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When an outcome is rated by several raters, ensuring consistency across raters 

increases the reliability of the measurement.  Tanner and Young (1985) proposed a 

general class of log- linear models to assess agreement among K raters and a rating scale 

with C nominal categories.  Their methodology can be used to assess pair-wise agreement 

among three or more raters.  Rogel et al. (1996, 1998) extended this work by assessing 

various patterns of agreement among rater sub-groups of size K-1.  These models can be 

used to test the assumption of rater exchangeability.  Although parameters from these 

models can be used to identify atypical raters, no formal inferential procedures are 

available. I propose a formal inferential approach that can be used to test the assumption 

of rater exchangeability and to identify an atypical rater. The global and heterogeneous 

partial agreement model is fit to the data and pair-wise comparisons of the K partial 

agreement parameters are made, adjusting the p-values for the multiple comparisons 

made. The heterogeneous partial agreement parameter that is constantly involved in the 

pair-wise comparisons that are statistically significant is distinguished. The premise is 

that, if there is an atypical rater, at least one heterogeneous partial agreement parameter 

will differ from at least one of the remaining K-1 partial agreement parameters. The 

approach is illustrated using published data from an intestinal biopsy rating study with six 

raters (Rogel et al., 1998). Overall Type I error and the power of the inferential approach 
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to correctly identify atypical raters are assessed via simulation with rater sub-groups of 

size 5. The Bonferroni, Sidak, and Holm’s Step-down procedures using the Bonferroni 

and Sidak adjustments are used to control the overall Type I error.  Being able to 

correctly identify an atypical rater, if present, and improving the consistency of ratings 

directly, influence the reliability of the measurement and the power of the study for a 

given sample size. Consequently, more informative studies can be conducted of 

interventions (e.g., behavioral, medicinal) that may have a significant positive impact on 

the public’s health.   
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1. INTRODUCTION 

 

Unreliable or imprecise measurement of the primary outcome, whether continuous or 

categorical, limits the power of a study.  One of the fundamental issues surrounding the 

design and analysis of a study involving a primary outcome measured by a subjective 

nominal rating scale by multiple raters is the reduced reliability of the measurement due 

to rater differences in rating the response.  These differences can occur between raters at 

a single time point (inter-rater) or within raters (intra-rater) across time.  The larger the 

amount of variability due to inter-rater or intra-rater differences, the greater the reduction 

in a study’s power.  It is difficult to demonstrate the benefit of new treatments (e.g., 

behavioral interventions, medicine) with insufficiently powered studies.   

I focus on ‘agreement’, defined as the reproducibility of a categorical outcome.  

Although agreement is defined for both ordinal and nominal outcomes, the focus of the 

present work is on nominal outcomes.  For nominal outcomes, such as the absence or 

presence of lesions determined by categorizing morphological features of biopsy 

specimens, each rater should have sufficient experience with the histological 

characteristics associated with the lesion for correct classification. At best, each specimen 

is objectively categorized with each rater using the same classification criteria. At worst, 

the ratings are highly subjective. 

Summary measures of overall agreement, such as Cohen’s Kappa (Cohen, 1960) 

assume that the raters are interchangeable.  This statistic does not focus explicitly on the 

contributions of individual raters or groups of raters to the overall summary measure and 

cannot be used to identify atypical raters.  There are situations, however, where 

identifying atypical raters is of particular interest.   
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My work focuses on identifying atypical raters for nominal data. That is, are there 

any raters who are inconsistent in their characterizations of the outcome with respect to 

the other raters?  If so, how can they be identified?  The log- linear modeling approach of 

Rogel et al. (1996, 1998) allows the assumption of rater exchangeability to be tested in a 

setting where K raters rate the same patients.  They define parameters that are used to 

assess various patterns of agreement but do not address explicitly the identification of 

individual raters.  The focus of this work was to formalize inferential approaches to 

identify atypical rater(s) within the framework of these models.  

In chapter 2 I review two approaches to assess inter-rater agreement for nominal 

categorical data, summary statistics and log- linear modeling.  I focused on the log-linear 

modeling approaches used by Tanner and Young (1985, JASA) and Rogel et al. (1996, 

1998) to model inter-rater agreement and quantify the magnitude of inter-rater agreement.  

I consider the applicability of formal statistical inference to identify an atypical rater, and 

review relevant multiple comparison procedures for identifying atypical raters.   

The inferential approach and the simulation study conducted to assess the Type I 

error and power of the approach are described in Chapter 3.  The analysis of published 

data from an inter-rater agreement study involving six raters using these methods and the 

results of the simulation study are presented in Chapter 4.  Discussion of the results and 

conclusions are in Chapter 5. 
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2. LITERATURE REVIEW 

 

I review two basic approaches to assessing rater agreement for nominal categorical data.  

One approach focuses on the use of the summary statistic Kappa (Cohen, 1960).  The 

second approach focuses on modeling the structure of agreement in the data using log-

linear models (Tanner and Young, 1985; Rogel et al., 1996, 1998). 

 

2.1 QUANTIFYING AGREEMENT USING THE SUMMARY STATISTIC 
KAPPA 

The predominant summary statistic for assessing agreement involving categorical data is 

the Kappa (Cohen 1960) statistic.  The statistic originated as a chance-corrected 

coefficient of agreement for a fixed pair of raters (K=2) rating the same patients using a 

nominal rating scale with two outcomes (C=2).  It has since been generalized to situations 

involving (i) two raters, multiple categories, (ii) multiple raters, two categories, and (iii) 

multiple raters, multiple categories.  Although the statistic has been defined for both 

ordinal and nominal categories, Kappa for situations (i) – (iii) is described in the context 

of the nominal case. 

 

2.1.1. Two Raters , Binary Outcome 

The statistic for two raters and a binary outcome is described as follows:  Suppose two 

raters independently identify N slides as having cancer cells absent (0) or present (1).  

Each slide is allocated into one of the 22 cells as shown in Table 1.  Let
1 2i ix  represent the 

number of slides assigned to category i by the first rater and to category i by the second 
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rater where index i takes values 0 or 1.  Let iix  represent the number of slides assigned to 

category i by both raters, 
1i

x +  represent the total number of slides assigned to category i 

by the first rater, and 
2i

x+  represent the number of slides assigned to category i by the 

second rater. 

Table 1. General Layout of a 2x2 Contingency Table Denoting Agreement 

 Rater 2  
Rater 1 0 1 Total 
0 x00 x01 x0+ 
1 x10 x11 x1+ 
Total x+0 x+1 x++ = N 
 

Kappa is defined 0 ,
1

e

e

P P
P

−
Κ =

−
 (Fleiss, Cohen, Everitt, 1969) where Po is the observed 

proportion of agreement and Pe is the expected proportion of agreement by chance,  

1 2

1 2

1 1

0
0 0

 and .i i
i i e

i i

x x
P x P

N N
+ +

= =

  
= =   

  
∑ ∑  

Landis and Koch (1977) assigned the following degree of agreement for varying values 

ofΚ :  

                          Κ   < 0 Poor    0.41 < Κ  < 0.6    Moderate 

                   0 < Κ  < 0.2 Slight   0.61 < Κ  < 0.8 Substantial 

              0.21 < Κ  < 0.4 Fair   0.81 < Κ  < 1.0 Almost 

perfect. 

 

2.1.2. Two Raters, Multiple (C) Nominal Outcomes  

An example of multiple nominal outcomes would be stages of sleep (e.g., Wakefulness, 

Stage 1, Stage 2, Stage 3, Stage 4, and Stage REM).  Suppose two raters independently 
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classify N epochs (defined time intervals, e.g., 30 seconds) of physiological data into one 

of C nominal sleep stage categories. Each epoch is allocated into one of the 2C  cells as 

shown in Table 2.  Let 
1 2i ix  represent the number of epochs assigned to category i by the 

first rater and to category i by the second rater where index i takes values 0 to C-1.  Let 

iix  represent the number of epochs assigned to category i by both raters, 
1i

x +  represent 

the total number of epochs assigned to category i by the first rater, and 
2i

x+  represent the 

number of epochs assigned to category i by the second rater.  

Table 2. General Layout of a Two Dimensional C x C Contingency Table Denoting 
Agreement 

  Rater 2  
 0 1 …i2… C-1 Total 
0 x00 x01 X0i2 xC-1 C-1 x0+ 
1 x10 x11 X1i2 xC-1 C-1 x1+ 
: 
i1 
: 

: 
xi0 

: 

: 
xi1 

: 

: 
xi1j2 

: 

: 
xC-1 C-1 

: 
xi+ 

: 
C-1 xC-1 0 xC-1 1 xC-1 i2 xC-1 C-1 x C-1 + 

R
at

er
 1

 

Total x+0 x+1 x+j x+ C-1 x++ = N 
 

Kappa is defined ,
1

o e

e

P P
P

−
Κ =

−
 (Fleiss, Cohen, Everitt, 1969) where Po is the observed 

proportion of agreement and Pe is the expected proportion of agreement by chance,  

1 2

1 2

1 1

0
0 0

1
   and  .

C C
i i

i i e
i i

x x
P x P

N N N

− −
+ +

= =

  
= =   

  
∑ ∑

 

 

2.1.3. Multiple (K) Raters , Binary Outcome 

Fleiss (1981) generalized the original kappa to the situation where there are more than 2 

raters (K>2).  The generalization is made with the assumption that “the raters responsible 
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for rating one subject are not assumed to be the same as those responsible for rating 

another (p.225, Fleiss, 1981)”. This kappa is given by                 

                                           

1

( )

1
( 1)

n
i i i

i i

x m x
m

n m pq
=

−

Κ = −
−

∑

   

where 

i

i

i

                       number of subjects rated;
                      number of raters rating subject ;
                      number of positive ratings on subject ;  

                      

n
m i
x i

m

=
=

=

−

i

1

i

1

 number of negative ratings on subject ;

                       mean number of ratings per subject  ;

                       overall proportion of positive ratings ;

          

n

i
i

n
m
n

i

x

nm

x i

m

p =

=

=

= =

∑
= =

∑

            1- ; overall proportion of negative ratings.q p=  

Note that no differentiation between raters is made with respect to each rater’s 

contribution to either the summary statistic or the number of positive (or negative) 

ratings.  Kappa is a summary statistic under the assumption that the raters are 

exchangeable.  Tanner and Young (1985) point out that the Kappa statistics are not 

sensitive to differences between observed and expected patterns of agreement, and 

Kappa’s value is a function of the marginal distribution of the raters.  

 

2.2 MODELING AGREEMENT USING LOG-LINEAR MODELS  

The second general approach to assessing rater agreement is to model the pattern of 

agreement in the data using log- linear models.  Log- linear modeling can be viewed as 

regression for count data displayed in a multi-way contingency table.  Using this 

approach, the agreement pattern in the data can be parameterized.  Excellent resources 
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about log- linear modeling include Bishop, Fienberg, and Holland (1975) and Agresti 

(2002).  I review the log-linear modeling literature related to assessing agreement among 

raters.   

 

2.2.1. Notation 

Log-linear modeling can used to describe and make inferences about the patterns of 

association among the categorical variables in a multi-dimensional contingency table.  

The dimension of the contingency table depends upon the number of categorical variables 

of interest.  In the agreement framework, where all K raters rate an outcome variable with 

C categories, the data can be displayed in a K-way KC contingency table.  The relevant 

literature has been developed in detail for the case of a binary outcome, although the 

approach generalizes directly for C>2 categories.  I review the methods in the context of 

a binary outcome. 

 For example, the cross-classification of three raters (K=3) assigning a rating of ‘0’ 

for the absence or ‘1’ for the presence a symptom (C=2) can be presented in a three-

way 32 contingency table as shown in Table 3.  Extending the notation introduced in 

section 2.1.1 for a two-way 2C  contingency table, a third subscript (k) is needed to 

represent the cells of a three-way contingency table. Subscripts 1 2 3, , and i i i  represent the 

rating assigned by rater 1, rater 2, and rater 3, respectively and 1 2 3(   )i i i represent a rating 

pattern.   Therefore, 
1 2 3i i ix represents the number of patients assigned to category 1i by the 

first rater, to category 2i  by the second rater, and to category 3i  by the third rater, where 

each of 1 2 , 3, a n d  i i i  is 0 or 1.  For example, 010x  represents the number of patients 
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rated as a “0” by raters 1 and 3 and a “1” by rater 2.  In addition, 

1 2 3
, ,and i i ix x x++ + + ++ represent the marginal totals for each rater and 

0 0 0, ,and p p p⋅⋅ ⋅ ⋅ ⋅⋅ represent the marginal proportions of rater 1, rater 2 and rater 3, 

respectively, (i.e., the proportion of patients rater 1, rater 2, and rater 3 rated as a “0”). 

Table 3. General Layout of a Three-Way 23 Contingency Table 

Rater 1 (i1) 
(i1=0) (i1=1) 

Rater 2 (i2) Rater 2 (i2) 

 

(i2=0) (i2=1) (i2=0) (i2=1) 
(i3=0) x000 x010 x100 x110 Rater 3 

(i3) (i3=1) x001 x011 x101 x111 
      

 

Count data from this inter-rater agreement study are assumed to follow a 

multinomial distribution, because a fixed number of patients (N) are classified according 

to the ratings of the K raters.  I am interested in the joint distribution of the ratings.  The 

probability that a rating pattern is 1 2 3(   )i i i  is given by the density function 

{ }
1 2 3

1 2 3

1 2 3
1 2 3

1 2 3
1 2 3

, ,
, ,

!
( )            (eq. 2.1.1, Bishop et al., 1975)

!

i i i

i i i

x
i

i i i i i i
i i ii i i

mN
f x

x N

 
= Π   Π    

where 
1 2 3i i im represents the expected frequency of rating pattern 1 2 3(   )i i i .  The maximum 

likelihood estimate of the frequency of observed rating pattern 1 2 3(   )i i i ,
1 2 3

ˆ i i im , is a 

function of the minimal sufficient statistics, a set of marginal totals from the contingency 

table that depend on the hypothesized log- linear model (Bishop, 1975).  For example, 

, ,  i j kx x and x++ + + ++  are minimal sufficient statistics for , ,  and ,i j km m m++ + + ++  respectively, 

and
1 2 3 2

( ) ( ) ( )
ˆ i j k

i i i

x x x
m

N
++ + + ++× ×

= , under the model of independence. 
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2.2.2. Model Of Independence 

For the case of three raters and a binary outcome, under the assumption of independence 

the expected number of agreements among the three raters is given by  

31 2

1 2 3
          (eq. 2.1.2, Bishop et al., 1975)ii i

i i i

xx x
m N

N N N
++++ + +=

 

Taking the natural logarithm of this equation, the log- linear model of independence is 

given by     

1 2 3 1 2 3
log log log log 2log     (eq. 2.1.3)i i i i i im x x x N++ + + ++= + + −  

Using the notation of Roge l et al. (1998) this equation can be rewritten as  

logmi i i i
O

i
O

i
O

1 2 3 1

1

2

2

3

3= + + +µ λ λ λ  ,               (eq. 2.1.4) 

where 
1 2 3i i im is the expected cell count (assumed to be strictly positive) in the 1 2 3( )thi i i cell, 

µ  represents the overall effect, 1

1

O
iλ  represents the effect due to the ith level of the first 

rater, 2

2

O
iλ represents the effect due to the ith level of the second rater, and 3

3

O
iλ  represents 

the effect due to the ith level of the third rater.  The ith level of a rater refers to the rating 

category assigned, here 0 or 1.  The notation ‘Op’ is used to denote the rater (observer) 

and p indexes the raters, p = 1 to K (here K=3). For C possible categories of the rating, 

the overall effect, µ , and each rater effect, p

p

O
iλ , are defined as follows: 

1 2

1 2 3 1 1 2 3 2 1 2 3

1 2 3 2 3 1 3

1 1 1 1 1 1 1

i i
0 0 0 0 0 0 0

1 1 1
log ,    log ,   log ,

C C C C C C C
O O

i i i i i i i i i
i i i i i i i

m m m
C C C C C C C

µ λ µ λ µ
− − − − − − −

= = = = = = =

= = − = −
∗ ∗ ∗ ∗∑∑∑ ∑∑ ∑∑

  

3

3 1 2 3

1 2

1 1

i
0 0

1
log ,

C C
O

i i i
i i

m
C C

λ µ
− −

= =

= −
∗ ∑∑    with 31 2

1 2 3

1 2 3

1 1 1

0 0 0

0.
C C C

OO O
i i i

i i i

λ λ λ
− − −

= = =

= = =∑ ∑ ∑      (eq.2.1.5) 
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  The above ‘sum to zero’ constraints rather than ‘baseline’ constraints yields an 

interpretation of the lambda parameters with respect to average agreement rather than 

agreement in reference to a given rater.  A rater effect at the ith level is interpreted as the 

departure of the rater’s ith category marginal mean from the overall mean.  The model has 

(C-1)(C-1)(C-1) residual degrees of freedom.  The model of independence (eq. 2.1.4) 

models agreement due to chance and allows for marginal homogeneity or marginal 

heterogeneity across raters.  Marginal homogeneity means that the proportion of patients 

to which each rater assigns a given category is the same for all raters.  Marginal 

heterogeneity means that the proportion of patients to which each rater assigns a given 

category is not the same for all raters.  Marginal homogeneity or marginal heterogeneity 

can occur in models of independence as well in models of agreement.   

 

2.2.3. Models Of Quasi-Independence 

Experienced raters trained in the use of a rating scale would be expected to agree more 

often than not.  That is, a greater number of counts would be expected along the main 

diagonal than an independence model would indicate.  Quasi- independence describes a 

rating pattern configuration with no structure specified in the off-diagonal cells but a 

larger number of counts on the main diagonal than would be expected under 

independence.   

Tanner and Young (JASA, 1985) laid the foundation for using log-linear models 

to assess rater agreement by proposing the use of the quasi- independence model, a 

general class of models of the form 

log ...... ...mi i i i
O

i
O

i
O

i i iK K

K

K1 2 1

1

2

2

1 2
= + + + + +µ λ λ λ δ  ,        (eq. 2.1.6) 
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where 
1 2 ... Ki i iδ can be composed of more than one value.  This model was formally 

introduced into the statistical literature by Goodman (1968). 

In the context of inter-rater agreement, the 
1 2 ... Ki i iδ term represents rater agreement 

different than what would be expected by chance.  The parameterization of 

1 2 ... Ki i iδ specifies the raters considered and the pattern of agreement among those raters.  

For example, the 
1 2 ... Ki i iδ  term can denote which raters are considered in a rater subgroup 

or whether the level of agreement depends on the category of the outcome. 

2.2.3.1. Agreement Among All Raters, Homogeneous Agreement Across Categories 
 
The simplest log-linear model of quasi- independence is homogeneous agreement across 

categories as well as raters.  For the case of three raters and a binary outcome, this model 

(Tanner and Young, 1985) is given by 

31 2

1 2 3 1 2 3 1 2 3
log ,(eq.2.1.7)OO O

i i i i i i i i im µ λ λ λ δ= + + + +  

where [ ]
1 2 3 1 1 1 2 3,  1 if ,  for 0,1i i i I and I i i i iδ δ= = = = =   

0 otherwise= .           

This parameterization of 
1 2 3i i iδ uses one parameter to denote agreement among the three 

raters and does not distinguish whether the agreement is on the absence or presence of the 

symptom.   

The indicator variable 1I  equals one for rating patterns (000) and (111) and equals zero 

for any other possible rating pattern.  
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  AGREEMENT AMONG ALL RATERS, HETEROGENEOUS AGREEMENT 
ACROSS CATEGORIES 

 

One extension of equation (2.1.7) is to allow the level of agreement to differ by category 

of the rating.  This model is called “heterogeneous agreement across categories”.  For a 

binary rating, 
1 2 3i i iδ  is defined using C=2 δ parameters to denote agreement among the 

three raters; separate parameters denote whether the agreement is on the absence or 

presence of the symptom.  That is,  

[ ]
1 2 3 0 0 1 1

0 1 2 3

1 1 2 3

              ,   (eq.2.1.8)

where 1 if  for 0, and 0 otherwise,

and 1 if ,  for 1, and 0 otherwise.

i i i I I

I i i i i

I i i i i

δ δ δ ′=

= = = =

= = = =

 

The indicator variables 0I  and 1I  equal one for rating patterns (000) and (111), 

respectively, and both equal zero for all other rating patterns. For the general case of C 

categories and K raters the 
1 2 ... Ki i iδ term will contain C parameters. 

 
AGREEMENT WITHIN SUBGROUPS OF RATERS 

Tanner and Young (1985) investigated agreement among sub-groups of raters of size G 

(2 < G < K), called “G-tuples of raters” with 
K
G

υ
 

=  
 

distinct subgroups of size G .  The 

1 2 ... Ki i iδ term is defined by a set of parameters that represents the cells corresponding to 

agreement between a given subgroup of the K raters.  When the size of the rater subgroup 

equals the total number of raters (i.e., G K= ), the concern is whether the agreement is 

homogeneous or heterogeneous across categories of the rating.  However, when the size 

of the rater subgroup is less the total number of raters, (i.e., G K< ), two characteristics 
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of agreement must be considered: (i) the pattern of agreement among the raters in each 

subgroup, and (ii) the pattern of agreement across categories. Since either can be 

homogeneous or heterogeneous, four scenarios are possible. 

For example, in the case of three raters there is only one sub-group of size three 

(rater triplet, 3, 3G K= = ) and agreement among the three raters is either homogeneous 

or heterogeneous across categories as described above in sections 2.2.3.1 and 2.2.3.2.  

When the size of the rater sub-group is two ( 2, 3G K= = ), there are three pairs of raters.  

Agreement among these three pairs of raters can be either; (i) homogeneous among rater 

pairs and homogeneous across categories, (ii) homogeneous among rater pairs and 

heterogeneous across categories, (iii) heterogeneous among rater pairs and homogeneous 

across categories, or (iv) heterogeneous among rater pairs and heterogeneous across 

categories.  The parameterizations of 
1 2 3i i iδ for these four scenarios are given in the 

following four sub-sections. 

Homogeneous Agreement Across Rater Subgroups, Homogeneous Across 
Categories 

 
Homogeneous agreement across rater subgroups and homogeneous across 

categories is parameterized by using a single delta parame ter to represent agreement 

within each subgroup. It denotes agreement among any of the υ subgroups of raters of 

size G for any category C of the rating scale.  For the case of three raters and a binary 

outcome, homogeneous agreement across rater pairs and homogeneous across categories 

is defined as      

[ ]
1 2 3 1 1i i i Iδ δ=         (equation 2.1.9) 

1 1 2 3where 1 if ,  0 or 1,I i i i i= = ≠ =  



    

 14 

1 3 2or  if  , 0 or 1,i i i i= ≠ =  

2 3 1or  if  , 0 or 1,i i i i= ≠ =  

and       0  otherwise. 

The indicator variable 1I equals one for rating patterns (001), (110), (010), (101), (100) 

and (011), the rating patterns in which exactly one rater disagrees with the other raters.  

 

Homogeneous Agreement Across Rater Subgroups, Heterogeneous Across Categories 

Homogeneous agreement across rater subgroups and heterogeneous across 

categories is parameterized by using C delta parameters, one δ term to denote agreement 

among any of the υ subgroup of raters of size G for each category of the response.  For 

the case of three raters and a binary outcome, homogeneous agreement across rater pairs 

and heterogeneous across categories is defined as  

[ ]
1 2 3 1 1 2 2i i i I Iδ δ δ=         (equation 2.1.10) 

1 1 2 3where 1 if 0, 1,I i i i= = = =  

1 3 2or  if  0, =1,i i i= =  

2 3 1or  if  0, =1,i i i= =  

and 0 otherwise, 

and 2 1 2 3where 1 if 1, 0,I i i i= = = =  

1 3 2or  if  1, =0,i i i= =  

2 3 1or  if  1, =0,i i i= =  

and 0 otherwise. 
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The parameter 1δ  represents rating patterns (001), (010) and (100) whereas 2δ  represents 

rating patterns (110), (101) and (011). 

 

Heterogeneous Agreement Across Rater Subgroups, Homogeneous Across Categories 

Heterogeneous agreement across rater subgroups and homogeneous across 

categories is parameterized by using υ delta parameters, with one δ term to denote 

agreement between each of the υ subgroup of raters of size G.  The parameterization of δ 

does not depend upon the category of the rating.  For the case of three raters and a binary 

outcome, heterogeneous agreement across rater pairs and homogeneous across categories 

is defined as   

                                [ ]
1 2 3 1 1 2 2 3 3i i i I I Iδ δ δ δ=        (equation 2.1.11) 

1 1 2 3where 1 if , 0 or 1, and 0 otherwise,I i i i i= = ≠ =  

2 1 3 2where 1 if , 0 or 1, and 0 otherwise,I i i i i= = ≠ =  

3 2 3 1where 1 if , 0 or 1, and 0 otherwise.I i i i i= = ≠ =  

The indicator variable 1I equals one for rating patterns (001) and (110) signifying 

agreement between raters 1 and 2, 2I  equals one for rating patterns (010) and (101) 

signifying agreement between raters 1 and 3, and 3I  equals one for rating patterns (100) 

and (011) signifying agreement between raters 2 and 3.  Each delta term represents a 

distinct subgroup of cells.  No cell of the contingency table is parameterized by more than 

one of these delta parameters, because separate parameters are defined to reflect 

agreement within subgroups larger than G.   
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Heterogeneous Agreement Across Rater Subgroups, Heterogeneous Across Categories 

Heterogeneous agreement across rater subgroups and heterogeneous across 

categories is parameterized by using C delta parameters for each of the υ subgroups of 

raters of size G.  The parameterization of δ does distinguish the level of the rating.  For 

the case of three raters and a binary outcome, the parameterization of 
1 2 3i i iδ for 

heterogeneous agreement across rater pairs and heterogeneous across categories is 

defined as 

[ ]
1 2 3 1 1 2 2 3 3 4 4 5 5 6 6i i i I I I I I Iδ δ δ δ δ δ δ=     (equation 2.1.12) 

1 1 2 3where 1 if 0, 1, and 0 otherwise, andI i i i= = = =  

2 1 2 3where 1 if 1, 0, and 0 otherwise, andI i i i= = = =  

3 1 3 2where 1 if 0, 1, and 0 otherwise, andI i i i= = = =  

4 1 3 2where 1 if 1, 0, and 0 otherwise, andI i i i= = = =  

5 2 3 1where 1 if 0, 1, and 0 otherwise, andI i i i= = = =  

6 2 3 1where 1 if 1, 0, and 0 otherwise.I i i i= = = =  

The indicator variable 1I  equals one for rating pattern (001), agreement between raters 1 

and 2 on the absence of the symptom and indicator variable 2I  equals one for rating 

pattern (110), agreement between raters 1 and 2 on the presence of the symptom.  

Indicator variables 3I  and 4I , and 5I  and 6I , are defined similarly to denote pair-wise 

agreement between raters 1 and 3, and raters 2 and 3, respectively.  With this 

parameterization, each delta term represents a distinct cell.  No cell of the contingency 

table is parameterized by more than one of these delta parameters.  
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Tanner and Young (1985) defined homogeneous and heterogeneous agreement across C  

categories among subgroups of size  for G K raters, but their examples were limited to 

scenarios of (i) two-rater, three-category outcome and (ii) three-rater, binary outcome.  

They also considered comparisons to a gold standard. They did not focus on the use of 

such parameterizations to identify atypical raters. 

 

2.3 GLOBAL AND PARTIAL AGREEMENT 

Rogel et al. (1996, 1998) extended this log- linear model approach to assess agreement 

among subgroups of K raters to the problem of identifying atypical raters by modeling 

agreement among rater subgroups of decreasing size.  Although they developed the 

approach for the general case of K raters, they illustrated the approach in the context of a 

binary outcome (with six raters) and subgroups of size K-1.  They introduced a ‘global’ 

and ‘partial’ agreement terminology in the framework of quasi- independence models.  

Global agreement is defined as agreement among all K raters and partial agreement is 

agreement among sub-groups of raters of size s where 2 < s < K. 

Rogel et al. (1996, 1998) introduced the notation , 1,   and pG
s s i KS S δ −  to describe 

explicitly how the agreement parameters are defined. sS denotes the set of rating patterns 

where exactly s  raters agree regardless of category.  For example, the set of rating 

patterns representing homogeneous agreement across categories among six raters is 

denoted by 6S , and 5S  denotes the set of rating patterns representing homogeneous 

agreement across categories among sub-groups of five raters.  ,s iS denotes heterogeneous 

agreement across categories ( 0 to Ci = ) among rater sub-groups of size s .  For example, 
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5,0S  denotes the rating patterns where exactly five raters agree on category 0.  Lastly, 

1
p
Kδ −  identifies which rater is omitted from the rater sub-group where p is the rater index 

( 1 to p K= ).  For K=6 and a rater subgroup of size five, homogeneous agreement across 

categories with homogeneous agreement among all raters but rater 3 is denoted by 

1 2 3 4 5 6i i i i i iδ = 3
5
Gδ and heterogeneous across categories with homogeneous agreement among 

all raters but rater 3 is denoted by 
1 2 3 4 5 6i i i i i iδ = 3

5,
G

iδ  ( 0,..., 1i C= − ).  Using this notation, I 

review five quasi- independent log- linear models used in their global and partial 

agreement modeling approach. 

For the case of six raters and a binary outcome, the general form of the quasi-

independence model is 

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
log O O OO O OQI

i i i i i i i i i i i i i i i i i im µ λ λ λ λ λ λ δ= + + + + + + +         (equation 2.1.13) 

where µ represents the overall effect, p

p

O
iλ  represents the effect of observer pO  

(p=1,2,…,6) on category pi ( pi = 0,1) with ‘sum to zero’ constraints on the p

p

O
iλ  terms.  In 

this model, 
1 2 3 4 5 6i i i i i iδ  represents rater agreement different than what would be expected by 

chance.    

 

2.3.1. Global Agreement, Homogeneous  Across Categories (G) 

The simplest log-linear model of quasi- independence for six raters and a binary outcome 

is homogeneous agreement across categories.  This model is referred to as the global 

agreement model ‘G’ by (Rogel et al., 1996, 1998) 

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
log O O OO O OG

i i i i i i i i i i i i i i i i i im µ λ λ λ λ λ λ δ= + + + + + + +  
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and 
1 2 3 4 5 6i i i i i iδ  = [ ]1 6I δ    (equation 2.1.14) 

where 1 1 2 6 61 if ( , ,..., )   and 0 otherwise.I i i i S= ∈  

6S denotes the set of rating patterns representing agreement among all six raters. The 

indicator variable 1 1I =  denotes rating patterns (000000) and (111111).  This is 

analogous to the agreement among all raters, homogeneous agreement across categories 

of Tanner and Young (1985). 

 

2.3.2. Global Agreement, Heterogeneous  Across Categories (Gc) 

 

Equation (2.13) allows the level of agreement to differ by category.  Rogel et al (1996) 

call this model ‘Gc’ and it is given by 

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 61 2 3 4 5 6
log

i i i i i i

O O OO O OGc
i i i i i i i i i i i im µ λ λ λ λ λ λ δ= + + + + + + +

 

and 
1 2 3 4 5 6i i i i i iδ  = [ 1 6,0 2 6,1I Iδ δ         (equation 2.1.15) 

where  1 1 2 6 6,01 if ( , ,..., )  ; 0 otherwise,I i i i S= ∈  

where 2 1 2 6 6,11 if ( , ,..., )  ; 0 otherwise.I i i i S= ∈  

The 6,0δ  term denotes the rating pattern, (000000), where all six observers agree on 

category ‘0’  and 6,1δ  denotes the rating pattern, (111111), where all six observers agree 

on category ‘1’.  This is analogous to the model of agreement among all raters, 

heterogeneous across categories, of Tanner and Young (1985). 

Rogel et al. (1996, 1998) also introduced two ‘global and partial agreement’ 

models.  These models parameterize the 
1 2 3 4 5 6i i i i i iδ term to assess the agreement structure 
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among all six (K) raters (global agreement) and among rater sub-groups of size five (K-1 

partial agreement).  Rogel et al. (1996, 1998) refer to the ‘global and partial agreement’ 

model as ‘GP’ if the global and partial agreements are homogeneous according to 

categories of the ratings and ‘GPc’ if the global and partial agreements are heterogeneous 

according to categories of the ratings.   

 

2.3.3. Global And Partial Agreement, Homogenous  Across Categories (GP) 

 

The GP model describing homogeneous agreement across categories is given by 

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 61 2 3 4 5 6
log

i i i i i i

O O OO O OGP
i i i i i i i i i i i im µ λ λ λ λ λ λ δ= + + + + + + +

 

and 
1 2 3 4 5 6i i i i i iδ  = [ [ ]1 6 2 5I Iδ δ    (equation 2.1.16) 

where  1 1 2 6 61 if ( , ,..., )  ,I i i i S= ∈  

            2 1 2 6 51 if ( , ,..., )  ,I i i i S= ∈  

and  0 otherwise. 

The 6δ  term represents rating patterns {(000000), (111111)} and the 5δ  term represents 

rating patterns {(000001), (111110), (000010), (111101), (000100), (111011), 

(001000),(110111), (010000), (101111), (100000), and (011111)}, patterns with exactly 

one disagreement. 

 

2.3.4. Global And Partial Agreement, Heterogeneous  Across Categories (GPc) 

The GPc model describing heterogeneous agreement across categories is given by 

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 61 2 3 4 5 6
log

i i i i i i

O O OO O OGPc
i i i i i i i i i i i im µ λ λ λ λ λ λ δ= + + + + + + +
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and   
1 2 3 4 5 6i i i i i iδ  = 1 6,0 2 6,1 3 5,0 4 5,1I I I Iδ δ δ δ     (equation 2.1.17) 

where  1 1 2 6 6,01 if ( , ,..., )  ,I i i i S= ∈  

           2 1 2 6 6,11 if ( , ,..., )  ,I i i i S= ∈  

          3 1 2 6 5,01 if ( , ,..., )  ,I i i i S= ∈  

         4 1 2 6 5,11 if ( , ,..., )  ,I i i i S= ∈  

                                                              and   0 otherwise. 

That is, 6,0δ denotes rating pattern (000000), 6,1δ  denotes rating pattern (111111), 

5,0δ denotes rating patterns {(000001), (000010), (000100), (001000), (010000), and 

(100000)} and 5,1δ  denotes rating patterns {(111110), (111101), (111011), (110111), 

(101111), (011111)}.  The terms 5,0δ and 5,1δ  represent rating patterns where there is 

exactly one disagreement from the rating of 0 and 1, respectively. 

 

2.3.5. Global And Heterogeneous Partial Agreement, Homogeneous Across 

Categories (GHeP) 

Rogel et al. (1996, 1998) suggested that the global and partial agreement models could be 

used to identify atypical raters if one kept track of which rater was omitted in each 

subgroup of five raters.  They presented a ‘global and heterogeneous partial agreement’ 

(GHeP) model that denotes differing levels of agreement among rater subgroups of size 

five that is homogeneous across categories of the ratings. The ‘GHeP’ model is defined 

as follows: 

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
log O O OO O OGHeP

i i i i i i i i i i i i i i i i i im µ λ λ λ λ λ λ δ= + + + + + + +  
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and  δ i i i i i i1 2 3 4 5 6
 = 3 5 61 2 4

0 6 1 5 2 5 3 5 4 5 5 5 6 5I I I I I I IG GG G G Gδ δ δ δ δ δ δ ′ 
   (equation 2.1.18) 

where    I0 = 1  if (i1, i2, …, i6) ∈ S6 

                                                                I1 = 1   if (i2, …, i6) ∈ S5 

                                                                I2 = 1 if (i1, i3, …, i6) ∈ S5 

              I3 = 1 if (i1, i2, i4, i5, i6) ∈ S5 

             I4 =1 if (i1, i2, i3, i5, i6) ∈ S5 

            I5 =1 if (i1, i2, i3, i4, i6) ∈ S5 

                                                               I6 =1 if (i1, …, i5) ∈ S5 

                     and  0 otherwise. 

The term δ 5
G p  denotes the level of agreement in the rater sub-group of exactly five 

observers after removal rater p (p= 1,…,6).  For example, δ 5
3G  represents rating patterns 

{(001000), (110111)}, i.e., homogeneous agreement across categories among all raters 

except Rater 3.   

 

2.4   AN EXAMPLE OF MODELING AGREEMENT USING LOG-LINEAR 
MODELS: INTESTINAL BIOPSY RATING DATA  

The use of log- linear models to model agreement is illustrated using the published data of 

Rogel et al. (1998), in which six raters assessed the absence (rating of 0) or presence 

(rating of 1) of mucosecretion diminution. 

The 25 rating patterns observed, the frequency of each pattern and the type of 

agreement represented by each rating pattern are shown in Table 4.  For the 68 biopsies, 

exact six-way agreement was observed for 30 and exact five-way agreement for 17, with 
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21 biopsies having other rating patterns.  Overall, 31.1% of ratings were for the presence 

of mucosecretion diminution.  Rater 4 was in disagreement for 35% (6 of 17) of biopsies 

characterized by five-way agreement, while rater 2 and rater 6 each were in disagreement 

for 17% (3 of 17) of the biopsies characterized as having five-way agreement.  The 

remaining 39 possible rating patterns with counts of zero are not listed in Table 4.  

Table 4. Frequencies and Type of Agreement of the 25 Observed Rating Patterns from 
Six Raters Denoting the Absence (0) or Presence (1) of Mucosecretion Diminution in 68 
Intestinal Biopsy Specimens 

Rating Pattern* Count Agreement Parameters ** 
111111 1 δ6 , δ6,1 
111110 2 δ5, δ5,1, 6

5
Gδ  

111101 2 δ5, δ5,1, 5
5
Gδ  

111100 2  
110111 1 δ5, δ5,1, 3

5
Gδ  

110101 1  
110100 1  
101111 2 δ5, δ5,1, 2

5
Gδ  

101100 1  
100111 1  
100110 1  
011111 2 δ5, δ5,1, 1

5
Gδ  

011110 2  
011101 1  
010111 3  
010101 1  
010100 1  
010000 1 δ5, δ5,0, 2

5
Gδ  

001110 2  
001100 2  
000110 1  
000101 1  
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Table 4 (continued) 
Rating Pattern* Count Agreement Parameters ** 

000100 6 δ5, δ5,0, 4
5
Gδ  

000001 1 δ5, δ5,0, 6
5
Gδ  

000000 29 δ6,  δ6,0 
* Rating patterns not listed have frequencies of zero. 
**Rating patterns without any indication of ‘type of agreement’ represent patterns having 
less than five raters in agreement on either the absence or presence of mucosecretion 
diminution.  
 
 

These intestinal biopsy data are summarized in Table 5 in terms of the marginal 

percentages of the absence and presence of mucosecretion diminution by each rater and 

the percentage of ratings that exhibit each type of agreement.  Rater 4 had the highest 

marginal percentage for the presence of mucosecretion diminution (54.4%).  Global 

agreement was observed for 44.1% of the biopsies (including 42.6% on the absence and 

1.5% on the presence of mucosecretion diminution).  Five raters agreed on 25% of the 

biopsies (11.7% on absence and 13.2% on presence of mucosecretion diminution).  The 

percentage of ratings showing partial agreement when each rater is excluded in turn is 

shown in the last column of Table 5.  For example, the percentage of biopsies showing 

agreement when rater 4 is excluded is 6/68 = 8.8%.  A higher level of partial agreement 

when a rater is excluded indicates that the excluded rater is in disagreement relatively 

more often when the other raters agree. 
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Table 5. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion 

Rater 
   i  

Marginal %   
for 

Absence 

Marginal % 
for 

Presence 

G %, 
 6δ  

G on 
Absence %, 

6,0δ  

G on 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP on 
Absence %, 

5,0δ  

GP on 
Absence %, 

5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

   1       77.9      22.1       2.9 
   2       69.1      30.9       4.4 
   3       72.1      27.9       1.5 
   4       45.6      54.4       8.8 
   5       73.5      26.5       2.9 
   6       75.0      25.0 

 
 

44.1 

 
 

42.6 

 
 

1.5 

 
 

25.0 

 
 

11.7 

 
 

13.2 

      4.4 
* For agreement patterns see Table 4. G = Global agreement; GP= Global and partial agreement
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For the intestinal biopsy data, the estimates of the rater effects, global agreement and the 

six partial agreement parameters are given in Table 6.  Parameter estimates are given under the 

assumption of marginal homogeneity and marginal heterogeneity.  Parameter estimates in Table 

6 were derived using sum-to-zero constraints for the ? parameters (Appendix A) and indicator 

variables for the global and heterogeneous partial agreement parameters (Appendix B).  Stata, 

version 8.2, was used to fit the models (Appendix C). 

 

Table 6. Maximum Likelihood Estimates and Standard Errors of the Global and Heterogeneous 
Partial Agreement Parameters Assuming Marginal Homogeneity and Heterogeneity for the 
Intestinal Biopsy Data. 

Assumed Marginals  
Homogeneous   Heterogeneous  

Parameter Estimate (SE) Wald Test  
p-value 

 Estimate (SE) Wald Test 
p-value 

1Oλ  na na  -0.65   (0.20) <0.01 
2Oλ  na na  -0.25   (0.17) 0.16 
3Oλ  na na  -0.35   (0.19) 0.07 
4Oλ  na na  1.35 (0.37) <0.001 
5Oλ  na na  -0.42   (0.19) 0.02 
6Oλ  na na  -0.48   (0.18) <0.01 

6δ  3.58   (0.28) <0.001  4.50   (0.54) <0.001 
1
5δ  0.87   (0.74) 0.24  1.96   (0.85) 0.02 

2
5δ  1.27   (0.62) 0.04  2.44   (0.79) <0.01 

3
5δ  0.17   (1.02) 0.87  1.38  (1.13) 0.22 

4
5δ  1.96   (0.46) <0.001  0.36  (0.56) 0.52 

5
5δ  0.87   (0.74) 0.24  2.08  (0.87) 0.02 

6
5δ  1.27   (0.62) 0.04  2.47  (0.76) <0.01 

µ -0.87   (0.21) <0.001  -2.08  (0.51) <0.001 
na = not applicable 

What does it mean to be atypical under the assumption of marginal homogeneity?  Under 

the assumption of marginal homogeneity, the magnitude of each heterogeneous partial agreement 



   
  

 27 

parameter, 5
iδ , corresponds to each rater’s non-chance contribution to five-way agreement after 

accounting for global agreement.  The rater with the largest heterogeneous partial agreement 

parameter estimate is the rater who disagrees more often than the other five raters.  The partial 

agreement parameters essentially partition the five-way agreement into components attributable 

to each rater. 

In Table 6 for the assumption of marginal homogeneity, the heterogeneous partial 

agreement parameter estimate of 1.96 for Rater 4 reflects the six biopsy specimens where Rater 4 

disagreed with the other five raters.  Five-way agreement with Rater 4 being the discrepant rater 

is represented by rating patterns (000100) and (111011).   The log- linear model for the expected 

number of counts is given by 

1 2 3 4 5 6 1
000100 6 5 5 5 5 5 5 6 5

2 3 5 6 4
5 5 5 5 5

000100

000100

log 0.87 3.58 0.87 1.27 0.17 1.96 0.87 1.27   where , ,

, ,  and 0, and 1.

log 0.87 1.96 1.01
exp(1.01) 2.75 

m

m
m

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

= − + + + + + + +

= =

= − + =
= =

  

The expected number of biopsy specimens with rating pattern (000100) is 2.75.  

