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One-dimensional nanomaterials have qualitatively different mechanical behavior 

comparing with their bulk form owing to their small length scale and huge surface 

area1. To predict the mechanical properties and deformation behaviors of material in 

nanometer length scale and disclose the deformation mechanisms of them, plenty of 

computational simulations have been conducted. However, due to the sample 

mounting difficulty and their quite small volume, it is very tough to perform 

high-quality mechanical testing and validate the predictions from computational 

simulations. 

Using the unique Nanofactory probing systems, in-situ mechanical tests 

combined with observations by transmission electron microscopy (TEM) with atomic 

resolution have been performed successfully on one-dimensional nanomaterials such 

as silver (Ag) nanowries, silica (SiO2) nanowires, nanoscale Al90Fe5Ce5 metallic glass 

and sodium chloride (NaCl) nanowires. 19.3 % strain was achieved in the bicystalline 

Ag nanowires. Stacking faults formed on the (111) plane and interestingly, the 

stacking fault (local hexagonal close-packed (hcp) structure) was not induced by 

partial dislocations movement, but by the Frank loops formation and expansion.  
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SiO2 glass at room temperature is usually brittle due to fracture instability. 

However, showered by electron beam, silica nanowires with big diameters (>100 nm) 

can flow superplastically more than 670%. But once beam is blanked more than 2 

minutes, the mechanical response can recover back to brittle failure if silica 

nanowire’s diameter is large than 20 nm. However, unrecovered beam damage will 

trigger the brittle to ductile transition if silica nanowire’s diameter is less than 20 nm.  

Al90Fe5Ce5 metallic glass with size less than 20 nm can be super plastic 

deformed with elongation ~200%. Necking occurred without shear bands in the 

nanoscale sample with an area reduction nearly 100%. Surprisingly, it is first time to 

see atomic chain formation in metallic glasses. Fast diffusion of surface atom and no 

chance to form shear band is thought to attributed to such extraordinary ductility. 

The mechanical test on common salt shows very interesting results. NaCl 

nanowires can be formed by touching sharp probe with NaCl surface in the 

transmission electron microscope and deform superplastically. The nanowires can be 

stretched to 280% and be very flexible under compression (can be bent over 90°) 

under the electron beam irradiation. During the elongation process, there were no 

dislocations observed due to the fast diffusion. 
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1.0     INTRODUCTION 

Nanowires behavior quite different comparing with their bulk form in electrical, 

mechanical, magnetic, optical and catalytic properties owing to their small length 

scale and huge surface area1-7. These remarkable properties make nanowires qualified 

for  different applications such as nano-electronics8,9, micro/nano electro-mechanical 

systems (MEMS/NEMS) 10,11 and sensors12,13. It has made a lot of different kinds of 

nanowires recently because of their wide applications14. As we know, when the 

sample size drops into the nanometer range, the surface area compare to volume will 

become significant, and the physical properties of a material will largely effected by 

the surface atoms. The fundamental understanding on the materials properties 

especially mechanical properties will be quite critical for utilizing nanosturctures. 

Recently, numerous theoretical and experimental studies have been performed on 

different nanowires to relate their structures and mechanical properties. Novel 

phenomena have been observed in nanowires including lattice reorientation and phase 

transformation driven by surface stress 15-17, single atomic chains formation during 

tensile testing18,19, shape memory and pseudoelastic behavior20-22, and deformation 

induced amorphization23,24. 

Nanowires shorter than 10 nm can be formed by a sharp tip touching the material 

surface and then slowly retracting25. This method is what called mechanically 

controllable break-junctions techniques and normally will generate single crystalline 
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nanowires25. Three characteristics are presented in the deformation behaviors of these 

nanowires: Tensile yield strengths different with compression yield strength, plastic 

deformed with the quantized steps and ideal atomic disjointing approaching 

fracture26. However, as nanowires size turns bigger than 10 nanometers, it turns very 

difficult for accurately connecting such small scale structures and performing the 

force measurement25. That is why the reported testing results on the mechanical 

properties of the nanomaterials scatter so drastically27-29. 

Compare to experiments, atomistic simulations are much easy to carry out, so it 

is extensively used to investigate nanowires’ deformation mechanism. Recently, a lot 

of groups performed atomistic simulations to study the mechanical properties and 

deformation mechanism of nanowires30-33. Using classical molecular dynamics (MD) 

simulations, two slip mechanisms were demonstrated by Sorensen et al. for nano 

materials34,35: one is the dislocation gliding and the other is atoms planes 

homogeneous shearing34. As the sample size smaller than a few nm, the homogeneous 

slip will be dominant in deformation mechanism to take over the dislocation mediated 

slip deformation mechanism34. Hyde et al.’s results revealed that the defects such as 

twin boundaries and surface steps have strong effect on the yield stress of Au 

nanowires25. The role of twin boundaries is that it can help materials hardening since 

it can act as barriers to resist the dislocation propagation25. The deformation process 

of nanowires under different conditions (shearing, elongation, twisting, and 

elongation combined twisting condition) with different velocities was studied by 

Kang et al36. When a Cu nanowire have first yield under pure tensile condition, it will 

elastic deformed following yielding again and such stages will repeat several times36. 

Under elongation combined twisting condition, it will be deformed more easily than 

the one just under elongation or twisting36. The torque and the tension force was 
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found to have an inversely proportional relation36. High strain-rates deformation 

induced the crystalline to amorphous phase transformation was found by Ikeda et al.24 

in Ni and NiCu nanowires37. Such phenomena was also discovered by Branicio and 

Rino in Ni nanowires 23. 

Although much important knowledge was obtained from these theoretical works, 

however, we can only regard MD simulations as a method to motivate and qualitative 

direct the real experiment, but not use it as a way to confirm whether a mechanism is 

really exist or not38. The results from the MD simulations still need the experiments 

to validate the accuracy. As revealed by many indirect experiments, strong size effect 

is shown on the nanowires’ mechanical properties. However, owe to the challenge of 

mounting the nanowires on testing device, there still absent direct experiments 

showing the evolution of structure as well the mechanical response of nanowires, and 

thus delay the practical industrical application of nanowries. It has been proven that 

In-situ TEM is a prevailing tool to disclose the fundamental physical mechanism 

because of its advantages like real time observation, dynamics and atomic resolution. 

And it was used on material research for long time. However, in-situ TEM 

experiments on discovering the deformation behavior and mechanical properties of 

nanowires are still lacking until now. There is still a missing gap between the 

experimental data of real mechanical test and the predications from simulations. 

There remain two questions not answered yet: 1) what really happened during the 

nanowires deformation process2) why caused such phenomena?   

Recently, by using a unique Nanofactory TEM-STM platform, the 

microstructure of individual carbon nanotubes with atomic resolution simultaneously 

with its electrical and mechanical properties has been successful characterized by 
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Huang et al.39-41. The in-situ TEM observation revealed that kink motion is the 

dominant deformation mechanism for superplastic carbon nanotubes in high 

temperature. Such powerful Nanofactory probing systems can fascinate us to get the 

atomic information simultaneously with the mechanical tests on individual nanowire. 

Using Nanofactory TEM-STM/AFM/Indenter platforms, we performed in-situ 

mechanical testing on different nanowires. The goal of our research is to discover the 

relation between the microstructure of nanostructured materials and the 

corresponding mechanical property. 

The following is the organization of this thesis. The theoretical background of 

size effect will be introduced in Chapter 2. Novel phenomena of deformed nanwoires 

and recent advances in mechanical testing of nanowires will also be reviewed in 

detail. 

In Chapter 3, the experimental procedure includes materials preparation methods, 

experimental equipment, device calibration and sample preparation procedures. 

In Chapter 4, the mechanical behavior of silver nanowires has been investigated 

by in-situ HRTEM mechanical experiments. Stacking faults were formed during the 

tensile test of silver nanowires. By careful analysis, we found these stacking faults are 

not induced by partial dislocations movement, but by the Frank loops formation and 

expansion.  

The mechanical behavior of brittle materials in nanoscale is reported in Chapter 

5, Chapter 6 and 7. Silica glass, metallic glass and common salt are chosen as 

covalent bond, metallic bond and ionic bond materials in our research. Surprisingly, 

tensile tests on SiO2 glass nanowire, nanoscale Al90Fe5Ce5 metallic glass and NaCl 
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nanowires show they are not brittle any more but plastic when the size goes to the 

nanometer scale.  

Finally, Chapter 8 will give the summary and conclusions of this thesis. 
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2.0  BACKGROUND AND LITERATURE RIVIEW 

2.1 SIZE SCALE EFFECTS IN PLASTICITY 

In classical mechanics, it is well know there is no size effect on the plasticity of bulk 

materials. The deformation behavior of bulk materials is controlled by dislocation 

gliding, which will affect the strength, hardening mechanisms and fracture et al. 

However, as the materials size decreasing to micron or nanometer scale, the size scale 

effect turns obvious in plasticity.  

2.1.1 Plasticity in Micron Scale 

The wide investigations on the size effect on small volumes with micron size scale 

are initiated by the 1940s work on Cu whiskers by Fisher and Hollomon42,43 and the 

classic experiments of Brenner44. Fisher and Brenner measured stress vs. strain 

relationship used the Cu whiskers with diameter from 1 to 25μm43. They found that as 

decreasing the whisker diameter ed will increase the yield strength dramatically, and 

the maximum strength of the whiskers is approaching to the theoretical strength43. 

Before deformation, these whiskers are almost perfect and only few dislocations 

existed owing to the quite small diameters of them43. Therefore it is quite difficulty 

for first dislocation nucleation, which may why caused the yield stress so high42,43. 

After yielding, there has much more mobile dislocations inside the crystal, so the 

flow stress of the whisker after first yielding will be very low because of the massive 
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dislocations movement, which will be much easier to be operated compared to 

dislocation nucleation43. Thus, it will have a significant drop in stress after yielding. 

To calculate the stress for a dislocation segment to bow out, Blanckenhagen et al. 

gave out the following formula45 

)/ln()2/( 1 bBA βωωπμσ −≈                     (2.1) 

As shown in the above expression, the yield stress and sample size l has the inverse 

relation, which is consistent with experimental observations43. 

To compare with whisker deformation and get new insight on the plasticity in 

micron scale, Uchic and Nix et al.46,47 recently developed a micro-compression pillar 

testing for measurement of yield and flow stress in small scaled materials43. Observed 

by Nix et al., the yield strength significantly increased as the specimen size decreased 

and the plastic flow can go on under the stress even up to several GPa for 300 nm 

diameter pillars. Not like whiskers, although they have relatively high amount 

dislocations before deformation, these nano pillars still display high strength and they 

showed significantly different stress–strain curve comparing with that of whiskers48. 

Multiple elastic load pick-ups occurred after a large plastic strain in these Au pillars 

but no big drop in flow stress like what happened in whiskers48.  

To explain the multiple elastic load pick-ups of the micro pillars, a dislocation 

starvation model has been proposed49,50.. As we know, the image force, F, for a screw 

dislocation in a cylinder of infinite length is51 

22
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where ξ represent the distance of the dislocation measured from the cylinder center 51. 

The imaging force is trying to let the dislocation slip out of the cylinder. Based on 

formula (2.2), the image force on the dislocation will become more significant as the 

cylinder diameter decreased. If the sample size is below some critical size, the mobile 

dislocations can be prematurely extinguished at the close free surfaces by the imaging 

force. In such condition, the dislocations multiplication through double cross slip or 

similar processes will not work; the dislocations will have to prematurely extinguish 

at the free surfaces closest to them. Eventually, the dislocation starvation state will 

reach. After the dislocation annihilated on the free surface, the mobile dislocation 

density turn to zero, so it needs the stress raised significantly again to nucleating fresh 

dislocation until it is over the image force of this dislocation embryo near surface51.  

The dislocation starvation evolution process scenario is presented in the MD 

simulation by Eshelby et al52. Minor et al53 validated such dislocation starvation 

model by in situ compression tests on single-crystal Ni pillar52. In their report, 

mechanical loading can activate and move the dislocations existed in the crystal and 

cause them annihilation at the free surface the Ni pillar, which can turn the pillar 

sample to free of defect52,53. Their observation revealed the dislocations will 

extinguish at the nanopillars surface and cause the sate of mobile dislocation density 

zero, which is consistent with the dislocation starvation model proposed by the earlier 

experiments and simulations52.  
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2.1.2 Plasticity in Nanometer Scale 

2.1.2.1 Curvature effect on the yield asymmetry 

Since the curvature, k, is equal to the reciprocal of the radius, r: 

r
k 1

=                                 (2.3) 

if the sample size decreases into nanometer range, the curvature will increase rapidly 

and thus curvature effect will become significant. For a cylinder with radius r, the 

formula P = f/r can be used to estimate the Laplace pressure54,55, here f is surface 

stress. For example, the calculated Laplace pressure can be as high as 2.8 GPa for a 

gold cylinder with diameter of 1 nm54,55. This large pressure has significant influence 

on the mechanical properties of small scaled samples54. For example, the Young’s 

modulus was found increased in gold nanowire and yielding of the sample is not 

symmetry in tension with that in compression has revealed by Marszalek et al.54,56. 

Using atomic force microscopy, they performed tensile and compression tests on the 

1.1 nm diameter gold wires. They found for such small nanostructure, the tensile 

yield stress is not close to the compressive yield stress but much larger57. It is also 

found that the wires plastic deformed with the quantized steps (0.176 nm for 

elongation and 0.152 nm for compression) 54. It is related with a series of fcc to hcp 

transformation then transfer back fcc phase54.  

The yield asymmetry mechanism of gold nanowires has been studied by Diao et 

al.57. It is found there is obvious larger yield stress in tension than compression for 

very small <100> nanowires57. However, for <111> nanowires, there is no such yield 

asymmetry57. It is well known that the dislocation nucleation is determined that the 



interior resolved shear stress (RSS)57. Since external forces caused the effective 

critical RSS, Ty,  but the critical RSS, yτ̂ , is effected by both the surface stresses and 

external forces, ( yτ̂ －Ty) can used to present the effect from the surface stresses57, 

After detailed comparing yτ̂  and Ty, they found the effect of surface stress in 

compressive yielding will turn much more significant with decreasing nanowire 

diameter57. Once the nanowire diameter is no more than 2.45 nm, even its own 

surface stress can yield the nanowire57. For tensile yielding, the external forces need 

to be above the surface stress induced RSS57. And as nanowires size decreasing, it 

turn more difficult for the external forces to overcome the RSS since the magnitude of 

RSS turns much larger57. Analyzing the uniaxial Schmidt factors, it is found that the 

leading partial slip under compression for <100> nanowires has larger uniaxial 

Schmidt factor than that under tension, so the compression yielding is much easier 

than tension yielding for <100>57. Different acting slip systems in yielding and the 

competition between surface stresses caused the tensile and compressive yield 

asymmetry for <100> nanowires57. For the <111> nanowires, the leading partial 

under tension has larger Schmidt factor than that under compression, but there is 

contributions from the surface stress on the compressive yielding57. These two factors 

are competing and will compensated by each other, which results the tensile yield 

stress of the <111> nanowire close to the compressive yield stress57.  

2.1.2.2 Surface effect on reorientation or phase transformation 

Besides the curvature effect, surface effect will also become significant as sample 

size goes down to a few nanometers. Considering a cubic with side length of d, its 

volume and surface area are d3 and 6d2 respectively, so the surface to volume ratio can 
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be estimated as 6/d. As the size of the sample goes down, the ratio can be extremely 

high. Consequently, the number of surface atoms will be comparable to that of 

volume atoms, making a considerable surface effect on material mechanical or 

physical behavior58. As illustrated in a figure of Ji’s Ph.D. dissertatio58, where a 

surface atom is colored by gray and a bulk atom colored by green. The coordination 

number for bulk atom and the surface atom was found to be 6 and 4 respectively58. 

The different coordination number can lead to the different electron charge 

distribution and therefore different atomic bonding condition between surface and 

bulk atoms58, consequently resulting in the self-contraction on surface15,59 and large 

surface stress can be generated58.  

Crystal reorientation or phase transformation can be initiated by the surface 

stress induced self-contraction in nanowire. For example, the surface stresses induced 

body-centred-tetragonal (bct) structure from fcc structure in Au nanowires has been 

demonstrated by Diao et al.15,16,60. The phase transformation caused by surface stress 

is dependent with several factors including the orientation of crystal at beginning, 

wire size, the shape of cross-sectional at beginning, temperature and boundary 

conditions15,16,60. It was found that intrinsic surface stresses can trigger such phase 

transformation in very small size <100> gold nanowire less than the critical size, 

which is ~2 nm15,16,60. It is predicted that the bulk bct phase is in a local energy 

minimum by theoretical approach, but is elastic instable by tight binding and first 

principle calculations15,16,60. This instable phase can only be stabilized in nanoscaled 

material because large internal stresses on it caused by high surface stress15,16,60. For 

structural reorientation case, a high surface stress made an fcc nanowire with <100> 

direction reorient to a <110> direction by progressive slip on adjacent planes in a 
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<112> system, which changes these planes stacking from ABCABC to ACBACB 

21,22,60-63. This phenomena can also be explained by similar mechanisms60. 

A detailed study on surface-stress-induced phase transformations and structural 

reorientation has been carried out by Haftel and Gall on different fcc metal nanowires 

including Au, Ag, Cu, Ni and Pt nanowires64. It is indicated that only when the 

nanowire diameter below a critical diameter, dcrit , which is normally around 1 nm to 2 

nm, the lattice reorientation or phase transformation can automatically start64. Once 

the diameter is small enough, the compressive surface stress will relax <001> 

nanowires spontaneously to other orientation nanowries64. For Ag, Cu, Ni <001> 

nanowrie, it will change to <110> orientation; but for Au, Pt <001> nanowrie, it will 

change to a bct <001> orientation64. They evaluated the stability of bct, and found the 

bct phase of Pt only stable under shear distortions in both bulk or nanowires form64. 

