
 

MODELING ROCK CUTTING USING DEM WITH CRUSHABLE PARTICLES 

 

 

 

 

 

 

 

by 

Jorge Alejandro Mendoza Rizo 

B.S in Civil Engineering, Universidad Nacional de Colombia, 2008 

 
 
 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science in Civil Engineering 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2010 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 

This thesis was presented 

 
by 

 
 

Jorge Alejandro Mendoza Rizo 
 
 
 

It was defended on 

April 1st, 2010 

and approved by 

Jeen-Shang Lin, Sc. D., Associate Professor 

Luis E. Vallejo, Ph. D., Professor 

John Brigham, Ph. D., Assistant Professor 

Thesis Advisor: Jeen-Shang Lin, Sc. D., Associate Professor 

 

 



 iii 

Copyright © by Jorge Alejandro Mendoza Rizo 

2010 



 iv 

A numerical model for the rock scratching tests subjected to sharp cutters is proposed in which 

the rock is represented by a bonded-particle model and its mechanical behavior is simulated by 

the Distinct-Element Method using the discrete element program PFC2D. The rocks that are 

modeled represent sandstones and their model micro-parameters are calibrated with laboratory 

test simulations. The specimen used in the rock scratching test is distinguished by the particle 

size of a rock sample and the crushability of particles, which affect the failure mode and the 

cutting force pattern during a scratch test. This study implements a particle crushing criterion 

that is rooted in micromechanics, and a size-dependent particle strength rule adopted is derived 

from laboratory results.  

The depth of cutting studied is shallow, namely, the cutting depth is no deeper than 1 

mm. For this type of shallow cut, ductile failure represents the dominant failure mode. The 

cutting force recorded during a scratch test fluctuated as a cutter moved through a sample, and 

this study computes the average force by fitting a straight line to the accumulated mechanical 

work done by a cutter. 

This study demonstrates that both the fragmentation process and the cutter force can be 

modeled reasonably well. Particularly, this study is able to duplicate an important laboratory 

result that the specific cutting energy of a shallow scratch test is proportional to the unconfined 

compression strength of the rock being cut. The potential implications of particle crushing have 

also been explored. 

MODELING ROCK CUTTING USING DEM WITH CRUSHABLE PARTICLES 

 

Jorge Alejandro Mendoza Rizo, M.S. 

University of Pittsburgh, 2010

 



 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ....................................................................................................... XI 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 OBJECTIVES AND SCOPE .............................................................................. 2 

2.0 LITERATURE AND METHODOLOGY REVIEW ................................................ 3 

2.1 DISTINCT ELEMENT METHOD IN PFC...................................................... 3 

2.1.1 Distinct Element Method ................................................................................ 3 

2.1.2 Contact model .................................................................................................. 4 

2.2 SYNOPSIS OF THE ROCK SCRATCHING TEST ....................................... 6 

2.2.1 The Rock Scratching Test as a technique ...................................................... 7 

2.2.2 Discrete Element Modeling of RST ................................................................ 9 

3.0 DISCRETE ELEMENT SIMULATION ................................................................. 13 

3.1 GEOMETRICAL CHARACTERISTICS OF THE SYSTEM ..................... 13 

3.2 CALIBRATION OF THE MATERIAL .......................................................... 16 

3.2.1 Laboratory tests ............................................................................................. 17 

3.2.1.1 Micro-parameter selection ................................................................. 19 

3.2.2 Cases of sandstones modeled ........................................................................ 25 

3.3 PARTICLE CRUSHING .................................................................................. 28 

3.3.1 Determination of a particle crushing strength ............................................ 29 



 vi 

3.3.2 Determination of a particle crushing strength ............................................ 30 

3.3.3 Consideration of crushing mechanism in scratching test simulations ...... 35 

3.4 NUMERICAL SIMULATION SETUP ........................................................... 36 

3.4.1 Interpretation of DEM graphical results..................................................... 37 

3.4.2 Sample preparation ....................................................................................... 38 

3.4.3 Boundary and initial conditions in the RST simulation ............................. 41 

3.5 IMPORTANT FINDINGS ................................................................................ 43 

3.5.1 Force processing ............................................................................................ 43 

3.5.2 Adjustment of critical factors ....................................................................... 46 

3.5.2.1 Achieving a steady particle flow ........................................................ 46 

3.5.2.2 Impact of cutter velocity ..................................................................... 47 

3.5.2.3 Impact of cutter friction ..................................................................... 54 

3.5.3 A discussion on cutting forces obtained ....................................................... 58 

3.5.4 Results obtained on a suite of tests ............................................................... 62 

3.5.5 Influence on crushing .................................................................................... 67 

4.0 CONCLUSIONS ........................................................................................................ 71 

BIBLIOGRAPHY ....................................................................................................................... 73 



 vii 

LIST OF TABLES 

 

Table 3.1 Mass scaling influence on the Young's Modulus and the Unconfined Compressive 
Strength ............................................................................................................................. 19 

Table 3.2 PFC2D micro-properties for CASE I ............................................................................ 26 

Table 3.3 Summary results of Uniaxial and Brazilian tests from CASE I materials .................... 26 

Table 3.4 PFC2D microproperties for CASE II............................................................................ 27 

Table 3.5 Summary results of Uniaxial and Brazilian tests from CASE II materials .................. 27 

Table 3.6 Results obtained from Rock Scratching and UCS Tests by Richard [3] ...................... 53 

Table 3.7 Results obtained from RST on a Vosges sandstone by Richard [3] ............................. 59 

Table 3.8 RST cutting forces obtained for the different materials ............................................... 63 

Table 3.9 Cutting specific energy of different types of rock obtained by Richard [3] ................. 64 

Table 3.10 Summarized results from laboratory tests and RSTs simulations .............................. 65 

Table 3.11 Summary results of Uniaxial tests from two new materials in CASES I and II ......... 68 



 viii 

LIST OF FIGURES 

 

Figure 2.1 Linear model implementing stiffness, slip, and damping at contact ............................. 5 

Figure 2.2 Parallel bond visualization as a cylinder of cementitious material [6] .......................... 6 

Figure 2.3 The Rock Scratching Test: (a) a ductile failure mode and (b) a brittle failure mode .... 8 

Figure 2.4 Specimen setup and boundaries for rock cutting [10] ................................................. 10 

Figure 2.5 Brittle failure in rock cutting [12] ............................................................................... 11 

Figure 2.6 Visualization of cutting morphology using DEM at (a) atmospheric conditions and (b) 
down-hole conditions ........................................................................................................ 11 

Figure 3.1 Dimension difference between the numerical model and laboratory sample .............. 14 

Figure 3.2 Piece of material analyzed numerically ....................................................................... 15 

Figure 3.3 Particle size distribution of the DEM model ............................................................... 15 

Figure 3.4 Deere and Miller's engineering classification of rocks taken from Bell [18] .............. 16 

Figure 3.5 Typical Uniaxial Test in PFC2D, where (a) is the sample at failure and (b) is its 
respective stress-strain curve ............................................................................................ 17 

Figure 3.6 Typical Brazilian test in PFC2D, where (a) is the sample at failure and (b) is its 
respective Force-strain curve ............................................................................................ 18 

Figure 3.7 Bond strength influence on: (a) Unconfined Compressive Strength and (b) Tensile 
Strength ............................................................................................................................. 21 

Figure 3.8 Normal stiffness of particles and bonds affecting (a) the Young's Modulus and (b) the 
Poisson Ratio .................................................................................................................... 22 

Figure 3.9 Influence of macro-properties due to bond strength on (a) the contact bond model and 
(b) the parallel bond model ............................................................................................... 23 

Figure 3.10 Macro-properties affected by the Young's Modulus on (a) the contact bond model 
and (b) the parallel bond model ........................................................................................ 24 

Figure 3.11 Engineering classification of rocks with materials generated marked on. ................ 28 



 ix 

Figure 3.12 Correspondence between (a) contact forces and principal state of stresses in a 
particle; and between (b) principal state of stresses and two couple of loads forming an 
inclined cross [20]. ............................................................................................................ 30 

Figure 3.13 Crushing strength of quartz by Nakata et al. [24] ..................................................... 31 

Figure 3.14 Power law and Weibull function for quartz, using Nakata et al.'s data [24] ............. 33 

Figure 3.15 Crushing strength as a function of particle size......................................................... 34 

Figure 3.16 (a) Theoretical crack propagation in the particle and (b) post-breakage configuration 
in the DEM model (Based on Tsuongui et. al.'s work[20]) .............................................. 35 

Figure 3.17 Region were crushing is allowed ............................................................................... 36 

Figure 3.18 Conventions in the rock scratching DEM model ...................................................... 37 

Figure 3.19 Refinement regions in the rock scratching model ..................................................... 39 

Figure 3.20 Steps for rock cutting sample preparation: (a) Generation of Particles, (b) 
Refinement of Particle, (c) application of Isotropic Stresses and identification of floaters, 
(d) Compacted Package and (e) Creation of Bonds .......................................................... 41 

Figure 3.21 Boundary conditions in the rock scratching model ................................................... 42 

Figure 3.22 (a) Forces generated randomly in a range through a distance, and (b) accumulated 
word due to these forces ................................................................................................... 44 

Figure 3.23 (a) Linear regression of the accumulated work, and (b) depiction of mean force 
obtained via mechanical work concept ............................................................................. 45 

