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MARKOV MODELS FOR LONGITUDINAL COURSE OF YOUTH

BIPOLAR DISORDER

Adriana Lopez, PhD

University of Pittsburgh, 2008

In this dissertation, mixture of first order Markov chains and Hidden Markov models were

used to model variable length sequences in order to find longitudinal patterns. Data from the

Course and Outcome of Bipolar Youth (COBY) study was used to estimate these models.

A mixture of four first order Markov chains found patterns of movers and stayers. Cluster

4 is the stayers. Cluster 3 are movers among the depression, well and submania states.

Cluster 2 are movers that tend to stay in the well state. Cluster 1 are movers that tend

to go to the submania/subdepression state. On the other hand, a hidden Markov model

with ten hidden states justifies the use of a scale with syndromal, subsyndromal and asymp-

tomatic episodes defined by psychiatrists. The inclusion of covariates in hidden Markov

models showed that: males move more than females, children move more than teenagers,

and patients who live in another situation move more than patients who live with both

natural parents. For bipolar diagnosis, BPII and BPNOS patients show similar transition

patterns. Age of bipolar onset sheds light on the stability of patients with a childhood and

an early adolescence onset. Thus, the possibility of an early diagnosis of the disorder would

consequently lead to provide appropriate treatment, and that would lessen the impairment

of bipolar youth. Socio-economic status showed patients with low socio-economic status

staying more weeks with subsyndromal submanic and mixed episodes, and less weeks with

subsyndromal depression and asymptomatic episodes. Quite the opposite behavior observed

for their counterparts in with high socio-economic status. This is the first research using

these two Markov models to analyze the longitudinal course of bipolar disorder in children
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and adolescents. No previous study has modeled the longitudinal course of bipolar disorder

using Markov models that estimate the transitions among the different episodes of bipolar

disorder. Furthermore, no previous study has modeled the effects of covariates consistently

with the longitudinal nature of the disease.
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1.0 INTRODUCTION

Real-world processes generally produce observable outputs which can be discrete or contin-

uous, stationary or nonstationary, and pure or corrupted (Rabiner, 1989). The real-world

process motivating this research is the follow-up of children and adolescents with bipolar

disorder from the Course and Outcome of Bipolar Youth (COBY) study. COBY is a large

longitudinal prospective study of 413 children and adolescents diagnosed with bipolar spec-

trum disorders (Bipolar I, Bipolar II or Bipolar Not Otherwise Specified) interviewed every

6 months. The follow-up period of these participants range from 6 months to 6 and a half

years. In the interview, DSM-IV-TR (2000) criteria information is gathered for each week

of the follow-up period, and then later translated into weekly ratings using the Psychiatric

Status Rating (PSR). The PSR scale is ordinal with values 1 through 6, with 1 represent-

ing an asymptomatic episode and 6 representing a severe episode. Depression, mania and

hypomania are three of the diagnoses measured in COBY using the PSR. The scores for

depression, mania and hypomania are combined in a single scale with twelve categories as

shown in Section 2.3.2. This 12 PSR scale is used to study the longitudinal course of youth

bipolar disorder.

Figure 1. shows the longitudinal course of four patients chosen at random from the 413

COBY participants with complete intake and follow-up data until January 2008. Figure 1.

pictures the variety and complexity of longitudinal profiles encountered in COBY patients.

Such complexity poses a challenge in finding a model that best describes patterns observed

in the longitudinal course of bipolar youth.

To date, the longitudinal course and outcome of bipolar disorder has been analyzed using

descriptive statistics, logistic regression and survival analysis (Marneros and Brieger, 2002).

Hennen (2003) reviews statistical methods for the analysis of longitudinal bipolar clinical

1
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Figure 1: Profile plots of a sample of four patients

trials, recommending consideration of summary measures, random effects or GEE regression

modeling and survival analysis. In a more recent and different venue, Pincus (2006) suggests

what kind of psychiatric serial data can be analyzed with approximate entropy (ApEn), and

Glenn et al. (2006) and Rao et al. (2006) present applications of ApEn to mood data from

patients with bipolar disorder.

For better understanding of bipolar disorder in youth, it is important to construct models

that help elucidate the dynamic process that these patients undergo. How does one con-

struct models of complex systems to understand and analyze their dynamic behaviors? For

processes like the one in COBY, models of dynamic behaviors are often best expressed in

terms of a sequence of events or phenomena that occur over time. This is typically called a

state-based modeling approach. This modeling approach defines the set of valid states of a

dynamic process and describes the system dynamics in terms of stochastic transitions among

these states. Markov models are one example of such models.

2



1.1 CONTRIBUTIONS

With the purpose of finding longitudinal course patterns, this dissertation studied two ap-

proaches to describe the dynamic behavior of bipolar youth: (i) clustering based on finite

mixtures of first-order Markov chain models, and (ii) hidden Markov models.

This is the first use of these two Markov models to analyze the longitudinal course of

bipolar disorder in children and adolescents. No previous study has modeled the longitudinal

course of bipolar disorder using Markov models that estimate the transitions among the

different episodes of bipolar disorder. Furthermore, no previous study has modeled the

effects of covariates consistently with the longitudinal nature of the disease process.

A brief description of the two Markov approaches studied in this dissertation follows.

More details about these models are presented in Chapter 3.

In clustering based on finite mixtures of first-order Markov chain models, clustering

means the partition of the bipolar youth into meaningful subgroups determined by the lon-

gitudinal course of the mood data observed for each subject. It is assumed that the data are

generated by a mixture of probability distributions in which each distribution corresponds

to a different group or cluster. Here the distributions define first order Markov chains, and

the parameters consist of initial probabilities and transition probabilities.

Specifically, the data is modeled as having been generated in the following fashion: 1)

a subject is assigned to a particular cluster with some probability, and 2) the behavior

of that subject over time is then generated from a first-order Markov chain model with

parameters specific to that cluster. It is assumed that this model generates the longitudinal

data that was observed, and that only the subject behaviors are seen and not the actual

cluster assignments. The Expectation-Maximization (EM) algorithm is used to learn the

proportion of subjects assigned to each cluster as well as the parameters of each first order

Markov model.

On the other hand, hidden Markov models (HMMs), have become popular media for

modelling phenomena such as speech (Rabiner, 1989; Juang and Rabiner, 1991). In HMMs,

there is a set of quantities, x, representing some unobservable phenomenon, and a set of

observables, y. Roughly speaking, y is a distorted version of x. In the context of speech

3



recognition, x represents a time-sequence of configurations of an individual’s vocal tract,

and y represents the corresponding time-sequence of projected sounds. The Markovian

assumption would be that the elements of x form a realization of a Markov chain (Archer

and Titterington, 2002).

Using the notation p(x) for the probabilities of all relevant x, and p(y|x) for the proba-

bility model assumed for the process by which x is distorted so as to produce y, the prime

interest is to use the observed y to make inferences about the unobserved x, and the norma-

tive statistical approach is to base such inferences on p(x|y), the conditional distribution for

x given y. By Bayes theorem:

p(x|y) ∝ p(y|x)p(x), (1.1)

where the constant of proportionality does not depend on x. Thus, the right-hand side

of 1.1 is the key to defining such quantities as the maximum a posteriori (MAP) estimate of

x, given y. The above notation is somewhat facile, however, because within the factors on

the right-hand side of 1.1 lurk parameters that are very likely to be unknown. In fact,

p(x) = p(x|β), p(y|x) = p(y|x, φ), (1.2)

where β and φ denote parameters. The ultimate goal is to estimate these parameters.

There are several approaches to estimating the parameters; some of these approaches are

likelihood-based. For hidden Markov models, the observed data are y, the parameters are

(β, φ), and the likelihood function is

L(β, φ; y) = p(y|β, φ) =
∑
x

p(y|x, φ)p(x|β) (1.3)

The practical problem in dealing with data from hidden Markov models is that the right-

hand side of 1.3 is not a simple function; the summation cannot be carried out explicitly

in order to create a neat formula and, consequently, computation of the maximizing (β, φ)

is not immediately straightforward. Were both x and y observed, the situation would be

simpler in that the appropriate likelihood would be

Lc(β, φ;x, y) = p(y|β, φ) =
∑
x

p(y|x, φ)p(x|β) (1.4)

4



and the two factors on the right-hand side of 1.4 can be maximized separately with

respect to β and to φ, respectively. The subscript ‘c’ is for ‘complete’. The pair (x; y)

constitute complete data, whereas the real-life data, y, are incomplete, with x missing. This

interpretation of data from hidden Markov models suggests the use of the EM algorithm,

an iterative procedure for computing maximum likelihood estimates (MLEs) for incomplete

data. For HMMs, the EM algorithm is usually known as the Baum-Welch algorithm.

In a hidden Markov model, the parameters are not strictly identifiable. For instance,

the indices of the states of the Markov chain can be permuted without changing the law

of the process {x}, and hence also the law of {y}. After defining an equivalence relation,

Leroux (1992) shows that the equivalence classes are identifiable, i.e., that parameter values

in different equivalence classes produce different stationary laws for the process {y}.

1.2 DISSERTATION OUTLINE

Chapter 2. of this dissertation presents relevant aspects of bipolar disorder, along with

a description of the COBY data. Finite mixtures of first-order Markov chain models for

clustering and hidden Markov models are described in Chapter 3. The results obtained with

these two models are reported in Chapter 4. Chapter 5. contains a discussion of the results,

along with the conclusions of this research. Also other approaches different to the two used

in this dissertation that can be explored to characterize the longitudinal course of bipolar

youth are proposed as future research.
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2.0 PSYCHIATRIC BACKGROUND

2.1 BIPOLAR DISORDER

2.1.1 Definition

Bipolar disorder, previously known as manic-depressive illness, is a familial recurrent mental

disorder characterized by periods of depression and mania (or hypomania, a less severe form

of mania) (DSM-IV, 1994). This disorder is accompanied by severe problems in the person’s

psychosocial functioning and increases the risk for drug abuse, legal problems and suicide.

Symptoms of depression, mania and hypomania are described below.

2.1.2 Diagnosis

One of the sources for psychiatric diagnosis is the Diagnostic and Statistical Manual (DSM)

written by the American Psychiatric Association, currently in its fourth text revised edition

(DSM-IV-TR, 2000). The DSM-based definition of bipolar disorder is built on the identifi-

cation of individual mood episodes. Mood episodes are discrete periods of altered feeling,

thought and behavior; they have a distinct onset and offset, beginning and eventually end-

ing gradually after several weeks or months. In bipolar disorder, the cardinal symptoms

are discrete periods of abnormal mood and activation that define depressive and manic (or

hypomanic) episodes, respectively. Diagnosis of such episodes is based exclusively on phe-

nomenology, the descriptive appearance of the syndrome of interest.

Major depressive episodes are defined by periods of depression or irritability, and/or loss

of interest or pleasure in life, which typically endure for weeks. These symptoms are of-
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ten accompanied by changes in sleep, appetite, energy, cognition, and judgment (First and

Tasman, 2004). Particular signs and symptoms of depression include: lasting sad, anxious,

or empty mood; feelings of hopelessness or pessimism; feelings of guilt, worthlessness, or

helplessness; loss of interest or pleasure in activities once enjoyed; decreased energy, a feeling

of fatigue or of being “slowed down”; difficulty concentrating, remembering, making deci-

sions; restlessness or irritability; sleeping too much, or too little; change in appetite and/or

unintended weight loss or gain; chronic pain or other persistent bodily symptoms that are

not caused by physical illness or injury; thoughts of death or suicide attempts. A depressive

episode is diagnosed if five or more of these symptoms last most of the day, nearly every day,

for a period of two weeks or longer (NIMH, 2002).

Manic episodes are defined by periods of abnormally elevated, expansive, or irritable

mood accompanied by marked impairment in judgement and social and occupational func-

tioning. These symptoms are frequently accompanied by unrealistic grandiosity, excess en-

ergy, and increases in goal-directed activity that have a high potential for damaging conse-

quences (First and Tasman, 2004). Symptoms and signs of mania include: increased energy,

activity, and restlessness; excessively “high”, overly good, euphoric mood; extreme irritabil-

ity; racing thoughts and talking very fast, jumping from one idea to another; distractibility,

cannot concentrate well; little sleep needed; unrealistic beliefs in one’s abilities and powers;

poor judgment; spending sprees; a lasting period of behavior that is unusual; increased sexual

drive; abuse of drugs, particularly cocaine, alcohol, and sleeping medications; provocative,

intrusive, or aggressive behavior; denial that anything is wrong. A manic episode is diag-

nosed if elevated mood occurs with three or more of the other symptoms most of the day,

nearly every day, for one week or longer. If the mood is irritable, four additional symptoms

must be present (NIMH, 2002).

Diagnosis of bipolar disorder derives from the occurrence of individual episodes over

time. Those who experience major depressive and manic episodes are diagnosed with bipolar

I disorder or BPI (DSM-IV-TR, 2000) and those with major depressive and milder or shorter

episodes of mania, usually called “hypomanic episodes” are diagnosed with bipolar II disorder

or BPII (DSM-IV-TR, 2000). DSM-IV (1994) is the first version of the DSM series to include

a specific category for bipolar II disorder. The separation of type II from both type I and
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major depressive disorders was supported by evidence found in studies of bipolar disorder

(First and Tasman, 2004). According to the DSM-IV-TR (2000), people who have significant

manic, hypomanic and depressive symptoms, but who do not fulfill the criteria for BPI or

BPII are classified as “bipolar disorder not otherwise specified” or BPNOS.

2.1.3 Children and adolescents

Literature concerning adult samples has noted that 20% to 40% of adults report that their

onset was during childhood, with depression as the first episode (Geller and Luby, 1997).

Several other studies report the onset of bipolar disorder occurring during youth for a large

number of patients. Particularly, for studies on prepubertal and adolescent populations,

there is a general consensus that bipolar disorder can and does exist in children and ado-

lescents, and furthermore, that it leads to marked impairment in functioning—specifically,

marked deterioration in: academic achievement; work effort; maternal, paternal and peer

relationships and extracurricular involvement (Shulman et al., 2002).

However, bipolar disorder is difficult to recognize and diagnose in youth, because it

does not fit precisely the symptom criteria established for adults, and because its symptoms

can resemble or co-occur with those of other common childhood-onset mental disorders.

Additionally, symptoms of bipolar disorder may be initially mistaken for normal emotions

and behaviors of children and adolescents. (NIMH, 2000). Shulman et al. (2002) report

about the consistency across studies in the findings that youths with bipolar disorder appear

to have higher rates of mixed mania and rapid mood changes than adults. The most common

mania symptoms among youths are psychomotor agitation (irritable and prone to destructive

outbursts), reduced sleep duration and talkativeness. On the other hand, when they are

depressed, bipolar youths have: a sad appearance, poor self-steem, hallucinations, frequent

absences from school or poor performance in school, somatic complaints (headaches, muscles

aches, stomachaches or tiredness), they talk of or make efforts to run away from home, they

are irritable, they complain, cry unexplainably, isolate socially, communicate poorly, and are

extremely sensible to rejection or failure (Shulman et al., 2002; NIMH, 2000).

Existing evidence indicates that bipolar disorder beginning in childhood or early adoles-
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cence may be a different, and possibly more severe, form of the illness than older adolescent-

and adult-onset bipolar disorder. When bipolar disorder begins before or soon after puberty,

it is often characterized by a continuous, rapid-cycling, irritable, and mixed symptom state

that may co-occur with disruptive behavior disorders, such as attention deficit hyperactivity

disorder (ADHD) or conduct disorder (CD), or may have features of these disorders as ini-

tial symptoms. In contrast, later adolescent- or adult-onset bipolar disorder tends to begin

suddenly, often with a classic manic episode, and to have a more episodic pattern with rela-

tively stable periods between episodes, and there is also less comorbidity. Studies comparing

youth- versus adult-onset bipolar disorder attribute the differences in illness characteristics

either to the possibility that an earlier age of onset indicates a more severe biological form

of the illness, or that an earlier onset interrupts psychosocial development. Both factors are

likely involved in explaining the consistent findings that an earlier age of onset tends to be

associated with greater overall psychopathology and impairment (Shulman et al., 2002).

Summarizing, prepubertal onset manic-depressive disorder may not present with the sud-

den or acute onset and improved interepisode functioning characteristic of the disorder in

older adolescents and adults. Rather, it may present with a picture of continuous, mixed,

rapid cycling of multiple brief episodes. Therefore, future studies of the longitudinal course

of bipolar children will be crucial for developing long-term, prophylactic treatments for im-

plementation during the prepubertal years (Geller and Luby, 1997).

