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Surgical reconstruction of congenital heart defects is often limited by the non-resorbable material 

used to approximate normal anatomy.  In contrast, non-crosslinked extracellular matrix (ECM) 

biologic scaffold materials have been used for tissue reconstruction of multiple organs and are 

replaced by host tissue.  Preparation of whole organ ECM by vascular perfusion can maintain 

much of the native three-dimensional (3D) structure, strength, and tissue specific composition.  

A 3D Cardiac-ECM (C-ECM) biologic scaffold material would logically have structural and 

functional advantages over materials such as Dacron™ for myocardial repair, but the in vivo 

remodeling characteristics of C-ECM have not been investigated to date.  

Intact porcine and rat hearts were decellularized through retrograde aortic perfusion to 

create a 3D C-ECM biologic scaffold material.  C-ECM biochemical and structural composition 

were evaluated.  C-ECM was not different in cell survival assays from a standard ECM material, 

urinary bladder matrix (UBM), and supported cardiomyocytes in both 2D and 3D culture.  

Finally, a porcine C-ECM or Dacron™ patch was used to reconstruct a full thickness right 

ventricular outflow tract (RVOT) defect in a rat model with a primary endpoint of 16 wk The 

Dacron patch was encapsulated by dense fibrous tissue and showed little cellular infiltration. 

Echocardiographic analysis showed that the Dacron patched heart had dilated right ventricular 

minimum and maximum dimensions at 16 wk compared to pre-surgery baseline values.  The C-

ECM patch remodeled into dense, cellular connective tissue including: collagen, endothelium, 
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smooth muscle, and small islands of cardiomyocytes.  The C-ECM patch showed no ventricular 

dimensional or functional differences to baseline values at either the 4 or 16 wk time point.    

The porcine and rat heart can be efficiently decellularized using perfusion in less than 10 

hours. The potential benefit of the 2D and 3D C-ECM was shown to support cardiomyocytes 

with an organized sarcomere structure.  The C-ECM patch was associated with better function 

and histomorphology compared to the Dacron™ patch in this rat model of RVOT reconstruction. 

While there is much work to be done, the methodology described herein provides a useful step to 

fully realizing a functional cardiac patch. 
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1.0  INTRODUCTION 

‘‘Nature impresses us with a great variety of reactive possibilities in the adaptation of its tissues 

to new conditions and substances. Sound progress in medicine is easiest when we work along 

with the physiological currents of beneficial reaction and adaptation. To understand the direction 

and the limits of nature’s reactions is always the first step toward progress in tissue engineering 

(1).’’  As stated by Wolter and Meyer, tissue engineering’s role is to understand and modify the 

body’s response to injury by using the tools nature provides.  To this end, scaffolds, cells, and 

cytokines by themselves or in combination can be used to persuade the injured tissue towards 

functional remodeling. Specifically, by using an organ specific biologic scaffold material derived 

from extracellular matrix (ECM) by itself or in combination with cells, one can provide a 

template for beneficial reconstruction and remodeling. 

1.1 DISEASE OVERVIEW 

The function of the heart to pump blood continuously to the whole body was first described by 

William Harvey in 1628 (2).  While this elucidated the function of the heart, the mechanisms are 

still being investigated; even more mysterious are the origins, progression, and resolution of 

cardiovascular disease.  Approximately 81 million Americans have cardiovascular disease 
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(CVD) accounting for 37% of all deaths and 5.3 million Americans with CVD have heart failure 

(HF) (3).   

There is even less information on the causes of congenital heart defects.   Approximately 

3 in 1000 infants require corrective surgery for congenital heart defects (CHD) within the 1st yr 

of life (3).  The most common CHD defects include ventricular septal defects (VSDs) (20%), 

Atrial septal defects (18.8%), coarctation of the aorta (7.6%), tetralogy of Fallot (6.1%), 

transposition of the great arteries (2.6%), hypoplastic left heart syndrome (2.2%) (4-5).  

Repairing the defects with functional tissue would increase quality of life and life expectancy.    

1.2 CURRENT TREATMENTS 

Current treatments of CHD and HF include: pharmacological intervention, heart transplant, 

surgical ventricular reconstruction (SVR), and mechanical assist devices all have shortcomings.  

The treatments often lead to continued progression of the disease, need for reoperations, lack of 

donor organs, lack of sufficient cell source/unproven benefits, and sepsis/device failure (6-9).  

While these treatments have decreased the 5 year age-adjusted mortality rate for HF by 

approximately 10% over the past 40 years, the 5 yr mortality rates are still 59% in men and 45% 

in women (10).   

The first line of defense against heart disease is pharmacological intervention.  Statins or 

low-dose aspirin are often given to prevent myocardial infarctions (11).  Aspirin can also be used 

to aide in closure of a patent foramen ovale in newborn babies.  After a myocardial infarction, 

angiotensin converting enzyme, ACE, inhibitors and angiotensin II type I receptor antagonists 
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are beneficial in improving symptoms and prolonging a LV dysfunctional patient’s life (6).  In 

many patients though, pharmacological intervention does not stop the progression of HF.   

The gold standard for HF patients is heart transplantation, however not enough organs 

exist for the number of patients.  Currently the international society of heart lung transplantation 

reports approximately 3200 heart transplants per year worldwide (12); which is far short of even 

292,000 US deaths caused by HF (13).  Heart transplantation is also limited in its longevity as 

the median survival after transplantation just over 10 years (14). 

Because of the lack of donor hearts, surgical reconstruction is an alternative.  For CHD 

the defects in structure can be reconstructed using synthetic grafts or homografts.   Pediatric 

cardiac reconstruction often requires a repeat surgery because the synthetic materials or cross-

linked homografts do not remodel as the patient grows.  About 50% of patients who undergo 

repair of tetralogy of fallot (TOF) require reoperation within 40 yrs of the surgery (15-16).  In 

one study 20% of patients required a reoperation due to stenosis or aneurism within 16 months 

(17).  Homografts additionally have issues with sensitization and rejection (18-19).  

In HF, the dilated ventricle can undergo surgical ventricular reconstruction (SVR) with a 

synthetic graft to improve the developed pressure in the heart.  The RESTORE group 

investigated SVR in 439 patients using the Dor procedure with a Dacron graft.  In the Dor 

procedure a portion of the infarcted heart is resected and the ventricle is reformed into a conical 

shape using a Dacron graft (20).  They concluded that SVR “is a safe and effective operation in 

the treatment of the remodeled dilated anterior ventricle after anterior myocardial infarction 

(21).”  However, the Dacron graft only reinforces the weakened portion of the heart and is not 

functional tissue or remodel over time.  Therefore, a patch that could constructively remodel the 

defect would be beneficial over current surgical reconstruction techniques.   
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Ventricular assist devices (VADs) do provide active support for the failing heart; they 

can be used to support the left, right, or both ventricles.  Complications include hemolysis, 

thrombosis, stroke, sepsis, and device failure (9).  There have been ongoing improvements to the 

VADs since their implementation in the 1970’s.  In a recent trial, 67.4% of patients survived one 

year after VAD implantation at experienced centers (22).   New devices in trials use an impeller 

with no bearings, which should reduce the possibilities of thrombosis and improve outcomes 

further (23).   Even for patients that survive, the VADs still require constant anticoagulation, 

battery changes, and check-ups which impact patient quality of life (23).   

 

1.3 INVESTIGATIONAL TREATMENTS 

A tissue engineering approach to HF and CHD may be able to improve patient life 

expectancy while minimizing impact on quality of life.  Most tissue engineering approaches 

involve a single procedure or surgery, do not require long term drug support including 

anticoagulation or immune suppression, and have no external power requirements.  Therefore, 

patients should have an improved quality of life over current treatments. 
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1.3.1 Cell based therapies 

Cell based therapies for CHD and HF hold great interest but to date functional cardiac tissue has 

not been formed in human clinical trials.  There have been small functional improvements found 

by injecting stem cells into the infarcted area, but the exact mechanism of functional 

improvement is unknown (8).  Similar small improvements have been found by injecting 

mesenchymal stem cells (MSCs) into the circulation after an acute myocardial infarction (24) but 

greater clinical improvements are needed.  Recently, multiple groups have reported 

differentiation of human embryonic stem cells (H-ESC) into cardiomyocytes with structural 

(organized sarcomere structure) and functional (synchronous beating) properties (25-26).  One 

group has even implanted a poly-1-lactic acid (PLLA) and polylactic glycolic acid (PLGA) 

scaffold including the H-ESC derived cardiomyocytes with endothelial cells and fibroblasts onto 

a rat heart in a non-defect model and showed integration with native vasculature (27).  However, 

this was a non-infarct model and amount of surviving cardiomyocytes was not assessed.  While 

there are many possible cell sources and methods, no stem cell therapy to date has proved 

effective in treating heart failure. 

1.3.2 Cytokines 

Many tissue engineering strategies include the use of growth factors directly or indirectly.  

Granulocyte colony-stimulating factor (G-CSF) was shown to reduce LV remodeling after an 

infarction in a mouse model (28).  Angiotensin-(1–7),  a biologically active metabolite of 
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Angiotensin  I and  II, preserved cardiac function, coronary perfusion, and aortic endothelial 

function in a rat model for heart failure (29), however it did not show any vasodilation properties 

in humans (30).   The combination of hepatocyte growth factor with an ECM patch showed 

improved electrical activity and local shortening compared to ECM alone or Dacron patch (31).  

However, administration of growth factors has to be closely monitored as they can cause 

unintended severe consequences such as neurologic impairment from ectopic bone formation 

(32).  Again, these improvements require more research before they reach clinically relevant 

efficacy for cardiac applications.  

1.3.3 Scaffolds 

Scaffolds are an integral part of tissue many engineering strategies.  As described above, 

scaffolds can provide a substrate for the delivery of cells and cytokines, but can also singularly 

change the physical and biological remodeling cues (33).   

1.3.3.1 Synthetic Scaffolds 

Dacron™ and Teflon™ have been used for years for SVR, but are associated with complications 

such as stenosis and aneurism (34-35).  Polylactic acid (PLA) and polyglycolic acid (PGA) 

polymers are some of the earliest and widely used biodegradable scaffolds because they break 

down into natural byproducts and their mechanical properties can be tuned by incorporating 

different percentages and changing the anisotropy of the polymers.  Cardiomyocytes have been 

shown to form sarcomeric structures in vitro on electrospun PLA scaffolds (36).  Unlike the 

stiffer PLA structure, polyester urethane urea (PEUU) has been shown to have tunable elastic 

properties that can be manipulated to closely match a variety of native tissues  (37).  PEUU 
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scaffolds have been used for right ventricle outflow tract (RVOT) repair and showed 

replacement with fibrous tissue with no indications of thrombosis (38).  While it is possible to 

use these synthetic scaffolds for mechanical support or combine them with cell, drug, or cytokine 

therapies, they do not provide beneficial bioactivity on their own. 

1.3.3.2 ECM Biologic Scaffolds 

One regenerative medicine approach that has been successful for tissue restoration has been the 

development of “bioinductive” scaffold materials such as those composed of naturally occurring 

extracellular matrix scaffolds (ECM).   The ECM scaffolds that have been most widely used 

have been those derived from the porcine small intestinal submucosa (SIS), bovine dermis 

(TissueMendTM), human dermis (e.g., AlloDerm), and porcine urinary bladder (UBM).    This 

approach has led to the formation of site-specific tissue reconstruction in several body systems, 

including myocardial repair (39-43).  Naturally occurring extracellular matrix (ECM) scaffolds 

have been successfully used to augment or replace diseased or injured tissues from a variety of 

body systems in pre-clinical studies and clinical practice. Non-crosslinked ECM scaffolds have 

been shown to degrade rapidly and completely (44-45) and are associated with a robust host 

cellular response and deposition of neomatrix that remodels in response to host factors such as 

growth or change in mechanical loading (an important concept in myocardial reconstruction).  

Degradation of an ECM scaffold is an essential component of the remodeling process.  Several in 

vitro studies have shown that degradation products of ECM scaffolds have inherent bioactivity, 

including antibacterial and chemotactic properties (46-48).  These findings are consistent with 

the results from in vivo studies that showed infection resistance in intentionally contaminated 

surgical sites treated with ECM (49-52) and recruitment of bone marrow derived cells to the site 

of ECM remodeling (53-54).    The recruitment of progenitor cells to participate in the 
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remodeling response may partially explain the observed site-specific remodeling (55).  Non-

crosslinked ECM scaffolds have been shown to promote differentiation of macrophages towards 

an anti-inflammatory phenotype consistent with tissue remodeling and accommodation (56).  

The positive bioactive and mechanical properties of ECM lead to many potential beneficial 

applications. 

Since ECM has been shown to have many chemical components that have chemo-

attractant, anti-microbial, and bioactive properties, it has been investigated for use in place of the 

synthetic patches in the Dor procedure (57-60).  The ECM remodeled into partially organized 

densely cellular collagenous tissue with small islands of cardiomyocytes.  The ECM showed an 

improvement in regional contractility and recruited hematopoietic cells as shown by labeling of 

CD 45 marker but did not fully restore myocardial structure or function (61-62).    Alternatively, 

ECM gel has been used in vitro as part of a scaffold for a contractile cardiac patch (63).  These 

cardiac applications are promising, but they lack the three dimensional (3D) structure needed to 

reconstruct complex geometries. 

(a) Organ Specific ECM Scaffolds 

Given the highly specific composition, organization, and function of the ECM of each individual 

organ, a xenogeneic ECM scaffold derived from the organ that is targeted for repair (i.e., the 

heart) may provide the optimal biomechanical behavior and biological signals for site specific 

remodeling to occur in that location.   Bornstein first described the term “dynamic reciprocity” to 

suggest that secreted matrix macromolecules could modulate the structure and function of the 

cells that produced them  (64-66)  Bissell further elucidated the term to describe the interaction 

between an ECM and an organ’s cells in development, differentiation, and regulation (67-69).  

One study showed organ specific ECM scaffolds have the advantage of maintaining a 
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differentiated cell phenotype in vitro (e.g., hepatic sinusoidal endothelial cells of the liver), 

whereas other ECM did not maintain differentiation (70).  Multiple other authors have described 

the role of Cardiac-ECM (C-ECM) in normal and diseased hearts (71-72).   ECM scaffolds 

largely retain the 3-D tissue architecture and composition of the tissue from which they are 

isolated (73-77), it would be logical that C-ECM possesses potential benefits for myocardial 

tissue engineering applications.  Within the last two years, C-ECM has been produced by several 

laboratories and has shown multiple structural and functional benefits (78-81).  A detailed 

method to decellularize an intact porcine heart in less than 10 hours has been described (78).  

Whole heart C-ECM in an in vitro perfusion system has been shown to support contractile 

cardiomyocytes that generated aortic pressure (80).  Singelyn et al. showed angiogenesis after 

injection of a gel form of C-ECM in a non-infarct cardiac rat model (81).  While each of these 

studies showed the potential benefits of C-ECM, none were in an in vivo defect model.  The 

unique ECM microstructure and ultrastructure provide distinct signals for the resident cells that 

reside within the tissue (67-69).   It is this reciprocal role between ECM structure and 

composition and resident cell function that make organ specific ECM an appealing biologic 

scaffold for functional remodeling.  Therefore, the goal of the present study is to evaluate 

cardiac extracellular matrix (C-ECM) for reconstruction of myocardial tissue. These goals will 

be accomplished through the successful completion of three specific aims. 
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1.4 SPECIFIC AIMS 

SPECIFIC AIM No. 1: To decellularize an intact heart and characterize composition, 

microstructure, and tissue properties. 

Rationale: The heart is a well vascularized and densely cellular tissue.  Unlike the small 

intestine or urinary bladder, cardiac tissue cannot be physically delaminated into a thin sheet due 

to the presence of long spiral fibers (82).  A more rigorous chemical decellularization method 

which utilizes the native vasculature of the heart can deliver reagents to all regions of the heart.   

Hypothesis1: An intact heart can be chemically decellularized with retrograde aortic 

perfusion.  

SPECIFIC AIM No. 2: To determine the ability of C-ECM to support proliferation of 

endothelial cells and myoblast cells and maintain phenotype of cardiomyocytes.  

Rationale: The reconstruction of functional tissue requires multiple cell types including 

muscle, endothelial, and progenitor cells.  The ability of C-ECM to support cells in vitro will be 

assessed in the sheet and gel form as well as an intact decellularized rat heart.     

Hypothesis2: C-ECM scaffold will support cell survival and maintain cardiomyocyte 

phenotype.   

SPECIFIC AIM No. 3: To compare the ability of a 6 mm C-ECM patch and Dacron 

patch in a rat model to reconstruct the right ventricle outflow tract (RVOT). 

Rationale: RVOT reconstruction is often needed for congenital heart defects.  Current 

synthetic patches often need a second surgery being the patches do not remodel (15); therefore 
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there is a clinical need for an improved patch material.  C-ECM structure and composition is 

unique to the heart, it is hypothesized that it will provide superior reconstruction than synthetic 

materials. 