Figure 3.24 (a) Effects of debris accumulation on both the configuration and  cutting forces; and 
(b) effect of short cutter and particle deletion on both the configuration and  cutting 
forces ................................................................................................................................. 47 

Figure 3.25 Velocity influence in the rock scratching test at (a) 0.25 m/sec and (b) 3.00 m/sec . 50 

Figure 3.26 Results at different velocities of (a) accumulated work and (b) mean horizontal force
........................................................................................................................................... 52  

Figure 3.27 (a) A snapshot of the RST simulation at 2.00 m/sec and (b) its respective horizontal 
forces ................................................................................................................................. 54 

Figure 3.28 Configuration and cutting forces under a coefficient of friction between the cutter 
and the specimen of: (a) 0.00 (b) 0.25 and (c) 0.50 .......................................................... 57 

Figure 3.29 Horizontal forces of a RST performed in a Vosges sandstone at 3 mm of depth 
cutting by Richard [3] ....................................................................................................... 58 



 x 

Figure 3.30 Cutting forces at different depths in a Vosges sandstone (Data taken from Richard 
[3])..................................................................................................................................... 60  

Figure 3.31 Cutting force history obtained from the materials (a) SS_25_I and (b) SS_25_II ..... 61 

Figure 3.32 Failure mode comparison: (a) laboratory test [3] and (b) DEM simulaiton .............. 62 

Figure 3.33 Cutting specific energy and rock strength linear regression (Data taken from Richard 
[3])..................................................................................................................................... 64  

Figure 3.34 Cutting specific energy and rock strength linear regression of both simulation and 
physical tests (Data taken from Richard [3]) .................................................................... 66 

Figure 3.35 Cutting specific energy and rock strength linear regression of both simulation and 
physical tests, but disregarding the data influenced by crushing strength (Data taken from 
Richard [3]) ....................................................................................................................... 66 

Figure 3.36 Particle crushing strength influence at high material uniaxial strength .................... 67 

Figure 3.37 Different particle crushing strength influence at high material uniaxial strength ..... 68 

Figure 3.38 Impact of particle crushing on failure configuration when (a) crushing is not 
consider, and (b) when crushing is implemented.............................................................. 69 

Figure 3.39 Failure characteristics affected by particle crushing strength in (a) SS_75_I and (b) 
SS_100_I ........................................................................................................................... 70 



 xi 

ACKNOWLEDGEMENTS 

This technical effort was performed in support of the National Energy Technology Laboratory’s 

on-going research in drilling under extreme conditions. 

Grateful acknowledgement is given to my advisor, Dr. Jeen-Shang Lin, who helped me 

focus my ideas, and whose intellectual contributions were crucial in the development of this 

study. My gratitude is also expressed to my committee members, Dr. Luis E. Vallejo and Dr. 

John C. Brigham, whose lessons developed my inventiveness and dared me to think beyond the 

written. 

To my alma mater, Universidad Nacional de Colombia Sede Manizales, and the 

professors who showed me the beauty of Civil Engineering. 

To my coworkers and friends who joined me in this journey and demonstrated 

outstanding examples of perseverance and discipline. 

To my family; my mother, who teaches me everyday how to be strong-minded; my 

father, who has been, and always will be, my professor and best friend; and my siblings, who are 

my role models. 

Finally, to my love Luisa, who owns my universe. 

 



 1 

1.0  INTRODUCTION 

Understanding the mechanics of rock cutting and developing a credible modeling framework has 

important implications across a diverse field of applications including drilling for oil , mining for 

coals and minerals, and tunneling and underground cavern construction, just to name a few. 

From the modeling perspective, rock cutting analysis poses a daunting challenge. Through 

scratching tests, Richard et al. [1] have reported that rock cutting may evoke different failure 

modes depending on the depth that a cutter reaches in the rock. How to capture the different 

failure modes through an analysis without a prior knowledge of which mode would prevail is one 

of the key issues confronting rock cutting modeling.  

To establish the credibility of a modeling technique it is essential that the results are 

verifiable. The rock cutting as represented by a Rock Scratching Test (RST) represents an 

excellent way for validation. First of all, it resembles a linear cutting action of a polycrystalline 

diamond compact (PDC) bit1. Furthermore, the test is not only simple in its geometrical and 

mechanical set up, the failure progression can also be readily be observed both in the failure 

patterns and force time history. This study therefore focuses on the modeling of rock cutting as a 

problem posed by a typical RST. 

                                                 

1 PDC bit: A drilling tool that uses cutters to shear rock with a continuous scraping motion (Taken from 

http://www.glossary.oilfield.slb.com/) 
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This research employed the Discrete Element Method [2] (DEM) and the representation 

of rocks with discrete elements is described first. Then, the rock cutting problem posed by a 

scratching test is presented. After, considerations of particle crushing implementation are 

detailed and the implications of particle crushing in rock cutting are explored. 

1.1 OBJECTIVES AND SCOPE 

The objectives of the present study have a different focus from the ones described in the 

LITERATURE REVIEW, namely, the goals are to obtain quantitative results. More specifically, 

the aim is to setup a DEM model so that it is capable of duplicating the horizontal cutter force 

history and the fragmentation configuration as those obtained from a physical test. Richard [3] 

has performed a series of rock scratching tests which this study attempted to model. His 

experiments showed that during a shallow cut, where the depth of the cutter into the rock was no 

more than 1mm, the rock failed in a ductile mode. In a ductile failure mode, the cutter force 

resembles that of an elasto-plastic material under yield. Whereas during a deeper cut, the failure 

resembles that of a brittle failure and often a crack is created, progresses and is finally forced into 

a chip with corresponding cutter force exhibited cycles of rising up and coming down.  
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2.0  LITERATURE AND METHODOLOGY REVIEW 

The literature review is focused narrowly on the applications of DEM to rock cutting. A brief 

review of the DEM formulation as adopted the Particle Flow Code (PFC) and the contact model 

used for modeling rock are first presented. Then, a basic description of the scratching test 

characteristics are reviewed for the specific case of a sharp cutter and a shallow cut. The 

available literature is then discussed. 

2.1 DISTINCT ELEMENT METHOD IN PFC 

2.1.1 Distinct Element Method 

The Distinct Element Method (DEM) is a specific application of a broad numerical method 

named the Discrete Element Method. The Distinct Element Method was first laid out by Cundall 

[4] for rock mechanics analysis and subsequently applied to soil mechanics problems by Cundall 

and Strack [2]. In this Discrete Element Method, each discrete element, or particle, has three 

degrees of freedom in a two dimensional setting, namely, two translational and one rotational. At 

each time step a rigid body dynamics equation is solved for each particle. The interaction 

between particles is implemented through the penalty method in which very stiff springs are used 



 4 

to both prevent excessive particle overlap, and to enable the computation of forces between 

particles. 

The solution method used for solving a particle system is based on the explicit finite-

difference method . The explicit method scheme requires the use of very small time step size for 

stability and accuracy, but avoids the need to solve simultaneous equation. 

The timestepping algorithm assumes that both the velocity and acceleration are constant 

inside the time step. The maximum timestep that can be used is dictated by the fundamental 

period of the system. Because of the high stiffness used, the time step is very small often in the 

order of 10-9  seconds. 

At each time step, the equation of motion is solved for each particle. The forcing term 

comes from external loads as well as from interaction with neighboring particles. The interaction 

forces, or contact forces, are updated using the force-displacement law from the relative motion 

at each contact. 

2.1.2 Contact model 

In the 2D DEM, in addition to circular particles, which are also referred to as balls, are rigid 

walls that are employed to impose displacement constraints. Accordingly, two types of contacts 

are encountered, i.e., ball-ball and ball-wall. A contact model dictates how a contact behaves by 

defining the follow characteristics: 1) stiffness, which relates the relative displacements to the 

contact force; 2) slip, which provides a relation between normal and shear forces; 3) damping, 

which dissipates kinetic energy in order to achieve a steady-state; and 4) bonding, which allows 

particles to be bonded for transferring forces only, e.g., contact bond, or both forces and 
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moments, e.g., parallel bond. There are two types of bond: (1) contact bonds, which can transfer 

force only; and (2) parallel bonds, which can transfer both forces and moments. 

The linear stiffness model is the simplest model in which the stiffness maintains a 

constant value until a failure takes place. Figure 2.1depicts a linear normal contact on the left and 

a linear shear contact on the right. The normal contact will be removed when particle loses 

contacts, or the spring is subjected to net tensile force. A shear spring fails, as represented by a 

slider, when its strength, often defined by the Mohr-Coulomb law, is exceeded. 

 

http://nptlab.tistory.com
 

Figure 2.1 Linear model implementing stiffness, slip, and damping at contact 

 

To model a rock sample in DEM, in this study, the rock is modeled by the Bond-Particle 

Model (BPM) of Potyondy and Cundall [5], in which particles are cemented together with bonds. 

First, an assembly of circular particles is created following a particular grain size distribution. 

This assembly is then packed under a preset level of compressive stress and bonded together at 

the points of contact between particles. The particular type of bond used is called the parallel 

bond which can be visualized as a finite-sized piece, or in our case a cylinder (depicted in Figure 

2.2) of cementitious material with its diameter proportional to the minimum diameter of the two 

particles that a bond cements. 
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Figure 2.2 Parallel bond visualization as a cylinder of cementitious material [6] 

 

When the bonds are in place, particles are not allowed to slide. Only after the bonds are 

broken, such as the creation of cracks, sliding is considered. The cementitious material can be 

visualized as well as a set of uniformly distributed springs over this region. The spring forces and 

moments can be related to maximum stresses acting within the bond periphery, and a bond can 

be broken when the strength is exceeded by the maximum stresses.  

