subjects (Voineskos et al, 2007). 

Some of the theoretical appeal of the dopamine hypothesis is the system’s ties to 

reward/anhedonia – relatively high-level perceptual and emotional states affected in depression. 

However, dorsal raphe neurons also respond in reward-related paradigms, self-stimulation of the 

dorsal raphe in primates alters reward valuation, and SSRi's in humans acutely alter reward 

responses (Kranz et al, 2010); thus non-dopaminergic systems also have potential to capture the 

anhedonia component of depression. Also, accumbens deficits are not specific to depression 

among neuropsychiatric disorders, and deep brain stimulation of accumbens is also useful for 

treatment of obsessive compulsive disorder (Denys et al, 2010). Nor is deep brain stimulation only 

effective on the accumbens, as stimulation of anterior cingulate and ventral striatum also have 

useful anti-depressant effects with no strict relationship of efficacy to accumbens proximity 

(Giacobbe et al, 2009). Attempts to see if dopamine is responsible for the effects of DBS (applied 

to DLPFC) using PET imaging found the dopamine binding did not increase post-DBS in any 

region. Furthermore, BDNF and CREB show opposite changes in NAc in response to social stress 

(in mice) as they do in the hippocampus. The justification for this is that CREB levels can mediate 

either adaptive or maladaptive neuronal plasticity. While it is entirely possible CREB leads to 

different symptom directions in this region than in the hippocampus, without a mechanistic 

explanation, this line of reasoning raises questions of falsifiability of NAc's relationship with 

depression. Thus, dopamine’s relationship to depression is non-specific, and while it could 

contribute to depression symptoms, it is not implicated as a necessary component of the disorder. 
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1.2.2 Stress and the glucocorticoid hypothesis of depression 

A classic definition of stress is “the non-specific response of the body to any demand for 

change” (Selye, 1936). In some cases the object of stress may be external, and in other cases the 

stress itself may be corporeal, such as an infection or tissue injury. Conversely “stress” as it is 

commonly used in the depression literature more properly refers to anything which contributes to 

an organism’s allostatic load, or allostatic load itself – the summed physiological changes 

stemming from a lifetime of stress (McEwen, 2003). The generality of the definition of stress is 

matched by the range of stressors that have relevance to depression – early life stress, chronic 

stress, acute stress, social stress and others.  

Epidemiology of stress and depression Stress is a major contributing factor towards 

entering a depressive episode, and stress may exert a cumulative effect on brain structures 

beginning early in life (Hammen, 2005; Mazure et al, 2002; Weaver, 2007) as it interacts with 

hundreds of relevant polymorphisms and other factors to determine individual predisposition 

towards depression (Caspi et al, 2003; Muglia et al, 2008). The relative contribution to depression 

of childhood stressors vs recent stressors is difficult to calculate for humans, due to the survey 

methods generally employed (Ensel and Lin, 2000). By regressing fMRI BOLD response in 

depressed patients to negative words against either recent or distal life stressors, Hsu (2010) 

found the severity of recent, but not distal life events, correlated with activation of several brain 

regions previously implicated in major depression. If males and females experience different 

amounts of stress, this could account for the sex difference in depression rates. However, stress 

estimates by sex vary as a function of subject age, and have frequently conflicting results 

(Hammen, 2005). Stressors clearly have different effects over the course of an organism’s life, as 

they interact with developing nervous systems, but unfortunately there is no clear threshold 

calculation that can integrate biomarkers for depression propensity with a weighted compilation of 

all stressful life events to predict depression onset. Therefore, the well-validated consensus in 
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depression research is that some variable amount of stress precipitates depression, but there is no 

precise calculation that predicts individual risk for depression, and thus stress is functionally 

considered to be a generic pro-depressive influence by the depression field, with many extended 

physiological effects.    

Glucocorticoid signaling is a major transducer of physiological/emotional stress. Brain 

structures respond to stress through a feed-forward activation of the paraventricular nucleus of the 

hypothalamus, anterior pituitary and adrenal glands (HPA axis) mediated by corticotropin releasing 

hormone (CRH), adrenal cortical releasing hormone (ACTH) and cortisol, which all feed back on 

the brain through CRH receptors and glucocorticoid and mineralcorticoid receptors (GR/MR). Since 

glucocorticoids activate transcription factors that lead to transcription of hundred of genes, their 

downstream effects are vast (for reviews see (Bamberger et al, 1996; de Kloet et al, 2005; Dedovic 

et al, 2009; McEwen, 2007; Pariante and Lightman, 2008; Rodrigues et al, 2009)), activating 

dozens of major intracellular signaling pathways, including effects on ionotropic and metabotropic 

receptors, growth factors, enzymes, neurotransmitters, and cell morphology. Therefore, we present 

a brief overview of some of the primary effects of HPA activation as they relate to depression. 

Interactions with other hypotheses of depression are covered in their respective sections. 

While absolute levels of cortisol do not have a consistent relationship with depression 

(Knorr et al, 2010), a classic finding is that depressed patients have a blunted response to cortisol 

release as shown by the DMT (dexamethasone suppression test), although this result is not 

specific to depression. (The DMT tracks cortisol feedback by using the synthetic glucocorticoid 

dexamethasone to induce suppression of natural cortisol production.) The glucocorticoid 

hypothesis of depression postulates that blunted feedback on cortisol and CRH production allows 

persistently high levels of glucocorticoids or abnormal diurnal regulation of cortisol. The inability to 

suppress cortisol release may be due to downregulation of glucocorticoid receptors in response to 

repeated stress, or receptor insensitivity due to polymorphisms in the receptor itself or anywhere in 

the associated nuclear transport (van Rossum et al, 2006). Chronically administering 
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corticosterone in mice, making the assumption that functionally increased cortisol levels mimic the 

induction of depression in humans, produces a behaviorally depressive-like state (David et al, 

2009). Alternately, CRH receptor antagonists should decrease apparent feedback of HPA 

activation, and subsequent adaptive effects. CRH antagonists do reverse chronic mild stress-

induced depression in mice to an equal transcriptome/behavioral extent as SSRI's (Surget et al, 

2009), and may be effective in humans, though they currently have toxic side effects (Holsboer and 

Ising, 2008). The DMT response appears to be heritable and characteristic of subjects from 

depressed families, even if they are not themselves depressed (Modell et al, 1998), therefore 

glucocorticoid signaling fits as a heritable basis for MDD. Within depression-affected systems, 

glucocorticoid responses have predictive power – if DMT results do not normalize, recovered 

depression patients are at a high risk of relapse (Zobel et al, 2001).  Therefore, even disregarding 

the downstream effects of stress on other systems, altered HPA activation correlates with 

depression induction and status, but the system itself cannot be identified as the direct substrate of 

depression. 

Interactions and uncertainty in a pure glucocorticoid model of depression Because the HPA 

axis and glucocorticoid signal are the point of input for environmental and psychological stressors, 

it is difficult to isolate the direct pro-depressive effects of glucocorticoids from their complex 

secondary effects. It appears that the direct effects of glucocorticoids do not completely account for 

depression symptoms. For instance, elevated cortisol levels should accompany blunted feedback, 

and while this is a historic belief in neuropsychiatry (Hinkelmann et al, 2009), recent meta-analysis 

indicates that the easy-to-administer salivary cortisol tests the belief is based on, do not show 

depressed patients have elevated cortisol (Knorr et al, 2010). Similarly, polymorphisms in GR’s that 

affect binding sensitivity do increase depression rates, but also appear to lessen the severity of 

cognitive symptoms in depression (Spijker and van Rossum, 2009), and furthermore might only be 

elevated in depressed populations with childhood abuse (Bet et al, 2009). Thus it is debatable if 

the immediate HPA activation and glucocorticoid levels themselves are the direct actuators of the 
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depressed brain state. While the glucocorticoid signaling hypothesis is highly relevant to 

depression pathogenesis, it may be more appropriate to see cortisol levels as an intermediary to 

important secondary mechanisms of depression (such as dendritic changes) driven by the HPA 

axis.   

1.2.3 Neurotrophic hypothesis of depression   

Synaptic plasticity and neurogenesis may play a role in depression pathology and 

antidepressant mechanisms of action. Neurogenesis in the subgranular zone of the hippocampus 

is often necessary for behavioral reversal of induced depression in mice (David et al, 2009; 

Santarelli et al, 2003). When it is not possible to directly test for neurogenesis, BDNF (brain-

derived neurotrophic factor), which acts through TrkB receptors to inhibit MAPK- and AKT-

mediated cell-death, is commonly used as a marker for neurotrophic effects. Electroconvulsive 

shock therapy, the most effective therapy for treatment-resistant depression, also increases 

neurogenesis along with levels of BDNF (Hellsten et al, 2005). Several monoamine 

antidepressants increase levels of BDNF (Nibuya et al, 1995), increasing TrkB receptor activity 

alone has an antidepressant effect, and antidepressants have lower efficacy in the BDNF inducible 

KO mouse (Monteggia et al, 2004). Thus, there is strong evidence for the role of 

neuro/synaptogenesis in antidepressant mechanisms. 

The transcriptional control of BDNF reinforces its putative role in depression. BDNF has a 

CRE binding site, and CREB levels been shown to have specific pro- or anti-depressant effects 

depending on the brain region (Nair and Vaidya, 2006).  This process may also be regulated 

through histone binding sites near BDNF's several promoters, and indeed those histones have 

been shown to be methylated in response to social stress (Tsankova et al, 2006). Reducing CREB 

levels actually has an antidepressant effect (Newton et al, 2002), but the result is difficult to 

interpret due to multiple transcriptional and area-specific effects. However, the conditional BNDF 



 

30 

 

knockout does show depressive behaviors, the magnitude of which are significantly higher in 

females, making it an attractive model of depression (Monteggia et al, 2007).  

Ambiguous causality for AD effects in the neurotrophic hypothesis  Neurogenesis appears 

to be more of a way-point on the road to antidepressant effect rather than the core mechanism of 

antidepressants, since halting neurogenesis does not create depressed behaviors in mice and they 

can still show depressed behavior while neurogenesis is ongoing (Airan et al, 2007; Surget et al, 

2008a). However, neurogenesis may be necessary for some antidepressant drugs, and indeed 

increasing neurogenesis directly through injecting stem cells into the hippocampus does have 

antidepressant effects (Tfilin et al, 2010). Similarly, there is limited evidence that lower BNDF itself 

induces depression, as there are inconsistent postmortem brain findings (Chen et al, 2001b; 

Thompson Ray et al, 2010), though there are more consistent reports of low peripheral BDNF in 

depression that correlates with depression severity (Dell'Osso et al, 2010). A study by Angelucci 

(2005) suggested the valmet66 polymorphism in BDNF could unify the stress, neurogenesis, and 

hippocampal volume decreases in depression. However, a recent meta-analysis concluded that 

there is no effect of this particular polymorphism on rates of depression (Chen et al, 2008a). 

BDNF’s involvement in a range of psychiatric disorders also makes it less likely that it is a specific 

mediator of depression, as opposed to a general mechanism for plasticity induction (Castrén, 

2004) that is frequently associated with antidepressant efficacy (Sahay and Hen, 2007). 

1.2.4 GABAergic hypothesis of depression 

GABA-expressing cells are found in all depression-affected brain regions, including the 

hippocampus, frontal cortex and amygdala and modulate release of serotonin, norepinephrine and 

dopamine (Bowery, 1989; Takahashi et al, 2010). Both ionotropic GABAA and metabotropic GABAB 

receptors can have depressive-related behavioral effects; however, GABABR knockouts display a 

simultaneous increase in depressive and anxiety behaviors, making them less likely to be future 
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antidepressant drug targets. The overarching idea in the GABAergic hypothesis is that 

independent GABA deficits in the frontal cortex, amygdala and hippocampus create a 

hyperexcitable PVN, which then leads to high cortisol levels and blunted HPA feedback (Luscher et 

al, 2010). 

GABAergic deficits have been suspected in MDD for the last 30 years on the basis of blood 

and CSF (Gerner and Hare, 1981; Petty and Schlesser, 1981). This was long-standing support for 

GABA involvement because depression has extensive comorbidity with anxiety, which is highly 

responsive to BZ (benzodiazepines - GABAA receptor allosteric modulators) and BZ's are often 

adjunctive therapy for depression. Several microarray studies show GABA deficits in occipital, 

cingulate and pre-frontal cortex, in an approximate match for consensus dysregulated brain 

regions in MDD (see Luscher (2010) for review), but the results are highly region- and receptor-

subtype specific. A more direct test of GABA activity showed differences in GABA-mediated 

cortical excitability in control vs euthymic vs treatment resistant depression patients (Levinson et al, 

2010). Because different parameters of evoked responses to TMS are related to the timescale of 

GABAA or GABAB cortical inhibition, it appears that both euthymic and unmedicated actively 

depressed patients had abnormalities in GABAA, while treatment-resistant patients also had 

GABAB deficits. A series of MRS (magnetic resonance spectroscopy) studies show evidence for 

lower GABA levels in brain regions including various segments of frontal cortex and anterior 

cingulate cortex (Bhagwagar et al, 2007; Sanacora et al, 1999) and that patients most resistant to 

depression had the lowest GABA levels in these areas (Price et al, 2009). Thus it appears that one 

or more types of GABA deficits are associated with depression pathology.  

GABA-mediated depression animal models In addition to the observed GABA deficits in 

depressed patients, animal models of GABA deficits show several depression-related effects. The 

γ2 GABA channel heterozygous KO mouse, which has impaired neurogenesis and moderate 

postsynaptic GABAAR reductions, shows an anxious and depressive phenotype. There appears to 

be a developmental interaction, wherein the heterozygous KO only produces depressive behaviors 
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if activated early in development (Shen et al, 2010). In vivo, GABA deficits may be created through 

chronic corticosterone administration activation that leads to dendritic remodeling (Orchinik et al, 

2001). Similarly, chronic restraint stress leads to loss of PV hippocampal interneurons, through a 

GR-driven nitric oxide mechanism (Hu et al, 2010). The decreased sensitivity to GABA in these 

regions may then exacerbate the HPA hyperactivation, which in turn leads to further down 

regulation of GABA.  

Antidepressant action through GABA activity SSRI activity has reciprocal ties with 

GABAergic antidepressant mechanisms (for review see Croarkin (2010)). SSRI's interact with 

several 5HT receptors found on GABAergic cells and appear to control membrane receptor 

concentrations through trafficking proteins (Egeland et al, 2010). Their action also reverses the low 

GABA levels observed in occipital cortex of depressed patients (Sanacora et al, 2002). In addition 

to the direct action of AD’s on GABAergic cells, they may also exert influence through neurosteroid 

or neurogenesis levels. 

In the neurosteroid mechanism of action, SSRI's act on GABAergic cells to mildly increase 

production of allopregnenalone (THP) (Pinna et al, 2006), which acts through GABAAR’s. Although 

this hypothesis has not yet been tested in humans, controlled increases in THP injections into the 

hippocampus lead to increased γ2 subunit expression and antidepressant effects (Nin et al, 2008; 

Uzunova et al, 2006). Also the time course of THP production matches the two-week onset latency 

of SSRI effects.  Thus, actions of THP represent a viable avenue for antidepressant effects outside 

of the canonical serotonin pathways, through GABAR’s. 

The effect of GABAAR's activation in immature neurons in the hippocampus is excitatory 

due to the higher reversal potential for chloride in these neurons. The resultant calcium influx 

activates several kinases and ultimately CREB, which is found to be low in the hippocampi of 

depressed patients (Chen et al, 2001a) and upregulated in that region by antidepressants 

(Dowlatshahi et al, 1998). Thus GABA signaling links to the neurotrophic hypothesis of depression, 

as BDNF is transcribed in response to elevated CREB. 
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1.2.5 Inflammatory hypothesis of depression 

Inflammatory activation and modulation are entwined with the etiology of major depression 

as risk factors, secondary effectors and bridges between other theories of depression. The initial 

proposal of the inflammatory hypothesis lacked causal evidence, but rather noted the high 

comorbidity of inflammation-driven processes such as coronary heart disease with depression, and 

also the similarity of depressive symptoms with behaviors of humans with immune response to viral 

infections (Smith, 1991). Now there is direct evidence of pro-depressive action of inflammation 

beyond these associations, as multiple SSRI's decrease pro-inflammatory cytokines (Sutcigil et al, 

2007).  Reciprocally, levels of TNF-α are associated with, and predictive of, SSRI response – 

patients with high levels of TNF-α are unlikely to show improvement (Eller et al, 2008; Kim et al, 

2008).    

Inflammatory modulators also feed back on serotonin levels by affecting the conversion of 

tryptophan to serotonin. Control over serotonin levels is likely the mechanism behind the 

association of interferon-α, and major depression. Studies of patients with hepatitis-C, which is 

treated with interferon-α have found that about half of all patients will develop depression during 

the course of their treatment. This is one of the few reliable pharmacological means to induce 

depression in subjects with no history of depression. The main accepted mechanism for immune-

induced depression is the action of TNF-α on several enzymes that control conversion of 

tryptophan to serotonin (Dantzer et al, 2008). While this induced depression is responsive to 

SSRI's, the serotonin-inflammation link is not critically indicated in this form of depression because 

the somatic complaints of patients remain, even while the “psychological” factors remit. Other 

depressive mechanisms besides serotonin levels may be recruited by inflammation; IL-6 and    

TNF-α (Koo and Duman, 2008; Pucak and Kaplin, 2005) have been shown to act as breaks on 

neurogenensis in the hippocampus, probably due to their interaction with STAT and MAPK 

(Nakanishi et al, 2007; Whitney et al, 2009; Zhu et al, 2006). The depressive effects of interferon 
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could be triggered by buildup of other metabolites associated with tryptophan conversion that 

activate NMDA receptors (Müller and Schwarz, 2007) which further casts doubt on a pure 

serotonin mechanism behind inflammatory depression.  

Inflammation seems to account for a significant portion of social withdrawal and lethargy 

associated with depression through a set of behavior patterns it triggers known as the “sickness 

syndrome”. These consist of behavioral and psychological symptoms associated with bacterial or 

viral infections – lack of interest in normal activities, lack of motivation, lack of appetite and 

irritability – all of which are components of the DSM-IV definition of depression. These symptoms 

are known to be mediated by TNF-α, IL1α/β, and IL1/6 (Kent et al, 1992; McDonald et al, 1987). 

Certain strains of mice injected with LPS (a bacterial component used to induce inflammation) 

show evidence of anhedonia in the sucrose-preference test, which is reduced with concomitant 

administration of SSRI's. The key brain areas associated with the long-term depression component 

of “sickness syndrome” are the hypothalamus, amygdala and hippocampus (Frenois et al, 2007). 

Because the sickness syndrome behaviors closely match those of depression, and many other 

hypotheses of depression have difficulty in accounting for the full range of DSM-IV depression 

symptoms, the inflammatory hypothesis could be an attractive explanation for depression if it 

integrates mechanistically with other theories. 

The mechanism of where/how cytokines create the sickness behavior is still debated, as 

cytokine receptor densities are very low, but several studies implicate interaction with the HPA axis 

and particularly the paraventricular nucleus of the hypothalamus (Dantzer et al, 2008). Of course, 

depression and immune response-mediated sickness behavior are not identical, and while 

sickness behavior remits, depression is maintained for long periods and is not adaptive. This may 

be reflected in elevated cortisol and cytokines in many depression patients, which is abnormal 

because the HPA and immune systems are usually mutually inhibitory. Cytokines may break the 

normal HPA feedback loop by decreasing sensitivity to cortisol on the hypothalamus, through 

expression of less sensitive receptor subtypes, or certain individuals may possess mutations in 



 

35 

 

glucocorticoid receptors that naturally decrease feedback (Pariante and Miller, 2001; van Rossum 

et al, 2006; Zunszain et al, 2010). The blunted cortisol feedback may simultaneously be ineffective 

in reducing cytokine production, and thus both HPA and cytokine activity may be elevated.  

One key piece of evidence for the inflammatory hypothesis, which is currently absent, 

would be large-scale clinical trials of anti-inflammatory drugs that specifically target inflammatory 

mediators in depression, either independently or in combination with other antidepressants. But 

there is some secondary evidence from a clinical trial of a TNF-α inhibitor (intended to treat 

psoriasis) that it also decreases depression rates (Tyring et al, 2006). Since there are plausible 

mechanistic links between the inflammatory hypothesis of depression, and monoaminergic 

neurotransmission, neurogenesis, HPA activity, and the behavioral symptoms of depression, it may 

be a common target of different pathological routes into depression or a bridge that links the 

activity of several systems into a pro-depressive force. 

1.2.6 Epigenetic regulation associated with major depression 

Epigenetic regulation refers to heritable non-sequence DNA modifications that can lead to 

altered expression levels (Waddington 1957). Two major epigenetic mechanisms, DNA methylation 

and histone acetylation, may both operate in major depression, but only histone acetylation 

appears likely to generate a coexpression signature because it tends to expose continuous regions 

of DNA wherein RNA polymerase may transcribe multiple genes consecutively. (Mechanisms of 

epigenetic regulation that may be detectable by coexpression analysis are discussed in Chapter 

1.4.4.) Maladaptive epigenetic regulation is an attractive depression mechanism in that it links 

glucocorticoid signaling, effects of early life stress, and the neurotrophic hypothesis.  

Early life stress and the level of maternal care in both rodents and primates are associated 

with epigenetic modifications that maintain a cellular memory of these early events and influence 

the propensity to develop depression later in life. Using the maternal separation paradigm as an 
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early life stressor, (Ladd et al, 2004) found increased density of glucocorticoid receptors in the 

PVN, but lower density in the hippocampus (Aisa et al, 2007). The increased sensitivity to 

glucocorticoids was associated with decreased mossy fiber density in the hippocampus, as would 

be expected from the action of glucocorticoids, and mildly decreased Morris water maze 

performance (Huot et al, 2002). Eye-blink conditioning appears to be a more telling assay of the 

long-term effects of maternal separation, as adult rats who underwent brief maternal separation 

had significantly impaired learning, which was accompanied by increased glucocorticoid receptors 

in the interpositus nucleus (a key nucleus mediating conditioned motor responses) (Wilber and 

Wellman, 2009). To more directly assess the culpability of epigenetic mechanisms in GR function, 

Weaver showed that the growth factor NGFI has a two-stage binding to the 17GR promoter, whose 

methylation status was responsive to levels of maternal care, probably due to 5HTR activation 

(Weaver et al, 2004; Weaver et al, 2007). In a striking cross-species study (McGowan et al, 2009) 

the glucocorticoid receptor promoter in the hippocampus was found to be methylated in both mice 

that underwent maternal neglect and in postmortem brain of patients with a history of childhood 

abuse. Tendency for pup abuse in rats may even be heritable through epigenetic mechanisms. 

When pups were raised by stressed and less attentive mothers they showed methylation near 

BNDF coding DNA in hippocampus and frontal cortex, and the abused pups also took less care of 

their own pups (Roth et al, 2009). This could be due to the pups mimicking parental behaviors, but 

even when pups were swiftly cross-fostered, they exhibited the neglectful behaviors in adulthood.  

Therapeutic manipulation of epigenetic mechanisms  The overall balance of HATs (histone 

acetyltransferases) and HDAC's (histone deactylases, which control regions of chromatin available 

for transcription) is a critical component of homeostasis, wherein excessive HAT activity is 

associated with cell-death and HDAC activity is associated with cancer (Barlev et al, 2001; 

Carrozza et al, 2003; Minucci and Pelicci, 2006). For instance BDNF levels show disease-related 

modulation through methylation of its promoter and actions of MeCP2. But BDNF is simultaneously 

under epigenetic control via HDAC5, which increases in models of social defeat, and is reversed 
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by imipramine (Tsankova et al, 2006). The major limitation in using HDAC inhibitors (HDACi’s) to 

reverse the deactylation often associated with stressful events is that while the stress-related 

acetylation is fairly gene-specific, HDACi’s act across the genome and have a high risk of 

increasing expression of at least some deleterious genes. Clinically, this non-specificity may be the 

source of valproic acid's (a HDACi used to treat mood disorders) many side effects and increased 

risk of various cancers.  

The epigenetic modifications of BDNF and GABA receptors, and epigenetic modifications in 

postmortem depressed subjects, suggest that HDACi's could have antidepressant qualities. A 

straightforward test of this hypothesis would be to administer an HDACi to depressed patients. But 

sodium butyrate (NaB - an HDACi) which would be expected to have antidepressant properties, 

actually increases latency in the novelty induced hypophagia test (Gundersen and Blendy, 2009). 

While it did acutely increase acetylation in the hippocampus, it did not improve performance in the 

zero maze. A comprehensive collection of behavioral effects of the social defeat model of 

depression showed depression reversal with an HDACi, which had a similar expression profile to 

fluoxetine (Covington et al, 2009). From this preliminary evidence using a specific HDACi, it 

appears that the antidepressant function of monoaminergic drugs do not operate purely through 

HDACs, but that HDAC activity may replicate some anti-depressant associated activity.  

1.2.7 Brain areas critically implicated in depression 

Evidence from Conti (2007) suggests that depression and antidepressant activity may be 

brain region specific, so in Chapters 2-4 we analyze microarray samples from multiple putatively 

depression-affected brain regions. Likely due to the focus on developing antidepressant drugs, 

depression is traditionally examined within the framework of global neurotransmitter systems or 

circulating factors as opposed to specific brain regions. Depression impact on specific brain 

regions is covered incidentally in previous sections and commonly impacted regions are briefly 
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reviewed here as well. 

Cortico-limbic network as crucial mediator of depression:  In a direct attempt to quantify the 

effects of depression on the amygdala, a number of volumetric studies of post mortem brains have 

attempted to show a localized loss of cells in this area. These have met with limited success and 

often conflicting results as a volume reduction was described in some studies (Sheline et al, 1998), 

but does not appear in a number of other studies (Campbell and MacQueen, 2006). However, a 

decrease in glial density specifically was reported in the amygdala of depressed subjects (Bowley 

et al, 2002) and recently attributed to reduced oligodendrocyte numbers (Hamidi et al, 2004). 

Further validating the amygdala as a central mediator of limbic function, Stein (2007) used 

structural equation modeling of fMRI data to infer a network of limbic activation, with the amygdala 

as a central hub, transferring information to cingulate, orbitofrontal, insular, and dorsolateral 

prefrontal cortex and the parahippocampal gyrus. Examining the amygdala’s activity through its 

divergent connectivity targets, two meta-analyses point towards a corticolimbic circuitry of 

depression (Mayberg et al, 1997; Seminowicz et al, 2004). This circuitry includes areas of the 

prefrontal cortex, the ACC, the hippocampus and anterior thalamic nuclei.  

Numerous functional imaging studies have shown emotional reactivity is linked to the 

amygdala and that changes in this structure track recovery from depression (Rhodes et al, 2007; 

Robertson et al, 2007; Siegle et al, 2006). However, amygdala reactivity may also be a result of 

insufficient negative feedback from other brain regions. The strength of amygdala coupling 

(synchronization) with multiple frontal cortex areas correlates with the strength of emotional 

regulation in response to negative stimuli (Banks et al, 2007). Siegle (2007) found DLPFC was 

hypoactivated in response to negative words in depressed patients who had high undamped levels 

of amygdala activation in the task. The extended activation of amygdala in response to negative 

stimuli, and the hypoactivation of anterior cingulate fits with data from chronic restrain stress 

showing that the increased glucocorticoids levels lead to amygdala hypertropy (Vyas et al, 2002) 

and frontal cortex hypotrophy (Wellman, 2001).  
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Frontal cortex involvement in depression Evidence of frontal cortex emotional appraisal and 

feedback on amygdala may also be seen from individual variability in response to stress. Subjects 

who showed a significant stress response to a serial subtraction task occurring under social-stress 

had decreased activity in anterior cingulate and orbital frontal cortex (Pruessner et al, 2008). The 

deactivation of frontal regions and poor performance under stress are correlated with cortisol 

response levels (Kern et al, 2008). Depressed subjects also have a tendency towards rumination 

on negative events, which has only recently been directly quantified. In contrast to hypoactivation 

under stress response, depressed patients show higher orbitalfrontal, mPFC and anterior cingulate 

activation when ruminating (thinking about hopes, dreams and life trajectory) and activity in those 

areas is sustained when switching from rumination to a distractor task (Cooney et al, 2010; 

Johnson et al, 2009). Based on these studies, several areas of frontal cortex appear to be 

incorporated into stress evaluation, responsiveness, and the pathological activity patterns seen in 

depression. 

The mechanism behind the PFC deficits may be glia-related as postmortem studies (Radley 

et al, 2004) are consistent with the effects of long-term elevated cortisol (Alonso 2000).  This fits 

well with the decrease in apical dendrite arborization in the anterior cingulate observed after 

chronic restraint stress and the generally lower glucose metabolism in PFC of depressed patients, 

which is reversed by antidepressants (Baxter et al, 1989). The consensus mechanism behind glial 

destruction in turn is glutamate excitotoxicity from persistent immune activation (see Chapter 

1.2.5).   

Neurogenesis studies suggest hippocampal role in depression:  Numerous genes linked to 

neurogenesis, dendritic arborization and spine formation, HPA regulation, and inflammatory 

processes/cytokines are preferentially altered in rodent hippocampus under a variety of stress 

paradigms (Alfonso et al, 2005). Chronic restraint stress reduced arborization in CA3 neurons and 

this appears to have functional consequences as these rats show reduced LTP in CA3 and dentate 

gyrus. These effects can be largely prevented by NMDA blockers. Mineur (2007) linked 
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performance in hippocampal and non-hippocampal dependent tasks following the UCMS protocol 

to the level of neurogenesis in the subgranual zone. While these deficits and lack of neurogenesis 

were reversed by AD treatment, there was a strong effect of sex and genetic strain on the results 

that does not permit these results to be generalized. In an attempt to increase the spatial-temporal 

resolution of such studies, Airan (2007) used voltage sensitive dye imaging to track activity 

propagation across mice after UCMS. They found lower levels of activation in the dentate gyrus of 

UCMS mice vs. controls that was reversed with SSRI and TCA AD treatment, but clinical 

improvement was not prevented by irradiation. The normally anxious BALB/c mice do not require 

hippocampal neurogenesis to recover from UCMS with SSRI’s (Holick et al, 2008), and 

antidepressant effects achieved through exercise and environmental enrichment also do not 

require neurogenesis (Meshi et al, 2006). Thus it appears hippocampal neurogenesis is necessary 

for some antidepressant effects and closely linked with cognitive deficits in depression (Sahay et 

al, 2007). 

1.2.8 Practical recommendations for more effective molecular hypotheses of 

depression 

Why are there so many competing hypotheses for the biological basis of depression? We 

suggest that depression research is cast against a pair of major roadblocks in neuroscience 

research: one scientific and one human-based. The major scientific roadblock to greater 

understanding of depression (which would be evidenced by actual improvement in treatment 

response rates) is that there are no agreed upon landmark findings to guide depression research. 

Specifically, there is no consistently used animal model, behavioral test, biomarker, cell-type, brain 

region, gene, pathway, or neuronal function which is specifically associated with the depressive 

state in all patients. Without such a landmark finding, researchers are forced to look for mutually 

consistent sets of findings, which are then inferred to represent a concerted detriment to some 
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cognitive process underlying normal function. However, such a unified theory of depression 

correlates has not been produced, because there is little understanding of the interoperability of 

multiple neurotransmitters in creating mental states, and thus it is difficult to relate findings from 

different brain regions and experimental paradigms. The issue is compounded as depressed 

patients likely have more than one deficit, and perhaps even several minor deficits/abnormalities 

(Nikolaus et al, 2009). Therefore, researchers studying subjects who show deficits in a given 

system of interest, are in fact studying deficits in additional systems, but the degree to which 

multiple deficits are distinct or part of some concerted dysfunction is unclear. Thus, depression 

research has reached a point of such obfuscation that it is not even clear when two particular 

results are in conflict – frequently they simply contribute to an acausal morass of depression-

related factoids, at best waiting for the post-hoc theoretical framework of a review paper, and at 

worst forming the literary equivalent of cosmic background radiation from an expanding universe of 

undirected depression studies.  

Of course, mental function is based on a combination of many neural systems including 

micro and macro structural connectivity, receptor densities as determined through complex second 

messenger systems, hormonal regulation, and slow and fast time-scale neuronal excitation. Thus 

the imprecision and redundancy of depression research in reality is even greater than expected for 

classic neurotransmitter hypotheses, as there is no unified framework for how various depression-

related deficits that are apparently scattered across the breadth of neuroscience may relate to 

each other or some common framework. To be more concrete, there is no agreed upon core mood 

circuitry, alterations in which are capable of generating depression in response to changes in levels 

of one or more neurotransmitters, through modulation of some specific neuronal function. Nor is 

there a single computational or theoretical model of what type of neural activity is associated with 

depressive brain-states. Indeed the closest approximation of what depression actually might be (as 

opposed to random manifestations that accompany it) is a non-mechanistic serotonin-based 

reinforcement learning model in a slug (Dayan and Huys, 2009).   
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However, lack of a unified theory of brain function does not prevent (treatment-evidenced) 

progress in other disorders, so why should it be necessary to understand integrated brain function 

before progress can be made on depression? Astonishingly, amid the thousands of studies 

showing specific fiber tracts, cell-types, neurotransmitters, hormone levels, there is almost no effort 

made to link different results into a conceptual framework which collapses these deficits down to 

simpler systems behind the clinical depression: symptoms of anhedonia, lack of motivation, and 

obsession with negative problems. While the definition of depression may indeed cover several 

different biologically distinct subtypes, it is not these biological divisions that allow results to 

accumulate and never integrate, but mutual indifference of researchers to theories other than their 

own. This is the second reason for the plethora of hypotheses. Thus the field continues to amass 

new observations of dysfunction, apparently in the hope that some single observation will 

revolutionize our understanding of depression, but more likely because grant funding is set up to 

support reductionist investigations, not conceptual synthesis. Despite the clear intellectual need for 

emergent integrated theories of depression, the economic, educational and technical challenges to 

creating a legitimate integrated model of depression (something more than an arrow diagram) has 

been sufficient to prevent progress in this key regard. 

Whatever the factors behind the failure of psychiatric research to find an effective 

description of depressive mechanisms, for the last 60 years depression research has never 

coalesced around a core dysfunction, in the way that schizophrenia research or Alzheimer's 

research have circled around GABA deficits or plaque accumulation. While those molecular 

markers carry their own ambiguity, at least they are a consistent finding and appear somehow tied 

to a core mechanism. While many supposed and real breakthroughs have occurred, when only 1/3 

of depressed patients show complete remission, objectively, the scope of those “breakthroughs” 

has limited clinical impact. Since antidepressant activity is not tied to pathology or pathogenesis, 

and because depression may well consist of multi-system dysfunction, attempting to understand 

specific characteristics of the disorder on a specific level has limited relevance to the systemic 
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impact of depression on the brain. In a troublesome loop, lack of understanding about 

pathogenesis may have led the field to focus on needlessly complex secondary and adaptive 

features that further distract attempts to find convergent neural mechanisms of depression.   

