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Three-dimensional (3D) medical imaging, including computed tomography (CT) and 

magnetic resonance (MR), and other modalities, has become a standard of care for diagnosis of 

disease and guidance of interventional procedures. As the technology to acquire larger, more 

magnificent, and more informative medical images advances, so too must the technology to 

display, interact with, and interpret these data. 

This dissertation concerns the development and evaluation of a novel method for 

interaction with 3D medical images called “grab-a-slice,” which is a movable, tracked stereo 

display. It is the latest in a series of displays developed in our laboratory that we describe as in-

situ, meaning that the displayed image is embedded in a physical 3D coordinate system. As the 

display is moved through space, a continuously updated tomographic slice of a 3D medical 

image is shown on the screen, corresponding to the position and orientation of the display. The 

act of manipulating the display through a “virtual patient” preserves the perception of 3D 

anatomic relationships in a way that is not possible with conventional, fixed displays. The further 

addition of stereo display capabilities permits augmentation of the tomographic image data with 

out-of-plane structures using 3D graphical methods. 

In this dissertation we describe the research and clinical motivations for such a device. 

We describe the technical development of grab-a-slice as well as psychophysical experiments to 

evaluate the hypothesized perceptual and cognitive benefits. We speculate on the advantages and 
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limitations of the grab-a-slice display and propose future directions for its use in psychophysical 

research, clinical settings, and image analysis.  
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1.0  INTRODUCTION 

1.1 THESIS STATEMENT 

Display of 3D medical data on a movable tracked tomographic screen is more conducive 

to navigation through and visualization of those data than on a conventional immobile screen, 

and provides a novel platform for medical image analysis. 
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1.2 OVERVIEW OF CONTRIBUTIONS 

This dissertation makes two major contributions. The first is the design, development, 

and validation of grab-a-slice, a movable tracked tomographic display that uses custom software 

and hardware to render slices of 3D data as a function of the position and orientation of the 

display. Through carefully designed psychophysical experiments, I demonstrated that using the 

grab-a-slice display confers a benefit to novices in their ability to accurately navigate through 

and visualize 3D structures as compared with a conventional display.  

The second major contribution is the inclusion of stereo out-of plane graphics into grab-

a-slice.  To our knowledge, this combination of a movable tomographic display with stereo 

capabilities has never been done before. The stereo capabilities allow for the stable rendering of 

3D objects in and out of the plane of the screen. This is a fertile testbed for future research on 3D 

medical image display and analysis. 
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1.3 THESIS ORGANIZATION 

The next chapter describes the relevant background for the present research, including 

current and previous methods in navigation through and visualization of 3D data, clinical 

motivation, and relevant methods in image analysis. Chapter 3 describes the evolution of the 

design of the grab-a-slice display, and Chapter 4 encompasses the psychophysical experiment 

done to evaluate performance with the display. Chapter 5 describes the current results of the 

stereographical component of grab-a-slice. Chapter 6 offers discussion on the significance, 

strengths, and limitations of this work as well as insights into future directions.   
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1.4 MATH NOTATION CONVENTIONS 

I have endeavored to abide by the following notation scheme throughout this document: 

 

1. Matrices are identified with bold capital letters, e.g. T 

2. N-d vectors are identified with bold, italicized, lowercase letters, e.g. q 

3. N-d points are identified as vectors, as they are assumed to be vectors from the 
global origin to a particular location in space 

4. A vector from a to b is computed by taking b – a 

5. Points and vectors should be construed in either the homogeneous or non-

homogeneous form, as appropriate for the context 

6. Reference frames are identified by italicized capital letters, e.g. R 

7. Points and vectors in a particular reference frame will have the reference frame as 

a subscript, e,g. aG 

8. Transformations from reference frame A to frame B are denoted as TA→B 

9. Scalars are represented by non-bold lowercase letters, e.g. z 
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2.0  BACKGROUND AND SIGNIFICANCE 

Three-dimensional (3D) medical imaging, including computed tomography (CT) and magnetic 

resonance (MR), and other modalities, has become a standard of care for diagnosis of disease 

and guidance of interventional procedures. However, effective visualization of 3D data remains 

limited by the available 3D display technology. Volumetric data can be rendered on two-

dimensional (2D) displays by graphical techniques that make use of a number of cues for depth 

perception, including stereopsis, shading, opacity, and perspective, among others. Nonetheless, 

doctors generally prefer to view 3D data in tomographic slices primarily because graphical 

computer renderings may obscure relevant information from the viewer. For example, the entire 

brain is hidden by the skull in the rendering at the top of Figure 2.1. While tomographic viewing 

of 3D data is sufficient for many clinical tasks facing the radiologist, gaining proficiency with 

this method of interpretation requires overcoming a steep learning curve. 
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Figure 2.1: 3D perspective rendering (above) and sequence of CT images (below) of a human skull (skull.cg-

graphic.com, answers.com). 

One particular use of tomographic viewing is with ultrasound (US), in which a slice is 

scanned and displayed in real-time, and in which practitioners exhibit the same learning curve 

mentioned above. Over the last decade, our laboratory has sought to reduce this learning curve 

by developing in-situ visualization methods for medical images that merge ultrasound images 

with a direct view of the patient [1][2]. Our device, called the Sonic Flashlight (SF), consists of a 

small display and a half-silvered mirror mounted on a conventional US transducer. Looking 

through the mirror, the operator sees the reflection of the real-time US image floating in-situ 

within the patient, precisely where the scan is currently being obtained (Figure 2.2). The SF 

merges the US image, US probe, operator's hands, surgical instrument, and patient into the same 

field of view, enabling perceptually guided action. Others have taken similar approaches for 

displaying slices of CT and MR data in-situ [3][4][5]. 
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Figure 2.2: The Model 4 Sonic Flashlight (Wu, et al). 

Our laboratory has conducted extensive research into the underlying psychophysical 

properties of in-situ image guidance. This research has demonstrated advantages as compared to 

conventional displays in the accuracy of perceived target depth, immunity to errors due to 

surface deformation, and the interpretation of shape and pose of 3D targets [6][7][8][9][10][11]. 

We use the term “tomographic aperture” to denote the manner in which 3D data is sampled by 

slicing, analogous to that of a conventional aperture through which the world is sampled by 

constrained projection. The research has established that displaying an image in-situ provides a 

spatial buffer for memory to combine sequential 2D information into a 3D context. 

This avenue of research led us to conceive of a novel type of in-situ display that may 

provide a better interface for viewing and interacting with pre-acquired 3D data, such as those 

generated by CT or MR. We call this display device “grab-a-slice,” and it consists of a tracked 

mobile flat-panel monitor that displays slices through a stationary 3D data set. Grab-a-slice 

creates an easily manipulable tomographic aperture by means of a real image, as opposed to the 



 

 8 

SF’s virtual image, and thus produces an in-situ image with larger size and greater clarity 

(resolution, brightness, and contrast) than possible with the SF.  

Conventionally, clinicians view tomographic images on an immobile 2D display, 

scrolling through stacks of parallel slices. However, we believe this method to be suboptimal for 

certain clinical tasks, such as locating and interpreting the boundaries of irregularly-shaped 

structures or following curved vessels along their trajectories. Furthermore, conventional 

displays do not preserve the context in which the data exists; users lose track of the location of 

relevant 3D structures in adjacent slices. 

Grab-a-slice has evolved to provide an improved interface for many common clinical 

imaging tasks, as it allows the user to navigate more intuitively through 3D data. Grab-a-slice 

may also be a medium through which graphical augmentation can illuminate the information 

content of 3D medical images rather than obscure it. For example, grab-a-slice can be used to 

display the results of 3D segmentation algorithms in a novel fashion, potentially creating new 

(two-way) modes of interaction between users and image data. Thus, grab-a-slice may be useful 

for supervising semi-automated segmentation of relevant anatomy, to facilitate computer-aided 

diagnosis and therapy planning.  

2.1 RELATED WORK ON VISUALIZATION OF 3D DATA 

2.1.1 Conventional computer graphics for 3D rendering 

Various methods have been developed for rendering 3D data onto a stationary 2D display, with 

or without special hardware for stereovision, such as Lorensen’s marching cubes algorithm for 
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pre-segmented 3D objects [12] and Levoy’s conversion of intensity gradient to rendered opacity 

and surface normal [13]. Many other graphical techniques may be applied to rendering medical 

data, but in general the data must first be analyzed to segment the structures to be displayed. 

