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DEVELOPING METHODS TO SOLVE THE WORKFORCE ASSIGNMENT 

PROBLEM CONSIDERING WORKER HETEROGENEITY AND LEARNING AND 

FORGETTING 

Natasa S. Vidic, PhD 

University of Pittsburgh, 2008 
 

 

In this research we studied how the assignment of a fully cross-trained workforce organized on a 

serial production line affects throughput. We focused on two serial production environments: 

dynamic worksharing on a production line, similar to bucket brigade systems and a fixed 

assignment serial-production line where workers work on a specific task during a given time 

period.  

For the dynamic assignment environment we concentrated on the impact of different 

assignment approaches and policies on the overall system performance. First, we studied two 

worker two station lines when incomplete dominance is possible as well as the effects of 

duplicating tooling at these lines. One focus of this research was to optimally solve the dynamic 

worksharing assignment problem and determine exact percentages of work performed by each 

worker under the assumptions presented. We developed a mixed integer programming 

formulation for n workers and m stations that models one-cycle balanced line behavior where 

workers exchange parts at exactly one position. This formulation is extended to incorporate 

multiple production lines. We also developed a two-cycle formulation that models a condition 

when workers exchange parts at exactly two positions in a periodic manner. We also determined 
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throughput levels when workers productivity changes over time due to workers’ learning and 

forgetting characteristics. 

A fixed worker assignment system considers a serial production setting in which work is 

passed from station to station with intermediate buffers between stations. We considered two 

models. The first model assumed that workers perform tasks based on their steady-state 

productivity rate. The second model assumed that workers’ productivity rates vary based on their 

learning and forgetting characteristics. Heuristic methods were developed and implemented to 

solve these two models and to determine optimal throughput levels and optimal worker 

assignments. We were also able to demonstrate the importance of introducing learning and 

forgetting into these types of worker assignment problems. A final focus of this research was the 

comparison of the dynamic worksharing and fixed worker assignment environments.  
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NOMENCLATURE 

 

 
I   The set of workers i = 1,2,…n. 

J   The set of tasks j = 1,2,…m. 

kij  Steady-state production rate for worker i doing task j.  

Output  Total throughput. Output ≥ 0. 

xij  Variable indicating the fraction of time worker i spends doing task j. xij ≥ 0.  

wj  The output from station/task j. wj ≥ 0. 

zij  Binary variable indicating whether worker i does task j.    

idlei  Variable indicating the amount of time worker i is idle. idlei ≥ 0. 

L     The set of lines l = 1,2,…o. 

Sp  The sets of tasks for each line p = 1,2,…,l. 

v  Number of workers at each line (given constant).   

Outputo    Total throughput from line o. Outputo ≥ 0. 

sio     Binary variable indicating whether worker i is assigned to line o.  

idle′i  Variable indicating the amount of time worker i is idle during the first cycle, 

idle″i  Variable indicating the amount of time worker i is idle during the second cycle. 

x′ij Variable indicating the amount of time worker i spends doing task j during the first cycle.  
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x″ij Variable indicating the amount of time worker i spends doing task j during the second 

cycle.  

w′j The output from station (task) j during the first cycle.  

w″j The output from station (task) j during the second cycle.  

z′ij Binary variable indicating whether worker i does task j during the first cycle. 

z″ij Binary variable indicating whether worker i does task j during the second cycle. 

yu Measure of the productivity rate corresponding to u units of cumulative work. yj ≥ 0. 

ui,j   Cumulative number of units produced by worker i at task (station) j. ui,j ≥ 0.  

pi,j   Imputed prior expertise of worker i doing task j, 

ri,j   Learning parameter of worker i doing task j, pi,j  + ri,j  > 0, 

αi,j   Forgetting rate of worker i doing task j, 

,i juR  Recency of individual experience based on units (ratio of average elapsed time to most 

recent unit time), 

,i just   Starting time of unit ui,j , 

,0i j
st  Starting time of the first unit of worker i doing task j, 

t0 Starting time for the first period of work. 

T  The set of time periods t = 1,2,…t. 

qijt  Binary variable indicating whether worker i does task j during time t. 

Oijt  The output from worker i performing task j during time t. Oi,j,t ≥ 0. 

Bjt  Buffer inventory level at task j at the end of period t. Bj,t ≥ 0. 

BIj  Beginning inventory for task j. 

prijt  Productivity if worker i does task j during time t. pri,j,t≥ 0. 

 xvii  



tjiR ,,  Recency of individual experience based on time periods (ratio of average elapsed time to 

most recent period time). 

M Very large number. 
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1.0 INTRODUCTION 

 

The manufacturing industry today faces a wide variety of challenges. Manufacturing 

companies around the world are attempting to improve their productivity, reduce manufacturing 

process complexity, and gain better production insight in order to stay on top of their industry. In 

today’s manufacturing market achieving high production efficiency is extremely important. 

Traditional production lines such as classical assembly lines are often inflexible and can be 

inefficient because it is difficult to balance the workload among the workers. In order to improve 

flexibility, maximally use resources, and maximize throughput many companies are applying 

worksharing concepts. Worksharing involves more than one worker doing a task rather than 

having tasks done by only one worker. A key prerequisite for worksharing is cross-training so 

that employees can perform more than one operation.  Cross trained workers represent flexible 

capacity and can be shifted dynamically to where they are needed (Hopp and Van Oyen 2004). 

In addition to reducing idle time and buffer sizes, cross-training workers is known to have other 

benefits, such as job enhancement, flexibility and reduced risk of worker injuries (Chen and 

Askin 2006). McClain (2000) points out that in some settings worksharing allows the line to be 

balanced by alternating which worker does a particular task, effectively splitting the shared tasks, 

so that the line balances itself.  
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Today’s manufacturing market is changing fast and is very competitive. When focusing 

on achieving high efficiency we also have to include the fact that today products have shorter life 

cycles and there is higher service diversity. Nembhard and Norman (2002) point out that many 

organizations face bigger challenges due to faster product changes, service diversity and intense 

competition. Organizations and service industries are facing new market challenges because of 

the accelerated rate of process innovation and as a result, products have shorter life cycles. Work 

activities need to be restructured and reorganized more often and workers need to master new 

tasks more frequently. A result of these frequent process and product changes is that workers 

learn new tasks very often. The amount of time the workforce spends on the steep part of the 

learning curve increases as new products are introduced (Uzumeri and Nembhard 1998). 

However, research in the area of worker-task assignment generally assumes steady-state 

productivity and the assignment of workers to tasks based on workers’ individual learning and 

forgetting characteristics has received very little attention in the literature. The necessity of 

incorporating worker learning and relearning behavior has been addressed by several researchers 

(Wisner and Pearson 1993) and it is misleading to assume steady-state productivity rates when 

workers master new tasks very often (Shafer et al. 2001).  

 In this research we consider how the assignment of a fully cross-trained workforce 

deployed on a serial production line affects throughput. Our overall aim is to develop methods to 

solve the worker assignment problem on a serial production line where serial operations vary in 

complexity and workforce is heterogeneous. We concentrate on two serial production 

environments: dynamic worksharing on a production line, similar to bucket brigades systems and 

a fixed assignment serial-production line where workers work on a specific task and there is no 

sharing during a given time period. 

 2  



 Dynamic assignment such as a bucket brigade system considers a serial production 

setting where workers walk to adjacent stations and carry the work towards the last station. This 

research considers the case where there are n workers and m stations and there are no buffers 

between the stations. Manufacturing systems organized in this way are one example of a “pull 

system”. Generally, in “pull systems” the work-in-process (WIP) is controlled and is minimal. 

An example production line is presented in Figure 1. 
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Buffer of 
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Figure 1: Serial Production Line: Dynamic Assignment Environment 

 

This type of production environment was introduced by Toyota and is called the “Toyota 

Sewn Products Management System” (TSS). It is used in many industries such as apparel, 

handbags, shoes, suitcases, furniture, etc. The bucket brigade system differs from a TSS system 

in that there are no pre-assigned worker zones to limit the movement of workers. Bartholdi and 

Eisenstein (1996) describe a bucket brigade system and present a sufficient condition for such 

lines to be self-balancing. Under a bucket brigade system, each worker starts working on a part 

and processes it at each station until the part is either finished or the next worker in the order 

takes over the part. The order of the workers is preserved at all times. More detailed analysis of 

workers’ movement is presented in Chapter Three. Dynamic worksharing is analyzed and tested 

under the assumption that the workers’ productivity rate is at steady-state production level. Two 
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mixed integer formulations are developed. We also simulate throughput levels when workers 

productivity changes over time due to workers’ learning and forgetting characteristics.  

 A fixed worker assignment system is also considered for a serial production setting, in 

which work is passed from station to station, with intermediate buffers between stations. There 

are n workers, m stations and p time periods. Workers can be assigned to any station and the size 

of the intermediate buffers can be either unrestricted or restricted. This production environment 

with three stations is presented in Figure 2.  
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Figure 2: Serial Production Line: Fixed Assignment Environment 

 

For a fixed assignment environment we analyze two types of models. The first model 

assumes that workers perform tasks based on their steady-state productivity rate. The second 

model assumes that workers’ productivity rates vary based on their learning and forgetting 

characteristics.  

 For both production environments we look at workers performing at steady-state 

production levels as well as production levels when learning and forgetting is present. The 

learning model used in our research was introduced by Mazur and Hastie (1978) and was 

modified to include the effects of forgetting by Nembhard and Uzumeri (2001). The workers’ 
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productivity changes over time and is dependent on the number of times the workers were 

assigned to each task, and the recency of their experience. 

 

 

1.1 OVERVIEW OF DISSERTATION 

 

The organization and areas of concentration of this dissertation are presented in Figure 3.  
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Figure 3: Workforce assignment 
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In Chapter Two, a review of the relevant literature is presented. We look at recent 

literature covering workforce flexibility, cross-training, workgroup selection, worker assignment, 

worksharing, bucket brigade systems and learning and forgetting. In Chapter Three we discuss 

dynamic worksharing assignment environments and present the analysis of a two worker two 

station production line. We look at optimal levels of worksharing and present a detailed case 

analysis based on workers’ steady-state production rates. This chapter also includes the analysis 

of a two worker two station line with duplicate tooling on either one or both stations.  

A one-cycle formulation for the dynamic assignment problem is presented in Chapter 

Four including the model formulation, numerical results and conclusions. For a one-cycle 

formulation workers exchange parts at exactly one location and they repetitively perform the 

same amount of work on each part. The extended formulation which considers several 

production lines coupled together either as an independent or linked system is also presented in 

Chapter Four. The two-cycle formulation for a dynamic assignment environment is presented in 

Chapter Five. For a two-cycle formulation workers exchange parts at two locations and they 

perform repetitive two-cycle work, so the amount of work performed on every other part is 

identical. Chapter Six discusses dynamic assignment when worker learning and forgetting is 

introduced, thus, workers do not perform at steady state levels.  A learning and forgetting model 

is presented. We look at dynamic worksharing systems with n workers and m stations and 

compare situations when workers perform at their steady state levels versus when learning and 

forgetting is included in the analysis.  

 We analyze a fixed assignment environment when workers work at steady state 

production levels in Chapter Seven. A production line with intermediate buffers is presented as 

well as a mixed integer model formulation. Smaller size instances for the fixed assignment MIP 
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are solved by the branch-and-bound technique employed by CPLEX. Due to the complexity of 

the problem, meta-heuristics including Simulated Annealing are implemented when solving 

larger instances. The MIP formulation is extended to include the effects of learning and 

forgetting and the resulting MINLP formulation is also presented in Chapter Seven. The fixed 

assignment MINLP formulation is solved by Simulated Annealing.  

A comparison of dynamic versus fixed assignment environments is presented in Chapter 

Eight. We compare final outputs for the fixed assignment serial production line where workers 

are rotated during fixed time intervals and a dynamic worksharing environment given the same 

number of workers, number of stations and total production horizon. We examined different WIP 

scenarios and present observations and conclusions. Directions for future research and 

conclusions as well as contributions of this research are summarized in Chapter 10. Different 

algorithms and codes are given in the Appendices. 

 

1.2 CONTRIBUTIONS 

 

We first list the contributions relevant to the dynamic worksharing assignment.  

• We were able to define possible benefits achieved from worksharing and the impact of 

different assignment approaches and policies on system performance. Our goal was to 

make recommendations according to our results with an objective of achieving maximum 

efficiency and throughput. Another important focus of this research was to optimally 

solve the dynamic worksharing assignment problem and determine exact portions of 

work performed by each worker under the assumptions presented.  
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• We first analyzed two worker two station lines when incomplete dominance is possible. 

We also investigated the effects of duplicate tooling at these lines.  

• We developed a mixed integer programming formulation for n workers and m stations 

that models one-cycle balanced line performance where workers exchange parts at 

exactly one position. We are able to obtain optimal positioning of the workers and the 

optimal amount of work performed by each worker.  

• We also extended the one-cycle formulation to incorporate multiple production lines. 

• We also developed a two-cycle formulation that models a condition when workers 

exchange parts at exactly two positions in a periodic manner. We compare the optimal 

throughput obtained from the one-cycle and two-cycle formulations for lines with two or 

more workers.   

 

For the fixed assignment environment we considered two formulations:  

 the MIP formulation with constant productivity rates, and  

 the MINLP formulation with learning and forgetting effects.  

• We implemented heuristic methods to solve these problems and to determine the optimal 

throughput levels as well as the optimal assignment of workers.  

• We were also able to show the importance of introducing learning and forgetting into 

these types of worker assignment problems. Different scenarios were analyzed and tested 

and it is shown that the total throughput differs considerably and is misleading when 

workers are assigned based on their steady-state productivity rate.  
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Another important contribution of this research is the comparison of these environments.  

• We were able to determine and define advantages and disadvantages of these two 

assignment methods given the same production conditions such as number of workers, 

number of stations, workers’ production rates and the length of the production horizon.  
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2.0 LITERATURE REVIEW 

 

Our research focuses on dynamic worksharing on a production line, similar to bucket brigade 

systems, and a fixed assignment serial-production line where workers work on a specific task 

and there is no worksharing during a given time period. We consider a fully cross-trained 

heterogeneous workforce.  Numerous papers have been written on the workforce assignment 

problem, including some that consider cross trained workers or multi-functional workers and 

worksharing.  In this section we review those papers most related to this research. 

 Our work related to the fixed assignment environment is an extension of the work done 

by Nembhard and Norman (2002) and Leopairote (2004). Regarding the dynamic worksharing 

environment, our research concentrates on a production line where workers are dynamically 

assigned, similar to bucket brigades, and tasks are discrete. Most of the bucket brigade literature 

assumes that work is evenly spread along the line, or that tasks are continuous, and workers’ 

speeds are constant along the line. The most relevant work regarding bucket brigade applications 

with discrete tasks is done by Lim and Yang (2006). Also, other relevant work was done by 

McClain et al. (2000). 

 We study production lines where workers perform at steady-state production rates as well 

as production lines where workers productivity changes due to the presence of learning and 

forgetting. Thus, we will also discuss learning and forgetting models in more detail. 
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2.1 WORKSHARING AND BUCKET BRIGADE SYSTEMS 

 
 

Two types of implementation of worksharing are frequently discussed in the literature: dynamic 

assembly line balancing and moving worker modules (Chen and Askin 2006). Dynamic task 

assignment in the traditional serial line model with partially cross-trained workers is addressed 

by Askin and Chen (2006) with the objective to maximize throughput. In the implementation of 

dynamic line balancing the identity of shared tasks has to be determined as well as the 

operational task rules (Anuar and Bukchin, 2006). Chen and Askin (2006) analyzed the tradeoff 

between the cost of work-in-process inventory and cross-training in dynamic balancing systems, 

and also tried to determine the best operating policies for shared tasks Overall, they concluded 

that worksharing improved output in the analyzed environments by 5.6% over static balanced 

assignments 

 Many researchers have studied worksharing and dynamic line balancing when working 

zones overlap. Among them are Ostolaza et al. (1990), McClain et al. (1992), Schultz et al. 

(1998) and McClain et al. (2000). McClain et al. (1992) concluded that dynamic line balancing 

can increase efficiency even when inventory buffers are absent. McClain et al. (2000) analyzed 

worksharing in a variety of situations including different worker to machine ratios, unequal 

workers, uncertain processing times, and handoffs with and without preemption. They concluded 

that worker sequencing is quite important, as slowest to fastest performs well in some situations 

and poorly in other. Their hypotheses consider work zones, inventory buffers and that there is 

complete dominance regarding workers’ velocities.   
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Hopp et al. (2004) studied two cross-training strategies for serial production systems with 

flexible servers. They stated that the primary benefits of workforce agility in this environment 

are capacity balancing, and variability buffering, which provides a solution for worker idleness 

caused by variability in processing times. The number of workers is equal to the number of 

stations. Hopp and Van Oyen (2004) outline approaches for accessing and classifying 

manufacturing and service operations in terms of their suitability for use of cross-trained 

workers. They define production agility as the ability to achieve heightened levels of efficiency 

and flexibility while meeting objectives for quality and customer service.  

 Sennott, Van Oyen and Iravani (2006) modeled and analyzed serial production lines with 

specialists at each station and a single, cross-trained floating worker who can work at any station. 

They formulated a Markov Decision Process which models K-station production lines. The 

model includes holding costs, set-up costs and set-up times at each station. They performed a 

numerical study for two and three station lines. They concluded that problems with both 

specialists and cross-trained workers are extremely difficult to optimize, and that the burden of 

maximizing performance falls on the worker with the greatest flexibility. Gel et al. (2002) 

formulated a model and a Markov Decision Process to explore the optimal control of systems 

with two workers and evaluate half-full buffer policies. Askin and Chen (2006) extended this 

work by looking at non preemptive tasks and trade-offs between the cost of cross training and the 

cost of work-in process inventory.  

 In a typical flow line, workers are assigned to fixed stations and the bottleneck station 

determines the production rate. In many types of flow lines there are fewer workers than stations 

and workers perform tasks at a portion of the line while maintaining their positioning. A different 

production line has been implemented in some manufacturing environments in which workers 

 12  



carry a part and walk to adjacent stations and there are fewer workers than stations. This type of 

line is often referred to as a bucket brigade system.  

 Under a bucket brigade policy, each worker starts a job and processes it at each station 

until he or she is blocked by a downstream worker, or gets bumped by a downstream worker. 

There are applications of this concept in many industries and some of the current users of bucket 

brigades include: McGraw-Hill, Blockbuster Music, Coach Leatherware, Champion Products, 

Subway, Tug Manufacturing, United Technologies Automotive, Revco Drug Stores, Inc. (now 

CVS), Anderson Merchandise, Readers Digest, The Gap (Old Navy, The Gap, and Banana 

Republic), etc.  

 Bartholdi and Eisenstein (1996) analyzed systems using the bucket brigades policy under 

the assumption of deterministic processing times and non-identical workers, each with a different 

processing rate. The authors introduced the Normative Model of bucket brigades where the work 

content of the product is continuously and evenly distributed along the line. The authors 

provided the first detailed analysis of the dynamics of bucket brigade systems and proved the 

conditions under which a bucket brigade is self-balancing. They concluded that when workers 

are assigned on a production line from slowest to fastest, and move according to the traditional 

bucket brigade rules, the production rate converges to a value that is the maximum possible 

among all ways of organizing workers and stations. The weakness of the model is that it assumes 

constant worker velocities over time and that the work content is continuously distributed along 

the line. Another important result is that the authors state that balancing the line is always 

possible, or that there exist worker positions such that after completion of each item workers 

reset to exactly the same positions to begin work. The authors present the detailed discussion in 
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support of deterministic processing times. For more discussion on deterministic versus stochastic 

processing times see Bartholdi and Eisenstein (1996).  

 Bartholdi et al. (2001) addresses the case of stochastic processing times and proves a 

similarity between the deterministic and stochastic systems as the number of stations goes to 

infinity. Bartholdi et al. (2005) extended the Normative Model and assumed that walk-back 

times and hand-off times are significant. The adoption of bucket brigades resulted in a reduced 

number of tasks for each worker and higher overall productivity. Real case studies reported in 

the literature as well as a survey of papers considering bucket brigade topics are given in Bratcu 

and Dolgui (2005). 

 Bartholdi et al. (1999) studied the dynamics of two and three worker bucket brigade 

production lines and discussed the types of asymptotic behavior possible in practice as a function 

of the workers relative speeds, which is assumed to be constant over the entire line. For a two 

worker line the authors conclude that two modes of asymptotic behavior are possible. The first is 

that the movements of workers would spontaneously converge to a fixed point (one-cycle) 

balanced line with the optimal production rate. The second mode of behavior is that the 

movements of the workers would converge to a two-cycle balanced line with a suboptimal 

production rate. For three workers, the authors defined four regions of possible asymptotic 

behavior. Region 1 is defined as one cycle or convergence to a fixed point with the optimal 

production rate. Regions 2 and 3 cover situations when workers are not ordered form slowest to 

fastest (thus blocking is present) and the positions of the workers would alternate between two 

and three cycle positions with suboptimal production rates. The fourth region is defined as region 

k where the systems in this region can converge to a k cycle for some values of k > 3. The 

authors also suggest that it is better for management to sequence workers from slowest to fastest 

 14  



and include very different workers (fast and slow) on the same team in order to achieve the 

maximum production rate. They also suggest that the greater the range in velocities on a team, 

the greater the rate of convergence.  

 Bucket brigades are most successful in applications where the skills required to perform 

the operations on the line are very similar, such as warehouse picking, fast food preparation, and 

textile sewing operations (Hopp and Van Oyen, 2004). A two worker bucket brigade was studied 

by Armbruster and Gel (2006) where one worker is faster than the other over some part of the 

production line and slower over another part of the line. They assumed deterministic processing 

times, continuous tasks and instantaneous walking speeds. The original no passing rule is 

modified as workers are allowed to pass each other. Two environments were analyzed: one with 

passing and one with blocking.  The study presents conditions under which bucket brigades 

remain effective. The authors concluded that if the order of the workers is switched when one 

passes another the bucket brigade self-organizes itself. Their conclusion is that the system may 

not always balance itself on a fixed point but rather to two stable positions where workers 

exchange jobs. Workers would hand over jobs at exactly two fixed locations that they visit 

periodically.  

 Lim and Yang (2006) analyzed the throughput of a bucket brigade system with discrete 

work stations meaning that the work is not continuously and uniformly spread along the line. 

They considered fully and partially cross trained workers and assumed constant worker speeds 

on all tasks. The authors developed an analytical procedure to determine policies that maximize 

the throughput and studied complete dominance cases including the case when workers speeds 

are equal. The authors defined regions, depending on the work content of the stations and the 
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workers’ speeds, where it is optimal to order workers either slowest to fastest or fastest to 

slowest in order to achieve optimal throughput. 

 In this research, the dynamic environment discussed in Chapter One is similar in many 

ways to a bucket brigade system with discrete tasks and deterministic production rates, however 

there are some key differences. The first difference is that we allow the last worker in the order 

to be idle. The second and key difference is that workers’ production rates are worker/station 

dependent so complete dominance along the line may not be possible. That is, one worker may 

be faster at one station but slower at another station relative to second worker. 

 

2.2 WORKFORCE FLEXIBILITY AND CROSS-TRAINING 

 

Many researchers have discussed the benefits of cross-training and the impact of cross-training 

to the overall performance of a system. In our research, we focus on a fully cross-trained 

workforce and benefits of employing a flexible workforce on a serial production line. We now 

summarize the most relevant work. Norman et al. (2002) developed a mixed integer 

programming model to assign workers to tasks in manufacturing cells. The model considers both 

technical and human skills with the objective to maximize an organization’s effectiveness. This 

model performs better than one that considers only technical skills. Slomp et al. (2005) studied 

the need for cross-training workers in a cellular manufacturing environment. They developed an 

integer programming model that can be used to select workers to be cross-trained for particular 

machines. Their study has shown that cross-training decisions in a cellular manufacturing 

environment should support the forming of effective ‘chains’ between workers and tasks in order 

to shift loads from a loaded worker to a less loaded worker. This model is helpful when 
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management is making decisions regarding the trade-off between training costs and workload 

balance among workers. In related worker assignment research, Molleman and Slomp (1999) 

developed a linear goal programming model subject to worker and skill requirements. In their 

extended study (2000), they formulated linear programming models and presented a hierarchical 

procedure for worker cross-training in order to reduce the workload of the bottleneck worker. 

Campbell and Diaby (2002) developed an assignment heuristic for allocating cross-trained 

workers to multiple departments at the beginning of a shift. Their formulation of the problem is a 

variant of the generalized assignment problem.  

 Cesani and Steudel (2005) studied labor flexibility in cellular manufacturing systems and 

specifically focused on the impact of different labor allocation strategies on system performance. 

They studied concepts such as workload balancing, workload sharing and the presence of 

bottleneck operations.  They concluded that both factors, the level of shared workload and the 

workload assigned to individual operators, are very important when determining the performance 

of the system. 

 Quantitative studies in the area of workgroup selection in cellular manufacturing have 

been found in the literature including Norman et al. (2002), Askin and Huang (1997), Askin and 

Huang (2001) and Bhaskar and Srinivasan (1997). Askin and Huang (1997) compared two 

integer-programming models for assigning workers to cells and evaluated the training program 

for each worker. In their extended study (2001), they developed a multi-objective model to create 

work teams for cellular manufacturing systems.  

 Hopp and Van Oyen (2004) outline approaches for accessing and classifying 

manufacturing and service operations in terms of their suitability for use of cross-trained 
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workers. They define production agility as the ability to achieve heightened levels of efficiency 

and flexibility while meeting objectives for quality and customer service.  

 Nembhard and Prichanont (2007) investigated the impacts of workers’ multifunctionality 

in a heterogeneous serial production system where workers differ based on their individual 

learning and forgetting characteristics. The authors conducted a simulation study and concluded 

that the managerial decisions on multifunctionality should be made in conjunction with worker 

rotation rate, degree of task similarity, bottleneck position, etc. 

 

2.3 LEARNING AND FORGETTING 

 

As we discussed in Chapter One, one of the goals of this research is to show the importance of 

incorporating workers’ learning and forgetting characteristics when studying worker-task 

assignment problems. Research in this area mostly assumes steady-state productivity and the 

assignment of workers to stations based on workers’ productivity that changes over time has not 

been discussed extensively.  

 The individual learning model used in our research was presented by Mazur and Hastie 

(1978). In a comparative study of learning models, Nembhard and Uzumeri (2000a) suggested 

that the hyperbolic learning model is useful when representing individual learning patterns. The 

initial learning model was modified to incorporate the effects of forgetting (Nembhard and 

Uzumeri, 2000b). The three parameter hyperbolic model was modified by including a measure 

that the authors termed recency of experiential learning. The authors (2000b), state that the 

recency measure represents the ratio of the average elapsed time to the elapsed time of the most 

recent unit produced. A comparative study of forgetting models is presented by Nembhard and 
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Osothsilp (2001), and the authors concluded that the recency model outperformed other models 

consistently in terms of all of the criteria presented in the paper. The hyperbolic-recency learning 

and forgetting model is presented in detail in Chapter Six.  

 Our research that concentrates on a fixed assignment environment is an extension of the 

work presented in Nembhard and Norman (2002). The authors developed a worker-task 

assignment model, where individual worker learning and forgetting is incorporated. The 

formulation was based on log-linear learning and forgetting where learning is dependent on a 

worker’s initial productivity level and how often the task is performed. Forgetting is dependent 

on a worker’s time absent from a task. An extensive list of related references relevant to our 

work also is presented in Nembhard and Norman (2002). Leopairote (2004) analyzed the same 

model where learning and forgetting was modeled using a hyperbolic-recency learning-forgetting 

model. The primary aim was to improve system efficiency and to develop policies for worker 

selection, assignment, and scheduling.  

 Jaber and Sikstrom (2004) compared three learning and forgetting models: the learn-

forget-curve model, the recency model, and the power integration-diffusion model and discussed 

their differences and similarities. Their conclusions regarding tasks that are more motor than 

cognitive included that the recency model suggests that fast (slow) learners forget faster (slower), 

which is different from both the power-diffusion model as well as the learn-forget-curve model. 