In this setting of competing hypotheses, only weakly associated with actual depression 

pathology, the results of Chapters 2-5, and in light of the exodus of pharmaceutical funding from 

neuropsychiatry (Miller, 2010) we offer a working philosophy of depression to guide the trajectory 

of future research. It may appear naive to propose a new theoretical paradigm in a field with so 

many competing hypotheses. However, given the enormous scientific challenge of depression and 

the undirected piles of evidence for depression deficits, adhering to this approach could provide 

great benefit with little additional funding. Futhermore, we make practical recommendations for 

how to construct an inclusive model of depression mechanisms via this philosophy (Chapter 5.4). 

Working philosophy of depression: Consider all the major depression hypotheses 

(monoamine, neurotrophic, etc) to be correct. The goal of researchers operating under this working 

hypothesis will be to create a new style of depression research that draws connections between 

the different hypotheses, finding instances of mutual activation and convergent neural substrates of 

depression that could be activated by several pathways. The theoretical justification for this 

approach is the many cross-links between the various hypotheses of depression – activity which 

would be classified under one particular hypothesis of depression is likely feeding into “competing” 

mechanisms (Figure 1). Even disregarding the links between theories, it is clear from the common 

clinical endpoint of depressive symptoms that the various hypothesized mechanisms of depression 

are all pushing the brain state into a dynamic regime that produces depressive behaviors and 

mental states. The existence of several different (though probably related) paths into the 

depressive state indicates that depression could be a unitary concept (in terms of brain dynamics 

underlying recurrent negative thought patterns) but present clinically with several deceptively 

unrelated markers, that would seemingly indicate multiple pathologies.  
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By looking for interoperability of different hypotheses of depression, it appears likely that we 

would move closer to a unified understanding of the common neural effects of the various 

mechanisms, and therefore closer to understanding depression pathology. The intention for this 

working philosophy is that by understanding how depression mechanisms operate cooperatively, it 

will reduce the confusion caused by redundant research efforts, and hopefully develop insightful 

hybrids of existing theories. Based on the interactions and cumulative effects of various 

hypotheses of depression, and then incorporating the combinatorial effects observed in Chapters 

2-4, we propose a testable theory of depression pathology under this philosophy, termed the 

floodgate model of depression (Chapter 5.4). 

1.3 COEXPRESSION NETWORK STRUCTURE AND ANALYSIS 

The purpose of this coexpression network overview is to highlight research which is 

representative of major trends in coexpression analysis. We only report on coexpression networks 

that are based on first-order Pearson correlations between genes/probe-sets across replicate 

samples. Many other networks, including various Bayesian networks, higher-order partial 

correlation networks and mutual information-based networks have been applied to microarray 

analysis and offer complementary information to coexpression networks, but are only mentioned as 

supporting information because human post-mortem sample sizes are usually insufficient for these 

other approaches and the research in Chapters 2-4 focuses on Pearson-based coexpression 

networks.   

The past decade of coexpression research largely falls into two historical periods, each with 

a particular methodological and thematic focus. Initial studies (roughly years 2002-2004) 

demonstrated that gene-gene correlations represented the convergent influences of many 

biological control structures (covered separately in Chapter 1.4) and established the small-world 
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and scale-free connectivity properties of coexpression networks that are fundamental to future 

studies. The latest stage of coexpression research (2005-present) has been focused on 

understanding how topological properties of coexpression networks (which encapsulate many 

biological relationships) relate to cellular activity in healthy and disease states. Within disease 

coexpression research, key approaches are either hub-based, module-based, differential-

coexpression based (examining altered network structure in disease), or use some combination of 

these approaches (see Chapters 1.3.1-1.3.4 for review of each approach).  

Basic coexpression network structure The structure of coexpression networks – the 

transcriptome-wide configuration of correlation-based links between genes – reflects many 

underlying cellular processes (Chapter 1.4). However, the abstract network structure itself has 

properties that orchestrate the flow of information through molecular pathways. Discovery that 

metabolic networks (composed of substrate-ligand interactions) and protein-protein interactions 

networks (composed of proteins linked by physical interactions) were scale-free and small-world 

(Guelzim et al, 2002; Jeong et al, 2001) presaged coexpression network structure. There were 

early examples of large-scale clustering of gene expression profiles (synchronous fluctuations of 

multiple genes across replicate samples) (Eisen et al, 1998; Tavazoie et al, 1999), but later series 

demonstrated the formal small-world and scale-free structure of coexpression networks, based on 

Pearson correlations between all pairs of genes (Agrawal, 2002; Ihmels et al, 2004; Jordan et al, 

2004; Pavlidis et al, 2004; van Noort et al, 2004). Scale-free and small-world topologies are 

common to man-made networks (Barabasi and Albert, 1999) and many natural systems including 

human neural and non-neural datasets (Horvath et al, 2006; Purmann et al, 2007). Their biological 

implementations, particularly coexpression networks, are characterized by highly clustered 

(mutually interconnected) “modular” communities of genes, and low average pathlength between 

nodes, courtesy of the wide-ranging connectivity of hub genes (see Chapter 1.3.1).   

The small-world and scale-free organization of coexpression networks persists across 

species, with significant conservation of links between species (Lee et al, 2004; Prieto et al, 2008; 
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Tsaparas et al, 2006). Coexpression relationships and larger “modules” of mutually coexpressed 

links have been repeatedly shown to have common biological functions, usually through GO (gene 

ontology). Gene ontology is a curated hierarchical classification of individual gene properties using 

controlled vocabulary to specific gene function on multiple dimensions (Ashburner et al, 2000). It is 

a useful tool for functionally characterizing large numbers of genes, as it can return the most 

common biological classifications, and an estimate of what functions are over-represented in a 

group of genes compared to chance. Gene coexpression networks may reiterate or predict known 

biological organization as annotated by GO or other classification systems, and therefore can 

implicate new genes in disease through guilt-by-association algorithms or reveal disease insights 

through their connectivity structure (Nayak et al, 2009). Two structural properties of these networks 

in particular – hub nodes and modularity are central to subsequent understanding of transcription 

dynamics and potential disease mechanisms. 

1.3.1 Leveraging hub connectivity as a functional marker of network activity 

In the small-world framework, hub nodes are network elements with non-local connectivity 

that serve to bridge different communities in the network, thereby lowering the average pathlength 

without destroying the overall clustering structure in the network (Watts and Strogatz, 1998). Hubs 

in scale-free networks are rare nodes with connectivity to a significant portion of the network. 

Remaining “provincial” nodes in scale-free networks have relatively few connections while the 

overall connectivity distribution follows a power-law distribution. Information flow through scale-free 

networks is unlikely to be affected by random node deletion, but is especially vulnerable to targeted 

attacks on hubs (compared to random networks) (Albert et al, 2000). The particular vulnerability to 

targeted attack and the numerous instances of scale-free networks in natural systems has led to 

the concept of hub-targeting in small-world/scale-free networks as a potential disease mechanism, 

often known as the “lethality-centrality” relationship. This was supported for molecular networks by 
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the classic work of Jeong (2001) who showed that lethality of particular gene deletion in yeast was 

proportional to the connectivity of the node in the protein-protein network. Examples of how hub-

targeting can lead to crucial functional impairment in humans also come from cellular and brain 

region networks with similar structural organization. For example, Stam (2007) showed that 

Alzheimer's disease is accompanied by selective loss of small-world hub connections in EEG-

based networks and epileptic activity is accompanied by altered clustering coefficients in local 

microcircuits in the hippocampus (Kramer et al, 2008; Netoff et al, 2004). 

Example hub-centric analysis  The gene ASPM was previously implicated in control of 

cortical size when Horvarth et al. (2006), in a classic application of hub-gene based coexpresion 

analysis, predicted that it was central to formation of glioblastomas. In brief, the weighted gene 

coexpression network analysis (WGCNA) routines employed in this study used topological overlap 

(a module completion/detection algorithm) to identify modules in the gene-gene correlation matrix 

that have been weighted to suppress small magnitude correlations, which are likely to have been 

generated randomly. The modules are then assigned to one or more biological functions by hand 

or through gene ontology. In a network generated from glioblastoma data, this method identified a 

module enriched in oligodendrocyte genes. ASPM was the most connected gene in this module, 

meaning that fluctuations in its expression level closely matched those of other oligodentrocyte 

genes. This gene showed a 40-fold increase in expression level in glioblastomas vs control, and 

hence is far from the subtle marker of dysfunction typically seen in depression. However gene 

therapy silencing ASPM using shRNA did halt development of tumors in mice, perhaps effective in 

part because of the centrality of ASPM to neural precursor proliferation (Bikeye et al, 2010).    

Unlike complex neuropsychiatric disorders, differential expression ratios found in cancer 

microarrays are quite large, but it is difficult to prioritize among possible candidates. Using the 

WGCNA procedure on testicular cancer samples, Wang (2009) found a module enriched in genes 

known to be associated with disease progression and selected several well-connected hubs (that 

were found to be related to cell-cycling) within this module as potential key disease mediators. 
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While their selection criteria were relatively ad-hoc, they avoided the danger of using WGNCA as a 

platform for molecular stargazing, by showing there is a strong relationship between a gene’s 

connectivity and the severity of disease when that gene is differentially expressed. The authors 

simultaneously measured levels of micro-RNA (miRNA) and found that several differentially 

expressed miRNA’s bound to the cancer hubs. While there was no statistical estimation of the 

likelihood of this occurrence, combined with evidence for common miRNA disregulation in multiple 

cancers, it points towards an expression control mechanism that utilizes coexpression hubs. 

Causality of hub identity vs hub connectivity in centrality-lethality relationship The centrality-

lethality/disease relationship has been validated in many systems, but it is unclear if highly 

connected nodes are intrinsically important, or if their biological importance stems from their 

numerous connections. This question is fundamentally a debate on the relative importance of pure 

network mechanisms vs specific biological explanations of the influence of hub nodes. Within gene 

networks, the debate takes the form of determining if hub node ablations are deleterious because 

the nodes are essential, or if it is merely because they act on numerous other nodes, some of 

which are likely to be essential (He and Zhang, 2006). Essential genes are defined as those genes 

which are found to be lethal in systematic knockout experiments (Winzeler et al, 1999). He (2006) 

(2006) found that the results from Jeong (2001) were consistent with a model of essentially protein-

protein interactions, randomly distributed throughout the network. Since hub-node disruptions are 

more likely to intersect one of these crucial links, this would ostensibly account for their increase 

lethality over non-hubs. In a complementary test of the relevance of network structure to hub 

lethality, Zotenko (2008) found that deletion of essential genes was no more likely to affect flow of 

information in a network than would the deletion of an equal number of hubs. Furthermore deleting 

high betweenness nodes (which have far-flung network influence) in the protein-protein interaction 

network (PPI) was no more disruptive to information flow in protein-protein networks than was 

deleting an equal number of nodes based purely on degree. However, by incorporating many 

different topological measures, especially clustering information, it is possible to very accurately 
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create a filter that predicts which genes will be essential in yeast (del Rio et al, 2009). These 

results are from protein-protein interaction networks in yeast, and may not apply directly to 

coexpression or other networks with more heterogeneous control structure. But they do illustrate 

that the global network contribution to essential gene lethality is at least more nuanced than 

originally predicted. 

1.3.2 Source of small-world and scale-free coexpression topology 

Theories concerning the origin of scale-free and small-world structures naturally focus on 

the evolution of modularity and hub nodes – the hallmarks of these topologies. The cannonical 

process for producing scale-free networks is “preferential attachment”, a network generation 

process wherein new network nodes are gradually added to a seed network structure, and the 

probability of connecting to a particular node in the seed network is proportional to the number of 

connections it has in the seed network (Barabasi et al, 1999). In this model, nodes with many 

connections gain even more connections, and this rich-get-richer pattern produces a power-law 

connectivity distribution of connectivity, which is found in many naturally occurring networks. 

Preferential attachment does not necessarily produce the modularity observed in gene 

coexpression structure. Ravasz (2002) found evidence of a hierarchy of modules in many 

metabolic networks i.e. modules nested within modules, each of which was largely devoted to a 

particular cellular process. Coexpression networks may be created by systems that use 

hierarchical control (Chapter 1.4.2), but they themselves do not show rigid hierarchy of modules 

(Dorogovtsev et al, 2002; Jordan et al, 2004; Ravasz et al, 2002). 

A theory that accounts for both the scale-free and modular organization of coexpression 

networks combines preferential attachment algorithms, with the gene duplication and divergence 

model (van Noort et al, 2004). The model consists of virtual genes that are linked if they share 

common transcription factors. When new genes are created by duplication of existing genes, then 



 

50 

 

the transcriptional control of that gene will likely resemble its predecessor (since the promoter 

regions of the two genes bind the same transcription factor) and thus gene duplication leads to 

clustered communities. Genes in the model also have a gradual rate of divergence from their 

paralogues due to random additions or deletions to transcription factors that control them. Any new 

regulatory interactions the gene gains are likely to be with the most connected elements of the 

network – the preferential attachment scenario. Together this theory reproduces the modularity 

(from similar connections via gene duplications) and scale-free connectivity (through preferential 

attachment of new regulatory relationships to hubs) found in coexpression networks.  

1.3.3 Use of modules as functional markers in coexpression analysis 

These two previous studies (Chapter 1.3.1) which rely on the idea of hubs as crucial 

mediators of disease also incorporate modularity to identify the most relevant hubs to particular 

disease-affected subsystems. A supporting finding behind this logic is that coexpression modules 

generated from heterogeneous tissues are distinctly enriched with markers of certain cellular 

populations (for example in brain for glia, oligodendrocytes and glutamatergic/GABAergic 

neurons). To rigorously support this claim Oldham et al. (2008) showed that modules are 

frequently enriched with markers associated with specific cell-type populations. The linkage 

between modules and morphological details is even more fine-grained, as illustrated by the finding 

that sub-modules within a mother GABA module are associated with specific cell sub-types, and 

sub-modules within a mitochondrial-focused module were localized to different cellular 

compartments in neurons (Winden et al, 2009). Thus, the modular components of coexpression 

networks appear to be recruited en masse to facilitate particular biological functions that are 

associated with, or even create, morphological diversity.   

This concept was actively tested by knocking out RGS4 and DLX1/2, which were well 

connected in their modules and linked to pre-natal death and schizophrenia, respectively (Winden 
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et al, 2009). Differential expression between control and KO samples was significant and largely 

confined within those modules wherein the knocked out genes were originally members. These 

interventions provide evidence that transcriptional control acts through the coexpression network, 

or the mechanisms that generate the network structure. Since coexpression networks are static, 

such comparisons of networks between two conditions can highlight genes that are more causally 

linked to observed effects. For instance, a comparative module-membership approach 

characterized a set of genes which are likely involved in neurogenesis. By contrasting membership 

in an astroglia-related module found in the subventricular zone of the caudate nucleus with the 

module membership of an astroglia-related module common to many brain areas, Oldham et al. 

(2008) produced a short list of candidate genes predicted to be associated with neurogenesis in 

the adult human brain. Using differences in connectivity (differences in module membership) to 

highlight genes related to a specific cellular process is a reversal of the standard logic that 

common functions reside in specific modules. As modules provide a specific biological context for 

the activity of hubs, so too does differential connectivity extend the relevance and power of 

module-based understanding of biological functions (see below). 

1.3.4 Differential coexpression – using changing network structure to highlight 

disease effects 

Many coexpression network-based studies use guilt-by-association algorithms to find new 

putative disease genes. These rely on identification of hub-genes or modules that have high 

connectivity to known disease genes. The methods are therefore not completely unbiased, as they 

rely on existing knowledge, and they are acausal, in that the putative disease genes may only be 

correlates of the essential disease process, because they have been selected from a static 

network structure. Differential coexpression algorithms skirt both of these issues by contrasting 

network connectivity in control and disease states to highlight genes associated with structural 
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alterations that occur between control and disease states. Differential coexpression algorithms are 

aimed to detect changes in the correlation values between the full correlation matrices generated 

by control data vs correlation matrices generated by disease data. Differential coexpression 

between two genes or groups of genes may or may not occur alongside differential expression, as 

the two measurements are mathematically independent. Studies have shown both an interesting 

collusion of differential connectivity with differential expression but also that differential connectivity 

can highlight causal factors that differential expression fails to detect (Reverter 2010). As detection 

and understanding of differential coexpression improves, it may be possible to track adaptive 

cellular processes as new modular functions are recruited/disbanded, or to determine the 

transcriptional control mechanisms behind these changes, which would be useful even in 

traditional microarray analysis. But these techniques to track the evolution of network structure in 

disease, and the potential for differential coexpression analysis, are tempered by several statistical 

challenges.    

The increased detail of differential coexpression is accompanied by increased statistical 

challenges determining if two networks, each based on noisy correlation matrices, are significantly 

different. While multiple testing limitations are a constant concern in traditional microarrays, 

differential coexpression faces severe multiple testing challenges, because in a network of n genes 

there are (n^2/2-n) possible links (correlations) that may change between conditions. This huge 

number of possible individual changes has prompted most researchers to adopt techniques that 

aggregate differential coexpression on a per-gene, per-probeset or per-module basis, reducing the 

scale of multiple testing adjustments to those of traditional microarray experiments. Establishing 

high confidence coexpression links requires significantly more replicates than traditional 

expression-level experiments, but finding stable distinctions between correlation values requires 

even more replicates: the few existing differential coexpression analyses have used between 30-

300 samples per group, which severely limits current applications. For these reasons, differential 

coexpression has been used for cancer datasets and knock-outs wherein the disease effects are 
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relatively large, compared to psychiatric datasets. However, there would be significant benefits in a 

more causally linked understanding of how disease impact percolates and reconfigures hundreds 

of interactions in neuropsychiatric disorders, if sufficiently large datasets become available. 

Because differential coexpression analysis is recent and limited, almost every publication to 

date employs a different statistical test to find these changes in correlation. The methods may be 

broadly grouped into approaches that (1) identify significant correlations in control and disease 

networks separately, in which differential coexpression is defined as net gain or loss of correlation 

for particular genes (Choi et al, 2005; Fuller et al, 2007; Kostka and Spang, 2004; Lai et al, 2004; 

van Nas et al, 2009; Wong and Huk, 2008) or (2) approaches that stress the total amount of 

rewiring (differential correlations), regardless of changes in net connectivity  (Hudson et al, 2009; 

Leonardson et al, 2010; Reverter et al, 2010; Tesson et al). While these two approaches may 

appear similar, the second approach skirts the troublesome issue of fixing individual cutoffs for 

control and disease networks, and facilitates simultaneous detection of both gain and loss of 

coexpression associated with single genes or pathways. Nevertheless, the first approach has also 

been used successfully, exemplified by Choi (2005) who used extensive permutation testing to 

conclusively demonstrate, for the first time, the existence of differential coexpression between 

control state networks and a collection of cancer datasets. To understand the contribution of 

network reconfiguration to disease, they identified modules of genes which were correlated only in 

control or cancer-state networks, which were generally related to control of cell-cycling. Thus, 

groups of genes which are differentially correlated, appear to correspond to disease processes.  

What other biological pressures can produce differential coexpression? Cataloging how 

networks change across different organisms may improve our basic understanding of how network 

architecture supports normal function, which ultimately could lead to more informed analysis of 

disease states. Speciation, aging and sex appear to each be accompanied by specific network 

alterations (differential coexpression) that are related to the comparative function of organisms. In 

a study that simultaneously considered differential expression, differential coexpression, and 
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differential modules between humans and chimpanzees (Oldham et al, 2006) researchers found 

that genes over-expressed in particular brain regions tended to be coexpressed in modules. 

Furthermore, modular conservation (similarity of connections within modules of genes over-

expressed in a particular brain region) reiterated evolutionary conservation between human and 

chimpanzee brain regions. This divergence in connectivity appears to be driven by divergence in 

genome sequence, as highly differentially coexpressed genes had significantly larger sequence 

changes between species than genes that maintained connectivity across species. Thus it appears 

that coexpression network organization corresponds to those biological processes that distinguish 

larger morphological and developmental features. 

Identifying differential coexpression between different age-ranges in humans is difficult 

because thousands of genes have a robust existing correlation with age and because it is unclear 

where to segment the data into relevant epochs, from which to calculate correlation values. Since 

wavelets have the ability to contrast behavior across multiple scales, Gillis et al. (2009) used the 

Haar transform to compare coexpression patterns from several age groups ranging from pre-natal 

to geriatric. They found that even excluding genes which have expression-level correlations with 

age, there are significantly altered correlations between genes across multiple age-ranges. These 

appear to be very biologically coherent, as the GO over-representation for differentially 

coexpressed genes had significantly superior ROC characteristics, even to standard coexpression 

modules. These analysis of these GO processes is complex due to many possible pair-wise 

comparisons between age ranges, but they roughly reiterate known aging properties, for example 

with hormonal-mediated processes associated mainly with early life. Chromatin remodeling may be 

one process specifically linked to differential coexpression, as gene members of modules that 

became decorrelated with increasing age (in mice) were frequently colocalized on chromosomes 

(Southworth et al, 2009). Differential coexpression also occurs on an even shorter time-scale, as a 

study using rare human time-series microarrays over a 24-hour period found that thousands of 

genes in whole-blood samples experience significant rewiring in response to food and diurnal 
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rhythms (Leonardson et al, 2010). Thus it appears that differential coexpression is actively 

controlled within organisms and may be a component in implementing particular transcriptional 

programs. 

Further indication that changes in microarray correlation structure relate to functional 

differences may be found in multi-tissue comparisons of male and female mice. van Nas (2009)  

noted that the majority of links were conserved in all tissues: the overlap in significant links varied 

from relatively low correlations of 0.5-0.7 (adipose and liver) to greater than 0.9 (brain and muscle). 

Within this broad similarity, simultaneous differential expression and coexpression analysis showed 

punctuate modules found only in males that were enriched in genes related to spermatogenesis. 

Aside from these specific differences, since the network structure remained intact, and there were 

a large number of differentially expressed genes in all tissues, this indicates that expression level is 

not necessarily dictated through network structure. Rather, based on evidence in the study, within 

species, the potential correlation structure remains in the background and may be activated (show 

increased expression) via transcription factors that act on all members of the module. While there 

is no apparent mathematical or biological principle that seems to consistently determine when 

differential expression and differential coexpression overlap, (or not), they do appear to regulate 

sets of functionally related genes in concert. 

1.4 BIOLOGICAL COEXPRESSION MECHANISMS 

Intro to transcriptional mechanisms behind coexpression  Based on these numerous 

studies, coexpression links and higher-order coexpression network structures (modules) appear to 

reflect meaningful transcriptional programs that provide the cell with appropriate levels of mRNA 

and are devoted to some unitary/modular function. While this may be the purpose of correlated 

expression among functionally related genes, what are the physical mechanisms that produce 
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gene coexpression? Correlated gene expression reflects multiple influences from structural and 

dynamic processes in the cell. The most reproduced and influential mechanisms relevant to 

synchronous mRNA expression are common transcription factor binding sites, chromosome 

location, epigenetic modification and chromatin remodeling. These influences on transcription each 

have their own regulation, and these mechanisms interact and all contribute to the final output of 

correlated gene expression. Thus, coexpression links, or changes in coexpression structure are a 

proxy for many background regulatory processes. Therefore, to interpret results of gene 

coexpression studies, it is helpful to know what biological processes are encapsulated and 

measured by gene coexpression. 

1.4.1 Genome organization is a foundation of coexpression 

There is a long-standing observation in multiple species that genes with similar functions 

tend to be proximal to each other on the genome, specifically that adjacent genes are likely to 

share GO categories (Caron et al, 2001; Cohen et al, 2000). Since RNA polymerase apparently 

acts outside of the exact domains of individual genes (Boutanaev et al, 2002; Ebisuya et al, 2008), 

and since functionally related genes are often adjacent, these two mechanisms operating together 

could combine to regulate functionally related genes (Xu et al, 2009), which would ostensibly be 

advantageous for the organism, and which would then be detected as synchronous transcript 

fluctuations by microarray (Chen and Zhao, 2005). 

The definition of what constitutes adjacent genes may have a significant influence on the 

odds of coexpression. RNA polymerase runs 3’ to 5’ on DNA, and thus genes are typically read off 

sequentially in one direction from a single strand of DNA. However there are many bidirectional 

promoters (Trinklein et al, 2004), that can lead to transcription of genes that are actually upstream 

of the promoter on the opposite strand of DNA. The operation and function of these bidirectional 

promoters are still debated: some studies find their gene products tend to be antiregulated (Chen 
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et al, 2010), though others have found a lack of coregulation (Ebisuya et al, 2008) and yet others 

have found positive correlations (Chen et al, 2010; Sémon and Duret, 2006; Trinklein et al, 2004). 

The function of genes transcribed through bidirectional promotors tend to be related to DNA repair 

and somatic cancers, (for instance BRCA2 has bidirectionally transcribed partners) though the 

reason for this association and physical mechanisms of bidirectional polymerase recruitment by a 

single transcription factor are unknown (Yang et al, 2007).  

Analysis of how coexpression relates to inter-gene distance (on the same DNA strand) 

indicates that close proximity (under 50kb) leads to a relatively small, but highly significant increase 

in coexpression r=~.1 between genes (Baskerville and Bartel, 2005). If more than two genes are 

found in close proximity (known as a cluster of genes, and precise definitions of cluster varies 

between studies), then the odds of coexpression are much higher (r=~.8), at which level 

coexpression could be detected by microarrays (Ng et al, 2009), though this is likely organism- and 

tissue-specific. Despite the overall higher correlations between genes defined as coexpressed in 

microarrays (e.g. r>0.7) compared to the low average coexpression of adjacent genes, in humans, 

adjacent genes are twice as likely to have common GO categories as coexpressed genes 

(Purmann et al, 2007).  

To quantify the relative influence of genome position on generating functionally related 

coexpressed genes vs other mechanisms of producing related pairs, Yanai (2009) compared 

transcription in two morphologically similar species of nematodes and found that coexpression of 

adjacent genes was largely species-specific, unless the genes were essential. The expression 

level of genes which changed genome position was strongly dictated by levels of its (new) 

neighbor. Similarly, Ebisuya (2008) found that when cells expressed early immediate genes (IEG's) 

in response to environmental stress, they also tended to coexpress “functionally unrelated” genes 

as well, which were close to the early immediate genes. Such “ripples” of transcription would 

produce another level of transcriptional control, if the position of genes on the genome represents 

a distance code for functional relationships. However, the ripples were also associated with histone 
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acetylation in the region of the IEGs, indicating cooperation between genome distances and 

another mechanism of coexpression. 

Because adjacent genes interact with the histone and transcription factors which also have 

clustered activity on the genome, it seems possible that the functionality associated with adjacent 

genes could be epiphenomenal and completely accounted for by these other clustered functions. 

However, attempts to subtract out these interacting clustering mechanisms by tracking the location 

of transcription factor binding sites and using ChIP-chip measures to detect histone binding, could 

not account for the majority of coexpression in adjacent genes (Purmann et al, 2007). In summary 

the genome appears to be organized in such a way that it supports coexpression of functionally 

related genes. The intrinsic contribution of inter-gene distances to observed coexpression in 

microarrays may be small, but the adjacency of functionally related genes interacts with histone 

and transcription factor binding to facilitate expression of related genes. 

However, the exact contribution of each mechanism with genome organization, and a 

consistent evolutionary explanation for how genome reordering leads to functional advantages 

(beyond the basic idea that coexpression of functionally related genes is beneficial) are currently 

lacking. Furthermore, conflicting and imprecise definitions of what constitutes a 

domain/family/cluster hamper direct comparisons of results. A coherent analysis of overlap 

between the intersecting clusters, defined by the several biological systems that interact with DNA, 

would be helpful in clarifying how these control system combine to produce appropriate expression 

levels. To prevent needless parallel development of similar ideas, or worse needlessly conflicting 

paradigms, methodological “shootouts” between various methods would be very informative. While 

some studies of cooperative coexpression mechanisms exist (Byrne et al, 2007; Ren et al, 2005; 

Zhan et al, 2006), a more typical pattern of research is to propose new methods without systematic 

comparison to older methods or application to multiple organisms. 
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1.4.2 Biological basis of coexpresssion – transcription factors 

Levels of transcription factors (TF's), which bind to DNA and facilitate transcription, are a 

major determinant of mRNA levels (Jothi et al, 2009) and their nuclear receptors are the targets of 

10% of all therapeutic drugs (Overington et al, 2006). Because each TF may have numerous DNA 

binding sites, they are hypothesized to be a major source of correlated gene expression (Allocco et 

al, 2004; Altman and Raychaudhuri, 2001; Brazma et al, 1998; Marco et al, 2009). By the transitive 

property, the study of coexpression networks will be in part the study of transcriptional regulatory 

networks. TF's themselves are subject to regulation (activation and inactivation) by other TF's in 

what are known as transcription factor networks, or more broadly, transcriptional regulatory 

networks (Babu et al, 2004) (Guelzim et al, 2002) (Yu et al, 2003). Therefore, properties and 

structures of transcriptional regulatory networks may be relevant to the endpoint mRNA expression 

and associated cellular states.   

One important caveat to the details of TF activity is that most systematic studies are 

completed in E.coli or S.Cerevisiae since ChIP-chip assays are noisy (likely due to intersecting 

biological influences on TF binding) and therefore the highest quality TF maps are available for 

these organisms (Zhu et al, 2007). While it is hoped that principles from these organisms extend to 

humans, some facets, such as coexpression of genes for proteins found in complexes, (Zampieri 

et al, 2008) may not apply equally well to humans (Xulvi-Brunet and Li, 2009) and identification of 

TF binding sites in higher organisms is expected to be difficult and currently less accurate (Tompa 

et al, 2005). 

 The broad structure of TF networks is one of small in-degrees and large out-degrees, 

meaning that TF-TF regulation is relatively simple, but each TF controls many gene targets. This 

asymmetric nature of TF connectivity is also seen in coexpression networks, wherein sorting genes 

by their signed connectivity (number of positive and number of negative correlations) reveals gene 

hubs that code for transcription factors have large positive correlations with many genes and few 
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negative correlations (Gustin et al, 2008). The global connectivity of transcription factors (the set of 

TF-TF interactions and the gene targets of expressed TF's) and the distribution of network motifs 

are globally reconfigured between biological states in yeast (Luscombe et al, 2004; Ni et al, 2009). 

Most of the 150 TF's in yeast are expressed in response to more than one endogenous or 

environmental perturbation, indicating these networks use combinatorial logic to produce a larger 

number of cellular responses than expected under pure 1-to-1 TF-to-environment regulation.   

What is the mechanism that allows for specific expression of the exact set of genes 

necessary for adaptation to external influence on a cell? A hierarchical organization in the 

transcription regulatory network would allow controlled expression of a coherent set of target genes 

(Ma et al, 2004; Yu et al, 2003). While hierarchical organization has not been conclusively 

dismissed (by examining the relationship of comparing clustering coefficient to degree (Barabasi 

and Oltvai, 2004), the presence of numerous feedback loops among transcription factors and their 

targets makes pure hierarchical feed-forward architecture unlikely. Despite the presence of 

feedback loops in regulatory networks, which would appear to prevent hierarchical specificity in 

gene targeting, it appears that transcription factor binding sites are organized on DNA in a manner 

suggestive of transcription that is highly targeted at specific selection of genes. Specifically, TF 

binding sights are most commonly found on specific chromosomes, and on those chromosomes for 

the specific TF there are select regions with high densities of binding sites, and within those 

regions binding sites are often adjacent to commonly coexpressed gene sets (Janga et al, 2008; 

Vogel et al, 2005). 

Practical caveats in hierarchical control of expression by transcription factors The concept 

of a hierarchical control structure (transcription factor network) converting environmental and 

endogenous signals into appropriate and comprehensive sets of transcriptional activity is very 

elegant. While some studies indicate that transcription factor networks act in approximately this 

fashion, in practice there are limitations on the power of this mechanism to control expression. For 

instance, the transcription factors are assumed to regulate proximal genes, but may leave those 
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unaffected, and in fact regulate distant genes (Hartman et al, 2005).  Alternately, deleting a 

transcription factor does not universally silence its targets (Gasch et al, 2000; Greenbaum et al, 

2003). Contrary to assumptions behind algorithms that generate TF network structure, in some 

cases, the binding site is far away from the observed gene response (Carroll et al, 2005). 

Furthermore, transcriptional regulatory networks show an irregular pattern of conservation across 

species, wherein closely related species may have widely different regulatory interactions, while 

quite different species have similar networks (Venkataram and Fay, 2010). Thus many aspects of 

TF activity are not fully quantified, they form a likely, but not universal, basis for coexpression 

relationships.    

Some of these points of uncertainty about TF function may be explained by additional 

mechanisms that redirect the TF targets under certain cellular regimes, or by variable transcription 

efficiencies under combinatorial TF control, but the point remains that TF networks are currently an 

incomplete mechanism for correlated gene expression. The broad solution to this uncertainty 

would be systematic investigation to characterize TFs by their network position, rates of activation 

and type of interaction. Any broad relationships between these variables would be useful in 

understanding how transcriptional programs are implemented, which would provide additional 

meaning behind observed coexpression relationships.   

1.4.3 Do coexpression networks mirror protein-protein interaction networks? 

What is the biological justification for coexpressing gene sets? While there are many 

explanations for how coexpression occurs mechanistically, and how it might have evolved, these 

do not necessarily provide a rationale for the prevalence of coexpression. Most commonly, 

researchers show that coexpressed genes have an overabundance of select GO terms, but that is 

as far as the characterization proceeds, with few exceptions (Oldham et al, 2008; Winden et al, 

2009). One stoichiometric justification for the prevalence of genes regulated with equal proportions 
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(i.e. coexpressed genes) would be if those genes form protein complexes. If this is the case, then 

coexpression links should align with PPI (protein-protein interaction) links, since PPI links are 

determined by physical binding of proteins. Different organisms and methodologies presents 

conflicting evidence for the extent of link overlap between coexpression and PPI networks. The first 

examination of this relationship found a weak overlap between coexpression and PPI's (Ge et al, 

2001), however, that was likely due to the essentially erroneous inclusion of dimerization (self-

links) from the PPI, when no such phenomenon of self-regulation is possible to measure in 

microarrays (Xulvi-Brunet et al, 2009). Similarly, while Bhardwaj and Lu (2005) are often cited as 

supporting links between protein network structure and coexpression, careful examination of the 

actual evidence in that paper shows the associations are quite weak. But when using a selection of 

hub genes based on every MOE430 array in the GEO database, Winden (2009) found that 

coexpressed gene pairs were likely to be part of a protein complex, a finding supported by Oldham 

(2008).  However, in an exhaustive comparison of yeast coexpression to PPI's, in this well 

annotated organism, there was little if any relationship between the global organization of the two 

networks (Xulvi-Brunet et al, 2009). These conflicting results indicate either variable conservation 

across species, small but highly significant overlap between coexpression and PPI's, crucial 

methodological differences in determining network overlap, or some combination of these factors. 

