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Coupled core walls offer an efficient lateral load resisting system. Due to their exceptional 

stiffness (many times greater than the sum of the component wall piers), coupled core wall 

structures are especially attractive in earthquake-resistant settings. Current design practice does 

not address dynamic properties of the structure, in particular the optimization of the coupling 

beams. The coupling beams affect both the “static” (stiffness) and dynamic performance of the 

structure to varying degrees depending on their damping and stiffness properties. Fixed Point 

Theory is applied to find optimal damping and stiffness values for beams coupling two wall pier 

structures. In this initial investigative work, “performance” is defined in a novel way: as the 

practical minimization of transmissibility of horizontal ground motion. An initial parametric 

study applies fixed point theory optimization to a series of 84 sets of wall piers. From this 

parametric study, two prototype structures are advanced and analyzed using linear time history 

analyses to assess their performance in a simulated earthquake. These “optimized” structures are 

compared to practical, uncoupled, and rigidly linked systems to determine the validity of the 

application of Fixed Point Theory to the choice of coupling beam properties.  
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 NOMENCLATURE 

The following symbols are used throughout this thesis. Where possible, notation taken from 

references was not changed from the original source documents. 

A1 = Wall 1 cross sectional area. 

A2 = Wall 2 cross sectional area. 

E = Young’s Modulus. 

ek1 = equivalent SDOF stiffness for Wall 1. 

ek2 = equivalent SDOF stiffness for Wall 2. 

em1 = equivalent SDOF mass for Wall 1. 

em2 = equivalent SDOF mass for Wall 2. 

floors = Number of floors to model. 

g = Coefficient from the closed form solution. 

I1 = Wall 1 moment of inertia. 

I2 = Wall 2 moment of inertia. 

k = Optimal coupling beam stiffness. 

K1 = Wall 1 stiffness matrix. 

k1 = Story level stiffness of Wall 1. 

K2 = Wall 2 stiffness matrix. 

k2 = Story level stiffness of Wall 2. 

h = Story height. 

L = Coefficient from the closed form solution. 

M1 = Wall 1 mass matrix. 

m1 = Wall 1 story level mass. 

M2 = Wall 2 mass matrix. 

m2 = Wall 2 story level mass. 
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mtot = Total mass at the story level (m1 + m2). 

rfloors = Floor level at which plastic hinge diminishes. 

Sp = Coefficient for the natural frequency corresponding to the intersection point “P”.  

Sp1 = Component of the coefficient for the natural frequency corresponding to the 

  intersection point “P”. 

Sq = Coefficient for the natural frequency corresponding to the intersection point “Q”. 

Sq1 = Component of the coefficient for the natural frequency corresponding to the  

  intersection point “Q”.  

U = Lateral displacement. 

U1 = Lateral displacement to Wall 1. 

U2 = Lateral displacement to Wall 2. 

α1 = Stiffness coefficient for modification of EI to account for cracked section 

properties in plastic hinge region. 

αu = Stiffness coefficient for modification of EI to account for cracked section 

properties outside the  plastic hinge region. 

γ = Frequency ratio of SDOF systems (ω2 / ω1). 

Λ1 = Wall 1 eigenvalue matrix. 

Λ2 = Wall 2 eigenvalue matrix. 

µ = Mass ratio of Wall 2 to Wall 1 (m2 / m1). 

ξ = Optimal coupling beam damping ratio (the average of ξA and ξB). 

ξA = Fixed point damping ratio corresponding to the intersection point “P”,  

comprised of the following coefficients: aA, bA1, bA2, bA3a, bA3, bA4a, bA4, 

bA5a, bA5, bA, cA1, cA2, and cA. 

ξB = The fixed point damping ratio corresponding to the intersection point “Q”,  

comprised of the following coefficients: aB, bB1, bB2, bB3a, bB3, bB4a, bB4, 

bB5a, bB5, bB, cB1, cB2, and cB. 

η = Fixed point stiffness ratio (k / k1). 

Φ1 = Wall 1 eigenvector (mode shape) matrix. 

φ1 = Normalized first mode shape vector for Wall 1. 

Φ2 = Wall 2 eigenvector (mode shape) matrix.  

φ2 = Normalized first mode shape vector for Wall 2. 
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ω1 = Natural frequency of Wall 1. 

ω2 = Natural frequency of Wall 2. 

ωp1 = Component of the natural frequency corresponding to the intersection point “P”.  

ωp = Natural frequency corresponding to the intersection point “P”. 

ωq1 = Component of the natural frequency corresponding to the intersection point “Q”. 

ωq = Natural frequency corresponding to the intersection point “Q”. 

 

This document contains measurements and calculations using the International System 

(SI) of units. The following conversions apply: 

1 inch  = 25.4 mm 

1 foot  = 305 mm 

1 kip  = 4.448 kN 

1 ksi  = 6.895 MPa 

Reinforcing bar sizes are reported using the standard inch-pound designation used in the 

United States designated by a ‘#’ followed by a number referring to the bar diameter in eighths 

of an inch. Thus a #7 bar is a nominal 7/8 inch diameter bar.  
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1.0  INTRODUCTION 

Coupled core wall (CCW) structures are very attractive design alternatives for earthquake 

resistant mid- and high-rise construction. Simply, a CCW consists of a series of cantilever wall 

piers coupled with moment resisting coupling beams (also called link beams). Practical design of 

these systems is complex and the peer-review process is often difficult to negotiate. The 

following comments are paraphrased from the experience of design engineers in designing 

CCWs (Shahrooz et al. 2006):  

“Coupled walls are very commonly used, especially in high rise design, but there are many 
issues/challenges a designer must face.” 

“Constructability is a huge issue. The diagonal reinforcing pattern combined with all of the 
ties and wall steel leave little room for tolerance, making placing nearly impossible in the 
real world. Relief on tie requirements will allow greater flexibility.” 

“Upper bound to shear strength of bdf c'10  [psi units] is a constant issue. Many coupling 
beams are pushed to this limit considering code level seismic forces. Options for exceeding 
this limit are needed.” 

“There is little guidance in North America for stiffness assumptions for different demand 
levels - wind, service earthquake, maximum considered earthquake.” 

 

The basic information required to overcome these issues through development and 

implementation of performance-based design methods and/or innovative systems, does not exist 

or is very limited. A significant limitation in CCW design is the lack of any “rules of thumb” or 

relatively simple methods for establishing initial trial designs. 

Harries (2001) demonstrated that idealized CCW analyses reported in the literature 

appeared to have excellent global structural behavior however the individual component 

response required to achieve this behavior was not justified based on existing experimental 

literature. Harries et al. (2004a) conducted an extensive parametric study of the elastic behavior 
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of 2016 idealized CCW structures and demonstrated significant force and displacement demands 

on coupling beams that could not be practically designed for or resisted.  

It is felt that a performance-based design (PBD) approach may help to address many of 

these shortcomings in the design of CCW structures. In this work, “performance” will be defined 

in a novel way: as the practical minimization of transmissibility of horizontal ground motion. 

Such an approach has not been tried and this thesis represents an exploratory study. 

1.1 OBJECTIVES 

The objective of the work presented in this thesis is to explore the application of Fixed Point 

Theory for establishing the practical minimization of transmissibility of horizontal ground 

motion in a coupled core wall structure. Fixed Point Theory will be used to establish initial 

design values for the coupling beams required to optimize the dynamic response of the entire 

CCW system. This work is exploratory in nature and therefore relies on a number of 

simplifications and idealizations described throughout the text. 

1.2 OUTLINE 

This thesis will cover the background subjects of coupled core walls, the generation of 

equivalent single degree of freedom (SDOF) systems, and fixed point theory in Chapter 2. In 

Chapter 3, a specific set of coupled core walls is reduced to two equivalent SDOF systems and 

the optimal coupling stiffness and damping values are found using fixed point theory. Chapter 4 

covers the modeling and linear time history analysis for several scenarios for two sets of wall 

combinations. The conclusions and recommendations for future work are listed in Chapter 5. 
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2.0  LITERATURE REVIEW 

The objective of this thesis is to apply Fixed Point Theory to the initial design of coupled wall 

structures. This chapter presents background material on the three major concepts on which this 

work is founded: coupled core wall structures, equivalent single degree of freedom systems, and 

fixed point theory. Knowledge and understanding of these concepts is essential to the 

development and analysis of the parametric study.  

2.1 COUPLED CORE WALL STRUCTURES 

Coupled core wall (CCW) structures resist applied lateral loads in an efficient manner through 

the coupling of individual wall piers to generate “frame” action between the walls in addition to 

the resistance provided by the flexural response of each cantilever pier. Core walls typically form 

the elevator shafts and are most often located in the center of the structure to maximize floor 

space. In the simplest scenario (and the one considered in the present work) a surrounding steel 

frame is used to carry the gravity loads, while the core walls are assumed to resist 100% the 

lateral loading (and its tributary share of the gravity loads). The walls and coupling beams are 

typically constructed of concrete, allowing the structure to perform well under fire or other 

catastrophic conditions. Concrete core structures are preferred for their toughness and their 

ability to protect the integrity of the primary egress (stairwells) for long periods of time in these 

conditions. Due to their exceptional stiffness, many times greater than the sum of the component 

wall piers, CCW structures are especially attractive in earthquake-resistant construction (Paulay, 

1971). 

When a structure consisting of a collection of uncoupled individual wall piers is loaded, 

the walls resist loading separately as cantilever walls. In CCW structures the wall piers are 
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coupled, usually at the story level, with connecting moment resisting coupling beams. As the 

walls are coupled, a system is created in which the walls act together to resist the lateral loading 

at varying degrees of efficiency based on the mechanical and physical properties of the 

connecting coupling beams. In this system, the coupled wall behavior approaches that in which 

the wall piers work together as one composite cantilever, rather than individual cantilevers, 

utilizing the increased moment arm from the centroid of the wall group to resist bending from 

applied lateral loads. The additional bending resistance is generated by the “frame action” 

introduced by the coupling beams resulting in an axial couple (tension and compression) being 

generated in the wall piers. This coupled system may be very efficient due to the large moment 

arm typically available. In a hypothetical fully composite system, the wall piers experience either 

axial tension or compression, while the uncoupled system, without frame action, contains wall 

piers that have a linear stress distribution as the lateral loads are resisted only by wall pier 

flexure. This is shown schematically in Figure 2.1 (Stafford-Smith and Coull, 1991).  

As the wall piers deflect under a lateral loading, they rotate at each story level. The 

moment connection between the coupling beams and wall pier cause the beams to deflect in 

double curvature. For optimal structural performance, it is also assumed that all coupling beams 

yield prior to hinges forming at the bases of the wall piers (Harries and McNeice, 2006). The 

beam double curvature results in bending and shear reactions at the wall face that counter the 

tendency of the individual walls to rotate at the story level. The cumulative effect of these 

deformations and reactions of the connecting beams on the core walls greatly increases the axial 

forces that must be resisted by the wall piers. In a pushover scenario, the leading wall 

experiences greater compression forces while the trailing wall experiences tension. The increased 

tension is of greatest concern in that it is not generally desirable for this tension to overcome 

gravity (compression) loads at the wall base. If this occurs, the wall base and foundation must be 

designed for uplift. The increased compressive force on the leading wall is generally not a 

concern in design unless the wall piers are very slender, although it may result in the need for 

additional confining reinforcing details (ACI 318, 2005).  

The efficiency of the coupled structure is described by the extent to which the structure 

behaves as a composite cantilever; that is the magnitude of the “frame action” described above. 

This efficiency is described as the degree of coupling (doc) of the CCW system. The doc can 

range from 0%, which represents core walls without coupling (linear stress distribution in the 
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walls), to 100%, in which the core walls are essentially doweled together by infinitely stiff 

beams, creating the hypothetical fully composite cantilever described above. The structural 

combination of the wall piers and the connecting beam is similar to a moment frame. The degree 

of coupling (doc) is defined as “the ratio of the overturning moment resisted by the ‘frame’ 

action to the total overturning moment” (Harries et al., 2004a) and is numerically defined as: 

∑ ⋅+
⋅

=
ww

w
LNM

LN
doc     (2.1) 

Where N is the axial load imparted to the wall pier from the accumulated shears of the coupling 

beams, Lw is the moment arm between the centroids of the walls, and Mw is the overturning 

moment resisted by each wall pier. Thus the denominator of Equation 2.1 represents the total 

overturning moment acting on the CCW structure. 

 In addition to vertical interaction effects, horizontal axial forces in the coupling beams 

themselves are generated in CCW structures. These forces result from the redistribution of 

horizontal shear forces from one wall pier to the other. Under lateral load, the “compression 

wall” naturally becomes stiffer while the “tension wall” is less capable of resisting moment and 

shear forces. Thus the overturning moment and lateral shear forces are redistributed from the 

tension wall to the compression wall. This redistribution is manifested as axial interaction forces 

in the coupling beams.  

The design engineer must consider the practicality, constructability, and cost of the 

required beam properties and dimensions and weigh them against the desired design criteria and 

level of efficiency. Additionally, as noted, wall pier tension forces require considerable attention. 

A fully composite structure is impractical because the coupling beams would need an extremely 

stiff design. Since concrete is desirable for the design, the beam depth would be excessive, or the 

walls would have to be so close together that the benefits of coupling are lost. A design must be 

completed that satisfies normal design criteria (either performance or strength based design) and 

is practical for purposes of achieving dynamic properties of the structure (stiffness and damping). 

