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Traditionally, computationally intense algebraic functions such as LU factorization are 

solved using complex systems such as supercomputers, parallel processing systems, and non-

dedicated computing clusters.  While these solutions are adequate for some problems, they 

typically suffer from classic parallel processing issues such as communication overhead, 

complex scheduling algorithms, and cost.  Moreover, they are not feasible for embedded 

applications.   

Extremely high performance solutions are sometimes implemented using costly, custom 

hardware such as Application Specific Integrated Circuits (ASICs).  Unfortunately, the design, 

implementation, and verification of ASICs has become cost prohibitive and such solutions are 

only feasible if the end design is to be manufactured in very high volumes.  As a result, many 

proposed architectures to solve specific problems lie dormant because they are simply too 

expensive to realize. 

In recent years, advancements in Field Programmable Gate Array (FPGA) technology 

allow engineers to map complex algorithms to logic gates while achieving performance similar 

to ASIC technology.  This thesis demonstrates the feasibility of the implementation of a three 

dimensional pipeline designed to solve LU factorization using FPGAs based on an architecture 
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proposed nearly 10 years ago when a technology to implement such an architecture either did not 

exist or was too costly to implement.   
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1.0  INTRODUCTION 

1.1 OVERVIEW OF THE PROBLEM 

As demand for computational performance increases, new technologies and data 

processing architectures are required.  While traditional, programmable CPUs obviously work 

extremely well for many real world applications, some problems are only “realistically” solved 

using custom hardware solutions.   

A programmable CPU is not designed to be the optimal solution for application specific 

problems but rather flexibility.  Programmable CPUs, at best, can only emulate what an 

application specific solution could provide without the resulting performance gains.  As a result, 

engineers develop custom hardware solutions for these application specific problems when 

warranted. 

Unfortunately, custom hardware solutions tend to have problems of their own.  A 

countless number of custom computing architectures have been proposed over the years.  

However, the underlying technologies required to implement these computing architectures are 

either too primitive, cost prohibitive or simply do not exist at the time they are devised.    As a 

result, most of these architectures lie dormant simply waiting to be realized so that their full 

potential can be unleashed.   
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Fortunately, the past ten years has seen explosive growth in Field Programmable Gate 

Array (FPGA) technology.  In the past, the need for high speed digital circuits typically 

translated into a requirement for an Application Specific Integrated Circuit (ASIC).  Not only do 

ASICs have significant costs in terms of manufacturing, they also require a significant amount of 

manpower for realization of the device.  Modern ASICs require teams of engineers to design, 

implement, and verify a complex digital system.   

FPGAs lighten this manpower requirement in that they are reconfigurable computing 

platforms: they do not require the verification efforts ASICs require nor do they require the up 

front costs involved with ASIC manufacturing.  If a problem is discovered in an FPGA design, 

the problem can be fixed without having to remanufacture the device.   

More importantly, FPGAs have achieved a level of performance on par with ASICs.  For 

example, the Xilinx Virtex 5 SXT device provides the end user with DSP MAC functions 

capable of running up to 550MHz as well as high speed serial transceivers running at 3.2Gbps 

[1].  Similar performance is available by competing products from other FPGA vendors such as 

Altera and Lattice Semiconductor.  The end result is that many custom, high performance 

computing platforms can now be realized with little risk and lower cost. 

Despite this technology providing vast, new computing resources, skeptics may still 

question the overall feasibility of such a technology.  As a result, this thesis aims to demonstrate 

the application of FPGAs on an architecture proposed almost ten years ago [1] when a 

technology for implementing the proposed architecture either did not exist, or existed but was far 

too cost prohibitive to implement at the time.  More importantly, this particular application and 

architecture has significant potential for use in modern, real time, embedded systems. 
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1.2 THESIS OBJECTIVE 

Solutions to complex mathematical problems have always been a driving force behind the 

explosive growth in computing platforms.  Obviously, as more computation power is available to 

end users, more complex problems can be solved.  However, not all of these problems are best 

solved on traditional, programmable CPUs.  Some problems, especially those that require 

solutions in real time, are best solved using other means. 

This thesis examines the problem of a complex mathematical problem, LU factorization, 

as well computational solutions that exist for this problem.  Subsequently, this thesis also 

demonstrates the implementation of a proposed, high performance architecture that solves the 

LU factorization problem using a 3D systolic array in a modern FPGA device.  

In the past, solutions that previously relied on parallel, Von Neumann processing systems 

were typically implemented on distributed computing platforms where a mathematical problem 

is decomposed into several smaller tasks.  These smaller tasks are subsequently assigned to 

various processing elements available in the system.  Once the processing elements have 

completed their task, the results are reported back to a host.  Once the host assembles the results, 

a final solution is reported and the system is free to work on the next problem. 

Problems exist with distributed computing methodology with the first being 

communication bottlenecks.  Typically, distributed systems of the past tend to use slower 

communications protocols relative to their potential computing power.  For example, a modern 

CPU might appear to have more than enough processing bandwidth to solve the partial solutions 
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of any given parallel processing problem.  However, the communications bandwidth available to 

the system might restrict the usefulness of the CPU.   

Next, distributed systems tend to suffer from communication overhead.  For example, a 

typical Ethernet packet contains several bytes of header information and requires several bus 

transactions with the Ethernet peripheral interface on the system bus.  The end result is degraded 

performance due to the communication link since the Ethernet peripheral is typically running at a 

speed far less than the processing power of the CPU.  Moreover, the bus where the peripheral 

resides is typically shared with other peripherals thus reducing overall system bandwidth. 

Finally, the linear CPUs in the distributed systems typically execute some kind of 

operating system.  Some of the processor’s time is interrupted to service other tasks required to 

maintain CPU operation.  While most of these tasks are taken into account when evaluating 

communication performance, some potential performance is lost simply due to the operating 

system requirement. 

Overall, the objective of this thesis is to demonstrate that a radically different solution to 

the LU factorization problem can be implemented using modern, custom hardware technology.  

Instead of mapping the LU factorization algorithm to a distributed, linear computing system, it is 

now possible to create a custom hardware pipeline using FPGA technology.  Not only can this 

architecture be implemented, an LU factorization problem can be solved in an optimal number of 

cycles.   

In the past, this solution was not feasible given the low gate densities of FPGAs, but 

modern FPGA devices are well suited for the computationally intense task of LU factorization.  

This thesis demonstrates the implementation of an algorithm proposed by Dr. Joann Paul and Dr. 

Marlin Mickle of the University of Pittsburgh [1] that is virtually impossible to implement with 
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significant performance gains on linear CPUs, but is straightforward to implement on a modern 

FPGA, and discusses performance compared to distributed, linear CPUs as well as other LU 

factorization solutions.  
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1.3 OUTLINE OF THE THESIS 

Chapter 2 of this thesis reviews literature leading to the support of FPGA technology as 

a viable candidate for implementing the massively parallel processing solution the 3D Pipeline 

for LU factorization requires.  It is intended to give the reader an idea of various solutions that 

have been explored over the past 20 years.  Chapter 3 defines the problem and details the 

approach used to solve the problem using FPGA technology.  Chapter 4 details the results of 

the work described and outlined in Chapter 3.  Finally, Chapter 5 presents conclusions and 

details potential future work. 
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2.0  THE LU FACTORIZATION PROBLEM ON COMPUTING PLATFORMS 

LU factorization of matrices is computationally intense.  The process is highly iterative in 

nature when implemented on a traditional, Von Neumann central processing unit.  Consider the 

following mathematical representation of LU factorization. 

 

 

 

Figure 1: Mathematical Representation of LU Factorization as detailed in [1] 

  

Overall, the following mathematical function can be represented in computer wording 

using the following pseudo code.  The variable N is equal to the size of the matrix (i.e. if N = 4, 

then the matrix is 4x4). 
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Figure 2: LU Factorization (Crout Elimination) pseudocode 

 

The end result of this procedure is a square matrix with the resulting s and t matrices both 

above and below the diagonal.  The s and t matrices are subsequently used to solve sets of linear 

simultaneous equations through back substitution.  Unfortunately, the above algorithm requires a 

substantial number of cycles to process matrices on traditional CPUs.  Each multiply, subtract, 

and divide requires time.  The amount of time is variable depending on the precision of the data 

being processed.  The loops also introduce conditionals which require the CPU to execute many 

compare operations to determine if branching is required. 

However, the potential for parallelism exists in the algorithm and researchers have 

exploited this parallelism in various projects.  This chapter aims to review the work that has been 
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done with implementing parallel solutions to address the LU factorization problem.  Moreover, 

this chapter demonstrates how this parallelism has migrated from banks of CPUs to single, 

programmable logic devices over the past two decades.   

2.1 PARALLEL PROCESSING SYSTEM WITH SHARED MEMORY  

One potential application for LU factorization algorithms is circuit simulation.  Back in 

1988, researchers at the Southern Methodist University as well as the University of Wisconsin 

examined the use of a Sequent Balance 21000 computing cluster for circuit simulation [2].  This 

particular system uses up to 10 processors running Unix with a single, shared memory.   Overall, 

various circuits are used to evaluate the performance of the system. 

The system is responsible for assembling a solution matrix based on the circuit that 

requires simulation.  LU Factorization is used to solve this solution matrix.  Once the solution 

matrix is created, a data structure (see Figure 3) is created in memory that represents the diagonal 

entries vector (DIAG), nonzero off-diagonal entries subscripts (NZSUB), the nonzero upper 

triangular entries vector row by row (UNZ), the nonzero lower triangular entries vector column 

by column (LNZ), and the index of the start of nonzero values in each column/row of LNZ/UNZ 

and NZSUB. 
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Figure 3: Example matrix from the Chen-Hu architecture and resulting data 

structure 

 

Once the data structure is assembled, the CPU must now label the tasks required to solve the 

matrix and map these tasks to various processors in the system.  It is important to note that, even 

at this point, the solution of the matrix has not commenced!  The data structure described in 

Figure 3 only facilitates scheduling of tasks that are candidates for parallel execution.  After the 

graph of these tasks is created, the scheduler can now instruct the processors to begin computing 

the final solution.   
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Figure 4: Task model and resulting task graph that is mapped to processors in the 

system. 

 

Overall, the researchers found significant performance increase when mapping the LU 

factorization algorithm to parallel processing elements.  For example, in the case of a 150 node 

simulation, performance was increased by a factor of 6.5 when using a 10 processor system 

when compared to a sequentially executing algorithm.  The same algorithm running on a five 

processor configuration yielded an improvement factor of 4.16. 

While a performance increase is observed, it is important to consider all the tasks 

involved to solve the matrix.  To recap, the system must assemble the data structure based on the 

matrix, assign task clusters to processors, label each task in the task graph, and form a task 

queue.  This is a significant amount of overhead.  Moreover, the researchers admit that “the 

critical path scheduling, in this case, will require a large amount of synchronizing semaphores 

and hence result in large overhead.” [2]   The system suffers from other communication overhead 
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such as interrupts, memory contention, and indirect accesses to nonzero entries.  Finally, given 

the shared memory architecture of the system, it is virtually impossible to pipeline seeing that a 

new solution cannot commence until the previous solution has been solved.  Throughput is rather 

low in such a system for these reasons. 

2.2 PARALLEL PROCESSING WITH DISTRIBUTED MEMORY  

The solution described in the previous section suffered from a serious bottleneck: 

memory contention and communication issues.  Of course, alleviating these problems will yield 

better system performance.  In 1992, researchers at the Supercomputing Research Center in 

Bowie, MD created a system to solve LU factorization on a MasPar MP-1 parallel processing 

system [3].  Using this system, a new way of mapping data and computations to processors is 

used, and reasonable processor utilization is obtained even for “unstructured” sparse matrices.  

The sparse problem is decomposed into many smaller, dense sub-problems, with low overhead 

for communications and memory access. 

The MP-1 is a distributed memory system.  Overall, this system alleviates one of the 

bottlenecks seen in the previous chapter: shared memory. Instead of multiple CPUs competing 

for memory access, each CPU uses its own memory space.  Of course, some communication 

bandwidth is required to load each processor’s shared memory; however, this bandwidth is 

virtually negligible when compared with the daunting task of LU factorization. 

The processor array in the MP-1 is a rectangular array.  Each processor has a low latency 

link to communicate with its eight nearest neighbors as well as a broadcast function to send 

specified row (column) elements across the entire row (column) [3].  This “mesh based” 
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communication is available to drastically reduce any inter-processor communication.  Obviously, 

so long as a processor is communicating with a nearest neighbor processor, communication 

overhead is kept to a minimum.  In the event a processor needs to communicate with a non-

neighbor, a router is available, but the communication cost associated with the router is higher 

than the local link. 

 

 

Figure 5: Rectangular processing array 

 

Similar to the architecture discussed in the previous section, the system requires the LU 

Factorization problem to be broken down into a graph.  In the case of this research, the tasks are 

mapped to an elimination tree.  Moreover, tasks are mapped such that all inter-processor 
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communication requirements are constrained to the high speed nearest neighbor and do not 

require use of the router mechanism. 

