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PATTERNS OF SHIFTING TREE SPECIES COMPOSITION AND DIVERSITY 
LOSS IN 19 OLD-GROWTH FOREST STANDS IN PENNSYLVANIA 

 

Henry Bernard Schumacher, M.S. 

University of Pittsburgh, 2008

 

A century of fire suppression and overbrowsing by deer have likely altered patterns of 

forest regeneration, with detrimental consequences for the future diversity, composition, and 

function of old-growth stands.  We quantified the diversity and composition of tree species in the 

canopy and understory layers of 19 old-growth stands in Pennsylvania to evaluate the 

consequences of existing regeneration patterns for the future composition of these communities.  

 Despite relatively high canopy diversity across all stands, the understory composition of 

all stands converged to a homogeneous subset of the canopy species.  In addition, understory 

layers had unusually low stem densities, lower species diversity than their respective canopies, 

and showed a significant lack of mid-tolerant species.  Oak species, which often require fire to 

regenerate, were common in the canopy of 12 stands, but absent from the understory layer of all 

stands.  Our findings suggest that deer browsing and fire suppression are partly responsible for 

this dramatic alteration of understory species composition.  The lower diversity and 

homogenized species composition of the understory indicates that the future composition of 

these stands will not resemble the current composition.  Alteration of tree species composition is 

likely to have detrimental effects on the survival of species dependent upon old-growth habitat. 

 

 

 iv 



TABLE OF CONTENTS 

PREFACE...................................................................................................................................... x 

1.0 CHAPTER 1 ................................................................................................................. 1 

1.1 INTRODUCTION ............................................................................................... 1 

1.2 MATERIALS AND METHODS........................................................................ 4 

1.2.1 Study Area ..................................................................................................... 4 

1.2.2 Sampling design ............................................................................................ 5 

1.2.3 Statistical Analysis ........................................................................................ 6 

1.2.3.1 Diversity................................................................................................. 6 

1.2.3.2 Species composition .............................................................................. 7 

1.3 RESULTS ............................................................................................................. 9 

1.3.1 Diversity and Species Richness .................................................................... 9 

1.3.2 Species Composition ................................................................................... 10 

1.4 DISCUSSION..................................................................................................... 11 

1.4.1 Do these old-growth stands show patterns indicative of canopy self-

replacement?............................................................................................................... 11 

1.4.2 Factors influencing existing regeneration patterns ................................. 13 

1.4.3 Implications for conservation and management...................................... 16 

APPENDIX.................................................................................................................................. 39 

BIBLIOGRAPHY....................................................................................................................... 43 

 v 



 LIST OF TABLES 

Table 1.  Stand names (including abbreviations used in Figures), coordinates, physiographic 

region, stand type, stand size, percent of the stand sampled, live tree basal area (m2 ha-1), live tree 

stem density (stems ha-1), and volume of coarse woody debris (CWD, m3 ha-1). ........................ 19 

Table 2.  Results of Anova for Shannon diversity index at the stand level and for Tukey's 

Honestly Significant Difference comparisons between individual size classes.  See Table 1 for 

stand names.  Size classes are abbreviated in the Comparisons column as: canopy (CAN), 

subcanopy (SUB), and understory (UND).  Degrees of freedom (d.f.) are shown for class and 

residuals.  Note that p-values > 0.05 are in bold........................................................................... 20 

Table 3.  Results of Anova for species richness at the stand level and for Tukey's Honestly 

Significant Difference comparisons between individual size classes.  Size classes are abbreviated 

in the Comparisons column as: canopy (CAN), subcanopy (SUB), and understory (UND).  Note 

that p-values > 0.05 are in bold..................................................................................................... 22 

Table 4.  Nonparametric MANOVA results for species composition at stand-level and size class 

contrasts (1000 permutations for all analyses).  See Table 1 for stand names.  Plots with no stems 

in the size classes being compared were removed from analyses, as dissimilarity indices could 

not be calculated in the absence of stems.   Note that p-values > 0.05 are in bold....................... 24 

Table 5.  Results of Kruskal-Wallis tests on the relative abundance of oak (Quercus), 

subdominant mixed hardwood species (HW), hemlock (Tsca), and beech (Fagr) between 

understory and canopy layers.  Not all sites show results for all species because not all species 

 vi 



were present at sites, or present in high enough abundance to conduct analyses.  Note that p-

values > 0.05 are in bold. .............................................................................................................. 26 

Table 6.  Results of Kruskal-Wallis tests on the abundance of shade-tolerant species (sensu, 

Burns and Honkala 1990) in understory and canopy size classes.  Note that p-values > 0.05 are in 

bold. .............................................................................................................................................. 27 

Table A1.  Comparisons of the results from Anova for Shannon and Inverse Simpson’s (InvSimp) 

diversity indices at the stand level and for Tukey’s Honestly Significant Difference comparisons 

between individual size classes..................................................................................................... 41 

 vii 



LIST OF FIGURES 

Figure 1.  Map of Pennsylvania and positions of the stands sampled.  Note that stand locations 

are not exact in order to clearly identify stand names.  See Table 1 for stand names and 

descriptive information. ................................................................................................................ 28 

Figure 2.  Size class Shannon diversity in the canopy (Can: >25cm d.b.h.), subcanopy (Sub: 10 - 

25cm d.b.h.), and understory (Und: 0.1 - 10cm d.b.h.) size classes in all 19 stands (see Table 1 

for stand names).  Results of Tukey's HSD contrasts are shown as letters indicating significant 

differences..................................................................................................................................... 30 

Figure 3.  Species richness in the canopy (Can), subcanopy (Sub), and understory (Und) size 

classes in all 19 stands (see Table 1 for stand names).  Results of Tukey's HSD contrasts are 

shown as letters indicating significant differences.  Note that the scale of the y-axis differs 

between stands. ............................................................................................................................. 32 

Figure 4.  Non-metric multidimensional scaling (NMDS) ordination of species abundance in 

canopy (filled squares, ■), subcanopy (filled circles, ●), and understory (open circles, ○) for each 

stand.  Each symbol represents the canopy, subcanopy, or understory of an individual stand; 

therefore there are 19 of each symbol.  Four letter species name abbreviations indicate the 

positioning of all species sampled.  Key species names are TSCA: Tsuga canadensis, ACSA: 

Acer saccharum, FAGR: Fagus grandifolia, BEAL: Betula alleghaniensis, BELE: Betula lenta, 

QURU: Quercus rubra, QUAL: Quercus alba.  '+' symbols indicate overlapping species names, 

in which case, the less abundant species name is replaced by '+.' ................................................ 34 

 viii 



Figure 5.  Relative abundance of all species in the canopy (Can), subcanopy (Sub), and 

understory (Und) size classes in all 19 stands (see Table 1 for stand names).  "Mixed hardwood 

(HW)" category includes all hardwood species comprising less than ten percent of the stems in 

the stand (e.g. Liriodendron tulipifera, Fraxinus americana, Nyssa sylvatica), while "Conifer" 

category includes Picea rubens and Pinus resinosa.  Acer, Betula, and Quercus species are 

pooled into their respective genera.  Species abbreviations: Fagr: Fagus grandifolia, Pist: Pinus 

strobus, Tsca: Tsuga canadensis................................................................................................... 36 

Figure 6.  Relative abundance of Quercus species in canopy (Can), subcanopy (Sub), and 

understory (Und) size classes in 12 stands where pooled relative abundance of Quercus species 

exceeds 10% of canopy.  See Table 1 for stand names and Table 5 for results of Kruskal-Wallis 

tests of difference in abundance between size classes. Species abbreviations: QUAL: Quercus 

alba, QUPR: Q. prinus, QURU: Q. rubra, QUVE: Q. velutina.  Note that the scale of the y-axis 

differs between stands................................................................................................................... 38 

 ix 



PREFACE 

I thank Mike Urban, Evan McDivett, and Ann Kowalecki for field assistance and Hank Stevens 

for advice on statistical analyses.  Thanks to Walt Carson, Steve Tonsor, Brian Traw, Sue Kalisz, 

Chris Peterson, Brian McCarthy, Chris Heckel, and Tom Pendergast for comments on previous 

drafts of this manuscript and thoughtful discussions.  Funding was provided by a grant from the 

PA DCNR Bureau of Forestry.  Logistical assistance was provided by Dan Devlin and numerous 

forest managers and employees of the PA DCNR Bureau of Forestry in addition to Scott Bearer 

at The Nature Conservancy, Williamsport, PA. 

