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INVESTIGATION OF THE MECHANISM AND THERAPEUTIC POTENTIAL OF A 

TRANSCRIPTION FACTOR DECOY TARGETING SIGNAL TRANSDUCER AND 

ACTIVATOR OF TRANSCRIPTION-3 (STAT3) FOR SQUAMOUS CELL 

CARCINOMA OF THE HEAD AND NECK (SCCHN) 

 

Squamous cell carcinoma of the head and neck (SCCHN) is the 5th most common cancer 

worldwide. Signal transducer and activator of transcription 3 (STAT3) is overexpressed in 

SCCHN and associated with decreased survival.  A transcription factor decoy was designed to 

bind to the DNA binding domain of STAT3, abrogating expression of downstream target genes. 

The antitumor mechanisms of transcription factor decoys, including the STAT3 decoy, are 

incompletely understood.  STAT3 forms heterodimers with STAT1 suggesting that the STAT3 

decoy may interact with STAT1. We determined that the STAT1 pathway was functional in 

SCCHN cell lines. The STAT3 decoy inhibited STAT1-mediated expression of the target gene, 

IRF-1. Stimulation of the STAT1 pathway with IFN-γ did not mitigate STAT3 decoy-mediated 

growth inhibition. STAT3 decoy-mediated inhibition of STAT1 signaling did not abrogate its 

antitumor effects in vitro. Studies using STAT3 knockout cells indicated that STAT3 is 

necessary for decoy-mediated growth inhibition. The STAT3 decoy was then studied in 

combination with an EGFR inhibitor and/or a Bcl-XL inhibitor as a therapeutic strategy for 

SCCHN.  Targeting this pathway at several levels—the upstream receptor (EGFR), the 

intracellular transcription factor (STAT3), and the downstream target gene (Bcl-XL)—has not 

been previously investigated. Combined targeting of EGFR and STAT3 using erlotinib and the 

STAT3 decoy enhanced growth inhibition of SCCHN cells in vitro. The STAT3 decoy in 

combination with gossypol, a Bcl-XL inhibitor, resulted in enhanced growth inhibition. The triple 
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combination of all 3 agents enhanced growth inhibition in vitro.  These results indicate that 

targeting the EGFR-STAT3-Bcl-XL pathway at three distinct levels may be a promising 

treatment strategy for SCCHN. 
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1.0  INTRODUCTION 

1.1 GENERAL INTRODUCTION 

1.1.1 Squamous cell carcinoma of the head and neck 

Squamous cell carcinoma of the head and neck (SCCHN) is an epithelial malignancy 

affecting the mucosa of the upper aerodigestive tract, including the larynx, oral cavity and 

pharynx.  Alcohol consumption and tobacco use are the most important risk factors for 

development of SCCHN, with 85% of cases linked to tobacco use [1].  Head and neck cancer is 

the 5th most common malignancy worldwide.  Approximately 40,000 Americans will be 

diagnosed this year and 13,000 will die from their disease.  Current treatments, including 

surgery, chemotherapy and radiation are effective in only half of all cases, and the survival rate 

has not significantly improved in the past forty years, providing rationale for the development of 

novel treatment strategies for SCCHN.   

1.2 STAT3 

New therapies for the treatment of SCCHN are being designed that target proteins 

involved in signal transduction pathways that have been shown to be associated with SCCHN 
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tumorigenesis, such as the Signal Transducers and Activators of Transcription (STATs).  There 

are seven members of the STAT family (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, 

and STAT6) which play different roles in normal cellular processes such as differentiation, 

proliferation, apoptosis, and angiogenesis [2].  Aberrant activation of STAT proteins leads to 

transformation at the molecular level [3, 4].  In particular, STAT3 plays an important role in cell 

cycle and apoptosis, contributing to transformation in a variety of malignancies through 

overexpression of target genes.   

1.2.1 STAT3 protein structure  

The STAT protein family has a specific structure consisting of several highly conserved 

domains (Figure 1).  The N-terminal oligomerization domain is critical for stabilizing STAT 

dimers bound to DNA. The DNA binding domain directly interacts with DNA, ensuring binding 

specificity to promoter regions [5, 6].  A helical coil region is located between the 

oligomerization and DNA binding domains and is involved in forming transcriptional 

complexes.  The dimerization domain contains an SH2 domain that is required for STATs to be 

recruited to the phosphorylated receptors and for the subsequent formation of dimers [7].  A 

critical tyrosine residue, Tyr 705, is also found in this region of the STAT3 protein, and its 

phosphorylation is necessary for activation [4].  The carboxy-terminal transactivation domain is 

involved in the formation of transcriptional complexes and contains a conserved serine residue 

whose phosphorylation contributes to maximal transcriptional activity [8].  Splice variants 

lacking this serine residue function as dominant-negative proteins, blocking the function of the 

protein [9].  Constitutively phosphorylated serine has been observed in human tumors, including 

leukemias and lymphomas, indicating that it may play a role in oncogenesis [3].  Studies have 
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shown that blocking serine kinase signaling pathways to inhibit STAT3 serine phosphorylation 

resulted in decreased STAT3 signaling and inhibition of Src-mediated transformation [9].  In 

addition to tyrosine phosphorylation, serine phosphorylation of STAT3 also plays a role in 

malignant transformation. 

 

Figure 1.  STAT3 protein structure. 

STAT proteins consist of four conserved regions: an N-terminal oligomerization domain, a DNA binding 

domain, a dimerization domain containing an SH2 domain and a tyrosine residue critical for activation, 

and a C-terminal transactivation domain containing a serine residue that contributes to maximal activation 

of the STAT protein. 

 

1.2.2 STAT3 pathways and cellular functions 

The STAT protein family was initially discovered through studies of IFN receptor 

signaling [10].  Deletion of STAT3 results in embryonic lethality [11] and studies have shown 

that it is activated in response to cytokines, growth factors, and other stimuli, indicating that 

STAT3 participates in a wide variety of cellular processes [10].  STATs are activated by 
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phosphorylation of tyrosine residues by receptor tyrosine kinases such as Epidermal Growth 

Factor Receptor (EGFR) [12-14], cytokine receptors such as IL-6/gp130 [15], or non-receptor 

tyrosine kinases such as Src [16] (Figure 2).   

 

Figure 2.  STAT3 signaling pathway. 

Activated growth factor receptors, cytokine receptors or non-receptor tyrosine kinases phosphorylate 

STAT3 at tyrosine 705 located in the dimerization domain of the STAT3 monomer.  Phosphorylated 

STAT3 monomers then dimerize and are translocated into the nucleus where they bind to specific 

response elements in the promoter region of target genes such as Bcl-XL, Cyclin D1, VEGF, MMP-2 and 

MMP-9. 

 

Active STATs form homodimers, heterodimers, or multi-protein complexes which translocate 

into the nucleus where they bind to DNA response elements such as the serum inducible element 
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of the human c-fos gene [17] and transcribe target genes in order to regulate a variety of cellular 

processes including growth, survival, and differentiation.  Studies have identified many STAT3 

target genes which are involved in cell cycle regulation (Cyclin D1, Cyclin D3, c-Myc, p21waf1, 

p27), inhibition of apoptosis (Survivin, Mcl-1, and Bcl-XL), angiogenesis (VEGF), migration and 

invasion (MMP-2 and MMP-9) [18].  The list of STAT3 target genes continues to expand and 

increase in complexity due to the considerable overlap between STAT3, STAT1, and STAT5 

target genes. 

1.2.3 STAT3 as an oncogene 

Many studies have provided striking evidence that STAT3 is an oncogene.  Initial studies 

suggested that STAT3 activation plays a part in Src-mediated oncogenesis [16, 19].  

Subsequently, a constitutively active form of STAT3 (STAT3C) was found to transform 

fibroblasts in culture that were then able to form tumors in mice—providing genetic evidence 

that STAT3 plays a part in oncogenesis [20].   

To date, no STAT3 mutations have been attributed to constitutive STAT3 activation in 

either human tumors or cancer cell lines, and it is generally thought that upstream activators 

(EGFR, Src, or gp130/IL-6R) or negative regulators (SOCS-3, GRIM-19, protein inhibitor of 

STAT3 (PIAS3)) are mediating constitutively activated STAT3 in cancer [18].  For example, it is 

generally accepted that IL-6 drives STAT3 activation in multiple myeloma through the 

gp130/IL-6R [21] and some studies have provided evidence for hypermethylation of the SOCS-1 

and SOCS3 genes in various tumor types [22, 23].  Constitutive STAT3 activation has been 

found in many cancers including multiple myeloma, leukemia, lymphoma, prostate, breast, 

pancreas, lung, ovary, and head and neck.  These studies have shown that inhibition of STAT3 
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function results in decreased proliferation and increased apoptosis, suggesting that STAT3 

contributes to cancer development and progression [2, 3, 24].  The biological significance of 

increased STAT3 activation in cancer is supported by the correlation of STAT3 over-expression 

with poor clinical prognosis and decreased survival as well as resistance to chemotherapy [3, 21, 

25-27]. 

1.2.4  STAT3 in disease 

STAT3 has been implicated in a variety of blood malignancies and solid tumors, 

including but not limited to myeloma, lymphoma, astrocytoma, pancreatic cancer, prostate and 

breast cancer [28, 29].  One of the first reports providing evidence for STAT3 activation in 

cancer cell growth was in multiple myeloma [21].  A high incidence of STAT3 activation was 

found in human multiple myeloma cells (elevated DNA binding was observed in all 24 patients), 

and when IL-6 receptor signaling was inhibited, STAT3 transcription of Bcl-XL was significantly 

decreased, inducing apoptosis. 

Anaplastic large cell lymphomas (ALCLs), a morphologically and immunophenotypically 

distinct type of non-Hodgkin lymphoma is caused by chromosomal translocations resulting in the 

nucleophosmin (NPM) gene being fused with the anaplastic lymphoma kinase (ALK) gene 

(NPM-ALK) [30].  Studies have shown that human ALCLs have high levels of phospho-STAT3 

and that mice engineered to express NPM-ALK express constitutively active STAT3 [31, 32].   

STAT3 is frequently activated in astrocytomas, the most common type of primary central 

nervous system tumors, in which STAT3 induces cell proliferation and inhibits apoptosis [33].  

While STAT3 activation is necessary for astrocyte differentiation, the role of STAT3 signaling in 

differentiated astrocytes is unclear.  Elevated STAT3 activity in astrocytomas has been reported 
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[34, 35], and STAT3 knockdown via STAT3 siRNA reduced the expression of target genes such 

as survivin and Bcl-XL, as well as increased apoptosis in human astrocytoma cell lines but not in 

primary astrocytes [33].   

STAT3 overexpression has been found in both human pancreatic cancer tissues and cell 

lines [36-38].  Aberrant STAT3 activation in pancreatic cancer has been postulated to be caused 

by Src and EGFR signaling, and overexpression of both Src and EGFR has been documented in 

this disease.  STAT3 has been implicated in the malignant transformation of human pancreatic 

cancer through promotion of cellular proliferation.  In addition, cells expressing STAT3 

dominant-negative mutants are unable to grow in in vitro and in vivo models of pancreatic 

carcinoma.  In particular, STAT3 mediated overexpression of VEGF was shown to regulate 

growth, angiogenesis and metastasis of pancreatic cancer in vitro and in vivo, again suggesting 

STAT3 is a therapeutic target for pancreatic cancer [38]. 

A role for STAT3 in both prostate and breast cancers has also been documented.  Studies 

have shown that aberrant STAT3 activation is due to IL-6 signaling and plays a role in 

tumorigenesis of prostate cells [39].  In addition, prostate cancer cells expressing constitutively-

activated STAT3 were sensitive to STAT3 inhibition, resulting in increased apoptosis [40, 41].  

An early experiment identified increased DNA binding of STAT3 in nuclear extracts from 

human breast cancer tissue [42].  Constitutive activation of STAT3 was detected in a panel of 

human breast cancer cell lines (five of nine investigated) but not in normal breast epithelial cells, 

and experiments with an EGFR inhibitor led to the conclusion that STAT3 activation is not 

necessarily dependent on EGFR activity in human breast carcinoma [43]. 
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1.2.5 STAT3 in SCCHN 

The role of STAT3 has been well characterized in SCCHN.  Early studies focusing on 

STAT3 found it was required for EGFR-mediated cell proliferation in SCCHN cell lines where 

SCCHN cells expressing a dominant-negative mutation did not proliferate and STAT3 antisense 

oligonucleotides significantly inhibited growth in vitro [26].  Further experiments found that 

STAT3 activation was EGFR-independent in SCCHN in vitro [44].  A similar investigation was 

performed using an in vivo SCCHN xenograft model and results indicated that STAT3 antisense 

oligonucleotides inhibited expression of activated STAT3 and induced apoptosis [45].  

Constitutive STAT3 activation was also discovered in SCCHN tumors from patients where a 

10.6 fold increase was observed in SCCHN tumors compared to normal mucosa from non-cancer 

patients [45] and a recent study from Shah et al., found that STAT3 was activated in oral 

squamous cell carcinoma and may be a risk factor for poor prognosis [46].  These studies give 

further evidence supporting the hypothesis that STAT3 plays a part in SCCHN and is a potential 

therapeutic target.   

1.3 STAT3 AS A THERAPEUTIC TARGET IN CANCER 

Chemotherapeutic agents designed to inhibit tumor growth through induction of 

apoptosis are frequently rendered ineffective by tumor cells which exhibit aberrant proliferation 

and resistance to pro-apoptotic stimuli.  Therefore, the identification of novel therapeutic targets 

to kill chemoradiation-resistant tumor cells is essential.  Given that STAT3 target genes are 

involved in cell cycle progression and inhibition of apoptosis, STAT3 has emerged as a 
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therapeutic target and many strategies to inhibit STAT3 have been investigated in preclinical 

models.  STAT3 targeting strategies include inhibition of upstream signaling molecules, 

inhibition of mRNA translation, and blocking the SH2 domain or the DNA binding domain of 

STAT3 (Table 1).  To date, no STAT3 inhibitor has been tested in patients with cancer. 

 

Table 1.  Strategies to inhibit STAT3. 

STAT3 inhibition strategies have focused on inhibiting mRNA translation, blocking the STAT3 SH2 

domain, or blocking the STAT3 DNA binding domain using the inhibitors listed below. 

Strategy Inhibitor References 

Inhibition of mRNA translation Antisense ODN 

siRNA 

[30, 45] 

[32, 47-49] 

Blocking the SH2 domain Peptide aptamer 

Phosphotyrosyl peptidomimetic 

G-quartet ODN 

[50] 

[51] 

[52] 

Blocking the DNA binding domain Peptide aptamer 

Transcription factor decoy 

[50] 

[53-56] 

 

1.3.1 Inhibiting STAT3 mRNA translation using antisense or siRNA 

One approach to inhibiting STAT3 is the use of antisense oligonucleotides (ODNs).  The 

mechanism by which antisense ODNs elicit mRNA inactivation is well characterized.  The single 

stranded oligonucleotides complementing the sequence of the mRNA target enter the cell and 
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bind to mRNA, disrupting mRNA transport, splicing, or translation by steric hindrance [57].  In 

addition, RNase H, a ubiquitously expressed endonuclease is activated by antisense ODNs, 

resulting in the cleavage of the mRNA, although the exact mechanism of recruitment is 

incompletely understood.  Advances in the efficacy of antisense ODNs have been the result of 

chemical modifications to the antisense backbone to increase its half-life in the cell by making it 

more resistant to degradation by nucleases. 

  A STAT3 antisense gene therapy approach using a modified U6 expression plasmid was 

applied to an in vivo model of SCCHN [45].  This study concluded that liposome-mediated 

antisense gene therapy blocked STAT3 activation, resulting in increased apoptosis but no 

inhibition of tumor growth was observed.  Chiarle et al., administered a STAT3 antisense 

oligonucleotide in preclinical models of NPM-ALK lymphoma and observed decreased cell 

proliferation, increased cleaved PARP, and induction of apoptosis in vitro, as well as 

significantly decreased tumor growth, prolonged survival, and tumor regression in vivo [30].  

STAT3 antisense oligonucleotides were studied in in vivo models of SCCHN and found to block 

STAT3 activation and induce apoptosis through downmodulation of STAT3 target gene 

expression as well [45].  

RNA interference (RNAi) has been investigated as a therapeutic approach for 

pathogenesis and is considered to be a more potent inhibitor of mRNA than antisense [57].  Short 

interfering RNA (siRNA) consists of two strands of nucleotides 19-23 oligomers in length.  The 

siRNA recruits and activates the RNA-silencing complex (RISC) which is a multimeric nuclease 

that degrades the target mRNA, reducing both RNA and protein expression of a particular gene.  

siRNA has been investigated extensively in preclinical models, and several studies have 

chronicled the use of STAT3 siRNA in several types of cancer. 
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STAT3 RNAi was found to significantly reduce STAT3 protein levels (75-95%) in both 

normal human astrocytes as well as astrocytoma cell lines 48-72 hrs after transfection [33].  

Downmodulation of STAT3 using this approach induced morphological changes and 

significantly decreased cell viability of several astrocytoma cell lines.  Transfection with STAT3 

siRNA also induced apoptosis as shown by Hoechst 33258 staining, caspase 3 cleavage, and 

annexin V staining.  In addition, knockdown of STAT3 also down-regulated two antiapoptotic 

genes: survivin and Bcl-XL.  However, these effects were not consistent throughout the panel of 

astrocytoma cell lines used—some cell lines were less sensitive to STAT3 knockdown, 

suggesting that astrocytomas are not uniformly dependent on STAT3. 

Recently, short hairpin RNAs transcribed from an RNA polymerase III-based vector 

under control of the U6 promoter targeting STAT3 were investigated as an antitumor therapy in 

prostate tumor xenografts in a mouse model [48].  In vitro experiments showed downmodulation 

of STAT3 and phospho-STAT3 levels as well as downmodulation of STAT3 target gene 

expression (Bcl-2, cyclin D1, and c-Myc).  When prostate cancer cell xenografts were injected 

with STAT3 siRNA, tumor volume was significantly decreased, and both apoptosis and cell 

cycle arrest were induced.   

A similar DNA-vector-based RNAi approach targeting STAT3 was used in both in vitro 

and in vivo models of laryngeal tumors using the Hep2 human laryngeal tumor cell line [48, 49].   

These studies found that STAT3 siRNA suppressed growth, and induced apoptosis through 

downmodulation of STAT3 as well as its downstream target genes Bcl-2, Cyclin D1, and 

survivin, further confirming previously published reports that suggest STAT3 is a rational target 

for STAT3 overexpressing cancer cells. 
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1.3.2 Blocking the SH2 domain to prevent STAT3 activity 

Using a yeast two-hybrid selection system, a high complexity peptide aptamer library 

was used to isolate a short peptide, or peptide aptamer, designed to specifically interact with the 

SH2 domain of STAT3 [50].  STAT3 SH2 domain-binding peptide aptamers were isolated and 

experiments demonstrated that they bound to STAT3 in vitro in NIH3T3 fibroblasts stably 

transfected with the EGFR gene in order to induce activated STAT3 that could serve as a target 

for the STAT3 peptide aptamer (Herc cells).  Further analysis of their function showed that 

STAT3-dependent transcription was reduced in a peptide aptamer-dose dependent manner, 

STAT3 DNA binding was reduced, and STAT3 signaling was downmodulated, specifically 

through a reduction in STAT3 tyrosine phosphorylation which prevents STAT3 activation.  

Nonetheless, the peptide aptamers showed no antitumor activity in either murine melanoma or 

human myeloma cell lines, indicating that these particular peptide aptamers targeting the SH2 

domain of STAT3 are not effective in STAT3 overexpressing tumor cells.   

Peptidomimetics are small molecules that target specific functional domains of a protein 

to block its activation.  A phosphotyrosyl peptide was designed to inhibit STAT3 by binding to a 

tyrosine residue in the SH2 domain that is critical for STAT3 dimerization and DNA binding 

[51].  When the peptide was combined with nuclear extracts containing STAT3, DNA binding 

was decreased in a dose-dependent manner, and STAT3 dimerization was abrogated.  In 

addition, the phosphotyrosyl peptide decreased transcription of a STAT3-dependent luciferase 

reporter gene and blocked v-Src-mediated transformation of fibroblasts.  These results 

demonstrated that a peptidomimetic targeting the SH2 domain of STAT3 could block STAT3 

activation and suppress signaling, but issues such as delivery of the peptide across the cell 

membrane and stability of the peptide in vivo still remain concerns. 
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G-quartet oligodeoxynucleotides (ODNs) have also been used to target STAT3 in human 

cancer.  G-rich ODNs can form intra- and inter-molecular structures consisting of four strands of 

DNA, or G-quartets.  G-quartets bind to DNA-binding sites, inhibiting the ability of transcription 

factors such as STAT3 to bind to promoter regions of target genes.  A G-quartet was designed 

that inhibited IL-6-mediated activation of STAT3 and STAT3-mediated expression of Bcl-XL 

and Mcl-1 in a human hepatocarcinoma cell line (HepG2) [52].  The G-quartet not only 

decreased the DNA binding affinity of STAT3, but also STAT1, probably due to the close 

sequence homology of the two proteins. 