In these cases the recency model is inconsistent with the other two models. The other two models 

suggest that as learning becomes slower forgetting becomes faster for motor tasks. They 

concluded that when a task is more cognitive than motor, or for a moderate learning scenario, all 

three models produced very similar predictions.  
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One of the basic assumptions of almost all of the previous bucket brigade work is that 

worker production rates are constant. There has been some consideration of learning and the use 

of bucket brigade systems in environments where worker production rates change over time. 

Munoz and Villalobos (2002) addressed the effectiveness of bucket brigades in the presence of 

high labor turnover and concluded that bucket brigade systems are highly effective in situations 

when frequent restitution of skills is present due to high labor turnover. They concluded from 

simulation studies that bucket brigades outperform alternative ways of organizing workers when 

there is high labor turnover.  

 Armbruster et al. (2007) also analyzed bucket brigades with workers learning. The 

authors primarily used an exponential learning model and considered both passing and blocking 

environments. Their concluded that self-balancing property of bucket brigades is very robust and 

defined conditions under which some managerial input is needed. They also concluded that a 

bucket brigade system with all workers learning will always lead to self-organized production.  

 We will study a dynamic assignment environment, discussed in Chapter One, where 

workers productivity changes over time due to workers’ learning and forgetting characteristics 

and compare the system performance when workers produce at the steady-state rate. This 

analysis is presented in Chapter Six. We will also study a fixed assignment environment when 

workers learning and forgetting is present. This analysis is presented in Chapter Seven.  
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3.0 DYNAMIC WORKSHARING ASSIGNMENT 

 

In this chapter we concentrate on the dynamic assignment environment discussed in Chapter 

One. We consider how the assignment of a fully cross-trained workforce deployed on a serial 

production line consisting of two workers and two stations affects throughput. We assume that 

worksharing is present if workers are assigned to the same station but not at the same time.   

 

3.1 MODELING ASSUMPTIONS 

 

We consider a serial-production line with two workers and two stations. Workers perform at 

steady-state production rates, processing times are deterministic and each part needs processing 

on the same sequence of stations (stations 1 and 2 in this case). There may be only two tasks to 

complete or multiple tasks may have been grouped into the two stations. Additionally, the work 

content at the stations need not be identical. Only one worker can work at a station at any point 

in time and only one part can be processed at the station. We assume that workers are fully cross-

trained and that there are no restrictions on their assignments, thus any worker can potentially 

work at any station. Throughout this research, we assume that our models also apply to cases 

where the workforce is partially cross-trained. If a worker is not trained for a specific task a very 

low production rate would be assumed for that specific worker task combination.  Tasks at 

stations have different complexity levels and worker speeds are not necessarily uniformly 
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dominated (meaning that worker 1 (W1) can be faster than worker 2 (W2) on station 1 (S1), but 

slower on station 2 (S2)). No buffer inventory is permitted between the stations. The order of the 

workers is preserved and no passing is allowed. We assume that preemption is allowed, thus 

workers can interrupt each other at any time. The production rate kij is defined as the number of 

parts produced by worker i at station j in a given period of time (e.g., one hour), and kij ≥ 0.  

 In order to determine the best assignment policy we assign workers in several ways: 1) 

no-sharing, 2) sharing is allowed but the last worker is always busy (never idle), and 3) sharing is 

allowed and the last worker is allowed to be idle. For no-sharing assignments, workers perform a 

task at their assigned station, and when finished either wait for a downstream worker to finish 

his/her task and take over the part, or if a downstream worker is already finished, he/she takes 

the part. For sharing options workers can go forward or backwards when finished at their 

assigned station. Both the forward and backward movements are adopted from the bucket 

brigade rules introduced by Bartholdi and Eisenstein (1996). Workers walk forward until 

blocked by a downstream worker or a part is processed at the last station and finished. Also, 

workers walk backward when a part is finished or they were interrupted by a downstream 

worker, and take work from a previous worker in the order. During this phase each worker 

interrupts his/her predecessor to take over his/her work, and the first worker in the order starts a 

new part once the first station is empty. This assumption differs from previous bucket brigade 

literature where the first worker in the order starts the work at the same time as the line resets 

(workers change positions). The first worker in this case needs to wait for the station to be 

empty, as only one worker can work at the station at one time. Our assumption is that both 

handoff times and walking times (forward or backwards) are significantly smaller than 
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production times, so we can safely assume that these occur instantaneously. This also implies 

that the positions of workers on the line change instantaneously when a part is completed. 

 Notice that because the tasks have different complexity levels and the workforce is 

heterogeneous, ordering workers from slowest to fastest may not be possible. This implies that a 

worker can be blocked if he/she arrives at a station that is busy. This assumption is the same as 

Lim and Yang (2006) and different than Armbruster/Gel’s (2006) definition of blocking. 

Armbruster and Gel (2006) assume that a blocked worker is not idle, but rather he/she moves at 

the speed of the worker in front of him/her. This is not feasible under our assumptions as only 

one worker can be at a station at any point in time.  

 

3.2 WORKER SCHEDULING OF TWO WORKER TWO STATION LINE 

WITH WORKSHARING 

 

In this section, our objective is to study a line with two workers and two stations and maximize 

the total throughput of the line. We define the objective function as minimizing the total time per 

part while satisfying assignment constraints. We would like to determine the optimal output rate 

considering the workers’ station dependent production rates. Also, we want to determine the 

optimal amount of time that worker i spends working at station j. Thus, one of the main 

questions that we attempt to answer is what is the optimal worksharing in the long run 

(percentage of each task done by each worker)? Also, given the workers’ production rates which 

assignment options are the best? 
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First we will analyze two worker and two station lines where there is only one set of tools 

at each station. Based on our observations we then consider the possible benefits of duplicating 

one or both stations.  

 Recall that we define the objective as minimizing the total time required per part 

produced. Time tij is defined as the time required for worker i to finish work at station j, and is 

equal to 60/kij where 60 is the length of one hour. We define xij as the portion of time that worker 

i spends working at station j during the production horizon. The production horizon is defined as 

the total production time including all idle times. If we assume that workers’ production rates are 

not constant over the entire line then we have a different production rate per worker per station. 

Let a, b, c, d represent the four possible kij values for a two worker two station line. Assuming 

that a ≤ b ≤ c ≤ d, then there are 24 (or 4!) possible combinations of relative worker speeds based 

on the different workers’ production rates. We analyze the 12 cases presented in Table 1.  

Table 1: Production rates for two worker two station line 

 
               

Case 1 S1 S2 Case 2 S1 S2 Case 3 S1 S2 Case 4 S1 S2   

W1 a b W1 b a W1 a b W1 b a   

W2 c d W2 c d W2 d c W2 d c   

              

Case 5 S1 S2 Case 6 S1 S2 Case 7 S1 S2 Case 8 S1 S2   

W1 a d W1 d a W1 a d W1 d a   

W2 b c W2 b c W2 c b W2 c b   

              

Case 9 S1 S2 Case 10 S1 S2 Case 11 S1 S2 Case 12 S1 S2   

W1 a c W1 c a W1 a c W1 c a   

W2 b d W2 b d W2 d b W2 d b   
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The additional 12 cases are not considered because due to symmetry they are equivalent 

to the 12 cases analyzed. For example, if we analyze Case 1 with production rates of a and b for 

W1 on S1 and S2 respectively, and c and d for W2 on S1 and S2 respectively, the analysis of this 

case is identical to that of W1 having production rates of c and d on S1 and S2, respectively, and 

W2 having production rates a and b on S1 and S2, respectively. 

 Given all possible combinations for the workers’ production rates, we can now discuss 

different approaches to assign the workers. All possible assignment options are presented in 

Table 2 and explained in detail in the following sections. 

3.2.1 No-sharing 

The no sharing option assumes a fixed assignment. Thus, for two workers, they can either be 

assigned in W1 (assigned at S1) - W2 (assigned at S2) order or W2 (assigned at S1) - W1 

(assigned at S2) order. The bottleneck rate, as determined by simply examining the kij values for 

the assignment, determines the output rate for the line where each worker only works at one 

station.  

3.2.2 Sharing is allowed but the second worker in the order is never idle 

Workers are assigned either in W1 - W2 or W2 - W1 order, and the second worker in the order is 

not allowed to be idle. If he/she finishes at S2 while the other worker is still completing work at 

S1, he/she takes work from the first worker in the order at S1. Once the first worker in the order 

is interrupted he/she waits until S1 is empty. Once the station empties he/she starts working on a 

new part. If the first worker in the order finishes first at his/her station, he/she is blocked and 

waits until the second worker in the order finishes his/her work at S2. This worker movement is 

the same as presented in the bucket brigade literature, except for the fact that the first worker is 
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idle until the first station becomes available as we are looking at discrete tasks. Note that in the 

case of two stations, the first worker in the order only works at the first station or is blocked by 

the second worker. 

3.2.3 Sharing is allowed and the second worker can be idle  

Workers are assigned either in W1 - W2 or W2 - W1 order, and if beneficial, either worker is 

allowed to be idle. If the second worker in the order is faster than the first worker at both 

stations, the assumptions are the same as those presented in 4.1.2 and the results from that 

section apply. However, if the first worker in the order finishes work at S1 prior to the second 

worker finishing at S2 and is faster at S2 than the second worker, he/she will interrupt the second 

worker and take his/her work at S2, instead of being blocked. The second worker will be idle, or 

wait, until the first worker finishes the part. After this part is finished, the first worker in the 

order starts a new part at S1. The second worker finishes work at S2. Handoff and walking times 

are zero as the assumption is that these operations are performed instantaneously. 

 

3.3 TWO WORKER TWO STATION CASE ANALYSIS 

 

Based on our assumptions there are six options, or total of six possible ways of assigning W1 and 

W2 to S1 and S2. All of the possible options are presented in Table 2. We studied the above 

described assignment options for the 12 cases presented in Table 1 and determined output rates 

for all of the options and case combinations. The optimal assignment of workers, from the six 

options given above, minimizes the total production time per part and thus results in the 

maximum output rate. Detailed analysis for Case 1 of Table 1 is given in the following section. 
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Analysis of Cases 2 to 12 is presented in Appendix A. Optimal assignments for all 12 cases are 

presented in Table 3 and the optimal output rates for all 12 cases are presented in Table 4. 

 

Table 2: All assignment options 

 
 Starting 

Assignment 
Assignment approach 

Option 1 W1 assigned to S1  
W2 assigned to S2 

No sharing 

Option 2 W2 assigned to S1  
W1 assigned to S2 

No sharing 

Option 3 W1 assigned to S1  
W2 assigned to S2 

Sharing is allowed and the second worker in the 
order cannot be idle 

Option 4 W2 assigned to S1  
W1 assigned to S2 

Sharing is allowed but the second worker in the 
order cannot be idle 

Option 5 W1 assigned to S1  
W2 assigned to S2 

Sharing is allowed and the second worker in the 
order can be idle 

Option 6 W2 assigned to S1  
W1 assigned to S2 

Sharing is allowed and the second worker in the 
order can be idle 

 
 
The optimal solution to the problem must satisfy the following equation:  

x11*k11 + x21*k21 =  x12*k12 + x22*k22  (1) 

which states that the output from the first station equals the output from the second station. 

Recall that xij is defined as the portion of time that worker i spends working at station j during 

the production horizon.  

 
Case 1 analysis 

Recall that for Case 1, presented in Table 1, k11=a, k12=b, k21=c and k22= d and that a ≤ b 

≤ c ≤ d. We now determine the maximum throughput for each of the worker assignment options 

given in Table 2. 

Option 1: Output1 = min (k11, k22) = min (a, d) = a. 

Option 2: Output2 = min (k21, k12) = min (c, b) = b. 
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Option 3: Under the assumption that W1 is first in the order and W2 is second, then (1) becomes 

x11* k11 + x21* k21 = x22* k22 because x12 = 0.  We know that x12 = 0 because the second worker, 

or W2, in this case, cannot be idle which implies that W1 can never be assigned to S2, thus x12 = 

0. We also know that x21+x22 = 1.0 because W2 is always working and that the first station is 

always occupied, thus x11+ x21 = 1.0. Solving these three equations with three unknowns results 

in x21 = (k22 – k11)/(k22 + k21 – k11) and therefore Output3 = (1-x21)*k22 = x22*k22 = k21*k22/(k22 + 

k21 – k11) = c*d/(d + c – a). 

Option 4: Under the assumption that W2 is first in the order and W1 is second (and cannot be 

idle) equation (1) reduces to x21* k21 = x12* k12 or x21* c = x12* b. Because c ≥ b (or k21 ≥ k12), 

W1 would never work at S1 and since W2 is faster, W2 will be idle a portion of the time. Thus, 

the output is: Output4 = min (k21, k12) = min (c, b) = k12 = b.  

Option 5: W1 is first in the order, and a ≤ d (or k11 ≤ k22), thus, this situation is equivalent to 

Option 3, as W2 is never idle. W2 is faster on both S1 and S2, so once he/she finishes at S2, it is 

beneficial to interrupt W1 on S1, which results in the same output rate as Option 3.Thus Output5 

= Output3 = k21*k22/(k22 + k21 – k11) = c*d/(d + c – a). 

Option 6: W2 is first in the order, and the second worker in the order can be idle, thus W2 is 

assigned to both stations and W1 is assigned only to the second station. This is implied by the 

relationship of the production rates given. Then (1) reduces to: x21* k21 = x22* k22 + x12* k12, 

since we know that x11= 0 and W2 is always busy thus, x21+x22 = 1.0 and S2 is always occupied 

thus x22 + x12 = 1.0. Solving these equations, we have the following: x22 = (k21 – k12)/(k22 + k21 – 

k12). The output from the line under this assignment option is: Output6 = (1-x22)*k21 = x21*k21 = 

k22*k21/(k22 + k21 – k12) = c*d/(d + c – b). 
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 Under the assumption that a ≤ b ≤ c ≤ d (or k11 ≤ k12 ≤ k21 ≤ k22) we have to determine 

which option results in the maximum throughput. We can prove that for Case 1, the optimal 

assignment is Option 6. First, we note that Output2 = Output4 and Output3 = Output5. Next, we  

show that Output6 ≥ Output2 (or Output4). To do this, we have to demonstrate that c*d/(d + c – b) 

≥ b. After rearranging the terms, this inequality is equivalent to (c - b)*(d - b)/ (d + c - b) ≥ 0, 

which is true given that a ≤ b ≤ c ≤ d. This also implies that Output6 ≥ Output1 as b ≥ a.  It is also 

clear that Output3 ≤ Output6 and Output5 ≤ Output6, because (c + d - a) ≤ (c + d – b). Thus the 

optimal assignment is Option 6, or to assign workers in W2 - W1 order and allow the second 

worker to be idle. Cases 2 to 12 are analyzed in a similar manner in Appendix A. 

The optimal assignments for all 12 cases are presented in Table 3. Shaded cells are used 

to represent the assignment of the workers, and i represents idle time. For example, for Case 1, 

W2 is first in the order and is assigned to both stations, while W1 works at S2 and is idle part of 

the time. For Case 2, W1 is assigned to S1 and has idle time, while W2 is assigned to both 

stations and is never idle.  

 We now summarize our results. We start by considering Cases 1 to 4 where worksharing 

is beneficial. For Cases 1 and 3, the second worker is faster on both tasks but assigned at the 

beginning of the line. The optimal throughput will be achieved if we allow the second worker in 

the order to have idle time. This differs from Cases 2 and 4, when we have the faster worker 

second in the order.  

Also, note that for the first four cases the worker-task combination with the smallest (or 

bottleneck) production rate is avoided. For Cases 5 to 12, it is optimal to assign workers in such a 

manner as to avoid the minimum production rate and not to allow sharing. Thus, when 

assignment approaches that consider sharing stations are applied to a two worker, two station 

 29  



line, these can be beneficial only if one worker is faster on both tasks, otherwise we should 

assign workers under the fixed assignment no-sharing options.   

Table 3: Optimal Assignments  

 
Case 1     Case 2 ***   Case 3     Case 4 ***   

  a   b  i   ** i  b a    a   b  i   ** i  b a   
** c   d       c d   ** d   c       d c   
                     
Case 5    Case 6 ***   Case 7    Case 8 ***   

  a   d  i   ** i  d a    a   d  i   ** i  d a   
** b   c      b c   ** c   b       c b   
                     
Case 9    Case 10    Case 11 ***   Case 12 ***   

  a   c  i   ** c    a       a c   **  i  c a   

** b    d    b   d  i   ** i  d b       d b   
                                

Notes:** first worker in the order;*** same as bucket brigade; a ≤ b ≤ c ≤ d. 
 

Currently, there are many practical implementations of the bucket brigade concept in 

manufacturing systems, assembly lines in particular, and warehousing and distribution (Bratcu 

and Dolgui, 2004). As application areas are continuously growing, we want to look at our results 

and determine what the output and optimal assignment would be if we run the system as a 

traditional bucket brigade system. In order to determine what would be the optimal assignment 

and optimal output rate if the system is restricted to operating as a traditional bucket brigade 

only, we can compare Options 3 and 4 and determine if the W1 - W2 or W2 - W1 order is better 

for the Case 1 production rates. When b ≥ c*d/(d + c – a) then Output4 ≥  Output3 and workers 

will be sequenced W2 - W1 or, for Case 1, the faster worker will be the first in the order. 

Example 1 presented below, shows that when b ≥ c*d/(d + c – a), it is best to put W2 first in the 

order while W1 is assigned to S2 and W2 is idle due to blocking part of the time. The resulting 

throughput rate is 7 parts / hour. However, for this same data, if we consider all of the 
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worksharing options (including permitting idle time for the second worker), the best possible 

throughput rate is 7.2 parts/hour and the optimal order of the workers stays the same. In this 

situation, W1 is idle part of the time. This is presented in Example 1a where shaded cells are 

used to represent the assignment of the workers, and i represents idle time, so we can see that W1 

is idle part of the time. One can see that W2 is assigned to both S1 and S2, while W1 is assigned 

to S2 only.  

Example 1: b ≥ c*d/(d + c – a) Example 1a: b ≤ c*d/(d + c – b) 

kij S1 S2   kij S1 S2 
W1 6 7  W1 6     7    i 
W2    8    i 9   W2 8 9 

Throughput: 7 parts/hour      Throughput: 7.2 parts/hour 

 

When b ≤ c*d/(d + c – a), and we consider Options 3 and 4 only, the optimal assignment 

will be W1 - W2, or in this case the slower worker will be the first in the order. This is illustrated 

in Example 2 where the throughput rate is 11.2 parts / hour. However, if we consider all of the 

worksharing options and allow the second worker to be idle, the optimal worker order will 

change and W1 will be idle part of the time at S2 as presented in Example 2a. The optimal 

throughput will be 11.79 parts / hour. Note that in this case the faster worker is first in the order. 

These examples illustrate that the worker ordering can be faster to slower or vice versa and that 

there can be benefits to permitting the second worker in the order to have idle time (which does 

not occur in a traditional bucket brigade operation). 

Example 2: b ≤ c*d/(d + c – a)    Example 2a: b ≤ c*d/(d + c – a) 

kij S1 S2   kij S1 S2 
W1 i    10 11  W1 10    11   i 
W2 14 16   W2 14 16 

Throughput: 11.2 parts/hour      Throughput: 11.79 parts/hour 
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 Optimal output rates for all cases are summarized in Table 4. The optimal output rates 

under the six proposed options are presented in Column 6. The corresponding optimal worker 

order is presented in the last column.  

 Recall that Options 3 and 4 assume that the second worker in the order is not allowed to 

be idle. Under Options 3 and 4 when the second worker is always busy, for Cases 1 and 3 the 

optimal assignment changes based on the relationship of b and c*d/(d + c – a). For Cases 5, 7 

and 9 the optimal assignment and the optimal output rate depend on the relationship of the terms 

presented in columns 2 and 4 in Table 4. 

Table 4: Optimal output rates 

 
1 2 3 4 5 6 7 

 Output rate 

Options 3,and 4 

Optimal 

Order 

Output rate 

Options 3 and 4 

Optimal 

Order 

Output rate 

All options 

Optimal 

Order 

Case 1 b W2-W1 c*d/(d+c-a) W1-W2 c*d/(d+c-b) W2-W1 

Case 2 c*d/(d+c-b) W1-W2   c*d/(d+c-b) W1-W2 

Case 3 b W2-W1 c*d/(d+c–a) W1-W2 c*d/(d+c-b) W2-W1 

Case 4 c*d/(d+c-b) W1-W2   c*d/(d+c-b) W1-W2 

Case 5 a*d/(a+d-b) W2-W1 c*b/(b +c–a) W1-W2 b W2-W1 

Case 6 c W1-W2   c W1-W2 

Case 7 a*d/(a+d-c) W2-W1 c*b/(b+c –a) W1-W2 c W2-W1 

Case 8 b W1-W2   b W1-W2 

Case 9 a*c/(a+c-b) W2-W1 b*d/(b+d-a) W1-W2 b W2-W1 

Case 10 b*d/(b+d-c) W1-W2   c W1-W2 

Case 11 c W2-W1   c W2-W1 

Case 12 b W1-W2   b W1-W2 

 

For example, for Case 5, if a*d/(a+d-b) ≥ c*b/(b +c–a) the optimal assignment will be 

W2 – W1, otherwise the optimal assignment would be W1 - W2 and the optimal output rate 

would be c*b/(b +c–a). Therefore, alternate output rates and assignments are presented in 
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columns 2 and 4 for Cases 1, 3, 5, 7 and 9. For Cases 2, 4, 6, 8, 10, 11 and 12 the optimal output 

and order would be the same as that presented in Column 6. It is interesting to note that if one is 

going to utilize bucket brigade types of rules where upon completion of a part the second worker 

in the line comes back to takeover work from the first worker that even if one worker’s speed 

dominates another worker’s that the optimal worker order depends on the values of a, b, c and d 

and is not necessarily as simple as placing the faster worker second.  

 Based on our findings, and considering task dependent worker production rates we can 

propose operational rules to managers in order to maximize productivity: 

• In cases where one worker is faster than the other worker (the complete 

dominance case) the faster worker can be assigned at the beginning of the line, 

rather than the end of the line (Cases 1, 3 and 9). This result is contrary to the 

main bucket brigade result which states that the optimal production rate is 

achieved when workers are ordered slowest to fastest (Bartholdi and Eisenstein 

(1996, 1999)) and the work is spread evenly and continuously over the line, as 

well as McClain’s result (McClain et al., 2000) that sequencing workers from 

slowest to fastest when preemption is allowed is a good starting point as it keeps 

the fastest worker busy. This result is similar to that found by Lim and Yang 

(2006). 

• In all cases, the minimum production rate is avoided (when all six options are 

considered). This result is intuitive since we are trying to minimize the total time 

per part. 
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• When only Options 3 and 4 are considered (so that the line works as a traditional 

bucket brigade system), the optimal ordering assignment will change depending 

on the relationship of the workers’ production rates (Cases 1, 3, 5, 7 and 9).  

• If a worker is faster on one task but slower on the other task and we allow 

workers to be idle, sharing assignment approaches result in suboptimal 

throughput. Thus, in these cases worksharing is not beneficial.  

• In some cases, as given in Example 3 below, the optimal assignment is not 

intuitive.  In the Example the optimal order is W1-W2. At first glance it might 

seem that W2-W1 would be better because W2 is extremely fast on S1. However, 

the optimal production rate in this case is b (or 8) and the optimal assignment is 

W1 on S1 and W2 on S2. To see this, consider the output rates for all six 

assignment options.  

Example 3. 

kij S1 S2 kij S1 S2 
W1 i       c a W1 i      9 7 
W2 d b W2 100 8 

 
Option 1: Output1 = min (k11, k22) = min (c, b) = b. 

Option 2: Output2 = min (k21, k12) = min (d, a) = a.  

Option 3: Under this Option, the second worker in the order is allowed to work at 

the first station, but as k22 ≤ k11 this never occurs, and the output rate is equivalent 

to Option 1. 

Option 4: Using similar reasoning as for Option 3, Output4 = a. 

Option 5: Under this option, the second worker in the order can be idle if 

beneficial. Because k22 ≤ k11, this never occurs, and thus Output5 = Output1 = b.  
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Option 6: The second worker in the order can be idle, and because k12 ≤ k22, this 

can be beneficial, and Output6 = k22*k21/(k22 + k21 – k12) = b*d/(d + b – a). One 

can readily show that Option 1 is optimal with the assignment W1 - W2. Thus, in 

this case the faster worker will be the second in the order but never utilize his/her 

extremely high production rate at S1. 

 We presented detailed analysis of the two worker two station production line with 

discrete stations and station dependent workers’ production rates. Our analysis suggests that 

under our assumptions worksharing is only helpful when one worker’s slowest rate is faster than 

the second worker’s fastest rate. Otherwise, fixed assignment options result in better throughput. 

Additionally, our analysis indicates that ordering workers from slowest to fastest in cases where 

this is possible, may not produce optimal throughput. In some Cases, especially for options 

where sharing is allowed, it is beneficial to have the second worker in the order have idle time. 

For all Cases, the minimum production rate should be avoided. 

 

3.4 WORKSHARING DYNAMICS FOR TWO WORKERS AND 

DUPLICATE STATIONS 

 

In this section we look at possible benefits of duplicating tooling at one or both stations. Based 

on our observations and results for two worker two station production lines we wanted to study 

possible advantages of duplicating stations. The modeling assumptions are the same as presented 

in Section 3.1 for the two worker two station production line. The additional assumption is that if 

the station has duplicate tooling both workers can be assigned to the same station at the same 

time.  
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 We also calculate the output when the system performs as two parallel lines, in the case 

of duplicating both stations. We compare the results for duplicating one station with the option of 

creating a parallel line.  

 Note that for this problem variation workers need not ever be idle due to the presence of 

the duplicate station (assuming that the correct station is duplicated and that the workers are 

ordered optimally). Our goal is to sequence the workers in a way that utilizes the duplicate 

tooling for the maximum benefit.  

3.4.1 Two workers and duplicate station lines 

We define the objective function as minimizing the total time required per part produced. We 

analyze Cases 1 to 12 presented in Table 1 when we duplicate either S1 or S2 or both S1 and S2 

and determine optimal output rates for each case.  Based on our assumptions there are four 

options for assigning workers W1 and W2 to the two stations. All options assume that sharing is 

allowed (when we have duplicate tooling), so that both workers can be at the same station at the 

same time. For example, if W2 is assigned to S2, W1 to S1, and S1 has duplicate tooling, then if 

W2 finishes first he/she walks back and takes the part from W1, at the same time W1 starts a 

new part and thus there is no idle time. All of the assignment options are presented in Table 5.  

In order to determine the output rate for each Option in Table 5, we first calculated the 

time needed to finish each part. For example, for Option 1, if we assume that at time zero W2 

starts working at S2 (assuming that one part was already processed at S1), W1 starts working on 

a new part at S1 and S1 has duplicate tooling, the total time required to finish a part is the time 

W2 takes at S2, t22, plus the time W2 needs to finish the part at S1. Note that in order for this 

option to be logical, we need to assume that t22 < t11. Otherwise W2 will never work at S1 and 

there is no reason to have duplicated the tooling at S1. The time that W2 spends at S1 is 
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calculated as (1- t22/t11)/(1/t21+1/t11) where the numerator represents the portion of the part that is 

not finished by W1 after t22 time units and the denominator represents the total production rate of 

the two workers at S1.  We applied the same reasoning for all four options. 

Table 5: Duplicate Tooling Assignment Options 

 
 Starting 

Assignment 
Duplicate tooling at station 

Option 1 W1 assigned to S1 
W2 assigned to S2 

S1 

Option 2 W1 assigned to S1 
W2 assigned to S2 

S2 

Option 3 W2 assigned to S1 
W1 assigned to S2 

S1 

Option 4 W2 assigned to S1 
W1 assigned to S2 

S2 

 

The output rates are calculated as 1/time per part and are given below. 