In this regard, Harries (2001) clearly demonstrated that it is often not possible to achieve the 

desired or predicted global CCW performance as the demands on the coupling beams greatly 

exceed their (experimentally demonstrated) capacity. Additionally, Harries et al. (2005) 

demonstrate that the code-compliant strength-based design of coupling beams often leads to 

unconstructable details. 
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2.1.1 Implications of CCW Behavior in the Context of the Present Work 

As will be discussed, the dynamic behavior of CCWs is complex. This behavior, as measured by 

the stiffness and damping properties of each wall pier, varies tremendously even in a single 

seismic event. The interaction of the tension-compression couple described above results in the 

proportional stiffness of the wall piers shifting in favor of the compression wall. Damping, 

although more complex, likely increases in the tension wall. Similarly, axial interaction forces in 

the coupling beams are dominantly compressive near the base of the structure and tensile in the 

upper stories affecting the distribution of coupling beam forces and, again, the dynamic behavior 

of the structure. 

2.1.2 Performance Based Design 

Current design practice (ACI 318, 2005) utilizes strength based design (SBD). SBD entails the 

determination of likely loading on a structure and subsequently designing the structural members 

to resist that loading. Structural deflections are also checked, to ensure that they are within 

specified limits, although this is typically a post-design check. Performance based design (PBD) 

is very different from SBD. PBD uses criteria relating to the performance of a building or its 

structural members under user specified conditions to serve as the goals of the design. In 

“standard” terminology: PBD considers a spectrum of performance objectives under a spectrum 

of performance levels (or hazard levels in the case of seismic design). Performance objectives 

may pertain to desired yield mechanisms, constructability, or to the post-earthquake condition of 

the building (among other objectives), and may include specific criteria such as acceptable 

deflection limits during an earthquake. Performance levels relate to the hazard considered; in the 

case of seismic design, hazards are defined by the return periods or probabilities of exceedance 

of events having specific magnitudes. Once performance goals are set, the design team works to 

ensure that structural and member behavior are provided to meet the goals defined. PBD is often 

a two (or multiple) level design methodology where a design is executed at a “design” level 

hazard where the structure is expected to meet particular performance objectives. From this 

basis, the structural performance is verified at greater hazard levels where performance 
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objectives are not as stringent; or at reduced hazard levels where one may desire improved 

performance. 

Performance objectives and hazard levels are set by the project owner and design team 

with guidance and minimum objectives defined by building codes and standards. One set of 

earthquake based performance objectives are the Target Building Performance Levels, which are 

laid out in FEMA 356 (2000). FEMA 356 is written as a pre-standard for the rehabilitation of 

structures, but the concept of PBD is well defined in this document and is applicable to new 

structures (though new structures are beyond the pre-standard’s scope). While PBD is currently 

not used throughout the United States, it is in the process of being adopted by FEMA in this pre-

standard. Additionally, Section 9.5.8 of ASCE 7-02 which permits non-linear dynamic time 

history analyses as an alternative method for determining seismic design and performance, 

appears to indicate a move toward PDB. In seismic practice today, some practitioners use a PBD 

approach coupled with a SBD presentation in order to satisfy SBD-based peer- and design-

review requirements.  

PBD requires the consideration of a hazard level. Four anticipated earthquake hazard 

levels were used to develop the criteria set forth for the performance levels prescribed by FEMA 

356 (2000): frequent events, which have a 50% probability of exceedance in 50 years, occasional 

events (20%/50 years), rare events (10%/50 years), and very rare events (2%/50 years). Existing 

standards (ASCE 7-02, FEMA 356, etc) generally set their “design level” event as the 10%/50 

year event and the “maximum credible” event as the 2%/50 year event. These are referred to as 

the design basis earthquake (DBE) and maximum credible earthquake (MCE), respectively.  

Having established a hazard level, the target performance level chosen by the owner 

consists of a combination of a Structural Performance Level and a Nonstructural Performance 

Level (FEMA 356, 2000). The spectrum of structural performance levels is defined at discrete 

levels and intermediate ranges. The discrete levels are the Operational, Immediate Occupancy 

(IO), Life Safety (LS), Collapse Prevention (CP), and Not Considered (NC) levels. The 

intermediate ranges fall between these levels are referred to as Damage Control (between IO and 

LS) and Limited Safety (between LS and CP) ranges. In new construction NC is not applicable 

and will not be discussed further. The definitions of structural performance levels are 

paraphrased from FEMA 356: 
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Immediate Occupancy (S-1) - Light damage. Following an earthquake, the structure is 

safe to occupy with no remedial measures. The building’s strength remains very 

close to the original design strength.  

Life Safety (S-3) - Moderate damage. Structural damage is expected although none does 

not affect the life safety of the occupants nor restricts reasonable egress. The 

structure maintains significant reserve capacity to prevent partial or total collapse. 

Typically, damage is repairable. 

Collapse Prevention (S-5) - Severe damage. Extensive structural damage is expected and 

casualties are possible – nonetheless a catastrophic collapse is not imminent; that 

is: the structural members have sufficient reserve capacity during and following 

the event to resist gravity loads. The building is near collapse and is not likely to 

be repairable. 

Damage Control Range (S-2) and Limited Safety Range (S-4) are levels of performance 

obtained from the interpolation between the criteria of levels S1 and S3 and S3 and S5, 

respectively. Tables C1-3 and C1-4 in FEMA 356 (2000) provide relatively extensive guidance 

as to the specific nature of damage, story drifts, and other performance criteria expected at each 

performance level. 

Similar criteria are defined for nonstructural performance levels (FEMA 356, 2000): 

Operational (N-A; non-structural elements in the building are able to function as well as they had 

before the earthquake), Immediate Occupancy (N-B; systems pertaining to access, egress, and 

mobility throughout the building remain intact and operable), Life Safety (N-C; damage is not 

life threatening), and Hazards Reduced (N-D; large, heavy objects are secure from falling, other 

building functions pertaining to access or fire protection not addressed). Non-structural 

performance criteria are described in Tables C1-5, C1-6, and C1-7 in FEMA 356.  

Structural and non-structural performance levels are combined to determine the 

building’s performance objective. In new construction, the levels are consistent and typically 

represented as one of three target performance levels: Immediate Occupancy (IO), Life Safety 

(LS), and Collapse Prevention (CP). Each performance level is assigned a hazard level. Thus the 

final structural performance is conventionally defined as: LS at the BDE event and CP at the 

MCE event. In some cases, a third reduced performance level is considered: often IO at the 

20%/50 year or 50%/50 year event. From a practical standpoint, design is carried out at one level 
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(LS at DBE) and performance is verified at the others. Often some additional design or detailing 

is required to achieve CP and/or IO performance. 

2.1.3 Performance Based Design of CCWs 

When performance based design is adapted for CCW structures, it is appropriate to address 

another type of performance criteria relating to the desired behavior and progression of hinge 

development in the building. Specifically, it is desirable to ensure that all coupling beams yield 

prior to hinges forming at the wall pier bases. This behavior is similar to the strong column-weak 

girder design philosophy for ductile moment resisting frames (Paulay 1971; Park and Paulay 

1975). Harries et al. (2005) also identify the design of constructible reinforced concrete coupling 

beams as a key initial consideration in the PDB of CCWs.  

CCWs are “dual systems” – cantilever wall flexural behavior and “frame” action. The 

desired performance of the structure may therefore include the exhibition of different behaviors 

at different performance levels. For example: at the LS performance level, the structure could be 

considered a CCW, while at CP, it may be more desirable to assume the coupling beam capacity 

has degraded completely, resulting in loss of “frame” action, but respecting the CP performance 

goals of maintaining gravity load carrying capacity and reasonable evacuation of the structure 

(Harries et al., 2004b). This particular performance level is believed to address limitations in 

coupling beam performance identified by Harries (2001). Additionally, this progression of 

performance with increasing hazards is a major premise behind the work presented here. 

A design methodology specific to CCW structures has been proposed by Harries et al. 

(2004b).  This five step process is outlined as follows:  

1. Definition of the performance objectives – This process, as described above, may 

be guided by FEMA 356 or from other reasonable and practical conditions. 

2. Design constructible coupling beams that meet other performance criteria. With 

coupling beam design, it is essential that careful attention to shear details is 

maintained. While concrete is highly desirable for this application, other forms 

have been researched utilizing steel, hybrid sections, or fused beams (Harries and 

Shahrooz, 2005 and Harries et al. 2000). 
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3. Based on the established coupling beam design, determine the forces in and 

design the wall piers. Use an elastic analysis to model the desired coupling 

“frame” action. From this model, determine the loading effects of the coupling on 

the wall piers. 

4. Use a non-linear analysis to develop axial load-moment-curvature relationships 

for the beams and the walls.  

5. Perform a complete non-linear “pushover” analysis that will determine the 

displacements of the CCW structure, and compare to the established Target 

Building Performance Levels. 

Harries et al. (2004b) and Harries and McNeice (2006) provide examples of 10 and 30 

story CCW designs, respectively, carried out using the proposed PDB methodology. In both 

cases, structures that may not be “designable” using SBD methods are easily designed and 

shown to perform very well.  

2.1.4 Dynamic Behavior of Coupled Systems  

As mentioned earlier, the behavior of CCW structures make these structures especially attractive 

in earthquake-resistant construction. The desired behavior of CCWs results in the coupling 

beams serving to dissipate energy over the entire height of the structure. Therefore, it is 

important to consider the damping and stiffness properties of the beam when completing a 

design.  Depending on the degree of coupling, the beams help reduce story level wall rotations 

and deflections, which greatly reduces the magnitude of the oscillations that an un-coupled wall 

structure would otherwise experience. Additionally, developing interaction between wall piers 

having different dynamic properties can result in improved behavior over the individual systems 

and over that of the sum of individual systems. 

The effects of coupling two structures having different dynamic characteristics can be 

seen from the results of a study reported by Minami et al. (2004). In this study, two SDOF portal 

frame structures were assembled each consisting of single large masses supported on four 

columns as shown in Figure 2.2. Several mass and stiffness combinations were modeled. The 

structures were connected at the mass level by a vertically oriented steel plate, with one structure 

fixed at either end of the plate. By careful selection of the plate dimensions (stiffness), different 
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hysteretic damping properties were achieved. The structure was then tested on a shaking table, 

which was programmed with scaled seismic ground motion records from the 1940 El Centro (NS 

component) and the 1995 JMA-Kobe (NS) earthquakes.  

Different relationships between the structures were tested, including the ratio of natural 

periods of the SDOF portal frames as defined by their respective stiffnesses and masses. The 

results of this experimental study were clear: the coupling of two structural components greatly 

reduces the deflections in the time history plots of the structures. Additionally, and most 

importantly, the degree of deflection control may be optimized based on structural and dynamic 

properties of the system. When coupled, the structures share stiffness and interact with each 

other, resulting in a greater benefit than if they were simply to behave as the sum of their 

components. It can be seen in Figure 2.3 (showing El Centro response) that although the initial 

displacements are similar to the un-coupled response, the oscillations of the structures as time 

advances diminishes to smaller levels. This behavior results in a much smaller distance traveled 

by each story level for the same period of time, reducing apparent accelerations and expected 

structural damage. The shaking experienced by the structure is less intense and therefore also 

less detrimental to the post-earthquake condition of the building.  

The experiment described is applicable to CCW structures, as each structure may 

represent one wall. In this representation, a combination of coupling beam properties for a given 

wall layout (geometry and properties) may be optimized to provide a significantly improved 

response to earthquake ground motion. In the more complex problem, the wall properties and 

beam properties may be theoretically optimized to minimize seismic effects.  The Minami 

experiment linked two single degree of freedom (SDOF) structures to simplify the dynamic 

analysis. This concept will be used in the parametric study (Chapter 3) to study the optimization 

of coupling beams for given combinations of wall piers, thus demonstrating the parallel of this 

experiment to CCW structures. 

2.2 DERIVATION OF EQUIVALENT SDOF SYSTEM 

The first step to modeling a structure is to simplify it to a level that can easily be analyzed. For 

the present study, it is required to model multi-degree of freedom (MDOF) wall piers as 
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equivalent single degree of freedom (SDOF) idealizations. When modeled as an equivalent 

SDOF system, the wall piers of the structure are represented by beam-column members that do 

not have mass, but have the geometric and mechanical properties (cross sectional area, modulus 

of elasticity, and moment of inertia) resulting in the column having the appropriate equivalent 

SDOF stiffness. The equivalent SDOF mass is lumped at the top of these beam-columns 

resulting in an idealized inverted pendulum.  

 The equivalent SDOF system may be defined in a variety of ways. For the application 

that is the subject of this work, it is desired to obtain an equivalent SDOF mass for the original 

MDOF system. In order to investigate the effects of coupling the MDOF system, it is necessary 

to locate the equivalent SDOF mass at a particular location of interest. In this study, the 

equivalent SDOF mass will be located at the roof level of the original MDOF structure. For other 

applications – for instance the optimization of an outrigger structure located at another discrete 

point along the structure’s height – it may be desired to assess the equivalent SDOF mass at 

another location. Once the equivalent SDOF mass is determined, the equivalent SDOF stiffness 

is calculated. Seto et al. (1987) present a simple “eigenvector method” of generically establishing 

the equivalent SDOF mass at any DOF of an MDOF system. This method is outlined below.  

The eigenvector method starts with a known MDOF system. The symmetric stiffness 

matrix is assembled in the conventional manner and takes the form: 
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K     (2.2) 

Where kij is the stiffness coefficient equal to the restoring force generated at DOF i due to a unit 

displacement at DOF j, while holding all other DOF’s fixed. For a cantilever wall MDOF 

assumed to have a single DOF located at each floor, K is a symmetric matrix having entries only 

on the main diagonal and in the locations immediate adjacent the main diagonal. All other entries 

are zero. Additionally, if the wall is modeled as a single uniform flexural element, the lateral 

stiffness associated with each story is: 

3

12
h
EIk =       (2.3) 



where E and I are the wall modulus and moment of inertia, respectively and h is the story height. 

