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Modeling and Simulation Approach to Characterize the Magnitude and Consistency of 

Drug Exposure using Sparse Concentration Sampling  

Yan Feng, PhD 

University of Pittsburgh, 2006

 

Population pharmacokinetic (PK) and pharmacodynamic (PD) modeling using a mixed effect 

modeling (MEM) approach has been widely used for various drug classes during development. 

The MEM approach provides a significant advantage when analyzing large scale clinical trials 

and special population where only a few samples are available per subject.   

 

The aims of this thesis are to explore the applications and advantages of MEM approach 

in the analysis of target populations (e.g., late-life depression, intensive care unit patients) from 

various aspects.  

1): To characterize the sources of variability and evaluate the impact of patients’ specific 

characteristics on SSRIs disposition using hyper-sparse concentration data. This study 

demonstrated that age and weight are significant covariates on citalopram clearance and volume 

of distribution. The age effect persists across the entire age range (22 to 93 years). Thus elderly 

subjects may need to receive different dose of citalopram based on their age. The other late-life 

depression study shows that weight and CYP2D6 polymorphisms significantly impact on 

maximal velocity (Vm) of paroxetine elimination. Thus, female and male subjects with different 

CYP2D6 genotypes may receive different dose based on their metabolizer genotype.  

2): To optimize a dosing strategy for general medical and intensive care unit (ICU) 

patients receiving enoxaparin by continuous intravenous infusion. The study suggests that dose 

should be individualized based on patients’ renal function and weight. It is also found that 

patients in the ICU tend to have higher exposure, thus should receive lower dose than those in 

the general medical unit. 

3): To evaluate the consistency of exposure using the deviation between model-predicted 

and observed concentrations (Cpred/Cobs ratio) and assess the stability and robustness of using 
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the ratio in reflecting erratic adherence patterns. The simulations demonstrate that ratio could be 

used as the indicator of the extreme adherence conditions for both long and short-half life drug.  

 

The knowledge gained in the thesis will contribute to the understanding the sources of 

variability in target population, including subjects specific characteristics, enzyme genetics and 

adherence, under conditions of highly sparse concentration sampling. This provides a basis 

whereby the magnitude and consistency of exposure can be examined in conjunction with the 

maintenance response of subjects in a future study as response data become available. 
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1.1 OVERVIEW 

Pharmacokinetic (PK) studies aim to study the time course of absorption, distribution, 

metabolism and elimination of a drug, which is considered as ‘what the body does to the drug’.1-3 

Pharmacodynamic (PD) studies aim to study the time course of the drug concentration and link 

this to the time course of pharmacologic effects, which is considered as ‘what the drug does to 

the body’.4 An integration of the determined relationship of concentration-time (PK) and 

concentration-effect (PD) is generally used to predict the temporal pattern of drug’s 

pharmacologic effect and thus to optimize an effective dosage. It is commonly observed in the 

clinical studies that subjects receiving the same dose of a drug can respond differently, where 

some patients have ineffective therapy whereas some patients experience toxicity. The 

population approach is the analysis which attempts to understand PK/PD difference among 

population subgroups and attempt to determine and classify sources and hierarchies of variability.  

 

Population approach has been widely used in various drug classes during drug 

development, such as anticoagulants 5-8, anti-cancer drugs 9,  CNS drugs 10, 11 and antibacterial 

drugs12. The ultimate objective of a population analysis is to provide information that can be 

applied to develop guidelines for individualizing drug dosage regimens. Thus understanding the 

sources of variability and its impact on drug disposition is very important for rational drug 

pharmacotherapy in the target population. Moreover, increasing the magnitude of random 

variability may possibly cause decreased efficacy and safety of a drug.  

 

The sources of variability which influence the observed data can be categorized as 

measurable (fixed effect or attributable) and unobservable variability (random effect or non-

attributable) (Figure 1). Traditional PK approaches (e.g., Naïve pooled data (NPD) and standard 

two-stage (TS) analysis) used in population analysis, usually involves intensive sampling in 

small homogenous population (e.g., 6-12 healthy volunteers). NPD approach pools the data from 

all individuals neglecting the differences between individuals and fits an individual’s model for it. 
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The estimation of variability from NPD approach is typically overestimated since all sources of 

random variability (inter- and intra-individual variability) are pooled together. 13-15  Thus NPD 

analysis is unable to provide information that allows an adequate characterization of the sources 

of variability and its implication for drug therapy. Standard TS method is able to work fairly well 

in the situations where there is intensive data per individual. The random inter-individual 

variability from TS approach can be overestimated, which is related to both true biological 

variability and the uncertainty of the individual parameter estimate. 13, 14 However, this problem 

is unlikely to be important for the traditional well-defined PK study with intensive sampling 

measurements and a simple model structure. The other approach for population analysis is the 

mixed effect modeling (MEM) approach, which is ideally suited for analyzing data from large 

clinical trials (e.g., phase II and phase III study) and data from special populations (e.g., 

geriatrics, pediatrics and critical care unit patients), where only a few samples are available for 

each subject due to the ethical and/or medical concerns.10 The MEM approach can also be 

applied in combined data analysis, which can be used to stabilize the population analysis with 

prior information.16  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fixed effect  
(Biological variability) 

Random effect  
(Statistic variability) 

Sources of variability  

Measurable factors Unobserved factors 

Subject’s demographic 
condition (e.g., age, 
weight, sex, genetics); 
Concomitant medical 
information; disease 
status (e.g., renal 
function, hepatic 
disease) 

Inter-individual 
variability  
Residual error (e.g., 
intra-individual 
variability, measurement 
error, model 
misspecification) 

 
Figure 1: Sources of variability 
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Population PK analysis (mixed effect modeling approach) has many advantages over 

traditional PK approach.10 Unfortunately, the drug dosing history is often poorly recorded and 

the extent of non-adherence is usually underestimated, which leads to biased parameter estimates. 
17-23 In clinical trials, it is reported that the average adherence rate is only 43-78% among 

subjects receiving chronic treatment. 24, 25 There are many other similar terminologies used in the 

literature to describe adherence, such as compliance, concordance and alliance. 26, 27 In this thesis, 

adherence is defined in two ways: the percentage of prescribed doses taken and the percentage of 

days of therapy when the medication was taken appropriately. Thus we focus on the continuous 

middle “execution” phase of drug intake that concerns the pattern that occurs before the 

discontinuation phase.28 Adherence, a major concern for many chronic disease therapies (e.g., 

hypertension, diabetes and depression), is a widespread phenomenon causing decreased efficacy, 

relapse and recurrence during treatment.29, 30 Many studies have suggested that adherence is 

related to the clinical outcomes. 29-33  It is a challenging area of investigation for the clinical 

settings. A 100% reliable indirect measure for adherence doesn’t exist to date. Medication Event 

Monitoring System (MEMS)34 is a microprocessor-based method for continuous monitoring of 

adherence, which provides more accurate information than simple adherence measurement (e.g., 

self-report, direct interrogations, tablet estimates or prescription count). Adherence can also be 

measured by evaluating the stability of plasma level / dose (L/D) ratios. 30, 35 However, L/D ratio 

requires exquisitely precise timing of the last dose as well as the sample measurement. In the 

population PK analysis, the poorly recorded dosing history can cause biased estimation, which 

can mislead the decision making in clinical trials and drug pharmacotherapy.17-23 Utilization of a 

prior established PK model may allow one to utilize these biases by evaluating the deviation 

between the prior model predicted and the observed drug concentrations. The deviation may be 

used to infer consistency of drug exposure and the erratic consistency of exposure can be used to 

reflect the adherence patterns.  

 

The work discussed in the thesis explores the advantages of MEM approach in the 

analysis of sparse data sampling situation from several perspectives, including 1): the evaluation 

of the covariate effect on selective serotonin reuptake inhibitor (SSRI) disposition in late-life 

depression using highly sparse sampling measurement (Chapter 3 and 4); 2): the evaluation of 

the consistency of the exposure using the ratio of predicted versus observed concentrations, 
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which was then applied to reflect the erratic adherence pattern (Chapter 5); and 3): the dosage 

optimization using modeling and simulation approach for an anticoagulant drug (Chapter 2).   

 

In the following sections, the traditional PK analysis (Standard TS approach) and MEM 

approaches are discussed first, and then the advantages and disadvantages of the two methods are 

compared. After that, the base model development is discussed which shows how to select a base 

model and what constitutes the inter-individual variability. The covariate model development is 

discussed after the base model section, which include the criteria for covariate selection and 

formulation of covariate model. Different model validation and evaluation methods are then 

discussed. Finally, the model-based simulation is addressed. 

1.2 POPULATION ANALYSIS APPROACH 

Population PK analysis is able to obtain typical PK parameter estimates, and identify sources of 

and correlations of variability in plasma concentrations between individuals for a specific dose 

across a number of individuals.36 Population PKs is widely used in drug safety and efficacy 

evaluation. Population PK modeling can be done using different approaches, such as NPD, 

standard TS method, and a MEM approach.37, 38 In the section below, we are focusing on the 

standard TS approach and parametric MEM approach. 

 

1.2.1 Standard Two-Stage approach 

In the 1st stage, the individual PK parameters are calculated separately from a dense data 

set, using classical fitting procedures (e.g., Weighted Least Squares) as shown below.  

OBJ (Pi) = (C∑
=

n

i 1
obs j – Cpred j)2 × Wij     (1) 

Where Pi is the PK parameters for ith individual, Wij is the weight of jth observation in ith 

individual. The weighted least squares assume a heteroscedastic error structure, where the 

random error is assumed to be some function of the observed concentrations, such as Wij=1/Cobs j 

which assumes the variance is proportional to the concentrations. 
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In the 2nd stage, the population mean and standard deviation (SD) of the PK parameters 

are calculated for the study population. The relationship between the covariates and the PK 

parameters across subjects can be evaluated using regression analysis. The population parameters 

(mean and variance) across the subjects can be calculated as below: 

Arithmetic mean and variance: 

 Mean = ∑  P
=

n

i 1
j / N     (2) 

 Variance = ∑  (P
=

n

i 1
j –mean)2 / N    (3) 

The TS approach is simple and usually generates unbiased mean parameter estimates. 

However, the random inter-individual variability from TS approach can be overestimated, which 

is associated with both true biological variability and the uncertainty of the individual parameter 

estimate.13, 14 The traditional two-stage method requires intensive sampling measurements at 

appropriate time to obtain accurate parameter estimate in stage 1, and it is generally not 

applicable in the highly sparse data sampling situation (e.g., 1-2 sample per subject), since 

estimating the individual parameters is out of the question.  

 

1.2.2 The mixed effect modeling approach 

The MEM approach is a one stage analysis approach, which considers the population 

study sample, rather than the individual, as a unit of analysis for the estimation of the distribution 

of parameters and their relationship with covariates within the population. The word “mixed” 

refers that the method evaluates both fixed and random effects. 

The MEM approach is ideally suited for analyzing data from large clinical trials, where 

only a few samples are available for each subject.10 This technique identifies individual-specific 

characteristics that impact the disposition of a drug. In addition, the results are more 

generalizable than those of the traditional methodology because a greater number of subjects are 

evaluated.39 MEM can identify both individual specific and overall population PK parameters 

based on sparse data sampling, and use each data point to inform the entire analysis. 10, 38, 40 

In the population analysis, it is natural to fit the data into a hierarchical modeling 

structure, which allows the variability in concentrations to be separated into inter- and intra-
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individual variability. In the 1st stage, the data of a particular individual is modeled conditioned 

on individual parameters, and the relationships between individuals are modeled in the 2nd stage. 

The hierachical structure in the two stages is described below: 

 

1st Hierarchy:  

Each subject has a set of drug concentrations, and the predicted concentration (h1(θi, tij, 

di)) is defined as below: 

 Yij = H1(θi, tij, di)+εij                          (4) 

With εij independent and identically distributed as ε ~ N(0, σ2). Yij is the jth observed 

concentration in the ith individual; h1 is the functional form of PK model, h1(θi, tij, di) is the jth 

predicted concentrations in ith individual; di is the dosing history, including amount of dose and 

the time of administration for ith individual; θi is the value of the ith individual’s PK parameter. 

 

2nd Hierarchy:  

The model used in second stage is defined as below: 

θi = H2(µ, Covi)+ ηi                                     (5) 

With ηi independent and identically distributed as η ~ N(0, ω2). Covi represent the 

covariates for the ith individual and µ is the population parameter. The predicted values of PK 

parameters for the ith individual at time tij are defined by H1 in equation 4. H2 is a function, which 

describes the relationship between ith individual’s covariates and ith individuals’ PK parameters.  

 

Stages 1 and 2 of the hierarchy explicitly partition the variability in the observed data into 

two variance components. These are called intra- (sometimes also called residual unknown 

variability) and inter-individual variability. The objective of population modeling is to identify 

covariates which are responsible for between-individual variability and to quantify the remaining 

variability. 

 

1.2.2.1 Model definition 

The population PK model is a combination of three basic components:  

● The structural PK model component, which defines the PK parameters and describes the 

plasma concentration-time profile 
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● The statistical PK model component, which comprises both intra- and inter-individual 

variability. The residual error model component describes the underlying distribution of the error 

in the measured PK variable and the inter-individual error model component describes the inter-

individual variation in PK parameters after correction for fixed effects 

● The covariate model component, which describes the influence of fixed effects (i.e., 

demographic factors) on PK parameters 

The description for each model component is presented below. 

 

1.2.2.1.1 Base model development 

Structure of the PK model 

The structure of the PK model represents the best description of the data without 

considering the effect of subject’s specific covariates. Structural PK models usually are 

expressed by using primary PK parameters such as clearance (CL) and volume of distribution (V) 

rather than rate constants, which can generate primary PK parameters in combination forms. 

Using primary PK parameters allows us to assess the impact of covariate on these parameters 

e.g., age, weight, sex, race or genotypes which may alter plasma concentration. The two-

compartment linear model with oral administration is shown below: 

 

 

 

 

 

 

Ka 
Depot 
Compartment 

Central 
Compartment 

Peripheral 
Compartment 

Q 

CL 

 
Figure 2 General form of the two-compartment model  

 

In the diagram above, Ka is the absorption rate constant, Q is the inter-compartment 

clearance, and CL is the oral clearance. The mass balance equations are given by: 

1
1 AKa

dt
dA

×−=       (6) 
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3

3

2

2
1

2 )(
V
A

Q
V
AQCLAKa

dt
dA

×+×+−×=    (7) 

3

3

2

23

V
A

Q
V
AQ

dt
dA

×−×=      (8) 

Where V2 is the volume of the central compartment, V3 is the volume of the peripheral 

compartment, A2 is the amount of drug in central compartment and A3 is the amount of drug in 

peripheral compartment. Equation and model above describes a linear PK drug, where AUC is 

proportional to dose and clearance is a constant regardless of drug concentrations.  

If AUC of a drug is non-linear by dose group e.g., paroxetine, clearance changes with 

concentration. The structural model should be reflected by a non-linear model, where the typical 

values such as Vmax and Km should be evaluated. The Michaelis - Menten equation is applied 

for clearance estimation in a non-linear model as shown below: 

2

2

max

V
AKm

VCL
+

=       (9) 

Where Vmax is the maximum rate, Km is the Michaelis - Menten constant, which is 

equal to substrate concentration at half of the maximal velocity. 

 

Inter-individual variability 

In this model component, the individual parameter estimates are modeled as a function of 

typical value for the population and individual random deviations. The inter-individual 

variability of the PK parameters can be described as below: 

Exponential:  CL= TVCL × EXP(ETACL)             (10) 

Additive:  CL= TVCL + ETACL                      (11) 

Proportional:  CL = TVCL ×(1 + ETACL)             (12) 

Where, TVCL is the typical value of clearance for the population; CL is the individual 

parameter estimate; ETACL is the inter-individual variability term on CL, representing the 

difference between the individual parameter estimate and the population mean. The random 

effects of inter-individual variability are assumed normally distributed, with a mean of zero and 
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variance of ω2. In the exponential form, the distribution of parameter is skewed to the right 

which is commonly observed for the PK parameter distribution.    

 

Intra-individual variability 

The difference between the predicted concentration and observed concentrations is 

defined as residual variability, which is comprised of but not limited to intra-individual 

variability, experimental errors, and process noise and / or model misspecifications. It can be 

modeled using additive, proportional and combined error structure as described below: 

Additive error: ijijij yy ε+= ˆ       (13) 

Proportional error: )1(ˆ ijijij yy ε+×=     (14) 

Combined additive and proportional error: ')1(ˆ ijijijij yy εε ++×=  (15) 

Where  is the jijy th observation in the ith individual,  is the corresponding model 

prediction, and 

ijŷ

ijε  (or 'ijε ) is a normally distributed random error with a mean of zero and a 

variance of σ2.  

The additive error (constant absolute error) model is applied when the variance is 

assumed to have a constant absolute magnitude and independent for all measurements. The 

proportional error (constant coefficient of variation error) model is applied when the 

measurements to be modeled have heteroscedastic property and the error represents a constant 

proportion of the observed data. In the case of PK concentrations, where wide range of 

concentrations is measured, the error in measurement based on the analytical method is usually a 

combination of additive and proportional error. Use of a combined error model would improve 

predictions at lower limit of assay precision where variance may be assumed a constant and a 

proportional error model at higher concentration range. 

 

1.2.2.1.2 Covariate model development 

An important objective of a population PK analysis is to identify the sources of variability 

from observable covariates and their correlation with the individual PK parameters, which can 
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explain part of the inter-individual variability besides the part which has been explained by 

random effect in the base model. As mentioned in the overview section, many factors in the 

biological system can potentially contribute to variability such as age, sex, weight, renal function, 

polymorphic enzymes and concomitant medication. Quantitative assessment of the relationship 

between covariates and PK parameters is important for drug development because it provides 

information on whether the special dosage is necessary for a subgroup of patients.  

 

Covariate identification and its selection criteria - The effect of subjects’ specific covariates 

e.g., age, weight, and gender is tested on PK parameter during the final model development. The 

covariate models can be developed by a forward inclusion / backward elimination using the 

likelihood ratio test. Covariates that are significant at the 0.05 level are retained in the model (χ2, 

∆OFV=-3.84, df=1). Once all the covariates that are significant at the 0.05 level have been 

included in the model, a backward elimination process is conducted. A significant level of 0.01 is 

used for the backward elimination (∆OFV=-6.63, df=1). The backward elimination process is 

repeated until all remaining covariates are significant (p<0.01). Covariate influence on inter-

individual variability and goodness of fit is also examined. Covariate factors should also have 

clinical or physiological relevance. Thus, if the magnitude of covariate effects if less than 20% of 

the parameter estimates for the typical subjects, the covariates may not be considered clinically 

relevant and may not be included into final model despite reductions in the objective function 

value (OFV).6  

 

Incorporation of covariate - The covariates can usually be classified as continuous covariate like 

age, weight, height and discrete covariates include: sex, race, and enzyme genotypes. 

These two types of covariates can be incorporated into the model as described below:  

   

Example for continuous covariate 

The incorporation of a continuous covariate for the parameter CL: 

    (16) Cov
CovCL MedCovTVCL θθ )/(+=

    (17) Cov
CovCL MedCovTVCL θθ )/(×=
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 ))(1( CovMedTVCL CovCovCL −×+×= θθ   (18) 

CL = TVCL × EXP(ETACL)                           (19) 

where TVCL is the population estimate of CL for individuals having a specific covariate; 

θCL is the population estimate for CL without a covariate effect; Cov is the continuous covariate 

that is affecting CL; θCov is constant describing association between covariate and typical value of 

parameter estimates; and MedCov is the median value of Cov; CL is the individual estimate of 

clearance, which is the population estimate for clearance incorporating the covariate and inter-

individual variability; ETACL is the inter-individual variability term for CL. 

 

Example for discrete covariate 

The incorporation of a discrete covariate involves assigning a numeric value to the 

covariate (e.g., sex, male = 0, female = 1). The equations below show sex as a discrete covariate 

in an exponential, a proportional, and an additive form respectively on the parameter CL.   

TVCL = θCL + Sex × EXP(θSex)   (20) 

TVCL = θCL × (1+Sex × θSex )   (21) 

TVCL = θCL +  Sex × θSex    (22) 

 CL = TVCL × EXP(ETACL)    (23) 

When sex is male, TVCL equals θCL since numeric value for male = 0 causing a zero 

multiplier for the covariate effect. For female, the θSex term is added to the population estimate of 

CL to modify it.  

 

If discrete covariate had more than two groups, for example the categorical variables are 

assigned to each of the three CYP2D6 phenotype groups (i.e, Poor metabolizers (PMs) = 1, 

Intermediate metabolizers (IMs)  =2, Extensive metabolizers (EMs) = 3), the incorporation of this 

covariate is shown below:  

IF (PHENOTYPE.EQ.1) TVCL= θPMs  (24) 

IF (PHENOTYPE.EQ.2) TVCL= θIMs  (25) 

IF (PHENOTYPE.EQ.3) TVCL= θEMs  (26) 
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Missing covariate value - In subjects without a recorded covariate value, it is better to 

impute the missing covariate values for these subjects than to exclude them from analysis which 

will decrease the sample size and lose information. The simple imputation approach can be 

applied, including mean estimation and predicting missing values from regression. Mean 

estimation method is to replace missing data with the median or mean covariate value calculated 

from non-missing subjects in the population dataset. To predict missing values from regression is 

to impute each independent variable on the basis of other independent variables in model using 

regression analysis. Simple imputation does not reflect the uncertainty about the predictions of 

the missing data, thus the standard deviation and standard errors are underestimated since there is 

no variation in the imputed values.41 The other attractive method is multiple imputation (MI) 

approach proposed by Rubin, which replaced each missing data with a set of plausible values 

with representation of the uncertainty about the right value to impute. 42, 43   MI requires the 

assumption of independency and missing at random, meaning that the probability that some data 

are missing does not depend on the actual values of the missing data, or missing completely at 

random, meaning the probability of an observation being missing does not depend on observed 

or unobserved measurements. The basic process of MI include: 1): impute missing values using 

an appropriate model that incorporates random variation; 2): do this m times, which produce m 

complete data sets; 3): analyse the m complete data sets using standard methods, e.g., 

Expectation Maximization method and Markov Chain Monte Carlo method; 4): combine the 

results from the m complete data sets and the point estimates from the MI and the standard errors 

can be calculated as below:  

Point estimate: 

∑
=

=
m

i
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m
Q

1

1       (27) 

The variance estimate: (Total variance = within variance + between variance) 
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Where m is the number of sets imputed and analyzed, Qi is the estimate from analyzing the ith 

data set, and vi is the variance estimate from analyzing the ith data set. The advantages of MI are 

that it introduces random error into the imputation process which reduces the probability of 

introducing biased estimate of all parameters than that in simple imputation method 

(deterministic imputation), it also allows one to obtain good estimates of the standard errors. 

However, there are often strong reasons to suspect that the data are not missing at random, where 

even accounting for all the available observed information, the reason for observations being 

missing still depends on the unseen observations themselves. 

 

In summary, the intra-subject model and the inter-subject model specifications together 

complete the model formulation for the population analysis with the non-linear mixed effects 

modeling approach.  

 

1.2.3. Estimation method and software 

Objective function and likelihood - The best model should provide the best model fit 

across all subjects through fitting. These ‘best’ parameter estimates in the model are typically 

obtained by minimizing or maximizing some objective function (OBJ), such as ordinary least 

squares, weighted least squares and extended least squares. The objective functions are shown 

below: 

Ordinary Least Squares:    (29) ∑
=
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Extended Least Squares: ∑
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Where vari models the variance of the observation, Yobs i are the observed concentrations 

and Ypred i are the predicted concentrations. W is the weight which reflects the relative 

uncertainty attached to the individual estimate. The extended least square is designated as a 

maximum likelihood if the random effects assume to be normally distributed. 
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The objective function quantifies the difference between observed and predicted data for 

a given parameter set. The estimation method commonly used in nonlinear mixed effect 

modeling is the maximum likelihood approach, which is an alternative of the least square 

objective function (extended least squares). In the nonlinear mixed effect modeling, all the 

parameters are estimated simultaneously. The likelihood for the population parameters are shown 

below:  

})](  ,[{) ,(
1
∏
=

==
N

i
ii xParameterModelypModelYFL  (32) 

Where L is likelihood, F represents some function of the observations and the model, and 

p is the probability of observation occurs at a given parameter set.  

The likelihood is the product of probabilities for each individual observation (i) to occur, 

given the respective model and parameters. Since the parameters are selected to maximize the 

probability, the greater the likelihood of the model means the large the probability of the 

dependent variable to occur, therefore, the better the model describes the data.  

 

Software - All software alternatives and approaches are based on the hierarchical 

nonlinear mixed effect modeling methods described above. The programs can be categorized 

into three groups: parametric maximum likelihood, nonparametric maximum likelihood and 

Bayesian. The programs using parametric methods are NONMEM, NLME in S-plus, 

WinNonMix, Kinetica 2000, MCPEM in S-ADAPT (a version of ADAPT II) and NLINMIX in 

SAS. The programs using nonparametric methods are NPML, NPEM and NLMIX. The 

difference between non-parametric and parametric method is that parametric approach has the 

assumption of specific distribution of the random effect. The programs using Bayesian 

approaches include BUGS/WinBUGS, and JAGS (Just Another Gibbs Sampler), which require 

the specification prior and hyper-prior information of the parameter in the estimation. The 

computer program NONMEM® developed by Beal and Sheiner in 1980 at UCSF is the first 

computer program available for sparse data analysis in a PK setting and has been widely used in 

population analysis. The NONMEM software is used as the analysis platform in all population 

PK analyses in the thesis projects and is also the focus in the following sections. 
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Estimation in NONMEM – In the compartment model, the flow between compartments 

can be defined by a series of linear differential equations, which yields a concentration time 

model as described in stage 1 of H1 (equation 4), a nonlinear function with unknown parameter. 

Due to the nonlinear dependency of the observations on the random variability of the η and ε, the 

integrals in likelihood cannot be evaluated analytically. Therefore, some form of approximation 

is needed.  

