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Chemical shift imaging (CSI) has been the mainstay of spectroscopic imaging because of 

its simple implementation, reliability and ease of image reconstruction. This technique has been 

widely used for observing the changes in the metabolic signature of tissues during evolving 

pathological and/or physiological conditions. CSI owes its ease of implementation and analysis 

to the Fourier encoding approach upon which is based. In this approach, the spectral-spatial 

information is encoded in a rectilinear fashion that favors the acquisition of very high-resolution 

information along the spectral axis and relatively low resolution along the spatial directions. For 

applications where higher spatial resolution is desired over a narrower spectral bandwidth, 

trajectory designs that repeatedly cross the center of k-space through the use of time-dependent 

gradients offer a convenient means to achieve significant speedups in data acquisition. This 

stems from the fact that the readout period could be used to acquire multiple spatial frequency 

values which, in turn, leads to a reduction in the total number of RF excitations required to 

provide proper encoding of the spatial and spectral information. Among the trajectory designs 

that could be well suited for such a spectroscopic imaging approach the Rosette data acquisition 

approach is particularly attractive because of its relatively simple implementation and modest 

gradient requirements. The time-varying nature of the gradients in this trajectory design, while 

flexible, leads to smooth variations in sample density and larger signal bandwidths than those 

associated with the CSI gold standard. Despite these potential drawbacks, because no time is 
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spent collecting information in the corners of k-space, we demonstrate that rosette spectroscopic 

imaging (RSI) can lead to an efficiency gain over CSI in a wide range of spectral bandwidths and 

spatial resolutions. An analytic relationship for the number of excitations to be used in an RSI 

experiment is derived and a method to obtain a more accurate self-derived B0 map that uses the 

information of the prevalent resonance in each voxel and linear regression is offered. Moreover, 

we show that any imaging technique that periodically samples the center and edges of k-space 

could be used for spectroscopic imaging. 
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1.0  INTRODUCTION 

1.1 OBJECTIVE 

The discovery of the NMR phenomena by Felix Bloch and Edward Purcell in 1946 ushered the 

scientists into a new era of chemical and physical molecular analysis. However, it was not until 

1973 when Paul Lauterbur first demonstrated magnetic resonance imaging (MRI) on small test 

tube samples using a back projection technique similar to the one used in x-ray computerized 

tomography (CT). In 1975, Richard Ernst proposed using phase and frequency encoding in 

conjunction with Fourier Transform and this forms the basis of the current MRI techniques. 

Since than, remarkable progress has been made and MRI has become the technique of choice for 

obtaining high quality images of the inside of the human body and for investigating living 

systems in a non-invasive manner.  

Magnetic Resonance Spectroscopic Imaging (MRSI) has developed as an extension of 

MRI allowing for simultaneous detection of NMR spectra from a large number of voxels and has 

important applications in studying in vivo biochemistry and metabolic pathways in fundamental 

biomedical research. MRS is also a valuable diagnostic tool and, among other applications, has 

been successfully used in studies of bipolar disorder, schizophrenia, Alzheimer’s disease, cardiac 

disease, obesity and diabetes. For a long time, the method of choice has been Free Induction 

Decay Chemical Shift Imaging (FIDCSI), or in short, Chemical Shift Imaging (CSI). However, 

 1 



because the spectral-spatial information is encoded in a rectilinear fashion that favors the 

acquisition of very high-resolution information along the spectral axis, the minimum number of 

phase encodes required is equal to the spatial resolution ( x yN N⋅ ), the acquisition times become 

intolerable long as the resolution increases. A number of fast CSI methods attempting to reduce 

the experiment duration while preserving an acceptable signal-to-noise (SNR) ratio have been 

developed. An elaborate study found that while these methods provide a speed-up in data 

acquisition compared to gold standard CSI, their sensitivity (SNR over square root of total scan 

time) is generally lower than the one for CSI. Not covered in this study, and of particular interest 

to us, is a class of CSI methods that uses non-Cartesian trajectories self-rewinding to the center 

of k-space. We will show that any imaging technique that periodically samples the center and the 

edges of k-space could be used for spectroscopic imaging, providing not only a significant 

speed-up in data acquisition but also, potentially, a higher sensitivity compared to conventional 

CSI. 

1.2 THESIS STRUCTURE 

This thesis is organized as follows. In Chapter 2.0 basic MRI/MRSI concepts like excitation, use 

of encoding gradients in K-space (data-space) to generate images/spectroscopic images of spin 

densities, Bloch evolution equations, sampling requirements to avoid aliasing (Nyquist Criterion) 

are described.  

Chapter 3.0 contains the bulk of this thesis and looks at the Rosette trajectories from a 

new perspective, namely in K-t space. An innate property of these trajectories is the periodic 

sampling of the center and edges of K-space and this will be used extensively in setting the 
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requirements for proper K-t space sampling when designing the gradient waveforms/trajectories 

(Section 3.3). Based on the nuclei used (1H, 31P, etc.), and hardware constraints (maximum slew 

rate, gradient and sampling rate) the maximum spectral bandwidth achievable vs. spatial 

resolution is derived. We show that as the spatial resolution xN increases, the achievable spectral 

bandwidth decreases and at higher xN ’s the data-sampling rate becomes the most limiting factor.  

The number of excitations required in the case of non-Cartesian trajectories and 

especially crossing trajectories is notoriously difficult to quantify. Because we look at the 

trajectories in the three-dimensional K-t space (two spatial and one temporal dimension), where 

the trajectories intersect each other only at the center of the space ( ), we succeed in 

deriving an analytical expression for the number of excitations to be used in an RSI experiment 

(Section 

0K =

3.4). The significance of this result is analyzed here. By looking at the two-dimensional 

(2D) and 3D Voronoi weights, we show that when the number of excitations is approximately 

equal to the number predicted by the equation we derived, the rosette trajectories achieve their 

highest sampling efficiency. In addition, the pre-compensation weights required when 

reconstructing non-uniformly sampled data, can be estimated exactly using an analytical 

expression. 

Because the trajectories are tailor designed for each spatial resolution/spectral bandwidth, 

in a sense, Section 3.3 goes hand-in-hand with the Data Reconstruction (Section 3.5). 

In Section 3.6, we predict that RSI will perform better than a CSI acquisition with square 

support because it doesn’t spend time collecting high-frequency spatial information in the 

corners of K-space and it’s more appropriate to compare RSI to a circularly supported CSI 

acquisition. While the RSI performance will be affected by its non-uniformly sampling pattern, it 
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still achieves an up to ~15% gain in SNR compared to the square supported CSI over the same 

acquisition time. These predictions are verified with extensive simulation studies in Section 3.7. 

 The technique is experimentally demonstrated on phantoms and in vivo by acquiring 

both Phosphorous 31P and high-resolution 1H spectroscopic images on a leg of a healthy human 

volunteer (Section 3.8). By adding a second set of trajectories, time delayed with respect to the 

first one, or in other words, using two temporal interleaves, the bandwidth of the technique is 

effectively doubled. This is demonstrated for the proton 1H acquired data. The images are 

corrected with self-derived B0 maps. The algorithm proposed to derive these maps is described 

in Section 3.8.3. 

Discussions and Conclusions are presented in Section 3.9.  

In Chapter 4.0  we proceed to demonstrate experimentally that any imaging technique 

that periodically samples the center and edges of k-space can be used for spectroscopic imaging. 

We adapt the Twisted Radial Lines (TWIRL) trajectories by forcing the radial component of the 

gradient to become null at the edge of k-space and then rewinding the trajectory to the center of 

k-space. Experimental Results are presented to support our theory. 

Chapter 5.0 contains concluding remarks. 

In Appendix, the theoretical sampling uniformity/efficiency factor for a rosette trajectory 

acquisition is calculated. 
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2.0  MRI/MRSI BASICS 

2.1 BASIC MRI PRINCIPLES 

When imaging an object, the wavelength of the energy used to image needs to be smaller than 

the size of the object. This is the case with X-ray imaging, optical and electronic microscopes 

and the list of applications could go on. However, when this is not possible, researchers found 

ways around this limitation. The trade-off is giving up on the ‘instantaneous’ nature of imaging 

associated with wavelengths smaller than the structure of the object imaged. For example, in 

Experimental High Energy Physics, when probing for the structure of protons and neutrons, 

looking for quarks and other elementary particles, the scale of energy involved is rather difficult 

if not impossible to achieve even in the large accelerators used in this kind of experiments. 