 

 

Figure 6: Tree example 

 

In the tree example seen in Figure 6, one processor is responsible for decomposing the 

matrix into subtasks.  Navigating down the tree, these tasks are assigned to processors in the 

rectangular processing array.  In LU factorization, some results are required from other tasks 

before computation can commence.  These required computations as well as matrix elements are 

forwarded down the tree.  Eventually, the tasks are decomposed such that a processor is able to 

perform computations that are not dependent on previous solutions being available.  As a result, 
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these child tasks stop processing and begin reporting their results back to their parent tasks.  As 

the solutions begin navigating up the tree, the intermediate calculations are performed until all 

results are communicated to the main process.  At this point, the main task has the solution to the 

factorization. 

The researchers indicate that their method was tested on a 64x64 processor array.  

Overall, they indicate that the decomposition function requires very little overhead and that most 

of the CPU cycles are spent on LU Factorization and not communication requirements thanks to 

the local link feature of the grid architecture.  However, similar to the architecture in the previous 

section, a major problem is throughput.  Again, despite the distributed nature of this system, a 

new matrix cannot be processed until the previous matrix is complete.  Moreover, this 

architecture requires a rather large number of general purpose processors, 4096 to be exact.  As a 

result, this approach would require extensive cost to develop. 

2.3 NETWORK DISTRIBUTED CLUSTER PROCESSING   

The previous research discussed involved solutions to LU factorization using static sized 

processing arrays.  In 2004, research in parallel processing performed by researchers at the 

University of Tokyo yielded high performance solutions to LU factorization on non-dedicated 

computing clusters where the number of available computing resources may be arbitrary and 

even dynamically changing.  The researchers observed 130Gflops with 128 processes running on 

a 70-node, dual 2.4GHz Intel Xeon cluster with a matrix size of 46,080 by 46,080 [4].  However, 

all 70 nodes are not available at all times. 
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Figure 7: Distributed Computing Cluster [5] 

 

Overall, distributed cluster computing (also known as “Grid Computing” or “Cloud 

Computing today) takes advantage of networked computers in an effort to create a “virtual 

supercomputer” to perform parallel operations via network links such as Ethernet as opposed to 

traditional parallel processing systems interconnected by a high speed computer bus [5].  

Overall, a topology is created that breaks all available systems down into various resource 

clusters known as Virtual Organizations (VOs).  Tasks are distributed among these VOs and 

results are communicated as needed.     

Solutions using distributed clusters are rather attractive in that numerous, networked 

processors exist that sit idle during down times.  With the advent of the Internet, literally millions 
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of computers are now globally networked.  In a report examining the use of broadband 

connectivity in the world, over 180 million active DSL lines, 60 million active cable lines, and 

23 million active fiber lines connecting as many or more computers worldwide are in place [6].  

This clearly indicates a substantial number of computing resources with broadband connections 

available at any given time on the Internet.   

As a result, researchers are looking to exploit this untapped power that exists.  

Researchers at Stanford University, under the Folding@home project, utilize idle, networked 

Sony Playstation 3 gaming consoles, as well as other powerful computers, to perform complex, 

mathematical functions in an effort to understand protein folding, mis-folding, and related 

diseases [7].   Researchers at Berkeley are using the same distributed cluster approach to 

distribute the analysis of radio telescope data in an effort to locate intelligent radio signals under 

the SETI@home project [8]. 

The research performed at the University of Tokyo is similar to the projects mentioned 

above only this project focuses on LU factorization.  The 70 node system is partitioned into 

various virtual organizations.  A programming model known as “Phoenix” is developed to 

facilitate communications between VOs as well as construct an algorithm for task scheduling and 

load balancing.  Also, methods are created to handle the communication protocol, the dynamic 

nature of nodes in the system, as well as the nondeterministic time involved with inter-processor 

communication.  Keep in mind that parallel processing systems discussed in the other research 

have deterministic interconnect. 

Overall, this system yields amazing results given the number of mathematical 

calculations required.  However, this system requires very complex algorithms to schedule, 

distribute, and collect results.  Moreover, the number of computing resources required is very 
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large.  A solution such as distributed computing clusters, while interesting, is not feasible for a 

straightforward solution to the LU factorization problem to say nothing of embedded system 

applications.  Also, the system cannot perform a subsequent solution until the current solution is 

computed.  Still, it is a glimpse at the future of parallel processing and how it pertains to the 

resources required for solving complex mathematical functions such as LU factorization.  Some 

of the aspects of this architecture that may be used in the future pertaining to the 3D LU 

factorization pipeline are discussed in Section 5.1.5. 

2.4 PARALLEL PROCESSING SYSTEM-ON-A-CHIP 

 

While most research involved with solving LU factorization has been performed using 

large computer systems, some research has been performed at implementing a solution to LU 

factorization on a chip level as opposed to a large scale, discrete processor system.  The benefits 

of using chips as opposed to large workstations are cost, reduced power consumption, and the 

potential to use these solutions in embedded systems. Researchers at the New Jersey Institute of 

Technology successfully implemented LU factorization at the chip level using FPGA technology 

[9]. 

The researchers employed a solution that is not unlike the shared memory solution 

discussed in Section 2.1.   To create a computational platform, six, 32-bit RISC processors are 

instantiated in an Altera FPGA.  These processors are connected to a shared memory using a 

customized block of logic on the FPGA fabric. The soft core IP processor from Altera, Nios, is 

used. The Nios RISC processor is a fully configurable soft IP that offers over 125MHz in an 
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Altera Stratix FPGA.  Since floating point operations are desired for LU factorization, a single 

precision, IEEE754 floating point unit is used so that floating point operations are handled in 

hardware as opposed to software thus improving performance.  

An algorithm is developed to partition the solution among five processors.  The sixth 

processor acts as a “local controller” governing the operation of the entire process.  These 

processors post results via the shared memory and the local controller broadcasts results to other 

processors as needed.  These algorithms are not unlike those examined in Section 2.1.  After one 

matrix is processed, the system is free to begin processing another matrix. 

The researchers demonstrate that performance for non-trivial matrix sizes is rather 

impressive.  In the case of a 5x5 LU factorization, a software solution takes 45,168 system clock 

cycles on a single CPU.  When their parallel processing solution is implemented, the 

performance increases significantly as only 4,583 clock cycles are required [9].  Therefore, this 

research proves that application acceleration similar to that seen in similar architectures using 

workstations is possible on FPGAs. 

The same researchers took this concept a step farther and implemented another system 

designed to solve LU factorization not unlike the system seen in Section 2.2.  The system is 

implemented on an Altera FPGA.  The algorithms to partition data in [9] are modified to handle 

load balancing.  The feasibility of scaling the architecture is also presented.  Also, distributed 

memory using on-chip SRAM is used as opposed to a single shared memory among all 

processors. 
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Figure 8: Binary tree of processors from [11] 

  

One processor is assigned “system controller” to provide a mechanism for both 

partitioning tasks taking into account the load balancing of both processing communications.  

Each node of the tree consists of both instruction and data caches, both data and program 

memory for the Harvard Architecture Nios processor, and a shared data memory for 

communicating results to children in the tree.  Each node also has a path to communicate results 

back to the system controller via Altera’s “Avalon” bus fabric [10] [11]. 

 The researchers indicate a significant improvement in the matrix operations reported in 

[11] of more than 20%.  Still, even with these enhancements, overhead exists similar to that seen 

in their workstation-based relatives.  Matrix processing time is sacrificed since inter-processor 

communication is required.  However, the research in [9], [10], and [11] clearly demonstrates 

that LU factorization of non-trivial matrices in an FPGA is possible. 
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2.5 DEDICATED PROCESSING LOGIC 

So far, every solution to the LU factorization problem presented involves the use of a 

traditional Von Neumann or Harvard CPU to perform calculations.  In an effort to increase 

performance, multiple CPUs are used.  When partitioning the design across multiple CPUs, some 

time must be dedicated to communication of intermediate results.  This indicates that some 

processing time must be sacrificed so that communication results are broadcast to interested 

processors. 

A potential solution to the communication bottleneck is the use of dedicated hardware to 

solve LU factorization.  While the 3D Paul-Mickle pipeline proposes such custom hardware, 

researchers at the University of Southern California actually implemented a similar solution in 

2004 in that a custom pipeline is used to solve LU factorization for any size of matrix.  The 

linear pipeline is implemented such that it assumes data is being sent to the pipeline in a word by 

word format since the research assumes that hardware accelerators are fed streaming data from 

external CPUs or external memory [12]. 
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Figure 9: Linear array solution presented in [12] 

 

The logic accepts data in a word by word, streaming format that arrives at the node 

labeled “Input” in Figure 9.  The first processing element (PE1) is responsible for the division 

required at each stage of the factorization algorithm.  These quotients, as well as the initial values 

of the matrix are forwarded to the subsequent processing elements denoted PE 2 to n in the linear 

array.  Control logic in PE1 directs matrix data to either the divide function or directly to the 

output.  Control logic in subsequent stages directs data to either the multiply or subtraction 

function as well as fetching of previous results from local storage when needed.  Output that is 

needed for the next stage of the algorithm is fed back into the pipeline as needed.  Also, the 

pipeline can begin to accept a new input matrix when the final stage of the current matrix being 

processed is performed.  The following diagram from [12] details the operations that occur in 

each processing element of a pipeline that solves LU factorization for a 4x4 matrix.   
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Figure 10: Dataflow of architecture presented in [12] 

 

This architecture clearly demonstrates that implementing a custom pipeline via the use of 

a device like an ASIC or FPGA is feasible as opposed to a system using distributed CPUs.  Each 

mathematical function is designed to support IEEE single precision format floating point 

operations and the design is functioning on a Xilinx Virtex-II Pro-125 device.  Performance is 

exactly as expected. The latency achieved by this solution is n2 + n cycles [12].  So, when 

comparing these results to the results in [9] and [11] a substantial performance increase is 

observed.  The 5X5 case in this architecture would only require 30 arithmetic cycles as opposed 

to the 4,583 cycles observed in the other FPGA research.  Even if one factors in the amount of 

latency in the divide, multiply, and subtract functions, the end result is well over three quarters 

the number cycles required by the Nios based parallel processing system.  While the latency 

reduction is impressive, it most certainly is improvable with a different, custom logic solution. 
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3.0  THE THREE DIMENSIONAL LU FACTORIZATION PIPELINE 

In the previous chapter, various architectures were explored from prior research that 

details various schemes used to solve LU factorization.  Earlier implementations used banks of 

parallel processors to perform the function while later solutions migrated similar solutions 

performed on large scale workstations to single-chip implementations.  Parallel processing 

solutions involving CPUs, as well as the more recent, distributed cluster architecture, provide a 

high-speed solution to the LU factorization problem with the tradeoff of significant computing 

resources being required, not to mention the classic communication overhead problem associated 

with parallel processing and overhead associated with the complex scheduling and load 

balancing algorithms. The later solutions utilizing FPGA technology reduce the physical 

requirements to a single device, but suffer from sub-optimal latency.  A solution must exist that 

eliminates the communication overhead issue and effectively minimizes latency. 

In 1998, Dr. JoAnn M. Paul and Dr. Marlin H. Mickle of the University of Pittsburgh 

presented an architecture that does not require a massive amount of parallel processors while, 

simultaneously, reducing the latency to perform LU factorization of a matrix size n*n down to 

4n-4 arithmetic operation cycles.  Moreover, in sustained operation, a new LU factorization is 

computed every single cycle for the minimal block pipelining period of 1 [1].  To date, this 

architecture is the optimal solution to LU factorization in terms of latency.  The only question 

remaining is if it is at all feasible to create the pipeline to optimally solve LU factorization for 

non-trivial matrix size using custom hardware such as an FPGA. 
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This section presents the architecture devised by Dr. Paul and Dr. Mickle.  Next, the 

hardware used to implement the pipeline is presented.  Finally, an overview of the design flow, 

from resource estimation to final implementation is discussed. 

3.1 THREE DIMENSIONAL ARCHITECTURE OVERVIEW 

 

In Figure 2, the pseudocode used to implement LU factorization, also known as Crout 

Elimination, was presented.  As stated, the loop appears trivial at first glance, but for non-trivial 

matrix sizes, it is clear that Crout Elimination required a substantial number of arithmetic 

operations.  The following figure shows the Crout loop “unrolled” for a 4x4 matrix revealing all 

of the computations required to perform the function. 
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Figure 11: Crout loop unrolled for the 4x4 case 

  

As seen in the loop, a significant number of operations are required for even a smaller 

case like n = 4.  Crout Elimination requires n3/3 arithmetic operation pairs.  When n3 is not an 

integer multiple of three, n3/3 is rounded to the nearest integer [1].   

 With the loop unrolled, it is apparent that parts of the Crout algorithm can be made 

parallel as enough data is present to perform partial computations in each stage.  Overall, the first 

operations that must be performed are the division functions in the first “active” row of each 

stage where the “active” row number is equal to the current stage number.  Once the quotients 

 26 



are computed, the multiply operations can be performed.  Thereafter, the subtraction function can 

be performed.  After all three arithmetic functions are performed, it is safe to begin the 

computations for the next iteration of the Crout loop. 