2.1.4 Longitudinal course

Both phenomenological types of data, cross-sectional and longitudinal, are essential for the

definition of mood disorders and the proper diagnosis of bipolar disorder (First and Tasman,

2004). Very often the diagnosis of bipolar disorder can be correctly made only during the

long-term course of the illness, because in the majority of cases the first episode of the

disorder is depressive. Thus, the concept of bipolar disorder is fundamentally defined by its

course (Marneros and Brieger, 2002).

The longitudinal course of any mental disorder includes all phenomena which occur after

the onset of the illness. Features of major importance when studying longitudinal course are
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(Marneros and Brieger, 2002):

• onset of the disorder(type of onset, age of onset)

• episodes (i.e., type of episode, number, frequency, length)

• cycles (i.e., number, length, frequency, intervals, persisting symptoms, stability of syn-

drome shift)

• activity of the episodes (i.e., re-manifestation during a defined period of time)

• outcome (the end-point of follow-up in a defined period of time)

Longitudinal course and outcome can be assessed with different methodologies. A com-

promise between the retrospective and prospective perspectives may be the concept of a

catch-up study, i.e., information comes from case records and is retrospectively assessed,

while present data are assessed by “catching up” with the former patients and actively

examining them.

Another descriptive characteristic of a study is the observation time: long-term (10 or

more years), medium-term (4-9 years) and short-term (1-3 years). Another distinction among

studies is controlled vs. naturalistic studies. In the former, the researcher controls certain

variable that may modify longitudinal course and outcome, such as treatment. In the latter,

the researcher observes longitudinal course and outcome without interfering with the natural

course of the illness.

2.2 STATISTICAL ANALYSIS OF LONGITUDINAL COURSE OF

BIPOLAR DATA

Hennen (2003) reviews statistical methods for the analysis of longitudinal bipolar clinical

trials involving relatively large samples, with outcome measures obtained repeatedly over-

time. Special circumstances affecting choice of methods in bipolar disorder research include:

(i) longitudinal study designs are preferable, with repeated measurements made at several

time points; (ii) outcome measures that can be considered continuous or quasi-continuous,

such as change-from-baseline scores on a psychiatric rating scale, may be preferable to or at
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least should supplement, binary outcome measures; (iii) it may be advisable to adjust for

baseline severity levels, even with randomized, blinded assignment; (iv) missing data due

to subject dropout and other reasons occur frequently, and data analytic methods need to

accommodate missingness; (v) temporal variation in outcome measures is often considerable,

requiring a large number of subjects to assure adequate statistical power.

Several methods are commonly used to assess outcomes obtained serially in longitudi-

nal (repeated measures) bipolar disorder research. Seven of these are widely used (Hennen,

2003): 1. Endpoint analysis, 2. Endpoint analysis with last-observation-carried-forward

(LOCF), 3. Summary measures (including slope estimation and area-under-the-curve esti-

mation) (Senn et al., 2000), 4. Random effects/mixed effects regression modeling or gener-

alized estimating equation (GEE) regression modeling (Laird and Ware, 1982; Diggle et al.,

1994; Hardin and Hilbe, 2003), 5. Time-to-event (survival analysis) modeling (Klein and

Moeschberger, 1997), 6. Multivariate analysis of variance (MANOVA), and 7. Analysis of

variance (ANOVA) with repeated measures (Winer et al., 1991).

Of these seven alternatives, Method 1 is sometimes useful, especially when the number

of repeated measures is small. Method 2 is very commonly used, especially in controlled

treatment trials research. For Method 3, if the summary measure is selected appropriately,

this methods yields readily interpretable results and missing data are typically tolerated

acceptably well, although they may disrupt reliable estimation of the chosen summary mea-

sure. Method 4 has the flexibility to be extended in various ways by the selection of different

modeling assumptions, all the available data are used, there is tolerance of missing data and

covariate adjustments are readily incorporated. Method 5 is increasingly widely used be-

cause of its meaningful clinical and scientific results in their time-to-signal-events outcomes.

Method 6 is of little practical use because a missing observation requires casewise deletion

and it essentially disregards the time dimension. Method 7 may be useful in some situations

in which the ε degrees of freedom adjustment does not reduce the statistical power substan-

tially. All these methods can be applied to data obtained in observational studies acquiring

information sequentially over time.

The choice of an appropriate method depends on several factors. If there are only two

time periods, then for continuous data a summary statistic combining baseline and endpoint
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observations is likely to be the most useful approach, a t-test or a simple linear regression

model can be done. For a binary outcome, logistic regression is recommended. When there

are multiple time periods and time-to-event data are available , then survival analysis can be

used. Alternatively, random effects or GEE methods can be chosen. After illustrating the

seven methods in a clinical trial of medicines used to treat mania, Hennen (2003) recommends

that bipolar disorder investigators doing longitudinal research consider summary measures,

random effects or GEE regression modeling and survival analysis as potentially more useful.

Marneros and Brieger (2002) present a review of the longitudinal course and outcome

of bipolar disorder studies, mainly for naturalistic studies. Among the results at follow-up

reported by these studies are descriptive statistics such as the number of episodes, length of

episodes, impairment, cycle count and length, switch rates, symptomatology changes, times

to recovery, relapse rates, hospitalization percentage. The statistical analyses used in most of

such studies are logistic regression and survival analysis, depending on the response variable

of interest.

Other statistical analyses already applied in longitudinal studies of bipolar disorder is

approximate entropy (ApEn). It was introduced as a model-independent quantification of

the regularity (complexity) of data. This approach calibrates an ensemble extent of sequen-

tial interrelationships, quantifying a continuum ranging from totally ordered to completely

random, with larger values corresponding to greater apparent process randomness or serial

irregularity and smaller values corresponding to more instances of recognizable features or

patterns in the data. For ApEn, discerning changes in order from apparently random to very

regular is the primary statistical focus (Pincus, 2006).

ApEn assigns a non-negative number to a sequence or time-series. Two input param-

eters, a run length m and a tolerance window r must be specified to compute ApEn. It

measures the logarithmic likelihood that runs of patterns that are close (within r) for m

contiguous observations remain close (within the same tolerance width r) on next incre-

mental comparisons. Theoretical analysis and clinical applications have estimated standard

parameter values, 1 or 2 for m and a fixed value of 0.1 to 0.25 times the standard devia-

tion of the individual subject time series. These input parameters produce good statistical

reproducibility for ApEn for time series of lengths 60 or more. ApEn has been used when
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the time series for all subjects have the same length. Pincus (2006) suggests what kind of

psychiatric serial data can be analyzed with ApEn and Glenn et al. (2006) and Rao et al.

(2006) present applications of approximate entropy to mood data from patients with bipolar

disorder.

2.3 COURSE AND OUTCOME OF BIPOLAR YOUTH STUDY

The Course and Outcome of Bipolar Youth (COBY) study is funded by the National Insti-

tute of Mental Health. COBY was designed to build on and extend the existing scientific

database on the cross-sectional presentation and longitudinal course of pediatric bipolar

disorder (Birmaher et al., 2006).

2.3.1 Demographics

Up to January 2008, there were 413 participants in COBY having intake and follow-up data.

These participants were enrolled in outpatient and inpatient units at three university centers:

Brown University (n=135), University of California at Los Angeles (n=74) and University

of Pittsburgh Medical Center (n=204).

The 413 children and adolescents (mean age±SD: 12.63±3.26) were assessed by semi-

structured interview and diagnosed as BPI (n=244), BPII (n=28) or BPNOS (n=141).

There are several variables measured at intake, among them: demographic characteristics,

age of onset and duration of bipolar spectrum illness and symptom severity (Birmaher et al.,

2006). Despite the huge number of characteristics measured on each patient at intake, the

interest of this dissertation is only in the demographic variables. Here is brief summary of

the COBY patients in terms of the chosen variables. 185 patients experienced the bipolar

onset during childhood, 123 during early adolescence and 105 during late adolescence. Social

economical status, an ordinal variable with categories ranging from 1 (low SES) to 5 (high

SES), has this distribution: 7.5%, 17.2%, 21.1%, 34.6% and 19.6%. The percentage of males

in the study is 53.5% and 42.1% of the patients live with both natural parents.
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2.3.2 Longitudinal data: Psychiatric Status Rating

COBY also measured longitudinal changes in psychiatric symptomatology, functioning, and

treatment exposure. They were assessed using the Longitudinal Interval Follow-up Evalu-

ation (LIFE) (Keller et al., 1987). The LIFE was administered to adolescents and parents

separately. On the other hand, younger children were interviewed together with their par-

ents, because often these children have problems determining the times of their symptoma-

tology. Any discrepancies between the informants’ responses were discussed and a summary

score based on all available information was determined. The LIFE evaluates the longitudi-

nal course of symptoms by identifying “change points”, frequently anchored by memorable

dates for the subject (e.g., holidays, beginning of school). The severity of ongoing symp-

toms, the onset of new symptoms and the episode polarity for bipolar disorder since the last

appointment are tracked on a week-by-week basis using the LIFE Psychiatric Status Rating

(PSR) scale.

For the data at hand, there are a total of 71,328 longitudinal entries that result from the

follow-up of the 413 participants. The numbers of weeks of follow-up range from 26 to 337

weeks, with median 176 weeks, which puts COBY between a short and medium term study,

according to the study characteristics described by Marneros and Brieger (2002). Regarding

the design, COBY is a catch-up study and since treatment has been given to the patients

throughout the follow-up without randomizing the subjects to any treatment, this does make

COBY a naturalistic study.

The Psychiatric Status Rating (PSR) was developed to generate analyzable data about

the longitudinal course of a subject’s psychopathology. The PSR’s are numeric values that

have been operationally linked to the DSM-IV-TR (2000) criteria. DSM-IV criteria informa-

tion is gathered in the interview, and then later translated into ratings for each week of the

follow-up period. The ratings indicate the severity level of an episode, as well as whether the

patient has recovered or relapsed. For DSM-IV mood disorders, the PSR scores range from

1 for no symptoms, 2 to 4 for varying levels of subthreshold symptoms and impairment, and

5 to 6 for full criteria with different degrees of severity or impairment. Comorbid disorders

and psychosis are also rated on a weekly basis on a 3-point scale of 1 to 3, where 3 indicates
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threshold symptomatology. There are 22 diagnoses rated in the PSR for each child. Only

three of them are under study here: depression, hypomania and mania. Table 1. contains

the meaning and description of the the PSR scale used to rate the severity of these three

diagnoses.

Table 1: Six-point rating scale for Psychiatric Status Rating

CODE TERM DESCRIPTION
6 Definite criteria

(severe)
Meets DSM-IV criteria for definite episode and has either
prominent psychotic symptoms or extreme impairment in
functioning

5 Definite criteria Meets DSM-IV criteria for definite, current episode, but
has no prominent psychotic symptoms or extreme impair-
ment in functioning

4 Marked Does not meet definite DSM-IV criteria, but has major
symptoms or impairment from the disorder

3 Partial remis-
sion

Considerably less psychopathology than full criteria with
no more than moderate impairment in functioning, but still
has obvious evidence of the disorder

2 Residual Either patient claims not to be completely back to ”usual
self” or rater notes the presence of one or more symptoms
of this disorder in no more than a mild degree

1 Baseline Patient returns to ”usual self” without any residual symp-
toms of this disorder, but may or may not have significant
symptoms from other condition or disorder

The 6-point PSR scales for depression, mania and hypomania can be combined in a

single 12-point PSR scale as shown in Table 2. Thus, a single sequence is generated for

each COBY participant, instead of having three separated sequences. This scale is arranged

in such a way that the lower two values correspond to depressive episodes, then the well

episode, followed for the categories of the manic episodes (submania, hypomania and mania)

with each of the following: pure, subdepression and MDD. This scale is the one used in the

statistics reported for the PSR scores.
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Table 2: The twelve PSR categories for follow-up data

Score Episode Depression Mania Hypomania
1 Major Depressive Disorder (MDD)-Pure 5-6 1 1-2
2 Subdepression only 3-4 1 1-2
3 Well 1-2 1 1-2
4 Submania only 1-2 1 3-4
5 Submania/Subdepression 3-4 1 3-4
6 Submania/MDD 5-6 1 3-4
7 Hypomania-Pure 1-2 1 5-6
8 Hypomnia/Subdepression 3-4 1 5-6
9 Hypomania/MDD 5-6 1 5-6
10 Mania-Pure 1-2 5-6 1-2
11 Mania/Subdepression 3-4 5-6 1-2
12 Mixed state 5-6 5-6 1-2

2.3.3 Descriptive statistics of the PSR

A fairly simplified characterization of the COBY follow-up data at hand is: (i) the three

longitudinal sequences (one for each: depression, mania and hypomania) have been coded

into one sequence for each COBY participant, (ii) each sequence is represented as a list of

discrete symbols, and (iii) each symbol represents one of twelve possible PSR categories.

As an exploratory analysis, the initial states probabilities and the transition matrix of

a first order Markov chain have been computed: (i) using the data from all 413 COBY

participants and (ii) by bipolar diagnosis, i.e., for BPI, BPII and BPNOS. The results are

reported int he next two sections.

2.3.3.1 Initial state probabilities Regarding the episode observed in the first week of

follow-up for each of the COBY patients, Table 3 contains the distribution of the initial state

for all patients and by bipolar diagnosis.

Clearly, the most frequent initial state overall and in each of the bipolar groups is Well

(3). About a third of COBY patients were in a well state when entering the study. This is

also observed within diagnoses.
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However, the picture changes a little when talking about the least frequent initial state.

Overall, Hypomania/MDD (9) is the least frequent. Hypomania/Subdepression (8) and

Hypomania/MDD (9) and are the least frequent initial state for BPI. For BPII, states 7 to

12—those related to hypomania and mania—were not observed as initial states; among the

states that were observed, Submania/Subdepression (5) is the least frequent initial state.

Lastly, states 7 and 10 to 12—Hypomania pure and the mania states—were not observed

as initial states for the children and adolescents diagnosed with BPNOS. Hypomania/MDD

(9) is the least frequent initial state among the initial states observed for BPNOS.

Table 3: Initial state distribution (in percentages)

PSR 1 2 3 4 5 6 7 8 9 10 11 12

All 8.7 9.0 31.5 13.1 17.0 5.8 1.2 1.0 0.7 4.8 2.4 4.8

BPI 7.4 7.8 31.6 10.3 13.1 5.7 2.1 0.8 0.8 8.2 4.1 8.2

BPII 25.0 10.7 35.7 10.7 7.1 10.7

BPNOS 7.8 10.6 30.5 18.4 25.5 5.0 1.4 0.7

2.3.3.2 Transition matrices As a description of the episode transitions experienced

by the COBY patients, the transition probability matrix of a first order Markov chain was

computed by averaging the frequency of the transitions of all patients, specifically:

pjk =
njk∑12
k=1 njk

where,

njk =
413∑
i=1

Li−1∑
t=1

I(PSR = k at week t+ 1|PSR = j at week t), j, k = 1, . . . , 12

where, I(·) is an indicator function that equals 1 when its argument is true and 0 other-

wise.
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The transition matrices by bipolar diagnoses were also computed, again averaging the

frequency of the transitions of patients sharing the same diagnosis. In the four transition

matrices below, a zero means that no transition was observed in COBY from the PSR score

in the row to the PSR score in the column.

Table 4. presents a summary of the overall transition probabilities among the twelve PSR

scores. Note that the transitions on the diagonal have values above 0.71 and the transition

from Well to Well (3,3) has the highest probability. All transitions off the diagonal are below

0.10, except for Submania only to Well (4,3) and for Hypomania-Pure to Well (7,3). This

transition probability matrix suggest that COBY patients tend to stay on the same episode,

they do not transition to another episode too often.

Table 4: Overall transition probabilities among the 12 PSR scores

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0.80

[2,] 0.79

[3,] 0.91

[4,] 0.12 0.80 0

[5,] 0.86

[6,] 0.83 0

[7,] 0.13 0.74 0

[8,] 0.74

[9,] 0 0.82 0 0

[10,] 0 0.71

[11,] 0 0.84

[12,] 0.84

0 means a zero-transition probability and blank means probability between 0 and 0.10

Besides, there are eight transitions that were not observed overall in COBY patients:

Submania/MDD→ Mania/Subdepression (6,11), Hypomania pure→ Mania/Subdepression
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(7,11), Submania only←→ Hypomania/MDD (4,9 and 9,4), Hypomania/MDD←→ Mania

pure (9,10 and 10,9) and Hypomania/MDD ←→ Mania/Subdepression (9,11 and 11,9).

A similar summary of the transition probabilities for patients diagnosed with BPI is

presented in Table 5. Again the highest transition probability is observed for the Well to

Well (3,3) transition, and all the probabilities on the diagonal are greater than 0.73. In

contrast, there are only three transitions off the diagonal with probabilities above 0.10.

