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A SEARCH FOR LEPTON FLAVOR VIOLATION IN UPSILON DECAYS

William Oliver Love, PhD

University of Pittsburgh, 2010

This document describes a search for lepton flavor violation (LFV) in the bottomonium

system. Using the data collected with the CLEO III detector, we looked for the leptonic

decays Υ(nS)→ µτ (n = 1, 2, and 3). The τ lepton was identified through its leptonic decay

τ → eν̄eντ , and signal yields were obtained through multidimensional likelihood fitting with

probability density function shapes measured from independent data samples. No signal was

observed. Therefore, we report our results as upper limits on the LFV branching fractions

of Υ mesons at the 95% confidence level.
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I. ELEMENTARY PARTICLES

Particle physics is the branch of physics that studies the ultimate constituents of matter and

the basic interactions of these constituents. Both are now described in terms of elementary

particles, which seem to be structureless geometric points endowed with physical properties.

Some of the elementary particles have mass and comprise ordinary matter. Others give

rise to the forces encountered by material objects. In this picture fundamental forces are

described in terms of particle exchange: two elementary particles interact by exchanging a

third, which is said to mediate the interaction. For example, the repulsive electrostatic force

between two electrons is mediated by the exchange of photons. The photons carry energy

and momentum from one electron to the other, with the result that there is a net exchange

of energy and momentum between the two electrons. The electrons, in turn, move apart,

and we say that one has exerted a force on the other and vice versa.

Particle physics is often called high-energy physics because experiments in the field usu-

ally involve accelerating subatomic particles to speeds close to that of light, which causes

the particles to acquire large kinetic energies. High energy is required for two reasons: first,

the phenomena under investigation take place over incredibly small distances, comparable

in size to atomic nuclei. Indeed, the elementary particles are believed to be point-like, and

the size of the smallest composite objects is around 10−15 m. In order to study any object,

radiation with a wavelength smaller than the object is required. The Planck relation1 im-

mediately tells us that the study of the very small requires radiation of high energy. If our

probe is a beam of particles, the de Broglie relation2 implies the same thing: namely that

1The energy of a photon is inversely proportional to the wavelength of the corresponding electromagnetic
radiation: E = hc/λ.

2The momentum of a material particle is inversely proportional to its associated quantum-mechanical
wavelength: p = h/λ. A short wavelength requires a large momentum and hence a high kinetic energy.
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Figure 1: The repulsion of two electrons, described in terms of photon exchange.

high energy is required. The second reason for this is that many of the particles studied by

particle physicists are relatively massive. Therefore, high energy is required to create them3.

The results of particle physics are described by the Standard Model. The model is a

relativistic quantum field theory that describes seventeen elementary particles4 participating

in three fundamental interactions. There are actually four known fundamental interactions:

gravitation, electromagnetism, and the strong and weak nuclear forces, but the Standard

Model does not describe gravitation5. This is because gravitation is so much weaker than

the other three that its effects are not yet observable at the subatomic level [16].

The seventeen elementary particles can be subdivided into groups according to their

intrinsic angular momentum, described by the particles’ spin quantum numbers. Particles

with s = 1/2 are fermions6 and comprise what we think of as matter in the macroscopic

world. The elementary fermions are further subdivided into two groups: quarks, which

participate in strong interactions, and leptons, which do not. The s = 1 particles are called

gauge bosons7, and they correspond to forces. The gauge bosons are the particles which

3This is Einstein’s mass-energy equivalence: E = mc2.
4Additionally, the particles have their corresponding antiparticles, which have the algebraic signs of their

internal quantum numbers flipped, e.g. electric charge: Q→ −Q.
5Gravitation is described by General Relativity, which is a classical field throry.
6They are so called because they obey Fermi-Dirac statistics. Therefore, they are subject to the Pauli

exclusion principle.
7Bosons, including the gauge bosons, obey Bose-Einstein statistics.
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Table 1: The four fundamental forces. Note: the graviton is still hypothetical.

interaction strength range affects mediator

strong 1 10−15 m quarks gluon

electromagnetic 10−2 ∞ quarks and charged leptons photon

weak 10−5 10−18 m all elementary fermions W and Z

gravitational 10−38 ∞ mass-energy graviton

mediate the fundamental interactions. Finally the Standard Model contains one elementary

particle that has s = 0, a boson called the Higgs boson, which has not yet been observed.

However, its existence is predicted by the theory that unifies the electromagnetic and weak

interactions.

From this basic picture much of the world can be described. Quarks are bound into

composite particles by the strong interaction. Two types are possible: baryons, which are

three-quark composites, and mesons, which are made of a quark bound to an antiquark.

The quark composites have radii of the order of 10−15 m. Note that because of quantized

angular momentum all baryons are fermions and all mesons are bosons8. Of the many

possible composite particles only one is absolutely stable and does not spontaneously decay.

This particle is the proton, a baryon composed of two u quarks and a d quark. A second

baryon, the neutron, is stable when it binds with protons to form atomic nuclei9. Protons

and neutrons, collectively called nucleons, are bound into nuclei by the residual effects of the

strong interaction, whereby the quarks in adjacent nucleons exert attractive forces on one

another. The largest nuclei are of the order of 10−14 m in radius.

At the next level of composite structure are atoms, which are formed when electrons

are bound to nuclei via the electromagnetic interaction. Atoms are electrically neutral: the

number of electrons bound to the nucleus equals the number of protons in the nucleus. When

there is a surplus or deficiency of electrons, an ion results. Typical atomic radii are of the

8Baryons can have s = 1/2 or s = 3/2, and mesons can have s = 0 or s = 1.
9Free neutrons decay via the weak interaction with a mean lifetime of 885.7 s.
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Table 2: The known elementary particles.

fermions gauge bosons

s = 1/2 (matter) s = 1 (forces)

type charge i ii iii charge interaction

quarks
(u-type) + 2/3 u c t γ 0 electromagnetic

(d-type) − 1/3 d s b g 0 strong

leptons
(neutral) 0 νe νµ ντ Z 0

weak
(charged) −1 e− µ− τ− W− −1

order of 10−10 m. This enormous size increase — atoms are four to five orders of magnitude

larger than their nuclei — is attributable to the different binding forces.

Finally, atoms can bind electromagnetically to form molecules. Molecules are also electri-

cally neutral, and here the result of an electron imbalance is called a molecular ion. Molecular

radii range from the order of 10−10 m for simple inorganic compounds to the order of 10−9 m

for the compounds commonly used in organic synthesis, and the macromolecules encountered

in biochemistry are larger still. Huge numbers of atoms and molecules in aggregate comprise

the solids, liquids, and gases of our macroscopic world. At this level of structure and above,

matter is electrically neutral, and this allows the effects of gravity to become apparent10.

10The weakness of gravity means that huge numbers of particles are required: it takes around 1024 atoms
to produce a measurable gravitational attraction.
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Table 3: Some composite particles.

baryons mesons

(three-quark composites) (quark-antiquark pairs)

name quarks charge s name quarks charge s

proton p uud +1 1/2 pion π+ ud̄ +1 0

neutron n udd 0 1/2 pion π0 uū−dd̄√
2

0 0

lambda Λ0 uds 0 1/2 rho ρ+ ud̄ +1 1

omega Ω− sss −1 3/2 upsilon Υ bb̄ 0 1

5



II. SYMMETRY

A symmetry is an operation that leaves a system in a configuration which is indistinguishable

from the system’s original configuration. Examples include rotating an equilateral triangle

by 120◦ about its center, reflecting the triangle through a line joining one of its vertices

to the midpoint of the opposite side, or, in fact, doing nothing at all to the triangle1.

Symmetries do not need to be visual, geometric symmetries, although the examples just

described are; any abstract operation that meets the criterion given above is a symmetry.

For example, in Newtonian mechanics the equations of motion of a system are unchanged

by the operation of relocating the origin of coordinates, and we therefore say that systems

described by Newtonian mechanics possess translational symmetry.

Noether’s theorem, proved in 1915, is a cornerstone of modern theoretical physics. It

states that any differentiable symmetry of the action2 of a physical system has a corre-

sponding conservation law. In other words, every symmetry implies a conserved quantity,

and every conserved quantity reveals an underlying symmetry [12]. Conserved quantities, of

course, are quantities that are unchanged by transformations of a system. Such quantities

include energy, momentum, and electric charge. To continue our example, the translational

symmetry of Newtonian mechanics corresponds to the law of conservation of momentum.

The Standard Model possesses a number of symmetries. Among them are: symmetry

with respect to translation in time, which corresponds to the conservation of energy, symme-

try with respect to translation in space, which corresponds to the conservation of momentum,

and symmetry with respect to rotation about a point, which corresponds to the conservation

1The null operation is technically a symmetry. Doing nothing at all to a system leaves it in a state
indistinguishable from the original.

2The action is the integral over time of a system’s Lagrangian function.
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of angular momentum. The Standard Model also possesses symmetry with respect to gauge

transformations. In electrodynamics a gauge transformation adds the gradient of an arbi-

trary function f to the magnetic vector potential while subtracting the partial derivative of

f with respect to time from the electric scalar potential:

A→ A +∇f

φ→ φ− ∂f

∂t

This is an extension of the idea that only differences in potential energy have physical

significance. Electrodynamic gauge symmetry corresponds to the conservation of electric

charge. The other fundamental forces described by the Standard Model, namely the strong

and weak nuclear forces, also possess gauge symmetry, corresponding to the conservation of

color charge and weak isospin respectively3.

Since the Standard Model describes elementary particles in terms of relativistic quantum

fields, it possesses symmetry with respect to Lorentz boosts as required by the special theory

of relativity. A boost is the operation of moving from one inertial coordinate system4 to

another, and boosts are described mathematically by Lorentz transformations, which are

rotations of Minkowski spacetime5 about the origin. Because of this, Lorentz transformations

encompass rotations about the origin in three-dimensional Euclidean space. Now, moving

from one inertial system to another may involve a translation of the spacetime origin in

addition to a rotation about that origin, so the complete relativistic symmetry is a symmetry

with respect to translations (in space and time) and Lorentz rotations. This symmetry, called

Poincaré symmetry, corresponds to the relativistic versions of the conservation of energy,

momentum, and angular momentum.

In the early 1950s it was shown by Julian Schwinger and others that the relativistic quan-

tum field theories that actually describe nature possess symmetry with respect to the follow-

ing combined operation: charge conjugation C, which replaces a particle with its antiparticle,

3Like electric charge, these quantities are quantum numbers, and just as a particle which has electric
charge participates in electromagnetic interactions by emitting and absorbing photons, so do particles with
color charge and weak isospin participate in the strong and weak interactions. In the former case the particles
emit and absorb gluons; in the later case they emit and absorb W and Z bosons.

4An inertial system in one in which Newton’s first law is valid, and any two inertial systems move at a
constant velocity with respect to one another.

5This is the four-dimensional coordinate system in which the special theory of relativity is set.
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inversion of spatial coordinates P , and time reversal T . Actually, the electromagnetic and

strong interactions are symmetric with respect to C, P , and T separately, and they are

said to conserve C-parity, parity, and T -parity, respectively. The weak interaction, however,

has been shown experimentally to violate C-parity conservation and parity conservation, as

well as the product of parities which would be conserved by the combined operation CP .

Therefore, the weak interaction is only symmetric with respect to the combined operation

CPT .

In addition to the symmetries described so far, the Standard Model also possesses sym-

metries arising from the fact that the fields describing the elementary fermions may be shifted

by an arbitrary phase angle (ψ → eiαψ) without changing the resulting physics. Four such

phase shifts are possible: all quark fields may be shifted by the same phase; the electron

and its neutrino may be shifted by some different phase; and the muon with its neutrino

and the τ with its neutrino may likewise be shifted. These four symmetries correspond to

the conservation of baryon number B, electron number Le, muon number Lµ, and τ number

Lτ . Since Le, Lµ, and Lτ , are separately conserved, their sum, lepton number L, is also

conserved.