1.3.3 Blocking the STAT3 DNA binding domain to prevent target gene expression 

A second peptide aptamer was designed to specifically interact with the DNA binding 

domain of STAT3 [50].  First, the ability of this 20-amino acid peptide aptamer to interfere with 

STAT3 function was investigated and the aptamer inhibited DNA binding and transactivation 

activity of STAT3 in Herc cells.  There was no effect on STAT3 phosphorylation.  The STAT3 

peptide aptamer was next analyzed in human myeloma U266 cells and murine melanoma B16 

cells, which both express constitutively active STAT3.  After treatment, both cell lines showed a 

dose-dependent increase in growth inhibition using cell viability assays and increased apoptosis 

by both TUNEL staining and Western blot analysis of PARP, cleaved caspase 3, and Bcl-XL. 

Another way to target the STAT3 DNA binding domain is to design short double or 

single-stranded oligonucleotides referred to as transcription factor decoys.  STAT3 has been 

successfully inhibited using a double-stranded STAT3 transcription factor decoy in vitro and in 

vivo in preclinical models of SCCHN, skin cancer, and psoriasis and will be discussed in more 

detail below [53-56].  These studies provide proof-of-principle for a transcription factor decoy 
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approach to inhibit STAT3 by blocking the DNA binding domain of STAT3, inhibiting target 

gene expression. 

1.4 THE STAT3 TRANSCRIPTION FACTOR DECOY 

1.4.1 Transcription factor decoys 

Transcription factor decoys are double- or single-stranded deoxyoligonucleotides 15-20 

base pairs long designed to mimic the promoter region of a target gene recognized by a specific 

transcription factor.  Theoretically, the transcription factor decoy binds to the DNA binding 

domain of the transcription factor, physically preventing it from binding to the DNA and 

transcribing its target gene.  This approach is particularly attractive because as therapeutic 

targets, the transcription factors are easily identified, the synthesis of the decoy is 

straightforward, and knowing the exact molecular structure of the transcription factor is 

unnecessary.   

Decoys have been designed and tested against a variety of transcription factors in 

preclinical models of disease (Table 2).  An E2F decoy is the first transcription factor decoy to 

reach clinical trials.  The E2F decoy (edifoligide) was extensively studied for its ability to inhibit 

smooth muscle cell proliferation in preclinical models of vein graft disease [58].  Yet, results of 

recent phase II and III clinical trials found that ex vivo E2F decoy treatment of lower extremity 

vein grafts did not significantly decrease the rate of vein graft failure in patients [59].   

NF-κB is a well characterized transcription factor that regulates genes involved in 

inflammation and cell adhesion, and inhibits apoptosis.  Several NF-κB transcription factor 
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decoys have been developed and studied in a wide variety of malignancies including gastric 

cancer, glioblastoma, prostate cancer, leukemia, and osteosarcoma [60-64].  Uetseka et al., 

demonstrated an NF-κB decoy could sensitize a chemoresistant stomach cancer cell line to 5-

fluorouracil [64].  Another study found that a transcription factor decoy targeting NF-κB 

inhibited cachexia, a common complication of cancer characterized by anorexia, anemia, 

decreased body weight and progressive tissue wasting, in a mouse model of colon 

adenocarcinoma [65].  NF-κB decoys inhibited cell growth in a model of glioblastoma [60], and 

enhanced induction of apoptosis in models of prostate cancer and leukemia [62, 63].  Studies of 

the preclinical efficacy of NF-κB decoys have been performed in other inflammatory diseases, 

including arthritis, asthma, and eczema [66, 67].  Furthermore, clinical trials of NF-κB decoys 

are currently underway to investigate their clinical efficacy as a topical treatment for atopic 

dermatitis (Phase I/II) [68].  

Sp1 has been inhibited by transcription factor decoys in preclinical models of disease as 

well.  Sp1 regulates the expression of genes involved growth, apoptosis, angiogenesis, and 

tumorigenesis.  An Sp1 transcription factor decoy suppressed proliferation and target gene 

expression in an in vitro model for diabetes [69].  Also, breast cancer cell migration was 

prevented by downmodulation of urokinase receptor expression by a Sp1 transcription factor 

decoy [70, 71].  When lung adenocarcinoma or glioblastoma multiforme cell lines were treated 

with an Sp1 decoy, VEGF was downmodulated and cell proliferation was inhibited [72].  In 

addition, an in vivo experiment further illustrated the therapeutic value of an Sp1 decoy when 

melanoma tumor growth was inhibited and VEGF and TNF-α protein expression was decreased 

in mice [73]. 
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Table 2.  Transcription factor decoys under investigation. 

Transcription factor decoys are listed with the therapeutic application and references. 

Transcription Factor Target Therapeutic Application References 

β-catenin Colon cancer [74] 

E2F1 Prevention of vein graft failure [58, 59] 

NF-κB Arthritis 

Asthma 

Cancer:  

    Colon cancer      

    Gastric cancer 

    Glioblastoma 

    Prostate cancer 

    Leukemia 

    Osteosarcoma 

Eczema 

Ischemia 

Osteoporosis 

[66] 

[67] 

[60-64] 

 

 

 

 

 

[75] 

[76] 

[77] 

[77] 

Sp1 Cancer: 

    Breast cancer 

    Glioblastoma multiforme 

    Lung cancer 

    Melanoma 

Diabetes 

[70, 71, 73] 

 

 

 

 

[69] 

STAT1 Arthritis [78] 

STAT6 Allergic reactions 

Acute dermatitis 

[79-81] 

[82] 

STAT3 Prostate cancer 

SCCHN 

Skin cancer 

Psoriasis 

[40] 

[53, 54] 

[56] 

[55] 

NF-κB, E2F, and STAT3 Breast cancer 

Lung cancer 

[83] 
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Finally, a single decoy containing binding sites for three transcription factors that are up-

regulated in cancer and known to form multiprotein transcription factor complexes with each 

other—NF-κB, E2F, and STAT3—has been developed [83].  Antitumor efficacy of the decoy 

was investigated in in vitro and in vivo models of breast cancer and lung cancer and found to 

significantly decrease tumor cell growth and target gene expression.  This study demonstrated 

the ability to design more complex decoys targeting multiple transcription factor decoys. 

1.4.2 STAT3 decoy design 

The double stranded STAT3 decoy ODN developed by our laboratory is based on the 

Serum Inducible Element (SIE) of the human c-fos promoter with a high affinity modification 

(Figure 3) [53].  The 18-base pair decoy was designed to bind to the STAT3 DNA binding 

domain, abrogating its ability to bind to DNA response elements and induce transcription of 

target genes, eliciting antitumor effects through the down-regulation of STAT3 target genes.  

One of the limiting factors in using oligonucleotides is the rapid degradation of unmodified 

ODNs in serum and cells, so modifications that increase resistance to nucleases have been 

developed.  One of the most common modifications is phosphorothioated bases, the replacement 

of a non-bridging oxygen with sulfur in phosphate linkages [84].  The internucleoside linkages 

between the first and last three base pairs of the STAT3 decoy and mutant control decoy are 

phosphorothioated to prevent degradation in serum and in cells.  Studies have shown that this 

type of modification also increases cellular uptake and sequence-specific duplexes are more aptly 

formed.  The entire sequence is not modified because studies have suggested that although fully 
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phosphorothioated ODNs have increased cellular retention, they also result in increased 

nonspecific binding compared to partially or unmodified ODNs [84].   

 

 

Figure 3.  STAT3 decoy and mutant control decoy sequence. 

The STAT3 decoy consists of an 18 nucleotide portion of the SIE promoter region of the human c-fos 

gene.  The first and last three bases at both the 5’ and 3’ ends have been chemically modified with a 

phosphorothioate modification (underlined bases) to increase resistance to degradation by nucleases.  A 

mutant control decoy differing by a single base pair mutation (in red) has no binding affinity for STAT3 

and serves a negative control for all experiments. 

The mutant control decoy differs from the mutant control decoy by a single base pair 

mutation (Figure 3).  The mutant control decoy has previously demonstrated no DNA binding 

activity to STAT3 and does not inhibit STAT3 binding activity in EMSAs after SCCHN cells are 

treated [53].  In cell proliferation experiments, the mutant control decoy does not significantly 

decrease cell proliferation compared to an untreated control.  Also, STAT3 target gene 

expression is not decreased by the mutant control decoy either.  Therefore, the mutant control 

decoy serves as a control for all STAT3 decoy experiments. 
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1.4.3 STAT3 decoy in preclinical models 

The STAT3 transcription factor decoy is designed to mimic the consensus sequence 

recognized by STAT3.  The decoy binds to STAT3, inhibiting its potential to bind to DNA and 

transcribe target genes.  Our lab previously demonstrated that the STAT3 decoy inhibited target 

gene expression, induced apoptosis, and decreased proliferation of a SCCHN cell line in vitro 

[53].  Experiments with normal oral keratinocytes showed that the STAT3 decoy was taken up in 

normal cells, although proliferation was not decreased.  Furthermore, the STAT3 decoy 

significantly inhibited the growth of SCCHN xenografts in nude mice compared to the mutant 

control decoy [54].  In addition, when combined with cisplatin, the STAT3 decoy inhibited cell 

proliferation, increased apoptosis, and decreased expression of Bcl-XL and Cyclin D1 both in 

vitro and in vivo, demonstrating improved therapeutic efficacy of combining the STAT3 decoy 

with an established treatment modality for SCCHN [54].   

Also, the STAT3 decoy inhibited the growth of initiated keratinocytes expressing the 

constitutively active Ha-Ras gene in cell lines and mice, and inhibited the growth of skin tumors 

after direct injection [56].  STAT3 activation is necessary in keratinocytes for skin to heal after 

injury, and some reports have provided evidence for a role for STAT3 in the development 

psoriatic plaques, which may actually be the result of persistent wound-healing reactions [55].  

Sano et al. showed that STAT3 activation in keratinocytes is responsible for the formation of 

human psoriatic lesions.  This study also found that transgenic mice expressing constitutively 

active STAT3 developed skin lesions that are pathologically related to human psoriatic plaques.  

These psoriatic-like lesions were inhibited by treatment with the STAT3 decoy, clearly 

indicating that STAT3 plays a role in the development of psoriasis in a transgenic mouse model.  

A single-stranded STAT3 oligonucleotide induced mitochondrial-mediated apoptosis in prostate 

 38



cancer preclinical models [40]. In vitro experiments found that the single-stranded STAT3 decoy 

decreased mitochondrial transmembrane potential, inhibited survivin expression, and induced 

caspase cleavage in prostate cancer cell lines.  Prostate cancer xenografts injected into nude mice 

were treated intratumorally with the single-stranded STAT3 decoy and resulted in slowed growth 

rate by inducing apoptosis.  These studies indicate the therapeutic efficacy of the STAT3 decoy 

as a STAT3 inhibitor in human diseases in which STAT3 is a mediator of pathogenesis. 

 

1.5 RATIONALE AND HYPOTHESES 

Our laboratory previously demonstrated STAT3 decoy antitumor activity both in vitro 

and in vivo using SCCHN models, as well as augmentation of these effects when the STAT3 

decoy is combined with chemotherapy in vivo [53, 54].  The goal of these studies was to 

elucidate the molecular mechanism of the STAT3 transcription factor decoy and to investigate 

the efficacy of a novel therapeutic strategy that incorporates the decoy with other clinically 

established treatment modalities. 

To investigate the mechanism by which the STAT3 decoy elicits antitumor effects in 

SCCHN, experiments were performed to determine the role of STAT1, based on high sequence 

homology between STAT1 and STAT3, the presence of STAT1/3 heterodimers in SCCHN cell 

lines, and the presence of both STAT1 and STAT3 in SCCHN cell lines and tumors. 

Furthermore, the STAT3 decoy was combined with an EGFR inhibitor and/or a Bcl-XL 

inhibitor to investigate the hypothesis that targeting a single signaling pathway up-regulated in 

SCCHN by inhibiting the upstream receptor, intracellular signaling molecule and transcription 
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factor, and the downstream target gene would increase antitumor effects in SCCHN preclinical 

models. 
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2.0  STAT1 DOES NOT CONTRIBUTE TO OR MITIGATE THE STAT3 DECOY 

ANTIPROLIFERATIVE MECHANISMS 

2.1 INTRODUCTION 

2.1.1 STAT1 

STAT1 was the first STAT protein identified after treatment with interferons resulted in 

transcription of its target genes [85].  STAT1 contains the same functional domains as STAT3—

the N-terminal oligomerization domain, DNA binding domain, dimerization domain containing 

the SH2 domain and tyrosine residue, and the C-terminal transactivation domain.  STAT1 and 

STAT3 share 72% sequence homology in the DNA binding domain, and STAT1/3 heterodimers 

have been identified in a variety of cell types, including SCCHN cell lines.  Serine 727 is 

required for STAT1 to bind to other transcription factors such as MCM-5 and BRCA1 for 

maximal transcriptional activity [86].   

2.1.2 STAT1 signaling pathways 

STAT1 mediates signaling downstream of growth factor and cytokine receptors, 

including EGFR, PDGFR, and IFN receptors (IFNRs), in a ligand-dependent manner (Figure 4).  

The DNA binding specificity of STAT1 dimers is dependent on its binding partners, which 
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include STAT2, STAT3, and various other transcription factors [86].  STAT1 is activated by 

ligand binding of IFN-α or IFN-β to the IFNAR, which is activated by auto- and trans-

phosphorylation of Jak1 and Tyk2.  This results in the phosphorylation of Tyr466 of IFNAR1, 

Tyr 660 of STAT2, and Tyr 701 of STAT1.  pSTAT1 and pSTAT2 dimerize and transcribe 

gamma activated sequence (GAS) elements, or the heterodimer can bind to p48, a member of the 

IRF family of transcription factors to form the ISGF3 complex.   

 

Figure 4.  STAT1 Signaling Pathways.   

STAT1 is activated by both cytokine and growth factor receptors.  IFN-γ binds to and activates 

Interferon-α receptors (IFNARs) which dimerize and recruit STAT1 to the JAK1 and JAK2 sites, which 

 42



phosphorylate tyrosine 701 of STAT1.  pSTAT1 then dimerizes through reciprocal interactions of 

phospho-Tyr 701 and the SH2 domain, with pSTAT2.  This heterodimer can then transcribe target genes 

containing GAS elements or form a transcription complex with p48 to form ISGF3, which regulates genes 

containing ISREs.  IL-6 binding to gp130/IL-6R, IFN-γ binding to Interferon-γ receptors (IFNGRs), EGF 

binding to EGFR, or PDGF binding to PDGFR phosphorylates Tyr 701 on STAT1, which then dimerizes 

with either pSTAT1 or pSTAT3 and then binds to serum inducible elements (SIE) to transcribe target 

genes as well. 

 

The heterodimer or transcription factor complex translocates into the nucleus, binds to either 

GAS or interferon-stimulated response elements (ISREs) in the promoters of IFN- α or IFN-β 

inducible genes [87].  STAT1 is also phosphorylated via EGF binding to EGFR or PDGF 

binding to PDGFR.  EGF binding to EGFR results in STAT1 and STAT3 activation, and 

subsequent homo- or heterdimerization, leading to transcription of target genes.  Studies have 

identified two to five hundred STAT1 target genes, including IRF-1, p21waf1, Fas and FasL, 

TRAIL, and caspases which modulate cell growth and induce apoptosis, providing evidence for 

STAT1 as a tumor suppressor [88]. 

2.1.3 STAT1 in cancer and SCCHN 

Several studies have indicated that STAT1 is important in normal growth and have 

implicated STAT1 as a tumor suppressor.  STAT1 knockout human fibroblasts are insensitive to 

TNF-α-mediated apoptosis [89].  STAT1 knockout mice have defects in IFN-mediated STAT1 

signaling, resulting in decreased immune response and increased susceptibility to infection [90].  

These mice developed tumors rapidly in response to chemical carcinogens but did not 
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spontaneously develop tumors [91].   In SCCHN cell lines overexpressing STAT1 and STAT3, 

loss of STAT1 by either antisense ODNs or dominant-negative constructs did not alter cell 

growth, indicating that STAT3 but not STAT1 is necessary for EGFR-mediated cell growth [26].  

Despite its antiproliferative and pro-apoptotic effects, STAT1 is frequently overexpressed in a 

variety of malignancies including multiple myeloma, some leukemias, lung cancer, breast cancer 

and SCCHN [4, 24].  In all cases, STAT3 and/or STAT5 are also overexpressed, and STAT1 

may be antagonizing the oncogenic activity of these proteins. 

2.1.4 Rationale and hypotheses 

Based on the presence of STAT1/3 heterodimers, the sequence homology between 

STAT1 and STAT3, as well as the overexpression of both proteins in SCCHN cell lines, we 

investigated the ability of the STAT1 pathway to mitigate the antiproliferative effects of the 

STAT3 decoy.  We hypothesized that the STAT3 decoy inhibits STAT1 signaling, and that 

decreased STAT1 levels would have no effect on STAT3 decoy-mediated antitumor effects.  In 

addition, stimulation of the STAT1 pathway would not mitigate the antitumor effects of the 

STAT3 decoy in SCCHN.  
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2.2 MATERIALS AND METHODS 

2.2.1 Chemicals and reagents 

Phospho-STAT1 (Tyr701), STAT1, and STAT3 antibodies were purchased from Cell 

Signaling Technology (Danvers, MA).  The IRF-1 antibody and Enhanced Chemiluminescence 

(ECL) kit were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  Beta actin 

antibody was obtained from Oncogene Science (San Diego, CA).  Beta-tubulin antibody was 

purchased from Abcam (Cambridge, MA).  Optifect transfection reagent, fetal calf serum, 

penicillin/streptomycin solution, and Opti-MEM®I Media were purchased from Invitrogen 

(Carlsbad, CA).  Human recombinant IFN-γ was obtained from Roche Applied Science 

(Indianapolis, IN).   

2.2.2 Cell culture 

The SCCHN cell lines UM-22A, UM-22B, PCI-15B, 1483, and PCI-37A cells [92] were 

of human origin and maintained in DMEM with 10% heat-inactivated fetal calf serum and 1X 

penicillin/streptomycin mix (both from Invitrogen, Carlsbad, CA) at 37°C with 5 % CO2.  

STAT1 knockout cells, the human fibroblast U3A cell line, were provided by Dr. Jacqueline 

Bromberg (Memorial Sloan Kettering Cancer Center, New York, NY) and cultured in DMEM 

containing 10% Cosmic Calf Serum (Hyclone, Logan, UT) and 1X Penicillin/Streptomycin mix 

at 37°C with 5 % CO2 [93].  STAT3 knockout and wild-type mouse embryonic fibroblasts [94] 

were provided by Dr. David Levy (NYU School of Medicine, New York, NY) and were 

maintained in DMEM with 10 % heat-inactivated fetal calf serum (Invitrogen, Carlsbad, CA) 
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and 1X penicillin/streptomycin mix (Invitrogen, Carlsbad, CA) at 37°C with 5 % CO2.  

STAT5A/B knockout and wild-type mouse embryonic fibroblasts [95] provided by Dr. James 

Ihle (St. Jude Children’s Research Hospital, Memphis TN) were grown in DMEM with 10% 

heat-inactivated fetal calf serum and 1X Penicillin/Streptomycin mix at 37°C with 5 % CO2. 

2.2.3 Preparation and transfection of STAT3 decoy and mutant control decoy 

STAT3 decoy (5’-CATTTCCCGTAAATC-3’ and 3’-GTAAAGGGCATTTAG-5’) and 

the mutant control sequence (5’-CATTTCCCTTAAATC-3’ and 3’-GTAAAGGGAATTTAG-

5’) were generated as previously described [53, 54].  The single-stranded sense and antisense 

oligonucleotides were synthesized and purified by means of β-cyanothylphysphoramidite 

chemistry to minimize degradation of the oligonucleotides by endogenous nucleases by the DNA 

Synthesis Facility at the University of Pittsburgh (Pittsburgh, PA).  Equal amounts of sense and 

antisense STAT3 decoy or mutant control decoy oligonucleotides were combined with TE buffer 

pH 8.0, and boiled for 5 mins.  The denatured oligonucleotides were then annealed by cooling to 

room temperature over 2-3 hrs, then stored at -20°C. 

For transfections, UM-22B or PCI-15B cells were plated to approximately 60-70% 

confluency and Opti-MEM®I Media containing the STAT3 decoy or mutant control with 

Optifect transfection reagent was added and incubated at 37°C with 5% CO2 for 4h.  Fresh 

DMEM containing 10% heat-inactivated fetal bovine serum and 1X Penicillin/Streptomycin mix 

was then added. 
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2.2.4 siRNA transfections 

STAT1 siRNA SMART pool and STAT3 On-Target Plus SMART pool siRNA were 

purchased from Dharmacon (catalog numbers MU-003543-01 and L-003544-00, respectively).  

1200 pmoles STAT1 siRNA was transfected into UM-22B or PCI-15B cells in T-75 flasks using 

Optifect according to manufacturer’s instructions in Opti-MEM®I Media (Invitrogen, Carlsbad, 

CA) for 4 hrs.  Media was then changed to DMEM + 10%FBS and 1X penicillin/streptomycin. 