After all, without some form of at least partial opacity by which objects can obscure other 

objects, the world would be a confusing cloud of translucent visual information very difficult for 

the human to interpret. As a result of the requirement to establish the locations of these opaque 

surfaces within the voxel data, graphical methods of 3D renderings are not widely used by 

clinicians, who generally prefer to see the raw data as slices than to trust a computer algorithm to 

segment and render structures correctly.  

 

Figure 2.3: Stereopsis for perception of depth due to retinal disparity (vision3d.com). 

2.1.2 Stereo vision 

With grab-a-slice, we use computer graphics not as a primary method of rendering data, but 

rather to enhance the spatial and anatomic context of the in-situ tomographic image on the 

display. To do this, we make use of stereo display technology. One of the most powerful and 

easily manipulated cues for depth perception is stereopsis, in which humans use the binocular 
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disparity between two 2D retinal images to generate an impression of three-dimensionality in the 

visual world (Figure 2.3). When focusing on an object at a particular distance, there is a locus of 

points, called the horopter, for which the rays project to corresponding retinal points (that is, the 

points on the horopter are seen without stereo discrepancy). Within a certain range of the 

horopter, disparity between the retinal images causes the perception of depth relative to the 

horopter (Figure 2.4). Within this region, called Panum’s fusional area, the discrepancies 

between retinal images are relatively small, and objects appear as fused, even though the retinal 

images do not perfectly correspond. Outside Panum’s area, double vision, or diplopia, results, 

and depth relative to the horopter is determined by a higher-level process [14]. 

 

Figure 2.4: The red and blue objects fall on the horopter, forming corresponding retinal images; the brown 

object does not (sinauer.com). 

Computer displays can present stereo images in several ways. Each method makes use of 

the human ability to interpret binocular disparity as the perception of depth. Different images can 

be presented to each retina by the use of specialized glasses, which filter the rays entering each 

eye by wavelength or polarization. An example of the latter is LCD shutterglasses (e.g., 

CrystalEyes, Inc., Beverly Hills, CA), which alternately darken the lens over each eye as the 

display alternates between two images. Commercial systems for consumer use are now widely 

available, with a large niche in the computer video game market. 

Blackwell et al [15] designed a display system in which stereo glasses were utilized to 

overlay 3D medical image information into a simulated patient using a half-silvered mirror. We 
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extend this concept to grab-a-slice, in which the tracked movable display can include stereo 

images of objects extending outside the slice, augmenting the tomographic content in the slice 

itself. 

2.2 RELATED WORK IN NAVIGATION THROUGH 3D DATA 

Navigation through a displayed 3D environment has also inspired various approaches. Ware and 

Osborne [16] provide a user interface for exploring virtual graphics environments they call 

“scene-in-hand,” a virtual camera control that changes the perspective of a 3D environment in 

response to the manipulation of a tracked tool. Hinckley, et al., use passive interface props [17], 

tracked objects that are simple and hand-held, to generate tomographic slices of medical image 

data (Figure 5). The cubic mouse [18], developed for specification of 3D coordinates in graphics 

applications, consists of a tracked in-hand device coupled with rods and buttons to specify 

motion of virtual objects along various axes (Figure 6). Other approaches, including the 

SpaceBall line of products (3DConnexion, Silicon Valley, CA) implement a non-tracked 3D 

navigation tool. All of the above still use a stationary display, as opposed to the movable display 

described here. 
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Figure 2.5: Passive interface props. 

 

Figure 2.6: The cubic mouse. 

Tracked movable boom-mounted monitors that are counterbalanced so that the operator 

can manipulate them by hand have been used as immersive displays into 3D virtual 

environments [19][20]. However, to our knowledge, they have not been used for tomographic 

slicing of a volume.  

Augmented reality systems in which head-mounted displays are coupled with algorithms 

for 3D perspective rendering have been studied extensively [21][22]. This approach has also 

been applied to viewing tomographic slices [23][24]. 
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Ito et al developed a system that tracks a handheld screen surface using a monocular 

vision system and then projects the corresponding slice of a 3D virtual object onto that screen in 

real-time. However, this system does not provide optimal image contrast and brightness, and has 

a limited region of operation [25]. 

Grab-a-slice differs from previous work in this field. To our knowledge, a movable 

tracked active display with stereo capability has not been used to show the unadulterated details 

of the medical image data in tomographic slices while simultaneously using 3D graphics to 

provide contextual information about the objects around the current slice. 

2.3 CLINICAL SIGNIFICANCE 

Pulmonary embolism (PE) is a condition in which an embolus (made of clotted blood, air, or fat) 

propagates into the pulmonary arterial tree, causing a partial or complete occlusion of blood flow 

to the lung (Figure 2.7). Depending on the size and location of the embolus, the condition ranges 

from asymptomatic to fatal. In a study of more than 42 million deaths (from all causes) that 

occurred over a 20-year duration, almost 600,000 patients (approximately 1.5 percent) were 

diagnosed with PE. PE was the presumed cause of death in approximately 200,000. This study 

underestimates the true incidence and prevalence of PE, since more than half of all PE are 

probably undiagnosed [26]. The average annual incidence in the US is approximately 1 in 1000, 

with about 250,000 incident cases occurring annually. Patients being evaluated for PE are 

typically given a contrast-enhanced CT scan, in which the blood vessels are filled with a high-

contrast agent that makes them easily distinguishable in the CT image.  
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Figure 2.7: Pulmonary embolus. At right, axial CT image showing embolus in the right pulmonary arterial 

tree (mdconsult.com, e-radiography.net). 

Radiologists follow a specific algorithm for detecting PE in the CT image in which they 

first identify suspicious features in the branches of the pulmonary vessels. PE can manifest in 

many ways, but is commonly observed as a filling defect caused by the presence of the embolus. 

The radiologist must trace the vessel containing the defect back to the heart to determine whether 

it is in fact a branch of the pulmonary artery (PA), emerging from the right ventricle, or of a 

pulmonary vein (PV), supplying the left atrium. PE is only seen in the branches of the PA, so 

suspicious structures in branches of the PVs are likely to be artifactual or otherwise non-

significant. 

Clinicians typically perform the task of vessel identification by scrolling through a stack 

of axial slices in the CT dataset. The clinician must invoke at least two cognitive processes: 

application of top-down knowledge of the vasculature and surrounding anatomy, and 

reconstruction of the path of 3D vessels through multiple 2D cross-sections. A hypothesis of the 

present thesis is that grab-a-slice can reduce this cognitive load by allowing the user to move in 

actual 3D space through the image volume. 
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Radiological diagnosis of PE is but one of many applications for which grab-a-slice may 

be well suited. Any medical imaging task requiring the reconstruction of 3D anatomy from 2D 

slices may lend itself to this device. 

2.4 COMPUTERIZED IMAGE ANALYSIS 

As mentioned above, we intend to adapt grab-a-slice as a tool for supervised image analysis. 

Segmentation algorithms hold great clinical promise in assisting radiologists with identifying 

normal and pathological anatomy, but currently most algorithms fall short of fulfilling this 

promise, especially when abnormal anatomy is involved. Various classes of segmentation 

methods, based on thresholding, region growing, maximum likelihood classifiers, Markov 

random field models, deformable models, atlas-based methods, and other techniques, have been 

developed in research settings but have generally yet to be sufficiently validated or widely 

accepted in the clinic [30][31]. 

Current attempts at segmentation of the vasculature have concentrated on methods that 

take advantage of the known tubular structure. Multiscale filtering is a method in which images 

are convolved with 3D Gaussian filters at multiple scales. Eigenvalues of the resulting Hessian 

matrix at each voxel are used to provide connectiveness along the axes of tubular structures 

[32][33]. Tobogganing is a segmentation algorithm in which the lowest gradient magnitude in 

each local 8-connected neighborhood of pixels determines a slide direction, connecting sets of 

pixels to avoid the boundaries [34][35][36]. 

Our laboratory has developed a method of semi-automated real-time segmentation of the 

common carotid artery and internal jugular vein in B-mode ultrasound images. This method, 
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known as the spokes ellipse algorithm, draws radial lines, or spokes, emanating from a seed point 

in the cross-sectional image of a vessel to detect an intensity boundary along each spoke. These 

boundary points are used to fit an ellipse, the center of which then acts as the seed point for the 

subsequent timeframe [37][38]. The method was used for temporal tracking of large vessels in 

2D US images, but could be applied as well in segmentation of the pulmonary vessels in 

spatially separated slices. The above methods have practical limitations including extensive 

parameterization and difficulty with branching structures. 

