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ABSTRACT 

A METHODOLOGY TO DEVELOP A DECISION MODEL USING A LARGE 
CATEGORICAL DATABASE WITH APPLICATION TO IDENTIFYING CRITICAL 

VARIABLES DURING A TRANSPORT-RELATED HAZARDOUS MATERIALS RELEASE 
 

Renee M. Clark, Ph.D. 
 

University of Pittsburgh, 2006 
 
 

An important problem in the use of large categorical databases is extracting information to make 

decisions, including identification of critical variables.  Due to the complexity of a dataset 

containing many records, variables, and categories, a methodology for simplification and 

measurement of associations is needed to build the decision model.  To this end, the proposed 

methodology uses existing methods for categorical exploratory analysis.  Specifically, latent 

class analysis and loglinear modeling, which together constitute a three-step, non-simultaneous 

approach, were used to simplify the variables and measure their associations, respectively.  This 

methodology has not been used to extract data-driven decision models from large categorical 

databases.   

      A case in point is a large categorical database at the DoT for hazardous materials releases 

during transportation.  This dataset is important due to the risk from an unintentional release.  

However, due to the lack of a data-congruent decision model of a hazmat release, current 

decision making, including critical variable identification, is limited at the Office of Hazardous 

Materials within the DoT.  This gap in modeling of a release is paralleled by a similar gap in the 

hazmat transportation literature.  The literature has an operations research and quantitative risk 

assessment focus, in which the models consist of simple risk equations or more complex, 



theoretical equations.  Thus, based on critical opportunities at the DoT and gaps in the literature, 

the proposed methodology was demonstrated using the hazmat release database.  The 

methodology can be applied to other categorical databases for extracting decision models, such 

as those at the National Center for Health Statistics. 

      A key goal of the decision model, a Bayesian network, was identification of the most 

influential variables relative to two consequences or measures of risk in a hazmat release, dollar 

loss and release quantity.  The most influential variables for dollar loss were found to be 

variables related to container failure, specifically the causing object and item-area of failure on 

the container.  Similarly, for release quantity, the container failure variables were also most 

influential, specifically the contributing action and failure mode.  In addition, potential changes 

in these variables for reducing consequences were identified.   
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NOMENCLATURE 
 

BTS Bureau of Transportation Statistics.  Agency within the 

DoT that undertook the Safety Data Initiative. 

 

DoT United States Department of Transportation. 

 

GeNIe Software for decision modeling, including the development 

of Bayesian networks.  Developed by the Decision Systems 

Lab at the University of Pittsburgh and used within this 

research. 

 

HMIRS Hazardous Materials Incident Reporting System.  Large 

database maintained by the Office of Hazardous Materials 

(OHM) within the DoT to record releases of hazardous 

materials during commercial transport.  Informally referred 

to as the Release database. 

 

Lambda/ Loglinear Parameter(λ) Parameter indicating the strength of the effect or 

association between two or more variables.  Variables X 

and Y are not directly associated if max|λij| < 0.20, where i 

and j represent any category combination of X and Y. 

 

Latent Gold Software for performing latent class analysis. Developed by 

Statistical Innovations, Inc. and used within this research. 

 

 xvi



Marginal association Association between two variables determined by summing 

over, or ignoring, all other variables in the model. 

 

Partial association Association between two variables after adjusting or 

correcting for the effects of other variables.  If there is a 

partial association between two variables, they are not 

conditionally independent given other variables. 

 

Modified LISREL Approach Latent structure modeling in which latent class analysis and 

loglinear modeling are performed simultaneously.  

Implemented in the LEM software.  Categorical analog to 

LISREL modeling. 

 

NCHS National Center for Health Statistics.  Agency with the 

Center for Disease Control and Department of Health and 

Human Services that produces health data for policy and 

decision making. 

 

OHM Office of Hazardous Materials.  Agency within the DoT 

that regulates hazardous materials transport. 

 

SDI (Safety Data Initiative) Effort undertaken by the Bureau of Transportation 

Statistics to improve safety data collection and empirical 

analysis. 

 

Three Step Correction Procedure Procedure involving matrix algebra in which the matrix of 

the observed and predicted latent variables is corrected, 

thereby greatly reducing the bias due to the classification 

error of the latent variables.  The result is a corrected 

matrix of the observed and true latent variables. 

 

 xvii



Three Step Modeling Latent structure modeling in which standalone latent class 

models are built and then used in a structural (loglinear) 

analysis.  Similar to the Modified LISREL approach, but the 

latent class analysis and loglinear modeling are done 

separately and in succession. 

 

 Bayesian network containing two random variables X and 

Y, which are represented by circles or ovals.  Variable X 

has a direct effect on Y, as represented by the arc.  The 

absence of an arc represents independence between two 

variables. 

Y X 

 

L2 Likelihood ratio chi square statistic.  Primary test statistic 

used in loglinear modeling. 

 

P(A|B,C) Conditional probability of variable A given its parent 

variables B and C. 

 

[X] [Y] Loglinear model notation indicating the lack of interaction, 

or association, between variables X and Y.  This is also 

known as the model of mutual independence for X and Y. 

 

[X Y] Loglinear model notation indicating an interaction, or direct 

association, between variables X and Y.   

 

A⊗B Kronecker product of matrices A and B.  The super matrix 

formed from all possible products of the elements of A and 

B.  Used in the three step correction procedure. 
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1.0 INTRODUCTION 

 

Databases play an important role in today’s organizations and may be used both tactically and 

strategically by businesses and organizations.  From a tactical standpoint, they are used to 

support day to day operations and for reactive decision making.  However, data may also be used 

proactively for business growth or informed governmental policies by applying the decision 

analysis process.  This process dictates that the overall structure of the problem be represented 

using a model, from which inferences are made for insight and explanation, thereby improving 

decision making.  Although models may be expert or data-driven, they have traditionally been 

based on expert knowledge.  This research takes the non-traditional data-driven approach in 

constructing a decision model. 

      In taking a non-traditional approach, a model can be extracted from a database using various 

statistical, data analysis, or machine learning techniques, including those for categorical data.  

Large categorical databases are common in today’s organizations, as the prevalence of 

categorical data has increased and categorical data is ubiquitous.( )1   However, for the most part, 

knowledge and use of categorical data methods has remained limited to the social, biomedical, 

and behavioral sciences as well as education and marketing.( )2   Historically, categorical analysis 

methods were stimulated by research in the social and biomedical sciences, where categorical 

scales are now pervasive for measuring attitudes, opinions, and medical outcomes.( )3   However, 

as an indicator of the penetration of categorical methods into engineering analysis, only one of 

the ten top industrial engineering departments for 2005 offers a statistics course focused on 

categorical data, although most offer courses in basic statistics or continuous data analysis.( )4   
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Yet, the application of statistical techniques can be challenging when using large categorical 

databases containing many records, variables, or categories.  When the number of variables is 

large, the number of possible associations between all variable pairs considering all other 

variables is also large.  The large size also leads to problems with convergence, testing, and 

interpretation of models.  In general, when working with a large categorical database, there are 

challenges in creating a compact, data congruent model for decision making, such as an 

influence diagram. 

      A case in point is a database maintained by the Office of Hazardous Materials within the 

Department of Transportation.  This agency develops and recommends regulatory policy changes 

for the commercial transport of hazardous materials.( )5   This transport activity poses risks to life, 

health, property, and the environment due to the possibility of an unintentional release.  This 

database houses data on hazmat release occurrences, including characteristics such as date, time, 

location, material type, container failure descriptors, and consequences.  The database is largely 

categorical and contains tens of thousands of records.  The use of the database by this hazmat 

agency has been largely reactive and in support of normal operations, such as investigations 

surrounding exemptions, occurrence spikes, and cost/benefit analysis.  This database has not 

been used to extract a model of a hazardous materials release.  The absence of a model limits the 

information available during regulatory decision making.  

      The absence of a modeling approach by this DoT agency is paralleled by and perhaps partly 

the result of the absence of a similar approach in the hazardous materials transportation 

literature.  This literature base has an operations research focus, with a large number of the  
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articles involving route optimization or path selection problems.  The objective functions in these 

articles make use of existing, oftentimes simple equations for risk, and the articles do not aim to 

develop new, multivariate risk models. 

      Another possible challenge to any previous development of a hazmat release model has been 

the lack of penetration of categorical data methods into the engineering domain, as mentioned 

previously.  Thus, a methodology for extracting a data-congruent decision model from a large 

categorical database using statistical methods has not been applied in the engineering arena.  

Categorical data methods are a recent advance relative to their continuous counterparts and 

continue to be used mostly by social, behavioral, and biomedical sciences.  By the mid 1900’s, 

there was widespread adoption of regression and ANOVA techniques.  Conversely, analogs for 

categorical data received little attention by the social and biomedical research community until 

the 1960’s.( )6   Loglinear modeling, which is used to assess associations and can be considered a 

categorical analog to regression, was mainly developed in the 1970’s and gained popularity in 

behavioral and life sciences in the 1980’s.( )7   Latent class analysis, which is used for variable 

simplification and can be viewed as a categorical analog to factor analysis, was developed in the 

1950’s by sociologist Paul Lazarsfeld for binary survey data.  It was extended in the 1970’s to 

include multi-category data and has become a standard tool in social, biomedical, education, and 

marketing research.( )8

      In this research, I provide an approach to the analysis of a large database based on statistical 

and decision analysis methods from the field of categorical data modeling.  Therefore, the 

contribution made by this research is as follows: using existing categorical data methods, a 

decision model was extracted from a large categorical database, using the hazmat release  
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database as the worked example.  Since statistical methods were used to build the association 

structure of the decision model, the relationships among the variables were not based on hunches 

or assumptions and therefore provide a data-driven basis for decision making.   

 

1.1 PROBLEM STATEMENT 

A critical problem related to large categorical databases is effective use of the data for decision 

modeling.  Traditional empirical modeling techniques, such as multiple regression analysis or 

neural networks, are more conducive to continuous types of data.  In addition, a challenge with a 

very large amount of data is an inability to use significance testing, since the results tend to 

become significant.  Decision analysis in the presence of many categorical variables necessitates 

extracting a model using a methodology involving exploratory methods for categorical data. 

Although the application of categorical exploratory methods is present in the literature, a 

common methodological approach for extracting a decision model, particularly for engineering 

based problems, is not present.  In the case of large amounts of data, a methodology is necessary 

given the complexity of the data in terms of many records, variables, and categories. 

      Consider the following related and real situation.  The Department of Transportation 

maintains a large categorical database on hazmat release occurrences in the United States.  The 

database consists of a large number of records and nominal, multi-category variables, whose 

associations are unknown.  Critical information needed from this database includes the 

identification of influential variables and categories relative to the outcomes of a hazardous 

materials release incident.  This is important because the most influential variables and 

categories are control points from which operational or policy changes can be made.( )9  Another  
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useful type of information is a characterization of a high-consequence event based on its most 

likely combination of variables.  In this way, the question “What does a high consequence 

hazmat release most often look like?” can be answered. 

      This database has not previously been used for proactive decision modeling either by the 

DoT or researchers in the literature.  Existing literature on hazmat releases is unrelated to this, as 

it focuses on mathematical programming formulations to minimize risk along a transport route.  

The literature also focuses on risk calculations using analytical equations as part of quantitative 

risk assessment studies.  For the modeling approach taken in this research, the release has 

already occurred, and the actual consequences and influencing variables are known.  Hence, a 

decision model of the variables and events in a hazmat release can be built to answer questions 

about the critical variables and their categories.  Thus, there are gaps that can be filled through an 

exploratory analysis of this large database for decision modeling.  Given this, a methodology for 

simplification and measurement of associations among many categorical variables is needed. 

      In summary, using the DoT database as the worked example, this research endeavors to 

establish a categorical analysis methodology for developing decision models.  In establishing this 

methodology, critical research based questions about the variables related to the release of 

hazardous materials can be addressed, which in the past were only speculated within the 

literature.  The application of this methodology to a hazmat transportation problem makes a 

needed inroad into this policy area as well as other decision problems in the engineering arena.  

In addition, the questions related to critical variables faced by the DoT are similar to those within 

other organizations, such as the Center for Disease Control or the Department of Homeland 

Security, where policies and decisions can be driven by the data collected by these agencies.   
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1.2 DESCRIPTION OF THE METHODOLOGY 

The methodology for development of a decision model consists of three separate analyses of the 

data.  They center on simplification, measurement of associations, and creation of a Bayesian 

network model.  Simplification of the variable domain was accomplished using Pareto analysis, 

data aggregation, discretization, and latent class analysis.  Latent class analysis was used for 

simplification by combining related variables to form a latent variable.     

      The determination of the association structure of the decision model began with a temporal 

layout of the simplified variables.  The temporal layout resulted in five distinct stages of a 

hazardous materials release.  These stages are identified as follows: pre-failure initiation, failure 

initiation, container failure, hazmat release, and realization of consequences, such as dollar loss.  

After this base structure was created, the associations between the variables were measured using 

the exploratory technique of loglinear modeling.   An exploratory approach was taken in order to 

create an accurate, data-driven structure.  A modeling approach that uses latent class analysis and 

subsequent loglinear modeling is described in the literature as a three-step, non-simultaneous 

modeling approach.( )  10 It is similar to the LISREL approach for continuous data that 

simultaneously combines factor analysis and path analysis. 

      The variables and data-driven associations determined in the three-step modeling approach 

were used to build the structure of a Bayesian network, a type of decision model consisting only 

of random variables and their relationships.  Given that a categorical database of uncertain events 

and variables surrounding a hazardous materials release was the data source for this analysis, a 

Bayesian network was a natural fit, since its strength exists in modeling complex relations 

between uncertain variables.  In addition, a Bayesian network was a natural fit because the 

identification of important variables was a key goal of this research.  Using the Bayesian 
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networks developed in this research, the most influential variables relative to two outcomes of a 

hazardous materials release were identified.  In addition, since Bayesian networks allow for 

computing the impact of some variables on the probabilities of others, desirable policy or 

operational changes for the explanatory variables were identified.  A summary of the 

methodology developed in this research to analyze a large categorical database is shown below. 
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Figure 1: Methodology for Building a Decision Model. 

 
 
 

1.3 ADDITIONAL APPLICATIONS OF THE METHODOLOGY 

The methodology proposed for building a data-driven Bayesian network using a large categorical 

database it not limited to the modeling of hazardous materials releases.  For example, within the 

Department of Transportation in general, there is an opportunity and need for growth and 
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improvement in the analysis of data.( )11   This gap was formalized in 1999 by the creation of the 

Safety Data Initiative (SDI) by the DoT.  This program was undertaken by Bureau of 

Transportation Statistics (BTS) to improve data collection and analysis.  Although this program 

is on hold due to budget cuts resulting from the events of September 11, 2001, its sentiments 

regarding the need to improve safety data analysis remain the same.( )12   One of the goals of this 

initiative was critical variable or leading indicator identification based on demonstrated 

correlations with consequences, and this remains a goal within the DoT.( , )13 14   The SDI 

maintained that the DoT’s data analysis proficiency was not at the level necessary for good 

program effectiveness.( , )15 16   Within the DoT currently, efficient data collection has achieved 

proficiency.  The next step for sound decision making and enhancement of program effectiveness 

is improvement of analysis abilities and techniques.( )17

      At the state level, transportation authorities could utilize decision support tools when 

establishing routing designations for hazardous materials.  In specifying a routing designation, a 

state must determine the extent to which certain factors specified by the DoT are incorporated.  

The DoT maintains that the weighting of these factors is mostly judgmental and should reflect 

their “expected influence” and the community’s consensus.( ) 18  Based on the limited decision 

support provided for this, the states could benefit from decision models that assist in determining 

how the factors should be incorporated in routing designations. 

      Considering areas outside the transportation domain for application of this methodology, the 

National Center for Health Statistics (NCHS), which is part of the Center for Disease Control 

(CDC), collects categorical data conducive to the extraction of a decision model representing an 

overall system or problem network.  However, system or network models have not been 

commonly or formally used by NCHS statisticians, although there is interest in them.( , )19 20   
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Another potential area for application of this methodology is threat characterization, a required 

capability within the Department of Homeland Security.( )21   These two federal agencies are 

examples of organizations that could apply this methodology to develop decision models based 

on categorical data. 
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2.0 LITERATURE SEARCH: HAZMAT TRANSPORTATION 

 

Risk is an integral part of the hazardous materials transportation literature.  The majority of 

articles are operations research studies for minimizing risk on a transport route.  The risk 

equations in the O.R. studies tend to be relatively simple and are often variations on the release 

probability or the product of release probability and consequences.  Other articles focus on 

calculating risk as part of quantitative risk assessment (QRA) studies of hazmat transport.  These 

articles are typically written by environmental, civil, and chemical engineers who incorporate 

demographic, meteorological, and chemical databases in calculating risk.  The analytical 

equations in the QRA studies are often mathematically complex and theoretical in nature.  These 

O.R. and QRA studies are focused on releases that occur on the road or along railways.  There is 

not a focus on transport-support activities, such as loading or unloading of containers.  Although 

there are differences in the accident scenarios surrounding these two activities, many of the 

variables and associations and hence the general Bayesian network structure are the same.    

      Thus, the great majority of existing studies attempt to minimize or calculate the risk of 

potential future occurrences.  In general, the hazmat literature has not modeled release incidents 

that have already occurred to determine the influence of the relevant variables.  One notable 

exception is a study by Burns and Clemen in which various sociological, behavioral, and 

perceptual variables affect the impact of a hazmat release, as depicted using an influence 

diagram.  This study is a continuous-data analog to the present work, and it used a covariance 

structure, or LISREL, model to construct the influence diagram.( )22   The present research 
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contributes to the literature by using categorical data methods to build the decision model, 

suggested as future work in the Burns article.  In addition, the variables considered in the present 

work are objective variables that describe the accident scenario surrounding a hazmat release to a 

larger extent.   

      The decision model by Burns and Clemen is unique within the hazmat transport literature by 

virtue of its exploratory, statistical nature.  In general, this literature lacks a focus on data-driven 

analyses of outcomes relative to the influencing variables.  The literature does not contain 

multivariate statistical or other exploratory models of risk, due in part to the goals of the 

researchers.  A notable example is the probability of an accident or release, which has 

traditionally displayed a gap in exploratory modeling of its critical variables.  Accident and 

release probabilities have been estimated for a given road and area type using averaged values, 

which have limited sensitivity in specific situations.( )23   However, some recent empirical work 

involving fuzzy logic incorporated multiple parameters into a determination of the accident 

frequency.( )24   Additional exploratory work on accident probabilities is still needed.  

      The primary goal within the hazmat literature has been the use of various risk equations in 

route optimization and quantitative risk assessment studies.  Many of the equations used in the 

route optimization studies are straightforward in terms of their formulation and are reused across 

articles.  An example of a straightforward risk formulation is the release probability or product of 

release probability and consequence level.  In fact, the straightforward formulations typically 

contain one or more of the following high-level variables: 1) accident or release probability, 2) 

consequence level, 3) population count, and 4) exposure amount, such as amount of hazmat 

transported.  Several authors whose risk equations are limited to these high level variables 

characterize their risk models as “simple.”( , )25 26    
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      More complex formulations for risk, which are often used in the QRA studies, include the 

above high-level variables along with variables such as 5) wind probability or 6) fatality 

probability, also known as vulnerability.  These latter variables are often specified in terms of 

sub-variables, or input parameters.  However, the numerical relationships of the sub-variables to 

the higher level variables or outcomes are not provided to the reader and are therefore not a 

discussion focus.  For example, in one equation, the release probability calls for the use of 

vehicle type and material type as sub-variables.  However, the exact numerical relationship of 

vehicle type or material type to release probability is not discussed or provided in the article.( )27   

In another equation, the following are identified as sub-variables of vulnerability: wind direction, 

meteorological condition, and final outcome. However, the numerical strength and empirical 

relevancy of these sub-variables to vulnerability is not demonstrated or a focus of discussion.( )28   

In general, the determination of high-level variables based on their sub-variables is not described 

in the literature.  This indicates a gap in terms of identifying critical variables. 

      There are a variety of risk equations used in the risk optimization and QRA studies based on 

differences in both structure and variables.  Thus, there is a lack of agreement on how hazmat 

transport risk should be represented, as noted in the literature.( )29   Based on an analysis of the 

hazmat transport literature, seven categories for risk were identified, as shown in Table 1.  

 
Table 1: Hazmat Transport Risk Categories. 

1  Accident or Release Probability 

• Probability of a vehicular accident of a hazmat truck 

• Probability of a vehicular accident that leads to release 

• Probability of a release 

2 Consequence Probability 

• Individual Risk 

• Societal Risk 

3 Numerical Indices 
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Table 1 (continued). 
4 Consequences 

5 Exposure and Product of Exposures 

6 Expected Value 

7 Variations on Expected Value 

       
 
 
In contrast to the various equations, risk is sometimes represented using only statements or 

definitions versus analytical equations containing variables.  In addition, the definitions are often 

accompanied by assertions of the important variables.  The prevalence of these qualitative 

representations is a further indication of the lack of modeling focus in the hazmat literature.  The 

discussion in the following sections, which is organized based on the different risk 

representations in Table 1, will elaborate on the issues raised in the previous paragraphs 

concerning the lack of statistical or exploratory modeling in the hazmat transport literature. 

 

2.1 ACCIDENT/ RELEASE PROBABILITY 

Accident, release, and conditional release probabilities have been proposed in the hazmat 

transport literature as measures for risk.  Harwood et al. define risk as the number of releases or 

vehicular accidents divided by an exposure measure, such as truck miles.  Their formula for risk 

is as follows: 

 
 ,

Exposure
EventsRisk =  Equation 1 

 
 
 
 
where an event is an accident or release.  Their accident rates are calculated using truck data 

from three states, which are combined to produce a weighted average.( , )30 31   The Harwood et al. 
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rates are those most often used to estimate probabilities in risk studies.  However, there is 

concern that application of these rates may lead to inaccuracies in the calculation of risk.  For, 

when using averages, parameters that apply in specific situations cannot be set or altered.  For 

example, in a study performed by Argonne National Lab for the DoT in 2000, the accident and 

release rates used are stated as a limitation of the study.  The study claims that these national 

averaged rates do not account for local or specific factors that may affect risk.( )32   Likewise, 

Hobeika and Kim suggest that specificity is an important characteristic of accident rates.  They 

feel that state-derived rates should be used instead of national default rates since “each state has 

unique hazmat transport characteristics.”( )33   Doug Reeves of the OHM also believes that the use 

of a general, average rate to calculate risk in specific circumstances, such as for a given highway 

route, may be inaccurate.  However, a challenge in the use of Equation 1, especially for specific 

scenarios, is the availability of associated data for use in the denominator.( )34    

      There is a separate group of articles that cover vehicle accidents that do not necessarily 

involve hazmat.  These articles on general accidents contain regression models that use highway 

geometric and traffic variables to model accidents.( , , , , ) 35 36 37 38 39  The pertinent question is why 

haven’t similar regression models been developed in the hazardous materials transportation 

literature for modeling accident probabilities?   

      

2.2 CONSEQUENCE PROBABILITY 

Models for the probability of a consequence include those identified as Individual or Societal 

Risk in the hazmat literature.  Individual Risk is most commonly defined as the probability of 

death to an individual due to a hazmat release and is represented by either analytical equations or 

qualitative statements or definitions.  The definitions are often further described by the variables 
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believed to be important.  Societal Risk is represented by means of F/N curves, where F is the 

cumulative frequency of an accident with N or more fatalities.  Analytical equations are used to 

calculate both F and N. 

2.2.1 Individual Risk 

The analytical equations for Individual Risk are often detailed or mathematically complex and 

have been implemented in software by environmental or chemical engineers for quantitative risk 

assessment along transport routes.  The following high level variables are present in an equation 

for Individual Risk proposed by Leonelli et al.: 1) frequency of release, 2) probability of final 

outcome given a release, 3) wind PDF, and 4) vulnerability.  This equation, which is 

implemented in software, is given as 
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Equation 2 

 

 
 
 
The various sub-variables, or input parameters, are the road link or segment, season, type of 

outcome, meteorological condition, wind direction, and vehicle typology, which is a combination 

of vehicle and material type.  The meteorological condition is described by the wind velocity and  

atmospheric stability class.  However, the numerical relationship of the sub-variables to the 

higher level variables and the details of their calculation are not provided in the article and are 

thus not a focus of discussion.( )40    
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      As a second example, Bubbico et al. present a similar equation for Individual Risk in their 

quantitative risk assessment.( )41   Their equation contains several of the same factors as Equation 

2, such as a meteorological factor (wind direction), the probability of a fatality, and the release 

probability, as shown below. 
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However, there are differences in the sub-variables in Equation 2 versus Equation 3.  For 

example, the probability of a fatality in Equation 3 does not have a meteorological or wind-

related sub-variable, as in Equation 2.  In addition, season and vehicle typology are not used as 

sub-variables for the release probability in Equation 3, as in Equation 2.  Thus, the question of 

which equation and sub-variables more-accurately describe Individual Risk can be raised. 

      In addition to these equations, various authors provide qualitative statements or definitions 

for Individual Risk.  Saccomanno and Shortreed define Individual Risk as the annual probability 

of death at various distances and suggest that hazmat quantity and traffic level are leading 

indicators of this risk.  Roodbol states that Individual Risk is the annual probability that a 24-

hour, unprotected resident at a certain distance from the incident will be killed.  According to this 
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author, risk depends on material, quantity, population density, and traffic safety mechanisms 

such as speed limit, guidance systems, traffic separation, and infrastructure.( )42

 

2.3 NUMERICAL INDICES 

A risk index of a hazardous materials incident was developed by Scanlon and Cantilli, who 

approach risk from a transportation and safety engineering perspective.  Their risk index consists 

of numerous independent variables, as shown below. 
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The accuracy of this equation and its coefficients and the relevancy of the independent variables 

are unknown.  Evidence of empirical validation is not provided.  Potential data sources for 

several of the independent variables, such as driver level and condition of traffic control devices 

and medians, are not provided.  Therefore, the feasibility of applying this equation, especially in 

a large area, is questionable.  The authors do not demonstrate their risk index in a real-life 

application.  Their equation for the risk level of a motor vehicle incident, a factor in the previous 
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equation, contains several variables for roadway characteristics and is depicted in the following 

manner: 
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 Equation 5 

 

 
 
 
Although the authors developed these indices using a multi-variable approach, they did not 

provide justification or rationale for the variables or coefficients chosen.( )43   

      In addition, recent work has been done in the development of a transportation risk index that 

incorporates hazard rankings for amount transported, nearest habitation distance from a release, 

material dispersion characteristics, and chemical properties of the material.  These inputs 

determine a risk index intended to be used as a practical guideline versus a model for 

transporting various chemicals.( )44

 

2.4 CONSEQUENCES 

Risk is also represented in the literature as the undesirable consequences from a release.  

Consequences include monetary losses, injuries, and fatalities.  The DoT considers consequences 
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as a measure of risk, but this has the drawback of year-to-year variation.  For example, based on 

data in the HMIRS, there were 120 fatalities in 1996, versus an average of about 11 per year 

from 1993-2001, excluding 1996.  The large number of fatalities in 1996 was due to the crash of 

a commercial airliner, which caught fire due to the hazmat it was transporting in a non-regulatory 

manner.  However, it is questionable as to whether the overall risk was higher in 1996 versus in 

other years.   

      Although the literature does not include equations for calculating consequences, there are 

various qualitative statements concerning consequences.  Erkut and Verter define exposure risk 

during a release as the undesirable consequences, which are stated to be dependent upon vehicle 

design, material, geography, and meteorology.( )45   In a maritime hazmat article, risk is 

represented using natural resource restoration costs, which are given as dependent upon the type 

of material.( )46    

      Some recent work in railway transportation of hazardous materials considers the initiating 

events leading to a loss of containment, which is a type of consequence.  Although this recent 

work focuses on collisions and derailments during rail transport, it uses an event, or fault, tree to 

model a release and therefore has similarities to the present research.  However, it does not 

perform decision modeling, such as Bayesian networking, based on the event tree.  Its 

framework is that of a chain of events leading to an ultimate event, or loss of containment.  It 

also differs from the present work in how it calculates various frequencies or probabilities.  

Specifically, input from experts is used to determine certain frequencies.  In addition, 

consequence probabilities, including the probabilities of death or injury, are calculated using 

probit equations based on the effects of concentration level and material type.  Derailment 

frequencies are calculated using analytical equations that make use of detailed rail infrastructure 
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data.  The use of equations to calculate probabilities are in contrast to use of frequency data or 

counts from a database to calculate probabilities, as was done in this research.( )47

 

2.5 EXPOSURE AND PRODUCT OF EXPOSURES 

Exposure is sometimes defined in the hazmat literature as opportunities for incidents to occur.  

Therefore, exposure exists in the form of number of shipments, amount of material shipped, or 

distance traveled.  Exposure is also defined as the number of people potentially subjected to a 

release of material.  ReVelle et al. propose their “tons-past-people” measure of perceived risk.  

This is calculated as the product of tons of waste transported on a link and the population within 

a certain bandwidth of the links, summed over all links, as given by 
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 Equation 6 

 

 
 
 
This equation for risk is used within their multi-objective programming problem for 

transportation policy analysis.  Based on the authors’ statement, “tons-past-people” is a simple 

risk measure, and better measures of risk should be developed in future research.( )48   Their 

statement points to the desirability of detailed modeling of risk. 
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2.6 EXPECTED VALUE 

An expected value representation for risk is advocated by the Department of Transportation and 

is the most common model for risk in the hazmat literature.  In general, the expected value model 

is calculated as the product of a 1) probability and a 2) consequence or exposure.  The DoT 

defines risk as the product of the probability of an accident that results in a release and the 

population within the impact area.( )49        

      There are variations on the probabilities used in the expected value representation for risk.  

One such probability is the probability of an accident.  For example, Sivakumar et al. define risk 

using the following equation: 
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This model is used in their risk minimization routing problem for the transportation of hazardous 

materials.  Although they indicate that weather conditions and time of day affect the accident 

probability, it is not their goal to determine the actual relationship.  They make use of accident 

probabilities that are generated randomly and not modeled.( )50    

      Jin et al. also use the probability of an accident in their expected value calculation of risk, 

which is used within a risk minimization problem.  Despite noting that environmental influences 

such as design speed, pavement wetness, and visibility influence the accident probability, they 

calculate accident probability as the product of the segment length and a uniform random number 

between 0.01 and 1.  Thus, the influence of specific environmental factors on accident 

probability is not taken into account.( )51

21 



 

      Glickman and Sontag use the probability of an accident-causing release in their expected 

value risk calculation.  They acknowledge that their risk calculation does not take factors other 

than road length and type and population density into account due to the unavailability of such 

data on a nationwide basis.( )52   This may provide some insight into the lack of detailed 

representation or modeling of probabilities and consequences in hazmat routing studies.   

      Taking a slightly different approach, Patel and Horowitz, who combine industrial and civil 

engineering perspectives, view risk as the expected concentration level of a released gas.  They 

model the concentration level using the Gaussian plume model, a common dispersion model that 

incorporates the mean wind speed, gas emission rate, and atmospheric stability.  To calculate the 

expected concentration, or risk, the concentration level is multiplied by the potential for a vehicle 

crash.( ) 53

 

2.7 VARIATIONS ON EXPECTED VALUE 

Perceived risk has been modeled using an exponent on the exposure in the expected value 

representation for risk discussed previously.  This exponent is known as the risk preference 

parameter.  The larger the risk preference parameter, the higher is the decision maker’s aversion 

to risk.  Such a model has the following form: 
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A value of q > 1 represents risk averse behavior, while a value of q = 1 indicates risk 

neutrality.( , )54 55   As with the expected value representation for risk, the factors in this equation 

are limited to high level variables. 

 

2.8   CONCLUSION  

In general, the studies in the hazmat transport literature do not have an exploratory modeling 

focus.  Rather, various analytical equations for risk are used in route optimization or quantitative 

risk assessment research.  The lack of focus on exploratory modeling of risk in terms of its 

important variables presents a gap or opportunity in the hazmat literature.  This research 

contributes to the literature by introducing a data-driven Bayesian network model of a hazardous 

materials release during unloading operations.   
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3.0 LITERATURE SEARCH: CATEGORICAL DATA METHODS 

 

In order to develop a methodology to analyze a large categorical database, a literature search on 

data analysis topics was done.  The specific subjects searched include categorical data analysis, 

simplification of a large categorical database, identification of critical variables, and exploratory 

construction of a decision model based on categorical data.  The following main topics were 

uncovered: 

 
• Path Analysis 
• Structural Equation Modeling (LISREL) 
• Modified LISREL Approach 
• Three Step Latent Structure Modeling 
• Loglinear Modeling 
• Latent Class Analysis 
• Decision Tree Entropy Analysis 
• Bayesian Networks 

 
 
 
These topics will be discussed in the following sections in order to provide background for the 

methodology established by this dissertation. 

