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Profilin-1 (Pfn1 - a ubiquitously expressed actin-binding protein) levels are significantly 

downregulated in various invasive adenocarcinomas including breast cancer. Although Pfn1 has 

been shown to be required for motility for most normal cells, breast cancer cells and normal 

human mammary epithelial cells exhibit a hypermotile phenotype upon Pfn1 depletion, and re-

expression of Pfn1 in breast cancer cells decreases their migration. The traditionally conceived 

pro-migratory function of Pfn1 through its relatively well-studied interactions with actin and 

polyproline ligands does not provide guidance to explain this context-specific effect of Pfn1 on 

cell migration. The overall goal of this study is to reveal molecular mechanisms underlying the 

hypermotile phenotype of breast cancer cells as a result of Pfn1 downregulation. We first show 

that loss of Pfn1 expression increases motility of breast cancer cells by enhancing targeting of 

Ena(enabled)/VASP (vasodilator stimulated phosphoprotein) family of actin-binding proteins to 

the leading edge, a feature that is also reproducible in other cells. We further demonstrate that 

Ena/VASP targeting to the leading edge is mediated through the action of lamellipodin (Lpd - a 

membrane anchoring protein) and Pfn1 negatively regulates membrane targeting of Lpd. 

Limiting Lpd expression impairs motility of Pfn1-deficient breast cancer cells, thereby 

demonstrating loss of Pfn1 augments breast cancer cell motility through enhanced membrane 

recruitment of VASP/Lpd complex. Subsequent rescue experiments with various ligand-binding 

deficient mutants of Pfn1, we further demonstrate that Pfn1 inhibits breast cancer cell motility 
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mainly by its phosphoinositide interaction through negative regulation of Lpd/VASP targeting to 

the leading edge. Membrane targeting of Lpd in Pfn1-deficient breast cancer cells critically 

depends on the availability of D3-phosphorylated phosphoinositides, and consistent with this 

observation, we demonstrate that loss of Pfn1 expression significantly increases PI(3,4)P2 

presentation at the leading edge. Collectively, these findings identify a novel inhibitory 

mechanism of Pfn1 on breast cancer cell motility by regulating membrane availability of 

PI(3,4)P2 and docking of Lpd, and this involves Pfn1’s phosphoinositide interaction. This is in 

contrast to conventionally thought Pfn1’s regulation of cell motility primarily through its 

interactions with actin and polyproline ligands. 
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1.0  INTRODUCTION 

1.1 BREAST CANCER AND ITS METASTASIS 

Breast cancer, the most commonly diagnosed non-skin cancer in women, is currently the second 

leading cause of cancer-related deaths in the United States with an estimated 40,610 deaths 

anticipated in the year 2009 [Welch et al., 2000; Cancer facts and Figures 2009, the American 

Cancer Society]. The vast majority of these cancer deaths are due to metastasis of invasive breast 

carcinomas to several non-adjacent organs (bone, liver, lung, and kidney) in the body resulting in 

cancer death. When breast cancer cells are confined within the basement membrane barrier of 

mammary tissue (non-invasive tumor), the patient survival rate exceeds 90% because benign 

tumors can be removed by surgery [Sainsbury et al., 2000]. However, once breast tumor cells 

metastasize, especially to the internal organs and the brain, morbidity and mortality rate 

increases drastically. A significant percentage of advanced breast cancer patients suffer from 

bone metastasis, which results in the resorption of bone, and eventually leads to osteoporosis, 

spinal cord compression, and fracture of long bones. As a result, the quality of life of these 

patients becomes severely comprised. Thus, elucidation of underlying cellular mechanisms of 

cancer metastasis and identification of molecular targets that inhibit tumor metastasis are 

critical for developing effective anti-metastatic therapeutics for breast cancer patients. Such 

therapeutic interventions should have a remarkable impact on not only controlling numerous 
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metastatic cancers but also improving the survival rate and the quality of life of both early stage 

and advanced breast cancer patients. 

 

 

Figure 1: A schematic illustration of tumor metastasis 

 
Chiang et al. stated that “Metastasis is the end product of an evolutionary process in 

which diverse interactions between cancer cells and their microenvironment yield alterations 

that allow these cells to transcend their programmed behavior” [Chiang et al., 2008]. Metastatic 

breast cancer cells from the primary tumor at the luminal epithelial lineage of terminal duct 

lobular units of the breast initiate by genetic alterations, thereby, these tumor cells are able to 

acquire new functions for metastatic potentials which facilitate their propagation to distant 

regions [Petersen et al., 2001; Chiang et al., 2008]. Distant metastasis of tumor is a multi-stage 
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process (schematically represented in Fig 1) and involves numerous signaling pathways. 

Metastasis of breast cancer is critically dependent on neovascularization (angiogenesis) in the 

tumor which provides a route for distant metastasis [Schneider et al., 2005].  To metastasize, 

aggressive malignant cells, which have lost the ability to adhere with their adjacent cells, 

dissociate from the localized primary tumor site and penetrate the surrounding connective tissue 

by breaking the dense basement membrane [BASAL LAMINA DEGRADATION AND 

INVASION]. Next, these disseminated tumor cells secrete factors that promote vascular 

endothelial cell contraction which causes retraction of the cell-cell junctions and impairs 

endothelial cell barrier function by creating gaps between endothelial cells so that cells can enter 

blood microvessels (hematogenous dissemination) or the lymphatic routes (lymphatic 

dissemination) [INTRAVASATION]. These cancer cells are transported through circulation to 

distant secondary sites where they may be trapped and subsequently leave the vasculature to 

enter the secondary target site [EXTRAVASATION]. Then, tumor cells invade to normal 

surrounding tissue and form dormant micrometastases. Eventually some of micrometastases 

proliferate and form solid macroscopic metastases in the secondary target organ [Enger et al., 

2000; Wyckoff et al., 2000; Lambrechts et al., 2004]. One of the essential steps of the tumor 

metastasis to other sites is cell invasion to adjacent connective matrix, which requires active cell 

migration. At the molecular level, cancer cell migration is correlated with deregulated actin 

cytoskeleton.  

 



 4 

1.2 DEREGULATION OF ACTIN CYTOSKELETON SIGNALING IN CANCER 

CELL MIGRATION 

Cell motility (schematically represented in Figure 2), a fundamental aspect of cancer invasion 

and metastasis, requires an asymmetry of biophysical and mechanical cell processes in a cyclic 

nature [Yamaguchi et al., 2005; Feldner et al., 2002; Lauffenburger et al., 1996]. Thus, dissecting 

molecular mechanisms of cell migration is an indispensable first step in understanding the 

behavior of cancer cells, thereby, preventing or limiting the invasion and metastasis of cancer. 

 

 

Figure 2: A schematic illustration of cell migration [modified from (Ridley et al., 2003)] 
 



 5 

In order for cell migration to occur, actin cytoskeletal reorganization in cells is a 

prerequisite to protrude their leading edge and to generate contractility that directed to net cell 

movement. Actin dynamics in motile cells is regulated by a large number of actin-binding 

proteins (ABPs) including those engaged in G-actin sequestering (thymosin β4), nucleation of 

actin filaments (Arp2/3, WASP, formin), elongation of actin filaments (Ena/VASP, formin), 

nucleotide exchange on G-actin and shuttling of G-actin to barbed ends of growing actin 

filaments (profilin), capping (capZ), severing/depolymerization (actin depolymerizing factor 

(ADF)/cofilin, gelsolin), and cross-linking/stabilization (filamin, fascin, cortactin) [Pollard et al., 

2003; Roy et al., 2008]. Disruption of actin cytoskeleton is a characteristic of malignant cells, 

and this correlates with altered expression and/or activity of wide-range of ABPs [Roy et al., 

2008; Clark et al., 2000; Wang et al., 1996].  

To migrate/invade to connective tissues and infiltrate into blood vessels, cells are initially 

required to polarize by migration-promoting molecules or microenvironments that include 

motogenic agents (growth factors such as EGF (epidermal), PDGF (platelet-derived), and VEGF 

(vascular endothelial)), chemokines (chemotactic cytokines that include four subfamilies; C, CC, 

CXC, and CX3C, (C: a cysteine; X: any amino-acid residue)  [Rottman et al., 1999]), cytokines 

(secreted molecules that signal through G-protein-linked receptors), and extracellular matrix 

(ECM) [Huttenlocher et al., 2005]. In response to migration stimuli, cells subsequently extend 

their lamellipodia (flat, sheet-like membrane network of actin filaments) or filopodia (thin, spike-

like cytoplasmic projection) for leading membrane protrusions in a given direction due to 

enhanced actin polymerization at the cell’s front. Once the migration path is defined, the 

protrusive machinery for facilitating movement assembles with regard to the directional 

migration. Membrane modifying enzymes that are associated with  the inner membrane surface 
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(example: phospholipase C-γ (PLCγ) and phosphatidylinositol 3-kinase (PI3K)) are activated at 

the downstream of various receptor tyrosine kinases (RTKs) such as a induce actin cytoskeletal 

reorganizations by altering membrane docking phospholipid-binding ABPs (profilin, cofilin, 

capping protein, and gelsolin) [Roy et al., 2008; Rheenen et al, 2007]. These ABPs in turn 

regulate actin meshwork at the cell’s leading edge by modulating actin turnover [Pollard et al, 

2003; Chen et al., 1996; Janmey et al., 1994; Allen et al., 2003; Goldschmidt-Clermont et al., 

1991; Bae et al., 2006]. 

Next, cells create new focal adhesions to ligands (collagen, fibronectin, laminin, and 

fibrinogen) in the ECM (the basal lamina, connecting fibers, connective tissue) or to molecules 

(cadherins) on the surface of adjacent cells through the binding of transmembrane receptors 

(integrins; a family of αβ heterodimers) which are linked with intracellular molecules (actinin, 

talin, vinculin, and filamin) that bind intracellular actin filaments inside. All of this acts to 

stabilize the dominant protruding lamellipodia at the leading edge of the cell membrane [Ridley 

et al., 2003; Sheetz et al., 1999; Roy et al., 2008]. In addition to ECM components, integrins 

attach to a cytoplasmic complex such as focal adhesion kinases (FAK) and Src family kinases to 

mediate adhesion to the actin cytoskeleton. 

The cell-substratum attachment is followed by de-adhesion and retraction at the rear end 

of the cell, but the leading edge stays attached to the ECM. These final processes require myosin 

II (an actin-based motor protein in eukaryotic non-muscle cells)-based contraction of actin 

filaments which generate a sufficient amount of force/tension, to provide forward movement of 

the cell [Sheetz et al., 1999]. Movement over an extended distance occurs through many 

repetitions of this cycle in a directionally-persistent manner. The forward protrusion by actin 

polymerization establishes the directionality and protrusive force of the cell, even in the absence 
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of a signaling gradient [Sheetz et al., 1999; Roy et al., 2008]. Overall, acquisition of the invasive 

phenotype by malignant cells is correlated with active reorganization of the actin cytoskeleton by 

deregulated expression of various ABPs [Feldner et al., 2002; Pawlak et al., 1999]. The 

malignant phenotype of tumor cells often can be reversed by experimental restoration of ABP 

expression, signifying that misregulation of ABPs could contribute directly to malignancy 

[Nikolopoulos et al., 2000; Tanaka et al., 1995]. Consistent with these findings, reduced 

expression of profilin-1 (Pfn1- an important actin regulatory protein) has been reported in 

various invasive adenocarcinomas including breast cancer cell. Whether there is any fundamental 

link between reduced Pfn1 expression and increased aggressiveness of various adenocarcinoma 

remains to be determined. 

 

1.3 PROFILIN-1 BIOCHEMISTRY 

Presently, four different mammalian profilin genes have been identified: Pfn1 (a member of 

profilin that is ubiquitously expressed in all cell types except skeleton muscle tissue [Witke et al., 

1998]), Pfn2 (has two splice variants [Pfn2a and Pfn2b] which are mainly expressed in the cells 

of  neural tissues [Witke et al., 1998; Giesemann et al., 1999]), Pfn3 (expression restricted to t 

kidney and testis) and Pfn4 (expression limited to testis) [Lambrechts et al., 2000; Hu et al., 

2001; Obermann et al., 2005]). From here, only Pfn1 will be reviewed and discussed in my thesis 

because of its implications in cancer. Pfn1 is capable of interacting mainly with three classes of 

ligands including actin monomers, many proline-rich proteins and various polyphosphoinositides 

[Fedorov et al., 1994; Metzler et al., 1994; Chaudhary et al., 1998; Mahoney et al., 1999]. Pfn1 

was initially reported as a G-actin sequestering protein [Karlsson et al., 1977].  
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Figure 3: Pfn1’s role in actin polymerization [modified from (Witke et al., 2004)] 
 

However, subsequent studies revealed that one of the major roles of Pfn1 is to promote actin 

polymerization in cells (schematically represented in Figure 3) by 1) accelerating the nucleotide 

exchange rate of ADP-to-ATP on G-actin, and 2) transporting ATP-G-actin to the free and fast-

growing barbed ends of actin filaments [Karlsson et al., 1977; Pantaloni et al., 1993; Kang et al., 

1999; Schluter et al., 1997; Bubb et al., 2003; Goldschmidt-Clermont et al., 1990; Witke et al., 

2004]. 

