

DESIGNING, FABRICATING AND TESTING CONCURRENTLY ACTIVE
WIRELESS SENSORS

by

David W. Sammel, Jr.

BS, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of

The School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2005

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

David W. Sammel, Jr.

It was defended on

April 5, 2005

and approved by

Ronald G. Hoelzeman, Associate Professor, Department of Electrical and Computer Engineering

Raymond R. Hoare, Assistant Professor, Department of Electrical and Computer Engineering

Thesis Co-Advisor: Marlin H. Mickle, Nickolas A. DeCecco Professor, Department of Electrical
and Computer Engineering

Thesis Co-Advisor: James T. Cain, Professor, Department of Electrical and Computer
Engineering

 ii

DESIGNING, FABRICATING AND TESTING CONCURRENTLY ACTIVE
WIRELESS SENSORS

David W. Sammel, Jr., MS

University of Pittsburgh, 2005

 There are many possible uses for remotely powered environmental sensing devices. The

University of Pittsburgh has obtained a subcontract to assist in the first development phase of

one such device for NASA, a wireless temperature sensor that could ultimately be used to

measure the temperature of panels on their spacecraft. This thesis describes the work that has

been done to completely meet the project specifications set forth in the subcontract, with

particular emphasis being given to the contributions made by the author. In addition to the

remote sensor board hardware and software, an embedded protocol is developed that can allow

hundreds of these devices to transmit their temperature readings over a single communications

channel (amplitude shift keying at 418 MHz) without interference or the need for an on-board

receiver. Laboratory testing results that verify the proper operation of the final prototype are

included.

 iii

TABLE OF CONTENTS

PREFACE.. ix

1.0 INTRODUCTION .. 1

2.0 PROBLEM STATEMENT... 4

3.0 PROTOTYPES ZERO AND ONE... 6

4.0 PROTOTYPE TWO ... 8

4.1 HARDWARE ... 9

4.2 SOFTWARE... 15

4.3 RESULTS ... 21

4.3.1 Prototype Two Demonstration.. 21

4.3.2 Power Consumption Data ... 23

4.3.3 Prototype Two Summary .. 26

5.0 PROTOTYPE THREE.. 27

5.1 HARDWARE ... 27

5.2 ANTENNA IMPEDANCE MATCHING .. 32

5.2.1 Initial Impedance Matching Tests... 32

5.2.2 Impedance Matching for the Remaining Boards .. 38

6.0 COMMUNICATIONS ... 43

6.1 EXISTING PROTOCOL.. 43

6.2 DATA RATE IMPROVEMENT.. 46

 iv

6.3 READ CYCLE TIMING .. 49

7.0 SOFTWARE... 58

7.1 GENERAL ARS BOARD SOFTWARE ... 58

7.2 TRANSMIT ROUTINE.. 59

7.3 BASE STATION SOFTWARE.. 63

8.0 RESULTS ... 66

8.1 DEMONSTRATION SETUP... 66

8.2 INTERPRETATION OF A/D CONVERTER READINGS .. 69

8.3 PROTOTYPE THREE DEMONSTRATION .. 70

9.0 CONCLUSIONS... 74

9.1 FUTURE CONSIDERATIONS ... 75

APPENDIX A. PROTOTYPE TWO SOURCE CODE.. 77

APPENDIX B. PROTOTYPE THREE SOURCE CODE .. 80

BIBLIOGRAPHY... 89

 v

LIST OF TABLES

Table 4.1 Circuit Power Consumption Measurements ... 24

Table 5.1 Impedance Matching Measurements .. 35

Table 5.2 Additional Measurements with L1 = 27 nH.. 37

Table 5.3 Impedance Matching Results.. 42

Table 6.1 ARS Board Charging Times at Various Distances... 55

Table 7.1 Base Station Software Delays... 64

 vi

LIST OF FIGURES

Figure 3.1 Fabricated Prototype Zero Board .. 7

Figure 3.2 Fabricated Prototype One Board with Dimensions Indicated 7

Figure 4.1 Prototype Two Hardware Schematic... 10

Figure 4.2 PLL Filter Spreadsheet (Included with Microchip AN846)...................................... 12

Figure 4.3 Prototype Two PCB Layout .. 13

Figure 4.4 Fabricated Prototype Two Board... 14

Figure 4.5 rfPICTest.c Source Code ... 16

Figure 4.6 Prototype Two Software Pseudocode.. 18

Figure 4.7 RF Transmitting for Loop ... 20

Figure 4.8 Prototype Two Demonstration Setup .. 22

Figure 4.9 ProComm Screen Capture from Prototype Two Demonstration............................... 22

Figure 4.10 Power Test Source Code ... 23

Figure 5.1 Prototype Three Hardware Schematic... 30

Figure 5.2 Prototype Three PCB Layout .. 31

Figure 5.3 Fabricated Prototype Three Board... 31

Figure 5.4 ARS Board Equivalent Circuitry... 33

Figure 5.5 Impedance Matching Smith Chart... 36

Figure 6.1 Initial Non-Interference Protocol Timing.. 44

Figure 6.2 Generic Read Cycle Timing, Ten Time Slots ... 50

 vii

Figure 6.3 Voltage Consumption During Sync Pulses ... 52

Figure 6.4 ARS Board Energy Harvesting and Sync Pulse Circuitry... 55

Figure 7.1 Updated PIC GPIO Pinouts ... 59

Figure 7.2 ARS Board Pseudocode .. 60

Figure 7.3 Transmit Routine Flowchart.. 61

Figure 7.4 Base Station Pseudocode... 64

Figure 7.5 Final Non-Interference Protocol Timing ... 65

Figure 8.1 ARS Boards and Base Station Antenna... 67

Figure 8.2 Temperature Data Framing.. 67

Figure 8.3 PC Receiver Program Pseudocode .. 68

Figure 8.4 Relationship Between A/D Converter Readings and Temperature........................... 70

Figure 8.5 Demonstration MATLAB Screen Capture.. 72

Figure 8.6 Oscilloscope Capture for Read Cycle Timing Verification 73

 viii

PREFACE

 I would like to extend a special thanks to Dr. Marlin H. Mickle and Dr. James T. Cain for

their valuable guidance during my thesis work and educational career at the University of

Pittsburgh. Also, thanks to Dr. Minhong Mi for the generous assistance he provided when I was

beginning my work.

 ix

1.0 INTRODUCTION

 Electronic devices have long been used to monitor environmental conditions.

Traditionally, many of these devices, such as video cameras, microphones and thermostats, have

been physically wired to their power supplies or equipped with batteries. What if certain

environmental sensors could be powered wirelessly from a radio frequency (RF) source? While

having an RF-powered camcorder might not be very useful, certain sensing devices and

applications could benefit tremendously by employing energy harvesting technology like that

developed at the University of Pittsburgh [1].

 Wireless sensing technology could be particularly beneficial when large numbers of

sensors are to be used together. Perhaps many devices are spread over a physical area to obtain a

spatial profile of some environmental quantity. Considering that a large number of devices are in

use, it would not be best to hardwire their power connections. This could lead to a great amount

of wiring (hence increased cost and construction time) and the possibility of a cable malfunction

disabling one or more sensors. Using batteries is not desirable because they tend to be very large

physically compared to the size of modern electronics. Therefore, a battery could be the feature

that limits the minimum size of each sensor. Furthermore, changing the batteries could be

difficult or impossible if the sensors were to be embedded inside an area or material. Powering

the sensors wirelessly would be the most flexible implementation. The remote devices could be

placed anywhere within range of the RF energy source (which could be mobile itself) and could

even be permanently embedded within a structure.

 1

 The sensor network would be even more robust if the sensor devices were to return their

environmental readings via a wireless medium as well. Again, this eliminates the chance of a

wire failure causing readings to be lost, and reduces the physical complexity of the network as a

whole. A very small, completely wireless sensor device would have the flexibility to be placed

practically anywhere so long as RF signals could be transmitted to and from it.

 One issue that arises when networking this type of device is that of access control.

Consider that two dedicated frequency channels are available, one for powering the sensor

devices and one for the transmission of the environmental readings (the data channel). When

several devices are powered simultaneously by the RF energy source, how will they synchronize

their outgoing data transmissions such that they do not interfere with one another? One solution

is to equip each device with a receiver for the data channel and use a carrier-detect scheme to

determine when it is free. The drawback to using this approach is that the receiver circuitry will

consume space and power on the device. An alternative solution to this problem is to assign

each device a unique time slot during which it must transmit. This eliminates the interference

concern as long as each device maintains an accurate count of the current time slot number. In

addition to removing the need for a data channel receiver, this simple access protocol would also

have a very straightforward software implementation. However, a method must still be devised

to synchronize the start of each time slot across multiple sensors.

 This thesis describes my contributions to the development of a prototype for a completely

wireless temperature sensing device. NASA identified the need for wireless temperature sensors

that could be used to measure the temperature of panels on their spacecraft. These sensors would

need to be powered by a remote energy source and also transmit their temperature readings

 2

wirelessly. Also, a non-interference protocol like those described above must be used to prevent

multiple sensors from simultaneously transmitting on the data channel.

 Gnostic Communications was one of the participating groups in the first development

phase of this device. A subcontract to perform part of the Phase I development was given to Dr.

Marlin H. Mickle and Dr. James T. Cain at the University of Pittsburgh. My responsibility was

the design of the testing and optimization methodology and analysis for optimization of the

power consumption and communication protocols of the remote temperature sensing device.

 3

2.0 PROBLEM STATEMENT

 The goal of my research was to optimize the energy harvesting, power consumption,

communication protocols and the mutual interactions of the NASA specified temperature sensing

device. Through my research, I developed a fully operational device to satisfy the requirements.

The design and development criteria are presented in this chapter.

 The first criterion dealt with physical aspects of the sensor board. Existing remote sensor

devices developed at the University had a form factor of 1.7” by 3.2”. The final device for

NASA must have a form factor of at most 1” by 2”. Although I was not responsible for making

the initial reduction in form factor to meet this requirement, it was necessary to maintain a

minimal board size when making various updates to the final device PCB layout. The

specifications were that surface mount integrated circuits and discrete components must be used

on the board instead of the “through the hole” type components used in previously developed

devices.

 An embedded non-interference protocol must be developed and fully implemented in

software. This protocol must be easily extendable to allow communication with hundreds of

sensors even though a small set (10) will be used in this development phase. No specification

with respect to approach was given, but the possibility exists of assigning each device a unique

identification number and using delays for time division multiplexing based on these

identification numbers to create a time-slotted protocol. This approach will be used. A different

 4

mechanism had been originally developed by Minhong Mi that can be further refined to be

employed in the final device.

 At least 10 sensor boards must be demonstrated in a laboratory setting to test the non-

interference protocol while reporting (communicating) valid temperature readings. These

devices must be read (that is, they must all obtain and transmit temperature readings) in one tenth

of a second while adhering to the inherent protocol. This is the primary constraint on the

protocol design to guarantee that multiple boards do not transmit simultaneously.

 The minimum Baud rate for data channel transmissions is specified as 2,400 bits per

second. Each device will send a maximum of a 24-bit frame consisting of an identification

number and temperature reading. An analysis will be conducted to determine the amount of

overhead necessary for powering and synchronizing the sensor devices.

 Multiple prototypes will need to be developed to test and meet all specifications.

Successive prototypes should improve upon the previous ones and be thoroughly tested to

evaluate techniques or components to be used in the final system. The remaining chapters in this

document report the research and results for the major prototypes with particular emphasis on my

contributions.

 5

3.0 PROTOTYPES ZERO AND ONE

 Two older prototypes (termed zero and one) for this device were available at the start of

my research. Background information on prototypes zero and one is presented here to provide a

basis for how the subsequent prototypes evolved.

 Prototype zero was an older active remote sensor (ARS) device. This first prototype

performed the most basic functionality stated in the project specifications. Its primary purpose

was to obtain a temperature reading and transmit it to a 418 MHz receiver, which is the core

behavior required in the final prototype. However, this device functioned only as a single device

– multiple boards could not be powered simultaneously because an embedded non-interference

protocol was not employed. Prototype zero was implemented on a 1.7” by 3.2” printed circuit

board and contained three separate integrated circuits – a 418 MHz transmitter, microcontroller

and analog to digital converter used to sample the voltage across a thermistor [2]. A fabricated

prototype zero board is shown in Figure 3.1.

 Prototype one improved on device zero by combining these three integrated circuits into

a single package. The Microchip rfPIC12F675K microcontroller contains a 418 MHz transmitter

and A/D converter and thus was an ideal choice for use on this prototype. Combining this

circuitry allowed for a significant reduction in PCB size. Prototype one met the project size

specifications of a 1” by 2” device form factor (Figure 3.2). The problem with prototype one

was that it operated only within a few inches of the 915 MHz energy source. This was due to

increased power consumption of the single chip compared to prototype zero [2].

 6

 With these two devices, the groundwork was laid for prototype two. Prototype two will

explore a simple non-interference protocol that could be used to allow multiple simultaneously

powered devices to transmit data without interference. It would also be used to examine the

power consumption of another combined microcontroller/transmitter device, the

rfPIC12C509AG.

Figure 3.1 Fabricated Prototype Zero Board

Figure 3.2 Fabricated Prototype One Board with Dimensions Indicated

 7

4.0 PROTOTYPE TWO

 The purpose of the development of prototype two was twofold. First, the prototype two

devices employed a non-interference protocol as required by the project specifications. The

successful completion of prototype two would provide a “proof of concept” for a simple

protocol. Second, the design, fabrication and testing of these devices provided an invaluable

opportunity to analyze the device operation that proved to be necessary when developing future

prototypes.