 

In NONMEM, the first order (FO) method estimates the typical value for each parameter, 

ω2 and σ2. FO method linearizes nonlinear model via a first order Taylor series expansion and is 

evaluated at the expected value of the random effects at 0. The detailed description about the 

approximation for FO method has been reported.44 The FO method provides the population 

parameter estimates. The individual parameter estimates can be obtained using the POSTHOC 

option in NONMEM program using empirical Bayes methods to estimate η values for each 

individual. The first-order conditional method (FOCE) method is more time consuming than 

using FO method, because the individual estimate are determined for every iteration of the 

regression. The FOCE method also linearizes the nonlinear model via a first order Taylor series 

expansion about the value of individual η (with the assumption that the eta is not very different 

from zero but is potentially non-zero) instead of 0. 45, 46 The FOCE with interaction (FOCEI) 

option in NONMEM assumes the interaction between η and ε. FOCEI differs from FOCE 

without interaction, which assumes the homoscedastic intra-individual variability across 

individuals. Applying FOCE and FOCEI methods are more time consuming for computation 

than that of FO method, but these methods have a more accurate approximation to the likelihood 

than the FO method. The Laplacian method uses a second-order Taylor series expansion about 

the η values. In the higher nonlinear model e.g., Emax model, logistic model, using Laplacian 

method can obtain more accurate parameter estimates than that of FOCE method. 45 

 

1.2.4. Model building criteria 

The adequacy of the developed structure models is evaluated using both statistical and 

graphical methods. The likelihood ratio test is used to discriminate between alternative (nested) 

models. The likelihood ratio test is based on the property that the ratio of the NONMEM 

objective function values (-2 log-likelihood) is asymptotically χ2 distributed. A reduction of the 
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objective function by 3.84 units is considered significant (χ2 P<0.05 df=1). For comparison 

between non-nested models, the Akaike Information Criterion (AIC) can be applied, 47 which is 

AIC equals to objective function value plus 2 times the number of parameters. 

 

1.2.5. Model evaluation 

Model validation/evaluation aims to determine whether the model is a good description 

of the validation data set. The model validation approach can be different based on the objective 

of the population analysis and the question that needs to be addressed. Not all population models 

need to be validated. Model validation can be classified as internal (e.g., bootstrap, data splitting 

and cross validation) and external (e.g., data from new studies) validation based on the sources of 

the data applied for validation.  

External validation is the most stringent type of validation. However, it needs external 

data from the new study, which is usually not available in most situations. Internal validation 

methods are commonly used, which rely on the analysis of the subsets from the total data with 

the majority of data used in model building. Data splitting method involves randomly dividing 

data into an index data set and a test data set, where the index data set (e.g., 2/3 of the original 

data set) is used to develop the model and the test data set (e.g., 1/3 of the original data set) is 

used to evaluate the model performance. Cross over validation method is a ‘leave-one-out’ or 

‘leave-some-out’ validation approach. Data is divided into m subsets. Fit the models from m-1 

data set and each of the m-1 estimation subsets is used to predict the unused subset. The mean 

prediction error (Ypred – Y obs) calculated for each of these m models is used as measure of 

accuracy and mean absolute prediction error is used for precision measurement.  Bootstrap 

analysis 48 is a widely used internal validation approach. It is a re-sampling methodology that 

provides a nonparametric assessment of the variances and confidence intervals without requiring 

asymptotic assumption on the distribution of parameters. This is a general technique for 

estimating sampling distribution. New “virtual” datasets are created by selecting patients at 

random. The model is re-run or parameters re-estimated for each of these datasets (e.g., 1000 

times). The results provide a good measure of model stability, confidence intervals, variances 

and parameter distributions. The characteristics of the confidence intervals reflect how well or 

how poorly the model captured the parameters given the available dataset. The other model 

evaluation method is predictive performance check. It is based on comparing meaningful 
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statistics of observed data, with corresponding statistics calculated from data simulated under a 

model. Statistics of the data which are meaningful depend on the objectives of the modeling 

analysis and are specified as a prior. Briefly, empirical distributions of these statistics under a 

model are constructed from data generated by Monto Carlo simulation. The validity of a model is 

assessed by determining the probability of obtaining the value of a statistic calculated from 

observed data given the simulated empirical distribution of the statistic. 49 

 

1.3 MODEL-BASED SIMULATION 

Simulation has been widely used in various areas, such as engineering, economics, marketing 

and statistics. In the field of drug development, model-based simulation approach has been 

shown to be a very useful tool to facilitate dose selection by evaluating and understanding the 

consequences of different study designs.6, 7 50 Simulation reveals the effect of input variables and 

assumptions on the results of a planned population analysis. Monte Carlo simulation is a widely 

used simulation approach.51-53 The ultimate objective for a simulation study is to determine the 

factors affected the virtual subjects’ response and thus provide the related information to the new 

clinical trial design. The beauty of a clinical trial simulation is to test various assumptions and 

hypotheses based on the prior information obtained from the previous studies, before conducting 

a real study. For example, simulation can be used to address the question on what would the 

‘best dose’ for target population if the random variability is reduced by 50% after formulation 

modification, what is the efficacy/safety outcome would possibly look like if subjects receive 

half of the recommended dose, or if they receive two times the recommended dose. Except for 

the advantages discussed above, simulated data lacks the complexity of real data generated by 

clinical trials. Covariate data is hard to mimic through simulation, especially for time-varying 

covariates. 
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1.4 OBJECTIVES OF THE THESIS 

The thesis explores the usefulness of MEM approach in several aspects for the clinical studies 

under sparse data sampling situation, including 1): the evaluation of the covariate effects on 

SSRIs disposition in the late-life depression using highly sparse sampling measurement (Chapter 

3 and 4); 2): the assessment of the deviation between the model-predicted and observed 

concentrations (Cpred/Cobs and Cipred/Cobs) in reflecting the erratic adherence patterns 

(Chapter 5); and 3): the dosage optimization using modeling and simulation approach in 

anticoagulant drug where a dynamic marker is measured (Chapter 2). The aims for each study 

are described below: 

 

Chapter 2: To determine an appropriate dosage for patients receiving continuous 

intravenous infusion of enoxaparin  

● To describe the PK for subjects administrated enoxaparin by continuous intravenous 

infusion using population analysis 

● To optimize a dosage strategy for subjects receiving CII enoxaparin using model-based 

simulation approach 

 

Chapter 3: To assess covariate affecting exposure to drug with linear PK characteristics 

given highly sparse sampling measurements  

● To describe PK parameters of selective serotonin reuptake inhibitor (citalopram) with 

linear PK characteristics using highly sparse sampling measurements in a depressed population  

● To evaluate the impact of covariates, including age, weight, race, and sex on citalopram 

PK parameters in late-life depression 

 

Chapter 4: To assess CYP2D6 genotype effects on PK of a drug with nonlinear 

pharmacokinetic characteristics  

● To describe PK parameters of selective serotonin reuptake inhibitor (paroxetine) with 

nonlinear PK characteristics using limited sampling measurements in late-life depression  

● To evaluate the impact of covariates, including CYP2D6 genotypes, race, age, sex, 

weight, on paroxetine PK parameters in late-life depression 
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.  

Chapter 5: To identify erratic adherence pattern by evaluating the consistency of drug 

exposure using a simulation approach 

● To evaluate the overall distribution of the deviation between model predicted and 

observed concentrations (Cpred/Cobs and Cipred/Cobs ratio) across the adherence patterns (high 

adherence rates to extremely low adherence rates) for both long and short half-life drugs under 

the situation when the subjects’ correct dosing history (negative control) and when the incorrect 

dosing history (positive control) is applied in population analysis  

● To evaluate the association between ratio and the rate under positive control 

● To evaluate the bias and precision of parameter estimates under negative and positive 

controls 

 

 

 

 

 20 



CHAPTER 2 OPTIMIZATION OF DOSE SELECTION USING BIOMARKER 

RESPONSE WITH SPARSE DATA 
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using modeling and simulation. British Journal of Clinical Pharmacology. 2006  
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Abstract 

Objective: To develop an appropriate dosing strategy for continuous intravenous infusions 

(CII) of enoxaparin by minimizing the percentage of steady state anti-Xa concentration (Css) 

outside the therapeutic range of 0.5 -1.2 IU/ml.  

Methods: A nonlinear mixed effects model was developed with NONMEM® for 48 adult 

patients who received CII of enoxaparin with infusion durations that ranged from 8 to 894 h at 

rates between 100 and 1600 IU/h. Three hundred and sixty three anti-Xa concentration 

measurements were available from patients who received CII. These were combined with 309 

anti-Xa concentrations from 35 patients who received subcutaneous enoxaparin. The effect of 

age, body size, height, sex, creatinine clearance (CrCL) and patient location (Intensive Care Unit 

(ICU) or general medical unit) on pharmacokinetic (PK) parameters were evaluated. Monte 

Carlo simulations were used to 1) evaluate covariate effects on Css; and 2) compare the impact 

of different infusion rates on predicted Css. The best dose was selected based on the highest 

probability that the Css achieved would lie within the therapeutic range. 

Results: A two-compartment linear model with additive and proportional residual error for 

general medical unit patients and only a proportional error for patients in ICU provided the best 

description of the data. Both CrCL and weight were found to significantly affect clearance and 

volume of distribution of the central compartment, respectively. Simulations suggested that the 

best doses for patients in the ICU setting were 50 IU/kg/12h (4.2 IU/kg/h) if CrCL<30 ml/min; 

60 IU/kg/12h (5.0 IU/kg/h) if CrCL was 30-50 ml/min; and 70 IU/kg/12h (5.8 IU/kg/h) if CrCL> 

50 ml/min. The best doses for patients in the general medical unit were 60 IU/kg/12h (5.0 

IU/kg/h) if CrCL < 30 ml/min; 70 IU/kg/12h (5.8 IU/kg/h) if CrCL was 30-50 ml/min; and 100 

IU/kg/12h (8.3 IU/kg/h) if CrCL>50 ml/min.  These best doses were selected based on providing 

the lowest equal probability of either being above or below the therapeutic range and the highest 

probability that the Css achieved would lie within the therapeutic range. 

Conclusions:  The dose of enoxaparin should be individualized to the patients’ renal function 

and weight.  There is some evidence to support slightly lower doses of CII enoxaparin in patients 

in the ICU setting. 
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Introduction 

Venous thromboembolism is a common cause of morbidity and mortality. Low molecular 

weight heparins (LMWHs) are as effective and safe as unfractionated heparin (UFH) for the 

treatment of deep vein thrombosis (DVT)  and pulmonary embolus (PE).54-57 LMWHs are also 

superior to and as safe as unfractionated heparin for acute coronary syndromes.58-60  When 

compared to UFH, LMWHs have superior bioavailability,61 a more predictable anticoagulation 

response, and a lower incidence of heparin-induced thrombocytopenia and osteoporosis with 

long term treatment.62  

Enoxaparin is one of the most widely used LMWHs in Europe and the US,63, 64 with anti-Xa 

activity widely used as a marker of enoxaparin concentration. 5, 6, 65 It is predominantly 

eliminated by the kidney. 66Studies suggest that renal dysfunction leads to increased anti-Xa 

concentrations, 5, 67, 68which in turn is associated with bleeding complications. Therefore, dosage 

adjustment based on renal function is suggested to decrease the risk of adverse bleeding events. 7, 

69, 70 

      Compared with general medical unit patients, critically ill patients have more medical 

complications due to pre-morbid and surgical conditions, invasive treatments, and prolonged 

immobility.71 Cook et al.72 found that Intensive Care Unit (ICU) patients with multiple 

predisposing factors have a high risk of venous thromboembolism and PE, which may result in a 

higher risk of mortality. Moreover, a range of organ dysfunction in ICU patients may result in 

more variable exposure to drugs and thus response. 73Investigators at the University of Buffalo 74  

have observed substantial variability in anti-Xa concentrations measured in multiple trauma 

critically ill patients.  Unreliable and extensive variable anti-Xa concentrations were found in 

these trauma critically ill patients when the standard recommended dose and route of 

administration (subcutaneous (SC)) of enoxaparin for the prevention of venous 

thromboembolism was applied. This has led the group to examine alternate means of 

administration (intravenous infusion) to attempt to reduce variability in the observed anti-Xa 

concentrations after enoxaparin administration in trauma critically ill populations. Under the 

circumstance where patients were reported to have substantial variability 74 (e.g. intensive care 

unit patients) in the observed anti-Xa concentrations with SC enoxaparin,  intravenous infusion / 
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CII could be utilized as a possible approach to reducing the variability.  Therefore, it is desirable 

to attempt to understand these factors and attempt to control exposure to drug more closely.   

      The modeling and simulation work presented here represents a pilot examination of 

enoxaparin administered via continuous intravenous infusion and provides a first look at the 

nature of the inter-individual variability (including covariate examination) for this administration 

method.  

Dosing strategy and extensive population pharmacokinetic analysis for patients receiving 

enoxaparin by continuous intravenous infusion (CII) has not been reported in the literature. The 

purpose of this study was to describe the pharmacokinetics (PK) for CII enoxaparin by 

developing a population PK model. This model was then used to guide a dosing strategy for CII 

enoxaparin.  

 

Subjects and Methods 

Subjects  

Anti-Xa concentrations were available from two studies. Patient characteristics for the two 

studies are shown in Table 1. The first study was conducted at the Cleveland Clinic 

Foundation.75  In the CII study, patients who received enoxaparin from January 1997 to 

December 1998 were identified, and a retrospective chart review was completed subsequent to 

institutional review board approval. The study provided 48 patients (23 male) with 363 anti-Xa 

concentrations with an average (Mean±SD) age and weight of 60.3±17.7 years, 73.9±14.6 kg, 

respectively. Patients were located in both general medical unit (n=29) and the ICU (n=19) and 

initially received enoxaparin 100 IU/kg/12h (8.3IU/kg/h) by CII. Routine monitoring of anti-Xa 

concentration was determined by chromogenic assay of LMWHs. 76 

The second study, reported by Green et al., provided detailed subject information for the 

subcutaneous (SC) use of enoxaparin.7 The study included 35 patients with 309 anti-Xa 

concentrations. The patients’ age, weight and CrCL were (Mean±SD): 75.1±10.5 years, 

67.7±15.5 kg, 39.2±21.6 ml/min respectively. 

The Brater equation 77 was used to calculate the CrCL for individuals with unstable serum 

creatinine (SCr) in the CII study when two SCr concentrations measured over 12 hours apart were 
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different by more than 0.2 mg/dL. CrCL for individuals with stable SCr concentrations was 

calculated using the Cockcroft and Gault (CG) equation in the CII and SC study, using ideal body 

weight (IBW) as a body size descriptor. 78 

 

Population PK analysis 

The population PK analysis for the combined data set was performed by using NONMEM® 

(version V, GloboMax, Hanover, MD)79 with the subroutine ADVAN4, TRANS4. The first 

order conditional estimation with interaction (FOCEI) method was used to estimate parameters. 

The likelihood ratio test was used to discriminate between alternative models. An 

objective function decrease of 3.84 units was considered significant (χ2 P<0.05 df=1). The 

covariates age, height, sex, CrCL and body size [total body weight (weight),  body surface area 

(BSA), body mass index (BMI), IBW, lean body weight (LBW), adjusted body weight (ABW), 

and percent ideal body weight (%IBW)6, 80] were introduced into each parameter one by one. The 

continuous covariate weight on clearance (CL) was incorporated into the model in several ways.  

These are shown as below: 

 

TVCL=θ1+(weight/ Medweight)θ weight 

TVCL=θ1*(weight/Medweight)θ weight 

CL=TVCL*exp(ηi CL) 

 

TVCL is the typical value for the population and ηi is the random effect representing the 

difference of the ith patient from the population mean.  The random effects of between subject 

variability were assumed to be log-normally distributed, with a mean of zero and standard 

deviation of ω. Weight is the total body weight in kilograms and Medweight is the median total 

body weight. Weight and other body size descriptors were included in the analysis to help 

examine whether the departure from the normal body size affected disposition.          

      CrCL (creatinine clearance in L per h) was included in CL as below:  

      TVCL=θ1+(CrCL/4.8)* θCrCL
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CL=TVCL*exp(ηi CL) 

     The non-renal component of clearance (θ1) was evaluated in this model as a fixed 

parameter (0.229) reported by Green et al,7 as well as being directly estimated by NONMEM. If 

CrCL was missing, then TVCL= θmissing was used. A sensitivity analysis was used to evaluate the 

impact on the other parameter estimates if θ1 was fixed. The reported parameter estimates for θ 

NR (non-renal clearance component) and θCrCL (renal component clearance) were 0.229 and 0.681 

respectively in the literature.7 To assess how the previously published parameters (see above) 

would impact on the analysis, θ NR was fixed to the published value of 0.229.  The fixed value 

for θ NR was then changed in 10% increments over a range of ±50% to assess whether or not this 

affected the other parameter estimates. 

Residual variability was modeled using additive, proportional and combined error structures.  

Graphical assessment of Bayesian individual parameter estimates versus covariates was 

evaluated to help identify possible covariate relationships. Covariates were retained in the model 

if inclusion in the model decreased the objective function value (OFV) by 3.84 (χ2 P<0.05 df = 1). 

The model improvement was assessed by the OFV values and parameter estimates. In addition, 

the significance of the covariates was assessed using a randomization test with Wings for 

NONMEM.81, 82 This approach provided a calibration for the changes in OFV versus p-value for 

determination of statistical significance.  In addition, graphics of goodness of fit were utilized to 

assess model robustness.83 

 

Simulation of steady state anti-Xa concentration  

Two types of simulations were performed; the first was a deterministic simulation which 

assessed the impact of covariate effects on predicted Css. Anti-Xa concentrations were simulated 

using mean model parameters obtained from the final covariate model with random effects fixed 

to zero. This was done to more clearly evaluate covariate effect on Css. The calculation of Css is 

shown below: 

CL
R

Css 0=   (1) 
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The second simulation set used a Monte Carlo approach 51-53to identify an appropriate dose 

for CII enoxaparin. The final covariate model was used as the input-output model to predict 

concentrations. The final model and parameter estimates obtained from the final model were 

used for the Monte Carlo simulations. The distribution of PK parameters was set to a log-normal 

distribution. Simulations were conducted to compare the percentage of the predicted Css values 

that were outside of the therapeutic range for the general medical unit and ICU patients receiving 

enoxaparin at infusion rates of 8.3, 5.8, 5.0, 4.2 IU/kg/h. The lowest infusion rate (4.2 IU/kg/h) 

was selected based on the best dose suggested by Green et al 7 for renal dysfunction patients 

receiving SC enoxaparin. The highest infusion rate (8.3 IU/kg/h) is the current dosing strategy of 

enoxaparin administrated by SC administration. A unique covariate distribution model was 

developed for general medical unit and ICU patients.  The model constituted a joint distribution 

of weight and CrCL based on the ICU and the general medical unit patients in CII study. The 

correlation of weight and CrCL in the covariate distribution model was 0.33 for general medical 

unit patients and 0.30 for ICU patients in the CII study.75 One thousand general medical unit 

patients and 1000 ICU patients were simulated from the joint distribution model. Two hundred 

simulations of 2000 patients were performed for each infusion rate using NONMEM®. For twice 

daily SC administration, the therapeutic range of anti-Xa is 0.5 IU/ml – 1.2 IU/ml.76, 84-88  This 

therapeutic range was applied as the target range for dose selection in simulation study for CII. 

The percentage of predicted Css which was higher than 1.2 IU/ml or which was lower than 0.5 

IU/ml was calculated for each simulation using code written by the researchers in True-BASIC® 

(developed in 1965 by John Kemeny & Thomas E. Kurtz). The mean, 5th and 95th percentiles 

(90% predicted interval (PI)) were calculated from 200 simulations for the percent of predicted 

Css falling out of therapeutic range at each infusion rate. The patients were classified into 3 

categories (CrCL<30ml/min; CrCL: 30-50 ml/min; CrCL>50 ml/min) prior to the simulation 

study, which was based on the severity of kidney impairment. These probabilities were then 

calculated for patients with varying degrees of renal function (CrCL<30 ml/min; CrCL: 30-50 

ml/min; CrCL>50 ml/min), and the percentile of the mean, 5th and 95th (90% PI) is represented 

graphically. The best dosing regimens were selected based on the highest probability that the 

achieved concentrations would fall within the desired therapeutic range.  
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Results 

Patient Characteristics  

Eight patients in the CII study had unstable SCr; three of them were general medical unit 

patients and five were ICU patients. The CrCL for twenty seven patients in the CII study was 

unavailable. The duration of infusion for the 48 patients ranged from 8 to 894 h (138±158 h) and 

infusion rates ranged from 100 to 1600 IU/h (500±210 IU/h).  

 

Population PK modeling  

A two-compartment linear model with exponential inter-individual variability on clearance 

(CL) and volume of distribution of central compartment (V2) adequately described the data. The 

basic PK parameters of CL, V2 and volume of distribution of peripheral compartment (V3), 

absolute bioavailability (F1) and absorption rate constant Ka (for SC study) are shown in Table 2.  

The residual error model accounted for differences in the residual error variance between the 

general medical unit and ICU patients. The residual error model was a combined additive and 

proportional model for general medical unit patients and proportional only for ICU patients. 

Allowing the residual error variance to partition based on location of the patient improved the 

OFV by 62.6 units (P<0.005).  

The best residual error was described by the equation: 

For general medical unit patients:  Yij = IPREDij*(1+εij1) + εij2  

For ICU patients:  Yij = IPREDij*(1+εij3) 

     where IPREDij represents the jth predicted concentration for the ith individual, Yij is 

the observed anti-Xa concentration, and ε are the i.i.d. normally distributed random effects with 

normal distribution with a mean zero and standard deviation σ. ε1 and ε3 are the proportional 

component, and ε2 is the additive component.  

      Visual inspection of individual empirical Bayes estimates of clearance showed a 

systematic change with CrCL.  Thus CrCL was chosen for inclusion in the model as below:  

      CL=θNR+(CrCL/4.8 )* θCrCL *exp(ηi CL) 
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The θ NR and θCrCL are non-renal and renal clearance components, respectively.7  The 

reported parameter estimates for θ NR and θCrCL were 0.229 and 0.681 respectively in the 

literature.7 From the sensitivity analysis, the CV% of all other parameter estimates, including 

mean parameter estimates (CV%: 0.4%-2.5%), inter-individual (CV%: 3.4% (ωcl); 3.0% (ωv2)) 

and intra-individual variability (CV%: 0.1% (σ1); 0.2%(σ2); 1.2%(σ3)), was less than 10% as a 

result of changing the value of θ NR with one exception. θCrCL, which is correlated with the θNR 

value, had a larger change in value (CV%: 19%) than all the other parameters in the analysis. 

However CV% of total CL estimates were less than 10%, which may explain the compensatory 

change of θCrCL with θNR value. Therefore, fixing θ NR to 0.229 did not affect the estimation of 

other parameters (mean parameter estimates, inter- and intra-individual variability), based on the 

sensitivity analysis. We left this value fixed at 0.229 as it was estimated under a much more 

robust experimental design and thus more likely to be an accurate reflection of non-renal 

clearance. 7 

CrCL was the most significant covariate on CL (∆OFV =-10.1; P<0.005). Weight was the 

most significant covariate on V2 (∆OFV=-11.8; P<0.005). After incorporating the effect of CrCL 

on CL, weight was the most significant covariate on V2 (∆OFV=-21.56; P<0.005). The final 

model included CrCL on CL and weight on V2.   The critical values of the delta OFV, according 

to the randomization test, to accept CrCL and weight were 2.6 and 2.3 respectively. The final 

model for CL and V2 was therefore: 

CL= 0.229 + (CrCL/4.8)*θCrCL *exp(ηiCL) 

V2=θ2*(weight/70) *exp(ηi V2) 

where θ denotes the fixed effects, η denotes random effects with log normal distribution 

with zero mean and standard deviation ω, 0.229 (L/h) is the fixed value for non-renal clearance 

component, 80 ml/min (4.8 L/h) is considered as the cut-off value for normal renal clearance. 89, 

90 

The final PK parameter estimates are shown in Table 2. Population predicted anti-Xa 

concentrations versus observed anti-Xa concentrations are shown in Figure 1. ICU patients had 

an approximately 2 fold higher proportional residual variability than those general medical unit 
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patients. Inter-individual variability of CL and V2 decreased by 38% and 53% respectively in the 

covariate model compared to the base model.  

Upon inspection, the 48 patients in the CII study, ICU patients had a lower CL (0.79±0.40 

L/h) than general medical unit patients (0.99±0.39 L/h), which is consistent with our previous 

results.75, 91  The individual dosage adjustment was calculated using individual estimates from 

NONMEM®. To achieve a target concentration of 0.5 IU/ml anti-Xa concentration, the infusion 

rates for typical ICU and general medical unit patients with weight of 70 kg were 5.6±2.7 

IU/kg/h and 7.0±2.7 IU/kg/h, respectively.  

 

Simulation of steady state anti-Xa concentrations  

Assessing significant covariates that affect anti-Xa concentrations: Since weight and CrCL 

were significant covariates for PK parameters, simulations were applied to evaluate their impact 

on target anti-Xa concentration at steady state with weight varying from 30 to 120 kg and CrCL 

varying from 10 to 120 ml/min. Steady state anti-Xa concentrations were simulated using a 2-

compartment model with parameters fixed to the final parameters under the covariate model and 

all random effects set to zero.   

Anti-Xa concentration at steady state was calculated by equation 1. The effect of weight and 

CrCL on Css when administering enoxaparin at a rate of 100 IU/kg/12h by CII, is shown in 

figure 2. Clearance increased from 0.6 to 0.9 L/h when CrCL increased from 30 to 80 ml/min. As 

CrCL decreased and weight increased, predicted Css increased. This was particularly 

pronounced, when CrCL was below 30 ml/min.  

 

Comparing the percent of predicted Css outside of therapeutic range at infusion rates 

of 8.3, 5.8, 5.0 and 4.2 IU/kg/h:  CrCL was simulated using the covariate distribution model. 

The distribution of the covariates in patients with simulated values was comparable to that of 

general medical unit and ICU patients in the CII study. The final PK model with covariates was 

used as the input-output model. The percent for a predicted Css higher than 1.2 IU/ml or lower 

than 0.5 IU/ml was calculated for each simulation when general medical unit and ICU patients 

received infusion rate at 8.3, 5.8, 5.0 and 4.2 IU/kg/h respectively.  
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The percentage of predicted Css outside of therapeutic range (mean, 5th and 95th percentiles) 

at each infusion rate for general medical unit and ICU patients was shown in Table 3. The 

percentage of predicted Css outside of therapeutic range at each infusion rate for these subjects 

with different renal function was shown in Table 4. For both general medical unit and ICU 

patients, when the infusion rate decreased, the percentages of the predicted Css that were higher 

than 1.2 IU/ml decreased and the percentages of the predicted Css that were lower than 0.5 IU/ml 

increased (Figure 3a, 3b, 4a, 4b). General medical unit patients achieved the lowest total 

percentage (with an equal probability of either being above or below the therapeutic range) of the 

predicted Css falling outside of therapeutic range at an infusion rate of 8.3 IU/kg/h, while ICU 

patients achieved the lowest total percentage at 4.2 IU/kg/h.  