Besides actin, Pfn1 also associates with a number of proline-rich proteins (PLP) that 

control actin assembly by promoting either nucleation and/or elongation of actin filaments at the 

leading edge, including proteins belonging to the Ena (enabled)/VASP (vasodilator stimulated 

phosphoprotein) [Ferron et al., 2007], N-WASP (Neural Wiskott Aldrich syndrome protein; the 

ubiquitously expressed member of WASP [Suetsugu et al., 1998]), WAVE (WASP family 

verprolin-homologous protein [Miki et al., 1998]), and diaphanous [Miki et al., 1998; Watanabe 

et al., 1999] protein families. Limiting Pfn1 expression resulting in slightly decreased total F-

actin level in various cells is consistent with this actin-regulatory function of Pfn1 [Ding et al., 

2006; Zou et al., 2007; Ding et al., 2009] . It has been proposed that these extracellularly-

activated PLP may potentially act as molecular scaffolds to spatially recruit the Pfn1-actin 
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complex to sites of actin assembly at the leading edge during active cell migration [Holt et al., 

2001]. 

In addition to actin and PLP ligands (proteins containing polyproline domains), Pfn1 also 

binds to plasma membrane most likely through its interactions with various phosphoinositides 

(PPIs) including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), phosphatidylinositol-3,4-

bisphosphate (PI(3,4)P2; generated by dephosphorylation of PIP3 by PI-5-phosphatase) and 

phosphatidylinositol-3,4,5-triphosphate (PIP3; generated by the phosphorylation of PI(4,5)P2 by 

PI3K) [Lu et al., 1996], potentiating it as a mediator between the cell membrane and 

cytoskeleton [Machesky et al., 1993]. PI(3,4)P2 and PIP3 are generated by activation of 

phosphoinositide 3-kinase (PI3K) and have a greater binding affinity to profilin than PI(4,5)P2 

[Lu et al., 1996]. Mammalian Pfn1 has two PPI binding regions, one largely overlapping with its 

actin-binding site and the other partially overlapping with its PLP binding site. It has been 

suggested that Pfn1 binding to PPI mostly inhibits its interaction with actin [Skare et al., 2002; 

Lassing et al., 1985]. 

Among the different ligand-binding abilities of Pfn1, the actin and PLPs interactions have 

been most heavily investigated in the literature, mainly in the context of cytoskeletal regulation. 

However, very little known about Pfn1’s interaction with membrane PPIs which has been almost 

exclusively investigated in vitro using pure protein-phospholipid mixture [Goldschmidt-

Clermont et al., 1990] and therefore, physiological and pathological implications of Pfn1’s 

interaction with membrane PPIs has not been explored in vivo. Signaling events downstream of 

PPIs play a major role in cell motility. However, whether Pfn1’s interactions with various 

membrane phospholipids have any modulatory function on cell migration has not been 

investigated in depth. Although it remains to be investigated, based on Pfn1’s ability to inhibit 
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PLC-mediated PI(4,5)P2 hydrolysis in vitro [Goldschmidt-Clermont et al., 1990] and a recent 

study by our group directly showing for the first time that significant suppression of PIP3 

generation in Pfn1-overexpressed breast cancer cells [Das et al., 2009], one could envision that 

Pfn1 may regulate membrane PPI metabolism by posing steric hindrance to some docking 

proteins and metabolic enzymes of PPIs through competition for lipid binding and in turn affect 

cell motility. Since these in vitro (using purified proteins and lipid micelles) and in vivo (using 

Pfn1 overexpression system in breast cancer cells) studies could not thoroughly show Pfn1’s 

interaction with specific PPI cellular processes in detail, Pfn1’s role in PPI metabolism and its 

functional significance needs to be revisited in a cellular context.    

   

1.4 PROFILIN-1’S ROLE IN NORMAL AND CANCER CELL MIGRATION 

Numerous previous studies identify Pfn1 as an important actin-binding protein in the overall 

balance of actin polymerization in cells. However, its exact role in cell migration has not been 

well understood until recently. The first direct evidence of Pfn1’s role in cell migration is from a 

study on Dictyostelium amebae mutants deficient in both Pfn1 and Pfn2, which demonstrated 

considerably impaired cytokinesis and cell motility [Haugwitz et al., 1994]. In addition, 

Drosophila harboring Pfn1-mutants exhibited developmental defects [Verheyen et al., 1994]. 

Profilin is necessary for motor axon outgrowth in the Drosophila Embryo [Wills et al., 1999] and 

C. elegans requires Pfn1 function for embryogenesis [Velarde et al., 2007]. Dependence of actin-

driven intracellular propulsion of bacterial pathogens on Pfn1 (Loisel et al., 1999; Mimuro et al., 

2000), impaired membrane protrusion of HUVECs (Human vascular endothelial cells) as a result 
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of Pfn1 downregulation [Ding et al., 2006], and very recently, induction of lamellipodia by Pfn1 

in a growth-factor insensitive mechanism [Syriani et al., 2008] all point to a key role of Pfn1’s 

function in driving membrane protrusion during most normal cell migration. In addition, studies 

by our group showed that both actin and PLP interactions of Pfn1 contribute to membrane 

protrusion and overall cell migration at least for vascular endothelial cell lines [Ding et al., 2006; 

Ding et al., 2009]. Collectively, these experimental evidences suggest that Pfn1 is a critical 

prerequisite molecule for normal cell migration and development. 

Interestingly however, significant reduction of Pfn1 expression has been shown in 

various types of highly invasive adenocarcinoma (a cancer originating in glandular epithelial 

tissue including breast, pancreatic, hepatic, and gastric) when compared to their non-tumorigenic 

counterparts [Gronborg et al., 2006; Janke et al., 2000; Wu et al., 2006; Oien et al., 2003]. A 

moderate overexpression of Pfn1 in CAL51 (epithelial, human breast carcinoma) and MDA-231 

breast cancer cell lines significantly inhibits its tumorigenic potential in nude mice [Janke et al., 

2000; Wittenmayer et al., 2004; Roy et al., 2004; Zou et al., 2007] suggesting that Pfn1 could be 

a tumor-suppressor protein as well. These experimental data are also consistent with 

immunohistological findings of graded Pfn1 downregulation with increased cancer grade [Janke 

et al., 2000]. Similarly, retinoic acid-induced suppression of hepatocarcinoma cell migration can 

be reversed by downregulating Pfn1 [Wu et al., 2006].  Previous studies from our lab show that 

loss of Pfn1 expression results in increased motility of both normal human mammary epithelial 

cells (HMEC) and MDA-231 breast cancer cells [Zou et al., 2007]. Conversely, restoring Pfn1 

levels by overexpression significantly impairs the aggressive phenotype of breast cancer cells 

(Roy et al., 2004; Zou et al., 2007). Collectively, these findings raises a possibility that Pfn1 

downregulation could lead to increased breast cancer invasion and metastasis in vivo. However, 
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given the plethora of evidence demonstrating importance of Pfn1 in driving actin polymerization 

at the leading edge and hence playing a critical role in cell migration, the existing literature fails 

to explain how loss of Pfn1 expression might contribute to enhanced motility of breast cancer 

cells at a mechanistic level. The overall goal of my research is to elucidate molecular 

mechanisms underlying the hypermotile phenotype of breast cancer cells as a result of Pfn1 

downregulation. 
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2.0  HYPOTHESIS AND SPECIFIC AIMS 

Given the generally considered pro-migratory role of Pfn1 mediated primarily through its actin 

and polyproline interactions, the existing studies cannot intuitively elucidate how loss of Pfn1 

expression augments carcinoma cell motility. My preliminary studies demonstrate that loss of 

Pfn1 expression enhances lamellipodial targeting of Ena/VASP proteins in several different cell 

lines including HUVEC, HMEC and MDA-231cells [Bae et al., 2009]. It has been recently 

shown that fish keratocytes (an extremely fast migrating epithelial cell type) migrate faster and in 

a smooth, gliding fashion when Ena/VASP family proteins are enriched at their leading edge 

[Lacayo et al., 2007]. Leading edge targeting of Ena/VASP has also been shown to result in 

faster membrane protrusion [Bear et al., 2002]. Recent studies further show that Ena/VASP 

proteins play a major role in chemotactic invasion of breast cancer cells [Philippar et al., 2008]. 

Lamellipodin (Lpd), a member of MRL (Mig10/ Rap1-interacting adaptor molecule / 

lamellipodin) family of actin-binding proteins which contain a pH domain with binding 

specificity PI(3,4)P2, has been identified as one of the potential linker for targeting Ena/VASP 

close to the plasma membrane at the leading edge. Herein, I postulate that limiting Pfn1 

expression in breast cancer cells enhances D3-phosphoinositide (such as PI(3,4)P2) 

presentation at the leading edge of migrating cells, allows increased access of lamellipodin to 

the plasma membrane and creates a hypermotile phenotype.  
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To test the overall hypothesis, I proposed the following aims:  

Specific Aim1: To determine whether VASP plays a role in the hypermotile response of 

breast cancer cells induced by loss of Profilin-1 expression.  

 

Specific Aim2: To examine whether Profilin-1 inhibits breast cancer cell motility by 

regulating D3-phosphoinositide availability for lamellipodin targeting to the membrane. 
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3.0  MATERIALS AND METHODS 

3.1 ANTIBODIES AND REAGENTS 

Polyclonal Pfn1 and GAPDH antibodies were purchased from Cytoskeleton (Denver, CO- in 

some experiments, a different polyclonal Pfn1 antibody that was kindly provided by Dr. Sally 

Zigmond of the University of Pennsylvania was used) and Abd Serotec (Raleigh, NC), 

respectively. Polyclonal GFP and monoclonal VASP antibodies was obtained from Pharmingen 

(San Diego, CA). Polyclonal Lpd antibody was purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA- in some experiments, a different polyclonal Lpd antibody that was supplied by 

Dr. Frank Gertler of the Massachusetts Institute of Technology was used). Polyclonal cofilin 

antibody was purchased from Abcam (Cambridge, MA). Monoclonal PI(3,4)P2 antibody was 

obtained from Echelon Biosciences (Salt Lake City, Utah). Polyclonal EGFR, AKT and 

phospho-AKT (S473) antibodies are products of Cell Signaling Technology (Danver, MA). 

Polyclonal PDGFR-β antibody was kindly provided by Dr. Paul Monga (University of 

Pittsburgh). Monoclonal phosphotyrosine and phospho-EGFR (Y1173) antibodies were obtained 

from Upstate Biotechnology (Billerica, Massachusetts). All cell culture reagents are products of 

Invitrogen (Carlsbad, CA). PI3-kinase inhibitor LY294002 was purchased from Calbiochem 

(Carlsbad, CA). Cytochalasin-D was purchased from Cytoskeleton, Inc. (Denver, CO). Plasmids 

encoding Ena/VASP sequestration (FP4-mito) and corresponding control (AP4-mito) constructs 
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were generated in Dr. Gertler’s laboratory as previously described [Bear et al., 2000; Bear et al., 

2002] and subsequently subcloned in mCherry vector. Expression vectors for GFP-PTEN and 

GFP-PH-AKT were generously provided by Drs. Pier Pandolfi (Beth Israel Deaconess Medical 

Center) and Tamas Balla (National Institute of Health), respectively. The sequences of Control 

and Pfn1 siRNAs have been previously described [Bae et al., 2009]. A pool of Lpd siRNAs was 

obtained from Santa Cruz Biotechnology (Santa Cruz, CA). 