 The requirements for this prototype were very straightforward. The device must be

capable of transmitting a 96-bit identification number when power is applied. Although the

value of the 96-bit number is not significant here, it could practically represent a variety of useful

data, including temperature readings and bar codes. The method of modulation is amplitude shift

keying at a carrier frequency of 418 MHz. A simple non-interference protocol must be used to

allow several of these devices, when powered simultaneously, to transmit their identification

numbers without interfering with one another. The prototype two devices were to be powered

initially by wire connections to a standard supply. Although low-power design was not a

primary consideration for this prototype, a power analysis could then be performed after the

devices were fabricated to determine if wireless operation is possible.

 The prototype two devices do not have 418 MHz receivers that would allow for a carrier

sensing non-interference protocol. Therefore, another method had been used to ensure a free

channel. The simple protocol used for this prototype is as follows. The amount of time ∆t

 8

required to transmit the 96-bit tag ID is determined, and each tag is programmed with a unique

“slot number” s, where s is an integer greater than or equal to 0. Each tag waits for s(∆t) time

before transmitting, which prevents two tags from transmitting simultaneously. While this

protocol is certainly effective, it does require that all devices be powered simultaneously so that

each of the s(∆t) delays begin at roughly the same time. The possibility for interference exists if

any devices power up slightly earlier or later than the rest. This suggests that the protocol might

not be suited for a wireless application where multiple distributed devices are powered by a

single base station. The varying distances of these devices from the base station could lead to

closer devices being powered more quickly than distant ones, hence violating the simultaneous

powering requirement of the protocol.

4.1 HARDWARE

 The hardware design for prototype two was based on those of the previous prototypes.

The circuit schematic is shown in Figure 4.1. The transmitting antenna design was used without

modification. After careful analysis, a different microcontroller was used for this prototype. The

Microchip rfPIC12C509AG was chosen for this device because it contains a built-in RF

transmitter that uses amplitude shift keying modulation [3]. This simplifies the overall design by

removing the need for a separate transmitter IC. Also, a complete suite of tools necessary for

PIC software development and programming were readily available.

 9

Figure 4.1 Prototype Two Hardware Schematic

 10

 For the rfPIC12C509AG, the frequency of the built-in RF transmitter is set by an

oscillator external to the microcontroller. To achieve a transmit frequency of 418 MHz, the

frequency of the oscillator was selected to be 418 MHz / 32 = 13.0625 MHz as specified in the

microcontroller datasheet. The crystal used for this project was manufactured by ECS, Inc.

International (part number ECS-130.625-CD-0373) [4].

A phase-locked loop (PLL) filter is also required for the internal RF transmitter. The

filter design is specified in the microcontroller datasheet, but the end user must choose the

component values. Microchip Application Note AN846, “Basic PLL Filters for the rfPIC™ /

rfHCS [5],” describes the functionality of the loop filter in detail and explains how to choose

appropriate component values using an accompanying Microsoft Excel spreadsheet. The

application note states that, “For most designs, the three loop filter components can be quickly

found with the spreadsheet calculator [5].” The top portion of Figure 4.2 shows the ideal filter

calculations provided by the spreadsheet for a transmit frequency of 418 MHz, including the best

values for C1, C2 and R1 (125 pF, 17 pF, 3508 Ω). These values were not readily available, so

similar components were chosen for the loop filter (100 pF, 22 pF, 3300 Ω). The bottom portion

lists the actual filter parameters given these modified component values. It can be seen that the

actual parameters are very close to the ideal calculations, and the actual phase margin is right

around the desired value of 50 degrees. The actual loop bandwidth parameter is more important

in designs requiring FCC approval because it impacts the amount of RF noise that is transmitted

outside of the carrier frequency (418 MHz). For this prototype, remaining close to the default

bandwidth of 1 MHz is acceptable. Therefore, the component values chosen are satisfactory for

the PLL filter.

 11

Figure 4.2 PLL Filter Spreadsheet (Included with Microchip AN846)

 12

The energy harvesting and in-circuit programming circuits present in the schematic were

taken directly from the existing prototype design. Again, energy harvesting (wireless operation)

was not intended to be used initially, but the circuitry was included in the design for future use.

It was later found that in-circuit programming would not be needed for prototype two because a

UV-erasable DIP version of the rfPIC12C509AG was available.

 Figure 4.3 shows the ExpressPCB printed circuit board layout created for prototype two,

and a fabricated PCB is depicted in Figure 4.4. Silkscreen component labels on the PCB layout

correspond to labels in the hardware schematic. As with the circuit design, the energy harvesting

and transmitting antenna portions of the PCB layout were taken from the existing prototype PCB

layout. The remainder of the board design was custom made for this prototype to accommodate

the rfPIC12C509AG and peripheral circuitry.

Figure 4.3 Prototype Two PCB Layout

 13

Figure 4.4 Fabricated Prototype Two Board

 The energy harvesting and transmitting antenna components on the PCB layout are

primarily surface mount components, while several other components are of the through-hole

type. The through-hole components were used because they would be easier to solder for this

early stage device than surface mount components. Other than the soldering concerns, there is

no particular reason for why some components are through-hole and others surface mount. One

notable exception is that the UV-erasable rfPIC12C509AG device used was only available in a

DIP package. An 18-pin DIP socket was used to allow the PIC chip to be easily swapped on and

off the board. This allowed for quicker reprogramming of the microcontroller during software

testing than if the IC had to be repeatedly soldered and desoldered.

 14

 A power supply may be connected to the circuit by soldering a wire in the via directly

above the microcontroller and attaching the positive voltage lead to that wire. The ground lead

may be connected to a number of points on the top surface of the board or the ground plane on

the bottom side. If the energy harvesting circuitry is to be used to power the board, a jumper

wire must be soldered below the programming port on the left side of the board.

4.2 SOFTWARE

 The software for prototype two was written in C because it is slightly easier to initially

write than assembly language (shorter learning curve) for the new Microchip PICs. The Custom

Computer Services, Inc. PCB compiler was used for this purpose [6]. PCB compiler version

3.137 was used, which supports the rfPIC12C509AG (use include file “12C509AG.h” in the

compiler “devices” folder). The compiler generates a HEX output file that is used to program

the microcontroller. The HEX file may be imported into Microchip’s MPLAB IDE, which

communicates with a PICSTART Plus programmer to perform the actual programming

operation.

 To quickly test if a newly fabricated prototype two board is working properly, the

following simple C program was devised as a testing program. When the program is executed, a

1 Hz square wave is transmitted by the device. Many parts of the hardware must be functioning

correctly for the 1 Hz square wave to be detected at a 418 MHz receiver, including the

microcontroller, external oscillator, PLL filter and transmitting antenna. If the test program does

not run successfully (i.e., a 1 Hz square wave is not received), then other debugging methods

may be used to isolate the source of the problem.

 15

#include <12C509AG.h>
#fuses INTRC,NOWDT,NOPROTECT,NOMCLR
#use delay(clock=4000000)

// Internal 4 MHz RC Oscillator Calibration
#rom 1023 = {0xC6C}

main() {

 // Enable RF
 output_high(PIN_B4);

 // Output 1 Hz square wave
 while (TRUE) {
 output_high(PIN_B5);
 delay_ms(500);
 output_low(PIN_B5);
 delay_ms(500);
 }

}

Figure 4.5 rfPICTest.c Source Code

 First, notice that 12C509AG.h is included, which allows a number of defined constants to

be used in the program (e.g., PIN_B4, PIN_B5). The #fuses pre-processor directive specifies

various configuration options for the microcontroller. INTRC indicates that the

microcontroller’s internal 4 MHz RC oscillator is to be used as its clock source. NOWDT and

NOPROTECT disable the watchdog timer and code protection features available on the

rfPIC12C509AG, respectively. NOMCLR disables the master clear pin (it is tied to the supply

voltage internally). This is acceptable because external reset functionality does not need to be

supported for this application.

 The parameter of the “#use delay” directive is the speed of the processor in Hz

(4,000,000 since the internal RC oscillator is being used). This value must be specified if the

 16

delay_ms() function is to be used in the program because it states the relationship between

instruction cycles and time.

 When using the rfPIC12C509AG internal RC oscillator, the pre-programmed calibration

value shipped with the microcontroller should be written to the topmost memory location [3].

The calibration value is erased when the device is erased, so this value must be recorded before

the device is erased for the first time and written back to memory location 1,023 each time the

device is programmed. The #rom directive accomplishes this. Note that the calibration value

0xC6C is specific to one of the microcontrollers used on a prototype two board; using a different

part will require the use of a different calibration value.

 Considering the main program, pin 3 (GP4) is tied to the RFENIN pin on the PCB, so

driving this pin high enables the RF transmitter in the microcontroller. Pin 2 (GP5) is tied to

PS/DATAASK, so toggling the state of this output every half-second results in a 1 Hz square

wave being transmitted.

 The actual prototype two source code is much longer than that of the test program, so it

has been included in Appendix A of this thesis. Please reference this code if necessary while

reading the description in the following paragraphs. A pseudocode description of the software is

provided in Figure 4.6. This software is used to program each board in order that it waits for its

unique time slot and then transmits a 96-bit identification code.

 The identification code chosen for each board is, “Board x ID”, where x is the number of

the board. This ID code will ultimately be sent to a PC, where it will be displayed in a terminal

window as ASCII characters. To make the display easy to read, after the characters “Board x

ID” are transmitted, a carriage return and line feed are transmitted as well. Therefore, a total of

 17

main() {
 // The board identification number (BOARD) is obtained from a command line
 argument when the software is compiled

 // Setup the 96-bit board identification code
 boardID[13] = “Board ID”; // A space is left for the identification number
 boardID[6] = BOARD; // The ID number is inserted into the ID code
 boardID[10] = Carriage Return; // CR and LF are for terminal program display
 boardID[11] = Line Feed; // purposes and to bring the total ID code length to
 boardID[12] = NULL; // 96 bits per the prototype two specifications

 Output RF enable signal to turn transmitter on

 // Call delay_ms() function to wait for the correct time slot
 // The length of the delay depends on the unique board identification number (BOARD)
 // which is an integer ≥ 1
 // Each time slot is 56 ms wide
 // Include a 2 ms startup time to make sure that the transmitter on the first board is ready
 // before the first time slot begins
 delay_ms(2 + (56 * (BOARD - 1)));

 // When this point is reached, the delay_ms() function has returned and it is time to
 // transmit the 96-bit board identification code using the RS-232 type format
 // The following for loop iterates once per transmitted ASCII character (see Figure 4.7)
 for(int i = 0; i < 12; i++) {
 Character to transmit is boardID[i]
 Output start bit, 8 data bits and 2 stop bits at 2400 Baud
 }

 Disable RF enable signal to turn transmitter off
}

Figure 4.6 Prototype Two Software Pseudocode

twelve 8-bit ASCII characters are transmitted as the identification code, for a total length of 96

data bits. The protocol used for the data transmission is the RS-232 type format, with 8 data bits,

no parity bit and two stop bits. The total number of bits that must be transmitted, including

classical RS-232 overhead bits, is calculated as:

 18

12 ASCII characters x (1 start bit + 8 data bits + 2 stop bits) / ASCII character

= 12 x 11 = 132 total bits

 A Baud rate of 2,400 was chosen for the initial communication protocol because it is one

of the specifications for the final prototype. Given this rate and the total number of bits to be

transmitted, the length of each time slot ∆t may be determined as follows:

∆t = 132 bits x (1 second / 2,400 bits) = 55 ms

 Considering slight differences in board clock rates, startup times, etc., an additional

millisecond of time is arbitrarily added to each slot as extra padding to assure that the end of one

transmission does not overlap with the start of the next. Therefore, the slot time used for the

prototype two non-interference protocol is 56 ms.

 The software listing in Appendix A contains step-by-step comments that explain the

functionality of the program. The following is a brief discussion of how the delay times in the

RF transmitting for loop were calculated (Figure 4.7). At 2,400 Baud, the bit time is 1 / 2,400 =

416⅔ µs. Delays in the rfPIC12C509AG have a resolution of 1 µs, so the bit time is rounded to

417 µs. However, a delay of 417 µs between the transmission of each bit is not correct because

some time is used processing instructions between the calls of delay_us(). By analyzing the

assembly language code generated by compiling the source code, it was determined that this

delay is approximately 8 µs. This explains the calls of delay_us(409) in the RF transmitting loop

between each bit transmission. Also, due to the time required for branching from the bottom to

the top of the loop (approximately 9 µs), the final delay_us() call has an argument of 408 µs.

 19

 for(i = 0; i < 12; i++) {
 // Mark to space transition - start bit
 output_high(PIN_B5);
 delay_us(409); // 417 - 8
 // Output eight data bits, no parity
 // Output low = Mark state = Logic "1"
 // Output high = Space state = Logic "0"
 // Bit 0 – LSB
 if(boardID[i] & 0x01) {
 // Bit 0 is set – output Mark state
 output_low(PIN_B5);
 } else {
 // Bit 0 is cleared – output Space state
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 1
 if(boardID[i] & 0x02) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 2
 if(boardID[i] & 0x04) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 3
 if(boardID[i] & 0x08) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }

 delay_us(409);
 // Bit 4
 if(boardID[i] & 0x10) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 5
 if(boardID[i] & 0x20) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 6
 if(boardID[i] & 0x40) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 7 – MSB
 if(boardID[i] & 0x80) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(417);
 // Two stop bits
 output_low(PIN_B5);
 delay_us(417);
 output_low(PIN_B5);
 delay_us(408);
 }

Figure 4.7 RF Transmitting for Loop

 20

4.3 RESULTS

4.3.1 Prototype Two Demonstration

 The demo system created to test the prototype two design consists of four boards. Each

board receives a unique #BOARD command line parameter (1, 2, 3 or 4) when its software

(listed in Appendix A) is compiled. This command line parameter is the value of x that will be

used for the identification code “Board x ID”. Viewed another way, the value of x is also the

number of the board’s unique time slot. This value is hard-coded into the microcontroller

memory when the software is downloaded.