 

 

 

 

 x 



1.0  CHAPTER 1 

1.1 INTRODUCTION 

Old-growth forest stands function as integral components of the contemporary forest matrix.  

Remnant old-growth stands can serve as seed sources for surrounding secondary forests (Keeton 

and Franklin 2005) and provide habitat for fauna (Welsh 1990) and flora (Whitney and Foster 

1988).  However, old-growth stands are extremely rare in the eastern United States, comprising < 

1% of forested land east of the Mississippi river (Davis 1996).  The natural senescence of canopy 

trees, pathogen-induced mortality (e.g. beech-bark disease, Cectria coccinea var. faginata, Gavin 

and Peart 1993), pest outbreak (e.g. hemlock woolly adelgid, Adelges tsugae, Orwig et al. 2002), 

and other mortality-inducing stresses may hasten canopy turnover throughout eastern temperate 

forests in the coming century.   

The conservation and management of remnant old-growth stands requires an 

understanding of the patterns of regeneration in these stands across all size classes.  However, 

the processes that contribute to patterns of regeneration of old-growth forests are poorly 

understood because these stands are rare (Davis 1996), have uncertain disturbance histories 

(McLachlan et al. 2000), and have ecological interactions (e.g. competition) that play out over 

decades (Pacala et al. 1996).  Numerous factors are likely altering the current species 

composition of eastern old-growth forest stands particularly overbrowsing by white-tailed deer 
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(Odocoilus virginianus, Horsley et al. 2003), suppression of understory fire (Abrams 1992), and 

the small size and fragmented distribution of remnant old-growth stands (Harper et al. 2005).   

Many of the defining features of old-growth stands (e.g. dominance by shade tolerant 

species, large diameter trees) are the result of long time periods between large-scale disturbances 

(Keddy and Drummond 1996).  Estimated return times for large, stand replacement disturbances 

range from 500-1500 years from the Great Lakes region through Pennsylvania and northern New 

York (Canham and Loucks 1984; Seymour et al. 2002).  These stands are therefore largely 

governed by gap-phase disturbance regimes where the understory saplings represent the 

available species pool to replace dying canopy trees (Oliver and Larson 1996).  Under gap-phase 

disturbance regimes, rapid recruitment into the canopy by recently dispersed seeds is uncommon 

in temperate forests (Lertzman 1992; Runkle 1998; Webster and Lorimer 2005), and individuals 

generally show numerous episodes of release and suppression before reaching the canopy 

(Nowacki and Abrams 1997).  Therefore, the absence or low abundance of a species in the 

understory reduces the likelihood of that species successfully regenerating in the absence of 

large-scale disturbances (Leak 1970; Runkle 1981; Waggoner and Stephens 1970).  A high 

relative abundance of a species in the understory does not guarantee an increased abundance in 

the future canopy (White et al. 1985), however, the importance of understory abundances on the 

likelihood of capturing gap space has been well documented (Fox 1977; Leak 1970; Runkle 

1981; Uhl et al. 1988; Waggoner and Stephens 1970).  For example, Runkle (1981; 1998) found 

that the species composition of the understory layer was a good predictor of canopy composition, 

and Lertzman (1992) found that the likelihood of capturing a gap was proportional to a species 

representation in the understory layer.  Therefore, the existing species composition and size 
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structure of old-growth stands can provide insight about regeneration patterns and the future 

composition of the canopy. 

Existing regeneration patterns across size classes in stands can help identify causal 

factors impacting regeneration in old-growth forests and serve as a useful tool to inform the 

management and conservation of these remnant stands.  For example, in stands showing patterns 

of self-replacement two predictions can be made: 1) all, or most, species present in the canopy 

should be present in the understory and canopy diversity should be similar to understory 

diversity, or 2) understory diversity may be higher than canopy diversity if numerous understory 

specialist species are present, or if the understory contains canopy species which do not 

successfully recruit into the canopy.  If stands do not show patterns of self-replacement, they 

may show patterns of successional replacement, such as a higher relative abundance of shade 

tolerant species in the understory than in the canopy (Woods 2000b).  Pervasive white-tailed deer 

(Odocoilus virginianus) browsing can significantly lower understory stem densities and increase 

the representation of more browse-tolerant species (e.g. Acer pensylvanicum, Fagus grandifolia) 

in the understory (Banta et al. 2005; Horsley et al. 2003).  Lastly, understory fire suppression can 

cause regeneration failure of fire-tolerant species (e.g. Quercus spp) and therefore an absence of 

these species in the understory, even in stands with high abundance of fire-tolerant species in the 

canopy (Abrams and Nowacki 1992).   

In this study, we compare overstory and understory species compositions of 19 old-

growth stands to test the hypothesis that old-growth stands show patterns consistent with canopy 

species self-replacement (Lorimer 1980; Runkle 1981; Runkle 1998).  Predictions of future 

species composition based on comparisons of canopy and understory layers can produce 

misleading results due to assumptions of a constant environment, constant disturbance regime, 
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and equivalent rates of growth and mortality amongst species (White et al. 1985).  However, by 

using overstory/understory comparisons across a large number of stands dispersed over a wide 

area (Fig. 1), we can identify re-occurring regeneration patterns and the factors that may underlie 

these patterns while accounting for these assumptions.  It is difficult to identify common 

regeneration patterns from the literature, given different study foci and associated sampling 

methodologies used.  Comparisons of stands in the literature are also difficult because most 

studies sampled one stand; we only found 6 studies that compared more than 5 stands (Leopold 

et al. 1988; McGee et al. 1999; Runkle 1981; Tyrrell and Crow 1994; Woods and Cogbill 1994; 

Ziegler 2000).  The large number of stands examined in this study allows us to make direct 

comparisons of regeneration patterns between stands.    

1.2 MATERIALS AND METHODS 

1.2.1 Study Area 

During 2006, we conducted stand-wide surveys of 19 old-growth forest stands throughout 

Pennsylvania (Fig 1, Table 1).  The old-growth stands surveyed are located in three 

physiographic regions of Pennsylvania: ridge and valley, deep valley Allegheny plateau, and 

high Allegheny plateau (Fig 1, Table 1, Braun 1950; DCNR 2000).  Nine of the stands are 

hemlock - white pine - northern hardwood forest types and the remaining ten stands are hemlock 

- red oak - mixed hardwood forest types (Table 1, Braun 1950; Fike 1999).  Seven of the stands 

have had detailed site descriptions (BMNA: Abrams et al. 2001; FCCF: Abrams and Orwig 

1996; TANF & HCANF: Hough and Forbes 1943; ASNA: Nowacki and Abrams 1994; SACF: 
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Orwig and Abrams 1999; SMNA: Zawadskas and Abrahamson 2003), however, the remaining 

12 stands have not been previously described.  All old-growth stands sampled reside within a 

matrix of secondary forests and many have experienced limited human-mediated disturbance 

including understory fires (Abrams et al. 2001; Abrams et al. 1995; Nowacki and Abrams 1994; 

Orwig and Abrams 1999) and selective logging (pers. obs., Abrams et al. 2001; Lutz 1930; 

Nowacki and Abrams 1994; Orwig and Abrams 1999). 

1.2.2 Sampling design 

Stands ranged in size from 2.75 to 1267 hectares, and 0.15 - 19.8% of each old-growth 

stand area was surveyed for using a system of stratified transects (Table 1).  The first transect in 

each stand was started at a random point at least 50m from the edges of the stand and 17m radius 

circular plots (0.09 hectares) were located every 200 meters along the transect.  Transects were 

spaced approximately 100 meters apart and no plots were located within 50 meters of the stand 

edge or a trail.  Each 0.09 hectare plot was sampled for living trees ≥ 5cm diameter at breast 

height (d.b.h., taken at 1.37m), fallen logs ≥ 10cm diameter at one end, and standing snags ≥ 5cm 

d.b.h.  For living trees we recorded species identity and d.b.h., for fallen logs we recorded the 

diameter at three points (both ends and the middle), and for standing snags we measured the 

d.b.h. and height, using a laser range-finder (Bushnell® Yardage Pro™ 800 Compact 

Rangefinder) to estimate the height of snags > 3m tall.  Within each 0.09 hectare plot, we 

sampled a central 100m2 circular plot for all living woody stems > 1.4m tall and < 5cm d.b.h. 

 Snag volume was estimated as a cylinder using the basal area and height, while 

log volume was estimated with Newton's formula [1], accounting for hollowed portions of logs 

(Harmon and Sexton 1996). 
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[1] 6)4( tmb AAALV ++=                                 

where V is the volume, L is the log length, Ab, Am, and At are the areas of the base, middle, and 

top of the log, respectively. 

