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THE DESIGN OF A HIGH CAPACITY AND ENERGY EFFICIENT PHASE CHANGE

MAIN MEMORY

Alexandre Peixoto Ferreira, PhD

University of Pittsburgh, 2011

Higher energy-efficiency has become essential in servers for a variety of reasons that range from

heavy power and thermal constraints, environmental issues and financial savings. With main mem-

ory responsible for at least 30% of the energy consumed by a server, a low power main memory

is fundamental to achieving this energy efficiency. DRAM has been the technology of choice for

main memory for the last three decades primarily because it traditionally combined relatively low

power, high performance, low cost and high density. However, with DRAM nearing its density

limit, alternative low-power memory technologies, such as Phase-change memory (PCM), have

become a feasible replacement. PCM limitations, such as limited endurance and low write perfor-

mance, preclude simple drop-in replacement and require new architectures and algorithms to be

developed.

A PCM main memory architecture (PMMA) is introduced in this dissertation, utilizing both

DRAM and PCM, to create an energy-efficient main memory that is able to replace a DRAM-only

memory. PMMA utilizes a number of techniques and architectural changes to achieve a level of

performance that is par with DRAM. PMMA achieves gains in energy-delay of up to 65%, with

less than 5% of performance loss and extremely high energy gains. To address the other major

shortcoming of PCM, namely limited endurance, a novel, low-overhead wear-leveling algorithm

that builds on PMMA is proposed that increases the lifetime of PMMA to match the expected

server lifetime so that both server and memory subsystems become obsolete at about the same

time.
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We also study how to better use the excess capacity, traditionally available on PCM devices, to

obtain the highest lifetime possible. We show that under specific endurance distributions, the naive

choice does not achieve the highest lifetime. We devise rules that empower the designer to select

algorithms and parameters to achieve higher lifetime or simplify the design knowing the impact on

the lifetime. The techniques presented also apply to other storage class memories (SCM) memories

that suffer from limited endurance.
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1.0 INTRODUCTION

The design of main memory has become the newest challenge for system designers due to aggres-

sive requirements of capacity, power consumption, performance and form factor. Although main

memory has steadily grown in size and performance, application demand has grown even faster,

with multicore CPUs and virtualization compounding this pressure. In servers, the challenge is

more pronounced since capacity and performance objectives for memory subsystems are much

higher.

Main memory uses a significant portion of system power [5, 27] in servers, as shown in Fig-

ure 1. With the growth of memory demand, it has become especially challenging to construct a

memory subsystem that has feasible power consumption, heat dissipation, and form factor. Main

memory size is growing from the 10s to 100s of gigabytes of current systems to terabytes or more in

the new designs [19, 9]. A terabyte of memory using today’s main memory technology (e.g., Fully

Buffered DRAM [32, 18, 15] or DDR3 SDRAM [33]) is above the cost, size and energy allowable

for most systems. With commercially available memory devices based on 8 GBytes FBDRAM

(fully buffered DRAM)[32], it would take 125 memory modules (DIMMs) to construct a one ter-

abyte memory! Other memory technologies like DDR3-DRAM face even larger problems with

density and form factor [33]. In terms of power consumption, the situation is even bleaker. The

power consumption of just the memory chips for one terabyte memory implemented as FBDRAM

is 1.25 KW [32, 32, 15]. Using DDR3-DRAM, the power consumption in the memory devices is

smaller, 400W [33], but more system support is required since only a small number of DIMMs

can be connected to each bus. These power demands are up to 10 times more than the demands of

memory in current machines, which are already considered too power hungry [5, 3, 2, 1, 4, 28].

For over three decades, DRAM has been chosen as the technology for main memory because

it allowed construction of cheaper, larger or faster main memories than existing alternative tech-
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Figure 1: Server Power Distribution [27].

nologies such as SRAM, MRAM, Flash and others. The primary advantage of DRAM was an

unmatched combination of density, energy-efficiency, speed and cost per bit. The DRAM storage

mechanism, which stored the memory cell value as charge in a capacitor, is susceptible to a number

of problems. The main limitations of DRAM technology are:

• Destructive reads: Each read removes the stored charge in the capacitor, requiring the infor-

mation to be restored.

• Limited data retention: The stored charge is also lost by leakage currents. Current DRAM

cells can maintain data for tens of milliseconds. Hence, a refresh process is required to create

the appearance of unlimited storage time.

• Susceptibility of singe-event upsets (SEUs, or errors): The stored charge in each cell is small

and the ionization process caused by cosmic radiation (alpha particles) can insert or remove

enough charge to change stored value.

In order to achieve good reliability and compensate for DRAM susceptibility to singe-event up-

sets, error correction codes (ECC) are employed. In current systems, the addition of ECC increases

memory size by 12.5% with the corresponding increase in energy and power consumption [31],

assuming a common configuration of 8 ECC bits for each 64bits word. Due to form factor, power
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consumption, and fault tolerance overhead (ECC), it is clearly very expensive to build scalable

main memory systems with DRAM for a typical Chip MultiProcessor (CMP) system. Until re-

cently, DRAM has been able to reap the benefits of smaller semiconductor technologies, with size

being the primary gain, but it is expected to reach serious roadblocks for smaller geometries. As

memory cells become smaller, less charge is stored in each cell, and they suffer more from charge

loss. The combination of these two effects cause DRAM cells to be unusable below 22nm [13, 14].

Memory technologies that can be considered alternatives to DRAM are still struggling with

either size, speed or maturity. First, NAND Flash is a mature technology and is a very serious

contender for file storage since it allies non-volatility with density, but its use as main memory

has serious limitations because of large latency (in the order of microseconds for reads and even

more for writes), block oriented access (512 bytes or more) and limited endurance. Endurance

is also touted as a primary scaling problem for NAND Flash, decreasing from 100K erase cycles

to less than 3K erase cycles for 25nm or smaller geometries [13, 14]. Second, NOR Flash uses

a similar storage mechanism as NAND Flash. NOR Flash advantages are in speed (in the hun-

dreds of nanoseconds) and byte addressability, but it offers limited capacity and similar endurance

when compared to NAND Flash. Lastly, resistive memories such as STT-RAM [10] are promis-

ing but still immature. Existing resistive devices [12, 10] (commercial and prototypes) are still

orders of magnitude smaller in capacity than current DRAM devices, creating a large size and cost

disadvantage.

Phase-Change Memory (PCM) has been proposed to replace DRAM in main memory [24,

48, 41]. PCM [38, 22, 23] is a new alternative memory technology that uses the physical state

of the material and the state’s impact on resistivity to store a bit, rather than relying on electri-

cal charge. PCM works by changing the material from a crystalline to an amorphous state and

vice-versa (hence, it is non volatile [11] and radiation resistant [30]). Each state has a specific

electrical resistance, which requires small power consumption for a read operation. PCM’s storage

mechanism, being non-volatile, requires no power for idle mode and very low standby power for

reading: a small current is used to read the cell by measuring the resistance. However, a high cur-

rent is needed to change the cell. The cell state is modified by melting the phase-change material

and using different cooling profiles to achieve the desired final state: crystalline with long cooling

time and amorphous with a short cooling time. Hence, PCM has asymmetric timing and energy

3



for reads/writes. Writes are five to ten times slower than reads and consume substantially more

energy due to the need to melt material in the cell to change its physical state. Also, because the

cooling profile is different if the bit is 1 or 0, the write duration and energy used depends on the

value written.

Contrary to NAND Flash memory and similar to NOR Flash, PCM is bit addressable. Other

operations, such as erasing a block before writing it as in NAND and NOR Flash, are not required.

PCM suffers from limited endurance because a write to a cell reduces slowly the cell’s ability

to reliably achieve physical state changes [16, 21]. PCM prototypes show that a PCM cell supports

at least 107 writes [26, 45], which is at least three orders of magnitude better than Flash. PCM

prototypes have shown high density (up to 1Gbit) [26, 45] and high read performance and band-

width (cycle time around 85ns and 266MBytes/s) but with very limited write bandwidth (around

9MBytes/s) [26].

In this dissertation, Sections 1.1,1.2, 1.3 below, describe the problem we are solving, present

the solution utilized and the results obtained, respectively. Chapter 2 introduces the PCM tech-

nology and present the related work. Chapter 3 describes the proposed architecture, PMMA. In

Chapter 4, a novel wear-leveling is described. Chapter 5 proposes how to better select the tech-

nique to use excess capacity present on wear-prone memories. Chapter 6 present the conclusions

and future work.

1.1 PROBLEM STATEMENT

Computing system are part of our lives today, not only in a recognizable form but ranging from the

large clusters hidden in datacenters to embedded systems hidden in common objects. Achieving

greater energy-efficiency is a requirement that appears in almost any system design, either because

the system is energy-limited (using stored energy) or power-limited. In the path to that goal, large

strides have been taken specially in dealing with power consumption in CPUs, but the path is still

not complete. Main memory is today one of the major energy consumers and new memory tech-

nologies have been proposed. It is our goal to propose an architecture, techniques and algorithms

that allow one of the most promising new memory technologies, PCM, to create a suitable replace-
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ment to a DRAM main memory that has large gains in energy-efficiency. It is also part of this goal

to integrate this architecture in current systems with minimal or no modifications to the CPU, OS

and applications.

1.2 SOLUTION PROPOSED

Our main memory architecture, Phase-Change Main Memory Architecture, or PMMA, utilizes

PCM, DRAM and SRAM in combination to achieve a high performance and energy-efficient re-

placement for a DRAM-only main memory. This new architecture is designed to replace the

DRAM memory controller, requiring no modifications to existing CPU, DRAM devices or PCM

devices that are commercially available or expected to become available soon. PMMA hides all

aspects of the architecture. It exposes only what is necessary for a memory request to be made and

executed. A number of algorithms and techniques are implemented in the memory controller to

achieve the desired level of performance, energy-efficiency and lifetime.

1.3 SUMMARY OF RESULTS

PMMA is designed to achieve high performance with high energy-efficiency. As a validation

tool, a highly configurable, energy and timing accurate main memory simulator was constructed.

This simulator is able to simulate both PMMA and a DRAM-only main memory architectures

with multiple variations in both architectures. A number of techniques were applied to mitigate

PCM limitations, specifically performance and endurance, and also reduce the overhead of the

architecture. The goal of having performance parity to a DRAM-only main memory main memory

with better energy-efficiency was achieved. PMMA has only a performance impact of only 5% but

consumes 50% less energy than a DRAM-only main memory. The use of a hybrid architecture is

essential to obtain the performance and energy-efficiency. The size of PMMA memory manager is

reduced by the use of larger pages and an asymmetric read-write partitioning.

5



The lifetime of PMMA was studied by creating an endurance management simulator, which

simulates multiple wear-leveling algorithms. The endurance simulator was essential to determine

the lifetime of the memory under worst case scenarios, by using multiple memory intensive appli-

cations running continuously. A lifetime of 8 years was achieved thanks to our novel low overhead

swap-based wear-leveling algorithms. The algorithm uses random victim selection with a global

counter that is within 25% of the lifetime of an idealized algorithm with an overhead of only 0.2%

additional writes. The proposed wear-leveling algorithm is crucial to the lifetime and energy-

efficiency of PMMA.

A study of how to achieve higher lifetime in wear-prone memories, PCM in particular, can

be limited by process variation in memory endurance. Different models of cell lifetime variation,

for example, bimodal and uniform are analyzed and rules are proposed that allow a designer to

select parameters or techniques best suited to the objectives, either higher lifetime, lower overhead

or lower cost. The specific endurance distribution, size of total memory size, desired lifetime or

amount to be reserved as excess capacity are the necessary parameters to identify the technique.
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2.0 BACKGROUND AND RELATED WORK

Phase-Change memory takes advantage of materials that have two or more stable states with dif-

ferent physical characteristics. These materials can change states reliably, in a very short time and

with each state presenting large differences in easily measurable physical properties, optical re-

flectivity and electrical resistivity as the most common ones [43]. One of most common materials

used in PCM is GST, a chalcogenide alloy of germanium, antimony and tellurium (GeSbTe). GST

can exist in a amorphous state with low reflectivity and high resistivity and crystalline states that

have high reflectivity (30% higher) and low resistivity (five orders of magnitude smaller). GST has

been popular as optical storage medium due to its optical properties. The high speed crystalliza-

tion process in GST, requiring less than 100ns, and the large changes in resistivity are the primary

properties that makes PCM memory possible.

The process of changing the state requires controlling the temperature of the material to achieve

the desired state. It uses the property of a phase-change material that will crystallize if it is heated

above the crystallization threshold but below the melting point and it will become amorphous if

melt-quenched [43](technique used to avoid crystallization by fast reduction of temperature). The

state of the material determines the stored value so the read operation requires the measurement

of the resistance of the phase-change material by applying a small current. The write operation

require state of the phase-change material to be modified, and consequently a much larger current

needs to be applied and a much longer timing is necessary. A large and short current pulse can be

used to melt-quench the material and a smaller but longer current pulse can achieve crystallization.

Both pulses can be independent of the current state of the material because GST will present

almost the same resistance when the voltage applied is above a threshold, as shown in the curve

in Figure 2 extracted from [43]. This property allows PCM to avoid an erase operation. The right
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part of Figure 2 shows an example of two PCM memory cells with each in a different state, SET

and RESET. A cell is in RESET when it is in the amorphous state and SET in a crystalline state.

Figure 2: Example current-voltage behavior and of PCM memory cells, from [43].

A number of PCM properties can be extracted by looking at the way information is stored:

• Bit-addressability

Each bit can be independently changed and there is no intrinsic requirement to change bits

simultaneously.

• Non-volatility

No energy is necessary to keep the state.

• Energy and latency asymmetry between reads and writes

Reads are faster and much more energy-efficient since the value of current needed is much

smaller and it can be applied for a very short period of time. Writes require a much larger

current for a much longer time to achieve crystallization or to melt-quench the material.

• Radiation tolerance [30]

Since the energy necessary to change the physical state of the material is much higher than

the energy necessary to provoke ionization, a much more energetic radiation is necessary to

modify the stored information.

• Bit value energy and latency asymmetry

RESETs are faster and more energy-efficient than SETs.
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• Sensitivity to higher operational temperatures

Larger ambient temperature can crystallize the material, which makes operation and storage at

higher temperatures challenging for PCM [43, 37].

• MLC (Multi-Level cells)

MLC (Multi-Level cells) can be implemented in PCM by using partial crystallization to create

intermediate states allowing larger memory densities. MLC is expected to be necessary to

make PCM competitive to Flash and DRAM [13, 14].