 All four boards are connected to the same power supply as shown in Figure 4.8. When

the power supply is turned on, the four tags begin processing their software simultaneously, and

each waits for the appropriate time slot before transmitting its ID code. Again, the data are

transmitted using amplitude shift keying at a frequency of 418 MHz. A simple 418 MHz

receiver accepts the ASK RF signal and converts it to a voltage waveform using standard RS-232

voltage levels. This voltage signal is sent to a PC over a DB9 serial cable, and a terminal

program on the computer (ProComm by Datastorm Technologies, Inc.) displays the received

ASCII characters on the screen as shown in Figure 4.9. All four ID codes are successfully

received.

 This result illustrates that the requirements for prototype two have been met. Each device

has transmitted a 96-bit ID code using ASK at a carrier frequency of 418 MHz. It can be seen

from Figure 4.9 that the non-interference protocol used for prototype two allows the four ID

codes to be received without corruption while the devices are powered simultaneously, thereby at

least demonstrating a “proof of concept” for this simple protocol.

 21

Figure 4.8 Prototype Two Demonstration Setup

Figure 4.9 ProComm Screen Capture from Prototype Two Demonstration

 22

4.3.2 Power Consumption Data

 Although the prototype two boards are “wired” devices, the final prototype requires fully

wireless temperature sensing boards. As mentioned previously, the prototype two devices have

energy harvesting circuitry onboard that may be used instead of a wired power supply. Using the

energy harvesting circuitry was a secondary goal for this prototype. Therefore, it was decided

that once a working demonstration had been completed, a power analysis would be performed to

determine if energy harvesting would supply enough power to operate the prototype two boards.

 A simple C program was used to determine the maximum power consumption of the

prototype two boards (Figure 4.10). This program causes the RF transmitter to continuously

transmit while an infinite loop prevents the processor from entering a low-power sleep mode.

#include <12C509AG.h>
#fuses INTRC,NOWDT,NOPROTECT,NOMCLR
#use delay(clock=4000000)

// Internal 4 MHz RC Oscillator Calibration
#rom 1023 = {0xC6C}

main() {

 int i = 0;

 // Enable RF
 output_high(PIN_B4);
 // Continuously transmit
 output_high(PIN_B5);
 // Prevent PIC from going to sleep
 while(TRUE) {
 i = i + 1;
 }

}

Figure 4.10 Power Test Source Code

 23

Referring back to Figure 4.1, note that the schematic shows microcontroller pin 2 (GP5)

connected directly to the RF transmitter data input (pin 7, PS/DATAASK). Because the logic

“1” output voltage on pin 2 is greater than 2.0V, the transmitter operates at its maximum output

power (see Table 7-5 in [3]). The maximum output power was used during device testing, and

the four board demonstration, because transmitter power consumption was not a concern for

prototype two.

The design would need to be modified and a simple voltage divider circuit added to allow

other transmitter output powers to be selected. A board was modified in this way and used to

obtain the circuit power consumption measurements presented in this section. Power

measurements were made using all six discrete transmitter output powers (see Table 7-5 in [3]).

The resulting measurements are provided in Table 4.1. As a baseline, one measurement was also

made while the RF transmitter was disabled and the processor was not in SLEEP mode.

Table 4.1 Circuit Power Consumption Measurements

* These values are specified in [3] and were not measured during the power test.

 24

 When examining the power measurements, please note that the values in the Transmitter

Output Power, Power Select Voltage and Transmitter Operating Current columns were not

actually measured during the power test – rather, these values are taken from the microcontroller

datasheet.

 As shown in Table 4.1, the supply voltage for all of the power measurements is 3.000 V.

The power consumption values in Table 4.1 are large enough to indicate that this circuit will not

run on power from energy harvesting (approximately 10 mW of power consumption or less

would be required). The minimum supply voltages for the microcontroller and RF transmitter

are 2.5 V and 2.1 V, respectively [3]. A test was run to get an indication of the circuit power

consumption at the minimum supply voltage. Using a supply voltage of 2.500 V and a measured

power select voltage of 2.445 V (maximum transmitter output power), 16 mA of current is drawn

from the power supply, yielding a circuit power consumption of 40 mW. This value is not

drastically different from the power consumption at a 3.000 V supply voltage (48 mW). This

leads to the conclusion that it is unlikely that reducing the supply voltage to 2.5 V will allow the

board to be powered by energy harvesting.

 By examining the transmitter operating current values in Table 4.1, which are taken

directly from the rfPIC12C509AG datasheet, it can be seen that the internal transmitter simply

seems to draw too much current (several mA) to be powered by the type of energy harvesting

circuitry present on the prototype two boards. Therefore, the rfPIC12C509AG will not be a good

candidate for the final prototype microcontroller.

 25

4.3.3 Prototype Two Summary

 As stated in the introduction to the prototype two section of this thesis, there were two

motivations for the development of this prototype. The first was to show that the simple non-

interference protocol that was introduced would indeed work, which has been confirmed here by

the demonstration results. The second was to gain insight that would be particularly vital for

completing the final prototype. This goal was satisfied.

 26

5.0 PROTOTYPE THREE

 The development work on prototype three (the final prototype) immediately followed the

completion of prototype two. One of the first steps was to set up the existing ARS boards and

test them. This would allow for the testing of any software modifications that needed to be

made. Significant time was spent examining the hardware schematic to understand in detail how

each portion of the circuitry worked. Also, the assembly language code was carefully analyzed

to have a firm understanding of the entire program.

 With this work completed, the stage was set to begin the work with prototype three.

5.1 HARDWARE

 As mentioned previously, the initial hardware design for prototype three was created as

an extension of prototypes zero and one. The hardware design had been worked on extensively.

However, a number of changes to the PCB layout were needed compared to the latest hardware

design.

 On prototype three, a voltage divider circuit is used to indirectly measure the resistance

of the thermistor and, hence, the temperature. The supply voltage for the voltage divider is

output on a microcontroller general purpose I/O pin, which allows the voltage divider circuit to

be enabled in software only when a temperature reading is to be performed (this is a low-power

consideration). Previously, the microcontroller supply voltage had been used as the A/D

 27

converter reference. This is not the correct choice for the reference voltage because the supply

voltage for the temperature sensing circuit is that which is output from the I/O pin, not the

microcontroller supply voltage, and these may differ. Therefore, the voltage output from the I/O

pin should be used as the A/D converter reference voltage. A specific microcontroller pin is

reserved for inputting an A/D converter reference, but it had already been used to control the 418

MHz transmitter in the existing hardware schematic. Because another general purpose I/O pin

was free, the transmitter enable signal was connected to the free pin and the voltage divider

supply connected to the A/D converter reference input. A software update was written because

this change involved modifying the pinout of the microcontroller.

 For the PCB modifications, I first identified a pull-up resistor that was present on the

hardware schematic but not on the PCB and added it. Also, I had learned from previous testing

that connecting an oscilloscope probe to the board in a consistent manner was absolutely

necessary for obtaining repeatable voltage measurements. Measurements of the ARS board

supply voltage are often important; therefore, I added a through-hole pad that is connected to

Vdd. A small wire can be soldered here, providing a location at which an oscilloscope probe can

be easily and consistently attached for supply voltage measurements. A similar designated

location for the oscilloscope ground is not needed because the entire bottom side of the ARS

board is a ground plane. Finally, the footprint for a surface mount switch was added that would

allow either Vdd or ground to be connected to one of the general purpose I/O pins on the

microcontroller. I chose to add this capability because it has many possible uses, including

enabling/disabling in-circuit programming of the PIC. With the existing printed circuit board

design, a small wire needed to be removed from the board whenever reprogramming was

necessary. Not only was this inconvenient, but it wasted a significant amount of time when

 28

small software changes needed to be quickly tested. Also, the repeated soldering and

desoldering of the wire could eventually cause damage to the board, such as the metal pads

lifting off.

 The final hardware schematic for prototype three is shown in Figure 5.1, and Figure 5.2

shows the updated printed circuit board layout. When working on the layout, special attention

was given to keep the total area of the board to a minimum. This is important because the

project specifications state that the total size can be no larger than 1” by 2”, and certainly an even

smaller size would be desirable. The initial PCB layout had a size of 0.864” by 1.656”, and the

updated layout of Figure 5.2 is nearly the same size (0.864” by 1.654”).

 Once the PCB layout had been updated, an order was placed with ExpressPCB for a total

of four printed circuit boards, each of which contained four ARS boards. A band saw was used

to cut the boards apart and their rough edges were sanded. The next task was to fabricate the

boards by soldering the numerous surface mount components onto them by hand. A fabricated

prototype three board is shown in Figure 5.3.

 Although the SAW resonator component was hand soldered onto the first ARS board, a

reflow soldering machine was used to attach these parts to the remaining boards. The resonator

package is designed such that reflow soldering is the easiest and most reliable way to obtain a

good connection to the board.

 The final components that would need to be added to the ARS boards were the inductor

and capacitor for the antenna impedance matching.

 29

Figure 5.1 Prototype Three Hardware Schematic

 30

Figure 5.2 Prototype Three PCB Layout

Figure 5.3 Fabricated Prototype Three Board

 31

5.2 ANTENNA IMPEDANCE MATCHING

5.2.1 Initial Impedance Matching Tests

 Once the prototype three boards were fabricated, the impedance matching between their

antennas and the energy harvesting circuitry was performed. The maximum amount of power

may be transferred from the energy harvesting antenna to the storage circuitry by striving to

obtain the best impedance matching possible. However, the impedance of the antenna cannot be

measured in a straightforward manner due to a number of factors, including the fact that the

antenna is physically much smaller than the 915 MHz wavelength (~1 foot) [7]. Therefore, the

process described in “Annealing Approach to the Impedance Matching of Antennas for RFID

Tags [7]” was used to determine the appropriate impedance matching components.

 Before the matching process could begin, some preparation was needed in the lab. First,

one of the ARS boards was modified such that two standard header pins protruded from the back

of the board. These pins were soldered to the board voltage supply (Vdd) and ground, and would

be used to connect the ARS board power supply to a separate measurement PCB. This PCB

contains an analog-to-digital converter that converts the voltage input to a digital value and sends

it over an infrared link to the “Virtual Power Meter” MATLAB software running on a PC. The

voltage measurement board and MATLAB software were previously created at the University

for this application.

 As part of the impedance matching process, it is necessary to estimate the impedance

looking into the ARS board just past the antenna (ZRct in Figure 5.4, which is taken directly from

[7]). Minhong Mi had previously developed a small PCB that is used for this purpose. A value

for the load resistor RL, which represents the circuitry on the actual ARS board, is needed to

obtain the ZRct measurements. RL is chosen such that the resulting current draw is similar to the

 32

current that would be drawn by an actual ARS board during the impedance matching tests. To

determine what resistance value should be used for RL, an estimate of the current consumption

on the ARS board is required. The PIC microcontroller datasheet may be used to find this

information, as explained in the following paragraph.

Figure 5.4 ARS Board Equivalent Circuitry

 During the matching tests, the PIC on the ARS board simply sleeps. This behavior is

appropriate because the microcontroller is typically in a low-power sleep state during normal

ARS board operation and it allows for an accurate estimation of RL due to the constant current

consumption of the PIC during sleep [7]. For the PIC configuration used with the ARS software

(watchdog timer, comparators, CVREF and T1OSC disabled, brown-out detect enabled) the

current consumption is 70 µA at VDD = 3.0 V and 130 µA at VDD = 5.0 V [8]. The resistances

drawing these currents at voltage drops of 3.0 and 5.0 V are 42.9 and 38.5 kΩ, respectively.

During the matching tests, VDD will vary dramatically depending on the effectiveness of each

match, so it is necessary only to choose a value for RL that is close to these. A readily available

resistor with a measured value of 41.5 kΩ was used.

 33

 Referring back to Figure 5.4, the value of RL has now been chosen. CL for the ARS

board is 15 pF. An RF Network Analyzer can be used to measure the value of ZRct for a given

matching network (values L1 and C1). Prior to beginning the matching procedure, the RF

Network Analyzer was calibrated so that the impedance measurements would be accurate.

 For the impedance matching tests, the RF energy source continually transmits, which is a

different behavior than during regular ARS board operation (the non-interference protocol is not

in use). As previously mentioned, the PIC sleeps during the test. The tests were performed at a

distance of 1.3 meters from the energy source. This distance was chosen experimentally. At

closer distances, the voltage readings for poor matches were found to be fairly high in the range

of 0 – 5 V (the A/D converter input range), indicating that the voltage readings for better matches

might all register as 5 V. This would make it impossible to tell which match is the best. At 1.3

meters, several low readings were observed. Therefore, it seemed that at this distance even the

best matches might not generate a supply voltage exceeding 5 V, which would allow a single

best match to be identified.

 The voltage obtained with the energy harvesting circuitry on the ARS board is converted

to a digital value on the measurement PCB and ultimately displayed on a PC. For each test, the

value of ZRct is measured, and the voltage value is plotted versus ZRct on a Smith chart [7]. Table

5.1 contains the testing results obtained.

 The Smith chart in Figure 5.5 visually depicts the testing results. Viewing the results

graphically is useful because it helps in identifying trends in the data (i.e., what ranges of LC

values lead to better matches). Colors at the red end of the spectrum correspond to higher

measured voltages and hence better impedance matches. The best match found for the particular

ARS board tested was 27 nH and 0.5 pF, which yielded 3.018 V at a distance of 1.3 meters.

