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FINITE ELEMENT MODELING OF ANEURYSM DEVELOPMENT AND GROWTH 

WITH A NONLINEAR MULTI-MECHANISM INELASTIC MATERIAL  

Sergey Sidorov, PhD 

University of Pittsburgh, 2007

 

Due to limited experimental data and a lack of understanding of the underlying microstructural 

deformation mechanisms involved, modeling of material behavior of biomechanical tissues 

presents a rather formidable task. In this dissertation, a nonlinear multi-mechanism inelastic 

material model is formulated for modeling vascular tissue, collagen recruitment and elastin 

degradation. The model is implemented into the commercial finite element software package 

ANSYS with user programmable features. Although the idea of using several deformation 

mechanisms in the same material model is by no means novel, it is the first time such model is 

being implemented in a commercial finite element package and applied to a numerical study of 

physiological processes taking place inside the vascular walls. Two numerical examples are 

presented: a simulation of angioplasty procedure, and a finite element analysis of fusiform 

aneurysm development and growth. This is by far not the exhaustive list of possible applications 

of the developed material model; implementation in a commercial finite element code will help 

facilitate innovative developments, including new ways to surgically treat vascular disorders. 
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1.0  INTRODUCTION 

The current work was inspired by a desire to study mechanisms leading to formation of 

aneurysms, as well as to assist in development of surgical treatment of the aforementioned 

disease. An aneurysm is a localized dilation of a blood vessel. Aneurysms are most commonly 

found in arteries in or near the Circle of Willis (intracranial aneurysms – ICA), and in the aorta 

(aortic aneurysms). Intracranial aneurysms occur in up to 6% of the population and have an 

average maximum diameter of 10 mm [1]. The overall annual risk of rupture for ICAs was found 

to be 1.9%. Abdominal aortic aneurysms (AAA) occur in 3% – 9% of the population, causing 

15,000 deaths per year only in the United States [2, 3]. The surgery on an AAA is performed 

whenever its dimension exceeds 50 mm [4 – 6].  

Depending on their geometry we can distinguish between saccular and fusiform 

aneurysms (Figure 1). Most intracranial aneurysms are saccular in nature, whereas the majority 

of aortic aneurysms are fusiform. Fusiform aneurysms manifest themselves by pressing on 

surrounding tissue; saccular aneurysms are usually asymptomatic until rupture, which causes 

spontaneous subarachnoid hemorrhage (SAH). SAH results in death in 35 – 50 % of the patients 

[7]. 

In order to gain some insight into the micromechanical processes leading to the initiation 

of aneurysms, it is important to understand the morphological structure of the arterial wall 

(Figure 2). 
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Arteries are generally distinguished as elastic (arteries adjacent to the heart) or muscular. 

Elastic arteries usually have larger diameters, whereas muscular arteries are smaller vessels.  

Arteries of either type consist of three layers (Figure 2): the tunica intima, tunica media 

and tunica adventitia [7].  

 

Blood flow 
 (a)  

 

Blood flow (b) 

Figure 1. Aneurysms: (a) saccular, (b) fusiform 

The intima is the innermost layer of the artery. It consists of a layer of endothelial cells 

and a thin basal membrane [7]. Intima is known to contribute very little to the solid mechanical 

response of the arterial tissue [8]. 

The media is the middle layer of the artery. It is composed of a plexus of smooth muscle 

cells, as well as the elastin and collagen fibers. From the mechanical point of view the media is 

the most important layer of the arterial wall. 

The adventitia is the outermost layer of the arterial wall, consisting of a maze of collagen 

fibers combined with elastin, nerves, fibroblasts (cells that supply collagen) and the vasa 

vasorum (the network of small vessels that provide cells that make up the outer wall of the 
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artery). At low pressure levels tunica adventitia is more compliant than tunica media. As the load 

increases, however, the tunica adventitia becomes a stiff shell, restraining the artery from 

excessive deformation and damage.  

 

Intima 
Media 

Adventitia 

Endothelial Cell 

Smooth Muscle Cell 

Helically 
arranged fiber-
reinforced 
medial layers 

 

Figure 2. Histological structure of a healthy artery 

There has been few publications on mechanical properties of blood vessels and 

aneurysms, as well as about the possible causes of the disease. A very important paper was 

published in 1972 by Scott et al [9]. Although it is over 30 years old, this paper contains 

experimental data that “appears to be the best available on human lesions” [7]. Their research 

focused on cyclic pressure inflation experiments on cerebral arteries. The tension (product of 

radius and pressure) vs. radius data obtained by Scott’s group is presented in Figure 3. An 

interesting phenomenon discovered by Scott et al is that the tension vs. radius data obtained in 

 3 



first three loading runs is fundamentally different from the second set of curves obtained from 

runs four through nine. This allowed conjecture that some drastic microstructural change 

occurred within the arterial wall, namely that elastin contained in the arterial wall ruptured. Scott 

et al. [9] claimed that rupture of elastin is the major cause of the aneurysm initiation. This is 

consistent with the histological evidence [c.f. 10], which shows that elastin within the aneurysm 

tissue is decreased and fragmented. 

0
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Figure 3. Tension vs. radius data from an anterior cerebral artery, reproduced from Figure 5B in [9] 

 

Similar results were obtained for aortic aneurysms. Drangova et al [11] used a computer 

tomography scanner for in vitro studies of arterial geometry and elastic properties of the 

abdominal aortic aneurysms. They have found a “sixfold decrease in elastin content in the 

aneurysm, compared to the normal aorta.”  
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Traditionally soft tissues are modeled with hyperelastic materials. Hyperelastic materials 

are characterized by a specific form of a strain energy density function [12]. Mathematical 

expressions for different forms of strain energy density functions for various hyperelastic 

materials are provided in Appendix B. 

Several publications on numerical modeling of soft tissues are to be found [13 – 15, 17, 

21 – 23].  Bellamy et al. [13] used a Mooney-Rivlin hyperelastic material model to analyze facial 

prostheses. Büchler et al. [14] employed an exponential hyperelastic material to model muscle 

tissue, and a Neo-Hookean hyperelastic material to model cartilage in their research study of 

mechanical behavior of a human shoulder. Cheung et al. [15] utilized a polynomial hyperelastic 

material in their analysis of the foot during standing. All these researchers used the commercial 

FE software package ABAQUS [16]. Some studies apply anisotropic materials to numerically 

investigate mechanical response of soft tissues (c.f. [17]). These material models are also 

available in commercial finite element packages, such as ANSYS [18] (which utilizes a 

formulation by Kaliske [19]) or LS-DYNA [20] (which utilizes a formulation by Weiss et al. 

[21]). LS-DYNA also features two very specific material models MAT_HEART_TISSUE 

(based on a theoretical work of Guccione et al. [22]) and MAT_LUNG_TISSUE (based on a 

theoretical work done by Vawter [23]). 

Commercial finite element packages provide very convenient tools for working with 

hyperelastic materials. Most of them feature so-called curve-fitting capabilities, which allow 

users to choose the material model most suitable to their needs, as well as calculate material 

parameters. 

Very few attempts of mathematical modeling of mechanical behavior aneurysms have 

been published. Most studies view aneurysms as a separate entity from the vascular tissue from 
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which they had evolved, thus leaving the process of aneurysm development outside the scope of 

the research. An important theory was proposed by Humphrey and Rajagopal [24]. They 

developed the so-called “growth and remodeling” of collagen theory. Wulandana and Robertson 

[25] formulated a new mathematical model to describe the initiation of an aneurysm from a 

healthy arterial tissue. Their research addressed modeling the important phenomena of elastin 

rupture and collagen recruitment.  

The material model, developed in [25], is termed a “dual-mechanism” model due to its 

separate treatment of mechanical response of elastin and collagen fibers. The idea of using more 

than one deformation mechanism in the same material model is not novel (c.f. [26]); Wulandana 

[27] was the first to apply a multi-mechanism model to study mechanical behavior of human 

arteries. Nevertheless, such models have never been implemented in a commercial finite element 

package. 

We shall hereby adopt the approach of [25], and formulate a computational model that 

we incorporate into the commercial code ANSYS. The formulation that we offer in this 

dissertation is somewhat different form the formulation of Wulandana and Robertson [25] in a 

sense that unlike in [25] we model the tissue as a compressible material. The main reason why 

we chose to model our material as compressible is the fact that the user defined material feature 

of ANSYS is only suitable for modeling compressible materials. There are, however, other 

arguments in favor of a compressible model. Traditionally, the arterial wall is considered 

incompressible, although the experimental evidence supporting the incompressibility assumption 

is incomplete [28]. Furthermore, Boutouyrie et al [29] claim that volumetric effects play a 

significant part in deformation of carotid arteries. Chuong and Fung [30] argue that the 
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incompressibility assumption is in contradiction with the fact that fluid can move across the 

vessel wall due to intraluminal pressure or shear stress. 

We are hoping that the model that we propose will allow us to shed some light on 

whether or not incompressibility effects play an important role in the mechanical response of the 

arterial tissue. Setting the compressibility parameter (see Section 2.1) to a very small value 

renders the model nearly incompressible, and thus the mechanical response becomes the same as 

that of an incompressible model. In other words, when the compressibility parameter is 

sufficiently small, the mechanical response of our material becomes identical to that of the 

material of [25]. 

The remainder of this dissertation will proceed as follows. In Chapter 2, a brief 

mathematical description of the material model will be given (derivation of some tensor algebra 

results are left for Appendix A). Chapter 3 discusses the testing of the finite element code. 

Chapters 4 and 5 will describe two numerical examples, illustrating how the developed material 

model can be applied to the numerical study of physiological processes taking place within the 

arterial wall, as well as some surgical procedures performed on human arteries. Although the 

material model was developed as an attempt to study biomechanical behavior of aneurysms, 

Chapter 4 demonstrates that the model can serve other purposes as well, namely the simulation 

of balloon angioplasty procedures. Finally, the conclusions of this dissertation are provided in 

Chapter 6. 
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2.0  MATHEMATICAL MODEL 

The two passive load bearing components of the arterial wall are elastin and collagen fibers [25]. 

The mechanical contribution of the rest of the constituents of the arterial tissue is insignificant, 

and, therefore, can be excluded from consideration. Wulandana and Robertson [25] proposed a 

structurally motivated phenomenological model of the arterial wall deformation that is illustrated 

in Figure 4. 

Stage B 

σ 

λ λa λb 
Stage A Stage C 

(a) 

Stage A 

Stage B 

Stage C 

Collagen 
fibers 

Elastin 

(b) 

Figure 4. Stages of arterial tissue deformation 

Figure 4 (a) shows a stress-stretch curve pertaining to a uniaxial tension of a vascular 

tissue material sample. Figure 4 (b) is a schematic illustrating microstructural changes occurring 

within the sample. At low loads in healthy vessels collagen fibers are crimped [8], and thus 

elastin is the sole load bearing component (Stage A in Figure 4). Then, as stretch exceeds a 
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certain value – referred to as λa – the collagen fibers begin to bear load (collagen recruitment – 

Stage B in Figure 4); thus, as we continue deforming the sample, two deformation mechanisms 

corresponding to elastin and collagen are present. As stretch reaches another material specific 

value denoted as λb, elastin ruptures. This corresponds to a sudden decrease of stress in the 

sample (Figure 4 (a)). As we continue to load the specimen, stress increases, but only the 

collagen deformation mechanism is active (Stage C in Figure 4). Note that after the elastin 

rupture, the unloaded configuration changes. If we unload the specimen from Stage C, the stress-

stretch curve will cross the horizontal axis at a point different from the origin. 

