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MINERALIZED TISSUE ENGINEERING, STEM CELL THERAPIES AND 
PROTEOMICS APPROACHES   

 

Pang-ning Teng, Ph.D. 

University of Pittsburgh, 2009

 

Cellular therapy holds tremendous potential in regeneration of mineralized tissues such as 

bones and teeth. I have characterized and identified pericytes as a unique population of dental 

pulp stem cells (DPSCs) that can be sorted by CD146+CD34-CD45-CD56-, expanded in culture, 

and differentiated into osteogenic, chondrogenic, and adipogenic lineages. A well-characterized 

stem cell source and an appropriate microenvironment containing growth factors and/or 

extracellular matrix (ECM) proteins to stimulate differentiation and mineralization are required 

for successful cellular therapies. To understand cell-ECM protein interaction, I studied the 

signaling role of phosphophoryn (PP), an ECM protein found in dentin and bone. PP signals 

through integrins, mitogen activated protein kinase (MAPK), and Smad pathways. There is also 

signaling crosstalk between the MAPK and Smad pathways. To better understand the complex 

signaling pathways involved in stem cell differentiation during dentin or bone formation, I have 

utilized quantitative proteomic strategies to study stem cell differentiation triggered by PP and 

BMP-2. Proteins upregulated and downregulated during differentiation were identified by mass 

spectrometry. With the ultimate goal of better enabling the regeneration of diseased or damaged 

mineralized tissue, my findings in this study have enhanced our understanding in stem cell 

differentiation to the osteoblastic/odontoblastic lineages and lay foundations for the development 

of future craniofacial regeneration.  
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1.0  INTRODUCTION 

1.1 TISSUE ENGINEERING FOR CRANIOFACIAL REGENERATION 

Craniofacial reconstruction is necessary to replace or repair damaged or lost tissue in the oral-

facial region. Tissue lost in the oral-facial region can arise for many different situations including 

injury or diseases such as head and neck trauma, cancer, genetic diseases, tooth injury, or 

alveolar bone loss due to periodontal disease. The current technology for treating craniofacial 

defects is to implant an allograft bone substitute seeded with bone marrow aspirate from the ilia 

crest. The grafted defect could be stabilized by titanium screws or bars if the need arises. 

Another approach is to harvest segments of bone from the patient’s ulna or tibia to replace the 

damaged craniofacial tissues; however, this introduces a second injury site that may elicit 

complications and infection.  

Current research in this field is focused on developing tissue engineering strategies to 

regenerate craniofacial defects. To this end, a wide variety of tissues are needed including bone, 

muscle, fat, cartilage, dentin, periodontal ligament, cementum, and dental pulp.  Our specific 

interest is in mineralized tissue engineering which is the regeneration of hard tissues such as 

bone and dentin. 
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1.2 STEM CELL SOURCE FOR CELLULAR THERAPY  

The source of stem cells is an important consideration for cellular therapy. Different types of 

stem cells possess different abilities to differentiate and are suitable for repairing various tissues. 

Stem cells can be categorized into embryonic stem cells, fetal stem cells and adult stem cells. 

The definition of a stem/progenitor cell is that it can self-renew as well as differentiate into at 

least one cell type. For cellular therapy, rejection poses a potential issue; therefore autologous 

stem cells are preferred. Embryonic and fetal stem cells may elicit a body rejection and also raise 

ethical concerns. Cells harvested from tissues that are discarded such as human umbilical vein 

endothelial cells, umbilical cord blood, foreskin, and dental pulp are convenient cell sources for 

cellular therapies. In specific, adult stem cells such as those derived from the bone marrow and 

dental pulp have been shown to be able to differentiation into the bone/dentin lineages and thus 

will be used in our study.[1,2]  

1.2.1 Cellular Therapies 

One approach to repair mineralized tissues is to utilize cellular therapies. Stem cell based 

mineralized tissue engineering requires a well-characterized population of stem cells that can be 

easily sorted, expanded, and induced by growth factors or extracellular matrix proteins (ECM) 

for the desired differentiation. Human bone marrow stromal cells, or mesenchymal stem cells 

(MSC), have been widely studied for differentiation toward osteogenic, chondrogenic, and 

adipogenic lineages.[1] However, mesenchymal stem cells from the craniofacial region have 

been shown to behave differently than those from iliac crest.[2, 3] The differences between the 

MSCs in the craniofacial region and those in the iliac crest might be due to their origin. Most 
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skeletal tissues are derived from the mesoderm except those in the craniofacial region. Neural 

crest cells form much of the mesenchyme of the head and neck, and are derived from the 

ectoderm found at the edges of the neural plate. These cells are also termed neuroectoderm or 

ectomesenchyme.[4] The pulp of adult third molars contains stem cells derived from the 

ectomesenchyme. Because of their unique neural crest origin, dental pulp stem cells may serve as 

a favorable alternative to bone marrow stromal cells for craniofacial tissue regeneration. Dental 

pulp stem cells from the adult third molars, isolated using fluorescent activated cell sorting 

(FACS), can be induced to differentiate by appropriate growth factors and incorporated into 

biocompatible scaffolds which can be useful for bioengineering of craniofacial mineralized 

tissues. In addition, they can provide a model to better understand the biological phenomena 

involved in cell differentiation towards the osteoblastic/odontogenic lineages and bone 

regeneration. Finally, these dental pulp stem cells can also be used to study epithelial-

mesenchymal interactions instrumental to the formation of future bioengineered teeth.   

1.2.2 Pericytes as a Unique Stem Cell Population 

Pericytes, also known as Rouget or mural cells, are microvascular cells surrounding the 

endothelial cells that emerged from the mesodermal origin.[5] Pericytes reside around the walls 

of microvessels (precapillaries, capillaries, and postcapillary venules) and are neither endothelial 

cells nor smooth muscle cells.[6, 7] Pericytes are distributed throughout the vasculature in the 

body with diverse characteristics, function, and location.[8] For example, pericytes in liver, also 

known as Ito cells, serve as a mediator between sinusoids and hepatocytes to facilitate metabolic 

interactions.[9] In general, pericytes interact with endothelial cells to regulate endothelial cell 

proliferation and differentiation.[10] Pericytes are also involved in angiogenesis, maintaining 
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blood flow, as well as providing mechanical strength to the microvessels.[7, 10, 11] It has been 

suggested that pericytes may play a role in the growth, maintenance and repair of the 

skeleton.[12] Pericytes may also be associated with diseases involving ectopic calcification.[13]  

Studies have shown pericytes to be a mesenchymal stem cell (MSC)-like population with 

the capacity to differentiate into multiple mesenchymal lineages: smooth muscle cells, 

osteoblasts, chondrocytes, and adipocytes.[5, 10, 14-16] Bone marrow stromal cells, or MSCs, 

are in fact perivascular cells that are viewed as a special subset of pericytes.[17] Pericytes have 

been isolated from retina, brain, epididymal fat pad, skin, lung, placenta, aorta, and dental pulp 

from various species (human, bovine, rat, monkey).[8, 10, 18, 19] Studies have shown pericytes 

to behave osteoblast-like in vitro even without addition of β-glycerophosphate.[20, 21] Human 

placental pericytes express bone associated proteins, matrix Gla protein and osteopontin 

(OPN).[19, 20] Pericytes from bovine retinal microvessels express alkaline phoshpatase, runx2, 

OPN, osteonectin (ON), osteocalcin (OCN), and bone sialoprotein (BSP) at different stages of 

differentiation.[10, 15] Osteocalcin concentration is higher in the bone cell when compared to 

perictyes.[22] Bovine retina pericytes have also been shown to have osteogenic potential in vivo 

using diffusion chambers.[23]  

However, pericytes used in the studies mentioned above were not sorted, but identified to 

be pericytes by the source of isolation, morphology, and characteristics such as forming nodules 

post confluence. There is no specific marker for pericytes, but there are markers expressed by 

pericytes as well as other cell populations such as 3G5, NG2, CD146, Stro-1, α-SMA, Desmin, 

and ON.[7, 8, 11, 18, 24] Studying pericytes is therefore extremely challenging and there is a 

significant need for a combination of specific markers to sort pericytes exclusively. Dr. Péault’s 

group has characterized and isolated pericytes from human white adipose tissue, fetal and adult 
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muscle, fetal pancreas, and fetal lung using the combination of markers CD146+CD34-CD45-

CD56- and showed multilineage potential of sorted pericytes.[25] In collaboration with Dr. 

Péault we will test this combination of markers for pericytes to isolate human dental pulp tissue.    

1.2.3 Stem Cell Populations in Dental Pulp 

Dental pulp is a highly vascularized tissue and has been proposed to be a stem cell niche.[3, 26] 

Pulp cells, like osteoblasts/odontoblasts, express bone/dentin markers such as bone sialoprotein 

(BSP), alkaline phosphatase, type I collagen, OCN, ON, parathyroid hormone/parathyroid 

hormone related peptide (PTH/PTHrp) receptor, and dentin sialophosphoprotein (DSPP).[26, 27] 

However, the identity of stem cell populations in the dental pulp remain unclear.   

Shi et al. have recently identified mesenchymal stem cells in adult human dental pulp and 

human primary teeth: dental pulp stem cells (DPSC) and stem cells from human exfoliated 

deciduous teeth (SHED). DPSC and SHED were reported to have stem cell like qualities such as 

self-renewal ability and multi-lineage differentiation.[26] Shi et al. observed clonogenic 

populations of DPSCs that were not sorted, but isolated by its ability to adhere to plastic, similar 

to bone marrow stromal cells. DPSCs also share similar gene expression profile with bone 

marrow stromal cells.[28] Non-sorted DPSCs form mineralized nodules in vitro and generate 

dentin-pulp-like tissue in vivo.[29, 30] SHEDs were isolated (but not sorted), expanded, and 

showed 9% Stro-1 positive by FACS. Sections of deciduous incisor pulp were positive for 

CD146 and Stro-1 for cells in perivascular areas. SHEDs are clonogenic and able to differentiate 

into neural cells, adipocytes, and odontoblasts in-vitro as well as osteogenic and odontogenic in 

vivo.[31]  
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The studies mentioned above suggested the stem cells are perivascular cells in the dental 

pulp by a descriptive manner using immuhohistochemistry (IHC) but they were not sorted 

routinely with FACS. There has been little effort in characterization and differentiation of sorted 

dental pulp cells. In only one study, Shi and Gronthos’ group sorted DPSCs by Stro-1, a 

mesenchymal stem cell marker, and then characterized them by IHC to be positive for the 

perivascular markers CD146 and 3G5, but negative for the endothelial and hematopoietic 

markers VWF, CD34, and CD45. They also sorted DPSCs by CD146 and observed ectopic 

dentin formation in immunocompromised mice.[32] Non-sorted pulp cells isolated by Alliot-

Licht’s group formed mineralized nodule and expressed alpha-SMA (a marker for pericytes and 

smooth muscle cells).[33] Tacles et al. showed pulp stem cells in the perivascular area proliferate 

in response to dentin injury.[34] Together, these results led us to our hypothesis that pericytes in 

the dental pulp are in fact a stem cell population, but we needed to develop a strategy to isolate 

the pericytes since Stro-1 and CD146 are also expressed by other cell types. In this study, we 

will characterize the pericytes by immunohistochemistry and determine an optimal combination 

of specific markers to specifically sort dental pulp pericytes by FACS. From our 

immunohistochemistry results, we have characterized pericytes from the dental pulp to be 

positive for CD146 but negative for CD34, CD45, and CD56 similar to pericytes found in other 

tissues. Using these results, we developed a protocol to isolate the pericytes by FACS by first 

excluding CD45+ and CD56+ cells, then selecting for the CD146+CD34- population. This 

provides us with a well-characterized stem cell population with high purity from human dental 

pulp that can be routinely sorted for expansion and differentiation.   

 However, other stem cells populations could exist in the dental pulp. For example, Laino 

et al. showed Stro-1+ckit+CD34+CD45- sorted population to be stem cells from the dental 
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pulp.[35] Further studies comparing various stem cell populations in the dental pulp different are 

warranted.  

1.3 EXTRACELLULAR MATRIX PROTEINS DIRECTS STEM CELL 

DIFFERENTIATION  

Stem cell maintenance and differentiation is directed by signals in the stem cell niche or 

microenvironment. These signals include mechanical stimuli, chemical stimuli, ECM-cell stimuli 

and cell-cell interaction. The ECM provides structure as well as contains growth factors that 

instruct cells to proliferate, migrate or differentiate.  

1.3.1 ECM Proteins Involved in Bone and Dentin Formation 

Many of the processes involved in bone and dentin formation are very similar. Osteoblast and 

odontoblasts secrete a specialized extracellular matrix that will mineralize. The ECM is believed 

to provide the appropriate signals to maintain the osteoblastic and odontoblastic phenotype. The 

ECM contains collagen and non-collagenous proteins, such as Small Integrin-Binding Ligand N-

Linked Glycoproteins (SIBLINGs). SILBLINGs are found in bone and dentin during 

mineralization and play an important role in directing biomineralization and by signaling stem 

cell differentiation. SIBLINGs include OP, BSP, dentin matrix protein-1 (DMP-1), DSPP (also 

called dentin matrix protein-3 or DMP-3), and matrix extracellular phosphoglycoprotein 

(MEPE).[36] Post-translational modifications of SIBLINGs such as phosphorylation, 

glycosylation, and proteolytic processing can affect its structure and function, as a result 
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directing osteogenesis and dentinogenesis.[37] Our interest is to determine the effect of 

phosphophoryn (PP) on cell signaling and stem cell differentiation in comparison to bone 

morphogenetic protein-2 (BMP-2).  

1.3.1.1 PP 

The DSPP gene codes for two proteins: dentin sialoprotein (DSP) and phosphophoryn (PP). PP is 

primarily found in dentin, but also found in bone at much lower levels. Due to its unique and 

exclusive secretion in mineralized tissues, we hypothesized that phosphophoryn would be needed 

for dentin formation, thus making it of significant interest to study if it has a role in stem cell 

differentiation to osteoblasts or odontoblasts. The isolation of the DMP-3 or DSPP mouse 

genomic clone in our laboratory as well as others demonstrated that demonstrated that DSP and 

PP are cleavage products of a single transcript coded by DMP-3.[38],[39] The same organization 

of the gene was also described in the rat species.[40, 41] The intron/exon structure we obtained 

was characterized and the gene contains 5 exons and 4 introns and ~1.5 kb and 6 kb 3' flanking 

regions. A diagram of the λ clone is shown in Figure 1.1. Exons 2, 3 and 4 code for DSP and 

exon 5 codes for PP, comprised primarily of a repetitive motif: (DSS)n. The (DSS)n motif 

confirms the partial degradation studies of phosphophoryns performed earlier.[42] DSPP is 

localized to chromosome 4, linking mutations in the gene to dentinogenesis imperfecta type 

II.[43, 44] Although initially thought to be tooth-specific, Dspp message is also localized in 

mouse calvaria and rat tibia, although at much lower levels.[37]  

PP is the most abundant NCP in dentin ECM, comprising approximately 50% of the 

ECM protein sector.[44] Like other proteins in the bone/dentin microenvironment, PP is highly 

phosphorylated and anionic in character.[45] PP is exceedingly rich in aspartic acid (D) and 

serine (S) residues, and approximately 85-90% of the serine residues are phosphorylated.[46, 47] 
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The majority of the protein sequence consists of (DSS)n repeats as shown in Figure 1-1.[39, 48] 

Odontoblasts secrete PP along the mineralization front.[49-51] PP has been implicated as a 

regulator of mineral crystal formation.[44, 45, 52, 53] Typical of other non-collagenous proteins, 

the physiochemical properties of PP dictate high affinity for Ca2+ which implicates a role in 

nucleation or modulation of HA crystal formation.[54-56] An RGD domain is present at the N-

terminal end of PP[52, 54], suggesting an auxiliary function in ECM-cell communication and 

initiation of intracellular signaling pathways. 