Similarly, the expected number of biopsy specimens with rating pattern (111011) is 2.75.  

Therefore, under this model the total number of expected biopsy specimens having a rating 

pattern representing five-way agreement where Rater 4 is the disagreeing rater is 5.5 (compared 

to the 6 shown in Table 5).  From the observed data, all six disagreements came from Rater 4 

rating the presence of mucosecretion diminution when the remaining five raters rated the absence 

of mucosecretion diminution.   

The heterogeneous partial agreement parameter estimate of 0.17 for Rater 1 reflects the 

one disagreement Rater 1 had with the remaining five raters.  The expected number of counts 

is ( 0.87 0.17) 0.72 2 2*0.496 0.99e e− + −= = = .  The standard error of the heterogeneous partial 
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3 5 64 1 21, and , , , , 1.O O OO O Oλ λ λ λ λ λ= − =

agreement parameter 3
5δ  is much larger than for any other parameter in the model, because Rater 

3 was in disagreement only once with the other five raters whereas the remaining five raters 

where in disagreement three or more times when five-way agreement was considered.  The 

heterogeneous partial agreement parameter estimates of 1.27 for Rater 2 and Rater 6 reflect the 

three disagreements each rater has with the remaining five raters.   

In Table 6 for the assumption of marginal heterogeneity, Rater 4’s lambda parameter 

estimate, 4Oλ = 1.35, and heterogeneous partial agreement parameter estimate of 0.36 reflects the 

five times Rater 4 rated “presence” when the remaining five raters rated “absence” and that Rater 

4 never rated “absence” when the remaining five raters rated “presence”. The relatively large 

magnitude of 4Oλ compared to the other five raters’ iOλ indicates that Rater’s 4 marginal 

proportion for “presence”, 54.4%, is higher than the overall mean portion for “presence”, 31.3%.   

The log- linear model for the expected number of counts for rating pattern (000100) is given by 

3 51 2 4

6

3 5 61 2 4

000100

1 2 3 4 5 6
6 5 5 5 5 5 5

1 2 3
6 5 5 5

log 2.08 ( 0.65) ( 0.25) ( 0.25) (1.35) ( 0.42)

( 0.48) (4.50) 1.96 2.44 1.38 0.36 2.08 2.47   where 

, , , , 1, and 1, and , , , ,

O OO O O

O

O O OO O O

m λ λ λ λ λ

λ δ δ δ δ δ δ δ

λ λ λ λ λ λ δ δ δ δ

= − + − + − + − + + − +

− + + + + + + +

= − = 5 6 4
5 5 5

000100

000100

 and 0, and 1.

log 2.08 0.65 0.25 0.25 1.35 0.42 0.48 0.36 1.68.
The expected number of counts for rating pattern (000100), ,  is exp(1.68) 3.75. 

m
m

δ δ δ= =

= − + + + + + + + =
=

 

The log- linear model for the expected number of counts for rating pattern (111011) is given by 

the above equation, but now 

1 2 3 5 6 4
6 5 5 5 5 5 5

000100

111

Indicator variables , , , ,  and  still equal 0, and  equals 1.

log 2.08 0.65 0.25 0.25 1.35 0.42 0.48 0.36 5.12.
The expected number of counts for rating pattern (000100), 

m
m

δ δ δ δ δ δ δ

= − − − − − − − + = −

011 , is exp( 5.12) 0.005  ~ 0. − = =
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Table 7 summarizes the predicted counts for the G agreement, Gc agreement, GP 

agreement, GPc agreement and GHeP agreement models considered under the assumption of 

marginal homogeneity fitted to the intestinal biopsy data.  For example, under the G model, 15 

biopsies are predicted to be rated as having the absence of mucosecretion diminution and 15 

biopsies are predicted to be rated as having the presence of mucosecretion diminution.  Given 

that the overall expected number of ratings has to equal the observed number of ratings, the 

remaining 38 ratings are equally dispersed across the remaining 62 possible rating patterns, 

giving a predicted count of 0.61.  The GPc model, the best fitting model under the assumption of 

marginal homogeneity, yields predicted cell counts that are closer to the observed cell counts for 

each of the 64 rating patterns.  Note that 21 biopsies (30.8%) had one of the14 rating patterns 

that did not represent global or partial agreement.      

Table 7. Predicted Counts of Observed Rating Pattern Based on Five Models under the 
Assumption of Marginal Homogeneity and Marginal Heterogeneity 

 Marginal Homogeneity 
Rating Pattern Observed Count G Gc GP GPc GHeP 

111111 1 15.00 1.00 15.00 1.00 15.00 
111110 2 0.60 0.61 1.42 1.50 1.50 
111101 2 0.63 0.61 1.42 1.50 1.00 
111100 2 0.61 0.61 0.42 0.42 0.42 
110111 1 0.61 0.61 1.42 1.50 0.5 
110101 1 0.61 0.61 0.42 0.42 0.42 
110100 1 0.61 0.61 0.42 0.42 0.42 
101111 2 0.61 0.61 1.42 1.50 1.50 
101100 1 0.61 0.61 0.42 0.42 0.42 
100111 1 0.61 0.61 0.42 0.42 0.42 
100110 1 0.61 0.61 0.42 0.42 0.42 
011111 2 0.61 0.61 1.42 1.50 1.00 
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Table 7 (continued) 
 Marginal Homogeneity 

Rating Pattern Observed Count G Gc GP GPc GHeP 
011110 2 0.61 0.61 0.42 0.42 0.42 
011101 1 0.61 0.61 0.42 0.42 0.42 
010111 3 0.61 0.61 0.42 0.42 0.42 
010101 1 0.61 0.61 0.42 0.42 0.42 
010100 1 0.61 0.61 0.42 0.42 0.42 
010000 1 0.61 0.61 1.42 1.33 1.50 
001110 2 0.61 0.61 0.42 0.42 0.42 
001100 2 0.61 0.61 0.42 0.42 0.42 
000110 1 0.61 0.61 0.42 0.42 0.42 
000101 1 0.61 0.61 0.42 0.42 0.42 
000100 6 0.61 0.61 1.42 1.33 3.00 
000001 1 0.61 0.61 1.42 1.33 1.50 
000000 29 15.00 29.00 15.00 29.00 15.00 

 Marginal Heterogeneity 
Rating Pattern Observed Count G Gc GP GPc GHeP 

111111 1 4.76 1.00 5.92 1.00 5.03 
111110 2 0.32 0.92 0.83 1.97 1.74 
111101 2 0.28 0.83 0.72 1.74 1.05 
111100 2 0.60 1.10 0.43 0.94 0.34 
110111 1 0.02 0.04 0.07 0.06 0.01 
110101 1 0.47 0.89 0.33 0.73 0.26 
110100 1 1.02 1.19 0.69 0.76 0.69 
101111 2 0.20 0.61 0.48 1.17 1.05 
101100 1 0.82 0.96 0.53 0.59 0.56 
100111 1 0.34 0.65 0.22 0.49 0.18 
100110 1 0.73 0.87 0.46 0.51 0.48 
011111 2 0.40 1.15 1.12 2.52 1.46 
011110 2 0.86 1.52 0.68 1.37 0.53 
011101 1 0.77 1.37 0.59 1.21 0.47 
010111 3 0.69 1.23 0.51 1.07 0.41 
010101 1 1.31 1.47 0.94 0.98 0.96 
010100 1 2.8 1.95 2.00 1.02 2.53 
010000 1 0.56 0.11 1.29 0.35 1.94 
001110 2 1.19 1.33 0.84 0.85 0.88 
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Table 7 (continued) 
 Marginal Heterogeneity 

Rating Pattern Observed Count G Gc GP GPc GHeP 
001100 2 2.27 1.58 1.54 0.78 2.05 
000110 1 2.03 1.43 1.34 0.69 1.77 
000101 1 1.80 1.28 1.16 0.61 1.58 
000100 6 3.87 1.70 8.64 6.75 5.99 
000001 1 0.36 0.07 0.75 0.21 1.25 
000000 29 25.25 29.00 24.07 29.00 24.96 

 
 Table 7 also summarizes the predicted counts for the G agreement, Gc agreement, GP 

agreement, GPc agreement and GHeP agreement models considered under the assumption of 

marginal heterogeneity fitted to the intestinal biopsy data.  Under the G model, 25.25 biopsies 

are predicted to be rated as having the absence of mucosecretion diminution and 4.75 biopsies 

are predicted to be rated as having the presence of mucosecretion diminution.  In contrast to the 

G model under homogeneity, the remaining 38 ratings are not equally dispersed across the 

remaining 62 possible rating patterns.  Instead, each rater’s propensity to rate “absence” or 

“presence”, is incorporated into how the counts are dispersed across the remaining 62 possible 

rating patterns.  The GPc model, the best fitting model under the assumption of marginal 

heterogeneity, yields predicted cell counts that are closer to the observed cell counts for each of 

the 64 rating patterns.   

This data set was the motivating example for my work and will be discussed further when 

the design of the simulation study is described in Chapter 3. I focus on log- linear models that 

categorize agreement homogeneous across categories (e.g., the G, GP, and GHeP models). 
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2.5   INTERPRETATION OF AGREEMENT PARAMETERS FOR A 2-
CATEGORY OUTCOME  

Rogel et al. (1998) interpret the agreement parameters for a 2-category outcome in the 

context of whether the type of agreement (global, partial and/or homogeneous or 

heterogeneous across categories) differs from the agreement expected by chance.  The 

interpretation of the global and homogeneous partial agreement parameters is as follows:  

from the G model described by equation 2.1.14, 6δ  can be written as  

3 5 61 2 4

1 2 3 4 5 6 1 2 3 4 5 6

( )
6 log ( )O O OO O OG

i i i i i i i i i i i imδ µ λ λ λ λ λ λ= − + + + + + + where 
1 2 3 4 5 6

( )log G
i i i i i im i s the log 

expected value of 
1 2 3 4 5 6i i i i i ix representing global agreement in this model. Letting 

1 2

1 2 3 4 5 6 1 2

( )log ( O OI
i i i i i i i im µ λ λ′ = + +  3 5 64

3 4 5 6
)O O OO

i i i iλ λ λ λ+ + + + , where 
1 2 3 4 5 6

( )log I
i i i i i im ′  is the part of 

1 2 3 4 5 6

( )G
i i i i i im expected by chance, 6

1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )/G I
i i i i i i i i i i i ie m mδ ′= for i= 0, 1.  If 6δ  >0, then 6eδ >1 so 

1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )G I
i i i i i i i i i i i im m ′> ,  global agreement is greater than that expected by chance.  If 6δ  < 0, 

then 6eδ <1 so 
1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )G I
i i i i i i i i i i i im m ′< and global agreement is less than that expected by 

chance.  Similarly, the homogeneous partial agreement parameter 5δ  can be rewritten as 

1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )log logGP G
i i i i i i i i i i i im m ′− with 5

1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )/GP G
i i i i i i i i i i i ie m mδ ′= where 

1 2 3 4 5 6

( )GP
i i i i i im is the expected value of 

1 2 3 4 5 6i i i i i ix  under the GHeP model (equation 2.1.16) and 
1 2 3 4 5 6

( )G
i i i i i im ′ is the part of 

1 2 3 4 5 6

( )GP
i i i i i im explained by global agreement and chance.  If 5δ  >0, then 5eδ >1 so 

1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )GP G
i i i i i i i i i i i im m ′>  and homogeneous partial agreement is greater than expected by chance 

accounting for global agreement.   If 5δ  < 0, then 5eδ <1 so 
1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )GP G
i i i i i i i i i i i im m ′< and 

homogeneous partial agreement is less than expected by chance accounting for global 

agreement. 
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Each of the heterogeneous partial agreement parameters in equation 2.1.18, 5
pGδ  

( p  = 1, …, 6) can be rewritten as 
1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )log /GHeP GP
i i i i i i i i i i i im m ′ with 5

1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )/
G p GHeP GP

i i i i i i i i i i i ie m mδ ′=  where 

1 2 3 4 5 6

( )GHeP
i i i i i im is the expected value of 

1 2 3 4 5 6i i i i i ix under the GHeP model and 
1 2 3 4 5 6

( )G
i i i i i im ′ is the part of 

1 2 3 4 5 6

( )GHeP
i i i i i im explained by global agreement and chance in this model.   If 5

pGδ >0, then 5
G p

eδ >1 

so 
1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )GHeP GP
i i i i i i i i i i i im m ′> , there is more agreement among five raters when rater p is excluded 

than is expected when partial agreement is assumed to be homogeneous.  If 5
pGδ < 0, then 

5
G p

eδ <1 so 
1 2 3 4 5 6 1 2 3 4 5 6

( ) ( )GHeP GP
i i i i i i i i i i i im m ′< , and there is less agreement among the five raters when rater 

p is excluded than is expected when partial agreement is assumed to be homogeneous.   

Rogel et al. (1998) also quantify the magnitude of agreement between two raters 

via the conditional odds ratio computed from a log-linear model of pair-wise agreement.  

Conditioning on the ratings of raters 3, 4, 5, and 6 ( 3 4 5 6, , ,O O O O ), the δ i i i i i i1 2 3 4 5 6
term 

when assessing pair-wise agreement between raters 1 and 2 ( 1 2,O O ) is defined as: 

δ i i i i i i1 2 3 4 5 6
 = 1 2

2I O Oδ    where I =1 if 1 2i i= ,  

                                                                  =  0, otherwise 

As described by Rogel et al. (1998), conditioning on the ratings of raters 3, 4, 5, and 6 

( 3 4 5 6, , ,O O O O ), the odds ratio of agreement for rater 1 and rater 2 is written as 

1 1 3 4 5 6 2 2 3 4 5 6 1 2 1 2

1 2 3 4 5 6 1 1 3 4 5 6 2 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 1 2
2 2

1 2 3 4 5 6 1 2 3 4 5 6

( ) 2 2

( ) 0

, where log ,  log ,

and log . Therefore, 
O O O O

i i i i i i i i i i i i O O O O
i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i

i i i i i i i i i i i i

m m
m m

m m

e e
m

e e

δ δ

τ µ δ µ δ

µ τ

= = + = +

= =
1 2

22
0 .

O O

e δ=
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 If agreement is homogeneous among pairs of raters, 2 2
i jO Oδ δ=  for all i and j ( ,i j  = 1 to 

K and i j≠ ), then given the rating of the other four raters, the odds that the first rater 

indicated the presence of the lesion rather than absence is estimated as 2
ˆ2e δ  times higher 

when the second rater rated presence rather than absence of the lesion.  If the agreement 

is heterogeneous among rater pairs, then this odds ratio will vary by rater pair.  

For the GP model with subgroups of five raters, if any four raters agree on the 

presence of the lesion, the odds that the fifth rater indicates ‘presence’ rather than 

‘absence’ is estimated as 6 5
ˆ ˆ( 2 )e δ δ−  higher when the sixth rater indicated ‘presence’ rather 

than ‘absence’.  The odds ratio 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 0 1 1 1 1 1 1 0

 is written as ,i i i i i i i i i i i i
i i i i i i

i i i i i i i i i i i i

m m

m m
τ = = = = = = = = = = = =

= = = = = = = = = = = =

 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 1 1 1 6 1 1 1 1 0 0 1 1 1 1 0 1

5 6
5 1 1 1 1 1 0 5 6

where  = exp( ), = exp( ), 

= exp( ) and = exp( ). Therefore, exp(

i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i

m m m

m

µ δ µ

µ δ µ δ τ µ δ

µ µ δ

= = = = = = = = = = = = = = = = = =

= = = = = =

+

+ + = +

+ − −

1 2 3 4 5 6

5 6
5 5

6 5

). Since it is the GP model, and partial agreement is homogeneous, 

exp( 2 ).i i i i i i

µ δ

τ δ δ

− −

= −

 

For the GHeP model under the assumption of marginal homogeneity, the partial 

agreement is not homogeneous and 
1 2 3 4 5 6

5 6
6 5 5exp( ). i i i i i iτ δ δ δ= − − Using the estimates 

from Table 6, the odds that Rater 5 indicates ‘presence’ rather than ‘absence’ is estimated 

as ( (3.58 0.871.27)exp =) 4.2 − − times higher when Rater 6 indicates ‘presence’ rather than 

‘absence’. 
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2.6 INFERENCE 

I review inference in the context of a family of hypotheses, the collection of hypotheses 

that are of interest for a dataset.  I outline procedures to control Type I error when 

multiple hypotheses are tested. 

 

2.6.1. Type One Error   

Testing multiple hypotheses inflates the Type I error rate, defined as the probability of 

rejecting the null hypothesis when the null hypothesis is true.  When the family (e.g., 

collection) of hypotheses includes more than one hypothesis, two kinds of Type I error 

rates are often considered: the comparison-wise error rate (CWE) and the family-wise 

(experiment-wise) error rate (FWE) (Klockars and Sax, 1986; Shaffer, 1995).  The CWE 

is the probability of a Type I error occurring for a single hypothesis.  The FWE is the 

probability that at least one hypothesis in the family of hypotheses is falsely rejected. 

When a family of hypotheses involves only one hypothesis, the CWE equals the FWE.  

When more than one hypothesis is tested, each at the same α level, the FWE is greater 

than the nominal level α.  Consequently, the FWE needs to be controlled at the desired 

pre-specified level ?.  Several multiple comparison procedures control the FWE at α by 

adjusting the CWE of each hypothesis tested.  Multiple comparison procedures include 

those categorized as one-step (simultaneous inference) or step-wise (sequentially 

rejective) procedures (Shaffer, 1995; Ludbrook 1998).  Each of these multiple 

comparison procedures makes some adjustment to the p-value of each comparison.  I 

denote the p-value uncorrected for the number of comparison made by up , and the p-
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value corrected for the number of comparison made by one of the multiple comparison 

procedures by cp . 

 

2.7 MULTIPLE COMPARISON PROCEDURES 

2.7.1. One-Step Procedures   

One-step procedures, such as the Bonferroni and Sidak Inequalities, apply the same 

correction to the p-value of each tested hypothesis in the family.  The rationale behind the 

Bonferroni and Sidak Inequalities is the following:  for a family of g null hypotheses 

( 1,..., gH H ), let C  be the event that at least one of the g comparisons is statistically 

significant under the null hypothesis.  The goal is to maintain the probability of C , Pr(C), 

at γ, the desired a priori specified FWE.  To determine at what significance level α* each 

of the g comparisons should be conducted, note that ( )P C , the probability that none of 

the g comparisons is statistically significant under the null hypothesis, has to equal 1-γ.  

If the hypotheses are independent, then ( ) ( )1 1
g

P C α γ∗= − = − . Solving for α ∗ yields the 

Sidak inequality adjustment, a comparison-wise error rate of 1 (1 )gα γ∗ = − − (Sidak 

1967; Shaffer, 1986).  If  α ∗  is small, then 1- γ can be approximated by 1-gα*.  Solving 

for α ∗  in this approximation yields the Bonferroni correction, α* = γ/g (Rosner, 1995). 

Testing each hypothesis at a comparison-wise error rate α* keeps the FWE at the pre-

specified level γ.  For the Bonferroni procedure, cp  is obtained by multiplying up  by g , 

(i.e. cp  = up  *g).  The Sidak Inequality corrected p-value is cp  = [1 (1 ) ]g
u up p× − − . 
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Corrected p-values less than the apriori specified γ level are considered to be statistically 

significant. 

 

2.7.2.  Holm’s Step-Down Procedure 

The Bonferroni and Sidak corrections are conservative procedures for controlling FWE 

when the test statistics of the hypotheses are correlated.  Increased power can be obtained 

by using Holm’s step-down procedure (Holm, 1979) because the critical levels are larger 

than γ/g or1 (1 )g γ− − .  The Holm’s procedure for testing g hypotheses in terms of both 

the Bonferroni and Sidak corrections is:  

(1) Rank order the uncorrected p-values for the g tested hypotheses in ascending order.   

(2) Calculate pc for the smallest p-value, pc = pu* g for the Bonferroni inequality or  

pc = 1-(1- pu)g for the Sidak inequality. 

(3) Calculate the pc for the next smallest p-value as ( 1)c up g p= − ∗  for the Bonferroni 

inequality or pc =1-(1- pu)g-1 for the Sidak inequality. 

(4) Continue this step-wise procedure until the corrected p-value exceeds α, or all p-

values have been corrected.  Reject the null hypotheses associated with adjusted p-values 

less than γ and fail to reject the null hypotheses associated with adjusted p-values that 

exceed γ. 

 The Holm’s procedure is based upon the closure method (closed testing 

procedure) proposed by Marcus et al. (1976) and the union intersection principle.  If a 

hypothesis, Hb, can be expressed as the intersection of a finite family of g 

hypotheses,
1 2

...
gb b b bH H H H= ∩ ∩ ∩ , then the rejection region of Hb is the union of the 
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rejection regions of  
1 2
, ,..., .

kb b bH H H   The closure method requires that the intersection of 

the k hypotheses does not include the null set.  Provided that a α level test is available for 

each ,  1 to ,
ibH i g=  the closed testing procedure rejects any hypothesis Hb if and only if 

all ,  1 to ,
ibH i g=  are rejected by the associated α level test. As such, the closed testing 

procedure controls the FWE at level ?.  For example, let there be three raters, and let 

1 2 3
2 2 2:bH δ δ δ= = = constant (i.e. the heterogeneous partial agreement parameters are 

homogeneous). Hypothesis Hb, can be expressed as the intersection of 

1 2 3
, whereb b bH H H∩ ∩

1 2 3

1 2 1 3 2 3
2 2 2 2 2 2: ,   : , and : .b b bH H Hδ δ δ δ δ δ= = =  In addition, 

the
ibH can be tested in order of the largest test statistic to the smallest test statistic.  For 

example, if
2bH has the largest test statistic, and 

1bH has the smallest test statistic, the Hb 

can be tested in the order of 
2
,bH

3bH and
1bH . Ordering the test statistics from largest to 

smallest yields the order statistics of the corresponding p-values.  The hypothesis 

corresponding to the smallest p-value (e.g., largest test statistic) is tested first as described 

above (here, 0.05/3). If it is rejected, the hypothesis corresponding to the second smallest 

p-value (
3bH ) is then tested (0.05/2).  This procedure continues until one of the 

hypotheses is not rejected or all the hypotheses in the family have been rejected.  The 

Holm’s procedure controls the FWE at level γ. 

Table 8 shows the corrected critical values for the 15 pair-wise comparisons when 

there are 6 raters for each of the multiple comparison procedures considered and the 

overall family-wise Type I error rate is ? = 0.05. The corrected critical p-values are 

0.003 and 0.0034  for the Bonferroni and Sidak adjustments, respectively. The corrected 
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critical p-values for the first tested hypothesis are 0.003 and 0.0034  for the Holm’s-

Bonferroni and Holm’s-Sidak adjustments, respectively, and increase in magnitude as 

each preceding hypothesis is found significant.  

The number of raters in the inter-rater agreement study dictates the number of pair-

wise comparisons made. As the number of pair-wise comparisons increases, the value of 

the corrected critical p-value decreases, making it more difficult to reject the hypothesis.  

If, for example, there are sampling zeros for the rating patterns representing partial 

agreement for two raters, then pair-wise comparisons are made among the remaining 4 

raters.  For illustrative purposes, Table 9 summarizes the corrected critical p-values for 

the 6 pair-wise comparisons when there are 4 raters for each of the multiple comparison 

procedures considered.  Note that the initial corrected critical p-value is larger compared 

to that shown in Table 8 for 6 raters, and when the Holm’s Bonferroni or Holm’s Sidak 

procedure is used, the increase in the magnitude of the next corrected critical p-value is 

bigger when fewer comparisons are made (Table 9). 
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Table 8. Value of the corrected critical p-values for the four multiple comparison procedures considered for the 15 pair-wise 
comparisons when there are 6 raters and the overall family- wise Type I error rate is gamma = 0.05.  

Unconditional Pair-wise Comparisons* Conditional Pair-wise Comparisons** 
 

Pair-wise Comparison, 
Hypothesis Tested 

Bonferroni Sidak Pair-wise Comparison, 
Hypothesis Tested 

Holm’s –
Bonferroni 

Holm’s -
Sidak 

1H : 1
5δ vs. 2

5δ  

0.0033 

0.003414 
1H   

( 1H , p-w comparison with smallest p-value) 0.0033 0.0034 

2H : 1
5δ  vs. 3

5δ  

0.0033 

0.0034 
2 1 | significantH H   

( 2H , p-w comparison with 2nd smallest p-value) 0.0035 0.0036 

3H : 1
5δ  vs. 4

5δ  

0.0033 

0.0034 
3 2  | significantH H  

( 3H , p-w comparison with 3rd smallest p-value) 0.0038 0.0039 

4H : 1
5δ  vs. 5

5δ  

0.0033 

0.0034 
4 3 | significantH H  

( 4H , p-w comparison with 4th smallest p-value) 0.0041 0.0042 

5H : 1
5δ  vs. 6

5δ  

0.0033 

0.0034 
5 4 | significantH H  

( 5H , p-w comparison with 5th smallest p-value) 0.0045 0.0046 

6H : 2
5δ  vs. 3

5δ  

0.0033 

0.0034 
6 5 | significantH H  

( 6H , p-w comparison with 6th smallest p-value) 0.005 0.0051 

7H : 2
5δ  vs. 4

5δ  

0.0033 

0.0034 
7 6  | significantH H  

( 7H , p-w comparison with 7th smallest p-value) 0.0055 0.0056 

8H : 2
5δ  vs. 5

5δ  

0.0033 

0.0034 
8 7  | significantH H  

( 8H , p-w comparison with 8th smallest p-value) 0.0062 0.0063 
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Table 8 (continued)  
Unconditional Pair-wise Comparisons* Conditional Pair-wise Comparisons** 

 
Pair-wise Comparison, 
Hypothesis Tested 

Bonferroni Sidak Pair-wise Comparison, 
Hypothesis Tested 

Holm’s –
Bonferroni 

Holm’s -
Sidak 

9H : 2
5δ  vs. 6

5δ  

0.0033 

0.0034 
9 8  | significantH H  

( 9H , p-w comparison with 7th largest p-value) 0.0071 0.0073 

10H : 3
5δ  vs. 4

5δ  

0.0033 

0.0034 
10 9  | significantH H  

( 10H , p-w comparison with 6th largest p-value) 0.008333 0.0085 

11H : 3
5δ  vs. 5

5δ  

0.0033 

0.0034 
11 10 | significantH H  

( 11H ,p-w comparison with 5th largest p-value) 0.01 0.0102 

12H : 3
5δ  vs. 6

5δ  

0.0033 

0.0034 
12 11 | significantH H  

( 12H , p-w comparison with 4th largest p-value) 0.0125 0.0127 

13H : 4
5δ  vs. 5

5δ  

0.0033 

0.0034 
13 12 | significantH H  

( 13H ,p-w comparison with 3rd largest p-value) 0.016667 0.0169 

14H : 4
5δ  vs. 6

5δ  

0.0033 

0.0034 
14 13 | significantH H  

( 14H , p-w comparison with 2nd largest p-value) 0.025 0.0253 

15H : 5
5δ  vs. 6

5δ  

0.0033 

0.0034 
15 14 | significantH H  

( 15H , p-w comparison with largest p-value) 0.05 0.05 
* Hypotheses of pair-wise comparisons are not ordered when using the Bonferroni or Sidak procedures. 
** Hypotheses of pair-wise comparisons for the Holm’s-Bonferroni or Holm’s –Sidak procedures are ordered from the smallest to largest p-value. 
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Table 9. Value of the corrected critical p-values for the four multiple comparison procedures considered for the 15 pair-wise 
comparisons when there are 4 r aters and the overall family- wise Type I error rate is gamma = 0.05.  

Pair-wise 
Comparison, 
Hypothesis* 
Tested 

Bonferroni Sidak Pair-wise 
Comparison, 
Hypothesis** 

Tested 

Holm’s –
Bonferroni 

Holm’s -
Sidak 

1H : 1
5δ vs. 2

5δ  
0.0083 0.008512 

1H   
( 1H , p-w comparison with smallest p-value) 0.0083 0.0085 

2H : 1
5δ  vs. 3

5δ  

0.0083 0.008512 

2 1 | significantH H   

( 2H , p-w comparison with 2nd smallest p-value) 0.01 0.0102 

3H : 1
5δ  vs. 4

5δ  

0.0083 0.008512 

3 2  | significantH H  

( 3H , p-w comparison with 3rd smallest p-value) 0.0125 0.0127 

4H : 2
5δ vs. 3

5δ  

0.0083 0.008512 

4 3 | significantH H  

( 4H , p-w comparison with 3rd largest p-value) 0.0166 0.0169 

5H : 2
5δ  vs. 4

5δ  

0.0083 0.008512 

5 4 | significantH H  

( 5H , p-w comparison with 2nd  largest p-value) 0.025 0.0253 

6H : 3
5δ  vs. 4

5δ  

0.0083 0.008512 

6 5 | significantH H  

( 6H , p-w comparison with largest p-value) 0.05 0.05 
* Hypotheses of pair-wise comparisons are not ordered when using the Bonferroni or Sidak procedures. 
** Hypotheses of pair-wise comparisons for the Holm’s-Bonferroni or Holm’s –Sidak procedures are ordered from the smallest to largest p-value. 
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3. METHODS 

 

The focus of this work is to formalize inferential approaches that can be used to test the 

assumption of rater exchangeability and identify an atypical rater in the framework of 

Rogel et al.’s log- linear models.  I propose an unconditional approach to test the 

assumption of rater exchangeability and identify an atypical rater, based on fitting the 

GHeP model directly (without using a model selection process).  The Type I error of the 

approach when raters are homogeneous or heterogeneous with respect to their marginal 

distributions and the power of this approach to identify a single atypical rater with rater 

sub-groups of size K-1 were assessed via a simulation study.  These data were simulated 

from scenarios with known underlying structure of agreement.  I also compared 

alternative adjustments for the multiple comparison problem (e.g., Bonferroni, Sidak, 

Holm’s Step-down procedures (Bonferroni and Sidak adjustments).  This chapter ends 

with a description of the simulation study.  

 

3.1. INFERENTIAL APPROACH 

The inferential approach involves: 

(1) Fitting the heterogeneous partial agreement log-linear model to the data, 

(2) Performing pair-wise comparisons of the K partial agreement 

parameters, 1
i
Kδ −% , and adjusting the p-values for the number of multiple 

comparisons performed, and  
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(3) Identifying any 1
i
Kδ −  agreement parameters that are involved in statistically 

significant pair-wise comparisons. 

 
To identify an ‘atypical rater’, I based statistical inference on the heterogeneous 

partial agreement parameters of the GHeP model.  Each partial agreement 

parameter, 1
ˆ iG

Kδ − , i = 1 to K, represents the level of agreement among the subgroup of K-1 

raters when rater i is not included in the rater subgroup.  If the level of agreement among 

rater subgroups differs significantly by which rater is excluded, then at least one rater is 

identified as atypical (e.g., the assumption of rater exchangeability does not hold).  

Defined in terms of the heterogeneous partial agreement parameters the null hypothesis is 

H0: 1 2
1 1 1 1... iKG G G G

K K K Kδ δ δ δ− − − −= = = =  vs. HA: at least one 1
iG

Kδ − ≠ 1
jG

Kδ − , i ≠ j where i = 1 to K.  If 

the null hypothesis is rejected, then the K partial agreement parameters are not 

homogeneous, prompting the question “Which partial agreement parameter is statistically 

significantly different from the others?”  The magnitude of each estimated partial 

agreement coefficient corresponds to each rater’s non-chance contribution to five-way 

agreement after accounting for global agreement.  Under the assumption of marginal 

homogeneity, an atypical rater’s non-chance contribution to five-way agreement after 

accounting for global agreement is higher than that of a rater who is not atypical and the 

atypical rater’s partial agreement parameter estimate would be significantly larger in 

magnitude relative to the other heterogeneous partial agreement parameter estimates. 

Under the assumption of marginal heterogeneity, the heterogeneous partial agreement 

parameter estimate for an atypical rater may not differ in a predictable way from the 

remaining heterogeneous partial agreement parameter estimate because it reflects only 
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disagreement that is not explained by the atypical rater’s marginal distribution.  An 

alternative strategy would be to examine differences in the lambda parameters in the 

model. This work focused on the pair-wise comparisons of the heterogeneous partial 

agreement parameters directly. I investigated whether hypothesis testing involving the K 

heterogeneous partial agreement parameters, adjusted for multiple comparisons, would 

correctly identify which rater, if any, is atypical. The analysis was performed assuming 

marginal homogeneity for scenarios simulated under the assumption of marginal 

homogeneity.  For scenarios simulated under the assumption of marginal heterogeneity, 

the analysis was performed twice, under the assumptions of both marginal homogeneity 

and marginal heterogeneity. 

The GHeP model was fit to the data without prior model selection.  Pair-wise 

comparisons of the K partial agreement parameters, 1
i
Kδ −% , were made using the Bonferroni 

and Sidak Inequalities and the Holms-Bonferroni and Holms-Sidak procedures, as 

described in Chapter 2.  These partial agreement parameters partition the overall 5-way 

agreement into components attributable to each rater. The premise is that, in the presence 

of an atypical rater, at least one heterogeneous partial agreement parameter would differ 

from at least one of the remaining K-1 partial agreement parameters, controlling for the 

assumed marginal structure.  The pair-wise comparisons of the K partial agreement 

parameters constitute a family of hypotheses where g = K(K-1)/2.   

These partial agreement parameters are asymptotically multivariate normal with 

mean 1
i
Kδ −%  and variance-covariance Σ, asymptotically 1

ˆ iG
Kδ −% ~ MVN( 1

iG
Kδ −% ,Σ).  The pair-

wise comparisons can be conducted using Z statistics for the appropriate linear 
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combinations of the delta parameters (Wald test statistics), with adjustment for the 

number of comparisons being made. 

 

3.2. SIMULATION STUDY 

3.2.1. Objectives 

The primary objectives of the simulation study were to assess the level (probability of 

Type I error) and the power of the proposed approach to detect an atypical rater in the 

context of several scenarios motivated by the intestinal biopsy rating study.  Five 

simulation scenarios were considered.  I considered the proposed approach under the 

assumption that each of five models (G, GP, GHeP-rog, GHeP-atyp4a, and GHeP-

atyp4b) was correct under the assumption of marginal homogeneity, and again, under the 

assumption of marginal heterogeneity.   

For scenarios simulated assuming marginal homogeneity, hypothesis testing was 

conducted under the assumption of marginal homogeneity.  For scenarios simulated 

under the assumption of marginal heterogeneity, the hypothesis testing was conducted 

twice, under the assumption of marginal homogeneity and under the assumption of 

marginal heterogeneity (Table 10). 
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Table 10. Summary of the Properties Assessed By the Analytic Approaches Used for 
Each Simulation Model 

Simulation Assumption of Marginals 
Homogeneity Heterogeneity 

Analytic Assumption of 
Marginals 

Analytic Assumption of 
Marginals 

 
 
 

Simulation 
Model Homogeneity Homogeneity Heterogeneity 

G Type I error Type I error Type I error 
GP Type I error Type I error Type I error 

GHeP-rog Power Power Power 
GHeP-atyp4a Power Power Power 
GHeP-atyp4b Power Power Power 

 
 
 
3.2.2. Design 

Monte Carlo simulation was used to generate 1,000 simulations for each of the five 

models shown in Table 10 under the assumption of marginal homogeneity and marginal 

heterogeneity.  One thousand simulations provide a 95% confidence interval half-width 

of 0.01 for the estimated level of 0.05 and a maximum half-width of 0.03 for the 

estimated power assuming the maximum binomial variance (when p=0.5). 

A simulation consisted of generating rating data, the counts for each cell of the 26 

contingency table.  Therefore, one thousand 26 contingency tables were generated for 

each model under the assumption of marginal homogeneity, and under the assumption of 

marginal heterogeneity.  The agreement structure within a given 26 contingency table was 

the agreement structure defined by the log- linear model that was used to generate the 

rating data. 

Rating data for the scenarios involving the G, GP and GHeP-rog models were 

generated using as “true” values the parameter estimates obtained by fitting the 

corresponding model to the intestinal biopsy data.   Each model was fitted to the 



    

 48 

published data to get realistic values for the simulations.  Rating data for the G, GP, and 

GHeP-rog simulation scenarios were constructed in the following manner: 

1. Fit the hypothesized model to the mucosecretion diminution data. 

2. Capture the estimates of the parameters and variance-covariance matrix 

for the model fit in Step 1. 

3. Randomly generate 1,000 realizations of each parameter in the model 

using the SAS % MVN macro (SAS Institute Inc;  

http://ftp.sas.com/techsup/download/stat/mvn.html) using the estimates 

from Step 2 as input parameters. 

4. Generate counts for the 26 contingency table by randomly sampling from a 

Poisson distribution with mean equal to the exponentiated sum of the 

coefficients corresponding to the covariate pattern of each of the 64 

possible rating patterns. 

5. Repeat Step #4 for the 1,000 realizations generated in Step #3. 

 When fitting the models to the intestinal biopsy data (Rogel et al. 1998), the ‘sum-

to-zero’ constraint was used for the rater effects (see Appendix A) and indicator variables 

(see Appendix B) were used for the agreement parameters, as in Rogel et al. (1998).  

Stata, version 8.2, software was used to fit the models.  The estimates of the parameters 

for each scenario are summarized in Table 11 (see Appendix C for Stata code and 

parameter estimate and variance-covariance matrix output).  
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Table 11. Marginal and Agreement Parameter Estimates for Five Possible Agreement 
Models Fitted to the Mucosecretion Diminution Intestinal Biopsy Data of Rogel et al. 
(1998) Assuming (a) Marginal Homogeneity and (b) Marginal Heterogeneity 

  Assumed Marginal Homogeneity 

Parameter G GP GHeP-rog GHeP-atyp4a GHeP-atyp4b 
 

6δ  3.20 3.58 3.58 3.58 3.58 

5δ  - - 1.22 - - - - - - 

1
5δ  - - - - 0.87 0.96 0.96 

2
5δ  - - - - 1.27 0.96 0.96 

3
5δ  - - - - 0.17 0.96 0.96 

4
5δ  - - - - 1.96 1.96 2.21 

5
5δ  - - - - 0.87 0.96 0.96 

6
5δ  - - - - 1.27 0.96 0.96 

µ -0.49 -0.87 -0.87 -0.87 -0.87 

 Assumed Marginal Heterogeneity 

Parameter G GP  GHeP-rog GHeP-atyp4a GHeP-atyp4b 
 

1Oλ  -0.51 -0.52 -0.64 -0.64 -0.64 

2Oλ  -0.16 -0.10 -0.25 -0.24 -0.24 

3Oλ  -0.26 -0.24 -0.35 -0.36 -0.36 

4Oλ  0.80 0.84 1.35 1.35 1.35 

5Oλ  -0.32 -0.30 -0.42 -0.42 -0.42 

6Oλ  -0.38 -0.37 -0.48 -0.49 -0.49 

6δ  3.47 3.96 4.50 4.49 4.49 

5δ  - - 1.25 - - - - - - 

1
5δ  - - - - 1.96 2.13 2.13 

2
5δ  - - - - 2.44 2.13 2.13 

3
5δ  - - - - 1.38 2.13 2.13 

4
5δ  - - - - 0.36 0.37 2.21 

5
5δ  - - - - 2.08 2.13 2.13 

6
5δ  - - - - 2.47 2.13 2.13 

µ -1.08 -1.48 -2.08 -2.08 -2.08 
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The GHeP-rog estimates shown in Table 11 are the same as those shown in Table 

6.  The interpretation of the 5  and , 1 to 6,iOi iδ λ = was provided in section 2.4.  Rating 

data for the GHeP-atyp4a scenario assuming marginal homogeneity was simulated using 

parameter estimates obtained by fitting a comparable model to the intestinal biopsy data.  

In the GHeP model, five of the six heterogeneous partial agreement parameters were 

constrained to be equal and the sixth was allowed to differ.  Specifically, the 

heterogeneous partial agreement parameter for Rater 4 was allowed to differ, yielding 

estimates of 3.58 for 6δ , -0.87 for µ, 0.96 for 5̂
iδ  , i =1, 2, 3, 5, and 6 and 1.96 for 4

5̂δ  (fifth 

column of the first half of Table 11). Rating data for the GHeP-atyp4b scenario under the 

assumption of marginal homogeneity was created by using the same parameter estimates 

from the GHeP-atyp4a except the magnitude of 4
5δ was increased to 2.21 (Table 11, sixth 

column).  An increase of 0.25, from 1.96 to 2.21, represents a two-fold increase on a log 

scale.   

Rating data for the GHeP- atyp4a scenario assuming marginal heterogeneity was created 

by using parameter estimates obtained by fitting a comparable GHeP model to the 

intestinal biopsy data that constrained five of the six heterogeneous partial agreement 

parameters to be equal and allowed the parameter for Rater 4 to differ.  Estimates for 1ˆOλ  

(i = 1 to 6) ranged from -0.64 to 1.35.  The parameter estimate of 4Oλ is relatively large 

under the G and GP models as well as the GHeP models. The estimate of 5̂
iδ  (i =1, 2, 3, 5, 

and 6) was 2.13 and 0.37 for 4
5̂δ , with µ̂  = -2.08 (fifth column of the second half of 

Table 11).  Rating data for the GHeP-atyp4b scenario under the assumption of marginal 
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heterogeneity was created by using the comparable parameter estimates from the GHeP-

atyp4a scenario except the magnitude of 4
5̂δ was changed from 0.37 to 2.21.  

These parameter estimates and the corresponding variance-covariance matrices 

were used with the SAS macro MVN (Appendix D) to generate 1,000 realizations of 

each parameter in the hypothesized model (Step #3).  The MVN macro generates 

multivariate normal data using the Cholesky decomposition of the variance-covariance 

matrix, an approach commonly used to simulate multivariate normally distributed data 

(Kennedy and Gentle, 1980). The random number generator in the macro uses the time 

from the computer’s internal clock as the seed for each run.  

For each of the 1,000 realizations, count data were generated for the 26 

contingency table by randomly sampling from a Poisson distribution with mean equal to 

the exponentiated sum of the coefficients corresponding to the covariate pattern of each 

of the 64 possible rating patterns (Appendix E).  For the GHeP-atyp4a model under 

marginal homogeneity, the portion of SAS code that generates the count data was as 

follows: 

logm=mu4+e6*b1+e5sub*b2+e5m4*b3; 
 

cntN&index=exp(logm); 
 

smcnt&index = ranpoi(0,cntN&index); 
 
where variables e6, e5sub and e5m4 hold the value ‘0’ or ‘1’ defined by the rating 

pattern and mu4, b1, b2, and b3 were one set of realized parameter estimates for the 

grand mean, global agreement, five-way agreement when raters 1, 2, 3, 5, or 6 are the 

discrepant rater, and five-way agreement when rater 4 is the discrepant rater, 

respectively.  For example, for rating patterns (000100) and (111011) variable e6 equals 
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zero because neither rating pattern represents global agreement, variable e5sub equals 

zero because the five-way agreement represented by these two ratings patterns was not 

the result of raters 1, 2, 3, 5 or 6 being the discrepant rater, and variable e5m4 equals one 

because rater 4 was the discrepant rater and the pattern represented five-way agreement.  