2.1 CONTINUUM MECHANICS FORMULATION 

Utilizing the phenomenological model of mechanical behavior of vascular tissue outlined above 

as a basis, we will now develop the continuum mechanics framework necessary for 

implementing the material model into a finite element software package. The formulation that we 

offer is based on the theory of Wulandana and Robertson [25]. 

 Notation, utilized in this section, is discussed in Appendix D. 

Let us consider a three-dimensional body Ω. As described by Wulandana and Robertson, 

let us define two reference configurations ҝ1 and ҝ2 (Figure 5), corresponding to the initial 

unloaded state and the state when collagen fibers begin to bear load respectively; ҝ2 is the 

unloaded configuration for collagen.  
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O 

222
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Figure 5. Different reference configurations for the multi-mechanism model 

A generic particle Y of the body Ω can be identified by a vector X1 in reference 

configuration ҝ1, or by a vector X2 in reference configuration ҝ2. The motion of the particle Y can 

be described by  

),( 1
1

tXx
κ

ϕ= ,                                                           (1) 

where 3:
1

RR →×Ω
κ

ϕ . 

If  ҝ2 is achieved at time t=t2, ),( 212
1

tXX
κ

ϕ= . Relative to configuration ҝ2 the motion 

of the particle Y may thus be described as 

),( 2
2

tXx
κ

ϕ= ,                                                          (2) 

where 3:
2

RR →×Ω
κ

ϕ . 

The deformation gradient for the particle Y at time t relative to the reference 

configurations ҝ1 and ҝ2 can now be defined as 
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1

1

1

),(
)( 1

X

tX
tF

∂

∂
= κ

ϕ

,                                                     (3) 

and 

2

2

2

),(
)( 2

X

tX
tF

∂

∂
= κ

ϕ

                                                     (4) 

respectively. 

Clearly,  

)()()( 2
1

112
tFtFtF −⋅=

.                                                  (5) 

The right Cauchy-Green deformation tensor for the particle Y at time t relative to the 

reference configurations ҝ1 and ҝ2 can now be defined as 

111
FFC T ⋅=

,                                                            (6) 

and 

222
FFC T ⋅=

                                                            (7) 

respectively, where dependency on time t is omitted. 

We assume that the material is quasi-hyperelastic, and that there exists a strain energy 

density function Ψ (also known as the elastic potential) from which the stress can be derived for 

each point X . Ψ is a function of the right Cauchy-Green deformation tensor (or its invariants). 

Following Simo and Hughes [31] we split the strain energy density function into 

volumetric and isochoric parts 

isovol Ψ+Ψ=Ψ ,                                                        (8) 

and define the modified deformation gradients and right Cauchy-Green deformation tensors 

relative to reference configurations ҝ1 and ҝ2 according to 
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1
3/1

11
FJF =

 and 2
3/1

22
FJF =

,                             (9) – (10) 

and 

1
3/2

11
CJC =

 and 2
3/2

22
CJC =

,                             (11) – (12)  

where 

2,1,F det == α
ααJ

.                                                   (13) 

The volumetric part is assumed to have a simple form 

2
1 )1(1
−=Ψ J

dvol
,                                                      (14) 

where d is called the incompressibility parameter. 

As in [25], we can define the deformation parameter 

)(ˆ
1

Css =
,                                                             (15) 

a scalar function of the deformation gradient. The value which the deformation parameter takes 

at time t=t2 is denoted as sa. Following the work of [25], we assume  

3
1
−= Ctrs

.                                                           (16) 

Taking into account the above considerations (Section 2), we choose the following form 

for the isochoric part of the strain energy density function 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥Ψ

≤≤Ψ+Ψ

≤≤Ψ

=Ψ

b
)(

ba
)()(

a
)(

iso

ss),I(

sss),I()I(

ss),I(

2
12

2
12

1
11

1
11 0

,                                    (17) 

where 

1

1
1 CtrI

)(
=

, 2

2
1 CtrI

)(
=

,                                      (18) – (19) 

and sb is the value the deformation parameter s assumes at the moment of elastin breakage. 
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As outlined in [25], we can assume the strain energy density function to take the 

exponential form: 

)1(
2

)( )3(

1

1
11

11 −=Ψ −IeI γ

γ
α                                                (20) 

and 

)1(
2

)( )3(

2

2
22

22 −=Ψ −IeI γ

γ
α .                                            (21) 

Further we split the second Piola-Kirchhoff stress tensor into volumetric and isochoric 

part as 

isovol
SSS += .                                                         (22) 

The volumetric part is defined as 

,2
)(

2 1

11

1

1

11

1 −=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
Ψ∂

=
∂

Ψ∂
= CpJ

C
J

JC
J

S volvol
vol

                                   (23) 

where  

)1(2)(
1

1

1 −=
∂

Ψ∂
= J

dJ
J

p vol .                                               (24) 

We define the isochoric part of the second Piola-Kirchhoff stress tensor as follows 

⎪
⎩

⎪
⎨

⎧

≥
≤≤+
≤≤

=

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≥
∂

Ψ∂
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∂
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+

∂
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,
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2
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0,
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2
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1

2
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2

22

1

11

1
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.               (25) 

Taking derivatives and using chain rule we obtain for 
1

S  
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where 
1

4 P  is a projection tensor (see Appendix A), and 

IeC
C

S I )3(
111

1
1

11)(2 −=Ψ
∂
∂

= γα                                         (27) 

 ( I is a second order unit tensor). 

Similarly for 
2

S  

),(::
)(

2
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2
222

43/2
2

2

2

2
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2
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2
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C
C

C
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C
C
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⎥
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⎢
⎢
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where 
2

4 P  is a projection tensor (see Appendix A), and 

IeC
C

S I )3(
222

2
2

22)(2 −=Ψ
∂
∂

= γα .                                     (29) 

Analogously the elasticity tensor is split into volumetric and isochoric parts. 

isovol
CCC 444 += .                                                   (30) 

For 
vol

C4  we have 

1

1

1

11
1

1

1

11

1

4 2~2 −−−− ⊕−⊗=
∂

∂
= CCpJCCpJ

C
S

C vol
vol

,                          (31) 

where 
1

~
J
pppp

∂
∂

+= . For derivation of (31), and the explanation of the symbol “⊕ ”, please 

refer to Appendix A. 
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The isochoric part of the elasticity tensor is defined as follows 
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Here  
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1122 γγα                                         (35) 

and 

IIe
C

S
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∂

∂
= −− )3(

22

2

23/4
22

4
2222 γγα .                                      (36) 

For derivation of (33) – (34) please refer to Appendix A. 
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3.0  VALIDATION OF THE FINITE ELEMENT CODE 

The continuum mechanics model outlined in Chapter 2 was implemented in the general purpose 

finite element code ANSYS (version 10.0) [32] via the USERMAT subroutine (Appendix B). 

The developed code uses the pre- and post- processing capabilities as well as the nonlinear 

solvers of ANSYS. In order to test the validity of the code, several test cases have been created. 

Here, by a test case we mean a short input deck written in ANSYS Parametric Design Language 

(APDL), which is the input language of ANSYS. Each test case is expected to verify a certain 

aspect of the developed code. 

3.1 DEGENERATE CASES 

Note that in degenerate cases our model has to behave similarly to a standard 

hyperelastic material. Indeed, if we set  

sa=sb=∞,                                                             (37) 

sa=sb=0                                                              (38) 

or  

sa=0, sb=∞                                                           (39) 

in eqn. (17), the expression for the strain energy density function becomes 
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1Ψ+Ψ=Ψ vol ,                                                         (40) 

2Ψ+Ψ=Ψ vol                                                          (41) 

or 

)( 21 Ψ+Ψ+Ψ=Ψ vol                                                   (42) 

respectively. 

Clearly, in such cases the results generated by the proposed material model have to be 

identical to the results generated by simpler hyperelastic models. Thus we chose to compare our 

model with the ANSYS built-in Yeoh material model. The expression for the Yeoh strain energy 

density function follows: 

k
N

k k

i
N

i
i J

d
Ic 2

11
1 )1(1)3( −+−=Ψ ∑∑

==

.                                        (43) 

For explanation of (43), please see Appendix B. 

By approximating the exponential functions in (20) and (21) by their Taylor series, we 

generated a set of material parameters for the corresponding Yeoh material model  

!i
c

i

i 2

1
1

−

=
γα ,                                                             (44) 

!i
c

i

i 2

1
2

−

=
γα                                                               (45) 

and  

!i
)(c

i

i 2

1
21

−+
=

γαα ,                                                       (46)  

where i=1..10 for the cases (37), (38) and (39) respectively. 

For each of the three degenerate cases (37), (38) and (39) six test cases have been created 

(a total of eighteen tests). Five of the tests were one-element uniaxial, biaxial, equitriaxial, non-

equitriaxial tension and simple shear tests, and one test examined a more complex geometry. 

Material constants chosen for the simple one-element tests were borrowed from [25], and 

are summarized in Table 1. 
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Table 1. Material parameters 

Parameters α1 α2 γ1 γ2 d 

Degenerate 
case  

sa=0, sb=∞ 
3550 Pa 3550 Pa 0.62 0.62 10-6 Pa-1

Values 
Other 
degenerate 
cases 

7100 Pa 7100 Pa 0.62 0.62 10-6 Pa-1

3.1.1 One-Element Tests 

The geometry for the one-element tests is a cube of unit dimension, consisting of a single 3D 8-

node finite element, with displacement boundary conditions applied. The boundary conditions 

for these tests are illustrated in Figure 6 – 9 and summarized in Table 2. 

Table 2. One-Element Tests and Boundary Conditions 

Test type Uniaxial 
tension 

Biaxial 
tension 

Equitriaxial 
tension 

Nonequitriaxial 
tension 

Simple Shear 

Boundary 
conditions 

ux=1.0 ux=0.7 

uz=0.7 

ux=0.5 

uy=0.5 

uz=0.5 

ux=0.5 

uy=1.0 

uz=0.8 

ux=0.5 
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Figure 7. Biaxial tension test 
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Figure 6. Uniaxial tension test 
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Figure 9. Simple shear test Figure 8.  Triaxial tension test 

 

The resultant x-components of the Cauchy stress tensor for each of the tests are provided 

in Table 3. As can be seen from Table 3, one-element tests of the multi-mechanism material 

model exactly matched stress-strain results with the Yeoh material model (error ε = 0.0%). 
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Table 3. Results of the One-Element Tests: x-component of Cauchy stress tensor 

Degenerate case  Test type Multi-
Mechanism 
Model 

Yeoh Model Error, % 

Uniaxial tension 82159.8 82159.4 4.9.10-4

Biaxial tension 103595 103588 6.8.10-3

Equitriaxial 
tension 

0.475.107 0.475.107 0 

Nonequitriaxial 
tension 

0.879959.107 0.879959.107 0 

sa=sb=∞ 

Simple Shear 2068 2068 0 

Uniaxial tension 82159.8 82159.4 4.9.10-4

Biaxial tension 103595 103588 6.8.10-3

Equitriaxial 
tension 

0.475.107 0.475.107 0 

Nonequitriaxial 
tension 

0.879959.107 0.879959.107 0 

sa=0, sb=∞ 

Simple Shear 2068 2068 0 

Uniaxial tension 82159.8 82159.4 4.9.10-4

Biaxial tension 103595 103588 6.8.10-3

Equitriaxial 
tension 

0.475.107 0.475.107 0 

Nonequitriaxial 
tension 

0.879959.107 0.879959.107 0 

sa=sb=0 

Simple Shear 2068 2068 0 
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3.1.2 Cantilevered Plate 

Consider a cantilevered plate with vertical deflection applied at its free end (Figure 10).  