 

 

 

Figure 12: Crout 3D pipeline 

  

Figure 12 helps graphically depict the structure of the 3D pipeline for a 4x4 case.  The 

Paul-Mickle 3D architecture groups these Crout loop processing iterations into matrix pipeline 

stages.  The elements of each stage of the matrix correspond to one of three functions.  First, the 
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function labeled “FWD” simply forwards data to the next matrix stage without any arithmetic 

operation being performed.  Next, the function labeled “FP_DIV” divides the current contents of 

the matrix by the element (stage,stage) where stage corresponds to the current stage of the 

matrix pipeline.  All quotients are computed in parallel.   

After the quotients are available, the function “FP_MUL_SUB” performs an arithmetic 

pair of operations.  First, the quotient is multiplied by the corresponding row element under the 

element (stage,stage).  For clarity, suppose one was examining element (3,2) during matrix stage 

1 of the pipeline.  The quotient computed in element (1,2) would be multiplied by the 

corresponding row element under (stage,stage) which, in this example, is element (3,1).  After 

the product is computed, the product is subtracted from the current value of the element being 

processed.  At this point, all computed values are forwarded to either the next stage of the matrix 

pipeline or are output from the pipeline in the final stage since the solution is now known. 

The pipeline falls into the “3D category” due to matrix stage stacking.  Each matrix 

pipeline stage is a 2D pipeline. Each element of the matrix stage is a linear pipeline.  The “FWD” 

function is a linear pipeline of no-operations that is equal in latency to the total number of cycles 

it takes to divide, multiply, and subtract.  The “FP_DIV” function is a divide pipeline.  The 

“FP_MUL_SUB” pipeline includes three different pipelines.  The first is the multiply pipeline 

used to multiply the quotient by the corresponding row element under (stage,stage).  Once the 

product is computed, the subtraction can occur.  However, a pipeline is hidden in that the current 

contents of the matrix stage element that has the multiply-subtract requirement must be 

maintained until both division and multiplication are complete.  The final pipeline in each matrix 

stage is the actual subtraction pipeline.  Also, an additional, no operation pipeline stages at the 

output of the divider function must be added to compensate for the latency of the multiply-
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subtract function.  So long as the matrix stage is created as described, a full matrix can be input 

on each cycle making the 2D pipeline fully systolic.  The third dimension is the stacking of each 

matrix stage.  The output of a stage’s current element connects directly to the input of the 

corresponding element of the next stage. 

3.1.1 3D Pipeline Example 

This section details the “flow” of a matrix element through the pipeline in an effort to 

clarify the pipeline operation.  To simplify the description, a 3x3 matrix example is used to 

demonstrate all arithmetic operations required on a particular element.  In particular, the flow of 

data for element (3,3) of the 3x3 case is examined.  Once this flow is understood for the 3x3 

case, any user of this logic should be capable of scaling the logic to accommodate any size of 

matrix. 
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Figure 13: Overview of the 3x3 example. 

 

A 3x3 Paul-Mickle pipeline requires 2 matrix pipeline stages.  Figure 13 details the 

arithmetic operations that occur in each element of the particular stages.  The structure of the 

pipeline is identical to stages 2 and 3 of the 4x4 example presented in Section 3.1.  A complete 

matrix arrives at the node “Input Matrix” and exits the pipeline at the node “Ouput Matrix”.  

Since each computing element (i.e. FWD, FP_DIV, or FP_MUL_SUB) is pipelined, a new 

matrix can be presented at the node “Input Matrix” each clock cycle.  After the initial latency of 

the computing elements passes, a solved matrix arrives at the node “Ouptut Matrix” on each 

clock cycle.  The intermediate node is the point where computations are complete for the first 

pipeline stage and data enters the second stage.  Finally, the output of each element is connected 

to the input of the corresponding element. 
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Figure 14: Dataflow for matrix stage 1 

 

Referencing Figure 14, data arriving at the node “Input Matrix” is immediately used as 

input for the FP_DIV processing element.  In the case of a 3x3 matrix, the FP_DIV logic at 

location (1,3) uses both Input Matrix(1,3) and Input Matrix(1,1) to compute the quotient (1,3) / 

(1,1).  After the quotient is present, the product of quotient(1,3) * Input Matrix(3,1).  Since each 

processing element of the matrix is considered to be systolic, a delay is required so that one 

meets the requirement of introducing a new matrix every clock cycle.  The delay required for the 

multiplication at element (3,3) is denoted in Figure 14 as “del 1”.  This delay is equivalent to any 

delay introduced by the division function. 
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Once the product is calculated, the subtraction of product(3,3) from Input Matrix(3,3) can 

be performed.  Both multiplication and subtraction are performed in the processing element 

FP_MUL_SUB.  Again, another delay must be introduced on the data at node “Input Matrix” to 

keep the pipeline systolic.  This delay is denoted in Figure 14 as “del 2”.  This delay is equal to 

the number of cycles required by both the division and multiplication functions.  After 

subtraction is complete, all results are available at the node labeled “Intermediate” for the second 

stage of the pipeline.   

 

 

 

Figure 15: Second matrix stage of the 3x3 example. 
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Figure 15 details the flow of data in the second stage of the pipeline.  Data arrives at the 

intermediate node and the quotient is computed at element(2,3) from Intermediate(2,3) and 

Intermediate(2,2).  After the quotient at element(2,3) is ready, the subsequent multiplication of 

quotient(2,3) and Intermediate(3,2) at element(3,3) can occur after the delay denoted by “del 1”.  

Finally, subtraction of the product calculated at element(3,3) from Intermediate(3,3) can be 

performed after the delay “del 2”.  After these operations are performed, the solution is present at 

the “Output Matrix” node.  

3.2 HARDWARE SELECTION 

Now that the architecture is understood, work can begin on the implementation of the 

pipeline.  Based on the description of [1], it is quite apparent that numerous divide, multiply, and 

subtraction processing elements are required.  In an effort to demonstrate feasibility of “real 

world” implementation, the processing elements are chosen to support IEEE single precision 

floating point representation.  Since floating point computations typically require a significant 

amount of logic to implement, a rather large FPGA must be used.  Moreover, a non-trivial matrix 

size must be selected. 

To satisfy the “large FPGA” requirement, the Xilinx Virtex 5 SXT 50 is selected.  The 

device provides 32,640, 6 input look up tables (LUTs) as well as 32,640 flip flops.  Moreover, an 

additional 288 48-bit dedicated multiply-accumulate functions known as DSP48 blocks are 

available for general use [13].  To avoid the intricacies involved with creating a custom printed 

circuit board, the Xilinx ML506 development board is chosen to implement the design.  This 
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board has the Virtex 5 device required to implement the pipeline as well as peripheral circuitry 

useful to test the pipeline once developed. 

 

 

 

Figure 16: The Xilinx ML506 development kit 

  

In an effort to demonstrate a non-trivial matrix pipeline is reasonable for implementation, 

a 5x5 matrix pipeline is chosen.  While Crout Elimination is complex for any size of matrix, a 

5x5 matrix shall require a significant amount of floating point processing to demonstrate that the 

3D pipeline can be realized for a non-trivial size.    Overall, the Virtex 5 SXT 50 should be able 

 34 



to hold all of the logic and test circuitry required for the 5x5 solution using IEEE754 single 

precision floating point numbers. 

3.3 DESIGN FLOW OVERVIEW 

Although the design is targeting FPGA technology, a design methodology similar to that 

of ASICs is used.  First, primitives required for the design are required to be created.  Overall, 

this entails determining solutions for the floating point functions required in the pipeline.  For 

demonstration purposes, it is desirable to use floating point functions that consume as little 

FPGA resources as possible. 

Once these floating point functions are chosen, they are assembled to form the 3D Crout 

Elimination pipeline.  VHDL is used to assemble the pipeline as it is one of the major languages 

used for logic synthesis.  A VHDL simulator as well as a custom written VHDL testbench is 

used to verify the functionality of the pipeline.  While an FPGA is reconfigurable unlike its 

ASIC brethren, it is rather inefficient as well as difficult to correct errors by synthesizing and 

uploading results to the FPGA as opposed to simulating the functionality of the device.  FPGA 

build times can take hours for designs as complex as a 5x5 Crout Elimination pipeline.   

After the Crout Elimination pipeline functionality is verified, work begins on a way to 

test the circuit in-system.  Overall, an interface is required to both drive data into the pipeline as 

well as capture results.  The simplest way to perform this task on a wide range of test vectors is 

to have a CPU drive these test vectors into the pipeline.  The CPU chosen to perform this task is 

the Xilinx Microblaze processor.  Also, since the input and output bit widths of the Crout 

pipeline are rather wide (25 matrix elements at 32 bits wide is equal to 800 total bits), some form 
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of translation is required to convert the 32 bit accesses of the Microblaze to the 800-bit wide 

vectors the pipeline requires.  This translation can be achieved using on-chip memory available 

on the Xilinx device. 

Once the pipeline and associated test circuitry are created, the design is synthesized and 

uploaded to the target device using the Xilinx ISE tools.  Ideally, a simple test program is written 

to exercise the hardware and observe the results.  Should these results match expected results, the 

development of the design is complete and the 3D Crout Elimination pipeline will be realized!   
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4.0  DESIGN, IMPLEMENTATION AND VERIFICATION OF THE PIPELINE 

This chapter details the design, implementation, and verification of the 3D Paul-Mickle 

LU Factorization Pipeline.  First, the development of IEEE 754 floating point primitives is 

discussed in an effort to determine logic utilization requirements.  Next, the design of the 

pipeline is discussed along with simulation results.   Third, the creation of an embedded system 

using a Xilinx FPGA to physically test the pipeline in hardware is presented.  Overall, this 

chapter is intended to present the design flow to implement the architecture proposed in chapter 

three. 

4.1 IEEE 754 FLOATING POINT PRIMITIVES 

The core mathematical primitives required to perform Crout Elimination are simply 

divide, multiply, and subtract.  Unfortunately, IEEE754 arithmetic functions are typically 

expensive in terms of hardware utilization or CPU cycles given the algorithms required to 

perform the said functions.  However, floating point functions are virtually required as they 

provide precision not found using integer or fixed point numerical representation.  As a result, 

using the IEEE754 format is almost mandatory for real-world applications. Many vendors 

provide intellectual property that performs floating point arithmetic.  For this thesis, two 

available solutions are examined.   
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The first solution explored is a synthesizable IEEE HDL floating point library known as 

1076.3.  The goal of IEEE1076.3 is to provide a floating point synthesis package for VHDL and 

Verilog based on IEEE 754 [14].  Currently, this package is freely available for download and is 

actively maintained as of 2008.  Unfortunately, after some experimentation, this package is not 

ready for the tool suite used in this thesis.  While the maintainer of the package has had success 

using the package with the Synplify Synplicity synthesis tool, Xilinx ISE synthesis tools, as of 

version 9.2.04, do not support some of the VHDL constructs required by the package [15].  

Fortunately, some features of the new package are used for verification purposes and are 

discussed later. 

The solution used in the implementation of the pipeline is provided by Xilinx via the 

Coregen FPGA IP generator [16].  Assuming a Xilinx user has a license to use ISE, Xilinx 

provides a netlist generator that creates a fully working floating point core.  Moreover, the 

floating point core can be customized in various ways to provide users flexibility in examining 

performance vs. area tradeoffs.  Since this solution is known to work, it was chosen for this 

implementation.  With that in mind, creation of the cores and resource utilization must be 

considered to see if these cores do not exceed the available resources in the target device. 

4.1.1 Floating Point Logic Creation 

Since the target device is a Xilinx Virtex 5 SXT 50, the following key resources are 

available for use.  First, the device has 32,640, 6-input Look Up Tables (LUTs) as well as 32,640 

flip flops on the FPGA fabric.  Next, the device has 288 DSP slices available that contain logic 

for creating both adders and multipliers without using FPGA LUT and flip flop resources.  

Finally, the device contains 144 36 kilobit “blockRAMs” for use as general purpose memory.  
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While the embedded memory is not critical to the Crout pipeline itself, it will serve a useful 

purpose as seen later in this thesis. 

With these area constraints known, the parameters used to generate the floating point 

cores for the 5x5 pipeline can be determined.  Again, the floating point cores are created using 

the Xilinx tool Coregen.  Coregen allows one to custom tailor the floating point core to fit their 

area requirements two ways: pipeline latency and cycles per operation when using IEEE754 

floating point numbers.   The following overview details the approach used to generate the cores.   

First, the user selects the function to create.  This is done via a simple menu after a user 

chooses to generate a floating point core in the Coregen IP menu. 
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Figure 17: Xilinx Coregen Floating Point Selection Menu. 

