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MODEL OF LIFTING 

 
 

Jill Christina Slaboda, Ph.D 
 

University of Pittsburgh, 2007 
 
 

A classification procedure was developed that uses hidden Markov models (HMMs) to identify 

sub-groups within a chronic lower back pain (CLBP) patient population based on their time 

series of lifting patterns during a repetitive lifting task. Based on clinical observations of a 

repetitive lifting task, our approach assumed that the patient population was composed of two 

groups: one group that performed lifts more similar to controls than to other patients and another 

group that lifted differently from control subjects. Two HMMs were designed to describe the 

repetitive lifting data, one derived from the control subject data and one derived from the CLBP 

subject data. The HMMs were designed based on the results of a data reduction procedure that 

reduced and combined the multidimensional lifting parameters into discrete lifting patterns using 

factor analysis and cluster analysis.  

Simulation studies were performed to demonstrate that the HMMs could reliably identify 

subjects from one group that were intentionally mislabeled as the other group. When the HMMs 

were applied to clinical data, 35 of the 81 CLBP subjects were classified to the control HMM 

and 46 were classified to the CLBP HMM. For the control group, 46 of 53 control subjects were 

classified to the control HMM and only seven were classified to the CLBP HMM. The CLBP 

groups were found to use different lifting patterns during the task. The CLBP subjects that were 

classified to the CLBP HMM were found to use a lifting pattern that involves slow, controlled 
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movements. Self-reported measures of the two groups of CLBP subjects were compared and 

self-reported pain intensity, pain severity and perceived self-efficacy found to be statistically 

different. The CLBP subjects that were classified to the CLBP HMM reported higher pain 

intensity and pain severity, and lower self-efficacy suggesting that the CLBP population is 

heterogeneous and that the HMM classification procedure can successfully identify two 

meaningfully different sub-groups of CLBP patients.         
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1.0 INTRODUCTION 

 
 
 
 
Patients with the same clinical diagnoses are often assumed to be a homogeneous group. In 

reality, these patients are heterogeneous and identifying differences between the patients may 

suggest diverse treatment options that can improve treatment effectiveness. For example, Delitto 

et al. identified sub-groups of patients with acute low back pain [1]. When these patients 

received treatment that was specialized to their symptoms assessed by clinical examination, the 

patients had a greater return to work status and lower self-reported disability compared to acute 

low back pain patients who were assigned to a single standardize treatment protocol [2].  

Classifications of chronic lower back pain (CLBP) patients have been found based on the 

patients’ responses to self-reported measures and on clinical examinations. Turk and Rudy 

identified three groups of CLBP patients based on responses to questionnaires related to pain 

psychosocial aspects, responses of patient’s significant other to their pain and frequency of 

general activities [3, 4]. O’Sullivan classified CLBP patients to one of two groups based on 

posture of the lower back and pain reports of subjects [5]. Dunn et al found four classifications of 

low back pain patients with latent class analysis of self-reported pain measures reported over a 

year [6]. These studies indicate the heterogeneity of CLBP patients but are limited in that the 

classifications relied on patient’s perception or the clinician’s experience. The objective of this 

project is to develop an unbiased classification procedure of CLBP patients based on lifting 

patterns performed during a repetitive lifting task.    
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Repetitive lifting tasks have been reported to initiate fatigue, which causes distinct changes 

in body segmental motion [7-8], posture [9] and flexibility [10] in pain-free control subjects. The 

presence of CLBP causes adaptations in motion in addition to those caused by fatigue. Several 

studies have compared motion of pain-free controls and CLBP subjects and have found 

differences in flexibility [11], spinal loading [12], muscle activation [13], segmental motion [14], 

jerk [15] and lifting strategies over time [16]. For example, Lavivierie et al. showed that chronic 

lower back pain patients (CLBP) demonstrated less lumbar flexion than pain-free controls during 

a flexion task [17]. Marras et al found differences in spinal loading with CLBP subjects, who 

experienced 26% more compression and 75% more shear than control subjects for a static 

exertion task [18]. Kankaanpää et al observed that CLBP patients showed greater fatigability of 

the gluteal maximus muscle during a flexion-extension task [19]. Oddsson and De Luca found 

that patients perform at a lower maximum voluntary contraction of paraspinal muscles than 

controls and the presence of pain causes a redistribution of the activation behavior between 

synergistic muscles of the lumbar back [13].  

In addition to differences in types of motion and muscle activation patterns during specific 

tasks, several studies have found temporal differences in motion patterns when control subjects 

are compared to CLBP subjects during a lifting task. Rudy et al. examined changes in lifting 

parameters over the duration of a repetitive lifting task by separating task time into three phases 

of early, middle and late [16]. CLBP subjects were found to modify lifting parameters in the 

early to middle phases of the task, while control subjects made modifications throughout all task 

phases. Similar results were found in Slaboda et al., who analyzed jerk at the shoulder in control 

and CLBP subjects performing the same repetitive lifting task [15]. CLBP subjects were found to 

perform lifts with lower jerk values than controls. Over task time, CLBP subjects increased jerk 
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from the early to middle phases while control subjects increased jerk throughout all phases of the 

task. These studies have shown that CLBP and pain-free control subjects demonstrate different 

motion patterns and different temporal characteristics of motion during tasks such as lifting. 

However, the differences in motion among CLBP subjects have received little research attention 

despite evidence in the psychosocial literature that shows the heterogeneity of CLBP group. 

The present investigation was based on two conclusions drawn from the repetitive lifting 

study: first, CLBP subjects and controls as groups use different temporal lifting motion patterns 

during the task and second, based on clinical observations, the CLBP subjects are not 

homogeneous. Several of the CLBP subjects appear to use a lifting style that is very similar to 

controls while other CLBP subjects perform lifting styles that are very different. Our goal was to 

develop an objective procedure to identify a sub-group of CLBP subjects that performed more 

like controls from the CLBP population. The procedure used hidden Markov models (HMM) to 

provide classification of CLBP subjects based on their time series of lifting patterns. HMMs 

have previously been used to describe the time series of lifting patterns of CLBP subjects and 

control subjects during a repetitive lifting task [20-21]. The HMM describing control subjects’ 

motion was found to have a topology that included more transitions than the HMM topology that 

described lifting motion of CLBP subjects, suggesting that control and CLBP subjects 

demonstrate different lifting patterns over time and HMMs can be used to describe these 

differences.  

In this project, a database that contains measures of psychological, medical and physical 

functioning of CLBP subjects from a previously conducted clinical study was used. During the 

clinical study, CLBP subjects completed a series of self-reported measures to assess 

psychological functioning, and CLBP subjects and control subjects completed a repetitive lifting 
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task to assess physical functioning. The body motion of the subjects during each lift was 

described by one of five lifting patterns, as determined from a data reduction procedure. The 

procedure used factor analysis and cluster analysis to combine the multidimensional motion 

parameters into lifting patterns. Two HMMs, one to describe the lifting pattern sequences of 

control subjects and the other to describe the lifting pattern sequences of CLBP subjects, were 

designed. The classification procedure assigned each subject to the HMM that had a higher 

probability of describing the subject’s sequence of lifting patterns. The CLBP subjects that are 

assigned to the control HMM were identified as the sub-group of CLBP subjects that perform 

lifts more similar to control subjects. 

The possibility of using HMM classification approach to identify CLBP groups was 

evaluated with a simulation study. The simulation was performed to assess reliability because all 

CLBP subjects were classified in one group and no information about the CLBP sub-groups was 

available. The simulations were conducted to determine how reliably the HMMs can detect 

lifting sequences that are classified to the wrong group and classify them to the appropriate 

group. Since the HMM classification procedure was successful in detecting mislabeled subjects 

in the simulation study, the procedure was applied to the clinical data. The self-reported 

measures of the CLBP groups were compared to determine whether the HMM classification 

produced could identify two meaningful different groups within a sample of CLBP subjects. 

This thesis is organized into six chapters. Chapter 2 provides a literature review of previous 

lifting studies comparing controls and CLBP subjects, classification of CLBP patients, cluster 

analysis methods and the use of HMMs to identify groups within a clinical population. The third 

chapter is the methods chapter and it describes the protocol of the clinical study including the 

self-reported measures and the lifting task. The data reduction procedure and the design of the 

 4



HMMs are also described in the methods chapter. Chapter 4 describes the simulation studies that 

were performed to determine whether the HMMs can reliably identify sequences to the correct 

model when the sequences are mislabeled to the wrong group. The results of the simulation 

studies are described in Chapter 5. The methods of HMM classification procedure on the clinical 

data, the results of the HMM classification procedure and the discussion which interprets the 

results are described in Chapter 6.  
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2.0 BACKGROUND 

 

 

This section will review literature that has shown differences in the lifting patterns of controls 

and CLBP subjects, identified groups within the chronic pain population, shown that hidden 

Markov models can be applied to clinical time series and methods of validating cluster solutions.  

 

 

2.1 PREVIOUS LIFTING STUDIES  

 

The lifting parameters that were used in this dissertation to describe lifting patterns were used 

previously and have shown significant differences in motion between CLBP subjects and control 

subjects. This section will review previous research related to lifting differences during a 

repetitive lifting task that were performed at the University of Pittsburgh Pain Evaluation and 

Treatment Institute.  

The relative motion of the hip and knee angles during repetitive lifting task was 

investigated to determine whether control subjects and CLBP subjects perform lifts differently 

[14]. Relative motion was described with a coordination index, derived from hyperbolic tangent 

curves that were fit to the hip and knee angle data as functions of lift time. Each curve was 

described by four parameters: starting angle, ending angle, risetime and midpoint time. The 
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risetime was defined as the time required for the angle to decrease from 88% to 12% of the total 

change in angle. The midpoint time defined the time after the beginning of the lift at which the 

hip or knee angle had completed half of its range of motion. The difference between the hip and 

knee risetime and the difference between the hip and knee midpoint described relative movement 

of the two joints. The difference is zero when a subject moves the hip and knees at the same 

speed, resulting in synchronous motion. In this case, both angles reach the midpoint at the same 

time. A negative midpoint difference occurs when the hips straighten before the knees. A 

positive risetime difference indicates that the knee angle is changing faster than the hip angle, 

producing a longer hip risetime than knee risetime.  

Pain-free controls were found to move the hip and knee asynchronously when they 

initiated the lift, but the hip and knee angles reach full extension simultaneously at the end of the 

lift. Controls either moved the knees earlier and the hip moved faster or the hip moved earlier 

and the knees moved faster in order to end together. For this lifting style, the midpoint and 

risetime differences are opposite in sign and the hip and knee motion produce a coordinated 

ending. CLBP patients used a "guarded" lifting pattern in which the hip and knee moved 

synchronously when patients initiated the lift but the hip and knees angles finished motion at 

different times. In this lifting style, the midpoint and risetime differences are the same sign and 

the hip and knee are not coordinated at the end of the lift. The guarded lifting style can result 

from contracting both agonist and antagonist muscles of a joint and has been suggested as a 

mechanism to avoid or minimize pain during movement [22].  

  The coordination index was used to assess the impact of a rehabilitation program on 

lifting motion of CLBP subjects. The coordination index showed that CLBP patient’s pre- and 

post-treatment index changed significantly, showing more coordinated endings between the hip 

 7



and knee post-treatment. The post-treatment coordination indices were not significantly different 

from those observed in controls. The test-retest reliability of the coordination index was found to 

be high at 0.76 [23].   

In addition to the coordination index, similar motion pattern differences were found in 

parameters of starting posture, lift duration and a work index [14]. The starting posture measures 

whether the subject performed a torso lift or a squat lift. CLBP patients pre-treatment were found 

to use more of a squat lift than controls, and post-treatment patients showed a greater squat 

lifting style. Lift duration is the time required for the subject to perform a lift. Control subjects 

performed lifts faster than CLBP patients pre- and post-treatment. Post-treatment testing resulted 

in decreased lift duration of CLBP patients when compared with pre-treatment testing. Work 

index was defined as the number of lifts performed multiplied by the weight lifted. The work 

index was greater for control subjects than CLBP patients. Treatment showed a 71% increase in 

the work index from pre-treatment values. However the post-treatment values never approached 

the work indices of control subjects [23]. 

Differences in the hip midpoint, knee midpoint, hip-knee midpoint difference, starting 

posture, and lift duration over task time were investigated [16]. Lifts were grouped as early, 

middle, or late phase, based on the individual subject's number of repetitions, to minimize the 

effects of wide variations among subjects in the number of lifts performed. To determine 

whether the control and CLBP subjects changed lifting parameters differently over time, 

repeated-measures ANOVA were used to assess differences between experimental group and 

changes over time. Significant differences between the motion of the lifting patterns over time 

were found for starting posture, hip, midpoint, knee midpoint and lift duration. Starting posture 

changed over time for CLBP patients demonstrating a greater knee angle as the task progressed 
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from the early to the middle phase. Control subjects consistently produced greater hip flexion 

than patients throughout the task. The hip and knee midpoints showed dissimilar changes over 

task time for controls compared to patients. Control subjects increased both hip and knee 

midpoints as the task progressed but patients increased midpoint from early to middle phase and 

then stabilized from the middle to the late phase. Lift duration demonstrated the same changes 

over task time for both groups, in which speed increased as the task progressed from early to 

middle phase and then speed stabilized. Controls performed faster lifts than patients for all 

phases. 

HMMs have been used to describe the temporal changes in the angle parameters of pain-

free controls and CLBP subjects during a repetitive lifting task [20]. The HMMs were designed 

from the DISSOLVE algorithm that determined the simplest model structure for discrete HMMs 

[21,24]. This algorithm iteratively removed state transitions and/or states from a trained fully-

connected HMM until the model had only a single state. The Baum-Welch algorithm was used to 

train the HMMs. During training, the initial estimates of HMM parameters were based on the 

training data and the lifitng sequences could start in any state within the HMM. The algorithm 

was validated with simulation studies [21].  

The DISSOLVE algorithm was applied to a fully-connected HMM that described the lifting 

parameters of CLBP patients and control subjects performing a repetitive lifting task to 

determine the appropriate HMM for each group. The three lifting parameters, risetime 

difference, midpoint difference and the difference between the starting hip angle and starting 

knee angle, were calculated for each lift that the subjects completed. For each group, the 

parameters were normalized to the range of the values and then vector quantized into 32 clusters. 

A 3-state HMM was found to be the appropriate HMM for the control HMM and CLBP HMM. 
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The control HMM had two interstate transitions: from state 2 to state 1 and from state 2 to state 

3.  The CLBP HMM had one isolated state (state 1) and one interstate transition: from state 2 to 

state 3.     

Although the angle parameters from the hyperbolic tangent equation showed differences 

between groups of CLBP patients and controls during lifting, these parameters relied on small 

differences between the timing of the hip and knee angle motion and were often difficult to 

interpret. A search for a more robust measure to differentiate lifting patterns between CLBP 

patients and control lead to jerk [15,25], which is defined as the rate of change of acceleration or 

the third derivative of position [26]. Jerk was applied to the shoulder of control and CLBP 

subjects to describe motion of the subjects when performing a repetitive lifting task. Since jerk 

was calculated as the third derivative of displacement, it was a noisy measure and smoothing 

methods were necessary to obtain an estimate of jerk. A simulation study was performed to 

assess the performance of the smoothing methods to estimate jerk of a known trajectory with 

additive correlated noise. Mean-squared-error was used as a measure of performance and was 

calculated between the jerk estimates of the noise-free known trajectory and the smoothed 

trajectory. The two smoothing methods that were assessed in the simulation were Woltring’s 

generalized cross-validation hepatic spline [27] and Wells and Winter’s method of low-pass 

filtering [28-29].   

 The results of the simulation showed that Woltring’s spline produced the best estimates 

of jerk. This method was applied to a database of control and CLBP subjects’ lifting data to 

calculate jerk at the shoulder. Derivatives of shoulder displacement were calculated using 

differentiation of the spline coefficients, and root-means-square (rms) amplitude of jerk was used 

for comparison. Lifts were divided into phases of early, middle or late based on the number of 
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repetitions completed by the subject. Average values of rms jerk during a lift were computed at 

each of the task phases. Significant group differences were found for rms jerk. CLBP patients 

were found to perform lifts with lower jerk values than controls and as the task progressed, rms 

jerk increased for both groups. A group-by-phase interaction was significant. After completion of 

a rehabilitation program, CLBP patients performed lifts with greater rms jerk. In general, patients 

performed lifts with lower jerk values than controls, suggesting that pain impacts lifting style. 

 

 

2.2 CLASSIFICATION SYSTEMS OF LOW BACK PAIN PATIENTS 

 

Previous classifications of pain patients have been found based on self-reported pain and 

psychological measures, clinical examination and motion patterns. This section will review the 

classification methods of previous studies and identify the measures that separate pain patients 

into different classifications. 

Turk and Rudy developed a multiaxial classification of temporomandibular disorders 

(TMD) patients based on responses to the West-Haven Multidimensional Pain Inventory (MPI), 

which assesses pain-relevant psychosocial aspects, responses of the significant other to the 

patient’s pain and frequency of common activities [3-4]. Subjects were asked to complete the 

MPI questionnaire and cluster analysis was applied to the responses. From the cluster solution, 

three distinct groups of TMD patients were found: Dysfunctional group, characterized by higher 

levels of pain, life interferences, emotional distress and functional limitation; Interpersonally 

distressed group, characterized by lower levels of social and personal support; and Adaptive 

copers group, characterized by lower levels of pain, functional limitation, and emotion distress. 
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To validate the classifications, additional self-reported measures that were not included in the 

formation of the classifications were compared between the three groups. The results showed 

that the Dysfunctional group reported significantly greater pain severity and improved mood, the 

Interpersonally Distressed reported lower levels of support and the Adaptive cope group reported 

higher levels of perceived control when compared to the two other classifications [4]. Turk and 

Rudy extended the MPI classification to a CLBP sample and a chronic headache sample and 

found that both samples demonstrate the same sub-groups as found with TMD patients [30]. 

The clinical utility of the classifications were shown in a study that administered the MPI 

questionnaire to TMD patients before, immediately after and six months after a standard 

treatment protocol for TMD [31]. The MPI classifications of TMD subjects were found to have 

differential responses to the treatment. Among the classifications, the Dysfunctional group 

showed the greatest improvement on measures of pain intensity, perceived impact of TMD on 

their lives, depression and negative thoughts. In each group, the greatest improvement was found 

on the measures that defined the groups at pre-treatment, indicating the importance of tailoring 

treatment components to specific characterization of the groups.   

A recent study identified sub-groups of patients with musculoskeletal pain based on self-

reported measures of disability, self-efficacy, pain intensity, fear of movement/(re)injury, and 

catastrophizing [32]. Subjects were asked to respond to self-reported measures and from these 

responses, three groups were identified. The first group is the High self-efficacy-Low fear-

avoidance sub-group and subjects in this group reported low levels of pain intensity, disability, 

fear of movement/(re)injury, catastrophizing and high levels of self-efficacy. The second group 

was labeled Low self-efficacy-Low fear-avoidance and the subjects in this group reported high 

levels of pain intensity and disability, and low levels of fear of movement/(re)injury, 
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catastrophizing and self-efficacy. The last group was labeled the Low self-efficacy-High fear-

avoidance and this sub-group was characterized as reporting high levels of pain intensity, 

disability, fear of movement/(re)injury, and catastrophizing, and low levels of self-efficacy. A 

binary measure of work status of the subjects were compared between the clusters and found to 

be significantly different. Subjects assigned to the High self-efficacy-Low fear-avoidance sub-

group reported working significantly more frequently than the subjects in the other two sub-

groups. The authors concluded that the differences in the working status of the sub-groups 

indicate the utility of the sub-groups and suggest that different treatment approaches are 

necessary for the sub-groups [32]. 

  A latent class analysis was applied to the self-reported measures reported by low back 

pain patients over a period of six months to identify groups with different pathways of back pain 

[6]. Subjects were recruited from a primary care clinic and received standard care. The subjects 

were asked to respond to questionnaires related to pain intensity, disability, and the psychosocial 

measures at baseline, monthly for a period of six months and at one year. Four pathways were 

defined and these pathways were persistent mild pain, recovering, severe chronic pain, and 

fluctuating pain. The persistent mild group reported moderate levels of pain intensity and 

disability. The recovering groups reported no to little back pain, good psychosocial status and 

low disability ratings. The severe chronic group reported high levels of pain intensity, poor 

psychosocial status and high levels of disability. The fluctuating group varied from high to 

moderate pain intensity, moderate levels of disability and poor psychosocial status. At one year 

follow-up, the persistent mild group and recovering group had improved on all measures while 

the severe chronic groups and fluctuating group showed little to no improvement. The authors 
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suggest that these four groups provide information about the course of low back pain and could 

possible form a basis for intervention [6]. 

O’Sullivan identified two groups of CLBP patients based on self-reported measures of pain 

and physical examination of the patient’s spinal motion [5]. The CLBP patients were assigned to 

either the flexion pattern group or the active extension pattern group based on the physical 

therapists assessment and the patient’s self-reported pain. The CLBP patients assigned to the 

flexion pattern reported aggravating of symptoms with movements and postures involving the 

flexion of the lower lumbar spine, difficulty maintaining neutral lordosis with the tendency to 

flex the lumber spine, and pain relief in spinal extension [5]. The active extension pattern 

reported difficulty performing extension motion and the symptoms reported by this group were 

opposite of those associated with the flexion group. The characteristics of the active extension 

group included aggravating of symptoms with movements and postures involving the extension 

of the lower lumbar spine, excess of lordosis with posture and sitting, and pain relief in spinal 

flexion [5]. 

 The CLBP flexion pattern group and active extension pattern group were compared to 

control subjects in separate studies to determine whether there were any biomechanical 

differences between the groups during an unsupported sitting task. The biomechanical 

parameters used to describe body motion during the task were the posture of the spine, measured 

with reflective markers located on the spine [33], and activation patterns of the trunk muscles, 

measured with surface electromyography of the superficial trunk muscles [34]. Control subjects 

were found to activate low back muscles while maintaining a neutral position of the spine during 

sitting. The CLBP flexion pattern group had decreased muscle activity of the lower back muscles 

[34] and had greater lumbar flexion [33]. The CLBP active extension pattern group co-contracted 
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the stabilizing muscles [34] and had hyperlordotic posture [33]. Significant differences in posture 

and muscle activation between control subjects and CLBP subjects were only found when the 

CLBP subjects were classified into the sub-groups of flexion pattern and active extension 

pattern, indicating the importance of identifying sub-groups within the CLBP population [34].  

Delitto et al. developed a classification system that assigned treatment protocols to lower 

back pain subjects based on physical examination and self-reported measures [1]. Patients were 

assigned into four classifications and each classification had a different treatment protocol. If 

patients reported less pain in performing extension and greater pain when performing flexion or 

vice versa, the patient was assigned to the specific exercise groups. The treatment protocol of 

this group involved exercises that were directed to the exercises in which the patient reported 

less pain, i.e. for less pain in extension, patients were given specific exercises related to 

extension. The manipulation groups consisted of patients with recent report of back pain, no 

symptoms of pain below the knee and lumbar segmental hypomobility. The treatment protocol of 

this group was manipulation of the lumbosacral spine that involved the therapists delivering a 

force to the pelvis. The stabilization group included patients with frequent previous episodes of 

back pain, greater straight leg raise range of motion, aberrant motions and lumbar hypermobility. 