Figure 3, Figure 4 and Table 4 illustrate the percentage of patients’ predicted Css falling out 

of therapeutic range for ICU and general medical unit patients.  These figures reflect that, given 

an optimization of dosage to result in an equal probability of being either above or below the 

therapeutic range, general ward unit subjects achieved the lowest total percentage of Css falling 

outside of therapeutic range at infusion rate of 5.0 IU/kg/h if CrCL<30 ml/min, 5.8 IU/kg/h if 

CrCL was 30-50 ml/min and 8.3 IU/kg/h if CrCL>80 ml/min, while ICU subjects achieved the 

lowest total percentage of Css falling outside of therapeutic range at infusion rate of 4.2 IU/kg/h 

if CrCL<30 ml/min, 5.0 IU/kg/h if CrCL was 30-50 ml/min and 5.8 IU/kg/h if CrCL>80 ml/min. 

The difference between different dosing strategies is shown graphically in Figure 3a, b and 

Figure 4a, b. If the current dosing guideline (100 IU/kg/twice a day) of enoxaparin administrated 

SC were used for patients with CrCL<30 ml/min receiving CII, 64.6-68.1% of ICU patients and 

52.1-60.9% of general medical unit patients would have anti-Xa concentration > 1.2 IU/ml 

(Figure 3b, 4b). This can be reduced to 24.1-29.2% for ICU patients when dosing is decreased to 

4.2 IU/kg/h and to 21.4-28.3% for general medical unit patients when the dosing decreased to 5.0 

IU/kg/h. When using the revised dosing strategy, simulated ICU and general medical unit 

patients with a CrCL<30 ml/min experienced a 28% and 22% (Table 4) decrease in the 

percentage of the total predicted Css falling out of therapeutic range respectively, when 

compared with the patients receiving 8.3 IU/kg/h of enoxaparin.  

In some situations, the best dose selected based on the total percentage of Css outside of the 

therapeutic range was found to be indistinguishable from other doses (change of total % Css 

outside of the therapeutic range less than 10%). For example, if ICU patients, with CrCL<30 
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ml/min that received enoxaparin at infusion rate of 5.0 IU/kg/h, the total percent Css outside of 

therapeutic range was reduced by 3% compared to the situation when the best dose of 4.2 

IU/kg/h was applied. This is also true for general medical unit patients with CrCL< 30 ml/min, 

the total percentage of Css falling outside of therapeutic range at infusion rate of 5.0 IU/kg/h was 

48% and became 49% at the rate of 5.8 IU/kg/h. However, in the “best dose” situations, patients 

have a similar probability of being either above or below the therapeutic range (Figure 3c, 4c). If 

the change of the total % Css outside of the therapeutic range was less than 10% when dose other 

than best dose was applied, the dose was considered to be indistinguishable from the best doses 

suggested above. Thus the range of dosage at each of the patient types were indicated, where the 

total probability of being outside the therapeutic range was indistinguishable: for general medical 

patients 4.2-5.8 IU/kg/h if CrCL<30 ml/min, 5.0 – 8.33 IU/kg/h if CrCL was 30-50 ml/min and 

5.8-8.33 IU/kg/h if CrCL>50 ml/min;  for ICU patients, 4.2-5.0 IU/kg/h if CrCL<30 ml/min, 4.2 

– 5.8 IU/kg/h if CrCL was 30-50 ml/min and 5.0-5.8 IU/kg/h if CrCL>50 ml/min. However, the 

clinician will have to consider the risks to a particular patients associated with the relative 

probability of that patients being either above or below the range when tailoring the actual dose 

administered to the patient. 

  

Discussion 

Dosing strategies developed by many SC enoxaparin studies were based on weight and renal 

function, which may help to reduce bleeding complications, 65, 67, 68, 84and these changes are 

amplified in complicated patient populations that are present in critically ill multiple trauma 

patients74.  Highly variable and unreliable anti-Xa concentrations were observed when the 

standard dose of enoxaparin for prevention of venous thromboembolism was applied. In this 

study, the bioavailability estimation for general medical unit patients in SC study was 0.94. 

Whether the extensive variability of anti-Xa concentrations in critically ill patients from Dr. Haas 
74study is due to the variable bioavailability for SC enoxaparin is unknown. Applying CII 

enoxaparin is one approach to evaluate this issue and may reduce the variability observed after 

SC administration in critically ill patients.   This has led some investigators to begin examining 

the continuous IV administration of enoxaparin to examine this issue.  Despite this, no extensive 

population pharmacokinetic analysis or dosing adjustment suggestions have been reported for 
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enoxaparin given by CII. This is the first study to evaluate factors affecting anti-Xa 

concentrations following CII administration of enoxaparin. This information is used to develop a 

dosing guideline based on the percentage of the predicted steady state anti-Xa concentrations 

falling out of the therapeutic range with CII using Monte Carlo simulations. 

In previous population data analyses, combined data sets were used to help stabilize 

estimations.16 In our study, combining additional data from the SC study with the CII data 

allowed us to better describe and characterize the PK parameters for CII.  Compared with the CII 

data analysis alone, there was a 50% decrease of standard error of estimation for CL and V2 in 

the combined data analysis. Moreover, the inter-individual variability of CL and V2 decreased 

37% and 47% respectively, compared with the CII data analysis alone. 75 

Approximately half of the subjects in CII study were from ICU. This may contribute to 

additive PK complexity as those patients were prone to have fluid shifts, organ dysfunction, and 

drug binding alteration.71, 92 Different PK parameters (CL) were found in ICU and general 

medical unit patients in this study and our previous report. 75The different clearance between 

ICU and general medical unit patients was also found by Priglinger et al.,73 where they 

demonstrated that SC administration of LMWH may not work well in critically ill patients due to 

different PK behavior as compared with general medical unit patients. Simulations suggest that 

an infusion rate of 5.6±2.7 IU/kg/h for ICU patients and 7.0±2.7 IU/kg/h for general medical unit 

patients were needed to achieve lower limit of therapeutic range of 0.5 IU/ml anti-Xa 

concentration. The model for ICU patients showed a higher proportional residual error than that 

from general medical unit patients. This may be a function of model misspecification in the 

highly dynamic ICU population compared to the more stable general medical unit patients  

Similar to previous reports of SC administration of enoxaparin,7, 68 this study showed that 

enoxaparin CL increased with increasing CrCL.  One study in 96 obese patients reported by 

Green et al.6 demonstrated that LBW is a significant covariate on CL and weight on V2. After 

including CrCL on CL and weight on V2, no body size descriptor other than weight was found as 

a significant covariate on PK parameters. Green et al 7 reported a series recommended dosing 

regimens based on the glomerular filtration rate (GFR) estimated using CG equation , where 

dose of 0.4 mg/kg/12h was suggested to subjects with GFR less than 30ml/min. A simulation 

study for CII administration found that CrCL had a higher impact on Css in patients with renal 
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dysfunction (CrCL<30 ml/min) than in patients with moderate renal impairment and normal 

renal function patients. Results from 200 simulations at each infusion rate (8.3, 5.8, 5.0, 4.2 

IU/kg/h) demonstrated that general medical unit patients achieved the lowest total percent of 

predicted Css outside of the therapeutic range at 8.3 IU/kg/h (90% PI: 48.0%-56.8%), while ICU 

patients achieved the lowest total percent at 4.2 IU/kg/h (90% PI: 47.7%-54.2%) (Table 3). 

Furthermore, if CrCL was less than 30 ml/min (renal dysfunction), the best doses for patients in 

the ICU and general medical unit were 4.2 IU/kg/h and 5.0 IU/kg/h, respectively; 5.0 IU/kg/h 

and 5.8 IU/kg/h, respectively, if CrCL is between 30 and 50 ml/min (moderate renal impairment). 

For ICU and general medical unit patients with CrCL greater than 50 ml/min, the best dose was 

5.8 IU/kg/h and 8.3 IU/kg/h respectively (Table 4). Based on these results, most patients will 

achieve expected steady state anti-Xa concentrations between 0.5 IU/ml and 1.2 IU/ml, if a): 

ICU patients with CrCL > 50 ml/min receive enoxaparin at 5.8 IU/kg/h, and general medical unit 

with CrCL > 50 ml/min receive enoxaparin at 8.3 IU/kg/h infusion rate; 2): ICU patients with 

CrCL between 30 to 50 ml/min receive enoxaparin at 5.0 IU/kg/h, and general medical unit 

patients with CrCL between 30 to 50 ml/min receive 5.8 IU/kg/h; and 3): ICU patients with 

CrCL< 30 ml/min receive enoxaparin at 4.2 IU/kg/h and medical unit patients with CrCL< 30 

ml/min receive enoxaparin at 5.0 IU/kg/h. These best doses also represented the optimal solution 

where the probability of being above the therapeutic range is not different from being below the 

range (Figure 3c, 4c). Given different therapeutic risks in the clinic, it was felt that this would 

provide a starting point. The additional information on the total risk of being outside the 

therapeutic range can then be considered in concert with this information tailoring to the patient 

with respect to whether or not it is worse for that patient to be above or below the range. Given 

the equal total probabilities of being outside the range for multiple dosage levels, we have 

provided a range of dosages where that total probability is indistinguishable across groups can be 

determined from Table 4. However, the clinician will have to consider the relative probability of 

above or below the range when tailoring the actual dose administered to the patient. 

CII administration of enoxaparin had been used in the treatment of acute pulmonary 

embolism.93, 94    Patients with acute pulmonary embolism received an i.v bolus of 0.5 mg/kg 

enoxaparin and followed by an initial dosage of 2-3 mg/kg/day CII enoxaparin. Anti-Xa 

concentrations were measured daily. The dosage was adjusted to maintain anti-Xa concentration 

between 0.2 – 0.6 IU/ml. 93, 94No deleterious hemorrhagic side effects were found during the 
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treatment of acute pulmonary embolism.94  This might be due to the dosage adjustment by daily 

measurements of anti-Xa and anti-IIa concentrations, which lead to more constant level of 

anticoagulation. The dosing adjustment recommended in this paper can be applied when CII is 

used in clinical practice to patients with varying renal function, which is not available in 

literature yet.  

Unfortunately, the limitations of a retrospective study are the availability of documented data 

in a medical unit record review. Even with the electronic laboratory information, SCr 

concentrations were unavailable in twenty seven patients in the CII study. The need to evaluate 

SCr was at the discretion of the physician since this was an observational evaluation. We 

acknowledge the small sample size of patients with available SCr in the CII study and accounted 

for this by combining data in the PK analysis with additional patients from a second study. This 

approach has been discussed previously.16   Combining datasets assisted in identifying CrCL as a 

significant covariate of CL. 75 

 

Conclusion 

This study evaluated the pharmacokinetic profile and defined a dosage strategy for 

administering enoxaparin by continuous intravenous infusion in patients with varying renal 

function. CrCL was identified as a significant covariate on CL and total body weight on V2. 
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Table 1: Patient characteristics for the two studies 

 

SC  CII  Combined Demographics 
General medical unit General medical unit ICU  

Sample size 35 29 19 83 
Age (years) 75.1  

(44-86) 
60.9 

(16-90) 
59.3 

(23-77) 
66.6  

(16-90) 
Weight (kg) 67.7  

(32-95) 
74.1  

(46.5-108) 
73.3  

(46.5-97.5) 
71.0  

(32-108) 
Height (cm) 164.0  

(147-184) 
168.7 

(152-182) 
166.2 

(151-177) 
166.0  

(147-184) 
Gender 
(Male/Female) 

17/18 16/13 7/12 40/43 

CrCL 
(ml/min) 

39.2  
(14.9-95.7) 

63.5  
(31.1-128.3) 

26.8 
(7.6-49.6) 

45.0  
(7.6-128.3) 

 
 

Abbreviations: SC: subcutaneous, CII: continuous intravenous infusion, CrCL= Creatinine Clearance.  

* Twenty seven patients in the CII study did not have a serum creatinine (SCr) concentrations.  
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Table 2: PK parameter estimates for two compartment model 

 
Parameters Base model SE% Parameters Final model     SE% 

CL (L/h) 0.693 9.5 CLmissing (L/h) 0.972         10.5 

θNR N/A N/A θNR (L/h) 0.229 N/A 

θCrCL N/A N/A θCrCL (1 /4.8 CrCL) 0.744 18.7 

V2 (L) 7.07 22.5 V2 (L/ 70 kg weight) 6.78 19.2 

V3 (L) 5.99 25.4 V3 (L) 6.19 24.9 

Q  (L/h) 0.494 27.9 Q  (L/h) 0.429 24.7 

Ka (/h) 0.428 29.0 Ka (/h) 0.476 27.3 

F1 1 1.1 F1  0.94 9.7 

ωcl% 65.5 44.1 ωcl% 40.7 23.8 

ωv2% 61.9 31.3 ωv2% 29.4 82.2 

σ1% 22.6 28.4 σ1% 12.1 100 

σ2 (IU/L) 75.4 36.6 σ2 (IU/L) 132 44.7 

σ3% 43.1 26.0 σ3% 44.0 26.3 

  
Abbreviations: CL=clearance, CrCL=creatinine clearance, IU=international units, SE=standard error, 

weight=total body weight, V2=volume of distribution of central compartment, V3=volume of distribution 

of peripheral compartment, ω=coefficient of variation of inter-individual variability, σ1=proportional 

coefficient of variation of residual error for general medical unit patients, σ2=additive coefficient of 

variation of residual error for general medical unit patients, σ3= proportional coefficient of variation of 

residual error for ICU patients; N/A: not available, θNR = 0.229 (fixed), Unit of weight=kg, Unit of 

CrCL=L/h, F1: absolute bioavailability 
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Table 3: Percent of predicted anti-Xa Css higher than 1.2 IU/ml or Percent of predicted anti-Xa Css 

lower than 0.5 IU/ml when general medical unit and ICU patient receiving enoxaparin at different 

infusion rates of 8.3, 5.8, 5.0 and 4.2 IU/kg/h 

 

General medical unit Patients ICU Patients 

Infusion rate 

 (IU/kg/12h) 

Percent of 

Css <0.5IU/ml 

Percent of 

Css >1.2IU/ml 

Percent of 

Css<0.5IU/ml 

Percent of 

Css>1.2IU/ml 

 Mean       90%PI Mean       90%PI Mean       90%PI Mean       90%PI 

8.3 18.1        16.7-20.7 33.9       31.3-36.1 5.8            4.5-6.8 61.1       59.4-63.9 

5.8 35.8        33.8-38.2 17.0      15.0- 19.0 13.8         12.5-15.1 41.4       40.4-43.5 

5.0 44.9        42.5-47.1 11.9      10.3-13.5 20.5         19.2-22.2 31.0       30.3-33.3 

4.2 55.2        52.5-57.5 7.50       6.40-8.70 28.3         26.5-29.8 22.7       21.2-24.4 

 
 

Abbreviations: ICU = intensive care unit, Css = steady state anti-Xa concentration, h= hour, PI=predicted 

interval 
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Table 4: Percent of predicted anti-Xa Css higher than 1.2 IU/ml or Percent of predicted anti-Xa Css 

lower than 0.5 IU/ml when general medical unit and ICU patient receiving enoxaparin at different 

infusion rates of 8.3, 5.8, 5.0 and 4.2 IU/kg/h for subjects at each renal function group (1: CrCL< 30 

ml/min; 2: CrCL 30-50 ml/min; 3: CrCL> 50 ml/min).  

 

 

Infusion rate 
(IU/kg/12h) 

CrCL 
(ml/min) 

General medical unit Patients 
Mean percent of     Mean percent of 
Css <0.5IU/ml        Css >1.2IU/ml 

ICU Patients 
Mean percent of     Mean percent of
Css <0.5IU/ml        Css >1.2IU/ml 

8.3 <30 6.74 54.4 4.1 65.8 
 30-50 11.9 42.7 7.4 55.5 
 >50 22.4 28 13.3 44 
5.8 <30 16.6 32.3 10.97 46.1 
 30-50 28.2 21.6 16.8 36.2 
 >50 43.8 11.6 25.8 22.9 
5.0 <30 23.7 24.3 16.8 35.1 
 30-50 36.8 15.3 24.2 26.4 
 >50 53.3 7.59 36.8 14.5 
4.2 <30 32.8 16.3 24.1 26.4 
 30-50 47.4 9.93 32.4 18.4 
 >50 63.8 4.47 48.0 9.13 

 

Abbreviations: ICU = intensive care unit, Css = steady state anti-Xa concentration, h= hour 
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Figure 1: population predicted anti-Xa concentrations versus Observed for the two-compartment 

model with CrCL and weight covariates in the model. Individual data points were shown as dots 

and the unity was shown as a solid line. 
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Figure 2: Three-D surface showing the relationship between CrCL, weight and predicted Css. 

The surface shows how the Css changes with both weight and CrCL simultaneously. 
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Figure 3: The percentage of predicted Css falling out of therapeutic range at different infusion 

rate (8.3, 5.8, 5.0, 4.2 IU/kg/h) for ICU patients with different renal function (1: CrCL< 30 

ml/min; 2: CrCL 30-50 ml/min; 3: CrCL> 50 ml/min). Dash lines represent the 5th and 95th 

percentiles (90% PI).  

a): Percentage of predicted Css which is lower than 0.5 IU/ml 

b): Percentage of predicted Css which is higher than 1.2 IU/ml  

(Rhombus ◆: 4.2 IU/kg/h; Square ■: 5.0 IU/kg/h; Triangle ▲:5.8 IU/kg/h; Dot ●: 8.3 IU/kg/h) 

c): Percentage of predicted Css falling out of therapeutic range (0.5-1.2 IU/ml) when patients 

with CrCL<30ml/min received enoxaparin at 4.2 IU/kg/h infusion rate and CrCL between 30 and 

50 ml/min received enoxaparin at 5.0 IU/kg/h infusion rate and CrCL> 50 ml/min received 

enoxaparin at 5.8 IU/kg/h infusion rate. 

 (Square ■: > 1.2 IU/ml; Dot ●: < 0.5 IU/ml) 
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Figure 4: The percentage of predicted Css falling out of therapeutic range at different infusion 

rate (8.3, 5.8, 5.0, 4.20 IU/kg/h) for general medical unit patients with different renal function (1: 

CrCL < 30 ml/min; 2: CrCL 30-50 ml/min; 3: CrCL > 50 ml/min).  

Dash lines represent the 5th and 95th percentiles (90%PI).  

a): Percentage of predicted Css which is lower than 0.5 IU/ml 

b): Percentage of predicted Css which is higher than 1.2 IU/ml  

(Rhombus ◆: 4.2 IU/kg/h; Square ■: 5.0 IU/kg/h; Triangle ▲:5.8 IU/kg/h; Dot ●: 8.3 IU/kg/h) 

c): Percentage of predicted Css falling out of therapeutic range (0.5-1.2 IU/ml) when patients 

with CrCL < 30 ml/min received enoxaparin at 5.0 IU/kg/h infusion rate and CrCL between 30 

and 50 ml/min received enoxaparin at 5.8 IU/kg/h infusion rate and CrCL>50 ml/min received 

enoxaparin at 8.3 IU/kg/h infusion rate. 

(Square ■: > 1.2 IU/ml; Dot ●: < 0.5 IU/ml) 
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CHAPTER 3 DETERMINATION COVARIATE EFFECTS ON EXPOSURE OF 

DRUG WITH LINEAR PHARMACOKINETIC CHARACTERISTICS GIVEN HIGHLY 

SPARSE DATA 

 

 

 

 

 

 

 

 

 

This chapter is based on the following paper: 

Bies, Robert R, Feng, Yan, Lotrich, Francis E, Kirshner, Margaret A, Roose, Steven P, Kupfer, David J, 

Pollock, Bruce G. Utility of sparse concentration sampling for citalopram in elderly clinical trial subjects.  

Journal of Clinical Pharmacology, 2004, 44(12):1352-1359. 

The supplemented results from the further study after publication were also presented. 

 

 

Copyright has been assigned to Sage Publications. The permission of using the full article in the 

thesis had been granted from the copyright owner (Sage Publications). 
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ABSTRACT 

Objective: To evaluate whether the disposition of the selective serotonin reuptake 

inhibitor, citalopram, could be robustly captured using 1 to 2 concentration samples per subject 

in 106 patients participating in two clinical trials.   

Methods:  Nonlinear mixed effects modeling was used to evaluate the pharmacokinetic 

parameters describing citalopram’s disposition. Both a prior established 2-compartment and a de-

novo 1-compartment pharmacokinetic model were used. Covariates assessed were concomitant 

medications, race, sex, age (22-93 years) and weight. Covariates affecting disposition were 

assessed separately and then combined in a stepwise manner.   

Results: Pharmacokinetic characteristics of citalopram were well captured using this 

sparse sampling design. Two covariates (age and weight) had a significant effect on the 

clearance and volume of distribution in both the one and two compartment pharmacokinetic 

models. Clearance decreased 0.23 L/hr for every year of age and increased 0.14 L/hr per kg body 

weight. 

Conclusions: Hyper-sparse sampling designs are adequate to support population 

pharmacokinetic analysis in clinically treated populations.  This is particularly valuable for 

populations such as the elderly, who are not typically available for pharmacokinetic studies. 
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INTRODUCTION: 

Selective serotonin reuptake inhibitors (SSRIs) such as citalopram are commonly used to treat 

depression in geriatric patients.95 There are limited data on the variability and exposure characteristics of 

these compounds once in general clinical use.  Elderly patients are not easily studied using the intensive 

concentration sampling required for classical pharmacokinetic (PK) analysis approaches. These data are 

potentially available using a sparse-sampling approach to measuring concentration exposure.  

 The limitation of traditional PK studies with small numbers of healthy volunteers is in the ability to 

extrapolate the results to clinical populations. For certain drugs, such as citalopram, large differences in 

PK/PD profiles may be found across individuals. Mixed effects population PK methods are better suited 

for evaluating inter-individual and intra-individual random effects in large-scale clinical trials, and only 

require a few samples per patient in a large number of patients.96 Moreover, covariate effects, when 

evaluated using this methodology, are supported by all data in the analysis.  Thus, systematic error is 

reduced when compared to classical PK approaches.97   

Despite this, there have been no studies evaluating in a continuous manner, the nature of PK changes 

for citalopram in clinically treated populations, particularly with regard to age.  Age-related differences 

in citalopram pharmacokinetics have been reported as general differences between groups of young and 

elderly individuals.98, 99  For example, Frederiscon Overo et al 98 measured citalopram PK in 11 elderly 

patients aged 73 to 90 years, and Gutierrez and Abramowitz 99 similarly examined citalopram 

disposition in 24 healthy elderly volunteers aged 65 to 77 years. Both of these studies found a reduction 

in clearance in the elderly group, with Frederiscon Overo et al showing a range of clearance from 4.8 to 

18 L/hr in the elderly and approximately 24 L/hr in the young.98 In 2 other studies utilizing data from 

therapeutic drug monitoring, age was correlated with drug concentrations 100 or with dose/concentration 

ratios,101 although specific pharmacokinetic parameters were not assessed. However, there is a need to 

quantitatively evaluate differences in PK for drugs used in the elderly across a range of ages and to 

account for the role of other individual specific characteristics that may impact exposure to drug. 

This study evaluated the performance of nonlinear mixed effects modeling in capturing exposure to 

citalopram as well as individual specific characteristics affecting that exposure with very limited 

sampling in a large number of psychiatric patients from two clinical trials.  We quantitatively explored, 

using nonlinear mixed effects modeling, the relationships between clearance, weight, age sex, race and 

concomitant medications as well as the degree of inter-individual variability in drug exposure. 
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METHODS: 

General Design  

Two clinical trials   (see below) provided a total of 199 plasma concentration samples for citalopram 

from 106 subjects (Table 1).  The subjects were started at a dose of 20 mg citalopram daily. The subjects 

received an average daily citalopram dose of 30±15 mg in study A and 15 ±5 mg in study B. 

Population PK analyses were performed using de-identified data. De-identified data does not allow a 

link to be made between patients and their individual personal and psychiatric information.  Both studies 

were approved by the appropriate institutional review boards and all subjects gave informed consent to 

participate. 

 

Subject selection 

Study A was a multi-site (5 academic medical centers in the U.S, with University of Pittsburgh as the 

coordinating center) open label study to assess citalopram as treatment for depression in patients with 

bipolar disorder.102  The subjects had a diagnosis of DSM-IV bipolar I or II depression.  Patients were 

excluded for mania, rapid cycling, mixed or psychotic forms of depression, any other axis I diagnosis, 

history of alcohol or substance abuse in the last three months, unstable or untreated medical disorder, 

and women who were pregnant or breastfeeding or of childbearing potential not on contraception. 

Subjects were treated with citalopram in 2 phases, an initial 8-week response phase followed by a 

16-week continuation phase for responders. Citalopram was started at 20 mg daily, and could be 

increased by 20 mg every 2 weeks based on response to a maximum of 60 mg or reduced to a minimum 

dose of 10 mg based on the appearance of adverse drug reactions.  A detailed history of dosage changes 

was available for the purposes of modeling citalopram pharmacokinetics. Plasma samples were obtained 

at baseline, week 1, week 8 and the end of study.  A histogram showing the distribution of sampling 

times (time after dose) is shown in Figure 1.  The concentration measurements were not scheduled for 

any particular time as the mixed-effects modeling approach could account for this as long as the last 

dosage time and the sampling time were known.  The dosage times were noted for inpatient subjects and 

were supplied as self-report from outpatients.  Concomitant medications were noted at each of the clinic 

visits. A total of 45 patients entered this study with 40 of these patients providing 85 citalopram 

concentration samples. 

