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The lattice Boltzmann equation (LBE) method is a promising technique for simulating 

fluid flows and modeling complex physics in fluids, and can be modified for solving general 

nonlinear partial differential equations (NPDEs). The LBE method has recently attracted more 

and more attention since it may help us to better understand the mechanisms of the complicated 

physical phenomena and dynamic processes modeled by NPDEs. 

In this dissertation, firstly, we developed a second-order accurate mass conserving 

boundary condition (BC) for the LBE method. Through several cases, the results show that our 

mass conserving BC will not result in the constant mass leakage that occurs for the other BCs in 

some cases. Additionally, it increases the efficiency and stability of the method for cases that 

involve relatively large magnitudes of body force. 

Secondly, we developed a multi-component and multi-phase LBE method for high 

density ratios. Multi-component multi-phase (MCMP) flow is very common in engineering or 

industrial problems and in nature. Because the lattice Boltzmann equation (LBE) model is based 

on microscopic models and mesoscopic kinetic equations, it offers many advantages for the 

study of multi-component or multi-phase flow problems. While the original formulation of Shan 

and Chen’s (SC) model can incorporate some multiple phase and component scenarios, the 

density ratio of the different components is greatly restricted (less than approximately 2.0). This 

obviously limits the applications of this MCMP LBE model. Hence, based on the original SC 
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MCMP model and the improvements in the single-component multi-phase (SCMP) flow model 

reported by Yuan and Schaefer, we have developed a new model that can simulate a MCMP 

system with a high density ratio. 

Finally, we developed a parallel computation LBE method based on Compute Unified 

Device Architecture (CUDA). CUDA offers a great economic alternative way to increase the 

calculation speed of LBE method instead of using a supercomputer. We present how to apply 

CUDA to the LBE method, including boundary condition treatments, single phase flow, thermal 

problems, and multi-phase cases. Through the results of several numerical experiments, our 

model with the help of CUDA can offer an improvement of a 10-30 times faster speed than that 

of a traditional single thread CPU code. 
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1.0  INTRODUCTION 

The lattice Boltzmann equation (LBE) method is a promising technique for simulating 

fluid flows and modeling complex physics in fluids. Unlike conventional computational fluid 

dynamics (CFD) methods, the LBE model is based on microscopic models and mesoscopic 

kinetic equations in which the collective behavior of the particles in a system is used to simulate 

the continuum mechanics of the system. Due to this kinetic nature, the LBE method has been 

found to be particularly useful in applications involving interfacial dynamics and complex 

boundaries, such as multi-phase or multi-component flows [1]. Besides that, the LBE model is 

straightforward to program and intrinsically parallel [2, 3, 4].  

Additionally, although the LBE method can be considered to be a simplified fictitious 

molecular dynamics model designed for solving fluid problems, it also demonstrates the 

potential to simulate a nonlinear system in other areas. Some early work shows that the LBE 

method has been extended successfully to simulate some evolution equations [5, 6, 7, 8, 9, 10], 

and recent research shows that the LBE method can be used to solve more generalized nonlinear 

partial differential equations (NPDEs). Chai, Shi and Zheng’s work proves that the LBE model 

can recover 6th-order NPDEs [11]. NPDEs play an important role in different fields of physics 

and mathematics [12, 13], and the LBE method has therefore attracted more and more attention 

since it may help us to better understand the mechanisms of the complicated physical 

phenomena and dynamic processes modeled by NPDEs. 
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1.1 INTRODUCTION TO THE LATTICE BOLTZMANN EQUATION METHOD 

The LBE model is derived from the continuum Boltzmann equation, which is an integro-

differential equation, and describes the evolution of a single-particle distribution function 

 txf ,,


 in the physical-momentum space. Because of the high dimensions of the distribution 

and the complexity in the collision integral, direct solution of the full Boltzmann equation is a 

formidable task for both analytical and numerical techniques [14]. In 1954, Bhatnagar, Gross 

and Krook developed the Boltzmann-BGK equation which is an important simplification of the 

original Boltzmann equation [15]. The Boltzmann-BGK equation takes the form: 

 01
fff

t

f






                                                                                              (1.1) 

For solving numerically, the Boltzmann-BGK equation is first discretized in the 

momentum space using a finite set of velocities 

f




: 

 )(1 eqfff
t

f





 


 



                                                                                    (1.2) 

where    txftxf ,,,  
  and    txftxf eq ,,, )0()(

 
  are the distribution function and the 

equilibrium distribution function of the  th discrete velocity  , respectively. The equilibrium 

distribution function can be expressed in the form:  

  



  uu

c
ue

c
ue

c
wf eq 

2

2

42 2

3

2

93
1                                                          (1.3) 

where  is the weighting factor [w 16], 
t

x
c




  is the lattice speed, e


 is the discrete velocity set, 

and u  and 
   are the macroscopic velocity and density. 

The weighting factors and discrete velocities for the D2Q9 model are, for example: 
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 
   

 












.8,7,6,5,1,1

;4,3,2,1,1,0,0,1

;0,0,0







c

cce


                                                                               (1.4) 














.8,7,6,5,36/1

;4,3,2,1,9/1

;0,9/4





w                                                                                               (1.5) 

For a 3-D LBE model, the weighting factors and discrete velocities for D3Q19 (a widely 

used state space) are: 

 
     

     













.18,...,8,7,1,1,0,10,1,0,1,1

;6,...,2,11,0,0,0,1,0,0,0,1

;0,0,0,0








ccc

ccce


                                                (1.6) 















.18,...,8,7,36/1

;6,...,2,1,18/1

;0,3/1






w                                                                                            (1.7) 

After discretizing the PDF in momentum space, the number of possible particle spatial 

positions and microscopic momenta are reduced to 9 for the 2-D problem, as shown in Figure 1.1. 

For 3-D flow, there are several cubic lattice models, such as the D3Q15, D3Q19 and D3Q27 

model, as shown in Figure 1.2.  

 

 

Figure 1.1: The 2D grids for LBM 
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Based on the D2Q9, D3Q15, D3Q19 and D3Q27 frame definition, the density and the 

velocity can be defined as: 





b

f
0

                                                                                                                        (1.8) 





b

efu
0

1





                                                                                                                (1.9) 

where  represents the total number of possible particle spatial positions. To solveb  txf ,


 , 

equation (1.2) needs to be further discretized in physical space x


 and time t , so the completely 

discretized form of Boltzmann-BGK equation is: 

        txftxftxftttexf eq ,,
1

,,


 
                                                   (1.10) 

where   is the non-dimensional relaxation time. Appendix C shows the steps from continuum 

Boltzmann equation to LBE model in detail. This equation often can be solved using the 

following two steps [17]: 

Collision:         txftxftxftxf eq ,,
1

,,
~ 

 
                                                     (1.11) 

Streaming:    txftttexf ,
~

,


                                                                       (1.12) 

After the streaming step (equation (1.12)), we can substitute the newly calculated PDF 

 tttexf  , 
 into equation (1.11) by replacing the old  txf ,


 . Every loop is a time step, 

and after many time steps, which may be over 10,000 for some particularly complicated 

phenomena, the program will converge. 
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Figure 1.2: 2D square lattice and 3D cubic lattice for LBM 
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1.2 INTRODUCTION TO THE MULTI-PHASE LBE METHOD 

It is commonly accepted that the separation of different phases or components is 

microscopically due to the long-range interaction between the molecules of a fluid [18]. This 

interaction can be expressed as: 

   xgxcxF


  0)(                                                                                          (1.13) 

where  is a constant depending on the lattice structure. For the D2Q9 and D3Q19 lattices, 

, and for the D3Q15 lattice, 

0c

0.60 c 0.100 c . The coefficient for the strength of the 

interparticle force is g , with  representing an attractive force between particles and  

a repulsive force. 

0g 0g

x  is the effective mass, which is a function of local density and can be 

varied to reflect different fluid and fluid mixture behaviors, as represented by various equations 

of state (EOS). This equation is derived from the original Shan and Chen (SC) model. Although 

that work only used the interparticle forces of nearest neighbor sites, it can be extended to 

include other neighboring sites as long as the gradient term   is properly specified. We use 

both the nearest and next-nearest sites to evaluate this gradient term, which gives a six-point 

scheme for two dimensions: 

              1,11,11,11,1,1,1
,

21 



jijijijicjijic 

x

ji   

(1.14a) 

              1,11,11,11,11,1,
,

21 



jijijijicjijic

y

ji    

(1.14b) 

where  and  are the weighting coefficients for the nearest and next nearest sites, 

respectively.  

1c 2c
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In addition to the interparticle forces, if the problem includes a solid wall boundary, the 

interaction between the fluid and solid interface needs to be considered, so the forces applied on 

a particle that contacts the solid wall are: 

        xxxxxGxxF w
x

ww


 



 ,                                                                    (1.15)  

where  xxGw 
,  reflects the intensity of the fluid-solid interaction, and  xw   is the wall density, 

which equals one at the wall and zero in the fluid. Furthermore, in addition to interparticle and 

wall forces, the body force can be defined as:  

   axxFb


                                                                                                                (1.16) 

The viscosity and the surface tension are two additional important factors for specifying 

fluid characteristics. The viscosity is defined in the LBE model as: 

tcs 2

2

1






                                                                                                               (1.17) 

where  is the speed of sound in the LBE model. Hence, the viscosity can be changed by 

choosing a different relaxation time 

sc

 . In order to adjust the surface tension, an additional force 

term should be introduced into the fluid-fluid interaction, and is defined as: 

    2sF


                                                                                                   (1.18) 

where  determines the strength of the surface tension [2]. 

Hence, the total force on each particle can be expressed as: 

  sbwitotal FFFFF


                                                                                      (1.19) 

All of these forces can be incorporated into the model by shifting the velocity in the 

equilibrium distribution. This means that the velocity u


 in equation (1.3) is replaced by  
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 x

F
uu

i

itotali
i

eq






 ,                                                                                                    (1.20) 

The effective mass  , which was mentioned in the introduction to calculating 

interparticle forces and surface tension, is the mechanism for incorporating a more sophisticated 

EOS. As stated previously, the effective mass ))(()( xx
    is a function of the local density, 

and can be defined as:  

 
gc

cp s

0

22
)(





                                                                                                     (1.21) 

where p  is the pressure. The choice of EOS can reflect the relationship between the pressure, 

temperature and density. In Yuan and Schaefer’s work [19], five different EOS were tested in 

this model, and it was found that that Peng-Robinson (P-R) EOS provided the maximum 

increase in the density ratio of SCMP flows while maintaining small spurious currents around 

the interface. Hence, we used the P-R EOS in our following multi-phase flow research, where 

the P-R EOS is expressed as: 

22

2

21

)(

1 





bb

Ta

b

RT
P





                                                                                         (1.22) 

   22 /126992.05422.137464.01)( cTTT                                            (1.23) 

with 
c

c

P

TR
a

2245724.0
  and 

c

c

P

RT
b

0778.0
 , where a  is the attraction parameter, b  is the 

volumetric or repulsion parameter, and   is the acentric factor.  and  are the critical 

temperature and critical pressure, respectively.  

cT cP
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1.3 INTRODUCTION TO THE THERMAL LBE METHOD 

As stated previously, the LBE method can be used to solve generalized NPDEs. Hence, 

the LBE model can also be applied to solving thermal problems. In a single-phase thermal fluid 

system, if the viscous and compressive heating effects are negligible, the temperature field 

satisfies a much simplified passive-scalar equation: 

   



TTu
t

T 
                                                                                         (1.24) 

where u  is the macroscale velocity, 
   is the thermal diffusivity, and   is the source term. To 

solve equation (1.24) using the LBE method, we firstly define a particle distribution function 

(PDF)  txT , f


  for temperature, which is the same as the dynamic PDF. The temperature then 

can be found using the following relationship: 





b

TfT
0

                                                                                                                      (1.25) 

Through equations (1.26) and (1.27) below, we can solve the temperature PDF  txf T ,


  

numerically: 

          txftxftxftttexf eqTT

T

TT ,,
1

,,


 
                                            (1.26) 

    



  uu

c
ue

c
ue

c
Twf eqT 

2

2

42 2

3

2

93
1                                                     (1.27) 

where T  is the dimensionless single relaxation time for temperature. The temperature variance 

results in a buoyancy force, which is expressed as: 

 jTTgG


0                                                                                                          (1.28)  

To incorporate the buoyancy force, we substitute equation (1.28) into equation (1.19) 

(  sbwitotal FFFFF


), calculate the total force that is applied on the particles, and then 

calculate the shifted velocity by equation (1.20) (  x

F
uu

i

itotali
i

eq






 , ). Finally, the velocity u


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in equation (1.27) is replaced by this shifted velocity. Through including the buoyancy force, the 

LBE method can be used for a number of systems with thermal effects, such as natural 

convection problems.  
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2.0  INTRODUCTION TO BOUNDARY CONDITIONS FOR THE LBE METHOD 

Boundary conditions (BCs) play a very important role in numerical simulation. A BC not 

only affects the accuracy and stability of a computational method, but it is also one of the 

characteristics that determine the adaptability of a CFD method. In this section, several BCs are 

discussed that include most of the necessary treatments for dealing with popular practical 

situations, such as the solid wall BC and the open BC. 