2.2.5 Western blotting 

Cells were lysed in lysis buffer (1 % Nonidet-P40, 150 mM NaCl, 1 mM EDTA, 10 mM 

sodium phosphate buffer (pH 7.2), 0.25 mM DTT, 1 mM PMSF, 10 μg/ml leupeptin and 10 

μg/ml aprotinin) for 30 mins at 4°C with rotation, scraped and transferred into microfuge tubes, 

and sonicated.  The lysates were then centrifuged at 13,200 rpms for 5 mins at 4°C.  50-40 μg of 

whole cell protein lysate was combined with 4X loading dye, boiled 5 minutes, and loaded onto a 

8% or 10% polyacrylamide gels and proteins were separated at 125V.  Proteins were transferred 

onto nitrocellulose membrane using a semi-dry transfer apparatus for 50 min at 19V.  The 

membrane was then blocked in 5% milk, 0.2 % Tween 20 in PBS (TBST) and then incubated in 

primary antibody diluted in 1% milk (beta actin, beta tubulin, pSTAT1, STAT1, STAT3, or IRF-

1 antibodies).  The membrane was then washed 4 times in TBS-T for 5 mins each, followed by 

incubation with appropriate secondary antibody diluted in 1% milk.  After the membrane was 

washed 4 times in TBS-T for 5 mins each signals were visualized using the ECL kit (Santa Cruz 

Biotechnology).   
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2.2.6 Cell counting 

Cell counting experiments were performed using trypan blue dye exclusion assay.  Cells 

were trypsinized and after lifting off of the plate, trypsin was neutralized with DMEM.  Cells 

were centrifuged and cell pellets were resuspended in fresh media.  Cells were then combined 

with trypan blue and counted using a hemacytometer.  The percent survival was then calculated 

relative to the untreated control. 

2.2.7 MTT Assay 

MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays were 

performed to determine the cell viabilities.  Media was removed from the culture plates and 

replaced with 5 mg/ml MTT (Sigma, Catalog # M5655) and incubated at 37˚C, 5% CO2 for 15 

min.  MTT reagent was removed and dimethyl sulfoxide (DMSO) was added to lyse the cells.   

Plates were then read in a plate reader at 595 nm.  Data was normalized to untreated control cells 

and the equation to calculate the percentage survival is (OD
experimental

/ OD
untreated 

) x 100%.  

2.2.8 Statistics 

Statistical analyses were performed using StatXact software (Cytel Software Corporation, 

Cambridge, MA) and p-values were obtained by the nonparametric Wilcox-Mann-Whitney test 

when comparing two groups or the Kruskal-Wallace test when comparing more than two groups 

(p < 0.05 was considered significant). 
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2.3 RESULTS 

2.3.1 STAT1 pathway is intact in SCCHN cells 

To determine that the STAT1 pathway is intact in SCCHN cell lines, we serum starved 

UM-22B cells for 48 hrs, followed by treatment with IFN-γ (200 U/ml) for 0 min, 10 min, 30 

min, 4 hrs, 10 hrs, or 24 hrs in serum free DMEM to stimulate the STAT1 pathway (Figure 5).  

Whole cell lysates were prepared and 50 μg of lysate/lane was immunoblotted for phospho-

STAT1 (Tyr 701), total STAT1, and a STAT1 target gene, IRF-1.  Beta actin was used as a 

loading control.  Increased phosphorylation of STAT1 was observed as early as 10 mins, and 

began to decrease between 4 and 24 hrs.  Expression of IRF-1 was also increased by 4 hrs after 

STAT1 stimulation.  STAT1 protein levels were not altered by IFN-γ.   

 

Figure 5.  Time course of IFN-γ stimulation of SCCHN cells. 

(A) UM-22B or (B) PCI-15B cells were serum starved for 48 hrs, then stimulated with IFN-γ (200U/ml) 

for 10 min, 30 min, 1 hr, 4 hrs, or 24 hrs.  50 µg cell lysate were immunoblotted for phospho-STAT1 

(Tyr701), IRF-1, or actin (loading control). 
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Additionally, UM-22B or PCI-15B cells were stimulated with increasing amounts of 

IFN-γ for 4hrs before lysates were collected and immunoblotted for IRF-1.  Figure 6 shows a 

dose-dependent increase in STAT1 phosphorylation and IRF-1 protein.  These results indicate 

that the STAT1 pathway functions in response to IFN-γ stimulation through the activation of 

STAT1 and subsequent expression of a known STAT1 target gene, IRF-1. 

 

 

Figure 6.  Dose-dependent induction of pSTAT1 by IFN-γ in SCCHN cells. 

(A) UM-22B or (B) PCI-15B cells were serum starved for 48 hrs, then stimulated for 24 hrs with IFN-γ 

(0, 2, 20 100, 200 or 400 U/ml).  50 µg cell lysate were immunoblotted for phospho-STAT1 (Tyr701), 

STAT1, IRF-1, or beta-tubulin (loading control). 

 

2.3.2 SCCHN cell lines express STAT1 and STAT3 and are sensitive to STAT3 decoy-

mediated cell death 

Lysates from a panel of SCCHN cell lines including PCI-37A, 1483, PCI-15B, UM-22A, 

and UM-22B were prepared and 50 μg of protein/lane was run on an 8% polyacrylamide gel, 
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transferred to nitrocellulose membrane, and probed for total STAT1 or STAT3 protein levels 

(Figure 7A).  Beta tubulin served as a loading control.  We found that the SCCHN cell lines, had 

similar levels of STAT1 or STAT3 protein.  The experiment was performed three times and 

densitometric analysis was performed, normalizing STAT1 or STAT3 protein expression to the 

loading control (Figure 7B).  There was no significant difference between either STAT1 or 

STAT3 protein expression across the five SCCHN cell lines examined (p=0.06 and p=0.81, 

Figure 7.  STA

respectively). 

T1 levels do not correlate with SCCHN growth inhibition by the STAT3 decoy. 

 (A) Lysates from SCCHN cells (PCI-37A, 1483, PCI-15B, UM-22A, and UM-22B) were immunoblotted

for STAT1, STAT3, or beta tubulin to assess expression levels of STAT1 and STAT3.  (B) Densitometric 

analysis was performed and Kruskal Wallis test was performed and determined there was no significant 
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difference in either STAT1 or STAT3 protein levels in these cell lines (p=0.06 and p=0.81, respectively).  

(C)  UM-22B or PCI-15B cells were transfected with 690 pM STAT3 decoy or the mutant control decoy 

and trypan blue dye exclusion was used to determine cell survival after 24 hrs.  Experiment was 

performed three times with similar results. 

 

UM-22B and PCI-15B cells were transfected with 690 pM STAT3 decoy or mutant 

control

2.3.3 Stimulation of the STAT1 pathway does not mitigate STAT3 decoy-mediated 

To investigate if the activation of the STAT1 pathway mitigates the antitumor effects of 

the STAT3 decoy, UM-22B and 1483 cells were trea

assays were performed and IFN-  treatment did not decrease STAT3 decoy-mediated growth 

 decoy, and viable cell counting was performed after 24 hrs to assess survival (Figure 7C).  

The STAT3 decoy treatment resulted in 26.4% (±8.95%) survival in UM-22B cells and 43.9% 

(±1.42%) survival in PCI-15B cells relative to the untreated control.  These results indicate that 

SCCHN cells are sensitive to the growth inhibitory effects of the STAT3 decoy. 

antitumor effects in SCCHN cell lines. 

ted with the STAT3 decoy or mutant control 

(100 pM) in the presence or absence of IFN-γ (200 U/ml) for 4 hrs.  Media was changed to fresh 

DMEM and lysates were collected after 24 hrs and immunoblotted for IRF-1 and β-tubulin 

(loading control) (Figure 8A and 8B).  The experiment was repeated four times, and 

densitometry was performed on the immunoblots and showed a significant decrease in IRF-1 

protein expression relative to loading control when the STAT3 decoy was added in the presence 

of IFN-γ (p=0.0143 for UM-22B or 1483 cells) (see Figure 8C and 8D).  Additionally, MTT 

γ

inhibition in either UM-22B or PCI-15B cells (Figure 8E and 8F).   
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Figure 8.  STAT3 decoy mediated inhibition of the STAT1 pathway or growth inhibition is 

not abrogated by stimulation with IFN-γ in SCCHN cell lines. 

UM-22B or 1483 cells were transfected with 100 pM STAT3 decoy or mutant control decoy in the 

presence or absence of IFN-γ (200U/ml) for 4 hrs.  Media was then changed to DMEM (10% FBS, P/S) 

and (A) UM-22B lysates or (B) 1483 were collected after 24 hrs for immunoblotting for IRF-1 and β-
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tubulin.  Densitometry was performed on the (C) UM-22B or (D) 1483 samples treated with IFN-γ, with 

IRF-1 protein levels normalized to the β-tubulin loading control (*p=0.0143) after the experiment had 

been performed four times. MTT assays were performed three times for both (E) UM-22B and (F) 1483 

cells. 

2.3.4 STAT1 siRNA down-regulates STAT1 protein expression and signaling in SCCHN 

cells. 

We chose an siRNA approach to downmodulate STAT1 protein levels in SCCHN cells to 

investigate the role of STAT1 in the STAT3 decoy antitumor mechanism.  siRNA transfection 

was optimized and the effects on protein expression, growth, and signaling were investigated.  

Pooled STAT1 siRNA (Dharmacon) was transfected into UM-22B or PCI-15B cells using 

Lipofectamine 2000 (Invitrogen), and cell lysates were collected at various time points (days 2 

through 7).  GFP siRNA was used as a negative control in these experiments.  The lysates were 

immunoblotted for STAT1 protein and a marked decrease in STAT1 protein levels was observed 

from day 2 through 7 (beta tubulin served as the loading control) (Figure 9A and 9B).  Growth 

curves were constructed for the siRNA-transfected UM-22B or PCI-15B cells and showed that 

STAT1 siRNA increased cell growth relative to the GFP siRNA transfected control cells 

(Figures 9C and 9D).  The siRNA-transfected cells were also stimulated with IFN-γ for 4 hrs.  

Cell lysates were collected after 24 hrs and immunoblotted for STAT1, IRF-1, and beta-tubulin.  

STAT3 siRNA transfected cells were also treated and immunoblotted for STAT3, IRF-1, and 

beta-tubulin as an additional control.  The immunoblots show that STAT1 siRNA (but not GFP 

or STAT3 siRNA) mitigates IFN-γ-induced IRF-1 protein expression in both UM-22B cells 

(Figures 9E). 
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Figure 9.  STAT1 siRNA downmodulates total STAT1 protein levels, increases 

proliferation, and decreases STAT1 signaling. 

Pooled STAT1 siRNA was transfected into (A) UM-22B or (B) PCI-15B cells and protein lysates were 

from day 2 through days 7 after transfection were immunoblotted for STAT1, STAT3, or β-tubulin 

(loading control).  The experiment was performed three times with similar results. Growth of (C) UM-

22B or (D) PCI-15B cells transfected with either GFP siRNA or STAT1 siRNA.  20,000 or 10,000 cells, 

respectively, were plated for cell counting 24 hrs after siRNA transfections.  Cell counts were taken for 7 

days using trypan blue dye exclusion.  The experiment was performed two times.  (E) UM-22B cells 

transfected with GFP siRNA (control), STAT3 siRNA (control) or STAT1 siRNA were stimulated with 

IFN-γ (200U/ml) for 4 hrs.  Lysates were collected after 24 hrs and probed for STAT1, STAT3, IRF-1, or 

β-tubulin (loading control). 
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2.3.5 Downmodulation of STAT1 does not mitigate the antiproliferative effects of the 

STAT3 decoy 

We next investigated the potential contribution of STAT1 to the STAT3 decoy-mediated 

antitumor mechanism using an siRNA approach.  STAT1 siRNA or GFP siRNA (control) was 

transfec

 were transfected with 1026 pM STAT3 decoy 

and res

ted into UM-22B or PCI-15B cells in T-75 flasks.  Twenty-four hours after siRNA 

transfection, cells were trypsinized and replated in 24-well plates for transfection with either the 

STAT3 decoy or mutant control decoy and cell survival was assessed after 72 hrs using MTT 

assay.   In UM-22B cells, treatment with the STAT3 decoy resulted in 54.2 % (± 0.8 %) survival 

in GFP siRNA transfectants, and 59 % (± 3.9 %) in STAT1 siRNA transfectants (Figure 10A). 

The mutant control decoy resulted in 100.4 % (± 1.8 %) and 111.6 % (± 2.0 %) survival and 

there was no significant difference in cell viability of STAT3 decoy transfected STAT1 siRNA 

cells or GFP siRNA cells (Figure 10A and 10B).   

These results were also confirmed in a STAT1 knockout human fibroblast cell line (U3A) 

(Figure 10C).  STAT1 knockout human fibroblasts

ulted in 31.2 % (± 4.0 %)  cell survival which did not significantly differ from that of 

wild-type mouse embryonic fibroblasts which served as a control in the experiment (35.7 % (± 

7.0 %) survival) (p=0.5).  These results from both UM-22B and PCI-15B cells indicate that 

down-regulation of STAT1 protein levels does not alter STAT3 decoy antiproliferative effects. 
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Figure 10.  Downmodulation of STAT1 protein does not alter decreased cell viability 

mediated by the STAT3 decoy in SCCHN cells. 

Cell viability of STAT1 siRNA transfected cells treated with the STAT3 decoy or GFP siRNA transfected 

control UM-22B cells was assessed 72 hrs after decoy transfection using MTT assay in (A) UM-22B or 

(B) PCI-15B cells.  (C)  STAT1 knockout cells (U3A cell line) or wild-type MEFs were transfected with 

1026 pM STAT3 decoy or mutant control decoy.  Cell counts using trypan blue dye exclusion assay were 

performed after 24 hrs.  Data above represent the cumulative results from three independent experiments. 
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2.3.6 Characterization of STAT1 and STAT3 protein expression in STAT3 knockout and 

wild-type mouse embryonic fibroblast cell lines 

Next, we wanted to determine if STAT3 is necessary for the growth inhibitory effects of 

the STAT3 decoy.  STAT3 or STAT5 knockout or wild-type mouse embryonic fibroblasts 

(MEFs) were obtained and STAT protein expression and cell growth were first examined.  Cell 

lysates from STAT3 knockout or wild-type MEFs were immunoblotted for STAT1, STAT3, or 

beta tubulin (loading control).  STAT3 knockout MEFs expressed STAT1 at a comparable level 

to that of the wild-type MEFs (Figure 11A).  The rate of growth of these cell lines was also 

investigated.  The wild-type and STAT3 knockout cell lines were plated in 6-well plates and cell 

counts were performed using trypan blue dye exclusion at days 1 through 5.  The STAT3 and 

STAT5 knockout MEFs were found to grow at a slower rate compared to the wild-type cells 

(Figure 11B and 11C).  STAT1 and STAT3 protein expression was previously reported to be 

intact in STAT5 knockout and wild-type cells [95]. 
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Figure 11.  Characterization of STAT3 or STAT5 knockout and wild-type MEFs. 

(A) Lysates from STAT3 knockout and wild-type MEFs were immunoblotted to determine that STAT1 

protein expression was intact.  (B)  STAT3 knockout and wild-type MEFs were plated in 6-well plates 

and cell counts were performed at days 1 through 5 using trypan blue dye exclusion to investigate the 

growth of these cell lines.  (C)  Growth curves were also obtained for STAT5 knockout and wild-type 

MEFs with similar results. 

 

2.3.7 STAT3 is necessary for the antiproliferative effects mediated by the STAT3 decoy 

To determine if STAT3 is necessary for STAT3 decoy-mediated cell growth inhibition, 

STAT3 or STAT5 knockout and wild-type MEFs were transfected with 1026 pM  or 102.6 pM 

STAT3 decoy or mutant control decoy and cell counts using trypan blue dye exclusion were 

performed after 24 hrs.  Survival of the STAT3 knockout cells was unaffected after transfection 

with 1026 pM of STAT3 decoy, in contrast to the STAT3 wild-type cells, STAT5 knockout 
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cells, and STAT5 wild-type MEFs whose survival was dramatically decreased upon treatment 

with 1026 pM of the STAT3 decoy compared to the mutant control decoy (Figure 12C and 12D).  

Because MEFs express comparatively normal levels of STAT3 compared to SCCHN cell lines, 

in order to observe a decrease in cell viability, 10X the concentration of STAT3 decoy sufficient 

to decrease proliferation in SCCHN cells (1026 pM) was transfected into the MEFs.  At 102.6 

pM, there was no decrease in cell viability compared to the mutant control decoy in any of the 

four MEF cell lines used (Figure 12A and 12B). 
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Figure 12.  STAT3 but not STAT5 is necessary for STAT3 decoy-mediated decrease in cell 

survival. 

(A) STAT3 knockout or wild-type MEFs or (B) STAT5 knockout or wild-type MEFs were transfected 

with 102.6 pM STAT3 decoy or mutant control decoy and cell counts were performed using trypan blue 

dye exclusion after 24 hrs.  The experiments were also repeated using 1026 pM STAT3 decoy or mutant 

control decoy in the (C) STAT3 knockout or wild-type MEFs or the (D) STAT5 knockout or wild-type 

MEFs.  The experiment was independently performed three times. 

 

2.4 DISCUSSION 

Our studies have previously focused on the antitumor activity of the STAT3 decoy in 

both in vitro and in vivo models of SCCHN [53, 54].  Others have reported that direct injection 

of the STAT3 decoy into skin tumors in a mouse model of epithelial cancer inhibited tumor 

growth [56].  The STAT3 decoy was also used to treat mice with psoriatic lesions induced by 

constitutive activation of STAT3 [55].  Sano et al., found that the STAT3 decoy prevented the 

onset of psoriatic lesions and induced the regression of established lesions, providing evidence 

for STAT3 as a target in the treatment of psoriasis, and indicating that the STAT3 decoy could 

be an efficacious treatment for psoriasis patients. 

To date, published reports using the STAT3 decoy have focused on its efficacy as a 

clinical therapy, assuming that STAT3 is the only target inhibited, leaving the exact mechanism 

of the STAT3 transcription factor decoy undefined [53-56].  To further elucidate the mechanism 

of the STAT3 decoy, the role of STAT1 and STAT3 in the STAT3 decoy-mediated antitumor 

mechanism in SCCHN was explored.  The STAT3 transcription factor decoy was designed to 

bind to the DNA binding domain of STAT3, a known oncogene whose overexpression has been 
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correlated with poor clinical prognosis, decreased survival, and increased resistance to 

chemoradiation.  We investigated the role of STAT1 in the mechanism of the STAT3 

transcription factor decoy because of the high sequence homology in the DNA binding domain 

of STAT3 and STAT1, the presence of STAT1/3 heterodimers, and because both STAT1 and 

STAT3 are expressed in SCCHN cell lines.  Also STAT1 has demonstrated the ability to 

function as a tumor suppressor in some malignancies [8, 19, 96-98], leading us to hypothesize 

that STAT1 may play a role in mediating the STAT3 decoy antitumor effects observed in 

SCCHN preclinical models.   We found that although the STAT3 decoy inhibited the STAT1 

pathway, STAT1 does not contribute to or mitigate STAT3 decoy-mediated antitumor effects.  

The role of STAT1 in cancer is unclear.  Classified as a tumor suppressor, STAT1 is essential for 

interferon signaling and regulates cell death through transcription of caspases, death receptors 

and ligands, as well as cell cycle regulators such as p21waf1 [99].  Yet, a recent report described a 

role for STAT1 as a tumor promoter in leukemia [100].  STAT1 is involved in the expression of 

MHC class I molecules, which have been postulated to play a role in tumor cell evasion of the 

immune system.  This study provided evidence for a model in which high MHC class I molecule 

expression protected tumor cells from elimination by the immune system and was a direct result 

of STAT1 activity.   

In regards to SCCHN, we previously reported that STAT1 overexpression has been 

shown to induce increased sensitivity to chemotherapy in SCCHN [98].  In a syngeneic model 

murine squamous cell carcinoma, STAT1 deficiency in the host enhanced interleukin-12-

mediated tumor regression [101]. It is possible that STAT1 functions as a tumor suppressor 

during the early stages of tumor initiation, and not during the progression of cancer after tumor 

cells are established.  Therefore, inhibition of STAT1 activity by the STAT3 decoy in cancer cell 

 62



lines may not have an effect on proliferation.  To investigate this, future studies could be 

performed to determine if STAT1 inhibition via the STAT3 decoy prevents tumor cell initiation 

using cancer prevention models. 

Transcription factor decoys were initially used to investigate transcription factor 

mediated-gene expression [102, 103].  Since then, several transcription factor decoys targeting 

proteins shown to play a role in malignancy and other diseases [53, 54, 58, 60, 62, 66, 68-78].  