1.2.3 Statistical Analysis 

Stand size structure was divided into three classes for all analyses, canopy (> 25cm d.b.h.), 

subcanopy (10.1 - 25cm d.b.h.), and understory (≥ 1.4m height - 10cm d.b.h).  Because we are 

interested in comparisons between size layers, we report results based on the analysis of canopy 

species only (i.e. species with the potential to reach the canopy), excluding understory specialist 

species such as Acer pensylvanicum, Carpinus caroliniana, Cornus florida, and Ostrya 

virginiana. 

1.2.3.1 Diversity 

To quantify diversity, we calculated the Shannon diversity index on a per plot basis, as this index 

weights species equally by their frequency.  The Shannon index is  

[2]                                         ∑=
−=

S

i ii ppH
1

)lnexp(exp

where S is the total number of species in the plot and pi is the relative abundance of the ith 

species (Jost 2006).  This is a slightly modified form of the more commonly used Shannon 

entropy, however it allows for a more direct comparison of diversity between forest stands in this 

study (Jost 2006). 

We used ANOVA to test for differences in diversity among size classes across all stands 

and within individual stands (Crawley 2002).  We used Tukey's honestly significant difference 
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(HSD) for contrasts of Shannon diversity indices between size classes within each stand 

(Crawley 2002).  We repeated these analyses with the inverse Simpson's diversity index and 

found the same qualitative results in 18 of 19 contrasts between the understory and canopy size 

classes and in 47 of the total 57 contrasts (Appendix A).  Given the consistency of the results for 

inverse Simpson's and Shannon index, we only present results for the Shannon's diversity index.  

Additionally, we used ANOVA to test for differences in species richness among size classes 

across all stands and within individual stands.  We used Tukey's HSD for contrasts of species 

richness between size classes within each stand. 

1.2.3.2 Species composition 

Patterns of species composition within and between size classes were assessed with non-metric 

multidimensional scaling (NMDS) ordination using species abundance data for each size class in 

each stand (Kenkel and Orloci 1986).  Semi-metric Bray-Curtis dissimilarity indices were used 

for NMDS ordination because it has one of the strongest relationships between site dissimilarity 

and ecological distance, making it a good measure of ecological distance for species abundance 

data (Faith et al. 1987).  The Bray-Curtis dissimilarity index (BC) is  

[3] 
∑
∑

+

−
=

i
ikij

i
ikij

XX

XX
BC

)(

||
   

where Xij is the abundance of the ith species at site j and Xik is the abundance of the ith species at 

site k (Krebs 1989). 

Nonparametric MANOVA (also called distance-based redundancy analysis) was used to 

test for differences in species composition between size classes within each stand.    

Nonparametric MANOVA was used because the high occurrence of zeros in the abundance 
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dataset and the low abundance of rare species violate the assumption of multivariate normality 

made by parametric MANOVA (Legendre and Anderson 1999; McArdle and Anderson 2001).  

Furthermore, linear models cannot be fit with parametric MANOVA using semi-metric 

dissimilarity indices (e.g. Bray-Curtis), as these semi-metric dissimilarity indices violate the 

triangle inequality property (Legendre and Anderson 1999; McArdle and Anderson 2001).  

Additionally, the nonparametric MANOVA allowed us to statistically test for differences in 

species composition using the same dissimilarity index (Bray-Curtis) used in the NMDS 

ordination.  We used three dissimilarity indices (Bray-Curtis, Morista- Horn, Chao) to test for 

differences in species composition between size classes and to account for possible limitations in 

the choice of any one dissimilarity index.  While the Bray-Curtis dissimilarity index is 

commonly used as a measure of ecological distance for species abundance data, it is biased by 

abundant species and can be affected by small sample size (Krebs 1989).  To account for each of 

these potential shortfalls, we used the Chao index, which gives greater weight to rare species 

than the Bray-Curtis index (Chao et al. 2005), and the Morista-Horn index, which is nearly 

independent of sample size (Krebs 1989).  While we used three dissimilarity indices for our 

analyses, we only report results for the Bray-Curtis analyses as the other dissimilarity indices 

gave us qualitatively very similar results.   

Lastly, we used nonparametric Kruskal-Wallis tests for comparisons of species relative 

abundance between canopy and understory layers.  All analyses were conducted in R 

(R_Development_Core_Team 2007), using the muStat package for Kruskal-Wallis tests 

(Wittkowski and Song 2007), and the vegan package for nonparametric MANOVA, NMDS 

ordination, and the calculation of Bray-Curtis, Chao, and Morista-Horn indices (Oksanen et al. 

2007). 
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1.3 RESULTS 

1.3.1 Diversity and Species Richness  

Shannon diversity differed significantly between stands (F18, 693 = 15.0, P < 0.001) and between 

size classes across all stands (F2,693 = 221.3, P < 0.001).  In 17 of 19 stands, diversity differed 

significantly between size classes (Table 2) and was significantly higher in the canopy than in 

the understory (Table 2).  The ARNA and CSNA stands showed no significant difference in 

Shannon diversity (ARNA: F2,15 = 0.4, P = 0.67; CSNA: F2,21 = 1.2, P = 0.31) across size classes 

(Table 2).  The subcanopy layer showed an intermediate level of diversity; subcanopy diversity 

was significantly lower than canopy diversity in 11 of 19 stands, whereas the subcanopy layer 

was significantly more diverse than the understory layer in only 9 of 19 stands (Fig. 2, Table 2). 

Similarly, species richness differed significantly between stands (F18, 693 = 15.1, P < 

0.001) and between size classes across all stands (F2, 693 = 226.7, P < 0.001).  In 18 of 19 stands, 

species richness differed significantly between size classes (Table 3) and was significantly higher 

in the canopy that in the understory (Fig. 3, Table 3).  The ARNA stand showed no significant 

difference in species richness (F2, 15 = 0.42, P = 0.66).  The subcanopy layer showed an 

intermediate level of species richness; subcanopy species richness was significantly lower than 

canopy species richness in 10 of 19 stands, whereas the subcanopy species richness was 

significantly higher than the understory layer species richness in 12 of 19 stands (Fig 3, Table 3). 

  9



1.3.2 Species Composition 

NMDS ordination shows a clear divergence of understory and canopy species composition 

across all stands, with no overlap of their respective polygons (Fig. 4).  Subcanopy species 

composition overlaps with both the understory and canopy species composition (Fig. 4).  The 

canopy cluster spans a species gradient ranging from sites heavily influenced by oaks (QUAL, 

Quercus alba; QURU, Q. rubra; QUVE, Q. velutina) to sites strongly influenced by hemlock 

(TSCA, Tsuga canadensis), yellow birch (BEAL, Betula alleghaniensis), and black birch 

(BELE, B. lenta).  The understory cluster does not show a species gradient as clear as that seen 

in the canopy cluster, but it does appear that hemlock, beech (FAGR, Fagus grandifolia), sugar 

maple (ACSA, Acer saccharum), and red maple (ACRU, A. rubrum) strongly influence site 

positions (Fig. 4). 

Species composition significantly differed between size class (F = 13.2, P < 0.001, 1000 

permutations) and stands (F = 4.9, P < 0.001, 1000 permutations).  In 18 of 19 stands, species 

composition was significantly different in the understory versus canopy layers (Fig. 5, Table 4).  

The species composition of the canopy and understory layers did not differ in STCF (F = 1.3, P = 

0.20, 1000 permutations), likely due to the dominance of hemlock and birch species across all 

size classes (Fig. 5). 

Differences in species composition between canopy and understory layers are primarily 

due to four major shifts in species abundance.  Oak abundance is significantly lower in the 

understory than canopy in all 12 stands where oak comprises greater than 10% of the canopy 

(ARNA, ASNA, BCNA, BMNA, BRNA, CSNA, CTCF, DRNA, JRNA, LJRNA, SACF, 

WRNA; Fig. 5, Table 5).  Additionally, the lower understory abundance of subdominant 

hardwood species (e.g. Liriodendron tulipifera, Fraxinus americana, Carya spp.) in 5 stands 
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(ASNA, BRNA, DMCF, FCCF, TANF) contributed to the difference in species composition 

(Fig. 5, Table 5).  Three stands (ARNA, HCANF, and TANF) have significantly higher beech 

abundance in the understory than in the canopy (Fig. 5, Table 5), due to the extensive 

proliferation of root sucker sprouts (pers obs).  Lastly, hemlock abundance was significantly 

higher in the understory than canopy of 9 stands (BRNA, CTCF, DMCF, FCCF, FDNA, 

LJRNA, SACF, SMNA, WRNA; Fig. 5, Table 5).  The increased abundance of hemlock in the 

understory of these stands contributed to higher understory relative abundance of shade tolerant 

species in 18 stands (Table 6).  Shade tolerant species are those species classified by Burns and 

Honkala (1990) as very tolerant or tolerant of shade.  STCF was the only stand which did not 

show a significant difference in the relative abundance of shade tolerant species between the 

canopy and understory (χ2
1df = 0.3, P = 0.59). 

