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ABSTRACT

A FRAMEWORK FOR ENABLING ENERGY EFFICIENT SEMANTIC

VIEWS IN WIRELESS SENSOR NETWORKS FOR DATA INTENSIVE

APPLICATIONS

Hui Ling, PhD

University of Pittsburgh, 2010

Sensor networks have been envisioned to be a promising technique for data intensive ap-

plications such as disaster management and emergency response and are being designed

and deployed for these applications [1]. The effectiveness of sensor networks in providing

information is determined by human’s capacity to recognize and comprehend information

from the raw data collected, and act accordingly. Finding relevant information from the

large amount of data, however, becomes a challenging problem because user interests con-

tinues to grow as the number and variety of sensors increase and users expect to receive

only the data they select to view. Transmitting users irrelevant data during data processing

not only overloads users with unneeded data but also incurs unnecessary communication

overhead. Furthermore, the user interests may be correlated when a large number of users

seek information from sensor networks. As a result, a lot of redundant data transmission

can be incurred during processing in resource-constrained sensor networks. Data aggrega-

tion, though effective in reducing data transmission for aggregated queries, doesn’t take the

correlation among user interests into consideration during processing. Therefore, additional

techniques need to be proposed to provide efficient information delivery for correlated user

interests in resource-constrained sensor networks.

To bridge the gap between data collected by sensors and the information interests of users,

the concept of “semantic view” is proposed in this thesis. The semantic view is a powerful

iv



abstraction which allows the fusion of multi-sensor and multi-source data into a virtual

data gathering and analysis infrastructure commensurate with the interest of an end user.

The main challenge is to enable semantic views in an energy efficient manner in resource

constrained sensor networks. To that end, a framework which consists of five protocols

and algorithms, “Query Aware Sensing”, “Probabilistic Query Dissemination”, “Correlated

Multi-query Processing”, “Location Discovery using Out-of-Range information with multi-

lateration”, and “End-to-end pairwise key establishment” is presented. The ultimate goal

is to develop an energy efficient and secure framework towards enabling semantic views in

sensor networks for data intensive applications.
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1.0 INTRODUCTION

The development of wireless sensor networks was initially motivated by military applications

such as battlefield surveillance, and then used to support industrial and civilian applications

including environmental monitoring, protection of critical infrastructures and disaster man-

agement and emergency response. As the number and varieties of sensor network applications

continue to grow, more and more information about various aspects of the physical world are

provided by sensor networks. As a result, sensor networks are becoming a very important

part of the networking infrastructure in the future.

1.1 BACKGROUND AND MOTIVATION

Advance in Micro-Electro-Mechanical-Systems has enabled the development of small-size,

low-cost, low-power and multi-functional sensor nodes. A sensor node typically consists of

sensing boards, a limited capacity processor and communication devices. The sensing boards

sample data such as temperature, pressure and light from where the sensor is deployed. The

processor allows a sensor to perform some simple processing on the sampled data if needed.

The communication devices, such as radio transceivers, allow sensors to talk to each other and

collaborate to accomplish complex tasks such as mobile target tracking, which are otherwise

impossible for individual sensors to finish.

A Wireless Sensor Network (WSN) is composed of a large number of interconnected sen-

sor nodes and often supports several unique features. First, the positions of sensor nodes

need not be engineered or pre-determined during deployment, which allows random deploy-

ment in inaccessible terrains or challenging environment in disaster management. Second,

1



sensor nodes, equipped with limited power processors, can carry out simple computations

locally and transmit only the required and partially processed data to a base station, instead

of sending all raw data for fusion. As a result, decisions can be made at sensor nodes to re-

spond to certain events more quickly than being made by the base station where all raw data

from sensors are received and processed. Furthermore, they can self organize after deploy-

ment and function without human intervention. These unique characteristics make sensor

networks a promising technique for a wide range of applications including field surveillance,

environment monitoring, structural health monitoring and disaster management.

In the past few years, extensive research has been conducted to implement these features

in sensor networks and significant progress has been made in various aspects of sensor net-

works. Now with the needed technology such as medium access control protocols and routing

algorithms in place, sensor network has evolved from a mere concept into practical implemen-

tations and deployments. Several sensor network systems have been deployed or are being

deployed for various types of applications. To name a few, a sensor network has been de-

ployed for real-world habitat monitoring in Great Duck Island, Maine in 2002 [2]. ZebraNet,

a wireless sensor network designed and developed at Princeton University, is deployed at

Mpala research centre to perform novel studies of animal migrations and inter-species inter-

actions [3]. Researchers at CMU are developing sensor-data driven vertical decision support

systems for specific critical infrastructure systems to provide a “nervous system” in these

systems such that proactive, intelligent decision support and control can be achieved over

their lifetime [4]. Another sensor network has been deployed in Alpine, Switzerland to gather

data for permafrost monitoring [5]. An underwater sensor network is also being designed and

will be deployed in the costal region of Padang, Indonesia, for near-shore tsunami detection

and disaster management [1]. As a result of these deployments, sensor networks will become

a critical part of the networking infrastructures in the future.

As a promising technique for collecting data about the real world, which would be either

expensive or impossible to collect otherwise, sensor networks provide us an effective means

to monitor the real world. What is more important, however, is not only to monitor the real

world, but also to assess and react to critical events in the world, such as detecting possible

tsunamis from underwater sensor network data and then preparing the communities for the
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coming tsunami strikes. It is noted that the “absorptive capability” of human decision makers

is limited in complex environments [6]. The human ability to acknowledge and understand

new information is limited, and at a certain threshold of exposure, human cognitive process

simply shut out information that is too complex or different from previous experiences. The

limited capability, in turn, reduces human ability to respond to events such as disasters in a

timely manner, particularly in the context of damaging or destructive events. Even though,

the human ability to extract information from sensor networks and recognize events such as

risk conditions in disaster management and emergency response, can be increased by focusing

on data that are directly related to each individual person [7]. In order to be more effective

and suited for decision making, sensor networks must be able to provide information specific

relevant to each human being in a timely and accurately manner so that each decision maker

can absorb and comprehend these information provided by sensor networks.

Towards that end, we start from understanding the limitations of current sensor networks

and then present new methods in sensor networks to provide information for human beings.

The main approach is to understand the characteristics of the information requirement in

these applications and then design new protocols and algorithms in sensor networks to process

these requests efficiently.

In these applications, different users or groups of users are often interested at different

information from the networks. For one example, in ZebraNet, some zoologists may seek

the position and body movement data of wild animals from the network to study their

migration patterns. Other zoologists may seek the integration between these data and other

data such as weather change and plant life change to understand how the migration patterns

of wild animals may be affected by changes in weather patterns and introduction of non-

native species. Ecologists may seek the integration of biometric data such as heart rate,

body temperature, and frequency of feeding, migration patterns of wild animals, and human

activities in surrounding areas to study how human development into wilderness areas affects

indigenous species.

For another example, disaster relief usually involves multiple autonomous organizations

3



Hospital

Sensor Network for Traffic Monitoring Underwater Sensor Network

Sensor Network for Bridge Monitoring

Map

Emergency Management
Agency (EMA)

VictimFirst Responder

Tsunami Observer
 Researcher and 

Figure 1: Information flow in disaster management

4



(governmental, individuals, communities and industry). The difference among organizations

leads to a diversity of user interests in information provided by the network. Figure 1

highlights the information flow in a disaster management and emergency response system. In

this system, the group of emergency managers seeks the integration of geospatial data about

the location of victims with on-line data about the location of medical facilities to provide

information needed by first responders in their rescue operations. The first responders, on

the other hand, seek traffic information to avoid traffic jams while relocating victims. Yet

another group, tsunami observers, is interested in gathering seismic and sea level gauge data

in order to estimate the magnitude and speed of the inundation. This information can then

be used to issue tsunami warnings of an appropriate level. Other researchers seek to explore

the feasibility of correlating the seismic data with sensed data on animal behaviors to explore

new ways of identifying disasters.

Even though the information needed by different users may vary, the underlying data

sets, from which the information is derived, might overlap. In other words, from the data’s

point of view, the same data may be needed by many users. Take disaster management and

emergency response as an example, in the scenario illustrated in Figure 1, a traffic sensor

network provides traffic condition for roads in the disaster area. An under water sensor

network collects information on seismic activity, tidal wavelength, etc. An infrastructure

sensor network monitors displacement, strain, acceleration of critical buildings, bridges and

roads, etc. Each network is of interest to multiple groups of people. The traffic condition

of a specific road is needed by first responders in order to plan a clear path for victim

transportation. The same information is also needed by emergency management agencies

to schedule future logistic transportation. The infrastructure monitoring information is of

interest to disaster victims, emergency management agencies (EMA) and first responders

to avoid potential dangerous places. Redundant data transmissions can be incurred during

data collection for the correlated user interests if they are processed separately by the sensor

networks, which can lead to the waste a significant amount of energy in sensor networks.

On the other hand, as the number and variety of sensors increase, so does the volume of

data generated by these sensor networks. The effectiveness of sensor networks in providing

information is determined by human’s capacity to recognize and comprehend information
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from the raw data collected, and act accordingly. Sensor networks should not only collect

data from the physical world, but also facilitate users to extract and absorb information

specific to their needs. Finding relevant information from the continuously increasing amount

of data for various kinds of user interests hence becomes a challenging problem because users

expect to receive only the relevant information they select to view. Overloading users with

irrelevant data is almost as bad as providing users no data, because by the time users identify

the needed data from the large amount of data they receive, it might be already too late to act

correspondingly. Furthermore, transmitting irrelevant data to users also incurs unnecessary

data communications in the sensor networks, which can be a major issue in a long run in

energy-constrained sensor networks.

In-network processing and data aggregation are presented in [8][9] to answer aggregated

queries such as “average” or “min”. In these schemes, sensor data is aggregated at inter-

mediate sensor nodes to reduce the amount of data being transferred in the network during

processing. This approach, referred to as “in-network aggregation” can reduce redundant

data transmissions in sensor networks, in comparison to the approaches in which data is

collected and aggregated centrally. However, data aggregation doesn’t reflect the correlation

among user interests. A large number of data may be processed and transmitted multiple

times to users with similar interests, which can cause significant communication overhead

in data intensive sensor networks. Therefore, additional techniques are needed to under-

stand the correlations among user interests and provide efficient data collection for these

user interests in data intensive sensor networks.

1.2 PROBLEM STATEMENT

Given a set of diversified and yet correlated user interests in data intensive sensor networks, a

naive approach for satisfying these user interests is to deliver all sensor data in the network to

users and let the users to retrieve what they need. This approach, apparently causes users be

deluged with unneeded data and hence significantly reduces the usability and effectiveness

of the system. Another alternative method is to use in-network processing such as data
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aggregations to reduce data communications in the network by local computations in sensor

nodes. This method, however, as we have pointed out above, does not take user interests into

consideration and therefore may still deliver redundant data to users. The overall research

question to be answered in this thesis then is

• Is it possible to design a general framework in data intensive sensor networks

to provide only relevant information for a large set of correlated user inter-

ests? If so, can the user interests be further processed energy efficiently in

the resource-constrained sensor networks?

Specifically, the main challenges of designing such a framework in data intensive sensor

networks to achieve energy efficient information delivery for multiple users/user groups are

• How to identify and select the relevant data for each user from the large volume of data

in sensor networks?

• How to efficiently collect the relevant data for a set of diverse and yet correlated user

interests in sensor networks?

• How to capture the correlations among user interests and avoid redundant data trans-

missions during processing of these interests?

1.3 THESIS APPROACH

To close the gap between sensor data and user interests in data intensive applications, we

propose the concept of semantic view, an abstraction to support mission-aware information

delivery commensurate with and relevant to the goals and needs of users. More specifically,

a semantic view is s set of queries, which specifies a set of predicates on specific data types

and timing and location constraints. An instantiation of a semantic view is a dynamically

created logical grouping of collaborative sensors and monitoring devices whose task is to

process, filter and fuse a flood of data into accurate and actionable information for decision

makers, as specified by the semantic view.
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Figure 2 depicts a multi-layered architecture of a disaster management system and il-

lustrates a set of different semantic views, Vi, i = 1, 2, · · · , n, each of which reflects the

mission and interests of a specific organization, Oi, i = 1, 2, · · · , n. The semantic view of the

Emergency Operation Center (EOC) captures a global, yet aggregated, view of the system,

while the semantic views of other organizations may express interest in gathering specific

data types under specific constraints. The semantic view is a powerful abstraction which

allows the fusion of multi-sensor and multi-source data into a virtual data gathering and

analysis infrastructure commensurate with the interest of the underlying organization.

Conceived to be independent of a specific application, the concept of semantic views is

well suited to address the gathering and aggregation of multiple types of sensor data across

multiple operational domains. As such, it provides users the ability to maintain absolute

time sequencing of data from various sensors within the system, enforce timing and location

constraints as specified by the underlying semantic view, and analyze temporal and spatially

collected data. Users will no longer be confined to receiving data that only marginally reflects

the current situation. Instead, a semantic view maps the query predicates and constraints

onto a dedicated set of sensors and monitoring devices for the resolution of the expressed

interests. A semantic view allows users to access directly the information they seek, rather

than having to depend on information being pushed to them.

In summary, a semantic view of a user/user group is a tuple < D, Π >, where Π is a set

of interests or constraints a user has and D is the set of data in the network which meets

these interests. In order for sensors to understand and process a semantic view, a set of

queries Q is constructed which returns exactly the same data, D, as requested by a user. As

illustrated in Figure 3, a semantic view is an abstraction bridging the gap between sensors

which can process queries and users who are interested at data.

In order to support semantic views in sensor networks, the relevant data of semantic

views must be identified, selected and collected from sensors. To this end, a framework for

enabling semantic views is proposed. The main components of the framework are sensing
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scheduling, query dissemination, query processing, location discovery and end-to-end pair-

wise key establishment for secure communications. The first three components address the

data identification, selection and collection, respectively, and location discovery provides lo-

cation information to sensors so that the location constraints of queries can be understood

by sensors. The design principle of all these components is that they must be implemented

in an energy efficient way to suit for resource-constrained sensor networks. The design is

validated through simulations of each component, respectively.

The first component deals with data sensing. It aims to figure out what sensors should

sample data in order to provide the required data for current users’ semantic views. Consider

a multiple purpose sensor network, where each sensor can sense multiple types of data with

different amount of energy consumption. Based on user interests, the data to be sensed in

the field may vary from area to area, as well as from time to time. As a result, the set of

working sensors might also change frequently. Furthermore, many different combinations of

sensors may exist to sample data for a set of user queries. To preserve energy consumption,

the set of sensors, which spends the minimum amount of energy, should be chosen to sample

the data requested by the current set of queries.

After a set of sensors are scheduled to sense data, the queries in users’ semantic views

must be delivered to relevant sensors for data collection. A naive way is to broadcast the

queries to the network so all sensors can receive them. The broadcast approach, although

guarantees that each sensor receives at least one copy of the queries, also sends queries

to irrelevant sensors and deliver multiple copies to relevant sensors. Since essentially only

one copy of the queries is needed by relevant sensors, the redundant transmissions in the

broadcast approach will cause a large amount of energy being wasted. The challenge is how

to reduce the amount of energy spent at sensor nodes in delivering queries to relevant sensors

in the network.

The final step of semantic view processing is data collection. As pointed out above, the

same data at a sensor node may be fused into several users’ semantic views. These data

are unnecessarily transmitted and aggregated multiple times if the queries of user semantic

views are processed separately. In a long run, these redundant transmissions may lead to

a significant waste of energy. Our approach is to look at the multiple queries together and
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find ways to reuse the shared data among them during processing. The challenge is how to

identify and reuse shared data among queries to reduce data communication cost in multiple

query processing, while preserving the semantic correctness of query processing result.

In addition, locations of sensor nodes must be known in the proposed framework for

several reasons. First, sensors locations must be known in order to compute the coverage level

of the deployment field. With this information, the desired level of coverage can be ensured

when sensors are turned off to preserve energy consumption at sensor nodes. The second

reason is that when the queries in user semantic views specify geographical constraints,

e.g. the data from a particular area is needed, a sensor needs to know its location in

order to determine if its data is required for these queries. Location discovery, therefore,

is an indispensable component in the framework and must be addressed as well. A naive

approach is to equip each sensor with an external device like a GPS receiver so that it knows

its location all the time. However, using such external devices not only makes a sensor much

more expensive, but also increases the energy consumption of a sensor by several orders of

magnitudes. Multi-lateration schemes, in contrast, rely on a small set of anchor sensors to

discovery other sensors’ locations through message exchanges. The multi-lateration scheme

can significantly reduce the number of anchor sensors needed to discover other sensors’

locations. The challenge is how to further minimize the number of the initial anchor sensors

to reduce the overall cost and energy consumption of sensor networks.

Furthermore, since semantic view processing relies on information exchange among sen-

sors for collecting data from sensors, attackers can also gain these data by capturing and

analyzing all the messages exchanged among sensors. To secure the sensor communications

against eavesdropping and traffic analysis by attackers, a key management scheme is needed

to establish keys among sensors to encrypt and decrypt their message exchanges.

1.4 SUMMARY OF CONTRIBUTIONS

This thesis studies the information delivery problem in sensor networks for data intensive ap-

plications such as disaster management and emergency response. To satisfy the diverse, yet
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correlated information needs of users in these systems, the concept of “semantic view” is pro-

posed. The semantic view is a powerful abstraction, which allows the fusion of multi-sensor,

multi-source data into a virtual data gathering and analysis infrastructure commensurate

with the interest of the underlying organization. It further allows users not to be overloaded

by the huge amount of data generated in sensor networks and retrieve information only from

relevant sensor nodes. The main contributions of this thesis are the concept of semantic

views and a set of protocols and algorithms in the framework towards enabling semantic

views in resource constrained sensor networks.

The framework consists of a set of efficiently designed protocols and algorithms, which

not only enable semantic views in sensor networks, but also address energy efficiency in their

designs so that they can be well suited to resource-constrained sensor networks. The specific

components of the framework are:

• Query aware sensing adapts the sensor sensing scheduling to dynamic sensing requirement

from semantic views so that a minimum amount of energy is spent on sampling data for

user semantic views.

• Probabilistic query dissemination aims to reduce the number of messages for delivering

semantic views to relevant sensors through probabilistic forwarding.

• Correlated multi-query processing reduces redundant transmissions for semantic view

data collections by identifying and reusing shared sensor data among user semantic views.

• Location discovery using out-of-range information with multi-lateration reduces the num-

ber of anchor sensors to discover the locations of other sensors in the network.

• End-to-End pairwise key establishment scheme allows sensors to set up and use symmet-

ric keys to secure their data communications against eavesdropping attack and compro-

mised sensors.

1.4.1 Query Aware Sensing

Query aware sensing derives the coverage requirements from user semantic views and com-

putes a minimum set of active sensors which should sample data in order to answer the user

semantic views. The set of active sensors are dynamically updated as the level of cover-
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age of user semantic views changes from time to time. This way, only the sensors which

must be active are required to sense data at any time. Therefore, a minimum amount of

energy is spent to sense relevant data which is needed for answering semantic views. By

adapting sensors’ sensing scheduling to different levels of coverage over different areas in the

deployment field and different time periods, query aware sensing can further reduce sensing

energy consumption in comparison to sensing with a static level of coverage, while ensuring

all relevant data to user semantic views is sampled.

1.4.2 Probabilistic Query Dissemination

To reduce propagation cost for semantic view dissemination, probabilistic forwarding tech-

niques are proposed to deliver semantic views to sensor nodes in the network. Several

schemes, which adapt the probability of forwarding a semantic view at a sensor node to

various types of local topology information, i.e. transmission range and neighborhood in-

formation, are presented and studied. The design principle is to differentiate forwarding

probabilities among neighboring sensor nodes such that all relevant sensors of user semantic

views receive a copy with a minimum number of messages being forwarded in the network.

These schemes can further reduce the number of messages needed to semantic view dissem-

ination in sensor networks, in comparison to other gossip based broadcast schemes.

1.4.3 Correlated Multi-Query Processing

In correlated multi-query processing, a numerical model is developed to estimate how much

data is shared among queries in a semantic view and between semantic views based on the

query constraints. From the estimated size of shared data among queries, shared interme-

diate views are then constructed to maximize reusing of shared data during processing. In

principle, a shared intermediate view is only processed once and its result is reused for the

queries from which the shared intermediate view is constructed. This way, the scheme re-

duces the number of data transmission by processing the shared intermediate views only

once and reusing their results for other queries. The queries are also transformed in such a

way that the results of shared intermediate views can be reused and the semantic correct-
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ness of final processing results can be ensured. In addition, correlated data collection is also

implemented at sensor nodes. In correlated data collection, each sensor node stores its data

to a proxy sensor node, which is closer to the base station. After a proxy sensor has been

established for a sensor node, any semantic view requesting its data retrieves the data from

its proxy node. By delegating data to a closer proxy node, a sensor node saves the message

transmissions from itself to its proxy node for future data requests.

1.4.4 Location Discovery for Semantic View Processing

The basic tenet of this location discovery scheme is the concept of “Out-of-range” informa-

tion, which is based on the observation that if two sensors cannot hear from each other, then

the distance between them must be larger than the transmission range of both sensors. This

information can be easily obtained by maintaining a neighbor list at each sensor node. Any

non-neighboring sensor of a sensor node can be inferred as out of its range. The out-of-range

information, when combined with multi-lateration scheme, can be very useful to resolve lo-

cation ambiguities of unknown sensors. The conditions that these out-of-range information

can be used to resolve location ambiguities are developed for reference nodes and unknown

nodes in different scenarios. An unknown sensor with location ambiguity, asks helps from

these out-of-range nodes through multi-hop paths and these out-of-range nodes determine if

they can help to resolve its location by checking the condition which may apply. It is shown

that, with out-of-range information, fewer reference nodes are needed to locate sensors in

the network, which in turn reduce cost and energy consumption of the whole network since

reference nodes are usually much more expensive and consumes more energy.

1.4.5 Secure Message Exchange for Semantic View Processing

To secure message exchanges for semantic view processing, an end-to-end pairwise key es-

tablishment scheme based on key pre-distribution is presented. This scheme allows any two

sensors to set up a common symmetric key after key pre-distribution and path key estab-

lishment. These keys are then used to protect data communication links between sensors

against packet eavesdropping and traffic analysis by attackers. The scheme also protects
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data communications among normal sensors from being exposed to compromised sensors.

1.5 THESIS ORGANIZATION

This chapter introduces the main challenges of information processing for correlated user

interests in data intensive sensor networks and gives a brief overview of the semantic view

approach and its main contributes to address the information processing problem. The

rest of the thesis is organized as follows. In Chapter 2, the related work to the thesis, i.e.

location discovery, sensing scheduling, query dissemination and query processing in sensor

networks are discussed in detail. Chapter 3 gives an overview of the proposed framework.

The detailed schemes of the framework, i.e. query aware sensing, probabilistic query dis-

semination, correlated multi-query processing and location discovery using Out-of-Range

information with multi-lateration for semantic view processing are presented at Chapter 4

to 7, respectively. Chapter 8 elaborates the design and analysis of the end-to-end pairwise

key establishment scheme for semantic view processing. Chapter 9 summarizes the major

work and contributions in the thesis and discusses the directions of future works.
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2.0 LITERATURE REVIEW

The purpose of this chapter is to present a detailed review of the literature and the back-

ground that are related to this thesis. Over the past ten years, a large amount of effort has

been dedicated to various aspects of research of sensor networks, to address the energy con-

straints of sensors and special traffic patterns in sensor networks. New protocols have been

proposed for medium access control (MAC), routing, security, sensor query processing and

dissemination protocols etc. Specifically, self configured MAC protocols have been proposed

to coordinate the sensor schedule of data transmissions to preserve the energy consumption

of individual sensor nodes [10][11][12][13][14]. Many of these schemes are based on or have

been motivated by MAC protocols for ad hoc networks [15][16][17]. In addition to the ex-

isting protocols for end to end routing in ad hoc networks [18][19][20][21][22], data centric

routing protocols are specially designed for sensor networks to focus on data delivery and

energy efficiency [23][24][25][26][27]. Because of the ad hoc manner of deployment of sensor

networks and the limited amount of energy available at sensor nodes, key pre-distribution

based schemes have been proposed to provide cryptographic protection of communications

in sensor networks [28][29][30][31][32] [33][34][35][36][37][38] [39][40][41][42][43]. Key man-

agement schemes for secure group communications are also being studied for ad hoc and

sensor networks [44][45][46] [47][48][49][50] [51][52][53][54][55]. To reduce the communication

cost of query processing and data collection in sensor networks, extensions of structured

query language like systems to sensor networks have been proposed [56][57], as well as new

techniques such as in network processing and data aggregation [58][8][9][59].

