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MODELING AND ANALYZING MULTIVARIATE LONGITUDINAL

LEFT-CENSORED BIOMARKER DATA

Ghideon Solomon Ghebregiorgis, PhD

University of Pittsburgh, 2008

Many medical studies collect biomarker data to gain insight into the biological mechanisms

underlying both acute and chronic diseases. These markers may be obtained at a single

point in time to aid in the diagnosis of an illness or may be collected longitudinally to

provide information on the relationship between changes in a given biomarker as it relates

to the course of the illness. While there are many different biomarkers presented in the

medical literature there are very few studies that examine the relationship between multiple

biomarkers, measured longitudinally, and predictors of interest.

The first part of this dissertation addresses the analysis of multiple biomarkers subject

to left-censoring over time. Imputation methods and methods that account for censoring are

extended to handle multiple outcomes and are compared and evaluated for both accuracy

and efficiency through a simulation study. Estimation is based on a parametric multivariate

linear mixed model for longitudinally measured biomarkers. For left censored biomarkers an

extension of this method based on MLE is used.

The linear mixed effects model based on a full likelihood is one of the few methods

available to model longitudinal data subject to left-censoring. However, a full likelihood ap-

proach is complicated algebraically due to the large dimension of the numeric computations,

and maximum likelihood estimation can be computationally prohibitive when the data are

heavily censored. Moreover, the complexity of the computation increases as the dimension

of the random effects in the model increases. The second part of the dissertation focuses

on developing a method that addresses these problems. We propose a method based on a
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pseudo likelihood function that simplifies the computational complexities, allows all possible

multivariate models, and that can be used for any data structure including settings where

the level of censoring is high. A robust variance-covariance estimator is used to adjust and

correct the variance-covariance estimate. A simulation study is conducted to evaluate and

compare the performance of the proposed method for efficiency, simplicity and convergence

with existing methods. The proposed methodology is illustrated in the analysis of Genetic

and Inflammatory Markers for Sepsis (GenIMS) study conducted at the University of Pitts-

burgh.
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1.0 BACKGROUND AND MOTIVATION

1.1 INTRODUCTION

1.1.1 Longitudinal Data Analysis

Longitudinal studies can be defined broadly as studies in which the response of each individ-

ual is observed on two or more occasions. The defining feature of longitudinal studies is that

measurements of the same individuals are taken repeatedly through time, thereby allowing

the direct study of change over time. The primary goal of a longitudinal study is to charac-

terize the change in response over time and the factors that influence change. Longitudinal

studies are in contrast to cross-sectional studies, in which a single outcome is measured for

each individual. With repeated measures on individuals, one can capture within-individual

change. Indeed, the assessment of within-subject changes in the response over time can

only be achieved within a longitudinal study design. For example, in a cross-sectional study

one can only obtain estimates of between-individual differences in the response. That is, a

cross-sectional study may allow comparisons among sub-populations that happen to differ

in age, but it does not provide any information about how individuals change during the

corresponding period.

In the health sciences, longitudinal studies play an important role in enhancing our under-

standing of the development and persistence of disease. Longitudinal studies represent one of

the principle research strategies employed in medical and social science research (Goldstein

1979; Nesselroade and Baltes 1979). There is much natural heterogeneity among individuals

in terms of how diseases develop and progress. This heterogeneity is due to genetic, envi-

ronmental, social and behavioral factors. A longitudinal study design permits the discovery
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of individual characteristics that can explain these inter-individual difference in changes in

health outcomes over time. In summary, the fundamental objective of a longitudinal anal-

ysis is the assessment of within-individual changes in the response and the explanation of

systematic differences among individuals in their changes.

1.1.2 Overview of Longitudinal Data Models

There are many challenges to the development of statistical methods for the analysis of longi-

tudinal data, which include the computational burden of estimation when multiple outcomes

are considered, the complexity of specifying multivariate longitudinal models and the speci-

fication of the covariance structure. Parameter estimation can be computationally intensive

due to the need for numerical or Monte Carlo simulation methods to evaluate the likelihood

of mixed effects regression models. Observations are not, by definition, independent and

we must account for the dependence in the data using more sophisticated statistical meth-

ods, especially for more sophisticated models that permit more general forms of correlation

among the repeated measurements.

The most commonly used techniques to analyze longitudinal data are generalized esti-

mating equations (GEE) and the mixed effects model. The focus of the current study will be

on the use of the mixed effects model to address the challenges of longitudinal data analysis.

Methods based on the mixed effects model that can be used for both single and multiple

outcomes will be proposed.

1.1.3 Mixed Effects Modeling

Traditional analysis of variance methods are of limited use for longitudinal data analysis be-

cause of restrictive assumptions concerning the variance-covariance structure of the repeated

measures, and also such methods impose model assumptions that are usually not met in

observational studies, since the circumstances under which the measurements are collected

cannot always fully be controlled. That is, individuals can enter the study at any time, and

they can also withdraw from the study at any time, for different reasons. Moreover, not only

may individuals be observed for a different number of times, and for a different periods of
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time, the interval between observations my be different as well. The univariate analysis of

variance (mixed model) assumes that the variance and covariance of the dependent variable

across time are equal (i.e., compound symmetry). Alternatively, the multivariate analysis of

variance for repeated measures only includes subjects with complete data across time. For

these and other reasons, mixed effects regression models, such as the linear and nonlinear

mixed effects models, have been used as alternatives and have become popular for modeling

longitudinal data.

The basic characteristic of these models is the inclusion of random subject effects into

regression models in order to account for the influence of subjects on their repeated obser-

vations. These random subject effects thus describe each person’s trend across time, and

explain the correlational structure of the longitudinal data. Additionally, they indicate the

degree of subject variation that exists in the population of subjects.

There are several features that make mixed effects models especially useful in longitudinal

research. First, subjects are not assumed to be measured on the same number of time points,

thus, subjects with incomplete data across time are included in the analysis. The ability

to include subjects with incomplete data across time is an important advantage relative to

procedures that require complete data across time for two reasons, first by including all

data, the analysis has increased statistical power, second the complete-case analysis may

suffer from biases to the extent that subjects with complete data are not representative of

the larger population of subjects. Because time is treated as a continuous variable in a mixed

effects model, subjects do not have to be measured at the same time points. This is useful

for analysis of longitudinal studies where follow-up times are not uniform across all subjects.

Linear mixed effects models are used when the relationship between a longitudinal re-

sponse variable and its covariance can be expressed via a linear model. The linear mixed

effects model introduced by Laird and Ware (1982) can be generally written as:

Yi = Xiβ + Ziγi + εi (1.1)

εi ∼ N(0,Σi), γi ∼ N(0, G), i = 1, 2, . . . , N

where Yi and εi are, respectively, the vectors of responses and measurement errors for the ith

subject, β and γi are, respectively, the vectors of fixed effects (population parameters) and
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random effects (individual parameters), and the Xi and Zi are the associated fixed effects

and random effects design matrices. One can show that the mean and the variance of Yi are

given by E(Yi) = Xiβ and Var(Yi) = ZiGZ
T
i + Σi, respectively.

1.2 MOTIVATION AND ORGANIZATION OF THE DISSERTATION

1.2.1 Motivation

Many medical studies collect biomarker data to gain insight into the biological mechanisms

underlying disease. These markers may be obtained at a single point in time to aid in diag-

nosis or may be collected longitudinally to provide information on the relationship between

changes in biomarkers and the course of disease. There are many challenges to the develop-

ment of statistical methods for these analyses which include the handling of left truncated

data due to the sensitivity of assays, the complexity of specifying multivariate longitudinal

models and the computational burden of estimation when multiple biomarkers are consid-

ered.

These issues have been of importance for the analysis of data from the Genetic and

Inflammatory Markers of Sepsis (GenIMS) study. This study conducted at the University

of Pittsburgh enrolled 2320 subjects with community acquired pneumonia from the emer-

gency departments of 28 hospitals in southwestern Pennsylvania, Connecticut, Michigan and

Tennessee between 2001 and 2003. One major goal of this study is to understand the role

of inflammation in the development of sepsis within this cohort. To this end, a battery of

inflammatory markers were measured throughout the course of hospitalization. In addition,

septic patients were also identified and all subjects were followed for a period of 1 year to

assess mortality. These measurements are to be used to understand the relationship between

pro-inflammatory and anti-inflammatory markers in sepsis creating the need for methods

that can adequately model multiple longitudinal markers simultaneously.
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1.2.2 Overview and Organization of the Dissertation

1.2.2.1 Overview: This research focuses on the development of methodological and the-

oretical methods that address the challenges discussed in the previous sections. These meth-

ods are being developed in response to methods needed for the analysis of the biomarker

data collected in the GenIMS study described above.

The research can be divided in two parts. The first part focuses on evaluating and

comparing existing methods for modeling and analyzing truncated longitudinal data using

simulation techniques. We extend the method of maximum likelihood (ML) that accounts for

the loss of information due to censoring to handle multiple outcomes studied simultaneously.

These methods are compared in a simulation study in order to highlight the strengths and

weaknesses of the current approaches for this problem.

With the use of the maximum likelihood methods in the simulation study it became

apparent that the large number of nuisance parameters meant that the estimation problem

is complicated algebraically and computationally prohibitive as it involves numerical com-

plexities that require higher dimensional integrations. Moreover, these methods are limited

by the data structure studied and the covariance structure used. The goal of the second part

of this research is to develop a method that addresses these and other convergence related

problems. We propose a method based on pseudo maximum likelihood estimation, which

divides the estimation procedure into two steps. We evaluate and compare the performance

of the proposed method with the existing methods through empirical findings and simulation

study.

1.2.2.2 Organization: The proposal is organized as follows, in chapter 2 we discuss

methods for modeling longitudinal data subject to left-censoring, an extensive study is carried

out to evaluate and compare these methods through simulation study. Naive methods and

methods that account for censoring have been evaluated and compared. In section 2.3 we

extend the maximum likelihood method to a multivariate model and a simulation study is

conducted to assess the performance of the extended method.