 34

Table 5.1 Impedance Matching Measurements

Matching Network Zrct Measurement
Inductance

(nH)
Capacitance

(pF)
Real Part (Ω) Imaginary

Part (Ω)

Voltage Measurement
(mV) @ 1.3 meters

15 0 6.9 -29.5 612.22
18 0 7.8 -11.1 784.22
22 0 8.2 14 1262.33
27 0 9.2 51 2616.30
33 0 15.4 114 637.58
39 0 20.5 175 248.07
12 0.5 5.4 -33 448.47
15 0.5 5.5 -22 551.43
18 0.5 4.2 -65 125.87
22 0.5 9.4 19 1522.31
27 0.5 14.6 65 3017.73
33 0.5 37 168 314.05
39 0.5 300 580 130.45
47 0.5 1600 -300 282.59
15 1 5 -19.8 551.73
18 1 6.4 -5.8 766.80
22 1 9.9 16.1 1683.31
27 1 25 84 967.82
33 1 230 380 331.47
39 1 420 -610 329.02
47 1 58 -300 44.60
15 2 3.4 -14.2 506.82
18 2 5.4 -4 129.84
22 2 10.3 13.4 1420.27
27 2 37 64 1027.70
33 2 45 -168 352.85
39 2 10 -96 176.27
47 2 6.6 -82 28.11

 35

Figure 5.5 Impedance Matching Smith Chart

 36

 The impedance matching tests included many standard inductances (15, 18, 22, 27, 33, 39

and 47 nH) and capacitances (0, 0.5, 1 and 2 pF). After testing and plotting all of these

combinations, it was seen that the best matches appear with an inductance of 27 nH. This

inductance was then tested with some additional capacitance values as shown in Table 5.2. The

voltage measurements recorded are the average of two trials.

Table 5.2 Additional Measurements with L1 = 27 nH

Matching Network Zrct Measurement
Inductance

(nH)
Capacitance

(pF)
Real Part

(Ω)
Imaginary Part

(Ω)

Voltage Measurement (mV) @
1.3 meters

27 0 9.4 55.5 2645
27 0.2 10.6 56.4 2725
27 0.4 12 58.6 2745
27 0.5 12.5 59.2 2745
27 0.6 13.6 61 2760
27 0.7 14.4 62 1892.5

 From this data, it is seen that capacitance values between 0.2 and 0.6 pF give the best

matching with an inductance of 27 nH. Less voltage is obtained when capacitance values above

0.6 pF are used (this agrees with the previously obtained data in Table 5.1). Given that the

voltages obtained from 0.2 to 0.6 pF are comparable and a good supply of 0.5 pF capacitors was

available, 27 nH and 0.5 pF were initially chosen as the matching values for the prototype three

boards. It was later found that slightly different capacitance values provided a better match for

some of the remaining nine prototype three boards.

 37

5.2.2 Impedance Matching for the Remaining Boards

 Once the initial antenna impedance matching measurements had been made on one ARS

board, the next step was to place matching components on the remaining devices and test the

quality of the matches. The values of 27 nH and 0.5 pF would not provide the best match for all

ten boards because of slight manufacturing differences between the printed circuit boards.

Manufacturing differences, particularly involving the thickness of the metal layer, may cause the

antenna impedance on other boards to vary slightly from that of the first tested board. This

creates the need to check the matching of each board individually and improve matches that are

poorer than the one obtained for the first board.

 Because only small deviations from the initial matching values were expected and to save

time, the infrared voltage measurement board and MATLAB software were no longer used to

determine the matching efficiency of the remaining boards. Rather, the maximum operational

distance of the each board from the base station was used as an indicator of matching quality.

This is acceptable because better impedance matching leads to greater amounts of harvested

energy which corresponds to longer maximum operational distances.

 The procedure followed for each remaining board is as follows. First, the initial

matching values (27 nH and 0.5 pF) are placed on the board and the maximum operational

distance is tested. If this distance is comparable to that of the ARS board used in the initial

impedance matching process (approximately 70 cm), then the matching quality is considered to

be acceptable. This criterion has been established because the matching for the first board was

found to be the best after trying many LC combinations (documented in the previous section).

However, if the distance is not close to 70 cm, then slightly different matching values are tried,

and the process repeats until a good maximum operational distance is found. The previously

 38

performed impedance matching experiments have shown that the best matches occur with an

inductance of 27 nH. Therefore, if different matching values need to be tried, the capacitance

value will be changed first.

 It can be difficult to remember the status of each board when working with ten of them,

so I decided to keep a careful record of the status of each board and my tests with them. The

record provides a detailed account of the time-consuming impedance matching process followed

for each board. It is presented here as a list of status reports, numbered in chronological order.

1. Boards 2 and 5 successfully tested at a distance of 70 cm with the initial matching

values of 27 nH and 0.5 pF.

2. Board 9 matching:

a. 0.5 pF – 50 cm

b. 0 pF – 40 cm

c. 0.2 pF – 45 cm (some readings were not received)

d. 0.4 pF – 50 cm

e. 0.6 pF – 55 cm

f. 0.8 pF – 55 cm

g. 1.0 pF – some intermittent behavior observed in the range of 60 – 70 cm

h. 1.2 pF – some intermittent behavior observed in the range of 65 – 75 cm

i. 1.5 pF – the board functions well at 70 cm; intermittent behavior still observed at

75 cm

 39

3. Additional capacitance values may be tested with Board 9 to optimize its performance.

However, this was not done because the working distance of Board 9 has been brought

close to that of the ARS board used in the initial impedance matching process (70 cm).

4. Board 1 was used for the detailed antenna impedance matching tests that were

previously performed. Eventually, LC components had been added and removed from

the board so many times that the metal traces on the PCB began to peel off. After this

occurred, the board only functioned correctly at extremely short distances (< 20 cm).

The matching was then adjusted in an attempt to attain the original working distance

again:

a. 0.5 pF – 20 cm

b. 0 pF – 25 cm

c. 1.0 pF – 20 cm

d. 0.2 pF – 25 cm

e. 1.5 pF – < 20 cm

From these results, it did not seem that tweaking the matching values would allow

Board 1 to function anywhere near the distance that it originally did (70 cm). This

board had seen a great deal of wear and tear, and perhaps some components had been

damaged during repeated soldering. To minimize the time spent fixing the board, it was

decided to simply fabricate a new one (extra printed circuit boards were available). The

new board exhibited a different antenna impedance than the original; the best match

yielded an operating distance of 65 cm with a 1.5 pF capacitor.

5. Board 10 matching:

a. 0.5 pF – 45 cm

 40

b. 0 pF – 35 cm

c. 1.0 pF – 55 cm

d. 1.5 pF – 65 cm

e. 2.0 pF – 65 cm

f. 1.8 pF – 65 cm

g. 1.3 pF – 65 cm

h. 1.6 pF – 65 cm

i. 3.0 pF – 55 cm

With readily available capacitor values, it appears that 65 cm is the best distance for

Board 10. A 1.5 pF capacitor was chosen for the final matching because a good supply

of them was available.

6. Board 3 matching:

a. 0.5 pF – 55 cm

b. 0 pF – 45 cm

c. 1.0 pF – 60 cm

d. 1.5 pF – 65 cm

e. 2.0 pF – 65 cm

f. 1.8 pF – 65 cm, very intermittent behavior observed at 70 cm

g. 1.6 pF – 65 cm, some intermittent behavior observed in the range of 70 – 75 cm

7. Board 4 matching:

a. 0.5 pF – 45 cm

b. 0 pF – 30 cm

c. 1.0 pF – 50 cm

 41

d. 1.5 pF – 70 cm

8. Boards 7 and 8 were found to operate at 45 cm with matching values of 27 nH and 0.5

pF. This is the same behavior that was seen with Board 4. Considering that 1.5 pF

proved to be a good match for Board 4, this value was tried with Boards 7 and 8 as well.

In both cases, this resulted in a maximum working distance of 70 cm.

9. Board 6 did not work at all with the original matching values, which prompted a check

of the circuitry. Upon examination, a bad connection was found on one pin of the SAW

oscillator. After the problem was corrected, Board 6 was found to work at 65 cm with a

1.5 pF capacitor.

 In summary, Table 5.3 contains the final antenna impedance matching values used on

each board and their maximum operational distances when tested individually.

Table 5.3 Impedance Matching Results

 Antenna Impedance Matching
Board Inductance Capacitance Maximum Individual Working Distance
1 27 nH 1.5 pF 65 cm
2 27 nH 0.5 pF 75 cm
3 27 nH 1.6 pF 75 cm
4 27 nH 1.5 pF 70 cm
5 27 nH 0.5 pF 75 cm
6 27 nH 1.5 pF 65 cm
7 27 nH 1.5 pF 70 cm
8 27 nH 1.5 pF 70 cm
9 27 nH 1.5 pF 75 cm
10 27 nH 1.5 pF 65 cm

 42

6.0 COMMUNICATIONS

 The next step toward finishing the final prototype would be to evaluate the existing state

of the non-interference protocol and update it if necessary to meet the project specifications –

that is, to read ten boards in one tenth of a second or less. Previous work had already shown that

several ARS boards work simultaneously with the initial non-interference protocol that had been

designed for this prototype. However, no consideration had been given to the time required to

perform a read cycle. The length of a read cycle is the amount of time required to power ten

boards from a discharged state and obtain a temperature reading from each. First, the read cycle

time using the existing software would be determined.

6.1 EXISTING PROTOCOL

 The existing read cycle time was first examined using an oscilloscope. The supply

voltage on an ARS board was monitored. The shape of the voltage waveform varies at different

points in the read cycle (e.g., during power up, a sync pulse, etc.), and so the length of the read

cycle can be determined by simply measuring the duration of the different variations. It was

found that the total time for one read cycle using the existing software was approximately 1.8

seconds. By examining the transmitter PIC assembly code, it was determined that one read cycle

is broken down as shown in Figure 6.1.

 43

915 MHz On
 …
915 MHz Off
 Device Power Up Sync 1 Slot 1 Sync 2 Slot 2 Sync

33
Slot
33

 195 ms .96 ms 48 ms .96 ms 48 ms .96 ms 48 ms

Figure 6.1 Initial Non-Interference Protocol Timing

 The total time for one read cycle, therefore, is 195 ms + (48.96 ms x 33) ≈ 1.8 seconds.

During each time slot, one ARS board transmits a single data byte. A 10-bit temperature reading

requires two bytes of storage, so each ARS board must use two time slots to transmit its reading.

With 33 time slots, the existing protocol allows a maximum of sixteen boards to be read. Note

that the thirty-third time slot does not actually serve any purpose, and may be present due to an

oversight when the software was written (e.g., a loop was supposed to iterate 32 times instead of

33).

Because the read cycle only needs to accommodate ten boards, 13 time slots can be

ignored in the cycle length calculation. Therefore, a revised read cycle time using the existing

protocol timing is 195 ms + (48.96 ms x 20) = 1.17 seconds. This still exceeds the required

cycle length (100 ms) by more than ten times. The read cycle time of 100 ms was derived in the

specifications by assuming that the protocol would allow ten boards to transmit 24 bits at 2,400

Baud with zero overhead (even time for framing bits as in RS-232 could not be afforded). Even

though the data rate supported in the initial prototype three software is 9,600 Baud, the current

protocol contains a lot of overhead built into it. For example, the time required to initially power

the boards, send the sync pulses, and recover consumed energy after each byte is transmitted.

This last source of overhead requires some additional explanation.

 44

 The existing software allocates two consecutive time slots for a given ARS board. When

a byte is transmitted during a time slot, a significant amount of power is consumed on the ARS

board (the transmitter component is the single greatest consumer of stored energy). In the

limiting case where the ARS board is operating at its maximum distance from the energy source,

the voltage level on the board following a byte transmission would be near the minimum that

will allow the circuitry to continue operation. This means that sufficient time must be available

to allow the board to recharge before the next transmission. Therefore, the time slot length in the

initial protocol is approximately 48 ms, which is much longer than the time required to transmit

one RS-232 encoded data byte at 9,600 Baud (~ 1 ms).

One proposed method for reducing the overall read time was to eliminate the large

recovery time (~ 47 ms) between the slots. This could be achieved through "pipelining" the

transmissions by having them occur in a round robin fashion, so that after one board sends a byte

of data, it can recover while the other boards are sending their bytes. This could potentially

reduce the overall time to 195 ms + (2 ms x 20) = 235 ms. Even if this method is applied, the

device power up time must still be drastically reduced to meet the specified read cycle time.

 As this partial solution was being considered, it was suggested that an attempt be made to

make the boards function at a doubled data transmission rate (19,200 Baud). If this change

would be possible, it would impact the read cycle time in an important way. Due to the bit time

being halved, two bytes could be transmitted back-to-back (with a stop bit between) in

approximately the same time as one byte could be transmitted at 9,600 Baud. So, whereas two

time slots were needed for each board at 9,600 Baud, only one is needed at 19,200 Baud.

 The number of time slots required for a single board to transmit its data illustrates a

tradeoff between operational distance/power and time. By reducing the number of times slots

 45

from two to one, ten boards may be read much more quickly. The large recovery delay between

slots and the need for the “pipelining” approach described above are eliminated. Also, by

halving the number of required time slots, the number of sync pulse delays is also halved which

saves additional time. However, in general, the price paid is an increase in the power required

for the transmission, and, hence, a decrease in the maximum operating distance. In this case

there should not be a dramatic increase in required power because the Baud rate was doubled

while the number of time slots was halved. Therefore, two bytes can be transmitted at roughly

the same energy cost as previously needed to transmit one. Each board may transmit back-to-

back, requiring a total time of approximately 195 ms + (.96 ms + (20 / 19,200) * 10) = 215 ms.

Again, the 195 ms power up time still needs to be addressed.