3.2 CELL CULTURE AND TRANSFECTION 

MDA-231 breast cancer cells were cultured in EMEM media (supplemented with 10% FBS, 

sodium pyruvate and antibiotics (Invitrogen - Carlsbad, CA). HMEC and HUVEC (source: 

Cambrex, Walkersville, MD) were cultured in a complete growth media supplied by the 

manufacturer. All Pfn1 constructs were generated by site-directed mutagenesis and rendered 

Pfn1-siRNA-resistant by introducing silent mutation in the siRNA targeting region without 

changing their peptide encoding (targeting region of Pfn1-siRNA has been previously described 

[Bae et al., 2009]). MDA-231 cells stably transfected with various Pfn1 constructs (using 

lipofectamine 2000 reagent (Invitrogen- Carlsbad, CA) were maintained in complete growth 

media supplemented with 500 μg/ml G418. The working concentration for various siRNAs were: 

Pfn1 (50 nM for MDA-231, 100 nM for HUVEC and HMEC) and Lpd (100 nM). SiRNA 

transfection was performed using reagents commercially available from Dharmacon (Lafayette, 

CO) according to the manufacturer’s instruction and all silencing-based experiments were 

performed 72 hours after transfection.  
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3.3 IMMUNOSTAINING 

Cells were washed with DPBS, fixed with 3.7% formaldehyde for 15 minutes, permeabilized 

with 0.5% Triton X-100 for 15 minutes and then blocked with 10% goat-serum for 1 hour at 

room temperature. After incubating with the primary antibodies (VASP and/or Lpd at 1:100 

dilution; Pfn1 antibody at 1:50 dilution) for 1 hour at room temperature, cells were washed two 

times with DPBS containing 0.02% tween and 2 times with DPBS and then incubated with 

secondary antibodies (source: Jackson Immunoresearch, West Grove, PA) with or without alexa-

488 phalloidin (Invitrogen) for an additional hour at room temperature. Stained cells were 

washed two times with DPBS containing 0.02% tween, two times with DPBS, and then once 

with distilled water before mounting on slides for imaging using a 60X oil-immersion objective 

on an Olympus IX71 inverted microscope. Quantitative fluorescence analyses of images were 

performed by Metamorph or ImageJ. Specifically, for VASP and Lpd quantification at the 

leading edge, images were first background subtracted (the average intensity of cell-free area on 

the coverslips was used for background correction), and the average fluorescence intensity at the 

very leading edge (identified by phalloidin counterstaining) was then calculated based on 15-20 

line scan measurements across the lamellipodia. 

3.4 PI(3,4)P2 IMMUNOSTAINING AND QUANTIFICATION 

Cells were serum-starved for 30-40 hours and then stimulated with either EGF or PDGF 

(working concentration -100 ng/ml) for 30 minutes before performing PI(3,4)P2 immunostaining 

according to a previously described protocol [Yip et al., 2008]. Briefly, cells were fixed and 
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permeabilized with 3.7% paraformaldehyde and 0.1% glutaraldehyde in 0.15 mg/ml saponin 

solution for 1 hour at 37°C. Cells were incubated with anti-PI(3,4)P2 antibody diluted in PBS-5% 

BSA (1:200) for 1 hour, after which they were washed 4 times with PBS, incubated with 

rhodamine-conjugated secondary antibody for 45 minutes and washed again 4 times in PBS 

before mounting for microscopy. Images were acquired with a 60X objective on an Olympus 

Fluoview 1000 inverted confocal microscope and were background subtracted before 

quantitative fluorescence intensity analyses. For PI(3,4)P2 quantification at the leading edge, the 

average fluorescence intensity was then be quantitated based on 10 line scan measurements 

across the lamellipodia. These values were then normalized with respect to the average 

fluorescence value calculated for control-siRNA treated cells in serum-starved condition. 

3.5 PROTEIN EXTRACTION AND IMMUNOBLOTTING 

Total cell lysate (TCL) was prepared by extracting cells with warm 1X sample buffer or 

modified RIPA buffer (50 mM Tris-HCl - pH 7.5, 150 mM NaCl, 1% NP-40, 0.25% sodium  

deoxycholate, 0.3% SDS, 2 mM EDTA) supplemented with 50mM NaF, 1mM sodium 

pervanadate, and protease inhibitors (10 µg/ml of leupeptin, aprotinin, pepstatin and 1 mM 

phenylmethylsulfonyl fluoride). For sub-cellular fractionation analyses of GFP-Pfn1, cells were 

washed twice with cold PBS and extracted with 0.5% saponin in hypotonic buffer (10mM 

HEPES, pH7.9, 10mM KCl, 0.1mM EDTA, 1mM DTE with protease and phosphatase 

inhibitors) for 10 minutes to obtain the cytosolic fraction. Further extraction with 1% Triton-

X100 in hypotonic buffer for 15 min followed by clarification of the extract at 18000g for 15 

minutes yielded the membrane fraction. For immunoblotting, protein concentration was first 
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determined by a coomassie-based protein assay kit. Proteins separated with SDS-PAGE were 

transferred onto a nitrocellulose membrane. After blocking the membrane with the appropriate 

blocking solution in TBST for 1 hour at room temperature, immunoblotting was performed by 

overnight incubation at 4℃ with the appropriate primary antibodies. The antibodies were used at 

the following concentrations: GAPDH (1:2000), Pfn1 (1:500), VASP (1:1000), GFP (1:1000), 

cofilin (1:3000), Lpd (1:1000), AKT (1:500), phospho-AKT (1:500), EGFR (1:1000), phospho-

EGFR (1:200), PDGFR-β (1:200), and pY-PDGFR (1:1000). After washing 5 times with TBST, 

the blot was incubated with the appropriate secondary antibody, washed 4 times with TBST and 

finally once with distilled H2O before performing chemiluminescence for visualizing protein 

bands.  

3.6 FLUORESCENCE BASED F-ACTIN QUANTIFICATION 

Cellular level of F-actin was quantitated using a rhodamine-phalloidin binding assay as 

previously described [Diakonova et al., 2002]. Cells (3.6x105) were seeded in 2-3 replicates in 

the wells of a collagen-coated 6-well plate. After 4 hours of incubation, cells were fixed with 

3.7% formaldehyde for 15 min, permeabilized with 0.5% Triton X-100, and then co-stained with 

rhodamine-phalloidin and DAPI (for normalization of cell number) for 1 hour at room 

temperature. After washing cells three times with PBS, rhodamine-phalloidin was extracted with 

500 μl of methanol for 1 hour in the dark; cells were finally extracted with 300 μl of lysis buffer. 

Fluorescence readings of rhodamine (excitation 540 nm, emission 575 nm) and DAPI (excitation 

358 nm, emission 461 nm) were acquired using a spectrofluorometer and the ratio of rhodamine 

to DAPI fluorescence was calculated. 
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3.7 TIME-LAPSE CELL MOTILITY AND KYMOGRAPH ASSAYS 

Cells, sparsely plated overnight on collagen-coated 35-mm culture dish, were imaged for 2-3 h at 

a 1-min time-interval between the successive image frames. For all time-lapse recordings, proper 

environmental conditions (37°C/pH 7.4) were maintained by placing the culture dish in a 

microincubator. Cell trajectory was constructed by frame-by-frame analyses of the centroid 

positions (x, y) of cell-nuclei (assumed to be the representations of cell-bodies). The change in 

the direction of centroid movement between successive image frames (i-1, i, i+1) was calculated 

as ∆θ i= ∆θi, i+1 - ∆θi, i-1 (∆θi, i+1= cos-1(xi+1 – xi)/sqrt ((xi+1 – xi)2) + ((yi+1 – yi)2)) and from these 

values, the standard deviation of ∆θ was computed. For kymography, additional time-lapse 

movies were recorded for 10-20 min at a 5-sec time-interval. Kymographs marking the 

beginning to the end of protrusion were constructed based on 1-pixel wide (0.3 µm) lines drawn 

at multiple locations (3-4) across the protruding membrane. Membrane fluctuation <4 pixels (1.2 

µm) was disregraded for quantitative analyses. All images were acquired and analyzed using 

Metamorph and NIH ImageJ softwares, respectively. 

3.8 STATISTICS AND DATA REPRESENTATION 

All statistical tests were performed with ANOVA followed by Neuman-Keuls post-hoc test for 

multiple comparisons whenever applicable, and a p value less than 0.05 was considered to be 
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statistically significant. In most cases, experimental data were represented as box and whisker 

plots where dot represents the mean, middle lines of box indicates median, top of the box 

indicates 75th percentile, bottom of the box measures 25th percentile and the two whiskers 

indicate the 10th and 90th percentiles, respectively. 
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4.0  ROLE OF ENA/VASP IN HYPERMOTILE RESPONSE OF BREAST CANCER 

CELL 

Several lines of experimental evidence including motility defect of Pfn1,2-null Dictyostelium 

amebae [Haugwitz et al., 1994], Pfn1-mutant Drosophila [Verheyen et al., 1994], and Pfn1-

deficient human vascular endothelial cells [Ding et al., 2006] all point to a key role of Pfn1 in 

normal cell migration. Interestingly however, silencing Pfn1 expression leads to increased 

motility and invasiveness of breast cancer cell lines and conversely, overexpression of Pfn1 

dramatically suppresses the aggressive phenotype of breast cancer cells [Roy et al., 2004; Zou et 

al., 2007]. Taken together, these findings not only suggest that Pfn1’s role in cell migration is 

complex and contextual, but also make Pfn1 an interesting and highly relevant molecule for 

further investigation in pathological context. Specifically, how reduced Pfn1 expression might 

contribute to hyper-motile phenotype of breast cancer cells needs to be addressed. 

 

Specific Aim1: To determine whether VASP plays a role in the hypermotile response of 

breast cancer cells induced by loss of Profilin-1 expression. 

 

This chapter has been published in the following publication: 

Bae YH, Ding Z, Zou L, Wells A, Gertler FB and Roy P. (2009). Loss of profilin-1 expression 
enhances breast cancer cell motility by Ena/VASP proteins. J Cell Physiol 219: 354-364. 
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4.1 RESULTS 

4.1.1 Loss Pfn1 expression leads to faster random motility of MDA-231 breast cancer cells 

In our previous study, MDA-231, a highly invasive and metastatic breast cancer cell line, was 

found to be more motile in both wound-healing and transwell-based migration assays when Pfn1 

expression was silenced [Zou et al., 2007]. However, neither of these two migration assays 

allows for detailed investigation of cell motility and particularly in wound-healing assay, the 

speed of cell migration can also be influenced by cell-cell contact. Therefore, we examined the 

effect of Pfn1 knockdown on the motility of MDA-231 cells at the single-cell level to identify 

possible mechanisms underlying of the resulting increased motility of breast cancer cells. 

Specifically, we conducted time-lapse imaging of individual MDA-231 cells which were 

transiently transfected with either a pool of non-targeting control siRNAs or our previously 

validated siRNA targeting a single region of Pfn1-mRNA [Ding et al., 2006; Zou et al., 2007]. 

As an additional control, cells were also subjected to mock transfection. Immunoblotting of total 

cell lysate (TCL) extracted 72 h after siRNA transfection showed strong Pfn1 bands for either of 

the two control groups of cells, but virtually undetectable signal for Pfn1-siRNA treated MDA-

231 cells and HMEC (Fig. 4A). There was also no detectable change in Pfn1 expression between 

mock and control-siRNA transfection groups. These results demonstrate that we are able to 

achieve very close to 100% transfection efficiency and near complete suppression of Pfn1 

expression in MDA-231 cells and HMEC by siRNA treatment. Figure 4B shows the actual 
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trajectories of different groups of cells obtained from 2-h time-lapse recordings (data pooled 

from 3 experiments). From cell trajectory analyses, we found that the average speed of migration 

of Pfn1-deficient MDA-231 cells (~1.0 µm/min) was 1.9-fold higher than that of mock-

transfected (~0.52 µm/min) and control-siRNA treated cells (~0.53 µm/min); there was no 

significant difference in the average speed of cell migration between our mock and control-

siRNA treatment groups thus confirming the specificity of our findings (Fig. 4C). As an 

additional validation of our results, we repeated these time-lapse motility experiments with a set 

of pooled siRNAs that targets different regions of Pfn1-mRNA and we found close to 1.5-fold 

increase in the average speed of MDA-231 cell migration as a result of Pfn1 downregulation 

(data not shown). A 20% difference in the average speed of migration between single (~1.0 

µm/min) and pooled (~0.8 µm/min) Pfn1 siRNA-treated cells could be due to marginally better 

silencing of Pfn1 achieved with a single siRNA treatment (unpublished observation). 