Our laboratory has also developed a method, Shells and Spheres, for extracting 

anatomical shape models from 3D images, which is especially well suited for the heart and 

vasculature. The method represents 3D shapes as the union of spherical regions, and is therefore 

well suited for tubular structures that can branch or curve back upon themselves. These spheres 

are found using a set of spherical operators centered at each image pixel and sized to reach, but 

not cross, the nearest object boundary. Statistical tests are performed on the sample of pixels 

contained by each sphere to measure homogeneity within objects and the heterogeneity between 

objects.  

One particular Shells and Spheres algorithm developed in our laboratory by Aaron Cois 

[39][40][41][42] and then extended by Vikas Shivaprabhu [43] and others [44] is briefly 

described here. The basic algorithm may be outlined as follows: Spheres are “grown” at each 

pixel location by incorporating “shells” of pixel intensity values into expanding spheres, 

including an ongoing analysis of mean, variance, and first-order moment, to identify the radius at 

which each sphere grows past its nearest object boundary. Pairs of spheres on opposite sides of 

putative boundaries (i.e., “inner” and “outer” spheres) are then analyzed to estimate the 

likelihood of a local boundary existing; two spheres whose pixel populations differ in intensity 
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will have a larger likelihood of lying across a boundary from each other. Abrupt changes in the 

direction vectors between large-likelihood sphere pairs are then used to generate the set of points 

that constitute the medial ridge of the object, which identifies the interior of anatomical 

structures of interest. The union of spheres whose centers lie on the medial ridge and are tangent 

to the boundary in two or more locations can be used to represent the entire object, and this set of 

spheres can be visualized with 3D graphics.  

The amount of human involvement in a segmentation algorithm ranges from none (in 

fully automated algorithms) to a great deal (fully manual systems). Shells and Spheres presents a 

number of promising features for operation with grab-a-slice. It is inherently multidimensional, 

permitting extension from the current slice into the surrounding 3D volume independent of the 

current slice’s orientation. It is also very efficient, provided it can be limited to particular 

structures and regions, which grab-a-slice can be used to do during initiation and supervision.  

Grab-a-slice may provide new ways for human input to be captured and utilized by 

segmentation routines that have not yet been considered in current approaches. 3D segmentations 

of structures can be displayed with stereo graphics on grab-a-slice. These segmentations can be 

overlaid with appropriate opacity and blending onto tomographic data to provide context-rich 

information that facilitates user interpretation of the image.  
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3.0  DEVICE DEVELOPMENT 

As mentioned above, grab-a-slice is the latest in a series of devices our lab has developed that 

utilize in-situ images. This chapter describes the evolution of the current generation of the 

device, including relevant previous devices in whose development and validation I was involved, 

and which helped motivate grab-a-slice.  This chapter then provides details of the current design. 

3.1 THE SONIC PENLIGHT 

The sonic flashlight has been described extensively (see Chapter 2.0 ). The clinical SF was 

designed to provide image guidance for particular clinical applications (e.g., vascular access and 

amniocentesis) that are performed at a particular scale – generally, between two and six 

centimeters below the patient’s skin. However, many clinical procedures require intervention 

within the first subdermal centimeter. Gaining vascular access in premature neonates, for 

example, is impeded by their vessels’ small size and mobility.  Ophthalmologists are exploring 

real-time ultrasonic guidance in corneal surgery and in accessing structures in the anterior 

chamber of the eye [45]. Surgery for carpal tunnel syndrome involves tendons and nerves that 

reside in the first subdermal centimeter [46].  

These examples and others may benefit from in-situ image guidance as provided by the 

sonic flashlight, but at a smaller scale. The first models of the SF [1][47] employed medium-



 

 19 

range ultrasound frequencies, which provide imaging information at a greater depth at the cost of 

poorer spatial resolution.  Obtaining meaningful images at superficial depths with these models 

is thus not optimal. The footprint of the transducers is also not optimal for getting access just 

beneath the skin. 

The need for image guidance techniques for superficial interventions motivated research 

toward construction of a miniature sonic flashlight that illuminates low-depth areas with high 

resolution.  I worked with others in our laboratory to construct a working model of this device 

using a 12x9mm organic LED microdisplay, a custom CAD/CAM designed housing, and a small 

phased array ultrasound probe. With this device, we guided insertion of a needle into a gel 

phantom blood vessel (diameter = 6mm) (Figure 3.1) [48].  

 

Figure 3.1: The sonic penlight for guidance of superficial subdermal access (Shukla, et al). 
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Experience with the sonic penlight led to a current project in our laboratory that replaces 

ultrasound with optical coherence tomography as the imaging modality.  The device is designed 

to be used to image superficial ocular structures in corneal surgery [49].   

3.2 CLINICAL TRIALS WITH THE SONIC FLASHLIGHT 

In addition to the design and testing of the sonic penlight, I was involved in the clinical trials of 

the SF. The first clinical trials of this device were performed in the interventional radiology suite 

of Presbyterian Hospital at the University of Pittsburgh.  Others in our laboratory had 

demonstrated the initial safety and feasibility of using the SF to guide the placement of 

peripherally inserted central catheters (PICCs) [50]. I was involved in a subsequent redesign and 

calibration of the SF and in trials of PICC placement in the IR suite [51] and at the patient’s 

bedside by nurses in over 50 patients [52]. I was also involved in the first live-animal study using 

the SF for real-time guidance of an intervention on the kidney, in which we gained percutaneous 

access to the renal collecting system in a pig model [53]. My participation in these trials led to 

valuable experience with how operators interact with in-situ images in the clinical environment. 

3.3 VIRTUAL ULTRASOUND ENVIRONMENT 

While the above research gave me useful experience with the in-situ display of real images, grab-

a-slice evolved most directly from another augmented reality system developed in our laboratory 

by Damion Shelton, the “virtual sonic flashlight.” The virtual SF differs from the clinical device 
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in that simulated data is examined in lieu of real ultrasound data in order to more easily study the 

psychophysics of in-situ image displays and how various image parameters affect a user’s 

perception of the contents of a simulated ultrasound image [54]. The virtual SF utilizes a cluster 

of infrared light-emitting diodes (IREDs) and an optical tracking system to continuously monitor 

the position and orientation of a dummy ultrasound probe; the contents of the virtual SF’s 

display are based upon this position and orientation data such that when the user is operating the 

device. Simulated targets were placed into a virtual patient, and using the virtual SF system, the 

operator can see registered simulated ultrasound images of cross sections of those targets below 

the scanning surface. 

The virtual SF was used in a set of psychophysical experiments that illuminated some of 

the differences between in-situ visualization (using the SF) and ex-situ visualization (using a 

conventional display) [54]. In particular, one experiment attempted to determine the effect of 

background cues in the virtual image on the accuracy of hitting a virtual target with a needle tool. 

The effect was studied using targets at different depths in the virtual patient, comparing 

performance between the SF and conventional ultrasound. The initial results indicated, although 

not with statistical significance, that performance with SF guidance is more accurate than that 

with conventional ultrasound guidance, provided that rich background cues are present in the 

virtual image. The magnitude of this difference increases with target depth.  

I became involved in this project in order to further validate the initial findings. I tested 

22 subjects, of which 16 provided suitable data for statistical analysis. The results of this analysis 

supported the trends found by Shelton, though not to the desired level of significance. 

Nonetheless, I gained valuable experience in planning and performing psychophysical 

experiments on human subjects, as well as with the apparatus, which inspired the design of my 
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device as well as of my own experiments. Many of the basic features of the engineering, 

including geometric transformations, optical tracking, graphical programming, 3D texture 

mapping, etc., carried over into my dissertation research. 

3.4 FIRST-GENERATION DEVICE 

The first prototype of grab-a-slice [55] was constructed using a wooden frame for a 15” touch-

screen display (Microtouch M150, 3M, Inc., St. Paul, MN) that allowed the display to be 

manipulated in 4 degrees of freedom (DOF) with respect to a stationary tabletop. The operator 

could move the display with a single hand using one or both of two handles (Figure 3.2). The 

apparatus was free to translate across the tabletop in two directions (A and B), and to rotate about 

the “yaw” axis (C), facilitated by Teflon pads attached to the underside of the platform to 

provide low dynamic friction. This permitted comfortable one-handed manipulation. A hinged 

mount with ball-bearing tracks permitted the display to rotate vertically about the “pitch” axis 

(D). Sufficient static friction in the hinge and between the platform and the tabletop, along with 

proper balance of the hinged assembly, permitted the screen to remain immobile when released. 