The lateral stiffness may be adjusted to account for the presence of shear if required, although 

this is not done in the present study. Therefore for the case of a uniform cantilever wall the 

stiffness matrix becomes (DOFs numbered from 1 at 1st floor and increase to roof in this case): 
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 For an MDOF cantilever wall pier, masses are lumped at each story and represent the 

entire story mass tributary to the wall (mj). The diagonal mass matrix is thus: 
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 The importance of finding the mass and stiffness matrices lies in the application of 

D’Alembert’s principle of dynamic equilibrium. This principle is founded on Newton’s second 

law of motion: for a constant mass, the force applied to a system is equal to the product of the 

mass and the acceleration of the mass (Tedesco, 1999). The corresponding equation of motion 

can be written as: 

)(txxx FKCM =⋅+⋅+⋅ &&&     (2.6) 

where F(t) is the dynamic forcing function and x is the resulting displacement as a function of 

time (x(t)). Thus  is the system velocity and  is the system acceleration. F and x are column 

vectors with entries corresponding to the response at each DOF. When no force is applied, and 

no damping is provided, equation 2.5 can be re-written as: 

x& x&&

0KM =⋅+⋅ xx&&      (2.7) 

Assuming a general free vibration response, the displacement vector is written as: 

))sincos()( tBtAtx nnnnn ωωφ +=    (2.8) 

Where ωn is the modal frequency of the structure and φn is column vector representing the 

corresponding mode shape. Substituting equation 2.8 into 2.7 and rearranging terms results in: 

( ) 0KM =++− )sincos(2 tBtA nnnnnnn ωωφφω  (2.9) 
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Neglecting the right-hand term in Equation 2.9 which, when equal to zero represents a trivial 

solution, Equation 2.9 may be rewritten: 

( ) 0MK =− nn φω 2      (2.10) 

Again, setting φn = 0 represents a trivial solution. The useful solution results by solving the 

eigenvalue problem represented by: 

02 =− MK nω      (2.11) 

The roots of equation 2.11 are the system eigenvalues. The eigenvalues, ωn
2, are then substituted 

back into equation 2.10 to determine the eigenvectors, φn. By substituting all of the eigenvalues 

into equation 2.10, all eigenvectors are found, and when they are combined together, they form 

the modal matrix (Tedesco, 1999). The eigenvectors in the modal matrix represent the normal 

modes of vibration for the structure. Typically, the behavior of relatively uniform building 

structures is dominated by their first vibration mode shape.  

The general eigenvectors are normalized by the value corresponding to the DOF of 

interest. In most structural applications, the eigenvectors are normalized by a control DOF – 

typically the roof DOF – or by the maximum value in the eigenvector. The normalization, 

however, may be against any DOF of interest (Seto, 1987). In the present work, the 

normalization is made using the roof DOF. Thus the normalized eigenvectors become: 
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In equation 2.12, the subscript values refer to the DOF or story number (hence 1 is at the 

bottom). 

The equivalent mass of the equivalent SDOF system corresponding to each fundamental 

mode is found as the product of the transpose of the normalized eigenvector with the mass matrix 

and the normalized eigenvector (Seto, 1987): 

n
T
nnM φφ M=      (2.13) 
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Finally, the equivalent SDOF stiffness is determined by substituting Mn and the 

eigenvalue ωn
2 into equation 2.10: 

2
nnn MK ω=       (2.14) 

To write the eigenvalues in a form having a physical meaning for the structure, the 

frequency (in Hz) is determined as: πω 2n  and the period as: nT ωπ2= . 

For the present study, only the fundamental natural frequency is considered, thus only the 

first mode shape is used and n =1 throughout the preceding equations. These calculated dynamic 

properties constitute the relevant components of the equivalent SDOF system corresponding to 

the roof DOF. As alluded to above, when two parallel walls are to be connected as a coupled 

core wall system, it is desirable to simplify each wall to its own equivalent SDOF system. Once 

this operation has been carried out, the next step of finding an optimal, yet practical, coupling 

system (stiffness and damping) can be pursued using Fixed Point Theory. 

2.3 FIXED POINT THEORY 

Fixed Point Theory (also know as the Theory of P,Q) is used to optimize interaction stiffness and 

damping properties of two structures that are in close proximity to each other (Iwanami et al., 

1996). Traditionally, this method is used to optimize damping properties for problems of 

dynamic isolation. In such an application, the two structures considered are the supporting 

structure (floor or entire building) and the structure to be isolated (often machinery). The two 

structures typically have exceptionally different dynamic properties in this case. The objective of 

applying fixed point theory in such a case is to determine the required damping to minimize 

transmissibility of vibrations between structures. Other applications include optimizing passive 

damping systems for structural control where the damping system is placed between two 

components of the structure (such as dampers for cable stays). In most applications, the stiffness 

of the damping system is negligible. Iwanami et al. (1996) however demonstrate that fixed point 

theory may be used to determine an optimal combination of damping and stiffness. This 

approach is applied in the present work. 

 15 



The premise of the current work is that coupling beams in CCWs provide both stiffness 

and damping and therefore affect the transmissibility of ground motions through coupled wall 

piers. The individual wall piers, in this case, represent the two structures for which fixed point 

theory is applied to determine optimal coupling beam stiffness and damping properties. The 

specific application will be discussed further in Chapter 3.  

2.3.1 Transmissibility  

Transmissibility in the present context is defined simply as the ratio of structural lateral 

deflection to that of the input horizontal ground motion: 

motiongroundstructureT δδ=    (2.15) 

In the present work, only unidirectional horizontal ground motion is considered. With the 

exception of extremely stiff building structures (single story masonry, for instance), T > 1. This 

indicates that ground motion is amplified by the structure. Thus a valid performance objective is 

to minimize this transmissibility. 

2.3.2 Fixed Point Theory  

In this work the following idealized model is considered: two wall piers modeled as equivalent 

SDOF systems connected to each other with damping and spring elements. The connecting 

elements allow the pier stiffnesses to help each other decrease transmissibility of the overall 

structure due to movement induced by a horizontal ground motion. The transmissibility is reliant 

upon the stiffness and damping values of the connecting elements. These elements can be 

optimized for a given pair of equivalent SDOF structures. This system is shown schematically as 

a 2DOF system in Figure 2.4. The system consists of two SDOF systems linked at the top with a 

dashpot and spring in parallel.  

D’Alembert’s principle of dynamic equilibrium is applied to determine the following 

equations of motion for each mass (Iwanami et al., 1996). 

( ) ( ) ( )12121111 xxcxxkxukxm &&&& −⋅+−⋅+−⋅=⋅    (2.16) 

( ) ( ) ( )21212222 xxcxxkxukxm &&&& −⋅+−⋅+−⋅=⋅    (2.17) 
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In equations 2.16 and 2.17, u is the ground displacement, k is the spring stiffness, and c is the 

dashpot damping. Values with subscripts refer to properties of wall piers 1 and 2 as shown in 

Figure 2.4. If the system is subject to harmonic vibration, two equations can be developed for the 

transmissibility of the two masses. Transmissibility is the ratio of the displacement at the top of 

the structure, x(t), to the displacement at the base of the structure: the input ground motion, u(t). 

These equations were derived by Iwanami et al. (1996), and are functions of the structures’ 

masses and stiffnesses, as well as the spring stiffness, dashpot damping, and natural frequency of 

the input vibration: 
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Where: ω = frequency of the forcing function; 

 ωi = frequency of wall pier i = 1 or i = 2: iii mk=ω ; 

η = the ratio of the spring stiffness to the stiffness of wall 1 (also known as the fixed point 

stiffness ratio): η = k/k1; 

µ = the mass ratio of the wall piers: µ = m2/m1; and, 

ξ = damping ratio: 222 kmc=ξ  

When the transmissibility equations for each wall are alternately expressed with damping 

(ξ) equal to zero and ξ equal to infinity, the results are three curves as shown schematically in 

Figure 2.5. When ξ = ∞, the connecting element becomes essentially rigid, creating a SDOF 

system in which the masses displace by the same amount, and thus the transmissibility of each 

wall is equal. The curves shown in Figure 2.5 have six intersection points. The two points of 



wall is equal. The curves shown in Figure 2.5 have six intersection points. The two points of 

interest, labeled “P” and “Q”, are shown in Figure 2.5. These interstices are those that 

correspond to the physical reality that when ξ = ∞, the transmissibility of each wall must be 

equal.  

When the equations given by 2.18 and 2.19 for the transmissibility of each wall pier are 

plotted on the same graph, it is apparent that their maximum values correspond to points P and 

Q, respectively (see Figure 2.5). As shown in Figure 2.6, after manipulation of the ratios η, µ, 

and γ, it is observed that the maximum transmissibility values always occurs near points P and Q, 

and that these values are different depending on the aforementioned ratios (Iwanami et al., 1996). 

The necessary interaction between parameters in order to optimize the problem is also 

demonstrated in Figure 2.6.  

The optimum transmissibility of the system is achieved when the transmissibility values 

of P and Q are equal (i.e.: when plotted, they fall on the same horizontal line in the plot). The 

optimum values of η and ξ are found through trial and error by selecting values for µ and γ, and 

plotting the transmissibility equations to determine how close the transmissibility values at P and 

Q are to equality. The ratios are varied until the transmissibility values at P and Q are nearly 

equal, meaning the system is optimized. Iwanami et al. (1996) suggest that this optimization is 

achieved when the transmissibility values are within 3% of each other. This represents the 

optimum set of ratios of mass, natural frequency, stiffening, and damping for the system. 

It is desirable to bypass this trial and error approach for a more efficient solution of the 

problem through the use of a closed form solution. A closed form solution is also practical in the 

case of the CCW problem considered, since the ratios µ and γ are defined by the problem and 

may not be varied, resulting in a solution having only two unknowns: η and ξ. It will be further 

proposed in subsequent chapters that a structural engineering problem such as a CCW likely has 

a very narrow practical range of values for the damping coefficient, ξ, and a broader (although 

still limited) range of practical values for the coupling beam stiffness, k. Thus the problem may 

not be truly optimized, but optimized based on a set of fixed input values. In such a case a closed 

form solution is practical. 

Such a closed from solution has been proposed by Richardson (2003). In this approach, 

the fixed point stiffness ratio, η, is found, followed by the damping values associated with points 

P and Q (ξA and ξB respectively). The optimized damping ratio is taken as the average of these 
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damping values. Critical aspects of the closed form solution are presented through its use in 

Chapter 3. The complete closed form solution (in MathCad format) is presented in Appendix A 

in support of the parametric study described in Chapter 3. It is critical to note that in the 

application of the closed form solution the wall designations (1 and 2) must be selected such that 

ω2/ω1 > 1.0.  
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Figure 2.1 Distribution of wall pier forces for coupled and uncoupled structures 
(Stafford-Smith and Coull, 1991) 

 

 

 

 
Figure 2.2 Coupled SDOF structures and two-dimensional idealization 

(Minami et al, 2004) 
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Figure 2.3 Effect of coupling on deflection time histories of coupled SDOF structures 
(Minami et al, 2004) 

 
 
 
 
 
 
 

 
 

Figure 2.4 Idealized 2DOF system for application of Fixed Point Theory 
(Iwanami et al, 1996) 
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Figure 2.5 Schematic representation of transmissibility vs. structural frequency curves 
(after Iwanami et al., 1996). 

 
 

frequency

frequency

frequency

frequency

Tr
an

sm
is

si
bi

lit
y,

 X
/U

Tr
an

sm
is

si
bi

lit
y,

 X
/U

Tr
an

sm
is

si
bi

lit
y,

 X
/U

Tr
an

sm
is

si
bi

lit
y,

 X
/U

1000

100

10

1

0.1

1000

100

10

1

0.1

1000

100

10

1

0.1

1000

100

10

1

0.1

1

1

1

1

10

10

10

10

100

100

100

100

X  ( =0)1 ξ X  ( =0)2 ξ

X =X  ( = )1 2 ξ ∞

P

P

P

P

Q

Q

Q

Q

µ
γ
η
ξ

 = 0.50
 = 4.00
 = 0.80
 = 0.38

µ
γ
η
ξ

 = 0.50
 = 2.00
 = 0.80
 = 0.38

µ
γ
η
ξ

 = 0.50
 = 4.00
 = 2.00
 = 0.38

µ
γ
η
ξ

 = 0.75
 = 4.00
 = 0.80
 = 0.38

 
 

Figure 2.6 Effect of varying µ, η, and γ on transmissibility curves. 
Upper left plot is only plot having optimized values (after Iwanami et al., 1996) 
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3.0  PARAMETRIC APPLICATION OF FIXED POINT THEORY 

The objective of this work is to present a preliminary exploration of the use of Fixed Point 

Theory as a means of optimizing coupled core wall (CCW) behavior. As described in Chapter 2, 

simplified closed form solutions will be undertaken requiring a number of generalizations. 

Additionally, it is not suggested in this work that the coupled wall geometries presented are 

representative of viable building geometries; they are however based on geometries used in a 

previous parametric study of CCW behavior (Harries et al. 2004a). 

In previous analytical studies, the individual wall piers of a CCW system are assumed to 

have the same geometry. This simplifies analysis and renders the optimization of transmissibility 

represented by the fixed point approach trivial since both walls piers have the same dynamic 

properties to begin with. The methodology examined in the present work require individual wall 

piers of a CCW to have different dynamic properties. 