The treatment protocol of this group consisted of trunk muscle strengthening and stabilization 

exercises. The traction group consisted of patients with nerve root compression and treatment 

involved mechanical or auto traction [35]. 

The treatment classification was further investigated by Fritz et al in a randomized 

controlled study to determine effectiveness of the treatment [2]. The study assigned patients to 

either a standardized treatment protocol or specialize treatment classifications described by 

Delitto [1]. Treatment outcomes measures included the Oswestry disability rating [36] and the 
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return work status of the patients. The Oswestry disability rating is a self-reported measure that 

asks subjects to rate their perceived difficulty in performing activities of daily life such as 

walking, sitting, standing, sleeping and personal care. The results showed that when patients 

received treatment specialized to their symptoms these patients had a greater return to work 

status and lower self-reported disability compared to acute low back pain patients who were 

assigned to standardize treatment protocol. 

Wrigley et al. used principal component analysis to distinguish the lifting techniques 

between healthy subjects that develop low back pain (LBP) and those who do not and to compare 

the principal component analysis approach to traditional parameter-based approach [37] The 

study used a database that contained the lifting motion parameters of subjects without LBP or 

with LBP without medical attention recruited from a nylon production plant and monitored for 2 

years to assess LBP status. The lifting parameters were from a lifting task that asked subjects to 

lift a 15 kg box from the floor to shoulder height for five repetitions, and the motion of the trunk 

and the box were tracked with markers during the lifts. The parameters of acceleration, velocity 

and displacement of the box and spinous processes of T1, S1 and L1, trunk compression and 

shear, and the moments at spinous processes of T1, S1 and L1 were calculated, resulting in 16 

parameters. All parameter data were analyzed with principal component analysis.  

Six principal components were found in the data and principal component scores were 

calculated and compared between the groups. The traditional parameter-based approach involved 

the calculation of peak, time to peak, minimum, time to minimum and mean values of each of the 

displacement waveforms, resulting in 48 parameters. The results showed significant differences 

in the principal component scores of box vertical velocity, T1 acceleration, T1 and S1 moments 

and trunk compression between subjects that developed LBP and those that did not. No 
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significant differences were found between the groups for the traditional parameter-based 

approach. These results suggest that subjects that develop LBP used different lifting patterns, 

especially in motion related to the trunk kinematics and placement of the box, than subjects that 

do not develop LBP and also demonstrate the utility of using principal component analysis to 

describe motion of displacement waveforms during a repetitive lifting task.  

Bishop et al. applied neural networks to identify LBP patients from control subjects based 

on trunk motion [38]. Two neural networks were designed. The first neural network assessed 

whether the subject was a LBP patient or a control. Once the subject was assigned as a LBP 

patient, a second neural network was assigned the patient to pain classification based on back 

motion. The neural networks were designed to describe back motion during several repetitions of 

five tasks: flexion/extension, axial rotation, lateral bending, clockwise circumduction and 

counterclockwise circumduction. A triaxial goniometer tracked the motion during the tasks and 

the features of velocity, shape and symmetry of the displacement waveform were calculated.  

The pain classifications of the LBP subjects and control subjects were based on the Quebec 

Task Force questionnaire which assigned classification from the patient’s pain history, pain 

complaints, clinical examination and complementary studies such as magnetic imaging or 

electromyogram [39]. These classifications were no LBP (a zero on the Quebec Task force 

questionnaire), subjective complaints with pain radiation, subjective complaints without pain 

radiation, objective signs, postoperative and non-specific low back pain.  To train the neural 

networks, the features of the back motion data were separated into a training sample and a test 

sample with equal distribution of the pain groups in both samples. The results showed that the 

neural network classified the subjects in the test sample as either a LBP or control at 86% 

accuracy rate. The second neural network could distinguish the LBP pain classification at 65% 
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accuracy rate. The authors concluded that neural networks provided good discrimination between 

LBP subjects and control subjects.    

The studies reviewed in this section showed that CLBP subjects are heterogeneous 

population and sub-groups can be identified based on the patient’s self-reported measures and 

clinical evaluations. These classifications showed that CLBP sub-groups are significantly 

different on measures of self-reported pain and psychological distress and for measures of back 

posture and muscle activation of the lumbar back during tasks such as sitting. In addition, 

complex models have been able to identify LBP subjects from control subjects based on lifting 

motion and lumbar back motion, indicating that it is possible to use these types of models to 

identify sub-groups of CLBP subjects.  

 

 

2.3 HIDDEN MARKOV MODELS AND CLINICAL DATA 

 

Hidden Markov models (HMMs) have been used extensively in research to describe time series 

data. The most common areas of research that use HMMs are speech research [40-42] and 

bioinformatics [43-44] but other research areas such as animal migration and behavior [45], 

human behavior and psychology [46], gait [47] and machinery wear [48] have used these 

models. This section will review literature that pertains to application of HMMs to clinical data.  

 Yu et al applied a Markov model to assess treatment effectiveness of four treatment 

protocols based on the self-reported outcome measures of LBP patients [49]. The subjects were 

randomized to either medical care, medical care with physical therapy, chiropractic clinic or a 

chiropractic clinic with physical therapy. Patients were asked to choose one of four statements to 
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rate their perceived improvement: a lot better, a little better, about the same and worse. The self-

reported measures were collected at two, four and six weeks, and 12 and 18 months post-

treatment. A polytomous logistic regression model with a Markov structure was used to model 

the data. The results showed that patients assigned to the chiropractic treatment or medical 

doctor plus physical therapy treatment were more likely to report that symptoms were better than 

the patients assigned to the medical doctor treatment only. The patients receiving the chiropractic 

treatment with physical modalities were less likely than the patients receiving only chiropractic 

treatment to report that their symptoms were worse. The authors concluded that the Markov 

model provided a straightforward procedure to compare treatment modalities based on 

transitions and likelihood probabilities.  

Hidden Markov models were applied to accelerometer data that classified the physical 

activity of subjects performing four distinct tasks of walking on a treadmill, walking up-hill on a 

treadmill, working at a computer and vacuuming [50]. The purpose of this study was to evaluate 

whether HMMs or a quadratic discriminant analysis (QDA) model could more accurately 

identify an activity given the accelerometer data than the traditional method of using cut-off 

values. In the cut-off values, a linear regression model is used to relate accelerometer data and 

physiological variable (such as VO2), and the output corresponds to certain physical activities. 

During each activity, an accelerometer was placed on the subject’s hip and recorded acceleration 

for a total of seven minutes.    

For each activity, an ergodic 3-state Poisson distribution HMM was trained with Baum-

Welch [51] algorithm. The sequences of the accelerometer data were classified to HMMs using a 

leave-one-out method that excluded a sequence and trained the models with the remaining data. 

The excluded data were then classified to one of the activity HMMs. This process continued until 
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all sequences were classified to a HMM. On average, the HMMs were found to better classify 

the activities than the QDA models. Both the QDA and HMMs were found to perform better 

than the cut-off method, which misclassified the walking uphill and the vacuuming activities. 

The authors concluded that HMM and QDA were improved methods for determining the 

physical activity levels than the traditional models.    

Wong et al designed a HMM to evaluate the performance of a seizure detection algorithm 

[52]. The intracranial electroencephalogram (IEEG) signals of five patients with mesial temporal 

sclerosis were recorded for 515 hours and within that data were 29 seizures. The IEEG signals 

were entered into a seizure detection algorithm and a binary output of the algorithm interpreted 

the IEEG signals as either negative for seizure activity, termed baseline, or positive for seizure 

activity, termed detected. In addition to the algorithm output, the IEEG signals were marked by 

an electroencephalographer who interpreted the IEEG signal for the onset and termination of the 

seizure. The total number of classes was three with 1 denoting baseline, 2 denoting detection and 

3 denoting a seizure. A fully-connected 3-state discrete HMM was trained with the Baum-Welch 

algorithm. The results showed that 17 of the 29 seizures were detected with the HMM that 

described the algorithm outputs. The authors concluded that the HMM approach provides a tool 

for designing and validating prediction algorithms [52].      

HMMs were used to identify subjects with pregnancy disorders based on the time series 

of blood pressure [53]. The blood pressure of fifteen pregnant women with pregnancy-induced 

hypertension and 34 pregnant women with preeclampsia were recorded over a 30 minute period. 

For each group, HMMs were designed to describe the systolic blood pressure data over the 30 

minutes. Several HMMs that varied in the number of states from 5, 10, and 15 states were trained 

resulting in a total of 36 models. All models were finite state HMMs with ergodic topologies and 
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trained with the Baum-Welch algorithm. The sequences of each subject was tested against the 

two HMMs and classified to a model based on the likelihood probability. A table of the number 

of correct and incorrect classifications for each HMM classification was constructed and a 

Fisher’s exact statistic was calculated to assess the significance of the classifications.  

The results of the study showed that 5-state HMMs could significantly classified 

sequences and correctly identify 80% of the preeclampsia subjects and 62% of the pregnancy-

induced hypertension subjects. The 10-state HMMs also showed significant classifications and 

correctly classified 91% of preeclampia subjects and 47% of the pregnancy-induced 

hypertension subjects. The 15-state HMMs did not identify significant classifications and 

classified all subjects to the preeclampsia HMM. The authors concluded that either the 5-state or 

10-state HMMs could sufficiently characterize the different blood pressure variations in patients 

with preeclampsia and pregnancy-induced hypertension, indicating the problems in identifying 

the appropriate number of states in HMMs. The author concluded that the significant 

classifications of subjects with HMMs suggest the etiology of the pregnancy disorders is 

dissimilar [53].       

Cooper and Lipsitch evaluated whether structured HMMs were appropriate model to 

describe hospital infection data of three classes of pathogens: methicillin-resistant 

Staphylococcus aureus (MRSA), vanomycin-resistant enterococci (VRE) and third generation 

cephalosporin-resistant Gram-negative rods (R-GNR) [54]. The authors defined structured 

HMMs as models that incorporate epidemic process of infection. In these types of infections, 

asymptomatic individuals carry the pathogen without developing an infection while another 

proportion of individuals within the sample develop the infection. The structured HMM is based 

on a Poisson distribution and includes the epidemic process of the infections with variables for 
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the rate of transmission, rate patients are discharged, and the probability that the patient is 

already carrying the pathogen.  

Data of MRSA infections were collected from a 10 hospital bed ward over 45 months and 

data of VRE and R-GNR were collected from a 16 hospital bed ward over 42 months. Three 

models were evaluated to determine the appropriate model for each of the pathogens. These 

models were a Poisson distribution model, 2-state HMMs with a Poisson distribution and 

structured 2-state HMMs with a Poisson distribution. Simulated data of 1000 monthly infections 

were generated from each model and statistics were calculated to evaluate the fit of the model to 

the data. The results showed that the structured HMM was the most appropriate HMM for the 

MRSA and VRE data. The Poisson distribution model was found as the appropriate model for 

the R-GNR data. The authors concluded that the new approach of the structured HMMs is an 

improvement over standard Poisson distributions models especially for MRSA and VRE data.  

  

     

2.4 CLUSTER ANALYSIS 

 

The HMMs in this project were designed from a data reduction procedure, which is described in 

Chapter 3. The data reduction procedure was applied to the lifting parameters and involves factor 

analysis and cluster analysis. Since clustering methods are exploratory and will produce a 

solution even if the solution is incorrect, the reliability and validity of the cluster solution must 

be assessed [55].  Invalid cluster solutions can occur when the number of clusters in the data is 

arbitrarily chosen. For instance, if the number of clusters is underestimated, information could be 

lost due to merging of clusters.  
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Milligan and Cooper suggested seven steps to cluster analysis process based on a review of 

the literature [56]. These steps are: (1) select entities to cluster, (2) select variables of the entities 

to cluster, (3) decide whether to standardize the data, (4) chose a similarity or dissimilarity 

measure that separates the data into clusters, (5) chose cluster analysis method, (6) determine 

number of clusters in data and (7) interpret, test and replicate the cluster solution. The first two 

steps of the process are related to the researcher’s study design. Aldenderfer and Blashfield 

emphasized that selecting variables is not trivial and should ideally be selected within the context 

of explicitly stated theory that will support the classifications [57].  

Once the variables have been selected, the next step is to decide whether to standardize the 

variables in the data. If the scales and/or magnitudes of the variables are different, the cluster 

analysis will be biased by the higher magnitude variables. To avoid bias, the data may be 

standardized to the normal distribution or the data can be normalized to the range of magnitudes 

of the variables. The fourth step is to choose a similarity measure and this choice is usually based 

on the data. The four common measures are correlation coefficients, distance measures, 

association coefficients and probabilistic similarity coefficient. A distance measure was used in 

this thesis. The distance measure calculates the distance between the data and each of the cluster 

centriods. The data is assigned to the cluster with the minimum distance.  

The fifth step is to determine the type of cluster analysis method to apply to the data. The 

two types that were used in this thesis were agglomerative hierarchical and iterative partitioning. 

Agglomerative hierarchical cluster analysis was used to determine the number of clusters in the 

data, and partitioning cluster analysis was used to separate the data into disjoint clusters. In the 

hierarchical cluster analysis, clusters are initially formed for each observation and then two 

clusters are joined until only a single cluster that contains the entire dataset is formed. There are 
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four common rules of joining the clusters during hierarchical cluster analysis: single linkage, 

complete linkage, Ward’s minimum distance, and average linkage. In this thesis, Ward’s 

minimum distance was used.   

Techniques to determine the appropriate number of clusters in a sample were investigated by 

Milligan and Cooper with a simulation study [55]. The study created data sets that each 

contained 50 data points, either 2, 3, 4 or 5 distinct non-overlapping clusters and were embedded 

in either 4, 6, 8 dimensional Euclidean space. In addition to these experimental variations, two 

other factors were varied in the simulation data to assess the performance of the stopping rules. 

The first factor was the number of data points that were contained in each cluster and this factor 

had three conditions: (1) equal number of points in all clusters, (2) one cluster must contain 10% 

of the data points, and (3) one cluster must contain 60% of the data points. The addition of the 

third factors resulted in 36 cells of conditions. Since the cells were replicated 3 times, a total of 

108 data sets were used in the study.  

The final factor that was tested in the simulation involved the dissimilarity measure used to 

separate the clusters during the hierarchical cluster analysis. The four methods that were assessed 

were Ward’s minimum variance, group average, complete linkage and single linkage. This 

increased the design of the simulation studies to 432 test conditions. The stopping rules were 

evaluated by whether the rule could detect the true number of clusters in the data. Two external 

criterions: the adjusted Rand statistic [58] and the Jaccard index [59]. Only stopping rules that 

were automatic and method independent were assessed in this study.        

The simulation evaluated the utility of 30 different stopping methods to detect the correct 

number of clusters in the data for the different conditions in the hierarchical cluster analysis of 

the data. The simulation study found that the pseudo F statistic of Calinski and Harabasz [60] 
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and J (2)/J (1)e e  rule of Duda and Hart [61] were the two best methods to detect the correct 

number of clusters within a sample. The Calinski and Harabasz index is calculated as the  

( ) ( )1trace B k traceW n k⎡ ⎤ ⎡− −⎣ ⎦ ⎣ ⎤⎦  

In this equation, k is the number of clusters in the solution, n is the total number of items, B is 

the cross product matrix of between-cluster-sum-of-squares and W is the cross product matrix of 

the pooled within-cluster-sum-of-squares. The maximum value of the statistic indicated the 

number of clusters in the data. The Je(2)/Je(1) index is the sum of squared errors within the 

clusters when the data is separated into two clusters divided by the sum of squared errors when 

only one cluster is present. If the ratio is smaller than the critical value, the hypothesis that one 

cluster is in the data is rejected. The critical value used by Milligan and Copper was 3.20. The 

data was partitioned into clusters until the hypothesis was first rejected. 

The results of the simulation showed that pseudo F statistic identified the correct number of 

clusters in 390 of the 432 data sets and the Je(2)/Je(1) identified the correct number of clusters in 

388 of the 432 data sets. The number of errors with the pseudo F statistic was consistent over the 

varying number of clusters in the data, and the Je(2)/Je(1) statistic had more errors when the true 

cluster number was 2 clusters. Although these statistics performed well and this study provides 

validated stopping rules, the authors emphasize that the findings might be data dependent.   

McIntyre and Blashfield proposed a method of evaluating the reliability of cluster solutions 

[62]. The method randomly separates the data into two equal samples: a training sample and a 

test sample. The training sample is clustered into disjoint clusters and the statistics of the cluster 

solution is determined, such as the mean and the standard deviation of the clusters. To assess the 

reliability of the cluster solution, cluster analysis is applied twice to the test sample, and the two 

cluster assignments are compared with a kappa statistic. The first cluster assignment of the test 
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sample is determined by assigning the test sample data to the clusters of the training sample. In 

this analysis, the cluster means and standard deviations do not change and the test data is 

assigned to the nearest cluster based on the cluster statistics of the training sample. The second 

cluster assignment of the test sample is determined by directly clustering the test sample data. 

The two different cluster solutions of the test sample are compared with a kappa statistic to 

assess reliability of the cluster solution. Kappa statistics of 1 to greater than 0.8 indicate excellent 

reliability, from 0.8 to greater than 0.6 indicate substantial reliability, from 0.6 to greater than 0.4 

indicate moderate reliability, from 0.4 to greater than 0.2 indicate fair reliability and kappa 

statistics from 0.2 to 0 indicate slight to no reliability [63].

 The methods of determining the number of clusters in the data and assessing reliability of 

the cluster solution that were reviewed in this section are used in Chapter 3.  
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3.0 METHODS 

 

 

A procedure to identify sub-groups of CLBP subjects based on their time series data during a 

repetitive lifting task was developed in this project and is described in this chapter. The Chapter 

is separated into 3 sections. The first section describes the protocol of the clinical study on which 

the present study is based, the second section describes a data reduction procedure that was used 

to determine lifting patterns and the last section describes the design of the hidden Markov 

models.  

  

 

3.1 CLINICAL STUDY PROTOCOL 

 

The data used for this project was from a database that contains lifting parameters, medical 

findings, and self-reported measures collected during a clinical study conducted at the University 

of Pittsburgh Medical Center Pain Evaluation and Treatment Institute [14-16]. During the 

clinical study, subjects completed three evaluations: medical, psychological and functional 

capacity. The medical evaluation involved a general medical screening and MRI images of the 

spine of CLBP subjects. The psychological evaluation assessed perceived disability, 
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psychosocial measures, pain frequency and intensity, and cognitive coping abilities based on the 

subject’s response to several questionnaires.  

The functional capacity evaluation assessed physical functioning and involved a repetitive 

lifting task that had been designed to quantify motion of CLBP patients and pain-free controls. 

During the lifting task, subjects repeatedly lift a resistant load and reflective markers track 

segmental motion. Several lifting parameters were calculated from the motion data of each lift 

resulting in a time series of parameters for each subject. In this section, the subject 

demographics, protocols of the medical evaluation, psychological evaluation and functional 

capacity test as well as the lifting parameters calculated during the repetitive lifting task are 

described.  

 

3.1.1 Subjects 

 

One hundred thirty-four subjects, 53 pain-free control and 81 CLBP patients, participated in the 

repetitive lifting study. Subjects were defined as CLBP subjects if the subject reported having 

pain everyday or almost everyday for the past three month that was of moderate or greater 

intensity. The age of the subjects ranged from 36-63 years. The average age of control subjects 

was 34.5 yrs (standard deviation = 11.8 yrs.) and CLBP subjects was 37.8 years (standard 

deviation = 10.1 years). Both groups were approximately matched for gender. In the control 

group, 29 subjects were female and 24 subjects were male. In the CLBP group, 38 subjects were 

male and 43 were female. All subjects gave written informed consent as approved by the 

University of Pittsburgh Biomedical Institutional Review Board before the start of the study. In 

the CLBP patient group, all of the 81 patients had a history of prolonged back pain with mean 
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pain duration of 4.1 years (standard deviation = 5.4 yrs.) The pain-free control group was 

composed of adult volunteers with no medical history or current complaint of back pain. College 

students and competitive athletes were excluded from the control group. A physician and 

physical therapist evaluated all subjects to determine his or her ability to participate in the 

repetitive lifting task.  

 

3.1.2 Medical Evaluation 

 

The medical evaluation obtained information about the subjects’ general health and pain history. 

For CLBP subjects, the second part of the medical evaluation consisted of magnetic resonance 

imaging (MRI) of the axial and sagittal sections of the back. CLBP subjects were scanned on 

1.5T superconducting magnets. A standardize scoring system that assigns linear weights to the 

medical procedures according to the relevance in diagnosing chronic pain patients was used. 

Twenty-three medical procedures were listed in the medics form and diagnosis of each procedure 

was assigned a score [64]. For example, in neurological examination, the doctor chose either no 

abnormality, non-specific abnormality or significant abnormality with the scores of 0, 1 and 2, 

respectively. There was the possibility that one or more of the procedures would not have been 

performed on the patients. To account for lack of data, a proportion of the number of 

abnormalities to the number of procedures was calculated. The proportions were transformed 

into a logit score and combined with the linear weights of the procedures to compute a weighted 

logit score of pathology.    
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3.1.3 Psychological Evaluation 

 

In the psychological evaluation, CLBP subjects answered a series of standardized self-reported 

inventories that assessed pain-relevant psychosocial aspects, perceived disability, self-efficacy, 

cognitive coping ability and frequency of daily activities. These inventories include the Pain 

Behavior Checklist [65], West Haven-Yale Multidimensional Pain Inventory (MPI) [3-4], Task 

Self-efficacy [66], Coping Strategy questionnaire [67], and Oswestry Low Back Disability Scale 

[36]. None of the measures were collected on control subjects because the measures assess pain 

impacts and the control subjects are pain-free.    

 The Pain behavior checklist asked subjects the frequency that they performed certain 

pain behaviors. These pain behaviors were separated into categories of facial/ audible 

expressions of distress, distorted posture, negative affect and avoidance of activity [65]. The 

facial/audible expressions category consisted of facial grimacing, sighing, moaning, and 

clenching teeth. The distorted posture category were limping, walking with distorted gait, 

moving extremely slow, moving in a guarded or protective fashion, sitting with a rigid posture, 

stooping while walking, frequently shifting posture and supporting, rubbing, or holding affected 

body area. The negative affects category were irritability, requesting to be excused from 

activities, seeking help in ambulating and questions such as why did this happen to me. The 

avoidance of activities consisted of taking analgesic medication on a schedule, using prosthetic 

devices, lying down frequently during the day and avoidance of physical activity.     

The West-Haven Multidimensional Pain Inventory (MPI) assessed pain-relevant 

psychosocial aspects, responses of the significant other to the patient’s pain and frequency of 

common activities [3-4]. CLBP subjects completed the three sections of the MPI. The first 
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section contains five sub-sections that assess the pain patients (1) report of pain severity, (2) 

perceptions of how pain interferes with their lives, (3) appraisals of the amount of support 

received from significant others, (4) perceived life control and (5) affective distress. In each of 

the questions of the section 1, subjects were asked to rate their response on a scale of 0 (none) to 

6 (extreme). The second section of the MPI assessed the responses of significant others to the 

patients’ pain with three sub-sections: (1) Punishing Response, (2) Solicitous Responses and (3) 

Distracting Responses. Subjects were asked to assess how frequently their spouse or significant 

other used a type of response when the subject is in pain on a scale of 0 (never) to 6 (very often). 