The symmetries with respect to phase shift are called accidental symmetries of the Stan-

dard Model because they were not explicitly postulated at the outset of its construction, and

there is no compelling physical reason for these numbers to be conserved by nature. Exper-

imentally, the phenomenon of neutrino oscillation [2] shows that the lepton flavor numbers

are not in fact conserved by nature. Theoretically, even within the Standard Model non-

perturbative quantum effects6 violate all of these accidental symmetries, leaving only the

combination B − L in tact.

6These are effects not described in terms of particle exchange.

8



Table 4: Symmetries of the Standard Model and their corresponding conservation laws.

symmetry conserved quantity

spacetime translations and boosts energy

momentum

angular momentum

gauge transformations electric charge

color charge

weak isospin (3rd comp.)

charge conjugation C C-parity (strong, EM)

spatial inversion P parity (strong, EM)

time reversal T T -parity (strong, EM)

N.B.: The weak interaction is symmetric only under the combined operation CPT .

fermion phase baryon number

electron number

muon number

τ number

9



III. LEPTON FLAVOR VIOLATION

The conservation of lepton number is one of the accidental symmetries of the Standard

Model. If we assign lepton number L = +1 to leptons, L = −1 to antileptons, and L = 0 to

all other particles we find that the net lepton number of all particles going into an interaction

equals the net lepton number of all particles coming out of the interaction. In other words

the net lepton number of the system is unchanged by the interaction. For example, neutron

beta decay can be understood in terms of the following weak interaction:

d→ u+ e−+ ν̄e

One of the neutron’s d quarks (L = 0) turns into a u quark (L = 0) by emitting a W−

boson (L = 0), which in turn decays into an electron (L = +1) and an electron antineutrino

(L = −1). The net lepton number is zero before and after the interaction.

As another example, consider the antineutrinos produced by the decay of negatively

charged pions: π−→ µ−+ ν̄µ. The pion consists of a u antiquark bound to a d quark, which

annihilate one another. This annihilation produces a W− boson that quickly decays into a

muon and a muon antineutrino, so in terms of elementary particles the interaction is

ū+ d→ µ−+ ν̄µ

Again lepton number is conserved (0+0 = 1−1). If the muon antineutrinos are now directed

at a target of protons, the following reaction occurs:

ν̄µ + p→ µ++ n

10
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Figure 2: The fundamental interaction behind neutron beta decay.

Or in terms of elementary particles:

ν̄µ + u→ µ++ d

The muon antineutrino and one of the proton’s u quarks annihilate, creating an antimuon

and a d quark in the process. The d quark remains bound to the original proton’s other two

quarks, and a neutron results. Once again, lepton number is conserved (−1 + 0 = −1 + 0).

Lepton number would also be conserved by this interaction:

ν̄µ + u→ e++ d

The only difference is that a positron1 (L = −1) has been substituted for the antimuon

(L = −1). However, no experiment to date has observed this.

If instead of decaying pions we use decaying neutrons as the source of antineutrinos, then

positrons are always produced and antimuons are never observed:

n→ p+ e−+ ν̄e

ν̄e + p→ e++ n

1Positrons are antielectrons. The name is kept for historical reasons.
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It appears that the antineutrinos are somehow associated with the particular type of charged

lepton involved in their production. Finally, we note that the following charged lepton decays

have never been observed:

µ−→ e−+ γ

τ−→ e−+ γ

τ−→ µ−+ γ

We conclude that lepton number is separately conserved for each of the three charged-

neutral lepton pairs2: e− with νe, µ
− with νµ, and τ− with ντ . To all elementary particles

we assign a quantum number called electron number (Le) with Le = +1 for electrons and

electron neutrinos, Le = −1 for antielectrons and electron antineutrinos, and L = 0 for all

other particles. Muon number (Lµ) and τ number (Lτ ) are similarly defined. Collectively

Le, Lµ, and Lτ are called lepton flavor numbers or simply lepton flavor, and we say that

lepton flavor is conserved by all particle interactions.

Lepton flavor conservation allows us to understand why the following interaction has

never been observed:

ν̄µ + u→ e++ d

Before the interaction we have Le = 0, Lµ = −1, and Lτ = 0; afterward we have Le = −1,

Lµ = 0, and Lτ = 0. Both the conservation of electron number and the conservation of

muon number have been violated. The neutrinoless decays of charged leptons, which were

mentioned above, also violate lepton flavor conservation:

l→ l′ + γ

Here l and l′ represent any two charged leptons (or charged antileptons for that matter) of

differing flavor.

As shorthand we define lepton flavor violation to be the non-conservation of lepton flavor

number by an interaction. The following are all examples lepton flavor violation3:

φ→ e−+ µ+

2The pairs are sometimes called lepton families or generations.
3Again we could equally well discuss the charge-conjugate interactions, where all particles are replaced

with their corresponding antiparticles.

12



?

b

b̄

τ+

µ−

Figure 3: A lepton flavor violating decay. The details of the interaction are unknown.

Υ→ µ−+ τ+

qq̄ → l + l̄′

Where the last interaction is general and q represents any quark4, q̄ its antiquark, l a charged

lepton, and l′ a charged antilepton of differing flavor.

The subject of the analysis described in this dissertation is a search for lepton flavor

violation in decays of Υ mesons, using data collected with the CLEO III detector. Specifically

we are looking for Υ(nS) → µ∓+ τ±, where n = 1, 2, or 3. The Υ is a composite particle

made of a b quark bound to a b antiquark. The quarks have their spins aligned, so the

Υ has a spin quantum number of 1. The spectroscopic notation S means that the quarks

have zero orbital angular momentum relative to one another, and the integer n refers to

radial excitation states, where n = 1 is the lowest energy Υ state5, n = 2 is the first radial

excitation, n = 3 the second, and so on. The lightest four Υ mesons are described [20] in

Table 5. The third column shows the width of the resonance, which is inversely proportional

to the mean lifetime of the particle, and the fourth column shows the partial width for the

decay Υ(nS)→ e−+e+. The ratio of the partial width for a particular decay to the width of

4Except for the t quark, which is so short-lived that it cannot bind into mesons. In this case we should
write t+ t̄→ l + l̄′.

5The Υ(1S) is not the ground state of the bb̄ system. The ground state is the ηb(1S), which has antiparallel
quark spins.
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Table 5: The four lightest Υ mesons.

resonance mass Γ Γ(e−e+)

Υ(1S) 9,460 MeV 53.0 keV 1.340 keV

Υ(2S) 10,023 MeV 43.0 keV 0.612 keV

Υ(3S) 10,355 MeV 26.3 keV 0.443 keV

Υ(4S) 10,579 MeV 20.5× 103 keV 0.272 keV

the resonance is the probability that a given particle will decay according to the particular

decay mode.

With our statistics we do not expect to see lepton flavor violation in decays of Υ(4S)

mesons because the Υ(4S) resonance is above the energy threshold for the production of pairs

of B mesons6. Therefore, it decays into pairs of B mesons almost 100% of the time7. Instead

we use Υ(4S) data and data collected 40 – 60 MeV below the Υ(4S) energy to optimize the

analysis for sensitivity. The search is limited to the µτ -channel. This channel should be the

most sensitive to lepton flavor violation, since we expect the unknown mediators of lepton

flavor violation to couple more strongly to heavier leptons; otherwise lepton flavor violation,

if it exists, would have been observed long ago in electron-positron experiments.

6A B meson consists of a b quark bound to some other kind of quark. The lightest B meson is the B−,
which consists of a b quark bound to a u antiquark. Its mass is 5,279 MeV, and twice this falls just shy of
the mass of the Υ(4S).

7The partial width for Υ(4S) → e−+ e+ is already small compared to the width of the Υ(4S), and the
partial width for lepton flavor violation, Γ(µ∓τ±), has to be smaller still.
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IV. PRIOR WORK

The probability that a given particle will decay according to a particular decay mode is

called the branching fraction1, B, of the decay. One of the primary concerns of experimental

particle physics is the determination of branching fractions, and this analysis in particular

seeks to establish a value (or at least an upper limit) for B(Υ → µ∓+ τ±), the probability

than a single Υ meson will decay into a muon and a τ lepton. Prior to our search, several

theoretical and semi-empirical estimates of this branching fraction have been made.

If the lepton flavor violating decay Υ → µ∓+ τ± is possible, then by unitarity so is the

decay τ∓→ µ∓+ µ−+ µ+; therefore, τ∓→ µ∓+ e−+ e+ is also possible. Nussinov, Peccei

& Zhang [15] used the experimental upper limits on the branching fractions of the latter

decays to constrain B(Υ → µ∓+ τ±). Using their model-independent estimate with recent

data on neutrinoless τ decays [20], one arrives at B(Υ→ µ∓+ τ±) < 10−3, a number which

is quite encouraging to an experimentalist.

Silagadze [18] suggested using lepton flavor violating decays of Υ and J/ψ mesons as a

probe of the energy scale of quantum gravity2. He estimates, using a four-fermion vertex in

the framework of effective field theory [8], the following ratio of partial widths:

Γ(Υ→ µ∓+ τ±)

Γ(Υ→ µ−+ µ+)
=

1

2q2
b

(
α ′

α

)2(
MΥ

Λ

)4

Here qb is the charge of the b quark, α is the fine structure constant, MΥ is the mass of the Υ

meson, Λ is the energy scale of quantum gravity, and α ′ is the strength of the four-fermion

1Also called the branching ratio because it is the ratio of the partial width for a particular decay mode
to the total width of the resonance.

2Silagadze was interested in quantum gravity, but Λ could equally well represent the energy scale of any
new physics beyond the scope of the Standard Model.
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Figure 4: The lepton flavor violating decay Υ→ µ−+ τ+.
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Figure 6: The decay τ−→ µ−+ µ−+ µ+.
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Table 6: Summary of relevant prior work.

semi-empirical estimate cl researchers

B(Υ→ µ∓+ τ±) < 10−2 90% Nussinov et al.

B(Υ→ µ∓+ τ±) < 10−3 90% Nussinov et al. (recent data)

theoretical estimate researcher

B(Υ→ µ∓+ τ±) ≈ 2× 10−5 Silagadze

measurement cl researchers

B(B0 → µ∓+ τ±) < 3.8× 10−5 90% Bornheim et al. (CLEO)

B(B̄0 → µ∓+ τ±) < 3.8× 10−5 90% Bornheim et al. (CLEO)

B(J/ψ → µ∓+ τ±) < 2.0× 10−6 90% Ablikim et al. (BES)

lepton flavor violating coupling. Solving this equation for Λ yields the following:

Λ =

(
1

2q2
b

Γ(Υ→ µ−+ µ+)

Γ(Υ→ µ∓+ τ±)

)1/4
√
α ′

α
MΥ

Assuming α ′ ≈ 1 and Λ ≈ 1 TeV, these formulae predict B(Υ → µ∓+ τ±) ≈ 2 × 10−5,

which is very interesting in light of the 2.1 × 107 Υ(1S) decays recorded by the CLEO III

detector [7, 4].

Previously the CLEO collaboration searched for lepton flavor violation in decays of B

mesons [9], while the BES experiment looked for lepton flavor violating decays of the J/ψ [1].

The search described in this dissertation is the first published [14] search for lepton flavor

violating decays of Υ mesons.
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V. THE CORNELL ELECTRON STORAGE RING

Cornell University has been actively involved in the study of elementary particles since the

earliest days of the field [6]. Cornell built its first particle accelerator, a 1-MeV proton

cyclotron, in 1935, the same year that Hideki Yukawa of Osaka University predicted the

meson later identified as the pion. The following year, Carl Anderson of the California

Institute of Technology discovered the muon in cosmic-ray experiments. These achievements,

Yukawa’s meson theory and Anderson’s cosmic-ray experiments, can arguably be considered

the birth of particle physics.

