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 There are many possible uses for remotely powered environmental sensing devices.  The 

University of Pittsburgh has obtained a subcontract to assist in the first development phase of 

one such device for NASA, a wireless temperature sensor that could ultimately be used to 

measure the temperature of panels on their spacecraft.  This thesis describes the work that has 

been done to completely meet the project specifications set forth in the subcontract, with 

particular emphasis being given to the contributions made by the author.  In addition to the 

remote sensor board hardware and software, an embedded protocol is developed that can allow 

hundreds of these devices to transmit their temperature readings over a single communications 

channel (amplitude shift keying at 418 MHz) without interference or the need for an on-board 

receiver.  Laboratory testing results that verify the proper operation of the final prototype are 

included. 
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1.0  INTRODUCTION 

 
 
 
 Electronic devices have long been used to monitor environmental conditions.  

Traditionally, many of these devices, such as video cameras, microphones and thermostats, have 

been physically wired to their power supplies or equipped with batteries.  What if certain 

environmental sensors could be powered wirelessly from a radio frequency (RF) source?  While 

having an RF-powered camcorder might not be very useful, certain sensing devices and 

applications could benefit tremendously by employing energy harvesting technology like that 

developed at the University of Pittsburgh [1]. 

 Wireless sensing technology could be particularly beneficial when large numbers of 

sensors are to be used together.  Perhaps many devices are spread over a physical area to obtain a 

spatial profile of some environmental quantity.  Considering that a large number of devices are in 

use, it would not be best to hardwire their power connections.  This could lead to a great amount 

of wiring (hence increased cost and construction time) and the possibility of a cable malfunction 

disabling one or more sensors.  Using batteries is not desirable because they tend to be very large 

physically compared to the size of modern electronics.  Therefore, a battery could be the feature 

that limits the minimum size of each sensor.  Furthermore, changing the batteries could be 

difficult or impossible if the sensors were to be embedded inside an area or material.  Powering 

the sensors wirelessly would be the most flexible implementation.  The remote devices could be 

placed anywhere within range of the RF energy source (which could be mobile itself) and could 

even be permanently embedded within a structure. 
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 The sensor network would be even more robust if the sensor devices were to return their 

environmental readings via a wireless medium as well.  Again, this eliminates the chance of a 

wire failure causing readings to be lost, and reduces the physical complexity of the network as a 

whole.  A very small, completely wireless sensor device would have the flexibility to be placed 

practically anywhere so long as RF signals could be transmitted to and from it. 

 One issue that arises when networking this type of device is that of access control.  

Consider that two dedicated frequency channels are available, one for powering the sensor 

devices and one for the transmission of the environmental readings (the data channel).  When 

several devices are powered simultaneously by the RF energy source, how will they synchronize 

their outgoing data transmissions such that they do not interfere with one another?  One solution 

is to equip each device with a receiver for the data channel and use a carrier-detect scheme to 

determine when it is free.  The drawback to using this approach is that the receiver circuitry will 

consume space and power on the device.  An alternative solution to this problem is to assign 

each device a unique time slot during which it must transmit.  This eliminates the interference 

concern as long as each device maintains an accurate count of the current time slot number.  In 

addition to removing the need for a data channel receiver, this simple access protocol would also 

have a very straightforward software implementation.  However, a method must still be devised 

to synchronize the start of each time slot across multiple sensors. 

 This thesis describes my contributions to the development of a prototype for a completely 

wireless temperature sensing device.  NASA identified the need for wireless temperature sensors 

that could be used to measure the temperature of panels on their spacecraft.  These sensors would 

need to be powered by a remote energy source and also transmit their temperature readings 
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wirelessly.  Also, a non-interference protocol like those described above must be used to prevent 

multiple sensors from simultaneously transmitting on the data channel. 

 Gnostic Communications was one of the participating groups in the first development 

phase of this device.  A subcontract to perform part of the Phase I development was given to Dr. 

Marlin H. Mickle and Dr. James T. Cain at the University of Pittsburgh.  My responsibility was 

the design of the testing and optimization methodology and analysis for optimization of the 

power consumption and communication protocols of the remote temperature sensing device. 
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2.0  PROBLEM STATEMENT 

 
 
 
 The goal of my research was to optimize the energy harvesting, power consumption, 

communication protocols and the mutual interactions of the NASA specified temperature sensing 

device.  Through my research, I developed a fully operational device to satisfy the requirements.  

The design and development criteria are presented in this chapter. 

 The first criterion dealt with physical aspects of the sensor board.  Existing remote sensor 

devices developed at the University had a form factor of 1.7” by 3.2”.  The final device for 

NASA must have a form factor of at most 1” by 2”.  Although I was not responsible for making 

the initial reduction in form factor to meet this requirement, it was necessary to maintain a 

minimal board size when making various updates to the final device PCB layout.  The 

specifications were that surface mount integrated circuits and discrete components must be used 

on the board instead of the “through the hole” type components used in previously developed 

devices. 

 An embedded non-interference protocol must be developed and fully implemented in 

software.  This protocol must be easily extendable to allow communication with hundreds of 

sensors even though a small set (10) will be used in this development phase.  No specification 

with respect to approach was given, but the possibility exists of assigning each device a unique 

identification number and using delays for time division multiplexing based on these 

identification numbers to create a time-slotted protocol.  This approach will be used.  A different 
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mechanism had been originally developed by Minhong Mi that can be further refined to be 

employed in the final device. 

 At least 10 sensor boards must be demonstrated in a laboratory setting to test the non-

interference protocol while reporting (communicating) valid temperature readings.  These 

devices must be read (that is, they must all obtain and transmit temperature readings) in one tenth 

of a second while adhering to the inherent protocol.  This is the primary constraint on the 

protocol design to guarantee that multiple boards do not transmit simultaneously. 

 The minimum Baud rate for data channel transmissions is specified as 2,400 bits per 

second.  Each device will send a maximum of a 24-bit frame consisting of an identification 

number and temperature reading.  An analysis will be conducted to determine the amount of 

overhead necessary for powering and synchronizing the sensor devices. 

 Multiple prototypes will need to be developed to test and meet all specifications.  

Successive prototypes should improve upon the previous ones and be thoroughly tested to 

evaluate techniques or components to be used in the final system.  The remaining chapters in this 

document report the research and results for the major prototypes with particular emphasis on my 

contributions. 
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3.0  PROTOTYPES ZERO AND ONE 

 
 
 
 Two older prototypes (termed zero and one) for this device were available at the start of 

my research.  Background information on prototypes zero and one is presented here to provide a 

basis for how the subsequent prototypes evolved. 

 Prototype zero was an older active remote sensor (ARS) device.  This first prototype 

performed the most basic functionality stated in the project specifications.  Its primary purpose 

was to obtain a temperature reading and transmit it to a 418 MHz receiver, which is the core 

behavior required in the final prototype.  However, this device functioned only as a single device 

– multiple boards could not be powered simultaneously because an embedded non-interference 

protocol was not employed.  Prototype zero was implemented on a 1.7” by 3.2” printed circuit 

board and contained three separate integrated circuits – a 418 MHz transmitter, microcontroller 

and analog to digital converter used to sample the voltage across a thermistor [2].  A fabricated 

prototype zero board is shown in Figure 3.1. 

 Prototype one improved on device zero by combining these three integrated circuits into 

a single package.  The Microchip rfPIC12F675K microcontroller contains a 418 MHz transmitter 

and A/D converter and thus was an ideal choice for use on this prototype.  Combining this 

circuitry allowed for a significant reduction in PCB size.  Prototype one met the project size 

specifications of a 1” by 2” device form factor (Figure 3.2).  The problem with prototype one 

was that it operated only within a few inches of the 915 MHz energy source.  This was due to 

increased power consumption of the single chip compared to prototype zero [2]. 
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 With these two devices, the groundwork was laid for prototype two.  Prototype two will 

explore a simple non-interference protocol that could be used to allow multiple simultaneously 

powered devices to transmit data without interference.  It would also be used to examine the 

power consumption of another combined microcontroller/transmitter device, the 

rfPIC12C509AG. 

 

 

Figure 3.1   Fabricated Prototype Zero Board 

 

 

Figure 3.2   Fabricated Prototype One Board with Dimensions Indicated 
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4.0  PROTOTYPE TWO 

 
 
 
 The purpose of the development of prototype two was twofold.  First, the prototype two 

devices employed a non-interference protocol as required by the project specifications.  The 

successful completion of prototype two would provide a “proof of concept” for a simple 

protocol.  Second, the design, fabrication and testing of these devices provided an invaluable 

opportunity to analyze the device operation that proved to be necessary when developing future 

prototypes. 

 The requirements for this prototype were very straightforward.  The device must be 

capable of transmitting a 96-bit identification number when power is applied.  Although the 

value of the 96-bit number is not significant here, it could practically represent a variety of useful 

data, including temperature readings and bar codes.  The method of modulation is amplitude shift 

keying at a carrier frequency of 418 MHz.  A simple non-interference protocol must be used to 

allow several of these devices, when powered simultaneously, to transmit their identification 

numbers without interfering with one another.  The prototype two devices were to be powered 

initially by wire connections to a standard supply.  Although low-power design was not a 

primary consideration for this prototype, a power analysis could then be performed after the 

devices were fabricated to determine if wireless operation is possible. 

 The prototype two devices do not have 418 MHz receivers that would allow for a carrier 

sensing non-interference protocol.  Therefore, another method had been used to ensure a free 

channel.  The simple protocol used for this prototype is as follows.  The amount of time ∆t 
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required to transmit the 96-bit tag ID is determined, and each tag is programmed with a unique 

“slot number” s, where s is an integer greater than or equal to 0.  Each tag waits for s(∆t) time 

before transmitting, which prevents two tags from transmitting simultaneously.  While this 

protocol is certainly effective, it does require that all devices be powered simultaneously so that 

each of the s(∆t) delays begin at roughly the same time.  The possibility for interference exists if 

any devices power up slightly earlier or later than the rest.  This suggests that the protocol might 

not be suited for a wireless application where multiple distributed devices are powered by a 

single base station.  The varying distances of these devices from the base station could lead to 

closer devices being powered more quickly than distant ones, hence violating the simultaneous 

powering requirement of the protocol. 

 
 

4.1 HARDWARE 

 
 The hardware design for prototype two was based on those of the previous prototypes.  

The circuit schematic is shown in Figure 4.1.  The transmitting antenna design was used without 

modification.  After careful analysis, a different microcontroller was used for this prototype.  The 

Microchip rfPIC12C509AG was chosen for this device because it contains a built-in RF 

transmitter that uses amplitude shift keying modulation [3].  This simplifies the overall design by 

removing the need for a separate transmitter IC.  Also, a complete suite of tools necessary for 

PIC software development and programming were readily available. 
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Figure 4.1   Prototype Two Hardware Schematic 
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 For the rfPIC12C509AG, the frequency of the built-in RF transmitter is set by an 

oscillator external to the microcontroller.  To achieve a transmit frequency of 418 MHz, the 

frequency of the oscillator was selected to be 418 MHz / 32 = 13.0625 MHz as specified in the 

microcontroller datasheet.  The crystal used for this project was manufactured by ECS, Inc. 

International (part number ECS-130.625-CD-0373) [4]. 

A phase-locked loop (PLL) filter is also required for the internal RF transmitter.  The 

filter design is specified in the microcontroller datasheet, but the end user must choose the 

component values.  Microchip Application Note AN846, “Basic PLL Filters for the rfPIC™ / 

rfHCS [5],” describes the functionality of the loop filter in detail and explains how to choose 

appropriate component values using an accompanying Microsoft Excel spreadsheet.  The 

application note states that, “For most designs, the three loop filter components can be quickly 

found with the spreadsheet calculator [5].”  The top portion of Figure 4.2 shows the ideal filter 

calculations provided by the spreadsheet for a transmit frequency of 418 MHz, including the best 

values for C1, C2 and R1 (125 pF, 17 pF, 3508 Ω).  These values were not readily available, so 

similar components were chosen for the loop filter (100 pF, 22 pF, 3300 Ω).  The bottom portion 

lists the actual filter parameters given these modified component values.  It can be seen that the 

actual parameters are very close to the ideal calculations, and the actual phase margin is right 

around the desired value of 50 degrees.  The actual loop bandwidth parameter is more important 

in designs requiring FCC approval because it impacts the amount of RF noise that is transmitted 

outside of the carrier frequency (418 MHz).  For this prototype, remaining close to the default 

bandwidth of 1 MHz is acceptable.  Therefore, the component values chosen are satisfactory for 

the PLL filter. 
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Figure 4.2   PLL Filter Spreadsheet (Included with Microchip AN846) 
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The energy harvesting and in-circuit programming circuits present in the schematic were 

taken directly from the existing prototype design.  Again, energy harvesting (wireless operation) 

was not intended to be used initially, but the circuitry was included in the design for future use.  

It was later found that in-circuit programming would not be needed for prototype two because a 

UV-erasable DIP version of the rfPIC12C509AG was available. 

 Figure 4.3 shows the ExpressPCB printed circuit board layout created for prototype two, 

and a fabricated PCB is depicted in Figure 4.4.  Silkscreen component labels on the PCB layout 

correspond to labels in the hardware schematic.  As with the circuit design, the energy harvesting 

and transmitting antenna portions of the PCB layout were taken from the existing prototype PCB 

layout.  The remainder of the board design was custom made for this prototype to accommodate 

the rfPIC12C509AG and peripheral circuitry. 