Option 1: Time per part = t22 + (1-t22/t11)/(1/t21+1/t11) = (t22t11+t21t11)/(t11+t21). Thus, Output1= 

1/time per part = (k21+k11)/(k21/k22+1). 

Option 2: Time per part = t11 + (1-t11/t22)/(1/t12+1/t22) = (t11t22+t22t12)/(t22+t12). Thus, Output2 = 

1/time per part = (k12+k22)/(k12/k11+1). 

Option 3: Time per part = t12 + (1-t12/t21)/(1/t11+1/t21) = (t12t21+t11t21)/(t21+t11). Thus, Output3 = 

1/time per part = (k11+k21)/(k11/k12+1). 

Option 4: Time per part = t21 + (1-t21/t12)/(1/t22+1/t12) =  (t21t12+t22t12)/(t22+t12). Thus, Output4 = 

1/time per part = (k22+k12)/(k22/k21+1). 

 For some cases, depending on the relationship of the workers’ production rates, it is not 

advantageous to duplicate either S1 or S2, as this station would not be used. For example, if we 

look at Case 4 presented in Table 1, it is not beneficial to duplicate S1 if the workers are ordered 

W2-W1 as the duplicate station would never be used since a ≤ d. For the 12 cases, output rates 

 37  



were determined for feasible (practical, logically possible) options, where feasible means that 

sharing could actually occur at the duplicated station based on the values of a, b, c and d. 

 

Duplicate Tooling Case 1 analysis 

Recall that for Case 1 we have the production rates given in Table 1 and that a ≤ b ≤ c ≤ d. Given 

the data for Case 1, Options 1 and 4 are analyzed because they are the only feasible ones. If we 

look at Option 2, we can conclude that it is not feasible because it is not beneficial to duplicate 

S2 when the workers are ordered W1- W2 since k11 ≤ k22 (based on our assumption that k11=a  ≤  

k22 = d). The same reasoning applies for Option 3. For Case 1, duplicate tooling in Options 1 and 

4 is beneficial because output will be higher if we have duplicate tooling. Thus, we need to 

compare the output rates for Options 1 and 4 to determine the optimal output. 

We determine the output rates based on the calculations presented in 5.1., thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (c+a)/(c/d+1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (d+b)/(d/c+1).  

When we compare these output rates, it reduces to the relationship between a*d and b*c. If a*d 

> b*c it is optimal to order the workers W1 - W2 and duplicate S1. Otherwise, it is optimal to 

order the workers W2 - W1 and duplicate S2.  

 

Duplicate Tooling Case 2 analysis 

The workers’ production rates for Case 2 are presented in Table 1. For Case 2, it is reasonable to 

only analyze Options 1 and 4 because output will be higher if we have duplicate tooling. If we 

look at Option 3, we can conclude that it is not beneficial to duplicate S1 when the workers are 
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ordered W2 -W1 since k21 ≥ k12 (based on our assumption that k21=c ≥ k12 = a). The same 

reasoning applies for Option 2.  

We determine the output rates based on the calculations presented in 5.1, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (b+c)/(c/d+1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (d+a)/(d/c+1).  

When we compare (b+c)/(c/d+1) and (d+a)/(d/c+1), it reduces to the relationship between d*b 

and a*c. Thus, Option 1 is optimal because d*b is always greater than a*c.  

 For the two worker line with duplicate stations we looked at situations where it is 

beneficial to duplicate either S1 or S2, based on the workers’ production rates. Similar to the 

analysis presented for Case 1 and Case 2 we determined the feasible options for all cases and 

calculated output rates for these option and case combinations. In order to determine the optimal 

assignment option for each case, the output rates for the feasible worker assignments were 

compared for each case where feasible means that sharing could actually occur at the duplicated 

station based on the values of a, b, c and d. If sharing could not occur the production rate was not 

calculated and the case/option combination was not considered (not applicable). For some cases, 

such as Case 2, one Option dominated the other (such as Option 1 for Case 2).  In other cases, 

such as Case 1, the optimal option depends on the relative values of the workers’ production 

rates. Table 6 presents a summary of the feasible options and indicates which worker ordering 

option is optimal for each case.  

Table 7 shows the corresponding optimal throughput rates for each case. In the event that 

neither worker ordering Option dominates the other, the expressions that determine the 

breakpoint for choosing one Option versus the other are given. Detailed calculations for all 

option and case combination are presented in Appendix A. 

 39  



Table 6: Feasible Options and Break Points 
 

 Option 1 

O1 

Option 2 

O2 

Option 3 

O3 

Option 4 

O4 

Optimal 

Option 

Case 1 a*d NA NA b*c O1 or O4 

Case 2 b*d NA NA a*c O1 

Case 3 a*c NA NA b*d O4 

Case 4 b*c NA NA a*d O1 or O4 

Case 5 1/(b/c+1) NA 1/(a/d+1) NA O3 

Case 6 NA 1/(a/d+1) NA 1/(c/b+1) O2 

Case 7 1/(c/b+1) NA 1/(a/d+1) NA O3 

Case 8 NA 1/(a/d+1) NA 1/(b/c+1) O2 

Case 9 1/(b/d+1) NA 1/(a/c+1) NA O1 or O3 

Case 10 c*d NA NA a*b O1 

Case 11 a*b NA NA c*d O4 

Case 12 NA 1/(a/c+1) NA 1/(b/d+1) O2 or O4 
Note: NA not applicable 

 Assuming that tooling costs are the same for duplicating either S1 or S2, we can 

summarize the optimal assignments and scenarios for all cases. For Case 1, it is likely that either 

Option (O1 or O4) may be optimal as it is possible to have workers’ production rates such that 

a*d is greater than, equal to or smaller than b*c.  Cases 4, 9, and 12 are similar in that the 

optimal assignment Option depends on the workers’ production rates. For Case 2, it is clear that 

O1 (Option 1) is always the best Option, thus W1 would be first in the order and we would have 

a line with duplicate tooling at S1. Similarly, Cases, 3, 5, 6, 7, 8, 10, and 11 always have one 

Option that dominates the other and thus the choice of which tool to duplicate and how to order 

the workers is clear. If the costs of duplicating the different stations are different than one could 

conduct an economic analysis comparing the benefits of the increased throughput with the cost 

of duplicating the stations.  
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3.4.2 Two parallel lines 

We now consider the benefit of duplicating both stations. If we assume that both stations have 

duplicate tooling, we can look at the system as two parallel production lines. By two parallel 

lines we mean that each worker works at both stations in sequential order and finishes parts 

independently of the other worker.  

Table 7: Optimal output rates 

 
 One station with duplicate tooling Two parallel lines 

Case 1 (c+a)/(c/d+1) or (d+b)/(d/c+1) a*b/(a+b)+c*d/(c+d) 

Case 2 (b+c)/(c/d+1) a*b/(a+b)+c*d/(c+d) 

Case 3 (b+c)/(c/d+1) a*b/(a+b)+c*d/(c+d) 

Case 4 (b+d)/(d/c+1) or (a+c)/(c/d+1) a*b/(a+b)+c*d/(c+d) 

Case 5 (a+b)/(a/d+1) a*d/(a+d)+c*b/(c+b) 

Case 6 (a+c)/(a/d+1) a*d/(a+d)+c*b/(c+b) 

Case 7 (a+c)/(a/d+1) a*d/(a+d)+c*b/(c+b) 

Case  8 (a+b)/(a/d+1) a*d/(a+d)+c*b/(c+b) 

Case 9 (a+b)/(b/d+1)or (a+b)/(a/c+1) a*c/(a+c)+d*b/(d+b) 

Case10 (b+c)/(b/d+1) a*c/(a+c)+d*b/(d+b) 

Case11 (b+c)/(b/d+1) a*c/(a+c)+d*b/(d+b) 

Case12 (a+b)/(a/c+1)or (a+b)/(b/d+1) a*c/(a+c)+d*b/(d+b) 

  

Optimal throughput rates are presented in Table 7 for two parallel lines (both stations 

have duplicate tooling) assuming the same worker production rates as presented in Table 1. It 

can be shown that the throughput obtained from two parallel lines is at most as good as the 

output produced when we have optimally ordered the workers and have chosen the one correct 

station to duplicate. For example, for Cases 6 and 7, it can be shown that a*d/(a+d)+ c*b/(c+b)  

≤  (a+c)/(a/d+1). Applying simple algebra, the expression reduces to a*b ≤ c*d. Based on the 
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assumed relationships of a, b, c, d we can say that the output rates from two parallel lines for 

Cases 6 and 7 are always lower than the optimal worker ordering combined with the best choice 

of duplicate tooling. The analysis for all other cases is presented in Appendix A. 

3.4.3. Summary 

For the two worker line with duplicate stations we focused on duplicating tooling on the stations 

where it would be best utilized, depending on the workers’ production rates. When we duplicate 

tooling the best possible way, the optimal output rate can be achieved and we can show which 

station to duplicate for the different worker production rate scenarios. We also analyzed how the 

system performs if we duplicate tooling at both stations and run the system as two parallel lines. 

Our main result is that the output obtained from two parallel lines is never greater than the output 

obtained from a line with two stations when one of those stations has duplicate tooling and the 

workers are properly sequenced.  

 

3.5 SUMMARY 

 

In this chapter we concentrated on a two worker two station serial production line and analyzed 

different worker assignment policies as well as different levels of worksharing to determine their 

impact on system performance. We determined conditions for which worksharing is most 

effective, as well as optimal throughput rates. We also considered the value of duplicating 

workstations.  
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4.0 DYNAMIC ASSIGNMENT: ONE-CYCLE FORMULATION 

 

In Chapter Three we studied two worker two station production lines and compared different 

assignment approaches and policies. A logical extension is to consider and study larger serial 

production lines with more workers and stations. In this chapter we discuss and analyze larger 

production lines and settings. We study a production line on its own and we look at a set of 

production lines operating together as an independent or dependent system. An example of this 

approach is when we have parts or work pieces from two or more input production lines 

combined to form a new line for further processing. Our goal is to determine the optimal worker 

selection, order and assignment based on workers’ production rates.  Thus, we solve the worker 

assignment problem for a single production line and later we solve the problem of worker 

selection and assignment from a larger pool of workers to a set of production lines running as an 

independent or dependent production system. 

 

4.1 MODELING ASSUMPTIONS 

 

We develop a mixed integer programming formulation that models constant one-cycle behavior 

with the objective to maximize the throughput and optimally assign workers. For a one-cycle 

formulation, workers exchange parts at the same point (i.e., for each part each worker performs 

exactly the same portion of the work). We want to determine the optimal percentage of work that 
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workers perform on each part in the case of a balanced line. We assume that a line is balanced if 

workers exchange parts at the same point so that each worker repeats the same work content on 

each successive part (Bartholdi 1996). Under traditional bucket brigade rules workers are only 

idle when waiting in front of a busy station and the last worker in the order (the worker who 

finishes the product) is never idle. Our formulation allows for the last worker in the order to be 

idle if his/her idle time benefits the total production or total throughput.  

 In the previous chapter we presented a two worker two station production line analysis 

and we now extend our study to a n worker m station line where n < m. The modeling 

assumptions are the same as presented in Chapter Three. Work is concentrated in various 

proportions among discrete stations. Workers perform at steady-state production rates, 

processing times are deterministic and each part needs processing on the same sequence of 

stations. As mentioned in Chapter Three, workers may block each other especially in situations 

when the worker to station ratio is high (close to 1).  

 An illustrative example of steady-state productivity rates, kij values, for a line with six 

workers and twelve stations is presented in Table 8. This is an incomplete dominance case where 

it is not possible to order workers from slowest to fastest. 

Table 8: Incomplete dominance case: steady-state production rates 

 
kij S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

W1 25 38.2 29.2 29.1 28.2 35.7 33.1 35.7 37.4 30.5 27.4 37.9 
W2 25.9 32.8 34.8 26.1 37.9 32.3 28.8 34 35.2 30.8 25.5 31.5 
W3 37.5 25.7 37.4 33.6 26.1 37.7 30.2 39.3 29.5 38.8 27 32.9 
W4 38.6 34.5 36.9 37.7 37.3 36.4 27.1 35.2 35.3 27.5 34.6 37.1 
W5 26.8 33.8 38.1 36 28.6 27.6 30.1 31.9 25.6 31.8 30.6 38.4 
W6 36.6 31.2 30.8 26.5 35.5 28.6 36.1 26.7 31.3 33.4 39.7 30.5 
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In the table above, lightly shaded cells represent the fastest rates or the fastest worker for 

a specific task/station, where cells with a darker shade represent the slowest worker for a specific 

task/station. For example, worker 1 (W1) is slowest at stations 1 (S1) and 3, and fastest on S2 

and S9. If we examine the table we can conclude that the situation is similar for other workers 

(rows represent workers and columns represent stations), thus it is not simple to assign workers 

based on their highest production rates. 

 

4.2 ONE-CYCLE FORMULATION 

 

Our goal is to determine the optimal worker assignment and optimal level of worksharing, or the 

exact percentage of work performed at each station. Under worksharing we assume that more 

than one worker is assigned to a particular station during the production horizon (not at the same 

moment as only one worker is allowed to work at the station at one time). The input buffer has 

infinite inventory and there are no other buffer inventories. Two workers share at most one 

station (not at the same time) as exchange of the part occurs always at the same position. Each 

worker works only at adjacent stations. The starting original order of the workers is preserved. 

The notation used in this section can be found in the Nomenclature section.  

 

Objective function  

Maximize Output                                                                                            

Constraints 

wj =   xi,j ki,j         ∀j       (1) ∑
=

n

i 1

Output ≤  wj      ∀j       (2) 
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∑
=

n

i 1
 xi,j  ≤  1        ∀j      (3) 

∑
=

m

j 1
 xi,j   +  idlei  ≤  1    ∀i      (4) 

xi,j  ≤   zi,j     ∀i,∀j      (5) 

M xi,j  ≥    zi,j     ∀i,∀j      (6) 

- absi,j ≤  zi,j - zi,j+1    ∀i      (7) 

absi,j ≥  zi,j - zi,j+1    ∀i      (8) 

zi,1 + ∑
−

=

1

1
,

J

j
jiabs + z i J   ≤   2   ∀i      (9) 

zi ,j  + zi ,j+1  +   zi′,j  + zi′, j+1    ≤   3  ∀i,∀i′ (i′≠ i) , j=1,…,m-1   (10) 

zi ,j-1  +  zi ,j + zi ,j+1   +  ≤   3  ∀i, ,∀i′ (i′≠ i),∀ j=2,…,m-1   (11) ∑
≠ii

jiz
'

,'

xij ≥ 0, wj ≥ 0, Output ≥ 0, idlei ≥ 0, absi,j ≥ 0 and zij binary. 

 

The objective is to maximize throughput from the serial production line during the 

production horizon. Constraint set (1) determines the output from each station. Constraint set (2) 

models the idea that the output from the last station can be at most the output of the bottleneck 

station.  

 Constraint set (3) provides that the maximum work assigned to a station cannot be more 

than one, as we assumed that the duration of the production horizon is either one hour, one day, 

etc. Consequently constraint set (4) provides that each worker works at most the duration of the 

production horizon, including the time that worker is idle. Variable xij indicates the portion of the 

production horizon that worker i spends doing task j. If xij is positive, meaning that worker i 
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performs task j, an indicator variable zi,j will equal 1. Otherwise zi,j will be zero as given in 

constraints (5) and (6). In order to model work at adjacent stations or model the idea that if a 

worker works at station j-1 and j+1, he/she needs to work at station j, the following constraints 

were introduced for each worker  

zi,1 + ∑
−

=
+−

1

1
1,,

J

j
jiji zz + z i J   ≤   2. 

 In order to model this idea and to model the absolute values, constraints (7), (8) and (9) 

were introduced.  

 To model the idea that each worker covers a portion of a line and that two workers share 

at most one station, we introduced constraints (10) and (11). These constraints also provide that 

if a worker is assigned to station j-1 and station j+1, he/she will be the only worker assigned to 

station j.  

4.2.1 Two workers three stations numerical examples 

First we start with a production line of two workers and three stations. For a general case, the 

final throughput is calculated for a line with n workers and m stations. Worker productivity 

levels represent steady-state production rates and ki,j values were randomly generated based on 

the steady state levels given in Shafer et al. (2001). For each set of kij values we present xij as the 

portion of time that worker i spends working at station j during the production horizon. We also 

present the final throughput obtained. 

 Several examples for a line with two workers and three stations are presented. In  

Table 9 an example is given where W2 is faster at each station, for example k21 is higher than k11, 

but also lower than k12, etc. The optimal solution obtained is also presented in the table and W2 

is optimally assigned on S1 and S2 and W1 on S2 and S3. W2 spends 90% of his/her time on S1 
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and 10% on S2. W1 spends 55% of his/her time on S2 and the rest on S3. The objective function 

value is 2.7 parts / hour. We assumed that the production horizon length is one hour. 

Interestingly, though W2 is faster than W1, W2 is not at the end of the line as in a “traditional” 

bucket brigade case. 

Table 9: Data set with two workers and three stations 

 
kij S1 S2 S3   xij S1 S2 S3   

W1 2 4 6  W1   0.55 0.45   
W2 3 5 7  W2 0.9 0.1     

            
Objective  2.7 parts/hour             

 

In Table 10 we present a complete dominance case. W2 is faster than W1 at any station. An 

optimal solution is also presented where the faster worker, W2 in this case, is first in the order. 

W2 spends 61% of his/her time at S1 and the remaining 39% at S2. There is no idle time.  

Table 10: Slower worker at the end of the line 

 
kij S1 S2 S3  xij S1 S2 S3   

W1 5 7 9  W1   0.25 0.75   
W2 11 13 15  W2 0.61 0.39     

            
Objective   6.75 parts/hour            

 

An example of the last worker being idle is presented in Table 11. Once W2 finishes at 

the last station (or the part is finished), it is better for him/her to wait for W1 to finish his/her 

work at S1 and then exchange a part rather than exchange earlier in which case W1 would wait 

and it would take longer for W2 to finish the part at S1, as k32 is smaller than k31. The objective 

function value or the total throughput in this case is 6 parts per hour.  
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Table 11: An example of idle time 

 
kij S1 S2 S3   xij  S1 S2 S3 idle 

W1 2 12 14   W1   0.5 0.42 0.08
W2 6 6 10   W2 1       

            
Objective 6 parts/hour             

 

4.2.2 N workers M stations numerical examples 

In this section we present the application to larger production lines. An example of a line with six 

workers and twelve stations is presented. The optimal solution obtained for the production rates 

given in Table 8 is presented in Table 12. W4 is assigned to S1 and S2, and he/she shares S2 

with W5 (not at the same moment), etc. The last row represents utilization of each station and the 

last column sums the total proportion of time that the workers are busy. The order of the workers 

presented here is as follows: W4 is at S1 and S2, W5 is at S2 to S4, W6 is at S4 to S7, etc. The 

objective function value is 18.13 parts/hour. We assume that the production horizon length is one 

hour. 

Table 12: Math formulation solution: Example 

 
  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 SUM 

W4 0.57 0.43                     1.0 
W5   0.07 0.49 0.44            1.0 
W6     0.06 0.46 0.49        1.0 
W1       0.01 0.51 0.46 0.01      1.0 
W3            0.49 0.49 0.01   1.0 
W2                     0.46 0.54 1.0 
U 0.57 0.49 0.49 0.50 0.46 0.50 0.51 0.46 0.50 0.49 0.48 0.54   

 

 49  



We also tested data sets for production lines with two to eight workers and three to 

sixteen stations.  Selected examples are given in Appendix B.  

4.2.3 Summary 

Our primary focus was to optimally solve the assignment problem and determine exact portions 

of work performed by each worker under the assumptions presented. We developed a mixed 

integer programming formulation that models one-cycle balanced line performance where 

workers exchange parts at exactly one position. We are able to obtain optimal positioning of 

workers and the optimal amount of work performed by each worker. Based on workers’ 

production rates we can determine the optimal throughput and exact workers’ assignments. This 

represents the maximum throughput with worksharing under the given assumptions. 

 

4.3 MULTIPLE PRODUCTION LINES 

 

In situations where several production lines are used simultaneously or parts assembled or 

produced at one line are used as a beginning inventory for another line, we need to look at that 

production scenario as one whole problem. Analyzing each line independently is not accurate, as 

in order to produce at line B workers need finished parts from line A. Sewing garments, or 

manufacturing cars are possible examples. In these cases we can state that lines A and B are not 

independent.   

 Now we extend our study to a set of production lines. We developed a mixed integer 

programming formulation for selecting workers to different lines as well as finding an optimal 

assignment of workers. This concept can be applied when worker groups are formed from a 

larger pool of assembly workers.  
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 The formulation presented in section 4.2 is modified in order to solve a different 

assignment problem. The problem defined is the selection and assignment of workers to several 

production lines based on the defined production requirements and the given workers’ 

production rates. We can either look at the system as a set of l independent lines or a set of l 

linked or dependent lines. 

 We have a total of n workers and m stations where parts need to be processed on 

consecutive stations and the sum of all the stations of all lines equals m. Our goal is to determine 

how to optimally select workers for each line, as well as how to assign workers to stations. 

Modeling assumptions are the same as presented in section 3.1.  

 An example of ten workers and fifteen stations is presented in Table 13. In this case we 

assumed that these fifteen stations actually represent five independent production lines, each line 

consisting of three stations. Workers’ production rates are assumed to be deterministic and 

known for each station. Based on workers’ production rates and line break-points (beginning and 

end of each line), we can select workers for each line as well as assign them in the proper order 

in order to achieve maximum throughput.  

We formulate the problem as follows: from a group of n workers with given production 

rates on m tasks, assign workers to each line in order to satisfy given constraints and to maximize 

the objective. In the first case we define the objective function as an equally weighted sum of 

throughput obtained from each line. Also, the notation used in this section can be found in the 

Nomenclature section.  

We also need to define the allocation of stations to lines, so for the example given above 

we’ll assign S1, S2 and S3 to line 1 (L1), S4, S5 and S6 to L2, etc. The assignment of stations to 

lines is given in Table 13. The formulation is presented below.  
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Table 13: Data set 1: Worker/station production rates 

 
kij    Line 1   Line 2   Line 3   Line 4   Line 5   
W/S S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15   
W1 11 9.4 10 9.2 9.5 10 11 10 9 12 11 10 10 9.9 12   
W2 7 8.8 5.6 6.2 7.7 9 7 8.4 6.8 10 8.7 7 9.5 8.3 10.2   
W3 9 7.7 6 5.7 5.1 6.1 5.4 9 6.1 7.5 8.1 9.2 9.9 7.1 8.3   
W4 6 8.1 9 9 8 7.9 7 8 6.8 8.1 8.7 9.3 7.4 6.4 8   
W5 10 6 7.6 6.1 5.7 5.8 6.2 5.4 6.7 7.6 8 9 6.6 7.7 7.2   
W6 8 7.3 6 9 6.2 5 7.1 7 6.1 6.9 8.1 9.2 7.7 8.8 9.9   
W7 7.2 6.9 7 7 8 6 7 8 6.8 8.1 8.7 9.3 6.2 6.6 8   
W8 6.7 7.1 9.4 7.9 5.6 6.6 8.8 6.8 6.2 9 10.6 6.2 8.3 8.5 7.2   
W9 7 8.9 6 8.8 5.7 7.2 9 5.2 6.1 7.5 8.1 9.2 7.4 5.5 10   
W10 4.5 4.2 4.1 5.4 5 4 4.9 4.9 5 5.2 6.7 3.2 5.5 4.6 5.9   
                                  

  

Objective function  

Maximize                                                                                     ∑
=

l

o
oOutput

1

Constraints 

wj =   xi,j ki,j         ∀j       (1)   ∑
=

n

i 1

Outputo ≤  wj      ∀j∈l,∀l      (2) 

∑
=

n

i 1
 xi,j  ≤  1        ∀j      (3) 

∑
=

m

j 1
 xi,j   +  idlei  ≤  1    ∀i      (4) 

xi,j  ≤   zi,j     ∀i,∀j       (5) 

M xi,j  ≥    zi,j     ∀i,∀j       (6) 

- absij ≤  zi,j - zi,j+1    ∀i      (7) 

absij ≥  zi,j - zi,j+1    ∀i      (8) 
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zi,1 + ∑
−

=

1

1
,

J

j
jiabs + z i J   ≤   2   ∀i      (9) 

zi ,j  + zi ,j+1  +   zi′,j  + zi′, j+1     ≤   3  ∀i,∀i′ (i′≠ i) , j=1,…,m-1   (10) 

zi ,j-1  +  zi ,j + zi ,j+1   +  ≤   3  ∀i, ∀i′ (i′≠ i),∀ j=2,…,m-1   (11) ∑
≠ii

jiz
'

,'

∑
∈Spj

zi,j      ≤  3 gil    ∀i,∀l      (12) 

10 zi,j  ≥  gil    ∀i,∀l      (13) ∑
∈Spj

∑
=

o

l 1
 gil  ≤  1        ∀i      (14) 

∑
=

n

i 1

 gil  ≤  v        ∀l      (15) 

xi,j ≥ 0, wj ≥ 0, Output ≥ 0, idlei ≥ 0, absi,j ≥ 0, zi,j binary and gi,l  binary. 

 In order for a worker to be assigned to one line only, we introduced another binary 

variable gio. If worker i is assigned to line o, then gio is one, otherwise it is zero. The objective 

given above is to maximize total throughput obtained from the serial production lines during the 

production horizon. Constraints (1) to (11) are identical to the constraints presented in section 

4.2. If worker i works at station j, then zij is one as described above. Also, if at least one zij, for 

stations that belong to line l, is one then the corresponding gil is also one. Constraints (12) and 

(13) capture that if the zij values corresponding to line l are all zero then the variable gil is zero. 

Constraints (14) provide that a worker is assigned to at most one line. The fact that at most v 

workers are assigned to one line is modeled by constraints (15).  
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4.3.1. Optimality Criteria 

The objective given in section 4.3 can be modified in order to maximize the total weighted 

throughput from the considered serial production lines during the production horizon. We can 

assign different weights to each line as given by weighto in order to construct more realistic 

scenarios. Thus weighto is defined as the coefficient assigned to each line. The modified 

objective can be written as Maximize        .  ∑
=

l

o
ooOutputweight

1

 In situations when higher throughput is needed from several lines we can assign more 

workers accordingly. Thus, instead of having the same number of workers and/or stations at each 

line, we can modify the formulation and satisfy requirements such as having different numbers 

of workers and/or stations at different production lines. For the examples tested v=2, which 

implies that at most two workers work at each line. Also, we tested lines with three stations. We 

could expand the formulation and examine production lines with different numbers of stations as 

well as allowing different numbers of workers at each production line. Another extension is 

defining a minimum necessary throughput from each line based on production requirements.                               

 Another possible assumption is that we have l connected cells or l linked (dependent) 

production lines where production at line l depends on finished products from line l-1, etc. The 

product or an item is finished if it was processed on all l successive lines.  

 The modified objective can be written as Maximize Output where the variable Output is 

defined as the output from the last line (or finished product). The new set of constraints 

introduced is Output ≤ Outputo, ∀o. New constraints introduced would insure that the output 

from the last line is at most the output of the line with the lowest output.  
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4.3.2 10 workers 15 stations (5 production lines) 

We primarily tested production lines with two workers and three stations. However, examples 

with six, eight and ten workers and nine, twelve and fifteen stations respectively were also tested 

and solved optimally. CPLEX solution times varied from 20 seconds to 450 seconds for 

independent lines, and were much higher for five dependent (or connected) lines. The solution 

times for the data sets tested ranged from 200 to 10000 seconds.   

 For data set 1, given in Table 13, based on the production rates given, it can be seen that 

W1 is faster than other workers at all stations, W10 is slowest at all stations and task S9 is 

defined as a hard task (the lowest production rates for all workers). The optimal solution 

obtained is presented in Table 14. W4 and W5 share work at line 1, and W5 works 56% of 

his/her time at S1 and 44% of the time at S2. W4 works 37% of his/her time at S2 and 63% of 

the time at S3. W10 is idle 3% of time. Total throughput is 28.4 units per hour. The utilization 

for each station as well as throughput obtained from each line are presented in rows U and T in 

Table 14 respectively.  