The last section of the MPI asked CLBP subjects how often on a scale of 0 (never) to 6 (very 

often) that the subject completed 19 common activities. The 19 activities are grocery shopping, 

gardening, mowing the lawn, washing the dishes, going to the movies, playing cards or games, 

visiting friends, house cleaning, working on the car, riding in car or bus, visiting relatives, 

preparing meal, washing car, taking a trip, going to park or beach, doing laundry, household 

repair and engaging in sexual activity.  

The responses to the nine sections of the MPI were analyzed with the MPI computer 

program version 3 [68]. In this version, the cluster analysis method was not used to assign 

subjects to groups since this method resulted in errors when subjects did not fit into one of the 

discrete clusters. The MPI program assigns subjects to either the dysfunctional or interpersonally 

distress composite scores based on their responses and these scores are continuous values [68]. 

The MPI composite scores were based on factor analysis of 6,545 heterogeneous chronic pain 

patients. 

Perceived self-efficacy is one’s belief that one can perform a specific task [69]. A task 

self-efficacy questionnaire asked subjects to rate on a scale ranging from 0% (very uncertain) to 
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100% (very certain) how confidently they felt they could perform a task for a period of time or 

number of repetitions [66]. For example, a subject were asked if he or she could walk on a level 

surface for (a) 1 minute, (b) 5 minutes, (c) 15 minutes, (d) 30 minutes, (e) 45 minutes, (f) 60 

minutes and (g) longest time they could walk, and to rate how confident they were in their 

answer on confidence scale of 0% to 100%. Another question asked the subject if they could lift 

(a) 10 pounds, (b) 20 lbs, (c) 30 lbs, (d) 40 lbs, (e) 50 lbs, (f) maximum weight, and how 

confident they were in their answers. The other tasks were remain standing, sitting in a 

comfortable chair, walk up steps, how many times they could lift their self-reported maximum 

weight, and turning a wheel with effort ranging from 10-50 lbs at 10 lb intervals.  

The Coping Strategies Questionnaire assessed the cognitive coping strategies that patients 

used when experiencing pain [67]. The questionnaire asked patients to rate on a scale of 0 

(never) to 6 (very often) how often the patients experienced certain thoughts or feelings when the 

pain was very severe. These feelings include frustration, worry, irritability, anger, anxiety and 

catastrophizing statements such as I think about whether life is worth living.  

The Oswestry low back disability rating scale is a 10 item questionnaire that measured 

the patient’s perceived level of disability due to pain during activities of daily life including 

walking, lifting, personal care, sitting, standing, sleeping, traveling, sexual activity and social life 

[36]. Subjects chose one of six answer statements to describe how pain has impacted to subjects’ 

ability to manage everyday life. For example, the personal care statements are (1) I can look after 

myself normally without causing extra pain, (2) I can look after myself normally but it causes 

extra pain, (3) It is painful to look after myself and I am slow and careful, (4) I need some help 

but manage most of my personal care, (5) I need help everyday in most aspects of self care, and 
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(6) I do not get dressed, wash with difficulty, and stay in bed. Higher scores on the Oswestry 

disability rating scale indicate greater levels of perceived disability.  

 

3.1.4 Functional Capacity Evaluation  

 

The functional capacity evaluation assessed the physical functioning of the subjects with the Jan 

van Breemen examination and a repetitive lifting task. The Jan van Breemen examination 

involved a self-report of pain intensity and functional status, and involved an examination of the 

subject’s spinal mobility by a physical therapist [70]. The repetitive lifting task measured the 

subject’s motion and physical endurance. Both control and CLBP subjects completed the 

repetitive lifting task.  

 

3.1.4.1 Jan van Breemen examination  

CLBP subjects were asked to respond to a set of standardized questions that concerned physical 

functioning in relation to their back pain in the past week. There are three sections to the Jan Van 

Breemen: pain scores, functional status, and spinal mobility exam. The pain scores section asked 

subjects to rate on a scale of 0 (no pain at all) to 10 (unbearable pain) how much backache the 

patient suffered during the past week (1) in general, (2) at night (3) during the first hour of the 

morning, (4) during sitting, (5) during walking, and (6) during standing. The functional status 

scores section asked subjects to rate on a scale of 0 (very bad/ impossible) to 10 (very good/ 

normal) how well during the past week he or she was able to (1) carry, (2) walk, (3) sit, (4) lift, 

(5) stand, (6) to outdoors, (7) sleep, (8) perform household and hobby activities and (9) perform 

occupational activities in relation to their back problem.   
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The spinal mobility exam measured lumbar flexion index and lumbar flexion/extension index 

and was measured by a physical therapist. For the flexion index, the physical therapist marked 

the position of lumbosacral junction and the position of a point at 15 cm above the lumbosacral 

junction when the subject was standing. The subject was then instructed to bend forward to touch 

the floor with his or her fingertips while keeping the knees straight. The therapist measured the 

distance between the marked points on the back of the subject as the subject was bent forward. 

The flexion index is the distance between the two marked positions when the subject bends 

forward subtracted by the original distance of 15 cm. For the flexion/extension index, the same 

marked positions on the subject’s back are used and the subject is asked to lean backwards. The 

difference between the two markings when the subject is leaning backwards is measured. The 

flexion/extension index is calculated as the sum of the distance of the marked positions when the 

subjects is in flexion and the distance between the marked positions when in the subject is in 

extension subtracted by 15 cm (the distance between the marked positions at standing).  

 

3.1.4.2 Repetitive lifting task Protocol  

The lifting task required control subjects and CLBP subjects to repeatedly lift a handle attached 

to a resistant load located 13 inches from the ground to waist height. The BTE Work Simulator 

(Baltimore Therapeutic Equipment Company, Baltimore, MD, USA) provided the resistant force 

for the up-phase of the lift. Subjects performed lifts for a total of twenty minutes with a fifteen 

second rest interval between each of the lifts, during which the subject returned to the standing 

position. Four hemispheric infra-red reflective markers, placed on the left side of the body, 

tracked joint motion throughout the lifting task. Markers placement was on the ankle, apex of the 

patella, greater trochanter of the femur, and acromion of the shoulder. Figure 1 shows a picture 
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of a subject lifting the handle of the BTE work simulator and the placement of the reflective 

markers during the lifting task. 

 

 

 

Figure 1: Subject is lifting the handle of the BTE work simulator. The reflective markers located on the 
subject’s joints tracked motion during the lifting task. 
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The resistant force applied during the lifting task was equal to 40% of each subject’s 

maximum voluntary static strength. Maximum voluntary static strength was measured with a 

force gauge (Chatillon Muscle Strength Dynamometer, Sammons Preston, Bolingbrook, IL, 

USA) attached to a platform. Subjects were instructed to assume a bilateral symmetrical leg lift 

position with the forearm in supination and the handle of the force gauge adjusted to knee height. 

The subject was then instructed to pull on the force gauge for approximately four seconds. This 

process was repeated three times with a fifteen second rest period between each attempt, during 

which the subject was instructed to return to a standing position. The average static strength of 

the three trials was calculated and 40% of the average static strength was used as the resistant 

force in the lifting task.  

Before the start of the repetitive lifting task, each subject was given the opportunity to 

practice the lift without resistant load applied to the handle in order to become familiar with the 

task. Once the subject was comfortable, the resistant load was applied and the repetitive lifting 

task began. Throughout the experiment the subject was given no verbal or visual feedback 

concerning performance. The task was terminated: (1) if the subject felt physically unable to 

continue, (2) if the experimenter stopped the task due to unsafe body biomechanics or (3) the 

time limit was reached.  

Subjects were asked to rate their pain intensity at the beginning of the functional capacity 

evaluation (baseline rating), after the static strength task and at the end of the dynamic lifting 

task. The pain rating is a self-reported measure that asked the subject to rate their pain on a scale 

from 0 (no pain) to 10 (extreme pain) [71]. 
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3.1.4.3 Instrumentation  

The BTE work simulator provided the resistance for each subject to work against during the 

repetitive lifting task. The work simulator is a computerized device that maintains constant force 

on the handle during the lift. The force transmission occurs at the handle by a rope connected 

through a pulley system. The starting height, waist level (ending height) and force were 

programmed into the work simulator before beginning the task. A series of tones instructed the 

subject when to lift and when to lower the handle. A high tone indicated that the rest period was 

over and the subject was to perform a lift. A low tone indicated that the handle had reached waist 

height and the subject could return the handle to the holder. A second, lower tone indicated that 

the subject had placed the handle in the holder, initiating the rest period. The BTE software 

(Baltimore Therapeutic Equipment Company, Baltimore, MD, USA) allowed the subject to 

perform the lifts at his or her own pace. The work simulator recorded the force and handle 

velocity at a sampling rate of 50 samples per second.       

Motion Analysis Model 110 Video Processor using Expert Vision Software (Motion 

Analysis Corporation, Santa Rosa, CA, USA) and an NEC TI-23A CCD camera with LED ring-

light tracked the retro-reflecting markers attached to the subject. The motion analysis system 

tracked the markers at 30 frames per second during the up-phase of the lift by detecting the 

marker boundaries. A schematic of the instrumentation used during the repetitive lifting task is 

shown in Figure 2. 
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Figure 2: Schematic of the instrumentation used in the repetitive lifting task 

 
 
 

3.1.4.4 Lifting Parameters  

The lifting parameters calculated to describe motion during the lifts were starting posture, lift 

duration, hip and knee midpoint, hip and knee risetime, midpoint difference, risetime difference, 

starting knee angle, starting hip angle, rms jerk, maximum jerk and time when maximum jerk 

occurred during the lift. These measures describe basic body biomechanics used by the subject 

for each lift. 

A two-dimensional three-segment biomechanical model was constructed from the motion 

of the four joint markers [72]. The three segments were defined as the shank, thigh and trunk. 

From the model, joint angles were defined from the segment angles as shown in Figure 3. The 

knee angle was defined by the angle between the shank and thigh segments, and the hip angle 

was defined by the angle between the thigh and trunk segments. Full extension was defined as 
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zero degrees. The starting knee angle and the starting hip angle were the values of these angles at 

the start of each lift.  

 

Hip angle 

Ankle angle 

Knee angle 

 

Figure 3: Three-segment model used to describe motion of the subjects during the task. The figure shows 
the orientation of the ankle angle, knee angle and hip angle.  

 
 
 

The index of starting posture was derived as starting hip angle minus starting knee angle 

divided by the starting hip angle, creating an index that ranged from -1.0 to 1.0 [14]. Values 

approaching -1.0 indicate a starting posture characterized by a squat lift in which the back is kept 

vertical and the hip and knees are flexed at the start of the lift. Values near 1.0 indicate a torso 

style lift in which the back and hips are flexed and the knees are kept straight at the start of the 

lift. Values around zero indicate a freestyle lift in which the back, hip, and knees are flexed. Lift 

duration is the time during which the BTE work simulator applied resistance to the handle. 

There were two parameters that described the timing of motion of the hip and knee angles: 

midpoint and risetime. In order to calculate these parameters, the knee and hip angles were fit to 
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hyperbolic tangent equations to describe changes of body angles as a function of time [14, 23]. 

The hyperbolic tangent equation described motion of the hip, knee and ankle angles using four 

parameters: midpoint, risetime, starting angle and ending angle [14]. The midpoint is defined as 

the time after the beginning of the lift at which the body angle had completed half of its range of 

motion. The risetime is the time required for the angle to decrease from 88% to 12% of the total 

change in angle. Midpoint difference is the difference between the hip midpoint and the knee 

midpoint. Risetime difference is the difference between the hip risetime and the knee risetime. 

The parameters of risetime, midpoint, risetime difference and midpoint difference were 

normalized by total lift duration to eliminate differences due to lift duration. An example of a 

knee angle trajectory for lift performed by a control subject is shown in Figure 4. The hyperbolic 

tangent parameters of starting angle, midpoint, risetime and the ending angle are labeled on the 

knee angle trajectory in the figure. 
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The hyperbolic tangent model used the equation described in the previous paragraph to 

generate the angles of the ankle, knee and hip. For each lift, the midpoint, risetime, starting value 

and lift duration of each angle were entered into the hyperbolic tangent equation and the body 

angles were calculated. Position data of the body segments were calculated using body segment 

link lengths and the calculated angles. Body segment link lengths were determined as the 

magnitude of the difference between the distal marker position and the proximal marker position 

at each time point during the lift. For example, the length of the lower leg was the difference 

between the knee marker and the ankle marker for a given subject. The link lengths were 

smoothed with an 8th order polynomial before the position data were calculated.  

Jerk was calculated as the magnitude of the third derivative of the shoulder displacement. 

Derivatives were estimated using central finite differences. Before differentiation, the 

displacement data were extrapolated by one second at the beginning and at the end of the data to 

eliminate numerical errors associated with finite differences. These extrapolated points were 

eliminated from the third derivative, and a root-mean-squared (rms) measure of jerk was 

calculated for each lift performed. The hyperbolic tangent model was used in this project to 

calculate jerk because, as shown in Figure 5, the model produced smoother jerk profiles than 

spline and low-pass filtering, and these smoother profiles permitted characterization of maximum 

jerk. It was not feasible to characterize maximum jerk with the jerk profiles calculated with 

splines or low-pass filtering because variability was too large. The jerk profiles when smoothing 

with splines or filtering were found to oscillate over lift time, resulting in waveforms that 

contained multiple peaks as shown in Figure 5. Although both of these jerk waveforms (top 

graphs in Figure 5) contain one peak with a larger magnitude than the other peaks in the 

waveform, it was not clear whether the larger magnitude peak was appropriate to use as a 
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measure of maximum jerk. In addition, several of the waveforms calculated with the low-pass 

filtering and splines contained multiple peaks or oscillations that were approximately equal in 

magnitude, making it difficult to identify maximum jerk. Since the hyperbolic tangent model 

produced smoother profiles in which maximum jerk could be easily identified, it was used to 

obtain estimates of jerk for these data.  
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Figure 5: Shoulder jerk plotted versus lift duration. The top right graph is jerk calculated with hepatic spline, the top left graph is jerk calculated 
with Well and Winter’s filtering method and the bottom center graph is jerk calculated with hyperbolic tangent equation 
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All of the lifting parameters were calculated for each lift that a subject completed and 

these parameters are listed in Table 1. The total number of lifts completed was 4762 (Controls 

3437 lifts & CLBP 1325 lifts). Each of the parameters was checked for outliers, violations of 

heteroscedasticity and violations of non-linearity using histograms and normality plots in 

SYSTAT 11 [73]. The parameters of rms jerk, maximum jerk and lift duration violated the 

heteroscedasticity assumption, and a logarithm transformation was performed to normalize these 

parameters.  

 
 
 

Table 1: List of the 13 lifting parameters that were calculated to describe motion during each lift 

 
Lifting parameters 

 Starting hip angle  hip midpoint  RMS jerk 
 Starting knee angle  knee midpoint  Maximum jerk 
 Starting posture index  hip risetime  Time at maximum jerk  
  knee risetime  lift duration  
  risetime difference  
  midpoint difference  

 

 

3.1.5 Treatment Protocol  

 

Each of the CLBP patients was enrolled in an intensive rehabilitation program after completing 

the study protocol. The CLBP patients attended the Pain Evaluation and Treatment Institute daily 

for 8 hours for a 3 ½ week period. The rehabilitation program focused on discussing pain and the 

impact of pain on the individual’s life to educate patient’s to mange their pain. Patients are 

taught stress management skills, relaxation techniques, problem-solving, distraction skills, 

coping strategies, body mechanics, physical exercises to increase endurance, and flexibility [74]. 
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Treatment included a combination of group and individual physical, occupational, and 

psychological therapies. During treatment, subjects did not have any training on the BTE work 

simulator. Once the rehabilitation program was completed, the CLBP patients completed the 

self-report evaluation and functional capacity evaluation using the same protocol.  

 

 

3.2 DATA REDUCTION PROCEDURE 

 

A data reduction procedure was developed to combine the multidimensional lifting parameters 

into a discrete set of lifting patterns. The procedure used factor analysis to reduce the number of 

parameters describing motion during the task and k-means cluster analysis to assign each lift to a 

cluster that describes a lifting pattern. Both of these methods are described in this section.  

 

3.2.1 Factor Analysis 

 

Each lift that a subject performed during the repetitive lifting task was described by the 13 

different parameters, and each of the parameters changed over task time. The lifting parameters 

were highly variable within and between the subjects and between lifts. In examining the 

parameters, it appeared that redundancy might be a problem, since several of the parameters 

were describing the same motion but in different areas of the body. For example, posture at the 

beginning of the lift is described with starting knee angle, starting hip angle and a starting 

posture index. To reduce the redundant parameters and combine the multi-dimensional 

parameters into discrete lifting patterns, a data reduction procedure was applied to the lifting 
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parameters. The procedure used factor analysis to reduce the redundant parameters to four 

factors, and k-means cluster analysis to assign each lift to one of five clusters based on the four 

factor scores of the lift. 

Pearson correlations were calculated between all parameters. If correlations between two 

parameters were high, only one of the parameters was included in the factor analysis. The only 

two parameters with high correlation were maximum jerk and rms jerk (Pearson correlation of 

0.999), and rms jerk was retained in the matrix. Factor analysis was applied to the correlation 

matrix of the lifting parameters using principal component analysis with a Varimax rotation [75]. 

Since CLBP subjects completed fewer lifts than control subjects, the factor structure could be 

biased by the control data. To avoid bias, the groups were separated and factor analysis was 

applied to the control data and CLBP data separately to obtain an invariant factor structure, i.e. a 

factor structure that was not biased by group membership.  

The number of factors extracted was determined as the number of eigenvalues of the 

correlation matrix that were greater than one [76]. The parameters of risetime difference, hip 

angle risetime, knee angle risetime and starting posture were eliminated from the factor analysis 

because these parameters loaded on multiple factors or did not load sufficiently well on any 

factor for one group or both groups. Once an invariant factor structure was found, the lifting 

parameters of the groups were combined and factor analysis was applied to the entire data set in 

order to calculate standard normal factor scores that are standardized to the mean and standard 

deviation of the entire sample of lifts. The invariant factor structure that was found for both 

group contained four factors with the same parameters loading on the each of the factors. All of 

the parameters had loadings of 0.75 or greater for a single factor and loadings of less than 0.45 

for all other factors when factor analysis was applied to the entire data set as shown in Table 2, 
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indicating that a simple structure was obtained. The four factors were found to explain 89% of 

the variance in the data.  

The factors were labeled to describe the lifting parameters that loaded on each of the four 

factors. The parameters of maximum jerk time, knee angle midpoint and hip angle midpoint had 

large loadings on the first factor. Since these parameters describe the time in the lift when certain 

motions occurred, the first factor was named the timing factor. The second factor was labeled as 

the posture factor because the parameters of starting knee angle and starting hip angle had high 

loading on the second factor and these parameters describe position of the hip and knee at the 

beginning of the lift. The third factor had only midpoint difference with a large loading on this 

factor. Since midpoint difference describes the relative timing of the knee and hip angle motion, 

the factor was named synchrony. The final factor contained the parameters of rms jerk and lift 

duration and was named the speed factor.  

 
 
Table 2: Loading of the lifting parameters on the four factors 

 
 Factor 1 Factor 2 Factor 3 Factor 4 
Lifting parameter Timing of motion Starting posture Synchrony  Speed  
hip angle midpoint 0.956 0.075 0.142 0.198 
maximum jerk time 0.943 0.024 0.041 0.200 
knee angle midpoint 0.888 0.031 0.402 0.180 
Starting hip angle 0.070 0.831 0.096 0.067 
Starting knee angle 0.020 0.791 0.175 0.023 
midpoint difference 0.021 0.071 0.987 0.003 
root-mean-squared jerk 0.134 0.175 0.053 0.952 
lift duration 0.347 0.071 0.075 0.904 
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3.2.2 Cluster Analysis 

 

A k-means clustering algorithm was applied to the factors scores of each lift to transform lifts 

into one of several clusters that described lifting patterns. The number of clusters in the factor 

scores data were determined with the pseudo F [60] and pseudo T2 statistics (transformed 

J (2)/J (1)e e  statistic of Duda and Hart [61]). These statistics were calculated with hierarchical 

clustering using Ward’s minimum-variance distance (algorithm CLUSTER in SAS) for cluster 

numbers ranging from 1 to 15. The statistics were then plotted versus cluster number as shown in 

Figure 6. The number of clusters was determined as the number that produced a peak in the 

pseudo F statistic combined with a small value of the pseudo T2 statistic [77]. Using this 

criterion, Figure 6 indicates that an appropriate number of clusters for these data is five.  

The FASTCLUS k-means algorithm in SAS software assigned each lift to one of the five 

clusters based on the factor scores of the lift. The initial estimates, or seeds, of the clusters are 

the first few observations in the file. The SAS program assigns each lift to the nearest seed that 

minimizes the Euclidean distance between the four factor scores of the lift and cluster seeds, 

resulting in the formation of temporary clusters. Once all observations are assigned to a cluster, 

the cluster means are calculated and used as the new seeds. The SAS program then uses the new 

seed and assigns the observations to the nearest cluster based on the Euclidean distance. This 

process repeats until changes in the seeds are small.  
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Figure 6: Plot of pseudo F and pseudo T2 statistic versus cluster number. Squares indicate the pseudo T2 
statistic and the diamonds are the pseudo F statistic 

 
 
 
Reliability of the cluster solution was assessed based on the methods described by 

McIntyre and Blashfield [62]. All of the lifts were randomly separated into two equal samples of 

control and CLBP lifts: training sample and test sample. The FASTCLUS k-means algorithm 

assigned each lift of the training sample to a cluster based on Euclidean distances and the five 

cluster centroids of the training sample were calculated. Each lift in test sample was then 

assigned to the nearest neighbor cluster based on the cluster centroids of the training sample, and 

the cluster solution of the test sample was determined. To assess reliability of the solution, the 

FASTCLUS algorithm was applied to the test sample without any constraints on the centroids 

and each lift was assigned to one of five cluster based on Euclidean distances. The two cluster 

solutions of the test sample were compared, using a kappa statistic to determine reliability.  

The kappa statistic comparing the cluster solutions of the test sample was 0.95, which 

indicates that the clusters have excellent reliability. A plot of cluster assignment versus group 
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membership for all the data are shown in Figure 7. The biggest difference in the cluster 

compositions are in clusters 2, 3 and 5 that contain more control lifts than CLBP subjects and 

cluster 1 that contain more CLBP subject’s lifts than control subjects.  
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Figure 7: Cluster composition of the lifts for each group.  Black bars are CLBP lifts and gray bars are 
control lifts 

 
 
 
 

3.3 HIDDEN MARKOV MODELS 

 

Since the temporal changes in several of the parameters were found to be significantly different 

between the groups, the HMMs were designed using the data reduction procedure to describe the 

temporal sequence of lifting patterns of individual subjects. HMMs can combine the temporal 

changes in a number of parameters and produce one sequence to describe lifting patterns of 

individual subjects. The phase separation model (early, middle and late phases), that was 
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previously used to describe the lifting parameters, created a separate model for each parameter 

that described the temporal changes in the parameter for groups of control and CLBP subjects 

[15-16]. The phase separation model ignored much of the data because only a few of the lifts in a 

trial were required to produce the model of each parameter. The HMMs can represent all of the 

lifts performed during the task in the sequence in which the lifting patterns were performed. The 

HMMs were constructed from the results of a data reduction procedure in order to simplify the 

structure of the models.  

