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RATERS USING A LOG-LINEAR MODELING APPROACH

Kari. B. Kastango, PhD

University of Pittsburgh, 2006

When an outcome is rated by several raters, ensuring consistency across raters
increases the reliability of the measurement. Tanner and Y oung (1985) proposed a
general class of log linear models to assess agreement among K raters and arating scale
with C nominal categories. Their methodology can be used to assess pair-wise agreement
among three or more raters. Rogel et a. (1996, 1998) extended this work by assessing
various patterns of agreement among rater sub-groups of size K-1. These models can be
used to test the assumption of rater exchangeability. Although parameters from these
models can be used to identify atypical raters, no formal inferential procedures are
available. | propose aformal inferential approach that can be used to test the assumption
of rater exchangeability and to identify an atypical rater. The globa and heterogeneous
partial agreement model is fit to the data and pair-wise comparisons of the K partial
agreement parameters are made, adjusting the p-values for the multiple comparisons
made. The heterogeneous partial agreement parameter that is constantly involved in the
pair-wise comparisons that are statistically significant is distinguished. The premise is
that, if there is an atypical rater, at least one heterogeneous partial agreement parameter
will differ from at least one of the remaining K-1 partial agreement parameters. The
approach isillustrated using published data from an intestinal biopsy rating study with six

raters (Rogel et al., 1998). Overal Type | error and the power of the inferential approach



to correctly identify atypical raters are assessed via simulation with rater sub- groups of
size 5. The Bonferroni, Sidak, and Holm’ s Step-down procedures using the Bonferroni
and Sidak adjustments are used to control the overall Type | error. Being able to
correctly identify an atypical rater, if present, and improving the consistency of ratings
directly, influence the reliability of the measurement and the power of the study for a
given sample size. Consequently, more informative studies can be conducted of
interventions (e.g., behavioral, medicinal) that may have a significant positive impact on

the public’s hedlth.
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1 INTRODUCTION

Unreliable or imprecise measurement of the primary outcome, whether continuous or
categorical, limits the power of astudy. One of the fundamental issues surrounding the
design and analysis of a study involving aprimary outcome measured by a subjective
nominal rating scale by multiple raters is the reduced reliability of the measurement due
to rater differences in rating the response. These differences can occur between raters at
asingle time point (inter-rater) or within raters (intra-rater) acrosstime. The larger the
amount of variability due to inter-rater or intra-rater differences, the greater the reduction
in astudy’s power. It isdifficult to demonstrate the benefit of new treatments (e.g.,
behavioral intervertions, medicine) with insufficiently powered studies.

| focus on ‘agreement’, defined as the reproducibility of a categorical outcome.
Although agreement is defined for both ordinal and nomina outcomes, the focus of the
present work is on nominal outcomes. For nominal outcomes, such as the absence or
presence of lesions determined by categorizing morphological features of biopsy
specimens, each rater should have sufficient experience with the histological
characteristics associated with the lesion for correct classification. At best, each specimen
is objectively categorized with each rater using the same classification criteria. At worst,
the ratings are highly subjective.

Summary measures of overall agreement, such as Cohen’ s Kappa (Cohen, 1960)
assume that the raters are interchangeable. This statistic does not focus explicitly on the
contributions of individual raters or groups of raters to the overall summary measure and
cannot be used to identify atypical raters. There are situations, however, where

identifying atypical ratersis of particular interest.



My work focuses on identifying atypical raters for nomina data. That is, are there
any raters who are inconsistent in their characterizations of the outcome with respect to
the other raters? If so, how can they be identified? The log linear modeling approach of
Rogel et al. (1996, 1998) allows the assumption of rater exchangeability to be tested in a
setting where K raters rate the same patients. They define parameters that are used to
assess various patterns of agreement but do not address explicitly the identification of
individual raters. The focus of this work was to formalize inferential approaches to
identify atypical rater(s) within the framework of these models.

In chapter 2 | review two approaches to assess inter-rater agreement for nominal
categorical data, summary statistics and log-linear modeling. | focused on the loglinear
modeling approaches used by Tanner and Y oung (1985, JASA) and Rogel et al. (1996,
1998) to model inter-rater agreement and quantify the magnitude of inter-rater agreement.
| consider the applicability of formal statistical inference to identify an atypical rater, and
review relevant multiple comparison procedures for identifying atypical raters.

The inferential approach and the ssimulation study conducted to assess the Type |
error and power of the approach are described in Chapter 3. The analysis of published
data from an inter-rater agreement study involving six raters using these methods and the
results of the simulation study are presented in Chapter 4. Discussion of the results and

conclusions are in Chapter 5.



2. LITERATURE REVIEW

| review two basic approaches to assessing rater agreement for nominal categorical data.
One approach focuses on the use of the summary statistic Kappa (Cohen, 1960). The
second approach focuses on modeling the structure of agreement in the data using log

linear models (Tanner and Y oung, 1985; Rogel et a., 1996, 1998).

21 QUANTIFYING AGREEMENT USING THE SUMMARY STATISTIC
KAPPA

The predominant summary statistic for assessing agreement involving categorical datais
the Kappa (Cohen 1960) statistic. The statistic originated as a chance-corrected
coefficient of agreement for afixed pair of raters (K=2) rating the same patientsusing a
nominal rating scale with two outcomes (C=2). It has since been generalized to situations
involving (i) two raters, multiple categories, (ii) multiple raters, two categories, and (iii)
multiple raters, multiple categories. Although the statistic has been defined for both
ordinal and nominal categories, Kappa for situations (i) — (iii) is described in the context

of the nomina case.

21.1. Two Raters, Binary Outcome
The statistic for two raters and a binary outcome is described as follows. Suppose two

raters independently identify N slides as having cancer cells absent (0) or present (1).

Each dideis allocated into one of the 2% cells as shown in Table 1. Let X,;, represent the

number of dlides assigned to category i by the first rater and to category i by the second



rater where index i takesvaluesOor 1. Let x; represent the number of dides assigned to
category i by both raters, x , represent the total number of slides assigned to category i
by the first rater, and x,; represent the number of slides assigned to category i by the

second rater.

Table 1. General Layout of a 2x2 Contingency Table Denoting Agreement

Rater 2
Rater 1 0 1 Total
0 X00 Xo01 Xo+
1 X10 X11 X1+
Total X+0 X+1 X++= N
R-P

Kappaisdefined K =

, (Fleiss, Cohen, Everitt, 1969) where P, isthe observed

e

proportion of agreement and Py is the expected proportion of agreement by chance,

[o] Olwg.;.ow(ﬂo
F{,:axilizandF;:agl\ll+ N2+
=0 ine N ge N g

Landis and Koch (1977) assigned the following degree of agreement for varying values

ofK:
K <0 Poor 041<K <0.6 Moderate
0<K <0.2 Slight 061<K <0.8 Substantial
021<K <04 Fair 081<K <10 Almost
perfect.

2.1.2. Two Raters, M ultiple (C) Nominal Outcomes
An example of multiple nominal outcomes would be stages of sleep (e.g., Wakefulness,

Stage 1, Stage 2, Stage 3, Stage 4, and Stage REM). Suppose two raters independently



classify N epochs (defined time intervals, e.g., 30 seconds) of physiological datainto one
of C nominal sleep stage categories. Each epoch is alocated into one of the C* cellsas

shownin Table2. Let x,; represent the number of epochs assigned to category i by the
first rater and to category i by the second rater where index i takesvalues 0 to C-1. Let
X; represent the number of epochs assigned to category i by both raters, X, represent
the total number of epochs assigned to category i by the first rater, and x,; represent the

number of epochs assigned to category i by the second rater.

Table 2. General Layout of a Two Dimensional C x C Contingency Table Denoting
Agreement

Rater 2
0 1 o, C-1 Total
0 X00 Xo1 Xoi2 Xc1c1 Xo+
- 1 X10 X11 X1i2 Xc1c1 X1+
o) : : : : : :
§ i1 Xio Xi1 Xi1j2 Xc1c1 Xi+
C-1 Xc-10 Xc11 Xc1i2 Xc1c1 Xc1+
Total X+0 X+1 X+j X+ C1 X++= N

Kappais defined K = K-

, (Fleiss, Cohen, Everitt, 1969) where Po is the observed

proportion of agreement and Pe is the expected proportion of agreement by chance,

1% Glae , OaeX,; O
R=—ax, andP=Qqc¢c>+c—==
TN &N &N 5

2.1.3. Multiple (K) Raters, Binary Outcome
Fleiss (1981) generalized the original kappa to the situation where there are more than 2

raters (K>2). The generaization is made with the assumption that “the raters responsible



for rating one subject are not assumed to be the same as those responsible for rating

another (p.225, Fleiss, 1981)”. This kappais given by

where

n= number of subjects rated;

m = number of raters rating subject i;

X = number of positive ratings on subject i;

m - X = number of negative ratings on subject i;

M= mean number of ratings per subject = é 3
i=1

4 x
= overal proportion of positiveratings = S=;

nm ?

p
q = 1-p; overal proportion of negative ratings.

Note that no differentiation between raters is made with respect to each rater’s
contribution to either the summary statistic or the number of positive (or negative)
ratings. Kappaisasummary statistic under the assumption that the raters are
exchangeable. Tanner and Y oung (1985) point out that the Kappa statistics are not

sensitive to differences between observed and expected patterns of agreement, and

Kappa s value is afunction of the margina distribution of the raters.

22 MODELING AGREEMENT USING LOG-LINEAR MODELS

The second general approach to assessing rater agreement is to model the pattern of
agreement in the data using log-linear models. Log linear modeling can be viewed as
regression for count data displayed in a multi-way contingency table. Using this

approach, the agreement pattern in the data can be parameterized. Excellent resources



about loglinear modeling include Bishop, Fienberg, and Holland (1975) and Agresti
(2002). | review the loglinear modeling literature related to assessing agreement among

raters.

2.2.1. Notation
L og-linear modeling can used to describe and make inferences about the patterns of
association among the categorical variables in a multi-dimensional contingency table.
The dimension of the contingency table depends upon the number of categorical variables
of interest. In the agreement framework, where all K raters rate an outcome variable with
C categories, the data can be displayed in aK-way C" contingency table. The relevant
literature has been developed in detail for the case of a binary outcome, although the
approach generalizes directly for C>2 categories. | review the methods in the context of
abinary outcome.

For example, the cross-classification of three raters (K=3) assigning arating of ‘0’
for the absence or ‘1’ for the presence a symptom (C=2) can be presented in a three-
way 2° contingency table as shown in Table 3. Extending the notation introduced in
section 2.1.1 for atwo-way C? contingency table, a third subscript (k) is needed to

represent the cells of athree-way contingency table. Subscripts i,i,, and i, represent the
rating assigned by rater 1, rater 2, and rater 3, respectively and (i, i, i,) represent arating
pattern. Therefore, X, represents the number of patients assigned to category i, by the
first rater, to category i, by the second rater, and to category i, by the third rater, where

eachof i ,i, and i, isOor 1. Forexample, x,, representsthe number of patients



rated asa“0” by raters1 and 3and a“1” by rater 2. In addition,

X, 411 %4,4,@0d X, represent the marginal totals for each rater and

++ig

Pose P @Nd P, represent the marginal proportions of rater 1, rater 2 and rater 3,

respectively, (i.e., the proportion of patients rater 1, rater 2, and rater 3 rated asa“0").

Table 3. General Layout of a Three-Way 22 Contingency Table

Rater 1 (i)
(11=0) (i1=2)
Rater 2 (i) Rater 2 (1)
(i.=0) (i=1) (i=0) (i.=1)
Raer3  (is=0) X000 X010 X100 X110
(i3) (3=1) X001 Xo11 X101 X111

Count data from this inter-rater agreement study are assumed to follow a
multinomial distribution, because a fixed number of patients (N) are classified according

to theratings of the K raters. | am interested in the joint distribution of the ratings. The

probability that arating pattern is (i, i, i,) isgiven by the density function

! o
f{ .0 = 5 AL “Eiaamﬁe - (eg. 2.1.1, Bishop et &, 1975)

X s 7

where m; represents the expected frequency of rating pattern(i, i, i;) . The maximum
likelihood estimate of the frequency of observed rating pattern(i, i, i;) ,m; , isa
function of the minimal sufficient statistics, a set of marginal totals from the contingency
table that depend on the hypothesized log linear model (Bishop, 1975). For example,

Xisr X jorand X, aeminimal sufficient statistics for m,, m,;, and m,,,, respectively,

A _()g++)' (X+j+)' (X++k)

i = N , under the model of independence.




2.2.2. M oddl Of I ndependence
For the case of three raters and a binary outcome, under the assumption of independence

the expected number of agreements among the three ratersis given by

)ﬁ ++ X+i + X++i H
Lo=—t——2 3N .2.1.2, Bishop et al., 1975
"™ N N N (eq P )

Taking the natural logarithm of this equation, the log linear model of independence is

given by

logm,; =logx, ., +logx,, , +logx,,, - 2logN (eqg. 2.1.3)
Using the notation of Rogel et al. (1998) this equation can be rewritten as

Oz 03
logm,,, =mI B +1 2410 (eq. 2.1.4)

where m, ; is the expected cell count (assumed to be strictly positive) in the (i,i,i ) cell,
m represents the overall effect, I : represents the effect due to the it level of the first

rater, | i‘} represents the effect due to the i™" level of the second rater, and | 53 represents

the effect due to the it level of the third rater. The i'" level of arater refers to the rating
category assigned, here 0 or 1. The notation ‘O’ is used to denote the rater (observer)

and p indexes the raters, p = 1 to K (here K=3). For C possible categories of the rating,

the overall effect, m, and each rater effect, | fp)" , are defined as follows:

1 ClClCl o ClCl o ClCl
lo | == I - | .2 = I
C* C*C90?090 gmllzl3 1 C*Clja—O@a—.O 09”‘1'2'3 m iz C*Clla-OIaa_O Ogn‘ll;zh
o, lC 1 o Col o
i3 C*C a a |Ogm1|2|3 -m with a. l 1 _a. I ,,?2 :a I i33 =0. (eq215)
i1=0i,=0 =0 =0 =0



The above ‘sum to zero’ constraints rather than ‘baseline’ constraints yields an
interpretation of the lambda parameters with respect to average agreement rather than
agreement in reference to agiven rater. A rater effect at the i level is interpreted as the
departure of the rater’s i'" category marginal mean from the overall mean. The model has
(C-1)(C-1)(C-1) residua degrees of freedom. The model of independence (eg. 2.1.4)
models agreement due to chance and allows for marginal homogeneity or marginal
heterogeneity across raters. Marginal homogeneity means that the proportion of patients
to which each rater assigns a given category is the same for all raters. Marginal
heterogeneity means that the proportion of patients to which each rater assigns a given
category is not the same for al raters. Marginal homogeneity or marginal heterogeneity

can occur in models of independence as well in models of agreement.

2.2.3. M odels Of Quasi-l ndependence
Experienced raters trained in the use of arating scale would be expected to agree more
often than not. That is, a greater number of counts would be expected along the main
diagona than an independence model would indicate. Quas-independence describes a
rating pattern configuration with no structure specified in the off-diagonal cells but a
larger number of counts on the main diagonal than would be expected under
independence.

Tanner and Young (JASA, 1985) laid the foundation for using log-linear models
to assess rater agreement by proposing the use of the quasi-independence model, a

general class of models of the form

— 041 % +d.. .
logm,, ;, =m+1d+1+ e +d, : (eq. 2.1.6)

10



where d,; ; can be composed of more than one value. This model was formally

introduced into the statistical literature by Goodman (1968).
In the context of inter-rater agreement, the d,; ; term represents rater agreement
different than what would be expected by chance. The parameterization of

d specifies the raters considered and the pattern of agreement among those raters.

gy ik

For example, the d;; ; term can denote which raters are considered in arater subgroup

or whether the level of agreement depends on the category of the outcome.

2.2.3.1. Agreement Among All Raters, Homogeneous Agreement Across Categories

The simplest log-linear model of quasi-independence is homogeneous agreement across
categories aswell asraters. For the case of three raters and a binary outcome, this model

(Tanner and Y oung, 1985) is given by

— O 4| O 4 O
|09m1i2i3-m+|il +Ii2 +Ii3 +d

(eq.2.1.7)

where d,,, =[1,d], and |, =1if i, =i, =i, fori =0,1
= 0 otherwise.
This parameterization of d,;; uses one parameter to denote agreement among the three

raters and does not distinguish whether the agreement is on the absence or presence of the
symptom.
The indicator variablel, equals one for rating patterns (000) and (111) and equals zero

for any other possible rating pattern.

11



AGREEMENT AMONG ALL RATERS, HETEROGENEOUSAGREEMENT
ACROSS CATEGORIES

One extension of equation (2.1.7) isto alow the level of agreement to differ by category

of the rating. Thismodé is called “ heterogeneous agreement across categories’. For a
binary rating, d, ; is defined using C=2 d parameters to derote agreement among the

three raters, separate parameters denote whether the agreement is on the absence or

presence of the symptom. That is,
d.,, =[lsdy 14]% (eq.2.18)
wherel, =1ifi, =i, =i, fori =0, and O otherwise,

andl, =1ifi, =i, =iy, fori =1, and O otherwise.
The indicator variables |, and |, equal one for rating patterns (000) and (111),
respectively, and both equal zero for all other rating patterns. For the general case of C

categoriesand K ratersthe d,;, ;, term will contain C parameters.

AGREEMENT WITHIN SUBGROUPSOF RATERS

Tanner and Y oung (1985) investigated agreement among sub-groups of raters of size G
(2< G <K), caled “G-tuples of raters’ with u = gé gdisti nct subgroups of sizeG. The
@

d,;, . termisdefined by a set of parameters that represents the cells corresponding to

agreement between a given subgroup of the K raters. When the size of the rater subgroup

equals the total number of raters (i.e., G =K), the concern is whether the agreement is

homogeneous or heterogeneous across categories of the rating. However, when the size

of the rater subgroup is less the total number of raters, (i.e,, G <K), two characteristics

12



of agreement must be considered: (i) the pattern of agreement among the raters in each
subgroup, and (ii) the pattern of agreement across categories. Since either can be
homogeneous or heterogeneous, four scenarios are possible.

For example, in the case of three raters there is only one sub- group of size three
(rater triplet, G = 3 K = 3) and agreement among the three raters is either homogeneous
or heterogeneous across categories as described above in sections 2.2.3.1 and 2.2.3.2.
When the size of the rater sub-group istwo (G =2, K =3), there are three pairs of raters.
Agreement among these three pairs of raters can be either; (i) homogeneous among rater
pairs and homogeneous across categories, (ii) homogeneous among rater pairs ard
heterogeneous across categories, (iii) heterogeneous among rater pairs and homogeneous
across categories, or (iv) heterogeneous among rater pairs and heterogeneous across

categories. The parameterizationsof d,; for these four scenarios are given in the

following four sub-sections.

Homogeneous Agreement Across Rater Subgroups, Homogeneous Across
Categories

Homogeneous agreement across rater subgroups and homogeneous across
categories is parameterized by using a single delta parameter to represent agreement

within each subgroup. It denotes agreement among any of the u subgroups of raters of

size G for any category C of the rating scale. For the case of three raters and a binary
outcome, homogeneous agreement across rater pairs and homogeneous across categories

isdefined as
d,. =[ld]  (equation2.1.9)

wherel, =1ifi,=i,* i,, i =0or1,

13



or if i,=i;t1i,,i=00rl,
or if i,=i;ti,i=00rl,
and O otherwise.
The indicator variable |, equals one for rating patterns (001), (110), (010), (101), (100)

and (011), the rating patterns in which exactly one rater disagrees with the other raters.

Homogeneous Agreement Across Rater Subgroups, Heterogeneous Across Categories

Homogeneous agreement across rater subgroups and heterogeneous across
categories is parameterized by using C delta parameters, one d term to denote agreement
among any of the u subgroup of raters of size G for each category of the response. For

the case of three raters and a binary outcome, homogeneous agreement across rater pairs

and heterogeneous across categories is defined as
d,. =[ld 1d,]  (equation2.1.10)
wherel, =1ifi, =i, =0,i, =1,
or if iy =i,=0,i,=1,
or if i,=i;=0,i,=1,
and O otherwise,
and wherel, =1ifi, =i, =1i,=0,
or if i, =i, =1i,=0,
or if i, =i, =1,i,=0,

and 0 otherwise.

14



The parameter d, represents rating patterns (001), (010) and (100) whereas d, represents

rating patterns (110), (101) and (011).

Heterogeneous Agreement Across Rater Subgroups, Homogeneous Across Categories

Heterogeneous agreement across rater subgroups and homogeneous across
categories is parameterized by using u delta parameters, with one d term to denote
agreement between each of the u subgroup of raters of size G. The parameterization of d
does not depend upon the category of therating. For the case of three raters and a binary

outcome, heterogeneous agreement across rater pairs and homogeneous across categories

is defined as
d.. =[ld, Ld, 14d;]  (equation2.1.11)

wherel, =1ifi, =i, i;,i =0o0r 1, and O otherwise,

wherel, =1ifi, =i, i,,i =0or 1, and O otherwise,

wherel, =1ifi, =i, * i,,i =0or 1, and O otherwise.
The indicator variable |, equals one for rating patterns (001) and (110) signifying
agreement between raters 1 and 2, |, equals one for rating patterns (010) and (101)
signifying agreement between raters 1 and 3, and |, equals one for rating patterns (100)

and (011) signifying agreement between raters 2 and 3. Each deltaterm represents a
distinct subgroup of cells. No cell of the contingency table is parameterized by more than
one of these delta parameters, because separate parameters are defined to reflect

agreement within subgroups larger than G.

15



Heterogeneous Agreement Across Rater Subgroups, Heterogeneous Across Categories

Heterogeneous agreement across rater subgroyps and heterogeneous across
categories is parameterized by using C delta parameters for each of the u subgroups of
raters of size G. The parameterization of d does distinguish the level of the rating. For

the case of three raters and a binary outcome, the parameterization of d, , for

heterogeneous agreement across rater pairs and heterogeneous across categoriesis

defined as
d,. =[ld Ld, 1d5 1,d, Ids 1ds] (equation2.1.12)

wherel, =1if i, =i, =0,i, =1, and 0 otherwise, and

wherel, =1if i, =i, =1,i, =0, and O otherwise, and

wherel, =1if i, =i, =0,i, =1, and O otherwise, and

wherel, =1if i, =i, =1i, =0, and O otherwise, and

wherel, =1if i, =i, =0,i, =1, and O otherwise, and

wherel s =1if i, =i, =1,i, =0, and 0 otherwise.

The indicator variable |, equals one for rating pattern (001), agreement between raters 1
and 2 on the absence of the symptom and indicator variable |, equals one for rating

pattern (110), agreement between raters 1 and 2 on the presence of the symptom.
Indicator variablesl, and 1,,and |, and I, are defined similarly to denote pair-wise
agreement between raters 1 and 3, and raters 2 and 3, respectively. With this

parameterization, each delta term represents a distinct cell. No cell of the contingency

table is parameterized by more than one of these delta parameters.

16



Tanner and Y oung (1985) defined homogeneous and heterogeneous agreement across C
categories among subgroups of size G for K raters, but their examples were limited to
scenarios of (i) two-rater, three-category outcome and (ii) three-rater, binary outcome.
They also considered comparisons to a gold standard. They did not focus on the use of

such parameterizations to identify atypical raters.

2.3 GLOBAL AND PARTIAL AGREEMENT

Rogel et a. (1996, 1998) extended this log linear model approach to assess agreement
among subgroups of K raters to the problem of identifying atypical raters by modeling
agreement among rater subgroups of decreasing size. Although they developed the
approach for the general case of K raters, they illustrated the approach in the context of a
binary outcome (with six raters) and subgroups of size K-1. They introduced a ‘ global’
and ‘partial” agreement terminology in the framework of quasi- independence models.
Global agreement is defined as agreement among all K raters and partial agreement is

agreement among sub- groups of raters of size swhere2 <s<K.

Rogel et d. (1996, 1998) introduced the notation S, S,; and d,”, to describe

explicitly how the agreement parameters are defined. S, denotes the set of rating patterns

whereexactly s raters agree regardless of category. For example, the set of rating

patterns representing homogeneous agreement across categories among Six ratersis

denoted by §;, and S, denotes the set of rating patterns representing homogeneous
agreement across categories among sub- groups of five raters.  S;; denotes heterogeneous

agreement across categories (1 = 0to C) among rater sub-groups of size s. For example,

17



S, denotes the rating patterns where exactly five raters agree on category 0. Lastly,

d? , identifies which rater is omitted from the rater sub-group where p isthe rater index
(p=1toK). For K=6 and arater subgroup of size five, homogeneous agreement across

categories with homogeneous agreement among all raters but rater 3 is denoted by

d..... = d5G§ and heterogeneous across categories with homogeneous agreement among

l1l213l4151

all ratersbut rater 3isdenoted by d. . .. .. = dfﬁ (i=0,...,C-1). Using this notation, |

11121314151
review five quas-independent log-linear models used in their global and partia
agreement modeling approach.
For the case of six raters and a binary outcome, the general form of the quasi-

independence moddl is

logmB s, =M+ 241241241 0 4] S+ X ad, (equation 2.1.13)

blsldlge hbhlylsle

where mrepresents the overall effect, | i‘:” represents the effect of observer O,

_ . . . ‘ y . O,
(p=1,2,...,6) on category i, (i,=0,1) with ‘sum to zero’ constraints on the | ,* terms, In

thismodd, d. ... .. represents rater agreement different thanwhat would be expected by

1112131415l

chance.

2.3.1. Global Agreement, Homogeneous Acr oss Categories (G)
The simplest log-linear model of quasi-independence for six raters and a binary outcome
IS homogeneous agreement across categories. This model is referred to as the global

agreement model ‘G’ by (Rogel et al., 1996, 1998)

18



andd . =[1ds] (equation2.1.14)

l11213l415l6

where 1, =1if (i, j,,...,i,) T S, and O otherwise.
S, denotes the set of rating patterns representing agreement among all six raters. The

indicator variable 1, =1 denotes rating patterns (000000) and (111111). Thisis

analogous to the agreement among all raters, homogeneous agreement across categories

of Tanner and Y oung (1985).

2.3.2. Global Agreement, Heter ogeneous Acr oss Categories (Gc)

Equation (2.13) allows the level of agreement to differ by category. Rogel et a (1996)
call thismodel ‘Gc’ and it is given by

(€9

11123486

=mHl 2 ]2 ] O 4] O] O 4] &g
logm M+l +EcE 1+ s+ +d

andd ... =[ gds, 1ds,§ (equation2.1.15)
where 1, =1if (i, i,,..., k)| S ,; O otherwise,

where 1, =1if (i,,i,,....,ig)l §,; 0 otherwise.
The dg, term denotes the rating pattern, (000000), where all six observers agree on

category ‘0" and dg, denotesthe rating pattern, (111111), where all six observers agree

on category ‘1. Thisis anaogous to the model of agreement among all raters,
heterogeneous across categories, of Tanner and Y oung (1985).

Rogel et a. (1996, 1998) also introduced two ‘global and partial agreement’

models. These models parameterizethe d. .. .. term to assess the agreement structure

I11213l415 16
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among all six (K) raters (global agreement) and among rater sub-groups of size five (K-1
partial agreement). Rogel et a. (1996, 1998) refer to the ‘global and partial agreement’
model as ‘GP if the global and partial agreements are homogeneous according to
categories of the ratings and ‘GPc’ if the global and partial agreements are heterogeneous

according to categories of the ratings.

2.3.3. Global And Partial Agreement, Homogenous Acr oss Categories (GP)

The GP model describing homogeneous agreement across categories is given by

GP

11123486

=m+l 2 1% +] O 4] % 4] O 4] & 4d
logm M+l oz s+ s+ +d

b blllsls

andd .. . =[[1,ds 1] (equation2.1.16)

ilsialsl
where I, =1if (i, i, k)T S,
I, =1if (i, iy ig)T S,
and O otherwise.
The dg term represents rating patterns { (000000), (111111)} and the d. term represents
rating patterns { (000001), (111110), (000010), (111101), (000100), (111011),

(001000),(110111), (010000), (101111), (100000), and (011111)}, patterns with exactly

one disagreement.

2.3.4. Global And Partial Agreement, Heter ogeneous Across Categories (GPc)
The GPc model describing heterogeneous agreement across categories is given by
GPC = | O] O 4] Os 4| O 4] Os 4] O
logm —m+I.L1+I.b+I.L3+Ii4 +I.%+I.%+d ......

11123456 hbllylslg
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and d ... =glds, 1ds, 1, 1,0, ¢ (equation2.1.17)

where 1, =1if (i iy k)T So,

~

l, =1if iy iy )T S

|3:1if(il,i2 ..... E)I %,0’
|, =Lif (iyipe i) Sy,

and O otherwise.

That is, dg,denotes rating pattern (000000), d,, denotes rating pattern (111111),

d;, denotes rating patterns { (000001), (000010), (000100), (001000), (010000), and

(100000)} and d, denotes rating patterns {(111110), (111101), (111011), (110111),

(101111), (011111)}. Theterms d;,and d, represent rating patterns where there is

exactly one disagreement from the rating of 0 and 1, respectively.

2.3.5. Global And Heterogeneous Partial Agreement, Homogeneous Acr 0ss
Categories (GHeP)

Rogel et al. (1996, 1998) suggested that the global and partial agreement models could be
used to identify atypical ratersif one kept track of which rater was omitted in each
subgroup of five raters. They presented a‘global and heterogeneous partial agreement’
(GHeP) model that denotes differing levels of agreement among rater subgroups of size
five that is homogeneous across categories of the ratings. The ‘GHeP mode is defined

as follows:

log rrf.H.‘?P. =m+ )

bl3lslslg

O b O | & ] Qo] S 4] O vd .
i i3 Ig Is ls

l12l3l4l5l
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ad d,,, = 8, 105 LdT 10% 1% 145 1% (equation 2.1.18)

where lo=1 if (i, iz, ..., I6) 1 Ss
=1 if(p, ..., Ie) 1 S
lo=1if (i, i3, ..., ) T S5
l3= 1if (ig, iz, ia, i5, i) T S
la =1 if (ir, ip, i3, 05, i6) T S
5 =1 if (ir, ip, i3, i, i6) T S5
le=1if (ir, ..., i5) T S5
and O otherwise.

Theterm d¢” denotes the level of agreement in the rater sub-group of exactly five

observers after removal rater p (p=1,...,6). For example, d represents rating patterns

{(001000), (110111)}, i.e., homogeneous agreement across categories among all raters

except Rater 3.

24 AN EXAMPLE OF MODELING AGREEMENT USING LOG-LINEAR
MODELS: INTESTINAL BIOPSY RATING DATA

The use of loglinear models to model agreement isillustrated using the published data of
Rogel et al. (1998), in which six raters assessed the absence (rating of 0) or presence
(rating of 1) of mucosecretion diminution.

The 25 rating patterns observed, the frequency of each pattern and the type of
agreement represented by each rating pattern are shown in Table 4. For the 68 biopsies,

exact six-way agreement was observed for 30 and exact five-way agreement for 17, with
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21 biopsies having other rating patterns. Overall, 31.1% of ratings were for the presence

of mucosecretion diminution. Rater 4 was in disagreement for 35% (6 of 17) of biopsies

characterized by five-way agreement, while rater 2 and rater 6 each were in disagreement

for 17% (3 of 17) of the biopsies characterized as having five-way agreement. The

remaining 39 possible rating patterns with counts of zero are not listed in Table 4.

Table 4. Frequencies and Type of Agreement of the 25 Observed Rating Patterns from

Six Raters Denoting the Absence (0) or Presence (1) of Mucosecretion Diminution in 68
Intestinal Biopsy Specimens

Rating Patter n*

Count

Agreement Parameters**

111111

1

dG [} dG,l

111110

d5l d5,11 d?g

111101

d5! d5,lv dsg

111100

110111

ds, Gz, o7

110101

110100

101111

G-

d51 d5,l1 d52

101100

100111

100110

011111

d51 d5,l1 d;BT

011110

011101

010111

010101

010100

010000

G5

d51 d5,01 dS2

001110

001100

000110

000101

N N RN RN R S R LY S N
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Table 4 (continued)

Rating Patter n* Count Agreement Parameters**
000100 6 ds, dko, d ;34—
000001 1 ds, ., d SGg
000000 29 de, dso

f* Rating patterns not listed have frequencies of zero.

Rating patterns without any indication of ‘type of agreement’ represent patterns having
less than five raters in agreement on either the absence or presence of mucosecretion
diminution.

These intestinal biopsy data are summarized in Table 5 in terms of the marginal
percentages of the absence and presence of mucosecretion diminution by each rater and
the percentage of ratings that exhibit each type of agreement. Rater 4 had the highest
margina percentage for the presence of mucosecretion diminution (54.4%). Global
agreement was observed for 44.1% of the biopsies (including 42.6% on the absence and
1.5% on the presence of mucosecretion diminution). Five raters agreed on 25% of the
biopsies (11.7% on absence and 13.2% on presence of mucosecretion diminution). The
percentage of ratings showing partial agreement when each rater is excluded in turn is
shown in the last column of Table 5. For example, the percentage of biopsies showing
agreement when rater 4 is excluded is 6/68 = 8.8%. A higher level of partial agreement

when arater is excluded indicates that the excluded rater is in disagreement relatively

more often when the other raters agree.
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Table 5. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion

Rater | Margina % | Margina % G %, Gon Gon GP %, GPon GPon Excluded
[ for for d, Absence %, | Presence d, Absence %, | Absence %, | Rater, %
Absence | Presence dq o %, g, ds ds, dy
1 77.9 22.1 2.9
2 69.1 30.9 4.4
3 72.1 27.9 44.1 42.6 15 25.0 11.7 13.2 15
4 45.6 54.4 8.8
5 73.5 26.5 29
6 75.0 25.0 4.4
* For agreement patterns see Table 4. G = Global agreement; GP= Global and partial agreement
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For the intestinal biopsy data, the estimates of the rater effects, global agreement and the

Six partial agreement parameters are given in Table 6. Parameter estimates are given under the

assumption of marginal homogeneity and marginal heterogeneity. Parameter estimatesin Table

6 were derived using sum-to- zero constraints for the ? parameters (Appendix A) and indicator
variables for the global and heterogeneous partial agreement parameters (Appendix B). Stata,

version 8.2, was used to fit the models (Appendix C).

Table 6. Maximum Likelihood Estimates and Standard Errors of the Global and Heterogeneous

Partial Agreement Parameters Assuming Marginal Homogeneity and Heterogeneity for the

Intestinal Biopsy Data.

Assumed Marginals

Homogeneous Heter ogeneous
Parameter Estimate (SE) wald Test Estimate (SE) Wald Test
p-vaue p-vaue
| & na na -0.65 (0.20) <0.01
| & na na -0.25 (0.17) 0.16
| © na na -0.35 (0.19) 0.07
| O na na 1.35(0.37) <0.001
| O na na -0.42 (0.19) 0.02
| O na na -0.48 (0.18) <0.01
d 3.58 (0.28) <0.001 450 (0.54) <0.001
6
dST 0.87 (0.74) 0.24 1.96 (0.85) 0.02
2 1.27 (0.62) 0.04 2.44 (0.79) <0.01
d
ds?» 0.17 (1.02) 0.87 1.38 (1.13) 0.22
4 1.96 (0.46) <0.001 0.36 (0.56) 0.52
ds
5 0.87 (0.74) 0.24 2.08 (0.87) 0.02
d5
2 1.27 (0.62) 0.04 2.47 (0.76) <0.01
ds
Il -0.87 (0.21) <0.001 -2.08 (0.51) <0.001

na = not applicable

What does it mean to be atypical under the assumption of marginal homogeneity? Under

the assumption of margina homogeneity, the megnitude of each heterogeneous partial agreement
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parameter, d. , corresponds to each rater’s non-chance contribution to five-way agreement after

accounting for global agreement. The rater with the largest heterogeneous partial agreement
parameter estimate is the rater who disagrees more often than the other five raters. The partid
agreement parameters essentially partition the five-way agreement into components attributable
to each rater.

In Table 6 for the assumption of marginal homogeneity, the heterogeneous partial
agreement parameter estimate of 1.96 for Rater 4 reflects the six biopsy specimens where Rater 4
disagreed with the other five raters. Five-way agreement with Rater 4 being the discrepant rater
is represented by rating patterns (000100) and (111011). The log linear model for the expected

number of countsis given by

10g Myy10 = - 0.87 +3.58d, +0.87d! +1.27d? +0.17d? +1.96d +0.87d5 +1.27d? whered,,d.,
d2,d2,d® andd? = 0, andd’ =1.

109 My = - 0.87 +1.96 =1.01

Myoor00 = EXP(1.01) = 2.75

The expected number of biopsy specimens with rating pattern (000100) is 2.75.
Similarly, the expected number of biopsy specimens with rating pattern (111011) is 2.75.
Therefore, under this model the total number of expected biopsy specimens having a rating
pattern representing five-way agreement where Rater 4 is the disagreeing rater is 5.5 (compared
to the 6 shownin Table5). From the observed data, all six disagreements came from Rater 4
rating the presence of mucosecretion diminution when the remaining five raters rated the absence
of mucosecretion diminution.

The heterogeneous partial agreement parameter estimate of 0.17 for Rater 1 reflects the

one disagreement Rater 1 had with the remaining five raters. The expected number of counts

is2e 08701 = 207 = 2% (0,496 = 0.99. The standard error of the heterogeneous partial

27



agreement parameter df ismuch larger than for any other parameter in the model, because Rater

3 was in disagreement only once with the other five raters whereas the remaining five raters
where in disagreement three or more times when five-way agreement was considered. The
heterogeneous partial agreement parameter estimates of 1.27 for Rater 2 and Rater 6 reflect the
three disagreements each rater has with the remaining five raters.

In Table 6 for the assumption of marginal heterogeneity, Rater 4's lambda parameter
estimate, | %= 1.35, and heterogeneous partial agreement parameter estimate of 0.36 reflects the
five times Rater 4 rated “presence” when the remaining five raters rated “absence” and that Rater
4 never rated “absence” when the remaining five raters rated “presence’. The relatively large
magnitude of | % compared to the other five raters | @ indicates that Rater’s 4 marginal
proportion for “presence”, 54.4%, is higher than the overall mean portion for “presence’, 31.3%.

The log linear model for the expected number of counts for rating pattern (000100) is given by

109 Myppip = - 2.08+1 (- 0.65) +1 2 (-0.25) +1 *(-0.25) +1 % (1.35) +| *(-0.42) +

| % (- 0.48) +d(4.50) +1.96d, +2.44d. +1.38d.’ +0.36d. +2.080 +2.47d where

| %1%, 1% 1% %=1 andl > =1 and d,,d?,dZ,d?,d® and d® = 0, and d* =1.
109 Myypi00 = - 2.08 +0.65 +0.25 +0.25 +1.35 +0.42 +0.48 +0.36 =1.68.

The expected number of counts for rating pattern (000100), Myyy,00, 1S €XP(1.68) = 3.75.

The log linear model for the expected number of counts for rating pattern (111011) is given by
the above equation, but now | % =-1 and| @,1 %, %=, % | % =1,

Indicator variablesd,, dZ,d2,d3,d> and d® till equal 0, and d. equals 1.
109 Myyp00 = - 2.08 - 0.65-0.25 - 0.25-1.35 - 0.42 - 0.48 +0.36 =- 5.12.
The expected number of counts for rating pattern (000100), m,,, ., is exp(- 5.12) =0.005= ~ 0.
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Table 7 summarizes the predicted counts for the G agreement, Gc agreement, GP
agreement, GPc agreement and GHeP agreement models considered under the assumption of
marginal homogeneity fitted to the intestina biopsy data. For example, under the G model, 15
biopsies are predicted to be rated as having the absence of mucosecretion diminution and 15
biopsies are predicted to be rated as having the presence of mucosecretion diminution. Given
that the overall expected number of ratings has to equal the observed number of ratings, the
remaining 38 ratings are equally dispersed across the remaining 62 possible rating patterns,
giving a predicted count of 0.61. The GPc model, the best fitting model under the assumption of
margina homogeneity, yields predicted cell counts that are closer to the observed cell counts for
each of the 64 rating patterns. Note that 21 biopsies (30.8%) had one of thel4 rating patterns

that did not represent global or partial agreement.