PCM cell failure mechanisms determine the endurance, which ranges from 106 to 108

writes [13, 14]. Two of the common underlying causes of failures is contamination of the phase

change material and delamination. Phase-change material contamination happens only in the

melted stage since only in this stage contaminants can diffuse into the material. The cell can

delaminate, separating the phase-change material from the metal or silicon that borders it, and cre-

ate a void that is essentially an open circuit. Even though the achieved endurance of PCM cells

are orders of magnitude higher than the 104 to 105 for Flash, it is not enough to be ignored in high

performance memory subsystems. One of the most common cause for contamination or delami-

nation is a phenomenon called overprogramming [46]. Overprogramming happens when a cell is

being RESET and too much current is applied. In that situation, even phase-change material that is

in the border of the cell is melted and now delaminate or contaminants can propagate through the

border. This effect is cumulative and causes early failures. Using a small current is not an option

because it will not melt a sufficient volume of material to reliably RESET the cell. Since these

current values are not too far apart, prototype devices use a loop to program the cell, where at each

interaction the cell value is compared to the expected value and, if it is different, a higher level of

current is used to try to program the cell in the next interaction. This mechanism is very effective

to make the endurance higher than 106 writes but has a large cost in terms of latency [26, 11, 21].

Even though the PCM concept has been introduced in the 1960s [38, 23], only recently large

sized prototypes and commercial devices have become available [26, 35]. The size of the available

PCM devices is still limited (512Mbits [26] and 128Mbits [35]) when compared to commercial

DRAM devices (1GBits and 2GBits are common), but are much larger than competing technolo-

gies, such as MRAM [12] and STT-RAM [10]. PCM devices still use 90nm and 65nm technology
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Attribute DRAM PCM NAND Flash

Non-Volatile No Yes Yes

Idle Power 100mW/GByte 1 mW/GByte 10 mW/GByte

Erase / Page Size No / 64Bytes No / 64Bytes Yes / 256KB

Write Bandwidth per die 1-6GBytes/s 50-100 MB/s 5-40 MB/s

Page Write Latency 20-50 ns 1 µs 500 µs

Page Read Latency 20-50 ns 50 ns 25 µs

Endurance 1016 107 105

Maximum Density 4Gbits 4Gbits 64Gbits

Table 1: PCM, DRAM and NAND Performance and Power Comparison, extracted from [13, 14,

37].

that is generations behind the of 32/28/22nm that is already in use for DRAM, so it is expected a

rapid expansion in the size of PCM devices [13, 14].

As Table 1 shows, writes are main cause of PCM limitations since not only they are slower

(10X to 20X) but also require a lot more energy (10X to 50X) when compared to reads. Two

main PCM system limitations are closely related and caused by writes, high latency for writes and

limited endurance. Due to these limitations, many researchers proposed techniques to avoid or

mitigate those limitations. These techniques are explored in the next sections.

2.1 EXISTING SOLUTIONS FOR ENDURANCE

PCM has an endurance of 106 to 108 writes per cell [14]. If a specific cell is written once a second,

it will take only 115 days for that cell to pass 107 writes 1. This shows that, even with a very low

write rate per cell of one write per second, PCM endurance is not enough to sustain a lifetime of 7

to 8 years. which is the expected lifetime of a server assuming obsolescence and capacity limits.

1Even if 108 can be guaranteed, this would be only 3 years at the rate of 1 write per second.

10



A number of techniques have been proposed to increase lifetime of PCM devices and PCM

memory systems. These techniques varies from write minimization (avoiding unnecessary writes),

to various forms of wear-leveling, to changes in bit encoding. Some important techniques are

presented in the following subsections.

2.1.1 Write minimization

The goal of the techniques presented below is to remove writes that are redundant or modify the

value to be written to reduce the number of bits to be altered. This can be done at the cell, row or

even at higher levels of aggregation.

1. Read-before-write

In this technique, a read is executed before the write and only the cells that the value differs

from value to be written are updated, and the cells that already have the final value are not

modified. Many PCM devices [11, 21, 26] implement this at the cell level. As described in

Page 9, to avoid overprogramming multiple writes may be necessary and only the cells that are

not correct (differ from the desired value) are written. In [25], it is proposed for removal of

redundant writes.

2. Partial writes

In this technique [25], higher level caches (the one closest to the main memory) track dirty

word or line and pass that information to the main memory. The additional information allows

PCM memory controller and devices to ignore the unmodified portions of the cache. In [41], a

similar technique, called Line-Level Writes, is proposed that stores dirty information per cache

line.

3. Flip-N-Write

Flip-N-Write, proposed by [7], uses an additional bit in each row to determine if the value is

stored in a normal encoding or inverted. The decision of which way to store is taken based

on the lowest number of changed bits from the previous stored data and the new value. This

technique reduces the number of bits to write at least by half, increasing write bandwidth to the

memory. PCM write performance is power limited so more bits can be written simultaneously
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within the same power budget. Less energy is consumed per transaction increasing energy-

efficiency of the memory.

2.1.2 Wear-Leveling

In a system in which that all the cells have the same endurance, an uneven distribution of wear can

cause cells that have more wear to fail prematurely, causing the whole memory to fail even though

most of the cells are still healthy. Wear-leveling has the objective of distributing the wear evenly

over the cells, avoiding premature cell failures and consequently increasing the memory lifetime.

The memory access pattern of applications does not normally follow a regular pattern of an even

distribution of writes over the whole memory, but it is highly skewed (see Chapter 3) directing a

higher number of writes to a small number of memory locations. The memory subsystem have

to counteract that access pattern to avoid premature failures and achieve a higher lifetime. Wear-

leveling is applied to achieve this goal and can be implemented using different algorithms and

granularities. A common implementation disconnects the physical address from a logical address

using a mapping function that translates a logical address to the corresponding physical address.

This mapping function allows the translation to be changed, pointing a logical address to different

physical locations, throughout the lifetime of the memory effectively distributing the writes to the

logical address over a larger number of physical address. Some of the wear-leveling algorithms

use a configurable mapping function, others implement a mapping table. Some of the algorithms

require the physical memory to be larger than what is addressable by a logical address (excess ca-

pacity), where others do not require but support this implementation. The wear-leveling algorithms

proposed to be used in PCM memories are described below.

1. Row Shifting

This technique, proposed in [48], implements wear-leveling at a row level. The mapping of the

physical cells and the logical cells in a row is shifted by a certain amount at each write, This

technique is designed to mitigate the difference in wear of cells in a row. In [48], it is shown

that writes to a specific row in general do not modify all bits in the row but tend to affect only

a small subset (low order bits for example). By shifting the row, the physical location of a

particular bit changes, hence distributing the writes to a single bit over a number of physical
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cells. In [48], it is proposed to use coarser shift instead of small ones (closer to 1bit shift),

since modified bits tend to cluster.

2. Segment Swapping

In segment swapping, each bank of memory is subdivided into fixed size segments. Each

segment is composed of a number of rows. The mapping of a logical segment and a physical

segment is flexible, by the use of a mapping table, allowing any logical segment to map to

any physical segment in that bank. Segment swapping exchanges both the mapping between

logical segments and the data, preserving the information but exchanging the physical segment

that now holds the data. The translation of logical segment to a physical segment is kept in

a mapping table. Segment swapping is proposed in [48] to create a more coarse level wear-

leveling. The key to the technique is how to select the segments that will be swapped. The

segments chosen in [48] are the one with the number of writes since the last swap is above

a threshold and the least written one. Segments that are 1MByte in size are used, in [48], to

reduce the overhead in counters and the size of the mapping table. The memory is unable to

respond to requests whenever a segment is being swapped, so even the number of swaps is

small (every 2 · 106 writes) the latency of copying this amount of data can be significant, since

2MBytes have to be transferred.

3. Fine-Grained Wear-Leveling

In [41], this technique is used to achieve intra-page wear-leveling. Each page of 4KBytes is

divided into 16 sub-pages and a shift number is added to the logical sub-page number to map

to the corresponding physical sub-page. In [41], this shift number is changed only when the

page is allocated by the operating system and it is not changed until the page is freed. The shift

number is allocated randomly whenever it is changed.

4. Start-Gap

Start-gap, proposed in [40], is a very low overhead wear-leveling technique. The low overhead

is achieved by using a programmable mapping function instead of a mapping table. The map-

ping function uses two counters, the start and gap counters. The start counter marks which

physical address corresponds to the logical address 0 and the gap marks the start of the gap, a

sequence of physical addresses that are not currently mapped to any logical address. The phys-

ical pages work as a circular buffer with the mapping determined by a start and gap counters.
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Periodically, based on number of writes, the gap counter is incremented and the information

stored at the previous end of the gap is copied to the physical address pointed by the gap

counter. This action remaps the logical address that corresponds to the gap entry to a new

physical address. Since the physical memory is treated as a circular buffer, a particular logical

address will point to all physical addresses during the lifetime of the memory.

2.1.3 ECC

Some memories utilize some form of error correction, and in NAND Flash and PCM, ECC has

been proposed as way to deal with cell failures. ECC reserves additional bits to store redundant

information allowing errors to be detected and corrected. ECC is heavily used in servers DRAM

main memory where memory errors cannot be tolerated. In a write, the error correcting code is

generated and stored in addition to the original information. In a read, the stored error correcting

code is compared to the one generated on the fly, if the original error correcting code and the newly

generated do not agree, an error has occurred. The ECC is capable of correcting errors up to a de-

termined number of incorrect bits and detecting but not correcting for a larger number of incorrect

bits. The limits are determined by the number of additional bits used for ECC. In [44], ECC is

determined to be detrimental to PCM and Error-Correcting Pointers (ECP) is proposed. ECC is

detrimental to PCM because it requires more bits to be written for each write, increasing power

consumption and decreasing write bandwidth. ECC also increases the number of bits modified in

each write, because a single data bit changed will affect some or all bits in the error correcting

code. ECC is used to detect bits that changed after writes which is useful in DRAM or flash, but

not so useful in case of PCM since after a bit is successfully written it will not fail. ECP repurposes

the excess bits to be used as pointers and replacements bits. When a write to a memory cell fails,

a set of pointer and replacement bit is allocated and the correct value is stored in the replacement

bit and the pointer contains the number of the failed bit. This removes the need of computing

the error correcting code both in the write and the read, and reading the correct bit is a matter of

swapping the incorrect bits pointed by the ECP code. ECP also avoids increasing the number of

bits to be written by changing the pointer only when a new failure is detected otherwise the pointer

and replacement bits are kept at 0. It is shown that ECP leads to a longer lifetime than ECC.
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2.2 EXISTING SOLUTIONS FOR PERFORMANCE

PCM write latency is one of the major limitations of the technology. Even though PCM reads are

expected to be two times slower than DRAM reads, PCM writes are one or more orders of magni-

tude slower than PCM reads [37]. Write bandwidth is also severely limited by power, since each

cell written consumes a significant amount of power, limiting the total number of cells that can be

written simultaneously. Read bandwidth does not suffer from that limitation and it is one to two or-

ders of magnitude higher than write bandwidth. One of the simple solutions that has been adopted

is write avoidance: to reduce the number of writes to PCM, by both reducing the total number of

write operations and the number of bits that are written. Write avoidance has a significant energy

and latency impact. Other performance improving techniques have been proposed such as write

cancellation and a improved PCM requests scheduler.

2.2.1 Write Avoidance

The techniques listed in the Section 2.1.1 can also improve performance. Flip-N-Write can double

the write bandwidth to the PCM devices by reducing the number of bits that are simultaneously

written to the memory. Partial writes and Read-before-write when used at a line/row level po-

tentially can remove unnecessary writes. The drawback of partial writes is the requirement of

additional dirty bits to store the dirty status in a higher granularity. Read-before-write requires a

read operation before a write and in worst case can have a small increase in latency since reads are

much faster than writes.

2.2.2 Request Preemption and Pausing

PCM Request preemption is used by [49, 39] to improve performance by reducing the impact of

high latency operations. Both reads and writes can be preempted. The advantage of preemption

is reduction of latency for higher priority requests even if another operation is already ongoing for

that bank. Read preemption increases energy consumption since the operation has to be reexecuted

in the future. Writes are the large latency offender in PCM, they are up to 10x slower than reads

and are often not in the critical path. Write preemption (write cancellation [49]) has the potential
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to improve latency but incurs in energy and endurance impacts. The additional energy and wear

are consequences of the reexecution of the write since the previous write was not completed and

the stored value differs from the expected. Both approaches [49, 39], try to limit the impact by not

allowing preemptions to occur to the same request too many times. In [39], an alternative operation

is proposed, called write pausing, that pauses the write operation between steps in the loop (over-

programming) and resume the write later. This operation does not incur in energy overhead, since

the operation is nor repeated but restarted from the point it was stopped. The request is paused so

no additional latency is necessary beyond the delay caused by the requests interposed to the paused

one.

2.2.3 PCM QoS Scheduling

A new memory controller is proposed in [49] that implements a scheduling algorithm that is more

amenable to PCM. The scheduling algorithms proposed in [49] are a modification of PAR-BS [36].

PAR-BS is a fair scheduling algorithm designed for CMP systems and it is modified to include

write and read preemption in an effort to improve latency for higher priority requests. The pre-

emption of requests that can be close to finishing does not improve latency significantly and can

be detrimental to energy efficiency. Threshold limits are implemented to preclude preemption to

requests that will take less than the threshold to finish. The advantage of specializing the mem-

ory controller to PCM is the ability to explore the difference in internal operations between PCM

and DRAM. DRAM, contrary to PCM, requires that a read be followed by a write in a row, since

reads are destructive where PCM reads are harmless. PCM can have preemptable reads or writes,

where preemption in DRAM are not possible since that would provoke information loss in reads

and a single write buffer prevents simultaneous operation (read with a write date buffered). This is

possible in PCM since read data do not have to be stored so the information can be preserved.
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2.3 EXISTING PCM MAIN MEMORY ARCHITECTURES

PCM use as main memory has been proposed by [41, 25, 48] and others. The search has started for

a possible DRAM replacement since it may be reaching the scaling limit [13] and PCM appears as

a possible candidate. PCM has limitations and needs architectural solutions to achieve performance

and endurance that are acceptable to system designers.

In [48], PCM is used as main memory for a 3D stacked chip to obtain power and energy

savings, characteristics that are essential in a 3D stacked chip. In this proposal, MLC (Multi-Level

Cells) PCM chips are stacked over a CPU chip and interconnected using a high bandwidth interface

by taking advantage of the 3D construction. The high read bandwidth can offset the higher read

latency of PCM when compared to DRAM. The use of MLC increases write bandwidth by reducing

the number of cells that need to be written. PCM has very low idle power reducing the thermal

requirements of the 3D chip.

In [25], a PCM device is redesigned to be more amenable as main memory. The main change

are in the increase of row size for reads and the inclusion of a write buffer that coalesces writes.

PCM density is increased by use of a 2-bit MLC. The asymmetry of reads and writes and the

endurance impact are mitigated by using the techniques mentioned at Section 2.1;

The architecture proposed by [41] utilizes both DRAM and PCM to create main memory.