 

3.3.1 Design  

 

Two HMMs were designed to describe lifting patterns of each group. The control HMM 

describes the lifting pattern time series sequence of controls and the CLBP HMM describes the 

lifting pattern time series sequence of CLBP subjects. The five clusters were defined as the 

output of the HMMs, and each state of the HMMs had a non-zero probability of generating each 

of the clusters. In the design of the HMMs, the output (or clusters) of the HMMs were called 

tokens. The input to the HMMs is the subject’s lift sequence or token sequence, which was the 

sequence of cluster assignments (1 to 5) for the lifts performed by the subject.  

The Baum-Welch algorithm [40-42, 51], with the multiple independent observation 

sequence modification [40-41], was used to train the HMMs. The modification was applied 

because each HMM describes the overall group lifting patterns during the task using the 

independent lift sequences of the subjects within that group. The hmmdecode program and a 

modified version of the hmmtrain program in the Statistical Toolbox of MatLab [78] were used 

to calculate the Baum-Welch algorithm. All of the control data were used to train the control 
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HMM, and all of the CLBP data were used to train the CLBP HMM. The training algorithm was 

iterated until the estimates of the transition, token and likelihood probabilities converged 

(difference between estimates of less than 1 x 10-6). State 1 was designated as the starting state of 

all the sequences. 

A common problem in mathematical modeling is determining the appropriate parameters 

to include in the model so that the model adequately describes the data. For HMMs, these 

parameters include the number of states, the topology and the initial conditions of the transition 

and token probability matrices. The initial probability matrices were chosen to be normalized 

uniform distributions, because they do not impose any structure on the HMM, resulting in 

probability matrices that are determined by training data. Defining the number of states and 

topology of the HMMs was a more difficult problem. One solution was to design the HMM with 

a fully-connected topology and three states since Vasko’s previous work [21] determined this 

was the appropriate number of states to describe these data. There were several disadvantages to 

this solution. A fully-connected topology has a large number of parameters that require large 

training data sets to properly define the parameters of the HMM and more importantly, the fully-

connected HMM have a more severe local minimum problem than a constrained HMM [44]. It is 

unclear whether three states would be appropriate for the data since there were differences 

between Vasko’s work and this thesis in the data reduction to obtain tokens and the number of 

parameters used to describe lifting patterns.  

In order to design HMMs with the appropriate topology and number of states, Vasko’s et 

al. pruning algorithm [21] and the Viterbi algorithm [79] were used. The pruning algorithm 

iteratively removed state transitions from a fully-connected HMM until a single state HMM was 

obtained. Metrics were calculated at each step in the algorithm and used to identify the simplest 
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HMM. Since the pruning algorithm did not reduce the number of states in the HMMs for these 

data as was found in Vasko’s work, the pruning algorithm was applied to fully-connected 4-state, 

3-state and 2-state HMM of both groups to identify the appropriate topology for all possible 

variations in the number of states. The number of states of an HMM is called the order. The 

Viterbi algorithm was applied to the resulting HMMs from the pruning procedure to evaluate the 

appropriate order of the HMMs for each group. 

 

3.3.2 Topology    

 

The pruning procedure simplified the HMMs by removing state transitions from the model. At 

each step in the procedure, one interstate transition was set to zero in the initial transition 

probability estimates and the HMMs were trained with subject data. A zero state transition in the 

initial estimate resulted in a zero state transition probability in the trained HMM. The non-zero 

transitions in the initial transition estimates were normalized uniform estimates, which required 

the rows of the transition matrix to sum to one. For example, in the 4-state HMM, if transition 

from state 1 to state 2 was zero then all other transitions out of state 1 to another state would be 

equal to 1/3.  None of the state self-transitions were pruned since eliminating self-transitions 

would create a null state as an intermediate step between states and this state would not be 

essential to the HMM topology. A state was removed from the HMM only when all of the 

interstate transitions to the state were pruned, and the procedure ended when a single state HMM 

was reached. The procedure was performed separately on the 4-state, 3-state and 2-state HMMs 

of the CLBP data and the control data. 
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At each of the steps in the pruning procedure, multiple trials were performed to determine 

which of the interstate transitions to remove without greatly impacting likelihood that the model 

fit the data. In each trial, a different interstate transition was eliminated, HMMs were trained and 

the likelihood probability was calculated. For example, step 1 pruned one transition from the 

fully-connected HMM. In the first trial of pruning step 1, the transition from state 1 to state 2 

was pruned, the HMM was trained and the likelihood probability was calculated. In the second 

trial of step 1, the transition from state 1 to state 3 was removed, the HMM was trained and the 

likelihood probability was calculated. This process continued until all possible state transitions 

were individually pruned. Once all possible trials were completed, the HMMs were compared 

and the pruned HMM with the largest logarithm of likelihood probability of fitting the data was 

chosen as the most likely model for that step. The HMMs per step are described in the results.    

 

3.3.3 Local minimum problem 

 

A local minimum problem occurred when training the fully-connected HMM for all variations in 

the number of states. As stated previously, the initial estimates of the transition and token 

probabilities were normalized uniform estimates. The results of training showed that the token 

probabilities of the trained HMM were the same for all states and transition probabilities were 

the same as the initial estimates upon convergence. The logarithm of the likelihood was large and 

convergence to 10-6 was reached in 3 iterations, suggesting that the models were at a local 

minimum. Increasing the convergence threshold or requiring the training algorithm to complete 

500 iterations did not change the model parameters. To avoid the local minimum problem, 
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weighted probability estimates of the transition probability were used to train only the fully-

connected HMM. 

The weighted initial estimate of the transition probabilities favored self-transitions i.e., 

for the 3-state HMM the state self-transitions had a probability of 0.5 and interstate transitions 

had a probability of 0.25. The initial estimate of the token probability matrix was kept as an 

uniform distribution, i.e. for all tokens the probability of observing a given token from a 

particular state was 0.2. When weighted initial estimates of the transition probability were used, 

the parameters of the HMMs did change from the initial estimates and the likelihood probability 

was larger than when the HMMs were trained with uniform initial estimates.  

 

3.3.4 Metrics 

 

Several metrics were calculated to determine the parsimonious HMM topology. These metrics 

were logarithm of likelihood probability [40-42], entropy measure of token distribution [21] and 

the Kullback-Leibler (K-L) distance measures [80]. The appropriate HMM topology would 

reduce the number of non-zero transitions without causing a large decrease in model likelihood, 

increase in entropy or increase in K-L distance measure.    

A graph of the metrics versus the pruned HMM was constructed to evaluate the HMMs 

resulting from each step of the pruning procedure. According to Vasko, the parsimonious HMM 

is identified as the HMM that occurred before a large decrease or increase in the metrics [21]. 

For example, the logarithm of likelihood probability was one of the metrics used to evaluate the 

topology of the HMMs. The likelihood probability is the probability that a sequences was 

generated by a HMM given the model parameters. The natural logarithm of the likelihood 
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probability was used to prevent underflow of the computer floating point representation since 

this probability is typically very small [40]. Figure 8 shows an example of logarithm of 

likelihood probability calculated at each step in the pruning algorithm. When a state transition 

was removed from the HMM, the likelihood probability of the model was reduced. If the 

removal of the state transition did not alter the ability of the HMM to model the data, the 

likelihood probability plot remained approximately constant as seen in Figure 8 for the reduction 

in topology from HMM full to HMM #4. When the pruning causes a large decrease in likelihood 

probability, Vasko indicated that the pruned HMM did not adequately model the data and 

indicated that the pruned HMM occurring before the substantial decrease was the simplest model 

topology. According to the criterion, the parsimonious HMM in Figure 8 is HMM #4. This same 

criterion was used on the metric graphs to determine the parsimonious HMM for these data.    
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Figure 8: Example of the change in logarithm of likelihood probability as the topology of the HMM is 
reduced. The y-axis is the values of the logarithm of likelihood probability and the x-axis is the reduced 
topology HMM at each step in the pruning procedure. Likelihood probability is approximately constant 
from HMM full to HMM #4 and then decreases substantially at HMM #5, indicating that HMM #4 is the 
appropriate HMM.  
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 The likelihood probability was calculated using the forward algorithm [40]. The forward 

algorithm is  

 

1. Initialization: 

1( ) ( ),t i ii b oα π=    1≤ i ≤ N 

2. Recursion 

1
1

( ) ( ) ( ),
N

t t ij j
i

j i a bα α+
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑ 1to +   1≤ t ≤ T-1, 1 ≤ j ≤ N 

3. Termination 

1
Pr( | ) ( )

N

T
i

O iλ α
=

=∑  

where N = total number of states and T = length of the sequence. 

Since each of the lifting sequences was an independent sequence observation, the 

likelihood probability of the group HMM was calculated as  

1

Pr( | ) Pr( | )
M

m

m

O Oλ λ
=

=∏  

where M is the total number of sequences. 

The entropy of the token probability matrix was used as a measure of token distribution 

overlap between the states as model topology is reduced [21]. Entropy increases when the token 

probability becomes broader, which occurs as the topology is reduced. The simplest HMM 

topology was the HMM that occurred before a substantial increase in entropy. Entropy is 

calculated as 

1

1 ( ) ( )
N

j
E H j N

τ =

= ∑ j  
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where N(j) is the number of times state j is occupied and τ is the data length.  

 The Kullback-Leibler (K-L) distance is a measure of the average discriminating 

information contained per observation token between two HMMs [80]. The measure compares 

the distance between a true probability distribution to an arbitrary probability distribution which 

is usually an approximation of the true probability distribution. The statistical properties of two 

HMMs are compared using the K-L measure by calculating the difference between the likelihood 

probabilities that either of the two models fit a sequence. The K-L measure [80] is calculated as 

[ ]1 2 1 2
1( || ) log Pr( | ) log Pr( | )T TD O
T

Oλ λ λ≈ − λ

c

 

In this calculation, random sequences are generated from model 1 and tested against both 

models. The likelihood probability is calculated using the forward algorithm.  

In order to obtain good estimates of distance, sequences must have large number of 

observations and a large number of sequences have to be tested. To avoid the large 

computational cost associated with testing large observation sequences, an estimate of the 

Kullback-Leibler (K-L) measure was used. The estimated measure was based on the experiments 

of Liang et al.[81], who presented a closed form approximation of K-L distance measure. The K-

L distance measure estimate was calculated as       

1 2 1 1 1 2
1 1

( || ) (log log )
M M

i ij ij ij
i j

D r c cλ λ
= =

= −∑ ∑  

where r  is the stationary observation distribution vector for a stationary HMM and is defined as 

. The variable v is called the stationary distribution vector and is defined as the 

normalized eigenvector that corresponds to eigenvalue of the state-transition probability matrix 

' 'r v B=
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that has a value of one. The variable cij is the observation-transition probability distribution 

matrix and is defined as  
1 1

( ) ( )N N
k k kp p

ij
k p i

v b i a b j
c

r= =

= ∑ ∑   

The K-L measure was calculated to compare the probability distance between the 

observable 5-state Markov model and the HMMs from the pruning procedure (D(λ1||λ2)). The 

fully-connected observable Markov model (OMM) was used in the K-L measure calculation as a 

reference model in order to compare statistical properties of the pruned HMMs. The K-L 

measures increased as the model complexity was reduced. The K-L measures were graphed and 

the simplest HMM topology was chosen as the HMM that occurred before a substantial increase 

in the K-L measures.  

The OMM was constructed with five states corresponding to the five tokens. Each state 

emitted a single token with probability of 1 and zero probability for all other tokens. The state 

transition probability was determined by summing the transition from state Si to state Sj divided 

by the total number of transitions out of state Si. The parameters of the OMM for controls are 

shown in Table 3 and the parameters of the OMM for the CLBP are shown in Table 4. 
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Table 3: Values of the transition and token probabilities for the control observable Markov model 

 
Parameters of the Control Observable Markov Model 

Control Transition Probability 

 
Transition  
to state 1 

Transition  
 to state 2 

Transition 
 To state 3 

Transition  
 to state 4  

Transition  
to state 5 

In state 1 0.5628 0.1005 0.0804 0.0503 0.2060 
In state 2 0.0209 0.7496 0.0820 0.0119 0.1356 
In state 3 0.0116 0.0494 0.7880 0.0552 0.0958 
In state 4 0.0244 0.0183 0.1280 0.7358 0.0935 
In state 5 0.0333 0.0959 0.1019 0.0525 0.7164 

Control Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 1 0 0 0 0 
State 2 0 1 0 0 0 
State 3 0 0 1 0 0 
State 4 0 0 0 1 0 
State 5 0 0 0 0 1 

 

Table 4: Values of the transition and token probabilities for the CLBP observable Markov model 

 
Parameters of the CLBP Observable Markov Model 

CLBP Transition Probability 

 
Transition  
to state 1 

Transition  
to state 2 

Transition 
 To state 3 

Transition  
to state 4  

Transition  
to state 5 

In state 1 0.8560 0.0131 0.0131 0.0812 0.0366 
In state 2 0.0222 0.8778 0.0389 0 0.0611 
In state 3 0.0411 0.0959 0.5616 0.1096 0.1918 
In state 4 0.0687 0 0.0305 0.8550 0.0458 
In state 5 0.0535 0.0535 0.0453 0.0864 0.7613 

CLBP Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 1 0 0 0 0 
State 2 0 1 0 0 0 
State 3 0 0 1 0 0 
State 4 0 0 0 1 0 
State 5 0 0 0 0 1 
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3.3.5 Results of pruning procedure 

 

The pruning procedure reduced the topology of the 4-state, 3-state and 2-state fully connected 

HMMs. For both subject groups, there were 12 steps of the procedure for the 4-state fully-

connected HMM pruning, 6 steps of the procedure for the 3-state fully-connected HMM pruning 

and 2 steps of the procedure for the 2-state fully-connected HMM pruning. The first step pruned 

one state transition from the fully-connected HMM, the second step pruned two transitions (the 

transition pruned with the first step plus an addition transition) and so forth until the final step 

resulted in a one state HMM. At each step, several trials were performed to determine which 

transition to remove from the HMM. 

The models converged when the difference between iterations of the transition, token and 

likelihood probabilities were all less than 10-6. The number of iterations needed to reach 

convergence ranged from 153 to 3 iterations. Training of the fully-connected HMM required 

more iterations to reach convergence than any other of the HMMs. The likelihood probability 

was calculated for all iterations of the Baum-Welch algorithm and graphed for each pruned 

HMM. The likelihood probability and the parameters of the HMM did change from the initial 

conditions suggesting that the convergence criterion was sufficient to train the HMM with 

subject data. As example, the logarithm of likelihood versus iteration of the training of the fully-

connected 3-state CLBP HMM is shown in Figure 9.  
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Convergence of the logarithm of likelihood probability when training a fully-connected 3-
state CLBP HMM
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Figure 9: Logarithm of likelihood plotted versus iterations of the Baum-Welch algorithm to reach 
convergence for a fully-connected 3-state CLBP HMM  

 
 
 

3.3.5.1 4-state HMMs: Control HMMs    

The metrics were calculated for pruned HMM and plotted to compare the different HMMs. For 

each group, three graphs were constructed to describe the metrics. Figure 10 shows the graph of 

the three metrics for the 4-state control HMMs with the plot of likelihood probability in the top 

graph, the plot of entropy in the middle graph, and the K-L measure plotted versus pruned HMM 

in the bottom graph. Figure 11 is a schematic of the 4-state control HMM that was chosen as the 

appropriate HMM. The transition and token probabilities the HMMs chosen as the most 

appropriate HMM for pruned 4-state control HMM are shown in Table 5. The graph of the 

metrics, schematics of the HMM and tables of the HMM parameters for the 4-state CLBP HMM 

(Figures 12-13, Table 6), 3-state HMMs of CLBP and control data (Figures 14-17, Tables 7-8), 
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and the 2-state HMM of the CLBP data and control data (Figures 18-20, Table 9) are presented 

in the same format.  

For organizational purposes, the pruned HMMs were named for the number of the zero 

transitions, i.e. HMM #1 corresponds to a HMM trained when one transition was zero; HMM #2 

corresponds to a trained HMM when two interstate transition were zeros and so forth. The 

exception to the naming convention was the fully connected HMMs, which were named HMM 

full.  

Two pattern of change in the metrics were observed. In the first pattern, all three metrics 

clearly indicated the HMM with the appropriate topology was the HMM that occurred before a 

substantial increase or decrease in a metric. In the second pattern, likelihood probability and 

entropy measures gradually changed as the HMMs were reduced and the K-L measure plot 

showed substantial change. In this case, the entropy and likelihood metrics suggested two 

possible models, while the K-L measure clearly indicated one model as the most appropriate 

reduced HMM.  

The likelihood and entropy plots for the 4-state control HMM were approximately 

constant from HMM #2 to HMM #8, slightly decreases from HMM #8 to HMM #9 and then 

begins to decrease (Figure 10). The K-L measure was appropriately constant from HMM full to 

HMM #8, and then increased. The simplest topology for a 4-state control HMM was chosen as 

HMM #8 based on the K-L measure. A diagram of the HMM #8 is shown in Figure 11 and the 

parameters are listed in Table 5.   
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Figure 10: Logarithm of likelihood probability (top), entropy (middle) and K-L measures (bottom) for 
pruning of the fully-connected 4-state control HMM. 
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Figure 11: Diagram of the control 4-state HMM 

 
 
 

Table 5: Values of the transition and token probability of HMM #8  

Parameters of the trained control HMM #8 
Control Transition Probability 

 
Transition  
to state 1 

Transition 
 to state 2 

Transition  
to state 3 

Transition 
to state 4 

In state 1 0.9690 0.0310 0 0 
In state 2 0 0.9332 0.0281 0.0387 
In state 3 0 0.0098 0.9902 0 
In state 4 0 0 0 1 

Control Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.1317 0.0967 0.0354 0.0431 0.6931 
State 2 0.0479 0.0269 0.1165 0.7409 0.0679 
State 3 0.0053 0.8947 0.0397 0.0017 0.0587 
State 4 0.0136 0.0347 0.8305 0.0267 0.0944 

 
 
 

3.3.5.2 4-state HMMs: CLBP HMMs  

The likelihood probability and the entropy metrics when pruning the 4-state CLBP HMM were 

approximately constant for HMM full to HMM #8, slightly changed from HMM #8 to HMM #9 

and then substantially changed (Figure 12). The K-L distance plot is appropriately constant from 

HMM full to HMM #9 and then substantially increases. From this plot, HMM #9 was chosen as 

the most appropriate HMM based on the K-L measure. The diagram of the HMM #9 is shown in 

Figure 13 and the parameters are shown in Table 6.  
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Figure 12: Logarithm of likelihood probability (top), entropy (middle) and K-L measures (bottom) for 
pruning of the fully-connected 4-state CLBP HMM. 
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Figure 13: A diagram of the 4-state CLBP HMM 

 
 
 
Table 6: Values of the transition and token probabilities of HMM #9 

Parameters of the trained CLBP HMM #9 
CLBP Transition Probability 

 
Transition  
to state 1 

Transition 
 to state 2 

Transition  
to state 3 

Transition 
To state 4 

In state 1 0.9294 0.0706 0 0 
In state 2 0 0.9809 0.0191 0 
In state 3 0 0 0.9708 0.0292 
In state 4 0 0 0 1 

CLBP Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.8833 0.0124 0.0197 0.0302 0.0544 
State 2 0.1035 0.0000 0.0433 0.8167 0.0365 
State 3 0.0040 0.0471 0.1570 0.0402 0.7516 
State 4 0.0000 0.9281 0.0289 0.0000 0.0430 

 
 

3.3.5.3 3-state HMMs: Control HMMs  

The likelihood and the entropy measures showed gradual changes when the HMM was reduced 

but the K-L distance plot indicated that the most appropriate HMM is HMM #4 (Figure 14). The 

K-L distance measure shows very slight increase in the K-L measure from HMM #1 to HMM #4 

and then a substantial increase at HMM #4 to HMM #6. Based on these results, HMM #4 was 

chosen. A diagram of HMM # 4 is shown in Figure 15 and the parameters of this HMM are 

shown in Table 7.  
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Figure 14: Logarithm of likelihood probability (top), entropy (middle) and K-L measures (bottom) for 
pruning of the fully-connected 3-state control HMM. 
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Figure 15: Diagram of the 3-state control HMM 

 
 
 
Table 7: Values of the transition and token probability of HMM #4 

Parameters of the trained Control HMM #4 
Control Transition Probability 

 Transition  to state 1 Transition to state 2 Transition to state 3 
In state 1 0.9759 0.0241 0 
In state 2 0 0.9507 0.0493 
In state 3 0 0 1 

Control Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.1254 0.1567 0.0618 0.0370 0.6192 
State 2 0.0393 0.0205 0.1400 0.7361 0.0642 
State 3 0.0014 0.3118 0.6084 0.0161 0.0624 

 

 

3.3.5.4 3-state HMMs: CLBP HMMs  

The simplest topology can be easily identified in the plots of all three metrics (Figure 16). The 

metrics are approximately constant from HMM full to HMM #4 and then substantially decreases 

or increase at the HMM #5. The HMM with the most appropriate topology is HMM #4. The 

diagram of HMM #4 is shown in Figure 17 and the parameters are listed in Table 8. 
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Figure 16: Logarithm of likelihood probability (top), entropy (middle) and K-L measures (bottom) for 
pruning of the fully-connected 3-state CLBP HMM. 
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Figure 17: Diagram of 3-state CLBP HMM 

 
 
 
Table 8: Values of the transition and token probabilities of HMM #4 

 
Parameters of the trained CLBP HMM #4 

CLBP Transition Probability 

 
Transition  
to state 1 

Transition 
 to state 2 

Transition  
to state 3 

In state 1 0.9294 0.0706 0 
In state 2 0 0.9749 0.0251 
In state 3 0 0 1 

CLBP Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.8854 0.0122 0.0196 0.0302 0.0526 
State 2 0.0948 0 0.0508 0.7902 0.0641 
State 3 0.0023 0.4232 0.1016 0.0053 0.4676 

 
 
 

3.3.5.5 2-state HMMs: Control and CLBP HMMs  

The results of the pruning procedure applied to the 2-state fully-connected HMM of control 

subjects are shown in Figure 18 and of CLBP subjects are shown in Figure 19. For both groups, 

all three metrics indicate that HMM #1 is the most appropriate topology of 2-state control HMM 

and 2-state CLBP HMM. A diagram of the topology of both HMMs is shown in Figure 20. The 

parameters of control and CLBP HMM are shown in Table 9.  
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Figure 18: Logarithm of likelihood probability (top), entropy (middle) and K-L measures (bottom) for 
pruning of the fully-connected 2-state control HMM. 
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Logarithm of Likelihood Probability of CLBP HMM 
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Figure 19: Logarithm of likelihood probability (top), entropy (middle) and K-L measures (bottom) for 
pruning of the fully-connected 2-state CLBP HMM. 
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1 2 

 

Figure 20: Diagram of the 2-state control HMM and the 2-state CLBP HMM 

 
 
 

Table 9 : Values of the transition and token probabilities of control HMM #1 and CLBP HMM #1 

 
Parameters of the trained Control HMM #1 

Control Transition Probability 
 Transition to state 1 Transition to state 2 

In state 1 0.9768 0.0232 
In state 2 0 1 

Control Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.1340 0.1066 0.0803 0.0563 0.6227 
State 2 0.0026 0.2684 0.4729 0.2110 0.0450 

Parameters of the trained CLBP HMM #1 
CLBP Transition Probability 

 Transition to state 1 Transition to state 2 
In state 1 0.9409 0.0591 
In state 2 0 1 

CLBP Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.8335 0.0067 0.0141 0.1082 0.0376 
State 2 0.0167 0.2109 0.0813 0.4186 0.2724 

 

 

3.3.6 Order estimation method 

 

When the pruning algorithm was applied to the fully-connected HMMs, the metrics identified 

HMMs that contained the same number of states as the fully-connected model. In Vasko’s thesis, 

the pruning algorithm reduced the number of states and transitions and identified a HMM that 
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contained fewer states than the fully-connected HMM. Since the pruning algorithm did not 

reduce the order of the HMMs, the Viterbi algorithm was used to determine the appropriate 

number of states in the HMM to describe each group data by assessing the frequency that the 

states were used by the data. Although this is a heuristic technique, it is similar to the technique 

of model surgery [43-44] that has been used in bioinformatics.  