 

 

Figure 4.3   Prototype Two PCB Layout 
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Figure 4.4   Fabricated Prototype Two Board 

 

 The energy harvesting and transmitting antenna components on the PCB layout are 

primarily surface mount components, while several other components are of the through-hole 

type.  The through-hole components were used because they would be easier to solder for this 

early stage device than surface mount components.  Other than the soldering concerns, there is 

no particular reason for why some components are through-hole and others surface mount.  One 

notable exception is that the UV-erasable rfPIC12C509AG device used was only available in a 

DIP package.  An 18-pin DIP socket was used to allow the PIC chip to be easily swapped on and 

off the board.  This allowed for quicker reprogramming of the microcontroller during software 

testing than if the IC had to be repeatedly soldered and desoldered. 
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 A power supply may be connected to the circuit by soldering a wire in the via directly 

above the microcontroller and attaching the positive voltage lead to that wire.  The ground lead 

may be connected to a number of points on the top surface of the board or the ground plane on 

the bottom side.  If the energy harvesting circuitry is to be used to power the board, a jumper 

wire must be soldered below the programming port on the left side of the board. 

 
 

4.2 SOFTWARE 

 
 The software for prototype two was written in C because it is slightly easier to initially 

write than assembly language (shorter learning curve) for the new Microchip PICs.  The Custom 

Computer Services, Inc. PCB compiler was used for this purpose [6].  PCB compiler version 

3.137 was used, which supports the rfPIC12C509AG (use include file “12C509AG.h” in the 

compiler “devices” folder).   The compiler generates a HEX output file that is used to program 

the microcontroller.  The HEX file may be imported into Microchip’s MPLAB IDE, which 

communicates with a PICSTART Plus programmer to perform the actual programming 

operation. 

 To quickly test if a newly fabricated prototype two board is working properly, the 

following simple C program was devised as a testing program.  When the program is executed, a 

1 Hz square wave is transmitted by the device.  Many parts of the hardware must be functioning 

correctly for the 1 Hz square wave to be detected at a 418 MHz receiver, including the 

microcontroller, external oscillator, PLL filter and transmitting antenna.  If the test program does 

not run successfully (i.e., a 1 Hz square wave is not received), then other debugging methods 

may be used to isolate the source of the problem. 
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#include <12C509AG.h> 
#fuses INTRC,NOWDT,NOPROTECT,NOMCLR 
#use delay(clock=4000000) 
 
// Internal 4 MHz RC Oscillator Calibration 
#rom 1023 = {0xC6C} 
 
main() { 
 
   // Enable RF 
   output_high(PIN_B4); 
 
   // Output 1 Hz square wave 
   while (TRUE) { 
     output_high(PIN_B5); 
     delay_ms(500); 
     output_low(PIN_B5); 
     delay_ms(500); 
   } 
 
} 
 

Figure 4.5   rfPICTest.c Source Code 

 

 First, notice that 12C509AG.h is included, which allows a number of defined constants to 

be used in the program (e.g., PIN_B4, PIN_B5).  The #fuses pre-processor directive specifies 

various configuration options for the microcontroller.  INTRC indicates that the 

microcontroller’s internal 4 MHz RC oscillator is to be used as its clock source.  NOWDT and 

NOPROTECT disable the watchdog timer and code protection features available on the 

rfPIC12C509AG, respectively.  NOMCLR disables the master clear pin (it is tied to the supply 

voltage internally).  This is acceptable because external reset functionality does not need to be 

supported for this application. 

 The parameter of the “#use delay” directive is the speed of the processor in Hz 

(4,000,000 since the internal RC oscillator is being used).  This value must be specified if the 
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delay_ms() function is to be used in the program because it states the relationship between 

instruction cycles and time. 

 When using the rfPIC12C509AG internal RC oscillator, the pre-programmed calibration 

value shipped with the microcontroller should be written to the topmost memory location [3].  

The calibration value is erased when the device is erased, so this value must be recorded before 

the device is erased for the first time and written back to memory location 1,023 each time the 

device is programmed.  The #rom directive accomplishes this.  Note that the calibration value 

0xC6C is specific to one of the microcontrollers used on a prototype two board; using a different 

part will require the use of a different calibration value. 

 Considering the main program, pin 3 (GP4) is tied to the RFENIN pin on the PCB, so 

driving this pin high enables the RF transmitter in the microcontroller.  Pin 2 (GP5) is tied to 

PS/DATAASK, so toggling the state of this output every half-second results in a 1 Hz square 

wave being transmitted. 

 The actual prototype two source code is much longer than that of the test program, so it 

has been included in Appendix A of this thesis.  Please reference this code if necessary while 

reading the description in the following paragraphs.  A pseudocode description of the software is 

provided in Figure 4.6.  This software is used to program each board in order that it waits for its 

unique time slot and then transmits a 96-bit identification code. 

 The identification code chosen for each board is, “Board x ID”, where x is the number of 

the board.  This ID code will ultimately be sent to a PC, where it will be displayed in a terminal 

window as ASCII characters.  To make the display easy to read, after the characters “Board x 

ID” are transmitted, a carriage return and line feed are transmitted as well.  Therefore, a total of 
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main() { 
 // The board identification number (BOARD) is obtained from a command line 
 argument when the software is compiled 
 
 // Setup the 96-bit board identification code 
 boardID[13] = “Board   ID”;  // A space is left for the identification number 
 boardID[6] = BOARD;  // The ID number is inserted into the ID code 
 boardID[10] = Carriage Return; // CR and LF are for terminal program display 
 boardID[11] = Line Feed;  // purposes and to bring the total ID code length to 
 boardID[12] = NULL;  // 96 bits per the prototype two specifications 
 
 Output RF enable signal to turn transmitter on 
  
 // Call delay_ms() function to wait for the correct time slot 
 // The length of the delay depends on the unique board identification number (BOARD) 
 // which is an integer ≥ 1 
 // Each time slot is 56 ms wide 
 // Include a 2 ms startup time to make sure that the transmitter on the first board is ready 
 // before the first time slot begins 
 delay_ms(2 + (56 * (BOARD - 1))); 
  
 // When this point is reached, the delay_ms() function has returned and it is time to 
 // transmit the 96-bit board identification code using the RS-232 type format 
 // The following for loop iterates once per transmitted ASCII character (see Figure 4.7) 
 for(int i = 0; i < 12; i++) { 
  Character to transmit is boardID[i] 
  Output start bit, 8 data bits and 2 stop bits at 2400 Baud 
 } 
 
 Disable RF enable signal to turn transmitter off 
} 
 

Figure 4.6   Prototype Two Software Pseudocode 

 

twelve 8-bit ASCII characters are transmitted as the identification code, for a total length of 96 

data bits.  The protocol used for the data transmission is the RS-232 type format, with 8 data bits, 

no parity bit and two stop bits.  The total number of bits that must be transmitted, including 

classical RS-232 overhead bits, is calculated as: 
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12 ASCII characters x (1 start bit + 8 data bits + 2 stop bits) / ASCII character 

= 12 x 11 = 132 total bits 

 

 A Baud rate of 2,400 was chosen for the initial communication protocol because it is one 

of the specifications for the final prototype.  Given this rate and the total number of bits to be 

transmitted, the length of each time slot ∆t may be determined as follows: 

 

∆t = 132 bits x (1 second / 2,400 bits) = 55 ms 

 

 Considering slight differences in board clock rates, startup times, etc., an additional 

millisecond of time is arbitrarily added to each slot as extra padding to assure that the end of one 

transmission does not overlap with the start of the next.  Therefore, the slot time used for the 

prototype two non-interference protocol is 56 ms. 

 The software listing in Appendix A contains step-by-step comments that explain the 

functionality of the program.  The following is a brief discussion of how the delay times in the 

RF transmitting for loop were calculated (Figure 4.7).  At 2,400 Baud, the bit time is 1 / 2,400 = 

416⅔ µs.  Delays in the rfPIC12C509AG have a resolution of 1 µs, so the bit time is rounded to 

417 µs.  However, a delay of 417 µs between the transmission of each bit is not correct because 

some time is used processing instructions between the calls of delay_us().  By analyzing the 

assembly language code generated by compiling the source code, it was determined that this 

delay is approximately 8 µs.  This explains the calls of delay_us(409) in the RF transmitting loop 

between each bit transmission.  Also, due to the time required for branching from the bottom to 

the top of the loop (approximately 9 µs), the final delay_us() call has an argument of 408 µs. 
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   for(i = 0; i < 12; i++) { 
      // Mark to space transition - start bit 
      output_high(PIN_B5); 
      delay_us(409);   // 417 - 8 
      // Output eight data bits, no parity 
      // Output low = Mark state = Logic "1" 
      // Output high = Space state = Logic "0" 
      // Bit 0 – LSB 
      if(boardID[i] & 0x01) { 
         // Bit 0 is set – output Mark state 
         output_low(PIN_B5); 
      } else { 
         // Bit 0 is cleared – output Space state 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 1 
      if(boardID[i] & 0x02) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 2 
      if(boardID[i] & 0x04) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 3 
      if(boardID[i] & 0x08) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 

      delay_us(409); 
      // Bit 4 
      if(boardID[i] & 0x10) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 5 
      if(boardID[i] & 0x20) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 6 
      if(boardID[i] & 0x40) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 7 – MSB 
      if(boardID[i] & 0x80) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(417); 
      // Two stop bits 
      output_low(PIN_B5); 
      delay_us(417); 
      output_low(PIN_B5); 
      delay_us(408); 
   } 
 

 

Figure 4.7   RF Transmitting for Loop 
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4.3 RESULTS 

 
4.3.1 Prototype Two Demonstration 
 
 
 The demo system created to test the prototype two design consists of four boards.  Each 

board receives a unique #BOARD command line parameter (1, 2, 3 or 4) when its software 

(listed in Appendix A) is compiled.  This command line parameter is the value of x that will be 

used for the identification code “Board x ID”.  Viewed another way, the value of x is also the 

number of the board’s unique time slot.  This value is hard-coded into the microcontroller 

memory when the software is downloaded. 

 All four boards are connected to the same power supply as shown in Figure 4.8.  When 

the power supply is turned on, the four tags begin processing their software simultaneously, and 

each waits for the appropriate time slot before transmitting its ID code.  Again, the data are 

transmitted using amplitude shift keying at a frequency of 418 MHz.  A simple 418 MHz 

receiver accepts the ASK RF signal and converts it to a voltage waveform using standard RS-232 

voltage levels.  This voltage signal is sent to a PC over a DB9 serial cable, and a terminal 

program on the computer (ProComm by Datastorm Technologies, Inc.) displays the received 

ASCII characters on the screen as shown in Figure 4.9.  All four ID codes are successfully 

received. 

 This result illustrates that the requirements for prototype two have been met.  Each device 

has transmitted a 96-bit ID code using ASK at a carrier frequency of 418 MHz.  It can be seen 

from Figure 4.9 that the non-interference protocol used for prototype two allows the four ID 

codes to be received without corruption while the devices are powered simultaneously, thereby at 

least demonstrating a “proof of concept” for this simple protocol. 
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Figure 4.8   Prototype Two Demonstration Setup 

 

 

Figure 4.9   ProComm Screen Capture from Prototype Two Demonstration 
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4.3.2 Power Consumption Data 
 
 
 Although the prototype two boards are “wired” devices, the final prototype requires fully 

wireless temperature sensing boards.  As mentioned previously, the prototype two devices have 

energy harvesting circuitry onboard that may be used instead of a wired power supply.  Using the 

energy harvesting circuitry was a secondary goal for this prototype.  Therefore, it was decided 

that once a working demonstration had been completed, a power analysis would be performed to 

determine if energy harvesting would supply enough power to operate the prototype two boards. 

 A simple C program was used to determine the maximum power consumption of the 

prototype two boards (Figure 4.10).  This program causes the RF transmitter to continuously 

transmit while an infinite loop prevents the processor from entering a low-power sleep mode. 

 

#include <12C509AG.h> 
#fuses INTRC,NOWDT,NOPROTECT,NOMCLR 
#use delay(clock=4000000) 
 
// Internal 4 MHz RC Oscillator Calibration 
#rom 1023 = {0xC6C} 
 
main() { 
 
   int i = 0; 
 
   // Enable RF 
   output_high(PIN_B4); 
   // Continuously transmit 
   output_high(PIN_B5); 
   // Prevent PIC from going to sleep 
   while(TRUE) { 
      i = i + 1; 
   } 
 
} 
 

Figure 4.10   Power Test Source Code 
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Referring back to Figure 4.1, note that the schematic shows microcontroller pin 2 (GP5) 

connected directly to the RF transmitter data input (pin 7, PS/DATAASK).  Because the logic 

“1” output voltage on pin 2 is greater than 2.0V, the transmitter operates at its maximum output 

power (see Table 7-5 in [3]).  The maximum output power was used during device testing, and 

the four board demonstration, because transmitter power consumption was not a concern for 

prototype two. 

The design would need to be modified and a simple voltage divider circuit added to allow 

other transmitter output powers to be selected.  A board was modified in this way and used to 

obtain the circuit power consumption measurements presented in this section.  Power 

measurements were made using all six discrete transmitter output powers (see Table 7-5 in [3]).  

