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In this work the evolution of microstructure and magnetic properties in cold deformed, 

equiatomic FePd during isothermal annealing has been studied. During annealing of the 

disordered cold deformed FePd at temperatures below the critical ordering temperature, Tc = 928 

K (655 ºC), concomitant annealing and ordering (FCC  L10) reactions take place. The effects 

of the processing parameters - stored energy of cold work and temperature - on microstructural 

and property evolution are investigated. The combined solid state reaction (CR) produces 

complex microstructures that exhibit enhanced magnetic hardness (coercivity) relative to the 

conventionally processed material. The magnetic age hardening response of the CR processed 

FePd has been reported. For fully equiaxed polycrystalline microstructures of the ordered FePd 

phase a correlation between the average grain size and the coercivity has been observed. Based 

on these purely microstructural observations a qualitative coercivity mechanism analysis has 

been performed in order to elucidate the origin of the decrease in magnetic hardness (coercivity) 

in the overaged condition.  
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1.0 INTRODUCTION 
 
 
 
 

1.1 THE γ1-FePd PHASE. 
 
 
At room temperature FePd of equiatomic composition forms a stable tetragonal L10 ordered 

intermetallic phase (γ1). The conventional unit cell of the L10 phase that has a simple tetragonal 

Bravais lattice is as shown in figure – 1.  

 

The ordered FePd p

of pure Fe and pur

this binary system 

clearly indicates th

 

 
 

 
 
 

Figure – 1 Unit cell of tetragonal L10 phase
hase can be envisaged as a layered structure consisting of alternating stacking 

e Pd planes of the type (002). The relevant section of the phase diagram for 

is shown in figure-2. The use of the conventional unit cell shown in figure-1 

e relationship to the cubic close-packed or face-centered cubic (FCC) parent 

1



phase, the disordered γ-phase (Fe,Pd)-solid solution, which is stable at temperatures above Tc = 

928 K (655 ºC). 

 

 

 

 
 
 

         Figure – 2 Section of the binary Fe-Pd phase diagram. 

γ1 - FePd based alloys are an important member of the family of technologically interesting 

intermetallics, such as CoPt, FePt, TiAl, and MnAl, that can produce the L10 phase at room 

temperature. The L10 phase in the FePd alloys exhibits a high uniaxial magnetocrystalline 

anisotropy with an 'easy' magnetization axis parallel to [001], a large theoretical B-H product and 

good corrosion and mechanical properties. This combination of properties renders FePd based 

L10 intermetallics very attractive for a range of permanent magnet and thin film applications [1]. 

As can be seen from table-1 the intrinsic properties of the intermetallic γ1 phase are comparable 

 2



to those of rare earth magnets, However, the technical magnetic properties reported for 

conventionally processed FePd based alloys are disappointingly low [2,3]. This indicates that the 

technical properties of the FePd alloys are very sensitive to the microstructure. 

      Table-1 Comparison of intrinsic magnetic properties of FePd with other L10 ferromagnets [8] 
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entional processing involves the heating of these alloys to a temperature where the FCC 

e is stable followed by rapid quenching to a low temperature to retain the FCC phase. The 

ched material is then heat treated at a temperature in the L10 phase field. The thermal 

ation at this elevated temperature is capable to facilitate the phase transformation of 

stable FCC  to stable L10. Conventional processing of these alloys produces a hierarchy of 

structural entities, such as polytwins and antiphase boundaries (APBs), which strongly 

ence hard magnetic properties. It has been shown that the presence of a well-developed 

win microstructure is detrimental to hard magnetic properties [4]. Thermomechanical 

ssing routes have been successfully employed to eliminate the polytwinned microstructure 

These routes have been based on a combined reaction (CR) mode of microstructural 
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transformation, involving the interplay between ordering and annealing reactions, such as 

recovery and recrystallization. The scale and morphology of the products of the CR 

transformation are extremely important in determining the magnetic properties and can be altered 

by a judicious combination of the amount of cold work and the transformation temperature and 

time [5].  

The driving force for the recrystallization reaction stems from the stored energy of cold work. 

Increasing the driving force for recrystallization at a given transformation temperature can have 

the effects of suppressing the polytwin structure and decreasing the length scale of the CR 

products [5]. An enhancement in the transformation kinetics in these CR processed samples 

relative to conventionally processed samples without prior cold-deformation has also been 

reported previously [5].  However, the details of the microstructural evolution during CR 

processing and correlation between the evolving microstructural morphology and scale with 

magnetic properties have not been developed sufficiently. Hence, further experimental study is 

required to establish a better understanding of the relationships between processing parameters, 

evolution of microstructure and the resulting properties for CR processed FePd alloys. This is 

attempted here using a model Fe-Pd alloy of equiatomic composition, cold-deformation by 

various methods, microstructural investigations by x-ray diffraction (XRD), scanning and 

transmission electron microscopy (SEM and TEM) and property measurements using M-H loops 

obtained with a vibrating sample magnetometer (VSM). 
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1.2 RESEARCH OBJECTIVES 
 
 
Further optimization of magnetic properties of CR processed Fe-Pd may be possible by the 

appropriate combination of temperature of transformation and the amount of cold work. This 

study aims to explore a processing parameter matrix of annealing temperature, annealing time 

and amount of strain of cold work to achieve a further reduction in the microstructural length 

scale of the transformation products, while suppressing the formation of microstructural 

morphologies detrimental to the enhancement of magnetic properties.  

Hence, in this study the stored energy of cold work, the driving force for recrystallization, 

imparted to the material has been altered by using different cold deformation techniques. Equal 

channel angular pressing (ECAP) and cold rolling have been utilized to achieve this effect. The 

evolution of microstructure has been investigated using techniques, such as SEM and TEM. The 

progression of the ordering process has been studied using XRD. VSM measurements have been 

used to obtain hysteresis loops of the thermomechanically processed material and the data 

gathered from these M-H loops has been used to study the evolution of the magnetic properties. 

Computer assisted image analysis has been used to obtain quantitative information about the 

microstructural changes using metrics such as the grain size and its distribution. The effect of 

these microstructural parameters on the observed coercivity has been studied. 

Using this approach it was attempted to accomplish the following objectives during this study –  

1. Identify a thermomechanical processing strategy that aids optimization of the hard magnetic 

properties, here taken as increase of the coercivity.  

2. Develop a quantitative understanding of the effect of prior strain of cold-deformation on the 

kinetics and the nature of the FCC  L10 phase transformation. 
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3. Develop a quantitative understanding of the evolution of the microstructure in terms of 

microstructural metrics, such as grain size, percentage transformed by non-conventional mode 

etc., during thermomechanical processing. 

4. Develop a qualitative understanding of the effect of these microstructural metrics on the 

coercivity exhibited by the non-conventionally or CR processed samples. 
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2.0 BACKGROUND 
 
 
 
 
This study is aimed at the development of an understanding of various elementary processes 

involved with the evolution of the microstructure and magnetic property in a model FePd system 

with equiatomic composition. Solid state processes, such as the ordering phase transformations, 

recovery, recrystallization and grain growth, occurring during annealing of the material in the 

cold worked state are being investigated. In this section these basic processes are briefly 

reviewed before subsequent reporting on their application to the FePd system.  

 
 
 

2.1 THE ORDERING PHASE TRANSFORMATION 
 
 
Conventional processing of the equiatomic Fe-Pd alloys involves thermally activated ordering of 

the disordered phase at temperatures below the critical ordering temperature without prior cold-

deformation of the FCC phase. The conventional processing establishes the ordered L10 phase of 

γ1-FePd by one of two different routes. The first involves continuous cooling of the equiatomic 

Fe-Pd materials from the high temperature γ1-phase field to room temperature at suitably slow 

rates. The second involves rapid quenching of the disordered solid solution FCC (γ) (Fe, Pd) 

from T > Tc ≈ 938 K to room temperature followed by isothermal annealing at T < Tc to induce 

ordering from FCC to L10 structure. The disorder-to-order transformation is thermodynamically 

a first-order type phase transformation with metastable FCC (γ)  stable L10 (γ1) transformation. 
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This ordering transformation involves the nucleation of coherent precipitates of γ1-phase 

throughout the grains of the disordered γ-matrix. The process of atomic ordering results in the 

formation of the tetragonal lattice of the product phase. Any of the three <010> axes of the cubic 

matrix may be altered in dimension to produce a tetragonal structure. Thus, in accordance with 

the three possible orientations of the c-axis of the tetragonal structure the precipitation reaction 

can generate three variants of the product phase in a given parent phase grain. This 

transformation is associated with a transformation strain. The transformation strains affect the 

transformation process, which results in structural self-organization. The resultant structure 

consists of regular plate-like misoriented crystallite-twins. Such crystallites may be referred to as 

c-domains. Adjacent c-domains in a polytwinned plate join together on invariant {110}FCC 

planes. The tetragonal axes in the adjacent plates are misoriented through an angle of ~ 90˚ 

[4,6,7]. The regular crystallite structure, having a twinned morphology with a dodecahedral 

{110} plane as the conjugate plane is referred to as the polytwinned structure and is depicted in 

Figure-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                              1 µm   

 
 

Figure – 3. Polytwinned microstructural morphology 
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Previous Studies [4,8] have ascribed the rather disappointing magnetic properties of these Fe-Pd 

alloys to the polytwinned structure that develops during the conventional processing. The c-axes 

in adjacent polytwin lamella are misoriented by about 90˚. In the uniaxial ferromagnetic L10 

phase, the easy axis of magnetization lies along the c-axis. Therefore the polytwin interfaces also 

act as 90˚ magnetic domain walls. Magnetization reversal is most effectively accomplished by 

the motion of 180˚ Bloch walls. Such 180˚ walls 'zig-zag' across the polytwin interfaces between 

adjacent lamellae with differently oriented c-axes in a given polytwinned grain. The polytwin 

interfaces cannot effectively pin 180˚ domain walls, which results in easy magnetization reversal 

by the unhindered motion of 180˚ walls along the length of the polytwin lamellae. This 

effectively reduces the magnetic hardness in polycrystals with  polytwinned morphology.  

 
 
 

2.2 ANNEALING PHENOMENON 
 
 

2.2.1 The Deformed State  
 
 
According to previous studies the FCC-related FePd base intermetallics have been categorized as 

a low stacking fault energy (LSFE) material [9]. During the process of cold rolling of FCC 

metals with LSFE tend to undergo deformation by both dislocation glide and a twinning mode. 

Previous work concluded that disordered Fe-Pd also exhibits these characteristics [10,11,12]. 

The resultant deformation structures consist of a lamellar morphology, with the twinning plane, 

{111}, making angles of 0˚-30˚ with the rolling plane. With additional deformation, rotation of 

the twinning plane towards the rolling plane occurs. At large deformations, shear, micro- and 

transition bands consisting of very fine, highly misoriented crystallites appear. These bands tend 

to make angles of 25˚- 40˚ with the rolling plane and are seen to be spanning over many grains. 
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The dislocation density in the regions of these deformation bands is very high. As the driving 

force for recrystallization stems from the stored energy of cold work, which is associated with 

the dislocation structures, these regions with high defect density can act as preferred sites for 

nucleation of recrystallized grains. 

With the exception of maintaining the cross sectional area, the process of deformation using 

equal channel angular pressing is similar to that in cold rolling. However with multiple passes, in 

principle, much larger amounts of energy of cold work can be stored in the material. 

