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The World Wide Web (WWW) now is widely used as a universal medium for information 

exchange. Semantic interoperability among different information systems in the WWW is 

limited due to information heterogeneity, and the non semantic nature of HTML and URLs. 

Ontologies have been suggested as a way to solve the problem of information heterogeneity by 

providing formal, explicit definitions of data and reasoning ability over related concepts. Given 

that no universal ontology exists for the WWW, work has focused on finding semantic 

correspondences between similar elements of different ontologies, i.e., ontology mapping. 

Ontology mapping can be done either by hand or using automated tools. Manual mapping 

becomes impractical as the size and complexity of ontologies increases. Full or semi-automated 

mapping approaches have been examined by several research studies. Previous full or semi-

automated mapping approaches include analyzing linguistic information of elements in 

ontologies, treating ontologies as structural graphs, applying heuristic rules and machine learning 

techniques, and using probabilistic and reasoning methods etc. In this paper, two generic 

ontology mapping approaches are proposed. One is the PRIOR+ approach, which utilizes both 

information retrieval and artificial intelligence techniques in the context of ontology mapping. 

The other is the non-instance learning based approach, which experimentally explores machine 

learning algorithms to solve ontology mapping problem without requesting any instance. The 

results of the PRIOR+ on different tests at OAEI ontology matching campaign 2007 are 
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encouraging. The non-instance learning based approach has shown potential for solving ontology 

mapping problem on OAEI benchmark tests. 
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1.0  INTRODUCTION 

This dissertation studies ontology mapping: the problem of finding semantic correspondences 

between similar elements of different ontologies. In the dissertation, elements denote classes or 

properties of ontologies. The goal of this research is to use ontology mapping to make 

heterogeneous information more accessible. 

We begin this chapter by showing that information heterogeneity is a big obstacle to 

achieve semantic interoperability in the WWW and current solutions are far from enough for this 

problem. Next, we show that ontology mapping, as a fundamental component in the Semantic 

Web vision to solve semantic interoperability problem, has been used in numerous applications. 

Our solutions for ontology mapping are discussed along with the contributions to the ontology 

mapping community. We list the limitations and delimitations of our research and define terms 

that will be used in the dissertation. Finally we give a road map to the rest of the dissertation. 

1.1 THE PROBLEM OF INFORMATION HETEROGENEITY 

The vision of the Semantic Web requires information systems that can exchange data and reuse 

the exchanged data with their intended meanings. This is called semantic interoperability. 

Achieving semantic interoperability among different information systems is very laborious, 

tedious and error-prone in a distributed and heterogeneous environment like the World Wide 

Web (WWW).  
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 Information heterogeneity occurs at three levels, i.e., syntax, structure and semantics 

(Stuckenschmidt and Harmelen 2005). Syntactic heterogeneity is the simplest heterogeneity 

problem caused by the usage of different data formats. To solve the syntactic heterogeneity, 

standardized formats such as XML1, RDF/RDFS2 and OWL3 have been widely used to describe 

data in a uniform way that makes automatic processing of shared information easier.  

Though standardization plays an important role for syntactic heterogeneity, it does not 

overcome structural heterogeneity which occurs as a result of the way information is structured 

even in homogeneous syntactic environments. For example, one source might model trucks but 

only classify them into a few categories; while the other source might make very fine-grained 

distinctions between types of trucks based on their physical structure, weight, purpose, etc. 

Manually encoded transformation rules as well as some middleware components have been used 

to solve structural heterogeneity problems (Wiederhold 1992). 

Though sophisticated solutions to syntactic and structural heterogeneity have been 

developed, the problem of semantic heterogeneity is still only partially solved. Semantic 

heterogeneity occurs whenever two contexts do not share the same interpretation of information 

(e.g. homonyms and synonyms).  For example, as shown in Figure 1.1, Swoogle4 returns 346 

documents when searching for spring. The top ranked results show that the same term has many 

different meanings, e.g. one spring means the season, the other spring means the ground water 

                                                 

1 http://www.w3.org/TR/2004/REC-xml-20040204 

2 http://www.w3.org/TR/2004/REC-rdf-primer-20040210 

3  http://www.w3.org/TR/2003/CR-owl-features-20030818/ 

4 Results got from http://swoogle.umbc.edu/ in July, 2007 
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etc. Another example, illustrated in Figure 1.2, shows that people are always trying to say the 

same thing in different ways.  

Approaches such as using synonym sets, term networks, concept lattices, features and 

constraints have been proposed as solutions for solving semantic heterogeneity among different 

information systems (Stuckenschmidt and Harmelen 2005). However those approaches are not 

sufficient to solve the problem of semantic heterogeneity in the WWW environment.  

 

Figure 1.1. Search spring in Swoogle 

 

Figure 1.2. People are always trying to say the same thing in different ways1 

                                                 

1 By Gahan Wilson 
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1.2 ONTOLOGY MAPPING AND ITS APPLICATION 

The vision of the Semantic Web (Berners-Lee, Hendler et al. 2001) provides many new 

perspectives and technologies to overcome the limitation of the WWW. Ontologies are a key 

component to solve the problem of semantic heterogeneity, and thus enable semantic 

interoperability between different web applications and services. Given the reality of multiple 

ontologies over many domains, ontology mapping that aims to find semantic correspondences 

between similar elements of different ontologies has been the subject of research in various 

communities (Noy 2004; Doan and Halevy 2005).  

Ontology mapping has been used in different applications. The following use cases 

illustrate how semantic correspondences are required in different scenarios, and motivate the 

importance of ontology mapping.  

First of all, ontology mapping is important to the success of the Semantic Web. The 

pervasive usage of agents or web services is a characteristic of the Semantic Web. However 

agents or web services may use different protocols that are independently designed. That means 

when agents or web services meet, there is little chance for them to understand each other 

without an “interpreter”. Therefore ontology mapping is “a necessary precondition to establish 

interoperability between agents or services using different ontologies.” (Ehrig 2006, p.2) That is, 

the mapping between ontologies provides the means for agents and services to either translate 

their messages or integrate bridge axioms in their own models. 

Ontology mapping is also widely used to support data integration and information 

transformation (Dou, McDermott et al. 2005; Crubezy and Musen 2003; Noy and Musen 2003). 

For example, Figure 1.3 illustrates a simple scenario where data are structured in different 

formats in two data sources, D1 and D2, which are associated with ontologies O1 and O2 
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respectively. To integrate instances from D1 to D2, the mapping relation m between O1 and O2 is 

needed. Many real world cases also demonstrate the need for ontology mapping to support 

schema/data integration. For example, a web marketplace such as Amazon 1  may need to 

combine products from multiple vendors’ catalogs into its own. A web portal like NCSTRL2 

may want to integrate documents from multiple library directories into its own. A company may 

want to merge its service taxonomy with its partners. A researcher may want to merge his/her 

bookmarks with those of his/her peers etc. 

 

Figure 1.3. Ontology mapping in supporting data integration 

From the perspective of information retrieval, ontology mapping can support semantic 

query processing across disparate sources by expanding or rewriting the query using the 

corresponding information in multiple ontologies (Genesereth, Keller et al. 1997; Calvanese, 

Giacomo et al. 2001; Halevy, Ives et al. 2003; Mena, Kashyap et al. 1996; Gasevic and Hatala 

2005). The term used in user’s query may be different from those in an ontology. Mapping is 

                                                 

1 http://www.amazon.com/ 

2 http://www.ncstrl.org/ 
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thus used to map the user specific concepts in the query to concepts in ontologies. For example, a 

user is looking for the director of a movie, e.g., "Star War", on the Web. In one movie website, 

the name of movie is identified as "moviename" and the name of its director is identified as 

"director" in its schema. However in another movie website, those two concepts might be 

identified as "title" and "directorname" respectively in their schema. Therefore to enable a 

federated search on those two websites, a mapping between the schemas of those two websites 

will help us rewrite queries according to different schemas. 

The application of ontology mapping can also be found in generating ontology extensions 

(Dou, McDermott et al. 2005) and a number of other scenarios  (Euzenat, Bach et al. 2004). 

1.3 CHALLENGES OF ONTOLOGY MAPPING 

Though many researchers are working actively on ontology mapping, ontology mapping systems 

are still a long way from complete. The Web, which is a heterogeneous and distributed 

environment with a lack of central control, requires significant new progress in ontology 

mapping to make semantic interoperability possible on a large scale. There are many open issues. 

First of all, ontology mapping is quite subjective. Ontologies are created to describe the 

existence of things in the world by different people who usually have different viewpoints about 

what the world looks like. Different users do not share the same understanding of the world and 

that results in idiosyncratic evaluation of the mapping results. What kind of methodology should 

be used to evaluate the correctness and completeness of the mapping? Currently, most ontology 

engineers adopt the standard precision, recall and f-measure from information retrieval research 

to evaluate mapping results (Shvaiko, Euzenat et al. 2006). A few people evaluate mapping 
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results by counting the number of needed adjustments between found matches and the reference 

ontology (Melnik, Garcia-Molina et al. 2002). However, sometimes no simple measure exists 

because either the size of ontologies is too large for people to find a complete set of mappings or 

it is too hard to precisely define mappings. In these cases, is it valid to evaluate mapping results 

by empirical methodologies such as testing how queries can be answered with the mapping or 

whether inferences performed by applications can be preserved by the mapping? 

Because ontology mapping is a laborious and tedious process, it is desirable to be able to 

reuse verified mapping results. For example, given two mappings, mA-B and mB-C, over ontology 

OA, OB and OC respectively, it should be able to efficiently derive the new mapping, mA-C, from 

existing mappings, mA-B and mB-C. The need to reuse mapping results not only requires high 

quality initial mappings but also requires mapping results to be defined in a formal and explicit 

way so that inference engines can use it for further reasoning. 

Finally, ontologies evolve all the time, and thus the mapping between the evolved 

ontologies needs to change (evolve) accordingly. For example, assume there exist two 

ontologies, source ontology OS and target ontology OT, and a mapping MS-T between OS and OT. 

Now, OS evolves from OS1 to OS2. To create a new mapping MS2-T between OS2 and OT, the ideal 

method is to integrate MS-T (i.e., MS1-T) with the change between OS1 and OS2, (i.e., MS1-S2) by 

reasoning between two mappings. Such integration operations require a complete and explicit 

representation of mapping results. However, ontology mapping, especially as an automatic 

process, is error-prone and thus incomplete and imprecise. Therefore, how to represent different 

types of and sources of incomplete and imprecise mappings, as well as how to use this 

information to perform reasoning services across the mapped ontologies are still challenges. 
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In the dissertation, we adopt the precision, recall and f-measure as our evaluation criteria, 

consistent with the approach used by other researchers. We also represent our mapping results as 

a list of mapping pairs, following the format required in the annual OAEI ontology matching 

campaign1. Please see an example of mapping format in Figure 4.11. 

1.4 GOALS OF THE DISSERTATION 

The existence of information heterogeneity and the importance of ontology mapping in different 

applications motivate our research interest in the area of ontology mapping. Therefore, the 

ultimate goal of our research is to solve the problem of ontology mapping, and thus enable 

semantic interoperability between different web applications and services in the WWW. More 

specifically, we aim to develop a new generic approach to automatically map ontologies with 

minimum human effort. This is because manual mapping becomes impractical as the complexity 

and volume of ontologies increases. Alternatively developing fully or semi-automated mapping 

algorithms/tools has attracted the interest of researchers in various areas (Noy 2004; Noy, Doan 

et al. 2005; Rahm and Bernstein 2001). 

                                                 

1 http://oaei.ontologymatching.org 
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1.5 OVERVIEW OF OUR SOLUTIONS 

Generally speaking, our efforts for ontology mapping problem can be divided into two 

directions. One is an integrated mapping approach; the other is learning based approach. Both of 

them are generic ontology mapping approaches and suitable for different mapping situations. 

The integrated approach, which we call the PRIOR+ (Mao and Peng 2007; Mao, Peng et 

al. 2008), is based on information retrieval and artificial intelligence techniques. The name 

PRIOR+ comes from the ontology mapping tool, the PRIOR (i.e., the profile propagation and 

information retrieval based ontology mapping tool) (Mao and Peng 2006; Mao, Peng et al. 

2007). PRIOR+ improves on PRIOR in two ways. First, the PRIOR+ proposes a harmony based 

adaptive aggregation method to aggregate multiple similarities without given golden standards. 

Second, the PRIOR+ innovatively integrates the IAC neural network to consider various 

constraints in the context of ontology mapping when the harmony of integrated similarities of 

ontologies is not good enough.  

 

Figure 1.4 The architecture of the PRIOR+ approach 

The PRIOR+ approach consists of three major modules, i.e., a similarity generator, an 

adaptive similarity aggregator, and a neural network based constraint satisfaction solver 

(optional). The architecture of the PRIOR+ is shown in Figure 1.4, where H denotes the harmony 

of a similarity. The similarity generator measures three kinds of similarities. The similarity 

aggregator measures the harmony of each similarity and then adaptively aggregates them. The 
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constraint satisfaction solver deals with various ontology constraints in neural network model, 

which is optional as illustrated with a dashed line and box. More details of the approach can be 

found in §4.0 . 

 

Figure 1.5 The major steps in learning-based approach 

The learning-base approach (Figure 1.5) is a non-instance based machine learning 

approach that explores general linguistic, structure and Web features of ontologies using a 

Support Vector Machine (SVM) algorithm. Like other learning based ontology mapping 

approach, our approach treats ontology mapping as a machine learning problem and thus utilizes 

machine learning techniques to solve the problem. But unlike other learning based approach, our 

approach is generic (i.e., the target in our learning model is not each specific element in 

ontologies) and does not rely on the availability of instances in ontologies.  More details of the 

approach can be found in §5.0 . 

1.6 CONTRIBUTIONS OF THE DISSERTATION 

The contributions of the dissertation can be summarized as follows: 

1. A comprehensive review on the state-of-the-art ontology mapping approaches.  

2. Exploration of multiple similarities such as edit distance based similarity, profile 

similarity and structure similarity to support ontology mapping. 
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3. Use of information retrieval techniques to evaluate the profile similarity of different 

elements in a vector space model. 

4. Development of a measure harmony to estimate the reliability of different similarities 

without given ground truth.  

5. Development of a harmony based adaptive aggregation method to aggregate various 

similarities.  

6. Integration of the interactive activation and competition (IAC) neural network in the 

context of ontology mapping to search for a global optimal solution that best satisfies 

ontology constraints. 

7. Exploration of a non-instance based machine learning approach for ontology mapping by 

treating it as a binary classification problem. 

1.7 LIMITATIONS AND DELIMITATIONS 

The limitations of the research are. 

1. Only those ontologies that come from the same or similar domain will be mapped. This 

limitation is based on the observation that the chance for two information systems from 

completely different domains to interact with each other is relatively small in real world. 

2. The to-be-mapped ontologies should be represented in the same language and in English 

only. We are not working on cross language ontology mapping problem. 

3. Currently our approaches only work on 1-1 mapping due to the limitation of the mapping 

extraction algorithm and the constraints chosen for the IAC neural network. For example, 

the mapping extraction algorithm adopted in this dissertation is naïve descendant 
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extraction algorithm (Meilicke and Stuckenschmidt 2007), which has a limitation that 

even though the similarity between two elements is weak a mapping always outputs as a 

result. Moreover, the constraint that "only 1-1 mapping is allowed" restricts the mapping 

cardinality of our approach. 

The following delimitations are set on the scope of our research:  

1. Mapping sources. Though many approaches of schema matching in database area can 

generally be applied to ontology mapping, ontology mapping relies more heavily on 

features of its concepts’ definitions and explicit semantics of these definitions. Therefore, 

our research will only deal with mapping different ontologies that are represented in a 

formal way. How to map relational or XML schemas will not be included in this work 

though various approaches in this area will be reviewed in §3.1. 

2. Mapping elements. Ontology mapping can be established between classes, properties and 

instances. In this dissertation, we focus on finding mapping relations between classes and 

properties instead of instances due to the lack of standards. Almost all available standards 

do not provide instance-level mapping results for evaluation purposes. Meanwhile, we 

only try to find mapping between elements that share the same type. For example, a class 

in one ontology can not be mapped to a property or an instance in another ontology. 

3. Mapping granularity. The semantic correspondences in ontology mapping, as defined in 

§2.2, include different relationships, e.g., equivalent (=), broader (⊇), narrower (⊆), 

disjoint (⎮), joint (∪), etc. This research primarily interested in identifying the equivalent 

relationship (i.e., =) between different elements of different ontologies. This is because 

equivalent relations are the most frequent relations between ontologies and other 
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relationships such as broader and narrower relations can be generalized based on 

identified equivalent relations. We will not try to identify disjoint and joint relations. 

4. Mapping cardinality. The cardinality of ontology mapping varies from simple mapping 

(i.e., 1:1 mapping) to complex mappings (i.e., 1:n, n:1 and n:n). Though it is useful and 

desirable to find complex mappings in real world cases, 1:1 mapping is prerequisite and 

fundamental for establishing complex mappings. Therefore this research will focus on 

finding 1:1 mapping in ontologies and save the establishment of complex mappings for 

future work. Moreover, the mapping extraction algorithm adopted in this dissertation is 

the naïve descendant extraction algorithm (Meilicke and Stuckenschmidt 2007). One 

limitation comes from this algorithm is: even though the similarity between two elements 

is weak a mapping always outputs as a result. 

1.8 TERM DEFINITIONS 

DEFINITION 1. SEMANTICS is an individual’s interpretation of data according to his/her 

understanding of the world (Uschold 2003). 

DEFINITION 2. INTEROPERABILITY is the ability of two or more systems to exchange 

information and to use the information that has been exchanged (IEEE 1990). 

DEFINITION 3. SEMANTIC INTEROPERABILITY is the capability of different 

information systems to communicate information consistent with the intended meaning of the 

encoded information. (Patel, Koch et al. 2004) (p.8) 
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DEFINITION 4. INFORMATION HETEROGENERITY refers to the difference between 

information. Information heterogeneity can happen at three levels, i.e., syntax, structure and 

semantics levels. (Stuckenschmidt and Harmelen 2005)(p.2) 

DEFINITION 5.  SCHEMA is a structure describing how data can be stored, accessed, and 

interpreted by user and applications. Sample schemas include relational schemas, XML schemas 

and ontological schemas in OWL. (Do 2006)(p.3) 

DEFINITION 6. ONTOLOGY is a formal, explicit specification of a shared conceptualization. 

(Gruber 1993)(p.199) 

DEFINITION 7. UPPER ONTOLOGY is an ontology that provides common reference 

terminologies for other ontologies to extend.  

DEFINITION 8. ONTOLOGY MAPPING is the determination of semantic correspondences 

between similar elements in different ontologies. Here, semantic correspondence refers to 

different relationships, e.g. the equivalence (=), the broader (⊇), the narrower (⊆) etc., and 

elements could be classes, properties, instances and relations between the instances of an 

ontology. (§2.2) 

DEFINITION 9. SIMILARITY is a confidence measure between two elements in different 

ontologies. The similarity is expressed in a mathematical number that typically range in [0..1]. 

1.9 OUTLINE 

The rest of this paper is organized in the following manner. Chapter 2 defines the ontology 

mapping problem that we consider in the dissertation, and gives out the format that we use to 

represent mapping results. Chapter 3 reviews representative work by different researchers for 
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ontology mapping as well as schema matching in the database area. Chapter 4 thoroughly 

described the PRIOR+ approach and evaluates its performance using the tasks from OAEI 

campaign 2007. Chapter 5 introduces a non-instance learning based ontology mapping approach 

and gives out the experimental results of it on the benchmark tests from OAEI campaign 2007. 

Chapter 6 is a summary of the whole thesis and the outlook for future work. 
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2.0  PROBLEM DEFINITION 

This chapter defines ontology mapping. We begin by introducing the concepts of ontology and 

its heterogeneity. Next, we define ontology mapping based on the definitions given by other 

researchers. We then describe an example of two ontologies and the possible mappings between 

them. Finally we give out a formal statement to represent mapping results. 

2.1 ONTOLOGY AND ONTOLOGY HETEROGENEITY 

The vision of the Semantic Web (Berners-Lee, Hendler et al 2001) provides many new 

perspectives and technologies to overcome the limitation of the WWW. Ontologies are a key 

component to solve the problem of semantic heterogeneity, and thus enable semantic 

interoperability between different web applications and services.  