 

The menu presents various floating point functions the user can choose.  In this example, a 

floating point subtraction function is created.  Once the function is chosen, the user then 

customizes the precision of the core. 
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Figure 18: Floating point precision menu 

 

For the Crout pipeline, “single precision” floating point numbers are chosen as indicated 

by the “precision type” checkboxes.  As specified in IEEE754, there is one sign bit, 8 exponent 

bits, and 23 mantissa bits.  Be aware that if more logic were available in the target device, a user 

could choose double precision or custom field widths for their applications.  If a custom format 

is required, the user would input the field lengths in the “Exponent Width” and “Fraction Width” 

boxes. 
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The final option provided by Coregen allows the user to tweak the area of the core by 

trading off performance. 

 

 

 

Figure 19: Floating point performance vs. area tradeoffs 

 

As seen in Figure 19, LUT utilization for a subtraction function remains relatively constant while 

flip flop utilization increases as the required maximum frequency of the core increases since 

additional pipeline stages are required.  Also, the user may choose to use Xilinx DSP48 elements 

to reduce the logic required for the addition and multiplication functions.  DSP48 elements lower 
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the LUT and flip flop count requirements and boost the overall performance of the core.  

However, the tradeoff is the limited number of DSP elements in the FPGA: there are only 288 of 

these present in the targeted device.  DSP elements also restrict the portability of the design to 

other FPGA platforms as many FPGA platforms do not have this functionality. 

 After experimenting with the various tradeoffs given the resource limitations, the 

parameters chosen for the design indicate that a 5x5 solution is feasible in the target device under 

certain constraints.  First, the IEEE754 subtraction and multiplication functions will consume an 

acceptable amount of resources while still maintaining full systolic functionality.  A pipeline 

latency of 7 is chosen for the subtraction function with zero DSP slice utilization since this value 

balances out performance versus logic utilization.  Next, the multiply function is chosen to be an 

8 stage pipeline with full systolic operation for the same reasons as the subtraction function: 

performance versus logic utilization.  However, multipliers tend to consume significant LUTs, so 

one DSP48 element is used per multiplier in an effort to fit the design in the target device.   

The divide function needs to be created in a non-systolic fashion as logic utilization 

increases if the function is “fully pipelined”.  Documentation on the divide function shows that 

the number of flip flops required for a systolic divide function is over 5 times greater than one 

that requires wait states [17].  As a result, the wait-state version of the core is used along with its 

26 cycle latency.  This does not disqualify the 3D pipeline from implementation in an FPGA 

since the goal is to prove that a new matrix can begin processing as soon as a current matrix is 

done being processed in the first stage of the pipeline.  However, more logic would be required if 

the user desired a solution that clocks a new matrix into the pipeline on each edge of the system 

clock. 
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Since the design is using arithmetic functions that are not “fully systolic”, shift registers 

are not required to delay the input and subsequent intermediate nodes.  This saves a logic as well 

since the input and intermediate nodes will only be registered at each matrix stage.  However, a 

“complete” systolic implementation will require these shift registers thus boosting the total logic 

count for the design. 

4.1.2 Floating Point Logic Utilization 

Since the demonstration pipeline is four “matrix” stages, the total logic required by all of 

the floating point elements based on the architecture discussed in Chapter 3 must be determined.  

The following table details expected logic utilization for all of the floating point cores required 

by the pipeline.  The number of cores required is derived from the unrolled loop of a 5x5 matrix 

as discussed in Section 3.1 and detailed in Figure 11. 
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Table 1 : Resource Estimation 

 

     

 Primitive
LUTs 

Required
Flip Flops 
Required DSPs Required    

 FP Divide 227 233 0 
 FP Multiply 293 242 1 
 FP Subtract 392 371 0 
     

Stage 1 
Number of 
Primitives Total LUTs Total Flip Flops Total DSPs 

     
Divide 4 908 932 0 
Multiply 16 4688 3872 16 
Subtract 16 6272 5936 0 
     
Stage 2     
     
Divide 3 681 699 0 
Multiply 9 2637 2178 9 
Subtract 9 3528 3339 0 
     
Stage 3     
     
Divide 2 454 466 0 
Multiply 4 1172 968 4 
Subtract 4 1568 1484 0 
     
Stage 4     
     
Divide 1 227 233 0 
Multiply 1 293 242 1 
Subtract 1 392 371 0 
     
Totals 70 22820 20720 30 
 

 
       It is determined that the parameters chosen indicate that the pipeline fits in the target     

           device.  More than 10,000 logic elements are remaining.  These will be reserved for the simple, 

           processor based system functions required to drive the pipeline in hardware once the pipeline is 

             synthesized.    
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4.2 PIPELINE AND TEST CIRCUITRY DEVELOPMENT 

Now that all issues pertaining to the creation of floating point logic are resolved, focus is 

shifted to the creation of the pipeline itself.  This section details the design methodologies used 

in the creation of the three dimensional LU factorization pipeline as well as support circuitry 

needed to test the pipeline.  Overall, a hierarchical design approach is used so that a relatively 

clear method of using conditional instantiation techniques available in HDLs is facilitated. 

4.2.1 Multiply-Subtract Component 

The first component in the design hierarchy required is a multiply followed by 

subtraction function.  Recall a “matrix stage” in the pipeline: 
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Figure 20: Single stage of 3D pipeline 

  

As seen in the figure above from the 4x4 example detailed in Chapter Three, the multiply and 

subtract functions occur consecutively after the quotient is calculated from the floating point 

division functions.  To express this clearly, suppose one is looking at the calculations for element 

A(3,3) and A represents stage one of the pipeline.   
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First, the following divide function must occur on element A(1,3): 

A(1,2) = A(1,2) / A(1,1) 

Once division is complete, we are free to perform: 

A(3,3) = A(3,3) - A(3,1)*A(1,3) 

So, in maintaining a proper design hierarchy, a circuit is developed to accept the results 

of both the current value of element being processed as well as both the result of the division 

function and the column of values used as the minuend of the subtraction function.  Once these 

functions are performed, the results are forwarded to the next matrix stage of the pipeline.   This 

multiply-then-subtract function begins once the divide function for the current stage is complete.  

Creating this logic as a single component allows easy instantiation of multiple multiply-

then-subtract functions via the use of VHDL generics.  In the next section, this component is 

combined with the floating point divide function as well as conditional instantiation to create the 

basis of the pipeline. 

4.2.2 Crout Matrix Stage Component 

With the “multiply then subtract” function complete, conditional instantiation is used to 

determine connectivity in each stage of the matrix pipeline.  The following pseudocode details 

this instantiation.  It is a basic nested instantiation loop where the term MATRIX_M indicates 

the size of the matrix while the term STAGE represents the pipeline stage we wish to generate.  

Also, the term “mtx_in” represents the input from the previous stage of the pipeline while the 

term “rslt_m_i” indicates an output of the stage. 
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Figure 21: Conditional component instantiation for Crout pipeline (divide).  

 

In the first section of the instantiation of components that create a Crout pipeline stage, 

dividers are placed in the first row where dividers are required to be instantiated given the 

current stage.  The only exception is the first element of the row since this element is used as the 

divisor of the current stage.  The flag “quotient_rdy” indicates when division is complete and 

that the upcoming multiply-subtract logic can begin processing with the quotient.  Finally, the 

quotient itself can be forwarded to the next stage since no other operations are required on this 

particular element of the matrix.  To be clear, no values of the current stage will be forwarded to 

the next stage until the whole divide/multiply/subtract function is complete in the actual 

implementation! 
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Figure 22: Conditional component instantiation for Crout pipeline (multiply-

subtract) 

 

The above conditional instantiation determines placement of the “multiply-then-subtract” 

components created in the previous section.  Again, this component starts processing new data 

once the floating point division is complete.  Once the “rslt_rdy” flag is asserted, the results on 

the term “rslt_m_i” are ready for forwarding to the next stage.  In the actual hardware 

implementation, the assertion of “rslt_rdy” indicates that the stage is ready to accept a new 

matrix. 
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Figure 23: Conditional component instantiation for Crout pipeline (pass current 

element). 

 

With the divide, multiply, and subtraction components instantiated, the final 

“component” is instantiated.  Depending on the stage being generated, some elements require no 

mathematical functions performed.  Therefore, the current input to the stage is simply forwarded 

to the output of the stage.  Nothing is changed. 

In general, this pseudocode creates a single stage of the 3D Crout pipeline.  While the 

actual VHDL solution resembles this pseudocode, it is important to note that some additional 

conditions must be added to prevent unwanted latches during synthesis.  These conditions are 

included in the source code provided in the Appendix and design files.  With the pipeline stage 

created, one can proceed to the next level of hierarchy: the creation of the 5x5 pipeline with 

additional circuitry to drive data through the pipeline. 
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4.2.3 Complete Crout Pipeline and Associated Test Circuitry 

Now that a single, generic stage of the Crout pipeline is complete, the actual 5x5 

processing pipeline is created as well as additional support circuitry required to test the pipeline 

on an FPGA.  First, at the next level of hierarchy up from the creation of the Crout single 

pipeline stage, the actual pipeline requires instantiation.  Since the Crout pipeline stage was made 

using generics, this is a relatively painless process.  One simply uses a generate loop to create the 

four stages required to solve a 5x5 matrix.  The following is the actual VHDL instantiation used 

in the design. 
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Figure 24: 5x5 Crout Pipeline Instantiation 

  

The Crout pipeline is configured by the MATRIX_M, STAGE, and FLOATVEC_LEN 

vectors.  MATRIX_M is the size of the matrix (i.e. 5x5), STAGE is used by the generate loop to 

allow the lower level “crout_pipe_stage” logic know the stage it is creating, and 

FLOATVEC_LEN is a generic provided for future use should a user want to expand the width of 

the elements of the matrix being processed.  The generate loop insures that the outputs of stage 1 

connect to the inputs of stage 2, the outputs of stage 2 connect to the inputs of stage 3, etc. 
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 Overall, the control signals are rather straightforward.  The signal “crout_rfd” indicates 

that a new matrix can be pushed into the pipeline.  This signal is only used by the logic 

responsible for pushing a new matrix into the pipeline only when the first stage is not busy.  The 

“crout_dvalid” signal indicates that valid data is being pushed into the pipeline.  At the output, a 

simple signal called “crout_dvalid” qualifies the matrix data on the output “crout_data_i”. 

 Driving the pipeline requires some additional circuitry as seen in the following block 

diagram.  Since streaming data is not available, circuitry must be added to mimic matrix data 

streaming into the Crout pipeline. 
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Figure 25: Block Diagram of Crout Pipeline Test Circuit 

 

Overall, two memories (generated by Xilinx Coregen) are required to both send and 

receive matrices via a standard CPU interface (i.e. address, 32 bit data, write enable, etc.).  A 

feature of Xilinx embedded memories is the ability to configure varying widths on the read and 

write ports of the blockRAM.  For matrix loading purposes, the user loads all matrix data into the 

write side of the 256x32 transmit RAM in row major format.  The size of the SRAM constrains 

the user to loading up to 8 matrices at a time.  Be aware that this is not due to a limitation of the 

Crout pipeline: it can obviously service more than 8 matrices at a time provided the user waits 
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for the first stage of the pipeline to be free before pushing another matrix into the pipeline.  The 

read port of the transmit RAM is 1024 bits wide with matrix element (1,1) corresponding to bits 

(31:0) of this vector.  Element (1,2) would be bits (63:32) and so on.  Since a 5x5 matrix only 

requires 25 elements (800 bits), all remaining bits are unused.  The user must account for these 

unused bits when loading the transmit RAM (i.e. matrices must be loaded on 32 DWORD 

boundaries). 

The “Register Interface and Control Logic” provides a means for a user to start the 

transfer of matrix data from the transmit RAM to the Crout pipeline.  It also monitors the “ready 

for data” signal so that the “first matrix stage is free” rule is obeyed.  Finally, it subsequently 

increments the read address pointer of the transmit RAM.  This register is written with a 

“number of matrices to send” value after loading the transmit RAM.  This register write 

subsequently starts pushing matrix data into the pipeline. 

Processed data is captured by the receive RAM.  The write port of this RAM is 8x1024 

bits wide.  The format of this data is the same as the transmit RAM.  The user can read data out 

via the read port of the receive RAM using the CPU interface.  The CPU interface is identical to 

the transmit RAM (256x32).  The unused bits of the matrix vector remain unused, but the user 

must account for these unused locations in receive RAM.  Matrices are stored on 32 DWORD 

boundaries. 

4.3 PIPELINE AND TEST CIRCUITRY SIMULATION 

Now that the concept is developed, it is best to simulate the design to insure that the 

circuit is behaving as expected functionally!  For this purpose, a test environment is created in 
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VHDL and the logic is simulated using Modelsim.  While additional logic, namely a simple 

microcontroller and external memory controller for test code storage, are added later, it is rather 

useless to simulate the entire chip because our component of interest is the Crout pipeline.  

Simulation of a full CPU for this application is rather unnecessary.  As a result, the testbench 

shall mimic the actions of the CPU. 

