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ANALYTICAL TECHNIQUES FOR THE IMPROVEMENT OF MASS

SPECTROMETRY PROTEIN PROFILING

Richard Craig Pelikan, PhD

University of Pittsburgh, 2011

Bioinformatics is rapidly advancing through the ”post-genomic” era following the sequencing

of the human genome. In preparation for studying the inner workings behind genes, proteins

and even smaller biological elements, several subdivisions of bioinformatics have developed.

The subdivision of proteomics, concerning the structure and function of proteins, has been

aided by the mass spectrometry data source. Biofluid or tissue samples are rapidly assayed for

their protein composition. The resulting mass spectra are analyzed using machine learning

techniques to discover reliable patterns which discriminate samples from two populations,

for example, healthy or diseased, or treatment responders versus non-responders. However,

this data source is imperfect and faces several challenges: unwanted variability arising from

the data collection process, obtaining a robust discriminative model that generalizes well to

future data, and validating a predictive pattern statistically and biologically.

This thesis presents several techniques which attempt to intelligently deal with the prob-

lems facing each stage of the analytical process. First, an automatic preprocessing method

selection system is demonstrated. This system learns from data and selects a combination

of preprocessing methods which is most appropriate for the task at hand. This reduces the

noise affecting potential predictive patterns. Our results suggest that this method can help

adapt to data from different technologies, improving downstream predictive performance.

Next, the issues of feature selection and predictive modeling are revisited with respect to the

unique challenges posed by proteomic profile data. Approaches to model selection through

kernel learning are also investigated. Key insights are obtained for designing the feature
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selection and predictive modeling portion of the analytical framework. Finally, methods for

interpreting the results of predictive modeling are demonstrated. These methods are used

to assure the user of various desirable properties: validation of the strength of a predictive

model, validation of reproducible signal across multiple data generation sessions and gener-

alizability of predictive models to future data. A method for labeling profile features with

biological identities is also presented, which aids in the interpretation of the data. Overall,

these novel techniques give the protein profiling community additional support and leverage

to aid the predictive capability of the technology.
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GLOSSARY

AUC

Area under the Receiver Operating Characteristic Curve, a performance metric used to

evaluate the decision-making ability of a predictor.

Biomarker

A naturally occurring biological component, such as a gene, protein or molecule, which

indicates or characterizes normal biological processes. The presence or absence of a

biomarker can also indicate a pathological process.

Dalton (Da, kiloDalton kDa)

The unit of measurement approximately equivalent to the weight of a proton or neutron.

A molecule appearing at mass-to-charge ratio m/z generally weighs m Daltons.

MALDI-TOF-MS

Matrix-Absorbing Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, a type

of mass spectrometer technology.

Method

In general, I use the word Method to describe a technique used to accomplish a single

task.

MS

Mass Spectrometer / Mass Spectrometry. See Section 2.3 for a detailed explanation.

Pathway

A set of genes which interact and depend on each other to achieve a biological function.

A disturbance in part of the pathway, such as a mutated gene, may cause a disruption

of the resulting biological function.
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Procedure

In general, I use the word Procedure as a course of action consisting of individual Methods

which are applied sequentially to a dataset.

Profile

A record in a dataset for a single sample which explains the molecular composition of

that sample at the protein level.

QA/QC

Quality-Assurance / Quality Control data. The biofluid sample which generates these

profiles comes from a common, pooled source. These data are intended to be used as

references to check the consistency of the output of the mass spectrometer.

Raw

Refers to the state of data as it arrives from the mass spectrometer.

SELDI-TOF-MS

Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, a type

of mass spectrometer technology.

Surrogate Biomarker

An element of the data which suggests the presence of a biomarker (see Biomarker above).

Knowledge of the biological nature of the biomarker is usually incomplete.
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1.0 INTRODUCTION

Bioinformatics is rapidly advancing through the ”post-genomic” era following the sequencing

of the human genome. In preparation for studying the inner workings behind genes, several

subdivisions of bioinformatics have developed. Each subdivision concentrates on a specific

level of biological granularity: genomics covers the DNA sequence and mutation of genes,

transcriptomics to study the expression of these genes, proteomics to characterize the pro-

teins produced by these genes and metabolomics to study the economy of cells. Each of these

subdivisions is supported by multiple similar technologies which allow for the rapid assess-

ment of thousands of biochemical or genetic experiments, or assays. This process is generally

referred to as high-throughput screening and their results are known as high-throughput data.

The popularity of high-throughput screening began with DNA microarrays. This tech-

nology is still currently used to perform gene expression assays, which measure how active

genes are behaving under certain conditions. In an effort to find genes responsible for a

particular condition, a researcher would take biological samples from several individuals ex-

hibiting this condition, the cases, and several individuals who do not, the controls. Producing

the high-throughput data for each sample, the researcher can locate genes which exhibit a

robust difference between cases and controls; this result is called a biomarker. A biomarker

can potentially serve to indicate a number of things: presence of disease, susceptibility of a

condition, responsiveness to treatment or relationship among individuals.

Finding a gene biomarker does not necessarily pinpoint the cause of a condition, as is the

case with many diseases. A gene is only the blueprint for proteins, which are responsible for

constituting and controlling cells. The ultimate cause of a condition may be attributed to

an abnormal level or state of a protein, which could be expected to be normal from simply

looking at the expression level of it’s producing gene. This can occur for a number of rea-
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sons. Although a gene may be highly expressed, it does not mean that its associated protein

product is produced correctly or at all. Furthermore, a single expressed gene may encode

more than one protein. The decision about which protein is used, and how these proteins’

functions may be changed, take place outside of the realm of gene expression. Therefore, a

natural next step in the investigation for biomarkers was to expand high-throughput screen-

ing beyond genomics to proteomics.

Several methodologies for performing proteomic high-throughput screens exist, and are

typically based on mass spectrometry technology. This type of technology is suitable for

analyzing complex mixtures of proteins, such as those obtained from biofluids, e.g. blood,

urine and saliva. Since these sample sources are more easily obtainable than organ tissue

samples, it increases the opportunity for data collection and production. The resulting data,

termed proteomic profiles, quantify how much, and depending on the technology, what type

of proteins are present in the sample.

The proteome changes from cell to cell, and even from time to time, and the resulting

complexity of proteomic profile data is naturally high. Generally, no limit is placed on the

number of types of proteins that can be quantified by the instrument. A typical proteomic

profile contains tens of thousands of measurements, or features, and the most sensitive tech-

nologies will produce profiles with hundreds of thousands of features. Each feature has the

potential to be a biomarker, but many challenges stand in the way before a good claim can

be made.

Lessons learned from microarray screening also apply to proteomics. The first is that no

technology is perfect - stochastic noise permeates all high-throughput technologies through

multiple ways. Changes in sample collection and processing, physical limitations of the

sensitivity of the detecting machinery and natural variation in the biology of the samples

contribute to errors and uncertainty in the data. Beyond this, thousands of features await

analysis for their potential identification as biomarkers. Many of these features can be spuri-

ously correlated with the difference between case and control samples. Perhaps only certain

combinations of features can be reliable biomarkers, but many combinations exist, and it

is infeasible to investigate all of them. Determining the ability of these biomarkers to dis-

criminate future unseen samples as case or control is yet another issue. Finally, interpreting
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the quality of biomarkers and their relevance to the discriminating condition in question is

a necessary step in moving a discovery-minded analysis forward.

1.1 CONTRIBUTIONS OF THE THESIS

Much research in bioinformatics has been devoted to developing methods to address each of

these issues. Although many ideas translate across the types of high-throughput screening

techniques, every data type has its own unique quirks and caveats. The objective of this

work is to develop a framework for analysis of high-throughput mass spectrometry data. The

components of this framework are briefly outlined below with descriptions of the methods

which contribute to those components.

• Preprocessing

Preprocessing consists of a range of methods used to make high-throughput data eas-

ier to analyze. The goal is to minimize the amount of perceived imperfections in the

data. These imperfections can be anything from missing or nonsensical values to unwar-

ranted stochastic variation, systematic or otherwise. These imperfections can obscure

useful information, or may cause downstream analyses to mistakenly identify spurious

biomarkers. Preprocessing methods are employed to resolve the problems caused by these

imperfections, with the expectation that most of the true biological information remains

unaffected. I demonstrate new methods for removing noise in a modular fashion, while

conserving valuable information.

1. Metrics for the evaluation of individual preprocessing stages are proposed. Standard

preprocessing in mass spectrometry typically only evaluates preprocessing holisti-

cally, after all stages have been completed. I investigate whether stagewise evaluation

through these metrics will improve preprocessing as a whole.

2. I evaluate preprocessing methods with the goal of preserving the discriminative infor-

mation between case and control profiles as much as possible. Standard preprocess-

ing techniques do not account for this. These methods will use the above-mentioned
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metrics to improve further on preprocessing methods.

• Feature Selection and Predictive Modeling

These are two intertwined topics which enable a computer to predict a disease state from

the mass spectrometry profile data. The former involves methods which select or con-

struct features from the proteomic profiles which appear to have diagnostic information.

These features are then fed into a predictive model, which must be given training data

to learn the relationship between the selected features and the actual disease state of the

sample. The predictive model must be able to discover a robust relationship from the

selected features, and furthermore, the features given as input must not be spuriously as-

sociated with the disease state. Thus, the combination of the methods used for selecting

features and model is critical. I evaluate whether certain methods are better at auto-

matically determining good combinations of feature selection and predictive modeling

techniques.

1. A variety of feature selection techniques are compared. This dissertation document

discusses these feature selection techniques and explains why certain feature selection

techniques are preferable to others.

2. A decorrelating feature selection procedure is presented. This feature selection tech-

nique takes advantage of the naturally highly correlated data by restricting feature

selection to potentially more informative features. In preliminary studies, this tech-

nique has performed comparably to other popular feature selection techniques.

3. The Support Vector Machine (SVM) has performed admirably in preliminary stud-

ies, even with the basic linear kernel. I compare the SVM approach to additional

kernel selection techniques. One alternative to the linear kernel is to learn a kernel,

which is accomplished through linear combinations of existing basis kernels. Another

alternative is to select a kernel from among many, based on statistical characteristics

of the dataset at hand.

4. I compare these kernel-learning approaches with a customized kernel for mass spec-

trum protein profile data. This kernel uses prior knowledge about gene and protein

interactions to extract pathway information within the profiles. I investigate the ex-

tent to which any of these approaches have favorable qualities which are important
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for mass spectrometry data analysis.

• Interpretive Analysis

These are approaches for evaluating and interpreting the results of predictive models.

Two major issues exist which discourage the acceptance of predictive models for routine

use: (1) the lack of statistical reproducibility of the predictive model’s performance in

light of multiple sources of noise, and (2) uncertainty about the underlying biological

reasons responsible for the predictive model’s performance. I present novel methods for

addressing these concerns and assisting the interpretation of preceding results.

1. I introduce a method for assessing the significance of predictive modeling perfor-

mance. This is a nonparametric method based on the permutation test, and allows

the analyst to determine the strength of a predictive model’s result.

2. I introduce a set of methods for measuring reproducibility across separate data pro-

duction sessions. This is particularly useful in determining whether a positive result

from an analysis of mass spectrometry data can be repeated. These methods can

also strengthen the confidence that the study design is robust against many types of

noise resulting in differences in sample collection and data production.

3. I introduce a method for labeling of features in mass spectrometry profiles with

protein identifiers. This is a necessary task when dealing with many types of mass

spectrometric protein profiles. This is especially true in the case of Time-of-Flight

Mass Spectrometry data, the predominant data type used in this thesis (See section

2.3 for further clarification).

4. I introduce methods for deriving biological interpretations from interesting patterns

in mass spectrometry profile data. This is motivated by the wish to represent profiles

as aggregate features which represent the biological functions ongoing in the sample.

While a similar framework for analysis may be assembled from existing pieces and meth-

ods, my framework builds upon knowledge and methods refined by analyses of multiple

datasets, each with different characteristics and requirements. Thus, the methods intro-

duced here are either new or are novel variations of existing methods. Their effectiveness

will be demonstrated on datasets pertaining to a variety of conditions. For certain areas,
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I provide guidelines and insight about effective analytical techniques for existing methods.

Overall, the hypothesis to be tested by this research is that the framework proposed here

improves the analysis of mass spectrometry proteomic profiling data, in terms of automating

the analytical process, improving predictive modeling performance and enabling more intuitive

and useful interpretation of results. The research reported here will be primarily useful to

the bioinformatics community, and particularly those who use mass spectrometry proteomic

technologies for disease prediction, risk assessment and treatment prediction. Validation

methods incorporating prior information will be of interest to systems biology and transla-

tional researchers, who routinely seek patterns of differential biological activity as it relates

to the condition of an organism.

Figure 1 is a simple depiction of the relationships between steps of analysis for proteomic

profiling data. The methods in this thesis were developed with this analytical workflow

in mind. Each of the steps are described in sequence throughout this document. Chapter

2 is devoted to describing the state-of-the-art techniques in mass spectrometry proteomic

profiling. The data collection and production process is described in detail, to give the

reader an appreciation for the nature of the data source. The types and limits of information

contained in the data are also described. A list of available mass spectrometry datasets from

a variety of disease conditions is presented. In addition, I also present a mass spectrometry

simulator for the generation of artificial datasets. The simulator is an iterative improvement

from a previously developed physical model of mass spectrometry [1] These datasets are

used in the development and evaluation of the methods presented in later chapters. Finally,

Section 2.5 describes mathematical notation relevant to the following chapters.

Chapter 3 is devoted to Preprocessing. The methods described in this chapter present

heuristics that are useful for comparing and evaluating how well preprocessing techniques

work. These heuristics are used to develop novel preprocessing steps which take into account

the differences between case and control profiles, and adjust the profiles in a way that

preserves these differences as much as possible.

Chapter 4 deals with the search for biomarkers. This process is governed by two inter-

twined topics, feature selection and predictive modeling. This chapter describes the basic

methods for each step, and then introduces new methods which take advantage of observ-
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Figure 1: A flowchart demonstrating the relationship between steps of analysis of proteomic

profile data.

able correlations in the data. Accounting for correlations allows flexibility and robustness in

predictive modeling. An approach to automatic model selection is also investigated through

approaches which try to learn the kernel of a Support Vector Machine. Additional ap-

proaches to model selection are also evaluated and should provide a basis for guidelines for

model selection.

Chapter 5 discusses approaches for evaluating and interpreting the results of predictive

models. As mentioned above, methods are presented to deal with the statistical and biolog-

ical uncertainty inherent in mass spectrometry protein profiling data. Though a great deal

of uncertainty surrounds the data source at any level, the presented methods work around

this problem in order to elucidate information and bolster confidence in predictive models.

This work also proposes a method which could relate elements of protein profile data to

expression of biological pathways in the sample.

Chapters 3, 4 and 5 follow a similar structure (see the Table of Contents for an overview

at a glance). Each chapter begins with a background section to motivate the chapter and

describe the relevant challenges. This section gives enough information to understand the

concepts developed in the methods section. The related work section describes the exist-
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ing state-of-the-art research involved in the respective topic. The methods section details

research advancements made by this thesis. Results evaluating the effectiveness of these

described methods are given at the end of every chapter.

The thesis concludes with Chapter 6, which summarizes the thesis work and sheds light

on future applications and extensions of the techniques presented in this thesis.
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2.0 DATA

Proteomics is defined as the study of the structure and function of proteins. At a high level,

one way of studying the function of proteins is to determine which are present or absent only

in a group of patients with a common disease state. Mass Spectrometry (MS) is an analytical

technique used to determine the elemental composition of a substance. In proteomic research,

this substance is typically a sample biofluid consisting of, for example, blood, tissue cell

lysate, urine or saliva. Many of these sample types can be obtained noninvasively, which

facilitates a potential clinical screening process. A mass spectrometer is one of many devices

which can be used to interrogate these samples to determine its constituents. A human

biofluid sample is a complex mixture of proteins and other molecules. To identify and

quantify each component of the mixture with certainty, any analytical technique would need

to tediously separate each molecule in the sample and count it. Technologies such as gel

electrophoresis, western blotting or liquid chromatography can separate proteins, but each

technique has their limitations. The advantage of mass spectrometry is that a complex

mixture can be analyzed with or without separation, and even small amounts of molecules

will be measured. The time and cost of the analysis is also relatively low compared to other

analytical techniques, which require non-reusable reagents, columns or films, larger amounts

of sample and a significant amount of time for necessary chemical reactions to take place.

The process by which mass spectrometry works is described briefly and depicted in figure

2. The complex mixture sample is placed on an analytical surface. This surface may have

properties which may emphasize the analysis of a particular class of proteins. The surface

and attached sample are exposed to an energy source (for example, a laser beam). The

surface transfers the energy source to the sample, causing individual molecules in the sample

to become ionized and fly away from the surface. During this flight time, the ions (charged
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molecules) are controlled and directed toward a detector plate. A more detailed description

of the factors involved in the ionization process is given in the following section, which

illustrates the complexity of the data production process.

2.1 BIOCHEMICAL ISSUES AFFECTING THE DATA GENERATION

PROCESS

Many biochemical processes contribute to the types of peptides or proteins measured by the

mass spectrometer. In particular, reparation of the analytical surface plays a critical role in

the resulting data. The analytical surface captures molecules in the sample for analysis. For

example, in Matrix-Enhanced Laser Desorption/Ionization (MALDI) mass spectrometry, the

analytical surface is formed by a mixture of the biofluid sample and a “matrix” chemical,

which crystallizes around the sample and allows laser energy to be transferred directly to

molecules in the sample. The earliest and most popular method for preparing the surface

is the “dried droplet” method [2]. Other methods were subsequently developed in attempts

to smoothly and evenly distribute matrix-sample crystallization across the analytical sur-

face. An investigation into the advantages of these alternative surface preparation methods

revealed that two factors have the majority of the influence in the crystallization: a careful

choice of the matrix chemical, as well as the amount of time allowed for the cocrystallization

to occur [3].

If important molecules in the sample do not crystalize with the matrix, their presence

will not be detected by the mass spectrometer, and they will be excluded from the data.

Thus, it is important that molecules of interest are present in the matrix-sample crystals.

The above investigations also established guidelines for matrix preparation when targeting

particular types of molecules. For example, peptides greater than 3 kDa in mass crystalize

better when the matrix solution includes formic acid and has a pH less than 1.8. Smaller

peptides are better analyzed when the matrix solution includes no added acid [3]. Matrix

solutions can be created to cover a more complete range of peptide masses, but it comes at

a cost of losing potential information where a more optimized protocol is established.
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If a matrix-sample crystal is hit by the laser, we must hope that the molecules in the

sample become properly ionized. Only ions will fly away from the analytical surface and

become measured by the mass spectrometer. Ideally, a peptide molecule will be measured

intact and singly-charged. Too much energy can cause a peptide to fragment, breaking it

into smaller peptides. Too much electric charge can cause the peptide to be measured at

different areas of a protein profile. The electrical charge of the ion plays differing roles in

various mass spectrometers. Depending on the amount of ionizing energy used, molecules

will acquire or lose one or more electrons. Since the ions are repelled by their charge from

the analytical surface by a constant field, adding additional charges will increase the flight

speed of the ion proportionally. A doubly-charged ion will fly twice as fast as with a single

charge. The ion mass and charge are combined to form the mass-to-charge ratio, or m/z

ratio. Creating an analytical procedure which controls the amount of expected charge on a

peptide would help to stabilize the analysis. Ideally, if every peptide is only singly-charged,

then a peptide will be measured by the spectrometer by its mass alone. If a doubly-charged

peptide is obtained, it will also be measured at half its mass.

Unfortunately, the ionization process in mass spectrometry is difficult to explain with

a simple physical mechanism [4]. Ionization depends on the laser wavelength, pulse energy

and pulse length, which can change from lab to lab. In addition, the relationship between

these parameters and the varying sample preparation methods has yet to be extensively

studied. Finally, certain classes of peptide molecules are more likely to ionize than others.

In certain types of mass spectrometry experiments, the rate of successfully ionized molecules

to neutral molecules can be as low as 1 out of 10000 [4]. These factors combine to make a

very complex picture of what is ordinarily a small and underappreciated step in the data

production and analysis of protein profiling data. However, it is important to discuss, as it

shows the complexity of the data source and the need for analytical techniques which can

deal with the inevitable imperfections in the data.

Prior knowledge about the chemistry of the sample and the types of molecules expected

can help to guide the data production process. Primarily, the acidity or basicity of the desired

molecules seems to be the most important factor influencing ionization. Matrix chemicals

with appropriate proton affinities or gas-phase basicities can be selected in order to encourage
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stable ionization behavior, and guidelines have been established in order to support these

behaviors [4]. Furthermore, new matrix chemicals can be designed if the available chemicals

are not appropriate for ionizing the desired peptide molecules. Overall, there are many

characteristics which play a part in the ionization process. The most important thing is to

ensure that as many ions as possible can be generated. Careful design of the matrix chemical,

combined with careful selection of the spectrometer’s laser settings, can help to ensure more

consistent and useful data production [4].

2.2 DATA USED FOR THIS THESIS

This thesis is primarily concerned with Time-of-Flight Mass Spectrometry (TOF-MS), which

is one method the mass spectrometer uses to calculate which ions are reaching the detector.

The detector plate records a series of collision events, which consist of the electrical charge

and time of impact of ions flying into the detector. The time of impact since the start of the

analysis is important. Heavier, more massive molecules will fly slower than their smaller,

less massive counterparts. From the length of the ions’ flight path, the mass spectrometer

calculates the mass of the colliding ion. The resulting data from a mass spectrometer is a

list of m/z ratios and the number of ions detected with that ratio.

A proteomic profile is a data record produced by a mass spectrometer from a biofluid

sample. Proteomic profiles can be visualized in a number of ways; a common view is displayed

in figure 3. M/z ratio is presented along the x-axis, and the y-axis measures the relative

intensity of ions present at a particular m/z ratio. Relative intensities are used instead of

ion counts, due to a physical limitation on the number of ions the detector plate can sense

simultaneously. There is a maximum value which the detector can sense, and all other values

recorded by the machine must be normalized to this value. Figure 3 gives the illusion of a

continuous line, but in reality, the measurements are individuals, and the distance between

observed m/z ratios can vary. However, the continuous-line interpretation will facilitate

many aspects of the data analysis, as will be seen in Chapter 3. From this point forward, a

m/z ratio and its associated relative intensity will be interchangeably referred to as a feature

12



of the proteomic profile. These types of profiles typically consist of tens of thousands of

features.

Mass spectrometry is an imperfect technology. It should be clear that many interpre-

tation errors can take place. For example, a molecule may be represented by two separate

features when ionized with a single and double charge. Two (or more) molecules could po-

tentially have the same m/z ratio, causing their intensities to overlap. And amongst these

uncertainties, it should be noted that very little information about the biological nature of

the features is generated by the mass spectrometer. Arguably, this is the largest problem

facing interpretation of MS proteomic profile data. Cutting-edge technology is being de-

veloped for the elucidation of identities of protein and peptide molecules. Briefly, ions in

the flight path are subjected to another energy source, causing the molecule to be reduced

to fragments. The fragments are then measured by the detector plate, and the resulting

fragmentation pattern is compared to databases of known protein fragmentation patterns.

Matches can often be found,however, even these methods are far from perfect. While it is

possible that MS technology will improve in the future to identify all proteins, techniques

can still be developed for the technology that works well now, and these techniques can be

designed to incorporate additional information as the supporting technology evolves.

2.3 AVAILABLE BIOLOGICAL DATA

For the purposes of this thesis, I have assembled a collection of proteomic profile datasets

for analysis. The majority of this data was produced by a Surface-Enhanced Laser Desorp-

tion/Ionization (SELDI) TOF mass spectrometer. Compared to other mass spectrometry

techniques, SELDI uses a specialized analytical surface which can have particular affinities

for certain protein types. Proteins that do not bind to the surface are washed off before

ionization. This reduces the number of different protein types that can enter the mass spec-

trometer, and can reduce the complexity of the resulting data. The particular SELDI-TOF

model used is the Ciphergen PBS-II SELDI-TOF mass spectrometer (Ciphergen Biosystems,

Fremont, CA, USA). The available Matrix-Assisted Laser Desorption/Ionization (MALDI)
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TOF data is produced by either a Voyager-Elite mass spectrometer (Applied Biosystems,

Foster City, CA, USA) or Bruker Clin-Prot II mass spectrometer (Bruker Daltonics, Billerica,

MA, USA).

Most datasets were produced either by the University of Pittsburgh Cancer Institute

(UPCI, Pittsburgh, PA, USA) or the University of Pittsburgh Medical Center (UPMC,

Pittsburgh, PA, USA). These datasets were produced with careful, strictly-controlled study

designs in order to reduce the potential for bias and confounding. Each dataset contains data

from samples of diseased (case) and healthy (control) individuals. Cases and controls were

processed by the laboratory on the same machine. When samples could not be processed

simultaneously, the order in which samples are processed by the laboratory is randomized

to reduce the possibility of spurious temporally-created biomarkers. To reduce the effect

of confounding between the two sample groups, the case and control samples are matched

by variables such as age, gender and smoking history when applicable. This means that

each case sample is matched with a control sample from an individual with similar clinical

characteristics.

Several disease conditions are demonstrated in the various datasets. Table 1 lists the

datasets as well as the disease condition, number of cases and controls, year produced and

originating laboratory. The disease conditions cover both diseases which are similar (Ovarian,

Prostate, Melanoma, Pancreatic and Lung Cancers) and dissimilar (hepatitis C, kidney

necrosis, diabetes and dental caries). With the diversity of conditions studied, it will be

possible to perform robust comparisons between methods, to ensure that they are not too

strongly biased to one class of diseases.

2.3.1 Important dataset notes

Several datasets have special properties which allow the evaluation of certain experiments.

2.3.1.1 Prostate cancer dataset The prostate cancer dataset [5] was produced by re-

searchers at the National Cancer Institute (NCI, Bethesda, MD, USA) Clinical Proteomics

Program in 2002. This dataset suffered from unintended mistakes as a consequence of the
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proteomic profiling research field being in its nascent and explosive stage. The case and con-

trol samples were processed on separate days. This had the unintended effect of introducing

a biased signal artifact which essentially labeled the case and control samples perfectly [6].

While results from this dataset should not indicate great success at predicting prostate can-

cer, it is still a useful tool in order to demonstrate the effectiveness of certain methods in

the face of overwhelming bias. The authors claim that this data was never intended to re-

flect the success of a potential screening platform. However, the flaws in this and another

study [7] cast a pall of doubt upon the protein profiling technology [8]. Despite the rough

beginning, protocols became more developed and technologies such as those presented in

this work began to develop, in order to support the promise of this technology.

2.3.1.2 Vanderbilt/UPCI Lung SPORE datasets This source of data reflects a large

set of samples processed at different locations, under different technologies. A larger set of

lung cancer patients’ serum samples were collected by the Vanderbilt University Medical

Center Clinics (Nashville, TN, USA), the Nashville VA Medical Center (Nashville, TN,

USA) and the UPCI. These samples were initially investigated at Vanderbilt University [9]

under the MALDI technology, and then the same samples were shipped to the UPCI to be

processed under SELDI IMAC (Immobilized Metal Ion Chromatography) and WCX (Weak

Cation eXchange) technologies. The intersection of these three datasets were a set of 134

case and 104 control profiles. These 3 datasets give us a unique look into how a sample can

be expressed across different MS platforms as well as different locations and different times.

2.3.1.3 UPCI Lung Cancer II dataset This dataset featured four data production

“sessions” in which a subset of the samples were repeatedly reprocessed after spending time

in a freezer. This was done in an effort to determine whether sample degradation would play a

large role in observing clinically relevant patterns. In most cases, table entries corresponding

to this dataset reference the initial data production session, which contained the largest set

of samples out of the four sessions. In Chapter 5, all four sessions are analyzed in greater

detail in the context of a reproducibility study.
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2.4 SYNTHETIC DATA

In addition to the biological data summarized above, the ability to simulate data sets is

also available. The simulator is based on a physical model of the TOF-MS process [1], and

is able to simulate data from any TOF-MS system. While the simulator model proposed

in [1] is thorough in parameterizing many aspects of the TOF-MS system, I believe there

are errors in the model, so I derived new sets of equations to convert masses to times-of-

flight. A detailed description of the simulator is given in Appendix From the above section,

one can see that the mass spectrometer is constructed with three main components: the

energy source, the flight chamber and detector plate. The simulator parameterizes each

of these components in order to match the configuration of any TOF-MS system. For the

purposes of simulation, these parameters are chosen to match those of the Ciphergen PBS-II

SELDI-TOF-MS system. The amount of noise in the MS components can also be adjusted

to demonstrate the effect of inaccuracy in the instrument on the amount of proteins in the

simulated sample. Full details of the simulator and its parameters are given in Appendix A.

In biological data, we are always uncertain of the types and amounts of molecules that

are present in the sample. A major advantage of simulating data is that the constituents in

the sample can be controlled. Thus the simulated data can be used as a tool to study the

effects of noise on individual measurements, and develop realistic expectations of how well

the MS instrumentation can represent mixtures of molecules in the data. The effects of noise

are described in greater detail in Chapter 3. The choice of peptides to be included in the

simulated sample is arbitrary, and can fit the need of the task when a particular reference

point is needed.

Mixtures of proteins and peptides can be added to the simulated sample if they are

present as entries in the UniProt database [10]. The UniProt peptide identifiers are in

turn used to retrieve amino acid sequences for these proteins. The expected mass of the

peptide is computed as the sum of the average isotopic masses of the amino acids in the

given sequence, in addition to the average isotopic mass of a single water molecule. Post-

translational modifications can also affect the peptide’s sequence, and these are taken into

account when calculating the peptide mass. Signal peptides from complete protein sequences
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are removed, and when documented in the UniProt entry, the mass of a post-translational

modifying molecule is added to the peptide’s expected mass. The relative abundances of each

peptide in the simulated mixture is provided. Thus, the abundances and expected masses

of the peptides can be used to study the ability of the mass spectrometer to detect an

appropriate amount of peptide at the correct m/z ratio. Additionally, multiple simulations

can be produced to study effects of noise on the MS system’s ability to reproduce profiles.

In this thesis, simulated data is used in Section 5.4.3.1 to demonstrate the effectiveness of a

peak-labeling system.

2.5 MATHEMATICAL NOTATION

The following notation and terminology is useful for understanding the technical details of

this thesis.

1. A dataset D is a collection of n proteomic profiles, indexed by the variable i.

2. Each proteomic profile X has d features, indexed by the variable j. It is associated with

a class label, Y ,which is either 0 (healthy//control) or 1 (diseased//case). The positive

(or case) class is marked as X+ and the negative (or control) class is marked as X−.

3. The jth feature in the ith profile fij occurs at m/z position xij and has intensity yij.

4. The average intensity of the jth feature is written as µj. The standard deviation of the

jth feature is written as σj. Superscripts of + or - indicate means or standard deviations

within a single class.

5. The average profile, consisting of all features µ1 · · ·µd averaged over all profiles is referred

to as µ, and can be computed across all positive (µ+) or negative (µ+) profiles.
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Analytical surfaces + Sample
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Detector

Energy Source

MS Profile Data

ions

Figure 2: A simple diagram of the mass spectrometry data production process. A biofluid

sample is deposited on an analytical surface. The sample is ionized by an energy source,

causing protein ions to fly through a flight chamber. Lighter, smaller molecules fly faster

than heavier molecules through the flight chamber. When they hit a detector plate at the end

of the chamber, the mass spectrometer records the amount of detected ions. By measuring

the time taken to fly through the tube, the masses of the ions are calculated and a ”peak”

feature at the appropriate m/z value is created in the data.
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Figure 3: An example of a proteomic profile produced by SELDI-TOF mass spectrometry.

The x-axis indicates the mass-to-charge ratio of molecules present in a sample for pancreatic

cancer. The y-axis reflects the relative intensity, or abundance, of those types of molecules.
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3.0 PREPROCESSING

Preprocessing refers to a range of methods used to make high-throughput data easier to

analyze. Since each high-throughput technology differs in its method of data acquisition,

the techniques required differ between applications. The goal in any case is to minimize the

amount of perceived imperfections in the data. These imperfections can be anything from

missing or nonsensical values to unwarranted stochastic variation, systematic or otherwise.

Figure 4 illustrates four MS profiles from the same sample source, but produced at four

different times. Changes are apparent in the intensity and shape of the MS signal, which

should ideally appear exactly the same across all four replicates. Downstream analysis

techniques could identify these imperfections in a way which would discriminate between

profiles which should otherwise be identical. Preprocessing methods are employed to resolve

the problems caused by these imperfections, with the expectation that most of the true

biological information remains unaffected. These methods are applied separately in stages

to address the different types of imperfections occurring in the data. The next section briefly

explains the most popular preprocessing stages and the errors that they attempt to correct.

3.1 BACKGROUND

3.1.1 Stages of Preprocessing

Calibration refers to the process of ensuring that the quantity measured by an assay is

truly reflected by its feature value. In a microarray experiment, this refers to translating

feature values into estimates of mRNA transcript abundance in the sample. In TOF-MS
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data, calibration can refer to mapping an observed time-of-flight value to an appropriate

m/z value, or to the more specific process of alignment. In any application, calibration helps

to ensure that the reported value is not misrepresented. Alignment is more particular to

proteomics, where peak features similar in shape across separate profiles may be shifted to

different locations along the m/z axis. Figure 5 displays two profiles from QA/QC serum

which require calibration. Their shape is nearly identical, but the peak positions appear

to be shifted linearly on the x-axis. The solid line could be shifted to the left to make the

shapes overlap neatly. Alignment can be used to bring these profiles into agreement.

Variance stabilization is a process used to decouple the dependance of a feature variable’s

variance on its mean. In many applications, features with the largest values exhibit the

greatest variance. Thus, a strongly expressed assay may incur more random noise than

a weaker one, detracting from its informational value. By applying a variance-stabilizing

transformation (such as taking the log or cube-root of the feature values), the features tend to

have a more constant variance, independent of the value of the feature. This makes adjusting

for systematic noise more convenient, as the relationship of the noise process becomes similar

across features. In any application, the aim is to reduce the effect of a multiplicative bias in

the feature values.

Baseline correction helps to ensure that all feature values are recorded with respect to

a baseline of 0 (or other suitable constant) to clearly distinguish values as being measured

features versus ’default’ values produced by the data collection equipment. In TOF-MS

data, this is easily seen in an unpreprocessed profile, which seems to have a constant, nonzero

baseline. Figure 6 displays an example of such a phenomenon in a SELDI-TOF-MS profile. In

microarray data, this is referred to as background adjustment, and accomplishes the removal

of detectable signal occurring due to reasons other than the correct transcripts binding to the

probe surfaces. In any application, baseline correction assures that the scale of comparison

for values has a common starting point by removing an additive bias. Common methods

simply subtract a constant from every feature value. More involved methods may fit a

function to the existing baseline and subtract this function to achieve a ”flat” baseline. The

result of the process is similar to that seen in the right panel of Figure 6.