Study B was a multi-site (10 academic medical centers in the U.S. with Columbia University as the 

coordinating center) randomized, double-blind study of the treatment of depression with citalopram or 
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placebo in subjects at least 75 years of age.103, 104  Subjects had a DSM-IV diagnosis of major depressive 

disorder with duration of the episode of greater than four weeks at baseline.  Subjects were excluded if 

they had other axis I disorders, dementia, acute severe or unstable medical illness or if they had a mini-

mental status examination score of less than 18. 

Citalopram was given at an initial dose of 20mg daily with the option to increase to 40mg daily for 

weeks five through eight.  Dosages could be reduced to 10 mg daily if there were significant side effects.  

Plasma samples for citalopram were obtained at baseline, week 4, and week 8 or upon termination, if 

early termination occurred.  No specific timing was scheduled for the citalopram concentration sampling.  

The distribution of sampling times is shown in Figure 1.  The time of last dosage was noted by self-

report and the dosage history was available for PK modeling.  The clinical trial site recorded the timing 

of the plasma sample collection for citalopram.  A total of 66 patients provided 114 concentration 

samples. 

 

Citalopram Analysis 

Citalopram and metabolites were measured by HPLC with UV detection using a method developed 

in our laboratory.105  This assay has been validated with a lower limit of detection of 3ng/mL and 

coefficients of variation ranging form 3.1% (220ng/mL) to 9.4% (15ng/mL).  All concentration 

measurements were analyzed in the Geriatric Psychopharmacology Laboratory at the University of 

Pittsburgh using the same analytical protocol. 

 

Pharmacokinetic modeling 

A prior nonlinear mixed effects model describing citalopram pharmacokinetics was used to evaluate 

the data from the two studies described above.106, 107  In addition, a new model search was performed 

evaluating 1 and 2-compartment models. The focus of the modeling was to examine the impact of the 

covariates weight, age, race, sex and concomitant medications on the oral clearance (CL/F) and volume 

of distribution (V/F) of citalopram.  NONMEM (Globomax Corporation, Hanover MD) was used for the 

analysis using both ADVAN2 TRANS2 and ADVAN4 TRANS4.  An exponential error model for inter-

individual variability (equation 1) on the pharmacokinetic parameters was used along with an additive 

and proportional residual error model (equation 2).  In equation 1, CL/Fi is an individual patient’s oral 

clearance value, TVCL/F is the population average oral clearance for an individual of particular age and 

weight and η is the inter-individual variability shown in exponential form.  In equation 2, Y is the 
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observed concentration value and G is the individually predicted concentration value. ERR(1) and 

ERR(2) are the residual error terms. Model building and assessment were done initially using the first 

order estimation method and confirmed using the first order conditional estimation method. 

CL/Fi = TVCL/F*exp(ηCL/F)   (1) 

Y = G*(1+ERR(1))+ERR(2)    (2) 

Initially, covariate relationships were evaluated using XPOSE,108 comparing the individual 

deviations for the parameters to the covariates of interest.  Four covariates (weight, age, sex, and race) 

were evaluated in this way.  For Study A, concomitant medication was assessed as an additional 

covariate. 

Covariates were evaluated in the mixed effects PK model in a stepwise fashion.  Initially, each 

covariate was assessed individually and then incorporated into the model in a stepwise fashion.  Both a 

stepwise addition with backward removal and a backward removal with forward addition method were 

utilized for covariate identification.  The difference in objective functions (∆-2 times the log likelihood 

(-2LL)) was used to compare alternative models.  As the log likelihood difference approximates a χ2 

distribution, the incorporation of a covariate resulting in an objective function decrease of 7.88 units (χ2, 

P<0.005, df=1) was considered significant.    Weight was incorporated as: 

TVCL1/F = θ1*(WT/MedWT) θ2  (3) 

where TVCL1/F is the population clearance, θ1 and θ2 are the coefficient and exponent 

surrounding the centered weight term, WT is weight in kilograms and MedWT is the median weight.109, 

110  The importance of each covariate was compared based on decreasing of objective functions (∆-2LL) 

when the model including a covariate and increase of ∆-2LL when the model excluding a covariate.  The 

most important covariate was retained in the model and then the second included after correction of the 

first.  Age was incorporated in model after inclusion of the weight covariate as shown below where 

TVCL/F is the population clearance including the age covariate, TVCL1/F is the weight normalized 

population oral clearance value and the age covariate is centered about the median age in the study (60 

years): 

 

 TVCL/F=TVCL1/F*exp((age-60)* θ3)  (4) 

In each run, the 95% confidence intervals (CI) of point estimates were determined from the standard 

errors of estimates (SE) as follows: CI point estimate ± 1.96×SE. If the covariate step was unsuccessful, 
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the 95% CI was determined by bootstrapping (sampling with replacement) method.111 This method 

consisted of repeatedly fitting the model to 200 bootstrap replicates of the data.  The 95% CI of 

bootstrap parameters were calculated by taking as the 2.5th to 97.5th inter-percentile range of the 200 

replicates. 

RESULTS:  

Although the prior 2-compartment model was used as an initial test model for this analysis,106, 107 the 

population PK model that was supported robustly by these data was the 1-compartment linear PK model. 

The 1-compartment PK model with exponential interindividual variability on both oral clearance and 

volume of distribution was determined to be the most robust based on both the Akaike information 

criterion (AIC)47 and the confidence intervals around the estimates (AIC = 1562, 1-compartment; AIC = 

1569, 2-compartment). 

The estimates of oral clearance averaged 6.34 L/h in the older patients (aged 75-93 years) and 16.49 

L/h in the younger patients (aged 22-65 years). The oral clearance values ranged from 2 L/h for the 

eldest patient (aged 93 years) in the study to approximately 19.5 L/h in the youngest subjects (aged 22-

29 years). This is consistent with studies using intensive PK sampling in limited numbers of subjects, in 

which oral clearance was approximately 4 L/h in the elderly group and 24 L/h in the young.112  

Details of the model-building process with the first-order (FO) and first-order conditional estimation 

(FOCE) methods are discussed below and also shown in Table 2. The incorporation of weight and age as 

covariates on CL/F and V/F resulted in significant changes in the objective function. The final models 

for CL/F and V/F were as follows:  

 

TVCL1/F = θ1*(WT/80) θ2

TVCL/F= TVCL1/F*exp((AGE-60)* θ3) 

CL/F = TVCL/F*exp(η1) 

TVV1/F= θ4*(WT/80) θ5 

TVV/F = TVV1/F*exp((AGE-60)* θ6) 

V/F= TVV/F*exp(η2) 

 

Beginning with a basic model not incorporating age or weight, a series of four additional models 

were tested using both FO and FOCE methods.  The best model for both FOCE method and FO method, 
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showed that weight and age were statistically significant covariates on both CL/F and V/F (Base Model 

OFV=1680, Best model with Covariates OFV=1567, FOCE).  After incorporation of weight as a 

covariate on CL/F and V/F, the incorporation of age as a covariate on CL/F and V/F further improved 

model fitness (FO: ∆=-102.3; FOCE: ∆=-36.93, P<0.005).  Observed versus model population predicted 

plots for the one-compartment model with both covariates using FOCE are shown in Figure 2.  This 

latter model effectively described twice the inter-individual variability on CL/F and V/F than the model 

without covariates.  A 2-compartment model was also evaluated.  Although the 1-compartment model 

had more robust parameter estimates, both models showed an age and weight effect on CL/F and V/F 

(see above for AIC values).  The parameters for the 1-compartment model are listed in Table 3.  Figure 

3 shows the relationship between the post-hoc predicted oral clearance versus weight and age as a 3-

dimensional response surface.  In the covariate free model, oral clearance increases while weight 

increases.  A similar relationship (although in the opposite direction) was seen in comparing the post-

hoc predicted oral clearance to age (Figure 3).  Notably the oral clearance decreased as age increased 

across the entire weight range.  Covariate plots generated by XPOSE of oral clearance versus age given 

weight and oral clearance versus weight given age also illustrated these inter-relationships (data not 

shown).     

In determining the individual specific PK parameters, we also calculated the dose-normalized AUC0-

24 to compare the relative exposure per milligram of drug dosed across age.  As age increased the 

average exposure increased. The average dose-normalized AUC (+/-SD) values were 69.7(+/-28.9) 

ng/mL*hr and 189.9(+/-78.4) ng/mL*hr for the 22-65 year and the 75-93 year old groups respectively 

(Figure 4).  The standard deviation in the old elderly group (75-93years) was more than two times 

greater than that in the younger group (aged 22-65, although the %CV is similar).  Consistent with the 

higher dose-normalized AUC observed in elderly subjects, the averaged dose was less than half than that 

used in younger adults (13+/-5 mg vs. 29+/-14 mg daily, respectively).  Subjects ultimately receiving 

less than 20mg (i.e., less than the initial dose both protocols) had lower CL/F values. 

 

DISCUSSION: 

In this study, we successfully implemented a population PK analysis in the spirit of Krecic-Shepard 

et al113 and Kang et al114 using a small number of samples per subject in a large number of subjects to 

determine the oral clearance and volume of distribution in patients ranging in age from 22 to 93 years.  

Specifically, our estimates of oral clearance averaged 6.34 L/hr in the older patients (75-93 years of age) 
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and 16.49 L/hr in the younger patients (aged 22-65 years of age).  The oral clearance values ranged from 

2L/hr for the eldest patient in the study to approximately 27 L/hr in the younger subjects. This is 

consistent with studies using intensive PK sampling in limited numbers of subjects, where oral clearance 

was approximately 4 L/hr in the elderly group and 24 L/hr in the young.98, 115 

The two metabolites of citalopram measured are typically present at lower concentrations than the 

parent compound and do not readily cross the blood brain barrier.  In our case, the concentrations for the 

demethyl-citalopram metabolite were less than or equal to those of the parent and the concentrations of 

the didemethyl-citalopram were less than 50% of the citalopram level.  This, in combination with EC50 

values that are three (demethyl-citalopram) to 15 times (didemethyl-citalopram) lower than that for 

citalopram, lead us to assume the metabolites do not significantly contribute to response.116  However, 

we did evaluate the metabolite concentrations versus the predicted clearance for citalopram. This 

showed no relationship between observed concentration and citalopram or its metabolites (data not 

shown).  This arises from the fact that samples were taken at random across the dose-concentration time 

profile.95   

This study allowed us to evaluate the covariate (body weight, age, race, sex, concomitant 

medications) effects on the PK parameters. When weight was included in the description the CL/F and 

V/F parameters, the model fit improved greatly both in the numeric indicator (objective function) and 

visually. This was anticipated as the volume of distribution is dependent on body weight due to the 

direct relationship between total body water and body size109, 110.  Also, the clearance (if solely a flow 

dependent process) is also related to the body weight with a hyperbolic function (usually BW0.75).109, 110, 

117  Age was also a highly significant covariate in this analysis.  In our study, using the covariate free 

model, oral clearance decreased from 19.50 L/h (age range: 22 to 29 years) to 2.05 L/h (age: 93 years). 

This decrease was consistent across the entire age range. Thus, age was included as a covariate affecting 

oral clearance (after weight), greatly decreasing the objective function by 70.53 (FO) units (P<0.005) 

and 57.10 (FOCE) units (P<0.005).  Other covariates tested were not significantly associated with the 

PK parameters. 

Although minimal samples were acquired for each patient (1 - 2 samples per patient), the results are 

consistent with findings from analyses from intense and therapeutic drug monitoring datasets.98-101  Our 

study was able to extend these findings by demonstrating a continuous relationship between age and 

clearance of citalopram, as well as simultaneously account for the effect of weight on the 

pharmacokinetics of citalopram. Clearance decreased 0.23 L/hr for every year of age and increased 0.14 
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L/hr for every kg of body weight. We were also able to assess for additional potential covariate effects, 

however, none showed a significant association with the PK parameters. 

Both dose-normalized magnitude of exposure and the absolute variability of that exposure increased 

dramatically as age increased. The largest magnitudes and variabilities per milligram of drug exposure 

occurred in the 75-93 year old subjects. Interestingly, there may have been a natural adjustment based on 

tolerability of the medications. Despite the fact that the dose titration protocols were similar across all 

ages, the final average dose in the older group was lower. In particular, the average dose was lower in 

individuals with lower clearance. 

In conclusion, our findings may have implications for how nonlinear mixed effects modeling 

approaches can glean useful information from sparsely sampled populations (ie, elderly, children, 

adolescents) not typically accessible in clinical trials. This information would be important in 

understanding both the magnitude and the variability of the exposure, as well as the specific factors 

that contribute to inter-individual differences in this exposure. 
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SUPPLEMENTAL RESULTS: 

Rationale for the supplemental study  

In the published article, the final model was developed using FOCE method. Age and 

weight were significant covariates on PK parameters (CL and V). The covariate selection criteria 

were based on significant reduction of OFV value, reduction of inter-individual variability and 

improvement of goodness of fit in diagnostic plots. The diagnostic plot in the previous study 

suggested that the model can adequately describe the data. However, the parameter estimate (V/F) 

didn’t agree with the PK parameter reported from the previous PK studies112, 118, 119, where V/F 

of citalopram was typically greater than 1000 L, due to its highly lipophilic property. In order to 

obtain physiological meaningful PK parameter estimates, further model development was 

performed. 
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Supplemental Results  

The further model development was performed using FOCE with interaction (FOCEI) 

method. The variance of the inter-individual variability of Ka was fixed to 1, which helped to 

stabilize the NONMEM model run. Nonparametric bootstrap methods were applied as an 

internal model validation approach. The detailed covariates selection during model development 

was shown in Table 4. The parameter estimate and the 90% CI from bootstrap (n=1000) analysis 

were showed in Table 5. The observed citalopram concentrations versus population predicted 

citalopram concentrations diagnostic plot are shown in Figure 5.  

 

One of the major aims of this study was to assess covariate effect on PK parameters. Age 

was the most significant covariate on CL, with reduction of OFV by 62.7 units (p<0.005) and 

reduction of inter-individual variability on CL by 30%. After incorporation of age on CL, the 

incorporation of weight on CL further improved model fitness. Comparing to the model with age 

on CL, OFV reduced by 15.8 units (p<0.005) and inter-individual variability on CL reduced by 

10% after incorporation both age and weight on CL. The OFV values were further reduced when 

including sex or race on CL (M10 and M11), weight on V (M12) in the model with age on CL, 

and when including age on V (M13), sex or race on CL (M14 and M15) in the model with age 

and weight on CL. However, none of them reduced the inter-individual variability. The 

improvement of goodness of fit was not noticeable in the diagnostic plot as well. Thus none of 

the covariates were included in the final model (M9).  
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Figure 1: Frequency histogram showing the sampling distribution for citalopram plasma 

concentration measurements. The x-axis is broken into two-hour bins. Several individuals were 

sampled past 30 hours (n=18 samples, <10% of all measurements, sampling times 31-178 hours 

after dose). The y-axis shows the proportion of samples taken in each interval. 
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Figure 2: Population predicted (PRED) versus observed (DV)  citalopram concentration values 

for the one-compartment model used with weight and age covariates in the model.  Individual 

data points are shown as diamonds and the unity is shown as a solid line. 
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Figure 3: Three-dimensional surface showing the relationship between age, weight and predicted 

clearance. The shading shows the exponentiated relationship for both weight and age across the 

entire range of these covariates. The surface shows how the clearance changes with both weight 

and age simultaneously. 
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Figure 4: Dose normalized AUC in ng/mL*hr versus age in years. The AUC was calculated from 

the individual specific post-hoc predicted pharmacokinetic parameters. 
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Figure 5: Observed citalopram concentrations versus population predicted citalopram 

concentrations plot of citalopram with 1-compartment model using FOCE interaction method. 

The solid line was the unity line. 
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Table 1:  Patient characteristics and data available from the Bipolar Depression and the Elderly 

Depression studies. 

 

Patient data Study A Study B 

N 40 66 

# of observations 85 114 

Sex Male:36; Female: 4 Male:33; Female: 33 

Race White:26; Black:14 White:62; Black:4 

Age range (years) 22-70 75-93 

MEAN±SD Age (years) 43.32±11.43 79.80±4.09 

MEAN±SD Weight (kg) 86.79±8.34 72.28±14.45 

MEAN±SD Dose (mg) 29.18±14.41 13.33±4.90 
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Table 2: Population model development (FOCE method) 

 
Covariate  Model -2LL ∆-2LL P value 
1 Base model 1693.136   
2-1     
CL(WT) M1 1650.527 -42.609  6.685e-11 
CL(AGE) M2 1601.486 -91.65 0 
CL(RACE) M3 1669.3 -23.836  1.047e-06 
CL(SEX) M4 1661.315 -31.821 1.691e-08 
2-2     
V(WT) M5 1680.49 -12.646 .00047027 
V(AGE) M6 1678.371 -14.765  .00012177 
V(RACE) M7 1686.147 -6.989  .00820122 
V(SEX) M8 1678.769 -14.367 .00015042 
3-1     
CL(AGE, WT) M9 1589.255 -12.23 .00047027 
CL(AGE, SEX) M10 1607.927 6.44 1 
CL(AGE, RACE) M11 1610.617 9.131 1 
3-2     
CL(AGE),V( WT) M12 1603.299 1.813 1 
CL(AGE),V( RACE) M13 1610.547 9.061 1 
CL(AGE),V( SEX) M14 1596.939 -4.547 .03297648 
4-1     
CL(WT, AGE), V(AGE) M15 1578.504 -10.75 .00104279 
CL(WT, AGE), V(SEX) M16 1593.99 4.735 1 
CL(WT, AGE), V(WT) M17 1581.881 -7.374 .00661736 
4-2     
CL(WT, AGE), V(AGE, WT) M18 1567.299 -11.2  .00081797 

 
∆-2LL was the objective function value from the covariate model minus the covariate-free model. -2LL values in 2-1 

and 2-2 were compared with base model; -2LL values in 3-1 and 3-2 were compared with M2; -2LL values in 4-1 

were compared with M9 and values in 4-2 was compared with M15. LL, log likelihood; WT, weight, Age (60 years) 

and WT (80 kg) were median values. 
Models: base model: TVCL/F= θ1, TVV/F= θ2; M1: TVCL/F= θ1*(WT/80)*θ4, TVV/F= θ2; M2: TVCL/F= θ 

1*EXP((AGE-60))*θ4, TVV/F= θ2; M3: TVCL/F= θ1+(1-Race)*θ4, TVV/F= θ2; M4: TVCL/F= θ1+(1-Sex)*θ4, 

TVV/F= θ2; M5: TVCL/F= θ1, TVV/F= θ2*(WT/80)*θ4; M6 TVCL/F= θ1, TVV/F= θ2*EXP((AGE-60))*θ4; M7: 

TVCL/F= θ1, TVV/F= θ2+(1-Race)*θ4; M8: TVCL/F= θ1, TVV/F= θ2+(1-Sex)*θ4; M9: TVCL/F=( θ1*EXP((AGE-

60))*θ4) *(WT/80)*θ5 , TVV/F= θ2; M10 TVCL/F=( θ1*EXP((AGE-60))*θ4) +(1-Sex)*θ5 , TVV/F= θ2; M11: 

TVCL/F=( θ1*EXP((AGE-60))*θ4) +(1-Race)*θ5 , TVV/F= θ2; M12: TVCL/F=( θ1*EXP((AGE-60))*θ4), TVV/F= 

θ2*(WT/80)*θ5; M13: TVCL/F=( θ1*EXP((AGE-60))*θ4), TVV/F= θ2+(1-Sex)*θ5; M14: TVCL/F=( θ1*EXP((AGE-

60))*θ4), TVV/F= θ2+(1-Race)*θ5; M15: TVCL/F=( θ1*EXP((AGE-60))*θ4) *(WT/80)*θ5 , TVV/F= θ2*EXP((AGE-

60))*θ6; M16: TVCL/F=( θ1*EXP((AGE-60))*θ4) *(WT/80)*θ5 , TVV/F= θ2+(1-Sex)*θ6; M17: 

TVCL/F=( θ1*EXP((AGE-60))*θ4) *(WT/80)*θ5 , TVV/F= θ2*(WT/80)*θ6; M18: TVCL/F=( θ1*EXP((AGE-60))*θ4) 

*(WT/80)*θ5 , TVV/F= θ2*EXP((AGE-60))*θ6*(WT/80)*θ7. 
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Table 3: PK parameter estimates for one compartment model. 

 

Parameters Cov-free model 95%CI Final model 95%CI 

Oral Clearance (L/h) 7.09 6.95-7.23 10.2 5.41-75.1 

V/F (L) 1.23 0.995-1.47 157 0.00306-2000 

Ka 0.00574 -0.851-0.862 0.0088 0.00156-5 

WT (θwt-CL) N/A N/A 0.663 0.0659-1.7 

AGE (θage-CL) N/A N/A -0.0285 -0.0416-0.0368 

WT (θwt-Vd) N/A N/A 3.61 0.0005-94.9 

AGE (θwt-Vd) N/A N/A -0.131 -0.946-1.25 

ωcl% 80.4 80.15-80.65 57.7 19.3-229.7 

ωv2% 450.5 448.6-452.5 279 0.0006-4582 

ωka% 94.9 93.1-96.7 45.1 0.00009-8700 

σ1% 17.37 -2.57-37.31 40.5 N/A 

σ2 (ng/mL) 4.39 3.49-5.29 3.46 N/A 

 
CI=confidence interval, WT=weight, V/F=volume of distribution, ω=coefficient of variation of inter-

individual variability, σ=coefficient of variation of residual error, N/A: not available 
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Table 4: Population Pharmacokinetic Model Development (1-compartment using FOCEI method) 

 

Covariate  Model -2LL ∆-2LL P value 
1 Base model 1664.743   
2-1    
CL    
WT M1 1636.694 -28.049 0.005
AGE M2 1602.017 -62.726 0.005
RACE M3 1658.054 -6.689 0.05
SEX M4 1648.254 -16.489 0.005
2-2    
V    
WT M5 1663.543 -1.2 > 0.05
AGE M6 1658.25 -6.493 0.05
RACE M7 1663.205 -1.538 0.05
SEX M8 1664.702 -0.041 0.05
3-1    
CL, V     
CL(AGE,WT) M9 1586.19 -15.827 < 0.005
CL(AGE, SEX) M10 1591.258 -10.759 < 0.05 
CL(AGE, RACE) M11 1597.967 -4.05 < 0.05 
CL(AGE),V(WT) M12 1599.33 -2.687 > 0.05
3-2    
CL and V     
CL(WT, AGE), V(AGE) M13 1577.613 -8.577 < 0.05 
CL(WT, AGE, SEX) M14 1578.305 -7.885 < 0.05 
CL(WT, AGE, RACE) M15 1581.042 -5.148 < 0.05 

 
 
<  
<  
<  
<  
 
 

  
<  
>  
>  
 

 

 
 

  
* WT=weight; CL=clearance, V=volume of distribution of central compartment; ∆-2LL was objective function 

value (OFV) form the covariate model minus the base model; -2LL values in 2-1 and 2-2 were compared with 

base model; -2LL values in 3-1 were compared with model M2; while values in 3-2 were compared with 3-1 

M9.  
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Table 5: PK parameter estimates from one-compartment model (FOCEI method) and bootstrap 

analysis 

 
 Final model result Bootstrap results 

Parameters Parameter estimate SE% Median 95% CI 

CL/F (L/h) 10.1 5.0 10.0 9.1-11 

V/F (L) 4520 47.6 3525 63.6-9673 

Ka (/h) 1.55 81.3 1.74 0.003-19445 

Age (θAge-CL) -1.1 12.5 -1.1 -1.36-0.89

WT- (θWT-CL) 0.829 25.6 0.85 0.471.22 

ωcl% 41.0 16.2 40.3 34.2-46.

ωv2% 89.5 30.5 79.4 0.0004-254

σ1% 20.5 35.5 20.4 12.8-25.

σ2 (ng/mL) 10.4 44.9 9.9 4.1-14.1 

 

2 

 

9 

  
* Abbreviations: CL=clearance, SE=standard error, weight=total body weight, V=volume of distribution of 

central compartment, ω=coefficient of variation of inter-individual variability, σ =coefficient of variation of 

residual error, WT=weight, Unit of weight=kg, Unit of age=year, 95% CI: 95% confidence interval. 
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CHAPTER 4 DETERMINATION COVARIATE EFFECTS ON 

EXPOSURE OF DRUG WITH NON-LINEAR PHARMACOKINETIC 
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Abstract 

Objective: To develop a population pharmacokinetic (PK) model using sparse sampling of 

long-term treatment with paroxetine in elderly depressed subjects, incorporating CYP 2D6 

genotype as well as other covariates.   

Methods: Elderly subjects (age 70) with non-psychotic, non-bipolar major depressive 

disorder from the inpatient and outpatient clinic were treated with paroxetine in a five-year 

clinical trial investigating “Maintenance Therapies in Late-Life Depression” (MTLD-2). Plasma 

concentrations were collected during regular visits. CYP 2D6 genotype was determined using 

polymerase chain reaction (PCR) for each individual. A nonlinear mixed-effects model was 

developed with NONMEM

≥

® for those subjects who received 10 to 40 mg/day of paroxetine 

during treatment. One and two compartment models with linear and nonlinear elimination 

(Michaelis- Menten) were evaluated. Pharmacokinetic parameters as well as inter-individual and 

residual variability were estimated. The effect of age, weight, sex, race and CYP2D6 genotypes 

on the pharmacokinetics of paroxetine was evaluated.  

Results: One hundred and seventy one  subjects with a mean age of 77 years (range 69-95) 

and a mean weight of 72.0 kg (range 32.9-137.0), were enrolled in the MTLD-2 clinical trial. A 

total of 1970 paroxetine concentrations were available for population PK analyses. 

Approximately ten samples were taken per subject. A two-compartment nonlinear PK model 

with additive and proportional error provided the best base model for description of the data. 

Weight and CYP2D6 polymorphisms were found to have a significant effect on maximal 

velocity (Vm), where as sex had an effect on volume of distribution of the central compartment. 

The Vm estimates in each of the CYP2D6 phenotypic groups were: 125 µg/h in poor metabolizer 

(PM) (n=1), 182 µg/h in intermediate metabolizers (IMs) (n=28), 454 µg/h in extensive 

metabolizers (EMs) (n=36), and 3670 µg/h in ultra-rapid metabolizers (UMs) (n=5).  