6.2 DATA RATE IMPROVEMENT

 At this point, significant algorithm changes were needed so that the ARS boards would

function at 19,200 Baud. The RS-232 type signal sent to the 418 MHz transmitter is generated

manually in software by toggling the voltage on a general purpose output pin. In the transmit

portion of the existing assembly code, various delays were present to maintain a Baud rate of

9,600. Some delays took the form of defined constants that specified the number of iterations to

spend in time-wasting loops between bit transmissions. However, simply modifying these

constants would not suffice to double the Baud rate. More subtle delays were also present

because there were various paths through the transmitter code. Different paths did not take the

same time to execute because they contained differing numbers and types of instructions. This

would need to be taken into account as well if the 19,200 Baud transmit routine was to be

reliable in all situations.

 46

 Multiple paths were needed through the code because different delays were needed

depending on the values of the current and previously transmitted bits. This would not be

necessary if the 418 MHz transmitter behaved the same when turning on and off. However,

during the development of the original software, it was found, by looking at the received 418

MHz RS-232 signal, that the transmitter takes a different amount of time to toggle from an off

state to an on state than vice versa. This can be compensated for in software so that, at the 418

MHz receiver, all bit widths are consistent.

 Some time was spent trying to determine how to modify the existing transmitter code for

19,200 Baud operation by taking these various sources of delay into account. After making a

few changes to the software and examining their effects, it was decided that rewriting the

transmitter code from scratch would likely prove quicker and more reliable than trying to modify

the existing routine. This would eliminate any guesswork involved with changing the existing

code and allow me to have a clear picture of the exact delay in the code. While the new software

was being written and tested, the differences in transmitter switching times were observed using

an oscilloscope. The new transmit routine also takes this problem into account and ensures that

the transmitted bit times are consistent. The updated transmitter software is described in Section

7.2.

 After modifying the software, several tests were performed where an ARS board was

programmed to transmit a fixed bit pattern. Using an oscilloscope, the RS-232 signal output

from the 418 MHz receiver was monitored, and the bit timing was evaluated. After several

iterations of modifying the software and retesting, the resulting RS-232 signals at 19,200 Baud

were satisfactory.

 47

 As an aside, one might wonder why an even higher Baud rate than 19,200 was not used.

Written calculations have shown that the microcontroller, while running at a clock speed of 4

MHz, can support a much higher Baud rate than 19,200 in software. However, lab experiments

with the 418 MHz receiver used for this project indicated that the maximum standard Baud rate

supported by the receiver is 19,200. Still, this is more than sufficient to satisfy the data rate

requirements for the current project.

 The project specifications stated that future development phases for this device would

require a data rate of at least 100K Baud. It can be shown that this data rate is theoretically

possible using the current hardware. Consider the data rate of 100,000 Baud, which has a bit

time of 10 µs. At this rate, the time to transmit one byte (not including the stop bit because it

does not require the transmitter to be enabled) is 10 µs x 9 bits = 90 µs. The PIC12F675

operates at a 4 MHz clock frequency (.25 µs period), and hence 90 / .25 = 360 clock cycles

would occur during the transmission of one byte at 100,000 Baud. There are plenty of cycles

here to toggle the transmitter output for nine bits. However, the clock frequency of the

microcontroller can vary with the supply voltage and temperature. For the range of supply

voltages possible in this application, the internal oscillator frequency could lie anywhere between

3.8 MHz and 4.2 MHz [8]. The software to transmit at 100,000 Baud would be designed to work

with a clock frequency of 4 MHz. The question now is whether or not this software would still

work given these possible extremes.

 The shortest possible clock period according to the datasheet is 1 / 4.2 MHz = .238 µs.

The time allocated to transmit 9 bits is 360 clock cycles, following which the transmitter would

be disabled for the stop bit. Assume that the value of each RS-232 bit is checked at the receiver

in the middle of the bit time. Considering the beginning of the start bit to be time zero, the

 48

middle of the ninth bit occurs at 10 µs x 8.5 bits = 85 µs. If it takes longer than 85 µs for 360

clock cycles to pass, then the 100,000 Baud software will work even with the shortest possible

clock period. 0.238 µs x 360 = 85.68 µs; therefore, the software will still work.

 A similar calculation shows that the software will work with the longest possible clock

period, 1 / 3.8 MHz = .263 µs. With this clock cycle period, the ninth bit must start before 85 µs

have passed; otherwise, the ninth bit will be lost. In software, the beginning of the ninth bit

occurs after (360 / 9) x 8 = 320 clock cycles have passed. 0.263 µs x 320 = 84.16 µs; the ninth

bit begins in time. These calculations have shown that there is much greater data rate potential in

the current design than has been used for this project.

6.3 READ CYCLE TIMING

 The data transmission Baud rate has been increased on the ARS boards. At this point, it

is now possible to update the read cycle timing (Figure 6.1) to take this change into account and

accomplish the goal of reading ten boards in a tenth of a second.

 Due to the Baud rate increase, the number of time slots has been reduced to ten. This

leaves three fundamental parts to a single read cycle as shown in Figure 6.2:

a. Power up time for the cycle

b. Ten sync pulse times

c. Ten transmit slot times

 The task now is to determine the appropriate values for times a, b and c. The best value

for each varies with a number of factors, particularly the distance of the sensor boards from the

base station. This distance is a factor in how quickly the boards can harvest sufficient energy,

which directly impacts the best values for times a and c. It is desired that the boards work at as

 49

great a distance from the base station as possible, so values that are appropriate for that scenario

will be sought.

915 MHz On
 …
915 MHz Off
 Device Power Up Sync 1 Slot 1 Sync 2 Slot 2 Sync

10
Slot
10

 a ms b ms c ms b ms c ms b ms c ms

Figure 6.2 Generic Read Cycle Timing, Ten Time Slots

 The sync pulses preceding each transmit slot are generated by briefly disabling the 915

MHz energy source. This prevents energy harvesting from occurring during the sync pulses.

Therefore, the ARS device must consume previously stored energy to remain powered during

these times. When the initial timing scheme was used, the energy consumption due to the sync

pulses was negligible because each sync pulse of .96 ms was followed by a 47 ms transmit slot

time (a long energy harvesting period). This is ample time to recoup the lost energy, even

though the storage capacitor is in the slowest portion of its charging curve. In order to read ten

boards in a tenth of a second, the transmit slot times had to be reduced to a minimum. The

absolute minimum is the time required for the active board to execute its interrupt service routine

and transmit 19 bits at 19,200 Baud. The transmission requires 19 bits * (1 / 19,200 bps) = .990

ms. By analyzing the ARS board assembly code and instruction execution times, a conservative

estimate of the total time is 1.5 ms. From lab experimentation, it has been found that a 1.5 ms

transmit slot time is not long enough to allow full recovery of the energy consumed during the

 50

prior sync pulse. This is because the storage capacitor is almost fully charged and hence

additional charge accumulates very slowly.

 Due to the net loss of energy during each sync pulse/transmit slot pair, the voltage supply

on the ARS board decreases across consecutive time slots (the voltage supply is proportional to

the amount of stored energy). However, after several time slots occur, an equilibrium is reached

whereby the amount of energy consumed during each sync pulse equals the amount recovered in

the following transmit slot (the reason for this will be explained momentarily). The ARS board

voltage supply also reaches equilibrium at this time due to its proportionality to the amount of

stored energy. This equilibrium voltage is less than the voltage reached on the ARS board when

a 47 ms transmit slot time is used. However, laboratory testing has shown that the equilibrium

voltage achieved by using a 1.5 ms transmit slot time is greater than 95% of the voltage available

when using a 47 ms transmit slot time (i.e., the voltage supply reduction caused by using the

shortened transmit slot time is minimal). This percentage will vary with how quickly a board

can harvest energy, which is a function of several variables, including its distance from the base

station and the optimality of its antenna impedance matching.

 The oscilloscope capture of Figure 6.3 illustrates the equilibrium phenomenon. The

screen capture shows the supply voltage on an ARS board versus time. The time slots are

indicated on the figure. The voltage is constant at the beginning of the waveform (label A on the

figure) because the device is still in the power up phase and the storage capacitor is fully

charged. The first drop in voltage (label B) corresponds to the energy loss due to the first sync

pulse, and the subsequent small increase in voltage (label C) is due to the energy harvesting that

occurs during the following transmit slot. A net voltage loss occurs during the first time slot, i.e.,

 51

Figure 6.3 Voltage Consumption During Sync Pulses

A – C. During the subsequent time slots, the drops in voltage during the sync pulses are

approximately equal, but more voltage is recovered with each transmit slot (e.g., x1-x2 > x2-x3 >

x3-x4 > … > x8-x9 > x9-x10). This increase in the amount of recovered voltage is due to the

storage capacitor being recharged more quickly than during earlier transmit slots. By the ninth

sync pulse (label D), the amount of voltage recovered during the following time slot (label E) is

very close to equaling the amount lost during the sync pulse. The total voltage loss due to the

nine sync pulses is only 0.164 V / 4.441 V = 3.7% of the power up voltage (calculated by

comparing the voltage before the first sync pulse to that before the tenth). Furthermore, very

little voltage will be permanently lost due to additional time slots because equilibrium has been

reached. These results show that greatly reducing the time slot length (from 48 ms to 1.5 ms, or

 52

by 96.9%) has a relatively small impact on the available supply voltage (reduced by 3.7%). This

loss is outweighed by the benefit of greatly reducing the read cycle time as required in the

project specifications. The results validate the decision to reduce the time slot length from an

energy harvesting perspective by confirming that doing so will not adversely impact the ARS

board supply voltage. As a final note on Figure 6.3, this particular ARS board transmitted a

temperature reading during the tenth time slot. This caused the rapid drop in voltage at the far

right of the capture (label F).

The question is: how do these observations affect the choice of read cycle times a, b and

c from Figure 6.2? In summary, they indicate that it is desirable to use the smallest working sync

pulse width. A shorter sync pulse width not only saves overall read cycle time, but it leads to

less net energy loss during each sync pulse/transmit slot pair. Also, having a longer transmit slot

time is clearly preferable as this allows more time for energy harvesting between each sync

pulse. These results assist in dictating how the read cycle timing should be determined for the

application of reading ten boards in 0.1 seconds.

• First, the sync pulse time b should be minimized.

• Second, the power up time a must simply be long enough to fully charge each board.

This time will vary based on the distance of each board from the base station but can be

experimentally determined for a given situation. ARS board charging time data gathered in the

lab is presented in Table 6.1, which will be discussed shortly.

• Finally, whatever time is left over in the tenth of a second can be divided among the ten

transmit slots. Remember that each slot must be at least ~1.5 ms long for proper operation.

Therefore, if this constraint cannot be met for a given base station distance and a cannot be

 53

reduced to a value that still allows each board to obtain sufficient charge to operate, then the

boards cannot be read in 0.1 seconds at that distance.

Consider the sync pulse delay time. The ARS board energy harvesting and sync pulse

circuitry is shown in Figure 6.4. The sync pulse must discharge the 15 pF capacitor C1 on the

ARS board. The voltage on this capacitor is connected to an I/O pin on the microcontroller, and

the state change of this digital input triggers an interrupt that awakens the processor from the

sleep state. Diode D3 isolates the main energy storage capacitor C2 from this process, allowing

capacitor C1 to discharge without affecting the charge previously stored on C2. Capacitor C1 is

connected to ground through a 1 MΩ resistor (R5), giving an RC time constant of 15 µs for the

discharging of capacitor C1. The capacitor is sufficiently discharged after 3RC = 45 µs.

However, lab experiments have shown that using this sync pulse delay in the base station

software is not enough to trigger the ARS board. Therefore, additional factors must be playing a

role; for example, a possible delay in switching the base station transmitter off. It appears from

lab experimentation that a sync pulse delay in the base station software of approximately 455 µs

is the minimum acceptable value. For added reliability, it might be better to use a slightly higher

value if possible given the time constraints of the application.

 Next, the time required to charge an ARS board was examined. An oscilloscope probe

was attached to the voltage supply on an ARS board to observe the time required for the voltage

to increase to 95% of its maximum value at various distances from the base station. The results

are shown in Table 6.1. The minimum operational voltage for the ARS board is somewhere

around 3 V or slightly less. Therefore, considering the charging time data in Table 6.1, a device

power up time around 75 – 80 ms would be appropriate in the read cycle timing. When

 54

Figure 6.4 ARS Board Energy Harvesting and Sync Pulse Circuitry

Table 6.1 ARS Board Charging Times at Various Distances

Distance From
Base Station (cm)

Maximum
Voltage (V)

Approximate Charging Time To 95% Of The
Maximum Voltage (ms)

80 4.75 39
75 4.69 42
70 4.50 43
65 2.53 77
60 1.69 90
57 2.81 75
56 3.06 68
55 3.38 63
50 4.31 50
40 4.75 44

 55

examining the data in Table 6.1, it is interesting to note that the longest charging times occur in

the middle of the distance range. Multiple charging time measurements have been obtained that

confirm this behavior. One possible explanation for these results is that certain behaviors are a

function of the ¼, ½ and ¾ RF wavelengths in the near field, and the largest charging times

occur at approximately 1¾ wavelengths from the base station antenna [9].

 A final note on the read cycle timing concerns the amount of time that the 915 MHz

energy source is disabled between consecutive cycles. This time is not considered to be a part of

the 100 ms read cycle and therefore can be chosen arbitrarily. However, the time between read

cycles must be long enough to allow the ARS board energy storage capacitor to discharge

sufficiently (enough so that the microcontroller resets due to low supply voltage). An ARS

board cannot recognize a new read cycle until its software is reset. A delay of 390 ms between

read cycles was found to be acceptable when testing the ARS boards in the laboratory.