If we allow more than two workers per line/cell, and also require at least one worker per 

each line/cell while having the same objective function, the optimal throughput and assignment 

may change. For example, for data set 1 the optimal throughput changed from 28.4/parts per 

hour to 29.4 parts per hour. The solution with modified constraints is presented in Table 15 and 

only one worker was assigned to line 3 and line 2, while three workers were assigned to lines 1 

and 5. We can also see from the table that W5 and W8 are idle 11% and 5% of the time 

respectively. By allowing more than two workers per cell (line) the number of workers is not 

strictly less than the number of stations. In this case we have the same number of workers as the 

number of stations in some cells (lines). 
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Table 14: Two workers per line (independent lines) 

 
    Line 1   Line 2   Line 3   Line 4   Line 5   
W/S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   

1             0.46 0.51 0.03             1 
2       0.4 0.6             1 
3                  0.62 0.38   1 
4   0.37 0.63                 1 
5 0.56 0.44                   1 
6                   0.38 0.62 1 
7               0.33 0.67     1 
8              0.69 0.31       1 
9      0.61 0.39               1 

10                 0.97             0.97 
U 0.56 0.81 0.63 0.61 0.79 0.6 0.46 0.51 1 0.69 0.64 0.67 0.62 0.76 0.62   
T 5.64   5.35   5.10   6.2   6.10   28.4 

 

Table 15: Solution with more than two workers per line 

 
    Line 1   Line 2   Line 3   Line 4   Line 5   
W/S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   

1                           1   1 
2              0.62 0.38       1 
3                  1    1 
4      0.31 0.34 0.35             1 
5 0.89                    0.89 
6                    1 1 
7               0.33 0.67     1 
8    0.95                 0.95 
9   1                   1 

10             0.34 0.34 0.33             1 
 U 0.89 1 0.95 0.31 0.34 0.35 0.34 0.34 0.33 0.62 0.71 0.67 1 1 1   
T 8.9   2.76   1.64   6.2   9.9   29.4 

 

As we discussed earlier, when finished products from several production lines, or manufacturing 

cells are used simultaneously or products assembled at one line are being used as beginning 

inventory for another line, we study the system as a set of dependent lines or cells. So, if we run 

the system as five linked cells or five dependent lines we would obtain the solution presented in 

Table 16.  The final throughput is 5.1 parts/hour if we assume that a part finished at line p is 

instantaneously available at line p+1. 
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Table 16: Five linked (dependent) lines 

 
    Line 1   Line 2   Line 3   Line 4   Line 5   
W/S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14   

0             0.5 0.5 0.03             1 
1                   0.5 0.5 1 
2              0.7 0.2      0.9 
3       0.3 0.6            0.9 
4 0.5 0.5                  1 
5      0.6 0.4              1 
6                  0.8 0.2  1 
7   0.3 0.5                0.8 
8               0.4 0.6    1 
9                 0.97             0.97 

 U 0.5 0.8 0.5 0.6 0.7 0.6 0.5 0.5 1 0.7 0.6 0.6 0.8 0.7 0.5   
 T 5.1     5.1     5.1     5.1     5.1       

 

4.3.3 Summary  

We considered multiple production lines and were able to assign workers to a set of production 

lines based on the optimality criteria defined. We analyzed two cases. The first is when 

production lines can be viewed as a set of l independent lines, and second when we have l 

dependent lines and we can produce at line l at most the output from line l-1. This extended 

formulation which assigns workers to a set of production lines can be helpful when workers are 

selected to work in different manufacturing cells. We are able to determine the optimal 

throughput as well as the information regarding the amount of busy/idle time for each worker 

(this is beneficial in cases where a worker can be assigned to perform some additional tasks 

during that time).  

4.4 SUMMARY 

 

In this chapter we studied a production line consisting of n workers and m stations. We were able 

to determine the optimal worker assignment to stations as well as exact portions of work 
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performed by each worker. We extended our formulation to a set of production lines functioning 

as an independent or dependent production system. We were able to determine the optimal 

throughput as well as the optimal assignment of workers to stations. 
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5.0 DYNAMIC ASSIGNMENT: TWO-CYCLE FORMULATION 

 

In order to model two-cycle behavior, where workers exchange parts at exactly two fixed 

positions that they visit periodically, we developed a two-cycle math formulation. The modeling 

assumptions are the same as presented in Chapter Four. We are able to show that depending on 

the workers’ production rates two-cycle behavior may result in optimal throughput.  

 

5.1 TWO-CYCLE FORMULATION 

 

We develop a mixed integer programming formulation that models two-cycle behavior with the 

objective to maximize throughput and optimally assign workers. Each worker covers a portion of 

a line during each cycle, and the assumption is that he/she repeats the same portion of work in 

each cycle for each part produced.  Workers perform repetitive work in each cycle and they 

exchange parts at two locations. There is no blocking and each worker performs the same portion 

of work on each part. Two workers may share only one station during each cycle (not at the same 

time) and each worker can only work at adjacent stations. We assume that the raw material (or 

input) buffer is constantly replenished. 

During the first part of the cycle the portion of the time that the workers spend at each 

station is defined by the x′ variables, the second part of the cycle is defined using x″ variables. 

Thus, in order to model two cycles we introduce variables x′ ij, w′ j, z′ij and idle′i that correspond 
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to the first cycle and x″ij, w″j, z″ij and idle″i that correspond to the second cycle. Detailed 

definitions regarding these variables are given in the Nomenclature section. Workers movement 

during the two cycles for a line with two workers and four stations is presented in Figure 4. In 

this example workers alternate exchanging parts at S2 and S3.  

 

S1 

W1 Cycle 1 

W1 Cycle 2 

W2 Cycle 2

W2 Cycle 1

OUTPUT S2 S3 S4

 

  

Figure 4: Two-cycle movement for two workers 

 

The two-cycle math formulation is presented below. 

Objective function  

 Maximize Output                                                                                            

Constraints  

w′j =   x′i,j ki,j           ∀j     (1) ∑
=

n

i 1

w″j =   x″i,j ki,j           ∀j     (2) ∑
=

n

i 1

Output  ≤  w′j + w″j      ∀j    (3) 

Output  ≤  w′0            (4) 

Output  ≤   w″0           (5) 
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∑
=

n

i 1
 x′ i,j  + ∑  x″i,j   ≤  1        ∀j    (6)  

=

n

i 1

∑
=

m

j 1
 x′i,j   +  idle′i  +   x″i,j   +  idle″i ≤  1   ∀i    (7) ∑

=

m

j 1

x′i,j   ≤   z′i,j       ∀i,∀j    (8) 

x″i,j  ≤   z″i,j       ∀i,∀j    (9) 

M x′i,j  ≥    z′i,j       ∀i,∀j    (10) 

M x″i,j  ≥    z″i,j       ∀i,∀j    (11) 

- abs′i,j ≤  z′i,j – z′i,j+1      ∀i    (12) 

abs′i,j ≥  z′i,j - z′i,j+1    ∀i      (13) 

z′i,1 + ∑
−

=

′
1

1
,

J

j
jisab + z′ i J   ≤   2   ∀i      (14) 

- abs″i,j ≤  z″i,j - z″i,j+1    ∀i      (15) 

abs″i,j ≥  z″i,j - z″i,j+1    ∀i      (16) 

z″i,1 + ∑
−

=

′′
1

1
,

J

j
jisab + z″i J   ≤   2   ∀i      (17) 

z′i ,j  + z′i ,j+1  +   z′ i′,j  + z′ i′, j+1        ≤   3   ∀i,∀i′ (i′≠ i) , j=1,…,m-1 (18) 

z″i ,j  + z″i ,j+1  +   z″i′,j  + z″i′, j+1           ≤   3   ∀i,∀i′ (i′≠ i) , j=1,…,m-1 (19) 

z′i ,j-1  +  z′i ,j + z′i ,j+1   + ∑     ≤   3   ∀i,∀i′ (i′≠ i) , j=1,…,m-1 (20) 
≠ii

jiz
'

,''

z″i ,j-1  +  z″i ,j + z″i ,j+1   +   ≤   3   ∀i,∀i′ (i′≠ i) , j=1,…,m-1 (21) ',
'

"i j
i i

z
≠
∑

z′i,0  - z″i,0  =  0       ∀i    (22) 

z′i,m  - z″i,m  =  0       ∀i    (23) 
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∑
=

m

j 1

 x′i,j +  idle′i  -  x″i+1,,j -  idle″i+1 = 0   ∀i,i+1    (24) ∑
=

m

j 1

∑
=

m

j 1

 x″i,j +  idle″i  -  x′i+1,,j -  idle′i+1  = 0   ∀i,i+1    (25) ∑
=

m

j 1

∑
=

n

i 1

 x′i,j ki,j    -  x′i,(j+1) ki,(j+1) =  0   ∀j,j+1    (26) ∑
=

n

i 1

∑
=

n

i 1

 x″i,j ki,j    -  x″i,(j+1) ki,(j+1) =  0   ∀j,j+1    (27) ∑
=

n

i 1

idle′i  ≥ 0, idle″i ≥ 0, Output ≥ 0,  x′ij ≥ 0, x″ij ≥ 0, w′j ≥ 0, w″j ≥ 0, , abs′ij≥ 0, abs″ij ≥ 0, z′ij  binary 

and z″ij binary. 

The objective is to maximize throughput from the serial production line during the 

production horizon. Constraint sets (1) and (2) determine the output from each station during the 

first and second cycle respectively. Constraint set (3) models the fact that the total output cannot 

be greater than the output from bottleneck stations during both cycles. Constraint sets (4) and (5) 

ensure that the output from the two cycles is the same.  

 Constraint set (6) provides that the maximum work assigned to a station during both 

cycles cannot be more than one, as we assumed that the duration of the production horizon is 

either one hour, one day, etc. Consequently constraint set (7) provides that each worker works at 

most the duration of the production horizon, including the time that the worker is idle.  

Constraint sets (8) to (21) are equivalent to the constraints sets (5) to (11) discussed in 

Chapter Four. Constraint sets (8) to (21) include constraints for both cycles. Constraint sets (22) 

and (23) ensure that the order of the workers is preserved in the two cycles, so if a worker is first 

in the order during the first cycle, he/she should be first in the order during the second cycle. 

Constraint set (22) conveys that idea. The equivalent reasoning applies for the last worker in the 
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order and is expressed by constraint set (23). These constrains are sufficient to preserve the order 

of two or three workers in two cycles. However, for more than three workers, additional 

constraints should be included in order to preserve the order of workers.  

Constraint sets (24) and (25) provide that the time of one worker in one cycle equals the 

time of the other worker in the other cycle in the case of two workers. Constraint sets (26) and 

(27) ensure that the output form each station is the same (serial line constraints).   

This formulation has one limitation. The possibility of workers exchanging at the first or 

the last station, which would necessarily induce a worker to be idle, is not modeled. In the future, 

the formulation could be extended to account for this possibility. 

 

5.2 NUMERICAL EXAMPLES 

 

In this section we present several examples for two worker and four station production lines 

where the one-cycle solution results in a lower throughput than the two-cycle solution.  

 Steady-state production rates for data set 1 with two workers and four stations are 

presented in Table 17. The one-cycle solution is presented in Table 18. The total throughput 

obtained is 2 parts/hour. We can see from Table 18 that W1 is assigned to S1 and S2, while W2 

works at S3 and S4. The two-cycle solution for data set 1 is presented in  Table 19.  

Table 17: Data set 1 workers production rates 

 
kij S1 S2 S3 S4 

W1 6 3 6 2 
W2 2 6 3 6 
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The total throughput obtained is 2.4 parts/hour which is 20% better than the optimal one-

cycle solution. We can see from the tables that W1 works at stations S1, S2 and S3 during the 

first cycle and only S1 during the second cycle. W2 works at S2, S3 and S4 during the first cycle 

and at S4 during the second cycle. 

 

Table 18: Data set 1: One-cycle solution 

 
xij S1 S2 S3 S4 

W1 .33 .67   
W2   .67 .33 

 

Table 19: Data set 1: Two-cycle solution 

 
x′ij S1 S2 S3 S4 
W1 .2 .4 .2  
W2    .2 
x′′ij S1 S2 S3 S4 
W1 .2    
W2  .2 .4 .2 

 

 Steady-state production rates for data set 2 with two workers and four stations are 

presented in Table 20. The one cycle solution is presented in Table 21. The total throughput 

obtained is 2.4 parts/hour. We can see from Table 21 that W1 is assigned to S1 and S2, while W2 

works at S3 and S4. 

Table 20: Data set 2 workers production rates 

 
kij S1 S2 S3 S4 

W1 6 4 4.6 3 
W2 3 4.6 4 6 
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The two-cycle solution for data set 2 is presented in Table 22. The total throughput 

obtained is 2.5 parts/hour which is higher than the one-cycle solution obtained. We can see from 

the tables that W1 works at station S1 during the first cycle and S1, S2 and S3 during the second 

cycle. W2 works at S4 during the first cycle and at S2, S3 and S4 during the second cycle. 

Table 21: Data set 2: One-cycle solution 

 
xij S1 S2 S3 S4 

W1 0.4 0.6   
W2   0.6 0.4 

 

Table 22: Data set 2: Two-cycle solution 

 
x′ij S1 S2 S3 S4 
W1 0.21    
W2  0.27 0.31 0.21 
x′′ij S1 S2 S3 S4 
W1 0.21 0.31 0.27  
W2    0.21 

 

 

5.3 SUMMARY 

 

We presented a two-cycle mixed integer formulation that models two-cycle behavior in a 

dynamic assignment environment. We were able to present examples where a two-cycle solution 

results in the optimal throughput while the one-cycle solution, for a given set of workers 

production rates, results in a lower throughout.  

  This is a significant result as Bartholdi et al. (1999) recognize the existence of two-cycle 

behavior, but also state that for their problem setting two-cycle behavior results in a suboptimal 

production rate. Also, for three of more workers other asymptotic modes of behavior or balance 
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are possible with a suboptimal production rate (such as k-cycles, Bartholdi et al. 1999). As we 

discussed in Chapter Two, Lim and Yang analyzed systems with discrete stations and determined 

the average throughput levels obtained based on the order of workers and workers’ velocities. 

However, they assume that workers’ velocities are constant along the line and thus if one worker 

is faster than another then the faster worker dominates the other worker throughout the entire 

line. They define regions where the system converges to one-cycle exchange positions or two-

cycle exchange positions as well as average throughput levels for these regions. They state that 

the maximum attainable throughput is obtained when workers are ordered from slowest to 

fastest, the system converges to a fixed point. Our result is unique as we assume that workers’ 

production rates are station dependent and that complete dominance may not be possible.  

 The two-cycle solution can result in an optimal throughput that is significantly better than 

the throughput obtained from the one-cycle solution. However, there are situations when a two-

cycle solution results in only a slightly better optimal throughput. For example, for data set 1, 

there is a 20% increase in throughput but for data set 2 the increase in throughput is only 4.1%.  
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6.0 DYNAMIC ASSIGNMENT WITH LEARNING AND FORGETTING 

 

In Chapters Three, Four and Five we studied a dynamic assignment environment which 

considers a serial production setting where workers walk to adjacent stations and carry the work 

towards completion. Workers’ production rates are deterministic, and our assumption is that 

work is divided among the finite number of discrete stations. An example of this dynamic 

environment is presented in Chapter One (Figure 1).  Previously, we studied different assignment 

policies and their impact on worker utilization, station utilization and portions of the work 

performed by each worker. We also presented one-cycle and two-cycle mixed integer 

formulations for serial production lines with n workers and m stations. We were able to obtain 

optimal worker assignments and determine the optimal throughput. We also looked at the 

benefits of duplicating stations.  

 In our previous analysis, we assumed that workers perform at a steady state level, and 

workers’ productivity does not change during the given production horizon. As stated in the 

Introduction, one of the aims of this research is to study dynamic systems when workers’ 

learning and forgetting is present. In this chapter we discuss situations when workers’ 

productivity changes due to workers’ learning and forgetting. In Chapter Two we presented a 

detailed literature review on the topic of workers’ individual learning and forgetting 

characteristics. We study how changes in the production rates due to learning and forgetting 

effects impact overall productivity. We are still looking at an environment where the workforce 

is heterogeneous. 
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6.1 MOTIVATION TO INTRODUCE LEARNING AND FORGETTING 

 

As we emphasized earlier, a significant amount of research has been done in recent years 

studying the individual and organizational learning in manufacturing environments. Researchers 

have discussed the importance of introducing individual learning and forgetting characteristics in 

situations when short product life cycles and faster product changes are present. Many 

organizations are restructuring and reorganizing work activities and workers learn new tasks 

frequently. Workers must learn new skills and processes often in order to keep up with shorter 

production runs and product cycle times. As a result, worker learning and retention is becoming 

an increasingly important factor in manufacturing productivity (Nembhard and Uzumeri, 2000b). 

However, almost all previous work regarding bucket brigade systems assumes that worker 

speeds are constant over time (Armbruster et al., 2007).  

 Due to shorter production and frequent process changes worker production rates also 

change over time in many production environments where bucket brigade system can be a 

practical alternative. Armbruster et al. (2007) studied the dynamics of the bucket brigade system 

with worker learning. The authors assumed that n workers are ordered from slowest to fastest 

with constant speeds along the production line. They considered a production line with fully 

cross-trained workers and continuous tasks. The authors primarily used an exponential learning 

model introduced by Mazur and Hastie (1978). One of their conclusions considering situations 

with all workers learning is that this system will lead to a self balanced production. In situations 

with one worker learning (it is assumed that the line is already self balanced with two workers 

working and that the new worker is introduced) the authors define conditions when managerial 

guidance is needed. 
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 Our assumptions are significantly different than those presented in Armbruster et al. 

(2007) in two important details. First, we assume that tasks are discrete (or work is divided 

among discrete stations) and second, workers production rates differ from station to station. We 

are also looking at how both learning and forgetting impact the total throughput and optimal 

assignment. We believe that in environments where there are fewer workers than stations, such 

as bucket brigade systems, forgetting could have significant impacts and should be considered. 

 

6.2 PRODUCTIVITY BASED ON THE LEARNING AND FORGETTING 

MODEL 

 

Worker productivity levels are determined based on a hyperbolic recency learning and forgetting 

model. The learning model used in our research was introduced by Mazur and Hastie (1978) and 

was modified to include the effects of forgetting by Nembhard and Uzumeri (2000). The 

workers’ productivity changes over time and is dependent on the number of times the workers 

were assigned to each task, and the recency of their experience. Now we present the hyperbolic 

recency learning and forgetting model. The notation used in this section can be found in the 

Nomenclature section. 

 The recency term, Ru, provides a relative measure of how recently an individual’s 

experience was obtained. For each unit of cumulative work u, Ru is determined from the ratio of 

the average elapsed time to the elapsed time of the most recent unit produced (Shafer et al. 

2001), as given in (1).  
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 The hyperbolic-recency learning and forgetting model is presented in (2) where pi,j 

represents an approximation of the initial experience of worker i doing task j, ri,j is a learning or 

shape parameter based on the same units as u and αi,j is the forgetting rate of worker i doing task 

j. The learning rate parameter ri,j in a hyperbolic-recency model represents the cumulative 

production required to get halfway to ki,j Thus, slower learning is represented by a larger value of 

ri,j. Parameters pi,j and αi,j are nonnegative and the learning rate rij can be negative. This learning 

model is capable of describing both positive and negative learning episodes (Nembhard and 

Uzumeri 2000), and for the negative learning case, rij < 0, in order to avoid division by 0, it is 

necessary that pi,j + ri,j > 0. However, this research considers positive learning only.  
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 More complex tasks or hard tasks result in slower learning because workers need 

additional practice to become proficient (Nembhard, 2000a).  The forgetting rate, αi,j, represents 

the extent to which worker i forgets task j following a break.  The literature on the effects of task 

complexity on individual forgetting rates concludes that as task complexity increases, the 

individual forgetting rate increases (Nembhard, 2000b). Initial expertise is estimated based on 

initial performance level.  The literature on the effects of task complexity on initial performance 

level, or the fitted initial expertise pi,j, suggests that a higher task complexity results in a lower 

mean initial expertise (Nembhard, 2000b).  In constraint (1) recency is based on cumulative units 

of work. 
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Modeling assumptions are the same as presented in section 3.1. As discussed in section 

3.1, the tasks performed at each station are different. Consequently, each worker has distinctive 

learning-forgetting parameters and learning-forgetting curves for each station at which he/she 

performs.  A worker’s productivity rate on each station varies over time due to the individual’s 

learning-forgetting characteristics. 

 

6.3 SIMULATION: COMPARISONS WITH STEADY STATE 

ASSIGNMENTS   

 

A C++ code for the bucket brigade application has been written in order to simulate a production 

line that operates as a bucket brigade system. The code’s algorithm and flow chart are presented 

in Appendix F. The final throughput is calculated for a line with m stations and n workers. 

Different order and initial positioning of workers were tested. No passing or switching of 

workers is allowed. We compared outputs when workers perform at steady-state production 

levels with the outputs obtained when productivity changes with each part/unit produced due to 

learning and forgetting effects.  

 The data used in this work is based on 124 workers that were observed at three serial 

production lines and 24 test stations doing an industrial manufacturing task. Data were collected 

from the final test and inspection station of an assembly line that produces car radios. The 

learning and forgetting parameters were individually fit from the empirical data and for detailed 

information see Shafer et al. (2001). For some instances tested (when workers produce at their 

steady state levels) ki,j values were randomly generated. 
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We tested instances with two to eight workers and two to sixteen stations. The total 

throughput calculated was based on the number of completed parts (units). We looked at 

different durations of 1, 2, 3, 4, 10, 20, 30, 40, 50, 100 and 1000 time units. We enumerated all 

possible assignments for both steady state production rates and production rates when learning 

and forgetting is present. Our objective is to determine the position of workers which yields the 

highest throughput. 

For a line with six workers and twelve stations, steady state production rates are given in 

Table 23. Learning and forgetting parameters p, r and α, for the same set of workers/stations, are 

given in Table 71 (Appendix F).  

Table 23: Data Set: Steady-state production values 

 
kij 1 2 3 4 5 6 7 8 9 10 11 12 

1 25.02 28.29 29.25 29.16 28.22 35.79 33.1 35.76 37.46 30.57 27.48 37.92 
2 25.93 32.85 34.88 26.1 35.92 32.34 28.89 34.03 35.28 30.86 25.53 31.49 
3 38.5 25.79 37.48 33.65 28.18 37.77 30.24 39.3 29.52 38.83 27.09 32.9 
4 38.63 34.56 36.99 37.79 37.38 36.4 27.18 35.28 35.34 27.56 34.61 37.11 
5 26.86 33.81 38.1 36.04 28.61 27.62 30.19 31.99 25.69 31.81 30.67 38.43 
6 36.67 31.23 30.82 26.52 35.57 28.65 30.13 26.78 31.33 33.42 34.79 30.59 

 
We present the optimal throughput for a line with six workers and twelve stations when 

learning and forgetting is present. We can see from Table 24 that the optimal assignment of 

workers, based on the highest throughput obtained, changes with the duration of the total 

production time or the total production horizon. If we looked at the highest levels of throughput 

obtained for the production horizon length of 100 time units we would assume that the optimal 

assignment is Position 3 (W1 at S9, W2 at S5, W3 at S7, W4 at S11, W5 at S3 and W6 at S1). 

However, if the total duration of production or the total production time is 20 time units, the 

optimal starting order or assignment would be Position 2.        
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Table 24: Throughput obtained with learning and forgetting 

 

Time  

Position 4: 
W1S7 W2S3  W3S11  
W4S9  W5S1  W6S5 

Position 2: 
W1S7  W2S1  W3S11  
W4S8  W5S3  W6S5 

Position 3: 
W1S9  W2S5  W3S7  
W4S11  W5S3  W6S1 

1 3 12 3 
2 10 25 8 
3 23 39 18 
4 36 54 32 
5 50 69 45 
6 65 84 60 
7 80 100 76 
8 96 115 91 
9 112 130 107 
10 128 145 124 
20 292 300 292 
30 458 456 464 
40 626 613 636 
50 795 771 808 
100 1641 1565 1672 

 

The results obtained for the six worker twelve station production line with workers 

producing at steady state levels are given in Table 25. The optimal solution or the highest levels 

of throughput are obtained when workers are assigned according to Position 3 (W1 at S9, W2 at 

S5, W3 at S7, W4 at S11, W5 at S3 and W6 at S1). We also presented throughput levels for 

Position 2 (W1 at S7, W2 at S1, W3 at S11, W4 at S8, W5 at S3 and W6 at S5) and Position 4 

(W1 at S7, W2 at S3, W3 at S11, W4 at S9, W5 at S1 and W6 at S5).  When workers produce at 

steady state levels Positions 4 and 2 result in lower throughput.  

The average throughput (the total throughput obtained divided by the number of time 

units) for Positions 2, 3, and 4 when learning and forgetting is included is presented in Figure 5. 

It can be seen that Position 2 yields the highest throughput for the shorter production horizons. 

We also wanted to note that Position 4 yields higher throughput than Position 3 for production 

horizons shorter than 20 time units. 
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Table 25: Throughput for three different workers positions: Steady state 

 

Time 

Position 4: 
W1S7 W2S3  W3S11  
W4S9  W5S1  W6S5 

Position 2: 
W1S7  W2S1  W3S11  
W4S8  W5S3  W6S5 

Position 3: 
W1S9  W2S5  W3S7  
W4S11  W5S3  W6S1 

1 17 16 17 
2 34 32 35 
3 50 48 52 
4 66 64 69 
5 83 80 87 
6 98 96 104 
7 116 112 121 
8 131 128 139 
9 148 144 156 
10 164 160 173 
20 326 320 346 
30 489 480 520 
40 653 639 693 
50 815 799 866 
100 1629 1598 1732 

 

However, ordering workers according to Position 3 would result in the highest 

throughput for longer production runs. It is interesting to look at the average throughput obtained 

by each assignment or position of workers as the break point when throughput obtained by 

steady state productivity becomes higher is easily determined. In, the break point is around 

twenty time units.  
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Figure 5: Average throughput with learning and forgetting 

 

6.4 SUMMARY 

 
The example presented confirms our intuition that for each set of workers where individual 

workers’ learning and forgetting characteristics are incorporated, the optimal assignment 

depends on the total production time. Based on the example presented, as well as other examples 

studied, we can conclude that for each set of workers we should focus on determining a break 

point where the optimal assignment changes due to the maximum throughput possible. We can 

see from Figure 5 that the break point regarding average throughput occurs around twenty time 

units for the data set presented. For a production horizon that is less than twenty time units, 

Position 2 yields the optimal throughout. After twenty time units Position 3 is optimal.  
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 Thus, when production runs are shorter and depending on workers’ previous experience, 

steady state production rate, and learning and forgetting parameters, the optimal throughput can 

be significantly different than throughput obtained based on steady state production only.  

Sensitivity analysis can be performed as well as more testing in order to determine the magnitude 

of importance, but when tasks are harder and it takes longer to achieve steady state the impact 

can be significant. It is very applicable to include forgetting in environments when there are less 

workers than tasks, like environments considered in this research. 
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7.0 FIXED ASSIGNMENT: MIP AND MINLP 

 

This part of our research focuses on a fixed assignment environment as discussed in Chapter 

One. This is an extension of the work presented in Nembhard and Norman (2002). The authors 

developed a worker-task assignment model where work is performed on sequential stations and 

there are intermediate buffers. 

 

7.1 MODELING ASSUMPTIONS 

 

We now present our modeling assumptions for a fixed assignment environment. Due to unique 

machinery only one task is performed at the station and the production horizon is divided into 

time periods. There is no collaboration among workers during the given time period. The authors 

considered individual worker learning and forgetting. The formulation was based on log-linear 

learning and forgetting. Leopairote (2004) analyzed the same model where learning and 

forgetting was modeled using a hyperbolic-recency learning-forgetting model.  