Conclusions:  The population PK model adequately described paroxetine data in this elderly 

depressed population. The data indicate that female and male subjects with different CYP2D6 

polymorphisms have different elimination rates, and therefore may need to be dosed differently 

based on metabolizer genotype.  
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Introduction 

Selective serotonin reuptake inhibitors (SSRIs) are the first-line antidepressants used in 

primary care and psychiatric practices. The response rate after the first drug administration can 

be as low as 60% in the general adult population and 39% in the geriatric population.120 Large 

inter-individual variability (IIV) has been found in pharmacokinetic (PK) parameters such as 

clearance (CL), half-life, area under the curve (AUC) and pharmacodynamic (PD) parameters 

such as time to response, recurrence, and side effects. 10, 121-125  This represents a significant 

clinical problem in the treatment of psychiatric illness in geriatric subjects. Some studies have 

suggested that the PKs of SSRIs were associated with drug effect.126, 127  Thus, understanding the 

IIV in PKs is important for a PD study. 

 

Paroxetine, one of the most potent SSRIs, is widely used in the treatment of depression and 

anxiety.120 A wide range of IIV was observed for the PK parameters of paroxetine.128-131 

Following single or multiple administration of paroxetine at doses of 20 to 50 mg, the mean 

elimination half-life for healthy subjects was approximately 24 hours, with a range of 7 to 65 

hours having been reported.124 Elderly subjects taking paroxetine have higher plasma 

concentrations and slower elimination than younger subjects.124, 131 Although plasma 

concentrations have not yet been correlated with paroxetine response or adverse events, these 

results suggested the initial dosage in the elderly subjects should be reduced.  

  

Paroxetine was mainly metabolized by CYP2D6.124, 130 More than 80 allelic variants have 

been identified for the CYP2D6 gene among different ethnic populations.132 These 

polymorphisms result in variable enzymatic activity and drug-metabolizing phenotypes which 

can be classified as poor (PMs), intermediate (IMs), extensive (EMs) and ultra-rapid (UMs) 

metabolizers.133, 134 A limited number of studies have reported an association between CYP2D6 

polymorphism and paroxetine PKs. Two studies investigated the differences in paroxetine PK 

between EMs and PMs.129, 130 A seven-fold difference in the median AUC0-inf was found for 

healthy subjects receiving a single dose of 30 mg of paroxetine, and a 2-fold difference in the 

median AUC at steady state (AUCss) after multiple 30 mg doses.129 The other study found a 3-

fold difference in median steady-state concentration (Css) after multiple 30 mg doses.130 Some 

studies suggest that the distribution of CYP2D6 activity in EMs also displays substantial IIV. 
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Ozdemir135 found a 2-fold higher median Css in healthy heterozygous EMs when compared to 

healthy homozygous EMs receiving paroxetine (20 mg/day). No PMs were included in this study.  

Factors that contribute to the variability of paroxetine PK parameters in geriatric depressed 

population have not been reported.  The association between CYP2D6 polymorphisms and 

paroxetine PK in the geriatric population after chronic paroxetine treatment is unknown.  To 

investigate this association, we applied a nonlinear mixed-effect modeling approach  to 

characterize paroxetine pharmacokinetics in a placebo-controlled study (the “MTLD-2 trial) of 

the efficacy of paroxetine in preventing recurrence of major depressive episodes in people aged 

70 and above. Mixed effect population PK approach is the study of the sources and correlates of 

variability in plasma concentrations between individuals,36 which is currently widely used in 

evaluation of drug safety and efficacy. Compared with the traditional pharmacokinetic approach, 

population pharmacokinetics is more suitable for analyzing large scale clinical trials, where only 

a few samples are available per subject.  

The purpose of this study was a): to apply a nonlinear mixed effect modeling approach to 

describe paroxetine PK parameters using limited sampling in a large number of geriatric subjects 

from the MTLD-2 clinical trial, and b): to evaluate the impact of covariates including age, 

weight, sex, race, and CYP2D6 polymorphisms on the PK parameters. 

 

Subjects and Methods 

Subject 

The Maintenance Therapies in Late-Life Depression (MTLD-2) study 136  assessed  

paroxetine as a maintenance treatment for prevention of recurrent episodes of major depression 

in geriatric subjects.  Subjects (aged 70 or older) were included if they met the diagnostic criteria 

from the Structured Clinical Interview for DSM-IV Axis I disorders (SCID) for a current episode 

of major depressive disorder, non-bipolar, non-delusional, and not actively suicidal. Subjects 

also were required to score 15 or above on the 17-item Hamilton Rating Scale for Depression 

(HAMD-17) and 18 or higher Folstein Mini-Mental State Exam (MMSE).  All the study sites 

were located in Pittsburgh. The study was approved by institutional review committee of the 
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University of Pittsburgh and the written informed consent to participate in this study was 

obtained from each subject.  

 

There were three phases of paroxetine treatment.  Subjects were treated during an initial 

acute phase (which could last up to 26 weeks) to assess for response, followed by a 16-week 

continuation phase for those subjects who responded.  Subjects with a continued response 

(recovered based on the 16 week continuation phase) entered the two-year maintenance phase 

and were randomly assigned to a placebo group or to paroxetine.  A responder was defined by a 

HAMD-17 score of less than 10 for three consecutive weeks. Recovery was defined as being free 

of significant depressive symptoms for 16 weeks of continuation treatment.  Recurrence in 

maintenance treatment was defined by a HAMD-17 score over 15 for at least 2 consecutive 

weeks and meeting SCID criteria for syndromal major depressive episode, confirmed by an 

independent senior geriatric psychiatrist. The acute and continuation phases were open-label, and 

the maintenance phase was double-blind. Subjects visited the clinic weekly during acute 

treatment, twice monthly during continuation treatment, and monthly during maintenance 

treatment. Plasma paroxetine samples were taken at each visit for concentration measurement. 

No specific timing was scheduled for the paroxetine sampling.  The dosage time was noted for 

inpatient subjects and was self-reported by outpatients. 

 

Paroxetine was started at 10 mg daily and could be titrated to a higher dose based on 

response. Subjects received paroxetine doses ranging from 10 mg to 40 mg daily.  De-identified 

data were applied in a population pharmacokinetic analysis, where the identification (ID) number 

for each subject was changed by replacing the original ID numbers by a randomly generated 

number.  

 

Analytical Procedures 

Paroxetine plasma concentrations were determined by HPLC technique, as previous 

described.137  Briefly, plasma was extracted using ethyl acetate and heptane (1:4, v/v) and back 

extracted into 0.025 M potassium phosphate, pH 2.4. Separation was achieved using a Beckman 

Ultrasphere C18 (150 mm×2 mm) column. Detection wavelength was 205 nm and flow rate was 

0.35 ml/min. Fluoxetine hydrochloride was used as the internal standard. The limit of 
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quantitation was 5 ng/ml. The linear range was 5 to 500 ng/ml with inter-assay variability 

ranging from 3.4% to 5.4% for spiked controls.  

 

CYP2D6 Genotyping  

After separating lymphocytes from whole blood using BD Vacutainer CPTTM tubes, DNA 

was extracted using the standard procedure.138, 139 Genomic DNA fractions were stored at -20°C.  

A polymerase chain reaction (PCR)-based allele-specific analysis previously described,140 

was used to determine whether individuals were carrying duplicated CYP2D6 genes (CYP2D6 

*XN), and long PCR was used to amplify a fragment spanning the potential crossing-over 

sites.140, 141  An allele-specific long PCR method developed by Steen et al 141, 142 was used to 

detect CYP2D6 *5 (gene deletion). Nested PCR was performed to detect CYP2D6*2, *4, *10 

and *17 by amplifying the entire CYP2D6 gene (5 kb).140, 143-145 After amplification of the entire 

gene, subsequent internal PCR was performed to identify the presence of the CYP2D6*2 

(C2938T), *4 (G1934A), *10 (G4286C) and *17 (C1111T) allele. When no mutations were 

found, the allele was defined as CYP2D6 *1. The specific primers, restriction enzyme, restriction 

pattern, and agarose gel for these alleles were shown in Table 1.  

 The allelic frequency was calculated using the equation: 

 Allelic frequency for the variant allele 

 = (Homozygous alleles × 2 + Heterozygous alleles) / (Total subjects × 2) 

 

     CYP2D6 genotype was classified into one of four phenotype groups (Table 2) based on the 

phenotype-genotype relationship reported in the literature.146, 147 Subjects carrying two 

nonfunctional alleles (*0/*0) were assigned to the PM group. Subjects carrying one normal or 

reduced functional allele and one reduced or nonfunctional allele were assigned to the IM group. 

Subjects carrying two normal functional alleles were assigned to the EM group and subjects 

carrying one *XN allele were assigned to the UM group.  

 

      Population Pharmacokinetic Analysis 

      The population PK analysis includes the base model and final (covariate) model development. 

The base model defines the PK parameters and describes the plasma concentration-time profile. 

The final model describes the influence of fixed effects (i.e., demographic factors) on the PK 
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parameters. Analysis platform, minimization methods, model building criteria and model 

validation were described below.  

 

Analysis Platform  

Non-linear Mixed Effects Modeling was used for the population PK analysis using 

NONMEM computer program (Version 5, level 1.1, Globomax, Hanover, MD). 40, 79  The 

models consisted of a structural model that described the disposition of the drug following oral 

administration, and a pharmaco-statistical model that described the inter- and intra-individual 

variability. Diagnostic graphics, exploratory analyses, and post-processing of NONMEM outputs 

were performed using S-PLUS (Version 6.2, Insightful, Seattle, WA). 

 

Minimization Methods and Model Building Criteria 

The first order estimation method (FO) was used for model building. The adequacy of the 

developed structural models was evaluated using both statistical and graphical methods. The 

likelihood ratio test was used to discriminate between alternative models. The likelihood ratio 

test was based on the property that the ratio of the NONMEM objective function values (OFV) (-

2 log-likelihood) were asymptotically χ2 distributed. An objective function decrease of 3.84 units 

was considered significant (χ2 p < 0.05 df=1). Standard errors for all parameters were obtained 

using the covariance option in NONMEM.  

 

Base Model Development     

Structural PK Model: The structural PK model represents the best description of the data 

without considering the effect of subject-specific covariates. The population PK analysis was 

performed using NONMEM® 40, 79 with the subroutine ADVAN9, ADVAN2 TRANS2 and 

ADVAN4 TRANS4. Various structure models were tested, including one and two compartment 

model, model with linear, nonlinear elimination (Michaelis - Menten) and combination nonlinear 

with linear elimination.  
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Inter-individual Variability: It was assumed that the IIV of the PK parameters was log-

normally distributed. The relationship between a PK parameter (P) and its variance could 

therefore be expressed as shown below: 

PePP TVj
η×=           

where, Pj was the value of PK parameter for the individual j, PTV was the typical value of P for 

the population, and ηP denoted the difference between Pj and PTV, independently, which was 

identically distributed with a mean of zero and variance of ωP
2. 

 

Intra-Individual Variability: The residual variability, which was comprised of, but not 

limited to, intra-individual variability, experimental errors, process noise and /or model 

misspecifications, was modeled using additive, proportional and combined error structures as 

described below: 

Additive error: ijijij yy ε+= ˆ  

Proportional error: )1(ˆ ijijij yy ε+=  

Combined additive and proportional error: ')1(ˆ ijijijij yy εε ++=  

where  was the jijy th observation in the ith individual,  was the corresponding model 

prediction, and 

ijŷ

ijε  (or 'ijε ) was a normally distributed random error with a mean of zero and a 

variance of σ2.  

 

Final Model Development 

The final model was developed by testing the effect of subject specific covariates, 

including age, weight, sex, race, and CYP2D6 polymorphisms on PK parameter estimates. The 

two types of covariates, including continuous covariates (e.g., age and weight) and discrete 

covariates (e.g., sex, race and CYP2D6 polymorphisms) were introduced into each parameter in 

a stepwise fashion.  The following example showed the effect of a continuous covariate on Vm 

(maximal rate): 
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Cov
CovVm MedCovTVVm θθ )/(×=  

TVVm was the typical value for the population; The random effects of between-subject 

variability were assumed to be log-normally distributed, with a mean of zero and standard 

deviation of ω. Cov was the continuous covariate that was affecting Vm; and MedCov was the 

median Cov.  

 

The following example shows the effect of a discrete covariate (sex) on Vm: 

SexVm SexTVVm θθ ×−+= )1(  

When sex was female (male=0, female=1), TVVm equals θVm since numeric value for (1-

female) = 0 resulting in a zero multiplier for the covariate effect. For male subjects, the θSex term 

was added to the population estimate of Vm to modify it.  

      Categorical variables were assigned to each of the four CYP2D6 phenotype groups 

and for the subjects without CYP2D6 phenotype information (i.e, PMs = 1, IMs =2, EMs = 3, 

UMs=4, Missing=0). The incorporation of this covariate was shown here for the parameter Vm 

below: 

IF (PHENOTYPE.EQ.0) TVVM= θVm

IF (PHENOTYPE.EQ.1) TVVM= θPMs

IF (PHENOTYPE.EQ.2) TVVM= θIMs

IF (PHENOTYPE.EQ.3) TVVM= θEMs 

IF (PHENOTYPE.EQ.4) TVVM= θUMs 

ieTVVMVmi
η×=         

The graphical assessment of POSTHOC parameter estimates versus covariates was 

evaluated to help identify possible covariate relationships using S-PLUS 6.2. In addition, 

goodness of fit plots were utilized to assess model robustness.83 The covariate was retained in the 

model if it decreased the objective function value (OFV) by 3.84 (χ2 p < 0.05 df = 1). Covariate 

influence on inter-individual variability and goodness of fit was also examined. In cases where 

the covariate value was not recorded at any time during the study for the subject, the median 

value calculated from the population dataset was used.  
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Results 

Patient Characteristics  

The MTLD-2 clinical trial included 171 elderly subjects (58 males) who provided 1970 

paroxetine concentrations. Subjects had an average (mean±SD) age and weight of 77.1±5.7 years, 

72.0±16.4 kg, respectively (Table 3). With the exception of three subjects who were 69 years of 

age, subjects aged 70 years or older were included in the MTLD-2 study.  The majority of the 

subjects were Caucasian (CA) (n=156) and only fifteen subjects were African - American (AA).  

The distribution of paroxetine sampling time (time after dose) was shown in Figure 1. 

 

CYP2D6 Genotyping  

CYP2D6 genotype was classified into one of four phenotype groups (Table 2) based on 

phenotype-genotype relationship reported in the literature, as described in methods section.146, 147  

Among the 171 subjects, whole blood was available from 68 subjects for CYP2D6 genotyping 

analysis. Of these 68 subjects, 4 were AA and 64 were CA. Five subjects were identified as UMs, 

36 subjects were EMs, 26 subjects were IMs, and one subject was a PM.  

The frequency of each CYP2D6 alleles was summarized in Table 4.  The CYP2D6 *17 

allele, an African and African-American specific allele found in previous studies, 134, 148 was 

found in only 25% of the AAs in this study.  CYP2D6 *2N was only found in CA subjects.  

 

Population PK modeling  

 Base Model       

The population PK analysis was performed by using NONMEM® (version V, GloboMax, 

Hanover, MD) 40 with the subroutine ADVAN9. A two-compartment nonlinear model with 

exponential inter-individual variability on Vm, the Michaelis-Menten constant (Km), and volume 

of distribution of the central compartment (V2) adequately described the data. The best residual 

error model was a combined additive and proportional model. The basic PK parameters of Vm, 

Km, V2, volume of distribution of the peripheral compartment (V3) and absorption rate constant 

Ka were shown in Table 5.   
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A two-compartment model was determined to be the robust, based on the Akaike 

information criterion (AIC) 47 (AIC = 17265.0, one-compartment; AIC = 17149.9, two-

compartment). Moreover, the decrease in residual error (50% decreased in additive residual error) 

and bias of data fitting were also observed. Nonlinear elimination model improved OFV by 

114.0 units (p < 0.001) compared to the linear elimination model. Combination of linear and 

nonlinear elimination model did not further improve model fitness or reduce the OFV value 

(∆OFV = -3.2, p > 0.05).   

 

Final Model 

CYP2D6 phenotype was the covariate on Vm that resulted in the largest reduction in 

objective function value (∆OFV=-137.9; P<0.005). Weight was a significant covariate on V2 

(∆OFV =-69.64; P<0.005). After incorporating the CYP2D6 phenotypic effect on Vm, sex was a 

significant covariate on V2 (∆OFV=-107.1; P<0.005). After incorporating the CYP2D6 

phenotype on Vm and sex on V2, the incorporation of weight on Vm further improved model 

fitness by reducing OFV 62.66units (P<0.005). The detailed covariates selection during model 

development was shown in Table 6. The final model Vm and V2 was: 

 

IF (PHNO.EQ.0) TVVM=θ1

IF (PHNO.EQ.1) TVVM= θ7

IF (PHNO.EQ.2) TVVM= θ8

IF (PHNO.EQ.3) TVVM= θ9

IF (PHNO.EQ.4) TVVM= θ10 

11)75/(*1 θWTTVVMTVVM =  

   VM=TVVM1*EXP(ETA(1)) 

   TVV2= θ3 + (1-SEX)* θ12

   V2=TVV2*EXP(ETA(3)) 

 

The final PK parameter estimates were shown in Table 5. Diagnostic plots were shown in 

Figure 2, including observed paroxetine concentrations versus population predicted paroxetine 
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concentrations (Figure 2a); observed paroxetine concentrations versus individual predicted 

paroxetine concentrations (Figure 2b); weighted residual error (WRES) versus population 

predicted concentrations (Figure 2c); and WRES versus time (Figure 2d).  Compared to the base 

model, proportional and additive residual error was reduced by 12.5% and 20.4% respectively, in 

the final model. The inter-individual variability on Vm and V2 both decreased by 41.9%. The 

standard error (SE) of IIV estimation of Vm was reduced by 66.1% and SE of IIV estimation of 

V2 was reduced by 92.6%. The SE of Vm, Km, and V3 estimates were also decreased in the final 

model.  However, the estimation of IIV on Km and the SE of IIV of Km increased.  

The order of magnitude for the Vm estimates by CYP2D6 phenotype was: UMs > EMs > 

IMs > PMs (Figure 3), which corresponded to the functional allele of the CYP2D6 gene.  The 

population mean (%SE) of Vm estimates in the final model for each CYP2D6 phenotype group 

were: 125 µg/h (48.8%) in PM, 182 µg/h (19.4%) in IMs, 454 µg/h (49.5%) in EMs, and 3670 

µg/h (34.6%) in UMs. The 95% confidence intervals (CI) of Vm in each phenotype group were: 

64.41-444.09 µg/h in IMs, 191.35-895.96 µg/h in EMs, and 2073.70-7006.30 µg/h in UMs, 

(95%CI is unavailable for PM group with n=1). The estimates of V2 in male subjects were: 

461.30 ± 259.75 L and in female subjects were: 346.41 ± 255.81 L. 

Age did not affect paroxetine disposition in this study, although the Vm estimates in 

subjects aged 80 or older appeared to be lower than subjects younger than 80 years. The median 

(25th and 75th percentile) of Vm estimates in subjects aged 80 or older was 275 µg/h (198 µg/h 

and 468 µg/h); in subjects with age less than 80 years was 419 µg/h (291 µg/h and 620 µg/h). 

Race was a significant covariate on paroxetine PK if CYP2D6 phenotype was not 

included in the PK model (Table 3).  However, once the CYP2D6 phenotype was included in the 

model, race did not significantly impact on paroxetine PK parameters.  

 

Discussion 

The molecular basis of the CYP2D6 polymorphism has been intensively studied, and 

more than 80 allelic variants, including nonfunctional, normal, reduced or increased functional 

alleles, have been identified for the CYP2D6 gene among different ethnic populations.132, 134 

These polymorphisms result in variable enzymatic activity and drug-metabolizing phenotypes, 
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which can be classified as PMs, IMs, EMs and UMs metabolizers.133, 134 Paroxetine is mainly 

metabolized by CYP2D6 enzyme. However, the relationship between CYP2D6 genotype and 

paroxetine PKs in the geriatric population has not been reported. This is the first study to assess 

the impact of CYP2D6 genotype as well as other factors (e.g., weight, sex, age, and race) on 

paroxetine PKs by using a population modeling approach in a geriatric depressed population 

with small number of samples per subjects.  In addition, we have captured the individual specific 

drug exposure magnitude over time.  This provides a basis where the magnitude of exposure can 

be examined in conjunction with the maintenance response of subjects in this study in a future 

study as response data become available. 

Both one and two-compartment nonlinear PK models demonstrated that CYP2D6 

polymorphisms and weight were significantly related to paroxetine Vm and sex significantly 

impacts V2.  The two-compartment PK model was a better description of the data than the one-

compartment model, based on the significantly reduced OFV value and a better goodness of fit. 

The Vm estimates in each CYP2D6 phenotype groups showed that UMs had the highest Vm 

than other CYP2D6 phenotype groups, while PMs had the lowest Vm population estimate. The 

order of magnitude for Vm estimates by CYP2D6 phenotype was: UMs > EMs > IMs > PMs and 

the Vm estimates were: 125 µg/h in PM, 182 µg/h in IMs, 454 µg/h in extensive metabolizers 

(EMs), and 3670 µg/h in ultra-rapid metabolizers (UMs). The order of magnitude of the Vm 

estimate was consistent with the CYP2D6 functional alleles, where the UM phenotype could be 

caused by alleles carrying multiple 2D6 gene copies134, 143 and the PM phenotype was the result 

inheriting of any 2 nonfunctional (null) alleles (genotype *0/*0). The IM phenotype was the 

result of both heterozygosity for a null allele and homozygous for two alleles with impaired 

function (e.g *9, *10, *17). Moreover, the model was able to differentiate IMs and PMs groups. 

Comparing the differences of Vm estimates between CYP2D6 genotype groups, Vm estimates 

between PMs (125 µg/h) and IMs (182 µg/h) was similar, which agreed with the suggestion from 

several studies that the IM phenotype was of clinical importance because drug PKs in IMs could 

be more similar to the PMs than to the normal EMs, especially after chronic treatment.147 The 

Vm for subjects without having CYP2D6 genotype information was 474 µg/h, which is similar 

to the estimation of Vm in the EMs (454 µg/h), since EMs is the most frequent genotype in both 

the CA and AA populations.  
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Nonlinear pharmacokinetics of paroxetine was found in EMs in the study of Sindrup et al. 
129, 130   One explanation of this finding was saturation of CYP2D6 metabolic capacity, where 

CYP2D6 enzyme activity seems readily to saturate as paroxetine dose increase, as demonstrated 

by Sindrup et al130 and Preskorn.149  Another  possibility relates to the self-inhibition of 

paroxetine metabolism, since paroxetine itself can inhibit CYP2D6 enzyme activity.130, 150 

Without considering self-inhibition, the model with nonlinear elimination (Michaelis-Menten) 

could under-predict paroxetine concentrations.  However the result of MTLD-2 data analysis did 

not support the self-inhibition mechanism, as no bias or under-prediction was found in the 

diagnostic plots of the weighted residual verse predicted paroxetine concentrations and the 

weighted residual versus time. Moreover, the model was tested with different elimination 

mechanisms (e.g., simple noncompetitive inhibition and uncompetitive inhibition 151, 152; data not 

shown). Model fitness was not significantly improved based on OFV values and diagnostic plots.  

Previous studies had reported that paroxetine was mainly metabolized by the high affinity 

enzyme CYP2D6 124, 130 and the low affinity enzyme e.g., CYP3A4 124, 129. Accordingly, models 

with linear, nonlinear, and combined linear and nonlinear elimination were evaluated. Results 

showed that the nonlinear elimination model improved the model fitness and significantly 

decreased the OFV value compared to the linear elimination model. However, the combined 

model with linear and nonlinear elimination did not provide further improvement in model 

fitness.   

Elderly subjects taking oral paroxetine had higher plasma concentrations than younger 

subjects.124, 131 Age was identified as a significant covariate on the PKs of another SSRI, 

citalopram. 10 Age was not a significant covariate on paroxetine PK in this study, although the 

Vm estimates in subjects aged 80 or older appeared to be lower than subjects younger than 80 

years. The small sample size in the MTLD-2 study may lead to a decreased ability to detect an 

age effect in this study.  

Race was determined to be a significant covariate in both the one and two-compartment 

PK models when CYP2D6 genotype information was not incorporated in the model. 153 One 

possible explanation was related to the correlation between race and genotypes. The frequency of 

*4, the most frequent null allele in CAs, was about 3 fold higher than in AAs.134, 143 The 

CYP2D6 *17 allele was an African and African-American specific allele found in previous 

studies and this study. 134, 154  CYP2D6 *2N was only found in CA subjects in this study.  When 
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CYP 2D6 genotype was incorporated, this race effect was no longer significant. The frequency 

of UMs in CA was 8%, which may be more reflective of Pittsburgh Caucasian population, since 

the frequency of UMs is higher in Southern Europe (10%) than that in North Europe (1-2%).134  

 

Conclusion 

The population PK model adequately described paroxetine PK parameters in subjects with 

late-life depression. The results suggest that weight, sex and genotype contribute to the 

variability in PK parameters, and that therefore, individuals of different sex or with a different 

genotype may need to be dosed differently from one another.  

 

 

Acknowledgements 

Financial Support: Advanced Center for Interventions and Services Research for the Study of 

Late Life Mood Disorders: R37 MH43832 (the MTLD-2 study), P30 MH71944 (the late-life 

ACISR), P30 MH52247, R01 MH37869, MH65416, MH30915, MH55756, and NIH MH64173; 

National Institute for Biomedical Imaging and Bioengineering (NIBIB) Grant # P41 EB001975-

06.  

The authors would like to acknowledge Kristin Bigos for her assistance in preparing this 

manuscript. 

 

 

 

 

 

 

 

 81 



Table 1: Conditions of CYP2D6 genotyping study: including the specific primers, restriction 

enzyme, restriction pattern, and agarose gel.  