Those transitions correspond to Submania only to Well (4,3), Hypomania-Pure to Well and

Hypomania/Subdepression to Subdepression only (8,2). There are twelve transitions that

were not observed for BPI patients.

Regarding the transition probability matrix for BPII patients, there are 57 transitions

that did not occur in COBY (see Table 6), not surprising given that there are only 28

individuals in this group. Most of the observed transitions are in the upper left corner of

the matrix. For BPII, the transitions on the diagonal are between 0.44 and 0.88, with the

probabilities for Well-Well (3,3) being the highest. This time there are several transitions

off the diagonal with probabilities above 0.10.

For BPNOS, the transition probabilities on the diagonal of the transition probability

matrix are above 0.66 and below 0.91. The highest probabilities are for transitions Well to

Well (3,3) and Mixed state to Mixed state (12,12). Only three probabilities off the diagonal

are greater than 0.10: Hypomania-Pure to Well (7,3), Mania-Pure to MDD-Pure (10,1) and

Mania-Pure to Subdepression only (10,2). There are 31 zero-probability transitions.

Thus from the results obtained at this exploratory stage, it could be said that COBY

patients, overall and by bipolar diagnosis, tend to stay on the same episode and do not move

to another episode too often. However, there are some slight differences among the bipolar

diagnosis. They differ in transitions observed off the diagonal. And BPII seems to be the

group with patients that transition more frequently.
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Table 5: Transition probabilities among the 12 PSR scores for BPI patients

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0.80

[2,] 0.80

[3,] 0.91

[4,] 0.14 0.79 0 0

[5,] 0.86

[6,] 0.80 0

[7,] 0.11 0 0.79 0

[8,] 0.10 0 0.75

[9,] 0 0.83 0 0

[10,] 0 0 0.73

[11,] 0 0.83

[12,] 0.83

0 means a zero-transition probability and blank means probability between 0 and 0.10

20



Table 6: Transition probabilities among the 12 PSR scores for BPII patients

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0.75 0.10 0

[2,] 0.75 0.13 0 0 0 0

[3,] 0.88 0 0

[4,] 0.32 0.59 0 0 0

[5,] 0.79 0 0 0 0

[6,] 0.20 0.72 0 0 0

[7,] 0.21 0.29 0 0 0.44 0 0 0 0

[8,] 0 0 0.18 0.67 0 0

[9,] 0.16 0 0 0 0 0.13 0.63 0 0 0

[10,] 0 0 0.20 0.10 0 0.10 0 0 0 0.50 0 0.10

[11,] 0 0 0 0 0 0 0 0.84 0

[12,] 0.18 0 0.14 0 0 0 0 0 0 0 0.63

0 means a zero-transition probability and blank means probability between 0 and 0.10
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Table 7: Transition probabilities among the 12 PSR scores for BPNOS patients

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0.81 0 0

[2,] 0.78 0

[3,] 0.91

[4,] 0.84 0 0

[5,] 0.87 0

[6,] 0.88 0 0

[7,] 0.12 0.67 0 0 0

[8,] 0 0.75 0 0

[9,] 0 0 0 0.87 0 0

[10,] 0.12 0.13 0 0 0.66 0

[11,] 0 0 0 0 0.86

[12,] 0 0 0 0 0 0.91

0 means a zero-transition probability and blank means probability between 0 and 0.10
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3.0 STATISTICAL LITERATURE REVIEW

A review of two Markov model techniques found in the literature to find patterns in discrete

longitudinal sequences of varying length are presented in the following sections.

3.1 MIXTURES OF FIRST ORDER MARKOV CHAIN MODELS FOR

CLUSTERING

Cadez et al. (2003) present a mixture of first-order Markov chain models to cluster Internet

users. The description of their model is given here in terms of the COBY follow-up data. The

data is modeled as having been generated in the following fashion: 1) a subject is randomly

assigned to a cluster with unknown probabilities of cluster assignment, and 2) the behavior

of that subject is then generated from a Markov chain model with parameters specific to

that cluster.

This approach to clustering is sometimes called a model-based (or mixture model) ap-

proach. The clustering model described above is a finite mixture of Markov models.

Let Xn be a multivariate random variable taking on values xn corresponding to the

behavior of the nth child or adolescent, n = 1, . . . , N . Let C be a discrete-valued variable

taking on values c1, c2, . . . , cK . The value of C corresponds to the unknown cluster assignment

for a child. A mixture model for X with K components has the form:

p(xn|θ) =
K∑
k=1

p(ck|θ)pk(xn|ck, θ) (3.1)

where p(ck|θ)is the marginal probability of the kth cluster satisfying
∑

k p(ck|θ) = 1, and
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pk(x|ck, θ) is the statistical model describing the distribution of Xn for subjects in the kth

cluster. θ denotes the parameters of the model. Details on θ for the first order Markov

chain model are given below.

In this research, Xn = (X1, X2, . . . , XLn) is an arbitrarily long sequence of variables

describing the bipolar conditions of the nth child who has been followed during Ln weeks.

The variable Xi takes on some value xi from among the M possible PSR categories or

states representing the child’s bipolar conditions. The assumption here is that each model

component is a first-order Markov chain model:

pk(xn|ck, θ) = p(xn1|θIk)
Ln∏
i=2

p(xni|xn(i−1), θ
T
k )

where θIk denotes the parameters of the probability distribution over the PSR category

at intake among subjects in cluster k, and θTk denotes the parameters of the probability

distributions over transitions from one category to the next by a subject in cluster k. This

model captures (to some degree) the nature of the child’s bipolar conditions. Specifically, it

captures the child’s condition at intake, the dependency between two consecutive conditions

and the last condition observed in the follow-up.

Explicitly, θ in the model described above is θ = {π, θI , θT}, where:

• π is a vector of K mixture weights, π = {π1, . . . , πK},
∑K

k=1 πk = 1

• θI is a set of K initial state probability vectors, θI = {θI1, . . . , θIK} where the per-

component initial state probabilities θIk, 1 ≤ k ≤ K are vectors of length M : θIk =

(θIk,1, . . . , θ
I
k,M),

∑M
j=1 θ

I
k,j = 1

• θT is a set of K transition matrices, θT = {θT1 , . . . , θTK} where the per-component transi-

tion probability matrices θTk , 1 ≤ k ≤ K are square matrices of order M : θTk = {θTk,j,l},∑M
l=1 θ

T
k,j,l = 1

After estimating the model parameters given the data, the model can be used to assign

subjects to clusters as follows. Given the observed behavior xn of subject n, the probabil-

ity distribution over the hidden variable C corresponding to the cluster assignment of the
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subject, can be computed by Bayes’ rule:

p(ck|xn, θ) =
πkpk(xn|ck, θ)∑K
j=1 πjpj(xn|cj, θ)

. (3.2)

The probabilities p(ck|xn, θ) are sometimes called membership probabilities. Once these

probabilities have been computed, the subject is assigned to the cluster with the highest

probability.

3.1.1 Estimating the parameters in the model

3.1.1.1 Bayesian estimation To encode prior knowledge about the domain and/or to

smooth the maximum likelihood estimates, a prior probability distribution over the param-

eter values, denoted p(θ), can be introduced. A criterion for estimating the parameters is

to identify those parameter values that maximize the posterior probability of θ given the

training data:

θMAP = arg max
θ
p(θ|x1, . . . ,xN) = arg max

θ

p(x1, . . . ,xN |θ)p(θ)
p(x1, . . . ,xN)

= arg max
θ
p(x1, . . . ,xN |θ)p(θ)

Closed-form solutions for θMAP do not always exist and iterative algorithms such as the

EM are used to search for maxima. Each variable Xi is finite, p(xn1|θIk) is a multinomial

distribution, and p(xni|xn(i−1), θ
T
k ) is a set of multinomial distributions. A prior distribution

used often for the parameters of a multinomial distribution is the Dirichlet distribution. A

Dirichlet distribution for the multinomial distribution with parameters φ = (φ1, . . . , φa) is

given by

p(φ1, . . . , φa|α1, . . . , αa) =
Γ(
∑a

i=1 αi)∏a
i=1 Γ(αi)

a∏
j=1

φ
αj−1
j (3.3)

subject to
∑a

i=1 φi = 1, 0 < φi < 1, αi > 0. Given this Dirichlet prior for φ, suppose

we observe data (a multinomial sample) such that there are ni occurrences of state i for

i = 1, . . . , a. Then, the posterior distribution for φ is another Dirichlet distribution with

hyperparameters (α1 + n1, . . . , αa + na). Thus, the Dirichlet distribution is a conjugate

distribution for multinomial sampling.

25



3.1.1.2 The EM algorithm The expected value of the objective function over the class-

posterior distribution using a fixed set of “current” parameters, denoted by Q, is the key

quantity of the EM. For the log-posterior (MAP) function, lPx1,...,xN
(θ) = log p(x1, . . . ,xN |θ)+

log p(θ),

Q(θ, θold) = 〈lPx1,...,xN
(θ)〉P (θold)

=
N∑
n=1

K∑
k=1

Pn,k(θold) log[πkp(xn|ck, θ)] + log p(θ) (3.4)

where Pn,k(θ), 1 ≤ n ≤ N , 1 ≤ k ≤ K is the class-posterior probability distribution

given in (3.2). Maximizing Q with respect to each subset of parameters θ, the update rules

for each set of parameters are:

• Mixture weights:

πk =

∑N
n=1 Pn,k(θold) + απk∑K

k′=1[
∑N

n=1 Pn,k′(θold) + απk′ ]
(3.5)

where απk is the hyperparameter associated with πk, k = 1, . . . , K.

• Initial state probabilities:

θIk,j =

∑N
n=1 Pn,k(θold)I(xn1 = j) + αIk,j∑M

j′=1[
∑N

n=1 Pn,k(θold)I(xn1 = j′) + αIk,j′ ]
(3.6)

where αIk,j is the hyperparameter associated with θIk,j and I(xn1 = j) is an indicator

function that equals to 1 if the arguments are equal and 0 otherwise, k = 1, . . . , K and

j = 1, . . . ,M .

• Transition probabilities:

θTk,j,l =

∑N
n=1 Pn,k(θold)δj,l(xn) + αTk,j,l∑M

l′=1[
∑N

n=1 Pn,k(θold)δj,l′(xn) + αTk,j,l′ ]
(3.7)

where αTk,j,l is the hyperparameter associated with θTk,j,l and δj,l(xn) denotes the number

of transitions from state j to state l in xn, k = 1, . . . , K and j, l = 1, . . . ,M .
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3.1.1.3 Initialization of the EM algorithm The likelihood function in Equation (3.1)

usually has multiple local maxima; thus, a search for the overall maximum requires the

application of the EM algorithm multiple times from a wide selection of starting values.

Even when starting from several points, all of the EM runs may fail to converge to the global

maximum, or the algorithm may get trapped in a flat likelihood area. Therefore, it is of

special interest to obtain a reasonable set of initial values. The usual approach to specifying

an initial set of starting values is to generate θ randomly.

3.1.1.4 Stopping rule of the EM algorithm One may be näıvely tempted to use

a stopping rule for the EM algorithm based on the changes in the parameters or based on

the log-likelihood being sufficiently small. Unfortunately, taking small EM-steps does not

imply that the algorithm is getting close to the global maximum. It may be possible that

the algorithm has been trapped in a flat log-likelihood area in which case either the relative

change in the parameter or the log-likelihood measures only lack of progress in the estimation

process. To avoid drawing this wrong conclusion, we need a more appropriate stopping rule.

Böhnig et al. (1994) proposed the use of the following stopping rule criterion, which would

force the algorithm to stop when the solution is near a local maximum:

stop if lstopj − lj < tol (3.8)

where lj is the log likelihood value at the jth iteration of the EM algorithm,

lstopj = lj−2 +
1

1− aj
(lj−1 − lj−2),

with

aj =
lj − lj−1

lj−1 − lj−2

,

and tol is the desired tolerance.
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3.1.2 Choosing the number of components or clusters

The fit of a mixture model to a given data set can only improve (and the likelihood can

only increase) as more components are added to the model. Hence likelihood cannot be used

directly in assessment of models for cluster analysis (Fraley and Raftery, 1998). Here are

the evaluation criteria used to choose the number of clusters or components in the mixture

of first order Markov chain models.

3.1.2.1 Bayesian Information Criterion (BIC) An advantage of the mixture-model

approach to clustering is that it allows the use of approximate Bayes factors to compare

models. This gives a systematic means of selecting not only the parametrization of the

model, but also the number of clusters. The Bayes factor is the posterior odds for one

model against the other assuming neither is favoured a priori. When EM is used to find

the maximum mixture likelihood, a reliable approximation to minus twice the log Bayes

factor called the BIC (Schwarz, 1978) is applicable. The smaller (more negative) the value

of the BIC, the stronger the evidence for the model. In the BIC, a term is added to the

loglikelihood penalizing the complexity of the model, so that it may be maximized for more

parsimonious parameterizations and smaller numbers of groups than the loglikelihood. The

BIC can be used to compare models with differing parameterizations, differing numbers of

components, or both. Although standard regularity conditions for the BIC to give consistent

estimators of the parameters do not hold for mixture models, there is considerable theoretical

and practical support for its use in this context (Fraley and Raftery, 1998).

3.1.2.2 Normalized Entropy Criterion (NEC) Celeux and Soromenho (1996) pro-

posed the normalized entropy criterion as a criterion to be minimized to assess the number

of components in a mixture model.

NEC(K) =
E(K)

L(K)− L(1)
(3.9)

where L(·) corresponds to the log likelihood of the mixture model with (·) components

and
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E(K) = −
K∑
j=1

N∑
n=1

p(ck|xn, θ) ln p(ck|xn, θ) ≥ 0

with p(ck|xn, θ) as defined in Equation (3.2). This criterion determines K∗ which min-

imizes NEC(K), 2 ≤ K ≤ Ksup. K∗ is then chosen as the number of components in the

mixture if NEC(K∗) < 1 otherwise no clustering structure is declared in the data (Biernacki

et al., 1999).

3.1.2.3 Markov Chain Cross-Validation (MCCV) Cross-validation is a well-known

technique to select a model from a family of candidate models. In probabilistic model-

based clustering–i.e., finite mixture models, where each component can be considered as a

cluster–, any score function which measures the quality of fit of the density also provides

a candidate function for model selection. Smyth (2000) presents cross-validated likelihood

as an appropriate score function for choosing the number of components in finite mixture

models.

Here are some details of this measure. Let ltraink = log p(θ̂k(x1, . . . ,xN)|x1, . . . ,xN) de-

note the log-likelihood of the fitted model with k components, with θ̂k estimated using the

data set x1, . . . ,xN and the log-likelihood evaluated on that same data. ltraink is a non-

decreasing function of k since the increment on mixture components allows better fit to the

data. Hence, ltraink do not provide clues about the number of components.

Instead, assuming that there is a large test data set xN+1, . . . ,xN+R that was not used

to fit the model, the log-likelihood ltestk = log p(θ̂k(x1, . . . ,xN)|xN+1, . . . ,xN+R), corresponds

to the log-likelihood evaluated on the xN+1, . . . ,xN+R data set, but with the parameters of

the model determined by x1, . . . ,xN . ltestk or test log-likelihood or log predictive score can

be interpreted as a function of k, keeping x1, . . . ,xN fixed. Smyth (2000) showed a property

of the test log-likelihood that motivates its use as a model selection criterion in this context.

However, a large independent data set xN+1, . . . ,xN+R is not always available. A prac-

tical alternative for model selection is to use a cross-validated estimate of the test log-

likelihood: lcvk . In one version of cross-validation, the available data are repeatedly parti-

tioned into two sets, one is used to build the model and the other is used to evaluate the

statistic of interest. Let M be the number of partitions. For the ith partition, denote by
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ei the data subset used for evaluation of the log-likelihood and x − ei be the remaining

data, which is used for model estimation. Therefore, the cross-validated estimate of the test

log-likelihood for the kth model is:

lcvk =
1

M

M∑
i=1

log p(θ̂k(x− ei|ei) (3.10)

Depending on how one chooses the partitions, different cross-validation methodologies

have been proposed Smyth (2000). One of them, “v-fold” cross-validation, partitions x1, . . . ,xN

in v disjoint test subsets: {s1, . . . sv}, each of size N/v. Two special cases are v = N , known

as “leave-one-out” and v = 10, known as the ten-fold cross-validation. For model selection

in linear regression, several authors have proposed a particular CV procedure generating M

independent partitions, each with a fixed fraction β of the data used as the test sample and

1−β used to estimate the parameters. This last procedure is known as “Repeated Learning

Testing” (RLT) or “Monte Carlo Cross Validation” (MCCV).