3.1 PROTOTYPE STRUCTURES 

Prototype structures having wall pier geometries previously identified by Harries et al (2004a) 

are used. Seven pier geometries (labeled A through G) are used – these are shown schematically 

in Figure 3.1 and the dimensions used are presented in Table 3.1. In all cases, wall thickness is 

assumed to be uniform at 0.760 m. The individual wall piers are paired into two pier CCWs – 

each pier matched with each different pier – resulting in 21 analyses for each case (see below). 

Again, it is noted that matching a wall pier with itself (A-A, say) results in a trivial case as far as 

the optimization of transmissibility is concerned. An example of matched wall piers D-E is 

shown in Figure 3.2. The coupling beam length and cross sectional dimensions are not relevant 

at this stage in the study as only the dynamic properties of the individual piers are considered. 
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Wall dimensions are provided largely to lend credibility to the selection of dynamic properties 

for the parametric study. Only two-dimensional loading in the coupled direction (left-to-right in 

Figure 3.2) is considered in this preliminary study; thus torsional effects and uncoupled wall 

behavior in the transverse direction are not considered. 

In the initial parametric study, four cases are considered involving two building heights 

and the use of uncracked and cracked section properties. Details of the cases are provided in 

Table 3.2. Twelve (cases 1 and 3) and twenty-four story (cases 2 and 4) versions of each CCW 

arrangement are considered. Story heights are maintained constant in all cases at 3.60 m. One set 

of cases (1 and 2) uses the wall piers’ gross section properties, EIg, throughout the height of the 

structure. Cracked section properties recommended by clause 10.11.1 of ACI 318 (2005) are 

used in cases 3 and 4. The cracked section properties assume a flexural stiffness of 0.35EIg in the 

lower floors corresponding to the expected hinging region - 2 stories in the 12 story structure and 

3 stories in the 24 story structure – and 0.70EIg throughout the remainder of the height. These 

cracked section properties are consistent with common west coast practice in preliminary CCW 

sizing and design. The value of E = 28.5 GPa is assumed in all analyses. 

In all cases, floor weights are assumed to be 10,000 Mg. These are distributed to the wall 

piers in proportion to the wall pier area and are thus used in determining the degree of freedom 

(DOF) masses for each wall pier at each floor 

3.2 PARAMETRIC ANALYSIS 

The parametric analysis was carried out using an integration of MathCad and Excel worksheets. 

The complete MathCad worksheet showing the entire procedure discussed below is provided in 

Appendix A. The following sections follow the step-by-step procedure used to arrive at the 

optimized transmissibility parameters for each pair of walls in each case. In all, 84 separate 

analyses were conducted. The results of these are presented in Appendix B. For clarity, the 

following step-by-step summary includes values determined for twelve story wall piers D and E, 

each having cracked section properties (Trial #3-16 in Appendix B). The calculation of the 

optimal conditions for this combination is desirable since it will be used for the linear dynamic 

time history analysis in Chapter 4. At the beginning of every case, the wall piers are arbitrarily 
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designated “1” and “2” in the MathCad worksheet. In the third step, these designations are 

checked and may be reversed to satisfy the requirement that the ratio of wall frequencies, ω2/ω1 

> 1.0. 

3.2.1 Step 1: Assembling MDOF Model of Each Wall Pier 

For Trial #3-16, Wall D is designated as “1” and Wall E is “2”. Thus: 

A1 = 11.005 m2  and  I1g = 26.5653 m4     ;    A2 = 7.965 m2  and  I2g = 6.0291 m4 

The value of E = 28.5 x 109 N/m2. The building is twelve stories high, with story heights 

of 3.60 m, and the mass at each story level is assumed to be 10,000Mg. The story mass is 

apportioned to each wall as the ratio of the wall areas. Thus the DOF masses of each wall 

become:  

Total
x

x m
AA

A
m ⋅

+
=

21
 for x representing walls 1 and 2.     (3.1) 

The values of m1 and m2 are thus found to be 5.801 x 106 kg and 4.199 x 106 kg, 

respectively. The 12 x 12 MDOF mass matrices are thus assembled for walls 1 and 2: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mx

mx
mx

x

0
......

0
0...0

M  for x representing walls 1 and 2. 

The lateral stiffness of each story is given as: 

 3

12
h
EI

k x
x =  for x representing walls 1 and 2.     (3.2) 

The values of k1 and k2 are thus found to be 1.947 x 1011 N/m and 4.419 x 1010 N/m, 

respectively. The 12 x 12 MDOF stiffness matrices are thus assembled for walls 1 and 2: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

−−
−

=

kxkx
kx

kxkx
kxkxkx

kxkxkx
kxkx

x

40.170.0...000
70.0...............
......40.170.000
0...70.040.170.00
0...070.005.135.0
0...0035.070.0

K   

with x representing walls 1 and 2. 
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The coefficients 0.35 and 0.70 in the stiffness matrix correspond to the cracked material 

properties. In these formulations, DOF 1 is the first floor lateral deflection and DOF 12 is the 

roof lateral deflection of the 12 DOF cantilever column representation of the wall pier. 

3.2.2 Step 2: Generate Equivalent SDOF of each wall pier 

Each 12 DOF cantilever wall is reduced to an equivalent SDOF system as described in Chapter 2 

by solving the eigenvalue problem represented in Equation 2.10: 

( ) 0MK =− nn φω 2         (3.3) 

The lowest or fundamental eigenvalue, ω2, is of interest in generating the equivalent 

SDOF system. For wall 1, the fundamental eigenvalue, ω1
2 = 279.75. From this value, the 

fundamental or first mode eigenvector, φ1, is found and normalized by the DOF of interest; in 

this case the roof DOF (DOF 12). The normalized fundamental eigenvector for wall 1 is thus 

determined to be: 
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...

...
2
1

11

DOF

DOF
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φ        (3.4) 

From the eigenvector (Equation 3.4), the equivalent SDOF mass (or modal mass) is 

determined as: 

 { } { } kgxem T 7
11 10126.4111 == φφ M1       (3.5a) 
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Similarly, for wall 2: 

 { } { } kgxem T 7
11 10986.2222 == φφ M2      (3.5b) 

The natural frequency of each wall pier is calculated from the eigenvalues: 

 sec/726.1675.2792
11 radians=== ωω ; and,    (3.6a) 

 sec/366.92
22 radians== ωω       (3.6b) 

The final step of developing a SDOF system from an MDOF system is to calculate the 

equivalent SDOF stiffness for both walls: 

 ( ) mNxemek /10154.111 102
1 == ω ; and,     (3.7a) 

 ( ) mNxemek /10619.222 92
2 == ω       (3.7b) 

Thus the equivalent SDOF systems having equivalent mass, em, and equivalent stiffness, 

ek, are determined. Using these SDOF systems, fixed point theory is applied to optimize 

transmissibility.  

3.2.3 Step 3: Apply Closed Form Solutions to Fixed Point Theory 

The closed form solution for optimization of transmissibility developed by Richardson (2003) 

requires that ω1 < ω2. This step is included in the MathCad worksheet presented in Appendix A. 

Thus in the example developed above, the designations of wall 1 and wall 2 must be reversed; 

therefore from this step onward: 

 Wall E is wall 1 and wall D is wall 2; 

ω1 = 9.366 rad/s   and   ω2 = 16.726 rad/s; 

em1 = 2.986 x 107 kg   and   em2 = 4.126 x 107 kg; and, 

ek1 = 2.619 x 109 N/m   and   ek2 = 1.154 x 1010 N/m. 

The solution continues establishing the ratios between fundamental properties of the 

individual SDOF systems: 

mass ratio = µ = em2/em1 = 1.382       (3.8) 

frequency ratio = γ = ω2/ω1 = 1.786 (≥ 1.0)      (3.9) 
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The fixed point stiffness ratio, η = k/ek1, where k is the optimized coupling beam 

stiffness, remains to be determined. The fixed point stiffness ratio may be determined as: 

 η = U/L         (3.10) 

where, 

( )[ ]
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For the example case, substituting all the variables into these equations yields:  

U = 1.619 x 1012; L = 4.283 x 1012; and, g = 1.826 x 1014 

Thus η = U/L = 0.378. 

Next, the frequencies corresponding to the points P and Q, ωP and ωQ respectively, are 

determined: 
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Substituting all the variables into equations 3.14 through 3.16 yields: 

 SP= 2.831x1010; ωPA = 2.857x105; and, ωP = 12.301 radians/sec. 
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Similarly: 
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Substituting all the variables into equations 3.17 through 3.19 yields: 

SQ= 3.938x1010; ωQA = 7.782x105; and, ωQ = 15.714 radians/sec. 

The optimal fixed point damping ratio, ξ, is reached when the transmissibility curves are 

nearly at a maximum at points P and Q, and the transmissibility values of P and Q are nearly 

equal in magnitude (Iwanami et al. 1996). Mathematically, recalling equations 2.18 and 2.19, the 

former condition is satisfied when:  

0)(1 =
ω
ω

d
dX P    and   0

)(2 =
ω

ω

d
dX Q        (3.20) 

Substituting equations 3.14 and 3.17, the solution to equations 3.20 yield two quadratic 

equations: 

01
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4
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The solutions to equations 3.21 and 3.22 are: 
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The definitions of the constants a1, b1, c1, a2, b2, and c2 are given in Appendix A. As 

expected, the damping ratios are very close to being equal. The fixed point damping ratio for the 

coupling beam is found by taking the average of ξ1 and ξ2: 

125.0
2

21 =
+

=
ξξ

ξ          (3.25) 

Finally, the fixed point stiffness is calculated from η as: 

mNxkk /10901.91 8=⋅=η         (3.26) 

Tabulated values of all 21 wall pairs for each of the four cases considered are provided in 

Appendix B. 

3.3 PARAMETRIC STUDY RESULTS 

Prior to discussing any results, it is important to note that when the natural frequency ratio, γ, 

approaches 1.0, ω1 approaches equality with ω2. This condition causes equation 3.11 to approach 

zero, resulting in the calculated fixed point stiffness ratio (equation 3.10) to also approach zero. 

This represents the trivial case where two identical SDOF systems will have continued identical 

dynamic behavior (and thus equal transmissibility) regardless of the level of coupling and/or 

damping provided. Additionally, in the closed form solution, when the product of mass and 

frequency ratios, µγ, falls below 1.0, the optimization process yields negative stiffness values. 

Although mathematically correct, such results are not physically meaningful – indicating a 

negative stiffness is required for optimization. In essence, coupling the wall piers in this case 

results in increased transmissibility compared to the uncoupled walls. Thus wall combinations 

with the product of mass ratio to natural frequency ratio at or below 1.0 are neglected in all 

further discussion. Trial numbers 15 and 19 in all four cases fall into this category, as shown in 

Appendix B. 

The parametric study results show that there is little difference between the four cases 

considered. Initially, this was troubling but upon further consideration, it is a reflection of the 

fact that the formulation of fixed point theory relies mostly on ratios of dynamic properties 

between two equivalent SDOF systems. When the number of floors change for a particular wall 

combination, the resulting equivalent SDOF mass and stiffness change proportionally; thus the 
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mass, frequency, fixed point damping, and fixed point stiffness ratios remain essentially 

unchanged. Similarly, when cracked sections are introduced, the equivalent SDOF stiffness and 

mass values change, reflecting the lower frequency. However, since both wall piers are 

considered in the same manner, the resulting ratios, again, remain virtually unchanged. Thus this 

approach is “normalized” to the ratio between wall pier dynamic properties. This observation 

may permit eventual generalization of the approach in a manner analogous to spectral analysis 

methods. 

As should be expected, regardless of ratios of properties, numeric values of optimized 

stiffness and damping are reduced when cracked concrete section properties are used. The 

resulting reductions are uniform for all structures considered and vary based on the structure 

height (number of stories) as shown in Table 3.3. The values in Table 3.3 show a more 

pronounced reduction in optimized properties for the 12 story case. This is a reflection of the 

proportionally greater (2 of 12 stories; rather than 3 of 24) extent of the assumed hinge region 

having a cracked stiffness of 0.35EIg. 

3.4 TWELVE STORY CCW WITH CRACKED WALLS (CASE 3) 

Based on the consistency of behavior described above, only the 12 story CCW having cracked 

section properties will be considered for the remainder of this discussion. 

Figures 3.3 and 3.4 show the optimized coupling stiffness and damping ratios, 

respectively, plotted against the frequency ratios. In order to verify the observed trends at lower 

frequency ratios than were considered in the database (approaching γ = 1), six artificial cases 

were calculated for γ = 1.05, 1.06, 1.07, 1.08, 1.09, and 1.10. These are indicated with a “∆” in 

the figures. It is clear from Figures 3.3 and 3.4 that as the frequency ratio grows – that is: the 

wall pier dynamic properties are less similar, that the optimized stiffness and damping increases.  

In practical applications, there are clearly limits to the damping and/or stiffness that can 

be developed between wall piers. Thus these plots, and the relationships they represent, give 

some indication of the “optimizability” of CCW systems. For example, at ultimate load levels, 

reinforced concrete beams may be expected to provide between 7% and 10% critical damping 

(Newmark and Hall, 1982). Thus the ability to optimize dynamic behavior would be limited to 
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walls having relatively similar dynamic properties; having a frequency ratio less than about γ = 

1.40. Similarly, the stiffness ratio is given as a ratio of the equivalent SDOF lateral stiffness of 

wall pier 1. Practical coupling beam stiffness may be assumed to be limited to fractional values 

of this stiffness. Thus, again a lower bound frequency ratio of for optimization may be assumed 

(in this case, perhaps γ = 1.65). Although optimization may not be practical outside of a range of 

parameters, improved transmissibility is still quite viable – the solution is simply not optimized. 