 

Table a. Long PCR for CYP2D6 genotype determination 

CYP2D6 Allele Specific Primers PCR product (kb) Agarose gels 

2D6 F: 5'-CCAGAAGGCTTTGCAGGCTTCA-3' 
R: 5'-ACTGAGCCCTGGGAGGTAGGTA-3' 

5.0 0.85% 

2D6-dup F: 5'-CCTGGGAAGGCCCCA TGGAAG-3' 
R: 5'-CAGTTA CGGCAGTGGTCAGCT-3' 

3.5 0.85% 

*5 (deletion) F: 5'-ACCAGGCACCTGTACTCCTCA-3' 
R: 5'-GCATGAGCTAAGGCACCCAGAC-3' 

3.5 0.9% 

 
 

Table b. Re-amplification reactions performed for CYP2D6 genotype determination 

CYP2D6 Allele 
(Mutation) 

Specific Primers Restriction 
enzyme 

Restriction pattern 
(bp) 

Agarose 
gels 

*2 (C2938T) F: 5'-AGGCCTTCCTGGCAGAGATGGAG-3' 
R: 5'-CCCCTGCACTGTTTCCCAGA-3' 

cfo I wt:260, 126 
mut: 386 

2.0% 

*4 (G1934A) F: 5'-TGCCGCCTTCGCCAACCACT-3' 
R: 5'-CTCGGTCTCTCGCTCCGCAC-3' 

Bst NI wt:292 
mut: 111, 181 

1.5% 

*10 (G4286C) F: 5'-GAGACAAACCAGGACCTGCCA-3' 
R: 5'-GCCTCAACGTACCCCTGTCTC-3' 

BstEII wt:860 
mut: 240, 620 

1.8% 

*17 (1111C) 
(wt) 

F: 5'-CCAAGGTTCAAATAGGACTA-3' 
R:5'-CCCGAAACCCAGGATCTGGG-3' 

 wt: 237 1.5% 

*17 (1111T) 
(mut) 

F: 5'-CCAAGGTTCAAATAGGACTA-3' 
R: 5'-CCCGAAACCCAGGATCTGGA-3' 

 mut: 237 1.5% 

 
 

* wt: wild type; mut: mutant; F: forward primer; R: reverse primer 
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Table 2: Genotype/Phenotype frequencies in Caucasian (CA) and African - American (AA) 

subjects in the MTLD-2 trial 

 

CA AA Allele 
status 

Assigned 
phenotype 

Genotype 
Frequency (%) n Frequency (%) n

0 PMs *0/*0 1.6 1 0 0
1 IMs IM/*0, IM/IM, EM/*0, EM/IM 39 25 75 3
2 EMs EM/EM 52 33 25 1
3 UMs UM/*X 7.8 5 0 0

 
 

* 0 = non-functional alleles (e.g *4, *5); 1 = one normal functional (EM: *1, *2) or reduced-functional 

allele (IM: *10, *17), plus a reduced or non-functional allele; 2 = two functional alleles or *XN allele 

plus other allele (UM). CA: Caucasian; AA: African - American.   
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Table 3: Patient characteristics for the MTLD-2 study 

 

 

Demographics MEAN±SD  

(Range) 

Sample size 171 

 

# of observations 1970 

 

Age (years) 77.1±5.8 

(69-95) 

Weight (kg) 72.0±16.4 

(32.9-137.0) 

Gender  Male: 58 

Female: 113 

Race Caucasian: 156 

African-American: 15 
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Table 4: CYP2D6 allele frequency in Caucasian and African - American patients 

 

CYP2D6 
allele 

N of CA Allele frequency 
in CA 

N of AA Allele frequency 
in AA 

*1 48 0.38 1.00 0.13 

*2 45 0.35 4.00 0.50 

*4 22 0.17 1.00 0.13 

*5 4 0.03 0.00 0.00 

*17 0 0.00 2.00 0.25 

*10 4 0.03 0.00 0.00 

*2x2 5 0.04 0.00 0.00 

  
CA: Caucasian; AA: African - American   
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Table 5:  PK parameter estimates for the two-compartment model 
Parameters Base model Estimates SE% Parameters Final model Estimates     SE% 

Vm (µg/h) 208 32.5 Vm (µg/h) 474 19.3 

Km (µg/L) 157 83.4 Km (µg/L) 205 24.67

V2 (L) 254 6.70 V2 (L/ 75 kg WT) 230 8.60 

V3 (L) 2350 102.1 V3 (L) 900 81.1 

Q (L/h) 1.33 12.3 Q (L/h) 1.05 25.3 

Ka (/h) 9.24 8.8 Ka (/h) 9.81 28.0 

PM (θVm) N/A N/A PM (θVm) 125 

IM (θVm) N/A N/A IM (θVm) 182 

EM (θVm) N/A N/A EM (θVm) 454 

UM (θVm) N/A N/A UM (θVm) 3670 

WT(θV2) N/A N/A WT(θV2) 1.83 

Sex (θV2) N/A N/A Sex (θV2) 99.3 

ωVm% 155 168.8 ωVm% 90.0 

ωKm% 79 19.4 ωKm% 109 

ωv2% 134 245.3 ωv2% 77.8 

σ1% 40 14.0 σ1% 35.1 

σ2 (µg/L) 10.8 90.6 σ2 (µg/L) 8.60 103

 

48.8 

19.4 

49.5 

34.6 

50.1 

42.9 

57.3 

56.1 

18.2 

14.4 

 

 
 

Abbreviations: Vm=maximal rate, Km=Michaelis-Menten constant (concentration at half Vm), 

SE=standard error, WT=total body weight, V2=volume of distribution of central compartment, 

V3=volume of distribution of peripheral compartment, ω=coefficient of variation of inter-individual 

variability, σ=coefficient of variation of residual error, N/A: not available, Unit of weight=kg. 
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Table 6: Population Pharmacokinetic Model Development (2-compartment with nonlinear 

elimination) 

Covariate  Model -2LL ∆-2LL P value 
1 Base model 17137.900   
2-1    
Vm    
CYP2D6 M1 16977.144 -160.76  < 0.005 
WT M2 17079.98 -57.92 0.005
AGE M3 17143.06 5.155 
RACE M4 17133.65 -4.25  < 0.05 
SEX M5 17070.42 -67.48 0.005
2-2    
V2    
CYP2D6 M6 17071.83 -66.07 < 0.005
WT M7 17068.262 -69.64 0.005
AGE M8 17134.346 -3.55 
RACE M9 17142.224 4.32 > 
SEX M10 17080.828 -57.07 0.005
3-1    
Vm, V2     
Vm(CYP2D6, WT) M11 16876.32 -100.82 < 0.005 
Vm(CYP2D6), V2(WT) M12 16900.59 -76.55 < 0.005 
Vm(CYP2D6), V2(SEX) M13 16892.90 -84.24 < 0.005 
Vm(CYP2D6, RACE) M14 16977.165 0.021 > 0.05 
3-2    
Vm and V2     
Vm(CYP2D6), V2(SEX, WT) M15 16861.53 -31.37 < 0.005 
Vm(CYP2D6, WT), V2(SEX) M16 16830.24  -62.66  < 0.005 

 
 

<  
> 0.05 

<  
 
 

 
<  
> 0.05 

0.05 
<  
 

 

  
* WT=weight; V2=volume of distribution of central compartment; ∆-2LL was objective 

function value (OFV) form covariate model minus base model; -2LL values in 2-1 and 2-2 

were compared with base model; -2LL values in 3-1 were compared with model M1; while 

values in 3-2 were compared with 3-1 M13 and M11. The incorporation of covariates was 

described in the methods section. 
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Figure 1: Frequency histogram showing the sampling distribution for paroxetine sampling 

measurements. The x-axis is broken into 1-hour bins. The y-axis is the proportion of samples 

taken in each interval. 
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Figure 2: Diagnostic plots of final PK model.  

Figure 2a: Plot of population predicted paroxetine concentrations versus observed paroxetine 

concentrations.  Individual data points were shown as dots and the unity line is shown as a solid 

line. 
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Figure 2b: Plot of individual population predicted paroxetine concentrations versus observed 

paroxetine concentrations. Individual data points were shown as dots and the unity line is shown 

as a solid line. 

Observed paroxetine concentrations (ng/mL)

In
di

vi
du

al
 p

re
di

ct
ed

 p
ar

ox
et

in
e 

co
nc

en
tra

tio
ns

 (n
g/

m
L)

0 200 400 600 800

0
20

0
40

0
60

0
80

0

 

 89 



Figure 2c: Plot of weighted residual error (WRES) verse population predicted concentrations  
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Figure 2d: Plot of WRES verse time.  
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Figure 3: Boxplot of Vm estimates for each CYP2D6 phenotype group. Dots in each group were 

median values. Notches show approximate 95% confidence limits for the median.  

CYP2D6 genotype was classified into one of the four CYP2D6 phenotype groups based on the 

phenotype-genotype relationship. In this plot, PMs = poor metabolizers, IMs =Intermediate 

metabolizers, EMs = extensive metabolizers, UMs=ultra-rapid metabolizers. Missing = Subject 

was missing CYP2D6 phenotype information.  
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CHAPTER 5 EVALUATION THE CONSISTENCY OF EXPOSURE USING THE 

PREDICTED/OBSERVED CONCENTRATION RATIO 

 

 

 

 

 

 

 

This chapter is based on the following paper: 

Yan Feng, Marc Gastonguay, Robert. R. Bies. Evaluation the consistency of exposure using the 

predicted/observed concentration ratio. Journal of Pharmacokinetics and Pharmacodynamics, 

2006 (In preparation) 

 

Copyright is to be assigned to Journals Rights & Permissions Controller (Springer Publishing) if 

the manuscript is accepted for publication. Once the paper is accept in Journal of 

Pharmacokinetics and Pharmacodynamics, the copyright transfer form will be signed by us, 

which including the rights of using the full article in the thesis. 
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Abstract    

Purpose: The aim of this study was to evaluate the stability and robustness of using the 

deviation between Nonlinear Mixed Effects PK model-predicted concentration and observed 

drug concentration as a measure of erratic drug exposure driven primarily by variable adherence. 

 

Background: Non-adherence is very common among subjects in the schizophrenia and 

depression treatment. Research has demonstrated that there is a higher probability of re-

hospitalization for poorly adherent schizophrenic subjects 155. The relationship between  the 

pattern of fluoxetine dose intake and the probability of positive response among subjects with 

major depressive disorder showed to be related not to the absolute adherence rate but rather the 

time to the first drug holiday in the treatment regimen 33. Therefore, measuring an individual’s 

specific adherence characteristics is potentially very important information in clinical trials, since 

non-response or adverse drug effect may be caused by the inconsistent intake of the drug.  

 

Methods: Population pharmacokinetic (PK) modeling in conjunction with dosage history 

information comprising the input to the PK model from the Medication Event Monitoring 

System (MEMS) was used to evaluate the consistency of exposure in the two simulated trials 

with atypical antipsychotic and antidepressants. Escitalopram (long half-life drug) and 

risperidone (short half-life drug) were selected as the representative drugs from the clinical trials. 

The observed adherence rate was calculated based on weekly and 2 days adherence pattern for 

MEMS data obtained from the clinical trial. The distribution of the deviation between the 

predicted and observed concentrations (Cpred/Cobs and Cipred/Cobs ratio) was evaluated across 

all adherence rate patterns under the situations when the subjects’ correct (negative control) or 

incorrect / assumed (positive control) dosing history was applied in population PK analysis. The 

relationship between this ratio and adherence rate was assessed under the conditions of the 

positive control. The adherence rate was then assigned based on the relationship described above 

and the classification error of this approach was calculated under each adherence condition. The 

bias and precision of the PK parameter estimates was also evaluated under both positive and 

negative control conditions. 
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Results: MEMS data showed that the adherence rates varied within subjects during 

treatment in the real clinical setting.  Concentrations tended to be over-predicted in the poorly 

adherent subjects and under-predicted in the highly adherent subjects. The relationship between 

rate and ratio was adequately described by exponential functions. The rate was well classified for 

the clinical events under extreme conditions, e.g., very high and very low adherence rates. The 

Cipred/Cobs ratio was found to be more differentiable than Cpred/Cobs ratio under positive 

control, which was suggested by the mean ratio between adherence rate conditions. It was also 

shown that the percentage of  correctly classified adherence rates was higher based on the 

relationship between Cipred/Cobs ratio and adherence rate than that based on the Cpred/Cobs 

ratio. For both long and short half-life drugs, the parameters tended to be more biased and less 

precisely estimated using the incorrect dosing history 

 

Conclusion: This simulation study demonstrated the usefulness of population PK 

modeling in combination with MEMS information in deriving a Predicted to Observed ratio 

metric that aimed to reflect the connection to the consistency of exposure.  The deviation 

between the individual model-predicted concentrations and concentration measurements could 

only adequately reflect the extremes in adherence conditions (i.e., >100% and <5%).   

Keywords: adherence, MEMS, dosing history, NONMEM, modeling and simulation 
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1. Introduction 

Mixed effect population pharmacokinetics (PK) is the study of the sources and correlates 

of variability in plasma concentrations between individuals, 36, 156 which is currently widely used 

in evaluation of drug safety and efficacy. Population PK analysis also shows great advantage of 

analyzing large scale clinical trials where only a few samples are available per subject.10  

Unfortunately, the drug dosing history is often poorly recorded and the extent of noncompliance 

is usually underestimated, which can cause biased estimation for a population PK analysis and 

may mislead the decision making in clinical trials and drug pharmacotherapy. 17-23 Vrijens 

reported that using the detailed records of the subjects’ dosing history helps to achieve 

convergence in model fitting under the sparse sampling measurement situation,157 explaining 

40% of residual variability in the plasma lopinavir concentrations and reduced the overall 

variability by 55%.158 Non-adherence is very common among subjects receiving treatment for 

schizophrenia or depression. Research also demonstrated that poorly adherent schizophrenic 

subjects had a higher risk of re-hospitalization.155 Another study demonstrated the relationship of 

the time to first drug holiday with fluoxetine treatment and the probability of response among 

subjects with major depressive disorder. 33 Therefore, measuring an individual’s specific 

adherence condition is a very important piece of information in clinical trials, as the non-

response or adverse drug effect may be caused by inconsistent drug intake.   

 

Many studies have shown 17-22 that inaccurate dosing history information biases estimates 

of PK and pharmacodynamic (PD) parameters in hierarchical Bayesian analyses. Utilization of a 

prior established PK/PD model may allow one to utilize these biases by evaluating the deviation 

between the prior model predicted and the observed drug concentrations (Cpred/Cobs and 

Cipred/Cobs ratio). This deviation may be used to infer consistency of exposure to drug. 

Brundage 32, 159 showed that the Cobs/Cpred ratio correlated with virologic escape in pediatric 

HIV patients, where the greater the number of Cobs/Cpred ratios outside a specified limit, and 

thus less consistent the exposure, the shorter time of the first viral rebounds. Based on the work 

by Brundage, 159we evaluated 23 whether the Cpred /Cobs ratio could discern erratic versus 

consistent drug exposure arising from good versus poor adherence to drug therapy by using 

model-based simulation approach.  In the study, the magnitude of the Cpred/Cobs ratio increased 

with decreasing adherence rates indicating that Cpred/Cobs could discriminate between good and 
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poor adherence rates. However, when adherence become very low, the ratio unexpectedly 

decreased although the magnitude remained higher than unity.23  This raises the question of 

utility of this ratio under conditions of extremely poor adherence. There are several possible 

explanations for this observed decrease in the magnitude of the Cpred/Cobs ratio under 

conditions of extremely low adherence. As patients become less and less adherence to drug 

therapy, this may result in a greater number of concentration measurements below the limit of 

quantitation (BLQ). Censoring of these observations in the analysis may result in a smaller 

number of ratios contributing to the calculation of the overall Cpred/Cobs ratio for that 

adherence group.  In addition, the ratios that would have resulted from extremely low 

concentrations, if they were not BLQ, would likely be very high and expand the overall mean 

Cpred/Cobs ratio for that group.  Since these values were missing, this may result in a lower 

overall Cpred/Cobs ratio.  The estimation of individual specific PK parameters for that particular 

group may become less efficient as information is lost (i.e., fewer usable concentration samples 

from these individuals) from that group in this way as well as no observations between the BLQ 

and zero (thus truncating where concentrations are actually declining for the model estimation). 

The other limitations for the previous study23 is that 1): the dosing history was simulated based 

on the study design and the adherence pattern was arbitrarily selected; 2): only one simulation 

was performed, the reference for the Cpred/Cobs ratio was unavailable.  

 

In this study, the MEMS based dosing history data from SPECTRUM clinical trial 

(Depression, the search for treatment-relevant phenotypes) was incorporated in the computer 

simulations. Adherence, including acceptance, execution and discontinuation phases, generally 

refers to the percentage of the prescribed doses actually taken correctly as the percentage of days 

of treatment period when the medication is taken appropriately. 160-162 In this study, adherence 

defined as the dose taking (number of the prescribe pills taken per day) and the timing of doses 

taken (pills was taken within a prescribed period). A 100% reliable indirect measure for 

adherence does not exit to date. The Medication Event Monitoring System (MEMS)34 is a 

microprocessor-based method for continuous monitoring of adherence, which provides more 

accurate information than other indirect adherence measurements (e.g., self-report, direct 

interrogations, tablet estimates or prescription count). Adherence has also be measured by 

evaluating the stability of plasma level / dose (L/D) ratios, however, these require the precise 
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timing and scheduling of dosage self administration by the patient and subsequent clinical visit to 

capture the true trough. 30, 35 Jonsson had suggested that exclusion the data suspected of arising 

from non-adherence using population PK modeling approach could improve parameter estimates. 
163 However, the information was lost since the excluded data had a high probability to link to 

the observed clinical event due to their inconsistent drug exposure level. How the excluded data 

could help to identify the erratic adherence pattern and therefore link to the consequent clinical 

event has not been reported in the literature.  

 

The primary objective of this study is to assess the stability and robustness of using the 

ratio of Cpred/Cobs (i.e., model population predicted to observed concentration ratio) and 

Cipred/Cobs (model individual predicted to observed concentration ratio)in reflecting adherence 

patterns, by using simulation approaches incorporating design features selected from two clinical 

trials (SPECTRUM and CATIE). PK models of escitalopram (long half-life drug) and 

risperidone (short half-life drug) were used for simulation. The trials simulations are 1) the 

SPECTRUM (depression, the search for treatment – relevant phenotypes) trial that evaluates the 

use of escitalopram and / or interpersonal therapy (IPT) in depression by use of the SPECTRUM 

rating scale and 2) the controlled antipsychotic trials of intervention effectiveness (CATIE), 

which deals with the treatment using atypical anti-psychotics. We hypothesize that the ratios of 

Cpred/Cobs and/or Cipred/Cobs predicts adherence rate in clinical trial for both short and long-

half life drugs. The purposes of this study are a): to evaluate the distribution of the deviation 

between the model predicted concentrations and observed concentrations across the adherence 

rate patterns (high to extremely low adherence rates) for both long and short half-life drugs under 

the situation when the subjects’ correct dosing history is known (negative control) and when the 

correct dosing history is unknown (positive control); b): to evaluate the association between 

ratios and the adherence rates under the conditions of the positive control; c): to evaluate the bias 

and precision of parameter estimates under both positive and negative control conditions.  

 

 

2. Methods  

2.1 Study design and subjects 
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In order to assess the stability and robustness of the Cpred/Cobs ratio, the SPECTRUM 

and CATIE clinical trial designs specified below were simulated to generate PK samples under 

conditions for extremely low, low, intermediate and high adherence rates (see table 2). 

Adherence rate was defined as the % of tablets taken correctly in a specified period preceding the 

clinic visit and PK sample.  PK models for a representative long (escitalopram) and short 

(risperidone) half-life drug were used for the simulations.  

 

SPECTRUM clinical trial 

The SPECTRUM trial evaluated the use of escitalopram and / or interpersonal therapy 

(IPT) in depression by use of the SPECTRUM rating scale. Up to five concentrations per patients 

are proposed in the study. In the simulation study, the plasma samples were assumed taken at 

each clinical visit. The PK model was adapted from the literature,164, 165 which was then used as 

the basis of the escitalopram PK simulation model. SPECTRUM trial proposed using the MEMS 

cap as part of pharmacotherapy adherence monitoring. MEMS cap data included number of does 

taken (MEMS cap opening record) and the time of dose taken (MEMS cap opening time), which 

was considered as patients’ actual dosing history and was incorporated in the simulation study to 

generate ‘observed’ concentrations.  

 

CATIE clinical trial 

The CATIE study (NIMH #N01 MH90001) was two separate multi-site trials. It 

investigated the comparative effectiveness of atypical antipsychotics in up to 2,250 subjects with 

either Alzheimer disease (AD) or schizophrenia. One to six concentrations per subject are 

proposed to be provided for each antipsychotics (e.g., risperidone, olanzapine, and quetiapine). 

The risperidone concentration measurements obtained from CATIE-AD clinical trial were used 

to build the population PK model, and then used in the simulation study. MEMS data is 

unavailable in CATIE study.   

 

2.2 Simulation Study 

2.2.1. Analysis Platform  

Non-linear Mixed Effects Modeling is applied to perform population PK analysis using 

NONMEM computer program (Version V, GloboMax, Hanover, MD).40, 166 The models 
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consisted of a structural model that describe the disposition of the drug following oral 

administration, and a pharmaco-statistical model that describes the inter- and intra-individual 

variability. NONMEM is also utilized for performing the model-based simulations. ‘Virtual 

subjects’ datasets simulation, graphics and post-processing of NONMEM outputs are performed 

using S-PLUS (Version 6.2.1, Insightful, Seattle, WA). Perl (version.5.6) is used for scripts of 

data-extraction and simulation routines. 

 

2.2.2. Simulations and Estimation Step 

Simulation - MEMS cap data provided the actual dosing history (dose and time of dose 

taken) for subjects in SPECTRUM study. This information is unavailable for CATIE trial.  The 

MEMS data from SPECTRUM was adapted to provide the dosing history information for 

CATIE (see below for detail). Subjects recruited in both clinical trials had chronic psychiatric 

disorders. Depression is a mood disorder that frequently co-exists with schizophrenia, therefore 

we assumed that subjects in CATIE had similar adherence pattern as those in the SPECTRUM 

study. Since subjects received BID risperidone in CATIE trial, while QD escitalopram in 

SPECTRUM trial, it is also assumed that if subjects took one dose, he should take the other dose 

12 hour later with standard deviation of 1 hour.    

 

S-PLUS was applied to simulate datasets, which composed of ‘virtual subjects’ with a 

unique virtual concentrations time profile under sampling conditions outlined in CATIE and 

SPECTRUM studies. The simulated dataset included information of the actual PK sampling time 

at each clinical visit (negative control) and incorrectly-reported dosage history (nominal dose and 

dose taking time) and recorded PK sampling time (positive control). The simulated datasets 

provide individual PK parameters and concentration measurements for each virtual subject. The 

‘observed’ concentrations for subjects at each clinical visit were generated using the NONMEM 

simulation option. A PK sample was assumed to be taken at each clinic visit during the clinic 

opening time. The actual dosing taken time and number of dose taken was provided from MEMS 

data. The actual PK sampling time was selected between 8:00 am to 6:00 pm within clinical 

opening period using a random uniform distribution. The selected erroneous nominal time of 

dose taken  (incorrect dosing) was 9:00 pm, with an SD of 1 hour from the selected erroneous 

nominal time. The reported PK sampling time was erroneously reported with an SD of 15 min 
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from the actual PK sampling time. 100% of adherence was assumed for the positive control. The 

detailed description of simulation scenarios for SPECTRUM and CATIE trial were summarized 

in Table 1, e.g., numbers of subjects, PK sampling per subject, simulation replicates, etc. 

Subjects with MEMS data in SPECTRUM study were bootstrapped (n=100) to provide reference 

intervals.  

 

Estimations - The estimated concentrations from the virtual patient’s dataset were 

obtained under two conditions: 1): given correct dosage history (MEMS cap data) and actual 

sampling time, considered the negative control for this experiment, to confirm that there was 

enough information to build a model with relatively accurate individual specific predictions if all 

of the information was known correctly, 2): given incorrect (nominal) dosage history and 

reported sampling time, the positive control for this experiment, evaluated the nature of the 

Cpred/Cobs ratio in relation to the dosing history; and 3): The association between ratio and 

adherence rate under the positive control was assessed and their relationship(s) were applied for 

rate prediction and rate classification. The estimations were done by using the first-order analysis 

with POSTHOC option in NONMEM. 166 

 

PK Model - Risperidone was selected as a representative short half-life drug from the 

CATIE trial and escitalopram was selected as a representative long half-life drug from the 

SPECTRUM trial. The one-compartment with additive and proportional residual error model 

was developed using risperidone data from CATIE study and the two-compartment model with 

additive and proportional residual error models was adapted from the literature report for 

escitalopram.164, 165 The models were then used to generate a unique set of PK parameters for 

each patient using NONMEM program (one-compartment: ADVAN2 TRANS2 and two-

compartment: ADVAN4 TRANS4). In the risperidone model, the population mean (inter-

individual variance) of oral clearance (CL), volume of distribution (V), and absorption rate 

constant (Ka) were 16.6 L/h (123%), 214 L (114%) and 2.5 h-1 respectively. In the escitalopram 

model, the population mean (inter-individual variance) of CL, volume of distribution of central 

compartment (V2), volume of distribution of peripheral compartment (V3), inter-compartment 

clearance (Q) and Ka were 24.4 L/h (50%), 357 L (35%), 35.7 L/h (30%), 575 L (30%) and 0.16 

h-1 respectively. The covariance structure was established between clearance and volume, since 
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they were typically dependent. We proposed to evaluate the use of the “deviation” of a predicted 

concentration value from the observed, when the PK model is anchored with an established 

Bayesian prior PK model. The observed concentrations were generated by the simulation of the 

virtual patients. The concentrations obtained by the NONMEM estimation and PK parameters 

for each individual at each PK sampling measurement were used to create the model predicted 

concentration at the sampling time and thus serve as the basis of the derivation of the 

Cpred/Cobs and Cipred/Cobs ratio. The ratios under the conditions of the negative (known doing 

history) and positive controls (unknown dosing history) were calculated for each patient and 

were tested to evaluate the consistency of the exposure in the positive control.  

 

2.2.3 Evaluation of the overall distribution of the derivation of the ratio 

measurement across the adherence rates in long and short half-life drugs 

2.2.3.1 CATIE and SPECTRUM clinical trial  

According to the CATIE protocol, up to 350 patients are expected to enter each arm of 

the study. According to the SPECTRUM protocol, the 288 subjects are expected to enter into the 

study, 178 subjects are expected to provide plasma concentrations. Study design and simulation 

steps have been described in our previous report. 23 The strategy of simulating the virtual 

subjects for both clinical trials was modified based on the purpose of this study.  