DRAM is used as a large cache and PCM as a large main memory. The DRAM cache is used to

mitigate the write impacts on PCM, large latency and limited endurance. The larger latency that is

characteristic of PCM is reduced by using 4x larger main memory and accounting for the reduction

of virtual page faults. The architecture is presented in a very high level and it is assumed that PCM

will be 4x denser than DRAM. The use of DRAM as a large cache towards improving lifetime

and endurance of a larger PCM storage is very compelling solution and the architecture presented

on this thesis share this characteristic. The details of each implementation can make substantial

negative or positive impact on performance and energy-efficiency. Using the algorithms described

on the following chapter, we show that even at the same size, a large main memory constructed

with PCM can be competitive with PCM.
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3.0 PCM MAIN MEMORY ARCHITECTURE - PMMA

In the previous chapter, we surveyed existing solutions for mitigating PCM performance and en-

durance limitations. A number of existing architectures that explore the use PCM as main memory

were also presented. In this chapter we introduce a new main memory architecture that uses PCM

as main memory. This architecture provides large energy and power savings with very little per-

formance impact as we will show in Section 3.3.

The new Phase Change Main Memory Architecture (PMMA) addresses the shortcomings as-

sociated with PCM, namely endurance, write vs. read asymmetries, and performance. PMMA

utilizes a set of architectural and algorithmic solutions, described in the next sections, to achieve

the desired lifetime (comparable to a server lifetime, around 8 years) and to mitigate the perfor-

mance impact of PCM. Large main memory subsystems for servers are the main application for

PMMA, since power is a major limitation in server design and one of the major advantages of

PMMA. PMMA is designed to replace DRAM main memory without impact on the CPU archi-

tecture and to leverage existing DRAM and PCM devices. PCM devices are assumed to have an

internal operation similar to existing PCM prototypes [26, 45].

3.1 PMMA

PMMA is a hybrid architecture that uses multiple memory technologies, such as PCM, DRAM

and SRAM, to achieve high performance and high energy-efficiency. PMMA uses PCM as main

memory, DRAM as a high performance local cache and SRAM as buffering and metadata storage

in the controller. In this work, it is assumed that the memory controller is off-chip, even though

PMMA can be integrated as an in-chip memory controller. Figure 3 contrasts a current DRAM
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architecture (left) with PMMA (right). The PMMA design goal of transparency to the CPU is

achieved by utilizing the same interface to the CPU as the one that exists between the DRAM

memory controller and the CPU in a conventional architecture.

Figure 3: Typical DRAM architecture and proposed PMMA Architecture

PMMA has two auxiliary components, in addition to PCM devices: the Acceleration and En-

durance Buffer (AEB) and the Memory Manager (MM). The AEB is much smaller but faster

memory than PCM. The MM is responsible for managing the internal operation of PMMA. Its

functionality is a superset of a memory controller in a conventional DRAM architecture. The MM

uses the AEB and PCM as randomly accessible storage and controls the information flow between

CPUs, PCM and AEB. One of the major functions of the MM is to manage the limited endurance

of the PCM cells by implementing algorithms to enhance the lifetime of the system. PMMA’s

PCM memory is designed to have at least a lifetime equivalent to the lifetime of a server (7 to 8

years). PMMA supports multiprocessor operation with multiple pending requests per CPU and a

split-transaction bus (requests and responses are sent asynchronously).

We describe the PMMA components in detail next. Figure 4 shows PMMA’s internal structure

for the AEB, MM, and PCM.
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Figure 4: MM Architecture
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3.1.1 PCM: Phase Change Memory

PCM memory devices are managed by the MM. PCM devices are connected to the MM, as shown

in Figure 4, via the PCM controller and data/control buses. The PCM controller has a direct mem-

ory access controller (DMAC) that allows it to initiate transactions directly to the data/control

buses without requiring intervention by the request controller. A memory bus is used to inter-

connect the PCM devices to the MM; current prototypes of PCM [11, 26, 35] use an interface

similar to SDR/DDR DRAM. Although it would not influence the design of PMMA, we expect

that DDR DIMM form factor and controller interface will likely be reused by PCM modules to

ease integration with existing systems.

The interconnection of PCM devices to the MM is an important design aspect and heavily in-

fluences performance and power consumption. The design space for the interconnection is large:

the number and width of buses and the number of DIMMs per bus are the primary parameters.

More buses result in more parallelism and bandwidth, but increase the complexity of the PCM

controller and the number of chip pins. The use of wider buses increases available bandwidth but

also increases interconnection cost (i.e., more pins). Using more DIMMs per bus allows more

physical memory per controller, which reduces system cost, but there is an inverse relation be-

tween bus speed and the number of allowed connections (DIMMS). Since PCM uses a low speed

bus (PCM is intrinsically a slower technology [26, 45]), its memory controller can support more

DIMMs per controller than a conventional DRAM architecture [20]. In our initial design, we favor

a single PCM bus to reduce controller costs and implementation complexity.

Figure 4 also shows what is stored in the PCM devices. The pages area holds the actual data

stored. The data is arranged in relatively large chunks, called pages. PMMA uses large page

sizes (1KByte to 4KBytes) to reduce cost and improve performance, as described and evaluated in

Section 3.2. The mapping table area holds the translation table that is used to map a CPU physical

page address to a PCM physical page address (as described in Section 2.1.2). This table is also

stored in the AEB for performance reasons but it is replicated in the PCM for persistence.
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3.1.2 AEB: Acceleration and Endurance Buffer

The AEB is a fast memory module that uses DRAM as a write buffer and high-speed (relative

to PCM) data cache. By design, it is much smaller (8 to 64 times smaller) than a conventional

DRAM main memory. We limit the AEB to a single, fast DIMM to reduce physical bus size, load

and capacitance, while enabling a high bus frequency. A number of high speed memory busses,

such as Rambus XDR [42], have been proposed that would be a good fit as the AEB interconnection

to MM. The high speed nature of the new bus technologies limits the number of devices that can

be interconnected to a single bus. DRAM was chosen over SRAM for the AEB to have a more

energy-efficient solution and larger capacity. The AEB has to be at least a couple of hundred of

megabytes, as shown in Section 3.3.2, for some workloads.

As Figure 4 shows, our initial AEB design has two storage areas: a page cache and a mapping

table. The page cache acts as a large data cache, used to improve performance and endurance; it

holds application data at page granularity. The tags for CPU addresses in the page cache are kept

by the Memory Manager (see below) rather than in the AEB, to expedite lookups.

The AEB also stores metadata – the mapping table – for endurance management of the PCM

components. It maps CPU physical page addresses to PCM physical page addresses. This table

is a duplicate of the one stored on the PCM devices. The duplicate is kept in the AEB (DRAM)

to permit fast lookups. The number of requests to the mapping table in the AEB is limited since a

mapping table access is needed only when a request is a miss at the AEB. The performance impact

to the majority of the requests is minimal but a large latency reduction is achieved for the misses,

since a slower request to the mapping table at the PCM is not required. Note that the page size

can have a dramatic impact on the spare table size: a very small page size (e.g., the same as a

L2/L3 cache block size) would result in an exceedingly large table. In turn, for a given total AEB

capacity, less storage space would be allocated to the pages area with a small page size. Instead,

a large page size allows a more modest mapping table size, leading to more storage (for a fixed

capacity) for the pages area. A smaller page size for PCM than the one used for the AEB will

require multiple requests to the mapping table, since each PCM page size can be remapped to a

different location, increasing latency and impacting AEB performance.

22



3.1.3 MM: Memory Manager

The Memory Manager has several components as shown in Figure 4. The primary components are

the request controller, a request buffer, an In-Flight Buffer (IFB), a PCM controller and a DRAM

controller (AEB interface). The request controller is responsible for receiving requests from the

CPU interface, allocating resources necessary for the requests (such as IFB buffers) and executing

the transactions on behalf of the CPU. The request buffer stores information about pending requests

that are required during the execution of the requests. It stores the current state of a request,

including its CPU/DRAM/PCM addresses, size of the transaction and resources reserved (e.g.,

buffers and tag array entries). The In-Flight Buffer is used as temporary data storage by the request

controller. The PCM and AEB controllers have DMA engines to read and write data from the

devices at a higher granularity than a single bus transaction.

In PMMA, all CPU transactions are made to the AEB, rather than the PCM. Any miss on the

AEB will read the page from PCM and store it in the AEB. Writes are done to the PCM devices

only when a dirty/modified page is evicted from the AEB (i.e., a writeback), which reduces the

total number of writes. Because writes in PCM are expensive in time and energy, a reduction in the

number of writes leads to better energy-efficiency and higher performance. Furthermore, a reduc-

tion in writes means that PCM cells will potentially “live” longer, thereby improving endurance.

During writeback of a dirty page, the memory manager checks for PCM device wear-out. A

write-read-verify process is done by our PCM controller: an evicted page is written to the PCM

device, it is read back and the read data is compared to the evicted page. The evicted page is kept

at the IFB until the write-read-verify process is done. If page wear-out is detected, that is, the write

operation is not successful, a spare is used to replace the “broken” page and the spare tables in the

AEB and the PCM are updated. Both tables are updated to ensure fault tolerance (i.e., the mapping

is not lost, due to PCM non-volatility) and good performance (i.e., the table is accessed from the

AEB).

Because the AEB is used as a data cache, tags are needed. A SRAM tag array is incorporated in

the Memory Manager (separately from data in the AEB) to permit a fast tag check (on the critical

path of all memory requests). The tag array is an SRAM implemented as an n-way set-associative

tag store. The size of the tag array is determined primarily by the number of pages available at
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the AEB. Associativity has a smaller impact. A larger associativity tag array requires more logic

than a lower associativity one. The associativity of the tag array has three main constraints: power

consumption (favors lower associativity), miss rate (favors larger associativity) and size (favors

lower associativity). A design constraint originates from the need to reserve area on the AEB to

store metadata. In a n-way set-associative array, each way maps a 1/n fraction of the data cache.

Hence, 1/n of the memory will not be used by the cache if one of the ways in a n-way is not

implemented. A larger associativity can tailor the 1/n to be closer to the fraction of the AEB

required by the metadata, a smaller associativity will waste memory by reserving more area than it

is needed.

The tag array is the largest structure in the MM; its size is linearly related to the number of

pages available in the AEB. A large page size reduces the size of the tag array for a fixed AEB

size. The size reduction of the tag array is an important reason to use large page sizes in PMMA,

this is evaluated in Section 3.3.4.

The In-Flight Buffer is used to increase parallelism and to decouple the PCM and DRAM

controllers. It is a small storage area on the MM that receives pages to be transferred to/from the

AEB and PCM. The IFB allows multiple transfers to occur simultaneously on the AEB and PCM

busses. The write-read-verify process to detect wear-out also uses the IFB. The data written to a

PCM page is kept in the IFB until the correct operation of the write is verified. This arrangement

decouples wear-out detection from the operation of the AEB and servicing of other requests but

increases the size of the IFB and requests buffer since the request will take longer to finish. The

IFB size is based on the number of requests that can be executing simultaneously at the system.

Its bandwidth requirements is the sum of the bandwidth of the AEB, PCM and the CPU interface.

Design choices here include implementing the IFB with SRAM or eDRAM, and choosing between

fast IFB technology or using a larger internal bus size. In PMMA, a SRAM IFB is used since the

size of the IFB (32KBytes and 128KBytes), is not large. If the IFB, DRAM controller (for the

AEB) and PCM controller (PCM main memory) are located on the same chip, the data bus can be

widened so the IFB can achieve the desired performance with almost any technology.

The IFB is managed by the request controller. A specific CPU memory request can use none,

1, or 2 buffers. The primary function of the IFB is to allow the decoupling of AEB and PCM

transactions for the same request. Without the IFB a larger latency would be imposed in the CPU
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requests. A request does not use the IFB when a needed page is in the AEB and the transaction

will occur between the AEB and the CPU interface since either the data is available already, in the

case of writes, or we want to forward it to the destination as soon as possible, in case of reads. The

use of the IFB in this situation would only increase latency without any additional benefit. The

request controller uses 1 buffer when a miss occurs (in the AEB) and 2 buffers when a miss with

an eviction is needed (see Section 3.1.4). In a miss, one buffer in the IFB is utilized to store the

page that is read from the PCM. The page comes in multiple bus transactions allowing the IFB

to fulfill other requests until the page read is completed. In a miss with eviction, the IFB is more

important, since it allows the PCM read to occur even though the allocated page in the AEB still is

being evicted. Without the IFB, the PCM read would have to be postponed until the AEB would

be able to receive the new data (after the page eviction or one PCM write). The request controller

uses a busy bitmap to manage the IFB, since only an information of busy or free is necessary for

an allocation, the specific buffers allocated to each request are stored in the request buffer. This

avoids the need to search the request buffer for an unallocated buffer.

Figure 4 shows that PMMA has a finite-state machine (labeled FSM) that controls the operation

of memory actions. The FSM uses the current request state and events coming from the DRAM

and PCM controllers to determine the next action to execute.

The FSM uses the request buffer to track memory requests. The request buffer stores, for each

CPU memory request, (1) information about the original CPU transaction, namely read or write,

CPU address, size of the transaction, CPU interface tag, write data in case of an write; and (2)

internal MM information, namely AEB physical page address, IFB buffers allocated and PCM

physical page address (see Section 3.1.4 below).

PCM and DRAM controllers are responsible for the interface with the actual memory de-

vices. These controllers are also responsible for scheduling requests to their respective devices and

implementing acceleration techniques like critical word first (see section 3.1.5 below). Memory

ordering hazards, namely RAW (Read After Write), WAR (Write After Read) and WAW (Write

After Write), are avoided in this implementation by requiring that all requests to the same page be

executed in order but requests destined to different pages can be reordered for better performance.

A more sophisticated approach could be used to disambiguate the requests allowing more paral-

lelism, but this requires more logic at the FSM and likely occurs infrequently since the CPU caches

25



would prevent transactions to the same address in a short distance (number of memory transaction).

The sequential ordering is kept for correctness and the request controller is responsible for check-

ing the request buffer to enforce it.

3.1.4 PMMA Operation

Figure 5: Simplified FSM state diagram for a single request

PMMA uses the CPU physical address to identify the page that will be used to fulfill the

request. The CPU physical address does not correspond to a specific physical location in the AEB

or PCM, since both rely on translation tables to correlate the CPU physical address to an AEB or

PCM physical address. The FSM in Figure 5 describes a simplified PMMA operation. The full

state machine has a very large number of states that are used to increase parallelism or are used

for the endurance algorithms. The necessary modifications of the state machine are described later

(see Page 28). In the figure, the action in a circle represents the operation executed to enter a state.

The arrows are the possible results of an operation.

During operation, the PCM page address of a new CPU request is checked against the request

buffer (state 1), to identify if the page used by this request is cached at the AEB or is being used

(processed) by another request, as shown in the Figure 6. A request can be blocked by a previous

request that uses the same page or if a previous request evicted the page that this request needs

and eviction process is still in execution (see Figure 9). In both situations (states 2 and 3), the new

request will be restarted when the previous requests finishes. The states on Figure 6 are designed

to maintain FIFO order for the requests that are directed to the same page, but allow reordering of

requests that go to different pages (enabling them to run in parallel). The shaded states in Figure 6
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correspond to states where the request is not in execution and waiting either for the checking if

the page is in use or waiting for previous requests to finish. State 4 in Figure 6 correspond to the

request in execution (AEB, IFB or PCM transactions will be executed).

Figure 6: Concurrency control and tag matching states of the FSM state diagram. Shaded states

maintain the sequential ordering of the requests.