Normalization adjusts all feature values to conform to the same scale. This process
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has varying levels of granularity. Microarray users typically refer to normalization as the

process that reduces variance between experiments in different datasets. In TOF-MS data,

it typically refers to removing bias from an individual profile by rescaling all feature values

within that profile. Figure 7 displays two profiles from QA/QC serum which should be

identical. However, a difference in either the level of sample or strength of the equipment

causes one profile to appear more intense than the other. Normalization would rescale the

data in both profiles, so that they would appear to be on the same scale. A common approach

is to normalize all features to a [0 1] range. In TOF-MS, profiles can be rescaled based on the

total sum of feature values across the profile (total ion current, or TIC, normalization). In

any application, normalization attempts to mold the data to a conformed range of variance.

Smoothing serves to eliminate a high frequency noise component in the signal. There are

multiple ways that this noise can be removed. A simple solution, moving average, involves

replacing the feature with an average of its neighboring features. Figure 8 displays an

example of moving-average smoothing on a SELDI-TOF profile. The signal in the left panel

carries a frequent, jagged landscape. By smoothing the signal, this variation is averaged over

a small area of points along the m/z axis. The result is a smoother signal with less variation.

A more intricate approach might use a kernel to give close features a particular shape. In

TOF-MS profiles, an ideal peak might have a Gaussian shape, and therefore fitting close

values to a Gaussian kernel might be best. Additional methods might employ a signal-to-

noise filter to remove the high-frequency random component. More recent work has used

wavelets to model a complex mixture of signals as a composition of simpler, smooth signals.

Regardless of the method used, it is never clear where to draw the line between random noise

and true biological information. A smoothing operation must be able to remove variance,

but not so aggressively that the features become fuzzy and redundant.

3.1.2 The order of preprocessing stages

Most applications do not require preprocessing methods that fall outside of these steps.

However, the selection and order of steps used is dependant on the type and quality of
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data. In the case of TOF-MS data, performing alignment before calibrating peaks along the

m/z axis is ideal. Although variance stabilization, normalization and smoothing all reduce

variation, they have specialized roles which might make them more effective in particular

orders. For example, variance stabilization can be seen as a type of normalization, which

removes a multiplicative bias on feature values. This must be done before the additive bias is

removed through baseline correction. Afterwards, additional rescaling through normalization

may take place, as not every rescaling operation will reduce the dependence of feature values’

variance on their means. Smoothing could be applied at any time to improve the consistency

of data. However, performing it too late may cause interesting variation to be obscured and

averaged out. Any preprocessing step entails removal and addition of information. Thus,

any preprocessing step carries a risk, and should be kept to a minimal level of aggressiveness

to preserve as much interesting information as possible. In order to adjust the harshness of

each preprocessing step, they are usually controlled by a choice of parameters (such as the

size of a moving-average window), or functions (such as an exponential function for modeling

a shifted baseline).

3.1.3 Related Work

The list of literature on high-throughput data preprocessing is substantial. It is typical

that each lab generating data will have their own preferred method, usually in addition to

at least one other ’default’ method suggested by the lab equipment manufacturer. Despite

the differences, the individual steps remain similar. The majority of differences are brought

about by how the steps are tuned to fit the quirks of the studied data. The following is a

summary of the most popular methods used for preprocessing data. Each technique will be

used later on as part of a comparative framework for evaluating preprocessing methods.

3.1.3.1 Preprocessing Techniques Preprocessing has been applied to data from many

fields, and should not be surprising that many techniques stem from simple methods. High-

throughput data is intended to demonstrate a signal, but suffers from much noise. Methods

in signal refinement have been simply transplanted from their native domains and applied to
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high-throughput data. Signal-to-noise filtering, originating in electrical engineering applica-

tions, has been refined for the purposes of smoothing and variance stabilization. The latter

is commonly performed through either a fractional-power transformation [11] or more com-

monly, log transformation [12,13]. Applying the latter transformation will artificially inflate

variance of very low feature values, as well as necessitating truncation of negative values.

A generalized log-transform was later developed to address these problems by parameter-

izing the logarithmic transformation for individual assays [14]. Going one step further,

assay-specific variance-stabilizing transformations can be created by learning an appropri-

ate transformation function [15]. This function is derived by characterizing the relationship

between the mean and variance of a feature’s values. This enables a wider variety of trans-

formation functions to be used. Another key advantage is that the method allows for the

incorporation of multiple replicates without needing to perform a linear normalization (av-

eraging) across feature replicates.

Smoothing techniques are relatively simple in nature and application. Many high-

throughput data analyses use local statistics to conform a feature’s value to its immedi-

ate neighbors. These include simple approaches such as moving average [13], median and

geometric mean filters [16]. Techniques used to smooth time-series data have also been

applied to proteomic profiles, due in part to their similarity in visualization. The Savitsky-

Golay filter [17,18] is considered a very popular choice for smoothing MS data. More recent

methods have been developed based on the Fourier transformation [19] and wavelet trans-

formations [20,21]. These transformations break the proteomic signal into a combination of

signals, with the intent to separate noise from the true signal. Wavelet transformations can

produce multiple wavelet basis functions, which have the advantage of adapting to differences

in scale and local signal structure.

Baseline correction methods generally assume that signal is constructed from a linear

combination of a noise signal, true signal and baseline (zero) signal. The true signal is affected

by systematic noise as a result of the imperfect machinery used to measure a feature’s value.

In the case of microarray data, this pertains to two separate effects; nonspecific binding of

genes to an inappropriate probe artificially inflates or deflates expression values for those

genes. Furthermore, the optical scanner imparts noise to the value of a probe’s reading. The
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original solution involved measuring mismatch probes, which are designed with a small defect,

to measure the amount of non-specific binding. The background adjustment is done by

subtracting this amount from the reading of the true-match probe. Although this ignored the

amount of noise introduced by the scanner, later models were able to separate contributions

of scanner and nonspecific binding noise. Affinities between gene targets and probes were

estimated based on their nucleotide structure, which permitted models for estimating the

nonspecific binding. Additional noise is modeled as a separate additive component, modeled

through a distribution learned from data [22].

Baseline correction methods for proteomic spectra developed with a similar history. Early

techniques concentrated on detecting ’peak’ features and subtracting them from the raw

signal to determine the shifted baseline [19, 23]. In these methods, the baseline is drawn

piecewise by finding a local minimum or median (to reduce noise) within a sliding window

of variable size. Alternative methods separated the peak-finding task from computing the

baseline, either by smoothing out the peaks [24], or by ignoring them altogether, using only

the local minima while ensuring a monotonically decreasing baseline [25]. The latter is a

simple and popular method, because it allows the decomposition of noise and true signal at

a later stage. A recent technique fits an exponential function to local medians which remain

below a smoothed version of the raw signal [24]. This can help to eliminate some of the

noise. However, remaining noise above the baseline may become more difficult to charac-

terize and remove. An ”orthogonal background subtraction” method was developed [16] by

characterizing noise through Principal Component Analysis [26]. The top two components

were used to estimate noise contributions in an area of signal which was known to consist

only of baseline. These learned components were then used to remove the baseline from the

entire profile.

Normalization techniques are not particularly abundant in the literature, as their purpose

is simple: to enhance the appearance that data come from the same scale. The method

outlined in [27] rescales all values to the [0 1] range. Similarly, the 10th and 90th percentiles

of profiles have been mapped to 0 and 1, with linear interpolation between [28]. Quantile

normalization [29] is a method which rescales data so that feature values in individual data

records come from the same distribution. This method was developed for microarray analysis,
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but has since been used for normalizing proteomic spectra [30]. Nevertheless, the most

common method of normalizing proteomic data tends to be the total ion current (TIC)

correction [19,25], which normalizes all feature values of a spectra by the sum of intensities

within a region of the spectra. This region can be as wide as the entire spectrum, but is

typically restricted to a region which appears to have a strong signal-to-noise ratio. A similar

method is global mean normalization [31], which assures the average feature intensity is the

same across all profiles.

Alignment of proteomic spectra is commonly performed to ease comparison of features

within and across datasets. The dynamic time-warping algorithm [32] was initially used

to measure and increase the similarity between two proteomic signals over time-of-flight.

However, the large size of proteomic profiles (≫ 10000 positions) is often prohibitive for the

memory and computational requirements of the underlying dynamic programming mecha-

nism. Restricting the maximum distance of edits between signals [33] alleviates this problem

somewhat. As an alternative, the dynamic programming approaches can be done away with

completely by using parametric and nonparametric methods [33,34]. These methods restrict

the warping function to a low-order polynomial. The parameters of the polynomial are fit

via regression so that an appropriate distance metric between the aligned signals is mini-

mized. To save computational costs, a method has been developed [35] to split the signal

into segments which are dealt with separately, but also forced to agree when merging them

at the end. One drawback of these approaches is that they require a “template” profile to

which other profiles are aligned. To avoid biasing the alignment with a poor choice of a

template profile, a probabilistic model was developed [36] to perform multiple alignments

simultaneously with a hidden Markov model (HMM). The template becomes a sequence of

states, each of which reflect a distinct feature in the profile. This is learned from the training

data in a way that maximizes the probability that the HMM can produce the training data

from the template state sequence. Afterwards, a profile is aligned to the template by its

probability of which state each feature is in.
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3.2 METHODS

As no technology can be absolutely perfect, high-throughput data requires preprocessing to

assure that the effects of internal and external noise are mitigated. Preprocessing necessarily

affects the downstream analysis of high-throughput data [37]. Predictive models learned

on differently preprocessed data may be substantially different in terms of which features

are used for diagnosis. This in turn affects the interpretation and validation of interesting

models. This may suggest that preprocessing methods consistently emphasize the same

features. However, preprocessing cannot correct for all variations in laboratory protocols

which may be responsible for different sets of informative features. Thus, preprocessing

methods must do their best to maintain any differences between classes, if they exist, so

that analysis routines can examine all reasonable possibilities. Concurrently, they must also

deal with the inherent stochasticity of the data collection process by benignly removing noise.

Thus, profiles belonging to the same class must remain as similar as possible, to reduce the

chances of spurious features arising in the feature selection phase.

This dissertation intends to develop heuristics and methodology for the evaluation of pre-

processing techniques. No means exists to objectively compare sets of preprocessing methods

for mass spectrometry data. The generic heuristics given here are applicable to any type of

MS data, and the methodology stresses an important aspect which is often overlooked in the

development of many preprocessing methods. This aspect is that the global task of achieving

good prediction must be balanced against the localized removal of noise. The evaluation of

these techniques are demonstrated on real biological data. The following sections describe

a methodology for automatically evaluating and applying preprocessing techniques which

seem to best improve discriminative information while removing targeted sources of noise.

These methods are then compared for their effect on downstream performance.

3.2.1 Evaluating Preprocessing Steps

The sections below introduce the Standard Automatic Preprocessing procedure, henceforth

abbreviated as SAP. This procedure attempts to maximize the discriminative signal remain-
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ing after a preprocessing method at a tradeoff with how well noise is removed from the

signal. At each stage of the preprocessing, we use two kinds of heuristics to determine a

preprocessing method’s performance at retaining discriminative signal and removing noise.

A third parameter acts as a security measure against methods which may cause these scores

to be circumvented.

In general, we are interested in the task of using proteomic profiles to predict disease.

This classification task is central to any analysis of protein profiling data. Preprocessing

consists of many stages, with each stage targeting a specific source of noise. Sometimes,

these sources of noise are more easily defined and their effects quantified. Other sources of

noise are hard to describe accurately and are more difficult to quantify. In this case, it is

increasingly important to focus on the original predictive task to assist us in determining

how well a noise source has been dealt with.

The Discriminative Estimate (DE) score is a global metric which stays constant through-

out all stages of the preprocessing. The goal of this heuristic is to measure how easily the

case and control profiles can be discriminated after a preprocessing method has been applied.

We can calculate the DE score through many means. In the experiments below, I use the

10-fold cross-validated AUC of a support vector machine, evaluated on the internally split

training data. Other possible ways to calculate the DE score include the following options:

• Summing the univariate scores of the top n discriminative features, where n is an index

into features sorted by their Fisher score in descending order

DE =
n∑

i=1

µ
(+)
i − µ(−)

i (i)

(σ
(+)
i )2 + (σ

(−)
i )2

(3.1)

• Measuring the ratio between average Euclidean distance of profiles within class to the

average Euclidean distance of profiles between classes (as in equation 3.2 below).
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DE = diff inter/diff intra ,where

diff inter = 1/(2n+)
d∑

j=1

(µ+
j − µ−

j )
2

diff intra = 1/(2n−)

n+∑
i=1

d∑
j=1

(µ+ − fj)2 +
n−∑
i=1

d∑
j=1

(µ− − fj)2

(3.2)

The following subsections present methodology for evaluating the best technique at every

stage of the preprocessing routine. However, each stage may have a different criteria to

evaluate the goodness of that particular stage’s contribution to the complete preprocessing

routine. I call these local criteria stagewisescores. There may be tradeoffs between local

stagewise scores and the global DE score, which is intended to reflect the goodness of

the entire preprocessing routine, rather than each individual step. Therefore, in order to

choose the best preprocessing method at any stage, I create so-called Stagewise Performance

curves (Henceforth referred to as SP-curves) akin to ROC curves. For each preprocessing

stage, multiple preprocessing methods will be evaluated using a stage-specific criterion. This

criterion is computed along with the resulting effect on the data’s DE score. A curve is

generated from the points, so that the x-axis represents the quantity 1-DE, and the y-axis

represents the stage-specific criterion, which is rescaled to the range [0 1]. The ”optimal”

method is chosen as the one whose scores are closest to the point (0,1). This gives a similar

interpretation to ROC curves, in which a ”perfect” classification system’s ROC curve will

reach the point (0,1). This selection system has the effect of equally weighting the DE score

and the stagewise score. However, a higher-quality stagewise score may be weighted higher

than the DE score, and for poorly defined stagewise scores, the DE score could likewise be

favored.

The sections below briefly describe the type of noise each preprocessing step tries to

address, and suggests a stagewise score for each stage. Some stagewise scores are very neatly

defined, such as the Heteroscedacity Retention score for variance stabilization. Other stages,

such as baseline correction, may have more difficulty accurately quantifying the success of

the baseline removal with the signal-to-noise ratio score. In this case, the global DE score
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will serve as an assistant to an imperfect local score. Section 3.1.3 includes a discussion of

all methods which are analyzed at each stage of preprocessing.

3.2.2 Variance Stabilization and Heteroscedacity

Heteroscedacity is defined as a relationship between the mean and variance of features.

This phenomenon can be observed by plotting the mean of feature intensities versus their

standard deviation. Ideally, we would like to see a constant amount of variance across all

intensities; thus the ideal plot would appear as a thin, horizontal cloud. A rough approach

to quantifying heteroscedasticity can use linear regression to fit a line to points defined by

these standard deviations and means. The slope of the fitted line indicates the degree to

which the heteroscedasticity remains in the data after the transformation. A flatter slope is

better. Furthermore, the sum of the residuals indicates to what degree the line approximates

the cloud. A smaller sum would indicate that the variance-stabilizing transformation was

able to alleviate more of the heteroscedasticity. Although both the slope and residual errors

are important, it is not clear at what point the residual errors begin to matter more than

the slope. Figure 9 displays an example on the pancreatic cancer dataset. Although the

slope increases slightly, the residual error from a linear regression fit improves greatly. This

is despite a slight increase in the slope from the raw data, which appears to be due mostly to

the poor choice of linear regression to fit a quadratic relationship between mean and standard

deviation. In practice, the difference between residual sums, combined with the small slope,

is probably enough to consider this transformation beneficial to the data.

The Heteroscedacity Retention score (HR, equation 3.3) uses both the slope and sum

of residuals in evaluating the goodness of a variance stabilization procedure. The sum of

residuals is the dominant term in the equation. As the slope varies, additional penalties to

the score are added, up to a maximum of each residual. When the slope is exactly 0, no

penalty is incurred. A larger HR score indicates that the variance stabilization procedure

retains more heteroscedacity (is poorer). To evaluate a variance stabilization procedure, the

HR score is calculated after applying the procedure to the training set. The HR score is

then used in the SP curve to decide which variance stabilization method performs the best.
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HR =
d∑

j=1

(Rj +Rj ∗ (mreg)) , where

Rj = ||mregxj + breg − yj|| , where

mreg and breg are from linear regression on x and y

(3.3)

3.2.3 Baseline removal, smoothing and the Signal-to-noise ratio

Baseline removal and smoothing are two techniques for removing systematic sources of noise.

Baseline removal deals with constant background noise, while smoothing deals with a stochas-

tic fluctuation between or within measurements. In the proteomic data, a baseline sub-

traction procedure restores the minimum of the measurements closer to 0. A smoothing

technique relieves the data of high-frequency noise which may appear as separate peaks or

valleys. Since these procedures remove information from the signal, the question is, how

much noise is removed in comparison to true signal?

The signal-to-noise ratio (typically calculated as the ratio of amount of true signal to

the amount of noise) seems to be a fitting metric for answering this question. Since the

noise sources are different, interpreting how the signal is constructed can become a different

task. A baseline shift is an additive noise which has its own variation. This should be

considered separately from the noise which is targeted by smoothing techniques, and comes

from other sources of variation influencing the signal (natural biological variation, chemical

or mechanical noise). In the case of baseline removal, we can define the Baseline Signal-to-

Noise Ratio score (bSNR) as 1
d

∑d
j=1(µvj − µbj)/(σvj − σbj), where µvj is the mean intensity

of feature j before baseline correction, µbj is the mean intensity of the baseline at feature

j, and σvj and σbj refer to the standard deviations of the feature and baseline intensities,

respectively. In the case of smoothing, since we only need to worry about the variance

experienced after the baseline is considered, we can drop the bj terms and calculate the

Smoothing Signal-to-Noise ratio score sSNR simply as 1
d

∑d
j=1 µj/σj. Both scores estimate

the average signal-to-noise ratio resulting from a preprocessing method. These scores are

used to determine the SP curves for baseline correction and smoothing, respectively.

32



The standard application of baseline correction and smoothing methods are analogous

to that of variance stabilization. For either stage, a set of methods is obtained. Each one is

applied to the training data at an appropriate time in the preprocessing sequence. The bSNR

score is obtained by using the chosen baseline removal method to calculate the baselines of

the profiles. Likewise the sSNR score is computed using the resulting smoothed profiles

from a smoothing method. Methods which have an acceptable PR score are retained for the

computation of their stage’s SP curve.

3.2.4 Alignment and the coefficient of variation

Alignment methods for proteomic profiling often differ in the metrics used to evaluate the

quality of the alignment. In general, an alignment is considered successful if the variation

in features which should be identical is minimized. Therefore, methods have attempted

to characterize this variation in many ways, for example, by measuring the percentage of

variance captured by the first two principal components of a PCA decomposition, or by

counting the percentage of profiles in which a peak is detected. A hybrid between these

approaches is using the coefficient of variation, computed as σj µj. This is a measure of the

dispersion of the variable, and should be smaller for measurements which should be identical.

Since many of the features in a proteomic profile will most likely not be discriminative, the

variation in most of the features should be minimized. Measuring the average coefficient of

variation (ACoV= 1
d

∑d
j=1 σj µj) is a simple and effective metric for comparing the vastly

different alignment methods discussed above. After an alignment method is applied to

the training data, the ACoV score is computed. Since the ACoV score uses the mean

and standard deviation across the entire training data set, a single score for the method is

achieved. Methods with an acceptable PR score are used to compute the SP curve. The

mean aligned profile is used as a template, when needed, to align profiles from testing data.

Occasionally, a poorly-designed method can enter the competition between other valid

methods. This method may allow the DE score to artificially inflate. For example, the

Moving-median smoothing routine available during the smoothing stage often performed

very well on the training data, but results on the test data were poor. Since smoothing occurs
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after baseline correction, many values are brought to 0 or close to 0. This means that the

median at many points in the profile will be 0 or very small. The moving median smoother

effectively erases much of the signal and smooths out several peaks if the sliding window

parameter is chosen poorly. The only part of the profile that remains similar is the start

of the profile (from 0 to roughly 3 kDa). This region in a MS proteomic profile is typically

referred to as the “junk” region, since many biological artifacts arise from the vaporization of

the analytical surface. These can include matrix molecules that are used to hold the biofluid

on the analytical surface, portions of broken proteins or other contamination. Nevertheless,

this region contains thousands of features and can possess spuriously discriminative features.

If the rest of the profile has been smoothed to 0, the classifier evaluating the DE score will

be forced to choose one of these spuriously discriminative features. However, the classifier

cannot make a guarantee about the reliability of the feature appearing in the junk region

of future test cases. In this case, the SP-curve will choose a poor method, and the SAP

preprocessing will suffer. This means the choice of the DE score must also be made carefully,

in order to try to weight robust preprocessing methods more heavily. In an effort to require

methods behave reasonably in their treatment of the data, I enforce the condition that

only methods which retain a number of “peak” features in the profile are considered for

application. This constrains the overall signal shape as a result of the preprocessing. A peak

detection routine is used to calculate positions of local maxima in the profile. These peak

features are often subselected in later stages of analysis as a first pass of feature selection,

since they often vary the most, and therefore have a greater chance to be discriminative. If

a preprocessing routine does not retain at least P% of the peaks in the data, the method

is not allowed to be chosen as a preprocessing step. The Peak Retention score (PR) is an

indicator function which is 1 when the percentage of peaks retained is > P , and 0 otherwise.

In our experiments, P = 50%.

All of the above methods were implemented in MATLAB. The computational time de-

pends largely on the number of profiles in the dataset, since many preprocessing routines

operate in a vectorized manner over the feature space, but work on individual profiles at a

time. Since the automatic preprocessing procedure evaluates all preprocessing methods, the

worst-case complexity is dependant on the most resource-intensive method.
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3.3 EXPERIMENTS AND RESULTS

These experiments are intended to evaluate and compare the above methodologies for prepro-

cessing and demonstrate the effectiveness of automatic selection of preprocessing methods.

A flowchart for these experiments is depicted in Figure 11. Briefly, a comparison is made be-

tween three different preprocessing methodologies: no preprocessing (referred to as “Raw”),

the “baseline” preprocessing procedure discussed in section 3.3.1 and the “Standard Auto-

matic Preprocessing” method, where the SP curves are used to select methods, but no class

information is used during the individual preprocessing stages. The raw dataset is divided

into training and testing datasets. The Standard Automatic Preprocessing (SAP) procedure

uses only the training data until the ’best’ preprocessing methods are known, and then these

are applied to the testing set.

A predetermined predictive model is trained using the preprocessed training data, and

classifies the profiles in the preprocessed testing set. The predictive model used in all exper-

iments for this section is a Support Vector Machine (SVM) with a linear kernel and ℓ1-norm

penalized regularization. This model was chosen primarily because of its simplicity. Addi-

tional details about this model are given in 4.2.10. This model is learned from the training

set and applied to the testing set, and the resulting performance (in terms of Area under

the ROC curve, or AUC) is recorded and reported in the experiments below. The AUC

performance is averaged over 40 training/testing data splits. These splits are identical for

each of the three evaluated preprocessing procedures. I begin by describing the results of

applying the baseline and SAP procedures relative to performance on raw data.

3.3.1 Baseline Preprocessing

During the development of my research, a baseline preprocessing procedure was devel-

oped [25, 38, 39]. The baseline preprocessing procedure was originally designed to remove

what was perceived at the time as the ”major” noise artifacts; the baseline shift and the

high-frequency noise running along the entire signal. This procedure was empirically de-

veloped primarily through visualization of the data before and after preprocessing. Sat-
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isfactory elimination of the noise artifacts on multiple datasets, coupled with satisfactory

downstream classification performance, suggested that this procedure was robust. The base-

line preprocessing procedure (not to be confused with baseline correction, the second stage

of preprocessing) is performed as follows:

• Variance stabilization - Cube-root transformation

• Baseline correction - Our baseline correction procedure uses a sliding window of 200

time-points to define local minima. These points are then linearly interpolated to define

the baseline. The area underneath the baseline is then subtracted from the uncorrected

signal.

• Normalization - Total Ion Current (TIC) normalization from 1500 to 20000 Daltons.

This constant is calculated individually for each profile.

• Smoothing - We use Gaussian-kernel smoothing to remove random noise in the signal.

The kernel affects 12 time-points at once.

• Alignment - Before alignment takes place, a mean reference profile is computed by av-

eraging all profiles within a dataset. Profiles are aligned individually to this reference

profile via dynamic programming within an area of 200 time-points.

In order to demonstrate the ability of the baseline preprocessing procedure alone, I also

evaluated classifier performance with respect to the unprocessed, raw data. Thus, the pre-

dictive model was trained on raw data, and evaluated on the raw testing data profiles. Table

2 displays the average area under ROC curves (AUC) for the predictive models evaluated

on the raw and baseline-preprocessed data.

Two important notions stand out from these results. The first is that many of the

datasets possess a signal in the raw data which enables correct classification beyond ran-

domly guessing (random guessing would give AUC = 0.5). In the case of the prostate cancer

dataset, we know this is due to a spurious discriminative signal introduced during data

production [6]. The same effect may be present in other datasets, but this is difficult to

determine. On the other hand, it is encouraging to see signal from the raw data, as it would

be overly pessimistic to assume the mass spectrometer could not reveal true biological differ-

ences in the samples. Regardless of the authenticity of the signal, it is unclear whether the
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baseline preprocessing procedure is robust enough to consistently improve the performance

of downstream predictive models. Four out of the 14 datasets experience an average draw-

back from learning with baseline-preprocessed data. Of those datasets that do experience

an advantage, this advantage is greater than 0.03 AUC in only 2 cases. The prostate cancer

dataset deserves an exception, as the baseline procedure effectively attacks the spuriously

discriminative signal. As a result, the performance drops greatly (-0.11 AUC).

In some cases, the baseline preprocessing procedure results in a poorer average AUC

than possible with the raw data. This suggests that most raw data contains a ”usable”

discriminative signal before any preprocessing takes place. The source of this discriminative

signal can be genuine biological information, or it can signify bias introduced in the data

production from lack of randomization between case and control sample processing, as was

the case in the prostate cancer dataset [6]. Regardless of the authenticity of the signal, it is

clear that our baseline preprocessing procedure is not suited to preprocessing the majority

of data. In almost all cases, the average AUC of resulting predictive models is lower than

those provided with the raw data.

The advantages imparted by the baseline procedure are small in all cases except the

Hepatitis and Vanderbilt Lung Maldi dataset. The addition of an additional 1% of AUC, as

well as largely overlapping confidence bounds suggests that the baseline procedure may not

have much influence on the development of predictive models. Regardless of the baseline

procedure’s performance, we can see that it will not guarantee a positive advantage over using

the raw data, and we may still seek improvement through other preprocessing procedures.

3.3.2 Scored Standard Automatic Preprocessing

We assume raw protein profiles have inherent discriminability, and the noise upon these

sources differ per dataset. The Standard Automatic Preprocessing (SAP) method attempts

to adjust to noise sources by choosing preprocessing methods at each stage which best

improve the discriminability of the data. Table 3 displays the average AUC achieved by

predictive models on the baseline-preprocessed and SAP-preprocessed data. The rightmost

column indicates the ”advantage” of using the SAP procedure over the baseline procedure.
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This advantage is surprisingly negative for all except four datasets (COPD, ILD, Prostate

Cancer and Vanderbilt Lung MALDI, where the advantage is 0). Interestingly, three of these

datasets incur a disadvantage from using the baseline procedure as seen in Table 2, and the

advantage given to COPD by SAP is greater than the advantage given to COPD by the

baseline procedure. This suggests that the SAP procedure can indeed improve over fixed

preprocessing procedures which are not robust enough for every dataset.

Unfortunately, for the rest of the datasets, the advantage from using SAP is negative, but

small (less than 0.05% AUC). For those datasets where SAP imparts a large disadvantage to

the predictive model, we might be concerned whether data production bias was present in

the raw data despite careful data production protocols. A small disadvantage may simply be

due to the limited pool of methods available to the SAP procedure. A larger pool of available

methods with alternatives for parameter settings may enable SAP to perform better than the

baseline procedure. These methods could be created on the fly by performing a grid-search

over the parameter space, and allowing the results of that search to be used in the SP-curve

selection process explained in Section 3.3.1.

3.3.3 Discussion

The SAP procedure was meant to be an intelligent method for dealing with the uncertainty

of whether a static preprocessing procedure was proper for any mass spectrometry protein

profiling dataset. Thus it was surprising to see that the baseline routine, created primarily

through experimental evaluation on the pancreatic cancer datasets, often outperformed SAP.

However, performance of the two methods is very close. There are many ways to explain

this behavior. The first is that our local stagewise scores for each stage may not be very

strong. The heteroscedacity score for variance stabilization is a well-defined metric which

targets and quantifies a noise in our signal. However, signal-to-noise ratio based metrics

such as those for baseline correction and smoothing are more general and need more of an

assist from the global DE score. The second reason why SAP may have underperformed

was due to the small pools of methods available. With few candidates for every stage, and

each stage including the method used in the baseline procedure, it is easy for SAP to select
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part or all of the baseline procedure’s methods. On a good note, this reinforces the strength

of our choices for the baseline preprocessing procedure we developed prior to SAP. Finally,

the raw data often possesses a usable discriminative signal by itself. This suggests that data

production bias may already be evident before any preprocessing begins. It is possible that

the baseline routine is actually failing to remove some or all of this production bias. SAP

is more aggressive in targeting the noise sources, and may remove more of these production

biases, but at the cost of not outperforming the baseline method in terms of predictive model

performance.

The following section discusses the performance of SAP with respect to the baseline

procedure in more detail.

3.3.3.1 Value of Individual Preprocessing Stages I re-evaluated the baseline and

SAP procedures by individual stage. This means that for each stage, only that stage of

preprocessing is performed, and the rest are skipped. The resulting data is then given to the

predictive model for training and evaluation. SAP in this case will only make a decision for

the method that will perform that stage.

Table 4 displays the AUC advantage contributed by each stage of baseline preprocessing

alone. No individual stage by itself stands out as the major contributor for every datsaet.

Instead, each dataset seems to be most favored by a different stage of preprocessing. In

general, variance stabilization (by cube-root transformation) seems to be the most harmless.

Table 5 displays the AUC advantage contributed by applying the method learned by SAP

for each stage. Similarities between this table and Table 4 would indicate that SAP tried

to choose the same method as baseline. This occurs most often with intensity correction, as

SAP frequently chose to use the baseline procedure’s TIC-normalization routine. In other

stages, there was more variance in the methods selected by SAP. For those datasets where

SAP outperformed baseline (COPD, ILD, Prostate Cancer, Vanderbilt MALDI), there are

patterns for the selection of methods which may be indicative of the behavior of SAP.

Sometimes, a competing method provides a good fit and it is chosen consistently. For

example, SAP repeatedly chose the generalized logarithm variance stabilization procedure for

the ILD dataset. The result was an improvement in the variance stabilization stage. For the
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COPD and Pancreatic Cancer II datasets, SAP alternated between performing no baseline

correction 50% of the time, and performing the monotone-baseline correction procedure the

other 50%. In the case of COPD, there was an average improvement, but the Pancreatic

Cancer II dataset suffered from the mixture. It’s possible that we got lucky with the mixture

with the COPD data, but the large drop in advantage for the Pancreatic Cancer dataset and

frequent choice to perform no baseline correction indicates that there was a poor selection

of baseline correction routines available for that dataset.

Interestingly, for only the two MALDI datasets (Diabetes and Vanderbilt Lung MALDI)

SAP chose to use the Log-transformation variance stabilization routine, and the average

advantage of applying this transformation improves over the baseline’s performance for this

stage. This may suggest that the Log-transformation is better suited to data from the

MALDI technology. Provided a wide array of preprocessing methods and a variety of data

types, SAP may be able to establish fixed preprocessing routines per data production tech-

nologies.

The large drops in advantage for the smoothing stage should not be alarming. Those

datasets which seem to suffer end up having the Moving-median smoothing routine chosen

for them. This routine is simply not a good method. Since the median is used as the

replacement value within the sliding window, a large number of features are reset to what

the local baseline appears to be. The remaining features which stand out are likely to be

from the aforementioned “junk” region, which exhibits high variance. It becomes possible

to discriminate profiles in the training set by chance (and also possibly because baseline

correction wasn’t performed beforehand, the baseline shift between classes may be obvious).

However, these features are not guaranteed to be robust for future data, and the error rate

on the test set increases. For the other datasets, SAP chooses among the other smoothing

methods, and this has a more positive effect. The lack of baseline preprocessing makes a

difference. For the Vanderbilt Lung WCX dataset, SAP chooses the moving median routine

if no baseline correction occurs, and as shown in Table 5, there is a large performance

dropoff. However, when smoothed within the context of the entire preprocessing pipeline,

SAP chooses a mixture of the Savitzky-Golay smoothing method, the Fourier-transform

smoothing method and No smoothing. The results as shown in Table 3 indicate that, in
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fact, SAP can choose a capable method. Nevertheless, this underscores the importance of

the teamwork and order between preprocessing stages.

3.3.3.2 Effect of additional training data on preprocessing procedures I investi-

gated how preprocessing procedures behaved as a result of learning from more or less training

data. Of course, the baseline procedure doesn’t “learn” anything, as its preprocessing meth-

ods are fixed. However, in the previous subsection, it was apparent that changes in the

training data can cause a different selection of methods for SAP. This is evidenced by the

selection of a mixture of methods to perform stages of preprocessing over the 40 separate

train/test splits.

For the three “Vanderbilt Lung SPORE” datasets, I repeated the experiments from this

chapter using random subsamples of the training data, starting at 20%, and increasing by

steps to 35%, 50%, 65% and 80% of the training set. Figures 12, 13 and 14 display a plot of

each preprocessing method’s average performance (in terms of AUC and their 95% confidence

intervals) as a function of the available training data percentage. In the interest of time,

these experiments were measured over only the first 10 out of 40 train/test splits. The test

set size remains constant (30% of original data), while the training set (70% of original data)

underwent subselection for each of the thresholds. The remaining data removed from the

training set is not used in any way. It can be seen that SAP performs close to the baseline

routine in terms of performance.

The procedures’ performance trends upward as the training set size increases. This is

the expected behavior, since increasing the training set size increases the heterogeneity of

the training data. This in turn improves the robustness of the predictive model, resulting in

better predictive performance.
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Figure 4: MS profiles for a single sample across 4 different sessions. Changes are apparent

in relative intensities of peaks.
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Figure 6: An example of baseline correction. Left panel: a profile with a baseline drift.

Right panel: the corrected profile. The additive component in the signal is removed and the

baseline is shifted to the zero intensity level.
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Figure 8: An example of smoothing
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Figure 9: The effect of variance stabilization on heteroscedacity.
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Table 2: Classifier performance on raw versus baseline-preprocessed data.