Since breast cancer cells are of epithelial origin, we next analyzed the effect of Pfn1 

depletion on the random motility of normal HMEC which express Pfn1 at higher levels than 

breast cancer cell lines including MDA-231 cells [Janke et al., 2000; Zou et al., 2007] and also 

show better chemotactic migration in transwell assay in the absence of Pfn1 expression as 

demonstrated in our previous study [Zou et al., 2007]. Similar to our observation in MDA-231 

cells, depletion of Pfn1 in HMEC led to a 2.6-fold increase in the average speed of cell migration 

in time-lapse assay (Fig. 4C). Overall, these time-lapse motility observations for HMEC and 

MDA-231 cells are consistent with our previously reported wound-healing and transwell 

migration data [Zou et al., 2007]. 
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Figure 4: Silencing Pfn1 expression leads to faster motility of MDA-231 breast cancer cells 
and HMEC in time-lapse assay. A) Pfn1 immunoblot of MDA-231 cell and HMEC lysates 72 
h after siRNA transfection (the GAPDH blot serves as the loading control). B) Trajectories of 
individual MDA-231 cells of different experimental groups in time-lapse motility assay (data 
pooled from three independent experiments). C) A box and whisker plot representing the relative 
comparison of the average speed of migration between different treatment groups for MDA-231 
cells and HMEC. All results are normalized to the average value calculated for the control-
siRNA treated cells and “n” indicates the number of cells analyzed in each treatment group. The 
asterisk marks represent P < 0.05. 
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We also asked whether loss of Pfn1 expression affects the directionality of MDA-231 cell 

movement. From the sequence of images of individual cells for different experimental groups 

(shown in Fig. 5A), it became apparent that Pfn1-depleted cells change direction of migration 

less frequently than either of the two control groups of cells. To quantitatively represent this 

feature, we first scored the change in direction of centroid movement (∆θ) as a function of time 

from which we computed the standard deviation of ∆θ (a higher value indicates larger fluctuation 

in the directionality of movement). As summarized in the form of a box and whisker plot in 

Figure 5B, a somewhat smaller standard deviation of ∆θ of Pfn1-sRNA treated cells compared to 

either of the two control groups of cells suggests that Pfn1-depletion moderately enhances the 

directional persistence of motility of MDA-231 cells. 
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Figure 5: Silencing Pfn1expression enhances directional persistence of MDA-231 cell 
migration. A) Sequences of images from a set of representative time-lapse experiments of 
MDA-231 cells conducted for 2 h (arrow- direction of protrusion; scale- 10 µm). B) Relative 
comparison of the standard deviation of ∆θ (a measure of the change in the direction of centroid 
movement) during motility between different treatment groups of MDA-231 cells. The asterisk 
mark represents P < 0.05. 
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4.1.2 Effect of Pfn1 depletion on lamellipodial protrusion 

Lamellipodial protrusion initiates and defines the direction of cell movement. Among its 

different functions, Pfn1’s role has been best described in the context of membrane protrusion 

during cell migration. We therefore analyzed the leading edge movement of MDA-231 cells for 

different transfection conditions from kymographs of 1-pixel (0.3 µm) wide lines that were 

drawn normal to the leading edge and in the direction of protrusion. Figure 6A depicts a set of 

representative kymographs of the protrusion events of MDA-231 cells for different siRNA 

transfection conditions where leading edge traces (marked by the arrows) show cycles of typical 

lamellipodial protrusion and withdrawal (resemble saw-tooth waveforms as outlined by the 

boxes). Quantitative analyses of kymographs showed that the actual protrusion velocity (this is 

equal to the slope of the ascending portion of a saw-tooth waveform) of Pfn1-depleted MDA-231 

cells (=3.5 µm/min) is almost twofold less than that of control siRNA-treated cells (=7.2 

µm/min; Fig. 6B). However, since MDA-231 cells actually exhibit a gain in overall migration 

speed after Pfn1 depletion, further explanation was needed. During cell motility, a protruding 

lamellipodium often undergoes partial or complete retraction (also true for MDA-231 cells as 

shown in Fig. 6A) and therefore it is the net membrane protrusion that correlates with the 

efficacy of whole cell movement. When we analyzed the rate of net membrane protrusion of 

MDA-231 cells, we found that Pfn1-deficient cells have a significantly greater net protrusion 

velocity (=1.0 µm/min) compared to control siRNA treated cells (=0.6 µm/min; Fig. 6C). To 

explain this observation, we further examined the lamellipodial withdrawal events which showed 

that on an average, withdrawal of protrusion was more frequent in control (1/min) than in Pfn1-

depleted MDA-231 cells (0.5/min; Fig. 6D). Also, the magnitude of lamellipodial withdrawal 

significantly decreases when Pfn1 expression is suppressed (Fig. 6E). 
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Figure 6: Loss of Pfn1 expression leads to slower but more stable lamellipodial protrusion 
in MDA-231 cells. A) Kymographs representing lamellipodial dynamics of MDA-231 cells with 
or without Pfn1 depletion (leading edge traces are marked by the black arrows and the boxes 
outlining the saw-tooth waveforms represent typical lamellipodial protrusion and withdrawal 
events). B) A box and whisker plots comparing the actual protrusion velocities between control 
and Pfn1-siRNA treated MDA-231 cells (“n” represents the total number of protrusion events 
characterized by the saw-tooth waveforms). C) A box and whisker plot comparing the net 
protrusion velocity of MDA-231 cells with or without Pfn1 depletion (“n” indicates the number 
of kymographs analyzed). D-E)  Box and whisker plots comparing the frequency (part D) and 
average distance (part E) of lamellipodial withdrawal (i.e., the descending part of the saw-tooth 
waveforms) between control and Pfn1-siRNA treated MDA-231cells (“n” in parts D and E 
represent the total number of kymographs and withdrawal events, respectively). These data are 
based on analyses of 30 cells for each transfection condition pooled from three independent 
experiments. The asterisk marks represent P < 0.05. 
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4.1.3 Silencing Pfn1 expression enhances VASP localization at the leading edge 

Stable lamellipodial protrusion is one of the characteristic features of smooth and gliding type of 

cell movement. It has been recently shown that fish keratocytes (an extremely fast migrating 

epithelial cell type) migrate faster and in a smooth, gliding fashion when Ena/VASP family 

proteins are enriched at their leading edge [Lacayo et al., 2007]. Leading edge targeting of 

Ena/VASP has also been shown to result in faster membrane protrusion [Bear et al., 2002]. We 

therefore asked whether sub-cellular distribution of Ena/VASP in MDA-231 cells is altered by 

Pfn1-depletion. We focused on VASP because it is the most well-characterized member of the 

protein family. Since VASP is recruited to the leading edge in a protrusion-dependent manner, 

we performed costaining of VASP and phalloidin (to identify the leading edge of lamellipodia) 

of MDA-231 cells under different siRNA transfection conditions. Only those cells which formed 

prominent lamellipodia (identified from phalloidin-stained images) were selected for comparison 

of VASP distribution between the different treatment groups (Fig. 7A). VASP was localized at 

the leading edge of lamellipodia (arrowheads), focal adhesions (thick arrows) and occasionally, 

in dorsal ruffles (thin arrow). VASP signal at the very leading edge of lamellipodia was found to 

be conspicuously higher in Pfn1-depleted cells. Fluorescence intensity analyses of line scans 

across the leading edge showed that the average signal intensity of VASP at the very leading 

edge is almost fourfold higher in Pfn1-depleted cells than in control-siRNA treated cells (Fig. 

7B). Immunoblot analyses confirmed that silencing Pfn1 expression does not alter the overall 

expression level of VASP in MDA-231 cells (Fig. 7C). Since VASP binds to barbed ends of 

actin filaments [Bear et al., 2002] and previous studies have shown that cofilin, an F-actin 

severing protein, plays a key role in generating barbed ends of actin filaments in breast cancer 

cells [Chan et al., 2000], we also compared the expression level of cofilin between control and 
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Pfn1-depleted cells. Immunoblot data showed that cofilin expression in MDA-231 cells is not 

altered by Pfn1 depletion [Fig. 7C]. It is, however, noteworthy here that Pfn1 depletion results in 

a slight reduction in the total actin level in MDA-231 cells as demonstrated previously by our 

group [Zou et al., 2007]. Finally, to determine whether stronger VASP localization at the leading 

edge as a result of Pfn1 depletion is a reproducible feature in other cell types, we performed 

similar immunostaining experiments with HUVEC and normal HMEC. Interestingly, both cell 

lines also showed stronger VASP signal at the leading edge in the absence of Pfn1 expression 

therefore substantiating our findings (Fig. 7D). 
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Figure 7: Silencing Pfn1 expression enhances leading edge localization of VASP. A) VASP 
(red) and phalloidin (green) costaining of MDA-231 cells show stronger leading edge 
(arrowhead) localization of VASP in Pfn1-deficient cells (VASP localization at focal adhesion 
and ruffles are marked by thick and thin arrows, respectively; scale- 10 µm). Magnified forms of 
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the insets (outlined by the boxes) are displayed in the right most parts. B) A bar graph comparing 
the relative intensity of VASP staining at the lamellipodial edge between control and Pfn1-
depleted MDA-231 cells (a.u., arbitrary units; data summarized from two independent 
experiments and the asterisk mark denotes P < 0.05). C) Silencing Pfn1 does not alter the total 
expression level of VASP and cofilin in MDA-231 cells (GAPDH blot serves as the loading 
control). D) VASP immunostaining of HMEC and HUVEC show similar VASP enhancement at 
the leading edge as a result of Pfn1 depletion. Scale bars in all images represent 20 µm. 
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4.1.4 Ena/VASP is responsible for hypermotile phenotype of Pfn1-deficient MDA-231 

cells 

Inhibition of Ena/VASP function leads to cell-type specific changes in cell migration. Leading 

edge targeting of VASP correlates with faster migration of fish keratocytes [Lacayo et al., 2007], 

but in the case of fibroblasts, inhibition or deletion of Ena/VASP results in increased motility 

[Bear et al., 2000]. To determine whether lamellipodial targeting of VASP is responsible for 

creating hyper-motile phenotype of Pfn1-deficient MDA231 cells, we adopted a previously 

described strategy to inhibit Ena/VASP function by expressing Ena-VASP homology-1 (EVH1) 

binding motifs of ActA fused to a mitochondrial membrane anchor (EGFP-FPPPP-mito: referred 

to as “FP4-mito”). This particular construct effectively depletes all Ena/VASP proteins from 

their normal sites of function and sequesters them on mitochondria [Bear et al., 2000]. A 

similarly structured construct deficient in binding to Ena/VASP proteins (EGFP-APPPP-mito: 

referred to as “AP4-mito”) was used as a control. To demonstrate the efficacy of this construct in 

our cell system, we transfected Pfn1-siRNA treated MDA-231 cells with either AP4-mito or 

FP4-mito construct and then examined VASP localization by immunostaining (Fig. 8). As 

expected, VASP distribution was not affected by expression of the AP4-mito construct: Pfn1-

siRNA transfected cells bearing this construct still displayed strong VASP staining at their 

leading edges. However, cells expressing FP4-mito showed no VASP signal at the leading edge 

or in focal adhesions and instead exhibited the expected mitochondrial sequestration of VASP 

(specificity and efficacy of these two constructs were also confirmed for control-siRNA treated 

cells in a similar manner- data not shown). 
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Figure 8: Effects of expression of EGFP-FP4/AP4-mito on VASP localization in Pfn1-
deficient MDA-231 cells. GFP (green) images of Pfn1-siRNA treated cells show typical 
mitochondrial localization of AP4-mito and FP4-mito fusion proteins. Corresponding VASP 
immunostaining (red) images show that VASP’s localization to the leading edge and focal 
adhesion are affected only by FP4-mito expression. Merged images reveal complete 
colocalization of VASP with FP4-mito (appears yellow) but not with AP4-mito (scale- 20 μm). 
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Next, we performed time-lapse imaging of control and Pfn1-siRNA bearing MDA-231 

cells following transfection with either AP4-mito or FP4-mito construct and compared the 

migration speed of EGFP-negative (only carries siRNA) and EGFP-positive (expresses either 

AP4-mito or FP4-mito against siRNA background) cells. Figure 9A shows that for either of the 

siRNA treatment groups, there was no significant difference in the average speed of migration 

between EGFP-negative and the corresponding AP4-mito bearing cells. Expression of FP4-mito 

reduced the average speed of migration of control siRNA treated cells by a nominal 15% 

although this difference was not statistically significant. The average speed of AP4-mito 

expressing Pfn1-depleted cells was 50% higher compared to the corresponding control siRNA-

treated cells. The FP4-mito construct, however, reduced the speed of Pfn1-deficient cells by 

nearly 65%; the average speed of these cells was in fact 40% less than that of FP4-mito bearing 

control siRNA treated cells. Overall these data suggest that Ena/VASP compensates for the loss 

of Pfn1 and further augments the overall motility of MDA-231 cells when Pfn1 expression is 

silenced. 

Since Ena/VASP sequestration in Pfn1-deficient cells leads to a dramatic inhibition in 

motility, we speculated that lamellipodial protrusion of these cells might be compromised. To 

confirm this, we studied the leading edge dynamics of Pfn1-depleted MDA-231 cells with or 

without Ena/VASP sequestration. We found that the kymograph patterns of EGFP-negative and 

AP4-mito expressing cells were very similar; however FP4-mito expressing cells exhibited 

significant reduction in protrusion (as judged from a near-flat profile- Fig. 9B). Data analyses 

showed that Ena/VASP inhibition by FP4-mito resulted in nearly 70% reduction in the net 

protrusion velocity of Pfn1-defiicient MDA-231 cells (Fig. 9C), suggesting that lamellipodial 

targeting of Ena/VASP plays a major role in the protrusive activity of these cells. 
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Figure 9: Mitochondrial sequestration of Ena/VASP dramatically impairs the motility and 
lamellipodial protrusion of Pfn1-deficient MDA-231cells. A) A box-whisker plot summarizes 
the relative speed of control and Pfn1-siRNA treated cells with (FP4-mito) or without (either 
AP4-mito or EGFP-negative) mitochondrial sequestration of Ena/VASP (all data are normalized 
to AP-mito expressing control siRNA treated cells; “n” represents the number of cells analyzed 
for each group pooled from three independent 2-h long time-lapse experiments). The single and 
double asterisks represent P < 0.05 and P < 0.01, respectively. B) Representative kymographs 
showing leading edge traces (white arrows) of Pfn1-depleted MDA-231 cells with or without 
Ena/VASP inhibition. C) A box and whisker plot comparing the net protrusion velocities 
between the different treatment groups of Pfn1-deficient cells (data normalized to AP4-mito 
expressing cells and “n” indicates the number of cells in each group pooled from three-
independent experiments; *P < 0.05). 
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Ena/VASP proteins bind to the barbed ends of actin filaments and support actin 

polymerization in the presence of actin filament capping proteins [Barzik et al., 2005; Pasic et 

al., 2008]. This has been proposed to be the mechanism underlying Ena/VASP-driven membrane 

protrusion. Leading edge localization of VASP in fibroblasts and keratocytes requires free 

barbed ends of growing actin filaments [Bear et al., 2002; Lacayo et al., 2007]. In our case, when 

we treated Pfn1-depleted MDA-231 cells with 100 nM cytochalasin D (CD; under these 

conditions CD works mainly as a pharmacological barbed-end capper without causing significant 

depolymerization of actin filaments [Bear et al., 2002]) for 30 min, VASP became completely 

delocalized from the leading edge while treatment with carrier DMSO had not effect at all (Fig. 