However, the bct phase is unstable to shear in bulk Au, but it is stabilized in nanowire 

structure because of the surface contribution to the elastic constant for shear64. For Ag, 

the fcc to bct phase transformation is not likely to happen due to the weak surface 

effect64. For Ni and Cu, the shear instability is too large to be conquered in the bulk 

although there are large surface and edge effects, so it is not possible for these 

nanowires transform from fcc to bct64. It is found the reorientation from <001> to 

<110> only exist in Ni, Ag and Cu64. 

2.1.2.3 Surface effect on Young’s modulus 

The surface atoms is not in equilibrium positions as the bulk atoms and they have 

very different interatomic distance from that in interior, Thus it results quite different 

surfaces elastic properties from those of an idealized bulk material65. The ratio 
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between surface area and volume will increase dramatically with the sample size 

shrinking, and so the surface elasticity turn considerable58. For example, the Young’s 

modulus with size of silicon relationship can shown as the following fomula66 

i
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where ωi represents the sample size. From the formula, the Young’s modulus is 

combined with two components: one is from core and another is from the 

contribution from the surface66. The predicted size depended elastic properties have 

been confirmed by experiments on silicon nanowires with sizes < 20 nm67-69. Such 

size-dependence has also be revealed in metallic nanowires by experimental 

observations70,71. 

2.1.3 Surface Dislocation Nucleation and Deformation Map72 

In bulk materials, the classical deformation mechanism is that the dislocations 

increases through double cross slip or multiplication processes by Frank-Read 

sources72,73. As sample size decrease to nanoscale, dislocations initiated by stress 

have less chance to meet each other or multiplicated. These dislocations will easily 

escape from free surfaces making a dislocation starvation state. Another possibility is 

no dislocation pre-existed in the initial nanoscaled sample54, thus in such case the 

plastic deformation is greatly influenced by surface dislocation nucleation72.  

    The defect nucleation can be effected by surface morphology. Zhu et al72 carry out 

the estimation on the 90˚ sharp corner and the middle of side surface, which are two 

very common nucleation sites. They calculated the activation energy for the two sites 

and found the dislocation nucleation is much easy from comer (0.1 eV for corner 

 13 



nucleation but 0.64 eV for side surface nucleation)72. Using MD simulations, they 

clearly demonstrate that the corner is favor site for dislocation nucleation72. The stress 

for surface dislocation nucleation from a perfect nanowire can be expressed by the 

following equation72 

ΩΩ
−

Ω
= ˆlnˆˆ

* 0

ε
σ
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TNvkTkQ BB                         (2.5) 

It indicate from equation (2.5) that the stress for surface dislocation nucleation is 

somehow influenced by the sample size74,75 since N is directly affected by the sample 

geometry72. In micropillars, it shows the yield strength and the size hold the 

Hall-Petch relationship with a negative slope of -0.6 to -0.772,76,77, The scaling 

behavior in pillars is thought to be caused by dislocation interactions and 

multiplications77 since the amount of the mobile dislocation can be very high in such 

large volume72. As sample size decreased to some critical size in nanometer scale, the 

dislocation starvation will start, and surface dislocation nucleation will dominate the 

plastic yielding72. The critical size is expected around tens of nanometers. Surface 

dislocation nucleation transited from dynamic cooperative dislocation activities has 

been shown in some recent experiments on quite small nanostructures50,72,76. 

2.2 NOVEL PHENOMENA OF DEFORMED NANOWIRES REVEALED BY 

ATOMISTIC SIMULATIONS  

Due to the quick progress of nanotechnology and wide applications on nanowries, it 

is quite critical to deeply recognize their deformation behaviors and mechanical 

properties78. Abundant MD simulations had been performed on metallic nanowires. 
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Recently, it is demonstrated that a <110> nanowires can have pseudoelastic behavior 

or even shape memory20-22,61,62,79-82. Such nanoscale phenomenon indicates that metal 

nanowires can be used as materials can be self healed and may be uesed on nano 

devices in the future58. To better employ these shape memory nanowires for future 

application, it needs comprehensive understanding the mechanisms which controlled 

their deformation and mechanical properties. Based on this purpose, numerous MD 

studies were performed on the shape memory nanowires62. Liang et al.20,22,62 showed 

shape memory effects (SME) can exist in some fcc metallic nanowire with size below 

5nm including Au Cu ,Ni because they have high twinnablility62. However, since the 

twinnablility of Al is low, the SME is not possible to exist in this metallic nanowire62.  

Mehrez et al.83 did MD simulations on copper nanowires and found that after 

first yielding, the nanowires will elastic deform again until next yielding and such 

stages repeat several times under uniaxial elongation83. Approaching fracture, the 

migration of atoms will form atomic chain at the neck area83. The atoms in the 

necking area tend to rearrange in closed-packed structures due to the extreme strain83. 

The atomic chains have also been demonstrated can be formed in nickel84-86 and 

gold30,87-89 by MD simulations. A detailed study on how possible the single-atomic 

chains can be formed was conducted by Bahn and Jacobsen in metals including Au, 

Ag, Cu, Ni, Pd and Pt90. Their results show that the atomic chain is easiest formed in 

Au and Pt. It is indicated by density functional theory calculations that the metals 

should have strong atom bonding in low coordinated systems to form atomic chains90. 

Another interesting phenomenon revealed by MD is that high strain rates 

deformation induced amorphousation in Ni and NiCu nanowires 23,24. At low strain 

rate like , Ikeda et al. and Branicio et al. found coherent shear bands 150 −=  ps%.ε&
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for example twins were produced in the crystal and finally necking before failure23,24. 

However at high strain rate like , coherent shear bands or twins will not 

be formed but crystalline to amorphous transformation appeared in the specimens. 

Similar deformation behaviors were observed in tensile copper nanowires. Liang and 

Zhou did the investigation on the size effect and strain rate effect on nanowires 

deformation

15 −=  ps%ε&

91. They found that specimen size changing will trigger a transition of 

deformation mechanism. For nanowires with large size, the plastic deformation was 

dominated by multiple cross-slips. But as the nanowire size decreased to below nm, 

the dominating mechanism will change to slipping along alternating (111) planes91. It 

also reported there is strong effect from strain rate on the transition of the deformation 

mechanism. Three different deformation mechanisms will show up with different 

strain rates: If strain rate is low, deformation is dominated by the lots of slipping 

along some favorable slip planes which are well-defined. As the strain rate goes to 

mediate range, deformation will be dominated by cross-slip. And if strain rate is 

extreme high, deformation will be dominated by amorphization91. 

2.3 MECHANICAL TESTING OF NANOWIRES 
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MD simulations has revealed many new phenomena on nanowires deformation 

behavior such as surface stress-induced lattice reorientation and phase 

transformation15-17, formation of single atomic chains in the necking area18,19, 

pseudoelastic behavior and shape memory effect20-22, and deformation induced 

amorphization23,24. Nanowires have received widespread interest because of their 

unique behaviors and outstanding physical properties including electrical, mechanical, 

thermal and optical. These outstanding properties ensured the nanowire wildly 



applications in nanotechnology10,11, 92,93. Due to the high surface stresses, strong size 

effects is shown on the deformation behavior and mechanism of nanowire32,91,94,95, 

which means that we can not only apply the bulk mechanical properties to that of 

nanostructures96. So for better employing the nanowires on practical application, it is 

very necessary to quantify the mechanical properties directly from these small 

volumes96.  

However, because of their small size and difficult in precisely operating them, it 

is really a challenge to mechanical test nanowires. Testing devices need to be 

miniaturized and have the capability to apply force for quantitatively measuring the 

mechanical properties of nanowires. It also needs subnanometer resolution to detect 

the local deformation. AFM，SEM and TEM have been extensively used for 

characterizing the nanostructures and deformations in nanoscale because they have 

nanometer resolution. So far, there are two advanced experimental techniques in 

mechanical characterization: one is AFM based tests, and another is in-situ electron 

microscopy based tests97. 

2.3.1 Bending Test  

Three-point bending test and lateral force microscopy (LFM) are two main types of 

bending tests developed by AFM testing techniques. Individual nanowires are 

normally suspended on a hole or trench in the three-point bending test, The nanowre 

can be clamped by several methods98 such as directly using the self-adhesion force of 

the wire on the substrate99, depositing some metal to wielding the nanowire and 

substrate by electron beam (EBID process)7,100 or using epoxy glue101. In three-point 

bending test on single nanowire98, the suspended nanowire will be deformed by an 
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AFM cantilever tip in the middle. Based on the three-point beam bending theory102, 

the elastic constant E can be evaluated using the following equation96 

         
dI
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=                               (2.6) 

Nanoscale three-point bending tests has been successfully carried out by Ni et al. 

on single crystalline GaN nanowires and amorphous SiO2 nanowires100,103. The 

calculated elastic modulus for single crystalline GaN nanowires is 43.9 ± 2.2 GPa, 

and 76.6±7.2 GPa for amorphous SiO2 nanowires100,103. It was found the size don’t 

have significant influence on the elastic modulus for both nanowires. And these two 

kinds of nanowires usually brittle failure and didn’t exhibit the obvious plastic 

deformation in bending. The elastic modulus of the Ag nanowires were also 

successfully investigated104 by nanoscale three-point bending tests. The calculated 

elastic modules for Ag nanowires with diameter ranging from 45.6 to 60.4 nm are 

ranged from 15.4 to 24.6 GPa104.  

Wong et al.105 was first researchers to use the LFM method to get the elastic 

modulus of nanostruces such as multiwalled carbon nanotubes and  SiC nanorods96. 

Used such method, Song et al.106 did the measurement on ZnO nanowires which 

vertically aligned on substrate by AFM scanning in contact mode. The normal force 

will have to be kept constant between sample surface and the AFM tip in the contact 

mode96, thus the tip will automatically adjust its height to keep the local contacting 

force constant during scaning106. Recording the tip’s height changing, the surface 

morphology can be determined106. The image of position topography and the lateral 

 

 18 



force will give the direct information of the bending distance and the bending force 106. 

The Young’s modulus can be determined using the following formula96:  

I
KLE
3

3

=                               (2.7) 

The obtained Young’s modulus are 29 ± 8 GPa for 45 nm ZnO nanowires106. The 

advantages of this technique is that it will not devastating or maneuvering the sample, 

and it can carry out systematically scanning on all the nanowires in the scanning 

area106.  

Using similar method, Wu et al. and Heidelberg et al.7,27 did fully measurement 

on the mechanical properties of nanowires including yield strength, elastic modulus, 

ductility and fracture behavior96. The nanowires are suspended over a trench and 

mechanically clamped on a SiO2 substrate7. They did lateral force AFM on two 

metallic nanowires: fivefold twinned Ag nanowires107 and Au nanowires7, and found 

the sample size doesn’t have strong influence on the Young’s modulus for both 

nanowires7. For Ag nanowires, the average modulus is 102 ± 23 GPa, much higher than 

reported bulk silver value 83 GPa7. However, the average modulus of Au nanowires is 

70 ± 11 GPa, which is no much different with reported values 78 GPa for bulk gold7. It 

is verified that the yield strength for Au nanowires is strongly dependent with the 

nanowire diameter. The yield strength of Au nanowire is increased as size decreasing 

and the largest strengths measured can reach almost 100 times of bulk Au yield 

strength7. The dislocation is still operatied in the Au nanowires with such small 

diameters of 40 nm since the stress-strain curve of Au nanowire still has the 

strain-hardening characteristics 7. In contrast, the fivefold twinned Ag nanowires have 

no considerable plasticity but super elastic deformed until brittle fracture107. However, 
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the Ag nanowires can turn more ductile after thermal annealing, which eliminates some 

twinned boundaries107. This implies that tailoring the nanowires microstructure can 

control their mechanical properties. 

2.3.2 Tensile Test 

In tensile tests, a single nanowire will be clamped over the gap of a straining stage96. 

The nanowire will be pulled continuously until failure as the two ends of the stage 

depart away96. During the testing, the applied force and the elongation of the 

nanowire can be recorded. And then it can be used to determin the nanowire’s 

mechanical properties including elastic modulus, ductility and strength96.  

Ding et al108 successfully using EBID method clamped an individual boron (B) 

nanowire between two AFM tips and stretched it in a SEM. The applied tensile force 

was increased until the nanowire broken108. Analyzing the SEM images, the 

deflection of the cantilevers as well the elongation of the nanowire can be achieved108. 

Based on solid mechanics, the tensile force and tensile strain can be calculated108. The 

Young's modulus as well fracture strength can be acquired by analyzing the 

stress-strain curve. They tested nine B nanowires and got the averaging Young's 

modulus ~320 GPa and the fracture strength 2 to 8 GPa, which is no much different 

with the values got from resonance test results108. 
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An in-situ method in TEM was introduced by Han et al. recently on bending test 

or tensile test of nanowires in TEM69,109-111. In this method, first they will use special 

way to induce designed cracks of the celloidin/ carbon film on a Cu grid69. Then the 

nanowires were dispensed at random on the TEM grid and infrequently some will 

suspended on the designed cracks of the film69. After good nanowire found trenched 



on these cracks, the electron beam will be controlled to irradiate the crack and cause 

the film shrinking and thus stretching the nanowires axially69. This method can be 

applied to any kinds of TEM and no special TEM attachments are needed109. The 

other advantage is that it can tilt the nanowire to quite large degree, which can ensure 

the individual nanowires to ideal orientation for observation during the testing109. 

Using such method, single-crystalline Si nanowires was stretched at 

room-temperature and large strain plasticity was discoverd69. The plasticity of Si 

nanowire is much higher than bulk Si plasticity69. A lot of dislocations emerged in the 

Si nanowire at the beginning, and then they disordered the crystalline structures and 

induced the amorphous structure formation in the long necking area before the 

nanowire broken69. Further, a extensor with two thermal bimetallic strips designed by 

Han’s group and they used this homemade tensile stage axial strained individual 

silicon carbide (SiC) nanowires in SEM112. The thermal bimetallic strips was made of 

one material with large thermal expansion coefficient and one with low thermal 

expansion coefficient, both of which were mounted on a heating stage with the 

opposite position112. By heating up the stage, the bimetallic strips will be bent and the 

nanowire suspended between them will be stretched112. Using this homemade tensile 

device, they discovered low temperature super plasticity with elongation more than 

200% in the beta-SiC [111] nanowires of single crystal structure112. In the SiC 

nanowires, there has 3C segments microstructure and it was suggested the observed 

superplasticity are related to such special structure where the dislocation nucleated, 

propagated and finally induced the amorphization of the local area112. In contrast, the 

segments with the highly defected structural only elastic deformed because of no slip 

systems working in such segments for dislocation movement112. 
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To do the tensile testing on nanowires with high resolution stress and strain, Zhu 

and Espinosa et al developed a nanomechanical test system97,109,113,114. The in-situ 

testing device includes a force sensor with nano-Newton force measurement capability. 

It also equipped an actuator activated by thermal, which can measure the 

displacement109. Using this special in-situ straining device in SEM or TEM, it can 

perform the real time observation on the deformation and failure process with 

simultaneously force measurement115. The tensile testing on ZnO nanowires and Pd 

nanowires has been successfully conducted using this device113,114. The Young’s 

modulus as well the fracture strength can be achieved by analyzing the achieved 

stress-strain curves109. Zhu and Espinosa et al obtained the Young’s modulus as 30 GPa 

for a ZnO nanowire and 99.4±6.6 GPa for a Pd nanowire109. For the fracture strength of 

ZnO nanowire, it was measured as 3.5 GPa109. For the fracture strength of the Pd 

nanowire it was measured as 1.5 GPa109. These results are comparable to the values 

reported by other groups using different methods97. For both nanowire, they didn’t find 

any plasticity but pure elasticity and the strength is much higher than that of bulk 

forms97. Their results indicate the strength of nanowire can be increased dramatically 

and approach to the theoretical strength as the size decreased97. 

2.3.3 Resonance Test 
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Poncharal et al.116 were first ones to use the resonance method to do the measurement 

on the Young’s modulus of carbon nanotubes in TEM. Some other researchers also 

applied similar method under an optical microscope117 or in a scanning electron 

microscope (SEM)108,109,118-120. In this method, an electron-static excitation source is 

accurately moved to very close to the individual nanowire by a stage driven by 

pizeo108,109. Then between the tip and the nanowire, it will apply an AC voltage under 
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a DC bias or no bias to test the nanostructure109. Mechanical resonance will be 

stimulated when the frequency of the AC voltage tuned until it is equivalent to the 

nanowire’s natural resonance frequency109. The mechanical resonance of a 

cantilevered nanowire can be excited by applying periodic force induced by 

mechanical device or an electrical field109. In mechanical excitation case, mechanical 

vibration of piezoelectric bender was induced by an applied AC voltage and drove the 

mechanical resonance of the attached nanowire109. In electrical excitation case, an AC 

voltage will be applied between the TEM grid and the AFM cantilever and the 

frequency of the AC voltage will be tuned109. 

For example, it has used this method to measure the Young’s modulus of ZnO120. 

The Young’s modulus was found increasing significantly to the value considerably 

higher than the bulk ZnO value as sample size decreasing below 120 nm,121. The 

experiments carried by Yu et al.120 has tried to determine what condition will cause 

the forced resonance or parametric resonance but the result is not very clear118. Then 

Chen et al did further study and discovered that the applied force direction strongly 

determined whether the parametric resonance can occur121. An axially force will be 

induced if the nanowire and the countering tip is in a straight line, and the resonance 

will be dominated by parametric excitation121. However, if the applied force and the 

nanowire axis formed the transverse relation, the resonance will be dominated by 

forced excitation121. 