Systematically deciding when and if coexpressed genes take part in a protein complex could 

provide a more specific mechanistic link from coexpression to cellular function, rather than the 

often broad GO categories used most times to classify coexpressed gene function. 

1.4.4 Biological mechanisms of coexpression – chromatin remodeling 

Histones are a collection of proteins that bind to DNA and control transcription of between 

2% and 10% of genes, by affecting transcription-factor access to DNA (Lee et al, 1993).  Each 

nucleosome (multi-histone complex) can tightly bind a variable amount of DNA as a function of 
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small molecular groups attached to the molecular tail of the histone (Strahl and Allis, 2000).  Since 

a histone or series of histones may expose or conceal several genes simultaneously, this may be a 

biological process that contributes to coexpression relationships. While there is little experimental 

literature describing a coexpression-histone relationship, there are no negative reports and two 

positive reports (Chen et al, 2005; Deng et al, 2010a). Since epigenetic mechanisms appear to be 

important in depression pathogenesis, we present an overview of potential coexpression 

mechanisms operating through histones. 

Histones exert control over transcription of genes sets through a combination of pervasive 

transcription in tandem with HDACs and HATS (histone deacetylases and histone acetyl 

transferases) which operate like global gain controls on transcriptional efficiency. Since each 

nucleosome only binds 147 bp of DNA it appears unlikely that histones directly induce 

coexpression by binding and unbinding to several sequential genes, although no studies have 

directly addressed this. There are two broad trends in the literature for how histone-DNA 

interactions could lead to coexpression, which we term the passive and active mechanisms.   

In the passive mechanism of histone-induced coexpression, histones appear to be 

clustered into groups on the chromosome which operate as road blocks to pervasive transcription 

(Chen et al, 2005). By consistently derailing polymerase at particular points during sequential gene 

transcription, histones may be responsible for defining coexpression membership of large groups 

of genes. Originally this role for histones was thought to explain coexpression of long swathes of 

unrelated genes (Boutanaev et al, 2002), but it appears that there are also common GO 

descriptions of genes demarcated by clusters of histones, so transcriptional proximity and histone 

boundaries may operate in tandem to promote transcription of genes sets with variable biological 

coherence (Batada et al, 2007).  Generally it appears that regions of DNA tightly bound by histones 

(heterochromatin) are capped by insulators (also called boundary complexes/elements) that 

segregate DNA into sets of continuous domains, prone to coexpression (Chen et al, 2005; Deng et 

al, 2010b; Li et al, 2010). Also, such chromatin domains initially appeared to be rare and the genes 
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they contained varied completely between species (Valenzuela and Kamakaka, 2006). Now it 

appears that the majority of DNA is organized into domains and that these insulators may play an 

analogous role to promoters in selected sets of coexpressed genes (de Wit et al, 2008; Raab and 

Kamakaka, 2010).  

The overall balance of HATs and HDACs is a critical component of homeostasis wherein 

excessive HAT activity is associated with cell death and HDAC activity is associated with cancer 

(Barlev et al, 2001; Carrozza et al, 2003; Minucci et al, 2006). Therefore, an active mechanism of 

histone-based coexpression would be through the balance of HDAC and HAT activity which could 

lead to synchronous expression of hundreds of genes. In general, sequential segments of 

chromatin tend to have similar acetylation status (Sproul et al, 2005).  As opposed to looking at 

how histones may lead to coexpression by halting transcription, an inverse question would be: “are 

neighboring genes that are coexpressed bound by histones with identical acetylation status”. If so, 

this would permit transcription of several neighboring (and ostensibly functionally related) genes. 

While adjacent histones are frequently acetylated or deacetylated together, the influence of 

identical histone acetylation status appears to only synchronize gene neighborhoods of 

approximately 4 genes in length (Deng et al, 2010a). Thus, while there are multiple ways that 

histone modifications could lead to coexpression, their contribution appears to be limited to small 

communities of genes. 

Chromatin conformation and coexpression Insulators may also play a role in the most 

recently described mechanism behind coexpression: chromosome interactions. Through 

mechanisms that are currently unclear, during chromosome interactions, insulators or regulatory 

elements can interact with other regulatory elements or promoter sequences that may be 

physically distant on the same or different chromosome (Engel and Tanimoto, 2000). The 

mechanisms for bringing DNA strands together or linking them is unclear and debated, but these 

interactions occur frequently between specific sections of distant chromatin (Dekker, 2008). 

Chromatin interactions generate large DNA loops that encompass hundreds of genes. This higher-
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order DNA structure is relevant to coexpression, because there is some evidence that these 

interaction sites occur at “transcriptional factories” wherein genes near the interaction site are 

highly transcribed (Sutherland and Bickmore, 2009).  Because chromosomal interactions are 

transient, this could lead to consistent groups of genes with fluctuating expression levels: i.e. 

responsible for some portion of the coexpression signature. Since the discovery that these 

interactions are detectable and prevalent, the shift from using PCR (in the original 3C technology – 

“chromosome conformation capture”) to deep sequencing (in the current “Hi-C” technology) has 

improved the resolution at which chromosome interactions can be located (Lieberman-Aiden et al, 

2009). Now it appears there may be a hierarchy of spatially adjacent regions on chromosomes in 

their natural 3D configuration. There is also evidence directly linking sites of chromatin interactions 

to coexpression of neighboring genes (Deng et al, 2010a).  Either the transcriptional factories 

hypothesis or some other facilitation of expression upon chromosome interaction could be 

responsible for the observed high correlation of genes near chromosome interactions sites. The 

observation that 3D chromosome configuration may play a role in coexpression indicates that 

many previous studies, which focused on linear adjacency on chromosomes, likely missed a large 

portion of geometry-driven gene correlations.  

1.4.5 Relationship of cellular coexpression mechanisms to measured expression 

correlations 

 Each microarray chip measures bulk mRNA levels derived from a variety of cell-types which 

are present in a given homogenized brain sample. Natural variability in the density of these various 

cell-type populations is another possible source of correlated genes expression. Under this 

paradigm, coexpression modules are generated by variability in numbers of specific cell-types 

across multiple brain samples. Because cell-types have similar levels of gene products, in 

microarrays across multiple subjects, these transcript sets will covary. In the same way, sub-
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commmunities of cells under common physiological influence, with similar activity-driven 

transcription, could also generate correlated expression. To validate this bulk coexpression 

mechanism, it would be necessary to check if certain genes are coregulated within certain cell-

types, and then also to check if these genes are correlated in homogenized microarray samples. 

This exact experiment has not been performed, but unique cell-type gene markers are known to 

exist, and some coexpression modules are enriched with markers for major cell-types (Oldham et 

al, 2008); therefore bulk coexpression (generated by cell-number variablity) appears to be a 

plausible source of detected gene correlations.   

 This source of coexpression is in some ways distinct from cellular mechanisms of 

coexpression, in that it represents fluctuations in the bulk quantity of mRNA from cell populations, 

rather than actively regulated processes within single cells. However, if this were the only source of 

correlated expression, there would be tight relationship between differential expression and 

coexpression. Namely, condition-specific modules would always be up- or down-regulated, when in 

fact they may not show differential expression at all (de la Fuente, 2010) - this indicates that 

internal cellular coregulation mechanisms make a contribution to coexpression. Furthermore, the 

mechanisms that maintain the transcriptional profiles of specific cell-types are many of the same 

mechanisms that generate cellular coexpression. Thus natural variability in the prevalence of 

certain cell-types could generate gene correlations, but the set of genes which covary by this 

mechanism may also stem from cellular mechanisms of coexpression. 

1.4.6 Summary of transcription regulatory systems affecting coexpression 

The regular structure of coexpression networks across multiple species is remarkable in 

light of the conglomeration of biological mechanisms that generate gene correlations. There is 

some seemingly incidental interaction between the correlation mechanisms (Lercher et al, 2003), 

but there is no overarching uniform control over coexpression mechanisms. While transcribing 
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genes in regulated fractions may be convenient from a cellular perspective, this is scarcely an 

explanation for how the assortment of regulatory mechanisms that form the physical basis for 

coexpression cooperate to generate appropriate levels of functionally related gene sets. The 

analysis of network structure generated by these mechanisms takes place in a parallel world of 

research that is oddly removed from the details of cellular mechanisms, (with rare exceptions, see 

Hudson (2009)) wherein consistent network geometry and carefully delineated network structure-

functions are expected.  

There have been no systematic studies that consider the contributions of TF’s, histones, 

chromosome location, and epigenetic modifications to the final structure of coexpression networks. 

This is likely due to challenges of rallying molecular expertise to focus on a single organism and 

the tendency to work inside specialties that only cover a single mechanism. Since the various 

mechanisms responsible for coexpression do interact, and the global structure of coexpression 

networks recapitulates an orderly categorization of cellular functions, examining how multiple 

coexpression mechanisms are aligned to achieve a particular functional goal without 

counterproductive cross-talk could be helpful in knowing what types of dysfunction to look for in 

disease states.  

1.5 OVERVIEW OF RELEVANT COEXPRESSION METHODS 

 This section provides definitions and rationale for statistical techniques used in building 

coexpression networks, with emphasis on the qualitative logic for quantative decisions. This is not 

a review of all coexpression techniques, only fundamental techniques directly applicable to 

Chapters 2-4. Complete detailed methods for individual studies may be found in Chapters 2-4, and 

this section is intended to be read in conjuction with them as a reference.  
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As detailed in Chapter 1.3, many biological processes lead to correlated expression levels 

among multiple genes. To build coexpression networks, these gene-gene correlations are 

commonly detected using Pearson correlations. The Pearson product-moment correlation 

(Pearson correlation, denoted ρ) maps the relationship of two variables (typically genes 𝑋 and 𝑌 

measured repeatedly across n subjects) onto [-1:1] as a function of the linearity of their 

relationship. 

𝜌(𝑋,𝑌) =
𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

 

where the covariance of 𝑋 and 𝑌 is defined as: 

𝑐𝑜𝑣(𝑋,𝑌) = � (𝑋𝑖 − 𝑋�
𝑛

𝑖=1
)(𝑌𝑖 − 𝑌�) 

and the standard deviation is defined as: 

𝜎𝑋 = �� (𝑋𝑖 − 𝑋�)2
𝑛

𝑖=1
 

For a microarray dataset of p-genes by n-samples, the Pearson correlation between all p 

genes produces a symmetric p x p dimension correlation matrix A, whose entries aXY equal the 

correlation of genes 𝑋 and 𝑌 across all n samples. This matrix of correlations between all pairs of 

genes is referred to as the (raw) correlation matrix. After various transformations this becomes the 

adjacency matrix that describes the existence of links between pairs of genes. Note that we will 

refer to the entries of the correlation matrix A as aij, because while nomenclature for correlation is 

between variables 𝑋 and 𝑌, coexpression nomenclature refers to gene pairs i and j.  

Correlation properties relevant to coexpression networks:  A common worry in coexpression 

networks is that the Pearson correlation will be driven by spurious/random correlations between 

genes. While outlying values can drive correlations, the significance of Pearson correlation values 

increases with increasing sample size, as the likelihood of spurious correlations decreases (a 

process depicted in Figure 20A). The significance may be robustly calculated through a 

permutation procedure, or through the student's distribution, but the latter assumes the dataset is 



 

69 

 

large and normally distributed. Pearson correlation will not detect non-linear relationships between 

genes.  

Using mutual information as a metric for gene-gene relationships could detect non-linear 

coupling, but even a recent algorithm that dramatically accelerates the calculation (Qiu et al, 2009), 

is still significantly slower than using Pearson correlation - a key shortcoming when huge 

adjacency matrices must be repeatedly calculated. Also, given the size of typical postmortem 

datasets, it is unlikely that non-linear relationships can be detected, and pragmatically, the gene 

sets with the highest mutual information and highest correlation scores are very similar (Steuer et 

al, 2002). 

Link selection methods – transforming correlation matrices into adjacency matrices 

Transforming microarray measurements of transcript expression level into networks of interactions 

is a critical task in gene network analysis, because techniques and parameter choices at this stage 

will influence the biological conclusions drawn from network structure. In the context of 

coexpression networks, the question of what constitutes a link is equivalent to the question of what 

correlation values represent true biological relationships. Since not all biological relationships are 

known, and indeed coexpression networks are often used to discover new relationships, calibrating 

correlation-based information to biological reality is challenging. It is possible to use known 

biological information, the network structure of inferred networks, or some combination of these to 

optimize the selection of which correlations are deemed coexpression links. Prior to selecting 

certain correlations as coexpression links, a larger question that should be addressed is why any 

threshold/weighting function should be applied to the basic correlation matrix. There are statistical, 

computational, and biological reasons to apply some filtration to the full correlation matrix. 

Statistical rationale for thresholding: Due to random effects, there is some distribution of 

non-zero correlation coefficients for any dataset. This null distribution can be estimated by 

scrambling the rows of microarrays (in the standard microarray format rows are genes and 

columns are samples) and again calculating the correlation between all genes (examples of the 
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null distribution shown in Figure 20A). These null distributions can be used to estimate the 

likelihood that a correlation of given magnitude would be observed at random. As a practical guide, 

for postmortem samples sizes suitable for building gene networks (roughly n>=20), random 

correlations greater than 0.4 are almost never observed, although a specific function can be 

generated for any dataset that estimates the link false discovery rate. Thus there is strong 

evidence that the different levels of correlation may be filtered according to their corresponding 

levels of confidence.  

Computational rationale for thresholding:  Most inferred biological networks have a 

connectivity of ~1%. This means that of the (n^2-n)/2 possible unique connections between n 

nodes, only about 1% of them are "truly" utilized by biological systems. This limited connectivity is 

beneficial when computing statistical measures of connectivity, because the requisite 

computational time is a linear or non-linear function of the number of vertices and edges in the 

graph. Therefore, assuming 1% connectivity, it will be roughly 100 times faster to compute a 

statistic on a thresholded/binarized graph, vs full correlation matrix. If the time required is an 

exponential function of the number of edges, then it may be 106 or more times slower for typical 

algorithms to work on full matrices. When operating on networks with 20K-50K nodes, frequently 

encountered in microarrays, the dramatic increase in time required to compute classic graph 

statistics such as clustering coefficients and pathlength on full matrices is prohibitive. 

Biological rationale for thresholding:  Coexpression link strength varies with 

tissue/condition/platform, but based on large-scale analysis across tissues (Day et al, 2009; Prieto 

et al, 2008), there is some evidence for selective and robust correlation of certain genes, and thus 

a broad distinction between real and random/spurious correlation levels. But do smaller distinctions 

in correlation (for instance between 0.8 vs 0.6) matter to cellular function? While highly correlated 

genes are involved in common biological process, it is unclear how cells would utilize or create a 

full gradation of correlation values - the full correlation matrix. There is no evidence of active 

regulation of particular coexpression relationships down to a specific decimal place value. However 
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there is evidence for a continuum of biological reality tied to the continuum of correlation values, 

since using the scale-free criteria (see below) to weight the raw correlation matrix improved the 

clustering of biological functions (Zhang and Horvath, 2005). 

Specific methods for thresholding/weighting gene correlations There are many possible 

functions that could be applied to correlation matrices to achieve the goal of filtering out irrelevant 

correlation values. Specific methods try to achieve this goal by relying on known biological 

information, the network structure of inferred networks, or some combination of these, to optimize 

the selection of which correlations are deemed coexpression links. These different approaches 

mean that there may not be a universal optimum method for filtering correlations. But for particular 

applications there may be an optimal method, which has useful features and irrelevant 

weaknesses. Several that have been used in associated literature are briefly reviewed here, and 

choice of methods in Chapters 2-4 will be discussed in light of these options. 

Arbitrary correlation filters: The simplest way to filter out low correlations consists of setting 

all correlations with absolute value less than some threshold 𝜏 to zero and setting all correlations 

greater than 𝜏 equal to one – they become coexpression links:  

𝐴𝑖𝑗 = �
1 if �𝑎𝑖𝑗� ≥  𝜏
0 if �𝑎𝑖𝑗� <  𝜏

� 

For a dataset of a given size, an experienced researcher can use arbitrary cutoffs as a way 

to prototype network structure, but formally employing this method to generate networks is 

questionable. Using the highest 1% of all correlation values has been shown to select genes with 

related functions (Shi 2010, Lee 2004). Picking an arbitrary threshold in the range of what has 

been used by other studies may produce significant biological relationships between coexpressed 

genes, but that does not mean that the resulting network is the best representation of coexpression 

relationships. Even if a threshold is optimal in one study, there is no justification for using it as a 

universal threshold in other studies, as some coexpression networks may have different levels of 

connectivity (Reverter et al, 2006). 
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Network structure-based correlation filters:  Biological networks show prevalence of non-

random network structures (such as specific degree distributions and modularity). Therefore, 

assuming that one or more of these graph features are indicative of biological information, it is 

possible to select a threshold that maximizes these features in the network. Again, assuming the 

particular network feature is indicative of biological function, this threshold selection technique 

should maximize the biological information contained in a network. (This procedure is illustrated 

schematically in Figure 2.) The success of these methods therefore depends on the veracity with 

which the presence of some graph measure corresponds to biological interactions, and depends 

on also the technical implementation of the method. We provide an overview of three popular 

network structure-based correlations filters: maximum clustering, maximum thresholding, and 

scale-free criterion methods of threshold optimization.  

 

 

Figure 2 Typical behavior graph statistics calculated from real vs randomized networks over a 

range of possible threshold values.  

Some techniques for correlation threshold optimization attempt to maximize a graph statistic 

(network feature) vs randomized networks, in order to predict the optimal threshold value. 
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Examples of relevant graph statistics could be clustering coefficient or synchronzability. See Figure 

6A for an actual example of this strategy. 

Maximum clustering thresholding: Biological networks are characterized by local 

communities - semi-isolated groups of nodes with dense interconnections, and these communities 

often correspond to functional units. The clustering coefficient (see formula below) is a classic 

method to detect evidence of local (functionally homogeneous) communities. Therefore the 

biological information in a network should be maximized by selecting the threshold with the 

maximum clustering coefficient (compared to degree-matched random networks).  

Maximum modularity thresholding: The concept of modularity extends the concept of 

clustering to larger communities that may be separated by more than a single link. Since biological 

networks are characterized by modular structures of dedicated function, optimizing the threshold 

for maximum modularity will expose the community structure in a network. This point will occur 

somewhere between the extremes of a low threshold (in which all nodes are coupled) and a high 

threshold (wherein the network has too few nodes, or is overly fragmented) as depicted in Figure 

20C. These goals are very general, and efficiently estimating what threshold will produce high 

modularity requires a graph measure that encapsulates the degree of modularity in the entire 

network. A measure that fits these criteria, “synchronizability” (see definition below) is a single 

graph statistic related to the number of nearly disconnected modules in a network and total 

network diameter. When it is calculated for a series of thresholds, it reaches a nadir at the point of 

maximum network modularity (Borate et al, 2009; Perkins and Langston, 2009).   

Scale-free criterion: Since many biological networks are scale-free, this structure can be 

used to calibrate link selection. By applying cutoffs at a series of correlation values, and estimating 

how well the resulting networks fit the scale-free connectivity distribution, it is possible to find the 

threshold which creates the most truly scale-free network (where a scale-free network is defined by 

degree distribution 𝑃(𝑘) ≈ 𝑐𝑘𝛾, where 𝑘 is the number of connections of a node (its degree) and 

𝑃(𝑘) is the probability of a given number of connections). Two practical concerns with the standard 
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implementation of the scale-free criterion are that threshold is chosen based on the assumption 

that the scaling exponent (γ) of the network should be -1, when there are counter examples of 

scale-free molecular systems with scaling exponents other than -1. Also, the scale-free connectivity 

relationship is estimated with a log-log linear fit of the (assumed) scale-free connectivity 

distribution, when scale-free distributions with exponential cutoffs may be more appropriate. 

However scale-free networks with an exponential cutoff makes estimation of the scaling exponent 

more difficult, potentially lead to unrepresentative fits (Khanin and Wit, 2006; Zhang et al, 2005).  

The scale-free criterion can be used to create weighted connectivity matrices that both 

decrease the contribution of low correlations and preserve the dynamic range of high correlations, 

by raising the raw correlation matrix to a power β>1, the such that the entries of the original 

correlation matrix A become �𝐴𝑖𝑗�
𝛽

. Just as a cutoff threshold may be selected by applying various 

cutoffs and evaluating the scale-free fit, so too can the exponent β be estimated by checking the 

scale-free fit for a sequence of β-values (Zhang et al, 2005). Preserving a range of correlation 

values can improve retrieval of modular communities compared to a binarized threshold. 

Overview of other graph statistics employed: 

The clustering coefficient is a measure of local community structure, that ranges from 0 

(neighboring nodes unconnected) to 1 (all neighboring nodes connected to each other). For an 

unweighted graph (network) 𝐺 = (𝑉,𝐸) consisting of a set of vertices (nodes) 𝑉 and edges (links) 

𝐸, wherein a given vertex 𝑣𝑖 has 𝑘𝑖 neighbors with a total of 𝑒𝑗𝑘 edges between them, the clustering 

coefficient (CC) for node 𝑣𝑖 is defined as: 

𝐶𝐶𝑖 =
2�{𝑒𝑗𝑘}�
𝑘𝑖(𝑘𝑖 − 1)

 

Betweeness centrality is a measure of the extended influence of a network node: it is 

proportional to how many shortest paths intersect a given node. If many shortest paths intersect a 

node, it is likely to be located in a bottleneck position, or else in the geometric center of the 

network. The formula for betweenness centrality (BC) for a given node 𝑣𝑖 is 
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𝐵𝐶(𝑣𝑖) = �
𝜎𝑗𝑘(𝑣𝑖)
𝜎𝑗𝑘𝑗,𝑘≠𝑖

 

𝜎𝑗𝑘(𝑣) is defined as the number of shortest paths from node 𝑣𝑗 to node 𝑣𝑘 that intersect node 𝑣𝑖, 

and 𝜎𝑗𝑘 is the number of shortest paths from j to 𝑘. Thus, if a node lies on one of a small number of 

routes between other pairs of nodes, it will have a high betweenness centrality. Calculating 

betweenness centrality for each node in a network entails finding all shortest paths between all 

pairs of nodes, which can be done efficiently in unweighted graphs with Dijkstra’s algorithm. 

Synchronizability refers to the smallest positive eigenvalue of the Laplacian (Kirchoff) graph 

matrix. The associated eigenvector (the Fiedler vector) is often used for spectral clustering (though 

we do not use it here). The Laplacian graph matrix L is created from the binarized correlation 

matrix with the degree of each node listed on the main diagonal, and each connection between 

genes listed at -1 instead of +1: 

𝐿𝑖𝑗 = �
deg(𝑣𝑖)              if i = j                    

   -1                         if i ≠ j and 𝐴𝑖𝑗 = 1
 0                         otherwise         

� 

Assortativity ranges from -1 to 1 and quantifies the likelihood that an edge will connect two 

nodes of similar degree (total connectivity level). If highly connected nodes are connected to other 

highly connected nodes, the network has positive assortativity, and if highly connected nodes are 

generally connected to provincial (low connectivity) nodes, the network has negative assortativity. 

There is a broad trend for technological networks to be structured such that they have positive 

assortativity, while biological networks generally have negative assortativity (Newman, 2003). The 

assortativity value r for a network with M edges, connecting nodes of degree (total connectivity) j 

and k is defined by  Newman (2002) as: 

𝑟 =
𝑀−1 ∑ 𝑗𝑖𝑘𝑖𝑚

𝑖=1  – [𝑀−1 ∑ 1
2 (𝑗𝑖 + 𝑘𝑖)]𝑚

𝑖=1

2

𝑀−1 ∑ 1
2 (𝑗𝑖2 + 𝑘𝑖2)𝑚

𝑖=1  − [𝑀−1 ∑ 1
2 (𝑗𝑖 + 𝑘𝑖)]𝑚

𝑖=1

2 
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Examples of how to choose methods to select correlation thresholds: To illustrate the 

selection of appropriate coexpression methods, we briefly present some example rationale for 

choosing the particular coexpresion methods found Chapters 2 & 4. These decisions show how 

specific study goals dictate certain methods and how when possible we seek to show that results 

are robust, regardless of the specific method. Further details on study goals, methods, and efforts 

to ensure robustness are found in Chapters 2-4.  

Consider a primary goal of Chapter 2: to understand if a set of genes chosen through 

extensive cross-species analysis form modular communities. Multiple methods and precautions 

were piled on top of each other to ensure that the inferred networks represented biologically driven 

interactions, and that the conclusions were robust against experimental noise. To establish that 

relationships between genes were similar in both mouse and human datasets, we were faced with 

the choice of using raw, weighted, or thresholded correlation matrices. Because the mouse sample 

size was small, fine gradations of correlation values were unlikely to be meaningful, and so we 

applied a threshold to generate mouse and human networks, whose structures we then showed to 

be similar. Working within the context of these small networks, we were less concerned about 

extracting information from all coexpression links, so we used the maximum clustering method to 

select the threshold. Finally, because we were searching for evidence of modules of glial- and 

neuronal-related genes based on the results of differential expression testing, to avoid any 

suggestion of bias, we show that these semi-distinct communities exist over a range of threshold 

values. 

As a prerequisite to achieve the goals of Chapter 4 - locating differentially connected and 

differentially expressed genes in many coexpression networks - we sought a very general method 

that would produce biologically insightful networks for all datasets, but at the same time would not 

force them into a certain configuration. Because we did not want to make any a priori choices 

about the degree distribution of the resulting networks, and because the maximum clustering 

threshold method slows down considerably for large networks, and due to the results of a threshold 
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selection comparison (Borate et al, 2009), we used the maximum modularity method to select a 

threshold value for each dataset. We could have used weighted correlation matrices as the basis 

of all tests in the paper, but that would have critically slowed the computation of betweenness 

centrality and clustering coefficients, and since using a hard threshold still showed several strong 

effects, weighted adjacency matrices did not appear necessary in this case. 

1.6 SUMMARY OF INTRODUCTION AND RESEARCH OVERVIEW 

The biological basis of major depressive disorder is a shifting target for statistical analysis, 

as there are multiple hypotheses of depression (Chapter 1.2) which span several major fields of 

neuroscience research, including neurotransmitter systems, synaptic structure, endocrine function, 

and large-scale connectivity. Since it is likely that hundreds of genes contribute to the disorder, 

high-throughput analyses are an increasingly common attempt to find some coherent pathology. 

However, there is scant agreement between these studies, in part due to high false discovery rates 

associated with multiple sub-populations, a variable set of affected systems and a disease signal 

originating at different scales of investigation (Bosker et al, 2010; Mehta et al, 2010). We confront 

these roadblocks to understanding depression directly, by accepting that depression cannot be 

represented by a single model system, that it is generated by the action of many genes, and that it 

is accompanied by symptoms and effects on multiple physical scales. In the next three chapters, 

we use coexpression networks to conceptualize the activity of multiple genes in depression, and 

then apply network analysis in the context of modular cell processes (Chapter 2), brain region 

communication (Chapter 3) and global gene-based disease signals (Chapter 4). These 

applications of coexpression networks to neuropsychiatric datasets are a new avenue of 

understanding complex disorders, containing a literal framework in which to organize disease-

related changes. The failure of other attempts to find a unified theory of depression indicates that 
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these coexpression-based analyses will not be a facile proof-of concept application, but will press 

the limits of statistical detection and biological interpretation. To show the concerted impact of our 

findings in expanding domains of influence, we discuss what the specific network-derived biological 

findings entail for the neurobiology of depression (Chapter 5), how multi-system interactions 

implicated in depression by our findings may trigger the “floodgate” model of depression, and new 

strategies for research design in complex disease research. 
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Abstract     

 

Objective: Major depressive disorder (MDD) is a heterogeneous illness with a mostly 

uncharacterized pathology. Recent gene array attempts to identify the molecular underpinnings of 

the illness in human postmortem subjects have not yielded a consensus. Thus, we hypothesized 

that controlling several sources of clinical and technical variability, and supporting our analysis with 

array results from a parallel study in the unpredictable chronic mild stress (UCMS) rodent model of 

depression would facilitate identification of the molecular pathology of MDD. 

 

Methods: Large-scale gene expression was monitored in anterior cingulate cortex (ACC) 

and amygdala (AMY) in paired male familial MDD and control subjects (n=14-16 pairs). Area 

dissections and analytical approaches were optimized. MDD results were compared to UCMS 

results, and confirmed by quantitative PCR and Western blot. Gene coexpression network analysis 

was performed on transcripts with conserved MDD-UCMS effects.  

 

Results: Significant and bi-directional predictions of altered gene expression were 

identified in AMY between MDD and the UCMS model of depression. These effects were detected 

at the group level, and also identified a subgroup of depressed subjects with a more homogeneous 

molecular pathology. This phylogenetically-conserved “molecular signature” of MDD was reversed 

by antidepressants in mice, identified two distinct oligodendrocyte and neuronal phenotypes, and 

participated in highly cohesive and interactive gene coexpression networks. 

 

Conclusion. These studies demonstrate that the biological liability to MDD is reflected in a 

persistent molecular pathology that affects the AMY, and supports the hypothesis of maladaptive 

changes in this brain region as a putative primary pathology in MDD.  
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Introduction   

 Although dysregulated serotonergic and stress pathways are contributing factors in MDD, 

and clinically-effective antidepressants were discovered over 50 years ago, the biological 

mechanisms of MDD remain mostly uncharacterized (Belmaker et al, 2008). Recent attempts at 

identifying the molecular pathology of the illness, based on large-scale gene arrays, have 

implicated several biological systems, but have not yielded a consensus, potentially due to 

differences in cohorts, brain areas investigated, and analytical approaches (Aston et al, 2005; 

Choudary et al, 2005; Kang et al, 2007; Sequeira et al, 2006; Sibille et al, 2004), and to a 

substantial clinical heterogeneity. In fact, MDD may correspond to a family of disorders, which may 

be identified based on more narrow clinical and biological definitions (Hasler et al, 2004). 

Consequently, we sought to address these challenges in a gene expression profiling study of MDD 

designed to (i) reduce the clinical heterogeneity of the human cohort, (ii) focus on a relevant neural 

network, (iii) control for the variability in gene expression intrinsic to each brain region, (iv) 

maximize true discovery in gene array approaches, and (v) utilize a parallel study in a more 

tractable animal model of depression and antidepressant reversal to support the analysis of the 

human results. UCMS is an informative model to study depression in animals, as it mimics in a 

naturalistic way the role of psychosocial environmental stressors in precipitating a depressive 

pathology and the timeframe of antidepressant response (Surget et al, 2008b; Willner, 2005). The 

random application of several environmental and social mild stressors for several weeks results in 

a syndrome that is reminiscent of symptoms of depression, including physiological changes, 

increased anxiety-like/fearfulness and altered agonistic behavior (Surget et al, 2008b). 

Our studies focus on the ACC and AMY, as critical components of a corticolimbic circuit of 

mood regulation (Pezawas et al, 2005) that is affected in MDD (Seminowicz et al, 2004). Evidence 

supporting dysfunctions of these areas in MDD include: decreased ACC volume and altered 

activity (Botteron et al, 2002; Drevets et al, 2002; Drevets et al, 1997; Mayberg et al, 1999), 

decreased glial density and reduced (Cotter et al, 2001) or no change in neuronal size (Ongür et 
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al, 1998) in ACC, decreased glial density (Bowley et al, 2002) and fewer oligodendrocytes (Hamidi 

et al, 2004) in AMY, and abnormal processing of emotional stimuli and sustained AMY reactivity 

(Roberson-Nay et al, 2006; Sheline et al, 2001; Siegle et al, 2002). Accordingly, we tested the 

hypothesis that the biological liability to MDD would be reflected in a persistent molecular 

pathology affecting the AMY and/or ACC.  

 

Methods 

Subjects  

Brain samples were obtained during autopsies conducted at the Allegheny County Medical 

Examiner’s Office after consent from next-of-kin. Consensus DSM-IV diagnoses were made by an 

independent committee of experienced clinical research scientists, utilizing information from clinical 

records, toxicology exam and a standardized psychological autopsy. We analyzed 16 pairs (14 in 

AMY), consisting of white male subjects with familial MDD and normal comparison subject 

matched for age, sex and race (Table 1). The increased disease severity was supported by a 

longer average duration of illness in the familial MDD cohort compared to non-familial MDD 

subjects from the same brain donation program (9±2 years versus 3±1 years; Mean±sem; p=0.01). 

A symptom score was calculated based on the presence at time of death (1=unequivocal yes; 

0.5=unsure or subthreshold; 0=unequivocal no) of nine MDD symptoms: depressed mood, 

anhedonia, appetite disturbance, sleep disturbance, psychomotor change, anergia, self-

recrimination, diminished ability to concentrate or make decisions, and suicidality. All procedures 

were approved by the University of Pittsburgh’s Institutional Review Board and Committee for 

Oversight of Research Involving the Dead. Detailed information is available in supplements. 

 

Brain samples 

Rostral AMY samples enriched in lateral, basolateral and basomedian nuclei were 

delineated as described (Hamidi et al, 2004) and dissected from frozen coronal blocks ~2-3cm 
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caudal to the temporal pole. ACC samples containing all six cortical layers were harvested from 

coronal sections in subgenual ACC. A pilot study revealed rostro-caudal variations in transcript 

levels in both areas (Figure 1A-B). Selected white matter (WM) samples in ACC (n=7) and AMY 

(n=4) were obtained for analysis of cellular origin of transcripts (Sibille et al, 2008).  

 

Microarray samples 

Total RNA were extracted from frozen samples stored in TRIZOL (Invitrogen, Carlsbad, CA) 

and processed for microarray analysis according to manufacturer’s protocol (Affymetrix Inc., Santa 

Clara, CA). In brief, 2.5μg of total RNA was reverse-transcribed and converted into double-

stranded cDNA. A biotinylated complementary RNA (cRNA) was transcribed in vitro, using an RNA 

polymerase T7 promoter site introduced during the reverse-transcription step. 20μg of fragmented 

labeled cRNA sample were hybridized onto Human Genome U133Plus-2.0 arrays, assessing 

54,675 probesets or gene transcript levels. To reduce the influence of technical variability, paired 

samples were processed together, but different pairs were randomly distributed at each 

experimental step. For samples, hybridization and arrays quality control, probeset signals (i.e., 

transcript levels) were extracted with the Affymetrix GCOS software. For statistical analysis, Log2-

transformed probeset signal intensities were extracted and normalized with the Robust Multi-array 

Average (GC-RMA) algorithm. Probesets with GC-RMA data values below 12 displayed systematic 

co-regulation patterns corresponding to the array normalization procedure and were considered 

background signal, leaving ~25,859 probesets with detectable signal in ACC and/or AMY. 