If one set of realized parameter estimates was (-1.01, 3.64, 1.18, 2.37) for the variables 

mu4, b1, b2, and b3, respectively, the value of variable logm for rating patterns (000100) 

and (111011) is  

4
000100 6 5 5log 1.01 ( 0)*3.64 ( 0)*1.18 ( 1)*2.37 1.01 2.37 1.36subm δ δ δ= − + = + = + = = − + =  

 
Count data for rating pattern (000100) was generated by sampling from a Poisson 

distribution with mean equal to 1.36.  Count data for rating pattern (111011) was also 

generated by sampling from a Poisson distribution with mean equal to 1.36.  The means 

of the two Poisson distributions are the same because the agreement is not assumed to 

vary by category of the response. 

 An example of simulated count data for each of the five models simulated 

assuming marginal homogeneity is provided in Table 12. The shaded rows highlight the 

rating patterns that represent global agreement or partial agreement.  Note, the total 

number of the counts observed in a realized 26 contingency table, the sample size, is not 

fixed. For the five realized 26 contingency tables presented in Table 12, the sample size 

ranged from 58 to 95.   
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Table 12. One Set of Simulated Count Data for Each of the Five Scenarios Assuming 
Marginal Homogeneity 

Rating Pattern G Model GP Model GHeP-rog 
Model 

GHeP-atyp4a 
Model 

GHeP-atyp4b 
Model 

000000 18 14 9 18 27 
000001 0 1 2 0 0 
000010 2 5 0 2 1 
000011 1 0 0 1 0 
000100 1 2 2 4 5 
000101 1 0 0 0 0 
000110 0 0 0 0 0 
000111 1 0 1 0 2 
001000 1 3 0 2 1 
001001 3 2 0 0 0 
001010 2 0 0 0 1 
001011 0 0 1 0 0 
001100 1 0 0 0 1 
001101 1 0 0 1 1 
001110 1 0 1 0 0 
001111 1 0 0 0 1 
010000 1 0 0 0 1 
010001 2 0 0 0 1 
010010 2 0 0 1 0 
010011 2 0 1 1 0 
010100 0 1 1 0 2 
010101 0 0 1 0 2 
010110 0 0 1 1 0 
010111 0 0 0 1 0 
011000 1 2 1 1 0 
011001 2 2 1 0 0 
011010 0 3 0 0 0 
011011 1 0 0 0 0 
011100 1 0 1 1 0 
011101 0 0 0 0 0 
011110 2 0 2 0 0 
011111 0 2 1 0 0 
100000 1 0 0 1 1 
100001 0 0 0 2 0 
100010 3 0 0 1 0 
100011 0 1 0 0 1 
100100 0 1 0 0 0 
100101 1 0 2 0 0 
100110 0 1 2 1 1 
100111 0 0 1 1 1 
101000 1 0 0 0 0 
101001 2 0 1 0 0 
101010 0 0 0 0 0 
101011 0 0 2 0 0 
101100 0 1 2 0 0 
101101 0 1 0 0 1 
101110 2 1 1 0 2 
101111 1 2 1 2 1 
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Table 12 (continued) 
Rating Pattern G Model GP Model GHeP-rog 

Model 
GHeP-atyp4a 

Model 
GHeP-atyp4b 

Model 
110000 1 0 1 0 1 
110001 0 0 0 1 0 
110010 0 1 0 1 1 
110011 0 0 1 0 0 
110100 1 0 1 0 2 
110101 1 0 0 1 1 
110110 1 0 0 0 0 
110111 1 0 1 2 0 
111000 0 0 0 0 1 
111001 0 0 1 0 1 
111010 1 0 0 0 1 
111011 0 1 1 2 1 
111100 0 0 0 0 0 
111101 1 1 2 2 1 
111110 1 2 2 1 0 
111111 17 10 10 18 31 

Sample Size 84 60 58 70 95 

 
After the count data for the 1,000 26 contingency tables were generated for a 

given scenario, the analysis was conducted on each generated contingency table. When 

fitting each model to the data, parameters with sufficient statistics equal to zero had to be 

taken into account. My SAS program included code that ascertained which of the 

heterogeneous partial agreement parameters for a given contingency table had sufficient 

statistics equal to zero.  The sufficient statistic of a heterogeneous partial agreement 

parameter was zero when both rating patterns representative of that parameter had counts 

of zero.  For example, if rating patterns (010000) and (101111) both had zero counts 

(e.g., sampling zeros), the sufficient statistic of the heterogeneous partial agreement 

parameter for Rater 2, 2
5δ , was non-estimable, and was set to zero when the GHeP model 

was fitted to the data.  There are 64 possible variations of the GHeP model when there are 

six raters and a binary outcome. A model number, 1 through 64, was assigned to each 

realized 26 contingency table. This model number was used as a data management tool to 

facilitate data processing when fitting the GHeP model to the data and when performing 
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pair-wise comparisons of the GHeP parameters.  The number of possible pair-wise 

comparisons of the GHeP parameters depends on the number of GHeP parameters with 

sufficient statistics not equal to zero. Table 13 enumerates each of the 64 possible GHeP 

models, summarizes the model number assigned to a given GHeP model, the number of 

possible pair-wise comparisons among the heterogeneous partial agreement parameters 

and the number of sampling zeros.  When there are six raters, the number of possible 

pair-wise comparisons of the heterogeneous partial agreement parameters ranges from 

zero to 15.   

In practice, in situations where an overall test is to be performed before individual 

comparisons, multiple comparison procedures generally are not used unless the overall 

test is statistically significant.  However, to assess whether this strategy could identify 

pair-wise differences in the absence of a significant overall test (e.g., under circumstances 

when an investigator would not have planned to initially perform an overall test) while 

controlling for Type I error, I computed adjusted p-values regardless of the statistical 

significance of the overall test. 

 

Table 13. Enumerated GHeP Models Having Heterogeneous Partial Agreement 
Parameters with Sufficient Statistics Equal to Zero and Its Number of Possible Pair-wise 
Comparisons 

Model  
Number 

Heterogeneous Partial Agreement 
Parameter with Sufficient Statistic 

Equal to Zero 

# of Pair-wise 
Comparisons  

(# Sampling Zeros) 
1 None of the six parameters 15 (0) 
2 6

5δ  
3 5

5δ  
4 4

5δ  
5 3

5δ  
6 2

5δ  

 
 
 

10 (2) 
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Table 13 (continued) 
Model  

Number 
Heterogeneous Partial Agreement 
Parameter with Sufficient Statistic 

Equal to Zero 

# of Pair-wise 
Comparisons  

(# Sampling Zeros) 
7 1

5δ  
8 1

5δ , 2
5δ  

9 1
5δ , 3

5δ  
10 1

5δ , 4
5δ  

11 1
5δ , 5

5δ  
12 1

5δ , 6
5δ  

13 2
5δ , 3

5δ  
14 2

5δ , 4
5δ  

15 2
5δ , 5

5δ  
16 2

5δ , 6
5δ  

17 3
5δ , 4

5δ  
18 3

5δ , 5
5δ  

19 3
5δ , 6

5δ  
20 4

5δ , 5
5δ  

21 4
5δ , 6

5δ  
22 5

5δ , 6
5δ  

 
 
 
 
 
 
 

6 (4) 
 

23 1
5δ , 2

5δ , 3
5δ  

24 1
5δ , 2

5δ , 4
5δ  

25 1
5δ , 2

5δ , 5
5δ  

26 1
5δ , 2

5δ , 6
5δ  

27 2
5δ , 3

5δ , 4
5δ  

28 2
5δ , 3

5δ , 5
5δ  

29 2
5δ , 3

5δ , 6
5δ  

30 3
5δ , 4

5δ , 5
5δ  

31 3
5δ , 4

5δ , 6
5δ  

32 1
5δ , 3

5δ , 4
5δ  

33 1
5δ , 3

5δ , 5
5δ  

34 1
5δ , 3

5δ , 6
5δ  

 
 
 
 
 
 
 
 

3 (6) 
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Table 13 (continued) 
Model  

Number 
Heterogeneous Partial Agreement 
Parameter with Sufficient Statistic 

Equal to Zero 

# of Pair-wise 
Comparisons  

(# Sampling Zeros) 
35 1

5δ , 4
5δ , 5

5δ  
36 1

5δ , 5
5δ , 6

5δ  
37 1

5δ , 4
5δ , 6

5δ  
38 2

5δ , 4
5δ , 5

5δ  
39 2

5δ , 4
5δ , 6

5δ  
40 4

5δ , 5
5δ , 6

5δ  
41 3

5δ , 5
5δ , 6

5δ  
42 2

5δ , 5
5δ  6

5δ  

 
 
 
 
 
 

3 (6) 

43 3
5δ , 4

5δ , 5
5δ , 6

5δ  
44 2

5δ , 4
5δ , 5

5δ , 6
5δ  

45 2
5δ , 3

5δ , 5
5δ , 6

5δ  
46 2

5δ , 3
5δ , 4

5δ , 6
5δ  

47 2
5δ , 3

5δ , 4
5δ , 5

5δ  
48 1

5δ , 4
5δ , 5

5δ , 6
5δ  

49 1
5δ , 3

5δ , 5
5δ , 6

5δ  

 
 
 
 
 
 

1 (8) 
 
 

50 1
5δ , 3

5δ , 4
5δ , 6

5δ  
51 1

5δ , 3
5δ , 4

5δ , 5
5δ  

52 1
5δ , 2

5δ , 5
5δ , 6

5δ  
53 1

5δ , 2
5δ , 4

5δ , 6
5δ  

54 1
5δ , 2

5δ , 4
5δ , 5

5δ  
55 1

5δ , 2
5δ , 3

5δ , 6
5δ  

56 1
5δ , 2

5δ , 3
5δ , 5

5δ  
57 1

5δ , 2
5δ , 3

5δ , 4
5δ  

 
 
 
 
 

1 (8) 
 

58 2
5δ , 3

5δ , 4
5δ , 5

5δ , 6
5δ  

59 1
5δ , 3

5δ , 4
5δ , 5

5δ , 6
5δ  

60 1
5δ , 2

5δ , 4
5δ , 5

5δ , 6
5δ  

61 1
5δ , 2

5δ , 3
5δ , 5

5δ , 6
5δ  

62 1
5δ , 2

5δ , 3
5δ , 4

5δ , 6
5δ  

 
 

0* (10) 
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Table 13 (continued)  
Model  

Number 
Heterogeneous Partial Agreement 
Parameter with Sufficient Statistic 

Equal to Zero 

# of Pair-wise 
Comparisons  

(# Sampling Zeros) 
63 1

5δ , 2
5δ , 3

5δ , 4
5δ , 5

5δ  0* (10) 

64 All six parameters 0 (12) 
* The hypothesis that e5mi = 0 can be tested. 
 

Models 58 through 63 have only one heterogeneous partial agreement parameter that is 

not constrained to be zero.  Although this parameter can be tested, pair-wise comparisons 

are not possible. If the heterogeneous partial agreement parameter estimate is not 

significantly different from zero, the five-way agreement represented by the 

heterogeneous partial agreement parameter is not more than what would be expected by 

chance alone after accounting for global agreement (and marginal heterogeneity if 

assumed).   

 This inferential approach was implemented using the statistical software Stata 8.2 

and SAS 8.2.  I wrote programs to fit the five GHeP models, perform pair-wise 

comparisons, and compute the unadjusted p-value associated with each pair-wise 

comparison in Stata.  SAS was used to compute the adjusted p-value values of each pair-

wise comparison and for data management purposes in computing the following: 

1. A summary of the mode, minimum and maximum sample size 

across the 1,000 simulations simulated from the G, GP, GHeP-

rog, GHeP-atyp4a or GHeP-atyp4b model. 

2. Descriptive statistics of the marginal percentages for different 

category specific agreement patterns and rater exclusion across 

the 1,000 simulations simulated from the G, GP, GHeP-rog, 

GHeP-atyp4a or GHeP-atyp4b model.   
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3. The distribution of the simulated 26 contingency tables having 

none, some or all of its heterogeneous partial agreement 

parameters with sufficient statistic equal to zero for each 

simulation model considered. 

4. The frequency that each of the fifteen pair-wise comparisons was 

statistically significant. These statistics were summarized by 

multiple comparison procedure and number of pair-wise 

comparisons/ sampling zeros subsets.  For simulations having one 

or more sampling zeros, an adjustment to the denominator was 

made when calculating the proportion.  The number of 

simulations in which a given pair-wise comparison was not 

possible due to sampling zeros was subtracted from the total 

number of simulations considered.   

5. Type I error is defined as the proportion of simulated tables 

generated under the G or GP model that had a significant pair-

wise comparison involving any of the heterogeneous partial 

agreement parameters. An indicator variable, denoting at least 

one pair-wise comparison (any pair-wise comparison) was 

significant, was created for each simulation.  Type I error was 

computed as the ratio of the number of simulated tables with at 

least one significant pair-wise comparison to 1,000 or (1000-X), 

where X is the number of simulations that have 

all 5 , i=1 to 6, iδ with sufficient statistic equal to zero.  
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6. Power is defined as the proportion of replications generated under 

the GHeP-rog, GHeP-atyp4a or GHeP-atyp4b models that had the 

designated atypical rater (Rater 4) identified as atypical by the 

multiple comparison procedures (i.e. at least of the following 

pair-wise comparisons was statistically significant 1 4
5 5 vs. δ δ , 

2 4
5 5 vs. δ δ , 3 4

5 5 vs. δ δ , 4 5
5 5 vs. δ δ , or 4 6

5 5 vs. δ δ  for a given 

simulated 26 contingency table). The denominator was 1,000 or 

(1000-X), as appropriate.  I summarized the proportion of 

simulated tables for which each possible number of the pair-wise 

comparisons involving 4
5δ  was significant.  

7. The proportion of replications that identified a rater other than 

rater 4 as being the atypical rater was estimated.  A rater other 

than rater 4 was considered identified as the atypical rater if one 

or more of the following pair-wise comparisons was statistically 

significant: 1 2
5 5 vs. ,δ δ 1 3

5 5 vs. ,δ δ  1 5
5 5 vs. ,δ δ  1 6

5 5 vs. ,δ δ  

2 3
5 5 vs. ,δ δ  2 5

5 5 vs. ,δ δ  2 6
5 5 vs. ,δ δ 3 5

5 5 vs. δ δ , 3 6
5 5 vs. δ δ  or 

5 6
5 5 vs. δ δ for a given simulated 26 contingency table. The 

denominator was 1,000 or (1000-X), as appropriate. 

8. The overall unconditional probability of identifying an atypical 

rater was estimated by the proportion of pair-wise comparisons 

that were significant across the 1,000 simulated tables. 
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9. The overall conditional probability of identifying Rater 4 as the 

atypical rater was estimated by the proportion of pair-wise 

comparisons that identified Rater 4, given that at least one rater 

was identified as atypical. 
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4. RESULTS 

 

The first section of this chapter illustrates the inferential approach using the intestinal 

biopsy rating data from Rogel et al. (1998). The second section summarizes the results 

from the simulation study described in Chapter 3.  

 

4.1. ANALYSIS OF INTESTINAL BIOPSY RATING DATA 

The mucosecretion diminution data and the observed rating patterns were described in 

section 2.4. My work required replicating some of the work done by Rogel et al. (1998). 

Reproducing results from the paper provided a way to validate my programs. 

 
 

4.1.1. Results for the GHeP Model Assuming Marginal Homogeneity 

The unconditional approach for identifying an atypical rater begins by fitting the GHeP 

model assuming marginal homogeneity to the data.  For the intestinal biopsy data, the 

estimates of the rater effects, global agreement and the six partial agreement parameters 

are shown in Table 6. 

Next, pair-wise comparisons of the heterogeneous partial agreement parameters 

with adjusted p-values were made. Table 14 summarizes the unadjusted and adjusted p-

values using the Bonferroni, Sidak, Holm’s-Bonferroni and Holm’s-Sidak procedures for 

this GHeP model.  The smallest unadjusted p-value was 0.10, which was comparing 5-

way agreement excluding Rater 3 with 5-way agreement excluding Rater 4.  These two 

raters had the most discrepant delta parameters (0.17 and 1.96, respectively) in Table 6.  

Adjusted p-values range from 0.78 to >0.99 for the Sidak and Holm’s-Sidak adjustments 
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and were consistently >0.99 for the Bonferroni and Holm’s-Bonferroni adjustments.  

None of the 15 pair-wise comparisons of the heterogeneous partial agreement parameters 

from this GHeP model was statistically significant.   

Table 14. Unadjusted and Adjusted p-values for the Fifteen Pair-wise Comparisons of the 
Six Heterogeneous Partial Agreement Parameters from the GHeP Model Assuming 
Marginal Homogeneity. 

 GHeP Model Fitted Assuming Marginal Homogeneity 
Comparison Unadjusted Bonferroni Holm’s – 

Bonferroni 
Sidak Holm’s –

Sidak 
 

1
5δ  vs. 2

5δ  0.66 > 0.99 > 0.99 > 0.99 0.99 

1
5δ  vs. 3

5δ  0.57 > 0.99 > 0.99 > 0.99 0.99 

1
5δ  vs. 4

5δ  0.17 > 0.99 > 0.99 0.95 0.94 

1
5δ  vs. 5

5δ  1.00 > 0.99 > 0.99 > 0.99 > 0.99 

1
5δ  vs. 6

5δ  0.66 > 0.99 > 0.99 > 0.99 0.99 

2
5δ  vs. 3

5δ  0.34 > 0.99 > 0.99 0.99 0.99 

2
5δ  vs. 4

5δ  0.34 > 0.99 > 0.99 0.99 0.99 

2
5δ  vs. 5

5δ  0.66 > 0.99 > 0.99 > 0.99 0.99 

2
5δ  vs. 6

5δ  > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 

3
5δ  vs. 4

5δ  0.10 > 0.99 > 0.99 0.78 0.78 

3
5δ  vs. 5

5δ  0.57 > 0.99 > 0.99 > 0.99 0.99 

3
5δ  vs. 6

5δ  0.34 > 0.99 > 0.99 0.99 0.99 

4
5δ  vs. 5

5δ  0.17 > 0.99 > 0.99 0.95 0.94 

4
5δ  vs. 6

5δ  0.33 > 0.99 > 0.99 0.99 0.99 

5
5δ  vs. 6

5δ  0.66 > 0.99 > 0.99 > 0.99 0.99 

 
 
4.1.2. Results for the GHeP Model Assuming Marginal Heterogeneity  

Under the assumption of marginal heterogeneity, the each rater’s overall prevalence of a 

positive rating for mucosecretion diminution is estimated. The largest lambda in Table 

6, 4 1.35,Oλ =  for Rater 4 corresponds to the largest marginal percentage for the presence 
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of mucosecretion diminution (54.4%) in Table 5.  Relatively large lambda estimates 

correspond to relatively large contributions to the fitted counts for positive ratings.  In 

this example, Rater 4 has relatively more positive ratings than any of the other raters. 

This GHeP log- linear model for the expected cell counts is:  

1 2 3 4 5 6

1
1 2 3 4 5 6 6 6

2 3 4 5 6
6 6 6 6 6

log 2.08 0.65 0.25 0.35 1.35 0.42 0.48 4.5 1.96

                   2.44 1.38 0.36 2.08 2.47 .

i i i i i im λ λ λ λ λ λ δ δ

δ δ δ δ δ

= − − − − + − − + +

+ + + + +
 

 The interpretation of the heterogeneous partial agreement parameters changes 

when marginal heterogeneity is allowed.  Under the assumption of marginal 

homogeneity, the largest heterogeneous partial agreement parameter corresponded to the 

rater who disagreed relatively more often than the other five raters when five-way 

agreement was considered.  Under marginal heterogeneity, the largest heterogeneous 

partial agreement parameter corresponds to the rater who disagrees relatively more often 

than the other five raters when five-way agreement is considered and this disagreement is 

not accounted for by the rater’s propensity to assign a particular rating.  The estimated 

heterogeneous partial agreement parameter for Rater 4 is 1.96 under the assumption of 

marginal homogeneity and only 0.36 under the assumption of marginal heterogeneity 

(Table 11).  In the GHeP marginal heterogeneity model, the more frequent occurrence of 

five-way agreement where Rater 4 is the discrepant rater may be attributable to  Rater 4’s 

higher propensity to rate the presence of mucosecretion diminution.  While strategies 

based on pair-wise comparisons of the heterogeneous partial agreement parameters may 

identify Rater 4 as “different” it is not necessarily because the corresponding delta 

parameter is large. 

Table 15 summarizes the unadjusted and adjusted p-values using the alternative 

multiple comparison procedures after fitting the GHeP model assuming marginal 



    

 65 

heterogeneity.  The unadjusted comparisons indicate that five-way agreement excluding 

Rater 4 differs significantly from five-way agreement excluding either Rater 2 or Rater 6.  

Raters 2 and 6 have the largest 5̂
iδ  parameters in Table 11.  None of the fifteen adjusted 

pair-wise comparisons were statistically significant, indicating that the significant 

unadjusted differences could be attributable to Type I error. The adjusted p-values range 

from 0.46 to >0.99 for the Holm’s- Bonferroni and Holm’s-Sidak procedures, and from 

0.62 to >0.99 for the Bonferroni and Sidak procedures.  
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Table 15. Unadjusted p-values and Four Adjusted p-values for the Fifteen Pair-wise 
Comparisons of the Six Heterogeneous Partial Agreement Parameter from the GHeP 
Assuming Marginal Heterogeneity. 

 GHeP Model Fitted Assuming Marginal Heterogeneity 
Comparison Unadjusted Bonferroni Holm’s – 

Bonferroni 
Sidak Holm’s -

Sidak 
1
5δ  vs. 2

5δ  0.61 > 0.99 > 0.99 > 0.99 > 0.99 

1
5δ  vs. 3

5δ  0.64 > 0.99 > 0.99 > 0.99 > 0.99 

1
5δ  vs. 4

5δ  0.14 > 0.99 > 0.99 0.90 0.85 

1
5δ  vs. 5

5δ  0.90 > 0.99 > 0.99 > 0.99 > 0.99 

1
5δ  vs. 6

5δ  0.58 > 0.99 > 0.99 > 0.99 > 0.99 

2
5δ  vs. 3

5δ  0.36 > 0.99 > 0.99 0.99 > 0.99 

2
5δ  vs. 4

5δ  0.05 0.78 0.72 0.55 0.52 

2
5δ  vs. 5

5δ  0.70 > 0.99 > 0.99 > 0.99 > 0.99 

2
5δ  vs. 6

5δ  0.97 > 0.99 > 0.99 > 0.99 > 0.99 

3
5δ  vs. 4

5δ  0.44 > 0.99 > 0.99 0.99 > 0.99 

3
5δ  vs. 5

5δ  0.57 > 0.99 > 0.99 > 0.99 0.99 

3
5δ  vs. 6

5δ  0.35 > 0.99 > 0.99 0.99 0.99 

4
5δ  vs. 5

5δ  0.13 > 0.99 > 0.99 0.87 0.82 

4
5δ  vs. 6

5δ  0.04 0.62 0.62 0.46 0.46 

5
5δ  vs. 6

5δ  0.67 > 0.99 > 0.99 > 0.99 0.99 

 
 

4.2. SIMULATION STUDY 

 

4.2.1. Simulated G Agreement Model Assuming Marginal Homogeneity 

Generation of Simulated Tables.  One thousand 26 contingency tables were generated 

under the assumption of marginal homogeneity using the parameter estimates for the G 

model shown in Table 11, column 2.  The total number of counts ranged from 32 to 116 



    

 67 

(Table 16); the mode of 70 is similar to the observed sample size (68) of the intestinal 

biopsy data.    

 

Table 16. Descriptive Statistics of Sample Size (Total Counts) of the 1000 26 
Contingency Tables Simulated under the Assumption of Marginal Homogeneity 

 Marginal Homogeneity 
Scenario G GP GHeP-rog  GHeP-atyp4a GHeP-atyp4b 

Minimum 32 36 41 36 34 
Maximum 116 113 125 123 115 
Mode* 70 65 62, 67 67, 70 75 
* Two values indicates a bi-modal distribution 

One example of the simulated cell counts of the 64 possible rating patterns for the 

generated 26 contingency tables was presented in Table 12 (col. 2).  The rater agreement 

characteristics across the 1,000 simulated contingency tables for the G agreement model 

are summarized in Table 17.  Because the 1,000 contingency tables were generated 

assuming homogeneous and not category-specific global agreement, each rater’s mean 

marginal proportion of rating presence of mucosecretion diminution should be 

approximately 50% (col. 2 and col. 3).  Because these data were simulated from estimates 

based on the mucosecretion diminution data, the marginal percentage for global 

agreement (col 4 in Table 16) should approximate the comparable summary for the 

observed data (44.1%) in Table 5; under the assumed model of homogeneous global 

agreement, both G and GP agreement are split equally between the absence and presence  
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Table 17. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the G Agreement Model 
Simulated under the Assumption of Marginal Homogeneity 

Global Agreement Model – Marginal Homogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal 
% for 

Presence 

G %, 
 6δ  

G on 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal %  
(SD)  

[min,max] 

Mean Proportion   
(SE) 

[min,max] 
1 50.0  

(6.1) 
[32.8,74.0] 

50.0 
(6.1) 

[26.0,67.2] 

1.8 
(0.05) 
[0,8.8] 

2 50.2 
(5.9) 

[29.3,67.9] 

49.7 
(5.9) 

[32.1,70.7] 

1.8 
(0.05) 
[0,8.2] 

3 50.0 
(6.2) 

[28.6,69.4] 

49.9 
(6.2) 

[30.6,71.4] 

1.7 
(0.05) 
[0,8.1] 

4 49.9 
(6.1) 

[29.0,69.1] 

50.1 
(6.1) 

[30.9,71.0] 

1.8 
(0.05) 
[0,9.5] 

5 49.9 
(6.2) 

[29.1,70.3] 

50.1 
(6.2) 

[29.7,70.9] 

1.8 
(0.05) 
[0,9.6] 

6 50.1 
(6.2) 

[29.6,67.2] 

49.9 
(6.2) 

[32.8,70.4] 

 

 

 

44.6 

 (0.28) 

[19.1, 72.7] 

 

 

 

22.3 

(0.19) 

[6.3, 46.9] 

 

 

 

22.3 

(0.19) 

[6.3, 42.6] 

 

 

 

10.7 

(0.12) 

[1.1, 23.6] 

 

 

 

5.3 

(0.1) 

[0,17.1] 

 

 

 

5.4 

(0.1) 

[0,18.4] 

1.7 
(0.05) 
[0,9.4] 

* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement 
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of mucosecretion diminution (22.3%, cols. 5 and 6; 5.3% and 5.4% in cols. 8 and 9; Table 17).  

All 5
iδ  (i =1 to 6) parameters were similar (~ 1.8%, col. 10).   

 The percentage of the 1,000 simulated 26 contingency tables having none, some or all 

heterogeneous partial agreement parameters with sufficient statistics equal to zero is summarized 

in Table 18.  Each set of 5
iδ s listed in the first column of the table are disjointed.  For example, 

1, 2, 3 indicates that only heterogeneous partial agreement parameters 1
5δ , 2

5δ , and 3
5δ  had 

sufficient statistics equaling zero. Consequently, only pair-wise comparisons between 4
5δ , 5

5δ , and 

6
5δ  are made.  Regardless of how many pair-wise comparisons are made, the Type I error of each 

simulation is fixed at 0.05.  Model G had relatively few (13.7%) simulated tables with no 

sufficient statistic for a heterogeneous partial agreement parameter equal to zero.  This is 

expected, because under the G model, non-global agreement was spread uniformly across the 

table rather than being concentrated near the diagonal (as in GP agreement).  The sufficient 

statistic for the heterogeneous partial agreement parameter 4
5δ  was zero in 5.7% (57) of the 

1,000 simulated contingency tables.  Both rating patterns representative of heterogeneous partial 

agreement for a particular rater must have a count of 0 for the sufficient statistic of the 

corresponding GHeP parameter to be zero.  Because each set of 1,000 simulated 26 contingency 

tables included tables where some GHeP parameters had sufficient statistics equal to zero, the 

actual number of possible pair-wise comparisons was less than 1,000. 
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Table 18. Percent of the 1,000 Homogeneous Simulated 26 Contingency Tables Having None, 
Some or All of Its Heterogeneous Partial Agreement Parameters With Sufficient Statistic Equal 
to Zero 

Sufficient Statistic of 
GHeP Parameter = 0 in 

Model 

5 0, i iδ = =  

G GP GHeP-
rog 

GHeP-
atyp4a 

GHeP-
atyp4b 

None 13.7 69.1 56.6 36.8 54.2 
6 5.2 5.0 4.4 2.8 5.0 
5 4.2 2.8 4.2 6.7 5.7 
4 5.7 4.0 0.5 0.5 0.1 
3 4.3 4.2 6.4 19.4 6.1 
2 5.8 3.6 5.5 2.8 5.1 
1 3.6 4.1 5.5 8.0 5.7 

1, 2 2.3 0.5 1.2 1.0 1.2 
1, 3 2.0 0.6 1.8 4.7 1.3 
1, 4 1.9 0.4 0.1 0.1 0 
1, 5 2.2 0.4 2.4 1.7 1.4 
1, 6 3.4 0.3 1.2 1.0 1.8 
2, 3 1.9 0.4 0.5 2.30 1.4 
2, 4 2.4 0.3 0 0 0 
2, 5 1.6 0.3 0.8 0.6 0.9 
2, 6 2.0 0.4 1.1 0.7 1.0 
3, 4 2.4 0.1 0.1 0.1 0.1 
3, 5 2.3 0.2 1.5 4.4 1.5 
3, 6 2.4 0.6 1.5 1.8 1.1 
4, 5 1.8 0.8 0.2 0 0 
5, 6 1.8 0.4 1.2 0 0.9 

1, 2, 3 0.8 0 0.4 0.7 0.6 
1, 2, 4 0.6 0.1 0 0.4 0 
1, 2, 5 0.6 0.1 0.6 0 0.4 
1, 2, 6 0.6 0.1 0.2 0.1 0.1 
2, 3, 4 0.6 0.1 0.1 0.1 0 
2, 3, 5 0.6 0 0.2 0 0.3 
2, 3, 6 1.4 0 0.3 0.4 0.8 
3, 4, 5 0.8 0.1 0 0.3 0 
3, 4, 6 0.7 0.1 0 0 0 
1, 3, 4 0.7 0 0 0.1 0 
1, 3, 5 0.7 0 0.1 0 0.5 
1, 3, 6 1.1 0 0.2 0.8 0.4 
1, 4, 5 1.0 0 0 0.5 0 
1, 5, 6 1.2 0.1 0.1 0 0.6 
1, 4, 6 0.9 0.1 0 0.1 0 
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Table 18 (continued) 

Sufficient Statistic of 
GHeP Parameter = 0 in 

Model 

5 0, i iδ = =  

G GP GHeP-
rog 

GHeP-
atyp4a 

GHeP-
atyp4b 

2, 4, 5 0.9 0.1 0 0 0 
2, 4, 6 1.2 0.1 0 0.1 0.1 
4, 5, 6 0.9 0 0 0 0 
3, 5, 6 1.1 0 0.1 0 0.2 
2, 5, 6 0.5 0 0.4 0.2 0.5 

3, 4, 5, 6 0.3 0 0 0.1 0 
2, 4, 5, 6 0.6 0 0 0 0 
2, 3, 5, 6 0.4 0 0.1 0 0.1 
2, 3, 4, 6 0.8 0.1 0 0.1 0 
2, 3, 4, 6 0.2 0 0 0 0 
1, 4, 5, 6 0.5 0 0 0 0 
1, 3, 5, 6 0.6 0 0 0 0.3 
1, 3, 4, 6 0.5 0 0.1 0.1 0 
1, 3, 4, 5 0.4 0 0 0 0 
1, 2, 5, 6 0.4 0 0 0.1 0.1 
1, 2, 4, 6 0.2 0 0 0 0 
1, 2, 4, 6 0.9 0 0 0 0 
1, 2, 3, 5 0.2 0 0.2 0 0.3 
1, 2, 3, 4 0.2 0 0.2 0 0.1 

2, 3, 4, 5, 6 0.6 0 0 0.4 0 
1, 3, 4, 5, 6 0.2 0 0 0 0 
1, 2, 4, 5, 6 0.1 0 0 0 0 
1, 3, 4, 5, 6 0.2 0.1 0 0 0 
1, 2, 3, 5, 6 0.4 0 0 0 0.1 
1, 2, 3, 4, 6 0.2 0 0 0 0 
1, 2, 3, 4, 5 0.6 0 0 0 0 

 All 0.2 0 0 0 0 
TOTAL 100.0 100.0 100.0 100.0 100.0 

 
 

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-wise 

comparison was statistically significant across the 1,000 simulated contingency tables is 

presented in Table 19.  Shaded comparisons highlight the pair-wise comparisons involving 4
5δ . 

None of the fifteen heterogeneous partial agreement parameter pair-wise comparisons was 
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significant in any table generated under the G agreement model, either unadjusted or adjusted for 

multiple comparisons.  

  

Table 19. Number of Times Each Possible Pair-wise Comparison was Statistically Significant 
Across 1000 Tables Simulated under the G Agreement Model with Marginal Homogeneity  

Comparison 
 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

 n (%) 
1
5̂δ  vs. 2

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

1
5̂δ  vs. 4

5̂δ  0 0 0 0 0 

1
5̂δ  vs. 5

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 4

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 4

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

4
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

4
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

5
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

 
 
4.2.2. Simulated GP Agreement Model Assuming Marginal Homogeneity 

Generation of Simulated Tables.  One thousand 26 contingency tables were generated for the 

GP model under the assumption of marginal homogeneity using the parameter estimates shown 

in Table 11, column 3.  The total number of counts per table ranged from 36 to 113 with a mode 

of 65 (Table 16).  An example of the simulated cell counts for a generated 26 contingency tables 

for this GP scenario was presented in Table 12 (col.3).   
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A summary of the rater agreement characteristics across the 1,000 simulated contingency 

tables for the GP agreement model is presented in Table 20.  As in the G model, global 

agreement in the GP model is not category specific, so the marginal distributions for presence 

and absence and the global agreement estimates in Table 20 are similar to those for the G model 

in Table 17. However, relatively more observations (25.6%) represent partial agreement for the 

GP model; this partial agreement is split equally between agreement on presence and absence of 

mucosecretion diminution. The percentage of five-way agreement is similar when each rater is 

excluded (~ 4.2%, col. 10). 

The simulation under the GP agreement model had the highest percent (69.1%) of 

contingency tables among the models considered with no sufficient statistics for heterogeneous 

partial agreement parameters equal to zero (Table 18).  This is expected because this model 

concentrates the counts on the main diagonal (rating patterns (000000) and (111111)) and 

equally across the ten rating patterns representing five-way agreement on the immediate off-

diagonal.  
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Table 20. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GP Agreement Model 
Simulated under the Assumption of Marginal Homogeneity 

Global & Partial Agreement Model – Marginal Homogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 50.1 
(6.3) 

[25.0,66.7] 

49.8 
(6.3) 

[33.3,75.0] 

4.2 
(0.1) 

[0,14.0] 
2 50.0 

(6.0) 
[33.3,67.1] 

50.0 
(6.0) 

[32.9,66.7] 

4.3 
(0.8) 

[0,16.2] 
3 49.8 

(5.9) 
[33.3,67.7] 

50.2 
(5.9) 

[32.3,66.7] 

4.3 
(0.1) 

[0,15.0] 
4 49.8 

(6.2) 
[25.0,68.6] 

50.2 
(6.2) 

[31.4,75.0] 

4.2 
(0.1) 

[0,16.3] 
5 49.6 

(6.0) 
[25.0,72.3] 

50.3 
(6.0) 

[27.7,75.0] 

4.3 
(0.1) 

[0,14.6] 
6 49.9 

(6.1) 
[29.9,67.6] 

50.1 
(6.1) 

[32.4,70.1] 

 

 

43.5 

(0.27) 

[19.0,69.7] 

 

 

21.6 

(0.19) 

[3.9,43.1] 

 

 

21.9 

(0.18) 

[4.7,44.4] 

 

 

25.6 

(0.23) 

[1.5,52.0] 

 

 

12.9 

(0.16) 

[0,31.1] 

 

 

12.6 

(0.15) 

[0,29.6] 

4.2 
(0.1) 

[0,13.1] 
* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement 
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Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-wise 

comparison was statistically significant across the 1,000 simulated contingency tables is 

presented in Table 21. Shaded rows highlight the pair-wise comparisons involving 4
5δ .  None of 

the fifteen heterogeneous partial agreement parameter pair-wise comparisons was significant in 

any table generated under the GP agreement model, either unadjusted or adjusted for multiple 

comparisons.  

Table 21. Number of Times Each Possible Pair-wise Comparison was Statistically Significant 
Across 1000 Tables Simulated under the GP Agreement Model with Marginal Homogeneity  

Comparison 
 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

 n (%) 
1
5̂δ  vs. 2

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

1
5̂δ  vs. 4

5̂δ  0 0 0 0 0 

1
5̂δ  vs. 5

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 4

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 4

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

4
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

4
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

5
5̂δ  vs. 6

5̂δ  0 0 0 0 0 
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4.2.3. Simulated GHeP-rog Agreement Model Assuming Marginal Homogeneity 

Generation of Simulated Tables.  One thousand 26 contingency tables were generated under the 

assumption of marginal homogeneity using the parameter estimates for the GHeP-rog model 

shown in Table 11, column 4.  The total number of counts per table ranged from 41 to 125 with 

modes of 62 and 67 counts (Table 16).  An example of the simulated cell counts for a generated 

26 contingency tables for this GHeP-rog scenario was presented in Table 12 (col.4).   

The rater agreement characteristics across the 1,000 simulated contingency tables for this 

GHeP-rog agreement model are presented in Table 22.  The global agreement and partial 

agreement from the 1,000 simulated contingency tables are comparable to those observed from 

the intestinal biopsy data (Table 5).  The global agreement of the simulated data was 42.2% vs. 

44.1% in the observed data, and partial agreement was 27.9% vs. 25.0%.  Because the data were 

simulated under the assumption of non-category specific global or partial agreement, the 

marginal percentages for the absence and presence of mucosecretion diminution should be 

similar for global and partial agreement (global agreement, absence: 21.4% , presence: 20.8%; 

partial agreement, absence: 13.9%, presence: 14.0%).   

The marginal percentage of five-way agreement when a specific rater is excluded from the 

simulated data differed slightly from that of the observed data because of the assumption of 

marginal homogeneity.  The mean marginal percentage of five-way agreement when Rater 1, 2, 

3, 4, 5, or 6 is excluded from the simulated data is 3.5%, 4.8%, 2.4%, 9.0%, 3.5%, and 4.9%, 

respectively, vs. 2.9%, 4.4%, 1.5%, 8.8%, 2.9%, and 4.4%, respectively, observed from the 

mucosecretion diminution data.  Five-way agreement was highest when Rater 4 was excluded. 
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Table 22. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-rog Agreement 
Model Simulated under the Assumption of Marginal Homogeneity 

GHeP-rog Model – Marginal Homogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 50.0 
(6.2) 

[29.6,68.5] 

49.9 
(6.2) 

[31.5,70.4] 

3.5 
(0.1) 

[0,20.0] 
2 50.3 

(5.7) 
[30.7,69.4] 

49.7 
(5.7) 

[30.6,69.3] 

4.8 
(0.1) 

[0,25.6] 
3 50.2 

(5.9) 
[31.5,70.8] 

49.8 
(5.8) 

[29.2,68.5] 

2.4 
(0.1) 

[0,25.8] 
4 50.2 

(5.8) 
[31.1,69.8] 

49.7 
(5.8) 

[30.2,68.9] 

9.0 
(0.2) 

[0,36.1] 
5 50.0 

(5.9) 
[28.4,70.7] 

49.9 
(5.9) 

[29.3,71.6] 

3.5 
(0.1) 

[0,21.4] 
6 50.4 

(5.9) 
[25.7,70.8] 

49.6 
(5.9) 

[29.2,74.3] 

 
 
 
 
 

42.2 
 

(0.26) 
 

[17.1,70.0] 

 
 
 
 
 

21.4 
 

(0.18) 
 

[6.3,44.6] 

 
 
 
 
 

20.8 
 

(0.18) 
 

[4.8,40.3] 

 
 
 
 
 

27.9 
 

(0.25) 
 

[6.0,60.0] 

 
 
 
 
 

13.9 
 

(0.16) 
 

[0,33.3] 

 
 
 
 
 

14.0 
 

(0.16) 
 

[1.4,41.4] 

4.9 
(0.1) 

[0,25.7 
For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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The sufficient statistic for the heterogeneous partial agreement parameter 4
5δ  was zero in 

only 0.5% (5) of these 1,000 simulated contingency tables (Table 18, row 4, col. 4), and 44.4% 

of the contingency tables had at least one heterogeneous partial agreement parameter with a 

sufficient statistic equal to zero.    

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

presented in Table 23.  Results are presented by subsets of simulations defined by the number of 

possible pair-wise comparisons (15, 10, 6, 3, or 1).  For subsets of size less than 15, “Missing” 

denotes the number of simulations in which the given comparison was not possible due to 

sampling zeros.   