2.2 SYNOPSIS OF THE ROCK SCRATCHING TEST 

The Rock Scratching Test (RST) will be the basis for validating the modeling effort of this study. 

In this test, the cutter moves in a linear fashion into a rock sample. The thinking here is that there 

is no sense in attempting to model sophisticated drilling bit action, unless this much simpler 

problem can be tackled in a satisfactory manner. the following section explains briefly the RST 

scheme, and how it has been modeled so far. 
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2.2.1 The Rock Scratching Test as a technique 

In the oil industry, or any other industry which requires that a natural resource be extracted, 

drilling is one of the most critical and expensive stages of an oil extracting project. However, the 

phenomenon of well drilling lacks a strong theoretical approach with respect to the interaction 

between the rock and drag bit. The Rock Scratching Test (RST) is a laboratory test performed 

over either a slab or a cylinder obtained from a rock core. The rock specimen is scratched in a 

single direction throughout the sample, using a cutting tool which mimics one of the tips of a 

drill bit, or drag bit, used for well drilling [7]. Purposes of the RST are: 1) to register the 

horizontal force acting on the cutting tool and 2) to observe the failure behavior of the rock. 

Hence, the Uniaxial Compressive Strength (UCS) can be well estimated based on the cutting 

mechanism observed in the experiment, and the forces acting on the cutting face [1, 3]. 

Based on experimental observation, Richard [3] concluded that two cutting modes in the 

rock cutting process take place in the RST: 1) a “ductile” failure mode occurring at shallow 

depths (generally less than 1mm) is associated with crushing of particles at the tool tip and 

shearing of the rock in front the cutter; and 2) a brittle mode occurring at greater depths 

(generally more than 1 mm), characterized by macroscopic cracks that initiate from the tip of the 

cutter creating uneven paths of failure ahead of the cutter. The two types of failure modes are 

depicted in Figure 2.3. 
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              (a)                  (b) 

Figure 2.3 The Rock Scratching Test: (a) a ductile failure mode and (b) a brittle failure mode 

 

It was found in the shallow cutting process that the Uniaxial strength is related to the 

specific energy of cutting. The latter is defined by the author as the energy required to cut a unit 

volume of rock. Equation 2.1 presents the relation between the specific, ε , and the mean 

horizontal force on a shallow cutting, SF ,here w  and d  respectively stands for the width of the 

cross-sectional scratched section and the depth of cutting. 

 

wd

FS=ε  

Equation 2.1 

 

The Rock Strength Device (RSD) is used to perform the RST. The size of the rock 

sample (cores) that can be used in the RSD ranges from 30 mm to 120 mm in diameter, and 20 

mm to 1000 mm in length according to Schei et al. [8]. In addition, the length of the groove 

scratched has to be at least 10 times the depth of the cutting. Thus, a sample subjected to shallow 
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cutting can offer good results after 10 mm of a cutting process. A more detailed description of the 

apparatus and the configuration of the test was presented by Richard [3]. 

2.2.2 Discrete Element Modeling of RST 

In general, the DEM modeling of rock cutting has been performed taking into account the 

following conditions: 1) The rock is modeled as a BPM, 2) the walls containing the specimen are 

boundary conditions at zero velocity, and 3) the cutting tool is a segmented wall, representing a 

boundary condition at a constant velocity. The nature of the rock being a BPM and the cutting 

tool a rigid body, allows for identification of the damage in the bulk material and the recording 

of the forces acting in the cutting process, respectively. 

The different failure modes in rock cutting was modeled by Huang et al. [9]. They found 

that the depth of cutting determines whether the failure regime is ductile or brittle when a 

characteristic particle size is given. The authors also found a fair relationship between specific 

energy of cutting and the unconfined compressive strength of the sample. 

Lei et al. [10, 11] has explored the use of DEM in modeling rock scratching tests by 

performing studies on the influence of hydrostatic pressure on orthogonal machining and 

sensitivity analyses of the micro-properties of the numerical model. The specimen particle 

distribution and boundary conditions setup are shown in Figure 2.4. The authors suggest that the 

increment of particle size towards the bottom of the sample decreases the computational 

expenses without affecting the macro-properties of the material. The findings in these studies are 

that: 1) the hydrostatic effect restrains crack growth and creates larger horizontal forces during 

the cutting process, 2) the failure in the absence of confining pressure implies short-chip 

formation, crack propagation and smaller cutting forces 3) the damping coefficient has a large 
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effect in the cutting forces, therefore a more realistic value is necessary for having closely results 

to reality, and 4) the shape of the particles for avoiding the spinning that the circular elements 

allows also affects the results, suggesting further research in the implementation of clusters in the 

specimen. 

 

 

Figure 2.4 Specimen setup and boundaries for rock cutting [10] 

 

DEM has been used as well by Rojek [12] in rock cutting simulation with the purpose of 

validating the cutting force results with the existing analytical approaches of Nishimatsu [13] and 

Evans [14]. However, this study does not specifically refer to the scratching test nor the shallow 

cut. Moreover, the study shows an interesting failure pattern that characterizes a deep cutting 

depth as shown in Figure 2.5. 
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Figure 2.5 Brittle failure in rock cutting [12] 

 

Huang and Detournay [15] investigated that the switch from ductile to brittle failure 

mechanisms can be explained by the introduction of a length scale parameter in the rock 

description, which is a function of the material toughness and the uniaxial strength. The 

investigators claim that the mean radius loses its quality of discretization parameter and becomes 

dependent on the toughness and the uniaxial strength. Thus, when the length scale is introduced, 

the failure behavior is controlled by the strength of the mechanical properties of the material. 

 

   

            (a)                  (b) 

Figure 2.6 Visualization of cutting morphology using DEM at (a) atmospheric conditions and (b) down-

hole conditions 
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Finally, the relation between failure mode in drilling and bottom hole pressure was 

investigated by Block and Jin [16] using DEM. Here, the energy dissipation was addressed not 

just as the breaking of the bonds, but also the irreversible reorganization of the grain structure. 

This issue was accounted for, calculating the average stress tensor and the strain rate on a grain 

within a given neighborhood. A cap-like failure envelope was considered in the post-processing 

of the results to determine whether the state of stresses on analyzed regions were behaving 

elastically, or failing either in a brittle or ductile manner. Moreover, it was found that the cutting 

morphology is affected by the in situ pressure conditions and the weight of the PDC bit, where 

the case of atmospheric conditions is shown in Figure 2.6(a) while the case of down-hole 

conditions is shown in Figure 2.6(b). 
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3.0  DISCRETE ELEMENT SIMULATION 

General test setup and the material property selection are described in this chapter. The 

calibration of the material through different laboratory tests, the aim in choosing these materials, 

and a brief description of the crushing criterion scheme and its implementation in the numerical 

model are explained. 

3.1 GEOMETRICAL CHARACTERISTICS OF THE SYSTEM 

The first issue confronts a modeling effort is how long should a sample be. Richard [3] found 

that for obtaining stable results, the length to be scratched, or distance of cutting, has to be at 

least ten times the depth of cutting, e.g., for our case of up to a 1.0 mm depth cut, a length of 

cutting of 10 mm is required, otherwise the results might not converge. Because our study is 

focus only on shallow cuts, we expect cracks, if created, would be shallow as well. This makes it 

possible to analyze a cutting consider only partial depth of a sample. 

Based on these facts, both height (or diameter) and length can be estimated in obtaining a 

conservative system size that can yield accurate results at a reasonable computational cost. For 

instance, if a rock sample with a height of 30 mm and a length of 50 mm was used in a laboratory 

test, the numerical sample dimensions can be greatly reduced, hence, reducing the computational 

expenses. In this study, we considered that a numerical sample with 10 mm of height and 25 mm 
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of length is sufficient to capture a ductile failure mode and can be scratched up to a distance of 

15 mm without being affected by any boundary condition of the model. A sketch of the model 

proposed with respect to the laboratory sample is depicted in Figure 3.1. 

 

50.00

30.00
25.00

10.00

Dimensions are in millimeters

15°

Cutting Tool
Rock Sample
Analyzed PieceCutting Depth

 

Figure 3.1 Dimension difference between the numerical model and laboratory sample 

 

From the analysis sample shown in Figure 3.1, and taking into account the failure mode 

that takes place in the shallow scratching test, a region with particles as fine as the real size of the 

grains in a Vosges sandstone is assigned in the top half of the sample. These particles are 

distributed in the range  from 0.1 mm to 0.4 mm of diametric size. To reduce the computational 

cost, the particles size were increased gradually with depth from the bottom half . The top region 

of the particles is called hereafter the Cutting Region as shown in Figure 3.2. 
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25.00

5.00
15°

Cutting Tool
Cutting Depth Cutting Region

Dimensions are in millimeters  

Figure 3.2 Piece of material analyzed numerically 

 

In order to create a numerical specimen with these features in the PFC2D, a refinement 

function embedded in the code is implemented in different regions assigned throughout the 

system. A snapshot of the numerical sample is shown in Figure 3.3 where the particle size 

distribution can be observed. A more detailed explanation about how the specimen was 

generated can be found in the section Sample preparation. 