1.4 DISCUSSION 

1.4.1 Do these old-growth stands show patterns indicative of canopy self-replacement? 

Low disturbance, old-growth forests have long been thought to maintain a stable species 

composition and structure across size classes, due to the prominence of shade tolerant species in 

all size classes and the importance of the understory layer in replacing canopy trees (Hough and 

Forbes 1943; Oliver and Larson 1996; Poulson and Platt 1996).  In the absence of less frequent, 

intermediate- (removal of 10 - 50% of the canopy, Woods 2004) or large-scale (stand-replacing) 

disturbances, the species composition of the understory is expected to resemble that of the 

canopy, consisting largely of shade tolerant species capable of long-term persistence while 
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suppressed in the understory.  With the exception of one stand, STCF, the stands sampled in this 

study do not show regeneration patterns expected for canopy self-replacement in low 

disturbance, old-growth forests.  Excluding woody shrubs and understory specialist species (e.g. 

Acer pensylvanicum), understory diversity and species richness were consistently lower than 

canopy diversity and species richness (Fig. 2, Fig. 3, Table 2, Table 3), contradicting our 

expectations if these stands were in fact late successional, mature old-growth stands (see below).  

Only 2 of the 19 stands (ARNA and CSNA) showed no significant difference in Shannon 

diversity between canopy and understory size classes (ARNA: F2,15 = 0.4, P = 0.67; CSNA: F2,21 

= 1.2, P = 0.31) and only 1 stand showed no significant difference in species richness between 

canopy and understory classes (ARNA: F2, 15 = 0.42, P = 0.66).   

The lower understory diversity and species richness is due to the absence or significantly 

lower abundance of oaks and mixed hardwood species in the understory of most stands (Fig. 5, 

Table 5).  The understory species composition differed significantly from the canopy in 18 of 19 

stands (Fig. 4, Fig. 5, Table 4).  The only stand showing no significant difference in understory 

and canopy species composition, STCF, was dominated by hemlock and birch in all size classes 

(Fig. 5, Table 4).  The understory of all stands showed a distinct species composition that was 

different from the canopy in an ordination of species abundances (Fig. 4).  In the most detailed 

studies on the role of species abundance in the understory and patterns of canopy recruitment, 

Runkle (1981) and Lertzman (1992) found a high degree of similarity in the species composition 

of the canopy and understory in old-growth stands demonstrating canopy self-replacement under 

gap-phase disturbance regimes (also, see Kneeshaw and Bergeron 1998).  Therefore, significant 

differences in the canopy and understory species composition in 18 of the 19 stands sampled 
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indicates that in the absence of intermediate or large-scale disturbances, the future species 

composition of the canopy will differ from the current composition in almost all stands. 

Differences in species composition of the understory and canopy were primarily due to 1) 

the almost complete absence of oak species in the understory in 12 stands with a high abundance 

of oak in the canopy (Fig. 5, Fig. 6), 2) a significantly lower abundance of subdominant, mixed 

hardwood species in the understory of 4 stands, 3) a significantly higher understory abundance of 

beech in 3 stands, and 4) a significantly higher understory abundance of hemlock in 9 stands 

(Fig. 5, Table 5, see Results for specific references to individual stands).  Below, we discuss the 

likely causes and implications of each of these shifts in species composition. 

1.4.2 Factors influencing existing regeneration patterns 

In 12 of the 19 stands sampled, we found a high abundance of oaks (10-50% of canopy stems) in 

the canopy and a complete or near absence of oaks in the understory (Fig. 6), consistent with a 

growing body of literature documenting failed oak regeneration throughout temperate secondary 

forests across eastern North America (reviewed in Abrams 1992; Abrams 2003).  Evidence from 

dendrochronology (e.g. Nowacki and Abrams 1997), experimental (e.g. Brose and Van Lear 

1998), observational (e.g. Brown 1960), and pollen count (Delcourt and Delcourt 1987) studies 

suggest that recurring understory fire maintained historically high oak abundance throughout 

much of the eastern temperate forest.  Recurring understory fire is hypothesized to promote oak 

regeneration by reducing understory competition from both shade tolerant and faster growing 

species that are less tolerant of fire (Brown 1960; Christensen 1977; Lorimer et al. 1994).  

Decades of oak regeneration failure have been attributed to twentieth century policies of fire 

suppression (Abrams 1992), which for example, have led a >50% decrease in the number of fires 
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and area burned in Pennsylvania from 1908 to 1990 (Abrams and Nowacki 1992; Haines et al. 

1978).  The suppression of periodic understory fire allows fire-sensitive species (e.g. sugar 

maple, red maple) to regenerate and replace oaks in the understory (Christensen 1977; Lorimer et 

al. 1994).  Therefore, it is likely that the loss of oak and replacement by more shade tolerant 

species (see below) in the understory of the 12 oak stands is partly due to fire suppression. 

Decades of overbrowsing by high white-tailed deer populations is another likely cause of 

failed oak regeneration, low understory hardwood abundance, and low tree diversity in the 

understory.  Deer densities sufficient to negatively impact tree regeneration have been reported 

in Pennsylvania since the 1930s (Bjorkbom and Larson 1977; Hough and Forbes 1943; Lutz 

1930) and continue to inhibit forest regeneration today (DCNR 2004; Horsley et al. 2003).  Deer 

can reduce understory densities, understory diversity, and increase the relative abundance of 

browse- and shade-tolerant species (Frelich and Lorimer 1985; Horsley et al. 2003; Waller and 

Alverson 1997).  The understory in our study sites had significantly lower diversity (Fig. 2, 

Table 2), a high abundance of browse-tolerant species (e.g. Fagus grandifolia (Fig. 5), Acer 

pensylvanicum-data not shown), and had low densities of small saplings.  Densities of small 

saplings (1.4m tall to 5cm d.b.h.) averaged 492.3 ± 282.95 (± 1 SE) stems ha-1 in the 19 stands 

sampled, including two stands with considerably higher small sapling densities than the other 17 

stands (TANF = 5395 stems ha-1, ARNA = 1500 stems ha-1).  Excluding the TANF and ARNA 

stands, the other 17 stands averaged 144.6 ± 31.62 small saplings ha-1, ranging from 0 - 477.8 

small saplings ha-1.  Both small sapling density estimates are lower than densities reported for 

temperate old-growth stands; 622 - 2180 small saplings ha-1 for hemlock-northern hardwood 

stands (Chokkalingam and White 2001; Leopold et al. 1988; Orwig et al. 2001) and 428 - 2010 

small saplings ha-1 for mesophytic stands (Brothers 1993; Chester et al. 1995; Runkle 1998), 
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indicating that the low small sapling density cannot be attributed solely to long periods of 

understory suppression.  Taken together, the low density of small saplings, low understory 

diversity, and high understory abundance of browse-tolerant species suggest a long-term 

negative effect of deer on old-growth regeneration.  Furthermore, the negative impacts of deer 

overbrowsing on regeneration has been documented for 5 of the stands sampled in this study, 

TANF (Bjorkbom and Larson 1977), HCANF (Lutz 1930), SACF (Orwig and Abrams 1999), 

BMNA (Abrams et al. 2001), and FCCF (Abrams and Orwig 1996).   

Although there is evidence that old-growth forests can maintain diversity and species 

composition under low severity gap-phase disturbance regimes (Fox 1977; Kneeshaw and 

Bergeron 1998; Lertzman 1992; Lorimer 1980; Poulson and Platt 1996; Runkle 1981), models of 

secondary succession predict directional changes in species composition towards increasing 

abundances of shade tolerant species (e.g. hemlock, beech, sugar maple) and concomitant 

decrease in both mid-tolerant (e.g. oaks) and shade intolerant species (e.g tulip poplar, white ash) 

abundance (Connell and Slatyer 1977; Oliver and Larson 1996; Pacala et al. 1996).  The higher 

understory abundance of shade tolerant species in 18 of 19 stands (Table 6) supports evidence 

from Woods (2000a; 2000b) that old-growth stands continue to show directional replacement of 

species, even centuries after the last major disturbance event.  The high understory abundance of 

shade tolerant species is largely a result of the higher abundance of hemlock and beech in the 

understory than canopy (in 9 and 3 stands, respectively; Fig. 5, Table 5).  The one stand which 

did not show a higher understory abundance of shade tolerant species, STCF, was dominated by 

the shade tolerant hemlock across all size classes (Fig. 5, Table 5). 