 

Sample size - One of the objectives of this study was to assess the distribution of the 

derivation of the Cpred/Cobs ratio measurements across all adherence patterns. Data from 

SPECTRUM trial was bootstrapped to create 100 replicates.  

 

Dosage and PK sampling – In the CATIE study, subjects are assumed to take their 

medications twice a day. In the SPECTRUM study, 90% of subjects are assumed to take their 

medication in the evening and 10% in the morning. The MEMS cap data from the SPECTRUM 

study was applied to the negative control and was considered as the actual dosing history. In the 

positive control, subjects were assumed to take 2 mg risperidone twice a day in CATIE study and 

10 mg escitalopram once a day. Since MEMS data is not available for CATIE study, we assumed 

that the subjects in CATIE trial (2 mg BID risperidone) had similar adherence pattern as those in 

SPECTRUM (10 mg QD escitalopram) trial, and it was also assumed that if there was one dose 
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taken record, there should be a 2nd dose record 12 hours after the 1st dose with a standard 

deviation of 1 hour. For both studies, the dosing time of 9:00 PM were selected as mean 

(nominal) administration time with normal distribution and a standard deviation of 1 hour. The 

plasma samples were taken from 11 to 21 hours in subjects taking the dose. The actual sampling 

time was modeled as a random uniform distribution with the open times through the full 9 hours 

from 8AM to 6PM. The reported sampling time was erroneous, with a standard deviation of 15 

min from the actual sampling time.  

 

Adherence rate – The adherence rate was calculated based on different patterns, e.g., 

weekly and 2 days, where rate equal to the total number of MEMS cap opening record (total 

number of dosing actually taken) divided by total number of doses prescribed. Some literature 

classified rates into groups as:  ‘good’ (75-100% of dosage intake), ‘fair’ (25-75% of dosage 

intake) and ‘poor’ (<25% of dosage intake). The dosage intake over 100% is defined as ‘hyper-

compliance’, often relates to the belief that this may accelerate the onset of action or enhance 

drug’s efficacy. In this study, the adherence rate was categorized into weekly and 2-day 

adherence rate patterns, as shown in Table 2 and Table 3. The ratios at each adherence rate 

pattern were assessed under the conditions of the negative and positive control. 

 

2.2.3.2 Evaluate the overall distribution of the derivation of the ratio measurement  

In order to assess the distribution of the Cpred/Cobs ratio measurement across all 

adherence patterns, box-whisker plots were generated for all the adherence rates in SPLUS for 

both short and long half-life drugs. The box itself contains the middle 50% of the ratio values at 

each adherence rate level. If the median value within the box is not equidistant from the upper 

edge (75th percentile) and lower edge (25th percentile), then the data value was skewed. From the 

boxplot, we can examine the consistency of the Cpred/Cobs ratio in reflecting erratic adherence 

patterns (extremely low to high adherence rates). The ratio of predicted and observed 

concentrations should equal to one under the ideal situation (negative control). Under the 

positive control, concentrations were expected over-predicted if the adherence rate was assumed 

to be 100% while it was actually less than 100%, and under-predicted if the actual adherence rate 

over 100% was assumed to be 100%. Thus the systematic deviations between the differences 

between observed and predicted concentrations could be reflected by the shift of the median ratio 
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value with adherence rate level change. These plots allowed us to examine whether or not there 

were systematic deviations in the difference between observed and predicted concentrations, and 

how these central tendencies of the deviations (ratios) shifted with the erratic drug taking pattern 

(adherence rate) change for both short and long half-life drugs. 

 

2.2.3.3 Evaluate the BLQ impact on the derivation of the Cpred/Cobs ratio measure 

under the extremely low adherence condition  

The impact of BLQ on the ratio distribution was assessed, with a focus on the subjects 

with extremely low adherence rate. As mentioned above, the Cpred/Cobs ratio was found 

unexpectedly decreased in our previous study.23 Several possible explanations / hypothesis have 

been discussed above. Since for the poorly adherent subjects, they are likely produce 

concentrations measurements that are BLQ. Thus, fewer ratios are calculable directly from the 

measured data.  This may change the nature of the ratio, perhaps reducing its explanatory power 

under conditions of extreme non-adherence. In order to test the unexpected reduced ratio under 

extremely low adherence condition was more related to the unnatural truncation of the 

distribution caused by censoring concentrations BLQ rather than due to the model performance. 

Different levels of limit of quantitation (LOQ) were tested under negative control, and the 

percentage of the censored concentrations BLQ and the corresponding median ratio were 

calculated under the extremely low adherence rate condition for both long and short half-life 

drug.  

 

2.2.4 Evaluate the association between ratio and the adherence rate  

The central tendency of the ratio (mean) at each adherence rate was calculated. The 

association between the mean ratio and its corresponded observed adherence rate (weekly and 2 

days rate pattern) was assessed using NONMEM program. The relationship was then used to 

predict adherence rate at a given Cpred/Cobs or Cipred/Cobs ratio. The predicted adherence rate 

was classified based on minimum Euclidean distance classification criteria, 167  where the 

differences between the predicted rate and each observed adherence rate was calculated. The rate 

was assigned to be one of the observed adherence rate if the minimal difference between the 

predicted rate and the observed adherence rate was achieved. The percentage of the correct 

assigned rate was calculated for both weekly and 2 days adherence rate pattern.  

 103 



 

2.2.5 Evaluate the bias and precision of parameter estimates under positive and 

negative control  

The true parameter values were obtained from the simulation step, where all the correct 

dosing history was known. The parameter estimates under negative control (correct dosage 

history and actual sampling time) and positive control (incorrect dosage history and reported 

sampling time) were obtained from the estimation step. The bias and precision of the parameter 

estimates under each condition were evaluated using percentage prediction error (% PE) as 

shown below: 

%100% ×
−

=
true

trueestPE
θ

θθ
 

Where θest is the estimated parameter values under negative or positive conditions 

obtained from the estimation step, and θtrue is the true parameter values obtained from the 

simulation step. The %PE was calculated from the 100 simulation replicates under each 

condition. The mean and standard deviation (SD) of %PE was calculated at each adherence rate, 

which was used as bias and precision measurement. The cutoff value for bias and precision was 

set to be 15% and 35%, 168 respectively, which was considered  a threshold for good prediction..  

 

3. Results  

3.1 Subjects  

A total of 65 patients’ MEMS data were available from the ongoing SPECTRUM clinical 

trial during the first 6 month, which had 863 clinical visit records.  The adherence rate was 

calculated for each clinical visit event (PK sampling), which was then grouped into different 

patterns, e.g., weekly, and 2 days adherence rate. The adherence rate was found to be varying 

within subject during the treatment. In the weekly adherence rate pattern, there were 9.7 % of the 

events with more than 7 doses taken record (rate >100%) before the clinical visit, 52.5 % of 

events with 6 to 7 doses taken record (rate: 85 to 100 %), 19.0 % of events with 3 to 5 doses 

record (rate: 30 to 85% ), 4.3 % of events with 1 to 2 doses record (rate: 0 to 30%), and 14.5 % 

of events without any dose taken record before the visit.  

 

3.2 Overall distribution of the derivation of the ratio across the adherence rates 
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The boxplots were generated for both long and short half-life drug under both positive 

and negative control. In the negative control, where the estimation was based on the subject with 

correct dosing history, the log median of Cpred/Cobs and Cipred/Cobs ratios was approximately 

to zero under each adherence rate condition, as shown in Figure 1a and Figure1b for the long 

half-life drug and Figure 2a and Figure 2b for the short half-life drug.  

 

As suggested by plots under negative conditions that the concentrations were under-

estimated under the extremely low adherence rate condition (0%), causing the Cpred/Cobs ratios 

less than one. As discussed above, there’re several possible reasons contributing to the reduced 

magnitude of the Cpred/Cobs ratio under the extremely low adherence condition. The impact of 

the different levels of LOQ on the magnitude of the Cpred/Cobs ratio was tested for escitalopram. 

In 0% adherence rate condition, the median value of the Cpred/Cobs ratio decreased with LOQ 

increase. The median (SD) ratio was 0.79 (1.14e+29) if LOQ is 0 ng/ml (without censoring), 

decreasing to 0.35 (20.3) if LOQ is 0.001ng/ml, and 0.16 (0.44) if LOQ is 1ng/ml. Censoring of 

the observed concentrations BLQ significantly reduced the number of ratios contributing to the 

overall Cpred/Cobs ratio calculation. If the LOQ was set to be 1ng/ml, 90.6% of the observed 

concentrations under the 0% weekly adherence rate condition were censored, and 57.8% was 

censored if LOQ was set to be 0.001ng/ml. For the results above, it suggested that the 

unexpected under-predicted concentrations under extremely low adherence condition were more 

caused by the high percentage of the censored concentrations BLQ than due to the model 

performance for long half-life drug. 

 

For the short half-life drug, without censoring BLQ, the median Cpred/Cobs ratios under 

the extremely low adherence rate condition were 0.005 (weekly rate pattern) and 0.2 (2 days 

adherence rate pattern). In the 2 days adherence rate pattern, 73.8% of the individual ratios were 

censored if LOQ was set to be 0.05ng/ml and 65.2% was censored if LOQ was set to be 

0.005ng/ml. Since the ratio under very low adherence rate conditions was significantly lower 

than 1, even without censoring any concentrations BLQ. The other possible explanations for this 

observation could be the model artifact. One compartment model was developed using highly 

sparse data from CATIE-AD study, while 2-compartment model had been reported for 

risperidone.169  Higher inter-individual variability (IIV) was evaluated using the highly sparse 
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data from CATIE-AD trial. Trying to evaluate the impact of model structure, PK parameters and 

IIV on the ratio under extremely low adherence conditions, The additional study was conducted 

using the 2-compartment PK model with reported PK parameters and IIV from our previous 

study.23 Similar BLQ effect on the ratio was found for the short half-life drug based on the 

previous model, where the Cpred/Cobs obtained from the extremely low adherence rate 

condition (2 days adherence rate pattern) become 0.7 without censoring (LOQ=0) BLQ and 

reduced to 0.5 if LOQ was set to be 0.005ng/ml and 0.2 if LOQ was set to be 0.2ng/ml. Under 

the weekly adherence rate patter, 100% of the concentrations were censored when LOQ was 

0.0005ng/ml. This was due to the nature of elimination processes for the short half-life, where 

the concentrations should be extremely low if the sample measuring time after dose is greater 

than 5 times half-life.   

For the results above, it suggested that if the model developed under highly sparse 

sampling data was used in simulations, the unexpected under-predicted concentrations under 

extremely low adherence condition were related to both the model performance and the censored 

concentrations BLQ for short half-life drug. Due to these observations for short half-life drug, 

Cipre/Cobs ratio was considered for assessing its relationship with rate for the short half-life 

drug. 

 

In the positive control, the estimation was based on the subjects with unknown dosing 

history. The median of Cpred/Cobs and Cipred/Cobs ratios increased with adherence rate 

decreasing as shown in Figure 1c and Figure 1d for the long half-life drug and Figure 2c and 

Figure 2d for the short half-life drug. The differences of the Cipre/Cobs ratio tended to be more 

differentiable among adherence rate groups than that of Cpred/Cobs ratio.  

 

3.3 Evaluation of the association between ratio and the adherence rate pattern 

The mean value of Cipred/Cobs ratio was obtained and its relationship with the observed 

weekly adherence rate was modeled. Bi-exponential and tri-exponential functions adequately 

described the relationship between Cipred/Cobs ratio and the weekly adherence rate for long and 

short half-life drug, respectively. The population predicted rate and the observed rate versus 

Cipred/Cobs ratio were shown in Figure 3a (long half-life drug) and Figure 3b (short half-life 

drug). The exponential relationship between Cipred/Cobs ratio and rate were shown below: 
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Long half-life drug:  RatioRatio eeRate ×−×− += 6.076.3 194396

Short half-life drug:  RatioRatioRatio eeeRate ×−×−×− ++= 6.0521.00827.0 5.171759.89

 

The exponential relationship developed above was then applied for rate prediction at each 

ratio obtained under positive control, and then classified into weekly and 2 days adherent rate 

pattern. The predicted rate classification was based on the minimum Euclidean distance 

classification criteria. 167  At a given Cipred/Cobs ratio, the distance between the predicted rate 

and the observed rate was calculated using equation: d= obspred RateRate −  and the predicted 

adherence rate was assigned to the class (observed rate) for which the distance "d" was minimum. 

The assigned rates were then grouped based on weekly adherence pattern as described in the 

methods section. The result of the correct rate classification at each rate groups was shown in 

Table 2 (weekly adherence rate classification) and Table 3 (2 days adherence rate classification). 

The result of weekly adherence rate condition showed that the correct assigned rate in PK 

samples measured under very high adherence rate condition (i.e., hypercompliant) for long and 

short half-life drug were 73.8% and 89.1%, respectively. In PK samples measured under 

extremely low adherence rates (0% in the last week)  the correct classification was 64.0% for 

long half-life drug and 39.9% for short half-life drug. The rates were better classified in PK 

samples measured under extremely low (0%) and extremely high adherence rate condition 

(>100%) than that under other adherence rate conditions. Two days adherence rate patterns were 

also evaluated. The relationship between 2 days adherence rate and Cipred/Cobs ratio was 

adequately described using a mono-exponential and bi-exponential function as shown below:  

Long half-life drug:   RatioeRate ×−= 05.2834

Short half-life drug:  RatioRatio eeRate ×−×− += 713.0069.0 4827.83

Similar as the results obtained from weekly adherence pattern, the rates were well 

classified for the event under extremely high (rate >100%) and extremely low (rate=0%) rate 

condition. The correct classified rates in the 2 days adherence rate pattern (Table 2 and 3) for 

long and short half-life drug were 80.8% and 91.8% under extremely high and 87.6% and 

35.81% under extremely low rate condition, respectively.  
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For the long half-life drug, the overall rates of correct adherence classification based on 

Cipred/Cobs ratios were: 42.3% for weekly adherence rate pattern and 50.2% for the 2 days 

adherence rate pattern. For short half-life drug, the total correct assigned rate based on 

Cipred/Cobs ratio was 15.8% in weekly adherence rate pattern and 19.3% in 2 days adherence 

rate pattern. 

 

The association of Cpred/Cobs ratio with adherence rate was also evaluate for long half-

life drug, following the same procedure as above. The total correct assigned rate based on 

Cpred/Cobs ratio were 26.4% in weekly adherence rate pattern and 29.9% in 2 days adherence 

rate pattern, which was lower than the correct assignment based on the Cipred/Cobs ratio. The 

correct assigned rate in PK samples measured under very high and very low adherence rate 

condition for long half-life drug were 75.4% and 54.6% under weekly rate pattern, and 79.8% 

and 69.8% under 2 days rate pattern.  

 

3.4 Evaluation of the bias and precision of parameter estimates  

The bias and precision of parameter estimates under negative and positive control was 

shown in Table 4/Figure 4a and Figure 4b for long half-life drug and Table 5/Figure 5a and 

Figure 5b for short half-life drug. Generally, all individual PK parameters for long half-life drug 

were well estimated under both positive and negative conditions, with mean %PE less than 15% 

and standard deviation (SD) of %PE less than 35% (except V2 and Q estimate under positive 

control). The parameter estimates tend to be more biased and less precise under positive control 

conditions where the subjects’ correct dosing history was assumed. The precision (SD of %PE) 

of clearance estimate was approximately 4 fold higher under negative control than that under the 

positive control. For the short half-life drug, estimates of individual oral clearance and Ka were 

unbiased, while volume of distribution estimates was biased. Most of the parameter estimates 

had SD of %PE over 35%, and the parameter estimates tend to be less precise under positive 

control where the subjects’ incorrect dosing history was used than that in negative control. The 

biased and less precise parameter estimates results could due to the high IIV of PK parameters 

estimated from CATIE-AD study, and the substantial variability was then contributed to the 

parameter estimates in simulation and estimation steps. The estimates of variability for clearance 

and volume of distribution were 123% and 114%, respectively.  An additional study were 
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preformed to assess the impact of the variability on the parameter estimates, using the 2-

compartment PK model, reported PK parameters and IIV from our previous study.23 The 

parameters were well estimated under both negative control and positive control with bias (%PE) 

less than 15% and precision (SD of %PE) less than 35%, except the less precise KA estimate 

(%PE SD: 49.3% in negative control and 119.9% in positive control). Thus the bias and precise 

parameter estimates for short half-life drug was related to the model structure and the lower IIV.  

 

4. Discussion 

Many studies have demonstrated that non-adherence is very common in subjects with 

schizophrenia and depression.33, 126, 155  In the clinical trials, it was reported that the average 

adherence rate is only 43-78% among subjects during chronic treatment. 24, 25 There are many 

other similar terminologies used in the literature to describe adherence such as compliance, 

concordance, alliance.26, 27 In this article, adherence is defined in two ways: the percentage of 

prescribed doses taken; and the percentage of days of therapy when the medication was taken 

appropriately.  Thus, we focus on the continuous middle “execution” phase of drug taking (these 

patients have all initiated therapy-acceptance phase) and we are looking at patterns that occurred 

prior to discontinuation, the dichotomous end. 170   The inconsistency of drug exposure caused by 

variable adherence to the prescribed therapy was suggested to be a single largest source of 

variance to the drug response. 158 Therefore, adherence plays an important role in the 

pharmacotherapy efficacy assessment, since the dosage adjustments may not be relevant if the 

subject is inconsistently receiving the prescribed medicine. Population PK analysis showed many 

advantages over traditional PK analysis, especially for the larger clinical trial where only a few 

sample were available per subject. 10 The aim of this study was to identify erratic adherence 

pattern using modeling and simulation approach. This is the first study to evaluate the ability of 

using the deviation between the predicted versus observed concentrations in reflecting the erratic 

adherence rate, by using population PK modeling combined with MEMS data from a target 

population. We also assessed the relationship between adherence rate and the ratio of 

Cipred/Cobs and Cpred/Cobs and assigned the adherence rate based on their relationship. 

 

As demonstrated in many studies, adherence is related to the clinical outcomes. 29-33 Our 

simulation study suggested that the population PK model with incorporation MEMS data could 
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be used to detect erratic exposure and thus reflect the subject specific adherence pattern 

(extremely high and extremely low adherence patterns) for both long and short half-life drugs. 

The predicted weekly and 2 days adherence rate pattern was well classified under the extremely 

high adherence condition and extremely low adherence conditions.  Two days adherence rate 

pattern had a higher percentage of correct assignment than that of weekly adherence pattern for 

the extreme high and extremely low adherence conditions. Since the Cipred/Cobs was more 

differentiable than Cpred/Cobs for long half-life drug, the percentage of the correct weekly 

adherence rate assignment was approximately 1.5 fold higher if using Cipred/Cobs as the rate 

indicator than that if using Cpred/Cobs as the rate indicator. Diaz155 demonstrated that the 

adherence rates in subjects with schizophrenia decreased from 63% in the 1st month to 45% over 

the following 5 month. Subjects with adherence rate lower than 50% were experienced a higher 

probability of re-hospitalization. This was also true in the depression study, where an index 

representing adherence was associated with the poor response or non-response clinical event.33 

Therefore, identifying the subjects with extremely low or high adherence conditions, is important 

for any dosage adjustment during treatment, since the non-response could due to the poor 

adherence and adverse side effect could due to the extremely high adherence condition, 

especially when the clinical event is concentration dependent. There were only about 10% 

correctly assigned high, intermediate, and low adherence rates for short half-life drug and about 

20% for long half-life drug, which suggested that the drug monitoring may be necessary under 

these conditions, since these types of inconsistency of drug taken could lead to moderate adverse 

side effect which may be less severe than those under extreme adherence conditions.    

 

In this study, we didn’t find the reduced magnitude of Cpred/Cobs ratio under the 

extremely low adherence rate condition for positive control (using incorrect dosing history) as 

reported in our previous study. 23 However, the concentrations were unexpectedly under-

predicted in the extreme condition for negative control, where the correct dosing history was 

known for the population PK analysis. The results suggested that the unexpectedly decreased 

ratio was caused by the greater number of the censored concentrations BLQ as well as a 

disproportion number of measurement which is close for but above BLQ, for long half-life drug. 

This may bias the ratio distribution under extremely low adherence pattern. The higher the BLQ, 

the more concentration measurements was censored and then more likely the concentrations 
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were under-predicted. However, for the short half-life drug, even without censoring any 

concentrations BLQ, the concentrations were still under-predicted, although less severely than 

that with concentrations censored BLQ .. The other possible explanation for the reduced ratio 

could be the PK model structure and IIV. The risperidone PK model used in the simulation and 

estimation steps was developed using sparse data from CATIE-AD study. One compartment was 

found to be adequately described the data, however some studies suggested that two-

compartment model best fitted the risperidone data. 171  The results from the 2-compartment 

study for short half-life drug suggested that the reduced Cpred/Cobs under extremely low 

adherence condition was not only related to the censored concentrations BLQ, but also related to 

the model structure, IIV and the method for adherence rate pattern calculation (e.g., weekly 

versus 2 days). In general, since the Cpred/Cobs and Cipred/Cobs ratios for both long and short 

half-life drugs was estimated to be approximate to one (Figure 1 and Figure 2), except in the 

most extreme situation, suggesting that there was enough information to build the model with 

relative accurate individual specific predictions.  

 

Correct subjects dosing history is very important for a PK model not only for the 

parameter estimates 22, 163 but also for model convergence.157 It also can explain much of the 

residual variability. 158  In our study, the bias and precision of parameter estimates under both 

positive and negative conditions were evaluated. For long half-life drug, all the parameters were 

well estimated with %PE (bias) less than 15%. The parameter estimates were more precise under 

negative control than that in positive control, especially for clearance. For the short half-life drug, 

the clearance and Ka were unbiased estimated. The %PE for V under positive condition was 

approximately 5 fold higher than that in the negative condition; however the %PE was over 15% 

under both conditions. It was also found that %PE SD were higher than 35% for all parameters 

under both conditions, except KA under negative control. Since the PK model was developed 

using the sparse data from the CATIE-AD trial, high IIV was obtained with IIV on CL and V 

were 151% and 130% respectively. The high IIV was suspected to be contributing to the less 

precise parameter estimates. Additional studies (data not shown) were performed using the PK 

model and parameter values including population mean value and IIV, from our previous 

study.23 The result showed that all the parameters were estimated precisely and accurately, with 

%PE SD less than 35% and %PE less than 15% under both negative and positive control, except 
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Ka estimate. Thus the IIV on PK parameters had a higher impact on the parameter estimates than 

the incorrect dosing history. The other interesting finding was that using the model developed 

using hyper-sparse data resulted in biased and imprecise parameter estimates, but did not reduce 

the ability for the rate assignment based on ratio under the extreme adherence conditions (Table 

2 and Table 3).  

 

 

5. Conclusion 

The simulation study demonstrated that the combination of the population PK model with 

MEMS information could be used to detect erratic exposure and thus reflect the subject with 

extremely low or high adherence conditions for both long and short half-life drugs. Since both of 

the extremely high and extremely low adherence rate conditions can be well reflected by the 

Cipred/Cobs and Cpred/Cobs ratio, which provides a basis where the magnitude and consistency 

of exposure can be examined in conjunction with the maintenance response of subjects in a 

future study as response data become available.  
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Table 1: The detailed description of simulation scenarios for long half-life drug and short half-

life drug  

 

Simulation Profile  simulation scenarios  

Sample size for each 
simulation replicate 

65 
 

Dose (mg) Escitalopram: 10  
Risperidone: 2 

N of Clinical visit 
record per subject 

18 (2 to 43 record) 

Time for dose 
administration 

Actual: MEMS cap opening time  
Nominal: 21:00  (normal distribution, SD=1h) 

PK sampling time  Actual: 8:00 AM to 6:00 PM (uniform distribution) 
Nominal: Actual sampling time + reported time error (normal 
distribution, SD=15min) 

Adherence rate (%) 1: Weekly and 2 days actual rate  
2: Adherence rate groups (very high, high, inter-mediate, low and 
extremely low) based on weekly and 2 days pattern 

Simulation replicates 100 

Simulation 
conditions  

Time: actual dosage time and actual PK sampling time 
 

Estimation 
conditions for 
negative control 

Time: actual dosage time and actual sampling time 
Number of dose taking was reflected by adherence rate as shown 
above 

Estimation 
conditions for 
positive control 

Time: nominal dosage time and reported sampling time 
Adherence rate assumed in the estimation step: 100% for all of the 
simulation sets 

 
* SD: standard deviation 
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Table 2 The Correct classified rate at weekly adherence rate condition for long half-life drug and 

short half-life drug 

 

Adherence rate  n of dose 
taken 

Long half-life drug 
n of event  % correct classification 

Short  half-life drug 
n of event    % correct classification 

Group 1  >7 8014 73.82 3593 89.06 

Group 2 6,7 45319 39.19 21939 5.98 

Group 3 3,4,5 15972 36.65 7035 9.05 

Group 4 1,2 2733 25.72 1252 9.03 

Group 5 0 1128 64.01 353 39.94 

 
* Group 1: very high adherence rate condition (>100%); group 2: high adherence rate condition (85-

100%); group 3: intermediate adherence rate condition (30-85%); group 4: low adherence rate condition 

(0-30%) and group 5: extremely low adherence rate condition (0%). 
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Table 3 The Correct classified rate at 2 days adherence rate condition for or long half-life drug 

and short half-life drug 

 

Adherence 
rate  

n of dose 
taken 

Long half-life drug 
n of event     % correct classification 

Short  half-life drug 
n of event      % correct classification 

Group 1  >2 8437 80.75 3935 91.82 

Group 2 2 43653 44.69 21677 6.64 

Group 3 1 17396 41.25 7496 15.62 

Group 4 0 3680 87.58 1064 35.81 

 
* Group 1: very high adherence rate condition (>100%); group 2: high adherence rate condition (100%); 

group 3: intermediate adherence rate condition (50%); group 4: low adherence rate condition (0%) and 

group. 
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Table 4 The overall bias and precision of parameter estimates under positive and negative control 

for long half-life drug  

PE (%) 
 

Negative control 
MEAN        SD 

Positive control 
MEAN       SD 

CL/F -1.9 5.7 3.4 24 

V2 3.0 29.1 10.5 39.3 

V3 3.9 26.7 6.0 32.8 

Q 5.4 31.8 8.4 35.8 

KA 0.6 6.4 -3.3 7.1 
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Table 5 The overall bias and precision of parameter estimates under positive and negative control 

for short half-life drug  

 

PE (%) 
 

Negative control 
MEAN            SD 

Positive control 
MEAN           SD 

CL/F -3.7 53.3 -0.38 83.2 

V 37.9 327.6 206.1 893.5 

KA -1.86 23.4 -0.69 53.5 
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Figure 1 Boxplot of the overall all ratio distribution at each adherence rate condition for long half-life 

drug (escitalopram). Dots in each group were median values. 