PP also has a signaling role similar to that of growth factors to regulate cell 

differentiation. Our group has shown that PP can act as a signaling molecule and upregulate 

osteogenic genes in human mesenchymal stem cells (hMSCs), mouse fibroblasts (NIH3T3), and 

mouse osteoblasts (MC3T3-E1). PP regulates hMSC differentiation through the integrin/mitogen 

activated protein kinase (MAPK) signaling pathway.[57] We have also shown that PP activates 

the Smad pathway, which is important in osteogenesis and dentinogenesis.[58] Runx2, Osterix, 

alkaline phosphatase, and osteocalcin were upregulated in hMSCs treated with PP.[57] PP has 

also been reported to act as a co-factor that can enhance BMP-2 in bone formation in a rat 

model.[59] Therefore, we feel that PP is a promising candidate for inducing osteogenic and 

odontogenic differentiation of stem cells.    
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Figure 1-1. Genomic organization of the mouse DMP-3 gene. Exons 2,3 and 4 code for DSP and exon 5 

codes for PP. 

1.3.1.2 BMP-2 

BMP-2, belonging to the transforming growth factor-β (TGF-β) super family, stimulates 

osteoblast diffentiation and bone matrix mineralization through activation of the BMP receptor 

and Smad pathways.[60, 61] BMP-2 has been extensively studied and reported to induce 

osteogenesis in stem cells from bone marrow, dental pulp, and adipose tissue.[62-64] BMP-2 is 

expressed by hMSCs during osteogenic differentiation and it stimulates osteogenic transcription 

factors such as Runx2/Cbfa1, ostrix, distal-less homeobox 5 (Dlx5), and msh homeobox 2 

(Msx2).[61, 65]  BMP-2 along with BMP-7 (OP-1) are the two BMPs currently in clinical use 

for bone regeneration that can be reproducibly produced in biotechnology processes using 

recombinant deoxyribonucleic acid technology.[66] BMP-2 has been demonstrated to heal 

critical-sized bone defects in several animal models and the healing process accelerates with a 

calcium phosphate or liposome carrier.[67] Studies are ongoing to incorporate BMP-2 in 3D 

scaffolds such as chitosan film, collagen sponge, and silk fibrin fibers with nanoparticles of 
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hydroxyapatite.[68-70] Understanding the effect of BMP-2 on stem cell differentiation can 

provide valuable information in bone development and tissue engineering.  

1.4 MECHANISMS UNDERLYING STEM CELL DIFFERENTIATION 

Stem cell differentiation is a complex process where the microenvironment plays an important 

role. This microenvironment contains growth factors and ECM proteins that play a major role in 

cell differentiation and signaling through the activation of signal transduction pathways. After 

the binding of growth factors to specific cell surface receptors, a cascade of signaling events 

leads to the recruitment of transcription factors to the cell nucleus, which then initiates specific 

gene expressions. However, how stem cells become osteoblasts/odontoblasts remains unclear. 

(Figure 1-2)  One of the goals of our research is to investigate intracellular signaling pathways to 

better understand the differentiation process of stem cells.  
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Our recent data show that PP interacts with αvβ3 integrin and signals through the mitogen-

activated protein kinase (MAPK) and Smad pathways. PP appears to play an important role 

during cell differentiation towards the osteoblastic lineage. Our goal is to understand the role of 

PP during cell differentiation. Since BMP-2 is a well known factor in the differentiation of cells 

into osteoblasts, we will utilize BMP-2 as a positive control and compare its signaling effects to 

the signaling role played by PP. In addition, PP and BMP-2 both activate the Smad pathway 

which leads us to speculate on how PP activates Smad1. Figure 1-3 illustrates how PP signals 

through αvβ3 integrin, via the MAPK pathway by activating Jnk, Erk, and P38, but it’s activation 

of the Smad pathway does not appear to arise from interaction with the BMP receptor. However, 

we do not know whether PP binds to only integrin αvβ3 or if it also interacts with other cell 

surface receptors. We will investigate other integrins, such as α2β1, which have been shown to be 

expressed in hMSCs and are involved in osteoblastic differentiation.   
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Figure 1-3. Working model of PP and BMP signaling pathways 

 

We are interested in comparing PP signaling to BMP-2 signaling pathways because PP 

activates Smads similarly to BMP-2. BMP-2 binds to two types of serine/threonine kinase 

receptors, type I and type II receptors. After BMP binds to its receptor, signals get propagated by 

phosphorylation of the receptor and through its downstream molecules, Smad1, 5, and 8. These 

Smad molecules form a complex which then interacts with Smad4 which translocates to the 

nucleus and interacts with transcription factors such as Runx2 to regulate target gene expression. 

Although BMP-2 has been extensively studied, the mechanism that it induces towards osteoblast 

differentiation is still not fully understood. BMP-2 also stimulates tysorine phosphorylation and 
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phosphotidylinosital 3-kinase (PI3K)/Akt pathways which are involved in osteoblast 

differentiation. It is well known that there is cross-talk between Smads and PI3K/Akt. PI3K, a 

lipid kinase, is often activated by tyrosine phosphorylation induced by binding of specific growth 

factors. PI3K functions as a control point in the signaling cascade.[71] Crosstalk also exists 

between the MAPK and Smad pathways under BMP-2 signaling.[72-74] Erk activation has been 

shown to inhibit Smad[75] while inhibition of P38 was shown to decrease Smad signaling.[76] 

Since we know that PP signals through the MAPK and Smad pathways similarly to BMP-2, we 

have investigated phosphorylated proteins present during differentiation to identify key players 

involved in this process after cells have been treated with recombinant PP (rPP) and recombinant 

human BMP-2 (rhBMP-2). 

1.4.1 Proteomic Approaches to Understanding Stem Cell Differentiation and Signaling 

Pathways 

Signal transduction underlying stem cell differentiation is extremely complex. While one 

approach to study these complex phenomena is to assess one signaling pathway, one molecule at 

a time, this is a lengthy and time consuming process. Novel proteomic strategies utilizing mass 

spectrometry (MS) can provide a systematic and efficient way to provide insight in signaling 

molecules or key players involved in stem cell differentiation. The proteome of mesenchymal 

stem cells has been studied using MS-based methods to understand changes in signaling 

molecules during differentiation.[77] Global proteomic analyses of osteoblast differentiation 

from hMSCs has been studied using 2D-polyacrylamide gel electrophoresis (PAGE)-MS.[78] 

Aside from the identification of signaling proteins involved in differentiation, utilizing 

quantitative methodologies in combination with mass spectrometry will provide the ability to 
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determine proteins that are up- or downregulated in response to treating stem cells with specific 

stimuli.  

1.4.1.1 Quantitative Proteomics 

A variety of MS-based quantification techniques exist to determine relative protein abundance 

changes in samples include metabolic labeling such as stable isotope labeling of cells in culture 

(SILAC), chemical labeling such as isobaric tag for relative and absolute quantitation (iTRAQ) 

or isotope coded affinity tags (ICAT), and difference in-gel electrophoresis (DIGE).[79, 80] 

Studies utilizing these techniques can differentially compare proteomes on a global scale from 

which specific information regarding signaling networks and pathways may be revealed in order 

to determine divergent signaling mechanisms from different treatment conditions. In a recent 

study using the iTRAQ technology, embryonic stem cell differentiation during noggin induced 

neural and BMP-4 induced epidermal ectoderm was investigated.[81] A recent SILAC study 

discovered how epidermal growth factor (EGF) could stimulate mesenchymal stem cell 

differentiation into osteoblasts but not platelet derived growth factor (PDGF). Although more 

than 90% of the signaling proteins were used by both ligands, it was found that the PI3K 

pathway was activated by PDGF but not EGF resulting in a much different effect on the 

cells.[82] Quantitative proteomics has also been used to profile the differential expression of 

membrane proteins of a hMSC cell line during osteoblast differentiation.[83] We used a SILAC-

based global proteomics approach to further investigate the signaling pathways involved in stem 

cell differentiation into the osteogenic and odontogenic lineages stimulated by BMP-2 and PP 

respectively.  
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1.4.1.2 Phosphoproteomics 

Protein phosphorylation is one of the most relevant and ubiquitous posttranslational 

modifications and it plays significant roles in cellular processes. Signals received from outside of 

the cells travels through a cascade of phosphorylation events of multiple proteins into the 

nucleus. An evaluation of the phosphoproteome presents an opportunity to identify and quantify 

these signaling proteins to better understand the cascade of events and processes leading to 

cellular transformation. Phosphorylation occurs mostly on amino acids serine, threonine and 

tyrosine[84] with an approximate ratio of the phosphorylation of those residues in the order of 

1800:200:1.[85] Globaly, phosphorylated proteins in the cell exist at diminishingly low 

abundances of 1-2%.[86] In order to address this analytical hurdle, several methods have been 

developed for enriching phosphopeptides from these complex mixtures including 

immunoprecipitation using phosphospecific antibody such as anti-phosphotyrsosine, 

immobilized metal affinity chromatography (IMAC) with Fe3+, Ga3+, or Al3+, and titanium 

dioxide (TiO2).[87] Each of these techniques have been shown to have different 

phosphoenrichment efficiencies[88, 89] and therefore each technique must be specifically suited 

to the experimental design in question. With the recent successes that have been demonstrated 

using the TiO2–based methodologies, we have utilized that workflow to evaluate the signaling 

events involved in differentiation following treatment with PP or BMP-2 .[90, 91]  
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1.5 HYPOTHESES 

Hypothesis 1: Pericytes are a stem cell population residing in the dental pulp. 

Hypothesis 2: PP plays a signaling role in stem cell differentiation toward the 

osteoblastic/odontoblastic lineage. 

Hypothesis 3: SILAC-based MS will efficiently quantify proteins identified from C3H10T1/2 

cells treated with PP and BMP-2.  

In order to support these hypotheses, the following specific aims have been developed 

1.6 SPECIFIC AIMS & RATIONALE 

1.6.1 Specific Aim 1: Characterization, identification, and isolation of dental pulp stem 

cells (pericytes) 

I will characterize and identify pericytes from human dental pulp by IHC using different 

combinations of marker antibodies, flow cytometery techniques that relies on a combination of 

surface markers CD146+CD34-CD45-CD56-. In addition, I will characterize that the sorted 

pericytes are clonogenic and have multilineage differentiation potential.  
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1.6.2 Specific Aim 2: Identification of cell surface receptors and signaling crosstalk in PP 

signaling in hMSCs.   

I will identify integrin receptor involvement in PP signaling and assess the crosstalk between the 

MAPK and Smad1 pathways. 

1.6.3 Specific Aim 3: Proteomic profiling of mouse embryonic fibroblasts (C3H10T1/2) 

during differentiation into osteoblasts and odontoblasts.   

I will use SILAC to quantify the proteins identified from C3H10T1/2 cells treated with PP and 

BMP-2.  

1.6.4 Rationale of Different Cell Types Selected for Each Aim 

The rationale of using different cell types in each of the specific aims is as the following. 

In specific aim 1, dental pulp pericytes were studied due to the interest in isolating a novel stem 

cell population. Although it would be interesting to test their response to PP, the cell numbers 

obtained were insufficient for those required for specific aim 2. In addition, studies of PP 

signaling were based on previous work in our lab which was done in hMSCs. Therefore, we 

chose to use hMSCs for the second aim of this thesis. For specific aim 3, our original thoughts 

were to use dental pulp pericytes or hMSCs for studying the effect of PP and BMP-2 on 

odontogenic/osteogenic differentiation. However, in order to achieve successful labeling of 

heavy amino acids in cell culture, cells were required to be cultured for at least five doubling 

times. Also, a large quantity of cells is required for mass spectrometry of the phosphoproteome. 
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In this case, dental pulp pericytes would not be suitable due to the limited number of cells 

obtained from FACS. hMSCs are also not suitable because cells might differentiate or stop 

proliferation after multiple passages during heavy amino acid labeling. Therefore, mouse 

embryonic fibroblasts C3H10T1/2 cells, which have multlilineage differentiation potiential and 

can be expanded extensively in culture, were selected for the SILAC experiments. 
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2.0  MULTILINEAGE POTENTIAL OF PRICYTES SORTED FROM HUMAN 

DENTAL PULP 

2.1 SUMMARY 

We document the existence of a perivascular stem cell population in the human dental pulp. 

Pericytes in human dental pulp were characterized by immunohistochemistry as expressing 

CD146, α-smooth muscle actin (α –SMA), NG2, but negative for CD34, von Willebrand factor 

(vWF), CD45 and CD56 expression. This phenotypic description provided the basis for the 

purification by flow cytometry of perivascular CD146+CD34-CD45-CD56- cells from the dental 

pulp.  Long-term cultured dental pulp perivascular cells are clonogenic colony forming units-

fibroblast, express the mesenchymal stem cell markers CD44, CD166 and CD90, and give rise to 

osteoblasts, chondrocytes and adipocytes in vitro. These results suggest that mesenchymal stem 

cells previously isolated from the dental pulp have a perivascular origin. Pericytes sorted to 

homogeneity from extracted dental pulp, then multiplied in culture may represent a convenient 

source of therapeutic progenitor cells.   
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2.2 INTRODUCTION 

The development of effective therapies for craniofacial regeneration is a clinically important 

long-term goal in the tissue engineering field. Craniofacial diseases and disorders ranging from 

periodontal disease and its associated bone loss to birth defects such as cleft lip and palate, to 

craniosynostosis, to injuries to the head and face, to devastating head and neck cancers require 

extensive surgery and would obviously benefit from innovative regenerative cell therapies.  

Dental pulp stem cells (DPSCs) were first described by Gronthos et al., who showed the 

capabilities of these cells to become osteoblastic in vitro and form dentin-like structures in vivo 

.[32] Characterization and isolation of the DPSCs will provide an understanding of the potential 

of these cells in craniofacial regeneration and dentin repair in the event of an injury. DPSCs are 

believed to be pericyte-like cells that migrate towards the pulpal injury site.[34, 92]  Pericytes, 

also known as Rouget cells or mural cells, reside around the endothelium of microvessels 

(capillaries and postcapillary venules), hence are distributed throughout the vasculature with 

diverse roles in the regulation of blood flow and vessel formation.[8] For a long time, pericytes 

under study were not sorted, but identified in primary cultures by morphology, slow adhesion to 

plastic and expression of pericyte-associated (but not pericyte-specific) antigens such as 3G5, 

NG2, CD146, Stro-1, α-SMA, desmin and osteonectin.[7, 8, 11, 18, 24, 93]   

Two groups including our own have recently shown that perivascular cells can be 

purified from multiple human organs including placenta, pancreas, fat and muscle and showed 

the multilineage developmental potential of these cells, suggesting the perivascular origin of the 

elusive mesenchymal stem cells (MSC).[93-98] Pericytes are therefore of potential interest for 

regenerative medicine. While pericytes are ubiquitous in the body, harvesting these cells for 

autologous transplantation should be easy but from a richly vascularized organ, of no risk for the 
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patient and minimally invasive, hence the interest of human tissues that are shed naturally, such 

as fetal appendages and teeth. Teeth, which are lost in the course of normal development 

(primary teeth), and commonly extracted in young adults in the case of wisdom teeth, can be 

envisioned as a source of such autologous stem cells, especially since dental pulp is rich in blood 

vessels.  In the present study, we have identified and purified perivascular cells present in human 

dental pulp. Our approach has relied first on immunohistochemistry (IHC) experiments to 

determine the presence of cell surface markers that could be utilized to sort dental pulp pericytes. 

We then confirmed that sorted dental pericytes could be expanded in culture and are multilineage 

mesodermal progenitors.  