Chapter 3 discusses the proposed pseudo maximum likelihood method. In section 3.2 we
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present the proposed methodology, the multivariate linear mixed model is given in section

3.2.1 and the pseudo-likelihood for left-censored data is developed in section 3.2.2. Com-

putational details are given in section 3.2.3. A simulation study, conducted to assess the

performance of the proposed model, is summarized in section 3.3 and the method is applied

to the GenIMS data in section 3.4. Results of this method are compared with results ob-

tained using existing methods. Brief discussion of the results and concluding remarks are

given in section 3.5.

In chapter 4 we discuss the findings and results of the research and direction for future

study is given.
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2.0 MODELING MULTIVARIATE LONGITUDINAL DATA SUBJECT TO

LEFT-CENSORING

2.1 INTRODUCTION

In medical sciences, studies are often designed to investigate changes in one or more vari-

ables which are measured repeatedly over time in the participating subjects. Many statistical

models have been proposed for the analysis of one single outcome. The analysis of multiple

outcomes, measured longitudinally, is often restricted to the analysis of each response sepa-

rately. However, research questions can often only fully be addressed in a joint analysis of

all outcomes simultaneously. For example, the association structure can be of direct scien-

tific relevance. A possible question might be how the association between outcomes evolves

over time or how outcome-specific evolutions are related to each other. Interest may be in

the comparison of average trends for different outcomes. For example, consider testing the

difference in evolution between many outcomes or joint testing of a treatment effect on a

set of outcomes. All of these situations require a joint model for all outcomes. However,

computational problems are likely to occur when the number of outcomes increases and

the complexity of specifying multivariate longitudinal models could be a challenge. Another

challenge to the development of statistical methods for this type of data include the handling

of left truncated data due to the sensitivity of assays.

In this chapter we will evaluate existing methods for the analysis of one single outcome to

longitudinal data subject to left truncation and we will propose an extension of the methods

for a joint analysis of multiple outcomes simultaneously.

Several approaches have been proposed in the statistics literature for the analysis of

longitudinal left censored data and all approaches differ in sophistication when handling the
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truncated values (measures). Ad hoc (Naive) procedures to replace the censored measures

have been used recently to adjust for a censored value. Replacing the censored value by the

lower detection limit (Keet et.al, 1997), or by half of the detection limit (O’Brien et.al, 1998,

Hornung and Reed , 1990) are the most frequently used approaches. Alternatively Paxton et

al.(1997) used an iterative two-stage imputation procedure to replace the censored measures

where they substitute the censored value with half of the lower detection limit in the first

stage then the model is refitted again by imputing the new estimated values. These methods

are convenient to use but they ignore the correlated structure of the data and did not adjust

the standard errors of the parameter estimates for the loss of information due to censoring.

In addition to imputation of the value of the detection limit, half of the limit or use

of a multiple imputation technique, methods that handle left-censoring directly have been

proposed. These procedures differ in the methodological approaches they follow. Proce-

dures based on fitting mixed effect linear models include maximum likelihood (ML) methods

and Bayesian methods based on modes of posterior distributions (Carriquiry et al., 1987 ).

Likelihood based methods include; Hughes (1999), Jacqmin-Gadda et al.(2000) and Lyles

et al. (2000). Hughes (1999) modified the usual EM estimation procedure for the mixed

effects model to account for left censoring. The method uses a Monte Carlo procedure to

provide a general solution that can be used with left-censored data and since the expectation

step of the EM algorithm is intractable, the Gibbs sampler is used to implement a Monte

Carlo expectation step in the EM algorithm. Jacqmin-Gadda et. al (2000) proposed an ap-

proach of direct maximization of the likelihood without the EM or the Monte Carlo methods

where maximization is based on the Marquardt algorithm. The Lyles et al. (2000) approach

is based on a hierarchical formulation of the likelihood, their approach combines those of

Hughes (1999) and Schluchter (1992) into a single likelihood, and estimation is carried out

by direct maximization of the likelihood using built-in algorithms in SAS.

While these methods address the challenges of truncated longitudinal data, they fail to

handle multivariate truncated data when multiple outcomes (markers) are considered. In

this study we modified and extended the direct maximization method proposed by Jacqmin-

Gadda et al. (2000) to model left-censored data with multiple outcomes accounting for the

loss of information due to censoring. For the univariate case, we evaluated and compared
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methods for modeling longitudinal data accounting for censored repeated measures, and the

naive methods that use simple imputation to replace the censored value.

2.2 ANALYSIS FOR A SINGLE OUTCOME

2.2.1 Single outcome linear mixed model

Mixed effects models or random effects models have proven to be powerful tools for longitu-

dinal data analysis. Here we used the standard linear mixed effects model proposed by Laird

and Ware (1982). First we introduce the following notation which will be used throughout

the chapter.

Let Yij denote the response variable for the ith subject on the jth measurement occasion.

Subjects may not have the same number of repeated measures and may not be measured at

the same set of occasions. To accommodate both of these features, we assume that there are

ni repeated measurements of the response on the ith subject and that each Yij is observed

at time tij. For convenience we group the response variable and the times of observation for

the ith subject into an ni × 1 vector

Yi =


Yi1

Yi2
...

Yini

 ti =


ti1

ti2
...

tini

 i = 1, 2, . . . , N .

The vector Yi is simply a time-ordered collection of the ni response variables for the ith

subject. The Yij’s are often called the components, entries, or elements of Yi.

The linear mixed effects model is defined (Laird and Ware, 1982) as:

Yi = Xiβ + Ziγi + εi, (2.1)

where β is a p dimensional vector of fixed effects and Xi is the corresponding ni × p design

matrix; γi is a q dimensional vector of random effects, Zi is an ni×q design matrix of random
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effects usually a sub-matrix of Xi and εi is ni dimensional vector of measurement errors. The

random effects γ1, . . . , γN and errors ε1, . . . , εN are assumed to be mutually independent with

εi ∼ N(0,Σi), γi ∼ N(0, G),

where G is a (q× q) covariance matrix of random effects with (i, j) element gij = gji and Σi

is (ni× ni) covariance matrix which depends on i only through its dimension ni, i.e. the set

of unknown parameters in Σi will not depend on i.

From (2.1) it follows that, conditional on the random effect γi, Yi is normally distributed

with mean vector Xiβ + Ziγi and with covariance matrix Σi. Let f(yi|γi) and f(γi) denote

the corresponding density functions, then we can obtain the marginal density function of Yi

by

f(yi) =

∫
f(yi|γi)f(γi)dγi,

which can be shown to be the density function of a ni dimensional normal distribution with

mean vector Xiβ and with covariance matrix Vi=ZiGZ
′
i + Σi. This marginal distribution of

the response Yi is used to estimate model parameters of the linear mixed effects model (2.1).

The marginal model

Yi ∼ N(Xiβ, ZiGZ
′

i + Σi), (2.2)

does not imply that Yi satisfies the hierarchical model (2.1). Hence, we do not explicitly

assume the presence of random effects representing the natural heterogeneity between sub-

jects, when we use the marginal distribution for inference. A simple example of the difference

between marginal and hierarchical models is given in Verbeke and Molenberghs (1997). The

classical approach to inference for the linear mixed effects model is based on estimators

obtained from maximizing the marginal likelihood function.

Let η denote the vector of all variance and covariance parameters (simply called variance

components) found in Vi, i.e. η consists of the q(q + 2)/2 different elements in G and of all

parameters in Σi. Let θ= (β
′
, η
′
)
′

denote the vector of all parameters in the marginal model

(2.2) for Yi, then the likelihood function with respect to θ, is given by

L(θ) =
N∏
i=1

1

(2π)ni/2|Vi(η)|−1/2
× exp

(
−1

2
(Yi −Xiβ)

′
V −1
i (η)(Yi −Xiβ)

)
. (2.3)
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2.2.2 Likelihood function for censored data

Assume there are nci censored measurements, and let ci denote the censoring threshold for

subject i (i.e. ci=Lower detection limit(LOD)). Also let Y o
i denote the noi -vector of ob-

served outcomes, Y c
i the nci -vector of censored outcomes for subject i, where ni = noi + nci .

Specifically, we define the observed and censored data as:

Y o
i =

 Yi if Yi > ci

ci if Yi ≤ ci ,

and the censored data Y c
i = {Yi | Yi ≤ ci }. Inference is based on incorporating this into the

likelihood function and different maximization techniques are used according to a method

used.

2.2.2.1 Ad hoc approaches Estimation using the naive methods is carried out by sim-

ply replacing the censored value by fixed value. One of the most commonly used replacement

methods is to substitute each non-detected value by half of its detection limit. Other com-

monly used replacement values are zeros or the detection limits. To avoid clumping of

replaced values in cases where there are several non-detect values that share a common de-

tection limit, values may be spaced evenly from 0 to the detection limit or according to some

specified probability distributions.

In this study we consider three of the most frequently used approaches, the method that

replaces the censored values with the lower detection limit (LOD), the approach of replacing

the censored values with half of the lower detection limit (HLD), and a random imputation

method where censored values are replaced by values from a random distribution. All these

methods use the complete data likelihood after censored values are replaced by fixed values,

and estimation is based on maximizing the complete likelihood in (2.3). We evaluated and

compared these methods, with other methods that account for censoring, through empirical

findings and simulation studies in sections 2.4 to 2.6.

2.2.2.2 Inference taking censoring into account One of the goals of the current

study is to develop statistical techniques that may be employed to handle censored data and
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account for the loss of information due to censoring. In this section we derive a likelihood

function for the linear mixed model in (2.1) for a longitudinal left-censored data that will be

used to estimate model parameters.

Reordering the matrix Xi, vector Yi, and the covariance matrix Vi(η) (written as Vi for

simplicity) we can partition them into observed and censored components as

Xi =

 Xo
i

Xc
i

 , Yi =

 Y o
i

Y c
i

 , Vi =

 V o
i V co

i

V co
i

′
V c
i

 .
Using these partitions and model (2.3), Y o

i has a multivariate normal probability density

f oi with mean µi
o = Xo

i β and covariance V o
i . Then the likelihood function of the censored

data in terms of the vector of parameters θ is:

L(θ) =
N∏
i=1

fY o
i |θ(Y

o
i |θ)P (Y c

i < ci|Y o
i , θ), (2.4)

that is the contribution to the likelihood for a censored value is the probability that the true

outcome is below the threshold.