2.1 BOUNCE BACK SOLID WALL BOUNDARY CONDITIONS 

In LBE simulations, to some extent, developing accurate and efficient BCs is as 

important as developing an accurate computation scheme itself, since they will influence the 

stability of the computation. The most common and simplest solid wall BC is the bounce-back 

boundary condition. In this BC, when a particle distribution streams to a wall node, it scatters 

back to the fluid node along its incoming link. However, the bounce-back BC only gives first 

order numerical accuracy. To improve it, many BCs have been proposed in the past [20, 21, 22, 

23], such as the halfway bounce-back scheme [24, 25], which is easy to implement and gives 

second-order accuracy for a straight wall. In this scheme, the wall is placed halfway between a 

fluid node and a bounce-back node.  The order of accuracy for a boundary condition in the LBE 

model can be tested by calculating the slope of the L2-norm error, which is defined as: 
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     
 

2/1

0

2

2/1

0

2

2













dyyu

dyyuyu
E

H

exact

H

exactLBE
                                                                               (2.1) 

where  is the LBE solution of the velocity. LBEu

Compared with other second order boundary treatments, the halfway bounce-back does 

not require any extrapolation, and is therefore easy to implement. Figure 2.1 shows the 

application procedure of both the fullway and halfway bounce-back BC. For the halfway bounce-

back BC, in only one time step, a fluid particle goes to the boundary site, reverses its velocity 

and comes back, while the fullway bounce-back condition needs two time steps to go forth and 

back. From the foundation of these simple BCs treatments, the LBE method can be used to 

address many complicated geometries, which is one of the strengths of the LBE model compared 

to traditional simulation methods.  

 

 

Figure 2.1: Demonstration of half way and full way bounce back boundary condition 
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Figure 2.2a shows an example of LBE grids for an object with a complicated geometry. 

From the enlargement, we can see that LBE meshes use squares to match the curved boundary. 

Hence, the higher the resolution (which means more grids), the better the matching between the 

simulation model and the real object that we are studying (such as in Figure 2.2b). This is similar 

to a bitmap or pixmap in computer graphics, which is a type of memory organization for an 

image file format that used to store digital images. Hence, for a 2D problem, for generating the 

grids for LBE simulation, we can firstly generate a black and white bitmap file (BMP) to 

describe the whole simulation domain, where a black pixel represents a solid object point and a 

white one a fluid space (or vice versa). Next, this image file is converted to a 2D matrix that only 

includes the digits 1 and 0, where 1 is black and 0 is white. The command “imread('C:\ 

image.bmp')” in MATLAB can easily deal with this conversion. Finally, this matrix file is 

defined as a solid boundary wall file in the LBE model program. By following this method, most 

2D complicated geometries can be imported into the LBE simulation program.  

For a 3D problem, the 3D object can be modeled in any CAD software, and then exported 

into an Initial Graphics Exchange Specification (IGES) file, which records the coordinates of 

solid object points in a 3D space. Each solid object point’s coordinate is read and recorded as 1, 

which is then put it in to the corresponding position in a 3D matrix. Finally, as in the 2D problem, 

this matrix file is defined as a solid boundary wall file in the LBE model program.  
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                           a                                                                          b 

Figure 2.2: Demonstration of 2-D LBE grids, (a) low resolution, (b) high resolution 

 

2.2 CURVED SOLID WALL BOUNDARY CONDITIONS 

For a curved wall, the bounce back boundary condition may result in obvious jagged 

boundaries when the grid’s resolution is not high enough, and therefore additional errors will be 

introduced. Hence, for dealing with a curved solid wall without requiring high mesh resolution, 

Filipova and Hänel (FH) proposed a curved wall BC [26], which later was improved by Mei, 

Luo and Shyy (MLS) [27, 28]. Bao, Yuan and Schaefer further refined this technique to create a 

mass conserving boundary condition [29] which solves the mass leakage problem of the original 

BC when a strong body force is present in a system.  

As shown in Figure 2.3, e


and  e


denote directions opposite to each other, bx


 is a 

boundary node, and fx


 is a fluid node. The curved wall is located between a boundary node and 

fluid node, with 
bf

wf

xx

xx







 denoting the fraction of an intersected link in the fluid region. 

Obviously, . In order to finish the streaming step, we need to know 10  ),(
~

tf xb


 at 
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boundary node bx


, where f
~

 denotes the post-collision state of the distribution function. FH 

proposed the following treatment for ),(
~

txf b


  on curved boundaries: 

wbfb ue
c

wtxftxftxf

 ()

), tw


 

2
)( 3

2),(),(
~

)1,(
~

2.2)                                            (

where (xuuw


  is the velocity at the wall,   is the weighting factor that controls the linear 

interpo en ),(lation e betw
~

txf f


  and ,()( xf )tb


 , and ),()( txf b


  is given by a fictitious 

equilibrium distribution:  





  wtxf

)( (),(  fffbfwb uu
c

ue
c

ue
c

tx


2
2

42 2

3
)(

2

93
1),                            (2.3) 

where ),( txw

  is called the wall density. In equation   (2.3), ),( txuu ff


  is the fluid velocity 

near the wall, bfu


 is to be chosen, and the weighting factor   depends on bfu


.  

wfbf uuu


)2/(3)]2/(31[   and  )2/1/()12(    for 2/                     (2.4) 1

),( tδtexuuu ff

    
ffbf   and  ( )2/()12     for 2/    1       

 

                     (2.5) 

 

Figure 2.3: Layout of the lattice and curved wall boundary 
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It must be determined what ),( txw

  

odel. Shown in 

65 ff

term guarantees mass conservation. We discuss this 

in the context of the D2Q9 m Figure 2.4 are the known and unknown PDFs of a 

flat boundary site at the lower wall boundary after the streaming step. The outgoing PDFs 

are , which are known, and the incoming PDFs are , which are unknown. 

Mass conservation requires that 

874 ,, fff 652 ,, fff

8742 ffff 

), with an unknown 

. It is assumed that all of the outgoing 

  (2.PDFs also satisfy equation 3 ,( txw )
  term. Then summing these together, 

we find: 

])(331)[,(
6

1 2
874

y
f

y
bfw uutxfff 

                                                                     (2.6) 

where  is the y-component of y
bfu bfu


 and  is the y-component of y

fu fu


),( txw


. Therefore   will 

be: 

2
874

)(331
6),

y
f

y
bf uu

t


                                                                                           (2.7) 

By substituting the exp

( w

fff
x



ression of ),( txw

  into 

show t

e condition , so the tota ss is conserved. The simulation results that 

will be shown in Chapter 3 demonstrate the improved performance of our BC. 

 

equation (2.3), the unknown PDFs 

652 ,, fff  can be obtained. It is straightforward to hat this boundary treatment indeed 

satisfies th   
incomingoutgoing

ff l ma
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Figure 2.4: PDFs of a flat boundary site at the lower wall boundary after the streaming 

step 

2.3 THE OPEN BOUNDARY CONDITION 

Open boundaries generally include inlets/outlets, periodical boundaries, lines of 

symmetry and infinity. The most commonly used open boundary conditions are introduced in 

this section. 

2.3.1  Periodical Boundary Condition 

The periodical BC is the most basic open BC. The periodical BC can be applied directly 

to the PDFs, a  PDFs coming out of 

one boundary will enter into the opposite boundary. 

nd not to the macroscopic flow variables, which means the

 The periodical BC can be used as an inflow/outflow BC in the streamwise direction. For 

example, with periodical BCs at the inlet and outlet, the uniform body force or constant pressure 
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gradient can be included in the simulation procedure after the collision step, which is expressed 

as follows: 

xe
dx

dp

c

3~~

where 

wff outletinlet   2__                                                                                   (2.8) 

dx

dp
 is the constant pressure gradient, x


 is the unit vector in the x (streamwise) direction, 

α denotes the direction of the unknown PDF, and 

hereafter. 

apolation Boundary Condition 

Besides the periodical BC, we can use the zero derivative condition for an inflow/outflow 

boundary. Supposing i = 1 is the inlet boundary and i = nx is the outlet boundary, in the 2-D case, 

~ denotes the post-collision state here and 

2.3.2  Extr

the zero derivative condition can be expressed in the following form: 

   jifjif ,2
~

,1
~

                                                                                                   (2.9) 

f
~    jnxifjnxi ,1 ~

,                                                                                         (2.10) 

We also can use extrapolation to find PDFs at the inflow/outflow boundary; e.g., instead 

of using the periodical treatment, the following simple extrapolation can be used: 
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     jif ,3jifjif
~

,2
~

2,1
~

                                                                          (2.11)  

     jnxif ,2jnxifjnxif
~

,1
~

2,
~

                                                         (  2.12) 

2.3.3 

The PDFs at the inlet can be obtained by applying bounce-back m

which the specified velocity or pressure can be recovered. In these approaches, usually the inlet 

boundary is placed half way between the inlet boundary node and the first fluid node, as shown 

re 2.5. If the velocity profile is known at the inlet, the standard bounce-back scheme for 

unknown PDFs at the inlet is: 

Inlet Boundary Condition 

ethod [30, 31], from 

in Figu

inletinlet ue
c

wff   
2_

3
2

~~
                                                                                 (2.13) 

where w is the weighting factor; and e and ~e  denote directions opposite to each other. 

 

 

Figure 2.5: Layout of the inlet boundary 

 

In some cases, the inlet is not placed in the middle of two nodes as shown in Figure 2.6, 

where the exact position of inlet is recorded by x . Yu [32] proposed the boundary treatment 

for these cases. In this approach, the unknown PDFs at the inlet were decomposed to an 

equilibrium part and non-equilibrium part and then computed separately, i.e. 
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)(
_