It is likely that the low diversity and relatively homogenized species composition of the 

understory, relative to the canopy (Fig. 2, Fig. 4, Fig. 5), is due to the combined effects of fire 
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suppression, pervasive deer browsing, and low-severity disturbance regimes.  These three factors 

all promote the regeneration of shade tolerant species (Abrams and Nowacki 1992) and browse-

tolerant species (Banta et al. 2005; Horsley et al. 2003), as well as the exclusion of mid-tolerant 

and intolerant species.  Larger disturbances, with estimated return times of 500-1500 years 

(Canham and Loucks 1984; Frelich and Lorimer 1991; Seymour et al. 2002), can maintain mid-

tolerant and intolerant species (Petraitis et al. 1989).  However, recent work has shown 

idiosyncratic effects of intermediate and large-scale disturbances on regeneration patterns due to 

variation in disturbance severity, survival rates of canopy trees, availability of propagules, stand 

history, and biotic interactions such as deer browse (Cooper-Ellis et al. 1999; Peterson and 

Carson 1996; Peterson and Pickett 1995; Webb and Scanga 2001).  Therefore, while it is 

possible that larger disturbances in the future may promote the regeneration and maintenance of 

mid-tolerant and shade intolerant species, it is beyond the scope of this study to predict the 

consequences of such disturbances on the regeneration patterns of these stands. 

1.4.3 Implications for conservation and management 

The old-growth stands sampled were not undisturbed examples of pre-European 

temperate forests; it is likely that such forests are exceedingly rare in the eastern USA (Davis 

1996).  Many of these stands experienced some selective logging (Abrams and Orwig 1996; 

Orwig and Abrams 1999), loss of chestnut (Aughanbaugh 1935), and possible edge-effects from 

the clear-cutting of adjacent forests.  However, while not pristine, these stands show 

characteristics (e.g. basal area, coarse woody debris) consistent with values reported for other 

old-growth stands and which have often been used to define "old-growth" (Keddy and 

Drummond 1996).  Stand basal areas ranged from 12.9 - 83.72 m2 ha-1 (Table 1), comparable to 
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the range of 26 to 61m2 ha-1 found in other eastern old growth stands (Chokkalingam and White 

2001; Keddy and Drummond 1996; McGee et al. 1999; Tyrrell and Crow 1994; Ziegler 2000).  

Additionally, the volume of coarse woody debris ranged from 27.64 - 613.54 m3 ha-1 (Table 1), 

with most stands consistent with the range of 29 to 180.9 m3 ha-1 found in other eastern old 

growth stands (Chokkalingam and White 2001; McGee et al. 1999; Ziegler 2000).  The HCANF 

stand had a much higher CWD volume (613.54 m3 ha-1) than the other 18 stands in this study 

(Table 1), and higher than the CWD volume found in other eastern old growth stands 

(Chokkalingam and White 2001; McGee et al. 1999; Ziegler 2000).  Beech (F. grandifolia) is 

common in the canopy and subcanopy of HCANF (Fig. 5), and it is likely that the high CWD 

volume of the HCANF stand is due to beech canopy tree mortality as a result of beech bark 

disease in this stand, described by Runkle (2007).        

Therefore, although these stands are not pristine examples of pre-European forest, they 

are representative of the known examples of old growth forest in the eastern USA.  Old growth 

stands serve as valuable tools for understanding forest dynamics and determining reference 

points for the management of future old-growth.  However, the conservation and management of 

existing old growth, and the management of secondary forests for old growth characteristics, 

requires a better understanding of regeneration patterns of current old-growth stands. 

We found common patterns of regeneration across stands, including a lower diversity in 

the understory than in the canopy, low understory density, and a shift in the understory species 

composition from that found in the canopy.  These patterns of regeneration suggest that fire 

suppression, deer browsing, and gap-phase dynamics all partly underlie these shifts in understory 

species composition.  In the absence of large-scale disturbances, these shifts in understory 

species composition are likely to persist, as understory individuals recruit into the canopy.  
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Furthermore, this shift in understory species composition may cause dramatic changes in future 

canopy composition if pathogen induced mortality (e.g. hemlock woolly adelgid, beech bark 

disease, emerald ash borer) increases canopy turn-over in the coming century. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



Table 1.  Stand names (including abbreviations used in Figures), coordinates, physiographic region, stand type, stand size, 

percent of the stand sampled, live tree basal area (m2 ha-1), live tree stem density (stems ha-1), and volume of coarse woody debris 

(CWD, m3 ha-1). 

Stand Name Location Regiona 
Stand 
Typeb 

Stand 
Size 

% Stand 
Sampled 

Basal 
Area 

Stem 
Density CWD 

Ander's Run Natural Area (ARNA) 41° 49' 33N, 79° 16' 45W AP RO 4.2 12.96 38.91 786.08 104.78 
Alan Seeger Natural Area (ASNA) 40° 41' 39N, 79° 16' 45W RV RO 20.5 7.97 39.49 408.96 91.31 
Bark Cabin Natural Area (BCNA) 41° 25' 09N, 77° 23' 12W DV RO 6.5 8.38 12.90 585.88 27.64 
Bear Meadows Natural Area (BMNA) 40° 43' 45N, 77° 45' 44W RV RO 136 1.33 34.16 563.11 89.39 
Bear Run Natural Area (BRNA) 40° 53' 13N, 77° 19' 18W AP RO 3.25 16.75 43.43 808.12 86.98 
Cranberry Swamp Natural Area (CSNA) 41° 15' 12N, 77° 43' 28W DV RO* 52.7 1.38 25.64 611.60 40.29 
Cook Trail - Cook Forest (CTCF) 41° 19' 56N, 79° 11' 35W AP HE 16.2 9.52 43.14 413.57 145.96 
Deer Meadow - Cook Forest (DMCF) 41° 21' 51N, 79° 13' 23W AP HE 12.3 7.38 38.89 484.87 166.78 
Detweiler Run Natural Area (DRNA) 40° 43' 21N, 77° 44' 18W RV RO 28 5.83 37.64 470.18 96.78 
Forest Cathedral - Cook Forest (FCCF) 41° 20' 33N, 79° 12' 32W AP HE 17.8 8.16 50.22 562.70 144.18 
Forrest H. Duttlinger Natural Area (FDNA) 41° 28' 10N, 77° 53' 33W DV HE 13.5 5.38 55.81 735.57 84.19 
Heart's Content - Allegheny National Forest (HCANF) 41° 41' 24N, 79° 14' 52W AP HE 12 9.07 40.74 458.24 613.54 
Johnson Run Natural Area (JRNA) 41° 21' 36N, 78° 04' 07W DV RO 27.8 4.24 36.46 667.97 46.51 
Lower Jerry Run Natural Area (LJRNA) 41° 15' 42N, 78° 04' 07W DV RO 2.75 19.80 40.15 383.86 30.90 
Swamp Area - Cook Forest (SACF) 41° 23' 36N, 79° 12' 49W AP HE$ 26 4.19 83.72 1178.20 152.94 
Snyder-Middlesworth Natural Area (SMNA) 40° 48' 36N, 77° 17' 13W RV HE 10.3 17.62 24.74 547.68 139.64 
Seneca Trail - Cook Forest (STCF) 41° 19' 44N, 79° 12' 45W AP HE 13.6 6.67 42.62 403.32 312.94 
Tionesta - Allegheny National Forest (TANF) 41° 38' 36N, 78° 56' 49W AP HE 1267 0.15 27.47 934.58 251.50 
Wykoff Run Natural Area WRNA) 41° 14' 46N, 78° 11' 40W DV RO 73.7 1.72 31.19 506.91 58.05 

 
 

a "AP" is High Allegheny Plateau, "DV" is Deep Valley Allegheny Plateau, and "RV" is Ridge and Valley (DCNR 2000) 

b "RO" is Hemlock - red oak - mixed hardwood stand type, "HE" is hemlock - white pine - northern hardwood stand type (sensu, Fike 1999)  

* CSNA can be more specifically classified as a red oak - mixed hardwood forest type, due to the low representation of conifers (Fike 1999) 