 

3.1 PATH ANALYSIS 

Path analysis is a graphical method used to model the relationships among a group of linearly-

related continuous or binary variables.  The goal is to measure the direct and indirect paths, or 

effects, between variables.  Thus, path analysis is a means to assess the influence of certain 

24 



 

variables on other variables.  An example path diagram, which can be analyzed using path 

analysis, is provided below in Figure 2.  Both W and X have a direct effect on Y, which has a 

direct effect on Z.  Both W and X have only an indirect effect on Z. 

 

W

X

Y Z

a

b

c

W

X

Y Z

a

b

c

 
Figure 2: Example Path Diagram. 

 
 
 
A direct effect, also known as a path coefficient or beta weight, measures the direct influence of 

the variable at the tail of the arrow on the variable at the head of the arrow, with the other 

variables held constant.  In Figure 2, the path coefficients are a, b, and c.  An indirect effect 

between two variables “passes through,” or involves, other variables in the model.  Thus, an 

indirect effect is a compound path and is calculated as the product of the path coefficients, or 

direct effects, along the path.  The path coefficients correspond to beta weights in a regression 

equation, which is one method of solution.( , , , , )56 57 58 59 60   A path diagram can be solved as a 

series of multiple linear regressions, with one equation per dependent variable in the diagram.  

The second solution method is an algebraic solution based on the decomposition of the overall 

correlation between two variables into various effects, including direct and indirect.    

      Path analysis is generally not performed with multi-category nominal variables.  First, there 

is no formal decomposition relationship of the overall association into the various effects, as 

there is for continuous variables.( , , , )  61 62 63 64 This decomposition rule forms the basis of the 

algebraic solution method within path analysis.  Second, although various researchers have 
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proposed the use of dummy variables for accommodating nominal-scaled variables in the 

regression formulation of path analysis, this is a tedious if not impractical effort in the case of 

numerous multi-category variables.( , , )65 66 67   Dichotomization of the multi-category variables has 

also been suggested, but this involves subjective judgment about the similarity of the 

categories.( )68    

 

3.2 STRUCTURAL EQUATION MODELING 

Path analysis is one of the major components of structural equation modeling (SEM), also known 

as LISREL or covariance structure modeling.  SEM is used with continuous variables to build a 

structural model consisting of both latent and observed variables.  With SEM, path analysis is 

simultaneously combined with factor analysis, which is used for developing latent variables.( , 

)

69

70   LISREL is a software product that performs SEM. 

 

3.3 MODIFIED LISREL APPROACH 

The categorical variant of SEM is known as the Modified LISREL approach.  A Modified 

LISREL approach simultaneously combines latent class analysis for development of latent 

variables and loglinear analysis for structural modeling.  It is a one-step, simultaneous estimation 

approach that provides unbiased estimates of the relationships among the observed and latent 

variables.( , , )71 72 73

      The software available for Modified LISREL modeling has limitations in terms of the models 

that can be built, however.  The only product available was LEM, an academic, non-commercial 

product.( )74   LEM does not have some important functionality available in its commercial 
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successor, Latent Gold, such as automated executions of the model using a predetermined 

number of sets of randomly-generated start values.( )75   This functionality is critical when 

building latent class models of a complex nature.  Based on this, LEM was not feasible for 

building the latent class models in this research.  In addition, according to LEM’s designer and 

developer, LEM has difficulty analyzing large modified LISREL models containing multiple 

observed and latent variables, especially when the latent variables have several indicators.( )76    

 

3.4 THREE STEP MODELS 

The three step approach to modeling categorical latent and observed variables is similar to the 

Modified LISREL approach in that it involves latent variable development and structural 

modeling.  However, with the three step approach, standalone latent class models are built first 

and then used in a structural analysis.  Thus, the latent variable development and structural 

modeling are not done simultaneously.  The latent class models or variables are built using some 

of the observed variables in the domain, which serve as indicator variables.  Then, the latent 

variables are modeled along with the remaining observed variables in a loglinear analysis.  Thus, 

the latent variables are cross classified with the observed variables.  This is done using the latent 

class scores, which are assigned to the latent variables during the classification stage of the latent 

class analysis.  The latent variables are essentially treated as observed variables in the structural 

model.( , )77 78    

      The three-step approach was used in this research, in large part due to the limitations posed 

by the software available for one-step modeling, in which the latent class analysis and structural 

modeling are done simultaneously.  The only product available for one-step modeling was LEM.  

Dr. Jeroen Vermunt, developer of the product, confirmed that LEM would have difficulty 
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modeling the five latent and six observed variables in this research simultaneously due to the 

complexity.  This recommendation was also based on three to four indicator variables per latent 

variable and two to nine categories per indicator variable.  Dr. Vermunt recommended a stepwise 

creation of the overall model in this case.( )79   This has also been recommended in the 

literature.( )80

3.4.1 Advantages of a Three Step Approach 

There are several additional reasons for using a three step versus a simultaneous approach.  First, 

when a structural model is built in pieces, the possibility for misspecification of the overall 

model is decreased.  This is due to a smaller chance of excluding important associations or 

masking poor fit in one portion of the model due to good fit in other portions.  In addition, a 

stepwise approach is better suited for cases in which the model building is exploratory, as in this 

research.  In this way, the researcher does not have to specify a priori the complete model with 

all latent and observed variables.  If a correct or best-approximating model is not known 

beforehand, a one-step or full information method is usually not the best approach.  The 

researcher should instead use an approach that divides the global model into different 

autonomous parts and fits each separately.( , ,81 82  83)  Disadvantages to the use of a three step 

approach will be discussed in a future section. 

       

3.5 LOGLINEAR MODELING 

Loglinear modeling is a method for detecting associations among multiple categorical variables 

and is the component of the modified LISREL approach that performs structural analysis.( , )84 85   

Using maximum likelihood estimation, the cell frequencies are estimated based on the specified 

model.  The lambdas (λ), or effect parameters, are then determined as part of the loglinear 
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modeling.  A main effect parameter indicates the effect that an individual variable has on the cell 

frequencies.  An interaction effect parameter indicates the presence of an interaction, or 

association, between two or more variables.( )86    

      The expected frequencies are used to assess the goodness of fit of the loglinear model by a 

comparison to the observed frequencies.  Either the Pearson chi square statistic (χ2) or the 

Likelihood Ratio chi square statistic (L2) can be used to assess the fit, although L2 is the preferred 

statistic.  The Likelihood Ratio statistic has additive properties and can be partitioned for testing 

conditional independence.( )87    

      There are two versions of loglinear modeling.  In the asymmetric version, also known as a 

logit analysis, a response variable is assumed or chosen, and the effects of the explanatory 

variables and their associations on the response variable are determined.  Specifically, the log of 

the odds of the expected frequencies of the response variable is modeled in terms of the variables 

and their associations.  In the symmetric version, a response variable is not assumed or chosen.  

Rather, patterns of mutual association among the categorical variables are explored.  In a 

symmetric loglinear model, the log of the expected cell frequency is modeled in terms f the 

variables and their associations.( , )88 89

3.5.1 Associations in Loglinear Models 

The reason for the use of loglinear modeling in this research is to assess the associations among 

the hazmat variables for development of an accurate network-based model.  There are various 

types of associations among categorical variables that can be determined or measured using 

loglinear modeling.  For example, one can test for either a marginal or partial association 

between two variables.  A marginal association between two variables is determined by 

summing or collapsing over all other variables in the model.  The other variables are in essence 
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ignored, and the association in the two-way table is assessed exclusively.  A partial association 

between two variables is an association after removing the effects of other variables.  Based on 

this, it is a conservative test.  Partial association is related to the concept of conditional 

independence.  If variables X and Y are conditionally independent given a third variable Z, then a 

partial association does not exist between X and Y given Z.  This is depicted in the figure below. 

 

X

Z Y

X

Z Y

 
Figure 3: Conditional Independence of X and Y. 

 
 
 
One will notice the absence of an arrow, or arc, from X to Y, indicating conditional 

independence, or lack of a direct association.( )90   The establishment of conditional independence 

between two variables simplifies an influence diagram or Bayesian network by reducing the 

number of needed arcs.( )91   If there are no associations among variables X, Y, and Z, then the 

model of mutual independence holds. 

3.5.2 Testing Significance of Associations 

Marginal and partial associations between variables are determined based on differences in the 

L2 statistics of the pertinent loglinear models.  This L2 difference is known as a component and 

also follows the chi square distribution.( )92   For example, suppose one wishes to test the 

significance of a marginal association between variables X and Y in a three-way table for X, Y,  
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and Z.  The statistic for the model of mutual independence among X, Y, and Z ( ) is compared 

to the statistic for the model that that additionally contains an interaction term for X and Y ( ), 

thereby obtaining the component L

2
0L

2
iL

2.  Specifically,  

.22
0

2
iLLL −=  

In addition, the difference in their degrees of freedom is also calculated, as shown below. 

.0 idfdfdf −=  

If the component L2 is large relative to its component degrees of freedom (df), then the 

association between X and Y is significant.( )93   In this test of marginal association between X and 

Y, the variable Z was ignored, or summed over.( )94    

      The previous test and loglinear models in general are represented using a conventional 

notation.  For example, for variables X, Y, and Z, the model of mutual independence is 

represented as follows:  

[X] [Y] [Z]. 

A test of marginal association between X and Y is indicated by a comparison of the above model 

with the following model, which additionally contains an interaction term for X and Y: 

[X] [Y] [Z] [XY]. 

A test of partial association can also be represented using the conventional notation.  To test for a 

partial association between X and Y in the presence of Z, the following model containing all two-

way associations except [XY]: 

[X] [Y] [Z] [XZ] [YZ], 

is compared to the model additionally containing an association term for  X and Y  

 [X] [Y] [Z] [XZ] [YZ] [XY].  
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If the component L2 is large enough, then a partial association between X and Y exists.( )  95 Note 

that the effect of Z was removed by the inclusion of all two-way associations involving Z in the 

former model.   

3.5.3 Assessing Associations in Large, Sparse Tables 

Significance testing is problematic in the case of a large, sparse contingency table as well as a 

large sample size.  However, a large, sparse table is often the type of table that investigators 

work with.( )96   Such tables contain many variables or categories and thus many cells with zeros 

or small cell counts less than five, despite a large sample size.  This is problematic for the use of 

chi-square statistics, such as L2.  These statistics are suspect under conditions of sparseness 

because L2does not follow the chi square distribution in this case.( )97   This is also known as 

Cochran’s Rule.( )98

      However, although significance testing is suspect with sparse tables, the existence of 

associations between variables can still be determined using the effects, or lambda (λ), 

parameters.( , )99 100   A lambda parameter indicates the strength of an effect, or its importance in 

explaining any deviation from a flat distribution of the cases among the categories, or cells.  

Thus, there is a lambda parameter for each combination of the categories of the variables, and a 

lambda parameter can be positive or negative, with the sign indicating the direction of influence 

of the effect.  For example, in a symmetric loglinear model, a lambda with a positive sign 

indicates that the effect is responsible for a relative increase in the number of cases in the 

cell.( )101   For an asymmetric model, which assumes a response variable, a lambda with a positive 

sign indicates increased odds that the response variable equals a given value.  In other words, 

there are a larger proportion of cases associated with the particular value of the response 

variable.( , )102 103   The lambda parameters are much more robust than a chi-square or standardized 
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lambda test.  The lambdas are also insensitive to sample size if the sample size is not small.( )104   

In general, two variables are considered not directly associated if the maximum lambda for the 

variable pair is less than 0.20 in absolute value.  Hence, X and Y are not associated if max|λij| < 

0.20, where i and j represent any two categories of X and Y, respectively.( , )105 106    

     

3.6 MORE ON THREE STEP MODELS 

3.6.1 Disadvantages of a Three Step Approach 

The main disadvantage to the three step approach is the bias introduced in the structural model 

due to the classification errors of the latent variables.  The latent variables are treated as observed 

variables in the structural model, but they are actually predicted variables with some degree of 

prediction, or classification, error.  The use of latent variables in this manner leads to bias, which 

causes attenuation, or underestimation, of the strength of the relationship between latent and 

observed variables.( , , )107 108 109

      Two tactics can be used to mitigate the bias.  First, greater emphasis can be placed on the 

classification ability of the latent variable, although this may come at the expense of fit.( )110   

Second, a correction procedure developed by Bolck, Hagenaars, and Croon can be applied to the 

(biased) joint distribution of the observed and predicted latent variables to obtain the joint 

distribution of the observed and true latent variables.( )111   Both tactics were applied in this 

research.  The correction procedure adjusts, or corrects, the biased joint distribution using a 

transition matrix, which is constructed using characteristics of the latent variable determined 

during latent class analysis. 
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3.6.2 Correction Procedures 

The correction procedures for three-step modeling developed by Bolck, Croon, and Hagenaars 

involve adjustment of the matrix containing the joint distribution of the observed and predicted 

latent variables.  This is done using one or more transition matrices, depending on the number of 

latent variables.  The result is a corrected matrix containing the joint distribution of the observed 

and true latent variables.( )112   In the case of one latent variable and one or more observed 

variables, the relationship between the uncorrected and corrected matrices is given as 

 
 

.
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matrixtransitionD
tvariablelatenttrue1andvariablesobservedofmatrixcorrectedA

svariablelatentpredicted1andvariablesobservedofmatrixduncorrecteE
where

ADE

=
=
=

=

 Equation 9 

 
 
 
Using matrix algebra, the corrected matrix A is determined as follows: 

 
 1−= EDA . Equation 10 

 
 
 
 
The corrected matrix A was used for the loglinear modeling versus the uncorrected, or original, 

table E.  The contents of corrected matrix A were rounded to the nearest integer prior to 

modeling.   

      The transition matrix D is calculated using the conditional and classification probabilities 

determined as part of the latent class analysis, as shown below.  

 
 ∑= ).|()|( ysptypD  Equation 11 
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The factor , in which t represents the true latent variable and y represents the response 

pattern, is calculated as the product of the conditional probabilities associated with response 

pattern y in latent class t.  The factor  corresponds to the classification of each response 

pattern.  Assuming modal classification, which was used in this research,  = 1 if response 

pattern y is assigned to predicted class s and 0 otherwise.

)|( typ

)|( ysp

)|( ysp

( )113

      In the case of a joint distribution involving two or more latent variables and one or more 

observed variables, a more general correction procedure is needed.  The previous correction 

formula (Equation 10) cannot be applied in these cases based on the matrix algebra.  Therefore, a 

more general procedure was developed by Dr. Marcel Croon in January 2005 in response to 

these more complex joint distributions, which are present in this research.( )114   The more general 

procedure was not part of the published correction procedures by Bolck et. al.  The general 

procedure involves concepts from advanced matrix algebra, such as the Kronecker Product.  

      In order to present this general correction procedure, the Kronecker Product will be defined 

for the case of two matrices, although it can be extended to more than two.  Assume Ais an n x m 

matrix and B be an r x s matrix.  Their Kronecker Product A⊗B is the nr x ms super matrix 

formed from all possible products of the elements of A with those of B.( )115   Also, the 

vectorization operation (vec) for a matrix consists of writing the elements of the matrix as a 

single vector by stacking the columns.  Using the case of three latent and two observed variables 

as an example, the relationship between uncorrected matrix Q and corrected matrix P is given as 
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vec(P)CBAvec(Q)
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=

⊗⊗=

 Equation 12 

 
 
 
The transition matrices A, B, and C are associated with the three latent variables and are 

determined as previously using Equation 11.( )116   The general procedure (Equation 12) can be 

extended to include additional latent and observed variables.  For each additional latent variable, 

there is an additional transition matrix.  Equation 12 is solved algebraically for the corrected 

matrix P, which is used within the loglinear modeling, as given by 

 
).()()( 111 QvecCBAPvec −−− ⊗⊗=  

 

3.7 LATENT CLASS ANALYSIS 

The second component of the modified LISREL approach is latent class analysis, which performs 

the measurement portion of the modeling.  Latent Class Analysis (LCA) is a technique used to 

determine a categorical latent variable from an analysis of the relationships among cross-

classified categorical indicator variables.  A latent variable is an unobserved variable that cannot 

be measured directly.  An example of a latent variable is a person’s attitude as portrayed through 

a survey.  A latent variable can be measured only indirectly using observed or manifest variables, 

which are also referred to as indicator variables.  An example of an indicator variable is a survey 

question.( )117   The basic premise of a latent variable is that it explains or accounts for the 

relationships among the indicator variables.( )118    
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      Latent class analysis is often referred to as a categorical analog to factor analysis and was 

originally conceived as a method for survey analysis in the social sciences.( )119   Factor analysis 

and LCA are similar in that both methods explore the latent structures among a group of 

observed variables.  Within three step modeling, a latent variable enables the researcher to work 

with one simple “predicted variable” versus many indicator variables.( )120   Since a latent variable 

explains the associations among its indicator variables, the indicators are simplified to a more 

basic and general latent construct.( , , , )  121 122 123 124 In essence, various associated nominal 

variables are “combined.”  Thus, in this research, latent class analysis was used as a variable 

simplification and reduction tool.  The following sections describe the various latent class 

analysis fundamentals necessary used in applying this technique within this research. 

3.7.1 Model Building Strategy 

The outcome of a latent class analysis is a latent variable, which contains a number of categories, 

or latent classes.  The objective is to choose the simplest model, or the model with the fewest 

classes, that has acceptable fit and classification ability.( , )125 126   Thus, the model builder must 

attempt to balance simplicity with fit and  classification ability.  In choosing the number of 

classes for the latent variable, the first model that is tested is the model of independence, which 

has one class.  If this model is acceptable, the indicator variables are not associated, and a latent 

variable is not necessary.  However, if a one-class model is not acceptable, then models 

containing several class are evaluated, starting with two.( )127   To compare models containing a 

different number of classes, the best run for each model is used.( )128   Based on these best runs for 

different models, a final model is chosen based on a comparison of fit, classification ability, and 

parsimony. 
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3.7.2 Output Parameters 

There are two types of parameters estimated as part of a latent class analysis.  Latent class 

probabilities describe the sizes, or distribution, of the classes of the latent variable and sum to 

one.  A conditional probability parameter is the probability of a particular category of an 

indicator variable given the latent class.  In other words, a conditional probability is the 

probability that an indicator variable has category i given the latent variable has class t.  It 

indicates the degree of the relationship between the category and the latent class.  The 

conditional probability parameters are used to interpret and name the latent classes.( ) 129  The 

conditional probabilities for an indicator variable within a latent class sum to one.( )130

3.7.3 Max Likelihood Estimation of Parameters  

The latent class and conditional probabilities are typically estimated using a max likelihood (ML) 

approach.( , , )131 132 133   However, there is no closed-form ML solution for these parameters, and 

most software packages use an iterative procedure known as the Expectation Maximization (EM) 

algorithm to estimate the parameters.( , )134 135   The EM Algorithm begins with trial values for the 

parameters and iterates until the change in the estimated parameters is less than a pre-defined 

tolerance or until the maximum number of iterations is reached.( )136   A caution with the use of 

the EM Algorithm is its tendency to converge to local maximums.  However, performing many 

runs of a model using different start values for the parameters allows a determination of the 

optimal solution with a high degree of certainty.( ) 137

3.7.4 Goodness of Fit 

One criterion used in choosing the best model is fit.  There are various statistics and measures 

used to assess goodness of fit.  These include the Pearson Chi Square statistic (Χ2) and 

Likelihood Ratio Chi Square statistic (L2), which are used for significance testing.  In addition, 
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the Index of Dissimilarity (Id), Normed Fit Index (NFI), Bayesian Information Criterion (BIC), 

Akaike Information Criterion (AIC), and the Consistent Akaike Information Criterion (CAIC) are 

other measures that can be used to assess fit.  The statistics Χ2 and L2 have the drawback of being 

dependent on the sample size.  They tend to reject a model when the sample size is large, even 

though the model is reasonable.  If Χ2 or L2is used to assess the fit of a latent class model, then 

the model is accepted as fitting the data if the chi square statistic is small enough relative to the 

degrees of freedom.  This is opposite of the traditional goal or rejecting the null hypothesis of 

independence by obtaining a large test statistic.  In finding the best fitting model, we hope to 

accept the hypothesized model.( )138

      Therefore, other measures are used to assess fit when the sample size is large, as in this 

research.  For instance, the Index of Dissimilarity (Id) takes sample size N into account and is 

defined as follows: 
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As a general rule, values of Id less than 0.05 are considered small and indicate good fit.  Thus, Id 

≤ 0.05 provides a target range for good fit when the sample size is large.( )  139 In this research, the 

Id  is one of the primary measures for assessing fit. 

      The Normed Fit Index (NFI) is another measure that can be used to assess fit with large 

sample sizes.  This index is calculated by comparing the likelihood ratio chi square of the model 

being tested ( ) with that of a baseline model ( ), such as a one-class model, as shown in 2
iL 2

0L

Equation 14.( )140   
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Equation 14 

 
 
 
When the NFI is between 80% and 90%, then goodness of fit is suggested.  In other words, when 

a model begins to account for 80-90% of residuum variation, then the model has good fit.( , )141 142

      The Akaike Information Criterion (AIC) is a measure of model fit based on concepts from 

information theory.  The AIC accounts for the number of independent parameters and is a 

parsimony index because it favors models with fewer parameters.  However, a criticism of the 

AIC is that it does not take N into account.  There are no critical values or targets, but smaller is 

better.( )143   It is calculated as shown in Equation 15.( )144
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The Bayesian Information Criterion (BIC) takes both N and the number of independent 

parameters into account.  Relative to the AIC, it tends to select less complex models, since it 

heavily penalizes for the number of parameters when N is large.  Similarly, there are no critical  
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values for BIC, but smaller is better.( )145   The Consistent Akaike Information Criterion (CAIC) is 

similar to the BIC in that it penalizes for both sample size and number of parameters.( )146   The 

smaller the AIC, BIC, or CAIC, the better the model.  

3.7.5 Classification 

Each pattern of the indicator variables is assigned to a class of the latent variable.  Each pattern is 

assigned based on the modal conditional probability.  The modal conditional probability is the 

largest probability of membership in a class of the latent variable given the particular pattern.( , 

)

147

148    

      Since modal assignment is probabilistic, measures of classification performance are 

calculated.  These include the classification error (Pe) and Goodman and Kruskal’s Lambda 

(λ).( )149   Lambda is a proportional reduction in error (PRE) measure that determines the 

proportional decrease in the error rate when modal assignment is used versus assignment of all 

patterns to the largest latent class in the model.  Specifically, λ is calculated as given in Equation 

16.( , )150 151
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The closer λ is to one, the better the classification performance, or predictive ability, of the 

model.( )  152 An LCA model should be judged not only on its fit but also on its ability to classify 

the patterns.( , ) 153 154
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3.7.6 Identifiability 

An LCA model must have the property of being identified.  When a model is identified, there is a 

unique set of parameters associated with a value of L2.( ) 155  Thus, when a model is not identified, 

more than one set of latent class or conditional probabilities exists for the same value of L2.  

Local identifiability applies to any given run of a model, while global identifiability applies to 

the optimal run, or the run with the minimum L2.  Local identifiability indicates whether there are 

additional parameter solutions for the same L2 in the same neighborhood.( )156   A necessary 

condition for identifiability is non-negative degrees of freedom. 

3.7.7 Local Maximum Solutions 

As indicated in section 3.7.3, a latent class model often converges to local maximum solutions, 

which have a larger L2 than that of the optimal model.( ) 157  A local maximum solution can differ 

substantially from the optimal solution in terms of the parameters.  Convergence to local max 

solutions is a noted problem in latent class analysis.  Therefore, it’s imperative to run a model 

many times using random parameter start values to arrive at the minimum L2 for the model, as 

was done for the latent variables in this research.( , )158 159   The automation of this process by 

software is advantageous and was necessary to build the latent class models in this research.  

Once two separate runs having the same minimum L2 are found, they are then verified to have 

the same parameters (latent class and conditional probabilities).  If their parameters are equal, the 

model is globally identified.   

3.7.8 LCA Software 

There are various software products available to perform latent class analysis.  Some are 

academically developed and/or freely-downloadable, such as LEM and MLLSA.  The product 

used in this dissertation was Latent Gold 3.0, a commercial product by Statistical Innovations.  
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Latent Gold allows a model to be automatically run many times, each time using a random set of 

start values, to ensure the optimal run is found.  The best of these runs is reported as the resultant 

model.  The functionality within Latent Gold enabled easy and fast determination of the globally 

identified solution for a given number of latent classes. 

             

3.8 BAYESIAN NETWORKS 

The final topic on categorical data modeling to be introduced is the Bayesian network.  A 

Bayesian network is a graphical decision model consisting of variables, represented by nodes, as 

well as the direct dependencies or associations between the variables, which are represented by 

arcs.  It is a directed graph that does not contain cycles.  A Bayesian network is used for 

probabilistic inference, or querying the probabilities of certain variables when the values of other 

variables are known.  For example, one of the main applications of a Bayesian network is 

determining the most likely cause for a given effect, also known as diagnostic, or bottom-up, 

reasoning.  Top down reasoning can also be performed, in which the probability of effects given 

causes is computed.( , , )160 161 162   Within diagnostic reasoning, the explanatory variables can be 

ranked based on their value of information and the degree to which they reduce the uncertainty 

of the effect.( , )163 164   For the hazmat release model, this was used to identify the variables that 

should be the top priorities for policy change.  In general, the Bayesian network has become a 

popular means of modeling expert or decision support systems, such as for medical diagnosis or 

other trouble-shooting applications. 

      The dependency, or association, structure of a Bayesian network is one of its two major 

components.  Only two-way associations and conditional independencies are depicted in directed 

graphs.  The absence of an arc indicates conditional independence between two variables.  
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Three-way and higher-order associations are represented only indirectly through multiple arcs.  

With a directed graph, if two variables are connected by an arc to a third variable, the three-

variable interaction is automatically represented in the graph by the connecting arcs.( )  165

Therefore, even if the exact form of the relationships among the variables is not known, it does 

not matter because the uncertainty is represented probabilistically. 

      A typical method of building the structure of a small to moderate sized Bayesian network is 

manually with the assistance of an expert.  Newer methods, which are often applied to larger 

networks or in the absence of a readily available expert, are machine learning or algorithmic 

approaches involving inductive inference or search for the most probable structure.( )166   Learning 

modules were implemented in academic Bayesian network software beginning in the early 

1990’s.( )167   A learning module was just implemented in GeNIe, the decision model software 

used in this research, in the summer of 2005.  An opportunity for future research is a comparison 

of the results of loglinear modeling with those of learning algorithms for building the structure of 

the network. 

      The second major component of a Bayesian network is the quantitative portion, and it 

represents the joint probability distribution among all the variables.  The joint probability 

distribution is calculated using the conditional probability distribution associated with each node 

in the network.  The conditional probability distribution of a node is the probability that the node 

takes on each of its possible values given every combination of values of its parent nodes.  The 

joint and conditional probabilities are related according to the chain rule.  The chain rule states 

that for a Bayesian network over the variables U={A1,…,Am}, the joint probability distribution 

P(U) is the product of all conditional probability distributions specified in the network.   

 

44 



 

Specifically,  
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where pa(Ai) is the parent node set of node Ai.  When a variable has no parents, the probability 

distribution is the prior distribution.( )168   In order to determine the quantitative portion of the 

Bayesian network, the conditional probability distribution for each variable, or node, must be 

calculated.  The conditional probability distribution for a variable A given its parents B and C is 

calculated according to Equation 18.( )169
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This equation is easily extended to include additional parent variables by including them in the 

numerator and denominator in the same manner as B and C.  To calculate  for 

category combination A=i, B=j, and C=k, the number of records in which A=i and B=j and C=k 

is divided by the number of records in which B=j and C=k.

),|( CBAP

( )  170 The conditional probability 

distribution for A contains i x j x k probabilities, so there is a probability associated with each 

category combination i,j,k. 

      Conditional probabilities can be determined based on record counts from a database or 

subjective data or beliefs from an expert.  All probabilities calculated for the Bayesian network 

in this research were calculated using record counts, or frequency data, from the HMIRS 

database.  Frequency data can be used when dealing with repetitive events that have been 

recorded.  However, a database may not be available, or the event may not be repetitive, for 
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instance a nuclear war.  In these cases, the conditional probabilities must be assessed subjectively 

by an expert.  The subjectivist view considers probability as a measure of personal belief.  

Hence, Bayesian networks are also known as belief networks.( )171

      The foundation of inference in Bayesian networks is Bayes Theorem, which enables 

inference in any direction in the network.  Using Bayes Theorem, some probabilities are updated 

based on new evidence, or specific values, of other probabilities.( )172   Several algorithms exist for 

performing inference in a Bayesian network.  The clustering algorithm, in which the directed 

graph is converted to a junction tree where the probabilities are then updated, is the fastest 

known exact algorithm.  The clustering algorithm is the default algorithm implemented in 

GeNIe, which is discussed next.( )173    

3.8.1 Bayesian Network Software 

The decision model software used in this research was GeNIe, a graphical decision-theoretic 

package developed at the Decision Systems Lab at the University of Pittsburgh.  GeNIe is a 

development environment for Bayesian networks and influence diagrams and is available to the 

community at no cost.  Using GeNIe, the modeler builds the network structure using circular 

nodes and arcs in an intuitive, graphical environment.  Conditional probability distributions can 

be copied into GeNIe for each node, making the construction of the network very efficient.  Once 

this is complete, the various forms of inference discussed previously can be performed.   

      Decision models can be studied in terms of value of information, which refers to the 

information value of a parent variable relative to the outcome variable.  The information value of 

a parent variable can also be viewed as its ability to influence or reduce uncertainty in the 

outcome variable.  An entropy-based value function is used in GeNIe to rank the parent variables 

based on their information content in relation to the outcome variable.  This function determines 
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the decrease in entropy, or uncertainty, by observing a given parent variable.  Entropy is a 

concept from the field of information theory and is used to measure the information value of a 

variable, which represents the expected amount of information needed to classify a new instance 

involving the variable.( )174
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4.0 METHODOLOGY 

 

A methodology for determining a data-directed decision model from a categorical dataset is 

being proposed and demonstrated in this research.  The major components of this methodology 

include simplification, determination of associations, and construction of a Bayesian network 

model, as shown in Figure 4 by way of review.  
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Figure 4: Methodology for Building a Decision Model. 

 
 
The variable domain was simplified for purposes of model building.  The simplification was 

accomplished using Pareto analysis, data aggregation, discretization, and latent class analysis.  
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Pareto analysis was used to eliminate infrequent categories and variables from consideration to 

decrease the sparseness of the contingency tables used for latent class analysis and loglinear 

modeling.  Data discretization was applied to the outcome variables release quantity and dollar 

loss, which were continuous variables.  These variables were made discrete based on their 

distribution as well as expert input.  This was done to simplify the data and to enable these 

variables to be used within loglinear and Bayesian network modeling.  After the Pareto analysis 

and data aggregation, latent class analysis was used to further simplify the variable domain by 

combining related variables to form latent variables.  Using latent class analysis, the number of 

variables in the decision model was reduced from 24 to 11.  The simplification strategy applied 

to the domain of variables is summarized below in Figure 5. 
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Figure 5: Simplification Strategy for a Highly-Categorical Database. 

 
The 11 simplified variables were used to construct a time-ordered, base network structure of a 

hazardous materials release.  In order to determine accurate relationships, or associations, 

between the variables, an exploratory loglinear modeling approach was taken, as part of a three-

step approach for the modeling of categorical latent variables.  In determining these associations, 

the downstream variables in the network served as response variables to the upstream variables, 

as the loglinear, or logit, modeling proceeded from left to right in the network.  An exploratory 
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analysis was considered the best approach based on the gaps in the literature, the possibility for 

non-obvious relationships, and the large amount of available data.  Loglinear modeling has been 

used previously by social science researchers to build data-congruent path diagrams.( , ) 175 176

      The associations determined using loglinear modeling were used to construct the structural, or 

qualitative, portion of a Bayesian network decision model.  The joint probability distribution 

among the 11 variables, which forms the quantitative portion of the Bayesian network, was 

obtained from the database using incident counts.  The Bayesian network was used for making 

inferences on the variables, including ranking the explanatory variables and analyzing desirable 

changes for them.  Starting with the simplification techniques of Pareto analysis, data 

aggregation, and discretization, the overall methodology is demonstrated using the DoT’s 

hazardous materials release database as the worked example. 