Lastly, the rake angle of the cutting tool in the model is set to be the same as that used in 

experiment [3], 15° as depicted in both Figure 3.1 and Figure 3.2. 

 

 

Figure 3.3 Particle size distribution of the DEM model 
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3.2 CALIBRATION OF THE MATERIAL 

Because the scratch test data available are mostly from sandstones [3], and because of the 

lacking of specific information about the particular rocks used we attempted herein to generate 

“general” sandstone. Namely, instead of modeling a sandstone that is typically found in a certain 

region, i.e., Vosges sandstone, Berea Sandstone, among others, we generated sandstone-like 

material. 

In order to achieve this , we used the engineering classification of intact rocks by Deere 

and Miller [17] as a guide, in which rock can be classified by its Uniaxial Compressive Strength 

(UCS) and the Young’s Modulus at 50% of the UCS. A green dash on the graph in Figure  

highlights the area corresponding to sandstones while the slopes in red stand as limit indicators 

for the ratios of Young's Modulus to UCS. Now, our purpose is to generate materials in DEM 

within the sandstone region. 

 

  

Figure 3.4 Deere and Miller's engineering classification of rocks taken from Bell [18] 
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3.2.1 Laboratory tests 

In the scratch test, we used the actual particle size of a sandstone sample. This is not necessary 

for numerical modeling of laboratory mechanical test. Potyondy and Cundall [5] found that in a 

PFC2D model, the elastic response of the materials, i.e., Young's Modulus and Poisson Ratio and 

the unconfined compressive strength, does not seem to be affected by the particle size . Thus, our 

particle size used in modeling laboratory tests was selected with the computational cost in mind. 

Potyondy and Cundall [5] chose for the finest particle system an average diameter of 0.36 mm in 

a rectangular specimen of 27.314.63 mm× , our laboratory test sample used an average diameter 

of 0.52 mm in a rectangular sample of 250100 mm× . The height to width ratio of the sample is 

kept to 2 to 1. 
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       (a)                   (b) 

Figure 3.5 Typical Uniaxial Test in PFC2D, where (a) is the sample at failure and (b) is its respective 

stress-strain curve 
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Figure 3.5 shows a typical result of a Uniaxial Compressive Test we obtained in PFC2D. 

A close look reveals that the red and magenta lines in Figure 3.5(a) denote the broken bonds that 

failed in tension and shear respectively, which mimics the failure of surfaces and cracks on a real 

rock. The parallel bonds that are intact are represented by parallel black lines while the particles 

are depicted as light-orange circles in the background. Lastly, the stress-strain curve obtained is 

plotted in Figure 3.5(b). 
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         (a)              (b) 

Figure 3.6 Typical Brazilian test in PFC2D, where (a) is the sample at failure and (b) is its respective 

Force-strain curve 

 

Indirect tensile tests, i.e., the Brazilian tests, were also carried out The failed sample 

configuration of this test is shown in Figure 3.6(a) and the force-strain curve is plotted in Figure 

3.6(b). Both were found to show trend similar to actual tests. 

 

kmtcrit /=  

Equation 3.1 
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An important issue to address in our calibration is that mass scaling was implemented 

such that the mechanical timestep can be increased during the modeling of the laboratory tests. 

Because the critical time step [19], critt  in Equation 3.1, is proportional to the square root of the 

mass, an increase in the mass, i.e., the so-called mass scaling, increased the critical time step and 

shortened the computational time. The effects of mass scaling by increasing the mass density of 

balls show rather small impact on the results of numerical test results as summarized in Table 

3.1. These results obtained for each density are an average of tests performed on three different 

assemblies. Through the 1000 times increase in the mass, the computational time was cut by a 

factor of 31. This significant time saving at the expanse of small loss in resolution is deemed a 

good trade off. 

 

Table 3.1 Mass scaling influence on the Young's Modulus and the Unconfined Compressive Strength 

ρρρρ (kg/cm
3
) σσσσc (MPa) E (GPa) 

2630 66.70 5.56 

2'630,000  70.10 5.67 

Difference 5.10% 1.98% 

3.2.1.1 Micro-parameter selection  

The numerical model requires a set of micro-parameters to create a BPM. These micro-

parameters refer to the properties of the constitutive model in general, where the particles and 

their contacts are involved. 

A large number of DEM rock mechanical tests were conducted, e.g., Unconfined 

Compressive Strength (UCS) and Brazilian Tests, to ensure that the selected micro-parameters 

yielded reasonable rock samples. How changes in these parameters could impact macro-
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properties of rocks were studied, and the results are summarized herein. Even though the parallel 

bonds were employed to cement grain particles into rock, an exploration using contact bonds was 

also included. The results of this sensitivity study provided a guide for the selection of the micro-

parameters and its influence on the macro-properties. For instance, when we needed to increase 

the uniaxial strength of the rock, the sensitivity study results gave a guideline or parameters in 

which to change and by how much.  

The sensitivity study reached the following conclusions: 

• The unconfined compressive and tensile strengths are proportional to the bond 

strength as shown in Figure 3.7(a) and Figure 3.7 (b), respectively 

• The Young’s Moduli and Poisson Ratios increase with the normal stiffness of 

both particle bonds as depicted in Figure 3.8(a) and Figure 3.8 (b), respectively. 

These are also affected by the type of bonding. For instance, in Figure 3.9(a) it is 

shown that the contact bond does not affect either, but the parallel bond affects 

proportionally the Poisson Ratio shown in Figure 3.9(a). 

• The Young's Modulus shows a strong proportionality in both of the bonding 

models as can be observed in Figure 3.10. However, it is important to notice that 

the results obtained using the contact bond model, Figure 3.10(a), are less stable 

than the ones obtained using the parallel bond model, Figure 3.10(b). 

This sensitivity analysis was not extensive and had a narrow focus of assisting in 

obtaining micro-parameters quickly. 
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Figure 3.7 Bond strength influence on: (a) Unconfined Compressive Strength and (b) Tensile Strength 
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Figure 3.8 Normal stiffness of particles and bonds affecting (a) the Young's Modulus and (b) the Poisson 

Ratio 
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Figure 3.9 Influence of macro-properties due to bond strength on (a) the contact bond model and (b) the 

parallel bond model 
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Figure 3.10 Macro-properties affected by the Young's Modulus on (a) the contact bond model and (b) the 

parallel bond model 
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3.2.2 Cases of sandstones modeled 

In creating a general set of samples that are typical of sandstones, two groups of sandstones were 

created based on two different Young's Modulus to ultimate strength ratios represented by the 

red lines in Figure 3.4. 

The first set of four samples created is named CASE I, and the micro-properties for this 

case are shown in Table 3.2. Here, each sample material is differentiated by a set of three 

parameters: the Young's Modulus of both the particle and the bond, and the normal strength of 

the bond. The rest of the parameters are kept the same. For instance, the material SS_25_I 

denotes a sandstone, for SS, with a mean bond normal strength of 25 MPa in CASE I. The 

corresponding particle Young's Modulus was 3 GPa, and the Young's Modulus of the bond was 

also 3 GPa. Moreover, all these three parameters are marked as material (i). Similarly, SS_50_I 

would have a mean bond normal strength of 50 MPa, and both bond and particle Young's 

Modulus are equal to 6 GPa. These parameters are marked as material (ii) 
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Table 3.2 PFC2D micro-properties for CASE I 

 GRAINS (PARTICLES) CEMENT (PARALLEL BONDS) 

 � = 2630 �	 
3⁄   
� = � ��� 3 ������� 6 ��������  9 ������� 12 ��� � 
���� ����⁄ = 1.66 ���� = 0.3 × 10−3 
 !� !"⁄ = 1 ∴  !� = 2$%&  , ( = 1 ) = 0.5 
 
Where, � ∶ Density ���� , ���� ∶ Maximum and minimum radius, respectively � ∶ Young′ sModulus !� ∶ Normal Stiffness !" ∶ Shear Stiffness ) ∶ Friction 

 

 GH = 1 �I = JK × 
LMNO�P�, O�Q�R 
�I = � ��� 3 ������� 6 ��������  9 ������� 12 ��� � 
!I� !I"⁄ = 1 ∴  !I� = %H& NO�P� + O�Q�RT   UI = 0.5VK& = �
W�M ± Y$Z. ZW[. �  
∴  �\�� = � ��� 25 ]������ 50 ]�������  75 ]������ 100 ]�� �  ;  Y$Z. ZW[. = 23% 

 
Where, GH ∶ Bond Radius Multiplier �I ∶ Bond Radius ��c�, ��d�: Radius of particle in contact A and B, respectively �I ∶  Young′ s Modulus !I� ∶ Normal Stiffnes !I" ∶ Shear Stiffnes  UI ∶ Normal Strength gH ∶ Shear Strength 

 
 

 

 

Each set of material parameters was used in creating three different samples. The samples 

were different because particles were geneated and placed randomly. The average results of 

Uniaxial and Brazilian tests on the set of CASE I materials are provided in Table 3.2.  