Microstructural features such as shear bands, transition bands, deformation bands and arrays of 

stacking faults would be produced in this process. With large amounts of deformation (using 

multiple passes) structures consisting entirely of sub-grains or a so-called deformation cell 

structure with all of the above-mentioned defect configurations can be expected. 

 
2.2.2 Annealing   
 

The three processes of recovery, recrystallization and grain growth together constitute the three 

distinguished annealing phenomena. Recovery refers to all those processes of defect 

rearrangements in the deformed microstructure, which do not involve the sweeping of the 

deformed structure by migrating high-angle grain boundaries. Thus, during recovery the 

deformed polycrystalline aggregate retains its identity, while the density of crystal defects 

(mostly dislocations and vacancies) and their distribution changes. Recovery has been associated 

with the decrease in number of line and point defects present in the deformed material. The 

annihilation of dislocations with opposite signs gliding on the same glide planes, thermally 

assisted climb of edge dislocations leading to polygonization, annihilation of excess vacancies 
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with grain boundaries and line defects acting as vacancy sinks are some of the mechanisms by 

which this process has been described previously [13].  

The various mechanisms for recovery are facilitated by diffusion of vacancies under the 

influence of thermal activation. However, during annealing of disordered alloys at temperature 

lower than the critical ordering temperature some new concerns arise. The diffusion of a vacancy 

in a medium is governed by factors, such as the jump distance for the elementary diffusion 

process, thermal activation, the coordination number, and a correlation factor that takes into 

account the ability of the vacancy to ‘hop’ into a particular site [14]. During annealing at 

temperatures for which the ordered phase is stable, the elementary processes by which vacancy 

diffusion takes place and therefore recovery occurs are affected by the evolution of the degree of 

long range order. It is no longer likely for the vacancy to diffuse in any direction at random, as 

doing so would tend to disrupt the atomic order for certain directions. Consequently the 

correlation factor reduces from its maximum value of unity (the reduction being a function of the 

degree of long range order at that particular instance). The reduction in the correlation factor 

leads to a decrease in the diffusion coefficient for vacancies and therefore slows the kinetics of 

all the vacancy diffusion assisted processes in annealing. Hence, the chemical ordering is 

expected to have a strong effect on the details of the recovery processes in the ordering Fe-Pd 

model alloys studied here. 

Recrystallization refers to the process by which stress free, equiaxed grains are produced from a 

heavily stressed microstructural state. This topic has been extensively studied for elemental 

metals and alloys and the theories of recrystallization have been debated extensively in the 

literature [15]. Central to all these theories has been the postulate that a stress free grain would be 

nucleated in the region of high deformation content.  Previous studies [16,17,18,19] have 

 11



clarified that the mechanism of nucleation of a recrystallized grain is intimately linked with the 

structure of the deformed metal and specifically with the degree of heterogeneity of orientation 

within each deformed grain. In line with these observations some theories of recrystallization 

have been promulgated [20,21,22,23]. The main ideas in these theories include the following 

models or concepts: 

 1) A classical nucleation (or fluctuation) phenomenon involving a heterogeneous or 

homogeneous mode; 

 2) Local growth of a polygonized region in the deformed sub-structure to eventually produce a 

viable nucleus; 

 3) Coalescence of neighboring sub-grains by the annihilation of dislocations constituting the 

sub-boundaries between them; 

 4) Strain-induced boundary migration (SIBM) model, in which a sub-grain within a deformed 

region grows into its neighbor, forming a bulge which has the orientation of the source grain and 

is largely free of dislocations.  

Of these four conceptual models that have been proposed, the classical nucleation theory has 

been discredited, as the driving force for recrystallization is not sufficient to account for the 

energy required to produce a high angle grain boundary. The last three theories involve the 

rearrangement of dislocation sub-structure (recovery) as a pre-requisite to produce viable high-

angle boundaries and do not require the formation of a truly new orientation grain or nucleus in 

the cold-worked material. Rather, they are based on the further evolution of specific defected 

regions already present after deformation. Given the complexity involved in the analysis of the 

phenomenon of recrystallization, one or all theories in tandem can be sufficient to explain the 

experimental observations. However, the details are still discussed controversially [24]. 
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Various kinetic models have been used to quantify the rate of the process of recrystallization 

[24,25]. The Johnson-Mehl-Avarami-Kolmogorov (JMAK) model seems to be the most popular 

model. This model expresses the volume fraction recrystallized as a function of time by the 

relation  

Xv = 1- exp (-Btk)   --       (1) 

Here, B and k are constants depending on the material and thermomechanical processing 

parameters (e.g. T, εcw). 

The annealing phenomenon of recrystallization is complete once the new, essentially strain-free 

grains have grown sufficiently to impinge on one another. At this point the driving force for 

recrystallization has been expended.  

If annealing is continued after recrystallization is essentially complete, grain growth entails as 

the dominant microstructure altering process. The driving force for grain growth arises from the 

reduction in excess surface energy associated with grain boundaries. The process of grain growth 

is affected by factors such as the impurity content at the grain boundaries, the orientation 

relationships across the grain boundaries, the defect content in front of a moving high angle grain 

boundary etc. Grain growth is a phenomenon facilitated by boundary diffusion. Thus, the nature 

(chemical order, atomic structure, morphology) of the GBs or interfaces plays a very important 

role in determining growth kinetics. Structurally and compositionally different segments of GBs 

exhibit different rates of mobility. This would manifest itself in the resultant three-dimensional 

grain structure that would be obtained during the process of grain growth. It is expected that the 

largest grains are bound by highly mobile interfaces and that smaller grains that have been 

unable to grow are bound by low mobility interfaces.   
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Processes of recovery usually lead to annihilation of excess defect content in the matrix grains. 

Thus, high local concentrations of strain energy, conducive to promote recrystallization can 

become scarce, therefore affecting recrystallization kinetics. Moreover the process of recovery 

can also affect growth, as it can alter both the impurity content and the defect content across a 

high angle grain boundary. Hence, it can be inferred that the elementary processes in annealing 

are not mutually exclusive, but rather they are interdependent or coupled and may occur 

simultaneously. The interplay between all these solid state reactions has to be considered which 

has made the theoretical modeling of annealing phenomenon quite complex. 

 
 

 
2.3 COMBINED REACTION TRANSFORMATIONS 

 

2.3.1 Introduction  
 
 
Solid state reactions occur under the influence of thermodynamic driving forces. Reactions, such 

as recrystallization and diffusional phase transformations have a characteristic thermodynamic 

driving force associated with them. In many thermomechanically processed metallic alloy 

systems more than one driving force and more than one type of reaction are present, which can 

strongly affect the microstructural evolution during thermally activated processing [26]. Under 

such circumstances, it is always possible to have more than one reaction change the 

microstructural state of the system. Microstructural rearrangement or transformation facilitated 

by a process for which the overall driving force is a function of more than one possible 

elementary solid state reaction are referred to as combined reactions (CR) [27].  

CRs are frequently encountered in the field of physical metallurgy. Typical examples are 

precipitation hardening in cold worked stainless steels and martensitic transformations in shape 
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memory alloys. Due to the interplay of the multiple driving forces for the different individual 

solid state reactions, the kinetics of these CR processes are altered from those of the individual 

reactions. Possible synergistic effects can exist amongst the various driving forces. Moreover, 

due to the different functional dependence of each process on thermal activation, there could be 

coordinates in temperature-time space for which one reaction could be favored as compared to 

another. Such scenarios can lead to simultaneous or sequential combined reactions. An important 

hallmark of a CR is the microstructure that develops as a result of the process. The 

microstructural development can provide insight regarding the possible mode of combined 

reaction (e.g. sequential vs. simultaneous) and also about the kinetics of the process. Therefore, 

here in this brief review a background will be developed for the investigation of the annealing 

phenomena for the FePd alloys studied here in light of the CR transformation mode.  

 
2.3.2 Sequential and Simultaneous Combined Reactions   
 

The kinetics of a CR are governed by the tendency of a system to maximize the rate of 

dissipation of excess free energy. The kinetics of any solid state reaction would be a function of 

the driving force (for the individual reaction) and the mobility of atoms (in case of diffusion 

assisted transformations). Thus depending upon the relative magnitudes of both these 

parameters, either sequential reactions or simultaneous reactions can occur. Though useful, such 

quantitative estimates assume a mean field approximation, and therefore may not be able to 

entirely correctly predict the observed behavior. Nevertheless they do provide a background for a 

theoretical analysis of the possible reaction paths.  
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Experimentally derived time-temperature-transformation (TTT) diagrams provide a more 

accurate description of the system behavior. In temperature-time space, reaction kinetics can be 

appropriately depicted using a TTT diagram. These diagrams can help us identify the onset and 

completion of various reactions that are possible under the influence of appropriate 

thermodynamic driving forces. As an example, a TTT diagram for a process involving 

recrystallization (R in the figure) and decomposition (D in the figure) of a phase is shown in 

figure-4. 

Figure- 4 indicates that the process of recrystallization has faster kinetics for isothermal 

treatments at temperatures between Te and T1. As a result it would precede the phase 

decomposition reaction. Thus for temperature in that range a sequential CR would produce a 

microstructure where phase decomposition would be observed within stress free recrystallized 

grains. At temperatures lower than T1 the kinetics for both reactions are comparable. This would 

 

 
 

Figure-4 A TTT diagram for a process involving recrystallization and phase decomposition. 
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lead to a reaction where decomposition of the phase and recrystallization are occurring 

simultaneously due to a combined driving force of larger magnitude than for the individual 

reactions. The microstructure produced in this simultaneous mode of CR would presumably 

consist of phase decomposition traversing multiple grains that undergo recrystallization at the 

same instance.  Hence, sequential and simultaneous CRs are predicted to produce 

morphologically significantly different microstructures. 

 
2.3.3 Combined Reactions in equiatomic FePd intermetallics  
 

In the FePd system under consideration here, the two solid state reactions that have to be 

considered in terms of possible combined reactions are the ordering phase transformation and the 

annealing reactions, foremost recrystallization. Hence, there are two major driving forces by 

which a change in the microstructural state of the system can be achieved. A driving force for 

recrystallization is provided by the stored energy of cold work. Superimposed, is the driving 

force for the ordering phase transformation. Depending upon temperature of the annealing heat 

treatment, simultaneous or sequential CRs may be expected. Recrystallization followed by 

ordering (sequential) CR would be expected or at least it would be more likely at high 

temperatures. At small undercooling only a relatively small fraction of the large driving force for 

ordering would be available for the ordering transformation.  For large stored strain energy this 

may tip the balance of the reaction kinetics in favor of recrystallization. It may be noted that at 

high temperatures near Tc atomic mobility should be high since volume diffusion is fairly easy. 

A simultaneous recrystallization and ordering CR would be expected at lower temperatures 

below some temperature equivalent to T1 in the example described in Fig. 4. However, a clear 

distinction between sequential and simultaneous reactions would be made difficult by the local 
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variations in driving forces. For instance, the dislocation density at some locations at the prior γ-

phase grain boundaries and within the grains would be different in the deformed state. This could 

lead to different driving forces for recrystallization at different locations in the microstructure, 

leading to the possibility of having a sequential reaction at certain locations and a simultaneous 

reaction at others. Furthermore, depending on the processing parameters, annealing temperature 

and amount of cold work, it may be envisaged that a sequential CR begins with recrystallization 

and before this first reaction fully transformed the microstructure the second reaction has already 

begun. Thus, complexities arise in identifying the exact mode of CR, sequential and/or 

simultaneous. In light of these issues, a mean field approximation is assumed here for simplicity, 

in any attempt to develop a quantitative understanding of the evolution of microstructures in 

terms of the CR transformation mode.    