)(
__

~~~ neq
inlet

eq
inletinlet fff   . An example is shown in Figure 2.6. By using linear interpolation and 

setting ,3
)()(

,3

~~ neqneqf BI f  the unknown PDF can be obtained: 

 )(
,1

)(
,1 

1
eq
I

eq
C ff 




                                                                                 (2.14) )(
,1

)(
,1

eq
I

eq
B ff 

 )(
,1

)(
,11

neq
I

neq
C ff 




                                                                             (2.15) )(
,1

)(
,1

neq
I

neq
B ff 

 

 

Figure 2.6: Configuratio

n of equilibrium

n of PDFs used to construct the inlet boundary condition: (a) 

Configuratio  PDFs at the inlet, (b) Configuration of non-equilibrium PDFs at the 

inlet (the gray color denotes a fluid node) 
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2.3.4 Thermal Boundary Condition 

Two different thermal boundary conditions are commonly encountered in temperature-

dependent flows:  

i) Isothermal wall: Suppose the temperature is fixed as  at the bottom wall. In the 

D2Q9 context as shown in Figure 2.7a, after streaming, are unknowns. These 

unknown PDFs can be assumed to equal their equilibrium

wT

, and 

 distribution, with 

2f , 5f 6f  

  replaced by some 

unknown temperature T  . Summing these three PDFs together, we have: 

 2
652 331

6

1
yy uuTfff                                                                                   (2.16) 

where is the velocity normal to the wall. Meanwhile, for the isothermal wall, . 

Substituting equation (2.16) into this,

yu  



8

0
wTf

 T   can be calculated as: 

 8743102331
ffffffT

uu
T w

yy




                                                      (2.17) 

and f  can be obtained by substituting

6

Finally, , ,  2f 5f 6 T   into equation (1.3) 

(   



 e


 uu

c
u

c
e

c
wTf


2

2

42 2

3

2

93
1'  ). For another case sho n in Figure 2.7b, the 

 the method outlined above, we can find that: 

u


w

solid wall is the right wall, and following

 8542102331 uu w
xx 

 

6
ffffffTT                                                       (2.18) 
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                                 a                                                                  b 

Figure 2.7: Sketch of thermal boundary condition for D2Q9 

 

From these two simple 2-D cases, it is shown that the normal direction of the wall (shown 

as arro alw n in Figure 2.7) is required to derive the equation used for c culation of T  . For a 

case, the Q15, Q19, and Q27 discretizations need 98, 162, and 338 different boundary e

different direction, the resulting equation is also different. For the 2-D case, the Q9 discretization 

requires 32 different equations for the possible normal directions of the solid wall. For the 3-D 

quations, 

respectively. If objects with complicated geometry are invo such 

as porous media problems, it would greatly reduce the efficiency of the code, especially for the 

 method. To overcome this, based on the general formulation of this method, we have 

developed a common equation: 

lved in the simulation problems, 

parallel

 













Tf

TfT
T

T

w

1
                                                                                                        (2.19) 

where   



  uu

c
ue

c
ue

c
wf T 

2

2

42 2

3

2

93
1                                                            (2.20) 

0T  if xex  


 is a fluid node, and 1T  if xex  


 is a solid node. Then PDFs for 

thermal boundary can be calculated by following equation: 
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     Tfuu
c

ue
c

ue
c

TwTf  22

where f   stands for the PDFs after the boundary condition treatment, and f  denotes e PDFs 

after the streaming step. Equations 



  

2

2

42

393
11                               (2.21) 

th

temperature on the wall. For example, for the bottom wall at 0

(2.19)-(2.21) can be directly used for the Q15, Q19, and Q27 

schema for 3-D cases. 

ii) Heat flux BC: Another common thermal boundary condition is the assumption of a 

constant heat flux on/at a surface. The formulation of these BCs is directly analogous to those of 

the isothermal case. After each streaming step, the temperature of the inner domain can be 

obtained by equation 
b

TfT  . A second-order finite difference scheme is used to find the 
0

y , 
y

TTT

y

T iii

i








2

34 1,3,2,

1,

.  

After finding the wall temperature, the same procedure as described in the isothermal 

wall case is used to calculate the unknown PDFs. 
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3.0  A MASS CONSERVING BOUNDARY CONDITION FOR THE LBE METHOD 

ction to curved boundary condition treatments, 

we have developed a mass conserving boundary condition for the LBE method when a body 

force such as gravity is applied to fluids. When body forces are present, both FH and MLS BCs 

can result in mass leakage, which is an unphysical reduction of the total mass of the system. In 

this section we demonstrate the performance of our improved boundary condition method 

through some example cases. 

3.1 FULLY DEVELOPED FLOW IN A 2-D CURVED PIPE 

The FH, MLS, and our newly refined mass conserving BC were all designed for a curved 

boundary, so we tested our new boundary condition for steady flow in a curved pipe, which is 

very common in practical thermal fluid systems. As shown in Figure 3.1, the fluid flows into the 

pipe through cross section A and flows out though cross section B. A body force in the form of 

gravity is applied on the fluid along the negative y-direction.  

 

As mentioned in section 2.2, in the introdu
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Figure 3.1:  Schematic computational area for flow in a curved pipe 

 

On the wall of the pipe, equations (2.2)-(2.7) are used to update the boundary conditions 

for the ),(
~

txf b functions. Figure 3.2 shows the resulting x-velocity and y-velocity contours 

using the mass conserving B



C, respectively. Figure 3.3 shows how the total system mass 

changes with time. Our new boundary condition can cause the total system mass to converge to a 

constant value, while the MLS BC demonstrates a steady mass leakage. 
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                                                                              a 

 

b 

Figure 3.2: Flow in a curved pipe (a) x-velocity contour and (b) y-velocity contour 
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Figure 3.3: System mass change with time using the mass conserving BC and MLS BC 

 

3.2 STEADY AND UNSTEADY FLOW OVER A CIRCULAR CYLINDER 

ity of 

avoiding constant mass leakage.  To further ex ine the accuracy of the mass conserving BC 

method on a curved wall, we conducted a final set of tests concerns 2-D steady and unsteady 

flows around a circular cylinder placed in a rectangular channel. For steady-state flow, the 

problem at Re=10 is tested. For unsteady flow, the simulation is at Re=100, resulting in a 

periodical vortex sheet.  

As shown in Figure 3.4, for steady-state problems, the circular cylinder is placed in a 

domain with nodes, and the center of the cylinder is at the origin (0, 0) of the grids. The 

From the tests in Section 3.1, our mass conserving BC shows the expected abil

am

70105  
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periodical boundary condition treatment is used for the upper and lower boundaries. A uniform 

velocity is used at the inlet, and the extrapolation boundary condition is used at the outlet. 

 

 

Figure 3.4: Schematic of the computational area for steady flow over a circular cylinder. 

The cylinder has a diameter of 7 lattice units. The cylinder center-to-center distance (H) is 70 

On the surface of the circular cylinder, the mass conserving BC treatment is used to update the 

bounda

lattice units 

ry conditions for the ),(
~

txf b


 values. Figure 3.5 shows the streamline and the contour of 

the pressure at 10/2Re  Vr using a radius (r) of 3.5. Figure 3.6 shows the velocity profile 

Vyxu /),0(   for 20/ rH  at 10Re  . The MLS BC was also used in the same conditions and 

grids for comparison. The finite difference solution is obtained using body-fitted coordinates and 

are distributed along the upper surface of the circle over 200 grid points. Figure 3.7 shows the 

centerline (y=0) velocity variations, upstream and downstream, at Re=10. The results using the 

MLS B

the finite difference solution, and have a similar order of accuracy as those for the MLS BC. The 

C and finite different results are also presented for comparison.  

As can be seen, the mass conserving solid wall BC results agree well with the result of 
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difference in the results between the MLS and mass conserving BC is around 0.01% of the MLS 

BC’s results (this difference cannot clearly be seen from the figures). Hence, our mass 

conserving BC would not reduce the accuracy for problems with geometries that include curved 

geometry boundaries. 

 

Figure 3.5: Steady flow around a cylinder at Re=10, with streamlines and pressure 

contours 
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Figure 3.6: Comparison of the velocity profiles at x=0 for the MLS BC, mass conserving 

BC and finite difference result for Re=10 
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Figure 3.7: Comparison of the velocity variation at the centerline (y=0) for the MLS BC, 

mass conserving BC and finite difference result for Re=10 

 

For unsteady flow, the problem  node regim is tested in a 100300 e, with a radius of r=6. 

The periodical boundary condition treatment is used for the upper and lower boundaries. Again, 

m velocity is given at the inlet, and the extrapolation boundary condition is used at the 

outlet. The results of the developed periodical flow are shown in Figure 3.8 for the x-velocity 

and y-velocity contours, respectively. Our mass conserving BC shows necessary capacity of 

describing and predicting unsteady flow problems. Like other curved BCs, such as FH and MLS, 

our BC does not cause obvious jagged velocity and pressure distribution near the solid boundary 

wall in this low grid resolution case (the radius of the cylinder is only 6 grids). 

 

a unifor
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a 

 

b 

Figure 3.8: Unsteady flow around a cylinder at Re=100: (a) x-velocity contour; (b) y-

velocity contour 

 

3.3 CONCLUSION AND DISCUSSION 

In summary, we have proposed a second-order accurate mass conserving boundary 

condition for the LBE method. Our mass conserving BC will not result in the constant mass 
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leakage that occurs for other both first- and second-order BCs in some cases. We can derive an 

expression for the mass leakage of the MLS BC, which can be calculated by: 

gnyervaltimenxleakagemass )]1()1([**)1(*5.0   int                                    (3.1) 

This shows that the larger the gravity or body force, the larger the mass leakage, so our 

BC is a good alternative for solving problems with large magnitudes of body forces, such as 

gravity or a magnetic force.  

Moreover, when there is the presence of an “artificial gravity” for certain problems, such 

as a thermal problem with natural convection, there are also benefits from using our mass 

conserving BC. For example, the Rayleigh number, which is important in many thermal-fluid 

problems, is defined as
 


 3nyTg

Ra


 , where   is the thermal expansion coefficient, and 

is the lattice size in the y direction. Hence, in such problems, when we want to simulate a 

large Rayleigh number, we can increase the gravity instead of using more grid units in the y-

direction, because increasing gravity does not significantly add to the computation load. By 

doing so, the efficiency of the code can be obviously increased when a relatively larger Rayleigh 

number is needed. Although increasing the grids in the y-direction may seem more direct and 

efficient, because it is a cubic in the equation, the increasing of grids can lead to a large increase 

in computational time and money for many cases.  

Additionally, because each lattice must be square or cubic (for a 3D problem), to 

maintain the ratio so need to also increase 

 and . The Rayleigh number commonly ranges from  to for practical engineering 

ble

ny

 in the simulation domain, when ny  is increased, we al

nx

pro

nz

m

 310 810  

s. Hence, adjusting the Rayleigh number by only changing ny  would make the 

simulation very inefficient. Furthermore, the amount of available physical memory and the 
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operating system’s addressing capability [33] strictly limits the number of grids. For three-

dimensional problems, especially for multi-component, multi-phase flows or a thermal system, 

the memory usage often reaches that limit. When using the MLS BC lso 

ses the mass leakage, as seen in equation (3.1). Since our BC allows the requirement of 

mass c

 system. In the flowing chapters, we will introduce more practical 

applica

, increasing the grids a

increa

onservation to be exactly met, the stability of the model is greatly increased. With this 

accurate and stable BC treatment, LBE method can be used at more practical problems such as 

multi-component multi-phase

tions. 
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4.0 THE LBE METHOD FOR MULTI-COMPONENT MULTI-PHASE FLOW WITH 

HIGH DENSITY RATIOS 

odels and mesoscopic kinetic equations, it offers many advantages for the study of 

multi-component or multi-phase flow problems. While the original formulation of Shan and 

Chen’s (SC) model can incorporate some multiple phase and component scenarios, the density 

ratio of the different components is greatly restricted (less than approximately 2.0). This 

obviously limits the applications of this MCMP LBE model. Hence, based on the original SC 

MCMP model and the improvements in the single-component multi-phase (SCMP) flow model 

reported by Yuan and Schaefer [19], we have developed a new model that can simulate a MCMP 

system with a high density ratio. 

4.1 INTRODUCTION TO MCMP FLOW WITH HIGH DENSITY RATIOS 

As in the single component multi-phase flow case, the separation of different components 

in MCMP flows is also due to the long-range interaction between the molecules of the fluid [18], 

so the interaction force must be revised to also include two parts for a multi-component fluid. 

One contribution is the interaction between molecules of the same component, and another is the 

 

Multi-component multi-phase (MCMP) flow is very common in engineering or industrial 

problems and in nature. Because the lattice Boltzmann equation (LBE) model is based on 

microscopic m
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interaction between molecules from different components. In a similar manner as in equation 

(1.13), these two parts can be expressed as: 

   xgxcxF iiiiii


  0, )(                                                                                            (4.1) 

  xcxF jijiji xg


  0, )(   ji                                                                                 (4.2) 

iiF ,


 is the force between the different particles of component , and i jiF ,


 indicates the 

ponent  and component force between the com i j . 

To increase the density ratio between different components, one first should increase the 

density ratio for the different phases of each single component. Work has already been done on 

increasing the density ratio for single-component multi-phase (SCMP) flows. For example, as 

reported by Swift [ 34 ], the maximum density ratio obtained using the free-energy-based 

approach is less than 10:1, and the largest density ratio tested in the He, Chen and Zhang (HCZ) 

approach is 40:1 [35]. These are improvements, but are still not large enough for most practical 

problems. This is because the idea gas EOS and original SC model show unrealistic pressure-

density relationship. They give a high compressibility for the liquid phase, which is even higher 

than the vapor phase. Yuan and Schaefer [19] found, hence, that is possible to simulate SCMP 

flows with a density ratio that can reach 1,000:1 by using a more accurate EOS such as the van 

der Waals, Peng-Robinson, or Carnahan-Starling EOS [36], and all of these EOSs are easy to 

.21) apply to the LBE model. To do so, first, the pressure term in equation (1

(
 

gc0

cp s
22

)(





 ) is replaced by the pressure formulation in an EOS (using Peng-Robinson 

as example, 
22

2)(  TaRT
P  ). Secondly, the effective mass is substituted into 

equation 

211  bbb 

(1.13) for calculation of the interparticle forces (    xgxcxF


  0)( ). Finally, 
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 x

F itotalieq uu
i

i 


  ,equation (1.20) is used to calculate the shifted velocity (


 ). Achieving a 

density ratio of up to 1,000:1 mean

most single-component vapor-liquid flows. 

Unlike in the original SC model, though, the coefficient of interaction strength within a 