$ SACF can be more specifically classified as a hemlock - mixed hardwood palustrine forest, due to the temporal inundation of the stand (Fike 1999) 
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Table 2.  Results of Anova for Shannon diversity index at the stand level and for Tukey's Honestly Significant Difference 

comparisons between individual size classes.  See Table 1 for stand names.  Size classes are abbreviated in the Comparisons column 

as: canopy (CAN), subcanopy (SUB), and understory (UND).  Degrees of freedom (d.f.) are shown for class and residuals.  Note that 

p-values > 0.05 are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  20



Stand Comparison d.f. F value P value   Stand Comparison d.f. F value P value   
              
ARNA Stand-level 2,15 0.41 0.99   FDNA Stand-level 2, 21 7.02 0.0046   
 CAN - UND 1,15  0.99    CAN - UND 1, 21  0.0042   
 CAN - SUB 1,15  0.7    CAN - SUB 1, 21  0.56   
 SUB - UND 1,15  0.75    SUB - UND 1, 21  0.04   
ASNA Stand-level 2, 51 27.09 < 0.001   HCANF Stand-level 2, 33 8.32 0.001   
 CAN - UND 1, 51  <0.001    CAN - UND 1, 33  0.02   
 CAN - SUB 1, 51  0.006    CAN - SUB 1, 33  0.001   
 SUB - UND 1, 51  <0.001    SUB - UND 1, 33  0.49   
BCNA Stand-level 2, 15 24.16 <0.001   JRNA Stand-level 2, 36 6.72 0.003   
 CAN - UND 1, 15  <0.001    CAN - UND 1, 36   0.003   
 CAN - SUB 1, 15  0.02    CAN - SUB 1, 36   0.05   
 SUB - UND 1, 15  0.003    SUB - UND 1, 36   0.46   
BMNA Stand-level 2, 57 29.18 <0.001   LJRNA Stand-level 2, 15 5.66 0.02   
 CAN - UND 1, 57  <0.001    CAN - UND 1, 15  0.01   
 CAN - SUB 1, 57  <0.001    CAN - SUB 1, 15  0.11   
 SUB - UND 1, 57  0.03    SUB - UND 1, 15  0.49   
BRNA Stand-level 2, 15 17.93 <0.001   SACF Stand-level 2, 57 41.76 <0.001   
 CAN - UND 1, 15  <0.001    CAN - UND 1, 57  <0.001   
 CAN - SUB 1, 15  0.01    CAN - SUB 1, 57  <0.001   
 SUB - UND 1, 15  0.052    SUB - UND 1, 57  <0.001   
CSNA Stand-level 2, 21 1.22 0.31   SMNA Stand-level 2, 33 15.23 <0.001   
 CAN - UND 1, 21  0.38    CAN - UND 1, 33  <0.001   
 CAN - SUB 1, 21  0.38    CAN - SUB 1, 33  0.02   
 SUB - UND 1, 21  1    SUB - UND 1, 33  0.03   
CTCF Stand-level 2, 39 23.28 <0.001   STCF Stand-level 2, 27 13.81 <0.001   
 CAN - UND 1, 39   <0.001    CAN - UND 1, 27  <0.001   
 CAN - SUB 1, 39   0.042    CAN - SUB 1, 27  0.007   
 SUB - UND 1, 39   <0.001    SUB - UND 1, 27  0.16   
DMCF Stand-level 2, 27 16.07 <0.001   TANF Stand-level 2, 60 17.36 <0.001   
 CAN - UND 1, 27  <0.001    CAN - UND 1, 60  <0.001   
 CAN - SUB 1, 27  0.0033    CAN - SUB 1, 60  0.82   
 SUB - UND 1, 27  0.14    SUB - UND 1, 60  <0.001   
DRNA Stand-level 2, 51 17.2 <0.001   WRNA Stand-level 2, 39 5.56 0.008   
 CAN - UND 1, 51  <0.001    CAN - UND 1, 39  0.006   
 CAN - SUB 1, 51  0.35    CAN - SUB 1, 39  0.55   
 SUB - UND 1, 51  <0.001    SUB - UND 1, 39  0.08   
FCCF Stand-level 2, 45 25.2 <0.001          
 CAN - UND 1, 45  <0.001          
 CAN - SUB 1, 45  <0.001          
 SUB - UND 1, 45  0.16          
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Table 3.  Results of Anova for species richness at the stand level and for Tukey's Honestly Significant Difference comparisons 

between individual size classes.  Size classes are abbreviated in the Comparisons column as: canopy (CAN), subcanopy (SUB), and 

understory (UND).  Note that p-values > 0.05 are in bold. 
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Stand Comparison d.f. F value P value   Stand Comparison d.f. F value P value   
              
ARNA Stand-level 2,15 0.42 0.66   FDNA Stand-level 2, 21 10.72 <0.001   
 CAN - UND 1,15  0.67    CAN - UND 1, 21  <0.001   
 CAN - SUB 1,15  0.77    CAN - SUB 1, 21  0.13   
 SUB - UND 1,15  0.98    SUB - UND 1, 21  0.04   
ASNA Stand-level 2, 51 38.67 < 0.001   HCANF Stand-level 2, 33 12.91 <0.001   
 CAN - UND 1, 51  <0.001    CAN - UND 1, 33  0.002   
 CAN - SUB 1, 51  <0.001    CAN - SUB 1, 33  <0.001   
 SUB - UND 1, 51  <0.001    SUB - UND 1, 33  0.49   
BCNA Stand-level 2, 15 36.18 <0.001   JRNA Stand-level 2, 36 10.46 <0.001   
 CAN - UND 1, 15  <0.001    CAN - UND 1, 36   <0.001   
 CAN - SUB 1, 15  0.001    CAN - SUB 1, 36   0.25   
 SUB - UND 1, 15  0.003    SUB - UND 1, 36   0.02   
BMNA Stand-level 2, 57 21.88 <0.001   LJRNA Stand-level 2, 15 17.47 <0.001   
 CAN - UND 1, 57  <0.001    CAN - UND 1, 15  <0.001   
 CAN - SUB 1, 57  <0.001    CAN - SUB 1, 15  0.008   
 SUB - UND 1, 57  0.03    SUB - UND 1, 15  0.08   
BRNA Stand-level 2, 15 16.47 <0.001   SACF Stand-level 2, 57 38.91 <0.001   
 CAN - UND 1, 15  <0.001    CAN - UND 1, 57  <0.001   
 CAN - SUB 1, 15  0.97    CAN - SUB 1, 57  <0.001   
 SUB - UND 1, 15  0.007    SUB - UND 1, 57  <0.001   
CSNA Stand-level 2, 21 4.34 0.03   SMNA Stand-level 2, 33 4.02 0.03   
 CAN - UND 1, 21  0.04    CAN - UND 1, 33  0.02   
 CAN - SUB 1, 21  0.97    CAN - SUB 1, 33  0.55   
 SUB - UND 1, 21  0.06    SUB - UND 1, 33  0.2   
CTCF Stand-level 2, 39 25.25 <0.001   STCF Stand-level 2, 27 11.93 <0.001   
 CAN - UND 1, 39   <0.001    CAN - UND 1, 27  <0.001   
 CAN - SUB 1, 39   0.002    CAN - SUB 1, 27  0.008   
 SUB - UND 1, 39   0.005    SUB - UND 1, 27  0.3   
DMCF Stand-level 2, 27 16.37 <0.001   TANF Stand-level 2, 60 12.11 <0.001   
 CAN - UND 1, 27  <0.001    CAN - UND 1, 60  <0.001   
 CAN - SUB 1, 27  0.01    CAN - SUB 1, 60  0.56   
 SUB - UND 1, 27  0.04    SUB - UND 1, 60  0.002   
DRNA Stand-level 2, 51 15.1 <0.001   WRNA Stand-level 2, 39 5.15 0.01   
 CAN - UND 1, 51  <0.001    CAN - UND 1, 39  0.009   
 CAN - SUB 1, 51  0.95    CAN - SUB 1, 39  0.55   
 SUB - UND 1, 51  <0.001    SUB - UND 1, 39  0.1   
FCCF Stand-level 2, 45 39.3 <0.001          
 CAN - UND 1, 45  <0.001          
 CAN - SUB 1, 45  <0.001          
 SUB - UND 1, 45  0.05          



Table 4.  Nonparametric MANOVA results for species composition at stand-level and size class contrasts (1000 permutations 

for all analyses).  See Table 1 for stand names.  Plots with no stems in the size classes being compared were removed from analyses, 

as dissimilarity indices could not be calculated in the absence of stems.   Note that p-values > 0.05 are in bold.  
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Stand Comparison F value P value   Stand Comparison F value P value 
          