3.1.2.4 Score The number of clusters (or components in the mixture) is chosen by find-

ing the model that accurately predicts R new “test” cases xN+1, . . . ,xN+R. That is, a model

with K clusters that minimizes the out-of-sample predictive log score is chosen:

Score(K,xN+1, . . . ,xN+R) = −
∑R

h=1 log2 p(xn+h|θK(x1, . . . ,xN))∑R
h=1 Lh

(3.11)

3.2 HIDDEN MARKOV MODELS

The basic theory of hidden Markov models (HMMs) was published in a series of classic papers

by Baum and his colleagues in the late 1960s and early 1970s. Rabiner (1989) provides an

overview of the basic theory of HMMs (as originated by Baum and his colleagues) and

provides practical details on methods of implementation of the theory.

A Hidden Markov Model (HMM) is a probabilistic model of the joint probability of

a collection of random variables {O1, . . . , OT , q1, . . . , qT}, where {O1, . . . , OT} denotes an

observed sequence and {q1, . . . , qT} denotes a hidden sequence. The Ot variables are either
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continuous or discrete and the qt variables are always discrete (Bilmes, 1997). Under an

HMM, there are two conditional independence assumptions:

1. The tth hidden variable, given the (t− 1)th hidden variable, is independent of previous

variables (both observed and hidden):

P (qt|qt−1, Ot−1, . . . , q1, O1) = P (qt|qt−1)

2. The tth observation, given the tth hidden variable, is independent of all other variables

(past and future):

P (Ot|qT , OT , qT−1, OT−1, . . . , qt+1, Ot+1, qt, qt−1, Ot−1, . . . , q1, O1) = P (Ot|qt)

3.2.1 Elements of an HMM

When {O1, . . . , OT} are categorical, an HMM is characterized by the following:

1. The number of states in the model (K). Although the states are hidden, for many

practical applications there is often some physical significance attached to the states or to

sets of states of the model. The individual states will be denoted as S = {S1, S2, . . . , SK},

and the state at time t as qt.

2. The number of distinct observation symbols per state (M). The observation symbols

correspond to the physical output of the system being modeled. The individual symbols

will be denoted as V = {v1, v2, . . . , vM}.

3. The state transition probability distribution A = {aij} where aij = P [qt+1 = Sj|qt = Si],

1 ≤ i, j ≤ K. When any state can reach any other state in a single step, we have aij > 0

for all i, j. For other types of HMMs, aij = 0 for one or more (i, j) pairs.

4. The observation symbol probability distribution in state j, B = {bj(m)}, where bj(m) =

P [Ot = vm|qt = Sj], 1 ≤ j ≤ K, 1 ≤ m ≤M . Here bj(m) ≥ 0 and
∑M

m=1 bj(m) = 1.

5. The initial state distribution π = πi where πi = P [q1 = Si], 1 ≤ i ≤ K. πi ≥ 0 and∑K
i=1 πi = 1.
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Given appropriate values of K, M, A, B and π, the HMM can be used as a generator to

give an observation sequence: O = O1O2 . . . OT , (Ot is one of the symbols from V and T is

the number of observations in the sequence) as follows:

1. Choose an initial state q1 = Si according to the initial state distribution π

2. Set t = 1

3. Choose Ot = vm according to the symbol probability distribution in state Si, i.e., bi(m)

4. Transit to a new state qt+1 = Sj according to the state transition probability distribution

for state Si, i.e., aij

5. Set t = t+ 1; return to step 3 if t < T ; otherwise terminate the procedure

A complete specification of an HMM requires specification of two model parameters (K

and M), specification of observation symbols, and the specification of the three probability

measures A, B and π. The complete parameter set of the model will be indicated by

λ = (A,B,π.

3.2.2 The three basic problems for HMMs

For the model presented above there are three basic problems of interest that must be solved

for the model to be useful in real-world applications:

• Problem 1

Given the observation sequence O = O1O2 . . . OT , and a model λ = (A,B,π), how do

we efficiently compute P (O|λ), the probability of the observation sequence, given the

model?

• Problem 2

Given the observation sequence O = O1O2 . . . OT , and the model λ, how do we choose a

corresponding state sequence Q = q1q2 . . . qT , which is optimal in some meaningful sense

(i.e., best “explains” the observations)?

• Problem 3

How do we select the model parameters λ = (A,B,π) to maximize P (O|λ) for the

observation sequence O?
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Problem 1 is the evaluation problem, how to compute the probability that the observed

sequence was produced by the model (scoring how well a given model matches a given

observation sequence). In problem 2 the goal is to uncover the hidden part of the model, i.e.,

find the “correct” state sequence. For practical situations, an optimality criterion is used

to solve this problem as best as possible. There are several reasonable optimality criteria

that can be imposed, and hence the choice of criterion is a strong function of the intended

use for the uncovered state sequence. For problem 3, the objective is to optimize the model

parameters so as to best describe how a given observation sequence comes about.

3.2.3 Solutions to the three basic problems for HMMs

3.2.3.1 Solution to problem 1: probability evaluation The most straightforward

way of calculating the probability of the observation sequence O = O1O2 . . . OT , given the

model λ, is through enumerating every possible state sequence of length T . This involves on

the order of 2TKT calculations, which is computationally unfeasible, even for small values of

K and T . Thus, a more efficient procedure is required to solve Problem 1. Fortunately such a

procedure exists and is called the forward-backward procedure. Only the forward procedure

is needed to solve Problem 1. Consider the forward variable, defined as the probability of

the partial observation sequence O1O2 . . . Ot, (until time t) and state Si at time t, given the

model λ:

αt(i) = P (O1O2 . . . Ot, qt = Si|λ)

Forward procedure: αt(i) can be solved inductively as follows:

1) Initialization: α1(i) = πibi(O1), 1 ≤ i ≤ K

2) Induction: αt+1(j) =

[∑K
i=1 αt(i)aij

]
bi(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ K

3) Termination: P (O|λ) =
∑K

i=1 αT (i)

In a similar manner, consider a backward variable, defined as the probability of the

partial observation sequence from t+ 1 to the end, given state Si at time t and the model λ:
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βt(i) = P (Ot+1Ot+2 . . . OT |qt = Si, λ)

Backward procedure: βt(i) can be solved inductively as follows:

1) Initialization: βT (i) = 1, 1 ≤ i ≤ K

2) Induction: βt(i) =
∑K

j=1 aijbj(Ot+1)βt+1(j), t = T − 1, T − 2, . . . , 1,

1 ≤ i ≤ K

3.2.3.2 Solution to problem 2: optimal state sequence The most widely used crite-

rion is to find the single best state sequence, i.e., to maximize P (Q|O, λ), which is equivalent

to maximize P (Q,O|λ). A formal technique for finding this single best state sequence exists,

based on dynamic programming methods, and is called the Viterbi algorithm.

Viterbi algorithm: To find the single best state sequence Q = q1q2 . . . qT , for the given

observation sequence O = O1O2 . . . OT , the best score (highest probability) along a single

path, at time t, which accounts for the first t observations and ends in state Si needs to be

defined:

δt(i) = max
q1q2...qT

P [q1q2 . . . qt = i, O1O2 . . . Ot|λ]

By induction we have: δt+1(j) = [max
i
δt(i)aij]bj(Ot+1). To actually retrieve the state

sequence, it is necessary to keep track of the argument which maximized δt+1(j), for each

t and j. It is done via the array ψt(j). The complete procedure for finding the best state

sequence can now be stated as follows:
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1) Initialization: δ1(i) = πibi(O1), 1 ≤ i ≤ K

ψ1(i) = 0

2) Recursion: δt(j) = max
1≤i≤K

[δt−1(i)aij]bj(Ot), 2 ≤ t ≤ T , 1 ≤ j ≤ K

ψt(i) = arg max
1≤i≤K

[δt−1(i)aij] 2 ≤ t ≤ T , 1 ≤ j ≤ K

3) Termination: P ∗ = max
1≤i≤K

[δT (i)]

q∗T = arg max
1≤i≤K

[δT (i)]

4) Path backtracking: q∗T = ψt+1(q
∗
t+1) t = T − 1, T − 2, . . . , 1

3.2.3.3 Solution to problem 3: parameter estimation The third, and by far the

most difficult, problem of HMMs is to determine a method to adjust the model parameters

(A,B,π) to maximize the probability of the observation sequence given the model. There

is no known way to analytically solve for the model which maximizes the probability of the

observation sequence. However, λ = (A,B,π) can be chosen such that P (O|λ) is locally

maximized using an iterative procedure such as the Baum-Welch method (or equivalently

the EM algorithm). Rabiner (1989) discusses an iterative procedure, based primarily on the

classic work of Baum and his colleagues, for choosing model parameters.

In order to describe the procedure for iterative update and improvement of HMM pa-

rameters, the probability of being in state Si at time t, and state Sj at time t+ 1, given the

model and the observation sequence, denoted by ξt(i, j) needs to be defined:

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ)

From the definitions of the forward and backward variables, ξt(i, j) can be written in the

form:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑K

i=1

∑K
j=1 αt(i)aijbj(Ot+1)βt+1(j)
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where the numerator is just P (qt = Si, qt+1 = Sj, O|λ), and dividing by P (O|λ) gives

the desired probability. Now, letting γt(i) represent the probability of being in state Si at

time t, given the observation sequence and the model: γt(i) = P (qt = Si|O, λ), γt(i) can be

related to ξt(i, j) by summing over j: γt(i) =
∑K

j=1 ξt(i, j). Now,

T−1∑
t=1

γt(i) can be interpreted as the expected number of transitions from Si, and

T−1∑
t=1

ξt(i, j) can be interpreted as the expected number of transitions from Si to Sj

Then, a set of reasonable update formulas for π, A and B are:

πi = γ1(i), aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

, bj(m) =

T∑
t=1,Ot=vm

γt(j)

T∑
t=1

γt(j)

.

Hence, πi is the expected frequency in state Si at time t = 1, aij is the expected number

of transitions from state Si to state Sj over the expected number of transitions from Si, and

bj(m) is the expected number of times in Sj and observing symbol vm over the expected

number of times in Sj.

3.2.3.4 Parameter estimation for independent sequences When data on N indi-

viduals is available to estimate the parameters in the hidden Markov model, and those N

observed sequences are independent of each other, i.e.,

P (O|λ) =
N∏
n=1

P (On|λ)

The update formulas for π, A and B are:
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πi =
1

N

N∑
n=1

γ
(n)
1 (i), aij =

N∑
n=1

Tn−1∑
t=1

ξ
(n)
t (i, j)

N∑
n=1

Tn−1∑
t=1

γ
(n)
t (i)

, bj(m) =

N∑
n=1

Tn∑
t=1,O

(n)
t =vm

γ
(n)
t (j)

N∑
n=1

Tn∑
t=1

γ
(n)
t (j)

3.2.4 Implementation issues for HMMs

3.2.4.1 Scaling Since αt(i) is the sum of a large number of terms, all of them products

of probabilities, then as t starts to get big (t ≥ 10), each term of αt(i) starts to head

exponentially to zero. For sufficiently large t (t ≥ 100), the dynamic range of the αt(i)

computation will exceed the precision range of essentially any machine. Hence, the only

reasonable way of performing the computation is by incorporating a scaling procedure. The

basic scaling procedure is to multiply αt(i) by a scaling coefficient that is independent of i. A

similar scaling is done to the βt(i) coefficients, since these also tend to zero exponentially fast,

and then, at the end of the estimation of the HMM parameters, the scaling coefficients are

canceled out exactly (Rabiner, 1989). The recommended scaling factor for the forward and

backward variables performed at every observation time is 1/
∑K

i=1 αt(i) (Devijver, 1985).

3.2.4.2 Choosing the model size and type Whiting and Pickett (1988) present three

information criteria to choose the number of hidden states in an HMM. It assumes an ergodic

model, i.e., for the hidden Markov model λ = (A,B,π), with K hidden states and M possible

categories for the observed sequences, the elements of B are strictly positive and no elements

of A and π are constrained a priori to be zero. Hence, the total number of independent

parameters is (K − 1)(K + 1) +K(M − 1). Notice that this quantity is a function of K, the

number of hidden states, since M is fixed a priori.

Each of the criteria involves minimization of a function of the maximum likelihood and

the number of independent model parameters with the following general form:

IC(k) = −max
λk

logPr(O;λk) + f(k, L) (3.12)

where k denotes the number of independent parameters in λ, and L denotes the obser-

vation sample length. The function f(k, L) is a non-decreasing function of k and L. The
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three criteria are:

a. AIC(k) (Akaike, 1974): f(k, L) = k

b. BIC(k) (Schwarz, 1978; Rissanen, 1978): f(k, L) = 1
2
k logL

c. CIC(k) (Hannan and Quinn, 1979): f(k, L) = k log logL
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4.0 RESULTS

These results were obtained after fitting the models by running codes in the statistical

package R, version 2.6.1., in an Intel Core Duo processor with a speed of 2.8 GHz and memory

of 4 GB 667 MHz. Due to the complexity of the models and the size of the longitudinal data

in COBY, the computation time ranged from few hours to whole days.

4.1 FINDING PATTERNS IN LONGITUDINAL COURSE

4.1.1 Mixture of first order Markov chains

The estimation of the parameters of the mixture of first order Markov chain model was done

using the EM algorithm as described in Equations (3.5), (3.6) and (3.7). The statistical

package R version 2.6.1. was used to write and run codes to fit this model.

EM initializations were random using a Dirichlet distribution as in Equation 3.3, with

φi = 1 for: the vector of k mixture proportions, each of the k vectors of 12 initial state

probabilities and each row of the k 12 × 12 transition probability matrices. Between 20 to

40 random initializations were used each time that the EM algorithm was run.

The convergence of the EM algorithm was determined as described in Equation (3.8),

with a tolerance of 0.001. The EM algorithm was run for k from 2 to 10, 16 times, each

time fixing 20 partitions. In each partition, 50% of the patients were allocated in a training

set and the remaining 50% were allocated in a test set. The training set was used to fit the

model and the test set was used to evaluate the MCCV and Score criteria. After all the

runs, M = 320 in Equation (3.10).
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The number of free parameters in the model depends on the number of number of com-

ponents k and number of PSR categories, which is 12. Values of the number of compo-

nents ranged from 2 to 10. Specifically, for each model the number of free parameters is

(k − 1) + k · 11 + k · 12 · 11 = 144k − 1.

Table 8. presents the summary of the evaluation criteria to choose the number of com-

ponents in the mixture of first order Markov chains model.

Table 8: Evaluation criteria for assessing the number of components in the mixture of first

order Markov chains

k AIC BIC NEC MCCV∗ Score∗

2 84126.64 87046.88 0.00107 21716.47 (899.96) 0.88127 (0.03340)

3 81526.07 85911.52 0.00133 21378.57 (908.86) 0.86752 (0.03306)

4 79969.49 85820.14 0.00073 21298.72 (912.78) 0.86430 (0.03364)

5 78747.95 86063.81 0.00105 21245.95 (946.47) 0.86216 (0.03516)

6 78025.75 86806.81 0.00234 21198.76 (923.16) 0.86024 (0.03417)

7 77508.38 87754.65 0.00358 21213.97 (932.72) 0.86084 (0.03424)

8 77093.60 88805.07 0.00252 21208.45 (945.32) 0.86061 (0.03458)

9 76983.37 90160.05 0.00377 21208.86 (957.30) 0.86063 (0.03518)

10 76465.81 91107.70 0.00344 21237.51 (939.48) 0.86180 (0.03448)

∗The standard deviation of the estimate of the criterion is given in parentheses

It can be appreciated that AIC does not help to take a decision, since it does not reach a

minimum for the values of k. On the other hand, the other criteria are minimized, however

not at the same value of k. As can be seen in boldface, BIC and NEC are both minimized for

k = 4, while the MCCV and the Score criteria suggest a mixture model with 6 components.

Therefore there was no consensus in the evaluation criteria to determine the number of

components of the mixture of first order Markov chains model.

Furthermore, only the BIC criterion follows a monotone pattern. The normalized entropy

criterion (NEC) oscillates between 0.00073 and 0.00377 in the range of k values. MCCV and

Score have a flat behavior, and also there are some ups and downs throughout the range
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of the number of components in the mixture. These findings lead to the selection of the

mixture model with four components, as estimated by the BIC. Nevertheless, the models

with three or with five components are also reasonable, given that the values for the BIC

criterion are close for k = 3, 4, 5. However, since the minimum value was attained at k = 4,

only the results for that model are reported.

4.1.1.1 Mixture of four first order Markov chains Appendix A. contains the param-

eters estimated for the mixture model with four components that had the largest likelihood

among the models with that number of clusters. Tables 23. and 24. show respectively, the

vectors of initial state probabilities and the transition probability matrix for the mixture of

four components. The percentage of individuals in components 4 through 1 are 69.41, 15.76,

10.71 and 4.12, respectively.