2.3 MATERIALS AND METHODS 

2.3.1 Antibodies 

Unconjugated antibodies used were mouse anti-human CD146, -CD34, -NG2, -CD56, -CD44, -

CD90 (BD Biosciences), -CD45 (DAKO), rabbit anti-human CBFA-1/Runx-2, -osteocalcin, -

PDGFR-β (Santa Cruz Biotechnology). Conjugated antibodies included mouse anti-human 

CD146-Alexa488 (Chemicon), -CD146-FITC (AbSerotec), -CD45-PE-Cy5, -CD56-PE-Cy7 (BD 

Biosciences), -α-SMA-FITC (Sigma), -CD34-PE (DAKO), -CD166-biotin (Ancell), sheep anti-

human vWF-FITC (US Biological), rabbit anti-human CD144-biotin (BMedSystems), donkey 

anti-rabbit-Alexa488, donkey anti-rabbit- Alexa594 (Molecular Probes), goat anti-mouseIgG 

biotin (DAKO), goat anti-mouse-IgM biotin (μ) (Caltag Laboratories), mouse IgG-PE, mouse 
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IgG-FITC (Chemicon), mouse IgG-PE-Cy7, mouse IgG-PE-Cy5 (BD Biosciences) and sheep 

IgG-FITC (US Biological).   

2.3.2 Tooth Procurement and Cell Isolation 

We obtained 85 adult third molars (age 14-23 years) at the School of Dental Medicine, 

University of Pittsburgh, as approved by the Institutional Review Board (IRB number: 0312073).  

Dental pulp was digested with collagenases I, II, and IV (each at 1 mg/mL, Sigma) at 37 ˚C for 2 

h under gentle agitation. Cell suspensions were passed through a 70 μm cell strainer (BD Falcon) 

to obtain single-cell suspensions.  

2.3.3 Immunohistochemistry 

Dental pulps were frozen in Tissue Freezing Medium (Triangle Biomedical Sciences) and 

cryosectioned at 5-µm thickness. Tissue sections were fixed in ice cold 50% methanol and 50% 

ethanol for 5 min, air dried for 15 min and then incubated with 5% goat serum (Gibco) in PBS 

for 1 h at room temperature (RT) to prevent antibody non-specific binding. Tissue sections were 

incubated with primary antibody (1:100 dilution, same dilution for all primary antibodies) 

overnight at 4 ˚C. Appropriate secondary antibodies were used (1:1000 dilution) for 1 h followed 

by streptavidin coupled to Cy3 (1:1000 dilution, Amersham) for 30 min at RT. When two 

antibodies were used simultaneously, the sections were incubated for 1 h at RT with a second 

primary antibody that was already conjugated with either Alexa-488 or FITC. The sections were 

then stained with 4',6-diamidino-2-phenylindole (DAPI, 1:2000 dilution, Molecular Probes) for 5 

min at RT to visualize nuclei. Coverslips were mounted with Gel/Mount mounting medium 
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containing anti-fading agents (Biomeda Corp.). Fluorescent images were acquired by optical and 

confocal microscopy using Nikon Eclipse TE2000-U and Olympus FLUOVIEW FV1000 

microscopes, respectively.  

2.3.4 FACS and Cell Culture 

Freshly digested dental pulp cells were washed with phosphate buffered saline (PBS, Gibco) and 

stained with CD146-FITC, CD34-PE, CD45-PECy5 and CD56-PE-Cy7 antibodies for 30 min at 

4 ˚C (1:100 dilution). Cells were then washed with PBS and resuspended in 1ml of Endothelial 

Cell Growth Medium 2 (EGM-2, Cambrex Bioscience Inc.). A FACSAria dual-laser 

fluorescence activated cell sorter (Becton-Dickinson) was used to isolate CD146+CD34-CD45-

CD56- cells as previously described.[98] 

 Sorted cells were cultured at 37 ˚C, 5% CO2 in EGM-2 on 48-well tissue culture plates 

coated with 2% gelatin (Calbiochem) at 10,000 cells per cm2. After cells attached to the culture 

plate, medium was changed to high-glucose DMEM high glucose (GIBCO) with 20% fetal 

bovine serum (FBS, Atlantic Biological) and 1% penicillin-streptomycin (GIBCO).  

2.3.5 Colony Forming Units-fibroblast (CFU-f) Assay  

Cultured dental pulp perivascular cells were seeded at a density of 100 cells/10cm2 and cultured 

for two weeks to test their clonogenic ability. Cells were fixed with 100% methanol for 5 min, 

air dried for 5 min and stained with 3% Crystal violet (Sigma) for 5 min at RT. Cells were 

washed with distilled water and colonies (>2.5 mm or 50 cells) were counted. Percentage of CFU 

was calculated as the number of colonies counted divided by the number of cells plated, then 
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multiplied by 100. Pericytes isolated from dental pulp of three patients were analyzed. Six plates 

of colonies were counted and scored for each donor. 

2.3.6 Immunocytochemistry 

Sorted dental pulp cells were seeded in 48-well tissue culture plates. Cells were fixed in 1% 

paraformaldehyde (PFA) in PBS or a mixture of ice-cold acetone and methanol (1:1).  Cells were 

washed with PBS, blocked with 5% goat serum, and then incubated with primary and secondary 

antibodies. To detect Runx-2 expression, cells were permeabilized with 0.1% Triton X-100 

(Sigma) during blocking and incubation with antibodies. 

2.3.7 Osteogenic Differentiation 

Dental pulp perivascular cells were seeded at 25,000 cells/cm2 in 6-well tissue culture plates and 

cultured in control medium (high-glucose DMEM with 20% FBS, 1% PS) or osteogenic medium 

for two weeks. Osteogenic medium is control medium supplemented with 50 µg/mL L-ascorbic 

acid (Fisher Biotech), 100 mM ß-glycerolphosphate (Sigma), and 100 nM dexamethasone 

(Sigma). Medium was changed every 3 days. Cells were then fixed and subjected to alkaline 

phosphatase and von Kossa stainings.  

Cells were washed with PBS and fixed with 4% PFA for 15 min at 4 ˚C. For alkaline 

phosphatase staining, cells were incubated with a solution containing 5 mg naphtol AS MX-PO4 

(Fisher Scientific) dissolved in 0.2 mL N,N-dimethylformamide, 25 mL Tris-HCl (0.2 M, pH 8.3, 

Sigma), Red Violet LB salt (30 mg, Sigma), and 25 mL distilled water for 45 min at RT. Cells 

were washed three times with distilled water, then incubated with 5% silver nitrate (Sigma) at 

 25 



RT for 30 min and then rinsed with distilled water three times. Cells were examined and imaged 

by bright field microscopy. Alkaline phosphatase activity was measured quantitatively using the 

Alkaline Phosphatase Kit (Sigma) following manufacturer’s instructions.  Briefly, cell lysates 

were incubated with alkaline phosphatase reagents at 37 °C for 30 min. Absorbance at 405 nm 

was measured at times 0 and 30 min. Alkaline phosphatase activity was normalized to the total 

protein content measured by the BCA protein assay kit (Pierce). All measurements were done in 

triplicate.  

2.3.8 Chondrogenic Differentiation 

Dental pulp perivascular cells were centrifuged for 5 min at 600 x g into 3-dimensional pellets 

(250,000 cells/pellet) and cultured for 14 days in chondrogenic medium that contains high 

glucose DMEM, 10 ng/mL TGF-β1 (Peprotech), 10 µl/mL ITS-plus premix (BD Biosciences 

Clonetech, final concentrations: 6.25 µg/mL each of insulin, transferrin, and selenous acid, and 

1.25 mg/mL bovine serum albumin, and 5.35 µg/mL linoleic acid), 100 nM dexamethasone 

(Sigma), 50 µg/mL ascorbic 2-phosphate (Sigma). Control medium was high-glucose DMEM 

containing ITS-plus premix. Medium was changed every three days.  Each experiment was 

performed in triplicates. Cell pellets were fixed in 4% paraformaldehyde, dehydrated in 

ethanol/xylene series, and paraffin-embedded. Five-µm paraffin sections were stained with 1-

Alcian blue (Sigma) with nuclear fast red (Sigma) counterstain or 2-Safranin O (Sigma) with fast 

green (Sigma) counterstain.   
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2.3.9 Adipogenic Differentiation 

Dental pulp perivascular cells were seeded at 25,000 cells/cm2 in 6-well tissue culture plates and 

cultured in control medium (high-glucose DMEM with 20% FBS, 1% PS) or adipogenic medium 

for two weeks. Adipogenic medium is control medium supplemented with 0.5 mM of 1-methyl-

3-isobutylxanthine (Sigma), 1 µM dexamethasone (Sigma), 0.01 mg/mL insulin (Cell Sciences), 

and 0.2 mM indomethacin (Sigma). Medium was changed every three days for 21 days. Each 

experiment was done in triplicate. Cells were fixed and stained with oil red-O (Sigma).  
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2.4 RESULTS 

2.4.1 Identification of Perivascular Cells on Dental Pulp Sections 

IHC was performed to identify the various cells that constitute vascular areas in human dental 

pulp using the cell surface markers listed in Table 2-1.  

 

Table 2-1. Markers used for IHC 

 
Pericytes CD146, NG2, α-SMA, PDGFR-β 
Endothelial cells CD146, CD34, vWF 
Hematopoietic cells CD34, CD45 
Myoblasts, NK cells CD56 

 

 

 

 

Perivascular cells that surround endothelial cells in capillaries and microvessels are 

anatomically defined as Pericytes.[7, 99, 100] Frozen sections of dental pulp were stained with 

antibodies against pericytes, endothelial cells, neural cells, and hematopoietic cells. Pericytes are 

pointed with arrows. Figure 2-1 A, B, G shows that pericytes in the dental pulp coexpress 

CD146, α-SMA and NG2. Pericytes are negative for CD34, vWF and CD45 expression (Figure 

2-1 C, D, E, and H). Some cells are positive for both CD146 and CD56 expression (Figure 2-1 

F). We deduced that the CD146+NG2+CD34-CD45-CD56- cell surface phenotype typifies all 

pericytes within human dental pulp, as it does in other tissues analyzed so far.[98] 
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Figure 2-1. Immunodetection of pericytes in human dental pulp. A, B - CD146 in red) α-SMA (green) C, D - 

CD146 (green), CD34 (red). Pericytes (P). Endothelial cells (EC). E - CD146 (red), vWF (green). F - CD146 

(green), CD56 (red). G - CD146 (green) NG2 (red) H - CD146 (green) CD45 (red). Nuclei were stained blue with 

DAPI. A, B, D: bar = 50 µm. 
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2.4.2 FACS of Human Dental Pulp Perivascular Cells 

To isolate pericytes by flow cytometry from the enzymatically dissociated dental pulp, we first 

excluded CD45+ hematopoietic cells and CD56+ myogenic and NK cells (Figures 2-2 A, B). 

The dental pulp cell suspension could then be fractionated into three distinct cell populations as 

shown in Figure 2-2 C and outlined below:  

• Endothelial cells: CD34+CD146-CD45-CD56- and CD34+CD146+CD45-CD56-  

• Pericytes : CD146+CD34-CD45-CD56- 

• Uncharacterized CD34-CD146-CD45-CD56- cells 

CD146+CD34-CD45-CD56- pericytes were isolated. Pericytes represent 0.62 ± 0.41%, 

whereas endothelial cells account for 3.43 ± 2.16% of the total dental pulp cell population.  

2.4.3 Clonogenic Capacity and Phenotype of Cultured Dental Pulp Pericytes 

Sorted dental pulp perivascular cells were seeded in culture in EGM-2 medium on gelatin-coated 

plates.  Cell viability was low when less than 1,000 cells were seeded after sorting. Cell viability 

increased when more cells were initially seeded. Cells attached to the bottom of the wells in 

approximately 48-72 h. One week after culture initiation, EGM-2 medium was replaced by 

DMEM supplemented with 20% FBS.  Recently attached cells exhibited mixed elongated, 

spindle and polygonal shapes. After cells were passaged once, they exhibited star-like shapes 

with prominent nuclei and multiple cytoplasmic extensions (Figure 2-2 D, Bar = 100 µm). 

The clonogenic capacity of cultured pericytes was determined by using the CFU-f assay. 

Cells were seeded at a low density of 100 cells/10cm2 and colonies were observed on day 14 by 

crystal violet staining. In vitro cultured dental pulp pericytes are highly clonogenic, 98 ± 2% of 
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these being CFU-f (Figure 2-2 E). Cultured pericytes at passage eight, i.e. cultured for two 

months, maintained expression of the pericyte markers CD146, NG2 and α-SMA (Figure 2-2 F-

H) and remained negative for vWF, CD144, CD45 and CD56 expression (not shown). All 

cultured pericytes were also positive for PDGFR-ß (Figure 2-2 I). These results show that sorted 

pericytes were not contaminated by other cell types and did not change their antigenic 

characteristics when proliferating in culture. To further characterize cultured dental pulp 

pericytes, we tested their expression of several mesenchymal stem cell markers. Cultured 

pericytes express the MSC markers CD44, CD90 and CD166 (Figure 2-2 J, K, L). Pericytes in 

culture express in addition both Runx-2 and osteocalcin, suggesting their inherent osteogenic 

capability (Figure 2-2 M, N).  
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Figure 2-2.  FACS, morphology, CFU-f analysis, and immunocytochemistry of cultured dental pulp pericytes. A, B 

– exclusion of CD56+ and CD45+ cells. C - Selection of CD146+CD34- population. D - Pericytes morphology.  E - 

CFU-f analysis.  F – CD146 (red), G – NG-2 (red), H – α SMA (green), I – PDGFR-β (red),  J – CD44 (red), K – 

CD90 (red), L - CD166 (red),  M – Runx2 (green), N – Osteocalcin (green). Nuclei were stained blue with DAPI. D: 

Bar = 100 µm. F-N: 20x magnification. 
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2.4.4 In vitro Multilineage Differentiation of Cultured Dental Pulp Pericytes 

Cultured pericytes were successfully differentiated into osteocytes, chondrocytes and adipocytes 

in vitro. For osteogenic differentiation, pericytes were cultured in medium containing ß-glycerol 

phosphate and dexamethasone. Alkaline phosphatase assay and von Kossa staining were used to 

characterize the progeny of pericytes grown in these conditions. Mean alkaline phosphatase 

activity of pericytes cultured in control and osteogenic medium after one week was 430.24 ± 

111.02 and 910.77 ± 406.15 U/mg total protein, respectively. We therefore observed an 

approximate 2.1-fold increase in the experimental group when compared to the control. After 

two weeks of culture, pericytes cultured in osteogenic medium maintained higher alkaline 

phosphatase activity than control cultured cells and mineralization was revealed by von Kossa 

staining (Figure 2-3 A, B). To induce chondrogenic differentiation, pericytes were cultured as 

pellets maintained in differentiation medium containing TGFβ-1. After three weeks, pellets 

exhibited cartilage-like round, smooth and shiny surfaces. Proteoglycans were synthesized by 

differentiated chondrocytes as shown by Alcian blue and safranin O staining of pellet sections 

(Figure 2-3 C, D, 20x). Lacuna eye structures were observed in the cell pellets, confirming the 

chondrogenic differentiation of pericytes (Figure 2-3 E, 40x magnification). Alcian blue and 

safranin O did not stain pellets cultured in control medium, and no lacuna eye structures were 

observed (data not shown). For adipogenic differentiation, pericytes were cultured in medium 

containing 1-methyl-3-isobutylxanthin, dexamethasone, insulin and indomethacin. Pericytes 

began to differentiate, as shown by the appearance of lipid vesicles in the cytoplasm, at week 3 

(data not shown). Pericytes cultured in adipogenic medium for 5 weeks contained accumulated 

lipid droplets. Oil red O brightly stained mature adipocytes (Figure 2-3 F).  
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Figure 2-3. Multilineage differentiation of cultured dental pulp pericytes. A, B - alkaline phosphatase and von 

Kossa stainings of pericytes cultured in control or osteogenic media. C, E – Alcian blue and D – Safranin O 

stainings of pellet section of cells cultured in chondrogenic media. F – Oil red O staining of cells cultured in 

adipogenic media. A-D: bar = 100 µm, E-F: bar = 50 µm. 
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2.5 DISCUSSION 

There is an enormous need to develop safe and effective methods to regenerate soft and hard 

tissues for craniofacial diseases such as head and neck cancers, trauma, birth defects, periodontal 

disease and pulp injuries. Cellular approaches provide an attractive option to develop therapies 

targeted for the craniofacial regeneration. Engineering cellular therapies for craniofacial 

regeneration requires the understanding of the cells and their regenerative potential. Current 

studies have focused on isolating dental pulp stem cells by utilizing different enrichment 

techniques, markers and various multi-lineage differentiation assessments. Many such studies 

used the total population of dental pulp cells and only few reported the characterization and 

tentative isolation of dental pulp stem cells using flow cytometry. Shi et al. were the first to 

characterize and compare different dental pulp candidate stem cell populations.[3] They have 

isolated clonogenic populations of DPSCs by their ability to adhere to plastic, similar to bone 

marrow stromal cells.[32] Colony-derived DPSCs formed mineralized nodules in vitro and 

generated dentin-pulp-like tissue in vivo.[29, 30] Using similar methods, Shi’s group also 

isolated stem cells from human exfoliated deciduous teeth (SHEDs) and showed that these cells 

are clonogenic and able to differentiate into neural cells, adipocytes and odontoblasts in vitro as 

well as osteogenic and odontogenic cells in vivo.[31] Alliot-Licht et al. have utilized total pulp 

cells and have shown that a population of α-SMA positive cells can form mineralized nodules in 

vitro, suggesting that the bone/dentin progenitors are perivascular cells.[33, 101] The reports 

mentioned above suggested that the dental pulp stem cells reside in the perivascular niche. Our 

group has recently demonstrated that one of the sources, if not the only one, of mesenchymal 

stem cells in multiple tissues is the pericyte.[98] We now extend this notion and hypothesize that 

pericytes are, or include, a stem cell population in the dental pulp.  
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We have focused on identifying and characterizing the dental pulp stem cells in the 

perivascular niche. Our data show that dental pulp perivascular cells express the pericyte markers 

CD146, SMA and NG2, but not the endothelial cell markers CD34 and vWF.  These data agree 

with previous studies by our group and others pertaining to the isolation of pericytes from other 

tissues.[3, 25, 95] We have shown that CD146+CD34-CD45-CD56- sorted dental pulp pericytes 

are highly clonogenic and multipotent, as was also demonstrated for pericytes derived from other 

human tissues.[94] Cultured pericytes express CD44, CD90 and CD166, which also applies to 

mesenchymal stem cell populations from various tissues.[32, 102-104] This further suggests that 

MSCs are derived from perivascular cells.   