The resulting measurements are provided in Table 4.1.  As a baseline, one measurement was also 

made while the RF transmitter was disabled and the processor was not in SLEEP mode. 

 

Table 4.1   Circuit Power Consumption Measurements 

 

* These values are specified in [3] and were not measured during the power test. 
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 When examining the power measurements, please note that the values in the Transmitter 

Output Power, Power Select Voltage and Transmitter Operating Current columns were not 

actually measured during the power test – rather, these values are taken from the microcontroller 

datasheet. 

 As shown in Table 4.1, the supply voltage for all of the power measurements is 3.000 V.  

The power consumption values in Table 4.1 are large enough to indicate that this circuit will not 

run on power from energy harvesting (approximately 10 mW of power consumption or less 

would be required).  The minimum supply voltages for the microcontroller and RF transmitter 

are 2.5 V and 2.1 V, respectively [3].  A test was run to get an indication of the circuit power 

consumption at the minimum supply voltage.  Using a supply voltage of 2.500 V and a measured 

power select voltage of 2.445 V (maximum transmitter output power), 16 mA of current is drawn 

from the power supply, yielding a circuit power consumption of 40 mW.  This value is not 

drastically different from the power consumption at a 3.000 V supply voltage (48 mW).  This 

leads to the conclusion that it is unlikely that reducing the supply voltage to 2.5 V will allow the 

board to be powered by energy harvesting. 

 By examining the transmitter operating current values in Table 4.1, which are taken 

directly from the rfPIC12C509AG datasheet, it can be seen that the internal transmitter simply 

seems to draw too much current (several mA) to be powered by the type of energy harvesting 

circuitry present on the prototype two boards.  Therefore, the rfPIC12C509AG will not be a good 

candidate for the final prototype microcontroller. 
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4.3.3 Prototype Two Summary 
 
 
 As stated in the introduction to the prototype two section of this thesis, there were two 

motivations for the development of this prototype.  The first was to show that the simple non-

interference protocol that was introduced would indeed work, which has been confirmed here by 

the demonstration results.  The second was to gain insight that would be particularly vital for 

completing the final prototype.  This goal was satisfied. 
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5.0  PROTOTYPE THREE 

 
 
 
 The development work on prototype three (the final prototype) immediately followed the 

completion of prototype two.  One of the first steps was to set up the existing ARS boards and 

test them.  This would allow for the testing of any software modifications that needed to be 

made.  Significant time was spent examining the hardware schematic to understand in detail how 

each portion of the circuitry worked.  Also, the assembly language code was carefully analyzed 

to have a firm understanding of the entire program. 

 With this work completed, the stage was set to begin the work with prototype three. 

 
 

5.1 HARDWARE 

 
 As mentioned previously, the initial hardware design for prototype three was created as 

an extension of prototypes zero and one.  The hardware design had been worked on extensively.  

However, a number of changes to the PCB layout were needed compared to the latest hardware 

design. 

 On prototype three, a voltage divider circuit is used to indirectly measure the resistance 

of the thermistor and, hence, the temperature.  The supply voltage for the voltage divider is 

output on a microcontroller general purpose I/O pin, which allows the voltage divider circuit to 

be enabled in software only when a temperature reading is to be performed (this is a low-power 

consideration).  Previously, the microcontroller supply voltage had been used as the A/D 
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converter reference.  This is not the correct choice for the reference voltage because the supply 

voltage for the temperature sensing circuit is that which is output from the I/O pin, not the 

microcontroller supply voltage, and these may differ.  Therefore, the voltage output from the I/O 

pin should be used as the A/D converter reference voltage.  A specific microcontroller pin is 

reserved for inputting an A/D converter reference, but it had already been used to control the 418 

MHz transmitter in the existing hardware schematic.  Because another general purpose I/O pin 

was free, the transmitter enable signal was connected to the free pin and the voltage divider 

supply connected to the A/D converter reference input.  A software update was written because 

this change involved modifying the pinout of the microcontroller. 

 For the PCB modifications, I first identified a pull-up resistor that was present on the 

hardware schematic but not on the PCB and added it.  Also, I had learned from previous testing 

that connecting an oscilloscope probe to the board in a consistent manner was absolutely 

necessary for obtaining repeatable voltage measurements.  Measurements of the ARS board 

supply voltage are often important; therefore, I added a through-hole pad that is connected to 

Vdd.  A small wire can be soldered here, providing a location at which an oscilloscope probe can 

be easily and consistently attached for supply voltage measurements.  A similar designated 

location for the oscilloscope ground is not needed because the entire bottom side of the ARS 

board is a ground plane.  Finally, the footprint for a surface mount switch was added that would 

allow either Vdd or ground to be connected to one of the general purpose I/O pins on the 

microcontroller.  I chose to add this capability because it has many possible uses, including 

enabling/disabling in-circuit programming of the PIC.  With the existing printed circuit board 

design, a small wire needed to be removed from the board whenever reprogramming was 

necessary.  Not only was this inconvenient, but it wasted a significant amount of time when 
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small software changes needed to be quickly tested.  Also, the repeated soldering and 

desoldering of the wire could eventually cause damage to the board, such as the metal pads 

lifting off. 

 The final hardware schematic for prototype three is shown in Figure 5.1, and Figure 5.2 

shows the updated printed circuit board layout.  When working on the layout, special attention 

was given to keep the total area of the board to a minimum.  This is important because the 

project specifications state that the total size can be no larger than 1” by 2”, and certainly an even 

smaller size would be desirable.  The initial PCB layout had a size of 0.864” by 1.656”, and the 

updated layout of Figure 5.2 is nearly the same size (0.864” by 1.654”). 

 Once the PCB layout had been updated, an order was placed with ExpressPCB for a total 

of four printed circuit boards, each of which contained four ARS boards.  A band saw was used 

to cut the boards apart and their rough edges were sanded.  The next task was to fabricate the 

boards by soldering the numerous surface mount components onto them by hand.  A fabricated 

prototype three board is shown in Figure 5.3. 

 Although the SAW resonator component was hand soldered onto the first ARS board, a 

reflow soldering machine was used to attach these parts to the remaining boards.  The resonator 

package is designed such that reflow soldering is the easiest and most reliable way to obtain a 

good connection to the board. 

 The final components that would need to be added to the ARS boards were the inductor 

and capacitor for the antenna impedance matching. 
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Figure 5.1   Prototype Three Hardware Schematic 
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Figure 5.2   Prototype Three PCB Layout 

 

 

Figure 5.3   Fabricated Prototype Three Board 
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5.2 ANTENNA IMPEDANCE MATCHING 

 
5.2.1 Initial Impedance Matching Tests 
 
 
 Once the prototype three boards were fabricated, the impedance matching between their 

antennas and the energy harvesting circuitry was performed.  The maximum amount of power 

may be transferred from the energy harvesting antenna to the storage circuitry by striving to 

obtain the best impedance matching possible.  However, the impedance of the antenna cannot be 

measured in a straightforward manner due to a number of factors, including the fact that the 

antenna is physically much smaller than the 915 MHz wavelength (~1 foot) [7].  Therefore, the 

process described in “Annealing Approach to the Impedance Matching of Antennas for RFID 

Tags [7]” was used to determine the appropriate impedance matching components. 

 Before the matching process could begin, some preparation was needed in the lab.  First, 

one of the ARS boards was modified such that two standard header pins protruded from the back 

of the board.  These pins were soldered to the board voltage supply (Vdd) and ground, and would 

be used to connect the ARS board power supply to a separate measurement PCB.  This PCB 

contains an analog-to-digital converter that converts the voltage input to a digital value and sends 

it over an infrared link to the “Virtual Power Meter” MATLAB software running on a PC.  The 

voltage measurement board and MATLAB software were previously created at the University 

for this application. 

 As part of the impedance matching process, it is necessary to estimate the impedance 

looking into the ARS board just past the antenna (ZRct in Figure 5.4, which is taken directly from 

[7]).  Minhong Mi had previously developed a small PCB that is used for this purpose.  A value 

for the load resistor RL, which represents the circuitry on the actual ARS board, is needed to 

obtain the ZRct measurements.  RL is chosen such that the resulting current draw is similar to the 
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current that would be drawn by an actual ARS board during the impedance matching tests.  To 

determine what resistance value should be used for RL, an estimate of the current consumption 

on the ARS board is required.  The PIC microcontroller datasheet may be used to find this 

information, as explained in the following paragraph. 

 

 

Figure 5.4   ARS Board Equivalent Circuitry 

 

 During the matching tests, the PIC on the ARS board simply sleeps.  This behavior is 

appropriate because the microcontroller is typically in a low-power sleep state during normal 

ARS board operation and it allows for an accurate estimation of RL due to the constant current 

consumption of the PIC during sleep [7].  For the PIC configuration used with the ARS software 

(watchdog timer, comparators, CVREF and T1OSC disabled, brown-out detect enabled) the 

current consumption is 70 µA at VDD = 3.0 V and 130 µA at VDD = 5.0 V [8].  The resistances 

drawing these currents at voltage drops of 3.0 and 5.0 V are 42.9 and 38.5 kΩ, respectively.  

During the matching tests, VDD will vary dramatically depending on the effectiveness of each 

match, so it is necessary only to choose a value for RL that is close to these.  A readily available 

resistor with a measured value of 41.5 kΩ was used. 
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 Referring back to Figure 5.4, the value of RL has now been chosen.  CL for the ARS 

board is 15 pF.  An RF Network Analyzer can be used to measure the value of ZRct for a given 

matching network (values L1 and C1).  Prior to beginning the matching procedure, the RF 

Network Analyzer was calibrated so that the impedance measurements would be accurate. 

 For the impedance matching tests, the RF energy source continually transmits, which is a 

different behavior than during regular ARS board operation (the non-interference protocol is not 

in use).  As previously mentioned, the PIC sleeps during the test.  The tests were performed at a 

distance of 1.3 meters from the energy source.  This distance was chosen experimentally.  At 

closer distances, the voltage readings for poor matches were found to be fairly high in the range 

of 0 – 5 V (the A/D converter input range), indicating that the voltage readings for better matches 

might all register as 5 V.  This would make it impossible to tell which match is the best.  At 1.3 

meters, several low readings were observed.  Therefore, it seemed that at this distance even the 

best matches might not generate a supply voltage exceeding 5 V, which would allow a single 

best match to be identified. 

 The voltage obtained with the energy harvesting circuitry on the ARS board is converted 

to a digital value on the measurement PCB and ultimately displayed on a PC.  For each test, the 

value of ZRct is measured, and the voltage value is plotted versus ZRct on a Smith chart [7].  Table 

5.1 contains the testing results obtained. 

 The Smith chart in Figure 5.5 visually depicts the testing results.  Viewing the results 

graphically is useful because it helps in identifying trends in the data (i.e., what ranges of LC 

values lead to better matches).  Colors at the red end of the spectrum correspond to higher 

measured voltages and hence better impedance matches.  The best match found for the particular 

ARS board tested was 27 nH and 0.5 pF, which yielded 3.018 V at a distance of 1.3 meters. 
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Table 5.1   Impedance Matching Measurements 

Matching Network Zrct Measurement 
Inductance 

(nH) 
Capacitance 

(pF) 
Real Part (Ω) Imaginary 

Part (Ω) 

Voltage Measurement 
(mV) @ 1.3 meters 

15 0 6.9 -29.5 612.22 
18 0 7.8 -11.1 784.22 
22 0 8.2 14 1262.33 
27 0 9.2 51 2616.30 
33 0 15.4 114 637.58 
39 0 20.5 175 248.07 
12 0.5 5.4 -33 448.47 
15 0.5 5.5 -22 551.43 
18 0.5 4.2 -65 125.87 
22 0.5 9.4 19 1522.31 
27 0.5 14.6 65 3017.73 
33 0.5 37 168 314.05 
39 0.5 300 580 130.45 
47 0.5 1600 -300 282.59 
15 1 5 -19.8 551.73 
18 1 6.4 -5.8 766.80 
22 1 9.9 16.1 1683.31 
27 1 25 84 967.82 
33 1 230 380 331.47 
39 1 420 -610 329.02 
47 1 58 -300 44.60 
15 2 3.4 -14.2 506.82 
18 2 5.4 -4 129.84 
22 2 10.3 13.4 1420.27 
27 2 37 64 1027.70 
33 2 45 -168 352.85 
39 2 10 -96 176.27 
47 2 6.6 -82 28.11 
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Figure 5.5   Impedance Matching Smith Chart 
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 The impedance matching tests included many standard inductances (15, 18, 22, 27, 33, 39 

and 47 nH) and capacitances (0, 0.5, 1 and 2 pF).  After testing and plotting all of these 

combinations, it was seen that the best matches appear with an inductance of 27 nH.  This 

inductance was then tested with some additional capacitance values as shown in Table 5.2.  The 

voltage measurements recorded are the average of two trials. 