 

4.1 WORKED EXAMPLE 

A general, high level methodology for development of a data-driven decision model based on 

categorical data was proposed in the previous section.  This methodology is demonstrated in the 

following sections using an engineering problem as the worked example.  The problem is the 

decision model of a hazardous materials release during transportation-related unloading of 

containers.  The decision model will be used for identification of critical variables and 

operational change analysis related to these types of hazmat releases.  In general, the decision 

model can be used to gain a better understanding of the hazmat release problem in order to 

decrease the severity of incidents.  In the following sections, the proposed methodology for  
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decision model construction is carried out.  Specifically, the following sections describe the 

Pareto analyses, data aggregation, discretization, three-step modeling procedure, and Bayesian 

network construction, as applied to the large, categorical hazmat release database.      

4.1.1 Simplification 

The simplification of the variable domain for the hazmat release problem using the techniques 

described previously is demonstrated in the following sections.  The application of Pareto 

analysis, data aggregation, discretization, and latent class analysis to the hazmat release database 

is demonstrated. 

4.1.1.1 Data Sources and Incident Types  
The most complete source of data on hazardous materials releases is the HMIRS, the database 

maintained by the DoT’s Office of Hazardous Materials (OHM).  If hazardous materials are 

unintentionally released during commercial interstate or intrastate transport, a written report must 

be submitted for entry into the HMIRS.  The HMIRS is readily available on the internet in the 

form of downloadable datasets covering years 1993 to the present.  There are approximately 

149,000 records from January 1993 to July 2002, the time period being considered in this 

research. 

      The HMIRS was compared to a state database that also tracks hazmat releases.  The state of 

Ohio, which has the largest number of off-road highway incidents according to the HMIRS, 

maintains a database for commercial transport releases.  However, based on a comparison of 

Ohio’s database to the HMIRS, the federal reporting requirement indicates the desirability of 

using federal data for off-road incidents.  In Ohio, it is not mandatory for commercial carriers to 

report unintentional releases.  The entities that typically report include regulatory and local  
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emergency response agencies.  As a result, only 30-50 releases were recorded annually between 

2000 and 2001 in Ohio’s database.( ) 177  This contrasts with an annual average of 1356 highway 

releases recorded for Ohio in the HMIRS between 2000 and 2001. 

      The majority of hazmat incidents in the United States are related to the highway mode of 

transport as opposed to air, water, and rail.  The highway mode is associated with 86% of 

incidents.  Highway-related incidents occur both on and off the road, but 88% occur off the road.  

Of these, 73% occur during the unloading of hazardous materials.  This compares to 22% during 

loading and 5% during storage operations.  Due to the prevalence of incidents that occur during 

unloading, the incident type considered is limited to unloading release incidents within the 

United States.  Based on an analysis of the HMIRS, there are approximately 80,000 incidents 

meeting these criteria in the HMIRS. However, after applying Pareto, approximately 40,000 

were used in constructing the association structure of the Bayesian network.  As shown in Table 

2, the percentage of unload incidents from 1993 to mid 2002 has remained fairly constant.  

However, one will notice a relative increase in 2001.  This may be the result of a requirement 

beginning in October 1998 to report intrastate as well as interstate incidents.( )178   Therefore, this 

research does not consider a trend in incidents over this time period.   

 
Table 2: Unload Incidents by Year. 

 YEAR 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 
Unload 

Incidents 7394 8701 8145 7200 7174 7613 9241 9225 10451 4834 

Total 
Highway 
Incidents 

11074 13984 12762 11909 11852 12995 14963 15012 14921 6852 

Unload 
Percentage 0.668 0.622 0.638 0.605 0.605 0.586 0.618 0.615 0.7 0.706 
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4.1.1.2 Pareto Analysis and Data Aggregation   
The need to simplify the variable domain was apparent at the outset of the data analysis.  The 

variables were multi-valued, ranging from two to thirty-six categories.  Despite the large sample 

size, the large number of categories created sparse contingency tables containing many zeros or 

small cell counts of less than five.  Unfortunately, the use of chi square statistics for significance 

testing in sparse tables is suspect.  Therefore, various categories were eliminated from 

consideration.

      Another important reason for reducing the categories considered was an increased chance of 

convergence of the loglinear models.  Loglinear models often do not converge when the 

contingency table contains many zeros, which is driven by a large number of categories.( )179   For 

example, an early model involving 13 container types did not converge.   

      In order to determine the categories to retain for modeling, a frequency analysis of each 

variable based on involvement in incidents was done.  In general, the categories associated with 

80% of the incidents were included.  Thus, the 80/20, or Pareto Principle, was applied when 

possible.  This principle focuses on the top 20% of the factors or categories that are associated 

with 80% of the outcome.( )180   For example, material type approximately follows the Pareto 

Principle since two of the nine material types, corrosives and flammable liquids, are associated 

with 80% of the unloading incidents.  The Pareto analysis of each variable and the categories 

retained for latent class modeling and loglinear analysis are described in the following sections.     

      In addition, there were several variables that were natural candidates for data aggregation, or 

generalization, as a means of simplification.  These variables included date, time, and U.S. state.  

Data aggregation or generalization was desirable and possible with these variables because they 

included natural groupings.  
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      A note on the selection of categories and variables as part of the simplification is in order.  

Although Pareto was applied to most of the variables and sets of binary variables, it was not 

applied to all of them due to modeling constraints.  The variables and sets to which Pareto was 

not applied were container type, failure item, and failure area, as will be discussed.  This resulted 

in the dataset of unloading incidents being reduced by 50% from approximately 80,000 records 

to 40,000 records.  The issues of model testing and convergence, which are affected by the size 

and sparseness of the contingency table, became the overriding factors for determining the 

categories and variables retained for container type as well as the failure item and area binary 

sets.  In addition, the binary variables in these two sets were combined to form one latent 

variable versus a latent variable for each set.  This was done so that the largest loglinear model 

would have a maximum of ten variables, due to an SPSS limitation.  Also, the ability to interpret 

latent class models is enhanced when the number of indicator variables and categories is kept 

small.  A summary of the approach used in this research for category elimination is provided in 

Figure 6. 

      Based on this, the infusion of subject matter knowledge can contribute to the methodology by 

removing some of the arbitrariness in selecting categories and variables and in general adding 

“art” to the science.  The modeler in this case would likely have better or additional reasons for 

retaining or eliminating certain categories or variables. 
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Figure 6: Strategy for Category Elimination. 

 
 
The non-simplified variables to be discussed in the following sections are summarized below. 

 
Table 3: Non-Simplified Variables in the Hazmat Release Network. 

Variable Data Type Number of 
Categories Range 

Area Type nominal 3   
Container 

Type nominal 36   
Dollar Loss continuous   $0-$43,760 

Geographic 
Division 
(State) nominal 9   

Land Use nominal 5   
Material 

Type nominal 9   
0-2000 gal. Release 

Quantity continuous   0-200 lb. 

Season 
(Date) nominal 4   

Shift (Time) nominal 3   
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Table 3 (continued). 

Variable 
Set 

Data 
Type 

Number 
of 

Variables 
Range 

Causing 
Object binary 9   

Contributing 
Action binary 18   
Failure 
Area binary 8   

Failure Item binary 8   
Failure 
Mode binary 8   

 
 
 
Area Type  Area type describes the location of the incident in terms of a suburban, urban, or 

rural setting.  Suburban incidents occurred most frequently, with urban incidents following 

closely behind, as shown in Table 4.  If an area type was not reported, as in 2% of the incidents, 

the record was excluded from the analysis.  Since suburban and urban accounted for over 80% of 

the incidents, the rural area type was not included in the analysis.   

 
Table 4: Unload Incident Count by Area Type. 

  Area Type 
Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 Suburban 34,809 0.44 0.44 
2 Urban 32,591 0.41 0.84 
3 Rural 11,043 0.14 0.98 

4 
Not 

Reported 1,535 0.02 1.00 

 
 
 
Land Use  Land use is another location-related variable that describes the scene of the incident 

in terms of a commercial, industrial, residential, agricultural, or undeveloped setting.  

Commercial and industrial incidents were about equally prevalent and accounted for the great 

majority of incidents at 96%, as shown in .  Residential settings were associated with 

only 2% of incidents, while agricultural and undeveloped accounted for less than 1% each.  

Table 5
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Approximately 2% of incidents had a non-reported land use and were not included.  Based on the 

large percentage of commercial and industrial incidents, the remaining categories were 

eliminated.  

 
Table 5: Unload Incident Count by Land Use. 

  Land Use 
Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 Commercial 39,561 0.49 0.49 
2 Industrial 37,224 0.47 0.96 
3 Residential 1,626 0.02 0.98 
4 Not Reported 1,237 0.02 1.00 
5 Agricultural 187 0.00 1.00 
6 Undeveloped 143 0.00 1.00 

 
 
 
State/Geographic Division  The third variable that describes the location of the incident is the 

U.S. state.  However, for simplification purposes, state was generalized to geographic division, 

which is based on the nine U.S. Census Bureau divisions.( )181   These nine divisions and their 

constituent states are shown in Table 6.  The East North Central division, which consists of 

Illinois, Indiana, Michigan, Ohio, and Wisconsin, accounted for the largest number of incidents 

with 21%.  Next, the South Atlantic and Middle Atlantic divisions were associated with 16% and 

15%, respectively.  All nine divisions were included in this research. 

 
Table 6: Unload Incident Count by Geographic Division. 

  Division States 
Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 East North Central IL, IN, MI, OH, WI 17,145 0.21 0.21 

2 South Atlantic 
DC, DE, FL, GA, MD, 

NC, SC, VA, WV 12,536 0.16 0.37 
3 Middle Atlantic NJ, NY, PA 12,058 0.15 0.52 
4 Pacific AK, CA, HI, OR, WA 8,704 0.11 0.63 
5 West South Central AR, LA, OK, TX 8,080 0.10 0.73 

6 West North Central 
IA, KS, MN, MO, ND, 

NE, SD 6,721 0.08 0.82 

7 East South Central AL, KY, MS, TN 5,686 0.07 0.89 

 

57 



 

Table 6 (continued). 

8 Mountain 
AZ, CO, ID, MT, NM, 

NV, UT, WY 5,473 0.07 0.96 

9 Northeast 
CT, MA, ME, NH, RI, 

VT 3,575 0.04 1.00 

 
 
 
Date/Season  In order to create a simplified and discrete variable for modeling, incident dates 

were aggregated based on the season, using the ranges shown in Table 7.  Incidents occurred 

most frequently during the summer season (29%) but were nearly as prevalent in the spring 

(28%).  The fall and winter seasons ere associated with 22% and 21% of incidents, respectively.  

All four seasons were analyzed in this research due the proximity of their percentages.   

 
Table 7: Unload Incident Count by Season. 

  Season Begin Date 
Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 Summer 21-Jun 23,189 0.29 0.29 
2 Spring 20-Mar 22,567 0.28 0.57 
3 Fall 22-Sep 17,513 0.22 0.79 
4 Winter 21-Dec 16,709 0.21 1.00 

 
 
 
Time/ Shift  The occurrence times of unloading incidents were also aggregated, as shown in 

Table 8, by the work shift.  The largest number of incidents occurred during the daytime shift, 

followed by the midnight and twilight shifts.  All three shifts were considered in this research 

due to the high prevalence of each.  If the time was invalid or not reported, the incident was 

excluded. 

 
Table 8: Unload Incident Count by Shift. 

  Shift Times 
Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 Day 7 AM – 2:59 PM 33,851 0.42 0.42 

2 Midnight 
11 PM - 6:59 

AM  23,872 0.30 0.72 

3 Twilight 
3 PM - 10:59 

PM  20,339 0.25 0.98 
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Table 8 (continued). 

4 

Not 
Reported 
or Invalid   1,919 0.02 1.00 

 
 
 
Material Type  There are nine hazmat classes that group materials based on their dangerous 

characteristics, as shown in Table 9.  Hazmat classes 8 and 3 (corrosives and flammable liquids, 

respectively) were associated with 80% of the incidents and therefore followed the Pareto 

Principle.  Applying the 80/20 Principle, only classes 8 and 3 were included in this research.  

Since a given incident may involve more than one material type, an incident may be represented 

more than once in Table 9.   

 
Table 9: Unload Incident Count by Hazardous Material Class. 

Hazard 
Class Description 

Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

8 Corrosives  32954 0.41 0.41 
3  Flammable Liquids 31530 0.39 0.80 

6 
Toxic and Infectious 

materials  6140 0.08 0.88 

2 

 Gases (Flammable, 
Non-Flammable and 

Toxic) 3851 0.05 0.92 

5 
Oxidizers and Organic 

Peroxides  3142 0.04 0.96 
9  Miscellaneous 2250 0.03 0.99 

4 

 Flammable Solids, 
Spontaneously 
Combustibles, 

Dangerous When Wet 786 0.01 1.00 
1  Explosives 25 0.00 1.00 
7 Radioactive Materials  18 0.00 1.00 

Not 
Reported    1 0.00 1.00 

 
 
 
Container Type  There were 36 container types associated with unloading incidents, as shown 

in Table 10.  The top two container types, fiber box and bottle, were considered in this research.  

Although they represent only 45% of the incidents, the other types were eliminated to reduce the 

sparseness of the stage one contingency table.  Container types were not combined for 
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simplification since this could be done based on either structure or material.  For example, 

should all drums be combined, or should all plastic containers be combined?  The desirability of 

one criterion versus the other was unknown.  An incident can involve more than container type, 

and so an incident may be represented more than once in Table 10. 

 
Table 10: Unload Incident Count by Container Type. 

  Container Type 
Incident 
Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 BOX FIBER 42,735 0.34 0.34 
2 BOTTLE 13,764 0.11 0.45 
3 DRUM METAL 12,887 0.10 0.55 
4 TANK 11,953 0.09 0.64 
5 JUG 11,432 0.09 0.73 

6 
DRUM NON-

METAL 8,465 0.07 0.80 
7 INSIDE CONTAIN 6,888 0.05 0.85 
8 CAN 5,246 0.04 0.90 
9 CONTAINER 2,804 0.02 0.92 

10 BAG PAPER 1,708 0.01 0.93 
11 DRUM 1,392 0.01 0.94 
12 PAIL 1,292 0.01 0.95 
13 JAR 1,156 0.01 0.96 
14 CYLINDER 1,000 0.01 0.97 
15 BAG PLASTIC 940 0.01 0.98 
16 BOX 820 0.01 0.98 
17 BAG 747 0.01 0.99 
18 JERRICAN 617 0.00 0.99 
19 COMPOSITE 253 0.00 1.00 
20 TUBE 99 0.00 1.00 
21 IBC 92 0.00 1.00 
22 OTHER 68 0.00 1.00 
23 BAG CLOTH 58 0.00 1.00 
24 BOX WOOD 37 0.00 1.00 
25 BOX PLASTIC 28 0.00 1.00 
26 CARBOY 25 0.00 1.00 
27 HOPPER 23 0.00 1.00 
28 BATTERY 21 0.00 1.00 
29 CYLINDER BULK 9 0.00 1.00 
30 BOX METAL 7 0.00 1.00 
31 KEG METAL 7 0.00 1.00 

32 
TANK 

INTERMODAL 6 0.00 1.00 
33 RAM CONTAINER 4 0.00 1.00 
34 TANK CRYO 4 0.00 1.00 
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Table 10 (continued). 

35 
BARREL/KEG 

WOOD 1 0.00 1.00 
36 TANK CAR 1 0.00 1.00 

 
 
 
Container Failure Variables  There are several sets of binary variables that describe the failure 

of the container and subsequent release of hazmat.  Each set contains between eight and eighteen 

binary variables, which represent yes/no responses, such as the container was punctured (yes), or 

the container was not dropped (no).  Each set consists of several binary variables that are 

grouped on the incident reporting form.  For example, there is a section on the form for “Action 

Contributing to Packaging Failure,” and it includes yes/no variables such as dropped, improper 

loading, and loose fitting.  Any number of variables within a set may have a “yes” response, 

allowing for the joint action of various factors. 

      In order to simplify the variable domain, two general actions were taken relative to the binary 

container failure variables.  First, only the top binary variables in each set were included in the 

analysis.  Second, these top variables were used as indicator variables for a latent variable 

characterizing the set.  For example, using the top variables in the section “Action Contributing 

to Packaging Failure,” a latent variable named Contributing Action was developed.  The 

following sections discuss the various sets of binary variables that describe the failure of the 

container of hazardous materials. 

Contributing Action  There are 18 binary variables in the set called Contributing Action, as 

shown in Table 11.  These variables describe the factors and actions that contributed to the 

failure of the container, such as loose fitting or improper loading.  Based on their grouping on the 

incident form, the variables were used to create a latent variable called Contributing Action.  
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      To simplify the analysis and reduce sparseness, the top four contributing actions, which 

represent almost 80% of the incidents, were utilized.  Thus, the following variables in the set 

served as indicator variables for the latent variable: other, loose fitting/valve, improper loading, 

and dropped.  Despite its lack of information, the variable “other” was included due to its large 

association with monetary and human consequences.  Based on an analysis of the HMIRS, 

“other” was associated with 39% of monetary damages, 41% of fatalities, 38% of injuries, and 

50% of evacuees, relative to total amounts.  However, elimination of the “other” variable related 

to contributing action and the container failure variables in general, is an item for future research, 

as will be discussed in section 5.3. 

 
Table 11: Unload Incident Count by Container Failure Contributing Action. 
  

Contributing Action Incident Count 
Incident 

Percentage 
Cumulative 
Percentage 

1 Other 44276 0.32 0.32 
2 Loose Fittings/Valves 25068 0.18 0.51 
3 Improper Loading 20979 0.15 0.66 
4 Dropped 17041 0.12 0.78 
5 Struck/Rammed 12925 0.09 0.88 
6 Improper Blocking 5148 0.04 0.92 
7 Defective 

Fittings/Valves 4310 0.03 0.95 
8 Overload/Overfill 2563 0.02 0.97 
9 Metal Fatigue 1335 0.01 0.98 

10 Friction 1293 0.01 0.99 
11 Corrosion 715 0.01 0.99 
12 Venting 537 0.00 0.99 
13 Incompatible Materials 351 0.00 1.00 
14 Freezing 185 0.00 1.00 
15 Fire/Heat 90 0.00 1.00 
16 Vehicle Overturn 63 0.00 1.00 
17 Vehicle Collision 57 0.00 1.00 
18 Vandalism 25 0.00 1.00 

 
 
 

Causing Object  Objects that caused the container to fail are represented by the binary variables 

in Table 12.  For example, a combination of the ground and water may have caused the container 

62 



 

to fail.  The top four variables, which are associated with 78% of incidents, were used to create a 

latent variable for causing object.  Thus, the indicator variables consisted of the following: none, 

other, floor/ground, and water/liquid.  The relationship of “none” and “other,” the top two 

variables, to consequences was large.  Based on this, these variables were not excluded from the 

analysis, despite the limited information they provide.  Relative to total fatalities, evacuees, 

damages, and injuries, respectively, “other” was associated with 53% of fatalities, 50% of 

evacuees, 40% of monetary damages, and 43% of injuries.  “None” was associated with 47% of 

fatalities, 32% of evacuees, 29% of monetary damages, and 31% of injuries.  However, as 

discussed previously, “none” and “other” should be removed as part of future research. 

 
Table 12: Unload Incident Count by Container Failure Causing Object. 

  

Causing Object Incident Count 
Incident 

Percentage 
Cumulative 
Percentage 

1 None 33521 0.26 0.26 
2 Other 29550 0.23 0.49 
3 Floor/Ground/Roadway 18441 0.14 0.64 
4 Water/Other Liquid 18236 0.14 0.78 
5 Other Freight 17802 0.14 0.92 
6 Forklift 7933 0.06 0.98 
7 Nail/Protrusion 2249 0.02 1.00 
8 Roadside Obstacle 225 0.00 1.00 
9 Other Transport Vehicle 157 0.00 1.00 

 
 
 
Failure Mode  A set of variables describes the manner in which the container failed, as shown in 

Table 13.  For example, a container may have been crushed, punctured, and/or cracked.  The 

variables other, punctured, and crushed were associated with 82% of the incidents.  

Consequently, these three variables were used as indicators for a latent variable called Failure 

Mode.  The remaining variables were eliminated from consideration.  The “other” failure mode  
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variable was analyzed for possible exclusion from the analysis.  However, despite its lack of 

information, it will remain in the analysis, as it was related to 68% of monetary damages, 88% of 

fatalities, 62% of injuries, and 73% of evacuees relative to the totals.   

 
Table 13: Unload Incident Count by Container Failure Mode. 

  Failure Mode Incident Count 
Incident 

Percentage 
Cumulative 
Percentage 

1 Other 76093 0.59 0.59 

2 Punctured 16591 0.13 0.72 

3 Crushed 12719 0.10 0.82 

4 Cracked 5937 0.05 0.86 

5 Burst/Internal Pressure 5920 0.05 0.91 

6 Ripped 5677 0.04 0.95 

7 Ruptured 4880 0.04 0.99 

8 Rubbed/Abraded 1272 0.01 1.00 

 
 
 
Failure Item  The item or items on the container that failed are described by the set of binary 

variables in Table 14.  For example, the basic package material itself and/or a closure may have 

failed.  For simplification purposes, the failure item variables were combined with a second 

group of variables related to the physical aspect of the container to form a latent variable.  This 

second group, the failure area, will be discussed in the next section.  The top two indicator 

variables from each of these two sets of variables were used to develop a latent variable called 

Failure Item-Area.  Thus, in the failure item set, basic package material and closure, which 

represent 67% of the incidents, were included in the analysis.  In the failure area set, the binary 

variables top and bottom, which represent 63% of the incidents, were used in the analysis.  

Pareto was not applied to these two sets of variables due to the need to create one latent variable 

versus two latent variables based on an SPSS limitation of 10 total variables.  In addition, by 

limiting the number of indicator variables, the number of classes for the latent variable was also 

minimized for convergence of the largest loglinear model.  
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Table 14: Unload Incident Count by Container Failure Item. 

  Failure Item Incident Count 
Incident 

Percentage 
Cumulative 
Percentage 

1 Basic Package Material 55438 0.43 0.43 

2 Closure 30963 0.24 0.67 

3 Other 29199 0.23 0.89 

4 Fitting/Valve 7224 0.06 0.95 

5 Weld/Seam 4005 0.03 0.98 

6 Inner Liner 1065 0.01 0.99 

7 Hose/Piping 966 0.01 1.00 

8 Chime 357 0.00 1.00 

 
 
 
Failure Area  The eight areas of the container that may fail are given by the set of variables 

shown in Table 15.  For example, the most frequent area that failed was the top of the container, 

while the forward, or front, of the container failed the least.  The top and bottom areas of the 

container were used to develop the latent variable Failure Item-Area discussed previously.  The 

“other” failure area was not analyzed due to simplification needs.  

 
Table 15: Unload Incident Count by Container Failure Area. 

  
Failure 
Area Incident Count 

Incident 
Percentage 

Cumulative 
Percentage 

1 Top 49907 0.37 0.37 

2 Bottom 34916 0.26 0.63 

3 Other 29666 0.22 0.86 

4 Right 7148 0.05 0.91 

5 Left 7124 0.05 0.96 

6 Center 3043 0.02 0.98 

7 Rear 1090 0.01 0.99 

8 Forward 973 0.01 1.00 
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4.1.1.3 Discretization   
The two outcome variables release quantity and dollar loss are continuous variables, as reported 

on the incident form.  In order to use them within loglinear and Bayesian network modeling, they 

were transformed to discrete variables based on both the distribution of the data and expert input.  

In discretizing these variables, the number of categories was minimized so the ten-variable 

models in stages four and five, which contain release quantity and dollar loss, would converge.  

The method and rationale for discretizing these variables is described in the following two 

sections.

Release Quantity  Unlike the variables previously discussed, the quantity of hazmat released is 

a continuous variable.  It was captured on the incident form in a free-form fashion as numeric, 

non-categorical data.  A unit of measure was provided by the user, including gallons and pounds.  

For simplification as well as for usage within categorical analyses such as loglinear modeling, 

release quantity was converted to a discrete variable.  Simplification was necessary because the 

range of the data was very large.  For corrosives, the release amount ranged from 0 to 2000 

gallons or 0 to 200 pounds, depending on the unit.  For flammable liquids, the range was 0 to 

4,827.74 gallons.  The unit of gallons was much more prevalent than pounds, being associated 

with more than 39,000 corrosives and flammable liquids incidents. Since only 273 incidents 

involved pounds as the unit of measure, these records were discarded from the analysis.   

      A discrete version of release quantity was created based on the data itself as well as expert 

input.  The distributions of the incidents were wide, skewed, and multi-modal, as shown in 

Figure 7.  As an indication of the skewed nature of the data, 91% of the corrosives incidents 

involved 1 gallon or less, and 99% involved a maximum of 5 gallons, although the maximum 

amount recorded was 2,000 gallons.  For flammable liquids, 90% of the incidents were 1 gallon 

or less, and over 99% involved 5 gallons or less, compared to a maximum amount of 4,827.74 
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gallons.  The use of discretization techniques such as equal interval or equal frequency binning is 

problematic with such distributions.  When applied to the data given the need to keep the number 

of bins small, the equal interval technique led to gradations that were too coarse.  The incidents 

were also unevenly distributed among the bins due to being heavily skewed to the left.  Equal 

frequency binning led to the placement of incidents with the same release quantity in different 

bins due to the skewed nature of the data. 
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Figure 7: Incidents vs. Release Quantity for Classes 8 and 3. 

 
 
 
Despite the large ranges for corrosives and flammable liquids incidents, there were very few 

releases greater than 100 gallons.  Specifically, there were only five releases involving more than 

100 gallons in the HMIRS.  Therefore, for further simplification, the non-zero range considered 

by this research was narrowed to 0.01 to 100 gallons.  Applying the log (base 10) transform to 

this range, the range was further narrowed to -2 to 2.  As evident, there were two approximately- 

equal interval bins based on the logarithm, or exponent, as shown below: 
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• 10-2 to 100 

• 10.005 to 102, 

 
 
 
which are equivalent to the following:  

 
• 0.01 to 1 gallon 

• 1.01 to 100 gallons. 

 
 
 
These equal interval bins very closely coincided with input provided by Doug Reeves of the 

OHM on appropriate categories for release quantity.  Reeves felt that a category for zero was 

desirable, since an incident may involve no release of material.  For example, an incident must 

be reported if a road closure results, regardless of the amount released.  Reeves also felt that 

carriers tend to report a zero quantity when the amount is too minor to quantify.  For a “small” 

release, Reeves felt that a 1 gallon upper limit was appropriate based on a new policy initiated in 

January 2005.  This policy maintains that a carrier is not required to report a release if it involves 

fewer than 5 gallons.  Finally, since the OHM identifies a “large” or bulk release as 119 gallons 

or more, Reeves felt that an upper limit of 100 gallons was appropriate for a “medium” 

release.( )182   Based on the small number of releases greater than 100 gallons, a category for 

“large” was not considered in this study.  In summary, the following categories were defined for 

release quantity for this research: 
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• 0 gallons 

• 0.01 to 1 gallon (small) 

• 1.01 to 100 gallons (medium). 

 
 
 
Dollar Loss  Dollar Loss, which is also a continuous variable as captured on the incident form, 

was analyzed in a similar fashion to release quantity.  Dollar loss is one of several types of 

consequences associated with a hazardous materials release, and for this research, the total dollar 

loss associated with the incident was used.  The range for dollar loss was large at $0 - $43,760, 

and the distribution was multimodal and skewed.  For example, there were concentrations of 

incidents at the values $0, $50, $100, $125, and $525, as shown in Figure 8.  In addition, 90% of 

all incidents involved $470 or less, and 99% involved $550 or less.  As discussed above, the 

equal frequency and equal interval binning techniques are difficult to apply when the distribution 

is wide and skewed.   
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Figure 8: Incidents vs. Dollar Loss. 

 
 
 
Expert opinion provided by Doug Reeves was primarily used to identify the categories for dollar 

loss.  Reeves recommended the following categories for zero, small, and medium dollar loss: 

 
• $ 0  

• $1 to $500 (small) 

• $501 to $25,000 (medium). 

 
 
 
As with release quantity, Reeves recommended a separate category for $0.  In fact, 17% of the 

incidents were associated with a zero dollar loss.  The “small” category consisting of losses of 
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$500 or less corresponds to a new DoT guideline as of January 2004.  This guideline states that 

the dollar loss must be reported only if it exceeds $500.( )183   Reeves recommended an upper limit 

of $25,000 for a “medium” loss because any incident above this amount would likely receive a 

great deal of attention and be considered “large” by the OHM.( )184   There were only two 

incidents in the HMIRS that exceed $25,000.  Since very few “large” releases occurred 

(0.005%), a category for them was not considered by this research. 

      In an effort to apply the binning techniques, the dollar loss range was narrowed using the 

logarithmic function, and equal-interval bins based on the logarithm were identified.  However, 

the results did not coincide well with the categories suggested by Reeves.  Therefore, the 

decision was made to place greater weight on the expert’s recommendations versus the data-

driven categories, since they were in part based on DoT guidelines.   

      Since the release incidents considered occurred from 1993 to 2002, the dollar loss values 

were discounted to 2002 dollars for standardization prior to categorizing the incidents based on 

dollar loss.  This was done using annual inflation rates for 1993 through 2002.  Dollar loss 

categorizations were thus based on the 2002-equivalent amounts. 

      The approach taken in this research for discretizing release quantity and dollar loss, which 

includes a combination of expert input and data-driven analysis, is summarized in flowchart form 

in Figure 9.  
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Figure 9: Strategy for Discretization. 

 
 

4.1.1.4 Latent Variable Development   
The last step in the simplification of the variable domain was the development of latent class 

variables.  Five latent class models were developed using the simplified variables and variable 

sets discussed previously.  Several of the variables and sets that were simplified using Pareto 

analysis and data generalization were used as indicator variables to build simplifying latent 

variables.  In developing the latent variables, an affinity diagramming approach was taken to 

group the variables believed to be related.  For example, geographic division (based on the state), 

land use, and area type were used as indicators for a latent variable describing the location of the 

hazmat incident.  This approach of building manageable, autonomous models in the form of 

latent class models is advocated in the literature.( )185          

      In the case of the container failure variables, the use of latent variables served to simplify the 

network by replacing many binary variables with a fewer number of latent variables.  The latent 
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variables also served to summarize the failure events.  For example, a latent variable called 

contributing action replaced the top four binary variables that describe the actions that 

contributed to the failure of the container.  The failure item-area latent variable was developed 

using variables related to both the physical item and area of the container that failed.  The four 

latent variables that were developed to describe the failure of the container served to simplify the 

network, which otherwise would contain 15 binary variables.  The strategy taken for reducing the 

number of variables in order to simplify the domain that was modeled is shown in Figure 10. 
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Figure 10: Strategy for Variable Reduction. 

 

In addition to simplifying the domain, the latent variables also resolved cyclic relationships 

among the indicator variables.  This is necessary when developing influence diagrams or 
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Bayesian networks.  For example, when constructing a Bayesian network, any mutual, or two-

way, associations among the variables must be converted to one-way relationships.  This process 

can be subjective, especially in cases where there is no clear temporal ordering among the 

variables.( )186   For example, there are mutual associations among the binary indicator variables 

for contributing action.  Since these variables are not ordered in time, determining the direction 

of influence between them would be subjective. 

      Due to the availability of data, a large sample size was used to develop each of the latent 

class models.( )187   Measures and indices for determining goodness of fit for large sample sizes 

were employed, since significance testing typically results in rejection of models with large N.  

These indices include the Index of Dissimilarity (Id), the Normed Fit Index (NFI), and the 

information criterion measures Bayesian Information Criterion (BIC), Akaike Information 

Criterion (AIC), and the Consistent Akaike Information Criterion (CAIC). 

Location  A latent class model describing the location of the incident in terms of its area type, 

land use, and geographic division was developed.  These three variables served as the indicator 

variables for the latent variable and have the categories shown in Table 16.  

 
Table 16: Categories for Geographic Division, Land Use, and Area Type. 