Matter and antimatter is collided at relativistic speed and scientists look for and analyze the 

byproducts of these collisions in their search for evidence of a new particle, rather than the 

particle itself. The experiments need to run sometimes for a few years for enough data/statistics 

to be generated. 

In MRI, the density of nuclear spins placed in a strong magnetic field is imaged at 

resolutions of the order of millimeters using as source of energy radio frequencies with 

wavelengths a few orders of magnitude larger. Gradients are used to generate spatial variations 

0B
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in  and therefore in the phase and frequency of the radio energy being absorbed and emitted 

by an object. Images are produced based on these variations.  

0B

Consider a pool of protons, placed in a constant magnetic field 0 0 1zB B= ⋅
GG

. 

The spins will precess at the Larmor frequency (γ -gyromagnetic ratio): 

 0 B0ω γ= ⋅  (2.1) 

This is also the resonant frequency of the radiation the spins absorb or emit generating 

transitions between Zeeman energy levels and corresponding to states aligned or anti-aligned 

with the magnetic field ( h -reduced Planck constant): 

 0E h 0ω= ⋅  (2.2)  

Because a spin of a positive charged particle aligned with 0B  is in a lower energy state 

than one anti-aligned, on average, at equilibrium, there will be more spins pointing in the 

direction of the main magnetic field than against it, resulting in a net magnetization 0 0 1zM M= ⋅
GG

. 

If a gradient is applied along the direction, the magnetic field becomes  zG z

 0( ) zB z B G z= + ⋅  (2.3) 

 0( ) ( ) zz B z G zω γ ω γ= ⋅ = + ⋅ ⋅  (2.4) 

The spins at will precess at a faster resonant frequency 0z > 0ω ω> and the ones at 

will precess at a lower frequency0z < 0ω ω< . A radio frequency (RF) pulse with a narrow 

frequency band that modulates a carrier wave atBW 0ω  will excite only the spins below and 

above whose resonant frequency are within that RF pulse band. The thin slab of material 

whose spins have been excited, or tipped, is perpendicular to the direction of the gradient field 

and has a thickness 

0z =

 ( ) 2

z z

z BW Bz
G G z

W
G

ω π
γ γ γ
Δ ⋅ ⋅

Δ = = =
⋅ ⋅ ⋅

 (2.5) 
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 /(2 )γ γ π= ⋅  (2.6) 

If we want to excite the spins in a slice that is centered at a position other than 0z = , the 

frequency of the carrier RF wave can be slightly increased ( ) or decreased ( ). This 

way one spatial dimension is resolved. Applying now a gradient

0z > 0z <

xG  in the x  direction (a field 

whose component varies linearly in proportion toz x ) modifies the magnetic field again and 

therefore the resonant frequency of the spins as a function of their position ( is turned off): zG

 0( ) xB x B G x= + ⋅  (2.7) 

 0( ) ( ) xx B x G xω γ ω γ= ⋅ = + ⋅ ⋅  (2.8) 

All spins at the same position x will precess at the same frequency. An RF receive coil 

that is spatially non-selective, acquires the signal produced by all the excited spins while the 

xG gradient is turned on. Computing the spectrum of this signal produces the amount of 

magnetization corresponding to each frequency bin and therefore to each position 

x (Equation(2.8)). The magnetization at position x is the integral of the signal for all the spins in 

the dimension (that have the samey x ), and the spectrum obtained is a projection of the object 

looking in the direction. Changing the direction of the gradient (y Figure 2-1 left) and collecting 

additional projections followed by projection-reconstruction to reconstruct the slice, as in X-ray 

computed tomography, resolves the other two spatial dimensions. This is how MRI was first 

proposed by Paul Lauterbur in 1973. Two years later, Richard Ernst proposed resolving the two 

spatial dimensions in the excited slice in a different way. 

After resolving the position along axis as described above, but before using z xG and 

acquiring the signal with different frequencies along the x dimension, consider turning on a 

gradient in the direction for a time intervalyG y PET . This will modify the magnetic field and 

therefore the precession frequency: 
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 0( ) yB y B G y= + ⋅  (2.9) 

 0( ) ( ) yy B y G yω γ ω γ= ⋅ = + ⋅ ⋅  (2.10) 

No signal is acquired while is turned on. If the strength of the gradient  is modified 

from repetition to repetition, because 

yG yG

( )yω is different for each repetition, the amount of phase 

accrued by the spins at position , before data acquisition starts, is different for each repetition: y

 ( ) ( ) PE yy y T G y PETϕ ω γ= − ⋅ = − ⋅ ⋅ ⋅  (2.11) 

This information, combined with the frequency encoded during the time xG is turned on 

and data is collected, is resolved with a two dimensional (2D) Fourier Transform. In this case, 

is called phase-encoding gradient and yG xG is called frequency-encoding gradient. The minus 

sign in Equation(2.11) is introduced due to the convention for a negative precession direction for 

protons. 

In general, an acquisition scheme could employ a gradient waveform 

 ( ) ( ) 1 ( ) 1 ( ) 1x x y y zG t G t G t G t= ⋅ + ⋅ + ⋅
G G G

z

G

1

 (2.12) 

The resonant frequency and the phase of a spin at position 1 1x y zr x y z= ⋅ + ⋅ + ⋅
G G GG and 

time t are: 

 0( , ) ( )r t G t rω ω γ= + ⋅ ⋅
GG G  (2.13) 

 
0 0 0

( , ) ( , ) ( ( ) ) 2 ( ( ) ) 2 ( )
t t t

r t r u du G u r du G u du r k t rϕ ω γ π γ π= − ⋅ = − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ = − ⋅ ⋅∫ ∫ ∫
GG GG G G G G (2.14) 

 
0

( ) ( )
t

k t G u duγ= ⋅ ⋅∫
G G

 (2.15) 

The 0ω contribution to phase in Equation(2.14) is a constant term that is the same for all 

spins and it has been discarded. 
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The transversal magnetization at position rG and time  that we would like to determine, 

can be written as (

t

1i = − ): 

 2 ( )( , ) ( ) i k t r
xy xyM r t M r e π− ⋅ ⋅ ⋅= ⋅

G GG G  (2.16) 

The RF receive coil, acquires the signal from all the spins in the system, thus: 

 2 ( )( ) ( ) i k t r
xy

V

S t M r e drπ− ⋅ ⋅ ⋅= ⋅∫∫∫ ⋅
G GG G  (2.17) 

This is the Fourier transform of the spatial distribution of ( )xyM rG , and by acquiring data 

(sampling) at different values of the spatial frequency ( )k t
G

, followed by an inverse Fourier 

transform, the image can be reconstructed. ( )k t
G

is referred to as K-space trajectory where K-

space is the space associated with data acquired (or( )S t ( ( ))S k t
G

) and image space is associated 

with ( )xyM rG . 

Two acquisition methods have been presented above. Equation (2.17) suggests there is a 

lot of flexibility in the way data can be collected and, indeed, numerous sampling strategies have 

been designed to provide benefits in the applications for which they are intended.  However, no 

matter what kind of K-space trajectories they employ, the Nyquist-Shannon sampling theorem is 

paramount in designing each strategy. The theorem states that exact reconstruction of a 

continuous-time baseband signal from its samples is possible if the signal is band limited and the 

sampling frequency is greater than twice the signal bandwidth. Let ( )x t  represent a continuous 

time signal and be the continuous Fourier transform of that signal: ( )X f

 2( ) ( ) i f tX f x t e dtπ
∞

− ⋅ ⋅ ⋅

−∞

⋅ ⋅∫�  (2.18) 

 9 



If the signal is band limited to a one-sided baseband bandwidth , thus B ( ) 0X f = for 

all | |f B> , the condition to be able to reconstruct exactly ( )x t  from samples at a uniform 

sampling rate sf is: 

 2sf B> ⋅  (2.19) 

In practice, the MRI signal is sampled in a discrete fashion and a finite number of 

complex data points are recorded. When the sampling times are  thus, samples are 

collected, rather than using the continuous FT in equation

0 1 1, ,..., Nt t t − N

(2.18), a Discrete Fourier Transform 

(DFT) would be calculated: 

 
21

0

i m nN
N

n m
m

X x e
π− ⋅ ⋅ ⋅−

=

= ⋅∑  (2.20) 

( )m mx x t=  is the ’th sample collected (out of samples, ) and 

 is the n ’th DFT sample reconstructed, for a total of reconstructions 

( ) corresponding to frequencies

m N 0,1,..., 1m N= −

n

− 1

( )nX X f= N

0,1,..., 1n N= 0 1, ,..., Nf f f − .  