 The vast majority of significant unadjusted pair-wise comparisons involved Rater 4, 

indicating that five-way agreement when Rater 4 is excluded is different from five-way 

agreement when the other raters are excluded. For pair-wise comparisons involving Rater 4, the 

number of adjusted significant pair-wise comparisons was reduced to 2 or less. The few 

statistically significant adjusted pair-wise comparisons all involved Rater 4. In this simulation  

scenario, Rater 4 is designated as the atypical rater. 
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Table 23. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under the GHeP-rog Agreement Model with Marginal Homogeneity  

Number of  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(556) 

 
 

10 
(265) 

 
 
6 

(136) 

 
 
3 

(27) 

 
 
1 

(6) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 

2 (1.3) 
0 
0 
0 
0 

110 

 
 
0 
0 
0 
0 
0 
91  

 
 
0 
0 
0 
0 
0 

 26  

 
 

-- 
-- 
-- 
-- 
-- 
6 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0  

 
 

1 (0.6) 
0 
0 
0 
0 

119 

 
 
0 
0 
0 
0 
0 

103 

 
 
0 
0 
0 
0 
0 
23  

 
 

-- 
-- 
-- 
-- 
-- 
6 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

80 (14.1) 
1 (0.2)  
1 (0.2)  
1 (0.2)  
1 (0.2)  

0 

 
 

38 (18.5) 
0 
0 
0 
0 
60 

 
 

16 (24.2) 
1 (1.5)  
1 (1.5)  
1 (1.5)  
1 (1.5)  

70  

 
 

2 (20.0) 
0 
0 
0 
0 
17 

 
 
0 
0 
0 
0 
0 
5 

1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0  

 
 
0 
0 
0 
0 
0 
97 

 
 
0 
0 
0 
0 
0 

104  

 
 
0 
0 
0 
0 
0 
23  

 
 

-- 
-- 
-- 
-- 
-- 
6 
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Table 23 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(556) 

 
 

10 
(265) 

 
 
6 

(136) 

 
 
3 

(27) 

 
 
1 

(6) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 

2 (1.2) 
0 
0 
0 
0 
99 

 
 
0 
0 
0 
0 
0 

105  

 
 
0 
0 
0 
0 
0 
24 

 
 

-- 
-- 
-- 
-- 
-- 
6 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0  

 
 

2 (1.4) 
0 
0 
0 
0 

119  

 
 
0 
0 
0 
0 
0 
85 

 
 
0 
0 
0 
0 
0 
26 

 
 

-- 
-- 
-- 
-- 
-- 
6 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

81 (14.3) 
1 (0.2)  
1 (0.2)  
1 (0.2)  
1 (0.2)  

0 

 
 

32 (15.6) 
1 (0.5)  
1 (0.5)  
1 (0.5)  
1 (0.5)  

60 

 
 

24 (25.0) 
1 (1.0)  
2 (2.0)  
1 (1.0)  
2 (2.0)  

40 

 
 
0 
0 
0 
0 
0 
22 

 
 

-- 
-- 
-- 
-- 
-- 
6 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 
97 

 
 
0 
0 
0 
0 
0 
89  

 
 
0 
0 
0 
0 
0 
25  

 
 
0 
0 
0 
0 
0 
5 
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Table 23 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(556) 

 
 

10 
(265) 

 
 
6 

(136) 

 
 
3 

(27) 

 
 
1 

(6) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 
99  

 
 
0 
0 
0 
0 
0 
75 

 
 
0 
0 
0 
0 
0 
26 

 
 

-- 
-- 
-- 
-- 
-- 
6 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

85 (15.0) 
2 (0.4)  
2 (0.4)  
2 (0.4)  
2 (0.4)  

0  

 
 

28 (14.3) 
1 (0.5)  
1 (0.5)  
1 (0.5)  
1 (0.5)  

69  

 
 

21 (26.5) 
0 
0 
0 
0 
57 

 
 

1 (7.7) 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
6 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0  

 
 
0 
0 
0 
0 
0 

106 

 
 
0 
0 
0 
0 
0 

100  

 
 
0 
0 
0 
0 
0 
25  

 
 

-- 
-- 
-- 
-- 
-- 
6 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 
0 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

108  

 
 
0 
0 
0 
0 
0 
89 

 
 
0 
0 
0 
0 
0 
21  

 
 

-- 
-- 
-- 
-- 
-- 
6 
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Table 23 (continued) 
Possibl e  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(556) 

 
 

10 
(265) 

 
 
6 

(136) 

 
 
3 

(27) 

 
 
1 

(6) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

78 (13.7) 
1 (0.2)  
1 (0.2)  
1 (0.2)  
1 (0.2)  

0 

 
 

27 (12.4) 
1 (0.4)  
1 (0.4)  
1 (0.4)  
1 (0.4)  

47 

 
 

15 (20.6) 
1 (1.4)  
1 (1.4)  
1 (1.4)  
1 (1.4)  

63  

 
 

3 (27.3) 
0 
0 
0 
0 
16 

 
 
0 
0 
0 
0 
0 
4 

4
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

89 (15.7) 
1 (0.2)  
1 (0.2)  
1 (0.2)  
1 (0.2)  

0 

 
 

38 (17.6) 
1 (0.4)  
1 (0.4)  
1 (0.4)  
1 (0.4)  

49  

 
 

24 (29.3) 
2 (2.4)  
2 (2.4)  
2 (2.4)  
2 (2.4)  

54 

 
 

4 (30.8) 
0 
0 
0 
0 
14 

 
 

1 (50.0) 
0 
0 
0 
0 
4 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.4) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 
86 

 
 
0 
0 
0 
0 
0 
99 

 
 
0 
0 
0 
0 
0 
22  

 
 

-- 
-- 
-- 
-- 
-- 
6 
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For each simulated 26 contingency table that had at least one significant p-value, the proportion 

of comparisons involving Rater 4 was assessed (Table 24).  Table 24 summarizes the power to 

detect Rater 4 as atypical when “atypical” was defined as being different from one, two, …, five 

raters or from at least one other rater.  The power to identify Rater 4 as being atypical is 27.7% 

using a criterion of at least one of the five unadjusted pair-wise comparisons involving 4
5̂δ  is 

statistically significant.  The power is reduced to 0.6% when the analysis is adjusted for the 

number of comparisons.  Power is similarly low across the four multiple comparison procedures 

considered using the criterion that at least one of the five pair-wise comparisons involving 4
5̂δ  is 

statistically significant.  

 

Table 24. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria by Multiple 
Comparison Procedure for the GHeP-rog Scenario 

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.078 0.002 0.002 0.002 0.002 
Two raters 0.070 0.001 0 0.001 0 
Three raters 0.066 0.001 0.002 0.001 0.002 
Four raters 0.040 0.001 0.001 0.001 0.001 
Five raters 0.023 0.001 0.001 0.001 0.001 
At least one rater 0.277 0.006 0.006 0.006 0.006 
 

The proportion of simulations that identified a rater other than Rater 4 as the atypical 

rater was 0.007 based upon unadjusted p-values and 0 when based on adjusted p-values (Table 

25).  The overall probability that any rater is identified as atypical is approximately 6% based on 

unadjusted comparisons and less than 1% if adjustments are made (Table 26). However, the 

probability that Rater 4 is identified given that an atypical rater is identified is greater than 93% 

(Table 27). 
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Table 25. Proportion of Simulations that Identify a Rater Other Than Rater 4 as the Atypical 
Rater by Multiple Comparison Procedure for the Three Scenarios Simulated under the 
Assumption of Marginal Homogeneity 

 Analytic Approach: Marginal Homogeneity 
Simulation 
Scenario 

Unadjusted Bonferroni Holm’s- 
Bonferroni 

Sidak Holm’s- 
 Sidak 

GHeP-rog 0.007 0 0 0 0 
GHeP-atyp4a 0.171 0.019 0.019 0.019 0.019 
GHeP-atyp4b 0.026 0 0 0 0 

 

Table 26. Overall Probability (%) of Identifying any Rater as the Atypical Rater for Data 
Simulated Under the Assumpt ion of Marginal Homogeneity 

Model Unadjusted Bonferroni Holm’s- 
Bonferroni 

Sidak Holm’s- 
Sidak 

GHeP-rog 6.05 0.13 0.14 0.13 0.14 
GHeP-atyp4a 9.14 0.86 0.94 0.86 0.94 
GHeP-atyp4b 10.56 0.63 0.65 0.63 0.70 

 

Table 27. Conditional Probability (%) of Identifying the Designated Atypical Rater as Atypical 
for Data Simulated Under the Assumption of Marginal Homogeneity 

Model Unadjusted Bonferroni Holm’s- 
Bonferroni 

Sidak Holm’s- 
Sidak 

GHeP-rog 94.37 100 100 100 100 
GHeP-atyp4a 60.65 53.76 55.45 53.76 55.45 
GHeP-atyp4b 97.11 100 100 100 100 

 
 
 
4.2.4. Simulated GHeP-atyp4a Agreement Model Assuming Marginal Homogeneity 

Generation of Simulated Tables. One thousand 26 contingency tables were generated under the 

assumption of marginal homogeneity using the parameter estimates for the GHeP-atyp4a model 

shown in Table 11, column 5.  The total number of counts per table ranged from 36 to 123 with 

modes of 67 and 70 counts (Table 16).  An example of the simulated cell counts for the 

generated 26 contingency tables for this GHeP-atyp4a scenario was presented in Table 12 (col. 

5).   
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A summary of the rater agreement characteristics across the 1,000 simulated contingency 

tables for the GHeP-atyp4a agreement model is presented in Table 28. The percentages of five-

way agreement when Raters 1, 2, 3, 5, and 6 are excluded should be similar and less than the 

percentage of five-way agreement when Rater 4 is excluded.  The percentages of five-way 

agreement when Raters 1, 2, 3, 5, and 6 are excluded are ~3.5%, and the percentage of five-way 

agreement when Rater 4 is excluded is 9.0%.   
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Table 28. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4a Model 
Simulated under the Assumption of Marginal Homogeneity 

GHeP-atyp4a Model– Marginal Homogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 50.2 
(6.1) 

[27.5,67.1] 

49.8 
(6.1) 

[32.9,72.5] 

3.4 
(0.1) 

[0,16.9] 
2 50.2 

(6.0) 
[31.0,72.5] 

49.7 
(6.0) 

[27.5,69.0] 

3.5 
(0.1) 

[0,16.3] 
3 50.3 

(5.9) 
[31.2,73.4] 

49.6 
(5.9) 

[26.6,68.8] 

3.4 
(0.1) 

[0,13.1] 
4 50.2 

(6.0) 
[28.2,70.9] 

49.8 
(6.0) 

[29.1,71.7] 

9.0 
(0.1) 

[0,26.2] 
5 50.1 

(6.2) 
[29.2,67.5] 

49.8 
(6.2) 

[32.5,70.8] 

3.4 
(0.1) 

[0,14.6] 
6 50.2 

(6.0) 
[33.3,72.4] 

49.8 
(6.0) 

[27.6,66.7] 

 
 
 
 
 

43.1 
 

(0.26) 
 

[16.9,70.2] 

 
 
 
 
 

21.7 
 

(0.18) 
 

[4.1,43.2] 

 
 
 
 
 

21.4 
 

(0.18) 
 

[5.6,40.7] 

 
 
 
 
 

26.2 
 

(0.25) 
 

[6.9,54.5] 

 
 
 
 
 

13.2 
 

(0.16) 
 

[0,30.7] 

 
 
 
 
 

13.0 
 

(0.16) 
 

[1.4,30.2] 

3.5 
(0.1) 

[0,15.0] 
* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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 In the GHeP-atyp4a simulated scenario, only 5 of the 1, 000 simulated 26 contingency 

tables had counts equal to zero for rating patterns (000100) and (111011), i.e.,  4
5̂ 0δ = ,  and 

63.2% of the contingency tables had at least one heterogeneous partial agreement parameter with 

a sufficient statistic equal to zero.    

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

shown in Table 29. Within each column, relatively more statistically significant unadjusted pair-

wise comparisons involved Rater 4. Very few of the adjusted pair-wise comparisons were 

statistically significant.  In contrast to the GHeP-rog simulation scenario, a sizeable number of 

statistically significant unadjusted pair-wise comparisons did not involve 4
5δ . This explains why 

the unadjusted conditional probability of identifying the designated atypical rater as atypical for 

the GHeP-atyp4a (60.65%) scenario is less than that from the GHeP-rog scenario (94.37%, Table 

27).
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Table 29. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under the GHeP-atyp4a Agreement Model with Marginal Homogeneity  

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(368) 

 
 

10 
(402) 

 
 
6 

(191) 

 
 
3 

(32) 

 
 
1 

(7) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

26 (7.1) 
0 
0 
0  
0 
0 

 
 

12 (4.1) 
1 (0.3) 
1 (0.3) 
1 (0.3) 
1 (0.3) 

108 

 
 

7 (10.0) 
2 (2.8) 
2 (2.8) 
2 (2.8) 
2 (2.8) 

121 

 
 
0 
0 
0 
0 
0 
30 

 
 

-- 
-- 
-- 
-- 
-- 
7 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

21(5.7) 
2 (0.5)  
2 (0.5) 
2 (0.5) 
2 (0.5) 

0 

 
 

6 (4.7) 
2 (1.6)  
2 (1.6)  
2 (1.6)  
2 (1.6)  

274 

 
 

3 (15.0) 
0 
0 
0 
0 

171 

 
 
0 
0 
0 
0 
0 
30 

 
 

-- 
-- 
-- 
-- 
-- 
7 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

79(21.5) 
5 (1.4)  
6 (1.6) 
5 (1.4)  
6 (1.6) 

0 

 
 

24 (7.6) 
1 (0.3)  
1 (0.3)  
1 (0.3)  
1 (0.3)  

85 

 
 

8 (17.1) 
2 (1.9)  
2 (1.9)  
2 (1.9)  
2 (1.9)  

86 

 
 
0 
0 
0 
0 
0 
22 

 
 

1(100) 
1(100) 
1(100) 
1(100) 
1(100) 

6 
1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

24(6.5) 
0 
0 
0 
0 
0 

 
 

5 (2.0) 
1 (0.2)  
1 (0.2)  
1 (0.2)  
1 (0.2)  

147 

 
 

3 (6.1) 
0 
0 
0 
0 

142 

 
 
0 
0 
0 
0 
0 
29 

 
 

-- 
-- 
-- 
-- 
-- 
7 
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Table 29 (continued) 

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(368) 

 
 

10 
(402) 

 
 
6 

(191) 

 
 
3 

(32) 

 
 
1 

(7) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

28 (7.6) 
3 (0.8)  
3 (0.8)  
3 (0.8)  
3 (0.8)  

0 

 
 

10 (3.4) 
3 (1.0)  
3 (1.0)  
3 (1.0)  
3 (1.0)  

108 

 
 

3 (4.1) 
1 (1.4)  
2 (2.7) 
1 (1.4)  
2 (2.7) 

117 

 
 
0 
0 
0 
0 
0 
26 

 
 

-- 
-- 
-- 
-- 
-- 
7 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

23 (6.3) 
3 (0.8)  
3 (0.8)  
3 (0.8)  
3 (0.8)  

0 

 
 

14 (7.8) 
1 (0.5)  
1 (0.5)  
1 (0.5)  
1 (0.5)  

222 

 
 

2 (5.9) 
0 
0 
0 
0 

157 

 
 
0 
0 
0 
0 
0 
31 

 
 

-- 
-- 
-- 
-- 
-- 
7 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

61 (16.5) 
5 (1.3)  
5 (1.3)  
5 (1.3)  
5 (1.3)  

0 

 
 

28 (7.6) 
2 (0.5)  
2 (0.5)  
2 (0.5)  
2 (0.5)  

33 

 
 

24 (16.7) 
3 (2.1)  
3 (2.1)  
3 (2.1)  
3 (2.1)  

47 

 
 

2(12.5) 
0 
0 
0 
0 
16 

 
 

1(100) 
0 
0 
0 
0 
6 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

17 (4.6) 
0 
0 
0 
0 
0 

 
 

5 (1.6) 
1 (0.3)  
1 (0.3)  
1 (0.3)  
1 (0.3)  

95 

 
 

9 (11.7) 
3 (3.9)  
3 (3.9)  
3 (3.9)  
3 (3.9)  

114 

 
 
0 
0 
0 
0 
0 
27 

 
 

-- 
-- 
-- 
-- 
 -- 
 7 
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Table 29 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(368) 

 
 

10 
(402) 

 
 
6 

(191) 

 
 
3 

(32) 

 
 
1 

(7) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

24 (6.5) 
2 (0.5)  
2 (0.5)  
2 (0.5)  
2 (0.5)  

0 

 
 

8 (2.3) 
3 (0.9)  
3 (0.9)  
3 (0.9)  
3 (0.9)  

56 

 
 

8 (7.3) 
2 (1.8)  
2 (1.8)  
2 (1.8)  
2 (1.8)  

81 

 
 

1(11.1) 
0 
0 
0 
0 
23 

 
 
0 
0 
0 
0 
0 
6 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

88 (23.9) 
4 (1.1)  
6 (1.6) 
4 (1.1)  
6 (1.6) 

0 

 
 

45 (22.2) 
3 (1.4)  
3 (1.4)  
3 (1.4)  
3 (1.4)  

199 

 
 

12 (21.1) 
1 (1.8)  
2 (3.5) 
1 (1.8)  
2 (3.5) 

134 

 
 
0 
0 
0 
0 
0 
28 

 
 

-- 
-- 
-- 
-- 
-- 
7 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

24 (6.5) 
3 (0.8)  
3 (0.8)  
3 (0.8)  
3 (0.8)  

0 

 
 

9 (6.3) 
1 (0.7)  
1 (0.7)  
1 (0.7)  
1 (0.7)  

261 

 
 

1 (3.7) 
0 
0 
0 
0 

164 

 
 

1(100) 
0 
0 
0 
0 
31 

 
 

-- 
-- 
-- 
-- 
-- 
7 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

33 (9.0) 
4 (1.1)  
4 (1.1)  
4 (1.1)  
4 (1.1)  

0 

 
 

14(7.8) 
0 
0 
0 
0 

222 

 
 

1 (3.0) 
0 
0 
0 
0 

158 

 
 
0 
0 
0 
0 
0 
30 

 
 

-- 
-- 
-- 
-- 
-- 
7 
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Table 29 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(368) 

 
 

10 
(402) 

 
 
6 

(191) 

 
 
3 

(32) 

 
 
1 

(7) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

68 (18.4) 
7 (1.9)  
7 (1.9)  
7 (1.9)  
7 (1.9)  

0 

 
 

23 7.0) 
2 (0.6)  
2 (0.6)  
2 (0.6)  
2 (0.6)  

72 

 
 

20 (17.2) 
2 (1.7)  
2 (1.7)  
2 (1.7)  
2 (1.7)  

75 

 
 

1(7.7) 
0 

1(7.7) 
0 

1(7.7) 
19 

 
 

-- 
-- 
-- 
-- 
-- 
7 

4
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

57 (15.5) 
6 (1.6)  
7 (1.9) 
6 (1.6)  
7 (1.9) 

0 

 
 

24(6.5) 
3 (0.8)  
3 (0.8)  
3 (0.8)  
3 (0.8)  

33 

 
 

22 (14.8) 
3 (2.0) 
3 (2.0) 
3 (2.0) 
3 (2.0) 

43 

 
 

1(5.9) 
0 
0 
0 
0 
15 

 
 
0 
0 
0 
0 
0 
3 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

34 (9.2) 
2 (0.5) 
2 (0.5) 
2 (0.5) 
2 (0.5) 

0 

 
 

7 (2.2) 
2 (0.7)  
2 (0.7)  
2 (0.7)  
2 (0.7)  

95 

 
 

4 (4.9) 
0 

1 (1.2) 
0 

1 (1.2) 
109 

 
 

1 (25.0) 
1 (25.0)  
1 (25.0)  
1 (25.0)  
1 (25.0)  

28 

 
 

-- 
-- 
-- 
-- 
-- 
7 
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Table 30 summarizes the power to identify Rater 4 as the atypical rater when 4
5δ  differs 

from one or more than one other 5
iδ .  The power of the unadjusted comparisons to detect Rater 4 

as different from exactly one other rater is slightly higher (11.3%) in Table 30 compared to the 

comparable power in Table 24 (7.8%); the overall power (27.5% vs. 27.7%, respectively) is 

similar. Regardless of the multiple comparison procedure used, the power to identify Rater 4 as 

atypical using a criterion that 4
5δ  differs from at least one 5

iδ  (i = 1, 2, 3, 5, or 6) is at most 2.3%.  

The increase in power from 0.6% in the GHeP-rog scenario to 2.2% in Table 30 may be 

explained by Raters 1, 2, 3, 5, and 6 being more homogeneous with respect to their rating 

characteristics in the GHeP-atyp4a scenario than in the GHeP-rog scenario. 

Table 30. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple 
Comparison Procedure for the GHeP-atyp4a Scenario 

Rater 4 Differs 
From: 

Unadjusted Bonferroni Holm’s- 
Bonferroni 

Sidak Holm’s- 
 Sidak 

One rater 0.113 0.011 0.011 0.011 0.011 
Two raters 0.069 0.002 0.002 0.002 0.002 
Three raters 0.039 0.002 0.002 0.002 0.002 
Four raters 0.039 0.006 0.005 0.006 0.005 
Five raters 0.015 0.001 0.003 0.001 0.003 
At least one rater 0.275 0.022 0.023 0.022 0.023 
 

Because there were adjusted statistically significant pair-wise comparisons that did not 

involve 4
5δ , the proportion of simulations that ident ified a rater other than Rater 4 as the atypical 

rater was calculated. Using an identification criterion that at least one of the pair-wise 

comparisons between the remaining five raters had to be significant to identify a rater as being 

atypical, 17.1% of these simulations identified a rater other than Rater 4 as the atypical rater 

based upon unadjusted comparisons compared to only1.9% from adjusted comparisons (Table 

25). 
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The overall probability that any rater is identified as atypical is 9.14% if adjustments for 

the number of comparisons are not made and less than 1% if adjustments are made (Table 26). 

The probability that Rater 4 is identified given that an atypical rater is identified is 60.65% based 

on adjusted comparisons and 54%-55% for the four multiple comparison procedures (Table 27).  

It is relatively more difficult to correctly identify the designated atypical rater under this 

scenario. A greater proportion (63.2%) of the GHeP-atyp4a simulations had at least one 

heterogeneous partial agreement parameter with a sufficient statistic equal to zero compared to 

the GHeP-rog scenario (43.4%, Table 18). There were a disproportionate percentage of GHeP-

atyp4a simulations with 3
5 0δ =  compared to the GHeP-rog scenario, 19.4% vs. 6.4%, and for the 

pair of heterogeneous partial agreement parameters 2 3
5 5, 0δ δ =  (2.3% vs. 0.5%).  Having 

heterogeneous partial agreement parameters with sufficient statistics equal to zero reduces the 

number of possible pair-wise comparisons. Consequently, the unadjusted critical p-value is 

larger and a greater proportion of pair-wise comparisons ( 5 5
ˆ ˆ: ,i j

oH i jδ δ= ≠ ) will be rejected. 

 

4.2.5. Simulated GHeP-atyp4b Agreement Model Assuming Marginal Homogeneity 

Generation of Simulated Tables.  One thousand 26 contingency tables were generated under the 

assumption of marginal homogeneity using the parameter estimates for the GHeP-atyp4b model 

shown in Table 11, column 5.  The total number of counts per table ranged from 34 to 115 with a 

mode of 75 (Table 16).  An example of the simulated cell counts for a generated 26 contingency 

tables for this GHeP-atyp4b scenario was presented in Table 12 (col.5).   

 

 



   
   

  

 94 

The rater agreement characteristics across the 1,000 simulated contingency tables are 

summarized in Table 31.  The mean marginal percentages for heterogeneous partial agreement 

are comparable for Raters 1, 2, 3, 5 and 6 and higher for Rater 4, (~2.3% for the former and 

~9.8% for the latter).  
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Table 31. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4b Model 
Simulated under the Assumption of Marginal Homogeneity 

GHeP-atyp4b Model – Marginal Homogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 50.1 
(6.2) 

[31.0,68.7] 

49.8 
(6.2) 

[31.3,69.0] 

2.3 
(0.1) 

[0,11.2] 
2 50.1 

(6.2) 
[32.9,67.7] 

49.8 
(6.2) 

[32.3,67.1] 

2.2 
(0.1) 

[0,13.3] 
3 50.0 

(6.0) 
[26.3,69.8] 

50.0 
(6.0) 

[30.2,73.7] 

2.2 
(0.1) 

[0,13.1] 
4 50.2 

(6.1) 
[31.1,71.0] 

49.8 
(6.0) 

[29.0,68.9] 

9.8 
(0.2) 

[0,30.5] 
5 50.1 

(6.2) 
[32.1,71.4] 

49.8 
(6.3) 

[28.6,67.9] 

2.3 
(0.1) 

[0,10.4] 
6 49.9 

(6.3) 
[30.2,66.7] 

50.1 
(6.3) 

[33.3,69.8] 

 
 
 
 

45.9 
 

(0.27) 
 

[21.7,71.0] 

 
 
 
 

23.0 
 

(0.19) 
 

[6.3,45.7] 

 
 
 
 

22.9 
 

(0.19) 
 

[5.8,42.6] 

 
 
 
 

21.4 
 

(0.22) 
 

[4.0,45.9] 

 
 
 
 

10.7 
 

(0.14) 
 

[0,28.6] 

 
 
 
 

10.7 
 

(0.14) 
 

[0,29.8] 

2.4 
(0.1) 

[0,10.9] 
* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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For these GHeP-atyp4b simulated data, only one contingency table had 4
5̂ 0δ =  (Table 18, 

row 4, col. 5), and 45.8% of the contingency tables had at least one heterogeneous partial 

agreement parameter with sufficient statistic equal to zero.  

 
Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-wise 

comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 32.  Approximately 25% of the unadjusted pair-wise comparisons 

involving Rater 4 were statistically significant.  In contrast, less than 2% of the unadjusted pair-

wise comparisons not involving Rater 4 were statistically significant. The only adjusted pair-

wise comparisons that were statistically significant involved Rater 4.   
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Table 32. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under the GHeP-atyp4b Agreement Model with Marginal Homogeneity  

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(542) 

 
 

10 
(277) 

 
 
6 

(126) 

 
 
3 

(45) 

 
 
1 

(10) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.4) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

108 

 
 
0 
0 
0 
0 
0 
90 

 
 
0 
0 
0 
0 
0 
43 

 
 

-- 
-- 
-- 
-- 
-- 
10 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.6) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

118 

 
 
0 
0 
0 
0 
0 
98 

 
 
0 
0 
0 
0 
0 
39 

 
 

-- 
-- 
-- 
-- 
-- 
10 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

129 (23.8) 
5 (0.9) 
5 (0.9) 
5 (0.9) 
5 (0.9) 

0 

 
 

68 (31.1) 
6 (2.7) 
6 (2.7) 
6 (2.7) 
6 (2.7) 

58 

 
 

27 (39.7) 
4 (5.9) 
4 (5.9) 
4 (5.9) 
4 (5.9) 

58 

 
 

6 (33.3) 
1 (5.5) 
1 (5.5) 
1 (5.5) 
1 (5.5) 

27 

 
 
0 
0 
0 
0 
0 
9 

1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 
0 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

114 

 
 
0 
0 
0 
0 
0 
90 

 
 
0 
0 
0 
0 
0 
36 

 
 

-- 
-- 
-- 
-- 
-- 
10 
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Table 32 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(542) 

 
 

10 
(277) 

 
 
6 

(126) 

 
 
3 

(45) 

 
 
1 

(10) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.4) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

107 

 
 
0 
0 
0 
0 
0 
87 

 
 
0 
0 
0 
0 
0 
42 

 
 

-- 
-- 
-- 
-- 
-- 
10 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

112 

 
 
0 
0 
0 
0 
0 
41 

 
 
0 
0 
0 
0 
0 
39 

 
 

-- 
-- 
-- 
-- 
-- 
10 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

136 (25.1) 
5 (0.9) 
5 (0.9) 
5 (0.9) 
5 (0.9) 

0 

 
 

74 (32.9) 
6 (2.7) 
6 (2.7) 
6 (2.7) 
6 (2.7) 

52 

 
 

30 (37.5) 
4 (5.0) 
4 (5.0) 
4 (5.0) 
4 (5.0) 

46 

 
 

9 (52.9) 
2 (11.7) 
2 (11.7) 
2 (11.7) 
2 (11.7) 

28 

 
 
0 
0 
0 
0 
0 
7 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.4) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

108 

 
 
0 
0 
0 
0 
0 
83 

 
 
0 
0 
0 
0 
0 
41 

 
 

-- 
-- 
-- 
-- 
-- 
10 
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Table 32 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(542) 

 
 

10 
(277) 

 
 
6 

(126) 

 
 
3 

(45) 

 
 
1 

(10) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

7 (1.3) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

101 

 
 
0 
0 
0 
0 
0 
43 

 
 
0 
0 
0 
0 
0 
40 

 
 

-- 
-- 
-- 
-- 
-- 
10 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

143 (26.3) 
2 (0.4) 
4 (0.7) 
2 (0.4) 
4 (0.7) 

0 

 
 

67 (31.1) 
5 (2.3) 
5 (2.3) 
5 (2.3) 
5 (2.3) 

62 

 
 

27 (37.5) 
2 (2.7) 
2 (2.7) 
2 (2.7) 
2 (2.7) 

54 

 
 

3 (18.8) 
1 (6.3) 
1 (6.3) 
1 (6.3) 
1 (6.3) 

29 

 
 
0 
0 
0 
0 
0 
9 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

118 

 
 
0 
0 
0 
0 
0 
86 

 
 
0 
0 
0 
0 
0 
43 

 
 

-- 
-- 
-- 
-- 
-- 
10 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

111 

 
 
0 
0 
0 
0 
0 
91 

 
 
0 
0 
0 
0 
0 
41 

 
 

-- 
-- 
-- 
-- 
-- 
10 
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Table 32 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(542) 

 
 

10 
(277) 

 
 
6 

(126) 

 
 
3 

(45) 

 
 
1 

(10) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

135 (24.9) 
6 (1.1) 
7 (1.3) 
6 (1.1) 
7 (1.3) 

0 

 
 

74 (33.8) 
6 (2.7) 
6 (2.7) 
6 (2.7) 
6 (2.7) 

58 

 
 

31 (39.7) 
2 (2.5) 
2 (2.5) 
2 (2.5) 
2 (2.5) 

48 

 
 

5 (26.3) 
3 (15.8) 
3 (15.8) 
3 (15.8) 
3 (15.8) 

26 

 
 

2 (66.7) 
2 (66.7) 
2 (66.7) 
2 (66.7) 
2 (66.7) 

7 
4

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

146 (26.9) 
5 (0.9) 
5 (0.9) 
5 (0.9) 
5 (0.9) 

0 

 
 

66 (29.2) 
5 (2.2) 
5 (2.2) 
5 (2.2) 
5 (2.2) 

51 

 
 

26 (33.8) 
2 (2.6) 
2 (2.6) 
2 (2.6) 
2 (2.6) 

49 

 
 

6 (33.3) 
0 
0 
0 
0 
27 

 
 
0 
0 
0 
0 
0 
9 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

6 (1.1) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

107 

 
 
0 
0 
0 
0 
0 
86 

 
 
0 
0 
0 
0 
0 
39 

 
 

-- 
-- 
-- 
-- 
-- 
10 
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Table 33 summarizes the power to identify Rater 4 as the atypical rater when 4
5δ  differs 

from one or more of the other 5
iδ ‘s. Using a criterion that 4

5δ  differs from at least one 5
iδ  (i = 1, 

2, 3, 5, or 6), the power to identify Rater 4 as being atypical is 44.2% based on unadjusted 

comparisons and only 2.9% for the adjusted comparisons.   

 

Table 33. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple 
Comparison Procedure for the GHeP-atyp4b Scenario 
Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.099 0.007 0.007 0.007 0.5 
Two raters 0.114 0.007 0.007 0.007 0.007 
Three raters 0.088 0.008 0.006 0.008 0.008 
Four raters 0.084 0.006 0.007 0.006 0.005 
Five raters 0.057 0.001 0.002 0.001 0.004 
At least one rater 0.442 0.029 0.029 0.029 0.029 
 
 
 
4.2.6. Simulated G Agreement Model Assuming Marginal Heterogeneity 

Generation of Simulated Tables.   One thousand 26 contingency tables were generated under 

the assumption of marginal heterogeneity using the parameter estimates for the G model shown 

in Table 11 (lower half of table, column 2).  The total number of counts per table ranged from 37 

to 119, with a mode of 74 (Table 34).   

Table 34. Descriptive Statistics of Sample Size (Total Counts) of the One Thousand 26 
Contingency Tables Simulated under the Assumption of Marginal Heterogeneity 

 Marginal Heterogeneity 
Scenario G GP GHeP-rog GHeP-atyp4a GHeP-atyp4b 

Minimum 37 36 32 37 57 
Maximum 119 124 143 111 224 
Mode 74 65 78 72,74* 110 
* Two values indicates a bi-modal distribution 

One example of the simulated cell counts of the 64 possible rating patterns for the generated 26 

contingency tables for the G scenario is presented in Table 35 (col. 2).  The shaded patterns  
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represent global agreement or partial agreement. Notice that 20 (83.3%) of the 24 rating patterns 

representing G agreement were from rating pattern (000000). 

Table 35. One Set of Count Data for Five Models Simulated Assuming Marginal Heterogeneity 
 Simulated Model 

Rating Pattern G GP GHeP-rog GHeP-atyp4a GHeP-atyp4b 
000000 20 32 32 12 23 
000001 1 2 2 0 1 
000010 0 0 4 2 2 
000011 0 0 0 0 0 
000100 6 5 4 7 32 
000101 4 3 1 1 4 
000110 0 1 2 4 8 
000111 0 1 0 2 0 
001000 0 0 0 2 4 
001001 0 0 0 0 0 
001010 0 1 0 0 0 
001011 1 0 0 0 0 
001100 2 3 0 0 8 
001101 1 1 0 1 2 
001110 0 1 0 0 1 
001111 0 1 0 0 0 
010000 1 3 2 3 0 
010001 1 0 1 0 0 
010010 0 1 0 0 0 
010011 1 1 0 0 0 
010100 4 3 1 4 3 
010101 0 0 1 1 0 
010110 1 2 0 1 2 
010111 0 0 1 0 0 
011000 0 0 0 0 0 
011001 1 0 0 0 0 
011010 1 0 0 0 0 
011011 0 0 1 0 0 
011100 2 0 1 0 1 
011101 1 0 0 2 0 
011110 0 0 0 0 0 
011111 1 0 2 0 8 
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Table 35 (continued) 
 Simulated Model 

Rating Pattern G GP GHeP-rog GHeP-atyp4a GHeP-atyp4b 
100000 0 4 1 2 0 
100001 0 0 0 0 0 
100010 0 0 0 0 0 
100011 0 0 0 0 0 
100100 0 2 3 2 0 
100101 0 0 1 0 0 
100110 0 1 2 0 3 
100111 0 1 0 0 0 
101000 0 0 0 0 0 
101001 0 0 0 0 0 
101010 0 1 0 0 0 
101011 0 0 0 1 0 
101100 2 0 1 1 1 
101101 1 1 0 0 0 
101110 0 1 0 1 0 
101111 0 0 1 1 2 
110000 0 0 0 0 0 
110001 0 0 1 0 0 
110010 0 0 0 1 0 
110011 0 0 1 0 0 
110100 1 0 2 1 0 
110101 1 0 0 0 1 
110110 0 1 0 1 0 
110111 1 2 3 1 2 
111000 0 0 0 0 0 
111001 0 0 0 0 0 
111010 1 1 0 0 0 
111011 0 0 0 0 0 
111100 0 1 0 0 1 
111101 1 1 5 4 0 
111110 0 2 4 4 3 
111111 4 7 5 4 9 

Sample Size 61 81 85 66 121 
 
The rater agreement characteristics across the 1,000 simulated contingency tables for the G 

model are summarized in Table 36.  The six raters’ mean marginal proportions of rating 

‘absence’ and ‘presence’ are similar to that observed in the intestinal biopsy example, with 

Raters 1, 2, 3, 5, and 6 rating ‘absence’ of the lesion in approximately 72% of the biopsies and  
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Rater 4 rating ‘absence’ of the lesion in 45.2% of the slides (col. 2).  The observed percentage of 

global agreement is no t necessarily divided equally between global agreement on the absence or  

presence of the lesion (35.8% and 7.1%, respectively).  The mean percentage of partial 

agreement 0.001 was 10.9% (col. 7), of which 50% represented five-way agreement when Rater 

4 disagreed with the other raters (col. 10). 
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Table 36. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the G Agreement Model 
Simulated under the Assumption of Marginal Heterogeneity 

Global Agreement Model – Marginal Heterogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal 
% for 

Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SD)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 77.3 
(7.4) 

[54.1,95.3] 

22.7 
(7.4) 

[4.6, 45.9] 

0.9 
(0.03) 
[0,7.7] 

2 68.6 
(7.7) 

[40.2,93.5] 

31.3 
(7.7) 

[6.5,59.8] 

1.3 
(0.04) 
[0,7.1] 

3 71.1 
(7.5) 

[42.9,91.2] 

28.8 
(7.5) 

[8.8,57.1] 

1.1 
(0.04) 
[0,7.8] 

4 45.2 
(8.3) 

[21.5,77.6] 

54.8 
(8.3) 

[22.3,78.4] 

5.5 
(0.1) 

[0,19.4] 
5 72.6 

(7.6) 
[45.5,91.4] 

27.4 
(7.6) 

[5.9,54.5] 

1.1 
(0.04) 
[0,6.6] 

6 74.1 
(7.4) 

[47.9,91.9] 

25.9 
(7.4) 

[8.1,52.1] 

 
 
 
 
 
 

42.8  
 

(0.27) 
 

[17.6, 78.9] 

 
 
 
 
 
 

35.8 
 

(0.25) 
 
[14.8, 72.3] 

 
 

 
 
 
 

7.1 
 

(0.13) 
 

[0, 31.1] 

 
 
 
 
 
 

10.9 
 

(0.12) 
 

[0, 26.5] 

 
 
 
 
 
 

8.8 
 

(0.11) 
 

[0,23.1] 

 
 
 
 
 
 

2.0 
 

(0.1) 
 

[0,11.7] 

1.1 
(0.04) 
[0,6.6] 

For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement 
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The percentage of the 1,000 simulated 26 contingency tables having none, some or all of 

its heterogeneous partial agreement parameters with sufficient statistics equal to zero is 

summarized in Table 37.  Model G had relatively few (5.1%) simulated tables with no 

heterogeneous sufficient statistic for a partial agreement parameter equal to zero.  This is 

expected, because under the G model, non-global agreement was spread uniformly across the 

table rather than being concentrated near the diagonal.  

 

Table 37. Percent of the 1,000 Heterogeneous Simulated 26 Contingency Tables with None, 
Some or All of Its Heterogeneous Partial Agreement Parameters Having Sufficient Statistic 
Equal to Zero  

Sufficient Statistic 
of GHeP Parameter 

= 0 in Model 

5 0, i iδ = =  

 
 
 

G 

 
 
 

GP 

 
 
 

GHeP-rog 

 
 
 

GHeP-atyp4a 

 
 
 

GHeP-atyp4b 

None 5.1 41.9 36.0 61.1 60.9 
6 3.5 8.6 2.8 5.7 5.2 
5 3.9 8.4 8.3 6.5 5.9 
4 0.1 0 0.3 0.7 0 
3 3.5 7.3 20.7 4.6 6.7 
2 2.6 4.9 3.1 5.0 5.9 
1 5.5 8.2 8.2 4.3 4.6 

1, 2 2.7 1.0 0.6 1.2 0.8 
1, 3 2.7 1.6 5.0 0.6 0.8 
1, 4 0.2 0 0 0 0 
1, 5 3.7 1.6 1.7 0.8 0.8 
1, 6 2.7 1.3 0.6 1.2 0.9 
2, 3 2.5 1.3 1.9 0.6 1.0 
2, 4 0.2 0 0 0.1 0 
2, 5 2.0 1.1 0.7 1.2 0.6 
2, 6 2.7 1.6 0.2 1.7 0.7 
3, 4 0.4 0 0.4 0.1 0 
3, 5 2.6 1.5 4.2 0.7 0.9 
3, 6 3.3 1.7 1.5 1.1 1.2 
4, 5 0.1 0 0 0 0 
5, 6 0.3 0 0 0 0 
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Table 37 (continued) 
Sufficient Statistic 

of GHeP Parameter 
= 0 in Model 

5 0, i iδ = =  

 
 
 

G 

 
 
 

GP 

 
 
 

GHeP-rog 

 
 
 

GHeP-atyp4a 

 
 
 

GHeP-atyp4b 

1, 2, 3 2.6 2.6 0.5 1.2 1.1 
1, 2, 4 2.6 0.5 0.6 0 0.3 
1, 2, 5 0.1 0 0 0 0 
1, 2, 6 2.5 0.6 0.2 0.2 0.1 
2, 3, 4 2.5 0.2 0.1 0.1 0.2 
2, 3, 5 0.1 0 0 0 0 
2, 3, 6 2.7 0.2 0.5 0.3 0 
3, 4, 5 2.3 0.2 0.1 0.4 0.3 
3, 4, 6 0 0 0 0 0 
1, 3, 4 0.1 0 0 0.1 0 
1, 3, 5 0.1 0 0 0 0 
1, 3, 6 4.0 0.3 0.7 0 0.3 
1, 4, 5 2.8 0.5 0.3 0 0 
1, 5, 6 0 0 0 0 0 
1, 4, 6 2.9 0.3 0.2 0 0.2 
2, 4, 5 0.1 0 0 0 0 
2, 4, 6 0 0 0 0 0 
4, 5, 6 0 0 0 0 0 
3, 5, 6 0.1 0 0 0 0 
2, 5, 6 2.9 0.7 0.1 0.2 0.3 

3, 4, 5, 6 2.6 0.6 0.2 0.1 0 
2, 4, 5, 6 0.1 0 0 0 0 
2, 3, 5, 6 0.1 0 0 0 0 
2, 3, 4, 6 2.3 0.2 0.1 0 0.1 
2, 3, 4, 6 0 0 0 0 0 
1, 4, 5, 6 0 0 0 0 0 
1, 3, 5, 6 0 0 0 0 0 
1, 3, 4, 6 4.3 0.2 0 0 0 
1, 3, 4, 5 0.1 0 0 0 0 
1, 2, 5, 6 0.1 0 0 0 0 
1, 2, 4, 6 2.5 0.3 0 0 0 
1, 2, 4, 6 0.1 0 0 0 0 
1, 2, 3, 5 3.1 0 0 0 0 
1, 4, 5, 6 0 0 0 0 0 
1, 3, 5, 6 0 0 0 0 0 
1, 3, 4, 6 4.3 0.2 0 0 0 
1, 3, 4, 5 0.1 0 0 0 0 
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Table 37 (continued) 
Sufficient Statistic 

of GHeP Parameter 
= 0 in Model 

d5
 i = 0 

 
 
 

G 

 
 
 

GP 

 
 
 

GHeP-rog 

 
 
 

GHeP-atyp4a 

 
 
 

GHeP-atyp4b 
1, 2, 5, 6 0.1 0 0 0 0 
1, 2, 4, 6 2.5 0.3 0 0 0 
1, 2, 4, 6 0.1 0 0 0 0 
1, 2, 3, 5 3.1 0 0 0 0 
1, 2, 3, 4 2.2 0 0.1 0.2 0.1 

2, 3, 4, 5, 6 0.1 0.4 0.1 0 0.1 
1, 3, 4, 5, 6 0.1 0 0 0 0 
1, 2, 4, 5, 6 0.2 0 0 0 0 
1, 3, 4, 5, 6 0.1 0 0 0 0 
1, 2, 3, 5, 6 2.9 0 0 0 0 
1, 2, 3, 4, 6 0.1 0 0 0 0 
1, 2, 3, 4, 5 0.2 0.2 0 0 0 

 All 0.1 0 0 0 0 
TOTAL 100.0 100.0 100.0 100.0 100.0 

 
The sufficient statistic for the heterogeneous partial agreement parameter 4

5δ  was zero in one 

(0.1%) of the 1,000 simulated contingency tables (shaded row, col. 2).  Because each set of 1,000 

simulated 26 contingency tables included tables where some GHeP parameters had sufficient 

statistics equal to zero, the actual number of possible pair-wise comparisons was less than 1,000. 