Cornell’s original cyclotron remained in service until 1956, but its successor was in place

well before then. The end of the Second World War brought with it an incredible interest in

nuclear and particle physics. Indeed, the mode of research pioneered at Los Alamos National

Laboratory during the Manhattan Project continues to dominate physics to this day: the

so-called “big science” approach, with dozens or hundreds of physicists collaborating on

large experiments. In 1945 Cornell established its Laboratory of Nuclear Studies and began

constructing a new building to house a second particle accelerator. Cornell alumnus Floyd

R. Newman donated one million dollars for construction, and the F. R. Newman Laboratory

was formally dedicated in October of 1948. The Office of Naval Research provided funding

for a 300-MeV electron synchrotron, which was completed in 1949.

This first synchrotron was operational until 1954 and was followed in quick succession by

a 1-GeV machine (1954 – 1964) and a 2.2-GeV machine (1964 – 1969). These two machines

were essentially large-scale upgrades of the original 300-MeV electron synchrotron, with each

successive machine being constructed largely out of the parts of its predecessor. However,

it soon became clear that the next upgrade would require an entirely new machine housed

in an entirely new facility. To increase the energy of a synchrotron, one can either increase
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the field strength of the guide magnets, or one can increase the radius of the machine itself.

The upgrades to the original 300-MeV synchrotron were essentially magnetic field upgrades,

and this approach had reached its practical limit.

The successor, which was to operate at 10 GeV, required a radius of 122 m. The ma-

chine’s circumference, therefore, was going to be 768 m, or nearly half a mile. In 1965

the laboratory’s director, Robert R. Wilson, won approval from Cornell’s administration to

house the new machine in a tunnel to be dug 12 m beneath Cornell’s Alumni Field. The

National Science Foundation provided twelve million dollars, and construction began on the

R. R. Wilson Synchrotron Laboratory. The new laboratory and its 10-GeV synchrotron were

finished in 1968 and formally dedicated in October of that year.

The Cornell 10-GeV Synchrotron, as it came to be known, was built for fixed-target

experiments: beams of high-energy particles were directed at stationary targets of various

materials, which produced sprays of secondary particles to be measured and analyzed. By

the 1970s, however, it was realized that experiments in which two oppositely directed beams

were made to collide would greatly increase the energy available for the creation of new

particles. In 1975 a proposal to augment the synchrotron, now operating at 12 GeV, with a

storage ring was put forward. This would allow beams of electrons and positrons, accelerated

by the synchrotron, to be stored for colliding-beam experiments. The $20.6 million proposal

was approved in 1977, and construction began on the Cornell Electron Storage Ring (CESR,

pronounced Caesar). By August of 1979, CESR could produce measurable colliding beams,

inaugurating what was to become nearly two decades of research for the machine1.

Fortuitously, CESR was designed to operate at a center-of-mass energy in the range of

3 – 12 GeV. This energy range is ideal for the study of mesons containing charm and bottom

quarks, the latter of which were completely unknown when CESR was being designed. The

Υ(1S) meson was unexpectedly discovered at the Fermi National Accelerator Laboratory in

1977, and it was quickly understood to be a bound state between a fifth quark, now called

the bottom quark, and its antiparticle. The mass of the Υ(1S) is about 9.5 GeV, almost

exactly the energy for which CESR was being designed! The Υ(2S) was soon discovered

with a mass of 10.0 GeV, and evidence for the Υ(3S) near 10.4 GeV was building. Indeed,

1CESR’s last beam collision occurred on March 3, 2008.
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Figure 7: The Cornell Electron Storage Ring and the Wilson Synchrotron Laboratory.
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verification of the Υ(3S), and the first evidence for the higher-mass bb̄ bound states Υ(4S),

Υ(10860), and Υ(11020) came from analyzing collisions produced by CESR.

The operation of CESR is as follows: first, electrons emitted from a heated filament are

accelerated in a linear accelerator (linac) to an energy of 300 MeV. Positrons are produced by

causing some of the accelerated electrons to strike a tungsten plate located at an intermediate

point along the linac. This produces a spray of electrons, positrons, and X-rays, from which

the positrons are selected and focused. The positrons are then accelerated to 150 MeV along

the remaining length of the linac. From here, the 300-MeV electrons and 150-MeV positrons

are fed into the synchrotron, where electrons circulate in the counter-clockwise direction

when viewed from above2. The synchrotron accelerates the electrons and positrons to the

desired final energy, which can be as high as 6 GeV. Once the particles are at the desired

energy they are transfered to the storage ring. The entire acceleration cycle is repeated 60

times per second for about 10 minutes, first clockwise with positrons, then counterclockwise

with electrons, until the required beam currents are built up in the storage ring. When the

beams are ready3, they are made to pass through each other at a point at the south end of

the ring called the interaction point. The electrons and positrons collide and annihilate one

another, and the energy released in this process creates subatomic particles, which must be

detected and analyzed. This is the job of the CLEO detector.

2The positrons, of course, circulate in the opposite direction.
3Circulating beams of high-energy electrons and positrons produce copious amounts of X-rays, which

are themselves valuable for research. Cornell established a separate laboratory, the Cornell High-Energy
Synchrotron Source (CHESS), to study these X-rays.
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Figure 8: Schematic of the CESR accelerator complex.
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VI. THE CLEO DETECTOR

The CLEO1 detector is a general-purpose particle detector [19], which was used to detect

and measure the subatomic particles resulting from CESR’s high-energy electron-positron

collisions. CLEO was in operation from October 1979 until March 2008, and during this time

the detector underwent two major and three minor upgrades. The latest version of CLEO

is CLEO-c, which started taking data in 2003. CLEO is also the name of the collaboration

of physicists who study the data taken with the detector.

The data used in our analysis were taken with the version of the detector known as

CLEO III2. CLEO is a hermetic detector; by design it covers as much of the solid angle

around CESR’s interaction point as possible. The different subsystems of the detector have

differing angular coverage, so we use the subsystem with the least coverage to quantify the

overall coverage of the detector. This subsystem is the ring-imaging Cherenkov detector,

which covers 83% of the 4π-sr solid angle around the interaction point.

The innermost piece of CLEO is the beam pipe, which surrounds CESR’s interaction

point. The beam pipe is a double-walled beryllium cylinder of inner diameter 21.165 mm,

outer diameter 22.330 mm, and length 300.0 mm3. The inner surface of the pipe is coated

with 10 µm of gold, and the 0.5-mm annular region between the walls of the pipe is filled

with coolant.

Surrounding the beam pipe is the first of the detector’s subsystems, which in CLEO

1Rare among large experiments, CLEO is not an acronym; it is, rather, a pun. The detector is named
after Cleopatra, whose companion was Julius Caesar.

2CLEO-c differs from CLEO III in only two respects: first, the innermost subsystem of CLEO-c is a stereo
drift chamber, whereas CLEO III used a silicon vertex detector. Second, CLEO-c’s solenoidal magnetic field
is maintained at 1.0 T; it was held at 1.5 T in CLEO III.

3CLEO’s coordinate system is a cylindrical system (ρ, φ, z) whose origin is at the interaction point. The
+z-axis points in the direction of the electron beam. In this system the beam pipe extends from z = −0.150
m to z = +0.150 m.
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III was the silicon vertex detector (SVD). The SVD used 447 double-sided silicon wafers

to detect the passage of charged particles. It was used for high-resolution particle tracking

near the interaction point. The wafers were arranged into four cylinders concentric with the

beam pipe. The individual wafers were identical and measured 52.6 mm long by 27.0 mm

wide by 0.3 mm thick. The first cylinder contained 21 wafers and was 25.0 mm in radius by

160 mm long. The second contained 40 wafers and was 27.5 mm in radius by 213 mm long.

The third contained 126 wafers and was 70.0 mm in radius by 373 mm long, and the fourth

contained 260 wafers and was 101.0 mm in radius by 533 mm long. The SVD covered 93%

of 4π sr.

The CLEO III drift chamber (DR3) is the next detector subsystem, and it also is used

for charged particle tracking. The DR3 is cylindrical and concentric with the beam pipe.

It contains thousands of conducting wires which are parallel or nearly parallel to the axis

of the cylinder, and its volume is filled with a mixture of helium and propane. The DR3,

like all drift chambers, works by measuring the charge deposited on high-voltage sense wires

by gas ions, which are created when a high-energy charged particle passes through the drift

chamber’s gas. The sense wires are held at a high electrostatic potential relative to field wires,

which are grounded. The ratio of field wires to sense wires in the DR3 is 2:1. Negatively

charged ions accelerate toward the sense wires, and the accumulated charge is measured. The

DR3 consists of an inner section with stepped endplates and an outer section with conical

endplates. The inner section extends from 132 – 342 mm in radius and contains 1,696 axial4

sense wires. The outer section extends from 370 – 790 mm in radius and contains 8,100

stereo5 sense wires. The DR3 covers 93% of 4π sr.

The ring-imaging Cherenkov detector (RICH) is the next subsystem [3]. It is used for

particle identification. When a charged particle passes through an insulating medium at

a speed greater than the speed of light in that medium Cherenkov radiation results. The

photons radiated by the charge when it enters the medium do not move fast enough to get out

of the way of the charge itself, and the radiation piles up, forming a conical wavefront6 whose

4These are parallel to the beam pipe.
5These make a slight angle (between 21 and 28 mrad) with respect to the axis of the DR3. This allows

the z-coordinate of a charge deposit to be measured.
6A similar thing happens when an airplane exceeds the speed of sound.
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precise shape depends on the speed of the charged particle. By measuring these Cherenkov

photons with a suitable photodetector, the shape of the wavefront, and hence the speed

of the charged particle, can be determined. Combining this measurement of speed with

an independent measurement of the particle’s momentum allows the mass of the charged

particle to be determined, which in turn allows the particle species to be identified. CLEO’s

RICH uses lithium fluoride as its Cherenkov radiator. It extends from 800 – 975 mm in ρ,

is 2.4 m long in z, and covers 83% of 4π sr.

Next comes CLEO’s electromagnetic crystal calorimeter (CC), which is used to measure

the energy of charged particles and photons [13]. The CC consists of a barrel section and

two end caps, and it contains 7,784 cesium iodide crystals. Charged particles entering the

crystals excite atoms in the material, causing them to emit light. This light is then collected

by silicon photodiodes mounted on the rear face of the crystal. High energy photons are

detected by the showers of secondary charged particles they produce7. Each crystal is 300

mm long and measures 50 mm by 50 mm at the front face. The barrel consists of 6,144

crystals that are tapered toward the front face8 and arranged so that their front faces point

toward the interaction point. The end caps each contain 820 crystals that are rectangular

in cross section and arranged parallel to the beam pipe. The barrel has an inner radius of

1.02 m, an outer radius of 1.32 m, and extends 3.26 m in z at the inner radius. The end

caps extend from 0.434 m to 0.958 m in ρ. Their front faces are at z = ±1.308 m, and their

back faces are at z = ±1.608 m. The CC covers 95% of 4π sr.

The next of CLEO’s components is not a detector; it is the superconducting solenoid.

This produces a magnetic field, which is uniform to 0.2% over the tracking volume9. CLEO

III used a 1.5-T magnetic field. The solenoidal magnetic field is parallel to the +z-axis

and causes charged particles to move in helical trajectories. The radius, R, of the helix is

proportional to the component particle’s momentum, p⊥, normal to the magnetic field, B:

p⊥ = |q|BR, where q is the particle’s charge. This is the well known cyclotron formula. Thus,

determining the radius of a charged particle’s trajectory through a uniform magnetic field

allows one to determine its momentum. The solenoid and its surrounding cryostat extend

7These secondaries then excite atoms in the crystal and cause them to emit light.
8There are 24 slightly different tapered shapes.
9The tracking volume contains the SVD and the DR3.
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from 1.4 – 1.6 m in ρ and are 3.8 m long in z.