With regard to the role of pericytes in mineralized tissues and their potential to 

differentiate into bone and dentin, we have shown that sorted dental pulp pericytes express 

Runx-2 and osteocalcin without the addition of ß-glycerolphosphate or dexamethasone. Our data 

agree with previous reports showing that perivascular cells behave like osteoblasts in vitro even 

without addition of ß-glycerolphosphate.[20, 21] In the presence of ß-glycerolphosphate or 

dexamethasone, dental pulp pericytes become mineralized in a similar manner as perivascular 

cells from other tissues such as the retina, brain, epididymal fat pad, skin, lung, placenta and 

aorta.[8, 10, 18, 19, 95] Furthermore, pericytes from bovine retinal microvessels at different 

stages of differentiation express alkaline phosphatase, Runx-2, osteopontin, osteonectin, 

osteocalcin and bone sialoprotein.[10, 15] The studies above demonstrated the osteogenic 

potential of pericytes in vitro.  In vivo, bovine retina pericytes and CD146+CD34-CD45-CD56- 

sorted pericytes also formed bone.[94] In addition, CD146+ dental pulp cells form ectopic dentin 

in immunocompromised mice.[3] Together, these results suggest the potential use of dental pulp 

pericytes for engineering mineralized tissues such as bone and dentin.  
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Our data clearly demonstrate that we have successfully isolated pericytes from human 

adult dental pulp as CD146+CD34-CD45-CD56- cells. This approach provides us with a well-

characterized stem cell population of high purity that can be expanded and differentiated. Dental 

pericytes should therefore be amenable to study and develop targeted dental therapies as well as 

bone regeneration strategies.  Specifically, dental cell therapies have recently garnered a lot of 

attention. Dentin, dental pulp, and cementum-periodontal complex regeneration has been shown 

with DPSCs, SHEDs and periodontal ligament stem cells.[105] Root-periodontal complex 

regeneration has been shown with cells from apical papilla and periodontal ligament.[106] Hard 

tissue formation with rat dental pulp cells has also been shown in vivo.[107] FACS isolated 

dental pulp pericytes provide a unique cell source to assess the in vivo differentiation potential of 

these cells into dental tissues. Due to the availability of milk teeth and extracted adult teeth, 

dental pulp pericytes can provide a convenient source of therapeutic cells to regenerate dental 

tissues as well as tissues of other mesodermal lineages such as bone, cartilage and fat.  
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3.0  PHOSPHOPHORYN SIGNALING MECHANISM IN HMSCS, INVOLVEMENT 

OF INTEGRINS AND CROSSTALK AMONG MAPK AND SMAD PATHWAYS 

3.1 SUMMARY 

Stem cell maintenance and differentiation are directed by ECM proteins. Integrins are the key 

cell surface receptors that mediate cell-ECM interaction. PP, an ECM protein, has been shown to 

signals osteogenic differentiation in hMSCs through the MAPK and Smad pathways. PP does not 

activate the Smad pathway by BMP-2/4 receptor and the mechanism governing Smad activation 

remains elusive. We hypothesized that 1) PP signals by binding to integrins and 2) there is 

crosstalk between MAPK and Smad in the PP signaling mechanism. To test our first hypothesis, 

we used antibodies against αvβ3 or α2β1 to block the integrins and then treated cells with PP and 

monitored the downstream signaling events. We showed the involvement of integrins αvβ3 and 

α2β1 in PP signaling. Western blot showed that downstream MAPK was decreased by blocking 

of the integrins αvβ3 or α2β1. To prove our second hypothesis, small interfering RNA (siRNA) 

of ERK and p38 were used to assess the effect of PP on MAPK and Smad1. We demonstrated 

p38 have promoting effects on both ERK and Smad1 activation while ERK has an inhibitory 

effect on Smad1 activation. We conclude that PP directs hMSC osteogenic differentiation 

through integrins αvβ3 and α2β1 to MAPK signaling pathways and there is signaling crosstalk 

between ERK and p38 and that MAPK modulates the Smad pathway during PP signaling. 
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3.2 INTRODUCTION 

The ECM proteins provide structural support for the cells as well as signal cellular activities. 

Phosphophoryn belongs to the SIBLING family of proteins found in dentin and bone, has been 

shown to signal cell differentiation towards the osteogenic lineage.[57] The expression levels of 

osteogenic genes, such as alkaline phosphatase, runx2/cbfa1, osteocalcin, osterix, and bone 

sialoprotein, were upregulated in mouse fibroblast (NIH3T3), mouse osteoblast (MC3T3), and 

human mesenchymal stem cells (hMSCs) when stimulated with PP. We have shown previously 

that PP signals through integrins, MAPK, and Smad pathways.[57, 58] PP was shown to play an 

important role in matrix mineralization.[108, 109] PP also has a signaling role in directing cell 

differentiation into the osteogenic lineage. We previously reported that PP induces upregulation 

of osteogenic genes Runx2/Cbfa-1 and osteocalcin as well as osteocalcin protein production 

through the MAPK and Smad1 pathways in hMSCs.  

MAPK pathways are involved in a broad range of cellular events from growth, 

differentiation, and development to inflammation and apotosis.[110] The extracellular stimulus 

transduce its signal through MAPK leading to biological responses. MAPK pathways are 

mediated through a cascade of phosphorylation events by kinases. MAPK has been shown to be 

activated through integrin binding to the ECM.[111] PP was shown to activate ERK, JNK, and 

p38 components of the MAPK pathway.[57]  

The Smad pathway is important in osteogenic differentiation and it is known to be 

activated by members of the TGF-β family such as BMPs. When Smad1 is activated, it 

complexes with Smad4 and is translocated into the cell nucleus to regulate targeted gene 

expression.[112] In our previous study, we have shown that Smad1 is activated by PP, although 

not through BMP-2/4 receptor.[58] The blocking of BMP-2/4 receptor by noggin did not inhibit 
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the Smad1 activity stimulated by PP. How PP signals Smad1 and triggers nuclear translocation 

remains an unanswered question. We hypothesize that the activation of Smad1 could be 

attributed to signaling crosstalk between MAPK and Smad.   

Integrins are the major receptors for cell adhesion to ECM proteins.[113] Integrins are a 

family of transmembrane proteins composed of α and β subunits with each αβ combination 

having its specific binding and signaling properties.[111] We observed the gene expression of 

Runx2 downregulated when integrin αvβ3 was blocked prior to PP treatment of the hMSC.[57] 

Therefore we deduced that PP signals through αvβ3. However, the runx2 expression after 

blocking of αvβ3 did not return to untreated control, suggesting that other receptors such as other 

types of integrins might be involved. Various integrins are found in hMSCs such as α1β1, α2β1, 

α4β1, α5β1, α6β1, α7β1, αvβ3, and αvβ5.[114, 115] We have selected integrins αvβ3 and α2β1 

to evaluate their involvement in PP signaling because they have been shown to be play a role in 

osteogenic differentiation and mineralization.[115-117] Integrin αvβ3 is the predominant 

receptor for vitronectin while α2β1 is the receptor for laminin and collagen.[114, 115]  

The specific aims of this study were to determine the involvement of integrins in PP 

signaling pathways and the mechanistic interactions between MAPK and Smad signaling 

pathways in hMSCs. To determine the involvement of integrins in PP signaling pathways, I 

looked specifically at the involvement of αvβ3 and α2β1 by blocking them with antibodies prior 

to treatment with PP. I examined the MAPK activated by PP after blocking of the integrins. I 

examined the crosstalk between MAPK and Smad by siRNA. The activity of ERK was knocked 

down by siRNA and its effect on Smad and p38 was evaluated. p38 was also knocked down by 

siRNA and its effect on ERK and Smad1 was examined. For the siRNA study, we have treated 
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cells with either full-length PP (F-PP) or recombinant PP (rPP), a truncated version of F-PP, to 

evaluate their signaling effect on hMSCs.  

3.3 MATERIALS AND METHODS 

3.3.1 Antibodies  

Primary antibodies used were mouse anti-human αvβ3 (Chemicon), mouse anti-human α2β1 

(Millipore), rabbit anti-human ERK (Cell Signaling Technology), rabbit anti-human phospho-

ERK (Cell Signaling Technology), rabbit anti-human JNK (Cell Signaling Technology), rabbit 

anti-human phospho-JNK (Cell Signaling Technology), rabbit anti-human p38 (Cell Signaling 

Technology), phospho-p38 (Cell Signaling Technology), rabbit anti-human phospho-smad1 (Cell 

Signaling Technology), rabbit anti-human smad1 (Cell Signaling Technology). Secondary 

antibody used was goat anti-rabbit IgG (H&L), HRP-linked (Cell Signaling Technology).  

3.3.2 Generation of rPP 

Recombinant PP (rPP) was generated as previously described.[57] Isolated mouse genomic PP 

was used as a template to amplify exon 5 by PCR. The primers used were designed with SalI and 

XbaI at the 5'-ends of the gene-specific sequence for rPP; PstI and XhoI for F-PP. rPP and full-

length rPP were generating using the following primers. The primers used for rPP were 

CTAATGTCGACATGGAGAGTGGCAGCCGTGGAGA-3' (forward) and 5'-

GCATTCTAGATTAAAGCACCCGCCATTCAAATCG 3' (reverse).  The primers used for full-
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length rPP were 5'-CTGGTTCTGCAGGGATCCCCGAATTCCG-3' (forward) and 5'- 

GCCGCTCGAGCTAATCATCACTGGTTGAGTGGTT3' (reverse).  

The thermocycling conditions were three cycles of 94 °C for 70 s (denaturation), 52 °C 

for 70 s (annealing), and 72 °C for 2 min (extension) followed by 30 cycles of 94 °C for 70 s 

(denaturation), 62 °C for 70 s (annealing), and 72 °C for 2 min (extension). The amplified PCR 

fragment was inserted into the pGEX-4T-3 vector and transformed into the bacterial BL21 host 

cells. Cells were cultured in Luria-Bertani medium with ampicillin for 4 h at 30 °C. Protein 

expression was induced by 1 mM isopropyl-1-thio- -D-galactopyranoside for 3 h. The bacterial 

lysate was cleared by centrifugation and applied directly to glutathione-Sepharose 4B. After 

washing with PBS, the glutathione S-transferase-bound protein was eluted with thrombin. 

Thrombin was removed from eluates with p-aminobenzamidine immobilized on a Sepharose 4 

Fast Flow matrix. rPP and F-PP was stored at –80 °C until use. 

3.3.3 Cell Culture 

hMSCs (Center for Gene Therapy, Tulane University) were cultured in Minimal Essential 

Medium Alpha (GIBCO) supplemented with 16.5% Fetal bovine serum (Atlanta Biologicals), 

1% penicillin/streptomycin (GIBCO), and 1% L-glutamine (GIBCO) medium at 37 °C, 5% CO2 

with humidity. hMSCs were cultured up to passage four before use for experminets.    

3.3.4 Blocking of Integrins 

hMSCs were plated in 6-well plates and cultured until 80% confluent. Cells were serum-starved 

overnight. Antibodies αvβ3 or α2β1 (20 µg/mL) were added to the cells for 90 min. rPP (250 
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ng/mL) was then added to the cells for 10, 20, or 30 min. Negative controls include cells that 

were not treated with either antibodies or PP as well as cells treated with the antibody only. Cells 

were washed twice with cold PBS then ice cold radio immunoprecipitation assay buffer (RIPA) 

buffer (250 µL/well) was added and incubated on a shaker at 4 °C for 20 min. RIPA buffer was 

consisted of 150 mM NaCl, 1% Igepal CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM 

Tris, pH 8.0, 1 tablet/50 mL protease inhibitor cocktail tablet (Roche). Cells lysates were 

collected by scraping of the wells. Cell lysates were sonicated and centrifuged at 13,000 rpm for 

15 min. Supernatants were collected and stored at -80 °C until further use. Three sets of 

experiments were performed for each antibody and each time point was done in triplicates.  

3.3.5 siRNA 

Cells were cultured in 6-well plates for 24 h prior to siRNA transfection. 50 nM of siRNA (p38 

and ERK, Santa Cruz) were transfected using Lipofectamine 2000 (Invitrogen) for 12 h. After 72 

h from siRNA transfection, the media was supplemented with 250 ng/mL of rPP or F-PP for 10, 

20, 30, and 60 min. Concentration of PP and treatment time points were based on previous 

studies.  

3.3.6 Western Blot Analysis 

Cell lysates were quantified by BCA protein assay kit (Pierce) and loaded equally (15 µg) on 

homemade 10% SDS gels and resolved by SDS-PAGE. Gels were run at 120 V for 2 h then 

transferred onto PVDF membranes at 60 V for 2 h. Membranes were blocked with 5% milk and 

probed with primary antibodies (1:1000 dilution) overnight at 4 °C with gentle rotation. 
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Membranes were washed with Tris-buffered saline with Tween20 (TBST) and incubated with 

secondary antibody (1:8000 dilution) for 1 h at room temperature. Membranes were washed and 

bands were detected by chemiluminescence of HRP using Western Lightning enhanced 

chemiluminescence substrate (Perkin Elmer) and exposure to X-OMAT film (Kodak). 

Quantification of band intensities was performed by Kodak 1D 3.6 Image Analysis Software. For 

statistical analysis, two tailed paired student t-test was performed.   

3.4 RESULTS 

3.4.1 PP Signals through Integrins αvβ3 and α2β1 

To examine whether PP signal through integrins, specific antibodies against αvβ3 or α2β1 

integrins were used to block ligand-receptor interactions. The hMSCs were then treated with PP 

and the downstream MAPK (p-ERK, p-JNK and p-p38) signals were detected by Western blot. 