The tag array is checked next (state 4). A hit implies that the AEB contains a valid copy of the

needed page and the CPU transaction can use the cached version of the page (state 5), as shown

in the Figure 7. A miss requires that the page in PCM be brought to the AEB before the CPU

transaction is executed (to be executed in states 6 and 7), as shown in Figure 8. In case of a miss,

state 4 also updates the tag array by replacing the previous AEB page entry address and status bits

with the information of the page being read from the PCM. State 4 is also responsible for allocating

an IFB buffer to receive the PCM page.

Figure 9 shows the relevant states whenever a miss with eviction occurs, requiring the AEB

cached page to be written back to the PCM (to be executed in states 8 and 9) before the AEB

cache page can be reused (to be executed in states 6 and 7). In case of miss with eviction, state 4

executes the same operation as in a miss and also allocates a single buffer in the In-flight Buffer

(state 4) because the eviction (AEB read and a PCM write) will be executed before the update with

the new page (PCM read and AEB write) can be executed. A single buffer can be used for both

operations, eviction and update. In a miss with eviction, a race can happen if a request to the page

that is currently being evicted is received by the FSM. To avoid the race, the FSM updates the tag

as soon as the request that caused the miss with eviction allocates this entry, prohibiting any new

requests to use the evicted page. Any new requests directed to the page that is in the process of
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being evicted will wait until the page is evicted and then they will be go to the tag array again

creating a miss and bringing it back from the PCM. This case is expected to be very rare since if a

page was selected for eviction it was not accessed for a while.

Figure 7: AEB Hit operation of the FSM state diagram.

Figure 8: AEB Miss operation of the FSM state diagram.

The diagram in Figure 5 is a simplified view and does not show the following optimizations

that actually exist in our design and implementation:

• Operation for state 4 can be done speculatively in parallel with state 1. The result of state 4 is

ignored if the FSM moves from state 1 to states 2 or 3.

• For a CPU read, the needed information is available inside the MM (at the IFB) at the end of

state 6 and data can be immediately forwarded to the CPU.

• A CPU write can finish even though the full transaction is not completed by using the MM as

a write buffer. This allows a response to be sent to the CPU at the end of state 6 or 8 because

the transaction has already started.
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Figure 9: AEB Miss with eviction operation of the FSM state diagram.

• For a miss with eviction, states 6 and 7 can be done in parallel with states 8, 9 by using different

in-flight buffers to store the data and with the constraint that state 8 is finished before state 7 is

started. This requires adding intermediate states to the FSM to account for the fact that any of

the two asynchronous transactions (AEB−→IFB and PCM−→IFB) can finish before the other.

It also requires two IFB buffers be allocated in state 4 instead of one and the IFB busy bitmap

to be updated.

The use of a FSM that allows parallel execution of transactions, e.g. states 6 and 7 in parallel

with 8 and 9, reduces the latency of memory operations and therefore increases the number of

requests pending at the MM, assuming the CPUs will be able to send more requests to the PMMA.

Even after a request sends a response to the CPU, it may stay in execution at the PMMA until

all the internal operations finish (e.g, writeback). The buffers must be sized properly, as lack

of resources would reduce PMMA’s throughput by reducing the number of requests it can support

simultaneously. The number of buffers can be estimated by computing the number of simultaneous

requests that the PCM subsystem of PMMA can support.

The wear-leveling mechanism, described in Section 4.1, requires modification to the state ma-

chine. Three additional operations are required to implement wear-leveling: mapping table access,

write failure recovery and page swapping.

1. Mapping Table Access

Before any read or write of a page from PCM, the mapping table in the AEB has to be accessed

to translate the physical address sent by the CPU (logical address in the context of the PCM)
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to the current physical PCM page address that contains that logical pages (See Section 4.1).

Figure 10 shows that an AEB read is necessary and has to occur before any PCM transaction

(states 6 and 9) in the FSM described in Figure 5.

2. Write Failure Recovery

Write failures require a simplified version of the swapping operation. In this simplified swap,

the new physical page is allocated from the excess capacity pool and no data is copied from

the new physical page. It is assumed that the page had no logical page data stored in it. The

failed write is reexecuted using the new physical page as the destination, and the old physical

page is discarded by simply not reinserting it in the mapping table, effectively removing this

physical page from the pool of available physical pages (see Section 4.1 and Figure 23). The

additional states are inserted after state 9 of Figure 5.

3. Page Swapping

Page swapping is the operation that implements the wear-leveling. A page swap exchanges

PCM physical pages between two CPU physical pages (See Section 4.1). In a page write to

PCM, a swapping operation can be triggered. In this case, a new physical page is selected, the

original value that exists in the new physical page is copied to the previous physical page and

the mapping table entries are exchanged. Figure 11 shows the transactions required to execute

a swapping operation. The original page is written at the new physical location, so effectively

this operation performs the swap of the physical pages between two logical pages. The FSM

in Figure 11 is inserted before state 9 of Figure 5.

Figure 10: Additional states for consulting the AEB Mapping table.

3.1.5 Performance Enhancements

A page is the unit of logically managed data at the PMMA. A block is defined as the amount of

data that is transferred to/from PCM in a single transaction. A block is transferred with multiple

bus transfers, each of which is called a bus transfer unit. Each bus transfer unit is composed
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Figure 11: Additional states required to execute a swap.

of sequential bus transactions each transferring a physical bus width worth of data. The physical

bus width, block and page sizes are defined by PMMA. The bus transfer unit is a property of the

specific bus protocol used (DDR2/3 or a variation). Some constraints affect the choice of sizes: a

page is always larger than a block, which is always larger than a bus transfer unit.

PMMA performance is improved by a number of techniques. These techniques are designed to

address the major limitations of PCM, such as large read/write latency and limited PCM bandwidth.

Critical word first. The use of critical word first in the requests that read data from PCM can lead

to a large reduction in latency. The PCM controller has to be modified to read data from the PCM

starting at the proper offset so the requested word is the first to be read. Typical controllers start

reading from the initial page address (0 offset). The PCM controller also has to inform the request

controller when the necessary data is available at the IFB, since it is only a subset of the whole

transfer.

AEB bypass. The IFB can be used to provide the data for read requests directly to the CPU

without waiting for all the data to be transferred from the PCM or to be sent first to the AEB. This

is clearly true for critical word first, when the CPU request that is waiting for the data was the one

responsible for the PCM request. It is also true when servicing a subsequent request to the same

page and the page is still being transferred. In this case, if the data corresponding to the requested

address is already available at the IFB, it is sent to the CPU to finish the request. If the data is

not available yet, it will be sent to the CPU as soon it is copied to the IFB. The implementation

of this improvement requires that the request controller dynamically query the PCM controller to
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determine whether a requested address is available at the IFB or scheduled to be transferred. If

the specific address is scheduled, the PCM controller will signal the request controller when the

address becomes available otherwise the request controller can already transfer the data from the

IFB.

Read-Write-Read (RWR) Read-write will be used to avoid sending writes to PCM that do not

modify the existing information already stored. In this case, each block of data is first read from

PCM, and only the bus transfer unit that contain modified information is sent as writes to PCM.

For each bus transfer unit written, an additional read is made, and the information is compared to

validate if the write was successful. In case of failure, a replacement page (write failure operation)

is allocated, and the failed one discarded. Most devices already implement a similar mechanism

(see Section 2.1.1) and which in this case it is redundant.

Page Partitioning. As previously discussed, a large page size reduces the amount of metadata;

however, it has the negative effect of increasing the transfer time, bandwidth and energy consump-

tion at the PCM and AEB interfaces. Page partitioning is a technique to lower metadata size and

offset the costs of a large page size. Each page is divided into subpages. A single entry in the tag

array is maintained for each page and valid and dirty bits are kept for each subpage. Because PCM

reads are much less expensive (in terms of energy and time) than writes, we propose a mechanism

to distinguish between the two operations and use large subpages for reads and small ones for

writes. A small write subpage reduces the number of bytes written to PCM. In turn, this reduction

lowers the time to write and consumes less energy. This optimization requires each entry of the

tag array to have a valid bit per read subpage and a dirty bit per write subpage. This is comple-

mentary to the RWR mechanism mentioned above because it avoids initiating a write operation to

PCM, where RWR would have to read each block of data from PCM to identify that the block is

unchanged.

Cache replacement policies. Due to PCM’s asymmetry on reads and writes, eviction of a dirty

block from the AEB should have a lower priority over a clean block. We designed the clean-

preferred LRU algorithm that modifies a traditional least-recently used (LRU) algorithm to evict

the next-to-least-recently used page instead of the least-recently used page when the least-recently

used page is dirty and the next-to-least-recently used page is clean. This algorithm tries to strike a

balance between keeping dirty pages and keeping younger clean pages by only looking at the last
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two LRU pages. This algorithm is useful in PCM, because it trades an expensive operation (a write

to the PCM) for an increase in the probability of requiring a lower cost operation, namely a read to

the recently evicted clean page.

We note that Critical word first and AEB bypass are very useful and have no negative impact

since they always reduce latency with a little modification of the FSM and the PCM controller.

Clean-preferred LRU could have a theoretical negative impact (i.e, larger number of read misses),

but it is expected to have a positive net effect in all non-pathological benchmarks. Thus, they are

implemented in PMMA. The effect of page partitioning is examined in Section 3.3.3, since the

impact is less predictable.

3.2 ARCHITECTURE EVALUATION

A PMMA simulator was designed and implemented to evaluate the performance and energy impact

of the memory architecture; the input to the simulator is a memory trace, which is obtained by

collecting memory references with Simics [29]. We use Simics to simulate the CPU, L1 and L2

caches with a zero-latency main memory. In other words, in the resulting memory traces, delays are

caused only by the CPU, computation (multithreaded applications), and caches (L1/L2 latency).

The memory trace contains, for each memory request by the CPU, a time stamp (assuming zero

memory latency), type of operation (read or write) and the CPU virtual and physical address used

in the operation.

3.2.1 Simulator

Figure 12 shows a high-level view of the simulation architecture and the internal structure of the

PMMA simulator. The simulator is able to model a conventional DRAM architecture and PMMA,

allowing for a direct comparison between the two architectures in the same experimental frame-

work. The input to the simulator is a memory trace and a configuration file that contains the

description of the parameters used in the simulation. The configuration file can alter many charac-

teristics of the memories or enable or disable all optimizations.
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Figure 12: Simulator Architecture

The PMMA simulator has a memory activity generator module that processes the memory

trace and initiates memory requests to other simulation modules. The simulator also models the

memory manager, the PCM controller and devices, and the DRAM controller and devices. The

DRAM, PCM and MM simulators export the same API that implements a split transaction model

with callback, allowing the simulation of other architectures by reconnecting the modules. A

split-transaction model allows asynchronous operation by decoupling the initiation of a request

and its response. For example, the simulator uses FIFO with priority scheduling for all shared

resources and accounts for latency due to resource contention, like request buffers, IFB buffers,

internal busses, PCM controller queue, DRAM controller queue, PCM bus and DRAM bus. PCM

and DRAM controllers have internal queues of finite size (parameterizable). PCM and DRAM

controllers implement flow-control by using a queue-full signal that back-propagates and halts

the sender until the queue can accept new requests. The parameters used to obtain the results of

Section 3.3 are shown in Table 2.

Timing and power models for DRAM were extracted from DDR2-DRAM devices from Mi-

cron [34]. Two DRAM devices were modeled, one is a better fit for a small and fast DRAM

memory and the other is more suitable to a large but slower DRAM memory. The latter represents

the largest capacity chip available today, while the former is a fast and wide device that can be

used for AEB (which requires a small number of DRAM devices, privileging speed over size).
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Parameter PCM 333MHz 533MHz

DRAM DRAM

Bus Size (Bits) 8 8 16

# Banks 8 8 8

# Rows 32768 16384 16384

# Columns (Bytes) 1024 1024 1024

Bus Cycle Time (ns) 16.7 3 1.87

Read Latency (ns) 66.8 15 15

Write Latency (ns) 334 15 15

Read Bus Speed (MHz) 66 333 533

Write Bus Speed (MHz) 33 333 533

Idle Current (mA) 1 7 7

Read Current (mA) 10 160 170

Write Current (mA) 70 160 170

Vdd (V) 1.8 1.8 1.8

Max requests in queue 16 16 8

Table 2: Parameters used in the simulation
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The implemented model supports memory DPM (Dynamic Power Management) [34], where the

memory enters a lower power state when idle. DRAM refresh was not modeled because it is a

small percentage of energy consumed (around 1% to 5% [34]) and has a small impact on perfor-

mance (also around 1% to 5% [34]). By not including DRAM refresh, the energy and latency of

the DRAM-only system with be underestimated giving it an advantage when compared to PMMA;

PMMA is able to show performance and energy improvements even without accounting for the

refresh impact.

The primary function of the memory activity generator is to simulate sending the requests to the

off-chip memory and accumulate statistics for each request. Given the zero-delay memory traces,

the memory activity generator determines the request issue time assuming that the CPU sustains a

single memory request at a time and the difference between the time stamps is due to computing

time and L1/L2 latency, since the traces were created with a zero-latency memory the timing has

to be adjusted. A new memory request is only issued to PMMA after the previous requests finish

and the computing time has elapsed with computing time being estimated by the interarrival time

of the requests. For example, assume that in the trace file request N1 had a timestamp TS1 and

request N2 had timestamp TS2, since in the trace file the memory latency was zero, TS2 − TS1

correspond to the computation and cache latency. Assume that the memory activity generator

sent request N1 at timestamp TE1 to the PMMA simulator, and the response to the request N1

came back at timestamp TER1. Request N2 will be sent to the PMMA simulator at a timestamp

TE2 = TER1+(TS2−TS1). This models a CPU that can sustain only a single pending memory

request and no write-buffer at the lowest level cache (L2 in our case).

The MM simulator models the operation of the Request Buffer, the Tag Array and request

controller. The Request Buffer model assumes that it will process a single event at a time and all

events consume a fixed amount of time with a FIFO queue at the input to order the events in case

of contention. The tag array can only process a single query at a time (also FIFO), allowing a more

accurate model of a single-ported cache. The FSM (request controller) is modeled as a very fast

state machine, compared to DRAM and PCM access time, with a fixed latency for all operations,

such as initiating a PCM or AEB memory request.

Each of the DRAM and PCM simulators has a memory controller with a finite size input

queue. Requests can be reordered. The memory devices (chips) can be aggregated in multiple
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Figure 13: Physical Memory Architecture

ranks, DIMMs and busses. A rank is a set of devices that are active to respond to a single request,

a DIMM can be composed by one or more independent ranks. Each DIMM is connected to a

single bus and the simulator allow the use of multiple independent busses. Figure 13 shows how

the memory is modeled in the simulators. Each chip can have multiple independent banks and the

DIMM bus width is configurable in multiples of device bus width. Busses, devices and banks uses

a modified FIFO scheduling with reordering, which can only occur when a later request can be

scheduled without changing the schedule of previous requests or a higher priority request arrives,

priority is defined as a request that is in a critical path for a CPU request. This reordering allows

low latency requests for banks that are free to proceed when a long latency operation (PCM write)

happens in another bank on the same bus.