Using multivariate normal distribution properties, the conditional distribution of the

censored, Y c
i , given the observed, Y o

i , is normally distributed with mean µ
c|o
i and variance,

V
c|o
i , given by the following expressions respectively:

µ
c|o
i = Xc

i β + V co
i Vi

o−1

[Y o
i − µoi ]

V
c|o
i = V c

i − V co
i Vi

o−1

Vi
co
′

.

Then the likelihood function of the left-censored data in (2.4) can be rewritten as:

L(θ) =
N∏
i=1

fY o
i |θ(Y

o
i |θ)Φ

c|o
i (ci|θ), (2.5)

where Φ
c|o
i (.) denote the conditional multivariate cumulative normal distribution of Y c

i given

Y o
i . Using the density and cumulative distribution function of the normal distribution (2.5)

can be further simplified to:
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L(θ) =
N∏
i=1

1

(2π|V o
i |)

1/2
exp

[
−1

2
(Y o

i − µoi )
′
Vi
o−1

(Y o
i − µoi )

]
∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cin
c
i

−∞

1

(2π|V c|o
i |)

1/2
exp

[
−1

2
(u− µc|oi )

′

V
c|o
i

−1
(u− µc|oi )

]
du, (2.6)

where u is an nc vector. Taking the logarithm of (2.5), we obtain the log-likelihood function

as:

`(θ) =
N∑
i=1

−log(2π)− 1

2
log|V o

i | −
1

2
(Y o

i − µoi )
′
V o
i
−1(Y o

i − µoi )

+ log

[∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cin
c
i

−∞

1

2π|V c|o
i |1/2

exp

[
−1

2
(u− µc|oi )

′

V
c|o
i

−1
(u− µc|oi )

]
du

]
. (2.7)

A FORTRAN program developed by Jacqmin-Gadda et al. (2000) is modified to esti-

mate model parameters by directly maximizing the likelihood in (2.7). In maximizing this

likelihood, a numerical computation of the integral of a multivariate normal density for each

subject with censored measures is required. We performed this computation by combining a

FORTRAN routine developed by Genz (1992) and a subregion adaptive multiple integration

method by Berntsen et al. (1991). This simplifies the computation and places it into a form

that allows efficient calculation using standard numerical multiple integration algorithms.

The algorithm uses a sequence of three transformations that transform the original integral

into an integral over a unit hypercube, reorders the integration variables and then applies a

subregion adaptive multiple integration method.

The likelihood was re-parameterized in terms of the square root for the variance of the

measurement error terms and the Cholesky decomposition of the covariance matrix of the

random effects G (G = C
′
C where C is an upper triangular matrix) is used in order to

impose positive constraints for the covariance parameters. To reduce computation time for

models with many covariance parameters, two optimization algorithms are combined. The

first iterations were done using the simplex algorithm and then the Marquardt algorithm

(Marquardt, 1963) was used near the optimum.

Instead of direct maximization of the likelihood in (2.7), Hughes (1999) proposed the

use of the EM algorithm treating γi and Y c
i as missing data. The M-step is carried out by
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computing the expectation of the complete data sufficient statistics and maximization of the

likelihood of complete data (i.e. the likelihood assuming that γi and Y c
i are observed) replac-

ing the sufficient statistics by their expectations. However, the E-step requires evaluation

of integrals which are intractable by classical methods leading to MCEM algorithm. The

MCEM algorithm has convergence problems and leads to more biased estimates, moreover,

it only works for models with simple covariance structure (Jacqmin-Gadda et al., 2000). The

method is restricted to single outcomes and can not be extended to a multivariate model.

2.3 ANALYSIS FOR MULTIPLE OUTCOMES

2.3.1 Multivariate linear mixed model

Mixed models are widely used for the analysis of a singleone repeatedly measured outcome.

If more than one outcome are present, a mixed model can be used for each one. These

separate models can be tied together into a multivariate mixed model by specifying a joint

distribution for their random effects.

Let k be the number of outcomes in the model, it will be assumed that each of the k

longitudinally measured outcomes can be modeled using the mixed model. For subject i and

outcome k, we observe the nik vector of measurements:

Yik =



yi1k

yi2k
...

yijk
...

yinikk


,

where yijk is the measure of subject i at occasion j for marker k. The number and times of

measurements may be completely different for each subject and each outcome.

For simplicity we present the bivariate case (k=2) in this section. Let yij denote the jth

measure at time tij for subject i (i = 1, . . . , N and j = 1, . . . , ni) for a single outcome, and let

14



Yi denote the vector of response of all measurements for subject i, i.e. Yi
′

= (yi1, . . . , yini
).

Let Yi =

 Y 1
i

Y 2
i

 denote the response vector for subject i, for i=1, . . . , N and Y k
i is the

nki vector of measurements of marker k (k=1,2). Let β =

 β1

β2

 be a p × 1 vector of

population parameters, known as fixed effects, and Xi be a known ni × p design matrix of

covariate variables linking β to Yi. Let γi =

 γ1
i

γ2
i

 be a q × 1 vector of subject-specific

parameters, known as random effects and Zi a known ni × q design matrix of covariates

linking γi to Yi.

We extend the usual linear mixed model (Laird and Ware,1982) to a multivariate model.

Yi = Xiβ + Ziγi + εi (2.8)

with the assumption that the ni-dimensional vector Yi satisfies

Yi|γi ∼ N(Xiβ + Ziγi,Σi)

γi and εi are assumed to be mutually independent with εi ∼ N(0,Σi), γi ∼ N(0, G) where Σi

is the ni×ni covariance matrix of measurement errors, and G is the covariance matrix of the

random effects. Σi is a diagonal matrix containing the two elements of the measurement error

of each marker, that depends on i only through it’s dimension ni. Thus the set of unknown

parameters in Σi will not depend on i. The covariance matrix of random effects G is the

matrix G =

 G1 G12

G12
′
G2

, which is partitioned into four sub-matrices: G1 is the covariance

matrix including variance and covariance of random effects for the first marker, G2 the

covariance matrix including variance and covariance of random effects of the second marker

and G12= G21
′

is the matrix of covariances between random effects of each marker. The

correlation between the two markers can be studied through the matrix G12. Marginally, the

Yi are independent normals with mean Xiβ and covariance matrix Vi=Var(Yi) = ZiGZ
T
i +Σi.
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2.3.2 Likelihood function for Left-Censored data

As before, let θ=(β
′
, η
′
)
′

denote all the unknown parameters in model (2.8), for a likelihood

based inference we use the marginal distribution of Yi. Conditional on the random effect

γi, Yi is normally distributed with mean Xiβ + Ziγi and with covariance matrix Σi. The

likelihood function arising from the marginal normal distribution for Yi is:

L(θ) =
N∏
i=1

∫ ni∏
j=1

f(Yi|γi, β)f(γi)dγi, (2.9)

where f(Yi|γi, β) and f(γi) are the normal density functions of the conditional distribution

of Yi|γi and γi respectively.

The ad-hoc approaches replace the censored measures with fixed values (LOD, HLD etc)

and thus use complete data, i.e. ni=n
o
i . Model parameters in this case are estimated by

maximizing the complete-data likelihood in (2.9).

For any of the responses Yi, assume that there are noi detectable values and thus nci=ni−noi
non-detectable (censored) values. Using the notation and partitions for censored and ob-

served responses from the previous section, we can show by the properties of the multivariate

normal distribution, that the conditional distribution of Yi
c given Yi

o is normal with mean

µi
c|o and covariance Vi

c|o. Then, we obtain the likelihood function using the marginal density

of Yi as

f(yi) =

∫
f(yi|γi)f(γi)dγi

=

∫ 
no

i∏
j=1

f(Y o
i |γi)




nc
i∏

j=1

P (Y c
i ≤ ci|γi)

 f(γi)dγi

=

∫ 
no

i∏
j=1

f(Y o
i |γi)




nc
i∏

j=1

FY c
i
(ci|γi)

 f(γi)dγi,

where FY c
i

is the cumulative distribution function (CDF) corresponding to the density of

f(Y c
i |γi).
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The the likelihood function of the vector θ of parameter is then given by

L(θ) =
N∏
i=1

f(yi)b =
N∏
i=1

fY o
i

(yoi |θ)P (Y c
i < ci|Y o

i = yoi , θ)

=
N∏
i=1

fY o
i

(yoi |θ)
∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cin
c
i

−∞
fY c

i |Y o
i

(u)du, (2.10)

where u = (u1, u2, . . . , unc
i
)
′

The log likelihood is then obtained by taking the log of this likelihood function. Using

the normal distribution of the observed and the censored data and their respective means

and covariance matrix, the log likelihood can be simplified as:

`(θ) =
N∑
i=1

−log(2π)− 1

2
log|V o

i | −
1

2
(Y o

i − µoi )
′
V o
i
−1(Y o

i − µoi )

+ log

[∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cin
c
i

−∞

1

2π|V c|o
i |1/2

exp

[
−1

2
(u− µc|oi )

′

V
c|o
i

−1
(u− µc|oi )

]
du

]
. (2.11)

2.4 ESTIMATION

Parameter estimation in the linear mixed effect model typically involves maximum likelihood

(ML) or variants of ML. Additionally, the solutions are usually iterative ones that can be

numerically quite intensive. Here in this section we discuss estimation of parameters based

on maximizing the likelihood functions specified for both univariate and multivariate models

using methods that has been frequently used in the statistical literature and the proposed

method.

2.4.1 Using Ad-hoc approaches

When data from an assay are left-censored, the lower detection limit (LOD) is known and

may be used to substitute a value for the censored observation. An ad-hoc approach for

dealing with the left-censored values is to replace them with the LOD value or with half of

the LOD (HLD) value.
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For our evaluation and comparison of methods we used three of the frequently used ad-

hoc methods. The first method replaces the censored value by the lower detection limit,the

second replaces censored value with half of the detection limit, while the third uses random

imputation to replace the censored value. After substituting censored values, model pa-

rameters can be estimated using many existing softwares by maximizing the complete data

likelihood given in (2.3) and (2.9) for univariate and multivariate outcomes, respectively.