Both STAT1 and STAT3 have been shown to interact with other proteins and transcription 

factors.  For example, STAT1 binds to the TNFα receptor signaling complex and inhibit NF-κB 

[104] and STAT1 binding to p53 has also been demonstrated [105].  Also, studies have 

documented that STAT3 interacts with other factors including PIAS3, GRIM-19 and EZ1 [106-

108].  To date, the effects of a transcription factor decoy on other transcription factors or binding 

partners has not been explored.  The ability of the decoy to inhibit activity of STAT1 in addition 

to its intended effects on inhibiting STAT3 raises the possibility that the STAT3 decoy may have 

actions beyond inhibiting STAT3 in cancer cells.  This could potentially limit its use as a 

therapeutic reagent.  Conversely, because transcription factors are known to function in large 

multiprotein complexes consisting of multiple regulatory proteins, co-factors and related DNA 

elements, use of a transcription factor decoy may be advantageous because it simultaneously 

inhibits multiple proteins in the transcription complex. These findings provide a rationale for 

similar mechanistic studies of other transcription factor decoys, prior to their entering the clinic.  

Because the previous experiments determined that STAT1 neither contributes to nor 

mitigates STAT3 decoy-mediated antitumor effects, we hypothesized that STAT3 is the main 

target of the STAT3 decoy and is necessary for growth inhibitory effects.  Both STAT3 knockout 

MEFs, STAT5 knockout MEFs, and wild-type MEFs were first characterized in regards to 
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STAT1 and STAT3 protein expression, and rate of growth in culture (Figure 11).  The STAT3 

and STAT5 knockout MEFs grew at a slower rate compared to the wild-type control MEFs, 

indicating that STAT3 and STAT5 contribute to growth and proliferation in these cell lines, but 

loss of either STAT3 or STAT5 protein does not kill the cells.  Other published reports using 

these cell lines have not investigated alterations in cell growth, but have focused on changes in 

signaling and other phenotypical aspects of the cells [94, 95].  Based on results from cell survival 

assays, we found that STAT3 but not STAT5 was necessary for STAT3 decoy mediated decrease 

in survival (Figure 12).  These results indicate that STAT3 is indeed the main target of the 

STAT3 decoy and further confirm the rationale for STAT3 as a therapeutic target in SCCHN.   
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3.0  COMBINING THE STAT3 DECOY WITH AN EGFR AND/OR A BCL-XL INHIBITOR 

ENHANCES ANTITUMOR EFFECTS IN PRECLINICAL MODELS OF SCCHN 

3.1 INTRODUCTION 

3.1.1 EGFR 

Epidermal growth factor (EGFR), also known as erbB1 or Her1, is a transmembrane 

protein tyrosine kinase receptor that mediates signal transduction and is critical for many 

metabolic and physiological cellular processes [109].  EGFR is a 170kd protein consisting of an 

extracellular ligand binding domain, a transmembrane domain, and an intracellular domain 

containing protein tyrosine kinase activity [110].  Ubiquitously expressed in normal epithelial 

tissues, EGFR activity is regulated by extracellular ligand binding including TGF-α, EGF, 

amphiregulin, and heparin binding EGF, which results in receptor homodimerization or 

heterodimerization and trans-phosphorylation of tyrosine residues in the carboxy-terminal 

domain of the receptors.  EGFR signals through a number of different signaling pathways, 

including activation of Ras/mitogen-activated protein kinase (Ras/MAPK), phospholipase C-γ, 

phosphatidylinositol-3 kinase (PI3K), and STATs.  Phospho-tyrosine binding proteins bind to 

activated EGFR, are phosphorylated on tyrosine residues and activated in order to perpetuate 

downstream signaling.   
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3.1.1.1 EGFR overexpression and mutation in SCCHN 

EGFR and its ligand TGF-α are overexpressed in 80-90% of SCCHN tumors, implicating 

an autocrine regulatory pathway in carcinogenesis of the disease [111].  EGFR overexpression 

has been identified as an independent prognostic marker in SCCHN, and high EGFR levels 

correlate with poor advanced stage, increased tumor size, resistance to chemotherapy and 

radiation, increased recurrence, and decreased survival [28, 112].   

Somatic mutations in the EGFR tyrosine kinase domain have been reported to confer 

increased sensitivity to EGFR targeting tyrosine kinase inhibitors (TKIs) in lung cancer [113, 

114].  However, the somatic mutation rate in SCCHN is low compared to other epithelial 

malignancies and evidence suggests EGFR mutation status is unrelated to sensitivity to TKIs in 

SCCHN [115-117].  Recently, EGFRvIII, an EGFR mutant in glioma was reported in SCCHN 

[118].  This truncated mutant protein has a portion of the extracellular domain deleted, resulting 

in a constitutively active form of the receptor that studies have shown is only present in cancer 

cells.  Because of this deletion, EGFRvIII function is independent of ligand binding.  EGFRvIII 

has been found in brain, lung, prostate, and ovary cancer, and SCCHN [119].  In one study, 

EGFRvIII was found in 42% SCCHN tumors examined, and cell lines expressing the mutated 

protein demonstrated decreased sensitivity to an EGFR monoclonal antibody (cetuximab) [118].   

3.1.2 EGFR as a therapeutic target for SCCHN 

EGFR targeting using EGFR antisense gene therapy, monoclonal antibodies, or tyrosine 

kinase inhibitors in SCCHN preclinical models results in antitumor effects [120].  Furthermore, 

EGFR is overexpressed in SCCHN tumors and this overexpression correlates with patient 

survival, making EGFR a therapeutic target for SCCHN [28].  Several strategies to block EGFR 
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activity have been developed and include down-regulation of EGFR expression, inhibition of 

EGFR activation and/or phosphorylation, and inhibition of downstream signaling.  Studies have 

focused on using a variety of inhibitors including toxin conjugates, antisense oligonucleotides, 

EGFR monoclonal antibodies (mAbs), or TKIs  [109] (Table 3). 

3.1.2.1 Monoclonal antibodies 

Cetuximab (Erbitux®, C225; Imclone Systems), a monoclonal antibody specific for 

EGFR, was approved by the FDA for the treatment of unresectable SCCHN in combination with 

radiation and as a monotherapy for the treatment of platinum-based therapy-resistant SCCHN in 

2006 [121].  However, cetuximab has resulted in limited efficacy as a monotherapy for SCCHN 

in the clinic [122].  Cetuximab is a mouse-humanized antibody specific for EGFR that competes 

with ligand and blocks ligand-induced activation of EGFR, induces receptor dimerization and 

subsequent receptor down-regulation [123-125].  Prior to FDA approval, studies documented 

antitumor effects in SCCHN preclinical models alone [126] or in combination with 

chemotherapeutic drugs such as cisplatin, paclitaxel or 5-fluorouracil [127, 128], or with 

radiation [129].  Several other EGFR antibodies have been developed and are currently 

undergoing investigation for treatment of SCCHN, including matuzumab (EMD7200) [130],  

panitumumab (ABX-EGF) [131, 132], and TheraXIM (hR3) [133]. 
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Table 3.  Summary of EGFR inhibitors studied for SCCHN. 

EGFR inhibitors have reached various stages of development for SCCHN, from FDA approval to 

preclinical studies in progress and are listed below. 

Inhibitor Strategy Phase of Development References 

Cetuximab (Erbitux®, 
C225) 

Chimeric mouse-
humanized anti-EGFR 

antibody 

FDA approved 2006 
for SCCHN 

[121-123, 
125-129] 

Gefitinib (Iressa™, 
ZD1839) 

TKI FDA approved in 2003 
for locally advanced or 

metastatic NSCLC* 

Phase II for SCCHN 

[134, 135] 

Erlotinib (Tarceva™, OSI-
779) 

TKI FDA approved in 2004 
for locally advanced or 

metastatic NSCLC 

FDA approved in 2005 
for pancreatic cancer in 

combination with 
gemcitabine 

Phase II for SCCHN 

[136, 137]  

Matuzumab (EMD-72000) Humanized anti-EGFR 
antibody 

Phase II for SCCHN [130] 

TheraXIM (hR3) Humanized anti-EGFR 
antibody 

Phase II for SCCHN [133] 

U6 promoter-driven 
EGFR AS 

EGFR antisense gene 
therapy 

Phase I for SCCHN [138-142] 

Panitumumab (ABX-
EGF) 

Human anti-EGFR 
monoclonal antibody 

Preclinical for SCCHN [131, 132] 

Pseudomonas toxin-EGFR 
antibody conjugate 

 

Toxin conjugate Preclinical [143, 144] 

TGF-α-linked toxin Toxin conjugate Preclinical for SCCHN [143, 144] 
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3.1.2.2 Targeting EGFR with TKIs 

Tyrosine kinase inhibitors (TKIs), such as erlotinib (OSI-779, Tarceva™) and gefitinib 

(ZD1839, Iressa™) selectively inhibit tyrosine phosphorylation on EGFR, abrogating 

downstream signaling.  Both erlotinib and gefitinib have been studied in clinical trials for various 

types of cancer but have demonstrated limited efficacy as monotherapies.  Erlotinib and gefitinib 

inhibit adenosine triphosphate (ATP) binding to the intracellular tyrosine kinase domain of 

EGFR, preventing protein kinase activity and subsequent downstream signaling, leading to 

apoptosis [145].   

Erlotinib is a quinazoline derivative and a reversible inhibitor of EGFR that has shown 

antitumor effects in a variety of human cancers including SCCHN [146].  Results of several 

phase I and II clinical trials investigating erlotinib alone or in combination with radiation and/or 

various chemotherapeutic drugs have been reported in SCCHN, with combination treatments 

showing increased antitumor effects (reviewed in [110]).  Erlotinib is currently FDA approved 

for treatment of locally advanced or metastatic non-small cell lung cancer after failure of at least 

one prior chemotherapy regimen [136] and approved for use in combination with gemcitabine 

for the first-line treatment of patients with locally advanced, unresectable or metastatic 

pancreatic cancer [137].   

Preclinical studies with gefitinib have shown antitumor activity as a monotherapy or in 

combination with chemotherapy in both tumor cell lines and xenografts [147, 148].  After phase 

I studies documented that the TKI is safe when administered daily and dose-dependent kinetics 

were performed, it was tested as a first or second-line therapy for SCCHN [149].  In this study, 

the response rate was 10.6%.  In 2003, Gefitinib was approved as a third-line monotherapy for 

NSCLC, but later failed to prolong patient survival in two phase III trials when combined with 
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chemotherapy and was removed from development by the company in 2005 [134, 135].  

However, several preclinical and clinical studies combining gefitinib with chemotherapy or 

radiation have demonstrated synergistic antitumor effects (reviewed in [110]), indicating that an 

EGFR TKI combined with cytotoxic strategies could serve as an efficient treatment for SCCHN. 

3.1.2.3 EGFR antisense gene therapy 

EGFR antisense gene therapy was investigated as a treatment for SCCHN in preclinical 

models.  EGFR antisense-expression plasmids were previously tested in vitro and significantly 

decreased growth of SCCHN cell lines compared to normal mucosal epithelial cells [138].  In 

vivo EGFR antisense in a modified U6 expression construct demonstrated antitumor effects when 

combined with liposomes and directly injected into SCCHN tumor xenografts [139].  EGFR 

antisense ODNs were also combined with chemotherapeutic agents such as docetaxel, and 

resulted in increased cytotoxicity, reduced tumor growth, and decreased EGFR signaling [141].  

A phase I clinical trial testing EGFR antisense gene therapy in SCCHN patients is currently 

underway [140]. 

3.1.2.4  Immunotoxin conjugates targeting EGFR 

Immunotoxins composed of Pseudomonas or Diphtheria bacterial toxins conjugated to 

either EGFR-targeted monoclonal antibodies or EGFR-specific ligands have been developed.  

Such toxin conjugates use the antibody or ligand portion to bind to the EGFR receptor.  After 

binding to the receptor, the toxin conjugate is internalized, where the toxin portion mediates 

cytotoxic effects.  A study found that a toxin linked to TGF-α had antitumor effects in EGFR-

positive cancer cell lines and in SCCHN tumor xenografts [144].  Another study of two 

Pseudomonas toxins linked to EGFR antibodies resulted in growth inhibition of SCCHN cell 
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lines in vitro and decreased tumor size in vivo [143].  Toxin conjugates targeting EGFR have not 

been evaluated in clinical trials in SCCHN to date. 

3.1.3 Bcl-XL 

The Bcl-2 family of proteins regulates apoptosis and includes death antagonists such as 

Bcl-2, Mcl-1, Bcl-w, A-1, and Bcl-XL, and death agonists such as Bax, Bak, Bik, Bad, and Bid.  

These proteins share at least one of four homologous Bcl homology (BH) domains, of which the 

BH3 domain has been indicated as critical for the protein-protein interactions between the Bcl-2 

family proteins [150, 151].  Bcl-XL, a STAT3 target gene, is found localized in the outer 

mitochondrial membrane where it binds to BH3 domains of pro-apoptotic proteins such as Bax, 

Bak, and Bad in order to function as a repressor of apoptosis [151].  The exact mechanism by 

which Bcl-2 family proteins regulate apoptosis remains unclear.  Studies indicate that apoptotic 

signals trigger the formation of pores in the outer mitochondrial membrane by proapoptotic 

proteins (Bax, Bak, Bik, Bad, and Bid) through which cytochrome c is released from the 

mitochondria into the cytosol, triggering the activation of caspases and a signaling cascade that 

initiates the mitochondria-mediated apoptosis pathway.  Certain members of this protein family 

have demonstrated the ability to form channels in synthetic lipid membranes [152-154].  

Apoptosis is an important cellular process, and dysregulation of regulators of apoptosis, such as 

Bcl-XL, results in a variety of diseases, including cancer.   

3.1.3.1 Bcl-XL as a therapeutic target for cancer 

Several studies have provided evidence for Bcl-2 family proteins as therapeutic targets 

for cancer [155].  Recent studies have specifically focused on targeting Bcl-XL.  A negative 
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correlation between Bcl-XL expression and sensitivity to chemotherapeutic drugs was shown in a 

panel of cancer cell lines [156].  Overexpression of Bcl-XL has been reported in a variety of 

malignancies, including glioblastoma, breast, pancreatic, prostate, colorectal, and intestinal 

cancers, as well as SCCHN.  While Bcl-2 and Bcl-XL are homologous proteins, a previous study 

showed high protein expression of Bcl-XL in 74% of laryngeal tumors, but only 15% of the 47 

tumors examined expressed high levels of Bcl-2 protein [157]. 

3.1.3.2 Bcl-XL targeting strategies 

Previous studies have targeted anti-apoptotic Bcl-2 family members using antisense 

ODNs, siRNA, small molecular weight chemical inhibitors, and BH3 peptides.  The general 

function of these inhibitors is to sensitize cancer cells to standard treatment modalities such as 

radiation or chemotherapy [155].  These strategies have also been applied to Bcl-XL (Table 4).  

To date, no Bcl-XL inhibitor has been FDA approved as a cancer treatment. 
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Table 4.  Summary of Bcl-XL targeting strategies. 

Below is a comprehensive list of Bcl-XL inhibitors and the mechanism by which they act is also 

described.  To date, no Bcl-XL inhibitor has been FDA approved for SCCHN or any other malignancy. 

Inhibitor Mechanism References 

Antisense ODNs Inhibition of mRNA 
translation 

[158-164] 

Bispecific antisense ODN 
targeting Bcl-2 and Bcl-XL 

Inhibition of mRNA 
translation 

[165-168] 

Bcl-XL siRNA Targeted mRNA degradation [169-173] 

Antisense chimeric peptide 
nucleic acid ODN 

Modulates splicing of Bcl-X 
gene 

[174] 

2-methoxy antimycin A Small molecule inhibitor that 
blocks mitochondrial electron 
transport at inner membrane 
ubiquinone-cytochrome c 
oxido-reductase 

 

[175-178] 

(-)-Gossypol Small molecule inhibitor that 
blocks the BH3 domain 

[179-188] 

Bax and Bad BH3 peptides Small molecule inhibitors that 
bind to Bcl-XL

[151, 181, 182, 189-191] 

ABT-737 Small molecule inhibitor of 
Bcl-2, Bcl-XL and Bcl-w 

[192-196] 

TW-37 Small molecule inhibitor of 
Bcl-2, Bcl-XL and Mcl-1 

[197] 

Chelerythrine and 
Sanguinarine 

Natural benzophenanthridine 
alkaloids, small molecule 
inhibitors of Bcl-XL by 
binding to BH groove and 
BH1 domain, respectively 

[198] 
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3.1.3.3 Antisense and siRNA strategies to target Bcl-XL 

The strategy of inhibiting mRNA translation using both antisense ODNs and siRNA has 

been used to target Bcl-XL.  Antisense strategies targeting Bcl-XL have shown antitumor efficacy 

when combined with chemotherapy or radiation in a variety of cancer models including 

glioblastoma, pancreatic cancer, prostate cancer, colorectal cancer, and mesothelioma [159-163, 

199].  Interestingly, antisense ODNs specifically designed to target both Bcl-2 and Bcl-XL, a 

“bispecific antisense ODN” has recently shown to induce apoptosis in a variety of cancer cell 

lines and enhanced sensitivity to chemotherapy in some preclinical models [165-168].  Another 

study coupled Bcl-XL antisense ODNs with antennapedia, a peptide of 16 residues from the 

homeodomain of the Drosophila transcription factor that is easily internalized into cells in 

culture, increasing cellular uptake of the antisense ODNs, and increasing stability in the 

cytoplasm [164].  Treatment of pancreatic cancer cells with Bcl-XL antisense ODNs coupled 

with antennapedia resulted in down-regulation of Bcl-XL protein and increased sensitivity to 

radiation both in vitro and in vivo.  Studies examining the efficacy of Bcl-XL siRNA have 

reported decreased Bcl-XL expression and increased apoptosis in preclinical models of 

hepatocellular carcinoma, gastric cancer, and colon cancer, esophageal cancer [169-172].  These 

studies using siRNA provide proof-of-principle for Bcl-XL as a therapeutic target in cancer. 

3.1.3.4 Small molecule inhibitors of Bcl-XL 

One promising approach to inhibit Bcl-XL repression of apoptosis involves the 

administration of small molecules designed to bind to the BH3 domain of Bcl-XL, preventing 

Bcl-XL/pro-apoptotic protein interactions [150, 151, 183, 200-202].  Several small molecule 

inhibitors of Bcl-XL have been identified and tested in preclinical models, including antimycin 

A, BH3 domain peptides, and the novel inhibitor ABT-737.  Antimycin A and its analogs are 
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inhibitors of the mitochondrial electron transport chain that induce apoptosis in a variety of Bcl-

XL-overexpressing cancer cell lines [175-178].  Antimycin A, an antibiotic isolated from 

Streptomyces sp., induces apoptosis by binding to the hydrophobic groove of the BH3 domain of 

Bcl-XL and Bcl-2, inhibiting Bcl-XL and Bcl-2 activity, resulting in mitochondrial swelling, loss 

of mitochondrial membrane potential [176].   

Another type of small molecule inhibitor of Bcl-XL, synthetic BH3 peptides that mimic 

the BH3 domains of pro-apoptotic proteins such as Bax and Bak, has demonstrated the ability to 

disrupt heterodimerization of Bcl-XL with its pro-apoptotic binding partners and induce the 

release of cytochrome c from mitochondria [190].  Studies investigated the ability of a Bad BH3 

peptide to bind to Bcl-XL in Bcl-XL-overexpressing Jurkat leukemia cells and found that the Bad 

BH3 peptide efficiently inhibited Bcl-XL and induced release of cytochrome c from 

mitochondria [151, 191].  These studies also concluded that the BH3 peptides were most 

effective in cells that overexpressed Bcl-XL, and given that Bcl-XL is overexpressed in SCCHN 

[157], the use of BH3 peptides may be an effective therapeutic strategy for SCCHN.  Bax, Bad, 

and Bak BH3 peptides linked to antennapedia or polyarginine peptide transduction domains have 

been investigated in the UM-22A, UM-22B, and 1483 cell lines and a dose-dependent decrease 

in cell survival was observed (unpublished data). 

The BH3 mimetic ABT-737 has also been investigated as a Bcl-XL inhibitor for cancers 

that overexpress Bcl-2 family proteins.  ABT-737 is unique because it inhibits Bcl-2, Bcl-XL, 

and Bcl-w with a higher potency than any other reported small molecule inhibitor [192].  This 

compound has demonstrated antitumor effects in small cell lung cancer and chronic lymphocytic 

leukemia [196, 203].  One study attributed significant antitumor effects to ABT-737 when used 

to treat multiple myeloma cell lines and primary multiple myeloma cells from patients whose 
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disease was resistant to prior treatment with chemotherapy [192].  Yet, studies have found that 

the antitumor activity of ABT-737 is limited by Mcl-1—cell lines treated with Mcl-1 inhibitors 

in combination with ABT-737 demonstrated higher antitumor activity, and cells overexpressing 

Mcl-1 were more resistant to ABT-737 treatment, indicating that it may not be an effective 

monotherapy for all Bcl-2 family-overexpressing malignancies [194, 195, 204, 205].  Further 

investigation to identify the exact mechanism by which this inhibitor elicits an antitumor 

response are necessary to understand why it is effective in some malignancies, but not others, 

and what other inhibitors it can be combined with to increase its efficacy. 