Table 7. Predicted Counts of Observed Rating Pattern Based on Five Models under the
Assumption of Margina Homogeneity and Marginal Heterogeneity

Marginal Homogeneity

Rating Pattern | Observed Count G Gc GP GPc GHeP
111111 1 15.00 1.00 15.00 1.00 15.00
111110 2 0.60 0.61 1.42 1.50 1.50
111101 2 0.63 0.61 1.42 1.50 1.00
111100 2 0.61 0.61 0.42 0.42 0.42
110111 1 0.61 0.61 1.42 1.50 0.5
110101 1 0.61 0.61 0.42 0.42 0.42
110100 1 0.61 0.61 0.42 0.42 0.42
101111 2 0.61 0.61 142 150 150
101100 1 0.61 0.61 0.42 0.42 0.42
100111 1 0.61 0.61 0.42 0.42 0.42
100110 1 0.61 0.61 0.42 0.42 0.42
011111 2 0.61 0.61 142 1.50 1.00
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Table 7 (continued)

Marginal Homogeneity

Rating Pattern | Observed Count G Gc GP GPc GHeP
011110 2 0.61 0.61 0.42 0.42 0.42
011101 1 0.61 0.61 0.42 0.42 0.42
010111 3 0.61 0.61 0.42 0.42 0.42
010101 1 0.61 0.61 0.42 0.42 0.42
010100 1 0.61 0.61 0.42 0.42 0.42
010000 1 0.61 0.61 1.42 1.33 1.50
001110 2 0.61 0.61 0.42 0.42 0.42
001100 2 0.61 0.61 0.42 0.42 0.42
000110 1 0.61 0.61 0.42 0.42 0.42
000101 1 0.61 0.61 0.42 0.42 0.42
000100 6 0.61 0.61 1.42 1.33 3.00
000001 1 0.61 0.61 1.42 1.33 1.50
000000 29 15.00 29.00 15.00 29.00 | 15.00

Marginal Heterogeneity

Rating Pattern | Observed Count G Gc GP GPc GHeP
111111 1 4.76 1.00 5.92 1.00 5.03
111110 2 0.32 0.92 0.83 1.97 1.74
111101 2 0.28 0.83 0.72 1.74 1.05
111100 2 0.60 1.10 0.43 0.94 0.34
110111 1 0.02 0.04 0.07 0.06 0.01
110101 1 0.47 0.89 0.33 0.73 0.26
110100 1 1.02 1.19 0.69 0.76 0.69
101111 2 0.20 0.61 0.48 1.17 1.05
101100 1 0.82 0.96 0.53 0.59 0.56
100111 1 0.34 0.65 0.22 0.49 0.18
100110 1 0.73 0.87 0.46 0.51 0.48
011111 2 0.40 1.15 1.12 2.52 1.46
011110 2 0.86 1.52 0.68 1.37 0.53
011101 1 0.77 1.37 0.59 121 0.47
010111 3 0.69 1.23 0.51 1.07 0.41
010101 1 1.31 1.47 0.94 0.98 0.96
010100 1 2.8 1.95 2.00 1.02 2.53
010000 1 0.56 0.11 1.29 0.35 1.94
001110 2 1.19 1.33 0.84 0.85 0.88
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Table 7 (continued)

Marginal Heterogeneity

Rating Pattern | Observed Count G Gc GP GPc GHeP
001100 2 2.27 1.58 154 0.78 2.05
000110 1 2.03 1.43 1.34 0.69 1.77
000101 1 1.80 1.28 1.16 0.61 1.58
000100 6 3.87 1.70 8.64 6.75 5.99
000001 1 0.36 0.07 0.75 0.21 1.25
000000 29 25.25 29.00 24.07 29.00 | 24.96

Table 7 also summarizes the predicted counts for the G agreement, Gc agreement, GP
agreement, GPc agreement and GHeP agreement models considered under the assumption of
marginal heterogeneity fitted to the intestinal biopsy data. Under the G model, 25.25 biopsies
are predicted to be rated as having the absence of mucosecretion diminution and 4.75 biopsies
are predicted to be rated as having the presence of mucosecretion diminution. In contrast to the
G model under homogeneity, the remaining 38 ratings are not equally dispersed across the
remaining 62 possible rating patterns. Instead, each rater’ s propensity to rate “absence” or
“presence’, isincorporated into how the counts are dispersed across the remaining 62 possible
rating patterns. The GPc model, the best fitting model under the assumption of margina
heterogeneity, yields predicted cell counts that are closer to the observed cell counts for each of
the 64 rating patterns.

This data set was the motivating example for my work and will be discussed further when
the design of the simulation study is described in Chapter 3. | focus on log linear models that

categorize agreement homogeneous across categories (e.g., the G, GP, and GHeP models).
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25 INTERPRETATION OF AGREEMENT PARAMETERSFOR A 2-
CATEGORY OUTCOME

Rogel et al. (1998) interpret the agreement parameters for a 2-category outcome in the
context of whether the type of agreement (global, partial and/or homogeneous or
heterogeneous across categories) differs from the agreement expected by chance. The

interpretation of the global and homogeneous partial agreement parameters is as follows:
from the G model described by equation 2.1.14, d, can be written as

dg =logm(y, ., - (M+12 122 +1% +1.2 +1 > +1 %) where logm(3), . i sthelog

hbillsle

expected valueof X .. .. representing global agreement in this model. Letting

11213141516

log {0y, = (ML 24122 1.5 +1 % +1 > +1. %) where logm,”... isthe part of

h2l3ldd 6

M), expected by chance, €* =nf5) . /m(i},,; fori=0, 1. If ds >0, then €*>1s0

Lisisigisig bl3ldd 6
Mo > Mg+ 910Dal agreement is greater than that expected by chance. If d; <0,

then e*<1so m'S). . <m(? . and global agreement is less than that expected by

1121341516 blgldd 6
chance. Similarly, the homogeneous partial agreement parameter d. can be rewritten as

(GP) (GO (GP) (GY (GP)

|Og m1i2i3i4i5i6 - IOg m1i2i3i4i5i6 with edS = n‘]1i2i3i4i5i6 / m1i2i3i4i5i6 where n‘]1i2i3i4i5i6 isthe expeth velue of

..... under the GHeP model (equation 2.1.16) and m _ isthe part of

X|1'2|3|4'5|6 1121341516

M., €xplained by global agreement and chance. If d, >0, then €*>1s0

M iide > Mg, @nd homogeneous partial agreement is greater than expected by chance

accounting for global agreement. If d; <0, then e*<1so m'o) <m®) and

11213141516 blldd e
homogeneous partial agreement is less than expected by chance accounting for global

agreement.
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Each of the heterogeneous partial agreement parameters in equation 2.1.18, dSG'“

(p =1, ..., 6) can be rewritten as log M) /(% with €% = m©"® /M \where

bl3lilsle 11213141516 hbislsdl g m1|2|3|4|5|6

miit, isthe expected value of .. under the GHeP model and m),. isthe part of

1121341516

(GHeP)

M., €xplained by global agreement and chance in this model.  If dS7 >0, then & >1

so miii) >m . , there is more agreement among five raters when rater p is excluded

than is expected when partial agreement is assumed to be homogeneous. |If dSGT’ <0, then

¢’ <150 m i) «m(® | and there is less agreement among the five raters when rater

11213141516 bigldde ’
p is excluded than is expected when partial agreement is assumed to be homogeneous.

Rogel et al. (1998) also quantify the magnitude of agreement between two raters

viathe conditional odds ratio computed from a log-linear model of pair-wise agreement.

Conditioning on the ratings of raters 3, 4, 5, and 6 (0®,0%,0°,0°), the d . . . .. term

i1ioi 5l4isie

when assessing pair-wise agreement between raters 1 and 2 (O',0?) is defined as:

d. . = @l d;X> g where | =1if i, =i,

= 0, otherwise
As described by Rogdl et al. (1998), conditioning on the ratings of raters 3, 4, 5, and 6

(O?,0* 0% 0°), the odds ratio of agreement for rater 1 and rater 2 is written as

i = m1i1i3i4i5iem2i2i3i4i5is Where |og rnli i — m+d0102 |Og m.. ... - m+d20_02’
1lalglyls g 21213141516
m1i2i3i4i5iem1i2i3i4i5ie
92 g5
_ _ _ 2d%02
andlogm ., =mTherefore, t,; ., = o =e™7 .
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If agreement is homogeneous among pairs of raters, dzo'ol =d, fordl iand j(i,] =1to

Kand it j), then given the rating of the other four raters, the odds that the first rater

indicated the presence of the lesion rather than absence is estimated as &% times higher
when the second rater rated presence rather than absence of the lesion. If the agreement
is heterogeneous among rater pairs, then this odds ratio will vary by rater pair.

For the GP model with subgroups of five raters, if any four raters agree on the

presence of the lesion, the odds that the fifth rater indicates ‘presence’ rather than

‘absence’ is estimated as %2%) higher when the sixth rater indicated ‘ presence’ rather

than ‘absence’. Theoddsratio t iswritten as M, 211,211,211, =1ig=1ig=1"), 21,71 =11, =1 ig=0ig=0
TR M =1i,=1i,=1i, =i, =0i, =1 M, =11, =11, =1, =1 =11, =0

where m _y, i gi,ztig=ig=1 = EXP(M+dg), M Ly cyip==a,=0= EXP(M), Mo 2i 0 042
= exp(m+ dsg) and M, z1i,=1,=1,= 15 =5, =0 exp(m+df). Therefore, b s — exp(m+d,

+m-m-d; - m- df). Sinceit isthe GP model, and partial agreement is homogeneous,
tooo =exp(d, - 2d;).

i1ipizigi5ig

For the GHeP model under the assumption of marginal homogeneity, the partia
agreement is not homogeneousand t . ... =exp(d; - df - df). Using the estimates
from Table 6, the odds that Rater 5 indicates ‘ presence’ rather than *absence’ is estimated

as (exp®8 28127 =) 4.2 times higher when Rater 6 indicates ‘ presence’ rather than

‘absence’.



2.6 INFERENCE

| review inference in the context of a family of hypotheses, the collection of hypotheses
that are of interest for a dataset. | outline procedures to control Typel error when

multiple hypotheses are tested.

2.6.1. TypeOne Error

Testing multiple hypotheses inflates the Type | error rate, defined as the probability of
rejecting the null hypothesis when the null hypothesisis true. When the family (e.g.,
collection) of hypotheses includes more than one hypothesis, two kinds of Type | error
rates are often considered: the comparisonwise error rate (CWE) and the family-wise
(experiment-wise) error rate (FWE) (Klockars and Sax, 1986; Shaffer, 1995). The CWE
isthe probability of a Type | error occurring for asingle hypothesis. The FWE is the
probability that at least one hypothesis in the family of hypotheses is falsely rejected.
When a family of hypotheses involves only one hypothesis, the CWE equals the FNVE
When more than one hypothesis is tested, each at the same a level, the FWE is greater
than the nominal level a. Consequently, the FWE needs to be controlled at the desired
pre-specified level ?. Several multiple comparison procedures control the FWE at a by
adjusting the CWE of each hypothesis tested. Multiple comparison procedures include
those categorized as one-step (Simultaneous inference) or step-wise (sequentialy
rejective) procedures (Shaffer, 1995; Ludbrook 1998). Each of these multiple

comparison procedures makes some adjustment to the p-value of each comparison. |

denote the p-value uncorrected for the number of comparison made by p, , and the p-
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value corrected for the number of comparison made by one of the multiple comparison

procedures by p, .

27MULTIPLE COMPARISON PROCEDURES

2.7.1. One-Step Procedures
One-step procedures, such as the Bonferroni and Sidak Inequalities, apply the same
correction to the p-value of each tested hypothesis in the family. The rationale behind the

Bonferroni and Sidak Inequalities is the following: for afamily of g null hypotheses

(Hy,...,Hy), let C bethe event that at least one of the g comparisonsis statistically

significant under the null hypothesis. The goal is to maintain the probability of C, Pr(C),

at g, the desired a priori specified FWE. To determine at what significance level a* each

of the g comparisons should be conducted, note that P (5) , the probability that none of
the g comparisons is statistically significant under the null hypothesis, has to equal 1-g.
If the hypotheses are independent, thenP(C_:) = (1- a’ )g =1- g. Solving for ayields the
Sidak inequality adjustment, a comparison-wise error rate of a” =1- m (Sidak
1967; Shaffer, 1986). If a” issmall, then 1- g can be approximated by 1-ga*. Solving
for a” in this approximation yields the Bonferroni correction, a* = g/g (Rosner, 1995).

Testing each hypothesis at a comparisonwise error rate a* keeps the FWE at the pre-

specified level g. For the Bonferroni procedure, p. isobtained by multiplying p, by g,

(i.e. p. = p, *9). The Sidak Inequality corrected p-valueis p, = p,” [1- (1- p,)°] -
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Corrected p-values less than the apriori specified glevel are considered to be statistically

significant.

2.7.2. Holm’s Step-Down Procedure
The Bonferroni and Sidak corrections are conservative procedures for controlling FWE
when the test statistics of the hypotheses are correlated. Increased power can be obtained

by using Holm’s step-down procedure (Holm, 1979) because the critical levels are larger
than g/g or 1- ,9/(1- g) . TheHolm’'s procedure for testing g hypothesesin terms of both

the Bonferroni and Sidak correctionsis:
(1) Rank order the uncorrected p-values for the g tested hypotheses in ascending order.
(2) Cdlculate p. for the smallest p-value, p. = py* g for the Bonferroni inequality or
pe = 1-(1- py)? for the Sidak inequality.
(3) Calculate the p. for the next smallest p-valueas p, =(g- )* p, for the Bonferroni
inequality or pc =1-(1- py)®* for the Sidak inequality.
(4) Continue this step-wise procedure until the corrected p-value exceeds a, or all p-
values have been corrected. Reject the null hypotheses associated with adjusted p-values
lessthan g and fail to rgject the null hypotheses associated with adjusted p-values that
exceed g.

The Holm’s procedure is based upon the closure method (closed testing
procedure) proposed by Marcus et al. (1976) and the union intersection principle. If a
hypothesis, Hp, can be expressed as the intersection of afinite family of g

hypotheses, H, = H,CH, C..C Hbq , then the rgjection region of Hy isthe union of the
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rejection regionsof H,,H, ,...,H, . The closure method requires that the intersection of

b
the k hypotheses does not include the null set. Provided that aa level test is available for

each H,,i= 1tog, the closed testing procedure rejects any hypothesis Hy, if and only if
dl H,,i= 1tog, arerejected by the associated a level test. As such, the closed testing
procedure controls the FWE at level ?. For example, let there be three raters, and let

H, :d} =dZ =d? = constant (i.e. the heterogeneous partial agreement parameters are
homogeneous). Hypothesis Hy, can be expressed as the intersection of

H, CH, CH,,whereH, :df=d2, H,, :dX=d2, and H,, :d2 =d2. Inaddition,

the H, can be tested in order of the largest test statistic to the smallest test statistic. For
example, if H,, hasthe largest test statistic, and H), has the smallest test stetistic, the Hp,
can be tested in the order of H, , H, and H, . Ordering the test statistics from largest to

smallest yields the order statistics of the corresponding p-values. The hypothesis
corresponding to the smallest p-value (e.g., largest test statistic) is tested first as described
above (here, 0.05/3). If it is rgjected, the hypothesis corresponding to the second smallest

p-vaue (H, ) isthen tested (0.05/2). This procedure continues until one of the

hypotheses is not rejected or all the hypotheses in the family have been rgjected. The
Holm's procedure controls the FWE at level g.

Table 8 shows the corrected critical values for the 15 pair-wise comparisons when
there are 6 raters for each of the multiple comparison procedures considered and the
overal family-wise Type | error rate is ? = 0.05. The corrected critical p-values are

0.003 and 0.0034 for the Bonferroni and Sidak adjustments, respectively. The corrected
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critical p-values for the first tested hypothesis are 0.003 and 0.0034 for the Holm's-
Bonferroni and Holm's-Sidak adjustments, respectively, and increase in magnitude as
each preceding hypothesis is found significant.

The number of raters in the inter-rater agreement study dictates the number of pair-
wise comparisons made. As the number of pair-wise comparisons increases, the value of
the corrected critical p-value decreases, making it more difficult to reject the hypothesis.
If, for example, there are sampling zeros for the rating patterns representing partial
agreement for two raters, then pair-wise comparisons are made among the remaining 4
raters. For illustrative purposes, Table 9 summarizes the corrected critical p-values for
the 6 pair-wise comparisons when there are 4 raters for each of the multiple comparison
procedures considered. Note that the initial corrected critical p-value is larger compared
to that shown in Table 8 for 6 raters, and when the Holm'’s Bonferroni or Holm'’s Sidak
procedure is used, the increase in the magnitude of the next corrected critical p-vaueis

bigger when fewer comparisons are made (Table 9).
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Table 8. Value of the corrected critical p-vaues for the four multiple comparison procedures considered for the 15 pair-wise
comparisons when there are 6 raters and the overall family-wise Type | error rateis gamma = 0.05.

Unconditional Pair-wise Comparisons*

Conditional Pair-wise Comparisons**

Pair-wise Comparison, | Bonferroni Sidak Pair-wise Comparison, Holm's— Holm's-
Hypothesis Tested Hypothesis Tested Bonferroni Sidak
H,:dZvs dZ 0.003414 | H,

0.0033 (H,, p-w comparison with smallest p-value) 0.0033 0.0034
H,:dl vs d2 0.0034 | H, [H, ggritican

0.0033 (H,, p-w comparison with 2" smallest p-value) | 0.0035 0.0036
H,: dg VS. dg 0.0034 H; |H, significant

0.0033 (H3, p-w comparison with 3 smallest p-value) 0.0038 0.0039
H,:dl vs d? 0.0034 | H, |H,ygican

0.0033 (H,, p-w comparison with 4™ smallest p-value) 0.0041 0.0042
H.: dg VS. C|5_6 0.0034 | Hy | H, gnircanm

0.0033 (H,, p-w comparison with 5™ smallest p-value) 0.0045 0.0046
H,:dZ2 vs. d2 0.0034 | He|Hsggican

0.0033 (Hg, p-w comparison with 6™ smallest p-value) 0.005 0.0051
H,: d5_2 VS. dg 0.0034 H,|Hsg significant

0.0033 (H,, p-w comparison with 7" smallest p-value) 0.0055 0.0056
H,:d2 vs. d? 0.0034 | Hg | H; grcan

0.0033 (Hg, p-w comparison with 8" smallest p-value) 0.0062 0.0063
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Table 8 (continued)

Unconditional Pair-wise Comparisons*

Conditional Pair-wise Comparisons**

Pair-wise Comparison, | Bonferroni Sidak Pair-wise Comparison, Holm's— Holm’s -
Hypothesis Tested Hypothesis Tested Bonferroni Sidak
H92d5_2 VS. df 0.0034 Ho | Hg sgnificant

0.0033 (H,, p-w comparison with 7" largest p-value) 0.0071 0.0073
H, :d5_3 VS. dg 0.0034 Hy [Hg significant

0.0033 (H,,, p-w comparison with 6" largest p-value) | 0008333 0.0085
H,,:dd vs d2 0.0034 | Hy | Hiosgrifcan

0.0033 (H,, p-w comparison with 5" largest p-value) 0.01 0.0102
H, :d5§ VS. df 0.0034 Hy | H 1 sgnificant

0.0033 (H,,, p-w comparison with 4" largest p-value) 0.0125 0.0127
His Zd571 VS. d5_5 0.0034 Hy [H, significant

0.0033 (H,5,p-w comparison with 3" largest p-value) 0.016667 0.0169
Hl4:d571 VS. dST5 0.0034 Hy[Hy significant

0.0033 (H,,, p-w comparison with 2" largest p-value) 0.025 0.0253
H,.:d® vs d® 0.0034 | Hy | Hyy sgrican

0.0033 (Hys, p-w comparison with largest p-value) 0.05 0.05

* Hypotheses of pair-wise comparisons are not ordered when using the Bonferroni or Sidak procedures.
** Hypotheses of pair-wise comparisons for the Holm’s-Bonferroni or Holm's —Sidak procedures are ordered from the smallest to largest p-value.
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Table 9. Value of the corrected critical p-values for the four multiple comparison procedures considered for the 15 pair-wise
comparisons when there are 4 raters and the overall family-wise Type | error rate is gamma = 0.05.

Pair-wise Bonferroni Sidak Pair-wise Holm’'s— Holm's-
Comparison, Comparison, Bonferroni Sidak
Hypothesis* Hypothesis**
Tested Tested
H,:dIvs d2 H,

0.0083 0.008512 | (H,, p-w comparison with smallest p-value) 0.0083 0.0085
Hz: d5I VS. d5?3 H2 | Hlsignificant

0.0083 0.008512 | (H,, p-w comparison with 2™ smallest p-value) 0.01 0.0102
H,: d5I VS. dg Hs 1 H, ggnificant

00083 | 0.008512 | (H;, p-w comparison with 3" smallest p-value) | 00125 0.0127
H,:d’vs d’ H 4 [H 5 sgniicant

0.0083 0.008512 | (H,, p-w comparison with 3@ largest p-value) 0.0166 0.0169
Hg: d5_2 VS. d571 Hg | H  sgnificant

0.0083 0.008512 | (Hs, p-w comparison with 2" largest p-value) 0.025 0.0253
H,:d2 vs d He | H sgnificant

0.0083 0.008512 | (Hg, p-w comparison with largest p-value) 0.05 0.05

* Hypotheses of pair-wise comparisons are not ordered when using the Bonferroni or Sidak procedures.
** Hypotheses of pair-wise comparisons for the Holm’s-Bonferroni or Holm's —Sidak procedures are ordered from the smallest to largest p-value.
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3. METHODS

The focus of thiswork isto formalize inferential approaches that can be used to test the
assumption of rater exchangeability and identify an atypical rater in the framework of
Rogel et a.’s loglinear models. | propose an unconditional approach to test the
assumption of rater exchangeability and identify an atypical rater, based on fitting the
GHeP model directly (without using a model selection process). The Type | error of the
approach when raters are homogeneous or heterogeneous with respect to their marginal
distributions and the power of this approach to identify a single atypical rater with rater
sub- groups of size K-1 were assessed viaa simulation study. These data were simulated
from scenarios with known underlying structure of agreement. | also compared
alternative adjustments for the multiple comparison problem (e.g., Bonferroni, Sidak,
Holm’ s Step-down procedures (Bonferroni and Sidak adjustments). This chapter ends

with a description of the simulation study.

3.1. INFERENTIAL APPROACH

The inferentia approach involves:
(1) Fitting the heterogeneous partial agreement log-linear model to the data,

(2) Performing pair-wise comparisons of the K partial agreement
parameters,d; ., and adjusting the p-values for the number of multiple

comparisons performed, and
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(3) Identifying anyd,_, agreement parameters that are involved in statistically

significant pair-wise comparisons.

To identify an ‘atypical rater’, | based statistical inference on the heterogeneous
partial agreement parameters of the GHeP nmodel. Each partial agreement
parameter, d ,f’ 1, 1=1to K, represents the level of agreement among the subgroup of K-1
raters when rater i is not included in the rater subgroup. If the level of agreement among
rater subgroups differs significantly by which rater is excluded, then at least one rater is
identified as atypical (e.g., the assumption of rater exchangeability does not hold).
Defined in terms of the heterogeneous partial agreement parameters the null hypothesisis
Ho: d&, =d%, =...=dS%, =d,% vs. Ha: at lesstoned 7, dgT,,i® j wherei=1toK. If
the null hypothesis is rejected, then the K partial agreement parameters are not
homogeneous, prompting the question “Which partial agreement parameter is statistically
significantly different from the others?’ The magnitude of each estimated partial
agreement coefficient corresponds to each rater’ s nonchance contribution to five-way
agreement after accounting for global agreement. Under the assumption of marginal
homogeneity, an atypical rater’s non-chance contribution to five-way agreement after
accounting for global agreement is higher than that of a rater who is not atypical and the
atypical rater’s partial agreement parameter estimate would be significantly larger in
magnitude relative to the other heterogeneous partial agreement parameter estimates.
Under the assumption of margina heterogeneity, the heterogeneous partial agreement
parameter estimate for an atypical rater may not differ in a predictable way from the

remaining heterogeneous partial agreement parameter estimate because it reflects only



disagreement that is not explained by the atypical rater’s marginal distribution. An
alternative strategy would be to examine differences in the lambda parameters in the
model. This work focused on the pair-wise comparisons of the heterogeneous partial
agreement parameters directly. | investigated whether hypothesis testing involving the K
heterogeneous partial agreement parameters, adjusted for multiple comparisons, would
correctly identify which rater, if any, is atypical. The analysis was performed assuming
marginal homogeneity for scenarios simulated under the assumption of marginal
homogeneity. For scenarios simulated under the assumption of margina heterogeneity,
the analysis was performed twice, under the assumptions of both marginal homogeneity
and marginal heterogeneity.

The GHeP model was fit to the data without prior model selection. Pair-wise

comparisons of the K partial agreement parameters, d;. _,, were made using the Bonferroni

and Sidak Inequalities and the Holms- Bonferroni and Holms-Sidak procedures, as
described in Chapter 2. These partial agreement parameters partition the overall 5-way
agreement into components attributable to each rater. The premise is that, in the presence
of an atypical rater, at least one heterogeneous partial agreement parameter would differ
from at least one of the remaining K-1 partial agreement parameters, controlling for the
assumed margina structure. The pair-wise comparisons of the K partial agreement
parameters constitute a family of hypotheses where g = K(K-1)/2.

These partial agreement parameters are asymptotically multivariate normal with
mean d_, and variance-covariance S, asymptotically d T, ~MVN(dS ,,S). The pair-

wise comparisons can be conducted using Z statistics for the appropriate linear
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combinations of the delta parameters (Wald test statistics), with adjustment for the

number of comparisons being made.

3.2.SIMULATION STUDY
3.21. Objectives
The primary objectives of the simulation study were to assess the level (probability of
Type | error) and the power of the proposed approach to detect an atypical rater in the
context of several scenarios motivated by the intestinal biopsy rating study. Five
simulation scenarios were considered. | considered the proposed approach under the

assumption that each of five models (G, GP, GHeP-rog, GHeP-atyp4a, and GHeP-

atyp4b) was correct under the assumption of marginal homogeneity, and again, under the

assumption of marginal heterogeneity.

For scenarios simulated assuming marginal homogeneity, hypothesis testing was

conducted under the assumption of marginal homogeneity. For scenarios simulated
under the assumption of marginal heterogeneity, the hypothesis testing was conducted
twice, under the assumption of margina homogeneity and under the assumption of

marginal heterogeneity (Table 10).
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Table 10. Summary of the Properties Assessed By the Analytic Approaches Used for
Each Simulation Model

Simulation Assumption of Marginals
Homogeneity Heterogeneity
Analytic Assumption of Analytic Assumption of
Simulation Marginals Marginals
Model Homogeneity Homogeneity Heterogeneity

G Type | error Type | error Type | error
GP Typel error Typel error Typel error

GHeP-rog Power Power Power

GHeP-atyp4a Power Power Power

GHeP-atyp4b Power Power Power

3.22. Design

Monte Carlo simulation was used to generate 1,000 ssimulations for each of the five
models shown in Table 10 under the assumption of marginal homogeneity and marginal
heterogeneity. One thousand simulations provide a 95% confidence interval half-width
of 0.01 for the estimated level of 0.05 and a maximum half-width of 0.03 for the
estimated power assuming the maximum binomial variance (when p=0.5).

A simulation consisted of generating rating data, the counts for each cell of the 2°
contingency table. Therefore, one thousand 2° contingency tables were generated for
each model under the assumption of margina homogeneity, and under the assumption of
margina heterogeneity. The agreement structure within a given 2° contingency table was
the agreement structure defined by the log-linear model that was used to generate the
rating data.

Rating data for the scenarios involving the G, GP and GHeP-rog models were
generated using as “true” values the parameter estimates obtained by fitting the

corresponding model to the intestinal biopsy data. Each modd was fitted to the
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published data to get realistic values for the simulations. Rating data for the G, GP, and
GHeP-rog ssimulation scenarios were constructed in the following manner:

1. Fit the hypothesized model to the mucosecretion diminution data.

2. Capture the estimates of the parameters and variance-covariance matrix
for the mode fit in Step 1.

3. Randomly generate 1,000 realizations of each parameter in the model
using the SAS % MVN macro (SAS Institute Inc;
http://ftp.sas.com/techsup/downl oad/stat/mvn.html) using the estimates
from Step 2 as input parameters.

4. Generate counts for the 2° contingency table by randomly sampling from a
Poisson distribution with mean equal to the exponentiated sum of the
coefficients corresponding to the covariate pattern of each of the 64
possible rating patterns.

5. Repeat Step #4 for the 1,000 realizations generated in Step #3.

When fitting the models to the intestinal biopsy data (Rogel et a. 1998), the ‘sum-
to-zero’ constraint was used for the rater effects (see Appendix A) and indicator variables
(see Appendix B) were used for the agreement parameters, asin Rogel et a. (1998).
Stata, version 8.2, software was used to fit the models. The estimates of the parameters
for each scenario are summarized in Table 11 (see Appendix C for Stata code and

parameter estimate and variance-covariance matrix output).
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Table 11. Marginal and Agreement Parameter Estimates for Five Possible Agreement
Models Fitted to the M ucosecretion Diminution Intestinal Biopsy Data of Rogel et al.

(1998) Assuming (a) Margina Homogeneity and (b) Marginal Heterogeneity

Assumed Marginal Homogeneity

Parameter G GP GHeP-rog GHeP-atypda GHeP-atyp4b
de 320 358 3.58 3.58 3.58
d5 -- 12 -- -- --
dI -- -- 0.87 0.96 0.96
5

d‘z -- -- 127 0.96 0.96
5

d‘s -- -- 0.17 0.96 0.96
5

d571 -- -- 1.96 1.96 221

d‘s -- -- 0.87 0.9 0.96
5

d?s -- -- 127 0.96 0.96
5
i -0.49 -0.87 -0.87 -0.87 -0.87

Assumed Marginal Heter ogeneity
Parameter G GP GHeP-rog GHeP-atypda GHeP-atyp4b
| O -0.51 -0.52 -0.64 -0.64 -0.64
| © -0.16 -0.10 -0.25 -0.24 -0.24
| © -0.26 -0.24 -0.35 -0.36 -0.36
| © 0.80 0.84 135 1.35 1.35
| S -0.32 -0.30 -0.42 -0.42 -0.42
| O -0.38 -0.37 -0.48 -0.49 -0.49
de 347 3.96 450 4.49 4.49
d5 -- 1.25 -- -- --
dI -- -- 1.96 213 213
5

d‘z -- -- 244 213 213
5

d‘s -- -- 138 213 2.13
5

dZ -- -- 0.36 0.37 221
5

d‘s -- -- 2.08 2.13 213
5

d ® -- -- 247 213 213
5
M -1.08 -1.48 -2.08 -2.08 -2.08
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The GHeP-rog estimates shown in Table 11 are the same as those shown in Table
6. The interpretation of the d5T and| @, i =1 to 6, was provided in section 2.4. Rating

data for the GHeP-atyp4a scenario assuming margina homogeneity was simulated using
parameter estimates obtained by fitting a comparable model to the intestinal biopsy data.
In the GHeP model, five of the six heterogeneous partial agreement parameters were
constrained to be equal and the sixth was allowed to differ. Specificaly, the
heterogeneous partial agreement parameter for Rater 4 was allowed to differ, yielding
estimates of 3.58 ford,, -0.87 for p, 0.96 ford, ,i=1, 2, 3,5, and 6 and 1.96 for dZ (fifth
column of the first half of Table 11). Rating data for the GHeP-atyp4b scenario under the
assumption of marginal homogeneity was created by using the same parameter estimates
from the GHeP-atyp4a except the magnitude of dg‘was increased to 2.21 (Table 11, sixth

column). An increase of 0.25, from 1.96 to 2.21, represents a two-fold increase on alog
scale.

Rating data for the GHeP-atyp4a scenario assuming marginal heterogeneity was created
by using parameter estimates obtained by fitting a comparable GHeP model to the

intestinal biopsy data that constrained five of the six heterogeneous partial agreement
parameters to be equal and alowed the parameter for Rater 4 to differ. Estimates for | &
(i = 1to 6) ranged from -0.64 to 1.35. The parameter estimate of | * is relatively large
under the G and GP models as well as the GHeP models. The estimate ofdAS‘_ (i=1,235,

and 6) was 2.13 and 0.37 for d?, with m =-2.08 (fifth column of the second haf of

Table 11). Rating data for the GHeP-atyp4b scenario under the assumption of marginal
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heterogeneity was created by using the comparable parameter estimates from the GHeP-

atypda scenario except the magnitude ofol.)71 was changed from 0.37 to 2.21.

These parameter estimates and the corresponding variance-covariance matrices
were used with the SAS macro MV N (Appendix D) to generate 1,000 realizations of
each parameter in the hypothesized model (Step #3). The MVN macro generates
multivariate normal data using the Cholesky decomposition of the variance-covariance
matrix, an approach commonly used to simulate multivariate normally distributed data
(Kennedy and Gentle, 1980). The random number generator in the macro uses the time
from the computer’ s internal clock as the seed for each run.

For each of the 1,000 realizations, count data were generated for the 2°
contingency table by randomly sampling from a Poisson distribution with mean equal to
the exponentiated sum of the coefficients corresponding to the covariate pattern of each
of the 64 possible rating patterns (Appendix E). For the GHeP-atyp4a mode under
marginal homogeneity, the portion of SAS code that generates the count data was as
follows:

logm=mu4+e6*bl+e5sub*b2+e5m4*b3;

cntN&index=exp(logm);

smcnt&index = ranpoi(0,cntN&index);
where variables e6, e5sub and e5m4 hold the value ‘0’ or ‘1’ defined by the rating
pattern and mu4, bl, b2, and b3 were one set of realized parameter estimates for the
grand mean, global agreement, five-way agreement when raters 1, 2, 3, 5, or 6 are the
discrepant rater, and five-way agreement when rater 4 is the discrepant rater,

respectively. For example, for rating patterns (000100) and (111011) variable e6 equals
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zero because neither rating pattern represents global agreement, variable e5sub equals
zero because the five-way agreement represented by these two ratings patterns was not
theresult of raters 1, 2, 3, 5 or 6 being the discrepant rater, and variable esm4 equals one
because rater 4 was the discrepant rater and the pattern represented five-way agreement.
If one set of realized parameter estimates was (-1.01, 3.64, 1.18, 2.37) for the variables
mu4, bl, b2, and b3, respectively, the value of variable logm for rating patterns (000100)

and (111011) is

109 My = - 101+ (d =0)*3.64 +(dy,, = 0)*1.18+(d* =1)*2.37 =- 1.01+2.37 =1.36

Count data for rating pattern (000100) was generated by sampling from a Poisson
distribution with mean equal to 1.36. Count data for rating pattern (111011) was also
generated by sampling from a Poisson distribution with mean equal to 1.36. The means
of the two Poisson distributions are the same because the agreement is not assumed to
vary by category of the response.

An example of simulated count data for each of the five models simulated
assuming marginal homogeneity is provided in Table 12. The shaded rows highlight the
rating patterns that represent global agreement or partial agreement. Note, the total
number of the counts observed in aredized 2° contingency table, the sample size, is not
fixed. For the five realized 2° contingency tables presented in Table 12, the sample size

ranged from 58 to 95.
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Table 12. One Set of Simulated Count Data for Each of the Five Scenarios Assuming

Margina Homogeneity

Rating Pattern

G Model

GP Model

GHeP-rog
Model

GHe P- at yp4a
Model

GHeP- at yp4b
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Table 12 (continued)

Rating Pattern G Model GP Model CGHeP-rog GHeP-at ypda GHeP- at yp4b
Model Model Mbde
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After the count data for the 1,000 2° contingency tables were generated for a
given scenario, the analysis was conducted on each generated contingency table. When
fitting each model to the data, parameters with sufficient statistics equal to zero had to be
taken into account. My SAS program included code that ascertained which of the
heterogeneous partial agreement parameters for a given contingency table had sufficient
statistics equal to zero. The sufficient statistic of a heterogeneous partial agreement
parameter was zero when both rating patterns representative of that parameter had counts
of zero. For example, if rating patterns (010000) and (101111) both had zero counts

(e.g., sampling zeros), the sufficient statistic of the heterogeneous partial agreement

parameter for Rater 2,d.2, was non-estimable, and was set to zero when the GHeP model

was fitted to the data. There are 64 possible variations of the GHeP model when there are
six raters and a binary outcome. A model number, 1 through 64, was assigned to each
redlized 2° contingency table. This model number was used as a data management tool to

facilitate data processing when fitting the GHeP modédl to the data and when performing




pair-wise comparisons of the GHeP parameters. The number of possible pair-wise
comparisons of the GHeP parameters depends on the number of GHeP parameters with
sufficient statistics not equal to zero. Table 13 enumerates each of the 64 possible GHeP
models, summarizes the model number assigned to a given GHeP model, the number of
possible pair-wise comparisons among the heterogeneous partial agreement parameters
and the number of sampling zeros. When there are six raters, the number of possible
pair-wise comparisons of the heterogeneous partial agreement parameters ranges from
zeroto 15.

In practice, in situations where an overall test is to be performed before individual
comparisons, multiple comparison procedures generally are not used unless the overal
test is statistically significant. However, to assess whether this strategy could identify
pair-wise differences in the absence of a significant overal test (e.g., under circumstances
when an investigator would not have planned to initially perform an overall test) while
controlling for Type | error, | computed adjusted p-values regardless of the statistical

significance of the overall test.

Table 13. Enumerated GHeP Models Having Heterogeneous Partial Agreement
Parameters with Sufficient Statistics Equal to Zero and Its Number of Possible Pair-wise
Comparisons

Model Heter ogeneous Partial Agreement # of Pair-wise
Number Parameter with Sufficient Statistic Comparisons
Equal to Zero (# Sampling Zeros)
1 None of the Six parameters 15 (0)
2 dSTS
3 d;’
5 d5§
6 dz
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Table 13 (continued)

Model Heter ogeneous Partial Agreement # of Pair-wise
Number Parameter with Sufficient Statistic Comparisons
Equal to Zero (# Sampling Zeros)
7 dg
dg, dZ
dg, dJ
10 dg,df
11 dg,df
12 dSI’ dsg 6(4)
13 df,df
14 dZ,d§
15 dz,df
16 dz,df
17 df,df
18 ds,df
19 dg,df
20 df,df
21 dg,df
22 df,df
23 dl, d2, d2
2 .o &
2 d?, dZ, d;
20 d:, o2, d
! d;, d7, d
8 d7, d5, dJ 3(6)
3 . d
* d?, a7, d;
31 @3, o, o]
32 dI, d2, d?
> d;, d, d;
34 dl, d2, d?
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Table 13 (continued)

Model Heter ogeneous Partial Agreement # of Pair-wise
Number Parameter with Sufficient Statistic Comparisons
Equal to Zero (# Sampling Zeros)

3 I, o, o

% &, &5 a;

> d, d7, df

> d?, d, d;

39 d2, dZ, d® 3(6)

0 d &5,

s d7, ds, d

42 d, dg dg

43 ds, d7, df, d¢

4 d7, dg, dg, d?

45 dZ, d2, d2, d?

46 dZ, d3, dF, dd

47 dZ,d2, d, d3 1(8)

48 dI, d?, dS, d®

49 dI, d3, d5, d®

S0 dI, d2, dZ, dS

51 dI, d2, d?, d>

52 dI, dZ, d2, d®

53 d;, dZ, d, d? 1(8)

54 dI, d2, d?, d>

55 dI, d2,d2, dd

56 dI, d2,d2, dS

57 dg, d, d3, df

o8 d7, d, dJ, dg, d?

59 dg, d?, dJ, d7, d? 0% (10)

60 d, dZ, dJ, dg, d?

61 dg, d7, dJ, d7, d?

62 dg, dZ, d?, d, df
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Table 13 (continued)

Model Heter ogeneous Partial Agreement # of Pair-wise
Number Parameter with Sufficient Statistic Comparisons
Equal to Zero (# Sampling Zeros)
63 dsl’ d52, d53, d54, d55 0 (10)
64 All six parameters 0(12)

* The hypothesis that esm; = 0 can be tested.

Models 58 through 63 have only one heterogeneous partial agreement parameter that is

not constrained to be zero. Although this parameter can be tested, pair-wise comparisons

are not possible. If the heterogeneous partial agreement parameter estimate is not

significantly different from zero, the five-way agreement represented by the

heterogeneous partial agreement parameter is not more than what would be expected by

chance alone after accounting for global agreement (and margina heterogeneity if

assumed).