In this study we used the FORTRAN program we modified and extended to multivariate

outcomes for parameter estimations. The computational details of the program is given in

section 2.2.

2.4.2 Estimation accounting for Censoring

Several methods have been proposed for estimating model parameters handling the censored

values, likelihood based methods include Hughes(1999), Jacqmin-Gadda et al. (2000), Lyles

et al.(2000) and Thiebaut et. al (2004). However, most of these methods are developed

and restricted to a model with a single outcome and can’t be extended to a multivariate

model. Thiebaut et al proposed a method to estimate parameters of a bivariate model

accounting for left-censoring of one or both markers, but the method is limited by the number

of random effects used in the model. Sy et al. (1997) used the Fisher scoring method

to fit a bivariate linear random effects model including an integrated OrsteinUhlenbeck

process (IOU), a stochastic process that includes Brownian motion as special limiting case.

Their program is implemented using the IML module of SAS software, however, it is very

complicated and it is not sufficiently flexible to allow large use by researchers not familiar

with IML (Thiebaut et. al 2004).

We perform estimation of model parameters based on maximum likelihood by directly

maximizing the log-likelihood given in (2.11). We extend the FORTRAN program described

earlier to maximize the likelihood(2.11). The maximization is based on a Marquardt algo-

rithm (Marquardt, 1963) that is a Newton-Raphson like algorithm where the diagonal of

the Hessian matrix is inflated when adapted. To impose a positive constraint of covariance

parameters, a new parameterization of the model was used in term of squared root of the
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variance of the measurement errors and a Cholesky decomposition of the random effects

covariance matrix. Multiple integrals of multivariate normal density as large as the number

of censored measures (nci) were numerically calculated using a subregion adaptative multiple

integration method developed by Genz (1992). We compare estimates obtained using this

method and other methods.

2.5 SIMULATION STUDY

The goal of this section is to evaluate and compare existing methods and proposed method

through simulation study. The performance of the methods is evaluated through bias and

precision of the estimators.

We generated data according to a linear mixed effects model with a random slope, random

intercept and independent error for k markers given by:

Y k
ij = βk0 + βk1 tij + βk2Xi + βk3 tij ∗Xi + γk0i + γk1itij + εij, (2.12)

where Yij, β, γ and ε are as defined in previous sections of this chapter and Xi is a binary

covariate. Data are simulated as follows, for i = 1, . . . , N we first generate all the components

of the design matrix X. That is, a binary variable randomly generated using Bernoulli(0.5)

is assigned as a covariate variable for each subject. For times of measurements random

numbers (similar to the real data measurement times) uniformly distributed between 1 and

7 (mean 4) were selected. Censoring values were chosen independently of time and subject

for each marker and parameter values were chosen to be close to those obtained from the

real data analysis. For the fixed effects parameter the values are set at

β1 =


β1

0

β1
1

β1
2

β1
3

 =


3.78

−0.41

−0.11

0.02

 ,

for the first marker and
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β2 =


β2

0

β2
1

β2
2

β2
3

 =


1.48

−0.15

−0.05

0.03


for the second marker.

The covariance matrix for the random effects was fixed at

G =


0.17 0.05 −0.66 −0.17

0.02 −0.16 −0.11

4.53 0.96

1.14

 ,

σ2
ε1=1.55 and σ2

ε2=0.66. With these specifications we simulated 500,000 measures of 1000

subjects with 30% - 40% censoring rate.

Tables 1-4 summarizes simulation results for data with 31% and 40% censored observa-

tions. All results reported are means of 500 replications. In table 1 we present the bias

and the MSE of the fixed effects of the linear mixed model (2.12) using the three differ-

ent ad-hoc methods considered in sections 2.2 and 2.3 and the proposed ML method that

accounts for censoring. The LOD method refers to the ad-hoc procedure that replaces the

censoring value by the lower detection limit, while HLD refers to the practice of substituting

half of LOD for all non-detected values. RI refers to the ad-hoc approach that uses random

imputation to replace non-detected values, and for this we generated random numbers from

Uniform(0,LOD) to replace the censored value.

As the tables show, the proposed ML method that takes censoring into account produces

estimates with significantly smaller bias and MSE compared to the other methods. The

procedure that substitutes LOD performed poorly, producing estimates with significant bias

and large MSE, and both bias and MSE gets larger with the increase of the censoring

rate in the data. On the other hand, the HLD method improves the estimates slightly,

but significant bias still exists. The RI method which replaces the censored value using a

randomly selected value from Uniform (0,LOD) distribution produces estimates comparable

to the HLD method, and improves the estimates slightly than the method of LOD. The ML

method that takes censoring into account, given in the last column of the table, removes
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Table 1: Simulation Results comparing the performance of the ML approach with the LOD,

HLD and RI procedures for fixed effect of the linear mixed effect model. The bias values are

obtained from the mean of estimates over 500 simulations.

Bias

Naive Methods ML-Method

% Censored Parameter True Value LOD HLD RI Accounting for Cens.

31 Slope of Time1 -0.41 -0.014 -0.014 -0.017 0.001

Slope of Time2 -0.15 -0.120 -0.009 -0.080 -0.015

Covariate1 -0.11 0.012 0.009 0.008 0.007

Covariate2 -0.05 0.019 0.017 0.018 0.005

Interaction1 0.02 -0.002 -0.002 -0.002 -0.001

Interaction2 0.03 -0.013 -0.011 -0.012 0.010

40 Slope of Time1 -0.41 -0.057 -0.035 -0.025 0.004

Slope of Time2 -0.15 -0.150 -0.129 -0.100 -0.045

Covariate1 -0.11 -0.049 -0.022 -0.021 -0.018

Covariate2 -0.05 -0.042 -0.023 -0.021 -0.012

Interaction1 0.02 -0.002 -0.002 -0.002 -0.004

Interaction2 0.03 0.064 0.050 0.047 0.026
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Table 2: Simulation Results comparing the performance of the ML approach with the LOD,

HLD and RI procedures for Variance components of the linear mixed effect model. The bias

values are obtained from the mean of estimates over 500 simulations.

Bias

Naive methods ML-Method

% Censored Parameter True Value LOD HLD RI Accounting for Cens.

31 Time1 0.02 -0.151 -0.161 0.13 -0.003

Time2 1.14 -0.131 -0.122 0.128 -0.053

σ2
ε1 1.55 -0.206 -0.201 0.143 -0.004

σ2
ε2 0.66 -0.092 -0.086 0.078 0.002

40 Time1 0.02 -0.215 -0.218 0.209 0.032

Time2 1.14 -0.321 -0.311 0.254 0.100

σ2
ε1 1.55 -0.255 -0.198 0.117 0.132

σ2
ε2 0.66 -0.175 -0.148 0.089 0.026
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much of the bias and reduces the MSE significantly. For example for the slope of time for

the data with 40% censoring rate LOD produces an estimate with -0.057 bias for the first

marker, whereas the ML method reduces this bias by more than 100% to 0.004. The same

is true for second marker (-0.15 using LOD and -0.045 using ML)

Generally the performance of all the methods deteriorates when the amount of censoring

was increased to 40%, but their relative performance did not alter substantially. Similar

results were observed, the ML method performs better than all the other methods with

significantly less bias and MSE.

Table 2 summarizes covariance parameter estimates. Similar trends between the differ-

ent methods were also observed for the covariance parameters estimates, substitution LOD

performed poorly underestimating the parameters with large bias, HLD and RI slightly im-

prove the estimates and perform better. No appreciable difference between HLD and RI was

noticed and the ML method remained to be the best producing estimates with significantly

less bias and MSE than the other three methods. As it can be seen from table 2 the ML

procedure not only accounts for the loss of information due to censoring but also reduced

the bias by more than half for all the estimates, for example, the bias for the slope of time

for the first marker is -0.151, -0.161, and 0.130 using LOD, HLD and RI respectively, while

the ML method produce estimates with only -0.003 bias.

2.6 APPLICATION TO GENIMS DATA

We applied the proposed method and the other three methods to a data set that motivates

our study, the Genetic and Inflammatory Markers for Sepsis study (GenIMS) data. We

illustrated how inference can be affected if appropriate measures are not taken to adjust

for the loss of information due to truncation. The GenIMS data is a longitudinal data set

collected for the Genetic and Inflammatory Markers of Sepsis study at the University of

Pittsburgh. One major aim of the study was to examine the relationship between a set of

inflammatory markers and to determine if changes in these markers over time were related

to mortality and/or development of sepsis.
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Table 3: Descriptive statistics for cytokines.

Raw Data Log Transformed Data

IL-6 IL-10 IL-6 IL-10

N 1797 1797 1797 1797

Mean 140.38 12.23 2.65 1.92

SD 1736.85 42.83 1.69 0.71

(Min, Max) (2, 126,000) (5, 1519) (0.69, 11.74) (1.61, 7.33)

2.6.1 Data Description

Twenty eight hospital from south western Pennsylvania, Connecticut, Michigan and Ten-

nessee participated in the study enrolling a total of 2320 patients from 2001 to 2003. Patient

eligibility criteria included being at least 18 years old and having both a clinical diagnosis

of pneumonia and a new pulmonary infiltrate on chest x-ray. During a patient’s stay in

the hospital, blood was drawn for cytokine assays at enrollment, and on days 2-7. The

biomarkers of greatest interest are IL-6 (interleukin-6), which is pro-inflammatory, and IL-

10 (interleukin-10), which is anti-inflammatory. Baseline inflammatory marker samples were

collected for 1797 subjects. Septic patients were also identified and all subjects were followed

for a period of one year to assess mortality. Descriptive statistics for the data are given in

table 3.