 

Table 5.2   Additional Measurements with L1 = 27 nH 

Matching Network Zrct Measurement 
Inductance 

(nH) 
Capacitance 

(pF) 
Real Part 

(Ω) 
Imaginary Part 

(Ω) 

Voltage Measurement (mV) @ 
1.3 meters 

27 0 9.4 55.5 2645 
27 0.2 10.6 56.4 2725 
27 0.4 12 58.6 2745 
27 0.5 12.5 59.2 2745 
27 0.6 13.6 61 2760 
27 0.7 14.4 62 1892.5 

 
 

 From this data, it is seen that capacitance values between 0.2 and 0.6 pF give the best 

matching with an inductance of 27 nH.  Less voltage is obtained when capacitance values above 

0.6 pF are used (this agrees with the previously obtained data in Table 5.1).  Given that the 

voltages obtained from 0.2 to 0.6 pF are comparable and a good supply of 0.5 pF capacitors was 

available, 27 nH and 0.5 pF were initially chosen as the matching values for the prototype three 

boards.  It was later found that slightly different capacitance values provided a better match for 

some of the remaining nine prototype three boards. 
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5.2.2 Impedance Matching for the Remaining Boards 
 
 
 Once the initial antenna impedance matching measurements had been made on one ARS 

board, the next step was to place matching components on the remaining devices and test the 

quality of the matches.  The values of 27 nH and 0.5 pF would not provide the best match for all 

ten boards because of slight manufacturing differences between the printed circuit boards.  

Manufacturing differences, particularly involving the thickness of the metal layer, may cause the 

antenna impedance on other boards to vary slightly from that of the first tested board.  This 

creates the need to check the matching of each board individually and improve matches that are 

poorer than the one obtained for the first board. 

 Because only small deviations from the initial matching values were expected and to save 

time, the infrared voltage measurement board and MATLAB software were no longer used to 

determine the matching efficiency of the remaining boards.  Rather, the maximum operational 

distance of the each board from the base station was used as an indicator of matching quality.  

This is acceptable because better impedance matching leads to greater amounts of harvested 

energy which corresponds to longer maximum operational distances. 

 The procedure followed for each remaining board is as follows.  First, the initial 

matching values (27 nH and 0.5 pF) are placed on the board and the maximum operational 

distance is tested.  If this distance is comparable to that of the ARS board used in the initial 

impedance matching process (approximately 70 cm), then the matching quality is considered to 

be acceptable.  This criterion has been established because the matching for the first board was 

found to be the best after trying many LC combinations (documented in the previous section).  

However, if the distance is not close to 70 cm, then slightly different matching values are tried, 

and the process repeats until a good maximum operational distance is found.  The previously 
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performed impedance matching experiments have shown that the best matches occur with an 

inductance of 27 nH.  Therefore, if different matching values need to be tried, the capacitance 

value will be changed first. 

 It can be difficult to remember the status of each board when working with ten of them, 

so I decided to keep a careful record of the status of each board and my tests with them.  The 

record provides a detailed account of the time-consuming impedance matching process followed 

for each board.  It is presented here as a list of status reports, numbered in chronological order. 

 

1. Boards 2 and 5 successfully tested at a distance of 70 cm with the initial matching 

values of 27 nH and 0.5 pF. 

2. Board 9 matching: 

a. 0.5 pF – 50 cm 

b. 0 pF – 40 cm 

c. 0.2 pF – 45 cm (some readings were not received) 

d. 0.4 pF – 50 cm 

e. 0.6 pF – 55 cm 

f. 0.8 pF – 55 cm 

g. 1.0 pF – some intermittent behavior observed in the range of 60 – 70 cm 

h. 1.2 pF – some intermittent behavior observed in the range of 65 – 75 cm 

i. 1.5 pF – the board functions well at 70 cm; intermittent behavior still observed at 

75 cm 
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3. Additional capacitance values may be tested with Board 9 to optimize its performance.  

However, this was not done because the working distance of Board 9 has been brought 

close to that of the ARS board used in the initial impedance matching process (70 cm). 

4. Board 1 was used for the detailed antenna impedance matching tests that were 

previously performed.  Eventually, LC components had been added and removed from 

the board so many times that the metal traces on the PCB began to peel off.  After this 

occurred, the board only functioned correctly at extremely short distances (< 20 cm).  

The matching was then adjusted in an attempt to attain the original working distance 

again: 

a. 0.5 pF – 20 cm 

b. 0 pF – 25 cm 

c. 1.0 pF – 20 cm 

d. 0.2 pF – 25 cm 

e. 1.5 pF – < 20 cm 

From these results, it did not seem that tweaking the matching values would allow 

Board 1 to function anywhere near the distance that it originally did (70 cm).  This 

board had seen a great deal of wear and tear, and perhaps some components had been 

damaged during repeated soldering.  To minimize the time spent fixing the board, it was 

decided to simply fabricate a new one (extra printed circuit boards were available).  The 

new board exhibited a different antenna impedance than the original; the best match 

yielded an operating distance of 65 cm with a 1.5 pF capacitor. 

5. Board 10 matching: 

a. 0.5 pF – 45 cm 
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b. 0 pF – 35 cm 

c. 1.0 pF – 55 cm 

d. 1.5 pF – 65 cm 

e. 2.0 pF – 65 cm 

f. 1.8 pF – 65 cm 

g. 1.3 pF – 65 cm 

h. 1.6 pF – 65 cm 

i. 3.0 pF – 55 cm 

With readily available capacitor values, it appears that 65 cm is the best distance for 

Board 10.  A 1.5 pF capacitor was chosen for the final matching because a good supply 

of them was available. 

6. Board 3 matching: 

a. 0.5 pF – 55 cm 

b. 0 pF – 45 cm 

c. 1.0 pF – 60 cm 

d. 1.5 pF – 65 cm 

e. 2.0 pF – 65 cm 

f. 1.8 pF – 65 cm, very intermittent behavior observed at 70 cm 

g. 1.6 pF – 65 cm, some intermittent behavior observed in the range of 70 – 75 cm 

7. Board 4 matching: 

a. 0.5 pF – 45 cm 

b. 0 pF – 30 cm 

c. 1.0 pF – 50 cm 
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d. 1.5 pF – 70 cm 

8. Boards 7 and 8 were found to operate at 45 cm with matching values of 27 nH and 0.5 

pF.  This is the same behavior that was seen with Board 4.  Considering that 1.5 pF 

proved to be a good match for Board 4, this value was tried with Boards 7 and 8 as well.  

In both cases, this resulted in a maximum working distance of 70 cm. 

9. Board 6 did not work at all with the original matching values, which prompted a check 

of the circuitry.  Upon examination, a bad connection was found on one pin of the SAW 

oscillator.  After the problem was corrected, Board 6 was found to work at 65 cm with a 

1.5 pF capacitor. 

 

 In summary, Table 5.3 contains the final antenna impedance matching values used on 

each board and their maximum operational distances when tested individually. 

 

Table 5.3   Impedance Matching Results 

 Antenna Impedance Matching  
Board Inductance Capacitance Maximum Individual Working Distance 
1 27 nH 1.5 pF 65 cm 
2 27 nH 0.5 pF 75 cm 
3 27 nH 1.6 pF 75 cm 
4 27 nH 1.5 pF 70 cm 
5 27 nH 0.5 pF 75 cm 
6 27 nH 1.5 pF 65 cm 
7 27 nH 1.5 pF 70 cm 
8 27 nH 1.5 pF 70 cm 
9 27 nH 1.5 pF 75 cm 
10 27 nH 1.5 pF 65 cm 
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6.0  COMMUNICATIONS 

 
 
 
 The next step toward finishing the final prototype would be to evaluate the existing state 

of the non-interference protocol and update it if necessary to meet the project specifications – 

that is, to read ten boards in one tenth of a second or less.  Previous work had already shown that 

several ARS boards work simultaneously with the initial non-interference protocol that had been 

designed for this prototype.  However, no consideration had been given to the time required to 

perform a read cycle.  The length of a read cycle is the amount of time required to power ten 

boards from a discharged state and obtain a temperature reading from each.  First, the read cycle 

time using the existing software would be determined. 

 
 
 

6.1 EXISTING PROTOCOL 

 
 The existing read cycle time was first examined using an oscilloscope.  The supply 

voltage on an ARS board was monitored.  The shape of the voltage waveform varies at different 

points in the read cycle (e.g., during power up, a sync pulse, etc.), and so the length of the read 

cycle can be determined by simply measuring the duration of the different variations.  It was 

found that the total time for one read cycle using the existing software was approximately 1.8 

seconds.  By examining the transmitter PIC assembly code, it was determined that one read cycle 

is broken down as shown in Figure 6.1. 
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915 MHz On         
      …   
915 MHz Off         
 Device Power Up  Sync 1 Slot 1 Sync 2 Slot 2  Sync 

33 
Slot 
33 

         
 195 ms .96 ms 48 ms .96 ms 48 ms  .96 ms 48 ms 

 
Figure 6.1   Initial Non-Interference Protocol Timing 

 

 The total time for one read cycle, therefore, is 195 ms + (48.96 ms x 33) ≈ 1.8 seconds.  

During each time slot, one ARS board transmits a single data byte.  A 10-bit temperature reading 

requires two bytes of storage, so each ARS board must use two time slots to transmit its reading.  

With 33 time slots, the existing protocol allows a maximum of sixteen boards to be read.  Note 

that the thirty-third time slot does not actually serve any purpose, and may be present due to an 

oversight when the software was written (e.g., a loop was supposed to iterate 32 times instead of 

33).   

Because the read cycle only needs to accommodate ten boards, 13 time slots can be 

ignored in the cycle length calculation.  Therefore, a revised read cycle time using the existing 

protocol timing is 195 ms + (48.96 ms x 20) = 1.17 seconds.  This still exceeds the required 

cycle length (100 ms) by more than ten times.  The read cycle time of 100 ms was derived in the 

specifications by assuming that the protocol would allow ten boards to transmit 24 bits at 2,400 

Baud with zero overhead (even time for framing bits as in RS-232 could not be afforded).  Even 

though the data rate supported in the initial prototype three software is 9,600 Baud, the current 

protocol contains a lot of overhead built into it.  For example, the time required to initially power 

the boards, send the sync pulses, and recover consumed energy after each byte is transmitted.  

This last source of overhead requires some additional explanation. 
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 The existing software allocates two consecutive time slots for a given ARS board.  When 

a byte is transmitted during a time slot, a significant amount of power is consumed on the ARS 

board (the transmitter component is the single greatest consumer of stored energy).  In the 

limiting case where the ARS board is operating at its maximum distance from the energy source, 

the voltage level on the board following a byte transmission would be near the minimum that 

will allow the circuitry to continue operation.  This means that sufficient time must be available 

to allow the board to recharge before the next transmission.  Therefore, the time slot length in the 

initial protocol is approximately 48 ms, which is much longer than the time required to transmit 

one RS-232 encoded data byte at 9,600 Baud (~ 1 ms). 

One proposed method for reducing the overall read time was to eliminate the large 

recovery time (~ 47 ms) between the slots.  This could be achieved through "pipelining" the 

transmissions by having them occur in a round robin fashion, so that after one board sends a byte 

of data, it can recover while the other boards are sending their bytes.  This could potentially 

reduce the overall time to 195 ms + (2 ms x 20) = 235 ms.  Even if this method is applied, the 

device power up time must still be drastically reduced to meet the specified read cycle time. 

 As this partial solution was being considered, it was suggested that an attempt be made to 

make the boards function at a doubled data transmission rate (19,200 Baud).  If this change 

would be possible, it would impact the read cycle time in an important way.  Due to the bit time 

being halved, two bytes could be transmitted back-to-back (with a stop bit between) in 

approximately the same time as one byte could be transmitted at 9,600 Baud.  So, whereas two 

time slots were needed for each board at 9,600 Baud, only one is needed at 19,200 Baud. 

 The number of time slots required for a single board to transmit its data illustrates a 

tradeoff between operational distance/power and time.  By reducing the number of times slots 
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from two to one, ten boards may be read much more quickly.  The large recovery delay between 

slots and the need for the “pipelining” approach described above are eliminated.  Also, by 

halving the number of required time slots, the number of sync pulse delays is also halved which 

saves additional time.  However, in general, the price paid is an increase in the power required 

for the transmission, and, hence, a decrease in the maximum operating distance.  In this case 

there should not be a dramatic increase in required power because the Baud rate was doubled 

while the number of time slots was halved.  Therefore, two bytes can be transmitted at roughly 

the same energy cost as previously needed to transmit one.  Each board may transmit back-to-

back, requiring a total time of approximately 195 ms + (.96 ms + (20 / 19,200) * 10) = 215 ms.  

Again, the 195 ms power up time still needs to be addressed. 

 
 

6.2 DATA RATE IMPROVEMENT 

 
 At this point, significant algorithm changes were needed so that the ARS boards would 

function at 19,200 Baud.  The RS-232 type signal sent to the 418 MHz transmitter is generated 

manually in software by toggling the voltage on a general purpose output pin.  In the transmit 

portion of the existing assembly code, various delays were present to maintain a Baud rate of 

9,600.  Some delays took the form of defined constants that specified the number of iterations to 

spend in time-wasting loops between bit transmissions.  However, simply modifying these 

constants would not suffice to double the Baud rate.  More subtle delays were also present 

because there were various paths through the transmitter code.  Different paths did not take the 

same time to execute because they contained differing numbers and types of instructions.  This 

would need to be taken into account as well if the 19,200 Baud transmit routine was to be 

reliable in all situations. 
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 Multiple paths were needed through the code because different delays were needed 

depending on the values of the current and previously transmitted bits.  This would not be 

necessary if the 418 MHz transmitter behaved the same when turning on and off.  However, 

during the development of the original software, it was found, by looking at the received 418 

MHz RS-232 signal, that the transmitter takes a different amount of time to toggle from an off 

state to an on state than vice versa.  This can be compensated for in software so that, at the 418 

MHz receiver, all bit widths are consistent. 