ARNA Stand-level 3.9 <0.01   FDNA Stand-level 2.2 0.03 
 CAN - UND 7.4 <.001    CAN - UND 3.6 0.01 
 CAN - SUB 2.3 0.05    CAN - SUB 0.8 0.51 
 SUB - UND 2.6 0.06    SUB - UND 2.2 0.10 
ASNA Stand-level 3.0 <0.01   HCANF Stand-level 3.2 <0.01 
 CAN - UND 4.9 <0.001    CAN - UND 4.8 <0.001 
 CAN - SUB 5.5 <0.001    CAN - SUB 5.7 <0.001 
 SUB - UND 1.7 0.08    SUB - UND 0.3 0.84 
BCNA Stand-level 2.9 <0.01   JRNA Stand-level 3.3 0.01 
 CAN - UND 4.2 <0.001    CAN - UND 5.7 <0.001 
 CAN - SUB 3.0 0.02    CAN - SUB 3.8 0.01 
 SUB - UND 1.6 0.18    SUB - UND 0.9 0.37 
BMNA Stand-level 7.2 <0.01   LJRNA Stand-level 4.5 <0.01 
 CAN - UND 7.3 <0.001    CAN - UND 9.2 <0.001 
 CAN - SUB 9.9 <0.001    CAN - SUB 0.6 0.52 
 SUB - UND 5.1 <0.001    SUB - UND 5.8 <0.001 
BRNA Stand-level 9.4 <0.01   SACF Stand-level 6.3 <0.01 
 CAN - UND 8.6 <0.001    CAN - UND 8.7 <0.001 
 CAN - SUB 6.5 0.002    CAN - SUB 9.4 <0.001 
 SUB - UND 14.7 <0.001    SUB - UND 3.4 0.023 
CSNA Stand-level 5.4 <0.01   SMNA Stand-level 8.7 <0.01 
 CAN - UND 8.0 <0.001    CAN - UND 13.3 <0.001 
 CAN - SUB 5.6 0.002    CAN - SUB 14.5 <0.001 
 SUB - UND 4.8 <0.001    SUB - UND 1.0 0.34 
CTCF Stand-level 5.7 <0.01   STCF Stand-level 1.3 0.20 
 CAN - UND 8.4 <0.001    CAN - UND 1.6 0.14 
 CAN - SUB 2.8 0.03    CAN - SUB 0.9 0.47 
 SUB - UND 4.8 <0.001    SUB - UND 0.3 0.92 
DMCF Stand-level 10.9 <0.01   TANF Stand-level 17.9 <0.01 
 CAN - UND 10.5 <0.001    CAN - UND 34.7 <0.001 
 CAN - SUB 13.4 <0.001    CAN - SUB 2.1 0.05 
 SUB - UND 9.8 <0.001    SUB - UND 19.0 <0.001 
DRNA Stand-level 5.0 <0.01   WRNA Stand-level 6.2 <0.01 
 CAN - UND 7.7 <0.001    CAN - UND 9.7 <0.001 
 CAN - SUB 4.0 0.003    CAN - SUB 1.7 0.11 
 SUB - UND 3.2 0.002    SUB - UND 6.3 <0.001 
FCCF Stand-level 5.3 <0.01       
 CAN - UND 5.5 <0.001       
 CAN - SUB 7.1 <0.001       
 SUB - UND 3.7 0.02       



Table 5.  Results of Kruskal-Wallis tests on the relative abundance of oak (Quercus), subdominant mixed hardwood species 

(HW), hemlock (Tsca), and beech (Fagr) between understory and canopy layers.  Not all sites show results for all species because not 

all species were present at sites, or present in high enough abundance to conduct analyses.  Note that p-values > 0.05 are in bold. 

Stand Species Chi-
Squared 

P value   Stand Species Chi-
Squared 

P value 

ARNA Quercus 8.6 0.003   DRNA HW 2.9 0.09 
ARNA HW 0.6 0.42   DRNA Tsca 9.5 0.002 
ARNA Tsca 5.3 0.02   DRNA Fagr 1.4 0.23 
ARNA Fagr 8.6 0.003   FCCF HW 10.1 0.002 
ASNA Quercus 20.6 <0.001   FCCF Tsca 21.1 <0.001 
ASNA HW 8.6 0.003   FCCF Fagr 4.6 0.03 
ASNA Tsca 0.4 0.54   FDNA Tsca 10.6 0.001 
BCNA Quercus 9.5 0.002   HCANF HW 2.1 0.15 
BCNA HW 6.1 0.01   HCANF Tsca 0.0 0.95 
BCNA Tsca 0.4 0.52   HCANF Fagr 6.1 0.01 
BMNA Quercus 22.7 <0.001   JRNA Quercus 17.1 <0.001 
BMNA HW 0.2 0.68   JRNA HW 2.7 0.10 
BMNA Tsca 0.2 0.70   JRNA Tsca 0.0 0.98 
BRNA Quercus 5.2 0.02   LJRNA Quercus 6.2 0.01 
BRNA HW 4.6 0.03   LJRNA Tsca 8.3 0.004 
BRNA Tsca 8.4 0.004   SACF Quercus 20.9 <0.001 
CSNA Quercus 12.3 <0.001   SACF HW 10.6 0.001 
CSNA HW 0.6 0.44   SACF Tsca 16.3 <0.001 
CTCF Quercus 15.2 <0.001   SACF Fagr 1.3 0.25 
CTCF HW 0.1 0.81   SMNA Tsca 14.6 <0.001 
CTCF Tsca 4.7 0.03   STCF Tsca 0.6 0.43 
CTCF Fagr 6.8 0.009   TANF HW 5.5 0.02 
DMCF HW 5.6 0.02   TANF Tsca 20.4 <0.001 
DMCF Tsca 12.1 0.001   TANF Fagr 27.0 <0.001 
DMCF Fagr 8.0 0.005   WRNA Quercus 7.1 0.008 
DRNA Quercus 11.7 0.001   WRNA HW 2.0 0.15 
 

 

 

     WRNA Tsca 5.0 0.03 
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Table 6.  Results of Kruskal-Wallis tests on the abundance of shade-tolerant species (sensu, Burns and Honkala 1990) in 

understory and canopy size classes.  Note that p-values > 0.05 are in bold. 

 

 

Stand Chi-Square P value 
 
ARNA 

 
7.4 

 
0.006 

ASNA 6.7 0.01 
BCNA 8.0 0.005 
BMNA 25.2 <0.001 
BRNA 8.4 0.004 
CSNA 11.7 0.001 
CTCF 13.0 <0.001 
DMCF 10.8 0.001 
DRNA 4.8 0.03 
FCCF 19.9 <0.001 
FDNA 8.9 0.003 
HCANF 4.6 0.03 
JRNA 19.0 <0.001 
LJRNA 8.3 0.004 
SACF 19.8 <0.001 
SMNA 10.1 0.001 
STCF 0.3 0.59 
TANF 14.9 <0.001 
WRNA 8.7 0.003 
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Figure 1.  Map of Pennsylvania and positions of the stands sampled.  Note that stand locations are not exact in order to clearly 

identify stand names.  See Table 1 for stand names and descriptive information. 
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Figure 2.  Size class Shannon diversity in the canopy (Can: >25cm d.b.h.), subcanopy (Sub: 10 - 25cm d.b.h.), and understory 

(Und: 0.1 - 10cm d.b.h.) size classes in all 19 stands (see Table 1 for stand names).  Results of Tukey's HSD contrasts are shown as 

letters indicating significant differences.  
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Figure 3.  Species richness in the canopy (Can), subcanopy (Sub), and understory (Und) size classes in all 19 stands (see Table 