 We consider a serial-production line with n workers, l time periods and m stations. 

Workers perform at steady-state production rates, processing times are deterministic and each 

part needs processing on the same sequence of stations (stations 1 to m). We are looking at a 
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discrete part production system where completed parts are put into a buffer which supplies the 

next station. This production environment is presented in Figure 6.  

 There are several major differences between the production environment presented in 

previous chapters and the production environment considered in this analysis. The production 

horizon is now divided into time periods, thus we look at the assignments per worker/per station 

/per time period. In the previous analysis we looked at worker/station assignments and different 

assignment options, so we only considered one worker order as the assumption was that the order 

of the workers is preserved.  In this case workers are assigned every period so the order of 

workers may change several times during the production horizon. Another important difference 

is the presence of buffers between stations.  

 

 

Output Buffer: 
Finished  
Product 

Station 3 Station 1 Input Buffer Buffer 
2 

Station 2 Buffer 
1 

 

Figure 6: Fixed Assignment Environment 

 There are no restrictions on the assignments and the work content at the stations need not 

be identical. At most one worker can work at a station at any given time due to the characteristics 

of the tasks or equipment requirements. Only one part can be processed at the station. Tasks at 

stations have different complexity levels and worker production rates are task dependent.  One 

worker can be faster at one station than another worker, but slower at another station. Buffer 

inventory is unconstrained and permitted between the stations. We looked at situations when the 

starting intermediate buffer inventory is zero, 10, 20, or 50 parts. We also looked at some 

situations (see Chapter Eight) when starting and ending buffer inventory is required to be 

identical.  The raw material input to the first station is constantly restocked. A worker at a 
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downstream station can produce the minimum of the buffer inventory plus the output from the 

previous station and his/her productivity rate during the given time period. We assume that units 

produced at station j during time period l are instantaneously available at station j+1. Also, the 

times that workers need to set aside the finished part and obtain the new part are significantly 

smaller than production times thus it is safe to assume that these occur instantaneously. This also 

implies that the positions of workers on the line change instantaneously at the end of each time 

period. The total number of workers assigned to a production line remains unchanged over time.   

 

7.2 MODEL FORMULATION: MIP 

 

A worker assignment problem is considered where workers are assigned on a serial production 

line. This formulation was developed by Nembhard and Norman (2002). Initially, it is assumed 

that workers produce at their steady-state productivity rate.  A mixed integer programming (MIP) 

formulation of the problem is now presented. The objective is to assign n workers on a serial 

production line consisting of m sequential stations (tasks) in order to maximize throughput 

during the total production time which is divided into l time periods. The notation used in this 

section can be found in the Nomenclature section. 

 

Objective function 

 Maximize O i,m,t                                                                                            ∑
=

n

i 1
∑
=

p

t 1

Constraints 

∑
=

n

i 1

 qi,j,t  ≤  1         ∀j, ∀t      (1) 
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∑
=

m

j 1

 qi,j,t    ≤  1      ∀i, ∀t    (2) 

Oi,j,t ≤ qi,j,t ki,j           ∀i, ∀j, ∀t    (3) 

B1,1 = BI1 - Oi,1,1                                            (4) ∑
=

n

i 1

Bj,1 = BIj + Oi,j-1,1 - ∑ Oi,j,1     j=2,…,m    (5) ∑
=

n

i 1 =

n

i 1

B1,t = B1,t-1 - Oi,1,t       t=2,…,l   (6) ∑
=

n

i 1

Bj,t = B j,t-1 + Oi,j-1,1 - ∑ Oi,j,t              j=2,…,m  t=2,…l       (7) ∑
=

n

i 1 =

n

i 1

qijt  binary, Oijt ≥ 0, Bj,t ≥ 0 and pri,j,t≥ 0. 

The objective function maximizes the total number of finished units from the last 

workstation on the serial production line. Constraints (1) and (2) provide that each workstation 

has at most one worker assigned to it and that each worker is assigned to at most one 

workstation. Constraint set (3) insures that the output from the station can be at most the 

productivity of the assigned worker. Constraint sets (4) to (7) are inventory balance constraints 

which determine the number of available units at each workstation. For example a worker can 

produce the minimum of his/her production rate and the number of available units. Note that Bjt 

represents the number of units in the buffer immediately preceding station j at the end of period t.  
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7.3 MODEL FORMULATION: MINLP 

 

The assignment of workers to tasks based on individual learning and forgetting characteristics 

has received very little attention in the literature. Research in the area of worker-task assignment 

generally assumes steady-state productivity. One of the goals in this research is to show the 

importance of introducing learning and forgetting in these types of problems. As we discussed in 

previous chapters, due to frequent changes in product demand, workers need to learn and master 

new tasks more often than before. The assumption that workers produce at steady state is not as 

justified as the length of total production for some products becomes shorter.   

 We now present the extended MIP formulation. Leopairote (2004) modified the MIP 

formulation developed by Nembhard and Norman (2002) to include the effects of workers 

learning and forgetting. Worker productivity levels are determined based on the hyperbolic 

recency learning and forgetting model introduced in 6.2. Workers’ productivity is now included 

in the MIP formulation.  The worker-assignment model is formulated as a mixed integer 

nonlinear programming model (MINLP).  

 Modeling assumptions are the same as presented in section 7.1. As discussed in section 

7.1, the operations performed at each station are station or task dependent. Consequently, each 

worker has distinctive learning-forgetting parameters and learning-forgetting curves for each 

station at which he/she performs. The notation used in this section can be found in the 

Nomenclature section. 
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The recency term, Ru,, introduced in (1) in 6.2, is again presented in (8). 
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 The hyperbolic-recency learning and forgetting model is presented in (9). 
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 In order to incorporate the recency measure given in (8) and the hyperbolic-recency 

learning and forgetting model given in (9) into the math programming formulation, the following 

constraints were added into the formulation (Leopairote 2004): 
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In constraints (10) and (11) recency is based on time periods rather than cumulative units of 

work, because it would be extremely difficult to incorporate the unit based constraints into the 

math programming formulation. Our assumption is that t0=0. 

 Constraint (3) is modified to include the variable productivity rate: 

Oi,j,t ≤ qi,j,t pri,,j,t         ∀i, ∀j, ∀t     (3) 
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All other constraints, (1) to (7), and the objective function are assumed to be the same as 

presented in the MIP formulation (see Section 7.1). 

 

7.4 SOLUTION METHODOLOGIES 

 

7.4.1 Branch and bound: MIP 

The worker assignment problem was solved to optimality for smaller and moderate size 

instances by the “branch and bound” of CPLEX. Branch and bound is a general algorithm for 

finding optimal solutions of various optimization problems, particularly in discrete and 

combinatorial optimization. The algorithm is nonheuristic in nature and consists of implicit 

enumeration of all possible solutions where large subsets of not promising candidates are 

discarded, by using upper and lower estimated bounds. Branch and bound algorithms can be 

slow in some cases. In the worst case they require effort that grows exponentially with problem 

size, but in some cases the algorithm converges much faster.  

 Several situations occurred when running “harder” and “larger” instances in CPLEX that 

were not solved in “reasonable” times. We either stopped the runs after recording the best 

obtained (feasible) solution or error termination occurred due to insufficient memory. We tried to 

set the CPLEX parameters so that memory is conserved by selecting strong branching or the 

node selection strategy to best estimate, or to do depth-first searches. Strong branching requires 

substantial computational effort at each node to determine the best branching variable (ILOG 

Reference Manual (2003)). As a result, it generates fewer nodes and thus makes less overall 

demand on memory. However, for “hard” instances we didn’t see much improvement (runs were 
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still terminated due to insufficient memory). We also tried tuning the parameters with the help of 

the tool STOP (Selection Tool for Optimization Parameters) developed by Brady Hunsaker, 

Mustafa Baz, Paul Brooks, and Abhijit Gosavi (Baz et al. (2007)). STOP is a tool to help find 

good parameter settings for a program for a set of instances. After using STOP we reduced 

running times on easier instances but we didn’t resolve the memory issues.  

 Thus, due to the structure and complexity of the defined problem and the size of the 

search space, even moderate size instances are difficult to solve. A “hard” instance with two 

workers, four stations and twenty periods or eight workers, eight tasks and twenty periods could 

not be solved. We define a “hard” instance as an instance that cannot be straightforwardly 

solved. Also, an “easy” instance is defined as an instance that can be easily solved.  However, we 

could solve an “easy” instance with eight workers, eight tasks and twenty periods.  

7.4.2 MINLP Solvers  

The General Algebraic Modeling System (GAMS) is specifically designed for modeling linear, 

nonlinear and mixed integer optimization problems. MINLP small instances with two workers 

and up to four stations were solved in GAMS. We used GAMS solvers: SBB and DICOPT. SBB 

is a GAMS solver for MINLP models. It is based on a combination of the standard Branch and 

Bound method known from Mixed Integer Linear Programming and some of the standard Non 

Linear Programming solvers already supported by GAMS. During the solution process SBB 

solves a number of relaxed MINLP models with tighter and tighter bounds on some of the 

integer variables. The solutions to these sub-models are assumed to provide valid bounds on the 

objective function. SBB will find the global optimum if the underlying RMINLP model is 

convex. If the sub-models are not convex then some sub-models may be solved to a local 
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optimum that is not global, and they may terminate in a locally infeasible point even if feasible 

solutions exist.  

DICOPT (DIscrete and Continuous OPTimizer) is a framework for solving MINLP 

models. DICOPT is an extension of the outer-approximation algorithm with equality relaxation 

strategies. DICOPT solves a series of NLP and MIP sub-problems using any solver supported by 

GAMS. Although, the algorithm has provisions to handle non-convexities, it does not always 

find the global solution.  

7.4.3 Pairwise-Exchange Heuristic: MIP and MINLP 

In order to solve larger and “harder” problem instances, we looked at different heuristic 

algorithms. We developed a heuristic algorithm that is based on an improvement search concept. 

The main idea of the proposed local improvement algorithm is based upon a pairwise exchange 

of worker-station assignments. Based on the mechanics of the algorithm, it can be considered an 

improvement algorithm. The algorithm starts from a random feasible solution. The algorithm 

searches for the local optimum, and the solution obtained is dependent on the initial solution 

because the search proceeds by examining adjacent feasible solutions. Random assignments were 

used as initial assignments. A pseudocode of the algorithm is presented in Appendix C.  Selected 

results are given in Appendix E. 

7.4.4 Simulated Annealing Algorithm: MIP and MINLP 

Due to the difficulty of using math programming to obtain solutions to the MIP metaheuristics 

methods are investigated. Both, Simulated Annealing and Tabu Search are very suitable for 

combinatorial optimization problems (Reeves 1993) and have been widely applied. We will 
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concentrate on the application of a Simulated Annealing algorithm. Some of the recent relevant 

literature is presented in Chapter Two. 

 Simulated Annealing is a probabilistic heuristic approach for global optimization. The 

objective is to locate a good approximation to the global optimum of a given function in a large 

search space. It was independently invented by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 

1983, and by V. Cerny in 1985.  Simulated Annealing is very appropriate for problems with a 

large feasible region and many locally optimal solutions (Reeves 1993). The algorithm’s 

advantage over many other improvement methods is a capability to avoid becoming trapped at 

local optima. The algorithm uses a random search which not only accepts changes that improve 

the objective function, but also some changes that worsen it. 

As its name implies, Simulated Annealing uses an analogy between the annealing process 

and the search for an optimum in a more general system. The current state of the thermodynamic 

system corresponds to the current solution of the combinatorial problem, the energy equation for 

the thermodynamic system corresponds to the objective function, and ground state is analogous 

to the global minimum (or maximum) (Reeves 1993). The major difficulty in implementation of 

the algorithm is that there is no obvious analogy for the temperature T with respect to a free 

parameter in the combinatorial problem. Furthermore, avoiding entrapment in local minima is 

dependent on the "annealing schedule", the choice of initial temperature, the number of iterations 

performed at each temperature, and how much the temperature is decremented at each step as 

cooling proceeds (Reeves 1993).  

An initial solution is defined as a feasible assignment of workers to tasks. The move 

operator is defined as the exchange of two workers’ assignments during a given time period. The 

neighborhood of a solution is defined as all pairwise exchanges of workers assignments. The 
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annealing schedule is determined empirically. Several temperature reduction functions were 

tested. Notation, together with the assumptions and the pseudocode of the algorithm are 

presented in Appendix D. 

     

7.5 NUMERICAL RESULTS 

7.5.1 Data sources  

The data used in this work is based on 124 workers that were observed at three serial production 

lines and 24 test stations doing an industrial manufacturing task. The learning and forgetting 

parameters were individually fit from the empirical data. For detailed information see Shafer et 

al. (2001). We also randomly generated workers’ production rates for some instances. Results 

obtained by the branch and bound of CPLEX for the MIP and the simulated annealing algorithm 

for both the MIP and the MINLP are presented below. 

7.5.2 Numerical Results: MIP 

The Simulated Annealing algorithm was tested on different sets of randomly generated initial 

assignments. We tested instances with two to eight workers and four to eight stations. The length 

of the production horizons varied from four to twenty four time periods. Ten random seeds were 

generated and all combinations were tested for these seed values. Initial temperature levels were 

determined based on initial testing and the average improvement of accepted solutions or moves. 

Changes in the objective function were between 4 and 12, thus these values were tested as the 

initial temperature levels. Two different annealing schedules were tested with α=0.95 and 

α=0.99. The number of iterations at each temperature level was either 1000, 1500 or 2000. The 

stopping condition at lower temperature levels was 800, 900 or 1000 iterations without 
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improvement. A summary of the results is presented below for selected instances. Results for 

additional instances are presented in Appendix F.  

We present results obtained for the data sets tested with two workers and four stations.  

Table 26: Data set 1: Workers’ Production Rates 

 
kij S1 S2 S3 S4 

W1 7.01 6.3 5.05 7.55 
W2 9.75 8.94 6.59 9.75 

 

 We compared the results obtained and the solution times for eight, twelve, and sixteen 

time periods for data set 1 (production rates given in Table 26). The results obtained by CPLEX 

for data set 1 are summarized in Table 27. 

Table 27: Data set 1: CPLEX Results 

 
Data set 

1 Periods Output Solution times (seconds) 
1-8 8 29.25 5.13 
1-12 12 43.48 40938.22 
1-16 16 59.74 11491.48* 

*Error termination 

 

 For data set 1 and 8 time periods, the simulated annealing algorithm reached the optimal 

objective value, or optimal throughput of 29.25 parts, 100% of the time. We tested four initial 

random assignments for ten randomly generated seeds. The average solution time was 3.312 

seconds (CPU time). The following settings were used:  

• tpr  (starting temperature) = 4; 

• α (a temperature reduction function parameter) = 0.99; and annealing schedule tpr = 

α*tpr; 
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• maximum number of iterations at each temperature level is 1000 and number of moves 

without improvement is 800; 

• tpr > 0.01 stopping condition and the last temperature level. 

Results for data set 1 and 12 time periods are presented in Table 28. The optimal solution 

was obtained every time and the average solution times are around seven seconds which is much 

shorter than CPLEX’s solution time of 40938 seconds. 

The solution time for data set 1 and 16 time periods solved by the branch and bound of 

CPLEX was 11491.48* seconds even though we applied parameter settings that we believed 

were the best possible. The best feasible solution obtained resulted in the objective function 

value of 59.74 parts. We were able to obtain this solution by Simulated Annealing in 6.5 seconds 

on the average. Other solutions were within 0.4 percent of the optimal objective value. 

Table 28: Data set 1-12 time periods: Simulated Annealing Results 

 
  Assignment 1 Assignment 2 Assignment 3 

Seed Solution 
CPU 
Time Solution 

CPU 
Time Solution CPU Time 

222 43.48 7.45 43.48 7.73 43.48 7.97 
44 43.48 7.44 43.48 7.53 43.48 7.56 

777 43.48 7.25 43.48 7.47 43.48 7.61 
653 43.48 7.44 43.48 7.55 43.48 7.38 
21 43.48 7.73 43.48 7.53 43.48 7.45 

269 43.48 7.75 43.48 7.89 43.48 7.50 
17 43.48 7.69 43.48 7.33 43.48 7.22 

140 43.48 7.75 43.48 7.36 43.48 7.38 
33 43.48 7.52 43.48 7.39 43.48 7.34 

178 43.48 7.70 43.48 7.25 43.48 7.53 
MAX 43.48 7.75 43.48 7.89 43.48 7.97 
MIN 43.48 7.25 43.48 7.25 43.48 7.22 
AVERAGE 43.48 7.57 43.48 7.50 43.48 7.49 
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Table 29: Data set 1-16 time periods: Simulated Annealing Results 

 
  Assignment 1 Assignment 2 Assignment 3 

Seed Solution 
CPU 
Time Solution 

CPU 
Time Solution CPU Time 

222 59.45 6.28 59.45 6.16 59.45 6.19 
44 59.45 6.59 59.74 6.22 59.45 6.23 

777 59.45 6.36 59.45 6.19 59.74 6.22 
653 59.45 6.38 59.45 6.19 59.45 11.45 
21 59.45 6.42 59.45 6.19 59.45 6.20 

269 59.74 6.33 59.45 6.17 59.45 6.20 
17 59.45 6.24 59.74 6.19 59.45 6.19 

140 59.45 6.73 59.45 7.36 59.45 6.28 
33 59.45 6.17 59.45 6.22 59.45 6.75 

178 59.74 6.20 59.74 6.22 59.45 6.41 
MAX 59.74 6.73 59.74 7.36 59.45 11.45 
MIN 59.45 6.17 59.45 6.16 59.45 6.19 
AVERAGE 59.508 6.37 59.54 6.3095 59.48 6.81 

 

 Workers’ production rates for data set 2 are given in Table 30. CPLEX results for data set 

2 and 8, 12 or 16 time periods are given in Table 31.  

Table 30: Data set 2: Workers' production rates 

 
kij S1 S2 S3 S4 

W1 8 9 5 7 
W2 5 6 7 8 

 

Table 31: Data set 2: CPLEX Results 

 
Data set 
2 Periods Output Solution times (seconds) 
2-8 8 28 2.02 
2-12 12 42 4389 
2-16 16 60 13846 

 

We obtained an optimal solution 100% of the time for data set 2 for both 8 and 12 time 

periods. Simulated Annealing results for data set 2 and 16 time periods are presented in Table 32. 

The best feasible solution obtained resulted in an objective function value of 60 parts. We were 
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able to obtain this solution by Simulated Annealing in 6.45 seconds on the average. Other 

solutions were within 3.3 percent of the optimal objective value. 

Table 32: Data set 2 – 16 time periods: Simulated Annealing Results 

 
  Assignment 1 Assignment 2 Assignment 3 

Seed Solution 
CPU 
Time Solution

CPU 
Time Solution

CPU 
Time 

222 60 6.5 58 6.31 58 6.28 
44 60 6.58 60 6.66 60 6.31 

777 59 6.31 59 6.30 58 6.28 
653 58 6.33 60 6.31 60 6.28 
21 59 6.30 59 6.31 60 6.28 

269 58 6.33 59 6.34 59 6.22 
17 58 6.30 60 6.28 60 6.34 

140 58 6.36 59 6.30 59 6.28 
33 58 6.33 60 6.30 58 6.27 

178 60 6.33 59 6.30 60 6.27 
MAX 60 6.58 60 6.66 60 6.34 
MIN 58 6.30 58 6.28 58 6.22 
AVERAGE 58.8 6.37 59.3 6.34 59.2 6.28 

 

 

We also tested larger instances with 2 to 8 workers and 3 to 16 stations. Results for 

several larger instances are summarized in Table 33, together with CPLEX results. The 

following three instances are presented: Instance L1 (large 1) with eight workers, eight stations 

and twelve time periods, Instance L2 with eight workers, eight stations and twelve time periods 

and Instance L3 with eight workers, eight stations and twenty time periods. For instance L1 ki,j 

values were randomly generated. The optimal solution for this instance can be obtained by 

CPLEX in approximately 3 seconds, thus it is considered an “easy” instance. Instances L2 and 

L3 are considered as “hard” instances. For instance L3, the upper bound is 604.4 (LP 

Relaxation), thus the solutions obtained are close to the upper bound (1.5%).  
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Table 33: Larger Instances: Comparison of Results 

 
  CPLEX     Simulated Annealing   

Instance Best Solution CPU time Instance Best Solution CPU time 

1 408 3.2 1 408 2.7 

2 356 3775 2 356 3.1 

3 595** 34023 3 595 31.2 

**Error termination         

 

Simulated Annealing provided solutions faster than CPLEX for all instances presented 

and based on the quality of the solutions found seems to be an appropriate solution methodology 

for this problem. For instance L1, simulated annealing reached the best solution 100% of the 

time. For Instance L2, Simulated Annealing reached the best solution 30 to 50% of the time and 

the other solutions were within 1.1% of the best solution. For Instance L3, Simulated Annealing 

reached the best solution 10 to 30% of the time and the other solutions were within 0.3% of the 

best solution. As the problem size increases, the search space is very large and Simulated 

Annealing has the potential of performing better than the “branch and bound” of CPLEX. Based 

on our study, solutions times needed for Simulated Annealing Algorithms are significantly 

lower. It is important to note that for Instance L1 ki,j values are randomly generated based on the 

steady state levels given in Shafer et al. (2001) and Instance 1 is considered an “easy” instance. 

Also, Instances L2 and L3 are considered “hard” instances (as defined in 7.4.1). All runs and 

data sets are attached in Appendix F.  

7.5.3 Pairwise-Exchange Heuristic: MINLP 

The algorithm was tested on problems with four different sets of k, p, r and α values. These were 

small problems with three workers, three stations and eight time periods, and they were solved to 

optimality. The optimal solution was compared with the solution obtained from the heuristic 
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algorithm. For buffer inventory levels of 0, 10, 20, 50 and 100 units and all data sets tested, the 

optimal solution was obtained with the heuristic algorithm. The results are presented in Table 34. 

In order to show the importance of introducing learning and forgetting into these types of 

problems two additional values were calculated for all data sets. The first is the optimal 

throughput provided by the optimal assignment based on the steady state productivity rates. The 

second value represents the throughput of the steady state optimal assignments evaluated 

considering learning and forgetting. The optimal throughput obtained with the steady state 

productivity rates is much higher than the actual output that is found when learning and 

forgetting are considered.  Across the problems the actual output is about 50% less than that 

found by simply using the steady state productivity values. This is important because if planning 

was based on attaining production assuming steady state productivity then there would be 

significant errors in the planning process. A second important point to notice is that the output 

found by properly evaluating the assignment that is found only considering the steady state 

productivity values is significantly less than the optimal assignment that is found when learning 

and forgetting are considered. The differences range from only a few percent to almost 25 

percent. Thus, if workers are assigned “optimally” based on their steady state productivity this, 

in fact, turns out to be a suboptimal assignment. These values are presented in Table 34 for four 

data sets.  

For larger problems such as ones containing eight workers, eight stations and twenty time 

periods we compared the heuristic solution with that found by an enumeration algorithm (lower 

bound) and an LP relaxation solution (upper bound). The enumeration algorithm exhaustively 

searches through all fixed assignments (no rotation) and calculates the total throughput. These 
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solutions are considered as lower bounds as the flow of the line could improve under different 

rotation polices. 

Table 34: Pairwise-Exchange Heuristic for small instances  

  inv 0 inv 10 inv 20 inv 50 inv 100 
Data set 1: Optimal solution with  
steady-state productivity 226 238 248 278 304 
Assignment evaluated with learning 
and forgetting 132 135 143 155 162 
Heuristic solution 144 156 162 168 168 
 Optimal solution 144 156 162 168 168 
Data set  2: Optimal solution with  
steady-state productivity 224 224 224 224 224 
Assignment evaluated with learning 
and forgetting 112 112 112 112 112 
Heuristic solution 150 160 160 160 160 
Optimal solution 150 160 160 160 160 
Data set 3: Optimal solution with  
steady-state productivity 200 215 216 216 216 
Assignment evaluated with learning 
and forgetting 74 94 107 134 134 
Heuristic solution 96 104 124 152 152 
Optimal solution 96 104 124 152 152 
Data set 4: Optimal solution with  
steady-state productivity 242 246 248 248 248 
Assignment evaluated with learning 
and forgetting 135 152 144 144 144 
Heuristic solution 144 164 176 176 176 
Optimal solution 144 164 176 176 176 
 

 

Unfortunately, due to the complexity of the MINLP formulation, simply relaxing the 

integrality constraints of the MINLP results in a problem that is still nontrivial to solve. Thus, we 

created an alternative formulation of the problem. First, we calculated the total number of units 

produced by assigning each worker to one station (no rotation) during the total production 

period, using the learning and forgetting curves. Then, the average individual productivity per 

period was calculated as the total number of units produced divided by the number of production 

periods. The resulting data was used in a formulation that assigned one worker to one task during 
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each of the twenty time periods. Thus, the non-linear constraints were removed because only the 

average productivity was used. Unfortunately, due to the difficulty of solving this integer 

program we had to look at the solution of the relaxation for an upper bound on total production.  

The solution obtained by this LP relaxation can only give us an insight into the possible 

throughput through the serial line and represents a high, and in most cases, non-attainable upper 

bound on the problem. The LP is formulated and solved using the GAMS optimization software.  

The results for three data sets with eight workers, eight stations and twenty time periods are 

presented in Table 36. The kij, rij, pij and αij for the three data sets are given in Appendix F. 

7.5.4 Simulated Annealing Algorithm: MINLP 

The algorithm was tested on problems with four different sets of k, p, r and α values. These were 

small problems with three workers, three stations and eight time periods, and they were solved to 

optimality. The optimal solution was compared with the solution obtained from the Simulated 

Annealing algorithm. The algorithm was tested for five randomly generated initial assignments 

and 10 random seed values, as well as different sets of initial temperature values, temperature 

reduction function parameters and number of iterations. The Simulated Annealing algorithm 

found an optimal solution 100% of time for each initial assignment. The results are presented in 

Table 35. Detailed results as well as data sets are presented in Appendix F.  

Table 35: Simulated Annealing Results for "small" instances  

 Data set 1 Data set 2 Data set 3 Data set  4 

Optimal Solution 144 150 96 144 

Simulated Annealing 144 150 96 144 
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 For larger data sets with eight workers, eight tasks and twenty time periods, the lower and 

upper bounds were obtained as discussed in section 7.5.3. The Simulated Annealing algorithm 

performed considerably better than the Pairwise-Exchange heuristic. The best solutions obtained 

are given in Table 36. The following settings were used:  

• tpr  (starting temperature) = 4 

• α (a temperature reduction function parameter) = 0.99; and annealing schedule tpr = 

α*tpr; 

• maximum number of iterations at each temperature level is 1000 and number of moves 

without improvement is 800; 

• tpr > 0.01 stopping condition and the last temperature level. 

Table 36: Simulated Annealing Results for larger instances 

 Data set  1 Data set 2 Data set 3 

No Rotation 

Heuristic 

320 

 

375 383 

Upper Bound 428.5 

 

428.85 435 

Pairwise-Exchange 

Heuristic Solution 

329 339 346 

Simulated Annealing 

Solution 

410 412 426 
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Simulated Annealing obtained the best solution 20 to 50% of the time for the large 

instances presented. Other solutions were within 0.5 to 3.2% of the best solutions obtained. Data 

for specific runs is presented in Appendix F.  

 

7.6 SUMMARY 

 

We studied a worker assignment problem where workers are assigned on a serial production line 

and workers produce at either steady-state productivity rates or productivity rates that change 

with time due to the presence of learning and forgetting. We implemented a Pairwise Heuristic 

Algorithm as well as a Simulated Annealing Algorithm for both the MIP and MINLP 

formulations. The Simulated Annealing Algorithm was able to reach the optimal solutions 

significantly faster than CPLEX for the MIP instances tested. For the smaller MINLP instances 

tested, the Simulated Annealing Algorithm reached the optimum for every instance tested. We 

were able to obtain reasonably good solutions for larger instances in a very reasonable time. 