 Some time was spent trying to determine how to modify the existing transmitter code for 

19,200 Baud operation by taking these various sources of delay into account.  After making a 

few changes to the software and examining their effects, it was decided that rewriting the 

transmitter code from scratch would likely prove quicker and more reliable than trying to modify 

the existing routine.  This would eliminate any guesswork involved with changing the existing 

code and allow me to have a clear picture of the exact delay in the code.  While the new software 

was being written and tested, the differences in transmitter switching times were observed using 

an oscilloscope.  The new transmit routine also takes this problem into account and ensures that 

the transmitted bit times are consistent.  The updated transmitter software is described in Section 

7.2. 

 After modifying the software, several tests were performed where an ARS board was 

programmed to transmit a fixed bit pattern.  Using an oscilloscope, the RS-232 signal output 

from the 418 MHz receiver was monitored, and the bit timing was evaluated.  After several 

iterations of modifying the software and retesting, the resulting RS-232 signals at 19,200 Baud 

were satisfactory. 
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 As an aside, one might wonder why an even higher Baud rate than 19,200 was not used.  

Written calculations have shown that the microcontroller, while running at a clock speed of 4 

MHz, can support a much higher Baud rate than 19,200 in software.  However, lab experiments 

with the 418 MHz receiver used for this project indicated that the maximum standard Baud rate 

supported by the receiver is 19,200.  Still, this is more than sufficient to satisfy the data rate 

requirements for the current project. 

 The project specifications stated that future development phases for this device would 

require a data rate of at least 100K Baud.  It can be shown that this data rate is theoretically 

possible using the current hardware.  Consider the data rate of 100,000 Baud, which has a bit 

time of 10 µs.  At this rate, the time to transmit one byte (not including the stop bit because it 

does not require the transmitter to be enabled) is 10 µs x 9 bits = 90 µs.  The PIC12F675 

operates at a 4 MHz clock frequency (.25 µs period), and hence 90 / .25 = 360 clock cycles 

would occur during the transmission of one byte at 100,000 Baud.  There are plenty of cycles 

here to toggle the transmitter output for nine bits.  However, the clock frequency of the 

microcontroller can vary with the supply voltage and temperature.  For the range of supply 

voltages possible in this application, the internal oscillator frequency could lie anywhere between 

3.8 MHz and 4.2 MHz [8].  The software to transmit at 100,000 Baud would be designed to work 

with a clock frequency of 4 MHz.  The question now is whether or not this software would still 

work given these possible extremes. 

 The shortest possible clock period according to the datasheet is 1 / 4.2 MHz = .238 µs.  

The time allocated to transmit 9 bits is 360 clock cycles, following which the transmitter would 

be disabled for the stop bit.  Assume that the value of each RS-232 bit is checked at the receiver 

in the middle of the bit time.  Considering the beginning of the start bit to be time zero, the 
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middle of the ninth bit occurs at 10 µs x 8.5 bits = 85 µs.  If it takes longer than 85 µs for 360 

clock cycles to pass, then the 100,000 Baud software will work even with the shortest possible 

clock period.  0.238 µs x 360 = 85.68 µs; therefore, the software will still work. 

 A similar calculation shows that the software will work with the longest possible clock 

period, 1 / 3.8 MHz = .263 µs.  With this clock cycle period, the ninth bit must start before 85 µs 

have passed; otherwise, the ninth bit will be lost.  In software, the beginning of the ninth bit 

occurs after (360 / 9) x 8 = 320 clock cycles have passed.  0.263 µs x 320 = 84.16 µs; the ninth 

bit begins in time.  These calculations have shown that there is much greater data rate potential in 

the current design than has been used for this project. 

 
 

6.3 READ CYCLE TIMING 

 
 The data transmission Baud rate has been increased on the ARS boards.  At this point, it 

is now possible to update the read cycle timing (Figure 6.1) to take this change into account and 

accomplish the goal of reading ten boards in a tenth of a second. 

 Due to the Baud rate increase, the number of time slots has been reduced to ten.  This 

leaves three fundamental parts to a single read cycle as shown in Figure 6.2: 

a. Power up time for the cycle 

b. Ten sync pulse times 

c. Ten transmit slot times 

 The task now is to determine the appropriate values for times a, b and c.  The best value 

for each varies with a number of factors, particularly the distance of the sensor boards from the 

base station.  This distance is a factor in how quickly the boards can harvest sufficient energy, 

which directly impacts the best values for times a and c.  It is desired that the boards work at as 
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great a distance from the base station as possible, so values that are appropriate for that scenario 

will be sought. 

 

915 MHz On         
      …   
915 MHz Off         
 Device Power Up  Sync 1 Slot 1 Sync 2 Slot 2  Sync 

10 
Slot 
10 

         
 a ms b ms c ms  b ms c ms  b ms c ms 

 
Figure 6.2   Generic Read Cycle Timing, Ten Time Slots 

 

 The sync pulses preceding each transmit slot are generated by briefly disabling the 915 

MHz energy source.  This prevents energy harvesting from occurring during the sync pulses.  

Therefore, the ARS device must consume previously stored energy to remain powered during 

these times.  When the initial timing scheme was used, the energy consumption due to the sync 

pulses was negligible because each sync pulse of .96 ms was followed by a 47 ms transmit slot 

time (a long energy harvesting period).  This is ample time to recoup the lost energy, even 

though the storage capacitor is in the slowest portion of its charging curve.  In order to read ten 

boards in a tenth of a second, the transmit slot times had to be reduced to a minimum.  The 

absolute minimum is the time required for the active board to execute its interrupt service routine 

and transmit 19 bits at 19,200 Baud.  The transmission requires 19 bits * (1 / 19,200 bps) = .990 

ms.  By analyzing the ARS board assembly code and instruction execution times, a conservative 

estimate of the total time is 1.5 ms.  From lab experimentation, it has been found that a 1.5 ms 

transmit slot time is not long enough to allow full recovery of the energy consumed during the 
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prior sync pulse.  This is because the storage capacitor is almost fully charged and hence 

additional charge accumulates very slowly. 

 Due to the net loss of energy during each sync pulse/transmit slot pair, the voltage supply 

on the ARS board decreases across consecutive time slots (the voltage supply is proportional to 

the amount of stored energy).  However, after several time slots occur, an equilibrium is reached 

whereby the amount of energy consumed during each sync pulse equals the amount recovered in 

the following transmit slot (the reason for this will be explained momentarily).  The ARS board 

voltage supply also reaches equilibrium at this time due to its proportionality to the amount of 

stored energy.  This equilibrium voltage is less than the voltage reached on the ARS board when 

a 47 ms transmit slot time is used.  However, laboratory testing has shown that the equilibrium 

voltage achieved by using a 1.5 ms transmit slot time is greater than 95% of the voltage available 

when using a 47 ms transmit slot time (i.e., the voltage supply reduction caused by using the 

shortened transmit slot time is minimal).  This percentage will vary with how quickly a board 

can harvest energy, which is a function of several variables, including its distance from the base 

station and the optimality of its antenna impedance matching. 

 The oscilloscope capture of Figure 6.3 illustrates the equilibrium phenomenon.  The 

screen capture shows the supply voltage on an ARS board versus time.  The time slots are 

indicated on the figure.  The voltage is constant at the beginning of the waveform (label A on the 

figure) because the device is still in the power up phase and the storage capacitor is fully 

charged.  The first drop in voltage (label B) corresponds to the energy loss due to the first sync 

pulse, and the subsequent small increase in voltage (label C) is due to the energy harvesting that 

occurs during the following transmit slot.  A net voltage loss occurs during the first time slot, i.e., 
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Figure 6.3   Voltage Consumption During Sync Pulses 

 

A – C.  During the subsequent time slots, the drops in voltage during the sync pulses are 

approximately equal, but more voltage is recovered with each transmit slot (e.g., x1-x2 > x2-x3 > 

x3-x4 > … > x8-x9 > x9-x10).  This increase in the amount of recovered voltage is due to the 

storage capacitor being recharged more quickly than during earlier transmit slots.  By the ninth 

sync pulse (label D), the amount of voltage recovered during the following time slot (label E) is 

very close to equaling the amount lost during the sync pulse.  The total voltage loss due to the 

nine sync pulses is only 0.164 V / 4.441 V = 3.7% of the power up voltage (calculated by 

comparing the voltage before the first sync pulse to that before the tenth).  Furthermore, very 

little voltage will be permanently lost due to additional time slots because equilibrium has been 

reached.  These results show that greatly reducing the time slot length (from 48 ms to 1.5 ms, or 
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by 96.9%) has a relatively small impact on the available supply voltage (reduced by 3.7%).  This 

loss is outweighed by the benefit of greatly reducing the read cycle time as required in the 

project specifications.  The results validate the decision to reduce the time slot length from an 

energy harvesting perspective by confirming that doing so will not adversely impact the ARS 

board supply voltage.  As a final note on Figure 6.3, this particular ARS board transmitted a 

temperature reading during the tenth time slot.  This caused the rapid drop in voltage at the far 

right of the capture (label F). 

The question is: how do these observations affect the choice of read cycle times a, b and 

c from Figure 6.2?  In summary, they indicate that it is desirable to use the smallest working sync 

pulse width.  A shorter sync pulse width not only saves overall read cycle time, but it leads to 

less net energy loss during each sync pulse/transmit slot pair.  Also, having a longer transmit slot 

time is clearly preferable as this allows more time for energy harvesting between each sync 

pulse.  These results assist in dictating how the read cycle timing should be determined for the 

application of reading ten boards in 0.1 seconds. 

•  First, the sync pulse time b should be minimized. 

•  Second, the power up time a must simply be long enough to fully charge each board.  

This time will vary based on the distance of each board from the base station but can be 

experimentally determined for a given situation.  ARS board charging time data gathered in the 

lab is presented in Table 6.1, which will be discussed shortly. 

•  Finally, whatever time is left over in the tenth of a second can be divided among the ten 

transmit slots.  Remember that each slot must be at least ~1.5 ms long for proper operation.  

Therefore, if this constraint cannot be met for a given base station distance and a cannot be 
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reduced to a value that still allows each board to obtain sufficient charge to operate, then the 

boards cannot be read in 0.1 seconds at that distance. 

Consider the sync pulse delay time.  The ARS board energy harvesting and sync pulse 

circuitry is shown in Figure 6.4.  The sync pulse must discharge the 15 pF capacitor C1 on the 

ARS board.  The voltage on this capacitor is connected to an I/O pin on the microcontroller, and 

the state change of this digital input triggers an interrupt that awakens the processor from the 

sleep state.  Diode D3 isolates the main energy storage capacitor C2 from this process, allowing 

capacitor C1 to discharge without affecting the charge previously stored on C2.  Capacitor C1 is 

connected to ground through a 1 MΩ resistor (R5), giving an RC time constant of 15 µs for the 

discharging of capacitor C1.  The capacitor is sufficiently discharged after 3RC = 45 µs.  

However, lab experiments have shown that using this sync pulse delay in the base station 

software is not enough to trigger the ARS board.  Therefore, additional factors must be playing a 

role; for example, a possible delay in switching the base station transmitter off.  It appears from 

lab experimentation that a sync pulse delay in the base station software of approximately 455 µs 

is the minimum acceptable value.  For added reliability, it might be better to use a slightly higher 

value if possible given the time constraints of the application. 

 Next, the time required to charge an ARS board was examined. An oscilloscope probe 

was attached to the voltage supply on an ARS board to observe the time required for the voltage 

to increase to 95% of its maximum value at various distances from the base station.  The results 

are shown in Table 6.1.  The minimum operational voltage for the ARS board is somewhere 

around 3 V or slightly less.  Therefore, considering the charging time data in Table 6.1, a device 

power up time around 75 – 80 ms would be appropriate in the read cycle timing.  When 
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Figure 6.4   ARS Board Energy Harvesting and Sync Pulse Circuitry 

 

 

Table 6.1   ARS Board Charging Times at Various Distances 

Distance From 
Base Station (cm) 

Maximum 
Voltage (V) 

Approximate Charging Time To 95% Of The 
Maximum Voltage (ms) 

80 4.75 39 
75 4.69 42 
70 4.50 43 
65 2.53 77 
60 1.69 90 
57 2.81 75 
56 3.06 68 
55 3.38 63 
50 4.31 50 
40 4.75 44 
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examining the data in Table 6.1, it is interesting to note that the longest charging times occur in 

the middle of the distance range.  Multiple charging time measurements have been obtained that 

confirm this behavior.  One possible explanation for these results is that certain behaviors are a 

function of the ¼, ½ and ¾ RF wavelengths in the near field, and the largest charging times 

occur at approximately 1¾ wavelengths from the base station antenna [9]. 

 A final note on the read cycle timing concerns the amount of time that the 915 MHz 

energy source is disabled between consecutive cycles.  This time is not considered to be a part of 

the 100 ms read cycle and therefore can be chosen arbitrarily.  However, the time between read 

cycles must be long enough to allow the ARS board energy storage capacitor to discharge 

sufficiently (enough so that the microcontroller resets due to low supply voltage).  An ARS 

board cannot recognize a new read cycle until its software is reset.  A delay of 390 ms between 

read cycles was found to be acceptable when testing the ARS boards in the laboratory. 