A PCM or a DRAM memory request has to be mapped to the devices that will serve this

request and the mapping function uses the trace-generated physical address provided to determine

which bus/DIMM/rank/bank will be used for this access. The mapping used assumes that each bus

transaction (a bus transfer unit) is contained in a single bank, so a transaction will involve only a

single bank.
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3.3 EXPERIMENTS AND RESULTS

3.3.1 Experimental Setup

The Simics configuration used to generate the traces has four 1.6GHz x86 cores, each with ded-

icated L1I and L1D caches (4-way, 32KBytes, cache line size of 64 bytes and a hit latency of 1

cycle) and each core pair share a L2 cache (16-way, 4 MBytes, cache line size of 64 bytes and a hit

latency of 6 cycles). The traces were collected until 200Million main memory accesses were seen,

which is enough to validate the architecture because a large page size makes the AEB warm-up

with a few million main memory requests (around a few hundred million instructions). The warm-

up with a low number of requests happen because the transfer unit is a sub-page that is larger than a

typical cache line, otherwise the warm-up period would be at least one or two orders of magnitude

larger.

The baseline DRAM main memory system was configured as having a total of 16GBytes and

using a 333MHz 64bit DDR2 bus with 16 DIMMs. Each DIMM is a 1GByte DRAM composed

of 8 memory devices each with 1Gbit. The PMMA was configured with an AEB with a physical

size 512MBytes of DRAM memory. The AEB interconnection to the MM is a single 64bit DDR2

533MHz bus. The DRAM memory at the AEB is composed of 4 DRAM memory devices each

with 1Gbit of memory, bus of 16bits and 533MHz bus speed. The logical size of the AEB was

varied to identify the impact of the AEB size on the applications, but the physical configuration

was kept constant to keep the energy and timing information comparable. The PCM memory is

a 16GByte using a similar configuration as the DRAM-only system also with 16 DIMMs with

each DIMM with 1GByte. The PCM interconnection to the MM is a single 64/128bit 66/133MHz

DDR2 bus.

The benchmarks used to validate the system were chosen based on memory footprint and main

memory utilization. Multithreaded applications and a mix of applications were used to validate the

design with multicore systems and increased memory pressure. PARSEC [6], SPECcpu2006 [8]

and SPECjbb [8] were the sources of benchmarks used. From PARSEC, Canneal and Facesim were

used since they are multithreaded, have a large memory footprint (2GBytes) and have a high miss

rate (≥ 10%) at the AEB. From SPECcpu2006, GCC, mcf and bwaves were chosen because they
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have the largest memory footprint and are main memory intensive (highest miss rate) among all

the applications, according to [17]. A mix of SPECcpu2006 applications, bwaves, GCC, mcf and

bzip2 were used as a multiapplication, multitasking benchmark (seen as SPECmix in the results).

SPECjbb2005 was also used because: (a) it has a large memory footprint, around 2GBytes; (b)

it is main memory intensive; (c) it is multithreaded; and (d) it represents a large Java application,

which have specific memory access patterns due to garbage collection.

In the simulations, we record how long it took to serve all memory requests in the trace and

the energy used for each element (MM, PCM and AEB). These metrics allow comparison between

PMMA and a conventional DRAM architecture with energy-delay product as the primary metric

(a small performance loss is acceptable if that generates large energy gains).

3.3.2 AEB and Page Size

Figure 14: Impact of AEB size (112, 224 and 448MBytes) and AEB page size (512, 1KByte,

2KBytes and 4KBytes) on energy-delay normalized to a DRAM-only memory (gain is positive).

Figure 14 compares the impact of different AEB sizes and AEB page sizes on energy-delay.

All values presented are normalized against a baseline, namely a DRAM-only main memory sub-

system. Positive results indicate improvements compared to the baseline. PMMA includes the

use of critical word first and AEB bypass enhancements. The main result is that PMMA in most

configurations (AEB cache size, page size) have large gains in energy-delay, up to 65%. Larger
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Figure 15: Impact of AEB size (112, 224 and 448MBytes) and AEB page size (512, 1KByte,

2KBytes and 4KBytes) on energy normalized to a DRAM-only memory (gain is positive).

Figure 16: Impact of AEB size (112, 224 and 448MBytes) and AEB page size (512, 1KByte,

2KBytes and 4KBytes) on delay normalized to a DRAM-only memory (gain is positive).
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AEBs are always beneficial for the applications but have a negative impact on energy, performance

and system cost. Some applications have a higher profit from a larger AEB than others, namely

Canneal, Bwaves and SPECjbb.

In contrast, page size has a mixed effect, although three different patterns can be seen in the

figure when page sizes are increased: marginal increase in energy-delay (SPECmix, Bwaves and

MCF), much worse energy-delay (Canneal and SPECjbb), and no variation. In other words, in-

creasing page size yields either small gains or almost exponential negative effects. This clearly

shows that small pages should be used for performance. Unfortunately, small pages increase the

size of the Tag Array, which becomes a limiting factor since the size of the Tag Array is dictated

by how much area of the chip can be allocated to it. The higher latency and smaller bandwidth

available on an off-chip Tag Array would negate the performance gain achieved with smaller page

sizes.

Figure 14 can be better analyzed by looking at each metric separately. Figure 15 shows energy

gains only. PMMA shows positive energy gains of up to 60% on all configurations for all applica-

tions, with the exception of Canneal and SPECjbb. Canneal and SPECjbb show energy gains for

smaller page sizes when the AEB is smaller and for all page sizes when a larger AEB is used. As

with energy-delay, energy gains also always improve with a larger AEB size but page size does

present a more complex relationship with energy where some applications benefit from a larger

page size and others prefer a smaller page size. The applications that benefits from larger pages,

presents higher intrapage locality, profiting from the prefetching mechanism.

Figure 16 shows delay (application runtime) gains and losses, positive and negative, respec-

tively. Only modest delay gains on most benchmarks can be achieved since AEB has a similar

latency compared to the DRAM architecture. The gain comes from the IFB and the prefetching

that is a natural consequence of transferring pages from the PCM to the AEB. Applications that

present temporal locality at a page level will benefit from this reduction in latency, but the gain is

not expressive, as seen in Figure 16, since the prefetching is intra-page only and do not improve

inter-page accesses. Canneal, SPECjbb and Bwaves are the only applications that show perfor-

mance loss; Canneal and SPECjbb, as mentioned before, show a very strong negative relationship

with page size. This is because these applications have poor spatial locality at the page level as

shown in Figure 17. Otherwise, Bwaves does show a lower negative impact with larger pages than
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the other two applications that originates from a higher intra-page locality that offsets some of the

negative impact. Poor spatial locality and high miss rate is very detrimental to PMMA because

every miss transfers a whole read subpage that only a subset is useful and the high number of miss

requires a large number of transfers. The PCM bus becomes the bottleneck and limits the perfor-

mance of PMMA. Canneal has the largest measured (AEB) miss rate and is the only application

that shows increase in (AEB) miss rate when a larger page is used. This shows that Canneal has

a large memory footprint but also has little short-distance spatial locality (4K page). Bwaves is

also an interesting case: even with a large cache, the miss rate is large. However, the miss rate is

reduced by 75% with a large page size, see Figure 17. This indicates strong short-distance locality

with poor global locality. The beneficial effect of using a larger page size (essentially prefetching)

is only realized if the miss rate is substantially reduced when a large page size is used. Otherwise,

the PCM bus bandwidth will be consumed transferring whole read sub-pages when only a fraction

of it is useful, wasting bandwidth and limiting the performance. Only a few of the benchmarks

tested have sufficient short distance spatial locality to benefit much from large pages.

Figure 17: AEB Miss rate per application, AEB size (112, 224 and 448MBytes) and AEB page

size (512, 1KByte, 2KBytes and 4KBytes).

From a design perspective, a smaller AEB size is preferable since it allows the use of faster

DRAM memory. The densest DRAM devices tend not to be the fastest and also if more than one

rank is needed, a faster point-to-point interface cannot be used. From our experiments, an AEB

size of 224MB satisfies the needs of almost all tested benchmarks. Hence, this AEB size is used

as the default value in the remaining experiments. Page size determination requires more analysis

since small page sizes are more efficient (smaller energy and delay) but considerably more costly
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in terms of metadata. A 2KBytes page will be used since in the next Section page partitioning

will be able to offset the performance loss. A 4KBytes page is too large and even the use of page

partitioning is not sufficient to achieve an acceptable performance.

3.3.3 Page Partitioning

In Figures 18, 19, 20, and 21, energy-delay improvements (positive) or losses (negative) are shown

when Page Partitioning is applied. In these figures each configuration is labeled by page size–read

subpage size–write subpage page if partition is applied otherwise only the page size is shown.

Figure 18: Impact of write page partitioning (256, 512, 1K) with a 2KBytes page on energy-delay

normalized to a DRAM-only memory. Each configuration is labeled Page Size[–Read subpage

Size–Write subpage Size].

Figures 18 and 19 shows the impact of write partitioning when applied to 2KBytes or 4KBytes

pages. The results show gains in all configurations and applications. As expected, smaller write

subpages have higher gains, which indicates that pages are frequently being evicted with most of

it untouched. It is also apparent by examining Figures 18 and 19, that even though a page size

of 2KBytes and 4KBytes can have bad behavior for some applications (Canneal and SPECjbb),

write page partitioning can mitigate a loss in energy-delay and even change a loss into a gain.

Some applications such as Bwaves, MCF and SPECmix have a better energy-delay using 2KBytes

page and 256Bytes write subpages than any other tested configuration. Figure 19 shows that using

subpages does improve the energy-delay but not enough to offset the impact of a 4K page for

Canneal.
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Figure 19: Impact of write page partitioning (256, 512, 1KByte, 2KBytes) with a 4K page on

energy-delay normalized to a DRAM-only memory. Each configuration is labeled Page Size[–

Read subpage Size–Write subpage Size].

Figure 20: Impact of both read (512,1KByte and 2KBytes) and write page partitioning (256) with a

2KBytes page. Each configuration is labeled Page Size[–Read subpage Size–Write subpage Size].

44



Energy-delay results for different sizes of subpages for reads and writes (write subpages are

smaller than read subpages) are shown in Figure 20. Results are mixed. Applications in which read

subpages are beneficial are the ones that have less spatial locality and also have high miss rates,

so reducing the congestion at the PCM bus improves performance. The other applications suffer

since any eviction will remove a whole page but a miss will only bring one subpage, which loses

the prefetching effect of large pages. The use of read subpages allows the designer to use a smaller

Tag Array for the same AEB size as analyzed in the next Section.

3.3.4 Technology Constraints

This section, two main constraints of PMMA are analyzed to identify the impact and solutions.

The first is the MM size that is determined by the Tag Array and IFB, the largest structures of the

MM. The impact of changing PCM technology characteristics, bus speed, latency, bus size is also

analyzed to determine what would be impact on PMMA if PCM devices are slower than predicted

A larger AEB (448MBytes) and smaller pages (1KByte) would achieve the highest performance

and significant energy savings mitigating a slow PCM memory, but also would be difficult to

implement by requiring a large Tag Array. Smaller configurations of AEB with larger page sizes

can reduce the size of the Tag Array, reducing the area occupied and the PMMA.

3.3.4.1 MM size PMMA physical size is dictated by the size of the tag array and the IFB. The

tag array can be seen as the tag portion of a CPU cache and the IFB is a RAM block. Note that

large pages sizes lead to a small tag array, with a large IFB. The IFB must have an integer multiple

of pages, accounting for at least one buffer per possible pending request at the request buffer. Page

partitioning changes the IFB size by transferring at most one read subpage at a time (not the whole

page) reducing the IFB size proportionally. At the Tag Array there exists an entry per available

page at the AEB, so it depends on the AEB size and page size. Page partitioning also increases Tag

Array size by requiring more bits per entry. Figure 21 shows the impact of page size and subpage

sizes (read and write) on the MM size (obtained from Cacti 5.3) compared to a 2KBytes page (no

read or write subpages) for a 224MB AEB size when accounting for the area consumed by the IFB

45



and Tag Array. Note the 2K-1K-256 have the same size as 2KBytes, the IFB is much smaller (half

of the size) and compensates from the increased size of the Tag for each entry.

Figure 21: Impact on MM size (Tag Array and IFB) of AEB page size (1KByte and 2KBytes) and

read (512, 1KByte and 2KBytes) and write page partitioning (256, 512 and 1KByte).

3.3.4.2 PCM technology PCM devices are available only as prototypes and have interface

specifications that are slow compared to DRAM devices in production today. Our base design

used a 133MHz device with a 60ns latency, but we carried out a sensitivity analysis to find the

impact of PCM technology. Figure 22 shows the impact of reducing the speed of the PCM bus

from 133 to 66 MHz and lowering latency of the PCM devices from 60ns to 30ns. The figure

shows clearly that a lower speed PCM would hurt some applications that are more sensitive to

bandwidth, high miss rate and lower locality (e.g., Canneal). Lower speed PCM would only be

useful in a small page configuration (ruling out large pages). This result also shows that reducing

PCM latency has minimal effect on energy-delay.
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Figure 22: Impact of PCM bus speed (66 and 133MHz), PCM bus latency (30,60ns) and AEB page

size (512, 1KByte, 2KBytes and 4KBytes) on energy-delay.

47



4.0 PCM RELIABILITY AND ENDURANCE IMPROVEMENTS

PCM endurance is one of the major hurdles that limits the use of PCM in main memory. We pro-

pose a wear-leveling algorithm that uses swapping of pages, exchanging heavily written physical

pages for lightly written ones. The technique avoids expensive operations, such as searching and

accounting, by selecting the pages using a random algorithm. Even though the selection is ran-

dom, the algorithms achieve a lifetime that is close to the theoretical maximum for large number

of pages. The memory system has to be protected from bad program behavior, defined as inten-

tional or unintentional behavior that leads to lifetime reduction. The applications try to undo the

wear-leveling by wearing some pages with a faster rate. Our algorithm is naturally resistant since

the random selection avoids any pattern that can be explored to cause more skewed wear (instead

of an uniform wear).

4.1 SWAPPING-BASED WEAR-LEVELING

Although a reduction in the number of writes will increase the lifetime of a PCM main memory

as shown in Chapter 3, the distribution of writes across the PCM devices can still affect lifetime.

Our experiments show that applications often have a highly skewed distribution of writes (i.e.,

AEB writebacks in PMMA). The benchmarks used had 70% of the writes directed to only 1% of

pages and 90% of the writes only used 20% of the pages (skewed behavior). The other pages are

primarily read only. A PCM memory system that does not counter this behavior quickly wears

out the heavily written pages, leading to a lifetime for the overall PCM main memory of a mere

months. Since the behavior of the applications is detrimental to the lifetime of the memory, a

mechanism is needed to prevent this behavior to affect from affecting the lifetime.
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As mentioned in Section 2.1.2, a wear-leveling mechanism can be used to distribute the wear

evenly over the pages, with the goal of ensuring that all pages have a similar amount of wear

at any time. PMMA is designed to replace a DRAM-only main memory implying that wear-

leveling should be achieved without support of the applications, or requiring modifications in the

OS or CPU architecture. The wear-leveling mechanism should also be impervious to adversarial

behavior of applications (e.g. malware). A swapping-based wear-leveling technique with very low

overhead algorithm is proposed in this dissertation to support the above two requirements of being

self-contained and resistant to attacks.