10

uz=1 

5 

2z 

y 

x 
 

Figure 10. Cantilevered plate 

Two finite element models have been created, one utilizing the multi-mechanism material 

model, another one utilizing the Yeoh material model, the parameters for which have been 

chosen according to Table 1 and equations (44) – (46). Each finite element model consists of 100 

3D 8-node elements. Von Mises stress results, obtained utilizing the models, are plotted in 

Figure 11.  As shown, the stress field generated by the multi-mechanism material model (left) is 

indistinguishable from the one generated by the Yeoh material model (right). 
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Multi-mechanism 
material model 

 
Degenerate case 
(sa=0, sb=1000) 

σmises, Pa 

Yeoh material model  
with 10 terms 

 

Figure 11. Bending of a cantilevered plate 

3.2 ANALYTICAL SOLUTION 

For some simple geometric configurations it is possible to find analytical solutions to the 

constitutive equations outlined in Section 3. This provides another means of verifying the finite 

element code. In this section we will look at the uniaxial extension of a cube and pressure 

inflation of a cylinder to verify the proposed model.  
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3.2.1 Uniaxial tension 

Consider uniaxial tension of a multi-mechanism cube of a unit dimension (Figure 6). The 

deformation gradient in this case takes a relatively simple form: 

⎥
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⎢
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⎢

⎣

⎡
=

2

2

1

1

00
00
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λ
λ

λ
F .                                                        (47) 

From (16) the deformation parameter s becomes: 

32
21 −= λλs .                                                             (48) 

Similarly the deformation gradient 
2

F relative to the reference configuration ҝ2, right 

Cauchy-Green tensors 
1

C  and
2

C , Jacobians J1 and J2, modified deformation gradients 
1

F  

and
2

F , and modified right Cauchy-Green Tensors 
1

C  and 
2

C can be expressed in terms of 

principal stretches λ1 and λ2 via equations (9) – (10) and (11) – (12). Second Piola-Kirchhoff 

stress S  can be determined from equations (22) – (29). Finally, applying  

isovol
σσσ +=                                                         (49) 
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we obtain the following expressions for the principal Cauchy stresses in terms of λ1 and λ2: 

for s < sa
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for sa ≤ s < sb
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and for s ≥ sb
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where  and  are values of principal stretches corresponding to s = sa
1λ

a
2λ a. 

These equations can be solved numerically to obtain a dependency of the first principle 

stress on the first principle stretch.  

In order to verify the multi-mechanism material model, a finite element model, consisting 

of a single 3D 8-node finite element was created. 

 24 



Material constants chosen for the analysis, borrowed from [25], are summarized in 

Table 4. 

Table 4. Material parameters for the uniaxial tension test 

Parameters α1 α2 γ1 γ2 sa sb d 

Values 7100 Pa 31000 Pa 0.62 1.87 1.4 3.48 10-6 Pa-1

Figure 12 shows stress-stretch curves obtained analytically and by means of the finite 

element analysis. As we can see the results match well. 

0

50000

100000

150000

200000

250000

300000

350000

400000

1 1.5 2 2.5 3

Analytical solution
FE solution

σ11, 
Pa 

λ1 
 

Figure 12. First principle stress vs. first principle stretch. Analytical and finite element solutions 
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3.2.2 Pressure inflation of a cylinder 

Consider a hollow thick-walled cylinder that incorporates a multi-mechanism material and has an 

internal radius Ri and an external radius Ro. The cylinder is subjected to internal pressure P and 

constrained in z-direction at both ends (Figure 14).  

A finite element model, consisting of 20 2D-axisymmetric 4-node finite elements was 

created (Figure 13). Axisymmetry boundary conditions have been utilized in order to reduce the 

solution time and minimize computational costs. Material properties (taken from [25]), the model 

geometry, and the finite element properties are summarized in Table 5.  

Table 5. Geometry of the cylinder and material parameters 

Parameter Value Units 

α1 
α2 
γ1 
γ2
sa
sb

 

Wall thickness 
Inner radius 

Height of the cylinder 

7100 
31000 
0.62 
1.87 
1.4 
3.48 

1.0·10-4

0.28·10-4

3.33·10-6

Pa 
Pa 
– 
– 
– 
– 
m 
m 
m 

In order to obtain the analytical solution of this problem, we assume that the material is 

incompressible. The deformation gradient for the material volume located at the outer surface of 

the cylinder becomes: 
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    (a)

(b) 

Figure 13. 2d axisymmetric finite element model (a) and expanded shape (b) of the cylinder 
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If the radial displacement at the outer surface is denoted as Δr, the principle stretches can 

be expressed as 

oR
rΔ

+=1θλ , and 
rR

R

o

o
r Δ+
=λ .                              (38) – (39)   

From (16) the deformation parameter s becomes: 

21 2

0
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o

o                                           (40) 

Utilizing results from Section 2.2, taking into consideration the boundary condition 

0== oRrrrσ                                                        (41) 
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and assuming that the deformation parameter s reaches its critical values sa or sb simultaneously 

throughout the wall of the cylinder, the expression for the circumferential Cauchy stress can be 

obtained. 

For s < sa we have 

( )2222
11 2 rr )](exp[ λλλλγασ θθθθ −−+=                                  (42) 

Denoting the values that principal stretches take when s = sa as  and and defining a
θλ

a
rλ

a
)(
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λ =2                                                          (43) 

and  

a
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λ =2                                                           (44) 

we have for sa ≤ s < sb
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and for s ≥ sb

])())][()()((exp[ )(
r

)()()(
r

22222222
22 2 λλλλγασ θθθθ −−+= .                          (46) 

In equations (42), (45) and (46) we obtain the circumferential stress at the outer surface 

of the cylinder as a function of the radial displacement at the outer surface. 

Figure 15 shows the stress-displacement curves obtained analytically and by means of the 

finite element analysis. As illustrated in the figure, the analytical solution provides a very close 

match to the finite element solution of the problem. This example is particularly important, 

because it represents the physical geometry of an idealized blood vessel (cylinder).  
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Figure 14. Hollow thick-walled cylinder subjected to internal pressure 
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Figure 15. Comparison of the analytical and finite element solutions of the cylindrical expansion problem. 
First principal stress σ11 at the outer edge vs. inner radius increment δur 
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3.2.3 Reproducing experimental results by Scott et al. [9] 

Let us now attempt to numerically reproduce experimental results of [9] (Figure 3). We consider 

a hollow multi-mechanism cylinder (representing a blood vessel) with pressure applied from 

within. We assume that the ends of the cylinder are constrained from moving in the axial 

direction. A finite element model corresponding to this problem is similar to the one shown in 

Figure 13, only it consists of 30 2D axisymmetric 4-node finite elements, rather than 20. The 

geometry of the cylinder and material properties [25] are summarized in Table 6.   

Table 6. Geometry of the vessel and material parameters 

Parameter Value Units 

α1 
α2 
γ1 
γ2
sa
sb

8900 
39000 
0.62 
1.87 
1.4 
3.48 

1.0·10-4Wall thickness 
Inner radius 

Blood vessel length considered 
0.28·10-3

0.2·10-5

Pa 
Pa 
– 
– 
– 
– 
m 
m 
m 

We conduct several numerical experiments varying the value of the compressibility 

parameter d. When d is small enough, the material response stops being dependent on d, and the 

material can be considered nearly incompressible. The results, obtained for the nearly 

incompressible material, can be compared with [25].  

Tension vs. radius graphs obtained numerically, superimposed on experimental data from 

[9], are shown in Figure 16.  
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Figure 16. Tension vs. radius results obtained numerically and experimental data from Scott et al. [9] 

As we can see, the mechanical response of the multi-mechanism model follows the first 

set of experimental data (Runs 1 – 3), and then, after (presumably) the rupture of elastin fibers, 

slides to the second set of points (Runs 4 – 9). From Figure 16 we may conclude that 

(a) Our numerical model is shown to qualitatively repeat experimental results by 

Scott et al., and 

(b) The value of d=1·10-7 Pa-1 is sufficiently small for our material to be considered 

nearly incompressible. 

The difference between the numerical results and the experimental data can possibly be 

attributed to the fact that material parameters (Table 6) that we used in the simulation were 

obtained by Wulandana and Robertson [25] who performed curve fitting for the case of pressure 

inflation of a cylinder in membrane formulation, whereas we consider a 3D case, taking the 

thickness of the cylinder into account. 
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4.0  SIMULATION OF BALLOON ANGIOPLASTY  

Angioplasty (from Greek angio vessel and plassein to form) is a medical procedure used to 

mechanically widen a narrowed (stenosis) or obstructed blood vessel, and restore blood flow. 

The obstruction is typically a result of atherosclerosis.  

During balloon angioplasty a catheter with a cylindrical balloon surrounding it is inserted 

into the blood vessel. Once in position, the balloon is inflated with pressure between 9 and 15 

atmospheres [33] in order to force the narrowed vessel to expand. 

Angioplasty is commonly referred to as a percutaneous (minimally invasive) method, and 

is often preferred to surgery. It is usually performed on coronary arteries (percutaneous 

transluminal coronary angioplasty – PTCA), leg arteries, especially the common iliac, external 

iliac, superficial femoral and popliteal arteries, and renal arteries [33]. Recently, angioplasty has 

been used to treat carotid stenosis in carotid arteries [34]. 

 Our goal here is to illustrate how the multi-mechanism material model can be used to 

model the process of angioplasty. Due to the lack of experimental data we do not presume to 

verify what actually happens during angioplasty, but merely try to understand how a foreign 

object, when inserted into a cylindrical vessel, affects its biomechanics. 

 Again we consider a multi-mechanism hollow cylinder, its ends constrained in the axial 

direction, pressure applied from within. A 2D finite element model consisting of 1560 2D 4-node 

axisymmetric finite elements is shown in Figure 17. The balloon is modeled as a 2D rigid target. 
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Since the only source of material data pertaining to the multi-mechanism model is [25], we 

hereby adopt material parameters and vessel geometry, pertaining to the anterior cerebral artery, 

from this paper. Material properties used in the analysis, as well as the geometry of the problem 

are summarized in Table 7.  

The finite element problem is solved in two steps. First, a uniform pressure of 10,000 Pa 

is applied to the inner surface of the cylinder. The resultant shape is shown in Figure 18. As we 

can see from Figure 18, a part of the cylinder is in the first (elastin only) deformation 

mechanism, and another part is in the second (both mechanisms active) deformation mechanism. 