The Shannon-Nyquist sampling theorem applies when using a frequency-encoding 

gradient. The sampling rate is the inverse of the dwell time xtΔ  (time interval between data points 

acquired) and for an object that fills the entire field of view fov , based on equation(2.8), the 

signal from all the excited spins in the object has a total bandwidth 2f BΔ = ⋅ : 

 ( / 2) ( / 2)
2 x

fov fovf G fovω ω γ
π

− −
Δ = = ⋅ ⋅

⋅
 (2.21) 

Therefore, it is necessary: 

 1/x xG fov tγ ⋅ ⋅ ≤ Δ  (2.22) 

Because x xk G xtγΔ = ⋅ ⋅Δ (Equation(2.15)), equation (2.22) is equivalent to: 

 1/xk fovΔ ≤  (2.23) 
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The distance between the sampling points in K-space kΔ , has to be smaller or equal to the 

inverse of the fov . When the condition in equation(2.23), also known as Nyquist Criterion, is 

satisfied, K-space is properly/sufficiently sampled. If (2.23) is not satisfied, aliasing artifacts will 

occur. Equation (2.23) is observed in almost every acquisition method; however, there are 

sampling strategies [62] that sufficiently sample the low frequency components of K-space that 

contain the most energy, but undersample outer K-space region that contains little energy and 

therefore will not contribute sever aliasing artifacts. These methods could reduce the total scan 

time while increasing the spatial resolution. 

While techniques that sample asymmetrically K-space exist (only a little more than half 

K-space is sampled and the symmetry of the Fourier transform is used since an image is a real 

function, however a phase correction is required), most acquisitions sample the K-space 

symmetrically because of the numerous sources of phase errors causing the real-value image 

assumption to be violated. For the technique using phase/frequency encoding introduced by 

Richard Ernst, technique largely known and used under the colorful name “spin warp”, a 

x yK K− space description would go as follows. xN sample points are collected after each phase 

encode at intervals 1/x xk foΔ = v  placed between and  (max
xK− max

xK max2 x x xK N k⋅ = ⋅Δ )  

 max

1
2

x

x x

fovdx
N K

= =
⋅

 (2.24) 

For uniform weighting of the K-space in the dimension with phase encodes (see y yN

Figure 2-1 right), is incremented in equal stepsyG yGΔ to generate equal increments in :  yK

 1/y y yk fov G TPEγΔ = = ⋅Δ ⋅  (2.25) 

 1/( )y yG fov PETγΔ = ⋅ ⋅  (2.26) 

 max

2
y y

y

N G
G

⋅Δ
=  (2.27) 
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The frequencies sampled in the dimension iny ykΔ steps, are in the range to : max
yK− max

yK

 max max

2
y

y y PE
y

N
K G T

fov
γ= ⋅ ⋅ =

⋅
 (2.28) 

 max

1
2

y

y y

fov
dy

N K
= =

⋅
 (2.29) 

A 2D FT reconstructs an image with x yN N⋅  points in image domain (called pixels) 

corresponding to a resolution , over a field of viewdx dy⋅ x yfov fov⋅ . 

 

So far, in the experiments presented above, the evolution of the magnetization 0M
G

has 

been described from a somewhat simplistic perspective, as the angular momentum would be 

conserved when there is no external impulse acting on it (e.g. an RF pulse). However, this is not 

the case. The excited spins interact with other excited spins, resulting in dephasing and a 

decrease of the transversal magnetization over time and they interact with the lattice spins, 

resulting in a transition from an excited state to an equilibrium state and therefore in a gradual 

recovery of the initial longitudinal magnetization. The characteristic times that describe these 

interactions in a semiclassical fashion are the  spin-lattice relaxation time and spin-spin 

relaxation time. In the absence of an external RF field, the time evolution of the longitudinal and 

transversal magnetizations 

1T 2T

zM and xyM can be written as: 

  (2.30) 1/( ) (0) (1 )t T
z zM t M e−= ⋅ −

  (2.31) 2/( ) (0) t T
xy xyM t M e−= ⋅

Since the excited spins are aligned and have the same resonant energy, the spin-spin 

interaction is stronger than the spin-lattice interaction and the transversal relaxation takes place 
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faster than the longitudinal one. Inhomogeneities in the magnetic field gradient add to the 

dephasing of the spins, resulting in faster signal loss and spin-spin relaxation described by a : *
2T

 *
2 2 inhom

1 1 1
T T T

= +  (2.32) 

 *
2 2T T T1< <  (2.33) 

Due to relaxation phenomenon in imaged objects, the RF pulses used for excitation 

usually have a duration much shorter than and . This is known as pulsed NMR and the 

magnetization 

1T 2T

M
G

 evolution equation, if and effects are neglected, is: 1T 2T

 ( ) ( ) ( )dM t M t B t
dt

γ= ×
G G G

 (2.34) 

In general, the time evolution of the magnetization in the presence of an RF field is 

described by the Bloch Equations, which update equation(2.34) to include the relaxation effects: 

 0

1

( )( ) ( ( ) ( ) ( ) ( )) zz
x y y x

M t MdM t M t B t M t B t
dt T

γ −
= ⋅ ⋅ − ⋅ −  (2.35) 

 *
2

( ) ( )( ( ) ( ) ( ) ( ))x x
y z z y

dM t M tM t B t M t B t
dt T

γ= ⋅ ⋅ − ⋅ −  (2.36) 

 *
2

( ) ( )
( ( ) ( ) ( ) ( ))y y

z x x z

dM t M t
M t B t M t B t

dt T
γ= ⋅ ⋅ − ⋅ −  (2.37) 

In above equations, is the total magnetic field. Therefore, in the most general case: B
G

 0( , ) ( ) 1 ( , )z 1B r t B G r B r t= + ⋅ ⋅ +
G GG GG G G  (2.38) 

In MRI, the RF field 1B
G

 generated by an RF transmit coil (that plays the role of an 

acquisition coil after generating the 1B
G

 field), has time varying x and components, withy 1 0zB = . 

For a spatially homogeneous 1B
G

, if the gradients are turned off ( 0G =
G

), the effective magnetic 

experienced by the spins is: 
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 2
0 1eff

2B B B= +  (2.39) 

 With Ω  in a narrow range  to , / 2BW− / 2BW 1B
G

 can be written: 

 1 1 0 0( , ) (cos(( ) ) 1 sin(( ) ) 1 )x yB r t B t tω ω= ⋅ +Ω ⋅ ⋅ + +Ω ⋅ ⋅
G GG G  (2.40) 

RF pulses ( 1( , )B r t
G G ), that produce desirable magnetization profiles ( )xyM rG , can be 

designed based on solving Bloch’s Equations, analytically or numerically [9-11, 13, 26, 33, 43-

47, 52, 60].  

Figure 2-1 Projection Imaging (PI) and Spin Warp Acquisitions 

  

In Figure 2-2, an example of a pulse sequence (rosette acquisition) is shown. The RF 

pulse is played at the same time with a slice selection gradient , followed by a refocusing -

axis gradient (area is equal to half of the slice selection gradient area). Data is acquired with 

zG z

,x yG on. 
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Figure 2-2 Rosette Acquisition Pulse Sequence 

 

2.2 MAGNETIC RESONANCE SPECTROSCOPIC IMAGING (MRSI) BASICS 

A spin in a magnetic field, interacting with the surrounding atoms, will experience a slight shift 

in its resonant frequency. A proton in a hydrogen atom, or a Phosphorous nucleus or other nuclei 

for that matter forming a bond with a groups of atoms in a molecule will resonate at a frequency, 

while the proton or Phosphorous nucleus in the same magnetic field but surrounded by a 

different group of atoms, will resonate at a different frequency. This shift in frequency, called 

chemical shift, is usually expressed as a fraction of the resonant frequency 0ω , because, like 0ω , it 

scales with the main magnetic field 0B , and is usually a few parts per million (ppm).  