Geographic 
Division Land Use Area Type 

Northeast Industrial Urban 
Middle Atlantic Commercial Suburban 

East North Central   
West North Central   

South Atlantic   
East South Central   
West South Central   

Mountain   
Pacific   

 
 
 
The latent class analysis for location using these three variables as indicators resulted in a two-

class model.  This model was chosen based on considering its fit and predictive ability relative to 
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stable, optimal models with one and three classes.  This information is provided in Table 17.  As 

classes were added, the L2, Id, BIC, AIC, and CAIC decreased, and the Normed Fit Index (NFI) 

increased, as shown in the table.  The stability of a given model, which contains a certain number 

of classes, is determined by comparing parameters in two different runs that have the same 

minimum (optimal) L2.  

 
Table 17: Measures for Location Models. 

Classes Id L2 BIC AIC CAIC 
NFI 
(%) 

Classification 
Error PRE DF 

Run
s 

1 0.111 6,255.02 5,977.65 6,205.02 5,952.65 0 0.00 1.00 25 6000 
2 0.072 1,999.24 1,843.92 1,971.24 1,829.92 68 0.0009 0.9981 14 6000 
3 0.037 809.23 775.95 803.23 772.95 87 0.2315 0.5868 3 6000 

 
 
 
Since the sample size was large, L2 was not used to test goodness of fit.  Rather, the Id, NFI, and 

information criterion values were used to assess the fit of the models.  The Id for the two-class 

model was close to the target value of 0.05, and its information criterion indices (BIC, AIC, 

CAIC) were smaller relative to the one-class model, indicating the desirability of more than one 

class.  In addition, the predictive ability of the two-class model was very good relative to the 

three-class model, as shown by the classification error.  Since the latent variables were to be used 

as part of a 3-step modeling approach, considerable weight was placed on a model’s 

classification performance so as to minimize bias in the structural model.  Although the Id of the 

two-class model was slightly above the target value, this model was chosen based on its lower 

classification error of 0.0009 versus 0.2315 for the three-class model.  Thus, based on its fit, 

classification ability, and parsimony, the two-class model was chosen. 

      The parameters of the two class model are given in Table 18.  These include the latent class 

probabilities of 51% and 49%, which indicate the sizes of the classes.  The conditional 
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probabilities are also given in Table 18.  For example, the conditional probability that the area 

type is suburban in the first latent class is 99.9%, indicating a strong association of the first latent 

class with a suburban area type.  

 
Table 18: Parameters of Location Model. 

Class 1 2 
Class Size 0.51 0.49 

Manifest 
Variables     

AREA TYPE     
Urban 0.0010 0.9991 

Suburban 0.9990 0.0009 
LAND USE     
Industrial 0.3754 0.5404 

Commercial 0.6246 0.4596 
DIVISION     

New England 0.0590 0.0280 
Middle Atlantic 0.1574 0.0941 

East North 
Central 0.2691 0.1937 

West North 
Central 0.0795 0.0960 

South Atlantic 0.1462 0.1488 
East South 

Central 0.0487 0.0924 
West South 

Central 0.0847 0.1277 
Mountain 0.0592 0.0818 

Pacific 0.0963 0.1376 

 
 
 
A class is interpreted by examining its conditional probabilities.  There are no standards for 

naming latent classes, and the process is subjective on the part of the model builder.  However, 

naming or interpreting the latent classes should reflect how the classes differ from one another.  

In addition, names should be based on the conditional probabilities that provide the greatest 

differentiation of the classes.( )188   The first class represents suburban locations, the majority of 

which are commercial.  It favors the eastern portion of the U.S., including both central and 

coastal states.  Specifically, the East North Central, Middle Atlantic and South Atlantic divisions 
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are most prevalent.  An example of a likely class one location is Monroeville, PA.  In contrast, 

class two represents urban settings that can be either industrial or commercial.  Class two differs 

from class one in that both eastern and western divisions are prevalent.  Specifically, the East 

North Central, South Atlantic, Pacific, and West South Central divisions are most prevalent.  

Two likely examples are Norfolk, VA or Detroit, MI.  This interpretation of the location variable 

is summarized in Table 19. 

 
Table 19: Interpretation of Location Model. 

Class 1 2 
Class Size 0.51 0.49 

Area Type Suburban Urban 

Land Use 
Commercial 

favor 
Industrial or 
Commercial 

Geographic 
Division 

Eastern 
favor  

 
(ENC, MA 

& SA) 

Eastern or 
Western 

  
(ENC, SA, 

PAC & 
WSC) 

 
 
 
Contributing Action  The binary variables that comprise the set contributing action describe the 

actions that contributed to the failure of the container, such as improper loading or dropped.  The 

binary variables in this set, which are grouped in a specific section on the incident form, were 

used to create a latent variable for contributing action.  The indicator variables were as follows: 

 
• Other 
• Loose Fitting or Valve 
• Improper Loading 
• Dropped. 

 
 
 
The latent class analysis of these indicator variables resulted in a three-class model for 

contributing action, with class sizes 46%, 35%, and 19%, as shown in Table 20.  Based on the 
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conditional probabilities, class two represents some “other” contributing action not listed on the 

incident form.  The third latent class corresponds to loose fitting or valve.  The first class differs 

from the others in that it represents a combination of improper loading and dropped, which work 

in combination to define a type of contributing action.   

 
Table 20: Parameters of Contributing Action Model. 

Class 1 2 3 

Class Size 0.46 0.35 0.19 

Manifest 
Variables       
LOOSE 

FITTING OR 
VALVE       

Y 0.0012 0.0177 0.9999 
N 0.9988 0.9823 0.0001 

DROPPED       
Y 0.2827 0.0117 0.0029 
N 0.7173 0.9883 0.9971 

IMPROPER 
LOADING       

Y 0.3519 0.0096 0.0084 
N 0.6481 0.9904 0.9916 

OTHER       
Y 0.0026 1.0000 0.0008 
N 0.9974 0.0000 0.9992 

 
 
 
A summary of the interpretation of the contributing action latent variable is given below in Table 

21. 

 
Table 21: Interpretation of Contributing Action Model. 

  Class 
  1 2 3 

Class  Size 0.46 0.35 0.19 

  
Improper 
Loading 

and 
Dropped 

Other 
Loose 

Fitting or 
Valve 

 
The three-class model was chosen based on its fit and excellent classification error (Pe=0.0018), 

as shown in Table 22.  Its Id was close to the target value of 0.05, its NFI was above the 80% 
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threshold, and its information criterion values were lower than those of the one and two class 

models.  The measures for competing models with one and two classes are given in Table 22.  A 

four-class model was not feasible due to negative degrees of freedom.   

 
Table 22: Measures for Contributing Action Models. 

Classes Id L2 BIC AIC CAIC 
NFI 
(%) 

Classification 
Error PRE DF runs 

1 0.380 84,201.60 84,072.68 84,179.60 84,061.68 0.00 0.0000 1.0000 11 6000 
2 0.199 39,805.04 39,734.72 39,793.04 39,728.72 52.73 0.0010 0.9970 6 6000 
3 0.086 13,705.21 13,693.49 13,703.21 13,692.49 83.72 0.0018 0.9966 1 6000 

 
 
 
Causing Object  A latent variable for causing object, which describes the objects that caused the 

failure of the container, was developed using four binary variables found in the section “Object 

Causing the Failure” on the incident form.  By way of review, these binary variables are as 

follows: 

 
• None 
• Other 
• Floor/Ground 
• Water/Liquid. 

 
 
 
The model chosen for causing object was a three-class model.  The three-class model was chosen 

based on its Id, which is close to the target value of 0.05, as well as the NFI of 83.6%.  Its 

information criteria values were also less than those of the one and two-class models.  In 

addition, it had excellent predictive ability, with a classification error Pe = 0.0006 and  

proportional reduction of error PRE = 0.9987.  The four-class model, which had slightly better 

fit, was not feasible due to its negative degrees of freedom.  The measures of competing models 

for causing object with various classes are shown below in Table 23.   
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Table 23: Measures for Causing Object Models. 

Classes Id L2 BIC AIC CAIC NFI(%) 
Classification 

Error PRE DF runs 
1 0.361 81,896.78 81,767.86 81,874.78 81,756.86 0.00 0 1 11 6000 
2 0.206 41,482.02 41,411.70 41,470.02 41,405.70 49.35 0.0005 0.9981 6 6000 
3 0.079 13,451.70 13,439.98 13,449.70 13,438.98 83.57 0.0006 0.9987 1 6000 

 
 
 
The parameters for the three-class model are shown in Table 24.  These include the latent class 

probabilities of 50%, 26%, and 24% as well as the various conditional probabilities indicating 

the association of the indicator variables to each latent class.  For example, class two is heavily 

associated with “none,” or no causing object.  

 
Table 24: Parameters of Causing Object Model. 

Class 1 2 3 

Class Size 0.50 0.26 0.24 

Manifest 
Variables       
WATER/ 
LIQUID       

Y 0.2736 0.0019 0.0029 
N 0.7264 0.9981 0.9971 

FLOOR / 
GROUND       

Y 0.2890 0.0000 0.0051 
N 0.7110 1.0000 0.9949 

NONE       
Y 0.0010 0.9999 0.0079 
N 0.9990 0.0001 0.9921 

OTHER       
Y 0.0003 0.0005 0.9999 
N 0.9997 0.9995 0.0001 

 
 
 
The first class or type of causing object is a combination of the floor and water (or other liquid).  

Classes two and three differ in nature from class one.  They are characterized as “none” and  
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“other,” respectively, as opposed to a combination of variables.  Unfortunately, classes two and 

three provide limited information on the causing object yet together account for 50% of the 

cases. 

 
Table 25: Interpretation of Causing Object Model. 

  Class 
  1 2 3 

Class Size 0.50 0.26 0.24 

Class 
Description 

Floor and 
Water/ 
Liquid 

None Other 

 
 
 
Failure Mode  Three indicator variables related to the manner of container failure were used to 

create a latent variable for Failure Mode.  These indicator variables are as follows: 

 
• Other 
• Punctured 
• Crushed. 

 
 
 
The model chosen for failure mode was a two class model, and its parameters are shown in Table 

26.  The first class, having a probability of 59.5%, corresponds to a failure mode of “other.”  

However, the interpretation of the second class differs from the first in that it corresponds to a 

combination of punctured and crushed. 
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Table 26: Parameters of Failure Mode Model. 

Class 1 2 
Class Size 0.595 0.405 

Manifest 
Variables     

OTHER     
Y 1.0000 0.0020 
N 0.0000 0.9980 

PUNTURED     
Y 0.0024 0.3264 
N 0.9976 0.6736 

CRUSHED     
Y 0.0024 0.2467 
N 0.9976 0.7533 

 
 
 
The interpretation for failure mode is summarized in Table 27.   

 
Table 27: Interpretation of Failure Mode Model. 

  Class 
  1 2 

Class Size 0.595 0.405 

Class 
Description Other 

Punctured 
and 

Crushed 

 
 
 
The two-class model for failure mode was chosen based on its fit and classification performance 

relative to a one-class model, as shown in Table 28.  Its Id was close to the target value of 0.05, 

and its NFI exceeded 80%.  Its classification ability was excellent (Pe=0.0007, λ=0.9982).  A 

model with three classes was not possible due to negative degrees of freedom, as apparent from 

Table 28. 

 
Table 28: Measures for Failure Mode Models. 

Classes Id L2 BIC AIC CAIC NFI(%) 
Classification 

Error PRE DF runs 
1 0.270 61,915.58 61,868.70 61,907.58 61,864.70 0.00 0.0000 1.0000 4 6000 
2 0.059 8,462.42 8,462.42 8,462.42 8,462.42 86.33 0.0007 0.9982 0 6000 
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Failure Item-Area  Two sets of binary variables pertaining to the physical aspects of the 

container were combined to develop a latent variable to describe the failed item and area of the 

container.  The indicators for this latent variable, which include the failed item and area, are as 

follows: 

 
• Basic Package Material 
• Closure 
• Top 
• Bottom. 

 
 
 
The model chosen for failure item-area was a three-class model, having the parameters shown in 

Table 29.  The largest latent class, which has a probability of 49%, can be characterized as the 

top of the basic package material.  The second latent class, with a size of 27%, corresponds to the 

bottom of the basic package material.  The third class identifies closures on the top of the 

container as a possible item-area of failure.  These interpretations are summarized in Table 30. 

 
Table 29: Parameters of Failure Item-Area Model. 

Class 1 2 3 
Class Size 0.49 0.27 0.24 

Manifest 
Variables       
BASIC 

PACKAGE 
MATERIAL       

Y 0.4187 0.8355 0.0160 
N 0.5813 0.1645 0.9840 

CLOSURE       
Y 0.0008 0.0161 0.9999 
N 0.9992 0.9839 0.0001 

TOP       
Y 0.3230 0.0334 0.9445 
N 0.6770 0.9666 0.0555 

BOTTOM       
Y 0.0012 0.9999 0.0027 
N 0.9988 0.0001 0.9973 
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Table 30: Interpretation of Failure Item Model. 

  Class 

  1 2 3 
Class Size 0.49 0.27 0.24 

Class 
Description 

Basic 
Package 

Material on 
Top of 

Container 

Basic 
Package 

Material on 
Bottom of 
Container 

Closure on 
Top of 

Container 

 
 
 
As in previous models, the three-class model was chosen based on its Id and NFI, both of which 

exceeded their target values, and its excellent classification performance (Pe=0.0012).   

 
Table 31: Measures for Failure Item-Area Models. 

Classes Id L2 BIC AIC CAIC NFI(%) 
Classification 

Error PRE DF runs 
1 0.366 137,362.93 137,234.01 137,340.93 137,223.01 0.00  0.0000 1.0000 11 6000 
2 0.191 28,939.01 28,868.70 28,927.01 28,862.70 78.93 0.0354 0.8770 2 6000 
3 0.041 2,954.08 2,942.36 2,952.08 2,941.36 97.85 0.0012 0.9976 1 6000 

 
 
 
4.1.2 Associations 

The next task in construction of the decision model was a determination of the associations 

among the variables, which were unknown.  There was no previous exploratory analysis in the 

literature, and the possibility for non-obvious relationships was a concern.  For example, could 

shift and material type be associated?  Therefore, to create a network model depicting accurate 

associations among the variables, an exploratory analysis was pursued.  Using the large amount 

of available data, the direct associations between the variables were measured using a series of 

loglinear models, which proceeded from left to right in the network.  The following discussion 

begins with the establishment of the base structure of the network, which takes the temporal 

ordering among the variables into account.  Based on this, five distinct stages of a release event 
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were identified.  Next, taking an overall perspective, the systematic analysis of the network is 

described.  Finally, the methodology and results of the modeling of each stage are presented, 

including the direct associations identified. 

4.1.2.1 Temporal Layout of Network 
After simplifying the variable domain through Pareto analysis, data aggregation and 

discretization, and latent class analysis, a network containing these simplified variables was 

constructed.  By way of review, these simplified variables are shown in : Table 32

 
Table 32: Simplified Variables in the Hazmat Release Network. 

Variable Number of 
Categories

Causing Object 3 

Container Type 2 

Contributing Action 3 

Dollar Loss 3 

Failure Item-Area 3 

Failure Mode 2 

Location 2 

Material Type 2 

Release Quantity 3 

Season 4 

Shift 3 

 
 
 
As a first step, the temporal ordering among the variables was considered.  Therefore, the 

variables were positioned left to right according to their time of occurrence or determination.  

This technique for network construction is suggested in the literature.( , )189 190   As a result of 

positioning the variables, five distinct stages of a hazardous materials release emerged.  

Specifically, these five stages and their constituent variables are given in Table 33. 
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Table 33: Stages of a Hazmat Release. 

Stage Name of Stage Constituent Variables 

1 Pre container-failure initiation Container Type, Material Type, 
Location, Season, Shift 

2 Container failure initiation Contributing Action, Causing Object 

3 Container failure Failure Item-Area, Failure Mode 

4 Hazmat release Release Quantity 

5 Consequences Dollar Loss 

 
 
 

These stages approximately coincide with Elisabeth Pate-Cornell’s System-Action-Management 

(SAM) framework for catastrophic accidents.  In the SAM Framework, there are time-ordered 

stages leading up to an accident.  Specifically, management and organizational factors influence 

human decisions and actions, which influence the failure or accident events.( )191   Roughly 

speaking, hazmat stage one corresponds to management and organizational factors, such as shift 

and container type.  Stages two and three correspond to human decisions and actions, including 

the contributing action and failure mode.  Stages four and five, which contain the release 

quantity and dollar loss, correspond to an accident event.  The base structure of the network 

containing these time-ordered stages is shown below in Figure 11. 
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Figure 11: Timed-Ordered Stages of a Hazardous Materials Release. 

 
 

4.1.2.2    Systematic Analysis of Network 
The loglinear analyses for assessing associations and independencies proceeded from left to right 

in the network, starting with a symmetrical analysis of the variables in stage one, the pre-failure 

initiation stage.  These variables consist of container type, location, material type, season, and 

shift and are known or determined prior to unloading of containers or the initiation of failure.  A 

symmetric loglinear analysis was performed for this stage since a direction of influence among 

the variables was not known or assumed.  When the stage one analysis was completed, a 

temporal order was then applied to the pairs of variables found to be associated.  In this way, the  
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mutual, or bi-directional, associations were converted to unidirectional associations, which are 

necessary for influence diagrams or Bayesian networks.  The following direct associations were 

uncovered among the stage one variables: 

 
• Material Type and Container Type 

• Season and Material Type 

• Shift and Location. 
 
 
A panel of engineers and scientists at the Office of Hazardous Materials provided some 

interpretations of these associations.  Material type and container type are likely directly 

associated because regulations dictate the type of container for transporting a particular type of 

material.  The seasonal usage of materials is an explanation for the direct association between 

season and material.( )192

      Given these three direct associations, a temporal order was applied to each pair, as discussed 

above.  Season, which is based on the incident date, can be considered a predetermined or 

general variable of a fundamental nature.  Several authors of loglinear modeling texts, including 

Knoke, Burke, and Hagenaars, identify the concept of a predetermined or fundamental variable 

and recommend its use as the preceding variable in a causal chain.( , )193 194   Based on this, season 

was assumed to precede material type.  It was then determined that material type influences and 

therefore should precede the container type, based on input from the OHM.( )195   Finally, shift, 

which is based on the incident time, was assumed to be more fundamental than the location.  

Therefore, shift was assumed to precede location in the model. 

      Proceeding to stage two, container failure initiation is characterized by the latent variables 

contributing action and causing object.  In this stage, failure is initiated by a combination of 

actions and objects that contribute to or cause the failure.  The indicator variables for 
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contributing action are as follows: dropped, loose fitting/valve, improper loading, and other. For 

causing object, they are floor/ground, water/liquid, none, and other.  It was assumed that 

contributing action precedes causing object, based on these indicator variables.  For example, an 

improperly loaded container may drop and impact the ground and encounter water or other 

liquid.   

      Since stage two is downstream in the network relative to stage one, the stage two variables 

served as response, or logit, variables.( )196   Therefore, an asymmetric loglinear analysis was 

performed, with the stage one variables serving as explanatory variables.  A loglinear analysis 

was first performed between contributing action, the first variable in stage two, and the variables 

in stage one.  Then, a second loglinear analysis was performed between causing object, the 

second variable in stage two, and its explanatory variables.  These explanatory variables consist 

of contributing action and the stage one variables.  This forward analysis of the network, each 

time utilizing a new logit variable further downstream in the chain, is suggested by Agresti, and 

Knoke and Burke.( , )197 198   Thus, the associations and conditional independencies among the 

variables are determined using a forward series of loglinear models. 

      Within stage three, where container failure occurs, the failure mode was assumed to precede 

the item-area of failure on the container.  For example, the container might be punctured, leading 

to a failure of the bottom of the basic package material.  The indicators for failure mode are 

punctured, crushed, and other.  For failure item-area, they are as follows: basic package material, 

closure, top, and bottom.  The variables in stages one and two served as explanatory variables for 

the variables in stage three.  An asymmetric loglinear analysis was first performed between  
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failure mode and the variables in stages one and two.  Moving forward, an analysis was then 

performed between item-area and its explanatory variables, failure mode and the variables in 

stages one and two.   

      At the next stage, the release of hazardous material to the surrounding area occurs.  The 

quantity of material released is represented by a discrete variable with categories zero, small, and 

medium, which have upper limits of 0, 1, and 100 gallons, respectively.  An asymmetric 

loglinear analysis was performed between release quantity and the variables of the preceding 

stages.  In this way, the associations and conditional independencies between release quantity 

and each of its explanatory variables were determined. 

      Finally, in stage five, the ultimate consequences of a release are realized.  The consequence 

considered in this study was the total dollar loss, which is represented by a discrete variable with 

categories zero, small, and medium with upper limits of $0, $500, and $25,000, respectively.  

Dollar loss served as the ultimate logit variable for the network.  Therefore, in this final loglinear 

analysis, the variables in the first four stages served as explanatory variables.   

      The high-level approach described in the previous sections for measuring the associations as 

part of step two of the methodology is summarized in Figure 12.  This methodology is 

demonstrated in the following sections, and the results for each stage are presented in detail.   
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Figure 12: High Level Approach to the Measurement of Associations. 

 
 
Stage One  The exploratory analysis in stage one consisted of a symmetric loglinear analysis of 

the variables given in Table 34.  These variables were determined or known prior to unloading of 

the containers and before any initiation of failure.  The abbreviation used in the loglinear 

notation and number of categories for each variable are also provided below.  

 
Table 34: Stage One Variables. 

Stage 1 Variable Variable 
Abbreviation

Number of 
Categories

Container Type C 2 

Location L 2 

Material Type M 2 

Season SE 4 

Shift SH 3 
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The contingency table for these five variables consisted of 96 cells, and the sample size was 

primarily determined by examining the number of cells with zeros and small counts of less than 

five.  The zeros and small cell counts associated with N=1500 and N=2500 based on five 

random samples are given below. 

 
N Sampling Zeroes Small cell count

1500 0% 13.75% 
2500 0% 2.92% 

 
 
 
The sample size of N=2500 was chosen based on the low percentage of cells having a small 

count.  Due to the availability of data, five random samples of N=2500 each were used for the 

significance testing.  Therefore, conclusions about the associations among the stage one variables 

were based on results from five different samples.  

      Prior to beginning this analysis, an additional preparatory step was taken.  This consisted of 

applying the correction procedure developed by Bolck et. al., as discussed previously in section 

3.6.2.  In stage one, the correction procedure for a table with one latent variable was applied 

using Equation 10.  However, since the classification error associated with the latent variable 

location was small (Pe=0.0009), the correction procedure had a very small effect, resulting in no 

differences between the uncorrected and the corrected table for each sample.( , )199 200   Despite its 

lack of impact in this case, the correction procedure was nonetheless applied for purposes of 

demonstration.  For, future application of the methodology may entail variables with higher 

classification error.  Sample transition, uncorrected, and corrected matrices based on a sample in 

stage one are given in Table 79 in Appendix A.  Each row of the uncorrected and corrected 

matrices represents a different combination of the categories of the observed variables.  Each 

column represents a different class of the latent variable.  The source code written to calculate 
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the transition matrix for location is provided in Figure 24 in Appendix E.  In addition, the Excel 

spreadsheets used as input to this source code are provided in Table 91 and Table 92 in 

Appendix E.  As a note for future application of the correction procedure, an error was made 

within this research in calculating the elements of the transition matrices for the various latent 

variables.  However, this error had a very small, if not negligible, impact on the corrected 

contingency tables.  The error was made in the choice of the particular classification probabilities 

to use to calculate the elements of the transition matrix.  Only two possible values for the 

classification probability should have been used, namely 1 or 0.  These probabilities indicate 

whether or not a response pattern was classified into a particular latent class.  The classification 

probabilities that were erroneously used were the actual calculated values.  However, most of the 

actual calculated classification probabilities were close to 0 or 1 anyway, as evidenced in the low 

classification errors associated with the latent variables.  Thus, the impact of this error was very 

small on both the correction procedure and the overall loglinear analyses.  

      After the correction procedure was applied, loglinear models using each of the five corrected 

tables were built.  A test of marginal association was used to determine the presence of a 

significant association between a given pair of variables.( )201   In this test, the model of mutual 

independence of the five variables in stage one is compared to a model that differs by the 

presence of a two-way term.  In stage one, ten different variable pairs were evaluated using ten 

marginal association tests.  Each pair and the p-value associated with each marginal test are 

given in Table 35.  For further reference, the values of the residual and component L2 for each 

test are given in Table 78 in Appendix A.  Three pairs were assessed using two additional 

samples due to borderline values for the component L2 and associated p-values.  The additional 

samples are reported in columns S6 and S7 in Table 35. 
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Table 35: P-values for Marginal Associations in Stage One. 

Variable Pair S1 S2 S3 S4 S5 S6 S7 AVG 
[SH L] 0.0241 0.0064 0.0225 0.0790 0.0003   0.0265 
[L SE] 0.5707 0.4588 0.5709 0.6120 0.1044   0.4634 
[L M] 0.5999 0.4934 0.0186 0.3286 0.0049 0.1287 0.6244 0.3141 

[SH SE] 0.1734 0.2886 0.0247 0.0766 0.8431 0.5096 0.8295 0.3922 
[SH M] 0.1135 0.5860 0.3460 0.8797 0.1236 0.0966 0.5368 0.3832 
[SE M] 0.0040 0.0219 0.0040 0.0006 0.0177   0.0096 
[L C] 0.3527 0.5167 0.5486 0.5906 0.7989   0.5615 

[SH C] 0.9176 0.9112 0.9731 0.8782 0.9559   0.9272 
[SE C] 0.3472 0.2962 0.8836 0.3044 0.2619   0.4187 
[M C] 0.0001 0.0001 0.0001 0.0009 0.0001   0.0003 

 
 
 
Based on these results, [M C], [SE M], and [SH L] were the significant associations at α=0.05.  

The association of material type and container type, [M C], was characterized by consistently 

small p-values.  In four samples, p = 0.0001, and for one sample, p = 0.0009.  The association 

between season and material type, [SE M], was also consistently strong, with p-values between 

0.0006 and 0.0219.  The final significant association was between shift and location, [SH L], as 

indicated by p-values between 0.0003 and 0.0790. 

      Three of the pairs had borderline values for the component L2 and associated p-values, based 

on five samples.  These associations were [L M], [SH SE], and [SH M].  Therefore, two 

additional random samples were used to draw a conclusion about them.  Based on these 

additional samples, however, these three associations were determined to be non-significant, as 

shown in Table 35 in columns S6 and S7.  Therefore, material type and container type [M C], 

season and material type [SE M], and shift and location [SH L] were identified as the only direct 

associations in stage one.  Since the associations were to be used to build a directed graph, only 

two-way, as opposed to three or four-way, associations were considered.   

      The lambda (λ), or effect, parameters provided similar evidence that [M C], [SE M], and [SH 

L] were directly associated.  A direct association between a pair of variables is present when any 
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of its lambda values exceeds 0.20 in absolute value, as discussed previously in section 3.5.3.  

The lambda of maximum absolute value for each variable pair, which represents the largest or 

strongest effect associated with the pair, is given in Table 36, along with the sign.  The sign 

indicates the direction of influence of the effect, as discussed in 3.5.3.  In many cases, there were 

equally-strong effects in opposite directions for a variable pair, as indicated by the 

positive/negative (±) signs in this table.  The lambdas were based on the full first-order model, 

which contained all two-variable associations.( )202   For the three associations, [M C], [SE M], 

and [SH L], which were consistently significant, the maximum lambda for the variable pair was 

also consistently above 0.20 in absolute value.  For the associations [L SE], [SE C], [SH M], and 

[SH SE], several of the maximum lambdas exceeded 0.20 in absolute value.  However, since the 

significance tests for these associations were inconsistent and sometimes notably in favor of a 

non-significant relationship, these variable pairs were determined not to be directly associated.  

For example, for the association between shift and season [SH SE], the p-values in Table 35 for 

samples S5-S7 were very large. 

 
Table 36: Lambdas of Max Absolute Value in Stage One. 

Variable 
Pair S1 S2 S3 S4 S5 S6 S7 
[M C] ± 0.4070 ± 0.4330 ± 0.3713 ± 0.3123 ± 0.4805         

[SE M] ± 0.2413 ± 0.5101 ± 0.6271 ± 0.2380 ± 0.5243         
[SH L] ± 0.3029 ± 0.3543 ± 0.3781 ± 0.3868 ± 0.6940         
[L C] ± 0.0955 ± 0.0542 ± 0.0422 ± 0.0546 ± 0.0568         
[L M] ± 0.0573 ± 0.0487 ± 0.1858 ± 0.0817 ± 0.2394 ± 0.1269 ± 0.0389 
[L SE] ± 0.3749 ± 0.1516 ± 0.1808 ± 0.3175 ± 0.6517         
[SE C] ± 0.1125 ± 0.4527 ± 0.0531 ± 0.2258 ± 0.2586         
[SH C] ± 0.1016 ± 0.0864 ± 0.0431 ± 0.0410 ± 0.0702         
[SH M] ± 0.3598 ± 0.0704 ± 0.0840 ± 0.0706 ± 0.3619 ± 0.2886 ± 0.1614 
[SH SE] + 0.3765 - 0.6808 - 2.1407 - 0.9240 + 0.7006 - 0.3484 - 0.1723 
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The lambda parameters provide insight into the categories that were responsible for the largest 

effects.  The categories associated with the largest positive and negative effects, or lambdas, for 

[M C], [SE M], and [SH L] are provided in Table 37.  These category combinations had the 

largest influence on incident counts for the three variables pairs.  As shown in Table 37, the 

combination of flammable liquids in an (outer) fiber box as well as corrosives in a bottle had the 

(equally) strongest positive effects for material type and container type [M C].  Thus, these two 

combinations were associated with relatively more incidents.  For season and material type [SE 

M], there were relatively more incidents involving flammable liquids during the winter based on 

3/5 samples.  Conversely, there were relatively fewer corrosives incidents during the winter 

months based on 3/5 samples.  Also, based on the maximum positive lambda for shift and 

location [SH L] in 5/5 samples, there were relatively more incidents that occurred during the 

twilight shift in suburban/commercial/eastern locations in the United States. 

 
Table 37: Interpretation of Largest Effects in Stage One. 

Variable 
Pair Largest Positive Effect 

Based 
on 

Samples Largest Negative Effect 

Based 
on 

Samples 

[M C] - Flammable liquids in fiber box 
- Corrosives in bottle 5/5 - Flammable liquids in bottle 

- Corrosives in fiber box 5/5 

[SE M] Flammable liquids during winter 3/5 Corrosives in winter 3/5 

[SH L] Twilight and suburban/ 
commercial/ eastern 5/5 Twilight and urban/ industrial or 

commercial/ eastern or western 5/5 

 
 
 
The three direct associations uncovered in stage one, which consist of season to material type, 

material type to container type, and shift to location, are summarized graphically in Figure 13. 
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Figure 13: Graphical Results of Stage One Analysis. 

 
 

As apparent, season directly influences material type, which directly influences container type.  

Shift directly influences location. 

Stage Two  Moving downstream in the network, the associations between stages one and two 

were investigated next.  Stage two consists of catalyst-type variables that describe the initiation 

of container failure, specifically the contributing action and causing object.  Contributing action 

was assumed to precede causing object based on their categories, as shown in Table 38.  For 

example, a container was improperly loaded and therefore dropped and impacted the floor.  

Thus, contributing action was a response variable relative to the stage one variables.  In turn, 

causing object was a response variable relative to contributing action and the stage one variables.   
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Table 38: Stage Two Variables. 
Stage 2 Variable Abbreviation Categories

Contributing Action CA 1) Improper Loading and Dropped 
2) Other 
3) Loose Fitting or Valve 

Causing Object CO 1) Floor and Water/Liquid 
2) None 
3) Other 

 
 
 
The first logit analysis in stage two had contributing action as the response variable.  In addition, 

there were two groups of explanatory variables for contributing action based on their 

independence.  The first group consisted of season, material type, and container type, and the 

second group consisted of shift and location.  The variables in the first group were independent 

of those in the second group, based on the direct associations uncovered in stage one, as shown 

previously in Figure 13.  Based on their independence, the first group of variables was analyzed 

separately from the second group relative to contributing action, as given by the Collapsibility 

Theorem.( )203   Thus, two separate logit analyses for contributing action were done.  Application 

of the Collapsibility Theorem was relevant because it permitted the use of smaller tables and 

sample sizes, which enabled significance testing. 