10). Phalloidin counterstaining confirmed that 100 nM CD treatment did not cause any major 

depolymerization of actin filaments; also the characteristic fan-shaped lamellipodial structure 

(arrow) was seen to be preserved. Antagonistic action of CD on lamellipodial targeting of VASP 

is consistent with VASP’s binding to the barbed ends of actin filaments as expected. 
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Figure 10: Lamellipodial targeting of VASP in Pfn1-deficient MDA-231 cells is sensitive to 
low dose of cytochalasin-D (CD) treatment. VASP immunostaining images of Pfn1-deficient 
cells show that VASP is completely delocalized from the leading edge (arrow) when exposed to 
100 nM CD for 30 minutes while diluent DMSO treatment has no effect. F-actin counterstaining 
by phalloidin show that 100 nM CD does not lead to any major depolymerization of actin 
filaments or disruption of lamellipodia (scale - 20 μm). 
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4.2 DISCUSSION 

Gain-of-motility of certain types of adenocarcinoma cells induced by loss of Pfn1 expression has 

been previously reported by us and others [Wu et al., 2006; Zou et al., 2007]; but, the 

mechanisms underlying this effect have not been delineated yet. This has been challenging 

particularly since Pfn1 has been traditionally viewed as a molecule required for cell migration. 

This study was the first attempt to identify a possible mechanism of how reduced Pfn1 

expression could actually promote migration of breast cancer cells. 

Our time-lapse data revealed that silencing Pfn1 expression leads to faster motility of 

both MDA-231 breast cancer cells and normal HMEC. This is in contrast to the behavior of 

HUVEC which exhibit significantly reduced motility after Pfn1 depletion as shown by our group 

in a previous study [Ding et al., 2006]. To better understand the physical basis for cell-specific 

difference in the overall motility response resulting from Pfn1 depletion, we studied the 

lamellipodial dynamics of HUVEC [Bae et al., 2009] and MDA-231 cells and found that in both 

cell types, the actual protrusion velocity is reduced when Pfn1 expression is suppressed. This is 

the first direct demonstration of the effect of Pfn1 depletion on the actual protrusion velocity of 

cells, and is consistent with previously shown slower intracellular propulsion of bacterial 

pathogens in the absence of Pfn1 [Loisel et al., 1999; Mimuro et al., 2000]. Interestingly, Pfn1-

deficient MDA-231 cells showed less withdrawal of protrusion, both in terms of its frequency 

and magnitude, compared to control cells which eventually resulted in a more effective net 

protrusion and an overall increase in motility. 

We found a striking enrichment of VASP at the very leading edge of MDA-231 cells as a 

consequence of Pfn1 depletion, and this finding was also reproducible in both HMEC and 

HUVEC. We further showed that specifically Pfn1-deficient but not control MDA-231 cells 
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become severely impaired in motility when Ena/VASP function is inhibited by mitochondrial 

sequestration. These data imply that (1) Pfn1 by itself still acts as a pro-migratory molecule in 

MDA-231 cells as literature has demonstrated in other cell types (Haugwitz et al., 1994; Ding et 

al., 2006), and (2) it is the enhanced Ena/VASP localization at the leading edge which rescues 

and further augments the overall motility of MDA-231 cells when Pfn1 expression is silenced. 

Although we have only studied VASP localization in this study, the other two Ena/VASP 

proteins, Mena and EVL have overlapping functions and localization with VASP. Therefore, it is 

likely that Mena also contributes to the hypermotile phenotype of Pfn1-deficient cells as it is 

expressed robustly in MDA-231 cells (unpublished observation in Dr. Gertler laboratory). The 

mitochondrial sequestering construct used in this study is effective against all three members of 

Ena/VASP protein family; whether there are any differences in the contributions of Mena or 

VASP to the phenotype of Pfn1-deficient cells remains to be determined. 

Ena/VASP proteins have a well-established role in promoting membrane protrusion 

[Rottner et al., 1999]. Previous studies showed that Ena/VASP increases the speed of 

intracellular actin-driven propulsion of Listeria monocytogenes [Laurent et al., 1999; Geese et 

al., 2002] and leading edge targeting of VASP correlates with faster protrusion in cells [Bear et 

al., 2002; Lacayo et al., 2007]. Mitochondrial sequestration of Ena/VASP leading to reduced 

membrane protrusion in Pfn1-deficient MDA-231 cells is consistent with those findings. 

Ena/VASP can bind Pfn1-actin complexes in an orientation favorable for transfer of monomer to 

growing barbed ends. Ena/VASP is known to facilitate actin polymerization by antagonizing the 

action of F-actin capping proteins [Bear et al., 2002]; the anti-capping activity does not require 

Pfn, but is enhanced by the presence of Pfn [Barzik et al., 2005]. In the present case, leading 

edge targeting of VASP facilitates lamellipodial protrusion in a near absence of Pfn1 expression. 
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In a previous study, we failed to detect Pfn2 expression in MDA-231 cells at least by 

immunoblotting [Zou et al., 2007]. Although it is possible that very low levels of residual Pfn1 

or Pfn2 enhance VASP-dependent actin polymerization, the contribution should be minimal. 

Therefore, it is likely that VASP drives membrane protrusion via Pfn-independent anti-capping 

action. 

The effect of Ena/VASP perturbation on the overall cell motility is cell-type dependent. 

This apparent discrepancy between different model systems is not completely surprising. 

Although the actual protrusion velocity increases when VASP is targeted to the leading edge, the 

overall persistence of protrusion and the net cell movement decrease in the case of slow-moving 

fibroblasts. This is because VASP-mediated protrusions in fibroblasts tend to be unstable and are 

prone to withdrawal [Bear et al., 2002]. The lamellipodial dynamics of rapidly migrating cell 

types such as fish epithelial keratocytes show much less oscillatory behavior when compared to 

fibroblasts, and therefore, the overall motility response of these cells to leading edge targeting of 

VASP can be quite different. Interestingly, our data showed that protrusions generated by Pfn1-

deficient MDA-231 cells are less susceptible to withdrawal therefore implying enhanced stability 

of these protrusions, and this is likely to be a result of better protrusion-adhesion coupling.  

Although the underlying mechanism is not clear, one simple explanation could be that since 

Pfn1-silenced cells protrude slower, these protrusions may have a better chance of engagement to 

the underlying substrate via adhesion receptors. 

A key question remaining to be investigated in detail is how absence of Pfn1 expression 

leads to VASP enrichment at the leading edge. One possibility is that both control and Pfn1-

depleted cells have comparable efficiency of targeting VASP to the membrane during protrusion. 

Since Pfn1-depleted cells show evidence of less withdrawal of protrusion, it is possible that 
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VASP-rich protruding membrane is better sustained and represented in fixed-cell preparations, as 

in immunostaining experiments. However, a comparable efficiency of targeting VASP to the 

leading edge is unlikely to result in a fourfold difference in membrane staining of VASP between 

control and Pfn1-depleted MDA-231 cells. An alternative explanation that we favor is that 

silencing Pfn1 expression actually increases the membrane targeting efficiency of VASP. Since a 

deletion mutant of VASP lacking its polyproline domain (a region that binds to Pfn1) targets 

normally to the leading edge [Loureiro et al., 2002], Pfn1 is unlikely to have a direct effect on 

Ena/VASP targeting to the leading edge. Therefore, we think loss of Pfn1 expression enhances 

leading edge targeting of VASP through an indirect mechanism, possibly involving Lpd as to be 

examined in specific Aim 2.  

In conclusion, we have now identified a possible mechanism of how loss of expression of 

a pro-migratory molecule like Pfn1 can result in increased migration of breast cancer cells 

through enhanced lamellipodial targeting of Ena/VASP proteins. We will need to determine the 

generalizability of our findings by expanding our studies to other breast cancer cell lines and 

other types of adenocarcinoma that have reduced Pfn1 expression compared to their normal 

counterparts. 
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5.0  PHOSPHOINOSITIDE-INTERACTION MEDIATED INHIBITORY ACTION OF 

PROFILIN-1 ON BREAST CANCER CELL MIGRATION 

A key cellular function downstream of membrane D3-PPI signaling events is the regulation of 

actin cytoskeletal dynamics which is critical for overall cell motility [Blume-Jensen et al., 2001]. 

During tumor progression, this cellular function of D3-PPI becomes dysregulated. Among the 

D3-PPI groups, PIP3 has been mostly studied in Dictyostelium and neutrophil model systems in 

the context of directional sensing and motility during chemotaxis. However, a major gap in the 

literature is the lack of understanding of specific signaling functions of membrane PI(3,4)P2 

(another byproduct of PI3K signaling) in cancer cell motility. Recently, lamellipodin (Lpd; an 

adaptor protein which binds to and recruits Ena/VASP family protein to the leading edge), has 

been identified and noted that it binds to pH domain of PI(3,4)P2 with high selectivity [Krause et 

al., 2004]. Ena/VASP localization at the leading edge associates with faster and in a smooth, 

gliding fashion of migration in fish keratocytes [Lacayo et al., 2007]. One of the possible links 

between D3-PPI signaling and regulation of actin dynamics at the leading edge of migrating cells 

is Lpd-mediated VASP recruitment and this needs to be investigated. 

 

Specific Aim2: To examine whether Pfn1 inhibits breast cancer cell motility by 

regulating D3-phosphoinositide availability for lamellipodin targeting to the membrane. 
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Some of the contents in this chapter have been or will be published in the following 

publications: 

Bae YH, Ding Z, Zou L, Wells A, Gertler F, Roy P. (2009). Loss of profilin-1 expression 
enhances breast cancer cell motility by Ena/VASP proteins. J Cell Physiol 219: 354-364. 
 

Bae YH, Ding Z, Das T, Wells A, Gertler FB, Roy P. Membrane PI(3,4)P2 availability, regulated 
by profilin-1, impacts breast cancer cell motility secondary to lamellipodin binding. 
[Under Review: 02/2010] 
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5.1 RESULTS 

5.1.1 Pfn1 inhibits breast cancer cell motility by negatively regulating VASP/Lpd 

targeting to the leading edge 

Lpd, a protein that contains a PH (pleckstrin-homology) domain with affinity for PI(3,4)P2, has 

been identified as one of the potential linkers for targeting Ena/VASP close to the plasma 

membrane at the leading edge and at least for fibroblasts, Lpd has been shown to play an 

important role in membrane protrusion [Krause et al., 2004]. Lpd staining of Pfn1-siRNA treated 

MDA-231 cells showed its localization at the lamellipodial tip (arrows) and ruffles (arrowheads- 

Fig. 11A). There was also a very strong colocalization of Lpd and VASP at the leading edge 

(Fig. 11A). As shown previously in fibroblasts [Krause et al., 2004], Lpd targeting to the leading 

edge in our cells is not VASP-dependent since expressing FP4-mito that sequesters Ena/VASP to 

mitochondria still preserves strong leading edge staining of Lpd (Fig. 11B). To determine 

whether Lpd plays a role in VASP targeting to the leading edge in Pfn1-depleted MDA-231 cells 

we transfected MDA-231 cells with Pfn1-siRNA either alone or together with Lpd-siRNA. We 

found that co-suppression of Lpd and Pfn1 expression in MDA-231 cells by dual siRNA 

treatment (Fig. 11C) results in markedly reduced VASP distribution at the leading edge (Fig. 

11D) thus confirming critical requirement of Lpd for lamellipodial targeting of VASP in our cell 

line.  
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Figure 11: VASP is colocalized with Lpd at the leading edge in Pfn1-deficient cells. A) 
Immunostaining shows complete colocalization of VASP (red) and Lpd(green) at the leading 
edge (arrows) in Pfn1 depleted MDA-231 cells (appears yellow in the merged image). B) Pfn1-
silenced MDA-231 cells expressing FP4-mito (green) maintain strong leading edge targeting of 
Lpd (red). The merged image in the right most part shows no overlapping of these two 
fluorescence signals. C) Immunoblot data showing dual suppression of Lpd and Pfn1 in MDA-
231 cells by siRNA cotransfection (GAPDH blot - loading control). D) VASP and Lpd 
costaining of MDA-231 cells transfected with Pfn1 siRNA either alone or together with Lpd 
siRNA. 
 