The muon detector (MU) is the final subsystem [10]. As its name implies, it is used

to track muons. The MU uses arrays of proportional chambers embedded in the solenoid’s

return iron, which essentially blocks all other types of particles. A proportional chamber is a

gas-filled tube down the center of which runs a single high voltage anode wire, with the tube

itself being used as the cathode. It works similarly to a drift chamber in that it measures the

charge deposited on the anode wire by gas ions. As in a drift chamber, high-energy charged

particles passing through the proportional chamber ionize its gas10. Negatively charged gas

ions accelerate toward the anode, and the accumulated charge is measured. Like the CC,

the MU has a barrel section and two end caps. A single plane of chambers consists of three

layers of counters, which in turn consist of eight adjacent chambers. An individual chamber

consists of a copper-beryllium anode wire, plated with 50 µm of silver, run down the center

of a square cell measuring 9 mm on a side. Three of the four walls of the cell are coated with

graphite and used as cathodes, and eight adjacent cells are placed in a polyvinyl chloride

enclosure to make a single counter, which is 83 mm wide by 10 mm thick by 5 m long. The

counters are sandwiched between copper cathode strips and a copper ground. The copper

cathodes are 80 mm wide and run perpendicular to the anode wires. They are used to

determine the z-coordinate of a hit. Finally, three layers of counters separated by foam form

a detection plane. There are three planes of chambers in the barrel at depths of 0.36, 0.72,

and 1.08 m in the iron and one plane of chambers in each of the two end caps at z = ±2.7

m. The MU covers 85% of 4π sr.

10The MU uses the same gas supply as the DR3.
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Table 7: CLEO’s upgrades. The abbreviations are used by the CLEO collaboration.

version dates components

I 1979 – 1986 inner proportional chamber (IZ)

main drift chamber (DR)

outer drift chamber (OZ)

gas Cherenkov detector (CV)

dE
dx

proportional chambers (DX)

time-of-flight scintillators (TF)

shower detectors (RS, ES, CS)

muon drift chambers (MU)

I.V 1986 – 1988 straw tube drift chamber (IV)

inner drift chamber (VD, replaced IZ in 1984)

new main drift chamber (DR2)

II 1989 – 1995 new straw tube drift chamber (PT, replaced IV)

inner drift chamber (VD)

main drift chamber (DR2)

new time-of-flight scintillators (TF)

crystal calorimeter (CC)

muon proportional chambers (MU)

II.V 1995 – 1999 silicon vertex detector (SVX, replaced PT)

III 2000 – 2003 new vertex detector (SVD, replaced VD and SVX)

new main drift chamber (DR3)

ring-imaging Cherenkov detector (RICH)

crystal calorimeter (CC)

muon proportional chambers (MU)

c 2003 – 2008 stereo drift chamber (ZD, replaced SVD)
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VII. PARTICLE DETECTION AND RECONSTRUCTION

The number of individual detection elements in CLEO is of the order of 106. When CESR

is running and energetic beams of electrons and positrons collide in the heart of CLEO, the

subatomic particles which result travel outward from the interaction point and through the

detector. These particles may cause charge to be deposited on the sense wires of the drift

chamber. One of them may knock an electron loose from a cesium ion in the calorimeter,

which in turn will knock more electrons loose, creating a shower of secondary electrons. The

particles leaving the interaction point may create Cherenkov photons in the RICH; they

might induce voltages on the vertex detector or deep in the muon system. Whenever and

however a particle interacts with an individual detection element it is said to leave a hit. All

of CLEO’s detection elements work by converting hits into measurable voltages1. Reading

out, storing, and processing these data presents a formidable task.

The first step is to decide that an event worth recording is taking place. This is done by

programmable circuitry called the global level-one (L1) trigger. This circuitry uses pattern-

recognition algorithms on hits coming from the drift chamber and calorimeter to decide

whether or not an event is taking place. It looks for hits in the drift chamber aligned into

possible tracks, and it looks at the location of hits in the calorimeter as well as the amount

of energy deposited by the resulting showers. The specific trigger criteria used by CLEO III

are shown in Table 8. The numbers in the table refer to tracks in the drift chamber, which

can be in the axial or stereo portions, or showers in the calorimeter barrel; the amount of

energy deposited by the showers is indicated by low, medium, or high. The L1 trigger issues

a yes-no decision every 42 ns.

Once an event has been accepted by the L1 trigger, the individual detector channels need

1This implies that calibrating CLEO is no simple job.
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Table 8: The criteria used by the CLEO III global level-one trigger.

name definition

Hadronic Naxial > 1 and Nbarrel, low > 0

µ Pair two collinear (back-to-back) stereo tracks

Barrel Bhabha two collinear high-energy showers in the CC barrel

Endcap Bhabha two collinear high-energy showers in the CC end caps

Electron + Track Naxial > 0 and Nbarrel, med > 0

τ / Radiative Nstereo > 1 and Nbarrel, low > 0

Two Track Naxial > 1

Random random 1 kHz source

to be digitized and stored for analysis. When CESR was running at the Υ(4S) resonance,

approximately 50% of the events accepted by the L1 trigger were beam-gas and beam-wall

interactions: unwanted interactions with residual gas in the beam pipe or with the material

of the beam pipe itself. Such events are clearly unsuitable for physics analysis, and a second

“trigger”, the level-three (L3) decision2, was used to discard them before writing the data to

disk. The L3 decision was implemented in software and looked at a subset of the digitized

hits to determine whether or not an event was worth saving for analysis. Telltale signatures of

these unwanted events include energetic bremsstrahlung photons3 or lots of hadrons coming

from the beam pipe.

Next the raw detector hits recorded for an event need to be converted into meaningful

measurements. Particle trajectories are derived primarily from hits in the drift chamber

and silicon vertex detector, but the location of calorimeter showers and hits in the muon

detector also provide useful positional information. Particle energies are measured by the

calorimeter, and momenta come from the curvature of the particles’ trajectories. The RICH

and the muon detector aid in particle identification: the RICH directly measures a particle’s

2Earlier versions of CLEO had a level-two trigger, but CLEO III didn’t use it.
3The word is German for “braking radiation”. It refers to the radiation emitted by a charged particle

when it decelerates in matter.
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Table 9: The performance of the CLEO III data acquisition system.

parameter performance

maximum read-out rate 150 Hz (data)

500 Hz (random trigger)

average event size 25 kB

average read-out time 30 µs

transfer bandwidth 6 MB/s

L3 throughput 130 Hz

velocity, which allows mass to be determined from an independent measurement of the

particle’s momentum, and the muon system identifies probable muons4.

The process of converting hits into measurements is called event reconstruction, and

CLEO’s event reconstruction happened in two stages. The first stage, accomplished by

software called pass1, happened immediately after the conclusion of a data-taking run5.

The pass1 software analyzed only a fraction of the hits recorded in order to quickly provide

information for quality-control and calibration purposes6.

The second stage of event reconstruction was done by software called, aptly enough,

pass2. The pass2 software analyzed all hits recorded for an event, and was therefore much

slower7. It also made one final decision about whether or not to keep an event. This “trigger”,

the level-four (L4) decision, looked at the fully reconstructed event and classified it based

on the number of reconstructed tracks and the number, location, and energy of calorimeter

showers. If an event had fewer than two tracks coming from the origin, L4 discarded it.

4Any particle which enters the muon detector has a high probability of being a muon.
5There was also a version called online pass1 that processed a subset of the recorded events for the event

display, which was used for real-time monitoring during a run.
6The output of pass1 was typically ready in a few hours’ time.
7All of the runs in a data-taking period constitute a data set, which would be processed by pass2 at the

end of the period. The number of individual runs in a data set was typically of the order of 103, and running
pass2 over an entire data set took about a month.
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Table 10: The CLEO III data sets used in our analysis.

name runs events resonance dates

data5 257 37,214,027 Υ(4S) 8/24/00 – 9/11/00

data6 536 54,509,053 Υ(4S) 10/12/00 – 11/19/00

data7 499 69,289,552 Υ(4S) 11/20/00 – 12/18/00

data8 473 77,059,984 Υ(4S) 12/19/00 – 1/16/01

data9 553 75,156,478 Υ(4S) 1/17/01 – 2/6/01

data10 636 82,956,536 Υ(4S) 2/7/01 – 3/5/01

data11 528 76,638,319 Υ(4S) 3/13/01 – 4/3/01

data12 565 87,789,019 Υ(4S) 4/4/01 – 5/1/01

data13 552 85,660,104 Υ(4S) 5/2/01 – 5/29/01

data14 623 113,418,172 Υ(4S) 5/30/01 – 6/26/01

data16 452 49,845,830 Υ(3S) 11/8/01 – 12/11/01

data17 568 74,314,425 Υ(3S), Υ(1S) 12/12/01 – 1/21/02

data18 596 89,036,857 Υ(1S) 1/22/02 – 3/12/02

data19 432 60,807,413 Υ(1S) 3/14/02 – 4/15/02

data21 480 64,841,127 Υ(2S) 5/22/02 – 7/9/02

data22 376 38,622,158 Υ(3S), Υ(2S) 7/10/02 – 8/12/02

data23 207 27,626,508 Υ(2S) 9/14/02 – 10/7/02

data25 213 31,746,192 Υ(2S) 10/23/02 – 11/5/02

data27 218 33,241,389 Υ(2S) 11/19/02 – 12/3/02
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VIII. THE SAMPLES

Scattering experiments are frequently characterized by their luminosities. In this context

luminosity is the number of incident particles per unit area per unit time. The luminosity

of an accelerator is measured by observing an interaction that has a well known scattering

cross section1, e.g. Bhabha scattering (e−+ e+ → e−+ e+). Measuring the luminosity then

becomes a matter of measuring the rate at which Bhabha scattering occurs:

L =
1

σ

dN

dt

where σ is the cross section for Bhabha scattering.

The time-integrated luminosity

L =
N

σ

is used to quantify the size of a data sample. Here N is the total number of interactions of

a particular kind in the sample, and σ is the cross section for the interaction.

This analysis uses a subset of the data collected by the CLEO III detector between August

24, 2000 and December 3, 2002. Our data samples contain 20.8 million Υ(1S) resonant

decays, 9.3 million Υ(2S) decays, and 5.9 million Υ(3S) decays [7, 4]. The integrated

luminosities of these samples are 1.1 fb−1, 1.3 fb−1, and 1.4 fb−1 respectively2.

We also use the CLEO III Υ(4S) sample, which has an integrated luminosity of 6.4 fb−1,

as well as a 2.3-fb−1 sample collected 60 MeV below the Υ(4S) resonance3. The Υ(4S)

1The cross section is used to express the probability of an interaction. The name comes from classical
scattering theory where it represents the cross sectional area of the target normal to the trajectory of the
incident particle.

2Since cross sections are areas they should be expressed in units of m2; integrated luminosities should
therefore be in units of m−2. However, these units are inconveniently large, so the barn (1 b = 10−28 m2)
and its submultiples (e.g. mb, nb, fb) are used instead.

3From the so called hadronic continuum.
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Table 11: The samples used in this analysis.

data beam energy L N resonance

signal data 4,730 MeV 1.1 fb−1 20.8× 106 Υ(1S)

signal data 5,010 MeV 1.3 fb−1 9.3× 106 Υ(2S)

signal data 5,180 MeV 1.4 fb−1 5.9× 106 Υ(3S)

background data 5,290 MeV 6.4 fb−1 6.0× 106 Υ(4S)

background data 5,260 MeV 2.3 fb−1 continuum

monte carlo beam energy L N simulated decay

background MC 5,290 MeV 23.3 fb−1 21.3× 106 Υ(4S)→ τ∓+ τ±

background MC 5,290 MeV 1.1 fb−1 1.2× 106 Υ(4S)→ µ∓+ µ±

signal MC 4,730 MeV 30.0× 103 Υ(1S)→ µ∓+ τ±

signal MC 5,010 MeV 30.0× 103 Υ(2S)→ µ∓+ τ±

signal MC 5,180 MeV 21.8× 103 Υ(3S)→ µ∓+ τ±

and continuum data are used to quantify background processes, to measure detection and

reconstruction efficiencies, and to estimate systematic errors. Being able to use actual data

for these purposes instead of having to rely solely on Monte Carlo simulation is a noteworthy

aspect of this analysis.

In addition to the measured data, we do in fact use a number of Monte Carlo samples.