Hypothesis3: The C-ECM patch will result in more cardiomyocyte, smooth muscle, and 

endothelial cells in the patched area compared to Dacron and will not cause stenosis or dilation 

of the RVOT or negatively impact the global function of the LV.   
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2.0  DECELLULARIZATION AND CHARACTERIZATION OF PORCINE HEART  

2.1 INTRODUCTION 

Biologic scaffolds composed of extracellular matrix (ECM) have been shown to promote the 

constructive remodeling of numerous tissue types in preclinical studies and in clinical practice 

(41-42, 44, 54, 83-87).  The most widely studied ECM scaffold materials include those derived 

from small intestine (SIS) (44, 88), urinary bladder (UBM) (41, 54, 86), and dermis (89-90).  The 

ECM of each tissue is synthesized by the resident cells and is in a state of dynamic equilibrium 

in response to environmental cues (68-69).  Convincing arguments can be made for the 

advantages of tissue specific ECM scaffolds for tissue specific repair (91-98).  Logically, a 

biologic scaffold derived from the targeted tissue source would possess the ideal 3-dimensional 

(3-D) architecture and biochemical composition to support tissue specific cell phenotype, cell 

proliferation, and tissue biomechanical properties.  If organs can be decellularized and still 

maintain their 3-D integrity, the resulting scaffold would possibly represent the ideal scaffold for 

all components of the organ including: vascular and lymphatic structures, nerves, and the 

parenchymal cells.   

 Most commercially available biologic scaffold materials are manufactured as thin sheets.  

The source tissues are typically decellularized by immersion and agitation in a combination of 

salt solutions, detergents, and enzymatic solutions.  Due to the density, mass, and 3-D 
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architecture of most whole organs such as the heart, liver, and kidney, these approaches are 

ineffective at removing cellular material (42, 99).  Recently, Ott et al. described the 

decellularization of rat hearts by vascular perfusion (80).   Decellularization of a porcine heart 

was shown to be possible, but a comprehensive, reproducible, and time-effective 

decellularization technique was not provided.   

The purpose of specific aim one is to describe a decellularization method for a complex 

organ, specifically the porcine heart, by pulsatile retrograde aortic perfusion to generate cardiac 

extracellular matrix (C-ECM).  Decellularization was confirmed by immunohistochemical (IHC) 

methods and DNA quantification.  The C-ECM was characterized by IHC analysis, scanning 

electron microscopy (SEM), and mechanical testing.   

2.2 MATERIALS AND METHODS 

2.2.1 Preparation of C-ECM 

Porcine hearts weighing approximately 300g were obtained immediately following euthanasia of 

adult pigs.  Excess fat and connective tissue were removed and the ventricles were rinsed with 

water to remove coagulated blood. Each heart was frozen at -80ºC for at least 16 hours for 

storage and to aide in cell lysis.   The hearts were then thawed in type 1 reagent grade water at 

room temperature.  The aorta was cannulated with a ½” to ¼” straight barbed reducer and 

connected to ¼” ID silicone tubing.  Each heart was placed in a 4 L beaker containing 3 L of 

hypotonic Type 1 water that was recirculated using a peristaltic pump (L/S® Drive EW-07550-

30, Cole-Parmer, Vernon Hills, Illinois) for 15 minutes at one L/min.   The Type 1 water was 
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replaced with 2X phosphate buffered saline (PBS) at one L/min each for 15 min.  Three liters of 

0.02% trypsin/0.05% EDTA/ 0.05% NaN3 solution was warmed to 37°C using a digital hotplate 

and then perfused through the myocardial vasculature at one L/min for two hrs.  A 3% Triton X-

100/0.05% EDTA/ 0.05% NaN3 was then used for perfusion followed by a 4% deoxycholic acid 

solution at 1.3 L/min each for two hours at room temperature.  After each chemical solution was 

used as a perfusate, Type 1 reagent grade water was perfused through the heart for approximately 

five min with no recirculation followed by recirculating 2X PBS for 15 min to aide in cell lysis 

and removal of cellular debris and chemical residues.  Disinfection was accomplished by 

perfusion of 0.1% peracetic acid (PAA)/4% EtOH at 1.7 L/min for one hour.  The acid was 

neutralized and removed from the ECM by perfusing the intact matrix with PBS (pH 7.4) two 

times and type 1 water three times for 15 min each at 1.7 L/min.  Fluid pressure was measured at 

the aorta during the entire decellularization process.  The free walls of the left ventricle (LV) and 

right ventricle (RV) were excised and were either used immediately for mechanical properties 

testing in the hydrated state or, were laid flat on non-stick aluminum foil, frozen at -80°C for at 

least two hours, and then lyophilized until dry for biochemical analysis.  See appendix A for C-

ECM preparation SOP.  
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Figure 1. Porcine heart during decellularization 

 

2.2.2 Immunohistochemistry and Immunofluorescence Studies 

Full thickness samples of C-ECM and native (non-decellularized) ventricles were fixed in 10% 

formalin and then paraffin embedded.  Eight micron thick sections were cut and deparaffinized.  

Hematoxylin and eosin (H&E) and 4', 6-diamidino-2-phenylindole (DAPI) were used to evaluate 

the presence of nuclear material. Movat’s Pentachrome stain was used to allow visualization of 
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the distribution of nuclei, elastic fibers, collagen, glycosaminoglycans, fibrin/fibrous structures, 

and muscle.  Herovici stain was used to discriminate and visualize collagen I and III in the ECM 

scaffolds.  In addition, collagen IV, a basement membrane component, was visualized using a 

mouse anti-human collagen IV antibody.  Slides were imaged using a Nikon™ E600 microscope 

with 4X and 20X objectives and captured using MetaVue™ Software package (Molecular 

Devices, Sunnyvale, CA).    

 

2.2.3 Scanning Electron Microscopy 

C-ECM ventricle and native ventricle were fixed with 2.5% glutaraldehyde followed by 

dehydration by 1 % Osmium tetroxide.  The samples were then dehydrated in a graded series of 

ethanol concentrations in PBS.  The samples were sputter coated with 3.5 μm of gold and 

visualized using a JEOL 9335 field emission gun SEM (JEOL Ltd., Tokyo, Japan) to capture 

standard scanning electron digitized images at 1000 and 30X.  

 

2.2.4 DNA Quantification 

Approximately 10 mg of native and ventricular C-ECM were digested with 0.1 mg Proteinase K 

(Sigma-Aldrich Corp. St. Louis, MO) in one ml of PBS at 37°C on a rocker overnight.  The 

digest was then purified using Phenol/chloroform/Isoamyl alcohol (100).  The Quant-iT™ 

PicoGreen® dsDNA assay (Molecular Probes, Inc., Eugene, OR) was used for quantification of 

the amount of DNA using the manufacturer’s instructions.  Samples were evaluated in triplicate.  

Equal volumes of digest were separated by gel electrophoresis in a 1% agarose gel with 

Ethidium Bromide at 60V for approximately 1 hour and the gel was visualized under ultraviolet 

transillumination to determine the fragment size of residual DNA.   
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2.2.5 Glycosaminoglycans and Elastin Quantification 

Total sulfated glycosaminoglycans (GAGs) and cross-linked elastin within the C-ECM were 

determined using the manufacturer’s instructions (Biocolor Ltd., Carrickfergus UK).  One 

sample of three lots each of lyophilized C-ECM LV and RV as well as one sample of LV and 

RV from native ventricle were digested with papain for the GAG and elastin assay.  Samples 

were evaluated in duplicate and all values were normalized to 1 mg dry sample for comparison.  

A two-tailed students t-test was performed to determine whether differences existed between the 

GAG and elastin contents of native ventricle versus C-ECM with the p-value set at 0.05 

(Minitab® version 15.1.1.0, Minitab, State College, PA). 

2.2.6 Mechanical Testing 

Suture retention testing was performed per ANSI/AAMI VP20–1994 Guidelines for 

Cardiovascular Implants-Vascular Prostheses (101).  A 2-0 Prolene suture was passed through a 

square piece of C-ECM from the right and left ventricle (n=5 for each) with a 2-mm bite depth. 

Suture retention testing was performed on a Test Bench System (Bose, Eden Prairie, Minnesota) 

at 10 cm/min and the load was measured using a 10 lb model 31 load cell (Honeywell, 

Columbus, O).  Minitab® version 15.1.1.0 was used to calculate the one sided t-test (p<0.05) 

with the hypothesis that each of the LV and RV C-ECM had a greater maximum force to failure 

than UBM. 

A MTS Tytron 250 with a 500g MTS load cell model 118-02 (MTS, Eden Prairie, MN) 

was used to obtain uniaxial maximum force measurements of C-ECM.  A dog bone shaped piece 

of ECM measuring 1 cm by 3 cm of the left ventricle and right ventricle orientated lengthwise 

along the short and long axis of the porcine heart, and UBM (n=5).  The ECM was then 
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preconditioned by pulling the sample to 10 % of its length 5 times followed by measuring force 

to failure.   A one-tailed student’s t-test was performed to determine whether differences existed 

between the maximum force to failure for the LV and RV C-ECM as compared to UBM with the 

p-value set at 0.05. (Minitab® version 15.1.1.0, Minitab, State College, PA).  

In vitro cell culture 

A MTS Insight with a 2000 N MTS load cell model 569327-03 (MTS, Eden Prairie, MN) 

was used with a ball-burst compression cage (Instron, Norwood, MA) to measure the biaxial 

burst strength of native LV and RV and the  C-ECM derived from each ventricle.  The test was 

performed in accordance with ASTM D3787-07 Test Method for Bursting Strength of Textiles-

Constant-Rate-of-Traverse (CRT) Ball Burst with deviations for sample geometry.  Similar 

methodology has been used in multiple published studies to describe the biaxial strength of 

synthetic and biologic scaffolds (99, 102-104).  The native ventricles were excised and tested the 

same day as euthanasia.  The C-ECM was tested within 48 hours of the completion of 

decellularization.   For all groups, the specimen was clamped in the fixture such that the polished 

ball contacted the endocardium.  A 25.4mm polished steel ball was advanced at a constant rate 

(25.4 mm/min) through the test material.  Each experiment was conducted three separate times 

for each ventricle in the native and decellularized form.  A two-tailed student’s t-test was 

performed to determine whether differences existed between the maximum force to failure and 

extension at maximum force for the LV and RV C-ECM as compared to the values for native LV 

and RV with the p-value set at 0.05. (Minitab® version 15.1.1.0, Minitab, State College, PA).  
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2.3 RESULTS 

2.3.1 Preparation of C-ECM  

At the beginning of the decellularization process, the mean perfusion pressure was recorded as 

approximately 150 mmHg.   During the Trypsin step, the hearts lost some of their red-brown 

coloration and became more flaccid, and the reagent became pinkish in appearance.  With each 

subsequent reagent change, the hearts became whitish in appearance and expanded to 

approximately twice the original volume. Although the flow rate was increased throughout the 

decellularization process, the mean perfusion pressure dropped to approximately 50 mmHg by 

the time of the final rinses.  16 porcine hearts have been successfully decellularized using the 

method described. 
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Figure 2. Representative images of the gross appearance of intact porcine hearts subjected 

decellularization by retrograde perfusion.  A: Before Decellularization, B: After 0.02% Trypsin, C: After 3% 

Triton X-100, D: After 4 % Sodium Deoxycholate, E: After 0.1% Peracetic Acid. 

 

2.3.2 Immunohistochemistry 

H&E and DAPI showed no visible cell nuclei or double stranded DNA at 40X and 200X 

magnification, respectively, whereas the native heart showed dense cellularity.   
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Figure 3. Representative photomicrographs showing no nuclear staining after perfusion 

decellularization. A: Native ventricle H&E Scale: 102 µm, B: Native ventricle DAPI Scale: 150 µm, C: C-

ECM  H&E Scale: 1000 µm, D:C-ECM DAPI Scale: 150 µm. 

 

Movat’s Pentachrome staining of the C-ECM showed the absence of muscle cells after 

decellularization.   

 

 

Figure 4. Movat’s Pentachrome photomicrographs of A: Native ventricle epicardial surface Scale: 

99 µm, B: Native ventricle endocardial surface Scale: 99 µm , C: C-ECM endocardial surface with coronary 

Scale: 100 µm, D: C-ECM epicardial surface Scale: 100 µm.  All at 200X Nuclei: purple/black, Elastic fibers: 

black, Collagen: yellow, Proteoglycan: green, Muscle: light red, Fibrin/Fibrous structures: vibrant red. 

 

Movat’s and Herovici’s staining showed the presence of collagen type I and III as well as 

elastin, with particularly dense collagen structure localized at the epicardium and endocardium.  
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Figure 5. Herovici Stain of C-ECM A:40X epicardial surface labeled Scale: 97 µm, B: 200X 

endocardial surface Scale: 100 µm. Collagen I: blue and Collagen III: pink. 

 

The basement membrane structures present within native ventricle tissue and C-ECM 

were identified by the positive staining for collagen IV, a basement membrane component, on 

the endocardium, myocardium and coronary arteries. 

 

 

Figure 6. Collagen IV staining of A: Native LV endocardium Scale: 100 µm, B: Native LV Coronary 

Artery Scale: 100 µm, C: C-ECM endocardium Scale: 99 µm, D: C-ECM coronary artery Scale: 100 µm.  All 

at 400X.                                        

2.3.3 Scanning Electron Microscopy 

The native and C-ECM epicardium and endocardium both showed a dense collagen layer with 

topographic variances.  The native ventricle has a densely cellular myocardium whereas the C-

ECM shows a more open configuration within the myocardium.  Intact vascular matrix was 
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evident throughout the C-ECM.  The SEM shows a 0.5 mm diameter coronary artery in the 

cross-sectional view.  No cells were visible in any of the SEM samples for C-ECM, but they 

were apparent in the native samples.   

 

 

Figure 7. SEM of Native and lyophilized C-ECM from the LV. A: C-ECM Epicardium 1000X, B: C-

ECM Endocardium 1000X, C: Cross-section of C-ECM 30X D: Cross-section of C-ECM 1000X E: Native 

Epicardium 1000X, F: Native Endocardium 1000X, G: Cross-section of Native 30X H: Cross-section of Native 

1000X.  1000X image scale: 10 µm. 30X image scale: 100 µm.   

 

2.3.4 DNA Quantification  

Quantitative analysis of DNA content within the C-ECM with the Pico Green assay showed a 

significant decrease in the amount of DNA compared to the DNA present in the native ventricles 

(31.48 ng DNA/mg sample vs. 484.36 ng DNA/mg sample (p=0.014)).  This value represents a 

94% decrease in the amount of the double stranded DNA found in the tissue as a result of 

decellularization.   
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Table 1. ECM component quantification. Values are normalized to 1 mg lyophilized sample.  

Sample DNA  (ng)  GAG (µg)  Elastin (µg)  

Native Heart  484.4 4.7 38.7 

   STDV  53.5 0.4 38.2 

C-ECM  31.5 5.4 19.7 

   STDV  2.2 0.2 3.4 

 

 

The ethidium bromide gel showed no DNA bands or smears associated with the 

decellularized C-ECM whereas the native ventricle showed a large band above 1500 base pairs.   

 

 



25 

 

Figure 8. DNA fragment size as determined by ethidium bromide gel. (N) denotes native. 

2.3.5 GAG and Elastin Quantification 

The amount of GAGs and elastin in C-ECM was not different than that measured in the native 

ventricle tissue (p< 0.05).  



26 

2.3.6 Mechanical Testing 

C-ECM from the LV showed suture retention strength (SRS) of 2.48N ± 1.09N and C-ECM RV 

showed a SRS of 2.78N ± 1.05N, while UBM had a SRS value of 1.23N ± 0.35N (n=5 per 

group). C-ECM from the LV and RV had a statistically higher SRS than UBM (p< 0.004).   

The load to failure for the C-ECM from the LV was 3.02N ± 0.99N in the longitudinal 

direction and 6.82N ± 3.40N in the circumferential direction.  The load to failure for C-ECM 

from the RV was 4.44N ± 0.13N in the longitudinal direction and 8.80N ± 1.37N in the 

circumferential direction.    Whereas UBM had a maximum failure force of 1.28N ± 0.27N.   C-

ECM from the LV and RV in both longitudinal and circumferential orientations had a 

statistically higher load to failure than UBM (p< 0.001). 
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Table 2. Table of Suture and Uniaxial Pull Tests 

 ECM Type  AVG Max (N)  STDEV  

Suture Pull UBM  1.23  0.35  

C-ECM LV  2.39  0.54  

C-ECM RV  2.67  0.30  

Uniaxial Pull UBM  1.28  0.27  

C-ECM LV 

Longitudinal  3.02  0.99  

C-ECM LV  

Circumferential  6.82  3.40  

C-ECM RV 

Longitudinal  4.44  0.13  

C-ECM RV  

Circumferential  8.80  1.37  

 

 

Figure 9. Picture of Suture and Uniaxial Pull Tests 
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The maximum force or extension at maximum force of C-ECM for the respective 

ventricle was not different than the native ventricle (p<0.05), although the average extension at 

maximum force was greater for the native ventricles.  The native ventricles showed multiple sub-

failure peaks that were associated with failure of layers within the tissue, while the C-ECM 

showed a smoother curve consistent with rotation and extension of fibers that likely occurred as 

a result of dilation of the heart during decellularization.  Failure was observed as the ball 

penetrated through the epicardium in all groups.   

Table 3. Maximum force and extension at maximum force with standard error and p value of t-test 

comparing native ventricle to C-ECM ventricle. 
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Figure 10.  Graph of representative force curves for ball burst test. 