 A problem arose during testing in the lab whereby the boards seemed to require some

minimum distance from the base station in order to function properly. Obviously, the supply

voltage on an ARS board increases as it is moved closer to the base station. Therefore, it seemed

that this problem was due to the supply voltage becoming too high for the microcontroller, and a

method to limit the voltage was investigated. It was later determined that this problem was

actually caused by an insufficient length of the delay between read cycles. As an ARS board is

moved closer to the base station, the amount of time necessary to discharge the energy storage

capacitor increases along with the supply voltage. The 390 ms delay between consecutive read

cycles, although sufficient at greater distances from the base station, was not long enough to

allow the microcontroller to reset when the board was moved closer. Therefore, the ARS boards

appeared to stop working at shorter distances, although they simply were not resetting for new

 56

read cycles. Through a trial and error process, a longer delay between read cycles was found that

corrected this problem. When the delay between read cycles was increased to 1.95 seconds, the

boards were found to have no limitation on their minimum operational range from the base

station.

 57

7.0 SOFTWARE

 The research concerning updating the non-interference protocol is complete, and now the

software running on the individual ARS boards as well as the base station must be designed to

implement the new read cycle timing. This section details the modifications that were made to

the existing prototype three software.

7.1 GENERAL ARS BOARD SOFTWARE

 Changes to the ARS board initialization routine needed to be made due to the hardware

modification that had been performed to improve the temperature reading accuracy (see Section

5.1). This hardware update involved modifying the pinouts of the microcontroller as well as

enabling the A/D converter external voltage reference feature.

 The values of some configuration registers needed to be updated to reflect the pinout

change. The TRISIO (GPIO tri-state) register contains a bit for each general purpose I/O pin

designating whether the pin is an input or output. The 418 MHz transmitter enable output was

moved from GPIO2 to GPIO4 because the A/D converter reference input must be on GPIO1 and

shorter PCB traces are needed if the thermistor circuit voltage supply is output from GPIO2 (this

is because the GPIO1 and GPIO2 pins, which must be tied together, are physically close to one

another as shown in Figure 7.1). The TRISIO register was updated to make GPIO4 an output

and GPIO1 an input. The ADCON0 (A/D control) register is used to configure several aspects

 58

of the internal A/D converter. The VCFG bit in this register was changed to indicate that the

VREF pin (GPIO1) should be used as the voltage reference instead of VDD. Finally, the ANSEL

(analog select) register contains bits that are used to select which of four GPIO pins will be used

as analog inputs to the A/D converter (four channels are available on the PIC12F675 although

only one is used here). The bit corresponding to GPIO1 was changed to an analog input because

it is now receiving the analog reference voltage.

 The pseudocode in Figure 7.2 describes the overall behavior of the ARS board software.

Figure 7.1 Updated PIC GPIO Pinouts

7.2 TRANSMIT ROUTINE

 As mentioned in Section 6.2, the transmit routine was redesigned to increase the data

channel Baud rate from 9,600 to 19,200 bits per second. A flowchart description of the updated

code is shown in Figure 7.3.

 Different paths through the flowchart in Figure 7.3 are taken based upon the values of the

previous, current and next bit to be transmitted. This is necessary because lab

 59

// Defined constants
DEVICE_ID 0 // Unique sensor identification number
 // Can be 0 – 15 in current implementation but is scalable

// The init code runs once during the device power up period
Init:
 Initialize microcontroller configuration registers (sets up general purpose I/O pins, A/D
 converter and other microcontroller-specific features)
 Enable sync pulse interrupt
 // Clear time slot counter
 timeSlot = 0
Main:
 Enter sleep mode
 // Microcontroller will awaken when sync pulse interrupt occurs
 goto Main

// Sync pulse interrupt service routine
SyncISR:
 Save current processor state

If (Interrupt source is not sync pulse) {
 // No other interrupts should be enabled
 goto EndISR
 }
 If (DEVICE_ID == timeslot) {
 // This is the correct time slot to transmit the temperature reading
 Access A/D converter and acquire 10-bit reading
 Form low and high bytes using A/D reading and DEVICE_ID
 Transmit low byte
 Transmit high byte
 } Else {
 // This time slot belongs to another sensor
 }
 // Increment time slot count
 timeSlot++
EndISR:
 Restore previous processor state
 Return from interrupt
 // “Return from interrupt” automatically re-enables sync pulse interrupt
 // Processor will return to sleep mode until the next interrupt occurs

Figure 7.2 ARS Board Pseudocode

 60

Figure 7.3 Transmit Routine Flowchart

experimentation indicated that the transmitter requires a significant amount of time

(approximately 10 µs) to turn off after the proper signal is output from the microcontroller.

However, a delay was not observed when the transmitter was turned on. This means that a

software remedy is required to provide consistent bit widths in all cases.

 61

 A delay only occurs when the transmitter is switched to the disabled state. The

transmitter is enabled when logic zeros are transmitted and disabled for logic ones. The new

transmit routine detects when the current bit to be transmitted is a zero and the next bit is a one.

At the end of the current bit time, the transmitter will need to be disabled. Due to the transmitter

turn-off delay, the current bit time as output from the microcontroller to the 418 MHz transmitter

should be ended short. The turn-off delay will provide the remainder of the bit time as seen at

the 418 MHz receiver. A short bit time delay is used in the software to handle this case.

 Because this bit time has been ended short from the perspective of the microcontroller,

the next bit time must be lengthened by the same amount to prevent future bit transitions from

occurring too early (in other words, to maintain the synchronization provided by the start bit).

The software provides an extended bit time delay in this case when the current bit to be

transmitted is a one and the previous bit was a zero. For all other situations, an exact bit time

delay of 52 µs is used.

 The assembly language software was written taking the instruction execution times of

each path through the flowchart into account so that the paths consistently require ~52 µs for

each bit time (except for the intentionally differing short and extended bit times). Although

some bit time error is acceptable with the RS-232 type interface at the base station receiver, the

effort has been made to maintain the correct bit times in all cases. To test the correctness of the

code while taking the transmitter behavior into account, an oscilloscope was connected to a 418

MHz receiver to view the received RS-232 waveforms for several test transmissions. Additional

tweaking of the software delays was performed based on this feedback. The final result was

consistently valid 19,200 Baud RS-232 waveforms at the receiver.

 62

7.3 BASE STATION SOFTWARE

 The base station software controls the 915 MHz energy source that is used to power and

synchronize the ARS boards. The microcontroller running in the base station is a PIC16F870.

The 915 MHz transmitter is enabled or disabled by setting the appropriate digital output on one

of the microcontroller I/O pins. The physical construction of the base station with the PIC

embedded inside was performed prior to my involvement with prototype three. Existing

software for the base station was available, but it supported the initial read cycle timing scheme

(Figure 6.1). The delay values in the software needed to be modified to use the updated read

cycle timing and allow ten boards to be read in a tenth of a second. A simple pseudocode

description of the base station software is provided in Figure 7.4.

 The various delays referred to in the pseudocode are implemented in assembly language

using loops. The counter value for each loop determines the length of the delay. The body of

each loop requires three instruction cycles per iteration [10]. The clock frequency of the

microcontroller is 4 MHz, and four clock cycles comprise a single instruction cycle. Therefore,

each instruction cycle is 1 µs in length, and each iteration of a delay loop consumes 3 µs. A

comparison of the original and updated read cycle timing delays is provided in Table 7.1.

 The updated time slot delay value of 1.5 ms was derived previously by taking into

consideration the amount of time needed to transmit 19 bits at 19,200 Baud and the software

overhead of the ARS board transmit routine. Prior lab experimentation had shown that a sync

pulse delay of 455 µs was the minimum sufficient for triggering the ARS boards. However,

while testing the updated read cycle timing with the ten ARS boards, it was observed that the

boards returned valid temperature readings more consistently when a longer sync pulse delay

was used. After testing the ARS boards with a number of sync pulse delay values, the time of

 63

1.2 ms was decided upon because it worked well in the lab and it was not so large as to greatly

reduce the time available for the power up delay. Ten sync pulse and time slot delays are

needed, and they consume a total of 27 ms of the read cycle. Therefore, the remaining 73 ms is

dedicated to device power up.

Init:
 Initialize microcontroller configuration registers (set up I/O pins, disable interrupts, etc.)
Start:
 // This is not part of a read cycle, but actually takes placed between cycles
 Disable transmitter
 Perform “Brown-Out” Delay // A very long delay (~ 400 ms) to allow the ARS
 // boards to discharge and reset between read cycles
 // This is the beginning of a new read cycle
 // Device power up phase
 Enable transmitter
 Perform “Power Up” Delay

 // Sync pulses and time slots
 // numSlots = 33 in the original code, changed to 10 for the final version
 for(i = 0; i < numSlots; i++) {
 Disable transmitter
 Perform “Sync Pulse” Delay
 Enable transmitter
 Perform “Time Slot” Delay
 }

 goto Start

Figure 7.4 Base Station Pseudocode

Table 7.1 Base Station Software Delays

Original Code Updated Code
Number of delay

loop iterations
Length of delay

(ms)
Number of delay

loop iterations
Length of delay

(ms)
Power Up Delay 65,025 195.075 25,000 75.000
Sync Pulse Delay 320 0.960 400 1.200
Time Slot Delay 16,000 48.000 500 1.500

 64

 The length of the power up delay in software is 25,000 loop iterations, which would be

75 ms. However, only 73 ms are available in the read cycle. While using this delay value, an

oscilloscope probe was attached to the voltage supply on an ARS board to obtain a picture of the

charging curve. The oscilloscope capture showed that the board was only charging for

approximately 71 ms. One possible explanation for this is that the 915 MHz transmitter might

require some additional time to start from a completely powered-down state as is the case

between read cycles. This is not the case for the sync pulses which require very brief

disengagements of the transmitter and therefore do not exhibit this delay. The read cycle only

begins when the transmitter turns on and the boards begin charging, so the “missing” part of the

power up delay is not counted against the read cycle time. Therefore, the power up phase

requires less than 73 ms, and hence fits into the 100 ms read cycle. The final non-interference

protocol timing is shown in Figure 7.5.

915 MHz On
 …
915 MHz Off
 Device Power Up Sync 1 Slot 1 Sync 2 Slot 2 Sync

10
Slot
10

 71 ms 1.2 ms 1.5 ms 1.2 ms 1.5 ms 1.2 ms 1.5 ms

Figure 7.5 Final Non-Interference Protocol Timing

 65

8.0 RESULTS

Ten ARS boards were completely fabricated, and all software was updated to use the

revised non-interference protocol. What remained at that point was to verify that all ten ARS

boards return correct temperature readings in 100 ms. Before presenting the test results, an

overview of the demonstration setup is provided.

8.1 DEMONSTRATION SETUP

 The entire test system consists of the base station, ARS boards, 418 MHz receiver and a

PC. The functionalities of the base station and ARS boards have already been presented. Figure

8.1 shows the testing setup where the ARS boards are positioned in front of the base station

patch antenna. What remains to be discussed is the formatting of the 418 MHz temperature

reading transmissions and how this information is presented to the user.

 A simple framing mechanism was employed for the transmissions between the sensor

boards and the 418 MHz receiver. When a sensor’s time slot is reached, it uses the 10-bit A/D

converter internal to the PIC12F675 microcontroller to sample the voltage across a thermistor.

These ten bits of data (TEMP[9...0]), as well as the sensor’s unique identification number, are

packed into a two-byte transmission as shown in Figure 8.2.

 The sensor identification number is currently four bits long to accommodate ten devices.

However, the number of bits for the ID can be increased to allow hundreds of sensors to be used

 66

with the non-interference protocol. Alternatively, if the receiver were to be aware of the number

of the current time slot, then the sensor identification number would not need to be transmitted at

all. The most significant bit is used to identify which byte (low or high) has been received. This

simple mechanism allows the receiver to resynchronize itself with the incoming bytes in the case

of a missing or damaged transmission.

Figure 8.1 ARS Boards and Base Station Antenna

First (Low) Byte

Value 0 Sensor Identification Number TEMP[2…0]
Bit 7 6 5 4 3 2 1 0

Second (High) Byte

Value 1 TEMP[9…3]
Bit 7 6 5 4 3 2 1 0

Figure 8.2 Temperature Data Framing

 67

 The two bytes are transmitted using amplitude shift keying (ASK) at a frequency of 418

MHz. Again, the transmission protocol is simply RS-232 (19,200 Baud, eight data, no parity,

one stop bit). The 418 MHz receiver simply changes the medium of the RS-232 transmission

from RF to a standard DB9 serial cable that is run to a PC. It does not perform any intelligent

processing of the data. On the PC, the temperature readings may be parsed and then processed in

any way necessary. To save computation, and hence power, on the remote device, the

conversion between raw A/D converter reading and actual temperature (degrees F, C, etc.)

occurs on the PC side. The pseudocode in Figure 8.3 describes the behavior of a simple PC

receiver program. For the tests performed in the lab, a short MATLAB receiver program written

previously was used to capture and display the raw A/D converter readings.

 Open serial port
 lowByteReceived = false
GetNextByte:
 Wait for byte on serial port

Get byte from serial port
If (MSB is “0”) {
// Low byte received
Parse byte, store ID number and lowest 3 bits of temperature
lowByteReceived = true

 } Else {
 // High byte received
 If (lowByteReceived == true) {
 Parse byte to obtain highest 7 bits of temperature
 Process temperature reading as necessary and display to user
 lowByteReceived = false
 } Else {
 // No accompanying low byte was received; error
 // Disregard the byte
 }
 }
 Goto GetNextByte

Figure 8.3 PC Receiver Program Pseudocode

 68

8.2 INTERPRETATION OF A/D CONVERTER READINGS

 The thermistor used on the ARS boards (Panasonic part number ERT-J1VT202J) has a

resistance of 2 kΩ at 25° C (77° F) and is used in a simple voltage divider circuit with a resistor

of the same value [11]. The A/D converter reference voltage is the supply to the divider circuit.