component

 .1) and (4.2). The only requirement for  is 

to ensu

important for creating and extending the MCMP LBE model. Firstly, when equation ) is 

substituted tion (4.2), is not eliminated. Secondly, from equation (4.2

4.2 SIMULATION OF AN EQUILIBRIUM DROPLET WITHOUT A BODY FORCE 

The first example is the simulation of a circular droplet in a 

s that the LBE model can work well for the simulation of 

 ( g ) here cannot control the overall interaction strength. (Indeed, it is canceled out 

when we substitute equation (1.21) into equation (4

ii

 into equa

iig

(1.21

), it can be 

re that the whole term inside the square root in equation (1.21) is positive. However, we 

have found that the coefficient of interaction strength between different components  is very 

ij

seen that ijg  affects the magnitude of the interparticle force between different components jiF , . 

The behavior of the interaction between the different components is primarily controlled by this 

force, so interaction can be adjusted through changing the value of ijg . From our tests, this force 

plays a critical role in adjusting the system density ratio, which we will explain and demonstrate 

in the following sections.  

AND EXTERNAL FORCES 

ijg

g  

100100  

d

2D square domain 

boundary con ition is applfor a liquid-gas system without body forces. A periodical ied on the 
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two vertical boundaries (  and 0x 100x

 and 100

), and a bounce back treatment is used for the upper 

and bottom boundaries  ( 0y y ). For an initial condition for component 1 (the 

liquid component), we specified a low density value ( 005.0 ) for most of the simulation 

region, except for a circular area at the center of the sim lation space, where a high density value 

was set (

u

1 ). For component 2 (the gas component), density was set to a relatively higher 

01.0 ) at most areas of the sim lation domain, except the center uvalue than component 1 (

circle area (corresponding to the liquid component), where an extremely low density was used 

( 0001.0 ). Generally, if the problem can reach a converged result, the shape of the high 

density area is not important. A square, triangle, or any random geometry will not affect the final 

result. Because a droplet always tends to become the shape that has smallest surface area, for this 

2D case, the droplet will alway become a circle. Hence, setting the initial shape to a circle 

increases the problem’s convergence speed, since as with most numerical methods, the less 

difference between the initial conditions and final result, the faster the model converges. 

s

c

 

e,

p

m dens

Figure 

4.1a shows the density contour of component 1 (the liquid component), and Figure 4.1b shows 

the comparison of the density of the two components along the center line ( 1000,50  xy ) 

on a 10log  scale. For convenien

 density of com

u

 we have

onent 1, m

 hi

i

ghlight

nimum p

nt 2, and minim ity of component 2, noted as 

ed several segm

 density of com

ents on these lines, which 

onent 1, maximum density 

max,1

are the m

of com

aximum

pone Component , min,1Component , 

max,2Component , and min,2Component , respectively. The density variation in each segment is very 

small compared to the density change at the interface of the different components, so this sm

p

all 

onent 1 in the droplet variation can be neglected. In Figure 4.1b, the density of com

( max,1Component ) is on the order of , while the density of component 2 around the droplet 110
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( max,2Component ) is on the order of ence the density ratio of these two components is 

around 1,000. In general, the density ratio of a system refers to the ratio between the maximum 

210 . H

densities of the two components (
max,2

max,1

Component

Component




). 

 

 

                                     a                                                                 b 

Figure 4.1: (a) Density contour for a circular droplet, (b) Comparison of the densities of 

the two components along the center line ( 50y , 10 00 x

Maximum Force Ratio 



) 

 in Section 4.1, the balance of the weights of the two parts  and 

 

4.2.1 

As detailed iiF , jiF ,


 

directly affects the density ratio of the different components. The forces iiF ,


 and vary in the 

ain and reach a m m value around th

Figure 4.2 shows the distribution of the ratio of  and in the test area, wh

ji


F ,  

ere 

simulation dom aximu e interface of the two components. 

x  is xF 1,1 max,1,1F  F 1,1
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th n of the interparticle force of component 1 and max,1,1F is the maximum force in the 

entire test region. 

 

e x-directio

 

Figure 4.2: Distribution of the ratio of  and 

 

Hence, we find that the ratio of the maximum forces (

xF 1,1 max,1,1F  

max2,1

max1,1

F

F
) is a key factor, and examine how 

this ratio affects the density ratio of the two components.  

This simulation is for an equilibrium droplet in a 100100  2D are d ain without 

body forces. 

squ om

Figure 4.3 shows four tests in this simulation domain with the 
max2,1

max1,1F
 ratio set 

F
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equal to 260, 75, 56, and 47. The solid line is the density distribution of component 1 along the 

center line ( 50y , 

y.  

Realistically, two unm

. For exam

already occupies. This m

1000  x

along the center line. The density ratios of 

i

pl

density of oil takes precedence. For a num

distribution with a zero value (or an extrem

min,1Component

), and the dotted line is the density distribution of component 2 

the two components are 278, 83, 53, and 44, 

respectivel

xable components cannot occupy the same physical space at the 

same time e, in a water-oil system, water cannot flow into the space that the oil 

eans that the density of water should be zero in the area where the 

erical model, it is almost impossible to have a density 

ely small value near zero). What can be done is to 

reduce the value of  , or to increase the ratio 
min,1

max,2

component

component




 and min,2Component  and 

min,2

max,1

component

component




. As shown in Figure 4.1b and Figure 4.3, the ratio 
min,2

max,1

component

component




 is on the order of 

310  he ratio 
min,1

max,2

component

component




which is relatively high. However, t  is only on the order of 010  to 210  

ity ratios. Many actual MCMP flow system

imu

gh for itation on the density ratio in the S

dard sta

eans that, for such

for different cases with different system

 cases. This is caused by the li

33 /101 mkg

 dens

m

) the density of water vapor in the air is around 

. This m

s can 

MP LBE 

nsity 

exhibit a ratio of more than 

some

2/ sm

ponent 

310 , so even the improvement shown by our s lation is not high 

C

, the density ratio of a 

enou

g 

model.  For example, for a water-air system at a stan te ( CT 0 , mmHgP 760 , and 

80665.9

of water is around 

single-com

3m , while the de/02.0 kg

 a system

min,1component
max,1component

 should , and currently no be 4105 SCMP LBE model can 
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stably reach such a high density ratio. Fortunately, the density of water vapor in the air is higher 

than this standard state practical and engineering problems (as high as 3/1 mkg ), such as 

in fog and most multi-phase thermal problems. Hence, our MCMP LBE model can be applied to 

study these sy

 in many 

stems and problems. For a further extension of our MCMP LBE model, it may 

depend on a more powerful SCMP LBE model. 

 

 

                                                                 a                                          b 

 

                                             c                                                                d 

Figure 4.3: Comparison of the density of the two components along the center 
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line ( 50y , 1000  x ) for (a) 260 75
max2,1

max1,1

F

F
 , (b) 

max2,1

max1,1

F

F

(c) 

 , 

56
max2,1

max1,1 
F

F
 and (d) 47

max1,1 
F

 
max2,1F

 

Figure 4.4 shows the relationship between the density ratio and maximum force ratio. 

From Figure 4.4, we can see that by changing the ratio of the maximum force, the density ratio 

can be adjusted from 1 to 1,000. This is a substantial range that can cover many kinds of liquid-

gas or liquid-liquid two component systems. One should notice that the forces  and 1,1F


2,1F


 are in 

conflict when they are of the same order. Therefore, if the density ratio should be around 1, the 

interparticle force between the different components 2,1F


 is 1 or 2 orders of m

than the force  (or  can be directly neglected). This coincides with the actua ysical 

ge, such as in a water-air 

system, the formation and position of the interface are mainly controlled by the tension of the 

water (as well as the body force and the interaction between the fluid and solid wall, if those are 

present). The interparticle force between the different components is very weak, especially for 

steady-state behavior. With a decrease in the density ratio, the interparticle force becomes more 

important. When the density ratio is near 1.0, as in a water-oil system, the formation and position 

of the interface is mainly caused by the interparticle force between the different components 

instead of the tension, body, force or other forces applied on each single component. 

agnitude higher 

l ph1,1F


1,1F


phenomenon. When the density ratio of two components is very lar
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Figure 4.4: Density ratio 
2

1Component




 variation with the ratio of the maximum force 
Component

max2,1F

 

4.2.2 Spurious Current 

A spurious current around the interface is an unphysical velocity that exists in the LBE 

model. Much research has been focused on discovering why the spurious current exists and on 

reducing it. One of the explanations is that the anisotropy of the discretized momentum space 

causes the spurious current [

max1,1F
 

current can 

be decreased, but cannot be eliminated. Our MCMP LBE model performs well in reducing the 

spurious current to an acceptably small value. Figure 4.5a shows the spurious current vectors in 

37]. Hence, by modifying the LBE model, the spurious 
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the same 2D simulation domain for a density ratio of around 1,000, and Figure 4.5b shows the 

magnitude of the spurious current. 

 

 

                                   a                                                              b 

Figure 4.5: (a) Vector of spurious current around the droplet, (b) magnitude of the 

spurious current 

 

r a density ratio of around 1,000, the spurious current is still under 

0.032 (the main current magnitude is on the order of for this equilibrium test case). For a 

dynami

1,000:1 density ratio, the velocity is reduced to 

We can see that, fo

1310  

 at 

c problem, the main stream would be 110  to 110 , so this spurious current is not easy to 

be noticed. This spurious current looks large compared to the surrounding velocity, but it is as 

low as or even lower than most SCMP or MCMP LBE models. The spurious current in most 

popular and widely used SCMP or MCMP LBE models may be around 0.05 to 0.1 for the same 

equilibrium test with a much smaller density ratio (on the order of 010 ). Furthermore, the area 

affected by the spurious current is very small in our MCMP LBE model. For the case with a 

1310 r2  far away from the droplet center ( r  
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is the radius of the droplet), as shown in Figure 4.5b. For the cases with a smaller density ratio 

(smaller than 300:1), the affected area is also much smaller. In those cases, the spurious current 

disappears around away from the droplet center. Figure 4.6 shows the relationship 

between the spurious current and the density ratio using our MCMP LBE model. It can be seen 

that the spurious current is tightly controlled for the full range of a density ratio that covers most 

kinds of liquid-gas and liquid-liquid systems. 

 

r2.1 ~ r3.1  

 

Figure 4.6: The maximum magnitude the s rious currents varying with the density 

ratio 

 

 of pu
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4.2.3 Convergence Speed 

Convergence is another important criteria for any numerical model. Hence, we tested the 

convergence speed of our MCMP LBE model for the same 2D case. Figure 4.7 shows the 

residual with respect to the time steps. The residual here is defined as the difference between the 

maximum magnitude of the spurious current of two nearby time steps: 

1

maxmax

 nn
uu

 
residual                                                                                                   (4.3) 

The case shown in Figure 4.7 is again for a density ratio of around 1,000. We can see that 

our MCMP LBE model converges quite quickly. Before 5,000 steps, the residual is already 

smaller than , and near 30,000 steps, the residual reaches , which is the 

ultimate precision for most double precision computational code, while some other SCMP or 

MCMP may need over 50,000 steps to reach the similar magnitude of residual. For those cases 

with a smaller density ratio, the model converges even faster. 

 

 6100.1  16100.1 
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Figure 4.7: The residual changes with time steps 

4.3 SIMULATION OF AN EQUILIBRIUM DROPLET AFFECTED BY A BODY 

FORCE AND EXTERNAL FORCES 

One of the strengths of the LBE model, besides its ability to simulate MCMP flow, is its 

flexibility for applying body and external forces on a flow. Hence, in this second example, the 

boundary conditions and the number of grids are the same as in Section 3.2, but gravity is also 

added along the negative y-direction in the simulation domain, and the interaction between fluids 

and the solid boundary is considered. Equations (1.15) and (1.16) are used to calculate these two 

forces. The value of controls the force between the fluid nodes and solid nodes. A positive 

represents a repuls ve force, which means that the solid wall repels the fluid and acts as a 

wG  

iwG  

 48 



 

hydrophobic surface. A negative represents an attractive force, or hydrophilic surface. The 

contact angle can clearly reflect the property of the interaction between the fluid and the solid 

surface (smaller than rface, greater than for a hydrophobic surface). 

Figure 4.8 shows the position terface of the two components. Figure 4.8a is a droplet on 

wG

for a hydrophilic su

 of the in

90  

a hydrophilic surface whose contact angle (

90  

 ) is about  and b shows a droplet on a 

hydrophobic surface with a contact angle. Our MCMP LB odel does not require an 

external and body forces. The methodology is the 

same as in the MCMP LBE model discussed in th s d the simulation results 

odel inherits the original LBE 

model’s flexibility in de  should be noted that the contact 

angle is controlled by both of th uids near the solid  interf e. For a high density ratio, 

ngle is m inly controlled by the fluid with the 

higher density. For a small density ratio, these co-effects become

55

e previou

r MCMP LBE m

-fluid

a

Figure 4.8

E m

 section, an

ac

 strong.  

107  

e fl

extra step or calculation for incorporation of 

clearly reflect the effects of these forces. Ou

these co-effects are not strong, and the contact a

aling with external and body forces. It
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                                      a                                                                  b 

Figure 4.8: Position of the interface of the two components on a hydrophilic and 

hydrophobic surface, and comparison of the density of the two components along the center line 

( 50x , 1000  y ) 

 

4.4 SIMULATION OF A DROPLET IN A FLOW 

This third example is a further refinement of the second one. Based on Section 3.3, we 

add a pressure drop along the positive x-direction, where 
dx

dP
 equals 5  in lattice units. The 

system density ratio is about 300:1. Figure 4.9 shows the position ace of the two 

components and the velocity vector in the simulation domain. The m agnitude is on 

the order of , and the spurious current is too small to be observed compared to the main 

current  for a hydrophilic surface, in Figure 4.9

102

 of the interf

ain current m

a, the two contact angles 

110

. As expected 1  ( ) 50
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and 2  ( ) are different. This difference reflects the contact angle hysteresis phenomena. In 

b, the two contact angles 

56

Figure 4.9 1  ( ) and 112 2  ( ) are almost the same, which means 

lsive forces at the two t points are nearly equal, and the drag force is very 

small. This coincides with the real physical phenom  The drag force on a hydrophobic 

ry small. For the ideal h rce should be zero.  

 

112

ena.