An ontology is a formal, explicit specification of a shared conceptualization (Gruber 

1993) (p.199), where “conceptualization” refers to an abstract model of phenomena in the world 

by having identified the relevant concepts of those phenomena, “explicit” means that the type of 

concepts used, and the constraints on their use are explicitly defined, “formal” refers to the fact 

that the ontology should be machine readable and “shared” reflects that ontology should capture 

consensual knowledge accepted by the communities (Fensel 2001; Fensel, Hendler et al. 2002).  
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Though ontologies have gained popularity in many communities as a means to establish 

formal and explicit vocabulary that applications can share, it is unrealistic to expect a universal 

ontology for the WWW. For example, Figure 2.1 illustrates two real ontologies, AKTors1 vs. 

eBiquity2.  These two ontologies use different definition, structure and notion to describe the 

same concept of publication. The problem of ontology heterogeneity induces research interest 

from different areas in ontology mapping.  

 

Figure 2.1. The publication in two real ontologies 

                                                 

1 http://www.aktors.org/ontology/ 

2 http://ebiquity.umbc.edu/ontology/publication.owl 
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2.2 THE DEFINITION OF ONTOLOGY MAPPING 

Ontology mapping is also known as ontology matching, or ontology alignment. In the 

dissertation, only the term of ontology mapping is used. Ontology mapping is different from 

ontology merging. Ontology mapping tries to make the source ontologies consistent and coherent 

with one another while keeping them separate. In contrast ontology merging aims to create a 

single coherent ontology that includes the information from all the sources.  

There are many different definitions of ontology mapping, depending upon its application 

and its intended outcome. Sample definitions of ontology mapping include: 

1. Ontology mapping is “a set of formulae that provide the semantic relationships between 

the concepts in the models” (Madhavan, Bernstein et al. 2002) (p.122).  

2. Ontology mapping is used to “establish correspondences among the source ontologies, 

and to determine the set of overlapping concepts, concepts that are similar in meaning 

but have different names or structure, and concepts that are unique to each of the 

sources” (Noy and Musen 2000) (p.450). 

3. Ontology mapping aims to “map concepts in the various ontologies to each other, so that 

a concept in one ontology corresponds to a query (i.e. view) over the other ontologies” 

(Calvanese, Giacomo et al. 2001) (p. 11).  

4. “Given two ontologies O1 and O2, mapping one ontology onto another means that for 

each entity (concept C, relation R, or instance I) in ontology O1, we try to find a 

corresponding entity, which has the same intended meaning, in ontology O2” (Ehrig and 

Staab 2004) (p.685). 
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In this research, we define ontology mapping as to find a set of semantic correspondences 

between similar elements in different ontologies. Here, semantic correspondence refers to 

different relationships, e.g. the equivalence (=), the broader (⊇), the narrower (⊆), the disjoint 

(⎮), the joint (∪) etc., and elements could be classes, properties, instances and relations between 

the instances of an ontology. The limitation and delimitation of our research can be found in 

§1.7. That is, in the thesis, we focus on finding 1-1 mappings with "equivalent" relationship 

between classes and properties in two ontologies from the same or similar domain. 

2.3 AN EXAMPLE OF ONTOLOGY MAPPING 

 

Figure 2.2. Two sample bibliographic ontologies 

Figure 2.2 shows two sample bibliographic ontologies, in which the ellipses indicate 

classes (e.g., "Reference", "Composite", "Book" and "Proceedings" etc.), the dashed rectangles 

indicate properties (e.g., "publisher", "editor", "organization" etc.), the lines with arrowhead 

indicate "subClassof" relation between two classes, and the solid rectangle indicates an instance 
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that is associated with the class of "Monograph" (i.e., "object-oriented data modeling" published 

by the MIT Press at 2000). Each class and property has some information to describe and restrict 

it. For example, the descriptive information of "Book" in the left ontology includes its ID, label, 

comment and restrictions such as title, publisher etc. In Figure 2.2 candidate mappings between 

classes include Reference and Composite, Book and Book, Monograph and Monogaphy, 

Collection and Collection, Proceedings and Proc. 

2.4 THE REPRESENTATION OF ONTOLOGY MAPPING 

The input of ontology mapping is two homogeneous ontologies, O1 and O2, expressed in the form 

of formal taxonomies or ontologies. The output is a mapping, also called the mapping result, 

between the input taxonomies or ontologies. Mapping can be represented in different ways 

depending on its intended use (Kalfoglou and Schorlemmer 2003). For example, mappings can 

be represented as queries (Calvanese, Giacomo et al. 2001), bridging axioms (Dou, McDermott 

et al. 2005) or an instance in a mapping ontology (Crubezy and Musen 2003; Gasevic and Hatala 

2005). 

We define mapping results as a statement of 4-tuple (shown as below), where m is a 

correspondence that specifies a specific element e1i of O1 has a relationship r with a specific 

element e2j of O2, and the correspondence holds a confidence measure s, which is a number 

typically ranged in [0..1]. 

),,,( 21 sreem ji  
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For example, in Figure 2.2, candidate mappings can be represented as: m(Reference, 

Composite, =, .11), m(Book, Book, =, 1), m(Monograph, Monography, =, .9), m(Collection, 

Collection, =, 1), m(Proceeding, Proc, =, .36) etc.  

Finally the mapping results are expressed in the format required by the annual OAEI 

campaign (see example in Figure 4.11). Please note even though the similarity between two 

elements is weak a mapping is always output as a result due to the limitation of naïve descendant 

extraction algorithm (Meilicke and Stuckenschmidt 2007) and delimitation of our 1-to-1 

mapping cardinality. For example, given the similarity matrix shown in Figure 4.4, when using 

the extraction algorithm to extract mapping results, m(Book, Book, =, 1), m(Collection, 

Collection, =, 1), m(Monograph, Monography, =, .9), m(Proceeding, Proc, =, .36) will be 

output as mapping results in sequence. Finally, even though the similarity score between 

Reference and Composite is as low as .11, m(Reference, Composite, =, .11) will be output as a 

mapping because it is the only mapping candidate left.  
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3.0  RESEARCH ON MAPPING APPROACHES 

Though ontologies are more semantically complex and are often larger than relational/XML 

schemas, many issues that ontology researchers grapple with in ontology mapping are similar to 

the issues that database researchers have addressed in schema matching (Noy 2004). In fact, 

there has been a convergence with database researchers employing more expressive components 

of schema definition in schema matching, and ontology researchers paying more attention on the 

well-examined experience from database community. Therefore before reviewing approaches to 

ontology mapping, the work that has been done in schema matching is briefly reviewed. 

3.1 SCHEMA MATCHING IN THE DATABASE COMMUNITY 

Schema matching is defined as finding semantic correspondences between elements of different 

relational or XML schemas (Do and Rahm 2002). Schema matching approaches are usually 

classified as rule-based or learning-based approaches. A more comprehensive classification of 

schema matching can be found in (Rahm and Bernstein 2001; Shvaiko and Euzenat 2005). 

Rule-based approaches generally exploit schema information such as data types and 

structures, element names, number of sub-elements, and integrity constraints. Various rules have 

been considered in different systems. For example, in the TranScm system (Milo and Zohar 

1998), rules such as “two elements match if they have the same name (allowing synonyms) and 
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the same number of subelements" were used. In the ARTEMIS system (Castano and Antonellis 

1999), the similarity of schema elements were computed as a weighted sum of the similarities of 

name, data type, and substructure. In the CUPID system (Madhavan, Bernstein et al. 2001), rules 

that categorize elements based on names, data types, and domains were employed. In the DIKE 

system (Palopoli, Terracina et al. 2003), the similarity of the characteristics of the elements and 

the similarity of related elements were used to compute the similarity between two schema 

elements. 

Learning-based approaches usually use a variety of learning techniques and exploit both 

schema and data information. For example, in the SemInt system (Li and Clifton 2000), a neural 

network learning approach is used to match schema elements based on attribute specifications 

(e.g., data types, scale, the existence of constraints) and statistics of data content (e.g., maximum, 

minimum, average, and variance). In the LSD system (Doan, Domingos et al. 2001), Naive 

Bàyes over data instances was employed, and a novel learning solution to exploit the hierarchical 

nature of XML data was developed. In the iMAP system (Dhamankar, Lee et al. 2004) two 

schemas were matched by analyzing the description of objects found in both sources. In the 

Autoplex and Automatch systems (Berlin and Motro 2001; Berlin and Motro 2002), a Naive 

Bàyes learning approach was used to match elements by utilizing data instances. 

Table 3.1 summarizes the major differences between rule-based approaches and learning-

based approaches for schema matching based on the comparison given in (Doan 2002). 
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Table 3.1 Comparison of rule-based and learning-based approaches 

 Rule-based Approaches Learning-based Approaches 

A
dvantage 

• relatively inexpensive (no 
training needed) 

• fast (schema operation only, does 
not work on data instances) 

• capture user knowledge (e.g. 
phone#, zip codes) quickly and 
concisely 

• can exploit data information 
and past matching activities 

• can figure out new rules by 
learning from training sets 

D
isadvantage 

• can not exploit data information 
(e.g. word frequencies, 
distribution) effectively 

• can not exploit previous 
matching efforts 

• has serious problem when rule 
are difficult to formulate (e.g. 
movie description vs. user 
comments) 

• time-consuming (need to 
preprocess data) 

• training required 
• has difficulty in learning 

certain type of knowledge (e.g. 
phone#, zip, country names) 

3.2 STATE OF THE ART ONTOLOGY MAPPING APPROACHES 

Ontology mapping is defined as finding semantic correspondences between similar elements of 

different ontologies (§2.2). Though ontology mapping is very similar to schema matching 

(Madhavan, Bernstein et al. 2001; Rahm and Bernstein 2001) in that both try to exploit lexical 

and structural information to find correspondences (i.e. mappings), ontology mapping often goes 

further due to the characteristics of ontologies (Noy 2004; Noy, Doan et al. 2005). For example, 

ontologies usually have more constraints specified than schemas, and thus ask for mapping 

methods that can automatically exploit these constraints. Ontology mapping also gets more 

benefits from exploiting semantics of relationships than schema could, such as the semantics of 

SubClassOf or PartOf relationships, the attachment of property to a class, domain and range 



25 

definitions for properties, and so on. In this section, two architectures for finding 

correspondences between ontologies are introduced. Following, five major mapping methods 

that have been used in previous work are described. 

3.2.1 Two Architectures for Ontology Mapping 

Two architectures, centralized vs. decentralized, have been proposed for ontology mapping. The 

centralized approach used an upper ontology shared by developers of different applications. This 

approach is intuitive because upper ontology can provide common reference terminologies for 

domain specific ontologies, and thus greatly facilitates finding correspondences between them. 

Figure 3.1 illustrates a simple example where three domain specific ontologies are extended from 

the same upper ontology. The mappings between domain ontologies can be established via 

interlingua information provided by the upper ontology.  

 

Figure 3.1. Mapping via interlingua information available in an upper ontology  
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Currently, a number of general ontologies that formalize notions such as processes and 

events, time and space, physical objects, and so on, have been developed and some of them are 

becoming accepted standards. DOLCE (Gangemi, Guarino et al. 2003) and SUMO (Niles and 

Pease 2001) are two examples that are built with the explicit purpose of being formal upper 

ontologies. DOLCE (Gangemi, Guarino et al. 2003) is an upper ontology developed in the 

WonderWeb project1. It aims at providing a common reference framework for ontologies to 

facilitate information sharing among them. DOLCE captures ontological categories based on 

natural language and human common sense in its representation. SUMO (Suggested Upper 

Merged Ontology) (Niles and Pease 2001) was created by the IEEE Standard Upper Ontology 

Working Group with the goal of developing a standard upper ontology to promote data 

interoperability, information search and retrieval, automated inference, and natural language 

processing. The SUMO ontology defines high level concepts (i.e., Object, ContinousObject, 

Process, Quantity, and Relation).  It also provides axioms in first-order logic to describe 

properties of these concepts and relations among them. 

Though it is surely helpful to have different ontologies refer to the same upper ontology, 

sometimes such ontology simply does not exist or people do not want to use one. Therefore, 

rather than using interlingua information in the upper ontology, the decentralized approach 

creates mappings by exploiting different kinds of information between ontologies. For example, 

structural information (e.g., subclass and superclass relationships, domain and range of 

properties, and graph structure of ontologies) can give insight into ontologies. Lexical 

information (e.g., names, definitions, and distance between strings) can help re-rank mapping 

results. Auxiliary information (e.g., WordNet) provides semantics for the elements in ontologies. 
                                                 

1 http://wonderweb.semanticweb.org/ 
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Finally, instance information, if available, is useful especially for machine learning approaches 

where they provide necessary training sets. The following sections introduce five major 

decentralized approaches, i.e., heuristic and rule-based methods, machine learning-based 

methods, graph-based methods, probabilistic methods, and reasoning and theorem proving 

methods. 

3.2.2 Heuristic and Rule-based Methods 

Heuristic and rule-based methods for ontology mapping are similar to rule-based approaches for 

matching relational schemas and XML structures. They both use lexical information (e.g., name, 

label, and description) and structural information (e.g., key properties, taxonomic structure) to 

find correspondences. For example, Hovy (Hovy 1998) describes a set of heuristics for semi-

automated mapping of domain ontologies to a central ontology. In the approach, the author 

mainly uses natural-language analysis of concept names and definitions, as well as taxonomic 

relationships. He first uses natural language processing (NLP) techniques to split composite 

word names, and then compares substrings of different lengths to find concept names that are 

similar to each other. The number and the ratio of shared words in the definitions are also 

considered. Other systems that use heuristic and rule-based methods for ontology mappings 

include Prompt (Noy and Musen 2000), QOM (Ehrig and Staab 2004), Ontomorph (Chalupsky 

2000), and Chimaera (McGuinness, Fikes et al 2000). 

1. PROMPT 

The PROMPT system (Noy and Musen 2000) was originally developed to support ontology 

merging, guiding users through the process and suggesting which classes and properties can be 
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merged. Figure 3.2 shows the PROMPT algorithm, where the gray boxes indicate the actions 

performed by PROMPT and the white box indicates the action performed by the user.  

To make the initial suggestions, PROMPT uses a measure of linguistic similarity among 

concept names and mixes it with the structure of the ontology and user’s actions. For each 

operation, PROMPT performs changes automatically, finds conflicts that the operation may 

introduce that need to be resolved, and presents new suggestions to the user. For instance, if a 

user says that two classes in two source ontologies are the same, that means these two ontologies 

should be merged, then PROMPT analyzed the properties of these classes, their subclasses and 

superclasses to look for similarities of their definitions and suggest additional correspondences. 

 

Figure 3.2. The workflow of PROMPT algorithm 1 

Their evaluation shows that human experts follow 90% of PROMPT’s suggestions. The 

experts follow 75% of the conflicts-resolution strategies that PROMPT proposes and PROMPT 

suggests 74% of the total knowledge-based operations invoked by the user. The results indicate 

that PROMPT is very effective in providing suggestions. Though the PROMPT algorithm is 

                                                 

1 from (Noy and Musen 2000), p.452 
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simple and fast, it can be made more efficient by sorting the labels first, thus only requiring the 

comparison of two neighboring elements in the list. Another limitation of PROMPT is it 

determines the similarity based on the exact equality of labels and only one similarity is 

computed.  No similarity aggregation is performed. 

2. QOM 

QOM (Quick Ontology Mapping) (Ehrig and Staab 2004) is based on the hypothesis that 

mapping algorithms can be streamlined such that the loss of quality is marginal, but the 

improvement of efficiency is tremendous for the ad-hoc mapping of large size, light weight 

ontologies. It is defined by the process model shown in Figure 3.3. 

 

Figure 3.3. QOM mapping process 1 

1) First, QOM employs RDF triples as features. 

2) Based on the observation that the run time complexity of a mapping algorithm is directly 

impacted by the number of candidate mapping pairs that need to be examined, in the 

Search Step Selection process, instead of comparing all entities of the first ontology with 

all entities of the second ontology, QOM applies a heuristic method that makes use of 

ontological structures to reduce the quantity of candidate mappings, which is a major 

ingredient of run-time complexity.  

                                                 

1 from (Ehrig and Staab 2004), p.686 
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3) In the Similarity Computation step, the similarity between entities of ontologies is done 

by using various similarity functions and heuristics. For efficiency reasons, QOM avoids 

the complete pair-wise evaluation of ontology trees and restricts the number of costly 

feature comparisons. 

4) All individual measures are then input to the similarity aggregation. Instead of applying 

linear aggregation functions, QOM applies a sigmoid function. The sigmoid function 

emphasizes high individual similarities rather than low individual similarities. 

5) Two methods are used to interpret similarity results. First, a threshold to discard spurious 

evidence of similarity is applied. Further mappings are assigned based on a greedy 

strategy that starts with the largest similarity values first. Since Similarity Aggregation 

and Interpretation steps are performed once per candidate mapping, they do not impact 

efficiency. 

6) Finally, QOM iterates to find mappings based on lexical information first and knowledge 

structure later. Through several iterations the quality of the results rises considerably. 

QOM limits the number of iterations to 10 because empirical findings indicate that 

further iterations produce insignificant changes. Eventually, the output is a mapping table 

representing the relationship between the two ontologies. 

Depending on the scenario, QOM can be very effective and efficient, reaching high 

quality levels quickly by a factor of 10 to 100 times compared to approaches such as PROMPT 

and NOM (a simulation of Anchor-PROMPT algorithm). One problem of QOM is its 

optimization of mapping approach does decrease the overall mapping quality. Therefore, QOM 

is recommended only when ontologies are large-scaled. 



31 

3.2.3 Machine Learning Approaches 

Machine learning can be used to creating mappings between ontologies (Doan, Madhaven et al. 

2003). This method is efficient when instances are available in ontologies and it works better if 

many instances have text in them rather than references to other instances. The GLUE system 

(Doan, Madhaven et al. 2003) is an example of learning-based ontology mapping systems. 

GLUE (Doan, Madhaven et al. 2003) is a system whose aim is to semi-automatically create 

semantic mappings, especially 1-1 correspondences, between the taxonomies of two given 

ontologies. GLUE first applies statistical analysis to the available data (i.e., joint probability 

distribution computation). And then it uses multiple learners to exploit information in concept 

instances and taxonomic structure of ontologies. Next, GLUE uses a probabilistic model to 

combine results of different learners. Finally, GLUE adopts relaxation labeling approach to 

search for the mapping configuration that best satisfies the domain constraints and the common 

knowledge, taking into account the observed similarities. 
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Figure 3.4. The architecture of GLUE 1 

GLUE consists of three main modules: Distribution Estimator, Similarity Estimator, and 

Relaxation Labeler. The Distribution Estimator takes two taxonomies O1 and O2 and their data 

instances as input. For every pair of concepts (A∈O1, B∈O2), the Distribution Estimator applies 

machine learning techniques to compute their joint probability distributions. And then it uses a 

set of base learners and a meta-learner. Each base learner exploits a certain type of information 

(i.e., the frequencies of words in the text value of the instances, the value formats, the instance 

names, the characteristics of value distributions, and so on.) from the training instances to build 

prediction hypotheses. Then, these base learners are applied to the instance and their predictions 

are combined by a meta-learner to achieve higher classification accuracy than any single base 

                                                 

1 from (Doan, Madhaven et al. 2003), p.307 



33 

learner alone. Next, GLUE feeds all the above numbers into the Similarity Estimator, which 

applies a user-supplied similarity function to compute a similarity value for each pair of 

concepts, (A∈O1, B∈O2). The output of this module is a similarity matrix between the concepts 

in the two taxonomies. Finally, the Relaxation Labeler module takes the similarity matrix, 

domain-specific constraints and heuristic knowledge. It searches for the mapping configuration 

that best satisfies the domain constraints and the common knowledge, taking into account the 

observed similarities. The output of GLUE is the mapping configuration. Though GLUE uses IR 

method to preprocess data, it does not calculate the similarity value for each pair of concepts in a 

vector space model that is different from what the PRIOR+ approach adopts. 

The authors evaluated GLUE on three domains, the results show that GLUE achieves 

high accuracy across all domains, ranging from 66 to 97%, compared to the best matching results 

of the base learners (i.e., content learner), of only 52 - 83%. The biggest problem of GLUE is 

that it requires a large number of instances associated with the nodes in taxonomies and these are 

not available in most ontology mapping situations. 

3.2.4 Graph-based Methods 

Treating ontologies as graphs and then comparing the corresponding graphs is another method to 

find mappings between ontologies. Examples of graph-based ontology mapping methods include 

Anchor-Prompt (Noy and Musen 2001) and Similarity Flooding (Melnik, Garcia-Molina et al. 