With the development of these new techniques and advances in Micro-Electro-Mechanical

Systems, it has become feasible to implement a large scale sensor network at a low cost.

Nowadays, many sensor networks have been deployed for environment monitoring, traffic
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monitoring, field surveillance and disaster management [2][60][61][62][63]. These systems are

functioning as very important sources of information for users and have become an essential

part of the network infrastructure of the future. The information provided by sensor net-

works, can lead to a better decision making for users when integrated with information from

other sources [64][65][66][67][68][69][70][71]. For example, the traffic information collected

from sensor networks, integrated with geographic maps, can help users to plan trips without

traffic congestion. The data integration between sensor networks and other data sources has

been studied recently and is still being investigated.

This thesis is focused on energy efficient mission-aware information delivery for data

intensive applications in sensor networks. It mainly address sensing coverage, query dissemi-

nation, query processing and location discovery in sensor networks. In the following, related

work to these four problems is reviewed in detail.

2.1 ENERGY EFFICIENT COVERAGE IN SENSOR NETWORKS

The idea of putting redundant sensors into sleep mode has been explored as a method to

preserve the limited energy at sensor nodes. It is widely used in designing energy efficient

medium access control protocols in sensor networks [10][11][12][13][14]. In these schemes,

sensors follow a periodic listen/sleep schedule. If no data needs to be transmitted or for-

warded for other sensors at one sensor node during the listen period, it turns off its radio

and goes into sleep state. It wakes up and listens again when its sleep period is over. Neigh-

boring sensors form virtual clusters to auto synchronize sleep schedules such that when a

sensor transmits data, all neighboring sensors go to sleep except the receiving sensor. By

turning off its radio and going to sleep, a sensor can save energy because it cannot transmit

anyway when one of its neighboring sensors is transmitting. This method is also utilized

to design coordinated routing schemes for energy efficient data transmission in sensor net-

works [72][73]. These schemes take a cross-layer approach, where routing information is

integrated with wake-up schedules for various sensors to increase sensor network longevity.

In these schemes, sensors along a routing path are well coordinated such that when one
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intermediate sensor in a path finishes its transmission and goes to sleep, the next sensor in

the route is ready to start a transmission. As a result, not only is energy preserved at sensor

nodes, but the end to end communication latency is ensured to be small in the network as

well.

The same idea has been explored as a way to achieve energy efficient coverage in sensor

networks [74][75][76] [77]. One scheme, PEAS, presented in [74], extends network lifetime

by maintaining a necessary set of working nodes and turning off redundant ones. Sensors

alternate among three states: sleeping, probing and working. Sleeping sensors wake up once

in a while to probe their neighborhood and replace any failed working sensors as needed.

PEAS has two components: probing environment and adaptive sleeping. Probing environ-

ment allows a newly waken up node to probe its local neighborhood to discover whether a

working node exists within a certain probing range. If no working node exists in that range,

it starts working. Otherwise, it sleeps again. Adaptive sleeping decides when a sleeping sen-

sor should wake up again. The scheme is distributed and localized and has low complexity,

but it does not preserve the original coverage area. The scheme described at [75] aims to

reduce energy consumption by scheduling nodes to sleep and adjusting sensing range. In the

proposed approach, each sensor in the network autonomously and periodically makes deci-

sions on whether to turn itself on or off using only local neighbor information. To preserve

sensing coverage, a node decides to turn itself off only when it discovers that its neighbors

can help it to monitor its whole working area. To avoid a blind point, which may appear

when two neighboring sensors expect each other to work, a backoff based scheme is intro-

duced to let each node delay its decision for a random period of time. A set of conditions

are then developed to check whether a sensor’s working area is covered by other neighboring

sensors for different scenarios where sensors may have different sensing ranges and different

information. The work focuses on uniform one coverage in the deployed field and must be

modified in order to support differentiated coverage requirements over the entire field.

Coverage Configuration Protocol (CCP) and Optimal Geographical Density Control

(OGDC) consider both coverage and connectivity in sensor networks [76][77]. The work

in [76] proves that when the communication range of sensor nodes is bigger than or equal to

twice their sensing range, then a set of nodes achieving a k − covered network also ensures
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a k − connected network. The relationship between the level of coverage and connectiv-

ity is also quantified, based on which the coverage configuration protocol is designed to

achieve different levels of coverage requested by applications. When the sensing range is

higher than half of the communication range, the CCP doesn’t ensure connectivity. In this

case, the CCP is integrated with an existing connectivity maintenance protocol, SPAN [78],

to provide both sensing coverage and communication connectivity. SPAN is a decentral-

ized coordination protocol that conserves energy by turning off unnecessary sensors while

maintaining a communication backbone composed of active sensors. The communication

backbone maintains the topology of the network such that all active sensors are connected

through the backbone and all inactive sensors are directly connected to at least one active

sensor. A sensor becomes active if it needs to be active at SPAN or CCP and goes to sleep

only if it is not eligible according to SPAN or CCP.

OGDC [77], on the other hand, shows how to optimally choose the subset of working

nodes under the assumption that node density is sufficiently high. A set of optimal conditions

under which a subset of working sensor nodes can be chosen for complete coverage is derived

under the ideal case that node density is sufficiently high. Based on the optimal conditions,

a decentralized algorithm, OGDC, can be devised for density control in large scale sensor

networks. The OGDC algorithm is fully localized and can maintain coverage as well as

connectivity, regardless of the relationship between the radio range and the sensing range.

A probabilistic coverage protocol was presented recently in [79]. This protocol aims to in-

vestigate the effect of a sensing model on the design of coverage protocols in sensor networks.

The disk model, exponential model, staircase model and probabilistic model are considered

and a new probabilistic coverage protocol (PCP) is proposed to adapt coverage protocols

to probabilistic sensing models. This scheme, however, may not be suitable for applications

that require a coverage level of more than one or depend on dynamic characteristics of the

event, as the authors mentioned in their paper.

In addition to the area coverage discussed above, in which the whole area must be cov-

ered by sensor nodes, point coverage in sensor networks has also been studied [80][81][82][83]

[84][85]. Point coverage is useful for applications such as target tracking, where only points

at which the target might appear should be covered instead of the whole area. In point
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coverage, one method to extend sensor network lifetime is to divide sensors into disjoint sets

such that every set completely covers all target points and let these sets activate successively.

By decreasing the fraction of time a sensor is active, the overall time until power runs out

for all sensors is increased. The disjoint set coverage problem is NP-complete, and any poly-

nomial time approximation algorithm has a lower bound of 2 [80]. In [81], the k-coverage

and network connectivity problem for point coverage is discussed. Given k, the coverage and

connectivity problem requires each target being covered by at least k sensors, while those

active sensors being connected as well. To solve this problem, a linear programming based

centralized algorithm and two distributed algorithms have been proposed. In [82], two algo-

rithms for efficient placement of sensors are presented to optimize the number of sensors and

determine their placement to support distributed sensor networks. These algorithms address

coverage optimization under the constraints of imprecise detections and terrain properties.

Furthermore, they are targeted at maintaining average coverage as well as at maximizing

the coverage of the most vulnerable grid points. The same coverage and placement problem

in a three dimensional field is studied in [83]. The problem is shown to be NP-hard, and

polynomial time approximation algorithms with proven approximation ratios are presented.

In [84], a novel sensor network coverage maintenance protocol called Coverage Aware Sensor

Engagement (CASE) was designed to efficiently maintain the required degree of sensing cov-

erage by activating a small number of sensors while putting the others in sleep mode. CASE

schedules active/inactive sensing states of a sensor according to the sensor’s contribution to

the network sensing coverage, which is quantitatively measured by a metric called “coverage

merit”. By activating sensors with relatively large coverage merit and deactivating those

with small coverage merit, CASE effectively achieves energy conservation while maintaining

sufficient sensor network coverage.
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2.2 PROBABILISTIC QUERY DISSEMINATION IN SENSOR

NETWORKS

A naive approach to deliver query q to its relevant sensor nodes is to flood q into the network.

In flooding, each sensor broadcasts query q to its neighbors when q is received. Apparently, in

this approach, a node may and often does receive multiple copies of q. However, as a matter

of fact, only one copy of q is needed at each sensor and all other copies are not needed.

As a result, a large number of redundant transmissions are incurred during flooding [86].

Probabilistic approaches such as Gossip were initially proposed to resolve inconsistencies

among database servers [87]. When a database is replicated at many sites, maintaining

mutual consistency among the sites in the face of updates is a significant problem. It has

been shown that deterministic algorithms for replicated database consistency can be replaced

with simple randomized algorithms. In randomized approaches, a site randomly updates

other sites during maintenance. The probability of inconsistency can be made arbitrarily

small by carefully configuring the random updating process. This problem shares a lot of

similarity with the routing request transmission in ad hoc networks and sensor networks.

In [88], Gossip is integrated with an ad hoc routing protocol to reduce the overhead

of sending routing requests into nodes in the network. Several probabilistic schemes are

presented to send routing requests to nodes in the network with high probability. In the

basic approach, a node, upon receiving a routing request message, m, forwards m to its

neighboring nodes with probability p. A very high probability that all nodes receive a copy

of the broadcast message, m, can be achieved if p is sufficiently high. To prevent the early

death of m, it is also suggested that the first several hops should always forward m to their

neighboring nodes. Other more complex schemes adapting p to local information, such as

the number of neighbors at sensor nodes, are also presented and discussed.

In the work described at [89], a Gossip-based broadcast scheme is investigated for het-

erogenous and dynamic networks. In these networks, it is impossible to adjust the parameters

of the Gossip algorithm off line. Instead, it must be dynamically adjusted to current network

conditions. A node’s gossip rate is adjusted according to the resources available within other

nodes in the network. This information, required to perform adaptation, is embedded in the
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normal gossip of data messages and exchanged among nodes through these data messages.

Global congestion information is used to control the message emission rate at nodes which

want to transmit data.

The probability can be further adapted to each node’s coverage information in the net-

work [90]. In such schemes, the contribution of each node to the broadcast of routing

requests is quantified as coverage in terms of area, copies or number of neighbors. The for-

warding probability is adapted to each node’s coverage contribution. The different values

of forwarding probabilities at neighboring sensor nodes ideally lead to a small set of nodes

forwarding routing requests at any time while ensuring that each routing request can reach

its destination node with high probability. The effect of probabilistic forwarding on the

route established is studied through simulations. Results show that transmissions of routing

requests can be further reduced with only a slight increase in routing delay.

In [91], Gossip-based approaches are utilized for group-based reliable multicast in large

scale distributed applications. A reliable probabilistic multicast scheme, rpbcast, is pre-

sented. Rpbcast is a hybrid of centralized and gossip based approaches. It uses gossip as the

primary retransmission mechanism and only contacts loggers if gossips fail. Rpbcast adds

packet reliability guarantees to Gossip-based multicast using loggers, and in the meantime

preserves the performance advantages of Gossip-based multicast. Large groups of active

senders are supported using negative gossip that specifies those messages a receiver is miss-

ing instead of those messages it has received. The negative gossip allows pull-based recovery,

which converges faster than push-based recovery. Rpbcast also applies hashing techniques

to reduce message overhead and approximate group membership for garbage collection.

The underlying assumptions of gossip are discussed in [92], as well as how sensitive the

robustness of gossip is to these assumptions. A list of five hidden assumptions are stated ex-

plicitly. Among them are “In a gossip protocol, participants gossip with one or more partners

at fixed time intervals”; “There is a bound on how many updates are concurrently propa-

gated” and “Every gossip interaction is independent of concurrent gossiping between other

processes”. The authors also discussed briefly how to ensure the performance advantages of

Gossip in different scenarios when these assumptions are not valid.

Probabilistic forwarding is also gaining attention in the area of sensor networks for broad-
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casting and routing [27][93][94][95]. In [27], a probabilistic routing algorithm, rumor routing,

is presented to reduce the communication cost of delivering events to queries. In rumor rout-

ing, when a sensor node observes an event, it probabilistically generates an agent to forward

the event to its neighboring sensor nodes. Similarly, when a query is generated or received

at a sensor node, the sensor node forwards the query in a random direction if it does not

have a route to the event. By disseminating events probabilistically to other sensors in the

network, a query may reach sensors along a route to the event with less number of hops.

Rumor routing, however, is only useful when the number of queries compared to the number

of events is not too large or too small. The parameters in rumor routing can be adjusted to

support different query to event ratios, delivery rates and route repairs.

Parametric probabilistic sensor network routing protocols apply a limited flooding strat-

egy during route discovery [93]. The key element is that the retransmission probability for

a packet at a sensor node is a function of various parameters rather than a constant. For

destination attractor, a sensor closer to the destination of a message forwards with a higher

retransmission probability. In contrast, for directed transmission, a sensor in the shortest

path towards the destination forwards with a very high probability. The global information

needed by these two schemes, the hop distance to the destination and the distance from

source to the destination is estimated using a light weight message exchange protocol. It has

been shown through simulations that different quality of service levels, measured as a fraction

of packets delivered, can be supported by destination attractors and directed transmission,

even in the presence of highly noisy network information.

Localized techniques for broadcasting in multi-hop ad hoc sensor networks are discussed

in [94]. The authors present three different schemes: the Irrigator protocol, the Irrigator v2.0

scheme and the Fireworks protocol. The first two schemes are based on the idea of flooding

over a sparse virtual topology, computed by means of inexpensive and fully decentralized pro-

tocols. The Fireworks protocol, instead, belongs to the class of on line probabilistic flooding.

It has been shown through simulation that the three approaches can significantly decrease

energy consumption and network load and increase the reliability of the broadcasting primi-

tive over the GOSSIP protocol, resulting in promising solutions for energy constrained sensor

networks.
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It has also been shown that further performance improvement can be achieved for gossip

by exploring network wide or local information [95]. For example, neighbor states are utilized

to set the gossip probability in [95]. The simulation results show that a superior performance

in terms of coverage, energy efficiency, per hop latency and overhead can be achieved. We

take this approach a step further and investigate how various kinds of local neighborhood

information can be explored to reduce the energy consumption for query dissemination in

sensor networks.

2.3 QUERY PROCESSING IN SENSOR NETWORKS

Several sensor database query systems, such as Cougar [56] and TinyDB [57], have been

developed by database researchers. These works aim to extend SQL-like systems for sensor

networks by focusing on reducing power consumption during query processing. The Cougar

approach to tasking sensor networks through declarative queries is introduced in [56]. A set of

challenging research problems, including distributed in-network processing, query optimiza-

tion, query languages, catalog management and multi-query optimization, are described and

discussed as well. TinyDB, a query processor for sensor networks that incorporates acqui-

sitional techniques, is presented in [57]. TinyDB is a distributed query processor that runs

on each of the nodes in a sensor network. TinyDB has many of the features of a traditional

query processor (e.g., the ability to select, join, project and aggregate data), but also incor-

porates a number of other features designed to minimize power consumption via acquisitional

techniques. These techniques, taken in aggregate, lead to significant improvements in power

consumption and increased accuracy of query results over non-acquisitional systems.

In addition to these two pioneer systems, a large number of studies have been conducted

to address many other aspects of query processing techniques for sensor networks [58][8][9][59].

An energy efficient routing scheme for data collection from all nodes in a sensor network is

proposed in [58]. The scheme explores suppression, both spatial and temporal, to reduce the

energy cost of sensor data collection. The suppression of spatial and temporal redundancy

is modeled by monitoring node and edge constraints. A monitored node triggers a report
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if its value changes. A monitored edge triggers a report if the difference in values between

its nodes changes. The set of reports collected at the base station is used to derive all node

values. The routing scheme, constraint chaining, builds a network of constraints which are

maintained locally but allow a global view of values to be maintained with minimal cost.

In-network processing and data aggregation are presented in [8][9]. To answer aggregated

queries such as “average” or “min”, sensor data can be aggregated at intermediate sensor

nodes to reduce the amount of data being transferred in the network during processing.

This approach, referred to as “in-network aggregation” can significantly reduce bandwidth

consumption over approaches where data is collected and aggregated centrally. The operator

placement problem, which deals with how to place filter operators in queries at the “best”

sensor node in the network based on its selectivity and cost so that the total cost of com-

putation and communication is minimized, is addressed in [9]. It is shown that the problem

is tractable; however greedy algorithms can be suboptimal. An optimal algorithm is then

presented for uncorrelated filters, correlated filters and multiway stream , respectively. The

work in [59] complements sensors with statistical data models to provide more meaningful

query results and reduce the number of message transmissions during data collection. Mod-

els can help provide more robust interpretations of sensor reading against inaccurate or even

faulty sensor readings and also extrapolate the values of missing sensors or sensors readings

at geographic locations where sensors are no longer operational. Furthermore, models pro-

vide new opportunities for optimizing the acquisition of sensor readings, because sensors are

only used to acquire data when the model itself is not sufficiently rich to answer the query

with acceptable confidence.

Multiple query processing, in particular the optimization (MQO) problem, has been

studied by database researchers [96]. The focus is given to finding common sub-expressions

in a single complex query or multiple such queries run as a batch. By identifying and

evaluating the common sub-expressions only once, the overall evaluation cost of multiple

queries can be reduced. Greedy and heuristic search algorithms have been designed for this

purpose. The focus of MQO in sensor networks, however, is different since data in sensor

networks is spread over all sensors and aggregated results are usually returned to a base

station during query processing. The sensor data, once aggregated, is difficult to reuse at
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the base station for multiple query optimization. New schemes, therefore, should be proposed

to address these new challenges.

The MQO problem has been recently addressed by several researchers [97][98][99][100].

The scheme presented at [97] explores using spatial query information for multi-query opti-

mization. A notion equivalence classes (EC) is defined as the union of all regions covered by

the same set of queries. A query is then expressed as a set of ECs intersecting with its query

region. In this approach, EC becomes the unit of processing and the results from these ECs

are used to derive the processing results of queries. Experimental results show that large

amount of energy can be saved using this optimization technique.

The impact of MQO is analyzed in the work described at [98]. A cost model was de-

veloped to study the benefit of exploiting common subexpressions in queries. The authors

also propose several optimization algorithms for both data acquisition queries and aggrega-

tion queries that intelligently rewrite multiple sensor data queries (at the base station) into

“synthetic” queries to eliminate redundancy among them before they are injected into the

wireless sensor network. The set of running synthetic queries is dynamically updated by

the arrival of new queries as well as the termination of existing queries. A synthetic query,

is rewritten from a set of queries and essentially collects data for all these queries. The

idea of synthetic query works for queries collecting raw data, but not for aggregated queries.

Data aggregation, such as summation, is like a one way function. From the raw data, the

aggregated value can be derived, but not vice versa. Similarly, from the aggregated result for

a synthetic query, the aggregated result of the queries which the synthetic query is written

from cannot be derived, even if the raw sensor data of these queries are contained in the

synthetic query.

The scheme is then extended into a Two-Tier Multiple Query Optimization (TTMQO)

scheme [99]. The first tier, called base station optimization, adopts a cost-based approach to

rewrite a set of queries into an optimized set that shares the commonalities and eliminates the

redundancy among the queries in the original set. The optimized queries are then injected

into the wireless sensor network. The second tier, called in-network optimization, efficiently

delivers query results by taking advantage of the broadcast nature of the radio channel and

sharing the sensor readings among similar queries over time and space at a finer granularity.
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These proposed schemes for MQO [97][99] have explored spatial or temporal information

among queries to reduce the transmission costs of multi-query processing. In this thesis, We

propose to investigate a finer granularity, the semantic correlation among multiple queries,

to further optimize multiple query processing in sensor networks.

The problem of “Many-to-Many aggregation” in sensor networks is addressed in [100],

where destinations require data from multiple sensors while sensor data are also needed by

multiple destinations. The ideas of multicast and in-network aggregation are combined to

reduce communication costs. It is natural to use multicast to send source reading at sensors

to multiple destinations. In the meantime, in-network aggregation is used to reduce the

data communication costs for each destination. However, a sensor reading, once aggregated,

becomes specific for one destination, and cannot be reused by other destinations. The goal

is to determine when the in-network aggregation should be performed during multicast to

minimize the overall communication costs for all destinations.

A similar problem of computing multiple aggregations in stream processing is studied

in [101]. In stream processing, many users run different, but often similar, queries against

the stream. Several techniques have been developed to find commonalities among aggregated

queries with same or different predicates and windows. The stream is chopped into slices

for aggregated queries with the same predicate but different windows. For queries with

the same window but different predicates, the predicates of queries are used to divide the

tuples at stream source into fragments. These tuples in fragments can be aggregated to form

partial fragment aggregates, which can in turn be processed to produce the results for various

queries. These two techniques are put together to process queries with different predicates

and windows. The proposed approach is particularly effective in handling query update in

a streaming system.

2.4 LOCATION DISCOVERY IN SENSOR NETWORKS

The localization schemes that use reference nodes can be classified into two main categories:

range-based schemes and range-free schemes. Range-based schemes mainly consist of two
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basic phases: distance (or angle) estimation and distance (or angle) combining. Distance

estimation handles how to estimate the distance or angle between two nodes. In the distance

combining phase, this information is combined to derive the locations of unresolved nodes.

The most commonly used methods in distance estimation include received signal strength

indicator (RSSI), time based methods (ToA, TDoA), and the angle-of-arrival (AoA) tech-

nique [102]. RSSI measures the power of a signal at the receiver and derives the distance

between the sender and receiver, based on the known transmission power and propagation

model. Time based methods record the time of arrival (ToA) or time difference of arrival

(TDoA) and translate it directly into the distance based on the known signal propagation

speed. ToA and TDoA are used at GPS [103] and Cricket [104] for distance estimation. In

the work described in [105], it is shown these location estimation problems can be solved by

measuring the received signal strength from just one or two anchors in a two dimensional

plane with directional antennas. If the antennas of a target sensor node are aligned, then the

power received by multiple receiving antennas of the target from a single transmitting an-

tenna on an anchor can be used to estimate the position of the target sensor node. Otherwise,

received power at two different antennas of the target node from two transmitting antennas

of one anchor node can be used for location discovery. The power received at antennas from

two different anchor nodes using uncorrelated channels can be used to improve the location

estimation accuracy. In these schemes, it is assumed that anchor nodes can talk to all other

nodes in the network. Therefore, one node can estimate its location by communicating with

anchor nodes directly.

Distributed positioning algorithms, in contrast, do not assume anchor nodes can talk to

all other nodes in the network. In distributed positioning schemes, a small set of anchors

randomly distributed over the network starts the location discovery process by communi-

cating to immediate neighboring nodes. A sensor node, upon receiving messages from its

neighboring nodes, computes the distance or angle between them and derives its own loca-

tion from this information. After a node successfully estimates its own position, it becomes

an anchor node and continues the location discovery process by sending messages to its

neighboring nodes. The process continues until all nodes resolve their locations or no more

sensor nodes can resolve their locations. In the distance combining phase, multi-lateration
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techniques, such as atomic, collaborative and iterative multi-lateration, can be used to esti-

mate sensor nodes’ location [106]. The N-Hop Multi-lateration scheme [107] discusses the

conditions under which one-hop, two-hop and n-hop multi-lateration can uniquely determine

nodes’ locations. Obviously, for successful one-hop multi-lateration, an unknown node must

be neighbor to at least three nodes whose positions are known. In addition, it is necessary

for an unknown node to use at least one reference point that is not collinear with the rest of

its reference points in order to uniquely determine its location. Similar conditions are also

defined for two-hop and n-hop multi-lateration. The Ad-hoc Positioning System (APS) [108]

uses four different distance metrics, ranging from minimum hop count and sum of hop lengths

to local geometric constructions to locate nodes in the network. A variant of APS utilizes

angle-of-arrival of signals received from anchor nodes for location estimation [109]. These

schemes rely on a high level of network connectivity so that each node can gain sufficient

information in the distance combining phase for location estimation. Furthermore, a high

percentage of anchor nodes must exist to achieve a small location error at each sensor node.

The schemes presented in [110][111][112] use mobile beacons whose locations are always

known to help location discovery in terrestrial sensor networks. The mobile beacon nodes

traverse the sensor network and disseminate their locations to other nodes in the network. A

sensor node keeps track of location of and distance to the mobile beacon when it is moving.