This inferential approach was implemented using the statistical software Stata 8.2

and SAS 8.2. | wrote programs to fit the five GHeP models, perform pair-wise

comparisons, and compute the unadjusted p-value associated with each pair-wise

comparison in Stata. SAS was used to compute the adjusted p- value values of each pair-

wise comparison and for data management purposes in computing the following:

1

A summary of the mode, minimum and maximum sample size

across the 1,000 simulations ssmulated from the G, GP, GHeP-

rog, GHeP-atypda or GHeP-atyp4b model.

Descriptive statistics of the marginal percentages for different

category specific agreement patterns and rater exclusion across

the 1,000 simulations ssimulated from the G, GP, GHeP-rog,

GHeP-atyp4a or GHeP-atyp4b mode.
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The distribution of the simulated 2° contingency tables having
none, some or all of its heterogeneous partial agreement
parameters with sufficient statistic equal to zero for each
smulation model considered.

The frequency that each of the fifteen pair-wise comparisons was
statistically significant. These statistics were summarized by
multiple comparison procedure and number of pair-wise
comparisons/ sampling zeros subsets. For simulations having one
or more sampling zeros, an adjustment to the denominator was
made when calculating the proportion. The number of
simulations in which a given pair-wise comparison was not
possible due to sampling zeros was subtracted from the total
number of simulations considered.

Type | error is defined as the proportion of simulated tables
generated under the G or GP model that had a significant pair-
wise comparison involving any of the heterogeneous partial
agreement parameters. An indicator variable, denoting at |east
one pair-wise comparison (any pair-wise comparison) was
significant, was created for each simulation. Type | error was
computed as the ratio of the number of simulated tables with at
least one significant pair-wise comparison to 1,000 or (1000-X),
where X is the number of simulations that have

alld], i=1to 6, with sufficient statistic equal to zero.
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Power is defined as the proportion of replications generated under
the GHeP-rog, GHeP-atyp4a or GHeP-atyp4b models that had the
designated atypical rater (Rater 4) identified as atypical by the
multiple comparison procedures (i.e. at least of the following
pair-wise comparisons was statistically significantd5I VS. d571 ,

d2 vs.d}, d2 vs.d?, d? vs.d®, or d2 vs. d® for agiven
simulated 2° contingency table). The denominator was 1,000 or
(1000-X), as appropriate. | summarized the proportion of
simulated tables for which each possible number of the pair-wise
comparisons involving d571 was significant.

The proportion of replications that identified a rater other than
rater 4 as being the atypical rater was estimated. A rater other
than rater 4 was considered identified as the atypical rater if one
or more of the following pair-wise comparisons was statistically
significant:dl vs. d2,dI vs. d2, dI vs d®, dI vs d?,

d2 vs.d2, d2 vs.d?, d2 vs d® d2 vs.d?, d2 vs. d® or

d> vs. d® for a given simulated 2° contingency table. The
denominator was 1,000 or (1000-X), as appropriate.

The overall unconditional probability of identifying an atypical

rater was estimated by the proportion of pair-wise comparisons

that were significant across the 1,000 smulated tables.
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The overal conditional probability of identifying Rater 4 as the
atypical rater was estimated by the proportion of pair-wise
comparisons that identified Rater 4, given that at least one rater

was identified as atypical.
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4. RESULTS

The first section of this chapter illustrates the inferential approach using the intestinal
biopsy rating data from Rogel et al. (1998). The second section summarizes the results

from the simulation study described in Chapter 3.

4.1. ANALYSISOF INTESTINAL BIOPSY RATING DATA

The mucosecretion diminution data and the observed rating patterns were described in
section 2.4. My work required replicating some of the work done by Rogel et al. (1998).

Reproducing results from the paper provided a way to validate my programs.

41.1. Resaultsfor the GHeP Mode Assuming Marginal Homogeneity
The unconditional approach for identifying an atypical rater begins by fitting the GHeP
model assuming marginal homogeneity to the data. For the intestinal biopsy data, the
estimates of the rater effects, global agreement and the six partial agreement parameters
are shown in Table 6.

Next, pair-wise comparisons of the heterogeneous partial agreement parameters
with adjusted p-values were made. Table 14 summarizes the unadjusted and adjusted p-
values using the Bonferroni, Sidak, Holm's-Bonferroni and Holm’s-Sidak procedures for
this GHeP model. The smallest unadjusted p-value was 0.10, which was comparing 5-
way agreement excluding Rater 3 with 5-way agreement excluding Rater 4. These two
raters had the most discrepant delta parameters (0.17 and 1.96, respectively) in Table 6.

Adjusted p-values range from 0.78 to >0.99 for the Sidak and Holm’ s-Sidak adjustments
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and were consistently >0.99 for the Bonferroni and Holm' s-Bonferroni adjustments.
None of the 15 pair-wise comparisons of the heterogeneous partial agreement parameters

from this GHeP model was statistically significant.

Table 14. Unadjusted and Adjusted p-values for the Fifteen Pair-wise Comparisons of the
Six Heterogeneous Partial Agreement Parameters from the GHeP Model Assuming
Marginal Homogeneity.

GHeP Model Fitted Assuming Marginal Homogeneity

Comparison Unadjusted | Bonferroni Holm's— Sidak Holm's—

Bonferroni Sidak
dI vs. d? 0.66 >0.99 > 0.99 >0.99 0.99
dl vs d2 0.57 >0.99 > 0.99 >0.99 0.99
dl vs d? 0.17 >0.99 > 0.99 0.95 0.94
dST VS, df 1.00 >0.99 > 0.99 >0.99 >0.99
dl vs d® 0.66 >0.99 >0.99 >0.99 0.99
d2 vs d2 0.34 >0.99 > 0.99 0.99 0.99
d2 vs. d? 0.34 >0.99 >0.99 0.99 0.99
d2 vs d? 0.66 >0.99 >0.99 >0.99 0.99
df VS, ds?s >0.99 >0.99 > 0.99 >0.99 >0.99
d2 vs. d? 0.10 >0.99 > 0.99 0.78 0.78
df’ VS, d5_5 0.57 >0.99 > 0.99 >0.99 0.99
d3 vs d? 0.34 >0.99 >0.99 0.99 0.99
dZ vs d> 0.17 >0.99 > 0.99 0.95 0.94
d? vs d? 0.33 >0.99 > 0.99 0.99 0.99
d vs d? 0.66 >0.99 >0.99 >0.99 0.99

4.1.2. Reaultsfor the GHeP Mode Assuming Marginal Heter ogeneity
Under the assumption of marginal heterogeneity, the each rater’s overall prevalence of a
positive rating for mucosecretion diminutionis estimated. The largest lambda in Table

6,1 ° =1.35, for Rater 4 corresponds to the largest marginal percentage for the presence
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of mucosecretion diminution (54.4%) in Table 5. Relatively large lambda estimates
correspond to relatively large contributions to the fitted counts for positive ratings. In
this example, Rater 4 has relatively more positive ratings than any of the other raters.

This GHeP log linear model for the expected cell countsis:

+2.44d2 +1.38d_ +0.36d; +2.08d° + 2.47d®.
The interpretation of the heterogeneous partial agreement parameters changes

when marginal heterogeneity is allowed. Under the assumption of marginal
homogeneity, the largest heterogeneous partial agreement parameter corresponded to the
rater who disagreed relatively more often than the other five raters when five-way
agreement was considered. Under margina heterogeneity, the largest heterogeneous
partial agreement parameter corresponds to the rater who disagrees relatively more often
than the other five raters when five-way agreement is considered and this disagreement is
not accounted for by the rater’s propensity to assign a particular rating. The estimated
heterogeneous partial agreement parameter for Rater 4 is 1.96 under the assumption of
margina homogeneity and only 0.36 under the assumption of margina heterogeneity
(Table 11). Inthe GHeP margina heterogeneity model, the more frequent occurrence of
five-way agreement where Rater 4 is the discrepant rater may be attributable to Rater 4's
higher propensity to rate the presence of mucosecretion diminution While strategies
based on pair-wise comparisons of the heterogeneous partial agreement parameters may
identify Rater 4 as “different” it is not necessarily because the corresponding delta
parameter is large.

Table 15 summarizes the unadjusted and adjusted p- values using the alternative

multiple comparison procedures after fitting the GHeP model assuming marginal



heterogeneity. The unadjusted comparisons indicate that five-way agreement excluding
Rater 4 differs significantly from five-way agreement excluding either Rater 2 or Rater 6.
Raters 2 and 6 have the largest dAsf_ parametersin Table 11. None of the fifteen adjusted
pair-wise comparisons were statistically significant, indicating that the significant
unadjusted differences could be attributable to Type | error. The adjusted p-values range
from 0.46 to >0.99 for the Holm’s Bonferroni and Holm'’ s-Sidak procedures, and from

0.62 to >0.99 for the Bonferroni and Sidak procedures.
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Table 15. Unadjusted p-values and Four Adjusted p-values for the Fifteen Pair-wise
Comparisons of the Six Heterogeneous Partial Agreement Parameter from the GHeP
Assuming Marginal Heterogeneity.

GHeP Modd Fitted Assuming Marginal Heterogeneity

Comparison Unadjusted Bonferroni Holm's— Sidak Holm’s -
Bonferroni Sidak
dl vs d2 0.61 > 0.99 >0.99 >0.99 >0.99
dl vs d2 0.64 > 0.99 >0.99 >0.99 >0.99
dl vs d? 0.14 > 0.99 >0.99 0.90 0.85
dI vs d2 0.90 >0.99 >0.99 >0.99 >0.99
dl vs df 0.58 > 0.99 >0.99 >0.99 >0.99
d2 vs d2 0.36 > 0.99 >0.99 0.99 >0.99
d2 vs d 0.05 0.78 0.72 0.55 0.52
d2 vs dF 0.70 > 0.99 >0.99 >0.99 >0.99
d2 vs df 0.97 > 0.99 >0.99 >0.99 >0.99
d3 vs d? 0.44 > 0.99 >0.99 0.99 >0.99
d3 vs d? 0.57 > 0.99 >0.99 >0.99 0.99
d2 vs df 0.35 > 0.99 >0.99 0.99 0.99
d? vs d2 0.13 > 0.99 >0.99 0.87 0.82
d? vs df 0.04 0.62 0.62 0.46 0.46
dZ vs df 0.67 > 0.99 >0.99 >0.99 0.99

4.2.1. Simulated G Agreement Model Assuming Marginal Homogeneity

4.2. SSMULATION STUDY

Generation of Simulated Tables. One thousand 2° contingency tables were generated

under the assumption of marginal homogeneity using the parameter estimates for the G

model shown in Table 11, column 2. The total number of counts ranged from 32 to 116
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(Table 16); the mode of 70 is similar to the observed sample size (68) of the intestinal

biopsy data.

Table 16. Descriptive Statistics of Sample Size (Total Counts) of the 1000 2°
Contingency Tables Simulated under the Assumption of Marginal Homogeneity

Mar ginal Homogeneity

Scenario G GP GHeP-rog GHeP-atypda | GHeP-atyp4b
Minimum 32 36 41 36 34
Maximum 116 113 125 123 115
Mode* 70 65 62, 67 67, 70 75

* Two values indicates a bi-modal distribution

One example of the ssmulated cell counts of the 64 possible rating patterns for the

generated 2° contingency tables was presented in Table 12 (col. 2). The rater agreement

characteristics across the 1,000 ssmulated contingency tables for the G agreement model

are summarized in Table 17. Because the 1,000 contingency tables were generated

assuming homogeneous and not category-specific global agreement, each rater’s mean

marginal proportion of rating presence of mucosecretion diminution should be

approximately 50% (col. 2 and col. 3). Because these data were simulated from estimates

based on the mucosecretion diminutiondata, the margina percentage for global

agreement (col 4 in Table 16) should approximate the comparable summary for the

observed data (44.1%) in Table 5; under the assumed model of homogeneous global

agreement, both G and GP agreement are split equally between the absence and presence
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Table 17. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the G Agreement Model
Simulated under the Assumption of Margina Homogeneity

Global Agreement Model — M arginal Homogeneity

Rater | Marginal % | Margina G %, Gon G for GP %, GP for GP for Excluded
[ for Absence % for d, Absence | Presence d, Absence | Presence | Rater, %
Presence %, dg %, dg, %, dg, %, dg, de
Mean Marginal % Mean Proportion
(SD) (SE)
[min,max] [min,max]
1 50.0 50.0 1.8
(6.2) (6.2) (0.05)
[32.8,74.0] | [26.0,67.2] [0,8.8]
2 50.2 49.7 1.8
(5.9 (5.9 (0.05)
[29.3,67.9] |[32.1,70.7] [0,8.2]
3 50.0 49.9 44.6 22.3 22.3 10.7 53 54 1.7
(6.2) (6.2 (0.05)
[28.6,69.4] | [30.6,71.4] (0.28) (0.29) (0.29) (0.12) (0.2) (0.2) [0,8.1]
4 49.9 50.1 1.8
(6.2) (6.2) [19.1,72.7] | [6.3,46.9] | [6.3,42.6] | [1.1,23.6] | [0,17.1] [0,18.4] (0.05)
[29.0,69.1] | [30.9,71.0] [0,9.5]
5 49.9 50.1 1.8
(6.2) (6.2 (0.05)
[29.1,70.3] | [29.7,70.9] [0,9.6]
6 50.1 49.9 1.7
(6.2) (6.2 (0.05)
[29.6,67.2] | [32.8,70.4] [0,9.4]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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of mucosecretion diminution (22.3%, cols. 5 and 6; 5.3% and 5.4% in cols. 8 and 9; Table 17).
All d5'_ (i =1 to 6) parameters were similar (~ 1.8%, col. 10).

The percentage of the 1,000 simulated 2° contingency tables having none, some or all
heterogeneous partial agreement parameters with sufficient statistics equal to zero is summarized

in Table 18. Each set of d. slisted in the first column of the table are disjointed. For example,
1, 2, 3indicates that only heterogeneous partial agreement parametersd.,d2, and d2 had
sufficient statistics equaling zero. Consequently, only pair-wise comparisons betweend.,dZ, and

df are made. Regardless of how many pair-wise comparisons are made, the Type | error of each
simulation isfixed at 0.05. Model G had relatively few (13.7%) simulated tables with no
sufficient statistic for a heterogeneous partial agreement parameter equal to zero. Thisis
expected, because under the G model, nontglobal agreement was spread uniformly across the

table rather than being concentrated near the diagonal (asin GP agreement). The sufficient

statistic for the heterogeneous partial agreement parameter d571 was zero in 5.7% (57) of the

1,000 simulated contingency tables. Both rating patterns representative of heterogeneous partial
agreement for a particular rater must have a count of O for the sufficient statistic of the
corresponding GHeP parameter to be zero. Because each set of 1,000 simulated 2° contingency
tables included tables where some GHeP parameters had sufficient statistics equal to zero, the

actual number of possible pair-wise comparisons was less than 1,000.
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Table 18. Percent of the 1,000 Homogeneous Simulated 2° Contingency Tables Having None,

Some or All of Its Heterogeneous Partial Agreement Parameters With Sufficient Statistic Equal

to Zero
Sufficient Statistic of G GP GHeP- GHeP- GHeP-
GHeP Parameter =0in rog atypda atyp4b
M odel
d =0,i=
None 13.7 69.1 56.6 36.8 54.2
6 5.2 5.0 4.4 2.8 5.0
5 42 2.8 42 6.7 5.7
4 5.7 40 0.5 0.5 0.1
3 4.3 4.2 6.4 19.4 6.1
2 5.8 3.6 55 2.8 5.1
1 3.6 4.1 55 8.0 5.7
1,2 2.3 0.5 1.2 1.0 1.2
1,3 2.0 0.6 1.8 47 1.3
1,4 19 0.4 0.1 0.1 0
1,5 2.2 0.4 2.4 1.7 1.4
1,6 34 0.3 1.2 1.0 1.8
2,3 19 0.4 0.5 2.30 1.4
2,4 2.4 0.3 0 0 0
2,5 1.6 0.3 0.8 0.6 0.9
2,6 2.0 0.4 1.1 0.7 1.0
3,4 2.4 0.1 0.1 0.1 0.1
3,5 2.3 0.2 15 4.4 15
3,6 2.4 0.6 15 1.8 1.1
4,5 1.8 0.8 0.2 0 0
56 1.8 0.4 1.2 0 0.9
1,23 0.8 0 0.4 0.7 0.6
1,24 0.6 0.1 0 0.4 0
1,25 0.6 0.1 0.6 0 0.4
1,2,6 0.6 0.1 0.2 0.1 0.1
2,3, 4 0.6 0.1 0.1 0.1 0
2,3,5 0.6 0 0.2 0 0.3
2,3,6 14 0 0.3 0.4 0.8
3,4,5 0.8 0.1 0 0.3 0
3,4,6 0.7 0.1 0 0 0
1,34 0.7 0 0 0.1 0
1,35 0.7 0 0.1 0 0.5
1,36 1.1 0 0.2 0.8 0.4
1,4,5 1.0 0 0 0.5 0
1,56 1.2 0.1 0.1 0 0.6
1,4,6 0.9 0.1 0 0.1 0
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Table 18 (continued)

Sufficient Statistic of G GP GHeP- GHeP- GHeP-
GHeP Parameter =0in rog atypda atyp4b
M odel
dl =0,i=
2,4,5 0.9 0.1 0 0 0
2,4,6 1.2 0.1 0 0.1 0.1
4,5,6 0.9 0 0 0 0
3,56 1.1 0 0.1 0 0.2
2,56 05 0 0.4 0.2 05
3,4,56 0.3 0 0 0.1 0
2,4,5,6 0.6 0 0 0 0
2,3,56 0.4 0 0.1 0 0.1
2,3,4,6 0.8 0.1 0 0.1 0
2,3,4,6 0.2 0 0 0 0
1,4,56 0.5 0 0 0 0
1,356 0.6 0 0 0 0.3
1,34,6 0.5 0 0.1 0.1 0
1,345 0.4 0 0 0 0
1,256 0.4 0 0 0.1 0.1
1,2,4,6 0.2 0 0 0 0
1,2,4,6 0.9 0 0 0 0
1,235 0.2 0 0.2 0 0.3
1,234 0.2 0 0.2 0 0.1
2,3,4,56 0.6 0 0 0.4 0
1,3 4,56 0.2 0 0 0 0
1,2,4,56 0.1 0 0 0 0
1,34,5,6 0.2 0.1 0 0 0
1,235,6 0.4 0 0 0 0.1
1,2,3,4,6 0.2 0 0 0 0
12345 0.6 0 0 0 0
All 0.2 0 0 0 0
TOTAL 100.0 100.0 100.0 100.0 100.0

Analysis Assuming M arginal Homogeneity. The number of times each possible pair-wise

comparisonwas statistically significant across the 1,000 simulated contingency tablesis
presented in Table 19. Shaded comparisons highlight the pair-wise comparisons involving dg‘.

None of the fifteen heterogeneous partial agreement parameter pair-wise comparisons was
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significant in any table generated under the G agreement model, either unadjusted or adjusted for

multiple comparisons.

Table 19. Number of Times Each Possible Pair-wise Comparisonwas Statistically Significant
Across 1000 Tables Simulated under the G Agreement Model withMarginal Homogeneity

Comparison Unadjusted Bonferroni Holm's- Sidak Holm’s-
Bonferroni Sidak
n (%)
dE VS. dAS_2 0 0 0 0 0
0t v &2 0 0 0 0 0
07 vs d2 0 0 0 0 0
07 vs d3 0 0 0 0 0
4% vs d? 0 0 0 0 0
07 vs d7 0 0 0 0 0
d:z vs. d? 0 0 0 0 0
02 vs. O3 0 0 0 0 0
07 vs d7 0 0 0 0 0
dAS_3 vs. d? 0 0 0 0 0
0 vs. d2 0 0 0 0 0
a3 vs 7 0 0 0 0 0
0% vs 43 0 0 0 0 0
0 v OF 0 0 0 0 0
0% vs d7 0 0 0 0 0

4.2.2. Simulated GP Agreement Model Assuming Marginal Homogeneity

Generation of Simulated Tables. One thousand 2° contingency tables were generated for the

GP modd under the assumption of marginal homogeneity using the parameter estimates shown

in Table 11, column 3. The total number of counts per table ranged from 36 to 113 with a mode

of 65 (Table 16). An example of the simulated cell counts for a generated 2° contingency tables

for this GP scenario was presented in Table 12 (col.3).
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A summary of the rater agreement characteristics across the 1,000 simulated contingency
tables for the GP agreement model is presented in Table 20. Asin the G model, global
agreement in the GP model is not category specific, so the margina distributions for presence
and absence and the global agreement estimates in Table 20 are similar to those for the G model
in Table 17. However, relatively more observations (25.6%) represent partial agreement for the
GP moddl; this partial agreement is split equally between agreement on presence and absence of
mucosecretion diminution. The percentage of five-way agreement is similar when each rater is
excluded (~ 4.2%, col. 10).

The simulation under the GP agreement model had the highest percent (69.1%) of
contingency tables among the models considered with no sufficient statistics for heterogeneous
partial agreement parameters equal to zero (Table 18). Thisis expected because this model
concentrates the counts on the main diagonal (rating patterns (000000) and (111111)) and
equally across the ten rating patterns representing five-way agreement on the immediate off-

diagonal.
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Table 20. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GP Agreement Model
Simulated under the Assumption of Margina Homogeneity

Global & Partial Agreement Model —Marginal Homogeneity

Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for | Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %
%, dg o %, dg, %, ds, %, dg, de
Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]
1 50.1 49.8 4.2
(6.3) (6.3) (0.2)
[25.0,66.7] | [33.3,75.0] [0,14.0]
2 50.0 50.0 4.3
(6.0) (6.0) 43.5 21.6 21.9 25.6 12.9 12.6 (0.8
[33.3,67.1] | [32.9,66.7] [0,16.2]
3 49.8 50.2 (0.27) (0.19) (0.18) (0.23) (0.16) (0.15) 4.3
(5.9) (5.9) (0.2)
[33.3,67.7] | [32.3,66.7] | [19.0,69.7] | [3.943.1] | [4.7,44.4] | [1.552.0] [0,31.1] [0,29.6] [0,15.0]
4 49.8 50.2 4.2
(6.2) (6.2) (0.2)
[25.0,68.6] | [31.4,75.0] [0,16.3]
5 49.6 50.3 4.3
(6.0) (6.0) (0.2)
[25.0,72.3] | [27.7,75.0] [0,14.6]
6 49.9 50.1 4.2
(6.2) (6.2) (0.2)
[29.9,67.6] | [32.4,70.1] [0,13.1]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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Analysis Assuming Marginal Homogeneity. The number of times each possible pair-wise
comparisonwas statistically significant across the 1,000 simulated contingency tablesis
presented in Table 21. Shaded rows highlight the pair-wise comparisons involving df. None of

the fifteen heterogeneous partial agreement parameter pair-wise comparisons was significant in
any table generated under the GP agreement model, either unadjusted or adjusted for multiple

comparisons.

Table 21. Number of Times Each Possible Pair-wise Comparison was Statistically Significant
Across 1000 Tables Simulated under the GP Agreement Model with Marginal Homogeneity

Comparison Unadjusted Bonferroni Holm's- Sidak Holm’s-
Bonferroni Sidak
n (%)
07 ve d7 0 0 0 0 0
Gt ve &7 0 0 0 0 0
07 vs d2 0 0 0 0 0
07 vs d3 0 0 0 0 0
0 vs 07 0 0 0 0 0
S 0 0 0 0 0
d:z vs. CTSZ 0 0 0 0 0
d:z VS. dA:’ 0 0 0 0 0
07 vs d7 0 0 0 0 0
07 vs d2 0 0 0 0 0
I 0 0 0 0 0
07 vs d? 0 0 0 0 0
d? VS. dAE 0 0 0 0 0
d? vs. d:e 0 0 0 0 0
dAE VS. dA5TS 0 0 0 0 0
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4.2.3. Simulated GHeP-rog Agreement M odel Assuming Marginal Homogeneity
Generation of Simulated Tables. One thousand 2° contingency tables were generated under the
assumption of margina homogeneity using the parameter estimates for the GHeP-rog model
shown in Table 11, column 4. The total number of counts per table ranged from 41 to 125 with
modes of 62 and 67 counts (Table 16). An example of the ssimulated cell counts for a generated
2° contingency tables for this GHeP-rog scenario was presented in Table 12 (col 4).

Therater agreement characteristics across the 1,000 ssimulated contingency tables for this
GHeP-rog agreement model are presented in Table 22. The global agreement and partial
agreement from the 1,000 simulated contingency tables are comparable to those observed from
the intestinal biopsy data (Table 5). The global agreement of the simulated data was 42.2% vs.
44.1% in the observed data, and partial agreement was 27.9% vs. 25.0%. Because the data were
simulated under the assumption of noncategory specific global or partial agreement, the
marginal percentages for the absence and presence of mucosecretion diminution should be
similar for global and partial agreement (global agreement, absence: 21.4% , presence: 20.8%;
partial agreement, absence: 13.9%, presence: 14.0%).

The margina percentage of five-way agreement when a specific rater is excluded from the
simulated data differed dlightly from that of the observed data because of the assumption of
margina homogeneity. The mean margina percentage of five-way agreement when Rater 1, 2,
3,4, 5, or 6 isexcluded from the ssimulated data is 3.5%, 4.8%, 2.4%, 9.0%, 3.5%, and 4.9%,
respectively, vs. 2.9%, 4.4%, 1.5%, 8.8%, 2.9%, and 4.4%, respectively, observed from the

mucosecretion diminution data. Five-way agreement was highest when Rater 4 was excluded.
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Table 22. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-rog Agreement
Model Simulated under the Assumption of Margina Homogeneity

GHeP-rog Model — M arginal Homogeneity

Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %

%, dg o %, dg, %, ds, %, ds, de

Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]

1 50.0 49.9 35

(6.2) (6.2) (0.2)
[29.6,68.5] | [31.5,70.4] [0,20.0]

2 50.3 49.7 4.8

(5.7) (5.7) (0.2)
[30.7,69.4] | [30.6,69.3] 42.2 214 20.8 27.9 13.9 14.0 [0,25.6]

3 50.2 49.8 24

(5.9) (5.8) (0.26) (0.18) (0.18) (0.25) (0.16) (0.16) (0.2)
[31.5,70.8] | [29.2,68.5] [0,25.8]

4 50.2 497 [17.1,70.0] | [6.3,44.6] | [4.8,40.3] | [6.0,60.0] [0,33.3] [1.4,41.4] 9.0

(5.8) (5.8) (0.2)
[31.1,69.8] | [30.2,68.9] [0,36.1]

5 50.0 49.9 35

(5.9) (5.9) (0.2)
[28.4,70.7] | [29.3,71.6] [0,21.4]

6 50.4 49.6 4.9

(5.9) (5.9) (0.2)
[25.7,70.8] | [29.2,74.3] [0,25.7

For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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The sufficient statistic for the heterogeneous partial agreement parameter df was zero in

only 0.5% (5) of these 1,000 simulated contingency tables (Table 18, row 4, col. 4), and 44.4%
of the contingency tables had at |east one heterogeneous partial agreement parameter with a
sufficient statistic equal to zero.

Analysis Assuming Marginal Homogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 ssimulated contingency tablesis
presented in Table 23. Results are presented by subsets of simulations defined by the number of
possible pair-wise comparisons (15, 10, 6, 3, or 1). For subsets of size less than 15, “Missing”
denotes the number of simulations in which the given comparison was not possible due to
sampling zeros.

The vast mgjority of significant unadjusted pair-wise comparisons involved Rater 4,
indicating that five-way agreement when Rater 4 is excluded is different from five-way
agreement when the other raters are excluded. For pair-wise comparisons involving Rater 4, the
number of adjusted significant pair-wise comparisons was reduced to 2 or less. The few
statistically significant adjusted pair-wise comparisons all involved Rater 4. In this simulation

scenario, Rater 4 is designated as the atypical rater.
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Table 23. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated
under the GHeP-rog Agreement Model with Margina Homogeneity

Number of

Pair-wise
Comparisons 15 10 6 3 1
(N) (556) (265) (136) (27) (6)

d5l Vs. d52
Unadjusted 3(0.5) 2(1.3) 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’ s-Sidak 0 0 0 0 -
Missing 0 110 91 26 6

d51 Vs. d53
Unadjusted 3(0.5) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 119 103 23 6

d51 Vs. d54
Unadjusted 80 (14.1) 38(18.5) 16 (24.2) 2(20.0) 0
Bonferroni 1(0.2) 0 1(1.5) 0 0
Holm’s- Bonferroni 1(0.2) 0 1(1.5) 0 0
Sidek 1(0.2) 0 1(15) 0 0
Holm s-.Sldak 1(0.2) 0 1(1.5) 0 0
Missing 0 60 70 17 5

d5l VS. d55
Unadjusted 4(0.7) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 97 104 23 6
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Table 23 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (556) (265) (136) (27) (6)

ds vs. d?
Unadjusted 5(0.8) 2(1.2) 0 0 -
Bonferroni 0 0 0 0 -
Holm'’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 9 105 24 6

dZ vs. d2
Unadjusted 4(0.7) 2(1.4) 0 0 -
Bonferroni 0 0 0 0 -
Holm'’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 119 85 26 6

dZ vs. dg
Unadijusted 81 (14.3) 32 (15.6) 24(25.0) 0 -
B,onferronl . 1(0.2) 1(0.5) 1(1.0) 0 -
Holm s-.Bonferronl 1(0.2) 1(0.5) 2(2.0) 0 -
Sidak 1(0.2) 1(0.5) 1(1.0) 0 ”
Holm's-Sidak 1(0.2) 1(0.5) 2(2.0) 0 -
Missing 0 60 40 22 6

dZ vs. dg
Unadjusted 3(0.5) 0 0 0 0
Bonferroni 0 0 0 0 0
Holm's- Bonferroni 0 0 0 0 0
Sidak 0 0 0 0 0
Holm’s-Sidak 0 0 0 0 0
Missing 0 97 89 25 >
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Table 23 (continued)

Possible
Pair-wise
Comparisons 15 10 6
(N) (556) (265) (136)
dZvs. d?
Unadjusted 4(0.7) 1(0.6) 0
Bonferroni 0 0 0
Holm’s- Bonferroni 0 0 0
Sidak 0 0 0
Holm' s-Sidak 0 0 0
Missing 0 99 75
d’vs. dg
Unadjusted 85 (15.0) 28(14.3) 21(26.5)
Bonferroni 2(0.4) 1(0.5) 0
Holm’s- Bonferroni 2(0.4) 1(0.5) 0
S!dak_ 2(0.4) 1(0.5) 0
Holm's-Sidak 2(0.4) 1(0.5) 0
Missing 0 69 57
d’vs. d>
Unadj usteo_l 5(0.8) 0 0 0
Bonferroni 0 0 0 0
Holm’s- Bonferroni 0 0 0 0
Sidak 0 0 0 0
Holm's-Sidak 0 0 0 0
Missing 0 106 100 25
dJvs. dg
Unadjusted 0 0 0 0
Bonferroni 0 0 0 0
Holm’s- Bonferroni 0 0 0 0
Sidak 0 0 0 0
Holm’s-Sidak 0 0 0 0
Missing 0 108 89 21




Table 23 (continued)

Possibl e
Pair-wise
Comparisons 15 10 6 3 1
(N) (556) (265) (136) (27) (6)
do vs. dg
Unadjusted 78 (13.7) 27 (12.4) 15 (20.6) 3(27.3) 0
Bonferroni . 1(0.2) 1(0.4) 1(1.4) 0 0
Holm’s- Bonferroni 1(0.2) 1(0.4) 1(1.4) 0 0
Sidak 1(0.2) 1(0.4) 1(1.4) 0 0
Holm's-Sidak 1(0.2) 1(0.4) 1(1.4) 0 0
Missing 0 47 63 16 4
d. vs. dg
Unadjusted 89 (15.7) 38(17.6) 24(29.3) 4(30.8) 1 (50.0)
B10nferron| _ 1(0.2) 1(0.4) 2(2.4) 0 0
Holm s-_Bonferronl 1(0.2) 1(0.4) 2(2.4) 0 0
Sfdak_ 1(0.2) 1(0.4) 2(2.4) 0 0
Holm's-Sidak 1(0.2) 1(0.4) 2(2.4) 0 0
Missing 0 49 54 14 4
d>vs. d?
Unadjusted 2(0.4) 0 0 0 -~
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 86 99 22 6
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For each simulated 2° contingency table that had at least one significant p-value, the proportion
of comparisons involving Rater 4 was assessed (Table 24). Table 24 summarizes the power to
detect Rater 4 as atypical when “atypical” was defined as being different from one, two, ..., five
raters or from at least one other rater. The power to identify Rater 4 as being atypical is 27.7%
using a criterion of at least one of the five unadjusted pair-wise comparisons involving d? is
statistically significant. The power is reduced to 0.6% when the analysisis adjusted for the
number of comparisons. Power is similarly low across the four multiple comparison procedures
considered using the criterion that at |east one of the five pair-wise comparisons involvi ng&f is
statistically significant.

Table 24. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria by Multiple
Comparison Procedure for the GHeP-rog Scenario

Multiple Comparison Procedure
Rater 4 Differs Unadjusted | Bonferroni Holm’s Sidak Holm’'s

from: Bonferroni Sidak
Onerater 0.078 0.002 0.002 0.002 0.002
Two raters 0.070 0.001 0 0.001 0
Three raters 0.066 0.001 0.002 0.001 0.002
Four raters 0.040 0.001 0.001 0.001 0.001
Five raters 0.023 0.001 0.001 0.001 0.001
At least one rater 0.277 0.006 0.006 0.006 0.006

The proportion of simulations that identified a rater other than Rater 4 as the atypical
rater was 0.007 based upon unadjusted p-values and O when based on adjusted p-values (Table
25). The overal probability that any rater is identified as atypical is approximately 6% based on
unadjusted comparisons and less than 1% if adjustments are made (Table 26). However, the
probability that Rater 4 is identified given that an atypical rater isidentified is greater than 93%

(Table 27).
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Table 25. Proportion of Simulations that Identify a Rater Other Than Rater 4 as the Atypical
Rater by Multiple Comparison Procedure for the Three Scenarios Simulated under the
Assumption of Marginal Homogeneity

Analytic Approach: Marginal Homogeneity
Simulation Unadjusted | Bonferroni Holm's- Sidak Holm's-
Scenario Bonferroni Sidak
GHeP-rog 0.007 0 0 0 0
GHeP-atypda 0.171 0.019 0.019 0.019 0.019
GHeP-atyp4b 0.026 0 0 0 0

Table 26. Overall Probability (%) of Identifying any Rater as the Atypical Rater for Data
Simulated Under the Assumption of Marginal Homogeneity

M odel Unadjusted Bonferroni Holm’s- Sidak Holm’s-
Bonferroni Sidak
GHeP-rog 6.05 0.13 0.14 0.13 0.14
GHeP-atyp4a 9.14 0.86 0.94 0.86 0.94
GHeP-atyp4b 10.56 0.63 0.65 0.63 0.70

Table 27. Conditional Probability (%) of Idertifying the Designated Atypical Rater as Atypical

for Data Simulated Under the Assumption of Marginal Homogeneity
M odel Unadjusted Bonferroni Holm'’s- Sidak Holm’s-
Bonferroni Sidak
GHeP-rog 94.37 100 100 100 100
GHeP-atypda 60.65 53.76 55.45 53.76 55.45
GHeP-atyp4b 97.11 100 100 100 100

4.2.4. Simulated GHeP-atyp4a Agreement M odel Assuming Marginal Homogeneity
Generation of Simulated Tables. One thousand 2° contingency tables were generated under the
assumption of margina homogeneity using the parameter estimates for the GHeP-atyp4a model
shown in Table 11, column 5. The total number of counts per table ranged from 36 to 123 with
modes of 67 and 70 counts (Table 16). An example of the simulated cell counts for the
generated 2° contingency tables for this GHeP-atyp4a scenario was presented in Table 12 (col.

5).




A summary of the rater agreement characteristics across the 1,000 simulated contingency
tables for the GHeP-atyp4a agreement model is presented in Table 28. The percentages of five-
way agreement when Raters 1, 2, 3, 5, and 6 are excluded should be similar and less than the
percentage of five-way agreement when Rater 4 is excluded. The percentages of five-way
agreement when Raters 1, 2, 3, 5, and 6 are excluded are ~3.5%, and the percentage of five-way

agreement when Rater 4 is excluded is 9.0%.
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Table 28. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4a Model
Simulated under the Assumption of Margina Homogeneity

GHeP-atyp4a M odel- M ar ginal Homogeneity

Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %

%, dg o %, dg, %, ds, %, ds, de

Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]

1 50.2 49.8 34

(6.2) (6.2) (0.2)
[27.5,67.1] | [32.9,72.5] [0,16.9]

2 50.2 49.7 35

(6.0) (6.0) (0.2)
[31.0,72.5] | [27.5,69.0] 43.1 21.7 214 26.2 13.2 13.0 [0,16.3]

3 50.3 49.6 34

(5.9 (5.9 (0.26) (0.18) (0.18) (0.25) (0.16) (0.16) (0.1
[31.2,73.4] | [26.6,68.8] [0,13.1]

4 50.2 49.8 [16.9,70.2] | [4.1,43.2] | [5.6,40.7] | [6.9,54.5] [0,30.7] [1.4,30.2] 9.0

(6.0) (6.0) (0.2)
[28.2,70.9] | [29.1,71.7] [0,26.2]

5 50.1 49.8 34

(6.2) (6.2) (0.2)
[29.2,67.5] | [32.5,70.8] [0,14.6]

6 50.2 49.8 35

(6.0) (6.0) (0.2)
[33.3,72.4] | [27.6,66.7] [0,15.0]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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In the GHeP-atyp4a simulated scenario, only 5 of the 1, 000 simulated 2° contingency
tables had counts equal to zero for rating patterns (000100) and (111011), i.e., d? =0, and

63.2% of the contingency tables had at least one heterogeneous partial agreement parameter with
a sufficient statistic equal to zero.