In Magnetic Resonance Spectroscopic Imaging (MRSI or MRS), unlike MRI where all 

the chemical shifts are combined in one image, most of the time resulting in artifacts due to 

incorrect assignment of the frequency which is related to the spatial position (previous section), 
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these chemical shifts are resolved while at the same time spatial images are generated for each 

shift.  

In a simple spectroscopic experiment, where two different resonances are excited and 

allowed to decay freely, the measured signal will look like the one in Figure 2-3.  

 

Figure 2-3 Two resonances Free Induction Decay 

 

In this form, it would be hard to say much about the spectral components forming the 

signal. However, applying a Fourier Transform, resolves the two resonances (Figure 2-4). As in 

imaging (previous section), using the Shannon-Nyquist criterion, for a uniformly time sampled 

signal at intervals tδΔ , the spectral bandwidth is 1/ tδδΔ = Δ  and the spectral resolution is the 

inverse of the readout time 1/ AQdf T=  . 
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Figure 2-4 Two resonances reconstructed spectrum 

 

A straightforward way to design a spectroscopic imaging acquisition is to collect FIDs at 

different positions in K-space. If the sampled positions in K-space are enough to generate a 

spatial image, the spectral and spatial information is resolved. This is exactly what the Free 

Induction Decay Chemical Shift Imaging (FIDCSI) technique does. Following a slice selection 

RF excitation pulse, the xG , gradients are turned on for a short periodyG Gτ , with different 

amplitudes from repetition to repetition, encoding different positions in ,x yK K (Figure 2-7). 

While all the data points sampled lye on a three dimensional (3D) Cartesian grid (Figure 2-5), 

allowing for Fast Fourier Transform (FFT) data reconstruction in each direction, the drawback to 

encoding only one spatial frequency per repetition is a long scan duration as the spatial 

resolution increases ( , is the repetition time). CSI x y RT N N T= ⋅ ⋅ RT
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Figure 2-5 FIDCSI K-t space sampling 

 

All the fast spectroscopic imaging techniques developed, achieve a speedup in data 

acquisition by encoding at least two dimensions, usually one spatial and one spectral, over one 

repletion period. Overall speedup in data acquisition can be also achieved by encoding only one 

spatial dimension rather than the spectral one as done by CSI, if the spatial resolution xN is much 

greater than the spectral one Nδ . Some of these methods will be discussed in section 3.6.1. By 

looking at K-t space sampling from a different angle (Figure 2-6), it becomes apparent that it can 

be thought of as a collection of planes (Figure 2-7) with data points collected at the same time 

interval after each RF excitation. These planes are equally space apart in time at time intervals 

1/dT δ= Δ (we will also refer to this time as spectral dwell time tδΔ ). We will refer to these 

planes as temporal planes. In the FIDCSI acquisition, it takes x yN N⋅ repetitions to sample 

properly one of these planes to create an image corresponding to that time moment (echo time).  
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Figure 2-6 Alternative perspective FIDCSI K-t space sampling 

 

Figure 2-7 Temporal slice FIDCSI K-space sampling 
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If the duration 1/dT δ= Δ is large enough, greater than the time dt  necessary for the 

scanner to collect a data sample, an acquisition trajectory could sample more than one position 

on this plane, requiring fewer overall excitations to sample properly the K-t space. Moving from 

one K-space position to another position in this temporal plane, means a gradient would be used 

(equation(2.15)). In this case, to allow the signal from all spins over the entire field of view in 

the receiver, we also have to account for the chemical shift at each position, in the range δΔ ; the 

signal bandwidth/sampling rate equation (2.22) becomes:  

 1/G fov dtγ δ⋅ ⋅ + Δ ≤  (2.41) 

 If becomes too small (corresponding to a large bandwidthdT δΔ ), because a trajectory 

will be limited by scanner hardware constraints to how fast it can move through K-space ( max
HWG ) 

or how fast it can turn (slew rate max
HWS ), or by the maximum signal bandwidth/sampling rate 

( max
sampG -equation(2.41)), it may not be able to sample more than one point during this time. In 

section 3.3, we will calculate based on these hardware constraints the maximum spectral 

bandwidth maxδΔ that can be achieved by the rosette trajectories.  

 

Note that, depending on the context, when we will refer to spectral resolution, this can be 

either the separation (in Hz ) between the spectral points or spectral slices in the reconstructed 

spectrum, /df Nδδ= Δ , or it can be the number of spectral points (spectral slices) Nδ . The same 

goes for the spatial resolution. Depending on the context, it can be either / xx fov NΔ = (in cm or 

mm), or it can be the number of spatial points (in one direction) in the reconstructed image xN . 
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3.0  ROSETTE SPECTROSCOPIC IMAGING (RSI) 

3.1 INTRODUCTION 

A multitude of spectroscopic imaging techniques (mostly using Cartesian trajectories) have been 

developed for improving Chemical Shift Imaging (CSI) data acquisition times. However, the 

SNR efficiency in these approaches was shown by Pohmann et al. [50] to be lower than that for 

standard CSI. This stems from an inefficient/partial use of the available data collection time 

following each excitation, as we will show in Section 3.5.1. Not covered in [50], and of 

particular interest to us, is a class of CSI methods that uses trajectories self-rewinding to the 

center of K-space. We’ll demonstrate that self-rewinding trajectories, for example Out-and-In 

Spirals and Rosette trajectories, or any imaging technique that can be adapted to periodically 

sample the center and edges of K-space and don’t spend time acquiring the low-energy data in 

the corners of K-space, can make optimal use of the signal available after each radio frequency 

(RF) excitation.  Our results demonstrate that, in addition to speedups of one or two orders of 

magnitude in data acquisition, self-rewinding trajectories have the potential to achieve higher 

sensitivity (signal-to-noise (SNR) over square root of total scan time) than CSI, thus allowing for 

greater flexibility in selecting the total scan time. 

 The rosette trajectories have been chosen because of the relative ease to generate and 

implement the gradient waveforms and because the gradients vary smoothly in time. First 

 21 



proposed by Likes [25], rosette trajectories have been examined and demonstrated 

experimentally for spectrally selective MR imaging by Noll [37] and Noll et al. [39]. In these 

approaches, data is first being demodulated at the resonant frequency of each spectral component 

present and then reconstructed in a two-dimensional (2D) imaging fashion. We will be looking 

and reconstructing the data from a three dimensional (3D) perspective (two spatial dimensions 

plus one spectral dimension), simultaneously resolving the spatial and spectral information.  This 

will allow us to set general conditions for choosing the trajectory parameters and obtain the 

highest SNR efficiency. In addition, the 3D perspective will reveal that a whole class of 

trajectories, namely self-rewinding trajectories or trajectories that can be adapted to sample 

periodically the center and edges of K-space, share common spectroscopic properties and could 

be used for spectroscopic imaging. Adapting for spectroscopic imaging an imaging technique 

that uniformly samples K-space, further improves on the SNR efficiency achieved by RSI (in 

Chapter 4.0 of this thesis). 