 



2.4 MOTIVATION AND OBJECTIVE 

“Seeing is believing” is a worldwide accepted old saying. From the results of the MD 

simulations, many novel phenomena induced by deformation have been proposed in 

nanowires. As reviewed in the section on mechanical testing of nanowires, most 

experiments just measured the size effect on the mechanical properties of nanowires 

for example Young's modulus, but did not show the structure evolution of these 

nanowires. The mechanical properties of nanowire will also greatly affected by other 

factors such as structural configuration, defects, strain rate and temperature. What 

really happened inside the nanowires during deformation is still not very clear. The 

existing measurement techniques have some drawbacks. For example, 

nanoindentation122 and force spectroscopy56 can do force measurement with 

displacement but cannot capture the specimen deformation process. Optical 

microscopy117 and AFM7,100,107 can capture the deformation and failure in local area, 

but the resolution is not high enough for studying the mechanical properties of 

nanowires. The techniques developed by Han et al69,110,111 can capture the 

deformation process with high resolution but no force output, and it requires frequent 

switching the electron beam between taking images and heating the celloidin/carbon 

thin film. When beam is used to heat the film, the local deformation events of 

nanowire have no chance to be observed. There still have a gap between the 

microstructure and the corresponding mechanical properties of nanowires. Absence of 

the direct experiments showing the structure evolution with the deformation of 

nanowires obstructs us to supplementary understands the deformation mechanism of 

these small volumes. It is very important for us to validate the MD simulation results 

by observation the process of the formation of initial defect, propagation, and 
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ultimately induced failure. To accomplish this objective, it is very essential to 

perform the quantitative in-situ study115 on the deformation behavior and mechanical 

properties of these small volumes with high resolution observation. 

It is also well know even a small surface flaw can trigger the catastrophic failure 

of nanowires, thus affect obtaining accurate information on the deformation 

mechanism of such small volumes. Therefore, good sample, i.e., one that is with a 

really smooth surface, free of contamination is essential for the quantitative 

experiments. 

The present study will use state of the art experimental tools to accomplish the 

specific objective of in-situ observing the deformation and fracture mechanisms on 

really smooth surface nanowires. 
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3.0  EXPERIMENTAL PROCEDURES 

3.1 MATERIALS AND METHODS 

In this thesis, nanowires with different bonding were used to study the mechanical 

behavior of materials in a nanometer scale. Silver, silica, and sodium chloride as 

traditional metallic bond, covalent bond and ionic bond materials are chosen in our 

research. Al90Fe5Ce5 metallic glass is also one interest for us. The following will 

describe the detailed preparation method of these materials and specimens for 

mechanical test in TEM. 

3.1.1 Silver Nanowires 

The silver nanowires are supplied from Murphy’s group123. It was synthesized in 

water by directly nanoparticle growth in the absence of a surfactant or polymer123. 

The average diameter of these nanowires is 35±6 nm and the lengths varying from 

66 nm to 12 microns123. These wires are satisfactory for our tensile testing since first, 

the small diameters enhancing the electron beam go through the nanowire and thus 

good lattice image can be more easily captured in HRTEM. Second, the broad length 

distribution will let us have more choice to pick out the suitable nanowire. 

The nanowires are suspended on a 250 μm gold rod for tensile test in TEM 

(Figure 3.1a). To support the nanowires, first, a sharp wedge is made at one end of the 
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gold rod by using tweezers with cutting jaws (Figure 3.1b). Then a CircuitWork 

Conductive Epoxy is used to mechanical bond the silver nanowires. The CircuitWork 

Conductive Epoxy is a two part, silver epoxy. Part A is epoxy and part B is the 

hardener. We need to mix equal amounts of Part A and Part B by weight or volume. 

After mixing thoroughly for 2 minutes and the silver paint becomes ropy, we use a 

steel needle to stick a little silver paint at the tip and smear it along the wedge of the 

gold rod. When the paste turns almost dry, we use an aspirating needle to suck 1 ml 

silver nanowires solution and drop the droplet from the top of the wedge. As hoped, 

some silver nanowires will stick on the gold wedge by the silver paint and will be 

suspended for our mechanical test in TEM (Figure 3.1d). 

 

Figure 3.1: (a) A 250 μm diameter gold rod. (b) A sharp wedge made at one end of the 

god rod. (c) Top view of the sharp wedge. (d) Schematic of the Ag nanowires sticking 

on the gold rod. 
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3.1.2 Silica Nanowires 

3.1.2.1 Drawing of micrometer wire by self-modulated taper-drawing process 

The SiO2 are supplied from Tong’s group124. All tensile samples were prepared in a 

two-step process: self-modulated taper-drawing and fibre-drawing under TEM. 

Highly-uniform SiO2 nanowires with diameters range from 40 to 150 nm were 

fabricated using a self-modulated taper-drawing process124. Figure 3.2 is the 

schematic diagram illustrating such method. The as-prepared SiO2 nanowires have 

uniform diameters and lengths over a hundred millimeter. Figure 3.3a is a scanning 

electron microscopy (SEM) image of a SiO2 nanowire. 

 

Figure 3.2: A schematic diagram illustrating a self-modulated taper-drawing process of 

ultrathin silica nanowires124. 

3.1.2.2 Fabrication of a dog-bone sample from a nanowire in a TEM 

We prepared dog-bone tensile samples in a FEI Tecnai F30 TEM. The operation 

voltage is 300 KV and the resolution of the high resolution TEM (HRTEM) is about 

0.2 nm. For making a dog-bone sample, we started with a nanowire with a few 

hundred nanometers in length. A manipulator was applied to control a STM tip with 



silver paint to pick up 5 microns to 20 microns long section from a long silica 

nanowire under an optical microscope. Then the section was inserted into the sample 

adapter side of a TEM-STM holder, and another STM tip with bulk silica was fixed in 

the movement part of the same platform. All operations in the TEM were performed 

carefully in a low dose mode (5×10-4 A/cm2 to 2.5×10-3 A/cm2) to minimize beam 

exposure of the sample. The procedure is as follows. After the STM tip with bulk 

silica touched the suspended end of the micron long wire, we focused the e-beam (1 

A/cm2) to the contacting area to sinter them together, while the center of the nanowire 

was not exposed to the beam. Then the focused beam was moved away to a blank 

area and expanded to a very low intensity (~5×10-4 A/cm2 to 2.5×10-3 A/cm2) for 

observation. The next step was to use image shift to move the desired cutting point to 

the center of the fluorescence screen. Usually we cut off a 200 nm to 500 nm wire 

segment, which was loaded into a TEM-AFM platform and approached to the AFM 

tip with some silica for welding. After the short nanowire touched the silica on the 

AFM tip, we focused the beam to weld them together. Once the nanowire was 

connected between the STM tip and the AFM tip, the dog-bone samples were 

prepared under TEM by straining the nanowire with electron beam illumination 

(~2.5×10-3 A/cm2). Figure 3.3b shows an as-prepared dog-bone sample with a 

diameter of 28.2 nm. Fig. 3.3c is the HRTEM image of the white-framed region of 

Figure 3.3b. And Fig. 3.3d is the HRTEM image of the broken part of the dog-bone 

sample. The two HRTEM images clearly show that no crystallization occurs in the 

sample before and after fracture. The composition was detected by the electron 

energy dispersive spectra (EDS). High angle annular dark field (HAADF) images 

were employed to figure out what the shape it is for the cross-section. Figure 3.3e is 

an HAADF image of the broken part of a 28.2 nm diameter dog-bone sample. We did 
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the EDS at position 1 and the line scanning at position 2. The EDS spectrum Figure 

3.3f shows that it consists of only silicon and oxygen, and a quantitative analysis 

reveals that the ratio of O to Si is close to 1.96. The ratio of oxygen being a little less 

than the stoichiometric ratio is within the EDS error range. Figure 3.3g and Figure 

3.3h are line scanning results. Judged from the EDS intensity profiles, the dog-bone 

sample has a circular cross section. 

 

Figure 3.3: Structure and composition characterizations of the drawn dog-bone silica 

nano ligaments. (a) A SEM image of a 49.6 nm diameter nanowire. (b) A TEM image 

of a 28.2 nm diameter dog-bone sample. (c) was taken from the region of (b) marked by 

white frame. (d) An HRTEM image of the broken part at the AFM tip side. (e) An 

HAADF image of the broken part. (f) EDS analysis at position 1 of (e). (g) and (h) are 

the EDX intensity profiles along a line marked by a “2” in e by selecting the EDS 

energy window of oxygen and silicon, respectively.  
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3.1.3 Al90Fe5Ce5 Metallic Glass 

Al90Fe5Ce5 ribbons were prepared by the melt-spinning a bulk on a fast spinning 

roller under a partial Ar atmosphere. The ribbons of Al90Fe5Ce5 metallic glass used in 

our research are 1.5 mm in width and 25 μm in thickness. Recently, focused ion beam 

(FIB) technique was widely applied in preparing samples especially nanoscale 

samples. However, FIB is considered to influence the material structure to some 

extent, particularly for the sample in nanoscale125-127. Therefore, strictly speaking, the 

results based on FIB are not the real properties of materials128,129. To exclude any 

damages induced artifact by ion-beam, here we used the twin-jet polishing method to 

replace FIB technique for preparing TEM samples. Amorphous Al90Fe5Ce5 thin foils 

for in situ tensile-loading experiments were polished by twin-jet method in a 

methanol and nitric acid (3:1) mixture solution at 243K. After electric-chemical 

polishing, several nanohills was found at the TEM sample edge(Fig. 3.4a,b). There 

was no contamination found in the prepared sample (Fig. 3.4c). 

3.1.4 NaCl 

NaCl crystals with size 10×10×10mm were purchased from TED PELLA, INC. Small 

pieces of NaCl crystals were cleved along a (100) plane of a NaCl single crystal using 

a razor blade and stuck to a Au rod with diameter of 250 μm by the CircuitWork 

Conductive Epoxy. After the epoxy dried, the specimen was put into the sample 

adapter side of the nanofactory TEM-STM holder for in-situ testing.  
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Figure 3.4: Twin-jet polished sample (a) TEM image of the nanohill at a twin-jet 

polished Al90Fe5Ce5 sample edge. (b) Al90Fe5Ce5 nanohill HRTEM image showing 

fully amorphous structure. (c) EDS analysis of the nanohill.  

3.2 EXPERIMENTAL EQUIPMENT AND METHODS 

3.2.1 Nanofactory Holders  

In our research, three Nanofactory Holders were used to investigate the mechanical 

behavior of nanowires. They are TEM-STM platform, TEM-AFM platform, 

TEM-Indenter platform. Figure 3.5 is the schematic of a TEM-STM platform. There 

are two parts in the head of the holder. The left part is a movement controlling part 

and the right part is the sample holder. The movement is driven by a Piezo tube with a 

sapphire ball on the top. By the six metal legs, a copper octopus like hat with a STM 

probe can clamp on the sapphire ball. The sample is usually stuck on a 250 μm gold 

rod, which can be fastened in the metal pole. By controlling the Piezo tube, the STM 
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Figure 3.5: Schematic of a Nanofactory TEM-STM platform (courtesy of Jianyu 

Huang). (a) Side view of a TEM-STM holder. (b) The details of the head of the holder, 

which is taken from the red frame region of (a). (c) A low magnification TEM image 

shows a STM probe touching with a carbon nanotube on a carbon fiber. (d) HRTEM 

image shows how the STM tip contact with a carbon nanotube, which is taken from the 

blue frame region of (c). (e) Electric test of the carbon nanotube. 

probe can move along the mutual-orthogonal axes X, Y and Z in TEM. Figure 3.5c 

shows a STM probe touching with a carbon nanotube on a carbon fiber. Once a STM 

probe touched the sample, we can use different method to weld the sample with the 

STM probe. As shown in Figure 3.5d, a carbon nanotube is welded with the STM tip 

by amorphous carbon. After welding, we can do mechanical test on sample by pulling, 

drawing and shearing. Also, we can do the electric test on samples by adding bias 

(Figure 3.5e).   

TEM-AFM platform is a very powerful tool. It can record the force and 

displacement when we do the mechanical test on individual nanowires. Figure 3.6 is  
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Figure 3.6: Schematic of a Nanofactory TEM-AFM platform. (a) Side view of a 

TEM-AFM holder. (b) The details of the head of the holder, which is taken from the 

red frame region of (a). (c) A low magnification TEM image shows a silica nanowire 

connected between a STM tip and an AFM tip. (d) High magnification TEM image 

shows how the silica nanowire is welded between the STM tip and the AFM tip. (e) A 

force-displacement curve of a SiO2 nanowire. (f) Schematic showing the force and 

displacement can also be achieved from the TEM images. 

the schematic of a Nanofactory TEM-AFM platform. There is a little difference with 

TEM-STM platform, the sample is installed in the copper hat at the left part, not right 

part, which is replaced by an AFM cantilever on an integrate circuit chip. Sensors 

mounting on cantilever and read-out of piezoresistive type are integrated on the 

chip130. By the relationship with force and voltage change, the force applied on the 

cantilever can be direct read out. The force output range from -3000 nN to 3000 nN. 

For TEM-SPM platform, we control the piezo to move the STM probe to touch the 

sample. But for TEM-AFM, we control the piezo to move the sample to touch the 



AFM. Figure 3.6d shows a silica nanowire attached on a STM tip touching a SiC 

AFM tip. Once a sample touched the AFM tip, we can weld it with the AFM tip and 

do tensile, compression and bending test. Force can be direct output by the sensor. 

Figure 3.6e is a force-displacement curve of a SiO2 nanowire showing the elastic 

deformation. The stress and strain can be derived from the force-displacement curve 

by classic solid mechanics. The force and displacement can also be achieved from the 

TEM images, as shown in Figure 3.6f. By recording the force and displacement with 

the real-time videos or TEM images, we can directly relate the structure evolution 

with the mechanical response of individual nanowires.  

 35 

A TEM-Indenter platform is used to do the nanoindentation test and 

compression testing on nanopillars or nanowires. Figure 3.7 is the schematic of a 

Nanofactory TEM-Indenter platform. Same as the TEM-AFM platform, the sample is 

stuck on a 250 μm diameter gold wire and installed in the copper hat at left part and 

moved by controlling the piezo tube. The right part is replaced with a diamond 

indenter, which is integrated on a integrate circuit chip, as shown in Figure 3.7b. The 

force range is much larger then that of the TEM-AFM platform. The maximum force 

output is from -2000 μN to 2000 μN. The diamond indenters supplied by Nanofactory 

have a Berkovich or Cone geometry with a radius of curvature of a few microns, 

which is not easy to just interact with individual nanopillar or nanowire without 

touching other nanopillars or nanowires. To enable more accurate positioning, a flat 

diamond indenter with diameter of 500 nm was fabricated by focused ion beam (FIB). 

Figure 3.7c shows the FIBed indenter moved close to a diamond nanopillar. The max 

load or max depth for a compression test can be set in the software Nanofactory 

Instrument 3 (NF3). Once the indenter reaches the max load or max depth, it stops 

advancing and retracts back to the original position, and a loading-unloading testing 
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is completed. The distance vs. time and force vs. time curves of a nanopillar sample 

will automatically be recorded by NF3, as shown in Fig.3.7d and 3.7e.  

 

Figure 3.7: Schematic of a Nanofactory TEM-Indenter platform. (a) Side view of a 

TEM-Indenter holder. (b) The holder head details, which is taken from the red frame 

region of (a). (c) A low magnification TEM image shows a diamond indenter 

approaching a diamond pillar sample. (d) and (e) are the distance vs. time and force vs. 

time curves of a nanopillar sample. 

3.2.2 Device Calibration 

The NFC3 is used to control the movement of piezo and record the output such as 

force with displacement or current with bias. Figure 3.8 is the interface of NFC3. 

Figure 3.9 is the interface of the Movement Controller, which can coarse control and 

fine control the movement of STM probe or sample along three directions: 
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back-forward, up-down and left-right. The fine movement has a resolution of 0.001 

nm. Before the mechanical testing, we should do the following calibration. 

 

Figure 3.8: Interface of the software NFC3. 

First we should do the calibration on the fine movement in the Movement 

Controller with the STM probe movement in TEM. Since our research will focus on 

tensile test to observe the mechanical behavior of nanowire, we just do calibration in 

the back-forward direction. The STM probe movement is controlled by the movement 

of the Piezo tube, which is driven by the voltage. We should set the sensitivity of 

back-forward, up-download and left-right, which are under the menu of electronic 

hardware, as shown in Fig. 3.10. The 6 nm/V in B/F sensitivity at Figure 3.10 means 

every 6 nm change in the fine movement in the movement controller can output 1V to  
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Figure 3.9: Interface of the Movement Controller. 

piezo tube and drive it move in B/F direction. So if the value turns big, the actually 

movement of piezo for every 1 nm change in the fine movement in the movement 

controller will turn small. Here, we use 200 nm in fine movement to correct the value 

for B/F sensitivity. Figure 3.11a and Figure 3.11b are the TEM images of actually 

STM probe positions at the beginning and end for the 200 nm fine movement in the 

movement controller. By analyzing the TEM images, the actually STM probe 

movement is 186 nm. The B/F sensitivity should be set 5.6 calculated by  

nm
nmSenstivityFB
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6
/

= , 

.  
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Figure 3.10: Electronic hardware setting under Advanced Configuration. 

 

Figure 3.11: TEM images of actually STM probe positions (a) at the beginning and (b) 

end for the 200 nm fine movement in the movement controller. 
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Second, we should carry out the calibration procedure on the electrical 

sensitivity constant (C-value) of the AFM tips, which is used to sense the resistance 

change as the AFM tip deflected and convert the voltage change to the force applied. 