2002). 

1. Anchor-PROMPT 
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Anchor-PROMPT (Noy and Musen 2001), an extension of PROMPT (Noy and Musen 2000), is 

an ontology merging and mapping tool with a sophisticated prompt mechanism for term 

matching. It treats an ontology as a directed labeled graph, where concepts are nodes and 

relations are arcs.  

The Anchor-PROMPT algorithm is based on the observation that if two pairs of terms are 

similar and there are paths connecting them, then the elements in these paths are often similar as 

well. Anchor-PROMP takes a set of anchors (pairs of related term) from source ontologies as 

input. These anchors are either manually identified by users or automatically generated by the 

system. From this set of pre-identified anchors, the Anchor-PROMPT traverses the paths 

between the anchors on the corresponding ontologies and then computes the terms along these 

paths to find similar terms. Finally, the Anchor-PROMPT produces a set of pairs of semantically 

related terms.  

For example, in Figure 3.5, there are two pairs of pre-identified anchors, classes A and B 

and classes H and G, and two parallel paths, one from A to H in Ontology 1 and the other from B 

to G in Ontology 2. The Anchor-PROMPT traverses the two paths and increments the similarity 

score between each two classes (i.e., classes C and D, classes E and F) reached in the same step. 

Then Anchor-PROMPT repeats the process for all the existing paths that start and end at the 

anchors and cumulatively aggregates the similarity scores. 
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Figure 3.5. Traversing paths between anchors in Anchor-PROMPT 1 

The evaluation shows that 75% of the results are correct when using Anchor-PROMPT 

with ontologies developed independently by different groups of researchers. There are two 

limitations of the Anchor-PROMPT algorithm. One is that Anchor-PROMPT is time-consuming. 

Its worst case run-time behavior is O(n2log2(n)), compared to PROMPT O(nlog(n)), GLUE of 

O(n2) and QOM O(nlog(n)). Another limitation is Anchor-PROMPT does not work well when 

one ontology has a deep hierarchy with many classes inter-linked and the other ontology has a 

shallow hierarchy with few levels. 

2. Similarity Flooding 

                                                 

1 from (Noy and Musen 2001), p.64 
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Similarity Flooding (Melnik, Garcia-Molina et al. 2002) is a generic graph matching algorithm 

using fixpoint computation to determine corresponding nodes in the graphs. The principle of the 

similarity flooding algorithm is that the similarity between two nodes depends on the similarity 

between their adjacent nodes. In another words, a part of the similarity of two elements will 

propagate to their respective neighbors. The spread of similarities is similar to how IP packets 

flood a network in broadcast communication. This is why the algorithm is called similarity 

flooding. 

 

Figure 3.6. Example illustrating the Similarity Flooding algorithm 1 

Figure 3.6 illustrates the Similarity Flooding algorithm, in which two ontologies, A and 

B, are first translated into directed labeled graphs based on the Open Information Model 

specification2. To implement this, the algorithm creates another graph whose nodes, i.e., (a, b) 

and (a1, b1), are pairs of nodes of the initial two graphs, and there is an edge l1 between (a, b) 

and (a1, b1) whenever there are edges (a, l1, a1) in the first graph and (b, l1, b1) in the second 

one. The algorithm computes initial similarity values between nodes based on their labels and 

iterates, re-computing the similarities between nodes as a function of the similarity between the 

                                                 

1 from (Melnik, Garcia-Molina et al. 2002), p.120 

2 http://www.mdcinfo.com/OIM/OIM10.html 
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adjacent nodes at the previous step. It stops when no similarity changes more than a particular 

threshold or after a predetermined number of steps. The aggregation function is a weighted linear 

aggregation where the weight of an edge is the inverse of the number of other edges with the 

same label reaching the same entities. The values are further normalized with regard to the 

maximal similarity value obtained. 

The authors adopt a novel quality metric to evaluate the performance of their Similarity 

Flooding algorithm. Unlike previously proposed metrics for measuring the matching accuracy 

without considering the extra work caused by wrong match proposals, they argue that user’s 

effort for modifying a proposed mapping result can be measured in terms of adding and deleting 

mapping pairs. Thus, the function of the accuracy used in their evaluation is: 

 

1Accuracy = Recall (2- )
Precision

×     (1) 

 

This definition shows that the notion of the accuracy only makes sense when precision is 

not less than 0.5. If more than half of the mappings are wrong, it would take the user more effort 

to remove the false positives and add the missing mappings than to do the mapping manually 

from a scratch. Their evaluation shows that their mapping accuracy over 7 users and 9 problems 

averaged 52%. 

Unlike most ontology mapping approaches which are not generic and tailored to a 

specific application domain such as data or schema integration and specific relational or XML 

schemas, the Similarity Flooding algorithm is a generic graph matching algorithm. Though the 

Similarity Flooding algorithm can be applied to 1-to-n mapping, it obtains this feature by 

decreasing the threshold of similarity. That is not a real 1-to-n mapping. 
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Some limitations of the Similarity Flooding algorithm are: 

1) The algorithm only works for directed labeled graphs. When labeling is uniform or 

undirected, or when nodes are less distinguishable, the algorithm degrades. 

2) The algorithm is based on the assumption that adjacency contributes to similarity 

propagation. Thus, when adjacency information is not preserved the algorithm will 

perform unexpectedly. For example, in some HTML pages, there are nodes displayed 

visually close are structurally far away from each other. In another case two cells in a 

HTML table vertically adjacent may be far apart in the document and can not contribute 

to similarity propagation. 

3) The algorithm can only be applied to equal-typed models. For instance, it works when 

mapping an XML schema against another XML schema instead of mapping a relational 

schema against an XML schema. 

3.2.5 Probabilistic Methods 

Probabilistic methods are usually used on instance level in the process of ontology mapping. For 

example, OMEN (Ontology Mapping Enhancer) (Mitra, Noy et al. 2004), is a tool for describing 

mappings via probabilities and infers new mappings by means of Bayesian Network inference 

mechanisms. The motivation for using Bayesian Networks is: 1) the mappings are always 

imprecise especially when they are discovered automatically by heuristics or machine learning 

techniques; 2) sometimes even experts are not sure about the exact match between elements of 

different ontologies and typically assign some certainty rating to a match.  
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Figure 3.7. The Bayesian network constructed in OMEN 1 

Figure 3.7 shows a Bayesian Network (BN) constructed in OMEN, where some classes 

(the small circles) in ontology O are represented in the left-hand tree and some classes in 

ontology O' are represented in the right-hand tree. The thin arrows in the figure represent 

relations between the classes, such as subclass and superclass relationships. The large gray ovals 

with nodes represent individual pairs of matches and the solid arrows represent influences 

between the nodes in BN graph.  

In order to run a Bayesian Network, two types of information are needed: 1) evidence, 

which is obtained from the initial probabilities and describes what is known with high 

confidence, and 2) conditional probability tables (CPTs), which represent how a probability 

distribution in one node affects the probability distribution in another node downstream from it. 

For instance, in Figure 3.7, the mapping between concept C1 and C'1 affects the mapping 

between concepts C2 and C'2, which in turn affects the mapping between C3 and C'3. 

                                                 

1 from (Mitra, Noy et al. 2004), p.539 
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Given source ontologies O and O' and initial probability distribution for matches, the 

OMEN algorithm is: 

1) If initial probability of a match is above a given threshold, create a node representing the 

match and mark it as evidence node. 

2) Create nodes in the BN graph representing each pair of concepts (C, C'), such that C∈O 

and C'∈ O' as a node in the graph and the nodes are within a distance k of an evidence 

node. 

3) Create edges between the added nodes. 

4) Generate the CPTs by means of a set of generic meta-rules, such as “Say there are two 

concepts C and C' that match and there is a relationship between C and another concept 

C1 in the ontology O and a relationship between C' and C'1 in the ontology O'. 

Furthermore these two relationships match/do not match. Then, the probability of the 

match between C1 and C'1 is increased/decrease.”  

5) Afterwards the inference on the Bayesian Network can be started and the output is a new 

set of matches. 

In the OMEN system, probabilistic influences are combined for the child with the 

assumption that if a node in a Bayesian Network has two parents, the two parents are 

independent, that is P(N|P1, P2) = P(N|P1)P(N|P2). This assumption is not true when the match of 

two pairs of parents influences each other. Even with this simple assumption the system obtains 

encouraging results that the inference of new mappings do work. For instance, the experiments 

on two ontologies about university departments and students, staff and faculty of the departments 

show that OMEN can generate up to 7 missing matches given only 3 out of 11 matches. 
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Compared with most ontology mapping techniques (i.e., heuristic, machine-learning, and 

graph methods) that are mainly based on linguistic analysis of concept names and natural-

language definitions of concepts, OMEN uses a probabilistic method to improve the matches 

produced by the methods above or to suggest additional matches. Thus it is a complementary to 

current techniques of automatic or semi-automatic ontology mapping. 

3.2.6 Reasoning and Theorem Proving Methods 

• S-Match 

S-Match (Giunchiglia, Shvaiko et al. 2004) is a schema and ontology mapping system that uses 

reasoning and theorem proving methods to find mappings. It starts with a combination of 

matchers using lexical information and external resources. Then it uses a SAT1 solver to find 

semantic relations, such as equivalence (=), more general (⊇), less general (⊆), mismatch (≠), 

union (∪) and overlapping (∩). 

In the S-Match platform, the module that takes input schemas in a standard internal XML 

format does the preprocessing and returns enriched trees containing concepts of labels and nodes 

as output. These enriched trees are stored in an internal database, namely PTrees, where they can 

be browsed, edited and manipulated. The preprocessing module has access to the set of oracles, 

which provide the necessary a priori lexical and domain knowledge. Currently the only oracle S-

Match has is WordNet. The Match Manager coordinates matching process using three extensible 

libraries, the Weak Semantic Matchers, the Oracles, and the SAT solvers. The Weak Semantic 

                                                 

1 The Boolean satisfiability problem (SAT) is a decision problem, whose instance is a Boolean expression written using only 

AND, OR, NOT, variables, and parentheses. (From http://en.wikipedia.org/wiki/Boolean_satisfiability_problem) 
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Matchers are “element level weak semantics matchers”, which perform string manipulations 

(i.e., prefix, edit distance, n-grams analysis, data types, and so on) and try to guess the semantic 

relations implicitly encoded in similar words. The Oracles are “element level strong semantics 

matchers”. These matchers extract semantic relations existing between concept labels using 

oracles which memorize the necessary lexical and domain knowledge. The SAT solvers are 

structure level strong semantics matchers, which decide propositional satisfiability (a formula is 

valid if and only if its negation is unsatisfiable). The SAT decider that S-Match is currently using 

is JSAT1. 

 

Figure 3.8. The architecture of the S-Match 2 

The evaluation of S-Match is based on a comparison with three other mapping systems -- 

Cupid (Madhavan, Bernstein et al. 2001), COMA (Do and Rahm 2002), and Similarity Flooding 

(Melnik, Garcia-Molina et al. 2002), all of which are schema-based only and utilize both 
                                                 

1 http://cafe.newcastle.edu.au/daniel/JSAT/ 

2 from (Giunchiglia, Shvaiko et al. 2004), p.72 
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linguistic and graph matching techniques. Though S-Match clearly outperforms other systems 

from the viewpoint of the quality of mapping results, S-Match runs the slowest because it needs 

to translate a mapping problem into a validity problem, which is very time consuming. 

3.3 THE LATEST RESEARCH ON ONTOLOGY MAPPING 

So far we have reviewed the representative approaches that have been proposed to solve the 

ontology mapping problem. Recently, some approaches that integrate the advantages of the state 

of the art techniques have appeared. In this section we review the 4 top-ranked systems that 

participated in OAEI campaign 2007, i.e., Falcon-AO (Qu, Hu et al. 2006; Hu, Zhao et al. 2007), 

RiMOM (Tang, Li et al. 2006; Li, Zhong et al. 2007), LILY(Wang and Xu 2007) , 

ASMOV(Jean-Mary and Kabuka 2007), and compare the major differences between them and 

PRIOR+. 

The reasons for reviewing the four systems are:  

1. The techniques that the 4 systems used in their approach are diverse and based on the 

state-of-art approaches. In reviewing these systems, we are reviewing the latest developments in 

this area.  

2. Like ours, all the systems use multiple similarities, and thus face the problem of 

aggregating similarities in an effective way. Therefore, reviewing the approaches helps to 

evaluate our approach.  
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3. All these systems participated in OAEI ontology matching campaign 2007. The OAEI 

campaign provides uniform test cases so that quantitative comparison between different 

approaches is practical. Please see the detailed quantitative comparison in §4.7.3.7. 

3.3.1 Falcon-AO 

Falcon-AO (Qu, Hu et al. 2006; Hu, Zhao et al. 2007) is a similarity-based generic ontology 

mapping system. Figure 3.9 is the system architecture of Falcon-AO, which shows its five 

components: the Repository temporarily stores the data during the matching process; the Model 

Pool manipulates ontologies and constructs different models for different matchers; the 

Alignment Set generates and evaluates exported alignments; the Matcher Library manages a set 

of elementary matchers; and the Central Controller configures matching strategies and executes 

matching operations.  

 

Figure 3.9 The system architecture of Falcon-AO1 

                                                 

1 From Hu, Zhao et al. 2007, p2 
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The Matcher Library is the core component of Falcon-AO. It consists of three elementary 

matchers, i.e., V-Doc, I-Sub (Stoilos, Stamou et al. 2005), and GMO, and one ontology 

partitioner, PBM. V-Doc constructs a virtual document for each URIref, and then measures their 

similarity in a vector space model. I-Sub compares the similarity of strings by considering their 

similarity along with their differences. GMO explores structural similarity based on a bipartite 

graph. PBM partitions large ontologies into small clusters, and then matches between and within 

clusters.  

The Model Coordinator eliminates useless axioms and reduces structural heterogeneity 

between to-be-matched ontologies based on some pre-defined coordination rules. 

The main differences between Falcon-AO and PRIOR+ are: 

1. The profile used in our approach is similar as the virtual document constructed in 

Falcon-AO. The difference is the virtual document only exploits neighboring 

information based on an RDF model; whereas our profile does not have any 

limitation of information type, and thus can integrate any information including 

instances.  

2. From the aggregation view, though Falcon-AO measures both linguistic 

comparability and structural comparability of ontologies to estimate the reliability of 

matched entity pairs, it only uses them to form three heuristic rules to integrate results 

generated by GMO and LMO. For example, Falcon-AO takes the results of GMO 

into account only when the structural comparability is greater than a predefined 

threshold. Using LMO, Falcon-AO linearly combines two linguistic similarities with 

some experiential number. Unfortunately neither experiential number nor heuristic 

rules can automatically adapt to different test cases, as we argued in §4.4. 
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Furthermore, when estimating linguistic comparability Falcon-AO does not 

distinguish the difference between class and property; whereas our approach 

estimates harmony for class and property separately.  

3. Finally Falcon-AO does not have solutions to optimize final results so that they can 

satisfy various ontology constraints.  

3.3.2 RiMOM 

RiMOM (Tang, Li et al. 2006; Li, Zhong et al. 2007) is a general ontology mapping system 

based on Bayesian decision theory. It utilizes normalization and NLP techniques and integrates 

multiple strategies for ontology mapping. RiMOM uses risk minimization to search for optimal 

mappings from the results of multiple strategies. Figure 3.10 is the system architecture of 

RiMOM, which includes five major steps in its general alignment process. 

 

Figure 3.10 The system architecture of RiMOM1 

The details of each step are: 

                                                 

1 From Tang, Li et al. 2006, p8 
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1. User Interaction (optional). RiMOM accepts rectified mapping or newly created 

mapping from users to improve the mapping accuracy. 

2. Multi-strategy execution. Given two ontologies, RiMOM first estimates two 

similarity factors, i.e., structure similarity factor and label similarity factor.  Based on 

the two factors, RiMOM executes multiple independent mapping strategies. Every 

strategy determines a prediction value between 0 and 1 for each possible candidate 

mapping. The output of the mapping execution phase with k strategies, m entities in 

O1 and n entities in O2 is a k×m×n cube of predicting values, which is stored for later 

strategy combination. 

3. Strategy combination. RiMOM combines the alignment results obtained by different 

strategies using a linear-interpolation method.  

4. Mapping discovery. RiMOM removes “unreliable” alignments using pre-defined 

heuristic rules. The output of its mapping discovery is a mapping table including 

multiple entries, each of which corresponds to a mapping. 

5. Iteration. RiMOM iteratively executes step 1 to 4 till no new mappings are 

discovered. 

The main differences between RiMOM and PRIOR+ are: 

1. Both RiMOM and our approach do propagation based on propagation theory 

(Felzenszwalb and Huttenlocher 2006). However RiMOM propagates the similarity 

of two entities to entity pairs associated with some kinds of relationship (e.g. 

superClassOf, siblingClassOf, domain etc.); whereas PRIOR+ propagates original 
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information of an element instead of its similarity to its neighboring elements, and 

then compares their similarity based on the propagated profiles.  

2. When integrating multiple strategies RiMOM adopts a sigmoid function with 

tentatively set parameters, which has been been shown to be inferior to harmony-

based adaptive similarity aggregation in the PRIOR+. See experimental results in  

§4.7.3.4. 

3. Furthermore, though RiMOM calculates two similarity factors to estimate the 

characteristics of ontologies, their estimation is suitable to some special situations 

only. For example, their linguistic similarity factor only concerns elements that have 

the same label. The idea of harmony in PRIOR+ is more general.  

4. While both explore different approaches to find the optimal mappings for final results 

extraction. RiMOM uses risk minimization approach; while PRIOR+ tries neural 

network approach. 

3.3.3 LILY 

LILY (Wang and Xu 2007) is a generic ontology mapping system based on the extraction of 

semantic subgraphs. It exploits both linguistic and structural information in semantic subgraphs 

to generate initial alignments. Then a subsequent similarity propagation strategy is applied to 

produce more alignments if necessary. Finally LILY uses classic image threshold selection 

algorithm to automatically select threshold, and extract final results based on the stable marriage 

strategy. Figure 3.11 shows the system architecture of LILY.  

The main differences between LILY and PRIOR+ are: 
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1. The efficiency problem. LILY faces two limitations when applying semantic 

subgraphs to solve the ontology mapping problem. One is it needs to manually set the 

size of subgraph according to different mapping tasks. The other is the efficiency of 

semantic subgraph mapping is very low in large-scale ontologies. For example, LILY 

used 4 days to get final mapping results between two anatomical ontologies in OAEI 

campaign 2007 while PRIOR+ needs only 23 min to find the mappings between the 

two anatomical ontologies. 

2. LILY combines different similarities using a linear method with experiential weights, 

which is not good as harmony-based adaptive aggregation method in our PRIOR+. 

3. LILY does not consider ontology constraints directly. Whereas the PRIOR+ integrate 

the IAC neural network to deal with constraints satisfaction in the context of ontology 

mapping. 

 

Figure 3.11 The system architecture of LILY1 

                                                 

1 From Wang and Xu 2007, p2 
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3.3.4 ASMOV 

ASMOV (Jean-Mary and Kabuka 2007) is an automated ontology mapping tool that iteratively 

calculates the similarity between concepts in ontologies by analyzing four features, i.e., textual 

description (id, label, and comment), external structure (parents and children), internal structure 

(property restrictions for classes; types, domains, and ranges for properties), and individual 

similarity. It then combines the measures of these four features using a weighted sum. The 

weights are adjusted based on static rules. At the end of each iteration, a pruning process 

eliminates the invalid mappings by analyzing two semantic inconsistencies: crisscross mappings 

and many-to-one mappings. Figure 3.12 shows the system architecture of ASMOV. 

 

Figure 3.12 The system architecture of ASMOV1  

Due to the limited literature available we are unable to compare our approach with 

ASMOV in detail. What we can say is: 

                                                 

1 From Jean-Mary and Kabuka 2007, p2 
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1. ASMOV integrates UMLS Metathesaurus1 as a domain specific thesaurus for the 

anatomy test and WordNet2 as a general thesaurus for the other tests including the 

benchmark tests in OAEI campaign. PRIOR+ does not rely on any external resources 

in the process of ontology mapping. 

2.  The aggregation method in ASMOV is heuristic rule based weighted aggregation and 

only two constraints are validated for their final results. PRIOR+ uses harmony-based 

aggregation method to adaptively combine different similarities. 