To study the background arising from the decay of Υ mesons into pairs of charged leptons

we use a Monte Carlo sample of 21.3 million τ pairs with an integrated luminosity of 23.3

fb−1 and a Monte Carlo sample of 1.2 million muon pairs with an integrated luminosity of

1.1 fb−1. These samples have a beam energy4 corresponding to our Υ(4S) data. We also

use three Monte Carlo samples to study the detection signatures of signal events. These

samples consist of 30,000 lepton flavor violating decays of the Υ(1S), 30,000 of the Υ(2S),

and 21,780 of the Υ(3S). Their integrated luminosities, of course, cannot be specified.

4The beam energy is the energy per particle of the incident electrons and positrons.
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Figure 10: One of the leading-order contributions to Bhabha scattering.
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Figure 11: The other leading-order contribution to Bhabha scattering.
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IX. SELECTION CRITERIA

The detection signature of our signal events is a muon1 whose momentum is very close

to the beam energy, Eb. A straightforward kinematic calculation shows that these signal

muons should have a momentum of 0.965Eb at the Υ(1S) resonance, 0.968Eb at the Υ(2S),

and 0.970Eb at the Υ(3S). Real data, of course, will show a signal peak that is smeared

somewhat because of the finite resolution of the detector. In order to select possible signal

events from our data samples a number of criteria were developed. We are looking for

Υ→ µ∓+τ±, so we select events that have exactly two reconstructed charged particle tracks

of opposite curvature2, corresponding to the muon and the τ . Furthermore, we identify the

τ through its decay to an electron: τ−→ e−+ ν̄e + ντ , making this an exclusive analysis3.

For identifying signal events the quantities of interest are x = pµ/Eb and y = pe/Eb, the

momenta, normalized to beam energy, of the muon and electron candidates respectively.

Electron and muon identification criteria are applied to the two tracks comprising an

event. First, we require that exactly one of the tracks be tagged as a high-quality muon

candidate, which means that it penetrates the muon detector to at least the second plane

of chambers, which is at a depth of 0.72 m in the magnet iron, leaving hits on at least two

of the three layers counters comprising the planes at and below the penetration depth4. To

identify the electron candidate we look at the ratio E/p for the second track. This is the

ratio of the energy deposited in the calorimeter along the track’s projection to the momentum

measured from the track’s curvature. Electrons will lose a lot of energy in the calorimeter,

1Or an antimuon; charge-conjugation is implied throughout this chapter.
2Therefore, they have opposite electric charge.
3Since B(τ−→ e−+ ν̄e + ντ ) = 18%, we are excluding 82% of our sample from the outset.
4In other words, the muon candidate has to go deep into the magnet iron and leave lots of hits. Any

particle that can do this is almost certainly a muon.
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Figure 12: (a) The scatter plot of y vs. x; (b) its binned x projection for calibration data.

so requiring 0.85 < E/p < 1.10 for the second track helps ensure that it is, in fact, due to an

electron. Additionally we require that the electron candidate penetrate no deeper into the

muon detector than the first plane of chambers, which is at 0.36 m. Real electrons rarely

make it deep into the muon detector, so this requirement helps reduce the possibility of our

electron candidate being a misidentified muon. The result of these criteria is that one of our

tracks should now be very likely caused by a muon and probably not by an electron, while

the other should be very likely caused by an electron and probably not by a muon.

Now, because of the logistics of data storage circa a.d. 2000, there is another set of

selection criteria that needs to be mentioned. Events measured by CLEO III were sorted

into various “subcollections” based on criteria tailored to different physics analyses. For

example, the τ subcollection contains events likely to be electron-positron annihilation to

τ pairs. It is intended for use by researchers studying τ physics at the Υ resonances; this

analysis uses the τ subcollection. To be included in this subcollection an event must satisfy

at least one of several sets of criteria. The relevant set for our analysis includes the following
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requirements:

• The event must have at least two reconstructed tracks.

• The 2nd highest track momentum in the event must be less than 85% of the beam energy.

• The total energy detected for the event must be greater than 20% of the center-of-mass

energy5.

• Total energy detected in the calorimeter alone for an event must be less than 85% of the

center-of-mass energy.

The first of these subcollection requirements is consistent with our two-track criterion. To

meet the second we require 0.10 < y < 0.85, and for the third we require 0.87 < x < 1.02.

The final subcollection requirement is met when we select events with a deeply penetrating

muon candidate.

No selection criteria are perfect, and the ones described so far select more than just signal

events. A certain number of background events — events which mimic the signal in some

way — are tagged by our selection criteria. The biggest contribution to our background

events comes from electron-positron annihilation to τ pairs: e−+ e+ → τ−+ τ+, where

afterward one of the τ leptons decays into a muon and the other decays into an electron:

τ−→ µ−+ ν̄µ + ντ while τ+→ e++ νe + ν̄τ . Since τ leptons are extremely short-lived6, they

will decay close to the interaction point, and the event will consist of a muon, a τ lepton,

and some neutrinos. Therefore, events such as the one just described will be misidentified

as signal by our selection criteria. Muon pairs: e−+ e+→ µ−+ µ+, where afterward one of

the muons decays into an electron7, also contribute to the background.

There is one other source of background events which requires some explanation. Suppose

a pair of muons is produced with an energetic photon: e−+ e+→ µ−+ µ++ γ. Such events

satisfy our E/p criterion when the photon is detected in the calorimeter along the projection

of one of the reconstructed muon tracks. If the photon carries off enough of the event’s energy

the muon whose track is intersected by the photon will fail to enter the muon detector, and

it will be misidentified as an electron candidate. Because of the requirement on E/p, these

5This is twice the beam energy in a symmetric collider such as CESR: Ecm = 2Eb.
6They have a mean lifetime of 290.6 fs.
7This is less likely because the mean lifetime of a muon is 2.197 µs; most muons make it out of the

detector before decaying.
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Table 12: Processes contributing to our background (charge-conjugation is implied).

label background description

ττ τ lepton pairs e−+ e+ → τ−+ τ+

τ−→ µ−+ ν̄µ + ντ

τ+→ e++ νe + ν̄τ

µµ(e) muon pairs with decay e−+ e+ → µ−+ µ+

µ−→ e−+ ν̄e + νµ

µµ(γ) muon pairs with radiation e−+ e+ → µ−+ µ+

µ−→ µ−+ γ

events cluster near y = 0.53. For such events E is the energy of the photon, which is

approximately half of the beam energy, combined with nearly 0.3 GeV deposited in the

calorimeter by the misidentified muon.

Eventually, attempting to suppress the background events with additional selection cri-

teria reaches a point of diminishing returns and a more sophisticated approach is required.

This is where maximum-likelihood fitting comes in. To use this method we look for measured

quantities whose distributions for signal events are significantly different from their distri-

butions for backgrounds. For example, at the Υ(1S) resonance the momentum distribution

of our signal muons is sharply peaked around 0.965Eb, while the momentum distribution of

the muons in our τ pairs background falls off linearly and becomes zero for momenta above

0.963Eb. Therefore, we can use x as one of the variables in a multi-dimensional likelihood fit.

In fact, in terms of separating signal events from background events, x is the most important

variable in this analysis. Our exclusive analysis uses the four fitting variables summarized

in Table 13. The ionization energy loss of the electron candidate dE/dx has not yet been

discussed. This quantity is a measure of consistency with the theoretically predicted value

of dE/dx for real electrons and is interpreted according to the hypothesis that the electron

candidate really is an electron. It is expressed in units of standard deviation. The limits we

impose on the fitting variables constitute additional selection criteria.
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Table 13: The variables used in our multi-dimensional maximum-likelihood fits.

variable description range

x = pµ/Eb normalized momentum of muon candidate 0.87 < x < 1.02

y = pe/Eb normalized momentum of electron candidate 0.10 < y < 0.85

E/p ratio of electron’s energy to its momentum 0.85 < E/p < 1.10

dE/dx electron’s specific ionization energy loss −3.0σ < dE/dx < 3.0σ

Once selection criteria are chosen, their efficiency at selecting signal events must be

determined. We do this by applying the criteria to signal Monte Carlo samples. The results

of this process are tabulated in Tables 14, 15, and 16. Note that the CLEO III trigger is

effectively a set of selection criteria which has high, but not perfect, efficiency, and that the

overall efficiency of our selection criteria is about 9%. This is mostly due to the fact that

this is an exclusive analysis, i.e. the selection criteria include B(τ−→ e−+ ν̄e + ντ ). Finally,

the effect of applying all selection criteria to the Υ(4S) data is shown in Figure 12, where

the location of the hypothetical signal peak is indicated by the arrow, where the width of

the horizontal bar at its tip is ±σ(x). The data in these plots are the background events

whose distributions in our fit variables are needed for maximum-likelihood fitting.
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Table 14: Selection efficiencies at the Υ(1S), determined from signal Monte Carlo.

criterion before after efficiency cumulative

two tracks 30,000 21,174 70.6% 70.6%

one muon 21,174 15,021 70.9% 50.1%

one electron 15,021 3,337 22.2% 11.1%

opposite charges 3,337 3,335 99.9% 11.1%

L1 trigger 3,335 3,129 93.8% 10.4%

L3 trigger 3,129 3,129 100.0% 10.4%

L4 trigger 3,129 3,118 99.6% 10.4%

τ subcollection 3,118 3,040 97.5% 10.1%

e is not µ 3,040 3,039 100.0% 10.1%

0.10 < y < 0.85 3,039 2,793 91.9% 9.3%

0.87 < x < 1.02 2,793 2,728 97.7% 9.1%

−3.0 < dE/dx < 3.0 2,728 2,650 97.1% 8.8%
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Table 15: Selection efficiencies at the Υ(2S), determined from signal Monte Carlo.

criterion before after efficiency cumulative

two tracks 30,000 21,250 70.8% 70.8%

one muon 21,250 15,059 70.9% 50.2%

one electron 15,059 3,403 22.6% 11.3%

opposite charges 3,403 3,403 100.0% 11.3%

L1 trigger 3,403 3,209 94.3% 10.7%

L3 trigger 3,209 3,209 100.0% 10.7%

L4 trigger 3,209 3,199 99.7% 10.7%

τ subcollection 3,199 3,110 97.2% 10.4%

e is not µ 3,110 3,109 100.0% 10.4%

0.10 < y < 0.85 3,109 2,846 91.5% 9.5%

0.87 < x < 1.02 2,846 2,786 97.9% 9.3%

−3.0 < dE/dx < 3.0 2,786 2,704 97.1% 9.0%
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Table 16: Selection efficiencies at the Υ(3S), determined from signal Monte Carlo.

criterion before after efficiency cumulative

two tracks 21,780 15,417 70.8% 70.8%

one muon 15,417 10,952 71.0% 50.3%

one electron 10,952 2,458 22.4% 11.3%

opposite charges 2,458 2,457 100.0% 11.3%

L1 trigger 2,457 2,313 94.1% 10.6%

L3 trigger 2,313 2,313 100.0% 10.6%

L4 trigger 2,313 2,309 99.8% 10.6%

τ subcollection 2,309 2,247 97.3% 10.3%

e is not µ 2,247 2,247 100.0% 10.3%

0.10 < y < 0.85 2,247 2,051 91.3% 9.4%

0.87 < x < 1.02 2,051 2,010 98.0% 9.2%

−3.0 < dE/dx < 3.0 2,010 1,954 97.2% 9.0%
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X. THE METHOD OF MAXIMUM LIKELIHOOD

To estimate the numbers of signal events in our samples after selection criteria have been

applied, we use V. Savinov’s software implementation of the multidimensional unbinned

extended maximum likelihood (EML) method. This software is called FELIX.