Typically every AFM sensor has individual force constant (k-value) and it has been 

supplied by NanofactoryTM Instrument AB Company. Table 3.1 summarized the k 

values of the AFM sensors used in our research.  

The following method can be used for evaluation the spring constant: 

)3/(3 EIFLD =∆                         (3.1) 

where E=160 GPa and the cross-section I is given by I= bh3/12. Hook’s theory gives 

the spring constant: DFk ∆= / . Finally  

)4/( 33 LEbhk =                          (3.2) 

where h, b, L represent the cantilever thickness, width and length. According to the 

equation 3.2, we can calculate out the k-value for each AFM sensor if we know the 

dimensions of the cantilever. 

The C constant has to be defined using calibration in TEM. As we can recall the 

AFM calibration uses the electric constant C to convert the voltage change ∆V to the 

applied force F according to the formula: 

CVkF /∆=                           (3.3) 

where k is the AFM cantilever’s spring constant. To do the calibration of the 

electric constant C, we should first go to Program settings under Advanced 
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Table 3.1: Specification of the AFM sensor 

BOX POS. SENSOR L/W/T (µm) K VALUE 

A1 W3D5#12 300/70/3.5 4.4 

A3 W3D5#16 300/70/3.5 4.4 

A5 W3D5#40 300/50/3.5 4.4 

A7 W3D5#30 300/50/3.5 3.2 

A9 W3D5#36 300/50/3.5 3.2 

    D1 W4D3#12 300/70/3.6 4.8 

D3 W4D3#12 300/70/3.6 4.8 

D5 W4D3#12 300/70/3.6 4.8 

D7 W4D3#12 300/50/2.7 1.5 

D9 W4D3#12 300/50/2.7 1.5 

 
Column 1:  Sensor position in box. 

Column 2:  Sensor specific name. 

Column 3:  Dimensions of the cantilever (Length/Width/Thickness). 

configuration and set k=1 and C=1, as shown in Figure 3.12. Then we use a hard 

surface (here we use a tungsten probe since it is very rigid) to push the AFM 

cantilever by 200-300 nm. After loading, the NF3 will generate a force-displacement 

curve. Since here we set k=1 and C=1, so from formula (3.3), F=∆V. The F-D curve 

we got is just the voltage-displacement curve. The one to one relation between the 

force and voltage gives: 

lVlFC ∆∆=∆∆= //  (mV/nm)               (3.4) 
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where F and l represent the force and the distance. From the slope of the 

voltage-displacement curve, we can get the electrical constant C for the TEM-AFM 

platform. We carried out four calibration tests to get the C constant. Figure 3.13 is the 

force-displacement curves of the four calibration tests on C constant and table 3.2 

summarized the C values of each test. We got C =13.4 mV/nm for our device. Then 

we need to go to Program settings under Advanced configuration and set the real 

values of k=4.8 N/m (the AFM sensor we used is D1 in Table 3.1) and C=13.4 

mV/nm. At this point our calibrations are completed and now the AFM sensor will 

measure the correct force in nN resolution. 

 

Figure 3.12: Program setting under Advanced Configuration. 



 

Figure 3.13: Force-displacement curves of the four calibration tests on C-value. 

 

Table 3.2: Summary of measured electric constant C values from four calibration 

tests 

TESTING NUMBER DISTANCE (nm) FORCE (nN) C VALUE (mV/nm) 

T1 200 2670 13.35 

T2 200 2696 13.48 

T3 200 2681 13.41 

T4 200 2675 13.38 
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4.0  IN-SITU TEM OBSERVATION ON THE MECHANICAL 

BEHAVIOR OF SILVER NANOWIRES 

4.1 INTRODUCTION 

Nanowires are widely used as building blocks for nano devices and integrated 

systems, which is considered to impact various areas of nanotechnology. Due to their 

small length and huge surface area, nanowires show unique mechanical properties 

comparing with their bulk counterpart1.  

As the sample size become smaller, the ratio of free surface area comparing to 

the volume will turn quite large in nanowires. Generally, the free surface will act as 

the source for both dislocation nucleation and sink. The competition between the 

dislocation splitting distance, r, and the nanowire diameter, d, will control the 

dislocation activities. For nanowire with diameter larger than r, slip deformation will 

dominate the deformation because full dislocations can nucleate from the surface and 

propagate through the nanowire. However, if the nanowire diameter is close to or 

lesser than r, only partial dislocations can be nucleated and the dislocation activities 

will transit to partial slip from conventional full dislocation slip. The nanowire will be 

strain harden because the dislocation propagation restrained by stacking faults. If the 

nanowire size shrink further, dislocations will glide out of the nanowire before 

multiplication, thus “dislocation starvation” will happen49,50. This raises the question 

of how a nanowire deforms, with dislocations or without dislocations. 
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Here we will perform in-situ study on the mechanical behavior of silver. 

Deformation induced lots of stacking faults inside a small diameter silver nanowire. 

By analyzing the atomic-scale structural evolution, we found these staking faults are 

not dislocation induced but by the Frank loop formation and expansion.  

4.2 EXPERIMENTAL APPROACH 

Tensile-loading experiments were carried inside FEI Tencai F30 TEM with a 

nanofactory TEM-STM platform, which allows mechanical loading on the nanowires 

simultaneously with the TEM imaging to show the deformation behavior. The force 

loading on a nanowire is applied by the piezo tube on the movement controlling part 

of the holder, as shown in Figure 3.7b. Since the tensile samples are prepared by 

dropping 1 ml silver nanowries solution on the wedge of a 250 μm gold rod (the 

detailed sample preparation procedure can be found in Chapter 3.1.1), many 

nanowires will lie on the wedge. By checking the sample along the wedge in TEM, 

we can find some nanowires suspended in air, as shown in Figure 4.1a. If the  

suspended nanowire is too short, it will be very difficult for the STM probe to touch 

them. But if the nanowire is too long, it will be very difficult to take the image of the 

whole nanowire under high magnification and find the deformation area during 

tensile testing. Once we find a good nanowire, we can approach the tungsten (W) 

probe with a tungsten carbonyl film, slowly, to the suspending end of the nanowire 

(Figure 4.1b). By fine movement of the probe along the up/down direction, the height 

of the tungsten carbonyl film can be adjusted until it touches the nanowire (Figure 

4.1c). Then we will use a high density electron beam to focus on them to make them 

bond (Figure 4.1d). After the silver nanowire side contacts the STM probe, it will be 
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loaded by the piezo manipulator at a speed 0.01 nm/s to 1 nm/s until fracture. Figure 

4.1e shows the experimental setup. 

 

Figure 4.1: Mounted silver nanowire inside TEM. (a) A suspended silver nanowire. (b) 

Approaching a W probe with a tungsten carbonyl film to this suspended nanowire. (c) 

The nanowire contacted with the film. (d) The nanowire and the film are welded 

together. (e) Experimental setup. A silver nanowire is side-contacted by a tungsten 

STM probe, which is further attached to a piezomanipulator. Another end of the silver 

nanowire is glued to a gold wire by silver epoxy. 



4.3 EXPERIMENTAL RESULTS  

4.3.1 Microstructure of the Silver Nanowires 

There are three kinds of microstructures in our silver nanowires sample: one is fcc 

structure, one is hcp structure and another is bycrystalline structure (Fig.4.2). From 

the fast Fourier transformed (FFT) images in Figure 4.2b and Figure 4.2d, a (111) 

twin exists in the fcc silver nanowire and a )1011( twin exist in the hcp silver nanowire. 

The bycrystalline nanowire is composed of two phases: the low part is fcc and the 

upper part is hcp (Fig. 4.2e). The inserts in Figure 4.2e are the corresponding FFT of 

the black frame region and the white frame region, respectively. From the FFT 

patterns, it clearly shows the two different structures. Figure 4.2f is the corresponding 

diffraction pattern of the whole bycrystalline nanowire. It is easy to find that the 

pattern is combined with the two FFT patterns in the inserts in Figure 4.2e. By 

analyzing the FFT patterns, we found the hcp phase in our silver nanowire is not the 

traditional 2H structure with stacking sequence of ABABABABABAB, but a 4H 

structure with stacking sequence of ABCBABCBABCB. This new hcp structure in 

silver was first detected in mineral deposits by Russian scientist Novgorodova131, and 

later, this unusual structure was also found in silver nanoparticles132 and epitaxially 

grown Ag films133. Recently, Liu et al.134 reported that this 4H structure can also exist 

in silver nanowire (4H-AgNW). These 4H-AgNW can coexist with a fcc Ag 

nanowire in electrochemically deposited Ag nanowires. 
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Figure 4.2: Microstructure of the silver nanowires. (a) HRTEM image of an fcc 

nanowire with twinning. (b) FFT of Figure a. The zone axis is ]110[ , twin boundary is 

(111) plane. (c) HRTEM image of an hcp nanowire with twinning. (d) FFT of Figure 

c. The zone axis is ]1132[ , twin boundary is )1011(  plane. (e) HRTEM image of a 

bycrystalline nanowire. The inserts are the corresponding FFT of the area framed 

with the black box and white box. (f) FFT of Figure e. The zone axis is ]110[ FCC 

// ]3112[ 4H.  
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4.3.2 Experimental Observations 

Once the sample was mounted, the NW was gradually pulled using the fine 

movement of the piezo tube until failure. We performed real time observations on the 

deformation process of a silver nanonwire in TEM with atomic resolution. The 

structure evolution of the nanowire with mechanical loading was recorded. The 

HRTEM micrographs shown in Figure 4.3 are still frames extracted from an in-situ 

tensile test video. These atomic resolution images show clearly the evolution of 

structure of the nanowire. At the straining beginning stage, the silver nanowire 

diameter is 33.2 nm, as shown in Fig 4.3a. Then, we use very low speed (about ~ 0.1 

nm/s) to pull this nanowire. The estimated strain rate was about ~ 6.5 ×10−4 s−1. At 

first, the nanowire was homogenously deformed and elongated uniformly along the 

wire axis upon pulling (Figure 4.3b). At 270 s, the center of the nanowire start local 

necking (white arrow in Fig. 4.3c indicates the start position of necking) and 

nanowire diameter shrink to 30.4 nm. Since the deformation is homogenous before 

necking, we can assume the volume of the nanowire keeps constant before necking, 

as indicated in Figure 4.1, 

tVV =0                             (4.1) 

 

 

Where V0: the original volume of the nanowire, Vt: the volume of the nanowire at 

time t. From equation 4.1, we can get 

tt ldld 2
0

2
0 ππ =                          (4.2) 
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where d0 is nanowire original diameter and l0 is the nanowire original length, dt and lt 

are nanowire diameter and length the at time t. Engineering strain can be calculate by 

the following equation: 
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Using equation 4-3, we can estimate that the engineering strain is 
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This is an extra large strain for silver since the maximum elastic and plastic strain for 

silver in bulk form or whisker was as large as 4% and 2.5%135,136.  

After the necking initiated, the silver nanowire will deform locally at the necking 

area. Since the tensile direction is not parallel with the wire axis, it will add some 

shear on the nanowire. The diameter of the nanowire in the necking area will further 

decrease as the pulling is continued. The stress concentrated at the necking area will 

increase. Once the stress is over the threshold, dislocation will nucleate from the 

surface step, slide to the grain boundary, and multiplicate. Figure 4.3d shows the 

dislocation even can cross slip. The dislocation density increased further and 

accumulated in the necking area. As a result, a dislocation wall formed perpendicular 

to the grain boundary of the fcc and hcp phase. Further pulling will change the 

dislocation wall to a grain boundary and separate the silver nanowire into two parts. 

The white arrow in Figure 4.3d indicates a notch formed on the upper side. The notch 

is start point for the detaching two parts, which will separate along the formed grain 

boundary. At the final stage of the detaching process, a small nanobridge of 5 nm will   
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Figure 4.3: HRTEM observation of the deformation process of the 33.2 nm silver 

nanowire. (a) t=0 s, tensile test beginning; (b) t=200 s, the nanowire was uniformly 

elongated along the wire axis and its diameter decreases to 31.2 nm; (c) t=270 s, 

necking initiated at the center of the nanowire; (d) t=895 s, dislocations multiply in the 

necking area and form a grain boundary (white arrow indicates a notch); (e) t=960 s, 5 

nm nanobridge formed between the two detaching parts; (f) After failure.  
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be formed (Fig. 4.3e). It reminds us at the nanowire formation by the mechanically 

controllable break junction (MCBJ) method137. Interestingly, the nanobridge was not 

necked down but uniformly elongated a little and finally broken. Figure 4.3f shows 

the morphology of the fracture nanowire. From crystallographic analysis, the two 

parts still have the two phases of fcc and hcp. But unlike the original nanowire, as the 

distance closes to the broken point, the ratio between hcp phase and fcc phase is 

increasing. 

Checking the HRTEM images of the nanowire before necking in Figure 4.3, we 

found the contrast in the center area of the fcc part changed a lot and later the necking 

initiated from this area. It seems something happened in the center area. Figure 4.4a 

and Figure 4.4c are the silver nanowire morphologies when tensile test start and just 

before necking starting, respectively. Figure 4.4b and Figure 4.4d are the 

corresponding FFT of Figure 4.4a and Figure 4.4c, respectively. Comparing with FFT 

pattern of Figure 4.4a, no obvious new diffraction spots appear in the FFT of Figure 

4.4d. This indicates that there seems to be no new crystal structure appearing in the 

silver nanowire during the tensile test. There are still the two phases of fcc and hcp. 

But as we can notice in the Figure 4.4d, all diffraction spots are elongated along the 

[111] direction, which is the wire axis. This means many stacking faults initiated 

along the [111] direction. To understand further what happened inside the fcc part, we 

performed inverse Fast Fourier-filtered transformation (IFFT) on the dynamic 

HRTEM micrographs. Figure 4.5 shows a series of IFFT images of the silver 

nanowrie from beginning to the state of necking starting. Figure 4.5a, c and d is the 

IFFT image corresponding to Figure 4.5a, b and c, respectively. From these IFFT 

images, the fcc and hcp phase can be easily indentified in the sample and clearly 
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Figure 4.4: (a) The silver nanowire at beginning of the tensile test. (b) FFT of Figure 

a. (c) The silver nanowire just before necking. (d) FFT of Figure c. 

is delineated by the red line. Surprisingly, as the nanowire elongated, the fcc phase 

area started shrinking (Figure 4.5b). It should note here that the fcc part is not 

decreased from the side contacting area, but from the surface and boundary area in the 

center and keeps going to the middle. Such shrinking induced a “necking” like 

morphology of the fcc part. The fcc part keep decreasing as the nanowire kept pulling 

and finally it was divided into two, as shown in Figure 4.5c. After further pulling, the 

two fcc parts kept separating and decreasing (Figure 4.5d).  

It is well known that the stacking faults formation normally by consecutive 

Shockley partial dislocations gliding138-140. A question is raised: is the deformation  
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Figure 4.5: Dynamic IFFT images of structure evolution of the silver nanowire (red 

lines delineate the boundary of the fcc phase). (a) IFFT of Figure 4.3a. t=0 s, tensile 

test beginning; (b) t=150 s, fcc part “necked” down in the center; (c) IFFT image of 

Figure 4.3 b. t=200 s, fcc part was divided into two; (d) IFFT image of Figure 4.3 c. 

t=270 s, the two fcc parts kept separating and decreasing. 

mechanism of the stacking faults formation here the same as the above one? To answer 

this question, we carried out the detailed analysis of the HRTEM images to understand 

what is going on during the transformation in our silver nanowire. Figure 4.6a, c and e 

show the morphologies of the silver nanowire at t=200 s to t=202 s during the tensile 

test. Figure 4.6b, d and f are the enlarged HRTEM images of the area framed with the 

black box in Figure 4.6a, c and e, respectively. From these images, we didn’t find the 

partial dislocation glide on the (111) plane. But interestingly, we found vacancies 

formed inside the silver nanowire. As show in Figure 4.6b, vacancies were produced on  
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Figure 4.6: Frank loops formation and expansion. (a) Morphology of the silver 

nanowire at t=200 s. (b) Enlarged HRTEM image of the black box in Figure a. (c) 

Morphology of the silver nanowire at t=201 s. (d) Enlarged HRTEM image of the black 

box in Figure c. (e) Morphology of the silver nanowire at t=202 s. (f) Enlarged HRTEM 

image of the black box in Figure e. 

the plane 2 and made the plane 2 to be two extra half planes, which are delineated by 

the green lines in images. Please note that two vacancy Frank loops already existed 

on the plane 1 and plane 3 at this moment. After the nanowire pulled a second, the 

vacancy cluster on plane 2 grew up along the (111) plane and formed a vacancy 

Frank loop with the length of 1.2 nm, as shown in Figure 4.6d. Once a frank loop 

formed inside the fcc Ag, a stacking fault (local hcp structure) is induced. The 

vacancy Frank loops on the plane 1 and plane 3 also expanded along the (111) plane. 

As the details show the Frank expansion in Figure 4.7, we can see the Frank loop 1 

and Frank loop 3 expanded much faster than the Frank loop 2. We think that the 

surface and boundary may have the effect on the speed of the Frank loops close to 
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them. As the nanowire is loaded further, these vacancy Frank loops will become 

larger and larger. By the formation and expansion of the vacancy Frank loops, lots of 

stacking faults formed inside the silver nanowire and changed the local stacking 

sequence. 

 

Figure 4.7: Details of the Frank loops expansion. (a) A Frank loop formed on plane 2. 