                                                 

1 http://www.nlm.nih.gov/research/umls/ 

2 http://wordnet.princeton.edu/ 
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4.0  THE PRIOR+ APPROACH 

4.1 INTRODUCTION 

Approaches to ontology mapping include using linguistic techniques to measure the lexical 

similarity of concepts in ontologies (Qu, Hu et al. 2006), treating ontologies as structural graphs 

(Noy and Musen 2001; Melnik, Garcia-Molina et al. 2002) applying heuristic rules to look for 

specific mapping patterns (Mitra, Wiederhold et al. 1999), using machine learning to map 

ontologies (Doan, Madhaven et al. 2003), and integrating various techniques (Hu, Zhao et al. 

2007; Li, Zhong et al. 2007; Mao and Peng 2007; Wang and Xu 2007; Jean-Mary and Kabuka 

2007). More comprehensive surveys of ontology mapping approaches can be found in (Euzenat, 

Bach et al. 2004; Kalfoglou and Schorlemmer 2003; Noy 2004).  

Though the more recent approaches have made significant progresses in ontology 

mapping, they suffer from two limitations. First, ontology mapping approaches that use multiple 

mapping strategies face the problem of aggregating multiple similarities. Currently, they either 

use some predefined experience numbers to weight different similarities or tentatively set 

parameters in aggregation functions (e.g. sigmoid). Manually setting parameters is impractical 

due to its inability to adapting to different ontology mapping tasks. A second limitation is that 

most ontology mapping approaches do not thoroughly deal with ontology constraints (e.g., the 
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hierarchical relations in RDFS 1 , the axioms in OWL 2 , and the rules in SWRL 3 ). Most 

approaches either ignore ontology constraints completely or consider ontology constraints from a 

local perspective based on some heuristic rules.  Exceptions include GLUE (Doan, Madhaven et 

al. 2003), which adopts relaxation labeling to optimize mapping configurations by considering 

ontology constraints, and RiMOM (Tang, Li et al. 2006), which uses risk minimization to search 

for the optimal mappings from the results output by multiple strategies.   

To overcome the limitations, this chapter introduces a new generic ontology mapping 

approach, called the PRIOR+ (Mao and Peng 2006; Mao, Peng et al. 2006; Mao and Peng 2007). 

4.2 OVERVIEW OF THE PRIOR+ APPROACH 

 

Figure 4.1 The architecture of the PRIOR+ approach 

Figure 4.1 depicts the architecture of the PRIOR+. The input to PRIOR+ is two ontologies 

expressed in a formal ontology language such as OWL4 or SKOS5. First the ontologies will be 
                                                 

1 http://www.w3.org/TR/rdf-schema/ 

2 http://www.w3.org/TR/owl-features/ 

3 http://www.daml.org/2003/11/swrl/ 

4 http://www.w3.org/TR/owl-features/ 

5 http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20050510/ 



54 

parsed by Jena1 and pre-processed by removing stop words, stemming, and tokenizing. After 

that, the approach measures both the linguistic and the structural similarities of the ontologies. 

More specifically, three kinds of similarity, i.e., edit distance based similarity, profile similarity 

and structural similarity, are calculated. For each similarity, a measurement of harmony is 

estimated. Based on the estimation, three similarities are adaptively aggregated to get the final 

similarity between elements in the ontologies. When the harmony of the aggregated similarity is 

not good, the interactive activation and competition (IAC) neural network is activated to improve 

mapping accuracy (as illustrated with dashed line and box in the figure). The purpose of the IAC 

neural network is to search for a globally optimized solution that best satisfies as many ontology 

constraints as possible. To extract final mapping results, a naïve descendant extraction algorithm 

is applied (Meilicke and Stuckenschmidt 2007).  

Here we briefly describe three major components in the PRIOR+. The details of each 

component are as follows. 

1. Similarity Generator   

The most intuitive and efficient way to compare the similarity of two elements is to 

calculate the edit distance between them. The larger the distance, the less similarity they own. 

However, edit distance based similarity does not work when two concepts are semantically 

similar but lexically different (e.g. synonyms). Therefore, besides edit distance based similarity, 

we propose to build a profile for each element, and then compare the cosine similarity of two 

profiles in a Vector Space Model (VSM). To build the profile, we integrate all descriptive 

information of an element, such as its id, label, comments and property restrictions. We explore 

the structural similarity between two elements in ontologies as well. In our approach the 
                                                 

1 http://jena.sourceforge.net/ 
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structural similarity are represented by some structural features of an element such as the depth 

of the element to the root, the number of its subclasses or subproperties, etc. 

2. Adaptive Similarity Aggregator 

With three kinds of similarities, combining them to get an integrated score that can be 

used to represent the similarity between two elements is a difficult problem. Currently most 

researchers integrate different similarities using the weighted sum method. They either rely on 

their experience or tentatively set a number when assigning weights to different similarities. A 

weighted sum method has the limitation that it can not adjust weights automatically to different 

situations. We propose a measurement of harmony to adaptively aggregate different similarities. 

The harmony is the ratio of "perfectly" matched mappings to the whole candidates. In a 

similarity matrix, the ratio equals the number of cell that holds the highest similarity score in 

both row and column. An example of harmony calculation is provided in §4.4.2.2. 

3. The IAC Neural Network based Constraint Satisfaction Solver 

Having the aggregated similarity, we can directly extract final mapping results using 

some naïve method (Meilicke and Stuckenschmidt 2007) or work assignment optimization 

method such as the Hungarian algorithm (Kuhn 1955). However in the context of ontology 

mapping, there are many constraints. For example, in the ontology taxonomy, if element e1 in O1 

map to element e2 in O2, then the parent of e1 should not map to child of e2. The crisscross 

mapping results in conflicts. To improve the mapping accuracy, we integrate the interactive 

activation and competition (IAC) neural network to search for an optimal solution that can 

satisfy as many constraints as possible in the context of ontology mapping. 

The IAC neural network consists of a set of nodes. Each node represents a hypothesis. 

Between hypotheses, there are two kinds of connections. If a hypothesis supports another 
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hypothesis, there is a positive connection between them. Otherwise, there is a negative 

connection. In the context of ontology mapping, a node represents a hypothesis that element e1 in 

ontology O1 maps to element e2 in ontology O2. The connections between nodes come from 

different kinds of constraints in ontology mapping. Each node has three kinds of input, its initial 

activation, the input from its neighboring nodes, and the external input. Once the network starts 

running, it will update the activation of each node using a set of rules. Finally it will stop at some 

globally optimized point, where as many constraints as possible will be satisfied.  

4.3 SIMILARITY GENERATOR 

The similarity generator generates three kinds of similarities, i.e. edit distance based similarity, 

profile similarity and structural similarity. The input of the similarity generator is two ontologies, 

which will be parsed by Jena1.  Each element will be pre-processed by removing stop words, 

stemming, and tokenizing. The outputs are three similarity matrixes that contain similarity scores 

for each pair of elements in the ontologies. 

4.3.1 Edit Distance Based Similarity 

The edit distance based similarity is calculated between the name (i.e. ID) of elements based on 

their Levenshtein distance. The similarity is defined by Equation 2, where EditDist(e1i, e2j) is 

Levenshtein distance between elements e1i and e2j, l(e1i) and l(e2j) are the string length of the 

name of e1i and e2j respectively. 

                                                 

1 http://jena.sourceforge.net/ 
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4.3.2 Profile Similarity 

The profile similarity is generated in three steps, i.e., Profile Enrichment, Profile Propagation, 

and Profile Mapping. Figure 4.2 shows the major processes in profile similarity generation. 

 

Figure 4.2 The major processes in Profile Similarity generation 

1. Profile Enrichment. For each element in the ontology, we generate a profile, i.e., a 

combination of the element's descriptive information, to represent it and thus enrich its 

information. Then the tf•idf weight is assigned for each profile based on the whole collection 

of all profiles in the ontology. 

2. Profile Propagation. To exploit the neighboring information of each element, the profile of 

the element's ancestors, descendants and siblings will be passed to that of the element with 

different weights. 

3. Profile Mapping. Finally the cosine similarity between the profiles of two elements of e1i and 

e2j is calculated using a vector space model. 

4.3.2.1 Profile Enrichment 

First we introduce the term profile. The profile of an element is a combination of its 

linguistic description, after removing stop words, stemming and tokenizing, and keeping all 

duplicates. In particular, we define the profile of each class, property and instance as:  
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the profile of a class = the class's ID + label + comments + other restriction + its 

properties' profiles + its instances' profiles 

the profile of a property = the property's ID + label + its domain + its range 

the profile of an instance = the instance's ID + label + other descriptive information 

For example, given the descriptive information in Figure 2.2, the profile of class Book, 

Proceedings and Monograph and property editor in the left ontology are: 

Profile(Bookleft) = (book, book, book, monograph, collection, write, text) 

Profile(Proceedings) = (proceeding, communication, event, editor, organization) 

Profile(Monograph) = (monograph, object, orient, data, model, publish, MIT, year) 

Profile(editor) = (editor, proceeding, person1) 

The motivation for a profile is based on the observation that though a ID or name is 

always used to represent an element, sometimes the information carried in the ID or name is 

restricted, especially in cases where the ID or name is identified using meaningless symbols. 

Meanwhile other descriptive information such as labels and comments may contain words that 

better convey the meaning of the concept. The goal of Profile Enrichment is to use the profile to 

represent an element in an ontology, and thus enrich its information. 

Having profiles for each element, the tf⋅idf (term frequency–inverse document frequency) 

weight will be used to assign larger weight to the terms that have a high frequency in a given 

document and a low frequency in the whole collection of documents. The tf⋅idf weight is defined 

as: 
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1 where the person is the range of the editor, which is not indicated in the Figure 2.2 
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where, ni is the number of occurrences of the considered term, ∑nk is the number of 

occurrences of all terms, N is the total number of documents in the collection, and n is the 

number of documents where the term ti appears at least once (i.e., ni≠0). In our case, each profile 

is treated as a document and all profiles in two ontologies are treated as the collection of 

documents, which means N equals the number of total profiles in two ontologies.  

The output of Profile Enrichment is a set of vectors, in which each vector represents a 

concept using its tf⋅idf weights corresponding to each term. 

4.3.2.2 Profile Propagation 

Profile Propagation exploits the neighboring information of each element. That is, the profile of 

the element’s ancestors, descendants and siblings will be passed to the profile of the element 

itself. The motivation of profile propagation is based on the observation that if the taxonomy of 

an ontology can be seen as the index of a book, the super class in the ontology reflects the 

“context” of its subclasses and each subclass is a specific “content” of its super class. This means 

super classes always carry some characteristics of its subclasses and vice versa. 

The profile can be propagated in different ways.  Figure 4.3 shows an example where the 

propagation level is up to 2 and the weights are set as witself→itself, wparent→itself, wgrandparent→itself, 

wchildren→itself, wgrandchildren→itself, wsibling→itself.  How to find the best assembly of different weights to 

the neighbors of an element is not easy. As a beginning point, this research suggests that 

ancestors exert more influence than children and children more influence than siblings.  

However, there is no firm rule to follow. In §4.7.3.2 we describe an experiment that investigated 

the difference between the performance of profile similarity when assigning different weights for 

neighboring elements. 
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Figure 4.3. Profile propagation 

The process of Profile Propagation can be represented as:  
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where e1i and e2j represent two elements in the ontologies, E represents the set of all 

elements in the ontologies, V e1i-new represents the new profile vector of the element e1i, Ve2j 

represents the original profile vector of the element e2j, and w(e1i,e2j) is the function that assigns 

different weights to the neighbors of the concept. For example, after the propagation, the new 

profile of the element itself in Figure 4.3 is:  

Vitself-new = witself→itselfVitself + wparent→itselfVparent + wgrandparent→itselfVgrandparent + wchildren→itselfVchildren + 

wgrandchildre→itselfVgrandchildren + wsibling→itselfVsibling 

The output of Profile Propagation is a new set of vectors, in which each vector is updated 

from its original vector by integrating its neighboring information using Equation 4. 

4.3.2.3 Profile Mapping 

Given a query and a set of documents, classical information retrieval measures the similarity 

between a query and a set of documents, and returns the documents that have top-ranked 
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similarities. In the context of ontology mapping, if a profile in an ontology is treated as a query, 

and all profiles in the other ontology are treated as a collection of documents, finding the most 

similar elements in the two ontologies is just a matter of searching for the most relevant 

document from the collection using the query.  

There are many ways to evaluate the similarity between two documents in a collection. A 

common method is to measure the cosine angle between the two vectors of the documents. The 

cosine similarity between the profiles of two elements of e1i and e2j is calculated in a vector space 

model using Equation 5: 
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where Ve1i and Ve2j are two vectors representing the profile of element e1i and e2j 

respectively, n is the dimension of the profile vectors, Vk
e1i and Vk

e2j are kth element in the profile 

vector of element e1i and e2j respectively, |Ve1i| and |Ve2j| are the lengths of the two vectors 

respectively. 

The output of Profile Mapping is a similarity matrix, each cell of which represents a 

similarity score between two elements. 

4.3.3 Structural Similarity 

The structural similarity between two elements comes from their structural features (e.g., the 

number of direct property of a class). Structural similarity is considered for classes only. No 

structural similarity will be given to property or instance because of the lack of hierarchical 
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information. The structural similarity of the classes in two ontologies is defined by Equation 6, 

where e1i and e2j are two class elements in ontology O1 and O2 respectively, n is the total number 

of structure features, diffk(e1i,e2j) denotes the difference for feature k. 
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The diffk(e1i,e2j) is defined as Equation 7, where sf(e1i) and sf(e2j) denote the value of 

structure features of e1i and e2j respectively. In our approach sf(e1i) and sf(e2j) are one of the 

following values, the number of the class' direct properties, the number of the class' instances, 

the number of the class' children, or the normalized depth of the class from the root. 
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As an example of depth difference, assume the max depth of ontology O1 is 5, the max 

depth of ontology O2 is 6. depth(e1i) = 3, depth(e2j) = 4. Then The normalized depth of e1i and e2j 

are sf(e1i) = 3/5 = .6, sf(e1i) = 4/6 = .67. Finally the depth difference between e1i and e2j can be 

calculated as:  

.10  
.67
.07  

.67) max(.6,
|.67-.6|  )e,diff(e 2j1i ===  
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4.4 ADAPTIVE SIMILARITY AGGREGATOR 

4.4.1 Similarity Aggregation in the State-of-art Ontology Mapping Approaches 

Aggregating different similarity is pervasive in ontology mapping systems that contain multiple 

individual matchers, e.g., COMA (Do 2006), Falcon-AO (Qu, Hu et al. 2006, Hu, Zhao et al. 

2007), RiMOM (Tang, Li et al. 2006; Li, Zhong et al. 2007), and QOM (Ehrig and Staab 2004). 

Many strategies, e.g., Max, Weighted, Average and Sigmoid, have been proposed to aggregate 

different similarities in the approaches. The Max strategy returns the maximal similarity of 

individual matchers. The Weighted strategy determines a weighted sum of similarity of 

individual matchers. The Average strategy is a case of the Weighted strategy and returns the 

average similarity over all individual matchers. The SIGMOID strategy combines multiple 

results using a sigmoid function, a smoothed threshold function.  

Among the strategies, the Max strategy selects one extreme end of various similarities to 

be the representative of the final similarity, which is too optimistic especially in case of 

contradicting similarities. The Average strategy considers the individual similarities equally 

important and can not distinguish differences between them. The Weighted strategy overcomes 

the drawbacks of the Average strategy by assigning relative weights to individual matchers. The 

SIGMOID strategy emphasizes high individual predicting values and deemphasizes low 

individual predicting values. 

Currently the systems that adopt the Weighted strategy or the SIGMOID strategy to 

aggregate similarities need to manually set aggregation weights based on experience for different 

similarities or tentatively set center position and steepness factor in the sigmoid function. 
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However, manually predefined parameters can not be generalized to adapt to different mapping 

situations. Therefore how to select appropriate parameters that can truly reflect the reliability of 

different similarities deserves further research. 

4.4.2 The Harmony 

In this section we introduce the term harmony to estimate the reliability of different similarities. 

The purpose of harmony is to:   

1. Provide a measurable number that can tell us which similarity is more reliable and 

trustful so that we can give it a higher weight during aggregation.  

2. Assist in adaptively adjusting the mapping strategy. That is, when to activate or inactivate 

NN-based constraint satisfaction solver.  

Five individual harmonies (i.e., class name harmony, class profile harmony, class 

structural harmony, property name harmony, and property profile harmony) and two final 

harmonies (i.e. class harmony, property harmony) will be estimated on the corresponding 

similarity matrix. The 5 individual harmonies will be used as weight to aggregate similarities. 

The 2 final harmonies will be used to decide if we need to activate the IAC neural network or 

not. 

4.4.2.1 The Definition of Harmony 

Ideally, for 1-1 mapping, the similarity score of two truly mapped elements should be larger than 

that of all other pairs of elements that share the same row/column with the two elements in the 

similarity matrix, which implies that the two elements of this pair mutually prefer each other. 
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Given the rationale, we define the harmony of the similarity matrix as Equation 8, where #s_max 

denotes the number of the pair of elements that has the highest similarity in its corresponding 

row and column in the similarity matrix, and #ei denotes the number of elements in ontology Oi. 

)#,min(#
max_#

21 ee
sh =                  (8) 

4.4.2.2 A Simple Example of Harmony Estimation 
 

Figure 4.4 is the name similarity matrix for the example illustrated in Figure 2.2. The left table 

lists the original similarity score between each pair of elements. The right table illustrates how 

the harmony is calculated, where "×" denotes the cell that has the highest similarity score in each 

row, "O" denotes the cell that has the highest similarity score in each column, and "⊗" denotes 

the overlapped cell that has the highest similarity in both the row and the column. Therefore the 

#s_max in Equation 8 is the number of "⊗" in the right table. In this case, #s_max is 4 and thus 

the normalized harmony of the name similarity matrix is 4/5 = .8. The range of the harmony is 

[0,1]. 

 

Figure 4.4 A sample of harmony calculation 
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4.4.3 The Harmony-based Adaptive Similarity Aggregation 

In this section we propose a new weight assignment method to adaptively aggregate different 

similarities. That is, we use the harmony of different similarities as weight to aggregate various 

similarities. Therefore the final similarity of the pair of elements (e1i,e2j) can be defined by 

Equation 9, where k denotes to different similarities (i.e., For classes, they are class edit distance 

based similarity, class profile similarity and class structural similarity; For properties, they are 

property edit distance based similarity and property profile similarity), hk denotes the harmony of 

different similarities as defined in Equation 8, n denotes the number of different types of 

similarity, and Simk(e1i,e2j) denotes the similarity of each pair of elements.  
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The input of the adaptive similarity aggregator is a set of individual similarity matrixes as 

described in §4.3. The output is an aggregated similarity matrix, which we call final similarity 

matrix. The comparison of the harmony-based adaptive similarity aggregation and other 

aggregation methods is given in §4.7.3.4. 

4.5 THE NEURAL NETWORK BASED CONSTRAINT SATISFACTION SOLVER 

4.5.1 The Constraint Satisfaction Problem 

A constraint satisfaction problem (CSP) is "a problem composed of a finite set of variables, each 

of which is associated with a finite domain, and a set of constraints that restricts the values the 
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variables can simultaneously take. The task is to assign a value to each variable satisfying all the 

constraints." (Tsang 1993). Classic examples of CSPs include the map coloring problem, 

sudoku, eight queens puzzle, etc.  

CSP is an intriguing research problem in ontology mapping due to the fact that the 

characteristics of an ontology and its representations result in many kinds of constraints.  For 

example, the hierarchical relations in RDFS1 do not allow crisscross mappings, the axioms such 

as owl:sameAs and owl:equvalentClass in OWL 2  indicate an equivalent relation between 

different elements, and the rules in SWRL3 imply or assert some properties that are not directly 

available. Figure 4.5 is a real world case (i.e., the OAEI web directory test case #1) that shows 

finding an optimal configuration that can best satisfy ontology constraints is critical to improving 

the quality of ontology mapping. In the example, a crisscross mapping, i.e., "celebrities" maps to 

"celebrities" and "arts" maps to "artists", might be incorrectly output as final results due to non-

validation of preliminary results from a global structural view. To avoid the problem, we need to 

find a configuration that satisfies the constraint of "if m(e1i, e2j,=,x)is true, then m(e'1i, e'2j,=,y) is 

false, where e'1i is the parent of e1i, and e'2j is the children of e2j". 