c surface, the drag fo

that the r

surface is v

epu

e

 contac

ydrophobi

 

                              

Figure 4.9: Position of interface of the two components and velocity vector,  

(a) 

The theoretical basis pr  in Section 3.1  simulation results detailed in 

Sections 3.2-3.4 show that applying a m least one component (particularly 

a                                                                b 

 

re realistic EOS for at 

hydrophilic surface, (b) hydrophobic surface 

 and the

4.5 CONCLUSIONS AND DISCUSSION 

esented

o
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the li id mponent) instead of using the SC EOS is the precondition for increasing the density 

ratio of a MCMP flow system. Add ion , the b an etween the forces iiF ,  and jiF ,

qu  co

it ally al ce b
 

 plays 

an important role in adjusting the potential density ratio for a MCMP system. In previous MCMP 

LBE models, the maximum density ratio was severely limited, partly due to the lack of attention 

paid to the interaction between molecules of the same component ( iiF ,


). We found th

e

at by 

increasing the fraction of , the density ratio can increase subs  the r sults in 

Section 4.2-4.4 are for a simple case in order to clearly demonstrate our MCMP LBE model’s 

performance. To fully demonstrate the capabilities of our model, more realistic systems or 

problems should be tested, such as those with a more complicated solid boundary, a more 

sophisticated interface, dynamic problems, and moving boundary conditions. However, the 

ability to simulate these systems can be limited by computational power and/or time. To 

overcome this hurdle, we have further expanded our code for parallel calculations using a 

graphic processing unit, as described in the following chapter. 

iiF ,


tantially. All of
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5.0 APPLICATION OF THE COMPUTE UNIFIED DEVICE ARCHITECTURE 

(CUDA) TO THE LATTICE BOLTZMANN EQUATION METHOD 

Parallel computation on a supercomputer is a great way to increase the speed of a 

numerical simulation program. However, both the programming environment and the costs of a 

supercomputer may limit the application of these computational tools. Additionally, some recent 

research shows that the LBE method cannot benefit as much as conventional CFD methods from 

traditional parallel computation on supercomputers. In order to overcome these difficulties, we 

will use NVIDIA’s Compute Unified Device Architecture (CUDA) technique, which offers an 

alternative way to increase the calculation speed of the LBE m

 

ethod. In this chapter, we will 

introduce this new computational tool, explain how this technique can benefit the LBE method, 

and demonstrate its performance through several practical cases. 

5.1 BRIEF INTRODUCTION TO PARALLEL COMPUTATION FOR THE LBE 

METHOD 

Although the development of new computer techniques has increased the efficiency of 

numerical simulation in recent years, the time cost of many computational problems is still 

unaffordable. This time consumption problem becomes serious for the 3-dimensional, multi-

component and thermal lattice Boltzmann model. One obvious way to reduce the calculation 
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time is through parallel computation. However, recent research [38] has shown that the multi-

thread LBE model on a traditional multi-core or multi-CPU computer system does not lead to a 

large increase in solution speed. This is because the LBE model requires a greater memory 

bandwidth than traditional CFD methods, and traditional multi-core or multi-CPU computer 

system cannot offer enough memory bandwidth for the 3-D LBE model. Memory bandwidth is 

the rate at which data can be read from or stored into a semiconductor memory by a processor. 

Figure 5.1

 shows the average price of a 

multi-core system in the current market. Although some newly developed multi-core computer 

systems, such as the IBM CELL system [41], partially solve the memory bandwidth problem, its 

g 

environment that is a major depart l programming.  

 

a [38] shows that a system based on the Intel Core 2 CPU [39], which is the most 

popular CPU for personal computers and mainstream workstations, can only increase the speed 

by about 2.68 times when the number of cores increases from 1 to 8. For a system based on the 

AMD OpternX2 [40], shown in Figure 5.1b [38], which is widely used in mainstream and high-

end workstations or servers, a 3-time increase in speed can be achieved when the number of 

cores increases from 1 to 4. The GFlop/s in the figures is a measure of a computer's performance, 

and it is an acronym meaning billion floating point operations per second. Hence, an increase in 

the number of cores cannot offer a linear speed increase. Also, an increase in the number of cores 

causes the price of the system to rise exponentially. Figure 5.2

impressive computational efficiency comes with a high price and a difficult programmin

ure from conventiona
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                                    a                                                                    b 

Figure 5.1: Comparison of runtime performance for a different number of cores on a 

64X64X64 LBE problem38 for the (a) Intel Core 2 and (b) AMD OpternX2 

 

 

Figure 5.2: Price comparison for multi-core computer systems 
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Additionally, most supercomputers with over hundreds of CPUs to thousands of CPUs 

are based on the architecture of interconnecting a collection of computers via a high-speed 

network or switching fabric [ 42 ], as shown in Figure 5.3. The speed of these kinds of 

interconnection is significantly slower than the internal connection between the CPU and 

memory in a single computer. Hence, the speed increase of the parallel LBE model also would 

be greatly limited by the bandwidth between CPUs on a supercomputer. 

 

 

Figure 5.3: Modern supercomputer architecture 

 

5.2 INTRODUCTION TO THE CUDA LBE METHOD 

For the purpose of increasing simulation speed without a correspondingly large increase 

in cost, we have developed a multi-thread parallel lattice Boltzmann equation model based on the 

Compute Unified Device Architecture (CUDA). CUDA is a new hardware and software 

architecture for issuing and managing computations on a graphic processor unit (GPU) as a data-
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parallel

rather than data caching and flow control. Figure 5.5 [43] shows the scheme of structures of a 

CPU and GPU. The structure of a GPU obviously shows that the GPU is especially well-suited 

to address problems that can be expressed as data-parallel computations (the same program is 

executed on many data elements in parallel) with high arithmetic intensity (the ratio of arithmetic 

operation to memory operations).  

 

 computing device [43]. With multiple cores driven by very high memory bandwidth, 

today’s GPUs offer incredible resources for both graphics and non-graphics processing. Figure 

5.4 [43] shows the comparison of floating-point operation capacity between GPUs and CPUs. 

The main reason behind GPUs’ evolutionary advantage over traditional CPUs is that the GPU is 

specialized for graphics rendering [44, 45], which requires computing-intensive, highly parallel 

computation, and therefore is designed such that more transistors are devoted to data processing 

 

Figure 5.4: Comparison of floating-point operation capacity between GPUs and CPUs 
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                                a                                                                    b 

Figure 5.5: Structural organization of a CPU and a GPU, (a) CPU, (b) GPU 

 

With the development of the GPU and the optimization of software for that programming 

environment in the last two years, CUDA has become a very powerful and popular parallel 

computational solution for various kinds of practical applications. More than 5 million NVIDIA 

8 and higher series graphic cards were sold, and all of them are suited for CUDA operations. 

Table 1 shows the price of several kinds of 8 and higher series GPUs with the memory 

bandwidth, memory capacity available, and number of streaming processors. The prices cover a 

wide range. The cheapest one, the 8400 GS, which is widely used in laptops, also can offer 16 

processor cores, and is very useful for the beginning research and study of CUDA. The 8800 and 

9800 can offer a great speed advantage over a CPU, and that speed comparison will be shown in 

the subsequent result sections.  

Additionally, all of these GPUs can work in parallel, which means that 2-4 graphic cards 

can work  

times the memory space and 2-4 times the number of stream processors to satisfy the 

computational load requirement. All of these extension abilities are available on a common 

personal computer. Figure 5.6a shows an example of such system. For higher computational load 

 together by a technique called Scalable Link Interface (SLI) [46], and offer 2 to 4
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requirements, NVIDIA also created the Tesla Computing System [47], which integrated 4 GPUs 

in a rack mounted server case, as shown in Figure 5.6b, and this system can be further stacked 

for higher computing capacity.  

 

Table 1. NVIDIA Geforce graphic cards 

GPU Engine Processor Memory Bandwidth Standard Memory 

MB) 

Price 

(Dollar) Cores (GB/sec) Configuration (

Geforce 2 240 141.7 1024 450 80 GTX 

Geforce 9800 GTX 128 70.4 512 160 

Geforce 8800 GTX 128 86.4 768 170 

32 32 256 50 Geforce 8600 GTS 

16 6.4 128 or 256 30 

 

 

Geforce 8400 GS 

 

                                         a                                                                    b 

Figure 5.6: (a) NVIDIA SLI system; (b) NVIDIA Tesla Computing System 
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As stated above, the memory bandwidth has limited the multi-thread LBE model’s speed 

in the traditional multi-CPU system. Figure 5.7 shows the comparison of memory bandwidth of 

different computer systems and GPU systems. Most desktop systems and workstations can only 

offer less than 20 GB/s of memory bandwidth, while the GPU system can easily offer more than 

50 GB/s of memory bandwid

GTX2 .7 GB/ ory b tes cards is the 

GT300 (named “Fermi”) and can offer 256GB/s bandwidth. This was demonstrated in June 2009, 

and it will be available on the market in the spring of 2010. Additionally, CUDA features a 

parallel data cache or on-chip shared memory with very fast general read and write access, so 

applications can take advantage of it by minimizing overfetch and round-trips to DRAM (the 

memory on the graphic card), and therefore becoming less dependent on DRAM memory 

bandwidth. Overfetch is a side effect of prefetch and tends to waste bandwidth on the shared bus. 

In modern electronic signal techniques, the bridge device may transmit several read requests 

before receiving the first read return. This behavior is known as prefetch and tends to improve 

the performance of the device. However, due to prefetch, a read return packet may arrive after it 

has indicated that it will no longer accept returned data, which is called overfetch. The usage of 

on-chip shared memory will be explained in detail in the following sections. 

 

th, and the current high-end graphic card, NVIDIA Geforce 

80, has 141 s of mem andwidth. The la t of NVIDIA’s graphic 
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Figure 5.7: Comparison of memory bandwidth for different system 

 

. Load data from device memory to shared memory, 

2. Process the data in shared memory, and 

3. Write the results back to device memory. 

 

For our computational fluid dynamics problems, the programming strategy is shown in 

Figure 5.8, and can be described as follows:  

5.3 INTRODUCTION TO THE CUDA PROGRAMMING STRATEGY FOR THE 

LBE METHOD 

Since device memory is of much higher latency and lower bandwidth than on-chip 

memory, device memory accesses should be minimized when implementing the LBE model. A 

typical programming pattern is shown below: 

1
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1. Set initial value on all grids and deposit on system memory,  

2. Copy all the data in the whole simulation domain to device memory (memory on the 

graphic card)i,  

3. Copy one block of data to shared memoryii,  

4. Process the data in shared memory,  

5. Write the results back to device memoryiii,  

6. Copy the data in another block to shared memory,  

7. Process the data in shared memory,  

8. Write the results back to device memory,  

9. When all the data in the device memory are updated, repeat step 3-6, and 

10. When all of the values have converged, copy all of the data back to system memory 

                                                                                                                                                            

for output into a file or display on the screeniv. 

 

i The exa
ii The exa
iii

mple code is in appendix A1. 
mple code is in appendix A2. 

 The example code is in appendix A3. 
iv The example code is in appendix A4. 
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Figure 5.8: General programming strategy for numerical simulation based on CUDA 

 

The general and traditional idea of parallel computation is to divide the whole simulation 

domain into several small blocks. The number of blocks depends on the number of CPUs or 

 completely local, this method is efficient and easy. The phrase 

at updating the value on one grid only needs its own previous 

data, and does not need the data of other grids near by it. However, many computational models 

cores. If all of the calculation is

“completely local” here means th
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are not completely local, such as the finite difference method. The Lattice Boltzmann equation 

model is not completely local as well, especially for the multi-component or multi-phase LBE 

model. Figure 5.9 shows a simulation domain which is divided in 4 blocks, and each thread is in 

charge of calculating the value in one block. Each small squire grid in figure stands for a lattice. 

If the simulation model is non-completely local, it is unavoidable that calculating the value on 

the edge of each block requires the data in other blocks. For the traditional parallel computation, 

the number of threads is only 2, 4, 8, or 16 at most for most practical cases. Hence, the number 

of interfaces of different blocks is not very large, and they can be manipulated when 

implementing the calculation on these interfaces. However, for a CUDA program, there may be 

around 100 threads, so the work load of dealing with the calculation of data on the block 

interfaces is too heavy, and may be even heavier than the load of updating the data on the whole 

simulation domain.  

Figure 5.10 demonstrates the parallel strategy of our program, similar as figure 5.9, and 

each small squire grid stands for a lattice. In one calculation cycle, each thread only calculates 

the data on one grid, and each thread reads the data to shared memory for the calculation of one 

certain grid only. This method can also avoid encountering the block interface problem. In order 

to demonstrate this clearly, the number of threads is set to 10 in the example. In the first step, the 

10 thre ure 

5.10a, and in the second step, the 10 threads update the value on the grid of blocks 11-20 (shown 

in grey), as seen in 

ads update the value on the grid of blocks 1 to 10 (they are in grey), as shown in Fig

Figure 5.10b. By continuing this method (Figure 5.10c and d), all of the data 

in the whole simulation domain can be updated. Through this method, it is easier to deal with the 

division of the simulation domain, especially when using a large number of threads. The work 

load of each thread can be more easily regulated than in the traditional division method shown in 

 64 



 

Figure 5.9. Furthermore, the shape of each block is not required to be rectangular in our method, 

so it is more efficient to deliver the work load to all of the threads that are available on the 

hardware.  

 

      

                                     a                                                                  b 

Figure 5.9: Division of blocks: a, 4 blocks; b, 8 blocks 

 

 

    

                                     a                                                                    b 

     

                                  c                                                                 d 

Figure 5.10: Demonstration of block division for CUDA 
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For the simplest case, single-component single-phase flow, the simulation can be divided 

into two steps, a collision and a streaming step, as described in equation (1.10). To clarify this 

separation, it can be divided into two parts that represent the collision and streaming steps: 