Rigid bodies can have a maximum of six DOF, but for the first prototype we deemed it 

unnecessary to physically implement the remaining two: translation in height normal to the 

tabletop and rotation in the “roll” direction within the image plane, as both could be readily 

implemented in software. A seventh DOF, isotropic scale, could also be manipulated in software, 

effectively magnifying or shrinking the virtual patient.  



 

 23 

 

Figure 3.2: First prototype of grab-a-slice, with 4DOF as labeled A-D. 

The first prototype of grab-a-slice used four IRED markers, roughly corresponding to 

each corner of the display, for detection by an optical tracking system (Optotrak Certus, Northern 

Digital Inc.). A subsequent revision increased the number of IRED markers to 10, divided 

between two hemispheres, providing greater range-of-motion and accuracy when manipulating 

and tracking the display. The Optotrak localized each IRED marker with an accuracy of 

approximately 0.1mm and a sampling frequency of at least 100 Hz, using a rigid array of three 

cameras fixed with respect to the volume of space through which grab-a-slice would be 

manipulated. All the markers were mounted on the portion of the grab-a-slice apparatus that is 

rigidly attached to the display itself. Thus the markers could be treated as a rigid body by the 
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Optotrak software to compute orientation and position for the display as a whole relative to the 

camera array. 

An optically tracked stylus was used to find the four corners of the display. The stylus 

was tracked along with the 10-marker array so that the position of the display corners could be 

identified relative to the marker array. For the original prototype, the display was assigned to be 

at the mid-axial slice across the thorax when placed at the center of the table with zero pitch and 

zero yaw. The long-axis of the patient was assigned to the “range” or z-axis of the camera 

coordinate system. As the apparatus was moved to other locations and orientations, the Optotrak 

software continually reported the locations of the four corners of the display based on their 

relationships to the array of IRED markers. To display the appropriate slice from the 3D data on 

the display, the locations of the four corners of the display were used to extract the slice from the 

3D data set by means of a 3D texture mapping board (GeForce 8800, NVIDIA, Inc., Santa Clara, 

CA). The method of 3D texture mapping interpolates voxels from a 3D data set onto polygons in 

arbitrary planes for 2D display, in this case a single rectangle occupying the surface of the screen 

[56]. Furthermore, the scale of the displayed data was adjusted accordingly so that the data 

would be shown as life-size (the scale could also be altered intentionally).  

Using the commercial software provided by Northern Digital, a “rigid body file” was 

created for the grab-a-slice display that described the physical arrangement of the markers 

relative to one another. The Optotrak system uses this file when the software is initialized to 

report not only the position of the markers, but also a 4x4 homogeneous transform matrix 

describing the position and orientation of the rigid body as a whole. A 4x4 homogeneous 

transformation matrix T can be decomposed into a 3x3 rotation component, R, and a 3x1 

translation column vector, t. 
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One may think of this matrix as a transform between the camera’s internal coordinate 

reference frame C to a reference frame W whose origin is within the rigid body (in this case, at 

the physical average of the array of markers describing the rigid body), TC→W. The various 

reference frames developed for this work are described in more detail below. 

3.5 SECOND GENERATION DEVICE 

The second prototype of grab-a-slice replaced the tabletop wooden frame with a flexible 

boom arm (Figure 3.3). This change was important for subsequent psychophysical experiments 

for a number of reasons. Recall that we seek to implement the effect that the display is slicing 

through an “invisible, virtual patient.”  In order to capitalize on the potential perceptual benefits 

of in-situ imaging, the user must believably immerse himself into the reference frame of this 

invisible patient. However, the original tabletop prototype created several alternative frames of 

reference that might actually conflict with the frame of reference created by the data, making it 

difficult to cognitively reference the correct reference frame. Competing coordinate systems 

cause direct conflict in thinking about the correct one.  The large bezel of the monitor and the 

wooden frame were natural focus points for the user that prevented intuitive immersion into the 

reference frame of the 3D data; rather, the user’s gaze was often fixed in the coordinate frame of 

the display. In addition, the bulkiness of the frame and weight of the display made the device 

relatively difficult to move, despite the use of Teflon pads to reduce friction. The wood-frame 

prototype was set up in a busy lab space with many additional objects in the user’s peripheral 
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field of view, including the tabletop and other furniture, which created even more alternate 

reference frames that confused the user. 

Given these limitations, the hardware design of grab-a-slice was improved by mounting 

the display on a flexible, counterbalanced boom arm. As opposed to the wooden frame, which 

presented a large additional visual target to the user, the boom arm attached from the rear of the 

screen and was largely invisible to the user. The boom arm also expanded the motion of the 

screen to include all six degrees of freedom. This enabled comfortable one-handed or two-

handed manipulation of the display through a large volume of space. The boom arm did, 

however, introduce irregular forces that depended on the position of the screen and the 

orientation of the boom, although these forces are not overwhelmingly intrusive during normal 

manipulation of the device.  

Software improvements to the device were also critical in improving the immersion into 

the frame of the virtual patient.  A precise calibration using coordinate transform matrices 

ensured that the location of the virtual patient was stable – the original approximation resulted in 

“patient drift” as the device was manipulated.  I manipulated the contrast windows of the CT 

data to be optimal for viewing pulmonary vasculature.  These changes along with the hardware 

improvements made it easier for users to find and remain in the correct reference frame. 

The new prototype was moved to a dedicated laboratory space at Carnegie Mellon 

University (CMU). This location facilitated recruitment of experimental subjects and provided 

better control for experiments. The space in which grab-a-slice was manipulated at CMU was 

relatively devoid of objects that could present alternate reference frames to the user. The 

darkened room facilitated immersion into the 3D data space itself as presented on the screen. 
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Figure 3.3: User operating the grab-a-slice display, which can be manipulated freely in six degrees of 

freedom. 

The touchscreen display from the first prototype was also replaced for the second 

prototype with a 120Hz 22” stereo-capable LCD (Samsung Syncmaster 2233rz, Ridgefield Park, 

NJ). In addition to being higher quality and larger, the higher speed of the new screen enabled 

stereo applications that will be described below. The pair of Styrofoam hemispheres containing 

IRED markers was rigidly mounted onto this display (Figure 3.4). 
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Figure 3.4: The grab-a-slice display mounted onto its flexible boom arm. Inset: one hemisphere containing 

five IRED markers. 

To permit stereo applications, I also replaced the GeForce graphics card with a Quadro 

FX 3800 (NVIDIA, Inc.), which was compatible with the NVIDIA 3DVision emitter and 

shutterglasses while also performing the texture mapping described above. 
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3.6 COORDINATE FRAMES OF REFERENCE 

Table 1. Coordinate frames of reference. 

C Camera coordinate system mm 

W World coordinate system mm 

D Data coordinate system Integer voxel indices 

G Graphics coordinate system mm 

T Texture memory coordinate system Floating point ∈ (0,1) 

 

A number of coordinate reference frames were required, as summarized in Table 1, and 

discussed below, to describe the position of tracked objects (the grab-a-slice display, and later, 

the 3D shutterglasses), as well as the individual voxels in the image and the graphical overlays in 

2D and 3D. The set of coordinate frames of reference evolved from the first prototype of grab-a-

slice to the current version. 

The Optotrak Certus camera array has a built-in coordinate system, which I denote as C, 

with its origin at the lens of the center camera and units in millimeters. Using commercial 

software provided by Northern Digital Inc., I first characterized grab-a-slice in C, denoting the 

four corners of the display as qi,C for i = 1,2,3,4, corresponding to the lower left, lower right, 

upper left, and upper right, respectively. Because this coordinate system is based upon the 

position of the camera relative to the operating volume, the key values are not intuitive to the 

user. 

I created a second coordinate reference frame called “world coordinates,” W, which is 

used to define the region of space through which the grab-a-slice display is to be manipulated. 