2.4 DISCUSSION 

The present study described a reproducible and time-efficient decellularization technique for the 

intact porcine heart.  The technique utilized retrograde aortic perfusion with successive 

hypertonic, hypotonic, enzymatic, acid, and detergent solutions to maximize the distribution of 

chemicals throughout the tissue, maximize the disruption of cells, and minimize the damage to 

the ECM.  The protocol took less than 10 hours to complete, and effectively removed DNA from 

the tissue to levels comparable to other commercially available ECM products (100, 105) and 

passed decellularization criteria (106).   
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It is important to limit the tissue exposure time and concentration of Trypsin, Triton® X-

100, deoxycholic acid, sodium dodecyl sulfate (SDS), PAA, or other commonly used 

decellularizing agents, as each solution can have a disruptive effect on the ECM structure while 

removing the cellular components (107).  By appropriate utilization of the series of reagents 

described in the present method, the decellularization time was significantly reduced from the 

time reported for decellularization of porcine heart valves, sliced porcine heart and intact rat 

hearts (80-81, 108-109).  The systematic decellularization method was setup so that each step 

preformed a specific task.  By flushing the heart with a hypotonic solution (type I water) the cells 

swell which increases the effectiveness of cell lysis caused by freezing the heart at -80 °C.  

Trypsin cleaves the peptide bonds on the C-side of Argenine and Lysine (110); this aides in 

breaking the bonds between the cell membranes and the ECM resulting in more open spaces so 

the remaining solutions can infuse the entire heart.  Triton® X-100 disrupts lipid–lipid and lipid–

protein bonds leading to the breakdown of the cell membrane (107).  Sodium deoxycholate then 

is able to permeate the cell membrane easier and solubilizes cytoplasmic and nuclear cellular 

membranes helping to remove cellular material.  While peracetic acid (PAA) also disrupts the 

cell membranes and intracellular organelles, its main purpose in this application is to inactivate a 

wide range of bacteria, fungi, and viruses (111-113).  The hypotonic (type I water) followed by 

hypertonic (2X PBS) washes between each of the solutions causes and remaining cells to swell 

and then shrink which aides in cell lysis as well as removal of chemical and cellular residues.  

The final water and PBS washing steps neutralize PAA and degrade it into water, carbon 

dioxide, and oxygen. In the trypsin and Triton X-100 solutions 0.05% of ethylene-diamine-tetra-

acetic acid (EDTA) and sodium azide (NaN3) were added.  The EDTA was added to aide in cell 

removal by chelating calcium.  NaN3 was added to prevent formation of pyrogens/endotoxins 
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(114-115). The remaining solutions were used to remove EDTA and NaN3.  In the present study, 

the systematic perfusion decellularization maintained much of the chemical and structural 

components of the ECM including GAGs and elastin as shown by IHC, SEM, and mechanical 

data.    

A previous study on the decellularization of heart valves with trypsin and Triton X-100 

found that collagen and elastin structure were severely disrupted and that stable suture lines for 

anastomosis could not be formed (116), but C-ECM prepared by the described method had a 

statistically higher suture pull out strength compared to UBM.  Earlier attempts to decellularize 

cardiac tissue have not been able to remove all cellular remnants due to the densely cellular 

cardiac tissue (117-118).  Gratzer’s group investigated serial decellularization of anterior cruciate 

ligaments (ACL) with Triton X-100 in combination with SDS or tributyl phosphate (TnBP) and 

found that both decellularized the tissue, but SDS disrupted the collagen matrix, removed GAGs, 

and impacted fibroblast ingrowth (119-120).  Rieder et al. saw a cytotoxic effect of aortic valves 

decellularized with SDS on endothelial cells but did not with sodium deoxycholate (121).  Based 

on these two studies plus cells were not attaching in vitro to C-ECM initially decellularized with 

SDS, SDS was avoided as a decellularization solution.  TnBP alone was tried for 

decellularization of C-ECM but few changes were seen in cellularity, therefore sodium 

deoxycholate was chosen for the decellularization.  By using the described protocol, much of the 

complex 3-D architecture of the heart was maintained including vasculature and basement 

membrane structures.   

While Brendel et al. first described by whole organ decellularization in 1978, it was used 

as a laboratory tool to investigate basement membrane permeability in the kidney (122).  When 

this study was started, there were no publications on ventricular decellularization for tissue 
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engineering applications.   Since then C-ECM has been produced by several laboratories (79-81).  

Eitan et al. sliced the left ventricle into 3 mm rings and then treated with trypsin for 2 days, 

Triton X-100 for 8 days, and ethanol overnight to decellularize the ventricle.  Whole rat heart C-

ECM was produced by Taylor’s group by serial perfusion with SDS, Triton X-100 and 

antibiotics for a total of 5.7 days (80).  Singelyn et al. used the same solutions as Taylor, but cut 

a porcine heart into 2 mm thick slices and treated with SDS for 4-5 days followed by Triton X-

100 and deionized water washes overnight (81).  While Eitan and Singelyn did decellularize 

porcine ventricles, they destroyed much of the macroscopic structure which could be beneficial 

in reconstruction surgeries.  Although Taylor’s group did show a picture of a decellularized 

porcine heart, they only published the method and detailed analysis for the decellularized rat 

heart.  The method described is unique in that it decellularizes the intact heart in less time while 

maintaining the macroscopic 3D organization. 

Much of the C-ECM structure was maintained which led to favorable mechanical 

properties.  C-ECM suture retention strength (SRS) and uniaxial pull strength (UPS)  were 

compared to UBM since published data on the values of UBM exist (99, 101-102) and because 

this ECM material has been used in several preclinical trials for full wall thickness ventricular 

repair (83, 123-126).  The higher SRS and UPS strength of C-ECM verse UBM showed that C-

ECM should be able to withstand initial pressure of the left or right ventricle; this is further 

substantiated by the fact that the biaxial rupture strength of the C-ECM (119 N) was not different 

from the native tissue (128 N).  This result is especially impressive as the dry weight of the C-

ECM samples tested was approximately 1/3 of the native samples.   The biaxial rupture strength 

of the C-ECM was also significantly larger than that reported for 4 layers of UBM (35 N) (99); 

which has successfully patched a full thickness left ventricular defect in preclinical evaluations 
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(126).  The combination of the mechanical testing data indicates that the C-ECM scaffold should 

withstand ventricular pressures while remodeling progresses. 

2.5 SUMMARY AND CONCLUSION 

The innovative portion of the decellularization method described in this chapter is the 

optimization of systematic decellularization solutions in combination with retrograde aortic 

perfusion to produce a biologic scaffold that maintained much of the macroscopic and 

microscopic structures as well as the C-ECM composition. Since the C-ECM biaxial rupture 

strength force was not different than the native tissue and was significantly larger than 4 layers of 

UBM, the mechanical integrity of C-ECM should be sufficient to withstand the pressure of the 

right or left ventricle as constructive remodeling progresses.  While there is much work to be 

done, the methodology described herein provides a useful step to fully realizing an engineered 

complex organ.   

2.6 FUTURE WORK 

It may be possible to further optimize the decellularization process based on the desired use.  For 

instance, C-ECM slices have recently been produced with trypsin and Triton® X-100 being used 

for longer periods of time as the main decellularization steps (79).  Using only trypsin and 

Triton® X-100 may leave more of the biologically active molecules in the ECM as it would 

eliminate the ionic detergent but could negatively impact the mechanical strength (107, 109).  



34 

This method could be beneficial in producing a C-ECM gel similar to ones previously described 

(81, 127), as mechanical strength is not essential but minimizing effects on growth factors could 

be beneficial.   

Although the method described is specific to cardiac tissue, the technique could be 

systematically modified for decellularization of other tissues and organs. New methods for 

decellularization would need to be systematically analyzed for effectiveness of decellularization, 

remaining biochemical components, and mechanical strength.  In terms of mechanical strength 

an ECM device must be designed with an understanding that there is an initial decrease in 

strength and then an increase in strength above the original implant as the tissue remodels.  In 

one study of a body wall repair in a dog, the 8 layer SIS device had a burst strength of 73 lbs 

before implantation (128).  The SIS device reached a minimum burst strength at 10 days (40 lbs)  

and continued to increase strength for the next two years (157 lbs) where it reached a biaxial 

failure force greater than the original tissue (33 lbs) (128).  Physiologic mechanical loading is 

also critical in constructive ECM scaffold remodeling.   Without physiologic loading ECM will 

constrict and often forms granulation tissue (129).  When designing an ECM device one must 

consider the initial degradation of strength to about 50% of the originally implanted device so the 

scaffold could be physiologically loaded and lead to constructive remodeling.   
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3.0  IN VITRO C-ECM EVALUATION OF CELL COMPATIBILITY 

As shown in the previous chapter, perfusion decellularization can maintain much of the 3D 

integrity and biochemical composition of the native cardiac ECM (78). Being the ECM of each 

tissue is synthesized by the resident cells and is in a state of dynamic equilibrium in response to 

environmental cues (68-69), convincing arguments can be made for the advantages of tissue 

specific ECM scaffolds for organ repair (91-98).  Logically, a biologic scaffold derived from the 

targeted tissue source would possess the ideal 3-dimensional (3-D) architecture and biochemical 

composition to support tissue specific cell phenotype, cell proliferation, and tissue biomechanical 

properties.  Therefore the C-ECM scaffold should have beneficial physical and biochemical cues 

for cell seeding.   

Another advantage of using an organ specific matrix is the three-dimensional (3D) 

structure (ventricles, valves, coronaries, and etc.).  The vasculature can be used as conduits for 

cell seeding and perfusion making it possible to reseed a decellularized heart.  If the 

decellularized heart could be reseeded with a clinically relevant cell and matured in vitro to 

obtain physiologic structures and pressures, then it could be possible to use the tissue as a 

contractile cardiac patch, a bio-ventricular assist device (bio-VAD), or possibly a total implant.  

The goal of this specific aim is to determine the ability of C-ECM to support proliferation 

of endothelial cells and progenitor cells as well as the viability and phenotype maintenance of 

cardiomyocytes.  These experiments used endothelial cells, progenitor cells, and cardiomyocytes 
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as they are some of the cells required for functional myocardium.  In vitro cell culture was used 

to compare C-ECM and UBM.  UBM was chosen as a comparison to C-ECM because UBM has 

shown beneficial remodeling in previous cardiac studies (83, 123-124, 126).  The intact 

decellularized rat heart was also reseeded and incorporated into a perfusion culture system to 

show some of the benefits of the 3D structure.     

3.1 METHODS 

3.1.1 C-ECM Preparation 

An intact porcine heart was perfusion decellularized to produce a C-ECM biological scaffold as 

previously described (78).  Briefly, porcine hearts weighing approximately 300g were obtained 

immediately following euthanasia of adult pigs.  Excess fat and connective tissue were removed 

and the ventricles were rinsed with water to remove coagulated blood.  Each heart was frozen at -

80ºC for at least 16 hours for storage and to aide in cell lysis.   The hearts were then thawed in 

type 1 reagent grade water at room temperature.  The aorta was cannulated with a ½” to ¼” 

straight barbed reducer and connected to ¼” ID silicone tubing.  Each heart was placed in a 4 L 

beaker containing 3 L of hypotonic Type 1 water that was recirculated using a peristaltic pump 

(L/S® Drive EW-07550-30, Cole-Parmer, Vernon Hills, Illinois) for 15 minutes at one L/min.   

The Type 1 water was replaced with 2X phosphate buffered saline (PBS) at one L/min each for 

15 min.  Three liters of 0.02% trypsin/0.05% EDTA/ 0.05% NaN3 solution was warmed to 37°C 

using a digital hotplate and then perfused through the myocardial vasculature at one L/min for 

two hrs.  A 3% Triton X-100/0.05% EDTA/ 0.05% NaN3 was then used for perfusion followed 
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by a 4% deoxycholic acid solution at 1.3 L/min each for two hours at room temperature.  After 

each chemical solution was used as a perfusate, Type 1 reagent grade water was perfused 

through the heart for approximately five min with no recirculation followed by recirculating 2X 

PBS for 15 min to aide in cell lysis and removal of cellular debris and chemical residues.  

Disinfection was accomplished by perfusion of 0.1% peracetic acid (PAA)/4% EtOH at 1.7 

L/min for one hour.  The acid was neutralized and removed from the ECM by perfusing the 

intact matrix with PBS (pH 7.4) two times and type 1 water three times for 15 min each at 1.7 

L/min.  Fluid pressure was measured at the aorta during the entire decellularization process.  The 

free walls of the left ventricle (LV) and right ventricle (RV) were excised and were either used 

immediately for mechanical properties testing in the hydrated state or, were laid flat on non-stick 

aluminum foil, frozen at -80°C for at least two hours, and then lyophilized until dry for 

biochemical analysis.   

3.1.2 UBM Preparation 

The preparation of UBM has been previously described (130).  In brief, porcine urinary bladders 

were harvested from market weight pigs (108-118 kg) immediately following euthanasia and 

placed in ice.  The excess connective tissue and residual urine were removed.  The tunica serosa, 

tunica muscularis externa, the tunica submucosa, and majority of the tunica muscularis mucosa 

were mechanically removed.  The urothelial cells of the tunica mucosa were dissociated from the 

luminal surface by soaking the tissue in phosphate-buffered saline solution with a pH of 7.4 

(PBS).  The resulting biomaterial, which was composed of the basement membrane of the 

urothelial cells plus the subjacent lamina propria, was referred to as urinary bladder matrix 

(UBM).  UBM sheets were placed in a solution containing 0.1% (v/v) peracetic acid (Sigma), 4% 
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(v/v) ethanol (Sigma), and 95.9% (v/v) sterile water for two hours while agitating.  Peracetic acid 

residue was then removed with one PBS wash, followed by two washes with sterile water, 

followed by a final PBS wash all for 15 minutes each.  The decellularized UBM sheets were then 

lyophilized using a FTS Systems Bulk Freeze Dryer Model 8-54 and used in the sheet form or 

comminuted to a powder form using a Wiley Mini Mill. 

3.1.3 ECM Gel Preparation 

C-ECM and UBM sheet and gels were produced as previously described (78, 101, 127).    One 

gram of UBM or C-ECM powder was digested with 100 mg pepsin (~2,000-2,300 Units/mg, 

Sigma-Aldrich, St. Louis, MO) in sterile 100 ml 0.01 N HCl.  This solution was stirred 

constantly at room temperature (25°) for 48 hours.  The resultant viscous solution of digested 

UBM or pre-gel solution had a pH of approximately 3.0-4.0.  The activity of pepsin was 

irreversibly inactivated when the pH was raised to 7.4 by mixing 0.1 N NaOH (1/10 of the 

volume of pre-gel solution) and 10X PBS (1/9 of the volume of pre-gel solution) at 4°C.  The 

solution was brought to the 6 mg ECM/ml solution using cold (4°C) 1X PBS and placed at 37°C 

for approximately 15 minutes for gelation to occur.   

3.1.1 Chick Fetal Cardiomyocytes Cell Description 

Hamburger-Hamilton Stage 31 (day 7) White Leghorn Chicken Embryonic Cardiomyocytes 

(CCMs) were provided by Dr. Kimimasa Tobita.  As previously described, CCMs were isolated 

using collagenase and trypsin digests and preplated for one hour to selectively isolate 

cardiomyocytes (131-132).  CCMs were cultured in DMEM with 10% FBS, 1% chick embryo 
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extract, and 100 U/ml Penicillin/100 μg/ml Streptomycin under a humidified atmosphere in 95% 

air/5% CO2.  

3.1.2 Human Aortic Endothelial Cell Description 

HAECs were obtained from Cambrex (CC-2535).  HAECs were cultured in EGM-2 medium 

(Lonza, Walkersville, MD) under a humidified atmosphere in 95% air/5% CO2.   

3.1.3 Mouse C2C12 Myoblasts Cell Description 

C2C12 mouse myoblasts were purchased from the American Tissue Culture Collection (ATCC).  

The C2C12 population was expanded in Dulbecco’s modified Eagle medium (DMEM) 

(Invitrogen Corporation, Grand Island, NY), supplemented with 10% calf serum (Hyclone, 

Logan, UT), and 100 U/ml Penicillin/100 μg/ml Streptomycin (Invitrogen Corporation, Grand 

Island, NY).  C2C12s were culture under a humidified atmosphere in 95% air/5% CO2.     

3.1.4 Human Fetal Cardiomyocytes Cell Description 

Human fetal cardiomyocytes (HCMs) were provided by Dr. Amit Patel at the University of 

Pittsburgh.  Hearts were collected at approximately week 14 gestational age, within 1 hour of 

medically induced termination.  Hearts were dissected out and washed 3X in DPBS (-) at 4°C.  

The hearts were finely minced in a solution of DPBS (-)/0.01% EDTA and incubated at 4°C for 

10 minutes.  This was followed by enzymatic digestion in a solution of DPBS (-)/0.01% EDTA 

containing 1 mg/ml collagenase 1A and 20 units/ml of DNase 1 at 37°C for 30 minutes.  After 
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digestion, fetal bovine serum (FBS) was added at the final concentration of 10%. Undigested 

tissues and cell clumps were separated by passing the cell suspension through a 100 μm cell 

strainer.  Dissociated cells were washed 3X by centrifugation at 400 g for 10 min.  Cells were 

plated and expanded until approximately 10 million cells were obtained.  The cells were 

trypsinized, counted, spun down and re-suspended in 1 ml of DMEM/F-12 complete.   