The detectable limit for both IL-6 and IL-10 was 5, indicating that the concentration

of the sample for these markers was below the detectable limit. Both of these markers are

measured for 7 days with the censoring rate increasing over time. For IL-6 these rates for

days 1 through 7 were as follows: 384/1797 or 21.4% for day1, 401/1738 or 23.1% for day

2, 464/1754 or 26.5% for day 3, 474/1463 or 32.4% for day 4, 364/1127 or 32.3% for day

5, 288/869 or 33.1% for day 6 and 229/696 or 32.9% for day 7. The censoring rates for

IL-10 were substantially higher with the results for days 1 through 7 as follows: 1086/1797

or 60.4% for day 1, 1138/1738 or 65.5% for day 2, 1281/1754 or 73.0% for day 3, 1128/1463
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or 77.1% for day 4, 844/1127 or 74.9% for day 5, 670/869 or 77.1% for day 6 and 532/696

or 76.4% for day 7. Overall 9283 (49.1%) measures of the combined bivariate cases were

left-censored.

2.6.2 Application of methods

To examine the relationship between these markers and mortality over time, we fit a linear

mixed model with random intercept and random slope for each biomarker (IL-6 and IL-10).

Before applying the methods a normalizing transformation is considered to assure normality,

and measurements are transformed using a log transformation. This results in the following

model

Y 1
ij = β1

0 + β1
1tij + β1

2Mortalityi + β1
3(tij ∗Mortalityi) + γ1

0i + γ1
1itij + εij

Y 2
ij = β2

0 + β2
1tij + β2

2Mortalityi + β2
3(tij ∗Mortalityi) + γ2

0i + γ2
1itij + εij,

where the superscript 1 and 2 represents the two biomarkers IL-6 and IL-10 respectively,

and mortality is a covariate variable indicating the mortality status of patients on the 30th

day of the study. i.e.

Mortality =

1 if subject is dead on day 30

0 if subject is alive on day 30.

The three ad-hoc methods and the proposed ML method described in sections 2.2 and

2.3 are applied to these models and parameters were estimated following the techniques

described in section 2.4.

Tables 4 and 5 present selected fixed effect estimates and variance components from the

four different analyses of the GenIMS data for the chosen model. The first analysis replaces

censored values with the detection limit. The second analysis replaces censored values with

half of the detection limit, while the third analysis is the random imputation method. The

fourth analysis is the ML method proposed here and uses the methodology described in

sections 2 and 3 of this chapter. From these results it is clear that simply replacing censored

values by the detection limit leads to bias in both the fixed effect and variance component
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Table 4: Selected fixed effects estimates of Bivariate linear mixed model for IL-6 and IL-

10,using several naive methods and the method that account for censoring.

ML

Naive Censoring Accounted

Parameter Method Estimate(S.E) Estimate(S.E)

LOD -0.224(0.009)

Slope of HLD -0.235(0.01) -0.234(0.009)

time for IL-6 RI -0.234(0.009)

LOD -3.057(0.568)

Slope of HLD -3.088(0.656) -3.096(0.655)

time for IL-10 RI -3.082(0.656)

LOD 1.163(0.170)

Mortality-IL-6 HLD 1.194(0.177) 1.194(0.176)

RI 1.196(0.179)

LOD 0.364(0.079)

Mortality-IL-10 HLD 0.554(0.103) 0.532(0.127)

RI 0.576(0.108)

LOD 0.607(0.236)

Mortality*time HLD 0.662(0.249) 0.659(0.249)

IL-6 RI 0.659(0.249)

LOD 0.685(0.097)

Mortality*time HLD 0.70(0.098) 0.703(0.100)

IL-10 RI 0.698(0.100)
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estimates. For all the methods, the mean IL-6 level exhibited a decrease during the first 7

days for alive patients and an increase for dead. The estimated mean IL-6 level at 7 days

was 1.662 by LOD, 1.566 by HLD, 1.561 by RI and 1.541 by ML for the alive patients and

7.074, 7.394, 7.37 and 7.104 by LOD, HLD, RI and ML respectively for the dead. Plots of

the estimated means obtained from the model is presented in figure 1.

Table 5 reports results of comparison between analyses using separate two univariate (

single outcome) models vs. analysis of multiple outcomes studied simultaneously using a

bivariate model. The joint modeling of the two markers using a bivariate model not only

allows the study of the correlation between markers, but also produces better estimates.

The estimated standard error of the slope of time for IL-6 (0.009) is much smaller than that

estimated with a univariate model (0.166). This underlines that information provided by

IL-10 data in the joint modeling contributes to the estimation of the IL-6. Moreover, the

joint analysis of multiple outcomes simultaneously results in a different fixed effects estimates

with different results, for example the mortality time interaction for IL-10 was not significant

using a univariate model but found to be significant using the bivariate model.
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Table 5: Fixed effects estimates of the linear mixed model using Bivariate model and two

separate univariate model.

Analysis taking left-censoring into account Analysis imputing threshold value*

Parameter Two Univariate Models Bivariate Model Bivariate Model

Slope time-IL6 -0.329(0.160) -0.234(0.009) -0.234(0.009)

Slope time-IL10 -3.279(0.616) -3.096(0.655) -3.082(0.656)

Intercept-IL6 2.954(0.062) 3.179(0.043) 3.235(0.043)

Intercept-IL10 1.372(0.055) 1.667(0.021) 2.074(0.020)

Mortality-IL6 1.277(0.228) 1.194(0.176) 1.196(0.179)

Mortality-IL10 0.496(0.267) 0.532(0.127) 0.576(0.108)

Mortality*time-IL6 0.160(0.349) 0.659(0.249) 0.658(0.249)

Mortality*time-IL10 0.036((0.125) 0.703(0.100) 0.698(0.100)

∗RI Method is used

28



3.0 PSEUDO MAXIMUM LIKELIHOOD METHOD FOR ANALYSIS OF

MULTIVARIATE TRUNCATED LONGITUDINAL DATA

3.1 INTRODUCTION

Many medical studies collect biomarker data to gain insight into the biological mechanisms

underlying both acute and chronic diseases. These markers may be obtained at a single

point in time to aid in the diagnosis of an illness or may be collected longitudinally to

provide information on the relationship between changes in a given biomarker as it relates

to the course of the illness. While there are many different biomarkers presented in the

medical literature there are very few studies that examine the relationship between multiple

biomarkers, measured longitudinally, and predictors of interest. The exception is the HIV

literature where CD4 counts and viral loads are jointly modeled over time (Jacqmin-Gadda

et al 2000; Thibaut, et al 2003).

Analysis of biomarker data has been important in understanding the relationship be-

tween markers of inflammation and the development of sepsis in the Genetic and Inflamma-

tory Markers of Sepsis (GenIMS) study. The study enrolled 2320 subjects with community

acquired pneumonia through the emergency department of 28 hospitals in southwestern

Pennsylvania, Connecticut, Michigan and Tennessee between 2001 and 2003. A battery of

inflammatory markers was measured throughout the course of hospitalization in this cohort

which was followed for a period of one year. With one goal being that of understanding

the relationship between the trajectories of the pro-inflammatory and anti-inflammatory

markers and the development of sepsis, there was a need for statistical methods that can

accommodate multiple longitudinal biomarkers rather than relying on a series of separate

longitudinal models for each biomarker. In addition, a large percentage of the biomarker data
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is left censored due to the sensitivity of the assays, so that much of the currently available

methodology is not applicable.

While there are methods available for the analysis of left censored outcome data in the

statistical literature, there are few methods that can handle multivariate truncated longi-

tudinal data when multiple outcomes need to be studied simultaneously. To address the

issue of truncation when modeling data, researchers have proposed either the use of imputed

values or the development of methods to handle the censoring directly. Imputing the lower

quantification limit (Keet et al ,1997) or half of this limit (O’Brien et al, 1998) to substitute

for the censored value and use of random imputation procedures (Paxton et al, 1997) are

the most frequently used approaches. All of these naive approaches, as seen in the previous

chapter, produce estimates with a substantial bias and they do not adjust the standard errors

of the estimates for the loss of information due to censoring. Hughes (1999), Jacqmin-Gadda

et al (2000), and Lyles et al (2000) proposed methods that handle left-censored measures.

However all of these methods, with the exception of the method proposed by Jacqmin-Gadda

et al (2000), are restricted to a longitudinal model with a single outcome. In addition, since

all of these methods are based on a full likelihood, they involve numeric and algebraic com-

plexities that require the evaluation of a series of multiple integrals and become prohibitive

for data with a high rate of censoring. These computations become even more unstable for

more than two random effects, leading to convergence issues when the current methodology

is applied.

In this chapter we propose a method that addresses the weaknesses of the current method-

ology for multivariate longitudinal models with left censored outcome data. The two major

weaknesses, computational complexity and model instability, are addressed by applying the

method of pseudo-likelihood to this problem. Using the pseudo-likelihood the estimation

problem is broken into two separate steps with estimation of the parameters associated

with the covariance taking place in step 1 and then computation of the remaining parame-

ters, based on the modified likelihood, occurring in step 2. The proposed pseudo-likelihood

method significantly reduces the computational burden associated with the current methods

and is much more stable while preserving the properties of the original estimators.

The chapter is organized as follows: in section 3.2 we present the proposed methodology,
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the multivariate linear mixed model is given in section 3.2.1 and we develop the pseudo-

likelihood for left-censored data in section 3.2.2. Computational details are given in section

3.2.3. A simulation study, conducted to assess the performance of the proposed model, is

summarized in section 3.3. In section 3.4 we apply the proposed method to the GenIMS data,

and results of these methods are compared with results obtained using existing methods.

Finally we close the chapter by giving a brief discussion of the results and concluding remarks

in section 3.5.

3.2 PSEUDO LIKELIHOOD METHODOLOGY

3.2.1 Linear Mixed Model

Let k be the number of outcomes in the model, it will be assumed that each of the k

longitudinally measured outcomes can be modeled using the mixed model. Let yij be the jth

measure at time tij for subject i (i = 1, . . . , N and j = 1, . . . , ni) for a single outcome. Let

Yi be the response vector for subject i, i.e. Yi
′
= (yi1, . . . , yini

).