Dataset Raw AUC Baseline AUC Advantage

COPD 0.5088 ± 0.2510 0.5179 ± 0.2319 0.0091

Hepatitis C 0.5933 ± 0.2098 0.7120 ± 0.1713 0.1187

ILD 0.5593 ± 0.2610 0.5108 ± 0.2591 -0.0485

Diabetes 0.6078 ± 0.2340 0.6311 ± 0.2190 0.0233

Melanoma I 0.5997 ± 0.1767 0.5875 ± 0.1916 -0.0122

Breast Cancer 0.5113 ± 0.1487 0.5140 ± 0.1366 0.0027

Pancreatic Cancer I 0.8963 ± 0.0632 0.9050 ± 0.0538 0.0088

Pancreatic Cancer II 0.8450 ± 0.0833 0.8501 ± 0.0726 0.0050

Prostate Cancer 0.9718 ± 0.0163 0.8679 ± 0.0571 -0.1039

Scleroderma 0.7164 ± 0.1135 0.7216 ± 0.1199 0.0052

UPCI Lung Cancer 0.7589 ± 0.0737 0.7803 ± 0.0713 0.0214

Vanderbilt Lung IMAC 0.8976 ± 0.0419 0.9007 ± 0.0454 0.0031

Vanderbilt Lung WCX 0.8584 ± 0.0520 0.8858 ± 0.0470 0.0274

Vanderbilt MALDI 0.8773 ± 0.0504 0.8291 ± 0.0617 -0.0481
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Table 3: Classifier performance on baseline versus automatically preprocessed data

Dataset Baseline AUC SAP AUC Advantage

COPD 0.5179 ± 0.2319 0.5460 ± 0.2366 0.0281

Hepatitis C 0.7120 ± 0.1713 0.6657 ± 0.1911 -0.0463

ILD 0.5108 ± 0.2591 0.5759 ± 0.2441 0.0650

Diabetes 0.6311 ± 0.2190 0.6025 ± 0.2698 -0.0287

Melanoma I 0.5875 ± 0.1916 0.5384 ± 0.1961 -0.0491

Breast Cancer 0.5140 ± 0.1366 0.4894 ± 0.1481 -0.0246

Pancreatic Cancer I 0.9050 ± 0.0538 0.8978 ± 0.0663 -0.0072

Pancreatic Cancer II 0.8501 ± 0.0726 0.8047 ± 0.0836 -0.0454

Prostate Cancer 0.8679 ± 0.0571 0.8695 ± 0.0565 0.0015

Scleroderma 0.7216 ± 0.1199 0.6630 ± 0.1144 -0.0586

UPCI Lung Cancer 0.7803 ± 0.0713 0.7307 ± 0.0792 -0.0496

Vanderbilt Lung IMAC 0.9007 ± 0.0454 0.8535 ± 0.0573 -0.0472

Vanderbilt Lung WCX 0.8858 ± 0.0470 0.8735 ± 0.0475 -0.0123

Vanderbilt MALDI 0.8291 ± 0.0617 0.8291 ± 0.0679 0.0000
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Figure 12: Performance versus varied train set size, Vanderbilt Lung SPORE IMAC data
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Figure 13: Performance versus varied train set size, Vanderbilt Lung SPORE WCX data
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Figure 14: Performance versus varied train set size, Vanderbilt Lung SPORE MALDI data
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4.0 BIOMARKER DISCOVERY AND PREDICTIVE MODELING

4.1 BACKGROUND

High-throughput data technologies such as microarray and MS profiling are producing large

quantities of genomic and proteomic data relevant for our understanding of the behavior

and function of an organism. This often includes the study of characteristics of disease

and its dynamics. Thousands of genes are measured in a typical microarray assay; tens

of thousands of measurements comprise a mass spectrometry proteomic profile. The high–

dimensional nature of the data demands the development of special data analysis procedures

that are able to adequately handle such data. Once these data are properly preprocessed, the

central question of this process becomes the identification of those features (measurements,

attributes) that are most relevant for characterizing the system and its behavior. We study

this problem in the context of classification tasks where our goal is to build a model that

lets us discriminate well among classes of samples, such as samples from people with and

without a certain disease. Discovering the features and building a model that uses them

are two intertwined processes. Neither task is straightforward, and both tasks have caveats

which must be addressed.

4.1.1 Feature selection

Feature selection is a process that aims to identify a smaller set of features from a large

number of features. Reducing the number of features is often done with the goal of simplifying

the process of discriminating between classes (groups) in the data. If the number of feature

candidates is small and the number of samples in the data set is large, feature selection is
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only rarely an issue. However, high-throughput data suffers from the curse of dimensionality.

Data such as MS profiles are naturally high-dimensional, with the number of features being

in the hundred-thousands, and the number of samples in a dataset often being less than

a hundred. By learning a model from data with so many features and so few samples, the

estimates of parameters of the model are unreliable and may cause overfitting, a phenomenon

in which each datum is fit so rigidly that the model lacks flexibility for future data. To avoid

overfitting, feature selection is applied to balance the number of features in proportion to

the number of samples.

Feature selection can be a one-shot process, but it can also include search problems

where multiple sets of features are evaluated and compared. However, high-throughput data

is naturally high-dimensional, with the number of features being in the hundred-thousands.

This makes the number of possible feature subsets prohibitively large to explore exhaustively.

Thus, efficient feature selection methods are typically sought. These features must also be

strongly correlated with the class membership (in this case, the disease state). At the same

time, the feature selection method must be correct in retrieving valid features.

Feature selection methods are typically divided into three main groups: filter, wrapper

and embedded methods. Filter methods rank each feature according to some univariate met-

ric, and only the highest ranking features are used; the remaining features are eliminated.

Wrapper algorithms [40] search for the best subset of features. These methods use a pre-

dictive model during the selection process to evaluate feature combinations. The wrapper

algorithm treats a classification algorithm as a black box, so any classification method can

be combined with the wrapper. Standard optimization techniques (hill climbing, simulated

annealing or genetic algorithms) can be used.

Embedded methods search among different feature subsets, but unlike wrappers, the

process is tied closely to a certain classification model and takes advantage of the model’s

characteristics and structure. In addition to feature selection approaches, in which a subset

of original features is searched, the dimensionality problem can be often resolved via feature

construction. The process of feature construction builds a new set of features by combining

multiple existing features with the expectation that their restructured form improves our

chance to discriminate among the classes as compared to the original feature space.
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4.1.2 Predictive modeling

Inextricably linked to the process of feature selection, predictive modeling refers to the uti-

lization of selected features for the classification of data points. A predictive model is any

mathematical function which maps data inputs to the class prediction. These models fall

into different types of their own, depending on how they use features to arrive at the clas-

sification. Each model type offers distinct advantages and disadvantages, which therefore

makes the choice of model important. Afterwards, the model must be validated to ensure

that its predictions truly reflect the task at hand.

The primary objective of MS proteomic profile data analysis is to build a predictive model

that is able to determine the target condition (case or control) for a given patient’s profile.

The predictive classification model is built from a set of SELDI-TOF- MS profiles (samples)

assembled during the study. Each sample in the dataset is associated with a class label

determining the target patient condition (case or control) we would like to automatically

recognize. More formally, let D be a set of data pairs {< X1, Y1 >,< X2, Y2 >, . . . , <

Xn, Xn >}, whereXi denotes inputs and Yi their designated outputs. In the case of proteomic

profiles, Xi corresponds to profile readings (a vector of m/z intensity values) and Yi to the

class label: case or control (cancer or non-cancer). The objective is to build a predictive

model f : X → Y that maps inputs (profiles) to outputs (labels) such that the mapping

achieves high accuracy on future unseen profiles. The classification (prediction) refers to the

process of applying the learned model f : X → Y to profiles and assigning the output label

for them.

4.1.3 Evaluation of Classifier Methods

Our objective is to obtain models that achieve accurate predictions on future profiles. Since

these examples are unobtainable, the ability of a classifier model f to generalize to such

data is analyzed by splitting the available data into two subsets: a training set and a test

set. The training set consists of profile samples used to pick the features and learn the

model. The test set consists of profile samples withheld from the learning stage that are

used to approximate the ability of the classifier to correctly predict future, yet to be seen,
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data. The complete performance picture is given by the confusion matrix that represents the

percentages of true positive (TP), true negative (TN), false positive (FP) and false negative

(FN) results. Secondary measures can be derived from the confusion matrix and include the

following:

Error rate (E) : FP + FN

Sensitivity (SN) : TP/(TP + FN)

Specificity (SP ) : TN/(TN + FP )

Positive predictive value (PPV ) : TP/(TP + FP )

Negative predictive value (NPV ) : TN/(TN + FN)

These performance measures can be computed for both the training set and test set.

Test set results are more important since they testify about how the classifier generalizes to

future data. However, the differences in training and testing performance statistics are still

important and carry useful information. For example, a large separation between training

and test errors is a sign of high variance of the estimates of the model parameters and

indicates potential overfitting of the model.

The evaluation measures discussed above are appropriate indicators of a learning models

performance under a 0-1 loss function that reflects the situation in which type 1 and type

2 errors (FP and FN) carry approximately the same weight. In the case where one type of

error should be weighted more heavily, a binary classifier’s performance can be captured and

examined independent of the loss function in terms of the receiver operating characteristic

(ROC). The separation of the two classes with different proportions of misclassification error

types is measured and summarized using the Area Under the ROC Curve (AUC) score [41].

A number of pitfalls apply to the evaluation of predictive models. The first cautions

against a perfect predictive model. Because of the intrinsic stochasticity in MS profile data,

it may be impossible to obtain a model with zero expected error. Noise may simply obscure

or remove important diagnostic information in features. A perfect model cannot be expected

in this type of environment. Following this, even if we see a small error, we must be assured

that the training and testing set were not chosen to particularly demonstrate this small

error. Evaluation measures must be averaged over several, random data splits to reduce
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the chance of biasing the evaluation with a lucky training/testing set split. Cross-validation

techniques such as random subsampling, n-fold and leave-one-out validation can be applied

to average evaluation measures over multiple data splits. And finally, the choice of which

model to apply to a test set must be made solely on their performance on data in the

training set. If we consider a single test set, a collection of predictive models will generate

varying performance statistics. This defines a distribution of the performance statistic which

is conditioned on the test set. Choosing the model that corresponds to the best value of

this distribution is biased, since in most practical settings, the test data comes from the

future (for example, a new patient comes into the hospital and is profiled). Since our test set

changes, our distribution of performance is no longer guaranteed to be identical, and thus

the best–performing model may not classify the future data well. Splitting the training set

further into an internal validation set can allow for estimation of generalization performance.

This process can be repeated multiple times and the results averaged in order to obtain a

good estimate of generalization performance.

4.2 RELATED WORK

4.2.1 Filter Methods

Filter methods perform feature selection in two steps. In the first step, the filter method

assesses each feature individually for its potential in discriminating among classes in the

data. In the second step, features falling beyond some thresholding criterion are eliminated,

and the smaller set of remaining features is used. This score–and–filter approach has been

used in many recent publications, due to its relative simplicity. Scoring methods generally

focus on measuring the differences between distributions of features. The resulting score is

intended to reflect the quality of each feature in terms of its discriminative power. Many

scoring criteria exist. For example, in the Fisher score [42],

V (i) =
µ(+)(i)− µ(−)(i)

σ2
(+)(i) + σ2

(−)(i)
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the quality of each feature is expressed in terms of the difference among the empirical means

of two distributions, normalized by the sum of their variances. Table 6 displays examples

of scoring criteria used in bioinformatics literature. Note that some of the scores can be

applied directly to continuous quantities, while others require discretization. Scores can be

limited to two classes, like the Fisher score, while others, such as the mutual information

score, can be used in the presence of 3 or more classes. For the remainder of this chapter,

we will assume our scoring metrics deal with binary decisions, where the data either belong

to a positive (+) or negative (-) group.

Table 6: Examples of Univariate Scoring Criteria for Filter Methods

Criterion References

Fisher Score [43,44]

SAM Scoring Criterion [45,46]

Student t–test [47,48]

Mutual Information [49]

χ2 (Chi Square) [50,51]

AUC [52]

J–measure [53]

J5 Score [54]
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4.2.2 Univariate feature selection

Differential scores allow us to individually rank all feature candidates. However, it is still not

clear how many features should be filtered out. The task is easy if we always seek a fixed set of

k features. In such a case, the top k features are selected with respect to the ordering imposed

by ranking features by their score. However, the quality of these features may vary widely, so

selecting the features based solely on the order may cause some poor features to be included

in the set. An alternative method is to choose features by introducing the threshold on the

value of the score. Unfortunately, not every scoring criterion has an interpretable meaning,

so it is unclear how to select an appropriate threshold. One solution is to transform a scoring

metric to a p-value. Regardless of whether the score is parametric (Fisher score, t-test) or

nonparametric (wilcoxon rank-sum test), any score can be transformed into p-values through

a permutation test (see section 5.1.1) For example, if the p–value threshold is 0.05 then there

is a 5% chance the feature is not differentially expressed at the threshold value. Such a setting

allows us to control the chance of false positive selections. These are features which appear

discriminative by chance.

4.2.3 Multivariate feature set selection and controlling false positives

A natural step after doing univariate feature selection is to consider what combinations of

features can work well. The high–throughput nature of biological data sources necessitates

that many features (genes or MS–profile peaks) be tested and evaluated simultaneously.

Unfortunately, this increases the chance that false positives are selected. To illustrate this,

assume we measure the expression of 10,000 independent genes and none of them are differ-

entially expressed. Despite the fact that there is no differential expression, we might expect

100 features to have their p–value smaller than 0.01. An individual feature with p–value 0.01

may appear good in isolation, but may become a suspect if it is selected from thousands

of tested features. In such a case, the p–value of the combined set of the top 100 features

selected out of 10,000 is quite different. Thus, adjustment of the p–value when performing

multiple tests in parallel is necessary.

The Bonferroni correction adjusts the p–value for each individual test by dividing the

63



target p–value for all findings by the number of findings. This assures that the probability

of falsely rejecting any null hypotheses is less than or equal to the target p. The limitation

of the Bonferroni correction is that it operates under the assumption of independence and

as a result it is becomes too conservative if features are correlated. Two alternatives to the

Bonferroni correction are offered by: (1) the Family–wise Error Rate method (FWER, [55])

and (2) methods for controlling the False Discovery Rate (FDR, [45, 56]. FWER takes

into account the dependence structure among features, which often translates to higher

power. [56] suggest to control FDR instead of the p–value. The FDR is defined as the mean

of the number of false rejections divided by the total number of rejections. The Significance

Analysis of Microarrays (SAM) method [46] is used as an estimate of the FDR. Depending

on the chosen threshold value for the test statistic T , it estimates the expected proportion

of false positives on the feature list using a permutation scheme.

4.2.3.1 Multivariate filters In the experiments below, a set of four multivariate filters

are evaluated.

• Leave-one-out AUC Drop Score (LOO-AUC)

This score is calculated by evaluating a predictive model Mall on a complete set of

features. One at a time, feature i is removed from the model and retrained. The AUC of

the retrained model Mi is evaluated over 10-fold cross-validation. The score for feature

i is given as:

LOO-AUCi = AUC(Mall)− AUC(Mi) (4.1)

• Random Forest Importance Score (RF-Import)

This score uses Random Forests [57] to calculate the importance score for each feature.

The importance score for feature i is given as:

RF-Importi =
# times feature i is selected as a splitting feature in a tree

total # trees in forest
(4.2)

where the selection of a splitting feature is done to optimize the Gini gain of a particular

tree [58].
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• ℓ1-regularization Score (ℓ1-Reg)

This score uses the ℓ1-regularized Elastic Net [59] to calculate the average regularization

coefficient of each feature. The Elastic Net attempts to solve a linear regression problem

in the following general form:

min
β∈Rd

1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λPα(β) (4.3)

where

Pα(β) =
d∑

j=1

[
1

2
(1− α)β2

j + α|βj|
]

(4.4)

is the elastic-net penalty, which involves the ℓ1-norm. The penalty is weighted by λ

over an optimization process. As this penalty changes over the schedule L of λ1 · · ·λL ,

weights for features in βl become more sparse, until only the most important features have

the largest weight. For a sequence L = λ1, · · · , λL and associated regression coefficients

β = β1, · · · ,βL learned during the course of training an Elastic Net, the ℓ1-regularization

score is given as:

ℓ1-Regi =
L∑
l=1

λlβl,i (4.5)

• Adaptive Lasso ℓ1-regularization score (Ad-Lasso)

The adaptive lasso [60] is a technique which builds upon lasso regression [61] and is

a similar approach to the Elastic Net. However, during the optimization of 4.3, we

will instead weight each feature of x proportionally to its regression coefficients from

an ordinary-least-squares regression (Although, since OLS has trouble with data having

high correlation, I use ridge regression instead). The Adaptive Lasso score is given as:

Ad-Lassoi = min
β
∥∥y −

∑
j = 1dxiwiβj∥∥2 + λ

d∑
j=1

|βj| (4.6)

where wi = 1/β̂i, β̂ is obtained from ridge regression of X on Y .
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4.2.4 Wrapper Methods

Wrapper methods [40] search for the best feature subset in combination with a fixed classi-

fication method. The goodness of a feature subset is determined using internal–validation

methods, such as, k–fold or leave–one-out cross–validation [62]. Since the number of all

combinations is exponential in the number of features, the efficiency of the search meth-

ods is often critical for its practical acceptance. Different heuristic optimization frameworks

have been applied to search for the best subset. These include: forward selection, backward

elimination [63], hill–climbing, beam search [64], and randomized algorithms such as genetic

algorithms [65] or simulated annealing [66]. In general, these methods explore the search

space (subsets of all features) starting with no features, all features, or a random selection

of features. For example, the forward selection approach builds a feature set by starting

from an empty feature set and incrementally adding the feature that improves the current

feature set the most. The procedure stops when no improvement in the feature set quality

is possible.

4.2.5 Embedded Methods

Embedded methods incorporate variable selection as part of the model building process. A

classic example of an embedded method is CART (Classification and Regression Tree, [67]).

CART searches the range of each individual feature to find the split that optimally

divides the observed data into homogeneous groups (with respect to the outcome variable).

Beginning with the resulting subsets of the variable that produces the most homogeneous

split, each variable is again searched across its range to find the next optimal split. This

process is continued within each resulting subset until all data are perfectly fit by the resulting

tree, or the terminal nodes have a small sample size. The group constituting the majority of

the samples in each node determines the classification accuracy of the derived terminal nodes.

Misclassification error from internal cross–validation can be used to backprune the decision

tree and optimize its projected generalization performance on additional independent test

samples.

Regularization or shrinkage methods [61, 68] offer an alternative way to learn classifi-
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cations for data sets with large number of features but small number of samples. These

methods trim the space of features directly during classification. In other words, regulariza-

tion effectively shuts down (or zeros the influence of) unnecessary features. This is another

way to effectively deal with correlations in the data.

Regularization can be incorporated either into the error criterion or directly into the

model. Let w be a set of parameters defining a classification model (e.g., the weights of a

logistic regression model), and let Error(w,D) be an error function reflecting the fit of the

model to data (e.g., least–squares as likelihood–based error). A regularized error function is

then defined as:

ErrorReg(w,D) = Error(w,D) + λ||w||,

where λ > 0 is a regularization constant, and ||.|| is either the L1 or L2 norm. Intuitively, the

regularization term penalizes the model for nonzero weights so the optimization of the new

error function drives all unnecessary parameters to 0. Automatic Relevance Determination

(ARD, [69, 70]) achieves regularization effects in a slightly different way. The relevance of

an individual feature is represented explicitly via model parameters and the values of these

parameters are learned through Bayesian methods. In both cases, the output of the learning

is a feature–restricted classification model, so features are selected in parallel with model

learning.

Regularization effects are at work also in one of the most popular classification frame-

works these days: the support vector machine (SVM) [71, 72]. The SVM defines a linear

decision boundary (hyperplane) that separates case and control examples. The boundary

maximizes the distance (also called margin) in between the two sample groups. The effects of

margin optimization are: unnecessary dimensions are penalized; only a small set of samples

(support vectors) are critical for the separation. Both of these help to fight the problem of

model overfitting.

4.2.6 Feature construction

Better performance can be often achieved using features constructed from the original input

features. Building a new feature is an opportunity to incorporate domain specific knowledge
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into the process and hence to improve the quality of features. For example, we have already

seen that correlated features exist in proteomic data. Some of these sets of correlated features

may relate to proteins or peptides which have similar biological function, or are activated in

the same cellular signaling pathway. While incorporating this information is made difficult

due to the limited information in TOF-MS data, an assembly of correlated features may

still share a relationship. Machine learning methods exist which can construct new features

from existing ones, in order to represent inter-feature relationships more succinctly. These

methods include clustering, linear (affine) projections of the original feature space, as well

as more sophisticated space transformations such as wavelet transformation. These feature

construction approaches are briefly reviewed below.

4.2.7 Clustering

Clustering groups data components (data points or features) according to their similarity.

Every data component is assigned to one of the groups (clusters); components falling into the

same cluster are assigned the same value in the new (reduced) representation. Clustering

is typically used to identify distinguished sample groups in data [73, 74]. In contrast to

supervised learning techniques that rely heavily on class label information, clustering is

unsupervised and the information about the target groups (classes) is not used. From the

dimensionality reduction perspective, the groups identified by clustering define a new set of

features and their values.

Clustering methods rely on the affinity matrix – a matrix of distances between data

components. The affinity matrix can be built using one of the standard distance metrics

such as Euclidean, Mahalanobis, Minkowski, etc, but more complex distances based on, for

example, functional similarity of genes [75], are possible. Table 21 (see Appendix B) gives a

list of some standard distance metrics one may use in clustering.

Clustering methods such as k–means clustering [76, 77], and hierarchical agglomerative

clustering [78, 79]have been applied to group features in high-throughput data. When clus-

tering features, the dimensionality reduction is achieved by selecting a representative feature

(typically the feature that is closest to the cluster center, [80]), or by aggregating all features
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within the cluster via averaging to build a new (mean) feature. If we assume k different

feature clusters, the original feature space is reduced to a new k-dimensional space. An ex-

ample method of feature clustering is to cluster features based on intra–correlation, and use

the cluster center as a representative. Grouping together the most intra-correlated features

removes redundancy in the data and exposes more diverse features.

4.2.8 Principal Component and Linear Discriminant Analysis

Principal Component Analysis (PCA), [26] is a widely used method for reducing the dimen-

sionality of data. PCA finds projections of high dimensional data into a lower dimensional

subspace such that the variance retained in the projected data is maximized. Equivalently,

PCA gives uncorrelated linear projections of data while minimizing their least square re-

construction error. Additionally, PCA works fully unsupervised; class labels are ignored.

PCA can be extended to nonlinear projections using kernel methods [81]. Dimensionality

reduction methods similar to PCA that let us project high dimensional features into a lower

dimensional space include multidimensional scaling (MDS) [82] used often for data visual-

ization purposes or independent component analysis (ICA) [83]. The technique has been

used extensively for classification of proteomic [84] and microarray data [85,86], in addition

to many other highly dimensional data types.

Principal component analysis identifies affine (linear) projections of data that maximize

the variance observed in data. The method operates in a fully unsupervised manner; no

knowledge of class labels is used to find the principal projections. The question is whether

there is a way to identify linear projections of features such that they optimize the dis-

criminability among the two classes. These techniques, termed Discriminative projections

include Fisher’s linear discriminant (FLD) [41], linear discriminant analysis [61] and more

complex methods like partial least squares (PLS) [87,88].

Take for example, the linear discriminant analysis model. The model assumes that cases

and controls are generated from two Gaussian distributions with means µ(−), µ(+) and the

same covariance matrix Σ. The parameters of the two distributions are estimated from data

using the maximum likelihood methods. The decision boundary that is defined by data
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points that give the same probability for both distributions is a line.

The linear projection is defined as:

w = Σ−1(µ+ − µ−),

where µ−, µ⃗+ are the means of the two groups and Σ is the covariance for both groups,

where p(x|y) ∼ N(µ,Σ).

4.2.9 Wavelets

Wavelets are families of basis functions which are used as ”building blocks” to approximate

more complex functions. Wavelets have been used to approximate the complex MS protein

profile data, since they appear as a superimposition of multiple wavy signals. The most

popular wavelet transformation for MS protein profile data is the Discrete Wavelet Transform

(DWT). In this wavelet model, the approximation for a curve c(t) is given by:

c(t) =
∑
k

sJ,kϕJ,k(t) +
J∑

j=1

∑
k

dj,kψj,k(t) (4.7)

The functions ϕJ,k(t) and ψJ,k(t) are called mother and father functions, respectively. In

the DWT method the mother and father wavelet functions are identical, so ϕ(t) = ψ(t) =

2−j/2ϕ(2−jt − k). The j and k parameters control how these basis wavelet functions are

translated and dilated. J controls the number of scales, and k ∈ 1, ..., Kj is the number

of coefficients at scale j. A scale of j means that each wavelet coefficient is spaced 2j time

units apart. The wavelet coefficients sJ,k and dJ,k reflect smooth and detailed behavior of the

function at scale j. The DWT calculates these components through a pyramid algorithm [89],

which transforms a datapoint into a vector of wavelet coefficients. Since this is a linear

transformation, it can also be computed through matrix multiplication of a wavelet matrix

W , which is implicitly computed during the DWT. This makes it convenient to exchange

data points with wavelet coefficient representations at will.
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4.2.10 Classifier Models

Many classifier models and learning approaches have been developed and are available for

these classification tasks. Their common property is that they represent the mapping be-

tween inputs and outputs. For example, classifiers such as CART [67] (described briefly in

section 4.2.5 and C4.5 [90] extract classification rules in terms of decision rules or trees. Some

methods, including logistic regression, [61] determine the output by a learning set of param-

eters used to weight individual inputs. Other examples include support vector machines

(SVM, [71,72,91], the naive Bayes classifier [92, 93] and multilayer neural networks [94–96].

In general, classification models attempt to partition a high-dimensional space of profile

measurements (x), such that the case and control profiles fall into distinct regions. Many

existing models, such as logistic regression or the SVM, achieve the partitioning by defining

a linear decision boundary: a hyperplane that separates a high-dimensional input space x

into two subspaces. Different models may use different optimization criteria.

For example, the SVM is a technique that computes a decision boundary between two

classes by restricting its attention only to the samples (support vectors) that are most critical

for separating the two groups. In our case, the decision boundary is a hyperplane that is

maximally distant from the support vectors on either side of the hyperplane. The hyperplane

is defined as:

wTx+ w0 = 0 (4.8)

with parameters w and w0, where w0 is the distance between the support vectors of each

class, and w is the normal to the hyperplane. The parameters of the model may be learned

through quadratic optimization with Lagrange parameters [72]. Then, the decision boundary

is given by:

ŵTx+ w0 =
∑
i∈SV

α̂iyi(x
T
i x) + w0 (4.9)

where αi are Lagrange parameters obtained through the optimization process and yi repre-

sents the class label for xi with two possible values, −1 or 1. Note that only samples that

correspond to support vectors (SV) define the hyperplane boundary, to which is normal.
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The decision made by the classifier for a new input x is given by:

ŷ = sign

[∑
i∈SV

αiyi(x
T
i x) + w0

]
(4.10)

which corresponds to the side of the hyperplane on which the datapoint occurs, either

positive or negative. The choice of the separating hyperplane in the SVM algorithm incor-

porates regularization effects which makes it less susceptible to overfitting [71].

4.2.11 Kernels

The dual problem formulation depends on the dot product (xi · xj). The dot product is a

measure of similarity between the two vectors xi and xj. The kernel trick [72] is used to

map input vectors of arbitrary structure to a (potentially) higher-dimensional feature space

through a replacement function called a kernel. The kernel function K(xi,xj) replaces (xi ·

xj) with Φ(xi)·Φ(xj) where the mapping function Φ(xi) maps the vector xi to a new feature-

space. The ”trick” is that the kernel function implicitly performs the mapping that would

be done by ϕ, which reduces the complexity incurred by complex ϕ functions. Computing

the kernel function instead redefines distances between points in the mapped feature space.

The SVM draws a linear boundary in this new feature space, and upon returning to the

original space, this boundary becomes bent into a nonlinear decision boundary. Figure 15

depicts nonlinear decision boundaries generated by nonlinear kernels. Certain kernels, such

as a radial-basis kernel (bottom right), happen to suit this particular classification problem

better than the standard linear kernel (top left).

This example demonstrates that different kernels may be helpful for classifying certain

types of data. Special-purpose kernels have been constructed for many types of data, includ-

ing strings, trees [97] and graphs [98]. These kernels take advantage of structure in the data

to facilitate comparisons between data points. When such a kernel is unknown, one option

is to choose from a number of popular choices. Some work has been done in automatically

selecting the best kernel function from a list [99, 100]. The process works by extracting

general features (meta-data) about each dataset. The meta-data is comprised of statistical

,distance-based and distribution-based measures which measure various qualities about the
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Figure 15: Example of SVM with different kernels on the same dataset.
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data. A rule-learning approach is then taken to determine which qualities best reflect the

applicability of a particular kernel. These rules are then applied to a test set in order to

decide an appropriate kernel function.

An alternative is to learn an appropriate kernel. Some more recent work involves learning

a kernel function [101, 102]. The basic approach involves learning a linear combination of

kernels. Multiple basis kernels are used to project features into individual feature spaces.

Weights for each kernel are used to optimize the margin as in the standard linear SVM

approach. These weights can also be optimized for agreement to an ideal kernel, but the

optimization method does not take misclassification error into performance, and can overfit.

A quality-of-fit metric was developed [103] to resolve this issue, which further enabled a

search over many kernels while penalizing complex kernels. The idea of a hyperkernel [103]

was created to enable searches over parameters which govern the kernels. This potentially

enables a kernel to be created from an infinite amount of basis kernels, but these combinations

are always kept in check by a regularization quality.

The hyperkernel is enabled by a mathematical concept called the Reproducible Kernel

Hilbert Space (RKHS). A Hilbert Space is any arbitrary-dimensional space, such as Euclidean

space. However, we may want to consider spaces which are bigger or smaller, and where

the idea of a ”point” can carry a different meaning. Briefly, data points can be mapped

to individual kernel functions, for example, Gaussians with the datapoint as the centroid.

Thus, a ’point’ in the space is really a continuous functional. Re-representing data points

in this way complicates the process of measuring distances between them in this space,

since the Gaussian functions are continuous. Instead of computing a distance, the RKHS

allows computation of dissimilarities between these re-representations. Through the kernel

trick, evaluating the dot product between these function re-representations ends up being

as simple as evaluating the original kernel function of the two points, hence ”reproducible

kernel”. A Hyper-RKHS (HRKHS) is a space where each point is its own RKHS. The

differences between each point can be different parameterizations of the kernel functions,

and computing the kernel function between two points calculates the dissimilarity between

the involved RKHS spaces (namely, the difference in their parameterization of their own

kernel function). Thus, similar datapoints are fit with similarly parameterized kernels, and
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since the similarity metric is already computed, we need not worry about what happens in

relation to the nested RKH Spaces. The result is that the decision boundary is optimized

across all classes of kernels.

4.3 METHODS

High-throughput data naturally has many features, and it is important to distinguish those

which are informative from the rest. Predictive models built on these features should strive to

use the maximum amount of information made available. At the same time, the researcher

should not be forced to do a post-hoc selection of feature selection and predictive model

combinations - a certain level of confidence should be seen that good combinations can be

arrived at automatically.

This dissertation intends to explore and analyze the aspects which make feature selection

techniques and predictive models better at dealing with high-throughput data, with partic-

ular emphasis on MS proteomic profile data. Often times, a feature selection technique is

employed for reasons that it simply improves the prediction error on a dataset, and does not

often give any insight as to why this improvement is experienced. Perhaps alternative meth-

ods with similar properties exist, which can perform equally as well. The hypothesis is that

feature selection techniques which deal explicitly with correlation perform significantly better

(in terms of classification performance) than those methods which do not. The difference

between correlation-aware techniques may be negligible. The evaluation of these techniques

is demonstrated on both biological and simulated data.

Using a correlation-aware feature selection process is only half a step of the analysis.

The other half comes from building a predictive model which is robust enough to deal with

multiple classification problems, such as different diseases, yet specific enough to incorporate

knowledge about the data type which may aid the classification. For example, classifiers

which assume conditional independence between all features, such as Naive Bayes, may

perform poorly on datasets where many features are interdependent. The experiments in

section 4.4.1 show that indeed, this is the case. The SVM approach is known to work well in
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spite of highly correlated features [61, 104]. Thanks to the kernel trick, I can create varied

SVMs which are different predictive models, but still keep the advantage of the SVM against

correlated features. Varying the kernel may result in improved classification performance,

and providing a kernel which explicitly expresses valuable aspects of MS profiles may be the

best option. The hypothesis is that a kernel designed specially for proteomic data can perform

equally as good as choosing among popular kernels, or learning a kernel. The hypothesis is

tested through evaluations on biological data.

4.3.1 Decorrelating Feature Selection

To keep the feature set small, the objective is to diversify the features as much as possible.

The selected features should be discriminative as well as independent from each other as

much as possible. The rationale is that two or more independent features will be able

to discriminate the two classes better than any of them individually. Each feature may

differentiate different sets of data well, and independence between the features tend to reduce

the overlap of the sets. Similarly, highly dependent features tend to favor the same data and

thus are less likely to help when both are included in the panel. The extreme case is when

the two features are exact duplicates, in which case one feature can be eliminated. Figure

16 displays the phenomenon of correlated features in the pancreatic cancer dataset. Many

of the features are correlated with any other feature by .8 or more. Filtering out highly

correlated features therefore significantly reduces the amount of work needed to search for

good, diverse features.

Correlation filters [25, 105] try to remove highly correlated features since these are less

likely to add new discriminative information [80]. Various elimination schemes are used

within these filters to reduce the chance of selected features being highly correlated. Typi-

cally, correlation filters are used in combination with other differential scoring methods. For

example, features can be selected incrementally according to their p–value; the feature to be

added next is checked for correlation with previously selected features. If the new feature

exceeds some correlation threshold, it is eliminated [25].

The decorrelation filter method is designed to reduce the effect of correlations in selecting
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Figure 16: Correlation coefficient matrix between features
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discriminative features. Multiple maximum-allowed correlation thresholds are used to create

queues for features. Features in each queue can only be correlated with feature selected

up to that stage by the MAC threshold. Since a correlated feature may still be able to

contribute to the analysis, highly correlated features might still be selected. However, the

overall diversity of the features should be improved.

Applying univariate analysis to each profile position allows us to rank the ability of each

position to discriminate between case and control profiles. However, we are interested in

building classifiers that utilize more than one feature and give the best possible classification

performance. One simple solution to this problem would be to pick the top candidates

determined by a univariate score. However, such a choice is not good for proteomic spectra

in which signals at many positions, are highly correlated. This is illustrated in Figure 17

(left) that shows the heat map of the top 15 Fisher score positions for the pancreatic dataset.