3.1.5 Rat Neonatal Cardiomyocytes Cell Description 

Rat neonatal (day 1-4) cardiomyocytes (RCMs) were isolated using a similar method as 

previously described (131).  Briefly, hearts were excised and diced into 1 mm pieces. 

Collagenase and trypsin were diluted with calcium free buffer to obtain concentrations listed 

below.  Pieces were transferred to a 50 ml conical with 4 ml/litter of pups of 3 mg/ml 

collagenase type II for 30 minutes (min) followed by six 0.1% trypsin  (Gibco, Carlsbad, 

California) digestions for 7 min at 37 °C while mixed  with a stir bar at approximately 1 rev/sec.  

Supernatant was filtered through a 100 um cell filter and neutralized in Rat Cardiac Myocyte 

Growth Medium (RCGM, Lonza, Switzerland), 1% Penicillin-Streptomycin, and 1% fungizome 

(Gibco, Carlsbad, California).  Cells were spun down for 5 min at 1000 g and resuspended in 10 

ml DMEM/F12 complete.  The first two trypsin digests were preplated twice for 1 hr each in 

plasma etched 60 mm petri dishes and the remaining trypsin digest supernates were preplated for 

one hr to purify for RCMs.  After the preplate time elapsed the supernate was removed from the 

petri dishes and the cells in the supernate were counted were counted using a coulter counter 

(Bekman Coulter, Brea, Ca) per manufacturer’s instructions.  RCMs were spun down again and 

resuspended in 1 ml of RCGM.    
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3.1.6 Initial Cardiomyocyte Cell Seeding Experiment  

Lyophilized C-ECM and UBM sheets were packaged in sterilization pouches and terminally 

sterilized using ethylene oxide (EtO).  CCMs were seeded on the luminal side of ECM sheets or 

the top of ECM gels.  Approximately 500,000 cells/cm2 were cultured on the ECM scaffolds for 

4 days in DMEM with 10 % fetal bovine serum, 1% chick embryo extract, and 1 % penicillin 

and streptomycin.  The scaffolds were then fixed in 4% paraformaldehyde for 20 min followed 

by rinsing with PBS.  Monoclonal Anti-α-Actinin antibody (clone EA-53, Sigma-Aldrich Corp. 

St. Louis, MO) and anti-beta Tubulin antibody (TU-06, Abcam, Cambridge, MA) were used to 

distinguish CCMs from other cell types (131).  The scaffolds were placed between two cover 

slips and imaged using an inverted Olympus Fluoview 1000 confocal microscope (Olympus, 

Center Valley, PA).  

3.1.7 Proliferation Assay and Histological Assessment 

A proliferation assay (ViaLight Plus Kit, Lonza, Rockland, ME) was used to quantitatively 

assess the relative number of cells on the scaffold per the manufactures instructions (133-134).  

Either 10,000 C2C12 or 20,000 HAEC cells in 200 µl of media without serum was pipetted onto 

the luminal surface of the C-ECM and UBM as well as the surface of C-ECM and UBM gels in a 

96 well plate. Experiments were run in triplicate along with a single negative control for each 

construct.  The negative control consisted of the ECM with media only.  After 48 hrs the cell 

lysis buffer was applied and luminesence of the supernatant was measured to determine relative 

ATP quantities. This assay was run four times for each cell line.   
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Visual immunofluorescent analysis was performed on all scaffolds using HAECs at a 

seeding density of 500,000 cells/cm2 for 8 days and C2C12 at a density of 200,000 cells/cm2 for 

3 days.  At the end of the cell culture period, the scaffolds were fixed in 4% paraformaldehyde 

for 20 min followed by rinsing. HAECs and C2C12 cells were stained with Rhodamine 

Phalloidin to image f-actin fibers and Hoechst to stain nucleic DNA.  The scaffolds were placed 

between two cover slips and imaged using an inverted Olympus Fluoview 1000 Confocal 

Microscope (Olympus, Center Valley, PA).  

3.1.8 Decellularization Rat C-ECM 

Rat C-ECM was produced in a similar manner as porcine C-ECM described earlier in this 

chapter (78).  Due to the size of the rat heart a lower flow rate and time were needed for 

decellularization.  The time for the trypsin, Triton X-100, and Deoxycholate acid perfusion was 1 

hour and PAA solution was perfused for 30 min.  The initial flow rate was set at 5 ml/min 

increasing to 12 ml/min through the decellularization process.  The intact decellularized rat heart 

ECM was terminally sterilized with 2 million Rads of gamma irradiation for cell seeding 

experiments.    

3.1.9 Verification of Decellularization of Rat C-ECM 

Full thickness samples of C-ECM were fixed in 10% formalin and then paraffin embedded.  

Eight micron thick sections were cut and deparaffinized.  Hematoxylin and eosin (H&E) and 4', 

6-diamidino-2-phenylindole (DAPI) were used to evaluate the presence of nuclear material.  
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Approximately 50 mg of native ventricle and ventricular C-ECM were digested with 10 

µl Proteinase K (Cat # 25530-049 Invitrogen) in 50 ml of 10 mM Tris-HCL, 100 mM NaCl, 25 

mM EDTA, 0.5% SDS in water at 50°C on a rocker overnight.  The digest was then purified 

using Phenol/chloroform/Isoamyl alcohol (100).  The Quant-iT™ PicoGreen® dsDNA assay 

(Molecular Probes, Inc., Eugene, OR) was used for quantification of the amount of DNA using 

the manufacturer’s instructions.  Samples were evaluated in triplicate.  Equal volumes of digest 

were separated by gel electrophoresis in a 1% agarose gel with Ethidium Bromide at 60V for 

approximately 1 hour and the gel was visualized under ultraviolet transillumination to determine 

the fragment size of residual DNA.   

3.1.10 HCM 3D culture 

The decellularized rat heart was then placed into a sterile perfusion chamber under a humidified 

atmosphere of 95% air/5% CO2 with 50 ml of DMEM/F-12 supplemented with 10% FBS and 1% 

P/S 100 U/ml Penicillin/100 μg/ml Streptomycin (DMEM/F-12 complete) and perfusion started 

at 2 ml/min.   

 



44 

 

Figure 11.  Picture of perfusion chamber and peristaltic pump  

 

This was a pilot study that included the reseeding of one heart at one and two week time 

points.  To reseed the rat heart, the perfusion pump was stopped while approximately 20 million 

HCMs re-suspended in 1 ml of DMEM/F-12 complete were injected into the aortic cannulae.  

Perfusion was restarted for 1 min and then constantly perfused at 2 ml/min after 30 min.  

Perfusion was increased from 2 ml/min to 8 ml/min by 2 ml/min increments each day.  At one or 

two weeks the reseeded heart was perfused with 4% PFA in PBS for 20 min.   The heart was 

bisected along the long axis.  Half was paraffin fixed, sectioned, and stained with hematoxylin 

and eosin (H&E) and imaged using Nikon™ E600 microscope (Nikon Instruments Inc. Melville, 

NY).  The remaining tissue was further sectioned and stained with Rhodamine Phalloidin and 

Hoechst, or anti-alpha actinin, anti-Histone H3 (Millipore, Billerica, MA), and Hoechst.  
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Sections were imaged on an Olympus Fluoview 1000 confocal microscope (Olympus, Center 

Valley, PA).   

3.1.11 RCM 3D culture 

The perfusion pump was stopped and approximately 30 million RCMs were injected into the 

aortic cannulae at approximately 5 ml/min.  Perfusion was restarted for 1 min and then 

constantly perfused at 2 ml/min after 30 min.  Perfusion was increased to 8 ml/min by 2 ml/min 

increments each day.  The first experiment was stopped at 3 days to show that the RCMs were 

throughout the 3D rat C-ECM.  The second experiment was carried out for 7 days; at day 2 the 

media was changed to RCGM with 100 µM BrdU to prevent the proliferation of fibroblasts 

(135).  On day 3 the electrical stimulation was started using carbon blocks (136-137).  

Stimulation was provided using a Grass stimulator (S88X, Grass Technologies, West Warwick, 

RI) at 1beat per second, 5 volts, and 10 ms.  At the end of the experiment, the recellularized 3D 

C-ECM was perfused with 4% PFA in PBS for 20 min followed by serial perfusion of 5 ml of 

PBS three times followed by optimal cutting temperature solution (Ted Pella, Redding, Ca).  

After freezing, the heart was sectioned through the short axis near the apex, papillary muscles, 

and valves and slides obtained.  Slides were stained with H&E, Masson’s Trichrome, or anti-

alpha actinin, anti-cardiac troponin T, and Hoechst and imaged.   
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3.1.12 Statistical analysis 

A one way ANOVA with a Tukey’s post hoc analysis was performed to determine whether 

differences existed between the relative fluorescent units (RFU) of cells seeded on the surface of 

C-ECM and UBM sheets and gels with the p-value set at 0.05. A power analysis was also 

performed for the one way ANOVA using the maximum difference between means and a pooled 

standard deviation (Minitab® version 15.1.1.0, Minitab, State College, PA).  

3.2 RESULTS 

3.2.1 Initial Cardiomyocyte Cell Seeding Experiment 

CCMs are identified by positive α-actinin staining and positive β-tubulin staining (green-yellow). 

Non-CCMs are recognized by negative α-actinin staining and positive β-tubulin staining (red).  

CCMs were the primary population of cells observed on the ECM scaffolds.  CCMs attached to 

all forms of the ECM biologic scaffolds and survived for the 4 day culture period.  The α-actinin 

fibers showed no global preferred orientation on any of the ECM scaffolds.  Only the C-ECM 

sheet and C-ECM gel supported the formation of organized CM sarcomere structure,  as 

indicated by striations of the α-actinin fibers by day four of culture (138).   
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Figure 12. CCMs seeded on surface of C-ECM and UBM sheet and gel. α-actinin red and β-tubulin 

staining green. 400X scale: 100 µm.   
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3.2.2  Proliferation Assay and Histological Assessment 

As seen by the confocal images of the HAECs, the cells attached and survived on all forms of the 

ECM scaffolds for the 8 day culture period. The f-actin fibers (red) appear to have preferred 

alignment direction on the C-ECM sheet, on all the other constructs, the actin fiber orientation 

seems to be random. 

 

Figure 13. HAECs seeded on surface of C-ECM and UBM sheet and gel. Rhodamine Phalloidin red 

and DAPI blue. Scale: 100 µm.   
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The average and the standard deviation (stdv) for relative fluorescent units (RFU) 

between the three repetitions for each ECM scaffold are shown in the figure below.  The UBM 

gel had a statistically higher RFU value than the UBM sheet or C-ECM sheet, but was not 

statistically different from the Cardiac gel.  There were no differences between the amounts of 

ATP/cells on any of the other ECM scaffold forms.  The power of this test was 0.88. 
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Figure 14. Boxplot of ATP assay RFU results for HAECs seeded on surface of C-ECM and UBM 

sheet and gel. ⃰ UBM gel had a statistically higher RFU value than the UBM sheet or C-ECM sheet, but was 

not statistically different from the Cardiac gel. 
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The C2C12s also attached and survived on all of the ECM scaffolds for the 3 day culture 

period.  The morphology of the C2C12 cells are different on each of the scaffolds.  C2C12s on 

the cardiac lumen appear to be present in more layers.  The nuclei on the UBM lumen are more 

rounded.  The nuclei on both gels are elongated and there appears to be some local alignment of 

the f-actin fibers on the UBM gel. 

 

Figure 15. C2C12s seeded on surface of C-ECM and UBM sheet and gel. Rhodamine Phalloidin red 

and DAPI blue. 600X scale: 100 µm.   
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There were no statistical differences in the ATP assay RFU values between the C2C12s 

seeded on any of the ECM scaffolds.  The power of this experiment was 0.54.   
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Figure 16. Boxplot of ATP assay RFU results for C2C12s seeded on surface of C-ECM and UBM 

sheet and gel. 

3.2.3 Three Dimensional Culture of Cardiomyocytes 

3.2.3.1 Decellularization Rat C-ECM 

It was possible for the rat heart to be decellularized in a similar manner as the porcine heart and 

the decellularized rat heart maintained some of the vascular structures.   
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Figure 17. Microscopic view of decellularized rat heart H&E: 100X. DAPI: 200X. Macroscopic view 

of decellularized rat heart injected with dye at 2 ml/min.  Scale: 100 µm.   

 

The Quant-iT™ PicoGreen® dsDNA assay (Molecular Probes, Inc., Eugene, OR) and 

1% agarose gel with Ethidium Bromide quantification showed remaining double stranded DNA 

was comparable with or less than other FDA approved ECM devices (100, 105).  Both 

decellularized rat hearts had more than 50 ng DNA/mg ECM and one decellularized rat heart had 

a faint DNA streak starting about 600 base pairs in the gel. 
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Figure 18. Quant-iT™ PicoGreen® dsDNA assay results for one native and two decellularized rat 

hearts. 
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Figure 19. Quantification of DNA by 1% agarose gel with Ethidium Bromide for one native and two 

decellularized rat hearts.  DNA base pair ladder shown for relative comparison.  

 

3.2.3.2 HCM 3D culture 

There is a large change in color and texture between the decellularized and reseeded heart at 2 

weeks of culture.  The decellularized heart is white/clear and the reseeded heart is beige.  The 

decellularized heart also collapses into a sheet when cut in half (data not shown) but the free wall 

of the reseeded ventricles maintains its spherical shape when cut longitudinally.   
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Figure 20. Macroscopic view of rat heart before and after cultured with HCM for 2 weeks. Apex to 

aorta length 22 mm for both hearts.  

 

 

H&E and DAPI microscopic images show major changes in cellularity between the 

decellularized and reseeded heart.  The decellularized heart shows no nuclei in the H&E and only 

the ECM matrix is visible in the DAPI image.  The recellularized heart shows nuclei and DNA 

throughout the ventricle wall.   

 

    

Figure 21. Microscopic view of rat heart before and after cultured with HCM for 1 week.  H&E of 

decellularized heart at 100X all others at 200X. Scale: 100 µm.   
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The recellularized heart shows local alignment of the HCMs on the endocardial surface.  

The rhodamine phalloidin staining shows alignment of the f-actin HCM fibers within the 200X 

field of view at both one and two weeks.  

 

   

Figure 22. Reseeded heart after cultured with HCM for 1 week (A) and 2 weeks (B).  Cells stained with 

rhodamine phalloidin (red) and Hoechst (blue) 200X.  Scale: 100 µm.   

 

Many of the HCMs present in the reseeded scaffold at 1 week showed evidence of 

proliferation.  The colocalization of Histone H3, a proliferation marker (139), and alpha-actinin, 

a striated muscle marker, shows that many of the HCMs are actively dividing after 1 week in 

culture. An organized sarcomere structure cannot be seen. 

A B 
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Figure 23. Reseeded heart after cultured with HCM for 1 week.  DAPI for Nuclei: Blue. Anti-α-actinin 

for muscle specific actinin: Red. Histone H3 for   proliferation/mitosis: Green. 400X A: DAPI and anti α-

actinin. B: Histone H3, and anti α-actinin. C: Combined DAPI, Histone H3, and anti-α-actinin. Scale: 

100 µm.   

 

3.2.3.3 RCM 3D culture 

RCMs were visualized throughout the reseeded heart.  One reseeded heart was fixed after three 

days of culture to visualize cell location.  Clusters of cells were seen in circumferential heart 

slices near the apex, papillary muscle, and atrioventricular (AV) valves.  The cells were seen in 

what appeared to be vasculature as well as between ECM fibers.  About 90% of cells were 

retained in the heart as determined from cell counts of the media and perfusion chamber.  

 

A B C 



58 

    

Figure 24. Reseeded heart after cultured with RCM for 3 days.  A: Apex of heart. Masson’s trichrome 

20X. B: Near papillary muscles of the heart. Masson’s trichrome 20X.  C: Near AV valves of the heart. 

Masson’s trichrome 20X.  Scale: 1000 µm.   

   

One can see RCMs with an organized sarcomere structure within the ECM in a reseeded 

heart that was fixed after 7 days of culture.  The H&E images show that the cells are within the 

ECM of the RV and LV.  From the immunofluorescence one can see striated patterns of the 

RCMs.  The cells stained positive for cardiac troponin T but very few of these cells expressed the 

proliferation marker Histone H3. The immunofluorescent image also shows that the RCMs are 

within the C-ECM; the C-ECM shows up as the light grey using the transmission light capture on 

the confocal microscope.  These images show that the intact decellularized rat heart is capable of 

maintaining RCMs in culture for up to one week. 

A B 

C 
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Figure 25. Reseeded heart after cultured with RCM for 7 days A: Middle of heart. H&E 40X scale: 1000 

µm.  B: Higher magnification of inset from A. H&E 200X scale: 100 µm.  C: 1000X magnification from 

inset from A scale: 100 µm.  DAPI: blue, Histone H3: green, and α-actinin: red 100 µm scale bar. D: 600X 

magnification from inset from A with transmission light to visualize matrix DAPI: blue, α-actinin: green, 

and cardiac troponin T: red. Scale: 100 µm.  