This information can then be used to derive the unknown sensors’ location. Apparently, the

trajectory of the mobile beacon and when the mobile beacon sends packets to other nodes

are critical to the location discovery scheme. It is shown that all sensors can estimate their

location as long as the trajectory of the beacon covers the entire deployment area in such a

way that each point receives at least three non-collinear beacon messages [110]. In [111], a

mobile user is used to collect inter-node distances between sensors and the mobile user. A

movement strategy is carefully designed so that the collected distances can produce a globally

rigid structure of known distances among the sensors in the network. In the perpendicular

intersection scheme presented in [112], a sensor node keeps measuring received signal strength

from a mobile beacon which moves in a specially designed trajectory. It is known the received

signal strength depends on the distance between the sending sensor and receiving sensor, and

reaches the highest value when the sender and receiver are closest to each other. When the
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mobile beacon moves along a straight line, a sensor node receives the strongest signal when

the line between the sensor node and mobile beacon is perpendicular with the trajectory

line of the mobile beacon. By not directly mapping distance from signal strength, which

usually introduces inaccuracy in distance estimation due to noise, the scheme can achieve

high accuracy for location estimation in sensor networks.

Range free localization schemes, such as [113][114][115][116] do not use range or bearing

information for location estimation purposes. As a result, these schemes are generally simpler

than range-based schemes. However, on the other hand, these schemes only provide a coarse

estimation of a sensor node’s location.

DV-Hop [113] employs a classical distance vector exchange protocol to maintain a node’s

distance in terms of hops to all anchor nodes. The hop distance is translated into physical

distance after an average distance per hop is estimated based on the hop distance and

geographical distance among anchor nodes. The estimated distance to anchor nodes are then

used to perform triangulation at each node for location estimation. The DV-Hop algorithm

performs well only in networks that have uniform and dense node distribution.

A variant of DV-Hop, Density-aware Hop-count Localization (DHL) have been pro-

posed to improve the accuracy of location estimation when the node distribution is not

uniform [114]. DHL incorporates density of a node’s neighborhood into the average hop

distance estimation. Consequently, it can estimate a more accurate location of sensor nodes

than DV-Hop in real deployment scenarios of sensor networks.

Area Localization Scheme (ALS) [115] locates sensor nodes into a certain area instead

of an exact coordinate. Each anchor node sends out beacon signals at a set of predefined

power levels. The sensors measure the lowest power level that they can receive from each

anchor node. The information is then synthesized into an n-dimensional coordinate, where

ith coordinate represents the lowest power level from the ith anchor node. The granularity of

the scheme depends on the interval of power levels each anchor is configured at to broadcast

its beacon signals.

Approximate Point In Triangle (APIT) [116] uses RSSI of beacon signals received from

anchor nodes to determine if a sensor node is inside a given triangle. The APIT tests are

carried out with all different combinations of audible anchor nodes. The test results are then
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aggregated together and the location is estimated as the center of gravity of the intersections

of all these triangles. This scheme requires a large level of node density to achieve a good

level of accuracy of location estimation.

Several other schemes have been proposed to ensure robust location estimation against

range estimation errors or erroneous reference information [117][118][119], to reduce the

number of beacon signals needing to be used for location discovery [120], or to reduce location

measurement error cumulation [121]. The localization problem in sparse networks has also

drawn interest from researchers recently. In [122][123], the conditions for unique localization

in networks are studied and used to identify all the localizable nodes in partially localizable

networks to prevent flawed location estimations. Furthermore, a special class of sparse

network, bilateration network, is investigated in [124]. The finite possible location sets of

nodes are derived sequentially and some particular edges in the network are then used to

sweep location possibilities. It is shown that nodes in a bilateration network can be finitely

localized using the proposed scheme.

2.5 SUMMARY

This chapter presented an overview of the research related to the framework for enabling

semantic views in the areas of: sensing coverage, query dissemination, multi-query processing

and location discovery in sensor networks. Section 2.1 presents the current research on how

to ensure a required level of coverage by sensors using a minimal amount of energy. In

section 2.2, related work on disseminating queries to relevant sensor nodes in the network is

discussed. The state of arts for query processing and data collection in sensor networks is

detailed in section 2.3. Section 2.4 describes the currently available approaches for location

discovery in sensor networks.
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3.0 OVERVIEW OF THE FRAMEWORK

This chapter presents an overview of the proposed framework. The definition of semantic

view is given first, followed by a detailed description of the architecture and components of

the proposed framework.

The framework aims to enable energy efficient semantic views for data intensive appli-

cations in sensor networks. The inputs are user information needs, which are captured and

defined as semantic views. The framework, consisting of algorithms and protocols at the

base station and the sensors in the network, builds an infrastructure to efficiently identify,

select and collect the relevant data from sensor nodes for processing these semantic views.

3.1 SYSTEM MODEL

3.1.1 Network Model

A sensor network consists of a base station and a set of sensor nodes. Each sensor has multiple

sensing capabilities and can sense k types of data. For simplicity, sensors are assumed to

have the same sensing range and to consume the same amount of energy, es, per sensing for

the same type of data. Each sensor divides its time into epochs. During each epoch, a sensor

only sample data once if needed. It is assumed that time synchronization among sensors can

be achieved using schemes like [125]. The coverage requirement specifies a level of coverage

required over an area in the field. It is defined per epoch and keeps changing from epoch to

epoch. If a coverage requirement lasts more than one epoch, it is repeated through all the

epochs in its lifetime. The coverage requirement may arrive at different times within one
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Figure 4: Query example in sensor networks

epoch. Figure 4 presents an example scenario of query arrivals.

For each type of data t, the sensing board is either “on” or “off”. Initially, the sensing

capabilities are turned off for all sensor nodes when they are deployed in the field in order to

save energy consumption. The relevant sensing capabilities at sensor nodes are then turned

on or off according to schedules made by the base station for given user queries.

3.1.2 Energy Model

A sensor consumes energy for both sensing and communication. Each sensor, once scheduled

to sample the field, must consume energy for sensing and delivering the sensed data back to

the base station. In addition, it may also consume energy in order to relay data from other

sensors to the base station. Furthermore, to avoid collision, sensors may have to exchange

messages for successful data transmissions. These issues, however, are not the focus of this

research. Therefore, the energy consumption for message retransmission due to collisions is

not considered in our model.

As mentioned above, each sensor consumes es per sensing. A sensor may consume dif-

ferent amounts of energy for message sending and receiving. For simplicity, in the energy

model it is assumed that they are the same. Each sensor, once scheduled to sample the field,

must also send the sensed data back to the base station. Therefore, it also consumes ec per

sensing. A sensor, consumes no energy if it is not scheduled to sense.
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3.1.3 Semantic View Definition

Let S = {Si, 1 ≤ i ≤ n} be a set of sensors, ∀Si ∈ S, let D(Si) = {dSi
j , 1 ≤ j ≤ t}, where

dSi
j is the type j data sensed by sensor Si. Furthermore, let D = {⋃Si∈S D(Si)} represent

the set of data sensed by the network. Given a group of users, g, a semantic view Vg is now

defined as:

Definition 1. A semantic view Vg =< Dg, Πg >, where Dg is a set of data and Πg is a

set of boolean functions. Πg = {P i
g(), 1 ≤ i ≤ n}. P i

g : D −→ {true, false} and Dg =
⋃

Pg∈Πg
{d|d ∈ D and Pg(d) = true}.

Different semantic views may share common interests. The notion “Correlated” is used

to define such semantic views.

Definition 2. Given two semantic views, Vgi
, and Vgj

, Vgi
and Vgj

are correlated if and only

if Dgi

⋂
Dgj

6= ∅.

In order for sensors to understand and process semantic views, a set of queries are

constructed from a semantic view. Let Q be a set of m queries, Q = {qi, 1 ≤ i ≤ m}, and

the data collected by a query qi, D(qi) = {d|d ∈ D and d satisfies qi}, the results for Q,

D(Q) then equals to
⋃

q∈Q D(q). Given a semantic view Vg =< Dg, Πg >, a set of queries,

Qg is constructed such that Qg = {q | ∃d ∈ Dg, d ∈ D(q)} and Dg == D(Qg).

The definition of a query is given in the following section.

3.1.4 Query Definition

The following simple declarative language is used to define user queries. The language defines

variable, predicate and rule, by which a query is defined.

Definition 3. A variable, V , can be the name of a data attribute sensed by nodes in the

network, location of sensors, temporal specification of data sampling or level of coverage

requirement.

Definition 4. A predicate, P , is in the format of < V op constant >. “op” is the arith-

metical operator, <,>,≤,≥, =, or 6=. Each P , specifies a filter on the data to be collected.
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Definition 5. A rule, R = (R ∧ P ) || P , is either a conjunction of predicates or a simple

predicate.

Definition 6. A query, q, is in the format of AF (V )?R1 ∨R2 ∨ · · · ∨Rm. AF specifies an

aggregate function on variable V , such as Max, Min, Avg. AF can be null if no aggregation

is needed.

The location variable X, Y, Z specifies a location constraint of a query. In other words,

a query q is only interested at sensor data in a certain area if a location constraint is given.

Otherwise, by default, a query seeks data from all sensors in the network. Another special

variable in our query language is Level of Coverage, LoC. LoC enables a user to specify the

desired quality of sensing. It enforces that each point in the query q’s target area must be

covered by at least LoC different sensors. The default level of coverage is 1 if not specified

explicitly.

The temporal variable specifies the interval of query processing. Based on the value of

the temporal variable, a user query can be classified into a snapshot query, which is only

executed once, or a long-lived query which collects data from the sensor network repeatedly

during a specified time period, T , in a specified interval.

A query, q, essentially specifies a set of filters on the sensor data to be collected, in

addition to the spatial-temporal constraints and level of coverage requirement. q is eventually

mapped to a set of sensor nodes, Sensors(q), whose data meets all the rules in q and the

other constraints.

A simple query q in a traffic sensor network can be given as :

WithinArea(X,Y ) = X ≤ 200 ∧X ≥ 100 ∧ Y ≤ 200 ∧ Y ≥ 100

Filter(X,Y, T ) = WithinArea(X, Y ) ∧ T = 0

q = Avg(Speed)?Filter(X, Y, T )

The rule “WithinArea” expresses that the potential interesting data are those sensors

within a square area from (100,100) to (200,200). T = 0 indicates that this query is a

snapshot query. q then shows that the data to be collected should be aggregated as the

average speed.
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3.2 FRAMEWORK ARCHITECTURE

The proposed framework for enabling energy efficient semantic views is presented in Figure 5.

It mainly consists of four components: query aware sensing, probabilistic query dissemina-

tion, correlated multi-query processing and location discovery. The correlated multi-query

processing is further divided into two parts: the correlated multi-query processing at the

base station and correlated data collection at the sensor nodes. Upon receiving a user se-

mantic view, the base station uses query aware sensing scheduling to determine what sensors

should sense data for the user semantic view. It then uses correlated multi-query process-

ing to derive a new set of queries and SIVS and delivers these queries and SIVS to sensor

nodes using probabilistic dissemination. After the relevant set of sensors are decided for the

semantic view, sensors use correlated data collection to send their data back to the base

station. Through the whole lifetime of the sensor network, the location discovery protocol

is executed at sensor nodes periodically to determine sensors locations, and the end-to-end

pairwise key establishment scheme is used to provide symmetric keys between sensors for

secure message exchange.

In query aware sensing, the set of active sensors is dynamically adjusted to achieve the

required level of coverage for the current set of semantic views. When new queries arrive

at the base station, the base station first derives the level of coverage requirement, COV ,

from these queries. Then based on the current sensing scheduling, it computes a minimum

set of sensors which must be additionally activated in order to provide the desired level of

coverage using a greedy algorithm. These sensors are then added to the current set of active

sensors. When the current sensing period ends, the current set of active sensors is updated

from the set of queries which still need to be processed. The sensors do not sample data and

turn off their sensing boards unless they are instructed by the base station to sense, rather

than they are constantly sensing.

The queries in semantic views are also used at the same time by “correlated multi-query

processing” at the base station. An estimation model is used to measure the size of shared

data between two queries. Based on the estimation value, pairs of queries are selected in

36



Scheduling
  Sensing

Existing COV

      COV
  Derivation     Sensing

     Greedy

     Update
     COV

     SIVS
 Construction

    Query
    Rewriting

 Aggregation

     SIVS
     Update

Existing SIVS

New SIVS
   Q

  New

Query

Results

Sensing
 Aware

Q’

Queries

 Correlated Multi−query Processing

 Query

at base station

Data

Location of Sensors

       Query
  Dissemination

  Probabilistic

     Correlated

    Location
   Discovery

     Collection
        Data

   End−to−end
  Pairwise key
  Establishment

Figure 5: The framework for enabling energy efficient semantic views in sensor networks

37



such a way that the estimated size of shared data among all these pairs is maximal. A shared

intermediate view is constructed for each pair of queries, which captures the actual set of

sensor data shared by these two queries. To ensure semantic correctness, the original queries

are rewritten into a different set of queries such that the data for an original query is now

divided into the set of sensors for the shared intermediate view and the rewritten query. The

set of shared intermediate views is also dynamically updated when new queries arrive at the

base station. As in query aware sensing, the set of shared intermediate views is cleared at

the end of a sensing period and rebuilt at the beginning of the next sensing period.

These shared intermediate views, along with the rewritten queries, are delivered to sen-

sor nodes in the network using probabilistic query dissemination. In probabilistic query

dissemination, each sensor forwards a query with a certain probability. This probability is

adapted to each sensor node’s local information, such as the additional area its forwarding

can cover, or the additional number of sensor nodes its transmission can reach, or the number

of messages with the same query it has already overheard.

After sensors receive the queries, they use correlated data collection to reduce the number

of data transmissions for correlated queries. In correlated data collection, each sensor node

stores its data to a proxy sensor node which is closer to the base station. A proxy node

is established when the data at the sensor node is first acquired by a query. The node in

the routing tree which first aggregates the value of a sensor node is the proxy sensor for the

sensor node. After a proxy sensor has been established by a sensor node, any later query

requesting its data shall retrieve the data from its proxy node. If the proxy node of a sensor

fails, a new proxy node is established when the next query requests data from the sensor.

Sensors run the location discovery using Out-of-Range information with multi-lateration

to compute their locations, which are used by query aware sensing to determine how to

use the sensors to achieve a desired level of coverage and by sensors to check if its data is

needed for queries with geographical constraints. In this scheme, some sensors are initially

configured as reference nodes or anchor nodes. The scheme starts with the anchor nodes

disseminating their positions to neighboring unknown sensor nodes. An unknown sensor node

then measures its distance to each of the neighboring reference/anchor nodes respectively,

assuming that the distance between two sensors can be estimated using methods such as
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RSSI or ToA. If more than three neighbor nodes are reference nodes, an unknown node then

estimates its own location using trilateration. In addition, the least square method is used

to refine a sensor node’s location in an over determined system. Otherwise, the unknown

sensor node sends messages to non-neighboring nodes to check if they can help to resolve its

location using Out-of-Range information. It is shown that the out-of-range information, i.e.

when the distance between two non-neighboring sensors is larger than a certain threshold

value, can be used to resolve location ambiguities in many scenarios. Once the unknown

sensor’s location is resolved, an unknown node becomes a reference node and disseminates

its position to other unknown nodes in the network to enable the continuation of the location

discovery process.

Furthermore, an end-to-end pairwise key establishment scheme based on key pre-distribution

is used to set up symmetric keys between sensors. The scheme enhance the security of path

keys by using multiple secure paths during key establishment. These symmetric keys are then

used to protect message exchanges in semantic view processing against packet eavesdropping

and traffic analysis by attackers.

39



4.0 QUERY AWARE SENSING

This chapter discusses the query aware sensing component in the proposed framework. An

energy model and network model are presented at the beginning to form the basis of dis-

cussion. The level of coverage requirement is derived from user semantic views and the

sensing problem is formulated as an integer programming problem. A heuristic based greedy

algorithm, referred to as “GRASS”, is then presented to compute a minimum set of active

sensors at a specific time period. The dynamic update of the active set of sensors is also

discussed as new queries may be added to the network and old queries may leave.

4.1 PROBLEM STATEMENT

The main idea of sensor scheduling is to reduce energy consumption of sensor nodes by turn-

ing off some sensor nodes’ sensing capability under the condition that the remaining sensor

nodes still provide the desired level of coverage. In previous studies of sensor scheduling, it

has been assumed that a fixed level of coverage is required over the sensor deployment field.

However, given a group of diversified user interests, the level of coverage may vary from one

area to another in the field. Furthermore, the user interests may also change from time to

time. The level of coverage, therefore, may also vary over time. A fixed high level of coverage

can provide a high quality of sensed data. However, it might be over-provisioning when no

interesting event is occurring in the network. On the other hand, if some event does occur

and the fixed level of coverage in the area is low, the quality of sensed data in the area of

focus will be low. Therefore, the level of coverage should be adapted to user queries and the

sensor nodes should be scheduled thereafter to achieve the desired level of coverage.
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Let n be the number of sensors in the network, t be the number of types of data a

sensor can sense, cj be the energy consumption per sample of data of type j, ei be the

residual energy of sensor i and SA(i) be the sensing area of sensor i. A set of m queries,

Q = {q1, q2, . . . , qm}, defines a sensing coverage requirement over the deployed field based on

the constraints specified in the queries. Let COV j
q be the coverage requirement of query q

over data type j. Each query, q, specifies a targeted area, A, and a Level of Coverage, LoC.

A is the area to be sensed for the current query, and LoC enforces that each point in A must

be covered by at least LoC different sensors in order to provide the desired quality of sensed

data. COV j
q is, then expressed as a tuple (Aj

q, LoCj
q ). The problem is to determine a sensing

scheduling to minimize:

n∑
i=1

t∑
j=1

(Xij × cj) (4.1)

Where Xij = 1 if sensor i is selected to sense data type j. Otherwise, Xij = 0. The schedule

must satisfy the following constraints:

∀q ∈ Q, ∀j, 1 ≤ j ≤ t,∀P ∈ Aj
q,

n∑
i=1

Xij × (P ∈ SA(i)) ≥ LoCj
q (4.2)

and

∀i, 1 ≤ i ≤ n, ei −
k∑

j=1

Xij × cj ≥ ethreshold (4.3)

Constraint 4.2 requires that the desired coverage requirement of each query must be

satisfied by the current scheduling of sensing. Constraint 4.3 enforces that each sensor

configured to sense data for the current set of queries has at least the amount of ethreshold

energy left after data sampling. The ethreshold must be large enough to allow the current

sampled data to be transmitted back to the base station. Otherwise, the sampled data

would be lost and the level of coverage requirement would not be met.

Constraint 4.2 can be simplified into the following:

∀j, 1 ≤ j ≤ t, ∀P,

n∑
i=1

Xij × (P ∈ SA(i)) ≥ LoCj
P (4.4)
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Where LoCj
P , the level of coverage at a point P , is defined as follows:

LoCj
P = max

∀q∈Q,P∈Aj
q

LoCj
q (4.5)

Constraint 4.4 can be further transformed into a list of constraints if an area is ap-

proximated into a set of points. The maximum number of constraints from 4.4 is t ×
NumberOfPoints, in which the NumberOfPoints depends on the granularity of approxi-

mation. This simplification transforms the sensing scheduling problem into an integer pro-

gramming problem, which is known to be NP-Hard. In the following section, a greedy

algorithm for query aware sensing scheduling is presented.

4.2 GRASS: A GREEDY ALGORITHM FOR SENSING SCHEDULING

In GRASS, the level of coverage requirement for each type of data j is transformed into

COV (j) = {(A1, LoC1), (A2, LoC2), · · · }, where ∀(Ai1, LoCi1), (Ai2, LoCi2) ∈ COV (j), Ai1∩
Ai2 = ∅. The rest of GRASS is an iteration-based algorithm. During each iteration, a

sensor node computes a weight, w, from COV (j) and its own sensing area. The weight

w measures how much coverage each sensor node contributes if it is scheduled to sense

data. The sensor with the highest weight is then selected during the current iteration. The

coverage requirement COV (j) is updated when a sensor i is scheduled to sense data j. One

sensor node is selected during each iteration and the whole process continues until COV (j)

becomes empty or all nodes have been selected. The overall steps of the greedy algorithm

are presented in Algorithm 1. The main steps COV derivation, weight computation and

COV update are further explained in the following sections.

4.2.1 COV Derivation

Each query q in Q may specify a coverage requirement, (Aj
q, LoCj

q ), for each type of data j

to be sensed. Aj
q may overlap with each other in Q. To better explain the level of coverage
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Algorithm 1 GRASS: A GReedy Algorithm for Sensing Scheduling
1: INPUT:

2: a set of queries, Q = q1, q2, · · · , qm

3: INITIALIZATION

4: ∀i, j, Xj
i = 0

5: Derive the level of coverage requirement, COV (j), from Q

6: while (COV (j) is not empty) do

7: Compute weight, w of each sensor, Si, based on its sensing area, SA, and current

COV (j)

8: Pick the sensor, i, with the largest weight, w, set Xj
i = 1

9: Update COV (j) according to sensor i’s sensing area, SAi

10: end while

11: OUTPUT:

12: Xj
i for each sensor i

requirement, the whole deployed area, A, is divided into disjoint subareas and the coverage

requirement of each subarea in defined a way similar to Equation 4.5.

LoCj
A = max

∀q∈Q, A⊆Aj
q

LoCj
q (4.6)

Given Equation 4.6, it is straightforward to derive the level of coverage from Q. The

algorithm is presented in Algorithm 2.

4.2.2 Weight Computation

The definition of weight is critical to the sensing scheduling algorithm. It determines which

nodes are selected during each iteration. Intuitively, a simple heuristic towards selecting a

minimal number of sensor nodes is to choose nodes which cover the most area left to be

covered. However, coverage of points in an area is shown to be correlated to each other

in [126]. In [126], the area to be covered is transformed into a planar graph G = (V,E), with

vertices V corresponding to the intersection points of the boundaries of all sensors’ coverage
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Algorithm 2 COV derivation

1: Initialization

2: COV = ∅
3: for all (q ∈ Q) do

4: ALEFT = Aj
q

5: for all (A,LoC) ∈ COV do

6: if LoCj
q ≥ LoC and ALEFT ∩ A 6= ∅ then

7: COV = COV − {(A,LoC)}+ {(ALEFT ∩ A,LoCj
q ), (A− ALEFT , LoC)}

8: ALEFT = ALEFT − A

9: end if

10: end for

11: if ALEFT 6= ∅ then

12: COV = COV + {(ALEFT , LoCj
q )}

13: end if

14: end for

regions and edges E connect pairs of adjacent intersection points along the boundaries of

sensor coverage circles. Figure 6(b) presents an example planar graph constructed from the

coverage requirement described in Figure 6(a). The main steps for constructing a planar

graph from the sensor locations and sensing ranges are presented in Algorithm 3.

Once the planar graph, G is constructed, it is easy to find all the faces by walking

through the edges of G. In a planar graph, a face can be identified by a directed edge and

its orientation. Furthermore, an edge also belongs to two faces if the outer face is included.

Giving these properties, a face can be found by starting from one edge and continuing at the

next node with the edge which is not included in two faces yet and has the largest clockwise

degree. The continual traversal of edges in this way can yield to a new face found. From

Euler’s formula, the number of faces in a planar graph G, f = e − v + 2, in which v is the

number of vertices and e is the number of edges in G [127]. Furthermore, it is known that if

v ≥ 3, then e ≤ 3v−6 [127]. In the planar graph constructed from a network with n sensors,
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Algorithm 3 Planar Graph Construction
1: INPUT:

2: a set of sensors, S,

3: for all sensor si, sj ∈ S do

4: if the sensing circle of si, sj intersects then

5: add two vertices, Vij, Vji to V

6: end if

7: end for

8: for all Vij ∈ V do

9: find all Vkl ∈ V , such that k == i||l == i

10: from these nodes, find the node(s) in the sensing circle of si, which is closest to where

si, sj intersects

11: add edges between Vij and these closest nodes to E

12: end for

13: OUTPUT:

14: planar graph G = (V,E)
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there are at most n(n − 1) vertices. As a result, there are at most 2n(n − 1) − 4 faces in

the graph. Once the faces are identified, each sensor’s coverage area is now represented as a

set of faces that the intersection point of each vertex of these faces are within the sensor’s

sensing area.

It is easy to see that for each face of G, i.e. the parts of the plane bounded by edges,

if at least one internal point is covered by a sensor, then the entire face is also covered by

the same sensor. As a result, a face shall be treated as the unit of coverage. Based on this

observation, a sensor which covers the most faces shall be chosen in order to minimize the

number of nodes for a coverage requirement. This heuristic leads to the definition of weight

as Equation 4.7.

wi =
∑

∀(A,LoC)

Number of faces in SA(i) ∩ A (4.7)

4.2.2.1 Faces Over Areas

It seems to be intuitive, simple and may also effective to select sensors with larger sensing

coverage area during sensing scheduling. However, as we pointed out above, a face is the

unit of coverage and it is more accurate to use faces to measure the weight of coverage than

using areas because a sensor covers a larger area doesn’t necessarily provide more coverage

in terms of sensing.