Figures 2., 3., 4. and 5. show the profiles of the patients in each of the four clusters, by

bipolar diagnosis. In cluster 1 there are ten, two and five patients respectively from BPI,

BPII, and BPNOS. Those numbers are 25, 3 and 16 in cluster 2; 34, 7 and 24 in cluster 3 and

the most frequent cluster, cluster 4, has 175 BPI patients, 16 BPII patients and 96 BPNOS

patients. From this distribution of bipolar diagnosis in the clusters, it can be concluded that

regarding the bipolar diagnosis this model does not help in identifying longitudinal patterns.

However, when looking Figure 2. in more detail, it can be appreciated that cluster 4 is

characterized by individuals that move among the twelve episodes in the PSR scale in Table

2 and also have several long stretches on a same PSR category. This observation can be

corroborated by the estimates in Table 23., where all twelve PSR categories have a positive

initial state probability. Also, in Table 24., where all the elements in the diagonal are greater

than 82% and all elements off-the-diagonal less than 6.5%. This cluster could then be labeled

as the cluster of the stayers.

Figure 3. shows that cluster 3 is distinguished by spikiness and periods on a same

episode during several weeks. From the parameters of this cluster in Table 23., episodes

Hypomania-Pure (7), Hypomania/Subdepression (8) and Mania/Subdepression (11) have a

very small probability as initial state, and most of the patients started their follow-up with

a Subdepression only (2), a Well (3) or a Submania/Subdepression (5) episode.
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Figure 2: Profile plots of patients in cluster 4 in the mixture of four first order Markov chains

by: (i) BPI, (ii) BPII, (iii) BPNOS
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Figure 3: Profile plots of patients in cluster 3 in the mixture of four first order Markov chains

by: (i) BPI, (ii) BPII, (iii) BPNOS
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Table 24. shows that the probabilities on the diagonal of the transition matrix vary

between 0.433 and 0.835. Among the transitions off-the-diagonal, those with a proba-

bility greater than 0.1 are: MDD-Pure (1) to Submania/MDD (6) and viceversa; Sub-

depression only (2) to Submania/Subdepression (5) and viceversa; Well (3) to Submania

only (4) and viceversa; Hypomania-Pure (7) to Well (3) and Submania only (4); Hypoma-

nia/Subdepression (8) to Subdepression only (2) and Submania/Subdepression (5); Mania-

Pure (10) to Well (3) and Submania only (4); Mania/Subdepression (11) to Subdepression

only (2) and Mixed state (12) to MDD-Pure (1).

Note that the transition probabilities are higher when moving from all states to states

1 through 6, therefore the individuals in this cluster are characterized by moving toward a

depression state (1 or 2), a well state (3) or a submania state (4, 5 or 6).

Cluster 2 shows even more spikiness and less stays on the same episode for several

weeks as can be appreciated in Figure 4. This time episodes Hypomania-Pure (7), Hy-

pomania/Subdepression (8), Mania/Subdepression (11) and Mixed State (12) have small

probabilities as initial states, as can be seen in Table 23.

In terms of transitions, Table 24. shows that the probabilities of staying on the same

episode are between 30.0% and 86.3%. Off-the-diagonal probabilities greater than 10% are

observed for entering a Well (3) state from: (1) MDD-Pure, (2) Subdepression only, (4)

Submania only, (7) Hypomania-Pure, (8) Hypomania/Subdepression, (10) Mania-Pure and

(11) Mania/Subdepression. Also for entering a Subdepression only (2) state from: (3) Well,

(8) Hypomania/Subdepression and (10) Mania-Pure. Other high probabilities are observed

from transitions Submania only (4) to Submania/Subdepression (5), Mania-Pure (10) to

MDD-Pure (1) and Mania/Subdepression (11) to Mixed State (12). It is also notorious than

in this cluster, when a patient presents a Mania/Subdepression episode, he/she experiences

a Well (3) or a Mixed state (12) episode in the following week. In conclusion, cluster 2 is

characterized mainly for patients who move but also spend several weeks in the Well state.

Figure 5. presents even a spikier pattern for patients classified in cluster 1. This cluster

contains patients who have several periods of frequent ups and downs. For cluster 1, Table

24. indicates that states involving MDD (1, 6 and 9) and the mania states (10 and up) have

an almost null probability of being initial states.
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Figure 4: Profile plots of patients in cluster 2 in the mixture of four first order Markov chains

by: (i) BPI, (ii) BPII, (iii) BPNOS
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Figure 5: Profile plots of patients in cluster 1 in the mixture of four first order Markov chains

by: (i) BPI, (ii) BPII, (iii) BPNOS

46



Table 24. shows that the transitions in the diagonal vary from 9% for Subdepression

only (2) to 90.3% for Submania/MDD (6). This time there are more transitions off-the-

diagonal with entries greater than 10%, the one for Mania/Subdepression (11) to Subma-

nia/Subdepression (5) is the largest, estimated at 66.5%. From MDD-Pure (1), the most

frequent transition is to Submania/MDD (6). In the same sense, other transitions that

should be highlighted are: Subdepression only (2) and Well (3) to Submania/Subdepression

(5) and viceversa, Hypomania with Subdepression and with MDD (8 and 9) to Subma-

nia/Subdepression (5), Hypomania/MDD (9) to Submania/MDD (6) and Mixed state (12)

to Well (3). These individuals clearly transition more than those in the previous three clus-

ters. These are movers, who tend to transition more often to a Subdepression only (2) state,

a Well state or a Submania/Subdepression (5) state, and stay in those three states for several

weeks.

To end the description of the findings of the mixture of four first order Markov chains

model, when looking to the three plots labeled (i), (ii) and (iii) in each figure of the four

clusters, it is observed that the range of PSR categories differs by bipolar diagnosis. That

shows that even though the clusters are identifying similar characteristics (spikiness and/or

long stretches on the same episode) for the bipolar longitudinal courses of children and

adolescents, the range of episodes varies by bipolar diagnosis.
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4.1.2 Hidden Markov models

Hidden Markov models were estimated as described in Section 3.2, which was found im-

plemented in the RHmm package in R (Taramasco, 2007). The number of hidden states k

was initially varied from 2 to 10, but since 10 was found by the evaluation criteria to be

the best hidden Markov model, the value of k was extended up to 12. The estimation was

done several times for each k, with tolerance 0.00001 for stopping the algorithm and with

100 random initializations for the parameters of each HMM. For the evaluation criteria in

COBY, L =
∑413

n=1 Tn = 71, 328 in Equation (3.12).

Table 9. reports the information criteria BIC and CIC. The model that maximizes both

of these criteria is the one with ten hidden states, as is highlighted with boldface.

Table 9: Evaluation criteria for assessing the number of components in hidden Markov

models

k BIC CIC

2 186350.47 186191.77

3 151238.58 150978.32

4 129568.66 129194.15

5 111507.58 111006.11

6 100680.24 100039.12

7 96342.06 95548.60

8 89511.71 88553.21

9 89627.66 88491.42

10 82994.46 81667.79

11 87029.61 85499.82

12 84628.94 82883.33

The parameters of the best hidden Markov model with ten hidden states expressed as

percentages are reported in Table 10. The initial state probabilities of the hidden states are

presented in the first row, followed by the transition probability matrix among the hidden
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states, and finally the distribution of the PSR categories conditional on each of the hidden

states are given in each of the columns in the last portion of the table.

Birmaher et al. (2006) reported results in eight categories, that was derived by grouping

the episodes in the twelve PSR scale as follows:

• Asymptomatic: 3

• DSM-IV syndromal episode:

– Pure MDD: 1

– Pure mania/hypomania: 7, 10

– Pure mixed: 12

– Cycling: 6, 8, 9, 11

• Subsyndromal episode:

– Subsyndromal pure depression: 2

– Subsyndromal pure mania: 4

– Subsyndromal Mixed: 5

From this classification, and the conditional distributions of observed PSR on the ten

hidden states in Table 10.—where each of the hidden states can be characterized by the most

frequent PSR category in the state as highlighted in boldface—the ten hidden states can be

labeled as:

• State 1: DSM-VI syndromal hypomania/mania (PSR’s 7 and 10: Hypomania pure and

Mania pure)

• State 2: Subsyndromal pure mania (PSR 4: Submania only)

• State 3: DSM-VI syndromal cycling (PSR’s 8 and 9: Hypomania/Subdepression and

Hypomania/MDD)

• State 4: DSM-VI syndromal cycling (PSR 11: Mania/Subdepression)

• State 5: Subsyndromal pure depression (PSR 2: Subdepression only)

• State 6: DSM-VI syndromal cycling (PSR 6: Submania/MDD)

• State 7: (PSR’s 2, 3, 4: Subdepression only, Well, Submania only)

• State 8: DSM-VI syndromal MDD and Pure mixed(PSR’s 1 and 12: MDD pure and

Mixed state)
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• State 9: Asymptomatic (PSR 3: Well)

• State 10: Subsyndromal mixed (PSR 5: Submania/Subdepression)

There is a striking similarity between these two classifications. States 1, 2, 5, 9 and

10 in the hidden Markov model with ten hidden states are identified as proposed by the

psychiatrists. States 3, 4 and 6 correspond to the group labeled as cycling by the psychiatric

team. State 8 fusions the MDD-Pure and Mixed state categories and State 7 which does

not appear in the psychiatrists classification, is a mixture of subsyndromal pure depression,

asymptomatic and subsyndromal pure mania.

Now that the hidden states had been labeled, it can be observed from the distribution

of the initial state in Table 10. that the asymptomatic state (9) is the most frequent. Thus,

most of the patients start the follow-up without bipolar symptoms. The least frequent states

is 4, one of the syndromal cycling states.

Note that the transition probability matrix in Table 10, shows probabilities over 88%

on the diagonal. Off the diagonal, only transitions from syndromal cycling (3 and 4) to

subsyndromal mixed (10) have probabilities over 5%.
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Table 10: Parameters of the HMM with ten hidden states (in percentages)

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

5.9 11.3 1.9 2.6 9.1 5.3 10.6 13.6 23.9 15.9

Transition

probability

matrix

1 91.0 3.7 0.4 0.4 0.4 0.1 0.8 0.4 2.4 0.4

2 0.6 94.3 0.1 0.3 0.5 0.3 0.2 2.5 1.3

3 0.7 0.1 90.5 0.7 1.0 0.5 0.1 0.5 0.6 5.4

4 1.0 1.0 1.1 88.0 0.7 0.5 0.1 1.6 0.5 5.5

5 0.1 0.3 0.1 92.5 0.2 0.4 1.6 3.8 1.1

6 0.2 1.6 0.4 0.5 91.1 1.6 0.3 4.2

7 0.3 0.4 0.5 0.1 96.0 1.2 1.2 0.3

8 0.3 0.3 0.2 0.1 3.3 0.9 1.8 90.3 2.3 0.6

9 0.3 0.6 1.1 0.3 0.5 96.9 0.2

10 1.2 0.4 0.4 0.9 1.2 0.2 0.4 0.6 94.6

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.2 0.1 0.6 75.1 0.1

2 2.7 94.3 12.0 0.1 0.1

3 3.0 0.3 0.2 0.1 59.7 0.1 99.6

4 96.7 20.1 0.2 0.1

5 3.1 1.3 0.5 4.8 4.3 99.6

6 99.5 0.2 5.7

7 54.8 0.1 2.1

8 1.2 65.5 0.6 0.2 0.3

9 0.1 31.7 0.2 0.2

10 36.0 0.1 0.6 1.7

11 0.1 0.1 98.6 0.2

12 1.0 0.7 0.2 0.2 17.1

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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4.2 FINDING PATTERNS INCLUDING COVARIATES

Assuming that the underlying process is a Markov process, this model can be represented

using the transition intensity matrix U:
−
∑

h6=1 u1h u12 . . . u1l

u21 −
∑

h6=2 u2h . . . u2l

...
...

. . .
...

ul1 ul2 . . . −
∑

h6=l ulh


A relation between: the matrix of transition probabilities of the hidden process over

a time interval t, P(t), and the transition intensity matrix U can be established with the

Kolmogorov forward differential equations

∂P(t)

∂t
= P(t)U (4.1)

where the element (i, j) in P(t) represents the probability of a transition from the state i

to the state j in a time interval t, denoted as pij(t). A solution to this system of differential

equations can be expressed as

P(t) = Adiag{eρt
1 , eρ

t
1 , . . . , eρ

t
k}A−1 (4.2)

where A is the square matrix containing in column i the eigenvector associated with the

eigenvalue ρi of the transition intensity matrix U (Marshall and Jones, 1995).

The model can be extended to introduce covariates as a proportional factor in the base-

line transition intensities. Thus, the element (i, j) of the transition intensity matrix U is

represented as

uij(z) = uij exp β′ijz (4.3)

where βij is the vector of coefficients associated with the vector of covariates z for the

transition between states i and j. Equation (4.3) for the transition intensity uij(z) resembles

the proportional hazard model with constant hazard function. The resulting transition
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intensity matrix U(z) for a subject with vector of covariates z in Equations (4.1) and (4.2)

to compute the transition probability matrix P(t|z).

The msm package (Jackson, 2007) in R allows to fit hidden Markov models with covariates

in the hidden states, as described above. In the following sections, the effect of gender, age,

cohabitation, bipolar diagnosis, age of bipolar onset and socio-economic status in the hidden

Markov model with ten states is analyzed separately, i.e., a model for each covariate.

4.2.1 Hidden Markov model with gender as covariate

Table 11. contains the parameters estimated for the hidden Markov model with 10 hidden

states when gender is included in the analysis. When gender is included in the model, the

estimates of the initial states probabilities even out throughout the hidden states.

Table 11: Parameters of the HMM with ten hidden states

with gender as covariate (in percentages)†

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

10.6 10.1 7.8 9.9 9.4 8.6 10.5 9.4 12.4 11.3

Transition

probability

matrix-

Females

1 65.9 2.7 1.6 3.3 5.2 3.1 5.6 4.9 3.7 3.9

2 0.7 97.3 0.5 0.2 0.1 0.2 0.2 0.3 0.4 0.1

3 0.4 1.4 57.5 1.8 9.5 2.7 6.5 5.9 5.8 8.4

4 0.2 3.3 1.7 77.6 3.1 2.4 3.0 3.6 2.3 2.7

5 0.2 0.7 0.2 0.1 95.4 0.6 1.3 0.2 1.0 0.3

6 0.5 2.3 1.2 1.6 1.6 83.9 1.8 2.4 1.3 3.5

7 0.7 0.8 0.7 1.0 1.6 0.6 93.4 0.6 0.1 0.5

8 0.5 1.3 0.9 1.4 2.5 1.3 1.7 88.5 0.9 1.0

9 1.0 0.8 0.2 97.8

10 0.5 1.2 0.5 0.7 0.9 0.1 0.4 0.1 0.2 95.4
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Table 11: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-

Males

1 60.3 2.8 1.7 3.9 5.5 3.9 6.5 5.5 4.6 5.4

2 0.8 94.6 0.8 0.5 0.4 0.6 0.6 0.6 0.9 0.2

3 0.4 1.5 54.1 1.8 9.4 2.8 7.6 6.5 7.3 8.5

4 0.2 3.7 2.4 71.2 3.5 2.9 4.1 4.0 3.9 4.2

5 0.2 1.2 0.6 0.5 90.5 1.0 2.0 0.6 2.3 1.0

6 0.5 2.8 1.8 2.4 3.1 75.0 2.8 3.5 3.2 4.8

7 0.7 0.9 1.2 1.3 2.6 1.2 89.2 1.3 0.2 1.3

8 0.6 2.0 1.4 2.2 4.2 2.4 3.3 78.7 3.0 2.5

9 1.0 0.8 0.3 0.1 0.1 0.1 0.1 97.5 0.1

10 0.8 1.3 0.6 0.9 1.4 0.3 0.9 0.3 0.6 92.9

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.6 0.1 0.5 76.4 0.1

2 4.3 94.1 18.3 0.1 0.1

3 4.4 0.3 0.2 0.1 61.7 0.1 99.6

4 96.6 13.5 0.2 0.1

5 3.1 1.3 0.5 5.1 3.3 99.6

6 99.5 0.2 4.4

7 80.4 0.1 1.6

8 1.7 65.9 0.5 0.1 0.2

9 0.1 31.3 0.2 0.2

10 6.2 0.1 0.6 1.3

11 0.2 0.1 98.7 0.2

12 1.0 0.7 0.1 0.2 17.4

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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Note that this time there are two transition matrices, one for females and one for males.