Analysis Assuming Marginal Homogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 ssimulated contingency tablesis
shown in Table 29. Within each column, relatively more statistically significant unadjusted pair-
wise comparisons involved Rater 4. Very few of the adjusted pair-wise comparisons were

statistically significant. 1n contrast to the GHeP-rog simulation scenario, a sizeable number of
statistically significant unadjusted pair-wise comparisons did not involvedg‘. This explains why

the unadjusted conditional probability of identifying the designated atypical rater as atypical for

the GHeP-atyp4a (60.65%) scenario is less than that from the GHeP-rog scenario (94.37%, Table

27).
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Table 29. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated

under the GHeP-atypda Agreement Model with Marginal Homogeneity

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N (368) (402) (191) (32) 7)
ds vs. dZ
Unadjusted 26 (7.1) 12 (4.1) 7(10.0) 0 -
Bonferroni 0 1(0.3) 2(2.8) 0 -
Holm’s- Bonferroni 0 1(0.3) 2(2.8) 0 -
Sidak 0 1(0.3) 2(2.8) 0 -
Holm's-Sidak 0 1(0.3) 2(2.8) 0 z
Missing 0 108 121 30 7
do vs. d>
Unadj usteql 21(5.7) 6 (4.7) 3(15.0) 0 -
Bonferroni 2(0.5) 2(1.6) 0 0 -
Holm’ s- Bonferroni 2(0.5) 2(1.6) 0 0 -
Sidak 2(0.5) 2(1.6) 0 0 -
Holm's-Sidak 2(0.5) 2(1.6) 0 0 -
Missing 0 274 171 30 7
ds vs. d.’
Unadjusted 79(21.5) 24.(7.6) 8(17.1) 0 1(100)
B,onferronl _ 5(1.4) 1(0.3) 2(1.9) 0 1(100)
Holm’s- Bonferroni 6 (1.6) 1(0.3) 2(1.9) 0 1(100)
Sidek 5 (1.4) 1(0.3) 2(1.9) 0 1(100)
Holm’s-Sidak 6 (1.6) 1(0.3) 2(19) 0 1(100)
Missing 0 85 86 22 6
do vs. d
Unadjusted 24(6.5) 5(2.0) 3(6.1) 0 -
Bonferroni 0 1(0.2) 0 0 -
Holm's- Bonferroni 0 1(0.2) 0 0 -
Sidak 0 1(0.2) 0 0 ~
Holm’s-Sidak 0 1(0.2) 0 0 -
Missing 0 147 142 29 7
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Table 29 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (368) (402) (191) (32) (7)
do vs. do
Unadjusted 28 (7.6) 10 (3.4) 3(4.1) 0 -
Bonferroni 3(0.8) 3(1.0) 1(1.4) 0 -
Holm's- Bonferroni 3(0.8) 3(1.0) 2(2.7) 0 -
Sidak 3(0.8) 3(1.0) 1(1.4) 0 -
Holm's-Sidak 3(0.8) 3(1.0) 2(2.7) 0 z
Missing 0 108 117 26 7
d2 vs. d?
Unadjusted 23(6.3) 14 (7.8) 2(5.9) 0 -
Bonferroni 3(0.8) 1(0.5) 0 0 -
Holm’ s- Bonferroni 3(0.8) 1(0.5) 0 0 -
Sidak 3(0.8) 1(0.5) 0 0 -
Holm's-Sidak 3(0.8) 1(0.5) 0 0 -
Missing 0 222 157 31 7
d5_2 vs. dg'
Unadjusted 61 (16.5) 28(7.6) 24(16.7) 2(12.5) 1(100)
Bonferroni 5(1.3) 2(0.5) 3(2.1) 0 0
Holm's- Bonferroni 5(1.3) 2(0.5) 3(2.1) 0 0
Sidek 5(1.3) 2(0.5) 3(21) 0 0
Holm's-Sidak 5(1.3) 2(0.5) 3(2.1) 0 0
Missing 0 33 47 16 6
dZ vs. d>
Unadjusted 17 (4.6) 5(1.6) 9(11.7) 0 -
Bonferroni 0 1(0.3) 3(3.9) 0 -
Holm’s- Bonferroni 0 1(0.3) 3(3.9) 0 -
Sidak 0 1(0.3) 3(3.9) 0 -
Holm's-Sidak 0 1(0.3) 3(3.9 0 -
Missing 0 95 114 27 7
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Table 29 (continued

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (368) (402) (191) (32) @)

dZ vs. d?
Unadjusted 24 (6.5) 8(2.3) 8(7.3) 1(11.1) 0
B,onferronl . 2(0.5) 3(0.9) 2(1.8) 0 0
Holm’s- Bonferroni 2(0.5) 3(0.9) 2(L8) 0 0
Sidek 2(0.5) 3(0.9) 2(1.8) 0 0
Holm’s-Sidak 2(0.5) 3(0.9) 2(1.8) 0 0
Missing 0 56 81 23 6

dJ vs. d.
Unadjusted 88 (23.9) 45 (22.2) 12 (21.1) 0 -
B,onferronl _ 4(1.1) 3(1.4) 1(1.8) 0 -
Holm's- Bonferroni 6 (1.6) 3(14) 2(3.5) 0 -
Sidak 4(1.1) 3(1.4) 1(1.8) 0 -
Holm’s-Sidak 6 (1.6) 3(1.4) 2(3.5) 0 -
Missing 0 199 134 28 7

d’vs. d>
Unadjusted 24 (6.5) 9(6.3) 1(3.7) 1(100) -
Bonferroni 3(0.8) 1(0.7) 0 0 -
Holm’s- Bonferroni 3(0.8) 1(0.7) 0 0 -
Sidek 3(0.8) 1(0.7) 0 0 -
Holm’s-Sidak 3(0.8) 1(0.7) 0 0 -
Missing 0 261 164 31 7

dJvs. dg
Unadjusted 33(9.) 14(7.8) 130 0 -
Bonferroni 4(1.1) 0 0 0 -
Holm’s- Bonferroni 4(1.1) 0 0 0 -
Sidak 4(1.1) 0 0 0 -
Holm’s-Sidak 4(1.1) 0 0 0 -
Missing 0 222 158 30 7
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Table 29 (continued

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (368) (402) (191) (32) @)

dSvs. d>
Unadjusted 68 (18.4) 237.0) 20 (17.2) 17.7) -
Bonferroni _ 7(1.9) 2(0.6) 2(1.7) 0 -
Holm’ s-_Bonferronl 7(1.9) 2(0.6) 2.7 1(7.7) -
Sidak 7(1.9) 2(0.6) 2(L7) 0 -
Hol m s-_S| dak 7(1.9) 2(0.6) 2@.7) 1(7.7) -
Missing 0 72 75 19 7

do vs. do
Unadjusted 57 (15.5) 24(6.5) 22 (14.8) 1(5.9) 0
Bonferroni 6 (1.6) 3(0.8) 3(2.0) 0 0
Holm’s- Bonferroni 7(1.9) 3(0.8) 3(2.0) 0 0
Sidek 6 (1.6) 3(0.8) 3(2.0) 0 0
Holm's-Sidak 7(1.9) 3(0.8) 3(2.0) 0 0
Missing 0 33 43 15 3

dovs. d?
Unadjusted 34(9.2) 7(2.2) 4(4.9) 1(25.0) -
Bonferroni . 2(0.5) 2(0.7) 0 1(25.0) -
Holm’ s—.Bonferronl 2(0.5) 2(0.7) 1(1.2) 1(25.0) -
Sidak 2(0.5) 2(0.7) 0 1(25.0) -
Holm’s-Sidak 2(0.5) 2(0.7) 1(1.2) 1(25.0) -
Missing 0 % 109 28 7

91



Table 30 summarizes the power to identify Rater 4 as the atypical rater when df differs

from one or more than one otherd. . The power of the unadjusted comparisons to detect Rater 4
as different from exactly one other rater is dightly higher (11.3%) in Table 30 compared to the
comparable power in Table 24 (7.8%); the overall power (27.5% vs. 27.7%, respectively) is
similar. Regardless of the multiple comparisonprocedure used, the power to identify Rater 4 as
atypical using a criterion that d571 differs from at least oned. (i =1, 2, 3,5, or 6) is at most 2.3%.
The increase in power from 0.6% in the GHeP-rog scenario to 2.2% in Table 30 may be
explained by Raters 1, 2, 3, 5, and 6 being more homogeneous with respect to their rating

characteristics in the GHeP-atyp4a scenario than in the GHeP-rog scenario.

Table 30. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple
Comparison Procedure for the GHeP-atyp4a Scenario

Rater 4 Differs Unadjusted | Bonferroni Holm's- Sidak Holm's-
From: Bonferroni Sidak
One rater 0.113 0.011 0.011 0.011 0.011
Two raters 0.069 0.002 0.002 0.002 0.002
Three raters 0.039 0.002 0.002 0.002 0.002
Four raters 0.039 0.006 0.005 0.006 0.005
Five raters 0.015 0.001 0.003 0.001 0.003
At least one rater 0.275 0.022 0.023 0.022 0.023

Because there were adjusted statistically significant pair-wise comparisons that did not
involvedsz, the proportion of simulations that identified arater other than Rater 4 as the atypical

rater was calculated. Using an identification criterion that at |east one of the pair-wise
comparisons between the remaining five raters had to be significant to identify arater as being
atypical, 17.1% of these smulations identified arater other than Rater 4 as the atypical rater
based upon unadjusted comparisons compared to only1.9% from adjusted comparisons (Table

25).
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The overall probability that any rater is identified as atypical is 9.14% if adjustments for
the number of comparisons are not made and less than 1% if adjustments are made (Table 26).
The probability that Rater 4 is identified given that an atypical rater isidentified is 60.65% based
on adjusted comparisons and 54%-55% for the four multiple comparison procedures (Table 27).
It is relatively more difficult to correctly identify the designated atypical rater under this
scenario. A greater proportion (63.2%) of the GHeP-atyp4a simulations had at least one
heterogeneous partial agreement parameter with a sufficient statistic equal to zero compared to

the GHeP-rog scenario (43.4%, Table 18). There were a disproportionate percentage of GHeP-

atypda simulations withd5§ =0 compared to the GHeP-rog scenario, 19.4% vs. 6.4%, and for the

pair of heterogeneous partial agreement parameters ds_z,ds§ =0 (2.3% vs. 0.5%). Having
heterogeneous partial agreement parameters with sufficient statistics equal to zero reduces the

number of possible pair-wise comparisons. Consequently, the unadjusted critical p-valueis

larger and a grester proportion of pair-wise comparisons (H, :dAsf_ :&51" 1)) will be rgjected.

4.25. Simulated GHeP-atyp4b Agreement Model Assuming Marginal Homogeneity
Generation of Simulated Tables. Onethousand 2° contingency tables were generated under the
assumption of margina homogeneity using the parameter estimates for the GHeP-atyp4b model
shown in Table 11, column 5. The total number of counts per table ranged from 34 to 115 with a
mode of 75 (Table 16). An example of the smulated cell counts for a generated 2° contingency

tables for this GHeP-atyp4b scenario was presented in Table 12 (col.5).
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The rater agreement characteristics across the 1,000 ssmulated contingency tables are
summarized in Table 31. The mean marginal percentages for heterogeneous partial agreement
are comparable for Raters 1, 2, 3, 5 and 6 and higher for Rater 4, (~2.3% for the former and

~9.8% for the latter).
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Table 31. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4b Model

Simulated under the Assumption of Margina Homogeneity

GHeP-atyp4b Model —Marginal Homogeneity

Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %

%, dg o %, dg, %, ds, %, ds, de

Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]

1 50.1 49.8 2.3

(6.2) (6.2) (0.2)
[31.0,68.7] | [31.3,69.0] [0,11.2]

2 50.1 49.8 2.2

(6.2) (6.2 45.9 23.0 22.9 214 10.7 10.7 (0.1
[32.9,67.7] | [32.3,67.1] [0,13.3]

3 50.0 50.0 (0.27) (0.29) (0.19) (0.22 (0.14) (0.14) 2.2

(6.0) (6.0) (0.2)
[26.3,69.8] | [30.2,73.7] |[21.7,71.0] | [6.3,45.7] | [5.8,42.6] | [4.0,45.9] [0,28.6] [0,29.8] [0,13.1]

4 50.2 49.8 9.8

(6.2) (6.0) (0.2)
[31.1,71.0] | [29.0,68.9] [0,30.5]

5 50.1 49.8 2.3

(6.2) (6.3) (0.2)
[32.1,71.4] | [28.6,67.9] [0,10.4]

6 49.9 50.1 24

(6.3) (6.3) (0.2)
[30.2,66.7] | [33.3,69.9] [0,10.9]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement




For these GHeP-atyp4b simulated data, only one contingency table had &57‘ =0 (Table 18,

row 4, col. 5), and 45.8% of the contingency tables had at |east one heterogeneous partial

agreement parameter with sufficient statistic equal to zero.

Analysis Assuming Marginal Homogeneity. The number of times each possible pair-wise
comparison was statistically significant across the 1,000 simulated contingency tablesis
summarized in Table 32. Approximately 25% of the unadjusted pair-wise comparisons
involving Rater 4 were statistically significant. In contrast, less than 2% of the unadjusted pair-
wise comparisons not involving Rater 4 were statistically significant. The only adjusted pair-

wise comparisons that were statistically significant involved Rater 4.
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Table 32. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated
under the GHeP-atyp4b Agreement Model with Marginal Homogeneity

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (542) (277) (126) (45) (10)
dJ vs. d52
Unadjusted 2(0.4) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 108 ) 43 10
ds vs. d2
Unadjusted 3(0.6) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 118 98 39 10
do vs. dg
Unadjusted 129 (23.8) 68 (31.1) 27(39.7) 6(33.3) 0
Bonferroni _ 5(0.9) 6(2.7) 4(5.9) 1(5.5) 0
Holm’s- Bonferroni 5(0.9) 6(2.7) 4(5.9) 1(5.5) 0
Sidak 5(0.9) 6(2.7) 4(5.9) 1(5.5) 0
Holm'’s-Sidak 5(0.9) 6(2.7) 4(5.9) 1(5.5) 0
Missing 0 58 58 27 9
dg vs. dg
Unadjusted 0 0 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 114 0 36 10
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Table 32 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (542) (277) (126) (45) (10)
d51 VS. d56
Unadjusted 2(0.4) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 107 87 42 10
dZ vs. d2
Unadjusted 4(0.7) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sldak_ 0 0 0 0 .
Holm’ s-Sidak 0 0 0 0 -
Missing 0 112 4 39 10
dZ vs. dg
Unadjusted 136 (25.1) 74 (32.9) 30 (37.5) 9(52.9) 0
Bonferroni 5(0.9) 6(2.7) 4(5.0) 2(11.7) 0
Holm’s- Bonferroni 5(0.9) 6(27) 4(5.0) 2(11.7) 0
Sidak 5(0.9) 6(2.7) 4 (5.0) 2(11.7) 0
Holm’s-Sidak 5(0.9) 6(2.7) 4 (5.0) 2(11.7) 0
Missing 0 52 46 28 7
dZ vs. dg
Unadjusted 2(0.4) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sldak. 0 0 0 0 .
Holm’ s-Sidak 0 0 0 0 -
Missing 0 108 83 41 10
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Table 32 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (542) (277) (126) (45) (10)
dZvs. d?
Unadjusted 7(13) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm'’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 101 43 40 10
d2 vs. df
Unadjusted 143 (26.3) 67 (31.1) 27 (37.5) 3(18.9) 0
Bonferroni 2(0.4) 5(2.3) 2(2.7) 1(6.3) 0
Holm's- Bonferroni 4(0.7) 5(2.3) 2(2.7) 1(6.3) 0
Sidak 2(0.4) 5(2.3) 2(2.7) 1(6.3) 0
Holm’s-Sidak 4(0.7) 5(2.3) 2(2.7) 1(6.3) 0
Missing 0 62 54 29 9
d2 vs. d®
Unadjusted 4(0.7) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 118 8 43 10
d2 vs. d®
Unadjusted 4(0.7) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 111 91 4 10
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Table 32 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (542) (277) (126) (45) (10)
dsvs. d>
Unadjusted 135 (24.9) 74 (33.8) 31(39.7) 5(26.3) 2 (66.7)
Bonferroni 6 (1.1) 6(2.7) 2(2.5) 3(15.8) 2(66.7)
Holm’s- Bonferroni 7(1.3) 6(2.7) 2(2.5) 3(15.8) 2(66.7)
Sidak 6(1.1) 6(2.7) 2(2.5) 3(15.8) 2(66.7)
Holm’s-Sidak 7(1.3) 6(2.7) 2(2.5) 3(15.8) 2(66.7)
Missing 0 58 48 26 7
d. vs. dg
Unadjusted 146 (26.9) 66 (29.2) 26 (33.8) 6(33.3) 0
B10nferron| _ 5(0.9) 5(2.2) 2(2.6) 0 0
Holm's- Bonferroni 5(0.9) 5(2.2) 2(2.6) 0 0
ez 5(0.9) 5(2.2) 2(2.6) 0 0
Holm's-Sidak 5(0.9) 5(2.2) 2(2.6) 0 0
Missing 0 51 49 27 9
d>vs. d?
Unadjusted 6(1.1) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 107 86 39 10




Table 33 summarizes the power to identify Rater 4 as the atypical rater when df differs

from one or more of the otherd. *s. Using a criterion that df differs from at least oned, (i =1,

2, 3,5, or 6), the power to identify Rater 4 as being atypical is 44.2% based on unadjusted

comparisons and only 2.9% for the adjusted comparisons.

Table 33. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple
Comparison Procedure for the GHeP-atyp4b Scenario

Rater 4 Differs Unadjusted | Bonferroni Holm's Sidak Holm's
from: Bonferroni Sidak
One rater 0.099 0.007 0.007 0.007 05
Two raters 0.114 0.007 0.007 0.007 0.007
Three raters 0.088 0.008 0.006 0.008 0.008
Four raters 0.084 0.006 0.007 0.006 0.005
Five raters 0.057 0.001 0.002 0.001 0.004
At least one rater 0.442 0.029 0.029 0.029 0.029

4.2.6. Simulated G Agreement Model Assuming Marginal Heter ogeneity

Generation of Simulated Tables. One thousand 2° contingency tables were generated under
the assumption of marginal heterogeneity using the parameter estimates for the G model shown
in Table 11 (lower half of table, column 2). The total number of counts per table ranged from 37

to 119, with amode of 74 (Table 34).

Table 34. Descriptive Statistics of Sample Size (Total Counts) of the One Thousand 2°
Contingency Tables Simulated under the Assumption of Marginal Heterogeneity

Mar ginal Heter ogeneity
Scenario G GP GHeP-rog GHeP-atyp4a | GHeP-atyp4b
Minimum 37 36 32 37 57
Maximum 119 124 143 111 224
Mode 74 65 78 72,74 110

* Two values indicates a bi-modal distribution

One example of the simulated cell counts of the 64 possible rating patterns for the generated 2°

contingency tables for the G scenario is presented in Table 35 (col. 2). The shaded patterns
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represent global agreement or partial agreement. Notice that 20 (83.3%) of the 24 rating patterns

representing G agreement were from rating pattern (000000).

Table 35. One Set of Count Data for Five Models Simulated Assuming Marginal Heterogeneity

Simulated M odel

Rating Pattern

GP

GHeP-rog

GHeP-atypda

GHeP-atyp4b

000000

32

32

12

000001
000010

N

0

000011

000100

000101

000110

000111

001000

001001

001010

001011

001100

001101

001110

001111

010000

010001

010010

010011

010100

010101

010110

010111

011000

011001

011010

011011

011100

011101

011110

011111

NN E R EE R E N E R E EE RN E E = =N == )

O|O|O(O|O|0|O0|O|O(N|O|IW|IFR| R IOIW|IFR|IFPIFPIWIO|IFR|IO|O(FR|(FkIWO1O|O

N|O|O(FRR|O|O|O|FR O |FRP|O|O[FRIN|O|O|O(O|O|O|O|O(O(N| RO K~(N

O|O|IN(O|O|O0|O0|O|O(FR ||~ |O|O(O|W|O|O|F O|IO|IO|IOININ|(AIFLIN|IOIN

w|o|o|r|o|o|o|o|o|v|o|w|o|o|o|o|o|r|v|m|o|o|o| kool -
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Table 35 (continued)

Simulated M odel

Rating Pattern

GHeP-rog

GHeP-atyp4da

GHeP-atyp4b

100000

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

110000

110001

110010

110011

110100

110101

110110

110111

111000

111001

111010

111011

111100

111101

111110

111111

AlO|r|O|O||O|o||O|||o|lo|o|o|o|o|r|N|o|o|o|o|o|o|o|o|o|o|o|o|®

\INHI—‘OHOOI\)I—‘OOOOOOOI—‘HOOI—‘OOI—‘I—‘ONOOO#%

OO O|O|O0|O|O(W(O|OIN|FP|O[FR|O|R|O|O(FR|O|0|O|O(O|IN|FRPIW|O|O|O| -

YRR [ellellellel el il Jdliell Jdiell Jdlellell i el il llel o] (o] o] le]e] ] V] (o] (el el )V

OIW|O(FRO|O|O|O(NO|FR|O|O|O(O|O0OIN|O|O(F|O|0|O|O|O|lw|O|O|O|o|o|o

Sample Size

61

81

85

66

121

The rater agreement characteristics across the 1,000 simulated contingency tables for the G

model are summarized in Table 36. The six raters mean marginal proportions of rating

‘absence’ and ‘presence’ are similar to that observed in the intestinal biopsy example, with

Raters 1, 2, 3, 5, and 6 rating ‘absence’ of the lesion in approximately 72% of the biopsies and

103



Rater 4 rating ‘absence’ of the lesion in 45.2% of the slides (col. 2). The observed percentage of
global agreement is not necessarily divided equally between global agreement on the absence or
presence of the lesion (35.8% and 7.1%, respectively). The mean percentage of partia

agreement 0.001 was 10.9% (col. 7), of which 50% represented five-way agreement when Rater

4 disagreed with the other raters (col. 10).
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Table 36. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the G Agreement Model
Simulated under the Assumption of Marginal Heterogeneity

Global Agreement Model — Marginal Heterogeneity
Rater | Marginal % | Margina G %, G for G for GP %, GP for GP for Excluded
[ for Absence % for d, Absence | Presence d, Absence | Presence | Rater, %
Presence %, dg %, dg, %, dg, %, dg, de
Mean Marginal % (SD) Mean Proportion (SE)
[min,max] [min,max]
1 77.3 22.7 0.9
(7.4 (7.4 (0.03)
[54.1,95.3] | [4.6,45.9] [07.7]
2 68.6 31.3 13
(7.7) (7.7) (0.04)
[40.2935 | [6.559.8] [0,7.1]
3 711 28.8 42.8 35.8 7.1 10.9 8.8 2.0 11
(7.5 (7.5 (0.04)
[42.991.2] | [8.857.1] (0.27) (0.25) (0.13) (0.12) (0.11) (0.2) [0,7.8]
4 45.2 54.8 55
(8.3) (8.3) [17.6,789] |[14.8,723] | [0 311] [0, 26.5] [0,23.1] [0,11.7] 0.1)
[21.577.6] | [22.3784] [0,19.4]
5 72.6 27.4 11
(7.6) (7.6) (0.04)
[45.5914] | [5.954.5] [0,6.6]
6 74.1 25.9 11
(7.9 (7.9 (0.04)
[47.9919 | [8.152.]] [0,6.6]

For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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The percentage of the 1,000 simulated 2° contingency tables having none, some or all of

its heterogeneous partia agreement parameters with sufficient statistics equal to zero is

summarized in Table 37. Model G had relatively few (5.1%) simulated tables with no

heterogeneous sufficient statistic for a partial agreement parameter equal to zero. Thisis

expected, because under the G model, non-global agreement was spread uniformly across the

table rather than being concentrated near the diagonal.

Table 37. Percent of the 1,000 Heterogeneous Simulated 2° Contingency Tables with None,
Some or All of Its Heterogeneous Partial Agreement Parameters Having Sufficient Statistic

Equal to Zero

Sufficient Statistic
of GHeP Parameter

=0inMode
d5T =0,i= G GP GHeP-rog | GHeP-atyp4a | GHeP-atyp4b
None 5.1 41.9 36.0 61.1 60.9
6 3.5 8.6 2.8 5.7 5.2
5 3.9 8.4 8.3 6.5 5.9
4 0.1 0 0.3 0.7 0
3 3.5 7.3 20.7 4.6 6.7
2 2.6 4.9 3.1 5.0 5.9
1 5.5 8.2 8.2 4.3 4.6
1,2 2.7 1.0 0.6 1.2 0.8
1,3 2.7 1.6 5.0 0.6 0.8
1,4 0.2 0 0 0 0
1,5 3.7 1.6 1.7 0.8 0.8
1,6 2.7 13 0.6 1.2 0.9
2,3 2.5 1.3 19 0.6 1.0
2,4 0.2 0 0 0.1 0
2,5 2.0 11 0.7 1.2 0.6
2,6 2.7 1.6 0.2 1.7 0.7
3,4 04 0 04 0.1 0
3,5 2.6 15 4.2 0.7 0.9
3,6 3.3 1.7 1.5 1.1 1.2
4,5 0.1 0 0 0 0
5,6 0.3 0 0 0 0
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Table 37 (continued)

GHeP-atyp4b

1.1
0.3

0.1

0.2

0.3

0.3

0.2

0.3

0.1

GHeP-atyp4da

1.2

0.2

0.1

0.3
0.4

0.1

0.2

0.1

GHeP-rog

0.5

0.6

0.2

0.1

0.5

0.1

0.7

0.3

0.2

0.1

0.2

0.1

GP

2.6
0.5

0.6

0.2

0.2

0.2

0.3
0.5

0.3

0.7

0.6

0.2

0.2

0.3

0.2

2.6
2.6

0.1

2.5

2.5
0.1

2.7

2.3

0.1

0.1

4.0

2.8

2.9

0.1

0.1

2.9

2.6

0.1

0.1

2.3

4.3

0.1

0.1

2.5
0.1

3.1

4.3

0.1

Oin Mod€

Sufficient Statistic

of GHeP Parameter

1,23

1,24

1,25

1,26
2,34
2,3,5
2,3,6
3, 4,5
3,4,6

1,34
1,35
1,36
1,45

1,56
1,4,6
2,4,5
2,4,6
4,5, 6

3,56
2,56
3,4,56

2,4,56

2,3,56

2,3,4,6
2,3,4,6

1,4,56
1,356
1,3 4,6
1,345
1,256
1,2,4,6
1,2,4,6
1,235
1,4,56
1,356
1,3 4,6
1,345
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Table 37 (continued)

Sufficient Statistic
of GHeP Parameter
=0in Model
ds'=0 G GP | GHeP-rog | GHeP-atyp4a | GHeP-atyp4b
1,256 0.1 0 0 0 0
1,2,4,6 25 0.3 0 0 0
1,2,4,6 0.1 0 0 0 0
1,235 31 0 0 0 0
1,23, 4 2.2 0 0.1 0.2 0.1
2,3,4,5,6 0.1 0.4 0.1 0 0.1
1,3,4,5,6 0.1 0 0 0 0
1,2,4,56 0.2 0 0 0 0
1,3,4,5,6 0.1 0 0 0 0
1,235 6 2.9 0 0 0 0
1,23,4,6 0.1 0 0 0 0
1,2,3,4,5 0.2 0.2 0 0 0
All 0.1 0 0 0 0
TOTAL 100.0 | 100.0 100.0 100.0 100.0

The sufficient statistic for the heterogeneous partial agreement parameter dg‘ was zero in one

(0.1%) of the 1,000 ssimulated contingency tables (shaded row, col. 2). Because each set of 1,000
simulated 2° contingency tables included tables where some GHeP parameters had sufficient
statistics equal to zero, the actual number of possible pair-wise comparisons was less than 1,000.
Analysis Assuming Marginal Homogeneity. The number of times each possible pair-wise
comparison was statistically significant across the 1,000 simulated contingency tablesis

summarized in Table 38. All of the statistically significant unadjusted pair-wise comparisons

involved Rater 4. None of the adjusted comparisons OTST VS. df‘was statistically significant. The
percentage of significant adjusted pair-wise comparisons ranged from 0.2% (d;‘vs. df) t0 0.6%

(d2vs.d2).
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Table 38. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically

Significant Across 1000 Tables Simulated under the G Model withMarginal Heterogeneity when

the Data were Analyzed Assuming Marginal Homogeneity

Comparison Unadjusted Bonferroni Holm’'s- Sidak Holm’s-
Bonferroni Sidak
n (%)
0 v a2 0 0 0 0 0
07 vs d7 0 0 0 0 0
"51 Ve &52 15(3.2) 0 0 0 0
G2 vs. O3 0 0 0 0 0
"g VS, d“;s 0 0 0 0 0
07 vs d2 0 0 0 0 0
d‘s—z Ve 652 20(3.6) 2(0.3) 2(0.3) 2(0.3) 2(0.3)
07 vs. d3 0 0 0 0 0
dA52 Vs, d56 0 0 0 0 0
d“5‘3 Vs, d54 27(5.4) 2(0.4) 2(0.4) 2(0.4) 2(0.4)
dASa Vs, d55 0 0 0 0 0
d53 VS, d56 0 0 0 0 0
a7 vs d° 28(5.6) 3(0.6) 3(0.6) 3(0.6) 3(0.6)
A7 vs. d2 24(4.7) 1(0.2) 1(0.2) 1(0.2) 1(0.2)
d55 VS, d56 0 0 0 0 0

The Type | Error to identify Rater 4 as the atypical rater when df differs from only
oned. (i=1,2,3,5,or6) or morethan oned, issummarized in Table 39.

The Type | Error is 6.6% when no adjustment is made for the number of comparisons and 0.7%

when adjusted using each multiple comparison procedure considered.
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Table 39. Type | Error to Identify Rater 4 as the Atypical Rater for G Scenario Simulated under

Marginal Heterogeneity when the Data were Analyzed Assuming Marginal Homogeneity

Rater 4 Differs Unadjusted | Bonferroni Holm's- Sidak Holm's-
from: Bonferroni Sidak
Onerater 0.026 0.006 0.006 0.006 0.006
Two raters 0.025 0.001 0.001 0.001 0.001
Three raters 0.013 0 0 0 0
Four raters 0.002 0 0 0 0
Five raters 0 0 0 0 0
At least one rater 0.066 0.07 0.07 0.07 0.07

Analysis Assuming Marginal Heterogeneity. The number of times each possible pair-

wise comparison was statistically significant across the 1,000 ssimulated contingency tablesis

summarized in Table 40. The only significant pair-wise comparisons, unadjusted or adjusted,

involved d*.

Table 40. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically
Significant Across 1000 Tables Simulated under the G Model withMarginal Heterogeneity when
the Data were Analyzed Assuming Marginal Heterogeneity

Comparison Unadjusted Bonferroni Holm's- Sidak Holm’s-
Bonferroni Sidak
n (%)
dE VS. dAS_2 0 0 0 0 0
07 ve d7 0 0 0 0 0
dASI Vi dA571 18(3.8) 3(0.6) 3(0.6) 3(0.6) 3(0.6)
7 vs d7 0 0 0 0 0
a7 vs d7 0 0 0 0 0
d:z VS. d:s 0 0 0 0 0
d“s_z Vs, &57‘ 37(6.6) 6(1.1) 6(1.1) 7(13) 7(13)
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Table 40 (continued)

Comparison Unadjusted Bonferroni Holm's- Sidak Holm's-
Bonferroni Sidak
n (%)
As‘z Vs, d“;s 0 0 0 0 0
a2 vs 4 0 0 0 0 0
d”5_3 . d“571 27(5.4) 10(2.0) 10(2.0) 10(2.0) 10(2.0)
07 vs d3 0 0 0 0 0
0% ve d7 0 0 0 0 0
d? . &5?» 27(5.4) 5(1.0) 5(1.0) 5(1.0) 5(1.0)
d‘si Vs, d‘5Ts 27(5.3) 5(0.9) 6(1.1) 5(0.9) 6(1.2)
% vs. d7 0 0 0 0 0

The Type | Error to identify Rater 4 as the atypical rater when df differs from one or more of

the other d. is summarized in Table 41. The overall Type | Error is 11% when no adjustment is

made for the number of comparisons and ~ 3.0% when each of the multiple comparison

procedures is used.

Table 41. Type | Error to Identify Rater 4 as the Atypical Rater for G Scenario Simulated under
Margina Heterogeneity when the Data were Analyzed Assuming Marginal Heterogeneity

Multiple Comparison Procedure
Rater 4 Differs Unadjusted | Bonferroni Holm’s- Sidak | Holm’s-
from: Bonferroni Sidak
One rater 0.083 0.026 0.026 0.028 0.027
Two raters 0.022 0.002 0.003 0.002 0.003
Three raters 0.004 0 0 0 0
Four raters 0.001 0 0 0 0
Five raters 0 0 0 0 0
At least one rater 0.11 0.028 0.029 0.03 0.03

* 0.06% not evaluable




4.2.7. Simulated GP Agreement Model Assuming Marginal Heter ogeneity
Generation of Simulated Tables. One thousand 2° contingency tables were generated under
the assumption of marginal heterogeneity using the parameter estimates for the GP model shown
in Table 11, column 3. The total number of counts per table ranged from 36 to 124 (Table 34).
One example of the simulated cell counts of the 64 possible rating patterns for the generated 2°
contingency tables was presented in Table 35 (col. 2). Thirty-two (~ 82%) of the 39 rating
patterns representing global agreement were from rating pattern (000000) and ~ 32% of the
rating patterns represented partial agreement.

The rater agreement characteristics across the 1,000 simulated contingency tables for the
GA model are summarized in Table 42. The six raters mean margina proportions of rating
‘absence’ and ‘presence’ from the GP model ssimulated under the assumption of marginal
heterogeneity are similar to those observed in the intestinal biopsy data, as are the mean
percentages of global and partial agreement (global agreement; 42.3% vs. 44.1%, partial
agreement; 25.5% vs. 25.0%). Relatively more GP agreement occurred for the absence (20.4%)
than the presence (5.1%) of the leson. The mean percentages of five-way agreement when
Raters 1, 2, 3, 5, and 6 were excluded were similar (~2.6%) and less than the five-way agreement
when Rater 4 was excluded (12.5%, col 10.)

Approximately 42% of the simulations using the GP model had no sufficient statistic

equal to zero for a heterogeneous partial agreement parameter. No sufficient statistics for df

were zero (row 4, col. 3, Table 37).
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Table 42. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GP Agreement Model
Simulated under the Assumption of Marginal Heterogeneity

Global & Partial Agreement Model — Heter ogeneity
Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %
%, dg o %, dg, %, ds, %, ds, do
Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]
1 77.3 22.6 2.7
(6.9 (6.9 (0.2
[47.7,96.9] [3.252.2] [0,15.0]
2 68.2 318 2.9
(7.8 (7.8 42.3 33.7 8.6 255 20.4 51 (0.2
[39.7,91.3 | [8.8360.3 [0,16.7]
3 712 28.8 (0.27) (0.24) (0.19) (0.23) (0.20) 0.1) 2.6
(7.5 (7.5 0.1
[49.3,92.3 [7.750.7] [17.3,74.3 [9.6,62.0] [0,284] [6.547.2] [4.2,41.5] [0,15.9] [0,9.6]
4 449 55.0 125
(8.2 (8.2 (0.2
[20.0,73.8] | [26.1,80.0] [1.131.5]
5 72.6 274 24
(7.5 (7.5 0.3
[40.091.3 [8.860.0] [0,11.3]
6 74.0 72.6 2.4
(7.9 (7.9 (0.1
[52.5,93.1] [6.947.5] [0,10.1]

For agreement patterns see Table 4. G= Global agreement; GP= Global ard partial agreement
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Analysis Assuming Marginal Homogeneity. The number of times each possible pair-wise

comparison was statistically significant across the 1,000 simulated contingency tablesis

summarized in Table 43. The vast mgority of the significant unadjusted pair-wise comparisons

and al of the significant adjusted comparisons involved d?.

Table 43. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically

Significant Across 1000 Tables Simulated under the GP Model withMarginal Heterogeneity
when Data were Analyzed Assuming Margina Homogeneity

Comparison Unadjusted Bonferroni Holm’'s- Sidak Holm’s-
Bonferroni Sidak
n (%)
dsl VS, d52 5 (0.7) 0 0 0 0
d51 Vs, d5_3 2(0.3) 0 0 0 0
11 d‘z 358 (43.2) 29(3.5) 30(3.6) 29 (3.5 30(3.6)
5 Vs O
dSI Vs. d5_5 2(0.3) 0 0 0 0
SI Vs, dsfs 1(0.2) 0 0 0 0
5‘2 Vs, d5_3 2(0.3) 0 0 0 0
d"5‘2 Vi d? 365 (42.1) 24(2.8) 27 (3.1) 24 (2.8) 29(3.3)
52 Vs, ds?; 2(0.2) 0 0 0 0
d52 Vs, d5_6 4 (0.5) 0 0 0 0
d‘s‘s Ve &571 357 (42.9) 26 (3.1 28 (3.4) 26 (3.1) 28 (3.4)
d5_3 VS. d55 0 0 0 0 0
53 Vs, ds?s 1(0.2) 0 0 0 0
d? VS, d‘55 334 (41.3) 25(3.1) 29(3.6) 25(3.1) 29(3.6)
d“SZ . d56 346 (42.8) 25(3.1) 27 (3.3) 25(3.1) 27 (3.3)
d55 Vs. dSG 0 0 0 0 0

The Type | Error to identify Rater 4 as the atypical rater when df differs from one or

more one of the otherd5'_ issummarized in Table 44. The Type | Error is 58.8% without adjusting

for the number of comparisons and 4.3% when adjustments are made.
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Table 44. Type | Error to Identify Rater 4 as the Atypical Rater for GP Scenario Simulated under
Marginal Heterogeneity when the Data were Analyzed Assuming Marginal Homogeneity

Rater 4 Differs Unadjusted | Bonferroni Holm’'s - Sidak Holm’s -
from: Bonferroni Sidak
Onerater 0.088 0.007 0.005 0.007 0.005
Two raters 0.09 0.009 0.008 0.009 0.008
Three raters 0.129 0.008 0.006 0.008 0.006
Four raters 0.15 0.015 0.018 0.015 0.016
Five raters 0.101 0.004 0.006 0.004 0.008
At least one rater 0.588 0.043 0.043 0.043 0.043

* 0.06% not evaluable

Analysis Assuming Marginal Heterogeneity. The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tablesis

summarized in Table 45. In contrast to the results from the analysis assuming marginal

homogeneity, the percentage of significant unadjusted pair-wise comparisons ranged from 0%

(d3vs.dZ) to 3.8% (d vsdS). After adjusting for the number of multiple comparisons, only the

comparisons involving d? remained significant, and the percentage of significant pair-wise

comparisons ranged from 0.1% to 0.7%.
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Table 45. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically
Significant Across 1000 Tables Simulated under the GP Agreement Model Assuming Marginal

Heterogeneity when the Data were Analyzed Assuming Marginal Heterogeneity

Comparison Unadjusted Bonferroni Holm’'s- Sidak Holm’s-
Bonferroni Sidak
n (%)
OE Vs (55‘2 3(0.4) 0 0 0 0
dASI Vs, d“s-s 3(0.49) 0 0 0 0
dASI Vs c[f‘ 28 (3.3) 4(0.4) 4(0.4) 4(0.4) 4(0.4)
d"SI Vs &53 3(0.49) 0 0 0 0
d‘SI Vs, dAf 5(0.8) 0 0 0 0
&;2 Vs, &5-3 5(0.7) 0 0 0 0
d‘;z vs. d2 26 (3.0) 1(0.1) 2(0.2) 1(0.1) 2(0.2)
&52 vs, 42 4(0.5) 0 0 0 0
d“52 Vs, d56 5(0.7) 0 0 0 0
d‘s-s vs. A2 27 (3.3) 5(0.6) 5(0.6) 5 (0.6) 5(0.6)
d53 VS, d55 0 0 0 0 0
d3 vs. d? 2(0.3) 0 0 0 0
A vs d° 31(38) 2(0.3) 2(0.3) 2(0.3) 2(0.3)
d54 Vs, d56 25(3.1) 5(0.6) 6(0.7) 5(0.6) 6 (0.7)
d3 vs. d? 4(0.6) 0 0 0 0

The Type | Error to identify Rater 4 as the atypical rater when df differs from one or

more of the otherd, is summarized in Table 46. The unadjusted Type | Error is 9.6%, compared

to 1.5% when adjusted for the number of pair-wise comparisons.
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Table 46. Type | Error to Identify Rater 4 as the Atypical Rater for GP Scenario Simulated under
Marginal Heterogeneity when the Data were Analyzed Assuming Margina Heterogeneity

Multiple Comparison Procedure

Rater 4 Differs Unadjusted | Bonferroni Holm’s- Sidak Holm’s-
from: Bonferroni Sidak
One rater 0.071 0.013 0.013 0.013 0.013
Two raters 0.014 0.002 0.001 0.002 0.001
Three raters 0.007 0 0 0 0
Four raters 0.003 0 0.001 0 0.001
Five raters 0.001 0 0 0 0

At least one rater 0.096 0.015 0.015 0.015 0.015

4.2.8. Simulated GHeP-rog Agreement M odel Assuming Marginal Heter ogeneity
Generation of Simulated Tables. One thousand 2° contingency tables were generated under
the assumption of marginal heterogeneity using the parameter estimates for the GHeP-rog model
shown in Table 11, column 4. The total number of counts ranged from 32 to 143 (Table 34).
One example of the simulated cell counts of the 64 possible rating patterns for the generated 2°
contingency tables for the GHeP-rog agreement model was presented in Table 35 (cal. 3).
Thirty-two of the 37 (~86%) rating patterns representing global agreement were from rating
pattern (000000) and ~33% of the rating patterns represented partial agreement.

The rater agreement characteristics across the 1,000 simulated contingency tables for the
GHeP-rog agreement model are summarized in Table 47. The six raters mean marginal

proportions of rating ‘absence’ and ‘presence’ are similar to that observed in the intestinal biopsy
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Table 47. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-rog Agreement

Model Simulated under the Assumption of Marginal Heterogeneity

Global & Partial Agreement Model — Heter ogeneity

Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %
%, dg o %, dg, %, ds, %, ds, do
Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]
1 76.6 234 3.7
(7.4 (7.4 (0.2
[46.4,96.9] [3.2,53.6] [0,29.2]
2 67.4 32.6 4.7
(8.0 (8.0 (0.1)
[42.6,96.7] [3.357.4] 40.6 33.3 7.3 28.2 19.6 8.6 [0,27.5]
3 70.3 29.7 2.2
(7.8 (7.8) (0.25) (0.24) (0.12) (0.25) (0.20) (0.15) (0.1)
[44.4,89.3] [10.7,55.6] [0,23.8]
4 444 55.6 87
(8.5) (8.5) [18.2,63.3] | [10.360.2] | [0232] [99565] | [1746.3] [0,36.4] (0.2)
[189,71.9] | [28.1,81.1] [0,39.1]
5 71.6 284 3.6
(7.6) (7.6) 0.3
[45.7,92.9] [7.2,54.3] [0,31.4]
6 73.1 26.9 5.2
(7.6) (7.6) (0.1
[48.8,93.2] [6.8,51.2] [0,29.5]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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data. The mean percentages of global and partial agreement were also comparable to that seenin
the intestinal biopsy data (global agreement; 40.6% vs. 44.1%, partial agreement; 28.2% vs.
25.0%). In contrast to that observed in the intestinal data, the mean percentage partial agreement
for absence of the lesion was greater than that for presence of the lesion in the simulated data
(19.6 % vs. 5.1%).