 

Microarray quality control 

Individual scans were visually inspected for the presence of manufacturing defaults and 

hybridization artifacts. Quality control parameters were as follows: noise (RawQ, ACC, 1.47±0.34; 

AMY, 1.47±0.34), background (ACC, 44±8; AMY, 43±5), scale factor (ACC, 2.62±1.32; AMY, 

4.41±0.97), 3’/5’ Actin ratio (ACC, 2.97±0.98; AMY, 2.98±0.93) and 3’/5’ GAPDH ratio (ACC, 
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1.23±0.217; AMY, 1.45±0.28). Consistent number of genes were detected across arrays (ACC, 

46.8±2.2%; AMY, 48.2±3.3%), and consistent detection of BioB/C hybridization spiked controls. To 

further identify outlier samples, we used the “outlier detection” feature of the DNA-Chip Analyzer 

software, and analyzed correlation coefficients between array signals across all samples. Based on 

these results 16 pairs were retained for analysis in ACC and 14 pairs in AMY.  

 

Rodent UCMS model  

We have previously described a behavioral and microarray study in the UCMS model of 

depression in mice (Surget et al, 2008b). Behavioral and array results from that study were used 

here to support the analysis of data in the homologous brain areas in human subjects. In brief, 

BALB/c mice were subjected to various stressors according to a pseudo-random schedule for 

seven weeks. Drug [fluoxetine, 20mg/kg/day, or a corticotropin-releasing-factor 1 (Crf1r) antagonist 

(SSR125543), 20mg/kg/day] or vehicle treatments started on day 14 and continued until the end of 

UCMS, when microarray data (MOE430-2.0) were generated in cingulate cortex (CC) and AMY 

(lateral/basolateral nuclei). Stressors included: altered bedding (sawdust change, removal or 

damp; substitution with water, rat or cat feces); cage tilting or shaking; cage exchange (mice 

exposed to the empty cage of another male); induced defensive posture (repeated slight grips on 

the back) and altered light/dark cycle. Body weight and coat state were assessed weekly, as 

markers of the progression of the UCMS-evoked syndrome. The coat score combined results from 

different body parts (O=well-groomed, 1=unkempt). This index has been pharmacologically 

validated (Santarelli et al, 2003). Emotion-related and agonistic behaviors were measured at the 

end of UCMS using the novelty suppressed feeding (NSF) and the resident/intruder (RI) tests. The 

NSF test consists of providing food-deprived mice with a food pellet in a novel, aversive 

environment (a brightly lit enclosure). The latency to start feeding correlates with fearfulness and 

decreases after acute treatment with anxiolytic drugs or chronic antidepressant exposure, 

suggesting that mechanisms underlying changes in the latency to feed involve anxiety-like and 
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antidepressant-like processes. For the RI test, control and UCMS-treated mice were single-housed 

in new cages two days before testing. The opponent, a six-month-old BALB/c intruder, was placed 

into the home cage of the test animal (resident). Latencies and number of attacks were recorded 

for 10min. Detailed methods and results are described in (Surget et al, 2008b) and summarized in 

Table 2.   

 

WM/GM analysis  

Ratios of transcript levels between WM and gray matter (GM) samples were generated as 

described, and used as estimates of relative gene transcript enrichment in glia (WM/GM>1.5), 

neurons (WM/GM<-1.5) or both cellular population (-1.5<WM/GM<1.5). Details in supplements. 

 

Array data statistical analysis  

- Selection of significant genes. To maximize discovery, we opted for an analytical 

approach with initial low stringency, followed by a comparative analysis with UCMS array data. 

First we flagged any gene potentially affected in correlation with MDD, and then focused on cross-

species identification of similar changes for orthologous probesets. The assumption was that MDD-

related changes would manifest as weak effects, but that the conservation of such changes across 

species would provide independent lines of validation and thus facilitate their identification from 

background variability or unrelated changes. We have previously validated this approach in a study 

of gene expression correlates of aging between the human and mouse brain.  

- Statistical criteria. Changes in gene expression can take different non-exclusive forms in 

large datasets and are difficult to assess with any single test. Thus, for our inclusive first step, 

genes were tested by parametric paired t-test, non-parametric paired Wilcoxon signed rank test 

and by analysis of variance (ANOVA), and taking into consideration several clinical covariate 

parameters. In ANOVA, the observed variance was partitioned into components explained by 

different explanatory variables (covariates). We applied the following ANOVA model for each gene, 
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giigigigigggi ADARSY εδγτβα +++++= ****  , where 1 ≤ g ≤ G  =26199 genes, 1 ≤ i ≤ I  

pairs,    and with clinical covariate values of 1 if the condition is true and 0 otherwise (Si, suicide; 

Ri, recurrence; Ai, co-morbid alcohol dependence; ADi antidepressant). Since some of the 

covariates may not be statistically significant for each gene g, we applied a stepwise model 

selection by Akaike Information Criterion (Akaike, 1974) to find the final “best fit” model, and a 

corresponding adjusted p-value was calculated for each gene. Genes were selected if any of the 

three statistical criteria were less than 0.05 and if group differences in transcript levels (paired and 

unpaired) were greater than 20% using mean or median averaged values, corresponding to a 

difference at the low limit of qPCR confirmation. Genes were selected according to similar criteria 

in the UCMS dataset [ANOVA, p<0.05; changes >20%;]. The significance of the cross-species 

concordance was assessed by bootstrap resampling (using the same analytical procedures), 

where sample groups were repeatedly shuffled in equal proportion (control and experimental) thus 

removing the MDD or UCMS component from the analysis. The procedure was repeated 1,000 

times to generate a null distribution so that p-values of the observed directional correlations could 

be assessed. 

- Directional correlations, ),( 21 DDr  were calculated in a pair of cross-species or cross-brain 

region datasets D1 and D2. Ortholog probesets were identified using the Netaffx webtool 

(Affymetrix Inc.) to link the human and mouse datasets. In contrast to traditional Pearson 

correlation, the directional correlation measures the fitness of significant genes in D1 to predict D2, 

and conversely of D2 to predict D1. For instance, the statistically significant genes in D1 were first 

selected and the Pearson correlation of the log-ratios of D1 and D2 in this restricted D1-significant 

gene set was calculated. Thus, directional correlations are not symmetric [r(D1, D2) ≠ r(D2, D1)]. 

- Group variability in gene expression was assessed by two-group t-test using individual 

gene transcript variances as continuous variables. 

 

Real-time quantitative PCR (qPCR) 
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qPCR was performed as previously described. Results were calculated as the geometric 

mean of relative intensities compared to three internal controls (actin, glyceraldehyde-3-phosphate 

dehydrogenase and cyclophilin). See details in supplements. 

 

Western blot analysis 

Proteins from paired samples were processed in quadruplicate using rabbit anti-actin 

(Sigma #A2066), and mouse anti-cyclic nucleotide 3' phosphodiesterase (CNP; SMI-91R, 

Covance) primary antibodies and IRDye® 800 anti-rabbit and 680 anti-mouse (LI-COR 

Biosciences) secondary antibodies. Signals were simultaneously detected using the LI-COR 

Odyssey® Infrared imaging system. CNP protein content was expressed relative to actin. See 

details in supplements. 

 

Gene coexpression networks  

Gene coexpression networks were built through Pearson correlation of expression patterns 

and optimized using clustering coefficient analysis and jackknife correlation. See details in Figure 4 

and supplements. 

 

Results 

AMY-ACC altered gene expression in human MDD  

Large-scale gene expression profiles were generated from sub-dissected AMY and ACC 

(Figure 1A-B) in postmortem brains of male familial MDD subjects and matched controls (Table 1). 

Overall correlations of gene transcript levels were significantly higher in matched pairs, compared 

to non-matched MDD-control pairs (Figure 1C), thus validating the pairing protocol at controlling 

non-disease related factors and reducing signal variability. 395 genes in ACC and 191 genes in 

AMY were identified by paired statistics or ANOVA models as differentially expressed in MDD 

(Figure S1 and 1D). A qPCR survey on adjacent tissue sections yielded highly concordant results 
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(Array-qPCR Pearson correlation r=0.88, p<e-5, n=16 genes; Figure S1 and Table 3 for selected 

genes), confirming the sampling and technical reliability of the array data. Nevertheless, as results 

are expected to contain false positives, we hypothesized that identifying relevant findings within 

this large pool of genes would benefit from a comparison with equivalent data obtained in an 

animal model that recapitulates behavioral and pharmacological aspects of depression.  

 

Profiles of altered gene transcripts are conserved between human MDD and the UCMS 

mouse model of depression, and are reversed by antidepressant treatments in mice 

We previously reported that UCMS induces a depressive-like syndrome in mice, consisting 

of progressive deterioration in coat state, reduced weight gain, and increased agonistic and 

emotion-related behaviors, and have shown that both symptom dimensions were reversed by 

chronic administration of an effective (fluoxetine) or putative (Crf1r antagonist) antidepressant 

(Surget et al, 2008b). UCMS also induced region-specific patterns of altered gene expression in 

cingulate cortex (CC) and in the lateral/basolateral nuclei of the AMY, which were reversed by both 

drug treatments. These behavioral and molecular results are summarized in Table 2 and the array 

results from that study were used here to support the analysis of the human data. Specifically, we 

hypothesized that if cellular mechanisms underlying mood regulation were conserved across 

species, then altered transcriptome in human MDD would predict similar changes in mice after 

UCMS, and that the effects of antidepressants in mice would help separate the effects of MDD 

from those of drug exposure in humans.  

We investigated the degree of conservation of altered transcript levels for ortholog genes 

between MDD and UCMS by analysis of directional correlations. Confirming our hypothesis, highly 

significant, reciprocal and consistent predictions of molecular changes were identified in AMY 

(Figures 1D-2A). Specifically, of 191 genes with altered transcript levels in MDD, expression levels 

in mice were available for 105 ortholog probesets. Changes for these 105 mouse probesets were 

significantly correlated with human MDD-related changes (r=0.29, p<0.005). Conversely, of 299 
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genes with altered transcripts in AMY of UCMS-mice, the 213 identified human orthologs revealed 

a reciprocal mouse-to-human significant correlation of similar amplitude (r=0.29, p<0.00001). 

Analysis of 1000 bootstrap resamplings demonstrated that the probability of obtaining the observed 

reciprocal concordance levels by chance was very low (p<0.001 for individual directional 

correlations; p<0.001 for concurrent positive findings in both directions). Markedly, the human-to-

mouse correlations disappeared, after successful antidepressant treatments in UCMS-exposed 

mice (Figure 2A). Thus, the pharmacological reversal of the MDD-UCMS correlation by two 

different antidepressants (i.e., targeting serotonergic or neuroendocrine stress pathways) 

demonstrated that the molecular changes supporting the MDD-UCMS correlations in AMY were 

specific to the altered mood phenotype.  

Toxicological screens identified the presence of antidepressants in 5 human subjects (4 

subjects in AMY cohort), although these subjects were depressed at time of death, suggesting a 

lack of efficacy, suboptimal treatment, or treatment-resistance. Similar correlations were observed 

between that patient subgroup and UCMS (r~0.35), thus supporting the clinical evidence of a lack 

of antidepressant efficacy in these subjects, at least for genes underlying the UCMS-to-MDD 

correlation.  

Conversely, UCMS-induced changes in mouse CC did not predict corresponding changes 

in human ACC (r=0.10), while human MDD-related changes were also unrelated to changes in 

mouse CC (r=0.02) (Figure 2A). These low and non-significant ACC-CC correlations could result 

from differential involvement of that brain area in MDD and UCMS, or reflect a low conservation of 

cingulate structure and function across species. To partly address this question, we took 

advantage of the robust differences in transcriptomes between ACC and AMY in human subjects 

(~20% of genes; >2-fold change, p<0.01), and between mouse CC and AMY (~10% of genes; >2-

fold change, p<0.01), to estimate the degree of similarity in “molecular structure” between areas 

across species. We found highly significant and reciprocal correlations between human ACC/AMY 

and mouse CC/AMY differences (Mouse-to-human, r=0.63, p<0.0001; Human-to-mouse, r=0.55, 
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p<0.0001). These values did not differ between MDD subjects, UCMS-treated mice or control 

samples (r=~0.60, all comparisons, not shown). These results suggested that the lack of 

conserved depression-related findings in ACC was not due to overall differences in “molecular 

structures” of the AMY/ACC network across species, thus also highlighting the AMY specificity of 

the human-rodent correlation of the molecular impacts of MDD and UCMS.  

 

AMY cross-species correlations of depression-related molecular changes identified a 

subgroup of human MDD subjects 

Absent or weak mouse-human correlations in cingulate cortices could also arise from 

variable or opposite effects in subgroups of human subjects, resulting in a null group-effect. 

Indeed, despite our efforts to reduce the heterogeneity of the human cohort, MDD is by its clinical 

definition a heterogeneous disorder, and one may reasonably expect differences in molecular 

pathologies across subjects. Moreover, since the current analyses rely on large numbers of genes 

(178 in ACC and 213 in AMY), different gene sets may weigh differently across subjects; thus, 

correlation analyses in individual subjects may reveal features of cross-species predictions 

otherwise not available using combined group-values. Here, using subject-wise changes in 

transcript levels for the identified genes (Figure 1D, step 3), we confirmed the lack of conserved 

MDD/UCMS effect in ACC, as most human individual subjects displayed no cross-species 

correlation (Figures 1D and 2B, left panel). In AMY, however, directional correlations revealed a 

large heterogeneity in cross-species predictions, with half of the subjects displaying positive 

correlations, and the rest displaying either absent or negative correlations (Figure 2B, right panel). 

This difference from the ACC distribution was not explained by baseline changes, as the variability 

in gene expression of controls was comparable between ACC and AMY (p>0.2). Rather it was due 

to a selective increase in gene expression variability in MDD subjects in AMY (AMY: 50.3% higher 

gene transcript variance versus controls, p<0.01; ACC: 1% increase, p=0.97).  

Notably, the subgroup of MDD subjects with positive UCMS correlation in AMY (denoted 
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here MDDUCMS) did not differ in demographic parameters from controls or other MDD subjects (all 

p>0.05), and was not explained by differences in death by suicide, disease recurrence, 

antidepressant exposure or alcohol dependence relative to other MDD subjects (Figure 2B, bottom 

grid). The four MDD subjects with evidence of antidepressant exposure at time of death were all 

included in the MDDUCMS subgroup, confirming the presence of a depression-related molecular 

profile in these subjects (i.e., positive correlation with UCMS), consistent with their clinical profile. 

Overall, MDDUCMS subjects displayed a trend towards more depressive symptoms (7.4 versus 4.6 

in the remaining MDD subjects, p=0.07). Interestingly, the two subjects with large negative 

correlations were among the only three MDD subjects who met requirements for remission or 

partial remission due to fewer depressive symptoms at time of death (Figure 2B, crossed circles). 

Together, these findings suggest that the degree of correlation between UCMS and MDD 

molecular changes in AMY may predict the severity of depression in human subjects. Indeed, a 

positive and significant correlation was observed between symptom numbers and UCMS/MDD 

correspondence (r=0.62; p=0.02; n=14 pairs), although this effect was partly driven by two remitted 

subjects (Figure S2). Finally, restricting the analysis to MDDUCMS subjects (Figure 1D, step 4), we 

identified a larger number of genes with altered transcript levels in AMY (n~2100; 1139 orthologs), 

suggesting a greater homogeneity in molecular profiles within this subgroup. In the absence of 

demographic identifiers, we interpreted these findings as evidence for a subgroup of MDD subjects 

(MDDUCMS) with a consistent AMY pathology, potentially reflecting a more severe form of the 

illness, and for which the UCMS rodent model provided significant predictability at the gene 

expression level.  

 

Two distinct oligodendrocyte and neuronal depression-related phenotypes in AMY 

To characterize putative biological events underlying the cross-species correlations of 

changes and to address the presence of false positives in single datasets, we focused on genes 

with confirmed changes across species. Selected genes had to be significantly affected by UCMS 
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and MDD, and reversed by antidepressant treatments in the mouse model (Figure 1D, step 4), 

thus tracking the altered mood phenotype and controlling for drug effects. Of 299 gene transcripts 

affected by UCMS in AMY, 61 were also significantly affected in MDD, mostly corresponding to 

changes in MDDUCMS subjects. Several of these transcript changes corresponded to the same 

genes and were combined, reducing the selection to 44 genes. 38 of the 44 genes displayed 

changes in the same direction in both species. Finally, antidepressant treatments reversed 

changes for 32 of these genes in rodents (Table 3), together identifying a core set of genes, 

characterized by concordant MDD and UCMS effects and effective reversal by antidepressant 

treatments.  

qPCR analysis on RNA extracted from adjacent tissue sections for 17 of these genes 

revealed a very high correlation with array results in the MDDUCMS group (r=0.95, p<0.00001; Table 

3), even if individual statistical significances for some genes were only at the trend level (p=0.1). To 

determine whether this represented a quantitative limitation of the qPCR assay or a lack of 

biological effect, we assessed changes in protein levels for CNP, one of the three genes with 

trend-level significance by qPCR. Quantitative western blot analysis revealed stable CNP protein 

levels over the postmortem interval covered in our study (PMI/protein, r=0.01; not shown), a high 

concordance with RNA levels (r=0.76 for all 14 pairs, p=0.002), and a significant downregulation in 

MDDUCMS subjects (-21.5%, p=0.01; Figure 3). In concert with qPCR, these findings provided 

supporting evidence for the technical reliability and biological validity of the identified molecular 

profile described in Table 3.  

Within the group of genes with suggested glial-enrichment of transcripts, genes were 

almost exclusively related to oligodendrocyte structure and function and were all downregulated 

(Table 3, bottom rows). This striking convergence of gene function and direction of biological 

effects strongly suggests the presence of a conserved phenotype negatively affecting 

oligodendrocytes in AMY under MDD and UCMS conditions. Conversely, genes with suggested 

neuronal enrichment of transcripts were mostly upregulated, and related to cellular maturation and 
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synaptic development, neurotransmission and signaling, and cell-cell and cell-matrix interactions 

(Table 3, upper rows), suggesting a putative increase in neuronal structure and function in AMY of 

MDD subjects.  

 

Genes with conserved MDD- and UCMS-related changes participate in a highly cohesive 

and interactive gene coexpression network 

We next investigated whether the identified genes represented various unrelated molecular 

findings or if they participate in shared cellular and biological functions (known as functional 

modules). It is possible to test these hypotheses by simultaneously inferring the interactions, or 

“links”, between our identified genes. These links are based on synchronized fluctuations in gene 

expression across samples (i.e. “coexpression” link), which have been shown to correspond to 

shared biological functions (Lee et al, 2004). Indeed, gene networks built on coexpression links 

typically cluster in functional modules that correspond to specific cellular activities (Alexander et al, 

2009; Lee et al, 2004; Zhang et al, 2005) and this organization persists across species (Bergmann 

et al, 2004). Hence, biological networks built on coexpression links are useful means to determine 

if genes share common functions, and represent here a bias-free and data-driven way to 

investigate putative unifying MDD-related cellular processes shared by our identified genes.  

Accordingly, we used Pearson correlations to determine pair-wise coexpression links 

between the 32 identified genes, which were then used to build gene networks (See Supplements). 

To ensure that the coexpression links represented robust markers of biological gene interactions, 

we used clustering coefficient analysis and jackknife resampling methods to optimize our criteria 

for inclusion in the networks. Clustering coefficients estimate the density of local connections within 

functional modules and represent measures of network structure with wide applicability in brain 

networks (Sporns et al, 2004). Here, local modules were more connected than randomized 

networks (i.e. higher clustering coefficient; Figure 4A), indicating that the identified genes 

participate in shared biological functions. Pearson correlation values resulting in networks with the 
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largest differences in clustering coefficients compared to permutated networks, provide the most 

biological information and were retained here as optimized cutoff points to build gene networks 

(Dashed line in Figure 4A) (. Additionally, we used a jackknife resampling approach to remove 

spurious links and maximize the biological reliability of the network. The obtained bimodal 

distributions clearly segregated links as robust (i.e., survive jackknife resampling; Figure 4B, right 

columns) or spurious (i.e., do not survive jackknife; Left columns) in both species. Thus, gene 

networks were built using 100 links from the most robust groups in the jackknife histograms (Figure 

4C-D), corresponding to clustering coefficients within the suggested range of optimized values 

(Figure 4A; >0.65 in human; >0.75 in mouse).  

We report that the 32 identified genes formed a tightly clustered network (Figure 4C-D) with 

~7 times more connections than random networks of similar sizes (p<0.01). Moreover, the overall 

clustering coefficients for each network were on average 77% higher than degree-matched 

randomly-selected reference networks (p<0.001). Results were highly similar for all conditions and 

in both species, thus strongly supporting the biological validity and reliability of the identified 

network. Although the organic representation of the networks showed some differences (Figure 

4C-D), the internal topology was well conserved, with a ~40% concordance of individual links 

across species, or ~57% using correlation of “betweenness centrality”, a more general measure of 

network similarity (Girvan and Newman, 2002). Within this network, genes with suggested glial- or 

neuronal-enrichment of cellular origin of transcripts naturally segregated (Figure 4C-D), which was 

quantitatively reflected by higher intra- (glial-glial and neuronal-neuronal) than inter-connections 

(glial-neuronal) (Figure 4E). In summary, these results demonstrate that genes forming the 

identified molecular signature of depression belong to an existing and tightly connected gene 

network that is conserved across species and that reflects the interactive glial/neuronal cellular 

compartments of gray matter tissue, together suggesting an abnormal recruitment by the illness of 

existing cellular pathways.                                        
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Discussion   

To identify the molecular pathology of MDD, a heterogeneous illness with multiple symptom 

dimensions, we focused on postmortem samples in a cohort with reduced clinical and demographic 

heterogeneity (familial MDD, male subjects; Table 1) and on two brain regions (AMY and ACC) 

within a neural network putatively involved in altered mood regulation, a core symptom of the 

illness. After controlling several sources of technical variability (Figure 1) and by relying on cross-

species validation and antidepressant reversal of results, we now report the identification of 

reciprocal predictions of altered transcriptome between MDD and the UCMS rodent model of the 

disease (Figure 2A). These effects were detected at the group level, and also identified a subgroup 

of MDD subjects (MDDUCMS; Figure 2B) with a more homogeneous molecular pathology and for 

which UCMS provided a means to identify individual genes with conserved changes. Specifically, 

changes in transcript levels of ~30 genes were similarly detected in human MDD and mouse 

UCMS, and were reversed by antidepressant treatments in mice, hence corresponding to a pool of 

genes affected in correlation with mood states. These genes belonged to an existing cohesive 

network (Figure 4) and suggested two distinct cellular phenotypes: decreased oligodendrocyte and 

upregulated neuronal structure and function (Table 3). Finally, the interconnections between the 

glial and neuronal components of the network suggested either a conserved cross-talk between 

the two phenotypes, or a common upstream mechanism. Together, the present studies confirm 

that the biological liability to MDD is reflected in a persistent molecular pathology affecting the AMY 

and support the hypothesis of maladaptive changes in AMY as a putative primary pathology in 

MDD.  

 

A phylogenetically conserved molecular subtype of depression in AMY 

To address past difficulties, we assumed that evidence for mechanisms of mood 

dysregulation would manifest as weak, but conserved signals between MDD and UCMS. Thus, 

critical analytical aspects were to first maintain a high discovery level and then rely on cross-
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species validations of results, as previously described in a mouse-human comparative 

transcriptome study of brain aging (Sibille et al, 2007). The conserved changes observed here 

were confirmed by permutation analyses and of similar magnitude as age-related changes (~0.3-

0.4 Pearson directional correlations). Thus, compared to the robust effects of aging, the molecular 

correlates of UCMS and MDD were surprisingly strong.  

It is not known whether these conserved changes correspond to specific symptom dimensions 

(i.e., stress effects, or AMY-mediated anxiety component) or to a core pathology in MDDUCMS 

patients, as available parameters did not correlate with the subgroup (Figure 2). Overall, MDDUCMS 

subjects displayed more depressive symptoms at time of death. The fact that MDD subjects who 

met requirements for remission or partial remission displayed negative, or no correlation, also 

suggested that opposite changes may participate in both depressive and remission phenotypes. 

We propose that this molecular signature may represent a novel approach to categorize MDD, 

based on similarities of biological changes. This molecular view of disease heterogeneity is 

consistent with the notion that other MDD subjects may present altered functions in different brain 

regions (exerting control over AMY, for instance), yielding similar clinical phenotypes, but through 

pathogenic mechanisms remote from the AMY.  

In contrast, no UCMS-MDD correlations in gene expression were identified in cingulate 

cortices. The complex evolutionary changes and potential differences in connectivity of this brain 

area may explain the lack of conserved effects, despite similarities in molecular structures. The 

ACC integrates input from cognitive and emotion-related sources, influences activities relating to 

decision making, and modulates neuroendocrine, motor and visceral responses (Paus, 2001). 

Phylogenetic specializations of the human ACC include increased size, more functional 

subdivisions, dense prefrontal cortex connections and cellular specializations (i.e. spindle cells) 

that allow distal connections with other brain regions (Allman et al, 2002; Allman et al, 2001), 

together reflecting the human capacity for higher integration of complex emotion and  cognitive 

functions, compared to rodents (Paus, 2001). Alternatively, some ACC findings may relate to the 
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illness, but the UCMS model did not make their distinction possible from unrelated effects, as the 

model mimics only one of many putative pathogenic mechanisms in the illness. Hence, molecular 

data obtained in different models, based on cognitive- or reward-related symptoms for instance, 

combined with investigations of additional brain regions, could provide additional insights on 

molecular dysfunctions in MDD, as different symptoms dimensions likely correspond to 

dysfunctions in distinct neural networks (Belmaker et al, 2008; Nestler et al, 2002). Investigating 

selected brain areas in human subjects, in parallel to relevant animal models of symptom 

dimensions, may thus represent a fruitful approach to address the heterogeneity of the molecular 

pathology of MDD. Here, in the absence of quantitative differences in clinical features or 

demographic identifiers, the present findings identified a subgroup of MDD subjects (MDDUCMS) 

with a homogeneous molecular pathology and for which UCMS provided a significant predictability 

at the gene expression level. 

 

Oligodendrocyte and principal pyramidal neuronal changes in AMY in depression 

The striking convergence of downregulated glial-related gene transcripts in MDD and 

UCMS clearly suggests a conserved phenotype selectively affecting oligodendrocytes (Table 3), 

consistent with reports of reduced oligodendrocyte number in AMY (Hamidi et al, 2004) and 

decreased oligodendrocyte-related gene expression in temporal cortex (Aston et al, 2005), thus 

establishing AMY oligodendrocyte alterations as a confirmed pathological finding in MDD. These 

changes appear more robust in AMY, since there were not observed in ACC/CC or frontal cortex 

(Choudary et al, 2005; Kang et al, 2007; Sequeira et al, 2006; Sibille et al, 2004), although see 

(Uranova et al, 2004).  

The coexpression analyses revealed that the identified genes participate in a naturally-

occurring tightly-linked functional network that includes glial and neuronal components (Figure 4), 

suggesting an abnormal recruitment by the illness of existing cellular pathways, although the 

identity and origin of the neuronal component is not known. What mechanisms might link these two 
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phenotypes, and be informative as to their cellular characterization? Results from the network 

analyses suggest that the two phenotypes may occur in concert, either through mutual interactions, 

or downstream from a common perturbation. We speculate that the converging effects of increased 

AMY recruitment (e.g. through excitatory glutamatergic neurotransmission originating from stress-

related sensorimotor modalities), and elevated stress-induced glucocorticoid exposure, as 

occurring in UCMS and suggested in MDD, may provide a common synergistic mechanism.  

Both effects would be consistent with the observed glial phenotype, in view of the known 

vulnerability of oligodendrocytes to glutamatergic excitotoxicity (Rosin et al, 2004) and inhibitory 

effect of glucocorticoids on oligodendrocyte proliferation (Banasr and Duman, 2007; Wennström et 

al, 2006). Accordingly, decreased oligodendrocyte gene transcripts may represent early evidence 

of combined excitotoxic insults and glucocorticoid inhibition, eventually leading over time to 

decreased oligodendrocyte numbers in MDD (Hamidi et al, 2004). 

On the other hand, this putative synergistic mechanism would suggest AMY principal pyramidal 

cell as the likely source of the neuronal molecular pathology. Indeed, the convergence of increased 

ARHGAP6 (a RhoA inhibitor), CACNB2 (voltage-dependent Ca channel) and modulators of 

glutamatergic synaptic plasticity (CAMK2D, EGR1), coupled with increased components of cell-

matrix remodeling (MATN2, CDH13 and CHSY1) suggest increased structural and functional 

dendritic/synaptic compartments. This interpretation is consistent with the reported increased 

dendritic branching in pyramidal neurons in the rat AMY after chronic mild stress (Vyas et al, 2002) 

and with the increased excitability of AMY basolateral pyramidal neurons after glucocorticoid 

exposure (Duvarci and Paré, 2007). Together with the absence of changes of interneuron markers, 

the known stimulatory effect of glucocorticoids on AMY principal cells (Duvarci et al, 2007)d and an 

expected activity-driven dendritic structural upregulation, the present results suggests an increased 

structure/function phenotype of  AMY principal pyramidal cells in UCMS and MDD. In humans, 

these proposed neuronal changes may correspond to cellular and molecular correlates of 

increased AMY function in MDD (Drevets et al, 1997; Sheline et al, 2001; Siegle et al, 2002), 
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although the causes may be complex and combine (mal)adaptive mechanisms and intrinsic 

genetic vulnerability .(Hariri et al, 2002; Pezawas et al, 2005)  

These results await replication in independent cohorts. The scarcity of well-characterized 

human postmortem brains of male familial MDD subjects prevented the direct replication in our 

brain bank, and it is not known whether different demographic and clinical parameters (i.e., female 

subjects, non-familial) will affect the nature and/or robustness of the molecular findings. Another 

limitation concerns the presence of antidepressant treatments. Here, antidepressant-treated 

subjects still met DSM-IV criteria for MDD, thus suggesting lack of efficacy, consistent with 

molecular profiles suggesting depressive-like states. Finally, numerous additional genes were 

identified than included in this report, but the putative association of these genes with MDD could 

not be confirmed in the absence of independent cohorts or of animal models for alternate 

pathogenic mechanisms in the illness. 
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TABLE AND FIGURE LEGENDS 

 

Table 1 (Table 1) MDD and control cohorts  

 

Age (years); PMI, postmortem interval (Hours); Storage, freezer storage at -80◦C (months); 

RIN, RNA integrity number; Rec., recurrent episode; AD, antidepressant at death; Alc., Alcohol 

dependence at time of death. (*) Samples from pairs 5 and 6 were not available in AMY, thus 

group parameters were compared separately for 16 pairs in ACC and 14 pairs in AMY. Average 

values for age, PMI, pH, storage time and RNA quality were not different between MDD and 

control groups (all p>0.05). 
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Table 2 (Table 2) Summary of physical and behavioral changes evoked in the UCMS mouse 

model of depression, and reversal by chronic exposure to two antidepressant treatments  

Data is from (9). The physical effects, emotion-related changes and associated gene 

changes evoked by UCMS were reversed by chronic antidepressant exposure. Significant effects 

of UCMS and antidepressant reversal are respectively indicated by (#) and (*); n/c, no change; n/a, 

not applicable. Flx, fluoxetine. Crf1r, corticotropin-releasing factor receptor 1 antagonist, 

SSR125543. Behavior: n=18-19/group. Array: n=6 arrays/group; Statistical criteria, ANOVA 

p<0.05, group differences >20%.  
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Table 3 (Table 3) Core genes significantly affected in human MDD and mouse UCMS  

 

 (*) identify genes for which multiple probes were significantly and similarly affected in MDD 

and/or UCMS. Red and blue indicate significant up- and downregulation, respectively. % of 

reversal indicates the degree to which the drug treatments opposed the UCMS effect and brought 

transcript levels (alr, average log2 ratios) back to control levels. “Residual effect” indicates changes 

in gene transcripts after antidepressant treatments in UCMS-exposed mice. “Log2(WM/GM)” 

indicate relative glial (high LogR, bottom rows) to neuronal (low LogR, top rows) enrichment of 

gene transcript [See methods and (Sibille et al, 2008)], consistent with other large-scale 

categorization of cellular origin approaches (Oldham et al, 2008). qPCR p- and alr values 

correspond to MDDUCMS samples.  
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Figure 3 (Figure 1) AMY/ACC sampling pilot study, effect of pairing protocol on analytical 

sensitivity, and experimental outline   

A) AMY micro-dissected samples (bottom) from serial 20µm sections 1mm apart were 

processed on microarrays along the rostral-caudal axis for sections 1, 2, 4, 6 and 7. Markers for 

the middle and caudal AMY were the dorso-lateral subnuclei of the basolateral nucleus (arrow) and 

the appearance of the hippocampus (arrowhead). The lowest variability was observed between 

levels 1 and 2, as indicated by the average changes for detected genes [Avg(alr)].  B) 20µm serial 

sections through the rostral subgenual ACC were initiated with the rostral tip of the subgenual 

ACC. Asterisks indicate the boundary between ACC and corpus callosum. Microarray samples 

were processed on the gray matter from 5 sub-dissected sections 1 mm apart (bottom). Although 
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absolute values were generally higher than in AMY, the lowest average variability in transcript 

levels was detected between levels 1 and 2 in rostral ACC. Accordingly, sampling was performed 

for all subjects at the levels of sections 1-2 in AMY and ACC.  C) Representative Log2-based 

correlation graphs for all detected transcripts illustrate the effect of the pairing protocol at reducing 

non-disease related effects. “Rep” indicates technical replicates. “Random” indicates non-paired 

MDD and control samples. *, p<0.05. *; p-values are from exact Wilcoxon signed-rank tests 

performed on ~26,000 gene transcripts with detectable levels. 

 D) Experimental design. Following analyses of altered gene expression in MDD and UCMS 

(1), the degree to which changes in one species predicted similar trends at the group level in the 

other species was assessed (2). In (3), UCMS predictions of gene changes in individual MDD 

subject were assessed. (4) Individual genes with conserved changes and AD reversal were 

selected between UCMS and all MDD subjects, or with the MDDUCMS subgroup (Grey circle), and 

(5) assessed for known cellular origin, function and relationship. R, directional Pearson correlation 

coefficient, including after AD treatments (red). “Values” indicate genes with significant effects in 

(1). “(Values)” indicate the numbers of identified mouse-human orthologs among significant genes 

that were used for cross-species analyses.  
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Figure 4 (Figure 2)  Reciprocal prediction of altered AMY gene expression between human 

MDD and the mouse UCMS model of depression, and reversal by antidepressant drug treatments 

A) Arrows indicate directional correlations between changes in transcript levels for genes 

identified in one area (origin of arrow) and changes for the same genes across areas within 

species, or within the same areas but across species (end of arrow). Numbers in italics at the origin 

of the vertical arrows indicate the numbers of genes significantly affected in that species and for 

which data was available for orthologous genes in the other species. Averaged group values per 

gene transcript were used here, when assessing MDD-UCMS correlation. Numbers in parentheses 

indicate levels of directional correlations between human MDD and UCMS-exposed mice 
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chronically treated with two antidepressants (Flx, fluoxetine; Crf, Crf1r antagonist). *, p<0.05; **, 

p<0.001. B) Correlation between UCMS and individual MDD subjects confirmed the absence of 

conserved effect in ACC, and identified a subgroup of human MDD subject with significant and 

positive cross-species correlations of altered transcript levels in the AMY. Subject-wise gene 

transcript changes were used here. Black dots indicate significant positive correlation. Crossed 

circles indicate subjects under partial or full remission at time of death. Dashed lines represent 

boundaries for significance of correlations.  