3.1.1 Rosette Trajectory Properties 

The rosette trajectories consist of a radial oscillation about the origin of K-space with angular 

oscillation frequency 1 2 1fω π= ⋅  that rotates in x yK K− space with angular oscillation 

frequency 2 2 2fω π= ⋅ . They are mathematically described by: 

 2
max 1( ) sin( ) i tK t K t e ωω ⋅ ⋅= ⋅ ⋅

G
 (3.1) 

To encode K-space properly, usually more than one excitation is required and a multishot 

acquisition is employed. In general, this is done by using a number shN of excitations that are 
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subsequently rotated with respect to the first trajectory by an angle 

0 2 / shn Nϕ π= ⋅ with . 1,2,..., 1shn N= −

Figure 3-1 shows these trajectories ( 1 2ω ω> ) in K-space and in Figure 3-2 they are 

depicted in K-t space: 

 

Figure 3-1 K-space sampling of a temporal slice using one trajectory set 
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Figure 3-2 Multishot Rosette: K-t space 3D view 64x yN N= = , 18fov cm= , 600HzδΔ =  

 

 

The radial distance in K-space from( )rK t 0K = is: 

 max 1( ) | ( ) | sin( )rK t K t K tω= = ⋅
G

 (3.2) 

The gradient or the speed of the trajectory in K-space can be written [37]: 

 max1 ( )( ) ( )
2

i t i tKdK tG t e e
dt

ωω ω
γ γ

+ ω−⋅ ⋅ − ⋅
+ −= ⋅ = ⋅ ⋅ + ⋅

⋅

GG
⋅

2

 (3.3) 

 1

1 2

ω ω ω
ω ω ω

+

−

= +
= −

 (3.4) 

The x and gradient components (y Figure 3-3) are ( ) Re( ( ))xG t G t=
G

and ( ) Im( ( ))yG t G t=
G

: 
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max

max

( ) ( cos( ) cos( ))
2

( ) ( sin( ) sin( ))
2

x

y

KG t t t

KG t t t

ω ω ω ω
γ

ω ω ω ω
γ

+ + − −

+ + − −

= ⋅ ⋅ + ⋅
⋅

= ⋅ ⋅ − ⋅
⋅

 (3.5) 

The magnitude of the gradient as a function of time is: 

 * 2 2 2max
1 1 2( ) | ( ) | ( ) ( ) cos ( ) sin ( )KG t G t G t G t t t2

1ω ω ω ω
γ

= = ⋅ = ⋅ ⋅ + ⋅
G G G

 (3.6) 

 
2 2

max 1 2
2 2
1 ma

( )( ) 1 (1 ) rK K tG t
K

ω ω
γ ω
⋅

= ⋅ − − ⋅
x

 (3.7) 

Therefore, the gradient along the trajectory will oscillate between a maximum 

value and a minimum value : maxG minG

 max 1 2
max

max( , )max( ( )) KG G t ω ω
γ

⋅
= =  (3.8) 

 max 1 2
min

min( , )min( ( )) KG G t ω ω
γ

⋅
= =  (3.9) 

Unlike [37, 39] that found max max 1 /G K ω γ= ⋅ , we allow for trajectories with 2 1ω ω> . 

Figure 3-3 Theoretical Gradient Waveforms ( 2 1/ 1ω ω > ) 
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The radial and tangential  component of the gradient vector, namely the 

component of the gradient along the line connecting 

( )rG t ( )G tϑ

0K = and the trajectory position at instant t , 

and the component perpendicular on this line respectively, are also useful quantities. They can be 

obtained by rotating to the new reference system: ( )G t
G

 2 11 max( ) ( ) ( )
2

i t i t i tKG t e G t e eω ωω ω
γ

− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
+ −= ⋅ = ⋅ ⋅ + ⋅

⋅

G G
1ω  (3.10) 

 1 max
1( ) Re( ( )) cos( )r

KG t G t t1ω ω
γ

= = ⋅ ⋅
G

 (3.11) 

 1 max
2( ) Im( ( )) sin( )KG t G t tϑ 1ω ω

γ
= = ⋅ ⋅

G
 (3.12) 

Alternatively, they can be obtained by observing that, if and are the radially and 

azimuthally infinitesimal small changes in

( )rdK t ( )dK tϑ

( )K t
G

, and because the change in the azimuthal 

position on the trajectory is 2d dtϑ ω= ⋅ : 

 max
1

( )( ) cos( )r
r

KdK tG t t
dt 1ω ω

γ γ
= = ⋅ ⋅

⋅
 (3.13) 

 max 1
2

( ) sin( )( ) ( )( ) r rdK t K tK t d K t dG t
dt dt dt

ϑ
ϑ

ωϑ ϑ ω
γ γ γ γ

⋅⋅
= = = ⋅ = ⋅

⋅ ⋅
 (3.14) 

The acceleration along the trajectory, the rate at which the gradient changes, or the slew 

rate, is: 

 2 2max( )( ) ( )
2

i t i tKdG tS t i e e
dt

ωω ω
γ

+ ω−⋅ ⋅ − ⋅
+ −= = ⋅ ⋅ ⋅ − ⋅

⋅

GG
⋅  (3.15) 

 * 2 2 2 2 2max
1( ) ( ) ( ) ( ) 4 cos ( )

2
KS t S t S t t2ω ω ω ω ω
γ + − + −= ⋅ = ⋅ + − ⋅ ⋅ ⋅
⋅

G G
 (3.16) 

The maximum and minimum slew rate along the trajectory is: 

 2 2 2 2max max
max 1 2( ) (

2
K KS )ω ω ω
γ γ+ −= ⋅ + = ⋅ +
⋅

ω  (3.17) 

 2 2max max
min 1 2( ) 2

2
K KS ω ω
γ γ+ −= ⋅ − = ⋅ ⋅ ⋅
⋅

ω ω  (3.18) 
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3.2 ROSETTE TRAJECTORIES SPECTRAL RESPONSE 

Ideally, in a spectroscopic imaging acquisition, the final reconstructed image should precisely 

reflect the spatial and spectral information in the imaged object. As will be shown in the data 

reconstruction section, Section 3.5, a reconstruction that is not optimal could result in artifacts 

and ghost resonances, phenomenon known as spectral leakage. However, even if an optimal 

reconstruction was employed, depending on the modality in which the K-t space was encoded, 

spectral information of an object at a resonant frequency could still appear at an off-resonance 

frequency.  This is called the spectral response of an acquisition technique.  

Using simulations, Noll [37] analyzed the spectral behavior of a multishot rosette 

trajectory with a data acquisition length equal to 2.5 radial oscillation periods per shot, each shot 

crossing the center of K-space six times. In this section, we further investigate the rosette 

spectral properties, for acquisitions using trajectories with longer readout periods (which cross 

the center of K-space a greater number of times). We theoretically explain how regular patterns 

of phase accumulation lead to the obtained spectral response function and that the same kind of 

response is to be expected from other self-rewinding trajectories used for 2D spectroscopic 

imaging. 

The off-resonance behavior of the rosette acquisition technique is evaluated in two 

different ways. First, a simulation model similar to the one used by Noll [37] is used. Our 

simulation object consists of a large disk, with a superimposed ellipse, both of them on-

resonance (Figure 3-4). The K-space data is generated noise free using analytical expressions for 

the 2DFT of an ellipse (equation(3.140)).  
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Figure 3-4 Spectral Response Simulated Object and Region of Interest (ROI) 

 

The trajectories are designed as in Section 3.3 and the number of shots used is the 

theoretical number derived in Section 3.4 (given by equation (3.83) or equation(3.87)). The data 

is modulated to several resonant frequencies /(2 )f ω π= (by multiplying data with i te ω⋅ ⋅ ), in the 

range zero to 12 f⋅  ( 1 1 /(2 )f ω π= ), and a two dimensional reconstruction is performed. For the 

simulations performed, the radial oscillation frequency is 1 300f Hz= . The image intensity for the 

simulated object is calculated at each off-resonance frequency inside the ellipse in a region of 

interest (ROI) depicted in Figure 3-4. The length of the trajectories is incrementally 

increased by  and the procedure is repeated. The evaluated spectral response for 

trajectories with a length equal to 

readT

11/(2 )dT f= ⋅

5Nδ =  petals ( / 2 2.5Nδ = radial oscillation, 1 6Nδ + =  

crossings),    petals (8osc. 17 cross.), 0K = 16Nδ = 32Nδ = petals (16osc. 33 cross.) and 

 petals (32osc. 65 cross.), is presented in 64Nδ = Figure 3-5 ( readT N dδ T= ⋅ ). The result for 

is practically the same as the one obtained by Noll [37]. There are two reasons for the 

slight differences between the curve obtained by us (

5Nδ =

5Nδ = ) and the one obtained by Noll. 