Antibodies against total ERK, JNK, p38 were probed on the same membrane as loading control 

for western blot. p-ERK, p-JNK and p-p38 were activated after PP treatment for 10, 20, and 30 

min (Figure 3-1 and 3-2). Western blot results showed PP signals through both αvβ3 and α2β1. 

When αvβ3 or α2β1 were blocked prior to PP treatment, the downstream MAPK signals were 

downregulated. When αvβ3 was blocked, p-ERK, p-JNK, and p-p38 were downregulated at 10, 

20, and 30 min (Fig 3-1). Similarly, when α2β1 was blocked prior to PP treatment, p-ERK, p-

JNK, and p-p38 were downregulated (Figure 3-2). Band intensity of the western blots was 

quantified by Kodak 1D 3.6 software (Figures 3-3 - 3-8). Band intensities of p-ERK, p-JNK, and 

p-p38 were normalized by total ERK, JNK, and p38 then divided by the control group to obtain 
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percent control values. Although not all groups showed statistical significant differences 

(p<0.05), the trends are similar among different western blots performed for MAPK activation 

by PP with or with ought inhibition of integrins αvβ3 or α2β1.     
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Figure 3-1. Blocking of αvβ3 in hMSCs prior to treating the PP. 
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Figure 3-2. Blocking of α2β1 in hMSC prior to treating the PP. 
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Figure 3-3. Blocking of αvβ3 in hMSC prior to treating the PP. Normalized p-ERK. 
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Figure 3-4. Blocking of αvβ3 in hMSC prior to treating the PP (student t-test, *p<0.05). Normalized p-

JNK. 
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Figure 3-5. Blocking of αvβ3 in hMSC prior to treating the PP (student t-test, *p<0.05). Normalized p-p38. 
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Figure 3-6. Blocking of α2β1 in hMSC prior to treating the PP (student t-test, *p<0.05). Normalized p-ERK. 
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Figure 3-7. Blocking of α2β1 in hMSC prior to treating the PP. Normalized p-JNK. 
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Figure 3-8. Blocking of α2β1 in hMSC prior to treating the PP. Normalized p-p38. 

 

3.4.2 MAPK and Smad Crosstalk 

PP’s signal is channeled via both the MAPK and Smad pathways and the crosstalk among these 

two pathways defines the downstream effect of PP. We have performed siRNA experiments of 

the MAPK and assessing the effect on the Smad pathway. We knockdown ERK or p38 

components of MAPK using siRNA and examine the activation of Smad1 by PP. We also 

knocked down ERK and look at the effect on p38 activation by PP.  
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3.4.2.1 ERK Inhibits the Activation of Smad1 

hMSCs were treated with ERK siRNA and then treated with rPP or F-PP for 10, 30, or 60 min. 

rPP is the truncated version of F-PP and we will compare the signaling effect of both forms of 

PP. Figure 3-9 shows the effect of ERK knockdown on the activation of MAPK and Smad1 by 

rPP and F-PP. When cells were treated with ERK siRNA, we observed a decrease of phospho-

ERK, ERK, Smad1. However, we observed an increase in phospho-Smad1 when ERK is 

knocked down. Similar results were observed for rPP and F-PP for all time points tested.  

Results from siRNA experiments were in agreement with previous results obtained from 

chemical inhibition experiments. Activation of MAPKs influences the Smad pathway at the level 

of pSmad1 nuclear translocation. PP signals through the Smad pathway and when Smad1 is 

activated, it is complexed with Smad4 and translocated to the nucleus. To investigate the effect 

of ERK on Smad signaling, chemical inhibitors were used to block the activity of ERK then 

examine their effect on Smad1 translocation to the nucleus. When U0126 inhibited MEK-1 from 

phosphorylating ERK, activation of ERK was blocked by U0126, phospho-Smad1 is translocated 

to the nucleus after PP treatment.[118]  
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Figure 3-9. ERK and Smad1 activity after ERK knockdown by siRNA 

3.4.2.2 p38 Enhances the Activation of ERK and Smad1 

hMSCs were treated with p38 siRNA and then treated with rPP or F-PP for 10, 30, or 60 min. 

Figure 3.10 shows the effect of p38 knockdown on the activation of MAPK and Smad1 by rPP 

and F-PP. When cells were treated with p38 siRNA, we observed a decrease in p38, phospho-

ERK, Smad1, and pSmad1. However, we observed an increase in phospho-smad1 when ERK is 

knocked down. Similar results were observed for rPP and F-PP for all time points tested. 

siRNA results were in agreement with previous results obtained from chemical inhibition 

experiments. When SB203580 inhibited MAPKK3/6 from phosphorylating p38, Smad1 nuclear 

translocation by PP was reduced.[118]  
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Figure 3-10. ERK and Smad1 activity after p-38 knockdown by siRNA 

3.5 DISCUSSION 

ECM-cell interaction plays a crucial role in stem cell maintenance and differentiation. 

Identifying cell surface receptors for ECM proteins is important in understanding how cells 

interact with the environment and ECM protein induced differentiation. In this study we report 

PP signal through integrins αvβ3 and α2β1. Previous results showed by blocking αvβ3, the gene 

expression of runx2 and osteocalcin downregulated in hMSCs.[57] Here we showed that the 

MAPK is inhibited when integrins αvβ3 or α2β1 are blocked. This provided explanations for the 

downregulation of the runx2 and osteocalcin gene expressions.  

Crosstalk among signaling pathways can modulate signal transduction from ECM to the 

nucleus. It was unclear how Smad1 is activated during PP signaling and we have demonstrated 
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that MAPK modulates the Smad1 pathway. We show that there is signaling crosstalk between 

ERK and p38 in the MAPK pathways during PP signaling. By siRNA we showed that, 1) ERK 

inhibits activation and the translocation of Smad1 to the nucleus, 2) p38 enhances the activation 

Smad1, and 3) p38 enhances the activation of ERK. The siRNA and chemical inhibition data 

were both in agreement.  

Our result indicated that ERK has an inhibitory effect on Smad1 activation and nucleus 

translocation and it is supported by the literature. Activation of ERK has been shown to have an 

opposite effect on the activation of Smad1. Smad1 consists of two globular domains, MH1 and 

MH2 domains, with a linker region between these domains that can be phosphorylated by ERK. 

The phosphorylation on the linker region opposes the effect of phosphorylation on the C-

terminus of Smad1 by BMPs leading to inhibition of nuclear translocation of the Smad 

complex.[75] In addition, ERK activation by anti-BMP, FGF, IGF-II has been shown to block 

epidermal differentiation, ventralization of the mesoderm and neural induction by inhibition of 

Smad nuclear translocation.[74]  

The p38 component of the MAPK pathway influences pSmad1 nuclear translocation. Our 

immunocytochemistry data showed that activation of p38 is required for Smad signaling and 

nuclear translocation. It has been shown in osteoblasts that Smad1 phosphorylation and 

translocation to the nucleus is suppressed when p38 is inhibited.[76] We showed that p38 not 

only affects the activation of Smad1, it also has a positive effect on the activation of ERK. It has 

been demonstrated that p38 modulates ERK signaling.[119-121]  

ECM-cell interaction plays a key role in signaling cell differentiation. The processes 

involved in stem cell differentiation into the osteogenic lineage and mineralization are complex 

and remain an area of research interest. Future studies include finding additional receptors for PP 
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and further understanding the complex signaling events involved in hMSCs differentiation into 

osteoblasts. PP may signal through receptors other than the integrins and trigger signaling 

pathways other than the MAPK and Smad pathways. Together these signaling pathways are 

modulated through crosstalk and lead to transduction to the nucleus to elicit cellular response. 

Cellular activities are controlled by highly complex and dynamic signaling pathways. Studying 

how these diverse signaling pathways are integrated by defining the crosstalk among the 

signaling pathways is essential for understanding cell fate decisions and tissue development.  
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4.0  PROTEOMIC PROFILING OF PP AND BMP-2 DIRECTED STEM CELL 

DIFFERENTIATION 

4.1 SUMMARY 

ECM proteins can direct stem cell differentiation through a variety of complex signaling 

pathways. To better understand the signaling pathways involved in stem cell differentiation into 

the osteogenic and odontogenic lineages, we stimulated mouse embryonic fibroblasts 

(C3H10T1/2) with PP or BMP-2 respectively. Using a quantitative mass spectrometry approach, 

we identified and quantified relative protein abundance differences for 1625 and 1973 unique 

proteins from total cell lysates obtained from the PP and BMP-2 treated groups with ratios 

(treated versus control) quantified. Proteins that were determined to be significantly up- or 

downregulated were further scrutinized and proteins of interest were selected for validation. In 

addition to a global proteome analysis, the phosphoproteome was evaluated in order to identify 

phosphoproteins involved in PP and BMP-2 directed stem cell differentiation.  

4.2 INTRODUCTION 

Stem cells have the ability to self-renew and differentiate into at least one of a number of 

different lineages.[122] Indeed, different populations of stem cells such as embryonic or adult 
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stem cells have very different differentiation potentials. Understanding the protein complement 

of these stem cell populations is important in helping to better classify their origin and to 

enhance our understanding of the proteins that govern cell fate decisions.[123] Multiple complex 

signaling events are involved during stem cell proliferation and differentiation. Recent advances 

in the field of proteomics provide the opportunity to identify proteins on either a global or 

targeted scale to study the mechanisms involved during stem cell differentiation in a systemic 

method.[124]  

ECM proteins signal cell differentiation, typically through activation of signaling 

cascades by phosphorylation of participating signaling proteins. Phosphorylation of these 

signaling proteins transduces stimuli from outside of the cell into the nucleus to instruct 

transcription of specific genes involved in differentiation. An evaluation of the phosphoproteome 

will allow us to identify signaling pathways involved during stem cell differentiation. 

Our goal is to identify and quantify proteins and phosphoproteins involved in stem cell 

differentiation towards the osteogenic and odontogenic lineages. In our model, we used PP and 

BMP-2 to stimulate C3H10T1/2 cell differentiation. PP has been shown to express in the dentin 

extracellular matrix while BMP-2 has been shown to stimulate osteogenic differentiation.[125] 

PP is a non-collagenous ECM protein found primarily in the dentin. It has been shown to signal 

through integrin, MAPK, and Smad pathways and upregulate Runx-2/Cbfa-1, alkaline 

phophatase, OCN, and Osx genes expression in hMSCs, MC3T3 cells, and NIH3T3 cells.[57] 

BMP-2 belongs to the TGF-β super family and it is known to signal through the Smad 

pathway.[67] Smad1 is phosphorylated by BMP-2 receptors and then, in complex with Smad4, 

translocates to the nucleus and participates in gene transcription with other factors such as 
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runx2.[126] Understanding the signaling proteins and mechanisms involved in bone and dentin is 

important for future mineralized tissue regeneration applications.  

In this study, we utilized stable isotope labeling of amino acids in cell culture (SILAC) to 

identify and quantify the total proteins and phosphoproteins found during cell differentiation 

towards osteogenic and odontogenic differentiation by PP and BMP-2 respectively. Our 

preferred cells to perform this study would be hMSCs, but hMSCs are not suited for SILAC 

experiments since they require a high number of cell passages which might change their 

phenotype. We then selected the mouse embryonic fibroblasts (C3H10T1/2) which are 

multipotent cells that can differentiate into osteoblasts, chondrocytes, adiopocytes similarly to 

hMSCs.[127] The data obtained from the SILAC experiments was then validated with western 

blot and immunohistochemistry.  

4.3 MATERIALS AND METHODS 

4.3.1 SILAC and Cell Treatment 

C3H10T1/2 (ATCC) were cultured in SILAC DMEM medium (Pierce) containing 10% dialyzed 

FBS and either the heavy (13C6) or light (12C6) L-lysine and L-arginine for more than six cell 

doubling time to ensure complete labeling of the proteome with the heavy labeled amino acids. 

In total, approximately sixty million cells were obtained from the culture, half each from the 

light media and heavy media cultured cells. Cells were serum starved overnight after which 

fifteen million cells from the heavy media culture were treated with 250 ng/mL of PP for 15 min, 

while the other fifteen million cells from the heavy media culture were treated with 150 ng/mL 
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of BMP-2 for 15 min. The thirty million cells from the light media received only serum-free 

medium to be used as an untreated control. After the treatment, cells were washed with ice-cold 

PBS, harvested from the tissue culture plates by scraping (to avoid tryptic digestion of cell 

surface proteins), and pelleted by centrifugation. Excess PBS was removed and the pellets were 

stored at -80 °C.  

4.3.2 Cell Lysis 

Cell lysis buffer (10 mM Tris pH 7.4, 5 mM EDTA, 6 M urea, 5 mM TCEP, 10 μM NaF, 50 μM 

Na3VO4, 1 mM PMSF) were added to the cell pellets (0.8 mL/pellet). Sonication was performed 

at a setting of 1, three times of 15-20 strokes with cooling on ice in between each set of pulses.  

4.3.3 Desalting 

Cell lysates were desalted with Pierce D-salt columns (Pierce). Columns were pre-equilibrated 

with 20 mL of 100 mM amonium bicarbinate (AmB). Samples were lyophilized to ~300 μl and 

loaded on the columns followed by an initial wash of 700 μl of 100 mM AmB and then 

consecutive washes of 500 μl of 100 mM AmB and each fraction (for a total of six) was 

collected. Each fraction was assayed to determine protein content using the Coomassie Plus 

Protein Assay (Pierce; 300 μl assay buffer + 10 μl sample). Fractions containing protein 

(typically 3-5) were combined and the final protein concentration for each pool/sample was 

determined by BCA (Pierce).    
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4.3.4 Fractionation by 1D-PAGE and In-Gel Digestion 

Samples were mixed at a 1:1 ratio of total protein for each heavy:light comparison (PP/control 

and BMP/control). For one dimensional (1D)-sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (PAGE) fractionation, thirty μl of total cell lysates (heavy and light mixed at 1:1 

ratio) were resolved on a 4-12% Bis-Tris gradient gel (Invitrogen) in MES running buffer at 170 

V and the gel was stained with Coomassie (Simply Blue Safe Stain, Invitrogen). Gels lanes for 

each sample mixture were separated into ten bands, excised and cut into approximately 1 mm x 1 

mm pieces, and placed into individual eppendorf tubes. Gel pieces were destained in 1 mL of 50 

mM AmB/50% acetonitrile (ACN) with a fresh solution change after 30 min. Destain solutions 

were removed and 200 μL of 100% ACN was added to each tube for 5 min, the solution 

aspirated out and gel pieces were incubated at 37 °C to dehydrate the gel pieces. Samples were 

then incubated with 100 μL of porcine sequencing-grade modified trypsin (20 ng/μL, Promega) 

on ice for 40 min. Excess trypsin solution was removed and 100 μL of 25 mM AmB was added 

and samples were incubated at 37°C overnight. The digest solution was removed to a new tube 

and 75 μL of extraction buffer containing 70% ACN/5% FA was added and samples were 

sonicated for 10 min in a water bath, and the solution was combined with the overnight digest 

previously replaced to a new tube. The extraction procedure was repeated two more times and 

the samples were, lyophilized to dryness and stored at -80 oC. 

4.3.5 Phosphoenrichment with Titanium Dioxide (TiO2) 

Cell lysates from PP/control or BMP-2/control groups (mixed at 1:1 ratio for 1 mg of total 

protein) were boiled for 5 min and digested with trypsin (1:50 enzyme:protein ratio) overnight at 
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37 oC. Samples were lyophilized to dryness and resuspended in 1 mL of TiO2 enrichment loading 

buffer (80% ACN, 0.1% TFA, 30 g/L dihydroxybenzoic acid (DHB)). Each sample was divided 

equally into two eppendorf tubes and phosphoenrichment was performed using a slightly 

modified protocol described in the literature.[128] First, 20 mg of TiO2 beads were washed in 

400 μL 20% ACN, pH 10.5, then with 400 μL of 50% ACN/0.1% TFA, and finally with 420 μL 

80% ACN, 0.1% TFA, 30 g/L DHB. The washed beads slurry was split equally into four 

eppendorf tubes (~5 mg of TiO2 beads per tube) and incubated with 500 μL of the sample for 1 h 

with gentle rotation at 4 °C. Sample mixtures (with beads) were transferred to spin columns and 

were washed with 500 μL of 80% ACN, 0.1% TFA, 30 g/L DHB and then again with 500 μL of 

50% ACN/0.1% TFA at 100 x g for 1 min. Phosphopeptides were eluted with three consecutive 

washes with 100 μL 20% ACN (pH>10.5), and samples were neutralized immediately with 25 

μL of 10% TFA (placed in the collection tube). Samples were lyophilized to dryness, 

resuspended in 0.1% TFA and desalted with C18 ZipTip microcolumns (Millipore) according to 

the manufacturer’s instructions, lyophilized again and stored at -80 oC until analysis.      