 

Figure 5 (Figure 3)  Concordant CNP RNA and protein downregulation in MDDUCMS subjects 

A) Western blot analysis revealed the expected bands for the two CNP protein isoforms. D 

and C indicate replicate MDD and control samples from the same matched pair of subjects. B) 

Quantitative plot denoting significant CNP downregulation at the RNA (-29.2%; p<0.01; array 

results) and protein (-21.5%; p=0.01) levels in MDDUCMS subjects. Both protein isoforms were 

similarly affected. 
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Figure 6 (Figure 4) A conserved and tightly clustered gene coexpression network with distinct 

glial and neuronal components underlies the identified molecular signature of depression.   
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A-B) Optimized parameters for building gene coexpression networks. A) (Top) The mean 

clustering coefficient (CC) for permutated degree-matched control networks decreases 

monotonically (dashed line). However, clustering in experimental networks showed a relative 

increase compared to permuted values at cutoff values in the region of 0.5-0.8 for both human 

(shown) and mouse (not shown) networks, indicating biologically relevant network structure(Elo et 

al, 2007). (Bottom) Optimum Pearson correlation cutoff for mean clustering coefficients (Dashed 

lines) were estimated by subtracting values of permutated degree-matched networks from actual 

values. Representative plots are from human control subjects. B) The histograms of link 

robustness under jackknife correlation demonstrated the common bimodal distributions between 

robust (right columns) or spurious (left columns) links in human (bottom) and mouse (top) 

networks. C-D) Organic representation of the coexpression networks formed by genes supporting 

the molecular signature of depression in humans (C) and mice (D), based on parameters optimized 

in (A-B). White circles indicate glial-enriched gene transcripts; Light to dark grey shapes indicate 

genes with increasing enrichment in neuronal origin of transcripts. Links between nodes represent 

coexpression links. E) Plots of glial-glial, neuronal-neuronal and neuronal-glial connectedness (i.e., 

number of connection within groups of genes divided by the total number of possible connections 

between those genes) as a function of network sizes (i.e. number of links)  The visual segregation 

of glial-enriched and neuronal-enriched genes observed in (C-D) was reflected by increased 

numbers of connections within glial or neuronal groups compared to glial-neuronal connections 

(i.e. vertical distances for given network sizes). The sudden emergence of glial networks reflects 

the modularity of coexpression networks formed by fewer genes (and fewer samples in the mouse 

study) and is a strong indicator of unified function. The vertical hashed bars represent the chosen 

optimized cut-offs for network design using robust and inclusion of representative glial-glial, 

neuronal-neuronal and neuronal-glial connectedness.  
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Abstract   

 Coordinated gene transcript levels across tissues (denoted “gene synchrony”) reflect 

converging influences of genetic, biochemical and environmental factors; hence they are 

informative of the biological state of an individual. So could brain gene synchrony also integrate 

the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? 

Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct 

brain areas, we report robust gene transcript synchrony between the amygdala and cingulate 

cortex in the human postmortem brain of normal control subjects (n=14; Control/Permutated 

data, p<0.000001). Coordinated expression was confirmed across distinct prefrontal cortex 

areas in a separate cohort (n=19 subjects) and affected different gene sets, potentially reflecting 

regional network- and function-dependent transcriptional programs. Genewise regional 

transcript coordination was independent of age-related changes and array technical parameters. 

Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major 

depressive disorder (MDD, denoted here “depression”) (n=14; MDD/Permutated data, 

p<0.000001), significantly affecting between 100 and 250 individual genes (10-30% false 

discovery rate). Biological networks and signal transduction pathways corresponding to the 

identified gene set suggested putative dysregulated functions for several hormone-type factors 

previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and 

glucocorticoids; p<0.01 for association with depression-related networks). In summary, we 

showed that coordinated gene expression across brain areas may represent a novel molecular 

probe for brain structure/function that is sensitive to disease condition, suggesting the presence 

of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive 

and pathological, state in major depression.  
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Introduction     

Major depression affects more individuals than all other psychiatric illnesses combined, 

and a significant number of patients do not remit after pharmacological or behavioral treatment 

(Belmaker et al, 2008), hence inflicting a continuous toll on affected individuals and on society 

(Warden et al, 2007). Changes in the coordinated function of a neural network comprising 

cortical and subcortical brain areas are thought to underlie the mood regulation deficit in 

depression (Seminowicz et al, 2004). The functional connectivity between two critical 

components of this corticolimbic circuitry, the amygdala and anterior cingulate cortex, potentially 

mediates the relay of emotion-related information for cortical processing, and feedback 

regulation on amygdala activity (Pezawas et al, 2005). In control non-depressed subjects, the 

volume, function and connectivity of these two areas are affected by serotonin-related gene 

variants (Hariri et al, 2002; Pezawas et al, 2005), together suggesting that this pathway may be 

recruited in diseases of altered mood. Indeed, recent findings suggest an increased task-related 

recruitment of rostral cingulate and decreased coactivation of amygdala and cingulate in 

depressed patients(Matthews et al, 2008). Moreover, studies in depression suggest functional, 

cellular and molecular pathologies in both areas (Cotter et al, 2001; Drevets et al, 1997; Hamidi 

et al, 2004). So, alterations in the intrinsic circuitry of the amygdala and anterior cingulate cortex 

may result in altered connectivity, deficient cingulate feedback regulation on amygdala function 

and abnormal processing of emotion-related stimuli in depression (Sheline et al, 2001; Siegle et 

al, 2002). 

How can brain region activities be investigated at the molecular and gene levels? We 

hypothesized that pathological mechanisms leading to depression may affect the coordination of 

gene expression patterns in the brain, and tested this hypothesis within a set of related brain 

areas, the amygdala and the subgenual anterior cingulate cortex. Our assay makes use of the 

fact that correlations in gene transcript levels across samples and datasets (“coexpression” or  

“coregulation”) represent intrinsic attributes of cellular and biological systems (Pavlidis et al, 
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2004; Prieto et al, 2008), including in the human brain (Bullmore and Sporns, 2009; Oldham et 

al, 2008). As expected for inter-related biological systems, many genes show variability in 

expression that do not reflect measurement error and that are consistently identified in a range 

of tissues and organisms(Lee et al, 2004; Mijalski et al, 2005; Prieto et al, 2008).  These 

correlated relationships are (i) driven by various molecular mechanisms, genetic make-up and 

function-dependent synchronization, (ii) central to cellular function, (iii) link genes of common 

biological functions (Lee et al, 2004; Mijalski et al, 2005), and thus can be used to create gene 

interactions networks (Dobrin et al, 2009). Hence, based on indications that correlated 

expression profiles might serve as markers of cellular or tissue relationships, we investigated 

synchronized expression across two regions implicated in the altered mood component of major 

depression. Confirming our hypotheses, we show that gene-wise coordinated transcript levels is 

a robust component of expression across regions within subjects, and that major depression is 

associated with significant gene-specific alterations in amygdala-cingulate gene coordination.  

 

Results  

Large-scale gene transcript synchrony across brain areas 

 Transcripts for a particular gene are synchronized between two regions if they display 

significantly higher correlation across brain regions compared to permutated data. Here, using 

gene array data in the human postmortem brain of control subjects (Sibille et al, 2009) (n=14), 

we demonstrate that a large number of genes displayed positive correlations of transcript levels 

between amygdala and cingulate (Figure 1A-D), resulting in a unimodal distribution (Median 

r=0.32) (Figure 1E). In contrast, the distribution of the permutated data, in which the subject 

linkage across regions was scrambled centered on the null correlation (Dashed line in Figure 

1E; r=0.014; Control/Permutated, p<0.000001). As no similar dataset are currently available 

(See Discussion), we investigated the presence of regional gene synchrony across a different 

set of brain areas. Large-scale gene synchrony was confirmed between two pre-frontal cortical 
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regions in an independent cohort (Erraji-Benchekroun et al, 2005) (n=19 subjects), and affected 

different genes (Figure 1F-G).   

 

Gene coordination is not a result of age-related changes in gene transcript levels 

Age-related genes could produce correlations between gene expression levels across 

samples because numerous genes have strong correlations with age (Erraji-Benchekroun et al, 

2005) and our subjects are acquired from a range of ages. It is therefore possible that the 

permutation destroys the global shift towards higher correlation (Figure 1E) simply because it 

scrambles the age-induced correlations. To investigate this putative effect, we subtracted age 

as a contributing factor and recomputed regional gene transcript correlations (see Methods and 

Figure 2B-D for details on age-detrending). As figure 2a shows, the entire shift towards positive 

correlation values across regions via gene coordination was achieved without any age-

correlations in the expression profiles, demonstrating that the gene expression correlations with 

age have only an exceedingly small influence on regional gene coordination.  

A genetic confound for these effects was also extremely unlikely as allelic frequencies 

for very large gene numbers would need to be similar within cohort, while being significantly 

different across cohorts, in order to generate the observed differences. Moreover, transcripts 

with reported impact of genetic variant on array hybridization and signal level (Sliwerska et al, 

2007) displayed low synchrony in both sets of brain regions (i.e. COMT; r≤0.2, p>0.05), thus 

ruling out technical confounders. Finally, regional gene coordination was observed across a 

heterogeneous cohort and could not distinguish the contribution of individual demographic or 

clinical factors (e.g. male/female difference, drug exposure; Supplementary Table 1).  

 

Gene transcript coordination is not a result of microarray gene expression protocols 

RMA-based methods (as used here) have superior low-level detection capability 
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compared to GCOS-MAS5 (Galfalvy et al, 2003); however, to ensure that normalization method 

was not responsible for the observed  correlations, we recomputed the cross-area correlations 

using MAS5-normalized data.  We observed similar and highly significant shifts (p<.000001) to 

positive levels of coordination for both amygdala-cingulate and prefrontal cortex regions using 

MAS5-normalized data, as we did with GCRMA-normalized data (not shown). Moreover, 

normalization-based differences in the estimated level of coordination were consistent low for 

highly coordinated genes, which are the focus of this study. 

 

Technical reliability of array data by quantitative real-time PCR (qPCR) 

qPCR confirmation typically relies on measuring group differences 20% or greater in 

magnitude and averaged over multiple samples. Accordingly, the technical reliability of the array 

data used here was previously validated by independent qPCR measurements (array/qPCR 

correlation r≥0.75; n=~20 genes)  (Sibille et al, 2009). While independent verification of 

differential expression changes between groups is a preliminary condition to establish 

confidence level in the quality of the gene array dataset before pursuing gene coregulation 

studies, measures of coordinated gene expression rely on changes of small magnitude across 

individual samples (Main text; Figure 1A-C) that are typically within the margin of technical 

variability in qPCR. For instance, we performed qPCR on 18 additional genes with coordinated 

regional expression (ATP5G1, CRHBP, MAOB, NFE2L2, PHKB, POLR2E, PRKAG2, RXRA, 

SAT1, AACS, CAP1, CDC42, CRYZ, GRLF1, IRF2BP2, NEFL, PAPOLA and SCN2A2). 

Samples were run in quadruplicates based on three internal controls (ACT, GAPDH and CYC). 

Transcript changes associated with variable coregulation levels resulted into lower coefficients 

of variation by array quantification (CVarray=0.19 in amygdala and cingulate; n=18 genes) 

compared to qPCR values (CVqPCR=0.37; p<0.005 in amygdala; p<0.0001 in cingulate, two-

group t-tests). This higher CVqPCR potentially reflects the exponential amplification of PCR 
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reactions compared to the linear hybridization detection by arrays, and effectively limits the 

potential of confirming coregulation by qPCR in this and related studies. These results are 

consistent with other studies on microarray-based gene network, where qPCR is typically used 

to validate the mean absolute expression level (Choi et al, 2005; Day et al, 2009). Instead, the 

validity and biological relevance of coordinated gene expression typically relies on extensive 

alternative forms of conformation through combining datasets and through permutation testing 

procedures (both performed here) (Mijalski et al, 2005; Pavlidis et al, 2004), while the larger 

accuracy of gene networks has been confirmed through functional convergence across groups 

of affected genes (Lee et al, 2004; Oldham et al, 2008; Prieto et al, 2008). 

 

Altered amygdala-cingulate corticolimbic regional gene synchrony in depression  

We next tested the hypothesis that pathological mechanisms leading to depression may 

affect the coordination of gene expression patterns between the amygdala and cingulate cortex. 

Array data from subjects with major depression (Sibille et al, 2009) (n=14; Supplementary Table 

1) displayed a similar amygdala-cingulate gene transcript right-shifted correlation distribution 

(Figure 3A; median r=0.32; MDD/Permutated data, p<0.000001). Transcript synchrony was 

similar in control and depressed subjects (Gray dots in Figure 3B; p<0.000001); hence 

independently confirming amygdala-cingulate regional gene synchrony in human subjects. 

Relying on permutation testing procedures to ensure statistical significance of coregulation 

measures and after controlling the false discovery rate (FDR) (10-30%), as many as 94 gene 

transcripts displayed robust significant loss of regional synchrony in depression (Blue in Figure 

3b-c; from greater to 0.7 to less than 0.2 values), while over 180 displayed significant gain of 

synchrony in depression (Red in Figure 3B-C; from less than -0.7 to greater than -0.2 values) 

(Supplementary Table 2).  
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Genes with altered transcript synchrony participate in biological networks and signal 

transduction pathways modulated by hormonal factors previously implicated in 

depression 

To gain insight into biological functions affected by these changes, we overlaid the top 

80 genes (~20% FDR) under both conditions (gain or loss of synchrony) onto the global 

molecular network of the Ingenuity knowledge database. The top gene networks in both 

categories displayed similarities, as they included numerous signal transduction and 

transcription components of the mitogen-activated protein kinase pathway (Table 1) and other 

genes previously implicated in depression (CREB1 (Nestler et al, 2002), SAT1(Sequeira et al, 

2006)). The unbiased inclusion of additional nodes significantly linked to depression-affected 

genes identified insulin – a recurrently-suggested contributor to neuropsychiatric disorders - as 

a putative modulator for both networks (Figure 3d; Table 1). The pro-inflammatory cytokine, 

interleukin 1 (IL1) was identified as a second putative modulator (p<0.0001) for the top network 

formed by genes with elevated synchrony in depression (Figure 3d; Table 1). Additional 

biological modulators identified in the top three networks in each category included thyroid 

hormone, a clinically-useful antidepressant-augmenting agent (Bauer et al, 2002), and beta-

estradiol, the major brain estrogen. All associations of the identified modulators with the top 

gene networks were significant (p<0.05), as assessed by bootstrap resampling. These 

associations were also selective (p<0.01), as assessed by repeated testing of the Ingenuity 

database with random gene lists of equivalent or variable sizes of selected genes (60 to 200 

genes). Pathways, biological functions and diseases associated with altered gene synchrony 

are summarized in Table 1. Notably, glucocorticoid receptor signaling was the top canonical 

pathway associated with three of the top networks, linking stress hormone-related events - a 

well-characterized causative factor (Holsboer, 2000) - to the deregulated molecular state in 

depression.  



 

 118 

 

Discussion 

Our findings demonstrate that regional gene synchrony, as measured by gene-wise 

correlated transcript levels across brain regions within individuals, is a major component of gene 

expression patterns in the human brain (Figure 1). These patterns were not explained by 

genetic, age or microarray effects, and appeared driven by correlation within subjects, as 

scrambling the data across subjects abolished them (Figure 1e-f, Figure 2). Thus we speculate 

that regional gene synchrony may partly reflect an integrated molecular output of function-, and 

dysfunction-dependent, regulation of brain areas.  

 While data from the amygdala/cingulate cortex and from the two prefrontal cortex areas 

supports the contention that gene coordination may reflect an overall, or network-specific, 

concerted brain region function, our results are independent of these larger hypotheses, as we 

only considered here the functional significance of those genes which show significant 

depression-related alteration in gene synchrony between two regions known to be functionally 

affected by depression. Accordingly, by bootstrapping correlations and controlling the FDR, we 

identified a robust and conservative collection of genes that displayed significant gains or losses 

of amygdala-cingulate gene transcript coordination in subjects with depression (Figure 3) (which 

is distinct from mean absolute expression level changes; See Comments section). These gene 

sets implicated shifts in intracellular signaling, metabolism and cell growth/structure, and 

suggested the implication of several biological modulators previously associated with 

depression (Table 1).  

 Notably, changes in amygdala-cingulate gene synchrony suggest a combined 

dysregulated function for several hormone-type modulators (Figure 3d; Table 1), which together 

summarize several key hypotheses for pathophysiological mechanisms in depression. As 

postmortem studies preclude investigating short-term events, we propose that the present 
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findings may correspond to a stable, chronic and adaptive de novo, although pathological, state. 

The integrative nature of this deregulated state departs from reductionist approaches and has 

critical implications for our understanding and modeling of pathological mechanisms of 

depression. 

 

What may underlie regional gene synchrony? 

As coregulated gene expression reflect the influences of genetic, biochemical and 

environmental factors (Elo et al, 2007; Lee et al, 2004), we speculate that the observed gene 

synchrony across regions may reflect a molecular balance of local brain systems that is 

achieved over time (days-months) through the coordinated function and continuous feedback of 

interacting brain regions. For instance, starting at the cellular level, the rate of neuronal firing is 

determined by the molecular composition of local neuronal circuits. The cumulative electric 

signals of single neurons with neuronal ensembles oscillate on various timeframes, supporting 

regional brain function and underlying correlated functions across regions. In turn, the 

translation and integration of neuronal activity by intracellular signaling cascades is influenced 

by coordinated activities across functionally-related brain regions. Additionally, broad and long-

acting modulators (hormones-type factors) modulate transcriptional programs (through nuclear 

receptors, for instance) and interact/modify this conversion of neuronal activity into cellular 

changes over time and across areas. According to this model, the disturbances in biological 

rhythms observed in depression (circadian, hormonal cycles) and the known role of 

environmental exposure (stress, disease) in precipitating disease episodes, will influence the 

degree of cellular exposure to hormone-type modulators, and may potentially result in an 

altered, yet stable, molecular balance. This suggested mechanism resembles a “decanalization” 

process that has been proposed for complex disorders, where chronic shifts in various 

regulating factors converge to induce and maintain a departure from the biologically-optimized 
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healthy organism into a distinct, stable and maladaptive pathological state (Gibson, 2009).  

 

A combined hormone-mediated disease pathology in major depression 

Consistent with the above-proposed model, the unbiased analysis of biological 

modulators associated with networks formed by genes with altered amygdala-cingulate 

coregulation identified factors previously implicated in depression or in its treatment (insulin, 

beta-estradiol, thyroid hormone, IL1 and glucocorticoids; Table 1), although notably, none of 

them would be sufficient to reasonably explain the presence of the illness in heterogeneous 

clinical cohorts (Belmaker et al, 2008; Nestler et al, 2002).  (1) Insulin shared potential control 

over genes forming the most robust networks under conditions of gain and loss of synchrony 

(Figure 3), suggesting that deregulation of this homeostatic modulator may participate in 

mediating pathological changes in depression. Insulin has been suggested as a potential 

mediator of metabolic changes in neuropsychiatric disorders (Altar et al, 2008), whereas insulin-

resistance is more frequent in subjects with familial depression (Lewis et al, 1983).  (2) Thyroid 

hormone influences brain physiology through regulating basal metabolism and neuronal 

maturation. Low thyroid function is associated with increased incidence of depression, while 

thyroid adjuvant therapy augments antidepressant therapy, potentially through deactivation of 

limbic regions (Bauer and Whybrow, 2003).  (3) Although associated with mood changes in 

female subjects, the relevance of altered estradiol function to this male group is underscored by 

local aromatase–mediated conversion of testosterone to estradiol, including in the amygdala, 

where it modulates anxiety and depressive-like behaviors (Walf and Frye, 2006).  (4) IL1 is a 

potent pro-inflammatory cytokine, which mediates aspects of the “sickness behavior”, a 

syndrome sharing similarities with major depression (Dantzer et al, 2008). Interestingly, IL1 was 

associated here with increased regional gene synchrony in depression, suggesting a gain-of-

function mechanism consistent with IL1 recruitment and role.  (5) Finally, as potential core 



 

 121 

inducing-factors of the illness (Holsboer, 2000), glucocorticoids (and stress) are known to 

modulate the functions of all other identified factors, resulting among others in altered blood 

brain barrier function, decreased glucose uptake, immune activation, and disrupted sex 

hormone cycling or release (Bauer et al, 2003; Dantzer et al, 2008; Goshen and Yirmiya, 2009). 

Circulating interleukin and other cytokines also affect insulin function (Dantzer et al, 2008), 

together suggesting that a complex interplay of disrupted hormone-mediated regulations of 

organs and cell ensembles may occur in depression.  

Hence, as contributing roles in depression are separately consistent for all identified 

factors, it is conceivable to envision a model where sustained environmental and lifestyle 

changes induce chronic adaptive changes in several systems (insulin, sex-hormones and 

thyroid-related functions), which now interacts with individual genetic make-up or additional 

environmental disturbances (stress or infection). Thus this model connects and potentially 

synergizes distinct and previously-proposed pathophysiological mechanisms for depression. 

Accordingly, pathways to a depressive state are not likely to be explained by any single factor, 

but may reflect the disruption of several hormone-type factors acting on different timeframes 

(cyclic, constant, phasic or induced). Here our results suggest that in depression these factors 

may converge on intracellular pathways (e.g., MAPK pathway), mitochondria and energy 

metabolism, and on other neurochemical pathways, such as SAT1 and polyamines (Sequeira et 

al, 2006), resulting in altered function and cell structure (growth, adhesion) within the amygdala-

cingulate network (Table 1). In conclusion, we propose that the identified departures in 

corticolimbic regional gene synchrony represent an integrated gene/molecular signature of a de 

novo maladaptive and pathological state in subjects with major depression.  

Limitations and comments  

The present findings demonstrate that regional gene coordination represents a biological 



 

 122 

feature of the human brain across related areas, and that alterations in this phenomenon are 

useful for measuring integrated multi-scale effects in complex disorders such as depression.  

Our results provide the basis for further mapping of gene coordination structure onto specific 

functional brain networks. Indeed, the extent to which gene coordination follow the boundaries 

of known anatomical/functional networks is still to be determined.  For instance, the amygdala is 

an anatomical and functional hub (Stein et al, 2007) and we may expect positive large-scale 

gene synchrony with other, but not all areas.  

 Similarly, the question of a control brain region in depression is often discussed but not 

clarified. Indeed, it is not know whether the primary pathology of the illness is region-specific or 

widespread and data has been provided for both cases (chi Hsiung et al, 2003; Sibille et al, 

2009). So in short, there is no consensus for a “control” brain region in depression. An additional 

practical limitation is that no similar datasets are currently available to define the limits of the 

effect of MDD on regional gene coordination. Finally, critical to our findings, our results do not 

depend on other regions being affected or not, but instead provide information on gene 

coordination in areas of a network that is affected in depression. Whether other brain regions 

are affected is an important scientific question, but for which the answer is complementary 

rather than necessary for the current study. 

 With regard to validating gene coexpression, it is becoming increasingly clear that there 

are different types of independent validation of array data for: 1) differential expression level, 2) 

coregulation and 3) functional implications, which in turn require different analytical approaches. 

Coregulation relies on changes of small magnitude across samples that are difficult to replicate 

by qPCR. Our results provide a technical reason for the usual absence of such confirmatory 

approaches in coregulation studies, which is that the variability of qPCR measurement is higher 

than the one observed in array data. Such information had to our knowledge not yet been 

provided in the rapidly growing field of coregulation studies.  Instead, coregulation methods rely 
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on assessing the probability of confirming the observed effects in other array datasets and on 

the probability of results belonging to common biological pathways. Here, we provide very 

robust statistical findings for these two types of validation, using bootstrap and other resampling 

statistical approaches. An implication of these observations is that it may not be wise to rely on 

single key genes as modulators of the observed effects, as the statistical reliability of any 

individual genes is moderate, compared to the robust statistical significance of coregulated or 

functionally-related gene groups. Here we relied on a process of convergent confirmation of 

mediators of depression, across groups of genes through the well-validated Ingenuity's 

literature-based database.  

 The mostly positive coordinated patterns may be surprising, based on known biological 

interactions between areas and cell types. Studies in regions with well-characterized 

neurotransmitter structures, such as raphe/cortex or substantia nigra/nucleus accumbens may 

help resolve this question. Notably, the proposed assay (regional gene synchrony) does not 

identify a single area of origin of disease-related changes (an intrinsic limitation of the 

approach), but rather suggests changes in factors supporting synchronization of gene function 

across brain areas in depression.   

 Other factors are likely engaged in the illness, for which the size and composition of the 

cohorts did not allow us to identify. For instance, early developmental events and indirect 

modulation (e.g. through monoamine regulation) may be more challenging to identify and are 

not necessarily well characterized in currently available functional gene networks. Finally, 

although we ruled out the contribution of several factors (genetic variants, tissue-specific 

programs, age) we only speculate that function-dependent regulation may be at play in 

supporting the depression-related correlation shifts. Hence, it will be of critical interest to assess 

whether correlated patterns return to control states in remitted subjects and if such patterns are 

measurable in rodent models of the illness. Finally, it is notable that robust coordinated patterns 
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were observed in a relatively small and heterogeneous cohort of subjects. Indeed, it is likely that 

demographic and clinical parameters, such as sex, race, lifetime stress exposure and 

antidepressant exposure for instance, will influence regional gene synchrony, although much 

larger cohorts and multi-region gene arrays datasets will be necessary to investigate the full 

extent of these effects.  Despite all of these potentially confounding influences, gene 

coordination remains a strong influence on patterns of gene expression across areas, and for 

which alterations in depressed subjects correspond to known and suspected abnormalities in 

the illness. 

 

Materials and Methods 

Cohort description and array parameters 

Human cohort 1 (amygdala and cingulate) includes samples from 28 white male 

subjects: 14 control subjects and 14 subjects with familial major depression. Subject description, 

array sampling and parameters were previously described (Sibille et al, 2009). In brief, brain 

samples were obtained at the Allegheny County Medical Examiner’s Office (Pittsburgh) after 

written consent from next-of-kin. Consensus DSM-IV diagnoses were made by an independent 

committee of experienced clinical research scientists, utilizing information from clinical records, 

toxicology exam and a standardized psychological autopsy. Depressed and normal comparison 

subjects were matched for age, sex and race (Table S1). Amygdala samples were dissected 

from frozen coronal blocks ~2-3cm caudal to the temporal pole and were enriched in lateral, 

basolateral and basomedian nuclei. Cingulate samples were harvested from coronal sections in 

subgenual cingulate and contained all six cortical layers. All procedures were approved by the 

University of Pittsburgh’s Institutional Review Board and by the Committee for Oversight of 

Research Involving the Dead. The second human cohort (BA9 and 47) includes 19 control 

subjects. Subjects description, array parameters and data are available in (Sibille et al, 2004). 
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Details about arrays processing and parameters are summarized in the supplemental files. 

 

Statistical methods 

Gene-wise bootstrapped Pearson correlation r-values were used to ensure an accurate 

estimation of the “real” underlying distribution and to avoid spurious findings due to outlying 

data. Because gene coordination relies on multiple samples to form a single measure, we used 

the percentile bootstrap method to ensure that the shifts were robust and significant (p<0.05) 

and then applied the Benjamini-Hochberg FDR (Benjamini et al, 2001). To increase the power 

of the analysis, we considered alterations of coordination in genes with high correlations in at 

least one condition, which are indicative of inter-regional communication (Dobrin et al, 2009).  

While methods exist to optimize cutoff values in coexpression networks (Elo et al, 2007), 

there are no analogous mathematical methods for coordinated expression for the same genes.  

Therefore we used a 0.7 r-value cutoff (resulting in=3244 probesets with cross-area links) that 

was indicated as an optimal balance of false positives and false negatives for within-area 

amygdala and cingulate networks (Elo et al, 2007), and results did not significantly vary for 

alternative cutoffs (+/-0.1) (not shown).  To generate p-values that quantify the depression-

related shift in gene coordination, we used the percentile bootstrap method. These p-values for 

shifts in correlation were estimated using 20,000 bootstrap resamples of the raw data, at which 

point p-values were stable.  

 

Methods for eliminating age correlation in microarray data 

While baseline comparison of age (Figure 2B) did not show any influence of age-

correlated genes on the amygdala-cingulate expression correlations (r=-0.01), to avoid 

ambiguity in the source of gene coordination we detrended any linear relationship with age in 

both amygdala and cingulate data (eliminating the possible influence of any large magnitude y-
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values shown in figure 2B on gene coordination). Because the final correlations used to assess 

gene coordination were bootstrapped, to detrend the data we removed any linear relationship 

with age in each of the 20,000 bootstrap instances and used these detrended resamples to 

generate a histogram of amygdala-cingulate expression profiles as before (see Figure 2A).  

 

Biological pathway, gene network and modulator analyses 

Selected genes were overlaid on the global molecular network developed from 

information contained in the Ingenuity Pathway knowledge base (www.ingenuity.com). This 

network is composed of ~2 million literature-based biological links between genes and bioactive 

molecules, and sub-networks are built on genes of interest based on their connectivity within 

this global network. Gene networks were limited to 35 nodes. The score for a network takes into 

account the relative numbers of network eligible molecules, of molecules analyzed and the total 

number of molecules in Ingenuity's knowledge base. These scores are based on the 

hypergeometric distribution and represent the negative log of the right-tailed Fisher's Exact Test 

p-value. Disease links are based on literature-based association with illness. The major 

functions of gene clusters were determined by DAVID functional clustering 

(http://david.abcc.ncifcrf.gov).  

To assess whether the association of the identified biological modulators with the top 

networks was specific (p<0.01), we resampled the Ingenuity database 100 times of with random 

gene lists of equivalent sizes. The process was repeated with variable sizes of selected genes 

(60 to 200 genes). Finally, the probability of finding the identified modulators in the top gene 

networks was assessed bootstrap resampling.  
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Figure 7 (Figure 1)  Correlated genewise transcript levels across brain regions.  

 

A-D  Examples of within-subject positive, negative and absent amygdala-cingulate gene 

synchrony. E  The right-shifted histogram of genewise transcript correlation suggests that the 

majority of genes are similarly regulated in both areas. The permutated data (dashed line) is 

centered on zero, indicating that gene coordination is subject-specific. F  A similar pattern of 

gene synchrony was observed between two areas of the prefrontal cortex in an independent 

cohort (“BA”, Brodman area). G  The lack of correlations in the extent of gene synchrony 
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between the amygdala-cingulate and prefrontal cortical areas demonstrate that different sets of 

genes present coordinated transcript levels in the two different sets of brain areas (G, R=0.002). 

AMY, amygdala, ACC, anterior cingulate cortex. 

 

 

Figure 8 (Figure 2) Age-related genes do not significantly influence gene coordination.  

 

A Age-detrended bootstrapped estimates of gene coordination were not significantly different 

from the null permutated model (distribution outlined by black dashed line) and did not decrease 

the overall levels of gene coordination. B-C Relationships between amygdala-cingulate 

coordination and age correlation, before (B) and after (C) removal of any age-correlation 

indicated that age-detrending did not affect amygdala-cingulate regional coordination. As shown 

in C, the distribution of age correlations is centered on zero and highly compressed compared to 
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figure B. The residual spread in the y-axis is due to inevitable, small, randomly occurring 

correlations while resampling the detrended data. D Histogram of correlations between original 

and detrended amygdala-cingulate coordination levels, showing that the vast majority of genes 

retain highly similar regional correlation, thus demonstrating an overall very small contribution of 

age to regional gene synchrony.  

 

Figure 9 (Figure 3)  Altered amygdala-cingulate regional gene synchrony in subject with 

major depression.   

 

A Global right-shifted histogram of gene synchrony in subjects affected with depression. B 

Comparing gene synchrony between control and depressed subjects confirmed that genes are 

similarly regulated in both groups (Gray dots) and identified numerous genes with robust 

decrease (Blue dots: High R in controls, low R in depression) or increase (Red dots: low R in 
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controls, high R in depression) in amygdala-cingulate synchrony. C  Single gene examples. D  

The top genes and molecule interaction networks built on genes selected with increased (right) 

or decreased (left) amygdala-cingulate synchrony in depression share similarities in signal 

transduction components and were linked through insulin, a homeostatic modulator with 

significant links to both networks (Table 1). IL1 was significantly connected to the network build 

in genes with increased regional synchrony in depression. Grey, depression-affected genes; 

White, genes or bioactive molecules significantly connected to the network. 
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Table 4 (Table 1) Top 3 biological networks formed by genes with gain of loss of 

amygdala-cingulate gene synchrony 

. In green are biological modulators significantly connected to the network over a range of 

FDR’s and unlikely to be selected at random (p<0.01). Depression-affected genes are in bold. 

Other included genes/molecules displayed significant interactions with Depression-affected 

genes in network. “Canonical pathways” contain genes linked to ≥25 % of nodes in networks. 

AMY, amygdala; ACC, anterior cingulate cortex; MDD, major depressive disorder. 
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Abstract    

Gene networks built on coexpression links provide a novel perspective on complex 

molecular systems, which are only beginning to be investigated in neuropsychiatric disorders. 

Accordingly we tested whether the multi-system changes observed in depression may be 

reflected in strategic changes to gene network structure. In a related hypothesis, we searched 

for characteristic position and connectivity among differentially expressed genes that would be 

informative of disease processes. Using several depression-related human postmortem 

transcriptome datasets, we show (1) that genes assemble into small-world and scale-free 

networks in control subjects, (2) that this efficient network topology is largely resilient to changes 

in depressed subjects, and (3) that differentially expressed genes are positioned on the 

perimeter of coexpression networks. Similar results were observed in a mouse model of 

depression, and also in bipolar- and schizophrenia-related coexpression networks. Importantly, 

we show that baseline expression variability contributes to the propensity of genes to be 

network hubs and/or to be differentially expressed in disease. In summary, the small-world and 

scale-free properties of gene networks appear to constrain the extent to which a gene may be 

differentially expressed in depression and other neuropsychiatric disorders. Previous studies in 

large-scale networks often reported a centrality-lethality relationship, in which pathology is 

mediated by hub nodes, so the diffuse peripheral localization of disease-related genes observed 

here may be specific to neuropsychiatric disorders, as it was conserved across several 

neuropsychiatric disorders.  
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Introduction  

The pathophysiology of major depression is hypothesized to involve dysregulation at the 

levels of genes, neurons and brain regions (Belmaker et al, 2008; Sibille et al, 2009), but the 

size, complexity, and interaction of the affected systems make it difficult to determine the 

disease impact of single modulators. Indeed, it appears that the disorder is the cumulative result 

of multi-system disturbances (Gaiteri et al, 2010), which moves the brain function into a 

pathological dynamical state. Gene microarrays have the potential to overcome this complexity 

by simultaneously measuring levels of many different gene transcripts. However, this larger 

window into cellular activity has not always led to more consistent results, as different 

laboratories, brain regions, and model systems implicate a divergent set of pathological 

mechanisms in depression (Mehta et al, 2010).  