Next the rigid target starts to move toward the inner surface of the cylinder, until it comes into 

contact with it, and starts to mechanically interact with the vessel wall (Figure 19).  

     (a)  (b) 

Figure 17. 2d axisymmetric finite element model (a) and expanded shape (b) of the artery 
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Table 7.  Material parameters and model geometry 

Parameter Value Units 

α1 
α2 
γ1 
γ2
sa
sb

Wall thickness 
Inner radius 

 

 
 s<sa (elastin only) 

sa<s<sb (both elastin and collagen) 

(a) 
 

(b) 

Figure 18. Deformed shape of the vessel corresponding to applied internal pressure: (a) 2D axisymmetric, (b) 
3D expanded 

 

Blood vessel length considered 
Initial radius of the balloon 

7100 
31000 
0.62 
1.87 
1.4 
3.48 

1.0·10-4

0.23·10-3

2·0.69·10-3

0.23·10-3

Pa 
Pa 
– 
– 
– 
– 
m 
m 
m 
m 
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σmises, Pa

 

 

Figure 19. Von Mises stress distribution at the moment of contact of the balloon with the artery wall 

 

Figure 19 shows the stress distribution at the moment of contact. As can be expected, 

maximum stresses arise in the area of contact. 

As the rigid target continues its motion, the onset of elastin rupture can be observed 

(Figure 20). As can be seen in Figure 20, the areas of the vessel near the area of contact are in the 

state of the third deformation mechanism, whereby elastin has ruptured. This should be avoided 

during the actual angioplasty.  

Figure 21 shows a resultant distribution of equivalent stresses. An interesting 

phenomenon can be observed: the maximum stresses do not arise near the zone of contact, but 

rather are located inside the vessel’s wall. This is explained by the fact that the areas near the 
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zone of contact are in the third deformation mechanism (when elastin is ruptured), and thus, are 

at a lower stress level. 

Perhaps the most important work concerning finite element analysis of angioplasty has 

been performed by Holzapfel et al [35, 36]. The researchers modeled the artery tissue as a multi-

layered anisotropic hyperelastic material. Current work does not take anisotropy into account, 

although it is capable of describing collagen recruitment and elastin rupture. Further research 

must be carried out in order to determine the relative importance of the phenomena mentioned 

above. 
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 s<sa (elastin only) 

sa<s<sb (both elastin and collagen) 

s>sb (collagen only) 
(a) 

(b) 
 

Figure 20. Deformed shape of the vessel corresponding to applied internal pressure and contact of the 
deployed balloon with the internal surface: (a) 2D axisymmetric, (b) 3D  expanded 
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σmises, Pa 

(a) 

(b) 

 
Figure 21. Deformed shape of the vessel corresponding to applied internal pressure and contact of the 
deployed balloon with the internal surface: (a) 2D axisymmetric, (b) 3D expanded.  Equivalent stress 
distribution 
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5.0  SIMULATION OF A FUSIFORM ANEURYSM FORMATION 

In order to simulate aneurysm formation and growth a finite element model (shown in Figure 22) 

was created. The properties of the finite element model are summarized in Table 8. The model 

geometry, as well as material properties (Table 9. Material parameters), were adopted from [25]. 

It is an axisymmetric model, and therefore only a cross-section has been considered. An 

expanded view of the model is shown in Figure 23. It is well known (c.f. [7], [37 – 39]) that 

aneurysms develop from an imperfection in the arterial wall (“bleb”). Thus a small geometrical 

imperfection has been introduced into the finite element model (Figure 22). A pressure load of 

30,000 Pa is applied to the inner surface of the cylinder. At the top end of the cylinder symmetry 

boundary conditions have been applied.  

A question of properly applying boundary conditions at the bottom end of the cylinder is 

not trivial. Clearly, simply constraining it from moving in the axial direction will not be accurate 

since axial stresses are obviously present inside the blood vessel’s wall. Another simplification 

would be to seal one end of the cylinder, and apply the same pressure of 30,000 Pa to the seal 

(Figure 24). Apparently, the truth lies somewhere in the middle. In the current work we have 

adopted the latter approach, even though it is a simplification. At the bottom end of the cylinder 

an axisymmetric Shell208 element (with very low stiffness properties assigned to it) has been 

created, connecting the origin with the inner surface of the cylinder. The pressure load of 

 39 



30,000 Pa has been applied to this element, and the vertical displacement degrees of freedom of 

all nodes at the bottom end of the cylinder have been coupled. 

Table 8.  Geometrical and finite element properties of the finite element model 

Geometrical properties 

• Wall thickness: 0.125·10-3 m 
• Inner radius: 0.2675·10-03 m                
• Blood vessel length considered: 3.21·10-03 m 
• Thickness at the imperfection: 0.0875·10-03 m 

Finite element properties 

• Element type: 
Plane182 axisymmetric 

• Number of elements: 2401 
• Number of nodes: 2577 

 

 

 Imperfection 

 

Figure 22. Finite element model 

 

Figure 23. Expanded view of the model 
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30,000 Pa 
 

Figure 24. A simplified way of applying boundary conditions 

As we begin to pressurize the cylinder, elastin is the only load bearing component (first 

deformation mechanism active, s < sa). As we continue the loading, the second deformation 

mechanism turns on (collagen recruitment, sa < s < sb) (Figure 25). Figure 26 shows Von Mises 

stress distribution, corresponding to the moment of collagen recruitment. As can be expected, 

maximum stresses arise in the area of the geometrical imperfection. As the applied pressure is 

further increased, the onset of elastin rupture can be observed (Figure 27). As can be seen, the 

stresses are no longer monotonously decreasing from the inner toward the outer side of the 

cylinder wall. Rather, they appear to reach a local minimum around the middle of the wall. This 

is explained by the fact that with rupture of elastin, the multi-mechanism material becomes more 

compliant. 

The resultant deformed shape of the model is shown in Figure 28. The elements, for 

which sa<s<sb are plotted in green, whereas those for which s>sb are plotted in red. The 

expanded deformed shape is shown in Figure 28 (b). For comparison, Figure 29 shows a 

schematic of a fusiform aneurysm [40].  
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 s<sa (elastin only) 

sa<s<sb (both elastin and collagen) 

 

Figure 25. Collagen recruitment 

 

Table 9. Material parameters 

Parameter Value Dimension 

α1 
α2 
γ1 
γ2
sa
sb
d 

7100 
31000 
0.62 
1.87 
1.4 
3.48 
10-5

Pa 
Pa 
– 
– 
– 
– 

Pa-1
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σmises, Pa 

 

 

Figure 26. Von Mises stress distribution, corresponding to the moment of collagen recruitment 

 

An important paper dealing with finite element analysis of fusiform aneurysm 

development has been published by Watton et al [41]. The researchers model the artery tissue as 

a two-layered material, whereby aneurysms form as a result of time-dependent elastin 

degradation (“aging”). Such an approach appears to be more realistic than the approach adopted 

in the current work, which models aneurysm development as a result of increased blood pressure. 

Implementation of “aging” into the artery tissue model may be one of the directions of future 

research. 
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sa<s<sb  
(both elastin  
and collagen) 

s>sb  
(collagen only) 

σmises, Pa 

 

Figure 27. Von Mises stress at the onset of eleastin rupture.  
The corresponding distribution of the deformation parameter s is shown on the right 
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(a) (b)

 s<sa (elastin only) 

sa<s<sb (both elastin and collagen) 

s>sb (collagen only) 
 

 

Figure 28. Deformed shape: (a) 2-dimensional; (b) expanded Figure 29. Schematic 
representation of fusiform 
aneurysm geometry from [40] 
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6.0  CONCLUSIONS 

In this dissertation, a novel compressible nonlinear multi-mechanism inelastic material model 

has been introduced for modeling biomechanical tissue, and applied to a numerical study of a 

procedure of angioplasty, and a process of initiation and development of a fusiform aneurysm. 

The model was implemented into the commercial finite element software package ANSYS with 

user programmable features.  

This dissertation contains a complete continuum mechanics formulation of the model 

(inspired by a theoretical work of Wulandana and Robertson [25], and experimental data of Scott 

et al. [9]), as well as a FORTRAN subroutine, that can be linked to the ANSYS code. The 

process of the verification of the finite element code is described. The dissertation also includes 

two computational examples, illustrating how the developed material model can be applied to a 

numerical simulation of a surgical procedure, and of the development of a vascular disease.  

Several major research directions can be recommended for a future development of the 

proposed material model: 

1. Experimental study of the biomechanics of blood vessels; 

2. Utilization of the experimental results to answer the question whether anisotropy 

effects play an important role in the elastic response of vascular tissue, and, if they do, 

incorporating anisotropy into the model; 
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3. Utilization of the experimental results to answer the question whether rate effects play 

an important role in the elastic response of vascular tissue, and, if they do, incorporating 

viscoelasticity into the model; 

4. Utilization of the experimental results to answer the question whether “growth and 

remodeling” of collagen [24] plays an important role in the elastic response of vascular tissue, 

and, if they do, incorporating them into the model; 

5. Implementation of time-dependent behavior (“aging”) into the tissue model. 

The significance of the present work relates to the fact that a multi-mechanism inelastic 

model has never been implemented into a commercial finite element package and applied to a 

numerical study of physiological processes taking place inside the arterial wall.  

It is believed that implementation of the model into a commercial finite element code will 

assist in the development of surgical treatment of various vascular disorders, and lead to a better 

understanding of biomechanical properties of vascular tissue.  

Additionally, this model can be used for modeling other materials, exhibiting multi-

mechanism behavior, such as fiber-reinforced rubbers. 
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APPENDIX A 

SOME IMPORTANT TENSOR ALGEBRA RESULTS 

Let us prove some of the identities used in Section 2. 

1. Let F  and C  be a deformation gradient and a right Cauchy-Green tensor respectively. Let 

FJ det= . Calculate the derivative
C
J

∂
∂ . 

□  

It is well known that 

12
2

−=
∂
∂ CJ

C
J                                                              (A.1) 

(c.f. [42]). 

Using the chain rule we have 

112
2

2 2
1

2
1 −− ==

∂
∂

∂
∂

=
∂
∂ CJCJ

JC
J

J
J

C
J .                                        (A.2) 

■ 

2. Similarly we can use the chain rule to find the derivative
C

J
∂

∂ − 3/2

: 
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13/213/5
3/23/2

3
1

2
1

3
2 −−−−

−−

−=−=
∂
∂

∂
∂

=
∂

∂ CJCJJ
JC

J
J

J
C

J .                          (A.3) 

3. Let C  be a modified right Cauchy-Green tensor: CJC 3/2= . Find the derivative
C
C
∂

∂
. 

□ 

Applying the chain rule we have  

( ) TPJCCIJIJ
C

JCCJ
CC

C 43/2143/243/2
3/2

3/2

3
1 −−−−

−
− =⎟

⎠
⎞

⎜
⎝
⎛ ⊗−=+

∂
∂

⊗=
∂
∂

=
∂

∂
,        (A.4) 

where I4  is the fourth order unit tensor, and 

CCIP ⊗−= −144

3
1                                                         (A.5) 

is called the projection tensor. 