Another two Frank loops already existed on plane 1 and 3. (b) Frank loop 2 expanded 

one atomic distance. Frank loop 1 and Frank loop 3 also expanded along the tensile 

direction. (c) Frank loop 2 expanded one more atomic distance. Frank loop 1 and frank 

loop 3 expanded much fast than Frank loop 2. 

4.4 DISCUSSION 

Under cold working, a metastable phase will try to change to a stable one141. For buck 

silver, fcc is the stable phase because it has lower internal energy than other phases if 

we don’t consider the effect from surface or interface. However, the surface effect 

will become more significant if the nanowire diameter shrink to less than a few tens 



of nanometers, and in that case it should not be neglected. Recently, it was reported 

that silver nanoparticles132 and silver nanowires134 having a new structure 4H, which 

is different with bulk silver microstructure and indicates that the hcp structure will be 

a stable phase for silver in nanometer scale. To determine which phase will be more 

stable in nanoscale Ag, Liu et al.134 did the calculation on the total energy difference 

between a 4H- and fcc Ag nanowire. The 4H-AgNW is demonstrated to be more 

energetically favorable if the nanowrie diameter smaller than 50 nm and it will have 

lowest energy when D* = 25.5 nm134. So it means that the fcc phase will be a 

metastable phase if the silver nanowire diameter decreasing to a small scale134. And if 

external energy affording on the metastable fcc phase, it is going to transform to the 

stable hcp phase. Under the tensile test, the force applied on the silver nanowire gave 

the energy to the fcc phase and assisted the transformation from fcc to hcp, which is 

more stable phase. The deformation-induced stacking faults (local hcp phase) in our 

tensile Ag nanowire is energy favored.  

To explain the deformation induced stacking faults, various models had been 

proposed. All these models are based on dislocation mechanisms142,143. In these 

models, the stacking faults are formed by partial dislocations gliding on alternating 

close packed plane138. The Burgers vector for a Shockley partials is 

HCPFCCb ><=><= 00113/11126/1 138. And to provide accommodation for a small 

alteration of the close packed planes interplanar spacing, there should exist a 

perpendicular Burgers vector to the glide plane144. However, in our case, the stacking 

fault formation is not based on dislocation slip. We can rule out the dislocation 

mechanism from several aspects. First, if the extra-half planes in Figure 4.6 are 

relevant to Shockley partial dislocations gliding along the interfaces (111), the 

relevant extra-half planes should not be parallel to the interface. Second, if the 
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extra-half planes are relevant to the dislocations gliding, the slip planes should not be 

parallel to the interface plane. However, as we indicated in Figure 4.6b, d and f, the 

position of extra-half planes continuously moved parallel to the interface, this 

hypothesis may also be unfavorable. Moreover, at the starting of our tensile test, we 

strained the nanowire almost near the longitudinal direction. The Schmid factor for 

those interfacial dislocations is almost zero because the interface is parallel to the 

direction of straining. According to the Schmid law, Shockley partial dislocations’ 

gliding is unfavorable in this case. 

The stacking faults here are induced by Frank loops formation and expansion. It 

is well known that Frank loops can be produced by severe plastic deformation. As the 

size decreases, the nanowire can endure higher stress than bulk materials. Silver 

nanowire can sustain very high yield stress over 7 GPa107. So for the 33 nm silver 

nanowire in the present work, the stress can quickly build up upon loading. The high 

stress inside the nanowire can nucleate point defects (either vacancies or 

self-interstitial atoms). Since the vacancy formation energy is lower than for 

interstitial formation energy, the vacancies will be much easier to form145. As the 

deformation goes on, the vacancy density will increase. The vacancies keep lowering 

the free energy of the system by migrating, coalescing, and form microscopic 

clusters145-147. The energy of the system can be further lowering when a vacancy 

cluster absorbs more vacancies and grows to a vacancy Frank loop145. In general, it 

will be energetically unfavorable for creation of Frank loops throughout the matrix, 

but due to kinetics of point defect migration, it can be achievable at interfaces. The 

system always aims to reduce point defects to lower the total energy, which is the 

driving force for point defect move to the sink sites, i.e., interfaces, and extinction 

there.  
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4.5 CONCLUSIONS 

The mechanical behavior of a 33 nm silver nanowire has been in-situ explored in 

HRTEM under low local strain rate. The plastic deformation of the silver nanowire is 

mainly attributed to the stacking faults formation, which is not like the plasticity of 

most crystalline materials dominated by dislocation nucleation and propagation. By 

in-situ HRTEM observation, we found the stacking faults are not induced by 

Shockley partial dislocations movement, but by the frank loops formation and 

expansion. Vacancies nucleated inside the silver nanowire, migrated and coalesced to 

form microscopic clusters. Further, a vacancy Frank loop can be formed from the 

vacancy cluster by absorbing more vacancies. The density of Frank loops increased 

during the deformation and induced more stacking faults, which changes the local 

stacking sequence, resulting a “necking” like morphology for the fcc part.  
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5.0  IN-SITU MECHANICAL TESTING OF SILICA NANOWIRES 

5.1 INTRODUCTION 

Owing to their small length scale and large surface atom number, small-scale 

structures exhibit unique mechanical properties comparing to their bulk form. To 

understand the deformation mechanism of small-scale structures, MD simulations 

have been employed to analyze their mechanical behaviour and revealed many novel 

phenomena such as single atomic chains formation during tensile testing18,19, surface 

stress-induced phase transformation and lattice reorientation15-17, shape memory and 

pseudoelastic behavior20-22, and deformation induced amorphization23,24. The 

theoretical analyses and numerical simulations show there are strong size effects on 

the mechanical response and deformation mechanism of nanowire due to the high 

surface stresses32,91,94,95. The mechanical properties of nanostructures are implied to 

be different with that of their bulk forms. 

Recently, a considerable effort has been put on the nanomechanical 

characterization of nanowires since the importance of evaluateing the applications of 

nanowires in nanotechnology field like nanoresonators10,11, nanocantilever117,148, 

piezoelectric nanogenerators92,93, and NEMS. Recently, the tensile testing on Si and 

SiC nanowire show unusual mechanical properties can be shown in brittle materials 

with the reduction in dimensionality69,110,112. It is surprising that these nanowrie can 

sustain unusually large plasticity near room temperature69,110,112. However, these 
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nanowires were under electron beam irradiation during the deformation process. And 

it is showed that electron beam irradiation can help the plasticity149. So there raised a 

question: is the ductility from beam effect or size effect?   

In this report, we performed in situ tensile measurement on silica glass 

nanowires in TEM. The study directly shows the continuous beam irradiation can 

totally change the mechanical behaviour of silica glass from brittle to ductile. And we 

show the glass nanowires larger than 20 nm can turn back brittle when beam is shut 

down. However, once the silica nanowire smaller than 20 nm, the e-beam damage 

will permanently trigger the brittle to ductile transition.  

5.2 EXPERIMENTAL APPROACH 

The tensile tests were carried out at room temperature inside a TEM, using a 

Nanofactory TEM-AFM platform (see schematics in Figure 5.2a), which allows for 

accurate force measurements (see Section 3.1.2 for a detailed instruction of the 

sample preparation and experimental set-up). A displacement control is provided by a 

piezo tube and the forces are measured from the deflection of the AFM tip. 

Engineering stresses are calculated from the forces using the wire diameter obtained 

from TEM. All the silica glass nanowires used in this study were directly drawn from 

large silica glass via a self-modulated taper-drawing process124 (Figure 3.3 and Figure 

3.4a). Short sections of 200 nm to 500 nm were cut from the silica glass nanowires 

and mounted between the tungsten probe and the AFM tip (Figure 3.4b). Dog-bone 

shaped samples with diameters in the range from 1 nm to 40 nm were prepared inside 

the TEM by a method similar to the hot-drawn or flame brushing technique150 (see 
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Section 3.1.2.2). The tensile experiments were performed under beam and no beam 

conditions. For no beam experiments, only images at start and end were captured. The 

sample length before (l0) and after fracture (lf) were determined from the TEM 

pictures and used to calculate the plastic elongation at fracture, which was calculated 

according to 00 /)( lll fpm −=ε . After nanowire broken, the failure regions were 

further checked by HRTEM to determine whether the specimens crystallized during 

deformation (Figure 3.4c, d). 

5.3 EXPERIMENTAL RESULTS 

5.3.1 Tensile tests on silica nanowire under beam irradiation  

Amorphous SiO2 fibres with diameters over 50 nm exhibit brittle fracture during 

tensile deformation100,151. To check whether beam irradiation will affect the 

mechanical behavior of silica glass nanowier, we first performed continuous e-beam 

irradiation on silica glass nanowire with diameter over 100nm. Figure 5.1 shows an 

example of a 128.8 nm silica glass nanowire under in situ tensile elongation. The 

strain rate is 2.7×10-4 s-1 and the nanowire original length is 518 nm (Fig. 5.1a). Since 

the contacting area of the STM probe side is smaller than the middle area, the 

nanowire will undergo local thinning from this area upon loading (Figure 5.1b). After 

nanowire is pulled 69 minutes, the diameter of the thinning area reducing from 128.8 

nm to 88 nm made the nanowires to a 337 nm diameter dog-bond-shaped sample 

(Figure 5.1c), which is ideal for the tensile test. Interestingly, this local thinning did  
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Figure 5.1: In situ tensile elongation of a 128.8 nm silica glass nanowire at strain rate of 

2.7×10-4 s-1. (a) t=0 min, tensile test beginning. (b) t=22 min, local thinning happened 

at the place near the contacting area of the STM probe side. (c) t=69 min, a 

dog-bond-shaped sample; (d) t=212 min, the dog-bond-shaped sample uniformly 

elongated along the wire axis; (e) t=246 min, the nanowire just before failure; (f) 

Failure of the nanowire. (g) and (h) are HRTEM images of the white framed regions in 

(f). (i) FFT of (h). 

not induce the catastrophic failure of the sample, but uniform elongation of the 

nanowire along the tensile axis, which is very similar with deformation process of the 

superplastic ceramic and cabon nanotubes. It is incredible since nearly all the silicon 

and oxygen atoms diffuse and rearrange in the nanowires, which indicates the 

elongation process is quite depend on the bond-switching process. As the total 

elongation reached 384%, the piezo tube was up to its limitation on back-forward 

movement (Figure 5.1d). So we have to use the left-right mode to move the sample. 

Surprisingly, though the shear was put on the nanowire, it did not fail instantly and 

still uniformly elongated along its axis. Figure 5.1e shows the nanowire just before 

failure, the total tensile stain reached 673.8 % (If we just consider the local thinning 



area, it experienced an elongation of 738.3 %). One more pulse will cause the sample 

finally to fail at the center of the dog-bond-shaped sample, but no obvious retraction 

of the two broken parts. This indicates the silica nanowire can sustain extraordinary 

plastic deformation with just a little elastic strain happened. The fractured nanowire 

was checked by HRTEM (Figure 5.1g and 5.1h). The HRTEM images and FFT 

image (Figure 5.1i) clearly demonstrate no deformation-induced crystallization in the 

uniform deformed amorphous silica nanowire.  

5.3.2 Evaluation of possible irradiation damage 

Electron beam during the sample preparation and imaging capturing process will cause the 

knock-on displacement and help the plastic deformation of silica nano ligements. The 

displacement energies for Si is 15~20 eV152,153, which correspond to ~200 keV for the 

threshold incident energy calculated by the following formula154: 

)7.465/()10/02.1( 6
00max AEEE +=                 (5.1) 

Our experiments were performed with 300 kV TEM accelerating voltage, therefore, 

displacement of Si occurred under beam irradiation. To determine whether or not the 

beam irradiation influences the composition, electron energy loss spectroscopy 

(EELS) was performed.  

We checked the composition change of a nano ligament drawn under TEM from 

56 nm (Figure 5.2a and b) to 24.6 nm (Figure 5.2c). The beam intensity and duration 

were ~2.5×10-3 A/cm2 and 1 min similar to those used during dog-bone sample 

preparation. The EELS results of Si-L2,3 edge and O-K edge in Figure 5.2d and e 

showed the composition and structure changes for the sample before and after 
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irradiation. The intensity of Si-L2,3 edge decreasing after sample preparation and 

e-beam irradiation indicated that Si was displaced during e-beam irradiation and 

knocked out of the sample. The lack of a peak at ~531 eV indicates there is no 

detectable molecular oxygen (O2) generated during irradiation155. However, it should 

note that although e-beam irradiation didn’t transform the Si-O bonds into O2, the 

electron beam still damage the Si-O bonds and produce the Si dangling bond and 

non-bridging oxygen.  

 

Figure 5.2: EELS on a 56 nm diameter nano ligament and an as-prepared 24.6 nm 

diameter dog-bone sample (the dotted circles marked the areas where we took the 

EELS). (a) and (b) show the nano ligament before and after 1 minute irradiation; (c) is 

an as-prepared dog-bone sample with a diameter of 24.6 nm for EELS test. (d) and (e) 

are the corresponding EELS spectra of Si-L2,3 edge and O-K edge. The EELS peak 

energy is: a-106.0, b-112.9, c-128.8, d-155.2, e-539.0 eV. 



5.3.3 Tensile tests on silica nanowire under no beam condition  

The continuous e-beam irradiation offered an unceasing source to produce Si 

dangling bond and non-bridging oxygen, which facilitated the bond switching process 

and helped the plastic flow of silica. Recently, irradiation experiment on glass show 

the e-beam damage of silica glass can recover ~90% after blanking beam for more 

than 2 minutes155. Here raise a question: is the ~10% left beam damage still large 

enough to change the mechanical behaviour of small scale silica glass?  

To check whether the unrecovered beam damage will affect the deformation 

behavior of silica glass, we performed the tensile testing on 72 SiO2 nanowires with 

diameters smaller than 50 nm after blanking beam more than 2 minutes. Figure 5.3 are 

examples of tensile tests on two nanowires with diameters of 33.9 and 5.3 nm. The 

sample with diameter of 33.9 nm shows clearly brittle failure (Figure 5.3b (before 

deformation) and Figure 5.3c (after fracture). Its stress vs. strain curve in Figure 5.3f 

shows only elastic deformation before brittle failure with a fracture stress of 2.2 GPa. 

The flat fracture surfaces (Figure 5.3c) orthogonal to the tensile axis also indicates no 

plastic deformation for the large sample. The smaller nanowire with diameter of 5.3 nm 

on the other hand shows clear ductile characteristics as exemplified by the plastic 

region in Figure 5.1f. The nanowire has a large elastic deformation of 5.4%, followed 

by a substantial plastic flow with flow stress of ~4.7 GPa. After the plastic flow, 

necking and ductile fracture were identified by TEM image as shown in Figure 5.3e in 

comparison with the sample before deformation (Figure 5.3d). The plastic elongation 

calculated from the TEM image (Figure 5.3e) is 8%. These results clear show that the 

unrecovered beam damage will not affect the mechanical behavior of silica nanowire if 
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its diameter is big enough. However, it really triggered the brittle to ductile transition 

when size of silica nanowire decreasing below some critical size. 

The summary of the maximum plastic strains of the nanowires with different 

diameters is shown in Fig. 5.4. The nanowires with diameter smaller than 20 nm show  

 

Figure 5.3: Tensile elongations of a 33.9 nm diameter NW at a strain rate of 3.3×10-2 s-1 

and a 5.3 nm diameter NW at a strain rate of 1.1×10-2 s-1. (a) Schematics of the 

experimental set-up. Images of the 33.9 nm NW b before loading and c after fracture. A 

5.3 nm diameter NW (d) before loading and (e) after fracture with plastic elongation of 

8%. (f) Strain-stress curves of the two NWs shown in b-e (the red line is a linear fit to 

the elastic slope of the 5.3 nm diameter NW ). g and h show that necking occurred in a 

4.0 nm diameter NW at a strain rate of 5.2×10-4 s-1. 



significant plastic deformation before failure, where shear deformation and necking 

during fracture have been identified in the TEM images (Figure 5.3e and 5.3h) taken 

after fracture, while those with diameter larger than 20 nm show brittleness with a flat 

fracture surface (Figure 5.3c). Figure 5.3g and 5.3h show necking occurred in a 4.0 nm 

diameter NW. The strain rate is 5.2×10-4 s-1. Pronounced plastic elongations up to 18% 

have been found for the wires with diameters around 5 nm (Figure 5.4). As the diameter 

goes down to ~1 nm, the fracture stress approaches 13.2 GPa (Figure 5.5), which is 

result from high strain rate for visco-plastic silica, although the strength is close to the 

theoretical one of silica (16 GPa) under elastic-brittle mode156. These results 

demonstrated the deformation mode of e-beam damaged silica can change from 

completely elastic to elastic-plastic once the diameter of the silica nanowire is below a 

critical value at a set strain rate. According to the reference line for 1% elongation 

(magenta dotted line, Figure 5.4), for a strain rate of 10-1 s-1, the critical diameter for the 

beam damages to trigger the onset of a ductile failure mode is about 5 nm. For a strain 

rate of 10-4 s-1, it is about 18 nm. It might lead to ductility in even thicker nanowires by 

further decreasing the strain rate. Since the beam damage intensity is proportional 

inversed with r2, as the sample size decreasing, the beam damage intensity will increase 

quickly, or in another word the dangling bonds density will become larger. The higher 

density dangling bonds will be much easier to facilitate the plastic flow of the beam 

damaged silica nanowire and enhanced the ductility. This induced the strong size effect 

on the ductility of the e-beam damaged silica nanowires. Shown from Figure 5.4, the 

silica nanowires ductility will peak up as the size decreasing. However, we should keep 

in mind that such size effect is actually some kind result from the beam effect.  
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Figure 5.4: Summary of the maximum plastic strains of nanowires with different 

diameters (magenta dot line indicates 1% elongation). 