 A problem arose during testing in the lab whereby the boards seemed to require some 

minimum distance from the base station in order to function properly.  Obviously, the supply 

voltage on an ARS board increases as it is moved closer to the base station.  Therefore, it seemed 

that this problem was due to the supply voltage becoming too high for the microcontroller, and a 

method to limit the voltage was investigated.  It was later determined that this problem was 

actually caused by an insufficient length of the delay between read cycles.  As an ARS board is 

moved closer to the base station, the amount of time necessary to discharge the energy storage 

capacitor increases along with the supply voltage.  The 390 ms delay between consecutive read 

cycles, although sufficient at greater distances from the base station, was not long enough to 

allow the microcontroller to reset when the board was moved closer.  Therefore, the ARS boards 

appeared to stop working at shorter distances, although they simply were not resetting for new 
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read cycles.  Through a trial and error process, a longer delay between read cycles was found that 

corrected this problem.  When the delay between read cycles was increased to 1.95 seconds, the 

boards were found to have no limitation on their minimum operational range from the base 

station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57



 

 
 
 
 

7.0  SOFTWARE 

 
 
 
 The research concerning updating the non-interference protocol is complete, and now the 

software running on the individual ARS boards as well as the base station must be designed to 

implement the new read cycle timing.  This section details the modifications that were made to 

the existing prototype three software. 

 
 

7.1 GENERAL ARS BOARD SOFTWARE 

 
 Changes to the ARS board initialization routine needed to be made due to the hardware 

modification that had been performed to improve the temperature reading accuracy (see Section 

5.1).  This hardware update involved modifying the pinouts of the microcontroller as well as 

enabling the A/D converter external voltage reference feature. 

 The values of some configuration registers needed to be updated to reflect the pinout 

change.  The TRISIO (GPIO tri-state) register contains a bit for each general purpose I/O pin 

designating whether the pin is an input or output.  The 418 MHz transmitter enable output was 

moved from GPIO2 to GPIO4 because the A/D converter reference input must be on GPIO1 and 

shorter PCB traces are needed if the thermistor circuit voltage supply is output from GPIO2 (this 

is because the GPIO1 and GPIO2 pins, which must be tied together, are physically close to one 

another as shown in Figure 7.1).  The TRISIO register was updated to make GPIO4 an output 

and GPIO1 an input.  The ADCON0 (A/D control) register is used to configure several aspects 
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of the internal A/D converter.  The VCFG bit in this register was changed to indicate that the 

VREF pin (GPIO1) should be used as the voltage reference instead of VDD.  Finally, the ANSEL 

(analog select) register contains bits that are used to select which of four GPIO pins will be used 

as analog inputs to the A/D converter (four channels are available on the PIC12F675 although 

only one is used here).  The bit corresponding to GPIO1 was changed to an analog input because 

it is now receiving the analog reference voltage. 

 The pseudocode in Figure 7.2 describes the overall behavior of the ARS board software. 

 

 

Figure 7.1   Updated PIC GPIO Pinouts 

 

7.2 TRANSMIT ROUTINE 

 
 As mentioned in Section 6.2, the transmit routine was redesigned to increase the data 

channel Baud rate from 9,600 to 19,200 bits per second.  A flowchart description of the updated 

code is shown in Figure 7.3. 

 Different paths through the flowchart in Figure 7.3 are taken based upon the values of the 

previous, current and next bit to be transmitted.  This is necessary because lab  
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// Defined constants 
DEVICE_ID 0 // Unique sensor identification number 
   // Can be 0 – 15 in current implementation but is scalable 
 
// The init code runs once during the device power up period 
Init: 
 Initialize microcontroller configuration registers (sets up general purpose I/O pins, A/D 
 converter and other microcontroller-specific features) 
 Enable sync pulse interrupt 
 // Clear time slot counter 
 timeSlot = 0 
Main: 
 Enter sleep mode 
 // Microcontroller will awaken when sync pulse interrupt occurs 
 goto Main 
 
// Sync pulse interrupt service routine 
SyncISR: 
 Save current processor state 

If (Interrupt source is not sync pulse) { 
  // No other interrupts should be enabled 
  goto EndISR 
 } 
 If (DEVICE_ID == timeslot) { 
  // This is the correct time slot to transmit the temperature reading 
  Access A/D converter and acquire 10-bit reading 
  Form low and high bytes using A/D reading and DEVICE_ID 
  Transmit low byte 
  Transmit high byte 
 } Else { 
  // This time slot belongs to another sensor 
 } 
 // Increment time slot count 
 timeSlot++ 
EndISR: 
 Restore previous processor state 
 Return from interrupt 
 // “Return from interrupt” automatically re-enables sync pulse interrupt 
 // Processor will return to sleep mode until the next interrupt occurs 
 

Figure 7.2   ARS Board Pseudocode 

 
 

 60



 

 

Figure 7.3   Transmit Routine Flowchart 

 

experimentation indicated that the transmitter requires a significant amount of time 

(approximately 10 µs) to turn off after the proper signal is output from the microcontroller.  

However, a delay was not observed when the transmitter was turned on.  This means that a 

software remedy is required to provide consistent bit widths in all cases. 
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 A delay only occurs when the transmitter is switched to the disabled state.  The 

transmitter is enabled when logic zeros are transmitted and disabled for logic ones.  The new 

transmit routine detects when the current bit to be transmitted is a zero and the next bit is a one.  

At the end of the current bit time, the transmitter will need to be disabled.  Due to the transmitter 

turn-off delay, the current bit time as output from the microcontroller to the 418 MHz transmitter 

should be ended short.  The turn-off delay will provide the remainder of the bit time as seen at 

the 418 MHz receiver.  A short bit time delay is used in the software to handle this case. 

 Because this bit time has been ended short from the perspective of the microcontroller, 

the next bit time must be lengthened by the same amount to prevent future bit transitions from 

occurring too early (in other words, to maintain the synchronization provided by the start bit).  

The software provides an extended bit time delay in this case when the current bit to be 

transmitted is a one and the previous bit was a zero.  For all other situations, an exact bit time 

delay of 52 µs is used. 

 The assembly language software was written taking the instruction execution times of 

each path through the flowchart into account so that the paths consistently require ~52 µs for 

each bit time (except for the intentionally differing short and extended bit times).  Although 

some bit time error is acceptable with the RS-232 type interface at the base station receiver, the 

effort has been made to maintain the correct bit times in all cases.  To test the correctness of the 

code while taking the transmitter behavior into account, an oscilloscope was connected to a 418 

MHz receiver to view the received RS-232 waveforms for several test transmissions.  Additional 

tweaking of the software delays was performed based on this feedback.  The final result was 

consistently valid 19,200 Baud RS-232 waveforms at the receiver. 
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7.3 BASE STATION SOFTWARE 

 
 The base station software controls the 915 MHz energy source that is used to power and 

synchronize the ARS boards.  The microcontroller running in the base station is a PIC16F870.  

The 915 MHz transmitter is enabled or disabled by setting the appropriate digital output on one 

of the microcontroller I/O pins.  The physical construction of the base station with the PIC 

embedded inside was performed prior to my involvement with prototype three.  Existing 

software for the base station was available, but it supported the initial read cycle timing scheme 

(Figure 6.1).  The delay values in the software needed to be modified to use the updated read 

cycle timing and allow ten boards to be read in a tenth of a second.  A simple pseudocode 

description of the base station software is provided in Figure 7.4. 

 The various delays referred to in the pseudocode are implemented in assembly language 

using loops.  The counter value for each loop determines the length of the delay.  The body of 

each loop requires three instruction cycles per iteration [10].  The clock frequency of the 

microcontroller is 4 MHz, and four clock cycles comprise a single instruction cycle.  Therefore, 

each instruction cycle is 1 µs in length, and each iteration of a delay loop consumes 3 µs.  A 

comparison of the original and updated read cycle timing delays is provided in Table 7.1. 

 The updated time slot delay value of 1.5 ms was derived previously by taking into 

consideration the amount of time needed to transmit 19 bits at 19,200 Baud and the software 

overhead of the ARS board transmit routine.  Prior lab experimentation had shown that a sync 

pulse delay of 455 µs was the minimum sufficient for triggering the ARS boards.  However, 

while testing the updated read cycle timing with the ten ARS boards, it was observed that the 

boards returned valid temperature readings more consistently when a longer sync pulse delay 

was used.  After testing the ARS boards with a number of sync pulse delay values, the time of 
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1.2 ms was decided upon because it worked well in the lab and it was not so large as to greatly 

reduce the time available for the power up delay.  Ten sync pulse and time slot delays are 

needed, and they consume a total of 27 ms of the read cycle.  Therefore, the remaining 73 ms is 

dedicated to device power up. 

 

Init: 
 Initialize microcontroller configuration registers (set up I/O pins, disable interrupts, etc.) 
Start: 
 // This is not part of a read cycle, but actually takes placed between cycles 
 Disable transmitter 
 Perform “Brown-Out” Delay  // A very long delay (~ 400 ms) to allow the ARS 
      // boards to discharge and reset between read cycles 
 // This is the beginning of a new read cycle 
 // Device power up phase 
 Enable transmitter 
 Perform “Power Up” Delay 
  
 // Sync pulses and time slots 
 // numSlots = 33 in the original code, changed to 10 for the final version 
 for(i = 0; i < numSlots; i++) { 
  Disable transmitter 
  Perform “Sync Pulse” Delay 
  Enable transmitter 
  Perform “Time Slot” Delay 
 } 
 
 goto Start 
 

Figure 7.4   Base Station Pseudocode 

 

Table 7.1   Base Station Software Delays 

Original Code Updated Code   
Number of delay 

loop iterations 
Length of delay 

(ms) 
Number of delay 

loop iterations 
Length of delay 

(ms) 
Power Up Delay 65,025 195.075 25,000 75.000 
Sync Pulse Delay 320 0.960 400 1.200 
Time Slot Delay 16,000 48.000 500 1.500 
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 The length of the power up delay in software is 25,000 loop iterations, which would be 

75 ms.  However, only 73 ms are available in the read cycle.  While using this delay value, an 

oscilloscope probe was attached to the voltage supply on an ARS board to obtain a picture of the 

charging curve.  The oscilloscope capture showed that the board was only charging for 

approximately 71 ms.  One possible explanation for this is that the 915 MHz transmitter might 

require some additional time to start from a completely powered-down state as is the case 

between read cycles.  This is not the case for the sync pulses which require very brief 

disengagements of the transmitter and therefore do not exhibit this delay.  The read cycle only 

begins when the transmitter turns on and the boards begin charging, so the “missing” part of the 

power up delay is not counted against the read cycle time.  Therefore, the power up phase 

requires less than 73 ms, and hence fits into the 100 ms read cycle.  The final non-interference 

protocol timing is shown in Figure 7.5. 

 

915 MHz On         
      …   
915 MHz Off         
 Device Power Up  Sync 1 Slot 1 Sync 2 Slot 2  Sync 

10 
Slot 
10 

         
 71 ms 1.2 ms 1.5 ms 1.2 ms 1.5 ms  1.2 ms 1.5 ms

 
Figure 7.5   Final Non-Interference Protocol Timing 
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8.0  RESULTS 

 
 
 

Ten ARS boards were completely fabricated, and all software was updated to use the 

revised non-interference protocol.  What remained at that point was to verify that all ten ARS 

boards return correct temperature readings in 100 ms.  Before presenting the test results, an 

overview of the demonstration setup is provided. 

 
 

8.1 DEMONSTRATION SETUP 

 
 The entire test system consists of the base station, ARS boards, 418 MHz receiver and a 

PC.  The functionalities of the base station and ARS boards have already been presented.  Figure 

8.1 shows the testing setup where the ARS boards are positioned in front of the base station 

patch antenna.  What remains to be discussed is the formatting of the 418 MHz temperature 

reading transmissions and how this information is presented to the user. 

 A simple framing mechanism was employed for the transmissions between the sensor 

boards and the 418 MHz receiver.  When a sensor’s time slot is reached, it uses the 10-bit A/D 

converter internal to the PIC12F675 microcontroller to sample the voltage across a thermistor.  

These ten bits of data (TEMP[9...0]), as well as the sensor’s unique identification number, are 

packed into a two-byte transmission as shown in Figure 8.2. 

 The sensor identification number is currently four bits long to accommodate ten devices.  

However, the number of bits for the ID can be increased to allow hundreds of sensors to be used 
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with the non-interference protocol.  Alternatively, if the receiver were to be aware of the number 

of the current time slot, then the sensor identification number would not need to be transmitted at 

all.  The most significant bit is used to identify which byte (low or high) has been received.  This 

simple mechanism allows the receiver to resynchronize itself with the incoming bytes in the case 

of a missing or damaged transmission. 

 

 

Figure 8.1   ARS Boards and Base Station Antenna 

 
 
First (Low) Byte 

Value 0 Sensor Identification Number TEMP[2…0] 
Bit 7 6 5 4 3 2 1 0 

 
Second (High) Byte 

Value 1 TEMP[9…3] 
Bit 7 6 5 4 3 2 1 0 

 

Figure 8.2   Temperature Data Framing 
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 The two bytes are transmitted using amplitude shift keying (ASK) at a frequency of 418 

MHz.  Again, the transmission protocol is simply RS-232 (19,200 Baud, eight data, no parity, 

one stop bit).  The 418 MHz receiver simply changes the medium of the RS-232 transmission 

from RF to a standard DB9 serial cable that is run to a PC.  It does not perform any intelligent 

processing of the data.  On the PC, the temperature readings may be parsed and then processed in 

any way necessary.  To save computation, and hence power, on the remote device, the 

conversion between raw A/D converter reading and actual temperature (degrees F, C, etc.) 

occurs on the PC side.  The pseudocode in Figure 8.3 describes the behavior of a simple PC 

receiver program.  For the tests performed in the lab, a short MATLAB receiver program written 

previously was used to capture and display the raw A/D converter readings. 