3.1.3.5 Gossypol 

Gossypol, is a polyphenol isolated from the seed, roots, and stem of the cotton plant, and 

found in cottonseed oil, is another well studied small molecule inhibitor of Bcl-XL.  Racemic 

gossypol was originally studied because of its antifertility properties.  In the 1970s, the Chinese 

government conducted a study in which men were given racemic gossypol daily (20 mg/day) as 

a contraceptive [206, 207].  Although it was effective and well tolerated, 10 % of patients had 

reduced blood potassium levels and 10 % had irreversible infertility after they discontinued use.  

As a result, development of racemic gossypol as a male antifertility drug has been slow. 

Racemic gossypol was next studied as an anticancer drug after treatment of cancer cell 

lines both in vitro and in vivo showed that it had potent antitumor effects, but eventually 

produced less than impressive antitumor effects in phase I/II clinical trials of breast cancer, 

adrenal cancer, and a variety of other advanced stage cancers [208-214].    Such dismal results 

led one group to conclude that although gossypol was safe and well tolerated, it was unlikely that 

it would be useful as a therapeutic drug for cancer [214].  The failure of racemic gossypol to 

perform satisfactorily as an anticancer drug in clinical trials led researchers to examine the drug 
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more carefully in preclinical models and subsequent studies identified the (-) enantiomer ((-)-

gossypol, or AT-101) as a potent cytotoxic drug.   

(-)-gossypol, but not the positive enantiomer, binds to the BH3 domain of Bcl-XL and 

Bcl-2 to cause apoptosis through induction of DNA fragmentation, PARP cleavage, loss of 

mitochondrial membrane potential, cytochrome c release, and activation of caspase-3, -8, and –9 

[179, 180, 183, 215].   One report demonstrated that (-)-gossypol induced dose-dependent 

apoptosis and growth inhibition of a panel of SCCHN cell lines in vitro [181].  A recent study 

investigated the efficacy of (-)-gossypol in an orthotopic xenograft model of SCCHN and 

concluded that systemic treatment with (-)-gossypol resulted in decreased tumor growth and 

increased apoptosis [184].  These studies using SCCHN preclinical models provide evidence that 

(-)-gossypol may be an effective therapeutic modality for SCCHN when Bcl-XL is 

overexpressed.  Clinical trials using (-)-gossypol for the treatment of B cell malignancies, small 

cell lung cancer, chronic lymphocytic leukemia, prostate cancer, and brain and central nervous 

system tumors, are all currently underway [216]. 

3.1.4 Rationale and hypotheses 

We hypothesized that combined targeting of the pathway including EGFR, STAT3, and 

Bcl-XL would result in increased antitumor effects.  EGFR, STAT3, and Bcl-XL have been 

implicated as independent therapeutic targets in SCCHN, and monotherapeutic strategies to 

target these molecules in SCCHN have shown limited efficacy in the clinic.  Combining new and 

innovative therapeutic approaches, such the STAT3 decoy, with established or emerging 

treatment modalities such as erlotinib and (-)-gossypol is a novel treatment strategy for SCCHN.  

By blocking a pathway at the level of the receptor, intracellular signaling molecule and 
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transcription factor, as well as the downstream target gene, the pathway can be effectively 

inhibited regardless of any crosstalk with other aberrant signaling pathways, and may also down-

regulate parallel or convergent pathways involved to maximize antitumor effects. 

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals and reagents 

An antibody against procaspase 3 and an antibody to detect both the full-length and 

cleaved forms of PARP were obtained from Cell Signaling Technology, Inc. (Danvers, MA).  

Beta tubulin antibody was obtained from Abcam, Inc. (Cambridge, MA).  MTT (3-(4, 5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was obtained from Sigma (The 

enhanced chemiluminescence (ECL) kit was purchased from Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA).  Erlotinib (OSI-774, Tarceva™) was provided by Ken Iwata (OSI 

Pharmaceuticals, Uniondale, NY) [146].   –(-)-gossypol was a kind gift from Dr. Shaomeng 

Wang (University of Michigan, Ann Arbor, MI) [181].   

3.2.2 Cell culture 

Please refer to section 2.2.2 (pg. 45). 

3.2.3 STAT3 decoy preparation and transfection 

Please refer to sections 2.2.3 and 2.2.4 (pgs. 46-47). 
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3.2.4 Dose response and cell viability experiments 

Dose response experiments were performed using 0.001-200 μM erlotinib or 0.03-30 μM 

–(-)-gossypol in DMEM containing 10% heat-inactivated fetal bovine serum and 1X 

Penicillin/Streptomycin mix, incubated at 37°C with 5 % CO2.  For dose response experiments, 

the concentration of STAT3 decoy ranged from 0.34 pM to 3.4 nM and was combined with the 

transfection reagents described above.  After 72h MTT assays were performed as described 

previously (see section 2.2.7, pg. 48).  Curve fit nonlinear regression analysis of sigmoidal dose 

response curves with variable slope was performed using GraphPad Prism version 4.03 for 

Windows, GraphPad Software (San Diego, CA, www.graphpad.com).  MTT data was confirmed 

using trypan blue dye exclusion assays for counting viable cells, as described previously (see 

section 2.2.6, pg. 48). 

 

3.2.5 Cell treatments 

For combination experiments, UM-22B and PCI-15B cells were transfected with the IC50 

values (10 pM or 40 pM, respectively) of the STAT3 decoy or mutant control decoy as described 

above.  After 4h, transfection media was removed and DMEM (10 % heat-inactivated fetal 

bovine serum, 1X Penicillin/Streptomycin mix) containing 5 μM or 0.1 μM erlotinib alone, 3 

μM (-)-gossypol alone, or a combination of both erlotinib and (-)-gossypol was added.  Cell 

counts using trypan blue dye exclusion were performed after 72h to assess cell viability.   
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3.2.6 Western blotting of cell line lysates 

Western blots were run using 50 μg of whole cell protein lysate per lane as previously 

described (see section 2.2.5, pg.47). 

3.2.7 Animals and treatment regimen 

4-6 week old female athymic nude mice were injected with 1x106 1483 cells in the left 

and right dorsal flanks, resulting in two tumors per animal.  Fourteen days later, after tumors 

were palpable, animals were assigned to two treatment groups by stratified randomization based 

on flank ratio (5 mice in the STAT3 decoy or mutant control decoy only group, and 5 mice in the 

erlotinib and STAT3 decoy or mutant control decoy group).  Daily intratumoral injections of 

STAT3 decoy or mutant control (50 μg in 50 μl) was delivered for 14 days.  Erlotinib was 

dissolved in a 20% trappsol (hydroxypropyl-beta-cyclodextrin) solution (CTD, Inc, Cyclodextrin 

Resource, High Springs, FL).  90 mg/kg erlotinib was delivered by oral gavage daily for 14 days, 

and sacrificed at day 15 after treatment began.  The dose was chosen based on the literature 

which found that the maximum tolerated dose of erlotinib in nude mice is 100 mg/kg in non-

small cell lung cancer xenografts [217].  There are no published reports for the maximum 

tolerated dose of erlotinib in nude mice carrying 1483 xenografts. 

 

3.2.8 Statistics 

Refer to section 2.2.8 (pg.48) for statistics. 
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3.3 RESULTS 

3.3.1 SCCHN cell lines have similar IC50 values for (-)-gossypol but not for erlotinib or 

the STAT3 decoy 

In order to determine the doses of the inhibitors to use in our cell lines for combination 

treatments, we first performed dose response experiments for erlotinib (0.001 μM to 200 μM), 

STAT3 decoy (0.34 pM to 3.4nM), or gossypol (0.03 μM to 30 μM).  UM-22B, PCI-15B, and 

1483 cells were treated with a range of doses of erlotinib, STAT3 decoy, or (-)-gossypol for 

72hrs and MTT assays were performed to assess cell viability.  Data was normalized to untreated 

control cells and the percentage of cytotoxicity was calculated.  Curve fit nonlinear regression 

analysis of sigmoidal dose response curves with variable slope was performed using GraphPad 

Software to determine IC50 values for erlotinib, STAT3 decoy, or (-)-gossypol in UM-22B, PCI-

15B, and 1483 cell lines (Table 5).  

The IC50 for (-)-gossypol in all cell lines tested was approximately 3 μM, which is 

consistent with other reports of (-)-gossypol in SCCHN cell lines [181].  The IC50 for erlotinib 

was 10 μM, 0.33 μM, or 7 μM for UM-22B, PCI-15B, and 1483 cell lines, respectively.  

Similarly, the IC50 value for STAT3 decoy varied between the cell lines examined, 12.6 pM for 

UM-22B, 38.3 pM for PCI-15B, or 2.05 pM for 1483.  These results imply that our panel of 

SCCHN cell lines has varying levels of sensitivity to erlotinib or the STAT3 decoy, but not to (-

)-gossypol. 
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Table 5.  IC50 values for inhibitors in SCCHN cell lines. 

Representative results of dose-response experiments for erlotinib, the STAT3 decoy, or (-)-

gossypol are listed for three SCCHN cell lines. 

Cell line Erlotinib STAT3 Decoy (-)-gossypol 

UM-22B 10 µM 12.6 pM 2.7 µM 

PCI-15B 0.33 µM 38.3 pM 3.0 µM 

1483 7 µM 2.05 pM 2.1 µM 

 

3.3.2 Combining EGFR and STAT3 inhibitors enhances antiproliferative effects in 

SCCHN in vitro 

To assess the antiproliferative effect of combining EGFR and STAT3 inhibition, we 

treated UM-22B cells with erlotinib and the STAT3 decoy.  The STAT3 decoy alone resulted in 

62.7 % (± 5.6 %) survival.  Treatment with erlotinib and the mutant control decoy resulted in 

48.7 % (± 5.5 %) survival.  Treatment with both the STAT3 decoy and erlotinib resulted in 29.6 

% (± 3.3 %) survival, which was significantly different from either the STAT3 decoy alone or 

erlotinib and the mutant control decoy (p=0.004 and p=0.028, respectively) (Figure 13A).  

Similar results were seen for PCI-15B cells (Figure 13B).  Treatment with the STAT3 decoy 

resulted in 61.2 % (± 5.5 %) survival.  Treatment with erlotinib and the mutant control decoy 

resulted in 59.4 % (± 5.0 %) survival, and treatment with both the STAT3 decoy and erlotinib 

resulted in 39.0 % (± 2.5 %) survival.  In PCI-15B cells, the combination of the STAT3 decoy 

and erlotinib significantly decreased survival compared to the STAT3 decoy alone or erlotinib 
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and the mutant control decoy (p=0.004 and p=0.016, respectively).  These results indicate that 

Figure 13.  Combining the STAT3 decoy with erlotinib enhances growth in

combining erlotinib with the STAT3 decoy enhances antiproliferative effects. 

hibition in vitro. 

 (A) UM-22B cells were transfected with 10 pM STAT3 decoy or mutant control decoy for 4h. 

Transfection media was removed and DMEM containing 10 % FBS and 5 µM erlotinib was added.  Cells 

were then counted after 72h using trypan blue dye exclusion. When the STAT3 decoy was combined with 

erlotinib, survival was significantly reduced compared to STAT3 decoy (p=0.004) or erlotinib and the 

mutant control decoy (p=0.028) in UM-22B cells.  (B) Similar results were seen for PCI-15B cells 

(p=0.004 and p=0.016) when treated with 0.1 µM erlotinib and 40 pM STAT3 decoy.  Cumulative results 

are shown from five separate experiments. 
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3.3.3 Targeting EGFR and STAT3 in an in vivo SCCHN preclinical model results in 

enhanced antitumor effects 

To determine the therapeutic efficacy of combining an EGFR inhibitor with the STAT3 

decoy in vivo, a xenograft model of SCCHN was used.  Mice bearing 1483 tumors were treated 

with the STAT3 decoy or mutant control decoy by intratumoral injection with erlotinib or the 

vehicle control by oral gavage for two weeks (Figure 14).  The STAT3 decoy inhibited growth of 

1483 tumors compared to the mutant control decoy (p<0.05 from day 8 to the end of the 

experiment) (Figure 14A and B).  Erlotinib and the mutant control decoy also decreased tumor 

volume compared to the mutant control decoy alone (p<0.05 at day 15) (Figure 14A and 14C).  

The combination of the STAT3 decoy and erlotinib did not significantly reduce tumor growth 

compared to the STAT3 decoy alone (p=0.393 at day 15).  This is because treatment with the 

STAT3 decoy alone was so effective at inhibiting tumor growth, the 50 μg/day STAT3 decoy 

used in the experiment was too high to observe any enhanced growth inhibition when combined 

with erlotinib.  However, two mice whose tumors were treated with the STAT3 decoy and 

erlotinib completely disappeared (Figure 14C).   
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Figure 14.  The STAT3 decoy inhibits SCCHN cell growth in vivo. 

(A) 1483 cells (1x106) were inoculated subcutaneously in the right and left flanks of 10 athymic nude 

mice.  After 14 days, the tumors were palpable and mice were randomized into two treatment groups.  

The tumor on the left flank was injected with the mutant control decoy and the tumor on the right flank 

was treated with the STAT3 decoy (50 μg) daily for 14 days.  Additionally, five mice received erlotinib 

(90 mg/kg) and five mice received vehicle control by oral gavage.  The median tumor volumes are shown.  

(B) and (C) Photographs showing the dramatic decrease in tumor volume when the STAT3 decoy was 

injected (right flanks) compared to the mutant control decoy (left flanks).  The mice in (C) received 
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erlotinib as well, and two of those mice whose tumors received the STAT3 decoy and erlotinib had no 

detectable tumor as early as day 17 after tumor inoculation (indicated by asterisks). 

 

3.3.4 Combining STAT3 and Bcl-XL inhibitors enhances antiproliferative effects in 

SCCHN cell lines 

The STAT3 decoy was combined with (-)-gossypol in UM-22B and PCI-15B cells, and 

cell viability was assessed using trypan blue dye exclusion assay after 72hrs to determine the 

antiproliferative efficacy of combined inhibition of STAT3 and Bcl-XL.  Treatment of PCI-15B 

cells with the STAT3 decoy resulted in 54.2 % (± 4.2 %) survival.  Treatment with the mutant 

control and (-)-gossypol resulted in 56.4 % (± 5.1 %) survival.  Combined treatment of PCI-15B 

cells with the STAT3 decoy and (-)-gossypol resulted in 38.7 % (± 4.0 %) survival.  Therefore, 

in PCI-15B cells, the combination of STAT3 decoy and (-)-gossypol significantly inhibited cell 

proliferation compared to either the STAT3 decoy alone, or the mutant control decoy with (-)-

gossypol (p=0.0278 and p=0.0278, respectively) (Figure 15B).  A similar trend was observed in 

UM-22B cells, where treatment with the STAT3 decoy resulted in 61.8 % (± 7.1 %) survival, 

treatment with the mutant control and (-)-gossypol resulted in 51.5 % (± 9.3 %) survival, and the 

combined treatment of the STAT3 decoy and (-)-gossypol resulted in 40.3 % (± 7.4 %) survival.  

Although the enhancement of growth inhibition elicited by the STAT3 decoy and (-)-gossypol 

was not statistically significant when compared to the STAT3 decoy alone (p=0.075) or to the 

mutant control and (-)-gossypol (p=0.155), the same trend was observed as that seen in the PCI-

15B cell line (Figure 15A).  These data indicate that the combination of the STAT3 decoy and (-

)-gossypol enhance antiproliferative effects compared to either agent alone.  
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Figure 15.  A combination of the STAT3 decoy with (-)-gossypol inhibits growth of head 

eated with 10 pM STAT3 decoy or mutant control decoy for 4h followed by 

3.3.5 A combination of EGFR, STAT3 and Bcl-XL inhibitors enhances antiproliferative 

effects in SCCHN cell lines 

We next investigated the antitumor efficacy of combined inhibition of EGFR, STAT3, 

and Bcl-XL using a combination of erlotinib, the STAT3 decoy, and (-)-gossypol.  We treated 

and neck cancer cells. 

(A) UM-22B cells were tr

treatment with 3 µM (-)-gossypol for 72h.  Cell counts were then performed using trypan blue dye 

exclusion.  Combining the STAT3 decoy with (-)-gossypol augmented cell growth inhibition compared to 

STAT3 decoy alone or mutant control and (-)-gossypol in UM-22B (p=0.075 and p=0.155, respectively).  

(B) Similar results were seen when PCI-15B cells were treated with 40 pM STAT3 decoy and 3 µM (-)-

gossypol (p=0.0278 and p=0.0278).  Cumulative results are shown from five separate experiments  
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UM-22B cells with 5 μM erlotinib, 10 pM STAT3 decoy, and 3 μM (-)-gossypol and compare

it to cells treated with the STA

d 

T3 decoy alone or the combination of erlotinib, the mutant control 

decoy, and (-)-gossypol.  After 72hrs, we performed cell counting using trypan blue dye 

exclusion assay, and found that the combination of erlotinib, the STAT3 decoy, and (-)-gossypol 

resulted in 21.3 % (± 4.1 %) survival.  Treatment with the STAT3 decoy alone resulted in 54.3 % 

(± 3.4 %) survival, while treatment with erlotinib, the mutant control, and (-)-gossypol resulted 

in 30.7 % (± 2.2 %) survival (Figure 16A).  The triple combination of erlotinib, the STAT3 

decoy, and (-)-gossypol significantly inhibited survival compared to either the STAT3 decoy 

alone (p=0.004) or compared to erlotinib, the mutant control, and (-)-gossypol (p=0.0476).  

Similar results were seen with PCI-15B cells, where erlotinib, the STAT3 decoy, and (-)-

gossypol significantly inhibited survival compared to the STAT3 decoy alone (p=0.004) or 

erlotinib, the mutant control decoy, and (-)-gossypol (p=0.008) (Figure 16B). 
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Figure 16.  Combining erlotinib, STAT3 decoy and (-)-gossypol further enhances growth 

inhibition but not apoptosis in SCCHN cells compared with treatment using either the 

STAT3 decoy alone or a combination of erlotinib, mutant control decoy, and (-)-gossypol. 

(A) UM-22B cells were plated in 96-well plates and treated with 5 μM erlotinib, 10 pM STAT3 decoy 

and/or 3 μM (-)-gossypol.  Cell counts were performed by trypan blue dye exclusion at 72h.  Combining 

erlotinib, STAT3 decoy and (-)-gossypol enhanced cell growth inhibition compared to STAT3 decoy 

alone (p=0.004) or erlotinib, mutant control, and (-)-gossypol (p=0.0476).  (B) Similar results were seen 

with PCI-15B treated with 0.1 μM erlotinib, 40 pM STAT3 decoy and 3 μM (-)-gossypol (p= 0.004 and 

0.008, respectively).  Cumulative results are shown from five separate experiments. 
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3.3.6 A combination of EGFR, STAT3 and Bcl-XL inhibitors does not increase induction 

of apoptosis in an SCCHN cell line 

To investigate the effect of combined targeting of EGFR, STAT3, and Bcl-XL on 

apoptosis, 1483 cells treated with erlotinib, the STAT3 decoy, and/or (-)-gossypol were 

harvested after 24 hrs and whole cell lysates subjected to Western blot analysis for PARP and 

cleaved PARP, procaspase 3 and caspase 3, and β-tubulin (loading control) (Figure 17A).  

Treatment of 1483 cells with combinations of the STAT3 decoy with erlotinib and/or (-)-

gossypol appears to decrease total PARP levels.  Yet, we do not observe any increase in the 

cleaved form of PARP.  Also, procaspase 3 levels and activated caspase 3 levels are not altered 

upon treatment.  Densitometry was performed to quantify the ratio of PARP to cleaved PARP 

(Figure 17B).  Treatment with the double combinations (STAT3 decoy in combination with 

either erlotinib or (-)-gossypol) both appear to decrease the PARP/cleaved PARP levels 

compared to the mutant control (0.69 ± 0.09 and 0.64 ± 0.23, respectively).  Treatment with the 

triple combinations (erlotinib, the mutant control, and (-)-gossypol or erlotinib, the STAT3 

decoy, and (-)-gossypol) appear to further decrease the PARP/cleaved PARP ratio (0.47 ± 0.13 

and 0.50 ±  0.11, respectively) compared to the double combinations.  Yet, when the ratios of 

PARP to cleaved PARP for all of the treatment groups were compared using a nonparametric 

Kruskal Wallis Test, there was no significant difference between them (p=0.205).  These results 

indicate that treatment with the STAT3 decoy in combination with erlotinib and/or (-)-gossypol 

does not increase apoptosis of 1483 cells after 24 hrs. 
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Figure 17.  Combined inhibition of STAT3 with erlotinib and (-)-gossypol does not 

significantly  increase apoptosis in vitro. 

(A)  1483 cells were treated with the STAT3 decoy (2 pM), erlotinib (3.5 μM), and/or (-)-gossypol (3 

μM) for 24 hrs. Cisplatin (40 μM) was used as a positive control for apoptosis induction.  Cell lysates 

were collected and immunoblotted for PARP, cleaved PARP, procaspase 3 and caspase 3, and β-tubulin 

(loading control).  The experiment was performed three times with similar results to those shown above.  