 

 
2.4 COLD WORKING 

 
 
2.4.1 Cold Rolling  
 
 
Cold rolling is a technique used to impart controlled amount of plastic deformation. It can act as 

a metal forming technique and at the same time can be used to store a controlled amount of strain 

energy, which provides the driving force for subsequent recrystallization processes. 

The true strain imparted during the cold rolling in terms of the thickness reduction can be written 

as [28] –  

ε = ln ( T0 / Tf )   --      (2) 

The strain energy stored during the process of cold deformation (an approximate equation 

applicable for all the cold deformation techniques) is given by [8,9,13,] – 
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∆GRX =  αµb2 ∆ρ / 2   --     (3) 

Where µ is the shear modulus, b is the magnitude of the Burgers vector and ρ is the dislocation 

density. The factor α would be function of the cold working process and would account for the 

dislocation configuration of the cold worked state. 

 
2.4.2 Equal Channel Angular Pressing 
 

Equal channel angular pressing is a process for severe plastic deformation (SPD). It can impart a 

large amount of plastic deformation into the work piece without any significant change in cross 

section. A schematic of the ECAP process is as shown in the following fig– 5 [29] 

 

 
 
 
Figure – 5. Schematic for the ECAP cold deformation process a) φ = 0, b) Ψ > 0 

 

The plastic deformation is achieved by pressing a billet usually of square or circular cross-

section through a die that has two channels, each with the same cross section as the billet. These 

two channels intersect at an angle of 90˚ or larger, which is determined by the die design. The 
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billet is constrained on all sides except for the opening of the second channel. While passing 

from one channel to the other, the material will shear along the symmetry plane lying at 

approximately a 45˚ angle of the die with an inner die angle of 90˚ and then flow around the 

corner.  

The details of the processes of deformation during ECAP are controlled by the angles ψ, φ as 

defined in figure 5.  The strain as a function of these angles is given by [29,30] 

εxy = 1 / √3 [2 cot (φ /2+ ψ /2) + ψ cosec (φ /2+/ ψ/2)]  --   (4) 

A highest value of strain equal to unity per pass is possible when angles ψ = 0˚, φ = 90˚ are used. 

Since there is no change in the cross section of the billet during the process of ECAP, the same 

billet can be passed through the die again, thus increasing the amount of cumulative strain 

imparted to the material. Using such a multi-pass processing schedule it is possible to impart 

strains to the billet that have a value much larger than one. A control over the amount of cold 

deformation imparted to the material allows control over the driving force for the process of 

recrystallization available during subsequent annealing treatments. The distribution of strain, and 

therefore of the driving force for recrystallization, as a function of the number of passes as 

determined by a finite element analysis (FEA) model, using ψ = 0˚, φ = 120˚ is shown in fig-6.  

The program predicts an inhomogeneous distribution of strain in the billet after one pass of 

ECAP with especially large strain gradients in the vicinity of the bottom surface and the front- 

and rear-end of the billet (figure 6). However, the central regions where strain homogeneity can 

be expected are also identified and increase in volume fraction with the number of ECAP passes.  
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                               Figure – 6a                                                           Figure – 6b 
                                              
 
                                                 

 
 

Figure – 6c 
 
 

Figure-6 The distribution of strain, as determined by a FEA model , a) One pass ECAP, b) Two 
pass ECAP, c) Three pass ECAP. 
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3.0 EXPERIMENTAL PROCEDURE 
 

 

3.1 SAMPLE PREPARATION 
 
 

3.1.1 Alloy preparation 
 
 
The equiatomic composition alloy was produced at Ames National Laboratory in Iowa by the 

Materials Preparation Center (MPC).  High purity (99.99%) iron plugs were added to the 

required amount of high purity palladium granules (99.95%), both of which had been acquired 

from Alfa Aesar, to produce the equiatomic mixture. Vacuum arc melting was employed to melt 

the alloy followed by casting on a water-cooled copper hearth. This procedure yielded a button 

of approximate dimensions 45mm x 45mm x 13mm. Compositional homogeneity of the button 

was ensured using the EDAX compositional microanalysis in the SEM through the cross section 

laterally and normal to the thickness. 

 
3.1.2 Heat treatments  
 

To ensure controlled non-oxidizing atmosphere for heat treatments all the samples were 

encapsulated in quartz tubes. The same encapsulation procedure was followed for all samples. In 

this procedure, the samples along with a tantalum foil as an oxygen-getter were placed in the 

quartz tube that was sealed at one end. The tube was then thinned down with a torch, 

approximately 10 cm away from the closed end. The open end was then attached to a vacuum 
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system and pumped down to approximately 20 millitorr before back-filling with high purity 

argon to a pressure of approximately one-half atmosphere. The valve to the vacuum system was 

reopened and again pumped to 20 millitorr. This flushing procedure was repeated 4-5 times 

before back-filling with argon and then sealing off the tube. It was ensured that the tantalum foil 

and the sample are not in physical contact whilst the heat treatment was in progress. 

 
3.1.3 Homogenization and Disordering Annealing Treatment  
 

As-cast buttons were cut perpendicular to the chill surface with a slow speed saw so that each 

slice had two nearly parallel surfaces. These specimens were then subjected to cold rolling to 

break down the cast structure. A thickness reduction to approximately 45% was achieved with 

the slices always going through the rollers length-wise and always in the same direction with the 

parallel surfaces of the samples touching the rollers. The deformed specimens were then 

encapsulated, and placed in a furnace at a temperature of 950˚C, which is within the disordered 

phase field of the FePd phase diagram. After 5 hours at this temperature the quartz tubes were 

quenched into ice-brine solution, resulting in a relatively rapid quench to preserve the disordered 

phase. 

 
 
 

3.2 COLD DEFORMATION 
 

The homogenized and disordered samples were then subjected to different mechanical 

processing schemes to vary the amount of stored energy of cold work. 
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3.2.1 Cold Rolling  
 
 
The disordered annealed specimens were cleaned. Billets 6mm x 6mm x 25mm in size were cut 

using the Struers Accutom-50 high speed cutting saw. Using multiple passes through the rolling 

mill, these billets were then cold rolled to a thickness of 180 µm, approximately 97% reduction 

in thickness. The total effective equivalent plastic strain was calculated to be 3.0 after this cold-

rolling procedure. 

 
3.2.2 Equal channel angular pressing   
 

The disordered billets 6mm x 6mm x 25mm in dimensions were cut. These were thoroughly 

cleaned and lightly sanded using a 120-grit paper. An ECAP die having a 120˚ die angle was 

used for the single pass ECAP trials. The die lubricated with molybdenum disulphide was 

assembled and the billet was placed in the channel. Using an Instron mechanical testing machine 

a compressive load was applied to the billet. The test was continued until the billet passed from 

the entrance channel 1 through to the exit channel 2. The total effect plastic strain, using relation 

(2) was calculated to be 0.6  

 
 
 

3.3 ISOTHERMAL ORDER-ANNEALING 
 

The samples for the order annealing treatment were encapsulated in quartz tubes. The single pass 

ECAP samples were heat treated at 400˚C and 500˚C.  The 97% cold deformed samples were 

heat treated at 400˚C, 500˚C and 600˚C.  The time periods involved for these heat treatments 

ranged from a minimum of 1 hour at 600˚C to a maximum of 10 days at 400˚C.  
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3.4 CHARACTERIZATION TECHNIQUES 
 
 

3.4.1 X-ray diffraction  
 
 

X-ray analysis was performed using a computer operated Phillips X’pert system operating at 

40kV, 30mA and with CuKα radiation. Cold rolled and annealed samples with dimensions of 

10mm x 10mm x 0.018mm were prepared with the rolling direction in plane. ECAP and 

annealed samples were prepared with a 6mm x 6mm x 1mm section of the billet perpendicular to 

the direction of the ECAP pass. The ‘powder diffraction’ technique was used for phase 

characterization. The powder diffraction unit consisted of a collimating slit with width equivalent 

to an angular width of 0.25˚, a multi-purpose sample stage and a curved graphite monochromator 

were used to scan for the Bragg angles of the existing phases. These scans were typically run 

with a step size of 0.02˚ and the time per step of 0.8 seconds.  

 
3.4.2 Electron Microscopy  
 

  
TEM observations were carried out on samples in the deformed and the annealed state. In case of 

the one pass ECAP samples, the observations were made in the direction perpendicular to the 

direction of the pass. Whereas in case of the cold rolled and annealed condition, the TEM 

observations were made in the rolling plane. Discs with a diameter of 3mm were drilled out 

using a slurry-drill and SiC abrasive. These discs were further polished to 30 µm in thickness and 

electron transparent foils were prepared using an E.A. Fishione twin-jet electropolisher in an 

electrolyte of acetic acid 82%, perchloric acid 9%, and ethyl alcohol 9% by volume. The 

electropolishing was carried out using an ice bath to cool the electrolyte to approximately 0˚C. A 
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voltage of 30V and a jet speed of five were used. Transmission electron microscopy was 

conducted on the scanning TEM (STEM), JEOL 2000FX microscope operating at 200 kV and 

utilizing a GATAN double tilt specimen holder. 

The sample preparation for scanning electron microscopy included essentially similar steps as 

outlined earlier. There was however no need for thickness reduction of the 3 mm diameter discs 

and the polishing effect of the electropolisher was sufficient to give good contrast in the 

backscattered electron (BSE) and the secondary electron (SE) modes. SEM investigations were 

conducted on a field-emission gun equipped Philips XL30 SEM, with facilities for BSE, SE 

contrast imaging and X-ray microanalysis using the EDAX composition analysis program.   

 
3.4.3 Magnetic Measurements  
 

 
Magnetic property measurements were conducted on 3mm diameter discs with known mass. 

Magnetic hysteresis loops were measured using a Lakeshore model 7300 vibrating sample 

magnetometer. Fields approaching 15kOe were applied to the samples using a Walker laboratory 

electromagnet and a model 668 Lakeshore power supply. IDEAS – VSM version 2 software was 

used for magnetic data collation and plotting of the hysteresis loops. 

 
3.4.4 Grain size analysis  
 

 
Grain size analysis was performed on SEM micrographs obtained in the BSE mode. The 

computer assisted image analysis procedure involved, delineating the grain boundaries, followed 

by a quantitative determination of the grain sizes using the NIH- image analysis software. The 

resolution of this grain size analysis technique was found to be in the range of 35nm and an 

absolute error in the estimation of grain sizes was determined to be 15nm. This error and the 
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resolution limits are dependent on the magnification at which the micrographs were collected 

and the total number of pixels of the digitally acquired images. To obtain statistical significance 

[31], about or more than 800 grains per treatment condition were analyzed. An example of the 

grain size image analysis is illustrated in figure-7.  
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Figure-7a 
 

 
 

Figure-7b 

 
Figure – 7  a) BSE, SEM micrograph with grain boundaries delineated. b) Individual 
grains identified by the Image analysis program and used for area determination 
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4.0 RESULTS AND DISCUSSION 

 
 
 

4.1 RECRYSTALLIZED DISORDERED STATE 
 
 
The microstructure of recrystallized disordered FCC FePd is as shown in fig-8. The contrast 

observed in this BSE - SEM image is due to differences in the crystallographic orientation. This 

starting microstructural state can be characterized by an equiaxed grain structure, with an 

approximate average grain size of 130+/-5 µm. The microstructure also shows annealing twins, 

and well defined high angle grain boundaries. X-ray diffraction spectrum for this microstructural 

state shows the presence of the fundamental reflections for the disordered FCC phase. The 

superlattice reflections characteristic of the ordered L10 phase were only weakly present.  