 

Table 3.3 Summary results of Uniaxial and Brazilian tests from CASE I materials 

Summary  σσσσc (MPa) νννν E  (GPa) σσσσt (MPa) E/σσσσc 

Sample with 25 MPa of normal parallel bond 
(SS-25_I) 

29.95 0.15 4.87 6.23 162.48 

Sample with 50 MPa of normal parallel bond 
(SS-50_I) 67.65 0.17 9.27 11.28 137.09 

Sample with 75 MPa of normal parallel bond 
(SS-75_I) 

88.41 0.17 13.76 17.85 155.62 

Sample with 100 MPa of normal parallel bond 
(SS-100_I) 

121.42 0.17 18.17 25.85 149.66 
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The same philosophy is adopted for creating four materials denoted as CASE II. The 

parameters and the results of the laboratory tests on them are summarized in Table 3.4 and in 

Table 3.5, respectively. 

 

Table 3.4 PFC2D microproperties for CASE II 

 GRAINS (PARTICLES) CEMENT (PARALLEL BONDS) 

 � = 2630 �	 
3⁄   
� = � ��� 6 ������� 12 ��������  18 ������� 24 ���  � 
���� ����⁄ = 1.66 ���� = 0.3 × 10−3 
 !� !"⁄ = 1 ∴  !� = 2$%&  , ( = 1 ) = 0.5 
 
Where, � ∶ Density ���� , ���� ∶ Maximum and minimum radius, respectively � ∶ Young′ sModulus !� ∶ Normal Stiffness !" ∶ Shear Stiffness ) ∶ Friction 

 

 GH = 1 �I = JK × 
LMNO�P�, O�Q�R 
�I = � ��� 6 ������� 12 ��������  18 ������� 24 ���  � 
!I� !I"⁄ = 1 ∴  !I� = %H& NO�P� + O�Q�RT   UI = 0.5VK& = �
W�M ± Y$Z. ZW[. �  
∴  �\�� = � ��� 25 ]������ 50 ]�������  75 ]������ 100 ]�� �  ;  Y$Z. ZW[. = 23% 

 
Where, GH ∶ Bond Radius Multiplier �I ∶ Bond Radius ��c�, ��d�: Radius of particle in contact A and B, respectively �I ∶  Young′ s Modulus !I� ∶ Normal Stiffnes !I" ∶ Shear Stiffnes  UI ∶ Normal Strength gH ∶ Shear Strength 

 
 

 

 

Table 3.5 Summary results of Uniaxial and Brazilian tests from CASE II materials 

Summary  σσσσc (MPa) νννν E  (GPa) σσσσt (MPa) E/σσσσc  

Sample with 25 MPa of normal parallel bond 
(SS-25_II): 

35.31 0.15 9.46 8.61 268.03 

Sample with 50 MPa of normal parallel bond 
(SS-50_II): 

79.96 0.16 18.25 14.09 228.20 

Sample with 75 MPa of normal parallel bond 
(SS-75_II): 

97.85 0.16 27.32 23.31 279.18 

Sample with 100 MPa of normal parallel bond 
(SS-100_II): 

129.78 0.17 35.91 30.91 276.73 
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Marking the results using the data from Table 3.4 and Table 3.5 into the classification 

chart of Figure 3.11, the actual classifications of generated materials are found to be within the 

range of sandstones targeted.  

 

 

Figure 3.11 Engineering classification of rocks with materials generated marked on. 

 

3.3 PARTICLE CRUSHING 

Particle crushing is implemented as follows: First, if the induced tensile stress on the particle 

exceeds its strength, a particle will be crushed; Secondly, when it is crushed, a particle is 

replaced by a number of smaller particles without bonds; and if the particle is bonded to others, 

these bonds are deleted. Finally, the post crushing configuration and the number of the particles 
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formed as proposed by Tsuongui et al. [20] were adopted. However, the conservation of mass 

criterion proposed by Åström [21] was not implemented because of the losing-mass nature of the 

test due to the scratching. 

The average stress within a rigid particle can be defined in terms of the peripheral forces 

and their position vector as shown below, 

 

c

j

n

c

c

i

p

ij Fr
V
∑

=

=
1

1
σ  

Equation 3.2 

 

where, pV  is the volume of a particle, F  is one of the n  contact forces acting on the 

particle, and r  is a position vector measured from the center of the particle to the contact force 

point [22]. 

3.3.1 Determination of a particle crushing strength 

A theoretical model for failure criterion on a particle in the DEM developed by Tsuongui et al. 

[20] was implemented in this study, where an arbitrary system of contact forces is considered for 

calculating the average state of stresses on each particle, and from there, two principal states of 

stresses, the hydrostatic and the deviatoric, are converted to two pairs of loads forming an 

inclined cross as sketched in Figure 3.12. These pair of loads then are used in computing the 

maximum tensile stress in the center of the particle, thus, in determining if the particle would be 

cracked or crushed. The rational for this step was based upon the finite element results that 
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Tsuongui et al. obtained in which fracture was found not originated at contacts but  in the center 

of the particle. 

 

   

(a) 

    

(b) 

Figure 3.12 Correspondence between (a) contact forces and principal state of stresses in a particle; and 

between (b) principal state of stresses and two couple of loads forming an inclined cross [20]. 

3.3.2 Determination of a particle crushing strength 

After the stresses that cause failure are found, the strength of the particle with respect to crushing 

is the next step in the process. It is known that the particle crushing strength is particle size 

dependent with high variability and can be expressed in a power rule form as follows, 

 

α
RKFcrit 0=  

Equation 3.3 
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Weibull distribution has been used to model such variability [19, 23-27]. The exponent α  is 

often related to Weibull's Modulus. The smallest particle crushing test data currently available 

for sand grains is around the diameter of one millimeter. Nakata et al.'s [24] data for quartz is 

duplicated below in Figure 3.13. Although the original data includes values for both feldspar and 

quartz, the decision of using just the quartz is supported by the fact that sandstones are mostly 

constituted by these mineral grains.  
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Figure 3.13 Crushing strength of quartz by Nakata et al. [24] 

 

The Weibull distribution, Equation 3.4, is a continuous probability distribution that can 

be applied to failure analysis as follows: The probability of survival, )( 0VPS , of a portion of 

similar samples to tensile stress σ  with volume 0V is given below, where 0σ  is the tensile stress 
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that allows the survival of 37%, i.e., 1−
e , of the samples; and m  is the Weibull Modulus, which 

reflects the degree of  strength variability. 

 























−=

m

S VP
0

0 exp)(
σ

σ
 

Equation 3.4 

 

A characteristic stress obtained from the Weibull distribution, where 37% of the samples 

having a diameter d  survived, has a general form given by Equation 3.5. Using Nakata et al.'s 

data, an equation of characteristic crushing strength for quartz particle , nfσ , was obtained as 

Equation 3.6, and was plotted in Figure 3.13 and Figure 3.14 as a solid line. 

 

MPa
d

d
n 0

2.43

0

σσ
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=  

Equation 3.5 

 

MPa
mm

d
nf 017.37

229.1

2.43−









=σ  

Equation 3.6 

 

From Nakata et al.'s data, a least square power law was also obtained, 

 

MPadnf

36.046 −=σ  

Equation 3.7 
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This equation is depicted in red in Figure 3.14. Because of the narrow range spread of the 

data, interpretation can vary widely. 

 

σσσσnf = 46.355d-0.359

R² = 0.4435 σσσσnf = 42.887d-0.714
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Figure 3.14 Power law and Weibull function for quartz, using Nakata et al.'s data [24] 

 

Both set of the equations match the data , even though the equations differ drastically in 

that their powers are -0.395 and -0.714, respectively. 
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Figure 3.15 Crushing strength as a function of particle size 

 

When extrapolate the equations to the range of particle sizes between 0.1 and 0.4 mm, 

focus of the study, the two equations diverge significantly as witnessed in Figure 3.15. The 

extrapolated strength curve is much higher in the case of the Weibull distribution. In this study,  

the lower power law curve was first used. One reasoning is that using quartz strength is in itself 

already placing strength on the high side. After all this, the strength of the particle to the crushing 

is driven by the power law function given in Equation 3.7 and in Figure 3.15. 

As the stress and strength for crushing failure are defined, crushing of particles can be 

modeled. After a particle is crushed, it is replaced by many smaller particles to represent the post 

crushing configurations. The configuration of a crushed particle in the numerical modeling is 

depicted in Figure 3.16(b) where Φ , measured in counterclockwise, is the direction of the 
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maximum principal stress with respect to the horizontal; this direction represents the theoretical 

particle breakage. 

 

Φ Φ

 

            (a)          (b) 

Figure 3.16 (a) Theoretical crack propagation in the particle and (b) post-breakage configuration in the 

DEM model (Based on Tsuongui et. al.'s work[20]) 

 

Finally, the DEM scratching simulation results shown hereafter, unless otherwise 

specified, include particle crushing effects. 

3.3.3 Consideration of crushing mechanism in scratching test simulations 

As was addressed in The Rock Scratching Test as a technique section, particle crushing is more 

significant around cutter tip. Therefore, in our model, the crushing failure is restricted to the 

particles that are near the tip of the cutter. Figure 3.17 sketches the region that particles crushing 

is implemented, this region is controlled by  the average diameter of the particles, avgD , in the 

Cutting Region. 
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Figure 3.17 Region were crushing is allowed 

 

This region can be visualized as a window that is fixed to the cutter and moves with it. 

This consideration reduces computational time significantly. 

3.4 NUMERICAL SIMULATION SETUP 

This section describes essential aspects of a scratch test setup, including the sample generation 

and the boundary condition considerations. 