3.5 PROTOTYPE STRUCTURE FOR FURTHER STUDY 

A single prototype structure is selected for further study: Trial #3-16, matching wall piers D and 

E and using cracked section properties. The CCW plan for this prototype is shown in Figure 3.2 

and the case is highlighted in both Figures 3.3 and 3.4 with a surrounding “□”. The dynamic 

properties determined for this case are as follows: 

frequency of wall 1 (E):  ω1 = 1.491 Hz 

frequency of wall 2 (D):  ω2 = 2.662 Hz 

 frequency ratio:   γ = 1.79 

 optimized damping ratio:  ξ = 0.125 

 optimized stiffness ratio:  η = 0.378 

The optimized fixed point curves for this prototype structure are shown in Figure 3.5. The 

minimized transmissibility for this optimized case is: 

 Wall 1 (E):   X1/U = 3.73 

 Wall 2 (D):   X2/U = 4.06 

The transmissibility of Wall 2 is slightly greater. Wall 2 is the stiffer wall (always the 

case using this closed form solution since γ > 1.0) and thus experiences proportionally less of a 

shift from its resonant frequency (the X2/U (ξ = 0) curve in Figure 3.5) to the point Q than wall 1 

does in shifting to point P. This observation is reflected in the following parametric sensitivity 

analysis. 
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3.5.1 Effect of damping and stiffness on transmissibility  

The damping ratio for the selected prototype, ξ = 0.125, is greater than may be practically 

achieved in a structure without mechanical damping devices. Thus it is instructive to investigate 

the effect of varying the damping provided on the transmissibility of each wall. Similarly the 

stiffness ratio may not be optimized or may vary as the structure undergoes seismic excitation. 

Thus, again it is instructive to vary the stiffness ratio and investigate the effect on 

transmissibility. Figures 3.6, 3.7 and 3.8 show the transmissibilities determined by varying the 

damping and stiffness parameters of the prototype structure as follows: 

 damping: 0.00 < ξ < 0.20 (calculated at increments of 0.01)  

 stiffness: 0.00 < η < 1.00 (calculated at increments of 0.05) 

Figure 3.6 shows the transmissibility determined for each wall pier, E and D, 

respectively, for varying damping and stiffness. These values are X1/U and X2/U, respectively. 

Figure 3.8 shows the average transmissibility value for the CCW system. In Figure 3.8, it is clear 

that the average transmissibility is minimized (average of X1/U and X2/U = 3.9) at ξ = 0.125 and 

η = 0.378 as indicated by the +. This point is repeated in Figure 3.6. The optimal transmissibility 

of each wall pier (Figure 3.6) is a) lower than the optimized value for the CCW system; and b) 

located at different damping and stiffness ratios. For Wall D the optimal transmissibility is 

approximately 3.02 and occurs at a damping ratio, ξ = 0.09 and essentially zero stiffness. 

Similarly, the optimal transmissibility for Wall E is also approximately 3.08 and occurs at a 

damping ratio, ξ = 0.12 and a nominal stiffness of η = 0.70 

 Figure 3.7 can be used to investigate the sensitivity of the transmissibility to variations in 

damping and stiffness. It is seen in Figure 3.7, for instance that while the optimal transmissibility 

is 3.9, the transmissibility remains below 5.0 over most of the range of stiffness values 

considered for damping values greater than ξ = 0.08. Such plots, may be normalized and used as 

design tools to initiate practical CCW system geometries 

Finally, Figure 3.8 shows the transmissibility relationships for the arbitrary, although 

thought to be structurally feasible, case of ξ = 0.050 and η = 0.250. In this case, the 

transmissibility becomes: 

 Wall 1 (E):   X1/U = 6.30 

 Wall 2 (D):   X2/U = 8.08 
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The curves shown in Figure 3.8 clearly indicate that the system is no longer optimized 

(points P and Q are not correctly determined) and that the behavior of each wall pier is closer to 

its original resonant condition; that is: the peaks of transmissibility curves lie very close to 

individual wall pier transmissibility curves (ξ = 0), and the peak of each curve no longer 

corresponds to the fixed points P and Q. As will be shown in Chapter 4, this trade-off between 

the optimal and the feasible coupling conditions will be further amplified by the linear dynamic 

analysis. 
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Table 3.1 Wall combinations for parametric study. 

 

Wall 

Wall Length, 
lw 
(m) 

Wall Width, 
bw 
(m) 

Gross Wall 
Area, A 

(m2) 

Gross Wall 
Inertia, I 

(m4) 
A 7.00 9.00 16.325 79.7880 
B 6.00 3.00 10.245 34.2875 
C 4.00 3.00 7.205 10.6519 
D 5.00 6.00 11.005 26.5653 
E 3.00 6.00 7.965 6.0291 
F 3.00 3.00 5.685 4.6059 
G 4.00 9.00 11.765 16.0905 

 
 

Table 3.2 Effective stiffnesses used for considered cases. 
 

Effective EIg * 

Case 

Number 
of 

Stories 
Affected 
Stories 

Reduced 
Stiffness 

Affected 
Stories 

Reduced 
Stiffness 

1 12 1.0 EIg

2 24 1.0 EIg

3 12 1-2 0.35 EIg 3-12 0.70 EIg

4 24 1-3 0.35 EIg 4-24 0.70 EIg

      
*Ref: ACI 318 - 02 Chapter 10.11.1 

 
 

Table 3.3 Ratio of optimized values determined from cracked sections analysis 
 to those determined for uncracked sections. 

 

Cracked / Uncracked Values 
# of 

Stories 
Coupling 
Stiffness 

Coupling 
Damping 

12 0.55 0.80 
24 0.60 0.82 
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Figure 3.1 Plan of Prototype Wall Pier 
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Figure 3.2 Example of Prototype CCW Plan – Walls D and E 
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Figure 3.3 Variation of optimized coupling stiffness ratio with frequency ratio. 
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Figure 3.4 Variation of optimized coupling damping ratio with frequency ratio. 
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Figure 3.5 Optimized transmissibility for prototype structure defined by Trial #3-16. 
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Figure 3.6 Transmissibility of individual wall piers E (top) and D (bottom) 
 over range of stiffness and damping. (Calculated optimized value for CCW D-E shown as +.) 
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Figure 3.7 Average transmissibility of wall piers D and E over range of stiffness and damping. 
(Calculated optimized value for CCW D-E shown as +.) 
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Figure 3.8 Transmissibility for prototype structure having ξ = 0.050 and η = 0.250. 
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4.0   LINEAR TIME HISTORY ANALYSES 

To further examine the behavior of the optimized system, a 2DOF model representing Trial # 3-

16 (described in Chapter 3) was subject to a linear time-history (LTH) analysis. Program 

RUAUMOKO (Carr, 2000) was used for this analysis. RUAUMOKO was selected largely for its 

ease of programming and extensive library of nonlinear hysteretic behaviors available for future 

analytical study associated with this preliminary research study. The 2DOF system was modeled 

as shown in Figure 4.1, and was assumed to remain elastic. The input ground motion used was 

that recorded from the 1940 El Centro earthquake (north-south direction) shown in Figure 4.2. 

For comparison, three additional coupling scenarios were modeled and subjected to the 

earthquake simulation: the arbitrary coupling described in Chapter 3.5.1 (Figure 4.1); a scenario 

with no coupling; and a scenario having rigid coupling.  Finally, in order to investigate the effect 

of a greater natural frequency ratio, the same scenarios were carried out from the wall 

combination of Trial #3-4 (Wall E to Wall A, shown in Figure 4.5). 

4.1 TWO-DOF SYSTEM MODELING 

For both wall combinations, the individual wall piers were simplified to equivalent SDOF 

systems, as discussed in Chapter 3. The properties of these SDOF systems are tabulated in 

Appendix B and shown in Figures 4.1 and 4.5. For modeling, the coupled 2DOF system was set 

up using unit column heights and lateral separation. This was done for simplicity of modeling but 

does result in artificial deflection and internal force values arising from the modeling. It is 

important to note that the deflections reported throughout this chapter are based on a building 

having unit (1 m) height and are not intended to be representative of a practical structure. The 

intent of this chapter is to draw comparisons between coupled systems and thus relative values 
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between models are relevant. All models were developed with the same artificial unit parameters 

and may thus be compared directly with each other. 

Beam elements were used to model the wall piers as sway columns. Since no vertical 

DOFs were considered, no axial load-moment interaction was considered (although 

RUAUMOKO is able to model this with ease). The wall piers were assumed to be concrete, and 

were assigned 5% “initial stiffness Rayleigh damping” (Carr, 2000). The required input values 

for the wall pier properties were as follows: 

E = 28.5 GPa 

E
khI
12

3

=             (4.1)  

where k is the equivalent SDOF wall pier stiffness determined by equation 3.7 (in this case 

reduced to account for cracking) and h = 1 m. The wall piers were assumed to be elastic elements 

for this study. The equivalent SDOF mass determined by equation 3.5 is lumped at the single 

lateral DOF at the top of each wall pier. 

 The tops of the columns were connected by a horizontal linear spring element having the 

spring stiffness calculated by equation 3.26, and a horizontal linear damping element (dashpot) 

having the damping value calculated by (see equation 2.19): 

 222 kmcd ⋅⋅⋅= ξ         (4.2) 

For each wall pair (E-D and E-A), four coupling scenarios were considered: 

1. Optimized:  using values obtained from the fixed point analysis (Chapter 3). 

2. Arbitrary:  using values of ξ = 0.050 and η = 0.250. 

3. No Coupling: the walls are modeled as individual SDOF having no coupling stiffness or 

damping. 

4. Rigid Link:  the walls are “pinned” together with a rigid link.  

  To achieve infinite damping and stiffness in the rigid coupling scenario, the 2DOFs 

(Figure 4.1) were constrained together, forcing the DOFs to displace the same distance. Table 4.1 

summarizes the damping and stiffness values used for all four scenarios for each wall 

combination.  

Each system was subject to the north-south direction ground motion record from the 1940 

El Centro earthquake (record obtained by Carr 2000). The twenty-second ground motion record 

is digitized at 0.01 seconds. The time-step used in the elastic analysis was 0.002 seconds 



although output is only recorded every 5 time steps, resulting in output also being digitized at 

0.01 seconds.  

4.2 WALL E - WALL D LINEAR TIME HISTORY RESULTS 

The modeling was carried out for the wall combination from Trial 3-16, and the resulting DOF 

displacement time histories are shown in Figure 4.3 for each coupling scenario. The maximum 

displacement for each scenario is tabulated in Table 4.2.  

Fixed point theory, described in Chapter 2, examines the effect of coupling a stiff 

structure to a more flexible structure. A coupling stiffness and damping that optimizes the 

response of the system as a whole is determined. The interaction between SDOF systems 

allowed by the coupling stiffness and damping results in the flexible structure becoming 

apparently stiffer at the expense of the stiffer structure. Thus the coupled system has an overall 

(or global) stiffness which lies between the individual wall pier stiffnesses and the sum of these 

stiffnesses. 

The expected response of the 2DOF system, therefore, is that the optimal coupling 

stiffness and damping will result in the optimal gain or loss of stiffness in the flexible or stiffer 

structures, respectively, resulting in improved global behavior. Thus it should be expected that 

the optimized structure exhibits improved global behavior over all other scenarios. Nonetheless, 

as clearly shown in Figure 4.6, the behavior of either individual pier is not optimized under the 

optimized condition: in particular the stiffer wall deflection may in fact increase as it interacts 

with the more flexible wall. In order to illustrate this effect, the overall or global behavior of 

each system will be represented by the simple average of the individual wall pier displacements. 

Additionally, in this discussion it is important to note that due the nature of the solution used (i.e: 

the requirement that ω2/ω1 > 1.0), Wall E, in both reported cases, is the more flexible pier.  

Figure 4.3 shows the wall pier responses of each scenario considered. Qualitative 

investigation of the displacement time histories indicates that increased coupling (in this case, 

progressing from none, to Arbitrary, to Optimal, to Rigid) results in the wall behaviors becoming 

increasingly in phase. The No Coupling plot in Figure 4.3 clearly shows each wall behaving 

individually and the resulting out-of-phase behavior expected as a result of the frequency ratio, γ.  
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Table 4.2 summarizes the peak displacements observed for each scenario in addition to 

the average displacement in each case. The behavior described above is clearly illustrated in 

Table 4.2 where Wall E is the more flexible wall. Using the No Coupling scenario as a baseline, 

the optimized displacement of Wall E has fallen (improved) 32.5% at the expense of an increase 

in Wall D displacement of only 0.4%. The average displacement has improved 24.7%. This latter 

value is the theoretical optimal improvement which may be affected by coupling these wall piers. 

In the Arbitrary scenario considered, both walls exhibit improved performance: 15.7% and 

19.5% for Walls E and D, respectively, although the global improvement is only 16.7% - less 

than the optimal value.  

It is instructive to also consider the Rigid Link scenario. In this scenario, the global 

stiffness is maximized as the sum of the individual wall pier stiffnesses. This maximization, 

however, does not result in an optimal behavior (global improvement of only 17.5%). More 

significantly, this scenario may result in a significant increase in the displacement of the stiffer 

wall as the loads are now shared in proportion to the wall stiffness. In the scenario shown in 

Table 4.2, Wall D displacement increases (reduced performance) 71.8%. 