 

 

 

Figure 26: Testbench block diagram 
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 Overall, the stimulus generator basically mimics the functions of the soon-to-be-added 

CPU as well as the core FPGA functions (clock management, etc).  The testbench code 

instantiates the Crout logic discussed in previous sections as well as components to simulate 

clock generation, power-on reset, and data driving.  The user of the testbench simply loads 

VHDL “real” values into the transmit RAM.  Since VHDL inherently lacks the concept of an 

IEEE754 floating point data-type, this task may seem rather difficult at first.  Fortunately, the 

proposed IEEE floating point library for synthesis has procedures to provide “real to IEEE754” 

and vice-versa to substantially ease the amount of work required to verify the Crout pipeline.  

Basically, these functions can convert a real number to the equivalent IEEE754 logic vector.  

 Once the user loads the matrix data via the testbench procedures that mimic CPU 

accesses, the user is required to strobe the control logic with the number of matrices to process.  

The simulation displays the expected solutions before proceeding.  The testbench then polls the 

“busy flag” to wait for processing to complete.  Once complete, the testbench displays the 

results.  Moreover, assertions are added in the Crout code itself to show intermediate results as 

data is passing from stage to stage in the pipeline.  Obviously, these assertions are not 

synthesized, but are useful for feedback during development. 

 The following figures detail the results of a simulation run of the Crout pipeline.  They 

are intended to show the critical operations that occur during the operation of the pipeline and are 

by no means intended to show the reader each and every value being sent through the pipeline.  

They are intended to show, via simulation, that the pipeline is behaving as expected. 
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Figure 27: Pipeline simulation results 

 

 The waveforms above show that the user loads matrix data into the pipeline via the Tx 

memory interface.  Afterwards, the user strobes the “start processing” register with a value of 

three.  The pipeline busy signal goes active immediately following this strobe.  Next, one can see 

the stages receiving matrix data via the “stage input/output signals”.  The time between each of 

these cycles is 44 clock cycles.  Recall that 26 cycles are expected for the division, 7 for the 

subtraction, and 8 for the multiplication.  This constitutes 41 cycles.  The additional 3 cycles are 

primarily due to the control logic overhead (thus the wider pulse width of “ready_for_data”).  

However, these timing diagrams show that a partial matrix solution is output from a stage every 
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44 cycles.  Therefore, after the first matrix arrives at the output of the pipeline, a new matrix 

solution is present every 44 clock cycles.  This is the intended behavior.  The next figure shows 

this sequencing up close due to the critical nature of this operation. 

 

 

 

Figure 28: Close up of stage to stage sequencing 

 

Next, so that the user can actually make sense of data as it is read from the Rx RAMs, the 

IEEE proposed floating point library for VHDL is used to convert the 32 bit floating point logic 

vectors to user friendly VHDL “real” values. In simulation, the console displays the results of 

each matrix processed.  The following screenshot shows the results of the Crout pipeline as 

displayed on the simulation console.  The real numbers displayed are the output of the 

IEEE754_to_real functions that are based on the IEEE floating point for synthesis library. 
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Figure 29: Simulation console as results are read from memory 
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 Observing these results, it appears safe to move to the synthesis stage to actually get the 

circuit up and running in hardware.  Just before a full system is synthesized, it is somewhat 

obvious that a quick test-run of the pipeline in synthesis would be beneficial to see how well 

actual results match expected results.  Synthesizing the system at this point of the design allows 

users to determine logic utilization of the Crout pipeline before all of the CPU logic overhead is 

added to the design. 

4.4 SYSTEM SYNTHESIS 

This section details the synthesis of the system.  First, a test run is performed to 

determine if the Crout pipeline will fit in the target device.  To facilitate hardware testing of the 

Crout pipeline, some logic must be available to add a simple Xilinx Microblaze CPU to load 

floating point matrices into the Crout pipeline.  After the test run, a Microblaze base system is 

created for testing the pipeline.   Next, final area results are presented before demonstrating a 

fully working system.  

4.4.1 Pipeline “Test Synthesis” 

Earlier in the design process, area estimates were calculated to determine the feasibility 

of fitting the 5x5 Crout pipeline into a Xilinx Virtex 5 SXT 50 device.  In order to check the 

accuracy of these estimates, it would be best to synthesize the design with just the pipeline, the 

minimal control logic, and the memories.  No constraints are used with this design, so only 

“raw” results are presented.  The tools will not work to meet any timing goals. 
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Figure 30: Pre "full system" synthesis results 

  

After synthesis and place and route of the “reduced” system, Xilinx reports that 24,325 

flip flops are currently used along with 23,259 LUTs.  This is somewhat higher than the 22,820 

LUTs and 20,720 flip flops expected during the logic estimate stage.  This additional logic might 

be attributed to the added control logic and rather large memory structures, but logic estimates 

typically vary due to numerous factors such as FPGA architecture, clock speed requirements, and 

synthesis algorithm seeds.  Also, many flip flops are used to store intermediate results at each 

matrix stage of the pipeline.  Overall, the numbers indicate that adding a CPU to test the system 

in hardware is not an issue as the CPU, a Xilinx Microblaze, and the peripherals required 

consume far fewer than the 10,000 logic elements available in the device.  
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4.4.2 Xilinx EDK and Microblaze 

To facilitate testing of the Crout pipeline, a CPU is added to the design.  This allows a 

user to write basic C programs to load the floating point data into the transmit RAMs as well as 

read received data from the receive RAMs once processing is finished.  Moreover, a simple 

UART is added so that results are displayed on any terminal program.  Finally, the compiled 

executable is stored in an external SRAM because the amount of remaining on-chip memory 

does not suffice.  Most on-chip SRAM is being used by the transmit and receive RAMs.  The 

Microblaze CPU, the UART, and external memory interface are provided by Xilinx via EDK. 

 

 

 

Figure 31: EDK session showing a simple processor system 
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EDK handles the creation of a CPU system as well as basic peripherals such as UARTs 

and memory controllers.  A custom peripheral is created to interface to the Crout pipeline test 

structure.  The control registers are mapped to one area of the Microblaze’s PLB bus while the 

Tx and Rx memories are mapped to other regions.  EDK also handles the compilation of code 

written for the Microblaze.  Some errors in the test code were caught at first, but were 

subsequently fixed and compilation is complete as shown in Figure 31.  The total memory 

footprint of the code is almost 200KB without any optimizations set.  This is far less than the 

4MB available in external SRAM. 

 

 

 

Figure 32: Complete synthesis hierarchy with Microblaze System 

 

Once the Microblaze system is created in EDK, it is added to the synthesis hierarchy.  This 

means that the total demonstration system is complete, and that the working design can be 
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uploaded to the target FPGA for testing.  Moreover, constraints are added via the 

‘crout_system.ucf” file so that pin placement matches the peripherals on the test board.  The 

constraints also direct the synthesis tools to meet the modest 50MHz timing requirements of the 

system.  Moreover, a logic analyzer is embedded in the design to probe nodes in the FPGA to 

demonstrate the pipeline is functioning exactly as seen in simulation.  This is achieved by using 

the Xilinx Chipscope tool and the resulting ‘c3d_probes.cdc’ file. 

4.4.3 Full System Synthesis 

Overall, the full system synthesis results added some significant logic to the complete 

device.  Roughly 7,000 flip flops and 2,000 LUTs were added.  While this is a significant 

amount of logic, 17% of the flip flops available and 20% of the LUTs remain available in the 

target device.  By no means could another Crout stage be added; however, additional functions a 

user may desire may fit in the remaining area (i.e. higher speed communication to a host, etc.).   

This basically indicates that a 3D Crout pipeline and associated support circuitry of a non-trivial 

dimension is feasible in modern devices.  The final part of the design now comes down to 

verifying the test structure created actually works in hardware! 
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Figure 33: Final system synthesis results 

4.5 HARDWARE VERIFICATION 

Hardware verification is primarily divided into two parts.  First, a simple C application is 

written for the Microblaze to verify the logic is properly processing the results expected.  Next, 

the embedded logic analyzer is used to determine that the hardware is functioning as seen in 

simulation.  Provided these two goals are met, the challenge of implementing a 3D, 5x5 Crout 

Elimination pipeline will be deemed complete! 

 67 



4.5.1 Software testing 

The software written to test the pipeline virtually mirrors the code written for the 

testbench.  Three matrices are loaded into the transmit RAM.  An access to the control logic is 

made indicating that three matrices requiring processing are loaded into transmit RAM.  This 

access starts pushing matrix data into the pipeline.  The code then polls the busy flag awaiting 

completion of the processing.  Finally, the results are displayed to the console in decimal format 

because reading floating point values in hexadecimal notation is a rather difficult task for most 

normal humans.  The following screen shot shows the output of the FPGA that is dumped to a 

console program running on a PC. 
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Figure 34: Output to console from system 

 

The top three matrices are the values that are loaded into the transmit RAM.  The CPU 

handles the conversion from decimal notation to IEE754 binary notation.  From there, the CPU 

reports that the access is kicked off and the “Engine is Busy” message indicates that the pipeline 

is busy.  After the busy flag indicates completion of processing, the results are displayed after the 
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reads from receive RAM and subsequent conversion to decimal notation.  Fortunately, the results 

are as expected!  Code is written in both behavioral VHDL and Matlab based on the pseudocode 

detailed in Figure 2 to verify that the input matrices generate the exact same solution.  So far, 

these results demonstrate that the design is at least working as expected in hardware, but more 

proof is needed to know that the design is working with cycle-for-cycle accuracy! 

4.5.2  Internal hardware probing 

All major FPGA vendors provide tools to probe internal nodes in FPGAs in an effort to 

assist in debugging.  Xilinx is no different with their Chipscope tools.  These tools allow a user 

to select nodes in the FPGA, configure options to allow various trigger modes not unlike one 

finds on a logic analyzer, and displays the results in a graphical format.  For the Crout pipeline, 

these tools are valuable to prove that the design is working exactly as expected. 
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Figure 35: Chipscope node probing 

  

The above figure demonstrates a typical session with Chipscope.  To help prove the 

pipeline is behaving as expected, node (5,5) is probed for each stage of the pipeline.  Moreover, 

the critical control signals between stages are probed as well as the signals that control the start 

of processing.  Overall, it is expected that the behavior of these signals will match the simulation 

results. 
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Figure 36: Results of Chipscope Session 

 

As seen above, the results match the simulation results exactly!  Each matrix result is 

output 44 cycles apart.  The timing to start the access as well as the assertions of “ready for data” 

mirror those of the Modelsim simulation.  The only restriction is that one node of each stage of 

the pipeline is probed in terms of matrix elements.  Element (5,5) was chosen because it requires 

arithmetic operations in each “matrix stage” of the pipeline.  The output of each matrix indicates 

that location (5,5) equals the following values: 

 

Matrix 1 (5,5) Output = 0x3FFF_FFFF  = 1.9999998807907104 

Matrix 2 (5,5) Output = 0x3F80_0000   =  1.0000000000000000 

Matrix 3 (5,5) Output = 0x42A0_F2FE  =  80.47459411621094 
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 The values observed at the (5,5) output are exactly as expected.  The discrepancy 

between the simulation and “decimal” observation of location (5,5) is due to rounding.  Aside 

from that, there are no problems with the output.  Based on the design of the pipeline, if location 

(5,5) is known working, then all elements of the output matrices are assured to be working.  This 

result coupled with the software verification insures the implementation of the 3D 5x5 Crout 

Elimination pipeline is a success. 

4.6 IMPLEMENTATION AND VERIFICATION EPILOGUE 

In this chapter, the implementation and verification of the Paul-Mickle 3D Crout 

Elimination pipeline is proven to be successful given the constraints of the target device.  First, 

the primitives required were generated and an estimate of total logic consumption was 

calculated.  Next, the design hierarchy was created and described.  This consisted of a single unit 

to handle multiply and subtraction as well as the conditional instantiation of computational 

elements depending on the stage in the pipeline.  Once the core pipeline was developed, support 

circuitry was added so that the logic would easily interface to a basic CPU for testing purposes.  

Simulations of this test structure were executed to insure proper functional operation.  Finally, 

the complete design was synthesized and uploaded to the target FPGA.  Both software and 

hardware tests were run to demonstrate that the design fully works as expected. 
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5.0  FUTURE WORK AND CONLUSIONS 

A working implementation of the Paul-Mickle pipeline for a matrix of a non-trivial size 

has been presented.  While some deviations from the original, “fully systolic” architecture were 

made mostly due to the amount of logic available on the target development PCB, this thesis 

demonstrates that the architecture is extensible using a modern FPGA device.  However, more 

research is required to apply the design to more real world applications.  This chapter details 

some topics that may arise from this thesis and examines some possible solutions.  

5.1 FUTURE WORK 

While this thesis proves the architecture is extensible, more work is required.  This 

section details possible future work on the Paul-Mickle architecture.  While the litany of 

suggestions is by no means complete, the following topics are some key issues that should be 

addressed in the future regarding this implementation. 
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5.1.1 Floating Point Core Limitations and Exception Handling 

Real world operation of the Paul-Mickle logic must be robust.  Any possible hazards 

encountered during operation must be handled so that a system can take corrective action and not 

enter indeterminate states.  The presented implementation does not take exceptions into account 

such as divide by zero nor does it detect operations involving “not a number” (NaN).  Also, the 

floating point cores do not handle denormalized values nor does it support any rounding 

operations specified by IEEE754 aside from truncation. Therefore, something has to be done to 

indicate exceptions. 