 28 



While Noll used for reconstruction a ramp filter ( ) as in projection imaging to pre-

compensate the data, we used a more appropriate weighting function (

iw K∼ i

2 2
maxi i iw K K K⋅ −∼  

weights that are the same as the 3D Voronoi volumes associated with the data points – Section 

3.4; see also Section 3.5 on importance of weighting function in data reconstruction). In addition, 

our trajectories have a somewhat higher K-t space sampling density. To form an image at the 

targeted spatial resolution, Noll’s trajectories [37] with a length of 2.5 radial oscillations require 

a smaller number of excitations than our acquisition that requires every .5 (half) radial 

oscillations an image is generated (as described in Trajectory Design Section 3.3), and therefore 

require a greater number of excitations. From a 2D K-space perspective (37, 55), because our 

simulations use a larger number of trajectories, there are also a larger number of trajectory 

crossings where the phase accumulation takes place. Nevertheless, the main features of the 

spectral response function obtained by Noll and the one obtained by us for are the same: 

the local maxima and minima in the studied frequency range (0 to

5Nδ =

12 f⋅ ), correspond to the same 

locations in both cases. 
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Figure 3-5 Spectral Response function evaluated using modulation ( i te ω⋅ ⋅ ) + 2D reconstruction 

 

 

Using the same generated object, another way to evaluate the spectral response is by 

performing a three dimensional reconstruction, simultaneously resolving the two spatial 

dimensions and the spectral information. Data was zero padded along the time direction to obtain 

128 spectral points in the range / 2δ−Δ  to / 2δΔ ( 12 fδΔ = ⋅  as discussed in Trajectory Design 

Section 3.3). The image intensity is evaluated in each spectral slice, in the same ROI as for the 

2D reconstruction. The results for the zero to 1f  range are displayed in Figure 3-7 and can be 

compared to the results for the modulation plus 2D reconstruction in the same range (Figure 3-6, 

which is the left half of Figure 3-5).  Regardless of the modality of reconstruction 

(modulation+2D or 3D), the spectral response measured exhibits the same behavior in either 

case. 
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Figure 3-6 Spectral Response evaluated using modulation + 2D recon (0 to f1 range) 

 

Figure 3-7 Spectral Response evaluated using 3D recon, zero-padded to 128 spectral points (0 to f1) 
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The results obtained in Figure 3-5 could be explained by looking at the data in K-t space. 

For an arbitrary position ( , )x yk k k=
G

in K-space (distance to the origin max0 rK K< ≤ ), there is a 

total of 2 Nδ⋅ data points sampled at different time instants as seen in Figure 3-8. The K-t 

position of the sampled data is depicted by the thick blue lines. Temporal slices, as defined in 

Trajectory Design (Section 3.3) are delimited by the green horizontal line. The time axis at an 

arbitrary position  (red line), will be sampled twice within one temporal slice (not necessarily 

by the same trajectory but rather by one of the rotated trajectories of a multishot acquisition, 

following a later excitation). The yellow horizontal lines represent the position of the gridding 

planes on which acquired data is convoluted to make possible a reconstruction that uses a Fast 

Fourier Transform (FFT) algorithm as discussed in Data Reconstruction Section 

rK

3.5. 

Figure 3-8 Profile of K-t space through 0K = , parallel to the time axis 
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We consider points within the range / 2, / 2x x y yk k k k± Δ ± Δ  ( 1/x yk k fovΔ = Δ = ) being 

the same, having the same signal iA e αϕ
α

⋅⋅  (for an ellipse this is given by equation(3.140)), and no 

relaxation. For the modulation plus 2D reconstruction, the total off-resonant signal at that K-

space position can be written as: 

2T

 
( ) ( ) ( )

2

1 1 1

j j
N N N

i i t i i t i i t

j j j

S A e e A e e A e e
δ δ δ

α α α α α αϕ ω ϕ ω ϕ ω
α α α α

j− +
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= −= +=

= ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑  (3.19) 

 j − is the summation index for the data points below the yellow horizontal median lines 

in Figure 3-8 and j + for data points above these lines. Therefore, if 11/(2 )dT f= ⋅ is the distance 

in time between two successive crossings, and 0K = tαΔ is the distance between the sampling 

instant and closest horizontal median line, jtα− and jtα+ can be written as: 

 ( 1)
2j

dTt j dTα tα− = − ⋅ + − Δ  (3.20) 

 ( 1)
2j

dTt j dTα tα− = − ⋅ + + Δ  (3.21) 

The sum in equation (3.19) becomes: 

  (3.22) (( 1) / 2)

1

(
N

i ii j dT dT

j

S A e e e e
δ

αϕ ωω
α α

⋅ − ⋅ ⋅Δ⋅ ⋅ − ⋅ +

=

= ⋅ ⋅ ⋅ +∑ )t i tα αω⋅ ⋅Δ

t2 cos( )i t i te eα αω ω
αω− ⋅ ⋅Δ ⋅ ⋅Δ+ = ⋅ ⋅Δ , and the geometrical series in equation (3.22) can be 

written in a simpler form: 

 
1

(( 1) / 2) / 2 / 2
/ 2 / 2

1 0

1 1
1

N N i dT
i j dT dT i dT i j dT i dT

i dT i dT i dT
j j

e ee e e e
e e e

δ δ δω ω
ω ω ω ω

ω ω ω

− ⋅ ⋅Ν ⋅
⋅ ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
= =

− −
= ⋅ = ⋅ =

− −∑ ∑
i dTδ⋅ ⋅Ν ⋅

(3.23) 

Noting that , we can write: / 2 / 2 2 sin( / 2)i dT i dTe e i dTω ω ω− ⋅ ⋅ ⋅ ⋅− = − ⋅ ⋅ ⋅

 (cos( )
sin( / 2)

i N dT
i eS A e t

i dT

δ
α

ω
ϕ

α α αω
ω

⋅ ⋅ ⋅
⋅ −

= ⋅ ⋅ ⋅Δ ⋅
⋅ ⋅

1)  (3.24) 
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The contribution of the cos( )tαω ⋅Δ term to the final reconstructed image is more difficult 

to quantify because it involves both the off-resonance frequency and the tαΔ variable that 

depends on the distance to the center of K-space, which takes values in between (at 

)and (at ). However, because of its position in the nominator in 

expression 

0tαΔ =

0rK = / 2t dTαΔ = maxrK K=

(3.24), and because it is a smooth varying function in the range -1 to 1, its effect will 

be less than the one of the faster varying function 1i N dTe δω⋅ ⋅ ⋅ − , and less than the contribution of 

the 1/ sin( / 2)dTω ⋅  term which takes values in between −∞ to ∞ . The contribution to the final 

image of these last two terms is independent of the position in K-space (α index), and depends 

only on the off-resonance amount. Therefore, the spectral response function is approx. equal to: 

 ( 1) (1( )
sin( / 2) sin( / 2)

i N dT i N dTef i
i dT dT

δ δω ω

ω
ω ω

⋅ ⋅ ⋅ ⋅ ⋅ ⋅− −
= = ⋅

⋅ ⋅ ⋅
)e  (3.25) 

The 1/ sin( / 2)dTω ⋅ term has maxima at / 2dT nω π⋅ = ⋅  ( 0, 1, 2,...n = ± ± ), where it 

diverges to infinity. In the range of frequencies analyzed (0 to 12 f⋅ ), using  

and

11/(2 )dT f= ⋅

2 fω π= ⋅ ⋅ , the maxima correspond to 0f =  and 12f f= ⋅ . A minimum is obtained 

at / 2 / 2dTω π⋅ = , or 1f f= .  

The faster varying term  is a periodic function that produces the 

bumps in the spectral response function | (

1/1 1i N dT i N f fe eδω π⋅ ⋅ ⋅ ⋅ ⋅ ⋅− = − δ

) |f ω  (Figure 3-5), with maxima when 

 ( ). There will be a total of 1/ (2 1) 1i N f f i ne eδπ π⋅ ⋅ ⋅ ⋅ ⋅ + ⋅= = − 0, 1, 2,...n = ± ± Nδ local maxima in the range 

0 to 12 f⋅ : 

  (3.26) ( )
max 1 (2 1) / ,    0,1,2,.., 1nf f n N n Nδ= ⋅ + = −δ

The first maximum ( 0)
max 1 /nf f Nδ

= =  and the last one ( 1)
max 1 12 ( /n N )f f f Nδ

δ
= − = ⋅ − cannot be 

distinguished because 11/ sin(( / 2) / )f fπ ⋅  has a much stronger effect on the spectral response 
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where1/ , and only a total ofsin( ) 0x → 2Nδ −  local maxima will be visible. When Nδ is odd, the 

central local maximum falls exactly at 1f and coincides with the minimum of 

11/ sin(( / 2) / )f fπ ⋅ , resulting in a rather non visible local maximum as seen for 5Nδ = in 

Figure 3-5. 