The ductility is strain rate dependent: lower strain rates will lead to larger 

elongations (Figure 5.3). The strain rate depended ductility indicate the mechanical 

response of the silica nanowires is time dependent. For a viscous material, the stress 

and strain rate are related through the following expression under uniaxial tension157,   

mKεσ &=                          (5.2) 

Here K is a constant, and m denotes the strain rate hardening exponents. Normally, 

the strain rate hardening exponents ( εσ &ln/ln ∂∂= ) is between 0.3~0.8158. So from 

the formula (5.2), the flow stress will increase as the strain rate increased for a 

viscous material. To validate this, we perform the calculation on the fracture stress of 

the 72 silica nanowires. Table 5.1 summarized the fracture stress and plastic 

elongation of the silica nano ligaments in room temperature tensile experiments. The 
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engineering fracture stress was calculated by 4∆F/πd0
2

, where ∆F refers to the force at 

the fracture point and d0 is the initial diameter of the nano ligament. The plastic 

elongation was calculated by (Lf - L0)/L0, where L0 and Lf are the initial and final (i.e. 

determined after fracture) gauge length of the nano ligament. Figure 5.5 clearly shows 

that the fracture stress is strain rate dependent if sample size below the critical size 

where beam damage takes effect. The dependence of the fracture stresses on strain 

rates shows a little scatter, but with a tendency of lower fracture stresses for slower 

strain rates159. The strain rate dependent fracture stresses clear shown beam damage 

will change the silica nanowire from elastic material to viscous material if the 

diameter of nanowire is less than the critical diameter. These results keep consistent 

with the conclusion from formula 5.1. Figure 5.5 shows fracture stress is increased as 

NW diameter decreases below 20 nm, where large visco-plasticity occurred due to 

e-beam effect. However, it is not clear why the fracture stress can reach such high 

(2.5-13 GPa) under with visco-plastic deformation mode. 

 

Figure 5.5: Summary of the fracture stresses of nanowires with different diameters.  
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The strain rate dependent stress also be observed in other amorphous systems 

such as metallic glasses160,161 and ceramics158. The strain rate dependent plasticity 

indicated that the plastic deformation of the small diameter nanowire is a time 

dependent event. As revealed by MD simulation, the plastic deformation of such 

small nanowire is induced by a bond-switching process, which delayed formation of 

voids with critical size and subsequently postpones the eventual fracture (See 

Appendix for simulation details and results). The bond-switching process is a time 

dependent process. If the strain rate increased, the extent of completion of the 

bond-switching in the silica nanowire will be decreased since there will be enough 

time for some danging bonds to connect with the non-bridged oxygen, thus the 

elongation decreased.  

Table 5.1: Summary of fracture stress and plastic elongation of SiO2 nano ligaments 

Sample 
Initial diameter/Initial 

gauge length 
(nm/nm) 

d0/L0 

Elongation   
(%) 

(Lf-L0)/L0 

Fracture 
stress 
(GPa) 

4∆F/πd0
2 

Strain rate 
(s-1) 

NL1-1 1.6/16.5 3.4 10.0 6.1×10-2 
NL1-2 3.8/21.8 3.4 9.2 1.2×10-1 
NL1-3 4.5/50.3 1.6 8.5 1.7×10-1 
NL1-4 5.7/15.8 1.3 5.8 1.6×10-1 
NL 1-5 8.4/38.7 0.5 4.9 5.0×10-1 
NL 1-6 10.8/95.1 0.9 4.5 1.1×10-1 
NL 1-7 13.9/75.1 0.5 2.1 1.3×10-1 
NL 1-8 17.2/93.1 0.6 2.0 1.1×10-1 
NL 1-9 18.2/142.4 0.6 4.3 7.0×10-2 
NL 1-10 18.6/99.7 0.0 1.9 1.2×10-1 
NL 1-11 18.7/193 0.0 3.7 6.0×10-2 
NL 1-12 22/118.9 0.0 4.8 8.4×10-2 
NL 1-13 27/160.3 0.0 2.9 6.2×10-2 
NL 1-14 33.5/151.9 0.0 1.7 6.6×10-2 
NL 1-15 35.4/168.6 0.0 1.6 5.9×10-2 

 



Table 5.1 (continued). 

NL 1-16 40/192 0.0 1.3 5.2×10-2

NL 1-17 45/344.3 0.0 1.6 5.8×10-2

NL 2-1 1.1/11.2 － 13.2 1.8×10-2

NL 2-2 2.8/21.2 14.6 7.2 4.7×10-2

NL 2-3 3.7/24.2 13.1 4.8 9.4×10-3

NL 2-4 4.7/17.8 10.5 6.3 4.2×10-2

NL 2-5 5.3/43.8 8.2 4.2 1.1×10-2

NL 2-6 6.3/30.4 8.6 4.9 6.9×10-3

NL 2-7 6. 6/24.9 6.2 2.3 2.3×10-2

NL 2-8 7.1/28.0 4.6 9.1 1.8×10-2

NL 2-9 8.1/27.1 3.9 3.5 2.1×10-2

NL 2-10 9.9/48.1 1.3 4.2 2.8×10-2

NL 2-11 10.8/223.2 1.0 4.6 1.1×10-2

NL 2-12 10.8/207.7 0.7 6.0 4.8×10-2

NL 2-13 11/281.7 1.0 5.2 4.3×10-2

NL 2-14 11.6/67.0 1.4 7.4 1.6×10-2

NL 2-15 12.5/54.0 1.2 2.4 4.3×10-2

NL 2-16 14.5/20.0 1.1 3.1 8.1×10-3

NL 2-17 15.9/204.0 0.6 5.4 4.9×10-2

NL 2-18 16.8/237.7 0.8 5.3 4.2×10-2

NL 2-19 17.7/255.4 0.6 4.8 3.9×10-2

NL 2-20 19.1/218.2 0.0 3.9 4.6×10-2

NL 2-21 19.6/365.8 0.0 3.1 2.7×10-2

NL 2-22 21.5/208.8 0.0 4.9 4.8×10-2

NL 2-23 22.4/226.7 0.0 4.2 4.4×10-2

NL 2-24 33.9/355.0 0.0 2.2 3.3×10-2

NL 2-25 40/300.9 0.0 1.9 3.3×10-2

NL 2-26 44.8/236.6 0.0 0.8 4.2×10-2

NL 2-27 47.6/206.8 0.0 1.0 4.8×10-2

NL 3-1 2.8/49.2 － 7.5 2.0×10-3

NL 3-2 3.9/16.3 11.8 4.7 1.8×10-3

NL 3-3 3.9/16.2 16.7 N/A 6.2×10-4

NL 3-4 5.6/24.9 9.05 4.3 4.0×10-3

NL 3-5 5.6/29.8 14.5 4.1 7.9×10-4

NL 3-6 8.5/43.6 5.4 4.4 3.6×10-3

NL 3-7 8.6/39.8 3.8 4.4 2.4×10-3

NL 3-8 12.1/19.3 4.5 － 5.2×10-4

NL 3-9 13.3/155.7 2.5 3.3 6.4×10-4

NL 3-10 19.8/76.5 0.0 1.2 1.3×10-3

NL 3-11 35.1/394.1 0.0 2.5 2.5×10-3

NL 4-1 4.4/20.8 15.1 － 4.8×10-4

NL 4-2 4.6/29.9 16.5 － 3.3×10-4

NL 4-3 4.7/29.5 17.6 － 2.8×10-4

NL 4-4 5.0/50.6 14.1 － 2.0×10-4

NL 4-5 5.1/22.3 15.1 5.3 4.5×10-4

NL 4-6 5.5/36.2 15.5 － 2.8×10-4
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Table 5.1 (continued). 

NL 4-7 5.8/22.8 11.5 4.6 4.4×10-4 
NL 4-8 5.9/28.6 11.3 2.9 3.5×10-4 
NL 4-9 6.0/55.6 13.3 － 1.8×10-4 
NL 4-10 6.0/29.5 11.7 － 3.4×10-4 
NL 4-11 7.0/28.6 11.1 2.3 3.5×10-4 
NL 4-12 7.2/27.3 9.4 － 3.7×10-4 
NL 4-13 7.8/43.3 8.0 － 2.4×10-4 
NL 4-14 8.1/36.7 7.8 1.7 2.7×10-4 
NL 4-15 9.4/31.4 6.4 － 3.2×10-4 
NL 4-16 15.1/53.5 2.3 － 1.9×10-4 
NL 4-17 15.3/65.6 1.6 2.4 1.5×10-4 
NL 4-18 16.6/42.0 1.6 － 2.4×10-4 
NL 4-19 21.1/40.4 0.0 － 2.5×10-4 

－: Image not clear; Force not recorded  

5.3.4 Experiment of comparision - Mechanical testing on diamond nanopillars  

As revealed by the above section, we found if we keep the beam on during the whole 

straining process, the beam damage can change deformation of silica nanowire from 

brittle to ductile and even superplastic deformation. However, after blanking beam, 

the unrecovered beam damage will not change the deformation behavior of big 

diameter SiO2 nano ligaments. But for the silica nanowrie with really small diameter, 

the e-beam during the sample preparation will inevitably produced more dangling 

bonds inside the nano ligaments and is enough to trigger the brittle to ductile 

transition. The beam induced atom displacement and the produced additional 

dangling bonds helped the plastic deformation of the silica nanowires with small 

diameter, although it has no effect on the deformation behavior of SiO2 nanowire with 

big diameter (> 20 nm). To further check the beam effect, we chose another covalent 

bonding material: diamond, which is the strongest material in nature. The 

compression tests were carried out under room temperature inside a transmission   



 

Figure 5.6: Compression tests on diamond nanopillars. (a) and (b) show a 87 nm 

diameter nanopillar before and after testing with beam current of 2×10-3 A/cm2. (c) and 

(d) show a 88 nm diameter nanopillar before and after testing with beam current of 

1.3×10-2 A/cm2. (e) and (f) show a 66 nm diameter nanopillar before and after testing 

with beam current of 1.6×10-1 A/cm2. 
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electron microscope (TEM), using a Nanofactory TEM-indenter platform (Fig. 3.9). 

We carried out the testing on different diameters nanopillars under different beam 

conditions to check the size effect and beam effect. Three examples of the 

compression tests on the diamond pillars are shown in Fig. 5.6. Upon compression, 

the 87 nm diameter diamond nanopillar under 2×10-3 A/cm2 e-beam irradiation was 

elastically strained and facture. There is no any significant deformation and it quickly 

fractured with the crack nearly vertical to the applied tensile stress direction, 

producing a relatively flat surface (Fig. 5.6b). Under such condition, the diamond is 

totally brittle. To check if increasing beam density will change the deformation mode 

of diamond pillar change, we carried out the second set of compression test. In Fig. 

5.6c, the beam current was increased to 1.3×10-2 A/cm2 to irradiate an 88 nm 

diameter nanopillar. Same with the result shown in Fig. 5.6a and 5.6b, the nanopillar 

still showed brittle fracture. We increased the beam current and tried the testing on an 

even smaller pillar. As shown in Fig. 5.6e, a 66 nm diameter nanopillar was irradiated 

by e-beam with beam current of 1.6×10-1 A/cm2. Even under such high density 

e-beam, no plastic deformation happened in the nanopillar with such small diameter. 

These results indicate that diamond is very stable under e-beam irradiation. Not like 

in silica, there will be no such enough dangling bonds produced during beam 

illumination to change the deformation behavior of diamond. 

5.4 DISCUSSION 

Ductility characterizes a material’s ability to plastically deform and dissipate 

mechanical energy up to the point of gross failure. A room-temperature tensile 

ductility of silica glass is abnormal. Surfaces were usually perceived as preferred 
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crack initiation sites162-164, due to damages caused in processing and by the 

environment. However, in our experiments, it appears that the ductility of the beam 

damaged silica nanowires is benefited from surfaces. To elucidate the roles of 

surfaces on the deformation and failure of silica, molecular dynamics (MD) 

simulations were performed (See Appendix for simulation details and results). The 

simulation indicates the plastic deformation of such small nanowire is due to the 

delayed formation of voids with critical size and subsequently postpones the eventual 

fracture. Upon pulling, the Si-O bonds will break and create void-like volumes. 

However, it can be recovered by the dangling Si that quickly bonds with the 

non-bridging O-defect and forms Si-O bonds again (Figure 9.1). We defined this 

process as a bond-switching process. MD reveals that there is a surface-plasticized 

region where bond-switching dominates. Our experiments suggest that the plasticized 

layer thickness is about 8–10 nm (Figure 5.4). In this region of enhanced plasticity 

flaws can be somewhat blunted, and once the surface affected region spans the wire it 

can deform plastically, as shown in Figure 5.4.  

Glass transition temperature, Tg, of bulk silica glass is well known higher than 

1200 ℃165,166, so the temperature rise due to the e-beam irradiation was no more than 

a few tens of degrees167,168, should have little consequence on the plasticity. However, 

based on the superplastic silica nanowire experiment (Figure 5.1) and compresion 

tests on diamond pillars (Figure 5.6), beam induced atom displacement and additional 

dangling bonds helped the plastic deformation of the silica nanowires with small 

diameter. The displacement energy of Si is 15~20 eV152,153, calculated by the formula 

(5.1)154, the TEM accelerating voltage (300keV) is large enough to cause Si atoms to 

displace and lead the formation of Si dangling bonds, which enhanced the bond 

switching process in SiO2. So if there has source to unceasingly produce the enough 
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Si dangling bonds, ductility even superplastic behavior can be observed in even 

bigger diameter nanowire (Figure 5.1). However, beam damage can be partially 

recovered in glasses. Mkhoyan et al.155 found the electron beam induced damage can 

totally recover in CaO-Al2O3-SiO2 glass after the beam is off 2 min. But increasing 

the silica fraction, the recovery will be decreased to ~90% for 

(CaO-Al2O3)0.67-(2SiO2)0.33 glass and 20% molecular O2 will decrease. It was 

revealed that during beam damage, O2 produced on amorphous SiO2 can bond to the 

silicon dangling bonds155,169, which induced the formation of links and peroxy 

radicals155,170,171. So the degree of the beam induced damage recovery is depended on 

how many oxygen atoms get involved in the bonding with silicon dangling bonds in 

the network, which cause the possibility of reabsorbing the silicon number by the 

nonbridging sites decreasing155. In our research, we used a very weak beam to 

produce the tensile sample. No detectable molecular oxygen (O2) was generated 

during the sample preparation process (see section 5.3.2), so most silicon dangling 

bonds connected with the nonbridging oxygen atoms and reformed the Si-O bonds 

once the beam is off. If we blank beam on big diameter sample after long time 

exposure, the electron beam induced damage recovered ~90% after the beam is off. 

There are no enough additional dangling bonds and no external source to keep 

creating such defects during the whole straining process, the exist bond-switching 

process couldn’t complete through the whole nanowire and thus the big diameter 

nanowires are still brittle even after long time beam exposure. The cavities or 

crack-nuclei in the interior of the sample have no way out but to coalesce, quickly 

exceeding the critical size and developing into a crack. And the pre-existing large 

flaws in bulk silica will quickly induce the sample failure. However, as sample size 

decreased, the beam damage intensity will increase up quickly. Once the sample size 
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below the critical diameter, the unrecovered beam induced the dangling bonds will 

exist across through the whole nanowire. The beam damage enhanced bond switching 

process spans the nanowires and thus trigger the plastic deformation. 

Because of its high corresponding threshold value of incident energy E0
154, 

which is ~330 keV154, diamond behaves much stable under the beam. The TEM 

accelerating voltage is not large enough to cause C atoms to displace and lead the 

formation of enough C dangling bonds to facilitate the plastic flow. The diamond 

pillars behaving brittle also accounts for the larger sample size (>60nm), which will 

pre-exist more large flaws. These large structural flaws will operate due to the 

instability under high stress and cause brittle failure of the samples. 

5.5 CONCLUSIONS  

Assisted by beam, the silica glass nanowires can turn ductile, and even superplastic in 

very large size. The ductility of silica nanowires comes from the beam damages 

enhanced bond switching process. Beam blanked more than 2 minutes will partially 

recover the beam damage and change the mechanical response to brittle for nanowire 

bigger than 20 nm. However, the unrecovered beam damages are large enough to 

trigger the brittle to ductile transition in silica nanowire with size reduction to below 

20 nm. The ductility, high strength (close to the theoretical strength) and high 

elastic-strain limit can prompt a wide range of applications for nanoscale glass 

structures172. The beam enhanced extreme ductility may also be used for a specific 

purpose such as manufacturing the optical nanofibers150.  
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6.0  IN-SITU TEM OBSERVATION ON THE DEFORMATION OF 

NANOSCALE METALLIC GLASS173 

6.1 INTRODUCTION 

For metallic glasses, brittleness is consider as a critical weakness if applied in the 

engineering fields173,174. Therefore, there are lots of researches focusing on improving 

the plastic deformation capability of metallic glasses175-177. Recently, several metallic 

glass composites designed by Hofmann et al. showed a large ductility with plastic 

strain more than 10% and an apparent necking approaching fracture178. It was 

suggested by them that the plastic zone179 in crack tip for most metallic glasses is 

around several micrometers. If we can control the size of metallic glass in 

micrometers range, then it should greatly improve the toughness or the capability of 

plastic deformation for metallic glass173. 