 48 

Next, we observed that silencing Pfn1 leads to a significant 4-fold increase in Lpd 

distribution at the leading edge in MDA-231 cells, and conversely, MDA-231 cells stably 

overexpressing GFP-Pfn1 about two-fold [Smith et al., 2010] present 25% less Lpd content at the 

lamellipodial tip when compared to the corresponding control GFP expressers (Fig. 12A and Fig. 

12B). Note that loss of Pfn1 expression has no effect on the overall expression of Lpd in MDA-

231 cells (Fig. 12C). We additionally found that Lpd enrichment at the leading edge induced by 

silencing of Pfn1 is reproducible in at least two other cell types including normal HMEC and 

HUVEC (human umbilical vein endothelial) (Fig. 12D). Interestingly, while the HMEC are 

similarly hypermotile upon Pfn1 depletion, [Bae et al, 2009], the HUVEC become hypomotile 

[Ding et al., 2006]. Thus, Pfn1-dependent regulation of Lpd localization appears be a generalized 

phenomenon. 
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Figure 12: Pfn1 is a negative regulator of lamellipodial targeting of Lpd. A) Lpd 
immunostaining data showing the effects of silencing and stable overexpression of Pfn1 in 
parental MDA-231 cells on Lpd localization at the leading edge (arrows). B) A bar graph 
comparing the relative intensity of Lpd staining at the lamellipodial edge in MDA-231 cells after 
silencing (grey bars) and overexpression (black bars) of Pfn1 ( ‘n’ - number of cells analyzed; **: 
p<0.01; *: p<0.05). C) Immunoblot showing comparable Lpd level between control and Pfn1-
siRNA treated MDA-231 cells (GAPDH blot - loading control). D) Lpd immunostaining 
showing Lpd enrichment at the lamellipodial tip in response to Pfn1-siRNA treatment in both 
normal HMEC and HUVEC (arrow) (scale bar - 20μm). 
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We next asked whether Lpd plays a role in the hypermotile response of Pfn1-depleted 

MDA-231 cells. Previously, Lpd knockdown was shown to cause impaired lamellipodia 

formation and reduce velocity of protrusion in fibroblasts [Krause et al, 2004]. When we 

compared morphology of control and Lpd-siRNA treated MDA-231 cells on tissue-culture 

substrate without any ECM coating, we also found that limiting Lpd expression somewhat 

decreases the overall flare of lamellipodial protrusion (as judged by the narrowing of lamellipod 

in Lpd knockdown cells) (Fig. 13A). Phenotypic change induced by Lpd suppression appears to 

be more prominent when Pfn1 expression is simultaneously downregulated as many cells in this 

group even fail to form proper lamellipodia (Fig. 13A). Interestingly, when the same groups of 

cells are seeded on collagen-coated substrate (mimics the substrate condition for motility 

experiments), Lpd knockdown alone does not appear to have any significant morphological 

consequence in MDA-231 cells as judged by normal appearing lamellipodia in both control and 

Lpd-siRNA treated cells, and only a small difference (~8%) in the fraction of cells with 

lamellipodia formation between the two groups (Fig. 13B). In the same experimental setting, 

lamellipodia formation in Pfn1-deficient cells, however, appears to be still significantly inhibited 

by Lpd knockdown as judged by a significant 31% lower fraction of cells forming lamellipodia 

(Fig. 13B). Consistent with these phenotypic distinctions, time-lapse migration assay showed 

that limiting Lpd expression does not have any significant effect on the motility of parental 

MDA-231 cells, but drastically reduces the average speed of Pfn1-deficient cells (Fig. 13C). 

These data demonstrate that hypermotile response of MDA-231 cells induced by Pfn1-

downregulation is Lpd-mediated. Differential sensitivity between control vs Pfn1 knockdown 

cells to Lpd depletion could be due to possible compensatory action by other Pfn1-binding Lpd-

homolog proteins as elaborated in the discussion. Given that lamellipodia formation/protrusion is 



 51 

driven largely by actin polymerization, we next examined the effect of Lpd depletion on actin 

cytsokeletal structure in Pfn1-defiicient cells by phalloidin staining. We found that Lpd 

knockdown results in significantly reduced F-actin content at the leading edge (as judged by the 

intensity of phalloidin staining – Fig. 13D) and a concomitant ~3 fold decrease in the net 

protrusion velocity of Pfn1-deficient cells (Fig. 13E). Note that similar to MDA-231 cells, the 

average speed of Pfn1-deficient HMEC is also reduced by 40% when Lpd expression is 

suppressed (Fig. 13F). 
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Figure 13: Lpd plays a key role in the hypermotile response of Pfn1-deficient MDA-231 
cells. A) Phase-contrast micrographs of MDA-231 cells plated on tissue culture substrate without 
ECM coating following transfection of various siRNAs indicated in the figure (scale bar - 50μm). 
B) Phase contrast micrographs of MDA-231 cells plated on collagen-coated tissue-culture 
substrate show defect in lamellipodia formation (marked by asterisks) only in cells with co-
suppression of Lpd and Pfn1 expression (mean ± sd values for % of cells with lamellipodia 
formation for the various siRNA-treated groups are indicated below; data summarized from 2-3 
independent expts with >125 cells analyzed in each group). Scale bar - 50μm. C) A box and 
whisker plot comparing the average speed of migration of control and Pfn1-siRNA treated 
MDA-231 cells with or without limiting Lpd expression. D) Phalloidin staining reveals marked 
reduction in F-actin content at the leading edge (arrows) in Pfn1-depleted cells when Lpd 
expression is downregulated (scale bar - 20μm). E) A box and whisker plot comparing the net 
protrusion rate of Pfn1-depleted MDA-231 cells with or without Lpd suppression. F) A box and 
whisker plot comparing the average migration speed of Pfn1-depleted HMEC with or without 
Lpd suppression (n’ indicates the number of cells analyzed in each treatment group and ** 
denotes p<0.01). 
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5.1.2 Pfn1 exerts its inhibitory action on breast cancer cell motility predominantly 

through its phosphoinositide interaction 

In order to obtain insight on how reduced Pfn1 level increases breast cancer cell motility, we first 

asked which among the three major ligand interactions of Pfn1 (i.e actin, polyproline or 

phosphoinositide) predominantly inhibits breast cancer cell migration. To address this question, 

we stably expressed either GFP-Pfn1 (fully functional form of Pfn1) or various previously 

characterized ligand-binding deficient mutants of Pfn1 in MDA-231 (a highly aggressive breast 

cancer cell line which expresses significantly lower Pfn1 compared to normal HMEC and 

display dramatically enhanced motility upon Pfn1 depletion [Zou et al., 2007; Bae et al., 2009]) 

cells. Note that fusing GFP to the N-terminus of Pfn1 as done in our case preserves the 

biochemical functions and cellular localization of the fusion protein similar to that of 

endogenous Pfn1 [Wittenmayer et al., 2000]. The various GFP-tagged Pfn1 mutants we 

expressed are: H119E-Pfn1 as actin-binding mutant (it has a ~30 fold reduction in actin-binding 

compared to wild-type Pfn1 but retains normal polyproline binding), H133S-Pfn1 as polyproline-

binding  mutant (it has normal actin and PI(4,5)P2-binding but 50-fold less polyproline-binding 

compared to wild-type) and R88L-Pfn1 as PPI-binding mutant (it has normal polyproline binding 

but is substantially defective in PI(4,5)P2 binding (less than 30% of the wild-type value)) [Zou et 

al., 2007; Suetsugu et al., 1998; Sohn et al., 1995; Wittenmayer et al., 2004; Ezezika et al., 2009; 

Lu et al., 2001; Richer et al., 2008]. Note that like all PPI-binding deficient mutants discovered 

to date, R88L-Pfn1 mutant also has ~2-3-fold deficiency in actin-binding because of partial 

structural overlap between PPI and actin binding sites of Pfn1 [Sohn et al., 1995; Wittenmayer et 

al., 2004]. We engineered all of these Pfn1 constructs to be resistant to Pfn1-siRNA treatment by 

introducing additional silent mutations in the siRNA-targeting region; this strategy enabled us to 
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express these various constructs in MDA-231 cells in the background of strongly suppressed 

endogenous Pfn1 expression achieved via Pfn1-siRNA treatment. As a control, we used our 

previously generated stable GFP expresser of MDA-231 cells [Zou et al., 2007] which were 

transfected with either non-targeting control or Pfn1-siRNA. The immunoblots in the inset of 

Figure 14A demonstrate that i) we are able to express various GFP-Pfn1 constructs in the 

background of a close to 100% suppression of endogenous Pfn1 expression, and ii) the relative 

expression of these Pfn1 constructs are similar between the different sublines of MDA-231 cells. 

We estimated the level of exogenous Pfn1 to be approximately 70-80% of that of endogenous 

Pfn1 (Fig. 14B). Sub-cellular fractionation analyses showed that GFP-Pfn1 is more abundantly 

localized in cytosol than at the membrane, as in a previously report in other cell types [Hartwig 

et al., 1989] (Fig. 14C). Note that similar to endogenous Pfn1, GFP-Pfn1 is also localized in 

nucleus to a certain extent (nuclear localization is strongest for H119E-Pfn1 mutant) which was 

not analyzed in the fractionation experiment. As expected from its reduced binding to PPI, 

membrane content of R88L-Pfn1 mutant was found to be significantly less compared to the other 

three variants of Pfn1 (Fig. 14D).  

When we compared the relative speed of migration of these various cell lines by time-

lapse imaging, we found that that the average speed of control GFP expressers increases by ~2 

fold when Pfn1 expression is silenced (this is consistent with our previous observation on 

parental MDA-231 cells [Bae et al., 2009]), and the hypermotile phenotype of Pfn1-deficient 

cells can be completely rescued by GFP-Pfn1. Among the various Pfn1 mutants, H119E-Pfn1 

and H133S-Pfn1 rescue the hypermotile response of Pfn1-silenced cells by nearly 70% and 85%, 

respectively; but R88L-Pfn1 mutant fails to rescue the hypermotile phenotype (in fact, there was 

no significant difference in the average speed between R88L-Pfn1 re-expressers and control GFP 
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cells in suppressed endogenous Pfn1 background) (Fig. 14E). Even though R88L substitution 

decreases actin-binding of Pfn1 by 2-3 fold in addition to causing a major defect in its PPI 

binding, given that expression of H119E-Pfn1 (a much more potent actin-binding mutant which 

has a ~30-fold reduction in actin-binding compared to wild-type Pfn1) is able to reduce the speed 

of Pfn1-deficient cells by 70%, our data strongly suggests that the hypermotile response of the 

R88L mutant is not related to loss of Pfn1’s interaction with actin. Also, since the average speed 

of GFP-Pfn1-H119E expressers is somewhat higher than that of GFP-Pfn1 expressers, this rules 

out an alternative explanation of our motility data based on mutual exclusion of actin and PPI 

interaction of Pfn1 i.e. “R88L-Pfn1 being less sequestered at the membrane enhances cell 

motility through more frequent association with actin”. Therefore, hypermotile response of 

R88L-Pfn1 mutant is attributed to loss of PPI interaction of Pfn1. 
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Figure 14: Pfn1 inhibits MDA-231 breast cancer motility predominantly through its PPI 
interaction. A) Pfn1 and GFP immunnoblots show the endogenous and exogenous Pfn1 contents 
for various stable sublines of MDA-231 cells under different siRNA treated conditions (Pfn1 and 
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of GFP expressers that are transfected with control siRNA serves as a standard for comparison; 
GAPDH blot - loading control). B) Pfn1 immunoblot of GFP-Pfn1 expressers shows relative 
levels of endogenous and exogenous Pfn1.C-D) GFP-immunoblot of equal amounts of protein 
from cytosolic (CF) and membrane (MF) fractions of GFP-Pfn1 rescue expressers, shows 
relative abundance of GFP-Pfn1 in cytosol and membrane (panel C). GFP immunoblots of CF 
and MF show the relative cytosolic and membrane contents of GFP-Pfn1 and its various mutants 
in the respective sublines (panel D - note that the exposure time for MF blot shown in panel D is 
much higher than the corresponding CF blot to reveal the weak MF band for R88L-Pfn1). EGFR 
and GAPDH blots serve as the markers for MF and CF samples, respectively. E) A box and 
whisker plot summarizing the effect of abolishing various ligand interactions of Pfn1 on the 
average speed of migration of MDA-231 cells. ‘‘N’ indicates the number of cells analyzed in 
each group pooled at least 3 independent experiments analyzed (**: p<0.01). 
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We previously showed that Pfn1 depletion results in slower but more stable (less prone to 

withdrawal) membrane protrusion thereby increasing the net protrusion velocity of parental 