 

 Open serial port 
 lowByteReceived = false 
GetNextByte: 
 Wait for byte on serial port 

Get byte from serial port 
If (MSB is “0”) { 
// Low byte received 
Parse byte, store ID number and lowest 3 bits of temperature 
lowByteReceived = true 

 } Else { 
  // High byte received 
  If (lowByteReceived == true) { 
   Parse byte to obtain highest 7 bits of temperature 
   Process temperature reading as necessary and display to user 
   lowByteReceived = false 
  } Else { 
   // No accompanying low byte was received; error 
   // Disregard the byte 
  } 
 } 
 Goto GetNextByte 
 

Figure 8.3   PC Receiver Program Pseudocode 
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8.2 INTERPRETATION OF A/D CONVERTER READINGS 

 
 The thermistor used on the ARS boards (Panasonic part number ERT-J1VT202J) has a 

resistance of 2 kΩ at 25° C (77° F) and is used in a simple voltage divider circuit with a resistor 

of the same value [11].  The A/D converter reference voltage is the supply to the divider circuit.  

The resistance of the thermistor may be determined by measuring the voltage drop across it, and 

this resistance directly corresponds to a temperature reading according to the thermistor 

specifications. 

 Consider that Vref is the voltage supply to the divider circuit and Vth is the voltage drop 

across the thermistor.  Let the resistance of the thermistor be Rth.  According to the voltage 

divider equation, the voltage drop across the thermistor is Vth = Vref[Rth / (Rth + 2,000)].  From 

the perspective of the 10-bit A/D converter which directly measures the thermistor voltage, Vth = 

Vref[ADreading / (210 – 1)], where ADreading is the 10-bit output value ranging from 0 to (210 – 1).  

Equating these expressions for Vth, we have: 

 

Vref[Rth / (Rth + 2,000)] = Vref[ADreading / (210 – 1)] 

 

Canceling Vref on both sides and rearranging, this can be solved for Rth: 

 

Rth = (2,000 * ADreading) / [(210 – 1) – ADreading] 

 

According to this equation, the resistance of the thermistor can be determined solely from the 

value of ADreading. 
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 The resistance values for many temperatures are provided in [11].  Using the above 

equation, the resistance values may be changed to A/D converter readings, thereby obtaining 

several data points relating A/D readings and temperature.  The graph in Figure 8.4 is obtained 

by taking these data points and plotting them in Microsoft Excel. 
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Figure 8.4   Relationship Between A/D Converter Readings and Temperature 

 

8.3 PROTOTYPE THREE DEMONSTRATION 
 
 
 Using the lab setup described above, the ten ARS boards were read simultaneously at a 

distance of 40 cm from the base station.  This is a significant reduction in operational distance 
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from the single board case, but this is to be expected because multiple devices must be within the 

limited field pattern at a point with sufficient distributed energy to activate all boards 

simultaneously.  The MATLAB screen capture in Figure 8.5 shows successive read cycles in 

which all ten boards are correctly read.  Each line of output corresponds to a received 16-bit 

temperature transmission.  The device ID for the reading is displayed along with the raw A/D 

converter value.  All of the A/D readings are in the range of 520 – 530.  Referring to Figure 8.4, 

it is seen that this range corresponds to temperature readings between 75.9° F and 74.5° F.  

These values are correct given the lab thermostat reading at the time of the test and the individual 

heating of each board due to the RF energy field at its particular location. 

 It is also necessary to obtain proof that the read cycle is indeed occurring in a tenth of a 

second.  To do this, an oscilloscope probe was attached to the voltage supply on one of the ARS 

boards during a read, which yielded the waveform in Figure 8.6.  The left part of the waveform, 

from the left cursor until just before the horizontal center of the screen, is the power up portion 

of the read cycle.  The large energy storage capacitor on the sensor board is charging during this 

time.  The drop in voltage at the horizontal center of the screen occurs when this board 

(identification number 2) transmits its temperature reading.  The slow increase in voltage 

following this drop is due to the additional energy harvested during subsequent time slots.  

Finally, the steady drop in voltage at the right is the power down period following the read cycle.  

The cursors show that the total time from the power up to power down phases is just less than 

100 ms, which fulfills the read cycle timing requirement. 
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Figure 8.5   Demonstration MATLAB Screen Capture 
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Figure 8.6   Oscilloscope Capture for Read Cycle Timing Verification 
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9.0  CONCLUSIONS 

 
 
 
 This project may be considered a success if all of the contractual specifications have been 

met.  Looking back over the specific operational requirements of the device as stated in the 

problem statement, it is seen that all of the criteria have been met.  The final prototype sensor 

board has a form factor of 0.864” by 1.654”, which is smaller than the required size.  A complete 

embedded non-interference protocol was indeed developed, and the necessary software was 

designed and implemented in both the sensor boards and the base station.  This protocol is easy 

to understand and very easily extendable to accommodate additional devices simply by adding 

additional time slots.  It was chosen over the protocol developed in prototype two because the 

sync pulse mechanism continually synchronizes the ARS boards so that all devices know exactly 

when each time slot begins.  In the prototype two method, each device determines the start of its 

time slot based on a software delay performed after powering up.  If all sensor boards are not 

powered simultaneously, or if there are slight differences in the microcontroller clock 

frequencies, then the devices may lose their synchronization, especially those transmitting during 

later time slots.  Even though the final protocol has more overhead compared to the simpler one 

developed for prototype two, the benefit of its enhanced synchronization method makes it much 

more suitable for supporting hundreds of devices as required. 

 Ten sensor boards were successfully fabricated and tested simultaneously in the lab using 

the non-interference protocol.  Valid temperature readings were returned from all boards within a 

tenth of a second, and no interference problems were observed.  Also, the Baud rate supported by 
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the sensor boards for data channel transmissions (19,200 Baud) exceeds the specifications (2,400 

Baud). 

 In addition to the project specifications being met in full, a second project goal has been 

attained as well.  Through this research, my research and engineering skills have been 

strengthened.  In retrospect, I can say that this experience has been a very beneficial one for me, 

during which I have learned new skills and strengthened old ones.  The opportunity to work on a 

project with real-world implications and in an essentially independent manner was a valuable 

one.  From a hardware perspective, I became familiar with a number of skills with which I had 

no prior experience, including printed circuit board layout and surface mount component hand 

and reflow soldering.  Also, I had never worked with RF devices in a lab environment, and I 

gained experience in the subtleties of testing these devices.  Considering the software side of the 

project, I greatly improved my knowledge of Microchip PICs and their configuration.  Also, I 

reviewed and strengthened my skills in C, assembly language and MATLAB programming.  

Finally, I consider the general area of embedded system research and development to be of 

particular interest to me, and this project fits well into that category.  An ARS board, consisting 

of a microcontroller and peripheral circuitry, is a simple embedded system that involves 

hardware and software co-design.  I very much enjoyed working on this project and bringing it to 

a successful conclusion. 

 
 
 

9.1 FUTURE CONSIDERATIONS 
 
 
 A number of issues remain to be examined during future development of the NASA 

temperature sensor.  An investigation into the operational environment of the final product was 
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beyond the scope of the first development phase addressed by this research.  However, as 

research on the device continues, it will certainly be important to determine what unique 

challenges might be presented to its operation when it is deployed on a spacecraft.  For example, 

it is possible that the sensor device might be subjected to very high temperatures, or that the 

materials used in the construction of the spacecraft panels could greatly attenuate the RF signals 

transmitted to and from the temperature sensors.  These operational challenges may be better 

understood and addressed once the details of the final environment are known (e.g., where the 

sensors are placed on the spacecraft panels, the relative positioning of the RF energy source and 

data receiver, etc.). 

 Also, future research could verify that the supply voltage on an ARS device does indeed 

reach equilibrium after several time slots have occurred.  This conjecture has been made based 

upon the oscilloscope capture in Figure 6.3.  It appears from the figure that the amount of voltage 

lost during the ninth sync pulse is nearly identical to the amount recovered during the following 

transmit slot.  To verify that equilibrium is truly reached, the supply voltage on the ARS device 

can be monitored during the passage of many additional time slots. 

 While the operational distance of the sensor device was not specified for the first 

development phase, additional research could focus on improving the maximum operational 

distance of the sensors from the base station.  One approach would be to further reduce the 

power consumption of the device.  For example, the output power of the 418 MHz transmitter 

could be reduced and a more sensitive receiver used to detect the weaker signal.  As the trend 

toward low-power devices continues, additional microcontrollers may become available that 

require less power or supply voltage.  Also, a more powerful RF energy source could be used in 

place of the current 5 Watt source. 
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APPENDIX A 
 
 
 
 

PROTOTYPE TWO SOURCE CODE 
 
 
 
 
#include <12C509AG.h> 
#fuses INTRC,NOWDT,NOPROTECT,NOMCLR 
#use delay(clock=4000000) 
#use fast_io(B) 
 
// Internal 4 MHz RC Oscillator Calibration 
// Note -- BOARD is command line argument to compiler 
#if(BOARD == 4) 
   #rom 1023 = {0xC70} 
#else 
   #rom 1023 = {0xC6C} 
#endif 
 
main() { 
 
   int i; 
   char boardID[13] = "Board   ID"; 
    
   boardID[10] = 0x0D;   // CR 
   boardID[11] = 0x0A;   // LF 
   boardID[12] = 0x00;   // NULL 
 
   // Note -- BOARD is command line argument to compiler 
   #if(BOARD == 1) 
      boardID[6] = '1'; 
   #elif(BOARD == 2) 
      boardID[6] = '2'; 
   #elif(BOARD == 3) 
      boardID[6] = '3'; 
   #elif(BOARD == 4) 
      boardID[6] = '4'; 
   #else 
      boardID[6] = 'X'; 
   #endif 
 
   // Set I/O port direction (GP4 and GP5 outputs) 
   set_tris_b(0x0F); 
 
   // Enable RF 
   output_high(PIN_B4); 
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   // Wait for time slot 
   // Each slot is 56 ms 
   // Include 2 ms startup time to make sure transmitter on first board is 
ready 
   delay_ms(2 + (56 * (BOARD - 1))); 
 
   // Output ID via RS232 over RF @ 2400 Baud    
   for(i = 0; i < 12; i++) { 
      // Mark to space transition - start bit 
      output_high(PIN_B5); 
      delay_us(409);   // 417 - 8 
      // Output eight data bits, no parity 
      // Output low = Mark state = Logic "1" 
      // Output high = Space state = Logic "0" 
      // Bit 0 -- LSB 
      if(boardID[i] & 0x01) { 
         // Bit 0 is set – output Mark state 
         output_low(PIN_B5); 
      } else { 
         // Bit 0 is cleared – output Space state 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 1 
      if(boardID[i] & 0x02) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 2 
      if(boardID[i] & 0x04) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 3 
      if(boardID[i] & 0x08) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 4 
      if(boardID[i] & 0x10) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 5 
      if(boardID[i] & 0x20) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
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      delay_us(409); 
      // Bit 6 
      if(boardID[i] & 0x40) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(409); 
      // Bit 7 -- MSB 
      if(boardID[i] & 0x80) { 
         output_low(PIN_B5); 
      } else { 
         output_high(PIN_B5); 
      } 
      delay_us(417); 
      // Two stop bits 
      output_low(PIN_B5); 
      delay_us(417); 
      output_low(PIN_B5); 
      delay_us(408); 
   } 
 
   // Disable RF 
   output_low(PIN_B4); 
 
} 
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APPENDIX B 
 
 
 
 

PROTOTYPE THREE SOURCE CODE 
 
 
 
 
 list      p=12F675         ; list directive to define processor 
 #include  <p12f675.inc>    ; processor specific variable definitions 
 
 __CONFIG  _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_OFF & 
_INTRC_OSC_NOCLKOUT & _MCLRE_OFF & _CPD_OFF 
 
;**************************************************************************** 
;Defines 
;**************************************************************************** 
 
#define DEV_ID  D'0'  ; Unique device identification number 
#define D_SHORT  D'8'  ; Constants for use in transmit routine 
#define D_EXACT  D'12'  ; bit time delays 
#define D_EXTENDED D'15' 
 
#define BANK0  0x00 
#define BANK1  0x80 
#define TrisConfig B'11101011' ; Initialization values for processor 
#define IntconInit B'10001000' ; configuration registers 
#define ANSELInit  B'01010011' 
#define ADCON0Init B'01000001' 
#define CMCONInit  B'00000111' 
#define _ADEN  D'2'  ; GPIO2 controls thermistor 
#define _TXOUT  D'4'  ; GPIO4 controls transmitter 
 