It well known that shear bands propogation caused the metallic glasses 

failure173,180-183. However, if view in a microscopic way, since the severe plastic 

deformation can be endured by shear band whether under deformation, metallic 

glasses is supposed to have outstanding toughness182,184. The maximum localized 

strain can reach 102-103% in the shear region, although the overall plastic strain is 

almost zero185,186. In general, the shear band thickness, ts, is about 10-20 nm185,187, and 

it can develop to ~1 μm through shear bands propagation188. In buck metallic glass, 

the shear band constrains the plastic deformation totally in such small area, which 
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causes the overall plastic deformation almost zero. However, what will happen if we 

control the tensile sample size nearly or smaller than the minimum size of shear 

band? In this circumstance, the shear band region is effective enough to totally cover 

the whole tensile sample173. Will some change happens in the metallic glass flow 

mechanism if the sample size below the smallest shear band thickness and how is 

it173? 

The experiment results presented in this report directly give the evidence that 

metallic glass can turn ductile, even super plastic, if its size below 20 nm173. Large 

homogeneous tensile plasticity and obvious necking with the reduction in area nearly 

100% is demonstrated in this nanometer length scaled metallic glass sample173.  

6.2 EXPERIMENTAL APPROACH 

The in-situ tensile tests were carried using a Nanofactory TEM-STM system in a 

Tencai F30 TEM, as schematically illustrated in Figure 6.1a173. The metallic glass 

nanohill at the edge of the thin foil was bonded with a tungsten probe controlled by a 

piezo manipulator (Figure 6.1a). Once the nanohill sample and W probe were 

connected, it was pulled by the piezo manipulator with a strain rate less than 10-3 s-1 

until failure. A nanohill sample without touched by W probe and after bonding are 

shown in Figure 6.1b and 1c. These high resolution TEM images demonstrated that 

the twin-jet polished sample is still amorphous and no crystallization after connectd 

by the W tip173. 
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Figure 6.1: Experimental set-up. (a) The bond between the tungsten and the Al90Fe5Ce5 

sample. (b) HRTEM image of the Al90Fe5Ce5 nanohill showing fully amorphous 

structure. (c) HRTEM image of the Al90Fe5Ce5 nanohill after bonding exhibiting no 

crystalline structure173. 

6.3 EXPERIMENTAL RESULTS AND DISCUSSION 

An example of a 14.3 nm diameter sample under in-situ tensile test is shown in Fig. 

6.2 and 6.3. A large ductility was found in this nano size sample173. During the tensile 

testing, shear band propagation didn’t happen in this nanoscaled metallic glass. The 

sample was first homogeneous plastic deformed, which induced the diameter 

shrinked to 4.5 nm from 14.3 nm (Figure 6.2a-6.2d). The strain of plastic deformation 

is as high as 200% calculated by the formula 00 /)( lllt −=ε , here l0 represents the 
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original length and lt represents the length at time t. For metallic glasses, this plastic 

strain is extreme high, which usually just happen when metallic glass is around glass 

transition temperature. And the area reduction for the sample is calculated around 

90% using the formulaΨ=(A0−At)/A0, here A0 represents the area of cross section for 

original sample and At represents that for the sample before necking at time t173. The 

sample starts necking after the homogenous deformation, as shown in Fig. 6.3a. And 

there formed a nanobridge with diameter of 1.4 nm in the necking area (Figure 6.3b). 

As the sample continued deformed, the nanobridge diameter kept reducing (Figure 

6.3b-6.3d). When the sample is close to break, the nanobridge was even developed to 

an atomic chain (Figure 6.3e). It is almost 100% for the area reduction of the necking 

area. An interesting thing is that the nanobridge as well the atomic chain is extremely 

flexible. It can be seen from Figure 6.3c to 6.3e, the nanobridge can be stretched from 

~3 nm to ~3.4 nm in length. We also found the end of the nanobridge, which is close 

to the STM probe, has very high mobility. The end of the chain can move smoothly 

on the surface as it is extended173. The arrowheads in Figure 6.3c to 6.3e marked the 

mobile end positions, which clearly show the trace of the end gliding on the surface. 

Although Atomic chain has been reported in some ductile metals18,19, there is no any 

previous reports demonstrate that atomic chain can exist in metallic glasses. The 

phenomena of superelongation in our nanoscaled metallic glass as well the formation 

of atomic chain point out that sample size decreasing to nanoscale can improve the 

ductility of the brittle metallic glass systems173.  

 82 



 

Figure 6.2: In-situ tensile test of a 14.3 nm diameter sample at a tensile strain rate of 

2.9×10-3 s-1. (a)-(d) HRTEM images of the superelongated metallic glass nanoscaled 

sample with (a) Original length of 9 nm and (d) final length of 26.9 nm173. 
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Figure 6.3: Formation of metallic glasses atomic chain. (a) Necking started in the 

center of the sample. (b) A nanobridge with diameter of 1.4 nm formed in the necking 

region. (c, d) The nanobridge shrink as the sample was continuously stretched. (e) An 

atomic chain was created. Its one end flexibly move on the surface. Arrowheads in (c) 

to (e) indicate the the nanobridge and atomic chain mobile end positions, show the trace 
173.  
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The ductility of nanoscaled metallic glass sample may be enhanced by the 

irradiation of electron beam173. Two types of damaging was caused by electron beam: 

ionization and displacement. Ionization usually occurs in organic samples, therefore it 

is not considered in our samples which are all metallic173. Therefore displacement is 

considered as the likely damaging mechanism. For Al, Fe, Ce, the displacement 

energies are 17 eV154, 40 eV189 and 44 eV190, so the corresponding electron beam 

energies are 180 keV, 630 keV and 1250 keV173. Ten TEM accelerating voltage in 

our experiments was 300 kV, consequently, it occurred Al displacement in our 

sample, which could possible help the plastic deformation of the metallic glass. Since 

metallic glass have excellent thermal conductivity, the effects from beam-heating can 

be neglected191. To make the effect from beam minimize, tensile testing with no beam 

condition were performed. In this condition, the electron beam was moved away 

when pulling the sample. For every ~2 minutes, the beam was moved back to capture 

a TEM image for around 5 seconds. It is surprising that there still happened 

superelongation for the metallic glass sample even under no beam condition173. It is 

shown in Fig. 6.4 that a ~8.3 length metallic glass nanoscaled sample (Figure 6.4a) 

was stretched to ~20.5 nm (Figure 6.4c). The calculated elongation is around 147% 

for this nanosized metallic glass sample. Even under no beam condition, the sample 

still shows superelongation as well necking. The similar phenomenon from with beam 

condition and no beam condition indicated that the extraordinary ductility may be the 

intrinsic property of metallic glasses in nanoscale, though electron beam could do 

favor on it. For the beam heating effect, it can be neglected because the beam in 

normal imaging condition will not increase temperature more than 50 K in 

metals192,193. It was confirmed by Fisher’s theory that the increase temperature should 
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no more than 10 K in electron irradiated aluminum foil193. Thus, the electron beam 

heating should have no help on the superelongation173. 

In what follows, we discuss possible mechanisms leading to the extraordinary 

ductility of nanosized metallic glasses173. For bulk metallic glass, homogeneous 

plastic deformation only occurs when it is near glass transition temperature180,194, 

which is far higher than room temperature. Under that condition, viscous flow causes 

the large ductility, and superplastic behavior has to require high strain-rate sensitivity. 

However, it is revealed from our results that the brittle metallic glass can change to 

extreme plastic even under ambient temperature by decreasing size to nanometer 

range. It is apparently unlike what shown in bulk tensile metallic glass where brittle 

deformation is quite universal. Firstly, from the aspect of global plasticity, it shows 

very large plasticity in the nanosized metallic glass. Secondly, from the view point of 

microscopic mechanism, no shear band assisted the deformation of nanosized 

metallic glass. These deformation behaviors are drastically different from that of bulk 

metallic glass. In the following, we will do more discussion on the factors which cause 

nanosized metallic glasses deform uniquely173. 

From the viewpoint of the thickness of shear band (ts) in metallic glass, due to 

the sample size being close to ts, if there exists shear band in it, the whole effective 

sample will be covered by the shear band173. For a fully developed and mature shear 

band, if we assume 10 nm for thickness of the incipient shear band, the diameter of 

the nucleus would be around 0.5 μm195. Therefore, the shear band for the present 

sample has no enough space to develop itself to the unstable level. The shear 

transform zones (STZ) will robustly collaborate together in this quite small volume, 

and propagate all through the entire173. In the meantime, the atomic diffusion induced 
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short-range or modest-range structure transformation will be significant in this case 

and help the homogeneous deformation173,191. 

 

Figure 6.4: Tensile test a nanosized metallic glass sample at a strain rate of 3.1×10-3 s-1 

under no beam condition173. 



The surface effect will turn significant if the sample size decreasing to 

nanoscale173,196-198. The surface stress will turn stronger as the sample size decreasing. 

To compensate the surface stress induced compressive stress on the sample, it will have to 

apply some tensile stress. The amount of the extra applied tensile stress can be estimated 

using r/γ 54, where γ  is the surface energy considering a cylindrical sample with radius, r, 

under tension. This surface induced compressive stresses could make the tensile fracture 

strength enhanced to some extent, and it could postpone the shear band nucleation in 

the nanoscaled sample. Meanwhile, under the constraint of the surface compressive 

stress, a normal stress close the band help operating shear band, resulting in a more 

stable shear deformation178,199. At the nanoscale, the shear transform zone (STZ) will 

react with the compressive stress outside, and make STZ multiple and pervade into 

the whole effective sample. Meanwhile, small size will decrease the statistic 

distribution of defects whether in large size or small size. This results in a STZ 

difficult to initiate and further to grow up to a mature shear band, which is regard as 

another fact for the plastic strain increasing173. 

Based on the deformation energy viewpoint, the stored elastic energy is mostly 

dissipated as heat on the surface of fracture plane because of the shear deformation 

highly localized in metallic glass173,200. The important roles of heat are: it can make 

shear band softening and have effect on the metallic glass catastrophic fracture201. 

The releasing of elastic energy upon fracture induced the shear fracture surface 

energy density can be generally proportional to the sample size (the diameter of a 

cylindrical sample). As sample size reducing, the dissipated energy density on the 

fracture surface of shear plane decreases linearly. So the stability of the shear band 

can be enhanced by sample size decreasing, i.e., the crack forming by the propagation 

of shear band becomes hard. Therefore, as sample size reducing, it will turn more 
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likely that homogeneous shear deformation happen in the full sample, thus the 

metallic glass plasticity can be enhanced173,191,202. 

Recently, Greer et al. reported a mode change from highly localized deformation 

to homogeneous deformation in Zr-based metallic glass nanopillars with diameter of 

100nm, and keep the yield strength no change203. As we know, there are two 

competing processes existing when metallic glass deforms: shear-band propagation 

by cracks and homogeneous flow203. As sample size varies, each process will give 

different contribution on the whole deformation. Considering these factors, a 

phenomenological model was proposed to explain this special homogeneous 

deformation caused by size effect203. The pre-existing shear band propagation to 

fracture drive stress is given as204: 

ad
ΓΕσ 22

=  

As shown in the deformation map in their report, there is a critical sample size d* for 

deformation transiting from propagation of shear-band to homogeneous deformation, 

however the sample size do not have affect on the stress initiating room temperature 

homogeneous flow203. Normally, the maximum shear stress τ  can be estimated 

by τ/G=0.036-0.016(T/Tg)2/3and the ideal strength is estimated around E/30203,205. 

With E=66 GPa206, G=24.4 GPa and Tg=543 K207, the stress for homogeneous 

deformation of our Al90Fe5Ce5 metallic glass is estimated between 1.3 and 2.2 GPa. 

When the size of specimen is much bigger than d*, the shear-band propagation will 

dominate the metallic glass deformation203. However, once the size of specimen is 

lesser than the d*, the homogeneous deformation will dominate since the shear band 

embryo will be stable enough to not propagated203. The materials will finally fail 

when the stress is increased enough to over the shear-band propagation stress203. 
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Referring with the estimation on Γ  from Greer et al203, Γ  is estimated to be ~10 

Jm-2, and consider a ~6.5, the critical sample size d* is estimated to be ~60－170 nm. 

Our sample size is only 14.3nm, which is much smaller than the d*, so referring the 

deformation map203, the homogeneous deformation will prevail in such small sample, 

which is consistent with our observation.  

The phenomenon that occurred in the present nanoscale sample will be helpful 

for us to understand the physical nature of metallic glass and indicative for us to 

design new metallic glass materials with excellent performance properties173. One can 

control the bulk metallic glass in nanoscale pieces by introducing the second phase. 

Each piece of metallic glass with nanoscale will display great tensile plastic 

deformation. The cooperation of all pieces of metallic glass results in considerable 

tensile plastic deformation. Recent progress in Zr-Ti-based metallic glass composite 

can be a good example of this condition178,208. In that work, these series of metallic 

glass composites exhibits great tensile plastic deformation, and even necking 

occurred in them173. 

6.4 CONCLUSIONS 

Quite difference with the bulk metallic glasses which show disastrous tensile failure, 

nanosized metallic glass exhibits extreme ductility with uniform elongation173. After 

the superelongation, the area reduction can reach 100% in the necking region. 

However, shear bands were not found during the whole deformation process and is 

not the reason to cause the excellent tensile plasticity. These findings can be used to 

improve the understanding on various metallic glasses systems with their mechanical 
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properties, deformation behavior, and fracture mechanisms. And it can indicate us a 

potential direction to design metallic glass materials with excellent performance in 

engineering fields173. 
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7.0  PULLING SUPERPLASTIC SODIUM CHLORIDE NANOWIRES FROM 

THE COMMON SALT SURFACE209 

7.1 INTRODUCTION 

It is a abnormal property of material that it has superplasticity at ambient temperature, 

in other word it can elongated more than >100% until fracture, which have only been 

observed in some covalent materials209,210. If nanoscaled sodium chloride (the 

common salts) can have superplasticity, it will be really unexpected because we know 

that salt is brittle material and we can squash them using fingers. The only materials 

can be pulled into nanowires in condition lower than their melting point are metals 

211-214. It is not reported that the superplasticity can exsit in other one-dimensional 

nanomaterials, such as ceramic nanowires and carbon nanotubes39,69,110,112,215, to 

foresee such special behavior for ionic nanowires. It is really necessary to 

comprehensive know the NaCl deformation mechanism since it can give the guide to 

understand the geotechnical problems by relating the measurements from 

labrotary216,217. It is will be extremely useful for comprehending the aerosols 

physicochemical reactions of sea salt. The wide problems such as asthmatic reactions 

in human body, cloud nucleation, and smog formation has implicated this218,219. By 

imaging in atomic-scale, NaCl crystal surfaces has been demonstrated to transform 

noticeably in environments with humid220,221. Normally, if the atomic diffusion close 

to dislocations, kinks, steps and surface209, the bulk plasticity induced will be much 

faster 222,223. In this report, it will show a superplastic NaCl nanowire can be formed 
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by retracting a sharp tip from the common salt crystal. This reveals that the plastic 

deformation can exist in nanoscaled sodium chloride and even in a pretty dry 

environment, however under the shower of electrons. The superplasticity is because 

of atomic diffusion, which facilitates quick migration of atoms and heal the defect 

induced by deformation or electron irradiation209. It is also discussed in this report on 

the stabilizing the superplastic deformation by possible Na+ to Na partial reduction209. 

7.2 EXPERIMENTAL APPROACH 

The in-situ experiments were performed under 100 keV with low dose 1 A/cm2 in a 

FEI TEM (Tencai F30) using a TEM-STM platform (Nanofactory)209. The nanowires 

was formed by retracting a gold probe from NaCl(100) surface209.  

7.3 EXPERIMENTAL RESULTS AND DISCUSSION 

Figure 7.1a shows a nanowire under superelongation and compression with length of 

∼580 nm at begining209. In the left side of the nanowire, the crystal contrast was 

appeared in a heavily strained single crystal209. As shown in Fig 7.1a and 7.1b, the 

middle part of the nanowire was uniformly elongated first during stretching until two 

∼30 nm height surface steps shown close to its two ends (Figure 7.1c). Upon further 

stretching, only the section of the nanowire between the two steps elongated 

drastically. Because of reaching the limitation of the manipulator in this pulling 

direction, it could not stretch the nanowire any more. The final length of the obtained 

extreme long nanowire is ∼2190 nm with no fracture. It is ∼280% for the 
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elongation of this nanowrie, however this is only minimum value209. The reduction of 

the nanowire diameter during the superelongation is from 210 nm (Fig. 7.1a) to 100 

nm (Fig. 7.1c), however it is increased by 75% for the nanowire volume. The 

increasing of volume is a sign of that there happened transportation of NaCl from the  

to the nanowire. The contrast change appearing in Figure 7.1c may be caused by 

crystalline structure formation as the nanowire elongated and it is thought because of 

the atomic diffusion. And it is possible some recrystallization induced by deformation 

caused by this. However dislocation activities such as nucleation or propagation were 

not detected during the elongation although it show heavily strain contrast in those 

areas with recrystallization. There has only homogeneous gray contrast shown in the 

elongated nanowire. If dislocation activity is stable during the tensile process, it 

should show strong diffraction contrast in the strained nanowire. A possibility is that 

dislocation movement is too quick to move out of the surface of nanowire and thus 

TEM imaging couldn’t capture it224. After the limitation of the manipulator in this 

pulling direction reached, we can only compress the nanowire by pushing back the 

STM probe as shown in Fig. 7.1d and 7.1e. It is remarkable that we can buckle the  

over 90°as the overlapped nanowire in Fig. 7.1f indicated. During the compression, 

it intermittently appeared the strong contrast resulted from recrystallization (Figure 

7.1e), which also designated the deformation is dominated by atomic diffusion209.  