                                                 

1 http://www.w3.org/TR/rdf-schema/ 

2 http://www.w3.org/TR/owl-features/ 

3 http://www.w3.org/Submission/SWRL/ 
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Figure 4.5. The crisscross mapping in OAEI web directory test case #1 

4.5.2 The Interactive Activation and Competition (IAC) Neural Network 

CSPs are typically solved by a form of search, e.g. backtracking, constraint propagation or local 

search (Tsang 1993). The IAC neural network, like the Hopfield network (Hopfield and Tank 

1985), was proposed to solve CSPs by McClelland and Rumelhart in 1980’s (McClelland and 

Rumelhart 1981; McClelland and Rumelhart 1988).  

Generally, an IAC neural network consists of a number of competitive nodes connected 

to each other. Each node represents a hypothesis. The connection between two nodes represents 

constraint between their hypotheses. Each connection is associated with a weight. The activation 

of a node is determined locally by the nodes adjacent to it and the weights connecting it. 

Furthermore, if two hypotheses support each other, the connection between them is positive (i.e., 

excitatory); whereas if two hypotheses are against each other, the connection between them is 

negative (i.e., inhibitory). The weight of the connection is proportional to the strength of the 

constraint. The stronger a constraint is, the larger the corresponding weight.  
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The mechanism of the IAC neural network can be illustrated using the following simple 

example. Suppose we have two grids, 1 and 2, and two constraints:  

1. Each grid can have one value, either A or B.  

2. The values of the two grids are different.  

We have four hypotheses: A in grid 1 (HA1); B in grid 1 (HB1); A in grid 2 (HA2); B in grid 

2 (HB2). Based on the two constraints we know there are two negative connections and one 

positive connection for each hypothesis: 

1. HAi is against HBi, and vice versa (i=1 or 2) 

2. Hx1 is against Hx2, and vice versa (x=A or B) 

3. HAi supports HBj, and vice versa (i, j = 1 or 2, and i ≠j)  

 

 

Figure 4.6. A simple IAC neural network 

Figure 4.6 illustrates the simple example, where each node represents a hypothesis, the 

line with rounded head and arrowhead represents negative connection and positive connection 

between hypothesis respectively and the dashed line with arrowhead represents a small stimulus 

on each node from outside.  
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Assume the negative weight is half the positive weight and all nodes are inactive at start. 

Though the input from three neighbors of the node will cancel out, the small excitatory input 

from outside will activate the node. Finally, either A1 and B2 or B1 and A2 will be active, and 

the network will reach a stable state, called settled or relaxed solution. 

The mechanism of the IAC network motivates us to apply it to solve the constraint 

satisfaction problem in ontology mapping. This is because:  

1. The constraints in ontology mapping are either interactive (i.e., synergistic) or 

competitive between mapping hypotheses, which is the same as the constraints in the 

IAC networks. For example, for two mapping hypotheses, e.g., m(e1i, e2j,=,x) and 

m(e'1i, e'2j,=,y), the constraint "if m(e1i, e2j,=,x) is true, then m(e'1i, e'2j,=,y) is true, 

where e'1i and e'2j are children of e1i, and e2j respectively" is interactive; whereas the 

constraint "if m(e1i, e2j,=,x) is true, then m(e'1i, e'2j,=,y) is false, where e'1i is the 

parent of e1i, and e'2j is the children of e2j" is competitive.  

2. The preliminary analysis of ontologies on both linguistic and structure bring prior 

knowledge to us, for example, the confidence of mapping hypotheses, which is 

suitable to convert to the external input in the IAC network. 

3. The IAC network is a parallel distributed processing (PDP) framework. It is easily 

implemented in a parallel processing platform. This is a valuable property especially 

when the number and complexity of constraints in ontology mapping increase. 

In next section, we will introduce how the IAC neural network will be applied in the 

context of ontology mapping. 
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4.5.3 The IAC Neural Network in the Context of Ontology Mapping 

In the context of ontology mapping, a node in the IAC neural network represents a hypothesis 

that indicates element e1i in ontology O1 can be mapped to element e2j in ontology O2. The 

connections between nodes in the network represent constraints between hypotheses.  

 

In Figure 4.7 we can see the input of the network includes the initial activation of each 

node (i.e., the priori probability of a hypothesis), its bias, external inputs and a weight matrix 

responding to the connections between different hypotheses. In our approach the initial 

activation of each node is set to the aggregated similarity of (e1i, e2j) output from the adaptive 

similarity aggregator. The activation of the node can be updated using the following simple rule, 

where ai denotes the activation of node i, written as ni, neti denotes the net input of the node.  

 

Figure 4.7. The IAC neural network in the context of ontology mapping 
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The neti comes from three sources, i.e. its neighbors, its bias, and its external inputs. The 

neti is defined by Equation 10, where wij denotes the connection weight between ni and nj, aj 

denotes the activation of node nj, biasi denotes the bias of ni, and eii denotes the external input of 

ni, which is a function of the confidence of a mapping. Note that the weight matrix is symmetric 

and the nodes may not connect to themselves, i.e., wij=wji, wii=0. 

∑ ++=
j

iijiji eibiasawnet                                   (10) 

The network can be stopped after running n cycles or at some goodness point. Forcing the 

network to stop at a predefined cycle number usually is not optimal. In the rest of the section, we 

introduce how we stop the network according to its goodness. 

McClelland and Rumelhart (McClelland and Rumelhart 1988, pp.50) defined the 

goodness (short for goodness of fit) as the degree to which the desired constraints are satisfied. 

They pointed out that the goodness depends on three things. First, it depends on the extent to 

which each node satisfies the constraints imposed upon it by other nodes. Thus, if a connection 

between two nodes is positive, the constraint is satisfied to the degree that both nodes are active. 

Otherwise if the connection is negative, the constraint is violated to the degree that both nodes 

are active. A simple way to express this is the product of the activation of two nodes times the 

weight connecting them, i.e., wijaiaj. Note that for positive weights the more active the two units 

are, the better the constraint is satisfied; whereas for negative weights the more active the two 

units are, the less the constraint is satisfied. Second, the priori probability of a hypothesis is 

captured by adding the bias to the goodness measure. Finally the goodness of a node when direct 

evidence is available is given by the product of the input value times the activation value of the 
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node. The bigger this product, the better the system is satisfying this external constraint. Overall 

the goodness of node i can be defined as in Equation 11, where the symbols share the same 

definition as Equation 10. 

iii
j

iiijiiji anetaeiabiasaawgoodness =++=∑      (11) 

Since we are concerned with the degree to which the entire pattern of values assigned to 

all of the hypotheses are consistent with the entire body of constraints, the overall goodness is 

defined as the sum of all individual goodnesses. Now the constraint satisfaction problem is 

converted to the problem of maximizing the overall goodness. In practice we look for the δgoodness 

between time t and t-1 (see Equation 12) less than a threshold to be a stop condition. 
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4.5.4 The Implementation of the IAC Neural Network 

Many constraints, e.g. the cardinality of a property, have been used to restrict ontologies. 

Different constraints result in different connections between nodes in the IAC neural network. 

For example, the constraint that "only 1-to-1 mapping is allowed" results in a negative 

connection between nodes (e1i, e2j) and (e1i, e2k), where k≠j. Moreover, "two elements match if 

their children match", results in a positive connection between nodes (e1i, e2j) and (e1k, e2t), where 

e1k and e2t are the children of e1i and e2j respectively.  

Table 4.1 lists the constraints that have been implemented in our approach. Although the 

number of negative constraints is much less than that of positive constraints, the ratio of negative 
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connections to positive connections is not small. This is because each node in the network will 

have a large number of negative connections introduced by the 1-1 mapping of constraints. 

Though the weights of different constraints should be set to a function of its confidence, 

currently we set the weight of positive constraints as 1 and the weight of negative constraints as 

–1. Meanwhile, for those mappings hypotheses that have no ambiguity (i.e., holding the highest 

similarity score in its corresponding row and column in the aggregated similarity matrix), we set 

their external input as 10. 

 

Table 4.1 The constraints used in the PRIOR+ approach 

# Constraints Connection 
1 Only 1-1 mapping is allowed. negative 
2 No crisscross mapping is allowed. negative 
3 If children elements match, then their parent elements 

match. 
positive 

4 If parent elements match, then their children elements 
match. 

positive 

5 If e1i match e2j, then e1s match e2t, where e1i and e1s, e2j 
and e2t are siblings in ontologies. 

positive 

6 If property elements match, then their domain 
elements match. 

positive 

7 If property elements match, then their range elements 
match. 

positive 

8 If class elements match, then their direct property 
elements match. 

positive 

9 If property elements match, then their mother-class 
elements match. 

positive 

10 If class elements match, then their instance elements 
match. 

positive 

11 If instance elements match, then their mother-class 
elements match. 

positive 

12 Two elements match if their owl:sameAs or 
owl:equivalentClass or owl:equivalentProperty 
elements match. 

positive 
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4.6 TWO SPECIFIC TECHNIQUES IMPLEMENTED IN THE PRIOR+ 

The PRIOR+ is a generic ontology mapping tool. It analyzes the characteristics of 

different kinds of similarities, adaptively aggregates them and integrates a neural network model 

to solve the constraint satisfaction problem in the context of ontology mapping. All 

implementations of the PRIOR+ are built in JAVA on a stand-alone PC running Ubuntu 6.0.6 

OS, with Intel Dual Core 1.8 Hz processor, 1.5G memory, 100GB Serial ATA hard disk and 

SUN JAVA VM 1.6.0. 

This section presents two specific techniques that have been implemented in the 

PRIOR+. One is to use Hadoop1 to support distributed parallel computing when calculating the 

profile similarity between elements. The other is to integrate Indri 2  search engine to find 

mappings between large-scale ontologies by treating the mapping problem as an information 

retrieval task. Both of the two techniques are motivated by the fact that we have to face the 

problem of processing large amount of data in some ontology mapping tasks such as the anatomy 

task in OAEI ontology matching campaign 2006 and 2007. Classic computing methods either 

need a very long time (up to days) to get results (see data in Table 4.93) or are unable to handle 

such problems at all. 

                                                 

1 http://lucene.apache.org/hadoop/ 

2 http://www.lemurproject.org/indri/ 

3 From http://webrum.uni-mannheim.de/math/lski/align2007/results.html 
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4.6.1 The Implementation of Hadoop in the PRIOR+ 

Hadoop is "a Free Java software framework that supports distributed applications running on 

large clusters of commodity computers that process huge amounts of data."1 On the basis of 

Hadoop Distributed File System (HDFS), it implements the MapReduce (Dean and Ghemawat 

2006), a distributed parallel computing infrastructure published by Google. Currently many 

search engines such as Yahoo2, Ask.com3, PowerSet4 are using Hadoop to process large scale 

data on the Web. 

 

Figure 4.8 The execution of MapReduce5  

Figure 4.8 shows the execution of MapReduce. All the input files will be stored in a 

distributed file system, such as HDFS. Each mapper works on a small part of input. For each 

                                                 

1 http://en.wikipedia.org/wiki/Hadoop 

2 http://www.yahoo.com 

3 http://www.ask.com 

4 http://www.powerset.com 

5 From http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0007.html 
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record, a key/value pair is generated. All pairs with the same key then are transmitted to one 

reducer, where their values are counted together. Finally several key/value pairs are output. 

Though finishing a reducer needs to finish all its related mappers first, mappers and reducers can 

run independently, i.e., in parallel. Figure 4.9 shows the parallel execution of MapReduce. 

 

Figure 4.9 The parallel execution1 of MapReduce  

Hadoop can be used to in many scenarios. The simplest application of Hadoop might be 

to count the frequency of each word in a large document. For example, a mapper replaces all 

empty character with enter character so that each word will be listed on one line, and then 

transmit them to reducers. The same word will be sent to the same reducer, where its number 

will be counted. The reducers finally output the frequency of each word. In this case, the key in 

the mapper is each word, its value is as simple as 1. The key in the reducer is each word, and its 

value is the frequency of the word.  

                                                 

1 From http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0008.html 
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Hadoop is used in the PRIOR+ for large-scale ontology mapping tasks (i.e. the anatomy task in 

OAEI campaign 2007) to build an inverted index and calculate the cosine similarity when 

generating profile similarity (described in §4.3.2). In the PRIOR+, we treat each profile as a 

document, and each unique word appearing in the profile as a term.  

Table 4.2 gives an example of documents, terms and their weights, in which Dij denotes 

document Di from ontology Oj, Tk denotes each unique term, and WTkDij denotes a weight (e.g. 

the tf•idf weight) of term Tk in document Dij. 

First we use Hadoop to build an inverted index for Table 4.2. The mapper parses each document 

and emits a sequence of <Tk, DijWTkDij > pairs. The reducer accepts all pairs for a given term, 

sorts the corresponding documents and emits a <Tk, list(DijWTkDij)> pair. The set of all output 

pairs forms a simple inverted index, as shown in Table 4.3.  

Having the inverted index table, we then use Hadoop to calculate cosine similarity 

between profiles of different elements (i.e. documents). This time, the mapper parses the inverted 

index file and emits a sequence of <DijDpq, WTkDijWTkDpq > paris. The reducer accepts all pairs for 

a pair of documents, sorts the corresponding documents and emits a < DijDpq, list(WTkDijWTkDpq)> 

pair. The set of outputs corresponds to the cosine similarity between profiles of different 

elements, as shown in Table 4.4, where f is the function to calculate cosine similarity between 

two given vectors. 
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Table 4.2 Sample of document, term and its weights for profile similarity generation 

               Term (in profile) 

Document (i.e., profile) 

T1 T2 T3 T4 

D11 WT1D11 WT2D11  WT4D11 

D21  WT2D21 WT3D21  

D12 WT1D12 WT2D12  WT4D12 

 

Table 4.3 Using Hadoop to build inverted index 

Term Corresponding documents and weights 

T1 D11 ,WT1D11  D12 ,WT1D12 

T2 D11 , WT2D11 D21 ,WT2D21 D12 ,WT2D12 

T3  D21 ,WT3D21  

T4 D11 ,WT4D11  D12 ,WT4D12 

 

Table 4.4 Using Hadoop to calculate of cosine similarity between profiles  

Profiles Cosine similarity between two profiles  

D11 D12 f(WT1D11 WT1D12)+f(WT2D11 WT2D12)+f(WT4D11 WT4D12) 

D11 D12 f(WT2D11WT2D12) 
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4.6.2 The Implementation of Indri in the PRIOR+ 

Indri is an open source search engine. Indri is integrated in the PRIOR, the previous version of 

PRIOR+, to support mapping discovery between large scale ontologies (i.e. the anatomy task in 

OAEI campaign 2006). In the case, Indri is used to look for mapping candidates between large 

scale ontologies as follows: 

Given two ontologies, OA and OB, first we index all profiles in OA as documents. 

Simultaneously we generate queries based on profile in OB. Then we search in OA using queries 

generated from OB by calculating the similarity between queries and documents. Those concepts 

in OA with top-ranked similarity or above a predefined threshold are stored. Now two ontologies 

are switched and the whole process is repeated. The overlapped results in two processes indicate 

mapping candidates.  

4.7 EVALUATION 

This section presents the test cases that are used to evaluate the performance of the PRIOR+ in 

different scenarios, followed by the experimental methodology and results. 
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4.7.1 The OAEI Campaign and its Test Cases 

To evaluate the performance of the PRIOR+ approach we use test cases from the OAEI ontology 

matching campaign 20071. OAEI ontology matching campaign is a yearly contest organized by 

Ontology Alignment Evaluation Initiative (OAEI) since 2004. OAEI campaign 2007 consists of 

three tracks, five data sets as listed in Table 4.5. To evaluate the performance of different 

approaches OAEI adopts two evaluation methods, i.e., open vs. blind. Open means the golden 

standard is available to participants; blind means only the organizer knows true mapping results 

and thus the evaluation on these tests can only be done by OAEI.  The PRIOR+ participated in 

three tasks, i.e. the benchmark task, the web directory task and the anatomy task. 

Table 4.5 The overview of OAEI campaign 2007 

Track Dataset Representation Evaluation Process 
Comparison Track Benchmark  OWL Open 

Web directory OWL Blind 
Food SKOS Blind 
Environment SKOS Blind 

Directories and 
Thesauri 

Library SKOS Blind 
Expressive Ontologies Anatomy OWL Blind 

4.7.1.1 Benchmark Tests 

The OAEI benchmark test ontologies2 originate from the bibliography domain. It includes one 

reference ontology OR dedicated to the very narrow domain of bibliography, multiple test 

ontologies OT manually discarding various information from the reference ontology in order to 

evaluate how algorithms behave when information is lacking, and 4 real world bibliographic 
                                                 

1 http://oaei.ontologymatching.org/2007/ 

2 http://oaei.ontologymatching.org/2007/benchmarks/ 
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ontologies (i.e., #301-#304) that are generated by MIT1, UMBC2, University of Karlsruhe3 and 

INRIA 4  respectively. More specifically, benchmark tests can be divided into 5 groups as 

described in Table 4.6. The detailed description for each test ontology can be found in Appendix 

A. 

Table 4.6 The overview of OAEI benchmark tests 

Tests Description 

#101-104 OR and OT have exactly the same or totally different names 

#201–210 OR and OT have the similar structure but different linguistics in some level 

#221–247 OR and OT have the similar linguistics but different structure 

#248–266 Both structure and linguistics are different between OR and OT  

#301-304 OT are real world cases, which we have more interest in 

 

4.7.1.2 Web Directory Tests 

The Web directory tests 5  consist of 4640 elementary tests for aligning web sites 

directories (e.g., Google and Yahoo!). Each test is represented by pairs of OWL ontologies, 

where classification relation is modeled as OWL subClassOf. Therefore all directory ontologies 

are organized as taxonomy hierarchies, i.e., the ontologies only contain classes connected with 

                                                 

1 http://visus.mit.edu/bibtex/0.1/ 

2 http://ebiquity.umbc.edu/ 

3 http://www.aifb.uni-karlsruhe.de/ontology 

4 http://oaei.ontologymatching.org/2007/benchmarks/fr.inrialpes.exmo.rdf.bib.owl 

5 http://www.dit.unitn.it/~yatskevi/directory.htm 
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subclass relation between each other. Figure 4.10 is a sample mapping between Google and 

Yahoo web directories. 

 

Figure 4.10. Sample mappings between Google and Yahoo web directories 

4.7.1.3 Anatomy Test 

The anatomy task1 requires the tool to find mappings between classes in two medical 

ontologies, i.e., Adult Mouse Anatomy ontology2 with 2744 classes and the NCI Thesaurus3 with 

3304 classes describing the human anatomy.  

                                                 

1 http://webrum.uni-mannheim.de/math/lski/align2007/ 

2 http://webrum.uni-mannheim.de/math/lski/align2007/mouse_anatomy.owl 

3 http://webrum.uni-mannheim.de/math/lski/align2007/nci_anatomy.owl 
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4.7.2 The Evaluation Criteria 

We follow the evaluation criteria used by the OAEI ontology matching campaign 2007. The 

evaluation is based on the results provided by participants. All results include a set of mapping 

pairs, which are expressed in the format as shown in Figure 4.11, where the element of Address 

in entity1 can be mapped to the element of Address in entity2, with the measure of 1.0 and "=" 

relation. 

 

Figure 4.11 A sample of mapping pair 

 OAEI campaign 2007 has two evaluation processes. Benchmark tests are provided with 

the expected results, i.e., they are open. Directories tests and anatomy test are blind tests, i.e., 

participants do not know the results. For all tests, standard information retrieval evaluation 

measures, i.e., precision, recall and f-measure, are computed against the reference alignment. 

For the matter of aggregation of the measures, weighted harmonic means are computed as well 

(Euzenat et al. 2006). The precision, recall and f-measure are defined by Equation 13, 14 and 15.  

 

mappingsfoundall
mappingsfoundcorrectp     Precision

__#
__#

=     (13) 

mappingspossibleall
mappingsfoundcorrectr      Recall

__#
__#

=       (14) 
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4.7.3 Experimental Methodology and Results 

To evaluate the PRIOR+ approach, we designed 6 experiments. Each answers one of the 

following questions: 

1. What is the performance of each individual similarity, i.e., edit distance based 

similarity, profile similarity, and structure similarity?  

2. Does propagation improve the performance of profile similarity? If it does, what is 

the best configuration of weight assignments for neighboring elements' profiles?  