;**************************************************************************** 
;General Purpose Registers (GPR's)  
;**************************************************************************** 
 
 cblock 0x20 
 WTEMP   ; register used in Interrupt Routine 
 STATUSTEMP  ; register used in Interrupt Routine 
 PCLATHTEMP  ; register used in Interrupt Routine 
 FSRTEMP  ; register used in Interrupt Routine 
 intCount  ; interrupt counts  
 outer   ; outer delay counter 
 inner   ; inner delay counter 
 bufHigh  ; buffer for A/D higher byte 
 bufLow  ; buffer for A/D lower byte 
 bufTransmit  ; buffer for the data byte to be transmitted 
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 idx   ; transmit bit index 
 dev_id  ; device ID register 
 endc 
 
;**************************************************************************** 
;Reset Vector  
;**************************************************************************** 
 
 ORG     0x000     ; processor reset vector 
 nop               ; required by in-circuit debugger   
 goto    Init      ; go to beginning of program 
 
;**************************************************************************** 
;Interrupt Vector      
;**************************************************************************** 
 
 ORG 0x004 
Isr 
 movwf    WTEMP          ;Save off current W register contents 
 movf  STATUS,w 
 clrf  STATUS  ;Force to page 0 
 movwf  STATUSTEMP           
 movf  PCLATH,w 
 movwf  PCLATHTEMP  ;Save PCLATH 
 movf  FSR,w 
 movwf  FSRTEMP  ;Save FSR 
 BANKSEL BANK1 
 
;**************************************************************************** 
;Interrupt Source Checks 
;**************************************************************************** 
 
Timer0InterruptCheck 
 movf INTCON,w 
 andlw 0x20   
 btfsc STATUS,Z  ;Is T0IE Set? 
 goto Next1   ;No 
 movf INTCON,w  ;Yes 
 andlw 0x04  
 btfss STATUS,Z  ;Is TOIF Set? 
 goto Timer0Interrupt ;Yes 
  
Next1 
GPIFInterruptCheck 
 movf INTCON,w 
 andlw 0x08   
 btfsc STATUS,Z  ;Is GPIE Set? 
 goto Next2   ;No 
 movf INTCON,w  ;Yes 
 andlw 0x01  
 btfss STATUS,Z  ;Is GPIF Set? 
 goto GPIFInterrupt ;Yes 
 
Next2 
GP2_INT_ExternalInterruptCheck  
 movf INTCON,w 
 andlw 0x10   
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 btfsc STATUS,Z    ;Is INTE Set? 
 goto Next3     ;No 
 movf INTCON,w    ;Yes 
 andlw 0x02  
 btfss STATUS,Z    ;Is INTF Set? 
 goto GP2_INTExternalInterrupt ;Yes 
  
Next3 
PeripheralInterruptCheck 
 movf INTCON,w 
 andlw 0x40 
 btfsc STATUS,Z  ;Is PEIE Set? 
 goto EndIsr  ;No 
  
Next4 
EEIFInterruptCheck 
 movf PIE1,w 
 andlw 0x80 
 btfsc STATUS,Z  ;Is EEIE Set? 
 goto Next5   ;No 
 BANKSEL BANK0  ;Yes 
 movf PIR1,w 
 BANKSEL BANK1      
 andlw 0x80 
 btfss STATUS,Z  ;Is EEIF Set? 
 goto EEPROMInterrupt ;Yes 
 
Next5 
ADIFInterruptCheck 
 movf PIE1,w 
 andlw 0x40 
 btfsc STATUS,Z   ;Is ADIE Set? 
 goto Next6    ;No 
 BANKSEL BANK0      
 movf PIR1,w 
 BANKSEL BANK1      
 andlw 0x40 
 btfss STATUS,Z   ;Is ADIF Set? 
 goto A_DConverterInterrupt ;Yes  
  
Next6 
CMIFInterruptCheck 
 movf PIE1,w 
 andlw 0x08 
 btfsc STATUS,Z   ;Is CMIE Set? 
 goto Next7    ;No 
 BANKSEL BANK0   ;Yes 
 movf PIR1,w 
 BANKSEL BANK1 
 andlw 0x08 
 btfss STATUS,Z   ;Is CMIF Set? 
 goto ComparatorInterrupt ;Yes 
 
Next7 
TMR1IFInterruptCheck 
 movf PIE1,w 
 andlw 0x01 
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 btfsc STATUS,Z  ;Is TMR1IE Set? 
 goto EndIsr  ;No 
 BANKSEL BANK0  ;Yes 
 movf PIR1,w 
 BANKSEL BANK1 
 andlw 0x01 
 btfss STATUS,Z  ;Is TMR1IF Set? 
 goto Timer1Interrupt ;Yes 
 goto EndIsr  ;No 
 
;**************************************************************************** 
;Interrupt Source Code 
;**************************************************************************** 
  
Timer0Interrupt 
 goto EndIsr 
 
GPIFInterrupt 
 banksel BANK0        
 call DelaySync  ; screen out spurious drop of pin voltage 
 
 btfsc GPIO,0x03  ; Is GP3 high 
 goto EndGPIFInterrupt  ; Do nothing if so 
 
 movf intCount,w  ; Get the device ID number that is  
     ; currently allowed to transmit 
 sublw DEV_ID  ; Check whether the current ID number 
 btfss STATUS,Z  ; matches the device ID 
 goto gpie1   ; Increase the counter and return if not 
 
 call  ReadTemp 
 setc  
 rrf bufHigh,f 
 rrf bufLow,f 
 clrc 
 rrf bufLow,f 
 rrf bufLow,f  
 rrf bufLow,f 
 rrf bufLow,f 
 rrf bufLow,w 
 addwf dev_id,w 
 call  Transmit 
 movf bufHigh,w 
 call Transmit 
 bcf INTCON,3  ; Disable interrupt because the device has  
     ; completed its mission in this cycle 
 
gpie1 
 incf intCount,f 
 btfss intCount,4  ; Restart the count if it is over the device id 
     ; range  
 goto EndGPIFInterrupt 
 clrf intCount 
 bcf INTCON,3  ; Disable interrupt since it is over time 
 
EndGPIFInterrupt 
 movf GPIO,w  ; Clears Mismatch Condition 
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 BANKSEL BANK1        
 bcf INTCON,GPIF       ; Clear Interrupt On Pin Change Flag 
 goto EndIsr 
  
GP2_INTExternalInterrupt 
 goto EndIsr 
  
EEPROMInterrupt  
 goto EndIsr 
  
A_DConverterInterrupt 
 goto EndIsr 
  
ComparatorInterrupt 
 goto EndIsr 
  
Timer1Interrupt 
  
EndIsr 
 clrf STATUS  ;Select Bank 0 
 movf FSRTEMP,w 
 movwf FSR   ;Restore FSR 
 movf PCLATHTEMP,w 
 movwf PCLATH  ;Restore PCLATH 
 movf STATUSTEMP,w 
 movwf STATUS  ;Restore STATUS 
 swapf WTEMP,f      
 swapf WTEMP,w  ;Restore W without corrupting STATUS bits 
 retfie                  ;Return from interrupt  
 
;**************************************************************************** 
;Initialization 
;**************************************************************************** 
 
Init 
 call 0x3FF  ; retrieve factory calibration value 
    ; comment instruction if using simulator, ICD2, or  
    ; ICE2000 
 BANKSEL BANK1 ; BANK1 
 movwf OSCCAL      ; update register with factory cal value  
 movlw TrisConfig ; set direction so that pins 3 and 5 (GP4 and GP2)  
    ; are outputs 
 movwf TRISIO ; all others are inputs (high-z) 
 movlw IntconInit ; configure interrupt control register  
 movwf INTCON ; so that IOC on GP3 is enabled 
 movlw ANSELInit ; configure GP0 and GP1 (A/D Vref) as analog input  
 movwf ANSEL  ; Fosc/16 for A/D clock  
 clrf VRCON  ; comparator Vref off 
 bsf IOCB,3 ; interrupt on pin change for GP3   
 BANKSEL BANK0 ; change back to PORT memory bank 
 movlw CMCONInit ; configure comparator inputs as digital I/O 
 movwf CMCON 
 movlw ADCON0Init ; configure ADCON0 so the output is left justified 
 movwf ADCON0 ; and the voltage reference is Vref 
 
 bcf GPIO,_ADEN ; clear GPIO ports 
 bcf GPIO,_TXOUT ; clear GPIO ports 
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 clrf intCount ; initialize the interrupt counter 
 movlw DEV_ID 
 movwf dev_id ; put the device ID to the dev_id register 
 clrc   ; clear the carrier flag 
 rlf dev_id,1 ; shift the ID to bits 6:3 
 rlf dev_id,1 
 rlf dev_id,1 
 
;**************************************************************************** 
;Main  
;**************************************************************************** 
 
Main 
 bcf GPIO,_TXOUT  ; clear transmit port 
 nop 
 sleep 
 nop 
 goto Main 
 
;**************************************************************************** 
;Subroutines & Functions 
;**************************************************************************** 
 
;********************************************************* 
;ReadTemp subroutine 
;Get data from thermistor to send out async port into w 
;INPUT: none 
;Output: W 
;VARIABLES: idx(counter)  
;*********************************************************  
 
ReadTemp 
  banksel BANK0 
  bsf GPIO,_ADEN ; turn on thermistor 
  call  DelayAD   
  bsf  ADCON0,1 ; turn on A/D 
waitlp: btfsc ADCON0,1 
  goto  waitlp     
  bcf  GPIO,_ADEN  ; turn off thermistor 
 
  movf  ADRESH,0 ; move the higher byte to w register  
  movwf bufHigh ; move the result to buffer 
 
  banksel BANK1 
  movf  ADRESL,0 ; move the lower byte to buffer 
  banksel BANK0 
  movwf bufLow 
 
  return 
 
;**************************************************************************** 
; Transmit  
;**************************************************************************** 
 
Transmit 
  banksel BANK0 
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  movwf bufTransmit   ; Move byte to transmit from w into   
       ; bufTransmit 
  movlw d'9'     ; Need to send 9 bits (not counting stop bit) 
  movwf idx 
  clrc     ; Set the carry ("previous bit") to zero --  
       ; start bit 
  rrf  bufTransmit,1 ; Shift the start bit to the current bit  
       ; position (7) 
 
       ; Transmit start bit '0' 
  btfsc bufTransmit,6 ; This bit is a '0' -- is the next bit a '1'? 
  goto  TxmZero 
  bsf  GPIO,_TXOUT   ; The next bit is a zero -- transmit a '0'  
       ; with exact delay 
  call  DelayExact 
  goto  TxmNext 
 
TxmStart 
  btfsc bufTransmit,7 ; Is the current data bit '0'? 
  goto  TxmOne   ; Goto transmit a '1' 
  btfsc bufTransmit,6 ; This bit is a '0' -- is the next bit a '1'? 
  goto  TxmZero 
  nop 
  bsf  GPIO,_TXOUT   ; The next bit is a zero -- transmit a '0'  
       ; with exact delay 
  call  DelayExact 
  goto  TxmNext 
 
TxmZero        ; The current bit is a 0 and the next is a 1 
       ; There is a delay switching the transmitter  
       ; off -- Compensate by using a smaller delay  
       ; this time and a larger delay the next 
  bsf  GPIO,_TXOUT 
  call  DelayShort 
  goto  TxmNext 
 
TxmOne 
  skpc    ; Was previous bit a zero? 
  goto  TxmOneExtended ; Yes -- needs special processing 
  bcf  GPIO,_TXOUT  ; Transmit a '1' 
  call  DelayExact 
  goto  TxmNext 
 
TxmOneExtended     ; The previous bit was a 0 and this is a 1 
       ; There is a delay switching the transmitter  
       ; off -- Compensate by using a larger delay  
       ; this time (a smaller delay was used last  
       ; time) 
  bcf  GPIO,_TXOUT 
  call  DelayExtended 
  goto  TxmNext 
 
TxmNext 
  rlf   bufTransmit,1  ; current bit -> carry 
  decfsz  idx,1   ; decrease the bit count 
  goto   TxmStart 
  bcf   GPIO,_TXOUT  ; send the stop bit of '1' 
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  call   DelayExact 
  return 
 
;**************************************************************************** 
; DelayShort 
;**************************************************************************** 
 
DelayShort 
 movlw  D_SHORT 
 movwf  inner 
DB0 
 decfsz inner,f ; loop countdown 
 goto  DB0  
 nop 
 nop 
 return 
 
;**************************************************************************** 
; DelayExact 
;**************************************************************************** 
 
DelayExact 
 movlw  D_EXACT 
 movwf  inner 
DB1 
 decfsz inner,f ; loop countdown 
 goto  DB1 
 return 
 
;**************************************************************************** 
; DelayExtended 
;**************************************************************************** 
 
DelayExtended 
 movlw  D_EXTENDED 
 movwf  inner 
DB2 
 decfsz inner,f ; loop countdown 
 goto  DB2 
 return 
 
;**************************************************************************** 
; DelayAD: delay for the hold capacitor in A/D to charge up 
;**************************************************************************** 
 
DelayAD 
 movlw  D'20' 
 movwf  inner 
DBAD 
 decfsz inner,f ; loop countdown 
 goto  DBAD 
 return 
 
;**************************************************************************** 
; DelaySync: delay to make sure it is the synchronization bit 
;**************************************************************************** 
 

 87



 

DelaySync 
 movlw  D'5' 
 movwf  inner 
DS0 
 decfsz inner,f ; loop countdown 
 goto  DS0 
 return 
  
 
 
 END    ; directive 'end of program' 
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