A B 

C D 



60 

 

 

3.3 DISCUSSION 

The in vitro cultures showed that C-ECM produced by our method maintained a differentiated 

cardiomyocyte phenotype unlike UBM, supported cell survival of endothelial and progenitor 

cells similar to UBM, and enabled 3D culture of cardiomyocytes in a perfusion system.  A more 

vigorous series of decellularization solutions compared to UBM were needed to decellularize the 

tissue because of the densely cellular and thick nature of the myocardium.  Therefore, in vitro 

cell culture was used to compare C-ECM and UBM to verify C-ECM enabled similar 

proliferation.   C-ECM was comparable to UBM for the culture of cardiomyocytes, endothelial 

cells, and myoblast cells with the exception that only an organized sarcomere structure shown by 

striated cardiomyocytes were seen on the C-ECM sheet and C-ECM gel.  UBM has been used in 

multiple cardiac reconstruction studies and showed some local contraction (83, 123-124, 126); 

the fact that C-ECM produced by the method described was not different to UBM is promising.  

In multiple in vitro investigations ECM has been shown to support synchronously contractile 

cardiomyocytes (63, 79-80, 140-141).  C-ECM has a further benefit compared to other ECM 

scaffolds because of C-ECM’s complex 3D structure that was shown to support viable 

cardiomyocytes with an organized sarcomere structure.  

Cardiomyocytes, endothelial, and progenitor cells were used for the in vitro culture and 

morphology was compared between the scaffolds as these would be some of the cells required to 

regenerate functional myocardial tissue.  While the scaffolds for reconstruction are implanted as 
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a sheet, it has been shown that 60% of the mass of ECM is degraded and lost within the 1st 

month and remodeled with native tissue (44, 142).  One way to obtain degraded ECM is to 

subject it to pepsin digestion.  Pepsin degraded ECM products have been shown to be chemo-

attractant, anti-microbial, and bioactive (57-58, 143). Therefore cells were seeded on the surface 

of the ECM gels in the in vitro assays to assess the effects of the ECM degradation products.  

Because the primary isolation of cardiomyocytes contains fibroblasts, quantitative 

cardiomyocyte cell counts could not be obtained.  Therefore myoblasts and endothelial cells 

were used to quantify relative in vitro cell counts on the C-ECM and UBM scaffolds.   

Only on C-ECM sheet and gel was an organized sarcomere structure seen for CCM 

culture; this showed the maintenance of cardiac phenotype.  Organization of the sarcomere 

structure is one component required for cardiomyocyte contraction.  While multiple experiments 

have shown the phenotype maintenance and contraction of cardiomyocytes on non-organ 

specific ECM (63, 140-141), the endpoint of the initial cardiomyocyte seeding (4 days) in the 

described experiment was shorter.  It could be possible that the C-ECM composition allowed for 

faster reorganization of the cardiomyocytes after the isolation procedure.  In fact, 

cardiomyocytes plated on extracellular matrix produced by cardiac fibroblasts (Cardiogel) were 

shown to adhere more rapidly after plating, exhibit spontaneous contractility earlier, undergo 

cytoskeletal and myofibrillar differentiation earlier, and grow larger than their counterparts 

plated on laminin or fibronectin alone (144-145).  More experiments looking at the time course 

of cardiomyocyte organization on C-ECM would be needed to confirm the benefit of organ 

specific ECM on cardiomyocyte structure and function.   

The cell morphology and cell quantity of endothelial and myoblast cells on C-ECM sheet 

or gel was similar to the same form of UBM.  There was an obvious alignment of HAECs only 
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on C-ECM sheet.  The HAEC alignment on the C-ECM could be related to the trabeculae of the 

heart as patterning has been show to align endothelial cells (146).  The ViaLight® Plus Bioassay 

Kit (Lonza, Allandale, NJ) was chosen to determine the metabolic activity because the amount of 

ATP measured correlates well to the cell number (133-134).   The higher proliferation on the 

UBM gel compared to the ECM sheets could be due to composition, as ECM degradation 

products have been shown to be a chemoattractant for endothelial cells in vitro (47), but there 

were structural differences between the sheet and gel that could have impacted proliferation.  

The power for the HAEC ANOVA was 0.88 (β=0.12) so there was a high probability that 

differences in cell number between the scaffolds would be detected.  The power (0.54) for the 

C2C12 analysis was much lower, so differences between cell survival/proliferation between the 

scaffolds may have been missed.  Running the experiment again for the C2C12s may have 

increased the power, but the large standard deviation could have been caused by differences in 

myoblast differentiation.  While C-ECM did not show an advantage over UBM in the 

quantitative portion of the study, the comparable results are encouraging being UBM has been 

shown to beneficially remodel in multiple organ systems (41, 83, 147).   

A market weight pig has a heart that is approximately the same size as the adult human 

heart but the decellularized rat heart was chosen for reseeding experiments because of the 

number of cells required for reseeding; the adult human heart contains 2-4 billion cells (148-

149).  Minimizing the number of cells required for these initial reseeding experiments is critical 

because contractile cardiomyocytes have limited proliferation (150) and can only be isolated 

from fetal or neonatal hearts.  Cardiomyocytes were seeded into an intact decellularized rat heart 

to show that C-ECM scaffold is capable of maintaining cells in vitro by using the native 

vasculature to provide nutrients.  While the ng DNA/mg ECM and base pair streak for the 
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decellularized rat heart were higher than the lab standard for decellularization (106), the 

scaffolds were sufficiently decellularized that no nuclei or DNA could be seen at high 

magnification and had approximately the same amount of remnant DNA as described by 

Taylor’s group (80) accounting for the high percentage of water in the decellularized rat heart 

(~95% water).  Therefore the amount of remnant DNA did not impact the microscopic evaluation 

of the reseeded rat heart.   

The human fetal cardiomyocytes were originally used for reseeding experiments because 

of the relevance of the species to clinical applications. The local alignment of the HCMs may be 

due to the pulsatile flow of the perfusate as CMs have been shown to align in parallel to the 

direction of tension (151).  The proliferation of the HCMs and presence throughout the entire 

matrix would make reseeding a larger matrix feasible however, these cells are not contractile in 

culture and are difficult to obtain.  Further experiments using neonatal rat cardiomyocytes were 

performed to show that it is possible to seed and maintain striated cardiomyocytes within a 3D 

C-ECM scaffold in vitro by using the native vasculature.  In the cross section of the reseeded 3D 

C-ECM, one can see the RCMs within the matrix throughout the heart and maintenance of 

cardiomyocyte phenotype.   

This is the first experiment to show the recellularization of the decellularized heart with 

cardiomyocytes using the coronary arteries.  In Taylor’s work, they injected cells directly into 

the anterior LV of the C-ECM which led to approximately 50% loss of cells in the first 20 min 

and only a partial reseeding of the LV.  They suggested that cells could not permeate the blood 

vessel walls as they state “endothelial cells formed single layers in both larger and smaller 

coronary vessels throughout the wall (80).”  It is unknown exactly how the cells migrate from the 

vessel to the myocardial ECM, but it is logical that pores would have to form in the vessel walls 
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during decellularization.  While the average width for a day 3 rat neonatal cardiomyocyte is 

about 6.2 µm (150), they tend to form clumps during the isolation so pores would probably need 

to be larger than the average CM width.   The additional steps compared to Taylor’s work in the 

decellularization method described here that maybe responsible for the permeability of the blood 

vessel walls are the initial freezing, pulsatile flow with higher peak pressures, and the use of 

trypsin.  The ice crystals formed in the initial freezing step helped with cell lysis, but also may 

have ruptured the vessels as the water expanded.  The pulsatile flow used in the described 

method obtained higher peak pressures than the 77.4 mmHg reported by Taylor and may have 

torn through the vessel walls during the decellularization process.  The trypsin step specifically 

breaks the collagen peptide bonds on the C-side of Argenine and Lysine which could have 

opened/increased pores in the vessel wall.  The large and small coronary arteries and veins could 

be isolated and the size of pores investigated through SEM and immunohistochemistry after the 

freezing, trypsin, and final step to specifically determine how and where the pores in the vessel 

wall are formed.   

3.4 CONCLUSION 

C-ECM supported in vitro culture of cardiomyocytes, endothelial and myoblast cells.   Only on 

the C-ECM scaffold did the cardiomyocytes show an organized sarcomere structure showing 

maintenance of their differentiated state.  The 3D C-ECM was shown to be a suitable substrate 

for cardiac cell attachment with maintenance of cardiomyocyte phenotype and is suitable for in 

vivo experimentation.   
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3.5 FUTURE WORK 

Ultimately transplantation of a total tissue engineered heart is the goal, but transplantation of a 

single chamber as a bio-VAD or a physiologically contracting cardiac patch would be beneficial.  

Some of the barriers to clinical translation of a 3D cardiomyocyte scaffold are cell source, cell 

seeding, organization of multiple cell types, physiologic pressure generation, adequate perfusion, 

and immunogenicity. While it has been shown that a 3D decellularized heart can produce about 

10 mmHg of aortic pressure if recellularized by neonatal rat cardiomyocytes (80), these cells are 

not clinically relevant.  Human stem cells are clinically relevant and have been differentiated into 

cardiomyocytes (25-27, 152); these cells could be implanted in a non-differentiated or 

differentiated form.  If induced pluripotent stem (IPS) cells were used (153-156), the original 

fibroblasts to be differentiated could be harvested from the same patient being treated; this would 

address many of the immunogenicity issues.  If non-differentiated stem cells were used to reseed 

the 3D C-ECM, they could be expanded and then differentiated toward a cardiac lineage within 

the scaffold.  The presence of an organ specific extracellular matrix may provide signals to 

seeded cells to enhance their differentiation and function (144-145, 157-158).   There are 

multiple possible ways to deliver cells for reseeding.  Cardiac stem cell therapy studies have used 

coronary artery, coronary sinus, systemic infusion or direct injection into the myocardium of 

many different cell types to treat CVD (24, 155-157, 159-165).  It is more difficult to inject cells 

through the coronary sinus in the decellularized rat heart, but this method is much easier and may 

be required to reseed the much larger porcine heart.  Direct injection has issues with cell lose, but 

again it should be easier to perform this method with the decellularized porcine heart due to the 

increased myocardium thickness.   These techniques may be useful in conjunction with 

retrograde aortic cell perfusion especially if multiple cell types were used for reseeding. Taylors 
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group did inject both cardiomyocytes and endothelial cells into the decellularized rat heart (80), 

but many more cells would be needed for a fully functional heart.  Addition of fibroblasts and 

myofibroblasts would be required for ECM production and remodeling (72), but can proliferate 

quickly in culture and impact the cardiomyocyte contraction.  Use of multiple plating steps and 

cell aggregation can limit the number of fibroblasts (131) and the addition of BrdU can prevent 

all proliferation including fibroblasts but would also stop stem cell proliferation (135).  Some of 

the other cardiac structures that would require site specific cells are the heart valves: fibroblasts, 

interstitial cells, and valve specific endothelial cells, arteries: smooth muscle and endothelium, 

and myocardium: cardiomyocytes including pacing, perkinje fibers, atrial, and ventricle cells.  It 

may also be required to have a local stem cell source for replacement of cardiomyocytes (166) 

such as isl1+ cells (152, 167-170).  The organization of all of these specific cells would be 

extremely difficult in vitro.  Partial organization of the cardiomyocytes could be obtained 

through physical (171-173) and electrical (174-175) stimuli, but it would be difficult to provide 

all of the environmental cues needed.  An in vivo culture through a heterotopic implantation may 

provide better biological and physiologic cues for differentiation and organization (176-177).  

The right side of the heart could be end-to-end anastomosed to the vena cava and the left side to 

the descending aorta (proximal aorta to the left atrium and the ascending aorta of the tissue 

engineered heart to the distal aorta of the recipient).  It is likely many of the cell types or at least 

stem cells would need to be seeded in the scaffold prior to implantation.  Thus combining the in 

vitro with an in vivo culture could provide the optimal maturation conditions before final 

implantation.  It may even be possible to differentiate stem cells toward a cardiac lineage and 

increase vascularization in vivo by adding growth factors in a localized controlled manor as part 

of an in vivo bioreactor.  Much work would be required to determine the optimal culture 
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conditions for recellularization of 3D C-ECM with appropriate cellular diversity and restored 

tissue function before transplantation of a tissue engineered patch or heart becomes clinically 

feasible but the possibilities are exciting.  
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4.0  RIGHT VENTRICULAR OUTFLOW TRACT REPAIR WITH A CARDIAC 

BIOLOGIC SCAFFOLD 

4.1 INTRODUCTION: 

Approximately 3 in 1000 infants require corrective surgery for congenital heart defects 

(CHD) within the first year of life (13).  Currently available homografts and synthetic 

biomaterials for surgical reconstruction are typically associated with rejection, stenosis, 

aneurysm formation, and calcification (16-17, 19, 178-179).  Even if corrective surgery is not 

required for the complications listed above, additional surgery may be required to accommodate 

the growth of the patient since available non-resorbable materials do not remodel over time as 

the surrounding tissue develops proportionally with the patient (16-17).  In contrast, non-

crosslinked biologic scaffold materials composed of extracellular matrix (ECM) are typically 

degradable, associated with a robust host cellular response and deposition of neomatrix that does 

remodel in response to host factors such as growth or change in mechanical loading.  Use of such 

biologic scaffold materials has been shown to promote a site appropriate constructive remodeling 

response of numerous tissue types including the heart (39, 41, 43).    

Since the surface characteristics (180), mechanical properties (101-102), and 

ultrastructure (77-78) of the ECM harvested from each tissue is distinct and unique, it is logical 

and plausible that a Cardiac ECM (C-ECM) material would be best suited to facilitate the 
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constructive remodeling of cardiac tissue.  C-ECM has been produced by several laboratories 

and has shown multiple structural and functional benefits over synthetic materials (78-81).  A 

detailed method to decellularize an intact porcine heart in less than 10 hours with maintenance of 

mechanical strength and chemical composition was described in specific aim 1 (78).  Specific 

aim 2 showed C-ECM’s ability to maintain a differentiated cardiomyocyte phenotype in  2D and 

3D culture.  Whole heart C-ECM in an in vitro perfusion system was shown to support 

contractile cardiomyocytes that generated aortic pressure (80).  Singelyn et al. showed 

angiogenesis after injection of a gel form of C-ECM in a non-infarct cardiac rat model (81).  

While each of these studies showed the potential benefits of C-ECM, none compared C-ECM to 

a clinically used material for ventricular reconstruction. 

The objective of the present study was to assess the ability of C-ECM as a patch material 

to replace and remodel a full thickness right ventricular outflow tract (RVOT) defect in a Lewis 

rat model.  Results were compared to a Dacron patch which is commonly used for myocardial 

reconstruction.  

4.2 METHODS 

4.2.1 Overview of Experimental Design 

C-ECM was compared to Dacron for myocardial reconstruction in a right ventricular defect 

model.  Specifically, a 6 mm C-ECM patch and Dacron patch were used to replace a full 

thickness RVOT defect in a rat model.   The primary endpoints of the study were 

histomorphology and echocardiographic assessment.  Eleven rats were included in each group 
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and eight of these animals were sacrificed at 16 wk post surgery.  One additional rat from each 

group was sacrificed at 2, 4, and 8 wk to evaluate the remodeling process over time. Cell 

phenotype and morphology were evaluated at all time points using immunohistochemistry and 

immunolabeling techniques.  Heart dimensions and function were quantified using 

echocardiography prior to surgery and at 4 and 16 wk post-surgery.   

4.2.2 Preparation of C-ECM 

Intact porcine hearts were perfusion decellularized to produce a C-ECM biological scaffold as 

previously described (78).  Briefly, porcine hearts were obtained immediately following 

euthanasia and frozen at -80°C for at least 16 hrs and thawed.  The aorta was cannulated and 

alternately perfused with type 1 reagent grade (Type 1) water and 2X PBS at 1L/min for 15 min. 

each.  Serial perfusion of 0.02% trypsin/0.05% EDTA/ 0.05% NaN3 at 37°C, 3% Triton X-

100/0.05% EDTA/ 0.05% NaN3, and 4% deoxycholic  was conducted, each for 2 hrs at 

approximately 1.2 L/min.  Finally, the heart was perfused with 0.1% peracetic acid /4% EtOH at 

1.7 L/min for one hour.  After each chemical solution, Type 1 water and 2X PBS were flushed 

through the heart to aide in cell lysis and removal of cellular debris and chemical residues.  

Decellularization was verified by removal of all visible nuclear material via hematoxylin and 

eosin (H&E) staining, decrease of measurable double stranded DNA to less than 50 ng/mg dry 

weight ECM, and showing that any remaining nuclear material consisted of DNA remnants less 

than 200 base pairs (106).  

4.2.3 Preparation of RVOT Patches 

The free wall of the decellularized porcine right ventricle (RV) was lyophilized and 6mm 

diameter patches were cut using a tissue punch.   The 6 mm Dacron™ patch was cut from the 
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Bard®DeBakey® Woven Fabric (Bard Peripheral Vascular, Inc. Tempe, Az.).  The average C-

ECM patch thickness was 2.5 mm and the Dacron patch was 0.25 mm.  All patches were 

packaged in sterilization pouches and terminally sterilized using ethylene oxide (EO gas 

sterilizer Series 3 Plus, Anderson Products, Haw River, NC).   

4.2.4 RVOT Surgical Procedure  

Adult female syngeneic Lewis rats (Harlan Sprague Dawley Inc, Indianapolis, IN) weighing 175 

g to 200 g were used for the RVOT replacement procedure as previously described (38). Briefly, 

a surgical plane of anesthesia was obtained using isoflurane (approx 2.5%)/oxygen.  The animals 

were intubated with a 16G catheter and respiration maintained at 60 cycles/min and a tidal 

volume of 1.5 ml.  Using aseptic techniques with sterile instruments the skin of the chest was 

sterilized with povidone-iodine solution and the heart was exposed through a median sternotomy.  