 

  

 
 
 

Figure – 8 BSE, SEM micrograph of disordered recrystallized Fe,Pd. 
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4.2 ONE PASS ECAP – MICROSTRUCTURE AND PROPERTY EVOLUTION 
 
 

4.2.1 Deformed microstructure  
 
 
Figures-9a and 9b show the microstructure of the alloy after one pass ECAP. After ECAP the 

microstructure consisted of heavily deformed grains that exhibited deformation bands at various 

length scales, i.e. shear, micro and transition bands. The local rotations of the crystal lattice result 

in fairly rapid orientation changes and a cell structure inside a given deformed grain has 

developed, which is reflected by the much more complex contrast in SEM BSE micrograph 

(figure – 9a). The TEM micrograph in figure – 9b presents a typical example of the dense defect 

structure developed in the deformed grains. Using diffraction contrast imaging, a dislocation 

density after one pass ECAP has been estimated to be 1011-1012cm-2. The accompanying SADP 

in figure-9b indicates the presence of a mosaic structure associated with frequent small 

orientation changes across the dense dislocation walls between cells of lower dislocation density. 

The matrix of the as deformed material has the FCC crystal structure. However, diffuse 

intensities for the superlattice spots in the SADP indicate the presence of L10 type either short-

range order (SRO) or very small (≤ 2nm) coherent precipitates of L10 ordered orientation 

variants (figure-9b). 
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Figure-9a 
 

 

 
 
 

Figure-9b 
 

Figure-9 a) BSE-SEM micrograph of disordered FePd in the deformed state after one pass 
ECAP. b) TEM bright field multi-beam micrograph of the dense dislocation cell structure in 
a grain in the FePd after ECAP, inset – SADP of the grain with a ZA of [100]. 
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4.2.2 Magnetic properties  
 
 
The magnetic coercivity, a measure of the magnetic hardness, is an extremely structure sensitive 

property. As the processing conditions were changed the microstructure of these alloys was 

expected to change, which was expected to affect strongly the coercivity measured for the CR 

processed alloys [32].  

Coercivity determination was performed using the hysteresis loops obtained with the vibrating 

sample magnetometer. An example of a hysteresis loop is as shown in figure-10. A 

demagnetizing factor of an oblate spheroid was used to correct for the demagnetizing field 

produced by the sample. 
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Figure -10 hysteresis loop, corrected for the shape of the sample using the demagnetizing 
factor for an oblate spheroid. 
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To monitor the development of the magnetic properties VSM experiments have been performed 

on the material prior to and after annealing. The evolution of magnetic hardness measured in 

terms of coercivity is shown in figure-11.  
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Figure-11 Coercivity evolution as a function of annealing time during order annealing 
after one pass ECAP 

The coercivity of the as-quenched disordered FePd solid solution was 27Oe. Due to the 

deformation during single pass ECAP the coercivity was enhanced to 37Oe. The coercivity 

increased from a low value of the as-deformed state to a maximum (523Oe) after 12 hours during 

annealing at a temperature of 500˚C. With a subsequent increase in the annealing time the 

coercivity was found to decrease to a low value of 349 Oe after 20 hours. A similar trend was 
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observed for samples annealed at 400˚C with a maximum value of 775 Oe after 8days. Previous 

studies have reported coercivities in the range of 180-350 for the poytwinned microstructures 

that resulted during conventional transformation [8,9]. Thus, nearly a two-fold improvement in 

the magnetic hardness has been achieved using this thermo-mechanical processing schedule. The 

magnetic age hardening behavior observed in this study is consistent with previous reports, 

which included a different mode of cold-deformation and slightly different annealing 

temperatures [33]. Thus, this behavior of the coercivity with annealing time appears to be 

characteristic of cold-deformed FePd during annealing at T < Tc.     

 
4.2.3 X-ray diffraction – Evolution of LRO 
 

 
XRD experiments have been performed to monitor the changes of the lattice parameters during 

annealing. The chemical ordering sensitive {113} and {131} diffraction peaks have been used to 

determine changes in the (c/a) ratio or tetragonality as a function of annealing time at 500˚C as 

summarized in figure-12. The data collated in this figure indicates that the (c/a) ratio decreases 

from unity prior to annealing towards the equilibrium value of 0.966 within 24 hours and 

remains constant thereafter. For annealing times of less than three hours the quality, peak width 

and signal to noise ratio, of the XRD signal was insufficient to determine with confidence 

apparent changes in the prominent lattice parameters. This lack of useful XRD data can be 

attributed to small sample size, the small fraction ordered material and the small size of the 

ordered domains or grains. From this data it appears reasonable to conclude that, while 

significant L10 type long-range order (LRO) certainly develops within the first 5 hours of 

annealing at 500˚C, the maximum LRO parameter is attained only after between 12 to 24 hours 

of isothermal annealing. The XRD analysis of samples annealed at 400˚C has revealed, that the 
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increase in the LRO parameter is not as rapid as at 500˚C. Increase to a maximum in the LRO 

parameter is observed after 8 days of annealing at this temperature. 
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Figure -12 Evolution of the LRO parameter as a function of annealing time. 
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4.2.4 Microstructural Observations 
  

 
SEM and TEM investigations of the annealed samples have been conducted in order to document 

the microstructural evolution during isothermal annealing of the cold deformed FePd. TEM 

allows detailed local probing of structural, morphological and compositional changes on a 

microscopic scale. Compared to TEM, SEM studies can provide information on the 

microstructural evolution over much larger fields of view and also at the larger length scales. 

Hence by combining SEM and TEM observations, the microstructural evolution during 

annealing of the cold-deformed FePd could be obtained across the relevant length scales. Figure-

13 and figure-14 present representative SEM,BSE micrographs that depict the pertinent 

microstructural features for the process of annealing at 500˚C. Changes occurring in the 

microstructure, as a function of annealing time can be easily understood using these data sets. 
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Figure -13a
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Figure -13b, 500°C-5 hrs 
 
 

 

 
 
 

Figure -13c, 500°C-12 hrs 
 
 

Figure -13 Examples of SEM BSE micrographs of the microstructural evolution in the cold-
deformed Fe-Pd during annealing at 500°C a) 3 hours, b) 5 hours, c) 12 hours, c) details of CR 
transformed grains that nucleate at transition bands between heavily deformed regions of 
significantly different orientation. 
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As seen from the micrographs at 500˚C, even at short annealing times (3hours) small, 

morphologically irregular shaped grains of the ordered phase emerge initially at grain boundaries 

(GBs) of the disordered, deformed FCC phase. These new grains appear to be the product of a 

concomitant recrystallization and ordering process, a combined reaction process (CRP) that has 

characteristics of being a nucleation and growth type process. It can be seen from the 

microstructure in figures-13 that the grains of the deformed matrix do not undergo any 

morphological changes that can be classified as an annealing phenomenon. Figure – 13b depicts 

an example of the microstructure after 5 hours of annealing. A significant fraction of CR 

transformed grains has nucleated at micro-bands within a non-CR transformed grain in addition 

to CRP grains at grain boundaries. With increasing annealing time, this process of heterogeneous 

nucleation of CRP grains at GBs and deformation bands and their growth into the surrounding 

non-transformed volume continues. Figure-13c depicts an example of CRP grains at transition 

bands, which separate regions of differently oriented deformed crystal with shear bands. Planar 

faults such as twins can be seen in the larger grains in the CR transformed fraction. Furthermore 

the CR fraction consists of a large number of grains having an average diameter in the sub-

micron scale. Comparison of figures from 13a-13c reveals that the CR transformed fraction in 

these alloys increases with increasing annealing time.  

Quantitative studies on these micrographs using computer assisted image analysis has shown that 

the CR transformed fraction increases from about 2% after 3 hours to 36% after 12 hours of 

annealing at 500˚C and reaches a maximum of 45% after 24 hours of annealing. A completely 

CR transformed state was not observed even after 24 hours of annealing at this temperature. This 

observation has implications in defining an adequate driving force for the process of 
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recrystallization during CR transformation. Apparently the driving force imparted by one pass 

ECAP was not sufficient to effect a combined reaction process throughout the matrix.  

Figure –14 presents SEM micrographs of the microstructures typical of annealing at 500˚C for 

 

Figure-14a,

 

Figure-14b,

Figure-14 SEM, BSE micrographs of the mic
annealing at 500°C. 
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12 hours and 24 hours. While microstructural morphology, namely heterogeneously distributed, 

irregularly shaped CRP grains and a majority volume fraction of non-CR transformed grains 

remained essentially the same up to 12 hours of annealing, a significantly different 

microstructure appeared after 24 hours of annealing. The microstructure in this state appears to 

be more homogeneous, since the heterogeneously distributed small CRP transformed grains that 

decorated the GBs and the deformation bands within the non-CR transformed grains are no 

longer observed (figure-14b). Instead, many larger CR transformed grains that contain annealing 

twins along with non-CR transformed regions that appear to contain polytwins are seen in the 

microstructure. A significant size difference in the largest grains observed in the CR transformed 

regions is also seen. While the largest grain size after 12 hours of annealing was in the range of 

10 µm, after 24 hours most CR transformed regions had grown to a size range of about 80 µm on 

average.  It appears likely that this change in CRP grain size and in microstructural morphology 

is associated with the suppression of further transformation of deformed regions by the CR and 

the rapid growth of select grains in the population of CRP transformed grains between 12 and 24 

hours of annealing. A semi-quantitative (insufficient statistics) grain size distribution analysis in 

the CR transformed fraction has revealed a quite heterogeneous distribution. It therefore appears 

reasonable to envisage that the larger grains in the CR transformed regions, under the driving 

force of reduction in excess surface energy, would grow at the expense of smaller ones. 

The microstructural data imply that the fraction CR transformed increases monotonically with 

annealing time until completion of the ordering transformation. However, even after 24 hours the 

fraction transformed does not increase beyond 45%. Thus, it would be rational to expect that the 

magnetic age hardening behavior does not depend solely on the increment of fraction CR 

transformed. Interestingly the maximum in coercivity observed after 12 hours at 500˚C correlates 
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well with the time required to achieve a LRO parameter close to unity. This observation implies 

that the increase in coercivity can be attributed to an increase in the LRO parameter in the overall 

microstructure. The decreased coercivity for annealing times longer than 12 hours appears to 

correlate with the significant grain growth in the CR transformed fraction of grains and the 

accompanying change in microstructural morphology. 

TEM studies have been conducted on the partially ordered and completely ordered states. The 

TEM micrographs in figure-15 have been obtained from non-CR transformed regions after 

annealing for 5 hours and 24 hours at 500˚C.  