(B)  Densitometry was performed on three separate immunoblots to analyze the ratio of PARP to cleaved 

PARP as a measure of induction of apoptosis. 
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3.4 DISCUSSION 

Because there are no published reports of IC50 concentrations for erlotinib, the STAT3 

decoy, or (-)-gossypol in the UM-  P  SCCHN cell lines, dose-response 

experiments were performed to determine the IC50 values of erlotinib, the STAT3 decoy, or (-)-

gossyp

linical studies have focused on combining EGFR inhibitors or Bcl-XL 

inhibitors with standard treatments—either radiation or chemotherapy [148, 159, 160, 162-164, 

22B, CI-15B or 1483

ol (Table 5).  IC50 values for erlotinib have not been reported for the cell lines used in our 

experiments, but have been reported for other EGFR overexpressing cancer cell lines including 

breast, colon, and head and neck, and vary from 100 nM to 7 μM [218].  The human esophageal 

squamous cell carcinoma cell lines Kyse-30, Kyse-70, and Kyse-140 had IC50s of 13.9 μM, 19.2 

μM, and 0.7 μM , respectively [219].   We found that the IC50 value for either erlotinib or the 

STAT3 decoy varied amongst the three cell lines examined (0.33 μM to 10 μM and 2.05 pM to 

38.3 pM, respectively).  One group reported a mean IC50 value of 5.30 (± 1.55) μM of (-)-

gossypol in 10 SCCHN cell lines, which is comparable to the 3.0 μM IC50 we calculated using 

our cell lines [181].  To perform combination experiments, in order to assess an enhanced effect 

on cell growth or apoptosis, the IC50 values of the STAT3 decoy and (-)-gossypol were used, 

while half of the IC50, or the IC25 concentration was used for erlotinib.  This is because the 

sigmoidal dose response curves for the STAT3 decoy and (-)-gossypol in the SCCHN cell lines 

was quite steep, indicating that the IC25, IC50, and IC75 concentrations are within a very narrow 

range (data not shown).   

Because of the complexity of signaling pathways and the multi-level cross-stimulation of 

parallel pathways in a cell, novel inhibitors have not performed satisfactorily as monotherapies in 

clinical trials [220].  Prec
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168, 16

orts of combined inhibition of STAT3 and 

EGFR 

9, 182, 187, 221, 222].  Because no STAT3 inhibitor has reached the clinic to date, there 

is no clinical data on the therapeutic efficacy of a STAT3 inhibitor in combination with either 

standard treatments or experimental treatments such as EGFR or Bcl-XL inhibitors.  Therefore, 

the strategy of combined targeting of molecules in a pathway whose component proteins are up-

regulated in cancer has only begun to be explored.   

For example, investigations of the clinical efficacy of combined targeting for the 

treatment of NSCLC reported increased response rates, prolonged time to progression of disease, 

and increased median survival time for patients that received inhibitors targeting VEGF and 

EGFR [220].  To date, there are few published rep

and no published reports of combined inhibition of STAT3 and Bcl-XL.  One study 

showed enhanced growth inhibition of an human cervical cancer cell line overexpressing EGFR 

when an EGFR inhibitor and a STAT3 inhibitor were combined in vitro [223].  The SCCHN cell 

lines were treated with the transcription factor decoy targeting STAT3, combined with either the 

EGFR tyrosine kinase inhibitor erlotinib, or the Bcl-XL inhibitor, (-)-gossypol.  The effects on 

cell survival were investigated in vitro and the data indicate that combining the STAT3 decoy 

with either erlotinib or (-)-gossypol enhances inhibition of cell growth.  Results also indicate that 

the STAT3 decoy combined with erlotinib in vivo did not significantly decrease the growth of 

1483 xenografts in nude mice, probably due to the striking efficacy of the STAT3 decoy alone at 

this particular concentration (50 μg/day).  This experiment should be repeated using a lower dose 

of STAT3 decoy (35 μg/day) in order to determine if the combination of the STAT3 decoy with 

erlotinib is therapeutically efficacious for SCCHN.   

Few studies investigating the therapeutic efficacy of combined targeting of three 

molecules have been reported.  The combined inhibition of EGFR, its downstream signaling 

 93



molecule, PKA, and the downstream target gene, COX-2 resulted in enhanced antitumor effects 

compared to single inhibitors or combinations of two inhibitors both in vitro and in vivo [224].  

Studies have shown that EGFR has a structural interaction with PKA, and that EGFR may 

activate expression of COX-2 [225-227].  One study performed in both colon and breast cancer 

in vitro and in vivo models combined EGFR, PKA, and Bcl-2/Bcl-XL inhibitors and again found 

that targeting multiple proteins in a pathway which are also points of convergence for other up-

regulated pathways that control proliferation, apoptosis, angiogenesis, and metastasis was 

therapeutically efficacious [224].  Our study combined EGFR, STAT3, and Bcl-XL inhibitors 

and found enhanced growth inhibition but we did not observe an induction of apoptosis in vitro 

after 24 hrs in 1483 cells.  Regardless, given the growth inhibitory effects observed, the triple 

combination of the STAT3 decoy, erlotinib, and (-)-gossypol may be an efficacious treatment 

modality for SCCHN. 
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4.0  CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 CONCLUSIONS 

This dissertation focused on two objectives: to elucidate the contribution if any of STAT1 

in the STAT3 decoy-mediated antitumor mechanism and to determine the therapeutic efficacy of 

combining the STAT3 decoy with EGFR and/or Bcl-XL inhibitors in preclinical models of 

SCCHN.  We found that the STAT1 pathway is intact in SCCHN cell lines, and that the STAT3 

decoy mitigates STAT1 signaling in vitro.  Downmodulation of STAT1 protein by transient 

transfection of STAT1 siRNA did not alter STAT3 decoy-mediated growth inhibition in SCCHN 

cell lines.  Similar results were seen when a STAT1 knockout cell line was transfected with the 

STAT3 decoy.  Therefore, STAT1 does not contribute to the growth inhibitory effects elicited by 

the STAT3 decoy.  Stimulation of the STAT1 pathway did not mitigate STAT3 decoy-mediated 

growth inhibition either.  Further studies using STAT3 knockout cells demonstrated that STAT3 

is necessary for STAT3 decoy-mediated growth inhibition.  These results lead us to conclude 

that the STAT3 decoy may be safely used as a therapy for cancers that express STAT3 and 

STAT1.  Also, this study provides evidence that the mechanism of any transcription factor decoy 

should be thoroughly explored.  Transcription factors form complexes with other transcription 

factors and co-activators whose signaling may also be affected by the use of a transcription 

factor decoy. 
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EGFR, STAT3, and Bcl-XL are all overexpressed in SCCHN and correlated with 

decreased survival, poor prognosis, and increased resistance to chemotherapy and radiation.  

These three proteins are related in that Bcl-XL is a downstream target gene expressed by the 

transcription factor, STAT3, which is activated in response to EGFR activation.  In addition, 

each protein is a point of convergence for many signaling pathways upregulated in SCCHN, 

including MAPK, PI3K/Akt, mTOR, Src, STAT5, and IL6/gp130.  We found that the 

combination of the STAT3 decoy, with either an EGFR inhibitor (erlotinib) or a Bcl-XL inhibitor 

((-)-gossypol) elicited enhanced growth inhibition in SCCHN cell lines compared to single 

treatments.  We also looked at the ability of the combinations of inhibitors to induce apoptosis, 

but we did not see a significant increase in apoptosis when the STAT3 decoy was combined with 

either erlotinib or (-)-gossypol.  Erlotinib is an FDA approved inhibitor, but there are currently 

no FDA approved Bcl-XL inhibitors, so we combined erlotinib with the STAT3 decoy in an in 

vivo model of SCCHN.  The STAT3 decoy elicited a strong growth inhibitory effect on SCCHN 

xenografts, which did not allow us to observe any effect of the combined treatment. 

4.2 FUTURE DIRECTIONS 

4.2.1 Investigation of other signaling molecules involved in the mechanism of the STAT3 

decoy 

Given the results implicating that the STAT3 decoy inhibits STAT1 signaling, we 

hypothesize that the STAT3 decoy may inhibit other molecules that are related to STAT3 or 

whose signaling pathways crosstalk with the STAT3 pathway such as STAT5 and mTOR.  
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STAT5 and mTOR are both up-regulated in cancer, particularly SCCHN, and are associated with 

STAT3 in various ways that are described in detail below.  Therefore, studies to further elucidate 

the mechanism by which the STAT3 decoy elicits antitumor effects in preclinical models should 

be performed to investigate if these proteins also play a role in the STAT3 decoy mechanism.  

After further elucidating the mechanism of the STAT3 decoy, investigations into the therapeutic 

efficacy of combined targeting approaches can also be performed. 

4.2.1.1 Role of STAT5 in the STAT3 decoy mechanism 

STAT5 is an oncogenic protein whose overexpression has been reported in a variety of 

malignancies, including breast, prostate, non-small cell carcinoma, melanoma, and SCCHN [2, 4, 

228-234].  STAT5 overexpression usually accompanies overexpression of STAT3, although the 

role of STAT5 overexpression in cancer is not clearly understood at this time [2, 3, 235].  

STAT5 does not share the same degree of homology with STAT3 as STAT1 does (about 62% in 

the DNA binding domain)—but the oncogenic effects of STAT5 have been clearly demonstrated 

in the literature.  The STAT5 pathway is intricately interwoven with that of STAT3—EGFR and 

Src are upstream mediators of STAT5 transcription of target genes, and the list of STAT5 target 

genes has considerable overlap with that of STAT3, including Bcl-XL.  Additionally, we have 

identified the formation of STAT3/5 heterodimers in SCCHN cell lines (unpublished data).  The 

role of the STAT heterodimers is unclear.  Studies to determine if STAT3 decoy binding to 

STAT3 disrupts STAT3/5 heterodimer formation and/or signaling should be performed to further 

elucidate the mechanism of the STAT3 decoy and determine a possible role for STAT5 in the 

STAT3 decoy-mediated antitumor effects.  In addition, the prolactin receptor specifically 

activates STAT5 after stimulation with prolactin, resulting in the expression of STAT5 target 

genes, such as Pim-1 (a known oncogene) [236].  This signaling pathway can be used to study 
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the role of STAT5 in the STAT3 decoy mechanism just as we used the STAT1 pathway 

(stimulated by IFN-gamma, with IRF-1 as the target gene) in the studies described in Chapter 2 

of the dissertation.  Preliminary data suggest that prolactin receptor is expressed in UM-22B, 

PCI-15B, 1483, and UM-22A cells, and STAT5b is expressed in UM-22B, 1483, and UM-22A 

cells under normal culture conditions (Figure 18).    Dose-response and time course experiments 

should be performed to determine optimal concentration of PRL and the best time point to 

observe PRL-mediated induction of STAT5 phosphorylation and downstream signaling.  

Additionally, the STAT3 and STAT5 knockout MEFs would be useful in these experiments to 

examine the function of the STAT3/5 heterodimers, and to investigate their role in the STAT3 

decoy mechanism. 

 

Figure 18.  Prolactin receptor and STAT5b protein expression in SCCHN cell lines. 

Panel of SCCHN cell lines (UM-22B, PCI-15B, 1483, and UM-22A) were immunoblotted for the 

prolactin receptor (PRLR) and actin (loading control).   

 

We took an siRNA approach to examine the effects of STAT5b, but not STAT5a, on 

STAT3-decoy mediated growth inhibition.  Our lab previously demonstrated that STAT5b but 

not STAT5a is responsible for tumorigenesis of squamous cells in vitro [233], therefore, we 
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focused on two STAT5b siRNA duplexes (5’-AAGCCUGGGACUCAAUAGAUCUU-3’ and 

5’-AAGUACUACACACCGGUCCCCUU-3’) [237] from Dharmacon and tested them alone and 

in combination in UM-22B cells (Figure 19A).  The combination of both siRNA duplexes down-

regulated STAT5b protein levels at days 2 and 3.  The growth of the STAT5b siRNA-transfected 

 

cells did not differ from that of untransfected control UM-22B (Figure 19B).   

igure 19.  STAT5b is not necessary for STAT3 decoy-mediated growth inhibition of 

n of a combination of two STAT5b siRNA duplexes into UM-22B cells was performed 

 

F

SCCHN cells. 

(A)  Transfectio

and protein lysates from day 2 and 3 after transfection were immunoblotted for STAT5b or β-actin 

(loading control).  (B) Growth curves of untransfected and STAT5b siRNA-transfected UM-22B cells. 

(C) Cell viability of STAT5b siRNA transfected cells treated with the STAT3 decoy or GFP siRNA 

transfected control UM-22B cells.  The experiment was performed independently three times. 
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After optimizing STAT5b siRNA transfection conditions, transfectants were treated with 

either the STAT3 decoy or mutant control decoy (Figure 19C).  There was no significant 

difference between STAT5b siRNA-transfected cells or GFP-siRNA-transfected control cells 

treated with the STAT3 decoy (43.3 % ± 6.0 % survival compared to 35.9 % ± 7.4 % survival, 

respectively, p=0.3155).  The STAT5b siRNA data was confirmed by the previously described 

like STAT1, STAT5b may not be necessary for STAT3 decoy-mediated growth inhibition in 

STAT3 decoy-mediated growth inhibition should be performed.   

experiment using the STAT5 knockout MEFs (Figure 12B and 12D).  These results indicate that 

SCCHN cells.  Further experiments to determine if stimulation of the STAT5 pathway mitigates 

4.2.1.2 Role of mTOR in the STAT3 decoy mechanism 

target in SCCHN [238, 

239].  Crosstalk between m

downstream activation of mTOR.  mTOR-mediated downstream effectors include p70S6 kinase 

eukaryotic initiation factor 4E (eIF4E), a protein that regulates cell growth.  Gene amplification 

tumor progression and a marker for tumor recurrence [245, 246].   

r in glioblastoma 

preclinical models, synergistic antitumor effects were observed [240].  mTOR has also been 

Studies have provided strong evidence for mTOR as a therapeutic 

TOR and the following signaling pathways has been demonstrated: 

EGFR, STAT3, NF-κB, and the prolactin receptor (PRLR) [240-244].  EGFR signals not only 

through the STAT3 pathway, but also through the PI3K-Akt pathway with subsequent 

(P70S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), which both regulate 

eukaryotic protein translation.  In particular, unphosphorylated 4E-BP1 binds to and represses 

and overexpression of eIF4E protein has been reported in SCCHN, and is associated with both 

When an mTOR inhibitor was combined with an EGFR inhibito
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shown 

olimus, Novartis Oncology) may result in 

synergi

to mediate serine phosphorylation (at serine 727) in the transactivation domain of STAT3, 

resulting in maximal activation of STAT3 [241, 243].  Given the crosstalk of mTOR with 

STAT3, we hypothesize that the STAT3 decoy may inhibit the mTOR pathway, contributing to 

the antitumor effects elicited by the STAT3 decoy. 

Also, we hypothesize that combining the STAT3 decoy with an mTOR inhibitor, such as 

rapamycin (RAPA, sirolimus) or RAD001 (ever

stic antitumor effects for SCCHN.  Rapamycin is an antibiotic that has displayed 

antiproliferative and antitumor activity and analogs of rapamycin are in clinical trials [247].  

RAD001, an mTOR specific inhibitor that exhibits antiangiogenic activity by inhibition of 

VEGF production and cell proliferation [240], is orally administered and currently under phase I 

and II clinical trials for multiple tumor types.  To date, no one has investigated the therapeutic 

effects of combined targeting of STAT3 and mTOR.  Rao et al. found that combining an mTOR 

inhibitor (rapamycin) with an EGFR inhibitor resulted in synergistic antitumor effects in 

glioblastoma multiforme cell lines [240].  Preclinical in vitro studies combining the STAT3 

decoy with an mTOR inhibitor would determine if combined inhibition of STAT3 and mTOR 

synergistically decreases cell survival, increases apoptosis, or decreases invasion.  This 

therapeutic strategy can also be investigated in vivo using SCCHN xenograft-bearing nude mice 

treated with the STAT3 decoy or mutant control decoy with or without systemic administration 

of RAD001.  Such a therapeutic strategy could be efficacious for the treatment of malignancies 

in which both STAT3 and mTOR are up-regulated. 
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4.2.2 Determining the molecular pathways affected by combined targeting of EGFR and 

STAT3 in vivo 

To determine if combined targeting of EGFR and STAT3 with erlotinib and the STAT3 

decoy alters SCCHN signaling in vivo, tumors from the mice treated with combinations of the 

STAT3 decoy or mutant control and/or erlotinib (Figure 14) were harvested and lysates were 

prepared.  50 μg protein lysate will be immunoblotted for STAT3 target gene protein expression 

including Bcl-XL, VEGF, and Cyclin D1, and phosphorylation of EGFR and proteins 

downstream, including mTOR and p70S6 kinase.  We expect that treatment with the STAT3 

decoy decreased expression of the STAT3 target genes Bcl-XL, VEGF, and cyclin D1, indicating 

that the STAT3 decoy inhibited the intended target.  Treatment with erlotinib should inhibit 

phosphorylation of EGFR, as well as activation of proteins downstream of EGFR, specifically 

mTOR and p70S6 kinase.  Such results would indicate that the STAT3 decoy inhibits STAT3 

activity and that erlotinib inhibited activation of EGFR and subsequent downstream signaling.  

These experiments assessing intracellular signaling and pathway activation in xenografts should 

indicate if there is any benefit to combining erlotinib with the STAT3 decoy at the 

concentrations used on a molecular level.  In addition, this experiment should be repeated with a 

lower dose of STAT3 decoy (35 μg/day).  This lowering of the STAT3 decoy concentration from 

the previous experiment should reduce the growth inhibitory effects in the xenografts, and allow 

us to assess if the combination of the STAT3 decoy with erlotinib reduces tumor growth in vivo. 
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4.2.3 Future studies to investigate the therapeutic potential of EGFR, STAT3, and Bcl-XL 

combined targeting for SCCHN 

Studies to investigate the mechanism by which combined targeting of EGFR, STAT3, 

and Bcl-XL elicits growth inhibition in vitro will be conducted.  Western blotting for EGFR 

activation, STAT3 activation, and downstream signaling of EGFR (mTOR, p70S6 kinase) and 

STAT3 (Bcl-XL, cyclin D1, VEGF, MMP-2, MMP-9) will be performed.   

We found that apoptosis was not induced by combined targeting of erlotinib, the STAT3 

decoy, and/or (-)-gossypol in vitro.  These results are contrary to previous reports using the 

STAT3 decoy [54] or (-)-gossypol [179, 181, 184] in which apoptosis was induced.  24 hrs may 

not be the optimal time point to investigate PARP cleavage.  The experiment will be repeated at 

earlier time points (10 minutes, 1 hr, and 12 hrs).  To determine the effects of the triple 

combination of inhibitors, apoptosis will also be measured by procaspase 3 activation using an 

ELISA and by annexin V staining and subsequent cell counting of annexin V positive cells to 

determine induction of apoptosis.  Flow cytometry will also be performed for propidium iodide 

staining to investigate changes in the cell cycle upon treatment of SCCHN cells with erlotinib, 

the STAT3 decoy, and/or (-)-gossypol.  The growth inhibitory effects observed in our study may 

be due to inhibition of cell cycle progression as well. 

The combined targeting of EGFR, STAT3, and Bcl-XL with erlotinib, the STAT3 decoy 

and (-)-gossypol inhibited the growth of SCCHN cells in vitro.  This therapeutic strategy will be 

investigated in an in vivo model of SCCHN.  Nude mice bearing human SCCHN xenografts on 

their dorsal flanks will be treated with the STAT3 decoy delivered by intratumoral injection with 

erlotinib by oral gavage and/or (-)-gossypol by intraperitoneal injection.   
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4.2.4 Limitations of the STAT3 decoy as a treatment for SCCHN and other malignancies 

This dissertation has focused on the STAT3 decoy as a treatment for SCCHN.   We and 

others have documented the therapeutic efficacy of the STAT3 decoy for SCCHN and other 

malignancies [54-56].  Yet, limitations to the STAT3 decoy as a treatment in the clinic must be 

considered.  The delivery of the STAT3 decoy by intratumoral injection is a substantial 

limitation to its use in the clinic.  SCCHN is one disease in which the tumor is accessible in 

many cases, but very few malignancies have this characteristic, limiting the diseases for which 

the STAT3 decoy can be administered.  Another limitation is the daily treatment regimen used in 

our in vivo experiments.  In vivo studies should be performed to determine the maximum 

tolerated dose of the STAT3 decoy via intratumoral injection.  Also, in vivo experiments to 

determine if dose of STAT3 decoy can be increased and the frequency of administration can be 

decreased should be performed because it is unrealistic to design a drug for the clinic that must 

be administered by intratumoral injection daily.  Daily intratumoral injection has been the 

standard treatment regimen in our in vivo experiments.  In cells, most unmodified DNA or RNA 

oligos have a half-life of 15 minutes or shorter [248].  Preliminary data has determined the 

STAT3 decoy remains intact as a double-stranded oligo for no more than 15 minutes in vivo 

(data not shown).  To determine if the STAT3 decoy functions as a single-stranded decoy, in 

vitro and in vivo experiments comparing double- and single-stranded STAT3 decoy should be 

performed.  One group reported that single-stranded STAT3 decoy induced apoptosis in prostate 

cancer cell lines in vitro and in vivo, indicating that annealing the STAT3 decoy may be 

unnecessary [40].   