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-wise 

comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 38.  All of the statistically significant unadjusted pair-wise comparisons 

involved Rater 4. None of the adjusted comparisons 1
5̂δ  vs. 4

5̂δ was statistically significant.  The 

percentage of significant adjusted pair-wise comparisons ranged from 0.2% ( 4
5δ vs. 6

5δ ) to 0.6% 

( 4
5δ vs. 5

5δ ).  
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Table 38. Number (%) of Times Each Possible Pair-wise Comparison was Statistically 
Significant Across 1000 Tables Simulated under the G Model with Marginal Heterogeneity when 
the Data were Analyzed Assuming Marginal Homogeneity  

Comparison 
 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

 n (%) 
1
5̂δ  vs. 2

5̂δ   0 0 0 0 0 
 

1
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

1
5̂δ  vs. 4

5̂δ  15(3.2) 0 0 0 0 

1
5̂δ  vs. 5

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 4

5̂δ  20(3.6) 2(0.3) 2(0.3) 2(0.3) 2(0.3) 

2
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 4

5̂δ  27(5.4) 2(0.4) 2(0.4) 2(0.4) 2(0.4) 

3
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

4
5̂δ  vs. 5

5̂δ  28(5.6) 3(0.6) 3(0.6) 3(0.6) 3(0.6) 

4
5̂δ  vs. 6

5̂δ  24(4.7) 1(0.2) 1(0.2) 1(0.2) 1(0.2) 

5
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

 
The Type I Error to identify Rater 4 as the atypical rater when 4

5δ  differs from only 

one 5
iδ  (i = 1, 2, 3, 5, or 6) or more than one 5

iδ  is summarized in Table 39.  

The Type I Error is 6.6% when no adjustment is made for the number of comparisons and 0.7% 

when adjusted using each multiple comparison procedure considered. 
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Table 39. Type I Error to Identify Rater 4 as the Atypical Rater for G Scenario Simulated under 
Marginal Heterogene ity when the Data were Analyzed Assuming Marginal Homogeneity 

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s- 
Bonferroni 

Sidak Holm’s- 
 Sidak 

One rater 0.026 0.006 0.006 0.006 0.006 
Two raters 0.025 0.001 0.001 0.001 0.001 
Three raters 0.013 0 0 0 0 
Four raters 0.002 0 0 0 0 
Five raters 0 0 0 0 0 
At least one rater 0.066 0.07 0.07 0.07 0.07 

 
Analysis Assuming Marginal Heterogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 40.  The only significant pair-wise comparisons, unadjusted or adjusted, 

involved 4
5δ .  

 

Table 40. Number (%) of Times Each Possible Pair-wise Comparison was Statistically 
Significant Across 1000 Tables Simulated under the G Model with Marginal Heterogeneity when 
the Data were Analyzed Assuming Marginal Heterogeneity  

Comparison 
 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

 n (%) 
1
5̂δ  vs. 2

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

1
5̂δ  vs. 4

5̂δ  18(3.8) 3(0.6) 3(0.6) 3(0.6) 3(0.6) 

1
5̂δ  vs. 5

5̂δ   0 0 0 0 0 

1
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 3

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 4

5̂δ  37(6.6) 6(1.1) 6(1.1) 7(1.3) 7(1.3) 
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Table 40 (continued) 
Comparison 

 
Unadjusted Bonferroni Holm’s - 

Bonferroni 
Sidak Holm’s - 

 Sidak 
 n (%) 

2
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

2
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 4

5̂δ  27(5.4) 10(2.0) 10(2.0) 10(2.0) 10(2.0) 

3
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

4
5̂δ  vs. 5

5̂δ  27(5.4) 5(1.0) 5(1.0) 5(1.0) 5(1.0) 

4
5̂δ  vs. 6

5̂δ  27(5.3) 5(0.9) 6(1.1) 5(0.9) 6(1.1) 

5
5̂δ  vs. 6

5̂δ  0 0 0 0 0 

 
The Type I Error to identify Rater 4 as the atypical rater when 4

5δ  differs from one or more of 

the other 5
iδ is summarized in Table 41. The overall Type I Error is 11% when no adjustment is 

made for the number of comparisons and ~ 3.0% when each of the multiple comparison 

procedures is used. 

 

Table 41. Type I Error to Identify Rater 4 as the Atypical Rater for G Scenario Simulated under 
Marginal Heterogene ity when the Data were Analyzed Assuming Marginal Heterogeneity 

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

One rater 0.083 0.026 0.026 0.028 0.027 
Two raters 0.022 0.002 0.003 0.002 0.003 
Three raters 0.004 0 0 0 0 
Four raters 0.001 0 0 0 0 
Five raters 0 0 0 0 0 
At least one rater 0.11 0.028 0.029 0.03 0.03 
* 0.06% not evaluable 
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4.2.7. Simulated GP Agreement Model Assuming Marginal Heterogeneity 

Generation of Simulated Tables.   One thousand 26 contingency tables were generated under 

the assumption of marginal heterogeneity using the parameter estimates for the GP model shown 

in Table 11, column 3.  The total number of counts per table ranged from 36 to 124 (Table 34). 

One example of the simulated cell counts of the 64 possible rating patterns for the generated 26 

contingency tables was presented in Table 35 (col. 2).  Thirty-two (~ 82%) of the 39  rating 

patterns representing global agreement were from rating pattern (000000) and ~ 32% of the 

rating patterns represented partial agreement. 

The rater agreement characteristics across the 1,000 simulated contingency tables for the 

GA model are summarized in Table 42.  The six raters’ mean marginal proportions of rating 

‘absence’ and ‘presence’ from the GP model simulated under the assumption of marginal 

heterogeneity are similar to those observed in the intestinal biopsy data, as are the mean 

percentages of global and partial agreement (global agreement; 42.3% vs. 44.1%, partial 

agreement; 25.5% vs. 25.0%).  Relatively more GP agreement occurred for the absence (20.4%) 

than the presence (5.1%) of the lesion.  The mean percentages of five-way agreement when 

Raters 1, 2, 3, 5, and 6 were excluded were similar (~2.6%) and less than the five-way agreement 

when Rater 4 was excluded (12.5%, col 10.)   

Approximately 42% of the simulations using the GP model had no sufficient statistic 

equal to zero for a heterogeneous partial agreement parameter.  No sufficient statistics for 4
5δ  

were zero (row 4, col. 3, Table 37).  
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Table 42. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GP Agreement Model 
Simulated under the Assumption of Marginal Heterogeneity 

Global & Partial Agreement Model – Heterogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 77.3 
(6.9) 

[47.7,96.8] 

22.6 
(6.9) 

[3.2,52.2] 

2.7 
(0.1) 

[0,15.0] 
2 68.2 

(7.8) 
[39.7,91.3] 

31.8 
(7.8) 

[8.83,60.3] 

2.9 
(0.1) 

[0,16.7] 
3 71.2 

(7.5) 
[49.3,92.3] 

28.8 
(7.5) 

[7.7,50.7] 

2.6 
(0.1) 

[0,9.8] 
4 44.9 

(8.2) 
[20.0,73.8] 

55.0 
(8.2) 

[26.1,80.0] 

12.5 
(0.2) 

[1.1,31.5] 
5 72.6 

(7.5) 
[40.0,91.3] 

27.4 
(7.5) 

[8.8,60.0] 

2.4 
(0.1) 

[0,11.3] 
6 74.0 

(7.1) 
[52.5,93.1] 

72.6 
(7.1) 

[6.9,47.5] 

 
 
 
 

42.3 
 

(0.27) 
 

[17.3,74.3] 

 
 
 
 

33.7 
 

(0.24) 
 

[9.6,62.0] 

 
 
 
 

8.6 
 

(0.14) 
 

[0,28.4] 

 
 
 
 

25.5 
 

(0.23) 
 

[6.5,47.2] 

 
 
 
 

20.4 
 

(0.20) 
 

[4.2,41.5] 

 
 
 
 

5.1 
 

(0.1) 
 

[0,15.9] 

2.4 
(0.1) 

[0,10.1] 
For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-wise 

comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 43.  The vast majority of the significant unadjusted pair-wise comparisons 

and all of the significant adjusted comparisons involved 4
5̂δ . 

 

Table 43. Number (%) of Times Each Possible Pair-wise Comparison was Statistically 
Significant Across 1000 Tables Simulated under the GP Model with Marginal Heterogeneity 
when Data were Analyzed Assuming Marginal Homogeneity 

Comparison 
 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

 n (%) 
1
5̂δ  vs. 2

5̂δ   5 (0.7) 0 0 0 0 

1
5̂δ  vs. 3

5̂δ  2 (0.3) 0 0 0 0 

1
5̂δ  vs. 4

5̂δ  358 (43.2) 29 (3.5) 30 (3.6) 29 (3.5) 30 (3.6) 

1
5̂δ  vs. 5

5̂δ   2 (0.3) 0 0 0 0 

1
5̂δ  vs. 6

5̂δ  1 (0.2) 0 0 0 0 

2
5̂δ  vs. 3

5̂δ  2 (0.3) 0 0 0 0 

2
5̂δ  vs. 4

5̂δ  365 (42.1) 24 (2.8) 27 (3.1) 24 (2.8) 29 (3.3) 

2
5̂δ  vs. 5

5̂δ  2 (0.2) 0 0 0 0 

2
5̂δ  vs. 6

5̂δ  4 (0.5) 0 0 0 0 

3
5̂δ  vs. 4

5̂δ  357 (42.9) 26 (3.1) 28 (3.4) 26 (3.1) 28 (3.4) 

3
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 6

5̂δ  1 (0.2) 0 0 0 0 

4
5̂δ  vs. 5

5̂δ  334 (41.3) 25 (3.1) 29 (3.6) 25 (3.1) 29 (3.6) 

4
5̂δ  vs. 6

5̂δ  346 (42.8) 25 (3.1) 27 (3.3) 25 (3.1) 27 (3.3) 

5
5̂δ  vs. 6

5̂δ  0  0 0 0 0 

 
The Type I Error to identify Rater 4 as the atypical rater when 4

5δ  differs from one or 

more one of the other 5
iδ  is summarized in Table 44. The Type I Error is 58.8% without adjusting 

for the number of comparisons and 4.3% when adjustments are made.  
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Table 44. Type I Error to Identify Rater 4 as the Atypical Rater for GP Scenario Simulated under 
Marginal Heterogene ity when the Data were Analyzed Assuming Marginal Homogeneity 

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

One rater 0.088 0.007 0.005 0.007 0.005 
Two raters 0.09 0.009 0.008 0.009 0.008 
Three raters 0.129 0.008 0.006 0.008 0.006 
Four raters 0.15 0.015 0.018 0.015 0.016 
Five raters 0.101 0.004 0.006 0.004 0.008 
At least one rater 0.588 0.043 0.043 0.043 0.043 
* 0.06% not evaluable 

 
Analysis Assuming Marginal Heterogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 45.  In contrast to the results from the analysis assuming marginal 

homogeneity, the percentage of significant unadjusted pair-wise comparisons ranged from 0% 

( 3
5̂δ vs. 5

5̂δ ) to 3.8% ( 4
5̂δ vs. 5

5̂δ ).  After adjusting for the number of multiple comparisons, only the 

comparisons involving 4
5̂δ  remained significant, and the percentage of significant pair-wise 

comparisons ranged from 0.1% to 0.7%.    
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Table 45. Number (%) of Times Each Possible Pair-wise Comparison was Statistically 
Significant Across 1000 Tables Simulated under the GP Agreement Model Assuming Marginal 
Heterogeneity when the Data were Analyzed Assuming Marginal Heterogeneity 

Comparison 
 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

 n (%) 
1
5̂δ  vs. 2

5̂δ   3 (0.4) 0 0 0 0 

1
5̂δ  vs. 3

5̂δ  3 (0.4) 0 0 0 0 

1
5̂δ  vs. 4

5̂δ  28 (3.3) 4 (0.4) 4 (0.4) 4 (0.4) 4 (0.4) 

1
5̂δ  vs. 5

5̂δ   3 (0.4) 0 0 0 0 

1
5̂δ  vs. 6

5̂δ  5 (0.8) 0 0 0 0 

2
5̂δ  vs. 3

5̂δ  5 (0.7) 0 0 0 0 

2
5̂δ  vs. 4

5̂δ  26 (3.0) 1 (0.1) 2 (0.2) 1 (0.1) 2 (0.2) 

2
5̂δ  vs. 5

5̂δ  4 (0.5) 0 0 0 0 

2
5̂δ  vs. 6

5̂δ  5 (0.7) 0 0 0 0 

3
5̂δ  vs. 4

5̂δ  27 (3.3) 5 (0.6) 5 (0.6) 5 (0.6) 5 (0.6) 

3
5̂δ  vs. 5

5̂δ  0 0 0 0 0 

3
5̂δ  vs. 6

5̂δ  2 (0.3) 0 0 0 0 

4
5̂δ  vs. 5

5̂δ  31 (3.8) 2 (0.3) 2 (0.3) 2 (0.3) 2 (0.3) 

4
5̂δ  vs. 6

5̂δ  25 (3.1) 5 (0.6) 6 (0.7) 5 (0.6) 6 (0.7) 

5
5̂δ  vs. 6

5̂δ  4 (0.6) 0 0 0 0 

 
 

The Type I Error to identify Rater 4 as the atypical rater when 4
5δ  differs from one or 

more of the other 5
iδ  is summarized in Table 46. The unadjusted Type I Error is 9.6%, compared  

to 1.5% when adjusted for the number of pair-wise comparisons. 
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Table 46. Type I Error to Identify Rater 4 as the Atypical Rater for GP Scenario Simulated under 
Marginal Heterogene ity when the Data were Analyzed Assuming Marginal Heterogeneity 

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s - 
 Sidak 

One rater 0.071 0.013 0.013 0.013 0.013 
Two raters 0.014 0.002 0.001 0.002 0.001 
Three raters 0.007 0 0 0 0 
Four raters 0.003 0 0.001 0 0.001 
Five raters 0.001 0 0 0 0 
At least one rater 0.096 0.015 0.015 0.015 0.015 
 

4.2.8. Simulated GHeP-rog Agreement Model Assuming Marginal Heterogeneity 

Generation of Simulated Tables.   One thousand 26 contingency tables were generated under 

the assumption of marginal heterogeneity using the parameter estimates for the GHeP-rog model 

shown in Table 11, column 4.  The total number of counts ranged from 32 to 143 (Table 34).  

One example of the simulated cell counts of the 64 possible rating patterns for the generated 26 

contingency tables for the GHeP-rog agreement model was presented in Table 35 (col. 3).  

Thirty-two of the 37 (~86%) rating patterns representing global agreement were from rating 

pattern (000000) and ~33% of the rating patterns represented partial agreement. 

The rater agreement characteristics across the 1,000 simulated contingency tables for the 

GHeP-rog agreement model are summarized in Table 47.  The six raters’ mean marginal 

proportions of rating ‘absence’ and ‘presence’ are similar to that observed in the intestinal biopsy 
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Table 47. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-rog Agreement 
Model Simulated under the Assumption of Marginal Heterogeneity 

Global & Partial Agreement Model – Heterogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 76.6 
(7.4) 

[46.4,96.8] 

23.4 
(7.4) 

[3.2,53.6] 

3.7 
(0.1) 

[0,29.2] 
2 67.4 

(8.0) 
[42.6,96.7] 

32.6 
(8.0) 

[3.3,57.4] 

4.7 
(0.1) 

[0,27.5] 
3 70.3 

(7.8) 
[44.4,89.3] 

29.7 
(7.8) 

[10.7,55.6] 

2.2 
(0.1) 

[0,23.8] 
4 44.4 

(8.5) 
[18.9,71.9] 

55.6 
(8.5) 

[28.1,81.1] 

8.7 
(0.2) 

[0,39.1] 
5 71.6 

(7.6) 
[45.7,92.8] 

28.4 
(7.6) 

[7.2,54.3] 

3.6 
(0.1) 

[0,31.4] 
6 73.1 

(7.6) 
[48.8,93.2] 

26.9 
(7.6) 

[6.8,51.2] 

 
 
 
 
 

40.6 
 

(0.25) 
 
 

[18.2,63.3] 

 
 
 
 
 

33.3 
 

(0.24) 
 
 

[10.3,60.2] 

 
 
 
 
 

7.3 
 

(0.12) 
 
 

[0,23.2] 

 
 
 
 
 

28.2 
 

(0.25) 
 
 

[9.9,56.5] 

 
 
 
 
 

19.6 
 

(0.20) 
 
 

[1.7,46.3] 

 
 
 
 
 

8.6 
 

(0.15) 
 
 

[0,36.4] 

5.2 
(0.1) 

[0,29.5] 
* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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data. The mean percentages of global and partial agreement were also comparable to that seen in 

the intestinal biopsy data (global agreement; 40.6% vs. 44.1%, partial agreement; 28.2% vs. 

25.0%).  In contrast to that observed in the intestinal data, the mean percentage partial agreement 

for absence of the lesion was greater than that for presence of the lesion in the simulated data  

(19.6 % vs. 5.1%).   

Approximately 35% of the simulations using the GHeP-rog model had no sufficient 

statistic for a heterogeneous partial agreement parameter equal to zero.  Only four contingency 

tables had a sufficient statistic for 4
5δ  equal to zero (row 4, col. 4).  

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 48.  Relatively more significant unadjusted pair-wise comparisons involved  

Rater 4.   
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Table 48. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under the GHeP-Rog Agreement Model Assuming Marginal Heterogeneity when Data were Analyzed Assuming Marginal 
Homogeneity 

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(173) 

 
 
1 

(2) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

37 (10.3) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

25 (7.8) 
2 (0.6) 
2 (0.6) 
2 (0.6) 
2 (0.6) 

113 

 
 

4 (6.0) 
0 
0 
0 
0 

107 

 
 

4 (6.0) 
0 
0 
0 
0 

107 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

29 (8.0) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

13 (9.0) 
0 
0 
0 
0 

289 

 
 

2 (14.3) 
0 
0 
0 
0 

159 

 
 

2 (14.3) 
0 
0 
0 
0 

159 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

56 (15.5) 
4 (1.1) 
4 (1.1) 
4 (1.1) 
4 (1.1) 

0 

 
 

64 (18.3) 
6 (1.7) 
7 (2.0) 
6 (1.7) 
7 (2.0) 

85 

 
 

13 (14.4) 
1 (1.1) 
1 (1.1) 
1 (1.1) 
1 (1.1) 

83 

 
 

13 (14.4) 
1 (1.1) 
1 (1.1) 
1 (1.1) 
1 (1.1) 

83 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

23 (6.4) 
2 (0.5) 
2 (0.5) 
2 (0.5) 
2 (0.5) 

0 

 
 

18 (6.7) 
2 (0.7) 
2 (0.7) 
2 (0.7) 
2 (0.7) 

165 

 
 

2 (5.0) 
1 (2.5) 
1 (2.5) 
1 (2.5) 
1 (2.5) 

133 

 
 

2 (5.0) 
1 (2.5) 
1 (2.5) 
1 (2.5) 
1 (2.5) 

133 

 
 

-- 
-- 
-- 
-- 
-- 
 2 
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Table 48 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(173) 

 
 
1 

(2) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

31 (8.6) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

30 (9.2) 
3 (0.9) 
3 (0.9) 
3 (0.9) 
3 (0.9) 

110 

 
 

5 (6.9) 
3 (4.2) 
3 (4.2) 
3 (4.2) 
3 (4.2) 

101 

 
 

5 (6.9) 
3 (4.2) 
3 (4.2) 
3 (4.2) 
3 (4.2) 

101 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

34 (9.4) 
0 
0 
0 

1 (0.2) 
0 

 
 

20 (10.2) 
2 (1.0) 
2 (1.0) 
2 (1.0) 
2 (1.0) 

238 

 
 

6 (21.4) 
1 (3.6) 
1 (3.6) 
1 (3.6) 
1 (3.6) 

145 

 
 

6 (21.4) 
1 (3.6) 
1 (3.6) 
1 (3.6) 
1 (3.6) 

145 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

46 (12.7) 
5 (1.4) 
5 (1.4) 
5 (1.4) 
5 (1.4) 

0 

 
 

71 (17.8) 
6 (1.5) 
6 (1.5) 
6 (1.5) 
8 (2.0) 

34 

 
 

23 (17.0) 
4 (2.9) 
4 (2.9) 
4 (2.9) 
4 (2.9) 

38 

 
 

23 (17.0) 
4 (3.0) 
4 (3.0) 
4 (3.0) 
4 (3.0) 

38 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

36 (10.0) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

25 (7.8) 
3 (0.9) 
3 (0.9) 
3 (0.9) 
3 (0.9) 

114 

 
 

5 (6.7) 
1 (1.3) 
1 (1.3) 
1 (1.3) 
1 (1.3) 

98 

 
 

5 (6.7) 
1 (1.3) 
1 (1.3) 
1 (1.3) 
1 (1.3) 

98 

 
 

-- 
-- 
-- 
-- 
-- 
 2 
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Table 48 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(173) 

 
 
1 

(2) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

30 (8.3) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

29 (7.7) 
2 (0.5) 
2 (0.5) 
2 (0.5) 
2 (0.5) 

59 

 
 

11 (9.7) 
5 (4.4) 
5 (4.4) 
5 (4.4) 
5 (4.4) 

60 

 
 

11 (9.7) 
5 (4.4) 
5 (4.4) 
5 (4.4) 
5 (4.4) 

60 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

81 (22.5) 
5 (1.4) 
6 (1.7) 
5 (1.4) 
6 (1.7) 

0 

 
 

56 (25.0) 
4 (1.8) 
4 (1.8) 
4 (1.8) 
6 (2.6) 

210 

 
 

10 (23.2) 
1 (2.3) 
1 (2.3) 
1 (2.3) 
1 (2.3) 

130 

 
 

10 (23.2) 
1 (2.3) 
1 (2.3) 
1 (2.3) 
1 (2.3) 

130 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

23 (6.4) 
3 (0.8) 
3 (0.8) 
3 (0.8) 
3 (0.8) 

0 

 
 

9 (6.3) 
2 (1.4) 
2 (1.4) 
2 (1.4) 
2 (1.4) 

290 

 
 

2 (14.3) 
0 
0 
0 
0 

159 

 
 

2 (14.3) 
0 
0 
0 
0 

159 

 
 

-- 
-- 
-- 
-- 
-- 
 2 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

29 (8.1) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

21 (10.6) 
0 

1 (0.5) 
0 

1 (0.5) 
235 

 
 

2 (6.7) 
2 (6.7) 
2 (6.7) 
2 (6.7) 
2 (6.7) 

143 

 
 

2 (6.7) 
2 (6.7) 
2 (6.7) 
2 (6.7) 
2 (6.7) 

143 

 
 

-- 
-- 
-- 
-- 
-- 
 2 
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Table 48 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(173) 

 
 
1 

(2) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

71 (19.7) 
4 (1.1) 
4 (1.1) 
4 (1.1) 
4 (1.1) 

0 

 
 

62 (17.8) 
6 (1.7) 
7 (2.0) 
6 (1.7) 
9 (2.6) 

86 

 
 

23 (23.4) 
3 (3.1) 
3 (3.1) 
3 (3.1) 
3 (3.1) 

75 

 
 

23 (23.5) 
3 (3.0) 
3 (3.0) 
3 (3.0) 
3 (3.0) 

75 

 
 
0 
0 
0 
0 
0 
1 

4
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

59 (16.4) 
2 (0.5) 
3 (0.8) 
2 (0.5) 
3 (0.8) 

0 

 
 

72 (17.8) 
11 (2.7) 
12 (3.0) 
11 (2.7) 
12 (3.0) 

31 

 
 

24 (17.0) 
4 (2.8) 
4 (2.8) 
4 (2.8) 
4 (2.8) 

32 

 
 

24 (17.0) 
4 (2.8) 
4 (2.8) 
4 (2.8) 
4 (2.8) 

32 

 
 
0 
0 
0 
0 
0 
1 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

25 (6.9) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

27 (8.3) 
4 (1.3) 
4 (1.3) 
4 (1.3) 
4 (1.3) 

111 

 
 

10 (12.6) 
2 (2.5) 
2 (2.5) 
2 (2.5) 
2 (2.5) 

94 

 
 

10 (12.6) 
2 (2.5) 
2 (2.5) 
2 (2.5) 
2 (2.5) 

94 

 
 

-- 
-- 
-- 
-- 
-- 
 2 
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The power to identify Rater 4 as the atypical rater when 4
5δ  differs from one or more of 

the other 5
iδ  is summarized in Table 49.  

 

Table 49. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple 
Comparison Procedure for GHeP-rog Scenario, Simulated Assuming Marginal Heterogene ity 
and when the Data were Analyzed Assuming Marginal Homogeneity  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s - 
Bonferroni 

Sidak Holm’s- 
 Sidak 

One rater 0.148 0.014 0.014 0.014 0.011 
Two raters 0.080 0.006 0.006 0.006 0.006 
Three raters 0.059 0.004 0.004 0.004 0.007 
Four raters 0.048 0.005 0.005 0.005 0.005 
Five raters 0.017 0.002 0.003 0.003 0.003 
At least one rater 0.352 0.031 0.032 0.031 0.032 
 
 
The power of the approach was 35.2% for the unadjusted pair-wise comparisons.  Using any four 

of the multiple comparison procedures considered, the power was reduced to ~ 3.2%. A  rater 

other than Rater 4 was identified as the atypical rater in ~26% of the simulations based upon 

unadjusted p-values and in ~ 3% based on adjusted p-values (Table 50). 

 

Table 50. Proportion (%) of Simulations that Identify a Rater Other Than Rater 4 as the Atypical 
Rater by Multiple Comparison Procedure for Scenarios Simulated under the Assumption of 
Marginal Heterogeneity and when the Data were Analyzed Assuming Marginal Homogeneity 
At least one rater is 

different 
Unadjusted Bonferroni Holm’s 

Bonferroni 
Sidak Holm’s 

 Sidak 
GHeP-rog 25.7 2.42 2.72 2.42 2.72 

GHeP-atyp4a 2.6 0 0 0 0 
GHeP-atyp4b 2.3 0 0 0 0 

 
The overall probability that any rater is identified as an atypical rater is approximately 12% 

based on unadjusted comparisons and approximately 1% if adjustments are made (Table 51).  

Rater 4 is identified given that an atypical rater was identified only 56.4% of the time for the 
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GHeP_rog model based on adjusted comparisons and about 60% of the time for the adjusted 

comparisons (Table 52). 

 

Table 51. Overall Probability (%) of Identifying any Rater as the Atypical Rater for Data 
Simulated Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal 
Homogeneity  

Model Unadjusted Bonferroni Holm’s -
Bonferroni 

Sidak Holm’s -
Sidak 

GHeP-rog 12.0 1.1 1.1 1.1 1.2 
GHeP-Atyp4a 6.8 0.20 0.21 0.20 0.22 
GHeP-Atyp4b 35.7 33.6 33.8 33.6 33.8 

 
 

Table 52. Conditional Probability (%) of Identifying Rater 4 as Atypical for Data Simulated 
Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal 
Homogeneity  

Model Unadjusted Bonferroni Holm’s -
Bonferroni 

Sidak Holm’s - 
Sidak 

GHeP-rog 56.4 58.4 59.6 58.4 61.1 
GHeP-Atyp4a 95.8 >99 >99 >99 100 
GHeP-Atyp4b >99 >99 >99 >99 >99 

 
 

Analysis Assuming Marginal Heterogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 53.  The majority of adjusted significant pair-wise comparisons involve 

Rater 4.  Very few pair-wise comparisons that did not involve Rater 4 remained significant after 

using a multiple comparison procedure.    
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Table 53. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under the GHeP-rog Agreement Model with Marginal Heterogeneity when Data were Analyzed Assuming Marginal Heterogeneity  

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(30) 

 
 
1 

(3) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

37 (10.3) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

24 (7.4) 
2 (0.6) 
2 (0.6) 
2 (0.6) 
2 (0.6) 

113 

 
 

4 (6.0) 
1 (1.5) 
2 (3.0) 
1 (1.5) 
2 (3.0) 

107 

 
 
0 
0 
0 
0 
0 
29 

 
 

-- 
-- 
-- 
-- 
-- 
3 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

26 (7.2) 
2 (0.6) 
2 (0.6) 
2 (0.6) 
2 (0.6) 

0 

 
 

9 (6.2) 
0 
0 
0 
0 

289 

 
 

1 (7.1) 
0 
0 
0 
0 

159 

 
 
0 
0 
0 
0 
0 
28 

 
 

-- 
-- 
-- 
-- 
-- 
3 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

154 (42.7) 
62 (17.2) 
63 (17.5) 
64 (17.8) 
65 (18.1) 

0 

 
 

162 (46.4) 
83 (23.7) 
86 (24.6) 
84 (24.1) 
86 (24.6) 

85 

 
 

38 (42.2) 
27 (30.0) 
30 (33.3) 
27 (30.0) 
30 (33.3) 

83 

 
 

4 (44.4) 
3 (33.3) 
3 (33.3) 
3 (33.3) 
3 (33.3) 

0 

 
 

1 (100) 
1 (100) 
1 (100) 
1 (100) 
1 (100) 

 2 
1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

24 (6.7) 
2 (0.6) 
2 (0.6) 
2 (0.6) 
2 (0.6) 

0 

 
 

11 (4.1) 
2 (0.8) 
2 (0.8) 
2 (0.8) 
2 (0.8) 

165 

 
 

2 (5.0) 
1 (2.5) 
1 (2.5)  
1 (2.5)  
1 (2.5)  

133 

 
 
0 
0 
0 
0 
0 
30 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 53 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(30) 

 
 
1 

(3) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

26 (7.2) 
0 
0 
0 
0 
0 

 
 

26 (8.0) 
0  

1 (0.3) 
0  

1 (0.3) 
110 

 
 

12 (16.7) 
3 (4.2) 
3 (4.2) 
3 (4.2) 
3 (4.2) 

101 

 
 
0 
0 
0 
0 
0 
25 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

32 (8.9) 
0 
0 
0 
0 
0 

 
 

17 (8.7) 
3 (1.6) 
3 (1.6) 
3 (1.6) 
3 (1.6) 

238 

 
 

5 (17.8) 
1 (3.6) 
1 (3.6) 
1 (3.6) 
1 (3.6) 

145 

 
 
0 
0 
0 
0 
0 
28 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Raw 

Bonferroni 
Holm’s- Bonferroni 

Sidak 
Holm’s-Sidak 

Missing 

 
 

167 (46.4) 
80 (22.2) 
83 (23.1) 
80 (22.2) 
84 (23.2) 

0 

 
 

190 (47.5) 
100 (25.0) 
100 (25.0) 
100 (25.0) 
 100 (25.0) 

 34 

 
 

88 (65.2) 
57 (42.2) 
59 (43.7) 
57 (42.2) 
59 (43.7) 

38 

 
 

9 (69.2) 
6 (46.2) 
6 (46.2)  
6 (46.2)  
6 (46.2) 

17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

34 (9.4) 
1 (0.3) 
1 (0.3) 
1 (0.3) 
1 (0.3) 

0 

 
 

22 (6.8) 
2 (0.6) 
2 (0.6) 
2 (0.6) 
2 (0.6) 

114 

 
 

6 (8.0) 
1 (1.3) 
1 (1.3)  
1 (1.3) 
1 (1.3) 

98 

 
 
0 
0 
0 
0 
0 
27 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 53 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(30) 

 
 
1 

(3) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

27 (7.5) 
1 (0.3) 
1 (0.3) 
1 (0.3) 
1 (0.3) 

0 

 
 

24 (6.4) 
2 (0.5) 
3 (0.8) 
2 (0.5) 
3 (0.8) 

59 

 
 

12 (10.6) 
5 (4.4) 
5 (4.4) 
5 (4.4) 
5 (4.4) 

60 

 
 
0 
0 
0 
0 
0 
23 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

114 (31.7) 
42 (11.7) 
44 (12.2) 
43 (11.9) 
46 (12.8) 

0 

 
 

69 (30.8) 
33 (14.7) 
34 (15.2) 
34 (15.2) 
35 (15.6) 

210 

 
 

18 (41.8) 
9 (20.9) 

10 (23.3) 
9 (20.9) 

10 (23.3) 
130 

 
 

3 (42.8) 
2 (28.6) 
2 (28.6) 
2 (28.6) 
2 (28.6) 

23 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

19 (5.3) 
2 (0.5) 
3 (0.8) 
2 (0.5) 
3 (0.8) 

0 

 
 

10 (6.9) 
2 (1.4) 
2 (1.4) 
2 (1.4) 
2 (1.4) 

290 

 
 

2 (14.3) 
0 
0 
0 
0 

159 

 
 
0 
0 
0 
0 
0 
29 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

24 (6.7) 
1 (0.3) 
1 (0.3) 
1 (0.3) 
1 (0.3) 

0 

 
 

18 (9.1) 
0 

2 (1.0) 
0 

2 (1.0) 
235 

 
 

2 (6.7) 
2 (6.7) 
 2 (6.7) 
 2 (6.7) 
 2 (6.7) 

143 

 
 
0 
0 
0 
0 
0 
28 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 53 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(360) 

 
 

10 
(434) 

 
 
6 

(173) 

 
 
3 

(30) 

 
 
1 

(3) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

156 (43.3) 
71 (19.7) 
75 (20.8) 
72 (20.0) 
75 (20.8) 

0 

 
 

144 (41.3) 
59 (17.0) 
62 (17.8) 
60 (17.2) 
63 (18.1) 

86 

 
 

51 (52.0) 
28 (28.6) 
30 (30.6) 
29 (29.6) 
31 (31.6) 

75 

 
 

8 (72.7) 
5 (45.4) 
6 (54.6) 
5 (45.4) 
6 (54.6) 

19 

 
 

1 (100) 
1 (100) 
1 (100) 
1 (100) 
1 (100) 

 2 
4

5̂δ  vs. 6
5̂δ  

Unadjusted 
 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

184 (51.1) 
96 (26.7) 
97 (26.9) 
96 (26.7) 
98 (27.2) 

0 

 
 

219 (54.3) 
130 (32.2) 
131 (32.5) 
132 (32.8) 
133 (33.0) 

31 

 
 

88 (62.4) 
57 (40.4) 
59 (41.8) 
57 (40.4) 
59 (41.8) 

32 

 
 

9 (45.0) 
7 (35.0) 
7 (35.0) 
7 (35.0) 
7 (35.0) 

10 

 
 

1 (100) 
1 (100) 
1 (100) 
1 (100) 
1 (100) 

 2 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

20 (5.6) 
1 (0.3) 
1 (0.3) 
 1 (0.3) 
 1 (0.3) 

0 

 
 

23 (7.1) 
4 (1.3) 
4 (1.3) 
4 (1.3) 
4 (1.3) 

111 

 
 

8 (10.1) 
1 (1.3) 
2 (2.5) 
1 (1.3) 
2 (2.5) 

94 

 
 

1 (16.7) 
0 

1 (16.7) 
 0 

1 (16.7) 
24 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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The power to identify Rater 4 as the atypical rater when 4
5δ  differs from one or more 

other 5
iδ  is summarized in Table 54. Using a criterion that at least one comparison involving 4

5δ  

has to be statistically significant, the power is 79.8% for the unadjusted comparisons compared 

to slightly more than 50% using the Bonferroni, Holm’s- Bonferroni, Sidak or Holm’s-Sidak 

adjustments.  

 

Table 54. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple 
Comparison Procedure for GHeP-rog Scenario Simulated Assuming Marginal Heterogeneity 
when the Data were and Analyzed Assuming Marginal Heterogeneity 

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.234 0.245 0.229 0.229 0.231 
Two raters 0.225 0.159 0.163 0.163 0.165 
Three raters 0.192 0.083 0.09 0.089 0.091 
Four raters 0.106 0.028 0.032 0.032 0.031 
Five raters 0.041 0.008 0.009 0.009 0.01 
At least one rater 0.798 0.523 0.523 0.523 0.528 
* 0.07% not evaluable 
 

Table 55 summarizes the proportion of simulations that incorrectly identified the atypical 

rater.  For the GHeP-rog model, the incorrect rater is identified in 25.6% of the simulations based 

on unadjusted comparisons but only 2.11% of simulations based on adjusted comparisons.  

 

Table 55. Proportion (%) of Simulations Identifying the Incorrect Rater as Atypical for Scenarios 
Simulated Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal 
Heterogeneity  
At least one rater is 

different 
Unadjusted Bonferroni Holm’s 

Bonferroni 
Sidak Holm’s 

 Sidak 
GHeP-rog 25.6 2.11 2.11 2.11 2.11 

GHeP-atyp4a 4.84 0.001 0.001 0.001 0.001 
GHeP-atyp4b 3.61 < 0.001 < 0.001 < 0.001 < 0.001 
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The overall probability that any rater is identified as an atypical rater for the GHeP-rog 

model is 21.9% using unadjusted comparisons 9% if adjustments are made (Table 56).  The 

probability that Rater 4 is correctly identified as the atypical rater given that an atypical rater was 

identified is 78.7% based on unadjusted comparisons but better than 95% if any of the four 

adjustment procedures are used (Table 57). The adjusted conditional probability provides more 

accurate inference than the unadjusted conditional probability. 

 

Table 56. Overall Probability (%) of Identifying any Rater as the Atypical Rater for Data 
Simulated Assuming Marginal Heterogeneity when the Data were and Analyzed Assuming 
Marginal Heterogeneity  

Model Unadjusted Bonferroni Holm’s -
Bonferroni 

Sidak Holm’s- 
Sidak 

GHeP-rog 21.9 9.2 9.6 9.3 9.7 
GHeP-atyp4a 15.3 5.1 5.4 5.2 5.6 
GHeP-atyp4b 4.19 0.57 0.65 0.57 0.65 

 
 

Table 57. Conditional Probability (%) of Identifying Rater 4 as the Atypical Rater for Data 
Simulated Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal 
Heterogeneity  

Model Unadjusted Bonferroni Holm’s- 
Bonferroni 

Sidak Holm’s- 
Sidak 

GHeP-rog 78.7 95.7 95.1 95.8 95.1 
GHeP-atyp4a 97.4 >99 >99 >99 >99 
GHeP-atyp4b >99 >99 >99 >99 >99 

 
 
 
4.2.9. Simulated GHeP-atyp4a Agreement Model Assuming Marginal Heterogeneity 

Generation of Simulated Tables.   One thousand 26 contingency tables were generated under 

the assumption of marginal heterogeneity using the parameter estimates for the GHeP-atyp4a 

model shown in Table 11, column 5.  The total number of counts per table ranged from 37 to 111 

(Table 34).  One example of the simulated cell counts of the 64 possible rating patterns for the 
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generated 26 contingency tables was presented in Table 35 (col. 4).  Only 16 of the 66 rating 

patterns in this sample simulation represented global agreement, and 30 (~ 45%) ratings patterns 

represented partial agreement. Eleven of the 30 partia l agreement ratings represented 

disagreement by Rater 4 only. 

The rater agreement characteristics across the 1,000 simulated contingency tables for the 

GHeP-atyp4a agreement model are summarized in Table 58.  There is less variability in the 

mean marginal percentages of heterogeneous partial agreement between Raters 1, 2, 3, 5 and 6 

than that seen for the GHeP-rog scenario because the parameter estimates of the 5
iδ for i =1, 2, 3, 

5 and 6 used to generate the data are constrained to be the same (2.13). The mean percentage of 

five-way agreement was ~3.4% when Raters 1, 2, 3, 5 or 6 was in disagreement and 9.0% when 

Rater 4 was in disagreement. 
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Table 58. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4a 
Agreement Model Simulated under the Assumption of Marginal Heterogeneity 

GHeP-atyp4a Model – Heterogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 77.1 
(7.1) 

[50,96.2] 

22.9 
(7.1) 

[3.8,50.0] 

3.6 
(0.1) 

[0,13.8] 
2 67.7 

(8.0) 
[39.4,92.3] 

32.3 
(8.0) 

[7.7,60.6] 

3.5 
(0.1) 

[0,16.2] 
3 71.0 

(7.8) 
[41.4,92.1] 

28.9 
(7.8) 

[7.9,58.6] 

3.5 
(0.1) 

[0,16.9] 
4 43.8 

(8.2) 
[20.8,68.3] 

56.1 
(8.2) 

[31.7,79.2] 

9.0 
(0.1) 

[0,30.4] 
5 72.4 

(7.7) 
[42.9,94.5] 

27.6 
(7.7) 

[5.5,57.1] 

3.2 
(0.1) 

[0,11.9] 
6 74.3 

(7.2) 
[51.2,91.8] 

25.7 
(7.2) 

[8.2,48.8] 

 
 
 
 

41.5  
 

(0.3) 
 

[17.6,66.2] 

 
 
 
 

34.1 
 

(0.2) 
 
[14.2,56.3] 

 
 
 
 

7.4 
 

(0.1) 
 

[0,27.4] 

 
 
 
 

26.1 
 

(0.2) 
 

[6.2,51.7] 
 
 

 
 
 
 

18.7 
 

(0.2) 
 

[2.4,39.7] 

 
 
 
 

7.4 
 

(0.1) 
 

[0,25.0] 

3.2 
(0.1) 

[0,12.5] 
* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement 
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 Simulation scenario GHeP-atyp4a had the highest percent (61.1%) of simulated tables 

with no sufficient statistic for a heterogeneous partial agreement parameter equal to zero.  Only 

seven of the simulated contingency tables had the sufficient statistic for 4
5δ  equal to zero (Table 

37). 

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 59. A majority of the significant unadjusted pair-wise comparisons and the 

only significant adjusted pair-wise comparisons involved Rater 4. 