First Logit Analysis for Contributing Action  To perform significance testing in the first logit 

analysis, the sample size had to be chosen appropriately.  Based on the zero and small cell counts 

associated with various sample sizes as shown below, a sample size of N=4000 was chosen. 

 
N Sampling Zeroes Small cell count

3000 0% 5.02% 
3500 0% 4.58% 
4000 0% 1.66% 

 
 
 
Five samples containing 4000 records each were used to investigate the presence of significant 

associations among the variables season, material type, container type, and contributing action.   
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      Prior to beginning the analysis, the correction procedure was applied to the table for these 

four variables.  However, since the latent variable (contributing action) had low classification 

error, the correction procedure did not have a large impact.  Specifically, across the five samples, 

the maximum difference between the counts in the uncorrected and corrected tables was six, with 

a maximum cell difference of one.   

      Nonetheless, the corrected matrix was used to perform the loglinear, or logit, analysis, the 

results of which are shown in Table 39.  The marginal component L2 associated with [C CA] had 

a consistently small p-value (< 0.0001), indicating a significant association between container 

type and contributing action.  The partial component associated with [M CA] was significant at 

α=0.05 in three out of five samples, as demonstrated by its component L2 values.  As discussed 

previously in sections 3.5.1 and 3.5.2, the partial association [M CA] is the association after 

adjustment for the effects of container type C.  Since the partial component was significant at 

α=0.05 in 3/5 samples and at α=0.10 in 4/5 samples, material type M and contributing action CA 

were determined to be directly associated.   In other words, M and CA were not conditionally 

independent given C.  The partial association between season SE and contributing action CA as 

measured by its component L2 was not significant at α=0.05 in four out of five samples.  Based 

on this, season did not appear to be directly associated with contributing action given container 

and material type.  However, as will be discussed, the lambdas (λ) suggested a different result for 

SE and CA. 
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Table 39: Significance Tests for Logit CA.   (SE, M, C) 

    RESIDUAL COMPONENT 

Sample Model L2 Df p L2 df p 
Significant 
Component 

1 [SE M C][CA]   (null logit) 1463.5744 30 2.00E-289         
  [SE M C][CA][C CA] 31.3128 28 0.3034 1432.2616 2 <0.0001 Y 
  [SE M C][CA][C CA][M CA] 23.9555 26 0.5785 7.3573 2 0.0253 Y 
  [SE M C][CA][C CA][M CA][SE CA] 20.8198 20 0.4078 3.1357 6 0.7916   
                  

2 [SE M C][CA]   (null logit) 1338.4577 30 1.00E-262         
  [SE M C][CA][C CA] 37.7725 28 0.1028 1300.6852 2 <0.0001 Y 
  [SE M C][CA][C CA][M CA] 26.9944 26 0.4096 10.7781 2 0.0046 Y 
  [SE M C][CA][C CA][M CA][SE CA] 18.6818 20 0.5426 8.3126 6 0.2161   
                  

3 [SE M C][CA]   (null logit) 1461.7462 30 6.00E-289         
  [SE M C][CA][C CA] 31.6474 28 0.2891 1430.0988 2 <0.0001 Y 
  [SE M C][CA][C CA][M CA] 30.2672 26 0.2567 1.3802 2 0.5015   
  [SE M C][CA][C CA][M CA][SE CA] 16.4394 20 0.689 13.8278 6 0.0316 Y 
                  

4 [SE M C][CA]   (null logit) 1403.7126 30 1.00E-276         
  [SE M C][CA][C CA] 33.9977 28 0.2009 1369.7149 2 <0.0001 Y 
  [SE M C][CA][C CA][M CA] 25.9030 26 0.4684 8.0947 2 0.0175 Y 
  [SE M C][CA][C CA][M CA][SE CA] 18.7515 20 0.5380 7.1515 6 0.3071   
                  

5 [SE M C][CA]   (null logit) 1543.7182 30 2.00E-306         
  [SE M C][CA][C CA] 24.7975 28 0.6388 1518.9207 2 <0.0001 Y 
  [SE M C][CA][C CA][M CA] 19.5840 26 0.8108 5.2135 2 0.0738   
  [SE M C][CA][C CA][M CA][SE CA] 10.4514 20 0.9592 9.1326 6 0.1663   

 
 
 

In addition to significance testing, the lambdas, or effect parameters, were also examined.  The 

lambdas were based on the full first-order model containing the main effects of C, M, and SE on 

the logit variable CA, as were the lambdas in all subsequent stages in this analysis.( , )204 205   The 

lambdas were therefore (conservative) partial effects, serving as measures of association after 

adjusting for all other variables.  For [C CA], the lambda of maximum absolute value for each 

sample was consistently large, as shown in Table 40.  This coincided with the consistently small 

p-values (< 0.0001) for this association.  The lambdas for [M CA] were greater than 0.20 in 5/5 

samples.  This generally coincided with the significant association between material type and 

101 



 

contributing action at α=0.05 in 3/5 samples and at α=0.10 in 4/5 samples.  Regarding the third 

and final association, the maximum lambdas for [SE CA] were similar in magnitude to those for 

[M CA] and were greater than 0.20 in absolute value in 5/5 samples.  Although season SE and 

contributing action CA were not directly associated based on significance testing, the decision 

was made to assume a direct association between them based on the values of their maximum 

lambdas and their proximity to the maximum lambdas for [M CA].   

 
Table 40: Lambdas of Max Absolute Value for Logit CA.   (SE, M, C) 

Variable 
Pair S1 S2 S3 S4 S5 

[SE CA] + 0.3768 + 0.3488 + 0.4806 + 0.3592 - 2.1656 
[M CA] ± 0.5287 ± 0.3668 ± 0.2636 ± 0.6953 ± 0.3813 
[C CA] ± 7.2263 ± 6.9781 ± 7.4654 ± 7.4152 ± 7.6799 

 
 
 
Interpretations of the strongest effects based on the maximum lambdas for each variable pair are 

given in Table 41.  For example, based on five out of five samples, a higher proportion of 

corrosives were released as the result of a loose fitting or valve.  In conjunction with this, there 

were proportionally more incidents of loose fittings or valves on bottles based on 5/5 samples. 

 
Table 41: Interpretation of Largest Effects for Logit CA.  (SE, M, C) 

Variable 
Pair Largest Positive Effect 

Based 
on 

Samples Largest Negative Effect 

Based 
on 

Samples 

[SE CA] Winter and other contributing 
action 2/5 - Winter and loose fitting or valve 

- Fall and loose fitting or valve 
2/5 
2/5 

[M CA] Corrosives and loose fitting or 
valve 5/5 Flammable liquids and loose 

fitting or valve 5/5 

[C CA] Bottle and loose fitting or valve 5/5 Fiber box and loose fitting or valve 5/5 

 
 
 
The logit analysis of the first group of explanatory variables for contributing action is 

summarized graphically in Figure 15 and consists of three direct associations to the response. 
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Figure 14: Graphical Results of Logit Analysis for CA.   (SE, M, C) 

 
 
Second Logit Analysis for Contributing Action  The second logit analysis for contributing 

action had shift and location as the explanatory variables, which were independent of the 

explanatory variables in the first logit analysis.  A sample size of 1200 was chosen based on the 

absence of zeros or small cell counts in five different samples.          

      Prior to the loglinear modeling, the correction procedure was not applied because the 

literature did not address the case of a joint distribution involving two or more latent variables.  I 

contacted the developers of the correction procedure concerning this gap.  Dr. Marcel Croon 

provided a more generally-applicable correction procedure later in time, which will be 

demonstrated in stage four.  Since the classification errors associated with location and 

contributing action were low (Pe=0.0009 and Pe=0.0018, respectively), the inability to apply a 

correction at this point in time was not a concern. 

      Significance testing and evaluation of lambdas were again used to assess the presence of 

direct associations.  The marginal association between location and contributing action [L CA] 

was consistently significant at α=0.05 across the five samples, as indicated by the significant  
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values of the component L2 in Table 42.  The partial association between shift and contributing 

action [SH CA], which was obtained after correcting for the main effect of location, was 

significant in 2/5 samples, as demonstrated by its component L2 in Table 42. 

 
Table 42: Significance Tests for Logit CA.   (SH, L) 

    RESIDUAL COMPONENT 

Sample Model L2 df P L2 df P 
Significant 
Component 

1 [L SH][CA]   (null logit) 36.5235 10 7.00E-05         
  [L SH][CA][L CA] 9.6272 8 0.2922 26.8963 2 <0.0001 Y 
  [L SH][CA][L CA][SH CA] 4.6614 4 0.3238 4.9658 4 0.2908   
                  

2 [L SH][CA]   (null logit) 32.1485 10 4.00E-04         
  [L SH][CA][L CA] 16.5212 8 0.0355 15.6273 2 0.0004 Y 
  [L SH][CA][L CA][SH CA] 2.4770 4 0.6488 14.0442 4 0.0072 Y 
                  

3 [L SH][CA]   (null logit) 21.5129 10 1.78E-02         
  [L SH][CA][L CA] 15.4588 8 0.0508 6.0541 2 0.0485 Y 
  [L SH][CA][L CA][SH CA] 1.3828 4 0.8472 14.0760 4 0.0071 Y 
                  

4 [L SH][CA]   (null logit) 26.2131 10 3.50E-03         
  [L SH][CA][L CA] 14.0863 8 0.0795 12.1268 2 0.0023 Y 
  [L SH][CA][L CA][SH CA] 8.6398 4 0.0708 5.4465 4 0.2445   
                  

5 [L SH][CA]   (null logit) 16.9713 10 7.50E-02         
  [L SH][CA][L CA] 7.9825 8 0.4352 8.9888 2 0.0112 Y 
  [L SH][CA][L CA][SH CA] 1.5442 4 0.8188 6.4383 4 0.1687   

   
 
 
The significant association between location L and contributing action CA coincided with the 

maximum lambdas for [L CA], as shown in Table 43, which were all above 0.20 in absolute 

value.  Although the [SH CA] partial association was significant at α=0.05 in just two out of five 

samples, the largest lambdas for [SH CA] ranged from 0.6088 to 1.5114 in absolute value.  

Based on this, the decision was made to assume a direct association between shift and 

contributing action. 
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Table 43: Lambdas of Max Absolute Value for Logit CA.   (SH, L) 

Variable 
Pair S1 S2 S3 S4 S5 

[SH CA] + 0.7421 - 0.8297 - 0.6088 + 1.5114 - 0.7967 
[L CA] ± 0.8838 ± 0.5530 ± 0.6852 ± 0.3235 ± 0.3775 

 
 
 
As explanations of the largest effects, a greater proportion of incidents on the twilight shift 

involved loose fittings or valves, based on two of five samples, as shown in Table 44.  For the [L 

CA] direct association, proportionally more incidents of loose fittings or valves occurred in 

urban/industrial or commercial areas, based on 3/5 samples. 

 
Table 44: Interpretation of Largest Effects for Logit CA.  (SH, L) 

Variable 
Pair Largest Positive Effect 

Based 
on 

Samples Largest Negative Effect 

Based 
on 

Samples 
[SH CA] Twilight and loose fitting or valve 2/5 Midnight and loose fitting or valve 3/5 

[L CA] 
Urban/ industrial or commercial/ 
eastern or western and loose 
fitting or valve 

3/5 Suburban/ commercial/ eastern 
and loose fitting or valve 3/5 

 
 
 
The results of the logit analysis for contributing action involving the second group of explanatory 

variables are graphically shown in Figure 15. 
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Figure 15: Graphical Results of Logit Analysis for CA.   (SH, L) 
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Logit Analysis for Causing Object  The second variable in stage two and the next response 

variable to analyze was causing object, which describes the physical objects, such as the floor 

and water, leading to failure of the container. Therefore, the explanatory variables for this 

analysis consisted of contributing action, also in stage two, and the variables in stage one.  The 

Collapsibility Theorem no longer applied to this model for causing object or others downstream, 

due to the associations among the preceding variables.  Thus, for this model involving causing 

object, all variables had to be analyzed as part of one model or table.  The logit model for 

causing object involved seven variables and 864 cells.  Due to the sample size needed to create a 

non-sparse contingency table, significance testing was not feasible.  Rather, for this model and 

those downstream in the network, associations had to be assessed using the lambda, or effect, 

parameters only, which are insensitive to large sample size and sparseness.( )206   The total sample 

of 40,474 records was used to build the model.  The table had 1.4% sampling zeros and 23.1% 

small cell counts. 

      The largest lambda parameters in absolute value for this seven-variable model are shown in 

Table 45, along with interpretations of these largest effects.  Contributing action had the largest 

effect on causing object, with λ = 4.5500, followed by location (λ = ± 0.9462) and container type 

(λ = ± 0.8962).  Several of the largest effects on causing object involved the “other” category and 

therefore provide limited insight at this time into the exact influence on causing object. 

 
Table 45: Lambdas of Max Absolute Value and Interpretation of Largest Effects for Logit CO. 

Variable 
Pair S1 

[CA CO] + 4.5500 
[C CO] ± 0.8962 
[M CO] ± 0.3036 
[L CO] ± 0.9462 
[SE CO] - 0.2111 
[SH CO] + 0.6801  
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Table 45 (continued). 
Variable 

Pair Largest Positive Effect Largest Negative Effect 

[CA CO] Loose fitting or valve and no 
causing object 

Loose fitting or valve and floor and 
water 

[C CO] Bottle and no causing object Fiber box and no causing object 

[M CO] Flammable liquids and other 
causing object 

Corrosives and other causing 
object 

[L CO] 
Urban/ industrial or commercial/ 
eastern or western and other 
causing object 

Suburban/ commercial/ eastern 
and other causing object 

[SE CO] Winter and other causing object Summer and other causing object 
[SH CO] Twilight and other causing object Day and other causing object 

 
 
 
The direct associations and conditional independencies are graphically summarized in Figure 16. 

 

Season

Material
Type

Container
Type

Location

Shift

Contrib.
Action
(CA)

Causing
Object
(CO)

Season

Material
Type

Container
Type

Location

Shift

Contrib.
Action
(CA)

Causing
Object
(CO)

 
Figure 16: Graphical Results of Logit Analysis for CO. 

 
 

Stage Three  Continuing downstream in the network, actual failure of the container occurs in 

stage three.  Stage three is similar to stage two in that it contains two variables and hence two 

separate logit models.  The failure mode describes the manner of failure, and the failure item-
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area defines the physical point of failure on the container.  Failure mode was assumed to 

temporally precede the item-area, based on their categories.  For example, perhaps the container 

was punctured, causing the bottom side of the basic package material (e.g. cardboard) to fail.  

The stage three variables are summarized below. 

 
Table 46: Stage Three Variables. 

Stage 3 Variable Abbreviation Categories

Failure Mode FM 1) Other 
2) Punctured and Crushed 

Failure Item-Area FIA 1) Basic Package Material on Top 
2) Basic Package Material on Bottom 
3) Closure on Top 

 
 
 
The logit analysis for failure mode consisted of seven preceding, explanatory variables.  With a 

total of 1728 cells, the contingency table had 13.1% zeros and 51.7% small cell counts, using the 

total sample size of 40,474.  Evaluation of the lambda parameters was the method used to 

determine the direct associations of the explanatory variables with failure mode.   

      Based on the lambda parameters shown in Table 47, contributing action was again the 

variable with the strongest effect on the logit variable, with λ = ± 4.3000.  The positive lambda 

parameter indicates that a larger proportion of loose fittings or valves were associated with some 

“other” failure mode not listed on the incident form, as shown in Table 47.  Conversely, a 

smaller proportion of loose fittings or valves led to puncture and crush of the container (λ = -

4.3000).  Causing object and container type had the next largest effects on failure mode, with λ = 

± 1.3657 and λ = ± 1.3598, respectively.  Location and season were also directly associated with 

failure mode albeit to lesser extents (λ = ± 0.2589 and λ = ± 0.2548, respectively).  However, 

shift and material type were not directly associated with failure mode, since their lambdas were  
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below 0.20 in absolute value.  Material type was the explanatory variable least associated with 

failure mode with λ = ± 0.0103.  Thus, arcs were not drawn from shift and material type to 

failure mode in the network. 

 
Table 47: Lambdas of Max Absolute Value and Interpretation of Largest Effects for Logit FM. 

Variable 
Pair S1 

[CO FM] ± 1.3657 
[CA FM] ± 4.3000 
[C FM] ± 1.3598 
[M FM] ± 0.0103 
[SE FM] ± 0.2548 
[L FM] ± 0.2589 
[SH FM] ± 0.1490    

Variable 
Pair Largest Positive Effect Largest Negative Effect 

[CO FM] Floor and water and punctured and 
crushed Floor and water and other failure mode 

[CA FM] Loose fitting or valve and other failure 
mode 

Loose fitting or valve and punctured and 
crushed 

[C FM] - Fiber box and other failure mode 
- Bottle and punctured and crushed 

- Bottle and other failure mode 
- Fiber box and punctured and crushed 

[M FM]  Not directly associated  Not directly associated 

[SE FM] Winter and other failure mode Winter and punctured and crushed 

[L FM] 

- Urban/ industrial or commercial/ eastern 
or western and other failure mode 
- Suburban/ commercial/ eastern and 
punctured and crushed 

- Urban/ industrial or commercial/ eastern 
or western and punctured and crushed 
- Suburban/ commercial/ eastern and 
other failure mode 

[SH FM]  Not directly associated  Not directly associated 

 
 
 
The results are summarized graphically in Figure 17 and show that four of the seven explanatory 

variables are directly associated with the response variable failure mode in stage three of a 

release. 
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Figure 17: Graphical Results of Logit Analysis for FM. 

 
 

Direct associations to the failure item-area were analyzed next and involved eight explanatory 

variables, which consisted of failure mode and the variables of stages one and two.  There were 

5,184 cells in this table, which was sparsely populated with 41.8% zeros and 80.8% small cell 

counts.   

     As with causing object and failure mode, contributing action also had the largest effect on 

failure item-area with λ = 7.4955, followed by container type (λ = ± 6.2782), as shown in Table 

48.  Based on this, there were proportionally more loose fittings or valves that led to the failure 

of a closure on the top of the container (λ = 7.4955) as well as more bottles in which the closure 

on the top failed (λ = 6.2782).  Causing object exerted a strong influence with λ = 3.1437, as it 

did in the previous logit model.  Based on this, some “other” causing object, for example as 

opposed to the floor and water, led to proportionally more failures of the basic package material 

on top of the container.  Failure mode was also directly related to failure item-area with λ = ± 
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1.2031.  This lambda indicated that a higher proportion of incidents involved some “other” 

failure mode of closures on top of the container, as opposed to puncture and crush, for example.   

 
Table 48: Lambdas of Max Absolute Value and Interpretation of Largest Effects for Logit FIA. 

Variable 
Pair S1 

[FM FIA] ± 1.2031 
[CO FIA] + 3.1437 
[CA FIA] + 7.4955 
[C FIA] ± 6.2782 
[M FIA] ± 0.3367 
[SE FIA] - 0.5586 
[L FIA] ± 0.2222 
[SH FIA] + 0.3389  

Variable 
Pair Largest Positive Effect Largest Negative Effect 

[FM FIA] Other failure mode and closure on top Punctured and crushed and closure on 
top 

[CO FIA] Other causing object and basic package 
material on top 

Other causing object and basic package 
material on bottom 

[CA FIA] Loose fitting or valve and closure on top Other contributing action and closure on 
top 

[C FIA] Bottle and closure on top Fiber box and closure on top 
[M FIA] Corrosives and closure on top Flammable liquids and closure on top 

[SE FIA] Winter and basic package material on 
bottom Winter and closure on top 

[L FIA] Suburban/ commercial/ eastern and 
closure on top 

Urban/ industrial or commercial/ eastern 
or western and closure on top 

[SH FIA] Twilight and closure on top Twilight and basic package material on 
bottom 

 
 
 
A visual summary of this logit analysis, in which five out of eight variables were directly 

associated to failure item-area as the response variable in stage three, is presented in Figure 18. 
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Figure 18: Graphical Results of Logit Analysis for FIA. 

 
 
Stage Four  Stage four of a release event involves the actual release of hazardous material to the 

environment, as quantified by a three-category variable for a zero, small, or medium-amount 

release, as described in Table 49. 

 
Table 49: Stage Four Variables. 

Stage 4 Variable Abbreviation Categories

Release Quantity RQ 1) Zero 
2) Small (≤1 gal) 
3) Medium (≤100 gal) 

   
 
 
The stage one variables and the container failure variables in stages two and three served as 

explanatory variables to release quantity.  With nine explanatory variables, the table was large 

and sparse, with a total of 15,552 cells. 
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      At stage four, the general correction procedure described in section 3.6.2 for a table with two 

or more latent variables and one or more observed variables was applied based on its availability 

at the time of the stage four analysis.  This procedure corrected for the bias introduced by the 

five latent variables, which consisted of location, contributing action, causing object, failure 

mode, and failure item-area.  Due to their low classification errors, the correction procedure had 

a small effect. However, the procedure was nonetheless applied to demonstrate its application as 

part of three-step model building.  As discussed previously in section 3.6.2, this procedure 

involved calculations involving the Kronecker product of the transition matrices for the five 

latent variables.  The Kronecker product of the transition matrices was large (108 X 108) and 

exceeded the limits of Microsoft Excel 2002.  As such, source code was written to determine the 

corrected matrix, using text files for output.  The individual transition matrices for the five latent 

variables are shown in Table 80 in Appendix B.  Due to space considerations, the Kronecker 

product and the uncorrected and corrected matrices are not shown.  This correction procedure 

had a limited effect, as expected, due to the low classification errors of the latent variables.  The 

difference between the total counts in the uncorrected and corrected contingency tables was 97, 

which represented 0.24% of the total count in the uncorrected table.  The maximum difference in 

any cell was 4.  Nonetheless, the corrected table was used for the stage four loglinear analysis. 

      Based on this analysis, the direct effects on release quantity tended to be smaller than the 

direct effects on previous logit variables.  The container failure variables continued to exert the 

largest influences.  Causing object had the largest effect on release quantity with λ = - 1.1925.  

Based on this lambda parameter, a smaller proportion of incidents with some “other” causing 

object were associated with a medium release quantity.  This “other” causing object is opposed 

to the floor and water, for example.  Causing object was followed by failure mode, container 
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type, and item-area, with λ = ± 0.9578, ± 0.7952, and 0.7260, respectively.  Contributing action, 

the most influential variable in several prior models, was much less influential on release 

quantity (λ = 0.5785).  This lambda indicates that proportionally more improperly loaded and 

dropped containers led to a medium release amount.  Material type was not directly related to 

release quantity, based on λ = ± 0.1730. 

 
Table 50: Lambdas of Max Absolute Value and Interpretation of Largest Effects for Logit RQ. 

Variable 
Pair S1 

[FIA RQ] + 0.7260 
[FM RQ] ± 0.9578 
[CO RQ] - 1.1925 
[CA RQ] + 0.5785 
[C RQ] ± 0.7952 
[M RQ] ± 0.1730 
[SE RQ] - 0.2208 
[L RQ] ± 0.4004 
[SH RQ] + 0.2784  

Variable 
Pair Largest Positive Effect Largest Negative Effect 

[FIA RQ] Closure on top and small release quantity Closure on top and medium release 
quantity 

[FM RQ] Punctured and crushed and medium 
release quantity Other failure mode and medium 

[CO RQ] Other causing object and zero release 
quantity Other causing object and medium 

[CA RQ] Improper loading and dropped and 
medium release quantity 

Other contributing action and medium 
release quantity 

[C RQ] Fiber box and medium release quantity Bottle and medium release quantity 
[M RQ]  Not directly associated  Not directly associated 

[SE RQ] Summer and medium release quantity Spring and medium release quantity 

[L RQ] Suburban/ commercial/ eastern and 
medium release quantity 

Urban/ industrial or commercial/ eastern 
or western and medium release quantity 

[SH RQ] Twilight and medium release quantity Twilight and zero release quantity 
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The network for release quantity, which consists of six direct associations with the explanatory 

variables in stages one through three of a release, is presented graphically in Figure 19. 
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Figure 19: Graphical Results of Logit Analysis for RQ. 

 
 
Stage Five  The final, or ultimate, logit variable in the network was dollar loss, one possible 

consequence of a hazmat release and a measure for risk identified in the literature.  Dollar loss 

has the following categories: zero, small, and medium, as summarized in Table 51 . 

 
Table 51: Stage 5 Variables. 

Stage 5 Variable Abbreviation Categories

Dollar Loss D 1) Zero 
2) Small (≤$500) 
3) Medium (≤$25K) 

 
 
 
There were ten variables that preceded dollar loss in the network.  However, SPSS 11.0 has a 

limitation of nine explanatory variables.  To address this limitation, the contingency table 
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containing all 11 variables (which included dollar loss) was collapsed over one of the 

explanatory variables that had a small impact in previous stages, as suggested by Hagenaars.( )207   

Consequently, the table was collapsed over shift.  This led to a model containing nine 

explanatory variables, in which shift was not modeled.  This table had 15,552 cells and a sample 

size of 40,282, after the general correction procedure was applied.  The correction procedure 

again had a small effect, with a difference in total count between uncorrected and corrected 

tables of 91, which represented 0.23% of the uncorrected total count.  There was a maximum cell 

difference of 8.  In order to investigate possible effects of shift on dollar loss, a second model 

was run.  In this model, the contingency table was collapsed over season, another variable that 

had a small impact on previous response variables.  This table was also corrected, resulting in a 

total difference of 70 (0.17%) between the uncorrected and corrected tables and a maximum cell 

difference of 10.       

      The lambda values for the two models were very similar, as shown in Table 52.  In this table, 

the model on the left was collapsed over shift, and the model on the right was collapsed over 

season.  In addition, interpretations of the lambda parameters are given in Table 53.  Causing 

object had the largest influence on dollar loss (λ ≅ - 4.3), as it did on release quantity.  Based on 

this as shown in Table 53, a lesser proportion of some “other” causing object was associated with 

medium dollar loss.  This is in contrast to the largest positive effect by causing object, in which a 

greater proportion of floor and water incidents that led to medium dollar loss (λ ≅ 3.2).  

Contributing action had the next largest effect (λ ≅ 3.6), followed by release quantity (λ ≅ 3.4) 

and failure item-area (λ ≅ -2.3).  The largest positive effect by the contributing action indicated 

that a greater proportion of loose fittings or valves were associated with medium dollar loss.  The 

largest positive effect by release quantity led to proportionally more incidents in which a medium 

116 



 

release quantity was associated with medium dollar loss, as might be expected.  In summary, the 

container failure variables and release quantity had strong effects on the ultimate logit variable.  

The only variable which was not directly associated with dollar loss was container type (λ ≅ ± 

0.11).  Both shift and season showed direct effects on dollar loss (λ = 0.4749 and λ = 0.5654), 

which points to the value of having run both models. 

 
Table 52: Lambdas of Max Absolute Value for Logit D.   

Collapsed over Shift (left) and Season (right). 

Variable 
Pair S1  

Variable 
Pair S1 

[RQ D] + 3.4386  [RQ D] + 3.3845 
[FIA D] - 2.2529  [FIA D] - 2.2660 
[FM D] ± 0.5156  [FM D] ± 0.5262 
[CO D] - 4.4261  [CO D] - 4.2793 
[CA D] + 3.5947  [CA D] + 3.6344 
[C D] ± 0.1130  [C D] ± 0.1113 
[M D] ± 0.5511  [M D] ± 0.5160 
[SE D] + 0.5654  [L D] ± 1.3434 
[L D] ± 1.3196  [SH D] + 0.4749 

 
 
The interpretations of the strongest effects on dollar loss are presented below in Table 53. 

 
Table 53: Interpretation of the Largest Effects for Logit D. 

Variable 
Pair Largest Positive Effect Largest Negative Effect 

[RQ D] 
Medium release quantity and medium 
dollar loss 

Zero release quantity and medium dollar 
loss 

[FIA D] 
Closure on top and medium dollar loss Basic packaging material on top and 

medium dollar loss 

[FM D] 
Punctured and crushed and medium 
dollar loss 

Other failure mode and medium dollar 
loss 

[CO D] 
Floor and water and medium dollar loss Other causing object and medium dollar 

loss 

[CA D] 
Loose fitting or valve and medium dollar 
loss Loose fitting or valve and zero dollar loss 

[C D]  Not directly associated  Not directly associated 

[M D] Corrosives and medium dollar loss Flammable liquids and medium dollar 
loss 

[SE D] Fall and medium dollar loss Summer and medium dollar loss 

[L D] 
Suburban/ commercial/ eastern and 
medium dollar loss 

Urban/ industrial or commercial/ eastern 
or western and medium dollar loss 

[SH D] Day and medium dollar loss Twilight and medium dollar loss 
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As presented in Figure 20, there are direct associations between dollar loss and all the 

explanatory variables in stages one through four except for container type, as shown by the 

absence of an arc from this variable. 
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Figure 20: Graphical Results of Logit Analysis for D. 

 

 
Summary of Stages 1-5  A flowchart that summarizes the method used for constructing and 

using the individual loglinear models to analyze each stage of a hazmat release is provided in 

Figure 21. 
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Figure 21: Approach to Constructing and Using a Loglinear Model. 

 

 
A complete structure showing all the direct associations determined among the variables in 

stages one through five is given in Figure 22.  In this diagram, the stage one variables are 

positioned on the outer ring of the circle, while dollar loss is in the center.  This diagram shows 

the high degree of interconnectedness of the network.  This structure served as the association 

structure for the Bayesian network decision model of the hazmat release variables, to be 

constructed next in the methodology. 
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Figure 22: Bayesian Network for Stages 1-5. 

 
 
4.1.3 Three Step Modeling Assumptions 

An assumption of the three step modeling approach, which was just used to develop the 

association structure, is that an observed variable does not have a direct effect on an indicator 

variable of a latent variable.  This assumption is stated in various publications by the authors of 

the correction procedure, namely Bolck, Croon, and Hagenaars.( , , , )208 209 210 211   For example, this 

assumption holds that container type, an observed variable, should not have a direct effect on 

improper loading, an indicator variable for the contributing action latent variable.  If there is a 

direct relationship, as measured by a significant L2 or |λij| ≥ 0.20, then the indicator variable 

should be converted to an observed variable.( )212    

120 



 

     Efforts at the beginning of the loglinear modeling to investigate these direct effects among the 

hazmat variables in order to comply with the assumption were not met with success.  Early 

efforts were not successful because the contingency tables for the required loglinear models were 

sparse.  At this time, significance testing was the method being used to determine the presence of 

associations, or direct effects.  The ability to use lambda parameters to assess associations in 

sparse tables was not known until later in time.  In addition, in the literature, violation of this 

assumption was described as leading to issues with interpretation of the final model versus issues 

of model accuracy or estimation of lambda parameters.( , )213 214   Based on this and the inability to 

perform significance testing, the loglinear modeling proceeded without an investigation of the 

possible direct effects. 

      After completion of the loglinear modeling, I learned through personal communication with 

Dr. Jacques Hagenaars that a “large” direct effect of an observed variable on an indicator can be 

influential on the estimation of the lambda parameters in the model.( )215   However, the value of a 

“large” direct effect is uncertain.  Dr. Hagenaars believed that a value of λ=0.75 may not be a 

large direct effect, especially if latent variables are involved.( )216   At this point, I ran the 

necessary loglinear models to investigate the direct effects of the observed variables on the 

indicator variables based on the lambda parameters.  This was done for each indicator variable 

influenced by an observed variable in the hazmat network.  The presence of a direct effect was 

determined through a three-variable loglinear model consisting of the observed, indicator, and 

latent variable.   

      Of the four observed variables that may directly influence the indicator variables, container 

type had the largest direct effects.  The direct effects of container type ranged from λ=0.01 to 

λ=5.75, with an average of λ=1.07.  Shift in general had smaller direct effects, which ranged 

121 



 

from λ=0.0002 to λ=10.21, with an average of λ=0.74.  Finally, the direct effects of season and 

material type were smaller than those of container type and shift, as presented below in Table 54. 

 
Table 54: Direct Effects of Observed Variables on Indicator Variables. 

Observed Variable Range Average 

Container Type 0.0100 5.75 1.07 
Shift 0.0002 10.21 0.74 
Season 0.0093 8.06 0.51 
Material Type 0.0100 6.79 0.45 

 
 
 
The indicator variables upon which the largest direct effects occurred were “other” and “none.”  

For example, shift had a direct effect of λ =10.21 on the indicator variable “other” of the latent 

variable contributing action. 