4.3.6 Mass spectrometry and Data Analysis 

For the global analysis, each band from the in-gel digestion was resuspended in 0.1% TFA and 

analyzed in duplicate by nanoflow reverse phase liquid chromatography (RPLC)-MS/MS using a 

Dionex Ultimate 3000 LC system coupled online with a hybrid linear ion trap (LIT)-Orbitrap 

mass spectrometer. Following injection, samples were loaded onto a C-18 reversed-phase trap 

column for 3 minutes at a flow rate of 30 µL/min with mobile phase A (2% ACN, 0.1% FA). 

Peptides were eluted from the C-18 trap column onto an analytical column (75 μm i.d. x 360 μm 

 60 



o.d. x 45 cm fused silica with a flame-pulled tip and packed in-house with Jupiter 5 µm C-18 

reversed phase stationary phase [Phenomenex] using a slurry packer) for increased peptide 

separation prior to electrospray ionization (1.6 kV) and analysis in the mass spectrometer. 

Peptides were eluted from the analytical column over the course of 130 minutes increasing 

mobile phase B (100% ACN, 0.1% FA) from 2% to 42% and then increasing mobile phase B to 

95% over the next 15 minutes. The column was washed at 95% mobile phase B for 20 minutes 

before re-equilibration at 100% mobile phase A prior to the next injection. The mass 

spectrometer was operated in a data-dependent mode where the first scan event was a broad mass 

range scan in the Orbitrap from m/z 375-1800 at a resolution of 60,000 followed by tandem MS 

(MS/MS) of the top seven most abundant ions in the LIT using collision induced dissociation at a 

normalized collision energy of 35. To avoid redundant identification of abundant ion species, 

molecular ions selected for MS/MS were dynamically excluded from being selected for tandem 

MS again for ninety seconds or until their signal-to-noise dropped below a certain threshold 

(early expiration). For the phosphoproteome analyses, TiO2-enriched samples were resuspended 

and analyzed similarly but with five replicate injections rather than in duplicate to increase the 

number of identifications due to lack of the gel fractionation step used in the global analyses.  

Raw data from the nanoflow RPLC-MS/MS analyses were searched against the mouse 

protein database (UniProt, 10-08 version, www.expasy.org) using Sequest (Bioworks Browser, 

ThermoFisher Scientific). Peptides were searched using the following parameters: tryptic criteria 

with up to two missed cleavages, 20 ppm mass tolerance for the molecular ion and dynamic 

modifications of 6.0201 for lysine, 10.0336 for arginine, and 15.9949 for methionine. SILAC 

ratios were determined from the areas obtained from reconstructed ion chromatograms of the 

heavy and light peptides for a given peptide pair using the PepQuan software in the Bioworks 
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Browser Software. For the phosphopeptide analyses, an additional dynamic modification of 

79.9663 on serine, threonine and tyrosine was allowed. Data were further filtered by stringent 

cross correlation versus charge state criteria as follows; [M+H]+, ≥ 1.9; [M+2H]2+, ≥ 2.2; 

[M+3H]3+, ≥ 3.5; and [M+4H]4+ and higher, ≥ 5.0; and a delta correlation of ≥ 0.08 for all cases. 

Tables of unique proteins (identified by peptide sequences that can be found in only one protein 

entry in the database) and common proteins (identified by peptide sequences that can be found in 

more than one protein entry in the database) were generated with average and standard deviation 

of heavy-to-light ratios (H:L), from which only those proteins with a percent standard deviation 

less than forty (SD/Avg*100) were considered for further scrutiny. Gaussian distributions of 

these highly filtered groups of proteins were generated and statistically significant over- and 

under-expressed proteins were determined for each. Proteins of interest were manually verified 

from the raw data prior to validation by IHC and western blotting. 

4.3.7 Ingenuity Pathway Analysis 

Ingenuity Pathways Analysis (IPA) 7.1 – 2002 was used to aid data analysis of the SILAC 

experiment. The IPA software is used for exploring functions of a gene or protein of interest, 

interpretation of protein interactions, network construction of a set of proteins, and data set 

comparisons. IPA’s search, analysis, and network construction functions are based on the 

Ingenuity knowledge base, which is compiled from published peer-reviewed literature and 

facilitates analyzing large sets of data in a systematic manner. Protein accessions and their 

corresponding average ratios were imported to IPA for core analysis. Analysis settings are as 

follows: Functions/Pathways/Tox List Analyses Reference Set - Ingenuity knowledge base 

(genes only), Network Analysis – direct and indirect relationships, includes endogenous 
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chemicals, and consider all species, tissues & cell lines, and data sources. From the core analysis, 

top networks with associated network functions of a particular dataset is constructed along with 

top biofunctions (diseases and disorders, molecular and cellular functions, physiological system 

development and function), top canonical pathways, top molecules (fold change up-regulated 

and down-regulated). For the global analyses, the PP/control and BMP/control data sets (unique 

and common) were imported into IPA for further analysis of the networks and functions of 

proteins identified.  

4.3.8 Western Blot Analyses 

Cells were treated identically as those for SILAC experiment without the supplementation of the 

labeled isoptopes. C3H10T1/2 cells were serum starved overnight and treated with PP or BMP-2 

(both at 250 ng/mL) for 15 min. After washing twice with ice-cold PBS, cells were incubated in 

lysis buffer (150mM NaCl, 1% Igepal CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50mM 

Tris, pH 8.0, 1 tablet/50mL protease inhibitor cocktail tablet (Roche)) for 20 min, harvested, 

sonicated, and pelleted by centrifugation at 13,000 rpm for 15 min. Supernatants were collected 

and protein concentrations were determined by BCA. Equivalent amounts of each sample (20 

μg) were resolved by 1D-PAGE on 10% SDS gels at 120 V for 2 h, then blotted onto PVDF 

membranes at 60 V for an additional 2 h. Membranes were blocked with 5% milk and probed 

with primary antibodies overnight at 4 °C with gentle rotation. Membranes were washed with 

tris-buffered saline with Tween20 (TBST) and incubated with secondary antibody for 1 h at 

ambient temperature and washed again prior to band detection by chemiluminescence of HRP 

using Western Lightning enhanced chemiluminescence substrate (Perkin Elmer) and exposure to 

X-OMAT film (Kodak). Primary antibodies used were rabbit anti-14-3-3 ε (1:1000 dilution, Cell 
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Signaling Technologies), rabbit anti-eIF2A-phosphoS51 (1:500 dilution, abCam) rabbit anti-

eIF2A (1:500 dilution, abCam), rabbit anti-Ras (1:1000 dilution, Cell Signaling Technology), 

rabbit anti-Coronin 1C (1:500 dilution, Santa Cruz Biotechnology), rabbit anti-androgen receptor 

(1:200 dilution, Santa Cruz Biotechnology). Secondary antibody used was anti-rabbit HRP 

(1:8000 dilution, Cell Signaling Technology).  

4.3.9 Immunohistochemistry 

Cells were treated identically as those for SILAC experiment without the supplementation of the 

labeled isoptopes. C3H10T1/2 cells were plated in 48-well tissue culture plates, serum starved 

overnight, and treated with PP or BMP-2 (both at 250 ng/mL) for 15 min. Cells were then 

washed twice with ice-cold PBS and fixed in 4% paraformadehyde for 15 min. Cells were 

washed with wash buffer (0.05% Tween-20 in PBS), permeabilized with 0.1% Triton X-100 in 

PBS for 5 min, and incubated with blocking buffer (5% donkey serum in PBS) for 1 h at ambient 

temperature. Cells were incubated in primary antibody overnight at 4 °C and washed three times 

in wash buffer prior to addition of secondary antibody and incubated for 1 h. Cells were washed 

twice with PBS and imaged with a Nikon fluorescent microscope. Primary antibodies used were 

AR (1:50 dilution, Santa Cruz Biochenology). The secondary antibody used was donkey anti-

rabbit Alexa 488 (1:500 dilution, Invitrogen).  
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4.4 RESULTS 

Cells were labeled with heavy or light lysine and arginine by culturing in media for at least 5 

passages to ensure complete incorporation of the heavy isotope amino acids into the proteome. A 

flow chart summarizing the SILAC-based experimental workflow is shown in Figure 4-1. 

Heavy-labeled cells were treated with PP or BMP (250 ng/mL) for 15 min while light-labeled 

cells were used as untreated control. Cells were lysed and mixed at a heavy to light ratio of 1:1 

based on total protein content. For global proteome analyses, total cell lysates were resolved by 

1D-PAGE and sample lanes were separated into ten fractions and bands were excised for in-gel 

trypsin digestion. For phosphoproteome analyses, cell lysates were digested in-solution with 

trypsin then enriched for phosphopeptides with an established protocol using TiO2 beads.   
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Figure 4-1. SILAC-based experimental workflow 

 

 

4.4.1 Heavy Lysine and Arginine Labeling in C3H10T1/2 Cells 

Prior to PP or BMP-2 treatment, cells cultured in heavy or light lysine and arginine medium were 

lysed, digested with trypsin (1:50 enzyme:protein ratio), and the resultant peptides were analyzed 

to ensure full incorporation of labeling. We observed that complete incorporation of heavy 

arginine and lysine amino acids into the proteome occurred after a minimum of five cell 

doubling times. Figure 4-2 illustrates an example of a pair of isotopomeric peptides from 
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aminopeptidase showing a mass difference of m/z 5 for the doubly charged peptide (10 amu) 

containing a heavy labeled arginine and an approximate ratio of 1:1 from the relative abundance 

of the molecular ions for the light and heavy peptides. 

 

Figure 4-2. Peptide isotope pair showing a difference of  m/z 5 amu for the heavy arginine-containing 

peptide with a relative abundance of 1:1 between control and treated. 

4.4.2 Protein Fractionation by 1D-PAGE 

Mixed cell lysates were resolved by 1D-PAGE, the gel stained by Simply Blue Safe Stain and 

ten bands were excised for in-gel digestion as shown in Figure 4-3. Following digestion with 

trypsin, samples were analyzed by nanoflow reversed-phase liquid chromatography-tandem mass 
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spectrometry. Insets in Figure 4-3 show representative base peak chromatograms from the 

RPLC-MS/MS analysis of peptides extracted from a few of the individual gel bands showing 

varying complexities within each band. The use of 1D-PAGE effectively provides an initial 

dimension of fraction (by gel filtration) prior to mass spectrometric analysis which improves 

overall protein identification and quantitation. 

 

Figure 4-3. Protein fractionation by 1D-PAGE 
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4.4.3 Global Protein Profiling of PP and BMP-2 Treated C3H10T1/2 Cells 

Results from the global proteomic analyses of the PP/control and BMP-2/control samples 

resulted in the identification of 2751 and 3294 proteins respectively with 1924 and 2177 

identified by at least two peptides. Of the total number of proteins identified, 1625 (PP/control) 

and 1973 (BMP-2/control) were identified by unique peptides; 1124 and 1274 of those by two or 

more peptides respectively. Protein abundance changes were calculated by PepQuan from 

extracted ion chromatograms generated from heavy and light peptide pairs and reported as H:L 

values. To generate a list of highly confident proteins with ratios, average and standard deviation 

determinations of ratios for each protein were first trimmed using cut-offs of H:L of 100:1 and 

0.01:1 at the high and low extremes, and then further filtered for average ratios calculated from 

at least two peptides with different ratio values (a standard deviation greater than zero). Finally, 

proteins with ≤ 40% standard deviation (SD), calculated by dividing the standard deviation by 

the average and then multiplying by 100, were used for further analysis bioinformatic analyses. 

Normal distributions of the final, filtered data sets (from unique peptides) were generated using 

binned protein counts vs. log2 of the ratio and are shown in Figures 4-4 and 4-5. A Gaussian 

(normal) distribution was observed for both treatment groups where the majority of the proteins 

had a ratio (treated over control) around one (Log2 Ratio = 0). This analysis allowed us to 

evaluate a subset of the proteins which were significantly up- or downregulated (in this case 1σ 

from the mean ratio for each sample) to determine those proteins which might merit further 

validation and analysis.  
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Figure 4-4. Normal distribution of binned protein counts vs. Log2 Ratio for PP/control group 

 

Figure 4-5.   Normal distribution of binned  protein counts vs. Log2 Ratio for BMP-2/control group 
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In evaluating the data, it was prudent to examine those proteins whose identification was 

derived from one or more peptides that are not unique to a given sequence within the database 

and can be found in several protein sequences. For these proteins, while definite assignment of 

their presence (and therefore the corresponding ratio) to a single, unique protein cannot be made, 

some insight into the nature of the biology that is taking place may be gleaned from looking at 

the list of possible proteins such as different isoforms or families of proteins. In these cases, 

proteins of interest that were selected after the previously described filtering were further 

inspected manually for the ‘commonality’ of the identification and the quality of the tandem 

mass spectra for each peptide used to determine the protein identification.   

Proteins identified from PP/control and BMP-2/control groups (total lysates, unique and 

common peptides) were imported to IPA software groups to examine protein functions and 

relations. The number of proteins identified for a particular cellular function was divided by the 

total number of proteins identified and multiplied by 100 to calculate the percent coverage. The 

distribution of cellular functions of proteins identified for PP/control and BMP-2/control groups 

are shown in Figure 4-6 and 4-7.  
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Figure 4-6. Distribution of protein functions in PP/control group 
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Figure 4-7. Distribution of protein functions in BMP-2/control group 
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4.4.4 Phosphoprotein Profiling of PP and BMP-2 Treated C3H1-T1/2 Cells 

To identify the changes in signaling transduction components during stem cell differentiation, we 

performed phosphopeptide enrichment using TiO2 on digested cell lysates from cells treated with 

PP or BMP-2. From these analyses, 226 and 171 phosphopeptides were identified in the 

PP/control and BMP-2/control groups, respectively. Of the phosphopeptides identified, 135 and 

114 were by unique peptides in the PP/control and BMP-2/control groups, respectively, with 25 

proteins observed as upregulated and 26 as downregulated (more than 1 SD away from the mean 

ratio). However, manual verification of the peptide tandem mass spectra suggested that the 

complexity of the multiple modifications present in most cases (heavy labels, phosphorylation, 

etc.) and the lack of complete peptide fragmentation due to predominant loss of the 

phosphorylation modification during collision indueced dissociation (CID), led to the majority of 

them being questionable identifications, and therefore were not selected for further validation. As 

an alternative approach for phosphopeptide identification, we re-searched the global proteome 

data using similar criteria to that used for the TiO2-enrichment data, but encountered the same 

concerns on the credibility of the peptide identifications. 

To gain insights to additional signaling pathways in PP and BMP-2 signaling, top 

networks of the identified phosphoproteins were constructed by IPA using data from the TiO2 

enriched samples. The top network for PP/control group (identified from unique peptides) 

suggests the involvement of MAPK (ERK, JNK, P38) in PP signaling which we have shown 

previously (Chapter 3). Proteins upregulated by PP are shown in red and downregulated in green 

with proteins not identified shown in white. Direct relationships are shown in solid lines and 
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indirect relationships in dotted lines. In addition, other molecules that are involved and related to 

MAPK such as YWHAH and MAP3K3 were identified and shown in the network.  