 
 

 
 
 

Figure -15a 

Traces of <111> 
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Figure – 15b 
 
 

  
 
 

Figure -15c 
 

Figure – 15 Example TEM micrographs depicting the evolution of L10 – type LRO in the 
non-CR transformed region. a) Bright field, g = 002 , off [110], b) corresponding dark field 
with g=001, both for 5 hours annealing at 500°C. Traces of dodecahedral planes parallel to 
[1-11] and [1-1-1] are marked in a). c) multibeam bright field, beam direction [001], inset 
SADP, for 24 hours of annealing at 500°C 



The complex contrast observed in these micrographs is due to the nucleation and growth type 

conventional ordering reaction occurring within these regions [3]. The FCC  L10 phase 

transformation is associated with a characteristic transformation strain. Under the influence of 

this strain the product of this reaction assumes a lamellar morphology and aligns itself 

approximately parallel to the traces of dodecahedral planes, namely the directions [1-11] and [1-

1-1] as depicted in the micrograph of figure 15a. The superlattice dark field TEM micrograph of 

figure-15b shows the same region as 15a, but at a higher magnification, revealing the nanoscale 

coherent precipitates of one of the three orientation variants of the L10 ordered phase emerging 

within the FCC matrix. Under the influence of the transformation strain, variant selection occurs 

locally during growth and small coherent L10 precipitates coalesce to form larger ordered 

domains aligned parallel to the traces of dodecahedral planes. These observations are consistent 

with the emergence of an incipient polytwin structure in the non-CR transformed grains during 

annealing of the cold-deformed FePd. The continued ordering and coarsening of these aligned 

ordered domains during isothermal annealing at this temperature produces a fairly well 

developed polytwin structure in the non-CR transformed grains after 24 hours. The 

accompanying [001] ZA SADP inset in figure-15c exhibits eight superlattice spots surrounding 

the central spot, which indicates the presence of all three possible orientation variants of the 

tetragonal ordered phase in the non-CR transformed grain.  
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An example of heterogeneous nucleation and growth of CR transformed grains at the GB 

between two formerly disordered, deformed grains is given in the TEM micrograph, figure – 16. 

Diffraction studies of these heterogeneously nucleated CR transformed grains indicate that these 

grains are essentially defect free and have an ordered L10 structure. Microstructural observations 

similar to the 500˚C isothermal annealing treatment have been made at a lower annealing 

temperature of 400˚C. The main difference in the evolution of the microstructure is the 

considerably slower reaction rate at this lower processing temperature. This has resulted in a 

peak in coercivity and a corresponding increase in the order parameter to a value of unity after a 

time period of 8 days at 400˚C. 

 

 
 
 

Figure -16 Multi-beam bright field TEM micrograph depicting an example of new 
L10 – ordered CRP grains, in the cold-deformed Fe-Pd after 10 hours of annealing 
at 500°C 

CR transformed 
grain 
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4.2.5 Discussion  

 
 

Microstructural evolution – 
 

The observations of the microstructural evolution are in accordance with expectation for a low 

stacking fault energy material [34,35,36]. For instance the large strain energy gradient present at 

the deformation bands and at high angle grain boundaries in the deformed microstructure 

provides sufficient driving force for preferential nucleation of defect free, recrystallized grains. 

Of the various recrystallization mechanisms previously enumerated, based on microstructural 

observations (e.g. figure-13), it would be tempting to consider a pure recrystallization 

mechanism where the nucleation of a stress free grain would occur by a bulge mechanism 

[13,35] (essentially similar to the stress-induced boundary migration (SIBM) mechanism).  

However, the system under consideration undergoes a recrystallization and a concomitant phase 

transformation. Thus, the local variations in the defect content would have to be considered, 

while trying to understand the microstructural evolution from a disordered, deformed FCC to an 

ordered L10 state. 

The energy barrier for nucleation of the ordered L10 phase can be given by [37] 

∆G* = (16 * pi * γ3 ) /  (3 * (∆G + ∆Gd)2 ). --    (5) 

The reduction in free energy due to the FCC  L10 phase transformation (∆G) is aided by a 

reduction in free energy due to elimination of defect content (∆Gd). Consequently a smaller 

energy barrier to phase transformation would be present in regions of high defect content (due to 

a larger ∆Gd). This would in turn lead to preferential nucleation of the L10 phase at locations 

with high defect content, such as deformation bands and prior high angle grain boundaries. The 

experimentally observed microstructures do depict these kind of discontinuous, nucleation and 
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growth events (figure-10, 11), which lead to monolithic, single variant, defect free grains. As 

previously stated the ordering phase transformation is associated with a transformation strain and 

a strain accommodation among all three possible L10-variants nucleated produces the 

polytwinned structure. However, in case of the CR transformed grains, only a single variant is 

observed. This observation can be rationalized based on the fact that the transformation strain 

can in itself be accommodated by the interaction of the moving high angle grain boundary with 

the surrounding non-CR transformed, heavily defected region. 

The defect content within the grains of the deformed FCC phase is considerably lower than at the 

high-strain energy concentration locations, such as at prior GBs and micro and transition bands. 

Thus, in the absence of or for a significantly reduced magnitude of the additional driving force 

∆Gd , the probability of nucleation of L10 phase is reduced. Furthermore, inside the deformed 

FCC grains the probability for nucleation of any of the three possible L10-variants appears to be 

about equal. Thus, an ordering process similar to the conventional mode typical of the 

undeformed material, which favors the nucleation of all three variants is expected within the 

matrix. While somewhat speculative, the observations are consistent with this scenario (figure-

12, 13). The regions referred to as a non-CR transformed region, indeed show the presence of 

polytwinned structure consisting of all three variants. 

During early stages of the annealing process there is a competition between the conventional and 

the heterogeneous or CR ordering modes. The resulting microstructure is therefore a composite, 

comprised of regions that have CR transformed and regions that have transformed by the 

conventional mode. The driving force for phase transformation vanishes once the LRO achieves 

the equilibrium value. Coincidentally, this occurs apparently when the maximum in coercivity is 

attained. During subsequent annealing only the driving force for grain growth is present. Under 
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these circumstances reduction in excess surface energy leads to grain coarsening in the fully 

ordered material.     

Magnetic property evolution -  

Based on the magnetic property measurement, a magnetic age hardening behavior has been 

reported for these thermo-mechanically processed intermetallics. In the initial stages of annealing 

the coercivity increases monotonically to a maximum (523 Oe) followed by a decrease to values 

typically in the range of those obtained for conventionally processed FePd. This behavior has 

been observed to be consistent with previous work [5,33]. XRD data has confirmed the 

correlation between the increasing coercivity and the increasing order parameter (LRO). 

However subsequent magnetic ‘overaging’ cannot be attributed to the LRO parameter, as with 

increasing annealing time, this parameter monotonically increases towards unity and remains 

constant upon completion of the ordering transformation. Similarly, the fraction CR transformed 

was found to increase monotonically even at the onset of overaging. Thus, the characteristic 

magnetic age hardening behavior of cold-deformed FePd cannot be attributed solely to the 

evolution of LRO and / or the evolution of the fraction CR transformed. 

The microstructure associated with the maximum in coercivity has CR and non-CR transformed 

regions in it. The CR transformed regions are essentially defect free and consist of monolithic 

L10 ordered, equiatomic FePd grains, which are considerably smaller in size (submicron range 

average grain size). These grains are surrounded by non-CR transformed fraction that exhibits 

polytwinned morphology.  

It has been proposed [8] that the increased coercivities of CR processed FePd originates from a 

superposition of magnetic hardening mechanisms that take into account the contribution to 

coercivity from greatly reduced grain size (grain size hardening) and by pinning of magnetic 
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domain walls by planar defects. According to previous reports [8] the grain size hardening 

contribution to the coercivity enhancement, ∆HD, in combined reaction transformed FePd can be 

given by approximately  

∆HD = (β γ / D Ms)  --        (6) 

Where β is a geometrical factor with a value between 1 to 5, γ is the domain wall energy 

(17erg/cm2), Ms is the saturation magnetization (1100emu/cm3) and D is the average grain size.  

Considering the range for β and a grain size of 1µm, the approximate upper and lower bounds of 

∆HD are estimated to be about 155 Oe to 775 Oe. For grain sizes 30 µm or larger the grain size 

hardening effect becomes negligible. After 24 hours at 500˚C  (that is in the significantly 

overaged condition), the CR transformed fraction was seen to be about 45% and an average CR 

transformed grain size was measured to be 80 µm.  Using above model, the contribution to 

coercivity from these CR transformed grains that have undergone considerable grain growth, 

would be very small (on the order of 10-25Oe).  

Microstructural observations have also indicated that the defect density in the non-CR 

transformed matrix is considerably reduced during the process of annealing. Potent line defects 

such as dislocation tangles can act as pinning sources to moving 180˚ domain walls. Due to a 

reduction in the density of these defects with increasing annealing time, a reduction in the 

pinning contribution to coercivity would be expected, thus decreasing the overall magnetic 

hardness. While quantitative description of the reduction in pinning strength is not possible due 

to the local variations in the defect density in the microstructure, however it can aid in qualitative 

understanding of the reduction in magnetic hardness.  

Hence it appears reasonable to conclude that the significant grain growth in the CR transformed 

fraction is responsible for the observed drop in coercivity in the overaged condition.    
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4.3 COLD ROLLED TO 97% REDUCTION IN THICKNESS – MICROSTRUCTURE 
AND PROPERTY EVOLUTION. 

In an effort to further optimize the magnetic properties, while exploring the matrix of processing 

parameters of annealing temperature, annealing time and stored strain energy of cold work, cold 

rolling to 97% reduction in thickness was employed. The process of cold rolling is capable of 

imparting a large amount of strain energy to this relatively ductile material. The calculations in 

section 3.2.1 show that under these conditions the total equivalent effective strain imparted to the 

material is larger than that calculated for a single pass ECAP, namely 3.0 versus 0.6 for 

deformation by cold rolling and ECAP, respectively. The increased amount of stored strain 

energy of cold work after cold rolling compared to the single ECAP pass would provide a larger 

driving force for recovery and recrystallization [13]. The thermo-mechanical processing by cold 

rolling would be expected to alter the kinetics of the CR transformation. Thus, the 

microstructural state after CR transformation in the cold rolled intermetallics would be predicted 

to differ from that in the material processed by a single pass ECAP. These changes in 

microstructure are also expected to alter the evolution of the coercivity or magnetic age 

hardening behavior, in terms of the rate of approach to the maximum, the maximum value, and 

the rate of overaging.  
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4.3.1 Deformed microstructure  
 
 
Figure – 17 shows an example of the deformed microstructure after cold rolling to 97% 

reduction in thickness. 

The contrast in this BSE image is based only on variations in local crystallographic orientations 

since there are no significant compositional changes associated with the transformation of the 

equiatomic Fe-Pd during annealing. Due to the large amount of deformation a very high density 

of dislocations is expected to be present in the microstructure and the crystal lattice orientations 

change over a rather small length scale comparable to the resolution of the SEM micrograph of 

figure-17. The internal stress fields associated with the high dislocation density of the as-

deformed microstructure results in rather diffuse contrast in the backscatter electron (BSE) 

mode.  As described previously the microstructure in the deformed condition includes 

deformation, shear-, micro- and transition bands (see section 4.2.1). The development of a 

 

 
 
 

Figure -17 BSE, SEM image of the microstructure in the cold rolled to 97% 
reduction in thickness sample. 
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dislocation cell structure in the alloy after cold rolling can also be inferred from the micrograph 

of figure-17. A much larger dislocation density is expected within the cell walls and at 

intersections of cell walls than in the cell interiors. Usually the dislocation cell-structure consists 

of cell interiors that are relatively dislocation-free and the cell-delineating cell walls that contain 

very high densities of dislocations. Hence, while the overall average dislocation density is of 

course increased by the increase in strain of cold-work, the dislocation density, ρ(r), is not 

homogeneous at the scale of the cell-structure. Regions of elevated local dislocation density 

within the well-developed cell-structure might be expected to act as preferential sites for 

nucleation of CR transformed grains. 