      Since the value of a “large” direct effect is not known, the impact of the direct effects of the 

observed variables on the indicator variables in this research is not known.  Since the “other” and 

“none” indicators were in general associated with the largest direct effects, an opportunity for 

future research is elimination of these indicator variables from the analysis.  Although “other” 

and “none” were associated with many incidents and consequences, they provide limited 

information and contribute to violation of the three-step modeling assumption.  As a 

consideration for future research, if a threshold for “large” had been chosen and the three step 

assumption followed by converting indicators to observed variables based on large λ’s, then the 

same degree of simplification using latent class analysis would not have been possible.  For, 

many of the indicator variables would have been included as observed variables and would not 

have been combined as indicators to form the latent variables.  In addition, not all of the latent 

variables that were developed in this research would have been possible.  Thus, there is a 

tradeoff between the ability to simplify and the three-step modeling assumption. 
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4.1.4 Bayesian Network Construction 

Using the association structure determined from the three step modeling approach, a Bayesian 

network decision model of a hazardous materials release was developed as the final step of the 

methodology.  A Bayesian network was chosen as the type of decision model since only random 

variables are considered in this research.  In addition, a Bayesian network was a natural fit due to 

its ability to perform inference on the variables, including ranking the explanatory variables 

based on their influence on the outcome variable.  Also, changes in the distribution of the 

outcome variable could be determined based on changes in the categories of the explanatory 

variables, suggesting desirable operational or policy changes.  Dollar loss, the ultimate response 

variable, and release quantity, the stage-four response variable of potential concern to 

environmentalists, were analyzed as network outcome variables.  The following sections 

describe the training, testing, and inferential results. The most influential variables and 

recommended policy changes for each outcome variable are discussed in detail. 

4.1.4.1 Bayesian Network Training   
The second component of a Bayesian network, the conditional probability distribution of each 

node or variable, was determined using incident counts from the HMIRS database.  Calculation 

of these conditional probability distributions constitutes the training of the network, or learning, 

at which point inference can be performed. 

      Some of the conditional probabilities were zero due to the large number of parent, or 

explanatory, variables, such as those of dollar loss and release quantity.  Conditional 

probabilities of zero were replaced by a small constant equal to 0.0001, as suggested in the  
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literature as well as by an expert.( , )217 218   The rationale for this was that the zeros were probably 

not structural zeros but sampling zeros.  And, using Bayes Theorem, a zero probability can never 

be updated to another value.( )219

      There were also instances in which the probability in the denominator of the conditional 

probability calculation was zero, thereby preventing calculation of the conditional probability.  In 

these cases, the uniform distribution was applied to the conditional probabilities that make use of 

this particular probability in the denominator.( )220   Using the uniform distribution, each of these 

conditional probabilities was assigned an equal value such that the values summed to one.  For 

example, for a three-category variable, the values 1/3, 1/3, 1/3 were assigned. 

      A total of 40,191 records were available for network training and testing.  These records 

were divided into five non-overlapping sets of equal size so that five-fold cross validation, or 

testing, could be done.  Cross validation involves comparing model predictions with actual 

values using a set of test records in order to assess model accuracy.  Although there is no general 

or gold standard for assessing the accuracy of Bayesian networks, cross validation was 

performed on the hazmat release networks to document their accuracy.( )221   Thus, five Bayesian 

networks were trained and tested using the available data.  The method for doing this is 

described in Table 55, where the five sets of records are represented by T1 through T5.  For 

example, for the first Bayesian network, sets T2-T5 were used for training, and T1 was used for 

testing, or cross validating.  For the second network, sets T1 and T3-T5 were used for training, 

and T2 was used for testing.  The plan described in this table resulted in five sets of testing and 

inference results, which will be described in the following sections.   
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Table 55: Bayesian Network Training and Test Plan. 

Network 
Training 

Sets 
Test 
Set 

1 T2,T3,T4,T5 T1 
2 T1,T3,T4,T5 T2 
3 T1,T2,T4,T5 T3 
4 T1,T2,T3,T5 T4 
5 T1,T2,T3,T4 T5 

 
 
 

4.1.4.2 Dollar Loss Outcome – Testing and Quality   
Cross-validation is commonly done after training to evaluate the resulting network by comparing 

model predictions to actual values using an independent set of test records.  For example, to 

evaluate the ability of the network to predict the correct category for dollar loss, the values for 

season, material type, and the other explanatory variables were set as evidence based on their test 

record values.  The probability for dollar loss was then updated using the network, leading to a 

most likely category for this outcome variable.  The most likely category was then compared to 

the actual category per the test record to identify the existence of a match.  This procedure was 

done for all records in the test set, leading to a calculation of the accuracy.  Specifically, a count 

of the records in which the actual category matched the most likely category was made, along 

with a count of matches on the next most likely category.  These two counts gave an indication 

of the accuracy of the network, as described in Onisko et. al.(222)  In predicting dollar loss, the 

accuracies of the five networks are given in Table 56.  The most likely category matched the 

actual category approximately 70% of the time, ranging from 68.9% to 70.8% across the five 

networks.  Thus, the accuracies associated with the five test sets were close in value, likely due 

to the large training and testing datasets of approximately 32,000 and 8,000, respectively.  When 

there was not a match on the most likely category, the next most likely category matched the 

actual approximately 23% of the time, ranging from 22.5% to 24.2% across the test sets.  
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Although the networks did not make perfect predictions for dollar loss, the accuracy appears to 

be reasonable.  The inability to make perfect predictions reflects the difficulty of the problem and 

may be the result of other factors or variables that are not part of the model.  ( )223   

 
Table 56: Prediction Accuracies for Dollar Loss. 

  Network 
  T1 T2 T3 T4 T5 
Most Likely = Actual 69.6% 68.9% 69.4% 70.8% 70.2% 
Next Most Likely = Actual 23.3% 24.2% 23.8% 22.5% 22.8% 

 

 
Tests were also performed in the reverse direction to assess the ability to predict values of the 

explanatory variables based on the category of dollar loss.  To do this, the value for dollar loss 

was set as evidence based on the test record value.  The probabilities for all the explanatory 

variables were then updated using the network, and counts of the most likely and next most 

likely matches for each parent variable were determined, as shown in Table 57.  For example, for 

season, the percentage of records in which the actual category matched the most likely category 

was approximately 31%, ranging from 30.2% to 32.2% across the five test sets.  The accuracies 

for each explanatory variable given in Table 57 were always better than random based on the 

number of categories of the variable.  In addition, for several of the variables, the predictions 

were notably better than random, such as those for container (C), contributing action (CA), 

causing object (CO), failure mode (FM), failure item-area (FIA), and release quantity (RQ).  

Note the excellent prediction of RQ at approximately 88%. 
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Table 57: Prediction Accuracies for Dollar Loss Explanatory Variables. 

    Matches for Dollar Loss by Network 
    T1 T2 T3 T4 T5 

Explanatory 
Variable Cat. 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Season 4 31.4% 27.5% 30.2% 27.3% 31.2% 27.5% 31.1% 26.9% 32.2% 27.0% 

Material 
Type 2 60.5%   59.3%   59.9%   58.7%   58.6%   

Container 
Type 2 75.5%   76.0%   75.7%   75.0%   75.4%   

Shift 3 37.3% 34.6% 37.6% 33.9% 36.3% 34.8% 36.9% 34.7% 36.3% 35.0% 

Location 2 54.4%   54.3%   54.6%   53.3%   54.6%   

Contributing 
Action 3 53.4% 33.6% 54.7% 32.5% 54.0% 33.5% 53.8% 33.2% 54.8% 32.2% 

Causing 
Object 3 63.3% 20.8% 63.9% 20.8% 62.7% 20.8% 63.6% 20.4% 63.6% 20.6% 

Failure 
Mode 2 69.5%   70.2%   69.7%   70.1%   70.8%   

Failure Item-
Area 3 51.2% 32.5% 51.6% 32.5% 51.1% 32.8% 50.6% 33.2% 51.1% 33.0% 

Release 
Quantity 3 87.6% 9.5% 88.1% 9.1% 87.7% 9.8% 88.0% 9.3% 88.3% 9.1% 

Note: 'Next Most Likely' percentage not listed for binary variables. 

 
 
 
Another means of testing the quality of a network is through a MAP, or maximum aposteriori 

probability.( )224   A MAP is the probability of the most likely joint state of the explanatory 

variables given the outcome variable and is a feature available in GeNIe.  A MAP can be 

compared to the conditional probability as determined using record counts from a database.  The 

proximity of these probabilities is an indication of the quality of the network.  The MAP of the 

variables in stages two through four, which were highly influential to medium dollar loss, was 

compared to the conditional probability based on record counts from the database.  This 

comparison was made for each of the five networks and shows good agreement between these 

two probabilities, as shown in Table 58.   
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Table 58: MAP for Medium Dollar Loss vs. Database Probability Calculation. 

  Network 
  T1 T2 T3 T4 T5 
MAP - Medium Dollar Loss 16.1% 16.0% 16.5% 16.4% 16.6% 
Database Probability Calculation 16.5% 16.5% 16.9% 17.0% 17.0% 

 
 
 

4.1.4.3 Release Quantity Outcome – Testing and Quality   
The prediction accuracy for the other outcome variable, release quantity, was determined in the 

same fashion as that for dollar loss.  The accuracy for release quantity was actually better than 

the accuracy for dollar loss and is given in Table 59.  The most likely category matched the 

actual value approximately 87% of the time, versus approximately 70% in the case of dollar loss.  

When there was not a match on the most likely category, the next most likely category matched 

approximately 10% of the time, ranging from 10.0% to 10.9% in the test sets.  For each of the 

two types of accuracies, the percentages were very close in value across the five networks, likely 

due to the size of the training and test sets. 

 
Table 59: Prediction Accuracies for Release Quantity.

  Network 
  T1 T2 T3 T4 T5 
Most Likely = Actual 86.7% 86.8% 86.4% 86.9% 87.1% 
Next Most Likely = Actual 10.3% 10.3% 10.9% 10.1% 10.0% 

 

 
A test was likewise performed in the reverse direction to determine the ability to predict the 

parent variables of release quantity based on the category of this outcome variable.  Percentages 

for the most likely and next most likely category matches for each explanatory variable are given 

in .  Again, the accuracy was always better than random and notably better for some of 

the container-related variables, which included container type, contributing action, causing 

object and failure mode.

Table 60
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Table 60: Prediction Accuracies for Release Quantity Explanatory Variables. 

    Matches for Release Quantity by Network 
    T1 T2 T3 T4 T5 

Explanatory 
Variable Cat. 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Most 
Likely 

Next 
Most 
Likely 

Season 4 31.2% 27.4% 30.2% 27.1% 30.8% 27.5% 31.6% 26.5% 31.9% 26.9% 

Material 
Type 2 60.5%   59.3%   59.9%   58.7%   58.6%   

Container 
Type 2 75.5%   76.0%   75.7%   75.0%   75.4%   

3 36.8% 35.1% 35.0% 36.4% 36.0% 35.2% 36.1% Shift 35.6% 36.2% 35.1% 

Location 2 51.4%   51.4%   51.7%   51.2%   51.9%   

Contributing 
Action 52.6% 34.3% 53.8% 33.5% 3 53.9% 33.6% 54.0% 33.0% 54.4% 32.6% 

Causing 
Object 3 60.6% 22.1% 60.9% 22.1% 59.8% 22.8% 60.3% 22.1% 59.9% 23.2% 

Failure 
Mode 2 69.5%   70.2%   69.7%   70.1%   70.8%   

Failure Item-
Area 3 43.1% 40.6% 43.2% 41.0% 43.3% 41.2% 42.5% 41.3% 43.4% 40.7% 

 
 
 
As another test of the quality of the network, a MAP of the variables in stages two and three, 

which were most influential on medium release quantity, was compared to the conditional 

probability as determined using record counts from the database.  This comparison for each of 

the five networks is given in Table 61 and indicates good agreement. 

 
Table 61: MAP for Medium Release Quantity vs. Database Probability Calculation. 

  Network 
  T1 T2 T3 T4 T5 
MAP - Medium Release Quantity 20.3% 20.4% 20.5% 19.2% 20.4% 
Database Probability Calculation 20.4% 20.3% 20.5% 19.2% 20.5% 
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4.2 RESULTS AND INFERENCES OF THE BAYESIAN NETWORK FOR THE 

WORKED EXAMPLE 

Bayesian networks can be used in both a strategic and tactical manner.  Thus, they can be used to 

make long-range plans as well as to answer queries of a more reactive, short-term nature.  An 

overarching goal of this research was identification of the key variables in a large categorical 

database, which represented a strategic use of the Bayesian network.  The next two sub-sections 

discuss the strategic results related to dollar loss and release quantity and focus on the key 

variables and desirable changes identified for them.  The final sub-section discusses potential 

tactical uses of the Bayesian network by the Office of Hazardous Materials, such as “what-if” 

analyses surrounding exemption approvals and occurrence spikes.

4.2.1 Dollar Loss Outcome – Strategic Results and Inferences 

One of the most valuable types of information that can be determined from a Bayesian network 

developed using GeNIe is a ranking of the explanatory variables based on their information value 

relative to the outcome variable.  This can also be viewed as a measure of their influence on or 

the degree to which they reduce the uncertainty in the outcome variable.   The concept of 

value of information is one method of handling or studying decision models.  The explanatory 

variables were ranked according to their degree of influence on, or information value relative to, 

each category of dollar loss for each of the five networks.  Thus, five sets of inferences are 

presented and summarized in the following sections.  The five sets of ranking results for zero, 

small, and medium dollar loss are presented in  through 

( , )225 226

Table 62 Table 64, respectively.  In 

summary, causing object was the leading diagnostic variable for dollar loss, regardless of the loss 

category, followed by the failure item-area.  Thus, these two variables were found to be the most 

influential or informative variables relative to dollar loss.  In Table 62, which presents the 
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ranking results specific to zero dollar loss, causing object was the leading variable in 3/5 

networks and nearly tied as the leading variable in a fourth network (T5).  For zero loss, failure 

item-area was clearly the second leading variable, based on the results from 3/5 networks. 

 
Table 62: Ranking of ‘Zero’ Dollar Loss Parent Variables. 

  Zero Dollar Loss Category 

Rank T1 
Ranking 

Value T2 
Ranking 

Value T3 
Ranking 

Value T4 
Ranking 

Value T5 
Ranking 

Value 
1 CO 0.0972 CO 0.0957 CO 0.0968 FIA 0.0966 FIA 0.0936 
2 FIA 0.0939 FIA 0.0927 FIA 0.0956 CO 0.0951 CO 0.0935 
3 L 0.0084 L 0.0080 L 0.0083 L 0.0096 L 0.0083 
4 RQ 0.0062 RQ 0.0072 RQ 0.0064 RQ 0.0073 RQ 0.0067 
5 M 0.0035 CA 0.0033 CA 0.0031 M 0.0036 CA 0.0030 
6 CA 0.0029 M 0.0030 M 0.0030 CA 0.0031 M 0.0029 
7 FM 0.0015 FM 0.0017 FM 0.0017 FM 0.0017 FM 0.0010 
8 C 0.0006 C 0.0008 C 0.0009 C 0.0010 C 0.0008 
9 SH 0.0003 SH 0.0001 SH 0.0003 SE 0.0004 SH 0.0003 

10 SE 0.0002 SE 0.0001 SE 0.0002 SH 0.0002 SE 0.0003 

 
 
 
For both small and medium dollar loss, which are shown in Table 63 and Table 64, causing 

object was clearly the leading variable, followed by failure item-area, both based on 5/5 

networks. 

  
Table 63: Ranking of ‘Small’ Dollar Loss Parent Variables. 

  Small Dollar Loss Category 

Rank T1 
Ranking 

Value T2 
Ranking 

Value T3 
Ranking 

Value T4 
Ranking 

Value T5 
Ranking 

Value 
1 CO 0.0186 CO 0.0183 CO 0.0192 CO 0.0173 CO 0.0179 
2 FIA 0.0161 FIA 0.0158 FIA 0.0167 FIA 0.0164 FIA 0.0158 
3 RQ 0.0051 RQ 0.0057 RQ 0.0054 RQ 0.0065 RQ 0.0057 
4 CA 0.0030 CA 0.0030 CA 0.0027 CA 0.0028 CA 0.0031 
5 FM 0.0021 FM 0.0020 FM 0.0020 FM 0.0023 FM 0.0026 
6 SE 0.0021 SE 0.0014 SE 0.0016 SE 0.0020 SE 0.0017 
7 SH 0.0007 SH 0.0005 SH 0.0005 SH 0.0008 SH 0.0005 
8 M 0.0005 M 0.0003 M 0.0004 M 0.0004 M 0.0002 
9 C 0.0001 C <0.0001 C 0.0001 C <0.0001 C 0.0001 

10 L <0.0001 L <0.0001 L <0.0001 L <0.0001 L <0.0001 
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Table 64: Ranking of ‘Medium’ Dollar Loss Parent Variables. 

  Medium Dollar Loss Category 

Rank T1 
Ranking 

Value T2 
Ranking 

Value T3 
Ranking 

Value T4 
Ranking 

Value T5 
Ranking 

Value 
1 CO 0.0393 CO 0.0385 CO 0.0413 CO 0.0390 CO 0.0375 
2 FIA 0.0307 FIA 0.0306 FIA 0.0330 FIA 0.0306 FIA 0.0314 
3 CA 0.0186 CA 0.0175 CA 0.0195 CA 0.0190 CA 0.0186 
4 FM 0.0172 FM 0.0172 FM 0.0176 FM 0.0182 FM 0.0171 
5 L 0.0153 L 0.0151 L 0.0152 L 0.0142 L 0.0155 
6 RQ 0.0049 RQ 0.0061 RQ 0.0050 RQ 0.0061 RQ 0.0062 
7 SE 0.0045 SE 0.0050 SE 0.0046 SE 0.0053 SE 0.0043 
8 SH 0.0029 SH 0.0028 C 0.0037 SH 0.0039 SH 0.0032 
9 C 0.0028 C 0.0027 SH 0.0033 C 0.0028 C 0.0029 

10 M  0.0013 M 0.0017 M 0.0014 M 0.0020 M 0.0018 

 
 
 
Therefore, based on these results, causing object and item-area should be the top focuses of 

policy or operational change initiatives.  In general, the container failure variables occupied 

upper positions in the rankings for dollar loss, indicating the value of this type of information.   

      In addition, GeNIe can be used to determine desirable changes in an explanatory variable in 

order to best impact an outcome variable.  For example, using GeNIe, it was determined that a 

reduction in incidents involving the floor and water/liquid as the causing object should be 

targeted, based on all five networks.  This was determined based on changes in the probability 

distribution of dollar loss given the particular category of causing object.  For example, using the 

first network (T1) to illustrate this method, setting the floor and water category of causing object 

as evidence led to an increase in the occurrence of both small and medium dollar loss and a 

decrease in zero loss relative to no evidence, as shown in Table 65.  Thus, the floor and water 

causing object had an undesirable effect on dollar loss and should be the target of reduction 

efforts to best impact dollar loss.  The “none” and “other” categories of causing object generally 

produced the opposite effect on dollar loss.   
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Table 65: Effects of Causing Object on Dollar Loss. (T1 network) 

Causing Object Dollar Loss 
  ZERO SMALL MEDIUM 
no evidence 0.167 0.718 0.116 
       

Floor and water/ 
liquid 0.083 0.770 0.147 

None 0.199 0.682 0.119 

Other 0.364 0.607 0.029 

 
 
 
This method of examining the probabilities to select the preferred alternative is based on the 

concept of stochastic dominance.  Using stochastic dominance, the dominating alternative is the 

one more likely to lead to a particular outcome or consequence.  It is in effect the better gamble.  

Stochastic dominance is a means to formally screen various alternatives and eliminate choices 

based on the pattern of the probabilities.( )227   Based on the T1 network as shown in Table 65, the 

best option or policy for a reduction in dollar loss was the floor and water/liquid combination 

because it increased the probability for a medium loss the most relative to no evidence (from 

0.116 to 0.147).  In addition, it also increased the probability for a small loss from 0.718 to 

0.770, while the other categories decreased this probability.  Although this analysis for causing 

object was fairly straightforward, more than one policy change initiative may be desirable for a 

variable, depending on the category of dollar loss targeted for reduction.  For, although the 

medium category has a higher dollar amount associated with it, it occurs less frequently than the 

small category (12% versus 72%, respectively).  Thus, targeting the small category may impact 

more incidents.   

      A summary of recommended policy changes for each variable based on all five networks 

using this same type of analysis is given in Table 66.  A few of the recommendations are based 

on “best of five” network outcomes where necessary.  For example, this table shows that 
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incidents involving the floor and water category should be the focus of reduction efforts in order 

to best impact dollar loss.  For failure item-area, there are two courses of action, depending on 

the category of dollar loss targeted.  Specifically, if small loss is to be reduced, the best category 

to target is basic packaging material on the bottom of the container.  However, to best impact 

medium dollar loss, either basic packaging material on the bottom or closures on top should be 

targeted.  When evaluated from an overall perspective, the best category of failure item-area to 

target for reduction is basic packaging material on the bottom since it increases the probability of 

both a small and medium dollar loss and (undesirably) decreases the probability of zero loss the 

most.  The five sets of probability distributions for dollar loss on which these recommended 

policy changes are based are provided in Table 81 through Table 85 in Appendix C.   

 
Table 66: Recommended Policy Changes for Impacting Dollar Loss. 

Explanatory 
Variable Targeted Categories 

Causing Object To best impact small and medium loss, target floor and water/liquid. 
Overall best choice is floor and water/liquid since it also decreases the probability of zero loss. 

Failure Item-Area 

To best impact small loss, target basic package material on bottom. 
To best impact medium loss, target closure on top or basic package material on bottom. 
Overall best choice is basic package material on bottom since it increases probability of small 
and medium loss and decreases probability of zero loss the most.    

Contributing 
Action 

To best impact small loss, target loose fitting or valve or other. 
To best impact medium loss, target improper loading and dropped. 
Overall best choice is loose fitting or valve since it increases probability of small and medium loss 
and decreases probability of zero loss the most. 

Failure Mode To best impact small loss, target other. 
To best impact medium loss, target punctured and crushed. 

Location To best impact medium loss, target suburban/ commercial/ eastern. 
There is limited information for small loss. 

Release Quantity To best impact small loss, target small release quantity. 
To best impact medium loss, target medium release quantity. 

Season To best impact small loss, target summer.   
To best impact medium loss, target fall. 
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Table 66 (continued). 

Container Type 

To best impact medium loss, target bottle. 
There is limited information for small loss. 
There is limited information provided by fiber box. 
Overall best choice is bottle since it also decreases the probability of zero loss. 

Shift To best impact small loss, target twilight. 
To best impact medium loss, target day.   

Material Type To best impact small and medium loss, target corrosives. 
Overall best choice is corrosives since it also decreases the probability of zero loss. 

 
 
 
4.2.2 Release Quantity Outcome – Strategic Results and Inferences 

As with the dollar loss outcome, the container failure variables were the most influential 

variables relative to release quantity based on the entropy-based ranking procedure in GeNIe.  

However, for release quantity, the leading container failure variable varied by category of release 

quantity.  For example, as shown in , causing object (CO) was the most influential 

variable relative to zero release quantity, followed by failure item-area (FIA), both based on 5/5 

networks.  

Table 67

 
Table 67: Ranking of ‘Zero’ Release Quantity Parent Variables. 

  Zero Release Quantity Category 

Rank T1 
Ranking 

Value T2 
Ranking 

Value T3 
Ranking 

Value T4 
Ranking 

Value T5 
Ranking 

Value 
1 CO 0.0250 CO 0.0256 CO 0.0277 CO 0.0259 CO 0.0276 
2 FIA 0.0112 FIA 0.0120 FIA 0.0132 FIA 0.0110 FIA 0.0123 
3 CA 0.0042 CA 0.0065 CA 0.0050 CA 0.0053 CA 0.0071 
4 FM 0.0030 FM 0.0039 FM 0.0039 FM 0.0043 FM 0.0044 
5 SE 0.0020 SE 0.0024 SE 0.0027 L 0.0015 SE 0.0021 
6 L 0.0016 L 0.0013 L 0.0013 SE 0.0009 L 0.0017 
7 C 0.0009 C 0.0006 C 0.0005 M 0.0001 SH 0.0003 
8 SH <0.0001 SH <0.0001 SH 0.0005 SH <0.0001 C 0.0002 
9 M <0.0001 M <0.0001 M 0.0001 C <0.0001 M <0.0001 
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However, as shown in Table 68, failure mode (FM) was the leading variable in 3/5 networks and 

tied as the leading variable in another network (T1) for small release quantity.  Contributing 

action (CA) was a close second to failure mode based on 3/5 networks. 

 
Table 68: Ranking of ‘Small’ Release Quantity Parent Variables. 

  Small Release Quantity Category 

Rank T1 
Ranking 

Value T2 
Ranking 

Value T3 
Ranking 

Value T4 
Ranking 

Value T5 
Ranking 

Value 
1 CA 0.0093 FM 0.0092 FM 0.0090 FIA 0.0083 FM 0.0085 
2 FM 0.0093 CA 0.0089 CA 0.0083 FM 0.0081 CA 0.0080 
3 FIA 0.0077 FIA 0.0084 FIA 0.0078 CA 0.0081 FIA 0.0070 
4 CO 0.0015 CO 0.0016 CO 0.0021 CO 0.0017 CO 0.0016 
5 C 0.0010 C 0.0010 C 0.0008 C 0.0013 C 0.0010 
6 L 0.0009 L 0.0009 L 0.0007 L 0.0008 L 0.0006 
7 M 0.0002 SH 0.0003 SH 0.0002 M 0.0003 SE 0.0003 
8 SH 0.0002 SE 0.0002 M 0.0002 SH 0.0002 M 0.0002 
9 SE 0.0002 M 0.0002 SE 0.0002 SE <0.0001 SH 0.0002 

 
 
 
Finally, for medium release quantity, contributing action (CA) was the most influential, 

informative variable, based on 4 of the 5 networks.  Failure mode (FM) was the second most 

influential variable for medium release quantity based on 4/5 networks, as shown in Table 69.  

Thus, based on the results in Table 68 and Table 69, contributing action and failure mode took 

on more influential roles for small and medium release quantity versus small and medium dollar 

loss.  In contrast, causing object and failure item-area were more influential to dollar loss than to 

release quantity.  

 
Table 69: Ranking of ‘Medium’ Release Quantity Parent Variables. 

  Medium Release Quantity Category 

Rank T1 
Ranking 

Value T2 
Ranking 

Value T3 
Ranking 

Value T4 
Ranking 

Value T5 
Ranking 

Value 
1 CA 0.0194 CA 0.0202 FM 0.0188 CA 0.0176 CA 0.0188 
2 FM 0.0182 FM 0.0185 CA 0.0186 FM 0.0171 FM 0.0179 
3 FIA 0.0068 FIA 0.0075 FIA 0.0064 FIA 0.0068 FIA 0.0060 
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Table 69 (continued). 
4 CO 0.0051 CO 0.0058 CO 0.0058 CO 0.0050 CO 0.0059 
5 L 0.0027 L 0.0025 L 0.0021 L 0.0024 L 0.0021 
6 C 0.0025 C 0.0024 C 0.0020 C 0.0022 C 0.0018 
7 SE 0.0002 SH 0.0003 SE 0.0002 M 0.0003 M 0.0002 
8 M 0.0002 M 0.0002 M 0.0002 SH 0.0002 SE 0.0002 
9 SH 0.0001 SE 0.0002 SH 0.0001 SE 0.0001 SH 0.0001 

 
 
 
In order to demonstrate the analysis of the recommended policy changes for release quantity, 

contributing action will be used as an example.  Based on the ranking procedure, this variable 

should be targeted in order to best impact medium release quantity.  However, the category of 

contributing action to pursue depends on the particular category of release quantity targeted for 

reduction.  For, although a medium release involves a greater quantity of material, it occurs less 

frequently than a small release (9.4% versus 87.9%, respectively).  Since the improper loading 

and dropped category increases the probability of a medium release, as shown in Table 70, it 

should be the target of reduction efforts.  However, since a loose fitting or valve increases the 

probability of a small release the most (0.911 versus 0.895 for “other”), it should be pursued if 

the goal is to best impact a small release quantity. 

 
Table 70: Effects of Contributing Action on Release Quantity. (T1 network) 

Contributing Action Release Quantity 
  ZERO SMALL MEDIUM 
no evidence 0.028 0.879 0.094 
       

Improper Loading 
and Dropped 0.020 0.841 0.139 

Other 0.031 0.895 0.075 

Loose Fitting or 
Valve 0.033 0.911 0.056 

 
 
 
The recommended policy changes for each parent variable of release quantity based on this same 

type of analysis and all five networks are summarized in Table 72.  Note that for material type, 
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shift, and season, there are no recommended policy changes due to the limited information these 

variables provide.  This is due to the small changes in the probability distribution of release 

quantity when evidence is introduced on these variables.  Refer to Table 71 for an illustration of 

this using the midnight shift as an example.  The distribution of release quantity given the 

midnight shift is nearly the same as the distribution given “no evidence,” as seen by comparing 

these two rows in Table 71.  The same is true given the day and twilight shifts. 

 
Table 71: Effects of Shift on Release Quantity. (T1 network) 

.Shift Release Quantity 
  ZERO SMALL MEDIUM 
no evidence 0.028 0.879 0.094 
       

Midnight 0.028 0.879 0.093 
Day 0.027 0.883 0.091 
Twilight 0.028 0.874 0.098 

 
 
 
The supporting probability distributions for the recommended policy changes in Table 72 are 

located in Table 86 through Table 90 in Appendix C.   

 
Table 72: Recommended Policy Changes for Impacting Release Quantity. 

Explanatory 
Variable Targeted Categories 

Contributing 
Action 

To best impact small quantity, target loose fitting or valve.   
To best impact medium quantity, target improper loading and dropped. 

Failure Item-Area To best impact small quantity, target closure on top. 
To best impact medium quantity, target basic package material on top.   

Failure Mode To best impact small quantity, target other. 
To best impact medium quantity, target punctured and crushed.   

Causing Object To best impact small quantity, target none.   
To best impact medium quantity, target floor and water/liquid.   

Container Type To best impact small quantity, target bottle. 
There is limited information provided by fiber box. 

Location There is limited information for small quantity. 
To best impact medium quantity, target suburban/ commercial/ eastern. 
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Table 72 (continued). 
Material Type There is limited information provided by material type. 
Shift There is limited information provided by shift. 
Season There is limited information provided by season. 

 
 
 
4.2.3 Potential Tactical Uses of the Bayesian Network for Decision Making 

An important use of a Bayesian network is tactical, or operational, decision making based on 

either predictive or diagnostic inference.  Predictive inference can take the form of various 

“what-if” analyses, in which the effects of one or more explanatory variables on the conditional 

probability distributions of the outcome variables are determined.  A potential use of predictive 

“what-if” analysis at the Office of Hazardous Materials (OHM) is for exemption, or special 

permit, approvals.  In this decision process, the OHM must evaluate individual requests for 

exemptions from the hazardous materials transportation regulations.  Conversely, diagnostic 

inference may involve “what-if” analysis in the opposite direction from effects to explanations, 

for potential use in risk reduction analysis or investigation of occurrence spikes.  In addition, 

MAP’s, or maximum aposteriori probabilities, may be used diagnostically to gain a basic 

understanding of an occurrence spike or accident scenario.  A MAP characterizes an accident 

scenario by identifying the most likely joint state or combination of the explanatory variables 

given the outcome variable.  These tactical uses of the Bayesian network by the OHM will be 

discussed further in the next sections. 

4.2.3.1 What If Analysis 
As a first step in starting a tactical analysis program, the Office of Hazardous Materials can use 

the Bayesian network developed in this research to obtain an understanding of the relationships 

between the variables in a hazardous materials unloading release, based on their top categories.  

Based on the face validation study, the OHM does not have a complete understanding of the 
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relationships between the dependent and independent variables in an unloading release.  A basic 

understanding of the relationships can be obtained by performing various “what-if” analyses in 

both a predictive and diagnostic manner.  Predictive analysis involves setting the value of one or 

more known, or observed, explanatory variables as evidence in the network.  The effects on the 

conditional probability distributions of the remaining, or unknown, downstream variables are 

determined by updating, or evaluating, the network.  For example, the OHM may wish to 

investigate the impact of time of day on hazmat releases during unloading.  Specifically, if the 

time of day for unloading flammable liquids is changed from the midnight to the daytime shift, a 

predictive “what-if” analysis can identify the impact on the quantity released and the monetary 

damages.       