Take the coverage requirement described in Figure 6(a) for an example, if coverage area

is used to select sensors for scheduling in the greedy algorithm, sensor S2 would be selected

first and then the other two sensors must both be selected in order to cover the area. In

contrast, if faces are used, S1 covers {f123, f234, f246, f126}, S2 covers {f234, f246, f456},
and S3 covers {f126, f246, f456, f156} for the given area. At first, either S1 or S3 would be

selected since they both cover four faces, one more face than how many faces S2 can cover

even though S2 covers more area. As a result, only two sensor are needed to cover the area.
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4.2.3 COV Update

When a node i is selected to sense data j, it provides single coverage for all the queries

interested in data in its sensing area, SA(j). The level of coverage requirement set, COV ,

therefore must be updated to reflect such coverage. The main steps of the update are

presented in Algorithm 4.

Algorithm 4 COV update

1: ALEFT = SA(i)

2: for all (A,LoC) ∈ COV do

3: if ALEFT ∩ A 6= ∅ then

4: COV = COV − {(A,LoC)}+ {(ALEFT ∩ A,LoC − 1), (A− ALEFT , LoC)}
5: ALEFT = ALEFT − A

6: end if

7: end for

8: for all (A,LoC) ∈ COV do

9: if A == ∅ or LoC ≤ 0 then

10: COV = COV − {(A,LoC)}
11: end if

12: end for

4.2.4 Incremental Scheduling

At the beginning of each epoch, the base station uses the greedy algorithm to determine the

set of sensors to sense in this epoch based on the currently known coverage requirements.

When a new coverage requirement arrives later during this epoch, the areas covered by

current set of active sensor nodes are first deducted from the coverage requirement using

Algorithm 4 and additional nodes are scheduled to sense using the greedy algorithm.

At sensor nodes, the sensing boards are turned off at the beginning of an epoch to

conserve energy. Upon receiving a sensing schedule from the base station, a sensor turns on

its sensor board and senses data. After the sensing operation is finished, a sensor turns off

its sensor board for the rest of time during the epoch.
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A sensor may also turn off its radio to save energy. In order to receive the sensing

schedules from base station when the radio is off, a sensor must periodically wake up within

an epoch to check messages. These periodic checks, however, can be eliminated if a sensor

knows that it must wake up and sense in next epoch. This is possible since some queries are

periodic and repeat themselves over several epochs. In these cases, the base station knows

what queries will be executed in future epochs and can determine a scheduling that may last

for several consecutive epochs.

4.3 ANALYSIS

In this section, we develop an analytic bound on the approximation ratio of the proposed

algorithm. Using Algorithm 2, the coverage requirement can be rewritten into an equivalent

set of coverage of disjoint areas SC = {< A1, LoC1 > · · · < Am, LoCm >}. For each area

Ai, a planar graph is defined, and a set of faces Fi = {f1, f2, · · · , fmi
} is constructed. The

monitored area, Ai, is then represented as a set of faces Ai = {f |f ∩ Ai 6= ∅}. Each sensor

i is represented as a set of faces Si = {f |f ⊆ SA(i)}, in which each Si is a subset of

Ai. The coverage problem then is equivalent to select a minimum number of subsets from

{S1, S2, · · · , Sn}, such that:

∀f ∈ Ai, (
∑

1≤i≤n

f ∈ Si) ≥ LoCi (4.8)

This problem is a variant of the set covering problem and is referred to as the set k

covering problem since each element must now be covered k times. In comparison, each

element only needs to be covered once in the original set covering problem. The set k

covering problem is formulated as follows. Given a universe U = {a1, a2, · · · , am}, a set

S = {S1, S2, · · · , Sl} where ∀1 ≤ i ≤ l, Si ⊆ U , and an integer number, k, find a minimum

cardinality J ⊆ {1, 2, · · · , l} such that

∀x ∈ U, (
∑
i∈J

x ∈ Si) ≥ k (4.9)
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The set k covering problem can be approximated within a factor of Hmk in equation 4.10

using the proposed greedy algorithm. The details of the proof can be found in Appendix A.1.

Hmk =
∑

1≤i≤mk

1

i
≈ ln(mk) (4.10)

With respect to the number of faces, m, in the planar graph for an area Ai, m ≤
ni×(ni−1)+2, where ni is the number of sensors which covers a subarea in A [126]. Therefore,

for a single coverage < Ai, LoCi >, the approximation ratio is H(ni×(ni−1)+2)×LoCi
. Similarly,

an approximation ratio for a set of coverage SC = {< A1, LoC1 >, · · · , < Am, LoCm >} can

be derived as:

HP
1≤i≤m LoCi×(ni×(ni−1)+2)

≤ ln
∑

1≤i≤m

LoCi + 2 ln n (4.11)

4.4 SIMULATION RESULTS

4.4.1 Methodology

In the simulations, two metrics are used to evaluate the performance of the sensing scheduling

schemes: the average energy consumption and network lifetime. These metrics depend on

the energy consumption for communications and sensing. We started from a model that the

ratio of communicating over sensing energy consumption as 10 to 1, which is derived from

actual measurement of energy consumption of sensors [2]. To study the performance of our

scheme over other energy models, we also collected results when a different ratio 5:1 is used.

We simulated two levels of coverage by varying the number of sensors in a field of 50X50m.

In the case of 150 sensors deployed using uniformly random distribution, the average level

of coverage, i.e the average number of sensors covering one point in the field, is 10.3. The

value increases to 17 when 200 sensors are deployed on the same field. These values may

seem to be very high, and indicates that the whole area is very densely covered. However,

both cases can only guarantee each point in the area to be covered by at least 2 sensors,
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since the edges of the field are much sparsely covered than other areas. In the simulation,

the network of 150 sensors is referred as “moderately covered field”, while the network of

200 sensors is referred as “densely covered field”.

Table 1: Two types of field in the simulation

moderately covered field densely covered field

Number of sensors 150 200

Average coverage level 10.3 17

The sensing scheduling scheme adapts the sensors to the dynamic coverage requirement

at each epoch. Apparently, the performance of the scheme also depends on the level of

coverage required. During the simulation, the coverage load is used to measure how much

coverage is required for each simulation. It is defined as follows:

Coverage load =

∑
<A,LoC>∈SC A ∗ LoC

Λ×max(LoC)
(4.12)

In order to deliver the sensed data back to the base station, a sensor may need to

exchange messages with other sensors to maintain a routing tree and a contention free

channel for message transmission. In the simulation, this amount of energy consumption

is not considered since it must be consumed by any data collection scheme and is not related

with sensing scheduling. For simplicity, it is assumed each sensor only needs to send one

message for each sensed data. Therefore, one sensing operation consumes energy for one

data transmission in addition to the cost of one sensing.

4.4.2 Performance Comparison

The energy consumption of GRASS using faces is compared with GRASS using areas and the

optimal sensing scheduling for a static level k coverage. k is the maximum level of coverage

provided in the network and it equals to 2 in the simulations. The “Static-2” scheduling

selects a minimum set of sensors as follows. The area is approximated into a set of points,

SP , and each sensor is represented as a subset of points in SP . The coverage problem is
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Figure 7: Average sensing energy consumption in a moderately covered field

then equivalent to select a set of sensors such that each point in SP appears in the union

of points of selected sensors at least twice. This problem can be formulated as an integer

programming problem, which in general cannot be solved in polynomial time. But when

the number of points is small, the minimum set of sensors can be computed within a small

amount of time using GLPK [128].

It is easy to see that a static schedule can guarantee that no matter how the coverage

requirement changes, the sensing schedule can always provide the required level of coverage

in the field, under the cost that many unneeded sensors are being turned on and sensing

during each epoch. Figure ?? and Figure ?? present the average sensing energy consumption

for a single set of coverage requirement in modestly and densely covered field, respectively.

In these two figures, each point represents an average value over 30 different sets of coverage

requirement with the same coverage load. The confidence interval of each single piece of

data with a 95% confidence level is also presented.

As expected, GRASS using faces and GRASS using areas can both save save a significant

amount of energy consumption from sensing when the coverage load is small by adapting

the sensing schedules to the dynamic level of sensing coverage. The saving decreases as the

coverage load increases. When the coverage load is high, the static coverage actually con-

sumes a smaller amount of energy than the proposed scheme since the schedule is optimized.
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Figure 8: Average sensing energy consumption in a densely covered field

Therefore, when the coverage load is very high throughout the network lifetime, query aware

sensing should not be used. Instead, optimum static coverage should be used.

Also as expected, GRASS using faces consumes slightly less energy than using areas,

since it is more accurate to measure the sensing coverage contribution using faces than

areas. Furthermore, GRASS using faces can provide an approximation ratio over the optimal

sensing scheduling, while GRASS using areas cannot. Therefore, it is preferred to use faces

in GRASS than using areas.

The second set of simulation studies the sensing lifetime of GRASS using faces, GRASS

using areas and “static-2” coverage. The sensing lifetime is defined as the number of epochs

until the coverage of the field breaks. During the measurement of a sensing lifetime, a

set of coverage requirement with the same coverage load is generated during each epoch.

Figure 9 and Figure 10 present the average sensing lifetime in modestly and densely covered

field, respectively. In these two figures, each point is an average value of 20 runs of lifetime

measurement with the same coverage load.

Both Figure 9 and Figure 10 show that, when the coverage load is low, the GRASS using

faces and GRASS using areas can both achieve a much higher lifetime than the static-2

scheduling. On the other hand, when the coverage load is very high, static-2 coverage can

provide longer lifetime than GRASS schemes.
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Figure 9: Average sensing lifetime in a moderately covered field
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Figure 10: Average sensing lifetime in a densely covered field
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Figure 11: Average sensing lifetime with communication overhead in a moderately covered

field

4.4.3 Communication Overhead

In the proposed scheme, the sensing schedule is computed at the base station and must

be delivered from the base station to relevant sensors during each epoch. These messages

then incur an additional amount of communication overhead. Therefore, the energy saving

of sensing by the proposed scheme might be reduced by the amount of energy consumption

necessary to send the schedules. However, there are many ways to reduce the communication

overhead. For example, the sensing schedule can be combined with any broadcast message

from the base station to sensor nodes within an epoch, such as a data request from the base

station.

If a separate message must be sent from the base station to relevant sensors, an additional

amount of 10 units for receiving the sensing scheduling needs to be consumed at each sensor

per sensing in our scheme. Figure 11 and 12 present the results for the average network

lifetime when such communication overhead is considered in a network of 150 and 200 sensors,

respectively. The results show that the proposed scheme can still extend the network lifetime

when coverage load is low. Again, the network lifetime becomes shorter than the static-2

scheduling in the 150 nodes network when coverage load is 0.8 and 0.9.
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Figure 12: Average sensing lifetime with communication overhead in a densely covered field

4.4.4 Ratio of Communicating over Sensing Energy Consumption

Figure 13 and 14 compares the average sensing lifetime for two different ratios of communi-

cating over sensing energy consumptions, 10 to 1 and 5 to 1, in a moderately and densely

covered field, respectively. Our scheme mainly saves energy by eliminating unneeded sensors

from sensing while still providing the required level of coverage. A lower ratio of communi-

cating over sensing energy consumption means saving in sensing energy consumption can be

used for more data transmissions. As a result, the sensing lifetime is expected to be bigger,

as shown from the results in Figure 13 and 14.

The difference in lifetime decreases as the coverage load increases since the energy saving

also decreases. The same pattern can be observed from the results presented in Figure 15

and 16, which takes the communication overhead per sensing scheduling into consideration.

In short, our scheme is more effective if the ratio of communicating over sensing energy

consumption is lower.
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consumption in a moderately covered field
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consumption in a densely covered field
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Figure 15: Average sensing lifetime with communication overhead for two ratios of commu-

nication over sensing energy consumption in a moderately covered field
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4.5 SUMMARY

In this chapter, the query aware sensing component in the framework is presented in detail.

In query aware sensing, the coverage requirement is derived from semantic views and the

sensing coverage problem is transformed into an integer programming problem. A greedy

based heuristic algorithm is then developed to select a minimum set of working sensors to

sample data requested by semantic views. The simulation results show that various amount

of energy can be saved unless the required level of coverage on the field is extremely high.
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5.0 PROBABILISTIC QUERY DISSEMINATION

This chapter describes the probabilistic query dissemination of queries and shared interme-

diate views to relevant sensors in the network. To reduce the query propagation cost, the

probability p of nodes forwarding a query q is adapted to various types of local topology

information, i.e. transmission area and neighborhood information. Four schemes, namely

Area Coverage-based Probabilistic Forwarding (ACPF), Copies Coverage-based Probabilistic

Forwarding (CCPF), Area and Copies Coverage-based Probabilistic Forwarding (ACCPF)

and Neighbor Coverage-based Probabilistic Forwarding (NCPF) are presented and discussed

in the chapter. A remedy process is also presented to send queries to these sensors which do

not receive queries after the probabilistic forwarding process.

5.1 PROBLEM STATEMENT

Given a set of queries, Q = {q1, q2, . . . , qm}, if query q wants to collect data from area

At
q, the potential relevant nodes are a subset of nodes {N |Loc(N) ∈ At

q}. Otherwise, the

potential relevant nodes are all the nodes in the network. A node determines if its data

should be collected for query q only after the data is sampled. In other words, the query

must be delivered to all potential relevant nodes in order for the query to be processed in

the network.

The dissemination of query q can be modeled as a directed propagation graph G(q). G(q)

is a subgraph of the network. All potential relevant nodes of query q must be connected

to the base station node in the propagation graph. The communication cost of a node N

in the propagation graph consists of the energy to receive q and the energy of forwarding
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q to other nodes in the network. Let nq
r be the number of copies of q node N receives and

nq
s be the number of copies of q node N forwards. For each edge e =< Ni, Nj > in G(q),

(ni)
q
s = (ni)

q
s + 1, and (nj)

q
r = (nj)

q
r + 1. Assuming the communication cost of sending a

query is es and that of receiving a query is er, the total communication cost at node N for

propagating q is:

er ∗ nq
r + es ∗ nq

s (5.1)

The communication cost of the propagation graph G(q) of query q, therefore, is:

∑

N∈G(q)

er ∗ nq
r + es ∗ nq

s (5.2)

Given 5.2, it is easy to know that the communication cost of propagating a set of queries

Q to their potential relevant nodes is:

∑
q∈Q

∑

N∈G(q)

er ∗ nq
r + es ∗ nq

s (5.3)

Any redundant query propagation will increase the cost in Equation 5.3. The challenge,

therefore, is to reduce redundant query transmissions as much as possible, while delivering

the query request to all relevant sensor nodes.

5.1.1 Probabilistic Forwarding

Probabilistic forwarding was introduced to reduce the communication overhead of broadcast

in ad hoc and sensor networks [88][94]. In the basic Gossip scheme, each intermediate sensor

rebroadcasts a broadcast message with a probability p. Obviously, when p equals 1, the

scheme reverts back to flooding, while when the value of p is less than 1, the average amount

of flooding traffic is reduced by a fraction of (1− p). Apparently, the value of the parameter

p is critical to the efficiency of the probabilistic forwarding scheme. The lower p is, the

fewer messages are broadcasted but also the smaller fraction of sensors can be reached after

probabilistic forwarding. In this chapter, we show how to adapt the probability p to local
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topology of each sensor node to reach a larger number of sensors with a smaller number of

transmissions.

The first scheme, referred to as Area Coverage-based Probabilistic Forwarding (ACPF),

exploits the overlapping of transmission areas between neighboring nodes to determine the

value of p a sensor uses to forward a query. Based on this scheme, this value of p de-

pends on the extra coverage achieved by a rebroadcast of the query message— the larger

the coverage, the higher the value of p. The second scheme, referred to as Copies Coverage-

based Probabilistic Forwarding (CCPF), takes a different approach and uses the number

of duplicate query messages overheard during a random time interval to determine its for-

warding probability, p. As the number of the overheard duplicate query messages increases,

the forwarding probability of the sensor decreases. The third scheme, referred to as Area

and Copies Coverage-based Probabilistic Forwarding (ACCPF), takes advantage of both the

transmission area coverage and the number of the overheard duplicates of the same query to

determine the value of p. The last scheme, referred to as Neighbor Coverage-based Proba-

bilistic Forwarding (NCPF), eliminates unnecessary rebroadcast by maintaining neighboring

information at each sensor node. In this scheme, a sensor, which finds that all of its neigh-

bors have been covered by other nodes’ rebroadcast, refrains itself from forwarding the query

message.

These four schemes, when combined with m-technique, become ACPFM, CCPFM, AC-

CPFM and NCPFM. The m-technique is that a sensor rebroadcasts a query message if it

does not forward the query message at first and then overhead fewer than m copies of the

same queries afterwards within a certain period of time. This technique, although simple, can

be used to increase the number of sensors to reach for the probabilistic forwarding schemes.

5.2 AREA COVERAGE-BASED PROBABILISTIC FORWARDING

The ACPF exploits the fact that the overlap between a sensor’s own coverage area and its

neighbors’ coverage areas is critical in reducing the number of duplicate query propagation

within a neighborhood. In a wireless sensor network, the coverage areas of neighboring sensor

61



Figure 17: Extra area that node N2 can cover by rebroadcast

nodes typically overlap. Furthermore, it is usually the case that the additional area covered

by a sensor’s rebroadcast, after receiving a message from its neighbor, is a small fraction of

the whole node’s coverage area, as depicted by Figure 17. In this figure, the shaded area

represents the extra area covered by N2’s rebroadcast after N1’s broadcast.

Let d denote the distance between sensors N1 and N2, r denote the transmission range

of a sensor node, and CA(N) denote the physical area covered by sensor N’s transmission.

The shaded area E(N2, N1) = CA(N2)− CA(N2) ∩ CA(N1) can be computed as follows.

The maximal value of E(N2, N1), denoted as Emax, is achieved when d = r. Its value is

0.61πr2.

E(N2, N1) = πr2 − 2× ( α
360

πr2 − d
2

√
r2 − d2

4
)

= πr2 + d
√

r2 − d2

4
− arccos d

2r

90
πr2 (5.4)

The objective of the ACPF protocol is to reduce the number of unnecessary query propa-

gations, while maintaining the likelihood of query delivery to all relevant sensors. To achieve

this objective, the ACPF protocol exhibits the following properties:

• The forwarding probability increases with the extra coverage the node adds to the area

covered by the original request
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• The forwarding probability reflects the passivity of a node in participating in the process.

This property can be expressed, for example, in terms of the residual energy of a node,

whereby a node’s passivity increases as its energy depletes. Other criteria can be used

to define the passivity of a node

The main steps of the ACPF algorithm are depicted in Algorithm 5, where p represents

the basic gossiping probability, and 0 ≤ k ≤ 1 represents the node’s passivity. Upon receiving

a query, q, from N1, node N2 computes the extra coverage area with respect to N1’s coverage

area and uses it to compute its forwarding probability, p′.

Algorithm 5 ACPF

1: Compute extra coverage area: E(N2, N1) = πr2 + d
√

r2 − d2

4
− arccos d

2r

90
πr2

2: Derive a new probability p′ as follows: p′ = p× ek×E(N2,N1)−Emax
πr2

3: Forward q with probability p′

Notice that as k increases, the forwarding probability, p′, decreases, further reducing the

amount of overhead caused by unnecessary propagation of query messages. A large value

of k, however, may increase the likelihood that a query message “dies” before it reaches its

destination. Figure 18 shows the impact of k on p′ and highlights the need for a careful

consideration of the passivity parameter in order to increase the likelihood of query delivery.

5.3 COPIES COVERAGE-BASED PROBABILISTIC FORWARDING

ACPF relates the forwarding probability to the “gain” achieved by a rebroadcast over the

additional coverage area. It is clear, however, that this gain may not be significant if the

neighboring nodes are within the same distance from the sending node. This can be illus-

trated by the scenario depicted in Figure 19. In this scenario, N1, N2 and N4 receive a

query message from N3. Using ACPF, N1, N2 and N4 are likely to produce similar values

for p′. This is due to the fact that d(N1, N3), d(N2, N3) and d(N4, N3) are close to r. As

a result, all three nodes may end up rebroadcasting query q, thereby making N1’s rebroad-

cast unnecessary, since its area is covered by node N2, N3 and N4. CCPF addresses this
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Figure 18: Effect of node passivity, k, on ACPF forwarding probability

shortcoming by taking into consideration the number of rebroadcasts of the query q a node

hears within its neighborhood.

The basic steps of the CCPF algorithm are depicted in Algorithm 6. Based on this

algorithm, a sensor, N , which receives a query, q, listens for a random time interval. During

this period, the node counts the number of rebroadcasts of q by its neighbors and uses this

number to compute its forwarding probability.

As in ACPF, the parameter k represents the passivity of a node in forwarding the query

message. Figure 20 shows the variation of p′ with respect to k. Notice that nodes in

2

1

3

4

Figure 19: Redundancy case 2
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Algorithm 6 CCPF

1: if q is a new query then

2: create a new counter c(q) = 0 for q;

3: set a timer τ = rand(0, t); buffer query q

4: else

5: c(q) = c(q) + 1; exit

6: end if

7: Listen for the same query q during the interval τ

8: After τ expires, compute p′ = p× e−k·c(q)

9: Rebroadcast q with probability p′ and remove q from its buffer

CCPF randomly generate a listening interval, τ , within [0, t]. Consequently, the number of

rebroadcasts overheard in a neighborhood is likely to differ from one node to another, leading

to a different value of p′ for each neighbor. Care must be taken in the choice of t to avoid

excessively long listening time periods, while at the same time ensuring that the periods of

nodes within the same neighborhood are different.

5.4 AREA AND COPIES COVERAGE-BASED PROBABILISTIC

FORWARDING

ACCPF combines the main features of ACPF and CCPF. It uses both the extra coverage area

and the number of copies heard over a neighborhood to compute the forwarding probability.

In ACCPF, each node maintains a counter, c(q), and the smallest additional coverage area,

Emin(q), for each query q. When a node N2 receives a query q from sensor N1, it computes

its forwarding probability, p′, as follows:
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Algorithm 7 ACCPF

1: if q is a new query then

2: c(q) = 0; Emin(q) = E(N2, N1);

3: set a timer τ = rand(0, t); buffer query q

4: else

5: c(q) = c(q) + 1

6: Emin(q) = min(E(N2, N1), Emin(q)) and exit

7: end if

8: Listen for the same query q during the interval τ

9: After τ expires, compute the new probability p′ = p× ek1×Emin(q)−Emax

πr2 × e−k2·c(q)

10: Rebroadcast q with probability p′ and remove q from its buffer
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5.5 NEIGHBOR COVERAGE-BASED PROBABILISTIC FORWARDING

In ACPF, CCPF and ACCPF, a node’s rebroadcast is deemed redundant if its entire trans-

mission area is covered by other nodes. It is possible, however, that some parts of a node’s

coverage may not be populated and need not be covered. The goal is to cover all nodes,

rather than areas in the network. Neighboring information can, therefore, be used to further

reduce unnecessary rebroadcasts within a neighborhood. More specifically, if all neighbors

of node N are already covered by other nodes’ rebroadcasts, node N does not need to for-

ward the query message any further. This observation is then extended to the Neighbor

Coverage-based Probabilistic Forwarding (NCPF) algorithm.

In NCPF, prior to forwarding a query message, a node must first collect neighboring

information. This information is then included in the query message. Upon receiving a

query message q from N1, which contains a neighboring list, node N2, does not forward

the message if its neighbors are already covered. Otherwise, it computes its forwarding

probability based on how many copies of q it has received. Algorithm 8 presents the details

of this algorithm.

Algorithm 8 NCPF

1: if q is a new query then

2: c(q) = 0; S = neighbors(N1); set a timer τ = rand(0, t); buffer query q

3: else

4: c(q) = c(q) + 1; S = S ∪ neighbors(N1) and exit

5: end if

6: Listen for the same query q during the interval τ

7: After τ expires, compute the new probability p′ = p× e−k·c(q)

8: if neighbors(N2) ⊆ S then

9: p′ = 0

10: end if

11: Replace neighbor information in q with the neighbors of N2, rebroadcast q with proba-

bility p′ and remove q from its buffer
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Sensors should be but haven’t been reached

 N1 N2

 N3

N4

 N5

 N6

Sensors have been reached

Figure 21: Example of path directed forwarding

5.6 UNCOVERED SENSORS AFTER PROBABILISTIC FORWARDING

The probabilistic forwarding schemes discussed above have the potential to reduce the num-

ber of query messages being forwarded in the network. However, they cannot ensure that all

sensors are covered during the probabilistic forwarding. Some sensors which should receive

a copy of the query message may not have been reached at the end of the probabilistic

forwarding. To address this problem, a remedy process is proposed.