This allows the 3D image to be located conveniently for the user. Each time a new dataset is 
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loaded, the origin of W is reset to the lower-left corner of the grab-a-slice display at its current 

position: TC→W (q1,C) = q1,W = (0,0,0)W. Typically, this position is set at a convenient starting 

point for user interaction with image data. The other three corners qi,W for i = 2,3,4 are calculated 

using the physical dimensions of the screen in millimeters. To compute the transform matrix 

TC→W, four non-coplanar points are required. We use three corners qi for i = 1,2,3 and generate a 

fourth point outside of that plane by means of the cross product of two vectors defined by the 

first three points. These four corresponding points in C and W are used to solve for the 

transformation matrix T by matrix inversion. When a new dataset is loaded, TC→W is re-

calculated given the user’s starting position. 

The coordinate reference frame for addressing particular voxels in the 3D image is 

referred to as D, the data coordinate system. In general, 3D medical images are stored with 

integer indices addressing each particular voxel. Radiologists have developed a convention for 

visualizing 3D images as axial slices, with the subject’s anterior aspect at the top of the screen 

and the subject’s left lateral side on the right side of the screen. I chose to use this convention for 

visualizing CT data on grab-a-slice, which corresponds to registering the origin of the image in D 

with the origin of W. Typical data sets are axial slices through CT data, measuring 512x512xN 

voxels (where N is the number of axial slices). Using the slice thickness and within-slice inter-

voxel distance for a particular 3D image allows for generation of an image-specific transform 

TW→D. This transform ensures that each point in the 3D image is uniquely mapped to a 

corresponding point in physical space.  

I have developed software in the OpenGL environment to render and display images and 

graphics in 2D and 3D. OpenGL’s flexibility permits definition of arbitrary coordinate systems 

for graphics. To preserve the intuitive nature of the coordinate systems, the graphics coordinate 
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system, G, is initially registered with the world coordinate frame W. For the psychophysical 

experiments described below, all rendering is performed orthographically at depth z = 0 (the 

plane of the screen); TW→G is then updated to permit correct rendering of graphical overlays as 

the grab-a-slice display is moved through the dataset. Later, as described below, I switched to 

perspective rendering for the stereo display. 

Finally, the last coordinate frame is T, the texture memory addressing system. TD→T is a 

simple scaling transform that maps the image data (typically 512x512xN) into a cube of texture 

memory with floating-point indices ranging from 0 to 1. The texture memory is the digital 

storage for the voxel information in the graphical processing unit, permitting rapid hardware-

based slicing of the data in arbitrary orientations. 

3.7 STEREO DISPLAY AND 3D GRAPHICS COORDINATE SYSTEM 

As described above, the second generation of grab-a-slice utilizes a stereo-capable display. The 

display operates at 120Hz with a pair of wireless LCD shutterglasses, which are controlled by an 

infrared emitter connected to the graphical processing unit (NVIDIA 3DVision, Santa Clara, 

CA). The display shows separate left and right images to each eye of the viewer, as the 

shutterglasses are darkened synchronously. Following the completion of psychophysical 

experiments, which were restricted to 2D graphics, the next aim of the thesis research was to 

create a 3D graphical environment for display of augmented medical image data.  

In order to create a stable 3D rendering, the position of the viewer must be tracked 

simultaneously with the position of the grab-a-slice display. Further, the method of projection in 
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OpenGL must be changed from orthographic to perspective projection, requiring a redefinition 

of the graphics coordinate system G with its origin at the location of the viewer (Figure 3.6).  

The stereo display shows separate left and right images to the viewer, so separate 

graphics coordinate systems (GL and GR) are identically developed in the software, although for 

the purposes of the description here, we will assume a single viewpoint (mono). The viewer’s 

eye is at the bottom left corner in Figure 3.6.  

An array of six IRED markers was rigidly mounted onto the LCD shutterglasses (Figure 

3.5). A circuitboard connecting these markers was fashioned such that the Optotrak camera could 

simultaneously track the position of the glasses and the grab-a-slice display. As before, the NDI 

commercial software was used to characterize a “rigid body file” describing the physical 

arrangement of the six IREDs. A one-time calibration using an optically tracked stylus was then 

used to determine the location of the viewer’s eye while wearing the shutterglasses, which is 

approximately 2.5cm behind the lens. These positions (one for each eye) are used as the new 

origin for G, and are tracked along with the six physical markers.  

 

Figure 3.5: 3D shutterglasses with IRED markers rigidly mounted. 
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Figure 3.6: GL viewing frustum (blue) for 3D rendering in OpenGL. 
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Next, we establish the coordinate axes for G. The z-axis is defined to be normal to the 

plane containing the grab-a-slice display, with the positive direction pointing out of the screen 

toward the viewer. The x-axis and y-axis are parallel to the line segments demarcating the 

boundaries of the screen (Figure 3.6). 

To generate TW→G, I again use four non-coplanar points with known coordinates in G and 

W. In this instance, I use points near the new origin of G: the new origin and a tripod of points 

along the new x-, y-, and z-axes. Following the same process described above, a matrix inversion 

is calculated to yield TW→G, and a unique transformation matrix is generated for each eye (TW→GL 

and TW→GR). Any location can then be transformed from its world coordinates into OpenGL 

graphics coordinates.  

I define a viewing frustum (blue in Figure 3.6) of space in which all rendered objects will 

reside; it is a set of six clipping planes for the rendering. Its location in world coordinates 

changes with both the location of the viewer and that of the screen; it can be thought of as the 

viewer’s “field of view” of the world as seen through the “window” of the screen. The frustum’s 

range from the viewer is specified with two clipping planes that are normal to the z-axis. Their 

distances from the viewer (and from the origin in G) are denoted as zNEAR and zFAR. (The far 

clipping plane is not shown in the figure, as it is chosen to be well beyond the position of the 

screen and any rendered objects.) Note that in most stereo rendering the z-axis is assumed to pass 

through the center of the screen, where with the special case of tracking the viewer for an oblique 

viewing angle, the z-axis may miss the screen entirely. The near and far clipping planes are, 

nonetheless, chosen to be parallel to the plane of the screen.  I choose zNEAR to be a small distance 

in front of the viewer (30cm). Points aG and bG (corresponding to the upper-left and lower-right 

corners of the screen, respectively) specify the lateral boundaries of the near clipping plane, and 
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therefore the locations of the four lateral clipping planes. The height and width of the near 

clipping plane are thus determined by proportions; since the image is to fill the entire screen, the 

clipping plane must have the same proportions as the screen. Because the graphics coordinate 

space is initialized to have the z-axis normal to the plane of the screen, the x- and y- coordinates 

of aG and bG are proportional to the x- and y-coordinates of the screen; they are scaled by the 

ratio zNEAR / z0, where z0 is the present distance from the origin to the plane of the screen. 

The specification of points aG and bG define the viewing frustum in the OpenGL 

software. I can then place simple objects into the scene by specifying their locations in W. As 

described above, the software calculates a new TW→G during each iteration of the code based 

upon the location of the viewer and the screen, and determines the coordinates in G for each eye. 

The graphics card then determines how to render the objects to the screen based upon the new 

coordinates. Generation of binocular disparity is accounted for by the use of separate G 

coordinate frames for each eye, resulting in a stable 3D rendering of an object outside the plane 

of the screen.  
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4.0  PSYCHOPHYSICS EXPERIMENT: EVALUATION OF VISUALIZATION AND 

NAVIGATION USING GRAB-A-SLICE 

As described above, grab-a-slice builds on a series of in-situ imaging devices developed in our 

laboratory that seek to take advantage of the perceptual benefit of placing a tomographic image 

into a 3D spatial context. With these devices, our lab has explored how novices and experts 

utilize perceptual cues as well as cognitive processes to perform image-guided tasks. This avenue 

of research motivated experiments to evaluate how novices interact with 3D medical images 

using grab-a-slice as compared with a conventional display, both in terms of performing a 

tracing task on complex vascular structures, as well as estimating the spatial relations between 

vessel structures in 3D space. We hypothesized that performance using grab-a-slice would be 

better than that using the conventional display in a variety of measures, as described below. 

4.1 METHOD 

4.1.1 Subjects 

Thirteen naïve observers and three coauthors who were naïve to medical images, totaling four 

females and twelve males, participated in the experiment. All subjects had normal or corrected-
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to-normal vision in both eyes. All gave informed consent as directed by an IRB approved 

protocol according to which these experiments were performed.  