The electron beam irradiation was found helpful for plasticity209. Different kinds 

of defects can be introduced by electron damage, which can collapse bulk NaCl into 

nanocrystals225,226 . In our experiment, numerous nanocrystals of NaCl formed on the 

edge and turn the smooth bulk surface to rough after electron beam irradiating the 

bulk NaCl a few minutes. The heating effect from the beam may also can help 
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improve the ductility of the nanowire. To not let the beam affect the ductility 

too much, we performed the same experiments again without beam irradiation. After   

 

Figure 7.1: (a)-(c) A nanowire was super elongated with a strain rate of 5.5×10-3 s-1. 

(c)-(f) Compress the nanowire with a strain rate of 2.4×10-3 s-1. The arrows marked the 

contrast change induced by crystallization209. 
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nanowire and then kept straining it. To take the images, in every ∼5 min we only 

move the beam back and stay on the nanowire for only ∼1 s intermittently. Even with 

no beam condition, the nanowire can still be super elongated (Fig. 7.2). The nanowire 

was elongated to ∼440 nm (Figure 7.2b) from ∼210 nm (Figure 7.2a), thus the 

calculated elongation is around 110%. During the elongation, the crystalline contrast 

can still be observed209. The center of the nanowire will neck down when it is closed 

to failure. The necking is a typical feature of plastic deformation209. 

 

Figure 7.2: A nanowire was super elongated with a strain rate of 2.6 ×10-3 under no 

beam condition when it is pulled209. 



To check change of the composition, we performed electron energy loss 

spectroscopy (EELS) characterization on the nanowire before and after 

superelongation209. Figure 7.3a and 7.3b show a nanowire before and after pulling 

with beam condition with final elongation of ~256%. Figure 7.3c show the EELS 

collecting area. Fig 7.3d and Fig 7.3e are the EELS spectras of Na-L2,3 edges and Cl 

L-2,3 edges for the pristine NaCl, the nanowire before pulling and the nanowire after 

pulling209. The energies of different peaks (eV) in the EELS spectras are: a, 9.1; b, 

15.3; c, 20.9; d, 32.1; e, 2.8; f, 5.4; g, 11; h, 16.4; i, 21.8; j, 30.6; k, 199.7; l, 208.5; m, 

215.7209. The Na-L2,3 and Cl-L2,3 edges show clearly in the EELS spectra of the 

nanowire before and after pulling referring with a standard EELS spectra227, which 

means that both Na and Cl exsit in the orginal and elongated nanowire. However as 

the nanowire elongated, the Cl content keep decreasing. The Cl content in the 

superelongated nanowires confirmed by Energy dispersive X-ray spectroscopy (EDX) 

measurement is no more than 10% (Fig. 7.4). And it was found in the Na-L2,3 edge 

show up more peaks in the nanowires after supereleongation such as peaks e, f, and g 

in Fig. 7.3d, which was thought resulting from the precipitation of Na induced 

plasmon oscillation. Because NaCl is quite easy to be decomposed under the higher 

electron fluxes, using HRTEM to get the atomic image of the NaCl nanowire is not 

possible. However use similar beam dose to irradiate buck NaCl crystal surface, we 

can perform HRTEM imaging and found numerous nanocrystals with small grain size 

<20 nm formed. Using EDX, the structures of these nanocrystals are confirmed still 

NaCl, however as shown in Fig. 7.4 there has reduction for Cl content (∼23%)209.  

A lot of research has revealed that electron beam is quite easy to decompose 

alkali halides209,228. So even under no beam condition, there still have possibility that  

the low dose electron beam during image capturing have strong effects on plasticity. 
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The NaCl bond energy is about 8 eV, which is much lower than the NaCl threshold 

displacement energy ∼25 eV (converting to electron energy, it will be more than 

350 keV)209,229. And irradiated by electron beam, it will form a lot of vacancies and 

interstitials of the halogen. These point defects can move fast to the surface226. 

Combined with atoms diffusion from bulk NaCl, the vacancies and interstitials may 

be recovered quickly. This is quite analogous process with that happened in 

superelongated carbon nanotubes39. Together with lots of point defects, the declining 

of Cl- will also possibly make grain smaller, which may enhance the unexpected 

plasticity of NaCl nanowire209. For instance, it has been reported that some ceramics

  

 

Figure 7.3: (a), (b) TEM images of a nanowire before and after superelongation. (c) 

The position to do the EELS measurment. (d), (e) EELS spectra of the Na-L2,3 edge 

and Cl L2,3 edge209. 
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can change from brittle to ductile if decreasing the grain size to a few nanometers, 

because of the enhanced grain boundary atoms diffusion230. The enhanced ductility 

may also possible get help from the precipitation of metallic Na. Although the bond 

energy of Na-Na 0.76 eV is significantly lower than the bond energy of Na-Cl∼8 eV, 

it is not constrained stoichiometrically for Na-Na bonds, and the conductivity of them 

will possible help the charging dissipating of electron beam209. 

 

Figure 7.4: (a) Lattice image of the nanocrystals in NaCl. (b) A lot of nanocrystals on 

the NaCl surfarce are clearly shown in the SAD patter (c) EDX spectrum shows there 

are only 65% Na and 35% Cl in NaCl nanocrystals209. 

7.4 CONCLUSIONS 

In summary, superplastic nanowires formation by retracting a sharp probe on 

common salt surface was demonstrated by in situ TEM experiments209. The 

superplasticity was resulted by a number of factors including the small cross section 

area, fast diffusion of atoms, quite small grain size of nanocrystals, and precipitation 

of Na. it is indicated from these results that formation of nanowires is possible 



happened during colliding of sea salt aerosols or gliding of rock salt. These 

discoveries may make it clear on the underground sediments flow, lithification, and 

numerous atmospheric reactions216-219,231. It is a notable and surprising example that 

common salt can change from brittle to superplastic to demonstrating that decreasing 

material size to nanoscale can exceedingly alter its physical properties209. 
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8.0  SUMMARY AND CONCLUSIONS 

In summary, the mechanical behavior of a 33 nm silver nanowire has been in-situ 

explored in HRTEM under low local strain rate. Not like the plasticity of most 

crystalline structures are generally controlled by the dislocation nucleation and 

multiplication232, the silver nanowire plastic deformation is mainly contributed to 

stacking faults formation inside the nanowire. By in-situ HRTEM observation, we 

found the stacking faults are not induced by Shockley partial dislocations movement, 

but by the Frank loops formation and expansion. Vacancies nucleated inside the silver 

nanowire migrated and coalesced to form microscopic clusters. Further, a vacancy 

Frank loop can be formed from the vacancy cluster by absorbing more vacancies. The 

density of Frank loops increased during the deformation process and induced more 

stacking faults, which changes the local stacking sequence, resulting a “necking” like 

morphology for the fcc part.   

Assisted by beam, the silica glass nanowires can turn ductile, and even 

superplastic in very large size. The ductility of silica nanowires comes from the beam 

damages enhanced bond switching process. Beam blanked more than 2 minutes will 

partially recover the beam damage and change the mechanical response to brittle for 

nanowire bigger than 20 nm. However, the unrecovered beam damages are large 

enough to trigger the brittle to ductile transition in silica nanowire with size reduction 

to below 20 nm. The ductility, high strength (close to the theoretical strength) and 

high elastic-strain limit can prompt a wide range of applications for nanoscale glass 
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structures172. The beam enhanced extreme ductility may also be used for a specific 

purpose such as manufacturing the optical nanofibers150.   

Quite difference with the bulk metallic glasses which show disastrous tensile 

failure, nanosized metallic glass exhibits extreme ductility with uniform 

elongation173. After the superelongation, the area reduction can reach 100% in the 

necking region. However, shear bands were not found during the whole deformation 

process and is not the reason to cause the excellent tensile plasticity. These findings 

can be used to improve the understanding on various metallic glasses systems with 

their mechanical properties, deformation behavior, and fracture mechanisms. And it 

can indicate us a potential direction to design metallic glass materials with excellent 

performance in engineering fields173. 

Superplastic nanowires formation by retracting a sharp probe on common salt 

surface was demonstrated by in situ TEM experiments209. The superplasticity was 

resulted by a number of factors including the small cross section area, fast diffusion 

of atoms, quite small grain size of nanocrystals, and precipitation of Na. it is indicated 

from these results that formation of nanowires is possible happened during colliding 

of sea salt aerosols or gliding of rock salt. These discoveries may make it clear on the 

underground sediments flow, lithification, and numerous atmospheric 

reactions216-219,231. It is a notable and surprising example that common salt can change 

from brittle to superplastic to demonstrating that decreasing material size to nanoscale 

can exceedingly alter its physical properties209. 
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APPENDIX 

MOLECULAR DYNAMICS SIMULATION ON SILICA NANOWIRES  

Erik Bitzek, Ju Li* 

Department of Materials Science and Engineering, University of Pennsylvania, 

Philadelphia PA 19104, USA 

* E-mail: liju@seas.upenn.edu

 

A.1 Methods 

Molecular dynamics simulations of uniaxial tensile deformation at a constant strain 

rate of 109 s-1 at 300K were performed on two amorphous silica samples: a nano 

ligament of a diameter d=4.5 nm and a length l=11nm with periodic boundary 

conditions along the ligament axis, and a rectangular sample of dimensions 

5.5x5.5x11 nm3 under periodic boundary conditions in all directions. Two interaction 

potentials were used: the original silica three-body potential by Vashishta et al.233 cut 

off, shifted and smoothed at rc=0.8 nm according to the procedure detailed in ref. 234, 

and the two-body potential by van Beest, Kramer and van Santen (BKS)235 which  

was cut off and shifted at rc=1.5 nm using a smooth cut-off function.  

The bulk sample was constructed from a crystobalite crystal following the 

stepwise cooling procedure laid out in ref. 236 while maintaining 0 MPa pressure, 

following an energy minimization and subsequent equilibration at 300K, again at 0 
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MPa pressure. With the Vashishta potential, the so obtained sample has a density of 

ρ=2.42 (2.2) g/cm3 and 0K elastic constants (experimental values from237 in 

brackets): Youngs modulus E=109 (73-74) GPa, shear modulus G=44 (31) GPa, and 

bulk modulus B=61 (31-38) GPa, leading to Poisson’s ratio of ν=0.21(0.17-0.18). The 

BKS sample has the following properties: ρ=2.38 (2.2) g/cm3, E=71 (73-74) GPa, 

G=31.7 (31) GPa, B=36.6 (31-38) GPa. With these values the Poisson ratio can be 

calculated to ν=0.16 (0.17-0.18). 

From the relaxed sample the nano ligament was cut out, taking care that the 

overall charge neutrality was maintained. It is important to note that as the nano 

ligament was created from the bulk sample, the inside of the nano ligament shares the 

same micro structure as the bulk sample, and both samples were free of apparent 

flaws. The nano ligament was again relaxed and equilibrated at 300 K. MD 

simulations were carried out using the DLPOLY package238 using the Berendsen 

thermostat with a time step of 1 fs and the smoothed particle mesh Ewald method for 

calculating the coulombic interactions (real space cut-off 1.05 nm and accuracy of 

10-6). In the bulk simulations, the length of the box vectors orthogonal to the tensile 

direction is controlled by the Berendsen barostat to maintain uniaxial stress 

conditions. 

The number of atoms with lost, switched or gained bonds determined the 

bonding topology between the actual configuration and the reference configuration at 

zero strain. Each atom is identified by its unique number ID. Atoms are considered to 

have lost bonds when their coordination number z (the number of atoms within the 

nearest neighbor shell of radius r=0.2016 nm) has decreased with respect to the 

reference configuration. Atoms which gain a bond show respectively an increase of z. 
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Atoms with switched bonds have the same z as in the reference configuration, 

however, at least one nearest neighbor has a different ID than in the reference 

configuration.  

A.2 Results 

The stress – strain response of the wire and the PBC sample are shown in Figure 9.1a. 

The wire shows an earlier deviation from the elastic slope and lower stress levels 

compared to the PBC sample. After a plastic region (between about 10 and 15% 

strain) the PBC sample abruptly failed by cleavage (see Figure 9.2), whereas the wire 

shows a large drop in the stress but is not fully fractured and still can sustain the 

maximum plastic strain of 20% (Figure 9.1a and 9.1b). Analysis of the atomic 

configurations shows a connecting ligament was formed during the fracture process 

of the wire (Figure 9.1b).   

As a general observation – which is not limited to glasses - we hypothesize that 

(a) plastic flow is caused by “bond switching” (S) events, whereas (b) damage and 

failure are caused by irreversible “bond loss” (L) events in materials. Our central 

hypothesis is that the ratio of these atomic-level S/L events directly correlates with 

the observed sample-scale ductility. We note that the accumulation of damage due to 

a net loss of bonds is a generalization of the classic Griffith concept of surface 

creation. The S/L statistics from MD simulations are shown as function of strain in 

Figure 9.1a, and in the colour code of the atoms in Figure 9.1b and 9.1c. From this 

analysis it becomes evident that plastic deformation by bond switching (S) and 

damage accumulation by bond loss (L) takes place already during the “elastic” part in 

the stress-strain curve, see Figure 9.1a. Furthermore, pre-existing free surfaces are 

seen to promote plasticity: S/L is about 1 : 2–2.5 for the wire compared to 1 : 2.5–4 in 
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the case without surfaces. From this and other examples (see Supplementary 

Materials) it becomes clear that the S/L statistics indeed controls ductility. Figure 9.1c 

shows that the atoms involved in the plastic deformation are mostly situated close to 

the surface of the wire. All of the plastic deformation in SiO2 involves 

bond-switching and thus changes in the bonding topology. In contrast, damage and 

irreversible bond loss in silica entails the net creation of under-coordinated atoms and 

free volume. Their local accumulation leads to the nucleation of internal surfaces like 

cavities or crack-nuclei. Bond switching processes (as shown in Figure 9.1d), which 

are characterized by correlated bond breaking and subsequent bond formation, on the 

other hand do not induce a net increase of under-coordinated atoms. They do, 

however, as we observe in both the BKS- and the Vashishta-potential, require the 

existence of under- or over-coordinated atoms (coordination defects), such as 

non-bridging oxygens239. The influence of the surface on the plastic deformation is 

thus twofold: first, the missing bonding constraints at the surface lead to an increased 

flexibility of the partly un-bonded silica tetrahedra (as seen e.g. in the rotation of a 

tetrahedron in Fig. 9.3d). These can rotate and thereby bring e.g. their non-bridging 

oxygen close to under-coordinated silicon atoms. Secondly, the presence of 

under-coordinated atoms at the surface catalyses bond switching and thus plastic 

deformation. In the course of deformation these defects can migrate by 

bond-switching processes inside the wire. 

Based on this general reasoning, one can assume that the existence of a surface 

will lead to a region of enhanced plasticity beneath it. Due to the high strain rate in 

the simulations the thickness of this surface-plasticized region in the MD simulation 

cannot be expected to be directly compared to the experimental situation72. The 

experiments (Figure 5.3) suggest however a thickness of the plasticized layer of about  
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Figure 9.1: Molecular dynamics simulations of the tensile behaviour of silica glass 

(Vashishta potential). (a) Stress-strain responses of the wire and the PBC sample 

together with the bond-switching statistics. (b) Snapshots of the wire at different 

strains (blue atoms have no change in bonding topology, cyan atoms have gained 

bonding partners, yellow atoms have switched bonds, red atoms have lost bonds). (c) 

Top view of the wire, showing only atoms with changes in bonding topology (same 

colour code as in (b)). (d) An example of a bond-switching process involving the 

migration of non-bridging O-defect and the rotation of a partially unbonded silica 

tetrahedron (around C) (colour coding according to the coordination number). 
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Figure 9.2: Snapshots from the bulk Vashishta sample at different strains. The atoms 

are colored according to the to changes of their bonding topology: dark blue atoms 

have exactly the same neighbors as in the strain free initial configuration, light blue 

atoms have gained a bond, yellow atoms have switched bonding partners while 

maintaining the same coordination number, red corresponds to broken bonds. 

8–10 nm (about 10 ring diameters). In this region of enhanced plasticity flaws can be 

somewhat blunted, and once the surface affected region spans the wire it can deform 

plastically, as shown in Figure 5.2. 

The existence of surface-plasticized layer 8–10 nm thick in silica glass may also 

resolve the puzzle why the fracture seems to proceed by the nucleation and 

coalescence of cavities when monitored at the intersection of the crack tip front with a 

macroscopic free surface240,241, whereas analysis of fractography inside the sample 

does not reveal any signs of ductility242. 

It is clear that the failure behaviour in the simulation of silica glass depends 

strongly on the interaction potential. We therefore performed simulations with the 

three-body potential of Vashishta et al.233 and the two-body potential by van Best, 



 109 

Kramer and van Santen (BKS)235. It is important to note that both potentials lead to 

different defect structures in the unstrained glass samples. In particular, the BKS 

potential allows for the existence of over-coordinated atoms, which are not observed 

in the Vashishta samples. As can be seen from the stress-strain curves in Figure 9.3 

and the snapshots in Figure 9.4, with the BKS potential, both the wire and the bulk 

sample deform in a ductile fashion. It is interesting to note that by suppressing the 

stress relaxation orthogonal to the tensile axis leads to brittle fracture of the PBC 

sample. However, these boundary conditions, also frequently used in MD simulations 

of glass fracture, do not represent the situation in experimental (uniaxial) tensile tests. 

From the bond switching (S) and loss (L) statistics (Figure 9.3) one sees clearly that 

more atoms are switching bonding partner than losing bonds. The S/L statistics 

during deformation can be thus used to characterize the ductility or brittleness of a 

given interaction potential.  
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Figure 9.3: Stress-Strain response for the BKS sample together with the bond-change 

statistics. 

 
Figure 9.4: Snapshots of the simulations with the BKS Potential at strains of 10, 20, 

and 40%. See Figure 9.2 for the colour code of the atoms. 
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