Given a query, q, let R(q) be the set of sensors to be reached by q. R(q) can be a subset

of sensors if constraints in q such as a geophysical requirement are used to filter out certain

sensors. Otherwise, R(q) simply includes all sensors. After the probabilistic forwarding,

let Reached(q) be the set of sensors who receive a copy of q. The problem occurs when

R(q)−Reached(q)! = ∅.
A simple method to find out if R(q) − Reached(q) equals ∅ is to ask every sensor who

receives q to return its identity to the base station. This can be achieved by sending a message

to parent of each sensor. These messages can be aggregated during transmission. If the base

station discovers that some sensors are not reached during the probabilistic forwarding, it

identifies paths from sensors in Reached(q) to the sensors in R(q) − Reached(q). q is then
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forwarded to these uncovered sensors through these paths. Due to the broadcast nature of

wireless signals, all neighbors of the intermediate sensors in these paths receive a copy of q

during the forwarding. This process is refereed to as “Path directed forwarding”.

To further illustrate “path directed forwarding”, an example scenario is presented in

Figure 21. In this scenario, two paths, N1 → N2 and N6 → N5 are used to reach the

uncovered sensors after probabilistic forwarding. The other two sensors, N3 and N4 can be

reached after N2 broadcasts q.

The path directed forwarding requires the base station to maintain the topology of sen-

sor networks in order to find a path between the reached sensors of q and the sensors to

be reached. This requirement may incur a large amount of overhead if sensor links keep

changing. An alternative approach is to utilize the locations of sensors to identify the closest

reached sensor for each uncovered sensor and then use location aided limited flooding at

these reached sensors to forward q to uncovered sensors.

The remedy process described above can be used to send query q to these uncovered

sensors after probabilistic forwarding. The process, however, should be used with caution. If

a major number of sensors are left uncovered, the overhead of using the remedy process may

overcome the savings in communication gained by probabilistic forwarding and the scheme

may end up transmitting more messages than the basic flooding scheme.

5.7 SIMULATION RESULTS

5.7.1 Methodology

The number of reachable sensors after the forwarding process completes and the number

of messages forwarded and received are used to measure the performance of the proposed

schemes. The reachable nodes information reveals how many sensors receive a copy of the

query message after the probabilistic forwarding and shows the coverage of the probabilistic

forwarding scheme. The number of messages forwarded and received determines the com-

munication cost of the scheme. In the simulation, message retransmissions due to collision
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are not considered since they are related to the medium access control protocol in the sensor

network and are not the focus of probabilistic forwarding schemes. In the simulation, it is

assumed that no collision or packet errors occur.

During the simulations, three different density of networks are considered by deploying

different number of sensors in a 100m× 100m field using uniform random model. The sensor

transmission range is 20m. The number of sensors and the average node degree are presented

in Table 2.

Table 2: Average node degree deg in a network of n nodes for probabilistic forwarding

density low medium high

n 50 100 150

deg 5.28 10.04 14.80

5.7.2 Performance Comparison

In addition to the proposed schemes, the results for PKGOSSIP, P1P2KNGOSSIP and

PKMGOSSIP [88], are collected and presented as well for comparison. In PKGOSSIP, the

first k hops of sensors from the source always broadcast to prevent the early death of the query

message and all other sensors forward queries with probability p. In P1P2KNGOSSIP, if the

number of neighbors of a sensor is bigger than N , it uses a small probability, p1, to forward

a query. Otherwise, it uses p2. N is set to be 4 during the simulation. In PKMGOSSIP, a

sensor rebroadcasts a query if it does not broadcast the query the first time it receives the

message and overhears fewer than m copies of the same query during a small period of time.

During the simulation, each sensor is selected once as the source of a broadcast to mini-

mize the effect of topology on the simulation results.

5.7.2.1 ACPF, CCPF, ACCPF and NCPF

Figure 22,23 and 24 present the result in the low density network. For ease of comparison

among different schemes, we list the smallest number of messages forwarded and received to
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Table 3: Parameters for schemes simulated

Scheme p p1 p2 k m t

PKGOSSIP 0.1-0.7 2

PKMGOSSIP 0.1-0.7 2 2

P1P2KNGOSSIP 0.1-0.7 0.8 2

ACPF 0.1-0.7 1

CCPF 0.1-0.7 0.25 8×MLD

ACCPF 0.1-0.7 k1=1 8×MLD

k2=0.25

NCPF 0.1-0.7 0.25 8×MLD

reach a comparable number of sensors among these schemes in Table 4. In the low density

network, although ACPF, CCPF, ACCPF, and NCPF incurs less communication overhead,

they reach much fewer sensors in the network.

The number of reachable sensors increases in the medium density network, as shown in

Figure 25 and Table 5. The number, nonetheless, is still smaller than some gossip schemes

even though fewer number of query messages are forwarded and received in the network.

In the high density network, on the other hand, ACPF, CCPF, ACCPF and NCPF can

reach a comparable number of sensors to the gossip schemes, yet still using fewer number

of messages for query dissemination. The results are presented in Figure 28 29 and 30, and

summarized at Table ?? for comparison.

In summary, ACPF, CCPF, ACCPF and NCPF can reduce the number of messages

needed in probabilistic forwarding for query dissemination in all networks, but can only

reach a large number of sensors in a high density network. Therefore, they should not be

used in low or medium density networks.

5.7.2.2 ACPFM, CCPFM, ACCPFM and NCPFM
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Figure 22: Number of reachable nodes in

a low density network
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Figure 23: Number of messages forwarded

in a low density network
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Figure 24: Number of messages received

in a low density network
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Figure 25: Number of reachable nodes in

a medium density network
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Table 4: Low density network

PKM P1P2KN

PKGOSSIP GOSSIP GOSSIP ACPF CCPF ACCPF NCPF

Reachable

Nodes 35.4 34.24 35.4 21.02 19.94 14.88 18.04

Messages

Forwarded 27.12 19.5 26.4 11.22 9.88 5.98 6.56

Messages

Received 119.24 81.74 119.1 52.94 46.02 28.86 31.92

Probability P 0.7 0.1 0.7 0.7 0.7 0.7 0.7
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Figure 26: Number of messages forwarded

in a medium density network
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Figure 27: Number of messages received

in a medium density network
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Table 5: Medium density network

PKM P1P2KN

PKGOSSIP GOSSIP GOSSIP ACPF CCPF ACCPF NCPF

Reachable

Nodes 99.14 99.52 99.01 92.59 79.89 63.95 89.25

Messages

Forwarded 73.62 65.49 72.99 49.58 33.02 20.88 26.84

Messages

Received 667.29 593.47 665.52 459 299.84 193.44 255.43

Probability P 0.7 0.6 0.7 0.7 0.7 0.7 0.7
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Figure 28: Number of reachable nodes in

a high density network
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Figure 29: Number of messages forwarded

in a high density network
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Table 6: High density network

PKM P1P2KN

PKGOSSIP GOSSIP GOSSIP ACPF CCPF ACCPF NCPF

Reachable

Nodes 149.287 148.26 149.287 149.333 147.26 135.227 146

Messages

Forwarded 83.0733 51.18 68.35 79.78 53.4 38.67 35.4

Messages

Received 1156.75 694.5 960.767 1107.73 717.44 528.37 509.4

Probability P 0.5 0.2 0.4 0.7 0.7 0.7 0.7
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Figure 30: Number of messages received

a high density network
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with m-technique in a low density net-

work
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Figure 33: Number of messages received

with m-technique in a low density net-

work

The results for ACPFM, CCPFM, ACCPFM and NCPFM are presented at Figure 31-

33, 34-36, and 37-39 for the low, medium and high density network, respectively. From the

comparison shown in Table 7,8 and 9, it is easy to see that ACPFM, CCPFM, ACCPFM

and NCPFM can reach approximately the same number of sensors as gossip schemes with

fewer number of messages in all three networks with different levels of density. They can

deliver the query to most sensors in the network in medium and high density networks, at

the cost of longer transmission time due to the extra waiting time for sensors who don’t

forward the query message at first, but then forward it using the m-technique.

5.8 SUMMARY

In this chapter, probabilistic query dissemination is presented to reduce the communication

overhead for delivering the queries from semantic views to all relevant sensors in the network.

Several approaches which adapt the forwarding probability to different types of local topology
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Table 7: Low density network with m-technique

PKMGOSSIP ACPFM CCPFM ACCPFM NCPFM

Reachable Nodes 37.02 36.22 35.34 35.24 38.36

Messages Forwarded 21.72 22.04 19.28 20.76 19.44

Messages Received 90.9 91 78.96 86.74 77.26

Probability P 0.2 0.6 0.7 0.7 0.5
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Figure 34: Number of reachable nodes

with m-technique in a medium density

network
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Figure 35: Number of messages forwarded

with m-technique in a medium density

network

Table 8: Medium density network with m-technique

PKMGOSSIP ACPFM CCPFM ACCPFM NCPFM

Reachable Nodes 97.92 96.62 95.45 96.06 98.08

Messages Forwarded 56.63 42.34 32.93 30.89 32.16

Messages Received 511.25 371.1 270.95 250.42 264.64

Probability P 0.5 0.5 0.4 0.1 0.3
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Figure 36: Number of messages received

with m-technique in a medium density

network
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Figure 37: Number of reachable nodes

with m-technique in a high density net-

work
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Figure 38: Number of messages forwarded

with m-technique in a high density net-

work
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Table 9: High density network with m-technique

PKMGOSSIP ACPFM CCPFM ACCPFM NCPFM

Reachable Nodes 148.26 149.74 148.867 149.387 149.78

Messages Forwarded 51.18 69.4 46.34 52 40.5

Messages Received 694.5 954.3 615.06 688.4 539.9

Probability P 0.2 0.6 0.7 0.6 0.7

information are investigated. It is also shown how to enhance probabilistic dissemination with

additional schemes to cover a very high percentage of sensors after the query dissemination.
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6.0 CORRELATED MULTI-QUERY PROCESSING

In SQL, a correlated sub-query is a sub-query (a query nested inside another query) that

uses values from the outer query. In current databases, e.g. Oracle, the same correlated

sub-query of several outer queries is executed only once and the results are reused for all

the evaluations in the outer queries. Similar ideas are applied in correlated multi-query

processing for sensor networks.

Two queries are correlated if they need common sensor data for processing. These shared

common data are then identified, collected and processed only once and the results are reused

to answer these queries. The key question is how to identify and reuse the correlation among

queries. It would be trivial if the set of sensor data for a query is already known before a

query is processed. However, in sensor networks, upon receiving a query, the base station

needs to either acquire all data from sensors or disseminate the query to all sensor nodes

in order to find out what sensors provide data for the query. This process involves a lot of

data transmissions among sensor nodes. The challenge is to identify the correlation among

queries without knowing exactly the set of sensors having data for the queries.

It is observed that the number of sensors having data for a query is determined by the

constraints that the query specifies over the data attributes at each sensor node. Given a

data attribute, a query having a larger range constraint is mapped to more sensors in the

network than another query with a smaller range constraint during processing. Based on this

observation, an estimation model is developed to approximate the number of shared sensor

data among queries. From the estimation model, the base station can further construct a

set of shared intermediate views (SIV) to capture the shared common data among queries.

However, without knowing exactly what set of sensors have data for what queries at the

base station, some common sensor data shared among queries is left unidentified after the
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shared intermediate views are constructed. Sensors, in contrast, know exactly if their data

are needed by a query for processing. Hence, it is also investigated how the data collection at

sensor nodes can be enhanced to reduce the communications of data collection for multiple

correlated queries. Details of the estimation model and other algorithms of correlated multi-

query processing at base station and sensor nodes are discussed in the following sections.

In this chapter, shared intermediate view is firstly defined to capture the correlation

among queries and it is shown that how the results of these shared intermediate views can

be reused to save message transmissions in data collection for multi-query processing. A

numerical model is developed to estimate the level of correlation among queries, based on

which a set of shared intermediate views with maximum level of correlation is constructed to

minimize the data collection cost for multi-query processing. Furthermore, correlated data

collection is presented to reduce data transmissions from sensors’ perspective.

6.1 PROBLEM STATEMENT

Upon completion of sensing, each sensor node N has relevant data for a subset of queries of

Q. The data collection for query q can be modeled as a routing tree, RT (q), rooted at the

base station node. Figure 40 shows example routing trees for two queries.

Each edge in RT (q) represents one communication message from the child node to the

parent node in the tree. Each node aggregates its own data with the data collected from its

children nodes during data collection. As a result, the communication cost of each link is

the same in the routing tree. The overall energy cost of data collection for a query q is as

follows:

er + es +
∑

N∈RT (q)

(er + es) (6.1)

The cost of collecting data for a set of queries Q is the summation of 6.1 if each query is
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N4 (T=72F)
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N7 (T=53F)

Figure 40: Query routing trees for data collection

processed separately:

C(Q) =
∑
q∈Q

(er + es +
∑

N∈RT (q)

(er + es)) (6.2)

However, it is easy to find scenarios where the data set of different queries overlaps.

In Figure 40, q1 collects data from nodes N1, N2, N6, N7 and N8. q2 collects data from

N1, N3, N4 and N5. Assume that the routing trees for q1 and q2, as shown in Figure 40,

are already optimized in terms of communication cost. If q1 and q2 are processed separately,

then N1 has to transmit its data two times to N7. However, N1 should only need to send

its data to N7 once during data collection, since the same data can be reused for both q1

and q2. A redundant message transmission can be avoided then if the overlapping data of q1

and q2 at N1 is reused, thereby reducing energy expenditure.

The main challenges of reusing shared data among queries to reduce multiple query

processing costs are:
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• How to find the set of shared sensor data among a set of queries and if there are multiple

possible sets of shared data, which set should be selected

• How to preserve the semantic correctness of query results when the shared data is reused

for multiple query processing

6.2 OVERVIEW

The correlated multi-query processing consists of two tiers: one tier at the base station

and the other tier at sensor nodes. At the base station, the scheme tries to identify the

sharing of sensor data among queries from the query constraints. At sensor nodes, the data

collection/aggregation is modified to further reduce the redundant data transmissions of

correlated queries.

The query model is described in section ??. Essentially, queries may arrive at any time

within an epoch. At the beginning of an epoch, the base station is given a set of queries, Q.

From Q, the base station constructs a set of shared intermediate views. Each intermediate

view identifies a set of shared data among queries in Q. These intermediate views are then

processed by sensors in the network before any query in Q is processed. Each query, q ∈ Q,

is mapped to several intermediate views and an additional set of sensors in the network. The

results from these intermediate views, aggregated with data collected from an additional set

of sensors, provide the necessary data to answer query q. Figure 41 illustrates the overall

process of correlated multi-query processing at the base station.

Later in the same epoch, when new query/queries arrive at the base station, the base

station checks the already available results from the existing shared intermediate views as

well as existing queries. To reuse any of the existing results, the base station must make

sure that the existing SIV/query is contained in the new query. The query containment

problem in general is a very difficult problem and NP-hard in relational databases. A simple

algorithm which checks the constraints in queries is used to determine if a query is contained

in another query. The simplified algorithm finds a subset of contained queries but only
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Figure 41: Overview of correlated multi-query processing
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requires a polynomial time of computation. A new set of shared intermediate views is then

derived from the new query/queries and the existing contained SIV/queries. The new set

of SIVs is also added into the existing SIVs for processing future queries. The procedure

is repeated for all new queries until the end of an epoch. Because sensor data may change

from epoch to epoch, the results of the SIVs in the current epoch cannot be reused by other

queries in the next epoch. Therefore, at the end of one epoch, the SIVs are removed and at

the beginning of the next epoch a new set of SIVs is constructed by the base station.

The goal of correlated multi-query processing at the base station is to eliminate the over-

lapping of sensor data among queries so that each sensor only needs to transmit/aggregate

its data once. However, without knowing the actual correlation, i.e. the shared set of sensor

data among queries, there might still be common data among SIVs and the rewritten queries.

In other words, a sensor node may still need to send its data more than once for the SIVs

and rewritten queries sent from the base station.

N8 (T=50F)

q2:  T >= 55Fq1:  T <= 65F, 

q1 q2

N1 (T=60F)
N2 (T=45F)

N3 (T=70F)

N4 (T=72F)
N5 (T=75F)

N6 (T=30F)

N7 (T=53F)

Figure 42: Example of data aggregation for correlated queries

Figure 42 presents an example of data aggregation for correlated queries in sensor nodes.
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In this example, query q1 is processed first and then query q2 is disseminated for processing.

For q1, the data at node N1 is transmitted to N7 and N7 aggregates its own data with

N1 and N2 during processing. Later when q2 arrives at N1, N1 needs to transmit its data

again to N7 for q2. Because the data of N1 has been sent to N7 during q1’s processing,

q2 can simply acquire N1’s data from N7 if N7 keeps a copy of N1’s data after aggrega-

tion. Therefore, the redundant transmission of N1’s data from N1 to N7 can be saved for

processing q2. In general, a leaf node in an aggregation tree uses its aggregator as a proxy

node for its data. Any later queries requesting data from the leaf node can retrieve the data

from its proxy node. Since in an aggregation tree, the aggregator, i.e. proxy node, should

be closer to the base station, the communications of the intermediate sensors between the

leaf node and its proxy node can also be saved.

6.3 CORRELATED MULTI-QUERY PROCESSING AT THE BASE

STATION

6.3.1 Shared Intermediate Views

The key idea of correlated multi-query processing at the base station is to reuse the correla-

tions among queries. Assuming that the correlation among queries, i.e. the shared common

set of sensor data, can be identified to the base station, a unified method is needed to reuse

these common data.

To this end, “Shared Intermediate Views (SIV)” is defined to capture the correlation

among queries. In the query definition language described in section ??, a rule, R, is a

conjunction of predicates. A query, q, uses a disjunction of rules to specify the conditions

of data to be collected. Let Rules(q) be the disjunction set of rules q specifies. A shared

intermediate view is defined as follows:

Definition 7. Given two queries, q1 and q2, a shared intermediate view, SIV, of (q1, q2) is

a query AF(V)?R, where AF(V) is the same as q1 and q2, and R = Rules(q1) ∧Rules(q2).

Based on Definition 7, a shared intermediate view set (SIVS) is defined as follows for a
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set of queries, Q:

Definition 8. Given a set of queries, Q, a shared intermediate view set, SIVS, is a set of

SIVs of queries in Q. Furthermore, ∀ SIVi, SIVj ∈ SIV S, queries(SIVi)∧queries(SIVj) =

∅.

It is easy to see that an SIV of qi and qj is mapped to the common set of sensor data

that qi and qj share, because each sensor data satisfying SIV must meet all the constraints

of both qi and qj. Therefore, the concept of SIV provides a method to specify the common

set of sensor data between two queries, qi and qj, using only the constraints of the queries.

In this way, the SIV is independent from the sensor network. No matter which sensors in the

network qi and qj collect data from, SIV(qi, qj) is always mapped to the set of shared sensor

data between qi and qj. As shown in Figure 43, a SIV of qi and qj is always equivalent to

the shared set of sensor data between qi and qj.

                        j                         i 

Sensor data of SIV(q   , q  )                               i      j  

Sensor data of qSensor data of q

Figure 43: SIV of two queries

Using Definition 8, an SIV can be defined for any pair of queries. However, different

SIVs collect data from different number of sensors. Some SIVs may not even acquire any

data from the network simply because no sensed data satisfies the constraints in the SIV. It

makes no sense to use such SIVs since no common sensor data can be reused for processing.

The correlated multi-query processing relies on the reusing of the processing results of

SIVs to reduce the overall processing cost. The construction of SIVs, therefore, is critical to
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the performance of correlated multi-query processing. The goal is to derive an SIVS which

enables the maximum reusing of shared data among queries. To derive such an SIVS, the

size of the shared data between queries must be known. This knowledge, however, cannot

be obtained before the relevant sensor nodes are identified for each query. Nonetheless,

heuristics can be explored for the maximization of reusing shared data. A simple range-

based algorithm for optimum SIVS construction is discussed next.

6.3.2 Range-Based SIVS Construction

A query uses constraints to specify what sensor data to collect for processing. The constraints

essentially form a range requirement over data attributes being sensed at sensor nodes.

Intuitively, the larger the ranges are, the more data sensors in the network have for a query.

In more detail, if the probability distribution function of a data attribute A, Pr[A], is

known, then given a predicate of attribute A, P (A) : al ≤ A ≤ au, the probability of the

sensed value of A at a sensor node is Pr[al ≤ A ≤ au]. Furthermore, assuming that the

sensors sense independently, the expected number of sensors in the network whose data is in

the range (al, au) is Pr[al ≤ A ≤ au]× n, where n is the number of sensors in the network.

Since n is a fixed value for a sensor network, the amount of sensor data for a predicate

P (A) : al ≤ A ≤ au, can be estimated as Pr[al ≤ A ≤ au].

Therefore, for a single predicate, P (A), of attribute A, P (A) : al ≤ A ≤ au, the estimated

number of sensors having data for P (A), denoted as RR(P (A)), is defined as follows:

RR(P (A)) = Pr[al ≤ A ≤ au] (6.3)

The probability distribution function can be determined from the historical sensing data.

If the sensing attribute value is uniformly distributed, the probability is au−al

max(A)−min(A)
, and

it is proportional to the range of the predicate.

A rule, R, may specify more than one predicate on a data attribute, A. These predicates,

P 1(A), P 2(A), ..., Pm(A) form a composite predicate Pred(R,A) = P 1(A) ∧ P 2(A) ∧ · · · ∧
Pm(A), which in turn defines a range requirement over A. The estimated relevant data size

88



of Pred(R, A) is defined as follows:

RR(Pred(R, A)) = Pr[ max
1≤i≤m

al(P
i(A)) ≤ A ≤ min

1≤i≤m
au(P

i(A))] (6.4)

A rule R may also impose range constraints over more than one attribute of T , ATTR =

{A1, A2, · · · , At}. In this case, the sensor data must satisfy all the constraints of all the at-

tributes. While the number of sensors can be estimated to satisfy any single range constraint

over a single data attribute, it is very difficult to estimate the number of sensors in the range

requirements of several data attributes unless the relations among these data attributes are

known. As a result, the estimated number of sensors whose data satisfy the constraints in R,

RR(R), is roughly approximated as the smallest range requirements over all data attributes:

RR(R) = min
∀A∈ATTR(R)

RR(Pred(R,A)) (6.5)

With a simple derivation, the conjunction of rules can be transformed into the con-

junction of predicates. Therefore, the estimated number of sensors whose data satisfy the

conjunction of rules can be defined in a way similar to that for a single rule. The definition

is given as follows:

RR(Ri ∧Rj) = min
∀A∈ATTR(Ri)∪ATTR(Rj)

RR(Pred(Ri, A) ∧ Pred(Rj, A)) (6.6)

Determining the correlation of a disjunction of two rules, however, is a little more com-

plex. The sensors having data for the disjunction of two rules, Ri and Rj, is the union of the

set of sensors whose data satisfy Ri and Rj. Similar to when computing the union of two

sets, the number of sensors whose data satisfy the disjunction of two rules is approximated

as follows:

RR(Ri ∨Rj) = RR(Ri) + RR(Rj)−RR(Ri ∧Rj) (6.7)

Using the definitions above, the correlation between two queries can be quantified. Given

two queries, q1 and q2, where Rules(q1) = R1
1 ∨ R2

1 ∨ · · · ∨ Rl1
1 , and Rules(q2) = R1

2 ∨ R2
2 ∨
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· · · ∨Rl2
2 , the correlation between q1 and q2, COR(q1, q2), is defined as:

COR(q1, q2) = RR(Rules(q1) ∧Rules(q2))

= RR(
∨

1≤i≤l1,1≤j≤l2

(Ri
1 ∧Rj

2)) (6.8)

Equation 6.8 provides us with a model to estimate the size of shared data among two

queries. The model, however, requires an exponential number of computations to estimate

the correlation between two queries. That is, following equation 6.7, the disjunction of

l1 × l2 rules needs to compute 2l1×l2 − 1 intermediate values before the final value can

be obtained. Therefore, to reduce the number of computations required, the correlation

definition is approximated to be a lower and upper bound of equation 6.8.