A purse-string suture with a diameter slightly larger than 6.0 mm was placed in the free wall of 

right ventricular outflow tract (RVOT) with Surgipro II 7-0 polypropylene sutures (Covidien, 

Mansfield, MA). Both ends of the stitch were passed through a 22-gauge plastic vascular 

cannulae, which was used as a tourniquet. The tourniquet was tightened and the distended part of 

the RVOT wall inside the purse-string stitch was resected. The tourniquet was briefly released to 

determine whether massive bleeding occurred, which indicated that a transmural defect had been 

created in the RVOT.  A 6 mm C-ECM or Dacron patch was sutured along the margin of the 

purse-string suture with 7-0 polypropylene over-and-over sutures to cover the defect in the 

RVOT.  After completion of suturing, the tourniquet was released and the purse-string stitch was 

removed. After the expansion of lungs using positive end-expiratory pressure, the sternum was 

closed parasternally with four interrupted Surgipro 5-0 polypropylene sutures (Covidien, 

Mansfield, MA).  The muscle layer and skin were closed with Polysorb 4-0 absorbable suture 
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(Covidien, Mansfield, MA). The first 3 days after surgery, buprenorphine (0.5 mg/kg) analgesia 

and cefuroxime (100 mg/kg) antibiotic were administered twice a day, subcutaneously and 

intramuscularly, respectively.  One animal in each group was sacrificed at 2, 4, and 8 wk post 

surgery and 8 animals from each group were sacrificed at 16 wk post surgery.  At the time of 

sacrifice, animals were anesthetized by inhalation of isoflurane (5%) in oxygen.  Cardiac arrest 

solution (68 mM NaCl, 60 mM KCl, 36 mM NaHCO3, 2.0 mM MgCl2, 1.4 mM Na2SO4, 11 

mM dextrose, 30 mM butanedione monoxime, 10,000 U/L of heparin) was administered 

intravenously and hearts were excised after death was confirmed. The research protocol followed 

the National Institutes of Health guidelines and was approved by the Institutional Animal Care 

and use committee at the University of Pittsburgh. 

4.2.5 Immunohistochemistry and Immunolabeling Methods  

The hearts were fixed in 4% paraformaldehyde for 20 min followed by rinsing in PBS.  The 

hearts were then placed in a 30% sucrose solution for at least 16 hrs.  Hearts were bisected along 

the short axis midway through the patch with a razor and placed in optimal cutting temperature 

solution (OCT, Sakura Finetek USA, Inc. Torrance, CA).  Five micron thick frozen sections 

were cut for mounting, staining, and histological evaluation.  Masson’s Trichrome stain was used 

to visualize muscle, fibrous tissue, and nuclei using a Nikon™ E600 microscope (Nikon 

Instruments Inc. Melville, NY).   Von Kossa stain was used to visualize calcification.  

Monoclonal anti-α-actinin (Sarcomeric) antibody (1:200, Sigma-Aldrich, St. Louis, MO) and 

cardiac troponin T antibody (1:100, Abcam, Cambridge, MA) were used to label 

cardiomyocytes.  Von Willebrand factor (VWF) antibody (1:100, Abcam, Cambridge, MA) was 

used to identify endothelial cells.  Smooth muscle myosin heavy chain 2 (SMMHCII) 

antibody (1:75 Abcam, Cambridge, MA) was used to label smooth muscle cells.  Connexin 
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43/GJA1 antibody (1:200, Abcam, Cambridge, MA) was used to visualize gap junctions. All 

primary antibodies were incubated for 2 hrs at room temperature in 1% bovine serum albumin 

(BSA) followed by five 1% BSA washes.  All Alexa Fluor secondary antibodies (Life 

Technologies, Carlsbad, Ca) were used at a concentration of 1:200 in 1% BSA for 2 hrs at room 

temperature followed by five 1% BSA washes.  Nuclei were counterstained with 4', 6-diamidino-

2-phenylindole (DAPI) and/or DRAQ5™ (Biostatus Limited, Shepshed Leicestershire, UK).  

Immunofluorescent (IF) slides were imaged on a confocal microscope.   

4.2.6 Echocardiographic Analysis  

Echocardiographic measurements were obtained pre-operatively, and at 4 and 16 wk post 

operatively.  A surgical plane of isoflurane anesthesia (approximately 1.5% maintenance through 

nose cone) was established before echocardiography was performed.  RV and LV minimum and 

maximum diameters and LV fractional shortening (FS) were calculated using Image J (NIH, 

Bethesda, Maryland).   

4.2.7 Statistical Analysis  

A repeated measures ANOVA with a Tukey’s post hoc analysis was performed to determine 

whether differences existed between the pre-operative, the 4 wk post-operative, and 16 wk post-

operative echocardiographic values within each patch group with the p-value set at 0.05. 

(Minitab® version 15.1.1.0, Minitab, State College, PA).  
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4.3 RESULTS 

4.3.1 Surgical Observations 

Macroscopic and scanning electron microscopy (SEM) images of the patches can be seen in 

Figure bellow.  The 6 mm patches replaced about 25% of the RV freewall.   

 

Figure 26. Dacron and C-ECM patches.  A: Macroscopic photo of patches. Dacron on left and C-

ECM on right. B: Approximate placement of 6 mm patch in RVOT shown on excised RV free wall.  SEM of 

Dacron C:30X scale: 100 µm D: 1000X scale: 10 µm.  SEM of C-ECM with endocardium on right side E: 30X 

scale: 100 µm F: 1000X scale: 10 µm.  
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  At the time of implant, it took longer to achieve hemostasis with the Dacron™ patch 

than the C-ECM patch.  There was one postoperative death in each of the Dacron and C-ECM 

groups.   Due to the 2.5 mm thickness of the C-ECM patch, it protruded above the epicardial 

surface of the RV at implantation, but the difference was minimal as remodeling progressed to 

the 16 wk time point.  At all end time points, there were dense fibrous adhesions on the 

epicardial surface on almost all of the Dacron patched hearts that were adhered to the sternum, 

but there were fewer adhesions with the C-ECM patched hearts.   

 

Figure 27. Macroscopic patch images at 2, 4, 8 and 16 wk post surgery.  The C-ECM patch decreased 

in thickness as it remodeled.  Fibrous adhesions can be seen at 2 and 4 wk on the Dacron patched hearts.  The 

adhesions were removed from the later timepoints so that the patch could be better visualized.  A: 2 wk C-

ECM, B: 4 wk C-ECM, C: 8 wk C-ECM, D: 16 wk C-ECM after fixation, E: 2 wk Dacron, F: 4 wk Dacron, 

G: 8 wk Dacron, H: 16 wk Dacron.   
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4.3.2 Immunohistochemistry and Immunolabeling Analysis of RVOT 

The Dacron material successfully patched the RVOT defect, but was encapsulated by fibrous 

tissue and there were very few cells that infiltrated the polyester weave of the Dacron patch.  

There were minimal histological differences in the patched region between the 2, 4, 8, and 16 wk 

time points. 

 

 

Figure 28. Masson’s Trichrome C-ECM Patch at 2, 4, 8, 16 wk post surgery. C-ECM patch 

recellularizes and remodels over 16 wk timepoint whereas there are few changes in the Dacron patched 

hearts over the 16 wk. A: 2 wk C-ECM, B: 4 wk C-ECM, C: 8 wk C-ECM, D: 16 wk C-ECM, E: 2 wk 

Dacron, F: 4 wk Dacron, G: 8 wk Dacron, H: 16 wk Dacron. Scale bar: 100 µm. 
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The connective tissue surrounding the Dacron patch had a continuous endothelial layer 

on the endocardial surface as shown by the positive staining for VWF.  There were few 

endothelial cells and no smooth muscle cells within the connective tissue surrounding the Dacron 

patch and no calcification was observed.  The Dacron patch showed encapsulation by a thin 

dense connective tissue layer with few differences between the 2 and 16 wk post surgery time 

points.    

 

Figure 29. Immunofluorescent staining of the Dacron patched area at 16 wk showing little cellular 

infiltrate of the tissue surrounding the patch and no cellular infiltrate into the Dacron weave. There is an 

intact endothelium on the endocardial surface but no cardiomyocytes surrounding patch. A: 10 X with 

transmission light capture scale: 100 µm. B: 60X from inset area scale: 17 µm. VWF: green, alpha actinin: 

red, Draq 5: blue. 

 

The C-ECM patch remodeled from an acellular scaffold material containing mostly 

collagen into densely cellular connective tissue. At 2 wk a portion of the original C-ECM patch 

could be identified in the Masson’s trichrome stained sections as denoted by the acellular area 

within the center of the patch.  By 4 wk, the C-ECM patch was characterized as densely cellular 

connective tissue.  At 8 and 16 wk the trichrome images showed that the C-ECM patch had 

remodeled into vascularized collagenous tissue with small islands of striated muscle. Von Kossa 
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staining failed to show any signs of calcification.  VWF showed a continuous endothelialized 

endocardium.  Endothelial and smooth muscle cells were visualized throughout the patched 

regions either localized in the same area or independent from one another.   

 

 

Figure 30. Immunofluorescent staining of the remodeled C-ECM patch showing VWF positive 

endothelium and vasculature and SMMHCII positive smooth muscle throughout the middle of the patch at 

16 wk. A: 10X scale: 250 µm, B: 60X from inset area 1 scale: 25 µm, C: 60X from inset area 2 scale: 25 µm, D: 

60X from inset area 3 scale: 25 µm, VWF: green, SMMHCII: red, Draq 5: blue. 

 

There were small islands of cells stained positive for alpha actinin, cardiac troponin T, 

and connexin 43 both on the epicardium and endocardium.  These islands of cardiomyocytes also 

contained blood vessels as shown by the positive staining of SMMHC II and VWF. 
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Figure 31. Immunofluorescent staining of the remodeled C-ECM patch showing α-actinin positive 

cardiomyocytes in the middle of the patch on the epicardial surface at 16 wks. α-actinin: red, Nuclei: blue, 

A:10X scale: 100 µm, B: 40X from inset area scale: 100 µm. 
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Figure 32. Immunofluorescent staining of the remodeled C-ECM patch showing α-actinin and 

cardiac troponin T positive cardiomyocytes with connexin 43 labeled gap junctions, VWF labeled 

endothelium and SMMHCII labeled smooth muscle in the middle of the patch on the endocardial surface at 

16 wk. A: 10X scale: 200 µm vwf: green, alpha actinin: red, DAPI: blue. B, C, D, and E from inset area on 

sequential slides scale: 30 µm.  B: 63X Alpha actinin: green, Card Troponin T: red, Draq 5: blue. C: 60X vwf: 

green, alpha actinin: red, DAPI: blue.  D: 63X Connexin 43: green, alpha actinin: red, Draq 5: blue. E: 60X 

SMMHCII: green, alpha actinin: red, DAPI: blue. 

 

4.3.3 Echocardiographic Assessment of RVOT 

The RV minimum and maximum diameters were greater for the Dacron patched hearts at 16 wk 

compared to pre-surgery (p<0.05).  At 16 wk post surgery, the RV minimum diameter was 150 

% greater than pre-surgery and RV maximum diameter was 130% greater than pre-surgery.  The 
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C-ECM patched heart at either time point showed no statistical differences in functional or 

dimensional measurements to pre-surgery.  

 

Figure 33. Echocardiographic analysis at pre surgery and 4 and 16 wk post surgery with one 

standard deviation shown. A: RV max diameter. B: RV min diameter. C: LV max diameter. D: LV min 

diameter E: Fractional area shortening.  For the C-ECM patch, none of the measures were different to pre-

surgery at either the 4 or 16 wk time point.  For the Dacron patch the RV minimum and maximum diameter 

had dilated by the 12 wk time point.   C-ECM: red line. Dacron: blue line. ⃰p< 0.05 to pre-surgery.  ⃰⃰ ⃰p< 0.05 to 

pre-surgery and 4 wk post surgery.  

4.4 DISCUSSION 

A biologic scaffold composed of cardiac ECM was shown to be suitable as a replacement 

material for a full thickness RVOT defect in this rat model.  The C-ECM was completely 

degraded and replaced by host tissue including small islands of cardiomyocytes.  By the 16 wk 

time point, the 2.5 mm thick C-ECM patch had remodeled such that the thickness was similar to 

the native RVOT and the function and global dimensions of the heart were normal at 4 and 16 
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wk post surgery.  In contrast, the Dacron material was surrounded by a dense fibrous capsule and 

negatively impacted RV dimensions at 16 wk.   

This is the first study reporting the use of cardiac specific ECM to positively impact the 

repair of a ventricular defect.  Previous studies investigating the remodeling of non-cardiac ECM 

scaffolds following implantation in cardiac applications have been associated with the presence 

of c-kit positive cells, angiogenesis, small patches of cardiomyocytes, and partially organized 

collagenous connective tissue (43, 123, 126).  Kochupura et al. reported local contractility of the 

remodeled ECM scaffolds but the percentage of the patch to the free wall was only 5% (123) so 

global measurements of ventricle function were of limited value (181).  With the 25% 

replacement of the RV freewall, this study was able to assess global dimensional and functional 

differences.  The present study also had a longer endpoint than other degradable cardiac patch 

remodeling studies (38, 43, 123, 126) allowing assessment of long term maturation of the defect.   

The cellular infiltrate and neovascularization that was observed in the remodeled C-ECM 

material is typical of the in vivo host response to non-crosslinked ECM biologic scaffold 

materials, such as small intestinal submucosa (SIS) and urinary bladder matrix (UBM) (39, 41, 

43).  Particularly, the C-ECM material showed similar cellular infiltration, angiogenic response, 

and degradation rate to those for SIS an UBM, and promoted the presence of site appropriate 

cells. Angiogenesis is a common occurrence following ECM placement in many anatomic 

locations (123, 182-185).  Singelyn et al. showed migration of endothelial and smooth muscle 

cells toward C-ECM in the rat heart with increased arteriole formation; specifically they used a 

gel form of C-ECM in a non-defect LV rat model (81).  Zhao et al. recently described the time 

course of cellular infiltration in response to SIS particulate injection in an acute infarction with 

reperfusion rat model; the cellular infiltration included initial migration of macrophages followed 
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by myofibroblasts and angiogensis (185). Suggested mechanisms of angiogenesis include release 

of cytokines such as transforming growth factor-β (TGF-β), basic fibroblast growth factor (b-

FGF), vascular endothelial growth factor (VEGF), and stem cell factor (SCF) (74, 76, 185-186), 

chemoattractive properties of ECM degradation products to endothelial, progenitor cells (47, 53, 

187), and the suitability of the ECM as a substrate for endothelial cell attachment and 

proliferation (77, 188-189).     

The remodeled C-ECM scaffold in the present study showed focal regions of 

cardiomyocytes along the edges of the repair site and across the endocardial and epicardial 

surfaces, suggesting that the presence of these cells was dependent upon a vascular supply. The 

small islands of cardiomyocytes within the C-ECM patched area lacked syncytium, representing 

immature myocardium that was most likely not capable of actively contributing to cardiac 

function.  Possible sources of the cardiomyocytes are resident islet1 positive (isl1+) (152, 170) 

cells or circulating bone marrow mesenchymal stem cells (165, 190), both of which have been 

shown to form cardioblasts. The possibility also exists that iatrogenic effects caused a limited 

seeding of both patches, but that the cardiomyocytes were only able to populate the C-ECM due 

to the presence of cell attachment sites and rapid angiogenesis.  Further study is required to 

determine the origin of the cardiomyocytes, and whether they would continue to mature with 

time.   

The hearts repaired with the C-ECM patch had superior echocardiographic results as 

compared to the hearts repaired with the Dacron patch.  The Dacron RV minimum and maximum 

diameter increased in size by the 16 wk time point which could be an early indication of 

aneurysm as the LV dimensions remained constant.  While there was no difference at the 4 or 16 

wk time point for the C-ECM patched heart indicating the patched area had constructively 
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remodeled.  A possible mechanism for the Dacron dilation is the stiffness mismatch to the native 

ventricle.  Kochupura et al. showed almost no change in Dacron dimensions throughout the 

cardiac cycle whereas the ECM deformed with the surrounding tissue (123).  Due to this stiffness 

mismatch of Dacron, the ventricle could have dilated to minimize wall stress similar to the 

negative remodeling that occurs after a myocardial infarction (191-193).  The C-ECM patch did 

not impact LV function and was not dilated; these measures are critical for a RVOT 

reconstruction patch.   

While the present study does show the potential for organ specific ECM for cardiac 

applications, it does not explicitly show that C-ECM is better than ECM derived from other 

sources since head to head comparisons were not performed.  However, ECM of each tissue is 

synthesized by the resident cells and is in a state of dynamic equilibrium with these cells (64, 

69).  Hepatocytes have shown superior structure and function when seeded upon liver derived 

ECM scaffolds compared to ECM scaffolds derived from non-hepatic sources (194).  Hydrated 

decellularized tracheal matrix (HDTM) supported the formation of site-specific epithelium and 

provided sufficient short term mechanical integrity to withstand physiologic pressures (176). 

Based on the tissue specific structure and composition of C-ECM (78, 80) and previous data 

showing advantages of tissue specific ECM (176, 194), it is logical that C-ECM would be a 

preferred scaffold material for myocardial reconstruction over ECM derived from non-

homologous sources.    