■ 

 

4. Let A  be the arbitrary second order tensor. Find the derivative
A

A
∂

∂ −1

. 

□ 

Let us consider the obvious identity 

O
A

AA 4
1 )(

=
∂

⋅∂ −

                                                             (A.6) 

In indicial notation (A.6) becomes 

0
)( 1

11

=
∂

∂
+

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
⋅∂ −

−−

kl

mj
immj

kl

im

ijkl
A
A

AA
A
A

A
AA

.                                      (A.7) 

Multiplying the second equation in (A.7) by ( )
jn

A 1−  we have 
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Further equation (A.8) becomes 

( 1111
1

2
1 −−−−

−

+−=
∂
∂

jnjkmlimjnjlmkimmn
kl

im AAAA
A
A δδδδδ ).                                   (A.9) 

Finally 

( 111
ln

1
1

2
1 −−−−

−

+−=
∂
∂

knilik
kl

in AAAA
A
A ) .                                              (A.10) 

In Section 3 we used the operation “⊕ ”, which is defined as follows 

11
1

−−
−

⊕−=
∂
∂

AA
A

A
.                                                      (A.11) 

 

■ 

 

5. Prove equation (31). 

 

□ 

In order to avoid confusion we will omit the index 1. 

( ) =⎟
⎠
⎞

⎜
⎝
⎛ ⊕−

∂
∂

⊗+⊗=
∂
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=
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vol

 

,2~ 1111 −−−− ⊕−⊗= CCJpCCpJ                                              (A.12) 

where 
J
pppp
∂
∂

+=~ . 

■ 
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6. Prove equations (33) and (34). 

 

□ 

Equations (33) and (34) only differ by an index (1 or 2), therefore in the following derivation we 

will omit the index where possible. 

We have 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
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⎜
⎝
⎛ −

∂
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=
∂
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=
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∂
= −−− SCCSJ

C
SPJ
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C :
3
12:22 13/243/21

1

4 .                (A.13) 

Let us take derivative from each term in (A.13). 

From (A.3) we have 

13/2
3/2

3
1 −−

−

−=
∂

∂ CJ
C

J .                                                (A.14) 

Applying (35) and (A.4) we obtain 
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C
C

C

S
C
S 43/24
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∂
=
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∂
.                                          (A.15) 

Further, applying (35) and (A.11) we obtain 
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Assembling the results (A.14) – (A.16) we have 

C
S

C
∂

∂
= 1

1

4 2  
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APPENDIX B 

EXPRESSIONS FOR STRAIN ENERGY DENSITY FUNCTIONS FOR DIFFERENT 

HYPERELASTIC MATERIAL MODELS 

B.1 NEO-HOOKEAN MATERIAL MODEL 

For the Neo-Hookean material model, the strain energy density function is chosen as: 

( ) 2
1 )1(13

2
−+−=Ψ J

d
Iμ ,                                              (B.1) 

where: 

μ is an initial shear modulus; 

d is a material incompressibility parameter; 

CtrI =1  is the first invariant of the modified right Cauchy-Green deformation tensor C ; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation tensor 

C . 

The initial bulk modulus is related to the material incompressibility parameter by: 

d
K 2
= .                                                              (B.2) 
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B.2 MOONEY-RIVLIN MATERIAL MODEL 

For the Neo-Hookean material model, the strain energy density function is chosen as: 

( ) ( ) 2
2211 )1(133 −+−+−=Ψ J

d
ICIC ,                                   (B.3) 

where: 

C1, C2 and d are material parameters; 

CtrI =1  is the first invariant of the modified right Cauchy-Green deformation tensor C ; 

)Ctr(trI
22

2
1

2 −= C  is the second invariant of the modified right Cauchy-Green deformation 

tensor C ; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

Parameter d is also known as a material incompressibility parameter. The initial bulk modulus is 

related to the material incompressibility parameter by: 

d
K 2
= .  

B.3 POLYNOMIAL FORM OF THE STRAIN ENERGY DENSITY FUNCTION 

For the Polynomial material model, the strain energy density function has the following form: 

( ) ( ) ∑∑
==+

−+−−=Ψ
M

k

k

k

N

ji

ji

ij J
d

IIC
1

2

1
21 )1(133 ,                               (B.4) 

where: 
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Cij and dk, i, j = 1..N, k = 1..M, are material parameters; 

CtrI =1  is the first invariant of the modified right Cauchy-Green deformation tensor C ; 

)Ctr(trI
22

2
1

2 −= C  is the second invariant of the modified right Cauchy-Green deformation 

tensor C ; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

B.4 OGDEN FORM OF THE STRAIN ENERGY DENSITY FUNCTION 

The Ogden form of strain energy density function is based on the principal stretches, and has the 

form: 

( ) ∑∑
==

−+−++=Ψ
M

k

k

k

N

i i

i J
d

iii

1

2

1
321 )1(13
ααα

λλλ
α
μ

,                     (B.5) 

where: 

μi, αi and dk, i = 1..N, k = 1..M, are material parameters; 

λ1, λ2 and λ3 are principal stretches; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

 55 



B.5 YEOH MATERIAL MODEL 

The Yeoh model is also known as the reduced polynomial model. The strain energy function is: 

k
M

k k

i
N

i
i J

d
Ic 2

11
1 )1(1)3( −+−=Ψ ∑∑

==

,                                       (B.6) 

where: 

ci and dk, i = 1..N, k = 1..M, are material parameters; 

CtrI =1  is the first invariant of the modified right Cauchy-Green deformation tensor C ; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

The Neo-Hookean model can be obtained by setting N = M = 1. 

B.6 EXPONENTIAL HYPERELASTIC MATERIAL MODEL 

For the exponential hyperelastic material model the strain energy density function has the 

following form: 

( )[ ] ( ) ( )2
21 113

2
3exp −+−+−=Ψ J

d
II αββα ,                              (B.7) 

where: 

α, β and d are material parameters; 

CtrI =1  is the first invariant of the modified right Cauchy-Green deformation tensor C ; 
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)Ctr(trI
22

2
1

2 −= C  is the second invariant of the modified right Cauchy-Green deformation 

tensor C ; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

Parameter d is also known as a material incompressibility parameter. 

B.7 ANISOTROPIC HYPERELASTIC MATERIAL MODEL 

In order to define the anisotropic hyperelastic material we need to specify two material directions 

a and b (representing directions of the fibers within the tissue). The strain energy density 

function in this case becomes: 
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where: 

ai, bj, ck, dl, em, fn, go and d, i =1..3, j = 1..3, k = 2..6, l = 2..6, m = 2..6, n = 2..6, o = 2..6, are 

material parameters;  

( )2ς ba ⋅= ; 

3IJ = , where CI det3 =  is the third invariant of the right Cauchy-Green deformation 

tensorC ; 
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8765421  and ,,,,, IIIIIII  are the invariants of the modified right Cauchy-Green deformation 

tensor C , defined as follows: 
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Parameter d is also known as a material incompressibility parameter. 

B.8 HEART TISSUE MATERIAL MODEL IN LS-DYNA 

This material model is based on the formulation of [22], and is described by the strain energy 

density function in terms of the components of the Green strain as follows: 

( ) 2)1(11
2

−+−=Ψ J
d

eC Q ,                                             (B.9) 

where: 

( ) ( )2
31

2
13

2
21

2
123

2
32

2
23

2
33

2
222

2
111 EEEEbEEEEbEbQ ++++++++= ; 

Eij, i,j = 1..3, are the Green strain components; 

C, b1, b2, b3 and d are material parameters (parameter d is also known as a material 

incompressibility parameter);  
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3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

B.9 ISOTROPIC LUNG TISSUE MATERIAL MODEL IN LS-DYNA 

This material model is based on the formulation of [23], and is described by the strain energy 

density function of the following form: 

( ) 2)1(

2

1 )1(1)1(
)1(

12
2

22
2
1 −+−

+Δ
+

Δ
=Ψ ++ J

d
A

C
CeC CII βα ,                       (B.10) 

where: 

1)(
3
4

21
2 −+= IIA ; 

Δ, C, C1, C2 and d are material parameters; 

CtrI =1  is the first invariant of the modified right Cauchy-Green deformation tensor C ; 

)Ctr(trI
22

2
1

2 −= C  is the second invariant of the modified right Cauchy-Green deformation 

tensor C ; 

3IJ = , where CI det3 = is the third invariant of the right Cauchy-Green deformation 

tensorC . 

Parameter d is also known as a material incompressibility parameter. 
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APPENDIX C 