In both of them, probabilities over 80% are in boldface and italics. Probabilities above

5% and below 80% are in boldface only. In both matrices, states 1 (Syndromal hypoma-

nia/mania) and 3 (Syndromal cycling) are the most affected with the inclusion of gender,

because the probabilities of these states in the diagonal are between 54% and 66% and they

also have several transitions off the diagonal with probabilities above 5%. When comparing

the two transition probability matrices, note that the transitions on the diagonal are con-

sistently smaller for males. That indicates that males tend to transition more than females.

The conditional distribution of the observed PSR on the hidden states is similar to the one

estimated for the HMM without covariates. The only difference is for hidden states 1 and 7.

Hidden state 1 is mainly made up of PSR 7. And hidden state 7 has a different distribution

that the one observed for the HMM in Table 10, but it is made up of the same mixtures of

PSRs.

The observation above, about males moving more than females, is corroborated with

the mean sojourn times in Table 12. “Sojourn time” refers to the total lengths of all PSR

categories through the longitudinal course for a single patient. “Mean sojourn time” is the

average sojourn times for all patients. For hidden states 2, 5 and 8, the mean sojourn time

of female is double than the one for males. And consistently, the mean sojourn times in all

other hidden states are always greater for females. That shows that males tend to spend less

time in each of the states before moving to another state.

Table 12: Mean sojourn times by gender

Gender 1 2 3 4 5 6 7 8 9 10

Female 2.4 36.2 1.8 3.9 21.1 5.7 14.5 8.1 44.8 21.2

Male 2.0 17.7 1.6 2.9 9.8 3.4 8.5 4.1 38.2 13.3

In Appendix B, Figures 6. and 7. show the prevalence estimated with the hidden

Markov model with ten hidden states for females and males, respectively. For females, the

model overestimates state 2 (subsyndromal mania) during the whole follow-up span, and

underestimates state 9 (asymptomatic). The observed and estimated prevalences agree in
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all other states. For males, the model seems to do better, because the discrepancies in states

2 and 9, between the observed and estimates prevalences, are smaller than those observed

for females.

4.2.2 Hidden Markov model with age as covariate

Table 13. contains the estimates of the hidden Markov model with ten hidden states when

including age as covariate. Age was measured in years, but for this analysis, it was categorized

as 1 for age 13 or more and 0 otherwise. Thus, 1 corresponds to teenagers and 0 to children.

The distribution of the initial state is almost uniform. The transition probability matrices

show that children move more than teenagers do. All ten probabilities in the diagonal are

consistently smaller for children than they are for teenagers.

Table 13: Parameters of the HMM with ten hidden states

with age as covariate (in percentages)†

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

12.4 9.9 7.9 9.8 9.3 8.6 10.1 9.3 11.9 10.8

Transition

probability

matrix-

Children

1 59.3 0.7 1.2 4.1 5.1 4.6 6.9 4.2 7.2 6.7

2 0.8 93.3 0.9 0.5 0.8 0.7 1.5 0.3 0.8 0.4

3 1.5 4.5 51.3 2.7 5.9 4.5 5.8 4.3 8.8 10.7

4 2.5 2.7 0.9 68.1 3.7 2.9 5.0 3.3 5.1 5.8

5 0.7 1.3 0.9 1.0 89.8 0.7 2.2 1.0 1.7 0.7

6 0.2 2.0 0.8 2.5 3.2 74.5 3.7 3.4 4.0 5.7

7 1.6 0.8 1.2 1.7 2.1 1.5 86.7 2.2 0.7 1.6

8 0.3 1.6 1.8 2.1 5.0 2.5 4.2 75.9 3.6 3.1

9 0.3 0.9 0.2 0.7 0.1 0.7 97.1

10 0.8 1.5 0.8 0.7 1.5 1.3 1.2 0.6 1.0 90.6
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Table 13: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-

Teenagers

1 67.3 0.6 1.1 3.6 4.0 3.2 5.9 4.1 5.6 4.6

2 0.7 96.3 0.5 0.2 0.4 0.2 1.2 0.1 0.3 0.1

3 1.5 4.4 54.5 2.7 5.5 4.0 5.3 4.3 7.5 10.3

4 2.1 2.7 0.8 76.0 2.8 2.3 3.4 3.6 3.0 3.3

5 0.6 0.8 0.4 0.8 94.8 0.2 1.3 0.3 0.6 0.2

6 0.2 1.9 0.7 1.7 2.1 84.3 1.8 2.6 1.9 2.7

7 1.1 0.7 0.6 1.0 1.5 0.9 92.3 1.2 0.2 0.4

8 0.3 1.3 0.8 1.6 2.6 1.6 2.2 86.8 1.7 1.0

9 0.1 0.7 0.2 0.2 98.8

10 0.6 1.4 0.5 0.3 1.2 0.9 0.6 0.3 0.5 93.7

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.7 0.1 0.6 76.1 0.1

2 3.7 94.3 17.6 0.1 0.1

3 4.1 0.3 0.1 0.1 64.6 0.1 99.6

4 96.8 11.0 0.2 0.1

5 2.9 1.3 0.5 4.9 3.3 99.6

6 99.4 0.2 4.7

7 79.6 0.1 1.7

8 1.7 65.9 0.5 0.2 0.2

9 0.1 31.3 0.2 0.2

10 7.8 0.1 0.6 1.4

11 0.2 0.1 98.7 0.2

12 1.0 0.7 0.1 0.2 17.3

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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Also, for children, hidden states 1, 3, 4, and 6 (syndromal hypomania/mania and the

three syndromal cycling states) have several transitions off the diagonal with probabilities

over 5%. Below the diagonal the transition (8,5), syndromal MDD and Pure mixed to

subsyndromal pure depression, has probability 5%. The conditional distribution of the PSR

on the hidden state differs from the one estimated for the HMM with ten hidden states

without covariates in hidden states 1 and 7.

The mean sojourn times of children are consistently smaller than the ones observed for

teenagers, as seen in Table 14. In hidden states 2, 5, 7, 8, and 9 the mean sojourn times

are almost double for children. States 1 and 3, where children and teenagers have similar

behavior in the transition probability matrices, show similar mean sojourn times for children

and adolescents.

Table 14: Mean sojourn times by age

Gender 1 2 3 4 5 6 7 8 9 10

Children 1.9 14.3 1.5 2.6 9.1 3.4 6.8 3.6 33.7 9.9

Teenagers 2.5 26.4 1.6 3.6 18.4 5.8 12.2 7.0 79.9 15.2

The goodness of fit of this model can be assessed with Figures 8. and 9. in Appendix

B. The model for children does not seem to rise any objections. On the other hand, the

model for teenagers shows overestimation for state 2 in the whole follow-up range, and

underestimation for hidden state 10 between weeks 1 and 170.

4.2.3 Hidden Markov model with cohabitation as covariate

When covariate cohabitation (lives with both natural parents: yes or no) is considered in the

hidden Markov model with ten hidden states, it is found that the initial states distribution

gives the highest probability to hidden state 1, as can be seen in Table 15. Even though

the effect of cohabitation seems the same for the two categories, it is observed a consistent

pattern in the diagonal of the transition probability matrices. Those probabilities are smaller

for the patients who live in another situation different to living with both natural parents.
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This suggests that patients who live in another situation move more among the bipolar

episodes.

Again the conditional distribution of the PSR on the hidden states differs for hidden

states 1 and 7, from the ones estimated for the HMM without covariates.

Table 15: Parameters of the HMM with ten hidden states

with cohabitation as covariate (in percentages)†

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

13.9 9.6 7.5 9.6 9.0 8.3 10.0 9.1 12.1 10.8

Transition

probability

matrix-

Parents

1 63.0 4.0 1.6 3.7 3.8 2.7 6.0 6.7 4.8 3.9

2 0.2 97.6 0.1 0.4 0.4 0.5 0.1 0.4 0.1 0.1

3 1.1 1.5 58.9 4.3 7.2 2.9 5.8 5.0 5.4 8.0

4 1.1 2.1 1.9 77.1 3.0 2.2 3.5 3.5 2.7 3.0

5 0.4 0.7 0.4 0.7 94.4 0.1 0.7 0.2 2.1 0.3

6 0.5 2.0 1.0 1.7 2.0 84.1 2.0 2.2 2.0 2.5

7 0.8 0.7 0.6 0.6 1.3 0.6 93.9 1.0 0.1 0.3

8 1.2 0.7 0.9 1.5 2.8 1.5 2.1 87.4 1.2 0.8

9 0.7 0.6 0.3 0.1 98.0

10 0.4 1.2 0.6 0.3 0.6 0.8 0.6 0.2 0.4 94.9

Transition

probability

matrix-

Other

1 60.8 4.2 1.7 4.2 4.1 3.0 5.8 6.3 5.3 4.7

2 0.2 95.2 0.2 0.8 0.8 0.9 0.4 0.7 0.4 0.4

3 1.1 1.5 54.9 4.7 7.6 3.1 6.3 4.8 6.2 9.8

4 1.1 2.1 2.3 70.7 4.0 2.8 4.4 4.0 3.9 4.6

5 0.4 1.0 0.9 1.2 89.8 0.5 1.5 0.7 2.9 1.1

6 0.5 2.0 1.2 2.1 2.7 78.1 2.9 3.3 2.8 4.3

7 1.0 1.4 1.0 1.4 2.1 1.2 88.7 1.8 0.3 1.2

8 1.8 0.9 1.5 1.8 3.7 2.5 3.2 80.1 2.4 2.2

9 0.8 0.8 0.4 0.1 0.4 0.1 0.1 97.2 0.1
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Table 15: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

10 0.4 1.3 0.8 0.6 1.0 1.2 1.0 0.5 0.7 92.4
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Table 15: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.6 0.1 0.5 76.5 0.1

2 3.7 93.7 20.1 0.1 0.1

3 4.2 0.3 0.2 0.1 57.9 0.1 99.6

4 96.5 15.9 0.2 0.1

5 3.2 1.3 0.5 5.5 3.1 99.6

6 99.5 0.2 4.3

7 81.1 0.1 1.6

8 1.7 66.0 0.5 0.2 0.2

9 0.1 31.2 0.2 0.2

10 6.4 0.1 0.5 1.3

11 0.2 0.1 98.6 0.2

12 1.0 0.7 0.2 0.1 17.4

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%

Observing the mean sojourn times of cohabitation in Table 16., we see that the times

are consistently higher for patients who live with both natural parents. Furthermore, for

states 2, 5, 7 and 8, patients who live with both natural parents spent double the number

of weeks than those patients who live in another situation. Similar mean sojourn times are

observed for both categories in states: 1, 3, 4 and 6, (the syndromal hypomania/mania and

syndromal cycling states).

Plots of the prevalences for the two categories of cohabitation are in Appendix B. Figure

10. and 11 show that the model overestimates states 2, and underestimates states 9 from

week 150, for patients who live with both natural parents, and for patients who live in

another situation.

61



Table 16: Mean sojourn times by cohabitation

Cohabitation 1 2 3 4 5 6 7 8 9 10

With both natural parents 2.2 40.1 1.9 3.8 17.1 5.8 15.7 7.3 49.0 18.9

Other situation 2.0 20.0 1.7 2.9 9.2 4.0 8.2 4.4 34.3 12.4

4.2.4 Hidden Markov model with bipolar diagnosis as covariate

When bipolar diagnosis is included in the hidden Markov model with ten hidden states, the

initial state distribution ranges from 0.074 (hidden state 3) and 0.139 (hidden state 1), as

appears in Table 17.

Table 17: Parameters of the HMM with ten hidden states

with bipolar diagnosis as covariate (in percentages)†

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

13.9 9.7 7.4 9.6 9.0 8.2 10.3 9.0 12.1 10.9

Transition

probability

matrix-BPI

1 72.9 2.1 0.3 2.9 2.8 2.3 5.0 5.1 3.5 3.0

2 0.5 96.8 0.3 0.8 0.4 0.1 0.4 0.1 0.6 0.1

3 0.4 0.9 65.0 4.3 4.7 3.1 4.7 3.9 4.2 8.9

4 0.1 2.3 1.6 82.2 2.2 2.0 2.6 3.1 1.4 2.6

5 0.7 0.6 0.7 0.8 94.3 0.3 1.1 0.2 0.8 0.5

6 0.7 1.7 1.3 1.7 1.6 84.7 1.8 2.2 1.4 2.8

7 0.8 0.6 0.6 0.6 0.9 0.6 94.2 1.0 0.1 0.6

8 0.9 0.8 0.9 1.5 2.3 1.4 1.6 89.1 0.5 1.0

9 0.5 0.7 0.2 0.5 98.0

10 0.5 0.7 0.5 0.7 0.6 0.4 0.4 0.1 0.4 95.7
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Table 17: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-

BPII

1 61.4 2.1 0.4 4.0 5.0 2.9 6.9 6.8 5.3 5.1

2 0.5 93.5 0.7 0.9 0.9 0.3 1.0 0.4 1.4 0.5

3 0.4 1.0 58.6 4.4 5.7 3.5 5.6 4.0 6.4 10.4

4 0.2 2.4 2.6 67.5 3.7 3.7 4.6 5.8 4.2 5.3

5 0.9 0.7 0.8 1.0 90.1 0.7 2.1 0.6 1.9 1.1

6 0.8 1.6 1.7 2.0 2.3 80.0 2.4 3.4 2.1 3.8

7 1.3 0.7 0.9 1.1 1.7 1.1 89.6 2.2 0.2 1.4

8 0.9 0.9 1.2 1.7 3.0 2.1 2.6 84.6 1.3 1.7

9 0.7 0.9 0.4 0.1 1.0 0.2 0.1 96.6 0.1

10 0.6 1.3 0.9 0.9 1.4 1.0 1.0 0.4 1.0 91.5

Transition

probability

matrix-

BPNOS

1 60.4 2.1 0.5 4.4 5.2 3.0 6.6 6.6 5.5 5.7

2 0.5 93.2 0.7 0.9 1.0 0.4 1.0 0.4 1.4 0.5

3 0.4 1.0 56.5 4.8 6.1 3.5 5.7 3.9 7.2 10.9

4 0.2 2.4 2.5 67.8 3.7 3.7 4.5 5.5 4.0 5.5

5 0.9 0.8 0.9 1.2 89.0 0.9 2.2 0.7 2.0 1.4

6 0.8 1.6 1.7 2.2 2.4 78.6 2.5 3.5 2.3 4.4

7 1.4 0.7 1.0 1.4 1.9 1.4 87.7 2.3 0.2 1.9

8 0.9 0.9 1.4 2.1 3.4 2.6 3.3 81.4 1.7 2.4

9 0.7 1.1 0.4 0.1 1.1 0.3 0.1 96.1 0.1

10 0.6 1.4 0.9 0.9 1.4 1.1 1.1 0.5 1.0 91.0
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Table 17: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.6 0.1 0.5 76.4 0.1

2 3.9 93.0 21.9 0.1 0.1

3 4.3 0.3 0.2 0.1 55.6 0.1 99.6

4 96.3 16.3 0.2 0.1

5 3.4 1.3 0.5 6.2 3.4 99.6

6 99.5 0.2 4.5

7 80.8 0.1 1.4

8 1.7 65.7 0.5 0.1 0.2

9 0.1 31.5 0.2 0.2

10 6.4 0.1 0.5 1.2

11 0.2 0.1 98.6 0.2

12 1.0 0.7 0.2 0.1 17.4

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%

The transition probability matrices show that the highest probabilities on the diagonal

are estimated for BPI. Those same probabilities consistently decreased for BPII, and even

more for BPNOS. This observation and the fact that there are eleven transitions off the

diagonal with probabilities above 5% for BPII and BPNOS, implicate that the BPI patients

do not move to often among states, and than BPII and BPNOS patients have a similar

transition pattern.

The conditional distribution of observed PSR given the hidden state are similar to those

estimated for the HMM with ten hidden states without covariates, except for hidden states

1 and 7.

The mean sojourn times in Table 18. reiterates the observation made with the transition

probability matrices. BPI patients spend almost twice the number of weeks than patients
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with BPII and BPNOS diagnosis, for states: 2, 4, 5, 7, 9 and 10 (that corresponds to PSR

scores 1 through 5, and 12, i.e., pure depression episodes, well, submania pure and with

subdepression, and mixed state). BPI patients spend consistently more weeks in all ten

states than patients with either of the other two diagnoses. And BPII and BPNOS show the

same pattern in the number of days spend in each of the hidden states.

Table 18: Mean sojourn times by bipolar diagnosis

Diagnosis 1 2 3 4 5 6 7 8 9 10

BPI 3.2 30.1 2.3 5.0 17.0 6.0 16.5 8.6 49.0 22.7

BPII 2.0 14.9 1.9 2.5 9.5 4.4 8.9 5.9 28.6 11.0

BPNOS 2.0 14.1 1.7 2.5 8.5 4.1 7.5 4.8 24.6 10.4

Appendix B. contains Figures 12., 13. and 14. that show the observed prevalence and the

estimated prevalence of the HMM with ten hidden states with bipolar diagnosis as covariate.