The skewed behavior of applications determines that a small number of addresses will be the

destination of a large percentage of all writes. Assuming the memory subsystem is self-contained,

this behavior implies that the association between a CPU physical address and the corresponding

PCM physical address needs to be alterable to distribute the writes to the same region of CPU

physical addresses over a larger number of PCM physical addresses. The presence of this capabil-

ity, or alterable translation between CPU and PCM physical addresses, creates the appearance to

the CPU that it is still writing to the same address even though different PCM physical locations

are used to store the information. A configurable mapping function or a mapping table can be used

as a translation mechanism.

A swapping-based wear-leveling exchanges data stored in two PCM physical locations and the

corresponding CPU physical to PCM physical mapping. The CPU view of the memory is kept

consistent by ensuring that a CPU physical address points to the same data even though it is stored

in a different PCM physical address during the system lifetime. A naive implementation of a swap

operation requires two reads and two writes to the PCM memory, reading the data in the original

location and storing it back in the new location. A swap operation will decrease the memory

lifetime by increasing the total number of writes. Hence, reducing the number of swap operations

is essential to maximize the memory lifetime.

Although the swap mechanism defined above enables wear-leveling, specific polices can be

defined by electing among the few choices of the following components.

• Granularity

Granularity defines the amount of data that is used as origin or destination for a single swap

operation. A larger granularity requires a smaller mapping table but increases the cost of each
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swap operation by requiring the exchange of a larger quantity of data. It also reduces the

effectiveness of the wear-leveling because the number of possible PCM physical addresses can

be allocated to a CPU physical address is smaller, assuming a fixed memory size.

• Frequency

Frequency defines how frequently swap operations are executed by defining the specific condi-

tion that will trigger a swap. Swapping more frequently makes the wear-leveling more effective

by reducing the number of writes that can be directed to a single physical location before it

is swapped. A high frequency increases overhead and decreases lifetime, since each swap op-

eration adds extraneous reads and writes to the PCM memory. It is desirable to reduce the

frequency so memory performance is not significantly affected and lifetime is maximized. In

the implementation, a swap operation is executed every 256 to 512 writes to PCM.

• Victim Selection

Victim selection defines which pages will be subjected to a swap operation. The selection

of the pages of the swap operation has a large impact in determining the effectiveness of the

wear-leveling. Poor choices of pages to swap, such as two highly written pages or two lightly

written pages, do not improve the wear-leveling and can be damaging by just adding writes to

the physical locations without improving the wear-leveling.

• Mapping Mechanism

A mapping mechanism defines how a CPU physical address is translated to a PCM physical

address. A number of mapping mechanisms have been proposed, low overhead ones, such as

start-gap [40], which uses a configurable function that computes the address using a few pa-

rameters, or a more flexible but more expensive mechanism that uses a mapping table (storing

the PCM physical address that corresponds to each CPU physical address).

A number of swapping-based wear-leveling algorithms have been proposed (see Section 2.1.2),

each with different policies and algorithms for components, such as start-gap [40] that propose a

new mapping mechanism or segment swapping [48] that uses a granularity of 1MByte with a victim

selection based on a LFW. Our approach is based on a novel mapping algorithm to be described in

the next section.
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4.2 OUR APPROACH

Our approach is based on the skewed behavior of the applications where a small subset of the

CPU physical addresses is the destination of the majority of the writes. Hence, the PCM pages

that correspond to these CPU addresses are the pages that need to swapped to avoid over stressing

them. This behavior privileges a flexible association between a CPU page to any PCM page, since

the highly written CPU pages are not necessarily clustered. A mapping table is used to map a

CPU physical page address to the corresponding PCM physical page address allowing any to any

mapping. Our scheme, using the components described in the previous Section, is defined by:

• Victim Selection Mechanism This mechanism is at the center of our algorithm. Our victim

selection mechanism is a very low overhead scheme that avoids high cost operations, such as

searching and the need to keep statistics. It is based on the previous observation that the highly

written pages are the ones that need swapping, so a PCM physical page that is currently being

written is a good candidate and the other PCM physical page should come from the read-only

or lightly written pool of pages. Assuming a that the number of highly written CPU pages

is small, a random selection of a PCM physical page has very low probability of choosing a

page that is a highly written one. Using a PCM page that is the subject of a write to PCM that

is in execution allows savings in the number of additional operations necessary for the swap:

instead of the 4 operations (two reads and two writes), only two operations are needed, a read

an a write.

• Granularity Our In our algorithm we use page level (1KByte to 4KBytes) granularity. In

Section 4.2.1, it is shown that 4KBytes is enough to achieve the expected lifetime (8 years), but

much larger pages have a large negative impact on lifetime. A swap operation will exchange a

page worth of data between the two PCM physical pages. A smaller page size would reduce the

swap overhead and potentially increase lifetime, by distributing the wear over a larger number

of PCM memory cells, on the other hand it increases the mapping overhead by requiring more

entries in the mapping table.

• Mapping Mechanism A mapping table is used as the mapping mechanism. The table is in-

dexed by the CPU physical page address and each entry contains the corresponding PCM phys-

ical page address. The mapping table contains one entry for each PCM physical page, where
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only a subset is accessible by the CPU since it is assumed that excess capacity is available at

the PCM.

• Frequency Our algorithm decreases the overhead of the wear-leveling by swapping infre-

quently. A swap is performed only when a write to PCM is being executed, our trigger to start

a swap operation is based on the number of PCM writes seen since the last swap executed.

Term Description

M Number of PCM physical pages

L Number of CPU physical pages

N Number of excess capacity pages

L1 CPU physical page being written

L2 CPU physical page begin swapped

P1 PCM physical page that current allocated to L1

P2 PCM physical page that current allocated to L1

Table 3: Parameters and terminology used in Swapping-based Wear-leveling.

Table 3 present the terminology used in the following analysis. Our swap algorithm is formally

described in Algorithm 1. The support architecture for mapping table is describe in the Figure 23.

The swap algorithm is based on the expectation that L1 will have more writes than L2, so a

swap of the PCM physical pages (P1 and P2) that supports the CPU physical pages (L1 and L2)

will equalize the number of writes. The “swap condition” in Algorithm 1 implements the triggering

condition (see frequency component). Since a swap operation adds additional writes (both PCM

physical pages have to be updated), frequent page swapping will lower memory lifetime. A natural

condition to trigger a swap happens when the number of writes to Li’s physical page crosses a

threshold. An implementation that can determine when this condition is met requires a counter

per PCM physical page. A less precise but much lower cost alternative is to use a single global

counter. A swap is done when the total number of writes to the whole PCM crosses a threshold.

The loss of precision means that there can be more uneven wear – some pages receive more writes

than others, and the chosen page to swap may not be the one with with the highest number of
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Algorithm 1 Swapping-based Wear-Leveling Algorithm
{Writeback of CPU physical page L1 onto a PCM physical page P1}

if SwapCondition() == FALSE then

write L1 data on P1

else

L2, P2 = SelectSwapTargetPage()

P1 ⇐ P2 {Copy data from P2 to P1}

Map[L2] ⇐ P1 {L2 points to P1}

Map[L1] ⇐ P2 {L1 points to P2}

write L1 data on P2

end if

End.

{Swapping Condition}

Function SwapCondition()

NumberWrites++

if NumberWrites ≥ Threshold then

Return True {Swap}

else

Return False {Proceed with write}

end if

End SwapCondition()

{Select the target CPU physical page L2 and PCM physical page P2}

Function SelectSwapTargetPage()

P2 ⇐ Random(0..Number of PCM pages)

L2 ⇐ CPU Physical page mapped to P2

Return L2 and P2

End SelectSwapTargetPage()
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Figure 23: Architectural support for Swapping-based Wear-leveling.

writes. However, it is expected that the difference in wear will “even out”, as the number of writes

increases. The global counter has the desirable property that highly written CPU physical pages

will have higher probability of being swapped, which happens in most applications due to their

skewed write distributions.

Our swap algorithm implements victim selection by selecting the PCM physical page being

written as one of the pages to be swapped since this reduces the swap operation overhead by half

(two operations instead of four). The use of the current PCM physical page being written also

has the benefit that the corresponding CPU physical page has a high probability of being a highly

written page, and it is one that it is desirable to swap. An adequate selection of a target PCM

physical page (P2) as the destination of the swap is crucial to achieve uniform wear. A bad choice

would trade two physical pages that have a similar number of writes. The best choice intuitively

is the least-frequently written (LFW) PCM physical page. However, finding the LFW page is

extremely expensive due to the large number of physical pages that have to be searched to find the

minimum count. Furthermore, LFW requires a counter per page and that the counter be updated

at each write to the physical page. A much simpler solution picks a random physical page as the
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target. The probability of choosing a highly written target page is low due to the large number

of physical pages and the small number of highly written pages. The random algorithm should

ultimately approximate LFW for a large number of writes, since the probability of choosing a

highly written page is small and all pages should be chosen in one point of time to be allocated to

a highly written page.

Figure 23 presents the architecture that implements our swap wear-leveling. The swap-based

wear-leveling algorithm uses a mapping table to translate between a CPU physical page address

and PCM physical page address (See Section 3.1.2 for PMMA implementation). It is indexed by

CPU physical page number; each table entry contains the PCM physical page address for a CPU

physical page. In a swap, two entries are chosen according to the victim selection mechanism

and both the entries in the mapping table and the data in the PCM physical pages are exchanged,

executing the swap. The architecture in Figures 23 supports the existence of excess capacity on

the PCM memory and allows graceful degradation by retiring pages. The fence register is used

to implement retirement by restricting the choice of pages to that can be used. If a write failure

happens, the failed PCM physical page is discarded and the PCM physical page that is currently

allocated to the entry that is pointed by the fence register is selected to be used by the CPU physical

page, with the fence register being decremented. Note that no information is lost because the page

pointed by the fence register is not currently used by a CPU physical page. Decrementing the fence

register retires the failed page by not allowing it to be used in a swap or write failure operation.

The mapping table present on the architecture, could be portrayed as creating excessive size

and time overhead but its size is small relative to PCM size. For example, a 4GBytes PCM with

2KBytes page size needs only 6MBytes (using 3 bytes per entry). In PMMA (see Section 3.1.2),

the mapping table is kept in both PCM and DRAM, reducing the time overhead. The existence of

a copy in the the PCM allows it to be persistent but creates the problem of endurance of the cells

that support the mapping table. A write-failure with page replacement can be used to guarantee the

reliability of the mapping table. The entries are individually updated, since both memories support

byte-addressing, and an update will only be required when a swap is executed for this specific CPU

physical page. This is a fraction of the number of writes to the PCM physical pages.

The swap-based wear-leveling algorithm and the supporting architecture allows the use of

small page sizes (smaller than 4KBytes). The primary reason is the use of a victim selection mech-
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anism that has constant overhead, independent on the number of pages. A small page size reduces

overhead since less data needs to be copied and creates a larger pool of possible destinations which

to distribute writes. A small page size also has a higher probability of avoiding specific application

behaviors that would impact lifetime. Larger pages would map a smaller number of CPU physical

addresses to each PCM memory cell, increasing the variation on the number of writes per address.

The disadvantage of a small size is the need to map a larger number of pages, since each CPU

physical page can map to any physical page. The need for small page sizes can be eliminated if the

applications does have a lightly skewed intra-page distribution of writes. The benchmarks tested

have a highly skewed inter-page distribution but a very small intra-page variation on the number

of writes. In PMMA, the wear-leveling granularity should be equal or larger than the largest sub-

page used, this guarantees that a single access to the mapping table is sufficient to access all the

data, otherwise multiple access to the mapping table would be necessary. Figure 24 shows that

the variation on the number of writes directed to each of the cache lines (64 Bytes) in all pages

(2KBytes page size) is small, differing by less than 3%. Figure 24 is constructed by summing all

writes directed to a single cache line independent of the specific PCM physical page the write as

directed to. The small difference removes the need for a smaller swapping page size or a specific

intra-page wear-leveling algorithm.

Our implementation of the swap algorithm uses a global write counter for the swap condition

and randomly selects the target page. The global counter is a decrement counter initially loaded

by a random value and a swap is executed when the counter underflows. A fixed threshold would

create a pattern that could be explored by an adversarial application to prevent wear-leveling to

occur. We use random page selection due to its low cost – it avoids the need for page usage

counters.

4.2.1 Simulation Set-up

To understand the effectiveness of our techniques, we evaluated their impact on PCM lifetime.

We used the same setup described in Section 3.2 with PMMA as the PCM main memory archi-

tecture. We configured PMMA with a 4GBytes address space, a 2KBytes page, and a 256Bytes

write sub-page because this page/sub-page configuration had the best performance average for
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Figure 24: Variation on the number of writes directed to each cache line aggregated for all writes .

our benchmarks. The DRAM page cache (AEB) uses 224MBytes. The remaining 32MBytes of

DRAM holds the mapping table. The AEB is mapped as a 14-way set associative with each set

having 16MBytes.

The simulator used in Section 3.2 is extremely accurate, modeling the system all the way

down to the bus and device event level. This simulator was used to obtain performance and energy

results for the wear-leveling algorithms. To measure lifetime, since a very large number of writes

is necessary to damage a page when our techniques are modeled (i.e., a 107 write limitation, when

multiplied by a few million pages would need almost 1013 memory requests), we used a separate

fast behavioral simulator. Even with a real system it would take 8 years (expected lifetime) to

damage enough pages. A trace of writes to PCM from the PMMA simulator was used as input to

the endurance management simulator. The trace can be repeated or mixed with other traces to get

the required number of writes to damage a page. A single trace obtained from a PMMA run of

each benchmark is orders of magnitude smaller than necessary: we used 2 billion PMMA memory

access for each benchmark (some benchmarks ended before the that number could be achieved),

but that number is still 3 to 5 orders of magnitude smaller than the necessary to simulate a server

lifetime.
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The same benchmarks used in Section 3.2 were selected since they stress endurance by hav-

ing a large number of AEB misses. The benchmarks are: Canneal and Facesim from PARSEC;

MCF, GCC, Bwaves and bzip2 from SPECcpu2006; and SPECjbb2005. A mix of SPECcpu2006

applications, composed of MCF, GCC, Bwaves and bzip2, were executed together to obtain a

large memory footprint and utilization. Each benchmark was run in Simics for 2Billion requests

to main memory. The collected memory traces were used as input to the PMMA simulator that

produced a PCM write trace that was applied to the endurance management simulator until a page

was damaged (107 writes to any bit on a page).