The EML method was first proposed by Fermi and is described in R. Barlow’s excellent

book [5]. It takes as its input a sample of N events and a set functions Pl({z}, {α}l)
describing the probability densities of the events. Each contribution to the sample needs to

be described by a corresponding function P . These functions depend on the set of fitting

variables {z} and a set of parameters {α} describing the multidimensional shape of P . Our

analysis uses the four fitting variables described previously, so in the notation given above

{z} = {x, y, E/p, dE/dx}. Also, we parameterize each variable separately, so

Pl({z}, {α}l) = Pl(x, {ξ}l)Pl(y, {η}l)Pl(E/p, {ζ}l)Pl(dE/dx, {ω}l)

Here Pl represents the overall probability density function of the lth contribution to the

sample of events; {ξ}l is the set of parameters describing the x-shape of the lth contribution,

with the parameter sets {η}l, {ζ}l, and {ω}l similarly describing the shape of the lth con-

tribution in y, E/p, and dE/dx respectively. There are four components contributing to our

event samples: the three background components summarized in Table 12, and a possible

signal component. For each of these four contributions, four distributions need to be pa-

rameterized: x, y, E/p, and dE/dx. The parameters of all sixteen of the probability density

functions used in fitting are measured from on-resonance Υ(4S) data1. The off-resonance

Υ(4S) data, taken 60 MeV below the resonance, are used as a control sample.

1Even signal, since y, E/p, and dE/dx are going to have the same distributions as our background
components with real electrons, and the width of the peak in x is just the momentum resolution of the
detector. The location of the peak, remember, comes from the kinematics of the interaction.
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Table 17: The shapes used in our maximum-likelihood fits.

τ pairs µ pairs (dec.) µ pairs (rad.) signal

x 1st order poly. Crystal Ball Crystal Ball Gaussian

y 2nd order poly. 2nd order poly. Crystal Ball 2nd order poly.

E/p Crystal Ball Crystal Ball 1st order poly. Crystal Ball

dE/dx Gaussian Gaussian Gaussian Gaussian

Several of our distributions are described by the “Crystal Ball” function [11]:

C(z, {A, z̄, σ, α, β}) =


Ae−(z̄−z)2/2σ2

if z > z̄ − ασ

A
( β
α

)βe−α
2/2

( z̄−z
σ
− β
α
−α)β

if z ≤ z̄ − ασ

This function matches a power-law tail to a Gaussian below the mean of the Gaussian. It is

parameterized by normalization A, Gaussian mean z̄, Gaussian width σ, parameter α, which

determines where the function starts to diverge from the Gaussian, and parameter β, which

determines the length of the tail.

Once we have our fitting shapes we use them to construct the likelihood function

L =
1

N !
exp

(
−

4∑
j

Nj

)
N∏
i

∑
j

NjPj({z}i, {a}j)

where N is the total number of events in our sample and Nj is the number of events in the

jth component. The EML method finds the set of values Nj that maximize L and does not

require that the sum of Nj over all components be equal to N .

We proceed as follows:

• First, we measure the parameters of our fitting shapes by performing binned maximum-

likelihood fits to the on-resonance Υ(4S) data using the MN_FIT and MINUIT software

packages.
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• Then we perform an unbinned extended maximum-likelihood fit to the on-resonance

Υ(4S) data with FELIX, using the parameters obtained in the previous step. We include

signal shapes to make sure we have not introduced a bias.

• Next we fit the off-resonance Υ(4S) control sample with FELIX, first without and then

with the signal component. We add signal Monte Carlo events to the control sample to

make sure that FELIX can find the correct number of signal events.

• Finally, we fit the Υ(1S), Υ(2S), and Υ(3S) data samples with FELIX.

Two complications to this straightforward procedure need to be explained. First, the

distribution of x for the τ pairs background needs to be “smeared” by convolving it with a

Gaussian function describing the finite momentum resolution of the detector. The x-shape

of the τ pairs background decreases linearly and becomes zero above a certain value:

Pττ (x, {Aττ , X}) = Aττ (1− x/X)

Here Aττ is the normalization parameter and X is the value of x above which Pττ (x) is

zero. The parameter X is determined by the kinematics of the τ lepton’s decay into a

muon and has the values X = 0.963 at the Υ(1S) resonance, X = 0.967 at the Υ(2S)

resonance, and X = 0.970 at the Υ(3S) resonance. These values fix the horizontal intercept

of the distribution. However, because of the finite resolution of the detector, there is a small

chance of detecting τ pairs events with values of x above this kinematic boundary. The

convolution mentioned above allows us to take this into account. We use our background of

muon pairs to measure the detector’s momentum resolution, which is just the width of the

Gaussian part of the Crystal Ball function, and find that it is 0.86%. This value is also used

as the width of the signal peak.

The other complication is that y and E/p are strongly correlated for the muon pairs

with radiation. Figure 13 shows the distribution of E/p vs. y for radiative muon pairs in our

calibration sample. The distribution of y for this component is described by a Crystal Ball

function C(y) whose mean depends on E/p. To deal with this we introduce the following

two-dimensional probability density, where for clarity we define u = E/p:

Pµµ(γ)(y, u) = Aµµ(γ)h(y, u)C(y, {1, ȳ(u), 0.0065, 1.0, 6.0})
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Figure 19: The distribution of E/|p| versus y for on-Υ(4S) calibration data that contain
one high-quality muon and one poorly reconstructed muon in the region 0.96 < x < 1.02.
Notice that when y = 0.5, E/|p| is approx. 1.05 – this is due to two energy deposits in
the calorimeter: from hard radiative photon AND from the muon itself. The latter amount
should be approx. 250MeV in order to explain the observed structure. Also, this (partially)
explains why y for muon pairs with hard radiation background does not peak at 0.5. Hard
radiative photons carrying smaller amounts of energy are more probable, this completes the
explanation for the shape of y for this background.

58

Figure 13: Correlation of E/p and y for radiative muon pairs in our calibration sample.
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This has normalization parameter Aµµ(γ) and uses the auxiliary function

h(y, u) = 1− 0.81338 (u cos θ − y sin θ)

which is a linear function of the rotated variable u′ = −y sin θ + u cos θ. Figure 13 shows

that the rotation angle is θ = arctan[(0.56 − 0.50)/(1.10 − 0.85)], or approximately 13.5◦.

The dependence of ȳ on u is described by

ȳ(u) = 0.50 + (1.10− u) tan θ

Using u′ = y cos θ + u sin θ to eliminate u and simplifying, we find

ȳ − y
σ

=
(0.50 cos θ + 1.10 sin θ)− y′

σ cos θ

which makes it clear that

C(y, {1, ȳ(u), 0.0065, 1.0, 6.0}) = C(y′, {1, ȳ′, 0.0065 cos θ, 1.0, 6.0})

where ȳ′ = 0.50 cos θ + 1.10 sin θ. So, in terms of the rotated variables y′ and u′, the proba-

bility density given above becomes

Pµµ(γ)(y
′, u′) = Aµµ(γ)h(u′)C(y′, {1, 0.74, 0.0063, 1.0, 6.0}).

The results of our unbinned EML fits are shown in Table 18. They are consistent with

Nsig. = 0 in all studied samples. Since no signal was observed, we may set an upper limit on

the branching fraction B(Υ→ µ∓+ τ±). In a perfect, error-free world this would simply be

B < 1

N

where N is the total number of Υ decays in our sample2. However, there are many sources

of error in this analysis, and these must now be described.

2Since a perfect detector would have a 100% detection efficiency, N would be the true number of Υ
mesons produced by CESR.
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Table 18: The results of our fits.

sample components Nττ Nµµ(e) Nµµ(γ) Nsig. Nj < 0

Υ(4S) 3 1,568± 40 66± 9 60± 8 – yes

Υ(4S) 4 1,571± 40 70± 10 60± 8 −6± 5 yes

Υ(4S) 4 1,568± 40 66± 8 60± 8 0 + 2 no

continuum 3 584± 25 18± 5 21± 5 – yes

continuum 4 584± 25 18± 5 21± 5 0± 4 yes

continuum 4 584± 25 18± 5 21± 5 0 + 4 no

Υ(1S) 3 492± 23 27± 6 13± 4 – yes

Υ(1S) 4 491± 23 26± 6 13± 4 3± 4 yes

Υ(1S) 4 491± 23 26± 6 13± 4 2 + 4 no

Υ(2S) 3 463± 22 22± 6 14± 4 – yes

Υ(2S) 4 462± 22 22± 6 13± 4 1± 4 yes

Υ(2S) 4 462± 22 22± 6 13± 4 1 + 4 no

Υ(3S) 3 451± 22 18± 5 7± 3 – yes

Υ(3S) 4 450± 22 17± 5 7± 3 2± 4 yes

Υ(3S) 4 450± 22 17± 5 7± 3 2 + 4 no
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XI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties in this analysis arise from several sources and fall into three cat-

egories. First there is an overall systematic uncertainty associated with the detection effi-

ciency. The largest contributions to this are listed in Table 19. The most important of these

is the error on the trigger’s efficiency. Signal Monte Carlo studies indicate that the trigger

is 94% efficient, and studies of the production cross section for τ pairs suggest that the

systematic error on this efficiency is 5%. V. Savinov studied two-track selection efficiency as

part of his PhD thesis [17] and found the error on this to be 4%. The track reconstruction

efficiency of CLEO III is 3% for muons and 1% for electrons. The systematic error on muon

identification was studied by V. Savinov and S. Nam while implementing the muon detec-

tor’s response for use in Monte Carlo simulation. This was found to be 2%. The selection

criteria for the τ subcollection are well understood and highly efficient; it is unlikely that

the error on their efficiency would exceed 2%. The spread of the efficiencies in Tables 14,

15, and 16 indicate that the error on our signal Monte Carlo statistics is 2%. The L3 and

L4 software triggers are very nearly 100% efficient, so we estimate the uncertainty on this

to be 1%. Our electron identification is based on loose selection criteria on E/p and dE/dx.

The uncertainty on the efficiency of these criteria would not be large, and we estimate it to

be 1%. All these contributions combine to give an overall systematic error on the detection

efficiency of 8%.

We verify this estimate by measuring the cross section for electron-positron annihilation

to τ lepton pairs in our Υ(4S) calibration sample, with a detection efficiency obtained from

generic τ pairs Monte Carlo samples. This measurement, shown in Figure 14, agrees with

the expected 0.92 nb to within 4%, with a statistical uncertainty of 5%.

For signal events there is an uncertainty in the shape of y and in the efficiency of the
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Table 19: Contributions to the systematic uncertainties on the detection efficiency.

source uncertainty comment

trigger 5% L1 trigger

event selection 4%

track reconstruction 3% two tracks

muon identification 2%

event preselection 2% τ subcollection

signal MC statistics 2% not used for shapes

software trigger 1% L3 and L4 decisions

electron identification 1%

y-region selection criteria arising from the uncertainty in the τ lepton’s polarization, which

is a priori unknown for the lepton flavor violating decay we seek. With respect to the

unpolarized τ leptons used in this analysis two extremes are possible: the electron arising

from the decay of the τ could be boosted forward, or it could be boosted backward. In

the former case the y-selection efficiency is 3% lower than the unpolarized case, and in the

latter it is 3% higher. We therefore use 3% as the systematic uncertainty on the y-selection

efficiency.

Next is the error on the integrated luminosities of our data samples, which leads to

uncertainties in the numbers of Υ mesons present in the samples. This in turn contributes

to the error on the upper limit we wish to set for B(Υ→ µ∓+ τ±). The luminosities of the

CLEO III data sets have a systematic error of 2%.

Finally, there is some uncertainty in our results arising from errors on the parameters of

our fitting shapes. These we take into account in our procedure for evaluating the upper limit

of B(Υ→ µ∓+ τ±). We perform 1,000 EML fits for each data sample using the parameters

measured from Υ(4S) data as described previously, but we vary the parameters according

to the Gaussian uncertainties in their values. This yields sets of 1,000 values each for Nττ ,
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Nµµ(e), Nµµ(γ), and Nsig., the latter of which we now write in terms of the branching fraction:

Nsig. = εNΥB

where ε is the detection efficiency and NΥ is the number of Υ mesons present in the sample.

We then integrate the likelihood function over the three background components, leaving it

as a function of B, which we also vary according to the Gaussian uncertainties in ε (8.5%,

including τ polarization error) and NΥ (2%). We now have 1,000 likelihood functions which

we normalize and sum.