The model surgery technique applies either the forward-backward or the Viterbi 

algorithm to the trained profile HMMs to determine how frequently a transition is used by the 

training data. A profile HMM is a model that consists of many modules. Each module contains a 

match state, delete state and an insert state with only forward transitions to each state. Surgery 

eliminates a module if a match state is used by less than a certain fraction of the sequences. If an 

insert state is used by more than a certain fraction of the sequences, than the module is expanded 

[44]. The technique was found to work well in identifying the appropriate parameters for a HMM 

that describes protein domains and was used for these data. For these data, the HMM chosen to 

describe the group data was the model in which a majority of the sequences utilized all the states 

in the model. The details and results of the algorithms when applied to these data are described 

below. 

The Viterbi algorithm was used to determine the most likely state path of each subject 

through the 4-state, 3-state and 2-state HMM resulting from the pruning procedure for each 

group. The frequency that the states were occupied by the subject’s sequences was calculated 

from the most likely state path of all the subject sequences within the group. For these data, the 

HMM chosen to describe the group data was the model in which a majority of the sequences 

utilized all the states in the model. Since the reduced HMMs are temporal and the sequences all 

started in state 1, the sequences could only either stay in the initial state or transition in one 
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direction to the next state. If the last state was occupied by only a few or none of the sequences, 

then the state was considered to be not essential.  

Table 10 shows the results of the frequency calculation for the control HMMs. The 

frequency calculation indicates that the 3-state HMM is the most appropriate HMM for the 

control data because the states in the 3-state HMM were approximately equally occupied by the 

control subjects. The 4-state HMM appeared to overfit the data because only 4% of the control 

subjects’ sequences used a four state path through the model suggesting that the fourth state is 

not necessary to describe the control data. Since the states in the 3-state HMM were occupied by 

a large percentage of the subject sequences, reducing the HMM to a 2-state HMM would ignore 

a considerable amount of information by forcing the subjects into either a single state path or a 

two state path. From these results, the 3-state HMM was determined to be the appropriate HMM 

to describe the control time series data.  

 
 

Table 10: Percentage of control subject sequences that occupied each of the states in the 4-state, 3-state 
and 2-state control HMMs  

 
Frequency that states were occupied 

HMMs state 1 state 2 state 3 state 4 
Control 4-state HMM 31% 29% 37% 2% 
Control 3-state HMM 39% 27% 33%  
Control 2-state HMM 49% 51%   

 

 

A 4-state HMM appeared to overfit the CLBP data since very few subjects occupied all 

four states when transitioning through the model as shown in Table 11. For the 3-state HMM, the 

frequency calculation showed that less than 15% of the CLBP subjects occupied the third state 

suggesting that a third state may not be necessary to describe the CLBP data. The results of the 
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frequency calculation for the 2-state HMM showed that about 1/3 of the CLBP subjects occupied 

the last state of the model. To determine whether the 3-state HMM or the 2-state HMM was the 

most appropriate HMM, reliability of these models was assessed with the second simulation 

study as described in Appendix A. The simulation compared the 3-state control HMM to the 3-

state CLBP HMM and to the 2-state CLBP HMM. The results showed that the 2-state CLBP 

HMM was more reliable than the 3-state CLBP HMM and the 2-state HMM was chosen as the 

most appropriate HMM to describe the CLBP time series data.   

 

Table 11: Percentage of CLBP subject sequences that occupied each of the states in the 4-state, 3-state 
and 2-state CLBP HMMs 

 
Frequency that states were occupied 

HMMs state 1 state 2 state 3 state 4 
CLBP 4-state HMM 57% 25% 15% 4% 
CLBP 3-state HMM 57% 31% 12%  
CLBP 2-state HMM 73% 27%   
 

 

3.3.7 Final HMMs 

 

A 3-state temporal HMM was chosen to describe the control HMM and a 2-state temporal HMM 

was chosen to describe the CLBP HMM. The parameters of the control HMM and the CLBP 

HMM were shown in Table 7 and Table 9, respectively. 
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4.0 RELIABILITY OF HMM CLASSIFICATION PROCEDURE  

 

 

The data reduction procedure described in Chapter 3 assigned each of the lifts that the subjects 

performed during the repetitive lifting task to a cluster that described a lifting pattern. From the 

results of the data reduction procedure, a temporal 2-state CLBP HMM was designed to describe 

the lifting patterns of CLBP subjects during the repetitive lifting task and a temporal 3-state 

control HMM was designed to describe the lifting patterns of the control subjects during the 

repetitive lifting task. The possibility of using these HMMs to identify sub-groups of CLBP 

subjects was evaluated with simulation studies. The methods and results of the simulation studies 

that were performed to determine reliability of the HMM classification procedure are described 

in this chapter. 

 

 

4.1 SIMULATION STUDIES 

 

Two simulation studies were conducted to determine how reliably the HMMs can identify 

sequences that are generated from a particular model, and to determine how reliably the HMMs 

can detect lifting sequences that are classified to the wrong group and classify the sequences to 

the appropriate group. A kappa statistic was used to assess reliability in both simulation studies 

and was calculated as the observed probability of agreement subtracted from the probability of 
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chance agreement divided by one minus the probability of chance agreement. The kappa statistic 

was chosen because it assesses rater agreement after adjusting for chance agreement [82]. Values 

of kappa greater than 0.8 indicate excellent reliability, between 0.8 and 0.6 indicate substantial 

reliability, between 0.6 and 0.4 indicate moderate reliability, between 0.4 and 0.2 indicate fair 

reliability and kappa statistics lower than 0.2 indicates slight to no reliability [63]. In the 

simulation studies, the HMMs were considered reliable when kappa was greater than 0.8.  

 

4.1.1 First Simulation Study 

 

The first simulation study was constructed to determine whether the control HMM and CLBP 

HMM can identify lifting sequences that were generated from a particular model. The study used 

the trained transition probability and token probability matrices of the control HMM and CLBP 

HMM to generate control simulated lifting sequences and CLBP simulated lifting sequences, 

respectively. All simulated lifting sequences started in state 1. To evaluate the influence of the 

number of sequences and the length of the sequences on reliability, the number of simulated 

sequences in each group was varied in increments of 10 from 20 sequences (10 simulated from 

control HMM and 10 simulated from the CLBP HMM) to 120 sequences (60 from control HMM 

and 60 from the CLBP HMM) and the number of lifts in the sequences was varied from 6 to 80 

lifts.  

The maximum sample size (120) and range of lifts in each sequence were selected to 

approximately match the clinical data. Each simulated sequence was tested against both HMMs 

and classified to the model with the greater likelihood probability that the sequence was observed 

given the model parameters. Once all of the sequences were classified, a kappa statistic was 
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calculated to determine how reliably the HMMs classified lifting sequences that were generated 

from a particular model. A schematic of the steps in the first simulation study and the calculation 

of kappa are shown in Figure 21. 
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Figure 21: Schematic of the steps in the first simulation study. The first step is to generate simulated 
sequences. The second step is to test the sequences against both HMMs and assign the sequence to a 
model based on likelihood probability. In step 3, a kappa statistic is calculated after all sequences have 
been tested and assigned to a HMM.   
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The MatLab program hmmgenerate [78] was used to generate simulated sequences from 

the control HMM and CLBP HMM. The program begins with all sequences starting in state 1. A 

random number was generated from an uniform distribution, and this number was compared to 

the cumulative transition probability matrices of the current state. If the random number was 

greater than the cumulative transition probability of staying in the state, the sequences 

transitioned to another state. If the random number was less than the cumulative probability of all 

interstate transitions out of the current state, the sequence remained in the current state. The 

program resets the current state depending on the type of transition (probabilities of a different 

state were considered if interstate transition occurred and the probabilities of the same state were 

considered if a self-transition occurred) and evaluated another random number against the 

cumulative transition probability. For example, the start state is state 1 and the random number 

0.95 is generated. The cumulative transition probability of state 1 is [0.8, 0.92, 1]. Based on this 

probability, the sequence would transition to state 3. The program sets the current state to state 3 

and the simulated state transition sequence is 13. The next random number is 0.62. The 

cumulative transition probability of state 3 is [0, 0.5, 1]. The sequences would stay in state three 

and the updated simulated state transition sequence is 133. The process was repeated until the 

designated length was reached. 

 Once the simulated state transition sequences were determined, simulated observation 

sequences were generated using the cumulative token probability and another set of random 

numbers. The cumulative token probability of the state defined by the simulated state transition 

sequence was compared to the random number. The program emitted the token that was less than 

the random number but greater than the previous token. For example, if a random number greater 
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than the cumulative probability of token 1 and token 2 but less than the probability of token 3, 

token 3 was emitted.  

 

4.1.2 Second Simulation Study 

 

The second simulation study assessed whether the HMMs can reliably identify lifting sequences 

to the appropriate model when some of the lifting sequences are intentionally mislabeled. A 

small number of simulated lifting sequences were switched between the groups to create 

intentionally mislabeled sequences. For example, lifting sequences generated from the CLBP 

HMM were labeled as lifting sequences generated from control HMM and lifting sequences 

generated from the control HMM were labeled as lifting sequences generated from CLBP HMM. 

A modified version of the jackknife method [83] was used to train the HMMs. The modified 

jackknife was used because it permitted classification of each subject’s lifting sequence to a 

model without introducing bias associated with classifying sequences that were used to train the 

HMM. For each HMM, the modified jackknife method excluded one of the simulated lifting 

sequences and trained the HMM with the remaining sequences. The excluded lifting sequence 

was classified to one of the HMMs based on the likelihood probabilities. This process continued 

until all of the lifting sequences had been tested. This subject was then assigned to one of the 

models based on the largest likelihood probability.  

The number of intentionally mislabeled sequences was varied equally between the groups 

(e.g. 1 simulated sequence generated from the control HMM and 1 simulated sequence from the 

CLBP HMM were both mislabeled) from 4 to 64 (4% to 50% of the total sample size) in 

increments of 5 (9%). At each increment in the number of intentionally mislabeled sequences, 
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the HMMs were retrained with the modified jackknife method and all of the sequences were 

classified to a HMM based on the likelihood probability. A kappa statistic assessed reliability. A 

schematic of the steps in the second simulation study is shown in Figure 22. 

The sample size of the simulated sequences in the second simulation was chosen as 108 

(54 CLBP simulated sequences and 54 control simulated sequences) to approximately match the 

data of the clinical study. The simulated lifting sequences were generated using the same 

methods as in the first simulation with a minor modification. The lengths of the sequences were 

varied to match the clinical data. Half of the CLBP sequences were randomly chosen to have a 

sequence length that varied from 6 lifts to 20 lifts and the remaining half were randomly chosen 

to have a length that varied from 21 lifts to 80 lifts. All of the control simulated sequences were 

randomly assigned to a length that varied from 30 lifts to 80 lifts.  
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Figure 22: Schematic of the steps in the second simulation study. The first step is to generate simulated 
sequences from the HMMs. Simulated sequences are then intentionally mislabeled to the wrong group in 
the second step. In the step 3, the modified jackknife method is used to test the sequences against the 
HMMs. The sequence is assigned to a model based on likelihood probability. Once all sequences have 
been assigned to a HMM, a kappa statistic is calculated in step 4. 

 

 

4.2 RESULTS OF SIMULATION STUDIES 

 

A kappa value of greater than 0.8 was chosen as the criterion for determining whether the HMMs 

were reliable since this value of kappa indicates excellent reliability. The number of errors 

associated with a kappa value of 0.8 (when the sample size is 108) is 10 classification errors, 

which corresponds to an error rate of approximately 10%.  
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In the first simulation, the length of the lifting sequences and sample size were varied. 

Kappa was calculated for comparison of simulated sequences that had equal length and equal 

sample size. For all sample sizes and sequences with more than 7 lifts, kappa was greater than 

0.8 as shown in Figure 23. Sequences with 45 or more lifts produced kappa values of 1 and 

sequences shorter than 45 lifts produced a kappa statistic than range from 0.8 to 1. These results 

suggest that the number of lifts in the sequences have a greater effect on reliability of the HMM 

to identify the sequence to the correct model than the sample size. 
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Figure 23: Kappa versus number of lifts in the simulated sequences calculated during the first simulation 
study. The symbols represent different sample sizes. 
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The second simulation determined how reliably the HMMs can identify lifting sequences 

that were generated from a particular model when a percentage of the simulated sequences were 

intentionally mislabeled. The HMMs were found to have excellent reliability when 4% to 41% of 

the data was intentionally mislabeled, as shown in Figure 24. This statistic corresponded to a 

total classification error of 1 to 10 simulated sequences (Table 11). As the percentage of 

mislabeled sequences increased, more classification errors were found in the mislabeled 

sequences than in the correctly in labeled sequences.  
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Figure 24: Kappa plotted versus percentage of intentionally mislabeled simulated sequences calculated 
during the second simulation study. Line at kappa = 0.8 indicates the cut-off value of reliability. HMMs 
can reliably identify sequences to the correct model when kappa is greater than 0.8.  
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Table 12: Kappa values, classifications errors in mislabeled and correctly labeled simulated sequences 
and error rate for each percentage of mislabeled simulated sequences during the second simulation study 
are listed.  

 

Second Simulation 

Percentage of  
mislabeled 
sequences Kappa values 

# errors in 
correctly 
labeled 

sequences 

# errors in 
intentionally 
mislabeled 
sequences 

Total 
classification 

Errors 
Error 
 rate 

4% 0.983 1 0 1 1% 
13% 0.972 1 1 2 1% 
22% 0.954 2 1 3 2% 
31% 0.914 3 2 5 4% 
41% 0.824 3 7 10 9% 
50% 0.648 5 14 19 18% 

 

 

The HMMs were able to reliably identify sequences to the correct model (i.e., the HMM 

that generated the simulated sequence) when the sequences contained more than 7 lifts and when 

41% or less of the data was intentionally mislabeled to the wrong group. Based on these results, 

the HMMs were applied to the clinical data. 
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5.0  HMM CLASSIFICATIONS OF CLINCAL DATA 

 

 

The CLBP subjects and control subjects were classified to either the control HMM or the CLBP 

HMM. Two CLBP groups (CLBP subjects classified to the CLBP HMM and the CLBP subjects 

classified to the control HMM) and two control groups (control subjects classified to the control 

HMM and control subjects classified to the CLBP HMM) were found. The HMM classification 

method was also applied to the lifting sequences of the CLBP subjects after the subjects 

completed treatment. This chapter describes the results of the HMM classification when applied 

to the clinical data, the statistical analyses performed to test the hypotheses and the results of the 

statistical analyses.  

 

 

5.1 ADDITIONAL DATA 

 

A subset of the data (54 CLBP subjects and 51 control subjects) was used to design the HMMs 

since not all of the data was available when the original models were designed. The total sample 

size within the clinical database is 81 CLBP subjects and 53 control subjects. The database also 

contained the post-treatment lifting data of 51 CLBP subjects. A procedure was developed to 

incorporate the additional data based on the statistics of the original sample. Each of the lifting 

parameters of the subject’s lifts was checked for outliers, violations of heteroscedasticity and 
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violations of non-linearity using histograms and normality plots in SYSTAT 11. As found in the 

original sample, lift duration and rms jerk were found to violate the heteroscedasticity 

assumption and logarithm transformations of the lift duration and rms jerk were performed. The 

logarithms of lift duration and rms jerk were used in all analyses. 

  The factor coefficients that were determined from the factor structure and described in 

Chapter 3 were used to calculate the standard normal factor scores of the additional data. The 

additional data were normalized to the mean and standard deviation of the lifting parameters 

from the original sample, and Z scores were calculated for each of the lifting parameters. The 

factor scores were then calculated from the matrix multiplication of the factor coefficient matrix 

and the Z scores of each lift of the additional data.   

Once the factor scores of each lift were calculated, the lifts were clustered based on the 

four factor scores of the lift. The statistics of the cluster solution of the original data were used to 

assign the factor scores of the additional data to a cluster, i.e. the additional data factor scores 

were assigned to the nearest cluster defined by the original data. The additional data set was 

added to the original data set and a control subject file and a CLBP subject file was created that 

contained all subjects’ sequences. This same procedure was used to create the lifting sequences 

of the post-treatment CLBP subjects.  
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5.2 STATISTICAL ANALYSES 

 

The lifting sequences of the control subjects and the CLBP subjects at pre-treatment were 

classified to a HMM using the modified jackknife method. The modified jackknife excludes one 

subjects and trains the control HMM and CLBP HMM with the remaining data. The excluded 

subject is then classified to either the control HMM or the CLBP HMM based on the logarithm 

of the likelihood probability. 

This section is separated into two sub-sections. The first sub-section describes the 

statistical analyses performed to test the hypothesis that the HMM classification procedure can 

identify two groups of CLBP subjects. Specifically, the CLBP subjects classified to the control 

HMM will be different from the CLBP subjects classified to the CLBP HMM for one or more 

self-reported measures, medical findings and /or functional capacity measures.  

The second sub-section describes the statistical analysis performed to assess whether 

treatment outcomes can be predicted and if CLBP subjects improved body mechanics after 

treatments by changing HMM classification at post-treatment assessment. The hypotheses of 

these data were: (1) the group-by-treatment interaction will be significant, indicating that 

treatment outcomes can be predicted based on the pre-treatment HMM classification of the 

CLBP subjects, and (2) the CLBP subjects that changed HMM classification after treatment will 

be significantly different from the those CLBP subjects that did not change HMM classification 

on one or more self-reported and/or functional capacity measures.  
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5.2.1 Pre-treatment CLBP subjects and control subjects 

 

Several measures of the CLBP subjects were compared between the two CLBP groups to 

determine whether the HMM classification procedure can identify meaningfully different sub-

groups of CLBP subjects. These measures include self-reported measures, medical findings, 

functional capacity measures and pain intensity rating during the functional capacity evaluation. 

Before these measures were compared, the demographics of the groups were compared to 

determine whether the composition of the subjects in the groups were similar. The statistical tests 

performed to assess differences between the two CLBP groups are described in the following 

paragraphs.      

The demographics of the CLBP subjects that were classified to the CLBP HMM and the 

CLBP subjects classified to the control HMM were compared with analysis of variance 

(ANOVA) models and chi-squared statistics for the nominal and ordinal demographical 

measures, respectively. The continuous demographical measures are pain duration in years and 

age of the subjects in years. The ordinal demographical measures are gender, ethnicity, 

education, martial status, employment status, pain etiology, pain frequency in days/week, pain 

frequency in hours per day, and number of surgeries. Any of the demographics that were 

significantly different between the CLBP subjects classified to the CLBP HMM and the CLBP 

subjects classified to control HMM were treated as covariates.   

The measures from the psychological, medical and functional capacity evaluations were 

compared between the two CLBP groups. The measures were assigned to a priori domains in 

order to combine similar measures and to account for correlations between the measures. These 
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domains were psychosocial, pain, self-efficacy, disability, cognitive, medical, lifting and spinal 

mobility. Table 13 lists the measures that were included in each of the domains. 

  

Table 13: List of self-reported and functional capacity measures within each of the domains 

 
Domains of self-reported and functional capacity measures 

Pain Domain Cognitive Domain Medical Domain 
MPI : Pain Intensity Coping strategies: emotionality Medics score 
Jan van Breemen: Pain Intensity Coping strategies: anxiety Body Mass Index 
   
Spinal Mobility Domain  (cm) Psychosocial Domain Lifting Domain 
Jan van Breemen: Flexion  MPI Dysfunctional score Number of lifts 
Jan van Breemen:  
Flexion/Extension  

MPI Interpersonally Distressed 
score Static strength 

   
Disability Domain Self-efficacy Domain  
MPI : General Activities Task self-efficacy  
Oswestry Disability rating   
Jan van Breemen: Walking speed   
Jan van Breemen: Functional status   
Pain behavior checklist   

 

 

The statistical significance of the psychosocial, pain, medical, spinal mobility, cognitive, 

and lifting domains were assessed with multivariate analysis of variance (MANOVA) models 

since each of these domains contains variables that are measured on different dimensions. The 

only exception was the self-efficacy domain that contained a single measure, for which an 

ANOVA was performed to assess group differences. The p-values resulting from the MANOVA 

determined whether any of the measures within the domain were significantly different between 

the CLBP groups (CLBP subjects assigned to the CLBP HMM and the CLBP subjects assigned 

to the control HMM). If the p-value was significant, follow-up ANOVAs were performed on the 
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individual measures within the domains to determine which measure were statistically different 

between the CLBP groups. A step-wise discriminant function analysis was performed on the 

measures that were significant based on the follow-up ANOVAs and these tests identified the 

measures that best separated the CLBP groups. Table 14 summarizes the statistical tests used to 

compare all measures between HMM classifications.   

Effect sizes were calculated to compare the magnitude of the differences between the two 

CLBP groups on each of the self-reported measures. The effect size index assesses the size of the 

significant difference between two populations after adjusting for the magnitude of the variable 

and can be interpreted as the number of standard deviations that separates two groups. The larger 

the effect size of a dependent variable, the more likely a statistical significance will be attained 

and the greater the statistical power. Effect size is calculated as the difference in the means 

divided by a pooled standard deviation. An effect size range of 0-0.32 is small, 0.33-0.55 is 

medium and 0.56-1.2 is large [84]. 

During the functional capacity evaluation, CLBP subjects were asked to rate their pain 

intensity using the pain rating scale at the start of the functional capacity testing (baseline), after 

static lifting task and at the end of the repetitive lifting task. Differences in the pain intensity 

ratings between the two CLBP groups were assessed using repeated measures ANOVA. The 

independent measure was CLBP group and the dependent repeated measures were the pain rating 

at the three time points during the functional capacity evaluation.  
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Table 14: Summary of the statistical tests performed to compare the HMM classification groups 

 
Statistical test Dependent Variables Independent Variables 

Chi-square Token distributions 

Control subjects classified to 
control HMM and CLBP 
subjects classified to control 
HMM 

MANOVA Pain, Disability, Cognitive, Lifting, 
Spinal Mobility and Medical Domains Two CLBP groups 

Follow-up ANOVA 
when MANOVA is 

significant  
Each measure within the domain Two CLBP groups 

ANOVA Self-efficacy measure Two CLBP groups 

Effect size All measures Two CLBP groups 
Repeated measures 

ANOVA 
Three pain ratings during functional 

capacity evaluation Two CLBP groups 

 

 

5.2.2 Post-treatment CLBP subjects  

 

This section describes the statistical analyses performed to verify that the measures can detect 

changes due to treatment program, to determine whether treatment outcomes can be predicted 

based on pre-treatment HMM classification and to identify differences in the self-reported 

measures of the CLBP subjects that changed HMM classification after treatment and those 

CLBP subjects that did not change HMM classification.  