Figure 1a Boxplot of the log Cpred/Cobs ratio under negative control 
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Figure 1b Figure1b: Boxplot of the log Cipred/Cobs ratio under negative control 
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Figure1c: Boxplot of the log Cpred/Cobs ratio under positive control 
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Figure1d: Boxplot of the log Cipred/Cobs ratio under positive control. 
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Figure 2 Boxplot of the overall all ratio distribution at each adherence rate condition for short 

half-life drug (risperidone). Dots in each group were median values 

Figure 2a Boxplot of the log Cpred/Cobs ratio under negative control 
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Figure 2b Boxplot of the log Cipred/Cobs ratio under negative control 
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Figure 2c Boxplot of the log Cpred/Cobs ratio under positive control 
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Figure 2d Boxplot of the log Cipred/Cobs ratio under positive control. 
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Figure 3 The association between Cipred/Cobs ratio and adherence rate in long half-life drug 

(Figure 3a) and in short half-life drug (Figure 3b). Dots represented the median values of 

Cipre/Cobs ratio at each observed adherence rate conditions. The line represented the model 

predicted rate at given Cipred/Cobs ratios.   

Figure 3a 
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Figure 4: Bias and precision of parameter estimates under negative and positive control. 

Figure 4a: Bias of parameter estimates for long half-life drug; Figure 4b: Precision pf parameter estimates 

for long half-life drug 

Figure 4a 

-4

-2

0

2

4

6

8

10

12

CL/F V2 V3 Q KA

Parameters

B
ia

s 
(%

)

negative control
positive control

Figure 4b 

0
5

10
15
20
25
30
35
40
45

CL/F V2 V3 Q KA

Parameters

Pr
ec

is
io

n 
(%

)

negative control
positive control

 
 

 

 

 123 



Figure 4c: Bias of parameter estimates for short half-life drug; Figure 4d: Precision of parameter 

estimates for short half-life drug. 
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CHAPTER 6 OVERALL SUMMARY AND FUTURE DIRECTIONS 
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6.1 Overall summary  

Population PK analysis is an important technique used to explore and define sources of 

variation in drug exposure in a target population. The purpose of the thesis work was to explore 

the usefulness of the mixed effect modeling approach in analysis sparse sampling measurements 

in large-scale clinical settings, including understanding variability among outpatients/inpatients 

with mental disorder, dose optimization and evaluation the consistency of drug exposure. 

 

To meet these goals, the following were carried out: 1): the study performed to evaluate 

age effect in subjects with major depressive disorder receiving citalopram using highly sparse 

data measurements; 2): the first study conducted to evaluate CYP2D6 genotypes impact on 

paroxetine disposition in late-life depression; 3): the first study to optimize dosage strategy for 

intensive care and general medical unit patients receiving enoxaparin by continuous intravenous 

infusion; and 4): the first study to evaluate the usefulness of population PK modeling with 

MEMS in evaluating the consistency of exposure. The conclusions from each study were shown 

as below: 

 

Elderly patients are not easily studied using the traditional PK analysis approaches, where 

intensive sampling measurements are needed for analysis. In the study, the data from two clinical 

trials were combined and analyzed. Age and weight were found to be significant covariates on 

clearance and volume of distribution. After the corrections include weight effect, age was a 

significant covariate across the entire age range (22-93 years). The study was able to extend 

these findings by demonstrating a continuous relationship between age and clearance of 

citalopram, as well as simultaneously accounting for the contribution of weight to citalopram 

pharmacokinetics. Clearance declined by 0.23 L/h per year of age and increased by 0.14 L/h per 

kg of body weight. The results also are important in understanding the magnitude and variability 

of drug exposure, as well as the specific factors that contributed to the inter-individual 

differences in the exposure.  

 

Late-life depression is a prevalent disorder that causes significant suffering and disability. 

Paroxetine, mainly metabolized by CYP2D6, is widely used in the treatment of depression. The 
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association between CYP2D6 genetics and paroxetine PKs in geriatric subjects after chronic 

paroxetine treatment is still unknown. In our study, it was found that the order of magnitude for 

Vm by CYP2D6 phenotype was: UMs>EMs>IMs>PMs. The other interesting finding in the 

study was that race was a significant covariate when CYP2D6 was not included in the model. 

One possible explanation for this observation is related to the correlation between race and 

CYP2D6 genotypes. When the CYP2D6 genotypes were incorporated, the race effect was no 

longer significant.  

 

Modeling and simulation can facilitate dosage strategies for the target populations. The 

target populations in our study were the general medical unit and intensive care unit subjects 

who received CII enoxaparin. Enoxaparin is mainly metabolized by the kidney. CrCL and weight 

were the significant covariates on clearance and central volume of distribution. The study 

showed that the dose of CII enoxaparin should be individualized based on the subjects’ renal 

function and weight. It is also suggested that subjects in the ICU appears to have higher exposure 

than those in general medical unit, even though the ICU patients are likely to receive slightly 

lower doses.  

 

Inconsistency of drug exposure caused by non-adherence is very common among 

subjects with schizophrenia or depression. Our studies examined the usefulness of population PK 

modeling combined with MEMS data in reflecting the consistency of exposure. Simulations 

showed that the deviation of model-predicted and observed concentrations adequately reflected 

subjects under the extremely high and extremely low adherence rate conditions. This 

methodology developed was very important in evaluation of individual specific adherence 

characteristics, and thus for understanding the clinical outcomes in the clinical trial, since the 

non-response or adverse drug effect may be caused by the inconsistency drug intake and it may 

be possible to get a sparse concentration sample for an individual rather than provide electronic 

monitoring to every individual assessed. 

 

6.2 Future directions 

Evaluate the impact of adherence on Escitalopram response in SPECTRUM study 
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The non-adherence is very common among schizophrenic and depressed patients during 

chronic treatment. The future study will be focused on examining the impact of the inconsistent 

escitalopram exposure driven by the erratic adherence rate during the treatment on the clinical 

response, including both safety and efficacy clinical outcomes from SPECTRUM study. 

Moreover, we will examine the ability of rate classification based on the relationship between 

ratio and adherence rate, when the actual concentrations are available.  

 

Paroxetine Pharmacodynamic study 

Evaluate the relationship between paroxetine response and serotonin genetics   

Reducing or at least capturing the immense variability in drug concentration is the first 

step towards optimizing power in pharmacodynamic studies. In the MTLD-2 study, we have 

demonstrated the impact of CYP2D6 genotypes on paroxetine pharmacokinetic parameters. In 

addition, the ability of capturing the magnitude of individual specific drug exposure over time 

provides a basis where the magnitude of exposure can be evaluated in conjunction with the 

maintenance response. Future work in MTLD-2 clinical study is focusing on understanding the 

variability of disease recurrence for similarly exposed subjects in the maintenance phase. There 

are two descriptors for the return of depressive symptoms.  The first is a relapse of the disease 

which is defined as a new episode of major depression occurring within 16 weeks of the initial 

treatment response.  The second is recurrence, and this is defined as the new episode of major 

depression at least 16 weeks after initial resolution of depression.  A new episode of major 

depressive disorder is defined by SCID/DSM-IV criteria in addition to HAMD score equal or 

greater than 15.  

 

The causes of depression are complex. One of the hypotheses is related to serotonergic 

activity, which suggests that decreased levels of serotonin at the synapse are factor causing 

depression. The initial site of action for SSRI (e.g., paroxetine) is the 5-HT transporter 

(SLC6A4); accordingly, the majority of studies to date have examined polymorphisms in or near 

the gene coding for the transporter. The association of the serotonin transporter promoter 

polymorphism with the speed or degree of a response or side effects of SSRI treatment is 

showing considerable promise. 172, 173 Therefore, the differences in the level or function of 

serotonin receptors, enzymes involved in synthesis (THP1) or metabolism (MAOA) of 5-HT 
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may also influence response. Genes correlated with antidepressant response are also believed to 

contribute to the high level of response variability. After the determination of the paroxetine 

exposure, the relationship between these 5-HT related genes and the probability of having 

recurrence will be examined. The results will help to understand the sources of variability related 

to depression recurrence, thus potentially providing for the individualization of dosage in the 

target populations. 
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APPENDIX A 
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LIST OF ABBREVIATION& NOMENCLATURE 

ABW   Adjusted body weight 

AIC   Akaike information criterion 

AUCss   Area under the curve at steady state 

CII   Continuous intravenous infusion 

CL   Clearance 

BMI   Body mass index 

BSA   Body surface area 

CrCL   Creatinine clearance 

Css   Steady state concentration 

DV   Observed concentrations 

DVT   Deep vein thrombosis 

EDTA   Ethylene diamine tetraacetic acid 

EMs   Extensive metabolizers 

F1   Bioavailability 

FO   First order 

FOCE   First order conditional estimate 

FOCEI   First order conditional estimate with interaction 

HAMD-17  Hamilton rating scale for depression 

Ka   Absorption rate constant 

IBW   Ideal body weight 

ICU   Intensive care unit 

IMs   Intermediate metabolizers 

IIV   Inter-individual variability 

IPRED   Individual predicted concentration 

LBW   Lean body weight 

LMWHs  Low molecular weight heparins 
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MI   Multiple imputation 

MMSE   Mini-mental state exam 

MTLD-2  Maintenance therapies in late-life depression 

OBJ   Objectve function 

OFV   Objective function value 

PCR   Polymerase chain reaction 

PE   Pulmonary embolus 

PD   Pharmacodynamics 

PI   Predicted interval 

PK   Pharmacokinetics 

PMs   Poor metabolizers 

PRED   Population predicted concentrations 

SC   Subcutaneous 

SSRIs   Selective serotonin reuptake inhibitors 

TS   Two-stage approach 

UFH   Unfractionated heparin 

UMs   Ultra-rapid metabolizers 

V   Volume of distribution 

V2 &Vc  Volume of distribution of central compartment 

V3 &Vp  Volume of distribution of peripheral compartment 

Vm   Maximal velocity 

WRES   Weighted residual error 

WT   Weight 
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APPENDIX B.1 PREDICTION OF CREATININE CLEARANCE FROM SERUM 

CREATININE 

1: Cockcroft & Gault equation to predict creatinine clearance from stable serum creatinine  

In male 

)/(72
)140(min)/(

dLmgScr
IBWagemLCLcr

×
×−

=   

In female 

85.0
)/(72

)140(min)/( ×
×

×−
=

dLmgScr
IBWagemLCLcr  

Ideal Body Weight (IBW) 

Male: IBW (kg) = 50 + (2.3 × Height in inches over 5 feet) 

Female: IBW (kg) = 45.5 + (2.3 × Height in inches over 5 feet) 

 

2: Brater equation to predict creatinine clearance from unstable serum creatinine  

In male 

wt
ScrScr

daytime
ScrScr

ScrScrage
mLCLcr ×

+×

−×
++×−×−

=
)(70

)(
)(49

)](0168.0035.1][03.2293[
min)/(

21

21
21

 

In female 

86.0
)(70

)(
)(49

)](0168.0035.1][03.2293[
min)/(

21

21
21

××
+×

−×
++×−×−

= wt
ScrScr

daytime
ScrScr

ScrScrage
mLCLcr  

Scr1 and Scr2 are the 1st and 2nd measured values of serum creatinine (mg/dL) 

respectively; time is the interval between Scr1 and Scr2 measurements in days, wt is the weight 

in kilogram unit.  

 

* Unstable Scr defined as the two separate determinations of serum creatinine obtained at 

least 12 hours apart have values within 0.2 mg/dL.  
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APPENDIX B.2 RELEVANT PART OF THE NONMEM CODE FOR ENOXAPARIN 

COVARIATE MODEL 

 

$SUBROUTINES ADVAN4 TRANS4 

 

$PK 

 

     BMI=WT/(HT*HT/10000)  ;Body mass index 

     BSA=SQRT(HT*WT/3600)  ;Body surface area 

     IBW=45.5+0.89*(HT-152.4)+4.5*SEX ;Ideal body weight 

 

     IF (SEX.EQ.1) THEN 

        LBW=1.1*WT-0.0128*BMI*WT ;Lean body weight 

     ELSE 

        LBW=1.07*WT-0.0148*BMI*WT  

     END IF 

     ABW=IBW+0.4*(WT-IBW)   ;Adjusted body weight 

     PIBW=WT*100/IBW    ;Percentage IBW 

 

     IF (SEX.EQ.1) THEN 

        PNWT=1.57*WT-0.0183*BMI*WT-10.5 ;Predicted normal weight 

     ELSE 

        PNWT=1.75*WT-0.0242*BMI*WT-12.6 

     END IF 

 

IF (GFR.EQ.0) THEN 

         TVCL=THETA(7) 

ELSE 

         TVCL=THETA(1)+(GFR/4.8)*THETA(6) 
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END IF 

 

      CL=TVCL*EXP(ETA(1)) 

      TVV2=THETA(2)*(WT/70) 

      V2=TVV2*EXP(ETA(2))  

      TVV3=THETA(3) 

      V3=TVV3 

      TVQ=THETA(4) 

      Q=TVQ   

      KA=THETA(5)      

      K    = CL/V2   

      F1=THETA(8)         

      S2=V2 

 

$ERROR 

     IPRED=F 

     IRES =F-DV 

IF (LO.EQ.0) THEN 

     Y = F*(1+ERR(1))+ERR(2) 

ELSE 

     Y = F*(1+ERR(3)) 

END IF 

 

 

$THETA 

   (0.229,FIXED)  ;Non-renal clearance component 

   (0,30)   ;Volume of central compartment distribution 

   (0.1,1.5)   ;Volume of peripheral compartment distribution 

   (0.1,1.5,200)   ;Inter-compartmental clearance 

   (0,0.5)   ; KA  

   (0,0.5)   ;Renal clearance component 
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   (0,1,5)   ;CL for missing situation 

   (0,0.8,1)   ;F1 

 

$OMEGA  

0.2  ; between subject variability of CL  

0.2  ; between subject variability of V2  

     

$SIGMA  

0.1  ; initial estimate of proportional residual error for ward patients   

130  ; initial estimate of additive residual error for ward patients   

0.1  ; initial estimate of proportional residual error for ICU patients   

 

$ESTIMATION  MAXEVAL=5000  PRINT=10 METHOD=1 INTERACTION 

SIGDIG=3 POSTHOC  

 

$COV 
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APPENDIX B.3 RELEVANT PART OF THE NONMEM CODE FOR CITALOPRAM 

COVARIATE MODEL (1-COMPATMENT MODEL USING FOCEI METHOD) 

 

$SUB ADVAN2 TRANS2 

$PK 

   

        TVCL1 = THETA(1)*(WT/80)**THETA(5) 

        TVCL =TVCL1*(AGE/60)**THETA(4) 

        CL   = TVCL*EXP(ETA(1)) 

        TVV = THETA(2) 

        V   = TVV*EXP(ETA(2)) 

        TVKA  = THETA(3) 

        KA    = TVKA*EXP(ETA(3))    

       S2   = V 

       K    = CL/V 

     

$THETA 

    (0,10)   ;CL 

    (0,2000);V   

    (0,0.5);KA 

    (,-0.5,) ;AGE   

    (,2,) ;WT 

 

$ERROR 

     IPRED=F 

     IRES =F-DV 

     Y = F*(1+ERR(1))+ERR(2) 
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$OMEGA  

     0.1 

     0.1 

     1 FIXED 

    

$SIGMA 

     0.1 

     3 

 

$EST METH=1 INTERACTION MAX=9999 PRINT=5 NOABORT POSTHOC SLOW 

MSFO=c1aw4.msf 

 

$COV 
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APPENDIX B.4 CYP2D6 GENOTYPING PROTOCOL 

The CYP2D6 genotyping study has been briefly presented in the submitted manuscript in chapter 

4, including specific primers, restriction enzyme, restriction pattern and agarose gel. The other 

detail method information and related results in the CYP2D6 genotyping study, which wasn’t 

included in the manuscript, are shown below:  

 

1: DNA Extraction 

After separating lymphocytes from whole blood using BD Vacutainer CPTTM tubes, 

DNA is extracted using the standard procedure.138, 139 In brief, thawed lymphocyte pellets are 

resuspended in cell lysis buffer (0.01 M Tris-HCl pH 7.4, 0.32 M sucrose, 5 mM MgCl2, 1% 

Triton X100). The tubes are centrifuged at 3300 g for 20 min at 4°C. The supernatant is 

discarded and each pellet of cell nuclei is resuspended in nuclei lysis buffer (0.4 M Tris-HCl pH 

8.0, 0.06 M EDTA, 400 mM NaCl). Next, the cell lysates are digested overnight at 37°C by 

adding 200 µl of 10% sodium dodecyl sulfate (SDS) and 500 µl of proteinase-K solution (2 mg 

protease K in 1 % SDS and 2 mM EDTA). Then 1 ml of 6 M NaCL is added and sample is 

centrifuged at 2500 g for 15 min. Supernatant containing DNA is transferred to a polypropylene 

tube. DNA is ethanol precipitated and resuspended in 200 – 1000 µl Tris-EDTA buffer (pH 8.0). 

Genomic DNA fractions are stored at -20°C. 

 

2: CYP2D6 alleles’ Amplification  

A polymerase chain reaction (PCR)-based allele-specific analysis described before,140 

will be used. To determine whether individuals are carrying duplicated CYP2D6 genes, long 

PCR will be used to amplify a fragment spanning the potential crossing-over sites.140, 141   

Amplification reactions are performed on a MJ PCR System in 0.2 ml thin-walled tubes. 

The 25 µl PCR mix for CYP2D6 allele’s amplification (CYP2D6 *4, *5, *10, *17, and 

CYP2D6*XN) is shown in Table 4.1.a. The PCR conditions for each allele’s amplification are 

provided below: 
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Table B4.1: PCR mix (25µl) for CYP2D6 allele amplifications 

Long PCR 2D6 (5kb)  Nest PCR *2, *4, *10 *17  Long PCR *5 and 
*XN 

 1 x (µl)   1 x (µl)    1 x (µl) 
dNTP 4  dNTP 4 4  dNTP 4
5ΧBuffer  5  10ΧBuffer  2.5 2.5  5ΧBuffer  5
50 mM Mg2+ -  50 mM Mg2+ 0.5 0.375  50 mM 

Mg2+ 
-

5M GC 2.5  5M GC - -  5M GC 2.5
H2O 6  H2O 13.8 13.9  H2O 5.5
DNA 
template 
(MTLD-2 
sample) 

4  DNA template 
(long PCR 
product) 

1 1 1 DNA 
template 
(MTLD-2 
sample) 

4

GC rich Taq  0.5  Invitro Taq  0.2 0.2  GC rich 
Taq  

1

Primer F 1.5  Primer F 1.5 1.5  Primer F 1.5
Primer R 1.5  Primer R 1.5 1.5  Primer R 1.5
  

CYP2D6 (5kb), CYP2D6*XN (gene duplication) and CYP2D6*5 (deletion) allele 

Amplification reactions are performed on a MJ PCR System. The PCR conditions include 

initial denaturation at 95 °C for 4 min, followed by 39 PCR cycles of denaturation at 94.8 °C for 

30 s, annealing at 54.5 °C for 30 s, synthesis at 72 °C for 4.5 min. The program ends with a final 

extension at 72°C for 5 min.  

 

CYP2D6*2 (C2938T), *4 (G1934A), *10 (G4268C) and *10 (C188T) allele 

*2 and *4: Amplification reactions are performed on a MJ PCR System. The PCR 

conditions include initial denaturation at 95 °C for 3 min, followed by 39 PCR cycles of 

denaturation at 94.8 °C for 30 s, annealing at 56 °C for 30 s, synthesis at 72 °C for 30 s. The 

program ends with a final extension at 72°C for 1 min. 

 

*10 (G4268C): Amplification reactions are performed on a MJ PCR System. The PCR 

conditions include initial denaturation at 95 °C for 3 min, followed by 38 PCR cycles of 

denaturation at 94.8 °C for 30 s, annealing at 58 °C for 30 s, synthesis at 72 °C for 30 s. The 

program ends with a final extension at 72°C for 1 min. 
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*10 (C188T): Amplification reactions are performed on a MJ PCR System. The PCR 

conditions include initial denaturation at 95 °C for 3 min, followed by 38 PCR cycles of 

denaturation at 94.8 °C for 30 s, annealing at 58.5 °C for 30 s, synthesis at 72 °C for 30 s. The 

program ends with a final extension at 72°C for 1 min. 

 

CYP2D6*17 allele specific PCR 

*17: Amplification reactions are performed on a MJ PCR System. The PCR conditions 

include initial denaturation at 95 °C for 3 min, followed by 27 PCR cycles of denaturation at 

94.8 °C for 30 s, annealing at 57.5 °C (wt) or 58 °C (mut) for 30 s, synthesis at 72 °C for 30 s. 

The program ends with a final extension at 72°C for 1 min. 

 

3: Nest PCR product digestion  

The digestion buffer for each CYP2D6 allele is presented in Table 4.1.b. Mixing 7 µl 

Digestion buffer with15 µl DNA products and followed by overnight digestion. Then load on gel 

after mixing with 4 µl orange dye.  

Table B4.2. Digestion Buffers for CYP2D6 alleles 

 CYP2D6 Allele  
 (Mutation)  

*2 
 (C2938T) 

*4 
(G1934A) 

*10 
 (C188T) 

*10 
(G4268C) 

cfo I or Hha I Bst NI HphI BstEII 
0.225 0.23 0.6 0.23 

 Restriction enzyme  Name 
                                 Volume (µl) 
                               Activity (KU/ml) 20  10  5  10  
 Temperature (°C) 37 60 37 60 
 Buffer 2.25 (Buf4) 2.25 (Buf2) 2.25 (NEB4) 2.25 
 BSA 0.23 0.23 - - 
 H2O 5.02 4.8 4.62 5.02 
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APPENDIX B.5 RELEVANT PART OF THE NONMEM CODE FOR PAROXETINE 

COVARIATE MODEL 

$SUBROUTINES ADVAN9 TOL=5 

$MODEL COMP=(GUT, DEFDOS), COMP=(CENTRAL, DEFOBS), 

COMP=(PERIPH) 

 
$PK 

IF (GENO.EQ.0) TVVM=THETA(1) ;Vm for subjects with missing 2D6 genotype 

information 

IF (GENO.EQ.1) TVVM=THETA(7) ;Vm for PMs 

IF (GENO.EQ.2) TVVM=THETA(8) ;Vm for IMs 

IF (GENO.EQ.3) TVVM=THETA(9) ;Vm for EMs 

IF (GENO.EQ.4) TVVM=THETA(10)  ;Vm for UMs 

 
   TVVM1=TVVM*(WT/75)**THETA(11)  

   VM=TVVM1*EXP(ETA(1)) 

   KM=THETA(2)*EXP(ETA(2)) 

   TVV21=THETA(3) 

   TVV2=TVV21+(1-SEX)*THETA(12)   

   V2=TVV2*EXP(ETA(3)) 

   V3=THETA(4) 

   Q=THETA(5) 

    S2=V2 

   KA=THETA(6) 

   
$DES 

   CON=A(2)/V2 

   CL=VM/(KM+CON) 

   DADT(1)=-KA*A(1) 

   DADT(2)=KA*A(1)-A(2)*CL/V2-A(2)*Q/V2+A(3)*Q/V3 
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   DADT(3)=-A(3)*Q/V3+A(2)*Q/V2 

 

$ERROR 

        IPRED=F 

        IRES=DV-IPRED 

       Y=F*(1+ERR(1)) + ERR(2) 

 

$THETA 

    (0,200,3000);VM 

    (0,20);KM 

    (20,200);V2 

    (20,200);V3 

    (0,20);Q 

    (0,10);KA  

    (0,10);PM 

    (0,10);IM 

    (0,10);EM 

    (0,10);UM 

    (0,0.5);WT 

    (,10,);SEX 

 

$OMEGA   

0.1  ; between subject variability of Vm   

0.1   ; between subject variability of Km 

0.6  ; between subject variability of V2 

 

$SIGMA  

0.1  ; initial estimate of proportional residual error  

10  ; initial estimate of additive residual error 

 
$COV 
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$EST SIG=3 MAX=9999 PRINT=10 NOABORT METHOD=0 POSTHOC 
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APPENDIX B.6 RELEVANT S SCRIPT FOR ADHERENCE RATE CALCULATION 

#  Below is the S code for weekly adherence rate pattern calculation  
 
# Total subjects 
subj.vec <- unique(df11$ID) 
nsubj <- length(subj.vec) 
 
# Calculate weekly adherence rate pattern (7 days) 
rate <- 7  
for (isubj in 1:nsubj){  
#  isubj <- 1 
 ###Extract data for isubj## 
 TF.subj<-df11$ID==subj.vec[isubj] 
 tmp.df<-df11[TF.subj,] 
 # Total rows for the isubj 
 nEV <-nrow(tmp.df)  
  
# Temp variables 
j <- x <- 1 
for (iEV in j:nEV){ 
   # Record for each PK sample (MDV=0) 
 if(any(tmp.df$MDV[iEV]==0)){ 
      # Calculate total rows within one week before PK sample (Clinical visit) 
       nDV.tmp <- iEV-x 
  # T.dose is used to calculate total dose within each time frame 
       T.dose <- 0 
        # Select the time frame before each PK sample (one week) 
       Time.df <- tmp.df$Time1.tmp[iEV]-rate 
  for (iDV.tmp in 1:nDV.tmp){ 
   TF.ad1 <- tmp.df$Time1.tmp[iEV-iDV.tmp]>Time.df 
      if(any(TF.ad1)){ 
            # Total MEMS opening: could be more than 7 
      T.dose <- tmp.df$MDV[iEV-iDV.tmp]+T.dose  
       }  
     } 
         # Calculate weekly adherence rate pattern  
   tmp.df$ADH7[iEV] <- T.dose/rate #  
       # Change to the next searching point (next PK sampling)  
   j <- x <- iEV+1  
 } 
  } 
 df11[TF.subj, ]<- tmp.df 
 } 
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