From equation 6.6 and 6.7, it can be derived that:

RR(Ri ∨Rj) = RR(Ri) + RR(Rj)−RR(Ri ∧Rj)

≤ RR(Ri) + RR(Rj)

and

RR(Ri ∨Rj) = RR(Ri) + RR(Rj)−RR(Ri ∧Rj)

≥ max(RR(Ri), RR(Rj))

Therefore, a lower and upper bound of the conjunction of two rules can be derived as

follows:

max(RR(Ri), RR(Rj)) ≤ RR(Ri ∨Rj) ≤ RR(Ri) + RR(Rj) (6.9)

Inequality 6.9 can be extended to compute the conjunction of m rules:

max
1≤i≤m

RR(Ri) ≤ RR(
m∨

i=1

Ri) ≤
m∑

i=1

RR(Ri) (6.10)

Given 6.10, a lower and upper bound for correlation among two queries, q1 and q2, can

now be derived.

max
1≤i≤l1,1≤j≤l2

RR(Ri
1 ∧Rj

2) ≤ COR(q1, q2) ≤
∑

1≤i≤l1,1≤j≤l2

RR(Ri
1 ∧Rj

2) (6.11)
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Similarly, another upper bound of the RR(Ri ∨Rj) can be defined as follows:

RR(Ri ∨Rj) = RR(
∧

A∈ATTR(Ri)

Pred(Ri, A) ∨
∧

A∈ATTR(Rj)

Pred(Rj, A))

= RR(
∧

A1,A2∈ATTR(Ri)∪ATTR(Rj)

(Pred(Ri, A1) ∨ Pred(Rj, A2)))

≤ min
A∈ATTR(Ri)∪ATTR(Rj)

RR(Pred(Ri, A) ∨ Pred(Rj, A)) (6.12)

This upper bound of RR(Ri ∨Rj) leads to another upper bound, that of the correlation

among two queries, q1 and q2.

COR(q1, q2) = RR(
∨

1≤i≤l1,1≤j≤l2

(Ri
1 ∧Rj

2))

≤ min
A∈ATTR

RR(
∨

1≤i≤l1,1≤j≤l2

Pred(Ri
1 ∧Rj

2, A) ) (6.13)

The lower and upper bound in inequality 6.11 and 6.13 give three approximations of

COR(q1, q2). The upper bounds approximation represents an aggressive approach in esti-

mating the correlations between queries while the lower bound represents a conservative

method in estimation. All three approximations give estimated numbers of shared common

data between queries. The effectiveness of these approximations depends on how close the

estimations are to the actual amount of common sensor data between queries.

Given the model of correlation estimation between queries, it is far from trivial to con-

struct the SIVS with the maximum correlation. The greedy algorithm, which always choose

queries with highest value of correlation during each iteration, does not always yield an op-

timal SIVS. In a simple example of four queries, Q = {q1, q2, q3, q4}, assume COR(q1, q2) =

0.4, COR(q1, q3) = 0.3, COR(q2, q4) = 0.3, COR(q1, q4) = 0.1 and COR(q3, q4) = 0.1, the

greedy algorithm constructs the SIVS as {SIV (q1, q2),SIV (q3, q4)}. However, {SIV (q1, q3),

SIV (q2, q4)} is the SIVS with the maximal correlation.

Given a set of queries, Q and the correlation values between any two queries in Q, a

correlation graph, G = (V, E), is constructed to construct the SIVS with the maximum

correlation. For each query q in Q, add a node Nq to E. Two nodes, Nqi
and Nqj

, are

connected in G if and only if COR(qi, qj) > 0. The weight of an edge is the correlation

value of the two queries of the corresponding end nodes of the edge. The problem of SIVS
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construction with maximal correlation is then equivalent to the maximal weighted match

problem in the correlation graph G. For the example queries given above, the correlation

graph is shown in Figure 44.

0.1

V1
V2

V4V3

Q=(q1,q2,q3,q4)
COR(q1,q2)=0.4
COR(q3,q4)=0.1
COR(q1,q3)=0.3
COR(q2,q4)=0.3
COR(q1,q4)=0.1

0.4

0.3
0.3

0.1

Figure 44: An example of a correlation graph

The maximal weighted match problem is well known in graph theory and has been

extensively studied in [129] [130] [131]. Several polynomial algorithms have been proposed

to find the optimal solution in polynomial time [132] [133]. The first polynomial algorithm

is due to Edmonds [129], based on which improved algorithms were designed later. These

algorithms are based on the idea of augmenting paths, which can be used to find new

matching with a larger weight from an existing match. In this thesis, Gabow’s algorithm

is used to find the maximum weighted matching in the correlation graph. The details of

Gabow’s algorithm are presented in Appendix A.2. For each edge e =< Vi, Vj > in the

maximum weighted matching, a SIV is constructed for queries qi and qj. The SIVS with

maximum correlation is the set of SIVs constructed from all edges in the maximum weighted

matching in the correlation graph. The main steps are described in Algorithm 9.

6.3.3 Query Processing using SIVS

After a SIV S is derived for a set of queries, Q, the shared intermediate views in SIV S

are firstly sent into the sensor network. Relevant data are collected and processed using an

existing communication scheme such as [23]. In order to reuse the results from these shared

intermediate views, the queries in Q are modified before they are delivered into the sensor

network for processing.
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Algorithm 9 SIVS Construction
1: INPUT:

2: Q = {q1, q2, · · · , qm}
3: INITIALIZATION:

4: SIV S = ∅
5: for all qi ∈ Q do

6: add node vi to V

7: end for

8: for all qi, qj ∈ Q do

9: if COR(qi, qj) > 0 then

10: add e = (vi, vj) to E, w(e) = COR(qi, qj)

11: end if

12: end for

13: find the maximum weighted matching, M , from G = (V, E)

14: for all e ∈ M, e = (vi, vj) do

15: SIV S = SIV S ∪ SIV (qi, qj)

16: end for

17: OUTPUT:

18: SIV S
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In principle, for an SIV ∈ SIV S, if SIV is the shared intermediate view for queries in

S ⊆ Q, then for each query, q ∈ S, q is replaced with q
′
= AF (V )?Rules(q)∧¬Rules(SIV ).

The algorithm for query rewriting is presented in Algorithm 10.

Algorithm 10 Query Rewriting
1: INPUT:

2: Q = {q1, q2, · · · , qm}, SIV S

3: INITIALIZATION:

4: Q
′
= Q

5: for all (SIV ∈ SIV S) do

6: S = {q|q ∈ Q and SIV is a shared intermediate view of q}
7: for all q ∈ S do

8: Q
′
= Q

′ − q; Q
′
= Q

′ ∪ {q′ = AF (V )?Rules(q) ∧ ¬Rules(SIV )}
9: end for

10: end for

11: OUTPUT:

12: Q
′

These modified queries in Q
′
are then delivered to sensors in the network. The relevant

data are collected and an aggregated result is returned to the base station. To answer an

original query q in Q, the aggregated result from q
′
and the SIV of q are aggregated together,

using the aggregation function specified in q.

In the proposed query processing scheme using SIVS, the final result for q is the aggre-

gated result from q
′
and the SIV . To ensure that the correctness of such an aggregation for

query q, the following two conditions, 6.14 and 6.15 must be true.

Data(q) == Data(q
′
) ∪Data(SIV ) (6.14)

Data(q
′
) ∩Data(SIV ) == ∅ (6.15)

Condition 6.14 means that all sensor data collected by q is collected by either q
′

or

SIV . Since q
′

is constructed as AF (V )?Rules(q) ∧ ¬Rules(SIV ), it is easy to see all
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data in Data(q
′
) meets Rules(q) ∧ ¬Rules(SIV ). Data in Data(SIV ), on the other hand,

satisfy condition Rules(SIV ). Therefore, data in Data(q
′
) ∪ Data(SIV ) meets the con-

straint (Rules(q)∧¬Rules(SIV ))∨Rules(SIV ). The constraint is equivalent to Rules(q)∨
Rules(SIV ). It follows then that Rules(q) ∨ Rules(SIV ) = Rules(q) since Rules(SIV ) =

Rules(q) ∧ · · · ∧Rules(qj).

Condition 6.15 requires that no duplicate data exist between Data(q
′
) and Data(SIV ),

because some aggregation functions such as “Average” are duplication sensitive. Collecting

a piece of data more than one time results in an inaccurate result. This condition, therefore,

is used to ensure that the aggregation of the aggregated results for q
′
and SIV is always the

same as the aggregated result for q for any aggregation function. The condition is obviously

true since Rules(q
′
) ∧Rules(SIV ) = Rules(q) ∧ ¬Rules(SIV ) ∧Rules(SIV ) = ∅.

6.3.4 SIVS Update and Query Rewriting for New Queries

Section 6.3.2 and 6.3.3 explain how to process a set of queries at the beginning of an epoch.

Later in the same epoch, new queries arrive at the base station. To explore the correlations

among new queries, the existing results are reused if possible. The processing results of

existing SIVs and queries can be reused if they are contained in a new query.

The query containment problem, which determines if one query is contained in another

query, is very challenging and has been shown to be NP-hard in relational databases [134][135]

[136][137][138][139]. Instead of finding all contained queries using non-polynomial algorithms,

a simple algorithm is used to find a subset of contained queries with polynomial time. In

this algorithm, a query, q1, is contained at q2 if and only if the range constraint for each data

attribute , A, specified at each rule, R in q1, [al1, au1], is within the range constraint of the

same data attribute in any single rule in q2.

Apparently, a query can reuse the results from more than one contained query if these

contained queries do not have any sensor data in common. However, without knowing the

set of actual sensor data for each query, it is almost impossible to tell if two queries do not

share any data in common. Therefore, for simplicity, only one contained query is reused

in the proposed scheme. The question is which contained query should be reused? A new
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query may also share more sensor data with another new query than existing queries.

To find the optimal solution, the correlation graph of new queries is augmented with

additional nodes and edges. For each existing query or SIV, if it is contained in any new

query, then a new node is added into the correlation graph. Furthermore, the new node

is connected to nodes of new queries which the existing query or SIV is contained in. The

weight of such an edge is the correlation between the contained query or SIV and the new

query. Gabow’s algorithm is used again to find the maximum weighted matching M for the

augmented correlation graph. For each edge in M , if it connects to two nodes of new queries,

then a new SIV is constructed and added to the existing SIVS. Otherwise, it means a new

query should reuse processing results from an existing query or SIV. Since these results are

already available at the base station, there is no need to collect these data again since sensors

only sense once and the data remains the same within an epoch.

If a new SIV is constructed between two new queries, q1 and q2, then both q1 and q2

are modified as shown in Section 6.3.3. The rewritten queries and SIV are processed and

the results are aggregated to answer q1 and q2. If a new query q reuses results from existing

query qe, then q is rewritten as q
′
= AF (V )?Rules(q) ∩ ¬(qe) and q

′
is sent to the sensor

network for processing. The results of q
′
, aggregated with the existing results of qe, are used

to answer q. The main steps of the SIVS update and query rewriting for new queries are

presented in Algorithm 11.

6.4 CORRELATED DATA COLLECTION AT SENSOR NODES

The correlated multi-query processing scheme at the base station aims to reduce the com-

munication cost at sensor nodes for query processing by using shared intermediate views.

As effective as the scheme might be, it doesn’t completely eliminate the redundancy of data

communications at sensor nodes. In other words, a sensor might still need to transmit its

data multiple times to the rewritten queries and shared intermediate views. The difficulty

of reusing sensor data is due to the fact that the sensor data cannot be recovered once it
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Algorithm 11 SIVS Update and Query Rewriting for New Queries
1: INPUT:

2: New Queries Q = {q1, q2, · · · , qm}, existing queries Qe and SIVS

3: construct correlation graph G for Q

4: augment G with additional nodes and edges for contained queries between Qe and Q

5: find the maximum weighted matching, M , from G

6: for all e ∈ M, e = (vi, vj) do

7: if qi, qj are new queries then

8: SIV S = SIV S ∪ SIV (qi, qj)

9: rewrite both qi and qj

10: else

11: only rewrite the new query

12: end if

13: end for

14: OUTPUT:

15: SIV S
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is aggregated with other sensor data. For example, from the average value of two pieces of

sensor data, it is impossible to compute the original value of each sensor data.

N8

N4

N7

N1
N2

N3

N5

N6

Figure 45: Example of data aggregation

Figure 45 gives an example of data aggregation in a sensor network. Data from nodes

N1, N2, N3 and N6 are needed for a query. Data from N1, N2 and N3 are aggregated at

N7. The aggregated value is aggregated again with N6’s data at N8 before it is returned

to the base station. In this particular example, any ancestor node of N7 doesn’t know what

the data of N1, N2 and N3 are since they have been aggregated. In contrast, N7 knows the

data of N1, N2 and N3 because it is the aggregation node for these data. As a result, if N7

holds the data of N1, N2 and N3 after the aggregation, a new query asking for data from

N1, N2 or N3 can collect them from N7. In this way, data transmissions between N1, N2

or N3 can be saved for the new query.

This observation leads to the design of an enhanced data aggregation scheme in sensor

networks. The basic idea is that the first aggregation node for a set of individual sensor data

becomes a proxy node for these sensors as well. The proxy node stores a copy of the data

it aggregates. Furthermore, any future query asking for data from a sensor retrieves it from

its proxy node if there is one.

To ensure that the final aggregated result is correct for the new scheme, there are two

98



issues which must be resolved. First, the copy of data that a proxy holds for a sensor node

may become invalid when the sensor node senses a different value in the next epoch. Col-

lecting an expired data from an aggregation node would then lead to an incorrect processing

result. A simple method is to attach a time stamp to each copy of data a proxy node stores.

The data automatically expires and is deleted after the epoch during which it was sensed

is over. In this way, a proxy node can reuse its storage space and a sensor node can also

dynamically select different proxy nodes from epoch to epoch.

Second, the sensor data must be collected once and only once during aggregation. A

simple solution is to maintain only one proxy for each piece of sensor data. The first time

a sensor node receives a query asking for its data, it marks the first aggregation node in

its aggregation tree as its proxy. Once a proxy node has been selected for a sensor node,

any future queries will receive data from the proxy node. Even if the sensor node receives

a query request for data, it simply discards these requests. If a proxy node fails for some

reason, it is important that the sensor should select another proxy. Assuming that the node

failure can be detected by its neighbors, one of these neighbors must send a message to the

sensor node so that it can clear its mark and reselect another proxy node when a new query

asks for its data.

Given the example of the aggregation tree in Figure 45, when another query, q2, needing

data from N1, N2, N3 and N4 is sent to the network, it only needs to retrieve data from

N4 and the proxy node, N7, which has stored the data of N1, N2 and N3. The aggregation

tree for q2 using the proposed scheme is shown in Figure 46(b).

6.5 ANALYSIS

The range-based SIVS construction mainly consists of two steps. The first step is to build the

correlation graph from queries. In this step, the correlations between each pair of queries are

computed. Given a pair of queries, q1 = AF (V )?R1 ∨R2 ∨ · · · ∨Rl1 , q2 = AF (V )?R1 ∨R2 ∨
· · · ∨ Rl2 , it takes l1 × l2 computations to derive the correlations between them. Assuming
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Figure 46: Example of correlated data aggregation

that the number of rules in a query is smaller than a certain threshold value lmax, the

complexity of computing the correlation between two queries can be considered as a constant

value. As a result, it takes O(k2) to construct a correlation graph from a set of k queries,

Q = {q1, q2, · · · , qk}.
The complexity of maximum weighted matching is O(mn lg n), when Gabow’s algorithm

is used. n denotes the number of nodes in the graph and m is the number of edges in

the graph. In our graph, the number of nodes is k and m is at most k ∗ (k − 1)/2. The

SIVS rewrite only iterates at most k times, therefore its complexity is only O(k). So the

complexity of range-based SIVS construction is O(k3 lg k).

Theorem 1. Given a set of k queries, the time complexity of the SIVS construction algorithm

is O(k3 lg k).

The correlated data collection at sensor nodes, in contrast, does not require complex

computations, but need messages to be exchanged between sensors for proxy node selection

and maintenance. Since a sensor node selects the first aggregation sensor along its path

towards the sink as its proxy node, it takes at most h transmissions for N1 to inform a
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sensor node N2 that N1 has became a proxy node for N2, where h is the length of the

longest path in the routing tree towards sink for the proxy node. Similarly, it requires at

most h transmissions for a sensor node to update its proxy node after the routing tree for

data aggregation is established. In the worst case, h could be the number of sensors in the

network, n, therefore, the message complexity of the correlated data collection at sensor

nodes is O(n).

Theorem 2. The message complexity of correlated data collection at sensor nodes in a

network of n sensors is O(n).

6.6 SIMULATION RESULTS

6.6.1 Methodology

To evaluate how effective correlated multi-query processing is in reducing the data commu-

nications in sensor networks, a set of simulations are conducted. In the simulations, the

correlated multi-query processing scheme at the base station is compared with the basic

scheme of processing queries separately. In correlated multi-query processing, every piece of

sensor data in the shared intermediate view set is only transmitted/aggregated once. There-

fore, the number of data transmissions saved is the number of messages needed to send these

data to the base station. This number, however, depends on the structure of the data collec-

tion/aggregation tree used for the shared intermediate views. Nevertheless, these data must

be transmitted at least once before the result is returned to the base station. To preserve

the fairness of comparison, the amount of sensor data in the SIV is measured as the number

of data transmissions saved by correlated multi-query processing at base station, so that the

saving is network topology independent.

The second tier of the correlated multi-query processing, the correlated data collection at

sensor nodes, is compared to basic data collection without using proxies. The number of data

transmissions saved using correlated data collection also depends on how many intermediate

sensors are between a sensor node and its proxy sensor. Similarly, to make the measurement
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network topology independent, when a query acquires sensor data from its proxy node, one

data transmission is considered to be saved.

The reduced number of sensor data transmissions can in turn lead to less contention or

collision among message transmissions. The focus, however, is on the number of sensor data

transmissions for query processing, rather than the number of messages being transmitted in

the network. For this purpose, a simple simulator is developed using C++. For simplicity,

in the simulation, each data attribute at a sensor node is assigned a value uniformly selected

within its possible range. A total number of 100 sensor nodes are given in the network.

The simulation time is divided into 10 epochs. Queries are randomly generated at the base

station within an epoch. Each simulation is run 500 times. In each run of the simulation,

sensor data is randomly generated.

There are two parameters which can affect the amount of shared sensor data among

queries: the number of attributes and the number of queries. Queries specify what sensor

data to collect by defining constraints over data attributes. The more data attributes sensed

in a sensor node, the more types of constraints can be defined by a query, which usually

leads to less data being shared among queries. On the other hand, a larger number of

queries provides more opportunities for data to be shared among queries. In the simulation,

different numbers of attributes a sensor senses and different numbers of queries are used to

simulate different amounts of shared data among queries.

6.6.2 Performance Comparison

Figure 47 presents the results for number of data transmissions saved while different number

of data attributes are sensed at sensors in the network. In the simulation results, each data

point is the average value of 500 runs. Many of these figures also include a confidence interval

of 95%. However, the interval is so small that it is invisible in almost all of the figures. The

results show that as the number of attributes increases, the amount of shared sensor data

identified by correlated multi-query processing at the base station decreases, as does the

number of saved data transmissions.
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Figure 47: Number of data transmission saved by correlated multi-query processing at the

base station for 20 queries

Figures 48 to 52 present the number of data transmissions saved in the simulations,

in which sensors sense 1 to 5 attributes, respectively. In these simulations, the number of

queries varies from 10 to 50 in intervals of 10. The results show that the saved number of

data transmissions does not always increase as the number of queries increases. This is due

to two reasons. First, the queries are randomly generated, so a larger number of queries does

not necessarily mean more sensor data are shared between queries. Second, increasing the

number of queries by 10 might not be enough to generate more shared sensor data between

queries. A trend of increasing in the number of saved data transmissions can be observed at

intervals of 20 in terms of number of queries.

It is also interesting to know, in these simulations, how much is saved in terms of percent-

ages. Figures 53 to 57 show the percentage of data transmissions saved to the overall number

of data transmissions needed for the same set of queries. As shown from these results, the

percentage varies in different cases. It can be as significant as 48%, or as low as 3%. The

results suggest that significant saving can be achieved using correlated query processing at

the base station when a large amount of data is shared among queries.

From the results in Figures 48 to 57, none of the three correlation approximations, namely

“CORLow”, “CORUp1” or “CORUp2” outperforms the others in every scenario. When one
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Figure 48: Number of data transmissions

saved by correlated multi-query process-

ing at the base station when 1 attribute

is sensed
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Figure 49: Number of data transmissions

saved by correlated multi-query process-

ing at the base station when 2 attributes

are sensed
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Figure 50: Number of data transmissions

saved by correlated multi-query process-

ing at the base station when 3 attributes

are sensed
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Figure 51: Number of data transmissions

saved by correlated multi-query process-

ing at the base station when 4 attributes

are sensed
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Figure 53: Percentage of data transmis-

sions saved by correlated multi-query pro-

cessing at the base station when 1 at-

tribute is sensed

data attribute is sensed in the network, “CORUp2” reduces the number of data transmissions

for multiple query processing the most, but not in other cases. However, being aggressive,

i.e. using “CORUp1” and “CORUp2”, leads to more data transmissions being saved in most

cases.

Because the correlated query processing at the base station cannot completely eliminate

the redundancy of data communications in the network for query processing, correlated data

collection at sensor nodes is proposed to further reduce the number of data transmissions in

sensor nodes. Figures 58 to 62 show a large number of data transmissions can be saved by

using proxies for data collection.

Figures 63 to 77 compare the number of data transmissions saved by correlated query

processing at base station to the number of data transmissions saved by correlated data

collection at sensor nodes. The results show that when only one attribute is sensed at

sensors, the correlated query processing at the base station saves a larger number of data

transmissions than the correlated data collection at the sensor nodes because most correlation
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sions saved by correlated multi-query pro-

cessing at the base station when 5 at-
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Figure 59: Number of data transmissions

saved by correlated data aggregation at

sensor nodes when 2 attributes are sensed

has been identified at the base station. In other cases, however, a large amount of correlation

is left among queries by the base station, and correlated data collection at the sensor nodes

reduces more data transmissions than correlated query processing at the base station.

6.6.3 Communication Overhead

Correlated multi-query processing at the base station uses shared intermediate views to

reuse common data between queries. It seems that the base station needs to send the SIVs

with rewritten queries to the sensor network for processing, which may incur communication

overhead since more queries must be sent. However, a shared intermediate view SIV (qi, qj)

can be constructed from qi and qj, as well as the rewritten queries of qi and qj. The base

station can send qi and qj together, and each sensor checks if its data satisfies qi∩ qj, qi∩¬qj

or ¬qi ∩ qj. In this way, a collection/aggregation tree can be constructed for SIV (qi, qj) and

the rewritten queries of qi and qj by only sending queries qi and qj.

In the correlated data collection scheme at sensor nodes, a proxy node is established at

almost no additional communication overhead since the data must be aggregated anyway.
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saved using CORUp2 when 4 attributes

are sensed
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Figure 77: Number of data transmissions

saved using CORLow when 5 attributes

are sensed

A sensor node doesn’t need to know what its proxy node is so no message needs to be sent

back from the proxy node to the sensor node once the data aggregation is done. The only

communication overhead is when the proxy node fails. One of its neighboring sensors must

update the sensor node that its proxy has failed and a new proxy must be selected if needed.

This process does incur additional communications. However, the overhead is not significant

if sensor failures are not frequent.

6.7 SUMMARY

This chapter details how to process the correlation among semantic views. A numerical model

is developed to estimate the volume of data shared between two queries. Based on these

estimation values, a set of shared intermediate views, which captures the actual set of data

shared between queries, are constructed. These shared intermediated views are processed

only once and their results are reused to provide results for the original queries from which
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the shared intermediate views are constructed. The goal is to eliminate the overlapping of

sensor data among queries so that each sensor only need to transmit/aggregate its data once

for processing semantic views. The sensor nodes, after receiving queries, use correlated data

collection to reduce the number of data transmissions for correlated queries. In correlated

data collection, each sensor node stores its data to a proxy node which is closer to the base

station. It is shown through simulations that these two techniques can effectively reduce the

communication cost of data processing for correlated queries among semantic views.
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7.0 LOCATION DISCOVERY FOR SEMANTIC VIEW PROCESSING

In this chapter, we first introduce some background of location discovery using multi-

lateration in sensor networks, and then define out-of-range information and show how to

use out-of-range information to resolve location ambiguities in several scenarios. Based on

these observations, the multi-lateration scheme is modified to utilize out-of-range informa-

tion for location discovery when sufficient reference nodes are not available. The design is

validated through simulations at the end of the chapter.