 
4.3.2 Magnetic properties   
 
 
Figure-18 summarizes coercivity measurements extracted from magnetization versus external 

applied field or M-H loop type magnetic hysteresis magnetization-demagnetization experiments 

performed on isothermally annealed samples.  
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during CR transformation, do not have a significant effect on the magnetization behavior 

measured by VSM.  

Figure-18 depicts the characteristic magnetic age-hardening behavior observed for all the 

isothermally annealed samples. These observations are similar to the coercivity behavior after 

one pass ECAP. However, relative to the polytwinned microstructure a five-fold increase in the 

maximum coercivity is observed, while for the single pass ECAP only a two-fold increase was 

obtained. Furthermore, the time required to reach the maximum in coercivity is also reduced by 

the larger cold-deformation strain. For instance, during the 500°C isothermal treatments the 

maximum is reached after 6 hours for the larger strain imparted by cold rolling, while it took 12 

hours to reach maximum coercivity for the lower strain deformation by one-pass ECAP. 

However, comparable annealing time is required for the attainment of a maximum coercivity at 

400˚C for the two different levels of strain of cold-work. These observations have their origin in 

the kinetics of the processes facilitating the microstructural transformation and are discussed in 

more detail in the following sections. 

 
4.3.3 X-ray diffraction – Evolution of LRO  
 
 
From studies of the evolution of the long-range order parameter for the single pass ECAP 

samples, during the isothermal treatment at 500˚C, it was concluded that the ordering process is 

essentially complete when the maximum in coercivity is obtained. XRD experiments have also 

been conducted to study the LRO evolution in cold rolled and annealed samples. Figure-19 

depicts a representative set of a symmetric (θ-2θ) XRD scan obtained for cold rolled samples 

annealed at 600˚C for a time period at which a maximum in coercivity is observed (3 hours). 
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symmetry of the ordered structure, have been analyzed for split peaks at larger values of 2θ close 

to 90˚. The family of {113} and {311} peaks shows splitting at the largest values of 2θ (~ 85˚) in 

the XRD scan, and thus these peaks have been employed to determine the c/a ratios as a function 

of annealing time for a given isotherm. 

To summarize briefly these XRD data analyses, here the computed c/a ratios from data collected 

for the various annealing temperatures for the condition of maximum coercivity are collated in 

table –2.  

Table – 2 c/a ratios obtained for the condition of maximum coercivity at various annealing 
temperatures. 

Temp. 2theta peak c/a 
    
    

400 deg C 83.01 {311}, {131}  
   0.9660 +/- 0.0005 
 86.51 {113}  
    

500 deg C 83.21 {311},{131}  
   0.9660 +/- 0.0005 
 86.57 {113}  
    

600 deg C 83.55 {311}, {131}  
   0.9660 +/- 0.0005 
 86.71 {113}  

Clearly, within the conservatively estimated experimental error of these measurements the LRO 

parameter, as represented by the c/a ratio, has reached the equilibrium value for the 

microstructural conditions associated with maximum magnetic coercivity. At shorter times of 

annealing values of c/a closer to unity have been observed for all annealing temperatures.  Thus, 

it appears reasonable to conclude that the ordering process is essentially complete when a 

maximum in coercivity is attained during annealing of the cold rolled FePd. The achievement of 
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the long-range order is intimately linked with the microstructural evolution, and will be 

discussed in greater details in the following sections. 

 
4.3.4 Microstructural Observations  

 
 

Apart from using XRD to monitor the evolution of LRO, the evolution of the microstructural 

state has also been documented using SEM and TEM. SEM provides a larger area overview of 

the microstructure and therefore aids in understanding the evolution of microstructure over a 

larger and perhaps more representative length scale than TEM. Information about important 

microstructural metrics, such as average grain size, the density of planar defects, such as 

annealing twins etc., can be obtained from these micrographs. TEM on the other hand provides a 

much better tool to probe the local morphology and crystallography of the microstructure. Using 

both these tools in conjunction, it is possible to obtain insight on the microstructural evolution 

spanning a rather wide length scale range of ~ 10-3m to 10-9m. 

An example of an SEM BSE micrograph for a condition of partial CR transformation of the cold 

rolled FePd is shown in figure – 20  
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Figure -20 BSE, SEM micrograph showing a microstructural state that has been partially 
transformed by CR process. 

Clearly, the microstructural state is complex in the partially transformed state. There are regions 

in the microstructure, which appear to have transformed by the heterogeneous nucleation and 

growth of CR grains. These nucleation and growth events seem to be aided by the prior 

deformation induced defect content. These observations of the microstructure in the early stages 

of the magnetic age hardening curve after cold rolling are in qualitative agreement with 

observations made for the partially transformed samples deformed by a single pass of ECAP.  

Examples of SEM BSE micrographs for annealing conditions associated with the maximum in 

coercivity and in the magnetically overaged condition for the three isothermal annealing 

temperatures explored are shown in figures – 21, 22 and 23. These micrographs are 

representative of a much larger group of observations made on much larger fields of view for 

each of the different annealing conditions. 
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Figure-21a 
 

 
 
 

Figure-21b 
 

Figure-21 BSE, SEM images of the microstructure after annealing at 400°C a) at the peak in 
the magnetic age hardening curve – annealed for 7 days; b) in the overaged condition –
annealed for 8 days. 
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Figu

Figu

Figure-22 BSE, SEM images of the micro
peak in the magnetic age hardening curve
condition – annealed for 10 hours. 
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Figure-23a 
 

 
 
 

Figure-23b 
 

Figure-23 BSE, SEM images of the microstructure after annealing at 600°C a) at the 
peak in the magnetic age hardening curve – annealed for 3 hours, b) in the overaged 
condition – annealed for 8 hours. 
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Figures-21 to 23 show that the microstructures of the CR processed FePd alloys, which have 

been previously cold rolled to 97% reduction in thickness, consist of essentially entirely of 

equiaxed grains. These microstructures appear to have almost 100% CR transformed fraction. In 

the SEM studies significant fractions of material with the polytwinned morphology has not been 

detected for any of the three isotherms for the condition of peak coercivity and those associated 

with the decreasing coercivity at longer annealing times. During the magnetic hardening stage 

new L10 ordered grains of FePd are seen to nucleate at heterogeneities in the deformed 

microstructure where large strain gradients exist, such as prior γ-phase grain boundaries, 

transition and / or micro-bands etc. The larger grains in the population of CR transformed 

fraction exhibit annealing twins. A significant fraction of grains are observed to be in the sub-

micron size range. Average grain sizes have been determined for the conditions of maximum 

coercivity and in the overaged condition for all three isotherms using computer aided image 

analyses. Some pertinent results of this grain size distribution analysis have been summarized in 

table -3   

These grain size measurements clearly indicate that a coarsening behavior is observed in the 

overaged state (table-3). Moreover, certain grains are seen to have grown to sizes very much 

larger than the average, producing extended large diameter tails in the grain size distributions. 

Microstructural observations of regions that exhibit some of these very large grains (figure-23b) 

show the presence of very small grains adjacent to the large grains. This local arrangement of 

grains of significantly disparate size may provide for conditions that could promote an abnormal 

mode of grain growth in the CR transformed fraction. Grain size distributions have been 

obtained for the peak coercivity and overaged  

conditions and a set of representative distributions are shown in figure-24a, 24b.  
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Table-3. Some pertinent grain size measurements for the condition of peak coercivity and in the 
overaged condition. 
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  Treatment  Treatment Coercivity Min grain Max grain Avg grain 
  Temp. Time Oe size size size 
    (Min)   (Micron) (Micron) (Micron) 
        Dmin Dmax Davg 
              

1 400°C 10080 1389 0.035 0.901 0.234 
              
  400°C 11520 1151 0.036 1.83 0.255 
              
              
2 500°C 360 1251 0.05 2.18 0.407 
              
  500°C 600 958 0.05 2.38 0.601 
              
              
3 600°C 180 984 0.05 1.99 0.493 
              
  600°C 480 705 0.08 6.36 1.13 
e grain size distribution plots exhibit long tails at very large grain sizes. Thus, a small fraction 

 grains are seen to have grown rather rapidly and to much larger sizes than the average. 

icrostructural observations of such regions (fig-23b) show the presence of very small grains 

jacent to these rather large grains. These local arrangements of disparately sized grains may be 

ovide conditions that could promote an abnormal mode of grain growth in the CR transformed 

ction.  
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Figure-24a 

Population % vs Grain size (600 - 8hrs)
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Figure-24b 
 

 
Figure-24 Grain size distribution for samples order annealed at 600ºC. a) For the peak 
coercivity condition, b) in the overaged condition. 
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To understand the local microstructural evolution, TEM investigations have been conducted on 

CR transformed samples in the peak and overaged condition. Representative TEM micrographs 

and selected area diffraction patterns (SADP) are shown in figures – 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure-25a Bright field, multibeam TEM micrograph, near [001] ZA (3h-600C) 

 

 

 
Figure-25b Selected area diffraction pattern, [001] ZA (3h-600°C) 
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As can be seen from TEM micrograph in fig-25a, microstructural details not observed in SEM 

investigations are revealed. Although SEM observations indicated an apparent 100% CR 

transformation, TEM reveals the presence of very minor fractions of non–CR transformed 

regions in the microstructure. The grain in the bottom part of fig-25a contains a high density of 

dislocations inherited from the deformed, disordered pre-annealing state and consists of γ1-FePd 

variants formed by conventional nucleation and growth process. The selected area diffraction 

pattern obtained from this heavily defected region is shown in figure – 25b and it confirms the 

presence of the three possible orientation variants of the L10 phase. The upper part of figure-25a 

shows a CR transformed grain of a single variant of γ1-FePd, which contains some octahedral 

annealing twins and antiphase domain boundaries and exhibits very low dislocation content. 

These microstructural observations confirm the presence of a small volume fraction of non-CR 

transformed regions with a significant dislocation content in the microstructures associated with 

the maximum in magnetic coercivity for the cold rolled samples. However, it must be noted that 

these non-CR transformed fractions are observed to constitute less than 5% of the overall 

microstructure based on careful analyses of SEM and TEM data. This clearly supports the 

importance to conduct SEM and TEM studies in combination in order to obtain representative 

microstructural information related to the transformations studied here. 

TEM observations have also been conducted for microstructures in the overaging or softening 

stage of the magnetic age hardening curve for 600°C isothermal annealing and are shown in 

figure-26. 
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Figure-26a Bright field, multibeam TEM micr
selected area diffraction pattern,[001] ZA, from 

 
Figure-26b Bright field TEM micrograph of CR
 

 
 
 

ograph, near [001] ZA (8h-600C) and as inset a 
a CR-transformed L10 FePd grain. 
 