Note that all these positions appear to be good individual discriminants of case and control

samples. However, all of them look alike, come from the same neighborhood and their signals

are highly correlated (pairwise correlations are ≥ 0.97). Since such highly correlated signals

are less likely to improve the discriminability of case and control samples, one may consider

removing high correlates from the feature set. This goal can be achieved via correlation

filtering that combines the removal of high (absolute value) correlates in feature sets rank-

ordered using univariate scores. The strategy uses a maximum allowed correlation (MAC)

threshold and incrementally selects the highest ranked feature such that its (absolute value)

correlation with any of the previously selected features is below MAC. Figure 17 (right) shows

the heat map for the top 15 Fisher score positions for the pancreatic data after correlation

filtering with MAC=0.6. Profile positions differ widely giving us more opportunities to find

good overall discriminants.

Experimenting with MAC thresholds on multiple cancer datasets (Pancreatic, Melanoma,

Prostate, Ovarian and Lung cancer data) we have found that enforcing MAC thresholds tends

to improve the quality of the feature set, but the best MAC value varies from dataset to

dataset and it is different also for different univariate criteria. Thus, instead of searching for

the best MAC we have developed a new feature selection procedure that combines the advan-

tages of univariate feature scoring and de-correlation. Figure 18 gives a visual representation
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Figure 17: Left Panel: Heatmap of the top 15 profile positions (features) selected by the

Fisher score, without correlation filtering. Right Panel: Heatmap of the top 15 Fisher

features with correlation filtering (MAC=0.6). The top and bottom rows are case and

control samples, respectively.

of the ”parallel MAC” feature selection technique.

The parallel MAC feature selection procedure first rank-orders features using a given

univariate differential expression score and then builds a feature set incrementally by choosing

the best new feature from among multiple candidate features, each of them being the highest

univariate score candidate at some fixed MAC level. The best feature is determined using a

internal cross-validation scoring (10-fold is the default) based on a simple classification model

such as a Nave Bayes or a linear Support Vector machine. Note that such an approach is

different from the classic greedy wrapper approach that must scan and evaluate all (6̃0,000)

possible candidate features. In contrast to this, the parallel MAC model scans and evaluates

only feature candidates that correspond to highest ranked candidates at different MAC levels

and the number of candidates com-pared depends on the number of MAC levels tracked. The

resolution of the method may be con-trolled by increasing or decreasing the number of MAC

thresholds.

This is one example of a method which directly interacts with the features to ensure that

correlations are limited. PCA and wavelet transformation, discussed above, also deal explic-
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Figure 18: Schema of the parallel MAC feature selection technique.
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itly with correlations by constructing features which tend to vary together. Certain feature

selection techniques either assume that all features are independent, as in univariate feature

selection strategies or embedded methods using classifiers which ignore feature dependencies.

The fact of the matter is, discriminatory information must be found while dealing with the

overwhelming amount of correlation present in raw MS profile data. However, with limited

empirical knowledge about which features interact with each other, the complexity of feature

selection seems limited.

With this in mind, I investigate whether any feature selection technique which accounts

for correlations in the data can perform significantly better than the popular techniques which

do not. Moreover, I investigated whether any technique taking advantage of correlations

is statistically indistinguishable from other correlation-aware methods. In this case, the

parallel MAC method would do just as well as PCA, wavelet transformations, or any other

decorrelating method at selecting discriminative features.

Feature selection techniques are divided into two groups - those that handle correlations

and those that do not. The techniques are taken from those discussed above throughout this

chapter. 40 splits of training and testing data are performed. On each split, all feature se-

lection techniques from either group are applied to the training data. The resulting features

are fed to a linear SVM. The choice of a linear SVM in this situation is to minimize the

complexity of the classifier as much as possible. The classifier is only used as a general eval-

uation technique for widely varied methods of feature selection. Later on, in the evaluation

of classifiers, this process can be repeated to determine if either group of feature selection

techniques influences the best way to decide which classifier to use. The error rate of the

classifier is used to evaluate the feature selection method. Two distributions of errors are

created - those resulting from feature selection ignoring correlates, and those resulting from

feature selection accounting for correlates.

The Mann-Whitney U-test [106] is a nonparametric test which estimates the likelihood

that two samples of data come from the same distribution. The null hypothesis in this case

is that the distributions of classification performances (errors) from the correlate-ignoring

and the correlate-aware groups are identical. The U-test determines the U -value (a p-value

analog) associated with the distance between the two distributions. The nonparametric
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nature of the test is necessary because the distributions of the errors are unknown and not

assumed to follow any predefined distribution. A smaller U -value indicates that the null

hypothesis is less likely to be true. In this case, I am expecting to reject the null hypothesis;

this would suggest that the difference between error distributions of the two feature selection

groups is more likely to be statistically significant.

I am also interested in determining whether any of the correlate-aware feature selection

methods are statistically distinguishable from one another. For this, the Kruskal-Wallis non-

parametric one-way test [107] is used. It is essentially an extension of the Mann-Whitney

U-test to 3 or more groups. This test determines whether the medians of the groups (dis-

tributions of errors given by the individual correlate-aware feature selection methods) are

equal. In this case, the null hypothesis is that these distributions of errors are identical,

because they have equal medians and similarly scaled variances. I expect that it will be very

hard to reject this null hypothesis at a reasonable significance level.

4.3.2 Kernel Comparison

The Support Vector Machine is a robust classifier framework which can be adapted to many

types of data. However, several alternatives exist to the popular linear kernel which may

be more effective at classifying MS protein profile data. The questions are, does a suitable

kernel exist for MS protein profile data, and if so, can it be chosen automatically? The

following describes a comparative study to determine whether a suitable kernel for this data

can be discovered. Three separate approaches are presented.

4.3.3 Automatic Selection Among Predefined Kernels

The first approach is to learn rules about datasets which indicate the best classifier to use.

This approach is similar to that taken in [99], where various statistical measures (henceforth

referred to as dataset characterization statistics) are used to characterize all datasets available

for training. The datasets are then classified using a handful of predefined kernels. Datasets

are grouped based on which kernel performs best, and a rule-learning classifier (CART or

C4.5) is used to generate relationships between the datasets’ characterization statistics and
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the best performing kernel. The testing dataset’s characterization statistics are calculated

and the learned rules are applied to determine the best kernel to use for classifying the

data. A list of characterization statistics is given in Appendix B, Table 23. Some popular

kernels are given below: The dth order polynomial kernel (Equation 4.11a), radial basis

kernel (Equation 4.11b), spline kernel (Equation 4.11c), multiquadratic kernel (Equation

4.11d) and Laplacian kernel (Equation 4.11e). Algorithm 1 describes the process formally.

K(Xi, Xj) = (⟨XT
i Xj⟩+ 1)d (4.11a)

K(Xi, Xj) = exp(−||Xi −Xj||2

2σ2
) (4.11b)

K(Xi, Xj) = 1 + (XT
i Xj) +

1

2
(XT

i Xj)min(XT
i Xj)

2 − 1

6
min(XT

i Xj)
3 (4.11c)

K(Xi, Xj) = (||Xi −Xj||2 + τ 2)1/2 (4.11d)

K(Xi, Xj) = exp

(
−|Xi −Xj|

h

)
(4.11e)

The benefit of this approach is that heterogenous data can be used to enhance learning

about the proper choice of kernels. Thus, with additional time and data, this approach has

the possibility of becoming stronger. However, if none of the predefined kernels are able to

capture any salient relationships about features of the data, then this technique will struggle.

The remaining two approaches focus on constructing more appropriate kernels, in the case

that one is not readily available.

4.3.4 Learning a Customized Kernel

A second approach is to learn the kernel through Hyperkernels. The hyperkernel optimizes

a decision boundary of points over a class of kernels. However, the kernels selected from

the list above are not in the same class (that is, governed by the same set of parameters).

A suitable class of kernels would be, for example, several radial basis kernels with different
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values of σ. Still, in the previous approach, we made several distinct kernels available in the

hopes that their diversity would allow better classification of datasets. By sticking to a class

of kernels which are only radial basis functions, we take away a lot of the diversity. Instead,

we might consider the wealth of distance metrics already defined for clustering techniques in

table 21. In any kernel function which incorporates Euclidean distance (for example, those

in Equations 4.11b and 4.11d), we can perhaps substitute any of the clustering distance

metrics and therefore create a class of kernels limited only by the number of available distance

metrics. To construct a hyperkernel from this new class of metrics, a RKHS is represented

using a kernel function from this class. Optimizing the decision boundary in the hyperkernel

results in a decision boundary which is a linear combination of boundaries resulting from

the diverse distance metrics in the constituent RKH Spaces. Algorithm 2 summarizes the

evaluation procedure for evaluating a hyperkernel learned from the proteomic data.

4.3.5 Learning the Hyperkerneled SVM

The hyperkernel using linear combinations of kernels is defined as [103]:

k(xp, xq) =
m∑

i,j=1

αij

n∑
l=1

clkl(xi, xj)kl(xp, xq) (4.12)

where k ∈ k1, ..., kn is a kernel function from the class of kernels considered. c ∈ c1, ..., cn
are the weights for the linear combination of kernels. αi,j are variables to be optimized to

minimize the Qreg (Regularized Quality of fit) loss function defined in [103]:

Qreg = min
β

min
α

1

m

m∑
i=1

max(0, 1− yif(xi)) +
λ

2
αTKα +

λQ
2
βTkβ (4.13)

Minimizing Qreg in this formulation maximizes the hyperplane separating the training

data. This quantity can be optimized as an instance of semidefinite programming (SDP, [103,

108]), which is an optimization technique that ensures that the optimized combinations of

matrices (in this case, the linear combinations of RKHS kernels) remain positive semidefinite.

This is important since the hyperkernel should overall be positive semidefinite to be a true

kernel. For a linear SVM using a soft margin loss function [72], the SDP is formulated as

follows, with notation following:
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minimize

β, γ, η, ξ, χ

1

2
t1 − χν + ξT

1

m
+
λQ
2
t2

subject to χ ≥ 0, η ≥ 0, ξ ≥ 0, β ≥ 0

||K
1
2β|| ≤ t2 G(β) z

zT t1

 < 0

(4.14)

where z = γy + χ1+ η − ξ.

Some notation is briefly presented. The training data Xtrain = x1, ..., xm and Ytrain =

y1, ..., ym consist of m examples. γ and χ are Lagrange multipliers. η and ξ are vectors of

Lagrange multipliers from the Wolfe dual of the SDP. β are hyperkernel coefficients. t1 and

t2 are auxiliary variables for the SDP.

The pseudo-inverse of a matrix K is denoted K†. The hyperkernel Gram matrix K is

defined by Kijpq = k((xi, xj), (xp, xq)). The kernel matrix K is given by K = reshape(Kβ),

which reshapes an m2 by 1 vector Kβ to a m by m matrix. Y = diag(y), is a matrix with y

on the diagonal and zeroes elsewhere. G(β) = Y KY . I is the identity matrix. 1 is a vector

of ones. y ⊙ z is the element-by-element multiplication operation.

The classification function for the optimized SVM is given by

f = sign(KG(β)†(y ⊙ z)− γ) (4.15)

SDPs of the type represented in Equation 4.14 can be optimized using the MATLAB

tools SeDuMi [109] and YALMIP [110].
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4.3.6 Using a Proteomics-Specific Kernel

A third approach is to design a kernel which is well-suited to picking out the differences

between MS protein profiles. The natural idea is to take advantage of ideas learned from

feature selection. Certain techniques like wavelet decomposition and PCA can identify fea-

tures which seem to vary on the same levels. These features should probably be selected and

compressed into features which can be useful for a linear separation.

Overall, this task is more difficult than the previous one, because custom kernels typically

capture the features of the data which are anticipated to differentiate dissimilar datapoints.

The string kernel, for example, computes similarity measures based on the amount of match-

ing substrings. The tree kernel also computes similarity based on the structure of the tree.

It is debatable what constitutes salient structural features of proteomic profiles, but per-

haps the best thing to do is consider the data source from its originally intended biological

standpoint. MS profile data from diseased patients should display a deviation from the data

produced from healthy individuals. Many diseases manifest themselves through disregula-

tion of biological processes which stay within some bounds while an individual is considered

”normal” or ”healthy”. When these processes are disturbed by a disease condition, the devi-

ation effect can be seen, for example, as an increase in inflammatory response proteins. Even

though this response is not very disease-specific, it certainly indicates that the individual is

experiencing from an adverse condition. Many of these deviating responses may be present

in the MS protein profile data, but they are hard to find and quantify.

Defining what ”normal” means is not a straightforward task. A control population can

vary over the course of study of a particular disease, and heterogenous case/control datasets

are bound to sample from different portions of the true ”normal” distribution. In fact, many

controls for one study could be cases for another. As a result, this methodology is left

somewhat open-ended. Using all available data (even if it is heterogeneously generated with

respect to the target testing set) can be important for defining normalcy.

My approach for a proteomics-specific kernel involves grouping m/z positions into path-

ways, which individually attempt to summarize the status of biological regulatory mecha-

nisms in the profile. The kernel-mapping function ϕmaps a protein profile to a set of pathway
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features, which indicate the level of disregulation of those pathways as viewed through the

profile. Thus, profiles can be classified through the kernel by their arrangement based on

similarly-disregulated pathways. I refer to this approach as the ”Pathway Kernel”.

4.3.6.1 Defining the Pathway Kernel The advantage of this ”Pathway Kernel” is

that it uses prior knowledge in the form of gene pathways to guide the learning process. The

method correlates these pathways either positively or negatively with previously unseen,

incoming data to subtype them into one class or another. Each dataset used in the learning

phase offers its own perspective on how proteomic spectra can be separated, but this method

allows some backtracking to see which pathways are responsible for those divisions.

The general methodology involves learning differentially expressed patterns from het-

erogenous proteomic datasets. These patterns are tested for validity by a permutation test,

in a fashion similar to GSEA (Gene set enrichment analysis, [111]). GSEA was a technique

developed for microarray data which evaluated the strength of a multivariate feature set

versus other combinations of features. Combinations of features (genes) are selected either

at random or chosen by prior knowledge (i.e. genes related in a biological pathway). The

strength of the feature set in distinguishing between treatment / no treatment groups is

measured by an aggregate statistic over univariate t-test scores for the genes in the set. The

statistic is compared to a null hypothesis distribution, estimated by permuting treatment/

no treatment labels and rescoring the gene set. In a paper by Atul Butte’s group [112], GSEA

was used to analyze pathway perturbations in microarray data. The pathway perturbations

(in terms of correlation with a case/control label) were significantly useful in discriminating

among subtypes of disease. An improvement on GSEA developed by Tibshirani and Efron

(termed Gene Set Analysis, GSA [113]) was more general and robust, due to the fact that

the null hypothesis distribution was computed not only with respect to randomized sample

labels, but also the performance of random gene sets in the original data.

I wanted to evaluate the strength of pathways in the proteomic data, yet retain some

notion of biological relevance, which would make the results more interesting in the down-

stream analysis. Rather than search among all combinations of m/z values for pathways, I

wanted to find a way to take in prior knowledge to drive the feature selection going into the
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pathway analysis. Harvard’s Molecular Signature Database (MSigDB, [111]) is a database of

gene sets which have defined relationships, such as proximity on the chromosome, biologically

studied and curated interactions and genes with common gene ontology terms. I took these

5400 gene sets and estimated the m/z values where their produced proteins should appear in

a proteomic profile. Translation of gene identifiers to protein profile features is done through

the following process. Gene identifiers in MSigDB are given in the HUGO format specified by

the Human Gene Nomenclature Committee [114], which associates each gene identifier with

a UniProt protein identifier [10]. The UniProt identifiers are in turn used to retrieve amino

acid sequences for the peptides associated with each gene. Using the amino acid sequences,

the nominal masses of these peptides are calculated by summing the monoisotopic masses

of their component amino acids, plus the weight of a water molecule. The resulting mass is

given a single charge and aligned to a feature in the profile. This process is repeated for all

genes in a MSigDB pathway. The gene sets defined by MSigDB become mapped to ”pro-

tein sets” to be analyzed through the GSA technique. Pathways found to be significantly

correlated by GSA are then retained and used to construct aggregate features from profiles.

Profiles are then reduced to a small set of aggregate pathway features which are used by

a standard kernel function, such as the linear kernel. The distance between points in this

space represents the similarity of how pathways are regulated between samples. Algorithm

3 outlines the procedure for computing and evaluating the pathway kernel.

4.4 EXPERIMENTS AND RESULTS

The output of the experiments in this chapter are intended to provide guidelines for the

choice of feature selection and classification models for MS profile data. I investigate whether

any feature selection method which is accounting for correlation is statistically equivalent.

Achieving a standard for feature selection is important to establish analytical protocols for

MS profile data. The kernel selection investigation is important because many researchers

only choose the model structure after seeing all methods’ performances post hoc. Any clarity

resulting from these experiments will give new directions into how to select models (either
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automatically or by hand) based on clearly defined characteristics of data. Although feature

selection and classification are not new topics, the data type is novel and the opportunity

for novel insight in handling this data can be uncovered by the above described methods.

4.4.1 Feature Selection

The goal of feature selection is to find a small group of discriminative features. Our features

in this data type may pertain to surrogate biomarkers which indicate the presence or absence

of a disease. Our set of selected features should ideally be diverse. Redundant features in our

selected set do not add additional information, and their selection implies the exclusion of

other, potentially useful features. Some predictive modeling methods, such as Naive Bayes

or logistic regression, are easily influenced by closely correlated features and may result in

a poorly fit model. Unfortunately, proteomic profiling data is highly correlated by nature.

A charged particle is often preceded by and followed by its lighter and heavier isotopes,

respectively. This means that neighboring features on the x-axis have a high chance of being

dependent, and a visible correlation results.

To demonstrate this, I used the Vanderbilt Lung Spore IMAC data to calculate the abso-

lute value of the correlation between each unique feature pair in the dataset. This resulted in

302782 pairs and their correlation values, whose distribution is plotted in Figure 19. Approx-

imately 77% of the feature pairs are correlated above 0.8. Consider a hypothetical dataset

of the same size, where the features are independent of their neighbors. Such a dataset

may be generated by sampling randomly from a Gaussian distribution until the equivalent

number of features has been reached. The correlated structure of the true proteomic data

is lost. This is seen in Figure 20 as the distribution becomes centered around 0. In this

example, there is no mass in the distribution beyond correlation values of 0.5. Table 7 lists

the percentage of feature pairs which are correlated greater than 0.8 to illustrate that every

dataset demonstrates this bias. This experiment establishes the existence of an extreme bias

towards correlates in proteomic data, and with this in mind, we should seek feature selection

methods which avoid this bias.

In order to evaluate the ability of feature selection methods, I performed the following
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experiments on both raw and SAP datasets. The 40 train/test splits were identical to

those used in Chapter 3. First, I evaluated the performance of univariate filter methods,

which rank features based on their individual relation to the class label. Next, multivariate

feature filters were analyzed. Rather than evaluating the individual impact of features, the

multivariate filtering approaches take into account how well features collaborate with each

other to create a set which helps more together than the sum of its individual parts. Finally,

I investigated techniques which take advantage of correlation in the data. These techniques

either eliminate or construct new features based on their correlation, as well as reduce the

dimensionality of the data.

In all cases, the predictive model used was a linear Support Vector Machine (SVM) with

L2-norm regularization. The reason for choosing the L2-norm was because I intended to

select only a small set of features, and the less-aggressive form of regularization would allow

me to demonstrate the impact of having too many correlated features in the predictive model.

ℓ1-norm regularization would perform additional feature selection and it would be difficult

to separate the effect of the predictive model on performance from the feature selection steps

used.

4.4.1.1 Demonstrating the effect of correlation on filter methods Univariate

methods are the simplest feature selection method, and often the least computationally

expensive. However, they can be influenced by highly correlated components in the data,

and the fact that in high-dimensional, low-sample size data, some discriminative signals may

arise simply by chance.

Due to the nature of proteomic data, intensity values from neighboring positions on the

m/z axis are highly correlated. Thus, a large “peak” feature which appears discriminative

(either genuinely or by chance) will also spread its high univariate score with its neighbors.

This is a bad case in either scenario - either a good signal with lots of redundant features is

selected, but a predictive model fit to them will not be robust, or a spurious signal with lots

of redundant features is selected, but a predictive model will overfit to the false signal and

fail to classify future data correctly.

Table 8 lists the percentage of feature pairs selected by the univariate t-test filtering
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method which are highly correlated (magnitude of sample correlation above 0.8). This

relationship persists even after preprocessing, as can be seen in Table 9. In the situation

where future profiles are generated which do not express this feature (say, for example, a

different subgroup of disease), the predictive model is poorly informed about where to look

for additional information, resulting in a greater rate of error.

Although some in the protein profiling community “bin” local features together to form

an aggregate peak feature [115], I do not prefer this approach. It is difficult to know for

sure when separate features are indicating different molecules (in fact, ideally by the nature

of the data, each feature should be a different molecule). Discriminative features can also

lie along the sides of peaks or in the troughs between them, which makes evaluating peak

extraction difficult. I prefer to address the problem of high correlates in univariate filters

by employing a decorrelation filter. Tables 8 and 9 demonstrate the percentage of highly

correlated feature pairs and AUC from a t-test filter that was applied in conjunction with

correlation filtering. The maximum-allowed correlation (MAC) threshold was set to 0.6.

Note that the percentage of highly correlated feature pairs drops drastically, indicating that

the selected features are more diverse in the information that they carry. As a result, average

AUC of models trained on these features increases (fourth column). Note that sometimes,

noise in the raw data (and especially on harder datasets) causes a drop in AUC. This effect

disappears with preprocessing.

Also note that applying decorrelation is not guaranteed to improve the AUC, especially

if features must be selected randomly if remaining features are correlated too highly. In this

case, we may even select a feature which does not collaborate well with other features in the

set. This is where multivariate filtering approaches begin to play a role.

Multivariate ranking methods directly address the problem of selecting a panel of features

which performs well, although not necessarily by decorrelating them. Tables 8 and 9 show (in

column 5) the percentage of highly correlated feature pairs resulting from the RF-importance

multivariate filter. These percentages are not necessarily lower than t-test with decorrelation,

but are lower than from a plain univariate t-test filter. However, since these features are

selected in a way which makes their combination more useful, rather than focusing on their

individual ability, we see an average increase in AUC for models built using these features
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(column 6).

4.4.1.2 Comparison of univariate versus multivariate filtering For the sake of

being thorough, the following experiments were performed in order to compare univariate

and multivariate filter methods, which support, and are supported by,the above analysis.

A selection of univariate filter methods were evaluated on each dataset. The Fisher-like

score, Wilcoxon signed-rank score, SAM-score and t-test were applied, and the 20 highest-

scored features were subselected and passed to the predictive model. See Table 22 for the

definition of these scores. The choice of the scoring metrics was based on their frequency of

use in the protein profiling research community. Most univariate scores can be computed in

a single vectorized operation. Certain scoring metrics (e.g. the t−test score) are parametric

while others (e.g. the Wilcoxon score used here) are nonparametric. To account for the

disadvantage or advantage, I simply report the performance of the best-performing filter

method in each experiment. The leftmost column in Table 10 displays the best average

AUC obtained by the four performance models trained on the top 20 filtered features.

I evaluated four multivariate ranking approaches and reapplied them to the identical

train/test splits as the previous experiment, on raw data. These methods were the Random

Forest Importance filter, the Leave-One-Out AUC Drop filter, the ℓ1-regularization filter

and the adaptive lasso regularization filter. The scores are defined in Section 4.2.3.1. The

performance of the best model out of the four multivariate filter methods is reported in

the center column of Table 10. The rightmost column indicates the advantage of the best

multivariate model over the best univariate model. The decisions are split, with about half

the data being at a disadvantage from multivariate filtering methods. The primary reason

for this is because we are working with the raw data, which contains discriminative features

by chance and are biologically unrelated to the disease state. For example, consider a dataset

where either cases or controls all suffer from a baseline shift. Almost all features will appear

discriminative due to the baseline shift between classes. Non-neighboring features will be

considered by multivariate rankers, and since it is less likely that they will be correlated, they

will be added to the list of top features, on the basis of their ability to discriminate between

classes. However, because of the noise in the raw data, it makes it difficult for the predictive
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model to estimate the appropriate weights for these features, and the variance of the estimates

for the parameters of the model will increase. Rather than deal with a “single” parameter

(for the correlated feature chosen by univariate methods), a predictive model working with

multivariate features from raw data will struggle with the poorly estimated parameters for

multiple features. The result is a poorer model performance.

Table 11 displays the alternative to these experiments on SAP-preprocessed data. Here,

the noise has been removed from the data, and in general, improvements can be seen in the

performance of both univariate and multivariate models. Note however that the advantage to

multivariate models is more frequently positive. Table 12 displays the percentage of feature

pairs selected by each multivariate filter which are highly correlated. Compared to Table 14,

the amount of correlated feature pairs is greatly reduced. Three datasets still suffer a perfor-

mance disadvantage. Multivariate ranking filters do not explicitly control for correlation; the

success of the multivariate filter largely depends on its ability to identify correlated features

and substitute them among one another. In fact, this is a difficult operation to achieve com-

putationally. The number of combinations of features in this extremely high-dimensional

setting is prohibitive to exhaustive evaluation. However, efficient techniques such as the

Parallel Decorrelation algorithm discussed in Section 4.3.1 exist which can simultaneously

reduce the feature space while simultaneously accounting for substitutability.

4.4.1.3 Correlation-based feature extraction and construction Rather than ex-

pect a multivariate filter to learn the substitutability of features, we can apply techniques

which account for and take advantage of their substitutability. I repeated the above ex-

periments, using 3 correlation-aware methods to select or construct features. The Parallel

Correlation, Top-K PCA Eigenvector reduction, and Wavelet Decomposition methods served

this purpose. In each case, the “top 20” features are taken: the parallel decorrelation filter

selects 20 features, the top-20 PCA eigenvectors are used for projecting the test data, and the

coefficients from the first 20 levels of wavelet decomposition are used. The best performing

models are reported in Table 13 for the raw data, and Table 14 for the SAP-preprocessed

data.

On difficult datasets like COPD and Diabetes, where few good features might exist, the
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noisy nature of the raw data makes itself apparent. Univariate filters will find the good

feature and its immediate correlates. Good discriminative features which are uncorrelated

with this initial feature are hard to come by, and likewise the correlation-aware methods

suffer. This is interesting, because we would expect these uncorrelated but discriminative

features (even if they are spurious) should exist just by random chance in the raw data.

While the disadvantages are mostly small, it’s likely that these raw datasets contain noise

which correlates the most highly discriminative features (such as a baseline shift separating

classes). Being forced to select a nondiscriminative feature just because all the others are

correlation-substitutable can add noise to the model, decreasing performance.

4.4.2 Predictive Modeling

In order to evaluate the ability of predictive modeling methods, I performed the following

experiments on both raw and SAP-preprocessed datasets. The 40 train/test splits were iden-

tical to those used in all previous experiments. Different predictive models are evaluated by

changing the kernel function of an ℓ1-norm SVM. The choice of the ℓ1-norm is to enable ag-

gressive, decorrelating feature selection through the predictive model itself (without needing

to choose a method from Section 4.4.1).

Three different kernel learning approaches were evaluated, first on the raw data. Table

15 displays the average AUC of the ℓ1-norm SVM when learning either a Hyperkernel, a

Metadata-based kernel or the Pathway Kernel described in Section 4.3.6. Results using a

standard linear kernel can be obtained from Tables 2 and 3 in Chapter 3. As can be expected,

the kernel-learning approaches suffer from the noisy raw data.

Table 16 displays the results of the previous experiment when applied to SAP-preprocessed

data. All three kernel-learning approaches almost always improve. The three cases where

performance does not improve occur on different datasets, under different methods (Hyper-

kernel on ILD, Metalearning on Hepatitis C and Prior Knowledge on the Vanderbilt Lung

WCX dataset). For many datasets, the effect of preprocessing gives a substantial advantage

to the kernel-learning methods. The stability of the performance estimates improves for the

Hyperkernel method, as evidenced by the smaller confidence intervals and higher average
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AUC. The same cannot be said of the Metalearning or Prior Knowledge kernels, however.

The Pathway Kernel replaces the entire original profile data with new features. It is

interesting to see this method improve with the preprocessing, especially because the features

are almost totally unrelated to protein expression amounts by the time the SVM is applied.

However, it is not a good kernel choice for this type of data. The pathway kernel can

suffer from many sources of noise due to its design. The conversion between Gene identifier

and protein is one step wrought with error [116], and furthermore, the mapping of these

proteins onto profile locations is also problematic. Although the Pathway kernel method

improves with preprocessing, it does not appear that the method outperforms a classifier

which guesses randomly. For data types which present more information about the features’

biological identities, perhaps the pathway kernel can be more useful. With TOF-MS data,

however, too much is lost in translation between the gene sets and protein features to take

advantage of this kind of prior knowledge.

The prior knowledge kernel has a direct biological interpretation. Helpful features reflect

an overall overexpression or underexpression of a set of proteins in the profile. For the sake

of interest, I listed the top 20 pathways used as features for each dataset. This list is in

Appendix C, Table 24. The pathway names are taken from MSigDB [111], so the interested

reader is directed to the Molecular Signatures Database 1 to browse for further information

on pathways which do not have a readily interpretable name (for example, pathways in the

C4 set of MSigDB, which are given a nonbiological identifier).

4.4.3 Discussion

It is difficult to make guarantees about what model will perform the best on any given

dataset. However, just because an assurance of a good model doesn’t exist doesn’t mean we

shouldn’t try to achieve it. The above experiments point us in a favorable direction which

should motivate our choices for feature selection and predictive modeling.

1http://www.broadinstitute.org/gsea/msigdb/index.jsp
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4.4.3.1 Recommendations for feature selection First, our choice about feature se-

lection is largely made due to the desire to have a parsimonious explanation for a disease

pattern. Although univariate filtering methods are the extreme of sparseness, the nature

of proteomic data defeats their application. High correlations and substitutability among a

large percentage of the features hinder the robustness of predictive models based solely on

univariately filtered features. In general, their use is not recommended for the development

of a robust model.

Multivariate filters start to alleviate the issue of correlation among features. Still, search-

ing exhaustively through many combinations of features can be computationally expensive.

Additionally, multivariate filters are not explicitly aware of substitutable features, and are

not guaranteed to return a robust set of orthogonal features.

The feature selection techniques which are aware of correlations (PCA, wavelet decom-

position and the Parallel Decorrelation technique presented above) can deal with the substi-

tutability of features. Interpreting the resulting features can be difficult, but not impossible.

One thing we learned from our experiments is that performing feature selection often

produces a better performing model. Moreover, performing preprocessing adds an additional

advantage. Preprocessing with SAP leads to the results in Table 14. Even though we saw

in Section 3.3 that SAP is probably a suboptimal method, the advantage to correlation-

aware techniques is largely positive for all datasets. It becomes easier to find uncorrelated

features which are discriminative, and this adds to the robustness of the model, improving

its performance.

I tested the significance of the advantages granted by using certain techniques. Here,

”Advantages” are used to measure the difference in model performance between the appli-

cation of a procedure and without the procedure applied (Advantage = Performance(after

feature selection ) - Performance(before feature selection)). Performance advantages must

be taken into context with the difficulty of the dataset being classified. As datasets become

more easily classified, it gets harder to create additional advantage, simply because there is

little room for improvement. Likewise, a difficult task faces a large room for improvement,

and perhaps almost anything can cause a large jump in performance. By measuring per-

formance advantages, we somewhat limit the impact that easy or hard datasets have in the
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hypothesis testing analysis.

First, I tested whether the advantages from using any of the correlation-aware methods

were significantly different from one another. Columns 1 and 4 from Table 17 show the per-

centage of times correlation-aware methods were not significantly different from one another.

The significance tests done in this table are by way of the Mann-Whitney U -test, a nonpara-

metric rank-sum significance test for two populations. In this case, the populations consist of

performance advantages in AUC obtained over the 40 splits of training and testing data. On

half the datasets, none of the correlation-aware techniques are significantly better than any

other. On the other half of the datasets, it’s possible to select out significantly better method

(p < 0.01). In the majority of cases where this occurs, it’s due to the parallel decorrelation

method being significantly better than the wavelet decomposition and PCA methods. The

statistical separation of the parallel decorrelation method increases after preprocessing with

SAP (Table 17, column 4).

Next, I tested whether the advantages from using correlation-aware methods were sig-

nificantly higher than the advantages from using univariate and multivariate filter methods.

These tests are also reflected in the additional columns in Table 17. Again, the Mann-

Whitney test was used. On the raw, data, 6 of the datasets have no significant difference

between correlation-aware and multivariate methods half the time. On the other 8 datasets,

there are more often advantages to the correlation-aware approach. The percentage of times

that correlation-aware techniques are significantly better decreases when the data is prepro-

cessed by SAP. Univariate methods are frequently significantly poorer in the raw data - this

is just a consequence of the noise in the raw data. The separation between these methods

mostly remains in the SAP-processed data.

Third, I tested whether the advantages obtained by using any feature selection method

after applying SAP preprocessing were significantly higher than advantages resulting from

applying the same methods to the raw data. Performance advantages from applying all

feature selection methods on SAP data were tested against performance advantages from

applying all feature selection methods on raw data, using the Kruskal-Wallis non-parametric

one-way test [107]. This is an extension of the Mann-Whitney test for 3 or more groups -

in this case, the advantages for all SAP methods are grouped together, and likewise with
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advantages from methods applied to the raw data. The Kruskal-Wallis test operates under

the null hypothesis that the samples come from populations such that choosing random

observations from both samples will only result in one observation being greater half the

time.

In the final column of Table 17, the p-value resulting from the Kruskal=Wallis test is given

for each dataset. In only three of the datasets (COPD, Breast cancer and nearly ILD), the p-

value was less than 0.01. This suggests that, very frequently, performing feature selection on

SAP-preprocessed data is not likely to give you the same performance advantage as simply

performing feature selection on raw data and building a model. Rather, the advantage will

be greater with the SAP-processed data.

4.4.3.2 Recommendations for predictive model choice I analyzed different kernel

learning approaches to improve the SVM classifier, and I wished to test whether any method

offers a consistent advantage over another. Evaluating the kernel-learning approaches was

an exploratory process. The decision about what model to use in the first place because

of familiarity with the model, simplistic reasons, or personal preference. When we want to

consider whether better representations of the data exists in order to achieve a better classifi-

cation, it becomes necessary to evaluate other models. For example, I once used the Pathway

Kernel to map proteomic profiles into their pathway features, and then considered whether

a linear classifier could separate the resulting transformed feature space. Unfortunately, the

feature space was perhaps more convoluted than before, but I wondered whether or not a

more advanced kernel method could separate the data in this feature space. The result would

be beneficial for the sake of interpretation - heavily weighted features would have a direct

biological interpretation. To this end, this foray into kernel learning was developed.

From Tables 14 and 16, there are a few things to take note of. First, the Meta-learning

approach learned to only use the linear kernel on SAP data. This made the method not

much better than the results presented in Chapter 3 to evaluate the SAP method. On the

raw data, the noise in the profiles causes the Meta-Learning kernel to switch between kernels

often, but the performance was not competitive with the other kernel-learning methods

(table not shown). After SAP preprocessing, the Meta-Learning approach realized that the
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best kernel was the linear kernel, and applied it continuously with only a few exceptions.