3Davg

3Davg

3Davg

2Davg
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3.4.1 Interpretation of DEM graphical results 

Various snapshots of the sample are taken during a DEM run and Figure 3.18 gives a typical 

such screen capture. To facilitate the discussion that follows, the meaning of the various entities 

in a such typical plot is explained 

The plot provides a depiction of the physical characteristics: The light orange circles are 

the particles, the parallel black lines linking two particles represent the parallel bonds, and the 

inclined rectangle with black outline and white fill stands for the cutter. On top of that,  the 

mechanical characteristics are added: The blue lines embody the contact forces, the red lines are 

a representation of bond breakage, and the gray and light green particles are post crushed 

fragmented particles. 

 

 

Figure 3.18 Conventions in the rock scratching DEM model 
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Additionally, if several red lines are coalesced into some pattern, this can generally be 

interpreted as a long crack being formed, like the one shown in Figure 3.18 that goes diagonally 

downward with respect to the tip of the cutter. Similarly, the interconnection of the contact 

forces in front of the cutter symbolizes the propagation of the forces in a chain form. 

3.4.2 Sample preparation 

As stated earlier, only in the cutter zone the actual grain size of a rock was modeled for capturing 

the failure mode more accurately, and beyond that, large size particles were used for reducing 

computational cost. Similar procedure has been suggested by Lei et al. [10, 11]. However, in 

creating the sample, we started by using the largest particle throughout, then gradually refined 

different regions so that the particles in each region were split into smaller particles 

This refinement process basically converted one particle with a certain volume into two 

particles whose volume summation is equal to the that of the original particle. The new two 

particles are created in such a way that they are in contact but not overlapping, and the contact is 

placed in the center of the mass of the original particle. Finally, the direction of the particles is 

determined in a random fashion. This refinement process can happen as many times as one 

determines in a predefined region. 

In our study, four refinement regions were predetermined: The Cutting Region, which is 

the largest region, where the refinement process was executed four times; (2) in the second 

region (immediately below), refinement was carried out three times; (3) within the third region, 

two times; and (4) in the fourth region (bottom region), only once. Figure 3.19 shows the 

specimen with the refinement regions identified by different colors. 
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Figure 3.19 Refinement regions in the rock scratching model 

 

Overall, the sample is created as follows:  

1. Particle Generation: The particles are generated, with half of their designated 

size defined by a uniform distribution within a region delimited by walls. In order 

to guarantee no overlapping after rearrangement, particles that overlapped during 

the initial generation were deleted. Afterwards, the radii of particles are increased 

until they reach the target values and achieve static equilibrium under a 

frictionless environment. 

2. Refinement Procedure: The particles are refined as many times as specified. 

Then a rearrangement is performed followed by a increasing of the particle’s 

radius and finally a reaching of static equilibrium of the particles in frictionless 

environment as described in the previous step. 

3. Achieving an Isotropic Stress: In this step the radius of each particle is increased 

until a specific isotropic stress is reached. In this process it is recommended that 
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the isotropic stresses correspond to 1% of the ultimate strength of the rock be 

maintained otherwise if the stress is too high the bonds may fail immediately after 

their creation. After the confinement, a portion of particles could be floating, i.e., 

particles with less than three contacts. Hence, these are then modified by fixing 

the velocity of the non-floating particles to zero, the radii of the floaters is largely 

increased, and then contracted until its contact forces with neighbors satisfy a 

tolerance, i.e., one-tenth of the system contact force average. When the tolerance 

is satisfied, the contraction stops and the floater particles gain more contacts. 

4. Installation of the Bonds: After all the floaters are modified, the system of 

particles is densely packed and all the particles are in contact. At each contact, a  

bond is introduced, and the rock sample is created. 

The various stages of the  process are further illustrated in Figure 3.20. 
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Figure 3.20 Steps for rock cutting sample preparation: (a) Generation of Particles, (b) Refinement of 

Particle, (c) application of Isotropic Stresses and identification of floaters, (d) Compacted Package and (e) Creation 

of Bonds 

3.4.3 Boundary and initial conditions in the RST simulation 

The boundary conditions (BCs) in a DEM system can be imposed by walls, particles and gravity. 

The BCs in walls are given through motion, i.e., translational and rotational velocity, while the 

gravitational field is defined by the acceleration due to gravity, and the particles by either force, 

moment or motion applied to the centroid of the particles. Even though, for particles, if the 

velocity is not fixed it can be changed due to the law of motion when it gets in contact with 

another entity, i.e., wall or ball. 

(a) Generate Particles (b) Refine Particles (c) Isotropic Stresses 

(d) Compacted Package (e) Creation of Bonds 
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The specimen created is bounded by walls on the sides and at the bottom. These walls 

provided fixed boundary conditions (BCs). The cutter is modeled as a segmented wall that 

moves at a constant speed during cutting. The walls are rigid and can be assigned with a 

coefficient of friction. In Figure 3.21, a picture is given of the simulation while scratching is 

taking place. Two wall BCs are indicated and numbered. The number (1), is indicated for walls 

at zero velocity, while the number (2) is assigned to a segmented wall, mimicking the cutting 

tool, where the translational velocity is specified, but the rotational velocity is zero. 

 

 

 

Figure 3.21 Boundary conditions in the rock scratching model 

 

Walls have normal and shear stiffness just like balls. In this study, the stiffness of the 

walls was assigned a value 10% larger than its counterpart of the balls. The friction coefficient 

between the walls at zero velocity and the particles is set as 0.1.The impact of the  coefficient of 

friction between the cutter and the particles is analyzed in the section Friction sensitivity. 

(1) 

(1) 

(1) 

(2) 
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3.5 IMPORTANT FINDINGS 

Summarized herein are the most important results found throughout the research on the  factors 

that affect the simulation results considerably. These factors include the cutter velocity and wall 

friction, among others. Also, the cutting forces found via the numerical model are compared to 

those of the physical cutting tests. Moreover, the cutting specific energy is related to the ultimate 

strength of the different materials created, and these results are compared with the ones obtained 

via the RST [3]. 

3.5.1 Force processing 

Richard [3] found that in a shallow RST, where the failure is characterized as ductile, the pattern 

of the cutting forces mimics that of a white noise signal. Thus, signal processing was the 

approach adopted for finding a mean force. However, a different technique was taken in the 

present research. 

The main concept adopted from Richard [3] is the fact that when the failure mechanism is 

ductile the cutting force can be represented by an average value. In this study, the concept of 

mechanical work given in Equation 3.8 was adopted to obtain that average force. The 

accumulated mechanical work exerted by the cutter on a rock sample up to a cutting distance x is 

simply 

 

∫= FdxxW )(  

Equation 3.8 
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Values of horizontal force were created randomly within a range through a distance as 

shown in Figure 3.22(a), emulating the results of the RST under ductile failure. Since the cutter 

moved horizontally, the mechanical work done by the cutter is simply the multiplication of the 

horizontal force with the horizontal movement of the cutter. The mechanical work for the given 

force history is obtained and presented in Figure 3.22(b). 
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Figure 3.22 (a) Forces generated randomly in a range through a distance, and (b) accumulated word due to 

these forces 
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Despite the fluctuation of the force with cutting distance, the accumulated work clearly 

shows a linear tendency. The slope of the linear trend gives the average force of interest. A linear 

fit to the data can easily be made as illustrated in Figure 3.23(a). This force obtained from the 

slope of the linear fit is plotted in Figure 3.23(b) and it provides a good representation of the 

average force. 
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Figure 3.23 (a) Linear regression of the accumulated work, and (b) depiction of mean force obtained via 

mechanical work concept 
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3.5.2 Adjustment of critical factors 

Cutter velocity and the cutter friction were found to impact greatly on the results of the cutting 

forces and the fragmentation process. Sensitivity studies were carried out to further pinpoint their 

effects. It was found, unexpectedly, that the heights of cutters used in the modeling had some 

influence on the results. This issue was resolved first before the sensitivity study was carried out. 

3.5.2.1 Achieving a steady particle flow 

Although the general focus that has been taken for simulating the RST in two-dimensions, this 

has an important implication with respect to the reproducibility of the cutting forces. In the actual 

physical laboratory test, when a rock is scratched some chipped fragments, or debris, would fall 

off to the side and their accumulation in front of the cutter would be more or less constant. This 

debris falling off phenomenon turned out to have important impact. 

In the present 2D modeling,  a study of the cutter force time history easily reveals that the 

cutter forces obtained appear to increase as the cutter advances. It was determined this was 

caused by the continuing debris accumulation in front of the cutter. To model the physical test 

correctly, we shortened the height of the cutter to reflect the height of potential debris 

accumulation deleting the particles above the cutter. A comparison between Figure 3.24(a) and 

Figure 3.24(b) affirms that the use of a short cutter resolves the debris accumulation problem, 

and the force pattern ceased to show an ever increasing trend. This revision actually put the 

cutter model closer to the cutter size used in the laboratory as presented in Figure 3.1(a). 
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(b) 

Figure 3.24 (a) Effects of debris accumulation on both the configuration and  cutting forces; and (b) effect 

of short cutter and particle deletion on both the configuration and  cutting forces 

3.5.2.2 Impact of cutter velocity 

There has been no research done previously on how to find an appropriate cutting velocity in the 

modeling. For instance, Lei et al. [10, 11] used a cutting velocity of 1 m/sec in rock cutting while 

Tan et al. [28] used different velocities (5, 10 and 15 m/sec) and analyzed only the impact of 

cutting velocity on the crack formation behavior of cutting into polycrystalline SiC.  
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In an effort to model the RST conducted by Richards in which the laboratory tests was 

conducted with a cutting velocity 4 mm/sec [3], the following was considered. From DEM 

perspective, this velocity is untenable for the computational time step is often in the order of 

9105 −×  seconds because of the high stiffness of the contact springs. The 4 mm/sec velocity 

would require 7105× steps of computation just to advance the cutter by 1 mm. Also, a precise 

cutting velocity also requires a precise matching of damping in the system which is simply not 

available. 