For k=2, let Yi =

 Y 1
i

Y 2
i

 denote the response vector for subject i, for i=1, . . . , N and

Y k
i be the nki vector of measurements of marker k (k=1,2). Let β =

 β1

β2

 be a p×1 vector

of population parameters, known as fixed effects, and Xi be a known ni × p design matrix

of covariate variables linking β to Yi. Let γi =

 γ1
i

γ2
i

 be a q × 1 vector of subject-specific

parameters, known as random effects and Zi a known ni × q design matrix of covariates

linking γi to Yi.

For multivariate normal data the linear mixed model proposed by Laird and Ware (1982)

can be extended;

Yi = Xiβ + Ziγi + εi, (3.1)

with the assumption that the ni-dimensional vector Yi satisfies

Yi|γi ∼ N(Xiβ + Ziγi,Σi),
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where γi and εi are assumed to be mutually independent with εi ∼ N(0,Σi), γi ∼ N(0, G)

and Σi is the ni × ni covariance matrix of measurement errors, which is a diagonal matrix

containing the two elements of the measurement error of each marker, that depends on i only

through its dimension ni, and G is the covariance matrix of the random effects. Thus the

set of unknown parameters in Σi will not depend on i. Marginally, the Yi are independent

normals with mean Xiβ and covariance matrix Vi=Var(Yi) = ZiGZ
T
i + Σi.

3.2.2 Pseudo-likelihood for left-censored function

In general, pseudo maximum likelihood estimation consists of replacing all nuisance param-

eters in a model by estimates and solving a reduced system of likelihood equations. We form

the pseudo-likelihood by dividing the parameter space θ into the parameter of interest and

nuisance parameters, treating the covariance component parameters as nuisance parameters.

Let θ = (β, η) denote the parameter space, where β is the vector of fixed effect parameters

which are the parameters of interest and η are the nuisance parameters. Then the model in

(1) can be rewritten as

Yi = f(X, θ) + εi, (3.2)

where X is the design matrix of the model.

Using the notation from section 3.2.1, and letting Y o
i denote the noi -vector of observed

outcomes, Y c
i the nci -vector of censored outcomes and ci the nci -vector of censoring threshold

for subject i, the pseudo likelihood function is given by

L(β, η) = L( θ) =
N∏
i=1

fY o
i |θ(Y

o
i |θ)Pr(Y c

i < ci|Y o
i , θ).

The matrix Xi, vector Yi, and the covariance matrix Vi in section 3.2.1 can be partitioned

into observed and censored components as

Xi =

 Xo
i

Xc
i

 , Yi =

 Y o
i

Y c
i

 , Vi =

 V o
i V co

i

V co
′

i V c
i

 .
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From model (3.1), Y o
i has a multivariate normal distribution f oi , using properties of the

multivariate normal distribution we can show that the conditional distribution of Y c
i given

Y o
i is normally distributed with the following mean and variance expressions respectively:

µ
c|o
i = Xc

i β + ηcoi η
o−1

i [Y o
i − µoi ].

V
c|o
i = ηci − ηcoi ηo

−1

i ηco
T

i ,

where ηi denotes the covariance matrix Vi(η).

Let the multivariate normal distribution function of the conditional distribution of Y c
i

given Y o
i be denoted by Φ

c|o
i , then the pseudo likelihood function can be rewritten as:

L(θ) =
N∏
i=1

fY o
i |θ(Y

o
i |θ)Φ

c|o
i (ci|θ)

=
N∏
i=1

1

2π|ηoi |1/2
e{
−1
2

(Y o
i −Xβ)T ηi

o−1(Y o
i −Xβ)}

∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cinc
i

−∞

1

2π|ηic|o|1/2
e

{
−1
2

(u−µc|o
i )T ηi

c|o−1
(u−µc|o

i )
}
du, (3.3)

where u is an nc vector. The log pseudo likelihood is given by:

`(β, η) =
N∑
i=1

−log(2π)− 1

2
log|ηoi | −

1

2
(Y o

i −Xβ)Tηi
o−1(Yi −Xβ)

+ log

∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cinc
i

−∞

1

2π|ηc|oi |
1/2
exp

[
−1

2
(u− µc|oi )

T
η
c|o
i

−1
(u− µc|oi )

]
du. (3.4)

The proposed PMLE method involves a two step estimation process. In the first a

consistent estimate η̂ is obtained for the nuisance parameter η by some technique or approach

other than the maximum likelihood estimation (two approaches are used in this dissertation).

The PMLE is then obtained by maximizing the log pseudo-likelihood `(β, η̂), viewed as a

function of the single parameter β.

We use and compare two different methods to obtain a consistent estimator of η in the

first step of estimation. In the first method we obtain η̂ by the method of moment estimators,

which is known to be consistent (Casella and Berger, 2002, Ch. 7). In the second method we

fixed β to be a consistent estimator β̃ obtained by an imputation method (Lubin et.al, 2004;
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Paxton et al., 1997), then the resulting log-likelihood function is used to obtain a consistent

estimator for η. We demonstrated the consistency of the estimator obtained by this method

in a theorem given in the appendix.

The second step of estimation proceeded by updating the log-pseudo likelihood in (4)

using the estimator η̂ to obtain the following likelihood

`(β, η̂) =
N∑
i=1

−log(2π)− 1

2
log|η̂oi | −

1

2
(Y o

i −Xβ)T η̂o
−1

i (Yi −Xβ)

+ log

∫ ci1

−∞

∫ ci2

−∞
. . .

∫ cin
c
i

−∞

1

2π|η̂c|oi |1/2
exp

[
−1

2
(u− µc|oi )T η̂

c|o
i
−1(u− µc|oi )

]
du. (3.5)

Setting the first derivative of this new log pseudo-likelihood, i.e. the pseudo-score vector,

S(β, η̂) =
∂

∂(β, η̂)
`(β, η̂)

equal to 0, and solving this equation for β gives the PMLE, β̂. Optimization is carried

out using the dual Quasi-Newton algorithm in SAS proc nlmixed (computational details are

given in next section)

The PMLE, β̂ is asymptotically multivariate normal (White 1982). However, since the

multiple markers are generally correlated (for example, two markers Yij and Yik for subject

i, may be correlated), a robust estimator of the variance-covariance is required. To this end

we carried out appropriate adjustments by replacing the asymptotic covariance matrix by a

robust estimator commonly known as the sandwich estimator. For this purpose we introduce

the following notation:

A(θ) = E

{
−∂

2`(Yi, f(X, θ))

∂θ∂θ′

}

B(θ) = E

{
∂`(Yi, f(X, θ))

∂θ

∂`(Yi, f(X, θ))

∂θ′

}
.

Gong and Samaiego (1981) and White (1982) showed that

√
N(θ̂ − θ) d→MVN(0, A(θ)−1B(θ)A(θ)−1). (3.6)
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Once the PMLE, β̂, of β is obtained, then we obtain the first and second order partial

derivatives for each subject to obtain the components of the sandwich estimator A(β) and

B(β) as:

A(β) = E
{
− ∂2

∂β∂β
′

{∑N
i=1−log(2π)− 1

2
log|η̂oi | − 1

2
(Y o

i −Xβ)T η̂o
−1

i (Yi −Xβ)

+log
∫ ci1
−∞

∫ ci2
−∞ . . .

∫ cinc
i

−∞
1

2π|η̂c|o
i |

1/2 exp
[
−1
2

(u− µc|oi )
T
η̂
c|o−1

i (u− µc|oi )
]
du

}}
, (3.7)

and

B(β) = E
{

∂
∂β

{∑N
i=1−log(2π)− 1

2
log|η̂oi | − 1

2
(Y o

i −Xβ)T η̂o
−1

i (Yi −Xβ)

+log
∫ ci1
−∞

∫ ci2
−∞ . . .

∫ cini
c

−∞
1

2π|η̂c|o
i |1/2

exp
[
−1
2

(u− µc|oi )T η̂
c|o−1

i (u− µc|oi )
]
du

}
∂
∂β′

{∑N
i=1−log(2π)− 1

2
log|η̂oi | − 1

2
(Y o

i −Xβ)T η̂o
−1

i (Yi −Xβ)

+log
∫ ci1
−∞

∫ ci2
−∞ . . .

∫ cini
c

−∞
1

2π|η̂c|o
i |

1/2 exp
[
−1
2

(u− µc|oi )T η̂
c|o−1

i (u− µc|oi )
]
du

}}
. (3.8)

We developed a SAS macro to estimate the model parameters and to obtain the compo-

nents of the robust variance-covariance estimator. The corrected variance estimateA(β)−1B(β)A(β)−1

is computed by dropping the expectation and replacing the unknown parameter β by the

PMLE β̂.

The methods proposed by Jacqmin-Gadda et.al(2000) and Thiebaut et.al (2002) are

based on maximizing the full likelihood in (3.3) and parameter estimation involves high

dimensional multiple integrations. In their methods the likelihood in (3.3) requires nci number

of multiple integrals of the multivariate normal density to be numerically calculated. The

PMLE method avoids such complex high dimensional integration by reducing the integration

to a single dimension where censored observations require only computation of the univariate

normal distribution for which an efficient numerical algorithm is used.
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3.2.3 Computational Details

We developed a SAS macro to obtain the pseudo-likelihood estimates of model parameters

by maximizing the log pseudo likelihood in (3.4) using the dual Quasi-Newton optimization

method in SAS Proc NLMIXED. The NLMIXED procedure provides improved ML estimates

and unlike other procedures, it allows for the explicit modeling of random effects by allowing

the user to write his/her own function. But NLMIXED does not have an option for adjusting

standard errors, so we developed a SAS macro that runs NLMIXED and calculates the

corrected standard error using the robust(sandwich) estimator given in (3.6) (SAS macro

and other codes developed for parameter estimation and the sandwich estimator are given

in appendix). Another limitation of the NLMIXED procedure is that it lacks a REPEATED

statement and so has limited capacities for modeling the covariance structure of correlated

data, however in modeling longitudinal data in which there is not a high degree of serial

correlation this limitation may not be serious.

3.3 SIMULATION STUDY

To explore the performance of the PMLE, we conducted a simulation study. We used the

simulation study to determine if the obtained estimators are indeed unbiased, if the standard

errors are correct and if there is any loss in efficiency compared to the full likelihood approach.