The COPD, Scleroderma and Melanoma datasets made use of the polynomial kernel and

multilayer-perceptron kernel twice each during 4 of the training and testing splits (but each

dataset on a different split, so these anomalies seem to be more about the individual datasets

than the train/test split). Moreover, many of the dataset metrics become useless under such

high dimensionality, and would not differentiate many datasets after averaged over more

than a handful of features. In the end, it seems the Meta-learning approach relies more on

the internal cross-validation to choose a kernel, and is not appropriate for high-dimensional

data such as MS protein profiling.

The Hyperkernel approach does not perform very well, given its complexity. Although it

produces predictive models which are better than random in some cases, the best univariate

filter approaches without decorrelation can outperform this method. The computational

complexity in terms of time and memory of solving the Semidefinite Program is quadratic

in the number of profiles, which is quite a large overhead considering other kernel methods

are linear in the number of profiles.

Finally, the Pathway kernel is not a good option at this point in time. Due to the

problems involved in translating gene sets to protein location sets in the profile, the kernel

cannot provide a good re-representation of the data. This makes it difficult to use the kernel

to build a predictive model. However, if features could be labeled as proteins in the profile,

then the Pathway Kernel should be employed to take advantage of this information.

Table 18 displays the percentage of datasets on which a performance advantage of a

kernel-learning approach was statistically significantly better than another. Four kernels are

evaluated: The hyperkernel, the meta-learning kernel, the pathway kernel and the linear

kernel selecting 20 features by way of the Parallel Decorrelation algorithm. Performance

advantages are calculated by subtracting the average AUC from the plain linear kernel

on SAP-processed data from the average AUC of the kernel-learning approach’s predictive

model. These performance advantages undergo a Mann-Whitney U -test for significance

at α = 0.5. Since we know the Meta-learning kernel approach is acting as a plain linear

SVM, we can interpret the results accordingly. The only reason why the linear kernel would

outperform the Parallel Decorrelation kernel would be due to the limit of the number of
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features. In the end, the linear kernel outperforms other kernels most often. Although

the parallel decorrelation-mapped kernel also performs well, it may be worth saving the

aggravation about how many features to pick, and simply go with a linear SVM kernel.

4.4.3.3 Using the decision-theoretic approach to recommend a predictive model

The analyses of different classification methods in terms of AUC statistics summarize how

well the models are able to discriminate among cases and controls for many different diag-

nostic thresholds. However, in practice we want to pick just one decision threshold.

One (simple) way to pick the decision threshold is to optimize the misclassification using

the zero-one cost function, where each misclassification contributes equally to the error score.

This is clearly suboptimal in many real-world cases where the cost of misdiagnosing a patient

with a disease when he is actually healthy is not equal to the cost of misdiagnosing a diseased

patient as healthy. To find the optimal diagnostic threshold we can adopt a decision-theoretic

framework where each prediction/disease contingency is assigned a utility (or a cost). Then,

the optimal decision threshold is the one that optimizes the expected utility defined by these

contingencies.

Let p(y = a|x) be the probability the profile x is a, where a = {disease, healthy}, and

let p(y = ¬a|x) = 1− p(y = a|x) denote the probability it is not a. Let u(a′, a) be a utility

function that assigns a real number to the true disease state a′ and the decision made a.

The utility is the negative of the corresponding mismatch cost.

The optimal decision a∗ for x is then defined as:

a ∗ (x) = argmax
a

P (y = a|x)u(a, a) + P (y = ¬a|x)u(¬a, a).

The optimal decision can be rewritten in terms of a simple decision threshold on P (y =

disease|x). Briefly, we should choose “disease” if:

P (y = disease|x) ≥
u(¬disease,¬disease)− u(¬disease, disease)

u(¬disease,¬disease)− u(¬disease, disease) + u(disease, disease)− u(disease,¬disease)
(4.16)

otherwise the choice should be “healthy”.
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The utility function u(a′, a) is typically elicited from an expert. However, the probability

model is not; it is learned from data. Some classification models and methods, such as Naive

Bayes, logistic regression or Linear Discriminant Analysis are probabilistic and attempt to

estimate P (y|x) directly. Others, such as the SVMs which were used extensively in our

previous investigations, do not have an immediate probabilistic interpretation. To build

a probabilistic model for the SVM, we can apply the probabilistic transformation model

introduced by Platt [117]. Let f(x) denote the value assigned to the profile x by the SVM

model trained with labels +1 corresponding to the disease and −1 to the control labels.

Then the probability P (y = disease|x) is modeled as:

P (y = disease|x) = 1

1 + exp(−wf(x) + w0)

where w,w0 are parameters fitted on the training data.

The probability model p(y|x), whether it is based on the Naive Bayes or an SVM, is an

estimate of the true model that is learnt from data. Its accuracy depends on the quality of

the learning algorithm and the number of examples available to learn it. Now, the question

is whether we can evaluate the goodness of the model and which metric we should judge

it by. One way to approach the task is to rely on the empirical likelihood measures based

on the test data. Briefly, the probabilistic model M learned on the train data is applied

to every datapoint (x, y) in the test set and is used to calculate the predictive likelihood

P (y|x,M). The likelihood of M on the data is then calculated as
∏

(x,y)∈Dtest
p(y|x,M).

A log-likelihood metric
∑

(x,y)∈Dtest
logp(y|x,M) is more practical and prevents us from

reaching small values and resulting numerical operation problems.

Table 19 displays the predictive log-likelihood of our three kernel-learning approaches

as well as that of the linear kernel used to evaluate SAP in Chapter 19. A number closer

to 0 is better. Most of the time, the Hyperkernel-based SVM seems to produce the best-

calibrated model for converting SVM outputs to probabilities. It is interesting to note that

the Vanderbilt Lung datasets, which are generated from the same set of samples, all benefit

the most from the pathway kernel-based SVM. In fact, the UPCI Lung Cancer dataset and

the Vanderbilt Lung IMAC dataset share a large subset of samples, so it is no coincidence
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that they share similar preferences for certain methods. Given these results, the hyperkernel-

based approach may have some merit when it is required to produce a probabilistic output.

102



input : Raw training dataset D, set of kernels K = {K1, · · · , Kp}

output: Selected kernel Ks

Estimate performance of each kernel via cross-validation.

for i← 1to 10 do

Split D into training data Dtrain and validation data Dvalid by subsampling.

train-metrics(i)← Calculated dataset characterization metrics for Dtrain

for j ← 1to p do

perf(j)← performance of SVM with kernel Kj, trained on Dtrain and tested on

Dvalid

end

Save the index of the best performing kernel on this dataset.

sel-kern(i)← index(max(perf))

end

Learn decision rules between data characterization metrics and best performing kernel.

rules ← CART-learn(train-metrics,sel-kern)

Use learned rules to select best kernel on training data.

data-metrics ← Calculated dataset characterization metrics for D

s← CART-apply(rules,data-metrics)

Algorithm 1: Procedure for Evaluating Predefined Kernel Selection

• Repeat over many splits of training and testing data

1. Split dataset Di into training data Dtrain and testing data Dtest

2. Define the class of kernels K = k1, ..., kl

3. Optimize the hyperkernel using K, Dtrain and the SDP in Equation 4.14

4. Use an SVM to classify Dtest.

Algorithm 2: Procedure for Learning and Evaluating Custom Hyperkernel
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1. Repeat over many splits of training and testing data

1. Split dataset Di into training data Dtrain and testing data Dtest

2. Evaluate the GSA score of each pathway

3. For those k pathways which are found to be statistically significant w.r.t

Dtrain by GSA

a) Compute the differential expression of the features in those pathways.

This defines a set of values which are related to the differences between the

classes in Dtrain.

b) Compute the correlation between these differential expression values

and the intensities of features for the same pathway for each profile i ∈ Dtest.

This results in a single value Pk for that pathway.

4. Let ϕ(Dtesti) = {P1, ..., Pk}

5. Use a linear kernel K = ⟨ϕ(xi), ϕ((xtesti )⟩)

6. Use an SVM to classify Dtest.

Algorithm 3: Procedure for learning the pathway kernel
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Figure 19: The distribution of absolute correlation values among all feature pairs for the

Vanderbilt Lung IMAC dataset. 77% of the feature pairs are correlated higher than 0.8,

demonstrating the correlation bias prevalent in proteomic MS data.
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Figure 20: The distribution of absolute correlation values for a hypothetical dataset gener-

ated by randomly sampling from a Gaussian distribution. The distribution is more heavily

tailed towards low values of correlation. 0% of the probability mass is correlated higher than

0.5.
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Table 7: Percentage of the distribution of feature pair absolute correlation value above 0.8.

For most datasets, more than two thirds of the features are highly correlated with each other.

For the Vanderbilt Maldi Lung dataset, 52% should not be striking, since this dataset has

roughly twice as many features as the other SELDI datasets.

Dataset Percentage of distribution mass above 0.8

COPD 77%

Hepatitis C 77%

ILD 77%

Diabetes 95%

Melanoma I 77%

Breast Cancer 77%

Pancreatic Cancer I 77%

Pancreatic Cancer II 77%

Prostate Cancer 96%

Scleroderma 77%

UPCI Lung Cancer 78%

Vanderbilt Lung IMAC 77%

Vanderbilt Lung WCX 77%

Vanderbilt MALDI 52%
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Table 10: Comparison of Univariate vs Multivariate Feature Selection on Raw Data

Dataset Best Univariate Best Multivariate Advantage

COPD 0.6270 ± 0.2210 0.5638 ± 0.2604 -0.0632

Hepatitis C 0.5484 ± 0.2212 0.5368 ± 0.2326 -0.0116

ILD 0.5549 ± 0.2784 0.6027 ± 0.2448 0.0477

Diabetes 0.5474 ± 0.2313 0.5355 ± 0.2662 -0.0119

Melanoma I 0.5825 ± 0.1653 0.5208 ± 0.1969 -0.0616

Breast Cancer 0.5698 ± 0.1343 0.5559 ± 0.1246 -0.0139

Pancreatic Cancer I 0.8310 ± 0.0828 0.8939 ± 0.0679 0.0629

Pancreatic Cancer II 0.7437 ± 0.1086 0.8433 ± 0.0779 0.0996

Prostate Cancer 0.9190 ± 0.0291 0.9047 ± 0.0330 -0.0143

Scleroderma 0.7479 ± 0.1071 0.7298 ± 0.1071 -0.0180

UPCI Lung Cancer 0.6411 ± 0.0958 0.7964 ± 0.0789 0.1553

Vanderbilt Lung IMAC 0.7686 ± 0.0682 0.8518 ± 0.0579 0.0832

Vanderbilt Lung WCX 0.8558 ± 0.0611 0.8616 ± 0.0528 0.0058

Vanderbilt MALDI 0.8107 ± 0.0632 0.8512 ± 0.0520 0.0405
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Table 11: Comparison of Univariate vs Multivariate Feature Selection on SAP Data

Dataset Best Univariate Best Multivariate Advantage

COPD 0.6386 ± 0.2116 0.6670 ± 0.1811 0.0284

Hepatitis C 0.6622 ± 0.1538 0.6269 ± 0.1680 -0.0353

ILD 0.6831 ± 0.1905 0.6404 ± 0.2174 -0.0427

Diabetes 0.6657 ± 0.1997 0.6090 ± 0.2158 -0.0567

Melanoma I 0.5804 ± 0.1697 0.5844 ± 0.1811 0.0040

Breast Cancer 0.5838 ± 0.1337 0.6079 ± 0.1364 0.0242

Pancreatic Cancer I 0.9009 ± 0.0516 0.9349 ± 0.0412 0.0340

Pancreatic Cancer II 0.9057 ± 0.0510 0.9130 ± 0.0525 0.0072

Prostate Cancer 0.8510 ± 0.0578 0.9574 ± 0.0214 0.1064

Scleroderma 0.5908 ± 0.1392 0.6031 ± 0.1416 0.0124

UPCI Lung Cancer 0.6917 ± 0.0802 0.7304 ± 0.0790 0.0387

Vanderbilt Lung IMAC 0.8083 ± 0.0680 0.8790 ± 0.0532 0.0708

Vanderbilt Lung WCX 0.8976 ± 0.0475 0.9206 ± 0.0373 0.0230

Vanderbilt MALDI 0.8044 ± 0.0656 0.8469 ± 0.0597 0.0425
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Table 12: Percentage of feature pairs with |r| ≥ 0.8

Dataset LOO AUC Drop RF Importance L1 Regularization

COPD 0% 1% 0%

Hepatitis C 0% 8% 3%

ILD 61% 3% 21%

Diabetes 6% 1% 1%

Melanoma I 6% 9% 11%

Breast Cancer 0% 2% 1%

Pancreatic Cancer I 52% 17% 5%

Pancreatic Cancer II 33% 45% 9%

Prostate Cancer 4% 7% 2%

Scleroderma 18% 7% 3%

UPCI Lung Cancer 4% 15% 2%

Vanderbilt Lung IMAC 5% 25% 4%

Vanderbilt Lung WCX 6% 99% 11%

Vanderbilt MALDI 14% 9% 7%
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Table 13: Performance of Feature Decorrelating Methods on Raw Data

Dataset Best Univariate Best Feat.

Constructor

Advantage

COPD 0.6270 ± 0.1979 0.5839 ± 0.2316 -0.0432

Hepatitis C 0.5381 ± 0.2026 0.6486 ± 0.1855 0.1105

ILD 0.5502 ± 0.2677 0.6035 ± 0.2128 0.0533

Diabetes 0.5479 ± 0.2570 0.5155 ± 0.2731 -0.0324

Melanoma I 0.5777 ± 0.1713 0.5797 ± 0.1599 0.0021

Breast Cancer 0.5698 ± 0.1225 0.5780 ± 0.1331 0.0082

Pancreatic Cancer I 0.8304 ± 0.0776 0.8923 ± 0.0686 0.0620

Pancreatic Cancer II 0.7361 ± 0.1097 0.8207 ± 0.0897 0.0846

Prostate Cancer 0.9190 ± 0.0291 0.9698 ± 0.0188 0.0508

Scleroderma 0.7186 ± 0.1066 0.7204 ± 0.1120 0.0018

UPCI Lung Cancer 0.6411 ± 0.0958 0.8368 ± 0.0659 0.1957

Vanderbilt Lung IMAC 0.7686 ± 0.0726 0.9089 ± 0.0414 0.1402

Vanderbilt Lung WCX 0.8558 ± 0.0579 0.9001 ± 0.0453 0.0443

Vanderbilt MALDI 0.8107 ± 0.0658 0.9143 ± 0.0405 0.1036

113



Table 14: Performance of Feature Decorrelating Methods on SAP-Preprocessed Data

Dataset Best Univariate Best Feat.

Constructor

Advantage

COPD 0.6233 ± 0.2202 0.6478 ± 0.2175 0.0245

Hepatitis C 0.6836 ± 0.1564 0.7102 ± 0.1398 0.0265

ILD 0.6572 ± 0.1901 0.6627 ± 0.2277 0.0055

Diabetes 0.6953 ± 0.1869 0.7426 ± 0.1571 0.0473

Melanoma I 0.5838 ± 0.1876 0.5955 ± 0.1893 0.0117

Breast Cancer 0.5806 ± 0.1105 0.6067 ± 0.1287 0.0261

Pancreatic Cancer I 0.9023 ± 0.0505 0.9599 ± 0.0238 0.0576

Pancreatic Cancer II 0.8979 ± 0.0511 0.9311 ± 0.0391 0.0333

Prostate Cancer 0.8510 ± 0.0578 0.9691 ± 0.0172 0.1181

Scleroderma 0.6112 ± 0.1314 0.6889 ± 0.1153 0.0777

UPCI Lung Cancer 0.6917 ± 0.0799 0.8276 ± 0.0639 0.1360

Vanderbilt Lung IMAC 0.7985 ± 0.0668 0.9003 ± 0.0429 0.1019

Vanderbilt Lung WCX 0.8976 ± 0.0458 0.9520 ± 0.0245 0.0545

Vanderbilt MALDI 0.8086 ± 0.0628 0.9221 ± 0.0379 0.1134
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Table 15: A comparison of predictive model performance (in terms of AUC) when using

various kernel learning methods on raw data. An ℓ1-norm penalized SVM was used as the

base predictive model, while the kernel was learned through varying methods. The results

are shown as averages over 40 splits of training/testing data along with 95% confidence

intervals.

Dataset Hyperkernel Metalearning Prior Knwlg

COPD 0.5025 ± 0.2662 0.5473 ± 0.1986 0.5365 ± 0.1189

Hepatitis C 0.5666 ± 0.2230 0.6299 ± 0.1619 0.5728 ± 0.1410

ILD 0.6550 ± 0.2206 0.5505 ± 0.2090 0.5538 ± 0.2124

Diabetes 0.5557 ± 0.2287 0.4783 ± 0.2037 0.5172 ± 0.1095

Melanoma I 0.5094 ± 0.2055 0.5181 ± 0.1177 0.5045 ± 0.1513

Breast Cancer 0.5121 ± 0.1303 0.5115 ± 0.1298 0.5232 ± 0.0853

Pancreatic Cancer I 0.5442 ± 0.1405 0.7812 ± 0.0632 0.5931 ± 0.0449

Pancreatic Cancer II 0.5739 ± 0.1373 0.7246 ± 0.0840 0.5460 ± 0.0851

Prostate Cancer 0.6243 ± 0.0870 0.9405 ± 0.0226 0.6571 ± 0.0851

Scleroderma 0.5301 ± 0.1342 0.6335 ± 0.0666 0.5673 ± 0.1295

UPCI Lung Cancer 0.5860 ± 0.0947 0.5000 ± 0.0000 0.5780 ± 0.0643

Vanderbilt Lung IMAC 0.7419 ± 0.0777 0.5201 ± 0.0026 0.5907 ± 0.0454

Vanderbilt Lung WCX 0.7764 ± 0.0723 0.5448 ± 0.0108 0.6764 ± 0.0602

Vanderbilt MALDI 0.7140 ± 0.0825 0.5527 ± 0.0046 0.6038 ± 0.0592
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Table 16: Performance of Kernel Learning Methods on SAP-preprocessed Data

Dataset Hyperkernel Metalearning Prior Knwlg

COPD 0.5640 ± 0.2170 0.6247 ± 0.1856 0.5651 ± 0.2055

Hepatitis C 0.7608 ± 0.1363 0.6542 ± 0.1905 0.6719 ± 0.1424

ILD 0.5549 ± 0.0566 0.6984 ± 0.1877 0.6380 ± 0.2077

Diabetes 0.6372 ± 0.1893 0.6473 ± 0.2208 0.6008 ± 0.1402

Melanoma I 0.5397 ± 0.2003 0.5387 ± 0.1957 0.5647 ± 0.1587

Breast Cancer 0.5654 ± 0.1227 0.5587 ± 0.1373 0.5608 ± 0.0945

Pancreatic Cancer I 0.6179 ± 0.0906 0.9544 ± 0.0324 0.6783 ± 0.1002

Pancreatic Cancer II 0.5761 ± 0.0856 0.9201 ± 0.0473 0.6079 ± 0.1036

Prostate Cancer 0.7017 ± 0.0634 0.9369 ± 0.0316 0.6913 ± 0.0832

Scleroderma 0.6263 ± 0.1297 0.6625 ± 0.1520 0.6364 ± 0.1203

UPCI Lung Cancer 0.6937 ± 0.0897 0.7595 ± 0.0725 0.5830 ± 0.0799

Vanderbilt Lung IMAC 0.8070 ± 0.0626 0.8684 ± 0.0534 0.6174 ± 0.0793

Vanderbilt Lung WCX 0.8753 ± 0.0496 0.9360 ± 0.0334 0.5877 ± 0.0729

Vanderbilt MALDI 0.8233 ± 0.0582 0.8758 ± 0.0498 0.6765 ± 0.0627
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Table 17: Percentages of insignificant (p >= 0.01 of Mann-Whitney U -test) comparisons

between feature selection methods. Key: CxC (Correlation-aware vs. Correlation-aware,

3 pairs); CxM (Correlation-aware versus Multivariate filter, 6 pairs); CxU (Correlation-

aware versus Univariate filter, 6 pairs). The tests are performed on the raw data (first

three columns) as well as SAP-preprocessed data (last three columns); RxS (p-value for

Kruskal-Wallis test between advantages obtained on all feature selection methods on raw data

versus all feature selection method advantages on SAP data). A higher percentage means

that methods from the two groups more frequently offer a statistically similar performance

advantage

.

RAW SAP

Dataset CxC CxM CxU CxC CxM CxU RxS p

COPD 100% 50% 50% 100% 50% 50% 0.699

Hepatitis C 67% 17% 17% 100% 50% 50% 0.000

ILD 100% 50% 50% 100% 50% 50% 0.078

Diabetes 33% 17% 17% 100% 50% 50% 0.000

Melanoma I 100% 33% 50% 100% 50% 50% 0.000

Breast Cancer 100% 50% 33% 100% 50% 50% 0.387

Pancreatic Cancer I 100% 50% 0% 67% 50% 0% 0.000

Pancreatic Cancer II 100% 50% 33% 67% 33% 0% 0.000

Prostate Cancer 33% 50% 50% 33% 33% 0% 0.000

Scleroderma 100% 17% 50% 33% 50% 33% 0.000

UPCI Lung Cancer 33% 17% 0% 33% 17% 17% 0.000

Vanderbilt Lung IMAC 33% 0% 0% 100% 33% 0% 0.000

Vanderbilt Lung WCX 33% 0% 17% 100% 50% 0% 0.000

Vanderbilt MALDI 33% 17% 0% 33% 17% 0% 0.000
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Table 18: The percentages reflect the proportion of datasets in which the row kernel-learning

method significantly outperforms the column kernel-learning method. The Linear SVM with

Parallel Decorrelated features is also added for comparison. Significance tests were done with

a Mann-Whitney U -test with α = 0.5. Interpret the Meta-Learning kernel as just a plain

linear kernel.

Hyperkernel Metalearning Pathway Parallel COR

Hyperkernel — 7% 35% 14%

Metalearning 57% — 50% 35%

Pathway 0% 0% — 7%

Parallel COR 28% 0% 50% —
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Table 19: Comparison of Log-likelihoods of probability models obtained from SVM classifiers

on SAP-processed data using different kernels. Columns correspond to: HYP (Hyperkernel),

META (Meta-learning), PATH (Pathway Kernel) and the Linear kernel used in Chapter 3.

A greater number is better - the best result for each dataset is bolded.

Dataset HYP META PATH Linear

COPD -3.2400 -2.4017 -4.6944 -1.5809

Hepatitis C -8.8668 -15.0818 -6.3207 -5.1058

ILD -3.1548 -3.3564 -3.4733 -4.8469

Diabetes -2.0065 -2.5536 -4.3701 -4.3251

Melanoma I -4.2802 -4.2343 -10.9350 -7.0104

Breast Cancer -18.7682 -36.8485 -30.8202 -27.8166

Pancreatic Cancer I -7.1689 -13.0232 -8.2671 -37.4862

Pancreatic Cancer II -7.1665 -8.6821 -7.2155 -19.6421

Prostate Cancer -8.8602 -10.4713 -10.7550 -23.9234

Scleroderma -5.4823 -10.0400 -5.5808 -21.3438

UPCI Lung Cancer -15.7557 -23.3732 -14.8621 -29.7677

Vanderbilt Lung IMAC -21.9110 -29.1278 -14.7063 -37.0586

Vanderbilt Lung WCX -20.1528 -34.2703 -15.5185 -43.2553

Vanderbilt MALDI -14.9691 -23.0833 -14.1232 -30.5254
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5.0 INTERPRETATION

5.1 BACKGROUND

Following predictive modeling and classification of proteomic profiles, any result must be

interpreted to some extent. The mass spectrometry (and in particular, the TOF-MS) data

source has two problems which can make interpretation of promising results difficult. The

first problem is that the data source is inherently noisy. Although preprocessing alleviates

this problem to some extent, it’s impossible to account for every source of variation in the

equipment and sample. The second problem is that the features in the data are difficult to

associate with biological concepts (henceforth referred to interchangeably as protein identi-

fication or protein labeling. This is due to the nature of how the data is generated with MS

equipment (and especially complicated with SELDI-TOF-MS technology) (See section 2.3

for a better understanding of why). Even with more complex equipment, labeling features

with biological identifiers for proteins is difficult. Although the methodologies for protein

labeling can differ according to equipment, as long as one exists, it enables theorizing about

the data in different ways. With a large collection of data and the ability to label features,

it becomes possible to search for disease-specific and general biomarkers.

To address these problems, two classes of methods are considered for the interpretation

of the performance of predictive models. Statistical interpretation methods aim to alleviate

concerns about the caveats normally associated with predictive modeling, such as generaliza-

tion error between experiments and the reproducibility of results. Biological interpretation

approaches attempt to link biological relationships to the features or samples used by the

predictive model. First, the features should be attached to protein labels, so that any further

reasoning about the data and results will carry additional meaning. Then, additional rela-
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tionships can be made using prior knowledge and online databases which document protein

interactions. Uncertainty in the biological identities of features generally discourages this

type of analysis, but as MS profiling technology improves, these interpretation techniques

will improve as they accommodate new information. For now, the hypothesis is that the

presence of these methods will enable more interesting conclusions about MS protein profile

analysis beyond the statistics presented for predictive model performance. These methods

should enable the analyst to reveal interesting concepts which have been hidden up until

now, due to the challenging nature of the data.

5.1.1 Statistical Interpretation Methods

To some degree the statistical validation of classifier models is taken care of through cross-

validation. However we may be interested in additional statistical properties of the data

which extend beyond classifier error. Rather than invent separate testing techniques for

each statistical property of interest, it would be desirable to use a general framework for

testing.

The permutation test [118] is such a framework, which can be used to interpret the

strength of any measurable statistical property T of a classifier model or its data. Examples

of statistical properties aside from classifier error include differential expression scores of

features or inter-class correlation.

The permutation test is a nonparametric approach to hypothesis testing, which makes

it useful when the underlying distribution of T is unknown. Figure 21 illustrates the per-

mutation test. A distribution of T under a null hypothesis H0 is generated by randomly

permuting the class membership labels of the data. For each permutation, T is recalculated,

which results in an empirical estimation of the distribution of T under H0. The null hy-

pothesis typically reflects the idea that no special relationship exists between T and the true

assignment of class labels to the data. For example, in the case of a model with excellent

testing error, we might consider H0 to represent the hypothesis that the model achieves

its testing error through chance, implying that the model’s selected features are spuriously

correlated with the class label.
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Values in this distribution are compared to the value of T under the true class label

assignment. If this value outside the distribution by a significant amount, the null hypothesis

is rejected. The level of significance can be determined, for example, by p-value. The

parameter α describes the level of confidence at which the null hypothesis was rejected.

5.1.2 Biological Interpretation Methods

The statistical validation of predictive models is useful for empirically determining the ap-

plicability of a predictive model. Determining the reasons why these models work beyond

the mathematical properties is a natural next question. Biological information is somehow

encoded into the proteomic profiles, and if a predictive model is effective at using this infor-

mation to discriminate between cases and controls, it would be interesting to see how the

model achieves its decisions. Moreover, if a predictive model experiences errors, we might

be curious whether any biological relationship to these errors are present.

In the data available for this thesis, biological information is limited to the molecular

weights of molecules measured by the mass spectrometer. More recent technology exists

which can supplement MS profile data by annotating features with peptide identifications.

With or without this advantage, it can be uncertain as to which proteins are being represented

in the MS profiles. Although the protein identities can not be known for sure, we can make

educated guesses about the identities of features. In the future, if MS proteomic profiling

improves to the point where all features are accurately identified, this identification step can

be skipped. However, biological interpretation techniques remain unchanged.

The Pathway Kernel from Section 4.3.6 was intended as an additional way to interpret

protein profiling models. The features selected by an SVM using the Pathway Kernel would

correspond to separate biological systems of interactions influencing the overall proteomic

profile. If the model fits the data well, we can then look at the components of the individual

processes to speculate why these components affect the outcome of a disease. Unfortunately,

converting the gene interaction pathways to locations in the protein profiles proved difficult

with the SELDI and MALDI ToF-MS data sources.

To deal with uncertainty of the identity of features, discriminative features and patterns
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Figure 21: Example of the permutation test. The empirical distribution of the test statistic

T (shaded histogram) is estimated by permuting class labels of data. If the test statistic

obtained under the true class labels (red cross) falls outside of this distribution by a significant

amount, the value of the test statistic is less likely to occur by chance.
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are often termed ”surrogate” biomarkers. These surrogate biomarkers function in discrimi-

nating diseased and healthy samples despite their abstract nature. It is possible that other

abstractions can exist, which could be more easily related to biological concepts and possibly

more effective for classification. This thesis intends to investigate ways of abstracting the

information in proteomic profiles in order to determine whether interesting biological rela-

tionships can be discovered. This is done primarily through latent variable models, a set of

statistical models which relate output variables to a smaller set of ”hidden” variables. These

latent variables are not observed directly in the data, but are modeled so that their settings

produce the data through independent processes. In an appropriately designed model, these

processes could be interpreted as separate biological systems of interactions influencing the

overall proteomic profile. The latent variables might indicate the condition of each process,

whether it is in a normal or dysfunctional state. If the model fits the data well, we can then

look at the components of the individual processes to speculate why these components affect

the outcome of a disease. There may be multiple ways to organize the features of a proteomic

profile into biological processes. One option is to use correlations learned from the feature

selection process. Another option is to label the features with their protein identities. If this

organization process is good, we might expect a better fit of the model to the data.

5.2 RELATED WORK

5.2.1 Supporting Generalization Error Results

The permutation.based approach compares the error achieved on the true data to errors on

randomly labeled data. It tries to show that the result for the true data is different from

results on the random data, and thus it is unlikely the consequence of a random process.

Note that the permutation-based method is different and thus complementary to standard

hypothesis testing methods that try to determine confidence intervals on estimates of the

target statistics. We also note that one may apply standard hypothesis testing methods

to check if the target statistic for our classification model is statistically significantly dif-
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ferent from either the fully random, trivial or any other classification model. However, the

permutation framework always looks at the combination of the data label generation and

classification processes and thus establishes the difference in between the performance on the

true and random data. Classification error is a composite evaluation metric. Other types

of performance measures for which confidence intervals have been studied so far include

significance of SN at a fixed SP [119], AUC [120] and the ROC curve itself [121]. Here we

briefly explain these options. Which performance measure to assess may vary according to

strategy. Bootstrap-estimated or analytically determined confidence intervals around SN at

a specified SP [119] requires that a desired SP be known, and this depends on its intent;

for example a screening test should have very high SP to avoid resulting in too many false

positives when applied to a population. Even here, however, ”very high” and ”too many”

are rather context dependent, and should not be considered in a silo by ignoring existing

or other proposed diagnostic tests. Acceptable FP values depend to a degree on the SP of

existing practices, and to an extent on the prevalence of the disease. Any screen can be

considered to change the prevalence of disease in the ”potential patient” population, and

therefore follow-up with panels of minimally invasive markers, or multivariate studies of

numerous risk factors (demographic, familial, vaccination, smoking history), and longterm

monitoring, might make such screening worthwhile. High-throughput proteomics highlights

the need for dynamic clinical diagnostics.

The various approaches suggested by Linnet were extended and revised with a suggestion

by [122] to adopt the bootstrap confidence interval method [123]. A working paper by [124]

explores related approaches. One strategy is to perform bootstrapping [123] and calculate

a 1-α confidence interval around a measure of interest. Bootstrapping is a subsampling

scheme in which N data sets are created by subsampling the features of the original data

set, with replacement. Each of the N data sets is analyzed. Confidence intervals around

some measure of interest (T ) can be calculated or consensus information can be gathered;

in either case, variability in an estimate T is used a measure of robustness of T . Various

implementations of the bootstrap are available; the least biased appears to be bias-corrected

accelerated version [123].

A second strategy is to calculate confidence intervals around the AUC measure. Boot-
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strapping [123] is sometimes used to estimate AUC confidence intervals. Relying on confi-

dence in the AUC can be problematic because it reports on the entire ROC, and, in practice,

only part of the ROC is considered relevant for a particular application (e.g., high SP re-

quired by screening tests. A literature on assessing the significance of partial ROC curves

has been developed [125, 126]; a recent study [127] compared the features and performance

of eight programs for ROC analysis. A third strategy is to calculate bootstrap confidence

bands around the ROC curve itself [121]. Under this approach, bootstrapping is explored

and bands are created using any of a variety of ”sweeping” methods that explore the ROC

curve in one (SN) or two (SN and 1-SP) dimensions.

5.2.2 Addressing concerns of Reproducibility

Earlier MS proteomic profiling studies stimulated significant enthusiasm [7], discussion [8],

and controversy [128] in the general scientific community and among proteomics researchers.

Potential confounding and bias in study design and analysis in initial studies [27], were rec-

ognized early on and have been addressed in subsequent research (See [129]) for an overview).

Issues related to confounding and bias in study design and data analysis can be approached

using appropriate principles of clinical epidemiology and laboratory research, together with

careful experimental design and methods for data preprocessing and analysis.

Predictive modeling relies on the detection of potential biomarkers which may explain

disease through previously understudied combinations of reproducible molecular measure-

ments. The reproducibility of these surrogate biomarker patterns often comes into question;

a pattern is not guaranteed to be replicated exactly within the same or other data generation

session, or at a different laboratory. This results from the intrinsic variation introduced into

the data by factors including, but not limited to, the biological nature of the samples and

limitations of the MS technology.

Typical proteomic profiling studies attempted to minimize the effect of this variation by

generating data in a single session. Classification results on these data sets were encouraging,

but dealt only with the data variation within a single session. These data sets were produced

in the ’ideal’ environment where only a single instrument in a single laboratory produces
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all of the available data at the same time. As a result, potential factors of inter-session

and inter-site biases were ignored. Skepticism arose as to whether spectra generated during

multiple sessions separated by variable intervals of time, or by a different laboratory, will be

useful for predictive modeling applications. Promising inter-site reproducibility results were

reported by [130,131]. Inter-session reproducibility, however, remains a relatively open area

of research.

5.2.3 Protein-Feature Association

Mass spectrometry (MS) proteomic profiling enables a parallel measurement of hundreds

of proteins present in a variety of biospecimens. This technology has shown many very

promising results in differentiating diseased and control samples in a variety of studies [132–

135]. The studies typically report classification statistics achieved by a predictive model,

such as accuracy, sensitivity, specificity or area under the ROC curve. As a supplement,

features constituting the discriminatory patterns are given as a list of mass-to-charge (m/z )

ratios. Unfortunately, these features were only rarely matched to proteins, which weakened

the overall results and spurred some controversy surrounding the interpretation of these

analyses [8]). Knowing the identities of ion species critical for the group differences could

lead to understanding the biological relevance of the result and would make the results more

acceptable.

An early approach to feature labeling in TOF-MS data relied solely on information about

mass of the protein species, more specifically the m/z ratio of peaks in MS signals [136].