The resistance of the thermistor may be determined by measuring the voltage drop across it, and

this resistance directly corresponds to a temperature reading according to the thermistor

specifications.

 Consider that Vref is the voltage supply to the divider circuit and Vth is the voltage drop

across the thermistor. Let the resistance of the thermistor be Rth. According to the voltage

divider equation, the voltage drop across the thermistor is Vth = Vref[Rth / (Rth + 2,000)]. From

the perspective of the 10-bit A/D converter which directly measures the thermistor voltage, Vth =

Vref[ADreading / (210 – 1)], where ADreading is the 10-bit output value ranging from 0 to (210 – 1).

Equating these expressions for Vth, we have:

Vref[Rth / (Rth + 2,000)] = Vref[ADreading / (210 – 1)]

Canceling Vref on both sides and rearranging, this can be solved for Rth:

Rth = (2,000 * ADreading) / [(210 – 1) – ADreading]

According to this equation, the resistance of the thermistor can be determined solely from the

value of ADreading.

 69

 The resistance values for many temperatures are provided in [11]. Using the above

equation, the resistance values may be changed to A/D converter readings, thereby obtaining

several data points relating A/D readings and temperature. The graph in Figure 8.4 is obtained

by taking these data points and plotting them in Microsoft Excel.

-50

0

50

100

150

200

250

0 200 400 600 800 1000

A/D Converter Reading

Te
m

pe
ra

tu
re

 (F
)

Figure 8.4 Relationship Between A/D Converter Readings and Temperature

8.3 PROTOTYPE THREE DEMONSTRATION

 Using the lab setup described above, the ten ARS boards were read simultaneously at a

distance of 40 cm from the base station. This is a significant reduction in operational distance

 70

from the single board case, but this is to be expected because multiple devices must be within the

limited field pattern at a point with sufficient distributed energy to activate all boards

simultaneously. The MATLAB screen capture in Figure 8.5 shows successive read cycles in

which all ten boards are correctly read. Each line of output corresponds to a received 16-bit

temperature transmission. The device ID for the reading is displayed along with the raw A/D

converter value. All of the A/D readings are in the range of 520 – 530. Referring to Figure 8.4,

it is seen that this range corresponds to temperature readings between 75.9° F and 74.5° F.

These values are correct given the lab thermostat reading at the time of the test and the individual

heating of each board due to the RF energy field at its particular location.

 It is also necessary to obtain proof that the read cycle is indeed occurring in a tenth of a

second. To do this, an oscilloscope probe was attached to the voltage supply on one of the ARS

boards during a read, which yielded the waveform in Figure 8.6. The left part of the waveform,

from the left cursor until just before the horizontal center of the screen, is the power up portion

of the read cycle. The large energy storage capacitor on the sensor board is charging during this

time. The drop in voltage at the horizontal center of the screen occurs when this board

(identification number 2) transmits its temperature reading. The slow increase in voltage

following this drop is due to the additional energy harvested during subsequent time slots.

Finally, the steady drop in voltage at the right is the power down period following the read cycle.

The cursors show that the total time from the power up to power down phases is just less than

100 ms, which fulfills the read cycle timing requirement.

 71

Figure 8.5 Demonstration MATLAB Screen Capture

 72

Figure 8.6 Oscilloscope Capture for Read Cycle Timing Verification

 73

9.0 CONCLUSIONS

 This project may be considered a success if all of the contractual specifications have been

met. Looking back over the specific operational requirements of the device as stated in the

problem statement, it is seen that all of the criteria have been met. The final prototype sensor

board has a form factor of 0.864” by 1.654”, which is smaller than the required size. A complete

embedded non-interference protocol was indeed developed, and the necessary software was

designed and implemented in both the sensor boards and the base station. This protocol is easy

to understand and very easily extendable to accommodate additional devices simply by adding

additional time slots. It was chosen over the protocol developed in prototype two because the

sync pulse mechanism continually synchronizes the ARS boards so that all devices know exactly

when each time slot begins. In the prototype two method, each device determines the start of its

time slot based on a software delay performed after powering up. If all sensor boards are not

powered simultaneously, or if there are slight differences in the microcontroller clock

frequencies, then the devices may lose their synchronization, especially those transmitting during

later time slots. Even though the final protocol has more overhead compared to the simpler one

developed for prototype two, the benefit of its enhanced synchronization method makes it much

more suitable for supporting hundreds of devices as required.

 Ten sensor boards were successfully fabricated and tested simultaneously in the lab using

the non-interference protocol. Valid temperature readings were returned from all boards within a

tenth of a second, and no interference problems were observed. Also, the Baud rate supported by

 74

the sensor boards for data channel transmissions (19,200 Baud) exceeds the specifications (2,400

Baud).

 In addition to the project specifications being met in full, a second project goal has been

attained as well. Through this research, my research and engineering skills have been

strengthened. In retrospect, I can say that this experience has been a very beneficial one for me,

during which I have learned new skills and strengthened old ones. The opportunity to work on a

project with real-world implications and in an essentially independent manner was a valuable

one. From a hardware perspective, I became familiar with a number of skills with which I had

no prior experience, including printed circuit board layout and surface mount component hand

and reflow soldering. Also, I had never worked with RF devices in a lab environment, and I

gained experience in the subtleties of testing these devices. Considering the software side of the

project, I greatly improved my knowledge of Microchip PICs and their configuration. Also, I

reviewed and strengthened my skills in C, assembly language and MATLAB programming.

Finally, I consider the general area of embedded system research and development to be of

particular interest to me, and this project fits well into that category. An ARS board, consisting

of a microcontroller and peripheral circuitry, is a simple embedded system that involves

hardware and software co-design. I very much enjoyed working on this project and bringing it to

a successful conclusion.

9.1 FUTURE CONSIDERATIONS

 A number of issues remain to be examined during future development of the NASA

temperature sensor. An investigation into the operational environment of the final product was

 75

beyond the scope of the first development phase addressed by this research. However, as

research on the device continues, it will certainly be important to determine what unique

challenges might be presented to its operation when it is deployed on a spacecraft. For example,

it is possible that the sensor device might be subjected to very high temperatures, or that the

materials used in the construction of the spacecraft panels could greatly attenuate the RF signals

transmitted to and from the temperature sensors. These operational challenges may be better

understood and addressed once the details of the final environment are known (e.g., where the

sensors are placed on the spacecraft panels, the relative positioning of the RF energy source and

data receiver, etc.).

 Also, future research could verify that the supply voltage on an ARS device does indeed

reach equilibrium after several time slots have occurred. This conjecture has been made based

upon the oscilloscope capture in Figure 6.3. It appears from the figure that the amount of voltage

lost during the ninth sync pulse is nearly identical to the amount recovered during the following

transmit slot. To verify that equilibrium is truly reached, the supply voltage on the ARS device

can be monitored during the passage of many additional time slots.

 While the operational distance of the sensor device was not specified for the first

development phase, additional research could focus on improving the maximum operational

distance of the sensors from the base station. One approach would be to further reduce the

power consumption of the device. For example, the output power of the 418 MHz transmitter

could be reduced and a more sensitive receiver used to detect the weaker signal. As the trend

toward low-power devices continues, additional microcontrollers may become available that

require less power or supply voltage. Also, a more powerful RF energy source could be used in

place of the current 5 Watt source.

 76

APPENDIX A

PROTOTYPE TWO SOURCE CODE

#include <12C509AG.h>
#fuses INTRC,NOWDT,NOPROTECT,NOMCLR
#use delay(clock=4000000)
#use fast_io(B)

// Internal 4 MHz RC Oscillator Calibration
// Note -- BOARD is command line argument to compiler
#if(BOARD == 4)
 #rom 1023 = {0xC70}
#else
 #rom 1023 = {0xC6C}
#endif

main() {

 int i;
 char boardID[13] = "Board ID";

 boardID[10] = 0x0D; // CR
 boardID[11] = 0x0A; // LF
 boardID[12] = 0x00; // NULL

 // Note -- BOARD is command line argument to compiler
 #if(BOARD == 1)
 boardID[6] = '1';
 #elif(BOARD == 2)
 boardID[6] = '2';
 #elif(BOARD == 3)
 boardID[6] = '3';
 #elif(BOARD == 4)
 boardID[6] = '4';
 #else
 boardID[6] = 'X';
 #endif

 // Set I/O port direction (GP4 and GP5 outputs)
 set_tris_b(0x0F);

 // Enable RF
 output_high(PIN_B4);

 77

 // Wait for time slot
 // Each slot is 56 ms
 // Include 2 ms startup time to make sure transmitter on first board is
ready
 delay_ms(2 + (56 * (BOARD - 1)));

 // Output ID via RS232 over RF @ 2400 Baud
 for(i = 0; i < 12; i++) {
 // Mark to space transition - start bit
 output_high(PIN_B5);
 delay_us(409); // 417 - 8
 // Output eight data bits, no parity
 // Output low = Mark state = Logic "1"
 // Output high = Space state = Logic "0"
 // Bit 0 -- LSB
 if(boardID[i] & 0x01) {
 // Bit 0 is set – output Mark state
 output_low(PIN_B5);
 } else {
 // Bit 0 is cleared – output Space state
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 1
 if(boardID[i] & 0x02) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 2
 if(boardID[i] & 0x04) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 3
 if(boardID[i] & 0x08) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 4
 if(boardID[i] & 0x10) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 5
 if(boardID[i] & 0x20) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }

 78

 delay_us(409);
 // Bit 6
 if(boardID[i] & 0x40) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(409);
 // Bit 7 -- MSB
 if(boardID[i] & 0x80) {
 output_low(PIN_B5);
 } else {
 output_high(PIN_B5);
 }
 delay_us(417);
 // Two stop bits
 output_low(PIN_B5);
 delay_us(417);
 output_low(PIN_B5);
 delay_us(408);
 }

 // Disable RF
 output_low(PIN_B4);

}

 79

APPENDIX B

PROTOTYPE THREE SOURCE CODE

 list p=12F675 ; list directive to define processor
 #include <p12f675.inc> ; processor specific variable definitions

 __CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_OFF &
_INTRC_OSC_NOCLKOUT & _MCLRE_OFF & _CPD_OFF

;**
;Defines
;**

#define DEV_ID D'0' ; Unique device identification number
#define D_SHORT D'8' ; Constants for use in transmit routine
#define D_EXACT D'12' ; bit time delays
#define D_EXTENDED D'15'

#define BANK0 0x00
#define BANK1 0x80
#define TrisConfig B'11101011' ; Initialization values for processor
#define IntconInit B'10001000' ; configuration registers
#define ANSELInit B'01010011'
#define ADCON0Init B'01000001'
#define CMCONInit B'00000111'
#define _ADEN D'2' ; GPIO2 controls thermistor
#define _TXOUT D'4' ; GPIO4 controls transmitter

;**
;General Purpose Registers (GPR's)
;**

 cblock 0x20
 WTEMP ; register used in Interrupt Routine
 STATUSTEMP ; register used in Interrupt Routine
 PCLATHTEMP ; register used in Interrupt Routine
 FSRTEMP ; register used in Interrupt Routine
 intCount ; interrupt counts
 outer ; outer delay counter
 inner ; inner delay counter
 bufHigh ; buffer for A/D higher byte
 bufLow ; buffer for A/D lower byte
 bufTransmit ; buffer for the data byte to be transmitted

 80

 idx ; transmit bit index
 dev_id ; device ID register
 endc

;**
;Reset Vector
;**

 ORG 0x000 ; processor reset vector
 nop ; required by in-circuit debugger
 goto Init ; go to beginning of program

;**
;Interrupt Vector
;**

 ORG 0x004
Isr
 movwf WTEMP ;Save off current W register contents
 movf STATUS,w
 clrf STATUS ;Force to page 0
 movwf STATUSTEMP
 movf PCLATH,w
 movwf PCLATHTEMP ;Save PCLATH
 movf FSR,w
 movwf FSRTEMP ;Save FSR
 BANKSEL BANK1

;**
;Interrupt Source Checks
;**

Timer0InterruptCheck
 movf INTCON,w
 andlw 0x20
 btfsc STATUS,Z ;Is T0IE Set?
 goto Next1 ;No
 movf INTCON,w ;Yes
 andlw 0x04
 btfss STATUS,Z ;Is TOIF Set?
 goto Timer0Interrupt ;Yes

Next1
GPIFInterruptCheck
 movf INTCON,w
 andlw 0x08
 btfsc STATUS,Z ;Is GPIE Set?
 goto Next2 ;No
 movf INTCON,w ;Yes
 andlw 0x01
 btfss STATUS,Z ;Is GPIF Set?
 goto GPIFInterrupt ;Yes

Next2
GP2_INT_ExternalInterruptCheck
 movf INTCON,w
 andlw 0x10

 81

 btfsc STATUS,Z ;Is INTE Set?
 goto Next3 ;No
 movf INTCON,w ;Yes
 andlw 0x02
 btfss STATUS,Z ;Is INTF Set?
 goto GP2_INTExternalInterrupt ;Yes

Next3
PeripheralInterruptCheck
 movf INTCON,w
 andlw 0x40
 btfsc STATUS,Z ;Is PEIE Set?
 goto EndIsr ;No

Next4
EEIFInterruptCheck
 movf PIE1,w
 andlw 0x80
 btfsc STATUS,Z ;Is EEIE Set?
 goto Next5 ;No
 BANKSEL BANK0 ;Yes
 movf PIR1,w
 BANKSEL BANK1
 andlw 0x80
 btfss STATUS,Z ;Is EEIF Set?
 goto EEPROMInterrupt ;Yes