 

 

-transformed grains showing twinning (8h-600C) 



  

The SADP inset in fig-26a confirms that this representative CR transformed grain is indeed of a 

single variant of L10 ordered phase. As observed from the grain size data, these CR transformed 

grains are seen to increase in size during the softening stage. Grain growth twins are seen to 

emerge within these CR transformed grains and the number of grains that show such annealing 

twins is also seen to increase with increasing annealing time. Grain growth of CR transformed 

grains also appears to occur into the regions of the highly defected grains that have transformed 

by the conventional ordering process, as these highly defected regions are no longer seen to be 

present in the microstructure after a period of overaging.  

 
4.3.5 Discussion  
 
 
Microstructural evolution  

The microstructural evolution in the cold rolled to 97% thickness reduction samples during order 

annealing can be analyzed over three regimes.  

1. The microstructural evolution during the hardening stage of the magnetic age hardening curve.  

2. The microstructural state corresponding to the maximum in coercivity.  

3. The microstructural changes during the magnetic overaging, the softening stage. 

Regarding 1.  

During the hardening stage the microstructures consist of partially CR transformed regions and 

partially conventionally ordered regions (e.g. figure-20). It can be deduced from XRD 

investigations that the ordering process is not yet complete during the hardening stage. 

Moreover, the microstructure also reveals the presence of deformation content from the prior 

cold work in the conventionally ordering, non CR-transformed regions. Thus, under the 
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influence of both the driving forces (those for ordering and recrystallization) the combined 

reaction can continue to produce microstructural changes. 

The ordering transformation in this CR process is facilitated by heterogeneous nucleation of new 

grains of L10 phase at multiple locations in the microstructure. As observed previously for the 

single pass ECAP deformed samples, such nucleation events are favored at regions in the 

microstructure that can provide large amount of stored energy of cold work. Preferred locations 

for nucleation of new L10 phase grains are greatly increased in the 97% cold deformed samples 

(figure-17) as compared to the single pass ECAP deformed material. Thus, there would be an 

enhanced probability for ordering via heterogeneous nucleation and subsequent growth of single 

variant, monolithic, L10 grains in the microstructure for the 97% cold rolled material. This 

increased ability for transformation via the CR mode should be reflected in the microstructure in 

the form of an increased or majority fraction transforming via the CR mode. This hypothesis is 

indeed in agreement with the microstructural observations presented here. 

Regarding 2.  

XRD data showed that the ordering process is complete just about when the maximum in 

coercivity is attained. The microstructures in the completely ordered state are shown in figures – 

21a, 22a, 23a and consist of nearly essentially 100% fraction transformed via the CR mode, 

leading to approximately equiaxed single variant L10-phase grains. A typical grain size 

distribution for the condition when ordering is complete is shown in figure – 24a. The nature of 

this grain size distribution is characteristic of a microstructural change that involves the 

simultaneous heterogeneous nucleation of new grains of the L10 phase at multiple locations in 

the microstructure. Due to copious nucleation, at multiple number of sites the nucleated L10 

grains have relatively little chance to grow before they impinge as annealing progresses. This 
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argument can explain the relatively small (sub-micron) average grain sizes obtained in the 

fraction that has ordered via the CR mode. Thus, the microstructural observations and the grain 

size distribution data indicate that a heterogeneous nucleation process leading to essentially the 

entire microstructure transforming by the CR mode is responsible for the microstructural state 

achieved in the completely ordered state for the 97% cold deformed samples.  

The FCC  L10 ordering process in these intermetallics is a thermodynamic first order type 

phase transformation. A nucleation and growth model can be applied to this phase 

transformation. Due to interplay between the reducing driving force and an increasing mobility, 

with temperature approaching the equilibrium transition temperature (Tc), the ordering reaction 

exhibits typical "C-curve" kinetics. The ordering kinetics are also a function of the prior 

deformation state. Accelerated ordering kinetics in the presence of  

prior deformation have been reported previously [38,39]. A TTT curve for data from the 

literature [38] (for a prior deformation state of 90% cold deformation in wire drawing, an 

equivalent strain of εequi > 3) is shown in figure – 27. Superimposed on the literature based TTT 

curve are data points obtained from the experimental work conducted here.  
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TTT diagram for data from literature for iso thermal 
annealing after 90% deformation (in wire drawing) overlaid 
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Figure-27 Comparison of previously reported [Greenberg] work on ordering kinetics 
with the experimental data obtained in this study.  

The presence of prior strain of cold-deformation tends to alter the kinetics of the first order FCC 

 L10 ordering phase transformation. Increasing prior strain of cold-deformation tends to shift 

the nose of the TTT curve (that represents the fastest rate of transformation) to higher 

temperature and to shorter time. Using the experimental data points obtained here for a slightly 

smaller effective strain than that imparted during wire drawing in the previously reported work it 

may be concluded that the nose of C-curve would be found at a temperature between 773 K and 

883 K.  In comparison with the data from the literature, the fastest transformation rate appears to 

be shifted to a slightly lower temperature and to a longer annealing time. Thus, given the smaller 
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amount of stored strain energy in the case of the samples studied here, the data obtained in this 

experimental study is in good qualitative agreement with these previous studies [38,39].     

Following a particular isotherm in figure-27, e.g 773 K, the fastest kinetics of transformation can 

be observed for the condition with the higher strain of prior deformation (90% - wire drawn). 

These observations can be rationalized based on the kinetics of the process. The activation 

energy barrier for ordering transformation in the CR mode is reduced due to contributions from 

an additional driving force ∆Gd (equn-5). With increasing prior strain of deformation a smaller 

activation energy barrier for ordering transformation would be present, and therefore the kinetics 

of the process would be enhanced. The prior strain of deformation would also affect the ordering 

process in the conventional mode; however its influence on the conventional ordering mode does 

not appear to be strong.   

 The average grain size in the completely ordered state is larger for transformation at high 

temperature (493 nm at 600°C) than at intermediate temperature (407nm at 500°C) or low 

temperature (234nm at 400°C). The ordering transformation in the CR mode is a nucleation and 

growth process. At 600°C due to faster diffusion kinetics the growth process is dominant. Once 

nucleated the grains are able to grow at much faster rate, therefore leading to a larger average 

grain size in the completely ordered state. At a lower temperature of 400°C, the process is 

nucleation dominated. Due to slower diffusion kinetics the nucleated grains have a small chance 

to grow, thus leading to a smaller average grain size.      

An investigation of the microstructure using TEM reveals microstructural details not observed in 

SEM. Based on SEM analyses, at the completion of ordering process, it was deduced that the 

microstructure in entirety consisted of regions transformed via a CR mode.  However TEM 

studies showed that after annealing at 600ºC for three hours, there are certain regions in the 
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microstructure that have ordered and still have prior deformation content present (figure-24a, b). 

The presence of these apparently non CR transformed regions can be explained based on a 

kinetic argument. The dislocation density present in the microstructure is not uniform. The 

deformed microstructure consists of a dislocation substructure with cell walls (high dislocation 

density) and cell interiors (low dislocation density). In the cell interiors with lower dislocation 

density the kinetics for ordering by the conventional mode and by the CR mode may become 

comparable. Thus, in these regions the conventional ordering mode may prevail producing all 

three variants of the L10 phase. 

Regarding 3.  

Microstructural observations and grain size measurements have been performed in the overaged 

condition. In comparison with the maximum coercivity condition, for the overaged condition the 

peak in grain size distribution shifted towards larger grain sizes. Furthermore, the fraction of the 

population of grains in the larger size bins increased. Based on the grain size distribution data 

and microstructural observations it can be inferred that grain growth occurred during the 

microstructural evolution in the overaging part of the magnetic age hardening curve. The grain 

size distribution in the overaged state depicts a very long tail (figure-23b). Grain sizes as large as 

6 µm have been measured in these overaged conditions. Figure-24b also shows the presence of 

very small grains adjacent to these large grains. Such observations may indicate conditions 

suitable to promote abnormal grain growth in certain regions of the microstructure for the 

overaged condition. However, the data obtained here is not sufficient to warrant any general 

conclusions regarding distinction between normal or abnormal mode of grain growth.  

TEM observations (figure-26a, 26b) in the overaged condition reveal the absence of any 

deformation content from the prior cold working. Since the material is in the completely ordered 
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state at the start of the overaging process, the microstructural change does not involve a 

transformation and can be treated purely as an annealing phenomenon. During overaging, the 

moving grain boundaries are able to sweep the dislocation and other defect content from the 

grains that are consumed. Thus it can be concluded that the microstructure in the overaged state 

consists of equiaxed coarsened grains that contain certain density of annealing twins.  

Magnetic Property evolution –  

The maximum value of coercivity observed after CR processing (1389 Oe) represents an 

approximately five fold increase with respect to the values typically obtained for equiatomic 

FePd with the polytwinned microstructure (~250 Oe). Thus, CR processing is suitable to enhance 

hard magnetic properties in equiatomic FePd. 

 Magnetic age hardening behavior, consistent with previous observations [5,38,40,41] is 

observed here for samples that have been annealed after 97% thickness reduction by cold rolling. 

The evolution of coercivity, Hc, with annealing time for each of the isotherms shows three 

characteristic regions as depicted in figure 18:  

Region 1 - Increasing coercivity with increasing annealing time (Hardening stage); Region 2 - 

Attaining of the coercivity peak (Peak coercivity); Region 3 - Decreasing coercivity (magnetic 

overaging) for further increased annealing times (Softening stage).  

Moreover, figure-18 indicates that this characteristic ‘magnetic age hardening’ behavior is 

observed for all the various processing conditions explored here. However, some important 

differences pertain with respect to the different processing conditions. For instance, the rate of 

approach to the peak coercivity and the maximum value of coercivity obtained for a given 

amount of prior strain of deformation depend on the annealing temperature. Thus, by using 

various processing temperatures at a fixed amount of strain the temperature-time space of 
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processing parameters has been probed. For instance, for the cold rolled FePd the maximum in 

coercivity is observed the earliest (3hrs) at an annealing temperature of 600ºC, whereas nearly 7 

days are required to achieve a maximum in coercivity at 400°C.  The XRD studies for these CR 

processed samples after 97% cold deformation by rolling have confirmed the attainment of a 

fully ordered structure with the equilibrium LRO-parameter after annealing times corresponding 

to those required for achievement of a maximum in coercivity. Thus, the monotonic increase in 

the coercivity in all these CR processed samples during the hardening stage (Region 1) can be 

attributed to an increase in the volume fraction of ordered phase, which is reflected in the 

evolution of the long range order parameter (LRO). This is identical with the conclusions drawn 

from the studies of the ECAP-deformed samples (section 4.2.2). The rate of increase in the LRO 

is linked with the kinetics of the CR process of ordering and the evolution of microstructure as 

ordering progresses. The faster diffusion rates due to the high atomic mobility at 600ºC lead to a 

much more rapid attainment of a completely ordered state leading to a maximum in coercivity 

after 3 hours. The much slower diffusion rates and reduced atomic mobility at the lower 

annealing temperature of 400°C leads to maximum coercivity after 7 days (168 hours, almost 60 

times longer than at 600˚C) for the essentially completely CR transformed microstructure. 