Based on our analysis, Simulated Annealing seems appropriate for this problem.  

 

As the problem size increases, the search space is very large and Simulated Annealing has the 

potential of performing better than the “branch and bound” of CPLEX for the MIP instances. 

Based on our study, solutions times needed for Simulated Annealing Algorithm are significantly 

lower than solution times for CPLEX. Based on our results for smaller MINLP instances and 

comparisons with bounds for larger MINLP instances we strongly believe that Simulated 

Annealing Algorithm is suitable for these types of problems.  
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8.0 DYNAMIC VS. FIXED ASSIGNMENT: COMPARISON OF RESULTS 

 

We presented the analysis of two different methods of assigning workers on a serial production 

line. We looked at a dynamic assignment environment where workers work at adjacent stations 

and there are no buffers between stations. We also looked at a fixed assignment environment 

where workers work at one station during a given time period. Our goal was to maximize 

throughput as well as to determine the optimal assignment of workers for both assignment 

environments.  

 There are several major differences in the assignment methods of these two 

environments. For a dynamic assignment environment workers carry a part to successive stations 

and the starting order of the workers is preserved. There is no intermediate buffer inventory and 

WIP is minimal. For the fixed assignment environment workers place a part in a downstream 

buffer when finished, or obtain a part from an upstream buffer when starting to work. Also, total 

production time is divided into l time periods, where a worker performs only one task, or works 

at one station, during each time period. Workers may change stations after each time period thus 

no worker order is preserved. Also, for the fixed assignment environment there are buffers 

between the stations and the levels of WIP are significantly higher when compared with the 

dynamic assignment environment. The number of parts stored in each buffer can be constrained 

or not constrained.  

 For both assignment methods we compared the optimal throughput obtained. We also 

looked at the impact of different levels of WIP on the optimal throughput in the case of the fixed 
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assignment.  For the dynamic assignment production line each worker carries a part or starts with 

the part thus the WIP is at most the number of workers. For the fixed assignment production line 

there are several starting/ending WIP scenarios that are important to consider. The optimal 

solution obtained for the dynamic assignment environment considers steady state behavior of the 

system. Thus, when analyzing a fixed assignment environment we have to take into account that 

during early production (warm up or first few time periods) intermediate buffers are empty and 

some workers may be idle due to empty buffers or ‘starvation’. In order to prevent workers being 

idle we may assume that there is some starting inventory in the intermediate buffers. So, for the 

fixed assignment environment we impose the requirement that the ending intermediate buffer 

inventory be at least equal to the beginning intermediate buffer inventory.  

 

 

Fixed 
Assignment 

Intermediate 
Buffer Inventory 

Production 
Horizon 

4 time periods 16 time periods Starting Inv. = 0  Starting Inv.= 10
Ending Inv. = 10

 

Figure 7: Fixed Assignment combinations tested 

 

 Thus, in order to have a “fair comparison”, we calculated the total throughput when the 

beginning as well as ending intermediate buffer inventory is not less than the maximum 
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production rate of all workers. For example, if the maximum production rate of all workers at all 

stations is 10 parts / time period we assumed that the beginning/ending inventory should be 10 

parts in all intermediate buffers. All possible combinations tested for a fixed assignment are 

presented in Figure 7. For a dynamic assignment there is no additional inventory or WIP in the 

system. 

 

 

8.1 COMPARISON OF RESULTS 

 

 

Our assumption is that workers’ production rates are deterministic and known and modeling 

assumptions are the same as presented in Sections 3.1 and 4.1 for a dynamic assignment 

environment and 7.1 for a fixed assignment environment. The optimal solutions obtained for 

both assignment environments and the optimal throughput as well as different levels of WIP 

were compared for all data sets tested.  

 We present results obtained for several data sets in the case of two worker and four 

station lines. These data sets were selected from a large group of data sets tested in order to 

present different scenarios that we observed when these two environments were compared. Data 

sets 1 and 2 were selected in order to illustrate situations when a dynamic assignment results in a 

higher throughput. Data set 3 illustrates a situation when a fixed assignment results in a higher 

throughput. Also, these two methods of assignment can result in the same optimal throughput for 

some data sets. However, in the long run, a fixed assignment will always converge to the 

maximum attainable throughput as illustrated with data set 4.    
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Table 37: Dynamic assignment one-cycle solution 

 
Dynamic Assignment: Data set 1       

     Solution      

kij 1 2 3 4 kij 1 2 3 4  
1 7.01 6.3 5.05 7.55 1   0.50 0.50  
2 9.75 8.94 6.59 9.75 2 0.39 0.42 0.19   

Output 3.78         
Dynamic Assignment: Data set 2       

     Solution      

kij 1 2 3 4 kij 1 2 3 4  
1 7.5 8 4.5 7 1 0.47 0.45 0.08   
2 7 5 8 6 2   0.40 0.60  

Output 3.58          
Dynamic Assignment: Data set 3       

     Solution      

kij 1 2 3 4 kij 1 2 3 4  
1 8 10 8 10 1   0.56 0.44  
2 10 8 10 8 2 0.44 0.56    

Output 4.448         
Dynamic Assignment: Data set 4       

     Solution      

kij 1 2 3 4 kij 1 2 3 4  
1 8 9 5 7 1 0.49 0.44 0.07   
2 5 6 7 8 2   0.51 0.49  

Output 3.93         
 

 

Workers’ production rates as well as the optimal solutions for the dynamic assignment 

environment are presented in Table 37 for data sets 1, 2, 3 and 4. For data set 1 the optimal 

throughput is 3.78 parts/hour. The optimal throughputs obtained for data sets 2, 3 and 4 are 3.58 

parts/hour, 4.44 parts/hour and 3.93 parts/hour, respectively. For data sets 2 and 4 the first 

worker works at the first segment of the line, and the second worker works at the second segment 

of the line and only station three is shared. For data sets 1 and 3, W2 is the first in the order, and 

there is no worksharing for data set 3.  
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 For a fixed assignment environment, we looked at several different scenarios such as zero 

beginning intermediate buffer inventory or ten parts in each intermediate buffer. However if we 

would start the production with ten parts in each intermediate buffer we also impose the 

requirement that the production horizon would end with at least ten parts in each intermediate 

buffer. A size of ten parts was selected because for all worker/station production rates tested the 

following inequality is true: kij ≤ 10.  

 It is important to note that the effectiveness of using a fixed versus dynamic assignment 

varies depending on the length of the time horizon. If we calculate the optimal throughput for a 

fixed assignment and consider only a few time periods, it is highly possible that the number of 

completed parts is zero or very low. The reasoning behind this is that at the start of the 

production horizon workers are mostly assigned at the beginning of the line as there are less 

workers than stations. For this reason, different time horizons were investigated. The number of 

total time periods or the length of the production horizon is given in the first column of Table 38. 

Column 3 represents average output information when the beginning intermediate buffer 

inventory is zero and there is no requirement regarding the final buffer inventory. The average 

output presented in Column 5 reflects the requirement that the ending intermediate buffer 

inventory is at least as large as the beginning intermediate buffer inventory (in this case 10 

parts).  

 

For data set 1 and a production horizon of 16 time periods, the optimal average 

throughput obtained is 3.73 parts/period (see Column 5), which is lower than the 3.78 

parts/period obtained when workers are assigned dynamically. 
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Table 38: Data set 1: Average Output 

 
1  

Time 

Periods 

2 

Output 

Inv 0 

3 

Average 

Output 

4 

Output; Inv 10 

Start = End 

5 

Average 

Output 

4 13.18 3.30 13.18 3.30 

8 29.25 3.66 29.25 3.66 

12 43.48 3.63 44.7 3.72 

16 59.74 3.73 59.74 3.73 

 

 

Results for data set 2 are presented in Table 39. For 16 time periods, the optimal average 

throughput obtained is 3.5 parts/period (see Column 7), which is lower than the 3.5757 

parts/period obtained when workers are assigned dynamically.  

 

Table 39: Data set 2: Average Output 

 
1 

Time 

Periods 

2 

Output 

Inv 0 

3 

Average 

Output 

4 

Output; Inv 10 

Start = End 

5 

Average

Output 

4 14 3.5 14 3.5 

8 28 3.5 28 3.5 

12 42 3.5 42 3.5 

16 56 3.5 56 3.5 

 

Results for data set 3 are given in Table 40. For data set 3 and 16 time periods, the 

optimal average throughput obtained is 5 parts/period (see Column 5), which is higher than the 

4.444 parts/period obtained when workers are assigned dynamically.  
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Table 40: Data set 3: Average Output 

 
1 

Time 

Periods 

2 

Output 

Inv 0 

3 

Average 

Output 

4 

Output; Inv 10 

Start = End 

5 

Average

Output 

4 20 5 20 5 

8 40 5 40 5 

12 60 5 60 5 

16 80 5 80 5 

 

Results for data set 4 are presented in Table 41. The optimal average throughput obtained 

for 16 time periods and 10 parts beginning/ending inventory is 3.94 parts/hour which is higher 

than the 3.93 parts/hour obtained when workers are assigned dynamically.  

Table 41: Data set 4: Average Output 

 
1 

Time 
Periods 

2 
Output 
Inv 0 

3 
Average 
Output 

4 
Output; Inv 10 

Start = End 

5 
Average
Output 

4 13 3.25 14 3.5 
8 28 3.5 28 3.5 

12 42 3.5 45 3.75 
16 60 3.75 63 3.94 

  

Based on the workers’ production rates, we can conclude that for data sets 1 and 2 it is 

better to assign workers dynamically even when intermediate buffer inventory is present. 

However, for data sets 3 and 4, it is better to assign workers according to a fixed assignment 

policy. A summary of the results for the four data sets presented is given in Table 42.  In order to 

better compare the obtained optimal throughputs for both assignment environments we also 

looked at the results of the LP relaxation for the fixed assignment model because it is an upper 

bound on the optimal throughput. We compared the throughputs obtained with the upper bound.  
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 The optimal throughput obtained for data set 1 through dynamic assignment is the same 

as the LP relaxation and the optimal throughput obtained for data set 3 through the fixed 

assignment is the same as the LP relaxation. The solution presented for the fixed assignment is 

the average output obtained for 4 and 16 time periods with either the beginning intermediate 

buffer inventory zero, or with a beginning/ending intermediate buffer inventory of 10 parts. We 

can see from the data sets presented, that there are cases when dynamic assignment performs 

better than a fixed assignment.  

Table 42: Comparison of results 

 

OUTPUT  
Data set 

1 
Data set 

2 
Data set 

3 
Data set  

4 
LP Relaxation 
 3.78 3.73 5.00 3.95 
Dynamic Solution (MIP) 
 3.78 3.58 4.44 3.93 
Fixed Assignment Solution 
(4 periods 0 Inventory ) 3.29 3.5 5.00 

 
3.25 

Fixed Assignment Solution 
(4 periods 10 Inventory Start = End) 3.29 3.5 5.00 

 
3.5 

Fixed Assignment Solution 
(16 periods 0 Inventory ) 3.73 3.5 5.00 

 
3.75 

Fixed Assignment Solution 
(16 periods 10 Inventory Start = End ) 3.73 3.5 5.00 

 
3.94 

 

 Another way to compare the assignments is to look at a comparison of the average 

throughput for a fixed assignment (throughput obtained per period) with the LP relaxation and 

the dynamic assignment. We want to see how fast the output would converge to the upper bound 

for different lengths of a production horizon. For data set 4 we can see from Figure 8 that the 

dynamic assignment one-cycle solution is very close to the upper bound obtained by the LP 

relaxation. Also, the fixed assignment solution when we have 10 parts of beginning/ending 
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inventory is quickly converging to the upper bound.  Depending on the data sets we could plot 

similar graphs and determine the optimal assignment approach.  

Data Set 4: Average Throughput
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Figure 8: Data set 4: Average Throughput Convergence 

 

We also discussed that one of the main differences between these two environments is the level 

of WIP.  We can see from Table 42 that a fixed assignment approach results in a higher 

throughput for data sets 3 and 4. However, we didn’t take into account WIP levels during the 

production as we assume that intermediate buffer levels during the production horizon are 

unconstrained. Thus, in the case of the fixed assignment environment we need to look how the 

intermediate buffer inventory changes during the production run. Our primary objective is to 

maximize throughput but at the same time to minimize (or control) the number of parts in each 

buffer during the each time period. When solving a mixed integer model formulation for the 

fixed assignment, we observed that there are many alternative solutions (depending on the data 
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set or given production rates). For data set 4, we recorded buffer inventory levels for 4, 8, 12 and 

16 time periods and these levels are presented in Table 43.  

 

Table 43: Maximum Buffer Inventory for Data set 4 

 
  Beginning Inv 0   Beginning Inv 10, End Inv 10 
Periods\Buffers B2 B3 B4 B2 B3 B4 

4 10 9 6 24 12 11 
8 8 14 14 19 17 19 
12 19 14 9 19 15 38 
16 12 13 19 24 13 31 

 
 

We can see from the table that when the beginning intermediate buffer inventory is zero 

the maximum buffer level is 19 parts. If we look at the last three columns in Table 43, the 

highest number of parts in the intermediate buffers is 38. This is the maximum number of parts 

when we require the beginning /ending inventory to be no less then 10 parts.  

Thus, we needed to consider different ways to minimize the intermediate buffer inventory 

in order to better compare our assignment environments. In order to determine the best solution 

based on the throughput obtained, but also with the minimum possible buffer inventory we 

modified the objective function to include the term . This modified objective 

function takes into account the total intermediate buffer inventory. The maximum buffer 

inventory obtained when coef = 0.01 is presented in Table 44. The optimal throughput obtained 

remained unchanged. We can see that the maximum buffer inventory given in  

∑∑
= =

−
m

j

l

t
jtbcoef

2 1

Table 44 is significantly lower than the maximum buffer given in Table 43. Thus, when 

studying the maximum levels of buffer inventory we should be aware of the existence of 

alternative solutions. Also, the value of coef is dependent on the given data set. In conclusion, 
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intermediate buffer inventory levels should be taken into consideration when comparing the 

different assignment environments.  

Table 44: Maximum Buffer Inventory for Data set 4 with the modified objective 

 
 Beginning Inv 0  Beginning Inv 10, End Inv 10 

Periods\Buffers B2 B3 B4 B2 B3 B4 

4 2 7 0 10 18 10 

8 8 14 7 10 19 10 

12 8 14 7 16 19 10 

16 11 14 13 16 19 14 

 

 
 

8.2 SUMMARY 

 

In this chapter we compared dynamic versus fixed assignment environments under the same 

conditions such as number of workers, number of stations and workers’ production rates. There 

are several advantages when assigning workers dynamically: 

• Work-in-process (WIP) is controlled and is minimal.  

• Throughput is continuous as there is one finished part in constant intervals, so it’s easier 

to plan further production or storage of finished products. 

• The layout is simpler as well as starting investments needed for the production line.  

• The space requirement for a production line without intermediate buffers is smaller.   

• Training workers for specific tasks is easier to accomplish in the case of dynamic 

assignment. Workers are assigned to a portion of the line so they need to be trained for 

one region or segment of the line only. For the fixed assignment environment, it can be 
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seen from the examples tested that a worker can be assigned to any station on the line 

requiring him/her to be trained for all tasks. 

 

However, when assigning workers dynamically workers exchange parts at any point in time, thus 

this environment cannot be applied in situations when tasks are not preemptive. In situations 

when inventory holding cost is minimal and space requirements  require low investments, then a 

fixed assignment environment may be preferable assuming that the production horizon is 

sufficiently long.  
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9.0 CONCLUSIONS AND FUTURE WORK 

 

This chapter summarizes conclusions from the first 9 chapters. It also discusses potential 

extensions of this research. 

 

9.1 CONCLUSIONS 

 

This research focused on developing methods to solve a worker assignment problem on a serial 

production line. Both dynamic and fixed assignment environments were considered with the 

objective of maximizing throughput. The problems that were discussed and analyzed assumed a 

heterogeneous workforce and also considered the impacts of individual learning and forgetting 

on system throughput.  

For a dynamic assignment environment we first considered how the assignment of a fully 

cross-trained workforce deployed on a serial production line consisting of two workers and two 

stations affects throughput. We analyzed different worker assignment policies as well as 

different levels of worksharing and determined their impact on system performance. For the 

dynamic assignment environment, we were able to define possible benefits achieved from 

worksharing and the impact of different assignment approaches and policies on system 

performance. We defined conditions when idle time is beneficial, as well as how to optimally 

assign workers based on their production rates. For the two worker two station line, in the 
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complete dominance case, the faster worker may be assigned at the beginning of the line, rather 

than the end of the line in order to achieve the highest throughput. This is counter to what is 

found in normative bucket brigade systems which order workers from slowest to fastest to 

maximize throughput.  

 For the two worker two station line, we also investigated the value of duplicating 

workstations as well as how the system performs if the system performs as two parallel lines due 

to duplicate tooling at both stations.  One of our main results is that the maximum possible 

output attained from two parallel lines is never greater than the output obtained from a line with 

two stations when one of those stations has duplicate tooling and the workers are optimally 

ordered.  

 Another important focus of this research was to optimally solve a dynamic assignment 

problem for any number of workers and stations and determine exact proportions of work 

performed by each worker under the assumptions presented. Thus, another main contribution is 

the development of one-cycle mixed integer programming formulation for n workers and m 

stations. We were able to obtain optimal assignments of workers and determine optimal levels of 

throughput. We also extended the one-cycle formulation to incorporate multiple production lines. 

We were able to determine optimal assignments of workers to a set of production lines based on 

the optimality criteria defined. We analyzed two different types of production lines: one where 

the production lines can be viewed as a set of l independent lines and a second where the 

production lines are l dependent lines. 

 Another significant contribution is the development of a two-cycle formulation that 

models the case where workers exchange parts at exactly two positions in a periodic manner with 

the objective to maximize throughput. We were able to achieve the optimal throughput and 
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determine the optimal assignment of workers. This is an important result as the previous 

literature recognizes the existence of a two-cycle behavior which results in a suboptimal 

throughput. We were able to show examples where a two-cycle solution results in the optimal 

throughput under the modeling assumptions presented.  

 We also investigated dynamic assignment when worker learning and forgetting is present, 

or workers do not perform at steady state levels.  We considered a dynamic worksharing system 

with n workers and m stations and compared optimal assignments and throughputs when workers 

produce at their steady state levels versus when learning and forgetting is considered.   

 For a fixed assignment environment we considered a worker assignment problem on a 

serial production line where workers either perform at steady state production levels or where 

workers’ productivity changes due to the presence of learning and forgetting. Two formulations 

were considered: the MIP formulation with steady state production rates, and the MINLP 

formulation which includes the individual worker learning and forgetting effects.  

 A main contribution is the development and implementation of heuristic methods to solve 

both MIP and MINLP problems and determine the optimal throughput levels and optimal worker 

assignment. A Simulated Annealing Algorithm was implemented and was able to attain the 

optimal solutions considerably faster than CPLEX for large MIP instances. For smaller MINLP 

instances tested, the Simulated Annealing Algorithm reached the optimum for every instance 

tested. For larger MINLP instances, we were able to obtain good solutions in a very reasonable 

time. Based on our study, Simulated Annealing seems suitable for this problem.  

 A final contribution of this research is the comparison of two different worker assignment 

environments. We compared dynamic and fixed assignment methods given the same number of 

workers, number of stations, workers’ production rates and the length of the production horizon 
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under the assumptions presented and were able to determine advantages and disadvantages when 

applying these two assignment methods. For short production horizons, dynamic assignment has 

many advantages such as minimal and controlled WIP and constant throughput. For long 

production horizons the fixed assignment environment can be preferable as the maximum 

possible throughput converges to the maximum attainable throughput. 

 

9.2 FUTURE RESEARCH 

 

For both dynamic assignment and fixed assignment environments our future research has many 

directions. For a dynamic assignment environment we are interested in determining the value of 

duplicating workstations for larger production lines, as well as the value of duplicating stations 

in the multiple line production settings.  

 We want to expand our focus on dynamic systems with workers learning and forgetting 

and introduce varying productivity into the one-cycle and two-cycle math formulations The 

additional research would then focus on the development and implementation of suitable 

heuristic methods in order to solve these problems.  

 Another focus is to introduce blocking into the two-cycle formulation. At present, the 

formulation does not allow for an exchange of parts at the first station and we would consider 

alternative formulations to allow for this situation. In our experience, the exchange of parts never 

occurs at the first station for a line of more than two stations that has realistic worker production 

rates. In addition, in the future we may focus on extending the two-cycle formulation to a k-cycle 

math formulation for cases of three or more workers.  
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 For a fixed assignment environment we may focus on the development of additional 

heuristic rules to determine a better “starting assignment” such as selecting the assignment based 

on the highest steady-state values. Another direction would be to implement additional heuristic 

algorithms such as a Tabu Search Algorithm. 

 Also, for a fixed assignment environment we can focus on solving models with different 

objectives such as to maximize the output given n workers, m stations and a production horizon 

T; to minimize the number of workers needed given a demand D to satisfy, m stations and a 

production horizon T; or to minimize the makespan given n workers, m stations and a demand D 

to satisfy.  

For a dynamic as well as a fixed assignment environment we may consider the use of 

other learning models. For a fixed assignment environment it may also be constructive to 

conduct a larger computational study to be able to make stronger generalized conclusions 

concerning learning and forgetting effects.  For example, it would be possible to determine the 

impacts of having bottleneck stations located at different portions of the production line.  
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APPENDIX A 

 
 
 

 TWO WORKER TWO STATION CASE ANALYSIS 
 

Case 2 analysis: Recall that for Case 2(k12 ≤ k11 ≤ k21 ≤ k22) we have the production rates given 

in Table 1 and that a ≤ b ≤ c ≤ d. 

Table 45: Case 2 workers' production rates 

 
kij S1 S2 
W1 b a 
W2 c d 
 

In this case we have that k11=b, k12=a, k21=c and k22=d. 

Option 1: Output1 = min (k11, k22) = min (b, d) = b. 

Option 2: Output2 = min (k21, k12) = min (c, a) = a. 

Option 3: Under the assumption that W1 is the first in the order and W2 is the second, the 

following equations can be written: x11* k11 + x21* k21 = x22* k22 and x12 = 0, as the second 

worker, or W2 in this case, cannot be idle which implies that W1 can never be assigned to S2, 

thus we have that x12=0. Also, x21+x22 = 1.0 (W2 is always working) and x11+x21 = 1.0 (S1 is 

always occupied). By solving these equations and assuming that x12 = 0, we have the following: 

x21 = (k22 – k11)/(k22 + k21 – k11) and Output3 = (1-x21)*k22 = x22*k22 = (k21 / (k22 + k21 – k11))*k22 

= k21*k22/(k22 + k21 – k11) = c*d/(d + c – b). 

Option 4: Under the assumption that W2 is the first and W1 is the second (and cannot be idle) we 

have the following equation: x21* k21 = x12* k12 or x21* c = x12* a. 

As c ≥ a (or k21 ≥ k12) thus, W1 would never work at S1 as W2 is faster and he/she will wait 

portion of the time. So, the output is: Output4 = min (c, a) = min (k21, k12) =a (or k12).  
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Option 5: For these production rates this Option is equal to Option 3 as b ≤ d or (k11 ≤ k22), thus if 

workers are ordered in this manner, W2 will never be idle. Thus Output5 = k21*k22/(k22 + k21 – 

k11) = c*d/(d + c – b). 

Option 6: W2 is the first in the order, and the second worker in the order, or W1, can be idle, thus 

W2 is assigned to both stations and W1 is assigned only to S2 (this is implied by the relationship 

of the production rates given). Then the following is true: x21* k21 = x22* k22 + x12* k12 and x11= 0 

or x21* c = x22* d + x12* a. Also, x21+x22 = 1.0 as worker 2 is always working and the second 

station is always occupied so x22 + x12 = 1.0. By solving these equations, we have the following: 

x21 = 1.0 - x22 and x12 = 1.0 - x22 and x22 = (k21 – k12)/(k22 + k21 – k12). The output from the line 

under these assumptions (worker 2 is the first and worker 1 is the second) is: Output6 = (1-

x22)*k21 = x21*k21 = (k22 / (k22 + k21 – k12))*k21 = k22*k21/(k22 + k21 – k12) = c*d/(d + c – a).  

Summary: Under the assumption that k12 ≤ k11 ≤ k21 ≤ k22 it is clear that Output2 ≤ Output1 

and Output4 ≤ Output11. Also, it is clear that Output6 ≤ Output3 or Output5 as they are equal. We 

can also show that Output4 ≤ Output3. We have to show that a ≤ c*d/(d + c – b) . After 

rearranging the terms we have d * (c-a) + a* (b-c) ≥ 0. Based on our assumption a ≤ b ≤ c ≤ d, 

we know that c- a ≥ 0 and b-c ≤ 0. However, as d ≥ a, we can assume that d*(c-a) + a*(b-c) ≥ 0 

will always be positive. We also have to show that Output1 ≤ Output3 or b ≤ c*d/(d + c – b). 

After rearranging the terms we have c(d-b)-b(d-b) ≥ 0 or (d-b)(c-b) ≥ 0. Based on our assumption 

a ≤ b ≤ c ≤ d, we know that c- b ≥ 0 and d-b ≥ 0 thus b ≤ c*d/(d + c – b). The optimal assignment 

is W1-W2 or Option 5 (or Option 3). 

Table 46: Case 2 output rates 

 
 Output rate Optimal 
Option 1 b  
Option 2 a  
Option 3 c*d/(d + c – b) c*d/(d + c – b) 
Option 4 a  
Option 5 c*d/(d + c – b) c*d/(d + c – b) 
Option 6 c*d/(d + c – a)  
 
Examples: 
kij S1 S2   kij S1 S2 
W1 i    19 18  W1 i    19 18 
W2     20 21   W2     20 60 

 

 116  



 

Case 3 analysis: Recall that for Case 3 (k11 ≤ k12 ≤ k22 ≤ k21) we have the production rates given 

in Table 1 and that a ≤ b ≤ c ≤ d. 

 

Table 47: Case 3 workers’ production rates 

 
kij S1 S2 
W1 a b 
W2 d c 

 
In this case we have that k11=a, k12=b, k21=d and k22=c. 

Option 1: Output1 = min (k11, k22) = min (a, c) = a. 

Option 2: Output2 = min (k12, k21) = min (b, d) = b. 

Option 3: Similarly to the Case 1 analysis: x11* k11 + x21* k21 = x22* k22 and x12 = 0 or 

x11* a + x21* d = x22* c  and x12 = 0. We also have: x21+x22 = 1.0 (W2 is always working) and 

x11+x21 = 1.0 (S1 is always occupied).By solving these equations and assuming that x12 = 0, we 

have the following: Output3 = (1-x21)*k22 = x22*k22 = (k21 / (k22 + k21 – k11))*k22 = k21*k22/(k22 + 

k21 – k11) = c*d/(d + c – a). 

Option 4: Under the assumption that W2 is the first and W1 is the second (and cannot be idle) we 

have the following equation: x21* k21 = x12* k12 or x21* d = x12* b. 

As d ≥ b (or k21 ≥ k12) thus, W1 would never work at S1 as W2 is faster and he/she will wait 

portion of the time. So, the output is: Output4 = min (d, b) = min (k21, k12) = b (or k12). 

Option 5: This Option is equal to Option 3 as a ≤ c or (k11 ≤ k22), thus if workers are ordered in 

this manner, W2 will never be idle. Thus Output5 = k21*k22/(k22 + k21 – k11) = c*d/(d + c – a). 