However, many different molecules can appear at the same location, and choosing among

them often results in an incorrect or nonsensical identification. Improved mass spectrometry

techniques dependent on sample fractionation enabled better separation of molecules along

the m/z axis by separating them along another dimension, usually elution time. These MS

profiling approaches typically use Tandem Mass Spectrometry as opposed to TOF-MS to

recover amino acid compositions of molecules. Despite the additional information, feature

labeling is imperfect and faces several challenges; since this thesis has only TOF-MS data

available, those methods for Tandem MS/MS are beyond the scope of this thesis. For a
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review of these methods and their limitations, see [137,138].

5.2.4 Incorporating Prior Information

In an effort to incorporate more prior knowledge into the learning process, [139] created a data

integration framework using Bayesian networks. The authors proposed that different data

sets would necessarily require different networks to accurately represent biological processes,

since different data sources will have different intentions on which processes to measure. In

this work, separate data sources were linked together by various Bayesian network structures,

although the performance of structured vs naive networks did not seem to differ much. Each

data source was modeled as being conditioned on by the functional relationship of a gene pair.

The correlations between expression measurements (as in microarray data) were discretized

and converted into true/false values. The network then predicts the type of functional

relationship responsible for the data. It is largely up to the learning algorithm to utilize

the ”prior knowledge”, which comes in the form of additional data types such as wet-lab

conformational assays or genetic associations.

Prior knowledge is also concentrated in publicly available sources, such as the Kyoto

Encyclopedia of Genes and Genomes (KEGG, [140]). A paper by [141] sought to use KEGG

as a way to validate prediction of gene pair interactions. The authors use a Bayesian scoring

metric which uses KEGG information as a benchmark. Interacting gene pairs are found to

be linked in various types of data. The scoring metric assigns higher scores to data which

display a greater frequency of links as found in the benchmark pathway information. Each

separate data source provides a score for a gene pair. The authors found it difficult to create

a Bayesian approach to estimate the contribution of each data source, since the data sources

have varying relative independence. As a solution, scores for a gene pair are reweighted

by rank-ordering the scores and dividing by a parameter chosen to optimize accuracy and

coverage of the integrated score on the benchmark. Accuracy was calculated by comparing

to gold-standard small-scale gene interaction assays. The work demonstrated that even weak

evidence from multiple sources can be combined for strong overall evidence for gene linkage

prediction. Furthermore, clustering genes in the resulting network resulted in highly coherent
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clusters in terms of function. The authors suggest the approach can be extended to human

genes and will improve as the amount of collected data increases. Functional analysis of the

clusters must still be done by hand.

Another effort to integrate prior knowledge was undertaken in [142]. Annotated gene ex-

pression datasets in the Gene Expression Omnibus (GEO, [143]) were mapped to concepts in

the Unified Medical Language System (UMLS, [144]). Datasets were partitioned by concept

into those mapped to that concept, and those not mapped. Genes in these datasets are then

tested for significant differences between the groups. The score of statistical significance is

subjected to a random permutation test by permuting the assignments of datasets to con-

cepts. As a result, genes are annotated with phenotypic concepts from the UMLS, which

creates a phenome-genome network derived only from expression data. Validation was done

two ways: by assuring a strict statistical significance threshold and by obtaining the same

gene-concept links in with homologous genes in other organisms. The latter method can

be restrictive since many conditions are not studied on homologous organisms. However,

thresholding by statistical significance produced many manually verified relations.

5.3 METHODS

5.3.1 Permutation-Achieved Classification Error (PACE)

The objective of optimizing a classification score itself is largely uncontrolled in most ge-

nomic and proteomic high-throughput analysis studies. Researchers do not, for example,

typically attempt to determine and therefore do not report the statistical significance of

the sensitivity of a test, in spite of the existence of a number of approaches for performing

such assessments. Here we introduce a permutation method for assessing significance on the

achieved classification error (ACE) of a constructed prediction model.

Permutation test methods work by comparing the statistic of interest with the distribu-

tion of the statistic obtained under the null (random) condition. Our priority in predictive

models is to critically evaluate the observed classification performance. In terms of hy-
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pothesis testing the null hypothesis we want to reject is: The performance statistic of the

predictive model on the true data is consistent with the performance of the model on the data

with randomly assigned class labels.

Permutation-Achieved Classification Error (PACE, [145] is a statistical validation frame-

work for determining whether the effect of a predictive model is obtained by chance. For

this application, our statistic of interest is the achieved classification error (ACE) of the

predictive model. PACE evaluates a predictive model M by estimating the distribution of

ACE TACE underM . The procedure is represented in algorithm 4 . The number of permuta-

tions is arbitrary; we use 1000 by default. Each time M is evaluated on a dataset, the ACE

is estimated through cross-validation over multiple train/test splits to reduce the effect of

subsampling bias. If the true ACE of M falls on the tail of T beyond the threshold specified

by α, the null hypothesis is rejected. This indicates that the predictive ability of M is less

likely to be by chance. This property gives additional assurance that M is valid model.

input : Predictive model M , significance threshold α, number of permutations B

output: Success of hypothesis test

Compute ACE T of model M on original data

for b← 1 to B do

Permute the group labels in the data

Compute the ACE Tb for model M on the modified data

end

Calculate the p–value of T with respect to the distribution defined by permutations b

as: p = NTb≤T/B, where NTb≤T is the number of permutations for which the test

statistic Tb is better than T under the true labeling

if p < α then

Reject null hypothesis, validation succeeds on M at confidence level α

else Accept null hypothesis, validation fails on M at confidence level α

end

Algorithm 4: PACE Algorithm
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5.3.2 Measures of Reproducibility

PACE evaluates a model holistically. The permutation-based framework can be specialized

to the feature level to measure the stability of information found in the data. From an eval-

uation standpoint, these analyses are particularly useful when dealing with data produced

throughout multiple sessions. An ideal model should locate generalizable, robust features

to use for the discrimination process. The same feature set across datasets for the same

(or possibly for similar) diseases should remain strong if they are valid. To this end, a set

of reproducibility metrics is presented to measure the reproducibility of information across

data [39, 146]. These techniques also attempt to quantify how much inter-session variabil-

ity plays a role in the performance of predictive modeling. Specifically, these techniques

demonstrate 1) the presence of intersession noise, 2) the similarity of profiles from different

sessions, 3) the reproducibility of aggregate patterns and 4) the generalizability of a model’s

performance when using inter-session data. The individual techniques are described in more

detail below. A feature set which displays strong reproducibility characteristics across multi-

ple data sessions is likely to benefit an accompanying predictive model, which can be further

evaluated with the PACE framework described above.

• It is possible to examine the differences in signals from the same sample across multiple

sessions. A signal difference score is defined to measure the discrepancies between signals

from the same sample. The hypothesis tested is whether the signal difference score for

profiles from the same sample is significantly better than profiles from other samples.

This would indicate that identical samples processed in multiple sessions experience

more similarity to themselves than to other samples in the session, supporting the usage

of profiles from multiple session for analysis purposes.

• The second proposed test asks whether discriminative information is affected by inters-

ession noise. This issue is analyzed on the feature signal and multivariate levels, using

differential expression and classifier accuracy metrics, respectively. The effect of inters-

ession noise on these statistics is determined by comparing them on single-session and

randomized multi-session data sets.

• The final proposed tests evaluate the predictive performance of multivariate models on
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future sessions. One test evaluates by how much the performance of classification mod-

els deteriorates on future sessions with respect to their ’ideal’ single-session performance.

The other test asks if performance of a multivariate model on future sessions can be

improved if the model is trained on mixed-session data. The hypothesis is that if inters-

ession variability exists, it can be learned through multi-session data, potentially leading

to accuracy gains over models trained on single sessions.

The specific methods to test these objectives are outlined below.

5.3.2.1 Reproducibility of profile signals No two MS profiles are exactly the same.

Profiles may differ due to instrument noise, differences in sample preparation procedures,

etc. Differences in profiles for the same sample are visible even if two profile replicates are

generated in the same session, and even if they are placed on the same chip. The intra-session

profile variation is well known and existing methods are robust enough to cope with it. The

differences in profiles for the same sample across multiple data generation session are much

less understood. The differences in the sample preparation at different times, instrument

settings may effect the resulting profiles and contribute to possible inter-session biases and

variability.

Figure 22 displays four MS profiles from the same sample that were generated in four

different sessions. Although the shape of the profile may look similar, differences in relative

intensities of peaks are apparent. Are these differences significant? Are these variations too

strong to overcome so that the profiles from the same sample are useless and easy to confuse

with profiles generated for other samples? To answer these questions we need to define a

similarity (or distance) metric that helps us assess the differences among profiles. We would

like MS profiles from the same sample to differ less across sessions than profiles from other

samples. To achieve this goal we measure the similarity among a set S of k spectra using

the average Euclidean distance dE between all pairs of spectra:

dE(S) =
1

k(k−1)
2

∑
∀1≤p<q≤k

√√√√ d∑
i=1

(pi − qi)2 (5.1)

where p and q represent a pair of spectra from the subset of k replicate spectra generated
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Figure 22: MS profiles for a single sample across 4 different sessions. Changes are apparent

in relative intensities of peaks.

from the same sample source. Intuitively, the signal difference score measures the sum of

areas between all possible superimposed pairs of k spectra; smaller values indicate better

similarity.

We used the above signal difference metric first, to evaluate the similarity of spectral

measurements from the same sample across multiple sessions and then, to determine that

the differences from random collections of spectra from other patients are very different and

thus profiles that originate from the same sample are hard to confuse with other profiles.

A random permutation test [118] was used to test the differences and their significance.
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We first estimated a distribution of signal difference scores for randomly grouped spectra.

Random groupings were generated by shuffling the sample identities assigned to spectra in

each session. The signal difference score was recalculated for each random profile grouping,

and the process was repeated 1000 times to estimate the distribution of signal difference

scores for randomly grouped spectra. Next, the signal difference score for profiles belonging

to the correct samples was calculated. If the score is statistically significantly different with

respect to the estimated distribution, we have greater confidence that signals from the same

sample are similar to each other beyond random effects. This increases our confidence that

profiles generated from multiple sessions are potentially useful for analysis.

5.3.2.2 Reproducibility of Discriminatory Signals Evaluating profile similarity

across sessions helps assure us of the basic consistency (reproducibility) of spectra with

respect to samples their represent. However, the differences in profiles across multiple sessions

are apparent (see Figure 22). This leads to a concern that information potentially useful

for disease detection purposes may be lost or at least significantly compromised if data from

multiple sessions were used in the analysis. To assess the effect of the potential information

loss we compare data mixed from multiple sessions to data generated from individual sessions

and their discriminatory power.

The information that helps us discriminate between healthy (case) and diseased (control)

profiles can be drawn from a single feature (peak) of the profile, or from a combination of

multiple features. We measure the quality of discriminative information for a single feature

(peak) by its differential expression score. The score quantifies the difference observed in

a profile feature between case and control groups. In this paper, we use the Fisher-like

score, computed as |µ(+)−µ(−)

σ(+)+σ(−) |, where µ and σ represent the sample mean and variance of the

feature, respectively. The signs (+) and (−) denote case and control samples, respectively.

We note that differential expression can be measured using many other criteria [25] which

would work just as well.

Testing peaks’ discriminatory information loss: To determine if the differential expression

information is lost across multiple sessions we assumed that feature’s differential expression

follows a distribution across sessions. The distribution can be empirically estimated by ran-
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domly choosing each sample’s spectrum from its replicate set. We generate 1000 randomized

datasets and calculate a feature’s differential expression score under each dataset to recover

its empirical distribution.

If the profiles generated in a single session retain more discriminatory information, we

expect their differential scores to be higher on average than the mixed-session distribution.

We can test this by comparing the differences in between the mean score for the mixed-

session distribution and the score for the single-session. We have four different sessions per

sample and multiple spectra peaks. We use 100 peak regions, evaluate their single-session

scores and compare their peak scores to the distributions generated for mixed session data.

This process generates a distribution of score differences. If the single session spectra are

’better’ we expect them to be differ on average from 0. This difference and its significance

can be assessed using standard one-sided hypothesis testing framework.

Testing multivariate information loss: The reproducibility of differential information in

individual features may be indicative of the reproducibility of discriminative information

given by combinations of these features. However, this is not guaranteed. Are the feature

combinations differently represented across sessions? If we mix data from different sessions,

what is the effect on the discriminative pattern and the resulting predictive model? To

answer these questions, we examine if the performance of a predictive model deteriorates on

data mixed from several sessions, as opposed to data from the same data-generation session.

Performance of a predictive model is typically measured using accuracy (percentage of

correct predictions), sensitivity and specificity, or area under the ROC curve statistics. In this

work, we evaluate predictive models using their test set accuracy. Similarly, there are many

classification models one may try to learn multivariate patterns. We use the linear Support

Vector Machine model [72,91] to learn the relationship between diagnostic features and state

of disease. This method has been used previously in many cancer studies [25,38,147] and is

particularly favored for its ’regularized’ feature selection.

To assess the reproducibility of multivariate classification patterns across sessions, we

generate 1000 random datasets such that each patient (sample) receives one of the profiles

from its replicate set. Our goal is to analyze differences in the performance of classifiers on:

(a) models trained and tested on profiles from multiple sessions, versus (b) models trained
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and tested on profiles from the same session. To measure test accuracies of models we first

decide which patients (samples) will be used for training and testing purposes. Forty-six

patients (samples) are split via random subsampling [148] so that 30% of the samples are in

the test set. The spectra obtained for the remaining samples are used to train the predictive

model. The split is always the same for both single-session and multi-session models. Test set

accuracies of 1000 random models define a distribution of accuracy scores for multi-session

data. This distribution can be compared to accuracy results for models trained and tested on

four single sessions. However, four single sessions entries are not sufficient to make any strong

conclusion. In addition, there is a chance a single train and test split may be biased. To

eliminate these problems, we repeat the analysis for multiple (30) train–test splits. This lets

us calculate 120 accuracy scores for single session models (30 per one session) and compare

them to respective accuracy-score distributions defined by 1000 multi-session datasets. To

assess the benefit or loss of multi-session data, we compare the mean of their accuracy-score

distribution to accuracies achieved by single-session models. To assess the global benefit or

loss, we average the results over four different sessions.

5.3.2.3 Effect of multi-session data on generalization performance In the ’ideal’

analytical setup for proteomic profiling studies, a predictive model is trained and evaluated

on data from the same session. It experiences only within-session noise and does not account

for potential inter-session noise, should it be re-used for future prediction of profiles. How-

ever, in the practical setting of clinical screening, new samples may be processed on-the-fly,

each at a different time and therefore experiencing unanticipated amounts of inter-session

variability. Concerns about this inter-session reproducibility is related primarily to concerns

over generalizability of predictive models that are extracted from past data sessions to pro-

files obtained in the future. We will analyze this aspect of the problem by learning predictive

models that are tested on profiles from one target (test) session and trained on the profiles

from the remaining three (training) sessions and by comparing them to the ’ideal’ model

trained and tested on the profiles from the same session.

We perform this analysis as follows. A target (test) session is chosen from the available

four sessions. The remaining three sessions are used to train a (future) predictive model.
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Next, samples are divided via the random subsampling approach to training and testing

samples, such that 30% of the samples are in the test sample set. The remaining samples are

represented in the training sample set. Next, we generate 1000 multi-session training datasets

by assigning each patient in the training sample set a profile from one of its training sessions

and learn the models for each dataset. The models are tested on the test session samples

and their accuracies define the distribution of (future) test accuracy scores for mixed-session

data. The mean of the distribution is then compared to the accuracy achieved by the model

trained on the same session as the test session. To provide additional assurance we repeat

everything using 30 different train-test sample splits and average the results. This will let

us compare the average future performance of mixed-session models to the ’ideal’ model for

one test session. The global performance can be assessed by averaging the results for four

test sessions.

In our first comparison of (a) models trained on profiles from the three training sessions,

versus (b) an ’ideal’ model trained on profiles from the same session as the testing set,

we expect the ’ideal’ models to outperform the multi-session-trained models. Inter-session

variability is not present in the ideal model and is therefore expected to cause a loss of

performance. Our second aim is to compare models from group (a) versus (c) models trained

on profiles from a single session other than the target session. The objective is to determine

if predictive models trained on multi-session data can learn to adapt to inter-session noise

and hence improve their performance when compared to models learned on single sessions.

We repeat the setup in the previous experiment to estimate the distribution of accuracy

scores for the 1000 models trained on multi-session data. Accuracy scores are also obtained

from models trained on one of the three single sessions. The difference between the mean

accuracy of the multi-session models and single-session models are kept for a total of 3

differences. This process is repeated 40 times for each of the four target sessions. We repeat

the hypothesis test to determine if the mean of these differences differs significantly from

0. In the case where multi-session models have the same generalization performance as

single-session models, the mean of this distribution should not differ significantly from 0.
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5.3.3 Peak Labeling

A new computational approach for assigning protein labels to peaks in MS spectra is de-

scribed below. This method builds upon the information about the mass of a protein’s

sequence and prior knowledge of the expected abundance of that protein in the biospecimen.

The method starts from a list of protein species that may show up in the profile, along

with their masses and expected relative abundances in the biospecimen. The method then

attempts to match the proteins to peaks observed in the profile while fitting the recorded

mass and intensity characteristics of the peaks. Since the measurements in the MS profile

are noisy in both the mass and intensity dimension, it is not immediately clear what peaks

correspond to what protein species. To model this uncertainty we rely on a probabilistic

model that represents the distribution of measured masses and measured intensities for a

protein in the specimen.

The distinguishing characteristic of this peak-labeling approach is the inclusion of the

peak intensity aspect in the model. A previous approach to peak labeling relied solely on

information about mass of the protein species, more specifically the m/z ratio of peaks in

MS signals [136]. However, many different molecules can appear at the same location, and

choosing among them often results in an incorrect or nonsensical identification. Our im-

provement is to incorporate information about the expected relative abundances of proteins

in the sample. Therefore, the intensity aspect attempts to match labels to peaks based

on the expected relative abundance of the label’s peptide. For a reliable labeling, a label

must fit the criteria of a good match to the location and intensity aspect of the peak signal

simultaneously.

We believe our current development effort is particularly important for high-throughput

whole-sample proteomic profiling and its post-interpretive analysis. The term “whole-sample”

refers to methodologies which do not significantly deplete or fractionate samples prior to their

MS analysis.

5.3.3.1 Probabilistic Model A mass spectrometry profile consists of a series of peak

measurements. Our method assigns protein labels to these peaks. Each label uniquely
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identifies an ion species (charged molecule of a protein or peptide) believed to be responsible

for the peak. A probabilistic model and associated probabilistic score takes into account

expectations about where ion species may produce peaks in the MS spectrum, and how

intense they may be. The probabilistic score is optimized using a dynamic programming

algorithm.

MS profiles occur as a series of measurements in two dimensions. The mass-to-charge

(m/z ) ratio reflects the mass of the measured ion, and its corresponding intensity reflects the

number of ions measured at that m/z. Measurements in a close neighborhood may aggregate

to peaks. These peaks may represent an ion species in the sample, or noise due to various

sources. Typical MS profile analyses focus only on peaks selected from the profiles. Hence

our analysis focuses only on peak-based profiles.

We define an observed MS profile S by a set of peak measurements

S = {(x1, y1), (x2, y2), ..., (xn, yn)}

where xi denotes the m/z location of the ith peak measurement, and yi its corresponding

intensity. The peak’s m/z ratio reflects the mass of the measured ion species creating that

peak. The peak’s intensity reflects the number of ions measured at a m/z ratio and measures

(indirectly) the concentration of the species.

Our goal is to annotate peaks in the MS profiles with ion species labels. We approach

this task by associating peak measurements to labels. Let L = {l1, . . . , ld} denote a set of

labels for ion species we believe may be present in the profile. Each label l can be associated

with either: a peak measurement m = (x, y) appearing at m/z location x and intensity y,

or the m = null value denoting a situation in which l does not get a peak. We refer to

the collection of these label-to-peak assignments as a label-induced profile and denote

it as SL = {m1,m2, · · · ,md}. Figure 23 illustrates the idea, note that the label-induced

profile is only a subset of peaks of the original profile. Since MS profiles are noisy, one set of

species labels may lead to more than just one profile SL. We therefore define a probability

distribution P (SL) that reflects how probable each of these profiles is.

To model the relation between a label-induced profile and an observed profile, we assume

the observed profile S is generated from the labeled profile SL by adding additional peaks

to SL. These peaks may correspond to species not in L or to noisy measurements. Figure
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23 illustrates the relation between the two profiles. We assume the probability P (S|SL) is

uniform for every profile S consistent with SL and 0 for every inconsistent profile. The two

profiles S and SL are said to be consistent if every peak in SL is matched in terms of the

location and intensity.

5.3.3.2 Peak-labeling as an optimization problem Our goal is to find the labeling

that gives the best label-to-spectrum fit. In other words, we want to identify the best possible

label-induced profile S∗
L as supported by the observed profile S. In terms of a probabilistic

model, the problem can be cast naturally as the problem of finding a label-induced profile

SL with the highest posterior probability:

S∗
L =argmax

SL

P (SL|S) =argmax
SL

P (S|SL)P (SL)

P (S)
(5.2)

Since the denominator is common for all assignments, it is sufficient to optimize its

numerator:

S∗
L =argmax

SL

P (S|SL)P (SL) (5.3)

The first term represents the conditional probability of observing a spectrum S given the ion

species in SL. The second term is the prior probability of SL. For the sake of simplicity, we

assume that P (S|SL) is approximately equal for all consistent matches of S and SL. In such

a case, the optimization reduces to the problem of finding the profile SL that is consistent

with S and that maximizes P (SL):

S∗
L =argmax

SL

P (SL) such that SL is consistent with S (5.4)

A label-induced profile SL = {m1,m2, · · ·md} assigns peaks to labels in L. If no peak

is assigned to a label, a special ’null’ value is used. Consequently, the model of the prior

distribution for SL, P (SL), can be defined in terms of an auxiliary label-induced-indicator

profile ŜL = {u1, u2, · · ·ud} that determines whether or not each peak is assigned a label,

but does not give specifics of peak measurements. Correspondingly, the values of a random
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Figure 23: An interpretation of the probabilistic model. Top: the label-induced profile

relates ion species labels with peak measurements (thick lines) in the profile. Some labels

are not assigned to any peak (B and D are therefore struck out). Bottom: the observed

mass spectrum S is given by the label-induced profile SL plus additional noise and unlabeled

measurements (thin lines). c⃝2010 IEEE.
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variable ui are true or false for peak and ’null’ outcomes respectively. Since the label-induced-

indicator profile is fully determined by SL and does not introduce any new information1 we

can rewrite P (SL) as:

P (SL) = P (SL, ŜL) = P (SL|ŜL)P (ŜL),

where P (ŜL) is the probability of the labels in L being assigned to peaks or not and P (SL|ŜL)

defines the probability distribution of peaks with certain location and intensity characteristics

for all non-null assignments.

We define P (ŜL) by assuming that the probability of an individual label receiving a peak

is independent of other peaks:

P (ŜL) =
d∏

i=1

p(ui) (5.5)

where p(ui) is the probability of seeing or not seeing a peak for an ith label. This distribution

is defined in terms of a single parameter pi,0 that denotes the probability of the ith ion species

failing to appear as a peak in the label-induced spectrum.

To define P (SL|ŜL) we propose and analyze two models that differ on the peak informa-

tion incorporated into the model. The first model defines the distribution of label-induced

peaks only in terms of their location information and ignores peak intensity measurements.

The second model combines both the peak location and the peak intensity information to

define the distribution.

5.3.3.3 Peak-location aspect First, let us consider a model for P (SL|ŜL) that incor-

porates only information about location of ion species in L into the model. In this case, SL

can be redefined as vector of the x components of {m1, . . . ,md}. We denote this projection

as Sx
L.

Briefly, if an ion species is present we expect it to be observed in the vicinity located

around its m/z ratio. In other words, the closer the peak is to its expected m/z ratio, the

better its peak-label fit should be. We define the probability of a label-induced spectrum as:

1The only reason to introduce the auxiliary profile is to simplify the definition of the distribution of SL

that uses random variables with a hybrid (null or peak measurement) outcomes.
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P (Sx
L|ŜL) =

d∏
i=1

P (xi|ŜL) (5.6)

where P (xi|ŜL) is defined as:

• P (xi|ŜL) ∼ N(xi|µi, σi) if the peak for the ith label is among the observed peaks, that

is, ui = true

• P (xi = null|ŜL) = 1 if the peak for the ith label is not among observed peaks, that is,

ui = false

• P (xi|ŜL) = 0 for all other cases.

The parameter µi is the expected time-of-flight (TOF) position2 of the ion species corre-

sponding to the ith label. The standard deviation σi is set to reflect the amount of mass

inaccuracy expected for the ith ion species.

Combining the model with the model for P (ŜL) in equation 5.5, the probability of a

label-induced profile SL is:

P (SL) = P (Sx
L|ŜL)P (ŜL) =

d∏
i=1

P (xi|ui)P (ui) (5.7)

where

P (xi|ui)P (ui) ∼
N(xi|µi, σi)(1− pi,0) if ui = true

pi,0 if ui = false.
(5.8)

The advantage of the above model is that it decomposes along individual labels in L.

However, the decomposition comes with one limitation. It permits an out–of–order assign-

ment of labels to peak locations, that is, there is a non-zero probability that two labels with

expected m/z values µi > µj will switch their order in the label-induced profile. We do

not expect this situation to occur, although close paralogs may violate this order. To fix

the problem we keep the above decomposable model, but always enforce the m/z locations

of peaks to be order-consistent with the expected masses of their labels. If paralogs with

very close masses are present in the label database, their order will depend on the expected

masses of their labels.

2The TOF is approximately equal to the square root of the ion’s mass. Peak locations are converted to
TOF during calculations.
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The other advantage of the model is that parameters µi, σi and pi,0 restrict the range of

possible peak assignments to the ith label. Briefly, the ith label can be assigned a peak with

location x only if

pi,0 < (1− pi,0)
1√
2πσi

exp

(
−(x− µi)

2

2σi

)
If this condition is not satisfied, the null assignment is preferred to a peak at x. This is

important since only peaks close to the expected m/z value should be considered as potential

matches for ith label.

5.3.3.4 Location-based peak-labeling algorithm The main advantage of our peak-

location model is that the optimization of S∗
L can be carried out by a dynamic programming

procedure. The decomposability of the score and the fact that possible peak matches are

restricted by the parameters µi, σi and pi,0 lets us assign a peak to a label by only considering

peaks and labels in the close vicinity of its expected mass µi. This is a favorable environment

for dynamic programming.

The proposed dynamic programming procedure works as follows. First, the set of labels

are sorted according to their expected mass. Then, each label is visited in ascending order

of its expected mass. The label can be associated with one of the peaks in the feasible range

of the represented ion species (defined by its pi,0 and σi values), or with nothing (the ’null’

value). For each of these assignments, we calculate and keep its partial score and optimal

partial assignments to all previously scanned labels. If no peak is assigned to label i, pi,0 is

used. The process continues till all feasible peak-label pairs are examined and their scores

are assessed. The optimal peak-to-label pairing sequence is the output of the method.

5.3.3.5 Peak intensity aspect The optimization of the label-to-peak assignments above

was performed using the knowledge of the protein sequence and its mass. In addition, one

can obtain the information about the species expected concentrations in different types of

samples. The abundances of proteins and peptides in relation to each other can inform on

the proper assignments of labels to peak measurements in the profile.

We wish to incorporate information about protein and peptide relative abundance into

our peak-labeling procedure. We assume that measurements along either the location or
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Sort labels in ascending order based on expected mass.

for k ← 1 to d do
Compute a portion of S∗

L by aligning labels la, · · · , lb ∈ L and peaks

mp, · · · ,mq ∈ S which lie in a feasible window around label lk by maximizing

P (SL) through dynamic programming:

for i = 0 to b− 1 do

score(i, 0)⇐ pk,0 · i

end

for j = 0 to q − 1 do

score(0, j)⇐ pk,0 · j

end

for i = 1 to b do

for j = 1 to q do

P (SL(mk = xj))⇐ score(i− 1, j − 1) · P (xj|uk)P (uk = true)

P (SL(mk = null))⇐ score(i− 1, j) · pk,0
P (SL(mk = null))⇐ score(i, j − 1) · pk,0
score(i, j)⇐ max(P (SL(mk = xj)), P (SL(mk = null)))

end

end

end

return S∗
L

Algorithm 5: Location-based peak labeling
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intensity axis happens through independent mechanisms, and that the noise models for

these mechanisms appear to be unrelated. This allows us to decompose the probability of

observing the spectrum under a given assignment as:

P (SL) = P (SL|ŜL)P (ŜL) = =P (Sx
L|ŜL)P (S

y
L|ŜL)P (ŜL) (5.9)

We reuse the definition of the peak location aspect (from equation 5.6) for the first factor.

The second factor in the probability defines the peak intensity aspect. Our assumption is

that relative abundance of the ion species in the sample is reflected by their measured relative

intensities. Thus, the peak intensity aspect models the probability of peak intensities in SL

for all peak-to-label assignments. We define the intensity aspect of SL as the vector of

y-components of {m1, · · · ,md} and denote it as Sy
L. To model the relative abundance of

species that appear as peaks, we use the Dirichlet distribution:

P (Sy
L|ŜL) ∼ Dir(ỹ|α1, . . . , αd) ∼

Γ(Σd
i=1αi)∏d

i=1 Γ(αi)

d∏
i=1

ỹαi−1
i (5.10)

where ỹ = (ỹ1, . . . ỹd), such that ỹi = yi∑d
j=1 yj

is the intensity value for the measurement

assigned to the ith label, renormalized according to intensities of other peak candidates in

L. The parameters of the distribution {α1, . . . , αd} reflect the expected concentrations of d

proteins and their variance.

The primary purpose of incorporating both intensity and abundance information is to

resolve possible misassignment of peaks to labels. Consider two peaks that are in the region

of the MS profile in which we expect a higher abundance protein to occur. Figure 24 displays

an assignment of peaks to the labels for protein A and B. While A appears as the only peak

in the region around its expected position µA, there are many peaks around the expected

position µB of protein B. Because of spectral misalignment, the peak caused by protein B

may not be the closest peak to its expected location µB. However, we can correct for such

a problem by considering the relative abundance information. For example, if we expect

protein B to be about one fifth more abundant as protein A, even if the peak with a higher

intensity is further from the expected mass, the label may be reassigned to account for a

proper fit to expected concentration levels.
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Figure 24: An illustration of misassignment which is correctable by our procedure. Expected

positions of proteins are marked as µ, where the true identification of a peak is marked with

a capital letter. Abundance information can help to reach the correct assignment if we know

that protein B is one fifth more abundant as protein A. c⃝2010 IEEE.
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Note that the above Dirichlet distribution model factorizes over the individual intensities

if the normalizing constant
∑d

j=1 yj is known. In such a case, we would be able to couple

factors from the Dirichlet with factors in the peak position model (see previous section) and

optimize the two together locally within the dynamic programming scheme. Unfortunately,

the normalizing constant depends on peak-to-label assignments made over the complete

profile. This violates the assumption underlying the dynamic programming calculations, that

the probabilistic score can be calculated using only information from a partial assignment.

5.3.3.6 Enhanced peak-labeling algorithm To overcome this problem, we approxi-

mate the components used in the calculation of the normalization constant through a greedy

heuristic procedure. The procedure works as follows. First, the labels for ion species (pro-

teins) in L we expect to see in the profile are sorted according to their abundance. Following

this order, the label is assigned to the largest unlabeled peak in the region defined by its

expected mass µi, σi and pi,0. The fact that the largest peak is labeled corresponds to the

situation in which an ion species with the highest concentration claims the peak. The greedy

procedure does not optimize for combinations of assignments, but the hope is that it gives

a good initial assignment.

The heuristic assignment gives an initial set of peak-to-label assignments and it is used

to estimate the Dirichlet portion of the probabilistic score. Combining the location and

intensity aspects, the probabilistic score becomes:

P (Sx
L|ŜL)P (S

y
L|ŜL)P (ŜL) ∼ ∼ Γ(

d∑
i=1

αi)
d∏

i=1

ỹαi−1
i P (x|ŜL)

Γ(αi)
(5.11)

Given the initial heuristic peak-to-label assignment, the optimization of m∗ can be per-

formed using the same dynamic programming approach as outlined above. For each label, all

peak-to-label matches inside the feasible region of the current label are optimized and their

partial score is calculated. To obtain the Dirichlet portion of the score for each peak-to-label

match, the intensity components needed for its calculation are obtained from: (1) the partial

optimal assignment of peaks to labels already computed by the algorithm, or (2) the initial

heuristic peak-to-label assignment. Since some of the labels may be assigned the ’null’ value,
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the intensity of the null-assigned peak is set to equal the level of noise observed within its

feasible region.

Because of the initial heuristic intensity assignment, the dynamic programming procedure

may not lead to the optimal assignment in the first pass. To correct the heuristic assignment,

we run the algorithm multiple times so that a more refined initial intensity assignment is

used in the next step. The algorithm is run until no change in the global peak-to-label

assignment is observed.

5.3.3.7 Applying the Model The above model is a general framework for labeling

peaks. This accommodates for changes in the technology producing mass spectra, which

can differ greatly. In our experiments, we test our peak-labeling method on mass spectra

from both a simulated matrix-assisted and a surface-enhanced laser desorption/ionization

TOF spectrometer. Thus, we set the parameters of our method to appropriate settings for

time-of-flight mass spectrometry.

Measurements which contend for a label are obtained by selecting “peaks” from the

MS signals. While there are many ways to measure and select a “peak”, we take the

following approach [25] : We begin with a set of available data D = S1, S2, ..., Sk, con-

sisting of k spectrum signals. In the first step, a “mean” profile is created such that

Smean = (x1, (
∑

k y1k)/k), (x2, (
∑

k y2k)/k), ..., (xn, (
∑

k ynk)/k). This achieves a smoothing

effect which ensures only highly expressed and reproducible peaks become prominent. Next,

the local maxima of the mean profile are selected. Finally, a signal-to-noise filter is applied

to remove those peaks that lie close to the baseline. This results in the selection of peak

locations that appear to be highly reproducible.

Peak intensity correction Care should be taken when assigning intensities to peak

measurements. The intensities reported should reflect the number of measured molecules for

that peak to the best degree possible. If the intensities for all measurements are misrepre-

sented unintentionally, the assumed Dirichlet model may not fit well, and few peaks will be

labeled. The necessities for corrections depends on the accuracy with which intensities are

reported by the MS technology. For example, our matrix-assisted laser desorption/ionization

(MALDI) TOF MS simulator produces wider, shorter peaks for larger mass molecules. The
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Sort labels in ascending order based on expected sample abundance.

Perform the initial heuristic alignment:

for i = 1 . . . d do

Select all unassigned measurements in S feasibly located around µi.