Approximately 35% of the simulations using the GHeP-rog model had no sufficient

statistic for a heterogeneous partial agreement parameter equal to zero. Only four contingency
tables had a sufficient statistic ford571 equa to zero (row 4, col. 4).

Analysis Assuming Marginal Homogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 simulated contingency tablesis
summarized in Table 48. Relatively more significant unadjusted pair-wise comparisons involved

Rater 4.
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Table 48. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated
under the GHeP-Rog Agreement Model Assuming Marginal Heterogeneity when Data were Analyzed Assuming Marginal

Homogeneity
Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (173) (2)
do vs. d?
Unadjusted 37(10.3) 25 (7.8) 4(6.0) 4(6.0)
Bonferroni 1(0.2) 2(0.6) 0 0
Holm's- Bonferroni 1(0.2) 2(0.6) 0 0 -
Sidak 1(0.2) 2(0.6) 0 0 -
Holm's-Sidak 1(0.2) 2(0.6) 0 0 -
Missing 0 113 107 107 2
ds vs. d2
Unadjusted 29 (8.0) 13 (9.0) 2(14.3) 2(14.3)
Bonferroni 1(0.2) 0 0 0
Holm’s- Bonferroni 1(0.2) 0 0 0
Sidak 1(0.2) 0 0 0
Holm’s-Sidak 1(0.2) 0 0 0 -
Missing 0 289 159 159 2
dg vs. d
Unadjusted 56 (15.5) 64 (18.3) 13 (14.4) 13 (14.4)
B10nferron| _ 4(1.1) 6(1.7) 1(1.1) 1(1.1)
Holm s-_Bonferronl 4(1.1) 7(2.0) 1(1.1) 1(1.1)
Sidak 4(1.1) 6(1.7) 1(11) 1(1y
Holm’s-Sidak 4(1.1) 7(2.0) 1(1.1) 1(11) -
Missing 0 85 83 83 2
d5I VS. df
Unadjusted 23(6.4) 18 (6.7) 2(5.0) 2(5.0)
B,onferronl . 2(0.5) 2(0.7) 1(2.5) 1(25)
Holm s-.Bonferrom 2(0.5) 2(0.7) 1(2.5) 1(2.5)
Sidak 2(0.5) 2(0.7) 1(2.5) 1(2.5)
Holm’s-Sidak 2(0.5) 2(0.7) 1(2.5) 1(2.5) -
Missing 0 165 133 133 2
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Table 48 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (173) (2)
ds vs. d?
Unadjusted 31(8.6) 30(9.2) 5(6.9) 5(6.9)
Blonferronl . 1(0.2) 3(0.9) 3(4.2) 3(4.2)
Holm s-.Bonferrom 1(0.2) 3(0.9) 3(4.2) 3(4.2) -
Sidak 1(0.2) 3(0.9) 3(4.2) 3(4.2) -
Holm's-Sidak 1(0.2) 3(0.9) 3(4.2) 3(4.2) -
Missing 0 110 101 101 2
dZ vs. d2
Unadjusted 34(9.4) 20 (10.2) 6 (21.4) 6(21.4)
B,onferronl _ 0 2 (1.0 1(3.6) 1(3.6)
Holm s-_Bonferronl 0 2(1.0) 1(3.6) 1(3.6)
Sidak 0 2(1.0) 1(3.6) 1(3.6)
Holm’s-Sidak 1(0.2) 2(1.0) 1(3.6) 1(3.6) -
Missing 0 238 145 145 2
dZ vs. dg
Unadjusted 46 (12.7) 71(17.8) 23(17.0) 23(17.0)
B,onferronl . 5(1.4) 6 (1.5) 4(2.9 4(3.0)
Holm s-.Bonferronl 5(1.4) 6 (1.5) 4(2.9) 4(3.0)
Sidak 5(1.4) 6 (1.5) 4(2.9) 4(3.0) -
Holm s—_Sldak 5(1.4) 8(2.0) 4(2.9) 4(3.0) -
Missing 0 A 33 38 2
d2 vs d>
Unadjusted 36 (10.0) 25 (7.8) 5(6.7) 5(6.7)
B,onferronl _ 1(0.2) 3(0.9) 1(1.3) 1(1.3)
Holm'’s- Bonferroni 1(0.2) 3(0.9) 1(1.3) 1(1.3) -
Sidak 1(0.2) 3(0.9) 1(1.3) 1(1.3) -
Holm's-Sidak 1(0.2) 3(0.9) 1(1.3) 1(1.3) -
Missing 0 114 98 %8 2
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Table 48 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (173) @)

dZvs. d?
Unadjusted 30(8.3) 29 (7.7) 11(9.7) 11(9.7) -
Bonferroni 1(0.2) 2(0.5) 5 (4.4) 5 (4.4) ~
Holm'’s- Bonferroni 1(0.2) 2(0.5) 5 (4.4) 5 (4.4) ~
Sidak 1(0.2) 2(0.5) 5 (4.4) 5 (4.4) -
Holm's-Sidak 1(0.2) 2(0.5) 5 (4.4) 5 (4.4) -
Missing 0 59 60 60 2

do vs. dg
Unadjusted 81 (22.5) 56 (25.0) 10 (23.2) 10(23.2) -
Bonferroni 5(1.4) 4(1.8) 1(2.3) 1(2.3) -
Holm s-_Bonferronl 6(1.7) 4(1.8) 1(2.3) 1(2.3) -
ez 5(1.4) 4(1.8) 1(2.3) 1(2.3) -
Holm’s-Sidak 6(1.7) 6 (2.6) 1(2.3) 1(2.3) -
Missing 0 210 130 130 2

d’vs. d>
Unadjusted 23(6.4) 9(6.3) 2(14.3) 2(14.3) -
Bonferroni . 3(0.8) 2 (1.4) 0 0 -
Holm's- Bonferroni 3(0.8) 2 (1.4) 0 0 -
Sidak 3(0.8) 2(1.4) 0 0 -
Holm'’s-Sidak 3(0.8) 2(1.4) 0 0 -
Missing 0 290 159 159 2

dJvs. dg
Unadjusted 29(8.1) 21 (10.6) 2(6.7) 2(6.7) -
B,onferronl _ 1(0.2) 0 2(6.7) 2(6.7) -
Holm’s- Bonferroni 1(0.2) 1(0.5) 2(6.7) 2(6.7) -
Sidak 1(0.2) 0 2(6.7) 2(6.7) -
Holm S-.Sldak 1(0.2) 1(0.5) 2(6.7) 2(6.7) -
Missing 0 235 143 143 2
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Table 48 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (173) )
dJvs.d>
Unadjusted 71(19.7) 62 (17.8) 23(23.4) 23(23.5) 0
Bonferroni 4(1.1) 6(1.7) 3(3.2) 3(3.0) 0
Holm’s- Bonferroni 4(1.1) 7(2.0) 3(3.1) 3(3.0) 0
Sidak 4(1.1) 6(1.7) 3(3.1) 3(3.0) 0
Holm's-Sidak 4(11) 9(2.6) 3(3.1) 3(3.0) 0
Missing 0 86 75 75 1
d. vs. dg
Unadjusted 59 (16.4) 72(17.8) 24 (17.0) 24 (17.0) 0
Bonferroni 2(0.5) 11 (2.7) 4(2.8) 4(2.8) 0
Holm’s- Bonferroni 3(0.8) 12 (3.0) 4(2.8) 4(2.8) 0
Sidak 2(0.5) 11 (2.7) 4(2.8) 4(2.8) 0
Holm’s-Sidak 3(0.8) 12 (3.0) 4(2.8) 4(2.8) 0
Missing 0 31 32 2 1
d>vs. d?
Unadjusted 25 (6.9) 27 (8.3) 10 (12.6) 10 (12.6)
Bonferroni 1(0.2) 4(1.3) 2(2.5) 2(2.5)
Holm's- Bonferroni 1(0.2) 4(1.3) 2(2.5) 2(2.5)
Sidak 1(0.2) 4(1.3) 2(2.5) 2(2.5) -
Holm's-Sidak 1(0.2) 4(1.3) 2(2.5) 2(2.5) -
Missing 0 111 A A 2
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The power to identify Rater 4 as the atypica rater when df differs from one or more of

the otherd, is summarized in Table 49.

Table 49. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple
Comparison Procedure for GHeP-rog Scenario, Simulated Assuming Marginal Heterogeneity
and when the Data were Analyzed Assuming Marginal Homogeneity

Rater 4 Differs Unadjusted | Bonferroni Holm’'s - Sidak Holm's-

from: Bonferroni Sidak
One rater 0.148 0.014 0.014 0.014 0.011
Two raters 0.080 0.006 0.006 0.006 0.006
Three raters 0.059 0.004 0.004 0.004 0.007
Four raters 0.048 0.005 0.005 0.005 0.005
Five raters 0.017 0.002 0.003 0.003 0.003
At least one rater 0.352 0.031 0.032 0.031 0.032

The power of the approach was 35.2% for the unadjusted pair-wise comparisons. Using any four

of the multiple comparison procedures considered, the power was reduced to ~ 3.2%. A rater

other than Rater 4 was identified as the atypical rater in ~26% of the simulations based upon

unadjusted p-vaues and in ~ 3% based on adjusted p-vaues (Table 50).

Table 50. Proportion (%) of Simulations that Identify a Rater Other Than Rater 4 as the Atypical

Rater by Multiple Comparison Procedure for Scenarios Simulated under the Assumption of
Margina Heterogeneity and when the Data were Analyzed Assuming Margina Homogeneity

At least onerater is | Unadjusted | Bonferroni Holm's Sidak Holm's
different Bonferroni Sidak
GHeP-rog 25.7 2.42 2.72 2.42 2.72

GHeP-atypda 2.6 0 0 0 0
GHeP-atyp4b 2.3 0 0 0 0

The overall probability that any rater isidentified as an atypical rater is approximately 12%

based on unadjusted comparisons and approximately 1% if adjustments are made (Table 51).

Rater 4 is identified given that an atypical rater was identified only 56.4% of the time for the




GHeP_rog model based on adjusted comparisons and about 60% of the time for the adjusted

comparisons (Table 52).

Table 51. Overall Probability (%) of Identifying any Rater as the Atypical Rater for Data
Simulated Assuming Marginal Heterogeneity whenthe Data were Analyzed Assuming Marginal
Homogeneity

M odel Unadjusted Bonferroni Holm’'s - Sidak Holm’s-
Bonferroni Sidak
GHeP-rog 12.0 11 11 11 12
GHeP-Atyp4a 6.8 0.20 0.21 0.20 0.22
GHeP-Atyp4b 35.7 33.6 33.8 33.6 33.8

Table 52. Conditional Probability (%) of Identifying Rater 4 as Atypical for Data Simulated
Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal

Homogeneity
M odel Unadjusted Bonferroni Holm’s - Sidak Holm’s -
Bonferroni Sidak
GHeP-rog 56.4 58.4 59.6 58.4 61.1
GHeP-Atypda 95.8 >909 >99 >99 100
GHeP-Atyp4b >99 >909 >99 >99 >99

Analysis Assuming Marginal Heterogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 ssimulated contingency tablesis
summarized in Table 53. The majority of adjusted significant pair-wise comparisons involve
Rater 4. Very few pair-wise comparisons that did not involve Rater 4 remained significant after

using a multiple comparison procedure.
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Table 53. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated

under the GHeP-rog Agreement Model with Marginal Heterogeneity when Data were Analyzed Assuming Margina Heterogeneity

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (30) (3)
do vs. d?
Unadjusted 37(10.3) 24.(7.4) 4(6.0) 0
B,onferronl _ 1(0.2) 2(0.6) 1(1.5) 0
Holm’s- Bonferroni 1(0.2) 2(0.6) 2(3.0) 0
Sidak 1(0.2) 2(0.6) 1(1.5) 0
Holm'’s-Sidak 1(0.2) 2(0.6) 2(3.0) 0 -
Missing 0 113 107 29 3
ds vs. d2
Unadjusted 26 (7.2) 9(6.2) 1(7.2) 0
Bonferroni 2(0.6) 0 0 0
Holm's- Bonferroni 2(0.6) 0 0 0
Sidak 2(0.6) 0 0 0 -
Holm's-Sidak 2(0.6) 0 0 0 -
Missing 0 289 159 28 3
do vs. dg
Unadjusted 154 (42.7) 162 (46.4) 38 (42.2) 4(44.4) 1 (100)
Bonferroni 62 (17.2) 83(23.7) 27 (30.0) 3(33.3) 1 (100)
Holm’s- Bonferroni 63 (17.5) 86 (24.6) 30(33.3) 3(33.3) 1(100)
Sidak 64 (17.8) 84 (24.1) 27 (30.0) 3(33.3) 1 (100)
Holm's-Sidak 65 (18.1) 86 (24.6) 30(33.3) 3(33.3) 1(100)
Missing 0 85 83 0 2
d; vs. do
Unadjusted 24 (6.7) 11 (4.1) 2(5.0) 0
Blonferronl _ 2(0.6) 2(0.8) 1(2.5) 0
Holm’s- Bonferroni 2(0.6) 2(0.8) 1(2.5) 0
Sidak 2(0.6) 2(0.8) 1(2.5) 0
Holm'’s-Sidak 2(0.6) 2(0.8) 1(2.5) 0 -
Missing 0 165 133 30 3
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Table 53 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (30) (3)

do vs. d7
Unadjusted 26(7.2) 26 (8.0) 12(16.7) 0 -
Bonferroni 0 0 3(4.2) 0 -
Holm's- Bonferroni 0 1(0.3) 3(4.2) 0 -
Sidak 0 0 3(4.2) 0 -
Holm's-Sidak 0 1(0.3) 3(4.2) 0 N
Missing 0 110 101 25 3

dZ vs. d2
Unadjusted 32(8.9) 17 (8.7) 5(17.8) 0 -
Bonferroni 0 3(1.6) 1(3.6) 0 -
Holm’s- Bonferroni 0 3(1.6) 1(3.6) 0 -
Sidek 0 3(1.6) 1(3.6) 0 -
Holm's-Sidak 0 3(1.6) 1(3.6) 0 -
Missing 0 238 145 28 3

d? vs. dg
Unadjusted 167 (46.4) 190 (47.5) 88 (65.2) 9(69.2) -
Raw 80 (22.2) 100 (25.0) 57 (42.2) 6 (46.2) -
aieier] 83(23.1) 100 (25.0) 59 (43.7) 6 (46.2) -
Holm’s- Bonferroni 80 (22.2) 100 (25.0) 57 (42.2) 6 (46.2) -
Sidak 84(23.2) 100 (25.0) 59 (43.7) 6 (46.2) -
Holm’s-Sidak 0 34 38 17 3

Missing

d? vs. d;
Unadjusted 34 (9.4) 22 (6.8) 6(8.0) 0 -
Bonferroni 1(0.3) 2(0.6) 1(13) 0 -
Holm s-_Bonferrom 1(0.3) 2(0.6) 1(1.3) 0 -
Sidak 1(0.3) 2(0.6) 1(1.3) 0 -
Holm s-_Sldak 1(0.3) 2(0.6) 1(1.3) 0 -
Missing 0 114 98 27 3
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Table 53 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (30) (3)
dZvs. d?
Unadjusted 27 (7.5) 24 (6.4) 12 (10.6) 0 -
Bonferroni 1(0.3) 2(0.5) 5(4.4) 0 -
Holm’s- Bonferroni 1(0.3) 3(0.8) 5 (4.4) 0 -
Sidak 1(0.3) 2(0.5) 5 (4.4) 0 -
Holm's-Sidak 1(0.3) 3(0.8) 5(4.4) 0 -
Missing 0 59 60 23 3
d’vs. dg
Unadjusted 114 (31.7) 69 (30.8) 18 (41.8) 3(42.8) -
Bonferroni 42 (11.7) 33(14.7) 9(20.9) 2(28.6) -
Holm's- Bonferroni 44.(12.2) 34 (15.2) 10(23.3) 2(28.6) -
Sidak 43(11.9) 34(15.2) 9(20.9) 2(28.6) -
Holm's-Sidak 46 (12.8) 35(15.6) 10(23.3) 2(28.6) T
Missing 0 210 130 23 3
d’vs. d>
Unadjusted 19 (5.3) 10(6.9) 2(14.3) 0 -
Bonferroni 2(0.5) 2(1.4) 0 0 ~
Holm's- Bonferroni 3(0.8) 2(1.4) 0 0 --
Sidek 2(0.5) 2(1.4) 0 0 .
Holm's-Sidak 3(0.8) 2(1.4) 0 0 "
Missing 0 290 159 29 3
d53 Vs. d56
Unadjusted 24 (6.7) 18 (9.1) 2(6.7) 0 -
B,onferronl _ 1(0.3) 0 2(6.7) 0 -
Holm's- Bonferroni 1(0.3) 2(1.0) 2(6.7) 0 -
Sidak 1(0.3) 0 2(6.7) 0 -
Holm's-Sidak 1(0.3) 2(1.0) 2(6.7) 0 A
Missing 0 235 143 28 3
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Table 53 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (360) (434) (173) (30) 3)
dsvs. d>
Unadjusted 156 (43.3) 144 (41.3) 51 (52.0) 8(72.7) 1 (100)
Bonferroni 71(19.7) 59 (17.0) 28 (28.6) 5 (45.4) 1 (100)
Holm’s- Bonferroni 75 (20.8) 62 (17.8) 30 (30.6) 6 (54.6) 1 (100)
Sidak 72 (20.0) 60 (17.2) 29 (29.6) 5 (45.4) 1 (100)
Holm’s-Sidak 75 (20.8) 63 (18.1) 31(31.6) 6 (54.6) 1 (100)
Missing 0 86 75 19 2
do vs. d?
Unadjusted 184 (51.1) 219 (54.3) 88 (62.4) 9(45.0) 1 (100)
Unadjusted 96 (26.7) 130 (32.2) 57 (40.4) 7(35.0) 1 (100)
Bonferroni 97 (26.9) 131 (32.5) 59 (41.8) 7(35.0) 1 (100)
Holm'’s- Bonferroni 96 (26.7) 132 (32.8) 57 (40.4) 7(35.0) 1 (100)
Sidak 98(27.2) 133 (33.0) 59 (41.8) 7(35.0) 1(100)
Holm' s-Sidak 0 31 P 10 2
Missing
do vs. do
Unadjusted 20 (5.6) 23(7.1) 8(10.1) 1(16.7) -
Bonferroni 1(0.3) 4(1.3) 1(1.3) 0 -
Holm’s- Bonferroni 1(0.3) 4(1.3) 2(25) 1(16.7) -
Sidak 1(0.3) 4(1.3) 1(1.3) 0 -
Holm's-Sidak 1(0.3) 4(1.3) 2(2.5) 1(16.7) -
Missing 0 111 A 24 3
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The power to identify Rater 4 as the atypical rater when df differs from one or more

other d5'_ Issummarized in Table 54. Using a criterion that at least one comparison involving df

has to be statistically significant, the power is 79.8% for the unadjusted comparisons compared
to dightly more than 50% using the Bonferroni, Holm’'s- Bonferroni, Sidak or Holm’s-Sidak

adjustments.

Table 54. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple
Comparison Procedure for GHeP-rog Scenario Simulated Assuming Marginal Heterogeneity
when the Data were and Analyzed Assuming Marginal Heterogeneity

Multiple Comparison Procedure
Rater 4 Differs Unadjusted | Bonferroni Holm's Sidak Holm's
from: Bonferroni Sidak
Onerater 0.234 0.245 0.229 0.229 0.231
Two raters 0.225 0.159 0.163 0.163 0.165
Three raters 0.192 0.083 0.09 0.089 0.091
Four raters 0.106 0.028 0.032 0.032 0.031
Five raters 0.041 0.008 0.009 0.009 0.01
At least one rater 0.798 0.523 0.523 0.523 0.528

* 0.07% not evaluable

Table 55 summarizes the proportion of simulations that incorrectly identified the atypical
rater. For the GHeP-rog model, the incorrect rater is identified in 25.6% of the simulations based

on unadjusted comparisons but only 2.11% of simulations based on adjusted comparisons.

Table 55. Proportion (%) of Simulations Identifying the Incorrect Rater as Atypica for Scenarios
Simulated Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal

Heterogeneity
At least onerater is | Unadjusted | Bonferroni Holm's Sidak Holm's
different Bonferroni Sidak
GHeP-rog 25.6 2.11 2.11 2.11 2.11
GHeP-atypda 4.84 0.001 0.001 0.001 0.001
GHeP-atyp4b 3.61 <0.001 <0.001 <0.001 < 0.001
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The overall probability that any rater isidentified as an atypical rater for the GHeP-rog

model is 21.9% using unadjusted comparisons 9% if adjustments are made (Table 56). The

probability that Rater 4 is correctly identified as the atypical rater given that an atypical rater was

identified is 78.7% based on unadjusted comparisons but better than 95% if any of the four

adjustment procedures are used (Table 57). The adjusted conditional probability provides more

accurate inference than the unadjusted conditional probability.

Table 56. Overall Probability (%) of Identifying any Rater as the Atypical Rater for Data
Simulated Assuming Marginal Heterogeneity when the Data were and Analyzed Assuming
Marginal Heterogeneity

M odel Unadjusted Bonferroni Holm's - Sidak Holm’s-
Bonferroni Sidak
GHeP-rog 21.9 9.2 9.6 9.3 9.7
GHeP-atypda 15.3 51 54 5.2 5.6
GHeP-atyp4b 4.19 0.57 0.65 0.57 0.65

Table 57. Conditional Probability (%) of Identifying Rater 4 as the Atypical Rater for Data
Simulated Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal

Heterogeneity
M odel Unadjusted Bonferroni Holm’s- Sidak Holm’s-
Bonferroni Sidak
GHeP-rog 78.7 95.7 95.1 95.8 95.1
GHeP-atyp4a 97.4 >99 >99 >99 >99
GHeP-atyp4b >99 >909 >99 >99 >909

4.29. Simulated GHeP-atypd4a Agreement M odel Assuming Marginal Heter ogeneity

Generation of Simulated Tables. One thousand 2° contingency tables were generated under

the assumption of margina heterogeneity using the parameter estimates for the GHeP-atyp4a

model shown in Table 11, column 5. The total number of counts per table ranged from 37 to 111

(Table 34). One example of the simulated cell counts of the 64 possible rating patterns for the
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generated 2° contingency tables was presented in Table 35 (col. 4). Only 16 of the 66 rating
patterns in this sample simulation represented global agreement, and 30 (~ 45%) ratings patterns
represented partial agreement. Eleven of the 30 partial agreement ratings represented
disagreement by Rater 4 only.

The rater agreement characteristics across the 1,000 simulated contingency tables for the
GHeP-atyp4a agreement model are summarized in Table 58. There isless variability in the

mean marginal percentages of heterogeneous partial agreement between Raters 1, 2, 3, 5and 6
than that seen for the GHeP-rog scenario because the parameter estimates of thed, for i =1, 2, 3,

5 and 6 used to generate the data are constrained to be the same (2.13). The mean percentage of
five-way agreement was ~3.4% when Raters 1, 2, 3, 5 or 6 was in disagreement and 9.0% when

Rater 4 was in disagreement.
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Table 58. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4a
Agreement Model Simulated under the Assumption of Margina Heterogeneity

GHeP-atyp4a M odel — Heter ogeneity

Rater | Marginal % | Margina % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence Rater, %
%, dg o %, dg, %, ds, %, ds, de
Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]
1 77.1 229 3.6
(7.1 (7.0 0.3
[50,96.2] [3.8,50.0] [0,13.9]
2 67.7 32.3 35
(8.0 (8.0 415 34.1 7.4 26.1 18.7 7.4 (0.2
[39.4,92.3] [7.7,60.6] [0,16.2]
3 71.0 28.9 (0.3) (0.2) (0.1) 0.2) 0.2 (0.2) 35
(7.8) (7.8) 0.3)
[41.4,92.1] [7.9,58.6] [17.6,66.2] | [14.2,56.3] [0,27.4] [6.2,51.7] [2.4,39.7] [0,25.0] [0,16.9]
4 43.8 56.1 9.0
(8.2 (8.2 (0.2)
[20.8683] | [317,79.2] [0,30.4]
5 72.4 27.6 3.2
(7.7) (7.7) (0.1)
[42.9,94.5] [5.5,57.1] [0,11.9]
6 74.3 25.7 3.2
(7.2 (7.2 0.1
[51.2,91.9] [8.2,48.8] [0,12.5]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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Simulation scenario GHeP-atyp4a had the highest percent (61.1%) of simulated tables
with no sufficient statistic for a heterogeneous partial agreement parameter equal to zero. Only
seven of the smulated contingency tables had the sufficient statistic for df equal to zero (Table
37).

Analysis Assuming Marginal Homogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 ssimulated contingency tablesis
summarized in Table 59. A mgjority of the significant unadjusted pair-wise comparisons and the

only significant adjusted pair-wise comparisons involved Rater 4.
The power to identify Rater 4 as the atypical rater when d571 differs from one or more of
the otherd. is summarized in Table 60. Using a criterion that requires at least one comparison

involving df being statistically significant, the power is 32.4% based on unadjusted comparisons

and 0.9% using any of the four multiple comparison procedures considered.
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Table 59. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated
under the GHeP-Atyp4a Agreement Model Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Margina

Homogeneity

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) (2)

dg vs. dZ
Unadjusted 5(0.8) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 %3 74 11 2

do vs. d.
Unadjusted 3(0.5) 1(0.5) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 89 63 13 2

df vs d?
Unadjusted 106 (17.4) 35 (16.0) 18(27.7) 0 -
Bonferroni 0 0 4(6.2) 0 -
Holm'’s- Bonferroni 1(0.1) 0 4(6.2) 0 -
Sidak 0 0 4(6.2) 0 -
Holm s—.S|dak 1(0.2) 0 4(6.2) 0 -
Missing 0 50 40 4 2

do vs. d;
Unadjusted 3(0.5) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 108 69 10 2
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Table 59 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) (2)

dg vs. d?
Unadjusted 3(0.5) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’' s-Sidak 0 0 0 0 -
Missing 0 100 78 10 2

dZ vs. d
Unadjusted 3(0.5) 1(0.6) 0 - -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 % 73 14 2

dZ vs. d?
Unadjusted 113 (18.5) 37(17.5) 16 (28.6) 0 -
Bonferroni 2(0.3) 0 5(8.9) 0 -
Holm'’s- Bonferroni 2(0.3) 0 5(8.9) 0 -
Sidak 2(0.3) 0 5(8.9) 0 -
Holm’s-Sidak 2(0.3) 0 5(8.9) 0 -
Missing 0 57 49 12 2

dz VS. d;’
Unadjusted 5(0.8) 2(1.3) 0 - -
Bonferroni 0 0 0 - -
Holm's- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 115 75 14 2
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Table 59 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) (2

d2 vs. d?
Unadjusted 2(0.3) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 107 83 13 2

d2 vs. df
Unadjusted 109 (17.8) 39(18.1) 18 (24.6) 0 -
Bonferroni 2(0.3) 0 4 (5.4) 0 -
Holm’s- Bonferroni 2(0.3) 0 4 (5.4) 0 -
Sidak 2(0.3) 0 4 (5.4) 0 -
Holm’s-Sidak 2(0.3) 0 4(5.4) 0 -
Missing 0 53 32 10 2

d2 vs. d®
Unadjusted 1(0.1) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 111 63 13 2

d2 vs. d®
Unadjusted 3(0.5) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 103 72 12 2
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Table 59 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) (2)

dsvs. d>
Unadjusted 113 (18.5) 33(16.8) 16 (25.0) 0 0
Bonferroni 2(0.3) 0 2(3.2) 0 0
Holm's- Bonferroni 2(0.3) 0 2(3.1) 0 0
Sidak 2(0.3) 0 2(3.2) 0 0
Holm's-Sidak 2(0.3) 1(0.5) 2(3.1) 0 0
Missing 0 72 41 9 2

d. vs. dg
Unadjusted 111 (18.2) 33(16.8) 12 (23.5) 0 -
B10nferron| _ 1(0.2) 1(0.5) 2(3.9) 0 -
Holm’s- Bonferroni 1(0.2) 1(0.5) 2(3.9) 0 -
ez 1(0.2) 1(0.5) 2(3.9) 0 -
Holm’s-Sidak 1(0.2) 1(0.5) 2(3.9) 0 -
Missing 0 64 54 9 2

do vs. dy
Unadjusted 4(0.7) 0 0 - -
Bonferroni 0 0 0 - -
Holm's- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 122 79 14 2
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Table 60. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria by Multiple
Comparison Procedure Simulated Assuming Marginal Heterogeneity when the Data were
Anayzed Assuming Margind Homogeneity

Multiple Comparison Procedure

Rater 4 Differs Unadjusted | Bonferroni Holm's Sidak Holm's
from: Bonferroni Sidak
One rater 0.077 0.001 0.001 0.001 0
Two raters 0.064 0.001 0.001 0.001 0.002
Three raters 0.056 0.006 0.006 0.006 0.006
Four raters 0.051 0.001 0 0.001 0
Five raters 0.066 0 0.001 0 0.001
At least one rater 0.324 0.009 0.009 0.009 0.009

The overall probability that arater other than Rater 4 isidentified as an atypical rater is 2.6%,

unadjusted, for the GHeP-atyp4a model, and O if adjusted (Table 50). The corresponding

probabilities that any rater isidentified are dightly higher (Table 51). The conditional

probability that Rater 4 is identified as the atypical rater given that an atypical rater was

identified is >99% either unadjusted or adjusted (Table 52).

Analysis Assuming Marginal Heterogeneity. The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tablesis

summarized in Table 61. The vast mgjority of unadjusted pair-wise comparisons involved Rater

4. Except for one significant dE vs. d? comparison, the only significant adjusted pair-wise

comparisons involved Rater 4.

139




Table 61. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated and

Analyzed under the GHeP-atyp4a Agreement Model Assuming Marginal Heterogeneity

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) (2)

dl vs. d?
Unadjusted 4(0.7) 4(2.3) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 93 74 11 2

ds vs. d2
Unadjusted 3(0.5) 0 1(2.3) 1 (100) -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak_ 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 89 63 13 2

do vs. dg
Unadjusted 281 (46.0) 92 (42.2) 27 (41.5) 2(20.0) -
Bonferroni 99 (16.2) 31 (14.2) 8(12.3) 1(10.0) -
Holm’s- Bonferroni 105 (17.2) 34 (15.6) 8(12.3) 1(10.0) -
Sidak 100 (16.4) 31(14.2) 8(12.3) 1(10.0) -
Holm'’s-Sidak 106 (17.4) 36 (16.5) 8(12.3) 1(10.0) -
Missing 0 50 40 4 2

d; vs. do
Unadjusted 2(0.3) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 108 69 10 2
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Table 61 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) (2)

ds vs. d?
Unadj usteo_l 1(0.1) 0 1(3.7) 0 -
Bonferroni 0 0 1(3.7) 0 -
Holm'’s- Bonferroni 0 0 1(3.7) 0 -
Sidak 0 0 1(3.7) 0 -
Holm's-Sidak 0 0 1(3.7) 0 -
Missing 0 100 78 10 2

dZ vs. d2
Unadjusted 7(1.2) 1(0.6) 0 - -
Bonferroni 0 0 0 - -
Holm'’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 2 73 14 2

dZ vs. dg
Unadjusted 259 (42.4) 82 (38.8) 21(37.5) 0 -
Bonferroni 82 (13.4) 26 (12.3) 9(16.1) 0 -
Holm s-.Bonferronl 90 (14.7) 29 (13.7) 9(16.1) 0 -
Sidak 82 (13.4) 26 (12.3) 9(16.1) 0 -
Holm'’s-Sidak 90 (14.7) 29 (13.7) 9(16.1) 0 -
Missing 0 57 49 12 2

dZ vs. dg
Unadjusted 2(0.3) 2(1.3) 0 - -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm's-Sidak 0 0 0 - -
Missing 0 115 75 14 2
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Table 61 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) 2

dz vs. d?
Unadjusted 4(0.7) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 107 83 13 2

d2 vs. df
Unadjusted 262 (42.8) 83 (38.6) 26 (35.6) 2(50.0) -
Bonferroni 99 (16.2) 20 (9.3) 11 (15.1) 2 (50.0) -
Holm’s- Bonferroni 103 (16.8) 24 (11.2) 13 (17.8) 2 (50.0) -
Sidak 99 (16.2) 21(9.8) 11 (15.1) 2 (50.0) -
Holm’s-Sidak 104 (17.0) 24 (11.2) 13(17.8) 2 (50.0) -
Missing 0 53 3R 10 2

d2 vs. d®
Unadjusted 5(0.8) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 111 63 13 2

d5§ Vs. df
Unadjusted 5(0.8) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 103 72 12 2
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Table 61 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (611) (268) (105) (14) 2)

dsvs. d>
Unadjusted 256 (41.9) 78(39.8) 24 (37.5) 0 0
EGTiErE 85 (13.9) 32(16.3) 15 (23.4) 0 0
Holm’s- Bonferroni 87 (14.2) 33(16.8) 15 (23.4) 0 0
Sidak 86 (14.1) 33(16.8) 15 (23.4) 0 0
Holm's-Sidak 90 (14.7) 33(16.8) 15 (23.4) 0 0
Missing 0 72 41 9 2

d. vs. dg
Unadjusted 273 (44.6) 78(38.2) 17 (33.3) 3(60.0) -
Bonferroni 82 (13.4) 30 (14.7) 8(15.7) 2 (40.0) -
Holm’s- Bonferroni 88 (14.4) 30 (14.7) 8(15.7) 2 (40.0) -
ez 85 (13.9) 30 (14.7) 8(15.7) 2 (40.0) -
Holm’s-Sidak 91 (14.9) 30 (14.7) 9(17.7) 2(40.0) -
Missing 0 64 54 9 2

d>vs. d?
Unadjusted 5 (0.8) 0 0 - -
Bonferroni 0 0 0 - -
Holm's- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 129 79 14 2
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The power to identify Rater 4 as the atypical rater when df differs from one or more

otherd, issummarized in Table 62. Using a criterion that requires at least one comparison

involving d571 to be statistically significant, the power to identify Rater 4 as the atypical rater is

reduced from 68.8% (unadjusted) and ~ 32% when a multiple comparison procedure is used.
Approximately 5% of the unadjusted pair-wise comparisons and 0.1% of the adjusted pair-wise

comparisons identified the incorrect rater (Table 55).

Table 62. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria by Multiple
Comparison Procedure for the GHeP-atyp4a Scenario Simulated Assuming Marginal
Heterogeneity when the Data were Analyzed Assuming Marginal Heterogeneity

Multiple Comparison Procedure

Rater 4 Differs Unadjusted Bonferroni Holm’s Sidak Holm's
from: Bonferroni Sidak
One rater 0.184 0.134 0.125 0.136 0.124
Two raters 0.143 0.088 0.081 0.089 0.085
Three raters 0.132 0.052 0.059 0.053 0.059
Four raters 0.13 0.028 0.032 0.028 0.033
Five raters 0.099 0.014 0.019 0.014 0.019
At least one rater 0.688 0.31.6 0.316 0.32 0.32

The overall probability that any rater isidentified as an atypical rater is 15.3% if
unadjusted pair-wise comparisons are used and ~ 5% if adjusted pair-wise comparisons are used
(Table 56). The probability that Rater 4 is the atypical rater given an atypical rater was identified

is> 99% with or without adjustment for multiple comparisons (Table 57).

4.2.10. Simulated GHeP-atyp4b Agreement M odel Assuming Marginal Heter ogeneity
Generation of Simulated Tables. One thousand 2° contingency tables were generated under the

assumption of marginal heterogeneity using the parameter estimates for the GHeP-atyp4b
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agreement model shown in Table 11, column 6. The total number of counts per table ranged
from 57 to 224 (Table 34); the mode of 110 is approximately 1.6 times the sample size of
intestinal biopsy data. One example of the ssmulated cell counts of the 64 possible rating patterns
for the generated 2° contingency tables was presented in Table 35 (col. 5). Only 32 of the 121
rating patternsin this one smulation represented global agreement, whereas 63 (~ 52%) ratings
patterns represented partial agreement. Thirty-two of the 63 partial agreement ratings were
because Rater 4 was in disagreement.

The rater agreement characteristics across the 1,000 simulated contingency tables for the
GHeP-atyp4b model are summarized in Table 63. The marginal percentages for the absence of
mucosecretion diminution were ~81% for Raters 1, 2, 3, 5, and 6 and 30.7% for Rater 4. The
mean percentage of global agreement was only 28.8%, representing predominantly global
agreement on the absence of the lesion (23.8%). The partial agreement of 49.1% also
represented predominately partial agreement on the absence of the lesion (43.9%). The mean
marginal percentage of five-way agreement when Rater 1, 2, 3, 5, or 6 is excluded is ~2.3%, and
37.3% when Rater 4 is excluded. These highly skewed percentages are because of the parameter

estimates used for the simulation scenario.
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Table 63. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4b
Agreement Model Simulated under the Assumption of Margina Heterogeneity

GHeP-atyp4b Model — Heter ogeneity

Rater | Marginal % | Marginal % G %, G for G for GP %, GP for GP for Excluded
[ for Absence | for Presence d, Absence | Presence d, Absence | Presence | Rater, %
%, dg o %, dg, %, ds, %, ds, d;’"
Mean Marginal % (SE) Mean Proportion (SE)
[min,max] [min,max]
1 84.3 15.6 25
(5.4) (5.4) 0.2)
[65.4,95.4] [4.5,34.6] [0,11.5]
2 78.0 22.0 2.4
(6.3 (6.3 (0.1)
[52.9,93.2] [6.7,47.1] 28.8 23.8 5.0 49.1 43.9 2.5 [0,10.1]
3 80.2 19.8 2.2
(6.2) (6.2 0.2 0.2 0.2) 0.3 0.3 0.3 0.2)
[56.7,93.7] [6.3,43.3] [0,10.3]
4 30.7 69.2 [11.3,53.2] [7.6,46.7] [0,17.3] [21.7,80.4] | [18.6,75.9] [0,11.5] 373
(7.6) (7.6) 0.3
[11.357.8] | [42.1,88.6] [12.0,73.2]
5 811 18.9 2.3
(6.0) (6.0) 0.1)
[59.0,96.0] [4.0,40.9] [09.2]
6 82.0 18.0 2.3
(5.7) (5.7) (0.3)
[61.1,97.2] [2.8,38.9] [0,11.5]

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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Under simulation scenario GHeP-atyp4b, 61.1% of simulated tables had no sufficient
statistic for a heterogeneous partial agreement parameter equal to zero. None of the simulated
contingency tables had the sufficient statistic for df equal to zero (Table 35).