In the case of handling NaN and divide-by-zero cases, flags available from the Xilinx 

floating point cores could be used to indicate when these exceptions occur [17].  Any time a flag 

is set in any floating point operation, this information can be sent to the host using the results of 

the Paul-Mickle pipeline.  Ideally, some kind of pipeline that shifts any exception flag setting 

along with matrix results should exist in this pipeline.  This would increase logic utilization, but 

not significantly.  Xilinx datasheets indicate that only a few more LUTs and flip flops would be 

required per floating point core.  

If denormalized values and other rounding operations are required, another floating point 

core is required.  One possible solution is the use of IEEE 1076.3 synthesizable floating point 

libraries mentioned in Chapter 4.  These libraries support denormalized numbers at the expense 

of higher logic requirements.  Moreover, this library supports additional rounding operations that 

are required by the IEEE floating point specification.   Unfortunately, at the time of writing this 

thesis, these libraries were not working with the Xilinx ISE design environment.  In the future, 

these libraries might be available and are an ideal replacement for the Xilinx core in that the 

library is theoretically portable across all FPGA platforms should their tools choose to support it. 
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Finally, it is desirable to expand the single precision floating point values to double 

precision or beyond provided FPGA resources are available.  Since the Crout function is highly 

iterative in an algorithmic sense, a risk exists where error due to rounding can accumulate 

through the pipeline stages.  Xilinx provides the option to use double precision floating point 

values in their floating point cores.  The tradeoff is both an increase in resource utilization as 

well as a decrease in maximum frequency.  Anything beyond double precision shall require 

custom floating point cores. 

5.1.2 Fully Systolic Operation  

The implementation of the Paul-Mickle architecture in this thesis was not systolic at the 

system clock level due to the amount of logic required by the floating point processing elements.  

As a design tradeoff, the division function was created requiring a multiple cycle delay. 

Moreover, logic required by elements that merely delay the current contents of each element (i.e. 

FWD elements as described in Chapter 3) of a matrix stage were not fully implemented as the 

shift register structure was not required.  The end result is a design that presents a new matrix 

solution at the end of each “matrix stage” cycle and not at each system clock cycle. 

While the implementation described in this thesis is still very useful to demonstrate the 

feasibility of implementing the Paul-Mickle architecture in an FPGA, the first item that needs to 

be addressed is the modifications that are necessary to achieve systolic behavior at the system 

clock level.  Systolic behavior can be achieved by creating a division function that is capable of 

accepting new data at each system clock cycle, and, at the same time, adding the shift register 

function that delays input elements in each matrix stage to compensate for arithmetic function 

pipeline latency. 
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Xilinx provides the option to create a division function with a “core available” latency of 

one cycle using the Coregen utility detailed in Chapter 4.  However, this will add more logic 

utilization to the design.  According to documentation from Xilinx regarding the floating point 

core used, a synthesized core with true systolic behavior requires five times the logic of a core 

that has 26 cycles of latency [17].  

The designer has two options to implement the FWD element required in each matrix 

stage in the target FPGA.  One method is to use a flip flop to store each bit of an IEEE754 

floating point number.  This method could grow into considerable flip flop utilization at each 

forwarding (FWD) element of the design.  Suppose, in a systolic approach to the design, one 

requires 6 cycles for the divide function (i.e. the “del 1” delay as detailed in Chapter 3), 6 cycles 

for the multiply function (i.e. the “del 2 delay as detailed in Chapter 3), and 6 cycles for the 

subtraction.  This demonstrates a need to delay each FWD element of a matrix stage by 18 

cycles.   

Overall, 32 flip flops are required to store a single IEEE754 value times a shift register 

depth of 18.  This indicates that each FWD element shall require 576 flip flops!  In the case of 

the 5x5, Paul-Mickle implementation, 60 forwarding functions are required across all matrix 

stages for a grand total of 34,560 flip flops.  Moreover, since intermediate values are required to 

be forwarded to the next matrix stages, each element requires storage to balance out the latency 

required by each element.  This shall increase flip flop requirements beyond the total of 34,560!  

In the end, a method to implement a more efficient shift register needs to be explored.   

According to Xilinx documentation on the Virtex 5 devices, one half the LUTs available 

in the FPGA are available for use as an element called an SRL16 [13].  SRL16s use the memory 

elements of a LUT in a device as a shift register.  As a result, the 6 cycles required for 
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compensation of a mathematical function can be reduced from 192 flip flops down to 32 LUTs 

where each LUT can be used as the 6 cycle delay.   

If the SRL16 approach is used to implement the delay chains required by the 5x5 

example, only 5,760 LUTs are required.  Three delay elements are needed to compensate for 

each mathematical function in a matrix stage (i.e. the 18 cycle depth).  If 32 bit precision is used, 

each bit of the value is stored across 32 LUTs.  The SRL16 provides up to 16 cycles of storage.  

Each delay only requires 6 cycles, so a delay at the bit level can be packed into a single LUT.   

Since 60 forwarding elements are used across all matrix stages, one finds that 5,760 LUTs are 

required.   This amount of logic is significantly easier to manage in an FPGA.  Given the results 

in Chapter 4, this delay could be packed into the existing design, but it is rather useless in that 

the divide function would have to be systolic for the delay function to be useful. 

5.1.3 Resource Utilization  

As indicated in Section 5.1.2, the Paul-Mickle architecture requires significant logic resources as 

matrix size increases.  Referring to the mathematical representation of Crout elimination in 

Figure 1, the pseudocode in Figure 2, and the “unrolled loop” in Figure 11, one can see that the 

number of divide functions required increases linearly and the number of multiply and subtract 

functions increases exponentially for a square matrix of size M.  Moreover, should one desire 

fully systolic operation as discussed in Section 5.1.2, the number of LUTs required for FWD 

(delay) elements grows exponentially as a square matrix of size M increases. 

The following figures detail the resources required for a Paul-Mickle solution to solving 

Crout Elimination in an FPGA for a square matrix of size M.  They were derived by examining 

the unrolled loop detailed in Figure 11.  These equations assume one is using a Xilinx device 
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with DSP48 slices present.  Also, these equations assume one can implement a floating point 

divide function that provides a solution in 16 cycles.  Sixteen cycle latency for floating point 

division is possible according to the floating point core datasheets [17].  This latency is required 

to insure a delay element is matched to the maximum delay possible using an SRL16 for delay 

purposes as discussed in Section 5.1.2.     

 

f divideareaFLOPs =X
i = 1

M@ 1

iB fpdivide coresizeFLOPs

b c

 

 

Figure 37: Function to compute flip flops required for the divide function 

 

f divideareaLUTs =X
i = 1

M@ 1

iB fpdivide coresizeLUTs + 2Bprecision
b c

 

 

Figure 38: Function to compute LUTs required for the divide function 

 

The two functions detailed in Figure 37 and Figure 38 show the amount of logic required 

for the division functions required across all matrix stages.  Figure 37 shows that the number of 

flip flops required grows linearly as do the number of LUTs required.  If “full systolic” operation 

is desired, then one must account for the two delay elements required.  Since these are 

implemented in Xilinx SRL16s, a single delay element consumes a single LUT.  The variable 

“precision” indicates the width of a bit vector corresponding to a floating point number.  In the 

case of this thesis, 32 bit precision was used.  This may vary depending on future 

implementations of this pipeline.  
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f mulsubareaFLOPs =X
i = 1

M@ 1

i2B fpmult coresizeFLOPs + fpsubtract coresizeFLOPs

b c

 

 

Figure 39: Function to compute flip flops required for the multiply-then-subtract 

function 

 

f mulsubareaLUTs =X
i = 1

M@ 1

i2B fpmult coresizeLUTs + fpsubtract coresizeLUTs + 4Bprecision
b c

 

 

Figure 40: Function to compute LUTs required for the multiply-then-subtract 

function 

 

f multDSPs =X
i = 1

M@ 1

i2B DSPslice
` a

 

 

Figure 41: Function to compute DSP48 slices required for the multiply function 

 

The three functions detailed in Figure 39, Figure 40, and Figure 41 show the amount of 

logic required for the multiply and subtraction functions required across all matrix stages.  These 

figures show that the number of required flip flops, LUTs, and DSP48 elements grows 

exponentially.  If “full systolic” operation is desired, then one must account for the two delay 

elements required in both the multiply and subtraction function.  Since these are implemented in 

Xilinx SRL16s, a single delay element consumes a single LUT and each arithmetic operation 
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requires two delays for a total of 4 delay elements.  Like the division resource utilization 

functions, the variable “precision” indicates the width of a bit vector corresponding to a floating 

point number.  Also, in this thesis, the floating point multiplication function used DSP logic to 

facilitate fitting of the pipeline into the target FPGA.  This may not be necessary in a future 

implementation of this pipeline provided sufficient resources are available. 

Finally, resources used for the “FWD” elements must be counted.  Like the multiplication 

and subtraction functions, these requirements also grow exponentially in size as the square 

matrix of size M increases.  In the case of a “fully systolic” implementation, the function detailed 

in Figure 42 is used. A total of three SRL16 delay elements are required to compensate for the 

division, multiplication, and subtraction functions. 

 

f fwdareaLUTs =X
i = 1

M@ 1

M 2
@ iB i + 1

` a

b c

d e

B 3Bprecision
b c

 

 

Figure 42: Function to compute LUTs required for the FWD function 

 

Any element in a matrix stage that does not contain arithmetic operators is required to 

store the results of the previous stage for forwarding to the next stage.  In the case of this thesis, 

the need for the delay elements was not required as flip flops were used to store intermediate 

results.  Recall that the division function was implemented with the restriction that new operands 

could not be pushed into the function until the previous function is complete.  While this 

eliminates the need for FWD delay elements as described in this section, it does require that 

storage is used at each intermediate node so that intermediate results are saved and forwarded to 
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their corresponding stages in the pipeline.  In the case of this thesis, banks of flip flops were used 

at each node to store intermediate results.  

Figure 43 details the number of flip flops required should one use this approach to 

implementing a non-systolic version of the Paul-Mickle pipeline. 

 

f fwdareaFLOPs =X
i = 1

M@ 1

M 2
@ iB i + 1

` a

b c

d e

Bprecision  

 

Figure 43: Total number of flip flops required for "non-systolic" FWD functions 

  

Overall, the Paul-Mickle architecture requires substantial logic as the matrix size 

increases.  Suppose one were to create a system based on this architecture to solve 20x20 

matrices.  Figure 42 shows that the final matrix stage alone would require over 38,000 LUTs just 

to implement the required FWD functions should one desire to implement a systolic pipeline 

with 32-bit precision!  This logic alone would not fit in the Virtex-5 FPGA used in this thesis.  

The largest Xilinx device available at the time of writing this thesis, the Virtex-5 LX330, would 

be 18% utilized just by this requirement alone [13]!  Therefore, some kind of solution is required 

so that the Paul-Mickle pipeline remains extensible using FPGA technology.  A solution to be 

considered is partitioning the design across multiple FPGAs. 

5.1.4 Design Partitioning 

While a 5x5 matrix example is by no means trivial to implement, the three dimensional 

Crout Elimination pipeline must support larger matrix sizes.  Since the design detailed in this 

 82 



thesis indicates that one requires roughly 25,000 logic elements to implement the non-systolic 

5x5 solution, any 5x5 systolic function or matrix size over 5x5 shall require multiple FPGAs to 

handle the demand for more logic.  As implied in Chapter 3 and detailed in Section 5.1.3, the 

amount of logic needed for Crout Elimination on a square matrix grows exponentially as matrix 

size increases. 

To remedy this logic demand, the design can be partitioned across multiple FPGAs.  In 

turn, these multiple FPGAs can be placed on a single PCB.  One problem, however, is 

communication overhead due to data transfers from one FPGA to another.  After referring to the 

Xilinx Virtex 5 data sheets, one can see that modern FPGAs are well equipped to handle these 

tasks [13].   

The number of pins available on modern FPGAs is rather impressive.  In FF1738 

package, a Xilinx FPGA provides 960 I/O pins available for general purpose use.  If a designer 

requires a wide, parallel bus, a vast number of these pins can be used for that purpose as all I/O 

have features such as DDR flip flops and output skewing for source synchronous applications.  

Each I/O pin is capable of a single ended operation at 800Mbps.   

Each I/O pair is capable of differential operation should clock frequency requirements 

dictate a higher speed transfer from one FPGA to another is required.  The benefit of LVDS pairs 

is increased performance at the expense of two I/O being used for each bit.  These LVDS pairs 

can be ganged in parallel for very high speed serial busses operating in parallel.  Each LVDS pair 

is capable of running at a 1.25Gbps rate.  Should higher serial rates be required, Xilinx provides 

up to 24 “Rocket I/O” pins.  Each Rocket I/O pin is capable of 3.75Gbps transfers.  Overall, chip 

interconnect in a partitioned design should provide substantial bandwidth. 
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Another problem with design partitioning is mapping partitioned blocks to the target 

FPGAs.  The VHDL provided in Appendix A assumes targeting the design to a single FPGA.  