Here, we propose using coexpression-based gene networks, which encompass many 

types of molecular interactions, as a contextual biological framework that may highlight common 

features of suspected disease genes in depression and other neuropsychiatric disorders. In 

coexpression networks, the links between genes (nodes) are determined by the extent of their 

correlated pattern of expression across multiple samples (measured by Pearson correlation; see 

methods) and are thought to result from a variety of biological relationships between genes, 

including common transcription factors or adjacent genome position (Allocco et al, 2004; Marco 

et al, 2009; Purmann et al, 2007). Gene networks derived from different tissues and species 

consistently show stereotypical “small-world” and “scale-free” network architecture (Carlson et 

al, 2006; Oldham et al, 2008). In small-world networks, nodes (genes) are typically strongly 

clustered into local communities that support biological sub-processes (Lee et al, 2004). The 

connectivity distribution in scale-free networks is highly heterogeneous: most genes are 

“provincial”, with only a few connections, while rare “hub” genes provide efficient global 

connectivity by linking together many distant genes.  

Networks with these structural characteristics are robust to the deletion of random 
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nodes, but critically sensitive to disrupted function or “attacks” targeted at the rare hub nodes 

(Albert et al, 2000).  Accordingly, at the level of molecular interactions, there are numerous 

demonstrations of close relationships between network connectivity and disease activity 

(Barrenas et al, 2009; Feldman et al, 2008; Jeong et al, 2001). Specifically, pathology-related 

targets may occupy strategic positions within these networks, which are poised to interrupt 

normal cellular function (Yanashima et al, 2009; Zotenko et al, 2008). Hub-nodes may be 

intrinsically disease-targeted, or merely frequently associated with disease, due to their far-flung 

connections (Goh et al, 2007; He et al, 2006). In either case, the collusion of network structure 

and pathology are important to understanding the relevance and priority of disease-related 

changes.  

Therefore, to understand how networks of molecular interactions may broadly direct 

transcription changes in depression, we investigated gene coexpression network structure in 

control and depressed subjects using postmortem transcriptome datasets. Based on the 

prevalence of the lethality-centrality relationship in disease-related networks, we hypothesized 

that network changes between control and disease-state networks would be centered around 

coexpression hubs, Second we hypothesized that differentially expressed genes would have a 

characteristic position and connectivity level in those networks. Mathematically, the first 

hypothesis tests the relationship of differential coexpression to network connectivity, while the 

second hypothesis tests the relationship of differential expression to network connectivity. 

These “hybrid” expression-and-network hypotheses were tested using postmorterm microarray 

datasets from depressed and healthy subjects. Because we seek to establish general principles 

of differential expression, we show the findings are consistent in an animal model of depression 

and applicable to a broader class of neuropsychiatric disorders, by including schizophrenia and 

bipolar disorder array datasets.  

While the basic structure of these networks is small-world and scale-free, connectivity 

changes in disease are not targeted at network hubs – the network topology is surprisingly 
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resilient effects of depression. Relatedly, tests of our second hypothesis show that differentially-

expressed genes are positioned on the perimeter of the coexpression network – relatively far 

from the critical network core. To understand what may mediate these effects, we explore the 

relationship of variability in gene transcript expression levels to network connectivity. Based on 

these results, we propose a general model of altered transcription in neuropsychiatric disorders 

and speculate on how the diffuse and peripheral localization of disease-related genes may 

relate to the difficulty in finding consistently differentially expressed genes across studies. 

 

RESULTS 

Small-world gene network structure in human and mouse brain transcriptome datasets  

In unweighted coexpression networks, each node is a single gene/probe-set and each 

link represents a correlation between gene expression profiles above some threshold. These 

networks were generated with established techniques to minimize false-positive links (under 

1%), that optimize the threshold for maximal biological information (see Figure S2 and 

supplemental information). As expected based on many previous studies (Bergmann et al, 

2004; Jordan et al, 2004; Tsaparas et al, 2006; van Noort et al, 2004), we find that all datasets 

examined here have approximately scale-free and small-world characteristics (Table S1). These 

characteristics of the “consensus” network generated from both control and disease-state 

samples are illustrated in Figure 1 using gene expression from the amygdala of human 

postmortem subjects. First, the distribution of gene links (degree) fits a power-law on log-log 

scale (R=0.82), indicating an approximately scale-free connectivity distribution (Figure 1A). 

Second, the distribution of path-lengths (i.e. number of links) between any two genes is similar 

to that of a randomized network (Figure 1B). Third, genes were clustered into local communities 

with a high number of mutual interconnections (Figure 1C), compared to a randomized network 

with identical degree distribution and number of links. The combination of high clustering (Figure 

1C) and low average pathlength (Figure 1B) is the hallmark of small-world networks. These 
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networks also showed uniformly positive assortativity, meaning that hubs were likely connected 

to other hubs, and provincial nodes to other provincial nodes (Table S1). A schematic of 

network structure that incorporates all of these characteristics is presented in Figure 1D.  

 

Resilient small-world gene network structure in major depression  

Since the basic combined structure of both control and disease coexpression networks 

is scale-free and small-world, it is possible that disease genes propagate pathological activity by 

altering the connections of influential hub genes -  a concept that has been validated in other 

biological systems (Bullmore et al, 2009). Our specific test for this is to compare gain or loss of 

connections (gain or loss of correlation-based links going from control to disease-state 

networks) for hub genes compared to provincial genes (Figure 2A). Technically, this means 

contrasting the amount of differential coexpression for hubs vs provincial nodes. This 

comparison (Figure 2B,C) shows that hub connections are not preferentially disrupted in the 

example of the amygdala network. In fact, hubs experience less average rewiring between 

control and depressed states than do provincial nodes. Also, the total number of differential 

connectivity between control and depressed networks lies within the disease permutated 

bounds (Figure 2B), indicating that apparent connectivity changes in disease are 

indistinguishable from variability in the Pearson correlations (Figure 2C).   

 We find no evidence of hub targeting in any dataset (using p<.05 as the criterion for hub-

targeting in all cases) including gene networks derived from an animal model of depression and 

bipolar and schizophrenia datasets. These results demonstrate that the pathology of depression 

is not created through differential connectivity targeted at hub nodes (at least in the current 

datasets using this methodology). While there are hundreds of ways in which control and 

disease-state networks may differ, in this critical measure (hub link targeting) coexpession 

networks are resilient to changes in human depression.  

A hybrid approach linking differentially-expressed genes with coexpression networks 
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To address our second hypothesis relating to connectivity characteristics of differentially 

expressed genes within coexpression networks, we use a constant network structure derived 

from the combined control and disease samples, supported by observation of similar 

connectivity in both conditions. We observed a robust trend between differential expression and 

connectivity, wherein genes with the lowest p-values for differential expression display very low 

connectivity, while genes with non-significant disease effect are progressively more connected. 

Evidence for this relationship (Figure 3A) was generated by (1) sorting p-values for differential 

expression from least to greatest numeric value, (2) binning the ordered p-values into 100 

groups/percentiles, and (3) computing the mean connectivity of each p-value group/percentile. 

We use this binned percentile method because it facilitates comparisons across datasets, which 

each has a unique distribution of p-values. Significance of connectivity was tested by repeatedly 

selecting an equivalent number of genes at random from that particular dataset to generate a 

distribution of expected connectivity. Performing all analyses using only control samples to 

generate the network structure does not significantly alter the trends (not shown), but since it 

does lead to higher false-discovery rates on networks (illustrated in supplementary Figure S2) 

we used the consensus network generated by combining control and disease samples. 

The consensus relationship of connectivity to differential expression across all datasets 

(defined here as meta-connectivity; estimated by combining the p-values for under- or over-

connectivity for each percentile across all datasets, see methods) shown in Figure 3F indicates 

a strong and stereotypical transcription response to disease that is closely related to gene 

network structure. The collective analysis (Figure 3F) also suggests a stereotypical connectivity 

for the entire continuum of differentially expressed genes, with the most consistent finding 

across datasets being low connectivity for low p-values DE genes. This was very consistent for 

the top 10% of differentially expressed genes across datasets even when controlling for FDR 

(10%). Greater than expected connectivity is also observed for some moderately differentially 

expressed genes, but in a less consistent manner (see fewer number of significant points at 
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middle percentiles in Figure 3F), due to lack of this broad trend in specific datasets, for instance 

Figure 3A. Similarly, there is an inconsistent drop in connectivity for ultra-high p-values, but this 

is not supported across datasets, unlike the major finding of robust low connectivity of low p-

value genes trend. 

The meta-analysis results in Figures 3F shows that the connectivity of disease genes is 

highly non-random, but we also investigated the broader question of whether these trends were 

specific to disease. To answer this question, we evaluate the same p-value to connectivity trend 

for pseudo-groups, each containing 50/50 combinations of control and disease samples (Figure 

4A). The range of expected results from this permutation testing (Figure 4B) shows that the non-

random connectivity of the true control-disease comparisons is actually not disease-specific, 

since the “true” or “observed” connectivity trend lies entirely between the permutation bounds. 

Furthermore, the control-disease comparison show a differential-expression to connectivity 

relationship that is very similar to the mean relationship of all permutations, indicating that while 

the real differential-expression to connectivity relationship is non-random, it is not unexpected or 

disease-specific. This additional test for disease-specificity was not conducted by the only 

directly comparable study (Lu et al, 2007), but indicates that some underlying trend beyond  

disease effect (which is negated by the permutations) must be creating the special connectivity 

of differentially expressed genes (see next section). 

 

Baseline expression variability contributes to the differential-expression to connectivity 

relationship 

What could account for the generic relationship of DE genes to connectivity (the red line 

in Figure 4B)? Meta-analysis comparing baseline variance in gene transcript level to 

connectivity shows a very strong relationship across all datasets (Figure 5). This indicates that 

hubs commonly show relatively large swings in transcript level (they are high-variance), with a 

mean/median correlation of 0.85/0.86 between variability and connectivity across all datasets. 
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Since hubs show more variable expression levels, this presents a simple explanation for the low 

connectivity of low p-value (for differential expression) genes since: (1) low variance genes are 

less connected and (2) low p-values tend are more frequently generated by low-variance genes, 

therefore low-p-values are associated with low connectivity. Any split of the data (permutation 

testing) will show this association of low p-values for differential expression with low 

connectivity, since transcript variance is unaffected by permutation. Note that transcript 

variability is factored out in the generation of Pearson correlations. So while this connectivity-

variability trend exists, it is not circular, but appears to be a natural characteristic of gene 

networks. Thus, the special connectivity properties of disease genes appear to be fueled by the 

broader trend of connectivity increasing with variability. Hence taking into consideration the 

broader context of variability/connectivity with transcriptional programs may lead to uncovering 

putative disease genes that are closer to the core neuropathology.  

 

DISCUSSION 

Resilience of small-world gene network structure to neuropsychiatric diseases 

When genetic variants and environmental influences combine to create disease 

pathology, they utilize and interact with cellular and molecular networks. We showed here that 

the coexpression networks of brain regions implicated in depression and other neuropsychiatric 

disorders display small-world and scale-free characteristics. These network architectures are an 

efficient (low path-length) and well-organized (highly clustered) framework for transcriptional 

activation. This efficiency comes with a specific weakness – vulnerability attack on key hub 

nodes (Albert et al, 2000), as demonstrated by disease operation in other large-scale networks 

(Guye et al, 2010; Micheloyannis et al, 2006; Smit et al, 2008; Srinivas et al, 2007; Stam et al, 

2007; van Nas et al, 2009). Therefore, we speculated that the connectivity of disease-affected 

genes could offer a window into pathological mechanisms in neuropsychiatric disorders. 

However, we found that the small-world connectivity characteristics of coexpression 
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networks are in fact resilient to the effects of depression and other neuropsychiatric 

disease states, and that the related pathology is not mediated by network disintegration 

via attack on hub nodes.  

Two related studies (Lu et al, 2007; Torkamani et al, 2010) also observed a broad 

similarity in the structure of control and schizophrenia gene networks or control and asthmatic 

networks, indicating that coexpression structure may be unaffected, or only slightly affected in 

complex disorders. While complete network reconfiguration and targeted destruction of hub 

connections appears to be rare in postmortem brain networks, it may be more evident in smaller 

more dedicated local networks that operate on a short time-scale, such as those devoted to 

metabolism or immune function (Leonardson et al, 2010; Reverter et al, 2006). The lack of hub-

targeting does not preclude existence of differential connectivity shown by more involved 

methods or if larger samples become available. 

As an alternative mechanism of network-pathology interaction, we tested if differentially 

expressed genes had a characteristic connectivity level within these resilient gene networks. We 

show that differentially expressed genes in neuropsychiatric disorders tend to have very low 

connectivity and fall on the edges of the network. This second form of network resilience to 

disease (i.e. differential expression of provincial nodes, but not central hubs) is the 

opposite of the standard pathological mechanisms in small-world networks, but potentially 

consistent with the broad range of affected systems in neuropsychiatric disorders. The low 

connectivity of DE genes is consistent across various brain regions, species, neuropsychiatric 

diseases and array platforms. Such a diffuse disease signature may be characteristic of 

complex disorders (Lu et al, 2007), but this is unclear since previous studies did not include 

permutation testing for significance or exploration of the relevance of expression variance. 

 

Why do differentially expressed gene have low connectivity? 

Since DE genes in neuropsychiatric disorders have low connectivity, it is natural to ask 
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(1) What biological and statistical relationships could generate this situation? and (2) How can 

this knowledge improve selection of disease-associated genes in a network setting? We show 

that a strong variability-connectivity relationship (Figure 5) creates a situation in which genes 

detected as differentially expressed are generically low-connected (Figure 4). But there are 

several biological rationales for why DE genes are located on the edge of the network in these 

particular datasets. It could be that DE genes follow generic patterns of variation (see Figure 4B 

for example) due to high false discovery rates associated with depression microarrays. 

Alternately, if control/disease comparisons have produced an accurate representation of DE 

genes, they may indeed ride on top of normal patterns of variability, since individual genes have 

small pro-disease effects in complex diseases.  

To determine if the low connectivity of DE genes is specific to complex diseases, a 

useful future experiment would be to calculate the connectivity of DE gene lists obtained from 

microarray datasets of severe disorders. To further explore the meaning of connectivity within 

neuropsychiatric datasets specifically, we checked if various classes of disease genes were 

associated with lower/higher connectivity (Figure S3). Surprisingly, given the prevalence of the 

lethality-centrality relationship in other systems, OMIM genes, genes associated with single-

mutation disorders, and essential genes showed expected levels of connectivity in coexpression 

networks. Genes which were frequently differentially expressed across many conditions did 

show higher connectivity, which fits with our emphasis on intrinsic patterns of variability 

associating with differential expression. 

Inferring mechanisms of pathology from differentially expressed gene connectivity 

Regardless of why DE genes are located on the edge of the network, how does this 

knowledge influence our conceptualization of disease effects on cellular interaction networks? 

The decentralized nature of DE genes in coexpression networks (Figure 6) may contribute to 

the illusive nature of depression pathology and the high failure rate of putative anti-depressant 

drugs – which essentially attempt to influence a vast network from the edge (if they are directly 
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targeting DE genes). These results are consistent with the multifactorial nature of major 

depression, bipolar depression and schizophrenia, and, from a coexpression perspective, 

suggest that single gene modulators will have limited therapeutic effect. It may be discouraging 

that the disease signal follows generic patterns of network fluctuation, but by understanding 

patterns of molecular interactions, it may be possible to more effectively track and dismantle 

disease processes.  

 

Centrality-lethality relationship in coexpression networks 

The low connectivity of DE genes calls into question the applicability of the centrality-

lethality framework to coexpression networks. The centrality-lethality relationship is exemplified 

in PPI networks and has gone on to permeate research in small-world and scale-free networks. 

From a theoretical perspective, it brings a coherent framework to far-flung and complex 

molecular networks; practically, hubs have been shown to be key components of the modular 

communities that are centered around them (Horvath et al, 2006; Wang et al, 2009). The 

consistent finding that small-world breakdown is a correlate of disease activity (Guye et al, 

2010; Micheloyannis et al, 2006; Smit et al, 2008; Srinivas et al, 2007; Stam et al, 2007; van 

Nas et al, 2009) spurs hope that widely applicable rules for optimal function determine the 

health of a network, regardless of its scale or composition.  

But based on our examination of the position of gene classes in gene coexpression 

networks (Figure S3), it appears that gene networks do not have the classic centrality-lethality 

relationship of PPI networks, perhaps because gene networks encompass a variety of biological 

relationships between molecules (versus physical protein binding). Coexpression relationships 

can be generated by a several cellular mechanisms, including transcription factor binding sites 

(Allocco et al, 2004; Marco et al, 2009), epigenetic regulation (Chen et al, 2005), chromosomal 

gene sequence (Ebisuya et al, 2008; Purmann et al, 2007), and potentially 3D chromosome 

configuration (Lieberman-Aiden et al, 2009) in addition to fluctuations in cell-type populations 
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(Oldham et al, 2008). Therefore, the definition of what constitutes a network link (physical 

binding vs correlation) may determine of the lethality-centrality relationship applies. If 

coexpression networks cannot be evaluated under the same paradigms as protein networks, 

what other methods can utilize network structure to guide disease-gene selection at the 

transcriptome/proteomic/metabolomic levels? 

 

Moving forward with gene networks analysis in light of the position of DE genes 

The distinctive lack of centrality of DE genes highlights a long-standing challenge in 

complex diseases: detecting biologically cohesive sets of genes that create a cumulative 

disease effect. We propose that coexpression links, which encapsulate many cellular 

relationships, can indicate collective dysfunction. For instance, coexpression links indicated that 

genes associated with depression in a cross-species analysis of depression were tightly bound 

together in glial and neuronal-growth related communities (Sibille et al, 2009). Specific modules 

of coexpressed genes may emerge to support specific biological functions, as indicated by a 

module of neurogenesis-related genes found specifically in the hippocampus (Oldham et al, 

2008). These diffuse changes may be tied back to specific modulators by searching for 

transcription factors which link many DE genes, and are themselves dysregulated (Hudson et al, 

2009).  Each of these studies uses networks structure to detect multi-gene cellular functions. 

But until we understand how disease or environmental influences percolate through the 

structure of coexpression networks, it is difficult define consistent strategies to predict which 

genes are critical mediators of disease. 

 While we examine the association of disease activity with connectivity in numerous 

datasets, this is a limited representation of transcriptional programs under disease states. In 

postmortem data, microarray measurements are years removed from potentially key 

developmental or disease shifts in these networks. What remains in postmortem data is the 

network steady state – the maladaptive equilibrium of a system sustaining long-term disease 
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activity. A number of developments could improve detection of key disease modulators, 

including improved graphs statistics, causal inference, or network-network interactions. It is 

possible that all information necessary to identify disease genes is contained in current 

datasets, which simply await application of the optimal graph/network analysis. Indeed new 

graph statistics that are responsive to physiological changes continue to be developed, such as 

clique configurations (Volinia et al, 2010), differential clustering (Chia and Karuturi, 2010). But 

calculating higher-order graph statistics does not overcome uncertain causality or the possibility 

of deficits outside coexpression networks. Understanding how observed coexpression structure 

responds to known perturbations could inform efforts to trace disease network structure back to 

unknown deficits. However time-series microarrays from inducible knockout systems, or tightly 

controlled human populations are extremely rare (Leonardson et al, 2010). The transcriptome 

networks described here are one of many cellular interaction networks, which themselves 

intersect at multiple contact points through feedback loops that can cloud causal relationships 

(de la Fuente, 2010). Combining information from different types of biological networks would 

more accurately reflect the “true” connectivity of genes sets associated with complex disease 

(Wachi et al, 2005), and hopefully further define the structure of pathology (Sharan and Ideker, 

2006). 

 

Material and Methods 

Study inclusion criteria 

We included several postmortem microarray studies of sufficient sample size (see 

methods) (Aston et al, 2005; Iwamoto et al, 2004; Iwamoto and Kato, 2006; Sibille et al, 2004; 

Surget et al, 2009; Torrey et al, 2000). We also performed all analyses on schizophrenia and 

bipolar datasets found in the main depression studies to see if observed trends were specific to 

depression or relevant to multiple complex disorders. Mouse data from animals submitted to 

unpredictable chronic mild stress (UCMS), which develop a depressive-like syndrome, were 
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also included in the study (Surget et al, 2009).  

 

Definition of differential connectivity 

To check for evidence of hub-targeting of coexpression links in disease, we use the 

resampling-based confidence intervals illustrated in Supplemental Figure S2D to identify links 

that are differentially coexpressed in control and disease networks. If a link is in condition ‘A’ is 

greater than the optimized cutoff and the correlation falls below its associated lower 95 % 

confidence bound in condition ‘B’ (or the reverse situation for link creation) then we define it as 

differentially coexpressed. Significance of a particular number of altered links (the p-values in 

Figure 2) connected to a given node is assessed by permutating the control and disease arrays 

many times to create sets of networks with no disease effect and then repeating the above 

check to establish confidence intervals on the expected number of significantly altered links 

(similar to the process in (Choi et al. 2005)). 

 

Significance of gene connectivity via sampling  

The expected mean connectivity of a selected group of genes (for instance low p-value 

genes in an array experiment) can be accurately estimated through resampling even in degree-

heterogeneous scale-free networks. By randomly selecting sets of genes of the same size, null 

distributions such as those in Figure 3D can provide confidence intervals on expected 

connectivity. Utilizing these limits it is possible to tell if a group of genes falls outside of the 95% 

expected range of the resamples, either as highly connected hubs or low-connected “provincial” 

nodes. 

 

Permutation significance bounds 

We repeatedly spliced the data into two pseudo “control” and “depressed” selections, 

each actually consisting of 50/50 mixture of control/depressed data. Thus any low p-values from 
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this pseudo-comparison are known to be due to chance or unknown demographic stratification 

characteristic and not disease effect. Repeated comparisons of degree versus p-value (or fold-

change) in such mixed datasets generates an expected null range for the degree associated 

with each p-value segment. The 95% confidence intervals on expected degree for a given p-

value segment are equivalent to the bounds that encompass 95% of the permutation values 

(see Figure 4B for examples). 

 

Corrections for multiple testing and procedure for meta-analysis of connectivity patterns 

across datasets 

 To assess the level of connectivity at a particular DE level across data sets we 

combined individual p-values for under or over connectivity using the “inverse normal method”. 

This is more appropriate to this data than the common Fisher's method, as it equally weights 

high and low values and outputs a consensus p-value as opposed to specifically favoring low p-

value results. This combined p-value estimation of under- or over-connectivity we term “meta-

connectivity.” Significance of the meta-connectivity values was assessed using the Benjamini-

Hochberg FDR. Because it is possible to segment datasets with different bin sizes, correction to 

the meta-connectivity values due to multiple testing varies based on number of segments into 

which genes are partitioned (alpha/#bins). Thus, it is possible to reduce the nominal FDR simply 

by a coarser estimation of the region of p-values with non-random connectivity. However, even 

with our fine-grained approach, there were clearly defined under- and over-connected regions at 

10% FDR, which largely persisted at 1% FDR as well.  
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Figures and Tables Captions   

 

Figure 10 (Figure 1) Scale-free and small-world properties of gene networks common to all 

human brain datasets – examples from amygdala 

 (A) Histogram of frequency of connectivity values for exemplar amygdala network and 

randomized network with equal total number of links (truncated at k=400 for clarity), inset: 

power-law fit of full connectivity distribution (R=0.82) on log-log scale, indicating distribution is 
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approximately scale-free. The connectivity distribution does not follow an exact power-law, but 

regardless, the degree distribution is highly heterogeneous compared to the Gaussian degree 

distribution expected under random connectivity (gray bars). (B) Path length comparison of 

actual and randomized network indicates signal pathways through the network are extremely 

short (since random networks are a common benchmark for low path lengths). (C) Clustering 

coefficients by degree nodes for a segment of the real amygdala network compared to 

randomized network with identical degree distribution and number of links. (D) Network 

schematic of resilient network structure, which persists in both control and disease networks, 

showing existence of hubs, high clustering and positive assortativity. 

 

 

 

Figure 11 (Figure 2) Small-world network structure is maintained in post-mortem networks 

in disease states – example from human amygdala   

 

 (A) Connectivity of hubs (top 5% connectivity nodes) and equal number of provincial 

(non-hub) nodes for examination of targeted differential connectivity in disease. This example 

selection of two different types of genes will be used to illustrate that disease does not target 

hub connections. Degree is the graph theory term for number of network connections of a 

particular node. (B) For this selection of provincial and hub nodes, we compute the relative 

fraction of altered links (both created and destroyed) between control and depressed networks. 
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For comparison the same rewiring statistic is calculated for disease-permutated data (pseudo 

network comparisons with no disease effect) and these permutations establish the mean and 

expected confidence bounds on a real effect. While provincial nodes are generically more likely 

to show differential connectivity vs hub-nodes, this is not a disease effect, but rather due to the 

greater statistical stability of hub nodes with a large base of connections. Note that “real” 

network connectivity changes are within the expected bounds of variability. (C) p-values for 

greater than expected differential connectivity, that further quantify panel 2B, showing that 

connectivity changes in depression are not greater than expected by chance for both provincial 

and hub nodes.   

 

 

Figure 12 (Figure 3) Examples and meta-analysis of network characteristics stratified by 

disease effect size, using t-test p-values for differential expression  
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(A) Stereotypical trends in connectivity by p-value levels in human amygdala data, 

showing rising connectivity with rising p-values and particularly low connectivity for the most 

differentially expressed genes (in all figures lowest p-values are to the left and transparent gray 

area shows non-random connectivity values). (B) Betweenness centrality (a measure of how 

trafficked a particular node is by all shortest network paths) by p-values in amygdala indicates 

DE genes are not merely low-connected, but on the edge of the network because low p-value 

genes have the lowest betweenness centrality. (C) Connectivity by p-value levels in largest 

depression dataset (DLPFC, n=58) also shows stereotypical low p-value/low connectivity trend. 

(D) Example null connectivity distribution used to estimate expected range of connectivity – 

each network has its own specific null distribution used to estimate bounds on expected 

connectivity. (E) Similar low p-value/low connectivity trend as in depression, but in a different 

area (temporal cortex) and disease (schizophrenia). (F) Combined p-value by degree trends for 

all datasets (spanning species, disease and array platforms). Meta-connectivity measure 

(calculated with the “inverse-normal method” close to 0 indicate less connectivity than expected 

for that percentile of DE genes in all. Meta-connectivity measure close to 1 indicates greater 

than expected connectivity for that percentile. Note the additional power of meta-analysis is 

scarcely necessary as mean connectivity is itself highly significant as well. Percentiles with non-

random connectivity were estimated at alpha=0.05 and 10% FDR. 
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Figure 13 (Figure 4) Disease specificity of differentially expressed gene connectivity 

patterns using example of DLPFC (n=58) dataset 

(A) Schematic of method of data permutation to generate null comparisons, which 

contain no disease effect since control/disease samples are balanced. (C) Stereotypical and 

actual trends in connectivity by p-value, showing that non-random connectivity (see Figure 3C) 

is a generic trend of all comparisons because the permutation bounds encompass the real 

comparison and because the mean permutation trend is similar to the actual trend.  
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Figure 14 (Figure 5) Underlying network characteristics driving disease-connectivity 

effects 

 (A) Variability (transcript expression variance) plotted compared to degree - example 

from amygdala dataset (B) Meta-analysis of variability-connectivity relationship  
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Figure 15 (Figure 6) Schematic of relationship between network structure and differential 

expression incorporating all results. 
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5.0  RESEARCH SUMMARY 

Rationale for network investigations in major depression Depression is the most 

common neuropsychiatric disorder with massive human and economic impact that is not 

effectively managed by current antidepressant drugs (Chapter 1.1). Studies of the relationship 

of specific genes, neuronal subtypes, brain-regions to depression effects (Chapter 1.2) have a 

repeating pattern: after the initial finding that some molecular or cellular process is necessary for 

antidepressant efficacy, it is determined that there is no analogous deficit in naturally occurring 

depression. Even if some molecule or system is affected by depression, restoring it to normal 

levels is frequently insufficient to restore healthy behavior. The inadequacy of any single 

explanation to account for diverse depression pathology and behavioral effects may be a result 

of depression’s multisystem composition. But, perhaps due to career pressure to hyper-

specialize, or lack of a computational model of depression, most investigations focus on a single 

specific aspect of depression, despite the fact that such investigations themselves clearly 

indicate the insufficiency of single-factor theories. Even traditional microarray analysis of post-

mortem depression data, which can sift through many biological processes, has been 

inconclusive, likely due to multiple pathological mechanisms that only have a faint transcriptome 

signature. At this point in the field of depression research, it is apparent a linear continuation of 

standard methodologies and techniques that investigate depression based on the contribution of 

independent factors is insufficient to deal with the true scope of a multi-system multi-scale 

disorder. 
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The novel methods and interdisciplinary questions that characterize studies in chapters 

2-4 are driven by the scientific crisis surrounding depression research wherein hundreds of 

parallel investigations have produced a litany of unconnected disease effects, to the point that 

pharmaceutical companies are abandoning psychiatric research as a waste of time/investment 

(Miller, 2010). The inadequate treatment options for depressed patients, the research funding 

crisis in psychiatry, and the limited progress of single-factor hypotheses of depression all 

prompted us to directly confront the complexity of biological interactions that have largely 

prevented coherent understanding of depression pathology. To do this we conducted 

investigations focused on interactive and collective effects of multiple factors and systems, 

which is a hallmark of depression pathology. Specifically, we use postmortem transcriptome 

networks to answer: Is there a biological or molecular process that is consistently dysregulated 

in the cross-species depressed brain-state (Chapter 2)? What is the basis of altered brain-

region communication seen in depression (Chapter 3)? Is there a basic coexpression network 

structure that mediates differential expressed genes in depression (Chapter 4)?     

Philosophical links between studies Of course, these questions are of general interest to 

depression research; however, we approach them on multiple physical scales in parallel, and 

use network analysis to access higher-order transcriptome-wide representations of pathology. 

Thus, what binds these investigations together in their conception (beyond the specific findings, 

discussed later) is a willingness to go after depression pathology wherever it is found. The 

studies are not bound by a specific physical scale, but investigate brain dysfunction at the levels 

of gene interactions, cell-types, and brain regions. This willingness to investigate the full-

spectrum of depression deficits in human post-mortem samples (as opposed to through several 

inaccurate mouse models) is crucial to success in a disease which does not have a 

characteristic neural process or biomarker. Furthermore, in each of these investigations, we go 

beyond common protocols of measuring one or more molecular markers and harness the full 

complexity of gene-gene correlations embedded in microarray data, to see into higher-order 
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network effects at work in depression. This approach contrasts with the historic trend in 

depression research to investigate single putative mechanisms in disease models 

(antidepressants applied to non-depressed mice) that have little to do with the naturally 

occurring pathology. The result of this unbiased, multi-scale, cross-species, network-centric 

approach to depression datasets implicates multiple pro-depressive mechanisms are at work 

simultaneously.   

In addition to our specific findings (summarized in Chapters 5.1-5.3), based on the multi-

system multi-factor nature of our findings, we advocate a new “floodgate” model of depression 

that emphasizes the potential for spreading regulatory failure across multiple systems as a 

pathological mechanism in depression (Chapter 5.4). The potential for cooperation among 

various biological hypotheses of depression is crucially important in the future success of a 

building a coherent depression pathology. It indicates that the key elements of understanding 

the disorder are in place, but what is required is a new integrative philosophy that focuses on 

the convergence of several mechanisms and how they could dysynergize to create the 

depressive state through a chain of regulatory/feedback failures.  

5.1 PAPER #1 DISCUSSION: HOW DOES REDUCTION IN GLIAL AND 

NEURONAL FACTORS RELATE TO VARIOUS HYPOTHESES OF DEPRESSION? 

Glia are non-neuronal cells of several classes that perform crucial functions related to 

glucose metabolism, neurotransmitter recycling, synaptic signaling, synaptic plasticity, and 

immune response (McNally et al, 2008). Because glia are involved in maintaining so many brain 

processes implicated in depression, they are well-situated to simultaneously mediate 

morphological and neurotransmission deficits hypothesized to underlie depression pathology. 

Glia cell death may account for the broad trends for prefrontal, orbitalfrontal, and cingulate 
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cortex hypotrophy seen in depression (Chana et al, 2003; Cotter et al, 2002; Rajkowska et al, 

1999) and even though neurons in the amygdala ramify in depression, glial loss is also 

observed in that region as well (Bowley et al, 2002; Hamidi et al, 2004). When antidepressants 

stimulate neurogenesis in the hippocampus they also lead to gliogenesis (Santarelli et al, 2003) 

and thus glia may be partially responsible for antidepressant effects. In a rare instance of 

agreement among microarray results, oligodendrocyte abnormalities have been detected by 

different researchers in multiple brain regions (Aston et al, 2005; Sibille et al, 2009; Sokolov, 

2007). The oligodendrocyte deficit may be particularly acute in late-life depression (Khundakar 

et al, 2009), which is characterized by white matter hyperintensities in T2 MR images that 

indicate altered vasculature and myelination (Nobuhara et al, 2006; Thomas et al, 2003). 

Peripheral markers of glial function also indicate that glial down-regulation is likely occurring as 

S100B is down-regulated in blood and CSF of unmedicated depressed patients (Kronenberg et 

al, 2009; Schroeter et al, 2010). (The S100B protein involved in calcium-mediated cellular 

growth (Santamaria-Kisiel et al, 2006) is neurotoxic at high concentrations and released by 

astrocytes and oligodendrocytes (Pinto et al, 2000).)    

The sustained HPA activation and inflammation frequently observed in depressed 

patients offer mechanistic explanation for observed oligodendrocyte deficits. Cortisol has both 

direct and indirect effects on oligodendroctyes: in the direct mechanism cortisol binds to 

glucocorticoid receptors in the oligodendrocytes, in particular the NG2 oligodendrocyte 

precursors and prevents their maturation (Alonso, 2000; Schröter et al, 2009). But cortisol and 

synthetic steroids sometimes used to treat multiple sclerosis may preserve oligodendrocytes 

(Mann et al, 2008; Melcangi et al, 2000) by preventing cytokines from altering potassium 

channel density. Thus stress response and cortisol levels can exert complex direct control over 

oligodendrocyte populations.   