Analysis Assuming Marginal Homogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 simulated contingency tables is
summarized in Table 64. Almost al unadjusted pair-wise comparisons involving Rater 4 were
statistically significant, as were most of the adjusted comparisons. The dramatically higher

percentage of significant adjusted pair-wise comparisons in the GHeP-atyp4b vs. the GHeP-

atyp4a ssimulation scenario is the result of increasing the parameter &etimate(fffrom 0.36t0 2.21.
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Table 64. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated
under theGHeP-atyp4b Agreement Model with Marginal Heterogeneity and Data were Analyzed Assuming Marginal Homogeneity

Possible
Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) (17) ©)
d5l Vs. d52
Unadjusted 5(0.8) 0 0 1(33.3) -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 105 56 14 3
ds vs. d2
Unadjusted 5(0.8) 1(0.6) 0 ~ -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 113 64 17 3
d51 VS. d54
Unadjusted 605 (99.3) 235 (99.1) 54 (98.2) 6 (100) 1 (100)
ﬁonfeffon' _ 567 (93.1) 224 (94.5) 54 (98.2) 6 (100) 1 (100)
Holm’s- Bonferroni 569 (93.4) 225 (94.9) 54 (98.2) 6 (100) 1 (100)
Sidak 567 (93.1) 224 (94.5) 54 (98.2) 6 (100) 1 (100)
Holm's-Sidak 569 (93.4) 225 (94.9) 54 (98.2) 6 (100) 1 (100)
Missing 0 46 33 11 2
d; vs. do
Unadjusted 1(0.1) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak_ 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 105 59 14 3
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Table 64 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) (17) (3)

d51 VS. d56
Unadjusted 1(0.1) 0 0 - -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 o8 63 17 3

d52 VS. d53
Unadjusted 1(0.1) 1(0.6) 0 - -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - .
Holm'’s-Sidak 0 0 0 - .
Missing 0 126 60 17 3

dZ vs. dg
Unadjusted 605 (99.3) 223 (99.6) 57 (100) 8 (100) -
'3,0nfe”0“' , 576 (94.5) 216 (96.4) 57 (100) 7(87.5) -
Holm’s- Bonferroni 578 (94.9) 217 (96.8) 57 (100) 7(87.5) -
Sidak 576 (94.5) 216 (96.4) 57 (100) 7(87.5) -
Holm’s-Sidak 578 (94.9) 217 (96.8) 57 (100) 7(87.5) -
Missing 0 59 31 9 3

d52 VS. d55
Unadjusted 4(0.6) 0 0 - -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 . .
Holm’ s-Sidak 0 0 0 - -
Missing 0 118 59 17 3
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Table 64 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) (17 (3)

dz VS. d56
Unadjusted 5(0.8) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 107 63 14 3

d2 vs. df
Unadjusted 608 (99.8) 214 (99.1) 48 (97.9) 5 (100) -
Bonferroni 568 (93.3) 208 (96.3) 47 (95.9) 4(80.0) -
Holm'’s- Bonferroni 575 (94.4) 209 (96.7) 47 (95.9) 4(80.0) -
Sidak 568 (93.3) 208 (96.3) 47 (95.9) 4(80.0) -
Holm’s-Sidak 575 (94.4) 209 (96.7) 47 (95.9) 4 (80.0) -
Missing 0 67 39 12 3

d5§ VS. df
Unadjusted 1(0.1) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 126 64 15 3

d5§ VS. df
Unadjusted 1(0.1) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 .
Holm’ s-Sidak 0 0 0 0 -
Missing 0 119 66 16 3
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Table 64 (continued)

Possible
Pair-wise
Comparisons 15 10 6 3 1
() (609) (283) (88) (17) 3)
dsvs. d>
Unadjusted 606 (99.5) 224 (100) 53 (98.2) 8 (100) 1 (100)
EGTiErE 560 (92.0) 212 (94.6) 52 (96.3) 8 (100) 1 (100)
Holm’s- Bonferroni 568 (93.3) 212 (94.6) 52 (96.3) 8 (100) 1 (100)
Sidak 561 (92.1) 212 (94.6) 52 (96.3) 8 (100) 1 (100)
Holm’s-Sidak 568 (93.3) 212 (94.6) 52 (96.3) 8 (100) 1 (100)
Missing 0 59 34 9 2
do vs. d?
Unadjusted 605 (99.3) 230 (99.6) 49 (100) 7 (100) 1 (100)
Bonferroni 570 (93.6) 219 (94.8) 48 (98.0) 7 (100) 1 (100)
Holm'’s- Bonferroni 573 (94.1) 220 (95.2) 48 (98.0) 7 (100) 1 (100)
ez 570 (93.6) 219 (94.8) 48 (98.0) 7 (100) 1 (100)
Holm’s-Sidak 573 (94.1) 220 (95.2) 48 (98.0) 7 (100) 1 (100)
Missing 0 52 39 10 2
d>vs. d?
Unadjusted 3 (0.5) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 111 62 14 3
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Power to identify Rater 4 as the atypical rater when d;‘ differs from one or more of the otherd.

is summarized in Table 65. Using the criteriathat at |east one of the pair-wise comparisons of the
heterogeneous partial agreement parameters is significant, both the unadjusted and adjusted
approaches provide better than 96% power to identify Rater 4 as atypical. Only 2.3% of
unadjusted comparisons and no adjusted comparisons identified the incorrect rater as atypical
(Table 50).

The overall probability that any rater isidentified as atypical rater is ~34% whether or not
adjustments for the number of comparisons are made (Table 51). The probability that Rater 4 is
the atypical rater given that an atypical rater was identified is >99% either unadjusted or adjusted

for multiple comparisons (Table 52).

Table 65. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple
Comparison Procedure for the GHeP-atyp4b Scenario Simulated Assuming Marginal
Heterogeneity when the Data were Analyzed Assuming Marginal Homogeneity

Multiple Comparison Procedure
Rater 4 Differs Unadjusted | Bonferroni Holm’s Sidak Holm's
from: Bonferroni Sidak
Onerater 0.004 0.01 0.01 0.01 0.01
Two raters 0.018 0.024 0.02 0.024 0.02
Three raters 0.089 0.105 0.096 0.105 0.096
Four raters 0.288 0.275 0.279 0.274 0.279
Five raters 0.599 0.548 0.557 0.549 0.557
At least one rater 0.998 0.962 0.962 0.962 0.962

Analysis Assuming Marginal Heterogeneity. The number of times each possible pair-
wise comparison was statistically significant across the 1,000 ssimulated contingency tablesis
summarized in Table 66. In contrast to Table 64, relatively few unadjusted or adjusted pair-wise

comparisons involving Rater 4 were statistically significant.
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Table 66. Number (%) of Times Each Possible Pair-wise Comparisonwas Statistically Significant Across 1000 Tables Simulated and

Analyzed under the GHeP-atyp4b Agreement Model Assuming Marginal Heterogeneity

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) (17) 3)

dJ vs. d52
Unadjusted 4(0.6) 0 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 105 56 14 3

ds vs. d2
Unadjusted 6 (1.0) 1(0.6) 0 - -
Bonferroni 0 0 0 - -
Holm’s- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm’s-Sidak 0 0 0 - -
Missing 0 113 64 17 3

do vs. dg
Unadjusted 70 (11.5) 27 (11.4) 2(3.6) 1(16.7) 0
Bonferroni 11(1.8) 3(1.3) 1(1.8) 1(16.7) 0
Holm’s- Bonferroni 11 (1.8) 3(1.3) 1(1.8) 1(16.7) 0
Sidak 11 (1.8) 3(1.3) 1(1.8) 1(16.7) 0
Holm'’s-Sidak 11(1.8) 3(1.3) 1(1.8) 1(16.7) 0
Missing 0 46 33 11 2

d; vs. do
Unadjusted 3(0.5) 2(1.1) 0 0 -
Bonferroni 0 0 0 0 -
Holm's- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 105 59 14 3
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Table 66 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) (17) 3

d51 vs. d56
Unadjusted 8(1.3) 0 0 - -
Bonferroni 0 0 0 - -
Holm's- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm's-Sidak 0 0 0 - -
Missing 0 93 63 17 3

d52 Vs. d53
Unadjusted 3(0.5) 0 0 - -
Bonferroni 0 0 0 - -
Holm's- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm'’s-Sidak 0 0 0 - -
Missing 0 126 60 17 3

dZ vs. dg
Unadjusted 56 (9.2) 26 (11.6) 5(8.8) 0 -
Bonferroni 10 (1.6) 2(0.9) 2(3.5) 0 -
Holm s-.Bonferronl 11(1.8) 4(1.8) 2(3.5) 0 -
Sidak 10 (1.6) 2(0.9) 2(3.5) 0 -
Holm’s-Sidak 11 (1.8) 4(1.8) 2(3.5) 0 -
Missing 0 59 31 9 3

d52 Vs. d55
Unadjusted 7(1.2) 1(0.6) 0 - -
Bonferroni 0 0 0 - -
Holm's- Bonferroni 0 0 0 - -
Sidak 0 0 0 - -
Holm's-Sidak 0 0 0 - -
Missing 0 118 59 17 3
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Table 66 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) (17) 3

dZvs. d?
Unadjusted 3(0.5) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 107 63 14 3

d2 vs d?
Unadjusted 64 (10.5) 26 (12.0) 5(10.2) 1(20.0) -
Bonferroni 11(1.8) 2(0.9) 2(4.0) 1(20.0) -
Holm’s- Bonferroni 13(2.1) 2(0.9) 2(4.0) 1(20.0) -
Sidak 11 (1.8) 2(0.9) 2 (4.0) 1 (20.0) -
Holm'’ s-Sidak 13(2.1) 2(0.9) 2(4.0) 1(20.0) -
Missing 0 67 39 12 3

d2 vs. d2
Unadjusted 2(0.3) 1(0.6) 1(4.2) 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm’s-Sidak 0 0 0 0 -
Missing 0 126 64 15 3

d2 vs. d®
Unadjusted 3(0.5) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 119 66 16 2
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Table 66 (continued)

Possible

Pair-wise
Comparisons 15 10 6 3 1
(N) (609) (283) (88) 17 (©)

dsvs. d>
Unadjusted 64 (10.5) 24(10.7) 3(5.5) 1(12.5) 0
Bonferroni 11(1.8) 2(0.9) 1(1.9) 1(12.5) 0
Holm's- Bonferroni 11 (1.8) 3(1.3) 1(1.9) 1(12.5) 0
Sidak 11 (1.8) 2(0.9) 1(1.9) 1(12.5) 0
Holm's-Sidak 11(18) 3(1.3) 1(1.9) 1(129) 0
Missing 0 59 A 9 2

d. vs. dg
Unadijusted 77 (12.6) 25 (10.8) 0 0 0
Bonferroni 8(1.3) 3(1.3) 0 0 0
Holm'’s- Bonferroni 10 (1.6) 4(1.7) 0 0 0
ez 8(1.3) 3(1.3) 0 0 0
Holm's-Sidak 10(1.6) 4(1.7) 0 0 0
Missing 0 52 39 10 2

do vs. dy
Unadjusted 1 (0.1) 1(0.6) 0 0 -
Bonferroni 0 0 0 0 -
Holm’s- Bonferroni 0 0 0 0 -
Sidak 0 0 0 0 -
Holm's-Sidak 0 0 0 0 -
Missing 0 111 62 14 3
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The power to identify Rater 4 as the atypical rater when df differs from one or more of

the otherd. is summarized in Table 67. The power islow to detect Rater 4 based on

unadjusted comparisons (20.0%) or adjusted comparisons (3.3%) based on a criterion that
at least one of the five pair-wise comparisons of the heterogeneous partial agreement
parametersis significant. Using unadjusted pair-wise comparisons, 3.61% of the
simulations identify an incorrect rater while none of the adjusted pair-wise comparisons
identify arater other than Rater 4 as the atypical rater (Table 55). The overall probability
that any rater is identified as an atypical rater is 4.19% if unadjusted pair-wise
comparisons are used and less than 1% if adjusted pair-wise comparisons are used (Table
56). The probability that Rater 4 isidentified as the atypical rater given that an atypical
rater was identified is >99% using either unadjusted or adjusted pair-wise comparisons

(Table 57).

Table 67. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By
Multiple Comparison Procedure for the GHeP-atyp4b Scenario Simulated Assuming
Marginal Heterogeneity when the Data were Analyzed Assuming Margina

Heterogeneity

Rater 4 Differs Unadjusted | Bonferroni Holm's Sidak Holm's
from: Bonferroni Sidak

Onerater 0.08 0.015 0.012 0.015 0.012

Two raters 0.041 0.007 0.007 0.007 0.007

Three raters 0.025 0.004 0.004 0.004 0.004

Four raters 0.030 0.004 0.007 0.004 0.007

Five raters 0.024 0.003 0.033 0.033 0.033

At least one rater 0.20 0.033 0.033 0.033 0.033
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4.3. SUMMARY

Because the results for each simulated scenario were comparable for the four multiple
comparison procedures considered, the results for only the unadjusted and Holm’s:
Bonferroni procedures are summarized in Tables 68 through Table 73. Tables 68-70,
respectively, summarize the probabilities of identifying Rater 4 and identifying a rater
other than 4, and the conditional probability of identifying Rater 4 given that at least one
rater was identified as atypical, all for data simulated assuming marginal homogeneity.
For the G and GP scenarios simulated under the assumption of margina homogeneity,
the Type | error isvirtually zero to detect either Rater 4 (Table 68) or any rater other than
Rater 4 (Table 69) for both the unadjusted and Holm’ s-Bonferroni adjusted comparisons.
Using unadjusted pair-wise comparisons, the power to identify the Rater 4 correctly as
atypical rater was about 27% for the GHeP-rog and GHeP-atyp4a models and increased
to 44.2% when the Rater 4 effect was exaggerated (Table 68). Very few of the
unadjusted comparisons in Table 69 identified a rater other than Rater 4 as atypical for
either the GHeP-rog or GHeP-atyp4b models; however, 17.1% of the ssimulations
incorrectly identified an atypical rater for the GHeP-atyp4a model. The power was
extremely low (less than 3%) for each of the corresponding Holms-Bonferroni adjusted
comparisonsin Tables 68 and 69. For both the unadjusted and adjusted pair-wise
comparisons, the corresponding conditional power to identify Rater 4 correctly as
atypical is high (>94%) for the GHeP-rog and GHeP-atyp4b models, but less than 61%

for the GHeP-atyp4a model (Table 70).
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Table 68. Proportion (%) of Simulations That Identify Rater 4 as the Atypical Rater for

Scenarios Simulated Assuming Marginal Homogeneity

Analyzed Assuming Marginal Homogeneity
M odel Unadjusted Holm’s— Bonferroni
G <0.1 <0.1
GP <0.1 <0.1
GHeP-rog 27.7 0.6
GHeP-atyp4a 27.5 2.3
GHeP-atyp4b 44.2 2.9

Table 69. Proportion (%) of Simulations That Identify a Rater Other Than Rater 4 as the

Atypica Rater for Scenarios Simulated Assuming Marginal Homogeneity

Analyzed Assuming Marginal Homogeneity
M odel Unadjusted Holm’s— Bonferroni
G <0.1 <0.1
GP <0.1 <0.1
GHeP-rog 0.7 <0.1
GHeP-atypda 17.1 1.9
GHeP-atyp4b 2.6 <0.1

Table 70. Conditional Probability (%) of Identifying Rater 4 as Atypical Given That At
Least One Rater Was Identified for Scenarios Simulated Assuming Marginal
Homogeneity

Analyzed Assuming Marginal Homogeneity
M odel Unadjusted Holm’s— Bonferroni
G na na
GP na na
GHeP-rog 94.4 > 99
GHeP-atypda 60.7 55.5
GHeP-atyp4b 97.1 > 99

na= not applicable

Tables 71-73, respectively, summarize the probabilities of identifying Rater 4 and
identifying a rater other than 4, and the conditional probability of identifying Rater 4
given that at least one rater was identified as atypical, all for data simulated assuming
margina heterogeneity. Two different GHeP models were fit to each set of simulated

data: one model which incorrectly assumed marginal homogeneity and another which
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correctly assumed marginal heterogeneity. Under the assumption of marginal
homogeneity, the Type | error of the unadjusted pair-wise comparisons is 6.6% for the G
model and 58.8% for the GP model (Table 71). This 58.8% appears to be picking up the
marginal heterogeneity due to Rater 4 in the partial agreement parameters, because the
margina heterogeneity isignored in the fitted model. The power of the unadjusted
comparisons to detect Rater 4 is about 35% for the GHeP-rog and GHep-atyp4a
scenarios; the power of both the unadjusted and Holms-Bonferroni comparisons is >95%
for the GHeP-atyp4b scenario. The Holms-Bonferroni procedure is quite conservative for
the other scenarios analyzed assuming marginal homogeneity.

When these smulated data are analyzed assuming marginal heterogeneity, the
Type | error of the unadjusted comparisons is approximately twice the nominal level for
the G and GP models; the Holm’s Bonferroni procedure is somewhat conservative for
these models (Table 71). The power to detect Rater 4 as atypica using unadjusted
comparisons in the GHeP-rog and GHeP-atyp4a models is improved considerably when
the correct analytic model is assumed. The power for the GHeP-atyp4b model is
unexpectedly low.

For the GP model analyzed assuming marginal heterogeneity, the probability of
identifying the wrong rater is 5.1% using unadjusted comparisons (Table 72). Among the
GHeP models, only for the GHeP-rog model with unadjusted comparisons does the
probability of detecting the wrong rater exceed the nominal level.

Except for the GHeP-rog model analyzed assuming marginal homogeneity, the
conditional power was very high to correctly identify Rater 4 when at least one rater was

identified as atypical (Table 73). Inthis GHeP-rog model, the Holm'’s Bonferroni
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procedure actually had somewhat higher conditional power than the unadjusted

comparisons assuming both marginal homogeneity and marginal heterogeneity.
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Table 71. Proportion (%) of Simulations That Identify Rater 4 as the Atypical Rater for Scenarios Simulated Assuming Marginal

Heterogeneity
Analysis Assuming Marginal Homogeneity Analysis Assuming Marginal Heterogeneity

M odel Unadjusted Holm’s—Bonferroni Unadjusted Holm’s—Bonferroni
G 6.6 0.7 11.0 2.9

GP 58.8 4.3 9.6 1.5
GHeP-rog 35.2 3.2 79.8 52.3
GHeP-atypda 324 0.9 68.8 31.6
GHeP-atyp4b 99.8 96.2 20.0 3.3

Table 72. Proportion (%) of Simulations That Identify a Rater Other Than Rater 4 as the Atypical Rater for Scenarios Simulated

Assuming Margina Heterogeneity

Analysis Assuming Marginal Analysis Assuming Mar ginal
Homogeneity Heter ogeneity
M odel Unadjusted Holm’s—Bonferroni Unadjusted Holm’s—Bonferroni
G <0.1 <0.1 <0.1 <0.1
GP <0.1 <0.1 5.1 <0.1
GHeP-rog 25.7 2.7 25.6 2.1
GHeP-atypda 2.6 <0.1 4.8 <0.1
GHeP-atyp4b 2.3 <0.1 3.6 <0.1
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Table 73. Conditional Probability (%) of Identifying Rater 4 as Atypical Given That At Least One Rater Was Identified for Scenarios
Simulated Assuming Marginal Heterogeneity

Analysis Assuming Marginal

Analysis Assuming Marginal Heterogeneity

Homogeneity
M odel Unadjusted Holm’s—Bonferroni Unadjusted Holm’s—Bonferroni
G > 99 > 99 > 99 > 99
GP > 99 > 99 82.7 > 99
GHeP-rog 56.4 59.6 78.7 95.1
GHeP-atypda 95.8 > 99 97.4 > 99
GHeP-atyp4b > 99 > 99 > 99 > 99
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5. DISCUSSION

Rogel et al. (1998) proposed using the heterogeneous partial agreement parametersin a
log-linear model to address the problem of identifying an atypical rater in the context of a
best-fitting model. Their work focused on model selections issues, and did not provide
specific guidance with respect to identifying particular raters. The present work
formalizes inferential procedures to identify an atypical rater using pair-wise comparisons
of the heterogeneous partial agreement parameters, with particular attention paid to the
issue of multiple comparisons due to the relatively large number of possible pair-wise
comparisons. The Type | error and power of the proposed procedures are assessed in a
simulation study, assuming either marginal homogeneity or marginal heterogeneity
across raters. In the models considered, agreement was aggregated across categories of
the outcome so that the approach is not sensitive to the prevalence of the outcome.

This study provides no evidence of elevated Type | error for unadjusted pair-wise
comparisons of the heterogeneous partial agreement parameters assuming marginal
homogeneity. While the unconditional power to identify the designated atypical rater is
low for data ssimulated assuming marginal homogeneity, the conditional power is high
using either unadjusted or adjusted comparisons for the unconstrained scenario and the
scenario with the effect of the atypical rater exaggerated.

This study provides evidence that the use of unadjusted pair-wise comparisons of
the heterogeneous partial agreement parameters is anti-conservative and the use of
adjusted pair-wise comparisons is conservative assuming either margina homogeneity or
heterogeneity for the global model simulated under the assumption of marginal

heterogeneity. The GP model is interesting because the heterogeneous partial agreement
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parameters in the incorrect analytic model (i.e. analysis assuming margina homogeneity)
appear to correctly identify Rater 4 for the wrong reason; even though there is no true
differential five-way agreement in the ssimulated data, Rater 4 has a different marginal
distribution that is not being parameterized directly in the analysis. However, for the
GHeP-rog and GHeP-atyp4a models, the power is even higher if the pair-wise
comparisons are conducted within the framework of the correct (i.e. marginal
heterogeneity) analytic model. At issue is whether one is overadjusting for the waysin
which Rater 4 could be atypical; Rater 4 could disagree relatively more often because
his’/her marginal distribution is different, or could disagree and share the same marginal
distribution. In these simulations the power was highest when the differences in the
marginal distributions were taken into account; Rater 4 contributed relatively little to the
five-way disagreement in this situation. Another strategy would be to examine
differences in the marginal heterogeneity parametersin the GP or GHeP models. This
was not addressed in the present work, but will be a focus of future efforts.

The simulation study was designed so that Rater 4 was the atypical rater. Inarea
life application, the atypical rater is not known a priori. Although the overall power of
the proposed approach was low in many settings considered, the conditional power to
correctly identify the atypical rater (given that someone was identified) was generally
quite high. In some settings the identity of the atypical rater is obvious (e.g. asingle rater
isinvolved in multiple significant pair-wise comparisons). However, if two raters differ
only from each other and none of the other raters differ from each other, then both raters
might be considered atypical. Moreover, if an investigator has concerns about poor inter-

rater agreement, corrective action can be taken in the absence of definitive statistical
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evidence identifying an atypical rater. Every effort should be made to improve the
consistency of ratings prior to conducting the primary study that assesses the impact of an
intervention

The descriptive summary table (e.g., marginal percentages for different category
specific agreement patterns) provides clinicians with atool to help them identify an
atypical rater. The clinician can determine whether or not the magnitude of the
differences in these proportions attributable to each rater is of clinical concern.
Confidence intervals for the heterogeneous partial agreement parameters can also aid the
clinician.

There are some limitations of thisresearch. First, it isbased on only one example
and the underlying structure of the data was not clearly GHeP. Second, the relatively
small number of discrepant ratings limited our power to detect atypical raters and
possibly the clinical importance of detecting such discrepancies However, thisis
frequently the case when experienced raters are involved in a study. Although it may
have limited our inferences, the number of specimens rated (68) is not unusual for inter-
rater agreement studies. In this example, although almost 25% of the 5-way agreement
was due to a discrepant rating by Rater 4, this corresponds to only 6 ratings. Lastly, the
GHeP model considered only assesses K-1 partial agreement and ignored other kinds of
disagreement. However, given sufficient data, other types of disagreement could be
addressed by redefining the agreement parameters. Future work includes (i) investigating
the marginal heterogeneity parameters as an aternative strategy to identify atypical raters
under this scenario and (ii) generalizing the programs to account for imbalanced and/or

multi-category nominal data.
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In conclusion, the heterogeneous agreement parameters generally do highlight the
most atypical rater in the marginal homogeneity scenarios considered, although the power
islow to detect such arater as statistically significantly different from the other raters.
Inference is less straightforward in the case of marginal heterogeneity, as the marginal
heterogeneity parameters may be over-controlling for the disagreement by allowing a
different marginal distribution. In either case, for the scenarios considered, pair-wise
comparisons of the heterogeneous partial agreement parameters are quite likely to

identify the correct rater as atypical when any rater is identified.
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Appendix A
Parameterization of the Rater Effect Variables Using Sum-to-Zero Constraints
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Par anet eri zati on. | og
rpattern r1 r2 r3r4 r5r6

Rl through R6 are the variables representing the main effects of each rater, Rater 1 through 6,

respectively.

Rat i ng

Pattern R1 R2 R3 R4 R5 R6
000000 -1 -1 -1 -1 -1 -1
000001 -1 -1 -1 -1 -1 1
000010 -1 -1 -1 -1 1 -1
000011 -1 -1 -1 -1 1 1
000100 -1 -1 -1 1 -1 -1
000101 -1 -1 -1 1 -1 1
000110 -1 -1 -1 1 1 -1
000111 -1 -1 -1 1 1 1
001000 -1 -1 1 -1 -1 -1
001001 -1 -1 1 -1 -1 1
001010 -1 -1 1 -1 1 -1
001011 -1 -1 1 -1 1 1
001100 -1 -1 1 1 -1 -1
001101 -1 -1 1 1 -1 1
001110 -1 -1 1 1 1 -1
001111 -1 -1 1 1 1 1
010000 -1 1 -1 -1 -1 -1
010001 -1 1 -1 -1 -1 1
010010 -1 1 -1 -1 1 -1
010011 -1 1 -1 -1 1 1
010100 -1 1 -1 1 -1 -1
010101 -1 1 -1 1 -1 1
010110 -1 1 -1 1 1 -1
010111 -1 1 -1 1 1 1
011000 -1 1 1 -1 -1 -1
011001 -1 1 1 -1 -1 1
011010 -1 1 1 -1 1 -1
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Rati ng

Pattern R1 R2 R3 R4 R5 R6
011011 -1 1 1 -1 1 1
011100 -1 1 1 1 -1 -1
011101 -1 1 1 1 -1 1
011110 -1 1 1 1 1 -1
011111 -1 1 1 1 1 1
100000 1 -1 -1 -1 -1 -1
100001 1 -1 -1 -1 -1 1
100010 1 -1 -1 -1 1 -1
100011 1 -1 -1 -1 1 1
100100 1 -1 -1 1 -1 -1
100101 1 -1 -1 1 -1 1
100110 1 -1 -1 1 1 -1
100111 1 -1 -1 1 1 1
101000 1 -1 1 -1 -1 -1
101001 1 -1 1 -1 -1 1
101010 1 -1 1 -1 1 -1
101011 1 -1 1 -1 1 1
101100 1 -1 1 1 -1 -1
101101 1 -1 1 1 -1 1
101110 1 -1 1 1 1 -1
101111 1 -1 1 1 1 1
110000 1 1 -1 -1 -1 -1
110001 1 1 -1 -1 -1 1
110010 1 1 -1 -1 1 -1
110011 1 1 -1 -1 1 1
110100 1 1 -1 1 -1 -1
110101 1 1 -1 1 -1 1
110110 1 1 -1 1 1 -1
110111 1 1 -1 1 1 1
111000 1 1 1 -1 -1 -1
111001 1 1 1 -1 -1 1
111010 1 1 1 -1 1 -1
111011 1 1 1 -1 1 1

169



Rati ng

Pattern R1 R2 R3 R4 R5 R6
111100 1 1 1 1 -1 -1
111101 1 1 1 1 -1 1
111110 1 1 1 1 1 -1
111111 1 1 1 1 1 1
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Appendix B
Parameterization of the Indicator Variables Used For the G, GP, GHePM oddls
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e5ml e5np e5n8 esmt e5nb

e5

e6
0
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Appendix C
Parameter Estimates and and Variance-Covariance Matricesfor the G, GP, GHeP
Models Under the Assumption of Marginal Homogeneity & Heter ogeneity
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* GLOBAL AGREEMENT MODEL

gimctdme6 , f(p)
note: ctdm has non-integer val ues

No. of obs
Resi dual df
Scal e paraneter
(1/df) Deviance
(1/df) Pearson

[ Poi sson]

[Log]

Al C

64
62
1
1. 940311
2.177023

2.891705

[95% Conf. Interval]

.09 0.000
.02 0.003

2.718913
-. 8074964

3.676284
-.1716001

Iteration O log |likelihood = -100.61721
Iteration 1 I og likelihood = -90.578469
Iteration 2: log likelihood = -90.53458
Iteration 3: log |ikelihood = -90.534554
Iteration 4: log |ikelihood = -90.534554
General i zed |inear nodels
Optim zation : M. Newt on- Raphson
Devi ance = 120.2993083
Pear son = 134.9754386
Variance function: V(u) = u
Li nk function g(u) =1n(u)
Standard errors : QM
Log |i kel i hood = -90. 53455362
Bl C = -137.5514428
ctdm | Coef Std. Err
e6 | 3.197598 . 2442317 13

_cons | -.4895482 .1622214 -3

(Vari ance- Covari ance Matri x)
matrix list e(V)
symmetric e(V)[2,2]
ctdm ctdm
e6 _cons

ctdm e6 . 05964912
ctdm _cons -.02631579 . 02631579

* GLOBAL & PARTI AL AGREEMENT

glmctdme6 e5, f(p)
note: ctdm has non-integer val ues

MODEL

No. of obs
Resi dual df
Scal e paraneter
(1/df) Deviance
(1/df) Pearson

64

61

1
1.765348
1. 808036

= 2.725876

[95% Conf. Interval]

Iteration O: log Iikelihood = -94.510217
Iteration 1: log |ikelihood = -84.276409
Iteration 2: log |ikelihood = -84.228052
Iteration 3: log |ikelihood = -84.228019
Iteration 4: log Iikelihood = -84.228019
CGeneral i zed |inear nodel s
Optim zation : M.: Newt on- Raphson
Devi ance = 107.6862395
Pear son = 110. 2901961
Variance function: V(u) =u
Li nk function : g(u) =1n(u)
Standard errors aM
Log |i kel i hood = -84.22801918
Bl C = -146. 0056286
ctdm | Coef Std. Err
e6 | 3.575551 . 2845213 12
e5 | 1.215807 .3262554 3
_cons | -.8675006 .2182179 -3

[ Poi sson]
[Log]
Al C
z P>| z|
.57 0.000 3.017899
.73 0.000 . 5763585
.98 0.000 -1.2952

4. 133202
1. 855256
-.4398014

(Vari ance- Covari ance Matri x)
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matrix list e(V)

symmetric e(V)[ 3, 3]

ctdm ctdm ctdm
e6 e5 _cons
ctdm e6 . 08095238
ctdm e5 . 04761905 . 10644258
ctdm _cons -.04761905 -.04761905 . 04761905

* GHeP-rog MODEL

glmctdme6 e5nl e5n2 e5nB e5md e5nb e5nB,

64

56

1
1.836893
1.788095

= 2.80681

note: ctdm has non-integer val ues
Iteration O log likelihood = -92.361679
Iteration 1: log likelihood = -81.85987
Iteration 2: log likelihood = -81.817945
Iteration 3: log |likelihood = -81.817916
Iteration 4 I og likelihood = -81.817916
General i zed |inear nodel s
Optim zation M.: Newt on- Raphson
Devi ance = 102. 8660327
Pear son = 100. 1333333
Variance function: V(u) = u
Li nk function g(u) = In(u)
Standard errors aMm
Log Ii kel i hood = -81.81791578
BI C =  -130.03142
ctdm | Coef Std. Err
e6 | 3.575551 . 2845213 12.
e5ntl | . 8675006 .7400129 1
e5ne | 1.272966 .6172134 2
e5n8 | .1743534  1.023533 0.
e5mt | 1.966113 . 46291 4
ebnb | . 8675006 .7400129 1.
e5nb | 1.272966 .6172134 2
_cons | -.8675006 .2182179 -3

f(p)
No. of obs
Resi dual df
Scal e paraneter
(1/df) Deviance
(1/df) Pearson
[ Poi sson]
[Log]
Al C
P>| z| [ 95% Conf .
0. 000 3.017899
0.241 -. 582898
0. 039 . 0632496
0. 865 -1.831734
0. 000 1. 058826
0.241 -.582898
0. 039 . 0632496
0. 000 - 1. 2952

I nterval]

4. 133202
2.317899
2.482682
2.18044
2.8734
2.317899
2.482682
-.4398014
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(Vari ance-covari ance Matrix)
matrix list e(V)

symetric e(V)[8, 8]
ctdm ctdm ctdm ctdm ctdm ctdm
e6 e5ml e5ne e5n8 ebmt e5nb
ctdm e6 . 08095238
ctdm e5mil . 04761905 . 54761905
ct dm e5nR . 04761905 . 04761905 . 38095238
ctdm e5n8 . 04761905 . 04761905 . 04761905 1.047619
ctdm e5mt . 04761905 . 04761905 . 04761905 . 04761905 . 21428571
ctdm e5nb . 04761905 . 04761905 . 04761905 . 04761905 . 04761905 . 54761905
ct dm e5n6 . 04761905 . 04761905 . 04761905 . 04761905 . 04761905 . 04761905
ctdm _cons -.04761905 -.04761905 -.04761905 -.04761905 -.04761905 -.04761905

ctdm ctdm
e5nb _cons

ctdm e5nb . 38095238
ctdm _cons -.04761905 . 04761905

* GHeP-rme MODEL

glmctdme6 e5md e5sub, f(p)
note: ctdm has non-integer val ues

Iteration O: log |ikelihood = -93.043343
Iteration 1: log |ikelihood = -82.550895
Iteration 2: log |ikelihood = -82.509176
Iteration 3: log |ikelihood = -82.509147
Iteration 4: log |ikelihood = -82.509147
General i zed |inear nodels No. of obs = 64
Optim zation : M.: Newt on- Raphson Resi dual df = 60
Scal e paraneter = 1
Devi ance = 104.2484956 (1/df) Deviance = 1.737475
Pear son = 100. 7393939 (1/df) Pearson = 1.67899
Variance function: V(u) = u [ Poi sson]
Li nk function : g(u) =1n(u) [ Log]
Standard errors : QM
Log |ikelihood = -82.50914727 A C = 2.703411
BI C = -145. 2844894
ctdm | Coef . Std. Err. z P>| z| [95% Conf. Interval]
_____________ e e e e e e e e e e e emmmem-mmemmmememmmmmmemmmmm-mmmmemmmemmmm-mmmmme————— -
e6 | 3.575551 . 2845213 12.57 0.000 3.017899 4.133202
esmt | 1.966113 . 46291 4.25 0.000 1. 058826 2.8734
eb5sub | . 9628107 . 3721937 2.59 0.010 . 2333245 1. 692297
_cons | -.8675006 .2182179 -3.98 0.000 -1.2952  -.4398014
(Vari ance-covari ance Matri x)
matrix list e(V)
symetric e(V)[4,4]
ctdm ctdm ctdm ctdm
e6 ebmt e5sub _cons

ctdm e6 . 08095238
ctdm e5md . 04761905 . 21428571
ctdm e5sub . 04761905 . 04761905 . 13852814
ctdm _cons -.04761905 -.04761905 -.04761905 .04761905
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Mar gi nal Het er ogeneity Model s

*d obal (G Model
glmctdmrl-r6 e6, f(p)

note: ctdm has non-integer val ues

Iteration O log likelihood = -74.117064
Iteration 1: log |ikelihood = -63.330689
Iteration 2: log |ikelihood = -62.989964
Iteration 3: log likelihood = -62.989091
Iteration 4: log |ikelihood = -62.989091

CGeneral i zed |inear nodels
Optim zation

Devi ance
Pear son

Vari ance function: V(u)
Li nk function :og(u)
Standard errors : QM

Log |i kel i hood

M.: Newt on- Raphson

65. 20838239
81. 21747696

I n(u)

-62. 98909065

BI C -167. 6890703
ctdm | Coef Std. Err z
rl| -.5051301 .1692812 -2.98
r2 | -.1592249 1537164 -1.04
r3 | -.2667977 .1567927 -1.70
ra | . 8001227 . 1984658 4.03
r5 | -.322779 . 1590265 -2.03
ré | -.3807889 .1617964 -2.35
e6 | 3. 474279 . 343287 10. 12
_cons | -1.080286 . 254489 -4.24
matrix list e(V)
symetric e(V)][8, 8]
ctdm ctdm ctdm
ri r2 r3
ctdmril . 02865612
ctdmr2 -.00340322 . 02362874
ctdmr3 -.00353864 -.00284647 .02458397
ctdmr4 -.00622486 -.00466073 -.00499298
ctdmr5 -.00364282 -.00294219 -.00307166
ctdmr6 -.00377685 -.00306288 -.00319335
ctdme6 -.00820788 . 00216985 -.00078424
ctdm _cons . 01371901 . 00241488 . 00552442
ctdm ctdm
e6 _cons
ctdm e6 . 11784594
ctdm _cons -.06320704 . 06476465
*d obal &Partial Agreenent (GP) Mode
gimctdmrl-r6 e6 e5, f(p)
note: ctdm has non-integer val ues
Iteration O: log |ikelihood = -66.964091
Iteration 1: log |ikelihood = -56.744469
Iteration 2: log |ikelihood = -56.570797
Iteration 3: log |likelihood = -56.570167
Iteration 4: log |ikelihood = -56.570167

General i zed linear nodels
Optim zation

M.:  Newt on- Raphson

No. of obs = 64
Resi dual df = 56
Scal e paraneter = 1
(1/df) Deviance = 1.164435
(1/df) Pearson = 1.450312
[ Poi sson]
[Log]
AlC = 2.218409

P>| z| [95% Conf. Interval]

0. 003 -.8369152  -.1733451

0. 300 - . 4605036 . 1420538

0. 089 -. 5741059 . 0405104

0. 000 . 4111369 1.189109

0. 042 -.6344652 -.0110927

0. 019 -.697904 -.0636738

0. 000 2.801449 4.147109

0. 000 -1.579075 - .5814965

ctdm ctdm ctdm
r4 r5 ré
. 03938867

-. 00521623 . 02528944

-.0054877 -.00329183 .02617806
. 04452793 -.00238668 -.00412201
-.03578212 .00725241 .00915215

No. of obs
Resi dual df
Scal e paraneter

64
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Devi ance =
Pear son =
Variance function
Li nk function
Standard errors

Log |i kel i hood
Bl C

52. 3705352
54. 70780162

u
I n(u)

V(u)

g(u)
am

-56. 57016705
-176. 3680344

ctdm | Coef Std. Err z
rl| -.5268156 .1855831 -2.84
r2 | -.1040925 .1666673 -0.62
r3 | -.2352723 .1702461 -1.38
ra | . 8436832 . 1871705 4.51
r5 | -.3038033 .1729446 -1.76
ré | -.3748939 . 176343 -2.13
e6 | 3. 964699 . 3693411 10. 73
e5 | 1.253173 . 3339669 3.75
_cons | -1.484641 .2923541 -5.08
matrix list e(V)
symmetric e(V)[9, 9]
ctdm ctdm ctdm
rl r2 r3
ctdmrl . 03444109
ctdmr2 -.00537786 . 02777799
ctdmr3 -.00535131 -.00452496 .02898373
ctdmr4 -.00655518 -.00295152 -.00396841
ctdmr5 -.00536261 -.00470427 -.00485101
ctdmr6 -.00538555 -.00490789 -.0050021
ctdme6 -.01289128 .00637501 .00064844
ctdme5 -.00356208 .00624207 . 0031854
ctdm _cons . 01676927 -. 0031609 .00255022
ctdm ctdm ctdm
e6 e5 _cons
ctdm e6 . 13641284
ctdm eb5 . 05903352 . 11153389
ctdm _cons -.08697025 -.05186641 .08547089

*GHeP-rog Mode

glmctdmrl-r6 e6 e5ml e5nm2 e5nB e5nd e5nb e5nb,

note: ctdm has non-
Iteration O: | og
Iteration 1: | og
Iteration 2: | og
Iteration 3: | og
Iteration 4: | og

Generalized |inear
Optim zation

Devi ance
Pear son

Vari ance function
Li nk function
Standard errors

Log |i kel ihood
Bl C

i nteger val ues

i kelihood
I'i kel i hood
i kelihood
I'i kel i hood
| i kel i hood

nodel s

- 67.821025
- 54. 067189
- 53. 682628
-53. 68041
-53. 68041

M.: Newt on- Raphson

46. 59102072
54. 65787957

V(u)
g(u)
am

=u
= I'n(u)

-53. 68040981
-161. 3531334

(1/df) Deviance = .9521915

(1/df) Pearson = .9946873

[ Poi sson]

[Log]

Al C = 2.049068
P>| z| [95% Conf. Interval]
0. 005 -.8905518 -.1630794
0. 532 -.4307544 . 2225695
0. 167 - . 5689485 . 0984039
0. 000 . 4768358 1.210531
0.079 -. 6427685 . 0351619
0.034 -.7205199 -.0292679
0. 000 3. 240804 4. 688594
0. 000 . 5986095 1.907736
0. 000 -2.057645 -.9116379

ctdm ctdm
r4 rs
. 03503279
-.00452297 . 02990984
-. 00512808 -.00507816
. 04057046 -.00241462 -.00566665
. 00456246  .00155263 -.00013648
-.03336546 . 00567674
f(p)

No. of obs = 64

Resi dual df = 50

Scal e paraneter = 1

(1/df) Deviance = .9318204

(1/df) Pearson = 1.093158

[ Poi sson]

[Log]