Next5
ADIFInterruptCheck
 movf PIE1,w
 andlw 0x40
 btfsc STATUS,Z ;Is ADIE Set?
 goto Next6 ;No
 BANKSEL BANK0
 movf PIR1,w
 BANKSEL BANK1
 andlw 0x40
 btfss STATUS,Z ;Is ADIF Set?
 goto A_DConverterInterrupt ;Yes

Next6
CMIFInterruptCheck
 movf PIE1,w
 andlw 0x08
 btfsc STATUS,Z ;Is CMIE Set?
 goto Next7 ;No
 BANKSEL BANK0 ;Yes
 movf PIR1,w
 BANKSEL BANK1
 andlw 0x08
 btfss STATUS,Z ;Is CMIF Set?
 goto ComparatorInterrupt ;Yes

Next7
TMR1IFInterruptCheck
 movf PIE1,w
 andlw 0x01

 82

 btfsc STATUS,Z ;Is TMR1IE Set?
 goto EndIsr ;No
 BANKSEL BANK0 ;Yes
 movf PIR1,w
 BANKSEL BANK1
 andlw 0x01
 btfss STATUS,Z ;Is TMR1IF Set?
 goto Timer1Interrupt ;Yes
 goto EndIsr ;No

;**
;Interrupt Source Code
;**

Timer0Interrupt
 goto EndIsr

GPIFInterrupt
 banksel BANK0
 call DelaySync ; screen out spurious drop of pin voltage

 btfsc GPIO,0x03 ; Is GP3 high
 goto EndGPIFInterrupt ; Do nothing if so

 movf intCount,w ; Get the device ID number that is
 ; currently allowed to transmit
 sublw DEV_ID ; Check whether the current ID number
 btfss STATUS,Z ; matches the device ID
 goto gpie1 ; Increase the counter and return if not

 call ReadTemp
 setc
 rrf bufHigh,f
 rrf bufLow,f
 clrc
 rrf bufLow,f
 rrf bufLow,f
 rrf bufLow,f
 rrf bufLow,f
 rrf bufLow,w
 addwf dev_id,w
 call Transmit
 movf bufHigh,w
 call Transmit
 bcf INTCON,3 ; Disable interrupt because the device has
 ; completed its mission in this cycle

gpie1
 incf intCount,f
 btfss intCount,4 ; Restart the count if it is over the device id
 ; range
 goto EndGPIFInterrupt
 clrf intCount
 bcf INTCON,3 ; Disable interrupt since it is over time

EndGPIFInterrupt
 movf GPIO,w ; Clears Mismatch Condition

 83

 BANKSEL BANK1
 bcf INTCON,GPIF ; Clear Interrupt On Pin Change Flag
 goto EndIsr

GP2_INTExternalInterrupt
 goto EndIsr

EEPROMInterrupt
 goto EndIsr

A_DConverterInterrupt
 goto EndIsr

ComparatorInterrupt
 goto EndIsr

Timer1Interrupt

EndIsr
 clrf STATUS ;Select Bank 0
 movf FSRTEMP,w
 movwf FSR ;Restore FSR
 movf PCLATHTEMP,w
 movwf PCLATH ;Restore PCLATH
 movf STATUSTEMP,w
 movwf STATUS ;Restore STATUS
 swapf WTEMP,f
 swapf WTEMP,w ;Restore W without corrupting STATUS bits
 retfie ;Return from interrupt

;**
;Initialization
;**

Init
 call 0x3FF ; retrieve factory calibration value
 ; comment instruction if using simulator, ICD2, or
 ; ICE2000
 BANKSEL BANK1 ; BANK1
 movwf OSCCAL ; update register with factory cal value
 movlw TrisConfig ; set direction so that pins 3 and 5 (GP4 and GP2)
 ; are outputs
 movwf TRISIO ; all others are inputs (high-z)
 movlw IntconInit ; configure interrupt control register
 movwf INTCON ; so that IOC on GP3 is enabled
 movlw ANSELInit ; configure GP0 and GP1 (A/D Vref) as analog input
 movwf ANSEL ; Fosc/16 for A/D clock
 clrf VRCON ; comparator Vref off
 bsf IOCB,3 ; interrupt on pin change for GP3
 BANKSEL BANK0 ; change back to PORT memory bank
 movlw CMCONInit ; configure comparator inputs as digital I/O
 movwf CMCON
 movlw ADCON0Init ; configure ADCON0 so the output is left justified
 movwf ADCON0 ; and the voltage reference is Vref

 bcf GPIO,_ADEN ; clear GPIO ports
 bcf GPIO,_TXOUT ; clear GPIO ports

 84

 clrf intCount ; initialize the interrupt counter
 movlw DEV_ID
 movwf dev_id ; put the device ID to the dev_id register
 clrc ; clear the carrier flag
 rlf dev_id,1 ; shift the ID to bits 6:3
 rlf dev_id,1
 rlf dev_id,1

;**
;Main
;**

Main
 bcf GPIO,_TXOUT ; clear transmit port
 nop
 sleep
 nop
 goto Main

;**
;Subroutines & Functions
;**

;***
;ReadTemp subroutine
;Get data from thermistor to send out async port into w
;INPUT: none
;Output: W
;VARIABLES: idx(counter)
;***

ReadTemp
 banksel BANK0
 bsf GPIO,_ADEN ; turn on thermistor
 call DelayAD
 bsf ADCON0,1 ; turn on A/D
waitlp: btfsc ADCON0,1
 goto waitlp
 bcf GPIO,_ADEN ; turn off thermistor

 movf ADRESH,0 ; move the higher byte to w register
 movwf bufHigh ; move the result to buffer

 banksel BANK1
 movf ADRESL,0 ; move the lower byte to buffer
 banksel BANK0
 movwf bufLow

 return

;**
; Transmit
;**

Transmit
 banksel BANK0

 85

 movwf bufTransmit ; Move byte to transmit from w into
 ; bufTransmit
 movlw d'9' ; Need to send 9 bits (not counting stop bit)
 movwf idx
 clrc ; Set the carry ("previous bit") to zero --
 ; start bit
 rrf bufTransmit,1 ; Shift the start bit to the current bit
 ; position (7)

 ; Transmit start bit '0'
 btfsc bufTransmit,6 ; This bit is a '0' -- is the next bit a '1'?
 goto TxmZero
 bsf GPIO,_TXOUT ; The next bit is a zero -- transmit a '0'
 ; with exact delay
 call DelayExact
 goto TxmNext

TxmStart
 btfsc bufTransmit,7 ; Is the current data bit '0'?
 goto TxmOne ; Goto transmit a '1'
 btfsc bufTransmit,6 ; This bit is a '0' -- is the next bit a '1'?
 goto TxmZero
 nop
 bsf GPIO,_TXOUT ; The next bit is a zero -- transmit a '0'
 ; with exact delay
 call DelayExact
 goto TxmNext

TxmZero ; The current bit is a 0 and the next is a 1
 ; There is a delay switching the transmitter
 ; off -- Compensate by using a smaller delay
 ; this time and a larger delay the next
 bsf GPIO,_TXOUT
 call DelayShort
 goto TxmNext

TxmOne
 skpc ; Was previous bit a zero?
 goto TxmOneExtended ; Yes -- needs special processing
 bcf GPIO,_TXOUT ; Transmit a '1'
 call DelayExact
 goto TxmNext

TxmOneExtended ; The previous bit was a 0 and this is a 1
 ; There is a delay switching the transmitter
 ; off -- Compensate by using a larger delay
 ; this time (a smaller delay was used last
 ; time)
 bcf GPIO,_TXOUT
 call DelayExtended
 goto TxmNext

TxmNext
 rlf bufTransmit,1 ; current bit -> carry
 decfsz idx,1 ; decrease the bit count
 goto TxmStart
 bcf GPIO,_TXOUT ; send the stop bit of '1'

 86

 call DelayExact
 return

;**
; DelayShort
;**

DelayShort
 movlw D_SHORT
 movwf inner
DB0
 decfsz inner,f ; loop countdown
 goto DB0
 nop
 nop
 return

;**
; DelayExact
;**

DelayExact
 movlw D_EXACT
 movwf inner
DB1
 decfsz inner,f ; loop countdown
 goto DB1
 return

;**
; DelayExtended
;**

DelayExtended
 movlw D_EXTENDED
 movwf inner
DB2
 decfsz inner,f ; loop countdown
 goto DB2
 return

;**
; DelayAD: delay for the hold capacitor in A/D to charge up
;**

DelayAD
 movlw D'20'
 movwf inner
DBAD
 decfsz inner,f ; loop countdown
 goto DBAD
 return

;**
; DelaySync: delay to make sure it is the synchronization bit
;**

 87

DelaySync
 movlw D'5'
 movwf inner
DS0
 decfsz inner,f ; loop countdown
 goto DS0
 return

 END ; directive 'end of program'

 88

 89

BIBLIOGRAPHY

1. M. H. Mickle, M. Lovell, L. Mats, L. Neureuter, and D. Gorodetsky, "Energy

 Harvesting, Profiles, and Potential Sources," International Journal of Parallel
 and Distributed Systems and Networks, vol. 4, pp. 150-160, 2001.

2. M. H. Mickle and James T. Cain, “Passive Wireless Sensors for Spacecraft
 Applications,” University of Pittsburgh, 2005.

3. Microchip Technology Inc., rfPIC12C509AG / 509AF Data Sheet, 2001.

4. ECS Inc. International, CSM-7 SMD Crystal for TX/RX Chipset, 2002.

5. Microchip Technology Inc., Appl. Note 846, pp. 1-8.

6. Custom Computer Services, Inc., PICmicro® MCU C Compiler Reference
 Manual, 2002.

7. M. Mi and M. H. Mickle, "Annealing Approach to the Impedance Matching of
 Antennas for RFID Tags," Manuscript submitted to IEEE Microwave and
 Wireless Components Letters, University of Pittsburgh.

8. Microchip Technology Inc., PIC12F629 / 675 Data Sheet, 2003.

9. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. Boston: Artech
 House, 1993.

10. Microchip Technology Inc., PIC16F870 / 871 Data Sheet, 2003.

11. Panasonic, Multilayer Chip NTC Thermistors (ERTJ), Rev.02/04.

	PREFACE
	INTRODUCTION
	PROBLEM STATEMENT
	PROTOTYPES ZERO AND ONE
	Figure 3.1 Fabricated Prototype Zero Board
	Figure 3.2 Fabricated Prototype One Board with Dimensions Indicated

	PROTOTYPE TWO
	HARDWARE
	Figure 4.1 Prototype Two Hardware Schematic
	Figure 4.2 PLL Filter Spreadsheet (Included with Microchip AN846)
	Figure 4.3 Prototype Two PCB Layout
	Figure 4.4 Fabricated Prototype Two Board

	SOFTWARE
	Figure 4.5 rfPICTest.c Source Code
	Figure 4.6 Prototype Two Software Pseudocode
	Figure 4.7 RF Transmitting for Loop

	RESULTS
	Prototype Two Demonstration
	Figure 4.8 Prototype Two Demonstration Setup
	Figure 4.9 ProComm Screen Capture from Prototype Two Demonstration

	Power Consumption Data
	Figure 4.10 Power Test Source Code
	Table 4.1 Circuit Power Consumption Measurements

	Prototype Two Summary

	PROTOTYPE THREE
	HARDWARE
	Figure 5.1 Prototype Three Hardware Schematic
	Figure 5.2 Prototype Three PCB Layout
	Figure 5.3 Fabricated Prototype Three Board

	ANTENNA IMPEDANCE MATCHING
	Initial Impedance Matching Tests
	Figure 5.4 ARS Board Equivalent Circuitry
	Table 5.1 Impedance Matching Measurements
	Figure 5.5 Impedance Matching Smith Chart
	Table 5.2 Additional Measurements with L1 = 27 nH

	Impedance Matching for the Remaining Boards
	Table 5.3 Impedance Matching Results

	COMMUNICATIONS
	EXISTING PROTOCOL
	Figure 6.1 Initial Non-Interference Protocol Timing

	DATA RATE IMPROVEMENT
	READ CYCLE TIMING
	Figure 6.2 Generic Read Cycle Timing, Ten Time Slots
	Figure 6.3 Voltage Consumption During Sync Pulses
	Figure 6.4 ARS Board Energy Harvesting and Sync Pulse Circuitry
	Table 6.1 ARS Board Charging Times at Various Distances

	SOFTWARE
	GENERAL ARS BOARD SOFTWARE
	Figure 7.1 Updated PIC GPIO Pinouts

	TRANSMIT ROUTINE
	Figure 7.2 ARS Board Pseudocode
	Figure 7.3 Transmit Routine Flowchart

	BASE STATION SOFTWARE
	Figure 7.4 Base Station Pseudocode
	Table 7.1 Base Station Software Delays
	Figure 7.5 Final Non-Interference Protocol Timing

	RESULTS
	DEMONSTRATION SETUP
	Figure 8.1 ARS Boards and Base Station Antenna
	Figure 8.2 Temperature Data Framing
	Figure 8.3 PC Receiver Program Pseudocode

	INTERPRETATION OF A/D CONVERTER READINGS
	Figure 8.4 Relationship Between A/D Converter Readings and Temperature

	PROTOTYPE THREE DEMONSTRATION
	Figure 8.5 Demonstration MATLAB Screen Capture
	Figure 8.6 Oscilloscope Capture for Read Cycle Timing Verification

	CONCLUSIONS
	FUTURE CONSIDERATIONS

	APPENDIX A. PROTOTYPE TWO SOURCE CODE
	APPENDIX B. PROTOTYPE THREE SOURCE CODE
	BIBLIOGRAPHY