A practical approach taken up in this study is to adopt the default damping and search for 

the right cutting velocity that may reproduce the results of the laboratory tests. The default value 

for the local adaptive damping coefficient in the PFC2D was 0.7. Then, conduct simulation with 

cutter velocities ranging from 0.25 to 3.00 m/sec and both the failure behavior and the cutting 

forces’ magnitude were observed.  

Figure 3.25 shows a comparison in the failure configuration, accumulated work and the 

cutter force results obtained, respectively, for the slowest and the fastest cutting velocities 

modeled. 
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Figure 3.25 Velocity influence in the rock scratching test at (a) 0.25 m/sec and (b) 3.00 m/sec 

vc = 3.00 m/sec 



 51 

 

The difference in the failure mode is striking, and it is thought that the reason for a chip 

developing under slow velocity is because the forces can propagate, seek, and destroy the 

weakest bonds, while in the high speed failure force propagation is lesser, leaving no choice than 

failed immediate bonds. Moreover, the propagation of cracks towards the bottom is a signal that 

has been reported as characteristic in shallow failure. A further study on the forces indicates that 

the white noise pattern is not developed under small velocities; this is understandable due to the 

loss of contact when the failure is more like a brittle, than like a ductile flow. This is also 

reflected in the accumulated work, where some horizontal tendencies are noticed, meaning there 

are no forces while the cutter advances, ergo, no work is performed. Therefore, the concept of 

mechanical work cannot be adopted for processing the forces, and clear proof for this is the 

somehow meaningless mean force obtained from the linear regression of the accumulated work. 

On the other hand, the force pattern and the accumulated work of the high velocity case looks 

much more results that can be compared with the physical tests. 

It is clear that higher velocities might lead us to the correct answer, but the mean force for 

the 3 m/sec case seems too high taking into account the ultimate strength of the material, i.e., 

SS_25_I. Figure 3.26 shows the results of the simulations performed expressed in terms of 

accumulated work and mean force. The force that we might find comparable should be close to 

the results obtained by Richard [3], which suggests that the cutting force for a rock with an UCS 

around 30 MPa should be in the order of 30 to 36 MPa as given in Table 3.6. Hence, the velocity 

chosen for our simulation is 2 m/sec, and the results of the configuration and the cutting forces 

are shown in Figure 3.27. This velocity of 2 m/sec was afterwards applied to all the modeling 

work. 
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Figure 3.26 Results at different velocities of (a) accumulated work and (b) mean horizontal force 
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Table 3.6 Results obtained from Rock Scratching and UCS Tests by Richard [3]2
 

Rock
σσσσc

(MPa)

Fs

(kN/m)

A2-4 9 13
Elgin 5563.33 m 12 16

Redwildmoor sandstone 13 17
Castelgate sandstone 15 22

Chalk 17 16
A2-6 18 20
A2-3 20 18

Elgin 5587.9 21 20
Lf6 24 23
Lf7 28 27

Chauvigny limestone 29 36
Elgin 5575.66 33 29
Elgin 5660.9 37 43

Vosges Sandstone 42 32
A3-10 43 38
A2-7 46 35

Elgin 5523.22 46 20
Elgin 5684.2 47 40
Elgin 5608.8 50 30
Elgin 5623.6 51 51
Elgin 5672.7 68 58

Buxy limestone 78 66
Fontainebleau sandstone 110 85

Rhune sandstone 110 122
 

 

                                                 

2 The original results are shown in terms of specific energy instead of horizontal forces, but were converted 

for comparison purposes taking into account that the cutting depth of our model is 1mm and unit depth is 1 m. 
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Figure 3.27 (a) A snapshot of the RST simulation at 2.00 m/sec and (b) its respective horizontal forces 

3.5.2.3 Impact of cutter friction 

In a rock scratching test, the influence of cutter friction was studied by Dagrain & Richard [29]. 

From this study, it was observed that the coefficient of friction between polished PDC bits and 

different types of rock ranges around 0.18 and 0.37. Moreover, a further study was carried out on 

SS_25_I 
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the influence of the friction coefficient, µ , between the cutter and the rock specimen. Three 

different µ  were used, namely, 0.00, 0.25 and 0.50 The effects were investigated in terms of 

failure configuration and the resulting cutter forces are summarized in Figure 3.28.  
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Figure 3.28 Configuration and cutting forces under a coefficient of friction between the cutter and the 

specimen of: (a) 0.00 (b) 0.25 and (c) 0.50 

 

It is concluded that the use of a µ  of 0.25 offers a best choice with respect to the other 

cases: (1) the cutting force increases only slightly over zero frictional case and remains the same 

level as those given in Table 3.6 for the rock strength, whereas the 0.5 friction pushes the cutter 

force too high, and (2) the failure mode has the feature of developing macro-cracks towards the 

SS_25_I 
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bulk, which is not observed for the zero coefficient of friction. Therefore, the µ  of 0.25 was 

employed for the analysis 

3.5.3 A discussion on cutting forces obtained 

The force pattern obtained in our model has been consistent with that obtained by Richard [3] as 

exemplified by Figure 3.29. However, the aim is to find if the cutting force magnitude of our 

simulation is comparable with the ones obtained in the physical laboratory test. In addition, the 

results shown in Figure 3.29 summarizes the cutting force time history of a Vosges sandstone 

subjected to a 0.3 mm depth of cutting, and the rock has an UCS of 42 MPa (Refer to Table 3.6). 

 

 

Figure 3.29 Horizontal forces of a RST performed in a Vosges sandstone at 3 mm of depth cutting by 

Richard [3] 

 

For the Vosges sandstone, Richards [3] has also shown that the magnitudes of the cutting 

force are proportional to the depth of cutting. His results are summarized in Table 3.7. 
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Table 3.7 Results obtained from RST on a Vosges sandstone by Richard [3]3
 

d (mm) d (m)
FS

(N/10mm)

FS

(kN/m)

0.2 2.00E-04 30 3.0

0.3 3.00E-04 63 6.3

0.4 4.00E-04 104 10.4

0.5 5.00E-04 126 12.6

0.6 6.00E-04 147 14.7

0.7 7.00E-04 170 17.0

0.8 8.00E-04 193 19.3

0.9 9.00E-04 225 22.5
 

 

The author found that the cutting force is proportional to the cutting depth when the 

failure mode has ductile characteristics. Thus, a linear regression of the data given in Table 3.7, 

shown in Figure 3.30, projects the average cutting force to be around 24.4 kN/m for a 1 mm 

cutting depth. Based upon this data, and with the observation that 1 mm cutting depth in our 

simulation still exhibits the ductile mode of failure, we compare the forces from our 1 mm 

cutting depth analysis results with this projected value. 

 

                                                 

3 An extra column for cutting force in our units is added. 



 60 

Fs = 24423d
R² = 0.9817

0

5

10

15

20

25

0.00E+00 2.00E-04 4.00E-04 6.00E-04 8.00E-04 1.00E-03

F
s(

k
N

/m
)

d (m)

Horizontal Force vs. Cutting depth

 

Figure 3.30 Cutting forces at different depths in a Vosges sandstone (Data taken from Richard [3]) 

 

Our specimens derived from SS_25_I and SS_25_II are compatible to the Vosges 

sandstone, even though the UCSs of these materials are slightly smaller at 29.95 and 35.31 MPa, 

respectively. But this is not deemed a substantial difference as the strength of a given rock has a 

high variability because of their inherent heterogeneous nature. 

A case in point, Bésuelle [30] has obtained a MPac 35≈σ  for the same sandstone. In 

Figure 3.31 the results of the horizontal cutting force time history and the mean cutting forces of 

SS_25_I and SS_25_II specimens are depicted. From here, our cutting forces obtained were of 

the same order of magnitude that the one obtained previously from Richard's data 

( 4.24≈SF kN/m). In conclusion, the response obtained in the simulation of the RST, from 

materials that have similar mechanical characteristics to the ones from Vosges sandstone, shows 

a strong similarity in both force magnitude and force pattern, with respect to the physical 

laboratory test results. 
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Figure 3.31 Cutting force history obtained from the materials (a) SS_25_I and (b) SS_25_II 

 

An illustration of the ability to model the fragmentation process, is presented with a side by side 

comparison of the laboratory test and modeling results. Shown in Figure 3.32(a) is a snapshot of 

a shallow cut laboratory scratching test on a Berea Sandstone [3], while Figure 3.32(b) is taken 

from our DEM simulation. Thus, our model appear to be able to capture the characteristics of the 

fragmentation process. 
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              (a)                  (b) 

Figure 3.32 Failure mode comparison: (a) laboratory test [3] and (b) DEM simulaiton 

3.5.4 Results obtained on a suite of tests 

One of the important findings from Richard [3] on shallow scratch tests is that the 

specific energy input required from the cutter to advance is proportional to the uniaxial strength 

of the rock. Based upon this result, it also suggest scratch test be used as an alternative way of 

measure the UCS of rocks. A more credible validation of the present study would be to 

reproduce that result through DEM. For this purpose, scratch tests were carried out on a suite of 

tests on eight different simulated rock materials, and the results obtained are summarized in 

Table 3.8 for the mean cutting forces, SF . 
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Table 3.8 RST cutting forces obtained for the different materials 

Material 
Fsµµµµ=0.25  

(kN/m) 

SS_25_I 31.15 
SS_25_II 38.29 
SS_50_I 56.40 
SS_50_II 63.71 
SS_75_I 84.29 
SS_75_II 69.09 
SS_100_I 70.08 
SS_100_II 69.09 

 

The specific energy, ε , is defined as the energy required to cut a unit volume of rock. For the 2D 

analysis carried out here, it can be computed as the force over the projection of the contact area. 