3. Can the measure of harmony reflect the reliability of different similarities? That is, 

does it correlate to the performance of a similarity? 

4. Is the harmony-based adaptive aggregation method better than other aggregation 

methods discussed in §4.4? 

5. Does the IAC neural network work in the context of ontology mapping? If it does, 

how much does it improve the results?  

6. What is the overall performance of the PRIOR+? How does it perform compared with 

other systems? 
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All the 6 experiments are run on the OAEI benchmark tests. We list the results of the 

PRIOR+ in the OAEI web directory task and anatomy task. Both results were evaluated by 

OAEI1 because they are blind tests. 

4.7.3.1 The Comparison of Each Individual Similarity 

In §4.3 we proposed three kinds of similarities, i.e., edit distance based similarity, profile 

similarity, and structure similarity. Each similarity measures the correspondence between two 

elements from a different perspective. Figure 4.12 compares the performance (i.e., f-measure) of 

3 individual similarities on each OAEI benchmark test. Figure 4.13 compares the performance 

(i.e., f-measure) of each individual similarity over all OAEI benchmark tests. 

  

Figure 4.12 The comparison of the f-measure of 3 individual similarities on each OAEI 

benchmark test 

                                                 

1 http://oaei.ontologymatching.org/2007/results/ 
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Figure 4.13 The comparison of individual similarities over all OAEI benchmark tests 

The observations from Figure 4.12 and Figure 4.13 are: 

1. The edit distance based similarity is intuitive. It works very well on the cases that 

have high similarity between the names of elements in ontologies. For example, Test 

#101-104, #203, #208, #221-247, #301, #302, #304, etc. However such similarity is 

more lexical-oriented than semantic-oriented, which encounters trouble where 

synonyms exist. In the cases that have very low linguistic similarity, e.g., #201, #202 

and #248-#266, the performance of the edit distance based similarity is very poor. 

One solution to overcome the limitation of edit distance based similarity is to check 

auxiliary information in a thesaurus, e.g. WordNet1. However WordNet suffers some 

drawbacks as well as discussed in §5.4.2 . Moreover, integrating WordNet will cost 

much more time in finding synonymous relations between words, and thus decrease 

the efficiency of the whole approach. 

                                                 

1 http://wordnet.princeton.edu/ 
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2. The structure similarity explores structural features in two ontologies. It is extremely 

useful in pure graphic mapping tasks, for example in #248-#266 where meaningful 

linguistic information has been removed or replaced by some randomly generated 

information. However structure similarity contributes very little in the cases where 

linguistic information is adequate, e.g., #221-247, or in the case where structural 

information is limited, e.g., #301, #303-#304, or does not exist at all, e.g. #302, in 

which the hierarchy of the ontology is absolutely flat. Finally, the overall recall of 

structure similarity is as low as .27, which indicates relying on this similarity only can 

not help us to find most mappings. 

3. The profile similarity utilizes all kinds of descriptive information to generate a profile 

for each element, and then compares the cosine similarity of two profiles in a vector 

space model. The profile similarity works very well when linguistic information is 

adequate, e.g., #101-#104, #221-247, #301, #302, #304. Meanwhile, since the profile 

similarity explores the structural information of an element by integrating its property 

information, instance information and neighboring information, it also works well in 

the cases where linguistic information is limited, e.g., #201, #202, #205-#207, #209, 

#248-266. Generally speaking, the profile similarity takes advantage of both edit 

distance comparison and structure analysis, and thus it outperforms edit distance 

based similarity and structure similarity in most cases except #250, #257, #261, #265, 

#266, where no or very very little lexical information is available. Therefore, the 

mapping totally relies on the structure information. The precision, recall and f-

measure of the profile similarity over all OAEI benchmark tests are .85, .77 and .81 

respectively. 
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4. The fact that different similarities work well in different situations motivates us to 

investigate a new measure that can estimate the quality of each similarity so that we 

can aggregate them according to their individual characteristic. 

4.7.3.2 The Impact of Propagation in Generating Profile Similarity 

Profile propagation extends the linguistic analysis by passing the neighboring information of an 

element to the element itself. What we are interested is whether the propagation does improve 

the f-measure of the profile similarity. If it does, how much improvement we can get due to the 

propagation.  

The experimental methodology is: First we generate a profile for each of element in the 

ontologies. Then we calculate the cosine similarity between two profiles directly without passing 

its neighboring information to itself. Next, we propagate the neighboring information (i.e., 

parent, children and siblings) of a profile to the profile itself, and then calculate the cosine 

similarity between the propagated profiles. For the two kinds of similarity scores, we extract 

final mapping results using naïve descendant extraction algorithm (Meilicke and Stuckenschmidt 

2007). Finally we compare the difference between the f-measure of two approaches on each of 

OAEI benchmark test. Figure 4.14 shows the comparison of f-measure between profile 

propagation and non-propagation.  
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Figure 4.14 The comparison of f-measure between profile propagation and non-

propagation 

The observations from Figure 4.14 are: 

1. If we calculate the f-measure of profile propagation and non-propagation over all 

OAEI benchmark tests, they are .8098 and .8005. The overall improvement of profile 

propagation vs. non-propagation is about 1%. However, there is significant difference 

(p=.0002 on one-tail t-test) between profile propagation and non-propagation over all 

OAEI benchmark tests. And there is significant difference (p=4E-5 on one-tail t-test) 

between profile propagation and non-propagation on OAEI benchmark tests #248-

#266. But there is no significant difference between profile propagation and non-

propagation on OAEI benchmark tests #1xx, #201-#247 and #3xx.   

2. This means the impact of profile propagation is very little when meaningful 

information of an element is adequate. It works only when no or very limited 

meaningful information is available for the element itself, but some useful 
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information can be found in it neighboring elements. However propagation makes the 

performance of the Prior+ approach more reliable on some cases. For example, 

profile propagation significantly improves performance on #248-#266. 

We conducted an experiment trying to determine the best settings for the weights of 

neighboring elements (e.g., parent and children) when propagating profiles. To simplify the 

number of variants of parameter configuration, we fixed the weight of sibling as .2 in the 

experiment. The experimental methodology is: We adjust the weight of parent and children to 

different numbers, range in [0, 1], step in .1. Then we have 11×11 (i.e. 121) configurations 

totally. Given each configuration, we calculate the f-measure over all OAEI benchmark tests 

using the PRIOR+ approach but not activating the IAC neural network. The result is shown in 

Figure 4.15, where the x axle represents the weight range of parent, the y axle represents the 

weight range of children, and the z axle represents the f-measure of the PRIOR+ without 

activating the IAC network over all OAEI benchmark tests. 

 

Figure 4.15 The correlation of parent’s weight and children’s weights 
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The observations from Figure 4.15 are: 

1. Generally speaking, the difference of the profile propagation with 121 configurations 

is very small. The f-measure varies from .7854, when parent weight is 1 and children 

weight is .8, to .8026, when parent weight is .1 and children weight is .7.  

2. More specifically, when the weight of children is 0, i.e., considering the impact of 

parent only, the trend of the f-measure decreases along with the increase of parent 

weight. The lowest f-measure is achieved when parent weight is .6. 

3. Furthermore, when the weight of parent is 0, i.e., considering the impact of children 

only, the trend of the f-measure increases along with the increase of children weight. 

The highest f-measure is achieved when children weight is .7. 

4.7.3.3 The Correlations between the Harmony and the Characteristic of Similarities 

As stated in §4.4.2 that the harmony is defined to estimate the importance and reliability 

of a similarity, which can be reflected by its performance, e.g. f-measure. We evaluated the 

correlation between harmony and f-measure. 

The experimental methodology is: For each test, we calculate 5 similarities, i.e., class 

name similarity, class profile similarity, class structural similarity, property name similarity and 

property profile similarity. For each similarity matrix, we extract mapping results using naive 

descendant extraction algorithm (Meilicke and Stuckenschmidt 2007). After that we evaluated 

the results against the reference alignment and got the f-measure of each similarity. Meanwhile, 

we estimate 5 harmonies for its corresponding matrix. Finally we measure the degree of the 

correlation between f-measure and harmony on each similarity.  The results are shown in Figure 

4.16 and Figure 4.17. 
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The observations from Figure 4.16 and Figure 4.17 are: 

1. The harmony does linearly correlate with f-measure of different similarities, 

especially on estimating the performance of class' ID, property's ID and property's 

profile.  

2. More specifically, the R2 for edit distance based similarity (i.e., name similarity), 

profile similarity, and structural similarity on class are .97, .85 and .77 respectively in 

Figure 4.16. The R2 for the edit distance based similarity (i.e., name similarity) and 

profile similarity on property are .96 and .97 respectively in Figure 4.17.  

The observation that the harmony is indeed a good estimator of f-measure for each 

individual similarity makes us confident in using harmony to adaptively aggregate similarities. 

Harmony vs. F-Measure on Class
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Figure 4.16 Correlation of harmony vs. f-measure on class 
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Harmony vs. F-Measure on Property
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Figure 4.17. Correlation of harmony vs. f-measure on property 

4.7.3.4 Comparison of Different Aggregation Methods 

Similarity aggregation has been studied in many ontology mapping approaches as 

discussed in §4.4.1. Data aggregation, called data fusion, has also been widely investigated in 

information retrieval area (Fox and Shaw 1994). To evaluate the harmony-based adaptive 

weighted aggregation method (HADAPT), we compared the performance of HADAPT with six 

other aggregation methods selected from both ontology mapping and information retrieval. Table 

4.7 lists the name and brief description of seven aggregation methods, where si denotes the ith 

similarity, fs denotes the final aggregated similarity, hi denotes the harmony of ith similarity, N 

denotes the number of individual similarity, Nz denotes the number of non-zero similarities. 
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Table 4.7 Aggregation functions used in the experiment 

Method Description Equation 

HADAPT Harmony based adaptive aggregation fs = sum(hi*si)/N 

MAX Maximum of individual similarities fs = max(si) 

AVG Average of individual similarities fs = sum(si)/N 

ANZ AVG ÷ number of nonzero similarities fs = (sum(si)/N)/Nz 

MNZ AVG × number of nonzero similarities fs = (sum(si)/N)*Nz 

SIGMOID Average of individual similarities smoothed by 

sigmoid  

fs = sum(sigmoid(si))/N 

 

The experimental methodology is: For each test, we first calculated three individual 

similarities (i.e. name similarity, profile similarity and structural similarity) as described in §4.3. 

Then we aggregated the individual similarities using different aggregation methods as listed in 

Table 4.7. After aggregation, we applied the naïve descendant extraction algorithm (Meilicke 

and Stuckenschmidt 2007) to extract final mappings. Precision, recall and f-measure of final 

results on each test are calculated. Finally the overall precision, recall and f-measure are 

calculated over all benchmarks tests. The results are shown in Figure 4.18. 
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Figure 4.18 The comparison of different aggregation methods 

The observations from Figure 4.18 are: 

1. The performance of 3 individual similarities is various. More detailed analysis of 

each individual similarity has been given in §4.7.3.1. 

2. The performance of profile similarity is better than most of aggregation methods 

except HADAPT method. The interesting phenomenon tells us the final aggregated 

result really depends on the parameters employed in the aggregation method. It is 

critical to choose right parameters to boost the final result of multiple similarities 

based ontology mapping approach. 

3. Without tuning parameters specifically, the performance of AVG, MAX, ANZ, MNZ, 

and Sigmoid aggregation methods are competitive with each other. The f-measure of 

them is between .74-.79.  

4. The harmony based adaptive similarity aggregation method (i.e., HADAPT) 

outperforms all other methods when aggregating different similarities. It holds the 
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highest precision, recall, and f-measure at .92, .83 and .87 respectively, which 

improves f-measure 7% over the other methods by 7% or more. 

4.7.3.5 The Improvement of NN-based Constraint Satisfaction Solver 

Having the output from Similarity Generator, the harmony of the aggregated similarity 

will be estimated. If the harmony is less than a threshold, which is set as .8 in the experiment, the 

IAC Neural Network will be activated to search for a global optimal solution that satisfy as many 

ontology constraints as possible. Otherwise, final mapping results will be directly extracted using 

naïve descendant extraction algorithm (Meilicke and Stuckenschmidt 2007). 

In the case of OAEI benchmark tests, the NN-based constraint satisfaction solver was 

activated on tests #202, #209, #210, #248-#266, #302 and #303. Figure 4.19 shows the change of 

the performance on each of the 20 tests after activating the IAC neural network. Table 4.8 shows 

the change of the performance over all 20 tests.  

The observations from Figure 4.19 and Table 4.8 are:  

1. The NN-based constraint satisfaction solver dramatically improves both precision and 

recall by more than .1.  

2. Among 20 tests, 16 get improved on their f-measure (e.g., the biggest improvement of 

f-measure is .37 on #262), only 4 get lower f-measures. The reason why the 

performance of #261 is worse than all others is: #261 extends the structure of the test 

ontology. It adds some new classes, sometimes these new classes are a new layer in 

the taxonomy of the ontology. In this case some constraints in the IAC neural 

network are not correct anymore (e.g. constraint #3 and #4 in Table 4.1). In real cases 

we usually have linguistic information as well as structure information, which will 
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decrease the impact of the difference of the structure. Unfortunately, #261 does not 

have any linguistic information that we can rely on.  

3. If we calculate the percentage improvement of the IAC neural network over the 20 

tests, they are 13%, 24%, and 19% for precision, recall, and f-measure respectively. 
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Figure 4.19 The improvement after applying the IAC neural network on each selected test 

Table 4.8 The overall improvement of the IAC neural network on all 20 tests 

 Precision Recall F-Measure 

Before NN .76 .54 .63 

After NN .88 .67 .76 

NN Improvement 13% 24% 19% 
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4.7.3.6 The Performance of the PRIOR+ over all OAEI 2007 Benchmark Tests 

Figure 4.20 is the performance of the PRIOR+ over all OAEI 2007 benchmark tests. 

Figure 4.21 is the performance of the PRIOR+ over 5 categories of OAEI 2007 benchmark tests 

(see categorization in §4.7.1). The full results of the PRIOR+ approach over all benchmark tests 

can be found in Appendix A. 
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Figure 4.20 The performance of the PRIOR+ over all OAEI 2007 benchmark tests 

The PRIOR+ @ OAEI Benchamark Tests
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Figure 4.21 The performance of the PRIOR+ over 5 categories in OAEI benchmark tests 



100 

The observations from Figure 4.21 are:  

1) The PRIOR+ performs perfect on benchmark tests #101–104, which are basic ontology 

mapping tests. 

2) Tests #201–#210 are mapping tasks, in which reference ontology and test ontologies are 

similar on their structures but different on their linguistics. The PRIOR+ obtains high 

precision and recall where test ontologies contain the same names (or name conventions) 

and/or comments as the reference ontology (e.g. #203, #204, and #208). For those 

ontologies whose names of classes/properties have been “removed” or expressed in 

another language (e.g. #201, #206, #207 and #210), the PRIOR+ still can find some 

matched classes and properties using the information of comments and instances. 

However, if both names and comments are replaced or missing in test ontologies (e.g. 

#202 and #210), the PRIOR+ is not good at recall, down to .825 and .814 respectively. 

The recall of the PRIOR+ on #209 is down to .68 as well because the test ontology uses 

many synonyms, but the PRIOR+ does not integrate any thesaurus or synonym sets as 

external resources. 

3) In tests #221–#247, where test ontologies have high similarity with reference ontology on 

linguistic information, the PRIOR+ performs well. Its precision, recall and f-measure are 

.9925, .995 and .9937 respectively. 

4) In tests #248–#266, where test ontologies have very low similarity from both linguistic 

and structural perspective (i.e., descriptive information such as labels and comments have 

been removed and structures have been changed as well), the PRIOR+ does not achieve  

good precision (which is .8616) as it does on other tests, and recall falls to .6245. 
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5) Tests #301–#304 are four real world ontologies, modeled by different institutions but for 

the same domain of bibliographic metadata, and thus they have high similarity from 

linguistic perspective but low similarity from structural perspective. We are more 

interested in these tests than other benchmark tests because they are real world cases, so 

that finding correct mapping between real ontologies can demonstrate the usability of an 

approach from a comprehensive perspective. The results show the PRIOR+ obtains a 

precision of .9028, recall of .8333, and f-measure of .8667 on Tests #301-#304.  PRIOR+ 

was the best among all systems on the real world cases on benchmark tests in OAEI 

campaign 2007. See comparison between the PRIOR+ and 4 top-ranked systems in 

Figure 4.22. 

4.7.3.7 The Comparison between the PRIOR+ and Top-ranked Systems on the Benchmark 

Test in OAEI Campaign 2007 
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Figure 4.22. The comparison between the f-measure of the PRIOR+ and top ranked systems on 

benchmark tests in OAEI campaign 2007 
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Figure 4.22 compares the f-measure of PRIOR+ with 4 top-ranked ontology mapping 

systems, i.e., ASMOV (Jean-Mary and Kabuka 2007), Lily (Wang and Xu 2007), RiMOM 

(Tang, Li et al. 2006; Li, Zhong et al. 2007), and Falcon-AO (Qu, Hu et al. 2006; Hu, Zhao et al. 

2007), on the benchmark tests in OAEI campaign 2007. The evaluation data of these 4 systems 

can be downloaded here1. The data for PRIOR+ can be downloaded here2 . 

The observations from Figure 4.22 are: 

1. All systems perform perfect on test 1xx.  

2. The PRIOR+ is not as good as LILY, ASMOV and RiMOM on test 2xx with a 

difference between .5% - 2.2%. 

3. PRIOR+ performs the best on real world cases, i.e., 3xx. The difference between 

PRIOR+ and others is between 3% - 17%. 

4. Overall the f-measure of PRIOR+ (.912) outperforms that of RiMOM (.907) and 

Falcon-AO (.890) while it is less than LILY (.925) and ASMOV (.924). The 

difference between PRIOR+ and LILY and ASMOV is 1%.  

4.7.3.8 The Comparison between the PRIOR+ and Other Participants on OAEI Web 

Directory Task 

Figure 4.23 compares the performance of PRIOR+ with 8 ontology mapping systems, 

i.e., Falcon-AO (Qu, Hu et al. 2006; Hu, Zhao et al. 2007), ASMOV (Jean-Mary and Kabuka 

2007), DSSim (Nagy, Vargas-Vera et al. 2007), Lily (Wang and Xu 2007), OLA2 (Kengue, 

                                                 

1 http://oaei.ontologymatching.org/2007/results/zip/  

2 http://www.sis.pitt.edu/om07/prior+_benchmark.zip This data is slightly different from what we submitted to the OAEI 

campaign after improving the PRIOR+ approach. 
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Euzenat et al. 2007), OntoDNA (Kiu and Lee 2007), RiMOM (Tang, Li et al. 2006; Li, Zhong et 

al. 2007), and X-SOM (Curino, Orsi et al. 2007) on the web directory test in OAEI campaign 

2007. 

 

Figure 4.23 The comparison between the PRIOR+ and other participates on OAEI 2007 web 

directory task1 

The observations from Figure 4.23 are: 

1. The precision, recall and f-measure of the PRIOR+ are .56, .71 and .63. 

2. The f-measure of the PRIOR+, i.e., .63, is the 2nd place among 9 participants. It is 

lower than that of OLA2 system, i.e. .71, but outperformed all other systems. 

                                                 

1 From http://www.dit.unitn.it/~pavel/om2007/oaei07/WebDirRes-OAEI07.html 
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4.7.3.9 The Comparison between the PRIOR+ and Other Participates on OAEI Anatomy 

Task 

Table 4.9 compares the performance of PRIOR+ with 11 systems that participated in the 

OAEI anatomy task 2007. The OAEI divided the 11 systems into three groups. Systems of type 

A, i.e., AOAS (Zhang and Bodenreider 2007) and Sambo (Tan and Lambrix 2007), are highly 

specialized on matching biomedical ontologies and make extensive use of medical background 

knowledge. Systems of type B, i.e., ASMOV (Jean-Mary and Kabuka 2007) and RiMOM (Tang, 

Li et al. 2006; Li, Zhong et al. 2007), can solve matching problems of different domains, but 

include a component exploiting biomedical background knowledge (e.g. using UMLS as lexical 

reference system). Systems of type C finally can be seen as all-round matching systems that do 

not distinguish between medical ontologies and ontologies of different domains. Given different 

categories, we are more interested in comparing the performance of the PRIOR+ with those 

systems that fall in the same category of Type C, i.e., Falcon-AO (Qu, Hu et al. 2006; Hu, Zhao 

et al. 2007), TaxoMap (Zargayouna, Safar et al. 2007), AgreementMaker (Sunna and Cruz 

2007), Lily (Wang and Xu 2007), X-SOM (Curino, Orsi et al. 2007) and DSSim (Nagy, Vargas-

Vera et al. 2007).  