4.1.2 Stimuli 

A set of 18 anonymized contrast-enhanced computed tomography images of the thorax was 

acquired. An expert user identified the pulmonary vasculature in each image and used colored 

spheres (radius 5mm) to label three structures in each image: the pulmonary artery (PA) just as it 

exits the right ventricle of the heart (green sphere), the left atrium (LA) where the pulmonary 

veins drain (blue sphere), and one distal branch of a pulmonary vessel (red sphere) being either 

an artery or a vein. The spheres were visualized as cross-sectional disks through the sphere 

overlaid on the particular slice from the data being displayed. Using each image twice, once with 

the red sphere in an artery and once in a vein, we generated a stimuli set of 36 uniquely labeled 

vessels. The labeled vessel in each image was connected to either the PA or the LA, but not both. 

In general, these vessels can be identified in CT images only by their anatomical connection to 

the heart, rather than pixel intensity or local vessel morphology, so, especially to a novice, they 

are indistinguishable except by tracing along the vessel, slice by slice, to either the PA or LA.  

The distance (in the axial dimension of the image) between the red sphere (marking the 

unknown vessel) and the correct endpoint (either the PA or LA) was used to classify each vessel 

into one of three categories, according to its distance from the endpoint: short (5-30 mm), 

medium (50-80 mm), or long (>100mm). Across images, the distances were uniformly 

distributed among these categories.  
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4.1.3 Design 

A 3 (Distance) x 2 (Viewing condition: in-situ or ex-situ) design was implemented. In-situ 

visualization here refers to visualization of the image data on the movable grab-a-slice display, 

while ex-situ refers to visualization on a fixed conventional display. The ex-situ display was 

identical to the in-situ display, except that it was stationary on a table directly adjacent to the 

space in which the grab-a-slice display would be manipulated. Six trials were performed in each 

of the conditions; a uniquely labeled lung image was used for each of the resulting 36 trials. 

Trials were blocked into two sets of 18 trials by viewing condition, with the presentation order of 

trials counterbalanced across blocks and subjects using a Latin-square. The testing order of the 

two viewing conditions was also counterbalanced to avoid bias from learning, with half of the 

subjects using in-situ first and half using ex-situ first. 

4.1.4 Procedure 

Subjects performed the experiment in a dark room free of peripheral visual cues. Two 

tasks were performed on each trial.  

4.1.4.1 Navigation task 

The first task involved navigation through the data set. With the display blanked out, 

subjects first moved the grab-a-slice display until they found the red sphere in 3D space, which 

appeared in cross-section on the screen when the display was moved through it. After subjects 

found the red sphere, the corresponding slice of CT data appeared on the screen, with the red 

sphere depicted inside an unknown pulmonary vessel. The subjects then followed the vessel by 
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moving the grab-a-slice display while maintaining a continuous path from the starting point to 

the endpoint. Eventually, the vessel terminated at the PA (marked with a green sphere) or LA 

(marked with a blue sphere), at which point the subject made a forced-choice selection about 

which endpoint was connected to the starting point, by means of a color-coded keypad. Subjects 

were timed during this “tracing” task, and their accuracy was recorded. 

4.1.4.2 Visualization task 

The second task, visualization of spatial relations, was performed during and after the 

navigation task. Subjects were instructed to remember the 3D location of the starting red sphere 

in space. Upon finding and selecting the endpoint sphere (blue or green), the screen was again 

blanked out, and subjects were asked to indicate in 3D the vertical plane containing the centers 

of both spheres. To demonstrate the perceived plane, subjects rotated the blank grab-a-slice 

display about the y-axis (see Figure 3.3) such that it was deemed parallel to the vertical plane 

connecting the starting and endpoint locations. Valid angles ranged from -80° to +80° relative to 

the starting position.  

4.1.5 Training 

Prior to the experimental trials, subjects performed two to four sample trials in each 

viewing condition to familiarize themselves with the use of the grab-a-slice display and the 

method of performing the experimental trials. The images used in the sample trials were different 

from the images used in the experimental trials in that the targets (red, blue, and green) were 

placed in different locations from any in the test set. Verbal coaching of the subject was helpful 
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to ensure that each subject understood the two tasks sufficiently to perform the experiment 

reliably, although quantitative feedback was not provided.  

4.1.6 Data Analysis 

Paired t-tests and ANOVAs were performed to study the effects of viewing condition, 

order of stimuli, and target distance on accuracy and time-to-completion of the tracing task as 

well as perceived angle in the visualization task.  

Trials in which subjects made errors in choosing the correct vessel during the tracing task 

were excluded from the analysis of the visualization task. Also, trials in which the subject made a 

reversal error in the visualization (correct in approximate magnitude but reversed in sign, e.g., 

they reported a +60° angle for a stimulus that was -60°) were excluded from the analysis of the 

visualization task. However, these errors were recorded and their frequency was analyzed.  

For the visualization task, the slope and correlation coefficient of the least-squares 

regression line relating stimulus angle to response angle was calculated for each subject (see 

Figure 4.1 for example), providing a quantifiable measure of performance of each subject across 

all trials. Perfect performance would have all data points falling along the line y=x. Absolute 

errors (and their mean and standard deviation) were also calculated for each trial.  



 

 41 

 

Figure 4.1 Sample subject data for visualization task using grab-a-slice (yellow squares) and 

conventional display (blue diamonds), showing subject response angles vs. true stimulus angles (as measured 

in degrees). Note the reversal error in the second quadrant. 
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4.2 EXPERIMENTAL RESULTS 

4.2.1 Navigation task 

Subjects were significantly more accurate in the navigation task of identifying the correct 

endpoint of the unknown vessel when using the grab-a-slice in-situ display for visualization 

(95.8±0.3%) as compared with using the conventional ex-situ display (93.1±0.5%) (p < 0.03). 

When reversals are included, subjects made fewer errors using grab-a-slice (10.4±6.7%) as 

compared with using the conventional display (13.5±9.1%), though not significantly so. The 

difference in accuracy was observed without a significant difference in time-to-completion 

(34±21s for in-situ, 38±14 for ex-situ), suggesting that no additional time was needed to achieve 

the increased accuracy.  

4.2.2 Visualization task 

Mean absolute errors in the reported angle between starting locations and endpoints were 

significantly reduced in the grab-a-slice in-situ condition (10.8±3.8°) as compared with the 

conventional ex-situ condition (13.0±4.7°) (p < 0.02).  
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Figure 4.2 Average response for each stimulus angle across all subjects, along with best-fit lines. Solid line: 

grab-a-slice display y = 0.95x - 0.58. Dashed line: conventional display, y = 0.86x - 1.51. 
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The slope of the least-squares regression line relating reported angle to stimulus angle 

was also compared across displays. The ideal slope for each subject should be 1.0. When the 

regression was fit to the average response to each stimulus, the slope for grab-a-slice (.946) was 

closer to 1.0 than the slope for the conventional display (.859), as shown in Figure 4.2. A paired 

t-test between conditions, using slopes calculated for individual subjects, showed the difference 

was significant  (p < 0.02). Individual subject results for the pointing task are shown in Appendix 

A (page Error! Bookmark not defined.). 

Paired t-tests were also performed to assess differences in the variances of the absolute 

errors in perceived target angles to ascertain if one display modality provided more consistency 

than another. While absolute error magnitude was significantly reduced with grab-a-slice, the 

variability in those errors was not significantly different. Further, the correlation coefficients of 

the least-squares regression lines were also not significantly different between grab-a-slice and 

the conventional display.  

ANOVA was applied to the data to look for effects of target distance, stimulus order, and 

modality order. No significant effects were observed. 

4.3 SUMMARY AND CONCLUSIONS OF EXPERIMENT 

These data support the hypothesis that the in-situ display of medical image data confers a benefit 

to naïve subjects in both navigation through and visualization of 3D medical image data. 

Accuracy in the tracing task was significantly higher, absolute errors in the visualization task 

were lower, and reported spatial relations between vessel structures showed a closer linear 
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relationship to true values with the grab-a-slice in-situ display as compared with the conventional 

ex-situ display. 

One interesting finding was that no effect was observed due to the distance from starting 

point to endpoint; there was no significant difference in performance in either task as a function 

of this distance. With the number of trials and subjects, we expected that the study was 

adequately powered to detect significance at the 0.05 level in a generalized linear model. The 

range of distances in the experiment represented typical clinical distances over which 

radiologists might be expected to navigate during PE detection; perhaps this range is simply too 

narrow to further divide into “easier” and “harder.”  