Option 6: W2 is the first in the order, and the second worker in the order can be idle, thus W2 is 

assigned to both tasks and W1 is assigned only to the second task (this is implied by the 

relationship of the production rates given). Then the following is true: x21* k21 = x22* k22 + x12* 

k12 and x11= 0 or x21* d = x22* c + x12* b and x21+x22 = 1.0 (W2 is always working). Also, x22 + 

x12 = 1.0 (S2 is always occupied). Solving these equations, we have the following: x21 = 1.0 - x22 

and x12 = 1.0 - x22 and x22 = (k21 – k12)/(k22 + k21 – k12). The output is: Output6 = (1-x22)*k21 = 

x21*k21 = (k22 / (k22 + k21 – k12))*k21 = k22*k21/(k22 + k21 – k12) = c*d/(d + c – b). 
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Similarly as presented for Case 1 and Case 2, we can show that Option 6 is optimal or W2-W1 

assignment, as c*d/(d + c – b) ≥ b ≥ a and c*d/(d + c – b) ≥ c*d/(d + c – a).  

 

Table 48: Case 3 output rates 

 
 Output rate Optimal 
Option 1 a  
Option 2 b  
Option 3 c*d/(d + c – a)  
Option 4 b  
Option 5 c*d/(d + c – a)  
Option 6 c*d/(d + c – b) c*d/(d + c – b) 
 

Also, as discussed for Case 1, if we not allow the second worker to be idle we would 

have to choose between Option 3 and Option 4. When b ≥ c*d/(d + c – a) or Output4 ≥  Output3 

workers will be sequenced W2-W1 or faster worker will be first in the order. When this condition 

does not hold the assignment will be W1-W2 or the slower worker in this worker will be first in 

the order.  

Example: b ≥ c*d/(d + c – a)      Example: b  ≥  c*d/(d + c – a) 

kij S1 S2   kij S1 S2 
W1 18     19   i  W1 18    19   i 
W2 21    20   W2 100    20 

 
 
Case 4 analysis: Recall that for Case 4 (k12 ≤k11 ≤ k22  ≤ k21) we have the production rates given 

in Table 1 and that a ≤ b ≤ c ≤ d. 

 

Table 49: Case 4 workers' production rates 

 
kij S1 S2 
W1 b a 
W2 d c 
 

In this case we have that k11=b, k12=a, k21=d and k22=c. 

Option 1: Output1 = min (k11, k22) = min (b, c) = b. 

Option 2: Output2 = min (k21, k12) = min (d, a) = a. 
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Option 3: Output3 = k21*k22/(k22 + k21 – k11) = c*d/(d + c – b). 

Option 4: Output4 = min (d, a) = min (k21, k12) = a (or k12). 

Option 5: As c ≥ b, W1 would never be idle thus Output5= Output3 = c*d/(d + c – b). 

Option 6: In this case it is beneficial for W1 to be idle, as c ≥ a. Thus, Output6 = k21*k22/(k22 + 

k21 – k12) =c*d/(c + d - a) . 

 

It is clear (see Case 1 and Case 2 proofs) that Output4≤ Output6≤ Output3. The optimal workers 

order is W1 - W2, or Option 3 (Option 5). 

 

Table 50: Case 4 output rates 

 
 Output rate Optimal 
Option 1 b  
Option 2 a  
Option 3 c*d/(d + c – b) c*d/(d + c – b) 
Option 4 a  
Option 5 c*d/(d + c – b) c*d/(d + c – b) 
Option 6 c*d/(d + c – a)  
 
Examples 
kij S1 S2   kij S1 S2 
W1 i    8 7  W1 i    8 7 
W2     10 9   W2     100 9 

 
 

Case 5 analysis: Recall that for Case 5 (k11 ≤ k21 ≤ k22 ≤ k12) we have the production rates given 

in Table 1 and that a ≤ b ≤ c ≤ d. 

 

Table 51: Case 5 workers’ production rates 

 
kij S1 S2 
W1 a d 
W2 b c 
 
Option 1: Output1 = min (k11, k22) = min (a, d) = a. 

Option 2: Output2 = min (k21, k12) = min (c, b) = b. 

Option 3: Output3 = (k21/(k22 + k21 – k11))*k22 = k21*k22/(k22 + k21 – k11) = c*b/(b + c – a). 
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Option 4: Output4 = k11*k12/(k11 + k12 – k21) =a*d/(a + d - b). 

Option 5: In this case Option 5 is equal to Option 3 as a ≤ c or (k11 ≤ k22), thus if workers are 

ordered in this manner, W2 will never be idle. Thus, Output5 = k21*k22/(k22 + k21 – k11) = c*b/(b 

+ c – a). 

Option 6: As b ≤ d, the second worker in the order will never be idle thus Output6 = k11*k12/(k11 

+ k12 – k21) =a*d/(a + d - b). 

Summary: Output rates for all options are presented in Table 52. We can show that 

Option 2 is optimal, or that W2-W1 is the optimal order. It is clear that Output2 ≥ Output4 (or 

Output6), or b ≥ a*d/(a + d – b), as it reduces to positive terms (d – b)(b – a)/(a + d – b) ≥ 0 . 

Also, Output2 ≥ Output3 (or Output5), b ≥ c*b/(b + c – a) as it reduces to b*(b – a)/(b + c – a) ≥ 

0. 

Table 52: Case 5 output rates 

 
 Output rate Optimal 
Option 1 a  
Option 2 b b 
Option 3 c*b/(b + c – a)  
Option 4 a*d/(a + d - b)  
Option 5 c*b/(b + c – a)  
Option 6 a*d/(a + d - b)  
 
If we want to apply only bucket brigade rules, we can look at Options 3 and 4. Under bucket 

brigade rules, it is not feasible to have the second worker idle, thus we have to decide if it is 

better to assign workers according to Option 3 or Option 4. If c*b/(b + c – a) ≥ a*d/(a + d - b) 

then Option 3 is optimal and order is W1-W2, otherwise Option 4 is  optimal, and order is W2-

W1. 

Examples: 

kij S1 S2   kij S1 S2 
W1     7    10   i  W1    7  100   i 
W2     8    9   W2    9  10 

 
 
Case 6 analysis: Recall that for Case 6 (k12 ≤ k21 ≤ k22 ≤ k11) we have the production rates given  

in Table 1 and that a ≤ b ≤ c ≤ d. 

 120  



Table 53: Case 6 workers' production rates 

 
kij S1 S2 
W1 d a 
W2 b c 
 

In this case we have that k11=d, k12=a, k21=b and k22=c. 

Option 1: Output1 = min (k11, k22) = min (d, c) = c. 

Option 2: Output2 = min (k21, k12) = min (b, a) = a. 

Option 3: As d ≥ c, Output3 = min (d, c) = min (k11, k22) = c (or k22). 

Option 4: As b ≥ a, Output4 = min (b, a) = min (k21, k12) = a (or k12). 

Option 5: There is no benefit of the second worker on the order to be idle, as the first workers’ 

rate at S2 is lower  then the second workers’ rate at S2, thus Output5= Output3= c.  If we allow 

W2 

Option 6: As c ≥ a, it is beneficial for the second worker to be idle, thus Output6 = k21*k22/(k22 + 

k21 – k12) = c*b/(c + b - a) . 

Summary: It is clear that Output2= Output4≤ Output1. Also, we can show that Output6≤ 

Output1 or c*b/(c + b - a) ≤ c, which reduces to c(c-a) ≥ 0 which is true as c ≥ a. The optimal 

order is W1-W2, or Option 1. 

Table 54: Case 6 output rates 

 
 Output rate Optimal 
Option 1 c  
Option 2 a  
Option 3 c  
Option 4 a  
Option 5 c  
Option 6 c*b/(c + b - a)  
 
Examples: 

kij S1 S2   kij S1 S2 
W1 i    10      7  W1 i     20     17 
W2      8      9   W2     18     19 

 
 
Case 7 analysis: Recall that for Case 5 (k11 ≤ k22 ≤ k21 ≤ k12) we have the production rates given 

in Table 1 and that a ≤ b ≤ c ≤ d. 
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Table 55: Case 7 workers' production rates 

  
kij S1 S2 
W1 a d 
W2 c b 
 
Option 1: Output1 = min (k11, k22) = min (a, b) = a. 

Option 2: Output2 = min (k21, k12) = min (c, d) = c. 

Option 3: Output3 = (k21/(k22 + k21 – k11))*k22 = k21*k22/(k22 + k21 – k11) = c*b/(b + c – a). 

Option 4: Output4 = k11*k12/(k11 + k12 – k21) =a*d/(a + d - c). 

Option 5: Option 5 is equal to Option 3 as a ≤ b or (k11 ≤ k22), thus if workers are ordered in this 

manner, W2 will never be idle. Thus Output5 = c*b/(b + c – a). 

Option 6: Option 6 is equal to Option 4 as c ≤ d or (k21 ≤ k12), thus if workers are ordered in this 

manner, W1 will never be idle. Output6 = a*d/(a + d - c). 

Summary: We can show that Option 2 is optimal, or that W2-W1 is the optimal 

assignment. It is clear that c ≥ a*d/(a + d - c), as it reduces to positive terms (c-a)*(d-c)/(a + d - 

c) ≥ 0 . Also, c ≥ c*b/(b + c - a) as it reduces to c*(c-a)/(b + c - a) ≥ 0. Also, we know that c ≥ a. 

If it is not feasible to have the second worker idle, or just apply bucket brigade rules, we 

have to decide is it better to assign workers according to Options 3 or 4. If c*b/(b + c – a) ≥ 

a*d/(a + d - c) then the optimal assignment is W1-W2, otherwise W2-W1. 

 

Table 56: Case 7 output rates 

 
 Output rate Optimal 
Option 1 a  
Option 2 c c 
Option 3 c*b/(b + c – a)  
Option 4 a*d/(a + d - c)  
Option 5 c*b/(b + c – a)  
Option 6 a*d/(a + d - c)  
 
 
Examples: 

kij S1 S2   kij S1 S2 
W1      7     10   i  W1     7   100   i 
W2      9     8   W2     9   8 
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Case 8 analysis: Recall that for Case 8 (k12 ≤ k22 ≤ k21 ≤ k11) we have the production rates given 

in Table 1 and that a ≤ b ≤ c ≤ d. 

 

Table 57: Case 8 workers' production rates 

 

kij S1 S2 
W1 d a 
W2 c b 
 
Option 1: Output1 = min (k11, k22) = min (d, b) = b. 

Option 2: Output2 = min (k21, k12) = min (c, a) = a. 

Option 3: As d ≥ b, W1 finishes first, thus Output3 = min (k11, k22) = min (d, b) = b. 

Option 4: As c ≥ a, W2 finishes first, thus Output4= min (k21, k12) = min (c, a) = a. 

Option 5: As d ≥ b but a ≤ b, it is not beneficial for W2 to be idle, thus Output5 = Output3 = b. 

Option 6: As b ≥ a, or k22 ≥ k12, it is beneficial for W1 to be idle. Thus, Output6 = k21*k22/(k22 + 

k21 – k12) =c*b/(c + b-a). 

Summary: It is clear that Option 3 is optimal as b ≥ a, and we can show that b ≥ c*b/(c + 

b-a). If we rearrange the terms the inequality reduces to b(b - a) ≥ 0, which is true.  

 

Table 58: Case 8 output rates 

 
 Output rate Optimal 
Option 1 b b 
Option 2 a  
Option 3 b b 
Option 4 a  
Option 5 b b 
Option 6 c*b/(c + b-a)  
 
Examples: 

kij S1 S2   kij S1 S2 
W1 i    10      7  W1 i     100     7 
W2      9      8   W2      29     25 

 
 

 123  



Case 9 analysis: Recall that for Case 9 (k11 ≤ k21 ≤ k12 ≤ k22) we have the production rates given 

in Table 1and that a ≤ b ≤ c ≤ d. 

 

Table 59: Case 9 workers' production rates 

 
kij S1 S2 
W1 a c 
W2 b d 
 
Option 1: Output1 = min (k11, k22) = min (a, d) = a. 

Option 2: Output2 = min (k11, k22) = min (b, c) = b. 

Option 3: Output3 = k22*k21/(k22 + k21 – k11) =b*d/(b + d - a). 

Option 4: Output4= k11*k12/(k11 + k12 – k21) =a*c/(a + c - b). 

Option 5: As d ≥ a, the second worker will not be idle, thus Output5 = Output3 = b*d/(b + d - a). 

Option 6: It is beneficial for the second worker to be idle as he/she is slower on the first task. 

Thus, Output6 = Output2= min (k21, k12) = min (b, c) = b. 

 Summary: We can show that Output5 = Output3 ≤ Output6. The optimal output is Option 6 

as b ≥ a*c/(a+c-b). After rearranging the terms we have (c-b)*(b-a)/(a + c - b) ≥ 0. This 

inequality is true as all the terms are positive by our assumption. We also have to show that 

Output4≤ Output6, or that a*c/(a + c - b) ≤ b. This inequality reduces to (c-b)*(b-a) ≥ 0, which is 

true. Thus the optimal order is W2-W1, and optimal output rate is b.  

 

Table 60: Case 9 output rates 

 
 Output rate Optimal 
Option 1 a  
Option 2 b b 
Option 3 b*d/(b + d - a)  
Option 4 a*c/(a + c - b)  
Option 5 b*d/(b + d - a)  
Option 6 b b 
 

However, if we want the system to behave as bucket brigade, we would look at either Option 4 

or Option 3. If a*c/(a  +c - b)≥ b*d/(b + d - a) then the assignment is W2-W1, otherwise it is 

W1-W2. 
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Examples: 

kij S1 S2   kij S1 S2 
W1      15     20   i  W1      7     9  i 
W2      18     25   W2      8   100 

 
 

Case 10 analysis: Recall that for Case 10 (k12 ≤ k21 ≤ k11 ≤ k22) we have the production rates 

given in Table 1 and that a ≤ b ≤ c ≤ d. 

 

Table 61: Case 10 workers' production rates 

 
kij S1 S2 
W1 c a 
W2 b d 
 

Option 1: Output1 = min (k11, k22) = min (c, d) = c. 

Option 2: Output2 = min (k21, k12) = min (b, a) = a. 

Option 3: As it is not allowed for the second worker to be idle, in this case W2, the output can be 

calculated as Output3 = k22*k21/(k22 + k21 – k11) = b*d/(b+ d - c). 

Option 4: Output4 = min (b, a) = min (k21, k12) = a. 

Option 5: As c ≤ d and b ≤ c (k21≤ k11) it is beneficial for the second worker to be idle, thus 

Output5 = min (k11, k22) = min (c, d) = c. 

Option 6: W2 will be assigned to both stations, as a ≤ d and it is beneficial for W1 to be idle, thus 

Output6 = k22*k21/(k22 + k21 – k12) = b*d/(b + d – a). 

 Summary: Option 3is better than Option 6 as b*d/(b + d – a) ≤  b*d/(b+ d - c) or  a ≤ c. 

Option 4 and Option 2 result in the lowest output. We can show that a ≤ b*d/(d + b – a) as it 

reduces to (d-a)(b-a) ≥ 0, which is true. Now, we have to prove that Option 5 (or Option 1) 

results in a better output than Option 3. Thus, we have to show that c ≥ b*d/(b+ d – c). After 

rearranging the terms the inequality reduces to (d - c) * (c - b) ≥ 0 which is true as all terms are 

positive. Thus, Option 5 (or Option 1) is optimal. 
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Table 62: Case 10 output rates 

 
 Output rate Optimal 
Option 1 c c 
Option 2 a  
Option 3 b*d/(b+ d - c)  
Option 4 a  
Option 5 c c 
Option 6 b*d/(b + d – a)  
 
Examples: 

kij S1 S2   kij S1 S2 
W1      9      7  W1      9    7 
W2      8     10   i  W2      8   100   i 

 
 
Case 11 analysis: Recall that for Case 11 (k11 ≤ k22 ≤ k12 ≤ k21) we have the production rates 

given in Table 1 and that a ≤ b ≤ c ≤ d. 

 

Table 63: Case 11 workers' production rates 

 
kij S1 S2 
W1 a c 
W2 d b 
 
Option 1: Output1 = min (k11, k22) = min (a, b) = a. 

Option 2: Output2 = min (k21, k12) = min (d, c) = c. 

Option 3: Output3 = k22*k21/(k22 + k21 – k11) = b*d/(d + b – a). 

Option 4: As c ≤ d, Output4= min (c, d) = min (k21, k12) = c. 

Option 5: As b ≥ a, the second worker in the order would never be idle, thus Output5 = Output3= 

b*d/(d + b – a). 

Option 6: As c ≤ d there is no gain if the second worker is idle, thus Output6= Output4= c. 

Summary: It is clear that Output1 ≤ Output2. We have to show that Option 4 (or 6) results in the 

highest throughput. So we have to show that c ≥ b*d/(d + b – a). This inequality reduces to d*(c 

– b) + c*(b - a) ≥ 0, which is true as all the terms are positive. Thus the optimal assignment is 

W2-W1. 
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Table 64: Case 11 output rates 

 
 Output rate Optimal 
Option 1 a  
Option 2 c c 
Option 3 b*d/(d + b – a)  
Option 4 c c 
Option 5 b*d/(d + b – a)  
Option 6 c c 
 
Examples: 

kij S1 S2   kij S1 S2 
W1       7      9  W1        7     9 
W2 i    10      8   W2 i    100     8 

 
Case 12 analysis 

Recall that for Case 12 (k12 ≤ k22 ≤ k11 ≤ k21) we have the production rates given in Table 1 and 

that a ≤ b ≤ c ≤ d. 

 

Table 65: Case 12 workers' production rates 

 
kij S1 S2 
W1 c a 
W2 d b 
 
Option 1: Output1 = min (k11, k22) = min (c, b) = b. 

Option 2: Output1 = min (k21, k12) = min (d, a) = a. 

Option 3: Output3 = min (c, b) = min (k11, k22) = b. 

Option 4: Output4 = min (d, a) = min (k21, k12) = a. 

Option 5: Output5 = Output3 = b, as b ≥ a we would not gain if the first worker is assigned to the 

second task or if the second worker is idle.  

Option 6: Output6 = k22*k21/(k22 + k21 – k12) = b*d/(d + b – a). 

We can show that b ≥ b*d/(d + b – a). This inequality reduces to b*(b - a) ≥ 0 which is true, as 

all terms are positive. Thus, Option 3 (or 5) is optimal. So the optimal assignment is W1-W2. 
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Table 66: Case 12 Output rates 

 
 Output rate Optimal 
Option 1 b b 
Option 2 a  
Option 3 b b 
Option 4 a  
Option 5 b b 
Option 6 b*d/(d + b – a)  
 
Examples: 
kij S1 S2   kij S1 S2 
W1 i     9      7  W1 i      9      7 
W2      10      8   W2     100      8 

 
 

Summary and analysis of results is presented in chapter 3. 
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POSSIBLE DYNAMICS FOR TWO WORKERS AND DUPLICATE STATIONS 

 

The assumptions are the same as presented in Chapter 3 for the two worker and two station 

production line except that workers are never idle due to duplicate tooling.  

 

Duplicate tooling Case 3 analysis 

The workers’ production rates for Case 3 are presented in, Table 1 also recall that a ≤ b ≤ c ≤ d. 

For Case 3, it is reasonable to only analyze Options 1 and 4. If we look at Option 2, we can 

conclude that it is not beneficial to duplicate S2 when the workers are ordered W1 – W2 since k22 

≥ k11 (based on our assumption that k22=c ≥ k11 = a). The same reasoning applies for Option 3. 

For Case 3, Options 1 and 4 are beneficial as output will be higher if we have duplicate tooling. 

Thus we need to compare these output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (a + d)/(d/c+1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (b + c)/(c/d+1).  

When we compare (a + d)/(d/c+1) and (b + c)/(c/d+1), it reduces to the relationship between 

a*c and b*d. Thus, Option 4 is optimal because b*d is always greater than a*c.  

 

Duplicate tooling Case 4 analysis 

The workers’ production rates for Case 4 are presented in, Table 1 also recall that a ≤ b ≤ c ≤ d. 

For Case 4, it is reasonable to only analyze Options 1 and 4. If we look at Option 3, we can 

conclude that it is not beneficial to duplicate S1 when the workers are ordered W2 -W1 since k21 

≥ k12 (based on our assumption that k21=d ≥ k12 = a). The same reasoning applies for Option 2. 

For Case 4, Options 1 and 4 are beneficial as output will be higher if we have duplicate tooling. 

Thus we need to compare these output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (b + d)/(d/c+1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (a + c)/(c/d+1).  

When we compare (b + d)/(d/c+1) and (a + c)/(c/d+1), it reduces to the relationship between 

c*b and a*d. If c*b > a*d it is optimal to order the workers W1 - W2 and duplicate S1. 

Otherwise, it is optimal to order the workers W2 - W1 and duplicate S2.  
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Duplicate tooling Case 5 analysis 

The workers’ production rates for Case 5 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 5, it is reasonable to only analyze Options 1 and 3. Options 2 and 4 would not result in 

higher throughput. If we look at Option 2, we can conclude that it is not beneficial to duplicate 

S2 when the workers are ordered W1 –W2 since k22 ≥ k11 (based on our assumption that k22=c ≥ 

k11 = a). The same reasoning applies for Option 4. For Case 5, Options 1 and 3 are beneficial. 

Thus we need to compare these output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (a + b)/(b/c+1).  

Option 3: Output3 = (k11+k21)/(k11/k12+1) = (a + b)/(a/d+1).  

When we compare (a + b)/(b/c+1) and (a + b)/(a/d+1), it reduces to the relationship between 

1/(b/c+1) and 1/(a/d+1). Considering the relationship of workers’ production rates, we can say 

that b/c ≥ a/d, and consequently 1/(b/c+1) ≤ 1/(a/d+1). Thus, Option 3 is optimal and it is 

optimal to order the workers W2 – W1 and duplicate S1.  

 

Duplicate tooling Case 6 analysis 

The workers’ production rates for Case 6 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 6, it is reasonable to only analyze Options 2 and 4. Options 1 and 3 would not result in 

higher throughput. If we look at Option 1, we can conclude that it is not beneficial to duplicate 

S1 when the workers are ordered W1 –W2 since k11 ≥ k22 (based on our assumption that k11=d ≥ 

k22 = c). The same reasoning applies for Option 3. For Case 6, we will look at Options 2 and 4 

and compare these output rates to determine the optimal output. We determine the output rates 

based on the calculations presented in Section 4, thus: 

Option 2: Output2 = (k12+k22)/(k12/k11+1) = (a + c)/(a/d+1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (a + c)/(c/b+1).  

When we compare (a + c)/(a/d+1) and (a + c)/(c/b+1), it reduces to the relationship between 

1/(a/d+1) and 1/(c/b+1). Considering the relationship of workers’ production rates, we can say 

that a/d ≤ c/b (a/d ≤ 1 and c/b ≥ 1), and consequently 1/(a/d+1) ≥ 1/(c/b+1). Thus, Option 2 is 

optimal and it is optimal to order the workers W1 – W2 and duplicate S2.  
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Duplicate tooling Case 7 analysis 

The workers’ production rates for Case 7 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 7, it is reasonable to only analyze Options 1 and 3. If we look at Option 2, we can 

conclude that it is not beneficial to duplicate S2 when the workers are ordered W1 –W2 since k22 

≥ k11 (based on our assumption that k22=b ≥ k11 = a). The same reasoning applies for Option 4. 

For Case 7, Options 1 and 3 are beneficial and we need to compare these corresponding output 

rates to determine the optimal output. We determine the output rates based on the calculations 

presented in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (a + c)/(c/b+1).  

Option 3: Output3= (k11+k21)/(k11/k12+1) = (a + c)/(a/d+1).  

When we compare (a + c)/(c/b+1) and (a + c)/(a/d+1), it reduces to the relationship between 

1/(c/b+1) and 1/(a/d+1). Considering the relationship of workers’ production rates, we can say 

that a/d ≤ c/b (a/d ≤ 1 and c/b ≥ 1), and consequently 1/(a/d+1) ≥ 1/(c/b+1). Thus, Option 3 is 

optimal and it is optimal to order the workers W2 – W1 and duplicate S1.  

 

Duplicate tooling Case 8 analysis 

The workers’ production rates for Case 8 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 8, it is reasonable to only analyze Options 2 and 4. If we look at Option 1, we can 

conclude that it is not beneficial to duplicate S1 when the workers are ordered W1 –W2 since k11 

≥ k22 (based on our assumption that k11=d ≥ k22 = b) since that station would not be used. The 

same reasoning applies for Option 3. For Case 8, Options 2 and 4 are beneficial and we need to 

compare these corresponding output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 2: Output2 = (k12+k22)/(k12/k11+1) = (a + b)/(a/d+1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (a + b)/(b/c+1).  

When we compare (a + b)/(a/d+1) and (a + b)/(b/c+1), it reduces to the relationship between 

1/(a/d + 1) and 1/(b/c + 1). Considering the relationship of workers’ production rates, we can 

say that b/c ≥ a/d, and consequently 1/(b/c+1) ≤ 1/(a/d+1). Thus, Option 2 is optimal and it is 

optimal to order the workers W1 – W2 and duplicate S2.  
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Duplicate tooling Case 9 analysis 

The workers’ production rates for Case 9 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 9, it is reasonable to only analyze Options 1 and 3. If we look at Option 2, we can 

conclude that it is not beneficial to duplicate S2 when the workers are ordered W1 –W2 since k22 

≥ k11 (based on our assumption that k22=d ≥ k11 = a) since that station would not be used. The 

same reasoning applies for Option 4. For Case 9, Options 1 and 3 are beneficial and we need to 

compare these corresponding output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (a + b)/(b/d+1).  

Option 3: Output3 = (k11+k21)/(k11/k12+1) = (a + b)/(a/c+1).  

When we compare (a + b)/(b/d+1) and = (a + b)/(a/c+1), it reduces to the relationship between 

1/(b/d + 1) and 1/(a/c + 1). If 1/(b/d + 1) ≥ 1/(a/c + 1) (or a*d ≥ b*c), Option 1 is optimal, 

otherwise Option 3 is optimal, in which case workers should be ordered W2 – W1 and duplicate 

S1. 

 

Duplicate tooling Case 10 analysis 

The workers’ production rates for Case 10 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 10, it is reasonable to only analyze Options 1 and 4. If we look at Option 3, we can 

conclude that it is not beneficial to duplicate S1 when the workers are ordered W2 -W1 since k21 

≥ k12 (based on our assumption that k21=b ≥ k12 = a). The same reasoning applies for Option 2. 

For Case 10, Options 1 and 4 are beneficial as output will be higher if we have duplicate tooling. 

Thus we need to compare these output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (b + c)/(b/d + 1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (d + a)/(d/b + 1). 

When we compare (b + c)/(b/d + 1) and (d + a)/(d/b + 1), it reduces to the relationship between 

c*d and a*b. Thus, Option 1 is optimal since c*d is always greater than a*b. 

 

Duplicate tooling Case 11 analysis 

The workers’ production rates for Case 11 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 11, it is reasonable to only analyze Options 1 and 4. If we look at Option 2, we can 
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conclude that it is not beneficial to duplicate S2 when the workers are ordered W1 –W2 since k22 

≥ k11 (based on our assumption that k22=b ≥ k11 = a). The same reasoning applies for Option 3. 

For Case 11, Options 1 and 4 are beneficial and we need to compare these output rates to 

determine the optimal output. We determine the output rates based on the calculations presented 

in Section 4, thus: 

Option 1: Output1 = (k21+k11)/(k21/k22+1) = (a + d)/(d/b + 1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (b + c)/(b/d + 1). 

When we compare (a + d)/(d/b + 1) and (b + c)/(b/d + 1), it reduces to the relationship between 

a*b and c*d. Thus, Option 4 is optimal since c*d is always greater than a*b. 

 

Duplicate tooling Case 12 analysis 

The workers’ production rates for Case 12 are presented in Table 1, also recall that a ≤ b ≤ c ≤ d. 

For Case 12, it is reasonable to only analyze Options 2 and 4. If we look at Option 1, we can 

conclude that it is not beneficial to duplicate S1 when the workers are ordered W1 –W2 since k11 

≥ k22 (based on our assumption that k11=c ≥ k22 = b) since that station would not be used. The 

same reasoning applies for Option 3. For Case 12, Options 2 and 4 are beneficial and we need to 

compare these corresponding output rates to determine the optimal output. We determine the 

output rates based on the calculations presented in Section 4, thus: 

Option 2: Output2 = (k12+k22)/(k12/k11+1) = (a + b)/(a/c + 1).  