The observations from Table 4.9 are: 

1.   The f-measure of the PRIOR+ is .592 in Testcase #1, .568 in Testcase #2, and .474 

in Testcase #3.  

2. Among 7 Type C systems, which are all generic ontology mapping systems that do 

not use any specific anatomy domain knowledge or external lexical information such 



105 

as the Unified Medical Language System (UMLS)1, the f-measure of the PRIOR+ is 

3rd highest compared to other systems over all three test cases. 

3. The PRIOR+ is very efficient as well among all Type C systems. Compared to other 

systems that cost several hours or even 4 days to get final results, the PRIOR+ 

required only 23 minutes to finish the task, which is second only to Falcon-AO, i.e., 

12 minutes in its case. 

 

Table 4.9 Comparison between the PRIOR+ and other participates on OAEI 2007 anatomy task2 

 

4.8 SUMMARY AND CONCLUSION 

This chapter proposed a new generic ontology mapping approach, PRIOR+. The approach uses 

both linguistic and structural information from ontologies, utilizes information retrieval 

techniques and artificial intelligence to solve ontology mapping problem. The major steps in the 

                                                 

1 http://www.nlm.nih.gov/research/umls/ 

2 From http://webrum.uni-mannheim.de/math/lski/align2007/results.html 
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approach include: similarity generation, adaptive similarity aggregation and neural network 

based constraint satisfaction. More specifically, the PRIOR+ first measures three similarities of 

ontologies. Next it estimates the harmony of each similarity upon its corresponding matrix. After 

that the PRIOR+ adaptively aggregates multiple similarities by weighting them using their 

harmonies. Finally the IAC neural network is selectively activated to find a global optimal 

solution that best satisfies ontology constraints. Final results are extracted using naïve extraction 

algorithm. 

The experimental results on OAEI ontology matching benchmark tests, web directory test 

and anatomy test show:  

1. The performance of three individual similarities, i.e. edit distance based similarity, 

profile similarity and structure similarity, varies. The edit distance based similarity is 

intuitive and works well when test ontologies are highly linguistic similar to the 

reference ontology. The structure similarity does not contribute much in most tests 

except those cases that have very little or no linguistic information at all. The profile 

similarity considers both the linguistic and structural information for ontologies and 

thus its overall performance outperforms the other two similarities. 

2. The profile propagation does improve the performance of the PRIOR+ over all OAEI 

benchmark tests. Its impact is trivial when meaningful information of an element is 

adequate. However, its impact is significant when no or very limited meaningful 

information is available for the element itself, but such information can be found in it 

neighboring elements. Further, the weight difference between parent and child is 

minor. Therefore, to simplify the approach so as to improve its efficiency, this step 

can be omitted when generating profile similarity. 
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3. Harmony is a good measure to estimate the reliability of different similarities, 

especially on estimating the f-measure of edit distance based similarity of class and 

property and profile similarity of property, without a given ground truth.  

4. The harmony-based adaptive aggregation method outperforms all other existing 

aggregation methods on OAEI benchmark tests.  

5. Using the IAC neural network to solve constraint satisfaction problem in ontology 

mapping can dramatically improve the performance of mapping results.  

6. The PRIOR+ is competitive with all top-ranked systems on benchmark tests, web 

directory test and anatomy test at OAEI campaign 2007. Notably it outperforms all 

systems on benchmark real cases and it is the 2nd place in web directory test. 

Future work for this approach may include exploring constraints such as complex axioms 

in OWL, investigating which constraint is more useful than others, assign each constraint a 

different weight according to its priori probability and implementing the IAC neural network 

using Hadoop, etc. 
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5.0  THE NON-INSTANCE BASED LEARNING APPROACH 

5.1 INTRODUCTION 

Chapter 4.0 proposed a generic ontology mapping approach, the PRIOR+, based on profile 

propagation, information retrieval techniques and artificial intelligent model. This chapter 

proposes a non-instance learning based approach for solving ontology mapping problem.  

Previous learning-based approaches have achieved high accuracy in prediction of correct 

mappings in the cases reported in GLUE (Doan, Madhaven et al. 2003). However GLUE has a 

limitation that it heavily relies on the availability of instance data when measuring the similarity 

of classes and attributes. Furthermore, the target of GLUE approach is every element in the 

target ontology. The specification of the learning target asks for new training data to rebuild the 

model when domain changes, and thus restricts the universality of the model. 

To overcome the limitations, we aim to learn a generic mapping model, which does not 

require the existence of instances and domain constraints, by treating the ontology mapping 

problem as a binary classification problem. To learn a model, a variety of features that can reflect 

the characteristics of mapping pairs are generated, and then the SVM algorithm is applied. 

Experimental results show that our non-instance learning-based ontology mapping approach 

performs well in most of OAEI benchmark tests when training and testing on the same mapping 
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task; and the results of approach vary according to the likelihood of training data and testing data 

when training and testing on different mapping tasks. 

5.2 ONTOLOGY MAPPING: AS A BINARY CLASSIFICATION PROBLEM 

Binary classification is the task of classifying the members of given data into two groups1. In the 

context of ontology mapping, there are many ways to judge the quality of a mapping result. If we 

judge the mapping result by its correctness, i.e., either correct (i.e. +1) or incorrect (i.e., -1), then 

the ontology mapping problem can be represented as a binary classification problem as the 

following statement, where e1i is element ei from ontology O1, e2j is element ej from ontology O2 

and r is the mapping relation between e1i and e2j. 

 

}1,1{),,( 21 −+→reem ji  

 

For example, some sample mappings in the bibliographic ontologies described in §2.3, 

Figure 2.2, can be written as: 

m(Bookright,Bookleft,=) → {+1} 

m(Proceedings,Proc.,=) → {+1} 

m(Monograph,Monography,=) → {+1} 

m(Proceedings, Talks,=) → {-1} 

m(Proceedings, Monography,=) → {-1} 
                                                 

1 http://en.wikipedia.org/wiki/Binary_classification 
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5.3 OVERVIEW OF THE NON-INSTANCE BASED LEARNING APPROACH 

 

Figure 5.1 The basic steps of the non-instance based learning approach 

Figure 5.1 show the basic steps of the learning-based approach.  

1. We generate various general features (i.e., linguistic, structural and web) to describe 

the characteristics of ontologies (e.g., OAEI benchmark tests).  

2. We randomly generate training and testing set. That is, for each OAEI benchmark 

test, we generate all possible mapping pairs using the elements from both the 

reference ontology and the test ontology. Then we randomly pick 50% of the 

mapping pairs as a training set, the results of which will be marked down based on 

the ground truth, and use the other 50% as test set. 

3. We train the training set using SVM model. 

4. We classify the test data using the trained SVM model. 

5. We extract final mapping results of test data using naïve descendant extraction 

algorithm (Meilicke and Stuckenschmidt 2007). 

6. Finally we evaluate the test data against the reference alignment. 
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5.4 VARIETY OF FEATURES 

Applying machine learning to the context of ontology mapping raises the question of what types 

of information should be used in the learning process. Many different types of information can 

contribute toward deciding the correspondence of a mapping pair. Two principles are followed in 

the process of feature selection:  

1. The feature should not be limited to instances. It could be generated from a class, a 

relation and/or an instance in ontologies.  

2. The feature should be general enough and domain independent so that the model 

could be generalized to other applications regardless of the domain.  

In the approach, 3 categories, i.e., linguistic features, structural features and web features, 

and a total of 23 features are generated for each mapping pair.  

5.4.1 Linguistic Features 

Linguistic features are selected according to the principle described in (Jones, Rey et al. 

2006). Table 5.1 lists 16 linguistic features that are used in our training. The features can be 

divided into two types:  

1. Isolated characteristics of elements in mapping pair, e.g. length of elements, number 

of tokens, etc.  

2. Syntactic characteristics of mapping pair, e.g. Levensthtein edit distance between two 

elements, number of common tokens in the pair, etc. 
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Table 5.1 Linguistic features 

Features Description 
Le1 the length of e1 

Le2 the length of e2 

ldiff the length difference between e1 and e2 = le1 - le2 

absldiff the absolute value of length difference = abs(ldiff) 
ldiffn the length difference normalized by the length of e1 = ldiff/lei 

lengthratio the absolute value of ldiffn = absldiff/lei 

ntoke1 the number of tokens in e1 

commonw the number of tokens in common in e1 and e2 

editdist the normalized Levenshtein edit distance of e1 and e2 

worddist the proportion of word changed from e1 to e2 

word_pov the proportion of tokens in common at beginning of  e1 

word_suf the proportion of tokens in common at the end of e1 

char_pov the proportion of characters (utf8 bytes) in common at the beginning of e1 

char_suf the proportion of characters in common at the end of e1 

digit_dropped a boolean value, identifying whether a digit has been dropped from e1 to e2 

profsim the cosine similarity of the profile of e1 and that of e2, the profile is the 
combination of all linguistic information (e.g. name, label and comments) of 
an element 

 

5.4.2 Web Features 

Edit distance, which defines the strings similarity by the minimum number of insertions, 

deletions and substitutions that require transforming one string into the other, is a commonly 

used method to calculate the similarity of terms (Bouquet, Euzenat et al. 2004). However edit 

distance encounters trouble where synonyms exist. For synonyms, the intuitive way is to check 

auxiliary information in a thesaurus, e.g. WordNet. However WordNet suffers some drawbacks 
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as well. First, semantic similarity between words changes across domains. Even though a 

thesaurus may contain a sufficiently wide range of common words1, sometimes it does not cover 

special domain vocabulary. For example, though apple is frequently associated with computers 

on the Web, this sense of apple is not listed in WordNet. Second, new words are continually 

created and new senses are assigned to existing words. Thesauri usually can not capture these 

new words and senses in time. As an alternative, the Web has a huge amount of information and 

the newest words/senses are stored. To overcome the problem of edit distance comparison and 

WordNet sense limitation, this section proposes to generate a new Web feature, i.e., WebDice 

coefficient (Bollegala, Matsuo et al. 2007). 

Webdice coefficient is a page count based co-occurrence measure (Bollegala, Matsuo et 

al. 2007). Page count of a query is the number of pages that contain the query terms obtained 

from a Web search engine such as Yahoo. Page count can be considered as a global measure of 

co-occurrence of query terms. For example, the page count of the query "spring" AND "last 

name" is 1,550,000 and the page count of the query "spring" AND "season" is 57,300,000 in 

Google2. The about 40 times more numerous page counts for "spring" AND "season" indicate 

that "spring" is more semantically similar to "season" than "last name". Using page count alone 

to measure the co-occurrence of two terms does not always accurately express semantic 

similarity. This is because page count ignores the position of a word appearing in a page, and 

thus may incorrectly count pages, in which both words appear but far away from each other and 

without any relevance. To overcome the drawback, one must consider the page counts not just 

                                                 

1 As of 2006, WordNet contains about 150,000 words organized in over 115,000 synsets for a total of 207,000 word-sense pairs. 

(From http://en.wikipedia.org/wiki/Wordnet) 

2 Search http://www.google.com on July, 2007. 
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for query X AND Y but also for the individual words X and Y to access semantic similarity 

between X and Y.  

Bollegala, Matsuo et al. proposed to exploit a modified co-occurrence measure, 

WebDice, to compute semantic similarity using page counts (Bollegala, Matsuo et al. 2007). 

WebDice coefficient is a variant of Dice coefficient (Rijsbergen 1979). For sets X and Y of 

keywords used in information retrieval, the Dice coefficient may be defined as: 

 

||||
||2),(

YX
YXYXDice

+
∩

=       (16) 

 

If the notation H(X) and H(Y) denote the page counts for query X and Y respectively in a 

search engine, and H(X∩Y) denotes the page counts for the conjunction query X AND Y, then the 

WebDice coefficient can be modified as: 
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where c is a predefined threshold (e.g. c=5) to reduce the adverse effects caused by 

random co-occurrences. Because of the scale and noise in Web data it is possible that a page 

contains two words purely accidentally. 

The WebDice coefficient has been demonstrated to outperform the other three modified 

co-occurrences (i.e. WebJaccard, WebOverlap, and WebPMI) in (Bollegala, Matsuo et al. 2007). 
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5.4.3 Structural Features 

Structural information is important in estimating the similarity of classes of ontologies. Table 5.2 

list the structural features of a mapping hypothesis between classes (e.g., C1 and C2) and 

properties (e.g., p1i  and p2j). 

Table 5.2 Structural features 

Elements Features Description 

DirPropNumDiff The normalized difference between the numbers of the 
classes’ direct properties 

DirPropSim 

The edit distance based similarity between the classes’ 
direct properties, i.e., 

))),((max(Avg  DirPropSim 21ji ji ppmEditDistSi= , where 

p1i and p2j are direct properties of class C1 and C2. 

chNumDiff The normalized difference between the numbers of the 
classes’ subclasses. 

chSim 

The edit distance based similarity between the classes’ 
subclasses, i.e., 

))),((max(Avg  chSim 21ji ji subCsubCmEditDistSi= , where 

subC1i and subC2j are subclasses of class C1 and C2. 

paSim 

The edit distance based similarity between the classes’ 
super classes, i.e., 

))),((max(Avg  paSim 21ji ji paCpaCmEditDistSi= , where 

paC1i and paC2j are super classes of class C1 and C2. 

Classes 

depDiff The normalized difference between the depth to root of the 
classes 

domainSim The edit distance based similarity between the properties’ 
domain 

rangeSim The edit distance based similarity between the properties’ 
range Properties 

motherSim The edit distance based similarity between the properties’ 
mother class 
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5.5 EVALUATION 

5.5.1 Test Ontologies 

The test ontologies are OAEI benchmark tests, which have been introduced in §4.7.1.  

5.5.2 Evaluation Criteria 

Same evaluation criteria, i.e., precision, recall and f-measure, as described in §4.7.2, are used. 

5.5.3 Methodology and Results 

Two experiments were designed to evaluate the learning-based approach. The 1st experiment 

investigates how the approach performs in the situation where people have manually marked 

some mapping results for a specific mapping task, but they need help from automatic mapping 

tools to find the rest of mappings. The 2nd experiment investigates how the approach performs in 

an alternative situation where no manual mapping results are available for a specific mapping 

task, but a general model has been learned that can be used to find mappings. 

5.5.3.1 1st Experiment – Within-task 

The 1st experiment investigates if machine learning methods work well in the situation where 

some manually marked mapping results are available for a specific mapping task. The motivation 

of the 1st experiment comes from the real world case: A user is working on an ontology mapping 

task with the help of computers. Since the size and complexity of the mapping task are large, the 
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user can not manually find all mapping pairs. But fortunately the user is able to mark some of 

them (e.g., e1i maps to e2j). Therefore, if we can utilize users’ previous effort, we can help them 

find the rest of mappings by using some machine learning techniques. 

The methodology of the 1st experiment is:  

1. For each OAEI benchmark test, we generate candidate mapping pairs by simply 

combine all elements from two ontologies.  

2. For each candidate mapping pair, we mark down their correctness according to the 

reference alignment (i.e. the ground truth). Simultaneously we generate various 

features (i.e., linguistic, structural and web) to describe the characteristics of the 

mapping pair.  

3. To simulate real world situation, we split all mapping pairs into two groups (i.e., one 

is for training purpose and the other is used as testing set) by randomly choosing (e.g. 

50% vs. 50%).  

4. We train two SVM models (i.e., SVM-Class and SVM-Property) on training set with 

the help of SVM-Light package1.  

5. We classify testing data on two models.  

6. Finally we extract mapping results of test data using naïve descendant extraction 

algorithm (Meilicke and Stuckenschmidt 2007) and evaluate the results against the 

reference alignment.  

7. To eliminate the bias caused by randomly choosing mapping pairs to generate 

training and testing data, we repeat step 3-6 10 times and show the average result. 

                                                 

1 http://svmlight.joachims.org/ 
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In the experiment, classes and properties are separated due to the difference between 

their structural features. That is, when training, two SVM models are trained – SVM-Class model 

for classes and SVM-Property model for properties. When testing, mapping pairs with class 

elements are tested on SVM-Class model and mapping pairs with property elements are tested on 

SVM-Property model. Moreover, since the number of negative examples is much larger than the 

number of positive examples in training data, we use a fixed cost factor (i.e. 10) in SVM-Light to 

equalize the distribution and ensure training errors on positive examples outweigh those on 

negative examples. Note, we add an annotation within-task to the name of the approach, referring 

that training and testing are done on the same ontology mapping task each time. 

Figure 5.2 shows the f-measure of classes on SVM-Class model on OAEI benchmark 

tests. Figure 5.3 shows the f-measure of properties on SVM-Property model on OAEI benchmark 

tests, in which the f-measures of benchmark tests #226, #233-#237, #240-#247, #250, #254-

#257, #260-#266 are 0 due to the fact that no property exists on those tests. Both pictures include 

the f-measure of classes/properties running by the PRIOR+ approach for comparison purpose.  
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Figure 5.2. Results of classes on SVM-Class model on all benchmark tests (Within-task) 
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Figure 5.3. Results of properties on SVM-Property model on all benchmark tests (Within-task) 

The observations from Figure 5.2 and Figure 5.3 are: 

1. On Test #101-#104 and #221-#247, both SVM-Class model and SVM-Property 

model perform as well as PRIOR+. This is because the linguistic information of these 

test ontologies is highly similar with that of the reference ontology and there is much 

less interference such as randomly generated name of classes/properties. Thus it is 

easy for both SVM models catch useful features such as the editdist feature in Table 

5.1.   

2. On Test #201-#210, both SVM-Class and SVM-Property model perform relatively 

worse than the PRIOR+ (especially on #201, #202, #208, #209). This is because the 

linguistic information changes too much on these tests so that it is hard to catch its 

linguistic and web characteristics in the training model. Meanwhile the structural 

feature is relatively weak. 

3. On Test #248-#266, both SVM-Class and SVM-Property model perform much worse 

than the PRIOR+. This is because there is no name and no comments in the test 
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ontologies at all, i.e., both linguistic features and web features are totally unavailable. 

The only feature available for SVM models is structural, which is relatively weak. 

Meanwhile, the PRIOR+ benefits from the profile enrichment process that integrates 

instance information, which keeps all descriptive information, to both classes and 

properties. 

4. On real world cases #301-304, the SVM-Class model performs much better than the 

PRIOR+ and the SVM-Property model performs similarly as the PRIOR+ (i.e., 

slightly better on #301 and #302 but slightly worse on #303 and #304). The reason 

why the performance of SVM models on real world cases is better than PRIOR+ 

might be because the learning based approach utilizes Web feature to explore 

synonymous relations between concepts in ontologies. By contrast the PRIOR+ 

approach does not integrate any auxiliary thesaurus for such a purpose. 

Furthermore, we investigate the distribution of the precision and recall of the SVM-Class 

model and SVM-Property over all benchmark tests. The results in Figure 5.4 and Figure 5.5 show 

that the precision and recall of test group (i.e., #1xx, #221-247) on SVM-Class model and SVM-

Property model are close to each other. The precision and recall of #202, #209 and #210 are 

different from other tests in the group of #201-#210. This is because though the linguistic 

difference exists in all test ontologies in the group, the unavailability of the linguistic information 

on the comments of #202, #209 and #210 is more severe and thus be anomalous with others. The 

differences between the classes of #248-#266 and #3xx result in different precision and recall on 

SVM-Class model. Such differential is smaller on SVM-Property model due to the smaller 

differential between their properties. 
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Figure 5.4 The precision-recall graph of SVM-Class model over all benchmark tests  

 

Figure 5.5 The precision-recall graph of SVM-Property model over all benchmark tests 

5.5.3.2 2nd Experiment – Cross-task  

The 2nd experiment investigates whether a model trained on one mapping task can work on 

another mapping task(s). Moreover, we are interested in which benchmark test(s) are more 

suitable as training models. The motivation for the 2nd experiment is based on the fact that in 

most ontology mapping cases, no ground truth is available. However we may have a model, 

which is already trained on another ontology mapping task. Thus, to save users’ time and effort, 

we would like to find out mapping results using the existing model. 
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The methodology of the 2nd experiment is:  

1. For each OAEI benchmark test, we generate candidate mapping pairs by combining 

all elements from two ontologies.  