USERMAT3D FORTRAN CODE 

      subroutine usermat3d( 
     &                   matId, elemId,kDomIntPt, kLayer, kSectPt, 
     &                   ldstep,isubst,keycut, 
     &                   nDirect,nShear,ncomp,nStatev,nProp, 
     &                   Time,dTime,Temp,dTemp, 
     &                   stress,ustatev,dsdePl,sedEl,sedPl,epseq, 
     &                   Strain,dStrain, epsPl, prop, coords,  
     &                   rotateM, defGrad_t, defGrad, 
     &                   tsstif, epsZZ, 
     &                   var1, var2, var3, var4, var5, 
     &                   var6, var7, var8) 
c************************************************************************* 
c 
c     input arguments 
c     =============== 
c      matId     (int,sc,i)               material # 
c      elemId    (int,sc,i)               element # 
c      kDomIntPt (int,sc,i)               "k"th domain integration point 
c      kLayer    (int,sc,i)               "k"th layer 
c      kSectPt   (int,sc,i)               "k"th Section point 
c      ldstep    (int,sc,i)               load step number 
c      isubst    (int,sc,i)               substep number 
c      nDirect   (int,sc,in)              # of direct components 
c      nShear    (int,sc,in)              # of shear components 
c      ncomp     (int,sc,in)              nDirect + nShear 
c      nstatev   (int,sc,l)               Number of state variables 
c      nProp     (int,sc,l)               Number of material ocnstants 
c 
c      Temp      (dp,sc,in)               temperature at beginning of 
c                                         time increment 
c      dTemp     (dp,sc,in)               temperature increment  
c      Time      (dp,sc,in)               time at beginning of increment (t) 
c      dTime     (dp,sc,in)               current time increment (dt) 
c 
c      Strain   (dp,ar(ncomp),i)          Strain at beginning of time  
c                                                                increment 
c      dStrain  (dp,ar(ncomp),i)          Strain increment 
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c      prop     (dp,ar(nprop),i)          Material constants defined by  
c                                                                    TB,USER 
c      coords   (dp,ar(3),i)              current coordinates 
c      rotateM  (dp,ar(3,3),i)            Rotation matrix for finite  
c                                                          deformation update 
c                                         Used only in 5.6 and 5.7 
c                                         Unit matrix in 6.0 and late version 
c      defGrad_t(dp,ar(3,3),i)            Deformation gradient at time t 
c      defGrad  (dp,ar(3,3),i)            Deformation gradient at time t+dt 
c 
c     input output arguments               
c     ======================              
c      stress   (dp,ar(nTesn),io)         stress 
c      ustatev   (dp,ar(nstatev),io)      user state variable 
c            ustatev(1)                     - equivalent plastic strain 
c            ustatev(2) - statev(1+ncomp)   - plastic strain vector 
c            ustatev(nStatev)               - von-Mises stress 
c      sedEl    (dp,sc,io)                elastic work 
c      sedPl    (dp,sc,io)                plastic work 
c      epseq    (dp,sc,io)                equivalent plastic strain 
c      tsstif   (dp,ar(2),io)             transverse shear stiffness 
c                                         tsstif(1) - Gxz 
c                                         tsstif(2) - Gyz 
c                                         tsstif(1) is also used to calculate  
c                                                                   hourglass 
c                                         stiffness, this value must be  
c                                                            defined when low 
c                                         order element, such as 181, 182,  
c                                                            185 with uniform  
c                                         integration is used. 
c      var?     (dp,sc,io)                not used, they are reserved  
c                                                                   arguments  
c                                         for further development 
c 
c     output arguments 
c     ================ 
c      keycut   (int,sc,io)               loading bisect/cut control 
c                                         0 - no bisect/cut 
c                                         1 - bisect/cut  
c                                         (factor will be determined by ANSYS  
c                                                           solution control) 
c      dsdePl   (dp,ar(ncomp,ncomp),io)   material jacobian matrix 
c      epsZZ    (dp,sc,o)                 strain epsZZ for plane stress, 
c                                         define it when accounting for  
c                                                            thickness change  
c                                         in shell and plane stress states 
c 
c************************************************************************* 
c 
c      ncomp   6   for 3D  (nshear=3) 
c      ncomp   4   for plane strain or axisymmetric (nShear = 1) 
c      ncomp   3   for plane stress (nShear = 1) 
c      ncomp   3   for 3d beam      (nShear = 2) 
c      ncomp   1   for 1D (nShear = 0) 
c 
c      stresss and strains, plastic strain vectors 
c          11, 22, 33, 12, 23, 13    for 3D 
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c          11, 22, 33, 12            for plane strain or axisymmetry 
c          11, 22, 12                for plane stress 
c          11, 13, 12                for 3d beam 
c          11                        for 1D 
c 
c      material jacobian matrix 
c        3D 
c           dsdePl    |  1111   1122   1133   1112   1123   1113 | 
c           dsdePl    |  2211   2222   2233   2212   2223   2213 | 
c           dsdePl    |  3311   3322   3333   3312   3323   3313 | 
c           dsdePl    |  1211   1222   1233   1212   1223   1213 | 
c           dsdePl    |  2311   2322   2333   2312   2323   2313 | 
c           dsdePl    |  1311   1322   1333   1312   1323   1313 | 
c        plane strain or axisymmetric (11, 22, 33, 12) 
c           dsdePl    |  1111   1122   1133   1112 | 
c           dsdePl    |  2211   2222   2233   2212 | 
c           dsdePl    |  3311   3322   3333   3312 | 
c           dsdePl    |  1211   1222   1233   1212 | 
c        plane stress (11, 22, 12) 
c           dsdePl    |  1111   1122   1112 | 
c           dsdePl    |  2211   2222   2212 | 
c           dsdePl    |  1211   1222   1212 | 
c        3d beam (11, 13, 12) 
c           dsdePl    |  1111   1113   1112 | 
c           dsdePl    |  1311   1313   1312 | 
c           dsdePl    |  1211   1213   1212 | 
c        1d 
c           dsdePl    |  1111 | 
c 
c************************************************************************* 
#include "impcom.inc" 
c 
      INTEGER           
     &                 matId, elemId, 
     &                 kDomIntPt, kLayer, kSectPt, 
     &                 ldstep,isubst,keycut, 
     &                 nDirect,nShear,ncomp,nStatev,nProp 
      DOUBLE PRECISION  
     &                 Time,    dTime,   Temp,    dTemp, 
     &                 sedEl,   sedPl,   epseq,   epsZZ 
      DOUBLE PRECISION  
     &                 stress  (ncomp  ), ustatev (nStatev), 
     &                 dsdePl  (ncomp,ncomp), 
     &                 Strain  (ncomp  ), dStrain (ncomp  ),  
     &                 epsPl   (ncomp  ), prop    (nProp  ),  
     &                 coords  (3),       rotateM (3,3), 
     &                 defGrad (3,3),     defGrad_t(3,3), 
     &                 tsstif  (2) 
c 
c***************** User defined part ************************************* 
c 
c --- functions 
c 
      DOUBLE PRECISION DoubleDot,det,delta,Trace 
c 
c --- local variables 
c 
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c Scalars 
      DOUBLE PRECISION JJ,alpha1,alpha2,gamma1,gamma2,sa,sb, 
     & s,d,I1,I2,JJ2,Jsa,p,ptilda 
c 2nd order tensors 
      DOUBLE PRECISION Identity(3,3),FT(3,3),FBar(3,3), 
     & FBarT(3,3),C(3,3),Cinv(3,3),CBar(3,3),SigmaVol(3,3), 
     & SBar(3,3),T1(3,3),Siso(3,3),SigmaIsoVoight(3,3), 
     & SigmaIso(3,3),Fsa(3,3),FsaInv(3,3),F2(3,3),C2(3,3),F2t(3,3), 
     & C2inv(3,3),FsaBar(3,3),FsaBarInv(3,3), 
     & FsaBarInvT(3,3),C2Bar(3,3),SBar1(3,3),Siso1(3,3), 
     & SigmaIso1(3,3),SigmaIsoVoight1(3,3),SBar2(3,3),Siso2(3,3), 
     & SigmaIso2(3,3),SigmaIsoVoight2(3,3) 
c 4th order tensors 
      DOUBLE PRECISION II(3,3,3,3),Cref(3,3,3,3),Cspac(3,3,3,3), 
     & Cref1(3,3,3,3),Cspac1(3,3,3,3),Cref2(3,3,3,3),Cspac2(3,3,3,3), 
     & CC(3,3,3,3),CCC(3,3,3,3),Cvol(3,3,3,3),TT1(3,3,3,3),TT2(3,3,3,3) 
c 
c 
      DOUBLE PRECISION var1, var2, var3, var4, var5, 
     &                 var6, var7, var8 
      INTEGER          i,j,k,l,m,IO,ic,jc,kc,lc 
c 
c************************************************************************* 
c 
c Form identity matrix 
      do i=1,3 
       do j=1,3 
        Identity(i,j)=delta(i,j) 
       end do 
      end do 
c Input material parameters 
      alpha1=prop(1) 
      alpha2=prop(2) 
      gamma1=prop(3) 
      gamma2=prop(4) 
      sa=prop(5) 
      sb=prop(6) 