Given that the subjects were naïve to studying medical image data, it was a challenge to 

identify a task that was simple enough for novices to learn, yet difficult enough to adequately 

measure differences in performance across the experimental conditions. Clearly, the experiments 

we settled upon were effective in this regard, as they allowed us to demonstrate underlying 

perceptual differences involved between in-situ and ex-situ image displays. We have submitted 

these results for publication in the IEEE Transactions on Visualization and Computer Graphics 

[57].  Additional tasks, we believe, would expand the psychophysical domain in which in-situ 

display is demonstrably superior.  
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5.0  STEREO VISUALIZATION RESULTS 

 

The psychophysics experiments described in the previous chapter did not utilize the stereo 

capabilities of the grab-a-slice display, as they were assessing the movable tomographic display, 

which did not rely on 3D graphics. Following the completion of those experiments, the final 

phase of my thesis research focused on the development of a 3D graphical environment within 

grab-a-slice in which augmentation of tomographic images with out-of-plane structures is 

possible. The results of this research are described here. 

5.1 PRESERVATION OF PREVIOUS FUNCTION OF GRAB-A-SLICE 

As described in Chapter 3.7, I changed the rendering system in OpenGL from an orthographic 

rendering of a 2D slice to a perspective rendering of a 3D scene, incorporating the position of the 

viewer when calculating the required projection transforms. The first test to demonstrate the 

success of the perspective rendering was to display the correct tomographic image on the screen 

just like any other 3D object in the scene. Essentially, I needed to duplicate the mono behavior of 

grab-a-slice in the stereo environment by providing the appropriate different projection of the 

tomographic image to the left and right eyes. 
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Recall that one of the most powerful cues for generating the perception of depth is 

stereopsis, in which the brain receives disparate images from each retina and uses the differences 

to infer depth. In the area of computer graphics, as noted previously, we can use LCD 

shutterglasses to facilitate this process with the stereo display by alternately opening and closing 

each lens synchronously with the display, which shows alternating images at 120Hz (60Hz 

refresh rate for each image). Thus, the right eye always sees one image, while the left eye always 

sees another. To prove that the stereo function was working correctly, I started with the mono 

version of grab-a-slice and introduced a fixed horizontal offset between the left-eye and right-eye 

images, which had the effect of making the tomographic slice appear to be behind the plane of 

the screen when the shutterglasses were worn. This demonstrated the effectiveness of out-of-

plane rendering with the shutterglasses, but was discarded once I developed the general 

transform matrices described in Chapter 3.7. 

To test the validity of these graphics transforms, the tomographic slice was treated as a 

graphical object and fed through the transforms to be rendered on the screen at its present 

location. The fact that there was no disparity between the resulting left-eye and right-eye images 

demonstrated that the new stereo transforms were working correctly, at least for information in 

the plane of the screen.  

In mathematical terms, the tomographic slice was calculated the same way as previously: 

I used the world coordinates of the screen to map into the texture memory containing the image, 

and selected the corresponding slice. The world coordinates of the slice were then put through 

separate transform matrices TW→GL and TW→GR to yield the graphics coordinates for its location 

with respect to each eye. I confirmed that these transforms were operating correctly, as the 

tomographic slice (which resides in the plane of the screen) was identical for both the left-eye 
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and right-eye images despite their positions being calculated independently (Figure). Thus, the 

mono version of grab-a-slice is preserved correctly in the stereo environment. The image remains 

stable as the viewer (wearing the tracked shutterglasses) moves around the scene, provided that 

the line of sight between the Optotrak camera and the IRED markers on the glasses is not 

obscured.  

5.2 RENDERING OF 3D OBJECTS 

The major benefit of using the stereo display is to augment the tomographic slice with 3D 

information that resides outside of the slice plane. Ergo, the next goal was to create a rendering 

of a 3D object in space that remains stable as the viewer moves around it. I chose a small black 

square floating two inches in front of the screen (and in front of the tomographic slice plane) as 

an initial test object. This was successful – the square has a fixed location in space independent 

of the viewer’s location and the screen’s position and orientation.    

I chose a 3D sphere floating in front of the screen as the next test object. I utilized the 

OpenGL lighting and shading models to illuminate the sphere, as these models serve as cues that 

further enhance the perception of a 3D scene. The sphere does remain stable as the grab-a-slice 

display is moved along the zG-axis or when the viewer moves horizontally.  However, as the 

angle between the viewer and the display becomes more acute (horizontally and vertically), some 

distortions become apparent for reasons that are still unsolved.  This may be due to the manner in 

which the triangle mesh of the sphere’s surface is calculated by the graphics library, and the 

order in which the vertices of these triangles enter the pipeline of graphical transformations.  

Further, it may be caused by the fact that the precise location of the viewer’s retina is impossible 
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to incorporate into the scene; we have approximated this location as best we can, but the error in 

this approximation may be partially responsible for these distortions. Work is ongoing to solve 

this problem. 

Once a sphere is stably rendered sans distortion, the next goal is to put multiple spheres 

into the scene along with the tomographic slice. Here, we will utilize the OpenGL models of 

opacity and depth buffering to make 3D objects in front of the screen appear translucent so that 

the tomographic image appears clearly behind them, as well as to make the tomographic images 

translucent to objects rendered behind it. 

As described in Chapter 2.4, the current version of Shells and Spheres [43] is a fully 

automated n-dimensional method of finding medial spheres whose union represents a 

segmentation in a medical image. We have taken the medial spheres generated by this 

framework and created perspective renderings in an OpenGL window outside of the grab-a-slice 

environment (Figure).  Clearly, these data are ideal for 3D rendering with grab-a-slice. A new 

graduate student in our lab, Vikas Shivaprabhu, has taken over this part of the research, and 

plans to use grab-a-slice to render sets of spheres that represent the segmentation of objects of 

interest. While this will begin with visualization demonstrations, we envision subsequently using 

grab-a-slice to interact with the segmentation algorithm itself in a supervisory role. 
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6.0  DISCUSSION AND FUTURE DIRECTIONS 

Grab-a-slice in its current form has much promise as a clinical tool and a device for further 

psychophysical research. Currently it can be used for visualization of the results of 3D medical 

image analysis routines, and it may serve as a supervision tool for such routines in the future. In 

the course of the development of the device, we have discovered areas for design improvement 

and established some of the strengths and weaknesses of grab-a-slice relative to the current 

clinical methods of visualization, which are discussed below. 

6.1 ADVANTAGES AND LIMITATIONS OF GRAB-A-SLICE 

The first (tabletop) generation of grab-a-slice used a wooden frame with handles. As 

mentioned earlier, this frame was bulky and unwieldy, making it difficult to manipulate at times 

and introducing visual distractors for the user. The second-generation device containing the 

boom-mount on the back of the display solved many of these limitations. In its current form, 

grab-a-slice still requires a significant amount of space for operation. The boom arm is mounted 

on a large heavy cart. An alternative approach could be to mount it to a wall or ceiling. The 

presence of the Optotrak Certus system for tracking position is not only space-consuming but 

prohibitively costly for most clinical applications. Some combination of cheaper technologies, 

including other optical, RF, or inertial tracking systems, may make more sense for clinical use. 
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The boom itself presents both advantages and limitations. Although it does allow for the 

operator to let go and leave it in its current location, the non-negligible weight of the boom and 

angle-dependent effect of joint friction introduced irregular forces that vary somewhat arbitrarily 

with position of display. This noticeable issue could be resolved by using a tracked, lightweight, 

handheld tablet device that could wirelessly display the real-time data from a separate computer. 

The 2011 Consumer Electronics Show included the debut of the G-Slate, a tablet made by LG 

Electronics (Seoul, South Korea) that could serve as the basis for such a display; its internal 

gyroscopes could be paired with the rear-mounted stereo cameras to replace the expensive 

optical tracking system, and its wireless connection could be used to stream video from a nearby 

computer while that computer’s GPU performs the texture mapping. The G-Slate also has stereo 

display capability for use with shutterglasses similar to those in the current system; the front-

facing camera could be utilized to monitor the position of the viewer. 

Grab-a-slice evolved from the clinical and virtual sonic flashlight projects, which had the 

interesting property of creating a virtual image seen through a semitransparent mirror. The 

presence of the mirror is crucial to the function of those devices, but one drawback is that the 

image suffers from subtle degradation; when viewed through the mirror, the effective contrast 

and brightness of the reflected image is decreased. Grab-a-slice doesn’t have this problem 

because the viewer’s gaze is focused the display’s real image when only a tomographic slice is 

being displayed. When using grab-a-slice to show stereo images out of the plane of the display, 

however, the effect is that the viewer is looking through a “window.” The tomographic slice 

resides within the windowpane itself, while other objects appear in front of or behind that 

windowpane. Thus some form of compromise similar to that of the SF’s half-silvered mirror is 

inevitable in combining the in-plane slice with the out-of-plane stereo graphics. But with 
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intelligent use of opacity, lighting, and other graphical cues, we hope that significant information 

may not be lost, leaving the viewer with the perception that the slice plane is moving through 

data anchored in a 3D location while out-of-plane objects are similarly anchored in the world. In 

such a system, as with the SF, the perception of 3D shape and location should be facilitated by 

the fusion of these two sources of information. 