2. For each candidate mapping pair, we mark down their correctness according to the 

reference alignment (i.e. the ground truth). Simultaneously we generate various 

features (i.e., linguistic, structural and web) to describe the characteristics of the 

mapping pair.  

3. We train two SVM models (i.e. SVM-Class and SVM-Property, same meanings as 

described in §5.5.3.1) on a benchmark mapping task (e.g. #101) with the help of 

SVM-Light package1. Please note that we do not train any model on benchmark tests 

#228, #233, #236, #239-#247, #250, #254, #257, and #260-#266 because we will not 

use their model to test other benchmark tasks. The reason why we do not test on these 

models is no properties exist in the test ontology of these tasks, and thus no SVM-

Property model can be trained on these mapping tasks. Whereas other benchmark 

tests have many properties in their test ontologies. Therefore it does not make any 

sense for us to test mapping tasks, which have both classes and properties, on the 

model, which is trained with classes only. 

4. We classify testing data of all other benchmark tests (excluding the one that has been 

used in training model) using the SVM models.   

5. Finally we extract mapping results of test data using naïve descendant extraction 

algorithm (Meilicke and Stuckenschmidt 2007) and evaluate the results against the 

reference alignment. 
                                                 

1 http://svmlight.joachims.org/ 
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6. We repeat step 3-5. That is, we train two SVM models on each benchmark test 

(excluding #228, #233, #236, #239-#247, #250, #254, #257, and #260-#266) and 

testing all the left benchmark tests on the models.  

7. Finally, we report the average f-measure of a group of testing data (e.g., #1xx, #2xx, 

#3xx etc.) on each training model as our final result.  

Note, to distinguish the approach from that used in the 1st experiment, we add an 

annotation cross-task to the name of the approach. The cross-task refers to training and testing 

are done on different mapping tasks each time.  

Figure 5.6 to Figure 5.12 show the average f-measure tested on different data sets (i.e., all 

benchmark tests, #1xx, #2xx, #3xx, and more specific #201-#210, #221-#238, #248-#259). The 

result of the PRIOR+ approach is included in each picture for comparison purpose. 
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Figure 5.6. Testing results on all benchmark tests (Cross-task) 

Figure 5.6  is the f-measure over all benchmark tests when training on each benchmark 

test. The observations from Figure 5.6 are: 

1. Generally speaking, the PRIOR+ outperforms the learning-based approach (i.e., the 

cross-task) over all benchmark tests. The PRIOR+ holds the highest f-measure .92. 
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Whereas no f-measure of any learning-based models is higher than .82. This suggests 

that none of OAEI benchmark tests is the best to be chosen to train the model that 

will then be used by all other benchmark tests to predict their mapping results. 

2. More specifically, training on #101-#104 and #221-#238 but testing on all other 

benchmark tests obtains worse results than training on other benchmark tests. This is 

because benchmark tests #1xx and #221-#238 are easy ontology mapping tasks. They 

have highly similar linguistic features, which leads the machine learning model to 

rely on some simple but specific features too much (e.g. the editdist feature), and thus 

it does not perform well when linguistic similarity changes a lot on other benchmark 

tests. For example, many benchmark tests have removed name and comments so that 

there is no linguistic information available at all. In this case, testing such data set on 

the model trained on #1xx and #221-#238 will hurt due to the significant difference 

between the characteristics of two mapping tasks. 

3. Training on #201-#210 and #301-#304, the f-measure is better than training on #101-

#104 and #221-#238 due to the balance between different kinds of features in the 

training data. 

4. Finally the f-measure when training on #248-#259 is better than training on #1xx and 

#221-#238 but worse than training on #201-210 and #3xx. This is because #1xx and 

#221-#238 mapping tasks are too easy and simple to build a training model; 

meanwhile, #248-#259 have very limited linguistic information in themselves, which 

is unlike the diverse characteristics existing in #201-#210 and #3xx. 
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Figure 5.7 Testing results on benchmark tests #1xx (Cross-task) 

Figure 5.7 is the f-measure over Test #101-104 (i.e., 1xx) when training on each 

benchmark test. The observation from Figure 5.7 is:  

The f-measure when training on different benchmark tests but testing on #1xx is good 

except on #248-#259. The overall good performance on 1xx is because their simple 

characteristics are easy to catch in almost all training sets. 
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Figure 5.8. Testing results on benchmark tests #2xx (Cross-task) 
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Figure 5.8 is the f-measure over Test #201-259 (i.e., 2xx) when training on each 

benchmark test. Please see more analysis on separate tests, i.e., #201-#210, #221-#238, #248-

#259, followed by Figure 5.9, Figure 5.10 and Figure 5.11. 
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Figure 5.9 Testing results on benchmark tests #201-#210 (Cross-task) 

Figure 5.9 is the f-measure over Test #201-210 when training on each benchmark test. 

The observations from Figure 5.9 are:  

1. Like the results over all benchmark tests shown in Figure 5.6, training on #101-#104 

and #221-#238 obtains worse results than training on other benchmark tests because 

all these tests have highly similar linguistic features, which leads the machine 

learning model to rely on some simple but specific features too much (e.g. the editdist 

feature), and thus it does not perform well when linguistic similarity changes a lot on 

other benchmark tests. 

2. Training on #201-#210 (except #203) and testing on themselves get the best f-

measure compare to training on all other benchmark tests. We believe it is because 

the training data carry the same characteristics as the testing data most. However the 
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performance of #203 is different to #201-#210 but similar to #1xx and #221-238 is 

because though no comments exist in #203 no change has been made to any name of 

its classes and properties or to its structure. Such characteristic makes #203 highly 

similar to #1xx and #221-#238 from both linguistic view and structural view. 

3. The f-measure when training on #248-#259 is better than the f-measure when training 

on #1xx and #221-#238 but worse than the f-measure when training on #201-210 and 

#3xx. This is because, on the one hand, #1xx and #221-#238 mapping tasks are too 

easy and too simple to build a training model; on the other hand, #248-#259 have 

very limited linguistic information in themselves, which is unlike the diverse 

characteristics existing in #201-#210 and #3xx. 

4. Finally, training on #301-#304, the f-measure is better than the f-measure training on 

all other benchmark tests except #201-210 themselves. This is because the diversity 

and balance of different kinds of features existing in #3xx. 
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Figure 5.10 Testing results on benchmark tests #221-#247 (Cross-task) 

Figure 5.10 is the f-measure over Test #221-#247 when training on each benchmark test. 

The observation from Figure 5.10 is similar as that of Figure 5.7:  
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The f-measure when training on different benchmark tests is good except for #248-#259. 

The overall good performance on #221-#247 is because their simple characteristics are easy to 

catch in almost all training sets. 
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Figure 5.11 Testing results on benchmark tests #248-#266 (Cross-task) 

Figure 5.11 is the f-measure over Test #248-#259 when training on each benchmark test. 

The observations from Figure 5.11 are: 

1. Generally speaking, the f-measure when training on #1xx, #203, #221-#238, and 

#3xx but testing on #248-#259 is poor. This is because all these benchmark tests 

include more or less linguistic information. Compare to #248-#259, these benchmark 

tests are relatively simple and easy. Thus, training on relatively simple and intuitive 

mapping tasks will result in relatively simple and intuitive model, which is not 

suitable to complex situations. 

2. Whereas the f-measure when training on #201-#210 (except #203) and #248-#259 

themselves is better than the f-measure when training on other benchmark tests due to 

the similarity between the training data and testing data. 
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Figure 5.12 Testing results on benchmark tests #3xx (Cross-task) 

Figure 5.12 is the f-measure over Test #301-#304 when training on each benchmark test. 

The observations from Figure 5.12 are: 

1. Generally speaking, the f-measure when training on #3xx themselves is the best 

compare to training on all other benchmark tests and the PRIOR+ approach except 

that the f-measure on #303 is slightly worse than on the PRIOR+. 

2. Training on #203 and #248-#259 obtained worst results in this case. This is because 

though #203 and #248-#259 are difficult mapping tasks their difficulties are manually 

made and are very different from what we can meet in real world cases. Therefore the 

model trained on these tests can not contribute to the real world cases. 
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5.6 SUMMARY AND CONCLUSION 

In this chapter, we examined a non-instance learning-based ontology mapping approach, which 

overcomes the limitations of previous learning-based ontology mapping approaches that either 

rely on the availability of sufficient instances or are domain-dependent.  

In the approach we treated the ontology mapping problem as a binary classification 

problem; generated a serial of domain-independent and task-independent features; utilized these 

features to build training model; and conducted two experiments to investigate the performance 

of machine learning techniques in different situations.  

The experimental results show: 

1. For learning-based within-task approach, the performance is good when mapping task 

is relatively easy (i.e., #1xx and #221-247). When mapping task is more difficult, its 

performance is not as good as the PRIOR+ approach (i.e., #201-#210 and #248-

#266). But the performance of this approach is better than the PRIOR+ on real world 

cases, which shows the features used in this approach do make more sense on real 

world cases than on artificially constructed cases.  

2. For learning-based cross-task approach, the performance is good when training data 

and testing data share similar characteristics. If the testing mapping task is very 

simple, it's easy to catch characteristics in the training model and thus get good 

performance with more difficult training task. Meanwhile if training task and testing 

task both are difficult but with different characteristics, the performance is not as 

good as other approaches. 
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6.0  CONCLUSION AND FUTURE WORK 

We have presented two approaches, i.e., the PRIOR+ and the learning-based approach, for 

ontology mapping using information retrieval, artificial intelligence and machine learning 

techniques to analyze both linguistic and structural information, as well as web information, for 

two ontologies. The experiment results show that the PRIOR+ is a generic and scalable ontology 

mapping approach. It is competitive with all top-ranked systems on benchmark tests, web 

directory test and anatomy test at OAEI ontology matching campaign 2007. Moreover, the 

learning-based approach demonstrates the potential of applying machine learning techniques in 

ontology mapping without using any instance information. It also shows the potential to improve 

performance in real world ontology mapping tasks. In this chapter, the main contributions of this 

thesis are outlined and a number of directions of future work are presented. 

6.1 SUMMARY OF CONTRIBUTIONS 

As stated in §1.4, the ultimate goal of our research is to solve the problem of ontology mapping, 

and thus enable semantic interoperability between different web applications and services in the 

WWW. More specific, we aim to develop a new generic approach to automatically map 

ontologies with minimum human effort. 
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Regarding our research objective, the main contribution of our work is: We designed and 

developed two generic ontology mapping approaches to find the semantic correspondences 

between elements in different ontologies. Each of the approach is suitable to some specific 

mapping situation. More specific, our contributions can be divided into twofold: 

1. We proposed a generic ontology mapping approaches, the PRIOR+, which integrates 

information retrieval and artificial intelligence techniques in the context of ontology 

mapping. Some highlights in the PRIOR+ are: 

1) We explored three different measures of similarity such as edit distance based 

similarity, profile similarity and structural similarity to support ontology mapping. 

2) We treated the ontology mapping problem as an information retrieval task, and 

thus utilized information retrieval techniques to estimate the profile similarity in a 

vector space model. 

3) We proposed a harmony measure to estimate the reliability of different 

similarities without given ground truth.  

4) We proposed a harmony based adaptive aggregation method to aggregate various 

similarities.  

5) We integrated the interactive activation and competition (IAC) neural network in 

the context of ontology mapping to search for a global optimal solution that best 

satisfies ontology constraints. 

6) We implemented the parallel computing platform, Hadoop, and the search engine, 

Indri, to support large-scale ontology mapping tasks. 

7) We conducted a series of experiments to evaluate the PRIOR+ from different 

perspectives and analyzed the results. 
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2. We proposed a non-instance based machine learning approach for ontology mapping 

problem. Some highlights in the learning-based approach are: 

1) We treated the ontology mapping problem as a binary classification problem. 

2) We extracted various features, i.e., linguistic, web and structural features, to 

describe ontologies. All the features are general and domain-independent. 

3) We explored machine leaning algorithms (i.e., SVM) for ontology mapping 

without requesting any instance information. 

4) We conducted a series of experiments to evaluate the learning-based approach 

from different perspectives and analyzed the results. 

6.2 FUTURE DIRECTIONS 

Given our findings, there is still much work to be done. For example, to extend 1-to-1 mapping 

to 1-to-n or even m-to-n mappings, we need to improve the mapping extraction algorithm and 

adjust constraints when implementing the neural network based constraint satisfaction solver so 

that they could allow 1-to-n or m-to-n mappings between ontologies. Currently we only work on 

finding equivalent relations between classes and properties in ontologies. Finding more complex 

relations such as broader and narrower will be more challenging. Some preliminary work of ours 

on exploring complex relationship between elements in ontologies have been done in the food 

track mapping task at OAEI ontology matching campaign 2006 (Mao and Peng 2006). In that 

task, we converted equivalent relations to broader and narrower relations by identifying the 

hierarchical relationship between classes in two ontologies. Future work in this direction could 

integrate an external repository to analyze the hierarchical relationship between classes, which 
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are not explicitly expressed in the two ontologies. Social tagging systems might also contribute 

to finding mappings between two ontologies such as the Google web directory and Yahoo web 

directory when they have been associated with many instances like web pages and the web pages 

have been tagged as well. Such tagging information can be used in our training model or 

integrated into the profile of the PRIOR+. Other future work includes the improvement of the 

PRIOR+ approach, especially on the IAC neural network, and the improvement of the learning-

based ontology mapping approach. 

The PRIOR+ approach has been demonstrated to be a good generic ontology mapping 

approach on different mapping tasks. The PRIOR+ integrates the IAC neural network to search 

for a globally optimized solution that can satisfy as many ontology constraints as possible. 

Currently the constraints implemented in the experiment are still limited.  It may be possible to 

integrate more constraints such as complex axioms in OWL. Further, we should investigate 

which constraint is more useful than others among all constraints.  As stated in §4.5.4, we set the 

same weight for both positive constraints (i.e., 1) and negative constraints (i.e., -1), which is 

practical but not rationale. This is because, in an ideal situation, the weight of different 

constraints should reflect their prior probabilities, i.e., they should be a function of their 

confidence. Finally, we are considering to implement the IAC neural network on the parallel 

computing platform, i.e., Hadoop, so as to improve the efficiency of the approach when the size 

and complexity of ontology constraints is large. 

Related to the learning-based approach, several things might be done. First, to leverage 

different features so as to achieve a robust semantic similarity measure, a forward-backward 

procedure should be carried out to reduce the number of features. That is, in the forward step, the 

best additional feature will be added one by one. Afterward, a backward process will be executed 
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on all data to drop features that are not significant. The criterion of feature selection is to 

maximize the f-measure. Secondly, we can build a tool to support ontology mapping evaluation 

using the learning-based approach. Taking the manually evaluated mapping pairs as training set, 

we can train an SVM model. Then we can test candidate mapping pairs against the model, rank 

them by confidence score returned by the model, and show the ranked list to the user so that the 

user can judge the correctness of the mapping results. While not fully automatic, the user would 

not have to go through all of the ontologies to look for mappings or randomly pick a mapping 

pair to evaluate for correctness. Instead, the user will be able to focuses on the top-ranked pairs 

only because they have more chances to be correct than others. By this means, the user saves 

time and effort. Furthermore, along with the new judgment from the user side, the training and 

testing could be iteratively done in the background. Then the ranked list can be updated with new 

models. Third, we could perform an active learning with Support Vector Machine (Lewis and 

Gale 1994). That is, instead of using a randomly selected training set, we actively choose training 

instances (e.g. the mapping results that have the most ambiguities) and request user feedback 

about them to construct a more accurate classifier. Finally, future work on the non-instance based 

learning approach may include using the harmony as the golden standard to train models. As we 

have demonstrated harmony is a good estimator of the performance of different similarities. 

When we train a learning model, the harmony, like the golden standard, gives us some sense of 

the quality of the model. Therefore, if we adjust a training model based on its harmony, we do 

not rely on the availability of the golden standard, which is a big bottle neck for learning based 

approaches. Even more, we can integrate the result of the learning based approach to the result of 

the PRIOR+ approach using the harmony measure so that we can take advantage of both 

approaches.  
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A. APPENDIX 

THE FULL RESULTS OF THE PRIOR+ ON OAEI 2007 BENCHMARK TESTS  

# N
am

e 

C
om

m
ents 

Specialization 
H

ierarchy 

Instances 

Properties 

C
lasses 

C
om

m
ents 

Precision 

R
ecall 

F-m
easure 

101 0 0 0 0 0 0 Reference alignment 1 1 1 

102       Irrelevant ontology N/A N/A N/A 

103 0 0 0 0 0 0 Language generalization 1 1 1 

104 0 0 0 0 0 0 Language restriction 1 1 1 

201 R 0 0 0 0 0 No names 1 1 1 

202 R S 0 0 0 0 No names, no comments 0.9756 0.8247 0.8939 

203 0 S 0 0 0 0 No comments (was 
misspelling) 

1 1 1 

204 C 0 0 0 0 0 Naming conventions 1 1 1 

205 S 0 0 0 0 0 Synonyms 0.9688 0.9588 0.9637 

206 F T 0 0 0 0 Translation 1 0.9897 0.9948 

207 F 0 0 0 0 0   1 0.9897 0.9948 

208 C S 0 0 0 0   1 0.9588 0.9789 

209 S S 0 0 0 0   0.8919 0.6804 0.7719 

210 F S 0 0 0 0   0.9634 0.8144 0.8827 

221 0 0 S 0 0 0 No specialization 1 0.9794 0.9896 

222 0 0 F 0 0 0 Flattened hierarchy 1 0.957 0.978 

223 0 0 E 0 0 0 Expanded hierarchy 1 1 1 

224 0 0 0 S 0 0 No instance 1 1 1 

225 0 0 0 0 R 0 No restrictions 1 1 1 

228 0 0 0 0 S 0 No properties 1 1 1 

230 0 0 0 0 0 F Flattened classes 0.9351 1 0.9664 
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231* 0 0 0 0 0 E Expanded classes 1 1 1 

232 0 0 S S 0 0   1 1 1 

233 0 0 S 0 S 0   1 1 1 

236 0 0 0 S S 0   1 1 1 

237 0 0 F S 0 0   1 1 1 

238 0 0 E S 0 0   1 1 1 

239 0 0 F 0 S 0   0.9667 1 0.9831 

240 0 0 E 0 S 0   0.9706 1 0.9851 

241 0 0 N S S 0   1 1 1 

246 0 0 F S S 0   0.9667 1 0.9831 

247 0 0 E S S 0   0.9706 1 0.9851 

248 N S S 0 0 0   0.9143 0.6598 0.7665 

249 N S 0 S 0 0   1 0.8351 0.9101 

250 N S 0 0 S 0 Individual is empty 0.8065 0.7576 0.7812 

251 N S F 0 0 0   0.9531 0.6559 0.7771 

252 N S E 0 0 0   0.8904 0.6701 0.7647 

253 N S S S 0 0   0.913 0.6495 0.759 

254 N S S 0 S 0   1 0.2727 0.4286 

257 N S 0 S S 0   0.6774 0.6364 0.6562 

258 N S F S 0 0   0.9219 0.6344 0.7516 

259 N S E S 0 0   0.8904 0.6701 0.7647 

260 N S F 0 S 0   0.7895 0.5172 0.625 

261 N S E 0 S 0   0.4333 0.3939 0.4127 

262 N S S S S 0   1 0.2727 0.4286 

265 N S F S S 0   0.7368 0.4828 0.5833 

266 N S E S S 0   0.5 0.4545 0.4762 

301       Real: BibTeX/MIT 0.9259 0.8197 0.8696 

302       Real: BibTeX/UMBC 0.9677 0.625 0.7595 

303       Real: Karlsruhe 0.82 0.8367 0.8283 

304       Real: INRIA 0.9136 0.9737 0.9427 

H-Mean 0.9577 0.8703 0.9119 

 

Notes: 

1) Name can be replaced by (R/N) random strings, (S) synonyms, (N) name with different conventions, (F) strings in 
another language than English. 

2) Comments can be (S) suppressed or (T) translated in another language. 
3) Specialization Hierarchy can be (S) suppressed, (E) expanded or (F) flattened. 
4) Instances can be (S) suppressed. 
5) Properties can be (S) suppressed or (R) having the restrictions on classes discarded. 
6) Classes can be (E) expanded, i.e., replaced by several classes or (F) flattened. 
7) 0 denotes no change. 
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