The power to identify Rater 4 as the atypical rater when 4
5δ  differs from one or more of 

the other 5
iδ  is summarized in Table 60. Using a criterion that requires at least one comparison 

involving 4
5δ  being statistically significant, the power is 32.4% based on unadjusted comparisons 

and 0.9% using any of the four multiple comparison procedures considered.   
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Table 59. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under the GHeP-Atyp4a Agreement Model Assuming Marginal Heterogeneity when the Data were Analyzed Assuming Marginal 
Homogeneity 

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 
93 

 
 
0 
0 
0 
0 
0 
74 

 
 
0 
0 
0 
0 
0 
11 

 
 

-- 
-- 
-- 
-- 
-- 
2 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 

1 (0.5) 
0 
0 
0 
0 
89 

 
 
0 
0 
0 
0 
0 
63 

 
 
0 
0 
0 
0 
0 
13 

 
 

-- 
-- 
-- 
-- 
-- 
2 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

106 (17.4) 
0 

1 (0.1) 
0 

1 (0.1) 
0 

 
 

35 (16.0) 
0 
0 
0 
0 
50 

 
 

18 (27.7) 
4 (6.2) 
4 (6.2) 
4 (6.2) 
4 (6.2) 

40 

 
 
0 
0 
0 
0 
0 
4 

 
 

-- 
-- 
-- 
-- 
-- 
2 

1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

108 

 
 
0 
0 
0 
0 
0 
69 

 
 
0 
0 
0 
0 
0 
10 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 59 (continued) 

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

100 

 
 
0 
0 
0 
0 
0 
78 

 
 
0 
0 
0 
0 
0 
10 

 
 

-- 
-- 
-- 
-- 
-- 
2 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 
96 

 
 
0 
0 
0 
0 
0 
73 

 
 

-- 
-- 
-- 
-- 
-- 
14 

 
 

-- 
-- 
-- 
-- 
-- 
2 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

113 (18.5) 
2 (0.3) 
2 (0.3) 
2 (0.3) 
2 (0.3) 

0 

 
 

37 (17.5) 
0 
0 
0 
0 

 57 

 
 

16 (28.6) 
5 (8.9) 
5 (8.9) 
5 (8.9) 
5 (8.9) 

49 

 
 
0 
0 
0 
0 
0 
12 

 
 

-- 
-- 
-- 
-- 
-- 
2 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 

2 (1.3) 
0 
0 
0 
0 

115 

 
 
0 
0 
0 
0 
0 
75 

 
 

-- 
-- 
-- 
-- 
-- 
14 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 59 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.3) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

107 

 
 
0 
0 
0 
0 
0 
83 

 
 
0 
0 
0 
0 
0 
13 

 
 

-- 
-- 
-- 
-- 
-- 
2 

3
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

109 (17.8) 
2 (0.3) 
2 (0.3) 
2 (0.3) 
2 (0.3) 

0 

 
 

39 (18.1) 
0 
0 
0 
0 
53 

 
 

18 (24.6) 
4 (5.4) 
4 (5.4) 
4 (5.4) 
4 (5.4) 

32 

 
 
0 
0 
0 
0 
0 
10 

 
 

-- 
-- 
-- 
-- 
-- 
2 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

111 

 
 
0 
0 
0 
0 
0 
63 

 
 
0 
0 
0 
0 
0 
13 

 
 

-- 
-- 
-- 
-- 
-- 
2 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

103 

 
 
0 
0 
0 
0 
0 
72 

 
 
0 
0 
0 
0 
0 
12 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 59 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

113 (18.5) 
2 (0.3) 
2 (0.3) 
2 (0.3) 
2 (0.3) 

0 

 
 

33 (16.8) 
0 
0 
0 

1 (0.5) 
72 

 
 

16 (25.0) 
2 (3.1) 
2 (3.1) 
2 (3.1) 
2 (3.1) 

41 

 
 
0 
0 
0 
0 
0 
9 

 
 
0 
0 
0 
0 
0 
2 

4
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

111 (18.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 
1 (0.2) 

0 

 
 

33 (16.8) 
1 (0.5) 
1 (0.5) 
1 (0.5) 
1 (0.5) 

64 

 
 

12 (23.5) 
2 (3.9) 
2 (3.9) 
2 (3.9) 
2 (3.9) 

54 

 
 
0 
0 
0 
0 
0 
9 

 
 

-- 
-- 
-- 
-- 
-- 
2 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

122 

 
 
0 
0 
0 
0 
0 
79 

 
 

-- 
-- 
-- 
-- 
-- 
14 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 60. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria by Multiple 
Comparison Procedure Simulated Assuming Marginal Heterogeneity when the Data were 
Analyzed Assuming Marginal Homogeneity 

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.077 0.001 0.001 0.001 0 
Two raters 0.064 0.001 0.001 0.001 0.002 
Three raters 0.056 0.006 0.006 0.006 0.006 
Four raters 0.051 0.001 0 0.001 0 
Five raters 0.066 0 0.001 0 0.001 
At least one rater 0.324 0.009 0.009 0.009 0.009 
 
 

The overall probability that a rater other than Rater 4 is identified as an atypical rater is 2.6%, 

unadjusted, for the GHeP-atyp4a model, and 0 if adjusted (Table 50).  The corresponding 

probabilities that any rater is identified are slightly higher (Table 51).  The conditional 

probability that Rater 4 is identified as the atypical rater given that an atypical rater was 

identified is >99% either unadjusted or adjusted (Table 52). 

Analysis Assuming Marginal Heterogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 61. The vast majority of unadjusted pair-wise comparisons involved Rater 

4. Except for one significant 1
5̂δ  vs. 6

5̂δ  comparison, the only significant adjusted pair-wise 

comparisons involved Rater 4.   
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Table 61. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated and 
Analyzed under the GHeP-atyp4a Agreement Model Assuming Marginal Heterogeneity  

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 

4 (2.3) 
0 
0 
0 
0 
93 

 
 
0 
0 
0 
0 
0 
74 

 
 
0 
0 
0 
0 
0 
11 

 
 

-- 
-- 
-- 
-- 
-- 
2 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 
89 

 
 

1 (2.3) 
0 
0 
0 
0 
63 

 
 

1 (100) 
0 
0 
0 
0 
13 

 
 

-- 
-- 
-- 
-- 
-- 
2 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

281 (46.0) 
99 (16.2) 
105 (17.2) 
100 (16.4) 
106 (17.4) 

0 

 
 

92 (42.2) 
31 (14.2) 
34 (15.6) 
31 (14.2) 
36 (16.5) 

50 

 
 

27 (41.5) 
8 (12.3) 
8 (12.3) 
8 (12.3) 
8 (12.3) 

40 

 
 

2 (20.0) 
1 (10.0) 
1 (10.0) 
1 (10.0) 
1 (10.0) 

4 

 
 

-- 
-- 
-- 
-- 
-- 
2 

1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.3) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

108 

 
 
0 
0 
0 
0 
0 
69 

 
 
0 
0 
0 
0 
0 
10 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 61 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

100 

 
 

1 (3.7) 
1 (3.7) 
1 (3.7) 
1 (3.7) 
1 (3.7) 

78 

 
 
0 
0 
0 
0 
0 
10 

 
 

-- 
-- 
-- 
-- 
-- 
2 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

7 (1.2) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 
96 

 
 
0 
0 
0 
0 
0 
73 

 
 

-- 
-- 
-- 
-- 
-- 
14 

 
 

-- 
-- 
-- 
-- 
-- 
2 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

259 (42.4) 
82 (13.4) 
90 (14.7) 
82 (13.4) 
90 (14.7) 

0 

 
 

82 (38.8) 
26 (12.3) 
29 (13.7) 
26 (12.3) 
29 (13.7) 

57 

 
 

21 (37.5) 
9 (16.1) 
9 (16.1) 
9 (16.1) 
9 (16.1) 

49 

 
 
0 
0 
0 
0 
0 
12 

 
 

-- 
-- 
-- 
-- 
-- 
2 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.3) 
0 
0 
0 
0 
0 

 
 

2 (1.3) 
0 
0 
0 
0 

115 

 
 
0 
0 
0 
0 
0 
75 

 
 

-- 
-- 
-- 
-- 
-- 
14 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 61 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.7) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

107 

 
 
0 
0 
0 
0 
0 
83 

 
 
0 
0 
0 
0 
0 
13 

 
 

-- 
-- 
-- 
-- 
-- 
2 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

262 (42.8) 
99 (16.2) 
103 (16.8) 
99 (16.2) 
104 (17.0) 

0 

 
 

83 (38.6) 
20 (9.3) 

24 (11.2) 
21 (9.8) 

24 (11.2) 
53 

 
 

26 (35.6) 
11 (15.1) 
13 (17.8) 
11 (15.1) 
13 (17.8) 

32 

 
 

2 (50.0) 
2 (50.0) 
2 (50.0) 
2 (50.0) 
2 (50.0) 

10 

 
 

-- 
-- 
-- 
-- 
-- 
2 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

111 

 
 
0 
0 
0 
0 
0 
63 

 
 
0 
0 
0 
0 
0 
13 

 
 

-- 
-- 
-- 
-- 
-- 
2 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

103 

 
 
0 
0 
0 
0 
0 
72 

 
 
0 
0 
0 
0 
0 
12 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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Table 61 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(611) 

 
 

10 
(268) 

 
 
6 

(105) 

 
 
3 

(14) 

 
 
1 

(2) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

256 (41.9) 
85 (13.9) 
87 (14.2) 
86 (14.1) 
90 (14.7) 

0 

 
 

78 (39.8) 
32 (16.3) 
33 (16.8) 
33 (16.8) 
33 (16.8) 

72 

 
 

24 (37.5) 
15 (23.4) 
15 (23.4) 
15 (23.4) 
15 (23.4) 

41 

 
 
0 
0 
0 
0 
0 
9 

 
 
0 
0 
0 
0 
0 
2 

4
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

273 (44.6) 
82 (13.4) 
88 (14.4) 
85 (13.9) 
91 (14.9) 

0 

 
 

78 (38.2) 
30 (14.7) 
30 (14.7) 
30 (14.7) 
30 (14.7) 

64 

 
 

17 (33.3) 
8 (15.7) 
8 (15.7) 
8 (15.7) 
9 (17.7) 

54 

 
 

3 (60.0) 
2 (40.0) 
2 (40.0) 
2 (40.0) 
2 (40.0) 

9 

 
 

-- 
-- 
-- 
-- 
-- 
2 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5  (0.8) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

129 

 
 
0 
0 
0 
0 
0 
79 

 
 

-- 
-- 
-- 
-- 
-- 
14 

 
 

-- 
-- 
-- 
-- 
-- 
2 
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The power to identify Rater 4 as the atypical rater when 4
5δ  differs from one or more 

other 5
iδ  is summarized in Table 62. Using a criterion that requires at least one comparison 

involving 4
5δ  to be statistically significant, the power to identify Rater 4 as the atypical rater is 

reduced from 68.8% (unadjusted) and ~ 32% when a multiple comparison procedure is used.  

Approximately 5% of the unadjusted pair-wise comparisons and 0.1% of the adjusted pair-wise 

comparisons identified the incorrect rater (Table 55). 

 

Table 62. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria by Multiple 
Comparison Procedure for the GHeP-atyp4a Scenario Simulated Assuming Marginal 
Heterogeneity when the Data were Analyzed Assuming Marginal Heterogeneity  

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.184 0.134 0.125 0.136 0.124 
Two raters 0.143 0.088 0.081 0.089 0.085 
Three raters 0.132 0.052 0.059 0.053 0.059 
Four raters 0.13 0.028 0.032 0.028 0.033 
Five raters 0.099 0.014 0.019 0.014 0.019 
At least one rater 0.688 0.31.6 0.316 0.32 0.32 
   
 

The overall probability that any rater is identified as an atypical rater is 15.3% if 

unadjusted pair-wise comparisons are used and ~ 5% if adjusted pair-wise comparisons are used 

(Table 56).  The probability that Rater 4 is the atypical rater given an atypical rater was identified 

is > 99% with or without adjustment for multiple comparisons (Table 57). 

 
 

4.2.10. Simulated GHeP-atyp4b Agreement Model Assuming Marginal Heterogeneity 

Generation of Simulated Tables. One thousand 26 contingency tables were generated under the 

assumption of marginal heterogeneity using the parameter estimates for the GHeP-atyp4b 
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agreement model shown in Table 11, column 6. The total number of counts per table ranged 

from 57 to 224 (Table 34); the mode of 110 is approximately 1.6 times the sample size of 

intestinal biopsy data. One example of the simulated cell counts of the 64 possible rating patterns 

for the generated 26 contingency tables was presented in Table 35 (col. 5).  Only 32 of the 121 

rating patterns in this one simulation represented global agreement, whereas 63 (~ 52%) ratings 

patterns represented partial agreement. Thirty-two of the 63 partial agreement ratings were 

because Rater 4 was in disagreement. 

The rater agreement characteristics across the 1,000 simulated contingency tables for the 

GHeP-atyp4b model are summarized in Table 63.  The marginal percentages for the absence of 

mucosecretion diminution were ~81% for Raters 1, 2, 3, 5, and 6 and 30.7% for Rater 4.  The 

mean percentage of global agreement was only 28.8%, representing predominantly global 

agreement on the absence of the lesion (23.8%).  The partial agreement of 49.1% also 

represented predominately partial agreement on the absence of the lesion (43.9%).  The mean 

marginal percentage of five-way agreement when Rater 1, 2, 3, 5, or 6 is excluded is ~2.3%, and  

37.3% when Rater 4 is excluded. These highly skewed percentages are because of the parameter 

estimates used for the simulation scenario.  
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Table 63. Marginal Percentages for Different Category Specific Agreement Patterns and Rater Exclusion for the GHeP-atyp4b 
Agreement Model Simulated under the Assumption of Marginal Heterogeneity 

GHeP-atyp4b Model – Heterogeneity 
Rater 
   i  

Marginal %   
for Absence 

Marginal % 
for Presence 

G %, 
 6δ  

G for 
Absence 
%, 6,0δ  

G for 
Presence 
%, 6,1δ  

GP %, 
5δ  

GP for 
Absence 
%, 5,0δ  

GP for 
Presence 
%, 5,1δ  

Excluded 
Rater, % 

5
iδ &&&&  

 Mean Marginal % (SE)  
[min,max] 

Mean Proportion  (SE) 
[min,max] 

1 84.3 
(5.4) 

[65.4,95.4] 

15.6 
(5.4) 

[4.5,34.6] 

2.5 
(0.1) 

[0,11.5] 
2 78.0 

(6.3) 
[52.9,93.2] 

22.0 
(6.3) 

[6.7,47.1] 

2.4 
(0.1) 

[0,10.1] 
3 80.2 

(6.1) 
[56.7,93.7] 

19.8 
(6.1) 

[6.3,43.3] 

2.2 
(0.1) 

[0,10.3] 
4 30.7 

(7.6) 
[11.3,57.8] 

69.2 
(7.6) 

[42.1,88.6] 

37.3 
(0.3) 

[12.0,73.2] 
5 81.1 

(6.0) 
[59.0,96.0] 

18.9 
(6.0) 

[4.0,40.9] 

2.3 
(0.1) 

[0,9.2] 
6 82.0 

(5.7) 
[61.1,97.2] 

18.0 
(5.7) 

[2.8,38.9] 

 
 
 
 
 

28.8 
 

(0.2) 
 

[11.3,53.2] 

 
 
 
 
 

23.8 
 

(0.2) 
 

[7.6,46.7] 

 
 
 
 
 

5.0 
 

(0.1) 
 

[0,17.3] 

 
 
 
 
 

49.1 
 

(0.3) 
 

[21.7,80.4] 

 
 
 
 
 

43.9 
 

(0.3) 
 

[18.6,75.9] 

 
 
 
 
 

2.5 
 

(0.1) 
 

[0,11.5] 

2.3 
(0.1) 

[0,11.5] 
* For agreement patterns see Table 4. G= Global agreement; GP= Global and partial agreement
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 Under simulation scenario GHeP-atyp4b, 61.1% of simulated tables had no sufficient 

statistic for a heterogeneous partial agreement parameter equal to zero.  None of the simulated 

contingency tables had the sufficient statistic for 4
5δ  equal to zero (Table 35). 

Analysis Assuming Marginal Homogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 64.  Almost all unadjusted pair-wise comparisons involving Rater 4 were 

statistically significant, as were most of the adjusted comparisons.  The dramatically higher 

percentage of significant adjusted pair-wise comparisons in the GHeP-atyp4b vs. the GHeP-

atyp4a simulation scenario is the result of increasing the parameter estimate 4
5̂δ from 0.36 to 2.21.  
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Table 64. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated 
under theGHeP-atyp4b Agreement Model with Marginal Heterogeneity and Data were Analyzed Assuming Marginal Homogeneity  

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

105 

 
 
0 
0 
0 
0 
0 
56 

 
 

1 (33.3) 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

113 

 
 
0 
0 
0 
0 
0 
64 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

605 (99.3) 
567 (93.1) 
569 (93.4) 
567 (93.1) 
569 (93.4) 

0 

 
 

235 (99.1) 
224 (94.5) 
225 (94.9) 
224 (94.5) 
 225 (94.9) 

46 

 
 

54 (98.2) 
54 (98.2) 
54 (98.2) 
54 (98.2) 
 54 (98.2) 

33 

 
 

6 (100) 
6 (100) 
6 (100) 
6 (100) 
6 (100) 

11 

 
 

1 (100) 
1 (100) 
1 (100) 
1 (100) 
1 (100) 

2 
1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

105 

 
 
0 
0 
0 
0 
0 
59 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 64 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 
98 

 
 
0 
0 
0 
0 
0 
63 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

126 

 
 
0 
0 
0 
0 
0 
60 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

605 (99.3) 
576 (94.5) 
578 (94.9) 
576 (94.5) 
578 (94.9) 

0 

 
 

223 (99.6) 
216 (96.4) 
217 (96.8) 
216 (96.4) 
 217 (96.8) 

59 

 
 

57 (100) 
57 (100) 
57 (100) 
57 (100)  
57 (100)  

31 

 
 

8 (100) 
7 (87.5) 
7 (87.5) 
7 (87.5) 
7 (87.5) 

9 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.6) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

118 

 
 
0 
0 
0 
0 
0 
59 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

 



        

 150 

Table 64 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

5 (0.8) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

107 

 
 
0 
0 
0 
0 
0 
63 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

608 (99.8) 
568 (93.3) 
575 (94.4) 
568 (93.3) 
575 (94.4) 

0 

 
 

214 (99.1) 
208 (96.3) 
209 (96.7) 
208 (96.3) 
209 (96.7) 

67 

 
 

48 (97.9) 
47 (95.9) 
47 (95.9) 
47 (95.9) 
47 (95.9) 

39 

 
 

5 (100) 
4 (80.0) 
4 (80.0) 
4 (80.0)  
4 (80.0)  

12 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

126 

 
 
0 
0 
0 
0 
0 
64 

 
 
0 
0 
0 
0 
0 
15 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1 (0.1) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

119 

 
 
0 
0 
0 
0 
0 
66 

 
 
0 
0 
0 
0 
0 
16 

 
 

-- 
-- 
-- 
-- 
-- 
3 

 



        

 151 

Table 64 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

606 (99.5) 
560 (92.0) 
568 (93.3) 
561 (92.1) 
568 (93.3) 

0 

 
 

224 (100) 
212 (94.6) 
212 (94.6) 
212 (94.6) 
212 (94.6) 

59 

 
 

53 (98.2) 
52 (96.3) 
52 (96.3) 
52 (96.3) 
52 (96.3) 

34 

 
 

8 (100) 
8 (100) 
8 (100) 
8 (100) 
8 (100) 

9 

 
 

1 (100) 
1 (100) 
1 (100) 
1 (100) 
1 (100) 

2 
4

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

605 (99.3) 
570 (93.6) 
573 (94.1) 
570 (93.6) 
573 (94.1) 

0 

 
 

230 (99.6) 
219 (94.8) 
220 (95.2) 
219 (94.8) 
220 (95.2) 

52 

 
 

49 (100) 
48 (98.0) 
48 (98.0) 
48 (98.0) 
 48 (98.0) 

39 

 
 

7 (100) 
7 (100) 
7 (100) 
7 (100) 
7 (100) 

10 

 
 

1 (100) 
1 (100) 
1 (100) 
1 (100) 
1 (100) 

2 
5

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3  (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

111 

 
 
0 
0 
0 
0 
0 
62 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Power to identify Rater 4 as the atypical rater when 4

5δ  differs from one or more of the other 5
iδ  

is summarized in Table 65. Using the criteria that at least one of the pair-wise comparisons of the 

heterogeneous partial agreement parameters is significant, both the unadjusted and adjusted 

approaches provide better than 96% power to identify Rater 4 as atypical.  Only 2.3% of 

unadjusted comparisons and no adjusted comparisons identified the incorrect rater as atypical 

(Table 50). 

The overall probability that any rater is identified as atypical rater is ~34% whether or not 

adjustments for the number of comparisons are made (Table 51).  The probability that Rater 4 is 

the atypical rater given that an atypical rater was identified is >99% either unadjusted or adjusted 

for multiple comparisons (Table 52). 

 

Table 65. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By Multiple 
Comparison Procedure for the GHeP-atyp4b Scenario Simulated Assuming Marginal 
Heterogeneity when the Data were Analyzed Assuming Marginal Homogeneity 

 
 

Multiple Comparison Procedure  

Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.004 0.01 0.01 0.01 0.01 
Two raters 0.018 0.024 0.02 0.024 0.02 
Three raters 0.089 0.105 0.096 0.105 0.096 
Four raters 0.288 0.275 0.279 0.274 0.279 
Five raters 0.599 0.548 0.557 0.549 0.557 
At least one rater 0.998 0.962 0.962 0.962 0.962 
 

Analysis Assuming Marginal Heterogeneity.  The number of times each possible pair-

wise comparison was statistically significant across the 1,000 simulated contingency tables is 

summarized in Table 66.  In contrast to Table 64, relatively few unadjusted or adjusted pair-wise 

comparisons involving Rater 4 were statistically significant.  
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Table 66. Number (%) of Times Each Possible Pair-wise Comparison was Statistically Significant Across 1000 Tables Simulated and 
Analyzed under the GHeP-atyp4b Agreement Model Assuming Marginal Heterogeneity  

Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
1
5̂δ  vs. 2

5̂δ   

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

4 (0.6) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

105 

 
 
0 
0 
0 
0 
0 
56 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 

1
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

6 (1.0) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

113 

 
 
0 
0 
0 
0 
0 
64 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

1
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

70 (11.5) 
11 (1.8) 
11 (1.8) 
11 (1.8) 
11 (1.8) 

0 

 
 

27 (11.4) 
3 (1.3) 
3 (1.3) 
3 (1.3) 
3 (1.3) 

46 

 
 

2 (3.6) 
1 (1.8) 
1 (1.8) 
1 (1.8) 
1 (1.8) 

33 

 
 

1 (16.7) 
1 (16.7) 
1 (16.7) 
1 (16.7) 
1 (16.7) 

11 

 
 
0 
0 
0 
0 
0 
2 

1
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 

2 (1.1) 
0 
0 
0 
0 

105 

 
 
0 
0 
0 
0 
0 
59 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 66 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
1
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

8 (1.3) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 
98 

 
 
0 
0 
0 
0 
0 
63 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 3

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 
0 
0 
0 
0 
0 

126 

 
 
0 
0 
0 
0 
0 
60 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 4

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

56 (9.2) 
10 (1.6) 
11 (1.8) 
10 (1.6) 
 11 (1.8) 

0 

 
 

26 (11.6) 
2 (0.9) 
4 (1.8) 
2 (0.9) 
4 (1.8) 

59 

 
 

5 (8.8) 
2 (3.5) 
2 (3.5) 
2 (3.5) 
2 (3.5) 

31 

 
 
0 
0 
0 
0 
0 
9 

 
 

-- 
-- 
-- 
-- 
-- 
3 

2
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

7 (1.2) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

118 

 
 
0 
0 
0 
0 
0 
59 

 
 

-- 
-- 
-- 
-- 
-- 
17 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 66 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
2

5̂δ  vs. 6
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

107 

 
 
0 
0 
0 
0 
0 
63 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 4

5̂δ  

 Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

64 (10.5) 
11 (1.8) 
13 (2.1) 
11 (1.8) 
13 (2.1) 

0 

 
 

26 (12.0) 
2 (0.9) 
2 (0.9) 
2 (0.9) 
2 (0.9) 

67 

 
 

5 (10.2) 
2 (4.0) 
2 (4.0) 
2 (4.0) 
2 (4.0) 

39 

 
 

1 (20.0) 
1 (20.0) 
1 (20.0) 
1 (20.0) 
1 (20.0) 

12 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 5

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

2 (0.3) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

126 

 
 

1 (4.2) 
0 
0 
0 
0 
64 

 
 
0 
0 
0 
0 
0 
15 

 
 

-- 
-- 
-- 
-- 
-- 
3 

3
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

3 (0.5) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

119 

 
 
0 
0 
0 
0 
0 
66 

 
 
0 
0 
0 
0 
0 
16 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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Table 66 (continued) 
Possible  
Pair-wise 

Comparisons 
(N) 

 
 

15 
(609) 

 
 

10 
(283) 

 
 
6 

(88) 

 
 
3 

(17) 

 
 
1 

(3) 
4

5̂δ  vs. 5
5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

64 (10.5) 
11 (1.8) 
11 (1.8) 
11 (1.8) 
11 (1.8) 

0 

 
 

24 (10.7) 
2 (0.9) 
3 (1.3) 
2 (0.9) 
3 (1.3) 

59 

 
 

3 (5.5) 
1 (1.9) 
1 (1.9) 
1 (1.9) 
1 (1.9) 

34 

 
 

1 (12.5) 
1 (12.5) 
1 (12.5) 
1 (12.5) 
1 (12.5) 

9 

 
 
0 
0 
0 
0 
0 
2 

4
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

77 (12.6) 
8 (1.3) 
10 (1.6) 
8 (1.3) 
10 (1.6) 

0 

 
 

25 (10.8) 
3 (1.3) 
4 (1.7) 
3 (1.3) 
4 (1.7) 

52 

 
 
0 
0 
0 
0 
0 
39 

 
 
0 
0 
0 
0 
0 
10 

 
 
0 
0 
0 
0 
0 
2 

5
5̂δ  vs. 6

5̂δ  

Unadjusted 
Bonferroni 

Holm’s- Bonferroni 
Sidak 

Holm’s-Sidak 
Missing 

 
 

1  (0.1) 
0 
0 
0 
0 
0 

 
 

1 (0.6) 
0 
0 
0 
0 

111 

 
 
0 
0 
0 
0 
0 
62 

 
 
0 
0 
0 
0 
0 
14 

 
 

-- 
-- 
-- 
-- 
-- 
3 
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The power to identify Rater 4 as the atypical rater when 4

5δ  differs from one or more of 

the other 5
iδ  is summarized in Table 67.  The power is low to detect Rater 4 based on 

unadjusted comparisons (20.0%) or adjusted comparisons (3.3%) based on a criterion that 

at least one of the five pair-wise comparisons of the heterogeneous partial agreement 

parameters is significant.  Using unadjusted pair-wise comparisons, 3.61% of the 

simulations identify an incorrect rater while none of the adjusted pair-wise comparisons 

identify a rater other than Rater 4 as the atypical rater (Table 55).  The overall probability 

that any rater is identified as an atypical rater is 4.19% if unadjusted pair-wise 

comparisons are used and less than 1% if adjusted pair-wise comparisons are used (Table 

56).  The probability that Rater 4 is identified as the atypical rater given that an atypical 

rater was identified is >99% using either unadjusted or adjusted pair-wise comparisons 

(Table 57). 

 

Table 67. Power to Identify Rater 4 as the Atypical Rater Using Various Criteria By 
Multiple Comparison Procedure for the GHeP-atyp4b Scenario Simulated Assuming 
Marginal Heterogeneity when the Data were Analyzed Assuming Marginal 
Heterogeneity 
Rater 4 Differs 
from: 

Unadjusted Bonferroni Holm’s 
Bonferroni 

Sidak Holm’s 
 Sidak 

One rater 0.08 0.015 0.012 0.015 0.012 
Two raters 0.041 0.007 0.007 0.007 0.007 
Three raters 0.025 0.004 0.004 0.004 0.004 
Four raters 0.030 0.004 0.007 0.004 0.007 
Five raters 0.024 0.003 0.033 0.033 0.033 
At least one rater 0.20 0.033 0.033 0.033 0.033 
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4.3. SUMMARY  

Because the results for each simulated scenario were comparable for the four multiple 

comparison procedures considered, the results for only the unadjusted and Holm’s-

Bonferroni procedures are summarized in Tables 68 through Table 73.   Tables 68-70, 

respectively, summarize the probabilities of identifying Rater 4 and identifying a rater 

other than 4, and the conditional probability of identifying Rater 4 given that at least one 

rater was identified as atypical, all for data simulated assuming marginal homogeneity.  

For the G and GP scenarios simulated under the assumption of marginal homogeneity, 

the Type I error is virtually zero to detect either Rater 4 (Table 68) or any rater other than 

Rater 4 (Table 69) for both the unadjusted and Holm’s-Bonferroni adjusted comparisons.   

Using unadjusted pair-wise comparisons, the power to identify the Rater 4 correctly as 

atypical rater was about 27% for the GHeP-rog and GHeP-atyp4a models and increased 

to 44.2% when the Rater 4 effect was exaggerated (Table 68).  Very few of the 

unadjusted comparisons in Table 69 identified a rater other than Rater 4 as atypical for 

either the GHeP-rog or GHeP-atyp4b models; however, 17.1% of the simulations 

incorrectly identified an atypical rater for the GHeP-atyp4a model.  The power was 

extremely low (less than 3%) for each of the corresponding Holms-Bonferroni adjusted 

comparisons in Tables 68 and 69.   For both the unadjusted and adjusted pair-wise 

comparisons, the corresponding conditional power to identify Rater 4 correctly as 

atypical is high (>94%) for the GHeP-rog and GHeP-atyp4b models, but less than 61% 

for the GHeP-atyp4a model (Table 70). 
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Table 68. Proportion (%) of Simulations That Identify Rater 4 as the Atypical Rater for 
Scenarios Simulated Assuming Marginal Homogeneity 
 Analyzed Assuming Marginal Homogeneity 
Model Unadjusted  Holm’s – Bonferroni  
G <0.1 <0.1 
GP <0.1 <0.1 
GHeP-rog 27.7 0.6 
GHeP-atyp4a 27.5 2.3 
GHeP-atyp4b 44.2 2.9 

 
 

Table 69. Proportion (%) of Simulations That Identify a Rater Other Than Rater 4 as the 
Atypical Rater for Scenarios Simulated Assuming Marginal Homogeneity 
 Analyzed Assuming Marginal Homogeneity 
Model Unadjusted  Holm’s – Bonferroni  
G <0.1 <0.1 
GP <0.1 <0.1 
GHeP-rog 0.7 <0.1 
GHeP-atyp4a 17.1 1.9 
GHeP-atyp4b 2.6 <0.1 
 
 
 
Table 70. Conditional Probability (%) of Identifying Rater 4 as Atypical Given That At 
Least One Rater Was Identified for Scenarios Simulated Assuming Marginal 
Homogeneity 
 Analyzed Assuming Marginal Homogeneity 
Model Unadjusted  Holm’s – Bonferroni  
G na na 
GP na na 
GHeP-rog 94.4 > 99 
GHeP-atyp4a 60.7 55.5 
GHeP-atyp4b 97.1 > 99 
na= not applicable 

 
Tables 71-73, respectively, summarize the probabilities of identifying Rater 4 and 

identifying a rater other than 4, and the conditional probability of identifying Rater 4 

given that at least one rater was identified as atypical, all for data simulated assuming 

marginal heterogeneity.  Two different GHeP models were fit to each set of simulated 

data: one model which incorrectly assumed marginal homogeneity and another which 
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correctly assumed marginal heterogeneity.  Under the assumption of marginal 

homogeneity, the Type I error of the unadjusted pair-wise comparisons is 6.6% for the G 

model and 58.8% for the GP model (Table 71).  This 58.8% appears to be picking up the 

marginal heterogene ity due to Rater 4 in the partial agreement parameters, because the 

marginal heterogeneity is ignored in the fitted model. The power of the unadjusted 

comparisons to detect Rater 4 is about 35% for the GHeP-rog and GHep-atyp4a 

scenarios; the power of both the unadjusted and Holms-Bonferroni comparisons is >95% 

for the GHeP-atyp4b scenario. The Holms-Bonferroni procedure is quite conservative for 

the other scenarios analyzed assuming marginal homogeneity.  

When these simulated data are analyzed assuming marginal heterogeneity, the 

Type I error of the unadjusted comparisons is approximately twice the nominal level for 

the G and GP models; the Holm’s Bonferroni procedure is somewhat conservative for 

these models (Table 71). The power to detect Rater 4 as atypical using unadjusted 

comparisons in the GHeP-rog and GHeP-atyp4a models is improved considerably when 

the correct analytic model is assumed. The power for the GHeP-atyp4b model is 

unexpectedly low. 

For the GP model analyzed assuming marginal heterogeneity, the probability of 

identifying the wrong rater is 5.1% using unadjusted comparisons (Table 72). Among the 

GHeP models, only for the GHeP-rog model with unadjusted comparisons does the 

probability of detecting the wrong rater exceed the nominal level. 

Except for the GHeP-rog model analyzed assuming marginal homogeneity, the 

conditional power was very high to correctly identify Rater 4 when at least one rater was 

identified as atypical (Table 73).   In this GHeP-rog model, the Holm’s Bonferroni 



    

 160 

procedure actually had somewhat higher conditional power than the unadjusted 

comparisons assuming both marginal homogeneity and marginal heterogeneity.
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Table 71. Proportion (%) of Simulations That Identify Rater 4 as the Atypical Rater for Scenarios Simulated Assuming Marginal 
Heterogeneity 

 Analysis Assuming Marginal Homogeneity Analysis Assuming Marginal Heterogeneity 
Model Unadjusted Holm’s –Bonferroni Unadjusted Holm’s –Bonferroni 
G 6.6 0.7 11.0 2.9 
GP 58.8 4.3 9.6 1.5 
GHeP-rog 35.2 3.2 79.8 52.3 
GHeP-atyp4a 32.4 0.9 68.8 31.6 
GHeP-atyp4b 99.8 96.2 20.0 3.3 
 
 
 

Table 72. Proportion (%) of Simulations That Identify a Rater Other Than Rater 4 as the Atypical Rater for Scenarios Simulated 
Assuming Marginal Heterogeneity 
 Analysis Assuming Marginal 

Homogeneity 
Analysis Assuming Marginal  

Heterogeneity 
Model Unadjusted Holm’s –Bonferroni Unadjusted Holm’s –Bonferroni 
G <0.1 <0.1 <0.1 <0.1 
GP <0.1 <0.1 5.1 <0.1 
GHeP-rog 25.7 2.7 25.6 2.1 
GHeP-atyp4a 2.6 <0.1 4.8 <0.1 
GHeP-atyp4b 2.3 <0.1 3.6 <0.1 
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Table 73. Conditional Probability (%) of Identifying Rater 4 as Atypical Given That At Least One Rater Was Identified for Scenarios 
Simulated Assuming Marginal Heterogeneity 
 Analysis Assuming Marginal 

Homogeneity 
Analysis Assuming Marginal Heterogeneity 

Model Unadjusted Holm’s –Bonferroni Unadjusted Holm’s –Bonferroni 
G > 99 > 99 > 99 > 99 
GP > 99 > 99 82.7 > 99 
GHeP-rog 56.4 59.6 78.7 95.1 
GHeP-atyp4a 95.8 > 99 97.4 > 99 
GHeP-atyp4b > 99 > 99 > 99 > 99 
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5. DISCUSSION 

 

Rogel et al. (1998) proposed using the heterogeneous partial agreement parameters in a 

log- linear model to address the problem of identifying an atypical rater in the context of a 

best-fitting model.  Their work focused on model selections issues, and did not provide 

specific guidance with respect to identifying particular raters. The present work 

formalizes inferential procedures to identify an atypical rater using pair-wise comparisons 

of the heterogeneous partial agreement parameters, with particular attention paid to the 

issue of multiple comparisons due to the relatively large number of possible pair-wise 

comparisons.  The Type I error and power of the proposed procedures are assessed in a 

simulation study, assuming either marginal homogeneity or marginal heterogeneity 

across raters. In the models considered, agreement was aggregated across categories of 

the outcome so that the approach is not sensitive to the prevalence of the outcome.  

This study provides no evidence of elevated Type I error for unadjusted pair-wise 

comparisons of the heterogeneous partial agreement parameters assuming marginal 

homogeneity.  While the unconditional power to identify the designated atypical rater is 

low for data simulated assuming marginal homogeneity, the conditional power is high 

using either unadjusted or adjusted comparisons for the unconstrained scenario and the 

scenario with the effect of the atypical rater exaggerated.  

This study provides evidence that the use of unadjusted pair-wise comparisons of 

the heterogeneous partial agreement parameters is anti-conservative and the use of 

adjusted pair-wise comparisons is conservative assuming either marginal homogeneity or 

heterogeneity for the global model simulated under the assumption of marginal 

heterogeneity.  The GP model is interesting because the heterogeneous partial agreement 
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parameters in the incorrect analytic model (i.e. analysis assuming marginal homogeneity) 

appear to correctly identify Rater 4 for the wrong reason; even though there is no true 

differential five-way agreement in the simulated data, Rater 4 has a different marginal 

distribution that is not being parameterized directly in the analysis.  However, for the 

GHeP-rog and GHeP-atyp4a models, the power is even higher if the pair-wise 

comparisons are conducted within the framework of the correct (i.e. marginal 

heterogeneity) analytic model.  At issue is whether one is overadjusting for the ways in 

which Rater 4 could be atypical; Rater 4 could disagree relatively more often because 

his/her marginal distribution is different, or could disagree and share the same marginal 

distribution. In these simulations the power was highest when the differences in the 

marginal distributions were taken into account; Rater 4 contributed relatively little to the 

five-way disagreement in this situation.  Another strategy would be to examine 

differences in the marginal heterogeneity parameters in the GP or GHeP models. This 

was not addressed in the present work, but will be a focus of future efforts.  

The simulation study was designed so that Rater 4 was the atypical rater.  In a real 

life application, the atypical rater is not known a priori.  Although the overall power of 

the proposed approach was low in many settings considered, the conditional power to 

correctly identify the atypical rater (given that someone was identified) was generally 

quite high.  In some settings the identity of the atypical rater is obvious (e.g. a single rater 

is involved in multiple significant pair-wise comparisons).  However, if two raters differ 

only from each other and none of the other raters differ from each other, then both raters 

might be considered atypical.  Moreover, if an investigator has concerns about poor inter-

rater agreement, corrective action can be taken in the absence of definitive statistical 
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evidence identifying an atypical rater. Every effort should be made to improve the 

consistency of ratings prior to conducting the primary study that assesses the impact of an 

intervention.   

The descriptive summary table (e.g., marginal percentages for different category 

specific agreement patterns) provides clinicians with a tool to help them identify an 

atypical rater. The clinician can determine whether or not the magnitude of the 

differences in these proportions attributable to each rater is of clinical concern.   

Confidence intervals for the heterogeneous partial agreement parameters can also aid the 

clinician.  

There are some limitations of this research.  First, it is based on only one example 

and the underlying structure of the data was not clearly GHeP. Second, the relative ly 

small number of discrepant ratings limited our power to detect atypical raters and 

possibly the clinical importance of detecting such discrepancies.  However, this is 

frequently the case when experienced raters are involved in a study. Although it may 

have limited our inferences, the number of specimens rated (68) is not unusual for inter-

rater agreement studies.  In this example, although almost 25% of the 5-way agreement 

was due to a discrepant rating by Rater 4, this corresponds to only 6 ratings.  Lastly, the 

GHeP model considered only assesses K-1 partial agreement and ignored other kinds of 

disagreement.  However, given sufficient data, other types of disagreement could be 

addressed by redefining the agreement parameters. Future work includes (i) investigating 

the marginal heterogeneity parameters as an alternative strategy to identify atypical raters 

under this scenario and (ii) generalizing the programs to account for imbalanced and/or 

multi-category nominal data. 
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In conclusion, the heterogeneous agreement parameters generally do highlight the 

most atypical rater in the marginal homogeneity scenarios considered, although the power 

is low to detect such a rater as statistically significantly different from the other raters.  