As alluded to earlier in this work, choosing values of coupling stiffness and damping that 

are less than optimal will result in overall system response that is less than optimal. Additionally, 

the selection of optimal values may simply be unrealistic. For example, obtaining an optimal 

damping value of ξ = 0.125 is not possible for a typical structure without mechanical damping 

devices being used. A realistic value of damping for a well-detailed concrete wall structure is 

likely about ξ = 0.050 (Newmark and Hall, 1982) as is used in the Arbitrary scenario. The results 

shown in Figure 4.3 and Table 4.2 suggest that although an optimal performance may be 

achieved, there is a considerable range of parameters where “near optimal” performance may be 

achieved. In the case of walls D-E, it may be argued that there is not a significant difference in 

structural performance between the Optimal, Arbitrary, and Rigid Link scenarios, and all 

represent an improvement on the No Coupling scenario. 

In comparing the behavior of the Optimized and Arbitrary scenarios, there is a clear 

benefit to Wall E when the system is optimized over the arbitrary and uncoupled scenarios. It is 

shown that Wall D behavior is marginally worse in the optimal scenario Figure 4.4 shows this 

relationship between the optimal and arbitrary scenarios for Wall D and Wall E. This result is 

expected, since the coupling should benefit the overall system by improving the more flexible 
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response, at the expense of the stiffer wall. The arbitrary scenario represents a more “structurally 

realistic” alternative than the optimal case; its average response is an improvement over the 

uncoupled response, although there is still a large spike in Wall E displacement at approximately 

2.2 seconds into the earthquake. The specific dynamic behavior, in this case, is also a function of 

the input ground motion used. The El Centro record is known to have relatively uniform high 

spectral intensity at frequencies greater than 0.5 Hz – thus affecting the prototype structures 

considered relatively severely    

4.3 WALL E - WALL A LINEAR TIME HISTORY RESULTS 

The natural frequency ratio of γ = 1.79 for the Wall E to Wall D case (above) shows that the 

walls are not greatly dissimilar. In an attempt to show a greater disparity of wall performance 

across the scenarios, a second trial was chosen that would have very different responses to 

dynamic loading. Trial # 3-4 consists of Wall E coupled to Wall A (see Appendix B). The 

natural frequency ratio of this case, γ = 2.54, shows a more significant difference in the expected 

dynamic response of the individual wall piers. The four scenarios described above were run for 

this wall combination. The 2DOF model is shown in Figure 4.5. The coupling stiffness and 

damping values are tabulated in Table 4.1. As shown in Figure 4.6 and Table 4.3, the effect of 

increasing the frequency ratio of the structures resulted in a significant improvement in response 

for the flexible wall (Wall E) when the system was coupled. In this case, the stiffer wall (Wall A) 

behavior is also improved for the Optimized and Arbitrary scenarios. As expected (see above) 

the stiff wall behavior is worse for the Rigid Link scenario where the forces are now carried in a 

manner proportional to wall stiffness. Figure 4.7 shows the dramatic improvement in Wall E 

behavior and the relatively minor effect on Wall A behavior for the Optimal and Arbitrary 

scenarios. In the Optimal scenario, Wall E experiences a 77.4% decrease in displacement over 

the No Coupling scenario while Wall A experiences a 15.2% decrease in displacement. The 

average displacement improvement is 69.3% for the optimal case. 

 Despite the significant change in stiffness (a reduction of 85%) from the Optimal to 

Arbitrary scenarios, the overall performance improvement remained significant. From Table 4.3, 

the Wall E response was improved by 53.7%, while the Wall A response improved by 17.9%.  

 46 



This follows the results of the Wall E-Wall D case, as the stronger wall response improved more 

with this change in coupling. But, as in the previous combination, the average arbitrary response 

is less than that of the optimal; a 49% reduction vs. the optimal 69.3% reduction. This result, 

again illustrates the reasonable large range of parameters across which improved or near-optimal 

behavior may be achieved.  
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Table 4.1 Parameters used to model stiffness and damping links (see Figures 4.1 and 4.5). 
 

Wall Combination 
Wall E - Wall D Wall E - Wall A 

Coupling        
Scenario η k (N/m) ξ 

cd 
(Ns/m) η k (N/m) ξ 

cd 
(Ns/m) 

1 Optimized 0.378 9.90x108 0.125 1.73x108 1.674 4.38x109 0.112 2.88x108

2 Arbitrary 0.250 6.50x108 0.050 6.90x107 0.250 6.55x108 0.050 1.30x108

3 No Coupling 0 0 0 0 0 0 0 0 
4 Rigid Link ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

 
 

Table 4.2 Wall E to Wall D summary of peak lateral displacements for coupling scenarios. 
 

Coupling Scenario for γ = 1.79 

 Optimal Arbitrary 
No 

Coupling Rigid Link 
Wall E Displacement (cm) 5.14 6.42 7.62 4.14 
Wall D Displacement (cm) 2.42 1.94 2.41 4.14 
Average Displacement (cm) 3.78 4.18 5.02 4.14 

 
 

Table 4.3 Wall E to Wall A summary of peak lateral displacements for coupling scenarios. 
 

Coupling Scenario for γ = 2.54 

 Optimal Arbitrary 
No 

Coupling Rigid Link 
Wall E Displacement (cm) 1.72 3.52 7.60 1.48 
Wall A Displacement (cm) 0.95 0.92 1.12 1.48 
Average Displacement (cm) 1.34 2.22 4.36 1.48 

 

 48 



 
 

Figure 4.1 Schematic of Optimized (left) and Arbitrary (right) prototype structures 
 for wall combination from Trial # 3-16. 
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Figure 4.2 1940 El Centro (NS) ground motion record (obtained from Carr, 2000). 

 49 



-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14 16 18 2

Time (seconds)

D
is

pl
ac

em
en

t (
m

)

0

Wall E
Wall D

 

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

D
is

pl
ac

em
en

t (
m

)

Wall E
Wall D

 

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

D
is

pl
ac

em
en

t (
m

)

Wall E
Wall D

 

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

D
is

pl
ac

em
en

t (
m

)

Wall E
Wall D

 
 

Figure 4.3 Lateral displacement response of Trial # 3-16. 
Scenarios from the top down: Optimized, Arbitrary, No Coupling, Rigid Link. 
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Figure 4.4 Response of Optimized vs. Arbitrary scenarios for Trial 3-16. 
Wall E on top, Wall D on bottom. 
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Figure 4.5 Schematic of Optimized (left) and Arbitrary (right) prototype structures 
 for wall combination from Trial # 3-4. 
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Figure 4.6 Lateral displacement response of Trial # 3-4. 
Scenarios from the top down: Optimized, Arbitrary, No Coupling, Rigid Link. 
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Figure 4.7 Response of Optimized vs. Arbitrary scenarios for Trial 3-4. 
Wall E on top, Wall A on bottom. 
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5.0  CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

The objective of this work is to present a preliminary exploration of the use of Fixed Point 

Theory as a means of optimizing coupled core wall (CCW) behavior. The performance objective 

attained through optimization is the minimization of transmissibility of ground motion 

displacement. The principles discussed in Chapter 2 can be used to apply fixed point theory to 

coupled core walls, as shown in Chapters 3 and 4. By converting two MDOF wall pier structures 

into equivalent SDOF systems and applying the closed form solution for fixed point theory, 

optimal coupling stiffness and damping are determined for the resulting CCW. Specific wall 

combinations presented in Chapter 4 show a noted improvement in the Optimized and Arbitrary 

scenarios over the No Coupling scenario. Fixed point theory was clearly useful in finding the 

best improvement in the overall system response of the coupled walls. The optimal system 

behavior does not coincide with the optimal behavior of the individual wall piers. Although not 

discussed here, it should be clear from Chapter 3 and specifically Figure 3.6 that the same 

method may be employed to optimize a single wall pier behavior without regard for the optimal 

behavior of the other pier or system as a whole. Such an approach of component and/or system 

optimization is compatible with a performance-based design approach. Future research in this 

area will illuminate this approach further.  

Specific conclusions of this study are as follows: 

1. The approach used is only applicable to systems with component wall piers having 

different dynamic properties. When the natural frequency ratio, γ, approaches 1.0, ω1 

approaches equality with ω2. This condition causes equation 3.11 to approach zero, 

resulting in the calculated fixed point stiffness ratio (equation 3.10) to also approach zero. 

This represents the trivial case where two identical SDOF systems will have continued 

identical dynamic behavior (and thus equal transmissibility) regardless of the level of 

coupling and/or damping provided.  
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2. Related to the previous conclusion, when the product of mass and frequency ratios, µγ, 

falls below 1.0, the optimization process yields negative stiffness values. Although 

mathematically correct, such results are not physically meaningful – indicating a negative 

stiffness is required for optimization. In essence, coupling the wall piers in this case 

results in increased transmissibility compared to the uncoupled walls.  

3.  The parametric study results (Chapter 3) show that there is little difference between the 

four cases considered. This is a reflection of the fact that the formulation of fixed point 

theory relies mostly on ratios of dynamic properties between two equivalent SDOF 

systems. This observation may permit eventual generalization of the approach in a 

manner analogous to spectral analysis methods.  

4. Regardless of ratios of properties, numeric values of optimized stiffness and damping are 

reduced when cracked concrete section properties are used. This should be expected since 

the cracked structure is more flexible and thus requires less coupling to affect the same 

improvement in behavior. 

5. As the frequency ratio, γ, increases; that is: the wall pier dynamic properties are less 

similar, the optimized stiffness and damping values required for optimization increase. 

This observation may effectively impose an upper limit on the frequency ratio for 

practical structural systems since both damping and stiffness will have practical limits 

based on structural geometry.  

6. Regardless of the previous conclusions, although optimization may not be practical 

outside of a range of parameters, improved transmissibility is still quite viable – the 

solution is simply not optimized. Furthermore, it is shown that the range of reasonable 

transmissibility values or “near-optimal” behavior may encompass a relatively wide 

range of parameters.  

7. Fixed point theory examines the effect of coupling a stiff structure to a more flexible 

structure. A coupling stiffness and damping that optimizes the response of the system as a 

whole is determined. The interaction between SDOF systems allowed by the coupling 

stiffness and damping results in the flexible structure becoming apparently stiffer at the 

expense of the stiffer structure. Thus the coupled system has an overall (or global) 

stiffness which lies between the individual wall pier stiffnesses and the sum of these 

stiffnesses. 
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8. Although individual wall pier behavior is not optimized at the calculated optimal 

coupling stiffness and damping, the average behavior of the walls is. This optimal 

improvement in performance may also be used in a performance based designed scenario 

to assess the relative benefits of coupling wall structures. 

 

5.1 FUTURE RESEARCH DIRECTIONS 

This study was a pilot study initiated to develop an understanding of the optimization of dynamic 

properties of coupled wall structures. A fundamental assumption of all structural analysis of 

coupled walls is that the axial behavior of the coupling elements is essentially rigid. This is the 

rigid diaphragm assumption used in high-rise building analysis. Clearly, in reality, no diaphragm 

is rigid. In this study, a method for investigating the effects of a non-rigid coupling element is 

explored and shown to have a potentially significant effect on the dynamic performance of the 

structure and its component piers. To adequately place these results in context, it is necessary to 

understand the “real” stiffness and damping provided by coupling beams in CCW systems and 

even by slabs in uncoupled systems of wall piers.  

 The results of this study have suggested a number of applications within a performance-

based design concept where optimization of dynamic properties (or at least the understanding of 

what is necessary to optimize properties) could be used in design. Most significantly, the concept 

proposed by Harries et al. (2004b) where a CCW may have fundamentally different structural 

behavior at different hazard levels (see Section 2.1.3) may be supported by the present work. 

Expected changes in dynamic performance may be predicted in a manner similar to that explored 

in Chapter 4, for instance.  

 To properly extend this study the following steps should be taken:  

1. Expand the modeling from a pair of equivalent SDOF piers to a pair of MDOF wall piers. 

The distribution of coupling stiffness and damping must be investigated in this case to 

determine, the optimal vertical distribution. As a point of initiation, a distribution 

reflecting the first mode deflected shape may be appropriate. Continued studies may 

consider a “modal” approach to stiffness and damping distribution.  
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2. Extend the study to investigate nonlinear effects.  

3. Consider a wider variation of structural parameters such as building height. Considering 

piers of different height in the same structure may also be considered.  

 Finally, this study is essentially concerned with using interaction forces and damping to 

control the dynamic properties of a multi-structure system. The problem itself may be better 

applied to other structures besides CCWs. Bridge piers and slender structures may offer 

appropriate applications. 
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APPENDIX A 

EXAMPLE CALCULATION OF SDOF SYSTEM AND OPTIMIZATION PROCESS 
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mh 3.60:=

Story height:

N/m2E 28.5 109
⋅:=

28.5 GPa must be converted to N/m2:

m2A2 7.965:=

m2A1 11.005:=

From Table 3.1, designate Wall D to be wall 1 and designate Wall E as wall 2.

Areas:

floors 12=

floors if Case 1= Case 3=∨ 12, 24,( ):=

The number of floors is automatically assigned based on the case number.

Number of Floors:

Case 3:=

To simulate the 12 story structure with cracked walls, use Case 3.

Case 1: 12 Floors, no change to EI.
Case 2: 24 Floors, no change to EI.
Case 3: 12 Floors, modified EI for first 2 floors.
Case 4: 24 Floors, modified EI for first 3 floors. 

* Cases defined in Table 3.2.Case Numbers:

m4I2 6.0291:=

m4I1 26.5653:=

From Table 3.1, designate Wall D to be wall 1 and designate Wall E as wall 2.

Moments of Inertia:

Comparison of Wall D to Wall E at 12 Stories  With Cracked Walls
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M2

M2i i, m2←

i 1 floors..∈for

M2

:=M1

M1i i, m1←

i 1 floors..∈for

M1

:=

* Note: Mass matricies are diagonal.Assemble M and K matrices for both walls:

-This portion of the worksheet calculates equivalent SDOF mass of 
the MDOF system based on the eigenvector method described in 
Seto et al. (1987).