      Using diagnostic “what if” analysis, a Bayesian network can be used to determine the 

distributions of the explanatory variables to identify the categories that are most or least likely 

given the outcome.  For example, as part of a risk reduction study, the OHM may wish to 

analyze the ideal situation of zero quantity released and compare it to a medium-quantity release 

to understand the factors involved.  Specifically, the OHM may wish to evaluate a zero-release 

versus medium-release situation in which the bottom of the basic packaging material failed, in 

order to identify possible risk reduction alternatives.  To do this, the known variables, namely 

zero release quantity and the bottom of basic packaging material, are set as evidence, and the 

values of the remaining variables are updated as the explanations.  This can be compared to a 

medium-quantity release to understand the differences.  To make this comparison, evidence is set 

of a medium-quantity release to determine any changes in the distribution of the explanatory 

factors. 
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Exemption/Special Permit Analysis  The use of the Bayesian network model to analyze 

exemptions, or special permits, at the OHM is a potential application of predictive “what-if” 

analysis.  For example, suppose an exemption is being considered for the relocation of a lab with 

infectious substances from Rockville, MD to Fairfax, VA, which are suburban, commercial 

locations in the greater Washington, DC area.  An exemption is likely necessary in this case due 

to the nature of the material being transported.  Within an exemption, certain variables may be 

fixed, such as material type or location.  In this scenario, the material type and locations are 

fixed.  However, there are certain variables that may be set or prescribed by the OHM as part of 

the exemption granting process in order to minimize the possibility of an undesirable outcome.  

For example, in the previous scenario, the time of day or the season of the year for the relocation 

could be prescribed by the OHM in the exemption that is granted.  Also, the type of container or 

packaging may be a point of negotiation or additional control for the OHM.( )228   Given these 

non-fixed variables, the OHM can use the Bayesian network and “what if” analysis to prescribe 

such variables to minimize the probability of the consequences.  For example, if the lab were 

relocated during the midnight shift in the summer months versus the daytime shift in the winter 

months, how would the consequences be impacted?  Also, what is the impact on the 

consequences of various containers for transporting infectious substances?  These questions can 

be answered by setting the fixed as well as the prescribed variables as evidence and updating the 

probabilities of the unknown variables, including the consequences.  

      However, in its present form, the Bayesian network model is specific to unloading incidents 

and the top material and container types.  These include corrosives and flammable liquids, and 

fiber boxes and bottles, respectively.  In addition, people-related outcomes are not considered by 

the present model, although this is the biggest concern when granting exemptions.  Thus, 
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considering the lab relocation scenario above, the present model could not be made specific to 

infectious substances or the types of containers often used to transport infectious substances, 

such as plastic bags.  Exemptions can get very specific in terms of the factors involved.  Given 

this constraint, the existing Bayesian network model could still be used during the exemption 

approval process to gain very general insight into the occurrence of hazmat incidents.  For 

example, how do daytime, suburban incidents impact the monetary damages in unloading 

accidents and possibly other scenarios?  Additionally, assume the OHM has a concern about 

potential inadequate handling of containers.  Using the existing model, the impact of dropping an 

improperly-loaded container on monetary loss can be determined and applied in a general sense 

to other situations.  However, taking a different approach, the present model could be expanded, 

or new models developed, in order to provide a decision tool that specifically considers certain 

variables or categories, such as the infectious material type, infectious-material containers, or 

human-related consequences.  

Analysis of Occurrence Spikes  In addition to performing risk reduction analysis, diagnostic 

“what-if” analysis of a Bayesian network can be used to investigate occurrence spikes reported to 

the OHM.  Increases in the occurrence of particular hazmat releases are often reported to the 

OHM from the field.  An example of an occurrence spike might be many loose closures on 

bottles during flight.  The OHM currently investigates such reports by using the HMIRS to 

determine similar reported incidents and the associated shippers for direct communication with 

them.( )229   To illustrate the use of “what-if” analysis for occurrence spikes, assume there is a 

sharp increase in the occurrence of medium-quantity releases in which the bottom of the basic 

package material failed.  The OHM can begin its investigation by getting a basic understanding 

of the distributions of the unknown factors associated with the occurrence spike using “what-if” 
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analysis.  Specifically, the known variables, namely medium release quantity and bottom of the 

packaging material, are set as evidence to obtain the distributions of the unknown variables.  The 

degree of prevalence of various categories of the unknown variables provides insight into the 

accident situation.  These results may be compared to those for a zero-quantity release for 

possible additional insight.  If additional information or explanation becomes known about the 

occurrence spike, it can be set as evidence to determine the impact on the remaining variables.  

It’s possible that additional information may make certain other explanatory variables more or 

less likely if the common outcome variable is known.  Thus, known explanatory variables may 

“explain away” certain unknown explanatory variables, thereby making them more or less likely, 

given knowledge on a common outcome.  In the example of loose closures during flight, the 

OHM may find it useful to know most likely categories for variables such as time of day, season 

of the year, or material type, which can be obtained using diagnostic style “what-if” analysis. 

      The OHM may wish to obtain an overall characterization of an occurrence spike by running a 

MAP.  Using a MAP, the OHM can determine the most likely combination of variables 

surrounding the occurrence spike.  For example, which combination of unknown variables is 

most likely given failure of the bottom of the basic packaging material and a medium release of 

material?  A MAP serves to tell a story of the events surrounding an accident.  It characterizes an 

accident and answers the question, “What does the accident look like?”  As a demonstrated 

example of a MAP, a MAP of the container failure variables in stages two through four, which 

were most influential to medium dollar loss, was run.  A MAP can be run using a subset of the 

explanatory variables, thereby increasing the combination likelihood and potential usefulness 

relative to using many explanatory variables.( )230   In the case of a release in which medium dollar 

loss occurred, it’s most likely that the container and its contents were improperly loaded and 
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dropped, thereby impacting the ground and encountering water or other liquid.  In addition, the 

container was consequently punctured and crushed, leading to failure of the basic package 

material on the bottom of the container and the release of a small amount of material to the 

environment.  This most likely scenario seems plausible.  In the same way, MAPs can be used to 

gain insight into occurrence spikes.  The MAPs for the variables in stages two through four given 

medium dollar loss across the five networks are summarized in Table 73.  Each MAP had an 

occurrence probability of approximately 16.5%, and the categories of the MAPs were the same 

across the five networks.   

 
Table 73: MAP of Most Influential Variables on Medium Dollar Loss. 

  MAP by Network 
Explanatory 

Variable T1 T2 T3 T4 T5 

CO 
Floor and 

water/liquid 
Floor and 

water/liquid 
Floor and 

water/liquid 
Floor and 

water/liquid 
Floor and 

water/liquid 

CA 
Improper loading 

and dropped 
Improper loading 

and dropped 
Improper loading 

and dropped 
Improper loading 

and dropped 
Improper loading 

and dropped 

FIA 

Basic package 
material on 

bottom 

Basic package 
material on 

bottom 

Basic package 
material on 

bottom 

Basic package 
material on 

bottom 

Basic package 
material on 

bottom 

FM 
Punctured and 

crushed 
Punctured and 

crushed 
Punctured and 

crushed 
Punctured and 

crushed 
Punctured and 

crushed 
RQ Small Small Small Small Small 

 
 
 

MAPs for medium release quantity were also run to characterize the worst case in terms of 

quantity released.  The results are similar to those for dollar loss and are given in Table 74.  

Based on 4/5 of the networks, a medium-quantity release is most likely characterized by an 

improperly-loaded and dropped container and contents that impact the ground and encounter 

water.  However, while the container is most likely punctured and crushed, it’s the basic package  
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material on top of the container that fails in the case of medium release quantity.  The Office of 

Hazardous Materials may find it useful to compare MAPs for insight into various events or 

problems, as was done here for dollar loss versus release quantity. 

 
Table 74: MAP of Most Influential Variables on Medium Release Quantity. 

  MAP by Network 
Explanatory 

Variable T1 T2 T3 T4 T5 

CO 
Floor and 

water/liquid 
Floor and 

water/liquid 
Floor and 

water/liquid 
Floor and 

water/liquid 
Floor and 

water/liquid 

CA 
Improper loading 

and dropped 
Improper loading 

and dropped 
Improper loading 

and dropped other 
Improper loading 

and dropped 

FIA 
Basic package 
material on top 

Basic package 
material on top 

Basic package 
material on top 

Basic package 
material on 

bottom 
Basic package 
material on top 

FM 
Punctured and 

crushed 
Punctured and 

crushed 
Punctured and 

crushed other 
Punctured and 

crushed 

 
 
 
Another decision support query useful for occurrence spikes is the determination of the most 

influential variables given the occurrence of another variable.  For example, suppose a risk 

assessment engineer is focusing on incidents involving the “floor and water/liquid” combination, 

perhaps because there has been a recent increase in this particular causing object.  Given that an 

incident has the “floor and water” combination as its causing object, what variable should the 

engineer next pursue to best impact medium dollar loss?  This can be determined in GeNIe by 

setting the “floor and water” combination as evidence in the Diagnostics module and then 

updating the rankings of the remaining variables.  In this example, the engineer should focus on 

the contributing action that led to the failure, based on its being the next most influential variable 

in 5/5 networks.  This query involved a conditional analysis between two variables.  Using 

GeNIe, it is also possible to determine the optimal joint combination of two or more parent  
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variables for the occurrence of a particular category of dollar loss.  This can be done in GeNIe by 

converting the Bayesian network to an influence diagram and assigning utilities to the categories 

of dollar loss.( )231

 

4.3 VALIDATION 

Models can be validated in various ways to assess their accuracy and quality.  Two forms of 

validation were performed to assess the hazardous materials release models developed in this 

research.  First, five-fold cross validation was performed on the Bayesian network models, as 

discussed previously in section 4.1.4.1, yielding very similar accuracies across the five networks 

for predicting dollar loss and release quantity.  In cross validating, a portion of the available data 

was retained for testing, and results predicted by the model were compared to actual values on 

the test records.  Tests were conducted in both a forward and reverse direction, meaning that 

accuracy was assessed relative to both the outcome and explanatory variables.  For the network 

in which dollar loss was the outcome variable, the accuracies associated with predicting the most 

likely and next most likely categories of dollar loss were approximately 70% and 23%, 

respectively, across the five networks, as discussed in 4.1.4.2.  For the network in which release 

quantity was the outcome variable, the respective accuracies were approximately 87% and 10% 

across the five networks.  Although there is not a standard for assessing prediction accuracies, 

these results appear reasonable given the possibility that other important variables were not part 

of the model. 

      Face validation is another method for assessing a model.  With face validation, the 

reasonableness of the model is determined, along with the presence of any obvious flaws.  In 

addition, inputs and outputs are also evaluated.  A face validation study of the base structure of 
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the Bayesian network and its results was conducted with five engineers and scientists at the 

DoT’s Office of Hazardous Materials in August 2005.  The base structure included the temporal 

layout of the simplified variables and the five stages of a hazmat release.  Each of the five 

members of the panel, who were familiar with hazmat transportation and the HMIRS, assessed 

the base structure as “reasonable.”  The entire association structure of the hazmat release 

network could not be assessed by this group due to its size.  As a possible caution concerning the 

face validation, the panelists did not have an in depth knowledge of the HMIRS consistent with 

performing exploratory analyses of the data.  Rather, the panelists’ experiences with the data 

have been limited to reactive use in support of day-to-day operations and investigation of 

specific problems and issues.   

      A series of questions was posed to this panel to compare their knowledge with various results 

of the model.  Although not all associations could be evaluated, the panelists were asked to 

identify the direct associations in stage one.  Their predictions versus the model results for stage 

one were encouraging.  All five panelists identified the material type to container type direct 

association, based on regulations surrounding usage of certain containers for certain materials.  

Three of the five panelists identified the season to material type association, based on their belief 

of seasonal usage of various materials.  None of the panelists identified the shift to location 

association but were subsequently able to offer plausible explanations for this association. 

      The panelists were also asked to rank the explanatory variables based on their influence on 

both release quantity and dollar loss.  Their predictions were compared to the results of the 

entropy-based ranking procedure in GeNIe as a means of face validating the results.  A grid of 

the results showing the amount of agreement between the panelists’ ranking and the model’s 

ranking of each explanatory variable was compiled, as shown in Table 75 and Table 76.  The 
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model’s ranking was determined by considering the ranking results of each of the five networks, 

using “best of five” where necessary.  In Table 75, the explanatory variables for release quantity 

are listed on the left side, in descending order of information value as ranked by GeNIe.  The 

numbers across the top are used to record the panelists’ ranking of a variable.  Each cell contains 

the number of panelists having the particular response.  For example, if two panelists ranked CA 

as third in terms of influence, a “2” would be entered in column 3 in the row for CA.  Agreement 

between the panelists and the model is indicated by a large number of responses in the shaded 

area.  This area was arbitrarily defined as each cell on the diagonal, which represents an exact 

match between panelist and model, plus one cell to the left and to the right.  For medium release 

quantity, the number of total responses that fell within the shaded area was 19/45, or 42.2%, as 

illustrated in Table 75.  

 
Table 75: Model vs. DoT Panelist Ranking of Variables for Medium Release Quantity.

Number of Responses 
      DoT Ranking 

Model Ranking  1 2 3 4 5 6 7 8 9 
1 CA     1 1 2   1       
2 FM   2   2   1         
3 FIA     1 2     2       
4 CO         2 2 1       
5 L               5     
6 C   3 1   1           
7 SE           1   1 1 2 
8 M     2     1 1   1   
9 SH               1 2 2 

 
 
 
For medium dollar loss, the agreement between the model and the panelists was less, with 13 out 

of 50 (26%) responses in the shaded area, as shown in Table 76.  In examining this table, the 

panelists’ predictions for dollar loss tended to be opposite the model’s predictions, as evidenced 
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in the large number of responses in the top right and bottom left corners of the grid in Table 76.  

Thus, the validation results for release quantity were more encouraging than those for dollar loss. 

 
Table 76: Model vs. DoT Panelist Ranking of Variables for Medium Dollar Loss. 

   Number of Responses 
      DoT Ranking 

Model Ranking   1 2 3 4 5 6 7 8 9 10 
1 CO             3   1 1   
2 FIA         1     3 1     
3 CA       1 1 1       1 1 
4 FM       4   1           
5 L             1 2 2     
6 RQ   3 2                 
7 SE             1   1 1 2 
8 SH         1         3 1 
9 C     1   2 2           

10 M   2 2     1           

    
 
 
In the face validation study, the panelists predicted different leading variables for dollar loss 

versus release quantity.  For example, although the model ranked the container failure variables 

as most influential to both release quantity and dollar loss, the panelists ranked the container 

failure variables as more influential to release quantity than to dollar loss.  This is shown by the 

greater number of entries in the upper left portion of Table 75 versus Table 76.  Based on this, 

the panelists thought the events associated with container’s failure were more important to the 

release quantity than to the monetary loss.  In addition, GeNIe ranked material type M as one of 

the least influential variables to both release quantity and dollar loss.  However, the panelists 

ranked material type as more influential to dollar loss than to release quantity.  This is shown by 

the additional number of #1 and #2 panelist rankings for material type in Table 76 versus Table 

75.  In terms of the most influential variables, the panelists thought that release quantity and 

material type were most influential to medium dollar loss, as shown by the number of entries in 
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columns 1 and 2 in Table 76.  This appears reasonable given that their frame of reference likely 

begins with the particular hazardous “material.”  However, the panelists thought that container 

type was most influential to medium release quantity, as given by the four entries in columns 1 

and 2 in Table 75. 

      In addition to face validating the results of the ranking procedure, the panelists were asked to 

face validate MAP results for the two most influential explanatory variables for release quantity 

and dollar loss, as shown in Table 77.  For medium dollar loss, the panelists were asked to 

identify the most likely combination of causing object CO and failure item-area FIA.  Three of 

the five panelists predicted the combination identified by 5/5 networks of floor and water and 

basic package material on the bottom of the container.  Likewise, for medium release quantity, 

four of the five panelists predicted 1) improperly loaded and dropped and 2) punctured and 

crushed as the most likely combination of its top variables contributing action CA and failure 

mode FM, as identified by 5/5 networks.  Thus, the majority of panelists predicted the most 

likely combinations of the top variables for dollar loss and release quantity.  The survey 

questionnaire used for the face validation is shown in Figure 23 in Appendix D. 

 
Table 77: Model vs. DoT Panelist MAP Results. 

  Most Influential   

Outcome 
Explanatory 

Variables Categories 
Panelists 
Predicted 

1. CO Floor and water Medium 
Dollar 
Loss 

2. FIA 

Basic package 
material on 

bottom 

3/5 

1. CA 

Improperly 
loaded and 

dropped 
Medium 
Release 
Quantity 

2. FM 
Punctured and 

crushed 

4/5 
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As an overall indication of face validity, the panelists felt this research should be considered for 

application at the DoT.  They felt the graphical aspect of the model was helpful in problem 

visualization. 
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5.0 CONCLUSIONS 

 

Using a methodology for categorical variables involving simplification, measurement of 

associations, and construction of a Bayesian network, a large database was analyzed to build a 

data-congruent decision model of an engineering policy problem.  The methodology employs a 

combination of existing categorical data analysis techniques to develop the qualitative structure 

of the decision model.  Specifically, new, simplifying variables were developed using latent class 

analysis, and measurement of associations was accomplished through loglinear modeling, 

together forming a three step modeling approach.   

 

5.1 CONTRIBUTION - METHODOLOGY 

This methodology for analyzing a large categorical database was developed as part of an initial 

data modeling effort using a database within an unexplored area (hazardous materials releases).  

It is a methodology that can be used to “get one’s hands around” a complex database for which 

few or no modeling efforts have taken place in the past.  With this methodology, data-driven 

analysis techniques can be combined with subject matter knowledge to enhance the usual 

decision modeling process.  The first stage of the methodology focuses the modeler on the top 

categories and variables as well as generalized versions of the variables, which is necessary for 

developing an initial, or first-generation, data model of an event or system.  In addition, after 

choosing top categories and variables by way of Pareto-style analysis and generalizing variables 
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where possible, new simplifying variables are created using the data modeling technique of latent 

class analysis.  Thus, the simplification consists of a combination of category elimination, which 

may be somewhat-subjective and benefit from subject matter expertise, and data modeling, 

which is very conducive to a first time analysis of the variables.   

      Similarly, the second stage of the methodology is also very conducive to an initial modeling 

effort within a subject area.  It represents an enhancement to more-traditional methods for 

building the relationship structure of a decision model.  It allows relationships to be determined 

based on data-driven associations as well as expert opinion where available.  It supports the 

modeling effort in the absence of prior theory or empirical analysis of the database or subject 

area.  The third stage of the methodology entails the construction of a traditional decision model 

consisting of only random variables.  The decision model, or Bayesian network, allows the 

combination of probability theory and information theory in identifying the most influential 

variables and desirable changes for them relative to a chosen outcome variable.  In addition to 

such strategic diagnostic analysis, more tactical-style analyses can also be made using the 

decision model, including “what-if” and sensitivity analysis.  Sensitivity analysis is useful in 

cases where the conditional probabilities are based on expert opinion or perhaps a smaller 

amount of data.  The tactical analysis can be either predictive or diagnostic, including “what-if” 

analysis for decisions such as exemption approvals.  Tactical analysis may also include the 

creation of MAPs, or maximum aposteriori probabilities, for a basic understanding of accident 

scenarios and situations, such as spikes in the occurrence of certain events.   

      This methodology may be a good candidate for application within an area such as Homeland 

Security given its relative newness.  It’s possible to envision that certain categorical variables, 

such as gender or country of origin, may influence a suspicion or threat level, which eventually 
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may impact human health or life and agriculture.  In addition, another area conducive to the 

development of system or network models based on a large amount of categorical data is the 

health arena.  For example, the National Center for Health Statistics (NCHS) collects interrelated 

data such as gender, parts of the body, health conditions, and reasons for avoiding medical care 

or testing, which influence a person’s health.  Although the NCHS conducts a large amount of 

empirical research, network or systems-style models are not commonly or formally used there 

currently.  Data-driven Bayesian networks have not penetrated their approach to proactive 

decision analysis, although there is interest in them. 

      In conclusion, the methodology developed as part of this dissertation is a general, flexible 

approach that can be applied to areas having large amounts of categorical data.  It is focused on 

data-driven development and therefore may be particularly useful for less-explored areas.  It can 

be supported and enhanced by the amount of subject matter knowledge desired. 

 

5.2 CONTRIBUTION - HAZMAT RELEASE LITERATURE 

Using the decision model, the most influential variables relative to dollar loss and release 

quantity were determined for a hazmat unloading accident.  For both of these outcome variables, 

the most influential variables were the container failure variables.  Specifically, for a small and 

medium release quantity, the top three influential variables were the action contributing to the 

failure of the container (CA), the item-area that failed (FIA), and the mode of failure (FM).  For a 

medium dollar loss, the leading variables in order of influence were as follows: object causing 

the failure (CO), the item-area (FIA), and the action contributing to the failure (CA).  For small 

dollar loss, release quantity (RQ) was third in terms of influence, versus contributing action (CA) 

for medium dollar loss.  In addition, the recommended operational or policy changes for each 
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explanatory variable to decrease the probability of release quantity and dollar loss were 

determined.  They were determined based on the effects of each category of the explanatory 

variable on the probability distributions of the outcome variable using the decision model.  For 

example, for causing object, the best change to pursue to decrease the probability for dollar loss 

is a reduction in incidents involving a combination of the floor and water/liquid as the causing 

object.  For contributing action, a top variable for release quantity, the best changes are 

reductions in incidents involving a loose fitting or valve as well as improperly loaded and 

dropped containers, depending on whether a small or medium release quantity is targeted, 

respectively.  Five Bayesian networks were built so that five-fold cross validation could be done.  

The five sets of cross validation results closely agreed and were reasonable, with approximately 

70% accuracy in predicting dollar loss and 87% accuracy in predicting release quantity.  Thus, 

the results regarding the influential variables were based on five separate networks.  The results 

of the face validation study indicate an opportunity for use of a Bayesian network model at the 

OHM for providing insight to both strategic and tactical decisions. 

      The hazmat release database had not previously been analyzed in this manner by the DoT, 

due in part to the lack of penetration of categorical analysis methods into the engineering arena.  

In addition, the hazardous materials transportation literature has been focused on minimum risk 

routing and calculation of risk in quantitative risk assessment studies.  There has been a lack of 

focus on post-accident, exploratory use of the incident data, in particular to identify critical 

variables and policy changes for them.  There has also been a lack of focus in the literature on 

transportation support activities, such as container unloading, despite the fact that the majority of 

incidents occur at this point.  Thus, this research also contributes to the literature in terms of 

exploring hazmat unloading activity.   
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5.3 FUTURE RESEARCH 

Opportunities for future study exist both in terms of the hazardous materials release problem as 

well as other areas in which the methodology can be applied.  Within the hazardous materials 

problem, additional types of consequences should be studied, especially the non-material 

consequences, such as injuries, deaths, and evacuations.  The Office of Hazardous Materials 

tends to focus more on human-related versus material consequences.  In addition to studying 

other types of consequences, additional phases of the transportation process should be studied, 

including loading, transport, and storage.  As mentioned previously, the container failure variable 

“other” should be eliminated from future analysis.  Although “other” is associated with many 

incidents and consequences, it does not provide definitive information for problem analysis.  On 

the new incident form instituted by the DoT in 2004, the “other” category has been eliminated.  

Therefore, the database based on the new incident form could be the subject of future research.   

      As a different approach to developing the decision model for the hazmat release problem, the 

learning module within GeNIe could be applied to the data in order to build the association 

structure.  It would be useful to compare the association structure as determined from the three 

step modeling approach with the structure as determined using the learning module.  The 

learning algorithm provides an alternative means of establishing the model’s structure. 

      Due to modeling constraints, some decisions were made concerning categories or variables to 

eliminate during the initial phase of the simplification.  The Pareto principle could not be 

followed and applied for all variables or sets of variables.  Unfortunately, the sensitivity of the 

model and results to this constraint is unknown.  This is an area for future research and may lead 

to later-generation models of a hazardous materials release during unloading. 
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APPENDIX A 
 
 
 

ADDITIONAL ANALYSES - STAGE ONE 

Table 78: Stage One Residual and Component L2 Results. 

    RESIDUAL COMPONENT 
Run Model L2 df p L2 df p Significant 

1 

[SE][M][C][SH][L] 
(mutual 
independence) 125.2625 87 0.0045         

  [M C] 107.5191 86 0.0581 17.7434 1 0.0001 Y 
  [SE M] 111.9227 84 0.0226 13.3398 3 0.0040 Y 
  [SH L] 117.808 85 0.0107 7.4545 2 0.0241 Y 
  [L C] 124.3989 86 0.0043 0.8636 1 0.3527   
  [L M] 124.9873 86 0.0039 0.2752 1 0.5999   
  [L SE] 123.2545 84 0.0034 2.0080 3 0.5707   
  [SE C] 121.9592 84 0.0043 3.3033 3 0.3472   
  [SH C] 125.0906 85 0.0031 0.1719 2 0.9176   
  [SH M] 120.9113 85 0.0064 4.3512 2 0.1135   
  [SH SE] 116.2602 81 0.0062 9.0023 6 0.1734   
                  

2 

[SE][M][C][SH][L] 
(mutual 
independence) 114.1234 87 0.0272         

  [M C] 94.4533 86 0.2498 19.6701 1 0.0001 Y 
  [SE M] 104.4828 84 0.0645 9.6406 3 0.0219 Y 
  [SH L] 104.0196 85 0.0789 10.1038 2 0.0064 Y 
  [L C] 113.703 86 0.0244 0.4204 1 0.5167   
  [L M] 113.6544 86 0.0246 0.4690 1 0.4934   
  [L SE] 111.531 84 0.0239 2.5924 3 0.4588   
  [SE C] 110.4271 84 0.0282 3.6963 3 0.2962   
  [SH C] 113.9375 85 0.0198 0.1859 2 0.9112   
  [SH M] 113.0544 85 0.0226 1.0690 2 0.5860   
  [SH SE] 106.7612 81 0.0292 7.3622 6 0.2886   
                  

3 

[SE][M][C][SH][L] 
(mutual 
independence) 128.0326 87 0.0028         

  [M C] 113.3556 86 0.0257 14.6770 1 0.0001 Y 
  [SE M] 114.7256 84 0.0146 13.3070 3 0.0040 Y 
  [SH L] 120.4478 85 0.0069 7.5848 2 0.0225 Y 
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Table 78 (continued). 
  [L C] 127.6727 86 0.0024 0.3599 1 0.5486   
  [L M] 122.4895 86 0.0060 5.5431 1 0.0186 Y 
  [L SE] 126.0251 84 0.0021 2.0075 3 0.5709   
  [SE C] 127.3769 84 0.0016 0.6557 3 0.8836   
  [SH C] 127.9781 85 0.0018 0.0545 2 0.9731   
  [SH M] 125.9098 85 0.0026 2.1228 2 0.3460   
  [SH SE] 113.5523 81 0.0099 14.4803 6 0.0247 Y 
                  

4 

[SE][M][C][SH][L] 
(mutual 
independence) 121.5583 87 0.0085         

  [M C] 110.5451 86 0.0385 11.0132 1 0.0009 Y 
  [SE M] 104.083 84 0.0679 17.4753 3 0.0006 Y 
  [SH L] 116.4828 85 0.0133 5.0755 2 0.0790   
  [L C] 121.2689 86 0.0074 0.2894 1 0.5906   
  [L M] 120.604 86 0.0082 0.9543 1 0.3286   
  [L SE] 119.7449 84 0.0064 1.8134 3 0.6120   
  [SE C] 117.9295 84 0.0086 3.6288 3 0.3044   
  [SH C] 121.2985 85 0.0060 0.2598 2 0.8782   
  [SH M] 121.302 85 0.0060 0.2563 2 0.8797   
  [SH SE] 110.1527 81 0.0173 11.4056 6 0.0766   
                  

5 

[SE][M][C][SH][L] 
(mutual 
independence) 141.63 87 0.0002         

  [M C] 115.7958 86 0.0178 25.8342 1 0.0001 Y 
  [SE M] 131.5206 84 0.0007 10.1094 3 0.0177 Y 
  [SH L] 125.0913 85 0.0031 16.5387 2 0.0003 Y 
  [L C] 141.5651 86 0.0002 0.0649 1 0.7989   
  [L M] 133.7182 86 0.0008 7.9118 1 0.0049 Y 
  [L SE] 135.4763 84 0.0003 6.1537 3 0.1044   
  [SE C] 137.6344 84 0.0002 3.9956 3 0.2619   
  [SH C] 141.5397 85 0.0001 0.0903 2 0.9559   
  [SH M] 137.4482 85 0.0003 4.1818 2 0.1236   
  [SH SE] 138.9105 81 0.00007 2.7195 6 0.8431   
                  

6 

[SE][M][C][SH][L] 
(mutual 
independence) 118.2752 87 0.0145         

  [L M] 115.9667 86 0.0173 2.3085 1 0.1287   
  [SH SE] 113.0043 81 0.0109 5.2709 6 0.5096   
  [SH M] 113.6011 85 0.0208 4.6741 2 0.0966   
                  

7 

[SE][M][C][SH][L] 
(mutual 
independence) 125.8119 87 0.0041         

  [L M] 125.5721 86 0.0035 0.2398 1 0.6244   
  [SH SE] 122.9788 81 0.0018 2.8331 6 0.8295   
  [SH M] 124.5677 85 0.0034 1.2442 2 0.5368   
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Table 79: Stage One Correction Procedure Matrices. 

LOCATION 
     

Transition Matrix  
Inverse Transition 

Matrix 

0.998213 0.001890  1.001794 -0.001894 
0.001930 0.998174  -0.001933 1.001833 

 

UNCORRECTED  CORRECTED  
CORRECTED 
(ROUNDED) 

33 43  33.02382193 42.98378703  33 43 
11 5  10.98996722 5.01163461  11 5 
52 54  52.0110443 53.99956812  52 54 
20 16  19.99506358 16.0085406  20 16 
33 44  33.02574766 43.98196143  33 44 
8 9  8.003032316 8.99866968  8 9 

68 66  68.00555458 66.00786108  68 66 
25 29  25.011161 28.99424535  25 29 
33 27  32.99301035 27.01299663  33 27 
8 8  8.001106592 8.00049528  8 8 

31 40  31.02161956 39.98548881  31 40 
11 13  11.00537301 12.99702981  11 13 
23 28  23.01281007 27.99229593  23 28 
6 5  5.99890422 5.00219706  6 5 

36 49  36.03001408 48.97849596  36 49 
13 16  13.00757538 15.99532803  13 16 
46 36  45.98710566 36.02110386  46 36 
10 11  10.00330896 10.9987935  10 11 
55 57  55.01145927 56.99975385  55 57 
23 17  22.99162711 17.01237753  23 17 
34 34  34.00470302 34.00210494  34 34 
9 3  8.989690572 3.01151079  9 3 

73 53  72.97158317 53.04103143  73 53 
22 24  22.00689458 23.99771082  22 24 
27 27  27.00373475 27.00167157  27 27 
4 15  4.02173626 14.98016604  4 15 

50 26  49.96069882 26.0469099  50 26 
15 18  15.00785203 17.99545185  15 18 
34 28  33.99314867 28.01305854  34 28 
4 9  4.010181916 8.99111964  4 9 

38 44  38.01681066 43.99139898  38 44 
16 11  15.99258456 11.01011856  16 11 
41 29  40.9825626 29.02444551  41 29 
4 13  4.017884812 12.98381724  4 13 

49 42  48.99329781 42.01581279  49 42 
10 14  10.00908614 13.9933167  10 14 
29 29  29.0040114 29.00179539  29 29 
13 10  12.99602104 10.00628163  13 10 
51 40  50.98587156 40.02323901  51 40 
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Table 79 (continued). 
23 22  23.00125573 22.00324953  23 22 
44 32  43.98297757 32.02463124  44 32 
8 1  7.987626524 1.01327448  8 1 

43 35  42.99054214 35.01726693  43 35 
14 11  13.99615936 11.00634354  14 11 
25 27  25.00730955 26.99789655  25 27 
8 9  8.003032316 8.99866968  8 9 

37 25  36.9820093 25.02419787  37 25 
13 13  13.00179821 13.00080483  13 13 
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APPENDIX B 
 
 
 

ADDITIONAL ANALYSES - STAGES FOUR AND FIVE 

Table 80: Latent Variable Transition Matrices. 