Al C = 2.115013
P>| z| [95% Conf. Interval]

ctdm

. 03109686

. 00905237
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rl | -.6495583 .2034988 -3.19
r2 | -.2479767 . 174465 -1.42
r3 | -.3511232 .1930984 -1.82
ra | 1.354155 . 3694166 3.67
r5 | -.4240635 .1854973 -2.29
ré | -.4821315 .1800043 -2.68
e6 | 4.501199 .5460147 8.24
e5nml | 1.964981 .8503748 2.31
ebne | 2.444098 .7949606 3.07
e5n8 | 1.38638 1.130114 1.23
esmt | . 3662216 . 5645338 0. 65
e5nb | 2.083242 . 871234 2.39
e5nb | 2.476514  .7636371 3.24
cons | -2.084366 .5139002 -4.06
matrix list e(V)
synmetric e(V)[ 14, 14]
ctdm ctdm ctdm
rl r2 r3
ctdmrl . 04141178
ctdmr2 . 00027207 . 03043802
ctdmr3 -.00105385 .00085813 . 037287
ctdmr4 -.03122223 -.02420736 -.03051538
ctdmr5 -.00052005 .00122311 .00008172
ctdmr6 -.00009219 .00153284 .00030505
ctdme6 -.04383912 -.02037006 -.03180308
ct dm e5nmil -.0155656 -.03150372 -.04060955
ctdmebnR -.04724359 -.04209883 -.03487818
ctdme5nB8 -.04861312 -.02626755 -.04306428
ctdm e5mt . 0214294  .03133485 .03144249
ctdme5nb -.05014925 -.02745548 -.03675151
ctdme5n6 -.05113894 -.02823508 -.03745916
ctdm _cons . 0496831 . 02709194 .03642927
ctdm ctdm ctdm
e6 e5ml esnk
ctdm e6 . 29813202
ctdm e5nil . 20691671 . 72313725
ctdm e5n2 . 27111711 . 2355624 . 6319624
ctdm e5n8 . 26224735 . 23027009 . 28198441
ctdm e5mt -.066457 -.08246962 -.09670597
ctdmebnb . 25094658  .22243742 .27298662
ctdmebnb  .24306341 .21651519 . 26650602
ctdm _cons -.25448157 -.22496545 -.27583585
ctdm ctdm
e5nt _cons
ctdm e5nmb . 58314168
ctdm _cons -.25521999 . 26409344
*CGHeP- rme Mbde
gimctdmrl-r6 e6 e5_at ebsub, f(p)
note: ctdm has non-integer val ues
Iteration O: log |ikelihood = -68.024168
Iteration 1: log |ikelihood = -54. 747051
Iteration 2: log |Iikelihood = -54. 359522
Iteration 3: log |ikelihood = -54.357354
Iteration 4: log |ikelihood = -54.357354
General i zed |inear nodel s
Optim zation M.: Newt on- Raphson
Devi ance = 47.94490854
Pear son = 55.38098786

Variance function

Li nk function

Standard errors

0. 001 -1.048409 -.2507079
0. 155 -. 5899217 . 0939683
0. 069 -. 7295892 . 0273427
0. 000 . 6301121 2.078199
0. 022 -.7876315 -.0604956
0. 007 -.8349336  -.1293295
0. 000 3. 43103 5.571368
0.021 . 2982774 3. 631685
0. 002 . 8860038 4.002192
0.220 - . 8286017 3.601362
0.517 -.7402442 1.472687
0. 017 . 3756544 3.790829
0. 001 . 9798123 3.973215
0. 000 - 3.091592 -1.07714
ctdm ctdm ctdm
r4 r5 ré
. 13646866
-.02691087 .03440924
-. 02420731 .00081971 .03240157
. 16852089 -.02952998 -.02745081
. 14041093 -. 04025279 -.03964364
. 18305387 -.03361015 -.03232511
. 17484678 -.03470091 -.0336038
-.10412641  .02723382 . 02446856
. 16639326 -.03274803 -.03503207
.1611632 -.03678816 -.02583819
-.16891589  .03557817 .03459983
ctdm ctdm ctdm
ebnB ebmt eb5nb
1. 2771569
-.09062649 .31869836
. 26707495 -.08649916 .75904872
. 26077656 -.08479318 .25260006
-.26982373 . 08757428  -.2614067
No. of obs = 64
Resi dual df = 54
Scal e paraneter = 1
(1/df) Deviance = .8878687
(1/df) Pearson = 1.025574
[ Poi sson]
[Log]
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Log |i kel i hood
BI C

= -54. 35735372
= -176.634778

e6
e5_at
e5sub
_cons

|
I
|
I
ré |
I
|
I
|

matrix list e(V)

symretric e(V)

ctdmrl
ctdmr2
ctdmr3
ctdmr4 -.
ctdmr5
ctdmr6
ctdme6b -.
ctdmeb_at
ctdm ebsub -.
ctdm _cons

ctdm e6
ctdmeb_at -.
ct dm e5sub
ctdm _cons -

Coef Std. Err
-.6376812 . 1942569
-. 2351533 . 1784588
-. 3594418 . 1816393
1. 345573 . 3633264
-. 4249581 . 1840168
-. 4930534 . 186926
4, 489447 . 5368271
. 3702664 . 564022
2.133214 . 5808956
-2.075287 . 5066553
[ 10, 10]
ctdm ctdm
rl r2
. 03773576
. 00016595 . 03184754
. 00006682 . 00124605
02804216 -.02572997
. 00004263 . 00098163
. 00004187 . 00071369
03825617 -.02170036
. 0210437 . 03272307
03840928 -.03248767
. 04493006 . 02785026
ctdm ctdm
e6 e5_at
. 28818333
06370685 . 31812086
. 23887007 -.08615438
. 24586888 . 08528791

ctdm
r3

. 03299285
. 02634692
. 00064065
. 00044457
. 02666347
. 02893164
. 03439781
. 03269279

ctdm
ebsub

. 33743965
. 25056839

Al C = 2.011167
P>| z| [95% Conf. Interval]
0.001 -1.018418 -.2569446
0. 188 -.5849261 . 1146194
0. 048 -.7154483 -.0034352
0. 000 . 6334668 2. 05768
0.021 -.7856245 -.0642918
0. 008 -.8594217 -.1266851
0. 000 3.437285 5.541609
0.512 -. 7351965 1. 475729
0. 000 . 9946795 3.271748
0. 000 -3.068314 -1.082261
ctdm ctdm ctdm
ra r5 ré
. 13200608
-. 02675271 . 03386219
-. 02719949 . 00032302 . 03494134
.16180863 -.0294101 -.03230681
-. 10240308 . 02701279 . 02506357
. 1598975 -.03551129 -.03663898
-. 16318541 . 03547502 . 03848346
ctdm
_cons
. 25669963
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Appendix D
SASMacro % MVN Used to Generate Multivariate Normal Data
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%MVN macro used to simulate data from a multivariate normal distribution (SAS
Institute Inc; http://ftp.sas.com/techsup/download/stat/mvn.html)

/x * EaE A o EaE A o B o FThIIxxk FThIIxxk

%MVN macro: Generating multivariate normal data

DISCLAIMER:
THIS INFORMATION IS PROVIDED BY SAS INSTITUTE INC. AS A SERVICE TO
ITS USERS. IT IS PROVIDED "AS 1S"™. THERE ARE NO WARRANTIES,
EXPRESSED OR IMPLIED, AS TO MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE REGARDING THE ACCURACY OF THE MATERIALS OR CODE
CONTAINED HEREIN.

PURPOSE:
The %MVN macro generates multivariate normal data using the
Cholesky root of the variance-covariance matrix. Bivariate normal
data can be generated using the DATA step code that follows the
macro .

REQUIRES:
The %MVN macro requires Version 6.06 or later of SAS/IML software.
The DATA step code for generating bivariate normal data requires
only Version 6.06 Base SAS software.

USAGE:
The macro input/output paramters are:

VARCOV= SAS data set that contains the variance-covariance
(and only the variance covariance) matrix. The macro
expects m variables and m observations in the data
set, where m is the number of variables to generate.

MEANS= SAS data set that contains the mean vector. The
macro expects a single variable with m observations
containing the m means for the variables generated.

N= Number of observations to generate.

SEED=  Starting seed value for the random number generator.
Default value is 0, which will use the system clock
to generate a seed.

SAMPLE= SAS data set name for the resulting multivariate
normal data. The variable names will be COL1-COLm.

LIMITATIONS:
No error checking is done. The macro assumes that dataset
names entered are valid, and exist in the case of the VARCOV=
and MEANS= options.
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EXAMPLE:

This example generates 1000 observations from a 3 variable
multivariate normal distribution with specified mean vector and

covariance matrix.

* Store the variance-covariance matrix in a data set;

data varcov;
input ml1-m3;
cards;
41.8 4
1.8 9 3.6
4 3.6 16

* Store the mean vector in a data set ;

data means;
input ml;
cards;

10

20

30

%mvn(varcov=varcov,

means=means,
n=1000,
sample=test)

proc corr data=test noprob cov;

run;

%macro mvn(varcov=,
means=,
n=,
seed=0,
sample=);

/*
/*
/*
/*
/*

/* Get initial seed value.

system clock. */

data _null_;
if &seed le 0 then do;
seed = int(time());
put seed=;

dataset for variance-covariance matrix */
dataset for mean vector */

sample size */

seed for random number generator */
output dataset name */

IT seed<=0, then generate seed from the

/* get clock time in integer seconds */

call symput(“seed” ,seed); /* store seed as macro variable */

end;
run;
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/* Generate the multivariate normal data in SAS/IML */

proc iml worksize=100;

use &varcov; /* read variance-covariance matrix */
read all into cov;

use &means; /* read means */

read all into mu;

v=nrow(cov); /* calculate number of variables */
n=&n;

seed = &seed;

I=t(root(cov)); /* calculate cholesky root of cov matrix */
z=normal (J(v,&n,&seed));/* generate nvars*samplesize normals */
x=01*z; /* premultiply by cholesky root */
x=repeat(mu,l,&n)+x; /* add In the means */

t><=t(x);

create &sample from tx; /* write out sample data to sas dataset */
append from tx;
quit;

%mend mvn;
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Appendix E
SAS Program Used to Generate Count Data for 2° Contingency Table for the GHeP
M odel
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i bnanme get "C:.\aaPhDSi nul ati ons\ HonoG GHePRME" ;

i bname g "C:\aaPhDSi nul ati ons\ HonoG\ GHePRVE\ STATAds" ;

/*

Dat aset cvarpats contains the 64 possible rating patterns.

The covariate patterns of the 64 possible rating patterns are
enuner at ed.

Variables rl through r6 represent the ratings or raters 1 thourgh 6,
respectively.

*/

data g.suffstat;
i nput what $;
cards;

suf f st at

run;

data g.cvarpats;
input rprlr2r3r4r5ré6;

cards;
1 000000
2 000001
3 000O0O10O0
4 000011
5 000100
6 000101
7 000110
8 000111
9 001000
10001001
11 001010
12001011
13001100
14001101
15001110
16 001111
17010000
1801 0001
19010010
2001 001 1
21010100
22 010101
23010110
24010111
25011000
26 011001
27011010
280011011
29 011100
30011101
31011110
32011111
33100000
34100001
3100010
100011
100100
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38

100101
39100110
401 00111
41 101000
42 1 01001
43101010
441 01011
45101100
46 1 01101
47101110
481 01111
49110000
50110001
51110010
52110011
53110100
54110101
55110110
56 110111
57111000
58111001
50111010
60111011
61111100
62111101
63111110

111111

64
run;
proc sort;by rp;run

%racro createds (index=1);
data g.cvarpats;set g.cvarpats;

e5mi=0;
e5sub=0;

/* HEteroG R-1 (Triplet) AGREEMENT
R12345=0; R12346=0; R12356=0;

*//*

if RI=R2 and R1=R3 and R1=R4 and

i f R12345=1 then e5sub=1;

if RI=R2 and R1=R3 and R1=R4 and

if R12346=1 then e5sub=1;

if RI=R2 and R1=R3 and R1=R6 and

i f R12356=1 then ebat=1;

if RI=R2 and R1=R6 and R1=R4 and

i f R12456=1 t hen e5sub=1;

if RI=R6 and R1=R3 and R1=R4 and

i f R13456=1 then e5sub=1;

if R6=R2 and R6=R3 and R6=R4 and

i f R23456=1 then ebsub=1;
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HOmwG RE: CATEGORY */
R12456=0; R13456=0; R23456=0;

R1=R5

R1=R6

R1=R5

R1=R5

R1=R5

R6=R5

and

and

and

and

and

and

R6~=R1 t hen R12345=1;

R5~=R1

R4~=R1

R3~=R1

R2~=R1

R1~=R2

t hen

t hen

t hen

t hen

t hen

R12346=1;

R12356=1,

R12456=1;

R13456=1;

R23456=1,



e6=0; e6¢c0=0; eb6cl=0;

if RI=R2 and R1=R3 and R1=R4 and R1=R5 and R1=R6 t hen e6=1

if RI=R2 and R1=R3 and R1=R4 and R1=R5 and R1=R6 and R1=0 then e6c¢c0=1
if RI=R2 and R1=R3 and R1=R4 and R1=R5 and R1=R6 and Rl=1 then e6cl=1
/* Honmpbgeneous with respect to category between R2, R3, and R4 only */
ebml=0; e5nm2=0; e5nB=0; e5m4=0; e5nb=0; e5nb=0;

e5¢c0=0; eb5cl1=0;

if R12345=1 and R1=0 then e5c0=1; if R12345=1 and Rl1=1 then e5cl=1

if R12346=1 and R1=0 then e5c0=1; if R12346=1 and Rl1=1 then e5cl=1

if R12356=1 and R1=0 then e5c0=1; if R12356=1 and Rl1=1 then e5cl=1

i f R12456=1 and R1=0 then ebc0=1; if R12456=1 and Rl1=1 then ebcl=1

i f R13456=1 and R1=0 then ebc0=1; if R13456=1 and Rl=1 then ebcl=1

i f R23456=1 and R2=0 then e5c0=1; if R23456=1 and R2=1 then ebcl=1

i f R12345=1 then ebnb=1;

i f R12346=1 then ebnb=1;

if R12356=1 then eb5mid=1;

if R12456=1 then e5nB=1

i f R13456=1 then e5nk=1;

i f R23456=1 then eb5ml=1;

e5=0;

if e5nb=1 or e5nb=1 or e5mi=1 or e5nB8=1 or e5m2=1 or e5nil=1 then e5=1
/*need rating of zero as -1

because of negative one, one paraneterization*/
a=rl;b=r2;c=r3;d=r4;e=r5;f=r6

if r1=0 then r1=-1;if r2=0 then r2=-1;if r3=0 then r3=-1;
if rda=0 then r4=-1;if r5=0 then r5=-1;if r6=0 then r6=-1;
run;

dat a Bvector;

set get.atyp_1k;

/*Data set containg Beta vector of

1, 000 sinul ated GHeP Moderate Mddel under

t he assunption of Margi nal HOVOGENEI TY*/ run

dat a Bvector;

do TAKEI T=1 to 1000 BY 1

/* 1 to the Nunber of SI MJULATI ONS done, here 1, 000*/
set Bvector PO NT=TAKEI T;

si mM\=t akei t ;

out put ;

end;

st op;

run;

dat a ds&i ndex;
set Bvector;
do i=1 to 64;
rp=i;
i f sinm\=& ndex then output;
end;
run;
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proc sort data=ds& ndex; by rp
proc sort data=g.cvarpats;by rp

data ds& ndex (drop=cnt N& ndex COL1l- COL4);
nmer ge dsé& ndex g.cvarpats; by rp;

/ *d6=col 1 e5sub=col 2 e5mi=col 3 mu=col 4
3.575551 0.9628107 1.966113 -0.8675006*/

b1=COL1; b2=COL2; b3=COL3; nmu4=COL4;

/* For each dataset (ds#) the values of bl-b3 and nmu4 are set to

the val ues generated fromthe corresponding sinmulation #. For each
rating (covariate) pattern, the value of the variable logmis conputed
fromthe correspondi ng sum of the appropriate paraneter estinmates.

For the first sinmulation (& ndex=1), The variable cntNl is cal cul ated
by exponentiating the sum of the parameter estimates correspondi ng that
each rating pattern. The count data for a given rating pattern is
conputed by randomy sanpling froma Poisson distribution with a nean
equal to the value of the variable cntNL

The rating pattern is constructed by concatenating the values of rl
t hrough
R6 and renoving the any internal spaces (conpress function).

This algorithmis repeated for the other 999 sinulations. */

| ognmenmu4+e6* bl+e5sub*b2+e5mi* b3;

cnt N& ndex=exp(l ogm ;

sncnt & ndex = ranpoi (0, cnt N& ndex) ;

cnt & ndex=round(snctnt & ndex) ;
pattern=trima)|[|trimb)||trimc)||trim(d)||trim(e)|]|trim(f);
pattern=conpress(pattern);

run;

proc sort; by pattern;run

data st at & ndex (keep=rp cnt & ndex);
set ds&i ndex;

proc transpose dat a=st at & ndex out =ssf & ndex prefix=rpcnt;
idrp;
var cnt & ndex; run;

data g.suffstat;set g.suffstat ssf& ndex;run
%rend creat eds;

/*One - One Hundred*/

%reat eds(i ndex=1); %reateds(i ndex=2); %reateds(i ndex=3);
%reat eds(i ndex=4) ; %r eat eds(i ndex=5) ;

%r eat eds(i ndex=6) ; %r eat eds(i ndex=7) ;

%reat eds(i ndex=8); %reateds(i ndex=9);

%r eat eds(i ndex=10);
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1 %reat eds(i ndex=995) ; %r eat eds(i ndex=996) ; %r eat eds(i ndex=997) ;
% r eat eds(i ndex=1000) ;

%r eat eds(i nde
run;

x=998);

data g.suffstat (drop=what);
set g.suffstat;

id=_N_;
if id=1 then
run;

del et e;

data g.suffstat;

set
id=id-1;
t ot al =sunq of

g.suffstat;

rpcnt 1-rpcnt 64);

% r eat eds(i ndex=999);

/*Variables to determne if sufficient statistic for

het er ogeneous

parti al

agr eenment

par anmet er

ssml=1; ssn2=1; ssnB=1; ssmid=1; ssnb=1; ssnb=1;

if (rpcnt2=0)
if (rpcnt3=0)
if (rpcnt5=0)
if (rpcnt9=0)

and (rpcnt63=0) then
and (rpcnt62=0) then
and (rpcnt 60=0) then
and (rpcnt56=0) then

ssnb=0;
ssnb=0;
ssmi=0;
ssnB=0;

if (rpcntl17=0) and (rpcnt48=0) then ssn2=0;
if (rpcnt32=0) and (rpcnt33=0) then ssnil=0;

suf st =ssml+ssnm2+ssnB+ssmid+ssnb+ssnb;

*if what ="' suff
/*No raters wh

stat'
ose parti al

t hen suf st =.

agr eement

if (ssml=1 and ssnm2=1 and ssnB=1 and

t hen nodel =1;

/*one raters whose partia

if (ssml=1 and
t hen nodel =2;
if (ssml=1 and
t hen nodel =3;
if (ssm=1 and
t hen nodel =4;
if (ssml=1 and
t hen nodel =5;
if (ssml=1 and
t hen nodel =6;
if (ssml=0 and
t hen nodel =7;

/*Two raters whose partia

if (ssm=0 and
t hen nodel =8;

if (ssml=0 and
t hen nodel =9;

if (ssml=0 and
t hen nodel =10;
if (ssml=0 and
t hen nodel =11;
if (ssm=0 and
t hen nodel =12;

ssnm2=1 and

ssn2=1 and
ssn2=1 and
ssnm2=1 and
ssn2=0 and

ssnm2=1 and

ssn2=0 and
ssn2=1 and
ssn2=1 and
ssn2=1 and

ssnm2=1 and

agr eenent
ssmB=1 and

ssnB=1 and
ssnB=1 and
ssnmB3=0 and
ssnB=1 and
ssnB=1 and

agr eenment
ssnB=1 and
ssnB=0 and
ssnB=1 and
ssnB=1 and

ssnmB=1 and

cnt =

ssmd=1

cnt =
ssmi=1

ssnmd=1

ssmi=0

ssmd=1

ssmi=1

ssnmd=1

cnt =

ssmi=1

ssmd=1

ssnmd=0

ssnmd=1

ssmi=1
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is zero*/

zero*/

and ssnmb=1

zer o*/

and ssnb=1
and ssnmb=0
and ssnb=1
and ssnb=1
and ssnb=1

and ssnb=1

zer o*/

and ssnb=1

and ssnb=1

and ssnb=1

and ssnb=0

and ssnb=1

and

and

and

and

and

and

and

and

and

and

and

and

ssnb=1)

ssm6=0)
ssmb=1)
ssnmb=1)
ssnb=1)
ssmb=1)

ssmb=1)

ssnb=1)
ssmb=1)
ssmb=1)
ssmb=1)

ssnm6=0)



if (ssm=1 and
t hen nodel =13;
if (ssm=1 and
t hen nodel =14;
if (ssml=1 and
t hen nodel =15;
if (ssml=1 and
t hen nodel =16;
if (ssml=1 and
t hen nodel =17;
if (ssm=1 and
t hen nodel =18;
if (ssml=1 and
t hen nodel =19;
if (ssml=1 and
t hen nodel =20;
if (ssml=1 and
t hen nodel =21;
if (ssm=1 and
t hen nodel =22;

/*Three raters
if (ssml=0 and
t hen nodel =23;
if (ssml=0 and
t hen nodel =24;
if (ssm=0 and
t hen nodel =25;
if (ssm=0 and
t hen nodel =26;
if (ssml=1 and
t hen nodel =27;
if (ssml=1 and
t hen nodel =28;
if (ssml=1 and
t hen nodel =29;
if (ssm=1 and
t hen nodel =30;
if (ssml=1 and
t hen nodel =31;
if (ssml=0 and
t hen nodel =32;
if (ssml=0 and
t hen nodel =33;
if (ssm=0 and
t hen nodel =34;
if (ssm=0 and
t hen nodel =35;
if (ssml=0 and
t hen nodel =36;
if (ssml=0 and
t hen nodel =37;
if (ssml=1 and
t hen nodel =38;
if (ssm=1 and
t hen nodel =39;

ssn2=0

ssm2=0

ssn2=0

ssn2=0

ssnk=1

ssnk2=1

ssnm2=1

ssnk=1

ssnk=1

ssnk=1

whose part

ssn2=0

ssn2=0

ssn2=0

ssm2=0

ssn2=0

ssn2=0

ssn2=0

ssnk2=1

ssnm2=1

ssnk=1

ssnk=1

ssnk=1

ssnm2=1

ssnk=1

ssnk=1

ssn2=0

ssn2=0

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

ssm3=0 and

ssnmB=1 and
ssnmB=1 and

ssmB=1 and

ssmB=0 and

ssmB=0 and
ssn83=0 and

ssmB=1 and

ssmB=1 and

ssmB=1 and

al agreenent

ssnB=0 and
ssnB=1 and
ssnB=1 and
ssnB=1 and
ssnB=0 and

ssmB=0 and

ssmB=0 and

ssmB=0 and
ssn83=0 and

ssmB=0 and

ssmB=0 and

ssmB=0 and
ssnmB=1 and
ssnmB=1 and

ssmB=1 and

ssmB=1 and

ssnmB=1 and

ssmd=1 and

ssmd=0 and

ssmd=1 and

ssmd=1 and

ssmd=0 and

ssmd=1 and

ssmd=1 and

ssmd=0 and

ssmd=0 and

ssmd=1 and

cnt =
ssmd=1 and

ssmd=0 and

ssmd=1 and

ssmd=1 and

ssmd=0 and

ssmd=1 and

ssmd=1 and

ssmd=0 and

ssmd=0 and

ssmd=0 and

ssmd=1 and

ssmd=1 and

ssmd=0 and

ssmd=1 and

ssmd=0 and

ssmd=0 and

ssmd=0 and
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ssnb=1

ssnb=1

ssnb=0

ssnb=1

ssnb=1

ssnb=0

ssnb=1

ssnb=0

ssnb=1

ssnb=0

zero*/

ssnb=1

ssnb=1

ssnb=0

ssnb=1

ssnb=1

ssnb=0

ssnb=1

ssnb=0

ssnb=1

ssnb=1

ssnb=0

ssnb=1

ssnb=0

ssnb=0

ssnb=1

ssnb=0

ssnb=1

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

ssmb=1)
ssnmb=1)
ssmb=1)
ssm6=0)
ssmb=1)
ssnmb=1)
ssnb=0)
ssmb=1)
ssm6=0)

ssnm6=0)

ssmb=1)
ssmb=1)
ssmb=1)
ssn6=0)
ssmb=1)
ssmb=1)
ssm6=0)
ssnmb=1)
ssnb=0)
ssmb=1)
ssmb=1)
ssm6=0)
ssnb=1)
ssnm6=0)
ssm6=0)
ssmb=1)

ssnm6=0)



if (ssml=1 and ssnm2=1 and ssnmB=1 and ssn¥4=0

t hen nodel =40;

if (ssml=1 and ssn?=1 and ssnmB=0 and ssmi=1

t hen nodel =41;

if (ssml=1 and ssn2=0 and ssmB=1 and ssmi=1

t hen nodel =42;

/*four raters whose partia

if (ssml=1 and
t hen nodel =43;
if (ssm=1 and
t hen nodel =44;
if (ssml=1 and
t hen nodel =45;
if (ssml=1 and
t hen nodel =46;
if (ssml=1 and
t hen nodel =47;
if (ssm=0 and
t hen nodel =48;
if (ssm=0 and
t hen nodel =49;
if (ssml=0 and
t hen nodel =50;
if (ssml=0 and
t hen nodel =51;
if (ssml=0 and
t hen nodel =52;
if (ssm=0 and
t hen nodel =53;
if (ssml=0 and
t hen nodel =54;
if (ssml=0 and
t hen nodel =55;
if (ssml=0 and
t hen nodel =56;
if (ssm=0 and
t hen nodel =57;

/*five raters whose partia

if (ssml=1 and
t hen nodel =58;
if (ssml=0 and
t hen nodel =59;
if (ssm=0 and
t hen nodel =60;
if (ssml=0 and
t hen nodel =61;
if (ssml=0 and
t hen nodel =62;
if (ssml=0 and
t hen nodel =63;
if (ssm=0 and
t hen nodel =64;
run;

ssnk=1

ssn2=0

ssnm2=0

ssn2=0

ssn2=0

ssnk=1

ssnm2=1

ssnk=1

ssnk=1

ssn2=0

ssn2=0

ssnm2=0

ssn2=0

ssn2=0

ssn2=0

ssn2=0

ssnk=1

ssn2=0

ssnm2=0

ssn2=0

ssn2=0

ssn2=0

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

ssnB3=0

ssnB3=1

ssnB=0

ssnB8=0

ssnB3=0

ssnB=1

ssnB3=0

ssnB8=0

ssnB3=0

ssnB=1

ssnB3=1

ssnmB=1

ssnB3=0

ssnB3=0

ssnB3=0

ssnB3=0

ssnB3=0

ssnB3=1

ssnB=0

ssnB8=0

ssnB3=0

ssnB3=0

agreenent cnt

and ssm4=0

and ssm4=0

and ssmd=1

and ssm4=0

and ssm4=0

and ssm=0

and ssmd=1

and ssm4=0

and ssm4=0

and ssmi=1

and ssm4=0

and ssm4=0

and ssmi=1

and ssmi=1

and ssm=0

agr eement

and ssm4=0

and ssm4=0

and ssm4=0

and ssmd=1

and ssm4=0

and ssm4=0

and ssm=0
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and

and

and

ssnb=0

ssnb=0

ssnb=0

zer o*/

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

ssnb=0

ssnb=0

ssnb=0

ssnb=1

ssnb=0

ssnb=0

ssnb=0

ssnb=1

ssnb=0

ssnb=0

ssnb=1

ssnb=0

ssnb=1

ssnb=0

ssnb=1

zer o*/

and

and

and

and

and

and

and

ssnb=0

ssnb=0

ssnb=0

ssnb=0

ssnb=1

ssnb=0

ssnb=0

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

ssm6=0)
ssn6=0)

ssnm6=0)

ssm6=0)
ssnm6=0)
ssnb=0)
ssm6=0)
ssmb=1)
ssnm6=0)
ssn6=0)
ssnm6=0)
ssmb=1)
ssm6=0)
ssnm6=0)
ssnb=1)
ssm6=0)
ssmb=1)

ssmb=1)

ssm6=0)
ssm6=0)
ssnm6=0)
ssnb=0)
ssm6=0)
ssmb=1)

ssm6=0)



proc print data=g.suffstat;titlel 'Step F';run;

proc freq data=g.suffstat;table nodel ;

titlel "RPM CHeP MHonoG Model # re: # of Suff Stats=0';
run;

proc freq data=g.suffstat;table total;
titlel ' RME GHeP MHonoG Sanpl e Size';
run;

G3_w A _w
G/_w B w
Gl2_w
Gl6_w Gl7_w

dat a

|
I_=s ==
|
I_ ==

&5 _ w &26_w

G33_w

G39_w Al w A2_w
G52_w

61w ;

Esssss¢s

32088022880
82008822090
SEssssss¢=

set g.suffstat ;
i f nmodel =1 then output Gl_w,

el se if nodel =2 then output G2_w,
el se if nodel =3 then output G3_w,
el se if nodel =4 then output G4_w,
el se if nodel =5 then output G5_w,
el se if nodel =6 then out put G6_w,
el se if nodel =7 then out put G7_w,
el se if nodel =8 then out put G3_w,

el se if nodel =9 then out put GO_w;
*el se if nodel =10 then output GLO_w,
else if nodel =11 then output Gl1_w,
el se if nodel =12 then output Gl2_w,
el se if nodel =13 then output GL3_w,
*else if nopdel =14 then output Gl4_w;
el se if nodel =15 then out put Gl5_w;
el se if nodel =16 then output Gl6_w,
el se if nodel =17 then output GL7_w,
el se if nodel =18 then output G18 w,
el se if nodel =19 then output Gl9_ w,
*else if nodel =20 then out put G0_w,
*else if nodel =21 then output &1_w,
el se if nodel =22 then output &2_w,
el se if nodel =23 then out put &3_w,
* else if nodel =24 then output &4_w,
el se if nodel =25 then out put &5_w,
el se if nodel =26 then out put &6_w,
*el se if nodel =27 then out put Q7_w,
el se if npdel =28 then out put &8_w,
el se if nodel =29 then output &9_w,
*else if nodel =30 then out put G30_w,
*else if nopdel =31 then output G31_w;
*else if nopdel =32 then output G32_w;
el se if nodel =33 then output G33_w,
el se if nodel =34 then output G34_w,
*el se if nodel =35 then output G35 w,
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el se if nodel =36 then output G36_w,
*else if nodel =37 then output G37_w,
*el se if nodel =38 then output G38_w,
el se if nodel =39 then output G39_w,
*el se if nodel =40 then output G40_w,
el se if nodel =41 then output A1 _w,
el se if nodel =42 then output 42_w,
*else if nodel =43 then output A3_w,
*else if nodel =44 then output 44_w,
el se if nodel =45 then out put 45_w,
*else if nodel =46 then output G46_w;
*el se if nodel =47 then output G47_w,
*el se if nodel =48 then output (48 _w,
el se if nodel =49 then output 49 _w,
*else if nodel =50 then output G50_w,
*else if nodel =51 then output G51_w,
el se if nodel =52 then out put G52_w,
*el se if nopdel =53 then out put G53_w;
*else if nodel =54 then output G54_w,
el se if nodel =55 then out put G55_w,
el se if nodel =56 then out put G56_w,
*el se if nodel =57 then output G57_w,
*el se if nodel =58 then output G58_w,
*else if nodel =59 then output G59_w,
*else if nodel =60 then out put G60_w,
else if nodel =61 then output G61_w,
*else if npdel =62 then output G62_w;
*else if nodel =63 then output G63_w,
*else if nodel =64 then output G64_w;,

/ *Nodel 1%/
data Gl_w ( drop=ssml-ssnb sufst nmodel id); set
proc transpose data=Gl_w out =Gl_| ong; run;

data g. Gl (drop=_NAME ); set Gl_long; rp=substr(_NAVE_, 6)+0; run;

proc sort data=g.Gl; by rp;run;

/ *Nodel 2*/

data G2_w ( drop=ssml-ssnb sufst nmodel id); set
proc transpose data=G2_w out=G2_| ong; run;

data g. & (drop=_NAME ); set G2_long; rp=substr(_NAVE_, 6)+0; run;

proc sort data=g.&; by rp;run;

/ *Nodel 3*/
data G3_w ( drop=ssml-ssnb sufst nmodel id); set
proc transpose data=G3_w out =G3_| ong; run;

data g. G3 (drop=_NAME ); set G3_long; rp=substr(_NAVE_, 6)+0; run;

proc sort data=g.G3; by rp;run;

[ *Model 4*/

data G4_w ( drop=ssml-ssnb sufst nodel id); set
proc transpose data=G4_w out =G4_1 ong; run;

data g. &4 (drop=_NAME ); set (A_long; rp=substr(_NAVE_, 6)+0; run;

proc sort data=g. &4; by rp;run;

/ *Model 5%/
data Go5_w ( drop=ssml-ssnb sufst nmodel id); set
proc transpose data=G5_w out =G5_| ong; run;

data g. G5 (drop=_NAME ); set Gb_long; rp=substr(_NAVE_, 6)+0; run;

proc sort data=g.Gb; by rp;run;
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[ *Model 6*/

data G6_w ( drop=ssml-ssnb sufst nmodel id); set G6_w, run;
proc transpose data=G6_w out =G5_| ong; run;

data g. G (drop=_NAME ); set G6_long; rp=substr(_NAME , 6)+0; run;
proc sort data=g. G6; by rp;run;

/*NModel 7*/

data G7/_w ( drop=ssml-ssnb sufst nmodel id); set G/_w, run;
proc transpose data=G7/_w out =G7_| ong; run;

data g. G/ (drop=_NAME ); set Gr7_long; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g.G7; by rp;run;

/ *NModel 8*/

data G8_w ( drop=ssml-ssnb sufst nodel id); set G _w, run;
proc transpose data=G8_w out =G3_| ong; run;

data g. G (drop=_NAME ); set GB_long; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g. G8; by rp;run;

[ *Model 9*/

data G9_w ( drop=ssml-ssnb sufst nmodel id); set G_w, run;
proc transpose data=G9_w out =G9_I ong; run;

data g. 3 (drop=_NAME ); set O_long; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g.&; by rp;run;

/ *Nodel 11%*/

data Gl1_w ( drop=ssnil-ssnb sufst nodel id); set GL1_w, run;
proc transpose data=Gl1l_w out=Gl1_| ong; run;

data g.Gl1l (drop=_NAME_ ); set Gl1_long; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g. Gl1l; by rp;run;

/ *NModel 12*/

data Gl2_w ( drop=ssnil-ssnb sufst nodel id); set GL2_w, run;
proc transpose data=Gl2_w out=Gl2_| ong; run;

data g.Gl2 (drop=_NAME ); set Gl2_Ilong; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g. Gl2; by rp;run;

/ *NModel 13*/

data G13_w ( drop=ssnil-ssnb sufst nodel id); set GL3_w, run;
proc transpose data=Gl3_w out=Gl3_| ong; run;

data g. Gl3 (drop=_NAME_ ); set Gl13_long; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g.Gl3; by rp;run;

[ *NModel 15*/

data G15_w ( drop=ssnil-ssnb sufst nodel id); set GL5_w, run;
proc transpose data=Gl5_w out=Gl5_| ong; run;

data g. Gl5 (drop=_NAME ); set Gl15_Iong; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g. Gl5; by rp;run;

/ *NModel 16*/

data G16_w ( drop=ssnil-ssn6 sufst nodel id); set GL6_w, run;
proc transpose data=Gl6_w out=Gl6_| ong; run;

data g.Gl6 (drop=_NAME ); set Gl6_Ilong; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g. Gl6; by rp;run;

/*NModel 17*/

data G17_w ( drop=ssnil-ssnb sufst nodel id); set GL7_w, run;
proc transpose data=Gl7_w out=Gl7_l ong; run;

data g. Gl7 (drop=_NAME_ ); set Gl7_long; rp=substr(_NAVE_, 6)+0; run;
proc sort data=g. Gl7; by rp;run;
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[ *Model 18*/

data G18_w ( drop=ssnil-ssnb6 sufst nodel
proc transpose data=Gl8_ w out=G18_| ong;
data g. Gl8 (drop=_NAME ); set Gl8 | ong;
proc sort data=g. G18; by rp;run;

/ *Model 19*/

data G19_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=Gl9_w out =G19_| ong;
data g. Gl9 (drop=_NAME ); set Gl19 | ong;
proc sort data=g. Gl9; by rp;run;

/ *Nodel 22%*/

data G22_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G&22_w out =G22_| ong;
data g. G22 (drop=_NAME ); set G22_I ong;
proc sort data=g. G22; by rp;run;

[ *Model 23*/

data G23_w ( drop=ssnil-ssn6 sufst nodel
proc transpose data=&3_w out =&3_| ong;
data g. 23 (drop=_NAME ); set G23_l ong;
proc sort data=g. G23; by rp;run;

/ *Model 25%*/

data G25_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=&5_w out =G25_| ong;
data g. G25 (drop=_NAME ); set G25_I ong;
proc sort data=g. G25; by rp;run;

/ *Nodel 26%*/

data G26_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G&26_w out =G26_1| ong;
data g. G26 (drop=_NAME ); set G26_I ong;
proc sort data=g. G26; by rp;run;

/ *Model 28*/

data G28_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G28_w out =G28_| ong;
data g. G28 (drop=_NAME ); set G28_l ong;
proc sort data=g. G28; by rp;run;

[ *NModel 29*/

data G29_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=&9_w out =G29_| ong;
data g. G29 (drop=_NAME ); set G29 | ong;
proc sort data=g. &9; by rp;run;

/ *Model 33*/

data G33_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G33_w out =G33_| ong;
data g. G33 (drop=_NAME ); set G33_l ong;
proc sort data=g. G33; by rp;run;
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run;

set Gl8 w,
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run;
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run;
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run;
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run;
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rp=substr ( _NAME_,
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run;
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rp=substr ( _NAME_,

id); set

run;

28 _w;

rp=substr ( _NAME_,

id);
run;

set Q29 _w;

rp=substr ( _NAME_,

id);
run;

set G33_w;

rp=substr ( _NAME_,

run;

6) +0; run;

runj;

6) +0; run;

runj;

6) +0; run;

run;

6) +0; run;

runj;

6) +0; run;

runj;

6) +0; run;
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6) +0; run;

run;

6) +0; run;

runj;

6) +0; run;



[ *Model 34*/

data G34_w ( drop=ssnil-ssnb6 sufst nodel
proc transpose data=G34_w out =G34_1| ong;
data g. G34 (drop=_NAME ); set G34_l ong;
proc sort data=g. G34; by rp;run;

/ *Model 36%*/

data G36_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G36_w out =G36_1I ong;
data g. G36 (drop=_NAME ); set G36_I ong;
proc sort data=g. G36; by rp;run;

/ *Nodel 39*/

data G39_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G39_w out =G39_| ong;
data g. G39 (drop=_NAME ); set G39_l ong;
proc sort data=g. G39; by rp;run;

[ *Model 41*/

data (A1 _w ( drop=ssnil-ssnb6 sufst nodel
proc transpose data=(41_w out =G41_| ong;
data g. G41 (drop=_NAME ); set G41 | ong;
proc sort data=g. G41; by rp;run;

/ *Nodel 42*/

data 42_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=(x42_w out =42_1 ong;
data g. 42 (drop=_NAME ); set (42_I ong;
proc sort data=g. 42; by rp;run;

/ *NModel 45%*/

data G45_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=(&45_w out =G45_1 ong;
data g. 45 (drop=_NAME ); set G45_I ong;
proc sort data=g. &45; by rp;run;

/ *Nodel 49*/

data G49_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=(x49_w out =49 _| ong;
data g. 49 (drop=_NAME ); set (49 | ong;
proc sort data=g. 49; by rp;run;

/ *Nodel 52%*/

data Gb2_w ( drop=ssnil-ssnb sufst nodel
proc transpose data=G52_w out =G52_| ong;
data g. Gb2 (drop=_NAME ); set G52_l ong;
proc sort data=g. G52; by rp;run;

/ *NModel 55%*/

data G55_w ( drop=ssnil-ssn6 sufst nodel
proc transpose data=Gb5_w out =G55_1| ong;
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run;
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data g. G55 (drop=_NAME);
proc sort data=g. G55; by rp;run;