ollision: C         txftxftxftxf eq ,,
1

,,
~ 

 
                               

Streaming:    txftttexf ,
~

,


                                       

where   



  uu

c
ue

c
ue

c
wf eq 

2

2

42 2

3

2

93
1         

The collision step is completely local, but the streaming step (equation (1.12)) is not. 

Figure 5.11 illustrates the meaning of streaming step. It can be seen as a simple copy step. Each 

component ( ) is copied to the nearby grids correspondingly after a streaming step. 

For the CUDA program, all of the data must be copied from the device memory to shared 

memory for v . 

Figure 5.12 shows the process for the streaming step and collision step . 

 

                                                                                                                                                            

821 ,...,, fff

 processing, so the streaming step can be done during this copying procedure

vi

 

v The exa
vi The ex

mple code is in appendix A5 . 
ample code is in appendix A6. 
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                               a                                                                     b 

Figure 5.11: Streaming step: (a) time step 0; (b) time step 1 

 

 

 

Figure 5.12: Demonstration of the streaming step and collision step based on the CUDA 

LBE model 

 

i-component flow, the force between particles needs to be 

calculated. Equation (1.14a) and (1.14b) show that the calculation of the gradient term causes a 

For multi-phase or mult
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highly non-local computation, which depends on the data of the six nearby grids. Hence, we 

must copy all of the six points’ data from device memory to shared memory for the calculation 

of this gradient term. If the gradient term in the grey grids (using 10 threads as an example) is 

required to be calculated, as shown in Figure 5.13, the values of the effective mass in the grids 

circled by the bold black line are needed to be copied from device memory to shared memoryvii. 

After calculating this gradient term, the value of   can be copied back to device memory or 

restored in temporary shared memory for calculating the interparticle forces by equation (1.13) 

and afterwards. When calculating interparticle forces on each grid (i,j,k) by equation (1.13), each 

thread reads the effective mass kji ,, and gradien  of effective mass t kji ,,  

is inte

that are stored in 

device memory. Hence this step is highly para . By substituting th rparticle force into 

equation (1.20) (

llel

 x

F

i

itotal
uu i

i
eq







 ) for th  velocity, this s ends only on 

local data, so it can be highly parallel as well. Figure 5.14 shows the steps of this copy process 

and the work flow of the calculation of the interparticle forces, modified velocity, and updated 

PDFviii. 

 

                                                                                                                                                            

, e shifted tep also dep

 

vii The ex
viii The example code is in appendix A8. 

ample code is in appendix A7. 
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Figure 5.13: Grids for calculating e gradient term of effective mass 

 

 

 th

 

Figure 5.14: Demonstration of MCMP LBE model based on CUDA programming 

 

Additionally, when incorporating temperature-dependent behavior into the LBE method, 

two sets of particle distribution functions are needed, one for the dynamic part and one for 

thermal part. The two parts are coupled together through the buoyancy force   jTTgG


0  . 

The buoyancy force is then utilized in calculating the shifted velocity, which is explained in 

ing strategy for the thermal LBE model is very similar to the 

single component single phase LBE model and is shown in Figure 5.15. 

Section 1.3. Hence the programm
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Figure 5.15: Demonstration of the Thermal LBE model based on CUDA programming 

 

5.4.1 Methodology 

006-2007 and 260 GTX 

5.4 EXPERIMENTAL METHODOLOGY AND RESULTS 

Our tests were run on two different NVIDIA GPUs, an 8800 GTS and a 260 GTX. They 

represent the middle range of performance of the two generations of NVIDIA GPUs for CUDA, 

show the most advanced CUDA technique at their time (8800 GTS for 2
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for 2008-present), and both were the most popular GPUs because of their market price. The 

specifications for each of these GPUs are found in Table 2. 

 

Table 2. GPU Specifications 

 Main Clock RAM Mem. Clock Mem. Bus Width Cores 

8800 GTS 1.2GHz 320MB 1.8GHz 256bit 96 

260 GTX 1.4GHz 896MB 2.1GHz 448bit 216 

 

For comparison, we also performed test runs on two different Intel dual-core CPU 

systems, an E6600 (2.4GHz) and an E8500 (3.16GHz). We used the Compaq Fortran compiler 

6.6b and the Visual Studio 2005 C++ compiler for the CPU code, and used NVCC release 2.0 for 

the GPU code. 

5.4.2 S

For fully examining the performance of the CUDA LBE program, we have run a series of 

tests for a 2-D Poiseuille flow case. Firstly, different size simulation domains were tested, where 

the num 12X512 and 

1024X1024. Figure 5.16 shows the velocity profile from both our CUDA LBE model and the 

ingle Component Single Phase Flow 

bers of lattice points for each case are 64X64, 128X128, 256X256, 5

 22

4

1
rR

x

P
u 







analytical solution ( ). All of the runs were tested on the E6600 and E8500 

for the CPU code and on the 8800 GTS and 260 GTX for the GPU code, and the results are 

shown in Figure 5.17. The calculation time is the code spend for 100 time steps, which is in ms. 

From the results, we can see that the speed advantage of the GPU increases with the number of 
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grids. It can also be observed that the E6600 and E8500 were released on the market 

approximately 2 years apart. However, the speed increase of the CPU over that two years is 

limited (around 15%-20%), because there was no substantive change in the CPU architecture. 

Conversely, the speed increase betwe s is obvious, and is around a 

100% increase, because the 260 GTX has more th  str a 00 

wn in Ta  two GP 0 GTS and 260 GTX) were installed in both the 

 E8500 sys testing h  speed a  GPU co re 5 hows 

that the GPU code depends little on the CPU speed. 

en the two generations of GPU

an double the eaming processors s the 88

GTS, as sho ble 2. The Us (880

E6600 and tems for ow CPU ffects the de. Figu .17 s

 

 

analytical solution (blue line) 

 

Figure 5.16: Comparison of velocity profile from CUDA LBE model (red vectors) and 
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Figure 5.17: Calculation time comparison between GPUs and CPUs 

 

We also studied how the size of the block affects the code efficiency. For a 1024X1024 

2-D Poiseuille flow, we used block sizes of 2X2, 4X4, 8X8, and 16X16. From the results shown 

in Figure 5.18, it can be seen that the larger block size has a much higher efficiency than the 

small blocks, such as 2X2 and 4X4. However, it should be noted that the block size is limited by 

the hardware capacity, such as the size of shared memory and the total number of streaming 

processors in the GPUs,

large. 

 so in most complicated practical problems, the block size cannot be very 
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Figure 5.18: Calculation time (in ms) for different size of block 

 

ne of the advantages of the LBE method is the simplicity of the solid wall boundary 

treatme

grids, where a periodical boundary condition is used for the boundaries of y=0, 

y=ymax, z=0, and z=zmax. A uniform inlet velocity is at x=0, and an extended boundary 

treatment is used for x=xmax. Figure 5.19b shows the velocity profile on a slice of y=25. 

Because the periodical BC is used for the upper and bottom boundaries, there is a relatively 

bigger space at the upper and bottom boundary that allows fluid to flow through easily, so the 

velocity is higher around this reign. This result coincides with the fact that fluid tends to flow to 

O

nt. Hence, objects or solid walls with a complicated geometry can be easily addressed in 

the LBE model. For testing the efficiency of dealing with solid wall boundary conditions, we 

tested two 3-D cases with complex geometry walls. Because the 8800GTS GPU has 320MB 

memory, which is not enough for most 3-D cases, all of our 3-D simulations were only tested on 

the 260 GTX. 

The first case is an external flow with porous media as shown in Figure 5.19a with 

5050 100
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the space that has less resistance.  Our LBE model clearly simulates the velocity distribution, 

such as the boundary layer, around every cubic object. Figure 5.20 shows the calculation time 

comparison between GPUs and CPUs. All of the codes run 10,000 time steps to reach steady 

state.  

 

 

                                   a                                                                   b 

Figure 5.19: (a) Demonstration of simulation domain, (b) Velocity profile on a slice at 

y=25 

 

 

 

Figure 5.20: Calculation time comparison for 3-D porous media flow 
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The second case is internal flow in vessel networks, as shown in Figure 5.21a. Evidence 

has shown that changes in the hemodynamic characteristics of cerebral vessels play an important 

role in the initiation and development of vascular diseases [48, 49, 50, 51, 52, 53].  CFD 

simulation on imaging-based patient-specific models are an effective alternative for 

understanding the vascular blood flow characteristics as well as assessing their roles in the 

development of vascular diseases [54, 55, 56, 57, 58, 59]. 3D blood vessel models often involve 

solid walls with complicated geometries. As we discussed in the previous sections, dealing with 

these solid wall boundary condition is one of the strengths of the LBE model. The 3D blood 

vessel network also requires a great amount of lattices, so our CUDA parallel LBE program can 

increase calculation efficiency in this area.   

For demonstration of the results and ease of comparison of the results from different 

method rom a section of a real 

blood ve l 

has a section of a blood vessel with an aneur d includes 37,100 grids. A uniform velocity 

is set at inlet, and extrapolation boundary condition is set at outlet. Figure 5.21b shows the 

streamline in this blood vessel with a Reynolds number of around 100 from LBE model. Figure 

5.21c show the streamline from ADINA’s result. ADINA is a popular commercial CFD software 

which is based on the finite element analysis (FEA) method, and it is widely used in biological 

applications. The results from LBE method and ADINA are qualitatively comparable, a part of 

fluid flows into the aneurysm and flows out after a circulation. This circulation in the aneurysm 

plays an important role in studying the development of vascular diseases, and our LBE method 

successfully simulated and tracked this phenomena. Because the limitation of grid resolution for 

s, we choose a relatively simple blood vessel model. The model is f

ssel through the technique of 3D rotational angiogram (3DRA) [60, 61, 62]. This mode

ysm an
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LBE method, the solid wall boundary is not as smooth as the FEA one, which uses unstructured 

grids, the results of LBE method and ADINA cannot perfectly match.  

 

 

                                           a                                                                 b 

 

c  

Figure 5.21: (a) Simulation domain for flow in vessel networks, (b) streamline in blood 

vessel from the LBE model, (c) streamline in blood vessel from a finite element analysis method 
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5.4.3 Thermal Single Component Single Phase Flow 

With the recent rapid advancements in the development of advanced cooling systems, the 

geometry of these cooling systems has become more and more complicated. Additionally, heat 

pipes are increasingly being widely used in cooling systems, so the study of heat transfer in 

porous media and small capillary tubes has attracted much attention. With its inherent 

advantages for dealing with complicated solid boundary conditions, the LBE method can also be 

used for the simulation of these thermal fluid problems. However, because the LBE model for 

thermal flow requires two sets of PDFs with much more complicated boundary condition 

treatments compared to isothermal problems, the calculation load for the thermal LBE model is 

nearly al problems often 

use more than 24 hours of calculation time.  

From our previous tests utilizing the GPU code, we found that its efficiency for logical 

operation is relatively low. Additionally, it is difficult to effectively parallelize logical operation 

for the GPU. Logical operation here represents the operation of checking if the condition is true 

or false. A sample of logical operation for CPU code is shown below: 

for (i=0; i=imax; i++) 

{  

if (grid(i)=1) 

{f(i)

ple means that if the condition grid(i)=1 is true, then the program runs the 

operation {f(i)=…}. The operation {f(i)=…} is only applied on the point “i” that meets the 

condition grid(i)=1. 

three times that of the isothermal model. Therefore, most common therm

=…} 

  } 

This sam
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 For comparison, a sample of logical operation for GPU is shown below. 

If (grid(tid)=1) 

dary condition treatment.  

of the solid objects have a 

un nd the temperature of environment and inlet is set to 0.1.  For 

examining the efficiency of the GPU code in thermal dynamics problem applications, a 

sim external flow heat transfer case has been run on both a CPU and GPU. Figure 

5.22 e temperature contour on a slice of y=20, and Figure 5.23 show the temperature 

contour on this slice at time steps 200, 400, 800 and 1200. Similar to the isothermal case in 

Section

{ f(tid)=…. } 

This sample intends to achieve the same function as the CPU code. “tid” here means the 

identification of a thread from 0 to imax, which represent all of the threads that are running in 

parallel. However, in this sample, the program cannot know which thread meets the condition 

(grid=1) when running the operation in {f(tid)=…}. The program will simply run the operation 

{f(tid)=…} on all of the threads, even if only one certain thread meets the condition grid(tid)=1. 

For the avoidance of logical operations in using the GPU code to determine the position 

and normal direction of the solid wall, we have developed a generalized series of equations (as 

described in Section 2.3.4 and summarized in equation (2.19)) for thermal boundary conditions, 

which allows us to easily parallelize the boun

In order to demonstrate the efficiency of this treatment, a simulation test was conducted 

over a domain of 1005050  , as shown in Figure 5.22a. A periodical boundary condition is 

used for the boundaries of y=0, y=ymax, z=0, and z=zmax. A uniform inlet velocity is at x=0, 

and an extended boundary treatment is used for x=xmax. All surfaces 

iform temperature=1, a

ulation for an 

b shows th

 5.4.2, the velocity is higher in the regions around the upper and bottom boundaries, so 

the convective heat transfer is also higher near this area. Hence, the temperature is higher near 
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the upp The cubic solid 

objects  heat, and the heated area keeps spreading, so the region near the center 

line (z=25) has the longest heated distance at time steps 800 and 1200, though the velocity is 

lower a

 

problem

the isothermal problem. 

The GP

er and bottom boundaries at the beginning (time steps 200 and 400). 

 keep generating

round this area. 

The comparison of simulation time is shown in Figure 5.24. The calculation time is 

recorded for 1,000 time steps. The thermal LBE model requires more than double the calculation 

load and resources than the isothermal problems.  

Table 3 shows the calculation time comparison between the thermal and isothermal

. The efficiency of the CPU code is obviously reduced, with each time step lasting 

around 4.5s, which is about 3.5 times longer than the isothermal LBE model. However, the 

increase of calculation load does not as greatly affect the efficiency of GPU code, which only 

requires about 0.14s for one time step, or about 2.1 times longer than 

U code is over 34 times faster than the CPU code.  

 

Table 3. Calculation time comparison between isothermal and thermal LBE models 

 Isothermal LBE model Thermal LBE model 

GPU code on 260GTX 0.067s 0.140s 

CPU code on E8500 1.272s 4.533s 
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                                      a                                                                     b 

Figure 5.22: (a) Demonstration of simulation domain, (b) Temperature contour on a slice 