Figure 12. shows underestimation for state 2, and for state 10 only from week 150 and up.

Overestimation is observed for state 9. For BPII and BPNOS patients, Figures 13. and

14. show overestimation for state 9 starting in week 150, and underestimation of state 10

starting around week 170.

4.2.5 Hidden Markov model with age of bipolar onset as covariate

The parameters of the HMM with ten hidden states when age of bipolar onset is included as

covariate are presented in Table 19. The distribution of the initial state is almost uniform.

Table 19: Parameters of the HMM with ten hidden states

with age of bipolar onset as covariate (in percentages)†

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

8.0 10.4 8.2 10.2 9.7 9.0 10.7 9.7 12.5 11.4
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Table 19: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-

Childhood

1 66.0 1.7 2.3 2.8 4.2 3.0 5.2 4.2 6.2 4.5

2 0.7 97.5 0.1 0.6 0.1 0.4 0.4 0.1

3 0.4 1.1 61.5 3.7 6.7 3.2 5.8 4.6 5.8 7.3

4 0.9 3.6 1.6 74.7 3.3 2.2 4.4 1.5 4.0 3.6

5 0.4 1.1 0.5 0.7 93.8 0.3 1.4 0.1 1.6 0.1

6 1.0 2.7 1.5 1.7 2.3 80.8 2.4 2.2 2.3 3.2

7 1.2 1.2 0.8 0.7 2.2 0.9 90.4 0.5 1.1 1.1

8 1.5 1.9 1.1 1.7 4.1 1.9 4.1 77.8 3.8 2.1

9 0.2 0.6 0.1 2.2 96.7

10 0.4 0.4 0.5 0.6 0.2 0.3 0.2 0.1 97.2

Transition

probability

matrix-

Early

adolescence

1 63.3 1.6 2.3 2.9 4.4 3.4 5.2 4.9 7.0 4.8

2 0.7 96.9 0.2 0.7 0.1 0.6 0.6 0.1 0.1 0.1

3 0.4 1.0 55.9 4.0 7.3 3.5 6.3 6.4 6.5 8.6

4 0.9 3.5 1.6 74.5 3.2 2.3 4.5 2.0 4.1 3.4

5 0.4 1.0 0.5 0.8 93.2 0.3 1.5 0.1 2.0 0.1

6 0.9 2.5 1.4 1.7 2.2 81.7 2.3 2.7 2.0 2.6

7 1.1 1.2 0.8 0.8 2.3 1.0 89.4 0.7 1.5 1.1

8 1.2 1.6 0.9 1.6 3.1 1.7 2.4 83.9 2.6 0.9

9 0.2 0.6 0.1 2.1 96.9

10 0.6 0.4 0.7 0.8 0.6 0.7 0.4 0.1 0.3 95.4
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Table 19: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-

Late

adolescence

1 58.6 1.6 2.5 2.9 5.0 4.0 5.7 5.3 8.7 5.8

2 0.9 95.0 0.4 0.8 0.3 0.9 1.1 0.2 0.2 0.2

3 0.4 1.1 53.3 4.1 8.1 3.7 6.9 7.0 7.2 8.3

4 0.9 3.9 1.8 66.8 4.2 3.2 6.0 3.5 5.2 4.6

5 0.5 1.6 0.9 1.1 89.1 0.7 2.2 0.4 3.1 0.4

6 1.0 2.7 1.8 1.8 2.8 74.8 3.3 3.5 3.9 4.3

7 1.5 1.3 1.0 1.3 3.1 1.4 83.9 1.3 3.4 1.9

8 1.5 1.8 1.1 1.8 4.4 2.6 4.4 75.5 4.4 2.5

9 0.4 0.7 0.2 0.1 0.1 2.3 96.2

10 0.8 0.4 0.9 1.0 1.1 1.0 0.8 0.2 0.7 93.0

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.7 0.1 0.6 76.6 0.1

2 3.7 95.2 14.2 0.1 0.1

3 4.3 0.3 0.2 0.1 66.6 0.1 99.7

4 96.9 12.8 0.2 0.1

5 2.9 1.3 0.5 4.1 2.9 99.6

6 99.5 0.2 4.1

7 80.9 0.1 1.7

8 1.7 66.1 0.5 0.2 0.2

9 0.1 31.2 0.2 0.2

10 6.4 0.1 0.6 1.3

11 0.2 0.1 98.7 0.2

12 1.0 0.7 0.2 0.2 17.4

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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The transition matrices in Table 19., show the highest probabilities on the diagonal, how-

ever states 1 and 3 (syndromal hypomania/mania and one of the syndromal cycling states)

have the lowest probabilities on the diagonal. Therefore, it is for those two states where

transitions off the diagonal have probabilities higher than 5%. This time, the probabilities

on the diagonal do not increase consistently through the three categories of age of bipolar

onset. For states 6, 8 and 9, the probabilities on the diagonal are higher for patients with

onset during early adolescence. In all the other states the probabilities on the diagonal are

always higher for patients with onset during childhood. This indicates that the individuals

who move more often are those whose onset was during late adolescence.

The conditional distributions of the PSR on the hidden states resemble the ones estimated

in the HMM without covariates. The only differences are observed for states 1 and 7.

Table 20. presents the mean sojourn times by age of bipolar onset. Similar times are

observed for states 1, 3, 4, 6, 8 and 9. In states 2, 5, 7 and 10, the patients with childhood

onset spend almost double the time than patients with late adolescence onset. The times

for patients with late adolescence onset are consistently lower throughout the states.

Table 20: Mean sojourn times by age of bipolar onset

Onset 1 2 3 4 5 6 7 8 9 10

Childhood 2.4 39.7 2.0 3.4 15.5 4.6 9.8 3.9 29.6 34.7

Early adolescence 2.2 31.0 1.7 3.4 14.0 4.9 8.8 5.7 31.6 21.0

Late adolescence 1.9 19.4 1.6 2.5 8.6 3.4 5.6 3.5 25.2 13.4

In Appendix B., Figures 15., 16. and 17. show the prevalences observed and estimated

with the HMM including age of bipolar onset as covariate. For the model of patients with

bipolar onset during childhood there is overestimation for states 2 and 10, and underestima-

tion for state 9. For the model of patients with bipolar onset during early adolescence, the

same pattern is observed, only that the underestimation of states 9 starts at week 100. In

the model of patients with bipolar onset during late adolescence, the discrepancies between

the observed and estimated prevalences is smaller.
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4.2.6 Hidden Markov model with socio-economic status as covariate

When socio-economic status (SES) is included in the hidden Markov model with ten hidden

states, one the main changes is observed in the distribution of the initial state. As can be

seen in Table 21., the probability is highest for state 1.

For the probabilities on the diagonal of the transition probability matrices, three patterns

are observed throughout the five categories of SES. The first pattern is consistently decreasing

probabilities. This pattern happens for states 1, 2, 3, 4 6 and 10. Here is an example of

what is meant with that statement: the probability on the diagonal for state 1, i.e., (1,1),

decreases from the highest estimated for SES 1 to the smallest estimated for SES 5. The

second pattern is consistently increasing, which is observed for states 5 and 9. And the third

pattern is neither consistently increasing or consistently decreasing. This last pattern occurs

in states 7 and 8.

Table 21: Parameters of the HMM with ten hidden states

with socio-economic status as covariate (in percentages)†

Hidden State 1 2 3 4 5 6 7 8 9 10

Initial state

probabilities

38.7 6.9 5.4 6.8 6.5 6.0 7.3 6.5 8.3 7.6

Transition

probability

matrix-SES

1

1 69.5 1.2 1.9 2.5 3.4 3.6 4.6 3.8 5.2 4.3

2 0.1 98.1 0.7 0.2 0.1 0.2 0.2 0.3 0.1

3 0.4 1.1 66.9 3.5 5.0 3.2 4.6 3.6 3.5 8.3

4 0.3 1.1 1.3 83.9 2.5 1.4 2.0 2.5 2.4 2.6

5 0.4 0.6 0.8 1.4 89.3 1.0 1.4 2.0 1.2 1.8

6 1.3 2.0 0.6 1.6 1.5 84.8 1.7 2.8 1.5 2.1

7 1.3 0.9 0.9 1.1 1.5 1.2 83.9 2.3 5.3 1.7

8 1.2 0.7 0.9 2.2 3.1 2.2 2.4 81.9 3.9 1.5

9 0.1 0.4 0.5 0.8 0.8 0.6 3.3 0.7 92.0 0.7

10 0.5 0.9 0.5 0.1 0.7 0.7 0.9 0.1 0.1 95.6
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Table 21: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-SES

2

1 68.2 1.3 1.9 2.5 3.8 3.7 5.0 4.1 5.2 4.5

2 0.1 97.4 0.7 0.4 0.1 0.3 0.4 0.5 0.1

3 0.4 1.1 62.6 3.9 5.5 3.5 5.7 4.4 4.0 9.1

4 0.3 1.3 1.7 79.8 2.6 1.9 2.8 3.3 2.9 3.4

5 0.4 0.6 0.9 1.3 91.0 1.0 1.3 1.4 0.9 1.2

6 1.5 2.3 0.6 1.8 1.9 82.3 2.1 2.9 1.9 2.7

7 1.3 1.2 0.9 1.1 1.8 1.2 88.4 2.0 0.5 1.5

8 1.2 0.8 0.9 2.2 3.2 2.2 2.6 82.2 3.2 1.6

9 0.2 0.5 0.1 0.4 0.5 0.2 1.5 0.1 96.3 0.1

10 0.6 1.1 0.6 0.2 0.8 0.8 1.0 0.2 0.1 94.7

Transition

probability

matrix-SES

3

1 66.7 1.4 1.8 2.4 4.2 3.7 5.3 4.5 5.2 4.8

2 0.1 96.0 0.7 0.6 0.2 0.4 0.8 0.1 0.9 0.1

3 0.4 1.2 57.8 4.3 6.0 3.8 7.0 5.3 4.6 9.8

4 0.3 1.4 2.1 74.7 2.8 2.7 3.8 4.3 3.5 4.4

5 0.4 0.6 0.9 1.1 92.2 1.0 1.2 1.0 0.7 0.9

6 1.7 2.7 0.6 1.9 2.4 79.3 2.6 3.0 2.4 3.5

7 1.2 1.6 1.0 1.2 2.1 1.2 88.5 1.7 0.2 1.4

8 1.1 0.8 1.0 2.1 3.3 2.1 2.8 82.3 2.6 1.8

9 0.2 0.6 0.2 0.3 0.1 0.7 97.8

10 0.7 1.3 0.7 0.3 1.0 1.0 1.1 0.3 0.2 93.4
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Table 21: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Transition

probability

matrix-SES

4

1 65.2 1.5 1.8 2.3 4.6 3.7 5.6 4.9 5.2 5.1

2 0.1 93.4 0.8 0.8 0.5 0.7 1.6 0.2 1.6 0.3

3 0.4 1.3 52.5 4.6 6.5 4.1 8.4 6.3 5.2 10.6

4 0.4 1.6 2.6 68.3 2.9 3.7 5.1 5.6 4.2 5.6

5 0.4 0.7 1.0 0.9 93.1 1.0 1.1 0.8 0.5 0.6

6 1.9 3.0 0.7 2.1 3.0 75.6 3.1 3.0 3.0 4.5

7 1.2 2.0 1.0 1.2 2.5 1.2 88.0 1.5 0.2 1.3

8 1.1 0.9 1.0 2.0 3.4 2.1 3.0 82.3 2.2 2.0

9 0.4 0.7 0.1 0.2 0.3 98.2

10 0.8 1.5 0.9 0.6 1.3 1.2 1.2 0.7 0.5 91.5

Transition

probability

matrix-SES

5

1 63.6 1.6 1.8 2.1 5.1 3.8 6.0 5.4 5.2 5.4

2 0.1 88.2 0.8 1.2 1.2 1.1 3.0 0.6 2.9 0.9

3 0.5 1.3 46.9 4.9 7.1 4.3 10.1 7.6 6.0 11.3

4 0.4 1.7 3.1 60.5 3.1 5.0 6.9 7.1 5.0 7.1

5 0.4 0.7 1.0 0.8 93.7 1.0 1.0 0.6 0.4 0.5

6 2.1 3.4 0.7 2.2 3.7 71.4 3.8 3.1 3.8 5.7

7 1.1 2.5 1.0 1.2 3.0 1.3 87.2 1.3 0.2 1.2

8 1.1 0.9 1.1 1.9 3.5 2.0 3.2 82.2 1.8 2.3

9 0.5 0.8 0.1 0.1 0.2 98.2

10 0.9 1.7 1.1 1.1 1.6 1.5 1.4 1.3 1.4 88.1
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Table 21: (continued)

Hidden State 1 2 3 4 5 6 7 8 9 10

Conditional

distribu-

tion of

observed

PSR on

hidden

states

1 2.5 0.1 0.5 76.3 0.1

2 4.1 93.4 21.2 0.1 0.1

3 4.6 0.3 0.2 0.1 54.2 0.1 99.6

4 96.4 18.8 0.2 0.1

5 3.3 1.3 0.5 5.8 3.0 99.6

6 99.5 0.2 4.7

7 80.3 0.1 1.4

8 1.7 65.9 0.5 0.1 0.2

9 0.1 31.4 0.2 0.2

10 6.4 0.1 0.5 1.2

11 0.2 0.1 98.7 0.2

12 1.0 0.7 0.2 0.1 17.3

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%

Off the diagonal, SES 1 has the fewest number of transitions with probabilities over 5%,

and SES 5 has the most number of probabilities above 5%.

The conditional distributions of the PSR have the same patterns observed for the HMM

with other covariates: only the estimates for state 1 and 7 differ from the ones obtained with

the HMM without covariates.

Table 22. contains some interesting results. The mean sojourn times for states 1 (syn-

dromal hypomania/mania), 3 (syndromal cycling, PSRs 8 and 9) and 8 (syndromal MDD

and pure mixed) are almost the same no matter to what socio-economic status the patients

belong to. State 7 (mixture of subsyndromal pure depression, asymptomatic and subsyndro-

mal pure mania) does not have a monotone pattern throughout the range of SES, but the

mean sojourn times are around 5 and 8 days.
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For states 4 and 6 (syndromal cycling, PSRs 6 and 11), the mean sojourn times decrease

as the socio-economic status increases, with the mean sojourn time for SES 1 doubling the

mean sojourn time observed for SES 5. State 5 (subsyndromal pure depression) presents

a monotonically increasing pattern in the mean sojourn times of the five categories of the

socio-economic status, in this case the mean sojourn time of SES 5 doubles the mean sojourn

time estimated for SES 1. The most striking patterns are observed for states 1, 9 and 10. The

mean sojourn times in states 2 and 10 (subsyndromal pure mania and subsyndromal mixed)

increase monotonically through the range of categories of socio-economic status. However,

for state 2, the mean sojourn time of SES 1 is almost seven times the mean sojourn time

observed for SES 5. While for state 10, the mean sojourn time of SES 1 is only three times

the mean sojourn time observed for SES 5. On the other hand, state 9 (asymptomatic)

shows a monotonically decreasing pattern, with the mean sojourn time of SES 5 being a

little over four times the mean sojourn time estimated for SES 1.

Table 22: Mean sojourn times by socio-economic status

SES 1 2 3 4 5 6 7 8 9 10

1 2.7 53.0 2.5 5.7 8.7 6.0 5.6 4.9 11.8 21.9

2 2.6 37.6 2.1 4.4 10.5 5.1 8.0 5.0 26.6 18.0

3 2.5 24.4 1.8 3.4 12.2 4.3 8.0 5.1 43.7 14.4

4 2.3 14.5 1.5 2.6 13.7 3.5 7.6 5.1 54.4 11.0

5 2.2 7.9 1.3 2.0 15.0 2.9 7.1 5.0 53.5 7.7

In Appendix B., Figure 18. shows that the observed and the estimated prevalences of

patients who belong to SES 1 differ for states 2, 9 and 10. There is overestimation in states

2 and 10 and underestimation in state 9. A similar observation can be made for patients

who belong to SES 2, as shown in Figure 19., only that the overestimation in state 10 starts

in week 150. Figure 20. shows overestimation for state 2 and underestimation for state 9,

however, the latter is from week 150 and up. No discrepancies between the prevalences are

notorious in Figure 21. Figure 22. shows underestimation in states 5 and 9 for the first 100

and 150 weeks, respectively. It also shows overestimation for state 10 up to week 150.
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5.0 DISCUSSION, CONCLUSION AND FUTURE WORK

5.1 DISCUSSION

With mixtures of first order Markov chains, this study found:

1. The model with four components as the best model, according to the BIC criterion.

Since the other evaluation criteria did not have a monotone pattern, only the BIC was

used to make the final decision on the number of components. The AIC, BIC and NEC

criteria are easily computed. On the other hand, the MCCV and Score criteria are

computationally complex.