7.1 PROBLEM STATEMENT

 d1

d3

d2

Reference node

Unresolved node

Figure 78: An example of trilateration
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In location discovery using multi-lateration, a sensor obtaining its location through exter-

nal devices is called an anchor or reference sensor node. Unknown sensors exchange messages

with neighboring reference sensor nodes. From these messages, unknown sensors can find out

where these neighboring reference sensors are. They can also compute the distances to the

reference sensor nodes through received signal strength or time of transmission. As shown

in Figure 78, in a two dimensional space, given the locations of three neighboring reference

nodes and distances to these reference nodes, an unknown sensor node can compute its own

location if at least one of these reference nodes is not collinear with the rest of the reference

nodes. Since the distance between sensors is not directly measured but estimated, inaccura-

cies may be introduced in the location discovery process. When more than three neighboring

reference nodes are available, an unknown sensor can minimize the location estimation error

using a maximum likelihood estimator [106]. If fewer than three reference sensors exist in

the neighboring nodes, an unknown sensor cannot uniquely determine its own position.

Unknown sensor node

Reference node

Figure 79: Location discovery through multi-lateration

Using the atomic multi-lateration process, some unknown sensor nodes can estimate their

locations from an initial set of reference nodes. These nodes then act as if they are newly

available reference nodes and propagate their locations to other sensors in the network. The

process continues until all unknown sensors with three or more neighboring reference sensor

nodes or resolved sensor nodes estimate their locations. Apparently, the ultimate number
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of sensors which can resolve their locations after the process depends on the number and

locations of the initial reference sensor nodes. In the example shown in Figure 79, all sensors

can discover their locations using the five initial reference sensors. With simple analysis, it

is also easy to see that all sensors can discover their locations with the four reference sensors

on the top of the network topology.

Given that each reference sensor can cost much more than a normal sensor node and

consumes significantly more energy in obtaining its location through external devices, it is

preferable to use as few reference nodes as possible. It is necessary then to look at possible

ways to minimize the number of initial reference sensors in location discovery using multi-

lateration schemes. In cases where sensors can be deployed at specific locations, the reference

sensors can be strategically positioned in the network such that the minimal number of

sensors is needed to enable the location discovery of all other sensor nodes. However, in

many scenarios, it is very difficult, if not possible, to deploy sensors at specific locations.

Therefore, approaches which don’t rely on the specific deployment of initial reference sensors

will be investigated.

7.2 OUT-OF-RANGE INFORMATION

The definition for Out-of-Range information is based on the following observation: if two

sensor nodes, N1 and N2, cannot hear from each other, then the distance between them

must be larger than r1, the transmission range of N1, and r2, the transmission range of

N2. In reality, the transmission range of a sensor may be irregular [140], so the transmission

range of a sensor node may depend on where the destination is. However, the observation is

still valid if r1 and r2 is replaced with the minimum range over all directions that N1 and

N2’s signal propagates. The observation is formally defined as follows:

N1, N2 are not neighboring nodes ⇒
dist(N1, N2) > max(min(r1α), min(r2α)) . (7.1)

For simplicity, let r be max(min(r1α), min(r2α)) in the rest of the chapter.
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P1 P2

           (a) Case 1            (b) Case 2

           (c) Case 3

Figure 80: Using Out-of-Range information to resolve an unknown node’s position

The following sections illustrate how to utilize Out-of-Range information to resolve an

unknown node’s position by introducing several scenarios. In all of the following cases, it

is assumed that node N is out of the transmission range of node U . Furthermore, it is

assumed that the network is connected. Hence, N can reach U through multi-hop flooding.

For simplicity, the other nodes in the network are not shown in Figure 80.

7.2.1 Case 1: N is a reference node and U has two neighboring reference nodes

In the scenario presented in Figure 80(a), the unknown node has two neighboring reference

nodes, R1 and R2. The distance measured from the unknown node to R1 and R2, is d1 and

d2 respectively. Obviously, there are two possible positions that the unknown node might be,

P1 and P2, given only this knowledge. If another reference node, N , exists in the network

and the unknown node cannot hear from N . Furthermore, P2 is in N ’s transmission range
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while P1 is not, then it can be inferred that the unknown node can only reside in P1 because

it would hear from N if it were at P2.

Let (xN , yN) be the coordinate of the reference node N , (x1, y1) and (x
′
1, y

′
1) be the two

possible positions of the unknown node U , and r be the minimum transmission range of N ,

N can resolve U ’s location if:

(
√

(xN − x1)2 + (yN − y1)2 > r &&
√

(xN − x
′
1)

2 + (yN − y
′
1)

2 ≤ r)

‖ (
√

(xN − x
′
1)

2 + (yN − y
′
1)

2 > r &&
√

(xN − x1)2 + (yN − y1)2 ≤ r) . (7.2)

7.2.2 Case 2: N is an unknown node with two neighboring reference nodes and

U has two neighboring reference nodes

In the scenario described in Figure 80(b), an unknown node, N , has two neighboring

reference nodes, R3 and R4. Given its distance to R3 and R4, d3 and d4, N can calculate its

two potential locations: P3 and P4. Similarly, the unknown node, U , has two neighboring

reference nodes, R1 and R2, and computes its own possible positions: P1 and P2. Further-

more, the distance between P3 and P1 and the distance between P4 and P1 are smaller than

U ’s minimum transmission range, r. Based on the fact that N is not a neighbor of U , U can

determine that it must be located at P2.

In general, an unknown node N , located at either (x1, y1) or (x
′
1, y

′
1), can determine the

location of another unknown node, U , located at either (x, y) or (x
′
, y

′
), if:

(
√

(x− x1)2 + (y − y1)2 ≤ r &&
√

(x− x
′
1)

2 + (y − y
′
1)

2 ≤ r)

‖ (
√

(x′ − x1)2 + (y′ − y1)2 ≤ r &&
√

(x′ − x
′
1)

2 + (y′ − y
′
1)

2 ≤ r) . (7.3)
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7.2.3 Case 3: N is an unknown node with one neighboring reference node and

U has two neighboring reference nodes

Similar to case 2, the scenario presented in Figure 80(c) also describes how an unknown

node, N , can help to determine the location of another unknown node, U . This case differs

from case 2 in that the unknown node, N , only has one neighboring reference node. In

Figure 80(c), U is located at either P3 or P4. N is located at d1 away from the reference

node R1. P1 is the farthest point from P4 among all the possible locations N might be.

If P4P1 is smaller than r, it can be easily concluded that U must reside at P3, because

otherwise U would be a neighboring node of N .

Generally, consider an unknown node U , located at either (x, y) or (x
′
, y

′
). An unknown

node N , which is d away from its neighboring reference node R1, can determine U ’s position

under the following condition:

√
(x− x0)2 + (y − y0)2 ≤ r, ∀(x0, y0),
√

(x0 − xR1)2 + (y1 − yR1)2 = d

‖
√

(x′ − x0)2 + (y′ − y0)2 ≤ r, ∀(x0, y0),
√

(x0 − xR1)2 + (y1 − yR1)2 = d . (7.4)

Condition 7.4 can be simplified into the following equivalent condition after a short

derivation:

√
(x− xR1)2 + (y − yR1)2 ≤ r − d1

‖
√

(x′ − xR1)2 + (y′ − yR1)2 ≤ r − d1 . (7.5)
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7.3 LOCALIZATION SCHEME

In the proposed location discovery scheme, anchor nodes disseminate their positions to neigh-

boring unknown sensor nodes. An unknown sensor node measures its distance to each of the

neighboring reference/anchor nodes respectively. It’s assumed that the distance between two

sensors can be estimated using methods such as RSSI or ToA. If more than three neighbor

nodes are reference nodes, an unknown node then estimates its own location using trilatera-

tion. In addition, the least square method is used to refine a sensor node’s location in an over

determined system. Otherwise, the unknown sensor node sends messages to non-neighboring

nodes to check if they can help to resolve its location using Out-of-Range information. Once

its location is resolved, an unknown node becomes a reference node and disseminates its

position to other unknown nodes in the network to enable the continuation of the location

discovery process.

Figure 81 presents the major steps of the localization process executed at a reference

node R. The reference node starts the localization process by announcing its location to

neighboring nodes. It then keeps waiting for messages from other nodes. Based on the type

of message received, the reference node, R, responds as follows:

• If a “Location help” message for U is received, R simply discards this message if it has

already processed the help request from U . Otherwise, R checks condition 7.2 and sends

“Location help reply” to U if it can determine the location of U using “Out-of-Range”

information. If R cannot utilize its “Out-of-Range” information to uniquely locate U ’s

position, R decreases the TTL of the “Location help” message by one and forwards the

“Location help” message to its neighbors if the TTL is still bigger than zero

The main steps of the localization scheme at an unknown node are described in Figure 82.

Each unknown node U basically waits for messages from other nodes and acts according to

the type of message as follows:

• After receiving a “Location announce” message from R, U puts R’s id and location

information in its reference node table. U also starts a timer t if the “Location announce”

is the first announce message it receives
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No

Figure 81: Localization algorithm at reference nodes
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Figure 82: Localization algorithm at unknown nodes
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• If the timer, t, expires and U still cannot resolve its location, U initializes the TTL of

the “Location help” message to be h and sends it out to its neighboring nodes

• Upon receiving a “Location help” message for another unknown node U1, node U simply

discards this message if it has already processed the message. Otherwise, it extracts the

reference node information in the message and determines if its location information can

help to determine U1’s position. The conditions in case 2 and 3 in section 7.2.2 and 7.2.3

are checked for based on the role of U and U1. If U ’s information can be utilized to

determine U1’s location, U replies to U1 with a “Location help reply” message. Other-

wise, U decreases the TTL of “Location help” by one and forwards the “Location help”

to its neighbors if the TTL is still bigger than zero

• After receiving a “Location help reply”, U extracts the reply information and resolves

its location. If U ’s location is resolved, U becomes a reference node and executes the

localization algorithm for reference nodes

7.4 SIMULATION RESULTS

7.4.1 Methodology

The main metric that we are interested in the simulations is how many number of sensors

can be resolved after the location discovery process completes. In addition, we also want to

know how many initial reference sensors are needed to discover the locations of all sensors

nodes in a high density network. The simulation is developed using Glomosim 2.03. The

location discovery scheme using Out-of-Range information is simulated at the application

layer. The initially configured anchor nodes start to broadcast location information at the

beginning of simulation. All the messages are delivered using UDP and retransmitted three

times if not received. Each node maintains a neighbor table so that it knows if it is out of

the range of another node.

A various levels of densities is simulated by modifying the number of sensors in a field

of 100X100m. The average node degree of these networks are listed in Table 10. In the
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Table 10: Average node degree deg in a network of n nodes for location discovery

n 30 40 50 60 65 70 75 80 90 100

deg 2.86 3.95 5.6 5.8 6.4 7.0 7.1 7.2 9.2 9.5

simulations, a transmission range of 20m is considered. Furthermore, for simplicity, it is

assumed that all sensors have the same value of transmission range.

7.4.2 Effect of h

The value of h is critical to the performance of the proposed scheme. On the one hand, a

large value of h allows an unknown node to reach more sensors for help and thus have a

higher chance of resolving its location ambiguity. However, on the other hand, it also leads

to a high level of communication overhead. Therefore, care must be taken in configuring the

value of h to ensure a high possibility of location discovery at a low cost of communications.

Figure 83 presents the number of resolved nodes after the location discovery completes in

networks with various levels of densities. In these scenarios, 3 nodes are initially configured

as anchor nodes. The results show that the number of resolved nodes remains the same in

most cases. It slightly increases in the network of 50 and 80 nodes when h increases from 2

to 3. The reason is that nodes multi-hop away may be geographically too far away from the

unknown node U to provide any useful Out-of-Range information. The value of h is set to

be 2 in the rest of the simulations.

7.4.3 Performance Comparison

The number of resolved sensors after the location discovery is completed is used to measure

the effectiveness of the proposed scheme in comparison to the basic multi-lateration scheme.

The number of additional nodes located using Out-of-Range information depends on the

network connectivity and topology. Figure 84 presents the number of resolved nodes after

location discovery with Out-of-Range and without Out-of-Range information in a set of
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scenarios. Each data point in Figure 84 is the average value of 20 runs. In each run, a

set of three nearby sensors which are neighboring to at least one other sensor are chosen

randomly as reference sensors to start the location discovery process. In addition to the

average number of resolved sensors, the 5% confidence interval is also shown in the figure.

The number of anchor nodes remains at 3 in the simulations.

When the average node degree is small, no Out-of-Range information can be used due to

the lack of connectivity in the network. On the other hand, when the average node degree

is large, no Out-of-Range information is needed since sensors can estimate their locations

using reference nodes. In the other cases, the proposed scheme can locate more nodes than

the basic multi-lateration scheme. The results show that as the sensor network connectivity

starts to decrease, the Out-of-Range information can be used to locate more sensors in the

network.

It is worth noting that the average number of resolved sensors does not always increase

as the density increases in the network. This is due to the fact that nodes are uniformly

placed over the entire area. With the uniform placement, the area is divided into a number

of cells and nodes are randomly placed within each cell. A slight increase in the number of

nodes can result in an additional cell with only few nodes placed in it. Selecting reference

sensors from this additional cell could end up with very few sensors being resolved after the

location discovery process. Nonetheless, a relative big increase of network density does result

in an increase of number of resolved sensors after the location discovery process.

In addition to Figure 84 which shows the absolute number of resolved sensors, we also

present the percentage of resolved sensors after location discovery process in networks with

different levels of densities in Figure 85. The data in Figure 85 shows that with Out-of-Range

information, a significant larger percentage of sensors can be located in the networks with

medium range densities.

Next, Figure 86 shows how many anchor nodes are required in order to discover the

locations of all sensors in the network when the network connectivity is high. As the figure

shows, the number of anchor nodes required to discover all sensors can be reduced using Out-

of-Range information in networks with low and medium density. In high density network,

there is no need to use Out-of-Range information for location discovery since sensors can
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gain sufficient information about reference sensor nodes and compute their locations using

multi-lateration.

7.5 SUMMARY

This chapter presents the location discovery scheme used in the framework for semantic

view processing. The location discovery scheme is based on “Out-of-Range” information

and it is shown how this information can be used to resolve sensor location ambiguities

when combined with multi-lateration. The simulation results show that with out-of-range

information, fewer reference nodes are needed to locate sensors in the network, which in turn

reduces cost and energy consumption of the whole network since reference nodes are usually

much more expensive and consume more energy.
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8.0 SECURE MESSAGE EXCHANGE FOR SEMANTIC VIEW

PROCESSING

In wireless sensor networks, sensors communicate with each other using open mediums such

as electromagnetic and acoustic waves. The data being transmitted in wireless signals can

be easily captured by attackers through eavesdropping and traffic analysis if communications

among sensors are not encrypted. Even if links between sensors are secured, attackers can

still attack sensor nodes. Once a sensor is compromised, its data is revealed to attackers if

it is not tamper resistent. In addition, data communications through this sensor for other

sensors may also be revealed to attackers.

To secure message exchanges for semantic view processing, an end-to-end pairwise key

establishment scheme based on key pre-distribution is presented. This scheme allows any

two sensors to set up a common symmetric key after key pre-distribution and path key

establishment. These keys are then used to protect data communication links between

sensors against packet eavesdropping and traffic analysis by attackers. The scheme also

protects data communications among normal sensors from being exposed to compromised

sensors.

8.1 ATTACK MODEL

We consider an attack model as follows:

• Attackers can eavesdrop all data communications among sensors through packet sniffing

and extract data using traffic analysis.
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• Sensors are not tamper resistent.

• Attackers only have limited resources to attack sensor nodes and can randomly compro-

mise a certain number of sensors up to a threshold value.

8.2 END-TO-END PAIRWISE KEY ESTABLISHMENT

Giving the attack model above, our goal is to secure data communications among sensors

against eavesdropping attack and compromised sensor nodes. We first briefly describe a

random key pre-distribution scheme, on which our scheme is based.

8.2.1 Key Pre-distribution Scheme and Path Key Exposure

In the random key pre-distribution scheme proposed in [28], each node is loaded with a key

ring of a set of m keys randomly selected from a large pool of keys, P, before deployment.

Two nodes exchange either key identifiers or challenges to discover common keys in their key

rings. The common key is used to establish a secure communication link. Since only a small

number of keys are loaded in each sensor, node pairs may not always share common keys.

Nodes without a common key to other WSN nodes are required to negotiate symmetric keys

through a secure path.

To illustrate the key pre-distribution process, consider the network depicted in Fig 87.

In this network, as a result of the common key discovery phase, N1 shares a key with N2 but

not with N3 or N4. Consequently, to communicate with N3, N1 establishes a secure path to

N3, e.g., N1 → N2 → N4 → N3, and sends a key K to N3 through the secure path. As it

travels from N1 to N3, K is encrypted with K12, K24 and K34, respectively. Notice, however,

that while the pairwise key K is supposed to be exclusively shared between N1 and N3, the

need for successive encryptions and decryptions along the path causes the key to be exposed

to the intermediate nodes N2 and N4. This may lead to potential security compromise if

a node along the path is captured. We refer to this problem as the “path key exposure

problem”. The likelihood of security breaches caused by key exposure is not negligible when
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Figure 87: An example sensor network after shared key discovery.

random key pre-distribution is used to establish secure channels between a large number of

WSN nodes. This is due to the fact that in key pre-distribution, the likelihood of a given

node sharing a common key with a large number of other nodes is relatively small. Therefore,

achieving secure communication between nodes which do not share a common key may lead

to the establishment of a large number of secure paths for symmetric key negotiation and

selection, thereby increasing the likelihood of security breaches.

8.2.2 End-to-End Pairwise Key Establishment using Multiple Secure Paths

As stated above, the path-key establishment exposes keys to each intermediate node along

the routing path. In order to enhance the security of symmetric key establishment, we

propose an end-to-end pairwise key establishment scheme which leverages multiple paths for

key negotiation and establishment. The following assumptions are made in our scheme and

security analysis.

• A Node Disjoint Routing Protocol (NDRP), such as the one described in [141], is used
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to find node-disjoint paths1.

• Secure links have been established among neighboring nodes in the network. This can

be easily achieved using a secure key pre-distribution scheme such as the one described

in [28].

Consider a network with a total number of n nodes, where a secure topology has been

established using a shared-key discovery phase. Furthermore, assume that node N1 needs

to set up a pair-wise key with another node N2. This can be achieved using the following

steps:

• N1 uses NDRP to find a set, PS, of node-disjoint secure paths to N2.

• Let s =| PS |, represent the size of the path set PS. Node N1 selects a key K and divides it

into s fragments, K1, K2 . . . Ks, such as K = K1∪K2∪. . .∪Ks, where Ki∪Ki+1 represents

the concatenation of Ki and Ki+1. Each fragment contains a sequence number, and the

last fragment contains a Cyclic Redundancy Checksum code to verify the correctness of

the assembled packet.

• N1 sends Ki through the ith secure path.

• Upon receiving all s fragments of the key, node N2 reproduces the key K, and uses it for

secure communication with N1.

Notice that the proposed scheme does not depend on the algorithm used to produce the

key K. Consequently, any algorithm to produce a secure key can be used. An issue related

to path selection, however, still remains to be addressed: how many node-disjoint paths must

be discovered by the underlying NDRP to ensure a high level of security with low level of

overhead? The answer to this question depends on the number of nodes an attacker may

compromise.

Assuming that an attacker can compromise at most x nodes in the network, a trivial

solution would be to build a set of at least x+1 node-disjoint paths to achieve maximum

security. However, if x is large, the network connectivity may not be “rich” enough to produce

1A large body of research work has focused on finding node-disjoint paths in a network. The focus of
our scheme is not on building node-disjoint paths, but on what paths should be used to ensure the secure
exchange of symmetric keys across a routing path. As such, the proposed scheme does not depend on a
specific NDRP algorithm. More work on finding node-disjoint secure paths or single-hop paths can be
found in [40][41][42][43]
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x+1 node-disjoint paths. Furthermore, a first look at the problem may lead to believe that

the larger the set of node-disjoint paths is the more secure the scheme would be. Contrary

to intuition, however, we will show that this is not always true. To this end, we develop a

security analysis model to determine how secure a path-key establishment scheme is, given

different sets of node-disjoint paths.

8.3 SECURITY ANALYSIS

In this section, we present a model to determine the probability that a path-key K is revealed

if a node-disjoint secure path set, PS , is used. The notation used in this analysis are listed

in Table 11. Assume that a node-disjoint path set, PS, is used. The key K is divided into

Table 11: Notation

K : A pairwise key to be established

n : Total number of nodes in the network2

x : The maximum number of nodes an attacker can capture

X : The set of nodes compromised. | X |≤ x

PS : {P1, P2 . . . Ps}
s : | PS |, number of secure paths in PS

li : Intermediate hop counts of path Pi

Npi
: Intermediate nodes set of path Pi,∀1 ≤ i ≤ s

Nps+1 : The rest of nodes not in PS

NXi : The set of nodes compromised in Npi

s =| PS | fragments. Each fragment of K is transmitted over a selected path in PS. The

key K could be reproduced if and only if all s fragments are received. An attacker, trying

to capture K, must compromise at least one node in each path in the set PS. Obviously, if

x < s then the probability of this event happening is zero. Otherwise, the probability of

a path-key being exposed is the probability of selecting a set X out of n nodes such that
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X ∩Npi
6= ∅,∀1 ≤ i ≤ s.

In this analysis, the security risk sr is defined as the probability of a key sent through a

set of s paths, {P1, P2 . . . Ps}, being revealed when an attacker captures x out of n nodes. We

denote this probability as prob[{P1, P2 . . . Ps}, x, n]. There are (n
x) cases which result in x out

of n nodes being randomly compromised. We need to compute how many of these cases will

reveal the key K to an attacker. A single selection of x from n nodes could be represented

as a (s+1)-tuple, (NX1, NX2 · · ·NXs, NXs+1), in which NXi is the set of nodes captured

from Pi and NXi ⊆ Npi
, ∀ 1 ≤ i ≤ s. Now the cases in which the key K would be exposed

are equivalent to those tuples (NX1, NX2 · · ·NXs, NXs+1) such that NXi 6= ∅,∀1 ≤ i ≤ s.

So

prob[{P1, P2 . . . Ps}, x, n] =

| {(NX1 · · ·NXs+1) | NXi 6= ∅, ∀1 ≤ i ≤ s} |
(n
x)

(8.1)

A simple procedure to compute | {(NX1 · · ·NXs+1) | NXi 6= ∅,∀1 ≤ i ≤ s} |, would be

to first fix the number of nodes in NXi and then determine how many possible cases exist.

It is hard, however, to list all possible distributions of x nodes over these s+1 sets. We,

therefore, use a different method to compute | {(NX1 · · ·NXs+1) | NXi 6= ∅,∀1 ≤ i ≤ s} |.
In the following, we describe the proposed method.

We index nodes in each path Pi from 1 to li. So Npi
= {Ni1 . . . Nili}. A new s tuple

S(j1, j2 . . . js) denotes the set of cases {(NX1 · · ·NXs, NXs+1) | NXi 6= ∅, and the largest

index of NXi is ji,∀1 ≤ i ≤ s}. Since ji ≤ li, ∀1 ≤ i ≤ s, there are totally l1 × l2 · · · × ls

possible tuples. For example, if n=6, x=3, PS={P1, P2} and l1 = 2, l2 = 3. We index nodes

in P1 and P2 so that P1 = {N11, N12}, P2 = {N21, N22, N23}. The node not in PS is N6. So

S(1,1)={({N11}, {N21}, {N6})}, S(2,2)={({N12}, {N22}, {N6}), ({N12, N11}, {N22}, ∅),
({N12}, {N22, N21}, ∅)}.

Lemma 1. S(j1, j2 . . . js) ∩ S(j
′
1, j

′
2 . . . j

′
s) = ∅ if ∃i, 1 ≤ i ≤ s and ji 6= j

′
i

2During the analysis, we assume that the source and destination node will not be compromised, thus they
are not counted in the total number of nodes n.
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Proof: Let ji be the largest index of node captured in Pi, if ji 6= j
′
i, then NXi 6= NX

′
i .

Thus S(j1, j2 . . . js) ∩ S(j
′
1, j

′
2 . . . j

′
s) = ∅.