The minima in the spectral response function | ( ) |f ω  correspond to  

( ). In the range considered (0 to

1/ 2 1i N f f i ne eδπ π⋅ ⋅ ⋅ ⋅ ⋅ ⋅= =

0, 1, 2,...n = ± ± 12 f⋅ ) this factor has 1Nδ +  zeros positioned at the 

off-resonant frequencies ( for on-resonance): 0n =

 ( )
min 12 / /( ) / ,    0,1,2,..,n

readf f n N n N dT n T n Nδ δ δ= ⋅ ⋅ = ⋅ = =  (3.27) 

Equation (3.27) is an important result because it provides the theoretical support for 

calculating the width of the spectral passband in which there is very little degradation of the 

object. The second zero, is the inverse of the trajectory readout duration , the same 

as the result measured by Scheffler [55] in the context of randomized stochastic trajectories, and 

by Noll [37], and as can be seen in our results in 

readT N dδ= ⋅ T

Figure 3-5: 

 ( 1)
min 12 / 1/( ) 1/n

readf f N dT N Tδ δ
= = ⋅ = ⋅ =  (3.28) 

For  and0f = 12f f= ⋅ , the spectral function can be calculated as a limit of type0 / . 

Using 

0

1sin( / 2) sin(( / 2) / )dT f fω π⋅ = ⋅ and the limits 
0

lim 1x

x
e x

→
≈ +  and 

0
lim(sin( ))
x

x x
→

≈ : 

 1

0
1

1 (1 / )lim ( ) 2
( / 2) /

i N f ff i
f f
δ Nδω

πω
π→

− + ⋅ ⋅ ⋅
= ⋅ = ⋅

⋅
 (3.29) 

The same result is obtained in the limit 12f f= ⋅ . Normalizing the spectral function to 

this maximum, it becomes evident that for a trajectory with fixed (and therefore fixed radial 

oscillation frequency

dT

1 1 /(2 )f ω π= ), increasing the acquisition duration , and thus readT N dδ= ⋅ T
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the number of times ( ) the trajectories cross the center of K-space , produces a better 

off-resonance behavior: 

1Nδ + 0K =

 ( ) ( ) ( )( 0) =  1/
max( ( )) ( 0) 2N

f f ff N
f f N δ

δ

ω ω ωω
ω ω

≠ = = =
= ⋅

∼  (3.30) 

Using some simple trigonometric relations, the magnitude ( | |⋅ ) of the normalized 

spectral response function, can be written as: 

 
sin( )1 2| ( ) | |

sin( )
2

N

N dT

f dTN

δ

δ

|

ω

ω ω

⋅ ⋅

= ⋅
⋅

 (3.31) 

While the on-resonance normalized response function is the same at 0ω =  regardless 

of Nδ , ( 0)Nf 1ω = = , the local off-resonance maxima (equation(3.26)) become smaller (for the 

same amount of off-resonance ω ), as Nδ  increases (see results Figure 3-5). 

 

When performing a 3D reconstruction at the frequency resolution 1/ readdf T=  

and Nδ spectral points in the range / 2δ−Δ to / 2δΔ , because the spectral response function 

minima (equation(3.27)) are exactly located at the same positions as the reconstructed spectral 

slices, the reconstructed object will appear only in the on-resonance spectral slice (Figure 3-9).  
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Figure 3-9 Trajectory length petals, 3D reconstruction spectral resolution  36Nδ = 1/ readdf T=

 

However, this result does not mean the 3D reconstruction is the solution to an acquisition 

with a problematic spectral response (e.g. an acquisition with large off-resonance response, as 

the one obtained for lower Nδ ’s). If the modulation plus 2D reconstruction was performed only 

at off-resonance frequencies in steps equal to 1/ readdf T= , because they correspond to the minima 

positions (equation (3.27)), the evaluated spectral function would be a close to zero flat line 

except on-resonance, regardless of the trajectory length (determined by Nδ for a fixed ).  dT
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For the 3D reconstruction, zero padding the temporal data and reconstructing at a smaller 

frequency resolution, reveals the otherwise hidden points in the spectral response function 

(Figure 3-7 and Figure 3-10). 

Figure 3-10 Trajectory length 36Nδ = petals, 3D recon, spectral resolution  1/ 4 / readdf T=
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We did not consider the effect of the  relaxation in equation2T (3.19) (total off-resonant 

signal at a positionα in K-space). If the effect is considered, equation2T (3.19) becomes: 

 
( )

( ) ( )
2 2

2 2 ( )
/

1 1

j
j j

iN N i t
t T i i t i T

j j

S A e e e A e e
δ δ α

α α α α
ω

ϕ ω ϕ
α α α

⋅ ⋅ ⋅ + ⋅
− ⋅ ⋅ ⋅ ⋅

= =

= ⋅ ⋅ ⋅ = ⋅ ⋅∑ ∑  (3.32) 

Rather than carrying out all the calculations again, we note that 2/i Tω ω→ + , and 

equation(3.24), becomes: 

 
2

( )

2

2

(cos(( ) )
sin(( ) / 2)

ii N dT
T

i i eS A e t iT i d
T

δ

α

ω

ϕ
α α αω

ω

⋅ + ⋅ ⋅

⋅ −
= ⋅ ⋅ + ⋅Δ ⋅

⋅ + ⋅

1)

T
 (3.33) 

 The spectral response function in equation(3.25) can be written as: 

 
22

( )
/

2
2

2

(1 ) (1 )( , )
sin( / 2 / 2 / )sin(( ) / 2)

ii N dT
N dT T i N dTTe ef T i ii dT i dT TdT

T

δ
δ δ

ω
ω

ω
ωω

⋅ + ⋅ ⋅
− ⋅ ⋅ ⋅ ⋅− − ⋅

= ⋅ = ⋅
⋅ + ⋅+ ⋅

e  (3.34) 

Using  and cosin( ) sinh( )i x i x⋅ = ⋅ s( ) cosh( )i x i x⋅ = − ⋅ , with sin and 

: 

h( ) ( ) / 2x xx e e−= −

cosh( ) ( ) / 2x xx e e−= +

 sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) cosh( ) cos( ) sinh( )x i y x i y x i y i x y i x y+ ⋅ = ⋅ ⋅ + ⋅ ⋅ = − ⋅ ⋅ + ⋅ ⋅ (3.35) 

 

 
2/

2
2 2

(1 )( , )
cos( / 2) sinh( / 2 / ) sin( / 2) cosh( / 2 / )

N dT T i N dTe ef T
dT dT T dT dT T

δ δω

ω
ω ω

− ⋅ ⋅ ⋅ ⋅− ⋅
=

⋅ ⋅ − ⋅ ⋅
 (3.36) 

 

For an acquisition with a trajectory length 36Nδ = petals (37 crossings), the 

spectral response function was evaluated in the range 0 to 

0K =

12 600f Hz=  at 145  off-

resonance points, using a . The result is presented in 

36 4 1= ⋅ +

2 /1.26AQT T= Figure 3-11. The spectral 
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response for the same acquisition parameters but without relaxation was included for 

comparison. The 3D evaluation in the range

2T

1/ 2 fδ−Δ = −  to 1/ 2 fδΔ = yields a similar result. 

 

Figure 3-11 Spectral response with relaxation (modulation 2T i te ω⋅ ⋅ +2D reconstruction) 

 

We have seen in this section that using longer trajectories, that cross a greater 

number of times, improves the spectral response function. However, in a spectroscopic imaging 

experiment, the readout (or acquisition) time cannot be indefinitely long and is usually up to 

three times the relaxation time . For free induction decays acquisition, for highest SNR per 

unit time, the optimal readout is

0K =

*
2T

*
21.26AQT T= ⋅ , and for spin echo acquisitions . For *

22.52AQT T= ⋅
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a fixed acquisition time, one way to increase the number of times the trajectory crosses the center 

of K-space is by increasing the radial oscillation frequency 1f , since 1/ 2AQ AQN T dT T fδ = = ⋅ , or 

AQN Tδ δ= ⋅Δ . However, for a fixed AQT , increasing 1f , results in an increase in the spectral 

bandwidth 12 fδΔ = ⋅ , while the spectral response for the same amount of off-resonance (in the 

original δΔ ) remains the same, as can be seen in Figure 3-12. 