      d=prop(7) 
c Calculate determinant of defGrad 
      JJ=det(defGrad) 
c Calculate right Cauchy-Green deformation tensor 
      call Transpose(FT,DefGrad) 
      call MulTens(C,FT,DefGrad,1.0d0) 
c Calculate C-inverse 
      call Inverse(Cinv,C,1.0d0) 
c Calculate the barred values 
      call ScalTensor(FBar,defGrad,JJ**(-1.0d0/3.0d0)) 
      call Transpose(FBarT,FBar) 
      call ScalTensor(CBar,C,JJ**(-2.0d0/3.0d0)) 
c Calculate the invariants 
      call MulTens(T1,CBar,CBar,1.0d0) 
      I1=Trace(CBar) 
c Calculate volumetric part of Cauchy stress and elastic tensor 
      p=2.0d0/d*(JJ-1.0d0) 
      ptilda=2.0d0/d*(2.0d0*JJ-1.0d0) 
      call ScalTensor(SigmaVol,Identity,p) 
      call TensorProduct(TT1,Cinv,Cinv,JJ*ptilda) 
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      call WheelProduct(TT2,Cinv,-2.0d0*p*JJ) 
      call AddTens4(CVol,TT1,TT2) 
c Deformation state parameter 
      s=I1-3.0d0 
      ustatev(11)=s 
c Determine active deformation mechanism 
      IF (s.LT.sa) THEN 
       if (ustatev(10).ne.0) ustatev(10)=0 
       call GetStress(IO,alpha1,gamma1,I1,JJ,C,Cinv,defGrad,FT, 
     & SigmaIsoVoight,SigmaIso,Siso,SBar) 
c *************************************************************        
       call GetStiffness(IO,alpha1,gamma1,I1,JJ,C,Cinv,defGrad,Siso, 
     & SBar,Cref,Cspac) 
      ELSE 
c Second or third deformation mechanism 
       if (ustatev(10).eq.0) then 
        IF (s.LT.sb) ustatev(10) = 1  
        if (s.ge.sb) ustatev(10) = 2 
        call ScalTensor(Fsa,defGrad_t,1.0d0) 
        ustatev(1)=Fsa(1,1) 
        ustatev(2)=Fsa(1,2) 
        ustatev(3)=Fsa(1,3) 
        ustatev(4)=Fsa(2,1) 
        ustatev(5)=Fsa(2,2) 
        ustatev(6)=Fsa(2,3) 
        ustatev(7)=Fsa(3,1) 
        ustatev(8)=Fsa(3,2) 
        ustatev(9)=Fsa(3,3) 
       else 
        Fsa(1,1)=ustatev(1) 
        Fsa(1,2)=ustatev(2) 
        Fsa(1,3)=ustatev(3) 
        Fsa(2,1)=ustatev(4) 
        Fsa(2,2)=ustatev(5) 
        Fsa(2,3)=ustatev(6) 
        Fsa(3,1)=ustatev(7) 
        Fsa(3,2)=ustatev(8) 
        Fsa(3,3)=ustatev(9) 
       end if 
       Jsa=det(Fsa) 
       call Inverse(FsaInv,Fsa,1.0d0) 
       call MulTens(F2,defGrad,FsaInv,1.0d0) 
       call Transpose(F2t,F2) 
       call MulTens(C2,F2t,F2,1.0d0) 
       JJ2=det(F2) 
       call Inverse(C2Inv,C2,1.0d0) 
       call ScalTensor(FsaBar,Fsa,Jsa**(-1.0d0/3.0d0)) 
       call Inverse(FsaBarInv,FsaBar,1.0d0) 
       call Transpose(FsaBarInvT,FsaBarInv) 
       call MulTens(T1,FsaBarInvT,CBar,1.0d0) 
       call MulTens(C2Bar,T1,FsaBarInv,1.0d0) 
       I2=Trace(C2Bar) 
       IF (s.GE.sb) THEN 
c Third deformation mechanism 
        ustatev(10) = 2 
        call GetStress(IO,alpha2,gamma2,I2,JJ2,C2,C2inv,F2,F2t, 
     & SigmaIsoVoight,SigmaIso,Siso,SBar) 
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        call GetStiffness(IO,alpha2,gamma2,I2,JJ2,C2,C2inv,F2,Siso, 
     & SBar,Cref,Cspac) 
       ELSE 
c Second deformation mechanism 
        ustatev(10) = 1 
        call GetStress(IO,alpha1,gamma1,I1,JJ,C,Cinv,defGrad,FT, 
     & SigmaIsoVoight1,SigmaIso1,Siso1,SBar1) 
        call GetStiffness(IO,alpha1,gamma1,I1,JJ,C,Cinv,defGrad,Siso1, 
     & SBar1,Cref1,Cspac1) 
        call GetStress(IO,alpha2,gamma2,I2,JJ2,C2,C2inv,F2,F2t, 
     & SigmaIsoVoight2,SigmaIso2,Siso2,SBar2) 
        call GetStiffness(IO,alpha2,gamma2,I2,JJ2,C2,C2inv,F2,Siso2, 
     & SBar2,Cref2,Cspac2) 
        call AddTensSc(SigmaIso,SigmaIso1,SigmaIso2,1.0d0,1.0d0) 
        call AddTens4(Cspac,Cspac1,Cspac2) 
       END IF 
      END IF 
c Form output stress vector 
      stress(1)=SigmaVol(1,1)+SigmaIso(1,1) 
      stress(2)=SigmaVol(2,2)+SigmaIso(2,2) 
      stress(3)=SigmaVol(3,3)+SigmaIso(3,3) 
      stress(4)=SigmaVol(1,2)+SigmaIso(1,2) 
      IF (ncomp.eq.6) THEN 
       stress(5)=SigmaVol(2,3)+SigmaIso(2,3) 
       stress(6)=SigmaVol(1,3)+SigmaIso(1,3) 
      END IF 
c Calculate spatial volumetric tangent moduli (push-forward) 
      do i=1,3 
        do j=1,3 
          do k=1,3 
            do l=1,3 
              CC(i,j,k,l)=0.0d0 
              do ic=1,3 
                do jc=1,3 
                  do kc=1,3 
                    do lc=1,3 
                      CC(i,j,k,l)=CC(i,j,k,l)+ 
     & defGrad(i,ic)*defGrad(j,jc)*defGrad(k,kc)*defGrad(l,lc)* 
     & CVol(ic,jc,kc,lc)/JJ 
                    end do 
                  end do 
                end do 
              end do 
            end do 
          end do 
        end do 
      end do 
c Update stiffness 
      call AddTens4(CCC,Cspac,CC) 
      dsdePl(1,1)=CCC(1,1,1,1) 
      dsdePl(1,2)=CCC(1,1,2,2) 
      dsdePl(1,3)=CCC(1,1,3,3) 
      dsdePl(1,4)=CCC(1,1,1,2) 
      dsdePl(2,1)=CCC(2,2,1,1) 
      dsdePl(2,2)=CCC(2,2,2,2) 
      dsdePl(2,3)=CCC(2,2,3,3) 
      dsdePl(2,4)=CCC(2,2,1,2) 
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      dsdePl(3,1)=CCC(3,3,1,1) 
      dsdePl(3,2)=CCC(3,3,2,2) 
      dsdePl(3,3)=CCC(3,3,3,3) 
      dsdePl(3,4)=CCC(3,3,1,2) 
      dsdePl(4,1)=CCC(1,2,1,1) 
      dsdePl(4,2)=CCC(1,2,2,2) 
      dsdePl(4,3)=CCC(1,2,3,3) 
      dsdePl(4,4)=CCC(1,2,1,2) 
      IF (ncomp.eq.6) THEN 
       dsdePl(5,1)=CCC(2,3,1,1) 
       dsdePl(5,2)=CCC(2,3,2,2) 
       dsdePl(5,3)=CCC(2,3,3,3) 
       dsdePl(5,4)=CCC(2,3,1,2) 
       dsdePl(5,5)=CCC(2,3,2,3) 
       dsdePl(5,6)=CCC(2,3,1,3) 
       dsdePl(6,1)=CCC(1,3,1,1) 
       dsdePl(6,2)=CCC(1,3,2,2) 
       dsdePl(6,3)=CCC(1,3,3,3) 
       dsdePl(6,4)=CCC(1,3,1,2) 
       dsdePl(6,5)=CCC(1,3,2,3) 
       dsdePl(6,6)=CCC(1,3,1,3) 
       dsdePl(1,5)=CCC(1,1,2,3) 
       dsdePl(1,6)=CCC(1,1,1,3) 
       dsdePl(2,5)=CCC(2,2,2,3) 
       dsdePl(2,6)=CCC(2,2,1,3) 
       dsdePl(3,5)=CCC(3,3,2,3) 
       dsdePl(3,6)=CCC(3,3,1,3) 
       dsdePl(4,5)=CCC(1,2,2,3) 
       dsdePl(4,6)=CCC(1,2,1,3) 
      END IF 
c That's all folks 
      return 
      end 
c ******************************************************************** 
      SUBROUTINE MULTENS(TensRes,Tens1,Tens2,fact) 
      DOUBLE PRECISION TensRes(3,3),Tens1(3,3),Tens2(3,3),fact 
      INTEGER i,j,k 
      do i=1,3 
        do j=1,3 
          TensRes(i,j)=0.0d0 
          do k=1,3 
            TensRes(i,j)=TensRes(i,j)+Tens1(i,k)*Tens2(k,j) 
          end do 
          TensRes(i,j)=TensRes(i,j)*fact 
        end do 
      end do 
      END 
c 
      SUBROUTINE WheelProduct(TensRes,Tens1,fact) 
      DOUBLE PRECISION TensRes(3,3,3,3),Tens1(3,3),fact 
      INTEGER i,j,k,l 
      do i=1,3 
        do j=1,3 
          do k=1,3 
            do l=1,3 
              TensRes(i,j,k,l)=fact/2.0d0*(Tens1(i,k)*Tens1(j,l)+ 
     & Tens1(i,l)*Tens1(j,k)) 
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            end do 
          end do 
        end do 
      end do 
      END 
c 
      SUBROUTINE TensorProduct(TensRes,Tens1,Tens2,fact) 
      DOUBLE PRECISION TensRes(3,3,3,3),Tens1(3,3),Tens2(3,3),fact 
      INTEGER i,j,k,l 
      do i=1,3 
        do j=1,3 
          do k=1,3 
           do l=1,3 
            TensRes(i,j,k,l)=fact*Tens1(i,j)*Tens2(k,l) 
           end do 
          end do 
        end do 
      end do 
      END 
c 
      SUBROUTINE ScalTensor(TensRes,Tensr,fact) 
      DOUBLE PRECISION TensRes(3,3),Tensr(3,3),fact 
      INTEGER i,j 
      do i=1,3 
        do j=1,3 
          TensRes(i,j)=Tensr(i,j)*fact 
        end do 
      end do 
      END 
c 
      SUBROUTINE ScalTens4(TensRes,Tensr,fact) 
      DOUBLE PRECISION TensRes(3,3,3,3),Tensr(3,3,3,3),fact 
      INTEGER i,j,k,l 
      do i=1,3 
        do j=1,3 
          do k=1,3 
            do l=1,3 
              TensRes(i,j,k,l)=Tensr(i,j,k,l)*fact 
            end do 
          end do 
        end do 
      end do 
      END 
c 
      Function DoubleDot(Tens1,Tens2) 
      DOUBLE PRECISION Tens1(3,3),Tens2(3,3),DoubleDot 
      INTEGER i,j 
      DoubleDot=0.0d0 
      do i=1,3 
        do j=1,3 
          DoubleDot=DoubleDot+Tens1(i,j)*Tens2(i,j) 
        end do 
      end do 
      return 
      END 
c 
      SUBROUTINE DoubleDot4(C,A,B,fact) 
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      DOUBLE PRECISION A(3,3,3,3),B(3,3,3,3),C(3,3,3,3) 
      DOUBLE PRECISION fact 
      INTEGER i,j,k,l,m,n 
      do i=1,3 
        do j=1,3 
          do k=1,3 
            do l=1,3 
              C(i,j,k,l)=0.0d0 
              do m=1,3 
                do n=1,3 
                  C(i,j,k,l)=C(i,j,k,l)+fact*A(i,j,m,n)*B(m,n,k,l) 
                end do 
              end do 
            end do 
          end do 
        end do 
      end do 
      END 
c 
      SUBROUTINE T4ddT2(Tres,T4,T2,fact) 
      DOUBLE PRECISION T4(3,3,3,3),T2(3,3),Tres(3,3) 
      DOUBLE PRECISION fact 
      INTEGER i,j,k,l 
      do i=1,3 
        do j=1,3 
          Tres(i,j)=0.0d0 
          do k=1,3 
            do l=1,3 
              Tres(i,j)=Tres(i,j)+fact*T4(i,j,k,l)*T2(k,l) 
            end do 
          end do 
        end do 
      end do 
      END 
c 
      SUBROUTINE T2ddT4(Tres,T2,T4,fact) 
      DOUBLE PRECISION T4(3,3,3,3),T2(3,3),Tres(3,3) 
      DOUBLE PRECISION fact 
      INTEGER i,j,k,l 
      do i=1,3 
        do j=1,3 
          Tres(i,j)=0.0d0 
          do k=1,3 
            do l=1,3 
              Tres(i,j)=Tres(i,j)+fact*T4(k,l,i,j)*T2(k,l) 
            end do 
          end do 
        end do 
      end do 
      END 