C-ECM produced by the described method possesses morphological advantages over 

current clinical materials for reconstructive surgeries due to the macroscopic and ultrastructural 

similarities to the region being replaced. For example, it may be possible to reconstruct the entire 

outflow tract, valve, and pulmonary artery from a decellularized porcine heart since coronary 



85 

perfusion allows for better decellularization of dense cardiac tissue (78, 80) than alternative 

approaches (79, 117-118).  Furthermore, the advantageous mechanical behavior of the C-ECM 

relative to the normal heart (78) and subsequent remodeling could reduce the incidence of 

aneurysm formation (179).  The use of decellularized xenogeneic tissue would also eliminate the 

current issues associated with homografts, specifically insufficient supply and limited size 

availability (16, 178).  Numerous studies have shown the lack of an adverse immune response 

when an appropriately decellularized non-crosslinked ECM biologic scaffold is placed within a 

xenogeneic recipient (183-184, 195). These non-crosslinked ECM scaffolds could eliminate 

issues of sensitization and rejection that are currently experienced with the use homografts in 

pediatric patients, thereby increasing the potential for successful donor matching in a population 

that may require an orthotopic heart transplant (19).  Finally, it may be possible to use a 3D C-

ECM patch seeded with stem cell derived cardiomyocytes (26, 155) to obtain an actively 

contracting patch as ECM in multiple in vitro investigations has been shown to support 

synchronously contractile cardiomyocytes (79-80, 140-141).   

4.5 CONCLUSIONS 

The improved echocardiographic findings of the C-ECM patch over the Dacron patch appeared 

to be related to the morphometric differences seen in the patched region.  Additional studies are 

needed to assess the potential of C-ECM biologic scaffold material, but the possibility of using 

3D C-ECM for the correction of congenital heart defects is promising. 



86 

   

4.6 LIMITATIONS AND FUTURE WORK 

Limitations of this study were that it was a small animal model with one primary endpoint (i.e. 

16 wks) and the source of the cells populating the patched region was not specifically 

determined. While the rats did increase their weight by about 25%, a 6 month juvenile sheep 

model is the standard for congenital heart defect reconstruction due to similar calcification issues 

and growth rates to children (196).  A limited number of animals were employed for histological 

evaluation at the early time points, which restricted analysis of cellular remodeling over time, but 

echocardiographic measurements enabled functional analysis of the tissue remodeling time 

course.  Studies are ongoing to elucidate possible sources of the cells within the C-ECM patched 

area and to compare RVOT remodeling with different sources of ECM; this may provide further 

information leading to a beneficial CHD treatment.   
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5.0  DISSERTATION SYNOPSIS 

5.1 MAJOR FINDINGS 

The present work described the manufacture and use of cardiac extracellular matrix (C-ECM) 

biologic scaffold produced by perfusion decellularization.  When this study was started, there 

were no publications on ventricular decellularization for tissue engineering applications.  The 

biochemical composition and structure of C-ECM was determined and mechanical performance 

was tested. The in vitro growth of multiple cell types was compared with immunolabeling and 

metabolic assays between C-ECM and a well characterized biologic scaffold material, urinary 

bladder matrix (UBM).  Finally, C-ECM was compared to a standard cardiac reconstruction 

material, Dacron™, to repair a full thickness defect in the right ventricle outflow tract in a rat 

model.   

The following are the major findings of the present work: 

Specific Aim 1 

• Use of retrograde aortic perfusion can decellularize heart in less than 10 hrs. 

• Removal of cells and DNA confirmed. 

• Presence of collagen IV, GAG, and elastin. 

• C-ECM ball burst force was not different than native tissue. 
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Specific Aim 2 

• Cardiomyocytes can be maintained in culture on 2D and 3D C-ECM scaffolds 

a. In 2D culture an organized sarcomere structure of cardiomyocytes were 

visualized on C-ECM scaffolds but not on UBM scaffolds  

b. An intact decellularized rat heart maintained striated cardiomyocytes in 

3D culture 

• Myoblasts and endothelial cell counts on C-ECM sheet and gel similar to UBM 

a. C-ECM produced by the described method enabled cell survival  

 

Specific Aim 3 

• Dacron successfully patched the RVOT defect but there was a negative impact on 

global function at 4 weeks and RV diameter at 16 weeks. 

•  C-ECM can successfully patch and remodel in a full thickness RVOT defect 

a. No negative impact on RV or LV dimension or  LV function  

b. Native tissues at site (collagenous connective tissue, smooth  muscle, 

endothelium, and cardiac muscle) 

i. Small numbers of cardiomyocytes within patched region  

5.2 OVERALL CONCLUSIONS 

The innovative portion of the decellularization method described in this chapter is the 

optimization of sytematic decellularization solutions in combination with retrograde aortic 

perfusion to produce a biologic scaffold that maintained much of the macroscopic and 
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microscopic structures as well as the C-ECM composition. Since the C-ECM biaxial rupture 

strength force was not different than the native tissue and was significantly larger than 4 layers of 

UBM, the mechanical integrity of C-ECM should be sufficient to withstand the pressure of the 

right or left ventricle as constructive remodeling progresses.  While there is much work to be 

done, the methodology described herein provides a useful step to fully realizing an engineered 

complex organ.   

C-ECM supported in vitro culture of cardiomyocytes, endothelial and myoblast cells.   

Only on the C-ECM scaffold did the cardiomyocytes show an organized sarcomere structure 

showing maintenance of their differentiated state.  The 3D C-ECM was shown to be a suitable 

substrate for cardiac cell attachment with maintenance of cardiomyocyte phenotype and is 

suitable for in vivo experimentation.   

The improved echocardiographic findings of the C-ECM patch over the Dacron patch 

appeared to be related to the morphometric differences seen in the patched region.  Additional 

studies are needed to assess the potential of C-ECM biologic scaffold material, but the possibility 

of using 3D C-ECM for the correction of congenital heart defects is promising. 
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APPENDIX A 

SOP P0055 vr 1 Preparation of Cardiac Extracellular Matrix 

 

Objective:  To prepare Extracellular Matrix (ECM) from heart using retrograde perfusion  

 

Requirements:  Must have completed the following training modules based 

on the tissue source used.  

All procedures: 

 Research Integrity – general must be completed to work in the research laboratory 

 Chemical Hygiene – general must be completed to work in the research laboratory 

Animal Tissue: 

 Use of Animal in Research and Education – when source is animal tissue  

 Small Animal Research and Training – when source is small animal tissue  

 Large animal training – when source is large animal tissue 

Human tissue: 

Bloodborne Pathogen Training – when source is human tissue (obtained through 

an honest broker) 

  

1. SOP# P1004 DAPI Staining of Tissue for Determination of DNA 
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2. SOP# D2000 PAA Disinfection and Depyrogenation: Mechanical Shaker 
3. SOP# H3000  Fixation, Dehydration, and Paraffin Embedding of Tissue Specimens 
 

NOTE: Record all steps and observations on Heart Production Sheet (See attached 
sheet for example) 
 

Solutions:  

Label all solution bottles with solution name, your initials, date of preparation, 

and date of expiration. 

 

Triton X 100 (source :Spectrum TR135 or equivalent)………………………………..90.0 ml 

3% (v/v) Triton X-100/0.05% EDTA/0.05%Sodium Azide (NaN3) (expiration 1 

month) 

EDTA (source: Fisher BP120 or equivalent)…………………………………………...1.5 g 

Sodium Azide (source: Sigma S8032-100G or equivalent)……………………… ....................................1.5g 

Type I water………………………………………………………………….2910.0 ml 

The Triton X-100 is viscous, so it will be necessary to do a repeated backwashing of the  

graduated cylinder to remove residual Triton X-100.  Mix on shaker to thoroughly 

dissolve. 

 

Caution: Sodium Azide is very hazardous in case of skin contact (irritant), 

Hazardous in case of ingestion, of inhalation, slightly hazardous in case of skin 

contact (permeator). 
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0.1% PAA (expiration 2 days) 

15% PAA (SOP#D2000 PAA)…………………………………………………20.0 ml 

Type I water………………………………………………………………….2860.0 ml 

Alcohol………………………………………………………………………..120.0 ml 

 

4% (w/v) Deoxycholic Acid (expiration 1 month) 

Deoxycholic acid[source: Spectrum S1066 or equivalent] (sodium salt minimum 97%)  120.0 g 

Type I water…………………………………………………………………3000.0 ml  

Caution:  Deoxycholic Acid is a lung irritant.  Solution must be made under the hood. 

 

0.2% trypsin/0.05% EDTA/0.05%Sodium Azide (expiration 1 day) 

trypsin[source: Sigma T-4549 or equivalent] (10X solution) ..............................................24.0 ml  

EDTA[source: Fisher BP120 or equivalent]…………………………………………...1.5 g 

Sodium Azide[source: Sigma S8032-100G or equivalent]…………………………….. 1.5 g 

Type I water………………………………………………………………… 2973.0 ml  

The trypsin is commonly packaged in a concentration of 25g/L.  Therefore, 
for a 0.02% solution of trypsin in 500 ml, 0.1 grams of trypsin is required. 
This is equivalent to 0.004 L, or 4 ml of the concentrated trypsin per 500 ml 
DI water.  0.05% EDTA is produced by adding 0.25 g of EDTA (4 ml of 
trypsin) to 495.75 ml of DI water.  Place on shaker to ensure adequate mixing. 
 

2X PBS (expiration 6 months) 

Type 1 water………………………………………………………………  3000.0 ml 

1X PBS[source: Sigma #P3813 or equivalent]……………………………………6 pouches 
According to manufacture’s procedure one pouch is used to make 1 L of 1X 
PBS, but for the purpose of the heart decellularization the hypertonicity of the 
solution was increased. 
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Procedure: 

The following procedure is for an approximately 400g porcine heart or a rat 
heart.  Flows, times, and solution quantity can be adjusted as needed for 
different size hearts. 
 
Contact appropriate source to obtain fresh heart. 
Transport heart on ice back to the laboratory or MIRM necropsy room.  Trim 
the heart of excess fat and tissue. 
 
Before beginning the decellularization process the heart must be frozen. Wrap 
heart in freezer paper and store in the -80ºC freezer.  The heart will be 
completely frozen after approximately 24 hours.   
 
Obtain production sheet and begin recording all processes (see attached sheet 
for example). 
 
Take frozen heart and thaw in Type 1 water.  Weigh heart and record weight.  
Once thawed, suture or zip tie the tube fitting/cannulae to aorta. Note: Make 
sure the tube is above the aortic valve.  
 
1. Flush porcine heart with Type 1 water for five minutes (approx 2000 
ml/min), (rat heart approx 5 ml/min).  Flushing allows influx of clean solution 
and removal of effluent. Heart can be connected directly to a Barnstead or 
similar water filtration system to flush heart. 
 
2. Use peristaltic pump to pump the following solutions through the 
heart (Note: pump speed ranges from about 1000 ml/min-1700 ml/min 
usually increasing through the decell process, flow rate for the rat heart stays 
at 5 ml/min): 
 
• 2X PBS for 15 min 

• 0.02% trypsin/0.05% EDTA/ 0.05% NaN3 at 37°C for 2 hours 
(Note: 1 hr for the rat heart) 

• Ensure heart is not sitting on bottom of beaker 

• 3% Triton X-100/0.05% EDTA/ 0.05% NaN3 for 2 hours (Note: 1 
hr for the rat heart) 

• 4% Deoxycholic acid for 2 hours (Note: 1 hr for the rat heart) 

• 0.1% Peracetic acid for 1 hour (Note: 30 min for the rat heart) 
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After each chemical solution Type 1 water is flushed through the heart for 
approximately 5 mins and then 2X PBS is pumped through for 15 mins.  
This removes cellular debris, chemical residues, and aids in cell lysis. 

After the final PAA solution is pumped through the heart, 1X PBS and Type1 
water washes follow (see SOP# D2000 vr2 PAA): 
• 15 min 1X PBS pump 
• 5 min Type 1 water flush 
• 5 min Type 1 water flush 
• 15 min 1X PBS pump 
• 5 min Type 1 water flush 
• Record weight once most water removed. 
 
Optional: 
Decellularization of the organ can be confirmed through DAPI (SOP# P1004) 
and H/E staining (SOP# H3006).  The best histological analysis is obtained 
when approximately 1 cm piece from each chamber free wall (outside wall of 
the heart) and the ventricular septum are submitted for this analysis.  The 
absence of cellular remnants in each of the four chambers and the ventricular 
septum indicated that the organ has been decellularized. 
 

End of Procedure 
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APPENDIX B 

LANGENDORFF PREPARATION FOR MEASUREMENT OF LV PRESSURE  

OBJECTIVE 

To validate Langendorff preparation setup with adult rat hearts so that system can be used to 

measure LV pressure volume relationships in the reseeded rat heart described in chapter 3. 

METHODS 

FILTER PERFUSATE BEFORE STARTING 

Prep of perfusate 

1. MacGowan Perfusate Solution - 1 Liters 
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Solute Concentration Amount (grams) 

  

1 L  

NaCl 112 mM 6.5400 

   KCl 4.7 mM 0.3500 

   CaCl2 2.5 mM 0.2777 

   MgSO4 1.2 mM 0.1447 

   Na-EDTA 0.5 mM 0.1860 

   NaHCO3 25.0 mM 2.1000 

   Glucose 5.5 mM 0.9900 

   Pyruvate 5.0 mM 0.5500 

   Caprylic 50 uM 0.0087 

Sodium 

Octanoate Sigma 

C5038-10G 

  Insulin 90 U/L 0.0011 

 

27 u/mg 

 Metoprolol 5.0 uM 0.0032 

Sigma M5391    MW  684 

 

• Filter after mixing 

Prep of system 

 

• Check pH (7.4) after oxygenation.   
• Check oxygenation and adjust O2 flow as needed to reach > 650 mmHg 
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• Temperature of perfusate should be  38 °C; adjust water bath temp approx 43 C and 600 
ml/min recirculation rate 

• Pressure equal to 60-70 mmHg adjust height of water bath.   
• Ensure balloon system has no air and pressure gauge zeroed and calibrated  
• Coronary flow (CF) should be 6-8 ml/min based on Heart Weight (HW) in grams.  

CF=7.43*HW^0.56 (Doring and Dehnert 1988) 

 

Pressure and volume calibration 

 

The 5F Millar used for pressure measurements has to be warmed up and wetted for 

several minutes before connecting it into the balloon system.  If this is not the case, there will be 

a drift in pressure readings. 

 

Calibrate the Millar for the 0 and 100 readings then turn the box to transducer.  Before 

the transducer is clamped into the volume control, take the wetted Millar and hold it right 

underneath the surface of the liquid in the bowl.   This is the zero on the transducer. 

 

Isolation of heart 

Induce a surgical plane of anesthesia with 5% isoflurane for 2-5 min (until the animal 

does not respond to stimuli).  Place animal on table and place a hard object behind the base of the 

skull.  Then pull the tail until popping sound heard followed by lifting the rear 90° while keeping 

hard object in place.  Next place animal on its back.  Excise rib cage and fill thoracic cavity and 

cannulae with ice cold perfusate.  Isolate ascending aorta and dissect halfway through at carotid 

bifurcation.  Insert cannulae into aorta making sure not to pass the aortic valve.  Suture the 
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cannulae in place with 5-0 silk or equivalent.  Excise heart and immediately hang on 

Langendorff apparatus and start flow of perfusate.  Excise both atriums and insert stimulation 

electrodes near RV and apex of the heart.    

Experimental protocol 

 

Crush AV node by squeezing top of septal wall (Inset one end of tweezer into each 

atrium.) 

 

The insertion of the balloon usually takes two people.   One person is holding the balloon 

away from the heart and the other is inserting the straightened needle connected to the bottom of 

the balloon into the ventricle and through the apex.  In order for the balloon to enter the ventricle 

with minimal damage, the balloon has to be deflated and great care must be taken to insert the 

balloon in as straight as possible.  Once the bottom of the balloon is visible exiting the apex, the 

balloon should be seated by quickly infusing and withdrawing approximately 25 microliters. 

 

• Place an electrode in the right atrium and the apex of the heart to prevent 

puncturing a coronary. 

 

• Increase voltage until get sinus rhythm then return to the following parameters: 

1BPS, 10 ms, 15 V.    

• Fill volume of balloon 0.025 ml   
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• Increase volume of balloon then take 10 measurements. Repeat until diastolic 

pressure is 30- 40 mmHg.  Deflate the balloon all the way and repeat two more 

times.   

 

Calculations 

Average systolic pressure for 3 beats for each balloon volume step.  Plot pressure over 

time.   

 

Figure 34. Setup of Langendorff Preparation System.  Adult rat heart from inset. 