 

Figure 4-8. Top network of PP/control (TiO2 enriched, unique peptides) 
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4.4.5 Protein Validation 

From the global protein analysis, proteins of interest with significant changes in ratios were 

selected for validation and were validated manually for robust ion matching (good coverage of 

the b- and y-type fragment ions) in the tandem mass spectra and also for accurate ratio 

calculations from the extracted ion chromatograms of the heavy and light peptide pairs. Of the 

nearly 3,500 proteins identified in the two global data sets, five were finally selected for further 

validation (Table 4-9) by western blot and/or immunohistochemistry; coronin-1C (PP Unique), 

androgen receptor and eukaryotic initiation factor 2A (Eif2A) (BMP Unique), 14-3-3 ε (BMP 

Common), and Ras-related Rab32 (PP/BMP-2 Common). Complete tables of proteins 

upregulated or downregulated more than one SD away from the mean ratio are shown in 

Appendix A with Tables 5-1 - 5-4 showing proteins identified by unique peptides and Tables 5-5 

– 5-8 showing proteins identified with common peptides. 

 

 

 

 

 

 

 

 75 



Table 4-1. Proteins selected for validation experiments  

UniProt Accession 
PP/control 

Fold Change 

BMP-2/control 

Fold Change 

Protein Name (Gene 

Name) 

Peptides 

Identified 

P19091 N/A 0.02 Androgen receptor (AR) 2 (unique) 

Q9WUM4 33.52 N/A Coronin-1C (Coro1C) 2 (unique) 

Q8BJW6-1 

Q8BJW6-2 
4.39 N/A 

Isoform 1 of Eukaryotic 

translation initiation factor 

2A (Eif2A) 

Isoform 2 of Eif2A 

2 (common) 

P62259 

 

A2ACM8 

N/A 8.51 

14-3-3 protein epsilon 

(Ywhae) 

Tyrosine 3- mono-

oxygenase /tryptophan-5-

mono-oxygenase activation 

protein,  epsilon 

2 (common) 

Q9CZE3 

Q8QZZ8 

Q91YQ1 

1.95 3.02 

Ras-related protein Rab-32 

Rab-38 

Rab-7L1 

2 (common) 

 

 

 

 

 76 



For Western blot validation, total cell lysates from cells treated in a similar manner as the 

SILAC experiment were resolved by 1D-PAGE. Antibodies against proteins of interested were 

used to evaluate changes in protein abundances (Figure 4-9). Coronin 1C, phospho-Eif2A, and 

Eif2A increased in both BMP-2 and PP treated groups. Ras increased after PP treatment and no 

change was observed in the BMP-2 treated group. 14-3-3 ε increased after BMP-2 treatment and 

no change was observed for the PP treated group. Androgen receptor decreased in both BMP-2 

and PP treated groups. β-actin showed equal loading of the protein.  

 

Figure 4-9. Western blot validation of proteins identified from mass spectrometry 
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In addition to western blot, immunocytochemistry was performed on C3H10T1/2 cells 

treated with PP or BMP-2 (250 μg/mL) for 15 min. Androgen receptors were expressed in the 

cytoplasm as well as the nucleus. No significant change in androgen receptor expression 

intensity or location for cells treated with PP or BMP-2 when compared to control (Figure 4-10).  

 

Figure 4-10. Androgen receptors staining in cells treated with BMP-2, PP, or untreated control 

4.5 DISCUSSION 

To study the early differentiation mechanism stem cells into the bone or dentin lineages. 

C3H10T1/2 cells were stimulated with PP to induce odontogenic differentiation or with BMP-2 

to stimulate osteogenic differentiation. SILAC was utilized to identify and quantify proteins 

involved during stem cell differentiation. Proteins found with significant change in ratio were 

evaluated and five proteins were selected for further validation. We have selected Coronin-1C, 

14-3-3 ε, androgen receptor, Ras, and eukaryotic initiation factor 2A (Eif2A) to perform western 

blot analysis.  
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Coronin-1C is an actin binding protein that is involved in actin cytoskeletal remolding, 

cell motility, and vesicle trafficking.[129] From the SILAC experiment, coronin-1C was 

identified and had a 33.5 fold increase in the PP treated group. From western blot analysis, we 

observed an increase in cells treated with either PP or BMP-2. PP has been shown to signal 

through the integrins (Chapter 3). Integrins are transmembrane proteins that interact with the 

extracellular matrix and are closely associated with actin cytoskeleton. Clustering of focal 

adhesion points occurs upon activation of integrins as well as signal transduction.[130] In 

addition, BMP-2 has been shown to induce actin cytoskeleton reorganization through Cdc42 

small GTPase and the alpha-isoform of the phosphoinositide 3-kinase (PI3Kalpha).[131] 

Coronin 1C could play a role in cytoskeletal remodeling stimulated by PP or BMP-2. 

14-3-3 ε, also known as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, epsilon polypeptide, (YWHAE) belongs to the 14-3-3 family of phospho-

serine/phospho-threonine binding proteins that mediate signal transductions including MAPK 

and AKT signaling pathways.[132] 14-3-3 has also been shown to regulate RGK-mediated 

cytoskeleton reorganization.[133] I observed an increase in 14-3-3 ε in cells treated with BMP-2 

from both mass spectrometry and western blot data. PP has been shown to activate the 

MAPK.[57] 14.3.3 is involved in initiation of Raf kinase activation that leads to the Ras-Raf-

MAPK pathway. Although 14-3-3 ε was not upregulated in cells treated with PP, other members 

of the 14-3-3 family could be involved in PP signaling.    

Ras is a family of guanine-nucleotide binding proteins that could be stimulated by 

receptor tyrosine kinases and G-protein coupled receptors, which then activate the Raf-MEK-

MAPK pathway. Ras-related Rab, identified from the mass spectrometry data, and was increased 
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in cells treated with PP or BMP-2.[134] The peptides identified were common peptides that 

could belong to Rab32, Rab38, or Rab7L1. Antibodies against mouse Rab32, Rab38, or Rab7L1 

were not commercially available. Therefore, a Ras antibody that binds to K-Ras, N-Ras, and R-

Ras was selected for western blot analysis. We observed an increase of Ras in PP treated group. 

PP has been shown to activate the MAPK and Smad pathways.[58] Smad is activated by PP 

independent of the BMP-2 receptor. I have shown that Smad1 could be regulated by crosstalk 

between ERK and P38 (Chapter 3). Ras is upstream of ERK and it has been previously shown to 

regulate Smad activation.[135] This provides an additional rationale to how PP activates the 

Smad signaling.  

Androgens and androgen receptors are important for bone metabolism.[136] Androgen 

receptor is a nuclear receptor that is expressed in the cytoplasm and when activated it is 

translocated into the nucleus and act as a transcriptional factor.[137] Androgen receptor was 

identified and showed a decrease in BMP-2 treated cells by mass spectrometry and western blot. 

Studies have shown that androgen receptor is inactivated by phospho-Smad1 that is activated by 

BMP-2.[138] Immunocytochemistry showed the expression of androgen receptor in the 

cytoplasm and the nucleus, however the assay was not sensitive enough to differentiate cells 

treated with PP or BMP-2 with untreated control.   

Eukaryotic initiation factor 2 alpha (Eif2A) is phosphorylated by eukaryotic translation 

initiation factor 2 alpha kinase 3 (Perk). Perk is essential for neonatal skeletal development.[139] 

Perk knockout mice showed skeletal defects such as deficient mineralization, osteoporosis, and 

abnormal compact bone development.[140] We showed an increase of Eif2A in the BMP-2 

treated cells by mass spectrometry. Western blot analysis showed an increase on phospho-Eif2A 
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as well as Eif2A for both PP and BMP-2 treated cells. Eif2A could play a role in bone 

development and mineralization as well as dentin development.    

 Through a quantitative proteomics approach, we have identified several proteins that 

could be involved in stem cell differentiation into the dentin and bone lineages. Future 

experiments include improvement of phosphopeptide enrichment and further validation of the 

proteins identified such as western blot, immunohistochemistry, siRNA, and drug inhibition 

assays. Using quantitative proteomic techniques such as SILAC, mechanism of stem cell 

differentiation into different lineages can be studied in an efficient and systematic manner.   
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS 

Mineralized tissue engineering requires appropriate cell source, growth factors, and scaffolds. In 

this study, different cell sources were investigated including dental pulp pericytes, hMSCs, and 

mouse embryonic fibroblasts (C3H10T1/2). Human dental pulp pericytes were characterized, 

isolated, and tested for their multilineage differentiation potential (Chapter 2). Interaction 

between stem cells and ECM-proteins were investigated to better understand the most suitable 

microenvironment for stem cell differentiation into mineralized tissues. Our goal was to study 

the signaling roles of ECMs found in bone and dentin and to assess their potential incorporation 

in a scaffold to create a compatible stem cell microenvironment. The effect of PP on hMSCs cell 

surface receptors and crosstalk among signaling pathways was assessed (Chapter 3). To further 

elucidate the mechanism involved in stem cell differentiation into the odontogenic and 

osteogenic lineages, mass spectrometry (Chapter 4) was utilized to quantify protein abundance 

differences in mouse embryonic fibroblasts C3H10T1/2 cells that were stimulated with PP or 

BMP-2. Understanding the cell-ECM interaction and the signaling mechanisms during stem cell 

differentiation is important in controlling cell fate decision and tissue morphogenesis. 

Appropriate cell sources and signals to stimulate differentiation are crucial to the bioengineering 

of mineralized tissues.  
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5.1 DENTAL PULP PERICYTES 

5.1.1 Differentiation Potential of the Dental Pulp Pericytes 

Pericytes from adult human dental pulp were successfully characterized. CD146+CD34-CD45-

CD56- could be used to sort pericytes and they can be expended in culture (Chapter 2). Cultured 

pericytes showed high clonogenic ability and was able to differentiate in to chondrogenic, 

osteogenic, and adipogenic differentiation. Cultured pericytes expressed runx2 and osteocalcin. 

We have not yet assessed the in-vivo osteogenic/odontogenic differentiation potential of the 

dental pulp pericytes.  

5.1.2 Different Cell Populations in the Dental Tissues 

Besides the pericytes, there are other stem cell populations that may exist in the dental pulp. 

Furthermore, other dental pulp cell populations, such as endothelial cells, could potentially 

produce growth factors that support the pericytes. It has been shown that Stro-1, an MSC marker, 

could be used to isolate stem cells from dental tissues such as dental pulp and periodontal 

ligaments.[3, 141-143] It will be interesting to compare the differential potential of the total 

population, Stro-1 sorted cells, and pericytes in-vitro and in-vivo. CD146+CD34-CD45-CD56- 

has been used to sort pericytes from the dental pulp and it was also used to characterize 

periodontal ligaments. FACS results of cells from the periodontal ligaments were similar to those 

from the dental pulp (Appendix B). Besides the dental pulp and periodontal ligament, stem cells 

have also been suggested to reside in the apical papilla of permanent immature teeth (SCAP). 

These cells are involved in root maturation of the tooth and could be used in conjunction with 
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other cell types for bioengineering of the tooth.[144, 145] These cells could then be used to study 

their differentiation into odontoblasts and ultimately tooth formation. As the isolation and 

characterization experiments were ongoing, we began to assess the signaling role of PP, a 

bone/dentin extracellular matrix protein. 

5.2 PP SIGNALING MECHANISM 

5.2.1 Receptors for PP 

The data presented here shows that PP signals through integrins αvβ3 and α2β1 (Chapter 3). The 

experiments conducted were done by blocking integrins αvβ3 or α2β1 individully then looking at 

the downstream MAPK signaling activation. When integrins αvβ3 or α2β1 were blocked prior to 

PP treatment, the MAPK activity was downregulated but the signal was not completely inhibited. 

It would be of interest to see the effect of PP signaling when both αvβ3 and α2β1 are inhibited. If 

the MAPK activation from PP were not completely inhibited by blocking both αvβ3 and α2β1, 

then it will suggest that other receptors might be involved in PP signaling. One method to find 

additional receptors for PP is by a pull-down assay, similar to immunoprecipitation, followed by 

mass spectrometry analysis. First, PP would be tagged with biotin, then either cells to be treated 

with tagged PP or a total cell/membrane lysate would be incubated with the tagged PP and then 

associated proteins would be isolated using streptavidin to pull down PP-receptor complexes. 

This mixture would then be resolved by 1D-PAGE for in-gel digestion of bands of interest 

followed by MS identification. Studies have shown success in identifying novel receptors using 

the affinity purification and mass spectrometry techniques.[146]  
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5.2.2 Effect of PP on Different Cell Types 

PP signals through the MAPK and Smad1 pathways in hMSCs, MC3T3, and NIH3T3 and 

upregulates bone/dentin related genes.[57] PP has been shown to upregulate Runx2 and OCN 

gene expression as well as alkaline phosphatase activity in human periodontal ligament cells 

(unpublished results). PP signaling in dental pulp pericytes and other stem cell populations are 

yet to be studied.  

5.2.3 PP Signaling Mechanisms 

We have shown that PP signals through integrin/MAPK and Smad1 pathways. ERK, JNK, and 

p38 were activated by PP and there are signaling crosstalk among MAPK and Smad1 (Chapter 

3). Activation of ERK inhibits Smad1 activation and nuclear translocation. Activation of p38 has 

a positive effect on ERK activation as well as Smad1 activation and nuclear translocation. The 

crosstalk among MAPK and Smad is complex and acts as intrinsic signaling control to regulate 

gene regulation. ERK activates c-FOS, while JNK activates ATF-2 and c-JUN. The AP-1 

transcription complex is composed of activated c-JUN protein which can homo- and/or 

heterodimerize with c-FOS.[147] For example, c-JUN/c-JUN or c-FOS/c-JUN can complex to 

form AP-1 transcriptional factor. AP-1 will then bind and activate osteoblast specific genes, 

enabling osteoblst differentiation.[148, 149] Future studies might include investigating whether 

c-FOS, c-JUN, AP-1, and ATF-2 are activated by PP.   
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5.3 GLOBAL PROTEOMICS APPROACHES 

5.3.1 SILAC 

We have used a SILAC-based mass spectrometry approach to evaluate changes in protein 

abundances when C3H10T1/2 cells were stimulated by PP or BMP-2 (Chapter 4). With the same 

approach, other cell types such as DPSCs and hMSCs could be used to study cell differentiation 

by various growth factors, keeping in mind that the cells need to be cultured for at least 5-6 cell 

doubling times in the SILAC medium before treatment to insure successful labeling of the heavy 

amino acids. In addition, improvements to the TiO2-based phosphoenrichment protocol are 

required (as described below) for a more complete evaluation of the signaling cascades activated 

in response to the treatment conditions. Therefore, an approach to immortalize these primary 

cells in the same fashion as the TERT-hMSCs could be incorporated.[150] 

5.3.2 iTRAQ 

Another quantitative proteomics approach, isobaric tag for relative and absolute quantitation 

(iTRAQ) could be used for the evaluation of multiple time points or dosing studies, of which up 

to eight different treatment groups can be compared. Unlike SILAC, which is a metabolic 

labeling process and occurs during cell culture, iTRAQ is a reagent-based chemical reaction 

which labels peptides at free amine groups, after proteins are isolated from cells. Up to eight 

experimental groups could be compared in a single iTRAQ experiment.[151, 152] For example, 

we can compare cells treated with PP or BMP-2 for 10, 20, 30, and 60 min in one set of 

experiments. While iTRAQ would be useful for comparing cells treated with multiple growth 
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factors, time points, and dosages, it requires additional steps during sample processing and as 

most chemical reactions, may suffer from inefficient labeling of the peptide substrates.  

5.3.3 Phosphoenrichment 

To study the signaling molecules involved in PP and BMP-2 stimulated differentiation, we 

utilized a TiO2 enrichment protocol to investigate the phosphopeptides from total cell lysates. 

However, the results were less than optimal and further modification of the protocol is required. 