A baseline is needed to identify the impact of our swap-based algorithm when applied in non-

ideal environments (real traces). The chosen baseline is a swap-based algorithm that has a high

overhead but has a guarantee bound on the variation on the number of writes per page. Three

conditions make this algorithm impractical, the need for one counter per page, an expensive search

algorithm (for the LFW) and the susceptibility to adversarial behavior since the swap operation

can be predicted. This algorithm uses a counter per page to accumulate the number of writes and

implements a swapping condition based on each counter passing a threshold. The victim selection

selects the LFW page to be the page to be swapped. This algorithm is called CT-LFW (counter

per page swapping condition, LFW victim selection). We compare the reference algorithm with

relaxed versions that use less overhead modifications up to our global counter (GC) and random

replacement selection algorithms. The global counter version removes a counter per page to trigger

a swap, using instead a global counter. The random victim selection randomly chooses the page to

swap, instead of searching for the LFW.

4.2.2 Wear-Leveling Experimental Results

Figure 25 shows the lifetime achieved with different swap algorithms. The reference algorithm,

CT256-LFW, implements a counter-per-page with a threshold of 256 (a swap every 256 writes to a

page) and LFW as the victim selection mechanism. In the graph, the frequency is changed from 1

swap every 256 writes to a page to 1 swap every 512 writes to a page. The lifetime was computed

by running each benchmark 500 times and recording the number of writes per physical page. The

number of runs necessary to damage each page (107 writes) is computed and the minimum overall
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Figure 25: Impact of wear-leveling on lifetime

is the predicted lifetime. The measured lifetime is a conservative estimate since it assumes that

the distribution of writes per page will be the same for all runs. The system does not change the

mapping table between runs so the same set of highly written pages will continue to be directed to

the same set of PCM physical pages in the last run. This will overestimate the number of writes

per page by removing the randomization that an OS would impose when reloading a process (in

the data pages).

The global counter and random victim selection mechanisms are expected to have better be-

havior for a larger number of writes, which will tend to make the distribution of number of writes

per page more uniform as more runs are executed. The algorithms count each write to a write

sub-page as one write to PCM. CT256-LFW, i.e. counter-per-page, 1 swap per 256 writes to a

page, least-frequently written victim selection, is an expensive algorithm that uses one counter per

page and requires an expensive search to find the LFW page at each swap operation. The search

for LFW is expensive because of the large number of pages involved, a more complex data struc-

ture like binary or red-black trees can be used to reduce the cost of search with the trade-off of

increasing the cost of each write. Other algorithms have lower overhead.

Figure 25 shows the reduction in lifetime that is caused by the change in the frequency and

victim selection mechanism. A change from a local per-page trigger (CT256-LFW) to a global

trigger (GC256-LFW) in the swap operation reduces lifetime by 8%. This reduction in lifetime

is a result of the larger difference between the number of writes in pages causing the maximum

number of writes to be achieved faster. The global counter does not guarantee a swap when the

number of writes to a particular physical page reaches a threshold. Next, a random replacement

mechanism is used instead of a LFW mechanism for victim selection. GC256-Random uses a
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global counter with random replacement. It reduces lifetime by 12.4% compared to GC256-LFW.

The difference in the number of writes per pages is accentuated by the random replacement; the

difference now is unbounded. Even though the random replacement mechanism makes no effort

to correct imbalances, only 12.4% of lifetime is lost for complete removal of the need of keep

counters in the pages. A total of 20% reduction in lifetime when GC256-LFW is compared to

CT256-LFW. The swap overhead of GC256-Random is only an additional 3% more writes due to

swap operation. When the overhead is reduced to 1.5% by setting the frequency to a swap every

512 writes to PCM, the decrease of lifetime is 25.4% when compared to the reference (GC256-

LFW). In Figure 25 all algorithms have at least eight years of lifetime, but GC256-Random and

GC512-Random have the lowest implementation cost and overhead.

The use of large 1MByte swapping pages, as in [48], has a negative impact on lifetime. In

our experiments, CT256-LFW with 1MByte pages has a lifetime of 7.5 years. This value is 31%

smaller than the lifetime obtained with 2KByte pages (CT256-LFW). The overhead is caused by

each swap requiring a transfer of 1Mbyte and not 2KBytes, so each swap is equivalent to 512

swaps of 2KBytes pages and the optimization of removing the additional operations (one write

and one read) is not possible, so a total of 2MBytes have to be read and written in each swap. Our

GC512-Random algorithm gets 6.3% better lifetime with significant lower cost than swapping on

1MByte pages.

4.2.3 Comparison with other techniques

The segment swapping algorithm is proposed in [48]. It uses a large 1MByte segment to reduce

overhead since it uses an expensive search for the least-frequently written segment to swap. The

large size of the segment requires additional intra-segment wear-leveling and the use of counters to

store the number of writes directed to each segment. Our swap-based algorithm can afford to use

a much smaller page by taking advantage of the low overhead of the victim-selection algorithm

used.

The start-gap algorithm presented in [40] (see 13) requires less architectural support than our

swap-based algorithm, as it does not require a mapping table and only uses two counters but de-

mands higher energy and achieves a lower lifetime. Start-gap requires excess capacity in the PCM
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memory but does not allow graceful degradation to occur. Any page that fails has to be replaced

transparently by an additional algorithm since the pool cannot be reduced without modifications

to the algorithm. Start-gap translates address using a function with two parameters, a start counter

and a gap counter. All the address computations are done wrapping around the PCM physical size

(modulus operation). The start counter marks the PCM physical page that is currently holding the

date from the CPU physical page 0 and gap counter points to the beginning of gap (region that

contains the excess capacity). The computation of the PCM physical page address depends on the

CPU physical page address being below [gap - start] or above it. If below, CPU physical pages

between [0 ... gap - start - 1], the start counter is added to the CPU physical page address to get

the PCM physical pages, i.e. [start ... gap-1]. If above, values between [gap - start ... Max CPU

page address - 1], the start counter and the size of the gap (excess capacity) is added to the CPU

physical page address to get the corresponding PCM physical page address. The wear-leveling

operation is executed by copying the data at the PCM physical page pointed by gap counter + gap

size to the PCM physical page pointed by the gap counter and incrementing the gap counter. The

start counter is moved whenever the gap counter passes by it. Looking at a specific CPU physical

page, it will only use a single PCM physical page until the gap passes by it and it is copied to a

different location. The consequence is that any writes to this particular CPU physical page will

be directed to the same PCM physical page until the next time the gap counter pass by this CPU

physical page. Assuming a skewed write distribution in the application, e.g., 20% of the pages is

the destination of 70% of the writes (as measured in our benchmarks, see Section 4.1), a single pass

of the start-gap algorithm will copy the whole PCM memory to a different location but only 20%

of it had large amount of writes. To achieve wear-leveling, all PCM physical pages have the same

amount of writes, the highly written CPU physical pages have to be mapped to all PCM physical

pages. Assuming an even distribution of the highly written CPU physical pages over the address

space (one at each 5 pages), 5 passes have to be executed requiring the memory to be copied 5

times (a pass is represented by a gap passing by a single PCM physical location). Our algorithm

swaps only the highly written pages, read-only pages are never the origin of a swap and only can be

a destination. Copying the 20% once over the whole space would achieve a level of wear-leveling

similar to a 5 passes by allowing our algorithm to use less operations to achieve the same lifetime,

reducing energy and increasing performance. Our algorithm will be more efficient than start-gap
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as more skewed the write distribution of the application is. A smaller page size would also benefit

our algorithm assuming that the write distribution is the same per page (only a subset of the page

is written), since the skewness of the application would increase.
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5.0 MODELING USAGE OF EXCESS CAPACITY

Wear-prone memories, such as PCM or NAND Flash, normally have more capacity than is visible

to the higher layers (CPU). This excess capacity is used to increase reliability and extend life-

time of the memory and without excess capacity, any portion of the memory with low endurance

would dictate the whole memory lifetime. Process variation in wear-prone memories affects the

endurance by changing characteristics that are responsible for the failure mechanisms. A constant

model for Endurance is now a too simple model and a more comprehensive model assumes that

endurance will follow some statistical model. The analysis of wear-leveling techniques in Sec-

tion 2.1.2 and in the previous Chapter 4 leave one question unanswered: how to use the excess

capacity provided by the wear-prone memories in the presence of process variation. The following

sections answer that question assuming that we have some knowledge of the endurance statistical

distribution.

5.1 ANALYSIS OF ENDURANCE ALGORITHMS WITH PROCESS VARIATION

The wear-leveling algorithms shown on Section 2.1.2 and on previous Chapter 4), partitions the

memory into fixed size pages and uses the excess capacity to extend the memory lifetime. The

memory system is considered failed whenever the visible area cannot be stored in the physical

memory, in other words, the excess capacity was exhausted.

The excess capacity can be used in two different schemes, Physical Capacity Degradation

(PCD) and Physical Sparing (PS). Figure 26 shows the two schemes. Physical Capacity Degra-

dation assumes that a wear-leveling mechanism will use the whole physical memory (non-failed

pages), removing a page whenever it fails. Physical Sparing, otherwise, assumes that the wear-
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leveling mechanism uses only a subset of the physical memory that correspond to the visible mem-

ory (visible to the CPU) and whenever a page fails a replacement is used from the excess capacity.

As PCD, PS will fail whenever the excess capacity is exhausted.

Figure 26: Model of the endurance algorithms

In the model, the memory subsystem has M physical pages, each of fixed size. Akin to many

storage systems, the set of pages is logically partitioned in two areas: a visible addressable space

of L pages and a reserved excess capacity area of N pages, as seen in Figure 27. In other words,

L = M − N and we assume the memory subsystem fails when there are less than L undamaged

physical pages. Note that the addressable user space has the same physical size L independent of

the endurance algorithm (PCD or PS) and therefore the performance of user processes is the same

for both endurance algorithms. A hybrid PS + PCD algorithm, which uses PS for until a subset

of the excess capacity is used and PCD until the rest of the excess capacity is exhausted, can be

modeled as two separate process. One is a PS with parameters M ,N ′,L′ = M −N ′ and the other

is a PCD with M ′′ = M −N ′,N ′′ = N −N ′, L = L.

We use an idealized wear-leveling scheme, which distributes the writes among all pages used

(the wear-leveling algorithm is ideal in the sense that all pages have had the same number of writes

at any instant of time), to be able to analyze behavior of PCD and PS. To distribute writes among the
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Figure 27: Memory Model with excess capacity.

pages, a mapping is necessary which translates from a CPU physical page address to the memory

physical page address, as shown in Figure 26. This mapping depends on the implementation of

the wear-leveling algorithm [25, 47, 48], as described in the Section 4.1. The lifetime of a set of

M pages will be measured as the number of writes that the memory supports until its capacity is

reduced below L.

Term Description

M Number of physical pages

L Number of addressable pages

N Number of excess capacity pages

LPCD(M,N) Number writes before failure for PCD

LPS(M,N) Number writes before failure for PS

Table 4: Parameters and terminology used in the analysis of endurance distributions.

Table 4 summarizes the key parameters and terminology used in the analysis of the different

endurance techniques and distributions.

In each subsection below, we compute the lifetime of a memory for four different models of

process variation, namely constant, bimodal, linear and normal, for each of the two endurance

algorithms (PCD and PS). We present the models by order of complexity.
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5.1.1 The Constant Model

Figure 28: Page Endurance distribution for a constant model.

In the constant model, we assume that all pages have the same endurance, WD, as shown

in Figure 28. In the PCD case, all M pages receive the same number of writes due to the un-

derlying wear-leveling algorithm. This implies that the lifetime for a memory with M pages is:

LPCD(M,N)=WD·M . In the PS case, a page in the addressable space will be damaged after WD

writes. Because there are only M−N pages to distribute the writes, M−N pages will be damaged

at the same time. Since M>2N implies M−N>N , there will not be enough spares to replace all

the M−N damaged pages. Hence, the lifetime of PS in this case is: LPS(M,N)=WD·(M−N).

Comparing the lifetimes, LPS(M,N)<LPCD(M,N), and thus, it is clear that PCD leads to a

longer lifetime than PS for any number of spares under the constant model.

5.1.2 The Bimodal Endurance Model

Figure 29: Page Endurance distribution for a bimodal model.

The bimodal model, as shown in Figure 29, assumes that pages are divided into two sets: a low

endurance set with K pages that has an endurance of WDL per page and a high endurance set with

M−K pages that has an endurance of WDH per page. It is assumed that WDL≪WDH .
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In the PDC case, the K weak pages are damaged and retired after WDL·M writes (since the

memory starts with M pages). There are two cases to consider:

• K≤N : For N pages to be damaged, some strong pages have to be damaged since only K

weak pages exist. This allows an additional (WDH−WDL)·(M−K) writes to be applied to the

memory. Thus,

LPCD(M,N)=WDL·K+WDH ·(M−K) if K≤N (5.1)

• K>N : After WDL·M writes, the K weak pages will be damaged and the number of available

pages will be less than M−N , thus leading to system failure. Hence,

LPCD(M,N)=WDL·M if K>N (5.2)

Figure 30: Spare and addressable page endurance distribution in a bimodal model.

In the PS case, there are three cases to be analyzed:

• K≤N : When all the K weak pages are in the addressable M−N pages, they will be replaced

when they reach their endurance limit (WDL). The lifetime will be determined by the endurance

of the strong pages, WDH , and the size of the addressable space (M−N ). Hence,

LPS(M,N)=WDH ·(M−N) if K≤N (5.3)

• K>2N : When there are at least N+1 weak pages in the addressable space, these weak pages

will be damaged after WDL·(M−N) writes and the number of spare pages available, N , will not

be enough to replace them. Thus,

LPS(M,N)=WDL·(M−N) if K>2N (5.4)
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• N<K≤2N : Among the K weak pages, let i be the number of weak spare pages and K − i be

the number of weak used pages, as shown in Figure 30. The K−i weak used pages located in

the addressable space will be damaged first since they have the lowest endurance and are being

constantly used. Two cases may occur:

– K−i>N : If i<K−N , the number of weak used pages is larger than the number of spare

pages. This implies that when the weak used pages are damaged, the memory will fail

since there will not be enough spares to replace all the damaged pages. The lifetime is then

LPS(M,N)=WDL·(M−N).

K−i≤N : In this case, there are at most N weak used pages. These weak used pages will be

damaged after WDL·(M−N) writes to the addressable space and will be replaced by spares,

extending the lifetime of the addressable space by an additional WDL·(M−N) writes. Given

that K>N , then i>0, and some of the newly commissioned spares will be weak and will

be damaged after an additional WDL·(M−N) writes. If K−i=N , then no more spares will

be available and the memory will fail at this point (here we assume that 2·WDL≪WDH , that

is, the weak spare pages will be damaged before the strong pages). However, if K−i<N ,

some spares will still be available after the first replacement round and the lifetime will be

extended by an additional WDL·(M−N) writes with any new replacement round for which

spares will still be available. The lifetime is then LPS(M,N)≥2WDL·(M−N), with the

equality achieved when only the first replacement round is possible.

Summarizing, the lifetime in the region delimited by N<K≤2N is:

LPS(M,N)

=WDL·(M−N) if i<K−N

≥2WDL·(M−N) if i≥K−N
(5.5)

It is important to note that the lifetimes for PCD and PS depend on K
N

, the ratio of weak pages

to spare pages.