Additional work is required to break the logic down into functional units that can map to 

available resources on the multiple FPGAs in a partitioned design.  Moreover, additional logic is 

required to map intermediate results to the communication protocol used for chip-to-chip 

communication.   

One possible solution to the partitioning problem is to modify the code taking these 

partition sizes into account.  Referring to the logic provided in Appendix A, the use of VHDL 

generics demonstrated that parameters could be used to control the size of the pipeline by simply 

changing a few parameters in the code.  Since it would be desirable to have this partitioning 

process automated, one could use the parameterized nature of the design to create a program that 

would automatically generate the partitioned units needed to create a larger matrix pipeline.  This 

program could determine the amount of logic used in each matrix stage and determine the best 

way to pack the design into available resources.  Subsequently, the program would be 

responsible for assigning proper parameters to the logic in the pipeline.   While some changes are 

required to the overall structure of the VHDL presented in this thesis, the overall idea could be 

implemented using this logic as a basis for more work on partitioning. 

5.1.5 FPGA Based Distributed Computing Clusters 

For solving “very large” matrix sizes, partitioning as described in Section 5.1.4 might not 

be enough.  Many factors such as PCB real estate, power consumption, and signal integrity are 

all concerns when designing relatively large PCBs.  In these cases, it might be desirable to take 

partitioning one step farther and divide up the tasks among multiple FPGAs on multiple PCBs.  

 84 



Such technology exists today and would be advantageous to use for Paul-Mickle pipelines of 

very large scale. 

 

 

 

Figure 44: The SGI Reconfigurable Application Specific Computing (RASC) RC100 

  

To address the need for general purpose platforms with multiple FPGAs, vendors are 

providing solutions that address the need for more logic on a general purpose platform.  One 

such vendor, SGI, provides the Reconfigurable Application Specific Computing (RASC) RC100 

blade to fill these needs [18].  The RC100 contains dual Virtex 4 LX200 FPGAs where each 

FPGA contains 200,488 LUTs and 200,488 flip flops.  The FPGAs are interconnected using a 

proprietary interconnect capable of sustaining speeds up to 6.4GB per second. 

 The RC100 blades operate in an SGI server.  Should a user require additional logic, up to 

64 blades may be added providing up to 128 Virtex 4 LX200 FPGAs.  This solution provides the 

user with 25.6M LUTs and flip-flops!  A shared memory is available should it be needed to store 

intermediate results in the event the algorithm is modified in the future to take advantage of such 

resources. 
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 Despite the vast amount of logic available on this platform, a threshold will be crossed 

where there will not be enough resources available to implement a solution for a large matrix 

size on an SGI server.  One possible solution to this problem is using networking appliances like 

the SGI server equipped with a very high speed communication interfaces like 10 Gigabit 

Ethernet.  Xilinx provides a 10Gb Ethernet core for use in their Virtex 4 and 5 FPGAs [20].  This 

core, coupled with a physical layer device, could allow high bandwidth communication of 

intermediate results between FPGA servers. 

 Eventually, another threshold will be crossed where the number of servers required to 

solve a large sized matrix will become unfeasible due to reasons such as cost, power, and overall 

area required to install a server farm.  It may be desirable to use the concepts presented in 

Section 2.3 to work around this issue.  As FPGA based servers grow in use across the world, it 

may be possible to apply some of the research in [4] and create a non-dedicated cluster of FPGA 

based servers to solve these extremely large matrices using the Paul-Mickle architecture.   

In the future, it might be possible to use some kind of basic, time sharing algorithm to 

allocate resources to users requesting access to massive amounts of FPGA resources.  Once a 

user is granted access, the pipeline can be partitioned according to the available resources in the 

network and the resulting FPGA configuration files can be sent to the target devices.  After 

computations are complete or the user’s time slice expires, the system is then free to accept 

configuration data from another user.  While this idea requires substantial research in design 

partitioning and system architecture, the concept is feasible using technology available in 2008.      
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5.2 CONCLUSION 

Overall, this thesis demonstrates that it is feasible for the Paul-Mickle pipeline to be 

implemented in modern FPGAs.  While earlier solutions for high speed LU factorization 

required the use of multiple CPUs, scheduling overhead, and communication time typically 

encountered in parallel processing solutions, the use of custom logic allows the possibility of 

implementing an optimal solution to the Crout Elimination problem should latency be the 

primary concern of the required solution.  Custom logic, through the use of FPGAs, alleviates 

much of the overhead required with parallel processing solutions on CPUs.   

The solution presented in this thesis is complete when considering the constraints of the 

hardware used to implement the design, but more work is required should an end user require a 

systolic solution or solutions to solve larger matrix sizes.  However, it is hoped that the work in 

this thesis provides an excellent starting point for future work in the implementation of the Paul-

Mickle Three Dimensional Pipeline. 
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APPENDIX A 

VHDL SOURCE FOR CROUT PIPELINE 

The VHDL for the Crout pipeline is presented.  Only the code for the 3D pipeline is presented.  

The floating point cores are assumed to be a fixed netlist since they are provided by Xilinx and 

are not available in source form.  

A.1 FLOATING POINT MULTIPLY-SUBTRACT FUNCTION 

The following VHDL source code details the creation of the FP_MULT_SUB function as 

described in Chapter 3. 

----------------------------------------------------------------------------------- 
-- 
-- Title    : Floating Point mutliply then subtract function. 
-- 
-- Author   : Ed Henciak 
--  
-- Function : For Crout elimination, a multiply followed by subtract function 
--            is required for nodes in the "matrix stage" being processed.  These 
--            two functions are combined in this component to make instantiation 
--            easier at higher levels. 
-- 
----------------------------------------------------------------------------------- 
 
LIBRARY IEEE ; 
  USE IEEE.STD_LOGIC_1164.ALL; 
  USE IEEE.std_logic_arith.ALL; 
  USE IEEE.std_logic_unsigned.ALL; 
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ENTITY fp_mult_subt IS 
PORT ( 
 
    -- Main Clock & reset 
    clk         : IN    STD_LOGIC; 
    reset       : IN    STD_LOGIC; 
 
    -- Indicates that new data is present and valid. 
    op_nd       : IN    STD_LOGIC; 
 
    -- Input operands... 
    quot_in     : IN    STD_LOGIC_VECTOR(31 DOWNTO 0); -- Input quotient from divider. 
    mlt_in      : IN    STD_LOGIC_VECTOR(31 DOWNTO 0); -- Value to multiply with quot. 
    sbt_in      : IN    STD_LOGIC_VECTOR(31 DOWNTO 0); -- Value from which we subtract 
                                                       -- the product of the quotient 
and 
                                                       -- mlt_in value. 
 
    -- Result of above computations. 
    result_rdy  : OUT   STD_LOGIC; 
    result      : OUT   STD_LOGIC_VECTOR(31 DOWNTO 0)  
 
); 
END ENTITY; 
 
ARCHITECTURE rtl OF fp_mult_subt IS 
 
    -- IEEE 754 Multiply component generated in Xilinx Coregen 
    -- using ISE9.2SP2 
    COMPONENT fp_multiply 
    PORT ( 
 a             : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 
 b             : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 
 operation_nd  : IN STD_LOGIC; 
 operation_rfd : OUT STD_LOGIC; 
 clk           : IN STD_LOGIC; 
 sclr          : IN STD_LOGIC; 
 result        : OUT STD_LOGIC_VECTOR(31 DOWNTO 0); 
 rdy           : OUT STD_LOGIC 
    ); 
    END COMPONENT; 
 
    -- IEEE 754 Subtract component generated in Xilinx Coregen 
    -- using ISE9.2SP2 
    COMPONENT fp_subtract 
    PORT ( 
 a             : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 
 b             : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 
 operation_nd  : IN STD_LOGIC; 
 operation_rfd : OUT STD_LOGIC; 
 clk           : IN STD_LOGIC; 
 sclr          : IN STD_LOGIC; 
 result        : OUT STD_LOGIC_VECTOR(31 DOWNTO 0); 
 rdy           : OUT STD_LOGIC 
    ); 
    END COMPONENT; 
 
    -- Signal declarations  
    SIGNAL product     : STD_LOGIC_VECTOR(31 DOWNTO 0); 
    SIGNAL product_rdy : STD_LOGIC; 
 
BEGIN 
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    -- Instantiate multiply function. 
    fp_mult_0 : fp_multiply 
    PORT MAP( 
 a             => quot_in, 
 b             => mlt_in, 
 operation_nd  => op_nd, 
 operation_rfd => OPEN, -- Multiplier is always ready 
 clk           => clk, 
 sclr          => reset, 
 result        => product, 
 rdy           => product_rdy 
    ); 
 
    -- Instantiate subtractor. 
    fp_subt_0 : fp_subtract 
    PORT MAP( 
 a             => sbt_in, 
 b             => product, 
 operation_nd  => product_rdy, 
 operation_rfd => OPEN, -- Subtractor is always ready 
 clk           => clk, 
 sclr          => reset, 
 result        => result, -- Difference 
 rdy           => result_rdy 
    ); 
 
END ARCHITECTURE rtl; 
 

A.2 PIPELINE MATRIX STAGE VHDL 

The following VHDL source code details the creation of a single stage of the Crout pipeline.  

Please note that the library “float_convert” is a library created for this thesis based on the 

proposed IEEE1076.3 library.  This library is used to convert VHDL “real” types to IEEE754 

floating point numbers in VHDL “std_logic_vector” notation.  It is not required to synthesize the 

actual design.  It is merely used for debugging purposes.  The library “textio_utils_pkg” merely 

provides a means to print VHDL simulation results to the console.  It is not required to 

synthesize the design. 
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----------------------------------------------------------------------------------- 
-- 
-- Title    : 3D Crout Pipeline Stage 
-- 
-- Author   : Ed Henciak 
--  
-- Function : Creates a single stage of the Mickle-Paul 3D 
--            Crout pipeline. 
--             
----------------------------------------------------------------------------------- 
 
LIBRARY IEEE; 
    USE IEEE.STD_LOGIC_1164.ALL  ;
    USE IEEE.std_logic_arith.ALL; 
    USE IEEE.std_logic_unsigned.ALL; 
 
-- synthesis translate_off 
LIBRARY WORK; 
    USE WORK.textio_utils_pkg.ALL;     
    USE WORK.float_convert_pkg.ALL; 
-- synthesis translate_on 
 
ENTITY crout_pipe_stage IS  
GENERIC ( 
 
    matrix_m     : INTEGER := 5; 
    floatvec_len : INTEGER := 32; 
    stage        : INTEGER := 1  
 
); 
PORT ( 
 
    -- Main Clock & reset 
    clk         : IN    STD_LOGIC; 
    reset       : IN    STD_LOGIC; 
 
    -- Input operands... 
    crout_rfd    : OUT  STD_LOGIC -- Ready for data... ; 
    crout_din    : IN   STD_LOGIC_VECTOR(((floatvec_len*(matrix_m**2))-1) DOWNTO 0); -
- Input matrix 
    crout_ivalid : IN   STD_LOGIC; -- Matrix is valid 
 
    -- Results 
    crout_dout   : OUT  STD_LOGIC_VECTOR(((floatvec_len*(matrix_m**2))-1) DOWNTO 0); -
- Output matrix 
    crout_ovalid : OUT  STD_LOGIC  -- output is valid. 
 
); 
END ENTITY; 
 
ARCHITECTURE rtl OF crout_pipe_stage IS 
 
    -- Constant which represents the number of bits required to represent the  
    -- entire matrix at this stage... 
    CONSTANT bits_per_row : INTEGER := matrix_m * floatvec_len; 
 
    -- Processed matrix type (makes assignments easier) 
    TYPE pmtx_t IS ARRAY (1 TO matrix_m, 1 TO matrix_m) OF 
STD_LOGIC_VECTOR(floatvec_len-1 DOWNTO 0); 
    SIGNAL mtx_in   : pmtx_t;  -- Input matrix for this stage... 
    SIGNAL rslt_m_i : pmtx_t;  -- Result matrix for this stage (wires)... 
    SIGNAL rslt_m   : pmtx_t;  -- Result matrix for this stage (flops)... 
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    -- "Quotient" type is simply an array of std_logic_vectors. 
    TYPE quotient_t IS ARRAY (1 TO matrix_m) OF STD_LOGIC_VECTOR(floatvec_len-1 DOWNTO 
0); 
    SIGNAL quotient : quotient_t; -- Array of quotients for this stage. 
 