c 
      Function Trace(Tensor) 
      DOUBLE PRECISION Tensor(3,3),Trace 
      INTEGER i 
      Trace=0.0d0 
      do i=1,3 
        Trace=Trace+Tensor(i,i) 
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      end do 
      return 
      END 
c 
      SUBROUTINE Transpose(TensRes,Tensor) 
      DOUBLE PRECISION TensRes(3,3),Tensor(3,3) 
      INTEGER i,j 
      do i=1,3 
        do j=1,3 
          TensRes(i,j)=Tensor(j,i) 
        end do 
      end do 
      END 
c 
      SUBROUTINE DEV(TensRes,Tensor) 
      DOUBLE PRECISION TensRes(3,3),Tensor(3,3),p 
      p=Tensor(1,1)+Tensor(2,2)+Tensor(3,3) 
      TensRes(1,1)=Tensor(1,1)-p/3.0d0 
      TensRes(3,3)=Tensor(3,3)-p/3.0d0 
      TensRes(2,2)=Tensor(2,2)-p/3.0d0 
      TensRes(1,2)=Tensor(1,2) 
      TensRes(2,1)=Tensor(2,1) 
      TensRes(3,1)=Tensor(3,1) 
      TensRes(1,3)=Tensor(1,3) 
      TensRes(2,3)=Tensor(2,3) 
      TensRes(3,2)=Tensor(3,2) 
      END  
c 
      SUBROUTINE EquateTens(Tens1,Tens2) 
      DOUBLE PRECISION Tens1(3,3),Tens2(3,3) 
      INTEGER i,j 
      do i=1,3 
        do j=1,3 
          Tens1(i,j)=Tens2(i,j) 
        end do 
      end do 
      END 
c 
      SUBROUTINE ADDTENSSC(TensRes,Tens1,Tens2,fact1,fact2) 
      DOUBLE PRECISION TensRes(3,3),Tens1(3,3),Tens2(3,3),fact1,fact2 
      INTEGER i,j 
      do i=1,3 
        do j=1,3 
          TensRes(i,j)=Tens1(i,j)*fact1+Tens2(i,j)*fact2 
        end do 
      end do 
      END 
c 
      SUBROUTINE ADDTENS4(TensRes,Tens1,Tens2) 
      DOUBLE PRECISION TensRes(3,3,3,3),Tens1(3,3,3,3),Tens2(3,3,3,3) 
      INTEGER i,j,k,l 
      do i=1,3 
        do j=1,3 
          do k=1,3 
            do l=1,3 
              TensRes(i,j,k,l)=Tens1(i,j,k,l)+Tens2(i,j,k,l) 
            end do 
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          end do 
        end do 
      end do 
      END 
c 
      FUNCTION delta(i,j) 
      DOUBLE PRECISION delta 
      INTEGER i,j 
      IF (i.eq.j) delta=1.0d0 
      IF (i.ne.j) delta=0.0d0 
      RETURN 
      END 
c 
      FUNCTION det(T) 
      DOUBLE PRECISION det,T(3,3) 
      det=T(1,1)*T(2,2)*T(3,3)+T(2,1)*T(3,2)*T(1,3)+T(1,2)*T(2,3)*T(3,1) 
     & -T(1,2)*T(2,1)*T(3,3)-T(2,3)*T(3,2)*T(1,1)-T(3,1)*T(2,2)*T(1,3) 
      RETURN 
      END 
c Returns Inverse of the matrix 
      SUBROUTINE Inverse(TensRes,Tensr,fact) 
      DOUBLE PRECISION TensRes(3,3),Tensr(3,3),fact,d,det 
      INTEGER i,j 
      TensRes(1,1)=Tensr(2,2)*Tensr(3,3)-Tensr(2,3)*Tensr(3,2) 
      TensRes(1,2)=Tensr(1,3)*Tensr(3,2)-Tensr(3,3)*Tensr(1,2) 
      TensRes(1,3)=Tensr(1,2)*Tensr(2,3)-Tensr(2,2)*Tensr(1,3) 
      TensRes(2,1)=Tensr(2,3)*Tensr(3,1)-Tensr(3,3)*Tensr(2,1) 
      TensRes(2,2)=Tensr(1,1)*Tensr(3,3)-Tensr(1,3)*Tensr(3,1) 
      TensRes(2,3)=Tensr(1,3)*Tensr(2,1)-Tensr(2,3)*Tensr(1,1) 
      TensRes(3,1)=Tensr(2,1)*Tensr(3,2)-Tensr(2,2)*Tensr(3,1) 
      TensRes(3,2)=Tensr(1,2)*Tensr(3,1)-Tensr(1,1)*Tensr(3,2) 
      TensRes(3,3)=Tensr(2,2)*Tensr(1,1)-Tensr(2,1)*Tensr(1,2) 
      d=det(Tensr) 
      do j=1,3 
        do i=1,3 
          TensRes(i,j)=TensRes(i,j)*fact/d 
        end do 
      end do 
      return 
      end 
c 
      SUBROUTINE Voight(Tss,Ttttt) 
      Double Precision Tss(6,6),Ttttt(3,3,3,3) 
      Tss(1,1)=Ttttt(1,1,1,1) 
      Tss(1,2)=Ttttt(1,1,2,2) 
      Tss(1,3)=Ttttt(1,1,3,3) 
      Tss(1,4)=Ttttt(1,1,1,2) 
      Tss(1,5)=Ttttt(1,1,2,3) 
      Tss(1,6)=Ttttt(1,1,1,3) 
      Tss(2,1)=Ttttt(2,2,1,1) 
      Tss(2,2)=Ttttt(2,2,2,2) 
      Tss(2,3)=Ttttt(2,2,3,3) 
      Tss(2,4)=Ttttt(2,2,1,2) 
      Tss(2,5)=Ttttt(2,2,2,3) 
      Tss(2,6)=Ttttt(2,2,1,3) 
      Tss(3,1)=Ttttt(3,3,1,1) 
      Tss(3,2)=Ttttt(3,3,2,2) 
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      Tss(3,3)=Ttttt(3,3,3,3) 
      Tss(3,4)=Ttttt(3,3,1,2) 
      Tss(3,5)=Ttttt(3,3,2,3) 
      Tss(3,6)=Ttttt(3,3,1,3) 
      Tss(4,1)=Ttttt(1,2,1,1) 
      Tss(4,2)=Ttttt(1,2,2,2) 
      Tss(4,3)=Ttttt(1,2,3,3) 
      Tss(4,4)=Ttttt(1,2,1,2) 
      Tss(4,5)=Ttttt(1,2,2,3) 
      Tss(4,6)=Ttttt(1,2,1,3) 
      Tss(5,1)=Ttttt(2,3,1,1) 
      Tss(5,2)=Ttttt(2,3,2,2) 
      Tss(5,3)=Ttttt(2,3,3,3) 
      Tss(5,4)=Ttttt(2,3,1,2) 
      Tss(5,5)=Ttttt(2,3,2,3) 
      Tss(5,6)=Ttttt(2,3,1,3) 
      Tss(6,1)=Ttttt(1,3,1,1) 
      Tss(6,2)=Ttttt(1,3,2,2) 
      Tss(6,3)=Ttttt(1,3,3,3) 
      Tss(6,4)=Ttttt(1,3,1,2) 
      Tss(6,5)=Ttttt(1,3,2,3) 
      Tss(6,6)=Ttttt(1,3,1,3) 
      end 
c ******************************************************************** 
      SUBROUTINE GetStress(IO,alpha,gamma,I,JJ,C,Cinv,F,FT, 
     & SigmaIsoVoight,SigmaIso,Siso,SBar) 
      DOUBLE PRECISION alpha,gamma,I,JJ,aaa,delta,DoubleDot 
      DOUBLE PRECISION C(3,3),Cinv(3,3),SigmaIso(3,3),SigmaIsoVoight(6), 
     & Siso(3,3),Sbar(3,3),T1(3,3),T2(3,3),F(3,3),FT(3,3),Identity(3,3) 
      INTEGER ic,j,IO 
c Form identity matrix 
      do ic=1,3 
       do j=1,3 
        Identity(ic,j)=delta(ic,j) 
       end do 
      end do 
c Calculate SBar 
      aaa=alpha*exp(gamma*(I-3.0d0)) 
      call ScalTensor(SBar,Identity,aaa) 
c Calculate Siso 
      call ScalTensor(T1,Sbar,JJ**(-2.0d0/3.0d0)) 
      aaa=-JJ**(-2.0d0/3.0d0)/3.0d0*DoubleDot(C,Sbar) 
      call ScalTensor(T2,Cinv,aaa) 
      call AddTensSc(Siso,T1,T2,1.0d0,1.0d0) 
c Calculate SigmaIso 
      call MulTens(T1,F,Siso,JJ**(-1.0d0)) 
      call MulTens(SigmaIso,T1,FT,1.0d0) 
c Form output stress vector 
      SigmaIsoVoight(1)=SigmaIso(1,1) 
      SigmaIsoVoight(2)=SigmaIso(2,2) 
      SigmaIsoVoight(3)=SigmaIso(3,3) 
      SigmaIsoVoight(4)=SigmaIso(1,2) 
      SigmaIsoVoight(5)=SigmaIso(2,3) 
      SigmaIsoVoight(6)=SigmaIso(1,3) 
      END 
c ******************************************************************** 
      SUBROUTINE GetStiffness(IO,alpha,gamma,II,JJ,C,Cinv,F,Siso,SBar, 
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     & Cref,Cspac) 
      DOUBLE PRECISION alpha,gamma,II,JJ,aaa,bbb,delta,DoubleDot 
      DOUBLE PRECISION C(3,3),Cinv(3,3),Siso(3,3),Sbar(3,3), 
     & T21(3,3),T22(3,3),F(3,3),Identity(3,3) 
      DOUBLE PRECISION Cbar4(3,3,3,3),Cref(3,3,3,3),Cspac(3,3,3,3), 
     & TT1(3,3,3,3),TT2(3,3,3,3),TT3(3,3,3,3),TT4(3,3,3,3), 
     & T41(3,3,3,3),T42(3,3,3,3),T43(3,3,3,3),T44(3,3,3,3), 
     & ProjTtilda(3,3,3,3) 
      INTEGER i,j,k,l,ic,jc,kc,lc,IO 
c Form identity matrix 
      do i=1,3 
       do j=1,3 
        Identity(i,j)=delta(i,j) 
       end do 
      end do 
c Calculate CBar4 
      aaa=2.0d0*alpha*gamma* 
     & exp(gamma*(II-3.0d0))*JJ**(-4.0d0/3.0d0) 
      call TensorProduct(CBar4,Identity,Identity,aaa) 
c Calculate Cref 
      call TensorProduct(TT1,Cinv,Cinv,-1.0d0/3.0d0) 
      call WheelProduct(TT2,Cinv,1.0d0) 
      call AddTens4(ProjTtilda,TT1,TT2) 
      call TensorProduct(TT1,Cinv,Siso,-2.0d0/3.0d0) 
      call TensorProduct(TT2,Siso,Cinv,-2.0d0/3.0d0) 
      aaa=2.0d0/3.0d0*JJ**(-2.0d0/3.0d0)*DoubleDot(SBar,C) 
      call ScalTens4(TT3,ProjTtilda,aaa) 
      call AddTens4(TT4,TT1,TT2) 
      call AddTens4(TT1,TT3,TT4) 
      call T4ddT2(T21,CBar4,C,1.0d0) 
      call TensorProduct(T41,Cinv,T21,-1.0d0/3.0d0) 
      call TensorProduct(T42,T21,Cinv,-1.0d0/3.0d0) 
      call AddTens4(T43,T41,T42) 
      call T2ddT4(T22,C,CBar4,1.0d0) 
      bbb=1.0d0/9.0d0*DoubleDot(T22,C) 
      call TensorProduct(T44,Cinv,Cinv,bbb) 
      call AddTens4(T42,T44,T43) 
      call AddTens4(TT3,T42,CBar4) 
      call AddTens4(Cref,TT1,TT3) 
c Calculate spatial DEViatoric tangent moduli (push-forward) 
      do i=1,3 
        do j=1,3 
          do k=1,3 
            do l=1,3 
              Cspac(i,j,k,l)=0.0d0 
              do ic=1,3 
                do jc=1,3 
                  do kc=1,3 
                    do lc=1,3 
                      Cspac(i,j,k,l)=Cspac(i,j,k,l)+ 
     & F(i,ic)*F(j,jc)*F(k,kc)*F(l,lc)* 
     & Cref(ic,jc,kc,lc)/JJ 
                    end do 
                  end do 
                end do 
              end do 
            end do 
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          end do 
        end do 
      end do 
      END 
c ******************************************************************** 
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APPENDIX D 

NOTATION 

Notation adopted in this dissertation is not entirely orthodox and may require additional 

comments. Traditionally, in the English language scientific literature vectors are denoted by bold 

lowercase letters (i.e. v), and tensors are denoted by bold capital letters (i.e. A). No distinction is 

usually made between second-order and higher-order tensors. Further confusion is caused by the 

fact that certain tensors (i.e. Cauchy stress) are commonly denoted by a lower-case letter (i.e. σ). 

In order to avoid confusion, as well as to satisfy his own aesthetic preferences, the author of this 

work uses notation more commonly found in Russian scientific texts. Thus in this manuscript, 

vectors are underlined (i.e. v), second-order tensors are underlined twice (i.e. A ), and for 

differentiating higher-order tensors from second-order tensors, a left superscript (denoting the 

order of the tensor) is utilized (i.e. P4 ). 

The following convention is adopted throughout the text for tensor operations: 

: inner product 

· scalar product 

× vector product 

⊗  tensor product 
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