1 for stand names).  Results of Tukey's HSD contrasts are shown as letters indicating significant differences.  Note that the scale of the 

y-axis differs between stands. 
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Figure 4.  Non-metric multidimensional scaling (NMDS) ordination of species abundance in canopy (filled squares, ■), 

subcanopy (filled circles, ●), and understory (open circles, ○) for each stand.  Each symbol represents the canopy, subcanopy, or 

understory of an individual stand; therefore there are 19 of each symbol.  Four letter species name abbreviations indicate the 

positioning of all species sampled.  Key species names are TSCA: Tsuga canadensis, ACSA: Acer saccharum, FAGR: Fagus 

grandifolia, BEAL: Betula alleghaniensis, BELE: Betula lenta, QURU: Quercus rubra, QUAL: Quercus alba.  '+' symbols indicate 

overlapping species names, in which case, the less abundant species name is replaced by '+.' 
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Figure 5.  Relative abundance of all species in the canopy (Can), subcanopy (Sub), and understory (Und) size classes in all 19 

stands (see Table 1 for stand names).  "Mixed hardwood (HW)" category includes all hardwood species comprising less than ten 

percent of the stems in the stand (e.g. Liriodendron tulipifera, Fraxinus americana, Nyssa sylvatica), while "Conifer" category 

includes Picea rubens and Pinus resinosa.  Acer, Betula, and Quercus species are pooled into their respective genera.  Species 

abbreviations: Fagr: Fagus grandifolia, Pist: Pinus strobus, Tsca: Tsuga canadensis. 
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Figure 6.  Relative abundance of Quercus species in canopy (Can), subcanopy (Sub), and understory (Und) size classes in 12 

stands where pooled relative abundance of Quercus species exceeds 10% of canopy.  See Table 1 for stand names and Table 5 for 

results of Kruskal-Wallis tests of difference in abundance between size classes. Species abbreviations: QUAL: Quercus alba, QUPR: 

Q. prinus, QURU: Q. rubra, QUVE: Q. velutina.  Note that the scale of the y-axis differs between stands. 
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APPENDIX 

COMPARISON OF SHANNON AND INVERSE SIMPSON'S DIVERSITY INDEX 

RESULTS 

Two diversity indices were used to test for differences in diversity amongst size classes across all 

stands and within individual stands.  There is little consensus in the literature regarding the most 

appropriate diversity index to use (Jost 2006), therefore, to reduce the likelihood that the choice 

of the diversity index might bias the results, the Shannon and inverse Simpson's diversity indices 

were used for all analyses of diversity.  The Shannon and inverse Simpson's diversity indices are 

both commonly used in the literature, however the Shannon diversity weights species equally by 

their frequency, while the inverse Simpson's diversity disproportionately favors the most 

common species (Jost 2006).  Inverse Simpson's index values were ln transformed to meet the 

assumptions of ANOVA, though Shannon diversity values did not require transformation for 

analysis.  

The inverse Simpson's diversity index (D) was calculated on a per plot basis as 

[A1] ∑
=

=
S

i
ipD

1

21                                

, where S is the total number of species in the plot and pi is the relative abundance of the ith 

species (Jost 2006).  The results of the ANOVA at the stand level were consistent between the 

Shannon and inverse Simpson's diversity indices.  Specifically, there was a significant difference 
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in diversity between size classes in 17 of 19 stands and this is seen in both the Shannon and 

inverse Simpson's diversity indices (Stand-level comparisons, Table A1).  The ARNA and 

CSNA stands showed no significant difference in diversity between size classes, and again, this 

is seen in both the Shannon and inverse Simpson's diversity indices (Stand-level comparisons, 

Table A1).  The results of the Tukey's honestly significant difference contrasts show less 

consistency between the two diversity indices used, however, qualitatively similar results were 

found for 18 of 19 contrasts between the understory and canopy size classes (HCANF showed 

the only inconsistent result between the two diversity indices), and in 47 of the total 57 contrasts 

(Table A1).  The primary focus of these analyses is the comparison of the understory and canopy 

size classes (see predictions in INTRODUCTION, p. 3), which showed very consistent results 

irrespective of the diversity index used.  Therefore, given the consistency of the results for 

inverse Simpson's and Shannon index, we only present results for the Shannon's diversity index.   
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Table A1.  Comparisons of the results from Anova for Shannon and Inverse Simpson’s (InvSimp) diversity indices at 

the stand level and for Tukey’s Honestly Significant Difference comparisons between individual size classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Stand Comparison  Shannon Diversity  InvSimp Diversity  Stand Comparison  Shannon Diversity  InvSimp Diversity  
  d.f. F value P value F value P value   d.f. F value P value F value P value
ARNA Stand-level 2,15 0.4 0.99 2.2 0.14 FDNA Stand-level 2, 21 7.0 0.005 3.8 0.034 
 CAN - UND 1,15  0.99  0.73  CAN - UND 1, 21  0.004  0.035 
 CAN - SUB 1,15  0.7  0.41  CAN - SUB 1, 21  0.56  0.67 
 SUB - UND 1,15  0.75  0.13  SUB - UND 1, 21  0.04  0.19 
ASNA Stand-level 2, 51 27.1 < 0.001 21.0 <0.001 HCANF Stand-level 2, 33 8.3 0.001 6.4 0.004 
 CAN - UND 1, 51  <0.001  <0.001  CAN - UND 1, 33  0.02  0.07 
 CAN - SUB 1, 51  0.006  0.003  CAN - SUB 1, 33  0.001  0.004 
 SUB - UND 1, 51  <0.001  0.011  SUB - UND 1, 33  0.49  0.44 
BCNA Stand-level 2, 15 24.2 <0.001 20.3 <0.001 JRNA Stand-level 2, 36 6.7 0.003 5.9 0.006 
 CAN - UND 1, 15  <0.001  <0.001  CAN - UND 1, 36  0.003  0.007 
 CAN - SUB 1, 15  0.02  0.004  CAN - SUB 1, 36  0.05  0.04 
 SUB - UND 1, 15  0.003  0.076  SUB - UND 1, 36  0.46  0.76 
BMNA Stand-level 2, 57 29.2 <0.001 24.8 <0.001 LJRNA Stand-level 2, 15 5.7 0.02 4.2 0.04 
 CAN - UND 1, 57  <0.001  <0.001  CAN - UND 1, 15  0.01  0.04 
 CAN - SUB 1, 57  <0.001  <0.001  CAN - SUB 1, 15  0.11  0.097 
 SUB - UND 1, 57  0.03  0.1  SUB - UND 1, 15  0.49  0.87 
BRNA Stand-level 2, 15 17.9 <0.001 10.7 0.001 SACF Stand-level 2, 57 41.8 <0.001 36.7 <0.001
 CAN - UND 1, 15  <0.001  0.001  CAN - UND 1, 57  <0.001  <0.001
 CAN - SUB 1, 15  0.01  0.013  CAN - SUB 1, 57  <0.001  <0.001
 SUB - UND 1, 15  0.05  0.49  SUB - UND 1, 57  <0.001  0.05 
CSNA Stand-level 2, 21 1.2 0.31 0.9 0.41 SMNA Stand-level 2, 33 15.2 <0.001 15.0 <0.001
 CAN - UND 1, 21  0.38  0.48  CAN - UND 1, 33  <0.001  <0.001
 CAN - SUB 1, 21  0.38  0.48  CAN - SUB 1, 33  0.02  0.02 
 SUB - UND 1, 21  1  1  SUB - UND 1, 33  0.03  0.05 
CTCF Stand-level 2, 39 23.3 <0.001 15.0 <0.001 STCF Stand-level 2, 27 13.8 <0.001 11.1 <0.001
 CAN - UND 1, 39   <0.001  <0.001  CAN - UND 1, 27  <0.001  <0.001
 CAN - SUB 1, 39   0.04  0.15  CAN - SUB 1, 27  0.007  0.007 
 SUB - UND 1, 39   <0.001  0.003  SUB - UND 1, 27  0.16  0.42 
DMCF Stand-level 2, 27 16.1 <0.001 16.3 <0.001 TANF Stand-level 2, 60 17.4 <0.001 11.9 <0.001
 CAN - UND 1, 27  <0.001  <0.001  CAN - UND 1, 60  <0.001  <0.001
 CAN - SUB 1, 27  0.003  <0.001  CAN - SUB 1, 60  0.82  0.99 
 SUB - UND 1, 27  0.14  0.70  SUB - UND 1, 60  <0.001  <0.001
DRNA Stand-level 2, 51 17.2 <0.001 13.8 <0.001 WRNA Stand-level 2, 39 5.6 0.008 4.0 0.03 
 CAN - UND 1, 51  <0.001  <0.001  CAN - UND 1, 39  0.006  0.02 
 CAN - SUB 1, 51  0.35  0.13  CAN - SUB 1, 39  0.55  0.44 
 SUB - UND 1, 51  <0.001  0.006  SUB - UND 1, 39  0.08  0.27 
FCCF Stand-level 2, 45 25.2 <0.001 13.3 <0.001        
 CAN - UND 1, 45  <0.001  0.002        
 CAN - SUB 1, 45  <0.001  0.41        
 SUB - UND 1, 45  0.16  0.04        
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