-The worksheet only handles shear buildings of any height having 
uniform mass and two regions of different stiffness.

-More complex structures require the M and K matrices to be 
assembled manually or by using an advanced algorithm.

First Mode Response Calculation for Wall 1 and Wall 2

N/mk2 4.419 1010
×=k2

12 E⋅ I2⋅

h3
⎛
⎜
⎝

⎞

⎠
:=

N/mk1 1.947 1011
×=k1

12 E⋅ I1⋅

h3
⎛
⎜
⎝

⎞

⎠
:=

The wall stiffness is calculated.  See Section 2.1.

The stiffness of each wall must also be calculated:

kgm2 4.199 106
×=m2

A2
A1 A2+

WTtot⋅ 1000⋅:=

kgm1 5.801 106
×=m1

A1
A1 A2+

WTtot⋅ 1000⋅:=

The total weight of the floor must be divided up between the two walls according to the cross 
sectional area distribution.  The weight is then converted into kilo-grams from mega-grams.

Total weight of floorMgWTtot 1 104
×=MgWTtot 10000:=

Assumed story weight:
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Alter the stiffness based on the case number (modified EI for cases 3 and 4):

Stiffness coefficient for cracked floors (Both adjustment factors are 
independent of the wall number):

αl if Case 3= Case 4=∨ 0.35, 1,( ):=

Stiffness coefficient for remaining (upper) floors:

αu if Case 3= Case 4=∨ 0.70, 1,( ):=

Floor level at which hinge behavior diminishes:

rfloors if Case 1= Case 3=∨ 2, 3,( ):=

K1

K1i i, 2k1 αl⋅←

K1i i 1+, k1− αl⋅←

K1i i 1−, k1− αl⋅←

i 2 rfloors( )..∈for

K1i i, 2k1 αu⋅←

K1i i 1+, k1− αu⋅←

K1i i 1−, k1− αu⋅←

i rfloors 1+( ) floors 1−( )..∈for

K1rfloors rfloors 1−, k1− αl⋅←

K1rfloors rfloors 1+, k1− αu⋅←

K1rfloors rfloors, k1 αl αu+( )⋅←

K11 1, 2k1 αl⋅←

K11 2, k1− αl⋅←

K1floors floors, k1 αu⋅←

K1floors floors 1−( ), k1− αu⋅←

K1

:= K2

K2i i, 2k2 αl⋅←

K2i i 1+, k2− αl⋅←

K2i i 1−, k2− αl⋅←

i 2 rfloors( )..∈for

K2i i, 2k2 αu⋅←

K2i i 1+, k2− αu⋅←

K2i i 1−, k2− αu⋅←

i rfloors 1+( ) floors 1−( )..∈for

K2rfloors rfloors 1−, k2− αl⋅←

K2rfloors rfloors 1+, k2− αu⋅←

K2rfloors rfloors, k2 αl αu+( )⋅←

K21 1, 2k2 αl⋅←

K21 2, k2− αl⋅←

K2floors floors, k2 αu⋅←

K2floors floors 1−( ), k2− αu⋅←

K2

:=
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The first 6 columns for each stiffness matrix is shown below:

K1

1 2 3 4 5 6
1
2

3

4

5

6

7

8

9

10

11

12

1.363·10    11 -6.816·10    10 0 0 0 0
-6.816·10    10 2.045·10    11 -1.363·10    11 0 0 0

0 -1.363·10    11 2.726·10    11 -1.363·10    11 0 0

0 0 -1.363·10    11 2.726·10    11 -1.363·10    11 0

0 0 0 -1.363·10    11 2.726·10    11 -1.363·10    11

0 0 0 0 -1.363·10    11 2.726·10    11

0 0 0 0 0 -1.363·10    11

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

=

K2

1 2 3 4 5 6
1
2

3

4

5

6

7

8

9

10

11

12

3.094·10    10 -1.547·10    10 0 0 0 0
-1.547·10    10 4.64·10    10 -3.094·10    10 0 0 0

0 -3.094·10    10 6.187·10    10 -3.094·10    10 0 0

0 0 -3.094·10    10 6.187·10    10 -3.094·10    10 0

0 0 0 -3.094·10    10 6.187·10    10 -3.094·10    10

0 0 0 0 -3.094·10    10 6.187·10    10

0 0 0 0 0 -3.094·10    10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

=
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Calculate Eigenvalues:

Λ1 sort eigenvals M1 1− K1⋅( )( ):= Λ2 sort eigenvals M2 1− K2⋅( )( ):=

Λ1

1
1
2

3

4

5

6

7

8

9

10

11

12

279.75
2.714·10  3

7.954·10  3

1.548·10  4

2.35·10  4

3.193·10  4

4.298·10  4

5.541·10  4

6.76·10  4

7.838·10  4

8.68·10  4

9.215·10  4

= Λ2

1
1
2

3

4

5

6

7

8

9

10

11

12

87.723
851.18

2.494·10  3

4.855·10  3

7.368·10  3

1.001·10  4

1.348·10  4

1.737·10  4

2.12·10  4

2.458·10  4

2.722·10  4

2.89·10  4

=

Calculate Eigenvectors (mode shapes):

Φ2

Φ2 j〈 〉 eigenvec M2 1− K2⋅ Λ2 j,⎛
⎝

⎞
⎠←

j 1 floors..∈for

Φ2

:=
Φ1

Φ1 j〈 〉 eigenvec M1 1− K1⋅ Λ1 j,⎛
⎝

⎞
⎠←

j 1 floors..∈for

Φ1

:=

Set j to show the eigenvector for the first mode:

j 1 12..:=

Φ1 j 1,
-0.078
-0.155

-0.191

-0.225

-0.257

-0.285

-0.31

-0.331

-0.348

-0.362

-0.371

-0.375

= Φ2 j 1,
0.078
0.155

0.191

0.225

0.257

0.285

0.31

0.331

0.348

0.362

0.371

0.375

=
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N/mek2 2.619 109
×=N/mek1 1.154 1010

×=

ek2 em2 ω2
2

⋅:=ek1 em1 ω1
2

⋅:=

Calculate SDOF equivalent stiffness:

radians/secω2 9.366=radians/secω1 16.726=

Λ21 1, 87.723=Λ11 1, 279.75=

ω2 Λ21 1,:=ω1 Λ11 1,:=

Calculate frequency: 

kgem2 2.986 107
×=kgem1 4.126 107

×=

em2 φ2
T

M2 φ2⋅:=em1 φ1
T

M1 φ1⋅:=

Calculate SDOF equivalent mass:

φ2

1
1
2

3

4

5

6

7

8

9

10

11

12

0.209
0.413

0.509

0.6

0.684

0.76

0.826

0.883

0.929

0.964

0.988

1

=φ1

1
1
2

3

4

5

6

7

8

9

10

11

12

0.209
0.413

0.509

0.6

0.684

0.76

0.826

0.883

0.929

0.964

0.988

1

=

φ2

φ2 j 1,
Φ2 j 1,

Φ2floors 1,
←

j 1 floors..∈for

φ2

:=φ1

φ1 j 1,
Φ1 j 1,

Φ1floors 1,
←

j 1 floors..∈for

φ1

:=

Normalize first mode by roof displacement:
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m1s if ω1 ω2< m1, m2,( ):= m1s 2.986 107
×= kg

m2s if ω1 ω2< m2, m1,( ):= m2s 4.126 107
×= kg

k1s if ω1 ω2< k1, k2,( ):= k1s 2.619 109
×= N/m

k2s if ω1 ω2< k2, k1,( ):= k2s 1.154 1010
×= N/m

ω1s if ω1 ω2< ω1, ω2,( ):= ω1s 9.366= radians/sec

ω2s if ω1 ω2< ω2, ω1,( ):= ω2s 16.726= radians/sec

The following variable indicates whether or not a switch took place:

switch if ω1 ω2< "No", "Yes",( ):= switch "Yes"=

Optimized Stiffness and Damping for the Combined Structure

-This portion of the worksheet calculates the optimized stiffness and damping of a pair of 
equivalent SDOF systems based on the closed form solution of described in Richardson 
& Abdullah (2004).

-The equivalent properties of the walls calculated above will be used in the equations 
below.  They will be renamed to coincide with the nomenclature used in the closed 
form solution.

m1 em1:= m2 em2:=

m1 4.126 107
×= kg m2 2.986 107

×= kg

k1 ek1:= k2 ek2:=

k1 1.154 1010
×= N/m k2 2.619 109

×= N/m

ω1
k1
m1

:= ω2
k2
m2

:=

ω1 16.726= radians/sec ω2 9.366= radians/sec

- A premise of using the closed form solution is that the natural frequency of building 1 
is less than that of  building 2.  Using the natural frequencies found above, "if" 
statements will switch the building (wall) properties and redefine them as necessary.
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L 4.283 1012
×=

L ω1
2

µ 1+( )2⋅ ω2
2
µ⋅ ω1

2
+( )⋅ L1 7 µ

3
⋅ 3 µ⋅+ 10 µ

2
⋅+( ) ω2

4
⋅+ g+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦:=

L1 6 µ⋅ µ
2

+ 5+( ) ω1
4

⋅ 13 µ
2

⋅ 3+ µ
3

+ 15 µ⋅+( ) ω2
2

⋅ ω1
2

⋅+:=

U 1.619 1012
×=

U
1
4

ω1− ω2+( )⋅ ω1 ω2+( )⋅ U2 21 µ
5

⋅ 51 µ
4

⋅+ 39 µ
3

⋅+ 9 µ
2

⋅+( ) ω2
6

⋅+ 3 µ
2

⋅ g⋅ µ g⋅−( ) ω2
2

⋅+⎡⎣ ⎤⎦⋅ µ⋅:=

U2 3− µ 5+( )⋅ µ 1+( )2⋅ ω1
6

⋅ 3 ω2
2

⋅ 7 µ⋅ 3+( )⋅ µ 1+( )2⋅ ω1
4

⋅− U1+:=

U1 3 µ
5

⋅ 15 µ
2

⋅+ 33 µ
3

⋅+ 21 µ
4

⋅+( ) ω2
4

⋅ 3 g⋅− µ g⋅+⎡⎣ ⎤⎦ ω1
2

⋅:=

g 1.826 1014
×=

g ω2
2
µ⋅ ω1

2
+( ) g1⋅ 5 ω1

2
⋅ 3 ω2

2
⋅+ ω1

2
µ⋅+ 7 ω2

2
⋅ µ⋅+( )2⋅:=

g1 µ
3
ω2

2
⋅ 26 µ

2
⋅ ω2

2
⋅+ 9 µ

2
⋅ ω1

2
⋅+ 9 ω2

2
⋅ µ⋅+ 26 ω1

2
⋅ µ⋅+ ω1

2
+( ):=

The closed form solution utilizes "g" in the calculation of η, but since the equation is so long, it will 
be split, using "g1" to shorten the equation for "g."  This will be repeated later under similar 
circumstances.

The beginning of the Richardson/ Abdullah equations:

µ 1.382=µ
m2
m1

:=

The mass ratio:

ω2 ω2s:=ω1 ω1s:=

k2 k2s:=k1 k1s:=

m2 m2s:=m1 m1s:=

Since dummy variable were used to switch the various properties above, the 
nomenclature must be reset to the original symbols used.
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ωq 15.714=

ωq
1
2

2 µ 2 ω2
2

⋅ µ⋅ ω2
2

+ ω1
2

+( )⋅ ωq1⋅⋅

µ 2ω2
2
µ⋅ ω2

2
+ ω1

2
+( )⋅

⋅:=

ωq1 7.782 105
×=

ωq1 2 2 η⋅+( ) ω2
2

⋅ ω1
2

⋅ 2 ω2
4

⋅+⎡⎣ ⎤⎦ µ
2

⋅ 1 2 η⋅+( ) ω1
4

⋅ 3 2 η⋅+( ) ω2
2

⋅ ω1
2

⋅+⎡⎣ ⎤⎦ µ⋅+ 2 ω1
4

⋅ η⋅+ Sq+⎡⎣ ⎤⎦:=

Sq 3.938 1010
×=

Sq 4 ω1
4

⋅ µ 1+( )2⋅ ω2
2
µ⋅ ω1

2
+( )2⋅ η

2
⋅ Sq1− µ

2
ω2 ω1−( )2⋅ ω1 ω2+( )2⋅ 2 ω2

2
⋅ µ⋅ ω1

2
+( )2⋅+:=

Sq1 4 µ⋅ ω1
2

⋅ ω2 ω1−( )⋅ ω1 ω2+( )⋅ ω2
2
µ⋅ ω1

2
+( )⋅ 2 µ

2
⋅ ω2

2
⋅ ω1

2
µ⋅+ ω1

2
−( )⋅ η⋅:=

The natural frequency corresponding to the intersection at point "Q" is calculated below:

ωp 12.301=

ωp
1
2

2 µ ω1
2
µ⋅ ω2

2
µ⋅+ 2 ω1

2
⋅+( )⋅ ωp1⋅⋅

µ ω1
2
µ⋅ ω2

2
µ⋅+ 2 ω1

2
⋅+( )⋅

⋅:=

ωp1 2.857 105
×=

ωp1 3 2 η⋅+( ) ω2
2

⋅ ω1
2

⋅ ω2
4

+⎡⎣ ⎤⎦ µ
2

⋅ 2 2 η⋅+( ) ω1
4

⋅ 2 2 η⋅+( ) ω2
2

⋅ ω1
2

⋅+⎡⎣ ⎤⎦ µ⋅+ 2 ω1
4

⋅ η⋅+ Sp−⎡⎣ ⎤⎦:=

Sp 2.831 1010
×=

Sp 4 ω1
4

⋅ µ 1+( )2⋅ ω2
2
µ⋅ ω1

2
+( )2⋅ η

2
⋅ Sp1− µ

2
ω1 ω2−( )2⋅ ω1 ω2+( )2⋅ 2ω1

2
ω2

2
µ⋅+( )2⋅+:=

Sp1 4 µ⋅ ω1
2

⋅ ω1 ω2−( )⋅ ω1 ω2+( )⋅ ω2
2
µ⋅ ω1

2
+( )⋅ µ

2
− ω2

2
⋅ ω2

2
µ⋅+ 2 ω1

2
⋅+( )⋅ η⋅:=

The natural frequency corresponding to the intersection at point "P" is calculated below:

η 0.378=
η

U
L

:=

The fixed point stiffness ratio is calculated from U and L:
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bA4 1.824 1022
×=

bA4 2− ωp⋅ µ
4

⋅ bA4a 8 ωp
6

⋅ µ
4

⋅ µ
2
η⋅ µ

2
+ 4 µ⋅+ 4 µ⋅ η⋅+ 2+ 3 η⋅+( )⋅ ω1

12
⋅− 12 ωp

8
⋅ µ

5
⋅ ω1

10
⋅+⎡⎣ ⎤⎦⋅:=

bA4a 8− ωp
2

⋅ η⋅ µ
3

⋅ 1 µ+( )⋅ 2 3 η⋅+( )⋅ ω1
16

⋅ 4 ωp
4

⋅ µ
3

⋅ bA4aa( )⋅ ω1
14

⋅+:=

bA4aa 4 µ
2

⋅ 4+ 8 µ⋅+( ) η2
⋅ 4 16 µ⋅+ 9 µ

2
⋅+( ) η⋅+ 4 µ⋅+ 2 µ

2
⋅+:=

"bA4" is split to include bA4a, bA4aa and bA4b:

bA3 2.217− 1020
×=

bA3 2− ωp⋅ µ
4

⋅ bA3b bA3a+ 8 ωp
6

⋅ µ
5

⋅ µ η⋅ µ+ 2+ η+( )⋅ ω1
10

− 6 ωp
8

⋅ µ
6

⋅ ω1
8

⋅+⎡⎣ ⎤⎦⋅:=

bA3b 8− µ
4

⋅ ωp
2

⋅ η 1+( )⋅ 3 η⋅ 1+( )⋅ 1 µ+( )⋅ ω1
14

⋅:=

bA3a 2 ωp
4

⋅ µ
4

⋅ 4 µ
2

⋅ 4+ 8 µ⋅+( ) η2
⋅ 12 µ

2
⋅ 10+ 28 µ⋅+( ) η⋅+ 18 µ⋅+ 7 µ

2
⋅+ 4+⎡⎣ ⎤⎦⋅ ω1

12
⋅:=

"bA3" is split to include bA3a and bA3b:

bA2 1.036 1018
×=

bA2 2− ωp⋅ µ
4

⋅ 8− µ
5

⋅ ωp
2

⋅ η 1+( )2 1 µ+( ) ω1
12

⋅ 4 ωp
4

⋅ µ
5

⋅ 1 2µ+( )⋅ η 1+( ) ω1
10

⋅+ 8 ωp
6

⋅ µ
6

⋅ ω1
8

⋅−⎡⎣ ⎤⎦⋅:=

bA1 1.692− 1015
×=

bA1 2− ωp⋅ µ
4

⋅ 2 ωp
4

⋅ µ
6

⋅ ω1
8

⋅( )⋅:=

aA 2.072 1038
×=

aA 32− ωp
5

⋅ ω2
12

⋅ µ
8

⋅ ω1
8

⋅ 1 µ+( ) ω1
2

ω2
2
µ⋅+( )2 ω1

2
− ω2

2
µ⋅− ωp

2
+ ωp

2
µ⋅+( )⋅:=

The fixed point damping ratio corresponding to the "P" intersection point is calculated using 
the following set of equations.  Richardson and Abdullah used xAx for components relating to 
point P:
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ξA 0.13=

ξA
bA− bA2 4 aA⋅ cA⋅−+

2 aA⋅
:=

The fixed point damping ratio corresponding to the "P" intersection point is calculated below:

cA 4.726− 1034
×=

cA 2 ωp⋅ ω2
8

⋅ µ
4

⋅ ω1
12

⋅ ωp ω2−( ) ωp ω2+( )⋅ ωp
2

ω1
2
η⋅− ω1

2
−( )⋅ µ⋅ ω1

4
η⋅+ ω1

2
η⋅ ωp

2
⋅−⎡⎣ ⎤⎦⋅ cA3⋅:=

cA3 2.515 107
×=

cA3 1 η+( ) ω2
2

⋅ ωp
2

−⎡⎣ ⎤⎦ µ⋅ ω1
2
η⋅+⎡⎣ ⎤⎦ cA1 cA2+ ω1

4
η

2
⋅+( )⋅:=

cA2 1.813 104
×=

cA2 ω1
4
η

2
⋅ η

2
ω2

2
⋅ 2 η⋅ ω2

2
⋅+ 2 η⋅ ωp

2
⋅−( ) ω1

2
⋅+⎡⎣ ⎤⎦ µ⋅:=

cA1 5.126 104
×=

cA1 1 η+( ) ω2
4

⋅ 2− η⋅ ωp
2

⋅ ω1
2
η

2
⋅+ 2 ωp

2
⋅− ω1

2
η⋅+( ) ω2

2
⋅+ ωp

4
+⎡⎣ ⎤⎦ µ

2
⋅:=

"cA" is split to include cA1, cA2 and cA3:

bA 7.189− 1035
×=

bA bA1 ω2
18

⋅ bA2 ω2
16

⋅+ bA3 ω2
14

⋅+ bA4 ω2
12

⋅+ bA5 ω2
10

⋅+:=

bA5 4.956− 1023
×=

bA5 2− ωp⋅ µ
4

⋅ 8− µ
2

⋅ ωp
2

⋅ η
2

⋅ 1 µ+( )⋅ ω1
18

⋅ bA5b+ bA5a+⎡⎣ ⎤⎦⋅:=

bA5b 4 ωp
4

⋅ η⋅ µ
2

⋅ 2 µ
2

⋅ 4 µ⋅+ 2+( ) η⋅ 3 µ
2

⋅+ 4 µ⋅+⎡⎣ ⎤⎦⋅ ω1
16

⋅:=

bA5a 8− ωp
6

⋅ µ
3

⋅ 3 µ⋅ µ
2

+ 2+( ) η⋅ µ+⎡⎣ ⎤⎦⋅ ω1
14

⋅ 2 µ
4

⋅ ωp
8

⋅ 4 2 µ⋅+ µ
2

+( )⋅ ω1
12

⋅+:=

"bA5" is split to include bA5a and bA5b:
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bB3 2.687− 1022
×=

bB3 2− ωq⋅ µ
4

⋅ bB3b 8 ωq
6

⋅ µ
3

⋅ 3 µ
2

⋅ η⋅ 2 µ
2

⋅+ µ+ 4 µ⋅ η⋅+ η+( )⋅ ω1
12

⋅− 12 ωq
8

⋅ µ
5

⋅ ω1
10

⋅+⎡⎣ ⎤⎦⋅:=

bB3b 8− ωq
2

⋅ η⋅ µ
3

⋅ 1 µ+( )⋅ 2 3 η⋅+( )⋅ ω1
16

⋅ bB3a+:=

bB3a 4 ωq
4

⋅ µ
3

⋅ 4 µ
2

⋅ 4+ 8 µ⋅+( ) η2
⋅ 6 14 µ⋅+ 5 µ

2
⋅+( ) η⋅+ 2 µ⋅+ µ

2
+⎡⎣ ⎤⎦⋅ ω1

14
⋅:=

"bB3" is split to include bB3a and bB3b:

bB2 5.14 1019
×=

bB2 2− ωq⋅ µ
4

⋅ bB2a 2 ωq
4

⋅ µ
4

⋅ 4 µ
2

⋅ 4+ 8 µ⋅+( ) η2
⋅ bB2c+⎡⎣ ⎤⎦⋅ ω1

12
⋅+ bB2b+⎡⎣ ⎤⎦⋅:=

bB2c 32 µ⋅ 18+ 8 µ
2

⋅+( ) η⋅ 18 µ⋅+ 4 µ
2

⋅+ 7+:=

bB2b 8− ωq
6

⋅ µ
4

⋅ 1 2 µ
2

⋅+ 3 µ⋅+( ) η⋅ 1+ 4 µ⋅+ 2 µ
2

⋅+⎡⎣ ⎤⎦⋅ ω1
10

⋅ 2 µ
4

⋅ ωq
8

⋅ 4 µ
2

⋅ 2 µ⋅+ 1+( )⋅ ω1
8

⋅+:=

bB2a 8− µ
4

⋅ ωq
2

⋅ η 1+( )⋅ 3 η⋅ 1+( )⋅ 1 µ+( )⋅ ω1
14

⋅:=

"bB2" is split to include bB2a, bB2b, and bB2c:

bB1 1.767 1017
×=

bB1 2− ωq⋅ µ
4

⋅ 8− µ
5

⋅ ωq
2

⋅ η 1+( )2⋅ 1 µ+( )⋅ ω1
12

⋅ bB1a+ 8 ωq
6

⋅ µ
6

⋅ ω1
8

⋅−⎡⎣ ⎤⎦⋅:=

bB1a 4 ωq
4

⋅ µ
5

⋅ 4 µ⋅ η⋅ 4µ+ 2+ 3 η⋅+( )⋅ ω1
10

⋅:=

"bB1" is split to include bB1a:

aB 7.047− 1038
×=

aB 32− ωq
5

⋅ ω2
12

⋅ µ
8

⋅ ω1
8

⋅ 1 µ+( ) ω1
2

ω2
2
µ⋅+( )2 ω1

2
− ω2

2
µ⋅− ωq

2
+ ωq

2
µ⋅+( )⋅:=

The fixed point damping ratio corresponding to the "Q" intersection point is calculated using the 
following set of equations.  Richardson and Abdullah used xBx for components relating to point Q:
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ξ 0.125=

ξ
ξA ξB+

2
:=

The average damping ratio is calculated below:

ξB 0.12=

ξB
bB− bB2 4 aB⋅ cB⋅−−

2 aB⋅
:=

The fixed point damping ratio corresponding to the "Q" intersection point is calculated below:

cB 1.806 1035
×=

cB 2 ωq⋅ ω1
8

⋅ µ
4

⋅ ω2
8

⋅ cBb⋅ ω2
2

ωq
2

ω1
2
η⋅− ω1

2
−( )2⋅ µ

2
⋅ cBc+

⎡
⎣

⎤
⎦⋅:=

cBc η
2

η+( ) ω1
6

⋅ 2− η⋅ ωq
2

⋅ η
2
ω2

2
⋅+ η ω2

2
⋅+( ) ω1

4
⋅+⎡⎣ ⎤⎦ µ⋅ ω1

6
η

2
⋅+:=

cBb cBa( ) ω1
2
η⋅ ωq

2
− ω1

2
+( ) ω2

2
⋅ µ⋅ ω1

4
η⋅+⎡⎣ ⎤⎦⋅:=

cBa ωq ω2−( ) ωq ω2+( )⋅ ωq
2

ω1
2
η⋅− ω1

2
−( )⋅ µ⋅ ω1

4
η⋅+ ω1

2
η⋅ ωq

2
⋅−:=

"cB" is split to include cBa, cBb, and cBc:

bB 2.256− 1036
×=

bB bB1 ω2
16

⋅ bB2 ω2
14

⋅+ bB3 ω2
12

⋅+ bB4 ω2
10

⋅+:=

bB4 1.69− 1024
×=

bB4 2− ωq⋅ µ
4

⋅ 8− µ
2

⋅ ωq
2

⋅ η
2

⋅ 1 µ+( )⋅ ω1
18

⋅ bB4b+⎡⎣ ⎤⎦⋅:=

bB4b bB4a 8 ωq
6

⋅ µ
3

⋅ 1 µ+( ) η⋅ µ+⎡⎣ ⎤⎦⋅ ω1
14

⋅− 6 µ
4

⋅ ωq
8

⋅ ω1
12

⋅+:=

bB4a 2 ωq
4

⋅ µ
2

⋅ 4 µ
2

⋅ 8 µ⋅+ 4+( ) η2
⋅ 2 µ

2
⋅ 4 µ⋅+( ) η⋅+ µ

2
+⎡⎣ ⎤⎦⋅ ω1

16
⋅:=

"bB4" is split to include bB4a and bB4b:
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ξ 0.125=

Optimal system damping ratio:

ξB 0.12=

Point P damping ratio:

ξA 0.13=

Point P damping ratio:

The optimal damping ratio values: 

ωratio 1.786=

ωratio
ω2
ω1

:=

The ratio of the natural frequencies is calculated by ωratio below:

N/mkfp 9.901 108
×=

kfp k1 η⋅:=

η 0.378=

The optimal stiffness is calculated using the fixed point stiffness ratio:

N/mk2 1.154 1010
×=

N/mk1 2.619 109
×=

µ 1.382=

kgm2 4.126 107
×=

kgm1 2.986 107
×=

The equivalent SDOF weight and stiffness:

Results Summary
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APPENDIX B 

TABULATED DATA FOR WALL COMBINATION TRIALS 

Case 1 (12 Stories, No Wall Pier Cracking) 

 

Case 2 (24 Stories, No Wall Pier Cracking) 

 

Case 3 (12 Stories, Wall Pier Cracking) 

 

Case 4 (24 Stories, Wall Pier Cracking) 
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