    -- "Quotient is ready" vector... 
    SIGNAL quotient_rdy : STD_LOGIC_VECTOR(1 TO matrix_m); 
 
    -- The "result ready" flag is actually a 2D array of bits...only one of these 
    -- will be used by the logic...the rest will be optimized away. 
    TYPE rslt_rdy_t IS ARRAY (1 TO matrix_m, 1 TO matrix_m) OF STD_LOGIC; 
    SIGNAL rslt_rdy : rslt_rdy_t; 
 
    -- Signal indicating that mutliply & subtract unit is done... 
    SIGNAL mult_sub_done : STD_LOGIC; 
 
    -- Output of this stage is valid 
    SIGNAL ovalid : STD_LOGIC; 
 
    SIGNAL ready_for_data : STD_LOGIC := '1'; 
 
BEGIN 
 
    -- First, use a generate statement to organize the matrix.  All this is doing 
    -- is making the "wires" easier to read...it consumes no logic... 
    create_input_mtx_i_0 : FOR i IN 1 TO matrix_m  
    GENERATE 
 
        create_input_mtx_j_0 : FOR j IN 1 TO matrix_m  
 GENERATE 
            mtx_in(i,j) <= crout_din( ( ((j*floatvec_len)-1) + ((i-1)*bits_per_row) ) 
DOWNTO  
                 ( (j-1)*floatvec_len + ((i-1)*bits_per_row) ) 
); 
 END GENERATE; 
 
    END GENERATE; 
 
    -- Next we have to instantiate either a "keep", a "divide" or a "mult/subtract"  
    -- component...these are instantiated based on stage... 
    --create_proc_i_0 : for i in STAGE to MATRIX_M 
    create_proc_i_0 : FOR i IN 1 TO matrix_m 
    GENERATE 
  
        create_proc_j_0 : FOR j IN 1 TO matrix_m 
 GENERATE 
 
     -- Instantiate a divider if I = current stage 
     -- and j > current stage... 
     check_if_divide : IF ((i = stage) AND (j > stage))  
     GENERATE 
 
                -- Instantiate divide function. 
                fp_div_0 : ENTITY WORK.fp_divide 
                PORT MAP( 
                    a             => mtx_in(i,j),  
                    b             => mtx_in(stage,stage), 
                    operation_nd  => crout_ivalid, 
                    operation_rfd => OPEN, 
                    clk           => clk,  
                    sclr          => reset,  
                    result        => quotient(j), 
                    rdy           => quotient_rdy(j) 
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                ); 
 
  rslt_m_i(i,j) <= quotient(j); 
 
            END GENERATE; 
 
     -- Here we prevent latches in the event quotient(x) is not 
     -- used in this stage...the synthesis tool should optimize 
            -- this element away since it is unused. 
     clear_quotient : IF ((i=stage) AND (j <= stage)) 
     GENERATE 
 
         quotient(j)     <= (OTHERS => '0'); 
  quotient_rdy(j) <= '0'; 
 
     END GENERATE; 
 
     -- Instantiate a mult/subtract if we're "under the  
     -- dividers".... 
     check_if_multsub : IF ((i>stage) AND (j>stage)) 
     GENERATE 
 
                fp_mult_subt_0 : ENTITY WORK.fp_mult_subt 
                PORT MAP( 
                 
                    -- Main Clock & reset 
                    clk         => clk, 
                    reset       => reset, 
                 
                    -- Indicates that new data is present and valid. 
                    op_nd       => quotient_rdy(j), 
                 
                    -- Input operands... 
                    quot_in     => quotient(j), 
                    mlt_in      => mtx_in(i,stage), 
                    sbt_in      => mtx_in(i,j), 
                 
                    -- Result of above computations. 
                    result_rdy  => rslt_rdy(i,j), 
                    result      => rslt_m_i(i,j) 
 
                ); 
 
            END GENERATE; 
 
     -- Here we simply pass results if no operation is to be performed. 
     --check_if_pass : if ( (not((i = STAGE) and (j > STAGE))) and  
     --                     (not((i>STAGE) and (j>STAGE))) ) 
     check_if_pass : IF ((i < stage) OR (j <= stage)) 
     GENERATE 
 
      rslt_rdy(i,j) <= '0'; 
      rslt_m_i(i,j) <= mtx_in(i,j); 
 
     END GENERATE; 
 
 END GENERATE; 
 
    END GENERATE; 
 
    -- Always use the "output valid" signal from a mult/sub unit 
    -- that will be used regardless of stage (i.e. "lower right" 
    -- unit will always be used...). 
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    mult_sub_done <= rslt_rdy(matrix_m, matrix_m); 
 
    -- Check above... 
    PROCESS(clk, reset) 
    BEGIN 
 
 IF (reset = '1') THEN 
 
     ovalid         <= '0';  
            ready_for_data <= '1'; 
 
     FOR IN 1 TO matrix_m LOOPi   
         FOR j IN 1 TO matrix_ LOOP m 
      rslt_m(i,j) <= (OTHERS => '0'); 
  END LOOP; 
     END LOOP; 
 
        ELSIF (clk'EVENT AND clk = '1') THEN 
 
     -- Defaults... 
     ovalid <= '0'; 
 
     -- In terms of "real" logic, all values that require no 
     -- operation are registered here.  There is also some code 
            -- to dispay results for debugging purposes... 
     IF (crout_ivalid = '1') THEN 
 
  ready_for_data <= '0'; 
 
  -- synthesis translate_off 
  nne " I ut tage #" & image(stage)); ba r( np of s
                FOR r IN 1 TO 5 LOOP 
 
                    printf(image(ieee754slv_to_real(mtx_in(r,1))) & "   " & 
                           image(ieee754slv_to_real(mtx_in(r,2))) & "   " & 
                           image(ieee754slv_to_real(mtx_in(r,3))) & "   " & 
                           image(ieee754slv_to_real(mtx_in(r,4))) & "   " & 
                           image(ieee754slv_to_real(mtx_in(r,5)))); 
 
  END LOOP; 
  -- synthesis translate_on 
 
  -- Register "pass" values... 
  FOR i IN 1 TO matrix_m LOOP 
 
      FOR j IN 1 TO matrix_m LOOP 
 
                 IF ( (NOT AND (j > stage))) AND  ((i = stage)  
        (NOT((i>stage) AND (j>stage))) ) THEN 
 
              rslt_m(i,j) <= rslt_m_i(i,j); 
 
          END IF; 
 
      END LOOP; 
 
  END LOOP; 
 
     END IF; 
 
     -- When the quotient is ready, we need to register the  
     -- quotients immediately as they will be invalid on the  
     -- next cycle. 
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     IF (quotient_rdy(matrix_m) = '1') THEN 
 
  -- Register quotients.... 
         FOR i IN (stage+1) TO matrix_m LOOP 
      rslt_m(stage, i) <= rslt_m_i(stage,i); 
  END LOOP; 
 
     END IF; 
 
     -- When the multiply/subtract units are done, the current 
            -- stage is complete...we can forward it on to the next stage... 
     IF (mult_sub_done = '1') THEN 
 
  -- Set ready for data flag 
  ready_for_data <= '1'; 
 
  -- Output is valid... 
  ovalid <= '1'; 
 
  -- Register the results of the mult+subtract units. 
  FOR i IN 1 TO matrix_m LOOP 
 
      FOR j IN 1 TO matrix_m LOOP 
 
   IF ((i>stage) AND (j>stage)) THEN 
              rslt_m(i,j) <= rslt_m_i(i,j); 
          END IF; 
 
      END LOOP; 
 
  END LOOP; 
 
     END IF; 
 
 END IF; 
 
    END PROCESS; 
 
    -- synthesis translate_off 
    -- Simple process to display intermediate results... 
    PROCESS(clk) 
    BEGIN 
 
 IF (clk'EVENT AND clk = '1') THEN 
 
            IF (ovalid = '1') THEN 
 
         banner(" Output of stage #" & image(stage)); 
 
                FOR r IN 1 TO 5 LOOP 
 
                    printf(image(ieee754slv_to_real(rslt_m(r,1))) & "   " & 
                           image(ieee754slv_to_real(rslt_m(r,2))) & "   " & 
                           image(ieee754slv_to_real(rslt_m(r,3))) & "   " & 
                           image(ieee754slv_to_real(rslt_m(r,4))) & "   " & 
                           image(ieee754slv_to_real(rslt_m(r,5)))); 
 
                END LOOP; 
 
            END IF; 
 
        END IF; 
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    END PROCESS; 
    -- synthesis translate_on 
 
    -- Concurrent signal assignments 
 
    -- Output of the divide function indicates when we can accept the next 
    -- matrix.  Always use a divider that will be "used" regardless of the 
    -- current stage! 
    crout_rfd <= ready_for_data; 
 
    -- Output valid signal... 
    crout_ovalid <= ovalid; 
 
    -- Create output vector... 
    create_output_vec_i_0 : FOR i IN 1 TO matrix_m  
    GENERATE 
 
        create_output_vec_j_0 : FOR j IN 1 TO matrix_m  
 GENERATE 
            crout_dout( ( ((j*floatvec_len)-1) + ((i-1)*bits_per_row) ) DOWNTO  
                ( (j-1)*floatvec_len + ((i-1)*bits_per_row) ) ) <= 
rslt_m(i,  j);
 END GENERATE; 
 
    END GENERATE; 
 
END ARCHITECTURE rtl; 

 

A.3 CROUT 5X5 PIPELINE VHDL 

The following VHDL source code details the creation of a single stage of the Crout pipeline.  

Please note that the library “float_convert” is a library created for this thesis based on the 

proposed IEEE1076.3 library.  This library is used to convert VHDL “real” types to IEEE754 

floating point numbers in VHDL “std_logic_vector” notation.  It is not required to synthesize the 

actual design.  It is merely used for debugging purposes.  The library “textio_utils_pkg” merely 

provides a means to print VHDL simulation results to the console.  It is not required to 

synthesize the design. 
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----------------------------------------------------------------------------------- 
-- 
-- Title    : 5x5 Crout Pipeline 
-- 
-- Author   : Ed Henciak 
--  
-- Function : Instantiates the components for the 5x5 Crout demonstration. 
--             
----------------------------------------------------------------------------------- 
 
LIBRARY IEEE; 
    USE IEEE.STD_LOGIC_1164.ALL  ;
    USE IEEE.std_logic_arith.ALL; 
    USE IEEE.std_logic_unsigned.ALL; 
 
-- synthesis translate_off 
LIBRARY WORK; 
    USE WORK.textio_utils_pkg.ALL      ;
    USE WORK.float_convert_pkg.ALL; 
-- synthesis translate_on 
 
ENTITY crout_5_5_pipeline IS 
PORT ( 
 
    -- Main Clock & reset 
    clk         : IN    STD_LOGIC; 
    reset       : IN    STD_LOGIC; 
 
    -- Input operands... 
    crout_rfd    : OUT  STD_LOGIC; -- Ready for data... 
    crout_din    : IN   STD_LOGIC_VECTOR(799 DOWNTO 0); -- Input matrix 
    crout_ivalid : IN   STD_LOGIC; -- Matrix is valid 
 
    -- Results 
    crout_dout   : OUT  STD_LOGIC_VECTOR(799 DOWNTO 0); -- Output matrix 
    crout_ovalid : OUT  STD_LOGIC  -- output is valid. 
 
); 
END ENTITY; 
 
ARCHITECTURE rtl OF crout_5_5_pipeline IS 
 
    CONSTANT matrix_m : INTEGER := 5; 
 
    SIGNAL crout_rfd_i  : STD_LOGIC_VECTOR(0 TO 4); 
    SIGNAL crout_dvalid : STD_LOGIC_VECTOR(0 TO 4); 
 
    TYPE rout_vec_t IS ARRAY (0 TO 4) OF STD_LOGIC_VECTOR(799 DOWNTO 0);  c
    SIGNAL crout_data_i  : crout_vec_t; 
 
BEGIN 
 
    -- Concurrent assignments to drive data into pipeline... 
    crout_dvalid(0) <= crout_ivalid; 
    crout_data_i(0) <= crout_din; 
 
    -- Instantiate a 4 stage pipeline to solve the 5x5 case. 
    crout_5_5_pipe : FOR k IN 1 TO matrix_m-1  
    GENERATE 
 
        crout_stage : ENTITY WORK.crout_pipe_stage  
        GENERIC MAP( 
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     matrix_m     => matrix_m, -- This is a 5x5 matrix 
     floatvec_len => 32, -- Precision is 32 bits. 
            stage        => k   -- We're on stage "K" 
         
        )  
        PORT MAP( 
         
            -- Main Clock & reset 
            clk         => clk, 
            reset       => reset, 
         
            -- Input operands... 
            crout_rfd    => crout_rfd_i(k-1), 
            crout_din    => crout_data_i(k-1), 
            crout_ivalid => crout_dvalid(k-1), 
         
            -- Results 
            crout_dout   => crout_data_i(k), 
            crout_ovalid => crout_dvalid(k) 
         
        ); 
 
    END GENERATE; 
 
    -- Concurrent assignments to drive the outputs... 
    crout_rfd    <= crout_rfd_i(0); -- 1st stage RFD indicates when it is clear to 
send next mtx. 
    crout_dout   <= crout_data_i(4); -- 4th stage is a completed matrix output. 
    crout_ovalid <= crout_dvalid(4); -- Use qualifier from stage 4. 
 
END ARCHITECTURE rtl; 
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