2. In this mixture model, the bipolar diagnosis itself does not shed light in the classification

of the longitudinal courses of bipolar patients, but the range of episodes observed by

bipolar type differs.

3. The estimated parameters of this mixture show the frequency of the patterns, the dis-

tribution of the episode with which patients in each cluster started their longitudinal

follow-up, and the 144 transitions among the 12 PSR categories within each cluster.

This information has never been used before in the psychiatric field. Neither have been

plots of the longitudinal course of the patients. These clusters and their parameters

certainly help to understand how bipolar youth transition from episode to episode and

from week to week.

4. The mixture of first order Markov chains model with four components identified patterns

in the longitudinal course of bipolar youth that are characterize for flat and spiky peri-

ods, i.e., some of the clusters are conformed by patients who present the same episode

for several weeks, other clusters have individuals who move along the whole spectrum
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of bipolar episodes and other clusters combines these two features. The four clusters

were labeled as: stayers (cluster 4, 70%), movers to the depression, well and submania

states (cluster 3, 16%), movers who also tend to stay several weeks in the well state

(cluster 2, 11%), and movers who also tend to stay in the subdepression only, well and

submania/subdepression states (cluster 1, 4%).

5. Cluster 2 identifies patients who present either a well or a mixed state episode after

experiencing a mania/subdepression episode.

6. Cluster 1 groups patients whose longitudinal courses almost never start with an episode

involving MDD or a mania state. Also in this cluster, a patient who experiences a ma-

nia/subdepression episode, either stays on that same state (probability 1/3) or move to

a submania/subdepression episode (probability 2/3). Subjects experiencing a hypoma-

nia/subdepression episode will stay for one more week on that same state 20% of the

time, or they will experience the following week either a submania/subdepression or a

submania/MDD episode (probability 40% each).

On the other hand, these are the findings obtained with the hidden Markov model ap-

proach:

1. The hidden Markov model with ten hidden states was found as the best model by the

evaluation criteria. The BIC and CIC estimated the same number of hidden states.

2. An eight PSR scale used by (Birmaher et al., 2006) was found to be similar to the hidden

states, only in a different order. The eight PSR scale was used to label the hidden states.

The two extra categories in the HMM are due to: (i) a separate identification of the

cycling states—instead of only one cycling state there are three—, (ii) Pure MDD and

Pure mixed—PSR 1 and 12 respectively—are merged in one state, and (iii) one hidden

state is identified as the mixture of subsyndromal pure depression, asymptomatic and

subsyndromal pure mania.

3. This HMM gives a statistical justification for the use of the eight PSR scale. With the

extra consideration that cycling should probably not be joined in one category, because

cycling behavior characterizes the longitudinal course of bipolar youth.
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Finally, the inclusion of individual demographic covariates measured at intake provided

these results:

1. For gender, males tend to transition more than females do. In average, female spend

almost twice the number of weeks than males in these episodes: subsyndromal pure

mania (PSR 4) , subsyndromal pure depression episode (PSR 2) and syndromal MDD

and pure mixed (PSRs 1 and 12).

2. When including age, categorized as 1 for age 13 or more and 0 otherwise, i.e. 1 corre-

sponds to teenagers and 0 to children, the hidden Markov model estimated that children

move more than teenagers. The mean sojourn times of teenagers almost double those of

children for episodes: subsyndromal pure mania, subsyndromal pure depression, syndro-

mal MDD and pure mixed, and asymptomatic.

3. Patients who live in another situation different to living with both natural parents, move

more among the bipolar episodes. This shows the effect of family stability in the mood

of children and adolescents. Particularly, for episodes subsyndromal pure mania, subsyn-

dromal pure depression, syndromal MDD and pure mixed, and asymptomatic, the mean

sojourn times of patients who live in another situation are doubled the corresponding

times of patients who live with both natural parents.

4. For the bipolar diagnosis, BPI patients have the behavior of stayers and patients with

the other two diagnoses have the behavior of movers. The transition probability matrices

and the mean sojourn times for BPII and BPNOS share similarities, suggesting that the

transition patterns of patients with these two diagnoses agree in the ten bipolar episodes.

5. Age of bipolar onset showed childhood and early adolescence onsets with similar behav-

iors, opposed to more transient patients with a late adolescence onset. This indicates

that the earlier a patient develops the disorder, the more stable the patient will become

through the episodes, spending more time in each, specially those that are milder. This

could also suggest that the disorder is diagnosed earlier, and therefore, the prescription

of treatment will help to lessen the impairment from the disorder.

6. Socio-economic status turned out to be one of the most interesting covariates. The effects

vary throughout the five categories of this covariate. It shows patients with low socio-

economic status spend more time with subsyndromal pure mania and subsyndromal
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mixed episodes and less time with subsyndromal pure depression and asymptomatic

episodes, the opposite of the patients in high socio-economic status. Hence, the poorer

a patient is the more impaired he/she can be by bipolar disorder. The lack of economic

resources seems to lengthen the presence of submanic and mixed episodes. And the

abundance of economic resources seem to imply more weeks without bipolar symptoms

or more weeks with subsyndromal depression. Maybe the economic status could be

affecting the access to treatment, are poor families with bipolar children and adolescence

being able to afford treatments for the disorder?

7. In all the six models with covariates, the conditional distribution of the observed PSRs

on the hidden states is similar to the one estimated for the HMM without covariates.

The only difference is for hidden states 1 and 7. Hidden state 1 is mainly made up of

PSR 7. And hidden state 7 has a different distribution that the one observed for the

HMM without covariates, but it is made up of the same mixtures of PSRs.

8. Regarding the goodness of fit of these six HMMs, the prevalence estimated with the

hidden Markov model with ten hidden states with each of the six covariates usually

overestimates state 2 (subsyndromal mania) and underestimates state 9 (asymptomatic).

5.2 CONCLUSIONS

In summary:

1. Four clusters show patterns of movers and stayers. Cluster 4 is the stayers. Cluster

3 are movers among the depression, well and submania states. Cluster 2 are movers

that tend to stay in the well state. Cluster 1 are movers that tend to go to the subma-

nia/subdepression state.

2. The range of transitions in each of the clusters vary by bipolar diagnosis.

3. MCCV and Score did not serve as criteria to choose the number of components. NEC

does not behave well for this model.

4. Ten hidden states are labeled using syndromal, subsyndromal and asymptomatic episodes

defined by the psychiatrists.
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5. When including a binary covariate in hidden Markov models, patients in one of the

categories transition more than the patients in the other category: males move more than

females, children move more than teenagers, and patients who live in another situation

move more than patients who live with both natural parents.

6. For bipolar diagnosis in the hidden Markov model, BPII and BPNOS patients show

similar transition patterns.

7. Age of bipolar onset sheds light on the stability of patients with a childhood and an

early adolescence onset. The possibility of an early diagnosis of the disorder, which

consequently would lead to providing appropriate treatment, would lessen the impairment

of bipolar youth.

8. Socio-economic status is by far the covariate in the hidden Markov model with the most

interesting effect. It shows patients with low socio-economic status staying more weeks

with subsyndromal submanic and mixed episodes, and less weeks with subsyndromal

depression and asymptomatic episodes. Quite the opposite behavior observed for their

counterparts in the high socio-economic status.

5.3 FUTURE WORK

The inclusion of longitudinal covariates like treatment remains to be studied in the future.

Modeling covariates with the mixture of first order Markov chains model should also be

considered, to study the effect of covariates in the clusters.

Also, at the end of the literature review of statistical models that could be appropriate

for finding patterns of the longitudinal course of bipolar youth these two references were

found and kept as ideas to work on in the future:

• Clustering Variable Length Sequences by Eigenvector Decomposition using HMM

Porikli (2004) proposes a clustering method using HMM parameter space and eigenvector

decomposition. This algorithm can cluster both constant and variable length sequences

without requiring normalization of data.
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• Mixed Memory Markov Models

Saul and Jordan (1999) study Markov models whose state spaces arise from the Cartesian

product of two or more discrete random variables. This models could be applied in COBY

using the original 6-point scales of depression, hypomania and mania. Saul and Jordan

(1999) show how to parameterize the transition matrices of these models as a convex

mixture of simpler dynamical models. The parameters in these models admit a simple

probabilistic interpretation and can be fitted iteratively by an EM algorithm. They

derive a set of generalized Baum-Welch updates for factorial hidden Markov models that

make use of this parameterization and also describe a simple iterative procedure for

approximately computing the statistics of the hidden states.
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APPENDIX A

PARAMETERS OF MIXTURE OF FOUR FIRST ORDER MARKOV
CHAINS MODEL

For the model with four components that has the highest likelihood, the component weights
were: 0.6941, 0.1576, 0.1071, 0.04116

A.0.1 Initial state probabilities

Table 23: Initial state probabilities of mixture of four first order Markov chains (in

percentages)†

PSR categorie

Component 1 2 3 4 5 6 7 8 9 10 11 12

4 8.4 8.1 27.8 13.8 17.1 5.6 1.4 1.4 0.7 6.3 3.5 5.9

3 7.7 13.4 38.4 9.8 18.4 4.6 1.5 1.5 4.6

2 15.8 9.0 45.7 11.3 11.3 4.5 2.3

1 5.9 29.4 17.6 23.5 17.6 5.9

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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A.0.2 Transition probability matrices

Table 24: Transition probability matrices of mixture of
four first order Markov chains (in pertecentages)†

PSR categorie
Cluster 1 2 3 4 5 6 7 8 9 10 11 12

4

1 87.7 5.3 3.9 0.2 1.0 1.3 0.1 0.3
2 1.4 90.5 5.7 0.4 1.4 0.1 0.2 0.2
3 0.4 1.4 96.2 1.4 0.2 0.2 0.1
4 0.2 0.3 4.6 91.4 2.0 0.6 0.4 0.4 0.1 0.1
5 0.3 1.1 0.7 1.8 93.8 1.3 0.1 0.2 0.5 0.2
6 1.2 0.4 0.4 1.6 4.7 90.1 0.5 0.1 0.9
7 0.1 1.1 2.5 4.5 0.5 0.1 87.6 1.5 0.4 1.6 0.1
8 0.4 3.3 0.4 0.4 4.0 2.5 86.2 1.3 0.8 0.6
9 0.9 0.4 4.9 3.1 1.3 4.5 83.4 1.3
10 1.1 2.4 3.0 6.5 0.3 0.2 2.0 0.2 82.2 1.4 0.6
11 0.5 1.5 0.7 6.2 0.5 0.2 1.3 1.5 86.3 1.3
12 0.8 1.5 1.0 2.8 2.2 0.3 0.4 0.8 0.3 1.1 88.7

3

1 71.0 3.5 3.3 0.5 0.7 17.4 0.2 0.1 0.2 0.1 0.2 3.0
2 2.4 77.1 5.4 2.1 10.9 0.7 0.6 0.1 0.7 0.1
3 0.8 2.2 83.5 11.3 0.8 0.2 0.9 0.1
4 0.6 1.5 33.9 59.9 1.7 0.4 1.7 0.3
5 0.6 14.6 2.9 1.9 75.7 1.1 0.1 3.0 0.2
6 43.8 1.9 2.3 1.5 3.8 45.3 0.6 0.2 0.6
7 0.7 27.2 14.6 2.0 51.2 0.7 3.6
8 11.4 3.1 38.1 43.3 4.1
9 5.5 1.8 3.6 1.8 87.3
10 5.3 5.3 18.5 15.9 2.6 3.6 46.1 2.6
11 2.6 19.7 1.3 1.3 2.6 2.6 68.4 1.3
12 31.7 3.3 1.7 1.7 0.8 60.8

2

1 72.0 2.6 11.1 1.7 0.3 2.9 0.3 1.0 7.9
2 0.6 37.3 38.9 9.4 2.8 0.1 4.1 2.7 0.2 3.8 0.1
3 1.4 10.2 75.4 8.6 1.2 0.2 2.0 0.3 0.7
4 1.4 9.2 24.8 47.2 16.6 0.5 0.2 0.2
5 3.6 6.4 26.3 63.2 0.2 0.1 0.1
6 4.6 5.5 4.6 2.8 81.6 0.9
7 8.1 8.6 48.6 0.5 30.0 3.8 0.5
8 0.9 22.8 12.3 2.6 6.1 54.4 0.9
9 17.1 2.9 2.9 77.1
10 28.8 21.2 16.5 0.6 32.4 0.6
11 49.8 49.8
12 2.3 6.8 2.3 2.3 86.3

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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Table 24: (continued)

PSR categorie
Cluster 1 2 3 4 5 6 7 8 9 10 11 12

1

1 64.4 3.8 3.8 3.8 1.9 21.2 1.0
2 0.7 9.0 13.4 15.3 58.2 0.4 2.6 0.4
3 1.4 5.3 45.9 19.2 24.0 0.4 1.4 0.2 0.7 1.4
4 0.6 5.0 15.8 72.3 4.7 0.8 0.6 0.2 0.2
5 0.2 26.9 22.0 3.4 43.1 0.5 0.3 1.8 0.6 0.3 0.8
6 5.6 0.5 1.5 1.5 90.3 0.5 0.2
7 4.8 6.2 2.1 1.4 82.8 2.1 0.7
8 3.2 3.2 32.3 3.2 6.5 51.6
9 39.9 39.9 20.0
10 6.0 1.5 1.5 6.0 1.5 1.5 80.6 1.5
11 66.5 33.3
12 10.0 40.0 5.0 10.0 5.0 30.0

† An empty cell means that the estimated probability expressed in percentage is less than 0.1%
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APPENDIX B

PREVALENCE PLOTS FOR HIDDEN MARKOV MODELS WITH
COVARIATES

B.0.3 With gender
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Figure 6: Prevalence of ten episodes of bipolar disorder in females: observed (solid line),

estimated with the 10 states hidden Markov model (dashed line)
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Figure 7: Prevalence of ten episodes of bipolar disorder in males: observed (solid line),

estimated with the 10 states hidden Markov model (dashed line)
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B.0.4 With age
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Figure 8: Prevalence of ten episodes of bipolar disorder in children (age<13): observed (solid

line), estimated with the 10 states hidden Markov model (dashed line)
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Figure 9: Prevalence of ten episodes of bipolar disorder in teenagers (age≥13): observed

(solid line), estimated with the 10 states hidden Markov model (dashed line)
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B.0.5 With cohabitation
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Figure 10: Prevalence of ten episodes of bipolar disorder in participants who live with both

natural parents: observed (solid line), estimated with the 10 states hidden Markov model

(dashed line)
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Figure 11: Prevalence of ten episodes of bipolar disorder in participants who live in another

situation: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)
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B.0.6 With bipolar diagnosis
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Figure 12: Prevalence of ten episodes of bipolar disorder in BPI patients: observed (solid

line), estimated with the 10 states hidden Markov model (dashed line)
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Figure 13: Prevalence of ten episodes of bipolar disorder in BPII patients: observed (solid

line), estimated with the 10 states hidden Markov model (dashed line)
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Figure 14: Prevalence of ten episodes of bipolar disorder in BPNOS patients: observed (solid

line), estimated with the 10 states hidden Markov model (dashed line)
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B.0.7 With age of bipolar onset
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Figure 15: Prevalence of ten episodes of bipolar disorder in patients with bipolar onset during

childhood: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)
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Figure 16: Prevalence of ten episodes of bipolar disorder in patients with bipolar onset during

early adolescence: observed (solid line), estimated with the 10 states hidden Markov model

(dashed line)
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Figure 17: Prevalence of ten episodes of bipolar disorder in patients with bipolar onset during

late adolescence: observed (solid line), estimated with the 10 states hidden Markov model

(dashed line)
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Figure 18: Prevalence of ten episodes of bipolar disorder in patients with socio-economic

status 1: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)
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Figure 19: Prevalence of ten episodes of bipolar disorder in patients with socio-economic

status 2: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)
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Figure 20: Prevalence of ten episodes of bipolar disorder in patients with socio-economic

status 3: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)

101



0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 1

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 2

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 3

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 4

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 5

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 6

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 7

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 8

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 9

Times

P
re

va
le

n
ce

 (
%

)

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

State 10

Times

P
re

va
le

n
ce

 (
%

)

Figure 21: Prevalence of ten episodes of bipolar disorder in patients with socio-economic

status 4: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)
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Figure 22: Prevalence of ten episodes of bipolar disorder in patients with socio-economic

status 5: observed (solid line), estimated with the 10 states hidden Markov model (dashed

line)
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