To determine whether the self-reported and functional capacity measure can detect 

treatment effects in CLBP patients, paired t-tests and effect sizes were calculated to compare the 

pre-treatment and post-treatment values of each measure for all CLBP subjects. The paired t-test 

assessed differences due to treatment and since multiple variables were compared, the 

Bonferroni correction, which controls for Type I errors, was used to assess significance of the t-
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tests. The effect sizes were calculated as the difference between the pre-treatment mean value 

and post-treatment mean value of all CLBP subjects divided by the pooled standard deviation. 

In the statistical analysis of the post-treatment self-reported and functional capacity 

measures performed to test the hypotheses, the same domains that are described in Table 12 were 

used. The only exceptions were the exclusion of the pain behavior checklist from the disability 

domain and the medical domain from the statistical analyses as these measures were not part of 

the post-treatment assessment. The number of lifts and the weight lifted during the lifting task 

were multiplied to produce a variable called work. These variables were combined because the 

sample size of the treatment data was reduced and overparameterization of the data was a 

concern.  

To determine whether treatment outcomes can be predicted based on the HMM 

classifications at pre-treatment, the self-reported measures at pre-treatment and post-treatment 

were compared. Doubly repeated measures MANOVAs were used to assess whether the pain, 

disability, cognition and spinal mobility domains were significantly different. This statistical test 

was performed separately for each domain and was chosen because the measures within these 

domains are multidimensional and completed at two different assessments: pre-treatment and 

post-treatment. The dependent variables were the measures within a domain and the independent 

variables were the group assignment. The p-values resulting from the statistical test determined 

whether any of the measures within the domain were significantly different between the groups, 

due to treatment and group-by-treatment interaction. Follow-up ANOVAs were performed on the 

significant results of the MANOVA to assess which of the measures within the domain were 

significantly different. A significant group-by-treatment interaction indicated that the measure(s) 

could be used to predict treatment outcomes.  
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Separate repeated measures ANOVAs were performed for the domains of self-efficacy and 

work, since both of these domains contain a single measure for each assessment. The dependent 

variables were either the self-efficacy measure or work, and the independent variables were the 

pre-treatment HMM classifications of the CLBP subjects. The p-values determined whether the 

measures were significantly different between the groups and due to treatment. Effect sizes were 

calculated for all measures to compare the two CLBP groups at pre-treatment and post-treatment 

assessments.  

The post-treatment classifications of the CLBP subjects that were assigned to the CLBP 

HMM at pre-treatment were examined to determine whether these subjects changed 

classification after treatment. The subjects were either labeled as a changer or non-changer when 

the subject was classified to a HMM at the post-treatment assessment. The subject was labeled as 

a changer when the CLBP subject changed HMM classification at post-treatment assessment, i.e. 

a CLBP subject was assigned to the CLBP HMM at the pre-treatment assessment and the same 

subject was assigned to the control HMM at post-treatment assessment. A CLBP subject was 

labeled as a non-changer when the subject was classified to the CLBP HMM at both pre-

treatment and post-treatment assessments.  

The CLBP subjects that were classified to the control HMM were also examined to 

determine whether these subjects changed HMM classification after treatment. Since it is 

unlikely that these CLBP subjects would perform worse after treatment, none of the CLBP 

subjects classified to the control HMM was expected to be classified to the CLBP HMM at the 

post-treatment assessment.  

The same statistical tests used to assess whether treatment outcome can be predicted 

(doubly repeated measures MANOVA and repeated measures ANOVA) were used to determine 
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whether the changers and non-changers were different in any of domains. In addition, the effect 

sizes were calculated for all of the self-reported measures. Table 15 shows a summary of the 

statistical tests performed to assess whether treatment outcome can be predicted and to assess 

differences between changers and non-changers. 

The pain intensity ratings reported at baseline, after the static strength task and after the 

repetitive lifting task for both the pre-treatment and post-treatment assessment were compared 

between changers and non-changers. Repeated measures ANOVA were used to assess for 

significant differences between treatment assessments and changes between pain ratings from 

baseline, after the static strength task and at end of the repetitive lifting task. The independent 

variable was the group assignment of changer or non-changer and the dependent variables were 

pain ratings at the three time points for both the pre-treatment and post-treatment functional 

capacity evaluations. The p-values resulting from the ANOVA determined statistical significance 

between the changers and non-changers, between the three time points, between treatment 

assessments and the interactions.    
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Table 15: Summary of the statistical tests that were performed on the pre-TX and post-TX CLBP data 

 
Statistical test Dependent Variables Independent Variables  

Effect size All measures CLBP pre-TX and post-TX 

Repeated measures 
ANOVA 

Three pain ratings during 
functional capacity evaluation at 

pre-TX and post-TX 
CLBP groups assigned at pre-TX

Doubly repeated 
measures MANOVA 

Pain, Disability, Cognitive, 
Lifting, and Spinal mobility 

Domains at pre-TX and post-TX 
CLBP groups assigned at pre-TX

Follow-up ANOVA 
when MANOVA was 

significant  

Each measure within the domain at 
pre-TX and post-TX CLBP groups assigned at pre-TX

Effect size All measures CLBP groups assigned at pre-TX

Doubly repeated 
measures MANOVA 

Pain, Disability, Cognitive, 
Lifting, and Spinal mobility 

Domains at pre-TX and post-TX 
Changers and non-changers 

Follow-up ANOVA 
when MANOVA was 

significant  

Each measure within the domain at 
pre-TX and post-TX Changers and non-changers 

Effect size All measures  Changers and non-changers 

Repeated measures 
ANOVA 

Three pain ratings during 
functional capacity evaluation at 

pre-TX and post-TX 
Changers and non-changers 

 

 

5.3 RESULTS 

 

The results of the HMM classification procedure when applied to the clinical data and the 

statistical tests assessing whether the CLBP subjects that were classified to the control HMM and 

the CLBP subjects that were classified to the CLBP HMM were different on the self-reported, 

medical findings, and functional capacity measures are described in the first sub-section.   

The second sub-section describes the results of the statistical tests to assess whether 

treatment outcomes can be predicted based on HMM classification at pre-treatment and whether 
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CLBP subjects classified to the CLBP HMM changed HMM classification after treatment. For 

all statistical analyses, a p-value of 0.05 or less indicated statistical significance. 

 

5.3.1 HMM classifications of CLBP subjects at pre-treatment and control subjects 

 

The classification procedure identified 35 CLBP subjects to the control HMM and 46 CLBP 

subjects to the CLBP HMM. In the control group, 46 control subjects were classified to the 

control HMM and 7 control subjects were classified to the CLBP HMM. Since the number of 

control subjects that were classified to the CLBP HMM is small, this sample was not considered 

a sub-group. 

For each of the four groups, the token distributions were plotted with a histogram as 

shown in Figures 25, 26, 27, 28 respectively. The CLBP subjects that were classified to the 

control HMM frequently used all of the tokens except token 1. The CLBP subjects classified to 

the CLBP HMM used token 1 in 75% of the lifts. The control subjects that were classified to the 

control HMM frequently performed lifts that were associated with tokens 2, 3, 5. The control 

subjects classified to the CLBP HMM appeared to use all of the tokens almost equally except for 

token 3.  

 A chi-squared statistic showed that the token distributions were significantly different 

when comparing the control subjects that were classified to the control HMM and the CLBP 

subjects classified to the control HMM (χ = 301.3, p = 0.0001). The significant chi-squared result 

indicates that even though both groups were classified to the same model, the frequency of the 

lifting patterns were different between the CLBP subjects classified to the control HMM and the 

control subjects classified to the control HMM.  
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 Since the CLBP subjects that were classified to the control HMM used significantly 

different distribution of lifting patterns than the control subjects classified to the control HMM, 

the possibility of using two CLBP models to describe the CLBP subjects was investigated. Two 

HMMs were designed to describe the lifting patterns of the two CLBP groups and the simulation 

studies were performed to assess whether the HMMs could reliably identify mislabeled 

sequences. The results are described in Appendix B and showed that the CLBP subjects were 

still classified to the control HMM. Due to the unreliability of the HMMs, CLBP HMM and the 

control HMM were used to classify the CLBP subjects at post-treatment assessment.  
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Figure 25: Histogram of the tokens used by the CLBP subjects classified to the control HMM 
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Histogram of tokens used by CLBP subjects classified to the 
CLBP HMM
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Figure 26: Histogram of the tokens used by the CLBP subjects classified to the CLBP HMM 

 
 
 
 

Histogram of tokens used by control subjects classified to the 
control HMM
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Figure 27: Histogram of the tokens used by the control subjects classified to the control HMM  
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Histogram of tokens used by control subjects classified to the 
CLBP HMM
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Figure 28: Histogram of the tokens used by the control subjects that were classified to the CLBP HMM 

 
 
 

The demographics of the two CLBP groups were compared to determine whether these 

groups were different for any of these variables. The p-values from the ANOVA and chi-squared 

tests are shown in Table 16. None of the demographics were significantly different between the 

CLBP subjects classified to the control HMM and the CLBP subjects classified to the CLBP 

HMM. 
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Table 16: Average values (standard deviations) or percentage of subjects in each of the demographical 
variables and corresponding p-values are listed below.  

 

 
CLBP fit 

CLBP HMM
CLBP fit 

control HMM p-value 
Pain Duration (years) 3.72 (5.13) 4.52 (5.69) 0.523 
Age (years) 36.36 (9.24) 39.66 (11.03) 0.162 

 Males 55%  63% Gender 
 Females 45% 36% 

0.439 

 White 67% 77% 
 African American 33% 19% Ethnicity 
 Other 0% 3% 

0.247 

 12th grade or less 20% 16% 
 High school graduate 34% 31% 
 Trade/ technical school 25% 31% 
 Some college 16% 16% 

Education 

 College degree or higher 5% 6% 

0.589 

 Single 25% 22% 
 Separated/divorced 20% 28% 
 Married 50% 44% 

Marital status 

 Widowed 5% 6% 

0.851 

  Full-time (over 30 hrs per week) 18% 32% 
  Part-time (less than 30 hrs week) 3% 4% 
 Unemployed  0% 4% 
 Retired 11% 0% 
 Working part-time because of pain 8% 8% 
 Unemployed because of pain 55% 44% 
 Retired early because of pain 0% 4% 

Employment 
status 

             

 Other 5% 4% 

0.255 

 Accident at work 63% 65% 
 Accident at home 7% 3% 
 Following surgery or illness 5% 3% 
 Pain just began 7% 16% 

How pain 
began? 

 Other 19% 13% 

0.765 

 0-4 hours 2% 3% 
 4-8 hours 10% 3% 
 8-12 hours 20% 7% 

Pain hours 

 more than 12 hours 68% 87% 

0.206 

 Never 73% 58% 
 Once 14% 13% 
 Twice 14% 19% 

Surgery 

 More than twice 0% 10% 

0.265 
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CLBP subjects classified to the control HMM and CLBP subjects classified to the CLBP 

HMM were compared to determine whether the groups were different on any of the measures. 

The MANOVAs showed that the domains of pain (p = 0.007), lifting (p = 0.001), and self-

efficacy (p = 0.013) were statistically significant when comparing the CLBP subjects classified 

to the control HMM and the CLBP subjects classified to the CLBP HMM. Follow-up ANOVAs 

indicate that within the lifting domain, the number of lifts completed (p = 0.0001) was significant 

and in the pain domain, MPI section of pain severity (p = 0.025) and pain intensity (p = 0.005) 

from the Jan van Breemen questionnaire were statistically significant between the two CLBP 

groups. There was only one measure in the self-efficacy domain and an ANOVA showed that the 

task self-efficacy measure (p = 0.013) was significantly different between the CLBP groups. The 

CLBP subjects that were classified to the control HMM were found to perform more lifts, 

reported lower levels of pain intensity and pain severity, and had greater task self-efficacy than 

the CLBP subjects classified to the CLBP HMM. The mean values, standard deviation and effect 

sizes along with the corresponding p-values of the statistical tests are shown in Table 17.  

A stepwise discriminant function analysis was performed to determine which measures 

best separated the CLBP subjects classified to the control HMM from the CLBP subjects 

classified to the CLBP HMM. The discriminant analysis found that number of lifts, pain severity, 

pain intensity and self-efficacy were all independent contributors to CLBP group separation. The 

number of lifts and pain intensity from the Jan van Breemen were the two most discriminating 

measures between the CLBP subjects that were classified to the control HMM and the CLBP 

subjects classified to the CLBP HMM. The order that the measures entered into the discriminant 

function model are shown in the last column of Table 17. 
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A large effect size (greater than 0.55) was found for the measures of pain intensity from 

the Jan van Breemen examination, number of lifts performed during the lifting task, MPI 

Dysfunctional composite score and self-efficacy. A moderate effect size (between 0.33-0.55) was 

found for pain severity from MPI, the measures from the Coping Strategies, functional status and 

walking speed from the Jan van Breemen examination and static lifting strength. The remaining 

measures showed small effect sizes (between 0-0.32). Effect sizes comparing the two groups of 

CLBP subjects for each of the measures are listed in Table 17.   
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Table 17: Average values (standard deviation) and effect size calculation for comparison of the two 
CLBP groups are listed below. P-values and discriminant function analysis entry of the measure into the 
model are also shown.  Bold indicate significant p-values and italic indicates domain. 

 
Measures Means (SD) for CLBP 

groups  
   

 CLBP 
subjects fit 

control HMM 

CLBP 
subjects fit 

CLBP HMM 

Effect 
size 

 

p-values 
 

DFA 
entry 

Sample Size 35 46    
Pain Domain    0.007  
MPI : Pain Severity 4.47 (0.71) 4.89 (0.86) 0.535 0.025 3 
Jan van Breemen: Pain Intensity 5.57 (1.72) 6.66 (1.56) 0.665 0.005 2 
Psychosocial Domain    0.100  
MPI Dysfunctional composite  score 57.27 (9.24) 62.60 (10.30) 0.547 0.035  
MPI Interpersonally Distressed 
composite score 39.12 (13.36) 38.10 (11.74) 0.081 0.737  
Cognitive Domain    0.119  
Coping strategies: emotionality 3.21 (1.32) 3.85 (1.31) 0.487 0.039  
Coping strategies: worrying 4.13 (1.35) 4.62 (1.18) 0.387 0.095  
Disability Domain    0.122  
MPI : General Activities 2.08 (0.9) 1.77 (0.79) 0.367 0.068  
Oswestry Disability rating 51.09 (14.43) 51.06 (14.43) 0.002 0.991  
Jan van Breemen: Walking speed 35.29 (7.95) 41.63 (15.89) 0.426 0.057  
Jan van Breemen: Functional status 4.50 (1.62) 3.91 (1.15) 0.532 0.123  
Pain behavior checklist 6.91 (3.60) 7.77 (3.94) 0.228 0.238  
Spinal Mobility Domain  (cm)    0.662  
Jan van Breemen : Flexion  5.19 (4.01) 5.21 (1.41) 0.007 0.975  
Jan van Breemen: Flexion/Extension 6.10 (2.18) 6.48 (1.88) 0.187 0.414  
Medical Domain    0.665   
Medics scale -0.15 (0.63) 0.003 (0.86) 0.205 0.383  
Body Mass Index 27.65 (5.9) 28.04 (6.77) 0.062 0.812  
Static lifting Domain    0.002  
Number of lifts 35.06 (23.28) 18.61 (16.39) 0.829 0.001 1 
Static strength 84.31 (54.47) 60.09 (57.68) 0.432 0.121  
Self-efficacy Domain 3.42 (0.91) 2.88 (0.91) 0.593 0.013 4 
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The results of the repeated measure ANOVA showed that during the functional capacity 

evaluation the CLBP subjects classified to the control HMM reported significantly lower pain 

intensity ratings than CLBP subjects classified to the CLBP HMM (p = 0.0001). Both CLBP 

groups reported increased pain intensity ratings from the baseline to the end of the lifting task (p 

= 0.0001). There was no significant group-by-time interaction. The mean, standard deviation and 

p-values of the pain intensity during the functional capacity evaluation are listed in Table 18. 

 

 
Table 18: Average values (standard deviations) of the pain intensity ratings of the CLBP subjects at the 
three time points during the functional capacity evaluation. P-values from the repeated measures ANOVA 
assessing differences in group, time and group-by-time interaction are listed. 

 
 Average Pain Ratings P-values 

HMM 
classifications Baseline 

After static 
lifting task 

After dynamic 
lifting task 

Group Time Group –
by-time 

CLBP classified to 
CLBP HMM 5.5 (2.13) 6.54 (2.08) 7.72 (1.57) 
CLBP classified to 
Control HMM 3.91 (2.71) 4.83 (2.60) 6.06 (2.20) 

0.0001 0.0001 0.931 

 

 

 

The number of lifts performed during the task was significantly different between the two 

CLBP groups. To assess whether the subjects could be separated into groups based only on the 

number of lifts completed, a histogram of the number of lifts was constructed for both CLBP 

groups (Figure 29). The CLBP subjects that were classified to the CLBP HMM performed fewer 

lifts more frequently than the CLBP subjects classified to the control HMM but the distributions 

overlap. It is does not appear from the histograms that a cut-off or threshold values could be used 

to clearly separate the CLBP subjects into groups. 
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Figure 29: Histogram of the number of lifts performed during the repetitive lifting task for CLBP subjects 
classified to the CLBP HMM and the CLBP subjects classified to the control HMM. 

 

 

 

5.3.2 Classification of the CLBP subjects at post-treatment assessment  

 

The results of the statistical analyses to verify that the self-reported measures can detect 

treatment effects, to determine whether treatment outcome can be predicted from pre-treatment 

HMM classification and to determine whether changers and non-changers are different are 

discussed in this sub-section. 

To verify that the self-reported and functional capacity measures can detect the effect of 

treatment in CLBP subjects, effect sizes and paired t-tests comparing the measures of all CLBP 

subjects at pre-treatment and post-treatment were calculated (Table 19). A large effect size was 

found for MPI section of pain severity, MPI Dysfunctional composite score, Coping Strategies 
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questions of emotionality and anxiety, Oswestry disability rating, walking speed, self-efficacy, 

and functional status questions from the Jan van Breemen. Moderate effect sizes were found for 

MPI section of General Activities, Jan van Breemen sections of pain intensity, and 

flexion/extension index. Since 14 variables were compared between the CLBP subjects, 

Bonferroni correction was used to determine significance of the t-tests and a p-value of 0.0005 or 

lower was considered statistically significant. Significant p-values were found for all measures 

except MPI Interpersonally Distressed composite score and task self-efficacy. The results of the 

effect sizes and p-values indicate that the self-reported and functional capacity measures can 

measure treatment effects.     
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Table 19: Average values (standard deviation) of the measures at pre-TX and post-TX assessments for all 
CLBP subjects. Effect size calculations and p-values from the t-tests comparing the pre-TX and post-TX 
means of all CLBP subjects are shown. Bold indicates significant p-values and large effect sizes. 

 

Measure 
Pre-TX  

mean (SD) 
Post-TX  

mean (SD) 
EFFECT 

SIZE 

p-value  
significant when 

< 5x10-4

MPI section: Pain Severity 4.64 (0.83) 3.59 (1.25) 1.01 1x10-6

MPI section: General Activities 1.93 (0.86) 2.32 (0.81) 0.467 0.0002 
MPI Dysfunctional score 60.08 (10.39) 48.91 (8.54) 1.18 1x10-9

MPI Interpersonally  
Distressed score 36.50 (12.05) 39.55 (10.87) 0.266 0.001 
Coping strategies: Emotionality 3.66 (1.38) 2.44  (1.38) 0.837 2.5x10-6

Coping strategies: Anxiety 4.48  (1.32) 3.40 (1.41) 0.791 1x10-6

Oswestry disability rating 52.04  (14.90) 39.39  (11.93) 0.943 6.2x10-7

Walking Speed 38.64  (13.92) 32.81 (7.90) 0.534 1.5x10-6

Jan van Breemen Questions: 
Pain Intensity 6.07  (1.79) 5.16  (1.95) 0.487 0.00047 
Jan van Breemen Questions: 
Functional status 4.02 (1.41) 5.48 (1.55) 0.986 3x10-9

Jan van Breemen Exam: 
Lumbar flexion index 4.86 cm (1.42) 5.30 cm  (1.31) 0.325 0.0003 
Jan van Breemen Exam: 
Flexion/extension index 6.26 cm (1.80) 7.11 cm (1.89) 0.461 1x10-5

Task Self-Efficacy 3.01 (0.94) 4.37 (3.44) 0.621 0.0069 
Work of dynamic lifting task 704 (1060) 1086 (1360) 0.316 0.00048 

 

 

To determine whether it is possible to predict treatment outcome based on pre-treatment 

HMM classification, the pre-treatment and post-treatment values of the measures were 

compared. A total of 54 subjects had pre-treatment and post-treatment data and of these 54 

subjects, 30 CLBP subjects were assigned to the CLBP HMM and 24 CLBP subjects were 

classified to the control HMM at the pre-treatment assessment. The p-values for the group-by-

treatment interaction from the doubly repeated measures MANOVAs were non-significant for all 
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domains and measures, indicating that treatment outcomes cannot be predicted from the pre-

treatment HMM classifications (Table 20).  

Although the HMM classifications could not predict treatment outcomes, significant 

differences were found between the two CLBP groups. Group differences and treatment effects 

were significant for the pain domain and for the spinal mobility domain. Follow-up ANOVAs 

showed that within the pain domain, the pain intensity from the Jan van Breemen examination 

had a significant group difference (p = 0.004) and treatment effect (p = 0.0001). CLBP subjects 

that were classified to the control HMM reported lower pain intensity than the CLBP subjects 

that were classified to the CLBP HMM and for both groups, pain intensity decreased after 

treatment. In the spinal mobility domain, the flexion task from the Jan van Breemen examination 

was significantly different between the CLBP groups (p = 0.011) and for treatment assessment (p 

= 0.001). The CLBP subjects classified to the control HMM had greater range of motion during 

flexion than the CLBP subjects classified to the CLBP HMM. In addition to pain intensity and 

flexion, self-efficacy were also found to be significantly different between the groups (p = 

0.014). The CLBP subjects that were classified to the control HMM reported higher levels of 

perceived self-efficacy at the post-treatment assessment than CLBP subjects classified to the 

CLBP HMM. For both groups, self-efficacy increased after treatment (p = 0.005).  