Assign label li to the most intense of these peak measurements.

end

repeat

for k = 1 to d do
Compute a portion of S∗

L by aligning labels la, · · · , lb ∈ L and peaks

mp, · · · ,mq ∈ S which lie in a feasible window around label lk by maximizing

P (SL) through dynamic programming:

for i = 0 to b− 1 do

score(i, 0)⇐ pk,0 · i

end

for j = 0 to q − 1 do

score(0, j)⇐ pk,0 · j

end

for i = 1 to b do

for j = 1 to q do

P (SL(mk = mj))⇐ score(i− 1, j − 1) · Γ(
∑d

i=1 αi)
ỹ
αi−1
j P (xj |ŜL)

Γ(αi)

P (SL(mk = null))⇐ score(i− 1, j) · pk,0
P (SL(mk = null))⇐ score(i, j − 1) · pk,0
score(i, j)⇐ max(P (SL(mk = mj)), P (SL(mk = null)))

end

end

end

until no change in S∗
L

return S∗
L

Algorithm 6: Peak-labeling with abundance information
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areas under these peaks may be quite large, but the critical points of these peaks are much

lower.

Since we use the height of the critical point of a peak as its intensity, a correction is

necessitated. We do this by rescaling the value yj at the peak’s critical point. We assume that

peak measurement distributions follow a Gaussian distribution [1]. The standard deviation

of this distribution, σj, is used as an estimate of the spread of a molecule’s peak at m/z

position xj. We rescale the intensity yj of the peak by a factor of yj/cj ,where cj is the

value at the critical point of a normal distribution with mean 0 and standard deviation σj.

This results in a better estimate of intensities, and therefore a better fit to the empirical

abundance model used by the method.

Our procedure relies on a database of information about proteins which are expected or

may be found in a particular sample medium. While this data often comes from specialty

laboratories, efforts are underway to characterize popular sample types such as plasma [149],

urine [150] and saliva [151]. Using the available and appropriate references for the sample

medium in question, we select the most highly abundant proteins and collect information

about them. The result is a set of candidate labels for protein and peptide signatures in the

spectra.

We begin building the set of labels by connecting to databases such as ExPAsy3, UniProt4,

and the NCBI Entrez Protein database5. The amino acid sequences and molecular features

regarding the abundant peptide candidates found in the literature are retrieved. As an ex-

ample, figure 25 shows the relevant information obtained from Swiss-Prot about the Serum

Amyloid A (SAA) precursor protein, an abundant acute-phase reactant in human serum.

We use this information to compute the expected mass of a molecule of SAA. This is done

by adding the average isotopic masses of the amino acids in the given sequence, in addition

to the average isotopic mass of a single water molecule. A label with this expected mass is

added to the label database.

The location of a protein or peptide’s signature along the x-axis depends on its TOF

through the mass spectrometer. This is approximately equal to the square root of the

3http://www.expasy.org/
4http://www.uniprot.org/
5http://www.ncbi.nlm.nih.gov/Entrez/
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Serum Amyloid A Precursor (SAA HUMAN)

MKLLTGLVFC SLVLGVSSRS FFSFLGEAFD GARDMWRAYS DMREANYIGS DKYFHARGNY

DAAKRGPGGV WAAEAISDAR ENIQRFFGHG AEDSLADQAA NEWGRSGKDP NHFRPAGLPE KY

key from to length

SIGNAL 1 18 18 Signal peptide

MOD RES 101 101 1 N4,N4-dimethylasparagine (Probable).

Figure 25: Summary of information taken from the Swiss-Prot database on the Serum Amy-

loid A Precursor protein (Accession SAA HUMAN). The amino acid sequence, as well as 2

potential post-translational modifications and their positions of occurrence, are indicated.

c⃝2010 IEEE.

expected mass of the corresponding molecule. In the case of multiply-charged ions of the

given molecule, the m/z position of the singly-charged molecule is divided by the number of

(positive) charges expected.

In addition, information is given about post-translational modifications, which can change

the amino acid structure, and subsequently the mass, of the molecule. These include phe-

nomena such as glycosylation and phosphorylation. Potential, probable, and confirmed sites

for post-translational modifications are documented in the most popular protein and peptide

databases. In our example, SAA can undergo signal peptide cleavage, as well as a dimethy-

lation at residue 101. For each possible modification, the average weight of the modifying

molecule is added or subtracted as necessary to that of the original, unmodified molecule.

In the case of multiply-charged ions, the expected mass is divided by the amount of charges.

A new label with the modified mass is added to the label database. We avoid considering all

combinations of modifications by incorporating only a single modification per label. Figure

26 displays the resulting label list after processing SAA and its modifications.

5.3.3.8 Protein abundance It is unrealistic to believe that every ion species with a

specific molecular weight will be detected by the MS technology in use at its expected m/z

location. Moreover, multiple proteins or peptides can share a similar expected m/z position.

We augment our labeling procedure by including information about the relative abundance

of proteins or peptides in the sample. This is expected to be reflected in the spectra by the
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Ion Species Expected Mass/Charge Ratio (Daltons)

Serum Amyloid A 13532.02104

SP-cleaved Serum Amyloid A 11682.70064

Dimethylated, Serum Amyloid A 13560.07484

Serum Amyloid A +2H 6766.01052

Figure 26: List of candidate protein labels resulting from information collected about Serum

Amyloid A. The list includes the original precursor ion, post-signal-peptide cleavage, post-

dimethylation and post-double charge forms with their estimated mass/charge ratios. c⃝2010

IEEE.

intensity of the signal along the y-axis.

In an ’ideal’ measurement process, the relative abundances of molecules in the biospec-

imen should be evident in the intensities of peaks they produce in the spectrum [152]. For

example, consider a pair of peaks, with the first peak being twice as intense as the second.

In the best case, the first peak would be more likely generated by a molecule which was

twice as abundant in the biospecimen as the second peak’s molecule. However, many factors

indicate that abundances of molecules in the biospecimen are not truly reflected by intensi-

ties in resulting mass spectra [153]. Instead, the intensity of a protein or peptide’s signature

along the y-axis depends on the amount of molecules successfully ionized and detected by

the spectrometer.

Accurately quantifying the amount of each molecule measured in proteomic studies is

a complex and ongoing field of research. The emerging methods for protein quantitation

use stable isotope labeling [154] to differentiate between the proteins in two sets of sample

pools. One sample pool is marked with a heavier molecular tag and the difference is noted

in a shift of peaks along the x-axis equal to the weight of the tag. More recently, computa-

tional approaches have been developed for determining the relationship between the quantity

of molecules in a sample and the amount of signal generated by their presence [153, 155].

These methods generate prior expectations of how well a protein or peptide can be detected

based on its composition. Although these methods do not perfectly quantify the amounts

of proteins measured, their computational nature negates the cost of chemical reagents. A

key notion of these methods is that component peptides of proteins each have different de-
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tectabilities. This is important to know in standard protein identification, which fragments

proteins into their component peptides. In our alternative approach of peak labeling, pro-

teins are generally left intact. Thus their detectability is likely an aggregate function of

its component peptides. The determination of this function is not straightforward, but our

model incorporates this function as a parameter α. The abundance variation parameter α is

intended to represent the relationship between the content of a given ion species in a sample,

and the mass spectrometer’s observation of that ion species in terms of relative intensity.

Accurately expressing this relationship is an ongoing process. In light of the this uncertainty,

we make a number of limiting assumptions which facilitate the operation of our procedure.

We assume all molecules have an equal chance to ionize, and that their relative abun-

dances should be ideally reflected through any measurement technique at any level. Proteins

and peptides may exhibit ionization difficulty, which results in a weak or failed attempt to

quantify molecules that are present in the mixture. Previous work has addressed some of

the causes for this difficulty by determining the effect of a peptide’s physical and chemical

properties on its chance to be observed [153,155]. Incorporating this information into a finer

estimate for α is beyond the scope of this paper.

Second, we assume that proteins or peptides which experience modifications occur in

the same abundance as their original, unmodified form. We make this assumption because

there is little publicly available empirical evidence indicating how often modifications occur

under various experimental settings. An extension of this work, in which the occurrence of

modifications is estimated based on function of the protein or peptide, is under way.

Third, we assume that the abundances of proteins or peptides should be ideally reflected

through any measurement technique. Any measurement technique has the possibility of

favoring a particular class of molecules. We make this assumption to avoid generating our

expectations of abundance based on biased measurements. We wish to avoid particularities

about specific measurement technologies, each of which can be sensitive towards a particular

class of molecules.

Following these assumptions, it is only necessary to collect the relative abundances of

proteins from literature. For example, [149] gives a list of expected concentrations of these

proteins in human plasma. We use this information to obtain the expected relative abun-
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dance of the species in the sample and incorporate them to the probabilistic model. In the

absence of concentration bounds, we can estimate the concentration of a molecule as equal

to the weight of the sample divided by the mass of the molecule. This gives an upper bound

on the abundance of the molecule.

Figures 31 and 32 show that the values parameters take on greatly influence the per-

formance of the labeling method. Spectra produced by different machinery or experimental

design will likely require different parameters for a labeling to be successful. Whenever pos-

sible, values for parameters should be chosen carefully with prior knowledge. In the absence

of prior knowledge, a parameter search can be done by measuring the success of the labeling

procedure on spectra from a known protein mixture, while varying the values of parameters.

Each peak position in the analyzed spectra may be assigned its own location variation

parameter, σi. This parameter should be set to reflect the reported mass accuracy at the m/z

position of the ith peak for the MS instrument used to produce the data. For the Ciphergen

PBSIIc MS instrument, this value was 0.2% of the expected mass. For the simulated data,

the mass accuracy was unknown, but constant across all peaks. Thus, all σi parameters had

the same value, and multiple evaluations were performed while varying this value.

Each peak position in the analyzed spectra may also be assigned its own intensity vari-

ation parameter, αi. This parameter should be set to reflect the expected variation in the

intensity of the ith peak for the MS instrument used to produce the data. In both the simu-

lated and real data, there was no way to accurately measure the variation in intensity, as the

amount of ions presented for measurement is never absolutely known. In our experiments,

we set αi to be equal to the expected relative concentration of the ith molecule in the sample.

These parameters are scaled so that the standard deviation of each variable is 10% of their

expected values. Although we did not vary these parameters during our experiments, this

can be done in an attempt to achieve a better labeling.

Each peak position in the analyzed spectra may also be assigned its own reliability pa-

rameter, pi,0. This parameter should be set to reflect the expectation that the ith molecule

generates a detectable peak in the MS signal. In experiments where affinity surfaces selec-

tively bind molecules for analysis, molecules which should not bind should have their pi,0

parameter set to reflect the probability with which they will remain in the analysis. In both
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our simulated and real experiments, we set these parameters to a single value p0. In the

simulated experiments, this parameter was varied slightly over a range of values. With the

SELDI-TOF data, p0 was set to 0.05 to reflect a 5% chance that molecules in the peak

database do not register as peaks in the MS signal. This value was determined by assuming

a 1% chance of a peak not appearing on either tail of the distribution, and 3% to reflect

imperfections in the peak detection procedure.

5.4 EXPERIMENTS AND RESULTS

The following sections deploy the methods proposed above, which aid the interpretation of

MS proteomic data analysis results in varying ways. The amount of work into each method

necessarily varies. PACE is a general technique which could be applied to any dataset. The

next section demonstrates its application towards validating the strength of the classifiers

learned on the 3 Vanderbilt Lung SPORE datasets in Chapters 3 and 4. However, for the

peak labeling method, very little data exists which serves as a gold standard. Additionally,

few datasets exist where the samples are generated in multiple sessions, so it is difficult to

do a thorough validation of the reproducibility measures. Nevertheless, some results on the

multisession UPCI Lung Cancer dataset are presented below, as well as peak-labeling using

SELDI technology to identify calibrant proteins in human serum.

5.4.1 Case Study: Application of the PACE Technique to Lung SPORE datasets

Up until this point, we have performed many experiments resulting in good predictive models

on the Vanderbilt Lung SPORE datasets. We can use the PACE technique to determine

whether or not these results occur simply by chance. Instead of ACE, let our permutation test

statistic instead be the average AUC of a predictive model on the SAP-processed Vanderbilt

Lung SPORE datasets. The predictive model will be the same as that reported in Table 3,

a ℓ1-norm regularized linear SVM. The labels are permuted 1000 times for every one of the

40 train/test splits.
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Figure 27 shows the estimated permutation distributions for the Vanderbilt IMAC, WCX

and MALDI Lung SPORE datasets, from left to right, respectively. The AUC achieved by

our predictive model under the true labeling is marked with a small red cross. Note that

the cross lies well outside the distribution, visually confirming significance. Statistically, this

result is significant at the α = 0.001 threshold, meaning it would be very difficult to accept

the null hypothesis that the results achieved in Chapter 3 were obtained by chance alone.

This gives us assurance that our predictive model is valid.

5.4.2 Case Study: Application of Reproducibility Measures to Lung Cancer

Serum Spectra

5.4.2.1 Signal reproducibility We first examined whether proteomic spectra are re-

producible across multiple sessions. We used the random regrouping test described in Section

5.3.2.1 to evaluate whether the signals from the same sample were more similar than signals

from randomly chosen sample sets. Since we expect to find differences between case and

control samples, this score was evaluated separately on respective subgroups of case and

control spectra.

The histogram in figure 28 (left) indicates the average signal difference score for the 21

cancer patients across all 4 sessions. A distribution of 1000 averages of 21 signal difference

scores for randomly selected quadruplets of spectra is plotted as a reference. The score for

the replicate spectra falls outside of the score distribution for randomly grouped spectra.

A similar phenomenon occurs with the control samples. Furthermore, we can assess the

reproducibility of signal difference over a small region of the profile. The right panel of

figure 28 displays the distribution of signal difference scores for the peak region at 8228 Da.

There is less difference in the peak among profiles from the same sample than from profiles

randomly assigned to a sample. There is a statistically significant difference between the

signal difference scores obtained from true and random replicates, at both the global and

local (peak) signal level. This assures us that profiles from the same sample do not exhibit so

much difference that they can be easily confused with profiles from a different sample. This

encouraging result emphasizes the reproducibility of proteomic profiles at the signal level.
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5.4.2.2 Reproducibility of discriminative features We use the randomization frame-

work from section 5.3.2.2 to determine whether differential expression scores obtained from

mixed session data differ on average from the differential expression mined from single session

datasets. These differences may assess the benefit or loss due to mixed-session analysis.

Figure 29 (left) displays the empirical distribution of differential expression scores for

multi-session data of one prominent peak in the spectra. The distribution was obtained

from 1000 random datasets such that each patient was randomly assigned a profile from one

of the four sessions. The four marks indicate the differential expression scores obtained for

profiles in four individual sessions.

We next determined the significance of these differences. To determine the amount of

noise experienced over a range of features, we similarly analyzed the top 100 differentially

expressed peak regions in the profiles. The mean was calculated for every feature’s differential

expression score distribution, as well as the score of the feature in the four single sessions.

These four scores were subtracted from the mean and kept for each feature, resulting in a

distribution of 400 differences. Figure 29 (middle) displays this distribution. If single session

scores were biased (that is, better scores are produced by the single session analysis) we

would expect to see the mean of this distribution to differ significantly from 0. In other

words, we would expect to reject (at some significance level) the null hypothesis: the mean

of differences is ≥ 0. Indeed, the mean of the distribution of differences was −0.0351, giving

a p-value of 5.588 × 10−8 for the one-sided t-test, which leads to the rejection of the null

hypothesis. Hence the amount of differential expression in single sessions appears to be

better on average than in mixed-sessions. This shows that inter-session variability affects

the measured differential information.

We expect this negative result to affect the performance (accuracy) of predictive models

trained on multi-session data. The question is how big the effect really is. Earlier research

studies considered it most ideal to learn from and evaluate their predictive models on data

from a single session. We therefore compare the differences in accuracy between models

trained on multi-session data versus models trained on single-session data.

Following the methods in section 5.3.2.2, we analyzed the accuracy of multi-session mod-

els versus single-session predictive models. Figure 29 (right) displays the distribution of
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differences between mean accuracies of multi-session and single-session predictive models. If

better accuracies are achieved by predictive models for single-session data, we would expect

to see the mean of this distribution to be below 0. Indeed, the mean of the distribution of

differences was −0.0267 which once again indicates a loss that can be explained by additional

inter-session variability. To confirm the difference we used a repeated resampling experiment

proposed by [156], estimating the 95% confidence interval around the mean of differences to

be −0.0267± 0.0001. This experiment confirmed that this difference is indeed significant.

On average, there is about a 2.7% drop in accuracy when using multi-session data,

demonstrating a relatively small (average) loss of reproducibility of multivariate discrim-

inative patterns across multiple sessions. One should understand that this is an average

assessment; the performance of an individual classifier may vary from session to session and

also depends on how profiles from multiple sessions are mixed.

5.4.2.3 Generalization Performance Finally, we want to determine the effect the

multi-session training has on predictive models which must generalize well to future, unseen

profiles and sessions. The previous result demonstrates that intersession noise exists, but

does not seem to greatly affect the performance of predictive models on average. However,

the analysis used each session and did not try to assess the performance on future sessions.

We use the methods in section 5.3.2.3 to analyze whether training predictive models on multi-

session data generalizes well to profiles in future sessions and compare the performance of

these models to ’ideal’ predictive models trained and tested on single session data.

Figure 30 (left) displays a distribution of accuracy differences between the average of 1000

predictive models built from random multi-session training data and models trained on data

that came from the session on which the model was tested. The mean of the distribution is

−0.0231 which quantifies an overall average generalization accuracy loss one may expect to

see by training the model on the mixed session data as opposed to the accuracy of the ’ideal’

model. We analyzed the difference using an additional resampling test [156] to compute the

95% confidence interval of the mean. The result of the mean falling within −0.0286±0.0001

confirmed the difference is statistically significantly different. However, in terms of absolute

numbers the accuracy loss with respect to the ideal model is not bad.
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In a practical setting such as clinical screening, the training data will certainly not come

from the same session as the testing session. This eliminates the possibility of having an

’ideal’ predictive model. We repeated the previous experiment by examining the differences

between the multi-session models and models trained on profiles from a single session other

than the target session. The difference from the previous experiment is that the single-

session models lose the advantage of the ’ideal’ environment. Inter-session noise must now

be accommodated by both the multi-session and single-session-trained models.

Figure 30 (right) displays a distribution of accuracy differences between the average of

1000 predictive models trained on multi-session data and models trained on the remaining

single sessions. The mean and 95% confidence interval of this distribution falls above 0

(= 0.0289 ± 0.0001), indicating a benefit of training on multi-session data. The confidence

interval is again computed using the repeated resampling test [156], which confirmed the

difference to be statistically significantly different. This result illustrates how training on

multi-session data can allow the model to adapt to inter-session noise. The better a predictive

model can adapt to inter-session noise, the more reproducible the performance will be on

future data.

5.4.3 Case Study: Application of Peak Labeling

Experiments with our peak-labeling method were conducted in two phases. First, we tested

the method on data simulated from a virtual MALDI-TOF mass spectrometer [1]. Second,

we have made preliminary validation of the procedure on real biological data for human

sera. Information about 94 high-abundance proteins (their expected mass and abundance)

in serum was collected from online protein databases and from the literature [149,157]. The

resulting collection was used as the label database throughout our experiments.

5.4.3.1 Phase 1: Labeling simulated data A set of 100 simulated spectra was gener-

ated with 16 controlled spiked-in peptides. The relative concentrations of these peptides were

chosen arbitrarily and retained as information to be used by the identification procedure.

Our task is to label peaks in the spectra correctly (true positive), while avoiding labeling
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peaks which may appear as a result of noise (false positive). While Receiver Operator Char-

acteristic (ROC) curves can be used to measure this tradeoff, the skew in number of true

positives (16) versus number of potential false positives (> 300) can lead to a misrepresen-

tation of performance. Instead, we evaluate our peak labeling method using precision-recall

(PR) curves [158], which are used in Information Retrieval tasks where a skew exists in the

numbers of true positives and potential false positives. In our task, precision refers to the

fraction of label-assigned peaks which are matched to the correct label, while recall refers

to the fraction of the 16 labels which were correctly assigned to a peak. Each of the 100

spectra were labeled, and performance statistics were averaged over the dataset.

We have tested two versions of our peak-labeling method: a baseline version that relies

only on the expected mass of the species and our improved version that combines the knowl-

edge of the expected mass together with their abundance information. The objective was to

show that the inclusion of the abundance information improves the identification accuracy

of the procedure.

We evaluated both our baseline method and the abundance-enhanced method over a

broad range of detection conditions. These were controlled by varying the location variation

parameter, σ, and the reliability parameter, p0. In the baseline method, we observed a

dramatic effect of varying p0, which uses only peak location information. A higher value of

p0 heavily discourages a label if the location of a peak is far from the expected mass of a

molecule. This results in a conservative labeling beyond p0 ≈ 0.5. The probability of peaks

not occurring begins to outweigh all but the closest location-based matches. Thus, few if

any peak-to-label matches are made beyond this point, resulting in recall and precision close

to 0. As the location variation parameter σ grows, there is a slight gain in recall at a cost

of precision. By providing a larger window for consideration of peak labels, the method can

freely choose labels which may have been further away from their expected mass locations.

However, if a close location match has already been found, increasing the window size does

not help our method choose the correct label. Thus, the improvement in performance is very

minimal when varying σ.

We sought improvements in precision and recall from the abundance-enhanced method.

For our experiments, we set the relative abundance variation parameters to reflect the con-
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centration used as input to the simulator. Peptides not involved in the process were set

to have an abundance attributed to “noise”. This was calculated as 1/100 of the smallest

spiked-in peptide abundance. The remaining parameters σ and p0 were varied as before.

In comparison to the previous case, which used only location information, the abundance-

enhanced method showed a large improvement in precision. Figure 31 compares the variation

in precision and recall for both the baseline and abundance-enhanced methods when varying

p0 and fixing σ = 0.05.

The importance of p0 in the relative abundance-enhanced method is downplayed due to

the need to fit labels to appropriately sized peaks. Only a handful of labels will ever match

a peak by both location and relative abundance. A correct match is either hit-or-miss, and

only a value of p0 = 1 causes the recall and precision to drop to 0. The result is relatively

stable behavior of precision and recall as p0 is varied. As seen in the previous case, varying

σ results in an improvement of recall in exchange for lost precision. However, the precision

obtained at most parameter settings are much better than under any parameter configuration

examined using the previous method. This results in much better parameter configurations

than can be achieved without including abundance information. The abundance-enhanced

method can therefore outperform the method using only peak information.

To quantify the improvement of the method, we use the F -measure [159], the harmonic

mean of precision and recall. The maximum F -measure obtained by the method using only

peak information was 0.5226, versus 0.6667 when including relative abundance information.

As an additional performance metric, the area under the method’s PR curves (AUC) can

be measured [158]. Figure 32 compares the PR curves for both versions of the labeling

method. The PR curve for the peak-location method is completely dominated by the PR

curve for the abundance-enhanced method. The AUC for the peak location method is 0.5782,

while the abundance-enhanced method achieves an AUC of 0.7387. These results show the

contribution of relative abundance information greatly improves the method.

5.4.3.2 Phase 2: Labeling spiked-in human serum We next applied the abundance-

augmented procedure to labeling of whole-sample human serum profiles with and without an

added protein calibration mixture. All mass spectra were produced using a Ciphergen PBS
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IIc SELDI-TOF mass spectrometer (Ciphergen Biosystems, Inc). Figure 33 displays average

spectra of the calibration mixture (top), human serum sample (center), and combination of

the “spiked-in” calibrant and serum sample (bottom). The calibrant contains an equimolar

concentration of horse proteins equine cytochrome C and equine myoglobin. We estimate

that serum proteins occur in 250-1000 fold excess of the calibrant. The peaks from the

calibrant are absent in the serum profile due to their non-human nature. They are, however,

visible in the calibrant/serum mix.

Our objective was to correctly label peaks of equine cytochrome C and equine myoglobin

in the human serum-calibrant mixture, while avoiding these labels when the calibrant is

not present in the serum. The label database of 94 highly abundant serum proteins was

augmented with information about equine cytochrome C (GenBank accession P00004) and

equine myoglobin (GenBank accession P68082). Parameters of the procedure were set as

follows. The location variation parameter σ was set according to the reported mass accuracy

of the Ciphergen PBS IIc instrumentation (0.2% of the molecular mass [27]). The relative

abundance variation parameters α1 . . . αd used for the abundance component were set using

the expected concentrations of the proteins represented in the label database, such that the

expected value is equal to the expected concentration and standard deviation of each variable

is 10% of its expected value. The reliability parameter p0 was set to 0.05 to reflect a 5%

chance that a molecule does not create a peak.

The peak-labeling procedure was first applied to the “spiked-in” spectra. Figure 34

displays the successful labeling of equine myoglobin, as well as the distinction between similar

compounds from different organisms. The assignment of equine myoglobin is made possible

through information about its abundance and location, which properly distinguishes it from

other labels. Figure 35 displays the proper identification of equine cytochrome c among

other regional peaks. In this mixture of peaks, one is detected at the expected location of

equine cytochrome C. Since the peaks in the area have similar abundance, the procedure uses

locational information to influence the final labeling. The label displays that the cytochrome

C molecule (11702 Da) exhibits an added acetyl group (42 Da) and heme group (616 Da),

bringing the total weight to 12360 Da.

In the second experiment, we applied the procedure to spectra containing only human
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serum. Knowing that the calibrant is not present, we could a priori exclude the mixture

components from the set of protein labels. However, to test the robustness of the procedure,

we assumed the calibrant components are present at the same concentrations as in the spiked-

in spectra. Figures 36 and 37 display the result of the labeling procedure on the serum-only

profile. The procedure does not label any peak as equine myoglobin or equine cytochrome C,

even though the opportunities exist; a peak is detected in the vicinity of equine myoglobin’s

expected mass. However, the probability of assignment to the “null” value outweighs the

probability of assigning it to a protein label. In particular, the intensity observed is too

low to fit the expected concentration well enough to outweigh assigning the peak to the

“null” value. In the case of cytochrome C, no peak is detected in the vicinity of the target.

Surrounding peaks which fall into the feasible region are assigned to the “null” value, due

to a lack of labels which can fit these peaks.

It is certain that these peaks are correctly identified. Few peaks are expected to appear

in the calibrant serum. Due to their nonhuman nature, they appear at places which do

not seem reproducible in the serum-only analysis. This is clearly observed through addition

of the calibrant to whole serum. Finally, the noticeable appearance of the peaks in the

“spiked-in” serum lead to the possibility of a highly-abundant peptide. Although there are

competing proteins for the spiked-in peaks besides equine cytochrome C and myoglobin, our

probabilistic model is able to match them correctly. These results are promising and support

further exploration.

In both experiments, we were aware of which proteins needed to be labeled, and whether

the labeling was correct. The selection of parameters varies the performance of the method

greatly, and in this case we are able to choose the parameters which yield the best perfor-

mance. In new data, where the true peak identities are not known, it is unclear how to

choose the parameters to achieve the best result. While the location variation parameter

σ can be set to the expected mass accuracy of the particular instrument, the optimal or

close-to-the-optimal setting of the reliability parameter p0 remains an open question. If a

calibration serum is processed along with the data, a parameter search can be performed to

optimize the method to the data produced by the machinery. The parameter which results

in the best labeling of the calibration serum can be used in further analysis of data coming
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from the same experimental setup.
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Figure 27: PACE distributions for Vanderbilt Lung SPORE data. Left panel: IMAC. Center

panel: WCX. Right panel: MALDI. All three results under the true labeling (red cross) are

significant at α = 0.001 with respect to the null hypothesis distributions.
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Figure 28: Distributions of signal difference scores for random groupings of profiles for

case samples. The left panel displays signal difference scores taken over the entire range

of the signal, while the right panel displays signal difference for a single feature at 8228

Da. The signal difference score for the true replicate spectra is plotted as a dot along

the x-axis. The signal difference among the true replicates is much less than any observed

signal difference among randomly grouped profiles. This indicates that the observed greater

similarity between replications of the same sample is much less likely to be due to random

effects.
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Figure 29: Left panel: Distribution of differential expression scores under random regroup-

ings of profiles for the peak region at 12.938 kDa. The differential expression score for the

peak in each of the 4 individual sessions is plotted as a dot along the x-axis. Middle panel:

distribution of differences between the mean of mixed-session Fisher score distributions and

single session Fisher scores for 100 peak regions. The distribution has a mean of -0.0351

and p-value of 5.588 × 10−8 for the null hypothesis: the mean is equal to 0. Right panel:

distribution of differences between the mean accuracies of models trained on multi-session

data and accuracies of models trained on single-session data. The mean of this distribution

falls below 0 ( = -0.0267), indicating an on-average benefit of training from single-session

data.
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Figure 30: Left panel: distribution of accuracy differences between predictive models trained

on multi-session data and models ideally trained on data from the same single session as the

target test session. The mean below 0 (= -0.0286) indicates an advantage of the ideally

trained single-session models. Right panel: distribution of accuracy differences between the

same predictive models trained on multi-session data and models trained on single-session

data from sessions other than the target testing set. The mean above 0 (= 0.0289) indicates

an advantage of training on multi-session data. This illustrates the ability of predictive

models trained on multi-session data to adapt to inter-session noise.
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Figure 31: Performance variation at σ = 0.05 for the baseline peak-location method and the

relative abundance-enhanced method. Recall (top) and precision (bottom) are plotted as

a function of the reliability parameter p0. As p0 increases, both precision and recall of the

peak-location method shrink as the requirement for close location-based matches becomes

more strict. However, the importance of this parameter is noticeably downplayed in the

relative abundance-enhanced method. Since fewer possibilities exist for the method to find

peaks which are both appropriately positioned and sized, labelings and their performance and

recall remain relatively stable. A significant gain in precision can be seen in the abundance-

enhanced method, indicating fewer false positive peak-to-label matches. c⃝2010 IEEE.
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Figure 32: Comparison of Precision-Recall curves for both peak-labeling methods. The

abundance-enhanced labeling method (thick solid line) improves over the method which

uses only peak location information (thin dashed line). The areas under these curves were

measured as 0.7387 for the abundance-enhanced method, versus 0.5782 for the basic peak

location method. c⃝2010 IEEE.
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Figure 33: Calibrant spiked into whole serum sample. Top: Calibrant mixture shot alone.

Center: Whole serum sample shot alone. Bottom: Whole serum sample spiked with cali-

brant. The spiked-in peaks are marked, and correspond to cytochrome C (12.360 kDa) and

myoglobin (16.591 kDa) from the calibrant (also marked). c⃝2010 IEEE.
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Figure 34: labeled peaks of serum-calibrant mixture in the range of [16500 17500] Da. The

spiked-in peak at 16947 Da is correctly labeled as equine myoglobin. The second peak labeled

myoglobin at 17131 Da corresponds to human myoglobin, which has a similar mass weight

(17184 Da). The unlabeled peak positions could not be confidently assigned a label. c⃝2010

IEEE.
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Figure 35: labeled peaks of serum-calibrant mixture in the range of [12000 13000] Da. The

spiked-in peak at 12359 Da is correctly labeled as equine cytochrome C. The unlabeled peak

positions could not be confidently assigned a label. c⃝2010 IEEE.
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Figure 36: labeled peaks of whole human serum in the range of [16500 17500] Da. The peak

at 17128 Da labeled myoglobin corresponds to human myoglobin, which has a similar mass

weight (17184 Da). The unlabeled peak positions could not be confidently assigned a label.

Although a peak is available at the expected mass weight of equine myoglobin (16947 Da),

the intensity is too low to allow a confident decision. c⃝2010 IEEE.
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Figure 37: labeled peaks of whole human serum in the range of [12000 13000] Da. The

unlabeled peak positions could not be confidently assigned a label. Although many peaks

appear within the feasible range of equine cytochrome C (12360 Da), none are labeled as

such due to extreme differences in location. c⃝2010 IEEE.
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6.0 CONCLUSIONS

The ability to quickly, cheaply and noninvasively assess the health of a person is of great

clinical importance. Mass spectrometry protein profiling is a method which shows promise

in these directions. Discriminative signals can be found in order to predict healthy samples

from a variety of complex diseases. Mass spectrometry, along with existing and emerging

high-throughput technologies, faces a number of challenges which necessitate techniques that

enable useful analysis and understanding of the data. Overall, the methods presented in this

thesis contribute to a framework which improves the analysis of mass spectrometry protein

profiling. The primary contributions of this thesis are briefly summarized below.

• Automatic Selection of Preprocessing Methods — Chapter 3 introduced and evaluated

our novel approach to preprocessing MS protein profile data: the Standard Automatic

Preprocessing procedure (SAP). To my knowledge, SAP is the first system which at-

tempts to optimize the preprocessing of TOF-MS protein profile data by choosing among

multiple preprocessing methods for each stage of preprocessing. SAP is competitive with

a heavily-customized baseline preprocessing procedure we developed. When the baseline

procedure has a negative impact on downstream predictive model performance, SAP is

able to outperform the baseline procedure. The SAP procedure also demonstrates some

unique characteristics which may allow it to inform a user on what preprocessing meth-

ods are best suited to a particular data source. For example, in the context of variance

stabilization, SAP prefers to apply the Log-transformation to MALDI data, while the

Cube-Root transformation is preferred by the SELDI data sources.

• Parallel decorrelation feature selection — Section 4.3.1 introduced the novel Parallel

MAC Decorrelating feature selection method. In our experiments, we saw that the
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MS protein profiling data sources are normally biased by an extremely high amount of

correlations. These correlates need to be addressed directly by the feature selection or

predictive modeling process, or through a combination of both. Our experiments showed

that, on average, feature selection methods which take these correlations into account

result in a better predictive model performance than methods which rank features in a

multivariate or univariate way.

• Evaluation of kernel-learning approaches — Section 4.4.2 evaluated three kernel-learning

approaches to determine whether or not kernel learning would impart a benefit to SVM-

based predictive models versus the standard linear kernel. The experiments suggest that

kernel learning is not preferable to a linear kernel with ℓ-1 regularization. Despite this,

the calibrated probabilities of the hyperkernel are quite good, and future work could

potentially tap this advantage.

• Pathway kernel — Section 4.3.6 describes the Pathway kernel, a kernel function which

attempts to capture information about regulatory biological processes observable in MS

protein profiles. The TOF-MS data source is not the best suited for use with the approach

described for computing the kernel in Section 4.3.6. This is largely due to error in the

translation process from gene interaction networks to feature mappings in the proteomic

profiles. Newer technology with better annotations, and additional resources like EPO-

KB [160] can help to reduce the amount of error in this translation process.

• A method for assessing the statistical significance of a predictive model’s performance —

Many high-throughput data sources suffer from too many dimensions and too few sam-

ples. MS protein profiling data are no different. The risk of achieving a good predictive

performance just by chance increases especially with smaller numbers of samples, which

is unavoidable especially with rare diseases. Section 5.4.1 demonstrates Permutation-

Achieved Classification Error (PACE), a novel method for assessing the statistical sig-

nificance of a predictive model’s performance. PACE can be used to test whether a

predictive model’s power is more likely to be due to spurious patterns in the data. The

experiments show that our predictive models frequently find discriminative information

that is very unlikely to be due to random chance, suggesting that genuine surrogate

biomarkers can be recovered from protein profiling data.
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• Measures of reproducibility — The sensitivity of many high-throughput data sources,

including MS protein profiling, can detect minute differences in replications of the same

sample. Since proteins can change over time, a sample recovered from storage may

generate a different protein profile. Section 5.3.2 introduced several measures of repro-

ducibility which help the interpretive analysis of MS profile data generated over multiple

time sessions, and possibly on different laboratory equipment. The experiments show

that protein profiles retain their individuality over multiple sessions despite the effect of

noise over time. We also showed that including profiles from multiple data generation

sessions can improve the generalizability of predictive models on future profiles.