The coercivity, Hc, describes the value of external magnetic field strength required to fully 

demagnetize (M=0) the sample after saturation (M= Mmax = Ms). The value of the coercive force, 

Hc, depends on phenomenon associated with the interactions of magnetic domain walls with 

microstructural entities, such as grain boundaries and other crystal defects. Thus, the maximum 

in coercivity obtained after annealing for a given εcw, depends upon the grain size, the 

distribution and nature of planar defects in the CR transformed fraction, as well as the 

microstructural morphology. The effects of microstructure on coercivity have been previously 
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studied [8,41,42,43] and two different principal coercivity enhancement mechanisms have been 

proposed. The first mechanism is based on the nucleation of a reversed magnetic domain during 

magnetization reversal. It is analogous to the ‘heterogeneous nucleation’ theory from phase 

transformation treatments and takes into account the relative ease with which the nucleation and 

growth of reversed domains can occur. The coercivity enhancement predicted by this nucleation 

type mechanism is inversely proportional to the grain size and can be expressed as follows [43] 

Hc = β (γ / Ms) (1/D)  --       (6) 

Here β is a geometrical factor related to the details of nucleus geometry of the reversed 

magnetization domain, γ is the magnetic domain wall energy (17 ergs/cm2), Ms is the saturation 

magnetization (1100 emu/cm3) and D is the grain diameter.  

Microstructural entities can also interact with moving domain boundaries and act as pinning 

centers or obstacles to these moving boundaries. A second coercivity mechanism based on a 

pinning effect associated with microstructural entities retarding moving magnetic domain 

boundaries has also been discussed previously [43,44]. The coercivity enhancement due to planar 

defects, such as grain boundaries, that have a width r0 much smaller than the magnetic domain 

wall width (δ) can be expressed by the pinning mechanism as –  

Hc = α (2K1/Ms)-NeffMs   --        (7) 

Here  

           α = (1/5.19) (п r0 / δ) [(A/A’) – (K/K’)]   --     (8) 

In the above equations 7 and 8, A’, K’ and A, K are constants describing the atomic exchange 

coupling and magnetocrystalline anisotropy of the obstacle and the matrix containing the 

magnetic domain wall. Neff is an effective demagnetizing factor. The factor α would also be a 

function of a statistical factor that accounts for the number of interactions that might occur 
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between a moving domain boundary and a pinning entity per unit of domain wall. An increased 

number of interactions would produce a larger value for α. 

Considering the effect of grain size on the value of the peak or maximum in coercivity obtained 

for the different isothermal annealing conditions after 97% cold deformation can based on 

equation-6 implies an inverse relation between coercivity and grain size. Thus, if a nucleation 

type coercivity mechanism is responsible for the peak coercivity observed here during annealing 

of the fully CR transformed cold rolled FePd the microstructure with the smallest grain size 

should exhibit the highest coercivity. Furthermore, for an increasing grain size in the essentially 

equiaxed microstructures of the fully ordered FePd a reduction in coercivity would be expected. 

These two correlations between grain size and coercivity are indeed observed here. Hence, it is 

tempting to conclude that the large coercivity observed in the CR transformed FePd originate via 

a nucleation type coercivity mechanism. However, it must also be noted that the increase in grain 

size during the overaging or softening stage occurs by grain growth and is facilitated by motion 

of mobile grain boundaries, presumably high-angle grain boundaries. The mobile grain 

boundaries sweep-out the defect content of the grains that are consumed (see previous section). 

Thus, grain growth naturally reduces the density of planar obstacles for magnetic domain wall 

motion, such as grain boundaries and APB's in the coarsening microstructure. Hence, the 

frequency of interactions between moving domain walls and pinning grain boundaries would 

decrease, lowering the contributions to coercivity from a pinning type mechanism too (equations 

7, 8). Conversely, a denser obstacle field is present in the smaller grain size microstructures and 

thus the statistical factor for interactions of the moving domain wall with obstacles would 

increase and according to equations 7, 8 the coercivity would increase. Therefore, contributions 

to coercivity enhancement from a pinning type mechanism would also be expected to increase 
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for microstructures with reduced grain size. The microstructural observations and coercivity 

measurements are in good qualitative agreement with these theoretical considerations. Maximum 

coercivity (1389 Oe) is indeed observed for a microstructure with the smallest average grain size 

(234nm) in the CR transformed ordered microstructure. Also the smallest enhancement (984 Oe) 

is observed for a condition (600ºC-3hours) that produces the largest average grain size (493 nm) 

for the essentially fully equiaxed microstructures. Intermediate peak coercivity enhancements are 

obtained for other processing conditions that produce intermediate average grain sizes in the 

morphologically equiaxed microstructures produced by the CR mode of the ordering 

transformation. 

As can be seen from the data in table-3 increasing the annealing time past the maximum in the 

magnetic age hardening curve leads to grain coarsening in the equiaxed microstructures. Based 

on the previously discussed nucleation and pinning models for coercivity enhancement, it can be 

expected that an increasing grain size should lower the magnetic coercivity. The experimental 

observations agree well with this prediction based on equation 7. In fact, figure-18 and table-3 

show a decreased coercivity for a microstructural state associated with a coarsening grain 

structure. 

The effect of microstructure on magnetic coercivity also becomes evident if the maximum in 

coercivity attained after single pass ECAP and annealing at 500ºC is compared with the 97% 

cold deformed and annealed at 500ºC condition. In the latter case, which represents a much 

larger amount of strain of cold work, the coercivity is almost twice as large as for the former.  A 

comparison of the microstructures (figure-13a and figure-22a) reveals the varying proportions 

(about 36% and >95%) of the microstructures that have CR transformed to equiaxed, nearly 

stress free, ordered L10 grains. A larger proportion of the microstructure in the single pass ECAP 
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sample has ordered via the conventional mode of nucleation and growth of coherent L10 phase 

precipitates. The smaller volume fraction of CR transformed grains in the ECAP sample can be 

expected to lead to a reduced pinning contribution from grain boundaries to the coercivity. The 

polytwinned morphology is virtually absent in the sample that has been CR transformed after 

97% cold deformation. Moreover, the average grain size in these latter samples is also of much 

smaller scale than the average grain size in the CR transformed fraction in the ECAP and 

annealed sample. These factors would therefore lead to an enhanced contribution from the 

nucleation and also from the pinning mechanisms to coercivity in the 97% cold deformed and 

annealed samples as compared to the single pass ECAP and annealed samples. 
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5.0 SUMMARY AND CONCLUSIONS 
 

 

The coercivity of the equiatomic FePd alloys depends upon their microstructure. Microstructural 

morphologies such as the polytwinned structure have a detrimental effect on the hard magnet 

properties of these alloys. A microstructural state comprising of equiaxed, monolithic, single 

variant L10 grains is found to be conducive to the enhancement of coercivity.  In this study 

thermomechanical processing strategies involving a combined reaction of recrystallization and 

FCC  L10 phase transformation have been employed to alter the microstructural state of the 

equiatomic FePd alloy. Both the scale and the morphology of the microstructures have been 

altered using the combined reaction processing routes. The microstructure and coercivity 

evolution is found to depend on the processing parameters, namely the prior strain of 

deformation, the annealing temperature and the time of annealing. Hence, a matrix of these 

parameters has been explored in attempts to optimize the microstructure and to obtain enhanced 

coercivitiy. Two techniques have been employed to impart different amounts of strain of 

deformation. A low strain of deformation (εcw = 0.6) has been imparted via equal channel angular 

pressing (ECAP). The effect of other parameters (temperature and time) on the evolution of 

microstructure and coercivity in these samples has been studied. In contrast a higher, prior strain 

of deformation (εcw = 3.0) has been imparted using cold rolling to 97% reduction in thickness. 

The effect of temperature and time on microstructure and coercivity evolution in these samples 
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has also been studied. A comparison between the results obtained after these different processing 

conditions has yielded the following main conclusions: 

1. The highest coercivity (1389 Oe) is obtained for the microstructure that has the smallest 

average grain size in the completely ordered state (234nm) and approximately 95% 

fraction of the microstructure consisting of equiaxed, monolithic L10 phase grains. This 

microstructural state is obtained in the 97% cold rolled state after 7 days of order 

annealing at 400°C. 

2. The rate of the ordering transformation is enhanced in the presence of stored strain 

energy from prior deformation. The samples that exhibit a higher amount of stored strain 

energy from prior cold deformation show larger enhancement in the ordering kinetics.  

3. The mode of the ordering transformation depends on the prior strain of deformation. A 

higher amount of prior strain of deformation increasingly favors a combined reaction 

(CR) mode of ordering over the conventional mode of ordering. 

4. The microstructural evolution is a function of the mode of transformation. A higher prior 

strain of deformation (about 3.0 for 97% cold rolling) leads to nearly 100% fraction 

transformation via the CR mode, with average grain sizes in the transformed fraction 

ranging from 234 nm to 493 nm. The lower prior strain of deformation (about 0.6 for one 

pass ECAP) allows for the CR mode and conventional mode to simultaneously achieve 

the ordering transformation. A smaller fraction of the microstructure in the completely 

ordered state (e.g. 36% after 12 hours at 500ºC) consists of the equiaxed, monolithic 

grains of L10 phase formed via the CR mode. Hence, for some critical amount of stored 

strain energy from prior cold deformation, which is larger than that accomplished by 

imparting an equivalent strain of about 0.6 at room temperature, the kinetics of the 
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combined reaction mode of ordering are sufficiently rapid to transform the entire sample 

volume. 

5. Grain coarsening is observed in the microstructures during overaging. The grain size 

distributions hint at the presence of an abnormal mode of grain growth occurring in some 

of these coarsening microstructure. 

6. The peak in the magnetic age hardening curve is achieved when the ordering 

transformation is complete.  

7. Qualitatively it has been established that the value of the coercivity obtained at the peak 

in the magnetic age hardening curve is a function of the fraction transformed via the CR 

mode and grain size in the CR transformed fraction. 

8. The grain growth process can be qualitatively linked to the decrease in coercivity during 

the overaging part of the magnetic age hardening curve. 
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6.0 RECOMMENDATIONS FOR FUTURE WORK  
 
 
 
 
1. Increased Prior Strain of Deformation - In this experimental work it has been established that 

the CR mode of ordering transformation can become dominant with an increased prior strain of 

deformation. Moreover it has also been established that the ordering transformation in the CR 

mode occurs via heterogeneous nucleation of single variant L10 phase grains. This heterogeneous 

nucleation process is favored at sites in the microstructure with large deformation content. It has 

also been qualitatively established that the relatively small grain size in the CR transformed 

fraction is responsible for the enhanced coercivity in these microstructure. Thus by increasing the 

amount of prior strain of deformation to even larger values than those used in this study (εcw > 

3.0), nucleation could be made favorable at an increased number of sites in the microstructure. 

The ordering transformation could be made nucleation dominated. Thus order annealing 

treatments of these severely plastically deformed samples could lead to microstructures that have 

average grain sizes in the truly nanoscale regime and would be expected to exhibit enhanced 

coercivities.  

2. Quantitative Coercivity Mechanism Analysis - A qualitative relation between the average 

grain size and the coercivity has been established in this study. A rigorous quantitative coercivity 

mechanism analysis would require the measurement of such additional parameters such as the 

average density of various defects such as APBs, annealing twins etc. in the microstructure, the 

orientations of different grains in the microstructure. Moreover better understandings of the 
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interactions of various microstructural entities with moving domain walls would also have to be 

developed for the Fe-Pd system. 
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