Results obtained by Richard [3] of several RSTs performed in different rock types are given in 

Table 3.9. The author argues that a linear correlation between cutting specific energy and UCS is 

an important finding achieved through the RST. However, the dispersion of the results given by 

some rocks is not clearly understood, and influences from the variability of the UCS test to 

factors not related directly with strength measurements are suggested. In addition, it was found 

that the specific energy is dependent upon the geometry of the cutting tool. 

The data in Table 3.9 is plotted, as can be established in Figure 3.33. Then, a simple 

linear regression is performed setting the intercept at zero. Richard’s data can be described by the 

equation below. 

 

cσε 8896.0=  

Equation 3.9 
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Table 3.9 Cutting specific energy of different types of rock obtained by Richard [3] 

Rock
σσσσc

(MPa)
εεεε (MPa)

A2-4 9 13
Elgin 5563.33 m 12 16

Redwildmoor sandstone 13 17
Castelgate sandstone 15 22

Chalk 17 16
A2-6 18 20
A2-3 20 18

Elgin 5587.9 21 20
Lf6 24 23
Lf7 28 27

Chauvigny limestone 29 36
Elgin 5575.66 33 29
Elgin 5660.9 37 43

Vosges Sandstone 42 32
A3-10 43 38
A2-7 46 35

Elgin 5523.22 46 20
Elgin 5684.2 47 40
Elgin 5608.8 50 30
Elgin 5623.6 51 51
Elgin 5672.7 68 58

Buxy limestone 78 66
Fontainebleau sandstone 110 85

Rhune sandstone 110 122
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Figure 3.33 Cutting specific energy and rock strength linear regression (Data taken from Richard [3]) 



 65 

 

A summary of our results are given in Table 3.10. Using all the data we computed, a 

linear trend is obtained with a much lower slope. Upon a further investigation, it is clear that our 

trend is skewed by two data points as marked in Figure 3.34. The specific energy of these two 

data points were excessively low. An inspection of the failure configuration of the sample 

revealed that these two data points because of the high compressive strength of the rock, 

consequently high bonding strength, the rock particles were crushed before the bond got the 

chance to be broken. As a result, the cutting forces, and specific energy for that matter, were 

limited. Had these two points being removed, this study would yield, 

 

cσε 8329.0=  

Equation 3.10 

 

as depicted in Figure 3.35. Thus, without including the particle crushing effects, this study would 

reproduce the general results from laboratory tests. This provides a strong validation on the 

present DEM modeling. 

 

Table 3.10 Summarized results from laboratory tests and RSTs simulations 

Material 
σσσσc 

(MPa) 

E  

(GPa) 

Ratio     

E/σσσσc 

Fsµµµµ=0.25  

(kN/m) 

εεεεµ=0.25µ=0.25µ=0.25µ=0.25   

(MPa) 

SS_25_I 29.95 4.87 162.48 31.15 31.15 
SS_25_II 35.31 9.46 268.03 38.29 38.29 
SS_50_I 67.65 9.27 137.09 56.40 56.40 
SS_50_II 79.96 18.25 228.20 63.71 63.71 
SS_75_I 88.41 13.76 155.62 84.29 84.29 
SS_75_II 97.85 27.32 279.18 69.09 69.09 
SS_100_I 121.42 18.17 149.66 70.08 70.08 
SS_100_II 129.78 35.91 276.73 69.09 69.09 
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Figure 3.34 Cutting specific energy and rock strength linear regression of both simulation and physical 

tests (Data taken from Richard [3]) 
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Figure 3.35 Cutting specific energy and rock strength linear regression of both simulation and physical 

tests, but disregarding the data influenced by crushing strength (Data taken from Richard [3]) 
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3.5.5 Influence on crushing 

When more high strength rock samples were added to the data, we found that there is an upper 

bound curve of how high the specific energy can go. This is illustrated in Figure 3.36. 
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Figure 3.36 Particle crushing strength influence at high material uniaxial strength 

 

From the nature of the problem, it makes sense that there is an upper bound to the 

specific energy. So, if alternatively, the higher crushing strength curve in Figure 3.15 was 

employed, one would expect the upper bound of specific energy would be raised. This, indeed, is 

the case as illustrated in Figure 3.37. 
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Figure 3.37 Different particle crushing strength influence at high material uniaxial strength 

 

We added two specimen which properties are given in Table 3.11, and performed 

scratching tests with higher particle crushing strength as extrapolated from the Weibull 

distribution. Using this higher crushing strength, the specific energy versus rock uniaxial strength 

relation is seen to be linear up to cσ  equals 130 MPa. When cσ  reaches around 130 MPa, the 

specific energy hits a plateau.  

In summary, we predict the linear relationship to cease once the uniaxial strength 

becomes high and that particle crushing plays a significant role. The exact nature still is 

uncertain because of the lack of data. 

 

Table 3.11 Summary results of Uniaxial tests from two new materials in CASES I and II 

Summary  σσσσc (MPa) νννν E (GPa) E/σσσσc  

Sample with 125 MPa of normal parallel bond 
(SS-125_I): 

177.30 0.17 22.40 126.34 

Sample with 125 MPa of normal parallel bond 
(SS-125_II): 

188.75 0.16 44.69 236.74 
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In addition, to play a role on limiting the level of specific energy, particle crushing has 

other impact on the model, albeit minor. One notable point is that with the inclusion of particle 

crushing is that failure progression is smoother. Figure 3.38(a) shows a case where even though 

there was a shallow cut, without particle crushing, an extended horizontal crack was developed. 

However, under the same numerical setup conditions, but with the inclusion of particle crushing, 

the damage observed in front of the cutter mimics the ductile failure mode as is shown in Figure 

3.38 (b), and the macro-cracks are formed towards the bulk of the material. 

 

 

 

 

 

                  (a)                             (b) 

Figure 3.38 Impact of particle crushing on failure configuration when (a) crushing is not consider, and (b) when 

crushing is implemented 

 

The other point of interest is that particle crushing affects the specimen configuration 

behind the cutter. Figure 3.39 depicts the final configuration of a RST in the two strongest 

materials in CASE I, and encircled it can be observed that the failure with respect to crack 

propagation in the strongest material is less, or does not exist in some areas. Thus the strength of 

the bonds is not being considered in the failure mechanical response of the scratching. 
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Figure 3.39 Failure characteristics affected by particle crushing strength in (a) SS_75_I and (b) SS_100_I 

SS_75_I 

SS_100_I 
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4.0  CONCLUSIONS 

This research has demonstrated that DEM is capable of modeling rock cutting as represented by 

the linear scratching test. DEM procedure, as laid out in this study, not only is capable of 

reproducing the rock fragmentation process induced by a PDC bit, but it is also capable to obtain 

cutter forces quantitatively that are compatible to those from physical tests. Most convincing of 

all, on the quantitative nature of the results, is that this study was able to reproduce an important 

relationship between the cutter specific energy input and the rock strength. We have also found 

that failure mode cannot be dictated by the depth of cut. The velocity of cutting also plays a role. 

As the study demonstrates, at least computationally, that a slow cutting velocity may force a 

shallow cut into a brittle failure while a faster cutting process gives a ductile failure at same 

cutting depth. 

When trying to model a physical test, one uncertain factor in an analysis has been the 

selection of cutting velocity. It is not possible to employ the actual velocity of the cutter from 

that of a physical test. At the present time, a sensitivity study is suggested so that a proper cutting 

velocity can be selected for numerical modeling that reproduces observation expected of a 

physical test. 

This study also found that particle crushing has a significant impact on the RST results. 

Although with uncertainty on the crushing strength of fine particles, the inclusion of particle 

crushing in the modeling gave a better representation of failure modes. From the cutting force 
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perspective, the crushing of particles does not seem to affect the resulting cutting forces unless 

the strength of the rock is very high. This study predicts that the cutter force has an upper bound 

that is dictated by the rock strength. Because the lacking of crushing strength data on small 

particles, the predicted bounds are given a range. 

With the present work, demonstrating the feasibility of numerical modeling of linear 

RST, future research of modeling circular cutting action similar to that of oil drilling using 3D 

DEM is in order  that may have impact on industrial applications particularly in the area of oil 

drilling.  

Finally, in terms of linear RST modeling, more research on modeling deeper cuts is also 

needed. As for nature of rock modeling, research on general DEM micro-parameter estimation is 

also a worthwhile undertaking. 
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