Effect sizes of the measures at post-treatment comparing the CLBP subjects classified to 

the control HMM and the CLBP subjects classified to the CLBP HMM were calculated. The 

measures of pain intensity, flexion and the self-efficacy had large effect sizes. Medium effect 

sizes were found for walking speed, pain severity from the MPI, MPI Dysfunctional composite 

score and for the two measures of the Coping Strategies. The mean values, standard deviation, 

effect sizes and corresponding p-values from the statistical tests are listed in Table 20.  
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Table 20: Average values (standard deviations) and effect size calculations of the measures comparing the two 
groups of CLBP subjects found in pre-treatment assessment. P-values from the MANOVA assessing differences 
between groups, treatment and group-by-treatment interaction are shown. Bold indicates significant p-values 

 
Measures Means (SD) for groups and TX  p-values 
 TX 

 
CLBP 

subjects fit 
CLBP HMM 

CLBP subjects 
fit control 

HMM  

Effect 
size 

 

Group 
(G) 

TX 
(T) 

G x T 

Sample Size  30 24     
Pain Domain     0.015 0.0001 0.976 

Pre 4.81 (0.85) 4.33 (0.76) 0.596 
MPI Pain Severity Post 3.83 (1.26) 3.16 (1.25) 0.534 0.056 0.0001 0.84 

Pre 6.62 (1.66) 4.99 (1.75) 0.956 Jan van Breemen: 
Pain Intensity Post 5.75 (1.95) 4.15 (1.77) 0.860 0.004 0.001 0.884 

Psychosocial Domain     0.339 0.0001 0.434 
Pre 62.60 (10.30) 57.27 (9.24) 0.546 

MPI Dysfunctional  Post 50.55 (7.79) 46.85 (9.16) 0.437 0.014 0.0001 0.236 

Pre 38.10 (11.74) 39.12 (13.36) 0.081 MPI Interpersonally 
Distressed Post 39.46 (10.87) 39.70 (11.19) 0.022 0.772 0.002 0.602 

Cognitive Domain     0.213 0.0001 0.927 
Pre 3.92 (1.39) 3.46 (1.37) 0.333 Coping strategies: 

emotionality Post 2.74 (1.43) 2.16 (1.38) 0.413 0.083 0.0001 0.784 

Pre 4.67 (1.28) 4.33 (1.31) 0.263 Coping strategies: 
worrying Post 3.66 (1.49) 3.14 (1.36) 0.365 0.108 0.0001 0.703 

Disability Domain     0.623 0.0001 0.195 
Pre 1.85 (0.86) 1.98 (0.86) 0.151 MPI : General 

Activities Post 2.41 (0.78) 2.22 (0.83) 0.236 0.513 0.0001 0.394 

Pre 51.67 (15.47) 53.26 (15.08) 0.104 Oswestry Disability 
rating Post 40.69 (11.25) 38.48 (13.22) 0.181 0.543 0.0001 0.319 

Pre 41.78 (16.71) 33.25 (6.80) 0.726 Jan van Breemen: 
Walking speed Post 33.95 (8.21) 30.51 (6.55) 0.466 0.382 0.0001 0.432 

Pre 3.73 (1.06) 4.29 (1.47) 0.443 Jan van Breemen: 
Functional status Post 5.50 (1.60) 5.32 (1.58) 0.113 0.640 0.0001 0.085 

Spinal Mobility 
Domain (cm) 

 
   0.012 0.0001 0.460 

Pre 5.13 (1.20) 4.81 (1.45) 0.242 Jan van Breemen : 
Flexion  Post 5.68 (1.05) 4.92 (1.12) 0.700 0.011 0.001 0.263 

Pre 6.26 (1.78) 6.51 (1.85) 0.138 Jan van Breemen : 
Flexion/Extension  Post 7.28 (1.65) 7.14 (2.06) 0.075 0.418 0.0001 0.669 

Self-Efficacy Domain Pre 2.78 (0.87) 3.40 (0.97) 0.674 
 Post 3.59 (1.05) 5.54 (5.43) 0.602 0.014 0.005 0.227 
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In the pre-treatment assessment classification, 46 CLBP subjects were classified to the 

CLBP HMM and of these 46 subjects, only 30 completed the lifting task after treatment. In the 

post-treatment assessment classification, fifteen of the 30 CLBP subjects were assigned to the 

CLBP HMM and these subjects were labeled as non-changers. Fifteen CLBP subjects were 

assigned to the control HMM at post-treatment assessment classification and these subjects were 

labeled as changers.  

A total of 35 CLBP subjects were classified to the control HMM at pre-treatment and of 

these subjects, 22 CLBP subjects had post-treatment data. Twenty of the 22 CLBP subjects were 

classified to the control HMM at post-treatment assessment. Two subjects were classified to the 

CLBP HMM at the post-treatment and these subjects were not considered a group due to the 

small number of subjects. Figure 30 displays a diagram of the CLBP subject’s assignments at 

pre-treatment and post-treatment.  
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81 CLBP subjects enrolled in study 
52 of the 81 CLBP subjects were enrolled in treatment program 

Pre-Treatment HMM classification 

35 CLBP subjects classified 
to the control HMM 

30 CLBP subjects completed 
treatment and post-treatment 
measures 

15 changers  

22 CLBP subjects 
completed treatment and 
post-treatment measures 

20 classified to 
control HMM at 
post-treatment  

2 classified to CLBP 
HMM at post-
treatment  

15 non-changers 

Post-Treatment HMM classification

46 CLBP subjects classified 
to the CLBP HMM 

 

Figure 30: Diagram of the sample size of CLBP subjects at pre-treatment and post-treatment HMM 
classification.  

 
 
 

The demographics of the changers and non-changers were investigated to determine 

whether the group compositions were different. None of the p-values were significant from the 

ANOVA and chi-squared test indicating that the groups were similar for age, pain duration, 

gender, ethnicity, education, martial status, employment status, how the pain began, pain 

frequency, or number of surgeries. The p-values comparing the demographics are shown in 

Table 21.   
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Table 21: Average values (standard deviations) or percentage of changer and non-changers in each of the 
demographical variables. P-values from the statistical tests comparing the demographics of the two 
groups are listed below. 

 
 Non-changers Changers p-values 
Pain Duration (years) 3.96 (5.92) 4.43 (6.24) 0.833 
Age (years) 37.07 (8.84) 35.8 (10.19) 0.719 

 Males 40% 47% Gender 
 Females 60% 53% 

0.713 

 White 71% 73% Ethnicity 
 African American 29% 27% 

0.909 

 12th grade or less 20% 13% 
 High school graduate 47% 27% 
 Trade/ technical school 20% 27% 
 Some college 13% 27% 

Education 

 College degree or higher 0% 7% 

0.587 

 Single 33% 0% 
 Separated/divorced 13% 27% 
 Married 47% 67% 

Marital status 

 Widowed 7% 7% 

0.102 

  Full-time (over 30 hrs per week) 13% 7% 
  Part-time (less than 30 hrs week) 0% 7% 
 Retired 0% 20% 
 Working part-time because of pain 20% 0% 
 Unemployed because of pain 47% 47% 

Employment 
status 

             

 Other 7% 0% 

0.140 

 Accident at work 57% 67% 
 Accident at home 0% 13% 
 Following surgery or illness 14% 0% 
 Pain just began 14% 0% 

How pain 
began? 

 Other 14% 20% 

0.270 

 0-4 hours 0% 7% 
 4-8 hours 7% 0% 
 8-12 hours 31% 21% 

Pain hours 

 more than 12 hours 54% 71% 

0.303 

 Never 80% 80% 
 Once 7% 7% Surgery 
 Twice 13% 13% 

1.00 
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The distributions of lifting tokens of the changers and non-changers at post-treatment are 

shown in Figures 31 and 32. Comparing the figures, it appears that non-changers use token 1 

more frequently than the changers. The token distribution of the changers was compared to the 

distribution of the CLBP subjects that were classified to the control HMM at pre-treatment and at 

post-treatment assessments. A chi-squared statistic showed that the CLBP subjects classified to 

the control HMM had significantly different frequencies of lifting patterns than the changers (χ = 

198.44, p = 0.0001). Figure 33 shows the token distribution of the CLBP subjects that were 

classified to the control HMM at pre-treatment and post-treatment.  
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Figure 31: Histogram of the tokens used by the non-changers at post-treatment assessment 
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Token distribution of changers
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Figure 32: Histogram of the tokens used by the changers at post-treatment assessment 

 
  
 
 

Post-treatment token distribution of the CLBP subjects classified to 
control HMM pre-TX and post-TX

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Tokens

Fr
eq

ue
nc

y

 
 

Figure 33: Histogram of the tokens used by the CLBP subjects that were assigned to the control HMM at 
pre-treatment and post-treatment assessment. This distribution corresponds to the post-treatment 
assessment. 
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The doubly repeated measure MANOVA found the only domain significantly different 

between the changers and the non-changers was spinal mobility (p = 0.006). A follow-up 

ANOVA showed that the changers and non-changers were significantly different for the 

flexion/extension task from the Jan van Breemen examination (p = 0.001). The CLBP changers 

had greater mobility when performing flexion\extension motion than the CLBP non-changers. 

For both groups, mobility significantly increased after treatment (p = 0.0001). For all of the 

domains and measures, the treatment effect was significant as shown in Table 22. There were no 

significant group-by-treatment interactions.  

 The effect sizes of the post-treatment measures comparing the changers and non-changers 

were calculated and are shown in Table 22. A large effect was found for walking speed, MPI 

Dysfunctional composite score, flexion/extension mobility, flexion mobility and for both 

measures from the Coping Strategies. The measures of MPI pain severity, Jan van Breemen pain 

intensity, work during the lifting task and MPI Interpersonally Distress composite score had 

medium effect sizes.  
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Table 22: Average values (standard deviation) and effect size calculations of the measures at pre-TX and 
post-TX assessment for changers and non-changers are shown. P-values from the MANOVA assessing 
differences between the groups, treatment and group-by-treatment interaction are also shown. Bold 
indicates significant p-values 

 
Measures Means (SD) for post-treatment 

groups and assessments (pre/post) 
 MANOVA Results 

p-values 

 TX 
 

Non-changer Changer Effect 
size 

Group 
(G) 

TX 
(T) 

G x T 

Sample size  15 15     
Pain Domain     0.394 0.001 0.459 

Pre 4.89 (0.78) 4.73 (0.93) 0.187 
MPI : Pain Severity Post 4.16 (1.24) 3.53 (1.25) 0.506 0.221 0.0001 0.244 

Pre 6.89 (1.75) 6.34 (1.58) 0.33 Jan van Breemen: 
Pain Intensity Post 6.14 (1.84) 5.36 (2.05) 0.401 0.197 0.007 0.970 

Psychosocial Domain     0.694 0.0001 0.780 
Pre 64.22 (10.94) 61.58 (11.39) 0.236 MPI Dysfunctional Post 52.87 (7.85) 48.08 (7.66) 0.618 0.389 0.0001 0.633 

Pre 36.52 (15.04) 36.50 (11.97) 0.001 MPI Interpersonally 
Distressed Post 38.08 (11.80) 41.66 (10.54) 0.321 0.922 0.006 0.592 

Cognitive Domain     0.755 0.003 0.134 
Pre 3.88 (1.33) 3.96 (1.49) 0.057 Coping strategies: 

emotionality Post 3.20 (1.50) 2.13 (1.27) 0.773 0.450 0.001 0.062 

Pre 4.58 (1.49) 4.76 (1.09) 0.14 Coping strategies: 
worrying Post 4.10 (1.41) 3.26 (1.49) 0.579 0.522 0.001 0.046 

Disability Domain     0.303 0.0001 0.877 
Pre 1.83 (0.92) 1.86 (0.82) 0.034 MPI: General 

Activities Post 2.07 (0.72) 2.40 (0.82) 0.429 0.269 0.0001 0.346 

Pre 53.59 (16.37) 49.87 (14.92) 0.238 Oswestry Disability 
rating Post 41.86 (11.6) 39.60 (11.2) 0.198 0.399 0.001 0.912 

Pre 42.50 (13.9) 41.06 (19.59) 0.086 Jan van Breemen: 
Walking speed Post 36.21 (6.94) 31.69 (8.99) 0.567 0.222 0.001 0.882 

Pre 3.96 (0.89) 3.50 (1.20) 0.44 Jan van Breemen: 
Functional status Post 5.68 (1.68) 5.32 (1.55) 0.223 0.542 0.0001 0.922 

Spinal Mobility 
Domain (cm) 

 
   0.006 0.0001 0.324 

Pre 4.91 (1.37) 5.36 (0.99) 0.381 Jan van Breemen : 
Flexion  Post 5.36 (1.17) 5.99 (0.83) 0.63 0.061 0.001 0.617 

Pre 5.69 (1.77) 6.82 (1.65) 0.661 Jan van Breemen : 
Flexion/Extension  Post 6.34 (1.58) 8.21 (1.12) 1.39 0.001 0.0001 0.564 

Self-Efficacy Domain Pre 2.74 (0.96) 2.82 (0.80) 0.091 
 Post 3.55 (1.15) 3.63 (0.98) 0.075 0.801 0.0001 0.991 

Work Pre 308 (291) 304 (286) 0.014 
 Post 408 (387) 816 (1385) 0.46 0.466 0.037 0.285 
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The pain intensity ratings reported during the functional capacity evaluation were not 

significantly different between changers and non-changers. The pain ratings were significantly 

different between the three time points (p = 0.0001) and from pre-treatment to post-treatment 

assessment (p = 0.006). The treatment-by-time interaction was significant (p = 0.002) and the 

group-by-time-by-treatment interaction was significant (p = 0.0001). The average pain ratings of 

the changers and non-changers for the three time points during the functional capacity evaluation 

are shown in Figure 34 and 35 respectively.    
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Figure 34: Average pain ratings with standard deviations error bars of the non-changers at each time point 
during the functional capacity evaluation 
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Average of the changer's pain ratings during the function capacity 
evaluation
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Figure 35: Average of pain ratings with standard deviation error bars of the changers at each time point 
during the functional capacity evaluation 
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6.0 DISCUSSION 

 

 

A classification procedure to identify sub-groups within a population of CLBP subjects based on 

their lifting patterns was developed. Simulation studies have showed excellent reliability, 

suggesting HMMs can be applied to clinical time series data to reliably identify a group of CLBP 

subjects that perform the lifting task similar to control subjects. The HMMs identified 35 CLBP 

subjects that lifted more similar to control subjects than to the other CLBP subjects and 46 CLBP 

subjects that lifted differently from control subjects. The two CLBP groups were significantly 

different for pain intensity, pain severity, self-efficacy and the number of lifts performed during 

the lifting task, suggesting that CLBP population is heterogeneous and that the HMMs can 

successfully identify two meaningful different CLBP groups. Most of the control subjects were 

classified to the control HMM, signifying that the control group is relatively homogenous and 

the HMMs could correctly identify the lifting sequences of control subjects. A few control 

subjects were classified to the CLBP HMM but this group was too small to be considered as a 

sub-group. The analysis of the post-treatment data indicated that treatment outcomes could not 

be predicted from pre-treatment HMM classification. However, the HMM classification 

procedure was able to identify those CLBP subjects that change lifting patterns after treatment 

and those who did not, possibly demonstrating that the HMM can identify those CLBP patients 

who improve body mechanics after treatment. This result suggests that HMMs could be used as a 

research tool to evaluate the effectiveness of treatment protocols.    
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The HMMs were designed based on the results of a data reduction procedure that used 

factor analysis and k-means cluster analysis to reduce the multidimensional lifting parameters 

into lifting patterns. The lifts of each of the subjects were assigned to one of five clusters and 

each cluster was associated with a lifting pattern. When the clusters were examined, it appeared 

that the cluster solution did effectively discriminate lifting patterns of controls and CLBP 

subjects since a majority of the lifts contained in some of the clusters were performed by one of 

the groups. The cluster solution was also found to be highly reliable but could not be used to 

identify groups of CLBP subjects because of overlap.  

The cluster solution identified five lifting patterns that provide a global description of 

body motion during a lift. Previously, individual lifting parameters (i.e. lift duration) have been 

compared between controls and CLBP subjects and inferences about the means of the parameters 

were made to distinguish lifting motions of control and CLBP groups [7-8,15-16]. For example, 

CLBP subjects as a group have been shown to perform slower lifts, use lower jerk and a more 

squat starting posture when compared to a group of controls. A limitation in computing averages 

of the parameters over the tasks is that variability can be large and differences between CLBP 

subjects cannot be detected due to the large variability. This same result was found in Wrigley et 

al., who could not differentiate between the lifting techniques of subjects that developed low 

back pain from those who did not when comparing the average or peak of lifting parameters 

[37]. The authors were able to differentiate lifting techniques when principal component analysis 

was applied to the displacement waveforms and the component scores were compared between 

the groups. The advantage of identifying the five lifting patterns in this project is that each lift 

can be assigned to a lifting pattern and used in the HMMs to distinguish motion between CLBP 
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subjects instead of relying on comparisons between individual parameter averages of a CLBP 

group and a control group.  

HMMs were used to describe the lifting patterns of the control subjects and CLBP 

subjects during the lifting task. To determine the appropriate topology of these HMMs, a pruning 

procedure based on Vasko’s DISSOLVE algorithm [21] was used. Comparing the methods used 

to construct the HMMs in this thesis to Vasko’s methods, several differences are notable. These 

differences include data reduction, initial conditions of transition and token probabilities, starting 

state of the sequences and the parameters used to describe the lifting task. Despite these 

differences, the HMMs found in this thesis are very similar to those designed by Vasko, 

suggesting that the HMMs are reproducible. 

Both the control HMM and the CLBP HMM were trained with a modified jackknife 

method to allow for the classification of subjects to a model. Typically, HMMs are trained with a 

training set and evaluated with a test set to determine the reliability of the HMM to model a 

particular time series. For these data, we had no prior knowledge of lifting patterns that separate 

the CLBP subjects into two groups (i.e. CLBP subjects that lifted similar to controls and those 

that lifted different from controls) and therefore could not separate the data into training and test 

sets. The modified jackknife method was used because it permitted classification of the 

sequences to a model without introducing bias associated with classifying a sequence that was 

used to train the HMM. The method excluded one sequence and trained both HMMs with the 

remaining sequences. The excluded sequence was then classified to either the control HMM or 

the control HMM. Two simulation studies were conducted and a kappa statistic was used to 

assess whether the HMMs can identify sequences to the appropriate model. The clinical data was 

simulated by intentionally mislabeling several of the simulated lifting sequences to the wrong 
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group (control sequence labeled as a CLBP sequences and vice versa) and using a modified 

jackknife method to train the HMMs. The HMMs trained with the modified jackknife approach 

were found to be reliable in the second simulation study and were able to identify CLBP groups 

when the HMMs were applied to the clinical data, indicating that the modified jackknife method 

is a valid technique to train HMMs. 

The simulation studies found that the HMMs had excellent reliability when the lifting 

sequences contained more than 7 lifts and when 41% or fewer of the simulated sequences were 

intentionally mislabeled. When 50% of the data was mislabeled, 19 classification errors were 

found. This result while large was better than expected and could suggest that the length of the 

lifting sequences may have contributed to reliability. The length of the simulated sequences was 

chosen to approximately match the clinical data. On average, the simulated sequences from the 

CLBP HMM were shorter than the simulated sequences from the control HMM because control 

subjects completed more lifts than CLBP subjects during the repetitive lifting task. In addition, 

the number of states in the HMMs was different, with a 2-state HMM describing the CLBP data 

and a 3-state HMM describing the control data. The longer sequences are more likely to make 

more transitions through a HMM than shorter sequences and would possibly have a greater 

probability of being generated from a HMM with more state transitions than a HMM with fewer 

state transitions. Thus the shorter CLBP simulated sequences may have been biased to the 2-state 

CLBP HMM and the longer control simulated sequences to the 3-state control HMM in the 

simulation, resulting in the higher reliability.    

The classification procedure identified a group of CLBP subjects that perform lifts 

similar to control subjects and a group of CLBP subjects that perform lifts very differently from 

control subjects. These groups were found to have significantly different lift token distributions. 
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To relate each token to a lifting pattern, the tokens were examined and a description of the lifting 

pattern of each token was obtained. The descriptions corresponded to the factor score(s) that had 

the highest mean value(s). The factor scores were interpreted by calculating the means of the 

lifting parameters that were contained in the particular factor score label. For example, for token 

1, the synchrony factor and the speed factor had higher mean values than the other factors. The 

synchrony factor is composed of the midpoint difference, and the speed factor is composed of lift 

duration and rms jerk. The mean values of midpoint difference, rms jerk and duration of the lifts 

assigned to token 1 were calculated, and the description of the lifting pattern of this token is a 

slow, unsynchronized angle motion with the hip moving faster than the knee, and having low 

jerk. An unsynchronized knee and hip angle motion describes a lift for which the hip and knee 

angles reach the midpoint of motion at different times, resulting in a non-zero midpoint 

difference. A positive midpoint difference indicates that the knees are moving faster than the hip 

and a negative midpoint difference indicates the hips are moving faster than the knees.  

The lifting pattern associated with token 2 is a more torso style starting posture with the 

knees moving faster than the hips. A torso lift is a lift that begins with the back bent and the 

knees at approximately full extension. Token 3 is a faster, high jerk lift with synchronized hip 

and knee motion and indicates a higher momentum lifting pattern. The lifting pattern associated 

with token 4 is a more squat starting posture with the knees moving faster than the hips. A squat 

lift is a lift that begins with the knees fully bent and the back straight. Token 5 was labeled as a 

lifting pattern in which the midpoint of the angles motion occurred at the same time but early in 

the lift time. This type of lifting pattern suggests that the subject is moving in two movements, 

the lower extremities move faster initially and then the upper extremities move faster later in the 

lift.       
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The CLBP subjects that were classified to the CLBP HMM frequently performed the 

lifting pattern associated with token 1. Since jerk is the rate change of acceleration and can be 

related to muscle force, the lower values of jerk for this type of lift suggests that the CLBP 

subject is not using all possible muscle force to lift the load but may instead be co-contracting 

antagonistic muscles (guarded motion) to possibly restrain motion that could produce further 

pain exacerbation [22]. Based on this lifting pattern, the CLBP subjects that were classified to 

the CLBP HMM are referred to as guarded CLBP lifters. The CLBP subjects that were classified 

to the control HMM are called the high performing CLBP lifters. 

Although the high performing CLBP lifters were classified to the control HMM, these 

subjects were found to use different lifting patterns when compared to control subject classified 

to the control HMM. The biggest difference between the high performing CLBP lifters and the 

control subjects is in the tokens that describe lifting patterns related to starting posture and jerk. 

The high performing CLBP lifters were more likely to perform lifts that started in a more squat 

posture than controls. CLBP patients are often told to lift with their knees in rehabilitation 

programs. Since a majority of the CLBP subjects are likely to have had prior treatment before 

entering the study, the rehabilitation instructions could explain this lifting pattern difference. The 

other difference in the high jerk lifting pattern may be related to the significant difference in the 

amount of weight lifted during the repetitive lifting task, since controls lifted almost twice as 

much weight than CLBP subjects. It is reasonable to assume that the greater weight would 

require more muscle force. Since jerk is related to the rate of change of force, lifting a heavier 

weight would result in a higher jerk lifting style than lifting a lighter weight.  

The guarded lifters performed significantly fewer lifts during the lifting task than high 

performing CLBP lifters, suggesting that number of states in the HMM may have biased the 
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classifications of the subjects to a particular HMM. To evaluate whether CLBP subjects could be 

separated into groups based on length of the sequences, a histogram of the number of lifts 

performed by each CLBP group was constructed and compared. The histograms revealed that 

although the guarded lifters performed fewer lifts than the high performing CLBP lifters, the 

distributions overlap. In addition to the histograms, a discriminant function analysis found that 

number of lifts, two measures of pain intensity and self-efficacy were all significant independent 

contributors to the differences between the two CLBP groups. These results indicate that the 

CLBP subjects could not be easily separated into groups based only on the number of lifts 

performed during the task.   