Data were generated as follows, for i = 1, . . . , N : we first generated all of the components

of the design matrix X, that is, a binary variable is randomly generated using Bernoulli(0.5)

and is assigned as a covariate variable for each subject. For times of measurements random

numbers (similar to the real data measurement time) uniformly distributed between 1 and

5 were selected. Censoring values were chosen independently of time and subject for each

marker and parameter values were selected to be close to those obtained from the real data

analysis with the following parameter values being used:
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Table 6: Computational time comparisons according method used. Methods based on the

two full Maximum likelihood based approaches(ML-CENSAD and ML-NLMIXED) and the

Pseudo likelihood approach (PMLE) proposed in this study. Time given is in cpu seconds∗.

Method Model with 2 Random Effects Model with 4 Random Effects

ML-CENSAD 720 1856

ML-NLMIXED 780 Didn’t converge

PMLE 510 820

∗ time given is for a single run

β1 =


0.70

−0.15

−0.2

0.03

 , β2 =


0.50

−0.15

0.15

0.05

 .

Using these specifications 1000 measurements of 200 subjects were simulated according

two different models. The first model is a model with two random effects, one random slope

for each response (marker)

Y k
ij = βk0 + βk1 tij + βk2Xi + βk3 tij ∗Xi + γk1itij + εij, (3.9)

where β and γ are vectors, ε is a matrix as defined in section 2, and Xi is a binary covariate

variable.

The second model includes a random slope and a random intercept for each response for

a total of four random effects in the model,

Y k
ij = βk0 + βk1 tij + βk2Xi + βk3 tij ∗Xi + γk0i + γk1itij + εij. (3.10)

In both models a binary variable Xi is used as a covariate variable and its effect over time is

also studied by including an interaction term in the model. For all of the simulation studies

25% of the measures were censored.
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Table 7: Selected simulation results comparing the performance of the PMLE approach

with the ML approach. Bias and S.E. for fixed effect parameters of the linear mixed effect

model with a random slope (model (9)) estimated by ML-NLMIXED and by PMLE. Values

reported are for the mean of 500 replications.

Method

ML-NLMIXED PMLE1 PMLE2

Parameter True Value Bias SE Bias SE Bias SE

Time1 (β1
1) -0.15 -0.0059 0.0340 -0.005 0.036 0.0040 0.0336

Covariate1 (β1
2) -0.20 0.0009 0.0432 0.002 0.035 0.0009 0.0433

Interaction1 (β1
3) 0.03 0.0087 0.0468 -0.002 0.049 -0.0091 0.0469

Time2 (β2
1) -0.15 -0.0242 0.0320 -0.027 0.037 0.0281 0.0354

Covariate2 (β2
2) 0.15 -0.0179 0.0426 0.023 0.045 0.0181 0.0426

Interaction2 (β2
3) 0.05 -0.0061 0.0491 -0.008 0.050 -0.0077 0.0490

The proposed method is compared to two different existing full likelihood methods for

efficiency and accuracy. The first method used for the comparison is a method proposed by

Jacqumin-Gadda et.al (2000), in which parameter estimation is carried out by maximizing

the full likelihood using a Marquardt algorithm and other multiple iterative process. They

used a FORTRAN program called CENSAD (and hence we labeled this method as ML-

CENSAD in the results presented in the tables). The second method used is that of Thiebaut

and Jacqmin-Gadda (2004) which is also a full likelihood based method,the authors used

SAS Proc Nlmixed procedure for maximization (results from this method are lebeled as ML-

NLMIXED in tables). Both of these methods are compared with the proposed method for

computational time, efficiency and bias.

For the first step in the estimation of the PMLE both the method of moment estimators

and the second method described in section 3.2.2 were used. Estimates obtained by these

methods are labeled as PMLE1 and PMLE2, respectively, in tables of results.

In Table 6 we present a summary of computation time by each method for both models
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Table 8: Selected simulation results comparing the performance of the PMLE approach

with the ML approach. Bias and S.E. for fixed effect parameters of the linear mixed effect

model with a random intercept and a random slope (model (10)) estimated by ML-CENSAD

and by PMLE. Values reported are for the mean of 500 replications.

Method

ML-CENSAD PMLE1 PMLE2

Parameter True Value Bias SE Bias SE Bias SE

Time1 (β1
1) -0.15 0.0311 0.0018 0.031 0.001 0.0284 0.0023

Covariate1 (β1
2) -0.20 0.0512 0.0788 0.033 0.079 0.0323 0.0812

Interaction1 (β1
3) 0.03 0.0225 0.0095 0.023 0.014 0.0234 0.0136

Time2 (β2
1) -0.15 -0.0401 0.0010 -0.050 0.001 -0.0483 0.0010

Covariate2 (β2
2) 0.15 -0.0410 0.0273 -0.047 0.030 -0.0472 0.0291

Interaction2 (β2
3) 0.05 0.0110 0.0019 0.014 0.002 0.0123 0.0023
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(3.9) and (3.10). The proposed PMLE method converges in substantially less time than

the other two full likelihood based methods. Comparing the two methods used for the

first step of the estimation of the PMLE, the method of moment estimators takes less time

than the second method. The ML-CENSAD converges a little bit faster than the ML-

NLMixed, but is significantly slower than the PMLE-method. For the model with four

random effects, model (3.10), the ML-NLMIXED did not converge and it was stopped after

an hour (3600 cpu seconds). Comparing ML-CENSAD and PMLE for model (3.10), again

the PMLE converges significantly faster than the ML-CENSAD. Generally speaking, the

computation time significantly increased based on the data structure and model used for

both full likelihood based methods, but the PMLE is not significantly affected by these

changes. For instance, the ML-CENSAD is very slow to converge when the number of

measures ni for each subject increases (the results reported in table 1 are for ni =5 ∀i) and

the ML-Nlmixed has convergence difficulties when the number of random effects in the model

increases (for the model with 4 random effects the method does not converge for 3600 cpu

seconds and was stopped before convergence).

Tables 7 and 8 display the bias and the standard error obtained from each method for

models (3.9) and (3.10) respectively. As can be seen from these tables the proposed PMLE

method produces estimates comparable to both of the full likelihood methods with less bias

and significantly shorter computation time. Both the method of moments and the second

method used in the first step of the estimation of the PMLE gives similar results with no

significant difference in the bias and standard error.

3.4 APPLICATION

We applied the proposed method and the other two existing methods to analyze the Gen-

IMS data descriped earlier in chapter 2. One aim in the GenIMS study is to examine the

relationship between a set of inflammatory markers and to determine if changes in these

markers over time were related to mortality and/or development of sepsis. A total of 2320

patients were recruited to the study with inflammatory markers measured on a subset of 1797
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subjects (see section 2.6.1 and table 3 for in depth description of the data). The biomarkers

of greatest interest are IL-6 (interleukin-6) and tumor necrosis factor (TNF) as markers of

pro-inflammatory and IL-10 (interleukin-10), as a marker of the anti-inflammatory cytokine

response.

To determine if there are specific patterns of the circulating levels of these makers as-

sociated with severe sepsis and death, we fit a linear mixed model with random intercept

and random slope for each biomarker. Before applying the methods a normalizing transfor-

mation is considered to assure normality, and measurements are transformed using the log

transformation function.

Y 1
ij = β1

0 + β1
1tij + β1

2Mortalityi + β1
3(tij ∗Mortalityi) + γ1

0i + γ1
1itij + εij.

Y 2
ij = β2

0 + β2
1tij + β2

2Mortalityi + β2
3(tij ∗Mortalityi) + γ2

0i + γ2
1itij + εij.

where the superscript 1 and 2 represents a cytokine response (IL-6, TNF or IL-10).

We conducted multiple analyses using different combinations of the pro-inflammatory

and anti-inflammatory markers using the proposed PMLE and the ML-CENSAD methods

to estimate model parameters. The ML-NLMIXED method is not used here since it does

not converge for a model with four random effects.

We present results of three analysis using mortality, severe sepsis and both mortality and

severe sepsis together in tables 9, 10 and 11 respectively, comparing analysis using separate

univariate models and bivariate model considering two markers simultaneously.

When comparing the estimates obtained using ML-CENSAD versus the PMLE method,

the standard errors of the PMLE estimates are larger. However, the inferences are the same

in both cases. In all cases, the computation time for the PMLE method is substantially less

than that of the ML-CENSAD.

The joint modeling of the two biomarkers using a bivariate model allows us to study the

correlation between the markers over time which can be of importance when understanding

the role of biomarkers in the development of sepsis. Moreover, the bivariate model takes into

account the estimation of the correlation matrix between random effects for the estimation

of other model parameters. For example the first analysis (using IL-6 and IL-10), estimated
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Table 9: Parameter estimates and S.E. of fixed effects for the linear mixed model of IL-6 and

IL-10 of the GenIMS data including mortality as a covariate variable according to method

(ML-CENSAD and PMLE) and model (Univariate Vs. Multivariate) used. Responses are

log(IL-6) and log(IL-10) and time is measured in days

Two Separate Bivariate Model according to Method

Parameter Univariate Models ML-CENSAD PMLE

Slope time-IL-6 -0.329(0.160) -0.2339(0.0093) -0.2738(0.0122)

Slope time-IL-10 -3.279(0.616) -3.0955(0.6549) -3.0939(0.6649)

Mortality-IL-6 1.277(0.228) 1.1937(0.1758) 1.1944(0.1811)

Mortality-IL-10 0.496(0.267) 0.5319(0.1272) 0.5317(0.1329)

Mortality*time-IL-6 0.160(0.349) 0.6597(0.2495) 0.6641(0.2578)

Mortality*time-IL-10 0.036(0.125) 0.7035(0.1001) 0.6952(0.1068)

Table 10: Parameter estimates and S.E. of fixed effects for the linear mixed model of TNF

and IL-10 of the GenIMS data including severe sepsis as a covariate variable according to a

model (Univariate Vs. Multivariate) used. Responses are log(TNF) and log(IL-10) and time

is measured in days

Selected Two Separate Bivariate

Parameter Univariate Models Model

Slope time-TNF -0.228(0.0296) -0.094(0.0110)