6.2 CLINICAL UTILITY 

This new method of medical image display shows promise in at least three areas of clinical 

application. 

One area is preoperative planning. Surgeons often examine medical images before 

performing a procedure. For example, a surgeon attempting to extract a bullet from a patient’s 

abdomen may look at an abdominal CT scan to identify the bullet’s location, possible obstacles, 

and to determine an optimal path of approach. At present, the surgeon must cognitively relate 

this information, displayed as 2D slices on a stationary screen, to the 3D location of the patient in 

the operating room. Being able to examine the CT data with grab-a-slice may provide the 

surgeon with a more intuitive sense of 3D anatomical relationships, analogous to what is termed 

in the military as, “situational awareness.” The surgeon may use it to preoperatively plan and 

record a surgical path and demonstrate it to the surgical team. The screen may be located on a 

table directly adjoining the patient, with the “invisible patient” oriented parallel to the real one, 

thus making corresponding orientations and distances directly comparable. 

A second potential clinical application involves using grab-a-slice as a training tool. 

Medical students, nurses, residents, and other health professionals often have difficulty learning 
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to interpret 3D medical images; the orientation of the patient and the relationship between slices 

is not always readily apparent. Medical students in the anatomy laboratory could dissect a liver 

in the cadaver while examining a grab-a-slice rendering of an abdominal CT scan of the same 

liver, using a 3D rendering of the segmented liver to guide their dissections and gaining expertise 

with medical images at an early stage in their training. 

A third clinical realm for grab-a-slice is diagnostic radiology. As described above, one 

particular application we are studying is the diagnosis of pulmonary embolism (PE), an acute, 

life-threatening, and treatable condition with over 250,000 incident cases in the USA annually. 

PE is diagnosed by a combination of clinical symptoms, laboratory results, and medical imaging 

to determine the presence, location, and size of potential emboli. Radiological evaluation of CT 

data for evidence of PE involves tracing branches of the pulmonary vessels containing suspected 

emboli back to the heart, to determine whether the vessel in question is an artery or a vein 

(pathologic emboli are always in the arteries). As we demonstrated in our psychophysics 

experiments, novices showed better performance with grab-a-slice at vessel-tracing tasks and 

visualization of 3D structures. Future experiments with expert radiologists could provide 

meaningful data into the role of learning and prior top-down knowledge in grab-a-slice as well as 

some constructive feedback about the design of the next iteration of the device. 

The role of stereo vision in the clinical setting remains a topic of debate [58]. Stereo 

display of medical images has been explored for each of the above applications, as well as a 

fourth one – minimally invasive surgery – but has yet to be adopted as a mainstream technique 

for visualization, primarily because the studies have not been extensive or decisive.  For 

example, in preoperative treatment planning, virtual reality systems using perspective renderings 

of 3D images have been used, and one group has investigated stereoscopic imaging for planning 
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of radiation therapy [59], but despite the potential benefit of direct perception of volumes, 

distances, and angles in 3D images prior to intervention, stereoscopic displays have not been 

pursued further for this application. In diagnostic radiology, studies have attempted to evaluate 

the potential benefits for angiography [60][61], skeletal imaging [62][63], 3D ultrasound [64], 

mammography [65], and other diagnostic applications, and while positive trends are seen, 

significant benefits for stereoscopic imaging have not been consistently demonstrated.  

Like many medical specialties, diagnostic radiology is a conservative field, relatively 

resistant to novel techniques or methods, and with good reason.  Generally, new technology is 

only accepted when it confers a quantifiable benefit to clinical care, in the form of reductions in 

medical errors, training time, recovery time – and cost.  Not only do these benefits have to be 

demonstrable through rigorous scientific study, they should be immediately apparent to 

clinicians when they first use the technology – one of the promising characteristics of the sonic 

flashlight. In light of the effect size seen in the grab-a-slice studies, I hypothesize that the biggest 

impact for grab-a-slice would be as a training tool. During their training, and before they have 

had years of experience learning a particular approach, medical professionals may be more 

receptive to alternative approaches. A clinically viable iteration of grab-a-slice could fill this role 

in medical school. 

6.3 FUTURE PSYCHOPHYSICAL EXPERIMENTS 

In addition to offering potentially useful clinical applications, grab-a-slice represents a new 

platform for at least two areas of fundamental psychophysical research: 3D visualization and 3D 

navigation. The present work began the evaluation of these areas using in-plane tomographic 
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images; adding stereo graphics to render 3D objects around the image plane makes more 

experiments possible.  

Grab-a-slice follows a series of in-situ display devices developed in our laboratory. We 

have consistently shown a perceptual and cognitive benefit when using in-situ images, and the 

results presented here suggest that grab-a-slice shares many of these same benefits. The 

processes that humans use to build up mental representations of 3D structures are of great 

interest to the psychophysical community. Grab-a-slice could be used to study how humans 

perceive curvature in 3D and to evaluate the ability to define a path through a 3D maze structure. 

Navigation through a maze is analogous to a surgeon’s preoperative and intra-operative route 

planning, avoiding obstacles to reach targets. Thus the in-situ nature of grab-a-slice provides a 

novel way in which to study these human perceptual and cognitive processes, and compare them 

to those used with conventional displays. 

6.4 COMPUTER-AIDED SEGMENTATION ALGORITHMS 

In our ongoing development of grab-a-slice, we are developing methods of graphical 

augmentation using stereo display to improve the ability of users to understand the raw content 

of a tomographic slice in the context of the surrounding 3D anatomy and to improve their ability 

to navigate through a 3D dataset. The current state of the device allows for a 3D sphere to be 

rendered (albeit with some distortion) at a position between the display and the viewer, with 

programmable illumination of the sphere.  

Future work will explore the application of grab-a-slice for guidance and supervision of 

segmentation using a Shells and Spheres algorithm designed to benefit from the human 
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interaction. We propose that this paradigm may provide a symbiotic coupling of top-down 

processes (human-user guidance) and bottom-up processes (pixel-level computational analysis) 

for semi-automated image segmentation. 
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APPENDIX A 

INDIVIDUAL SUBJECT RESPONSE DATA FOR VISUALIZATION TASK OF 

PERCEPTION EXPERIMENT 

 

Sixteen subjects were used in the perception experiment described in Chapter 4.0 . Their 

individual responses for the visualization task, described in Chapter 4.1.4.2, are shown here. 

Response angles are plotted against stimulus angles for both the grab-a-slice (GAS) and 

conventional (CUS) display conditions.  (The acronym “CUS” stands for “conventional 

ultrasound,” which was the control condition in previous psychophysical experiments on the 

sonic flashlight; the acronym remained in place for the grab-a-slice experiments even though 

there is no ultrasound data being used.)  If a subject had perfect performance, the data points 

would lie along the line y = x; reversal errors (as described above) are shown in quadrants II and 

IV. 
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Figure A.1: Visualization data for subject 1. 
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Figure A.2: Visualization data for subject 2. 
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Figure A.3: Visualization data for subject 3. 
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Figure A.4: Visualization data for subject 4. 
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Figure A.5: Visualization data for subject 5. 
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Figure A.6: Visualization data for subject 6. 
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Figure A.7: Visualization data for subject 7. 
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Figure A.8: Visualization data for subject 8. 
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Figure A.9: Visualization data for subject 9. 
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Figure A.10: Visualization data for subject 10. 
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Figure A.11: Visualization data for subject 11. 
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Figure A.12: Visualization data for subject 12. 
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Figure A.13: Visualization data for subject 13. 
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Figure A.14: Visualization data for subject 14. 
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Figure A.15: Visualization data for subject 15. 
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Figure A.16: Visualization data for subject 16. 
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APPENDIX B 

RELEVANT SOFTWARE 

 

Software has been included as a separate contribution in the electronic submission of this 

dissertation, in the file Code_ShuklaG_etd_2011.zip. 
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