During the functional capacity evaluation, the guarded CLBP lifters reported significantly 

higher levels of pain intensity than the high performing CLBP lifters. For both CLBP groups, 

pain intensity ratings increased from baseline to the end of the repetitive lifting task. Even 

though high performing CLBP lifters reported increase in pain intensity, they performed more 

lifts and used several different lifting patterns during the lifting task. The guarded CLBP lifters’ 

perception of greater pain may be one of the reasons that these subjects used a constrained lifting 

pattern in a majority of the lifts and decided to quit the lifting task before the time limit was 

reached.  

The guarded CLBP lifters also reported higher levels of pain severity and pain intensity and 

lower self-efficacy than high performing CLBP lifters, suggesting that these measures may have 

an impact on body motion and endurance during the lifting task. These results are consistent with 

previous studies that have found correlations between self-reported measures and performance 

on physical functioning tasks. Rudy et al. found self-efficacy expectations and perceived 

emotional and physical health were significant predictors of subjects’ performance on a lifting 
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task in a sample of chronic pain patients with lower extremity amputation [85] Vlaeyen et al. 

found a significant covariation between lumbar muscular activity and the pain report, suggesting 

that the presence of pain results in tensing of the muscles in patients [86]. Lackner found that 

self-efficacy was a better predictor of lifting ability than measures of perceived control over pain 

or psychological distress [87]. Verbunt et al found an association between decreased quadriceps 

muscle strength of CLBP subjects and increased self-reported pain intensity and psychological 

distress [88].  

The significant differences in the self-reported measures of pain and self-efficacy, number 

of lifts and lifting patterns between the two CLBP groups suggest that these measures are related. 

Specifically, higher pain intensity possible translates to guarded lifting style and lower endurance 

for some unknown reason. All subjects were asked for their best performance during the lifting 

task, but it is possible that some CLBP subjects choose to perform at sub-maximal level because 

they may have remembered a past incident that caused increased pain and were fearful of 

reoccurrence of that pain. This type of behavior has been labeled as fear-avoidance.  

 A fear-avoidance model has been constructed that attempts to describe why chronic pain 

develops. The model based on multiple research studies that were performed over several years 

[89-92], describes two pathways when an individual has an injury: fear-avoidance or 

confrontation. In the fear-avoidance pathway, patients experience pain that leads to 

catastrophizing thoughts about their pain which evolves into pain-related fear. The fear leads to 

increased attention to a pain threat or hyperviligance to body sensations which leads to disability, 

depression and deconditioning due to disuse or avoidance of activities of daily life. In the 

confrontation pathway, patients experience pain with the injury but do not develop pain-related 

fear and continue to confront daily activities, which lead to faster recovery.     
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Although no significant differences were found for the cognitive, disability and 

psychosocial domains, the effect sizes of measures within these domains were moderate 

suggesting that at larger sample sizes, significant differences may be found. Assuming this trend 

in the data, the guarded CLBP lifters would report higher disability, greater MPI Dysfunctional 

composite scores and more catastrophizing statements than the high performing CLBP lifters. 

Combining these characteristics with the higher report of pain, lower self-efficacy and 

constrained motion lifting pattern, the results suggest that guarded CLBP lifters demonstrate 

greater fear-avoidance behavior than high performing CLBP lifters and this behavior may 

explain why the two CLBP groups lift differently.        

The self-reported measures at pre-treatment and post-treatment assessments were compared 

between the high performing CLBP lifters and the guarded CLBP lifters to determine whether 

the HMM classifications can predict which CLBP patients that will benefit most from treatment. 

The results showed that the group-by-treatment interaction was not significant for any of the 

domains or measures in the domains, indicating that it is not possible to predict the patients that 

will benefit most from treatment based on HMM classification.  

To assess the treatment effect on the HMM classifications, the CLBP subjects that 

completed the lifting task after treatment were classified to either the control or CLBP HMM. 

The guarded CLBP lifters were labeled as changers or non-changers based on the post-treatment 

HMM classification. Half of the guarded lifters were labeled changers suggesting that changers 

alter in lifting patterns after treatment and that the HMM classification procedure can evaluate 

treatment effectiveness. The high performing CLBP lifters were also classified to a HMM at 

post-treatment and all except two of the high performing CLBP lifters were classified to the 
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control HMM, suggesting that high performing CLBP subject did not perform poorer lifting 

patterns (i.e. classified to the CLBP HMM) at the post-treatment assessment. 

The non-changers used token 1 lifting pattern more frequently than any other token in the 

post-treatment lifting task and this is the same lifting pattern non-changers used frequently in the 

pre-treatment lifting task. Since no significant group difference was found between the changers 

and non-changers for pain intensity ratings during the functional capacity evaluation, pain is 

probably not the reason for lifting pattern differences. During treatment, CLBP patients received 

instructions about body mechanics, cognitive behavior and pain management. It appears that the 

changers may have developed skills to decrease fear-avoidance, increased coping and increased 

pain management techniques. Further evidence to this idea is the significant difference between 

the changers and non-changers in the spinal mobility domain. Changers were found to have a 

greater range of flexion/extension motion which may have translated to greater flexibility and 

less stress on the lumbar back when performing the lifting task, possibly enabling the changers to 

perform lifting patterns that are more similar to controls than to the lifting patterns of non-

changers.  

 The effect sizes were large to medium for coping strategies, MPI Dysfunctional 

composite score, pain intensity and pain severity when comparing the post-treatment assessment 

of the changers and non-changers. In addition, in post-treatment, the non-changers used the 

guarded, more constrained lifting style associated with token 1. These results indicate that the 

non-changers are still demonstrating fear-avoidance behavior after treatment, suggesting that 

treatment was not as effective for these patients. Some reasons for the differential treatment 

outcomes may be the short length of the treatment program, the unwillingness of the subjects to 

change pain behavior or the learning behavior of the individuals. The treatment program was 3.5 
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weeks and involved verbal instructions about body mechanics and cognitive behavior. It is 

possible that the non-changers may need a longer treatment programs, learn through visual 

stimulation or are not willing to alter their perception of pain. Future studies that evaluate the 

effectiveness of longer treatment programs and different treatment modalities such as 

biofeedback [93] may lead to better treatment options for these patients.  

CLBP subjects were assigned to a HMM based on their lifting patterns perform during a 

repetitive lifting task. Five lifting patterns were found with a data reduction procedure and of 

these lifting patterns, two were related to jerk. In this project, jerk was calculated with a 

hyperbolic tangent model to obtain smooth estimates and the parameters of maximum jerk, rms 

jerk and time at maximum jerk were determined from the estimates. Previously, jerk was 

calculated with a hepatic spline and a rms measure of jerk was compared between a control 

group and a CLBP group [15, 25]. The results showed that control subjects and CLBP subjects 

perform lifts with significantly different patterns of jerk. The hyperbolic tangent model was used 

as the smoothing method in this project because we were interested in characterizing maximum 

jerk. It was not possible to characterize maximum jerk with the spline estimates of jerk due to the 

variability in the waveforms. A limitation of using jerk to describe motion in this project is that it 

is not clear whether the estimates from the either the hyperbolic tangent model or spline 

smoothing method are truly measuring jerk. Since jerk was calculated as the third derivative of 

position, it was a noisy measure that could only be estimated using smoothing methods. Future 

studies may focus on validating the estimates of jerk from the smoothing methods possibly by 

comparing jerk calculated with accelerometers and jerk calculated from the displacement 

markers using the different smoothing methods.     
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A limitation of the HMM classification procedure is that the reliability of the HMMs 

must be estimated with simulation studies. The objective of the study is to reliably identify the 

group of CLBP subjects who performed lifting patterns that more similar to the lifting pattern of 

control subjects than other CLBP subject within a sample using HMMs. A simulation study was 

designed to assess how reliably the HMMs can classify the simulated sequences to the correct 

HMM when a percentage of the sequences are intentionally mislabeled to the wrong group and 

the HMMs are trained with the mislabeled sequences. The reliability results of the simulation 

study are only estimates of HMM reliability because the high performing CLBP lifters are 

represented as control sequences in the simulation, while in the clinical data the CLBP subjects 

are not control subjects. The control sequences were used as approximations because at the start 

of the project, it was impossible to know which of the CLBP subjects were high performing 

CLBP lifters and which were the guarded CLBP lifters. 

 Another limitation of the study is the sample size especially in the analysis of the 

treatment data. Several of the self-reported measures had moderate effect sizes indicating 

potential for significant differences in larger samples sizes. A power analysis was performed and 

showed that approximately 218 subjects (95 high performing CLBP lifters and 123 guarded 

CLBP lifters) would be needed to identify significant differences between guarded CLBP lifters 

and high performing CLBP lifter on the measures of coping strategies, MPI Dysfunctional 

composite score, functional status from Jan van Breemen and walking speed (Appendix C). 

Future studies may focus on using the HMM classification procedure to determine whether these 

variables are different between the two CLBP groups at larger sample sizes.     

Other systems to identify groups of CLBP subjects that were based on clinical 

examination and self-reported measures have been described. O’Sullivan identified groups 
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within a CLBP patient population based on clinical examinations and found differences in 

posture and trunk muscle activation during a seated task [5]. Turk and Rudy identified groups 

based on responses to the MPI [3], and Dunn et al. identified CLBP groups based on self-

reported pain intensity, disability and psychosocial measures [6]. The advantage of using the 

HMMs to identify the CLBP groups is that the classifications are not dependent on the 

experience of the clinician or the subjectivity of the CLBP patient’s self-report as is found with 

the other classification systems. The HMMs also provide a method to incorporate temporal 

patterns into the classification strategy. 

One of the motivating factors of this project was from the observations of an experienced 

occupational therapist, who described differences in the lifting motion of CLBP subjects during a 

lifting task that were not discernable to the untrained or inexperienced observer. Specifically, the 

clinician observed during the clinical research study that some of the CLBP subjects lifted like 

control subjects and others lifted differently from controls. The HMM classification procedure 

was able to identify these CLBP groups. Since few tools are available to quantify the 

observations of experienced clinicians, the results of this study suggest that the HMM 

classification procedure is a useful research tool for validating the clinician observations, 

identifying CLBP groups and evaluating the effectiveness of treatment. 

This study provides a classification method for identifying groups within a CLBP 

population based on time series data and can be easily adapted to classify patients from other 

clinical populations besides CLBP. One reason for developing a classification method is that 

groups of chronic pain patients have shown differential response to standardize treatment 

protocol when separated into groups based on responses to the MPI. In identifying difference 

between sub-groups, more diverse treatment options can become available to patients that could 
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possibly increase recovery time and treatment effectiveness. The classification method used 

HMM to classify subjects based on their time series data. An advantage of the HMMs is that 

information over duration of the performance or measures of the disease over time can be used to 

classify patient instead of discrete or short-term clinical parameters  
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7.0 CONCLUSION  

 

 

Patients diagnosed with CLBP are not a homogenous group and different treatments may be 

beneficial to different groups of patients. The HMM classification procedure described in this 

thesis provides a technique to identify sub-groups within a sample of CLBP subjects based on 

time series data. Simulation studies demonstrated the reliability of the classification method. In 

this study, a sub-group of CLBP patients that performed a repetitive lifting task more like control 

subjects than like other CLBP subjects was identified. The sub-group performed more lifts than 

the other CLBP subjects, reported lower pain intensity at the before and after the repetitive lifting 

task, lower levels of pain intensity during activities of daily life and higher levels of self-

efficacy. Treatment outcomes could not be predicted based on the pre-treatment HMM 

classifications of the CLBP subjects. However, half of the CLBP subjects that were classified to 

the CLBP HMM at pre-treatment assessment were classified to the control HMM at post-

treatment and the other half were assigned to the CLBP HMM. Almost all of the CLBP subjects 

classified to the control HMM at pre-treatment were classified to the control HMM at post-

treatment, indicating that the HMM classification procedure is a useful research tool to measure 

treatment effectiveness. 
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APPENDIX A 

 

 

3-STATE CLBP HMM 

 

To determine whether the 3-state CLBP HMM or 2-state CLBP HMM was the appropriate 

HMM to apply to the clinical data, the reliability of both models was assessed in the second 

simulation. The 2-state CLBP HMM and 3-state CLBP HMM were compared to the 3-state 

control HMM to determine whether these models could reliably identify mislabeled simulated 

sequences to the correct HMM. The results of the second simulation comparing the 2-state CLBP 

HMM and 3-state control HMM found that the models could reliable identify 41% or fewer 

mislabeled sequences to the correct model, as shown in Figure 24 (Chapter 4). The results of the 

second simulation study assessing the reliability of the 3-state control HMM and the 3-state 

CLBP HMM showed that the HMMs could reliably identify 22% or fewer of the mislabeled 

simulated sequences to the correct model (Figure 36). Based on these results, the 2-state CLBP 

HMM was chosen as the appropriate HMM to describe the CLBP time series data.       

 139



 

Second simulation comparing 3-state control HMM and 3-state 
CLBP HMM

0.00

0.20

0.40

0.60

0.80

1.00

4% 13% 22% 31% 41% 50%

% of mislabeled simulated sequences

ka
pp

a

 

Figure 36: Results of the second simulation study assessing the reliability of the 3-state CLBP HMM and 
the 3-state control HMM. HMMs were considered reliable if kappa was > 0.8. 
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APPENDIX B 

 

 

DESIGN OF TWO CLBP HMMS 

 

Since two groups of CLBP subjects (guarded CLBP lifters and high performing CLBP lifters) 

were found, HMMs were designed to determine whether it is more appropriate to classify sub-

groups of the CLBP subjects with two CLBP HMMs or with a control HMM and a CLBP HMM. 

This section describes the design of the guarded CLBP lifters (GL) HMM and the high 

performing CLBP lifters (HP) HMM, simulation studies to determine reliability, and results of 

the HMMs when applied to the clinical data.  

 

 

B.1  DESIGN 
 

The two CLBP HMMs were designed according to the methods described in Chapter 3. Briefly, 

a fully-connected 4-state, 3-state and 2-state HMMs were trained for the GL and the HP CLBP 

groups. A pruning procedure was applied to the each of the HMMs to reduce the topology of the 

models. The likelihood probability, K-L measure and the entropy of the token distribution were 

used to identify the simplest topology of the 4-state, 3-state and 2-states GL HMMs, and the 

simplest topology of the 4-state, 3-state and 2-states HP HMMs. The Viterbi algorithm was 

applied to the resulting HMMs, and the frequency that each state was occupied was calculated. 

 141



The HMM that contained states that were frequently occupied by the subject’s sequences was 

chosen. 

 

 

B.2  SIMULATION STUDIES 
 

In order to determine how reliably the GL HMM and HP HMM can identify mislabeled 

sequences to the correct model, an experiment similar to the second simulation study was 

performed. In this simulation, simulated sequences were switched between the GL HMM and the 

HP HMM and between the HP HMM and the control HMM. A modified jackknife method was 

used to train HMMs and the logarithm of likelihood probability determined the classification of 

the simulated sequence. The sample size of the simulated sequences was chosen to match the 

clinical data with 35 simulated sequences generated from the HP HMM, 46 simulated sequences 

generated from the GL HMM and 51 simulated sequences generated from the control HMM. The 

methods of the second simulation described in Chapter 4 were used. 

.  

 

B.3  RESULTS 
 

The pruning algorithm indicated that the simplest topologies of the 4-state, 3-state and 2-state LP 

and HP HMMs were temporal HMMs. The frequency calculation, based on the results of the 

Viterbi algorithm, showed that the 2-state HMM was the appropriate HMM to describe the GL 

time series data as shown in Table 23. For the HP data, it is not clear whether the 2-state HMM 

or the 3-state HMM was the appropriate model since 14% of the subjects occupied the last state 
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in the 3-state HMM. Both models were tested in the simulation studies and the HMM with the 

higher reliability was chosen to describe the HP time series data. The parameters of the 2-state 

CLBP guarded lifters HMM and the 2-state CLBP high performing lifters HMM are shown in 

Table 24.   

 
 

 
Table 23: Frequency that the states were occupied for the 4-state, 3-state and 2-state GL HMMs and the 
4-state, 3-state and 2-state HP HMMs 

 
  4-state HMM 3-state HMM 2-state HMM 
# of states in most 
 likely state path  1 2 3 4 1 2 3 1 2 
GL group 63% 23% 14% 0% 70% 24% 6% 68% 32% 

HP group 37% 46% 17% 0% 54% 31% 14% 60% 40% 
 
 
 
Table 24: Parameters of the guarded CLBP lifters HMM and the high performing CLBP lifters HMM 

 
Parameters of the trained Guarded CLBP lifters HMM 

Guarded HMM Transition Probability 
 Transition to state 1 Transition to state 2 

In state 1 0.9619 0.0381 
In state 2 0.0000 1.0000 

 Guarded HMM Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.9670 0.0000 0.0000 0.0293 0.0037 
State 2 0.4306 0.0839 0.0989 0.2694 0.1172 

Parameters of the trained High Performing CLBP lifters HMM 
High Performing HMM Transition Probability 

 Transition to state 1 Transition to state 2 
In state 1 0.9590 0.0410 
In state 2 0.0000 1.0000 

High Performing HMM Token Probability 
 Token 1 Token 2 Token 3 Token 4 Token 5 

State 1 0.0869 0.0000 0.0338 0.8378 0.0415 
State 2 0.0119 0.3225 0.2485 0.0050 0.4121 
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In the simulation, simulated sequences were equally mislabeled between the CLBP 

groups (i.e. one sequence from the HP group was labeled as a GL sequence and one sequence 

from the HP group was labeled as a GL sequence) from 4 to 36 (5% to 44% of the total sample) 

in increments of 2. The maximum percentage of mislabeled sequences was 44% of the total 

sample (n = 81) because at this percentage, 50% of the HP data (n = 35) was incorrectly labeled 

to the GL group. For the comparison between the control HMM and the HP HMM, the 

maximum percentage of mislabeled sequences was 40% of the total sample. 

The second simulation results comparing the GL HMM and the 2-state HP HMM showed 

that these models were reliable when 34% or less of the total sample was mislabeled (Figure 37). 

This same result was found when comparing the 3-state HP HMM and the GL HMM as shown 

in Figure 38. The 2-state HP HMM and control HMM were reliable when 22% or less of the 

total sample was mislabeled as shown in Figure 39. The results of the second simulation 

comparing 3-state HP HMM and the control HMM showed that the models were reliable when 

9% or less of the total sample was mislabeled (Figure 40). Based on these results, a 2-state HP 

HMM was chosen since this model was more reliable. Both the 2-state GL HMM and the 2-state 

HP HMM were applied to the clinical data. 
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Second simulation assessing reliability between 2-state HP HMM 
and the 2-state GL HMM 
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Figure 37: Kappa plotted for the percentage of mislabeled simulated sequences comparing the 2-state HP 
HMM and the 2-state GL HMM. HMMs were considered reliable if kappa was > 0.8. 

 
 
 

Second simulation assessing reliability of the 3-state HP HMM 
and 2-state GL HMM
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Figure 38: Kappa plotted for the percentage of mislabeled simulated sequences comparing the 3-state HP 
HMM and the 2-state GL HMM. HMMs were considered reliable if kappa was > 0.8. 
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Second Simulation assessing the 2-state HP HMM and
 control HMM
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Figure 39: Kappa plotted for the percentage of mislabeled simulated sequences comparing the 2-state HP 
HMM and the control HMM. HMMs were considered reliable if kappa was > 0.8. 

 
 
 

Second Simulation assessing the reliability of the 3-state HP 
HMM and 3-state control HMM
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Figure 40: Kappa plotted for the percentage of mislabeled simulated sequences comparing the 3-state HP 
HMM and the control HMM. HMMs were considered reliable if kappa was > 0.8. 

 146



 
 

B.4  APPLICATION TO THE CLINICAL DATA 
 

The subjects classified to the GL group were used to train the GL HMM and the subjects in the 

HP group were used to train the HP HMM. The CLBP subject’s lifting sequences were tested 

against the GL HMM, HP HMM and control HMM using a modified jackknife method and 

classified to one of the three HMM based on the likelihood probability. The control HMM was 

trained with all of the control data and the control data were not tested.  

When the subjects in the GL group were classified to a HMM, 40 subjects were classified 

to the GL HMM, 3 subjects were classified to the HP HMM and 3 subjects were classified to the 

control HMM.  In the HP group, 10 subjects were classified to the HP HMM, 2 were classified to 

the GL HMM and 23 subjects were classified to the control HMM.  

Given the small number of subjects in the HP group that were classified to the HP HMM, 

this model was considered unreliable to classify subjects to a group. The results suggest that 

lifting pattern distribution of HP subjects is more similar to the lifting patterns distribution of the 

control subjects. Based on these results, the control HMM and CLBP HMM were used to 

classify the lifting sequences of the CLBP subjects at pre-treatment and post-treatment.  
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APPENDIX C  

 

 

POWER ANALYSIS 

 

Power analysis was performed on the measures that showed moderate effects when comparing 

the high performing CLBP lifters and the guarded CLBP lifters to determine the sample sizes 

that could possibly produce significant p-values. Moderate effects were found for the measures 

of coping strategies, MPI Dysfunctional composite scores, walking speed, walking speed and 

functional status from the Jan van Breemen. Since more CLBP subjects were classified to the 

CLBP HMM than to the control HMM, the total sample size needed when comparing the means 

of two normally distributed samples of unequal sample size was calculated [94]. Based on the 

number of subjects that were found in each CLBP group when sample size was 81, the power 

analysis was calculated with the assumption that CLBP subjects classified to the CLBP HMM 

would be 1.3 times larger than the CLBP subjects classified to the control HMM. The sample 

size of the group of CLBP subjects classified to the CLBP HMM was calculated using the 

equation [94] on the left and was denoted as n1. The sample size of the CLBP subjects classified 

to the control HMM was calculated using the equation [94] on the right and denoted as n2. 
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In both equations, k is 1.3 or the projected ratio of the two samples (k = 46/35), σ represented 

standard deviation, µ represented the mean values and the values of Z1-α/2 was 1.96 and Z1-β was 

0.84. These Z score values represent a p-value of 0.05 as a significant level and a power level of 

80%. 

       The results of the sample size calculations of the two CLBP groups for the measures of 

coping strategies, MPI Dysfunctional composite scores, walking speed, and functional status are 

shown in Table 25. The maximum sample size to detect significant differences ranges from 106 

(60 guarded CLBP lifters and 46 high performing CLBP lifters) of the Dysfunctional composite 

score to 217 (123 guarded CLBP lifters and 94 high performing CLBP lifters) for the coping 

strategies (anxiety). 

 

 

Table 25: The projected sample sizes of the high performing CLBP lifter and guarded CLBP lifters and 
the average (standard deviation) of the variables with moderate effect sizes are listed. 

  

 

Guarded  
CLBP lifters 

N = 46 

High 
performing 

CLBP lifters 
N = 35 

Projected 
Sample size of 
guarded CLBP 

lifters 

Projected 
Sample size of 

high performing 
CLBP lifters 

Total  
sample 

size 
Coping strategies: 
emotional 

3.85  
(1.31) 

3.21  
(1.32) 76 57 135 

Coping strategies: 
anxiety 

4.62  
(1.18) 

4.13  
(1.35) 123 94 217 

MPI Dysfunctional 
composite score 

62.60  
(10.30) 

57.27  
(9.24) 60 46 106 

Jan van Breemen: 
functional status  

3.91 
 (1.15) 

4.50  
(1.62) 107 82 189 

Jan van Breemen: 
walking speed 

41.63  
(15.89) 

35.29  
(7.95) 65 50 115 
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