 

Preparation of balloon 

 

For the balloon prep, you will need the following materials: 

• plastic garbage bag (Sears, or any stiff thin polyethylene material) 

• 0.25 glass hypodermic syringe plunger 

• white sewing thread 
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• black 00 silk 

• 23 gauge serrated metal rod or other cannulae 

• silicone tubing, large enough to fit over the 23 gauge rods 

• 4-0 black silk suture, needle straightened 

double knot

single knot

silicone tubing

metal rod

 

Figure 35. Preparation of balloon 

 

 

Take the syringe plunger and sequentially stretch out the plastic bag into a tube 

approximately 1-1.5 cm in length.  Cut the plastic tube out of the bag.  Cut a 3 cm length of the 

small silicone tubing and fit the serrated 23-gauge rod into one end, making sure the serrated end 

is closer to the opening.  The plastic balloon should be fitted on the rod/tubing end and tied with 

the white sewing thread.  To ensure a tight grip of the thread without ripping the plastic, the 

thread should be tied with double looped knots and by alternating sides.  The bottom of the 

balloon should be tied with single knots and alternating sides.   The knots have to be sequential 

in order to make it as thin as possible; otherwise the width of the knots will damage the apex of 

the heart as it passes through.   
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Connect the balloon/tubing to the custom made pressure and volume control.   Tie the 

tubing with black 00 silk.  Do the same with the tubing connecting the volume control syringe 

and metal holder.  The easiest way to get rid of air in the system is to fill a bowl with an 

alconox/degassed water solution and leave the balloon in overnight.    

RESULTS 

After 10 attempts at isolating heart and recording pressure measurements the procedure was 

refined to that listed.  With this procedure pressure volume measurements were obtained on an 

adult rat heart.  This concluded development of the Langendorff preparation system.    
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Figure 36. LV pressure measurements of adult rat heart with changing LV balloon volume. 

If the reseeded decellularized rat heart described in chapter 2 generated measurable pressure, this 

system would have been used to measure the pressure volume relations ships and compare the 

reseeded heart to the adult rat heart.  In the middle of one reseeding experiment the rat heart 

generated visible contraction during a media change.  Unfortunately, the reseeded 3D C-ECM 

scaffold had a fungal contamination before the end of the culture period.  This result was not 

replicated over the next two attempts due to issues with cell isolation and a shorter culture 

period. 
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APPENDIX C 

THE USE OF EXTRACELLULAR MATRIX AS AN ATRIAL SEPTAL DEFECT 

REPAIR DEVICE 

OBJECTIVE 

The purpose of this study was to evaluate the ability of an extracellular matrix scaffold to 

function as a repair device for experimentally produced atrial septal defects (ASD) in a dog 

model.  The device was manufactured from a four layers of vacuum pressed urinary bladder 

matrix (UBM).   

BACKGROUND AND OVERVIEW OF STUDY DESIGN 

Septal defects are typically a congenital heart problem in which there is a hole in the wall that 

separates the chambers of the heart. The word “septal” refers to the wall between the chambers, 

and “congenital” describes a condition that has been present since before birth. Congenital heart 

disease occurs in just under 1 of every 100 births.  
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A prototype for the percutaneous delivery of the UBM ASD patch was created.  The 

prototype was optimized based on in vivo work and benchtop testing. 

The animal study investigated the repair of atrial septal defects with a biologic scaffold 

material.  Site specific cellular regeneration after an operation is essentially unknown.  An 

extracellular matrix (ECM) material used as a scaffold represents a major advance in cellular 

engineering.  An important unexplored application is the use of ECM for the reconstruction of 

healthy tissue for the treatment of myocardial defects: atrial and ventricular wall defects, atrial 

and ventricular septal defects, aneurysms, and valve leaflet repair.  Preliminary evidence has 

demonstrated that site specific tissue reconstruction occurs in the myocardium similar to that 

which occurs at other tissue sites (83, 123-124, 126). 

 

This study evaluated the ability for the UBM device to prevent blood flow shunting as a 

result of the created ASD as well as the morphology of the atrial free wall at 3 months.  In 

addition, histology of the patched areas was evaluated at the 3 month timepoint.   

SPECIFIC AIM NO. 1: TO CREATE A PROTOTYPE ASD REPAIR DEVICE FROM 

AN ECM BIOLOGIC SCAFFOLD AND DEMONSTRATE FUNCTIONALITY IN 

VITRO. 

Rationale: Biologic scaffolds derived from ECM (such as the UBM-ECM derived from porcine 

urinary bladder proposed for use in this study) have significant adaptability with regard to 

mechanical and material properties and physical appearance. To create a device that will equal or 

exceed the success of the existing metal cage devices while eliminating the rare but potentially 
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catastrophic adverse events, it will be important to maximize the amount of ECM material in the 

prototype device while minimizing any foreign material that would have the potential to abrade 

the adjacent atrial and aortic structures. In addition, a prototype device created from an ECM 

biologic scaffold must have the ability to be folded around a delivery wire, passed through a <14 

Fr catheter, deployed at the site of intended use, and retrieved if necessary via catheter-based 

techniques. These are non-trivial requirements and form the basis of this first Specific Aim. 

Voice of the customer (VOC) was obtained from an Interventional Cardiologist and a 

Cardiac Surgeon on ASD defect sizes and device requirements.  From this data an initial 

prototype was made, revision 1 (See Figure).  However, based on benchtop testing, it was 

determined the waist region of the ASD device had to be larger to match the defect diameter.   

   

Figure 37. Original ASD Prototype  

 

A multistep forming process was developed to incorporate a self sizing waist length and 

diameter, revision 2 (See Figure).   

-Waist Length  

Defect Diameter  

Occlusion Disc  Waist Diameter->  
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Figure 38. Self-sizing device in expanded form and in 11 Fr. Tube (3.7 mm ID) with and without 4 

layer UBM attached.   

 

The self sizing ASD device was then tested in an explanted calf heart.  Approximately a 

10 mm defect in the atrial septum was made.  The self sizing frame was then placed within the 

defect (See Figure).    

 

Figure 39. 10 mm ASD in a calf heart, picture taken from the right atrium side.  Self sizing NiTi 

device in ASD 
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From this data, it was determined that the NiTi device needed a larger occlusion disc than 

15 mm due to the flexibility of the tissue.  Revision 3 of the device was developed which 

included a 25 mm occlusion disc (See Figure).  This completed development of the frame.    

 

Figure 40. Revision 3 of NiTi ASD frame on top and Revision 4 of NiTi ASD frame on bottom 
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SPECIFIC AIM NO. 2: TO CONDUCT MECHANICAL PROPERTIES TESTING UPON 

THE MULTILAMINATE ECM PROTOTYPE TO DETERMINE SUITABILITY FOR 

USE AS AN ASD REPAIR DEVICE. 

Rationale: The UBM-ECM device functions in vivo as an inductive template for autologous 

tissue repair. Stated differently, the device degrades in vivo and is replaced by site-appropriate 

host tissue. The handling characteristics and the mechanical properties of the device at the time 

of implantation should closely match the native tissue so that immediate functionality is realized. 

The work conducted for this Specific Aim will determine the size, shape, thickness, and strength 

(number of layers) needed to prepare the most suitable prototype ASD repair device. 

As described in Specific Aim 1, the NiTi frame went through multiple iterations to obtain 

a suitable design.  A single layer or a four layer of UBM was considered for the UBM Occluder 

disc.  The four layer UBM sheet was manufactured by layering wet sheets of UBM alternating 

between laying the luminal side up or down.  This created a construct that had the luminal side of 

UBM facing outwards on both sides.  Being the luminal side of UBM is the basement membrane, 

the natural attachment for endothelial cells; it was hypothesized that this orientation could reduce 

thrombosis and encourages endothelialization.  The wet construct was then vacuum pressed at 

approximately -30 mmHg for 8 hours until dry.  The ball burst test (BBS) was used to compare 

the devices single layer or a four layer of UBM sheets (101-102).  The BBS test is described by 

the Standard Test Method for Bursting Strength of Knitted Goods, Constant-Rate-of-Traverse 

(CRT) Ball-burst Test (ASTM D 3797–89). Briefly, an Instron was equipped with a ball-burst 
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compression cage in which a 25.4 mm polished steel hemisphere was pushed against the material 

until failure. The burst strength was defined as the force required to rupture the material. Table 1 

shows the (BBS) values of the single and four layer UBM sheets (101-102).   

Table 4. BBS values of the single and four layer UBM sheets 

 

 BBS (N) 
Single layer UBM 11.32 ± 1.88 (n=6) 
Four Layer UBM 35±2  (n=3) 
 

While the single layer UBM has been shown to remodel without failure in the canine 

right ventricle (83, 123-125, 197), a four layer sheet was chosen for both occluder disks.  The 

four layer sheet was chosen based on the fact that the 4 layer UBM device had a significantly 

higher BBS the single layer UBM and the fact that the basement membrane would cover all 

surfaces. 

SPECIFIC AIM NO. 3: TO CONDUCT AN ANIMAL STUDY TO REPAIR AN ASD 

DEFECT WITH A FOUR LAYER UBM BIOLOGIC SCAFFOLD. 

Animal Husbandry 

Each animal was fed appropriate amounts of Nutro dog food. The dogs were supplied with tap 

water ad libitum. The animals were checked daily for eating, drinking, urine production, feces, 

and general appearance. The results were recorded on the appropriate data collection sheet.  

Approval for this study was granted by the Institutional Animal Care and Use Committee, 

IACUC. IACUC approval # 0806636  
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      Device Implants 

 

Test article: 4 layer UBM patch with luminal layer facing outward on both surfaces.    

All grafts produced in Dr. Badylak’s laboratory  

 Procedure 

Surgical Procedure:   

Dogs were anesthetized (dog, sodium thiopental, 12-25 mg/kg IV for induction and intubation. 

Animals were then be maintained at a surgical plane of anesthesia with Isoflurane (1-3% in 

oxygen). Blood pressure (via femoral artery) and ECG was monitored throughout the surgical 

procedure.  The animals were infused with 2 ml/kg/h of lactated Ringer’s solution or equivalent 

solution throughout the procedure. 

Prior to undergoing thoracotomy the wound edges were infiltrated with local anesthetic 

(marcaine or bupivicaine, ~10-15 ml) effectively blocking the intercostal nn., (This has been 

shown to decrease pain in the early post-op period thereby improving comfort and decreasing the 

requirements for narcotic analgesics in patients undergoing thoracotomy).  A right thoracotomy 

was made at the third intercostal space, followed by a pericardiotomy and placement of 

suspension sutures to cradle the heart. Visualization of the heart, the pulmonary valve outflow 

tract, aorta, and right atrium was accomplished. Heparin was administered IV (25-75 IU/kg). The 

animal was then be placed on cardiopulmonary bypass (CPB) by cannulation of the vena cava 
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and the outflow cannulae for the cardiopulmonary bypass was inserted into either the carotid 

artery using a cutdown or into the aorta based on the individual anatomy of the animal. 

Ventricular fibrillation was induced by standard cardioplegia.  For the creation of an ASD the 

right atrium was opened and a portion of the intra-atrial septum in the fossa ovalis was excised 

(approximately 2cm x2cm).  The defect was repaired using a ECM scaffold material. The ECM 

scaffold device was sewn into its place with 7-0 non-absorbable suture material (e.g. Prolene).  

The hole in the right atrium was closed with ECM scaffold in the same manner as the ASD.  At 

the conclusion of surgery, defibrillation was achieved and the dogs were weaned from CPB.  A 

chest tube was placed prior to closing the chest and maintained up to 72 hours to ensure negative 

pressure compliance in the chest and to remove any excess drainage present after a procedure of 

this type. The chest wall was closed using routine thoracic closure technique (1-0 Prolene for 

closure of the ribs, 2-0 PDS for SQ and 2-0 Prolene or staples for skin closure).  Skin 

staples/suture will be removed 10 days post-op.   

 

Post-Operative Care: 

 

Following the surgical procedure and cessation of inhalation anesthesia, the animal was 

continually monitored for 24 hours, recording the following parameters every hour: pulse rate, 

strength of pulse, capillary refill time, amount of fluid removed from chest via the chest drain, 

respiratory rate & ability to maintain an open airway, urinary output, and defecation. Body 

temperature was determined and recorded every 2 hours. The animal was kept warm and dry to 

prevent hypothermia and was rotated once per half-hour until it can maintain a sternal position.  

Extubation of an animal was based on the following criteria: the presence of a 

swallowing reflex and the protective cough reflexes that are functional. The pulse, respiration, 
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body temperature, jaw tone, capillary refill time, and mucous membrane color was evaluated 

prior to removing the endotracheal tube. An animal’s overall health status was stable prior to 

extubation, and after extubation the animal must continue to maintain an open airway, stable 

heart rate, respiration rate, body temperature, jaw tone, capillary refill time (3-4sec), and good 

(pink) mucous membrane color.  Following extubation, the animal responded to touch and 

sound, and achieved sternal recumbency (i.e., the animal was alert and able to sit up and balance 

itself on its sternum). 

Dogs were held in a recovery cage for up to 72 hours. The dog was moved to a run when 

it demonstrated normal respiration, did not demonstrate pain, and was bright, alert, and 

responsive.  At this time the cephalic vein line was removed. 

Buprenorphine hydrochloride (dogs, 0.01-0.02 mg/kg, SQ, q12h; pigs, 0.005-0.01 mg/kg, 

IM or IV, q12h), was administered at regular intervals for 4 days for pain, and then was 

continued to be administered for pain management if signs of pain are exhibited. Acute pain in 

animals is expressed by guarding, vocalization, mutilation, restlessness, recumbency for an 

unusual length of time, depression (reluctance to move or difficulty in rising), or abnormal 

appearance (head down, tucked abdomen, hunched, facial distortion).  

Non invasive echocardiograms were performed at 1 week and at the time of sacrifice. In 

addition, the implants were harvested after euthanasia for mechanical properties testing and 

macroscopic and microscopic examination. The measured endpoints were evaluated at the 

following time point: 3 months.  

Following the first 24 hours, the animal was evaluated and assessed for the need for 

additional continuous monitoring. If the animal is unstable (unable to maintain a stable pulse, 

respiration, clotting time, hematocrit), continual monitoring will follow for an additional 24 
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hours. Once the animal is considered stable, monitoring frequency will decrease to once every 2-

4 hours, then once every 4-12 hours, and finally, once every 24 hours.  

At three months following surgery, a final echocardiogram was performed prior to 

euthanasia while the animal was under anesthesia. Once the dog has been euthanized graft sites 

were analyzed grossly and tissues harvested for morphologic evaluation. 

Euthanasia 

Animal Sacrifice:  At the 3 month time point animals was evaluated for flow from the left and 

right atrium as well as visual inspection.  Heparin was administered IV (110-500 IU/kg). A 

sternotomy, followed by a pericardiotomy and placement of suspension sutures to cradle the 

heart. Visualization of the heart, the pulmonary valve outflow tract, aorta, and right atrium was 

accomplished. Trans-esophageal echocardiogram was used to visualize the defect.  Isoflurane 

was increased to 5% for 5 minutes.  The vena cava, pulmonary arteries, and aorta were clamped.  

The heart was then excised and perfusate flushed through.  The scaffold placement site and the 

adjacent native tissue will be excised, divided, and placed in neutral buffered formalin for routine 

H&E and Masson’s trichrome staining or 4% Paraformaldehyde for immunofluorescence.   

 Methods of Evaluation 

The response variables for this study included: 

• Surgical assessment to determine feasibility of new graft 
• Echocardiogram to assess graft efficacy 
• Histology to determine the degree (qualitative morphologic assessment) of 

remodeling of the patched areas 
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Results 

Surgical assessment:  

The first two attempts to create the defect in a dog were unsuccessful. During the first surgery 

the AV node was crushed while creating the ASD defect and during the second surgery a vein 

was irreparably punctured during the cannulation.   

On the third attempt, a 10 mm patch was placed in the septal wall and a 30 mm patch on 

the atrial free wall.  The rehydrated device was easy to manipulate and suture.  Both patches 

were competent at initial surgery and at 3 months. 

 

    

Figure 41. Grafts at implantation. ASD and right atrium free wall patch 
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Figure 42. Grafts at 3 months. ASD and right atrium free wall patch 

Echo Results: There was no shunting between the atriums as determined by microbubble 

test at 1 week or 3 months.  This result indicates that the device was clinically successful.  

 

Figure 43. Trans Esophageal Echocardiogram of ASD area patched with the UBM device 1 week 

post surgery.   
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Figure 44. Epicardial Echocardiogram of ASD area patched with the UBM device 3 months post surgery.   

 

Histological Evaluation: 

The UBM ECM patches had smooth intact endothelialized non-thrombogenic surface. 

The patched areas were well vascularized and integrated into the adjacent myocardium. The 

device was replaced by a mixture of connective tissues: dense collagenous tissue and adipose 

tissue.  The freewall also had small islands of muscle and fingers of muscle from the adjacent 

native tissue.  There were also some chondrocytes in the freewall as noted by the arrow in figure. 
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Figure 45. Trichrome cross section of ASD patched area at 2 and 20 X magnification 

 

Figure 46. Face section of ASD patched area showing integration of the connective tissue matrix with 

the adjacent tissue 2X. 
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Figure 47. Trichrome cross section of atrial free wall patched area at 2 and 20 X magnification 

 

Figure 48. Face section of atrial free wall patched area showing integration of the connective tissue 

matrix with the adjacent tissue 2X. 
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Summary 

• A novel ASD percutaneous device was developed.  
• The surgical procedure was feasible with the 4 layer UBM test article to close a 

defect in both the atrial septum and right atrium free wall. 
• The device was remodeled within the 3 month timeframe and prevented shunting. 
• Device Patent Application submitted: Biologic Matrix for Cardiac Repair 

(International Pub No.: WO/2009/137755 published 11/12/09)  
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Figure 49. Device Patent Application submitted: Biologic Matrix for Cardiac Repair (International 

Pub No.: WO/2009/137755 published 11/12/09) 
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