Comparing the lifetime of PCD and PS:

PCD has a higher lifetime than PS when (a) the number of weak cells is larger than the number

of spares (i.e., when K
N
<1); compare Equations (5.1) for PCD and (5.3) for PS, or (b) the number

of weak cells is much smaller than the number of spares (i.e., K
N
>2); compare Equations (5.2) for

PCD and (5.4) for PS.
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In the case of N<K≤2N , the result depends on Equation (5.5) since the lifetime of PCD, as

clear from Equation (5.2), is constant in this region.

The lifetime of the PS algorithm depends on the number of weak pages in the spare area.

The probability of having x weak pages among the spares, Pr(i = x), follows a hypergeometric

distribution. Equation (5.2), PS will have a higher lifetime than PCD when i≥K−N , which occurs

with probability:

Pr

 LPS(M,N)>

LPCD(M,N)

=
N∑

x=K−N

Pr(i=x) (5.6)

The average, E[i]=
∑N

x=0 x·Pr(x), of a hypergeometric distribution is E[i]=NK
M

.

Since LPS(M,N)>LPCD(M,N) only if i>K−N , the probability can be estimated by:

N∑
x=K−N

Pr(i=x)≥0.5 if
NK

M
≥K−N (5.7)

By changing the condition in Equation (5.7) to N
M
=1−1/K

N
, Equation (5.6) can be rewritten as

a function of the ratios of K, M , and N , showing that LPS>LPCD more than 50% of the time:

Pr

 LPS(M,N)>

LPCD(M,N)

≥0.5 if N
M
≥1−N

K

<0.5 if N
M
<1−N

K

(5.8)

Note that Equation (5.8) depends on the ratios N
M

and K
N

and not on the specific value of M .

graceful degradation depends only on the percentage of spares and fraction of weak over spares

pages. Figure 31 shows the curve N
M
=1−1/K

N
in the region 1<K

N
≤2, that is, when N<K≤2N .

The curve N
M
=1−1/K

N
creates two regions. In the region above the curve, it is more probable that

the lifetime of PS will be higher than the lifetime of PCD (points 1, 2, 3, 5 and 8 in Figure 31).

The region below the curve will have the opposite behavior, with higher lifetime when using PCD

(points 4, 6 and 7 in Figure 31).

Note that for the hypergeometric distribution the standard deviation, σ, is at most the square

root of the average, that is, σ≤
√

NK
M

. The hypergeometric distribution can be approximated by a

normal distribution for which the probability that i<E[i]−2σ or i>E[i]+2σ is less than 2.5%.

This allows Equation (5.8) to be rewritten as:

Pr

LPS(M,N)>

LPCD(M,N)

 ≥0.975 if N
M
≥1−N

K
+2σ

K

≤0.025 if N
M
<1−N

K
−2σ

K

(5.9)
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–

Figure 31: Regions where PS increases lifetime.

Given that σ=
√

NK
M

, we can conclude that 2σ
K
=2

√
N

MK
implies that 2σ

K
≤ 2√

M
since N

K
≤1.

Equation (5.9) indicates that there is a very narrow band (of width proportional to 2√
M

) around

the curve N
M
=1−1/K

N
of Figure 31 within which Pr(LPS(M,N)>LPCD(M,N)) is between

0.025 and 0.975. Above this band the lifetime of PS is longer than the lifetime of PCD (with very

high probability) and below this band, the lifetime of PS is shorter than the lifetime of PCD (with

a very high probability).

To examine the validity of our analysis, we plot in Figure 32 the exact probability given by

Equation (5.6), for M = 2000 and M = 5000 at N
M
=0.1 and N

M
=0.2. This corresponds to the cuts

A and B in Figure 31. Clearly the probability of LPS(M,N)>LPCD(M,N) goes from 100% to

0% very sharply near N
M
=1−1/K

N
, which shows the approximation given by Equation (5.9) is true

for large values of M , which is what happens in real life.

5.1.3 The Linear Endurance Model

The linear model, as shown in Figure 33, is a tractable approximation of the normal distribution

assuming that cells have lifetime linearly distributed between WDL and WDH . We model it as the

lifetime of page i as Wi=WDL +R·i with R= (WDH−WDL)
M

.

The lifetime under PCD is determined by the first N +1 pages that wear out. We approximate

this by N . Let WDN=WDL+R·N be the point on the endurance curve where N pages have failed.
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Figure 32: Probability of sparing having a higher lifetime

Figure 33: Page Endurance distribution for a linear model.
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We can compute the area under the endurance curve up to N (N ·WDN/2) and between N and M

(WDN ·(M−N)). The sum of these two areas is LPCD(M,N)=WDL·M+R·N(M−N/2).

PS lifetime is determined by the endurance (WDj) of the last page to die (jth page), that is

LPS(M,N)=WDj·(M−N). It is apparent that j≥N , since the worst case is when all the spares

have endurance higher than WDN . The maximum value of j is N+ N2

M−N
. N2

M−N
is the expected

number of pages with WD≤WDN . The impact of larger values of N on lifetime is minimal because

it increases J but also decreases the number of pages in the addressable space. Large values of

R would in theory benefit PS but the probability that a page needs to be replaced more than once

before the memory subsystem dies increases, reducing the number of addressable pages that can

be replaced. The end result is a lower lifetime than predicted by the maximum j. Using Monte

Carlo simulations, we determined that the lifetime of PCD and PS for the linear endurance model

are very similar, with a maximum of 3% difference.

5.1.4 The Normal Endurance Model

Figure 34: Page Endurance distribution for a normal model.

The normal model can be approximated by a constant model if the standard deviation is small

compared to the average. Figure 33 show the endurance distribution for this model. The linear

model is a good approximation if the normal model has a large standard deviation and the number

of spares is small (we only are interested in the pages with a low lifetime). In cases that the

approximations are not applicable, numerical simulations show that PCD and PS present a very

similar lifetime under the normal endurance model with PCD always winning by less than 5%.
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5.1.5 Generalization for Other Distributions

The models presented can be used as an approximation of a more complex distribution if the

distribution of the weakest 2N + 1 pages is similar to one of models.

Theorem 1. As defined in section 5.1, the model is based on a memory with M pages with N

reserved as spares. Let the pages be ordered by endurance so the page 0 is the weakest and page

M is the strongest.

Lemma 2. The lifetime of a Physical Graceful Degradation algorithm is independent of specific

distribution of the endurance of the strongest M −N pages.

Proof. Assuming ideal wear-leveling, all the pages will have the same number of writes at any

instant of time. The first page to be damaged will be page 0 since it is the weakest page. The

subsequent one being the page 1 and so forth until N pages are damaged. At this point the memory

has no more additional pages to retire and will be considered damaged. The specific value of the

endurance of the pages M − N is not important as long as they are larger than the endurance of

the page N .

Lemma 3. The lifetime of a Physical Sparing algorithm that follows a uniform model for the

weakest 2N pages and any specific distribution of endurance for the stronger ones is equal or

larger than the lifetime of the sparing algorithm under a uniform model.

Proof. A generalized uniform model has the weakest 2N cells with the same endurance. Even if N

of the weakest cells are reserved as spares, there will be N +1 weak pages which will be damaged

at the same time causing the memory to fail.

Lemma 4. The lifetime of a Physical Sparing algorithm that follows a bimodal model for the

weakest 2N pages and any specific distribution of endurance for the stronger ones is equal or

larger than the lifetime of the sparing algorithm under a bimodal model.

Proof. The section 5.1.2 analysis can be reused since it depends only on the number of weak pages

and their endurance.
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Lemma 5. The lifetime of a Physical Sparing algorithm that follows a linear model for the weakest

2N pages and any specific distribution of endurance for the stronger ones is equal or larger than

the lifetime of the sparing algorithm under a linear model.

Proof. The probability of a page requiring more than one replacement is not affected, since the

lifetime of the replaced page is at least WD2N > WDj . The section 5.1.3 analysis can be reused by

using only the linear portion of the distribution.

Lemma 6. The lifetime of a Physical Sparing algorithm that follows a normal model for the weak-

est 2N pages and any specific distribution of endurance for the stronger ones is equal or larger

than the lifetime of the Physical Sparing algorithm under a normal model.

Proof. The probability of a page requiring more than one replacement is not affected, since the

lifetime of the replaced page is at least WD2N > WDj . The section 5.1.4 analysis can be reused by

using only the normal portion of the distribution.

5.2 USES OF THE LIFETIME MODELS

In Section 5.1, we showed that system lifetime under a specific endurance model can vary depend-

ing on the algorithm, the percentage of spares and percentage of weak pages. The analysis and

results above can be used in design tool to obtain the longest lifetime of the memory.

The decision to use PS or PCD depends primarily on the lifetime distribution of the pages. For

the constant model, PCD will result in the highest lifetime. In the linear and normal models the

difference is small allowing the decision to be taken based on other design constraints.

The bimodal model is less straightforward and two cases should be examined. The first case is

when a manufacturer produces a device with size M and wants to sell it with a size L. If K
N
≤1 or

K
N
>2 then PCD is the recommended algorithm according to Equations (5.1)-, (5.3), (5.2) and (5.4).

Equations (5.1)-(5.4). In the more interesting case, 1<K
N
≤2, the algorithm selection depends on

the relative values of N
M

and K
N

. Specifically, if N
M
≥1−1/K

N
then PS should be used, otherwise

PCD is recommended.
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In a second case, a manufacturer produces a device of capacity M with K bad cells and by

choosing N and the endurance algorithm, can market it as a device of size L=M−N . Using

the objective of highest lifetime with the largest addressable space, the selection of the endurance

algorithm and of N are coupled. Figure 35 shows how the lifetime changes when N is varied in a

system with a fixed M and K. The maximum lifetime is achieved when N is bigger than K, and

we can choose N=K to minimize resources, because the lifetime does not change for all values

of N that satisfies this relation. It is possible that, for marketing reasons, restrictions will prohibit

the use of N≥K (e.g., when an already advertised device size has to be sold but the devices were

produced with too many weak pages). In this case, if the restriction on N allows N≥ KM
K+M

, then

PS should be used because N≥ KM
K+M

implies N
M
≥1−1/K

N
and Equation (5.9) indicates that the

lifetime of PS is longer than PCD (see middle section of the figure). Finally, if it is not possible to

use N≥ KM
K+M

, then the use of spares is not recommended since (in this case) the lifetime is constant

for the PCD algorithm for any value of spares, as shown on the left section of Figure 35.

Figure 35: Lifetime impact of varying N for a fixed K and M.

At times, the manufacturer knows M , N , and L but K is variable. This can happen, for exam-

ple, due to wafer to wafer process variation or fabrication process improvements. The selection of

the algorithm to operate the memory will be based on the region the memory subsystem falls in, as

described above.

All the previous results assume that the weak pages are distributed randomly. If it is possible

to identify the weak pages, then those pages should be used as spares and a PS algorithm should

be used. This result is valid for the region 1<K
N
≤2. The use of weak pages as spares guarantees

that the constraint of Equation (5.5) is valid, increasing the lifetime of the PS algorithm.
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In a constant model, PCD lifetime is independent of the number of spares but PS lifetime

actually decreases with a larger number of spares. In this model, reserving space as excess capacity

is unnecessary and all memory should be exported to the system. A linear model with a low value

of R behaves in a similar fashion to the constant model and the same recommendations apply. A

linear model with larger R will have a similar lifetime with either PCD or PS so either can be used.

The amount of excess capacity reserved determines the expected memory lifetime, since a larger

excess capacity will also increase lifetime while reducing the addressable space.
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6.0 CONCLUSIONS

In this dissertation, a new hybrid main memory architecture is proposed that uses multiple mem-

ory technologies, namely, Phase-change memory, DRAM and SRAM, to achieve higher energy-

efficiency than a conventional DRAM based main memory, while maintaining the same level of

performance. The objective of high performance and lower energy required that a number of novel

algorithms and mechanisms were developed to overcome limitations of PCM technology. The val-

idation of the new main memory was enabled by a new main memory simulation infrastructure,

that allowed many different configurations of PMMA and DRAM-only main memory to be evalu-

ated in terms of energy, performance and lifetime. A novel low-overhead wear-leveling algorithm

was proposed that extended the main memory lifetime to be similar to the server’s. The impact

of process variation of the endurance of the memory cells on the memory lifetime is analyzed and

mitigated by the proper selection of algorithms and parameters.

The results on PMMA shows that PCM is a viable alternative but not a direct replacement

to DRAM as main memory. PMMA is a high-performance and energy-efficient main memory

architecture with savings of up to 65% in energy with a performance loss of less than 5% leading

to a very advantageous energy-delay gain of 60%. The use of a relatively small DRAM as a

cache for PCM and SRAM as an even smaller auxiliary structure is fundamental to obtain those

results reinforcing the proposal of a hybrid approach. Various performance enhancements are

utilized to achieve the results, such as DRAM bypass, asymmetric page partitioning and a new

page replacement algorithm such as clean-preferred LRU.

A sensitivity analysis was executed to determine the impact of various PMMA configurations

that shows that PMMA performance is mainly limited by the PCM bus bandwidth but only lightly

affected by PCM latency suggesting that future PCM devices should privilege bandwidth instead

of latency. The PMMA architecture was designed to replace an existing DRAM memory controller
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and DRAM without changes on the CPU, OS, applications and utilize existing implementations of

PCM and DRAM devices. PMMA’s goal to be a viable solution was achieved by managing sizes of

metadata and caches. Asymmetric page partitioning is the tool used to achieve a reduction in size

of the architecture overhead without requiring a very large DRAM cache or giving up performance.

Our swap-based wear-leveling algorithm has a very low overhead, requiring very little ar-

chitectural support beyond a mapping table. When compared to existing algorithms, the biggest

advantage of our algorithm is the very little energy overhead by only requiring an insignificant

number of writes to PCM to achieve a lifetime of 8 years. Our algorithm is also naturally resistant

to bad application behavior such as malicious or faulty behavior that could reduce the memory

lifetime, since it uses randomized selections, avoiding patterns that can be exploited.

Wear-prone memory technologies, such as PCM and Flash, provide excess capacity as a way

to increase lifetime. Our methods identify rules that empower designers to achieve the best use the

devices. One interesting aspect is even for the same generic distribution, changes on physical size

of the memory, number of spares or parameters of the distribution can benefit a different wear-

leveling algorithm. We also demonstrate that under some conditions, other endurance distributions

can be approximated by one of the analyzed ones, allowing reuse of the rules. The results show

that for specific endurance statistical distributions, twice the lifetime can be achieved.

PMMA creates a high performance, energy-efficient, durable main memory but does not ex-

plore all properties that PCM provides. PCM is a non-volatile memory and that characteristic is

not explored in this dissertation. The non-volatile property can be used to improve system energy-

efficiency and reliability. We expect that many areas, mainly in operating system and systems

research, will be affected and can explore the use of a non-volatile main memory. PMMA was

designed to be a plug-in replacement of a DRAM-only main memory, but a clean design that ex-

plores specific application characteristics, such as very large data intensive applications may lead

to a different architecture and it is an important new venue to be explored.
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