at y=25 

 

 

  

  

Figure 5.23: Temperature contour at the slice of y=20 for time steps 200, 400, 800 and 

1200 
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Figure 5.24: Calculation time comparison for 3-D thermal porous media flow 

5.4.4 Multi-Phase Flow 

he ability to create detailed simulations for multi-phase flow is one of the greatest 

strengths of the LBE method, as outlined in the previous sections. By applying the parallel 

computational method that was introduced in Section 5.1 and the boundary condition treatment 

from Section 1.2, 3-D multi-phase problems can be solved. In order to compare the computation 

speed between the CPU and GPU code, we developed two 3-D multi-phase cases.  

The first simulation case is a test of the interaction between a droplet and a micro-

structured surface, as shown in Figure 5.25. The simulation domain is still 100X50X50 grid 

points. The four vertical boundaries are periodical, and an extended boundary condition is used 

for upper boundary. A solid wall with convex dots is placed on the bottom of simulation domain. 

Both hyd

 

T

rophobic and hydrophilic surfaces are tested.  
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Figure 5.25: A droplet on a micro-structured solid surface 

 

Figure 5.26 shows the hydrophobic surface case. Figure 5.26b show a cross section of the 

droplet. The simulation results shows that the convex shapes on the hydrophobic surface greatly 

drag force on the solid surface.  This is stated by Cassie-Baxter [63] and Wenzel’s theory [64], 

water repellency exhibited by the leaves of the lotus flower [65], which is also known as the self-

cleaning property from superhydrophobic micro-nanostructured surfaces discovered in the 1970s 

[66]. In nature, this superhydrophobic surface is a double structure, which is formed out of a 

characteristic epidermis and the covering waxes. The epidermis of the lotus plant possesses 

reduce the contact area between the fluid droplet and solid surface, which reduces the droplet’s 

which asserts that a microstructured surface can amplify the natural tendency of the surface. For 

the hydrophobic surface, this phenomenon is called the Lotus effect, based on the very high 

 83 



 

m  in height and 10 to 15 mpapillae that are 10 to 20  in width, on which the so-called 

epicuticular waxes are imposed [67, 68, 69, 70] as shown in Figure 5.27. This can make the 

contact angle between a droplet and the leaf surface larger than 170 degrees, which means that 

the droplet’s actual contact area is only 0.6% of the drop’s surface. Some nanotechnologists have 

developed treatments, coatings, paints, roof tiles, fabrics and other surfaces that can emulate the 

structure of the lotus plant leaf, and which can offer the stay-dry or self-clean function that is 

very useful in practical and engineering applications. Our numerical model offers an efficient 

method for studying how the geometry or distribution of papillae affect the superhydrophobic 

effects. Because the number of grid limitation, the size convex dot is a little big to be exactly 

defined as lotus effect, but our simulation shows the characteristic of superhydrophobic micro-

nanostructured surfaces. 

 

   

                                      a                                                                  b 

Figure 5.26: (a) liquid droplet on hydrophobic surface, (b) a cross section of droplet 
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Figure 5.27: Computer graphic of a lotus leaf surface 

Figure 5.28 shows the hydrophilic surface case. Because of strong attractive forces 

between the fluid and solid wall, the droplet tend to spread in the channels as much as possible, 

as shown in Figure 5.28a, and Figure 5.28b shows that the liquid already fully penetrates into the 

channels between convex surfaces. Figure 5.29 shows a cross section of the droplet. The micro-

structured convex dots on the hydrophilic surface greatly increase the contact area between the 

liquid and solid, so the drag force is also increased, which also coincides with Wenzel’s theory.  

In order to study the computational efficiency of the GPU- versus CPU-based code for 

these types of structures, these sim  

the 260GTX GPU. Figure 5.30 shows the calculation time of 10,000 steps for the GPU and 

CPUs. It is clear that the GPU computation offers a clear advantage, with the CUDA parallel 

LBE model running at around 22 times faster than the traditional CPU code. 

 

ulations were completed on the E6600 and E8500 CPUs and
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                                     a                                                                 b 

Figure 5.28: Droplet on hydrophilic surface 

 

 

 

Figure 5.29: A cross section of droplet on hydrophilic surface 
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Figure 5.30: Calculation time comparison for 3-D multi-phase flow 

This numerical model f the melding process 

of nano-composites. Polymer-based nanocomposites are becoming an attractive set of materials 

due to heir multifunctionality and many potential applications [ 71 ]. These materials are 

expected to possess unique electric, magnetic, optical, and mechanical properties which can be 

significantly different from those of individual material [72]. For polymeric matrix composites, 

the assembly of composite materials is the key to success. However, the intrinsic van der Waals 

attraction among nanowires and high surface area and high aspect ratio of nanowires often 

prevent efficient polymer fill into the matrix, especially for some kind of materials such as ZnO. 

The focus of this melding process is how to insert a polymer liquid into a host nano-framework 

[73], such as a nano-wire array [74, 75] as shown in Figure 5.31a, as fully or as deeply as 

possible. Figure 5.31b shows a schematic diagram of ideal ZnO nanocomposites. Figure 5.31c 

shows an SEM image of ZnO nanocomposites where pure polyimide PI-2611  used to fill the 

matrix, and the poly 5.31d shows 

another SEM image of ZnO nanocomposites where polyimide PI-2611 is diluted by solvent 

T9039 to 1:2 weight ratios, and the polyimide can partially penetrate into the array [72]. Our 

LBE model can show how the liquid flows into the nano-wire array, and how deeply the polymer 

 

can be further extended for the simulation o

 t

is

imide almost cannot insert into the nanowires array. Figure 
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can be inserted while adjusting the attractive or repulsive interaction between the solid host and 

liquid polymers. Better understanding and engineering of this interaction can have many 

practical applications. Therefore, our second case for demonstrating the CUDA multi-phase LBE 

model gives an example of this problem.  

 

      

                                 a                                                      b 

  

                                         c                                                             d 

Figure 5.31: (a) SEM image of nanowire array, (b) schematic diagram of ideal ZnO 

nanocomposite, (c)(d) SEM image of ZnO nanocomposites 

 

Figure 5.32 shows the simulation domain which contains 100X100X50 grids. The small 

pillars which represent the nanowire array are planted on the bottom wall. The diameter of each 

pillar is 3 grids. The periodical boundary condition is used on the four vertical boundaries, and 
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gravity force is along the negative z-direction. A liquid droplet is initially put on the top of the 

pillars.  

 

 

Figure 5.32: Sketch of the simulation domain 

 

The value  liquid and solid 

surface, so it can be used to adjust the melding process. When a strong repulsive force is set 

betwee

liquid. On the other hand, for an attractive force between the liquid and solid surface, the droplet 

of wG  in equation (1.15) controls the force between the

n the liquid and solid surface, the droplet will primarily stay on the top of the pillar array, 

and cannot achieve a strong penetration, as shown in Figure 5.33a. The cross section is along the 

center line of the droplet, and the small figure at the left upper corner shows the interface of the 
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can flow into the space between the pillars as shown in Figure 5.33b. The value of wG  controls 

the strength of the attractive force, so the droplet can be partially or fully inserted into the pillar 

array. 

 

 

                                   a                                                                    b 

Figure 5.33: (a) Cross section and liquid interface of droplet for repulsive interaction, (b) 

cross section and liquid interface of droplet for attractive interaction 

 

We also tested how t s. Ou odel is 

obviously ideal compared to a real nanowire array. The distribution of an

is muc

he distance between pillars affects this proces r test m

 actual nanowire array 

h more complicated. The distance between nanowires and the length of nanowires vary, 

and nanowires may also not be perfectly orthogonal with the bottom wall. Additionally, some of 

the nanowires may crossover, and so on. Obviously, all of these variations would affect the 

melding process. Figure 5.34a and Figure 5.34b show the results for different distances between 

pillars. Figure 5.34c shows a result for pillar array with varied length. The bigger space between 

pillars causes the penetrating process to occur more easily. Hence, our numerical model shows 
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the capacity to adapt complex solid boundary conditions, and also offers a good tool for people 

to study how each element (such as the length of the nanowires, distribution of the nanowires, 

and the force between the polymer and nanowires) affects the melding process. 

 

 

a 

 

b 

 

c  

Figure 5.34:  Cross section of droplet for different distribution of pillars, (a) distance  

between pillars is 4 grids, (b) distance between pillars is 8 grids, (c) pillars have different lengths 
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5.5 CONCLUSIONS AND DISCUSSION 

NVIDIA’s CUDA technique offers a great choice for parallel computation using the LBE 

method. From the test results in Chapter 5, it can be seen that the GPU code can offer 10-30 

times faster performance over the CPU code. Furthermore, this impressive increase in efficiency 

is accomplished using a common and inexpensive (under $200) GPU. Additionally, the stability 

of the system for a traditional CPU-based workstation is critical, since the system often needs to 

run for several days continuously in a full work load. Hence, these kinds of systems require high-

maintenance standard environments, such as cooling systems, a power supply system, and a back 

up system. All of these requirements increase the cost of a simulation. GPU-based simulations do 

not require the same critical system stability, because a GPU only spends 1/30 to 1/10 time of a 

CPU for the same simulation problem. This means that the GPU code can be solved in only 30 

minutes to 4 hours for most 3-D LBE method problems, even if multi-phase or thermal dynamics 

is involved.  

From the results in Section 5.4, it can be seen that the CUDA technique shows great 

adaptability to the LBE model. It is not only used for simple single phase and isothermal flow 

problems, but also shows obvious efficiency advantages for thermal and multi-phase cases. Our 

study also shows that with an increase of the calculation load, the efficiency of the GPU LBE 

model also increases. For single phase isothermal flow problems, the GPU is around 15 times 

faster than the CPU model. For the high calculation load cases, such as multi-phase and thermal 

flow problems, the GPU LBE model is about 20 and 34 times faster, respectively. Because we 

assume our GPU code does not affect the accuracy of LBE method and we only parallelized the 

original LBE code, we did not pay too much attention on the comparison of the accuracy, 

especially for the thermal and multi-phase cases. 
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However, the w ess U’s memory space is 

smaller than the system memory. Hence, our current GPU LBE model can only deal with cases 

with le

eakn  of GPU model is also obvious. A GP

ss than 1 million grids, and for thermal or multi-phase problem, the limit on the number of 

grids is even lower. However, with the development of transistor techniques, the cost of memory 

is continually decreasing, so it is possible for more and more memory to be integrated onto a 

graphics card. Currently, some graphics cards with 2GB of memory are available on the market. 

Furthermore, as stated in Section 5.2, the SLI technique that allows multiple graphics cards 

working parallel can also provide multiple time available graphic memory space versus a single 

card. 
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6.0 CONCLUSIONS AND FUTURE WORK 

l computation. The following is a summary of our major accomplishments. 

1. Development of a new mass conserving boundary condition for the LBE method 

We proposed a second-order accurate mass conserving boundary condition for the LBE method. 

Several practical cases involving curved solid boundaries are tested for examining the accuracy 

and robustness of the proposed BC. Compared with the FH and MLS BCs, our new BC will not 

result in the constant mass leakage seen in other BCs in some special cases, and accuracy is kept 

at the same level as MLS BCs.  

2. Development of a new LBE method for multi-component multi-phase flow with high 

density ratios 

Originally, the SC model was proposed for multi-component and multi-phase system. In their 

multi-component approach, the different components were included in the model by introduction 

different sets of PDFs. We found that the biggest problem for this approach is the density ratio 

cannot be high. The highest density ratio it can achieve is only about 2.0. If the density ratio is 

higher than that, the simulation will fail. However, in common gas-liquid flows, like an air-water 

system, the density ratio can be higher than 1,000. In order to simulate such systems, we noticed 

 

6.1 MAJOR ACCOMPLISHMENTS 

In this dissertation, we have made several contributions to the study of LBE method and 

paralle
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the original model’s lack of attention paid to the interaction between molecules of the same 

component ( ). We found that by increasing the fraction of iiF ,


iiF ,


, the density ration can increase 

substantially. All of odel can 

handle the two-component system with density ratio of up to approximately 1,000:1, which 

makes the simulation of most air-water systems possible. Additionally, the spurious current in 

our model is very small (0  in d 1,000, which is smaller 

than the average level (0.05 to 0.1) of most other SCMP or MCMP LBE model for much lower 

E method 

eed, but 

 technique, which is a new hardware and software architecture 

ice. In Chapter 5, we introduced the CUDA LBE models for simple single-phase 

 the results in Chapter 3 clearly demonstrate our MCMP LBE m

.032)  the case with a density ratio of aroun

density ratios.  

3. Application of the Compute Unified Device Architecture (CUDA) to the LB

Parallel computation is always an obvious way to increase the numerical simulation sp

many factors limit the application of traditional multi-thread computation, such as the difficulty 

of the programming environment and costs of the hardware. Besides that, some numerical 

methods may not benefit much from parallel computation on a traditional multi-CPU system. 

The LBE method is one of these numerical models. Hence, we developed a series of parallelized 

LBE models based on the CUDA

for issuing and managing computations on a graphic processor unit (GPU) as a data-parallel 

computing dev

flow, multi-phase flow, and thermal flow, as well as the most common and necessary BC 

treatments. Through a basic benchmark test and several practical applications, which include 

blood vessel internal flow, porous media flow, thermal flow, and multi-phase flow on a complex 

solid boundary wall, our CUDA LBE models show a great increase in efficiency, operating 10-

30 times faster than single-thread CPU program. Furthermore, this impressive increase in 

efficiency is accomplished using a common and inexpensive (under $200) GPU.  
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6.2 FUTURE WORK 

Several possible future tasks are listed below. We have conducted preliminary research in 

some of these areas. 

1. Thermal multi-component multi-phase flow with high density ratio 

In industrial problems, heat transfer is almost always involved in multi-component multi-phase 

systems, such as air-water systems. In Chapter 4, we introduced an isothermal MCMP flow with 

a high density ratio, and it is highly possible that this can be extended to solve thermal problems. 