To increase biostability of the STAT3 decoy, chemical modifications can be made in 

addition to the phosphorothioate modification currently performed during synthesis.  By 
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modifying the STAT3 decoy using peptide nucleic acid (PNA) technology, the STAT3 decoy 

efficacy may be improved.  PNAs are synthetic mimics of DNA that have a modified 

deoxyribose phosphate backbone that is uncharged and flexible, resulting in increased binding 

affinity for complementary sequences and biostability [249].  Also, because PNAs have an 

uncharged polyamide backbone, they are not subject to the same degree of non-specific binding 

seen by DNA duplexes, and the half-life is at least 48 hrs [248].  Another advantage to PNAs is 

that they can be administered at high concentrations without toxicity.  One study found that a 

Sp1 decoy with PNA modification inhibited Sp1 transcription, resulting in decreased expression 

of urokinase-type plasminogen activator receptor [250].  By combining the STAT3 decoy with 

PNA technology the biostability and antitumor efficacy of the STAT3 decoy could be improved.  

Yet, a distinct disadvantage to PNA technology is the low rate of cellular uptake observed in 

preclinical studies.  Fisher et al. reported that binding of an NF-κB transcription factor decoy to 

complementary PNA  linked to a cell-penetrating peptide (transportan) increased cellular uptake 

and decreased concentrations necessary to inhibit NF-κB binding activity in vitro [251].  Such a 

strategy could be applied to the STAT3 decoy as well to increase cellular uptake and subsequent 

antitumor effects. 

4.3 CONCLUDING REMARKS 

This dissertation has focused on the STAT3 transcription factor decoy previously 

designed in our laboratory.  We have investigated the mechanism by which the STAT3 decoy 

elicits antitumor effects in SCCHN preclinical models.  We found that the STAT3 decoy inhibits 

STAT1 signaling but that neither loss nor activation of STAT1 mitigates STAT3 decoy growth 
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inhibition.  Also, we demonstrated that STAT3 is necessary for the STAT3 decoy-mediated 

growth inhibition.  Our results provide rationale for mechanistic studies of transcription factor 

decoys.  We then went on to investigate the therapeutic efficacy of combining the STAT3 decoy 

with an EGFR inhibitor and/or a Bcl-XL inhibitor.  We found that the triple combination of 

erlotinib, the STAT3 decoy, and (-)-gossypol resulted in enhanced growth inhibition of SCCHN 

cell lines in vitro.  The studies performed for this dissertation have further characterized the 

STAT3 decoy as a therapeutic modality for SCCHN and provided evidence for combined 

targeting of EGFR, STAT3, and (-)-gossypol as a treatment strategy for this malignancy. 
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ABSTRACT 

 

We previously developed a transcription factor decoy targeting STAT3 and reported 

antitumor activity in both in vitro and in vivo models of squamous cell carcinoma of the head and 

neck (SCCHN). Based on the known existence of STAT1-STAT3 heterodimers, the high 

sequence homology between STAT1 and STAT3, as well as expression of both STAT1 and 
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STAT3 in SCCHN, we examined whether the STAT3 decoy interferes with STAT1 signaling. 

SCCHN cell lines with different STAT1 expression levels (but similar STAT3 levels) were used. 

Both cell lines were sensitive to the growth inhibitory effects of the STAT3 decoy compared to a 

mutant control decoy. Intact STAT1 signaling was demonstrated by interferon-gamma (IFN-γ)-

mediated induction of STAT1 phosphorylation (Tyr701) and interferon-regulatory factor-1 (IRF-

1) expression. Treatment with the STAT3 decoy (but not a mutant control decoy) resulted in 

inhibition of IRF-1 protein expression in both cell lines, indicating specific inhibition of STAT1 

signaling by the STAT3 decoy. As STAT1 is a potential tumor suppressor, we also investigated 

whether the therapeutic efficacy of the STAT3 decoy was mitigated by STAT1 signaling. In both 

PCI-15B and UM-22B cells, STAT1 siRNA treatment resulted in decreased STAT1 expression, 

without altering the antitumor activity of the STAT3 decoy. Similarly, the antitumor effects of 

the STAT3 decoy were not altered by STAT1 activation upon IFN-γ treatment. These results 

suggest that the therapeutic mechanisms of STAT3 blockade using a transcription factor decoy 

are independent of STAT1 activation. 

 

 

INTRODUCTION 

 

Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a potential 

molecular target for cancer therapy. STAT3 is constitutively activated and over-expressed in a 

variety of human malignancies, including breast, lung, prostate, brain, leukemia, multiple 

myeloma as well as squamous cell carcinoma of the head and neck (SCCHN) (Grandis et al., 

1998; Turkson and Jove, 2000). The expression levels of activated or tyrosine phosphorylated 
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STAT3 have been reported to correlate with decreased survival in several cancers, including oral 

tongue carcinoma (Masuda et al., 2002). Molecular targeting of STAT3 using a variety of 

strategies in preclinical models of human cancer has been shown to inhibit tumor growth 

(Turkson and Jove, 2000). We previously developed a transcription factor decoy based on the 

STAT3 DNA binding element and demonstrated that this decoy interferes with STAT3 signaling 

and decreases SCCHN tumor growth in vitro and in vivo (Leong et al., 2003; Xi et al., 2005).  

Transcription factor decoys are double-stranded DNA oligonucleotides that resemble the 

transcription factor-binding site in the promoters of target genes. Transcription factor decoys 

presumably bind transcription factors and sequester the targeted transcription factor, rendering it 

unavailable for transcription of downstream target genes. The sequence of the STAT3 decoy was 

derived from the serum-inducible element (SIE) of the human c-fos promoter. The therapeutic 

effects of the STAT3 decoy have also been demonstrated by another group in a chemically-

induced skin carcinogenesis model (Chan et al., 2004) as well as in psoriasis, where STAT3 

hyperactivation plays a major role (Sano et al., 2005). The regulation of STATs and the role of 

STAT proteins in carcinogenesis remain incompletely understood. Theoretically, targeting 

STAT3 using a transcription factor decoy approach may also affect the function of STAT3-

associated proteins. Elucidation of the antitumor mechanisms of a STAT3 transcription factor 

decoy is necessary to optimize the design of clinical studies using this strategy to inhibit STAT3 

signaling.  

The protein sequence of STAT1 is 72% homologous with STAT3, and STAT1 has been 

shown to form heterodimers with STAT3. In contrast to the growth stimulatory and anti-

apoptotic functions of STAT3, STAT1 is generally recognized to have a tumor suppressor 

function (Bromberg et al., 1998; Bromberg et al., 1996; Chin et al., 1997; Thomas et al., 2004; 
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Xi et al., 2006).  Given the frequent expression of both STAT1 and STAT3 in cancers including 

SCCHN, we examined the effects of the STAT3 decoy on STAT1 signaling and the potential 

role of STAT1 in mediating the antitumor effects of the decoy in SCCHN. Our results 

demonstrate that while the STAT3 decoy disrupts STAT1 signaling, the therapeutic efficacy of 

the decoy is independent of STAT1 activation or expression levels.  

 

 

MATERIALS AND METHODS 

 

Plasmids and reagents: 

The Gamma-activated sequence (GAS)-containing luciferase reporter plasmid, pGAS-Luc, was 

purchased from Stratagene (La Jolla, CA). Human interferon-γ (IFN-γ) was obtained from Roche 

Applied Science (Indianapolis, IN). Antibodies against STAT1, phospho-STAT1 (Tyr701), 

STAT3, or phospho-STAT3 (Tyr 705) were purchased from Cell Signaling Technologies 

(Beverly, MA). Antibodies against IRF-1 (C-20) and beta-actin were from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA) and Oncogene Science, Inc (NY), respectively. Beta 

tubulin antibody (catalog number ab6046) was obtained from Abcam Inc. (Cambridge, MA). 

STAT1 (M-22) and STAT3 (C-20) antibodies used for electrophoretic mobility shift assay were 

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  Enhanced 

Chemiluminescence (ECL) kit was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, 

CA). Transfection reagents, Lipofectamine 2000 and Optifect were purchased from Invitrogen 

(Carlsbad, CA).  
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Cell culture and generation of stable clones: 

All head and neck squamous cell carcinoma cell lines (PCI-37A, 1483, PCI-15B, UM-22A, UM-

22B) were of human origin (Lin et al., 2006). 1483 was a kind gift from Dr. Gary Clayman (MD 

Anderson Cancer Center, Houston, TX) and UM-22A and UM-22B lines were provided by Dr. 

Thomas Carey (University of Michigan, Ann Arbor, MI). The PCI-37A and PCI-15B lines were 

created at the University of Pittsburgh (Heo et al., 1989). Cells were maintained in DMEM with 

10 % heat-inactivated fetal calf serum (Invitrogen, Carlsbad, CA) and 1x Penicillin/Streptomycin 

mix (Invitrogen, Carlsbad, CA) at 37°C with 5 % CO2. STAT3 knockout and wild-type mouse 

embryonic fibroblasts were provided by Dr. David Levy (NYU School of Medicine, New York, 

NY) and were maintained in DMEM with 10 % heat-inactivated fetal calf serum (Invitrogen, 

Carlsbad, CA) and 1X Penicillin/Streptomycin mix (Invitrogen, Carlsbad, CA) at 37°C with 5 % 

CO2 (Lee et al., 2002). STAT5A/B knockout and wild-type mouse embryonic fibroblasts 

provided by Dr. James Ihle (St. Jude Children’s Research Hospital, Memphis TN) were grown in 

DMEM with 10% heat-inactivated fetal calf serum and 1X Penicillin/Streptomycin mix at 37°C 

with 5 % CO2 (Teglund et al., 1998). U3A cells that do not express STAT1 were provided by Dr. 

Jacqueline Bromberg (Memorial Sloan Kettering Cancer Center, New York, NY). U3A cells 

were cultured in DMEM containing 10% Cosmic Calf Serum (Hyclone, Logan, UT) and 1X 

Penicillin/Streptomycin mix at 37oC with 5%  CO2 (Muller et al., 1993).  For the generation of 

stable clones, UM-22B cells were transfected with pGAS-Luc (Stratagene, La Jolla, CA, 

Catalog# 219093) or pIRF-1-Luc (Panomics Inc., Redwood City CA, Catalog # LR0039) and co-

transfected with pcDNA3.1 (+) carrying a G418 selection marker.  Two days after transfection, 

cells that stably expressed luciferase were selected by G418 treatment (2 mg/ml) and stable 
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clones were expanded. Expression of luciferase in these clones stably expressing either pGAS-

Luc or pIRF-1-Luc was confirmed by luciferase assays.  

 

STAT3 decoy and siRNA transfection: 

The STAT3 decoy and the mutant control decoy sequences (double-stranded 

dexoyribonucleotides with phosphorothioate modifications in the first three bases and last three 

bases of the sequences) were generated as previously described (Leong et al., 2003). The mutant 

control decoy, carrying a single base mutation, was used as a control as in previous studies 

(Leong et al., 2003; Xi et al., 2005). The DNAs were synthesized and purified using an 

oligonucleotide purification cartridge (OPC) method by the DNA Synthesis Facility at the 

University of Pittsburgh (Pittsburgh, PA). STAT1 siRNA SMART pool (catalog number MU-

003543-01) and STAT3 On-Target Plus SMART pool siRNA was purchased from Dharmacon 

(catalog number L-003544-00). Decoy transfection was performed as described in the 

manufacturer’s manual. In brief, SCCHN cells were plated (2.5-3 x 105/well in a 6 well tissue 

culture plate or 0.8 x 105/well in a 24 well tissue culture plate). Eighteen hours after plating, cells 

were transfected with 102.6-1026 pM STAT3 decoy or mutant control decoy as a control. For 

cytotoxicity studies, the transfection medium was replaced with complete DMEM after 5 hrs of 

transfection. For STAT1 signaling studies, IFN-γ was added into the transfection medium 1 hr 

after transfection. For siRNA transfection, 1200 pmoles of siRNA was used to transfect a T-75 

flask of cells. 

 

Electrophoretic mobility shift assay: 
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20 μg UM-22B cell lysate was incubated for 1 hr with STAT1 and/or STAT3 antibodies (Santa 

Cruz).  Radiolabeled high affinity serum inducible element (hSIE) duplex oligonucleotide or a 

mutant hSIE duplex oligonucleotide was incubated with the cell extract and antibodies (Wagner 

et al., 1990).  Samples were then run on 4% nondenaturing polyacrylamide gels which were 

dried at 65˚C for 1 hr.  Supershifted proteins were then visualized by autoradiography.   

 

 

 

Western blotting: 

Cells were lysed in western lysis buffer [1 % Nonidet-P40, 150 mM NaCl, 1 mM EDTA, 10 mM 

sodium phosphate buffer (pH 7.2), 0.25 mM DTT, 1 mM PMSF, 10 μg/ml leupeptin and 10 

μg/ml aprotinin] for 5 mins at 4°C. Lysates were then centrifuged at 4°C, 12000 rpm for 15 

mins, and supernatants were collected for protein quantitation. Protein quantitation was 

performed using the Protein Assay Solution (BioRad Laboratories, Hercules, CA). Proteins (50 

μg/lane) were then resolved on 10 % SDS-PAGE gels and transferred onto Trans-Blot 

nitrocellulose membranes (BioRad Laboratories, Hercules, CA) using a semi-dry transfer 

machine (BioRad Laboratories, Hercules, CA). Following transfer, membranes were incubated at 

4˚C overnight in blocking solution containing 5% non-fat dry milk, 0.2 % Tween 20 in 1 x PBS 

(TBST). Membranes were then incubated with primary antibody at room temperature for 2 hrs, 

then washed 3 times with TBST (10 mins/wash). The membranes were then incubated with 

secondary antibody for 1 h at room temperature, followed by 3 washes in TBST. Blots were 

developed using ECL, according to the manufacturer’s instruction (Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA).   
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MTT assay and cell counting: 

To determine survival of SCCHN cells in response to various treatments, MTT assays were 

performed in 24 well plates. MTT solution was prepared from MTT powder (Sigma, Catalog # 

M5655) in 1x PBS (final concentration of 5mg/ml). Twenty-four hrs after the STAT3 decoy 

treatment, MTT solution was added to each well and incubated at 37°C for 1 h. MTT solution 

was then removed and DMSO (300 µl) was added to each well. The optical density of each well 

was determined using a microplate reader set at 570 nm. The percentage cell proliferation was 

calculated using the following equation: Percentage proliferation = (Treatment/Untreated) x 100 

%. 

Cell counting experiments were performed using trypan blue dye exclusion assay.  Cells 

were trypsinized and after lifting off of the plate, trypsin was neutralized with DMEM.  Cells 

were centrifuged and pellet was resuspended in fresh media.  Cells were then combined with 

trypan and counted using a hemacytometer.  Cell proliferation was then calculated relative to the 

untreated control using the following equation: Percentage proliferation = (Treatment/Untreated) 

x 100 %. 

 

Luciferase assay: 

Stable clones of pGAS-Luc or pIRF-1-Luc were generated in the UM-22B cell line using G418 

selection media as described above.  Transient transfections of STAT3 decoy and mutant control 

decoy were performed as described above using 690 pM STAT3 decoy or mutant control decoy. 

5 hr after transfection, the transfection medium was removed and replaced with DMEM (10% 

FBS, 1X Penicillin/Streptomycin) with or without 200 U/ml of IFN-γ.  After 24 hours cells were 
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lysed in luciferase lysis buffer (0.05% Triton X-100, 2 mM EDTA and 0.1 M Tris-HCl at 

pH 7.8) for 5 mins on ice. Lysates were then centrifuged at 14,000 rpm for 5 min at 4°C. 

Supernatants were collected and assayed for luciferase activity using the luciferase assay kit 

from Promega (Madison, WI). Luminescence was measured with a luminometer (Wallac Inc., 

Gaithersburg, MD). Luciferase activity was normalized as relative light units per microgram of 

total protein in the supernatant (RLU/μg protein). Fold changes with reference to the untreated 

control were calculated. 

 

Statistical analysis: 

Using StatXact software with Cytel Studio (Cytel Software Corporation, Cambridge, MA, USA). 

P-values were obtained by the Wilcox-Mann-Whitney test (p < 0.05 was considered significant). 

 

 

RESULTS 

 

STAT3 decoy inhibition of SCCHN growth does not correlate with STAT1 levels 

Given the expression of both STAT1 and STAT3 in SCCHN, we investigated the potential role 

of STAT1 signaling on the antitumor activity of the STAT3 decoy in SCCHN cell lines. We first 

examined the expression levels of STAT1 and STAT3 in a panel of SCCHN cell lines, including 

PCI-37A, 1483, PCI-15B, UM-22A, and UM-22B in order to compare the effects of the decoy in 

cells expressing different levels of STAT1 (Fig. 1A).  STAT1 was expressed at high levels in 

two SCCHN cell lines (PCI-15B, and UM-22A), and expressed at relatively lower levels in 

PCI37A, 1483 and UM-22B. All five SCCHN cell lines expressed high levels of STAT3. Two 
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SCCHN cell lines, PCI-15B and UM-22B, which expressed similar levels of STAT3 but 

different levels of STAT1 protein, were then chosen for further study. PCI-15B expressed a 

higher level of STAT1 than UM-22B. As shown in Figure 1B, treatment of PCI-15B cells with 

690 pM STAT3 decoy resulted in only 34% (± 1.8%) proliferation at 24 hrs, while the mutant 

control decoy treatment resulted in 94.1% (± 6.7%) cell proliferation. In UM-22B, the SCCHN 

cell line expressing lower STAT1 levels, treatment with the STAT3 decoy resulted in 17.0% 

(±1%) cell proliferation, while the control decoy treatment resulted in 75.5% (± 1.1%) 

proliferation.  Similar results were observed by trypan blue dye exclusion assay (Figure 1C), in 

which the STAT3 decoy treatment resulted in 26.4% (± 8.9%) proliferation in UM-22B cells 

while the control decoy treatment resulted in 98.0% (± 2.3%) proliferation.  PCI-15B cells 

treated with the STAT3 decoy resulted in 43.9% (±1.4%) cell proliferation, and 101% (±5.0%) 

of the control decoy treated cells proliferated after 24 hrs.   These results demonstrate that 

SCCHN cell lines (PCI-15B and UM-22B) with high or low expression levels of STAT1, were 

equally sensitive to the cytotoxic effects of the STAT3 decoy. These results are supported by our 

previous observations that 1483, a SCCHN cell line with relatively lower levels of STAT1 and 

high levels of STAT3, was also sensitive to the cytotoxicity of the STAT3 decoy (Leong et al., 

2003; Xi et al., 2005).  

 

STAT1 signaling is intact in SCCHN cells  

Since the cytotoxic effect of the STAT3 decoy was not diminished in SCCHN cell lines over-

expressing STAT1, we next examined whether the STAT1 activation pathway was intact in 

SCCHN cells. IFN-γ is known to activate the STAT1 pathway through tyrosine phosphorylation 

of STAT1 (Tyr 701) and induction of the STAT1 target gene, IRF-1. Both PCI-15B and UM-
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22B cells were serum-starved for 48 hrs and then treated with IFN-γ for up to 24 hrs (Fig. 2). In 

both cell lines, short-term IFN-γ treatment induced a dramatic and persistent phosphorylation of 

STAT1 (Tyr 701) without significant changes in total STAT1 levels until the 24 hr time point. In 

addition, intact IFN-γ-induced STAT1 signaling was further demonstrated by the rapid induction 

of IRF-1 expression, a known STAT1 target gene.  Maximal IRF-1 induction was observed at 4 

and 24 hrs after IFN-γ treatment in both cell lines. In fact, IRF-1 expression persisted for up to 

72 hrs following IFN-γ treatment, although at much lower levels (data not shown). Therefore, 

STAT1 signaling is intact in SCCHN cell lines that are susceptible to the cytotoxic effects of the 

STAT3 decoy. 