MDA-231 cells [Bae et al., 2009]. Importantly, the cells analyzed in each of these six groups 

form normal appearing lamellipodia in motility experiments (Fig 15A); however, kymography 

analyses of membrane protrusion showed that the average net protrusion velocity of R88L-Pfn1 

mutant cells (=1.15 μm/min) is significantly higher than any of the other rescue cell lines and 

very similar to the value obtained for Pfn1-depleted cells (=1 μm/min) (Fig. 15B-C). Overall, our 

findings indicate that Pfn1 inhibits MDA-231 cell migration predominantly through its PPI 

interaction. Note that we did not find any significant difference in either actin expression or the 

overall cellular F-actin level between GFP-Pfn1 (full rescue) and GFP-Pfn1-R88L rescue 

expressers (Fig 16); therefore, a striking difference in the protrusion kinetics between the two 

cell lines suggests that F-actin dynamics and/or protrusion/adhesion coupling at the leading edge 

are likely to altered by the PPI mutation of Pfn1. 
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Figure 15: Protrusion dynamics of various sublines of MDA-231 cells. A) Phase-contrast 
micrographs of migrating cells show normal appearing lamellipodia (arrows) formed by the 
various experimental groups of MDA-231 cells. B-C) A set of representative kymographs of 
protruding membrane (panel B) and a box and whisker plot comparing the net protrusion rate 
(panel C) between the different experimental groups of cells measured from kymography assay 
(‘‘N’ indicates the number of cells analyzed in each group pooled at least 3 independent 
experiments analyzed (**: p<0.01). 
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Figure 16: A) A comparison of total cellular F-actin content between GFP-Pfn1 and GFP-Pfn1-
R88L rescue sublines of MDA-231 cells as measured by either fluorescence assay (data 
summarized from 3 independent experiments) or immunoblot-based detection of actin in the 
triton-insoluble fraction of cell lysate (inset of panel A). B) Relative actin expression between 
the two cell lines. Vimentin blots serve as the loading controls. 
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5.1.3 Pfn1 inhibits breast cancer cell motility by negatively regulating Lpd targeting to 

the leading edge through its phosphoinositide interaction 

We previously demonstrated that lowering Pfn1 expression in normal HMEC and MDA-231 

cells enhances lamellipodial targeting but not the total expression level of VASP (a protein 

known to localize at focal adhesion, distal rim of lamellipodia, filopodia and actin stress-fibers 

[Rottner et al., 1999]) and that hypermotile response of Pfn1-deficient MDA-231 cells is 

Ena/VASP-dependent [Bae et al., 2009]. Membrane targeting of Ena/VASP proteins also 

positively correlates with protrusion velocity and overall speed of migration of fish scale 

keratocytes, another rapidly migrating cell type [Lacayo et al., 2007]. Given our present data 

with MDA-231 cells showing similar overall speed and net protrusion velocity between R88L-

Pfn1 rescue expressers and Pfn1 knockdown cells, we asked whether PPI-interaction of Pfn1 

plays any role in regulating VASP targeting to the leading edge. Indeed, immunostaining of our 

various rescue cell lines showed that VASP-rich lamellipodial rim, a feature of Pfn1-depleted 

cells, is mimicked predominantly in R88L-Pfn1 expressers (Fig. 17A) thus demonstrating that 

PPI interaction of Pfn1 inhibits targeting of VASP to the leading edge in MDA-231 cells. Similar 

to our finding related to VASP, we found that among the various rescue sublines of MDA-231 

cells, only R88L-Pfn1 expressers display a very strong Lpd-staining at the lamellipodial tip 

similar to what is seen in Pfn1-knockdown cells (Fig. 17B). Note that the same R88L-Pfn1 

expressers, when treated with control-siRNA (mimics a moderate overexpression setting), 

neither exhibit Lpd-rich lamellipodial tip (Fig. 17C) nor produce a hypermotile phenotype when 

compared to control GFP expressers (Fig. 17D). Similarly, in a transient-transfection based assay, 

the difference in the average speed between GFP and GFP-Pfn1-R88L overexpresser was found 

to be only 10% (not statistically significant) which further confirmed the results from stable 
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expressers in control siRNA-based setting. Since endogenous Pfn1, when present in R88L-Pfn1 

expressers, should still be able to interact with the membrane, these overexpression-based results 

further establish that the phenotypes exhibited by R88L-Pfn1 mutant in a rescue situation (i.e in 

the absence of endogenous Pfn1 expression) are specifically due to the loss of PPI interaction of 

Pfn1 and not secondary to other changes induced by the mutant. In summary, our findings thus 

far demonstrate that Pfn1 negatively regulates membrane targeting of Lpd and VASP at the 

leading edge through its PPI interaction. 

Since R88L-Pfn1 rescue expressers phenocopy Pfn1-knockdown cells in terms of 

comparable hypermotile response, net protrusion velocity, formation of Lpd/VASP-rich 

lamellipodial rim, we next asked whether VASP and Lpd contribute to the hypermotile response 

of this rescue cell line. To assess the contribution of VASP, we expressed mCherry-tagged FP4-

mito, a construct that sequesters all members of Ena/VASP proteins to the mitochondria thereby 

inhibiting their function (as a control, cells were transfected with mCherry-tagged AP4-mito, a 

similar structured construct that also targets to mitochondria but fails to bind to Ena/VASP 

proteins). Figure 17E shows Ena/VASP inhibition by mCherry-FP4-mito results in a ~ 3.2-fold 

reduction in the average speed of migration of R88L-Pfn1 expressers. This is specific to 

Ena/VASP inhibition since expression of mCherry-AP4-mito (control construct) did not show 

any significant change in motility when compared to untransfected (mCherry-negative) cells. 

Likewise, motility of R88L-Pfn1 mutant cells also showed strong dependence on Lpd 

availability since limiting Lpd expression by siRNA treatment led to a 2-fold decrease in cell 

speed (Fig. 17F - the immunoblot in the inset confirms Lpd suppression by siRNA treatment). A 

stronger inhibitory effect of VASP inhibition (~3.2 fold) compared to Lpd depletion (~2 fold) on 

motility of R88LPfn1 mutant cells was not surprising given that we failed to achieve a complete 
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knockdown of Lpd expression by siRNA treatment whereas we have seen that FP4-mito 

construct is highly effective in sequestering all of the detectable cellular pool of VASP to the 

mitochondria in MDA-231 [Bae et al., 2009]. Given Lpd’s requirement for VASP recruitment to 

the leading edge, our overall data indicate that PPI interaction of Pfn1 confers the major 

inhibitory effect of Pfn1 on breast cancer cell motility secondary to the availability of Lpd and in 

turn VASP at the leading edge. 
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Figure 17: Pfn1 limits VASP and Lpd distribution at the leading edge through its PPI 
interaction. A) Immunostaining show that only R88L-Pfn1 expressers show strong VASP 
localization at the leading edge (arrow) similar to Pfn1-depleted cells (arrowheads shows the 
characteristic focal adhesion localization of VASP). B) Lpd staining of various rescue expressers 
of MDA-231 cells shows strongest Lpd-staining at the lamellipodial tip in R88L-Pfn1 rescue 
subline. Magnified forms of the insets (outlined by the boxes) are displayed above. C) Lpd 
immunostaining of GFP-Pfn1-R88L expressers of MDA-231 cells following control siRNA 
transfection. D) A bar graph summarizing the average speed of migration of GFP and GFP-Pfn1-
R88L expressers following control siRNA transfection. ‘N’ indicates the number of cells 
analyzed for each group of cells pooled from 2 independent experiments. E) A box and whisker 
plot demonstrates that Ena/VASP sequestration by mCherry-FP4-mito dramatically inhibits 
motility of R88L-Pfn1 mutant expressers. Untransfected or m-Cherry-AP4 transfected cells serve 
as the two control groups in Ena/VASP sequestration experiments. “N” indicates the number of 
cells analyzed for each experimental group pooled from at least 3 independent experiments (**: 
p<0.01). F) A box and whisker plot comparing the average speed of migration of R88L-Pfn1 
expressers with or without Lpd suppression (the immunoblot in the inset shows strong 
suppression of Lpd expression; GAPDH blot - loading control). For all experiments, ‘‘N’ 
indicates the number of cells analyzed in each group pooled from at least 3 independent 
experiments (**: p<0.01). The scale bar in all images represents 20 µm. 
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5.1.4 Loss of Pfn1 expression enhances PI(3,4)P2 presentation at the leading edge 

In vitro studies showed that PH domain of Lpd binds specifically to PI(3,4)P2 (this does not bind 

to any other 3’-phosphorylated-PPI [D3-PPI] such as PI3P or PI(3,4,5)P3) [Krause et al., 2004]. 

A recent study further demonstrates that enteropathogenic bacteria generates PI(3,4)P2-rich 

platform at the host-cell membrane to recruit Lpd [Smith et al., 2010] thus suggesting that Lpd 

docks to plasma membrane via its binding primarily to PI(3,4)P2. Activation of various receptor 

tyrosine kinases such as EGFR (EGF-receptor) and PDGFR (PDGF-receptor) stimulate PI3-

kinase [PI3K] activity and generate PI(3,4,5)P3, which when dephosphorylated by 5’-

phosphatases (such as SHIP2) lead to the production of PI(3,4)P2. To initially confirm the role of 

D3-PPI (such as PI(3,4)P2) in VASP and Lpd targeting to leading edge in our case, we subjected 

Pfn1-deficient MDA-231 cells (either without or with R88L-Pfn1 rescue) to acute PDGF 

stimulation either in the presence of LY294002 (a pharmacological inhibitor of PI3K that 

reduces both PI(3,4)P2 and PI(3,4,5)P3) or DMSO (diluent control). We found that Lpd 

localization at the leading edge in both Pfn1 knockdown cells and R88L-Pfn1 rescue expressers 

is dramatically reduced in response to LY294002 treatment (Fig. 18A-B - diluent control DMSO 

preserves strong VASP and Lpd localization at the leading edge as expected). Consistent with 

these results, overexpression of either GFP-PTEN (phosphatase and tensin homolog deleted on 

chromosome 10 - a dual lipid-protein phosphatase that dephosphorylates D3-PPIs and reduces 

their level) or GFP-PH-AKT (a reporter that binds to D3-PPI including PI(3,4)P2 and should 

therefore act as a competitor for other ligands, such as Lpd, for binding to PPI) also completely 

abolishes the strong Lpd distribution at the leading edge in Pfn1-depleted cells (Fig. 18C - as a 

negative control, expression of GFP maintains the characteristic Lpd-rich lamellipodial rim as 

expected). Based on these data demonstrating the sensitivity of membrane targeting of Lpd to 
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D3-PPI perturbation, we speculated that loss of Pfn1 expression might enhance Lpd-targeting to 

the lamellipodial tip through influencing PI(3,4)P2 content at the membrane of the leading edge. 

To test this, we examined PI(3,4)P2 distribution at the leading edge between control and Pfn1-

siRNA treated MDA-231 cells either in basal (serum-starved) or various growth factor (EGF, 

PDGF) stimulated conditions by immunostaining. Figures 18D-E demonstrate that cells under 

either siRNA transfected condition exhibit increased PI(3,4)P2 content at the leading edge in 

response to acute EGF/PDGF stimulation; however, Pfn1-depleted cells have significantly higher 

PI(3,4)P2 accumulation at the leading edge compared control cells in response to these various 

growth-factor stimulated conditions. Stronger PI(3,4)P2 presentation at the leading edge in Pfn1-

deficient cells is clearly consistent with enhanced Lpd targeting to the lamellipodial tip in these 

cells. 