The indirect path from cortisol release to oligodendrocyte death is through interaction 

with the increased inflammation seen in depression, interaction with other glia, and glutamate 
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excitoxicity. Cytokines from the periphery or those released in the brain lead to activation of 

microglia and increased levels of indolamine 2,3dioxygenase, which increases conversion of 

tryptophan to quinolinic acid, simultaneously decreasing production of serotonin and increasing 

activation of NMDA receptors. Not only do astrocytes then have more glutamate to scavenge, 

but quinolinic acid acts on them to decrease rates of glutamate uptake (Tavares et al, 2002). 

These conditions can complete a positive feedback loop wherein the excess glutamate levels 

lead to further microglia activation and release of TNF-α which sustains high inflammation 

levels, which are associated with glial death (Mann et al, 2008). The astrocyte glutamate  

transporters EEAT1/2 are down regulated in multiple sclerosis and their absence is most severe 

around cortical lesions (Vercellino et al, 2007).  Therefore, glia have a certain tolerance for 

glutamate scavenging and the high amygdala activation and inflammation seen in depression 

may push them beyond capacity and lead to glial death.   

Several clinical and antidepressant drug observations support the glutamate toxicity 

hypothesis. Chronic stress in mice leads to a decrease in oligodendrocyte density and using a 

gliotoxin to decrease glia numbers (in the prefrontal cortex) creates similar depressive-type 

behaviors (Banasr and Duman, 2008). The glia death from chronic stress appears to be 

glutamate-mediated as the NMDA antagonist Riluzole prevents loss of glia or generation of 

depressive behaviors (Banasr et al, 2010). Resting state connectivity (default mode 

connectivity) occurs on a timescale that reflects astrocyte contribution to signaling, and indeed 

several abnormalities in the anterior cingulate and prefrontal cortex default mode connectivity 

and task switching responses have been detected in depressed patients (Greicius et al, 2007; 

Sheline et al, 2009). Combining resting state connectivity with MRS, abnormalities in glutamate 

and GABA cycling were observed in depressed patients and severity of the deficit correlated 

with HAMD scores (Horn et al, 2010). Thus, an abundance of mechanisms link glial death, 

glutamate toxicity and depressive behavior. 
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Because several mechanisms leading to excitotoxicity could all be recruited by stress 

response and found in depression, there is a possibility for a perfect glutamate storm in 

depression. For instance, excess glutamate from prolonged HPA activation, decreased 

glutamate scavenging due to fewer and less effective astroglia, positive glutamate feedback 

onto microglia, decreased GABAergic tone and increased NMDA activation from quinolinic acid 

could all occur simultaneously to increase glutamate levels, which would lead to 

oligodendrocyte cell death through excitotoxicity (Takahashi et al, 2003). While the collusion of 

all of these mechanisms has not been shown in the context of a single experiment, the 

independent components are well-replicated by behavioral testing (Banasr et al, 2010), MR 

studies (Horn et al, 2010; Price et al, 2009), post-mortem microarrays (Choudary et al, 2005; 

Rajkowska et al, 1999) and peripheral assays(Petty et al, 1981). Therefore in determining the 

potential culpability of glia/oligodendrocytes in depressive processes, it is not merely the direct 

effects that are important, but the opportunity glial deficits provide for an excitotoxitic positive 

feedback loop. Despite all these potential mechanisms behind oligodendrocite death, the actual 

way in which this contributes to the symptoms of depression, has not yet been specified and 

probably relates to myelination associated with cell growth (see next). 

The second module of “neuronal-related” genes that were differentially expressed across 

species in depression is likely related to region-specific connectivity changes in depression. The 

amygdala shows increased dendritic arborization in depressed patients, in contrast to the 

anterior cingulate cortex, hippocampus, and prefrontal cortex which all show hypotrophy under 

stress and depression conditions (Morales-Medina et al, 2009; Radley et al, 2004; Shansky et 

al, 2009). Concordant with amygdala hypertropy we found many differentially affected genes 

related to calcium regulation and cellular scaffolding, potentially mediating net dendritic growth 

in the amygdala. Even a single high dose of corticosterone in rats led to amygdala hypertrophy, 

probably as a function of calcium influx through NMDA and AMPA channels (Duvarci et al, 
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2007; Inglis et al, 2002). However, increased calcium influx and resultant neuroplasticity could 

be created through other mechanisms in naturalistic depression.   

While the theory of simultaneous neuronal hypertrophy and glial death in the amygdala 

are consistent with increased HPA activity, in most other brain regions depression is associated 

with less ramified dendrites, probably mediated by extrasynaptic NMDA receptors (see below) 

and if that is the case, then the amygdala hypertrophy has a unique mechanism driving it. While 

the objective distinctions in plasticity and dendrites in various regions have been cataloged 

repeatedly, there is frustratingly little research concerning the exact mechanism responsible for 

these distinctions between cortisol’s actions on different regions. It is likely some combination of 

the structure of feedback circuits and patterns of activation in response to stress, receptor 

densities, and input from other limbic structures. Again, while our results fit with the approximate 

story of amygdala reactivity undamped by the frontal cortex, it is far from a mechanistic 

explanation for exactly how that situation occurs. Currently, since there is no computational 

model of multi-region interaction and also scant biological justification for how these changes 

are implemented, we exist in a disturbing situation in which the field does not possess a global 

framework nor local landmarks that would serve to mechanistically couple these depression 

effects. 

The scenario wherein NMDA is a component in a positive feedback loop of glutamate 

signaling levels, taken in conjunction with the decreased arborization seen in depression, 

appears to conflict with experiments showing that NMDA receptors stimulate synaptic plasticity, 

the antidepressant properties of SNRI's, and the elements of neuronal outgrowth we find 

upregulated in the amygdala. One possible explanation for the diversity of glutamate effects that 

is relevant to depression is as follows: low-dose ketamine would be expected to worsen 

glutamate excitoxicity and inflammation, as opposed to providing immediate relief, as it does in 

reality (Zarate 2006). However, synaptic and extrasynaptic NMDA channels have different 

binding affinities and activate different calcium cascades (Hardingham et al, 2002). The 
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extrasynaptic NR2b-containing receptors have higher affinity and are surrounded by lower 

glutamate concentrations, so ketamine likely acts on those receptors. While the exact 

mechanisms are still debated (Hardingham and Bading, 2010), extrasynaptic receptors are 

largely pro-apoptotic and decrease BDNF by decreasing CREB levels, while synaptic receptors 

are pro-survival. By stimulating synaptic NMDA receptors at a relatively higher level than the 

extrasynaptic receptors, it seems SNRI’s shift the signaling balance towards neuroprotection. 

However, if extrasynaptic glutamate levels rise due to glial dysfunction then extrasynaptic 

NMDA receptors are more likely to be activated and decrease proliferation. Therefore, it is at 

least in theory possible to stimulate dendritic ramification in the amygdala, while generally 

promoting excitotoxicity in other regions and non-specific glial death. However, there has been 

no simultaneous examination of glutamate signaling and glial activity in the amygdala and other 

areas, which would be necessary to move the field beyond speculation about how these region-

specific effects might be occurring. 

Intrinsic, referred and collective brain region deficits in depression 

In light of the core amygdala deficits found in this study, how can reports of depression 

deficits in other brain regions, or the joint activity of the amygdala with other regions, be 

interpreted consistently? For instance Chapter 2 shows cross-species oligodendrocyte and 

neuronal deficits in the amygdala, but not the cingulate cortex; Chapter 3 shows deficits in the 

communication between those regions; Chapter 4 shows consistent coexpression patterns of 

differentially expressed genes in both regions. Post-mortem microarrays show a mixture of 

causal and long-term adaptive changes to environmental and pathological influences, due to the 

single time-point assessment. Concordantly, expression changes may indicate a brain region 

generates a particular condition, or they may be activity-driven reactions to changes in other 

regions. If the changes are reactive, it may be the particular region is targeted by disease-

affected regions (convergent or focal input) or selectively vulnerable (lacking some standard 

compensatory mechanism). Because activity percolates through neural systems, all of these 
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types of deficits may be present simultaneously, and may or may not be causally-linked. For 

instance the strong amygdala findings of Chapter 2 are mathematically consistent with the 

altered AMY-ACC results of Chapter 3, since changes in coordination do not require changes in 

expression level. However, it is possible that the amygdala is the source of altered coordination 

- that abnormal amygdala responses to emotional stimuli originate a pattern of communication 

that results in decorrelated gene expression. Distinguishing between these possibilities, or even 

the relative likelihood of either scenario, is not possible without a strong modeling framework 

(developed in Chapter 5.4). 

5.2 PAPER #2 DISCUSSION: WHAT IS THE POTENTIAL FOR GENE 

COORDINATION AS A FUNCTIONAL MARKER OF NEURAL NETWORK ACTIVITY? 

Patterns of brain region feedback in depressed patients correspond to the core clinical 

symptoms of inability to suppress negative thoughts and a tendency toward rumination on 

negative life events (Cooney et al, 2010; Johnson et al, 2009). Therefore, a primary research 

question is how to identify and validate the molecular mechanism behind these effects that 

encompass multiple brain regions. The influence of specific metabolites on brain function may 

be assessed through PET or MRS studies, but they require specific ligands and/or can only 

measure a limited number of metabolites. Alternately, any gene variant can be correlated with 

fMRI task responses, but those still require apriori selection of specific genes. Thus, if there 

were a gene-based proxy for interregional communication, it could be an effective way of linking 

abnormalities in brain region activity to potential targets behind those effects, without bias 

towards a small number of well-studied genes. Gene coordination (Chapter 3) utilizes inter-

regional correlations in expression level as a transcriptome-wide filter to relate altered functional 

connectivity to putative gene markers. Changes to gene coordination in disease are less 
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specific than, for instance results of a PET study, because while gene coordination is likely 

driven by related patterns of neural activity, the physical cause of altered coordination is a black 

box. The list of gene-results from a gene coordination study cannot be traced back to a specific 

functional deficit or specific fMRI task, because samples come from post-mortem subjects and 

represent the steady-state relationship of two or more brain regions. But what gene coordination 

lacks in specificity, it compensates for, by relating combined brain function back to many gene 

markers in a manner not possible via more specific measures. 

Because decreased feedback between the amygdala and anterior cingulate is one of the 

most replicated fMRI findings in depression (Drevets, 1999; Hooley et al, 2009; Matthews et al, 

2008; Pezawas et al, 2005), the genes which also lose synchrony across regions could (A) 

represent the mechanisms responsible for the abnormal joint activity or (B) represent genes that 

are dependent on joint activity regimes for synchrony. For future studies it would be useful to 

clarify the nature of its relationship to regional network activity. This could be done by 

performing microarrays on many brain regions and then considering if the strongest gene 

correlation links correspond to strong functional or structural link between brain regions. This 

would be particularly useful for neuropsychiatric disorders, since interregional connectivity is 

studied in parallel with expression changes, but systematic understanding of how those two 

systems couple, is scarce. Regardless of whether gene coordination is causal or correlative with 

changes to regional activity patterns, it is a robust marker of interregional dysfunction that can 

easily be linked to specific genes.   

Because a large number of genes show altered coordination between AMY and ACC, 

even at low FDR, we use IPA modulators to represent their concerted function. Two over-

arching properties of the IPA-identified modulators behind the observed coordination changes 

are that (1) they consist of distinct hormonal and circulating factors that affect many brain 

regions, and (2) they correspond to many existing hypotheses of depression pathogenesis. The 

association of insulin, beta-estradiol and thyroid hormone with altered coordination suggests 
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that risk factors of sex and metabolic deficits are reflected in altered gene coordination. 

Specifically, diabetes increases risk of developing depression (Eaton 1996) and low thyroid 

hormone may cause depression, which is then directly treatable through artificial thyroid 

hormone supplements. While the sample in this study was completely male, estradiol’s 

influence on many decoordinated genes could lead to even stronger effects in females.   

The interaction of estradiol with many differentially coordinated genes hints that AMY-

ACC feedback may be preferentially affected in females, which would fit with higher depression 

rates in females. There is some evidence that the psychological experience of depression may 

be different for females, in that they rank social perception as a greater source of depressive 

symptoms than do males, but exactly what structures and pathways mediate this is unclear 

(Scheibe 2003). Behavioral tests of depression in mice sometimes show stronger response to 

stress, but effects are highly test and strain dependent (Dalla 2009). The amygdala and ACC 

also meet the minimum criteria of response to estradiol levels. (Goldstein 2005). Furthermore, 

BOLD responses in functionally dimorphic areas including AMY and ACC are most similar to 

those of males when estrogen levels are lowest, indicating activity is actively regulated and not 

purely structurally programmed (Holsen 2010).   

A separate set of likely partners in gene decoordination are IL-1 and glucocorticoid 

signaling, as these normally would have negative feedback on each other, but are both elevated 

in depression (see Chapter 1.2.2 for review of glucocorticoid and inflammatory hypotheses of 

depression). Since altered glucocorticoid signaling enables many other hypotheses of 

depression, and it is highly influential among genes with altered coordination, it is both a 

validation of the technique of gene coordination and an incitement of collective AMY-ACC 

activity in depression. Thus, the main modulators of altered coordination represent some of the 

strongest markers of depression, from classic causal factors, to risk factors, to putative 

mechanisms.   
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The modulators associated with altered coordination are not part of a single pathway, 

but involved in multiple hormonal systems. It could be that depressed sub-populations are 

defined by a single dysregulated modulator and collectively our data sample implicated these 

several modulators, however the small samples size here and requirements for statistical 

robustness, make the separate-and-equal modulator hypothesis unlikely. A more likely 

conclusion is that these results indicate a combination of disrupted circulating factors is 

necessary for depression. Mechanistic connections between the hypotheses of depression 

would certainly support the interoperability of multiple mechanisms in contributing to cortico-

limbic dysregulation. As described in Chapter 1.2.5, one possible chain linking all of these 

hormones would be if lowered sensitivity of glucocorticoid signaling could lead to insufficient 

suppression of inflammation, which in turn could lead to higher glucocorticoid levels or 

increased reactivity to emotional stimuli. Increased inflammation and cortisol would lead to 

amygdala hypertrophy and prefrontal/cingulate hypotrophy, and the accompanying decrease in 

feedback on the amygdala would exacerbate emotional reactivity (Dantzer et al, 2008; McNally 

et al, 2008). However, this concerted activation of several pathways implicated in depression 

has not been validated or explored in a unified single-organism setting, because depression 

research is segmented into research cliques. While results from altered gene coordination 

support the idea of multiple regulatory dysfunctions leading to depression (further developed in 

Chapter 5.4 as the “floodgate model of depression”) this larger concept requires additional direct 

tests of combined multi-system influence.  

Because gene coordination is a new marker of regional communication, that has not yet 

been artificially manipulated, there are several aspects of the measure that cloud mechanistic 

interpretation of results of AMY-ACC communication. For instance, what is the source of gene 

coordination? Since there is both gain and loss of synchrony among sets of genes in 

depression, it is possible that either (1) interregional AMY-ACC activity selects sets of genes to 

be coordinated or else (2) cellular conditions in each region interact with input from the other 
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region to determine which genes are coordinated. Therefore another source of ambiguity in 

results interpretation is that it may not be altered feedback activity itself that specifically creates 

altered coordination, but perhaps independent dysfunctions in each region which then lead to 

altered coordination. In this case the decoordinated genes would reflect the individual 

dysfunctions to the extent that they alter communication between the regions. Indeed, based on 

the numerous morphological changes to AMY and ACC, it appears unlikely that in depression 

the AMY and ACC have perfect internal operation and merely altered feedback(Drevets, 2003; 

Rajkowska and Miguel-Hidalgo, 2007; Sheline et al, 2001). However, altered feedback between 

depression-implicated brain regions (Cooney et al, 2010; Matthews et al, 2008), excess HPA 

activation (Pariante et al, 2008), metabolic defects(Marcus et al, 1992; Weber et al, 2000), and 

unsupressed inflammation (Dantzer et al, 2008; Smith, 1991) could interact and reinforce 

specific morphological or cellular deficits. Therefore, altered gene coordination reflects within-

area deficits which result in, or result from, altered communication across regions. Thus there 

are several potential mechanisms behind alterations in gene coordination in depression. While 

the biological mechanism behind these changes is unclear, they do offer a transcriptome-wide 

representation of brain-region communications, so the method is well-suited to detecting the 

combinatorial brain-region dysfunction thought to characterize depressive states.   

5.3 PAPER #3 DISCUSSION: UNDERSTANDING BIOLOGICAL FUNCTION THROUGH 

NETWORK STRUCTURE  

The centrality-lethality “rule” permeates research in small-world and scale-free networks. 

From a theoretical perspective, it brings a coherent framework to far-flung and complex 

molecular networks; practically, hubs have been shown to be key components of the modular 

communities that are centered around them (Horvath et al, 2006; Wang et al, 2009). The 
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consistent finding that small-world breakdown is a correlate of disease activity (Guye et al, 

2010; Micheloyannis et al, 2006; Smit et al, 2008; Srinivas et al, 2007; Stam et al, 2007; van 

Nas et al, 2009) spurs hope that widely applicable rules for optimal function determine the 

health of a network, regardless of its scale or contents. The need for coherence and 

understanding of concerted action of hundreds of genes and multiple neural systems is acute in 

neuropsychiatric research, because unlike cancer research, there is not even a consistent list of 

differentially expressed genes and the significance of individual SNPs is quite low and 

debatable (Bosker et al). Thus, network analysis in neuropsychiatry faces the dual challenge of 

identifying core dysregulated processes, and understanding how subtle far-flung changes in 

expression relate to disease phenotypes. 

To understand how coexpression networks structure may reflect the impact of 

neuropsychiatric disorders, we measure the centrality of genes that are differentially expressed 

and differentially coexpressed in depression. Since post-mortem sample sizes are small, we 

compiled results across all available high-quality depression datasets. These include data from 

multiple regions, so the results are indicative of any general network pathology mechanisms 

spanning or targeting multiple regions. Since we include data from multiple regions in a mouse 

model of depression (Surget et al, 2009), these results benefit from the constant genetic 

background and identical depression induction, in contrast to humans which have unique 

combinations of genetic background and environmental influences that precipitate depression, 

which also manifests with different physical symptoms. Furthermore, we also include samples 

from schizophrenia and bipolar populations, to improve the applicability of results to a range of 

neuropsychiatric disorders. As described in detail in Chapter 4, we observe a robust trend 

across all datasets for differentially expressed genes to be much less connected than expected 

at random. We find that is probably fueled by variability trends in the data, which was not clear 

in the only previous study (Lu et al, 2007), but the fact remains that genes thought to be key 

mediators of disease are in fact very peripheral in the coexpression network. From a pure 
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methodological standpoint, this indicates that data from psychiatric disorders pose more 

substantial challenges to network analysis than have the previous cancer-based datasets, 

because the typical method of searching for disease-associated hubs may not apply, or may 

need to be adapted in this situation. 

Simultaneous investigations of differential expression and network connectivity are 

relatively rare (Fuller et al, 2007; Lu et al, 2007; van Nas et al, 2009). It is however, these 

studies do find specific modules of genes that show consistent up or down-regulation in 

response to disease, but the general connectivity level of differentially expressed gene is not 

specified. With exceptions, (van Nas et al, 2009) usually the relationship is described with a 

scatter plot with little or no quantification or significant calculation on the trends. Because there 

are few examples of this type of analysis, it is difficult to estimate the specificity of this peripheral 

impact to neuropsychiatric disorders. There does appear to be a correlation between the 

severity of genetic impact of a condition and the centrality of the impact: datasets with major 

effects (cancer/sex) show differential expression in well-connected genes, while complex 

disease datasets (depression/schizophrenia/asthma) show differential expression among low-

connected genes. 

Thus our findings are not anti-modularity or anti-hub in philosophy, but may represent 

the flipside of the centrality-lethality relationship. Because deficits in high centrality nodes are 

very deleterious, and since depression is non-lethal and does not affect the potential of 

individuals to perform survival tasks, expression changes are concordantly on the edge of the 

network. A contributing factor to the results may be that post-mortem depression microarrays 

are inconsistent with each other and near the effect of noise (positive interpretation) or 

potentially littered with false positives (negative interpretation). However, asthma microarrays 

lack the highly contentious and discordant nature of depression microarrays, and differentially 

expressed genes in those networks are also low connected (Lu et al, 2007), so it seems that 
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disease properties, and not simply connectivity-variability relationships are driving the position of 

differentially expressed genes.   

Regardless of how differentially expressed genes come to be positioned on the edge of 

gene networks, this presents multiple challenges to the routine of selecting hubs which connect 

many differentially expressed genes. Similarly, if there is differential connectivity between 

control and depressed states, it is not occurring as relatively easy-to-detect changes in hub 

connectivity, but rather as fluctuations in connectivity among many low-connected genes. In 

addition to the technical questions prompted by the position of differentially expressed genes, 

there is also the larger biological question about how these expression patterns relate to 

difficulty in finding consistently dysregulated molecular functions in depression.  

Simply based on the volume of cases in which disease states correspond to targeted 

attack on small-world/scale-free network hubs, depression microarrays might be thought to 

continue in this vein, illustrating a universal disease mechanism. Because results indicate the 

opposite of this process is occurring – that changes are largely peripheral to the influential 

coexpression network hubs - this may be the network manifestation of a decentralized multi-

system/multi-module dysfunction in depression. The diffuse coexpression impact could be both 

a symptom and a cause of disagreement over the specific genes and pathways detected by 

array in depression. If indeed there is no unitary core component of depression which is either 

differentially connected or differentially expressed, then the frequent disagreement over the 

microarray correlates of depression have a basis in the disease impact, which is very faint, 

highly distributed, and skirts around network hubs. From the perspective of what biological 

processes may be involved in depression, these results support our contention that depression 

cannot be studied as the result of a single mechanism but likely reflects several simultaneous 

mechanisms that may be collectively destabilized (Chapters 1.2.8 and 5.4). Thus, in addition to 

answering specific questions about the connectivity of differentially expressed genes, based on 

results from hundreds of arrays in multiple species, brain areas and neuropsychiatric disorders, 
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this study supports a more collective integrative, multi-mechanism approach to research on 

depression pathology.  

If the network representation of disease changes is highly distributed along the edge of 

the network, practically how then should coexpression studies of depression be conducted? As 

indicated in Chapter 2, cross-species analysis may select a set of differentially expressed genes 

of sufficiently high statistical quality, that they do form modular functions in coexpression 

networks. Overlaying additional sources of biological information into coexpression networks, 

such as transcription factor networks, or GWAS candidate genes may also link several 

differentially expressed genes into detectable disease-related communities. If robust 

differentially connectivity is found in larger datasets, even if it is not targeted at hub nodes, 

linking differential connectivity to differential expression could prioritize selection of genes closer 

to primary depression deficits, which is currently difficult to do in the acausal coexpression 

framework. These possibilities would all benefit from a more mechanistic understanding of how 

coexpression communities arise from transcription dynamics, and a catalog of specific 

examples of how different types of disruptions at the levels of DNA sequence, and 

posttranslational/epigenetic modifications can affect coexpression relationships. However, 

sample-sizes in knock-out experiments large enough to infer networks are rare, and the 

distribution of KO genes do not have the systematic coverage needed to build understanding of 

how expression changes percolate in coexpression networks. Given that depression likely 

consists of many slightly altered expression levels, and many array datasets have very high 

false discovery rates, it is unsurprising that multiple datasets and techniques will be necessary 

to detect robustly affected genes.   
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5.4 COLLECTIVE IMPLICATIONS OF THESE STUDIES FOR DEPRESSION RESEARCH 

These studies reiterate many suspected pathways and mediators of depression 

pathology and highlight network-based methods to extract the transcriptome impact of major 

depression at the levels of genes, cells and brain regions. But what new predictions do they 

collectively make about multi-system multi-scale interactions among putative depressive 

mechanisms? What, if any, grand organization do they implicate behind depression pathology? 

In Chapters 2-3 we observe evidence for several hypotheses of depression, ironically excepting 

the canonical monoamine hypothesis. The observed deficits are highly distributed in 

coexpression networks (Chapter 4) and only detectable based on interaction between multiple 

brain regions, or cross-species analysis (Chapter 3). These results could be taken as a marker 

of contention in depression research over the primacy of different mechanisms and the 

continued lack of a single mechanism which is capable of accounting for the depressed state. 

However, we show all of these deficits in the overlapping or related datasets, indicating that they 

are simultaneously present in the same individuals. For instance, altered gene coordination 

between AMY and ACC is found in the same individuals who have oligodendrocyte and 

dendritic abnormalities, who are the same individuals with diffusely distributed expression level 

changes. Since these deficits interact mechanistically as repeatedly reviewed in Chapter 1.2, 

and we observe evidence that they are occurring simultaneously, we accept the prima facie 

conclusion that these dysfunctions co-occur in depression. As opposed to selecting a single 

primary deficit as the core mechanism of depression, we propose that depression is a collective 

multi-scale multi-system disorder. If this is the case, what conceptual framework is there to 

understand these depression deficits, so that the disorder does not merely become a syndrome 

of frequently associated mechanisms and symptoms? 

The floodgate model of major depression  The standard model for complex disease 

induction is a threshold model, wherein a sufficient number of deficits (driven by genetics or 
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environments) eventually becomes sufficient to create disease symptoms.  Based on results in 

Chapters 2-4, and in line with the approaches outlined in Chapter 1.2.8, we propose a 

“floodgate” model of depression, so named because it proposes that depression occurs as an 

uninhibited chain of events propagating among several related systems which are no longer 

able to compensate for, or contain external pressure. Consider the directed nature of the 

mechanistic links shown in Figure 1:  It is not the case that genetic and environmental damage 

merely occurs statically and is purely confined to a local network. Rather, deficits occur and alter 

the baseline responsively of the systems and overflow into related systems. Therefore, the 

“floodgate” model is a macro behavioral-level reiteration of the small cascades of depression-

related events which are constantly occurring at the molecular level. This is a distinct 

mechanism of depression induction from existing theories, which emphasize the severity of a 

particular deficit or the non-specific total contribution of random deficits that surpass a given 

threshold (under the allostatic load model). 

The emphasis on dysynergy in the floodgate model represents a shift in the philosophy 

of depression research: instead of asking “what is depression?” – and generating a laundry list 

of unrelated deficits, the central question in the floodgate model is: “how do combinations of 

factors all lead to a common depressed brain-state?”. This new paradigm focuses on how brain 

structure and function can unify the various hypotheses of depression. For much of the time-

course of depression research, the brain has been considered almost incidental to depression - 

it was merely the setting in which deficits happened to occur. But focusing on how the deficits 

relate to each other hinges on finding convergent neural mechanisms for hundreds of discrete 

findings that may appear unconnected. Currently, much research unsuccessfully attempts to 

skip from anti-depressants to clinical symptoms, almost as if playing a game that involves 

matching molecules to symptoms, while the brain stands on the sidelines. To make progress in 

the floodgate model, all an experiment needs to show is what depression is not, i.e. depression 

is NOT independently a deficit in factor X and factor Y, but both X and Y activate some pathway 
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Z. (This process essentially corresponds to dimensionality reduction applied to the field of 

depression research – looking for colinearity among experimental assays). Ironically, by 

accepting a complex multi-factor basis for depression, it might be possible for traditional single-

mediator-style experiments to begin constructing a systematic understanding of depression, 

which is more akin to the progress made in other areas of neuroscience, as opposed to the 

current hodge-podge of discordant findings. 

A concrete example of how the floodgate model could be used to evaluate pro-

depressive impact may be in the case of severe HPA activation: even if the patient has an 

oligodendrocyte deficit, as long as there are no simultaneously pro-depressive factors at work 

i.e. inflammation is low, so that astrocyte glutamate scavenging is adequate and there are not 

prestanding brain region connectivity changes (stemming from long-term stress or childhood 

abuse for instance) then the system will likely adapt to the severe HPA activation without 

creating a depressive state. If depression were to occur, the flood-gate model would predict 

concurring mechanistically-linked deficits in multiple systems that allow stress-inputs to have 

largely unregulated impact across several systems. The reason the several linked systems 

ultimately do collapse is probably related to repeated activation from stress combined with 

genetic deficits. Thus regulatory systems in each individual may be primed for destruction in 

different combinations in separate individuals. Therefore, the floodgate model does not 

emphasize any specific set of priming events (which could vary by individual), but rather the 

reinforcing effects that occur when regulatory mechanisms fail simultaneously across multiple 

systems. The floodgate analogy is stretched by the complex regulation between depression-

affected systems that control percolation among them. Due to multiple regulatory loops between 

systems, it may be difficult to detect those sets of deficits that lead to unregulated sequences of 

adaptation (see Chapter 5.4.1 on multiscale modeling). However, the traditional threshold model 

provides no framework for how deficits cohere to produce depression, making it even less 

testable. 
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To lend support to the floodgate’s emphasis on the collusion of distributed deficits, it 

would be necessary to show that specific combinations of deficits in functionally linked systems 

have a greater effect than randomly distributed deficits that do not form sequential regulatory 

links across systems. Treatment with interferon (for hepatitis C) could provide a platform to test 

the floodgate model vs the traditional threshold model for complex disorders. Because this 

treatment is a known extreme stress on the immune system, under the floodgate model, the 

difference between those patients who do/do not develop depression will be relatively lower 

functioning in ALL depression-related systems, whereas any single measure should be less 

predictive, even if it is severely affected. This could be tested by regressing depression status at 

the end of interferon treatment against either a combination of PET, DSI, DMT tests, fMRI stress 

responsivity and peripheral glial markers (to address functionality of several depression-related 

systems) or some normalized minimum of those scores. These could indicate if depression is 

more likely to occur in individuals with some distribution of low-grade deficits (floodgate model) 

or simply occurs in those individuals with the greatest total deficits. There is some supporting 

evidence that this proposed experiment could distinguish between depression models, as poor 

sleep patterns prior to interferon treatment predicts depression during treatment (Franzen et al, 

2010) as do elevated HAM-D scores (Lotrich et al, 2007).   

Assuming that all results from depression research are in fact correct, these deficits 

ultimately contribute towards a brain-state which is prone to stress reactivity and focused on 

negative personal events. In this framework, the question becomes how exactly deficits 

combine to create a brain-state characterized by depression. For instance, the floodgate model 

would predict certain deficits that are particularly detrimental in combination. Even if the 

floodgate model is validated experimentally, moving depression research into this paradigm of 

studying the breakdown of robustness vs single depression mediator will require a framework 

that binds together the hundreds of depression-related deficits. Exploring the concurrent 

influences of depression deficits will entail dynamical systems models to account for the specific 
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contribution and interaction of various far-flung depression influences, within a unified setting. 

However, building such models is technically challenging. Part of what has prevented an 

integrated model of depression is the challenge of mechanistically uniting deficits that range 

from complex second messenger systems, to neurotransmitters, to synaptic configurations to 

the temporal evolution of brain region communication during specific tasks. Modeling all of these 

influences simultaneously requires “multi-scale” models that search for convergent dynamic 

patterns of brain activity that are generated by both molecular and systems-level effects – just 

as they are in the actual brain. 

5.4.1 Overview of multi-scale modeling 

   A pubmed search for all variants of “multi-scale” modeling currently (12-25-2010) 

yields 12 results, mainly related to large-scale cardiac models. However, I predict multi-scale 

models will become a key multi-center investigative modeling technique. What are multi-scale 

models? Multi-scale models mathematically combine the activities of biological elements that 

operate on different physical or temporal “scales”. Compared to “normal” single-scale models, 

they more closely reflect the nested complexity of real biological systems (see figure 14). For 

example, gene transcription is influenced by DNA sequences, post-translational modification, 

feedback from protein-protein networks, cellular/molecular activity, and ultimately the activity of 

the organism. While these systems are sometimes modeled in isolation (single-scale), a multi- 

scale model mathematically couples activity on two or more of these levels, which literally can 

scale-up the relevance of findings on lower levels. In short, the end point of most experiments – 

the “limitations” section of confounding factors and unanswered questions is where multi-scale 

models begin. 
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Figure 16  How is a multi-scale model different from other models?  

Here we contrast how single-scale vs multi-scale models would be formulated for multi-scale 

disorders such as depression. Multi-scale models form a unified framework, wherein the results 

of one simulation feed into the next layer of complexity. This nested organization is useful in 

preventing the tentative conclusions, isolated results, system-specific results, and parallel but 

unconnected investigations that characterize depression research. However, multi-scale 

modeling does require an extensive computational framework between mechanisms that would 

have to be gleaned from hundreds of papers. Currently such a framework relating the actions of 

multiple modulators and biochemical links between key brain structures does not exist, even in 

primitive form, for depresion. 

 

High-throughput technologies indicate that depression stems from the combination and 

interaction of many causal factors whose individual contribution is small. This distributed 

pathology impinges on cellular and molecular networks which adapt and interact with each 

other, simultaneously creating the cognitive symptoms of depression and disguising their 

cellular origins. Thus, the process of fully testing how or if putative antidepressant agents can 
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reverse the cognitive symptoms of depression in humans is long, expensive and error-prone. 

Combining knowledge about depression pathology at the levels of genes, neurons, and brain 

regions into a unified multi-scale model should allow a more coherent understanding of 

interactions among causal factors and how they collectively maintain the depressive state. 

The advantage of multi-scale models for depression is that multiple polymorphisms that 

affect specific components of neurotransmission can be modeled in a realistic parallel fashion to 

understand their collective effect on network activity. A practical example in the case of 

depression would be to create a detailed simulation of the amygdala, anterior cingulate cortex, 

and DLPFC as a brain region network of mood regulation with outputs to a virtual hypothalamus 

and reticular activating system. Each of these regions will have a realistic three-dimensional 

synaptic coupling between neurons, which each have different receptor subtypes that determine 

their firing patterns. The activity of neurons as well as the level of virtual circulating hormones 

and neuromodulators will then interact (via differential equations) with the regulations of genes. 

Genes for trophic factors, receptor insertion and other processes will regulate neuron firing rates 

and network structure, to ultimately influence inter-regional communication. Thus a multi-scale 

depression model would form a mechanistic explanation for signal transduction and biological 

adaptation from the level of drugable molecules all the way up to brain region communication 

associated with mood regulation and perceptual states.   

This simulation environment would enable faster antidepressant compound profiling with 

fewer false positives, because it incorporates the relevant biological complexity. Because the 

model is mathematical and can be “frozen” at any moment, the complete cascade of effects 

from antidepressants (which interact with virtual cellular machinery) is fully dissectible, and may 

be utilized in understanding how to extend and improve the activity of promising compounds. 

Moreover, multi-scale models could provide new insight into the mechanisms most responsible 

for sustaining the depressive state, and thus a novel basis for new classes of antidepressants. 

Conversely, multiscale models can be used to test specific compounds or several compounds 
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with particular properties that are most successful at switching the network from depressed to 

normal activity.  