 
LOCATION 

     

Transition Matrix  
Inverse Transition 

Matrix 
0.998213 0.001890  1.001794 -0.001894 
0.001930 0.998174  -0.001933 1.001833 

 
CONTRIBUTING ACTION 

       
Transition Matrix  Inverse Transition Matrix 

0.996606 0.002320 0.001070  1.003416 -0.002337 -0.001079 
0.003110 0.996462 0.000422  -0.003135 1.003558 -0.000422 
0.002660 0.000781 0.996557  -0.002679 -0.000780 1.003459 

 
CAUSING OBJECT 

       
Transition Matrix  Inverse Transition Matrix 

0.998978 0.000743 0.000330  1.001024 -0.000745 -0.000331 
0.001410 0.998125 0.000467  -0.001412 1.001880 -0.000468 
0.000617 0.000519 0.998823  -0.000618 -0.000520 1.001179 

 
FAILURE MODE 

     

Transition Matrix  
Inverse Transition 

Matrix 

0.998811 0.001190  1.001193 -0.001193 
0.001810 0.998190  -0.001816 1.001816 

 
FAILURE ITEM-AREA 

       

Transition Matrix  Inverse Transition Matrix 
0.998055 0.001210 0.000737  1.001953 -0.001214 -0.000739 
0.002220 0.997540 0.000245  -0.002225 1.002469 -0.000245 
0.001500 0.000278 0.998220  -0.001506 -0.000278 1.001784 

 

161 



 

 
 
 
 
 

APPENDIX C 
 
 
 

ADDITIONAL ANALYSES - BAYESIAN NETWORKS 

Table 81: Dollar Loss Distribution by Explanatory Variable. (T1 Network) 

Causing Object Dollar Loss  Failure Item-Area Dollar Loss 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.167 0.718 0.116  no evidence 0.167 0.718 0.116 

Floor and water/ 
liquid 0.083 0.770 0.147  

Basic Package 
Material on Top 0.289 0.648 0.063 

None 0.199 0.682 0.119  
Basic Package 
Material on Bottom 0.064 0.783 0.154 

Other 0.364 0.607 0.029  Closure on Top 0.103 0.737 0.160 
Contributing Action Dollar Loss  Release Quantity Dollar Loss 
no evidence 0.167 0.718 0.116  no evidence 0.167 0.718 0.116 

Improper Loading 
and Dropped 0.161 0.680 0.158  Zero 0.347 0.559 0.094 

Other 0.180 0.738 0.081  Small 0.160 0.730 0.110 

Loose Fitting or 
Valve 0.124 0.731 0.146  Medium 0.175 0.647 0.178 

Location Dollar Loss  Failure Mode Dollar Loss 
no evidence 0.167 0.718 0.116  no evidence 0.167 0.718 0.116 

Suburban/ 
Commercial/ Eastern 0.135 0.717 0.148  Other 0.176 0.733 0.092 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.200 0.719 0.082  

Punctured and 
Crushed 0.146 0.683 0.172 

Season Dollar Loss  Shift Dollar Loss 
no evidence 0.167 0.718 0.116  no evidence 0.167 0.718 0.116 
Spring 0.173 0.711 0.116  Midnight 0.174 0.720 0.106 
Summer 0.161 0.744 0.095  Day 0.163 0.702 0.135 
Fall 0.171 0.683 0.146  Twilight 0.161 0.735 0.104 
Winter 0.163 0.724 0.113      
Container Type Dollar Loss  Material Type Dollar Loss 
no evidence 0.167 0.718 0.116  no evidence 0.167 0.718 0.116 
Fiber Box 0.172 0.721 0.107  Flammable Liquids 0.192 0.704 0.104 
Bottle 0.151 0.707 0.141  Corrosives 0.149 0.727 0.124 
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Table 82: Dollar Loss Distribution by Explanatory Variable. (T2 Network) 

Causing Object Dollar Loss  Failure Item-Area Dollar Loss 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.168 0.716 0.116  no evidence 0.168 0.716 0.116 

Floor and water/ 
liquid 0.085 0.768 0.148  

Basic Package 
Material on Top 0.290 0.647 0.063 

None 0.199 0.685 0.116  
Basic Package 
Material on Bottom 0.065 0.780 0.155 

Other 0.364 0.605 0.031  Closure on Top 0.105 0.738 0.156 
Contributing Action Dollar Loss  Release Quantity Dollar Loss 
no evidence 0.168 0.716 0.116  no evidence 0.168 0.716 0.116 

Improper Loading 
and Dropped 0.164 0.679 0.157  Zero 0.365 0.551 0.084 

Other 0.182 0.736 0.082  Small 0.161 0.730 0.109 

Loose Fitting or 
Valve 0.121 0.736 0.143  Medium 0.176 0.640 0.184 

Location Dollar Loss  Failure Mode Dollar Loss 
no evidence 0.168 0.716 0.116  no evidence 0.168 0.716 0.116 

Suburban/ 
Commercial/ Eastern 0.137 0.715 0.148  Other 0.177 0.731 0.092 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.200 0.718 0.082  

Punctured and 
Crushed 0.146 0.682 0.172 

Season Dollar Loss  Shift Dollar Loss 
no evidence 0.168 0.716 0.116  no evidence 0.168 0.716 0.116 
Spring 0.174 0.710 0.116  Midnight 0.173 0.722 0.105 
Summer 0.167 0.739 0.094  Day 0.163 0.701 0.135 
Fall 0.162 0.689 0.149  Twilight 0.167 0.728 0.105 
Winter 0.167 0.720 0.113      
Container Type Dollar Loss  Material Type Dollar Loss 
no evidence 0.168 0.716 0.116  no evidence 0.168 0.716 0.116 
Fiber Box 0.174 0.719 0.108  Flammable Liquids 0.192 0.706 0.102 
Bottle 0.150 0.709 0.141  Corrosives 0.151 0.724 0.125 
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Table 83: Dollar Loss Distribution by Explanatory Variable. (T3 Network) 

Causing Object Dollar Loss  Failure Item-Area Dollar Loss 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.169 0.717 0.114  no evidence 0.169 0.717 0.114 

Floor and water/ 
liquid 0.085 0.770 0.145  

Basic Package 
Material on Top 0.294 0.646 0.060 

None 0.203 0.676 0.121  
Basic Package 
Material on Bottom 0.064 0.784 0.152 

Other 0.368 0.606 0.026  Closure on Top 0.104 0.735 0.162 
Contributing Action Dollar Loss  Release Quantity Dollar Loss 
no evidence 0.169 0.717 0.114  no evidence 0.169 0.717 0.114 

Improper Loading 
and Dropped 0.163 0.681 0.155  Zero 0.348 0.560 0.092 

Other 0.184 0.737 0.079  Small 0.162 0.730 0.108 

Loose Fitting or 
Valve 0.124 0.726 0.150  Medium 0.183 0.641 0.176 

Location Dollar Loss  Failure Mode Dollar Loss 
no evidence 0.169 0.717 0.114  no evidence 0.169 0.717 0.114 

Suburban/ 
Commercial/ Eastern 0.137 0.717 0.146  Other 0.179 0.731 0.090 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.202 0.717 0.081  

Punctured and 
Crushed 0.147 0.683 0.170 

Season Dollar Loss  Shift Dollar Loss 
no evidence 0.169 0.717 0.114  no evidence 0.169 0.717 0.114 
Spring 0.176 0.710 0.114  Midnight 0.177 0.721 0.102 
Summer 0.167 0.739 0.093  Day 0.162 0.703 0.135 
Fall 0.170 0.686 0.144  Twilight 0.168 0.730 0.103 
Winter 0.161 0.726 0.113      
Container Type Dollar Loss  Material Type Dollar Loss 
no evidence 0.169 0.717 0.114  no evidence 0.169 0.717 0.114 
Fiber Box 0.175 0.720 0.105  Flammable Liquids 0.193 0.705 0.102 
Bottle 0.150 0.707 0.143  Corrosives 0.153 0.725 0.122 
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Table 84: Dollar Loss Distribution by Explanatory Variable. (T4 Network) 

Causing Object Dollar Loss  Failure Item-Area Dollar Loss 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.167 0.714 0.118  no evidence 0.167 0.714 0.118 

Floor and water/ 
liquid 0.085 0.764 0.151  

Basic Package 
Material on Top 0.292 0.643 0.064 

None 0.200 0.681 0.119  
Basic Package 
Material on Bottom 0.062 0.780 0.158 

Other 0.362 0.607 0.031  Closure on Top 0.104 0.735 0.161 
Contributing Action Dollar Loss  Release Quantity Dollar Loss 
no evidence 0.167 0.714 0.118  no evidence 0.167 0.714 0.118 

Improper Loading 
and Dropped 0.160 0.678 0.162  Zero 0.360 0.547 0.092 

Other 0.183 0.734 0.083  Small 0.159 0.729 0.112 

Loose Fitting or 
Valve 0.125 0.727 0.148  Medium 0.186 0.626 0.188 

Location Dollar Loss  Failure Mode Dollar Loss 
no evidence 0.167 0.714 0.118  no evidence 0.167 0.714 0.118 

Suburban/ 
Commercial/ Eastern 0.134 0.716 0.150  Other 0.177 0.730 0.093 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.203 0.712 0.085  

Punctured and 
Crushed 0.145 0.678 0.177 

Season Dollar Loss  Shift Dollar Loss 
no evidence 0.167 0.714 0.118  no evidence 0.167 0.714 0.118 
Spring 0.179 0.705 0.116  Midnight 0.174 0.719 0.107 
Summer 0.161 0.741 0.098  Day 0.162 0.696 0.141 
Fall 0.165 0.681 0.154  Twilight 0.166 0.730 0.104 
Winter 0.164 0.723 0.113      
Container Type Dollar Loss  Material Type Dollar Loss 
no evidence 0.167 0.714 0.118  no evidence 0.167 0.714 0.118 
Fiber Box 0.174 0.716 0.110  Flammable Liquids 0.193 0.703 0.104 
Bottle 0.148 0.707 0.145  Corrosives 0.150 0.722 0.128 
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Table 85: Dollar Loss Distribution by Explanatory Variable. (T5 Network) 

Causing Object Dollar Loss  Failure Item-Area Dollar Loss 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.168 0.715 0.117  no evidence 0.168 0.715 0.117 

Floor and water/ 
liquid 0.086 0.766 0.148  

Basic Package 
Material on Top 0.291 0.646 0.063 

None 0.201 0.679 0.120  
Basic Package 
Material on Bottom 0.064 0.780 0.156 

Other 0.363 0.605 0.031  Closure on Top 0.106 0.732 0.162 
Contributing Action Dollar Loss  Release Quantity Dollar Loss 
no evidence 0.168 0.715 0.117  no evidence 0.168 0.715 0.117 

Improper Loading 
and Dropped 0.165 0.677 0.158  Zero 0.357 0.551 0.092 

Other 0.181 0.737 0.082  Small 0.161 0.728 0.110 

Loose Fitting or 
Valve 0.123 0.727 0.150  Medium 0.176 0.637 0.187 

Location Dollar Loss  Failure Mode Dollar Loss 
no evidence 0.168 0.715 0.117  no evidence 0.168 0.715 0.117 

Suburban/ 
Commercial/ Eastern 0.136 0.714 0.150  Other 0.176 0.732 0.093 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.201 0.716 0.083  

Punctured and 
Crushed 0.151 0.676 0.173 

Season Dollar Loss  Shift Dollar Loss 
no evidence 0.168 0.715 0.117  no evidence 0.168 0.715 0.117 
Spring 0.176 0.709 0.115  Midnight 0.176 0.720 0.104 
Summer 0.165 0.738 0.097  Day 0.161 0.701 0.138 
Fall 0.169 0.683 0.148  Twilight 0.166 0.726 0.108 
Winter 0.161 0.722 0.117      
Container Type Dollar Loss  Material Type Dollar Loss 
no evidence 0.168 0.715 0.117  no evidence 0.168 0.715 0.117 
Fiber Box 0.174 0.718 0.108  Flammable Liquids 0.192 0.705 0.103 
Bottle 0.151 0.706 0.144  Corrosives 0.152 0.721 0.127 
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Table 86: Release Quantity Distribution by Explanatory Variable. (T1 Network) 

Causing Object Release Quantity  Failure Item-Area Release Quantity 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.028 0.879 0.094  no evidence 0.028 0.879 0.094 

Floor and water/ 
liquid 0.017 0.876 0.106  

Basic Package 
Material on Top 0.037 0.852 0.111 

None 0.033 0.901 0.067  
Basic Package 
Material on Bottom 0.018 0.892 0.090 

Other 0.050 0.868 0.081  Closure on Top 0.026 0.916 0.058 
Contributing Action Release Quantity    
no evidence 0.028 0.879 0.094      

Improper Loading 
and Dropped 0.020 0.841 0.139      

Other 0.031 0.895 0.075      

Loose Fitting or 
Valve 0.033 0.911 0.056      

Location Release Quantity  Failure Mode Release Quantity 
no evidence 0.028 0.879 0.094  no evidence 0.028 0.879 0.094 

Suburban/ 
Commercial/ Eastern 0.024 0.870 0.105  Other 0.030 0.897 0.073 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.031 0.887 0.082  

Punctured and 
Crushed 0.021 0.836 0.143 

Season Release Quantity  Shift Release Quantity 
no evidence 0.028 0.879 0.094  no evidence 0.028 0.879 0.094 
Spring 0.032 0.876 0.092  Midnight 0.028 0.879 0.093 
Summer 0.023 0.880 0.097  Day 0.027 0.883 0.091 
Fall 0.027 0.884 0.089  Twilight 0.028 0.874 0.098 
Winter 0.029 0.874 0.097      
Container Type Release Quantity  Material Type Release Quantity 
no evidence 0.028 0.879 0.094  no evidence 0.028 0.879 0.094 
Fiber Box 0.026 0.874 0.100  Flammable Liquids 0.028 0.874 0.098 
Bottle 0.032 0.894 0.074  Corrosives 0.027 0.882 0.091 
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Table 87: Release Quantity Distribution by Explanatory Variable. (T2 Network) 

Causing Object Release Quantity  Failure Item-Area Release Quantity 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.028 0.878 0.095  no evidence 0.028 0.878 0.095 

Floor and water/ 
liquid 0.017 0.875 0.108  

Basic Package 
Material on Top 0.037 0.850 0.113 

None 0.034 0.901 0.065  
Basic Package 
Material on Bottom 0.018 0.891 0.091 

Other 0.050 0.868 0.082  Closure on Top 0.026 0.917 0.057 
Contributing Action Release Quantity    
no evidence 0.028 0.878 0.095      

Improper Loading 
and Dropped 0.019 0.841 0.140      

Other 0.032 0.893 0.076      

Loose Fitting or 
Valve 0.035 0.913 0.053      

Location Release Quantity  Failure Mode Release Quantity 
no evidence 0.028 0.878 0.095  no evidence 0.028 0.878 0.095 

Suburban/ 
Commercial/ Eastern 0.025 0.870 0.106  Other 0.031 0.896 0.073 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.031 0.887 0.083  

Punctured and 
Crushed 0.020 0.836 0.144 

Season Release Quantity  Shift Release Quantity 
no evidence 0.028 0.878 0.095  no evidence 0.028 0.878 0.095 
Spring 0.033 0.873 0.094  Midnight 0.028 0.875 0.098 
Summer 0.023 0.880 0.097  Day 0.027 0.884 0.089 
Fall 0.026 0.884 0.090  Twilight 0.028 0.874 0.098 
Winter 0.029 0.875 0.096      
Container Type Release Quantity  Material Type Release Quantity 
no evidence 0.028 0.878 0.095  no evidence 0.028 0.878 0.095 
Fiber Box 0.026 0.873 0.101  Flammable Liquids 0.028 0.873 0.099 
Bottle 0.031 0.894 0.075  Corrosives 0.027 0.881 0.092 
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Table 88: Release Quantity Distribution by Explanatory Variable. (T3 Network) 

Causing Object Release Quantity  Failure Item-Area Release Quantity 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.028 0.879 0.093  no evidence 0.028 0.879 0.093 

Floor and water/ 
liquid 0.018 0.877 0.106  

Basic Package 
Material on Top 0.039 0.852 0.109 

None 0.034 0.904 0.062  
Basic Package 
Material on Bottom 0.018 0.892 0.090 

Other 0.053 0.864 0.082  Closure on Top 0.026 0.916 0.058 
Contributing Action Release Quantity    
no evidence 0.028 0.879 0.093      

Improper Loading 
and Dropped 0.020 0.844 0.136      

Other 0.032 0.893 0.075      

Loose Fitting or 
Valve 0.034 0.912 0.054      

Location Release Quantity  Failure Mode Release Quantity 
no evidence 0.028 0.879 0.093  no evidence 0.028 0.879 0.093 

Suburban/ 
Commercial/ Eastern 0.025 0.872 0.103  Other 0.032 0.896 0.072 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.032 0.886 0.082  

Punctured and 
Crushed 0.021 0.837 0.143 

Season Release Quantity  Shift Release Quantity 
no evidence 0.028 0.879 0.093  no evidence 0.028 0.879 0.093 
Spring 0.034 0.873 0.093  Midnight 0.029 0.878 0.093 
Summer 0.023 0.880 0.097  Day 0.026 0.884 0.090 
Fall 0.029 0.883 0.088  Twilight 0.030 0.873 0.096 
Winter 0.029 0.878 0.092      
Container Type Release Quantity  Material Type Release Quantity 
no evidence 0.028 0.879 0.093  no evidence 0.028 0.879 0.093 
Fiber Box 0.027 0.874 0.099  Flammable Liquids 0.029 0.874 0.096 
Bottle 0.032 0.893 0.076  Corrosives 0.028 0.882 0.090 
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Table 89: Release Quantity Distribution by Explanatory Variable. (T4 Network) 

Causing Object Release Quantity  Failure Item-Area Release Quantity 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.028 0.878 0.094  no evidence 0.028 0.878 0.094 

Floor and water/ 
liquid 0.017 0.876 0.106  

Basic Package 
Material on Top 0.038 0.850 0.112 

None 0.034 0.901 0.065  
Basic Package 
Material on Bottom 0.019 0.892 0.089 

Other 0.051 0.865 0.084  Closure on Top 0.024 0.916 0.059 
Contributing Action Release Quantity    
no evidence 0.028 0.878 0.094      

Improper Loading 
and Dropped 0.020 0.844 0.136      

Other 0.032 0.891 0.076      

Loose Fitting or 
Valve 0.031 0.913 0.056      

Location Release Quantity  Failure Mode Release Quantity 
no evidence 0.028 0.878 0.094  no evidence 0.028 0.878 0.094 

Suburban/ 
Commercial/ Eastern 0.025 0.870 0.105  Other 0.031 0.895 0.074 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.031 0.886 0.083  

Punctured and 
Crushed 0.020 0.838 0.142 

Season Release Quantity  Shift Release Quantity 
no evidence 0.028 0.878 0.094  no evidence 0.028 0.878 0.094 
Spring 0.031 0.877 0.092  Midnight 0.028 0.877 0.095 
Summer 0.025 0.881 0.095  Day 0.027 0.883 0.090 
Fall 0.028 0.880 0.092  Twilight 0.029 0.873 0.098 
Winter 0.028 0.873 0.099      
Container Type Release Quantity  Material Type Release Quantity 
no evidence 0.028 0.878 0.094  no evidence 0.028 0.878 0.094 
Fiber Box 0.027 0.872 0.100  Flammable Liquids 0.029 0.872 0.099 
Bottle 0.029 0.895 0.076  Corrosives 0.027 0.882 0.091 
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Table 90: Release Quantity Distribution by Explanatory Variable. (T5 Network) 

Causing Object Release Quantity  Failure Item-Area Release Quantity 
  ZERO SMALL MEDIUM    ZERO SMALL MEDIUM 
no evidence 0.028 0.877 0.095  no evidence 0.028 0.877 0.095 

Floor and water/ 
liquid 0.017 0.874 0.108  

Basic Package 
Material on Top 0.038 0.852 0.110 

None 0.034 0.901 0.065  
Basic Package 
Material on Bottom 0.018 0.890 0.092 

Other 0.052 0.867 0.081  Closure on Top 0.027 0.913 0.060 
Contributing Action Release Quantity    
no evidence 0.028 0.877 0.095      

Improper Loading 
and Dropped 0.019 0.843 0.139      

Other 0.033 0.892 0.076      

Loose Fitting or 
Valve 0.033 0.910 0.057      

Location Release Quantity  Failure Mode Release Quantity 
no evidence 0.028 0.877 0.095  no evidence 0.028 0.877 0.095 

Suburban/ 
Commercial/ Eastern 0.025 0.870 0.105  Other 0.031 0.895 0.074 

Urban/ Industrial or 
Commercial/ Eastern 
or Western 0.031 0.885 0.084  

Punctured and 
Crushed 0.020 0.837 0.144 

Season Release Quantity  Shift Release Quantity 
no evidence 0.028 0.877 0.095  no evidence 0.028 0.877 0.095 
Spring 0.033 0.871 0.097  Midnight 0.029 0.876 0.095 
Summer 0.023 0.881 0.096  Day 0.026 0.882 0.092 
Fall 0.027 0.884 0.089  Twilight 0.029 0.873 0.098 
Winter 0.030 0.874 0.096      
Container Type Release Quantity  Material Type Release Quantity 
no evidence 0.028 0.877 0.095  no evidence 0.028 0.877 0.095 
Fiber Box 0.027 0.872 0.100  Flammable Liquids 0.029 0.872 0.099 
Bottle 0.030 0.893 0.078  Corrosives 0.027 0.881 0.092 
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APPENDIX D 
 
 
 

FACE VALIDATION 

Validation Questionaire 
 
Base all answers on Unloading incidents associated with highway transport from 1993-2002 and on the categories 
used in this research.  Refer to “Variables, Categories and Incident Types Considered.”   
 
 
 
Name and job function:   __________________________________________________________ 
Years of hazmat transportation experience:   _______ 

 
 
 
 
 
1) Is the hazmat release Bayesian network (slide #6) reasonable in terms of the temporal layout of 

the variables and the 5 stages?  Please comment if you wish to. 
 
 
 
 

2) Direct associations among 3 pairs of variables in Stage 1 were found using loglinear analysis.  
Which 3 pairs of variables are directly associated (related) and interpret “why” they are related.  

 
Interpretation  
   
   

a. __________and __________ _____________________________________________ 
 

b. __________and __________ _____________________________________________ 
 

c. __________and __________ _____________________________________________ 
 
 
   Eg. Go Hiking   and Encounter Bear    More likely to see a bear in a wooded area. 
 
 
3) For the 3 associations in Stage 1 uncovered using loglinear modeling, do they make sense?   

Why? 
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4) Rank the following variables according to their degree of influence on releases involving medium 
dollar loss.  Medium dollar loss is >$500 but <= $25,000.   
Use 1 (most influential on dollar loss) through 10 (least influential), and use each number just 
once.  

 
 

No direct association 
Container Type  ________    __ 
Failure Item-Area  ________    __ 
Location   ________    __ 
Material Type  ________    __ 
Causing Object  ________    __ 
Release Quantity  ________    __ 
Season   ________    __ 
Contributing Action  ________    __ 
Shift   ________    __ 
Failure Mode  ________    __ 

 
 
 

5) For the top 3 variables, why do they strongly influence medium dollar loss?   
 

1.________________________________________________________________ 
2. ________________________________________________________________ 
3. ________________________________________________________________ 

 
 
 

6) Rank the following variables according to their degree of influence on releases involving medium 
release quantity.  Medium release quantity is >1 gal but <= 100 gal. 
Use 1 (most influential) through 9 (least influential), and use each number just once.  

 
 

No association 
Container Type  ________    __ 
Failure Item-Area  ________    __ 
Location   ________    __ 
Material Type  ________    __ 
Causing Object  ________    __ 
Season   ________    __ 
Contributing Action  ________    __ 
Shift   ________    __ 
Failure Mode  ________    __ 
 
 
 

7) For the top 3 variables, why do they strongly influence medium release quantity?   
1.________________________________________________________________ 
2. ________________________________________________________________ 
3. ________________________________________________________________ 
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8) Assume you want to reduce occurrences of medium dollar loss releases.  For your “top” variable 

in question #4, which category of this variable would you attempt to reduce first based on its level 
of impact? 

 
_____________________________ 

 
 
 
a. What operational changes could be made to reduce occurrences of this top category? 
________________________________________________________________ 
________________________________________________________________ 

 
 
 
 
 

9) Assume you want to reduce occurrences of medium release quantity releases.  For your “top” 
variable in question #6, which category of this variable would you attempt to reduce first based 
on its level of impact? 

 
  _____________________________ 

 
 
 

a. What operational changes could be made to reduce occurrences of this top category? 
_________________________________________________________________ 
_________________________________________________________________ 
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10) Which combination of causing object and failure item-area occurs most of the time during a 

release involving medium dollar loss?  (>$500 but <= $25,000) 
“What tells the story of a medium dollar loss?” 

 
  Group 1 Group 2 Group 3 Group 4 

Causing Object floor/water other floor/water floor/water 

Failure Item-
Area 

basic material 
on top of 
container 

closure on top 
of container 

basic material on 
bottom of 
container 

closure on 
top of 

container 
 
 
 
11) Which combination of causing object and failure item-area occurs most of the time during a 

release involving zero dollar loss?  ($0) 
“What tells the story of a zero dollar loss?” 

 
  Group 1 Group 2 Group 3 Group 4 

Causing Object floor/water other floor/water floor/water 

Failure Item-
Area 

basic material 
on top of 
container 

closure on top 
of container 

basic material on 
bottom of 
container 

closure on 
top of 

container 
 
 
 
12) Which combination of contributing action and failure mode occurs most of the time during a 

release involving medium release quantity?  (>1 gal but <= 100 gal) 
 

  Group 1 Group 2 Group 3 Group 4 

Contributing 
Action 

Loose 
fitting/closure 

improperly 
loaded and 

dropped 
Loose 

fitting/closure other 

Failure Mode 
punctured 

and crushed 
punctured and 

crushed other other 

 
 
 

13) Which combination of contributing action and failure mode occurs most of the time during a 
release involving zero release quantity?  (0 gal) 

 
  Group 1 Group 2 Group 3 Group 4 

Contributing 
Action 

Loose 
fitting/closure 

improperly 
loaded and 

dropped 
Loose 

fitting/closure other 

Failure Mode 
punctured 

and crushed 
punctured and 

crushed other other 

 
Figure 23: Face Validation Questionaire. 
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APPENDIX E 
 
 
 

CORRECTION PROCEDURE SOURCE CODE – LOCATION TRANSITION MATRIX 

 
 
'CREATES THE TRANSITION MATRIX FOR LOCATION 
 
Set Excel1 = CreateObject("Excel.Application") 
Set Excel1 = GetObject("c:\Location_Classification.xls") 
Set Sheet1 = Excel1.WorkSheets.Item("Class") 
Open "c:\ Location_TransMatrix" For Output As #1 
 
 
Dim EndRow, EndCol 
Dim r, c 
Dim CondProb() As Single, ClassProb() As Single 
Dim SumMatrix() As Single 
Dim TotalProb, SumProb 
Dim NumClasses 
Dim Dim AreaTypeCol, LandUseCol, GeoDivCol 
Dim NumIndVar, NumPatterns 
Dim Prob 
Dim category 
Dim ModalCatCol 
Dim clProb 
 
NumClasses = 2 
NumIndVar = 3 
ModalCatCol = NumIndVar + NumClasses + 1 
 
'------------------------------------ 
'Set Classification Probabilities 
'Sixth position is modal category 
EndRow = 36 
EndCol = 6 
NumPatterns = EndRow 
ReDim ClassProb(EndRow, EndCol) 
 
r = 1 
c = 1 
While r <= EndRow 
  While c <= EndCol 
    ClassProb(r, c) = Sheet1.Cells(r, c) 
    c = c + 1 
  Wend 
  r = r + 1 
  c = 1 
Wend 
 
'------------------------------------   
'Set Conditional Probabilities 
Set Sheet2 = Excel1.WorkSheets.Item("CondProb") 
EndRow = 13 
EndCol = 3 
NumCategories = EndRow 
ReDim CondProb(EndRow, EndCol) 
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r = 1 
c = 1 
While r <= EndRow 
  While c <= EndCol 
    CondProb(r, c) = Sheet2.Cells(r, c) 
    c = c + 1 
  Wend 
  r = r + 1 
  c = 1 
Wend 
 
'------------------------------------   
'Calculate transition matrix using classification and conditional probabilities 
TotalProb = 1 
SumProb = 0 
AreaTypeCol = 1 
LandUseCol = 2 
GeoDivCol = 3 
ReDim SumMatrix(NumClasses) 
For c2 = 1 To NumClasses   'true latent variable 
 For c = 1 To NumClasses  'predicted latent variable 
  CondProbCol = c2 + 1 
  ClassCol = c + NumIndVar 
  For r = 1 To NumPatterns 
    category = ClassProb(r, AreaTypeCol) 
    For i = 1 To NumCategories 
      If category = CondProb(i, 1) Then 
        Prob = CondProb(i, CondProbCol) 
      End If 
    Next i 
    TotalProb = TotalProb * Prob 
    category = ClassProb(r, LandUseCol) 
    For i = 1 To NumCategories 
      If category = CondProb(i, 1) Then 
        Prob = CondProb(i, CondProbCol) 
      End If 
    Next i 
    TotalProb = TotalProb * Prob 
    category = ClassProb(r, GeoDivCol) 
    For i = 1 To NumCategories 
      If category = CondProb(i, 1) Then 
        Prob = CondProb(i, CondProbCol) 
      End If 
    Next i 
    TotalProb = TotalProb * Prob 
    If c = ClassProb(r, ModalCatCol) Then 
      clProb = 1 
    Else 
      clProb = 0 
    End If 
    TotalProb = TotalProb * clProb 
    SumProb = SumProb + TotalProb 
    TotalProb = 1 
  Next r 
  SumMatrix(c) = SumProb 
  SumProb = 0 
 Next c  'predicted 
 Print #1, SumMatrix(1) & " " & SumMatrix(2) 
Next c2  'true 

Figure 24: Source Code for Location Transition Matrix. 
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Table 91: “Class” Worksheet for Source Code. 

281 271 1 0.0015 0.9985 2 
281 271 2 0.0012 0.9988 2 
281 271 3 0.001 0.999 2 
281 271 4 0.0006 0.9994 2 
281 271 5 0.0007 0.9993 2 
281 271 6 0.0004 0.9996 2 
281 271 7 0.0005 0.9995 2 
281 271 8 0.0005 0.9995 2 
281 271 9 0.0005 0.9995 2 
281 272 1 0.0029 0.9971 2 
281 272 2 0.0023 0.9977 2 
281 272 3 0.0019 0.9981 2 
281 272 4 0.0012 0.9988 2 
281 272 5 0.0014 0.9986 2 
281 272 6 0.0007 0.9993 2 
281 272 7 0.0009 0.9991 2 
281 272 8 0.001 0.999 2 
281 272 9 0.001 0.999 2 
282 271 1 0.9994 0.0006 1 
282 271 2 0.9992 0.0008 1 
282 271 3 0.9991 0.0009 1 
282 271 4 0.9985 0.0015 1 
282 271 5 0.9987 0.0013 1 
282 271 6 0.9976 0.0024 1 
282 271 7 0.9981 0.0019 1 
282 271 8 0.9983 0.0017 1 
282 271 9 0.9982 0.0018 1 
282 272 1 0.9997 0.0003 1 
282 272 2 0.9996 0.0004 1 
282 272 3 0.9995 0.0005 1 
282 272 4 0.9992 0.0008 1 
282 272 5 0.9993 0.0007 1 
282 272 6 0.9988 0.0012 1 
282 272 7 0.999 0.001 1 
282 272 8 0.9991 0.0009 1 
282 272 9 0.9991 0.0009 1 

AREATYPE LANDUSE DIVISION Class 1 Class 2 Modal 
 
 
 
 

Table 92: “CondProb” Worksheet for Source Code. 

281 0.001 0.9991 
282 0.999 0.0009 
271 0.3754 0.5404 
272 0.6246 0.4596 
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Table 92 (continued). 
1 0.059 0.028 
2 0.1574 0.0941 
3 0.2691 0.1937 
4 0.0795 0.096 
5 0.1462 0.1488 
6 0.0487 0.0924 
7 0.0847 0.1277 
8 0.0592 0.0818 
9 0.0963 0.1376 
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