The results of this procedure are likelihood contours, which are themselves normalized,

like the one shown in Figure 15. This figure shows: (a) the binned x projection of the results

of the EML fit to Υ(1S) data, which are the points with the error bars. The solid line

indicates the result of the fit; the shaded areas show τ pair, µ pair, and signal contributions

to the fit. The dashed line shows the hypothetical signal of 100 lepton flavor violating events

superimposed on the results of the fit, and (b) the distribution of the likelihood function

as a function of branching fraction for Υ(1S) → µ∓+ τ±. The 95% CL upper limit on B
corresponds to the value of B that gives 95% of the area under the contour in the physical, i.e.

nonnegative, region of B. This procedure yields the following upper limits on B(Υ→ µ∓+τ±)

at the 95% confidence level:

B(Υ(1S)→ µ∓+ τ±) < 6.0× 10−6

B(Υ(2S)→ µ∓+ τ±) < 14.4× 10−6

B(Υ(3S)→ µ∓+ τ±) < 20.3× 10−6.
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Figure 74: The measurements of e+e− → ττ production cross section performed using all
CLEO III on-resonance Υ(4S) calibration data samples. Only statistical errors are shown.
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Figure 14: A measurement of the τ pairs production cross section from data.
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Figure 15: The results of the EML fit to Υ(1S) data.
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XII. THE INCLUSIVE ANALYSIS

The detection efficiency of our analysis is fairly low (8.9%) in part because we identify the

τ lepton in signal events through its decay to an electron, a process that occurs only 18% of

the time. Therefore, an inclusive analysis, one that does not discard four out of every five

signal events from the outset, was investigated to see if it would have better sensitivity.

Two criteria were used to select signal events from the data samples. First, events were

required to have at least two reconstructed charged particle tracks, and second, at least one

of the tracks was required to be a high-quality muon candidate as defined in Chapter 9.

These criteria select all of the backgrounds that were present in the inclusive analysis as well

as electron-positron annihilation to muon pairs: e−+ e+→ µ−+ µ+, and muons arising from

the cosmic ray bombardment of the upper atmosphere1.

From the two or more tracks in a selected event we define the following: Track 1 is the

muon candidate with the highest momentum, and Track 2 is the track with the highest

momentum of the remaining tracks. Tracks 1 and 2 are then used to define the following

quantities:

x = p1/Eb

y = p2/Eb

cosα = p1 · p2/(p1p2)

Angle α is the angle between the momentum vectors of the two tracks of interest; it can be

used for background suppression.

1This happens way more often than a graduate student would think.

55



Table 20: Inclusive selection efficiencies at the Υ(1S).

criterion before after efficiency cumulative

τ subcollection 30,000 22,664 76% 76%

at least one muon 22,664 19,154 85% 64%

| cosα| < 0.95 19,154 9,038 47% 30%

0.13 < p⊥/Ecm < 1.10 9,038 7,605 84% 25%

χ2 per degree of freedom < 5 7,605 7,605 100% 25%

fitting region 7,605 6,009 79% 20%

To suppress background events arising from electron-positron annihilation to muon pairs

and cosmic rays we require | cosα| < 0.95. This works because these backgrounds have

collinear tracks, which our signal, because of the τ lepton’s decay, will not necessarily have.

The decay of the τ will also introduce a neutrino, which means that a signal event will have

some undetected energy and momentum. Therefore, to suppress radiative muon pairs, which

should be fully reconstructed, we look at the perpendicular component of the missing event

momentum and require 0.13 < p⊥/Ecm < 1.10.

Table 20 shows that the overall detection efficiency is 20%. Note that since all events in

the τ subcollection have at least two reconstructed charged particle tracks and have passed

all levels of the trigger, the first row of the table includes those efficiencies. To estimate the

sensitivity of the inclusive analysis we count the number of background events remaining

in the signal region: 0.94 < x < 0.99, after all selection criteria have been applied to the

on-resonance Υ(4S) calibration sample. We then scale this number to the Υ(1S) resonance

to estimate the number of background events in the signal region of our Υ(1S) data sample:

Nbkg. = 1.6Nbkg., Υ(4S)

(LΥ(1S)

LΥ(4S)

)(
10,579 MeV

9,460 MeV

)2

.

The number of signal events in the signal region is

Nsig. = εNΥB(Υ(1S)→ µ∓+ τ±).
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We want to know the smallest value of the branching fraction B that will still give us enough

signal events to make
√
N2

sig./Nbkg. > 3. This is

B(Υ(1S)→ µ∓+ τ±) >
3
√
Nbkg.

εNΥ

.

In other words the inclusive analysis will be able to see signal events if the lepton flavor

violating branching fraction B(Υ(1S) → µ∓+ τ±) is at least as large as 3
√
Nbkg./(εNΥ),

where Nbkg. is estimated from the number of events remaining in our calibration data sample

that fall within the signal region. This procedure was also used to optimize the selection

criteria on | cosα| and p⊥/Ecm for sensitivity. This is shown in Figure 16, where first | cosα|
is optimized and then p⊥/Ecm. After imposing one final requirement on the quality of the

fit for the muon candidate’s track2, we find that the inclusive selection criteria are sensitive

to

B(Υ(1S)→ µ∓+ τ±) > (8± 1)× 10−6

assuming errors similar to those in the exclusive analysis.

The effect of applying the optimized selection criteria to calibration data and to Υ(1S)

signal Monte Carlo is shown in Figure 17. In the figure the vertical scale of the one-

dimensional x-distributions is events/0.001, and the vertical scale of the one-dimensional

y-distributions is events/0.005. We find that there is only one variable suitable for EML

fitting: x, where the fitting region in x is the same as the one used in the exclusive analysis:

0.87 < x < 1.02. There is only one fitting variable because we have no requirements on Track

2 other than that it exists. The background selection criteria remove events with y & 0.60 in

an x-dependent manner, so we impose one final requirement before fitting: 0.10 < y < 0.60.

However, we conclude that the inclusive analysis does not give enough improvement to justify

fitting.

2For the muon candidate’s track χ2 per degree of freedom must be less than 5.
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Figure 16: Optimization of selection criteria in the inclusive analysis.
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Figure 17: Scatter plots of y vs. x and their 1-d projections in the inclusive analysis.
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XIII. CONCLUSIONS

The exclusive analysis, which identified the τ lepton in signal events through its decay to an

electron, observed no signal events, and we used it to establish the following upper limits at

the 95% confidence level:

B(Υ(1S)→ µ∓+ τ±) < 6.0× 10−6

B(Υ(2S)→ µ∓+ τ±) < 14.4× 10−6

B(Υ(3S)→ µ∓+ τ±) < 20.3× 10−6.

Errors on the fitting parameters, detection efficiencies, and sample luminosities were ac-

counted for in deriving these numbers. The inclusive analysis only looks for the signal’s

muon and consequently has much larger backgrounds. Its optimized selection criteria are

sensitive to:

B(Υ(1S)→ µ∓+ τ±) > (8± 1)× 10−6

assuming errors similar to those in the exclusive analysis.

We searched for physics beyond the scope of the Standard Model using a machine that

was originally designed before the b quark was discovered. Interestingly, all but one of

the necessary parameters for this analysis were measured from actual data. No signal was

observed, so the conservation of the lepton flavor numbers remains in tact for now. Observing

how this accidental symmetry is broken — and it is broken; neutrino oscillation tells us this

— will have to wait for more energetic experiments.

60



APPENDIX

PLOTS

This appendix contains numerous plots related to fitting. The first group (Figures 18 – 26)

illustrates the measurement of our fitting parameters from the calibration data.

• Figure 18 shows projections of the on-resonance Υ(4S) data, i.e. our calibration sample,

onto each of the four fit variables.

• Figure 19 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the region of x below 0.96. This result supports the conclusion

that a straight line is a good approximation for the x-shape of our τ pairs background.

• Figure 20 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the region of x between 0.87 and 0.96. This result shows that

the y-shape for real electrons is well approximated by a 2nd-order polynomial.

• Figure 21 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the region of x between 0.87 and 0.96. This result shows that

the shape of E/p for real electrons can be described by the Crystal Ball function.

• Figure 22 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the region of x between 0.87 and 0.96. This result shows that

the shape of dE/dx for real electrons can be described by a Gaussian function.

• Figure 23 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the region of y between 0.45 and 0.60. These are events that

contain one high-quality muon and one poorly reconstructed muon. This fit shows that
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the x-shape of such events can be described by the Crystal Ball function.

• Figure 24 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the region of x between 0.96 and 1.02. These are radiative muon

pairs. The fit is done in the rotated variable y′, which was described in Chapter 10,

and it shows that the y′-shape of this background can be described by the Crystal Ball

function.

• Figure 25 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the following regions: x between 0.96 and 1.02, y between 0.45

and 0.60, and dE/dx below −1.0. These are radiative muon pairs. The fit is done in the

rotated variable u′, which was described in Chapter 10, and it shows that a straight line

is a good approximation for the u′-shape of this background.

• Figure 26 shows the results of a binned maximum-likelihood fit to our calibration data.

The fit is performed for the following regions: x between 0.96 and 1.02 and y between

0.45 and 0.60. These are radiative muon pairs. This fit shows that the shape of dE/dx

for this background is well described by a Gaussian function.

The next group (Figures 27 – 30) illustrates the detection signature of signal events. Note

that the signal’s peak is determined kinematically and its spread is determined by the de-

tector resolution. We also use the detector resolution to smear the shape of x for the τ pairs

background.

• Figure 27 shows the results of a binned maximum-likelihood fit to Υ(1S) signal Monte

Carlo. This result supports the conclusion that the detection signature of signal events

is a monochromatic muon whose momentum distribution is smeared by the detector’s

resolution. We do not use these results to fit our signal data. Instead we use a Gaussian

with σx measured from our calibration data.

• Figure 28 is the same as the previous except that it shows Υ(2S) signal Monte Carlo.

• Figure 29 is the same as the previous except that it shows Υ(3S) signal Monte Carlo.

• Figure 30 shows the results of a binned maximum-likelihood fit to our calibration data.

The events have been selected to enhance radiative muon pairs. This is our measurement

of the detector’s momentum resolution σx.

62



Next (Figures 31 – 35) we show the results of our unbinned extended maximum-likelihood

(EML) fits.

• Figure 31 shows projections of the results of a three-component (no signal) unbinned

EML fit in four dimensions along with binned Υ(4S) calibration data for comparison.

Solid line (black) shows all components; dashed line (light grey) shows τ pairs; dotted

line (medium grey) shows µ pairs with radiation; dot-dashed line (dark grey) shows µ

pairs with decay. Also shown (upper left only) is a hypothetical signal peak containing

100 events.

• Figure 32 is the same as the previous except that it shows continuum control data.

• Figure 33 shows projections of the results of a four-component unbinned EML fit in four

dimensions along with binned Υ(1S) signal data for comparison. Solid line (black) shows

all components; dashed line (light grey) shows τ pairs; dotted line (medium grey) shows

µ pairs with radiation; dot-dashed line (dark grey) shows µ pairs with decay. Also shown

(upper left only) is a hypothetical signal peak containing 100 events.

• Figure 34 is the same as the previous except that it shows Υ(2S) signal data.

• Figure 35 is the same as the previous except that it shows Υ(3S) signal data.

The final group of plots (Figures 36 – 40) illustrates the determination of upper limits.

• Figure 36 shows the profile of the likelihood function vs. LFV branching fraction for

Υ(4S) calibration data. (a) No correlations among fit variables and no systematic uncer-

tainties are taken into account. (b) Correlations are accounted for but not systematics.

(c) Correlations and systematic uncertainties in PDF shapes are accounted for. (d) Cor-

relations, PDF systematics, and efficiency systematics are accounted for. (e) Correlations

and all systematic uncertainties are accounted for.

• Figure 37 is the same as the previous except that it shows continuum control data.

• Figure 38 is the same as the previous except that it shows Υ(1S) signal data.

• Figure 39 is the same as the previous except that it shows Υ(2S) signal data.

• Figure 40 is the same as the previous except that it shows Υ(3S) signal data.