Repeated incubation of the cell lysates with the TiO2 might improve the binding efficiency. Also, 

we have used a ‘batch’ or ‘bulk’ method (incubating cell lysates with a TiO2 bead slurry) in our 

phosphoenrichment protocol; a column-based method (passing cell lysates through column 

packed with TiO2 materials) might provide a more efficient enrichment. Besides using TiO2 

beads, we also briefly evaluated an IMAC-based approach utilizing Ga3+ (Sigma) in a 

preliminary study but the results were poor in our hands. An alternative method to enrich the 

phosphopeptides is to use antibodies that bind to phosphorylated peptides or proteins. It has been 

shown that 4G10 and PY100 can be used to enrich phospho-Tyrosine peptides.[82] We could use 

these antibodies to perform an immunoprecipitation, followed by 1D-PAGE and LC-MS to 

identify and quantify the phosphoproteins in stem cells treated with PP, BMP-2, or other ECM 

proteins and growth factors.  

5.3.4 Absolute Quantification 

We have achieved relative quantification of identified proteins by calculating ratios of proteins 

from PP or BMP-2 treated samples versus untreated controls by SILAC. In order to achieve 
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absolute quantification of a protein of interest, we could spike the samples with a known amount 

of peptide (from the protein of interest) and then calculate the amount of protein of interest by 

comparing its peptide peak intensity to that of the spiked peptide.  

5.4 SCAFFOLD FOR MINERALIZED TISSUE ENGINEERING 

Scaffolds can provide support for cells and can be incorporated with growth factors to be 

implanted in the site of injury of the host. In collaboration with Dr. Steve Little, we tested the 

mineralization potential of SAOS cells on a biomaterial, poly(ethylene oxide)-modified poly(β-

amino ester) (PbAE). Cells were seeded on surfaces coated with different percentage mixtures of 

poly(L-latic acid) (PLA) and PbAE or KK89 (a form of PbAE). Initial results indicated that cells 

seeded on 85% PLA + 15% KK89 enhanced mineralization (Appendix C). Different materials 

could elicit different cellular activities and also varying responses in different cell types. To 

further study the interaction of cell-scaffolds, cell viability and proliferation, differentiation, 

mineralization, and functional assays needs to be taken into consideration. Time-lapse video 

microscopy could be used to study cell migration, proliferation, and differentiation on surfaces 

coated with different materials. In addition, we could utilize proteomics to investigate proteins 

involved in cells’ responses to different materials. For bone tissue engineering, in-vivo studies 

such as ectopic bone formation and critical size bone defect studies could be conducted. Growth 

factor and gene delivery systems can also be incorporated into scaffold design to promote 

regeneration.  
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APPENDIX A 

SILAC SUPPLEMENTAL DATA 

Table 5-1. Proteins with unique peptides upregulated by PP treatment 

UniProt 

Accession 

Average 

Ratio 
Protein Name Peptides  

Q9CR51 79.32 V-type proton ATPase subunit G1 (Atp6v1g1) 2 

Q9D411-2 62.35 Isoform 2 of Testis-specific serine/threonine-
protein kinase 4 (Tssk4) 2 

Q8CI04 48.16 Conserved oligomeric Golgi complex subunit 3 
(Cog3) 2 

Q9WUM4 33.52 Coronin-1C (Coro1c) 2 
P05201 11.56 Aspartate aminotransferase, cytoplasmic (Got1) 2 
Q8VBT0 6.06 Thioredoxin domain-containing protein 1 (Txndc1) 2 
Q9D1A2 4.53 Cytosolic non-specific dipeptidase (Cndp2) 2 
Q9R190 2.40 Metastasis-associated protein MTA2 (mta2) 2 
Q91X76 2.20 5’-nucleotidase domain containing 2 (Nt5dc2) 5 
O70252 1.97 Heme oxygenase 2 (Hmox2) 3 
P70280 1.78 Vesicle-associated membrane protein 7 2 
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Table 5-2. Proteins with unique peptides downregulated by PP treatment 

UniProt 
Accession 

Average 
Ratio Protein Name Peptides  

Q80YQ1 0.14 Thrombospondin 1 (Thbs1) 3 
Q8C2Q3-1 0.14 Isoform 1 of RNA-binding protein 14 (Rbm14) 2 
Q6ZWV3 0.13 60S ribosomal protein L10 (Rpl10) 3 
Q9QZF2 0.13 Glypican-1 (Gpc1) 2 

P35486 0.08 Pyruvate dehydrogenase E1 component subunit 
alpha, somatic form, mitochondrial (Pdha1) 2 

Q5M9L1 0.02 60S ribosomal protein L36 (Rpl36) 2 
Q6IFT3 0.01 Keratin Kb40 (Krt78) 2 
Q9CZX7 0.53 Transmembrane protein 55A (Tmem55a) 2 
Q9JJK2 0.50 LanC-like proteins 2 (Lancl2) 2 
Q69ZX9 0.50 MKIAA0838 protein (Fragment) (Gls) 27 
Q9DBL7 0.38 Bifunctional coenzyme A synthase (Coasy) 2 

 

Table 5-3. Proteins with unique peptides upregulated by BMP-2 treatment 

UniProt 
Accession 

Average 
Ratio Protein Name Peptides 

P62305 63.12 Small nuclear ribonucleoprotein E (Snrpe) 2 

Q8CIR4 59.83 Transient receptor potential cation channel 
subfamily M member 6 (Trpm6) 2 

Q5M6W3 51.16 Uncharacterized protein C2orf63 homolog 2 

O70146 29.30 Dual specificity testis-specific protein kinase 1 
(Tesk1) 2 

Q3UW12-2 24.35 Isoform 2 of cyclic nucleotide-gated cation channel 
alpha-4 (Cnga4) 2 

Q9CYL5 12.52 Golgi-associated plant pathogenesis-related protein 
1 (Glipr2) 2 

Q9Z0N1 3.32 Eukaryotic translation initiation factor 2 submunit 3 
(Eif2s3x) 3 

Q99LI7 3.11 Cleavage stimulation factor 77 kDa subunit (Cstf3) 2 
Q8C7K6 2.63 Prenylcysteine oxidase-like (Pcyox1l) 2 
P55012 2.32 Solute carrier family 12 member 2 (Slc 12a2) 5 
Q01721 2.31 Growth arrest-specific protein 1 (Gas1) 3 

Q60967 2.00 Bifunctional 3’-phosphoadenosine 5’-
phosphosulfate synthetase 1 (Papss1) 2 

Q3UDW8 2.00 Heparan-alpha-glucosaminide N-acetyltransferase 
(Hgsnat) 2 
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Table 5-4. Proteins with unique peptides downregulated by BMP-2 treatment 

UniProt 
Accession 

Average 
Ratio Protein Name Peptides  

Q9QZE7 0.08 Translin-associated protein X (Tsnax) 4 
Q8C264 0.07 NOD-derived CD11c +ve dendritic cells cDNA 

(Bak1) 2 

P62307 0.07 Small nuclear ribonucleoprotein F (Snrpf) 6 
P61967 0.06 AP-1 complex subunit sigma-21A (Ap1s1) 2 
O35129 0.05 Prohibitin-2 (Phb2) 2 
Q8BFY6 0.04 Peflin (Pef1) 2 

Q9Z2Z6 0.03 Mitochondrial carnitine/acylcarnitine carrier protein 
(Slc25a20) 2 

P61226 0.03 Ras-related protein Rap-2b (Rap2b) 3 
Q8VED5 0.03 Keratin, type II cytoskeletal 79 (Krt79) 7 
P19091 0.02 Androgen receptor (Ar) 2 
Q9CPQ1 0.02 Cytochrome c oxidase popypeptide (Cox6c) 2 
Q8C0C7 0.40 Phenylalanyl-tRNA synthetase alpha chain (Farsa) 3 
Q921HB 0.38 3-ketoacyl-CoA thialase A, peroxisomal (Acaa1a) 2 

Q9DBZ1-2 0.38 Isoform 2 of Inhibitor of nuclear factor kappa-B 
kinase-interacting protein (Ikip) 2 

Q9D5L2 0.37 Adult male testis cDNA (4940426D05Rik) 2 
Q9CQ60 0.28 6-phosphogluconolactonase 2 
Q9D5V6 0.25 Synapse-associated protein 1 (Syap1) 2 

Q9DBZ1-1 0.22 Isoform 1 of Inhibitor of nuclear factor kappa-B 
kinase-interactin protein (Ikip) 2 
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Table 5-5. Proteins with common peptides upregulated by PP treatment 

UniProt 

Accession 

Average 

Ratio 

Protein Name Peptides  

Q9WVB2 41.67 Transducin-like enhancer protein 2 (Tle2) 2 

P63013-1 38.73 
Isoform PMX1-B of Paired mesoderm homeobox 
protein 1(Prrx1) 2 

Q9CWU6-
1 35.29 

Isoform 1 of Ubiquinol-cytochrome c reductase 
complex chaperone CBP3 homolog (Uqcc) 2 

Q64010-1 28.73 Isoform Crk-II of Proto-oncogene C-crk (Crk) 2 
P63085 15.04 Mitogen-activated protein kinase 1 (Mapk1) 2 
Q9CZW2-1 13.92 Isoform 1 of Centromere protein N (Cenpn) 2 
P50247 9.58 Adenosylhomocysteinase (Ahcy) 2 
B1ATZ0 4.55 HGF-regulated tyrosine kinase substrate (Hgs) 3 

Q8BJW6-1 4.39 
Isoform 1 of Eukaryotic translation initiation factor 
2A (Eif2a) 2 

Q8C0I1 4.27 
Alkyldihydroxyacetonephosphate synthase, 
peroxisomal (Agps) 4 

Q69ZB2 2.29 MKIAA1758 protein (Fragment) (Cttnbp2) 2 

Q3TIV5-1 2.130 
Isoform 1 of Zinc finger CCCH domain-containing 
protein 15 (Zc3h15) 2 

Q9CZE3 1.950 Ras-related protein Rab-32 (Rab32) 2 
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Table 5-6. Proteins with common peptides downregulated by PP treatment 

UniProt 

Accession 

Average 

Ratio 

Protein Name Peptides  

Q61703 0.01 Inter-alpha-trypsin inhibitor heavy chain H2 (Itih2) 2 
Q9CZH7 0.03 Matrix-remodeling-associated protein 7 (Mxra7) 2 
Q3TTY5 0.03 Keratin, type II cytoskeletal 2 epidermal (Krt2) 2 

P39061-3 0.27 
Isoform 1 of Collagen alpha-1(XVIII) chain 
(Col18a1) 2 

Q8BFS6-1 0.34 
Isoform 1 of Uncharacterized 
metallophosphoesterase CSTP1 (Cstp1) 3 

Q64331 0.35 Myosin-VI (Myo6) 3 
Q99LX0 0.48 Protein DJ-1 (Park7) 4 
O09159 0.51 Lysosomal alpha-mannosidase (Man2b1) 2 

Q60961-1 0.55 
Isoform Long of Lysosomal-associated 
transmembrane protein 4A (Laptm4a) 4 

P70302 0.56 Stromal interaction molecule 1 (Stim1) 6 
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Table 5-7. Proteins with common peptides upregulated by BMP-2 treatment 

UniProt 

Accession 

Average 

Ratio 

Protein Name Peptides  

A2AQ25-1 69.32 Isoform 1 of Sickle tail protein (Skt) 2 

Q9D1L0 31.86 
Coiled-coil-helix-coiled-coil-helix domain-
containing protein 2, mitochondrial (Chchd2) 2 

Q9QYP6-1 29.89 Isoform 1 of 5-azacytidine-induced protein 2 (Azi2) 4 

O35855 16.24 
Branched-chain-amino-acid aminotransferase, 
mitochondrial (Bcat2) 2 

Q5XG71 14.94 
Small subunit processome component 20 homolog 
(Utp20) 3 

B1ATZ0 14.88 HGF-regulated tyrosine kinase substrate (Hgs) 2 

Q9Z351-12 13.10 
Isoform 12 of Potassium voltage-gated channel 
subfamily KQT member 2 (Kcnq2) 2 

P62259 8.51 14-3-3 protein epsilon (Ywhae) 5 
Q9CX30-1 5.74 Isoform 1 of Protein YIF1B (Yif1b) 2 
Q9CZE3 3.02 Ras-related protein Rab-32 (Rab32) 2 

B2RWW6 2.33 
GCN1 general control of amino-acid synthesis 1-
like 1 (Yeast) (Gcn1l1) 2 

A2ARJ0 1.92 
Signal transducing adaptor molecule (SH3 domain 
and ITAM motif) 1 (Fragment) (Stam) 4 
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Table 5-8. Proteins with common peptides downregulated by BMP-2 treatment 

UniProt 

Accession 

Average 

Ratio 

Protein Name  Peptides  

O09106 0.01 Histone deacetylase 1 (Hdac1) 3 
P01029 0.02 Complement C4-B (C4b) 3 

O35969-1 0.02 
Isoform 1 of Guanidinoacetate N-
methyltransferase (Gamt) 2 

Q9JKF7 0.16 
39S ribosomal protein L39, mitochondrial 
(Mrpl39) 2 

Q64331 0.16 Myosin-VI OS=Mus musculus GN=Myo6 4 

P08730-1 0.20 
Isoform 1 of Keratin, type I cytoskeletal 13 
(Krt13) 2 

Q9DCG9 0.21 TRM112-like protein 2 

Q61584-1 0.23 
Isoform E of Fragile X mental retardation 
syndrome-related protein 1 (Fxr1) 2 

Q3U8W9 0.25 

Bone marrow macrophage cDNA, RIKEN full-
length enriched library, clone:I830045N07 
product:heterogeneous nuclear 
ribonucleoprotein R, full insert sequence 
(Hnrnpr) 4 

O09131 0.33 
Glutathione transferase omega-1 OS=Mus 
musculus GN=Gsto1 4 

Q3U882 0.37 

Bone marrow macrophage cDNA, RIKEN full-
length enriched library, clone:I830063I15 
product:Similar to SEC24 related gene family, 
member B (S. cerevisiae) homolog (Fragment) 
(Sec24b) 2 

Q91ZR2 0.39 Sorting nexin-18 (Snx18) 2 

Q9QXG4 0.41 
Acetyl-coenzyme A synthetase, cytoplasmic 
(Acss2) 2 
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APPENDIX B 

FACS ANALYSIS OF PERIODONTAL LIGAMENT CELLS 

Total populations of periodontal ligament cells were isolated from four human adult third 

molars (21 year old male). Periodontal ligament were digested in collagenase for 1.5 h at 37 °C 

and pass through cell strainers to obtain single cells suspension. Cells were stained with 

antibodies CD146, CD34, CD56, and CD56. IgGs were used as negative controls. FACS analysis 

of periodontal ligament cells are shown in Figure 5-1. CD56+ and CD45+ cells are gated out and 

CD146+CD34- cells can be isolated as shown in P6. P6 = 0.6%.  
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Figure 5-1.  FACS analysis of periodontal ligament cells. 
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APPENDIX C 

MINERALIZATION OF SAOS CELLS SEEDED ON PBAE (KK89) 

SAOS-2 cells were seeded (25,000 cells/cm2) on glass slides coated with different 

percent of KK89 with PLA and placed in 6 well plates. Culture cells in medium Alpha MEM + 

10% FBS + 1% Penicillin/Streptomycin + 2 mM L-glutamine without supplements. After cells 

are attached and appeared normal in cell growth morphology, supplements 50 µg/mL L-ascorbic 

acid, 5mM β-glycerophosphate, and 100nM dexamethasone were added on day three. Media 

were changed every 3-4 days and cells were stained for alkakine phosphatase (pink) and von 

Kossa (black) on Day 14.  

Table 5-9. Experiment groups with cells grew on different coated surfaces 

Groups Coated surfaces 
1 Tissue culture polystyrene 
2 100% PLA (Mw 40-45K, H) 
3 90% PLA + 10% KK89 
4 85% PLA + 15% KK89 
5 80% PLA + 20% KK89 
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15%KK89 20%KK8910% KK89

Plastic PLA 

 

Figure 5-2. Alkaline phosphatase and von Kossa staining of SAOS-2 cells seeded on tissue culture plastic, 

PLA, and different % of KK89 at week two. 
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