Integrating lists of differentially expressed genes into a multi-scale model 

 Gene transcript products can affect intracellular signaling, cell-structures, and cell-cell 

communication - the full gamut of cellular functions. Therefore implementing differential 

equations that describe the effects of dozens of genes on a cell (for instance, the effects of a 

disease-associated gene set) can quickly snowball into a project of simulating every known 

cellular system. There are at least two complementary strategies to estimate the contribution of 

numerous genes to multi-scale dynamical models. These enable more realistic simulation of 

disease complexity (effects of multiple genes and systems) in the framework of incomplete 

information on the cellular function of genes and gene products. 

Strategy 1: Collapsing gene lists into modular affected systems    

Under this strategy, microarray results are interpreted as a proxy for subsystem-specific 

dysregulation: the degree of dysfunction corresponds to the number of affected genes found in 

a given system, or potentially the coexpression connectivity of those genes. The main 

assumption of this approach is that the disease relevance of a set of genes is proportional to 

their cumulative effects on major cellular systems that ultimately affect spiking activity. For 

instance, if microarrays from the prefrontal cortex showed differential expression of enzymes 

related to GABA, under this strategy, the first step would be to construct a computational system 

that encapsulates major components of GABAergic neurotransmission, such as synthesis, 

vesicle release probability, receptor subtypes and reuptake. Then the probable effect of the 

differentially expressed genes could be simulated by varying parameters related to the 

efficiency of the core system components. There are multiple advantages to constructing the 

simulation around well-characterized elements of a particular subsystem, rather than around 

specific differentially expressed genes: data may actually exist to realistically model these core 

systems and modifying the core system may more accurately represents how disease 
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processes interact with prestanding systems. Furthermore, since microarray measurements 

present a mixture of causal and (mal)adaptive changes, it may be more appropriate to 

implement systems-level changes than gene-level changes.  

Strategy #1 essentially subsumes genes into parameters (or sometimes variables) that 

affect neuronal activity. This strategy will still permit multi-scale feedback loops between 

neuronal activity and gene expression levels, however those "genes" will be functionally 

implemented as elements in signaling cascades related to neuronal function. This nested 

complexity is essential in multi-scale models, because it permits examination of the high-level 

examination of low-level deficits. But how can we increase the richness of gene-gene 

interactions, at the lowest level of the model, when coexpression networks are acausal and 

direct interaction pathways are incomplete?   

Strategy #2: Modular interactions to determine virtual transcription   

Creating a transcriptional activation system for modular cell functions could provide more 

realistic feedback interactions at the gene level of the model. The "gene" markers of modular 

cellular functions (which are essentially tied to sets of neuronal parameters) would follow simple 

activation and repression relationships thought to exist between the systems (likely composed 

of the major hypothesized systems involved in depression). This is a useful approximation of 

transcriptional programming since depression is a heterogeneous disorder (different cellular 

systems are affected in different patients), and because transcriptional programs are regulated 

in many ways like a classic hidden-layer neural network: classifying a range of inputs into 

transcriptional programs (Babu et al, 2008; Shmulevich et al, 2005). While there would be a 

limited number of these transcriptional markers, they could have fairly detailed combinatorial 

interactions in response to a set of environmental and endogenous conditions present at a given 

time in the model. For instance, markers of low thyroid hormone+high stress could activate a 

very different final selection of genes/parameters than low thyroid+inflammation. The interaction 

of these modular systems is largely informed by relevant literature, and so may seem adhoc in 
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comparison to data-driven coexpression networks. However, in the absence of causal data from 

time-series microarrays, it represents an acceptable approximation of multi-gene interactions. 

Furthermore, these interactions exist mainly to bring further realism to temporal evolution of 

neuronal parameters, which themselves have a much more refined set of parameters. 

Conclusion of multi-scale modeling and relevance to the floodgate model Thus, the 

floodgate model is not a purely descriptive model of depression, but may be useful in 

understanding how slight changes across multiple systems do more than accumulate – they can 

occur in specific combinations that are particularly deleterious due to linked dysregulation. The 

floodgate model pushes depression into an individualized medicine paradigm in that each 

patient may have a different set of predisposing factors which are most likely to be mediating 

depression. Rather than simply dissolving the etiology of depression into many subcomponents, 

the floodgate hypothesis relates broad trends in multi-system depression involvement that 

accounts for its irregular presentation and self-sustaining pathology. 

5.5 CONCLUSIONS AND FUTURE DIRECTIONS 

Challenges and recommendations for neuropsychiatry The past 60 years of depression 

research have been marked by blossoming understanding of the effects of depression on the 

brain, a diversified series of antidepressant drugs, but scant change in disease remission rates. 

What are the key factors that have prevented molecular research from improving patient 

response rates? Is the lack of some specific technologies or type of study holding back patient 

treatment? Results from Chapter 2-4 confirm several main suspects in depression pathology. 

But if the field has indeed identified the key mediators of the depressive state, why do we still 

lack a coherent understanding of depression symptoms to guide antidepressant development 

and patient treatment? Our inability to control the outcome of cases of major depression 
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suggests we do not understand how key components of depression pathology interact. As 

indicated by Figure 1 and reiterated in the floodgate model of depression, there are known 

mechanistic interactions between various hypotheses of depression that offer hints to common 

mechanisms behind the observed pathology. But the vast majority of depression research 

describes isolated effects, and hence a forest of vaguely related results has grown up around 

the amalgam of symptoms that make up depression. Comparatively few studies are devoted to 

understanding how distinct depression effects converge into brain states that produce a 

depressive phenotype. Because depression consists of a combination of deficits, it is utterly 

important to understand how they interact though common neural pathways. Those common 

pathways could form the basis for logical drug development, whereas research on the currently 

disjoint hypotheses of depression mechanisms has spurred branching subfields.  

How can we understand the common, unique and combined contributions of different 

mechanisms to the depressed state? Capturing the shifting combinatorial structure of 

depression requires revamped organization of research focused on the relationships between 

specific experimental results. If study results are structured relative to each other, in the same 

way that depression effects exist relative to each other, a coherent pathology may emerge as 

depression models align with actual brain mechanisms. At the very least, this entails a 

discussion section in each paper linking specific findings to larger mechanisms that are 

phenomenologically closer to depression symptoms. However, there is a limit to the power of 

arrow diagrams and verbal references: the multitude of depression effects necessitate rigorous 

implementation in a unified setting. The multi-scale model necessary to capture these effects 

could be one of the most involved modeling projects to date, because known depression deficits 

span several physical scales and multiple systems within scales. However, the alternative to 

commencing model construction is to allow the present cacophony of results to rattle on without 

an overarching framework. Based on the current level of scientific understanding in depression, 

objectively quantified by pharmaceutical exodus and low remission rates in patients, we suggest 
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the organization of depression research should be revamped so the field can capitalize on key 

findings. Specifically we suggest configuring research results to mimic the interconnected 

structure of depression mechanisms by focusing on interactions between depressive 

mechanisms. In short, the span of depression mechanisms in the brain demands a 

corresponding bridge between studies in research. 

Global summary We directly confront the dominant obstacles in the field of depression 

research - multifactorial and multi-scale pathology – by constructing transcriptome-wide 

networks that comment on depression mechanism at the level of genes, cells, and brain 

regions. Each of these studies detects a set of biological and network effects that indicate 

depression persists through multi-component multi-system failures. For instance, in meta-

analysis of postmortem depression microarray datasets, we investigated if differentially 

expressed genes interact with coexpression network structure – potentially using the small-

world structure to leverage pathology. We show that the expression and connectivity changes in 

depression and other neuropsychiatric disorders are confined to the fringes of coexpression 

networks. Thus the contested genes of interest in depression may create a collective pro-

depressive effect without any single gene predominating.   

Because the false discovery rates are high in depression microarray studies, we use 

cross-species analysis to refine a set of differentially expressed genes and then use 

coexpression networks to show that these results represent two communities of glial- and 

neuronal growth-related genes. This oligodendrocyte/glial deficit is one of the few results 

confirmed across microarray studies and fits with the gene markers of change in neuronal 

structure. So once again, depression deficits do not occur in isolation, but appear 

simultaneously in meaningful sets of effects that mirror their codependent function in the brain. 

We establish “gene coordination” as a new gene-based synchrony measure that 

appears to reflect function communication between brain regions. Genes with altered 

coordination implicate the action of glucocorticoids, thyroid hormone, estradiol, insulin and 



 

 184 

cytokines in mediating depression effects on cortico-limbic regulatory circuits. These suspect 

pathologies operate simultaneously on brain regions which are crucial in determining mood and 

emotional responses. Thus a set of circulating factors with molecular interactions is related to a 

set of brain regions with functional interactions. While such network-network interactions are 

complex, they may produce meaningful disease characterizations, because this conception of 

depression is closer to reality, evidenced by the well-validated results of this study. 

Chapters 2-4 already comprise the most network-centric molecular studies of depression 

to date, yet they point toward the need to integrate more types of cellular networks, to better 

detect and conceptualize the widespread impact of depression. Embedding these effects into 

realistic cellular networks would be helpful in understanding the confluence of multi-system 

interactions that characterize depression. This is an extremely challenging computational 

modeling task, but we outline how a multi-scale model could satisfy requirements for a realistic 

simulation environment and could break depression research out of the strangely parallel worlds 

of competing theories. We also propose a non-competitive framework for depression research - 

the floodgate model of depression – designed to meld the relationships between hypotheses of 

depression into a more coherent theory that will develop, rather than fragment, under pressure 

from new experimental results.  

From the perspective of a depression researcher, there has never been a more diverse 

cadre of potential depression mechanisms. From the perspective of patients with unremitting 

depression, their vitality is on hold until superior new treatment options arrive. Fortunately there 

are many insightful experiments currently underway to determine the precise causes and effects 

of depression. Thus the primary elements necessary for antidepressant drug development - and 

substantial improvement in the human experience - already exist. But it may be possible to 

catalyze meaningful progress in depression research through new conceptual approaches. 

Based on the results of Chapters 2-4 we propose that many forms of network analysis will be 
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useful in gathering diverse components of pathology and then projecting a coherent 

representation of depression. 
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1. Detailed Material and Methods 

Subjects  
Brain samples were obtained during autopsies conducted at the Allegheny County 

Medical Examiner’s Office following consent from the surviving next-of-kin. After careful 

examination of demographic, clinical and technical parameters, we selected a cohort of male 

depressed subjects and matched control samples.  

For all subjects, consensus DSM-IV diagnoses of MDD were made by an independent 

committee of experienced clinical research scientists at a case conference utilizing information 

obtained from clinical records, toxicology exam and a standardized psychological autopsy 
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(Glantz and Lewis, 1997). This latter incorporates a structured interview, conducted by a 

licensed clinical psychologist with family members of the index subject, to assess diagnosis, 

psychopathology, medical, social and family histories, as well as history of substance abuse. A 

symptom score was calculated based on the presence at time of death (1= unequivocal yes; 

0.5= unsure or subthreshold; 0= unequivocal no) of nine major depressive episode symptoms: 

depressed mood, anhedonia, appetite disturbance, sleep disturbance, psychomotor change, 

anergia, self-recrimination, diminished ability to concentrate or make decision, and suicidality.   

We further focused on patients with familial depression, as these subjects in general display 

earlier onset of symptoms, more recurring episodes, shorter inter-episode duration, and suffer 

from more severe and incapacitating episodes than non-familial depressed patients(Fava et al, 

2000). To determine familial MDD, the next-of-kin was asked about each 1st-degree family 

member and about the psychiatric history of other family members. This approach has the 

advantage of being prompt, efficient and appropriate for postmortem studies, but it also 

underestimates the presence of psychiatric illness in 1st-degree relatives (Andreasen et al, 

1977). All MDD subjects had at least one 1st-degree relative with a history of MDD. The 

increased disease severity was supported by a longer average duration of illness in the familial 

depressed cohort compared to non-familial subjects collected under the same conditions in the 

same brain donation program (9±2 years versus 3±1 years; Mean±sem; t-Test, p=0.01).  

Cases who did not commit suicide, died from natural causes, thus ruling out the possibility of 

accidental death as masked suicide. MDD subjects with co-morbid psychiatric disorders were 

excluded. Antidepressant drug exposure was assessed by clinical data from structured 

interviews, review of records and toxicology studies. Control subjects were paired to each case 

as closely as possible on age and freezer storage time. Control subjects did not have an Axis I 

psychiatric disorder, were antidepressant drug-free and died from natural or accidental causes 

other than suicide. The family histories of MDD in controls included one positive, nine negatives 

and six unknowns. Subjects with advanced disease stages (i.e., cancer, neurodegenerative 
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disorders) were excluded. All cases and controls were white Caucasian and were selected for 

rapid modes of death and short agonal phases, to limit the influence of agonal factors on RNA 

quality and pH (Tomita et al, 2004). All selected brains were analyzed for adequate brain pH 

(>6.4) and RNA integrity by optical density (OD≥ 1.6) and Agilent bioanalyzer analysis (Agilent 

Technologies, Palo Alto, CA; RIN expert scoring system ≥ 7) as previously described (Eggan et 

al, 2008). Two pairs did not pass quality control in AMY, leaving 16 pairs in ACC and 14 pairs in 

AMY for the final analysis (Table 1). Rates of death by suicide, disease recurrence, evidence for 

antidepressant treatment at time of death, and alcohol dependence in MDD subjects are 

described in Table 1. Toxicological screens on peripheral fluids identified the presence of at 

least one antidepressant in 5 subjects, including four different tricyclics, one selective serotonin 

reuptake inhibitor and one weak dopamine reuptake inhibitor. Importantly, all antidepressant-

treated subjects were currently depressed at time of death, suggesting either a lack of efficacy, 

suboptimal treatment or treatment-resistance in these subjects. All procedures were approved 

by the University of Pittsburgh’s Institutional Review Board and Committee for Oversight of 

Research Involving the Dead. 

Brain samples 
Upon collection, coronal blocks through the rostral to caudal extent of the brain were cut 

in ~2 cm blocks and stored at -80C. The AMY is located ~2-3 cm caudal to the temporal 

pole. Tissue samples were dissected from 20μm section in the cryostat and stored in Trizol 

(Invitrogen, Carlsbad, CA). Sampling was adapted from (Hamidi et al, 2004) (Figure 1A in 

manuscript). The lateral and ventral borders were delimited by the white matter surrounding the 

AMY. The medial border was defined by the deep layer of the cortex along the medial edge of 

the temporal lobe. Finally, the dorsal border of the AMY was drawn along the lateral, basolateral 

and basomedian nuclei. In view of the heterogeneity of the AMY structure, we performed a pilot 

study to determine appropriate protocols for reliable and consistent dissection, and to assess 

the sample-to-sample variation in transcript levels within the rostral part of the AMY compared 
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to more caudal samples. Rostral samples were reliably sub-dissected and resulted in samples 

enriched in lateral, basolateral and basomedian nuclei tissue (De Olmos, 2004), while avoiding 

tissue dilution from the cortical and transitional amygdaloid nuclei that are more prominent in 

middle and caudal AMY. Rostral, middle and caudal AMY samples were processed on arrays. 

Results indicated that rostral sub-dissected samples displayed low intra-variability of RNA levels 

compared to more caudal samples (Figure 1A in manuscript). Accordingly, sampling proceeded 

on sub-dissected samples corresponding to rostral sections 1 and 2 in Figure 1A. This protocol 

enriches samples in nuclei of interest and increases the probability that signal differences will 

reflect subject differences rather than AMY rostral-caudal variability.  

ACC samples containing all six cortical layers were harvested from coronal sections at the 

anatomical level corresponding to subgenual ACC (Brodman area 25), located in the third 

prefrontal cortex block along the rostral-caudal axis of the brain. A similar microarray pilot study 

revealed that, within a subject, very little variability in transcript levels was observed for most 

genes along 10mm of the rostral-caudal axis of the subgenual ACC (Figure 1B in manuscript), 

in agreement with the more homogeneous anatomical structure of this brain area compared to 

the AMY. Accordingly, sampling on all cases and controls occurred in the rostral part of the 

subgenual ACC, immediately caudal to the genu of the corpus callosum. Replicate samples 

were processed for 4 pairs in the AMY at 3-4 months interval from different RNA extractions 

obtained from the same subjects. A few white matter (WM) samples were obtained for analysis 

of cellular origin of transcripts (Sibille et al, 2008). These samples were collected adjacent to the 

grey matter (GM) samples in ACC (n=7) and as an easily recognizable thin band located 

between the lateral and ventral borders of the amygdala (n=4).  

WM/GM analysis  
While subgroups of genes are expressed in cell type-specific manners, the majority of 

gene transcripts display relative enrichments across cell types, including neurons and glia. 

Here, we used array data from adjacent white matter (WM) samples to generate WM/GM ratios 
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that are specific for each gene and brain region. We have shown that these ratios represent 

valid estimates of relative gene transcript enrichment from glia (WM/GM>1.5), neurons 

(WM/GM<-1.5) or both cellular population (-1.5<WM/GM<1.5) and that incorporating the use of 

these ratios into transcriptome analysis can provide wider views of overall patterns relating to 

glial and neuronal functions (Erraji-Benchekroun et al, 2005; Sibille et al, 2008). Here, WM/GM 

ratios generated in control samples were used, although ratios generated in psychiatric subjects 

or treated mice were essentially identical, as Pearson correlation factors between control and 

all-samples ratios were greater than 0.99 (Sibille et al, 2008).  

Real-time quantitative real-time PCR (qPCR)   
qPCR was performed as previously described (Erraji-Benchekroun et al, 2005; Galfalvy 

et al, 2003) In brief, small PCR products (80-120 base-pairs) were amplified in quadruplets on 

an Opticon real-time PCR machine (Bio-Rad, Hercules, CA), using universal PCR conditions 

[65C to 59C touch-down, followed by 35 cycles (15” at 95C, 10” at 59C and 10” at 72C)]. 150 pg 

of cDNA was amplified in 20μl reactions [0.3X Sybr-green, 3mM MgCl2, 200μM dNTPs, 200μM 

primers, 0.5 unit Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA)]. Primer-dimers 

were assessed by amplifying primers without cDNA. Primers were retained if they produced no 

primer-dimers or non-specific signal only after 35 cycles. Results were calculated as the 

geometric mean of the relative intensities compared to three internal control genes (actin, 

glyceraldehyde-3-phosphate dehydrogenase and cyclophilin).  

Western Blot analysis  
Proteins were isolated from phenol-ethanol supernatant obtained during the RNA 

isolation for array samples and re-suspended in urea/SDS buffer. 5μg of protein samples were 

resolved by SDS PAGE in 10% Tris/glycine gels and transferred to PVDF membrane. After 1 

hour in Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE), the blots were incubated 

with primary antibodies [Rabbit anti-actin 1:10,000, Sigma #A2066, and mouse anti-cyclic 

nucleotide 3' phosphodiesterase (CNP); SMI-91R from Covance, Denver, PA] in Odyssey 
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blocking buffer, followed by incubation with secondary antibodies (IRDye® 800 anti-rabbit and 

680 anti-mouse; LI-COR Biosciences). After extensive washing, the signals were 

simultaneously detected using the LI-COR Odyssey® Infrared imaging system. To compare 

protein content between different samples and to correct for any experimental variations that 

occur during sample processing on SDS PAGE and Western blots, CNP protein content was 

expressed relative to the actin content in the same sample. Paired samples were processed in 

quadruplicate on the same gel.  

 
Gene coexpression networks     See Section #5 
 
 
 
 
 
 
 
 
 
 
 
 

2.   

(a) Venn diagram of altered gene expression. 45% of these genes were upregulated and 

55% downregulated in AMY, while ACC results displayed 60% and 40% up- and downregulated 

genes, respectively. Arrows indicate directional correlations between changes in transcript 

levels for genes identified in one area (origin of arrow) and changes for the same genes in the 

other area (end of arrow); p<e-6 in both directions. Although the overlap in gene selection was 

limited, transcript changes in AMY and ACC significantly predicted similar trends for the same 

Figure 17 (Figure S1)  AMY-ACC altered gene expression in MDD and qPCR 

validation 
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transcripts in the other area, suggesting coordinated changes across areas, despite variability in 

statistical thresholds.  

(b) Technical validation of array results by independent qPCR measurements. Alr, 

Average Log2 of (MDD/Control) expression ratio.  (-DDCt) represent differences in PCR cycle 

thresholds between MDD and control samples, which are equivalent to Log2 values of ratios 

(See also Table 3). Upregulated: GRIN2B, DGKG, GABRA2, KCTD12, CALB1, DUSP4, 

GPNMB, ASPH, RAB27B; Downregulated: MOBP, CNP, EGR1, MBP, ENPP2, MAPK1, 

RPH3A; Unchanged (RAB27B). For all but one (GRIN2B), qPCR and array results correlated 

highly (All genes, R=0.88, p<5.e-6; y slope=1.07). Line indicates linear fit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

See the following section in the manuscript: “AMY cross-species correlations of 

depression-related molecular changes identified a subgroup of human MDD subjects”. The solid 

line indicates the linear fit for all 14 pairs in AMY (r=0.62; p=0.02). The dashed line indicates the 

Figure 18 (Figure S2)  Positive correlation between the number of MDD symptoms and 

UCMS/MDD correspondence  
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linear fit after removing two subjects with 0 symptoms (r=0.51, p=0.09).Black squares indicate 

MDDUCMS subjects. 

 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

32 genes displayed significant and highly similar changes in transcript levels in human 

depression and mouse UCMS (black dots). All changes were reversed in UCMS-exposed mice 

after treatments with an effective (fluoxetine; white squares) or a putative (Crf1R antagonist; 

grey diamonds) antidepressant treatments in UCMS-exposed mice. Values are from (Surget et 

al, 2009) and are described in Table 3 

 
5. GENE COEXPRESSION NETWORKS  (Methods & supporting findings) 

Gene networks based on coexpression (i.e., correlated patterns of expression) appear to 

represent intrinsic attributes of cellular and neural systems that are helpful in identifying 

functionally-related genes (Lee et al, 2004). On the genomic scale, these gene interactions 

networks are clustered into functional modules (Zhang et al, 2005) embedded within a generic 

scale-free structure (Agrawal, 2002) and this organization persists across species (Bergmann et 

al, 2004). Coexpression networks of genes built through Pearson correlation are broad yet 

Figure 19 (Figure S3)  Antidepressant reversal of MDD conserved changes in the 

mouse UCMS model   
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reliable representation of gene interactions (Eisen et al, 1998; Lee et al, 2004) and have 

successfully dissected canonical datasets into functional modules (Carlson et al, 2006). We use 

the Pearson product-moment correlation coefficient to estimate pair-wise coexpression of our 

set of 32 genes in both mouse and humans.  All analyses were performed using the boost graph 

library and custom MATLAB code. Network visualizations were created using Cytoscape. 

Validity and robustness of experimentally derived networks 

The sample sizes (n=6/group in mouse; 4 groups: Control, UCMS, UCMS+ fluoxetine, 

UCMS + CRF1R antagonist; n=14 pairs in human) ruled out the network creation through non-

linear or information theoretic measures, which commonly require sample sizes that are an 

order of magnitude larger. Thus, to ensure that our coexpression links were reliable markers of 

gene interactions, we used clustering coefficient analysis (Step 1) and jackknife correlation 

(Step 2) to optimize our cut-off selection. Our goal was to use these techniques to optimize the 

biologically valid information in the network and to ensure an independent unbiased perspective 

on glial/neuronal gene regulation in depression. 

Network Authentication Step 1:  Network Validity  

Clustering coefficients estimate the density of local connections in a network. They are 

calculated for each node in the network as the number of connections between neighboring 

nodes, divided by the total possible number of connections between all neighboring nodes. 

Clustering coefficients are a fundamental measure of network structure with wide applicability in 

brain networks (Sporns et al, 2004).  We used clustering coefficient as a signature of structural 

information in the network that was generated by a particular cutoff point, in a method based on 

Elo (2007). Maxima in the plot of clustering coefficient vs. cutoff represent an optimal ratio of the 

biological structure vs. noisy or spurious connections. In each case, we compared the clustering 

coefficients to degree-matched randomly selected networks (see representative plots in Figures 

S3-4). These plots showed maxima in the region of Pearson correlations of ~0.6-0.8 for all 
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Control MDD Control UCMS Fluoxetine Crf1R atg

Pearson cutoff in jackknife correlation 0.65 0.65 0.75 0.75 0.75 0.75

Average Pearson correlation value of 
links 0.77 0.76 0.93 0.93 0.88 0.9

% increase of clustering coefficient vs 
Random network 60 110 95 41 76 77

Human Mouse

conditions in both species, indicating that using a Pearson correlation cutoff in this region would 

maximize the number of links which are representative of biological structure (Elo et al, 2007). 

Network Authentication Step 2:  Network Robustness  

Pearson correlation is susceptible to outlying values. To prevent such occurrences from 

generating links in our networks, we used jackknife correlation in combination with an optimized 

cutoff threshold (Step 1) to optimally prune the network and maximize the biological signal. 

Figure S5 shows the common bimodal distributions of potential links that clearly segregated as 

either robust (i.e., right columns in graphs) or spurious (left columns in graphs) links in the 

human and mouse datasets. Links in our network were gathered from the most robust groups in 

jackknife histogram. Within each bin, links were selected in order of Pearson correlation value, 

beginning with the highest values, until the required network size was filled. Because of the 

hybrid link selection technique, actual Pearson correlation values of included links are 

substantially higher than cutoff values. A network size of 100 links will have: 1) a cutoff value in 

the suggested range 0.65 (human) or 0.75 (mouse), 2) will only be composed of robust links, 

and 3) will be representative of glial-glial, neuronal-neuronal and neuronal-glial connectedness 

(See Fig 5). Results for networks with 100 bidirectional links are summarized in table S1. This 

rigorous criterion generated networks which are highly valid representation of underlying 

biological interactions.  
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Genes above the cutoff value are then selected in order of their robustness in jackknife 

correlation. Combining these techniques naturally leads to the selection of genes with a higher 

correlation than the baseline cutoff. 

Table 5 (Table S1) Pearson cutoff values are selected by monitoring increased 

clustering coefficients of experimental networks vs. controls. 
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APPENDIX B SUPPLEMENTARY INFORMATION FOR PAPER #3 

 

Differentially expressed genes in depression and other neuropsychiatric disorders are 

distributed on the periphery of resilient gene coexpression networks 

 

 

 Supplementary Experiments and Methods: 

A. Selecting optimal coexpression threshold for maximum modularity 

B. Connectivity estimates of known gene classes 

 Supplementary Figures and Tables Captions 
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Supplementary Experiments and Methods: 

A.  Selecting optimal coexpression threshold for maximum modularity 

Optimally selecting network links to establish a high-confidence gene networks using human 

postmortem microarray data  There are multiple ways to infer gene interaction networks, 

however all methods rely on synchronous fluctuations in two or more genes across multiple 

microarrays. Therefore, when inferring biological networks based on microarrays, a primary 

concern is selecting an optimal level of correlation that ensures core network structure is a 

product of real biological interactions, not spurious data correlations. To assure networks 

generated via datasets listed in Table S1 represent biological reality, we first individually 

optimize the link selection process for each dataset, since each represents a distinct 

combination of sample size, data quality, and biological structure (see next). 

Figure S2A illustrates the importance of large samples sizes in addressing these issues 

by shrinking the null distribution of expected Pearson correlation values between genes 

(decreasing noise). The larger number of extreme correlation values of the non-permutated 

dataset in Figure S2A (shown in red) compared to the permutated data (gray) is thus indicative 

of biological relationships underlying gene correlations. Using postmortem array data from 

psychiatric populations, an additional concern is the influence of subpopulations on network 

generation. Increasing sample size addresses this concern as it refines the set of actual 

correlations, decreasing false positives (shown in Figure S2B distribution plateauing at n=14 

samples). These plots show that false-positive network links are unlikely to occur at high link 

selection thresholds (i.e. correlations of 0.8 or greater). 

To translate raw gene-gene correlation values into gene networks, we apply this 

optimized threshold to the absolute correlation values and select all higher correlations to be 

links in the network (greater than 0.85 in Fig.1C). The outcome of this network generation 

procedure is extremely low false discovery rate (FDR) for network links, commonly under 1%. 
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Bootstrap estimates of correlation values shows that at the high thresholds used in these 

analyses, the correlations are very stable and that there is little influence from outlying values, 

such as would be generated by the presence of subpopulations (Figure S2D). Based on this 

complete assessment of gene-gene correlations, each dataset is transformed into a high 

confidence network, in which links represent biologically undefined but highly consistent 

relationship between connected nodes. 

To optimally balance false positives and false negative links in the networks, so that the 

real biologically-driven correlations predominate, we utilize the stereotypical community 

structure of biological networks. Because modularity (segregated clusters) in network structure 

is a hallmark of meaningful network connections, we chose the cutoff for “real” correlations to be 

the exact point of greatest biological/clustered structure (Figure S2C, specifically example 

networks shown for different thresholds). We do this by minimizing network synchronizability (λ1) 

- a measure which is small when the network is composed of nearly disconnected clusters, 

indicating the network has been pruned down to its core modular components (Perkins et al, 

2009). 

Assortative mixing in postmortem gene networks  Assortativity (the likelihood of 

connection to nodes of similar degree) is another global characteristic that may direct disease 

activity in coexpression networks. A commonly cited distinction between technological and 

biological network compared to social networks is that the former tend to be dissortative while 

social networks are positively assortative. However, we show here that all gene array based 

networks in this analysis are strongly assortative (mean/median assortativity .396/.468, see 

Table S1) meaning that hubs are preferentially connected to hubs, while provincial nodes are 

preferentially connected to other provincial nodes. See Fig.1D for a graphical representation 

summarizing the gene network characteristics observed in all tested postmortem gene arrays 

datasets (from Table S1).  



 

 200 

 

B.  Connectivity estimates of known gene classes 

Understanding relevance of connectivity through known gene classes  Since DE genes 

have a particularly low connectivity, we were interested in what other classes of genes might 

share this characteristic and/or whether biological meaning can be assigned to over- or under-

connectivity. Examining the connectivity of disease genes in particular allows us to assess if the 

centrality-lethality relationship found in protein-protein interaction (PPI) networks holds for gene 

networks. Additionally mapping gene classes onto postmortem networks can provide an 

external validation for our inferred network structures. As with differentially expressed genes, for 

each class of genes we test the hypothesis that it is either central or peripheral to the gene 

network. Many of these classes are hubs in PPI networks; however, given the lack of overlap in 

gene and protein network links, their role in gene interaction networks may not be similar 

(Bhardwaj and Lu, 2009; Xulvi-Brunet et al, 2009). 

 Composite results show these gene classes have more non-random types of 

connectivity, both above and below the expected range, readily demonstrable from the large 

number of extreme p-values in Table S4. Also, under hierarchical clustering, similar brain 

regions from different studies showed similar patterns of connectivity across gene categories, 

(as indicated by adjacency of similar brain regions under hierarchical clustering in Figure S3). 

For instance, the proximity of anterior cingulate studies, amygdala studies, and of BA8-9-and-10 

studies in Figure S3 indicates that the region by gene class connectivity variations are not 

random, but consistent characteristics of those particular systems, potentially related to their 

distinct biological functions. 

Gene classes with non-random connectivity  Concordant results across many included 

studies were found for connectivity of cancer (n=497) (Futreal et al, 2004) and transcriptions 

factor gene lists (n=1835) (Vaquerizas et al, 2009). Surprisingly, given their presumptive roles in 
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directing large swathes of activity, these classes were both less connected in the investigated 

datasets than expected at random. Also, those genes that are commonly differentially 

expressed (“DER” genes - commonly differentially expressed ratio genes, n=400) across a large 

number of microarray studies (Chen et al, 2008b) were more connected than expected. This 

gene category may correspond to our highly variable/highly connected gene class and indeed 

shows similarly high connectivity. Expanding on the original centrality-lethality correlation, 

Barrenas (2009) showed that the protein products of complex genes have lower connective than 

monogenic diseases. However at the gene network level it appears they above expected 

connectivity. 

Gene classes with expected connectivity  In order to check if the lethality-centrality 

relationship of PPI networks exists in the postmortem gene interaction networks, we include list 

of genes whose proteins are classified as “essential” (n=118) (Liao and Zhang, 2008). While 

genes associated with severe diseases are frequently hubs in PPI's, they were not more or less 

connected than expected at random in the gene network. Similarly longevity-associated proteins 

(n=261) (de Magalhaes et al, 2009) are organizing hubs in PPI networks (Budovsky et al, 2007), 

however their associated genes are not hubs in the gene networks. Disease genes cataloged in 

OMIM (n=1646) (Hamosh et al, 2005) were at first largely monogenic (n=738) (Jimenez-

Sanchez et al, 2001), but now include an increasing number of genes implicated in complex 

disorders (n=411) (Barrenas et al, 2009).  While the complex disorder genes appear to be over-

connected, there is no evidence of under or over-connectivity of the complete OMIM catalogue 

or of monogenic disease gene specifically.  

The connectivity of specific gene classes indicates that these classes may operate in 

brain-region specific ways, which we speculate are related to their under- or over-connectivity in 

the respective systems. Additionally, these function-specific patterns of connectivity support the 

biological validity of our inferred networks, since many gene classes do exhibit non-random 
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connectivity and because categories of genes show similar levels of connectivity in similar brain 

regions. 

Establishing significant connectivity by gene class  For each class of genes we generate 

a null distribution of median connectivity values for a group of randomly selected genes of equal 

number to the special gene class in question. The percentile in which the actual median 

connectivity of the gene class falls determines its p-value for hub/non-hub connectivity signature 

(Table S4). Meta-p-values for connectivity of each class of gene were computed using the 

inverse normal method. 

 

Supplementary Figures and Tables Captions 

 

Table 6 (Table S1) Summary of studies included in meta-analysis – array details, brain 

regions, disorders, and network parameters 
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Figure 20 (Figure S2) Gene network validity and optimization – examples from human 

amygdala dataset 

 (A) Decreasing spurious network links with increasing sample size, shown by the null 

correlation distributions shrinking towards zero with increasing sample size, and the greater 

number of high correlations in real versus permutated data. (B) Decreasing false positive 

correlations in the actual data set with increasing sample size, shown as decrease in number of 

extreme correlations when comparing 7 to 14 samples, but which then remains constant 

between n=14 and n=28 samples.  (C)  Example estimates of network synchronizability (low 

synchronizability implies high modularity) at various thresholds in order to optimize correlation 

cutoff (example estimates based on different subsets of nodes are shown in different colors). 

Inset: schematic of link pruning and changes in modularity shown for increasing cutoffs.  (D) 

95% confidence bounds on Pearson correlation shrink for extreme correlation values (estimated 
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by resampling) indicating selected network links are robust since most optimized cutoffs are 0.8 

or greater. 

 

 
Figure 21 (Figure S3) Hierarchical clustering of brain regions by gene class connectivity 

(A) Regions with similar patterns of connectivity across the different gene classes are 

listed proximally. Heatmap shows under-connected categories as orange and over-connected 

as blue. 
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Table 7 (Table S4)  p-values for under- or over-connectivity of 8 important biological gene 

categories in each gene network. Low p-values represent over-connectivity and very high p-

values represent under-connectivity. 
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