/ *Model 56%*/
data Gb6_w ( drop=ssnil-ssnb suf st

proc transpose data=G56_w out =G56_
set Gb6_

data g. Gb6 (drop=_NAME);
proc sort data=g. G56; by rp;run;

/ *Nodel 61*/
data G61_w ( drop=ssnil-ssnmb suf st

proc transpose data=G61_w out =G61_
&1

data g. G861 (drop=_NAME ); set
proc sort data=g. G61; by rp;run;

/* datasets with neg one/one

data g. Gl; nerge g.cvarpats g.Gl; by
data g. G2; nmerge g.cvarpats g. &; by
data g. G3; nerge g.cvarpats g. G3; by
data g. &4; nerge g.cvarpats g. 4; by
data g. Gb; nerge g.cvarpats g. Gb; by
data g. G6; nerge g.cvarpats g. G6; by
data g. G7; nmerge g.cvarpats g. G7; by
data g. G8; nerge g.cvarpats g. G8; by
data g. G9; nerge g.cvarpats g. (; by
data g. Gl1; nmerge g.cvarpats g.Gl1;
data g. Gl2; merge g.cvarpats g. Gl2;
data g. Gl3; nerge g.cvarpats g.GL3;
data g. G15; nerge g.cvarpats g. Gl5;
data g. Gl6; nerge g.cvarpats g. Gl6;
data g. Gl7; nerge g.cvarpats g.Gl7;
data g. G18; nerge g.cvarpats g. Gl8;
data g. Gl9; nerge g.cvarpats g. Gl9;
data g. @1; nmerge g.cvarpats g. &1;
data g. &2; nerge g.cvarpats g. &2;
data g. GQ3; nerge g.cvarpats g. @3;
data g. G5; nerge g.cvarpats g. @5;
data g. G26; nerge g.cvarpats g. G6;
data g. G28; nerge g.cvarpats g. @8;
data g. G29; nerge g.cvarpats g. Q9;
data g. G33; nerge g.cvarpats g. G33;
data g. G34; nerge g.cvarpats g. G34;
data g. G36; nerge g.cvarpats g. G36;

set Gb5_

| ong; rp=substr(_NAME_, 6)+0; run
nodel id); set G56_w, run

| ong; run;

| ong; rp=substr(_NAVE_, 6)+0; run;
nodel id); set G61_w, run;

| ong; run;

| ong; rp=substr(_NAME_, 6) +0; run;

paraneterization */

rp;run;
rp;run;
rp;run;
rp;run;
rp;run;
rp;run;
rp;run;
rp;run;
rp;run;

by
by
by

rp;run;
rp;run;
rp;run;

by
by
by
by
by

rp;run;
rp;run;
rp;run;
rp;run;
rp;run;

by
by
by

rp;run;
rp;run;
rp;run;

by
by

rp;run;
rp;run;

by
by

rp;run;
rp;run;

by
by

rp;run;
rp;run;

by rp;run;
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dat a

dat a
dat a

dat a

dat a

dat a

dat a
dat a

dat a

«

«

; Mer ge

; mer ge
;. mer ge

; mer ge

; mer ge

; Mer ge

; mer ge
; mer ge

; mer ge

«

«

.cvarpats

.cvarpats
.cvarpats

.cvarpats

.cvarpats
.cvarpats

.cvarpats
.cvarpats

.cvarpats

«

«

. G39; by rp;run;

. A1; by rp;run;
. (A2; by rp;run;

. &A5; by rp;run;

. 49; by rp;run;
. Gb2; by rp;run;

. G55; by rp;run;
. Gb6; by rp;run;

. G61; by rp;run;
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Appendix F
STATA Program Used to Perform Pair-wise Comparisons of the GHeP paramaters
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/**********************************************************/

/*pw_GL. do */

/*Di ssertation */
/*Conduct s pairwi se conpari sons of the heterogeneous */
/* partial agreement paraneters for dataset */
[*g#.dta */

/*Si mul ati ons - pw done using |incom conmand */
/*Captures the estimate, se and df for the G Model */
[*for each simulation. */
/* K.B. Kastango */

/**********************************************************/

capture program drop pw_Gl
program define pw_Gl, rclass
/* Version 8.0*/

capture log close

| og using

"C:\aaPhDSi nul ati ons\ HonoG\ G\ adofi | es\do_pwGl_pval .| og", repl ace
use "C:\aaPhDSi nul ati ons\ HonoG G STATAds\ GL. dta", cl ear

di splay "Opened Data Set Gl.dta - X sins, e5m=0"

drop if rp ==

quietly {
generate rpnum-_n
}
quietly {
foreach x of varlist cnt* {

/*Fit GHeP Model, create var estB & seEst*/
glm > x' e6 e5ml e5nm2 e5n3 e5nmd e5nb e5nB, f(p)

i ncom e5ni- e5nP

gen est 12z x' =r(esti mte)

gen sel2z x' =r(se)

gen zl2a x' =est 12z x'/sel2z x

i ncom e5ml- e5nB

gen est 13z x' =r(esti mate)

gen sel3z  x' =r(se)

gen z13a x' =est 13z x'/sel3z x

[incom e5ml-e5m

gen est 14z  x' =r(esti mate)

gen seldz x' =r(se)

gen zl4a x' =est 14z x'/seldz x

i ncom e5ml- e5nb

gen est 15z x' =r(esti mate)

gen selb5z x' =r(se)

gen zlb5a x' =est 15z  x'/selbz x
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i ncom e5ml- e5nb

gen est 16z x' =r(esti mate)
gen sel6z” x' =r(se)

gen zl6a x' =est 16z  x'/sel6z’

i ncom e5n2- e5n8

gen est23z x' =r(estimte)
gen se23z x' =r(se)

gen z23a x' =est 23z x'/se23z"

i ncom e5nR-e5mt

gen est24z" x' =r(esti mate)
gen se24z x' =r(se)

gen z24a’ x' =est 24z  x'/se24z’

[ i ncom e5n2- e5nb

gen est 25z  x' =r(esti mte)
gen se25z x' =r(se)

gen z25a’ x' =est 25z x'/ se25z°

i ncom e5nR- e5nb

gen est26z x' =r(estimte)
gen se26z x' =r(se)

gen z26a’ x' =est 26z" x'/se26z"

i ncom e5nB-e5m

gen est34z x' =r(estimte)
gen se34z" x' =r(se)

gen z34a x' =est 34z x'/se34z"

I i ncom e5nB- e5nb

gen est 35z x' =r(estimte)
gen se35z x' =r(se)

gen z35a x' =est 35z  x'/se35z°

i ncom e5nB-e5nb

gen est 36z x' =r(esti mate)
gen se36z  x' =r(se)

gen z36a x' =est 36z  x'/se36z"

i ncom e5n¥- e5nb

gen est45z  x' =r(esti mate)
gen sed45z x' =r(se)

gen z45a’ x' =est 45z  x' / se45z"

i ncom e5n¥- e5nb

gen est46z x' =r(esti mate)
gen sed6z x' =r(se)

gen z46a’ x' =est 46z x'/sed6z’

i ncom e5nb- e5nb

gen est56z x' =r(estimte)
gen seb6z x' =r(se)

gen z56a’ x' =est 56z  x' /se56z"

}
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quietly {
drop if rp>1
drop r1 r2r3r4r5r6
drop e6 e6¢c0 e6cl eb5nl e5ne
drop e5nB e5mt e5nb e5nb e5c0 ebcl eb5
drop cnt*
}
save
" C:\ aaPhDSi nul ati ons\ HomoG\ G\ STATAds\ cover age\ ado_hong_G1_pval . dt a”
save " C:\aaPhDSi nul ati ons\ HombG\ G\ STATAds\ pwfi | e\ ado_pw _G1_pval . dta"

use "C:\aaPhDSi mul ati ons\ HonoG G STATAds\ pwfi |l e\ado_pw Gl _pval . dta"
cl ear

di spl ay "Opened Data Set"

drop est* se*

reshape | ong zl2acnt zl3acnt zl4acnt zl5acnt zl6acnt z23acnt z24acnt
z25acnt z26acnt z34acnt z35acnt z36acnt z45acnt z46acnt z56acnt, i(rp)

j(sim

repl ace zl2acnt
repl ace zl13acnt
repl ace zl4acnt
repl ace zl5acnt
repl ace zl6acnt
repl ace z23acnt
repl ace z24acnt
repl ace z25acnt
replace z26acnt
repl ace z34acnt
repl ace z35acnt
repl ace z36acnt
repl ace z45acnt
repl ace z46acnt
repl ace z56acnt

-1*abs(z12acnt)
-1*abs(z13acnt)
-1*abs(zl4acnt)
-1*abs(z15acnt)
-1*abs(z16acnt)
-1*abs(z23acnt)
-1*abs(z24acnt)
-1*abs(z25acnt)
-1*abs(z26acnt)
-1*abs(z34acnt)
-1*abs(z35acnt)
-1*abs(z36acnt)
-1*abs(z45acnt)
-1*abs(z46acnt)
-1*abs(z56acnt)

gen pl2=norn(zl2acnt)
gen pl3=norm zl3acnt)
gen pld4=norm zl4acnt)
gen pl5=norm zl5acnt)
gen pl6=norm zl6acnt)
gen p23=norm z23acnt)
gen p24=norm z24acnt)
gen p25=nor m(z25acnt)
gen p26=nornm(z26acnt)
gen p34=norm z34acnt)
gen p35=norm z35acnt)
gen p36=norm z36acnt)
gen p45=norm z45acnt)
gen p46=norm z46acnt)
gen p56=norm z56acnt)

save
"C:\ aaPhDSi nul ati ons\ HombG\ G\ STATAds\ pwfi | e\ ado_r eshape_pw _Gl1_pval . dta"
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use
" C:\ aaPhDSi nul ati ons\ HombG\ G\ STATAds\ pwfi | e\ ado_r eshape_pw _Gl1_pval . dta"
, Clear

drop rp rpnum z*

reshape long p, i(sim j(hyp)

gen p2=p*2

gen nconp=15

gen Atyp=0

replace Atyp=1 if p2 <= 0.0034
list simhyp p2 if Atyp==
table simAtyp

gen Btyp=0

replace Btyp=1 if p2 <=0.05
list simhyp p2 if Btyp==1
save "C:\aaPhDSi nul ati ons\ HonoG\ G\ STATAds\ pwfil e\final pval _Gl. dta"
capture log close

end
pw_Gl
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Appendix G
SAS Codeto Perform Multiple Comparison Procedures
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[*This programis centered around the SAS procedure PROC MJULTTEST*/

/* Dataset "pval s" contains the p-value of the 15, 10, 6, 3, or 1
possi ble multiple conparisons of the heterogeneous K-1 parti al
agreenent paranmeters and a character variabl e denoting which pair-w se
conparison the p-value is from P-values of each conparison was
determ ned usi ng STATA (see Appendix F)*/

/* For exanple, H12 0.610 indicates that the p-value of the pair-wse
conpari son between the heterogeneous partial agreenment parameter of
raters 1 and 2.

Ho: e5ml — e5nm2 =0 ;
*/

/* This specific programis for sinmulations that have sufficient
statistics equal to zero as described by nodel #56 */

i bnane get "C:\aaPhDSi nul ati ons\ HonoG GHePSever e\ STATAds\ pwfile";
I i bname post hoc
"C:\aaPhDSi nul ati ons\ HonoG\ RogSi nDat a\ nul ttest _results";

proc contents data=get.final pval _g56;run; proc sort
dat a=get . fi nal pval _g56; by sinrun;
[*proc print;titlel 'Model 56 ROG_SI M DATA'; run;*/
dat a nod56si ns; set get.final pval _g56;by simif first.sinrun;
/*
proc print;run;

data nod56si ns (keep=adjc resultc sim;

set nod56si Ims;
contrast="H ||trim hyp);
adj c="%adj 56(sim=" || trim(sim]|]|"');";
adj c=conpress(adjc);
resultc="posthoc.results'||trim(sim|]|";";
resul tc=conpress(resultc);
data adj (keep=adjc) result(keep=resultc);

set nmod56si ns; run;

proc print data=adj noobs;titlel 'Mddel 56 ROG_SI M DATA';run;

proc print data=result noobs;run;
*/
%racro adj 56(si m=0) ;
data Sev&sim (renane=(p2=raw_p));

set get.final pval _g56;

contrast="H || trim hyp);

contrast= conpress(contrast);

where sinrF&sim
run;
proc nmulttest pdata=Sev&si mbon sid hol mstepsid fdr
out =post hoc. resul ts&si m
titlel 'Bonferroni, Sidak, Stepdown Bon, Stepdown Sidak, False
Di scovery Rate';
title2 "Sinulation Scenario &si m ROG_SI M _DATA"; run;
proc print data=posthoc.results&simrun;
%rend adj 56;

%adj 56(si m=791); %adj 56(si mF977);
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dat a nodel 56 (keep=si m hyp bon_p);
set posthoc.results791 posthoc.results977 ;
run; proc sort; by simhyp;
dat a nodel 56; set nodel 56; n=_n_; run;
proc transpose out=first(drop=_nane_); by n sim var hyp bon_p ; run;
proc transpose data=first out=posthoc. nb6Bon(drop=_nane_) prefix=pbon;

by sim var col 1; proc print;
titlel '"Bonferroni - Mddel 56 ROG SI M DATA';
title2 " " ;run;

dat a post hoc. nb6bon (renane=(pbon2=pbonN));
set posthoc. nb6bon; run;
dat a post hoc. nb6bon (drop=pbonl );
set posthoc. nb6bon;
nodel =56; run;
proc print;
titlel " Bonferroni - Mddel 56 ROG _SI M DATA';
title2 " ' ;run;

/**** RAW*****/

dat a nodel 56 (keep=sim hyp raw_p);
set posthoc.results791 posthoc.results977 ;
run; proc sort; by sim hyp;
dat a nodel 56; set nodel 56; n=_n_; run;
proc transpose out=first(drop=_nanme_); by n sim var hyp raw.p ; run;
proc transpose data=first out=posthoc. nb6raw( drop=_nane_) prefix=praw,

by sim var col 1; proc print;
titlel 'RAW- Mdel 56 ROG _SI M DATA';
title2 ' ' ;run;

dat a posthoc. nb6raw (rename=(praw2=prawN) ) ;
set posthoc. nb6raw; run;
dat a posthoc. nb6raw (drop=prawl );
set posthoc. nb6raw,

nmodel =56; run;

proc print;
titlel ' RAW- Model 56 ROG S| M DATA';
title2 " ' ;run;

/‘k‘k‘k END RAW****/
[**** STEP BONFERRONI ****/

dat a nodel 56 (keep=si m hyp stpbon_p);

set posthoc.results791 posthoc.results977 ;

run; proc sort; by sim hyp;

dat a nodel 56; set npdel 56; n=_n_; run;

proc transpose out=first(drop=_nane_); by n sim var hyp stpbon_p ;
run;

proc transpose data=first out=posthoc. nb6st pBon(drop=_nane_)

prefi x=st pbon;

by sim var col 1; proc print;
titlel 'S Bonferroni - Model 56 ROG_SIM DATA';
title2 " " ;run;

dat a posthoc. nb6st pbon (renane=(st pbon2=st pbonN));
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set posthoc. nb6st pbon; run;
dat a post hoc. mb6st pbon (drop=stpbonl );
set posthoc. nb6st pbon;
nodel =56; run
proc print;
titlel 'S Bonferroni - Mddel 56 ROG SI M DATA';
title2 " ' ;run;
[*** END STEP BON ******]
/*** Sl DAK****/

dat a nodel 56 (keep=sim hyp sid_p);
set posthoc.results791 posthoc.resul ts977
run; proc sort; by simhyp;
dat a nodel 56; set npdel 56; n=_n_; run
proc transpose out=first(drop=_name_); by n sin var hyp sid_p ; run
proc transpose data=first out=posthoc. nb6si d(drop=_nane_) prefix=psid;

by sim var col 1; proc print;
titlel 'S - Mdel 56 ROG SI M DATA';
title2 " " ;run;

dat a posthoc. nb6si d (rename=(psi d2=psi dN));
set posthoc. nb6si d; run;

data posthoc. nb6sid (drop=psidl );

set posthoc. nb6si d;

nodel =56; run;

proc print;
titlel ' S - Mdel 56 ROG SI M DATA';
title2 " ' ;run;
[**** END SI DAK ***/
[*** STEP S| DAK****/

dat a nodel 56 (keep=sim hyp stpsid _p);
set posthoc.results791 posthoc.results977
run; proc sort; by sim hyp;
dat a nodel 56; set nodel 56; n=_n_; run;
proc transpose out=first(drop=_nanme_); by n sinm var hyp stpsid_p ;
run;
proc transpose data=first out=posthoc. nb6st psi d(drop=_name_)
prefix=pstpsid;

by sim var col 1; proc print;
titlel 'SS - Mddel 56 ROG SI M DATA';
title2 " ' ;run;

dat a post hoc. nb6st psid (renane=(pstpsi d2=pst psi dN));
set posthoc. nb6st psid; run;

dat a posthoc. nb6st psid (drop=pstpsidl );

set posthoc. nb6st psi d;

nodel =56; r un;

proc print;
titlel ' SS - Mddel 56 ROG _SI M DATA';
title2 " ' ;run;
[*** END STEP S| DAK ****x/

209



Appendix H
SAS Commands for Holm’s Step-Down Procedure
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/*Holm's Step Down Procedure*/

/ *Mar gi nal Honopgeneity*/
data pval sMO,
i nput conparison$ raw p;

cards;
dn84 0.097
dmd5 0.178
dmi4 0.178
dmd6 0.327
dn23 0. 341
dn86 0.341
dn24 0. 341
dml3 0.571
dn85 0.571
dml2 0.657
dml6é 0.657
dnm25 0. 657
dnb6 0. 657
dml5 1.00
1.00

dn26

proc nmulttest pdata=pval sMO hol m
title * MCP Procedure: Marginal Honobgeneity';
run;

/ *Mar gi nal Het erogeneity*/
data pval sMG;
i nput conparison$ raw_p;

cards;
dmd6 0. 041
dn24 0. 052
dmd5 0.125
dml4 0. 146
dn86 0. 346
dnm23 0.362
dn84 0. 444
dn85 0.570
dml6 0.584
dml2 0.610
dml3 0.641
dnb6 0. 667
dnm25 0. 695
dml5 0.908
0. 969

dn26
broc nul tt est pdat a=pval sMG hol m

title * MCP Procedure: Marginal Heterogeneity';
run;

211



Appendix |
SAS Out put From Commands for Holm’s Step-Down Procedure for Table 14
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Test

© oo~NOoO O WDNER

e el
O~ WNRO

Raw

0.0970
0.1780
0.1780
0.3270
0.3410
0.3410
0.3410
0.5710
0.5710
0.6570
0.6570
0.6570
0.6570
1.0000
1.0000

MCP Procedure: Marginal Homogeneity

The Multtest Procedure

p-Values

Stepdown

Bonferroni Bonferroni
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
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Sidak

0.
0.
0.
0.
0.
0.
0.
1.
.0000
.0000
.0000
-0000
-0000
-0000
.0000

PR RPRRPRPRPPRPBR

7836
9471
9471
9974
9981
9981
9981
0000

Stepdown
Sidak

.7836
-9357
-9357
-9914
-9914
.9914
-9914
9989
-9989
-9989
9989
-9989
-9989
-0000
1.0000

e NeNeNeoNoNeolNolNolNolNoNolNolNol



Test

©oo~NO O~ WNDNER

P
= O

12
13
14
15

0.
0.
0.
0.
.3460
.3620
-4440
-5700
-5840
.6100
.6410
.6670
.6950
-9080
-9690

OO0 o000 pOO0OO0OOo0Oo

MCP Procedure: Marginal Heterogeneity

Raw

0410
0520
1250
1460

The Multtest Procedure

p-Values

Stepdown

Bonferroni Bonferroni
0.6150 0.6150
0.7800 0.7280
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
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Sidak

0.4663
0.5511
0.8651
0.9063
0.9983
0.9988
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Stepdown
Sidak

0.
.5265
.8238
.8495
-9906
-9906
-9949
-9988
-9988
-9988
-9988
-9988
-9988
-9988
-9988

[eleNeolNeolNeolNeolNeolNolNolNolNolNolNeolNel
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Appendix J
SAS Commands Summarizing M CP Results by the Number of Possible Pair-wise
Comparisons
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Because each of the 64 possible GHeP models alows for al or a subset of the 15 possible
pair-wise comparisons, 15 variables per multiple comparison procedure were created. For
example, variables pbonA, pbonB, .... pbonP were created to represent the Bonferroni
adjusted p-value from each of the fifteen pair-wise comparisons. The suffix ‘A’ through
‘P (skipping ‘O’) uniquely represents what two heterogeneous partial agreement
parameters are involved in the pair-wise comparison. Variable pbonA represents the pair-
wise comparison ofds and d?, pbonB represents the pair-wise comparison ofd. and d.’,

..., and pbonP represents the pair-wise comparison ofd5g and df. Similar variables were

created for unadjusted p- values and the Holm's -Bonferroni, Sidak, and Holm’ s-Sidak
adjusted p-values.

i bname post hoc
"C:\aaPhDSi nul ati ons\ HonoG ChepAt yp4a\ mul ttest _resul t s\ pval ues”;

dat a post hoc. QHonGr aw_Dat al5;
set posthoc. nilr aw,

if (.<prawA<=.05) then cl12=1; if prawA > 0.05 then c12=0
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0;
if (.<prawC<=.05) then cl1l4=1; if prawC > 0.05 then c14=0;
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0;
if (.<prawk<=.05) then c16=1; if prawk > 0.05 then c16=0;
if (.<prawrF<=.05) then c23=1; if prawr > 0.05 then ¢c23=0;
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0;
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then c25=0;
if (.<praw <=.05) then c26=1; if prawi > 0.05 then c26=0;
if (.<prawd<=.05) then c34=1; if prawJ > 0.05 then ¢34=0;
if (.<prawk<=.05) then ¢35=1; if prawkK > 0.05 then ¢35=0;
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then ¢c36=0;

if (.<prawwk=.05) then c45=1; if prawM .05 then c45=0
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0;

\"
o

if (.<prawP<=.05) then c56=1; if prawP > 0.05 then ¢c56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum( c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, c34, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46) ;
Rat er 5=Sum( c15, c25, ¢35, c45, c56);
Rat er 6=Sunm( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sun(c12, c23, c25, c26);
R3not 4=Sum( c13, c23, c35, c36) ;
Rat er 4=Sum( c14, c24, c34, c45, c46) ;
R5not 4=Sun( c15, c25, ¢35, c56) ;
Rénot 4=Sum(c16, c26, c36, c56) ; run;
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proc freq;tabl es nodel;
titlel '"15 Honmog GSi nul ated Data - 1K' ;
title2 "Results of RAW MCPs'; run
proc freq;tables c12 c13 cl14 cl15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;
titlel '15 Honpg_GSinul ated Data - 1K';
title2 "Results of RAWMCPS';run;
proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel '"15 Honmog_GSinul ated Data - 1K' ;
title2 "Results of RAWMCPS'; run;
proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;
run;
/*10 P-W Conparisons*/
dat a post hoc. QHonGr aw_Dat al0
set posthoc. n2raw post hoc. n8raw post hoc. miraw post hoc. nbr aw
post hoc. m6r aw post hoc. nm7r aw,

if (.<prawA<=.05) then cl12=1; if prawA > 0.05 then c12=0;
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0;
if (.<prawC<=.05) then c14=1; if prawC > 0.05 then c14=0;
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0;
if (.<prawk<=.05) then c16=1; if prawe > 0.05 then c16=0;
if (.<prawrF<=.05) then c23=1; if prawr > 0.05 then ¢23=0;
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0;
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then ¢25=0;
if (.<prawl <=.05) then c26=1; if prawi > 0.05 then c26=0;
if (.<prawd<=.05) then c34=1; if prawd > 0.05 then c34=0;
if (.<prawk<=.05) then ¢35=1; if prawkK > 0.05 then ¢35=0;
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then ¢c36=0;

if (.<prawMk=.05) then c45=1; if prawM > 0.05 then c45=0
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0;

if (.<prawP<=.05) then c56=1; if prawP > 0.05 then ¢56=0;

Rater 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, ¢34, ¢35, c36);
Rat er 4=Sunm( c14, c24, c34, c45, c46) ;
Rat er 5=Sunm( c15, c25, ¢35, c45, c56);
Rat er 6=Sun( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sum(c12, c23, c25, c26);
R3not 4=Sun( c13, c23, c35, c36) ;
Rat er 4=Sunm( c14, c24, c34, c45, c46) ;
R5not 4=Sunm( c15, c25, ¢35, c56) ;
Rénot 4=Sum(c16, c26, c36, c56) ; run;

proc freq;tables nodel
titlel '"10 Honmog_GSi nul ated Data - 1K' ;
title2 '"Results of RAW MCPS';run;
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proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel '10 Honmog_GSi nul ated Data - 1K' ;

title2 "Results of RAWNMCPS'; run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;

titlel '10 Honpbg_GSi nul ated Data - 1K';

title2 'Results of RAW MCPs'; run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;

run;

dat a post hoc. HonG_Dat a6;

set posthoc. nBraw post hoc. mBraw post hoc. mLOr aw
post hoc. mLlr aw post hoc. ml2r aw post hoc. mL3r aw
post hoc. mL5r aw post hoc. nil6r aw

post hoc. mL7r aw post hoc. mL8r aw post hoc. nil9r aw
post hoc. m22raw ;

if (.<prawA<=.05) then cl12=1; if prawA > 0.05 then c12=0;
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0;
if (.<prawC<=.05) then cl1l4=1; if prawC > 0.05 then c14=0;
if (.<prawbD<=.05) then c15=1; if prawD > 0.05 then c15=0;
if (.<prawk<=.05) then cl16=1; if prawk > 0.05 then c16=0;
if (.<prawrF<=.05) then c23=1; if prawr > 0.05 then ¢c23=0;
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0;
if (.<prawtk=.05) then c25=1; if prawH > 0.05 then c25=0;
if (.<praw <=.05) then c26=1; if prawi > 0.05 then c26=0;
if (.<prawd<=.05) then c34=1; if prawJ > 0.05 then c34=0;
if (.<prawk<=.05) then c35=1; if prawkK > 0.05 then ¢35=0;
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then ¢36=0;

o

if (.<prawMk=.05) then c45=1; if prawM > 0.05 then c45=0;
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0;

if (.<prawP<=.05) then c56=1; if prawP > 0.05 then ¢56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, c34, ¢35, c36);
Rat er 4=Sunm( c14, c24, c34, c45, c46) ;
Rat er 5=Sunm( c15, c25, ¢35, c45, c56);
Rat er 6=Sun( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sun(c12, c23, c25, c26);
R3not 4=Sum(c13, c23, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46);
R5not 4=Sun( c15, c25, ¢35, c56) ;
Rénot 4=Sum(c16, c26, c36, c56) ; run;

proc freq;tabl es nodel;
titlel "6 Honpg GSinmulated Data - 1K' ;
title2 "Results of RAWMCPS';run;
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proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel '6 Honog GSinmul ated Data - 1K' ;

title2 "Results of RAWNMCPS'; run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel '6 Honpg GSinmulated Data - 1K' ;

title2 'Results of RAW MCPs'; run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;
run;
/* THREE P-W Conpari son*/

dat a post hoc. HonG_Dat a3;

set

post hoc. m23r aw post hoc. m25r aw post hoc. m26r aw post hoc. n28r aw
post hoc. m29r aw post hoc. n81raw post hoc. nB3raw post hoc. nB4r aw
post hoc. n36r aw

post hoc. n38r aw

post hoc. mi1lraw post hoc. n¥2r aw

if (.<prawA<=.05) then cl12=1; if prawA > 0.05 then c12=0;
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0;
if (.<prawC<=.05) then cl1l4=1; if prawC > 0.05 then c14=0;
if (.<prawbD<=.05) then c15=1; if prawD > 0.05 then c15=0;
if (.<prawk<=.05) then cl16=1; if prawk > 0.05 then c16=0;
if (.<prawrF<=.05) then c23=1; if prawr > 0.05 then ¢c23=0;
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0;
if (.<prawtk=.05) then c25=1; if prawH > 0.05 then c25=0;
if (.<praw <=.05) then c26=1; if prawi > 0.05 then c26=0;
if (.<prawd<=.05) then c34=1; if prawJ > 0.05 then c34=0;
if (.<prawk<=.05) then c35=1; if prawkK > 0.05 then ¢35=0;
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then ¢36=0;

o

if (.<prawMk=.05) then c45=1; if prawM > 0.05 then c45=0;
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0;

if (.<prawP<=.05) then c56=1; if prawP > 0.05 then ¢56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, c34, ¢35, c36);
Rat er 4=Sunm( c14, c24, c34, c45, c46) ;
Rat er 5=Sunm( c15, c25, ¢35, c45, c56);
Rat er 6=Sun( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sun(c12, c23, c25, c26);
R3not 4=Sum(c13, c23, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46);
R5not 4=Sun( c15, c25, ¢35, c56) ;
Rénot 4=Sum(c16, c26, c36, c56) ; run;

proc freq;tables nodel
titlel '3 Honpg GSinmul ated Data - 1K' ;
title2 "Results of RAW MCPs'; run;

219



proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel '3 Honog GSinmul ated Data - 1K' ;

title2 "Results of RAWNMCPS'; run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;

titlel '3 Honpg GSinmulated Data - 1K' ;

title2 'Results of RAW MCPs'; run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;

run;

/*ONE P-W Conpari son*/
dat a post hoc. HonG Dat al,;
set posthoc. m5raw
post hoc. mM9raw post hoc. nblraw post hoc. nb6r aw

if (.<prawA<=.05) then cl12=1; if prawA > 0.05 then c12=0
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0;
if (.<prawC<=.05) then cl14=1; if prawC > 0.05 then c14=0;
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0;
if (.<prawk<=.05) then cl16=1; if prawk > 0.05 then c16=0;
if (.<prawkF<=.05) then c23=1; if prawk > 0.05 then ¢23=0;
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0;
if (.<prawtk=.05) then c25=1; if prawH > 0.05 then c25=0;
if (.<praw <=.05) then c26=1; if prawi > 0.05 then c26=0;
if (.<prawd<=.05) then c34=1; if prawJ > 0.05 then ¢34=0;
if (.<prawk<=.05) then ¢35=1; if prawkK > 0.05 then ¢35=0;
if (.<prawkL<=.05) then c36=1; if prawL > 0.05 then ¢36=0;

if (.<prawwk=. 05) then c45=1; if prawM .05 then c45=0
if (.<prawN<=. 05) then c46=1; if prawN > 0.05 then c46=0;

\Y
o

if (.<prawP<=.05) then c56=1; if prawP > 0.05 then ¢c56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sum( c13, c23, ¢34, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46) ;
Rat er 5=Sum( c15, c25, ¢35, c45, c56);
Rat er 6=Sunm( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sum(c12, c23, c25, c26) ;
R3not 4=Sum(c13, c23, c35, c36) ;
Rat er 4=Sum( c14, c24, c34, c45, c46);
R5not 4=Sum( c15, c25, ¢35, c¢56) ;
R6énot 4=Sum(c16, c26, c36, c56) ; run;

proc freq;tabl es nodel;

titlel "1 Honopg GSinmulated Data - 1K' ;

title2 "Results of RAWMCPS';run

proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;
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titlel "1 Honopg GSinmul ated Data - 1K' ;

title2 "Results of RAWMCPS';run;

proc freqg;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel "1 Honpbg GSi mul ated Data - 1K' ;

title2 "Results of RAW MCPs'; run

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;
run;

dat a post hoc. QHonmGbon_Dat al5;
set
post hoc. mLbon ;

if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0;
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0;
if (.<pbonC<=.05) then cl14=1; if pbonC > 0.05 then c14=0;
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0;
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0;
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then c23=0;
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0;
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0;
if (.<pbonl<=.05) then c26=1; if pbonl > 0.05 then c26=0;
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then ¢34=0;
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then ¢35=0;
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then ¢36=0;

if (.<pbonM=.05) then c45=1; if pbonM .05 then c45=0;
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0;

\Y%
o

if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then ¢56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, ¢34, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46);
Rat er 5=Sum( c15, c25, ¢35, c45, c56);
Rat er 6=Sum( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sunm(c12, c23, c25, c26);
R3not 4=Sum(c13, c23, c35, c36) ;

Rat er 4=Sunm( c14, c24, c34, c45, c46) ;
R5not 4=Sum( c15, c25, ¢35, c56) ;
Rénot 4=Sum( c16, c26, c36, c56) ;
run;

proc freq;tabl es nodel;

titlel '15 Honpbg_GSi nul ated Data - 1K';

title2 '"Results of BON MCPs';run;

proc freq;tables c12 c13 cl14 cl15 c16 ¢c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel '15 Honmog_GSinul ated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
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titlel '"15 Honmog_GSinul ated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4,
run;

dat a post hoc. QHonGbon_Dat al0;
set posthoc. n2bon post hoc. nBbon post hoc. mibon post hoc. nbbon
post hoc. m6bon post hoc. ni7rbon

if (.<pbonA<=.05) then cl12=1; if pbonA > 0.05 then c12=0;
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0;
if (.<pbonC<=.05) then cl14=1; if pbonC > 0.05 then c14=0;
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0;
if (.<pbonE<=.05) then cl16=1; if pbonE > 0.05 then c16=0;
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then ¢c23=0;
if (.<pbonGs=.05) then c24=1; if pbonG > 0.05 then c24=0;
if (.<pbonHk=.05) then c25=1; if pbonH > 0.05 then ¢c25=0;
if (.<pbonl<=.05) then c26=1; if pbonl > 0.05 then c26=0;
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then c34=0;
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then ¢35=0;
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then ¢36=0;

if (.<pbonMc=.05) then c45=1; if pbonM > 0.05 then c45=0;
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0;

if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then ¢56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, c34, ¢35, c36);
Rat er 4=Sunm( c14, c24, c34, c45, c46);
Rat er 5=Sunm( c15, c25, ¢35, c45, c56);
Rat er 6=Sun{ c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sum(c12, c23, c25, c26) ;
R3not 4=Sum( c13, c23, c35, c36) ;

Rat er 4=Sum( c14, c24, c34, c45, c46) ;
R5not 4=Sun( c15, c25, ¢35, c56) ;
Rénot 4=Sun( c16, c26, c36, c56) ;
run;

proc freq;tables nodel

titlel '"10 Honmog_GSi nul ated Data - 1K' ;

title2 "Results of BON MCPS';run;

proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel '10 Honog_GSi nul ated Data - 1K';

title2 '"Results of BON MCPs';run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel '"10 Honog_GSi nul ated Data - 1K';

title2 "Results of BON MCPs';run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;
run;
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dat a post hoc. QHomGoon_Dat a6;

set post hoc. nBbon post hoc. mBbon post hoc. mLObon
post hoc. mLl1bon post hoc. mi2bon post hoc. nil3bon

post hoc. mLl5bon post hoc. nil6bon

post hoc. mL7bon post hoc. mL.8bon post hoc. nl9bon post hoc. n22bon;

if (.<pbonA<=.05) then cl12=1; if pbonA > 0.05 then c12=0;
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0;
if (.<pbonC<=.05) then cl14=1; if pbonC > 0.05 then c14=0;
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0;
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0;
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then ¢c23=0;
if (.<pbonGs=.05) then c24=1; if pbonG > 0.05 then c24=0;
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0;
if (.<pbonl<=.05) then c26=1; if pbonl > 0.05 then c26=0;
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then ¢34=0;
if (.<pbonK<=.05) then ¢35=1; if pbonK > 0.05 then ¢35=0;
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then ¢36=0;

if (.<pbonMc=.05) then c45=1; if pbonM > 0.05 then c45=0;
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0;

o

if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then ¢c56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum( c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, ¢34, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46) ;
Rat er 5=Sunm( c15, c25, ¢35, c45, c56);
Rat er 6=Sun( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sum(c12, c23, c25, c26) ;
R3not 4=Sum(c13, c23, c35, c36) ;

Rat er 4=Sum( c14, c24, c34, c45, c46);
R5not 4=Sum( c15, c25, ¢35, c¢56) ;
R6énot 4=Sun( c16, c26, c36, c56) ;
run;

proc freq;tabl es nodel;

titlel "6 Honbpg GSinmulated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel '6 Honbpg GSinmulated Data - 1K' ;

title2 '"Results of BON MCPs';run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel "6 Honpg GSinmulated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;
run;
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dat a post hoc. QHomGoon_Dat a3;

set posthoc. n23bon post hoc. m25bon post hoc. m26bon post hoc. m28bon
post hoc. m29bon post hoc. nB1lbon post hoc. mMB3bon post hoc. nB4bon
post hoc. mM36bon post hoc. mB8bon

post hoc. mM1lbon post hoc. md2bon ;

if (.<pbonA<=.05) then cl12=1; if pbonA > 0.05 then c12=0;
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0;
if (.<pbonC<=.05) then cl14=1; if pbonC > 0.05 then c14=0;
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0;
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0;
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then ¢c23=0;
if (.<pbonGs=.05) then c24=1; if pbonG > 0.05 then c24=0;
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0;
if (.<pbonl<=.05) then c26=1; if pbonl > 0.05 then c26=0;
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then ¢34=0;
if (.<pbonK<=.05) then ¢35=1; if pbonK > 0.05 then ¢35=0;
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then ¢36=0;

if (.<pbonMc=.05) then c45=1; if pbonM > 0.05 then c45=0;
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0;

o

if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then ¢c56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum( c12, c23, c24, c25, c26);
Rat er 3=Sum(c13, c23, ¢34, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46) ;
Rat er 5=Sunm( c15, c25, ¢35, c45, c56);
Rat er 6=Sun( c16, c26, c36, c46, c56) ;

Rlnot 4=Sum(c12, c13, c15, c16);
R2not 4=Sum(c12, c23, c25, c26) ;
R3not 4=Sum(c13, c23, c35, c36) ;

Rat er 4=Sum( c14, c24, c34, c45, c46);
R5not 4=Sum( c15, c25, ¢35, c¢56) ;
R6énot 4=Sun( c16, c26, c36, c56) ;
run;

proc freq;tabl es nodel;

titlel '3 Honpg GSinmulated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel "3 Honpbg GSi mul ated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel '3 Honpg GSinmulated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not 4;
run;
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dat a post hoc. QHomGbon_Dat al
set posthoc. mM5bon posthoc. M9bon post hoc. nblbon posthoc. nb6bon

if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0;
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0;
if (.<pbonC<=.05) then cl14=1; if pbonC > 0.05 then c14=0;
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0;
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0;
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then ¢c23=0;
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0;
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0;
if (.<pbonl<=.05) then c26=1; if pbonl > 0.05 then c26=0;
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then ¢34=0;
if (.<pbonK<=. 05) then c35=1; if pbonK > 0.05 then ¢35=0;
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then ¢36=0;

if (.<pbonM=.05) then c45=1; if pbonM > 0.05 then c45=0;
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0;

if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then ¢56=0;

Rat er 1=Sum(c12, c13, c14, c15, c16);
Rat er 2=Sum(c12, c23, c24, c25, c26);
Rat er 3=Sunm( c13, c23, ¢34, ¢35, c36);
Rat er 4=Sum( c14, c24, c34, c45, c46);
Rat er 5=Sum( c15, c25, ¢35, c45, c56);
Rat er 6=Sum( c16, c26, c36, c46, c56) ;

Rlnot 4=Sunm(c12, c13, c15, c16);
R2not 4=Sunm(c12, c23, c25, c26);
R3not 4=Sunm(c13, c23, c35, c36) ;

Rat er 4=Sunm( c14, c24, c34, c45, c46) ;
R5not 4=Sunm( c15, c25, ¢35, c56) ;
Rénot 4=Sum( c16, c26, c36, c56) ;
run;

proc freq;tabl es nodel;

titlel "1 Honopg GSinmulated Data - 1K' ;

title2 '"Results of BON MCPs';run;

proc freq;tables c12 c13 cl14 cl15 c16 ¢c23 c24 c25 c26 ¢34 ¢35 c36 c45
c46 c56;

titlel "1 Honog GSinmul ated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Raterl Rater2 Rater3 Rater4 Rater5 Rater6;
titlel "1 Honpbg GSi mul ated Data - 1K' ;

title2 "Results of BON MCPs';run;

proc freq;tables Rlnot4 R2not4 R3not4 Rater4 R5not4 R6not4;run
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