p

each point from two sets of PDFs. Studying the interaction of the two sets of PDFs for 

hile it is not a 

standard programming platform for unified computation, it is currently very popular. However, 

A sim le way is adding another set of PDFs for temperature besides the two sets of PDFs for the 

two components. We have already conducted some basic tests for this method, but it is not 

currently accurate enough for the application because the result differs significantly from the real 

physical phenomena. One obvious reason is that the two components have different thermal 

properties and behavior, especially for two components with a high density difference, and one 

set of PDFs cannot simulate the different heat transfer phenomena for the two components at the 

same time. In order to solve this problem, one more additional set of PDFs may be needed, 

which means that two sets of PDFs will be used for temperature and to simulate the thermal 

property and behavior of the two different components separately. However, two sets of PDFs 

for temperature will cause another problem, namely how to determine the unique temperature at 

temperature will be the critical step for developing a thermal LBE model for MCMP flow with a 

high density ratio. 

2. Further application of the CUDA technique for the LBE method 

As introduced in Chapter 5, the CUDA technique was developed by NVIDIA. W
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all of the CUDA code can only ru  N he competition between different 

companies in the unified computation area means that this kind of technique will continually 

 (OpenCL), is under development by the organization of companies of such 

r user interface, and 

n on VIDIA’s products. T

undergo significant changes. Fortunately, a standard unified computation platform, Open 

Computing Language

as Apple, AMD, NVIDIA, IBM and so on. OpenCL will offer a friendlie

programmers will not need to pay as much attention to the hardware usage and control as when 

writing CUDA code, such as control reading, writing, and storing of data on different kinds of 

memory. Furthermore, an OpenCL program can run on the any unified computing hardware, no 

matter what manufacturer it is from. Hence, rewriting the CUDA LBE model to the OpenCL 

platform will help the further development of parallel LBE methods on a unified computing 

environment. The easier interface will also simplify the difficulty of the programming, which 

may help in proposing more complicated models for solving practical engineering and industrial 

problems. Although CUDA provides a great efficiency increase, the accuracy problem can be a 

concern. Most current CUDA code or other unified computing code are based on single precision 

calculation, because the hardware can only support single precision, which may cause higher 

accumulative error than double precision calculations. From our previous work, we also noticed 

that the higher accumulative error may cause our CUDA code to not be as stable as the CPU 

code. Fortunately, NVIDIA, AMD, and Intel already claim that their new generation of unified 

capable products will have the ability to handle double precision calculation. Hence, developing 

a double precision CUDA or OpenCL LBE model is a prospective direction.  
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APPENDIX A 

// copy device memory to shared memory 

#define sf1( index)      CUT_BANK_CHECKER(sf1, index) 

__shared__  float sf1[2][30]; 

const unsigned int tidx = threadIdx.x+1; 

EXAMPLE OF CUDA CODES 

A.1 COPY DATA FROM SYSTEM MEMORY TO DEVICE MEMORY 

// copy host memory to device memory 

float h_f1[60][60]; 

float* d_f1; 

CUDA_SAFE_CALL( cudaMalloc( (void**) &d_f1, mem_size)); 

CUDA_SAFE_CALL( cudaMemcpy( d_f1, h_f1,  

mem_size,cudaMemcpyHostToDevice) ); 

A.2 COPY DATA FROM DEVICE MEMORY TO SHARED MEMORY 
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const unsigned int tidy = threadIdx.y; 

for (iblock=0; iblock<=1; iblock++) 

 { 

for (jblock=0; jblock<=28; jblock++) 

  { 

   sf1[tidy][tidx]=g_f1[60

    } 

   } 

D MEMORY TO DEVICE MEMORY 

emory to device memory 

const unsigned int tidy = threadIdx.y; 

for (iblock=0; iblock<=1; iblock++) 

  for (jblock=0; jblock<=28; jblock++) 

][tidx]; 

+jblock*120+iblock*29+tidy*60+tidx]; 

A.3 COPY DATA FROM SHARE

// copy shared m

#define sf1( index)      CUT_BANK_CHECKER(sf1, index) 

__shared__  float sf1[2][30]; 

const unsigned int tidx = threadIdx.x+1; 

 { 

  { 

g_ftemp1[60+jblock*120+iblock*29+tidy*60+tidx]=sf1[tidy

} 

 } 

 99 



 

A.4 COPY DATA FROM DEVICE MEMORY TO SYSTEM MEMORY 

opy device memory to host memory 

ftemp1, mem_size,cudaMemcpyDeviceToHost) ); 

 

iblock=0; iblock<=1; iblock++) 

 { 

  for (jblock=0; jblock<=28; jblock++) 

  { 

 sf1[tidy][tidx]=g_ftemp1[60+jblock*120+iblock*29+tidy*60+tidx-1]; 

 sf3[tidy][tidx]=g_ftemp3[60+jblock*120+iblock*29+tidy*60+tidx+1]; 

 sf4[tidy][tidx]=g_ftemp4[60+jblock*120+iblock*29+(tidy+1)*60+tidx]; 

y-1)*60+tidx-1]; 

 sf6[tidy][tidx]=g_ftemp6[60+jblock*120+iblock*29+(tidy-1)*60+tidx+1]; 

mp7[60+jblock*120+iblock*29+(tidy+1)*60+tidx+1]; 

 sf8[tidy][tidx]=g_ftemp8[60+jblock*120+iblock*29+(tidy+1)*60+tidx-1]; 

 sf0[tidy][tidx]=g_ftemp0[60+jblock*120+iblock*29+tidy*60+tidx]; 

   } 

} 

// c

CUDA_SAFE_CALL( cudaMemcpy( h_ftemp1, d_

A.5 STREAMING STEP 

for (

 sf2[tidy][tidx]=g_ftemp2[60+jblock*120+iblock*29+(tidy-1)*60+tidx]; 

 sf5[tidy][tidx]=g_ftemp5[60+jblock*120+iblock*29+(tid

 sf7[tidy][tidx]=g_fte
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A.6 CALCULATE DENSITY, VELOCITY AND COLLISION STEP  

sf5[tidy][ti

dx]+sf6[tidy][tidx]+sf7[tidy][tidx]+sf8[tidy][tidx]+sf0[tidy][tidx]; 

//velocity   

sux[tidy][tidx]=(sf1[tidy][tidx]-sf3[tidy][tidx]+sf5[tidy][tidx]-sf6[tidy][tidx]-

tidx]-sf4[tidy][tidx]+sf5[tidy][tidx]+sf6[tidy][tidx]-

ilibriumPDF  

id

A.7 COPY EFFECTIVE MASS FROM DEVICE MEMORY TO SHARED MEMORY 

 (jblock=0; jblock<=28; jblock++) 

 sfi1[tidy][tidx]=g_fi[60+jblock*120+iblock*29+tidy*60+tidx-1]; 

//density  

srho[tidy][tidx]=sf1[tidy][tidx]+sf2[tidy][tidx]+sf3[tidy][tidx]+sf4[tidy][tidx]+

sf7[tidy][tidx]+sf8[tidy][tidx])/srho[tidy][tidx]; 

suy[tidy][tidx]=(sf2[tidy][

sf7[tidy][tidx]-sf8[tidy][tidx])/srho[tidy][tidx]; 

//equ

sf1[tidy][tidx]=srho[tidy][tidx]/9.0*(1.0+3.0*sux[tidy][tidx]+4.5*sux[tidy][tidx]*sux[t

y][tidx]-1.5*(sux[tidy][tidx]*sux[tidy][tidx]+suy[tidy][tidx]*suy[tidy][tidx])); 

//collision step fro tao=1 

g_ftemp1[60+jblock*120+iblock*29+tidy*60+tidx]=sf1[tidy][tidx]; 

for (iblock=0; iblock<=1; iblock++) 

 { 

  for

  { 
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 sf y]

 sfi3[tidy][tidx]=g_fi[60+jblock*120+iblock*29+tidy*60+tidx+1]; 

tidx]=g_fi[60+jblock*120+iblock*29+(tidy+1)*60+tidx]; 

1]; 

dx]=g_fi[60+jblock*120+iblock*29+(tidy+1)*60+tidx+1]; 

tidy*60+tidx]; 

A.8 FORCES 

ND MODIFIED VELOCITY 

//gradient of effective mess and interparticle forces   

sforcex[tidy][tidx]=-sfi[tidy][tidx]*gf*(sfi3[tidy][tidx]-sfi1[tidy][tidx]-

sforcey[tidy][tidx]=-sfi[tidy][tidx]*gf*(sfi4[tidy][tidx]-sfi2[tidy][tidx]-

tidx]+0.25*sfi8[tidy][tidx]+0.25*sfi7[tidy][tidx]); 

odified velocity 

rcex[tidy][tidx]/srho[tidy][tidx]; 

c[tidy][tidx]=suy[tidy][tidx]+0.5*sforcey[tidy][tidx]/srho[tidy][tidx]; 

i2[tid [tidx]=g_fi[60+jblock*120+iblock*29+(tidy-1)*60+tidx]; 

 sfi4[tidy][

 sfi5[tidy][tidx]=g_fi[60+jblock*120+iblock*29+(tidy-1)*60+tidx-1]; 

 sfi6[tidy][tidx]=g_fi[60+jblock*120+iblock*29+(tidy-1)*60+tidx+

 sfi7[tidy][ti

 sfi8[tidy][tidx]=g_fi[60+jblock*120+iblock*29+(tidy+1)*60+tidx-1]; 

 sfi[tidy][tidx]=g_fi[60+jblock*120+iblock*29+

  } 

} 

CALCULATE GRADIENT OF EFFECTIVE MASS, INTERPARTICLE 

A

0.25*sfi5[tidy][tidx]+0.25*sfi6[tidy][tidx]-0.25*sfi8[tidy][tidx]+0.25*sfi7[tidy][tidx]); 

0.25*sfi5[tidy][tidx]-0.25*sfi6[tidy][

//m

suxc[tidy][tidx]=sux[tidy][tidx]+0.5*sfo

suy
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APPENDIX B 

Our starting point is the LBGK model. Performing a Taylor series expansion in the time and 

 small parameters 

FROM THE LBE TO THE N-S EQUATIONS 

tx    to the second order, we obtain: space with
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
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in essence is a standard multi-sc

In order to derive the N-S equations from LBE, the Chapman-Enskog expansion, which 

ale expansion, is used as follows: 

21 ttt 






                                                                                                         B.2a 2 

1xx 




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where   is a small parameter, 1 . Equation A.2a means that the convecti

aller than the diffusion time scale 2t  (low-frequencies assumption), and the PDF f  ca

on time scale  is 

much n 

be expa

1t

sm

nded similarly as: 

 3)2(2)1()0(   Off                                                                               ff                  B.3 

Inserting equation B.2 and B.3 into equation B.1, we obtain: 
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Collecting the terms in the ascending order of  : 

:                                                                                                                 B.5 

1 :                         

)( 0O )()0( eqff  

)(O 















k

k x

f
e

t

f
tf

1

)0()0(

1

)1( 



                                                             B.6 

 
)( 2O : 



 











 








nk

nk
k

k
k

k xx
ee

xt
e

tx
e

tt
tf

1111
2
1121

)2( 2
2











   

                                                                                                    

   ffftfff )0(2)0(2)0(22)0()0()1( 

                                              B.7 

Using equation B.6 and performing some algebra, equation B.7 can be simplified to be: 
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Equation B.5 means that the PDF f  is not far from the equili

  fff )1()1()0( 1

brium state. We can re-write 

equation B.3 as following: 
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The equilibrium distribution function satisfies the following constraints: 
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Summing over all   for both equation B.6 and equation B.8, multiplying by  and summing 

over all 

ne

  for both equation B.6 and equation B.8, and using the constraints given by equation 

B.10-11, we can obtain the following macroscopic equations: 
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From equation B.17, we can identify that the momentum flux tensor is: 
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with the zero order momentum tensor and the first order momentum tens given by the 

following equation: 
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To sp orm of , the lattice structure and corresponding equilibriecify the detailed f   um 

distributions have to be specified. The D2Q9 lattice is considered here. Derivation for other 

lattice structures can be obtained using similar fashion. For the D2Q9 model, the following 

identities are observed: 
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Substituting equation B.6 into equation B.18 and using identity B.22, we find: 
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Substituting equation B.23 back into equation B.18, the momentum equation becomes: 
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where the pressure p and kinematic viscosity  are given by: v

3
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Therefore, the LBE recovers the N-S equation (equation B.27-28) in th w 

limit: 

e incompressible flo
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APPENDIX C 

FROM THE CONTINUUM BOLTZMANN EQUATION TO THE LBE MODEL 

We start from the Boltzmann equation with the BGK approximation: 

 )0(1
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                                                                                C.1 

where satisfies the Maxwell-Boltzmann distribution function: )0(f
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                                                                       C.2 

where R  is the gas constant,  is the dimension of the space, and D T  is the macroscopic 

temperature. The hydrodynamic variables are the moments of distribution function f : 

  
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2

1
  C.3 

where RTD02

1
 and  is the number of the degrees of  freedom of a particle. 

Integrating equation C.1 over a time interval 

0D

t , we find: 
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Assuming that t  is relatively small and g  is locally smooth, and further neglecting the terms of 

 2tO   or higher on the right hand side HS) of equation C.4, we obtain: (R
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Expanding the equilibrium distribution  as a Taylor series in 
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In order to derive the N-S equations, the second order expansion is enough, so we denote: 
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and we will use  instead of  in the following calculations. 

To numerically evaluate the hydrodynamic variables in equation C.3, we need to 

discretized the momentum space 

)(eqf )0(f




 pro entum 

space, integration in equation C.3 can be approximated by quadrature up to a certain degree of 

accuracy, i.e.: 

perly. With an appropriately discretized mom
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where    txfWtxff ,,,  
 ,    txfWtxff eqeqeq ,,, )()()(

 
                             C.8 

 is the weight coefficient of the quadrature and W 


 is the discrete velocity set. 

The above approximation process can be written in the following general form: 
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where  


 is the polynomial of 


. The above integral has the following common part, which 

 evaluated by a Gaussian-type quadrature [76]: can be
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v ution equation. i.e. C.5, can 

be numerically evaluated over a discretized physical phase space and time. In doing this, we 

need to consider two factors. First, the discretized momentum space is coupled to that of physical 

ries is 

required to satisfy the conservation constraints in equation C.8 and also to retain the N-S 

equations. We use the D2Q9 model to illustrate the derivation of the LBE models. 

del. There fore, we can set: 

We next need to discretized the phase space so that the e ol

space such that a lattice structure is obtained. Second, a lattice with necessary symmet

A Cartesian coordinate system is used to recover the D2Q9 mo

  n y
m
x  


, where m

x  and m
y  are the x and y components of 


. The integral in equation C.10 

can then be written as:  

  
nm

nm
IIRTI

2
2


                                                                                                               C.11 

where 






  deI m
m

2

, RTx 2/ R .12  or   Ty 2/                                                               C

For the purpose of deriving the D2Q9 model, a third-order Herm d 

to e

ite formula [77] is use

valuate mI , i.e. 


 m
jjmI  . The three abscissas of the quadrature are: 

3

1j

2/31  2/33, 02 ,                                                                                               C.13 

and the corresponding weight coefficients are: 

6/1   , 3/22   , 6/3    
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Then the integral in equation C.11 becomes: 
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 is the discrete velocity set with a zero-velocity vector for 0 , vectors of 

 0,1  and  1,03 RT  for   from 1 to 4, and 3RT  1,13 RT  for   from 5 to 8. After 

the momentum space is discretized with these nine discrete velocities, the physical space needs 

to be discretized accordingly. This means that the physical space is discretized into a square 

lattice space with a lattice constant tRTx  3 . If we only deal with the isothermal model, 

then the temperature T has no physical significance here. Thus we can pick x  to be a 

fundam ntal quantity, i.e. e
x
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cRT
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odel, and c  is th e speed. Usually the lattice speed is fixed as 1, so for the 

s

1
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D2Q9 m l,

Comparing equation C.10 and C.14, we can identify the weights in equation C.10 as: 
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speed of the m

ode

e lattic
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                                                                                                    C.15 

where  is the same as given in e ion 1.5 in Sectw quat ion 1.1. 

Then the equilibrium distribution function of the D2Q9 model is: 
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  wteq) 1,                  C.16   

where e


 is the sam  

]. 

 

e as given in equation 4. Model for the other lattice configurations (D2Q7,

D3Q27) can be derived in a similar manner [78
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