Inference is less straightforward in the case of marginal heterogeneity, as the marginal 

heterogeneity parameters may be over-controlling for the disagreement by allowing a 

different marginal distribution. In either case, for the scenarios considered, pair-wise 

comparisons of the heterogeneous partial agreement parameters are quite likely to 

identify the correct rater as atypical when any rater is identified. 
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Appendix A 
Parameterization of the Rater Effect Variables Using Sum-to-Zero Constraints
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Parameterization.log   
rpattern r1 r2 r3 r4 r5 r6  
 
 
R1 through R6 are the variables representing the main effects of each rater, Rater 1 through 6, 
respectively. 
_______________________________________________________________________________________________ 
 
Rating  
Pattern      R1          R2          R3           R4         R5          R6 
_______________________________________________________________________________________________ 
000000          -1          -1           -1          -1          -1         -1 
000001          -1          -1           -1          -1          -1          1 
000010          -1          -1      -1          -1           1         -1 
000011          -1          -1      -1          -1           1          1 
000100          -1          -1           -1           1          -1         -1 
000101          -1          -1           -1           1          -1          1 
000110          -1          -1           -1           1           1         -1 
000111          -1          -1           -1           1           1          1 
001000          -1          -1            1          -1          -1         -1 
001001          -1          -1            1          -1          -1          1 
001010          -1          -1            1          -1           1         -1 
001011          -1          -1            1          -1           1          1 
001100          -1          -1            1           1          -1         -1 
001101          -1          -1            1           1          -1          1 
001110          -1          -1            1           1           1         -1 
001111          -1          -1            1           1           1          1 
010000          -1           1           -1          -1          -1         -1 
010001          -1           1           -1          -1          -1          1 
010010          -1           1           -1          -1           1         -1 
010011          -1           1           -1          -1           1          1 
010100          -1           1           -1           1          -1         -1 
010101          -1           1           -1           1          -1          1 
010110          -1           1           -1           1           1         -1 
010111          -1           1           -1           1           1          1 
011000          -1           1            1          -1          -1         -1 
011001          -1           1            1          -1          -1          1 
011010          -1           1            1          -1           1         -1 
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_______________________________________________________________________________________________ 
 
Rating  
Pattern      R1          R2          R3           R4         R5          R6 
_______________________________________________________________________________________________ 
011011          -1           1            1          -1           1          1 
011100          -1           1            1           1          -1         -1 
011101          -1           1            1           1          -1          1 
011110          -1           1            1           1           1         -1 
011111          -1           1            1           1           1          1 
100000          1           -1           -1          -1          -1         -1 
100001          1           -1           -1          -1          -1          1 
100010          1           -1           -1          -1           1         -1 
100011          1           -1           -1          -1           1          1 
100100          1           -1           -1           1          -1         -1  
100101          1           -1           -1           1          -1          1 
100110          1           -1           -1           1           1         -1 
100111          1           -1           -1           1           1          1 
101000          1           -1            1          -1          -1         -1 
101001          1           -1            1          -1          -1          1 
101010          1           -1            1          -1           1         -1 
101011          1           -1            1          -1           1          1 
101100          1           -1            1           1          -1         -1 
101101          1           -1            1           1          -1          1 
101110          1           -1            1           1           1         -1 
101111          1           -1            1           1           1          1 
110000          1            1           -1          -1          -1         -1 
110001          1            1           -1          -1          -1          1 
110010          1            1           -1          -1           1         -1 
110011          1            1           -1          -1           1          1 
110100          1            1           -1           1          -1         -1 
110101          1            1           -1           1          -1          1 
110110          1            1           -1           1           1         -1 
110111          1            1           -1           1           1          1 
111000          1            1            1          -1          -1         -1 
111001          1            1            1          -1          -1          1 
111010          1            1            1          -1           1         -1 
111011          1            1            1          -1           1          1 
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_______________________________________________________________________________________________ 
 
Rating  
Pattern      R1          R2          R3           R4         R5          R6 
_______________________________________________________________________________________________ 
111100          1            1            1           1          -1         -1 
111101          1            1            1           1          -1          1 
111110          1            1            1           1           1         -1 
111111          1            1            1           1           1          1 
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Appendix B 
Parameterization of the Indicator Variables Used For the G, GP, GHeP Models  
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. list  rpattern  e6  e5  e5m1 e5m2 e5m3 e5m4 e5m5 e5m6 e5sub 
 
     +----------------------------------------------------------------------+ 
     | rpattern   e6   e5   e5m1   e5m2   e5m3   e5m4   e5m5   e5m6   e5sub | 
     |----------------------------------------------------------------------| 
  1. |   000000    1    0      0      0      0      0      0      0       0 | 
  2. |   000001    0    1      0      0      0      0      0      1       1 | 
  3. |   000010    0    1      0      0      0      0      1      0       1 | 
  4. |   000011    0    0      0      0      0      0      0      0       0 | 
  5. |   000100    0    1      0      0      0      1      0      0       0 | 
     |----------------------------------------------------------------------| 
  6. |   000101    0    0      0      0      0      0      0      0       0 | 
  7. |   000110    0    0      0      0      0      0      0      0       0 | 
  8. |   000111    0    0      0      0      0      0      0      0       0 | 
  9. |   001000    0    1      0      0      1      0      0      0       1 | 
 10. |   001001    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 11. |   001010    0    0      0      0      0      0      0      0       0 | 
 12. |   001011    0    0      0      0      0      0      0      0       0 | 
 13. |   001100    0    0      0      0      0      0      0      0       0 | 
 14. |   001101    0    0      0      0      0      0      0      0       0 | 
 15. |   001110    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 16. |   001111    0    0      0      0      0      0      0      0       0 | 
 17. |   010000    0    1      0      1      0      0      0      0       1 | 
 18. |   010001    0    0      0      0      0      0      0      0       0 | 
 19. |   010010    0    0      0      0      0      0      0      0       0 | 
 20. |   010011    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 21. |   010100    0    0      0      0      0      0      0      0       0 | 
 22. |   010101    0    0      0      0      0      0      0      0       0 | 
 23. |   010110    0    0      0      0      0      0      0      0       0 | 
 24. |   010111    0    0      0      0      0      0      0      0       0 | 
 25. |   011000    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 26. |   011001    0    0      0      0      0      0      0      0       0 | 
 27. |   011010    0    0      0      0      0      0      0      0       0 | 
 28. |   011011    0    0      0      0      0      0      0      0       0 | 
 29. |   011100    0    0      0      0      0      0      0      0       0 | 
 30. |   011101    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 31. |   011110    0    0      0      0      0      0      0      0       0 | 
 32. |   011111    0    1      1      0      0      0      0      0       1 | 
 33. |   100000    0    1      1      0      0      0      0      0       1 | 
 34. |   100001    0    0      0      0      0      0      0      0       0 | 
 35. |   100010    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 36. |   100011    0    0      0      0      0      0      0      0       0 | 
 37. |   100100    0    0      0      0      0      0      0      0       0 | 
 38. |   100101    0    0      0      0      0      0      0      0       0 | 
 39. |   100110    0    0      0      0      0      0      0      0       0 | 
 40. |   100111    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 41. |   101000    0    0      0      0      0      0      0      0       0 | 
 42. |   101001    0    0      0      0      0      0      0      0       0 | 
 43. |   101010    0    0      0      0      0      0      0      0       0 | 
 44. |   101011    0    0      0      0      0      0      0      0       0 | 
 45. |   101100    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 46. |   101101    0    0      0      0      0      0      0      0       0 | 
 47. |   101110    0    0      0      0      0      0      0      0       0 | 
 48. |   101111    0    1      0      1      0      0      0      0       1 | 
 49. |   110000    0    0      0      0      0      0      0      0       0 | 
 50. |   110001    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
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     +----------------------------------------------------------------------+ 
     | rpattern   e6   e5   e5m1   e5m2   e5m3   e5m4   e5m5   e5m6   e5sub | 
     |----------------------------------------------------------------------| 
 51. |   110010    0    0      0      0      0      0      0      0       0 | 
 52. |   110011    0    0      0      0      0      0      0      0       0 | 
 53. |   110100    0    0      0      0      0      0      0      0       0 | 
 54. |   110101    0    0      0      0      0      0      0      0       0 | 
 55. |   110110    0    0      0      0      0      0      0      0       0 | 
     |----------------------------------------------------------------------| 
 56. |   110111    0    1      0      0      1      0      0      0       1 | 
 57. |   111000    0    0      0      0      0      0      0      0       0 | 
 58. |   111001    0    0      0      0      0      0      0      0       0 | 
 59. |   111010    0    0      0      0      0      0      0      0       0 | 
 60. |   111011    0    1      0      0      0      1      0      0       0 | 
     |----------------------------------------------------------------------| 
 61. |   111100    0    0      0      0      0      0      0      0       0 | 
 62. |   111101    0    1      0      0      0      0      1      0       1 | 
 63. |   111110    0    1      0      0      0      0      0      1       1 | 
 64. |   111111    1    0      0      0      0      0      0      0       0 | 
     +----------------------------------------------------------------------+ 
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Appendix C 
Parameter Estimates and and Variance-Covariance Matrices for the G, GP, GHeP 

Models Under the Assumption of Marginal Homogeneity & Heterogeneity 
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* GLOBAL AGREEMENT MODEL  
. glm ctdm e6 , f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -100.61721   
Iteration 1:   log likelihood = -90.578469   
Iteration 2:   log likelihood =  -90.53458   
Iteration 3:   log likelihood = -90.534554   
Iteration 4:   log likelihood = -90.534554   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        62 
                                                   Scale parameter =         1 
Deviance         =  120.2993083                    (1/df) Deviance =  1.940311 
Pearson          =  134.9754386                    (1/df) Pearson  =  2.177023 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -90.53455362                    AIC             =  2.891705 
BIC              = -137.5514428 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          e6 |   3.197598   .2442317    13.09   0.000     2.718913    3.676284 
       _cons |  -.4895482   .1622214    -3.02   0.003    -.8074964   -.1716001 
------------------------------------------------------------------------------ 
(Variance-Covariance Matrix) 
. matrix list e(V) 
 
symmetric e(V)[2,2] 
                  ctdm:       ctdm: 
                    e6       _cons 
   ctdm:e6   .05964912 
ctdm:_cons  -.02631579   .02631579 
 
* GLOBAL & PARTIAL AGREEMENT MODEL  
 
. glm ctdm e6  e5 , f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -94.510217   
Iteration 1:   log likelihood = -84.276409   
Iteration 2:   log likelihood = -84.228052   
Iteration 3:   log likelihood = -84.228019   
Iteration 4:   log likelihood = -84.228019   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        61 
                                                   Scale parameter =         1 
Deviance         =  107.6862395                    (1/df) Deviance =  1.765348 
Pearson          =  110.2901961                    (1/df) Pearson  =  1.808036 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -84.22801918                    AIC             =  2.725876 
BIC              = -146.0056286 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          e6 |   3.575551   .2845213    12.57   0.000     3.017899    4.133202 
          e5 |   1.215807   .3262554     3.73   0.000     .5763585    1.855256 
       _cons |  -.8675006   .2182179    -3.98   0.000      -1.2952   -.4398014 
------------------------------------------------------------------------------ 
(Variance-Covariance Matrix) 
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. matrix list e(V) 
 
symmetric e(V)[3,3] 
                  ctdm:       ctdm:       ctdm: 
                    e6          e5       _cons 
   ctdm:e6   .08095238 
   ctdm:e5   .04761905   .10644258 
ctdm:_cons  -.04761905  -.04761905   .04761905 
 
 
* GHeP-rog MODEL 
 
. glm ctdm e6 e5m1 e5m2 e5m3 e5m4 e5m5 e5m6, f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -92.361679   
Iteration 1:   log likelihood =  -81.85987   
Iteration 2:   log likelihood = -81.817945   
Iteration 3:   log likelihood = -81.817916   
Iteration 4:   log likelihood = -81.817916   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        56 
                                                   Scale parameter =         1 
Deviance         =  102.8660327                    (1/df) Deviance =  1.836893 
Pearson          =  100.1333333                    (1/df) Pearson  =  1.788095 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -81.81791578                    AIC             =   2.80681 
BIC              =   -130.03142 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          e6 |   3.575551   .2845213    12.57   0.000     3.017899    4.133202 
        e5m1 |   .8675006   .7400129     1.17   0.241     -.582898    2.317899 
        e5m2 |   1.272966   .6172134     2.06   0.039     .0632496    2.482682 
        e5m3 |   .1743534   1.023533     0.17   0.865    -1.831734     2.18044 
        e5m4 |   1.966113     .46291     4.25   0.000     1.058826      2.8734 
        e5m5 |   .8675006   .7400129     1.17   0.241     -.582898    2.317899 
        e5m6 |   1.272966   .6172134     2.06   0.039     .0632496    2.482682 
       _cons |  -.8675006   .2182179    -3.98   0.000      -1.2952   -.4398014 
------------------------------------------------------------------------------ 
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(Variance-covariance Matrix) 
. matrix list e(V) 
 
symmetric e(V)[8,8] 
                  ctdm:       ctdm:       ctdm:       ctdm:       ctdm:       ctdm: 
                    e6        e5m1        e5m2        e5m3        e5m4        e5m5 
   ctdm:e6   .08095238 
 ctdm:e5m1   .04761905   .54761905 
 ctdm:e5m2   .04761905   .04761905   .38095238 
 ctdm:e5m3   .04761905   .04761905   .04761905    1.047619 
 ctdm:e5m4   .04761905   .04761905   .04761905   .04761905   .21428571 
 ctdm:e5m5   .04761905   .04761905   .04761905   .04761905   .04761905   .54761905 
 ctdm:e5m6   .04761905   .04761905   .04761905   .04761905   .04761905   .04761905 
ctdm:_cons  -.04761905  -.04761905  -.04761905  -.04761905  -.04761905  -.04761905 
 
                  ctdm:       ctdm: 
                  e5m6       _cons 
 ctdm:e5m6   .38095238 
ctdm:_cons  -.04761905   .04761905 
 
 
* GHeP-rme MODEL 
 
. glm ctdm e6 e5m4 e5sub, f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -93.043343   
Iteration 1:   log likelihood = -82.550895   
Iteration 2:   log likelihood = -82.509176   
Iteration 3:   log likelihood = -82.509147   
Iteration 4:   log likelihood = -82.509147   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        60 
                                                   Scale parameter =         1 
Deviance         =  104.2484956                    (1/df) Deviance =  1.737475 
Pearson          =  100.7393939                    (1/df) Pearson  =   1.67899 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -82.50914727                    AIC             =  2.703411 
BIC              = -145.2844894 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          e6 |   3.575551   .2845213    12.57   0.000     3.017899    4.133202 
        e5m4 |   1.966113     .46291     4.25   0.000     1.058826      2.8734 
       e5sub |   .9628107   .3721937     2.59   0.010     .2333245    1.692297 
       _cons |  -.8675006   .2182179    -3.98   0.000      -1.2952   -.4398014 
------------------------------------------------------------------------------ 
 
(Variance-covariance Matrix) 
 
. matrix list e(V) 
 
symmetric e(V)[4,4] 
                  ctdm:       ctdm:       ctdm:       ctdm: 
                    e6        e5m4       e5sub       _cons 
   ctdm:e6   .08095238 
 ctdm:e5m4   .04761905   .21428571 
ctdm:e5sub   .04761905   .04761905   .13852814 
ctdm:_cons  -.04761905  -.04761905  -.04761905   .04761905 
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Marginal Heterogeneity Models 
 
. *Global (G) Model 
. glm ctdm r1-r6 e6, f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -74.117064   
Iteration 1:   log likelihood = -63.330689   
Iteration 2:   log likelihood = -62.989964   
Iteration 3:   log likelihood = -62.989091   
Iteration 4:   log likelihood = -62.989091   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        56 
                                                   Scale parameter =         1 
Deviance         =  65.20838239                    (1/df) Deviance =  1.164435 
Pearson          =  81.21747696                    (1/df) Pearson  =  1.450312 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -62.98909065                    AIC             =  2.218409 
BIC              = -167.6890703 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          r1 |  -.5051301   .1692812    -2.98   0.003    -.8369152   -.1733451 
          r2 |  -.1592249   .1537164    -1.04   0.300    -.4605036    .1420538 
          r3 |  -.2667977   .1567927    -1.70   0.089    -.5741059    .0405104 
          r4 |   .8001227   .1984658     4.03   0.000     .4111369    1.189109 
          r5 |   -.322779   .1590265    -2.03   0.042    -.6344652   -.0110927 
          r6 |  -.3807889   .1617964    -2.35   0.019     -.697904   -.0636738 
          e6 |   3.474279    .343287    10.12   0.000     2.801449    4.147109 
       _cons |  -1.080286    .254489    -4.24   0.000    -1.579075   -.5814965 
------------------------------------------------------------------------------ 
 
. matrix list e(V) 
 
symmetric e(V)[8,8] 
                  ctdm:       ctdm:       ctdm:       ctdm:       ctdm:       ctdm: 
                    r1          r2          r3          r4          r5          r6 
   ctdm:r1   .02865612 
   ctdm:r2  -.00340322   .02362874 
   ctdm:r3  -.00353864  -.00284647   .02458397 
   ctdm:r4  -.00622486  -.00466073  -.00499298   .03938867 
   ctdm:r5  -.00364282  -.00294219  -.00307166  -.00521623   .02528944 
   ctdm:r6  -.00377685  -.00306288  -.00319335   -.0054877  -.00329183   .02617806 
   ctdm:e6  -.00820788   .00216985  -.00078424   .04452793  -.00238668  -.00412201 
ctdm:_cons   .01371901   .00241488   .00552442  -.03578212   .00725241   .00915215 
 
                  ctdm:       ctdm: 
                    e6       _cons 
   ctdm:e6   .11784594 
ctdm:_cons  -.06320704   .06476465 
 
. *Global &Partial Agreement (GP) Model 
. glm ctdm r1-r6 e6 e5, f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -66.964091   
Iteration 1:   log likelihood = -56.744469   
Iteration 2:   log likelihood = -56.570797   
Iteration 3:   log likelihood = -56.570167   
Iteration 4:   log likelihood = -56.570167   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        55 
                                                   Scale parameter =         1 
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Deviance         =   52.3705352                    (1/df) Deviance =  .9521915 
Pearson          =  54.70780162                    (1/df) Pearson  =  .9946873 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -56.57016705                    AIC             =  2.049068 
BIC              = -176.3680344 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          r1 |  -.5268156   .1855831    -2.84   0.005    -.8905518   -.1630794 
          r2 |  -.1040925   .1666673    -0.62   0.532    -.4307544    .2225695 
          r3 |  -.2352723   .1702461    -1.38   0.167    -.5689485    .0984039 
          r4 |   .8436832   .1871705     4.51   0.000     .4768358    1.210531 
          r5 |  -.3038033   .1729446    -1.76   0.079    -.6427685    .0351619 
          r6 |  -.3748939    .176343    -2.13   0.034    -.7205199   -.0292679 
          e6 |   3.964699   .3693411    10.73   0.000     3.240804    4.688594 
          e5 |   1.253173   .3339669     3.75   0.000     .5986095    1.907736 
       _cons |  -1.484641   .2923541    -5.08   0.000    -2.057645   -.9116379 
------------------------------------------------------------------------------ 
 
. matrix list e(V) 
 
symmetric e(V)[9,9] 
                  ctdm:       ctdm:       ctdm:       ctdm:       ctdm:       ctdm: 
                    r1          r2          r3          r4          r5          r6 
   ctdm:r1   .03444109 
   ctdm:r2  -.00537786   .02777799 
   ctdm:r3  -.00535131  -.00452496   .02898373 
   ctdm:r4  -.00655518  -.00295152  -.00396841   .03503279 
   ctdm:r5  -.00536261  -.00470427  -.00485101  -.00452297   .02990984 
   ctdm:r6  -.00538555  -.00490789   -.0050021  -.00512808  -.00507816   .03109686 
   ctdm:e6  -.01289128   .00637501   .00064844   .04057046  -.00241462  -.00566665 
   ctdm:e5  -.00356208   .00624207    .0031854   .00456246   .00155263  -.00013648 
ctdm:_cons   .01676927   -.0031609   .00255022  -.03336546   .00567674   .00905237 
 
                  ctdm:       ctdm:       ctdm: 
                    e6          e5       _cons 
   ctdm:e6   .13641284 
   ctdm:e5   .05903352   .11153389 
ctdm:_cons  -.08697025  -.05186641   .08547089 
 
. *GHeP-rog Model 
. glm ctdm r1-r6 e6  e5m1 e5m2 e5m3 e5m4 e5m5 e5m6, f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -67.821025   
Iteration 1:   log likelihood = -54.067189   
Iteration 2:   log likelihood = -53.682628   
Iteration 3:   log likelihood =  -53.68041   
Iteration 4:   log likelihood =  -53.68041   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        50 
                                                   Scale parameter =         1 
Deviance         =  46.59102072                    (1/df) Deviance =  .9318204 
Pearson          =  54.65787957                    (1/df) Pearson  =  1.093158 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -53.68040981                    AIC             =  2.115013 
BIC              = -161.3531334 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
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          r1 |  -.6495583   .2034988    -3.19   0.001    -1.048409   -.2507079 
          r2 |  -.2479767    .174465    -1.42   0.155    -.5899217    .0939683 
          r3 |  -.3511232   .1930984    -1.82   0.069    -.7295892    .0273427 
          r4 |   1.354155   .3694166     3.67   0.000     .6301121    2.078199 
          r5 |  -.4240635   .1854973    -2.29   0.022    -.7876315   -.0604956 
          r6 |  -.4821315   .1800043    -2.68   0.007    -.8349336   -.1293295 
          e6 |   4.501199   .5460147     8.24   0.000      3.43103    5.571368 
        e5m1 |   1.964981   .8503748     2.31   0.021     .2982774    3.631685 
        e5m2 |   2.444098   .7949606     3.07   0.002     .8860038    4.002192 
        e5m3 |    1.38638   1.130114     1.23   0.220    -.8286017    3.601362 
        e5m4 |   .3662216   .5645338     0.65   0.517    -.7402442    1.472687 
        e5m5 |   2.083242    .871234     2.39   0.017     .3756544    3.790829 
        e5m6 |   2.476514   .7636371     3.24   0.001     .9798123    3.973215 
       _cons |  -2.084366   .5139002    -4.06   0.000    -3.091592    -1.07714 
------------------------------------------------------------------------------ 
 
. matrix list e(V) 
 
symmetric e(V)[14,14] 
                  ctdm:       ctdm:       ctdm:       ctdm:       ctdm:       ctdm: 
                    r1          r2          r3          r4          r5          r6 
   ctdm:r1   .04141178 
   ctdm:r2   .00027207   .03043802 
   ctdm:r3  -.00105385   .00085813     .037287 
   ctdm:r4  -.03122223  -.02420736  -.03051538   .13646866 
   ctdm:r5  -.00052005   .00122311   .00008172  -.02691087   .03440924 
   ctdm:r6  -.00009219   .00153284   .00030505  -.02420731   .00081971   .03240157 
   ctdm:e6  -.04383912  -.02037006  -.03180308   .16852089  -.02952998  -.02745081 
 ctdm:e5m1   -.0155656  -.03150372  -.04060955   .14041093  -.04025279  -.03964364 
 ctdm:e5m2  -.04724359  -.04209883  -.03487818   .18305387  -.03361015  -.03232511 
 ctdm:e5m3  -.04861312  -.02626755  -.04306428   .17484678  -.03470091   -.0336038 
 ctdm:e5m4    .0214294   .03133485   .03144249  -.10412641   .02723382   .02446856 
 ctdm:e5m5  -.05014925  -.02745548  -.03675151   .16639326  -.03274803  -.03503207 
 ctdm:e5m6  -.05113894  -.02823508  -.03745916    .1611632  -.03678816  -.02583819 
ctdm:_cons    .0496831   .02709194   .03642927  -.16891589   .03557817   .03459983 
 
                  ctdm:       ctdm:       ctdm:       ctdm:       ctdm:       ctdm: 
                    e6        e5m1        e5m2        e5m3        e5m4        e5m5 
   ctdm:e6   .29813202 
 ctdm:e5m1   .20691671   .72313725 
 ctdm:e5m2   .27111711    .2355624    .6319624 
 ctdm:e5m3   .26224735   .23027009   .28198441   1.2771569 
 ctdm:e5m4    -.066457  -.08246962  -.09670597  -.09062649   .31869836 
 ctdm:e5m5   .25094658   .22243742   .27298662   .26707495  -.08649916   .75904872 
 ctdm:e5m6   .24306341   .21651519   .26650602   .26077656  -.08479318   .25260006 
ctdm:_cons  -.25448157  -.22496545  -.27583585  -.26982373   .08757428   -.2614067 
 
                  ctdm:       ctdm: 
                  e5m6       _cons 
 ctdm:e5m6   .58314168 
ctdm:_cons  -.25521999   .26409344 
 
. *GHeP-rme Model 
. glm ctdm r1-r6 e6 e5_at e5sub, f(p) 
note: ctdm has non-integer values 
 
Iteration 0:   log likelihood = -68.024168   
Iteration 1:   log likelihood = -54.747051   
Iteration 2:   log likelihood = -54.359522   
Iteration 3:   log likelihood = -54.357354   
Iteration 4:   log likelihood = -54.357354   
 
Generalized linear models                          No. of obs      =        64 
Optimization     : ML: Newton-Raphson              Residual df     =        54 
                                                   Scale parameter =         1 
Deviance         =  47.94490854                    (1/df) Deviance =  .8878687 
Pearson          =  55.38098786                    (1/df) Pearson  =  1.025574 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
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Log likelihood   = -54.35735372                    AIC             =  2.011167 
BIC              =  -176.634778 
 
------------------------------------------------------------------------------ 
        ctdm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          r1 |  -.6376812   .1942569    -3.28   0.001    -1.018418   -.2569446 
          r2 |  -.2351533   .1784588    -1.32   0.188    -.5849261    .1146194 
          r3 |  -.3594418   .1816393    -1.98   0.048    -.7154483   -.0034352 
          r4 |   1.345573   .3633264     3.70   0.000     .6334668     2.05768 
          r5 |  -.4249581   .1840168    -2.31   0.021    -.7856245   -.0642918 
          r6 |  -.4930534    .186926    -2.64   0.008    -.8594217   -.1266851 
          e6 |   4.489447   .5368271     8.36   0.000     3.437285    5.541609 
       e5_at |   .3702664    .564022     0.66   0.512    -.7351965    1.475729 
       e5sub |   2.133214   .5808956     3.67   0.000     .9946795    3.271748 
       _cons |  -2.075287   .5066553    -4.10   0.000    -3.068314   -1.082261 
------------------------------------------------------------------------------ 
 
. matrix list e(V) 
 
symmetric e(V)[10,10] 
                  ctdm:       ctdm:       ctdm:       ctdm:       ctdm:       ctdm: 
                    r1          r2          r3          r4          r5          r6 
   ctdm:r1   .03773576 
   ctdm:r2   .00016595   .03184754 
   ctdm:r3   .00006682   .00124605   .03299285 
   ctdm:r4  -.02804216  -.02572997  -.02634692   .13200608 
   ctdm:r5   .00004263   .00098163   .00064065  -.02675271   .03386219 
   ctdm:r6   .00004187   .00071369   .00044457  -.02719949   .00032302   .03494134 
   ctdm:e6  -.03825617  -.02170036  -.02666347   .16180863   -.0294101  -.03230681 
ctdm:e5_at    .0210437   .03272307   .02893164  -.10240308   .02701279   .02506357 
ctdm:e5sub  -.03840928  -.03248767  -.03439781    .1598975  -.03551129  -.03663898 
ctdm:_cons   .04493006   .02785026   .03269279  -.16318541   .03547502   .03848346 
 
                  ctdm:       ctdm:       ctdm:       ctdm: 
                    e6       e5_at       e5sub       _cons 
   ctdm:e6   .28818333 
ctdm:e5_at  -.06370685   .31812086 
ctdm:e5sub   .23887007  -.08615438   .33743965 
ctdm:_cons  -.24586888   .08528791  -.25056839   .25669963 
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Appendix D 
SAS Macro %MVN Used to Generate Multivariate Normal Data 
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%MVN macro used to simulate data from a multivariate normal distribution (SAS 
Institute Inc; http://ftp.sas.com/techsup/download/stat/mvn.html) 
 
/************************************************************************ 
           %MVN macro:  Generating multivariate normal data 
 
    DISCLAIMER: 
      THIS INFORMATION IS PROVIDED BY SAS INSTITUTE INC. AS A SERVICE TO 
      ITS USERS.  IT IS PROVIDED "AS IS".  THERE ARE NO WARRANTIES, 
      EXPRESSED OR IMPLIED, AS TO MERCHANTABILITY OR FITNESS FOR A 
      PARTICULAR PURPOSE REGARDING THE ACCURACY OF THE MATERIALS OR CODE 
      CONTAINED HEREIN. 
 
    PURPOSE: 
      The %MVN macro generates multivariate normal data using the 
      Cholesky root of the variance-covariance matrix.  Bivariate normal 
      data can be generated using the DATA step code that follows the 
      macro. 
 
    REQUIRES: 
      The %MVN macro requires Version 6.06 or later of SAS/IML software. 
      The DATA step code for generating bivariate normal data requires 
      only Version 6.06 Base SAS software. 
 
    USAGE: 
      The macro input/output paramters are: 
 
           VARCOV= SAS data set that contains the variance-covariance 
                   (and only the variance covariance) matrix.  The macro 
                   expects m variables and m observations in the data 
                   set, where m is the number of variables to generate. 
 
           MEANS=  SAS data set that contains the mean vector.  The 
                   macro expects a single variable with m observations 
                   containing the m means for the variables generated. 
 
           N=      Number of observations to generate. 
 
           SEED=   Starting seed value for the random number generator. 
                   Default value is 0, which will use the system clock 
                   to generate a seed. 
 
           SAMPLE= SAS data set name for the resulting multivariate 
                   normal data.  The variable names will be COL1-COLm. 
 
    LIMITATIONS: 
      No error checking is done.  The macro assumes that dataset 
      names entered are valid, and exist in the case of the VARCOV= 
      and MEANS= options. 
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    EXAMPLE: 
      This example generates 1000 observations from a 3 variable 
      multivariate normal distribution with specified mean vector and 
      covariance matrix. 
 
        * Store the variance-covariance matrix in a data set; 
        data varcov; 
           input m1-m3; 
           cards; 
          4 1.8   4 
        1.8   9 3.6 
          4 3.6  16 
        ; 
 
        * Store the mean vector in a data set ; 
        data means; 
           input m1; 
           cards; 
        10 
        20 
        30 
        ; 
 
        %mvn(varcov=varcov, 
             means=means, 
             n=1000, 
             sample=test) 
 
        proc corr data=test noprob cov; 
          run; 
 
 
************************************************************************/ 
 
%macro mvn(varcov=,       /* dataset for variance-covariance matrix */ 
           means=,        /* dataset for mean vector */ 
           n=,            /* sample size */ 
           seed=0,        /* seed for random number generator */ 
           sample=);      /* output dataset name */ 
 
 
 /* Get initial seed value.  If seed<=0, then generate seed from the 
    system clock. */ 
 
data _null_; 
   if &seed le 0 then do; 
      seed = int(time());   /* get clock time in integer seconds */ 
      put seed=; 
      call symput('seed',seed);   /* store seed as macro variable */ 
   end; 
run; 
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 /* Generate the multivariate normal data in SAS/IML */ 
 
proc iml worksize=100; 
   use &varcov;            /* read variance-covariance matrix */ 
   read all into cov; 
   use &means;             /* read means */ 
   read all into mu; 
   v=nrow(cov);            /* calculate number of variables */ 
   n=&n; 
   seed = &seed; 
   l=t(root(cov));         /* calculate cholesky root of cov matrix */ 
   z=normal(j(v,&n,&seed));/* generate nvars*samplesize normals */ 
   x=l*z;                  /* premultiply by cholesky root */ 
   x=repeat(mu,1,&n)+x;    /* add in the means */ 
   tx=t(x); 
   create &sample from tx;  /* write out sample data to sas dataset */ 
   append from tx; 
quit; 
 
%mend mvn; 
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Appendix E 
SAS Program Used to Generate Count Data for 26 Contingency Table for the GHeP 

Model 
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libname get "C:\aaPhDSimulations\HomoG\GHePRME"; 
libname g "C:\aaPhDSimulations\HomoG\GHePRME\STATAds"; 
/* 
Dataset cvarpats contains the 64 possible rating patterns. 
The covariate patterns of the 64 possible rating patterns are 
enumerated. 
Variables r1 through r6 represent the ratings or raters 1 thourgh 6, 
respectively.  
*/ 
data g.suffstat; 
input what$; 
cards; 
suffstat 
; 
run; 
data g.cvarpats; 
input rp r1 r2 r3 r4 r5 r6; 
cards; 
1  0 0 0 0 0 0 
2  0 0 0 0 0 1 
3  0 0 0 0 1 0 
4  0 0 0 0 1 1 
5  0 0 0 1 0 0 
6  0 0 0 1 0 1 
7  0 0 0 1 1 0 
8  0 0 0 1 1 1 
9  0 0 1 0 0 0 
10 0 0 1 0 0 1 
11 0 0 1 0 1 0 
12 0 0 1 0 1 1 
13 0 0 1 1 0 0 
14 0 0 1 1 0 1 
15 0 0 1 1 1 0 
16 0 0 1 1 1 1 
17 0 1 0 0 0 0 
18 0 1 0 0 0 1 
19 0 1 0 0 1 0 
20 0 1 0 0 1 1 
21 0 1 0 1 0 0 
22 0 1 0 1 0 1 
23 0 1 0 1 1 0 
24 0 1 0 1 1 1 
25 0 1 1 0 0 0 
26 0 1 1 0 0 1 
27 0 1 1 0 1 0 
28 0 1 1 0 1 1 
29 0 1 1 1 0 0 
30 0 1 1 1 0 1 
31 0 1 1 1 1 0 
32 0 1 1 1 1 1 
33 1 0 0 0 0 0 
34 1 0 0 0 0 1 
35 1 0 0 0 1 0 
36 1 0 0 0 1 1 
37 1 0 0 1 0 0 
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38 1 0 0 1 0 1 
39 1 0 0 1 1 0 
40 1 0 0 1 1 1 
41 1 0 1 0 0 0 
42 1 0 1 0 0 1 
43 1 0 1 0 1 0 
44 1 0 1 0 1 1 
45 1 0 1 1 0 0 
46 1 0 1 1 0 1 
47 1 0 1 1 1 0 
48 1 0 1 1 1 1 
49 1 1 0 0 0 0 
50 1 1 0 0 0 1 
51 1 1 0 0 1 0 
52 1 1 0 0 1 1 
53 1 1 0 1 0 0 
54 1 1 0 1 0 1 
55 1 1 0 1 1 0 
56 1 1 0 1 1 1 
57 1 1 1 0 0 0 
58 1 1 1 0 0 1 
59 1 1 1 0 1 0 
60 1 1 1 0 1 1 
61 1 1 1 1 0 0 
62 1 1 1 1 0 1 
63 1 1 1 1 1 0 
64 1 1 1 1 1 1 
; 
run; 
proc sort;by rp;run; 
 
%macro createds (index=1); 
data g.cvarpats;set g.cvarpats; 
 
e5m4=0; 
e5sub=0; 
 
/* HEteroG R-1 (Triplet) AGREEMENT *//* HOmoG RE: CATEGORY */ 
 R12345=0; R12346=0; R12356=0; R12456=0;R13456=0; R23456=0;      
 
 if R1=R2 and R1=R3 and  R1=R4 and R1=R5 and R6~=R1 then R12345=1; 
 if R12345=1 then e5sub=1; 
 
 if R1=R2 and R1=R3 and  R1=R4 and R1=R6 and R5~=R1 then R12346=1; 
 if R12346=1 then e5sub=1; 
 
 if R1=R2 and R1=R3 and  R1=R6 and R1=R5 and R4~=R1 then R12356=1; 
 if R12356=1 then e5at=1; 
 
 if R1=R2 and R1=R6 and  R1=R4 and R1=R5 and R3~=R1 then R12456=1; 
 if R12456=1 then e5sub=1; 
 
 if R1=R6 and R1=R3 and  R1=R4 and R1=R5 and R2~=R1 then R13456=1; 
 if R13456=1 then e5sub=1; 
 
 if R6=R2 and R6=R3 and  R6=R4 and R6=R5 and R1~=R2 then R23456=1; 
 if R23456=1 then e5sub=1; 
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e6=0;e6c0=0; e6c1=0; 
if R1=R2 and R1=R3 and R1=R4 and R1=R5 and R1=R6 then e6=1; 
if R1=R2 and R1=R3 and R1=R4 and R1=R5 and R1=R6 and R1=0 then e6c0=1; 
if R1=R2 and R1=R3 and R1=R4 and R1=R5 and R1=R6 and R1=1 then e6c1=1; 
/* Homogeneous with respect to category between R2, R3, and R4 only */ 
e5m1=0; e5m2=0;e5m3=0;e5m4=0;e5m5=0;e5m6=0; 
e5c0=0; e5c1=0; 
if R12345=1 and R1=0 then e5c0=1; if R12345=1 and R1=1 then e5c1=1; 
if R12346=1 and R1=0 then e5c0=1; if R12346=1 and R1=1 then e5c1=1; 
if R12356=1 and R1=0 then e5c0=1; if R12356=1 and R1=1 then e5c1=1; 
if R12456=1 and R1=0 then e5c0=1; if R12456=1 and R1=1 then e5c1=1; 
if R13456=1 and R1=0 then e5c0=1; if R13456=1 and R1=1 then e5c1=1; 
if R23456=1 and R2=0 then e5c0=1; if R23456=1 and R2=1 then e5c1=1; 
 
if R12345=1 then e5m6=1; 
if R12346=1 then e5m5=1; 
if R12356=1 then e5m4=1; 
if R12456=1 then e5m3=1; 
if R13456=1 then e5m2=1; 
if R23456=1 then e5m1=1; 
e5=0; 
if e5m6=1 or e5m5=1 or e5m4=1 or e5m3=1 or e5m2=1 or e5m1=1 then e5=1; 
/*need rating of zero as -1  
because of negative one, one parameterization*/ 
a=r1;b=r2;c=r3;d=r4;e=r5;f=r6; 
if r1=0 then r1=-1;if r2=0 then r2=-1;if r3=0 then r3=-1; 
if r4=0 then r4=-1;if r5=0 then r5=-1;if r6=0 then r6=-1; 
run; 
 
 
data Bvector; 
 set get.atyp_1k;   
 /*Data set containg Beta vector of  
 1,000 simulated GHeP Moderate Model under 
 the assumption of Marginal HOMOGENEITY*/ run; 
 
data Bvector; 
 do TAKEIT=1 to 1000 BY 1;   
 /* 1 to the Number of SIMULATIONS done, here 1,000*/ 
 set Bvector POINT=TAKEIT; 
 simN=takeit; 
 output; 
 end; 
 stop; 
run; 
 
 
 
data ds&index; 
 set Bvector; 
  do i=1 to 64; 
  rp=i; 
  if simN=&index then output; 
  end; 
  run; 
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proc sort data=ds&index;by rp; 
proc sort data=g.cvarpats;by rp; 
 
  data ds&index (drop=cntN&index COL1-COL4); 
  merge ds&index g.cvarpats; by rp; 
 
  /*d6=col1       e5sub=col2          e5m4=col3        mu=col4 
3.575551  0.9628107  1.966113     -0.8675006*/ 
 
 
  b1=COL1; b2=COL2; b3=COL3; mu4=COL4;  
 
/* For each dataset (ds#) the values of b1-b3 and mu4 are set to 
the values generated from the corresponding simulation #. For each 
rating (covariate) pattern, the value of the variable logm is computed 
from the corresponding sum of the appropriate parameter estimates. 
 
For the first simulation (&index=1), The variable cntN1 is calculated 
by exponentiating the sum of the parameter estimates corresponding that 
each rating pattern.  The count data for a given rating pattern is 
computed by randomly sampling from a Poisson distribution with a mean 
equal to the value of the variable cntN1. 
 
The rating pattern is constructed by concatenating the values of r1 
through 
R6 and removing the any internal spaces (compress function).   
 
This algorithm is repeated for the other 999 simulations. */  
 
logm=mu4+e6*b1+e5sub*b2+e5m4*b3; 
cntN&index=exp(logm); 
smcnt&index = ranpoi(0,cntN&index); 
cnt&index=round(smcnt&index); 
pattern=trim(a)||trim(b)||trim(c)||trim(d)||trim(e)||trim(f); 
pattern=compress(pattern); 
run; 
proc sort;by pattern;run; 
 
data stat&index (keep=rp cnt&index); 
 set ds&index; 
 
proc transpose data=stat&index out=ssf&index prefix=rpcnt; 
 id rp; 
 var cnt&index;run; 
 
data g.suffstat;set g.suffstat ssf&index;run; 
%mend createds; 
 
 
/*One - One Hundred*/ 
%createds(index=1); %createds(index=2);%createds(index=3); 
%createds(index=4);%createds(index=5); 
%createds(index=6);%createds(index=7); 
%createds(index=8); %createds(index=9); 
%createds(index=10);  
: 
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: 
:%createds(index=995);%createds(index=996);%createds(index=997); 
%createds(index=998); %createds(index=999); %createds(index=1000); 
run; 
  
 
data g.suffstat (drop=what); 
 set g.suffstat; 
 id=_N_; 
 if id=1 then delete; 
 run; 
 
data g.suffstat; 
 set g.suffstat; 
 id=id-1; 
 total=sum(of rpcnt1-rpcnt64); 
 
/*Variables to determine if sufficient statistic for 
heterogeneous partial agreement parameter is zero*/ 
ssm1=1;ssm2=1;ssm3=1;ssm4=1;ssm5=1;ssm6=1; 
if (rpcnt2=0) and (rpcnt63=0) then ssm6=0; 
if (rpcnt3=0) and (rpcnt62=0) then ssm5=0; 
if (rpcnt5=0) and (rpcnt60=0) then ssm4=0; 
if (rpcnt9=0) and (rpcnt56=0) then ssm3=0; 
if (rpcnt17=0) and (rpcnt48=0) then ssm2=0; 
if (rpcnt32=0) and (rpcnt33=0) then ssm1=0; 
 
sufst=ssm1+ssm2+ssm3+ssm4+ssm5+ssm6; 
*if what='suffstat' then sufst=.; 
/*No raters whose partial agreement cnt = zero*/ 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=1; 
/*one raters whose partial agreement cnt = zero*/ 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=2; 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=3; 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=4; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=5; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=6; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=7; 
 
/*Two raters whose partial agreement cnt = zero*/ 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=8; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=9; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=10; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=11; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=12; 
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if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=13; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=14; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=15; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=16; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=17; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=18; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=19; 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=20; 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=21; 
if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=22; 
 
 
/*Three raters whose partial agreement cnt = zero*/ 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=1)  
then model=23; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=24; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=25; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=26; 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=27; 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=28; 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=29; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=30; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=31; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=32; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=33; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=34; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=35; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=36; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=37; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=38; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=39; 
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if (ssm1=1 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=40; 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=41; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=42; 
 
/*four raters whose partial agreement cnt = zero*/ 
if (ssm1=1 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=43; 
if (ssm1=1 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=44; 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=45; 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=46; 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=47; 
if (ssm1=0 and ssm2=1 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=48; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=49; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=50; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=51; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=52; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=53; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=54; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=1 and ssm6=0)  
then model=55; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=1)  
then model=56; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=1)  
then model=57; 
 
 
 
/*five raters whose partial agreement cnt = zero*/ 
if (ssm1=1 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=58; 
if (ssm1=0 and ssm2=1 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=59; 
if (ssm1=0 and ssm2=0 and ssm3=1 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=60; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=1 and ssm5=0 and ssm6=0)  
then model=61; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=1 and ssm6=0)  
then model=62; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=1)  
then model=63; 
if (ssm1=0 and ssm2=0 and ssm3=0 and ssm4=0 and ssm5=0 and ssm6=0)  
then model=64; 
run; 
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proc print data=g.suffstat;title1 'Step F';run; 
proc freq data=g.suffstat;table model ; 
title1 'RPM  GHeP MHomoG: Model # re: # of Suff Stats=0'; 
 run; 
 
 proc freq data=g.suffstat;table total; 
title1 'RME GHeP MHomoG: Sample Size'; 
 run; 
 
 
data G1_w      G2_w      G3_w   G4_w  
     G5_w      G6_w      G7_w        G8_w  
     G9_w     G11_w   G12_w  
     G13_w     G15_w     G16_w       G17_w  
     G18_w     G19_w    
     G22_w    G23_w  G25_w  G26_w  
     G28_w    G29_w     G33_w  
     G34_w     G36_w   G39_w       G41_w   G42_w    
     G45_w     G49_w   G52_w  
     G55_w    G56_w     G61_w ; 
  
 set g.suffstat ; 
 if model=1 then output G1_w; 
 else if model=2 then output G2_w; 
 else if model=3 then output G3_w; 
 else if model=4 then output G4_w; 
 else if model=5 then output G5_w;  
 else if model=6 then output G6_w; 
 else if model=7 then output G7_w;  
 else if model=8 then output G8_w; 
 else if model=9 then output G9_w; 
 *else if model=10 then output G10_w; 
 else if model=11 then output G11_w; 
 else if model=12 then output G12_w; 
 else if model=13 then output G13_w; 
 *else if model=14 then output G14_w; 
 else if model=15 then output G15_w; 
 else if model=16 then output G16_w; 
 else if model=17 then output G17_w; 
 else if model=18 then output G18_w; 
 else if model=19 then output G19_w; 
 *else if model=20 then output G20_w; 
 *else if model=21 then output G21_w; 
 else if model=22 then output G22_w; 
 else if model=23 then output G23_w; 
* else if model=24 then output G24_w; 
else if model=25 then output G25_w; 
else if model=26 then output G26_w; 
*else if model=27 then output G27_w; 
else if model=28 then output G28_w; 
else if model=29 then output G29_w; 
*else if model=30 then output G30_w; 
*else if model=31 then output G31_w; 
*else if model=32 then output G32_w; 
else if model=33 then output G33_w; 
else if model=34 then output G34_w; 
*else if model=35 then output G35_w; 
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else if model=36 then output G36_w; 
*else if model=37 then output G37_w; 
*else if model=38 then output G38_w; 
else if model=39 then output G39_w; 
*else if model=40 then output G40_w; 
else if model=41 then output G41_w; 
else if model=42 then output G42_w; 
*else if model=43 then output G43_w; 
*else if model=44 then output G44_w; 
else if model=45 then output G45_w; 
*else if model=46 then output G46_w; 
*else if model=47 then output G47_w; 
*else if model=48 then output G48_w; 
else if model=49 then output G49_w; 
*else if model=50 then output G50_w; 
*else if model=51 then output G51_w; 
else if model=52 then output G52_w; 
*else if model=53 then output G53_w; 
*else if model=54 then output G54_w; 
else if model=55 then output G55_w; 
else if model=56 then output G56_w; 
*else if model=57 then output G57_w; 
*else if model=58 then output G58_w; 
*else if model=59 then output G59_w; 
*else if model=60 then output G60_w; 
else if model=61 then output G61_w; 
*else if model=62 then output G62_w; 
*else if model=63 then output G63_w; 
*else if model=64 then output G64_w; 
   