Based on Lemma 1, we derive that

prob[{P1, P2 . . . Ps}, x, n] =∑l1
j1=1

∑l2
j2=1 · · ·

∑ls
js=1 | S(j1, j2 . . . js) |
(n
x)

(8.2)

For the cases of S(j1, j2 . . . js), N1j1 . . . Nsjs are compromised and the rest of the nodes could

be captured either from the nodes not in PS or from those nodes in path Pi with smaller

index than ji. There are n−∑s
m=1 lm nodes not in any path and (

∑s
i=1 ji)− s nodes in PS

with smaller index, So | S(j1, j2 . . . js) |= (
n−Ps

m=1 lm −s +
Ps

i=1 ji

x−s ). Thus

sr = prob[{P1, P2 . . . Ps}, x, n] =
∑l1

j1=1

∑l2
j2=1 · · ·

∑ls
js=1(

n−Ps
m=1 lm −s +

Ps
i=1 ji

x−s )

(n
x)

(8.3)

From Equation 8.3, we know that the security risk of our scheme is related to both the

number of node-disjoint paths in PS and the hop count of each path in PS. A path set PS with

more paths could be less secure. For example, if n=100, x=10 then prob[(3, 4, 8), 100, 10] =

0.045 however prob[(1, 5), 100, 10] = 0.038, so path set {1, 5} is more secure than {3, 4, 8}.
In order to study the relation between the security risk of our scheme and the number of

node-disjoint paths, we isolate the effect of path hop count by assuming that we always find

another node-disjoint path with the same length. Fig 88 depicts the relation between s, l

and sr in a 100 nodes network with 10 of them being captured randomly.

Fig 88 shows that although the security is improved by using more node-disjoint paths,

the improvement by adding one more path decreases as the number of node-disjoint paths

increases. For example, when one 6-hop path is used, the security risk decreases from 0.47

to 0.21 by adding one more 6-hop node-disjoint paths. However if more than 5 node-disjoint

paths are used, the security risk decrease by adding one more path will be less than 0.01.

In a real network, it is unlikely that the node-disjoint paths found would be the same

length. We take a path set {P1, P2, P3, P4, P5, P6} with l1 = 1, l2 = 3, l3 = 4, l4 = 6, l5 =

8 and l6 = 9, and select these node-disjoint paths in the order of their hop count. Fig 89
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shows how security risk varies with number of node-disjoint paths. We can see that the

benefit from adding one more path is also decreasing. So after a number of node-disjoint

paths are selected, it is not worth to find more node-disjoint paths. In other words, given

security risk sr we need only use a certain number of node-disjoint paths with hop count

constraint. The following properties of path-set can help to define a condition of path-set

selection.

Lemma 2. prob[{l1 . . . ls}, x, n] ≤ prob[{l . . . l}s, x, n]3 if
∑s

j=1 lj = s× l

Lemma 3. prob[{l1 . . . ls}, x, n] ≤ prob[{l . . . l}s, x, n] if
∑s

j=1 lj ≤ s× l

Lemma 2 can be proved by strong induction, and Lemma 3 follows from Lemma 2. See

Appendix A.3 for details.

From Lemma 3, we know that given (s,l) a path-key sent through s node-disjoint paths

set {l1, l2 . . . ls} can be compromised with probability less or equal than prob[{l . . . l}s, x, n]

if
∑s

j=1 lj ≤ s × l. Given sr and s, we can use Equation 8.3 to compute the maximum

l such that prob[{l . . . l}s, x, n] ≤ sr and prob[{l . . . l}s+1, x, n] > sr. If node-disjoint path

discovering algorithm NDRP can find such s node-disjoint paths, then we do not have to

find more paths.

3{l . . . l}s means there are s paths with the same hop count l in this set.
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Figure 89: Security analysis of a real path set

8.4 OVERHEAD ANALYSIS

There are two kinds of overhead in our scheme: computational overhead and communication

overhead. Given a security risk sr, number of nodes n and maximum number of nodes x an

attacker could compromise, we compute a sequence of tuples (s, l) and use these tuples to

determine when NDRP stops. It could be done off-line before sensors are deployed and a

table of (s, l) could be loaded into each sensor.

In our scheme, the NDRP will need to find multiple node-disjoint paths for key estab-

lishment. It will incur extra routing overhead. However since the path-key establishment

only needs to be run once for data communications unless the path-key is revoked and a

new key needs to be negotiated. Generally, the path-key establishment occurs once during

a long period of time for a pair of nodes. Also because we only send a small piece of key

information through each path, every path is used for a very short period of time. So path

maintenance is unnecessary if mobility is not extremely high.
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8.5 SUMMARY

This chapter details the end-to-end pairwise key establishment scheme for secure message

exchange in semantic view processing. The scheme is based on key pre-distribution and

improves the level of security of pairwise keys by using multiple secure paths during estab-

lishment. The symmetric keys can then be used to secure all data communications between

sensors against packet eavesdropping and traffic analysis by attackers in semantic view pro-

cessing.
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9.0 CONCLUSION AND FUTURE WORK

Data intensive applications, in particular disaster management and emergency response have

very stringent requirement of efficient information delivery for data processing. The effec-

tiveness of sensor networks in providing information is determined by human’s capacity to

recognize and comprehend information from the raw data collected, and act accordingly.

Sensor networks should not only collect data from the physical world, but also facilitate

users to extract and absorb information specific to their needs. Transmitting users irrelevant

data during data processing not only overloads users with unneeded data but also incurs un-

necessary communication overhead. This efficient information delivery requirement creates

additional challenges for data processing in wireless sensor networks when they are deployed

to collect data for these applications, because the user interests can be diversified and yet

correlated in these applications. To bridge the gap between data collected by sensors and

the information interests of users, the concept of “semantic view” is proposed in this thesis.

The semantic view is a powerful abstraction, which allows the fusion of multi-sensor and

multi-source data into a virtual data gathering and analysis infrastructure commensurate

with the interest of the underlying organization.

In order to support semantic views in sensor networks, the relevant data of semantic

views must be identified, selected and collected from sensors. To this end, a framework

for enabling semantic views is proposed. The main components of the framework are sens-

ing scheduling, query dissemination, query processing, location discovery and pairwise key

establishment. “Query Aware Sensing” addresses how to schedule sensors to achieve a de-

sired level of sensing coverage for a dynamic changing set of queries in sensor networks

using a minimum amount of energy. “Probabilistic Query Dissemination” deals with how

to reduce the energy consumption of delivering queries to their relevant sensor nodes in the
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network. “Correlated Multi-query Processing” aims to reduce transmission cost of data col-

lection for multiple queries by reusing shared data among them. “Location Discovery using

Out-of-Range information with multi-lateration” is presented to provide locations, which is

absolutely necessary in order to provide coverage and geographical filtering of data in sensor

networks to sensor nodes. “End-to-End pairwise key establishment” is used to establish

symmetric keys between sensors using multiple secure paths for securing message exchanges

in semantic view processing against traffic analysis and compromised sensor nodes. The

ultimate goal is to develop a general framework towards enabling energy efficient semantic

views in sensor networks for data intensive applications.

In query aware sensing, the set of active sensors is dynamically adjusted to achieve

the required level of coverage for the current set of semantic views. When new queries

arrive at the base station, the base station first derives the level of coverage requirement,

COV, from these queries. Then based on the current sensing scheduling, it uses GRASS, a

greedy algorithm for sensing scheduling, to compute a minimum set of sensors which must

be additionally activated to sense in order to provide the desired level of coverage. This set

of sensors is added to the current set of active sensors. After one sensing period ends, the

current set of active sensors is updated from the set of queries which still need to be processed

in the next sensing period. Sensors do not sample data and their sensing boards are turned

off unless they are instructed by the base station to sense, thereby further reducing energy

consumption.

The queries in semantic views are also used at the same time by correlated multi-query

processing at the base station. An estimation model is used to measure the size of the shared

data between two queries. Based on the estimation value, pairs of queries are selected in

such a way that the estimated size of shared data among all these pairs is maximal. A

shared intermediate view is constructed for each pair of queries, which captures the actual

set of sensor data shared by these two queries. To ensure semantic correctness, the original

queries are rewritten into a different set of queries such that the data for the original query

is now divided into two disjoint sets of sensors of the shared intermediate view and the

rewritten query. The set of shared intermediate views is also dynamically updated when

new queries arrive at the base station. Similar to query aware sensing, the set of shared
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intermediate views is cleared at the end of a sensing period and rebuilt at the beginning of

the next sensing period. The goal of correlated multi-query processing at the base station is

to eliminate the overlapping of sensor data among queries so that each sensor only need to

transmit/aggregate its data once.

These shared intermediate views, along with rewritten queries, are delivered to sensor

nodes in the network using probabilistic query dissemination. In probabilistic query dissem-

ination, each sensor forwards a query with certain probability. This probability is adapted

to each sensor node’s local information, such as the additional area its forwarding can cover,

the additional number of sensor nodes its transmission can reach, or the number of mes-

sages with the same query it has already overheard. By adapting the forwarding probability

to local topology information, these schemes can further reduce the number of messages

needed to disseminate semantic views in sensor networks, in comparison to other gossip

based broadcast schemes.

After sensors receive the queries, they use correlated data collection to reduce the number

of data transmissions for correlated queries. In correlated data collection, each sensor node

stores its data to a proxy sensor node which is closer to the base station. A proxy node

is established when the data at the sensor node is first acquired by a query. The node in

the routing tree which first aggregates the value of a sensor node becomes the proxy sensor

for the sensor node. After a proxy sensor is established by a sensor node, any later query

requesting its data shall retrieve the data from its proxy node. If the proxy node of a sensor

fails, a new proxy node is established when the next query requests data from the sensor.

Correlated data collection at sensor nodes is used to further reduce the number of data

transmissions in sensor nodes, since the correlated query processing at the base station does

not completely eliminate the redundancy of data communications in the network for multiple

query processing.

Locations of sensor nodes must be known in the proposed framework for several reasons.

First, sensors’ locations must be known in order to compute the coverage level of a deploy-

ment field. With this information, the desired level of coverage can be ensured when sensors

are turned off to preserve energy consumption of the sensor nodes. The second reason is that

when the queries in user semantic views specify geographical constraints, e.g. the data from
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a particular area is needed, a sensor needs to know its location in order to determine if its

data is required for those queries. To this end, a location discovery scheme using out-of-range

information with multi-lateration is proposed. The out-of-range information is based on the

observation that if two sensors cannot hear from each other, then the distance between them

must be larger than the transmission ranges of both sensors. This information can be easily

obtained by maintaining a neighbor list at each sensor node. Any non-neighboring sensor

of a sensor node can be inferred as out of its range. The out-of-range information, when

combined with multi-lateration scheme, can be very useful to resolve location ambiguities of

unknown sensors. The conditions that this out-of-range information can be used to resolve

location ambiguities are developed for reference nodes and unknown nodes in different sce-

narios. An unknown sensor with location ambiguity then reaches these out-of-range nodes

through multi-hop paths and the out-of-range nodes determine if they can help to resolve

its location by checking the conditions which may apply. It is shown that, with out-of-range

information, fewer reference nodes are needed to locate sensors in the network, which in turn

reduces cost and energy consumption of the whole network since reference nodes are usually

much more expensive and consumes more energy than normal sensors.

Furthermore, since semantic view processing relies on information exchange among sen-

sors for collecting data from sensors, attackers can also gain these data by capturing and

analyzing all the messages exchanged among sensors. To secure message exchanges for

semantic view processing, an end-to-end pairwise key establishment scheme based on key

pre-distribution is presented. This scheme allows any two sensors to set up a common sym-

metric key after key pre-distribution and path key establishment. These keys are then used

to protect data communication links between sensors against packet eavesdropping and traf-

fic analysis by attackers. The scheme also protects data communications among normal

sensors from being exposed to compromised sensors.

In essence, semantic views support mission-aware information delivery commensurate

with and relevant to the goals and needs of associated organizations in sensor networks.

These protocols and algorithms towards enabling semantic views allow sensors to self-organize

to identify, collect, and deliver the information specific to each decision maker efficiently.

Since the effectiveness of sensor networks as a decision making tool is essentially limited by
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human being’s capacity to absorb and react on the information provided by these networks,

“semantic views” can increase decision makers’ capacity to recognize critical events such

as disasters by allowing them to focus on data through “semantic views” that are directly

relevant to their responsibilities. The “semantic view” reduces the overload of less relevant

information and time required for information processing and facilitates rapid absorption of

critical information by decision makers. Consequently, more prompt and accurate reaction

can be taken on the critical events recognized by decision makers. This increased ability

to recognize and react to events may significantly benefit human beings in various scenar-

ios. For instance, in disaster management, an early perception of risk conditions such as

tsunamis using sensor networks can provide us precious time to evacuate and may save a

significant number of human lives when tsunami strikes. Although, the ultimate success of

disaster management depends on how communities react to risk conditions, “semantic views”

extends the capability of sensor networks towards such success in a social system from the

technology’s perspective.

9.1 FUTURE WORK

Currently, the framework and the designed algorithms and protocols have been evaluated

through simulations. However, implementation of these algorithms and protocols in new re-

search projects being funded and conducted to develop sensor networks for disaster manage-

ment and emergency response, for instance, in an underwater sensor network being designed

and implemented for near shore tsunami detection in city of Padang, Indonesia [1], would

allow for further evaluation through actual experimentations.

The gap between the processing results of the queries in user semantic views and informa-

tion requests from users must also be further examined. Even though semantic technologies

such as metadata and ontology enables bridging and interconnection of data, content, and

processes, and facilitates information integration from different sources of data, information

discovery from a large amount of data and fast information retrieval after relevant data is

generated [142][143][144][145][146], selecting the one most appropriate for sensor networks is
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not an easy task but worth a deep study and analysis, because the tradeoffs among all these

approaches must also be carefully considered in order to pick the best method for sensor

networks.
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APPENDIX

ALGORITHMS AND THEOREMS

A.1 MINIMUM SET K COVERING

In this section, we analyze the greedy algorithm used in query aware sensing scheduling for

semantic view processing. For simplicity of analysis, the GRASS algorithm is transformed

into an equivalent greedy algorithm for minimum set k covering problem at first, and an

approximation factor is then developed for the greedy algorithm.

Theorem 3. The greedy algorithm has a Hmk approximation factor for the minimum set k

covering problem, where Hmk =
∑

1≤i≤mk
1

mk

Proof. The proposed algorithm is equivalent to the following greedy algorithm for set k

covering problem.

Let x1, x2, · · · , xmk be the order of elements in U being selected by the greedy algorithm.

When xl is selected, there are at least mk − l + 1 elements left uncovered. The price of xl,

price(xl) must be less or equal to OPT
|U | , where OPT is the optimal number of sets selected to

cover U for k times. Otherwise, the optimal solution will incur cost price(x)× |U | > OPT .

Therefore,

price(xl) ≤ OPT

mk − l + 1
(.1)
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Algorithm 12 Greedy algorithm for set k covering

1: for all ai ∈ U do

2: d(ai) = k

3: end for

4: C = ∅
5: while U 6= ∅ do

6: Find set F ∈ S − C, that minimizes α = 1
F∩U

7: for all a ∈ F ∩ U do

8: price(a) = α

9: end for

10: C = C ∪ F

11: for all a ∈ F ∩ U do

12: d(a) = d(a)− 1

13: if d(a) == 0 then

14: U = U − F

15: end if

16: end for

17: end while
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Due to the nature of the weight definition, the cost of the greedy algorithm Cost is:

Cost =
∑

1≤i≤mk

price(xi) (.2)

From inequality .1, it is easy to derive the Cost as:

Cost ≤ OPT ×
∑

1≤i≤mk

1

mk − i + 1

= OPT ×Hmk (.3)

A.2 GABOW’S ALGORITHM FOR MAXIMUM MATCHING ON GRAPHS

The main sketch of Gabow’s algorithm is described in this section, more details and discus-

sions can be found at [131]. The algorithm consists of three routines, E, L and R. E is the

main routine and it uses subroutines L and R.

L assigns the edge label n(xy) to nonouter vertices edge xy, which joins outer vertices

x, y. The main steps of L are described in Algorithm 14:

R(v, w) rematches edges in the augmenting path. The main steps of R are described in

Algorithm 15.

A.3 SECURITY ANALYSIS

In this section, we show how to select from two sets of node disjoint secure paths in our

end-to-end pairwise key establishment for a higher level of security based on the number of

hops in these paths.
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Algorithm 13 E

1: (Initialize) Read the graph into adjacency list, numbering the vertices 1 to V , and the

edges V + 1 to V + 2W . Create a dummy vertex 0. For 0 ≤ i ≤ V , set LABEL(i) =

1,MATE(i) = 0, u = 0

2: (Find unmatched vertex) Set u = u + 1. If u > V , return; Otherwise, if vertex u is

matched, repeat step 1, otherwise set LABEL(u) = FIRST (u) = 0

3: (Choose an edge) Choose an edge xy, where x is an outer vertex. If no such edge

exists, go to step 8

4: (Augment the matching) If y is unmatched and y 6= u, set MATE(y) = x, call

R(x, y), then go to step 8

5: (Assign edge labels) If y is outer, call L, then go to step 3

6: (Assign a vertex label) Set v = MATE(y). If v is nonouter, set LABEL(v) =

x, FIRST (v) = y, and go to step 3

7: (Get next edge) Go to step 3

8: (Stop the search) Set LABEL(0) = −1. For all outer vertices i, set LABEL(i) =

LABEL(MATE(i)) = −1, then go to step 1

Algorithm 14 L

1: (Initialize) set r = FIRST (x), s = FIRST (y). If r == s, return. Otherwise flag r

and s

2: (Switch paths) If s 6= 0, interchange r and s

3: (Next nonouter vertex) Set r = FIRST (LABEL(MATE(r))). If r is not flagged,

flag r and go to step 2, otherwise, set join = r and go to step 4

4: (Label vertices in P (x), P (y)) Set v = FIRST (x), do step 5. Set v = FIRST (y), do

step 5. Then go to step 6

5: (Label v) if v 6= join, set LABEL(v) = n(xy), F IRST (v) = join, v =

FIRST (LABEL(MATE(v))), repeat current step. Otherwise, continue as specified

in step 4

6: (Update FIRST ) For each outer vertex i, if FIRST (i) is outer, set FIRST (i) = join

7: (Done) Return
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Algorithm 15 R

1: (Match v to w) Set t = MATE(v),MATE(v) = w. If MATE(t) 6= v, return

2: (Rematch a path) If v has a vertex label, set MATE(t) = LABEL(v), call

R(LABEL(v), t) recursively and then return

3: (Rematch two paths) Set x, y to vertices so LABEL(v) = n(xy), call R(x, y) recur-

sively, call R(y, x) recursively, and then return

A.3.1 Proof of Lemma 2

Proof. We reform Equation 8.3 into another form in order to prove Lemma 2.

prob[{l1 . . . ls}, x, n] =

∑l1
j1=1 · · ·

∑ls
js=1(

n−Ps
m=1 lm −s +

Ps
i=1 ji

x−s )

(n
x)

=

∑Ps
i=1 li

j=s ej × (
j+n−s−Ps

m=1 lm
x−s )

(n
x)

ej is the number of s-tuples whose summation of all elements is j.

ej = e([l1, l2 . . . ls], j)

= | E([l1, l2 . . . ls], j) |

= | {(i1 . . . is) |
s∑

m=1

im = j

and im ≤ lm∀1 ≤ m ≤ s} |

Before we prove Lemma 2, let us look at three properties of ej.

Property 1. e([l1 . . . ls−1, ls], j) = e([l1 . . . ls−1, ls − 1], j) + e([l1 . . . ls−1],

j − ls)

For all s-tuples in {(i1 . . . is) |
∑s

m=1 im = j and im ≤ lm∀1 ≤ m ≤ s}, the sth index is is

either ls or less than ls. If is = ls then the summation of all other elements should be j − ls.

There is totally e([l1 . . . ls−1], j−ls) such s-tuples. When is < ls, the number of tuples equal to

e([l1 . . . ls−1, ls−1], j). Thus e([l1 . . . ls−1, ls], j) = e([l1 . . . ls−1, ls−1], j)+e([l1 . . . ls−1], j− ls)

Property 2. e([l1, l2 . . . ls], j) = e([l2 . . . ls], j−1)+e([l2 . . . ls], j−2)+ · · ·+e([l2 . . . ls], j− l1)
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Property 2 can be proved by applying Property 1 on l1.

e([l1, l2 . . . ls], j) = e([l1 − 1, l2 . . . ls], j) + e([l2 . . . ls], j − l1)

= e([l1 − 2, l2 . . . ls], j) + e([l2 . . . ls], j − (l1 − 1)) +

e([l2 . . . ls], j − l1)

= e([0, l2 . . . ls], j) + e([l2 . . . ls], j − 1) +

e([l2 . . . ls], j − 2) + · · ·+ e([l2 . . . ls], j − l1)

= e([l2 . . . ls], j − 1) + e([l2 . . . ls], j − 2) + · · ·+
e([l2 . . . ls], j − l1)

Property 3. e([l1 . . . lm], j) ≤ e([l1 . . . lm + y], j + y)

For any s-tuple (i1 . . . im−1, im) in E([l1 . . . lm], j), we can construct another s-tuple (i
′
1 . . . ,

i
′
m−1, i

′
m) in E([l1 . . . lm + y], j + y) as following: i

′
m = im + y and i

′
t = it ∀ 1 ≤ t ≤ m − 1.

∑m
t=1 i

′
t =

∑m
t=1 it + y = j + y and i

′
t = it ≤ lt ∀ 1 ≤ t ≤ m− 1; i

′
m = im + y ≤ lm + y. Thus,

this new tuple belongs to E([l1 . . . lm + y], j + y).

If
∑s

j=1 lj = s× l, then

prob[{l1 . . . ls}, x, n] =

∑l×s
j=s e([l1 . . . ls], j)× (j+n−s−s×l

x−s )

(n
x)

prob[{l . . . l}, x, n] =

∑l×s
j=s e([l . . . l], j)× (j+n−s−s×l

x−s )

(n
x)

So we can prove Lemma 2 by proving e([l1 . . . ls], j) ≤ e([l . . . l], j) ∀ s ≤ j ≤ s× l using

strong induction. The following describes the main steps in the induction.

Step 1: s = 1. Since l1 = l, e([l1], j) = e([l], j) ≤ e([l], j)
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Step 2: Assume e([l1 . . . lm], j) ≤ e([l . . . l]m, j) ∀ m ≤ j ≤ m× l for all m ≤ s− 1.

e([l1, l2 . . . ls], j) = e([l2 . . . ls], j − 1) + e([l2 . . . ls], j − 2) + · · ·
+e([l2 . . . ls], j − l1)

= e([l2 . . . l
′
s], j − 1) + e([l2 . . . ls−1], j − 1− ls) +

· · ·+ e([l2 . . . ls−1], j − 1− ls + (l − l1 − 1)) +

e([l2 . . . l
′
s], j − 2) + e([l2 . . . ls−1], j − 2− ls) +

· · ·+ e([l2 . . . ls−1], j − 2− ls + (l − l1 − 1)) + · · ·+
e([l2 . . . l

′
s], j − l1) + e([l2 . . . ls−1], j − l1 − ls) +

· · ·+ e([l2 . . . ls−1], j − l1 − ls + (l − l1 − 1))

= e([l2 . . . l
′
s], j − 1) + e([l2 . . . l

′
s], j − 2) +

· · ·+ e([l2 . . . l
′
s], j − l1) +

e([l1, l2 . . . ls−1], j − ls) + e([l1, l2 . . . ls−1], j − ls + 1)

+ · · ·+ e([l1, l2 . . . ls−1], j − ls + (l − l1 − 1))

≤ e([l . . . l]s−1, j − 1) + e([l . . . l]s−1, j − 2) +

· · ·+ e([l . . . l]s−1, j − l1) +

e([l1, l2 . . . ls−1], j − ls) + e([l1, l2 . . . ls−1], j − ls + 1)

+ · · ·+ e([l1, l2 . . . ls−1], j − ls + (l − l1 − 1))

≤ e([l . . . l]s−1, j − 1) + e([l . . . l]s−1, j − 2) +

· · ·+ e([l . . . l]s−1, j − l1) +

e([l1, l2 . . . ls−1 − l + ls], j − l) +

e([l1, l2 . . . ls−1 − l + ls], j − l + 1) +

· · ·+ e([l1, l2 . . . ls−1 − l + ls], j − l1 − 1)

≤ e([l . . . l]s−1, j − 1) + e([l . . . l]s−1, j − 2) +

· · ·+ e([l . . . l]s−1, j − l1) +

e([l . . . l]s−1, j − l) + e([l . . . l]s−1, j − l + 1) +

· · ·+ e([l . . . l]s−1, j − l1 − 1)

= e([l, l . . . l]s, j).
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A.3.2 Proof of Lemma 3

Proof. Obviously, prob[{l1 . . . ls}, x, n] ≤ prob[{l1 . . . ls + y}, x, n] if y ≥ 0. So if
∑s

j=1 lj ≤
s× l, then

prob[{l1 . . . ls}, x, n] ≤ prob[{l1 . . . ls + s× l −
s∑

j=1

lj}, x, n]

≤ prob[{ l1 + . . . + ls + s× l −∑s
j=1 lj

s
. . .

l1 + . . . + ls + s× l −∑s
j=1 lj

s
}s, x, n]

= prob[{l . . . l}s, x, n]
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