• Algorithms for peak labeling of molecular species in TOF-MS data — Section 5.4.3 in-

troduced novel algorithms for labeling profile peak features with biological peptide iden-

tifiers. In experiments, we showed that a probabilistic model taking advantage of prior

knowledge about protein abundance has enhanced precision and recall for labeling peaks

in simulated data. The enhanced probabilistic model was also successful in selectively

labeling calibrant peaks when spiked into a normal human serum sample.

• A simulator for MS protein profile data — Appendix A details a revision of a previously

described physical model of a TOF Mass Spectrometer [1]. The revision includes in-

structions for how to simulate realistic TOF-MS spectra, given a list of UniProt peptide

accession numbers. The simulator model’s parameters are adjustable to reflect a variety

of machinery types.

6.1 IMPACT ON BIOINFORMATICS DATA ANALYSIS

Many high-throughput data sources are very similar to MS protein profile data. Genomic

and metabolomic data merely change the type of biological element being measured by the

instrument. Variants of TOF-MS are currently being used to generate metabolomic data.

Therefore, many of the techniques presented in this thesis can be applied to other types of

bioinformatics data. In the following sections, I suggest some applications of these techniques

outside of protein profiling to demonstrate their wider applicability.
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6.1.1 Preprocessing of other “omic” datasets

Microarray data typically undergoes preprocessing much in the same vein as described in

Chapter 3 for protein profile data. Stages of microarray preprocessing include background

correction, normalization and summarization, which are analogs of MS protein profile pre-

processing’s baseline correction, normalization and smoothing stages. It has been shown in

previous research that the choice of the most appropriate preprocessing methods is largely

platform dependent [161,162] and not easy to automate [163]. As new technologies emerge,

significant effort is made to characterize noise sources and determine the optimal preprocess-

ing procedures for each individual technology [163–165].

Repurposing the SAP preprocessing framework for microarray data preprocessing could

assist the state-of-the-art efforts to automate and recommend appropriate preprocessing

procedures. Large databases of microarray data from a variety of technologies exist in

databases like the Stanford Microarray Database (SMD, [166]) or Gene Expression Omnibus

(GEO, [143]). This data could be fed to SAP in an effort to learn preferences for preprocessing

methods in relation to the originating data platform. In turn, efforts to characterize noise

sources in microarray and metabolomic data can help refine the local stagewise scores of

SAP to further improve the selection process.

Beyond “omic” data, image analysis is another subfield of biomedical informatics which

requires significant data preprocessing. Since image data can be relatively large to store and

transmit, lossless compression of the data is often required. Despite the compression, data

must continue to be useful for clinical diagnosis. This tradeoff has been previously noted and

studied [167], and presents yet another opportunity for the SAP framework to be applied.

Global and local scores would balance the tradeoff between diagnostic information loss and

storage size.

6.1.2 Feature Selection and Predictive Modeling Preferences

Feature selection remains an important topic for all high-throughput data sources, as the

dimensionality of data will continue to increase with improving technology. At the time

of this article, mass spectrometers like the Linear Trap Quadrupole-Orbitrap hybrid mass
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spectrometer (Thermo Electron, Bremen, Germany) exist which can identify molecules at 2

parts per million [168]. Further improvements are being made to mass spectrometers, and

the increasing resolution corresponds to higher data dimensionality. As isotopic distributions

of molecules begin to be elucidated, the number of correlated features in the data will also

increase. Correlation-aware techniques will be of utmost importance in order to perform

good feature selection on these future data.

The experiments in feature selection and predictive modeling, presented in Chapter 4,

have intuitive but important results. First, if our goal is to have the best classifier per-

formance, ranking features univariately is often not the best way to do feature selection.

Predictive models perform much better when their predictive features are considered in con-

junction with other, or previously selected, features. Next, a simple predictive model, like

the linear SVM, can frequently outperform predictive models based on more complicated

kernels. The savings over computing a more complicated kernel, in terms of computational

complexity, can be extremely beneficial. The choice of regularization penalty is also impor-

tant. It has been previously proven that ℓ1 regularization is effective even when the training

samples are outnumbered by exponentially many irrelevant features [169]. The results in

this thesis are consistent with this result.

6.1.3 Reproducibility of Results

All “omic” data sources are bound to suffer from reproducibility issues. Even those “omic”

data sources which may appear in the future will face questions about reproducibility. A

biological sample will degrade over time, no matter how strict and considerate the storage and

processing protocols are. The reproducibility measures and evaluation framework presented

in Chapter 5 are general enough to be adapted to any technology. This enables any “omic”

technology user to evaluate for themselves whether that technology can generate reproducible

and reliable data. This is a critical step for addressing the concerns about the applicability

of a certain technology in a practical setting.
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6.1.4 Next-Generation Genomic Sequencing

The advent of “next-generation sequencing” enables the rapid sequencing of genomes on a

cellular basis. This allows the genomes of tumor tissue cells to be compared to genomes

of cells from the tissue adjacent to, and distal from, the tumor. An emerging challenge

in this new area of bioinformatics is the discovery of driver versus passenger mutations,

both of which appear to be discriminative mutations between tumor and healthy tissue.

However, the driver mutations are thought to be causally implicated in tumor progression,

while passenger mutations are a result of chance or inconsequential errors during the cell

division process. Being able to classify these two types of mutations is therefore valuable for

driving further research.

The pathway kernel used in this thesis was an attempt to map genomic features to

protein profile information. Although it was not successful in this application, the general

technique could be applied to the analysis of driver/passenger mutation classification. Stan-

dard mutation classification approaches typically involve phenotypic, sequence-based and

structure-based features [170,171] of the resulting mutation, which are then fed to a predic-

tive model like the SVM. Efforts to attach these features to downstream interacting gene

“modules” is underway [172]. The modules differ primarily from classic pathways in that

modules represent a group, of which genes may not have a direct interaction. This gives us

the advantage of describing a driver mutation as being one that is present in any gene of a

module, and then interacting genes of the mutated gene may exhibit a disregulated pathway.

The obvious next step is to ask how these gene modules are affecting oncogenesis through

protein expression. In this application, the pathway kernel could be built around these new

gene modules and their resulting mutated proteins, instead of the gene pathways used in our

experiments.

As these driver mutations are thought to be among the first somatic changes in the

development of cancer, it may be useful to evaluate mutated gene module pathways to

classify early-stage cancer profiles versus normal profiles. To identify the modules which

are more likely to represent passenger mutations, the pathway kernel can be applied to

classify later-stage cancers versus healthy tissue. A comparison of the most relevant features
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for both of these analyses would be very revealing. Ideally, pathways and modules which

predict cancer will differ between the two studies. Those pathways or modules effective for

the early-versus-normal study, but less effective for the late-versus-normal study, could be

more likely influenced by driver mutations. Pathways or modules which only appear relevant

for the late-versus-normal study are probably more likely due to passenger mutations. In the

worst case, this technique could narrow down the vast number of mutations which require

driver/passenger classification.

6.2 OPEN QUESTIONS AND FUTURE WORK

The methods and results presented here raise a number of interesting open problems in

proteomic profiling analysis. Several directions, as discussed below, could be undertaken in

order to improve these methods further.

6.2.1 Tradeoff of the local and global scores in SAP

It is still unclear how to proportion the SP-curve’s weight to the global DE score versus the

local stagewise scores of each stage. In some cases, for example, the Heteroscedacity Reten-

tion score described in Section 3.2.1, it would be possible to estimate a weight by evaluating

several weight combinations and determine the average benefit to multiple datasets under

that weighting scheme. This could help to become a qualitative measure for the stagewise

score; as the weight estimation begins to lean more on the global metric, it probably means

that the local metric for that stage requires revision.

6.2.2 Class-sensitive Automatic Preprocessing

An improvement of Standard Automatic Preprocessing, which I call Class-sensitive Auto-

matic Preprocessing, takes the ideas in SAP one level further. Each stage defines a pair of

stagewise scores, one for features expected to be discriminative, and another for those which

are superfluous. The goal in each stage is to optimize the DE score and normal stagewise
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score only with respect to the discriminative features, while at the same time allowing the

non-discriminative features to also select their own preprocessing method. This allows dis-

criminative features to be preferentially treated and may improve the overall quality of the

signal resulting from preprocessing.

6.2.3 Method Parameterization Search for SAP

The amount of methods available to SAP for this paper were small, because each method

operated using default parameters. Ideally, SAP treats differently parameterized methods

(for example, a smoothing procedure with sliding window size of 24 features, instead of 12)

as competitors for a given stage. An automated grid search over a parameter space for

preprocessing methods might lead to better performance in some stages of preprocessing.

6.2.4 Combining feature selection with kernel learning

One of the better performing methods in this chapter is the linear SVMwith ℓ1-regularization,

combined with the parallel decorrelation algorithm. It remains to be seen whether any of the

kernel-learning methods can be improved upon if they go through feature selection. We saw

that the hyperkernel approach is able to give well-calibrated probabilities despite not being

accurate. It would be interesting to see whether we could improve the classification accu-

racy by performing feature selection, but retain the benefit of better calibrated probability

estimates.

184



APPENDIX A

SIMULATION OF TOF-MS DATA

The model proposed by Coombes et al. [1] describes a mathematical model for the simulation

of TOF-MS proteomic profiles. It is available for the S-Plus programming environment from

the authors’ website (http://bioinformatics.mdanderson.org/cromwell.html). The input to

the system is a set of parameters which govern the behavior of physical properties of molecules

and how they are propagated and detected by the mass spectrometer. Molecular weights can

be fed to the simulator to produce their resulting mass spectra. I was unable to reproduce

realistic spectra using this package directly, but using the derivations and methods below, I

was able to make an improvement on the simulator which does produce realistic spectra.

A.1 PARAMETERS OF THE MODEL

Figure 38 displays a general schematic of a mass spectrometer simulated by this model.

Let the parameters of the data simulator, as described by Coombes et al. in [1], be defined

as follows: L is the length of the drift tube. D1 is the distance from the sample plate

to the electric field, which is bounded at the front by the focusing grid. D2 is the width

of the electric field, which is bounded on the far end by the accelerating grid. The laser,

upon striking the sample, imparts a velocity v0 on a molecule from the distribution N(µ, σ).

Energized ions drift for delay time δ before reaching the electric field. Voltage V1 is then

applied to the sample plate, causing ions to be propelled into the electric field. The electric
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Figure 38: A general diagram of a mass spectrometer simulated by the Coombes et al. model.

(SP): sample plate, (FG): focusing grid, (AG): accelerating grid, (DE): detector plate.

field is charged with voltage V , which further increases the acceleration of ions. These ions

continue onward until they reach the detector. The amount of time during which the detector

is able to measure incoming particles (i.e. the resolution) is given as τ .

The default values of the parameters of the model, under both the implementation in [1]

and the implementation used in this thesis are given in Table 20.

A.2 DERIVATION OF TIME-OF-FLIGHT VALUES

Using the Time-of-Flight equations derived in [1], I was not able to reproduce protein pro-

files which looked realistic compared to genuine TOF-MS data from the available biological

datasets used in this work. I do believe the description in [1] is sound, but I am unable

to find the error myself, due to a lack of understanding of the physical laws used for their

derivation. Instead, I derived the equations for particles using the most fundamental laws
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Table 20: Simulator Parameters and Default Settings

Parameter Coombes et al. This work

D1 17e−3 17e−3

D2 8e−3 8e−3

L 1 1

V 20000 20000

V1 2000 2000

δ 600e−9 600e−9

τ 4e−9 4e−9

µ 350 350

σ 50 50

of classical physics. To my knowledge, the derivation below is a correct procedure for esti-

mating Time-of-Flight (TOF) values for molecules present in the sample. Please excuse my

incredibly simplified explanation, for the field of physics is not my area of expertise, and if

I make errors in assumption or otherwise, then I hope to facilitate their discovery by the

more advanced reader. I use the SI units of measurement, where possible, in the following

derivation.

Electric fields are measured in units of volts (V , electric potential) per meter (m, distance)

or newtons (F , force) per coulomb (electric charge). Let E represent an electric field and

z = 1.602e19 represent the elementary charge of one electron in coulombs. Therefore,

E =
V

m
=
F

z
(A.1)

From Newton’s Second Law of Motion, net force on a particle is equal to the mass (g,

grams, to prevent confusion with meters) of the particle times its acceleration a:

F = ga (A.2)
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Rewriting Equation A.2 results in the following:

F = zE

F =
zV

m

(A.3)

And therefore, the acceleration of a particle in a particular electric field will be given as:

a =
F

g

a =
zV

mg

(A.4)

Our goal is to calculate the time it takes for an ion to travel from the sample plate to the

detector. The linear distance d traveled by a particle with initial velocity v, under uniform,

constant acceleration a, is given as:

d = vt− 1

2
at2 (A.5)

This equation can be rewritten in terms of time by applying the quadratic formula.

t =
−v ±

√
v2 − 2a(d)

a
(A.6)

While negative terms can result from this equation, we are not interested in negative

times (these ions would not reach the detector).

We split up the calculation of the TOF values into three stages. First, there is the time

for the focusing phase, tf , which occurs from the ion’s location in the plume, x0 to the

position of the focusing grid of the electric field, D1. Next, for the accelerating phase, ta, we

consider the time taken from entering the electric field at D1 and leaving the electric field

at D2. Finally, the drift time td is calculated as the time taken to travel from D2 to the

detector, a distance of L.

The initial velocity v0 imparted on an ion is given stochastically by the distribution

N(µ, σ) every time an ion requires its TOF value calculated. The three flight times are

calculated using Equation A.2 as follows:
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tf =
−v0 +

√
v20 − 2af (D1 − x0)

af

where af =
zV1
D1g

(A.7)

The velocity of the ion at the end of the focusing phase, vt, will be equal to vt = tf∗af+v0.

ta =
−vf +

√
v2f − 2af (D1 − x0)

af

where aa =
zV

D2g

(A.8)

The velocity of the ion at the end of the acceleration phase, va, will be equal to va =

ta ∗ aa + vt.

In the drift phase, acceleration is assumed to be 0 (constant velocity). Therefore, to

prevent numerical error from dividing by 0, we use the relationship between distance, velocity

and time to compute td. Recalling that distance = rate * time:

td =
L

va
(A.9)

Finally, Time-of-Flight is calculated as δ+ tf + ta+ td. This procedure results in realistic

TOF-MS spectra.
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A.3 USING THE SIMULATOR TO GENERATE SPECTRA

My simulator takes as input, values for the parameters listed in Table 20, and a list of peptide

accession numbers corresponding to peptides which should appear in the mass spectra.

First, a sample amount S is defined in kilograms. This will be the total amount of

sample analyzed. I do not know what a reasonable setting is for this parameter. For most

experiments, I set S = 4e−16kg.

Next, each separate molecular species (peptide) to be analyzed in the sample is defined

by its primary amino acid peptide sequence. In my experiments, the primary sequence is

obtained from the UniProt database [10]. The expected mass of the peptide is computed as

the sum of the average isotopic masses of the amino acids in the given sequence, in addition

to the average isotopic mass of a single water molecule. Post-translational modifications

can also affect the peptide’s sequence, and these are taken into account when calculating

the peptide mass. Signal peptides from complete protein sequences are removed, and when

documented in the UniProt entry, the mass of a post-translational modifying molecule is

added to the peptide’s expected mass.

Each molecular species is assigned a relative proportion, which indicates how abundant

that molecular species is relative to other molecular species. Following this, I calculate

the number of possible molecules pm which can fit in the sample. This is calculated by

pm = S/mi, where mi is the mass of molecular species i. The simulator is used to calculate

TOF values using the equations above for each of the pm molecules. A quadratic relationship

is expected between TOF values and m/z, such that the TOF value squared approximates

the m/z value to a constant factor [173]. Let the ith row of matrix of A be ]1, TOFi, TOF
2
i ]

for all ions to be simulated in the spectra. Let bi = mi. The coefficients x for a least-squares

solution to the system of equations Ax = b are computed. Finally, TOF values are binned

according to the resolution τ of the mass spectrometer. These TOF values are then converted

to m/z values by multiplication with the coefficients x learned above. Naturally, the number

of TOF values entering that bin reflect the intensity measured at that particular m/z value.

The result is a spectrum consisting of detected m/z values and the amount of molecules

detected in that time bin, which corresponds to relative abundance.
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APPENDIX B

TABLES OF MATHEMATICAL FORMULAE

Table 23: Dataset Characterization Measures

Geometric mean = 1
d

∑d
i=1

[∏n
j=1 xi,j

]1/n
Harmonic mean = 1

d

∑d
i=1

n∑n
i=j(1/Xi)

Trim mean =

1
d

∑d
i=1(µiwith 20% highest and lowest percentiles removed fromxi)

Standard Deviation = 1
d

∑d
i=1

(
1

n−1
∑n

j=1(xi,j− 1
n

∑
xi,j)

)
Range = 1

d

∑d
i=1(max(xi)−min(xi))

Median = 1
d

∑d
i=1median(xi)

Interquartile Range = 1
d

∑d
i=1 75th percentile of xi - 25

th percentile of xi)

Maximum / Minimum Eigenvalue = Computed from sample covariance matrix

Skewness = 1
d

∑d
i=1

Ej(xi,j−µi)
3

σ3
i

Kurtosis = 1
d

∑d
i=1

Ej(xi,j−µi)
4

σ4
i

Correlation Coefficient = Avg correlation coefficient btwn all pairs

Z-score = 1
d

∑d
i=1

1
n

∑n
j=1

xi,j−µi

σi

Euclidean Distance = Avg dist. btwn all pairs (See table 21)

Mahalanobis Distance = Avg dist. btwn all pairs (See table 21)

Cityblock Distance =Avg dist. btwn all pairs (See table 21)

Chi-Squared PDF =x(v−2)/2e−x/2

2v/2Γ(v/2)
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Table 23: (continued)

Chi-Squared CDF =
∫ x

0
t(v−2)/2e−t/2

2v/2Γ(v/2)
dt

Normal PDF = 1
σ
√
2π
e−(x−µ)2/2σ2

Normal CDF = 1
σ
√
2π

∫ x

− inf
e−(x−µ)2/2σ2dt

Binomial PDF =
(
n
x

)
pxq(n−x)I0,1,...,n(x)

Discrete Uniform CDF = floor(x)
N

I0,1,...,n(x)

Exponential PDF = 1
u
ex/u

F PDF =
Γ
[
(ν1+ν2)

2

]
Γ( ν1

2 )Γ(
ν2
2 )

(
ν1
ν2

) ν1
2 x

ν1−2
2[

1+
(

v1
v2

)
x
] ν1+ν2

2

Gamma PDF = 1
baΓ(a)

xa−1ex/b

Geometric CDF =
∑floor(x)

i=0 rqi

Hypergeometric CDF =
∑x

i=0

(Ki )(
M−K
N−i )

(MN)

Lognormal PDF = 1
xσ

√
2π
e−(ln(x)−µ)2

2σ2

Poisson PDF = λx

x!
e−λI0,1,...,n(x)

Rayleigh PDF = bx/2e(−x2/2b2)

Student’s t PDF = Γ((v+1)/2)
Γ(v/2)

1√
vπ

1
(1+(x2/v))(v+1)/2
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Table 21: Examples of distance metrics for clustering.

Metric Formula

Euclidean distance d(r, s) = (xr − xs)(xr − xs)′

Standardized Euclidean distance d(r, s) = (xr − xs)trace(Σ)−1(xr − xs)′

Mahalanobis distance d(r, s) = (xr − xs)Σ−1(xr − xs)′

City Block metric d(r, s) =
∑n

j=1 |xrj − xsj|

Minkowski metric d(r, s) = p

√(∑n
j=1 |xrj − xsj|

p
)

Cosine distance d(r, s) =

(
1− xrx′

s√
x′
rxr

√
x′
sxs)

)

Correlation distance d(r, s) = 1− (xr−x̄r)(xs−x̄s)′√
(xr−x̄r)(xr−x̄r)′

√
(xs−x̄s)(xs−x̄s)′

Hamming distance d(r, s) =
#(xrj ̸=xsj)

n

Jaccard distance d(r, s) =
#[(xrj ̸=xsj)∧((xrj ̸=0)∨(xsj ̸=0))]

#[(xrj ̸=0)∨(xsj ̸=0)]

x and x′ denote a column vector and its transpose respectively.

xr and xs indicate the rth and sth samples in the data set, respectively.

xrj indicates the j
th feature of the rth sample in the data set.

x̄r indicates the mean of all features in the rth sample in the data set.

Σ is the sample covariance matrix.
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Table 22: Formulae for popular filter scores

Filter Name Formula

Fisher Score score(i) = (µ+(i)−µ−(i))2

(σ+(i))2+(σ−(i))2

Student t–test score(i) = (µ+(i)− µ−(i))/
√

σ2
+

n+
+

σ2
−

n−

Mutual Information score(X) =
∑

x

∑
y p(X = x, Y = y) · log p(X=x,Y=y)

p(X=x)·(Y=y)

(Chi–Square)χ2 score(X) =
∑

x

∑
y

(p(X=x,Y=y)−p(X=x)·p(Y=y))2

p(X=x)·p(Y=y)

AUC score(i) =
∫
ROC Curve for feature i

J–measure score(X) =
∑

x p(X = x|Y = 0) − p(X = x|Y = 1) · log p(X=x|Y =0)
p(X=x|Y =1)

J5 Score score(i) = µ+(i)−µ−(i)
1
m

∑m
j=1 |µ+(j)−µ−(j)|

The standard SAM technique is meant to be used in a permutation setting, however, the

scoring criteria can still be used for filtering methods.

score(i) = µ+(i)−µ−(i)
s(i)+s0

The correcting constants s(i) and s0 are computed as follows:

s(i) =

√
(1/n+)+(1/n−)

(n1+n2−2)

[∑n+

j=1(xj(i)− µ+(i))2 +
∑n−

j=1(xj(i)− µ−(i))2
]

s0 = 1 for purposes of simplicity.
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APPENDIX C

LISTS OF TOP TWENTY PATHWAYS USED BY PATHWAY KERNEL

PER DATASET

Table 24: Lists of 20 most relevant MSigDB Pathway

Identifiers per dataset

COPD

DCPATHWAY

module 287

GTGGGTGK UNKNOWN

CARM ERPATHWAY

V$ZID 01

V$PITX2 Q2

module 49

AMINO ACID AND DERIVATIVE METABOLIC PROCESS

GH GHRHR KO 6HRS DN

MESODERM DEVELOPMENT

TGCCTTA,MIR-124A

CCTGAGT,MIR-510

HSA00480 GLUTATHIONE METABOLISM

HSA00604 GLYCOSPHINGOLIPID BIOSYNTHESIS GANGLIOSERIES

RESPONSE TO WOUNDING
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

UVB NHEK1 UP

V$AP2REP 01

HDACI COLON BUT16HRS DN

RNA CATABOLIC PROCESS

MORF PPP2R5B
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Hepatitis C

HSA00340 HISTIDINE METABOLISM

V$ATF1 Q6

VESICLE MEDIATED TRANSPORT

RUTELLA HEPATGFSNDCS UP

ZHAN PCS MULTIPLE MYELOMA SPKD

PYRUVATE METABOLISM

V$AFP1 Q6

ESR FIBROBLAST UP

RRCCGTTA UNKNOWN

PROTEIN AMINO ACID DEPHOSPHORYLATION

V$AR 01

V$OCT1 B

PROTEIN TYROSINE PHOSPHATASE ACTIVITY

V$HMEF2 Q6

V$AREB6 04

module 543

GOLGI ASSOCIATED VESICLE

CELL PROJECTION

UV ESR OLD UNREG

module 125
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

ILD

LYTIC VACUOLE

VACUOLE

V$AP2REP 01

module 15

chr9q

CCTGCTG,MIR-214

INTRACELLULAR PROTEIN TRANSPORT

REGULATION OF PROGRAMMED CELL DEATH

HSA00641 3 CHLOROACRYLIC ACID DEGRADATION

V$CREBP1 01

module 155

AGUIRRE PANCREAS CHR1

RESPONSE TO ORGANIC SUBSTANCE

SA BONE MORPHOGENETIC

FLECHNER KIDNEY TRANSPLANT WELL UP

CTACTGT,MIR-199A

BECKER ESTROGEN RESPONSIVE SUBSET 2

LEE CIP DN

MORF ERCC2

NI2 MOUSE UP
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Diabetes

GTGCCAT,MIR-183

RIBOSOMAL SUBUNIT

chr14q11

V$TBP 01

MITOCHONDRIAL MATRIX

MEMBRANE FRACTION

chr10q24

CATTGTYY V$SOX9 B1

CALCIUM ION BINDING

module 98

ION BINDING

module 124

GNF2 CDH11

TATAAA V$TATA 01

module 5

KANG TERT DN

BRCA BRCA1 POS

MGGAAGTG V$GABP B

PEART HISTONE DN

MORF TTN
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Melanoma I

V$WHN B

module 229

HDACI COLON BUT12HRS DN

CTCTATG,MIR-368

V$MYOD Q6 01

CORTICAL ACTIN CYTOSKELETON

ATGCTGG,MIR-338

CELLULAR RESPONSE TO STIMULUS

chr15q23

MEMBRANE

CORTICAL CYTOSKELETON

N GLYCAN DEGRADATION

MORF EIF3S2

module 212

CALCIUM REGULATION IN CARDIAC CELLS

V$ELK1 01

MEMBRANE PART

LEE TCELLS2 UP

WELCSH BRCA DN

V$ETS2 B
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Breast Cancer

chr12q

CELL PROJECTION BIOGENESIS

chr10q25

STEROID HORMONE RECEPTOR SIGNALING PATHWAY

GNF2 NPM1

CELL CORTEX

BHATTACHARYA ESC UP

chr1q23

GNF2 SPI1

HSA00521 STREPTOMYCIN BIOSYNTHESIS

chr5p15

ZHAN PCS MULTIPLE MYELOMA SPKD

TUBE MORPHOGENESIS

module 533

chr2q35

ZHAN MM CD138 CD2 VS REST

CONDENSED CHROMOSOME

PEART HISTONE UP

CELL DIVISION

module 61
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Pancreatic Cancer I

module 545

OLD FIBRO UP

ADIP DIFF CLUSTER3

STEMPATHWAY

TCAPOPTOSISPATHWAY

LEE MYC TGFA DN

GGCNNMSMYNTTG UNKNOWN

HYPOPHYSECTOMY RAT UP

LEE CIP DN

MEMBRANE BOUND VESICLE

LU IL4BCELL

MORF IL4

V$MEF2 03

LYMPHOCYTE DIFFERENTIATION

module 259

WELCSH BRCA DN

POD1 KO MOST DN

NUCLEOLAR PART

REGULATION OF PH

chr4p14
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Pancreatic Cancer II

chr4q23

TCA

KREBS TCA CYCLE

NEGATIVE REGULATION OF MAP KINASE ACTIVITY

GGCNNMSMYNTTG UNKNOWN

THELPERPATHWAY

STEMPATHWAY

CAR IGFBP1

GLYCEROPHOSPHOLIPID METABOLIC PROCESS

V$AHR Q5

RYTGCNNRGNAAC V$MIF1 01

chr2q23

TCAPOPTOSISPATHWAY

ATCMNTCCGY UNKNOWN

GLYCEROPHOSPHOLIPID BIOSYNTHETIC PROCESS

MORF PTPRR

WALLACE JAK2 DIFF

ACTACCT,MIR-196A,MIR-196B

V$HIF1 Q3

module 166
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Prostate Cancer

DNA PACKAGING

ENZYME LINKED RECEPTOR PROTEIN SIGNALING PATHWAY

module 41

V$PAX4 01

V$NKX22 01

module 5

CAGGTA V$AREB6 01

CTTTGA V$LEF1 Q2

V$PAX4 03

TGGAAA V$NFAT Q4 01

TRANSITION METAL ION BINDING

CYTOPLASMIC PART

V$OCT1 07

V$DR4 Q2

SYSTEM PROCESS

NEUROLOGICAL SYSTEM PROCESS

WGTTNNNNNAAA UNKNOWN

PLASMA MEMBRANE

STRESS ARSENIC SPECIFIC UP

NUCLEOBASE NUCLEOSIDE NUCLEOTIDE AND NUCLEIC ACID METABOLIC PROCESS
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Scleroderma

TTCYNRGAA V$STAT5B 01

V$AP1 Q6 01

RESPONSE TO ABIOTIC STIMULUS

V$NRF2 Q4

V$MYOD Q6

TGANTCA V$AP1 C

YCATTAA UNKNOWN

V$YY1 Q6

module 118

module 24

module 334

V$NFE2 01

V$HFH4 01

CTTTAAR UNKNOWN

module 23

RESPONSE TO CHEMICAL STIMULUS

V$GR 01

module 330

CELLULAR HOMEOSTASIS

V$ER Q6 01
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

UPCI Lung Cancer

module 349

KANNAN P53 UP

TPA SKIN UP

LAMB CYCLIN D1 UP

MORF PPP1CC

LEE CIP UP

SHIPP FL VS DLBCL DN

LIZUKA L1 GR G1

module 166

GAMETE GENERATION

chr13q33

INOSITOL PHOSPHATE METABOLISM

chr18q21

PANTOTHENATE AND COA BIOSYNTHESIS

module 540

NKTPATHWAY

METHOTREXATE PROBCELL UP

V$TAXCREB 01

NAKAJIMA MCSMBP MAST

module 107
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Vanderbilt Lung IMAC

HOFMANN MDS CD34 LOW AND HIGH RISK

module 286

module 429

UREA CYCLE AND METABOLISM OF AMINO GROUPS

DEVELOPMENTAL MATURATION

ZUCCHI EPITHELIAL UP

HYDROLASE ACTIVITY ACTING ON GLYCOSYL BONDS

IDX TSA UP CLUSTER2

module 440

chr6q14

NO2IL12PATHWAY

UBIQUITIN LIGASE COMPLEX

module 424

RECEPTOR SIGNALING PROTEIN ACTIVITY

SARSPATHWAY

CANTHARIDIN DN

IRITANI ADPROX DN

DNA DAMAGE RESPONSE SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR

FLECHNER KIDNEY TRANSPLANT REJECTION PBL DN

IDX TSA UP CLUSTER4

207



Table 24: (continued)

Dataset MSigDB Pathway Identifier

Vanderbilt Lung WCX

METPATHWAY

GTPASE REGULATOR ACTIVITY

AACTGAC,MIR-223

CCR3PATHWAY

chr2q37

PROTEASOMEPATHWAY

P53 SIGNALING

GNF2 G22P1

BRENTANI SIGNALING

TGAGATT,MIR-216

PROTEASOME

GOLUB ALL VS AML UP

chr2p22

TGACATY UNKNOWN

GCM PSME1

HSA00670 ONE CARBON POOL BY FOLATE

RECEPTOR ACTIVITY

MORF CASP2

RNA METABOLIC PROCESS

AGGGCAG,MIR-18A
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Table 24: (continued)

Dataset MSigDB Pathway Identifier

Vanderbilt MALDI

module 279

ATATGCA,MIR-448

V$OCT Q6

module 334

RECEPTOR SIGNALING PROTEIN SERINE THREONINE KINASE ACTIVITY

TTTNNANAGCYR UNKNOWN

V$MEF2 02

KRCTCNNNNMANAGC UNKNOWN

STEMCELL COMMON DN

V$IRF1 Q6

AGED MOUSE RETINA ANY UP

module 183

PARK RARALPHA MOD

module 345

module 182

V$COUP DR1 Q6

PROTEIN KINASE BINDING

HOFFMANN BIVSBII BI TABLE2

ATCTTGC,MIR-31

ACAACCT,MIR-453
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APPENDIX D

STANDARD OPERATING PROCEDURES FOR BASELINE

PREPROCESSING

For the sake of reproduction, our standard operationg procedure for performing baseline

preprocessing is given below.

D.1 BASELINE PREPROCESSING

By default, the order of preprocessing steps continues as follows:

• Variance stabilization.

• Baseline correction.

• Profile normalization.

• Smoothing

• Alignment

D.1.0.1 Variance Stabilization Higher intensities typify higher-variance measures in

TOF-MS datasets. We decouple the dependency of variance of measurements upon their

intensity by applying the cube-root transformation to all profile readings (Hauskrecht et al.,

2005).
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• Change the intensity of every profile measurement to be the cube root of that measure-

ment.

D.1.0.2 Baseline correction To ensure that intensities are measured with a baseline

of 0, instrument noise is removed by a sliding-window method:

• Calculate a minimum over local window of width 200 data points to determine the

baseline shift constant for the window’s middle position.

• Subtract the constant from the intensity reading.

• Slide the window forward

• Continue to compare new baseline correction techniques.

D.1.0.3 Profile normalization Profile normalization is performed by TIC correction

on a limited range.

• Sum intensities between the m/z range of 1500 and 16500 Daltons.

• Divide each intensity in the profile by this amount.

• Continue to compare new baseline correction techniques.

D.1.0.4 Smoothing Smoothing is accomplished by rounding intensities to fit a Gaussian

shape.

• For each intensity i in profile p do:

– Fit i to a Gaussian distribution based on its 10 immediate neighbors on either side.

The Gaussian distribution has standard deviation equal to 2.

– Move to the next intensity.

• Continue to compare the effects of smoothing.

D.1.0.5 Alignment

• Calculate the mean profile by averaging all samples in the study

• Identify peaks in the mean profile using Procedure Peak-Identification

• For all profiles p do:
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– Identify peaks of the profile p

– Use dynamic time-warping procedure to adjust the m/z values associated with the

profile p so they align with the peak in the mean profile

• Continue to compare alternative alignment strategies.

D.1.0.6 Handling technical replicates If more than one technical replicate exists for

a sample, the replicates are averaged together to produce a single proteomic profile per

patient.

• Average spectra that correspond to the same sample.

• Measure the effect of averaging on COV in search of variance inflation (undesirable

outcome)

D.1.1 Standardized Peak Identification (Data Characterization)

D.1.1.1 Data characterization

• Ensure the following for each profile p:

– Each profile consists of n intensity measurements

– Each intensity measurement is assigned an m/z value.

– Individual peaks or peak complexes may be analyzed.

• Each profile contains a class label corresponding to its disease state (typically 1 for case,

and 0 for control).

• Consider various binarization approaches prior to modeling.

• Continue to consider additional (multivariate) data characterizations.

D.1.1.2 Peak identification

• Average all profiles in the dataset.

• Using a sliding window of width 12 (measurements), search for local maxima in this

averaged profile.

• Local maxima are marked as peak positions.

• Transfer the positions of marked peaks to the original profiles.
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• Continue to compare additional peak detection algorithms.
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