/*Model 1*/ 
data G1_w ( drop=ssm1-ssm6 sufst model id);  set G1_w; run; 
proc transpose data=G1_w out=G1_long; run; 
data g.G1 (drop=_NAME_); set G1_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G1;by rp;run; 
/*Model 2*/ 
data G2_w ( drop=ssm1-ssm6 sufst model id);  set G2_w; run; 
proc transpose data=G2_w out=G2_long; run; 
data g.G2 (drop=_NAME_); set G2_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G2;by rp;run; 
 
/*Model 3*/ 
data G3_w ( drop=ssm1-ssm6 sufst model id);  set G3_w; run; 
proc transpose data=G3_w out=G3_long; run; 
data g.G3 (drop=_NAME_); set G3_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G3;by rp;run; 
/*Model 4*/ 
data G4_w ( drop=ssm1-ssm6 sufst model id);  set G4_w; run; 
proc transpose data=G4_w out=G4_long; run; 
data g.G4 (drop=_NAME_); set G4_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G4;by rp;run; 
 
/*Model 5*/ 
data G5_w ( drop=ssm1-ssm6 sufst model id);  set G5_w; run; 
proc transpose data=G5_w out=G5_long; run; 
data g.G5 (drop=_NAME_); set G5_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G5;by rp;run; 
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/*Model 6*/ 
data G6_w ( drop=ssm1-ssm6 sufst model id);  set G6_w; run; 
proc transpose data=G6_w out=G6_long; run; 
data g.G6 (drop=_NAME_); set G6_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G6;by rp;run; 
 
/*Model 7*/ 
data G7_w ( drop=ssm1-ssm6 sufst model id);  set G7_w; run; 
proc transpose data=G7_w out=G7_long; run; 
data g.G7 (drop=_NAME_); set G7_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G7;by rp;run; 
/*Model 8*/ 
data G8_w ( drop=ssm1-ssm6 sufst model id);  set G8_w; run; 
proc transpose data=G8_w out=G8_long; run; 
data g.G8 (drop=_NAME_); set G8_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G8;by rp;run; 
 
/*Model 9*/ 
data G9_w ( drop=ssm1-ssm6 sufst model id);  set G9_w; run; 
proc transpose data=G9_w out=G9_long; run; 
data g.G9 (drop=_NAME_); set G9_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G9;by rp;run; 
 
 
/*Model 11*/ 
data G11_w ( drop=ssm1-ssm6 sufst model id);  set G11_w; run; 
proc transpose data=G11_w out=G11_long; run; 
data g.G11 (drop=_NAME_); set G11_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G11;by rp;run; 
 
/*Model 12*/ 
data G12_w ( drop=ssm1-ssm6 sufst model id);  set G12_w; run; 
proc transpose data=G12_w out=G12_long; run; 
data g.G12 (drop=_NAME_); set G12_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G12;by rp;run; 
/*Model 13*/ 
data G13_w ( drop=ssm1-ssm6 sufst model id);  set G13_w; run; 
proc transpose data=G13_w out=G13_long; run; 
data g.G13 (drop=_NAME_); set G13_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G13;by rp;run; 
 
/*Model 15*/ 
data G15_w ( drop=ssm1-ssm6 sufst model id);  set G15_w; run; 
proc transpose data=G15_w out=G15_long; run; 
data g.G15 (drop=_NAME_); set G15_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G15;by rp;run; 
/*Model 16*/ 
data G16_w ( drop=ssm1-ssm6 sufst model id);  set G16_w; run; 
proc transpose data=G16_w out=G16_long; run; 
data g.G16 (drop=_NAME_); set G16_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G16;by rp;run; 
/*Model 17*/ 
data G17_w ( drop=ssm1-ssm6 sufst model id);  set G17_w; run; 
proc transpose data=G17_w out=G17_long; run; 
data g.G17 (drop=_NAME_); set G17_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G17;by rp;run; 
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/*Model 18*/ 
data G18_w ( drop=ssm1-ssm6 sufst model id);  set G18_w; run; 
proc transpose data=G18_w out=G18_long; run; 
data g.G18 (drop=_NAME_); set G18_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G18;by rp;run; 
 
/*Model 19*/ 
data G19_w ( drop=ssm1-ssm6 sufst model id);  set G19_w; run; 
proc transpose data=G19_w out=G19_long; run; 
data g.G19 (drop=_NAME_); set G19_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G19;by rp;run; 
 
 
/*Model 22*/ 
data G22_w ( drop=ssm1-ssm6 sufst model id);  set G22_w; run; 
proc transpose data=G22_w out=G22_long; run; 
data g.G22 (drop=_NAME_); set G22_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G22;by rp;run; 
 
/*Model 23*/ 
data G23_w ( drop=ssm1-ssm6 sufst model id);  set G23_w; run; 
proc transpose data=G23_w out=G23_long; run; 
data g.G23 (drop=_NAME_); set G23_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G23;by rp;run; 
 
/*Model 25*/ 
data G25_w ( drop=ssm1-ssm6 sufst model id);  set G25_w; run; 
proc transpose data=G25_w out=G25_long; run; 
data g.G25 (drop=_NAME_); set G25_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G25;by rp;run; 
 
 
/*Model 26*/ 
data G26_w ( drop=ssm1-ssm6 sufst model id);  set G26_w; run; 
proc transpose data=G26_w out=G26_long; run; 
data g.G26 (drop=_NAME_); set G26_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G26;by rp;run; 
 
/*Model 28*/ 
data G28_w ( drop=ssm1-ssm6 sufst model id);  set G28_w; run; 
proc transpose data=G28_w out=G28_long; run; 
data g.G28 (drop=_NAME_); set G28_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G28;by rp;run; 
 
/*Model 29*/ 
data G29_w ( drop=ssm1-ssm6 sufst model id);  set G29_w; run; 
proc transpose data=G29_w out=G29_long; run; 
data g.G29 (drop=_NAME_); set G29_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G29;by rp;run; 
 
 
/*Model 33*/ 
data G33_w ( drop=ssm1-ssm6 sufst model id);  set G33_w; run; 
proc transpose data=G33_w out=G33_long; run; 
data g.G33 (drop=_NAME_); set G33_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G33;by rp;run; 
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/*Model 34*/ 
data G34_w ( drop=ssm1-ssm6 sufst model id);  set G34_w; run; 
proc transpose data=G34_w out=G34_long; run; 
data g.G34 (drop=_NAME_); set G34_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G34;by rp;run; 
 
/*Model 36*/ 
data G36_w ( drop=ssm1-ssm6 sufst model id);  set G36_w; run; 
proc transpose data=G36_w out=G36_long; run; 
data g.G36 (drop=_NAME_); set G36_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G36;by rp;run; 
 
/*Model 39*/ 
data G39_w ( drop=ssm1-ssm6 sufst model id);  set G39_w; run; 
proc transpose data=G39_w out=G39_long; run; 
data g.G39 (drop=_NAME_); set G39_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G39;by rp;run; 
 
 
/*Model 41*/ 
data G41_w ( drop=ssm1-ssm6 sufst model id);  set G41_w; run; 
proc transpose data=G41_w out=G41_long; run; 
data g.G41 (drop=_NAME_); set G41_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G41;by rp;run; 
 
 
/*Model 42*/ 
data G42_w ( drop=ssm1-ssm6 sufst model id);  set G42_w; run; 
proc transpose data=G42_w out=G42_long; run; 
data g.G42 (drop=_NAME_); set G42_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G42;by rp;run; 
 
 
/*Model 45*/ 
data G45_w ( drop=ssm1-ssm6 sufst model id);  set G45_w; run; 
proc transpose data=G45_w out=G45_long; run; 
data g.G45 (drop=_NAME_); set G45_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G45;by rp;run; 
 
 
 
/*Model 49*/ 
data G49_w ( drop=ssm1-ssm6 sufst model id);  set G49_w; run; 
proc transpose data=G49_w out=G49_long; run; 
data g.G49 (drop=_NAME_); set G49_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G49;by rp;run; 
 
 
/*Model 52*/ 
data G52_w ( drop=ssm1-ssm6 sufst model id);  set G52_w; run; 
proc transpose data=G52_w out=G52_long; run; 
data g.G52 (drop=_NAME_); set G52_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G52;by rp;run; 
 
/*Model 55*/ 
data G55_w ( drop=ssm1-ssm6 sufst model id);  set G55_w; run; 
proc transpose data=G55_w out=G55_long; run; 
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data g.G55 (drop=_NAME_); set G55_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G55;by rp;run; 
 
/*Model 56*/ 
data G56_w ( drop=ssm1-ssm6 sufst model id);  set G56_w; run; 
proc transpose data=G56_w out=G56_long; run; 
data g.G56 (drop=_NAME_); set G56_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G56;by rp;run; 
 
/*Model 61*/ 
data G61_w ( drop=ssm1-ssm6 sufst model id);  set G61_w; run; 
proc transpose data=G61_w out=G61_long; run; 
data g.G61 (drop=_NAME_); set G61_long; rp=substr(_NAME_,6)+0;run; 
proc sort data=g.G61;by rp;run; 
 
 
/* datasets with neg one/one parameterization */ 
 
data g.G1;merge g.cvarpats g.G1;by rp;run; 
data g.G2;merge g.cvarpats g.G2;by rp;run; 
data g.G3;merge g.cvarpats g.G3;by rp;run; 
data g.G4;merge g.cvarpats g.G4;by rp;run; 
data g.G5;merge g.cvarpats g.G5;by rp;run; 
data g.G6;merge g.cvarpats g.G6;by rp;run; 
data g.G7;merge g.cvarpats g.G7;by rp;run; 
data g.G8;merge g.cvarpats g.G8;by rp;run; 
data g.G9;merge g.cvarpats g.G9;by rp;run; 
 
data g.G11;merge g.cvarpats g.G11;by rp;run; 
data g.G12;merge g.cvarpats g.G12;by rp;run; 
data g.G13;merge g.cvarpats g.G13;by rp;run; 
 
data g.G15;merge g.cvarpats g.G15;by rp;run; 
data g.G16;merge g.cvarpats g.G16;by rp;run; 
data g.G17;merge g.cvarpats g.G17;by rp;run; 
data g.G18;merge g.cvarpats g.G18;by rp;run; 
data g.G19;merge g.cvarpats g.G19;by rp;run; 
 
data g.G21;merge g.cvarpats g.G21;by rp;run; 
data g.G22;merge g.cvarpats g.G22;by rp;run; 
data g.G23;merge g.cvarpats g.G23;by rp;run; 
 
data g.G25;merge g.cvarpats g.G25;by rp;run; 
data g.G26;merge g.cvarpats g.G26;by rp;run; 
 
data g.G28;merge g.cvarpats g.G28;by rp;run; 
data g.G29;merge g.cvarpats g.G29;by rp;run; 
 
 
 
data g.G33;merge g.cvarpats g.G33;by rp;run; 
data g.G34;merge g.cvarpats g.G34;by rp;run; 
 
data g.G36;merge g.cvarpats g.G36;by rp;run; 
 
 
 



    

200 

data g.G39;merge g.cvarpats g.G39;by rp;run; 
 
data g.G41;merge g.cvarpats g.G41;by rp;run; 
data g.G42;merge g.cvarpats g.G42;by rp;run; 
 
data g.G45;merge g.cvarpats g.G45;by rp;run; 
 
 
data g.G49;merge g.cvarpats g.G49;by rp;run; 
 
data g.G52;merge g.cvarpats g.G52;by rp;run; 
 
data g.G55;merge g.cvarpats g.G55;by rp;run; 
data g.G56;merge g.cvarpats g.G56;by rp;run; 
 
data g.G61;merge g.cvarpats g.G61;by rp;run; 
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Appendix F 
STATA Program Used to Perform Pair-wise Comparisons of the GHeP paramaters  
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/**********************************************************/ 
/*pw_G1.do                                        */ 
/*Dissertation                                            */ 
/*Conducts pairwise comparisons of the heterogeneous      */ 
/* partial agreement parameters for dataset               */ 
/*g#.dta                                  */ 
/*Simulations - pw done using lincom command              */ 
/*Captures the estimate, se and df for the G Model      */ 
/*for each simulation.                                    */ 
/* K.B. Kastango                                          */ 
/**********************************************************/ 
 
capture program drop pw_G1 
program define pw_G1, rclass 
  /*  Version 8.0*/ 
 
capture log close 
log using 
"C:\aaPhDSimulations\HomoG\G\adofiles\do_pwG1_pval.log",replace 
use "C:\aaPhDSimulations\HomoG\G\STATAds\G1.dta", clear 
display "Opened Data Set G1.dta - X sims, e5m=0"  
 
drop if rp == . 
 
quietly { 
 generate rpnum=_n 
} 
quietly { 
foreach x of varlist cnt* { 
 
/*Fit GHeP Model, create var estB & seEst*/ 
                glm `x' e6 e5m1 e5m2 e5m3 e5m4 e5m5 e5m6, f(p) 
                
                lincom e5m1-e5m2 
                gen est12z`x'=r(estimate) 
                gen se12z`x'=r(se) 
                gen z12a`x'=est12z`x'/se12z`x' 
 
      lincom e5m1-e5m3 
                gen est13z`x'=r(estimate) 
                gen se13z`x'=r(se) 
                gen z13a`x'=est13z`x'/se13z`x' 
  
                lincom e5m1-e5m4 
                gen est14z`x'=r(estimate) 
                gen se14z`x'=r(se) 
                gen z14a`x'=est14z`x'/se14z`x' 
  
 
                lincom e5m1-e5m5 
                gen est15z`x'=r(estimate) 
                gen se15z`x'=r(se)  
                gen z15a`x'=est15z`x'/se15z`x' 
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                lincom e5m1-e5m6 
                gen est16z`x'=r(estimate) 
                gen se16z`x'=r(se)  
                gen z16a`x'=est16z`x'/se16z`x' 
 
                lincom e5m2-e5m3 
                gen est23z`x'=r(estimate) 
                gen se23z`x'=r(se)  
                gen z23a`x'=est23z`x'/se23z`x' 
 
                lincom e5m2-e5m4 
                gen est24z`x'=r(estimate) 
                gen se24z`x'=r(se)  
                gen z24a`x'=est24z`x'/se24z`x' 
 
                lincom e5m2-e5m5 
                gen est25z`x'=r(estimate) 
                gen se25z`x'=r(se)  
                gen z25a`x'=est25z`x'/se25z`x' 
 
                lincom e5m2-e5m6 
                gen est26z`x'=r(estimate) 
                gen se26z`x'=r(se)  
                gen z26a`x'=est26z`x'/se26z`x' 
 
                lincom e5m3-e5m4 
                gen est34z`x'=r(estimate) 
                gen se34z`x'=r(se)  
                gen z34a`x'=est34z`x'/se34z`x' 
 
 
                lincom e5m3-e5m5 
                gen est35z`x'=r(estimate) 
                gen se35z`x'=r(se)  
                gen z35a`x'=est35z`x'/se35z`x' 
 
                lincom e5m3-e5m6 
                gen est36z`x'=r(estimate) 
                gen se36z`x'=r(se)  
                gen z36a`x'=est36z`x'/se36z`x' 
 
               lincom e5m4-e5m5 
                gen est45z`x'=r(estimate) 
                gen se45z`x'=r(se)  
                gen z45a`x'=est45z`x'/se45z`x' 
 
               lincom e5m4-e5m6 
                gen est46z`x'=r(estimate) 
                gen se46z`x'=r(se)  
                gen z46a`x'=est46z`x'/se46z`x' 
  
                lincom e5m5-e5m6 
                gen est56z`x'=r(estimate) 
                gen se56z`x'=r(se)  
                gen z56a`x'=est56z`x'/se56z`x' 
 
                                      } 
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                                      } 
 
quietly { 
   drop if rp>1 
   drop r1 r2 r3 r4 r5 r6   
   drop e6 e6c0 e6c1 e5m1 e5m2  
   drop e5m3 e5m4 e5m5 e5m6 e5c0 e5c1 e5 
   drop cnt* 
} 
save 
"C:\aaPhDSimulations\HomoG\G\STATAds\coverage\ado_homg_G1_pval.dta" 
save "C:\aaPhDSimulations\HomoG\G\STATAds\pwfile\ado_pw_G1_pval.dta" 
 
use "C:\aaPhDSimulations\HomoG\G\STATAds\pwfile\ado_pw_G1_pval.dta", 
clear 
display "Opened Data Set"  
drop est*  se*  
 
reshape long z12acnt z13acnt z14acnt z15acnt z16acnt z23acnt z24acnt 
z25acnt z26acnt z34acnt z35acnt z36acnt z45acnt z46acnt z56acnt, i(rp) 
j(sim) 
 
replace z12acnt = -1*abs(z12acnt)  
replace z13acnt = -1*abs(z13acnt) 
replace z14acnt = -1*abs(z14acnt) 
replace z15acnt = -1*abs(z15acnt) 
replace z16acnt = -1*abs(z16acnt) 
replace z23acnt = -1*abs(z23acnt) 
replace z24acnt = -1*abs(z24acnt) 
replace z25acnt = -1*abs(z25acnt) 
replace z26acnt = -1*abs(z26acnt) 
replace z34acnt = -1*abs(z34acnt) 
replace z35acnt = -1*abs(z35acnt) 
replace z36acnt = -1*abs(z36acnt) 
replace z45acnt = -1*abs(z45acnt) 
replace z46acnt = -1*abs(z46acnt) 
replace z56acnt = -1*abs(z56acnt) 
 
gen p12=norm(z12acnt) 
gen p13=norm(z13acnt) 
gen p14=norm(z14acnt) 
gen p15=norm(z15acnt) 
gen p16=norm(z16acnt) 
gen p23=norm(z23acnt) 
gen p24=norm(z24acnt) 
gen p25=norm(z25acnt) 
gen p26=norm(z26acnt) 
gen p34=norm(z34acnt) 
gen p35=norm(z35acnt) 
gen p36=norm(z36acnt) 
gen p45=norm(z45acnt) 
gen p46=norm(z46acnt) 
gen p56=norm(z56acnt) 
 
 
save 
"C:\aaPhDSimulations\HomoG\G\STATAds\pwfile\ado_reshape_pw_G1_pval.dta" 
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use 
"C:\aaPhDSimulations\HomoG\G\STATAds\pwfile\ado_reshape_pw_G1_pval.dta"
, clear 
 
drop  rp rpnum z* 
 
 
reshape long p, i(sim) j(hyp)  
 
gen p2=p*2 
gen ncomp=15 
gen Atyp=0 
replace Atyp=1 if p2 <= 0.0034 
list sim hyp p2 if Atyp==1 
table sim Atyp 
gen Btyp=0 
replace Btyp=1 if p2 <=0.05 
list sim hyp p2 if Btyp==1 
save "C:\aaPhDSimulations\HomoG\G\STATAds\pwfile\finalpval_G1.dta" 
capture log close 
 
end 
pw_G1 
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Appendix G 
SAS Code to Perform Multiple Comparison Procedures 
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/*This program is centered around the SAS procedure PROC MULTTEST*/ 
 
/* Dataset "pvals" contains the p-value of the 15, 10, 6, 3, or 1 
possible multiple comparisons of the heterogeneous K-1 partial 
agreement parameters and a character variable denoting which pair-wise 
comparison the p-value is from. P-values of each comparison was 
determined using STATA (see Appendix F)*/ 
 
/* For example, H12 0.610 indicates that the p-value of the pair-wise 
comparison between the heterogeneous partial agreement parameter of 
raters 1 and 2.   
 
Ho: e5m1 – e5m2 =0 ; 
*/ 
 
 
/* This specific program is for simulations that have sufficient 
statistics equal to zero as described by model #56 */ 
 
libname get "C:\aaPhDSimulations\HomoG\GHePSevere\STATAds\pwfile"; 
libname posthoc 
"C:\aaPhDSimulations\HomoG\RogSimData\multtest_results"; 
 
 
 proc contents data=get.finalpval_g56;run; proc sort 
data=get.finalpval_g56;by sim;run; 
/*proc print;title1 'Model 56 ROG_SIM_DATA';run;*/ 
data mod56sims;set get.finalpval_g56;by sim;if first.sim;run; 
/* 
proc print;run; 
 data mod56sims (keep=adjc resultc sim); 
 set mod56sims;  
contrast='H'||trim(hyp); 
adjc='%adj56(sim='||trim(sim)||');'; 
adjc=compress(adjc); 
resultc='posthoc.results'||trim(sim)||';'; 
resultc=compress(resultc); 
data adj (keep=adjc) result(keep=resultc); 
 set mod56sims;run; 
 proc print data=adj noobs;title1 'Model 56 ROG_SIM_DATA';run; 
 proc print data=result noobs;run; 
*/ 
%macro adj56(sim=0); 
data Sev&sim (rename=(p2=raw_p)); 
 set get.finalpval_g56; 
 contrast='H'||trim(hyp); 
 contrast= compress(contrast); 
 where sim=&sim; 
run; 
proc multtest pdata=Sev&sim bon sid holm stepsid fdr 
out=posthoc.results&sim; 
title1 'Bonferroni, Sidak, Stepdown Bon, Stepdown Sidak, False 
Discovery Rate'; 
title2 "Simulation Scenario &sim ROG_SIM_DATA";run; 
proc print data=posthoc.results&sim;run; 
%mend adj56; 
              %adj56(sim=791); %adj56(sim=977);  
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data model56 (keep=sim hyp bon_p); 
 set  posthoc.results791 posthoc.results977 ;                                        
  run;proc sort;by sim hyp; 
data model56;  set model56;    n=_n_; run; 
proc transpose out=first(drop=_name_); by n sim; var hyp bon_p ; run; 
proc transpose data=first out=posthoc.m56Bon(drop=_name_) prefix=pbon; 
by sim;   var col1;   proc print; 
title1 'Bonferroni - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
 
data posthoc.m56bon (rename=(pbon2=pbonN)); 
 set posthoc.m56bon;run; 
 data posthoc.m56bon (drop=pbon1 ); 
 set posthoc.m56bon; 
model=56;run; 
 proc print; 
title1 ' Bonferroni - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
 
/**** RAW *****/ 
      
data model56 (keep=sim hyp raw_p); 
 set  posthoc.results791 posthoc.results977 ;                                        
  run;proc sort;by sim hyp; 
data model56;  set model56;    n=_n_; run; 
proc transpose out=first(drop=_name_); by n sim; var hyp raw_p ; run; 
proc transpose data=first out=posthoc.m56raw(drop=_name_) prefix=praw; 
by sim;   var col1;   proc print; 
title1 'RAW - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
 
data posthoc.m56raw (rename=(praw2=prawN)); 
 set posthoc.m56raw;run; 
 data posthoc.m56raw (drop=praw1 ); 
 set posthoc.m56raw; 
model=56;run; 
 proc print; 
title1 ' RAW - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
/*** END RAW ****/ 
/**** STEP BONFERRONI ****/ 
      
data model56 (keep=sim hyp stpbon_p); 
 set  posthoc.results791 posthoc.results977 ;                                        
  run;proc sort;by sim hyp; 
data model56;  set model56;    n=_n_; run; 
proc transpose out=first(drop=_name_); by n sim; var hyp stpbon_p ; 
run; 
proc transpose data=first out=posthoc.m56stpBon(drop=_name_) 
prefix=stpbon; 
by sim;   var col1;   proc print; 
title1 'S Bonferroni - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
 
data posthoc.m56stpbon (rename=(stpbon2=stpbonN)); 
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 set posthoc.m56stpbon;run; 
 data posthoc.m56stpbon (drop=stpbon1 ); 
 set posthoc.m56stpbon; 
model=56;run; 
 proc print; 
title1 'S Bonferroni - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
/*** END STEP BON ******/ 
/*** SIDAK****/ 
      
data model56 (keep=sim hyp sid_p); 
 set  posthoc.results791 posthoc.results977 ;                                        
  run;proc sort;by sim hyp; 
data model56;  set model56;    n=_n_; run; 
proc transpose out=first(drop=_name_); by n sim; var hyp sid_p ; run; 
proc transpose data=first out=posthoc.m56sid(drop=_name_) prefix=psid; 
by sim;   var col1;   proc print; 
title1 'S - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
 
data posthoc.m56sid (rename=(psid2=psidN)); 
 set posthoc.m56sid;run; 
 data posthoc.m56sid (drop=psid1 ); 
 set posthoc.m56sid; 
model=56;run; 
 proc print; 
title1 ' S - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
/**** END SIDAK ***/ 
/*** STEP SIDAK****/ 
      
data model56 (keep=sim hyp stpsid_p); 
 set  posthoc.results791 posthoc.results977 ;                                        
  run;proc sort;by sim hyp; 
data model56;  set model56;    n=_n_; run; 
proc transpose out=first(drop=_name_); by n sim; var hyp stpsid_p ; 
run; 
proc transpose data=first out=posthoc.m56stpsid(drop=_name_) 
prefix=pstpsid; 
by sim;   var col1;   proc print; 
title1 'SS - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
 
data posthoc.m56stpsid (rename=(pstpsid2=pstpsidN)); 
 set posthoc.m56stpsid;run; 
 data posthoc.m56stpsid (drop=pstpsid1 ); 
 set posthoc.m56stpsid; 
model=56;run; 
 proc print; 
title1 ' SS - Model 56 ROG_SIM_DATA'; 
title2 ' ' ;run; 
/*** END STEP SIDAK *****/ 
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Appendix H 
SAS Commands for Holm’s Step-Down Procedure  
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/*Holm's Step Down Procedure*/ 

 
/*Marginal Homogeneity*/ 
data pvalsMO; 
input comparison$ raw_p; 
cards; 
dm34 0.097 
dm45 0.178 
dm14 0.178 
dm46 0.327 
dm23 0.341 
dm36 0.341 
dm24 0.341 
dm13 0.571 
dm35 0.571 
dm12 0.657 
dm16 0.657 
dm25 0.657 
dm56 0.657 
dm15 1.00 
dm26 1.00 
; 
proc multtest pdata=pvalsMO holm; 
title ‘MCP Procedure: Marginal Homogeneity'; 
run; 
 
/*Marginal Heterogeneity*/ 
data pvalsMG; 
input comparison$ raw_p; 
cards; 
dm46  0.041 
dm24  0.052 
dm45  0.125 
dm14 0.146 
dm36 0.346 
dm23 0.362 
dm34 0.444 
dm35 0.570 
dm16 0.584 
dm12 0.610 
dm13 0.641 
dm56 0.667 
dm25 0.695 
dm15 0.908 
dm26 0.969 
; 
proc multtest pdata=pvalsMG holm; 
title ‘MCP Procedure: Marginal Heterogeneity'; 
run; 
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Appendix I 

SAS Output From Commands for Holm’s Step-Down Procedure for Table 14  
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                              MCP Procedure: Marginal Homogeneity                               
                                                                      
 
                                     The Multtest Procedure 
 
                                            p-Values 
 
                                                 Stepdown                    Stepdown 
           Test           Raw    Bonferroni    Bonferroni         Sidak         Sidak 
 
              1        0.0970        1.0000        1.0000        0.7836        0.7836 
              2        0.1780        1.0000        1.0000        0.9471        0.9357 
              3        0.1780        1.0000        1.0000        0.9471        0.9357 
              4        0.3270        1.0000        1.0000        0.9974        0.9914 
              5        0.3410        1.0000        1.0000        0.9981        0.9914 
              6        0.3410        1.0000        1.0000        0.9981        0.9914 
              7        0.3410        1.0000        1.0000        0.9981        0.9914 
              8        0.5710        1.0000        1.0000        1.0000        0.9989 
              9        0.5710        1.0000        1.0000        1.0000        0.9989 
             10        0.6570        1.0000        1.0000        1.0000        0.9989 
             11        0.6570        1.0000        1.0000        1.0000        0.9989 
             12        0.6570        1.0000        1.0000        1.0000        0.9989 
             13        0.6570        1.0000        1.0000        1.0000        0.9989 
             14        1.0000        1.0000        1.0000        1.0000        1.0000 
             15        1.0000        1.0000        1.0000        1.0000        1.0000 
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                             MCP Procedure: Marginal Heterogeneity                              
                                                                      
 
                                     The Multtest Procedure 
 
                                            p-Values 
 
                                                 Stepdown                    Stepdown 
           Test           Raw    Bonferroni    Bonferroni         Sidak         Sidak 
 
              1        0.0410        0.6150        0.6150        0.4663        0.4663 
              2        0.0520        0.7800        0.7280        0.5511        0.5265 
              3        0.1250        1.0000        1.0000        0.8651        0.8238 
              4        0.1460        1.0000        1.0000        0.9063        0.8495 
              5        0.3460        1.0000        1.0000        0.9983        0.9906 
              6        0.3620        1.0000        1.0000        0.9988        0.9906 
              7        0.4440        1.0000        1.0000        0.9998        0.9949 
              8        0.5700        1.0000        1.0000        1.0000        0.9988 
              9        0.5840        1.0000        1.0000        1.0000        0.9988 
             10        0.6100        1.0000        1.0000        1.0000        0.9988 
             11        0.6410        1.0000        1.0000        1.0000        0.9988 
             12        0.6670        1.0000        1.0000        1.0000        0.9988 
             13        0.6950        1.0000        1.0000        1.0000        0.9988 
             14        0.9080        1.0000        1.0000        1.0000        0.9988 
             15        0.9690        1.0000        1.0000        1.0000        0.9988 
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Appendix J 
SAS Commands Summarizing MCP Results by the Number of Possible Pair-wise 

Comparisons  
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Because each of the 64 possible GHeP models allows for all or a subset of the 15 possible 
pair-wise comparisons, 15 variables per multiple comparison procedure were created. For 
example, variables pbonA, pbonB, …. pbonP were created to represent the Bonferroni 
adjusted p-value from each of the fifteen pair-wise comparisons.  The suffix ‘A’ through 
‘P’ (skipping ‘O’) uniquely represents what two heterogeneous partial agreement 
parameters are involved in the pair-wise comparison. Variable pbonA represents the pair-
wise comparison of 1 2

5 5 and δ δ , pbonB represents the pair-wise comparison of 1 3
5 5 and δ δ , 

…, and pbonP represents the pair-wise comparison of 5 6
5 5 and δ δ .  Similar variables were 

created for unadjusted p-values and the Holm’s -Bonferroni, Sidak, and Holm’s-Sidak 
adjusted p-values. 
 
libname posthoc 
"C:\aaPhDSimulations\HomoG\GhepAtyp4a\multtest_results\pvalues"; 
 
 
data posthoc.QHomGraw_Data15; 
 set posthoc.m1raw; 
 
 
if (.<prawA<=.05) then c12=1; if prawA > 0.05 then c12=0; 
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0; 
if (.<prawC<=.05) then c14=1; if prawC > 0.05 then c14=0; 
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0; 
if (.<prawE<=.05) then c16=1; if prawE > 0.05 then c16=0; 
  
if (.<prawF<=.05) then c23=1; if prawF > 0.05 then c23=0; 
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0; 
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then c25=0; 
if (.<prawI<=.05) then c26=1; if prawI > 0.05 then c26=0; 
 
if (.<prawJ<=.05) then c34=1; if prawJ > 0.05 then c34=0; 
if (.<prawK<=.05) then c35=1; if prawK > 0.05 then c35=0; 
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then c36=0; 
 
if (.<prawM<=.05) then c45=1; if prawM > 0.05 then c45=0; 
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0; 
 
if (.<prawP<=.05) then c56=1; if prawP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56);run; 
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proc freq;tables model; 
title1 '15 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '15 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '15 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
/*10 P-W Comparisons*/ 
data posthoc.QHomGraw_Data10; 
 set posthoc.m2raw posthoc.m3raw posthoc.m4raw posthoc.m5raw  
posthoc.m6raw posthoc.m7raw; 
 
if (.<prawA<=.05) then c12=1; if prawA > 0.05 then c12=0; 
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0; 
if (.<prawC<=.05) then c14=1; if prawC > 0.05 then c14=0; 
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0; 
if (.<prawE<=.05) then c16=1; if prawE > 0.05 then c16=0; 
  
if (.<prawF<=.05) then c23=1; if prawF > 0.05 then c23=0; 
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0; 
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then c25=0; 
if (.<prawI<=.05) then c26=1; if prawI > 0.05 then c26=0; 
 
if (.<prawJ<=.05) then c34=1; if prawJ > 0.05 then c34=0; 
if (.<prawK<=.05) then c35=1; if prawK > 0.05 then c35=0; 
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then c36=0; 
 
if (.<prawM<=.05) then c45=1; if prawM > 0.05 then c45=0; 
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0; 
 
if (.<prawP<=.05) then c56=1; if prawP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56);run; 
 
proc freq;tables model; 
title1 '10 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
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proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '10 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '10 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
 
data posthoc.HomG_Data6; 
 set posthoc.m8raw posthoc.m9raw posthoc.m10raw  
posthoc.m11raw posthoc.m12raw posthoc.m13raw  
posthoc.m15raw posthoc.m16raw  
posthoc.m17raw posthoc.m18raw posthoc.m19raw  
posthoc.m22raw  ; 
 
 
if (.<prawA<=.05) then c12=1; if prawA > 0.05 then c12=0; 
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0; 
if (.<prawC<=.05) then c14=1; if prawC > 0.05 then c14=0; 
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0; 
if (.<prawE<=.05) then c16=1; if prawE > 0.05 then c16=0; 
  
if (.<prawF<=.05) then c23=1; if prawF > 0.05 then c23=0; 
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0; 
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then c25=0; 
if (.<prawI<=.05) then c26=1; if prawI > 0.05 then c26=0; 
 
if (.<prawJ<=.05) then c34=1; if prawJ > 0.05 then c34=0; 
if (.<prawK<=.05) then c35=1; if prawK > 0.05 then c35=0; 
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then c36=0; 
 
if (.<prawM<=.05) then c45=1; if prawM > 0.05 then c45=0; 
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0; 
 
if (.<prawP<=.05) then c56=1; if prawP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56);run; 
 
proc freq;tables model; 
title1 '6 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
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proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '6 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '6 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
/*THREE P-W Comparison*/ 
data posthoc.HomG_Data3; 
 set  
posthoc.m23raw posthoc.m25raw posthoc.m26raw posthoc.m28raw  
posthoc.m29raw posthoc.m31raw posthoc.m33raw posthoc.m34raw 
posthoc.m36raw  
posthoc.m38raw   
posthoc.m41raw posthoc.m42raw  ; 
 
if (.<prawA<=.05) then c12=1; if prawA > 0.05 then c12=0; 
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0; 
if (.<prawC<=.05) then c14=1; if prawC > 0.05 then c14=0; 
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0; 
if (.<prawE<=.05) then c16=1; if prawE > 0.05 then c16=0; 
  
if (.<prawF<=.05) then c23=1; if prawF > 0.05 then c23=0; 
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0; 
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then c25=0; 
if (.<prawI<=.05) then c26=1; if prawI > 0.05 then c26=0; 
 
if (.<prawJ<=.05) then c34=1; if prawJ > 0.05 then c34=0; 
if (.<prawK<=.05) then c35=1; if prawK > 0.05 then c35=0; 
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then c36=0; 
 
if (.<prawM<=.05) then c45=1; if prawM > 0.05 then c45=0; 
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0; 
 
if (.<prawP<=.05) then c56=1; if prawP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56);run; 
 
 
proc freq;tables model; 
title1 '3 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
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proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '3 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '3 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
 
/*ONE P-W Comparison*/ 
data posthoc.HomG_Data1; 
 set  posthoc.m45raw  
posthoc.m49raw  posthoc.m51raw posthoc.m56raw ; 
 
 
if (.<prawA<=.05) then c12=1; if prawA > 0.05 then c12=0; 
if (.<prawB<=.05) then c13=1; if prawB > 0.05 then c13=0; 
if (.<prawC<=.05) then c14=1; if prawC > 0.05 then c14=0; 
if (.<prawD<=.05) then c15=1; if prawD > 0.05 then c15=0; 
if (.<prawE<=.05) then c16=1; if prawE > 0.05 then c16=0; 
  
if (.<prawF<=.05) then c23=1; if prawF > 0.05 then c23=0; 
if (.<prawG<=.05) then c24=1; if prawG > 0.05 then c24=0; 
if (.<prawH<=.05) then c25=1; if prawH > 0.05 then c25=0; 
if (.<prawI<=.05) then c26=1; if prawI > 0.05 then c26=0; 
 
if (.<prawJ<=.05) then c34=1; if prawJ > 0.05 then c34=0; 
if (.<prawK<=.05) then c35=1; if prawK > 0.05 then c35=0; 
if (.<prawL<=.05) then c36=1; if prawL > 0.05 then c36=0; 
 
if (.<prawM<=.05) then c45=1; if prawM > 0.05 then c45=0; 
if (.<prawN<=.05) then c46=1; if prawN > 0.05 then c46=0; 
 
if (.<prawP<=.05) then c56=1; if prawP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56);run; 
 
 
proc freq;tables model; 
title1 '1 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
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title1 '1 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '1 Homog_GSimulated Data - 1K'; 
title2 'Results of RAW MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
 
 
data posthoc.QHomGbon_Data15; 
 set  
posthoc.m1bon ; 
 
if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0; 
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0; 
if (.<pbonC<=.05) then c14=1; if pbonC > 0.05 then c14=0; 
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0; 
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0; 
  
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then c23=0; 
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0; 
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0; 
if (.<pbonI<=.05) then c26=1; if pbonI > 0.05 then c26=0; 
 
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then c34=0; 
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then c35=0; 
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then c36=0; 
 
if (.<pbonM<=.05) then c45=1; if pbonM > 0.05 then c45=0; 
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0; 
 
if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56); 
run; 
 
 
proc freq;tables model; 
title1 '15 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '15 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
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title1 '15 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
 
data posthoc.QHomGbon_Data10; 
 set posthoc.m2bon posthoc.m3bon posthoc.m4bon posthoc.m5bon  
posthoc.m6bon posthoc.m7bon ; 
 
if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0; 
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0; 
if (.<pbonC<=.05) then c14=1; if pbonC > 0.05 then c14=0; 
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0; 
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0; 
  
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then c23=0; 
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0; 
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0; 
if (.<pbonI<=.05) then c26=1; if pbonI > 0.05 then c26=0; 
 
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then c34=0; 
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then c35=0; 
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then c36=0; 
 
if (.<pbonM<=.05) then c45=1; if pbonM > 0.05 then c45=0; 
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0; 
 
if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56); 
run; 
 
 
proc freq;tables model; 
title1 '10 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '10 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '10 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
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data posthoc.QHomGbon_Data6; 
 set posthoc.m8bon posthoc.m9bon posthoc.m10bon  
posthoc.m11bon posthoc.m12bon posthoc.m13bon  
posthoc.m15bon posthoc.m16bon  
posthoc.m17bon posthoc.m18bon posthoc.m19bon posthoc.m22bon; 
 
if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0; 
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0; 
if (.<pbonC<=.05) then c14=1; if pbonC > 0.05 then c14=0; 
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0; 
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0; 
  
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then c23=0; 
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0; 
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0; 
if (.<pbonI<=.05) then c26=1; if pbonI > 0.05 then c26=0; 
 
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then c34=0; 
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then c35=0; 
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then c36=0; 
 
if (.<pbonM<=.05) then c45=1; if pbonM > 0.05 then c45=0; 
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0; 
 
if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56); 
run; 
 
 
proc freq;tables model; 
title1 '6 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '6 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '6 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
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data posthoc.QHomGbon_Data3; 
 set posthoc.m23bon posthoc.m25bon posthoc.m26bon posthoc.m28bon  
posthoc.m29bon posthoc.m31bon posthoc.m33bon posthoc.m34bon 
posthoc.m36bon  posthoc.m38bon  
posthoc.m41bon posthoc.m42bon ; 
 
 
if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0; 
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0; 
if (.<pbonC<=.05) then c14=1; if pbonC > 0.05 then c14=0; 
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0; 
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0; 
  
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then c23=0; 
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0; 
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0; 
if (.<pbonI<=.05) then c26=1; if pbonI > 0.05 then c26=0; 
 
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then c34=0; 
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then c35=0; 
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then c36=0; 
 
if (.<pbonM<=.05) then c45=1; if pbonM > 0.05 then c45=0; 
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0; 
 
if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56); 
run; 
 
proc freq;tables model; 
title1 '3 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '3 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '3 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4; 
run; 
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data posthoc.QHomGbon_Data1; 
 set posthoc.m45bon  posthoc.m49bon  posthoc.m51bon posthoc.m56bon ; 
 
 
if (.<pbonA<=.05) then c12=1; if pbonA > 0.05 then c12=0; 
if (.<pbonB<=.05) then c13=1; if pbonB > 0.05 then c13=0; 
if (.<pbonC<=.05) then c14=1; if pbonC > 0.05 then c14=0; 
if (.<pbonD<=.05) then c15=1; if pbonD > 0.05 then c15=0; 
if (.<pbonE<=.05) then c16=1; if pbonE > 0.05 then c16=0; 
  
if (.<pbonF<=.05) then c23=1; if pbonF > 0.05 then c23=0; 
if (.<pbonG<=.05) then c24=1; if pbonG > 0.05 then c24=0; 
if (.<pbonH<=.05) then c25=1; if pbonH > 0.05 then c25=0; 
if (.<pbonI<=.05) then c26=1; if pbonI > 0.05 then c26=0; 
 
if (.<pbonJ<=.05) then c34=1; if pbonJ > 0.05 then c34=0; 
if (.<pbonK<=.05) then c35=1; if pbonK > 0.05 then c35=0; 
if (.<pbonL<=.05) then c36=1; if pbonL > 0.05 then c36=0; 
 
if (.<pbonM<=.05) then c45=1; if pbonM > 0.05 then c45=0; 
if (.<pbonN<=.05) then c46=1; if pbonN > 0.05 then c46=0; 
 
if (.<pbonP<=.05) then c56=1; if pbonP > 0.05 then c56=0; 
 
Rater1=Sum(c12,c13,c14,c15,c16); 
Rater2=Sum(c12,c23,c24,c25,c26); 
Rater3=Sum(c13,c23,c34,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
Rater5=Sum(c15,c25,c35,c45,c56); 
Rater6=Sum(c16,c26,c36,c46,c56); 
 
R1not4=Sum(c12,c13,c15,c16); 
R2not4=Sum(c12,c23,c25,c26); 
R3not4=Sum(c13,c23,c35,c36); 
Rater4=Sum(c14,c24,c34,c45,c46); 
R5not4=Sum(c15,c25,c35,c56); 
R6not4=Sum(c16,c26,c36,c56); 
run; 
 
 
proc freq;tables model; 
title1 '1 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables c12 c13 c14 c15 c16 c23 c24 c25 c26 c34 c35 c36 c45 
c46 c56; 
title1 '1 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables Rater1 Rater2 Rater3 Rater4 Rater5 Rater6; 
title1 '1 Homog_GSimulated Data - 1K'; 
title2 'Results of BON MCPs';run; 
proc freq;tables R1not4 R2not4 R3not4 Rater4 R5not4 R6not4;run; 
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