Option 4: Output4 = (k22+k12)/(k22/k21+1) = (a + b)/(b/d + 1).  

When we compare (a + b)/(a/c + 1) and (a + b)/(b/d + 1), it reduces to the relationship between 

1/(a/c + 1) and 1/(b/d + 1). If 1/(a/c + 1) ≥ 1/(b/d + 1) (or c*b ≥ a*d), Option 2 is optimal. 

Otherwise, Option 4 is optimal and workers should be ordered W2 – W1 and duplicate S2.  

 

A summary and analysis of these results is presented Chapter 3. 

 

PARALLEL LINE COMPARISONS 

 

If we assume that both stations have duplicate tooling, we can look at the system as two parallel 

production lines. By two parallel lines we mean that each worker works at both stations in 

sequential order and finishes parts independently of the other worker. It can be shown that the 
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throughput obtained from two parallel lines is at most as good as the output produced when we 

have optimally ordered the workers and have chosen the correct station to duplicate. In both 

scenarios workers are never idle and it is beneficial not to duplicate both stations.   

For Case 1, we know that either Option 1 or Option 4 would result in the optimal 

throughput. So, if Option 1 is optimal we can show that inequality (c+a)/(c/d+1) ≥ 

a*b/(a+b)+c*d/(c+d) is true, which states that the output from two parallel lines is at most as 

good as output from a line with one station with duplicate tooling,  reduces to bc ≤ ad, which us 

true under the assumption that Option 1 is optimal (see Case 1 analysis section 2.1). If Option 4 

is optimal we can show that inequality (d+b)/(d/c+1) ≥ a*b/(a+b)+c*d/(c+d) is true, and 

reduces to ad ≤ bc, which is true under the assumption that Option 4 is optimal. 

For Cases 2 and 3, we have to show that (b+c)/(c/d+1) ≥ a*b/(a+b)+c*d/(c+d) is true. 

This inequality reduces to 1/(c/d + 1) ≥ 1/( b/a + 1). This inequality is true since c ≤ d,  or c/d ≤ 

1, and also b ≥ a,  or b/a ≥ 1.  

For Case 4, we know that either Option 1 or Option 4 would result in the optimal 

throughput. So, if Option 1 is optimal we can show that inequality (b+d)/(d/c+1) ≥ 

a*b/(a+b)+c*d/(c+d), which states that the output from two parallel lines is at most as good as 

output from a line with one station with duplicate tooling,  reduces to bc ≥ ad, which us true 

under the assumption that Option 1 is optimal. If Option 4 is optimal, we have to show that 

(a+c)/(c/d+1) ≥ a*b/(a+b)+c*d/(c+d) is true. This inequality reduces to ad ≥ bc, which is true 

under the above assumption. 

For Case 5, we have to show that (a+b)/(a/d+1) ≥ a*d/(a+d)+c*b/(c+b). This inequality 

reduces to d*b ≥ a*c, which is true. 

For Cases 6 and 7, it can be shown that a*d/(a+d)+ c*b/(c+b)  ≤  (a+c)/(a/d+1). 

Applying simple algebra, the expression reduces to a*b ≤ c*d. Based on the assumed 

relationships of a, b, c, d we can say that the output rates from two parallel lines for cases 6 and 7 

are always lower than the optimal worker ordering combined with the best choice of duplicate 

tooling.  

For Case 8, we have to show that (a+b)/(a/d+1) ≥ a*d/(a+d)+c*b/(c+b). This inequality 

reduces to b*d ≥ a*c which is true based on our assumption. 

For Case 9, we have to show that (a+b)/(b/d+1)≥ a*c/(a+c)+d*b/(d+b)is true if Option 1 

is optimal, or (a+b)/(a/c+1) ≥ a*c/(a+c)+d*b/(d+b) if Option 3 is optimal. The first inequality 

 134  



reduces to a*d ≥ b*c (see Section 4.9), which is true if Option 1 is optimal. The second 

inequality reduce to b*c ≥ a*d, which is true if Option 3 is optimal. 

For Cases 10 and 11, we have to show that (b+c)/(b/d+1) ≥ a*c/(a+c)+d*b/(d+b). This 

inequality reduces to c*d ≥ a*b, which is always true under the above assumption. 

For Case 12, we have to show that (a+b)/(a/c+1) ≥ a*c/(a+c)+d*b/(d+b) if Option 2 is 

optimal. This inequality reduces to c*b ≥ a*d, which is true if Option 2 is optimal (see Section 

4.12). Also, we have to show that (a+b)/(b/d+1) ≥ a*c/(a+c)+d*b/(d+b) if Option 4 is optimal. 

This inequality reduces to a*d ≥ c*b, which is true if Option 4 is optimal (see Section 4.12). 

In summary, we showed that the output from two parallel lines is at most as good as 

output from a line with one station with duplicate tooling. The break point analysis and the 

summary table are given in Chapter 3. 
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APPENDIX B 

 
 
 
 

ADDITIONAL NUMERICAL EXAMPLES  

Example 1: Three Workers Six Stations 

Table 67:  Three Workers Six Stations: Steady state production rates 

 
kij S1 S2 S3 S4 S5 S6 

W1 11 12 15 7 11 11 
W2 8 12 12 12 8 7 
W3 11 11 13 9 10 11 

 

Table 68: Solution Three Workers Six Stations 

 
xij S1 S2 S3 S4 S5 S6 

W1         0.49 0.51 
W2   0.02 0.47 0.47 0.04   
W3 0.51 0.49          

Objective:  5.6 parts/hour 

Example 2: Three Workers Four Stations 

Table 69: Three Workers Four Stations: Steady state production rates 

 
kij S1 S2 S3 S4 

W1 9 10 12 11 
W2 12 10 9 10 
W3 13 9 10 12 
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Table 70: Solution: Three Workers Four Stations 

 
xij S1 S2 S3 S4 

W1   0.55 0.45   
W2 0.7 0.3    
W3     0.3 0.7 

Objective:  8.4 parts/hour 
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APPENDIX C 
 

 

Table 71: Data set: Learning and forgetting data 

 
  pij                         

 W\S 1 2 3 4 5 6 7 8 9 10 11 12   

1 884.4 11.12 607.1 994.2 798.4 937.7 1118 418 1081 14.95 575.7 11.17   

2 61.74 0 322.1 448.1 84.96 1000 965.5 171.1 946.2 156.4 1186 118.9   

3 255.8 636.4 115.2 102.6 771.5 223.7 33.51 186.4 0 992 708.3 110   

4 261.3 512.1 125.1 0 983.1 217.8 140.4 871.1 847.7 817.2 59.67 103   

5 842.6 838.3 836.4 0 326 595.1 553.3 1107 184.5 62.73 917.5 426   

6 59.66 14.24 311.8 93.92 1080 64.52 18.53 1011 934.5 0 992 255.8   

  rij                         

 W\S 1 2 3 4 5 6 7 8 9 10 11 12   

1 161.5 566.9 285.5 411.1 196.8 168.6 447.9 215.5 740.2 914.5 59.76 373.2   

2 67.28 76.74 270.1 863.2 87.46 738.6 283.8 630.9 263.7 314.3 74.46 114.8   

3 46.14 721.2 396.2 694.6 918.4 97.84 491.8 29.8 120.1 322.6 47.55 6.08   

4 938.9 62.46 42.99 8.18 235.8 199 538.6 370.5 81.01 217.7 446.6 141.1   

5 11.13 97.74 873.8 141.4 157 457.1 519.4 441.7 362 74.15 72.02 309.9   

6 868.1 380.9 209 12.97 83.91 53.08 513.8 40.39 542.9 56.44 627.5 55.36   

 

 

 

 

 

 

 

 

 

 138  



Table 71: (continued) 

 
  kij                         

 W\S 1 2 3 4 5 6 7 8 9 10 11 12   

1 25.02 28.29 29.25 29.16 28.22 35.79 33.1 35.76 37.46 30.57 27.48 37.92   

2 25.93 32.85 34.88 26.1 35.92 32.34 28.89 34.03 35.28 30.86 25.53 31.49   

3 38.5 25.79 37.48 33.65 28.18 37.77 30.24 39.3 29.52 38.83 27.09 32.9   

4 38.63 34.56 36.99 37.79 37.38 36.4 27.18 35.28 35.34 27.56 34.61 37.11   

5 26.86 33.81 38.1 36.04 28.61 27.62 30.19 31.99 25.69 31.81 30.67 38.43   

6 36.67 31.23 30.82 26.52 35.57 28.65 30.13 26.78 31.33 33.42 34.79 30.59   

 αij                         

 W\S 1 2 3 4 5 6 7 8 9 10 11 12   

1 4.71 1.24 4.4 3.78 0.27 0.77 0.25 3.7 0.62 1.86 3.09 4.09   

2 1.01 1.16 3.41 4.6 1.63 3.13 0.23 3.53 3.97 0 4.38 3.69   

3 1.36 3.98 4.42 0.12 3.82 2.02 1.73 0.59 4.93 2.1 3.6 1.87   

4 0.86 0 0.74 0 4.22 2.94 3.11 2.44 0.33 1.73 1.01 4.32   

5 1.36 4.32 1.74 4.73 0.17 2.81 4.01 2.44 0.33 1.73 1.01 4.32   

6 3.74 1.36 1.57 2.33 1.63 4.13 2.49 1.25 1.5 4.48 2.11 3.72   
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Bucket Brigades Pseudo code and Flowchart 

 

 
Input data: The length of production horizon, Number of workers, Number of stations, Worker 

order and starting positions, Workers’ individual learning and forgetting characteristics. 

Possible phases:  

A. Worker starts work at the station.  

B. Worker finishes work at the station.  

Question 1 (Q1): Is the queue empty?  

No. Take the part. Go to A. 

Yes. Question 2 (Q2): Is the worker at the last station? 

Yes. Go to D.  (D. Go to the previous station.) 

No. Question 3 (Q3): Is the next station empty? 

  Yes. Go to the next station. Go to A. 

  No. Go to the next station. Go to E. (E. Wait in the queue). 

C. Part is taken from the worker. 

Q1: Is anybody in the queue? 

Yes. Go to E. 

No. Question 5 (Q5): Is worker at the first station? 

 Yes. Go to E. 

 No. Go to D. 

D. Go to the previous station. 

 Question 4 (Q4): Is station empty? 

  Yes. Q5: Is worker at the first station? 

   Yes. Take a new part. Go to A. 

   No. Go to D.  

  No. Take a part from a worker. Go to A. 

 

E. Wait in the queue. 

 Assign the worker to the queue at the station. 
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A. Worker Starts work at
the station 

 
 

 

B. Worker 
finishes work 
at the station 

 

 

C. Part is 
taken from 
the worker 

 

 
D. Go to the previous 

station 
 

 
E. Wait in the queue

 

 
D. Go to the previous 

station 

 
E. Wait in the queue 

 

 

Figure 9: Possible phases in a bucket brigade system 
 

 

 
No. Go to the next station  
E. Wait in the queue. 

Yes. D. Go to the previous station. 
 

No. Q3: Is the next station empty? 

Yes. Go to the next station. Go to A.

 
Q1: Is the queue empty? 

Yes. Q2: Is the worker at the last station? No. Take the part. 
Go to A. 

B. Worker finishes 
work at the station 

 

 

Figure 10: Event B: Worker finishes work at the station 
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C. Part is taken from the worker
 

Q1: Is anybody in the queue? 
 

Yes. 
Go to E. 

No. 
Q5: Is worker at the first station? 

 

Yes. 
Go to E. 

No. 
D. Go to the previous station. 

 
 

Figure 11: Event C: Part is taken form the worker 
 
 
 

 

D. Go to the previous station 

Yes. 
Q5: Is worker at the first station? 

No. Take the part form a worker. Go to A. 
Preempted worker go to C. 

Q4: Is station empty? 

Yes. 
Take a new part. Go to A. 

No. 
Go to D. 

 

 

Figure 12: Event D: Backward phase 
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APPENDIX D 

 

 

PAIRWISE EXCHANGE HEURISTIC 

 

Input data: total production time t, number of workers n, number of stations in a serial production 

line m (including the starting buffer capacity), learning and forgetting parameters (k, p, r and a).  

The algorithm steps are as follows: 

1  generate an initial assignment;  

2  calculate the total production, BestOUT, for the initial assignment;      

3  ind= 1;  (ind is an improvement indicator)  

4  while ind = 1 

5       ind = 0 

6   for t ←  0 to t-1 

7   for i ←  0 to n-1 

8   for j ← i+1 to n-1 

9    exchange x[i][t] ↔ x[j][t]; 

10    calculate OUT;                

11    if (Out > BestOUT)   

12     set ind = 1 and record besti, bestj and best;  

13    exchange x[i][t] ↔ x[j][t]; 

14  note the value of the best solution found, BestOUT 

15  end;  
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APPENDIX E 

 

SIMULATED ANNEALING ALGORITHM 

 

Notation and Assumptions: 

• tpr  -  starting temperature; 

• α is a temperature reduction function parameter; 

• tpr = α*tpr; annealing schedule or temperature reduction function;  

• tpr > ε stopping condition and the last temperature level; 

• x[i][t] – initial solution, i=1,2,…n, t=1,2,…,p; For example vector [2 3 0 1 4 5 7 6] 

means that worker 0 does task 2, worker 1 task 3, worker 3 task 0, etc…. during the 

given period; 

• bestx[i][t] – best solution found so far; 

• N(x[i][t]) - all points in  x[i][t] neighborhood. A neighborhood is defined as N(x[i][t]) 

which are all adjacent solutions as any two workers assignments are exchanged during 

the given period; 

•  A move is defined as the exchange of two worker’s assignments; 

• OUT - initial objective function value;  

• Number of iterations at each temperature level was defined as MAX=nrep; 

• Number of iterations at each temperature level without an improvement = NOIMPROV; 

• Opt -  previously accepted solution’s objective function value; 

• Best - best objective function value obtained; 

• LocalOpt - current solution’s objective function value; 

• DELTA = LocalOpt – Opt, the difference in the current solution and the previous 

solution. 
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A pseudocode of the algorithm is presented and the C code is attached in the Appendix. The 

algorithm steps are as follows: 

Pseudocode 

Input data: total production time t, number of workers n, number of stations in a serial 

production line m (buffer capacity = 0), steady-state production rate k: 

• Calculate the total production, OUT, for the initial assignment; 

• Best = 0; 

• Opt=OUT; 

• Assign a starting temperature tpr; 

• while ( tpr > ε) 

•   while (count  <  MAX) 

•   Generate two random numbers in the range of 1 to n (workers); 

•   Generate a random number in the range of 1 to p (time period); 

•    while (count  <  MAX and noimprov < NOIMPROV); 

Exchange two randomly selected worker’s assignments during the 

selected period; 

•      Calculate OUT; 

•     LocalOpt = Out; 

•     DELTA = LocalOpt – Opt; 

•     if (DELTA < 0) 

•      Opt = LocalOpt; (accept the move) 

•       bestx[i][t] = x[i][t]; (accept the  solution for all i, t) 

•       count += 1; (increment the count) 

•        if (OPT > BEST) (remember the best solution) 

•       BEST = OPT; 

•        bestx[i][t] = x[i][t] for all i;  

•     else  

•      r = ( (double)rand() / (double)(RAND_MAX+1) ); 

•      ee = exp(-DELTA/tpr); 

•      if (r < ee) 

•       Opt = LocalOpt; (accept the move if true) 
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•       count +=1; (increment the count) 

•    else  

•         switch back two assignments; 

•    end 

•    tpr = α*t pr; (temperature reduction function) 

• end  
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APPENDIX F 

 

ADDITIONAL DATA SETS AND RESULTS 

 
Table 72: MIP Instance L1: Simulated Annealing Results 

 
SIMULATED ANNEALING RESULTS 
  Assignment  1 Assignment  2 

Seed Solution CPU Time Solution CPU Time 
87 408 2.782 408 2.768 
39 408 2.768 408 2.767 

678 408 2.767 408 2.783 
890 408 2.783 408 2.783 

3290 408 2.799 408 2.97 
7654 408 2.767 408 2.814 

543 408 2.783 408 2.783 
119 408 2.767 408 2.799 

7 408 2.783 408 2.783 
1928 408 2.768 408 2.783 

MAX 408 2.799 408 2.97 
MIN 408 2.767 408 2.767 
AVERAGE 408 2.7767 408 2.8033 
  Assignment  3 Assignment  4 

Seed Solution CPU Time Solution CPU Time 
87 408 2.783 408 2.814 
39 408 2.783 408 2.846 

678 408 2.752 408 2.845 
890 408 2.751 408 2.861 

3290 408 2.799 408 2.893 
7654 408 2.752 408 2.939 

543 408 2.783 408 2.924 
119 408 2.783 408 2.891 

7 408 2.845 408 2.813 
1928 408 2.877 408 2.969 

MAX 408 2.877 408 2.969 
MIN 408 2.751 408 2.813 
AVERAGE 408 2.7908 408 2.8795 
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Table 73: Instance L1: Workers production rates 

 
kij S1 S2 S3 S4 S5 S6 S7 S8 

W1 20 33 40 20 33 40 35 35 
W2 28 24 24 41 38 20 28 35 
W 33 21 27 27 20 41 32 36 
W4 28 29 32 21 32 31 31 34 
W5 38 37 37 32 44 21 43 23 
W6 40 26 25 21 26 37 38 22 
W7 38 26 30 37 41 39 25 32 
W8 43 33 23 28 31 21 26 23 

 
 
 
Table 74: MIP Instance L2: Simulated Annealing Results 

 
Assignment  1  Assignment  2 Assignment  3 Assignment  4 

Seed Solution 
CPU 
Time Solution

CPU 
Time Solution

CPU 
Time Solution

CPU 
Time 

87 355 3.995 352 3.966 355 4.086 355 4.056 
39 356 3.936 356 3.906 352 4.086 355 4.005 
678 355 3.976 356 3.905 355 4.016 356 4.196 
890 355 3.925 354 4.026 356 3.986 355 4.096 
3290 356 4.006 356 3.946 356 4.015 355 4.026 
7654 355 3.906 355 3.945 355 3.986 356 4.076 
543 354 3.935 356 4.086 354 4.236 354 3.976 
119 356 3.946 355 4.166 355 4.126 352 4.236 
7 356 3.916 355 4.146 356 4.076 356 3.985 

1928 356 3.975 355 4.206 355 4.026 355 4.076 
MAX 356 4.006 356 4.206 356 4.236 356 4.236 
MIN 354 3.906 352 3.905 352 3.986 352 3.976 
AVERAGE 355.2 3.9516 355 4.0298 354.8 4.0639 354.5 4.0728 
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Table 75: Instance L2: Workers production rates 

 
kij S1 S2 S3 S4 S5 S6 S7 S8 

W1 35.95 45 40.04 33.92 22.95 27.4 24.59 23.37 
W2 22.42 23.39 19.42 27.06 29.09 26.02 20.66 19.81 
W3 25.53 21.05 24.34 25.14 25.6 29.83 27.99 22.41 
W4 24.92 31.03 24.3 27.83 22.15 37.32 27.39 22.41 
W5 21.92 32.21 23.81 26.86 20.39 25.78 23.84 23.01 
W6 28.62 27.24 22.99 29.5 30.51 33.12 28.74 23.6 
W7 45 27.97 28.7 38.68 30.07 29.29 29.18 30 
W8 25.58 45 23.04 30.77 43.15 34.27 31.41 31.53 

 
 

Table 76: Instance L3: Simulated Annealing Results 

 
SIMULATED ANNEALING RESULTS         
Instance 3: 8 8 20             
tpr = 5; t = 0.99 * t; Stopping condition t > 0.01; MAX iterations = 1000 Nonimprov = 1000. 
                  
  Assignment  1 Assignment  2 Assignment  3 Assignment  4 

Seed Solution 
CPU 
Time Solution

CPU 
Time Solution

CPU 
Time Solution 

CPU 
Time 

87 594 29.457 593 29.753 594 30.581 594 29.767 
39 594 29.848 594 29.658 595 31.846 593 29.815 

678 594 30.317 594 29.674 594 30.033 595 30.095 
890 595 29.785 595 30.596 594 30.08 593 30.283 

3290 594 29.676 593 30.081 593 30.189 594 30.721 
7654 594 29.722 595 31.252 593 30.424 595 29.065 

543 595 29.973 594 30.955 594 30.486 593 29.815 
119 594 30.16 594 29.955 593 29.892 595 30.783 

7 593 29.77 593 30.143 594 29.783 593 31.033 
1928 594 29.878 593 30.018 593 29.924 594 30.439 

MAX 595 30.317 594 31.252 595 31.846 595 31.033 
MIN 593 29.457 593 29.658 593 29.783 593 29.065 
AVERAGE 593.9 29.8586 593.6 30.2085 593.7 30.3238 593.7 30.1816 
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Table 77: MINLP small data sets 

 
MINLP small instances: 3 workers, 3 stations and 8 time periods 
DATA SET 1       
k values        r values      

35.95 45 40.04  1165.2 1205.93 1733.26 
22.42 23.39 19.42  3.23 4.09 4.62 
25.53 21.05 24.34  9.33 13.09 13.26 

p values    a values     
3156.93 1183.46 1910.76  2.12 5 0 

0 0 12.37  5 0 5 
8.12 0 21.6   4.11 0 4.99 

DATA SET 2       
k values        r values      

28.62 27.24 22.99  103.08 128.22 149.19 
45 27.97 28.7  339.88 377.8 413.7 

25.58 45 23.04  623.82 647.86 692.7 
p values    a values     

158.64 240.15 0  0.9 0 0 
227.44 533.83 370.83  0 0.11 0 

1444.03 464.63 6181.6   0 4.21 0 
 
DATA SET 3       
k values        r values     

25.6 29.83 27.99  18.19 20.03 21.44 
22.15 37.32 27.39  54.08 54.18 54.22 
20.39 25.78 23.84  79.31 87.78 94.25 

p values     a values     
0 53.3 0  0 5 0 

37 0 131.57  0.29 0.61 4.47 
69.59 52.29 74.74   0.66 0.13 1.7 

DATA SET 4       
k values        r values      

33.12 28.74 23.6  261.77 316.29 336.69 
29.29 29.18 30  558.64 619.38 622.64 
34.27 31.41 31.53  901.84 914.1 927.13 

p values     a values     
336.92 511.21 595.06  4.3 0.01 0 

499 908.78 1837.9  0.28 0 0 
575.52 13165.66 1248.85   0.87 0.33 0.35 
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Table 78: Simulated Annealing Algorithm: Small Data Sets Solutions 

 
Simulated Annealing Solutions:  3 workers, 3 stations and 8 time periods 
Data Set 1: Initial Assignment 1  Data Set 3: Initial Assignment 2 

Seed Solution CPU Time  Seed Solution CPU Time 
2345 144 5.156  2345 96 3.578 
55 144 5.187  55 96 3.484 
87 144 5.203  87 96 3.422 
771 144 5.282  771 96 3.687 

3705 144 5.437  3705 96 3.563 
39 144 5.36  39 96 3.406 
68 144 5.39  68 96 3.469 
890 144 5.328  890 96 3.391 

3290 144 5.375  3290 96 3.484 
7654 144 5.157  7654 96 3.422 

MAXIMUM 144 5.437  MAXIMUM 96 3.687 
MINIMUM 144 5.156  MINIMUM 96 3.391 
AVERAGE 144 5.2875  AVERAGE 96 3.4906 
         
Data Set 2: Initial Assignment 2  Data Set 4: Initial Assignment 2 

Seed Solution CPU Time  Seed Solution CPU Time 
2345 150 5.062  2345 144 3.625 
55 150 5  55 144 3.61 
87 150 5.078  87 144 3.64 
771 150 5.016  771 144 3.625 

3705 150 5.219  3705 144 3.641 
39 150 5.25  39 144 3.609 
68 150 5.281  68 144 3.625 
890 150 5.031  890 144 3.625 

3290 150 5.063  3290 144 3.625 
7654 150 4.937  7654 144 3.578 

MAXIMUM 150 5.281  MAXIMUM 144 3.641 
MINIMUM 150 4.937  MINIMUM 144 3.578 
AVERAGE 150 5.0937  AVERAGE 144 3.6203 
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Table 79: MINLP Large Instance L1 

 
MINLP Large Instance 1: 8 workers, 8 stations and 20 time periods    

aij         
worker/station 1 2 3 4 5 6 7 8 

1 2.12 5 0 0 5 5 1.44 0 
2 5 0 5 0.68 5 1.43 0 5 
3 4.11 0 4.99 0 0 5 0 1.32 
4 1.81 1 0 0 0.29 0.61 4.47 0 
5 0 2.27 0.07 0.94 0.66 0.13 1.7 0.92 
6 0.9 0 0 2.56 5 4.3 0.01 0 
7 0 0.11 0 1.05 0 0.28 0 0 
8 0 4.21 0 0.03 2.44 0.87 0.33 0.35 
pij         

worker/station 1 2 3 4 5 6 7 8 
1 3156.93 1183.46 1910.76 3704.23 0 0 0 0 
2 0 0 12.37 28.37 29.84 28.87 0 37.86 
3 8.12 0 21.6 0 0 53.3 0 9.92 
4 27.03 293.97 11.54 186.47 37 0 131.57 98.8 
5 78.68 22.72 38.17 6.08 69.59 52.29 74.74 70.37 
6 158.64 240.15 0 321.95 1014.69 336.92 511.21 595.06 
7 227.44 533.83 370.83 256.43 575.45 499 908.78 1837.9 
8 1444.03 464.63 6181.6 619.71 853.67 575.52 13165.66 1248.85 
rij         

worker/station 1 2 3 4 5 6 7 8 
1 1165.2 1205.93 1733.26 1839.29 0.15 1.3 2.62 2.92 
2 3.23 4.09 4.62 6.31 6.4 6.83 8.07 8.3 
3 9.33 13.09 13.26 16.23 18.19 20.03 21.44 23.65 
4 26.84 37.56 40.5 51.98 54.08 54.18 54.22 60.8 
5 65.29 69.63 70.96 77.51 79.31 87.78 94.25 101.85 
6 103.08 128.22 149.19 184 221.38 261.77 316.29 336.69 
7 339.88 377.8 413.7 498.77 499.6 558.64 619.38 622.64 
8 623.82 647.86 692.7 722.73 813.89 901.84 914.1 927.13 
kij         

worker/station 1 2 3 4 5 6 7 8 
1 35.95 45 40.04 33.92 22.95 27.4 24.59 23.37 
2 22.42 23.39 19.42 27.06 29.09 26.02 20.66 19.81 
3 25.53 21.05 24.34 25.14 25.6 29.83 27.99 22.41 
4 24.92 31.03 24.3 27.83 22.15 37.32 27.39 22.41 
5 21.92 32.21 23.81 26.86 20.39 25.78 23.84 23.01 
6 28.62 27.24 22.99 29.5 30.51 33.12 28.74 23.6 
7 45 27.97 28.7 38.68 30.07 29.29 29.18 30 
8 25.58 45 23.04 30.77 43.15 34.27 31.41 31.53 
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Table 80: MINLP: Simulated Annealing Results for L1 

 
Initial Assignment 1 

Seed Solution CPU Time 
2345 409 671.91 
55 409 675.00 
87 409 675.86 
771 409 683.16 

3705 410 691.44 
39 409 676.78 
68 409 675.92 
890 410 670.12 

3290 409 674.89 
7654 407 675.47 

MAXIMUM 410 691.44 
MINIMUM 407 670.12 
AVERAGE 409 677.055 

 
 

Table 81: MINLP: Simulated Annealing Results for L2 

 
 Initial Assignment 2 

Seed Solution CPU Time 
2345 408 676.24 
55 410 684.11 
87 410 685.23 
771 412 685.69 

3705 410 683.94 
39 410 680.64 
68 410 681.92 
890 410 679.03 

3290 412 684.58 
7654 410 684.03 

MAXIMUM 412 685.69 
MINIMUM 408 676.24 
AVERAGE 410 682.54 
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