63



0.87 0.92 0.97 1.02

x = pµ/Ebeam

0.

40.

80.

120.

E
v
e
n
ts

 /
 5

0
 b

in
s

0.10 0.30 0.50 0.70

y = p
e
/E

beam

0.0

20.0

40.0

60.0

E
v
e
n
ts

 /
 5

0
 b

in
s

0.85 0.975 1.10

E/|p|

0.

100.

200.

E
v
e

n
ts

 /
 5

0
 b

in
s

-3.0 -1.0 1.0 3.0

dE/dx (electron hypothesis)

0.

40.

80.

120.

E
v
e

n
ts

 /
 5

0
 b

in
s

Figure 35: Projections of the Υ(4S) data sample on the four variables used in our fits.
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Figure 18: Projections of the on-resonance Υ(4S) data onto each of our fit variables.
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Figure 14: The results of a binned ML x fit to calibration on-Υ(4S) data. The fit is
performed only for the region of x below 0.96. We use this result to support our conclusion
that a straight line is a good approximation for the x shape of τ pairs background.
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Figure 19: The shape of x for our τ pairs background.
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Figure 15: The results of a binned ML y fit to calibration on-Υ(4S) data for the x region
0.87 < x < 0.96.
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Figure 20: The shape of y for real electrons.
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Figure 17: The results of a binned ML E/|p| fit to the on-Υ(4S) calibration data for the
region 0.87 < x < 0.96. Notice that we use a combination of two functions to parameterize
the contribution from real electrons.
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Figure 21: The shape of E/p for real electrons.
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Figure 22: The shape of dE/dx for real electrons.
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data that contain one high-quality muon and one poorly reconstructed muon in the region
0.45 < y < 0.60.
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Figure 23: The shape of x for µ pairs.
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Fit Status  3
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=    42.4 for  32 -  3 d.o.f., C.L.=  5.2%

Errors Parabolic                     Minos
Function  1: CB line shape
A   734.47 ±   27.99 -   27.63 +   28.36
MEAN  0.56318 ±  2.9954E-04 -  3.0185E-04 +  2.9891E-04
SIGMA  6.43317E-03 ±  2.5477E-04 -  2.4681E-04 +  2.6422E-04
ALPHA"   1.0000 ±   0.000 -   0.000 +   0.000
BETA"   6.0000 ±   0.000 -   0.000 +   0.000

Figure 20: The results of a binned ML fit to the y distribution for on-Υ(4S) calibration
data that contain one high-quality muon and one poorly reconstructed muon in the region
0.96 < x < 1.02. To estimate the shape of y for this background we removed the correlation
evident in Fig. 19 by adjusting the value of y in a E/|p|-dependent fashion. This correlation
is taken into account in our multidimensional fits.
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Figure 24: The shape of the rotated variable y′ for radiative µ pairs.
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NORM   184.17 ±   6.250 -   26.07 +   26.08
SLOPE -0.81338 ±  1.1419E-02 -  4.8389E-02 +  6.4988E-02

Figure 22: The results of a binned ML fit to the rotated y distribution shown in Fig. 19 for
on-Υ(4S) calibration data that contain one high-quality muon and one poorly reconstructed
muon in the region 0.96 < x < 1.02, 0.45 < y < 0.60 and dE/dx < −1.0 (interpreted
according to electron hypothesis).
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Figure 25: The shape of the rotated variable u′ for radiative µ pairs.
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Figure 23: The results of a binned ML fit to the dE/dx distribution for on-Υ(4S) calibration
data that contain one high-quality muon and one poorly reconstructed muon in the region
0.96 < x < 1.02 and 0.45 < y < 0.60. The correlation between y and dE/dx is small because
of narrow range of y.
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Figure 26: The shape of dE/dx for radiative µ pairs.
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SIGMA  6.60704E-03 ±  1.2744E-04 -  1.2459E-04 +  1.3044E-04

Figure 29: The results of a binned ML fit to the x distribution for signal Υ(1S) MC. We do
not use these results in our fits to signal data. Instead, we use Gaussian with σx = 0.0065
centered at x according to Table 6.
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Figure 27: The shape of x for Υ(1S) signal Monte Carlo.
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Figure 30: The results of a binned ML fit to the x distribution for signal Υ(2S) MC. We do
not use these results in our fits to signal data. Instead, we use Gaussian with σx = 0.0065
centered at x according to Table 6.
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Figure 28: The shape of x for Υ(2S) signal Monte Carlo.
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Figure 31: The results of a binned ML fit to the x distribution for signal Υ(3S) MC. We do
not use these results in our fits to signal data. Instead, we use Gaussian with σx = 0.0065
centered at x according to Table 6.
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Figure 29: The shape of x for Υ(3S) signal Monte Carlo.
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,
A
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MEAN
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,
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,
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,
#   1.0000 ±   0.000 -   0.000 +   0.000
,
BETA

,
  3.2372 ±  0.6770 -  0.5685 +  0.8427

Figure 10: The results of one of our ML fit to Υ(4S) data events (preselected by Bill Love)
selected to enhance µµ background with radiation. In this and the next figures we show
the results of the fit with CBL function which can be used to approximate the shape of
radiative tail. One might think that using CBL solves the “problem of choosing the exact
fitting range of x” – however, in this and the next figures we show that the estimate of
the resolution parameter σ(x) depends on the range of x included in the fit. However, the
difference between 0.0865±0.0002 (this figure) and 0.0864±0.0002 (the next figure) is of the
same order as the one obtained from Gaussian fits (see Fig. 8 and Fig. 9). Notice that we use
the systematic error on σ(x) of 0.003. We are not using, e.g. 0.0086± 0.0001 (as we could
justify on statistical basis alone with more data included in the fits) but 0.0086 ± 0.0003
which is meant to account for systematic effect addressed here.
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Figure 30: The smearing in x, measured from our Υ(4S) calibration data.
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Figure 36: Projections of the results of three-component (no signal) 4D unbinned ML fit
and the comparison with binned Υ(4S) data. The legend for the results of the fit: solid
black for everything, dashed green for τ pairs, dotted red: muon pairs with hard radiation,
dot-dashed blue (solid blue for right top corner plot): muon pairs with decay to electron.
Dashed black line (top left corner plot only) shows 100 hypothetical signal events added to
the results of the fit.
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Figure 31: The results of a three-component fit to our calibration data.
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Figure 37: Projections of the results of three-component (no signal) 4D unbinned ML fit and
the comparison with binned “continuum” data. The legend for the results of the fit: solid
black for everything, dashed green for τ pairs, dotted red: muon pairs with hard radiation,
dot-dashed blue (solid blue for right top corner plot): muon pairs with decay to electron.
Dashed black line (top left corner plot only) shows 100 hypothetical signal events added to
the results of the fit.
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Figure 32: The results of a three-component fit to our control data.
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Figure 38: Projections of the results of four-component (including signal) 4D unbinned ML
fit and the comparison with binned Υ(1S) data. The legend for the results of the fit: solid
black for everything, dashed green for τ pairs, dotted red: muon pairs with hard radiation,
dot-dashed blue (solid blue for right top corner plot): muon pairs with decay to electron.
Dashed black line (top left corner plot only) shows 100 hypothetical signal events added to
the results of the fit.

77

Figure 33: The results of a four-component fit to the Υ(1S) signal data.
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Figure 39: Projections of the results of four-component (including signal) 4D unbinned ML
fit and the comparison with binned Υ(2S) data. The legend for the results of the fit: solid
black for everything, dashed green for τ pairs, dotted red: muon pairs with hard radiation,
dot-dashed blue (solid blue for right top corner plot): muon pairs with decay to electron.
Dashed black line (top left corner plot only) shows 100 hypothetical signal events added to
the results of the fit.

78

Figure 34: The results of a four-component fit to the Υ(2S) signal data.
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Figure 40: Projections of the results of four-component (including signal) 4D unbinned ML
fit and the comparison with binned Υ(3S) data. The legend for the results of the fit: solid
black for everything, dashed green for τ pairs, dotted red: muon pairs with hard radiation,
dot-dashed blue (solid blue for right top corner plot): muon pairs with decay to electron.
Dashed black line (top left corner plot only) shows 100 hypothetical signal events added to
the results of the fit.
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Figure 35: The results of a four-component fit to the Υ(3S) signal data.
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Figure 23: The profile of the likelihood function versus “LFV branching fraction” for cali-
bration (on-Υ(4S)) data obtained from four-component 4D unbinned ML fit. Correlations
among fit parameters (b–e), systematics due to the uncertainties in PDF shapes (c–e), the
efficiency (d,e) and statistics (e) are taken into account (depending on the plot). This sample
is normalized to Υ(1S) statistics – i.e. the scale of horizontal axis is arbitrary. See the text
for more information.
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Figure 36: Likelihood profiles vs. LFV branching fraction for Υ(4S) calibration data.
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Figure 24: The profile of the likelihood function versus “LFV branching fraction” for control
(just below-Υ(4S)) data obtained from four-component 4D unbinned ML fit. Correlations
among fit parameters (b–e), systematics due to the uncertainties in PDF shapes (c–e), the
efficiency (d,e) and statistics (e) are taken into account (depending on the plot). This sample
is normalized to Υ(1S) statistics – i.e. the scale of horizontal axis is arbitrary. See the text
for more information.
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Figure 37: Likelihood profiles vs. LFV branching fraction for continuum control data.

83



Signal (Υ(1S)) data

-4 0 4 8 12

LFV BR (in units of 10-6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
L

ik
e
lih

o
o

d
 f

ro
m

 n
o

m
in

a
l M

L
 f

it 
(n

o
 c

o
rr

.,
 n

o
 s

ys
t.
)

Signal (Υ(1S)) data

-4 0 4 8 12

LFV BR (in units of 10-6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
ik

e
lih

o
o

d
 f

ro
m

 n
o

m
in

a
l M

L
 f

it 
(n

o
 s

ys
te

m
a

tic
s)

Signal (Υ(1S)) data

-4 0 4 8 12

LFV BR (in units of 10-6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
ik

e
lih

o
o

d
 f

ro
m

 n
o

m
in

a
l M

L
 f

it 
(P

D
F

 b
u

t 
n

o
 o

th
e

r 
sy

st
.)

Signal (Υ(1S)) data

-4 0 4 8 12

LFV BR (in units of 10-6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
ik

e
lih

o
o
d

 f
ro

m
 n

o
m

in
a

l M
L

 f
it 

(P
D

F
 a

n
d

 e
ff
. 

sy
st

.)

Signal (Υ(1S)) data

-4 0 4 8 12

LFV BR (in units of 10-6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
ik

e
lih

o
o
d

 f
ro

m
 n

o
m

in
a

l M
L

 f
it 

(w
ith

 a
ll 

sy
st

.)

Figure 25: The profile of the likelihood function versus LFV branching fraction for signal
(Υ(1S)) data obtained from four-component 4D unbinned ML fit. Correlations among fit
parameters (b–e), systematics due to the uncertainties in PDF shapes (c–e), the efficiency
(d,e) and statistics (e) are taken into account (depending on the plot). See the text for more
information.
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Figure 38: Likelihood profiles vs. LFV branching fraction for Υ(1S) signal data.
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Figure 26: The profile of the likelihood function versus LFV branching fraction for signal
(Υ(2S)) data obtained from four-component 4D unbinned ML fit. Correlations among fit
parameters (b–e), systematics due to the uncertainties in PDF shapes (c–e), the efficiency
(d,e) and statistics (e) are taken into account (depending on the plot). See the text for more
information.
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Figure 39: Likelihood profiles vs. LFV branching fraction for Υ(2S) signal data.
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Figure 27: The profile of the likelihood function versus LFV branching fraction for signal
(Υ(3S)) data obtained from four-component 4D unbinned ML fit. Correlations among fit
parameters (b–e), systematics due to the uncertainties in PDF shapes (c–e), the efficiency
(d,e) and statistics (e) are taken into account (depending on the plot). See the text for more
information.
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Figure 40: Likelihood profiles vs. LFV branching fraction for Υ(3S) signal data.
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