It is known that EGF signaling, in particular, plays a key role in breast cancer cell 

migration/invasion in vitro and in vivo [Goswami et al., 2005; Wyckoff et al., 2004; Xue et al., 

2006]. We therefore asked whether loss of Pfn1 expression alters the expression and/or 

activation of EGFR in MDA-231 cells. Immunoblot data in Figure 18F show that EGF-induced 

phosphorylation of EGFR at its Y1164 residue (a measure of EGFR activation) and the overall 

expression level of EGFR are unaffected by silencing of Pfn1. Similarly, the expression level of 

PDGFRβ and PDGF-induced tyrosine phosphorylation of PDGFR (correlates with its activation) 

were found to be similar between control and Pfn1-depleted cells (Fig. 18G-H). Finally, EGF-

dependent phosphorylation of AKT, a downstream signaling that involves PI3K-mediated 

generation of PI(3,4,5)P3, was also found to be comparable between control and Pfn1-siRNA 

treated cells (Fig 16I). These results indicate that Pfn1-depletion induced increase in PI(3,4)P2 

accumulation at the leading edge is not due to altered RTK activation. 
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Figure 18: Loss of Pfn1 expression enhances PI(3,4)P2 accumulation at the leading edge in 
MDA-231 cells. A) LY294002 treatment dramatically delocalizes VASP from the leading edge 
(arrows), while DMSO (diluent control) treated cells show strong lamellipodial distribution of 
VASP as expected. B) PI3K inhibition by 30 min LY294002 treatment delocalizes Lpd from the 
leading edge (arrows) in PDGF-treated Pfn1-knockdown MDA-231 cells without or with R88L-
Pfn1 rescue (DMSO - vehicle control; arrowhead shows Lpd in membrane ruffles). C) 
Expression of either GFP-PTEN or GFP-PH-AKT but not GFP (control) delocalizes Lpd from 
the leading edge (arrow) in Pfn1-deficient cells. D-E) Representative confocal images (panel D; 
inset shows magnified images of regions outlined by the boxes) and bar graph summarizing 
relative intensity (panel E) of PI(3,4)P2 immunostaining at the leading edge in control and Pfn1-
siRNA treated MDA-231 cells either in basal (serum-starved) or following 30 minutes of EGF 
and PDGF stimulation (arrows show leading edge). ‘N’ indicates number of cells analyzed in 
each group (**: p<0.01). F) Phosphorylation of EGFR at Y1173 residue and total EGFR level at 
different time-points after EGF stimulation in control and Pfn1-siRNA treated cells (GAPDH 
blot - loading control). G) Relative PDGFR-β expression level between control and Pfn1 siRNA 
treated MDA-231 cells (GAPDH blot – loading control). H) Phosphotyrosine (pY) immunoblot 
showing PDGF-induced phosphorylation of PDGFR in control and Pfn1 siRNA treated cells. I) 
Effect of silencing Pfn1 expression on the level of phospho-AKT (S473) 10 min after EGF 
stimulation (AKT blot - loading control). The scale bar in all images represents 20 µm. 
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5.2 DISCUSSION 

A context-dependent role for Pfn1 in cell migration is becoming increasingly evident based on 

differential response of whole cell motility to Pfn1 depletion depending on the cell type. While 

certain types of normal cells (example: human vascular endothelial cells) show impaired motility 

upon loss of Pfn1 function, the opposite occurs with adenocarcinoma (breast, hepatic) cells and 

even some normal cells such as HMEC. Conventional principle of action of Pfn1 through its 

actin and polyproline interactions facilitating membrane protrusion during cell migration cannot 

explain the hypermotile response of breast cancer cells and HMEC enabled in the absence of 

Pfn1. We here describe a novel mechanism of Pfn1-dependent regulation of breast cancer cell 

migration involving its PPI interaction and using Lpd, a PPI-binding Ena/VASP ligand, as a 

mediator. 

Using a knockdown-knockin strategy, we demonstrated that two important phenotypic 

characteristics of MDA-231 cells associated with Pfn1-depletion including hypermotile behavior 

and strong distribution of Lpd/VASP at the lamellipodial tip are completely abolished by GFP-

Pfn1 re-expression therefore confirming the functional rescuing ability of GFP-Pfn1. Among the 

three mutants of Pfn1, only the PPI binding-deficient form (R88L) fails to rescue these 

phenotypes. We found a striking similarity between R88L-Pfn1 re-expressers and Pfn1-deficient 

cells in terms of their motility speed, average velocity of protrusion and Lpd/VASP distribution 

at the lamellipodial tip and these data provide a direct evidence of Pfn1’s negative regulation of 

Lpd/VASP localization at the leading edge and motility of breast cancer cells predominantly 

through its PPI interaction. Even though the effect of Lpd knockdown on whole cell motility has 

not been previously examined, impaired lamellipodia formation and slower membrane protrusion 

in fibroblasts resulting from Lpd knockdown suggest that Lpd is an important regulator of 
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lamellipodial dynamics [Krause et al., 2004]. The same study also showed that Lpd 

overexpression leads to faster membrane protrusion in fibroblasts which can be suppressed by 

Ena/VASP inhibition further indicating that Ena/VASP plays a key role in Lpd’s regulation of 

membrane dynamics at the leading edge. Ena/VASP proteins bind to and promote elongation of 

barbed ends of actin filaments [Barzik et al., 2005; Pasic et al., 2008]. This has been proposed to 

be the mechanism underlying Ena/VASP-driven actin assembly at the leading edge and 

membrane protrusion. We previously demonstrated Ena/VASP’s involvement in the hypermotile 

response of MDA-231 cells induced by Pfn1 downregulation [Bae et al., 2009]. The present 

study showed Lpd’s role in VASP recruitment to the lamellipodial tip, regulation of actin 

assembly at the leading edge/membrane protrusion and overall migration in Pfn1-deficient cells. 

These findings taken together with additional evidence of Lpd’s and Ena/VASP’s involvement in 

the hypermotile response of R88L-Pfn1 expresser are supportive of Pfn1’s negative regulation of 

breast cancer cell motility through Lpd and in turn modulating Ena/VASP function at the leading 

edge. Whether Lpd has an additional contribution to the hypermotile response of Pfn1-

knockdown cells in an Ena/VASP–independent manner is not clear at this point. 

An interesting finding of the present study is the differential sensitivity of control vs Pfn1 

knockdown MDA-231 cells to Lpd depletion. We showed that even though Lpd suppression 

alone can reduce the overall flare of protrusion in MDA-231 cells, this phenotype is rescued 

when cells are seeded on collagen-coated substrate and therefore, it is not surprising that Lpd 

knockdown does not have any significant impact on the overall motility of MDA-231 cells 

assessed on collagen-coated substrate. Pfn1-deficient deficient cells show a more severe 

phenotype in terms of lamellipodia formation and motility when subjected to Lpd depletion. 

Although the underlying reason is not clear, one possibility is that Lpd deficiency can be 
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compensated by RIAM-1 (Rap-interacting adaptor molecule), a Lpd-homolog that also binds to 

membrane PPI, Pfn1 and Ena/VASP proteins like Lpd [Lafuente et al., 2004]. Given that RIAM-

1 regulates cell adhesion/spreading through actin organization and integrin activation, 

compensatory action of RIAM-1 might be more pronounced on adhesion promoting substrate 

such as on collage-coated tissue-culture substrate as used in our motility experiments. If RIAM-

induced actin organization at the leading edge, at least, partially requires the involvement of 

Pfn1, cells lacking Pfn1 would also be expected to be hypersensitive to Lpd depletion as seen in 

our study. This will need to be investigated in the future. 

Finally, we here report a novel finding that loss of Pfn1 expression enhances PI(3,4)P2 

presentation at the leading edge which clearly provides at least one mechanistic explanation for 

how Pfn1 could regulate Lpd distribution at the leading edge. Since Pfn1 can also bind to 

PI(3,4)P2, one cannot absolutely rule out an additional possibility that potential competition 

between Pfn1 and Lpd for PI(3,4)P2 binding could also be relieved upon loss of Pfn1 expression 

thereby further favoring Lpd targeting to the membrane. How might loss of Pfn1 enhance 

PI(3,4)P2 accumulation at the leading edge? Given that PI(3,4)P2 is predominantly generated by 

dephosphorylation of PI(3,4)P2 by SHIP2 and we here show that Pfn1 depletion does not alter 

the activation of EGFR and AKT (a PI(3,4,5)P3-directed event at the downstream of activated 

EGFR), one interesting possibility is that Pfn1’s binding to PI(3,4,5)P3 somehow sterically 

blocks SHIP2’s access to PI(3,4,5)P3 and hence prevents PI(3,4,5)P3’s turnover to PI(3,4)P2. This 

is not completely unreasonable since PI(4,5)P2 hydrolysis by PLCγ (phospholipase-Cγ) has been 

previously shown to be inhibited by PPI-interaction of Pfn1, at least, in vitro [Sohn et al., 1995; 

Goldschmidt-Clermont et al., 1990]. Our future studies revealing how perturbation of Pfn1 
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affects the different PPI turnover pathways in response to RTK activation will provide further 

mechanistic insights into these biochemical events. 
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6.0  CONCLUSIONS 

This work leads to a new paradigm of motility regulation by cytoskeletal molecules with pluri-

ligand docking sites involving signaling cascade at the membrane. We have shown that this is 

how Pfn1, a generally considered pro-migratory molecule, can also inhibit cell motility by 

altering docking of other proteins at the membrane-cytosol interface, and this action is modulated 

by phospholipid interaction of Pfn1. The model we propose is in contrast to conventionally 

presented Pfn1’s role in cell motility primarily through its actin and polyproline interactions. 

Based on this study, an intriguing hypothesis could be that Pfn1 affects cell migration through 

two pathways: a traditional pro-migratory pathway involving its direct action on actin 

polymerization at the leading edge through its actin and polyproline interactions, and an anti-

migratory pathway involving suppression of PI(3,4)P2-dependent leading edge targeting of pro-

migratory complexes such as Lpd/VASP which is strictly regulated by PPI interaction of Pfn1. It 

is the relative contribution of these two opposing pathways which would ultimately define 

whether Pfn1 promotes or limits cell migration. Since the molecular environment of various PPI 

may vary from cell-type to cell-type, Pfn1-dependent modulation of cell motility through its PPI 

interaction could explain its context-dependent role in cell motility. 
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6.1 FUTURE DIRECTIONS 

6.1.1.  To investigate whether Lpd/VASP plays a role in breast cancer metastasis when 

Pfn1 expression is attenuated 

Previous in vivo study from our laboratory demonstrate that overexpressing Pfn1 expression 

inhibits micro-metastasis of MDA-231 breast cancer cells in nude mice [Zou et al., 2007]; 

however, this study did not provide mechanistic insights on how Pfn1 overexpression limits 

migration and invasion of breast cancer cells in vivo. Recent in vitro studies show that 

overexpression of Pfn1 significantly suppresses breast cancer cell migration; conversely, limiting 

Pfn1 expression results in enhanced motility of MDA-231 breast cancer cells [Roy et al., 2004; 

Zou et al., 2007; Bae et al., 2009]. My previous in vitro studies further reveal that significantly 

increased motility of Pfn1-depleted MDA-231 breast cancer cells is through membrane targeting 

of Lpd/VASP complex at the protruding leading edge [Bae et al., 2009] suggesting that 

Lpd/VASP complex at the leading edge plays a role in membrane dynamics and overall breast 

cancer cell migration. However, whether the lamellipodial targeting of the Lpd/VASP complex 

can modulate the hyperinvasiveness (hypermetastasis) of MDA-231 breast cancer cells in vivo 

has not yet been investigated. Since surrounding microenvironment of tissue or matrix in vivo 

has an important factor on tumor cell invasion, I would like to extend my in vitro system to in 

vivo animal experiments.   

To determine the importance of Lpd/VASP complex in metastatic ability of Pfn1-

depleted MDA-231 cells on tumor metastasis, xenograft experiments will be performed with 

Pfn1 knockdown cells with or without co-suppression of Lpd or co-expression Ena/VASP 

mistargeting construct. Based on previous motility data, I expect that inhibiting Lpd/VASP 
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function should dramatically reduce metastasis of Pfn1-depleted MDA-231 cells. If true, 

perturbing Pfn1 and Lpd/VASP expression levels could prove to be a good molecular strategy 

for limiting metastasis of breast cancer cells.    

 

6.1.2 To determine whether Pfn1 regulates the overall turnover and spatiotemporal 

dynamics of PPIs in breast cancer cells 

Pfn1’s interaction with membrane PPIs has mostly been confirmed in vitro and among the 

different PPIs, Pfn1 has been found to bind to PI(4,5)P2, PIP3, and PI(3,4)P2 [Lu et al., 1996]. 

Biochemical experiments with purified constituents initially demonstrated that Pfn1 inhibits 

PLC-mediated PI(4,5)P2 hydrolysis to IP3. Since these experiments were performed with 

purified constituents, determining whether Pfn1 influences PPI metabolism and the functional 

significance of such metabolism has not yet been thoroughly investigated in a cellular context. 

Based on recent observations from our laboratory demonstrating that limiting Pfn1 expression 

dramatically increases leading edge localization of PI(3,4)P2 [unpublished data] and 

overexpressing Pfn1 significantly reduces PIP3 generation in breast cancer cells [Das et al., 

2009], I propose that Pfn1 plays a important role in regulating PPI turnover and consequently 

PPI-dependent downstream signaling.  

To test this working model, I will first determine whether perturbing Pfn1 expression alters PPI 

turnover and the resulting products in MDA-231 breast cancer cells either in a basal or an EGF 

(or PDGF)-stimulated state by immunostaining and TLC-based detection assays. The next goal 

would be a fluorescence-based reporter assay or FRET-based (fluorescence resonance energy 

transfer) assay in real time to visualize the spatiotemporal dynamics of various PPIs at the cell 

membrane in response to growth factor (EGF, PEGF) stimulation in breast cancer cells. Overall, 
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this study will provide mechanistic insights as to whether and how perturbation of Pfn1 

influences the different PPI turnover pathways and dynamics in response to receptor tyrosine 

kinase activation in cells.      
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