 

STAT3 decoy disrupts STAT1 signaling 

We and others have previously shown that the STAT3 decoy inhibits STAT3 signaling in several 

disease models including SCCHN, skin cancer and psoriasis (Xi et al., 2005) (Chan et al., 2004; 

Leong et al., 2003; Sano et al., 2005). STAT1 shares the highest homology with STAT3 among 

the STAT family members and it is known to associate with STAT3 through direct heterodimer 

formation. Theoretically, targeting STAT3 using a transcription factor decoy approach may also 

affect the function of STAT3-associated proteins. Among the known STAT3-associated proteins, 

STAT1 is also of particular interest in this context because contrary to the growth stimulatory 

and anti-apoptotic functions of STAT3, STAT1 is generally recognized to have tumor suppressor 

functions (Xi et al., 2006). Therefore, we investigated the effects of the STAT3 decoy on STAT1 

signaling by examining the effects of the decoy on STAT1 transcriptional activity and STAT1 

target gene expression. SCCHN cells were stably transfected with a STAT1 reporter construct 

expressing luciferase from a pGAS-Luc, containing 4 gamma activated sequence (GAS) 
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enhancer elements, which are specific for STAT1 (Fig. 3A). In the absence of IFN-γ, the pGAS-

Luc stable cell line expressed a low level of luciferase (41.3 ± 1.4 RLU/µg protein), indicating a 

low level of endogenous STAT1 activation. Treatment with the STAT3 decoy slightly inhibited 

luciferase activity (13.2 ± 0.3 RLU/µg protein) when compared with the mutant control decoy 

(38.1 ± 1.5 RLU/µg protein). The pGAS-Luc stable cell line was highly responsive to IFN-γ, 

indicating intact STAT1 signaling. In the presence of IFN-γ, luciferase activity increased 

markedly by 57 fold (from 41.3 ± 1.4 to 2350 ± 39.6 RLU/µg protein). Treatment with the 

STAT3 decoy, but not the mutant control decoy, completely abrogated luciferase activity in the 

pGAS-Luc stable cell line (STAT3 decoy treatment: 25.8 ± 1.8 RLU/µg protein; control decoy 

treatment: 2260 ± 13.3 RLU/µg protein). We next investigated whether expression of the STAT1 

target gene, IRF-1, was affected by the STAT3 decoy. When SCCHN cells were treated with the 

STAT3 decoy for only 5 hrs (in the presence or absence of IFN-γ), induction of IRF-1 protein 

was markedly inhibited (Fig. 3B). Consistent with this result, we observed significant inhibition 

of IRF-1 transcriptional activity using a reporter gene system. A SCCHN cell line stably 

expressing an IRF-1-Luc reporter gene (carrying 6 copies of IRF-1-responsive element) was 

employed (UM-22B). Treatment with the STAT3 decoy, but not the mutant control decoy, 

completely abrogated the IFN-γ-induced expression of luciferase in the IRF-1-Luc stable cell 

line (Fig. 3C). We previously reported that the STAT3 decoy abrogates STAT3 DNA binding on 

gel shift assays (Leong et al., 2003). To determine the effect of the decoy on STAT dimers, we 

performed supershift experiments using STAT1 and/or STAT3-specific antisera. As shown in 

Figure 3D, STAT1 homodimers, STAT3 homodimers, as well as STAT1/3 heterodimers were all 

supershifted from the DNA binding complex on gel shift. Taken together, these results 

demonstrated that STAT3 decoy inhibited STAT1-mediated DNA binding and transcription. 
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These cumulative results suggest that the STAT3 decoy (but not the mutant control decoy) may 

sequester STAT1 in addition to STAT3 (or sequester STAT1/STAT3 heterodimer) and hence, 

disrupt STAT1 function and transcriptional activity.   

 

STAT1 does not mediate the cytotoxic effects of the STAT3 decoy 

STAT1 has been reported to function as a tumor suppressor in human cancer including SCCHN 

(Xi et al., 2006). We therefore investigated whether STAT1 contributes to the cytotoxic effects 

of the STAT3 decoy in SCCHN cells. STAT1 SMART pool siRNA was used to specifically 

down-regulate the expression of STAT1 in SCCHN cells. As shown in Figure 4A, STAT1 

siRNA transfection of UM-22B for 4 hrs resulted in a knockdown of STAT1 expression for up to 

6 days. Similar results were observed in PCI-15B cells (data not shown). To determine whether 

STAT1 knockdown using siRNA abrogated STAT1 signaling, we examined the effects of IFN-γ 

on IRF-1 expression in the presence and absence of STAT1 siRNA. As shown in Figure 4B, 

treatment of the SCCHN cells with STAT1 siRNA led to the failure of IFN-γ to induce IRF-1 

expression in these cells. In contrast, treatment of the same cells with siRNA directed against 

STAT3 did not mitigate IFN-γ induction of IRF-1 (Figure 4C). We then evaluated the impact of 

STAT3 decoy on cells transfected with STAT1 siRNA (or GFP siRNA as control). After 

transfection with STAT1 siRNA, cells were replated for STAT3 decoy treatment. After an 

additional 72 hrs, cell viabilities were determined. As shown in Figure 4D, STAT1 siRNA 

transfection did not alter the growth inhibitory effects of the STAT3 decoy in both PCI-15B and 

UM-22B cells. In PCI-15B cells, STAT3 decoy treatment resulted in 47.4 % (± 1.5 %) and 46.9 

% (± 4.3 %) cell proliferation in the GFP siRNA transfected and STAT1 siRNA transfected PCI-

15B cells, respectively. The mutant control decoy resulted in 83 % (± 6.2 %) and 81.3 % (± 4.1 
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%) cell proliferation in the GFP siRNA and STAT1 siRNA transfected PCI-15B cells, 

respectively. Similar results were observed in UM-22B cells where STAT3 decoy treatment 

elicited 54.5 % (± 1.3 %) cell proliferation in GFP siRNA transfectants, and 63.1 % (± 2.0 %) in 

STAT1 siRNA transfectants. The mutant control decoy failed to inhibit cell proliferation. To 

confirm these results in a genetically defined system, the effects of the decoy was examined in 

STAT1 knockout MEFs. As shown in Figure 4E the STAT3 decoy inhibited the growth of 

STAT1 deficient cells as well as cells derived from wild-type MEFs. These results suggest that 

expression of STAT1 neither contributes to nor is required for the cytotoxic effects of the 

STAT3 decoy in SCCHN cells.  

 

STAT1 activation does not alter the cytotoxicity of the STAT3 decoy 

We next examined whether activation of STAT1 by IFN-γ would affect the cytotoxicity 

of the STAT3 decoy. As shown in Figure 4F, treatment of STAT3 decoy-transfected cells with 

increasing doses of IFN-γ did not result in any significant changes in the cytotoxicity of the 

STAT3 decoy (p=0.9 in PCI-15B and p=0.6 in UM-22B). In PCI-15B cells, the percentage cell 

proliferation with the STAT3 decoy alone, or the STAT3 decoy plus IFN-γ was 17% ± 1.0 %, 

and 18.3% ± 0.17 %, respectively. Similar results were observed in UM-22B cells, where the 

STAT3 decoy alone, or the STAT3 decoy plus IFN-γ resulted in 10.7% ± 1.2 % and 13.1 ± 1.0 

% proliferation relative to control, respectively. Thus, activation of STAT1 pathway by IFN-γ 

does not alter the growth inhibitory effects of the STAT3 decoy in SCCHN cells. This suggests 

that the efficacy of the STAT3 decoy is independent of STAT1 activation, and that the STAT3 

decoy can inhibit tumor cell growth even in the presence of STAT1 signaling. 
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STAT3 is required for growth inhibition by the STAT3 decoy  

To determine if STAT3 is necessary for decoy-mediated cell killing, we examined the growth 

inhibitory effects of the decoy on STAT3 knockout and wild-type murine embryonic fibroblasts 

(MEFs) (a kind gift from Dr. David Levy). We first confirmed that the STAT3 knockout cells 

did not express STAT3 compared with the wild-type cells, and also found that both cell lines 

express comparable levels of STAT1 (data not shown). The MEFs were plated at a density of 5 x 

104 cells in 12 well plates and transfected with 1026 pM STAT3 decoy or mutant control decoy. 

Cell counts, performed after 24hrs of transfection demonstrated that the percentage survival of 

the STAT3 knockout MEFs treated with the STAT3 decoy was 81.8 ± 9% as compared to 29.5 ± 

6% survival of the wild-type MEF cells (Fig. 5A).  We previously reported a lack of cytotoxic 

effects of the STAT3 decoy on normal epithelial cells when used at a concentration of 250.3 nM 

without lipid-mediated transfection (Leong et al., 2003). To verify that the growth inhibition of 

the wild-type MEFs by the STAT3 decoy was due to the higher concentrations of the decoy used 

in this assay, we repeated the experiment using a lower concentration of the decoy that we 

previously used to treat the SCCHN cell lines (102.6 pM) and observed that the survival of wild-

type or STAT3 knockout MEFs was not impacted when this lower dose of the STAT3 decoy was 

employed (94% and 102%, respectively) (data not shown). To determine the specific 

requirement of STAT3 to mediate the growth inhibitory effects of the STAT3 decoy, cells 

derived from STAT5 deficient mice (and cells from their wild-type counterparts) were also 

treated with the high concentration of the STAT3 decoy. These cells have been previously 

reported to express STATs 1 and 3 (Teglund et al., 1998). In contrast to the results obtained in 

the STAT3-deficient cells, there was no difference in the effects of the STAT3 decoy on the 

growth of the STAT5 knockout cells or cells derived from their wild-type littermates (Fig. 5B). 
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These results indicate that STAT3 is specifically required for the antiproliferative effects of the 

STAT3 decoy.   

 

 

DISCUSSION 

 In this study, we investigated the potential role of STAT1 on the antiproliferative effects 

of a STAT3 transcription factor decoy and the reciprocal effects of the STAT3 decoy on STAT1 

signaling in SCCHN cells. STAT1 is a potential tumor suppressor that is known to associate with 

STAT3. Our results demonstrate that the STAT3 decoy inhibits SCCHN growth independent of 

STAT1 levels and STAT1 activation status. SCCHN cells with either high or low levels of 

STAT1 were equally sensitive to the growth inhibitory effects of the decoy. Down-regulation of 

STAT1 levels by siRNA or activation of STAT1 signaling by IFN-γ did not affect the growth 

inhibitory effects of the STAT3 decoy. In addition, we found that the STAT3 decoy disrupts 

STAT1 signaling, inhibits STAT1 target gene levels and STAT1 transcriptional activity. These 

results suggest that STAT1 does not contribute to the antitumor activity of the STAT3 decoy in 

SCCHN cells. Therefore, a STAT3 decoy has therapeutic potential for treating cancers with 

active STAT3 and STAT1 signaling. 

Transcription factor decoys are double-stranded DNA oligonucleotides that closely 

resemble the transcription factor-binding site (or DNA binding sequence) in the promoters of 

target genes. Decoys presumably bind and sequester the targeted transcription factor, rendering it 

unavailable for transcription of downstream target genes, thus resulting in specific transcriptional 

inhibition. A transcription factor decoy approach was originally used for the study of gene 

expression mediated by transcription factors (Cho et al., 2002; Gambarotta et al., 1996). Because 
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of the sequence specific characteristics of a transcription factor decoy, it is an attractive approach 

to target transcription factors. Transcription factor decoys targeting a variety of transcription 

factors have been developed for E2F, NF-κB, p53, AP-1, ets, Sp1 and estrogen receptor in a 

variety of disease models [reviewed in (Gambari, 2004)]. Many transcription factors have 

important roles in carcinogenesis and a number of transcription factor decoys have been shown 

to inhibit human cancer growth in preclinical models (Ahn et al., 2003; Alper et al., 2001; 

Ishibashi et al., 2000; Kuratsukuri et al., 1999; Leong et al., 2003; Xi et al., 2006). Both STAT1 

and STAT3 interact with other proteins and transcription factors. STAT1 binds to the TNFα 

receptor signaling complex and inhibit NF-κB (Wang et al., 2000). STAT1 has also been 

demonstrated to bind to p53 through protein-protein interactions (Townsend et al., 2004). 

STAT3, like STAT1, interacts with other factors including PIAS3, GRIM-19 and EZ1 (Chung et 

al., 1997; Nakayama et al., 2002; Zhang et al., 2003). Although the signal transduction events 

mediated by STAT1 and STAT3 were initially characterized in the context of DNA binding, it 

now appears that a co-activator mechanism that does not involve DNA binding, can explain 

some of the consequences of STAT activation. However, the effects of transcription factor 

decoys designed to inhibit a specific transcription factor, on other transcriptions factors or 

interacting proteins is largely unexplored.  

Theoretically, inhibition of a tumor suppressor function should lead to enhanced tumor 

growth. However, this does not seem to be the case when STAT1 signaling is inhibited by the 

STAT3 decoy. This could be explained by the fact that the function of STAT1 in cancer is still 

incompletely understood. In addition to a potential tumor suppressor role, STAT1 may also have 

other unknown functions such as regulation of apoptosis (Thomas et al., 2004). STAT1 

overexpression has been shown to induce chemosensitization in SCCHN (Xi et al., 2006) and 
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STAT1-deficient cells are resistant to tumor necrosis factor-alpha-induced apoptosis (Kumar et 

al., 1997). In addition, it is possible that the tumor suppressor activity of STAT1 is restricted to 

cancer development and not cancer progression. Therefore, abrupt inhibition of STAT1 activity 

by the decoy may not have an effect on cancer cell proliferation. In a syngeneic model murine 

squamous cell carcinoma, STAT1 deficiency in the host enhanced interleukin-12-mediated 

tumor regression (Torrero et al., 2006). These cumulative results suggest that the effects of 

STAT1 signaling on tumor formation and progression are likely dependent on the specific 

growth factors, cytokines and other transcription factors that are present in the tumor 

microenvironment. The ability of the decoy to inhibit STAT1 as well as STAT3 action, raises the 

possibility that the STAT3 decoy may have actions beyond inhibiting STAT3 in cancer cells, 

which might limit its potential usefulness as a therapeutic reagent. 

Our findings have several clinical implications. Although STAT1 and STAT3 (with 

relatively opposed functions) are both expressed in a wide variety of cancers, including SCCHN, 

targeting of STAT3 using a transcription factor decoy approach can still be safely used as an 

anticancer treatment since inhibition of STAT1 signaling does not mitigate the therapeutic 

efficacy of the STAT3 decoy. Molecular targeting using a transcription factor decoy approach 

should be accompanied by a careful examination of the effects on other transcription factors or 

proteins associated with the transcription factor that is being specifically targeted. In this case, 

targeting of STAT3 by the STAT3 decoy disrupts STAT1 signaling in SCCHN. Transcription 

factors are known to function in large multiprotein complexes comprising multiple regulatory 

proteins, co-factors and related DNA elements. Therefore, targeting using a transcription factor 

decoy approach may offer an advantage (compared with an siRNA or antisense approach) of 

simultaneously inhibiting multiple proteins in the transcription complex.  
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FIGURE LEGENDS 

 

Figure 1. STAT1 levels do not correlate with SCCHN growth inhibition by the 

STAT3 decoy. (A) Expression levels of STAT1 and STAT3 in a panel of SCCHN cell 

lines (PCI-37A, 1483, PCI-15B, UM-22A, UM-22B). Fifty micrograms of protein were 

loaded for immunoblotting with antibodies against STAT1 and STAT3. Beta-actin was 

performed as a loading control. (B) STAT3 decoy effects on proliferation in two SCCHN 

cell lines expressing different levels of STAT1. Both PCI-15B and UM-22B cells (0.6 x 

105 cells) were transfected with 690 pM STAT3 decoy or the mutant control decoy and 

compared with an untransfected control (untreated).  Inhibition of cell proliferation was 

determined by MTT assay at 24 hrs post-transfection. (C) STAT3 decoy effects on cell 

proliferation was also examined by trypan blue dye exclusion assays.  PCI-15B and UM-

22B cells were transfected with 690 pM STAT3 decoy or control decoy and compared to 

an untransfected control (untreated).  Experiments were performed in triplicate wells and 

performed 3 times with similar results.  

 

Figure 2. STAT1 signaling is intact in SCCHN cells. PCI-15B and UM-22B cells were 

first serum-starved for 48 hrs and then stimulated with IFN-γ (200 U/ml) for 10 mins, 30 

mins, 1, 4 and 24 hrs, respectively. The levels of phospho-STAT1 (Tyr 701), total 

STAT1, and IRF-1 were determined by immunoblotting (50 µg of protein were loaded). 

Beta-actin was performed as a loading control. The experiment was performed 3 times 

with similar results.  
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Figure 3. STAT3 decoy disrupts STAT1 signaling. (A) The STAT3 decoy inhibited the 

expression of STAT1 promoter activity in a cell line (UM-22B) stably expressing pGAS-

Luc. The stable cell line was transfected with 690 pM STAT3 decoy or the mutant 

control decoy. Luciferase assay was performed 24 hrs after transfection. Fold change was 

calculated with reference to the untransfected control (without IFN-γ). Experiments were 

performed in triplicate wells and performed a total of 3 times with similar results 

obtained in each independent experiment. (B) Expression of an IFN-γ-responsive STAT1 

target gene, IRF-1, was specifically down-regulated by the STAT3 decoy upon IFN-� 

treatment. SCCHN cells were transfected with the STAT3 decoy or mutant control decoy 

for a total of 5 hrs (in a 6 well plate). In the IFN-γ-treated group, IFN-γ (200 U/ml) was 

added 1 h after transfection for an additional 4 hrs. Cells were then collected for 

immunoblotting for IRF-1. Beta-actin was performed as a loading control. Experiments 

were performed a total of 3 times with similar results obtained in each independent 

experiment. (C) Specific down-regulation of the transcriptional activity of IRF-1 by the 

STAT3 decoy. A SCCHN cell line (UM-22B) stably expressing IRF-1-Luc was used to 

examine the effect of the STAT3 decoy on IRF-1 transcriptional activity. Cells were 

transfected with 690 pM of the STAT3 decoy or the mutant control decoy. Luciferase 

assay was performed 24 hrs after transfection. Fold change was calculated with reference 

to the untreated (no decoy or IFN-γ) IRF-1-Luc control cells. Experiments were 

performed in triplicate wells and independently performed 3 times with similar results.  

(D)  STAT 1 homodimers, STAT3 homodimers and STAT1/3 heterodimers can be 

supershifted from the DNA binding complex following treatment with the STAT3 decoy, 

but not the mutant control decoy.  20 μg whole cell lysate from UM-22B cells was 
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preincubated with STAT1 and/or STAT3 antibodies and then radiolabeled using hSIE or 

a mutant hSIE probe. 

 

Figure 4.  STAT1 does not contribute to the cytotoxic effects of the STAT3 decoy in 

SCCHN cells. (A) UM-22B cells (a T-75 flask) were transfected with 1200 pmoles of 

GFP siRNA (control) or STAT1 siRNA for 4 hrs. Cells were collected at days 2, 3 and 4 

for the analysis of STAT1 protein levels by immunoblotting. (B) Untreated, GFP siRNA, 

or STAT1 siRNA transfected UM-22B cells were stimulated with IFN-γ (200U/ml) for 4 

hrs.  Lysates were collected after 24 hrs and were immunoblotted for STAT1, IRF-1, and 

β-tubulin.  (C)  Untreated, GFP siRNA, and STAT3 siRNA transfected UM-22B cells 

were stimulated with IFN--γ (200U/ml) for 4 hrs.  Lysates were collected after 24 hrs and 

were immunoblotted for STAT3, IRF-1, and β-tubulin.  (D) Down-regulation of 

endogenous STAT1 by STAT1 siRNA did not affect the cytotoxic effects of the STAT3 

decoy in SCCHN cell lines. PCI-15B and UM-22B cells were first transfected with the 

STAT1 siRNA (or GFP siRNA as control) and plated for STAT3 decoy treatment. MTT 

assay was performed 72 hrs after decoy treatment. The percentage proliferation after 

STAT3 decoy treatment (filled bars) and the mutant control decoy (open bars) was 

calculated using untransfected cells as control. Experiments were performed in triplicate 

wells and independently repeated 3 times. (E) STAT3 decoy-mediated decrease in cell 

survival in STAT1 knockout cells in not significantly different from that of wild-type 

cells (p=0.5). STAT1 knockout cells (U3A) and wild-type MEFs were transfected with 

1026 pM STAT3 decoy or mutant control decoy.  After 24 hrs, cell counts using trypan 

blue dye exclusion assay were performed.  Experiment was performed independently in 
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triplicate 3 times.   (F) Activation of STAT1 signaling by IFN-γ did not affect the 

cytotoxic effects of the STAT3 decoy in HNSCC. Both PCI-15B and UM-22B cells were 

transfected with 540 pM of the STAT3 decoy or mutant control decoy. At 5 h after 

transfection, the transfection medium was removed and replaced with either complete 

DMEM, DMEM + 200 U/ml of IFN-γ. MTT assay was performed at 24 hrs after 

transfection. Experiments were performed in triplicate wells and independently 

performed in triplicate wells and independently performed 3 times with similar results. 

 

Figure 5. STAT3 is required for STAT3 decoy-mediated growth inhibition. (A) 

STAT3 knockout or wild-type MEFs (4 x 104 cells) were plated in 12-well plates and 

transfected with 1025 pM of the decoy or the mutant control decoy. Cell counts were 

performed 24hrs after transfection. EGFP control plasmid was used to measure 

transfection efficiency (80-90%). This figure represents cumulative results of three 

independent experiments. (B) STAT5 knockout or wild-type MEFs were plated in 12 

well plates and transfected with 1025 pM of the decoy or mutant control decoy.  Cell 

counts were performed 24 hrs after transfection, and the data represent the cumulative 

results of 3 independent experiments.  
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