Slope time-IL-10 -0.649(0.0306) -0.308(0.0153)

Severe Sepsis-TNF 0.264(0.0478) 0.259(0.0440)

Severe Sepsis-IL-10 0.209(0.0792) 0.315(0.0728)

Severe Sepsis*time-TNF 0.004(0.0307) -0.005(0.0178)

Severe Sepsis*time-IL-10 0.167(0.0386) 0.055(0.0236)
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Table 11: Parameter estimates and S.E. of fixed effects for the linear mixed model of TNF

and IL-10 of the GenIMS data including mortality and severe sepsis as covariate variables

according to a model (Univariate Vs. Multivariate) used. Responses are log(TNF) and

log(IL-10) and time is measured in days

Selected Two Separate Bivariate

Parameter Univariate Models Model

Slope time-TNF -0.226(0.0212) -0.093(0.0111)

Slope time-IL-10 -0.641(0.0303) -0.313(0.0153)

SS-TNF 0.212(0.0495) 0.2034(0.0458)

SS-IL-10 0.173(0.0833) 0.245(0.0767)

Mortality-TNF 0.337(0.0897) 0.356(0.0826)

Mortality-IL-10 0.226(0.1320) 0.419(0.1250)

SS*time-TNF 0.006(0.0315) -0.0001(0.0184)

SS*time-IL-10 0.111(0.0394) 0.031(0.0249)

Mortality*time-TNF -0.0189(0.0604) -0.027(0.0340)

Mortality*time-IL-10 0.312(0.0635) 0.148(0.0389)
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standard error for the slope of time IL-6 is 0.0122 (table 9) using a bivariate model, smaller

than the estimated standard error using a univariate model (0.160), underlining the fact that

information provided by the second marker (IL-10) data in the bivariate model contributes

to the estimation of the first marker. In addition, use of the bivariate model resulted in a

different relationship between mortality and IL-6 values when compared to modeling IL-6 as

a single outcome, and statistical significance of the interaction term for mortality and time

for IL-10 differs depending on the model used, with the term being non-significant for the

single outcome model and highly significant for the bivariate model.

Plots of the estimated means from the three analysis, using a univariate and bivariate

models are presented in Figures 1-3. The plotted values are the estimated mean levels on

each of the seven days using both univariate and bivariate models. The estimated mean level

of the markers using a bivariate model are different compared to the levels of the univariate

model. Generally the estimated mean concentration is higher in day 1 and reduced in the

subsequent days for all the markers.

The estimated mean IL-6 concentrations were higher for subjects who died compared to

those who did not, and for the subjects who developed severe sepsis compared with those

who did not. The pattern was similar for TNF, the mean estimated level was higher for

subjects who developed sever sepsis (both survivors and non survivors) compared with those

who did not develop sever sepsis.

The mean estimated IL-10 concentration were lower than those observed for IL-6. Higher

levels were associated with dead subjects compared to survivors and with subjects with severe

sepsis compared with subjects without severe sepsis. Comparing the bivariate model (red

line) and the univariate model(green line) (fig.1 b), estimated mean concentration of IL-

10 for non-survivors is significantly higher than survivors in the bivariate model, but not

significantly different using a univariate model.
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Figure 1: Estimated model means of log(IL-6) and log(IL-10) for the GenIMS data, using the

PMLE parameter estimation by mortality status (dead or alive) and model used (univariate

or bivariate).
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Figure 2: Estimated model means of log(TNF) and log(IL-10) for the GenIMS data, using the

PMLE parameter estimation method by model(univariate or bivariate) using severe sepsis

as a covariate variable.
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Figure 3: Estimated model means of log(TNF) and log(IL-10) for the GenIMS data, using

the PMLE parameter estimation method by model(univariate or bivariate) using mortality

and severe sepsis as covariate variables.

47



3.5 DISCUSSION

We proposed and evaluated a pseudo maximum likelihood estimator for the analysis of multi-

variate longitudinal left-censored data that simplifies computational complexities and can be

applied to different models and different data structures. The major advantage of the pseudo

likelihood estimator is its computational simplicity when compared with the full likelihood

method currently used for modeling multivariate longitudinal data. The proposed method

significantly eases the numerical complexities of the full likelihood approach by reducing

high-dimensional integration to integration of a single dimension. Further, it alleviates the

need to specify and estimate many nuisance parameters that are required in a full likelihood

approach. As is demonstrated by the simulation and the real life data studies, the pseudo

likelihood approach yields estimates with small bias and robust standard errors.

For longitudinal data with high rate of censoring, like the GenIMS data analyzed in

this study, the pseudo likelihood method is recommended since it dramatically decreases the

computation time. The full likelihood approach methods are limited by the rate of censoring

as these methods require numerical evaluation of multiple integrals of a multivariate normal

density whose dimension is equal to that of the number of censored measures. Whereas,

the pseudo likelihood approach avoids numerical evaluation of multivariate integrals, since

filling in censored observations requires computation of the univariate normal distribution

function for which efficient numerical algorithms are available.
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4.0 DISCUSSION AND FUTURE WORK

4.1 DISCUSSION

We presented two approaches to fit linear mixed model accounting for left-censoring of the

response. In the maximum likelihood approach to estimate mixed effects linear models

with left-censored longitudinal data, the simulation study showed that the bias and the

mean squared error of parameter estimates obtained by this method are smaller than those

obtained by imputing the censoring limit or half of the limit.

The proposed extension of the maximum likelihood method to handle a multivariate

model when multiple outcomes are needed to be studied simultaneously yields better esti-

mations than the two univariate models. Moreover the correlation matrix between random

effects could be very informative as illustrated in the application of this study.

Limitations of the full maximum likelihood are its computational complexities, it involves

numerical complexities that require high dimensional integrations and the convergence and

other problems related when the data to be analyze involve high rate of censoring. The

pseudo-maximum likelihood method proposed simplifies these and other problems. As is

demonstrated by the simulation and the analysis of the GenIMS data studies, the pseudo

maximum likelihood approach yields estimates with small bias and robust standard errors

in a significantly less time than the full likelihood. It also significantly eases the numerical

complexities by reducing the high dimensional integration to integration of a single dimen-

sion.

We recommend the pseudo maximum likelihood method for longitudinal data with high

rate of censoring, like the GenIMS data analyzed in this study, not only because it signifi-

cantly decreases the computation time, but also unlike the full likelihood method, it can be
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applied to a data with numerous censored measures.

Unlike the full likelihood, the pseudo-likelihood requires specification of the distribution

for the data at times on the same subject. Further, compared to maximum likelihood, which

requires the full likelihood to be correctly specified in order to obtain consistent estimates,

the pseudo- likelihood estimates are consistent as long as the marginal distributions are

correctly specified.

4.2 FUTURE WORK

The future work plan is to apply the review of outcomes from this study to analysis of a

single outcome model. Develop a methodology based on the pseudo maximum likelihood to

a single outcome analysis to evaluate and compare the performance with existing methods.

The model developed in this study assumes ignorable drop outs, and did not take into

account informative drop out. In the future I plan to work on developing a joint model of

longitudinal data with informative drop out and censoring.
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APPENDIX

A.1 PROOF OF CONSISTENCY

We demonstrate consistency of η̂ obtained by the second method described in section 2.2 in

the following theorem.

Let ηo denote the true value of η, and β̃ a consistent estimator of β we will make use of

the following regularity conditions.

(C1) The parameter space θ is a compact subset of the Euclidean p-space (Rp) (the

value ηo is an interior point of θ).

(C2) `N(β̃, η) is a measurable function for all η ∈ θ and ∂
∂η
`N(β̃, η) exists and is

continuous in an open neighborhood of ηo.

(C3) 1
N
`N(β̃, η) converges in probability uniformly to a function `(β̃, η) in an open

neighborhood of ηo, and `(β̃, η) attains a local maximum at ηo.

Condition (C1) is one of the assumptions used to develop our method, while (C2) can

be verified easily as the first-order derivatives of `N(β̃, η) are bounded in a neighborhood of

ηo, and that E| 1
N
`N(β̃, η)| ≤ K, on a neighborhood of ηo. (C3) can be verified using the

first-order Taylor’s expansion and the law of large numbers.

Theorem: Under the above regularity conditions, let η̂N be a root of the equation

∂

∂η
`N(β̃, η) = 0

for which |η̂N − ηo| < ε for ε > 0. Then η̂N
p→ ηo.
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Note: if η̂N is not unique, we appropriately choose one such value in such a way that η̂N

is a measurable function. This is possible by a theorem of Jennrich (1969, p. 637).

Proof: Let K be an open neighborhood in Rp containing ηo. Then K̄ ∩ θ, where K̄ is

the complement of K in Rp, is compact. Therefore maxη∈K̄∩θ `(β̃, η) exists. Define

ε = `(β̃, ηo)− max
η∈K̄∩θ

`(β̃, η). (.1)

Let AN be the event that | 1
N
`N(β̃, η)− `(β̃, η)| < ε/2 for all η. Then

AN ⇒ `(β̃, η̂N) >
1

N
`N(β̃, η̂N)− ε/2, (.2)

and

AN ⇒
1

N
`N(β̃, ηo) > `(β̃, ηo)− ε/2. (.3)

But then since `N(β̃, η̂N) ≥ `N(β̃, ηo), from (A.2) we have

AN ⇒ `(β̃, η̂N) >
1

N
`N(β̃, ηo)− ε/2. (.4)

Therefore, adding both sides of the inequalities in (A.3) and (A.4), we obtain

AN ⇒
1

N
`N(β̃, ηo) + `(β̃, η̂N) > `(β̃, ηo)− ε/2 +

1

N
`N(β̃, ηo)− ε/2

⇒ `(β̃, η̂N) > `(β̃, ηo)− ε. (.5)

Hence, from (A.1) and (A.5) we conclude that AN ⇒ η̂N ∈ K, which implies

P (AN) ≤ P (η̂N ∈ K).

But, since by condition (C3) limN→∞ P (AN) = 1 ,

⇒ η̂N
p→ ηo.
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