 

Figure 3-12 Spectral Response for a trajectory with same 26.67AQT ms= , twice crossings 0K =

 

Due to its spectral response, the RSI acquisition might find it difficult to resolve 

metabolites with very short ’s and that are very close in frequency, but this is a problem for 

any spectroscopic method and techniques applied in these situations (like spectral editing, etc.) 

*
2T
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could also be combined with RSI. For water-fat resonances separated by 450Hz∼ at 3Tesla, an 

acquisition with only petals and a spectral bandwidth 16Nδ = 600HzδΔ = (sufficient to separate 

the two resonances) corresponding to a readout as short as 26.67AQT ms= , has an off-resonance 

response at 450f Hz= of approximately 6-7% (Figure 3-5). This figure represents how much the 

water/fat will contribute as background noise to the fat/water image.  For comparison, Noll used 

an acquisition where the local peaks in the spectral response function have been reduced from 

~15-20% to about 6-8% through a trajectory time delay scheme [37], or for a two shot 

acquisition, positioning the trajectories at an angle of [39], rather than that would 

provide more uniform angular coverage of K-space. The figure of ~6-7% for the spectral 

response function for  at

090 0180

16Nδ = 450f Hz= is further improved when using longer readouts as 

seen in Figure 3-5 for (~4%) and 32Nδ = 64Nδ = (~2%). Optimally, for an RSI acquisition that 

resolves only two spectral resonances, because the spectral response function always has a 

minimum at 1 / 2f δ= Δ  (Figure 3-5), the trajectories should be designed (Section 3.3) such the 

acquisition spectral bandwidth δΔ  is twice the separation in frequency of the two resonances. 

 

Looking at the result in equation(3.31), an interesting analogy with optical diffraction on 

slits can be made. The observed amplitude at angleN ϑ , for light of wavelengthλ diffracted on 

infinitely extended slits with opening a , with a distance between slits d  is: N

 0

sin( sin )
( ) sin ( sin )

sin( sin )

N d
aA A c d

π ϑπ λϑ ϑ πλ ϑ
λ

= ⋅ ⋅  (3.37) 

The K-t space trajectories act like an optical diffraction grid for the off-resonance 

frequencyω , with Nδ infinitely thin slits ( 0a = ), with a separation between slits equal to .  dT
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While the results presented in this section correspond to rosette trajectories acquisitions, 

from the theoretical treatment of the spectral response function, it can be seen that the same kind 

of off-resonance behavior is to be expected from any spectroscopic imaging technique that uses 

self-rewinding trajectories that periodically sample the center and edges of K-space. The K-t 

profile parallel to the time axis through 0K =  for these techniques will look similar to the one 

depicted in Figure 3-8, and it is merely the ( rt t Kα α )Δ = Δ in equation (3.22) that will vary 

according to a function that is different than the one for the rosette trajectories. 

 

3.3 TRAJECTORY DESIGN 

As discussed in Chapter 2.0 , it is very important that K-t space be properly sampled to achieve 

the desired spatial resolution and spectral bandwidth. From Figure 3-2 where the rosette 

trajectories are depicted in K-t space, it can be seen that the largest separation along time axis 

between successive sampled points with same ( , )x yK K position corresponds to data points at the 

center ( ) and the ones at the edge of K-space (0K = maxrK K= ). This can also be seen in Figure 

3-8, by looking at the intersection of sampling trajectories with the time axis (vertical red lines). 

The time separation between two successive 0K = crossings is equal to half the radial oscillation 

period, thus .  According to the Shannon-Nyquist sampling theorem, this distance 

in time will dictate the largest spectral bandwidth 

11/(2 )dT f= ⋅

11/ 2dT fδΔ = = ⋅  at which the reconstructed 

data will not exhibit spectral aliasing artifacts. Because the maximum speed along the trajectory 
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maxG is limited by either the signal bandwidth/sampling requirements or by hardware constraints 

(maximum scanner gradient max max
HWG G≤ and slew rate max max

HWS S≤ ), there will be a maximum 

achievable spectral bandwidth maxδΔ  for a given set of imaging parameters fov , xN . 

Because 12 fδΔ = ⋅ , trying to achieve the highest possible bandwidth is equivalent to 

using the highest possible radial oscillation frequency 1 1 /(2 )f ω π= , or with trying to get as fast 

as possible from the center of K-space, to the edge and back to the center. In this case, depending 

on the imaging parameters, the trajectories might look like straight lines, since we want the 

angular oscillation frequency 2 2 /(2 )f ω π=  to contribute as little as possible to the slew rate 

value (equation(3.17)). In fact, to allow for maximum 1 12 fω π π δ= ⋅ = ⋅Δ , by setting 2 0ω =  in 

equation(3.17) , the requirement max max
HWS S≤ can be written ( max / 2 /xK N fov= ): 

 2max max
1 ( )2

max
HWK K Sω π δ

γ γ
⋅ = ⋅ ⋅Δ ≤  (3.38) 

 max max max
max

/ 21HW HW
SR

x

S K S f
N

γ γδ
π π
⋅ ⋅ ⋅ ⋅

Δ = = ⋅
ov

2

 (3.39) 

Setting 1ω ω> in equation(3.8), max max
HWG G≤ translates into: 

 max max
1 ( ) max

HWK K Gω π δ
γ γ

⋅ = ⋅ ⋅Δ ≤  (3.40) 

 max max
max

max

2HW HW
grad

x

G G fo
K N

vγ γδ
π π

⋅ ⋅ ⋅ ⋅
Δ = =

⋅ ⋅
 (3.41) 

The signal bandwidth fΔ has to be smaller or equal to the sampling rate 1/  

(equation

dt

(2.41)) at any moment along the trajectory. The largest signal bandwidth will 

correspond to the largest gradient . Therefore, maxG

 max 1/f G fov dtγ δΔ = ⋅ ⋅ + Δ =  (3.42) 
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Since 1ω π δ= ⋅Δ , for 1 2ω ω> , max / / 2 /xG N fovπ δ γ= ⋅ ⋅Δ  and equation (3.42) becomes: 

 / 2 1/xN dtπ δ δ⋅ ⋅Δ + Δ =  (3.43) 

 max
1

(1 / 2)
samp

xdt N
δ

π
Δ =

⋅ + ⋅
 (3.44) 

The highest achievable spectral bandwidth for a field of view fov and a spatial 

resolution xN is: 

  (3.45) max max max maxmin( , , )samp grad SRδ δ δΔ = Δ Δ Δδ

The results in equations(3.39),(3.41),(3.44) were derived for one set of trajectories that 

start after the same time , with respect to the RF excitation. It is apparent from these equations 

that, everything else being the same, as the spatial resolution increases, the maximum achievable 

spectral bandwidth decreases. However, adding a second set of trajectories starting at a 

time , also called temporal interleave, the largest separation along time axis between 

successive sampled points with same ( ,

ET

/ 2ET dT+

)x yK K position is halved (Figure 3-13), which in turn, 

increases the spectral bandwidth by a factor of two. This kind of acquisition (using two 

temporally interleaved sets of trajectories) will be demonstrated experimentally in Section 3.8 

and Chapter4.0   
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Figure 3-13 Two sets of trajectories temporally interleaved 2TIn =  

 

In general, a number  of temporal interleaved sets of trajectories, spaced apart in 

time , could be used. The corresponding spectral bandwidth is

TIn

1/ 1/( 2TI TIdT n n f= ⋅ ) 12TIn fδΔ = ⋅ . 

Therefore, 1 12 TI/f nω π π δ= ⋅ = ⋅Δ . Equations(3.39),(3.41),(3.44) become: 

 max
max

2 HW
SR TI

x

S fn
N
γδ

π
⋅ ⋅ ⋅

Δ = ⋅
ov  (3.46) 

 max
max

2 HW
grad TI

x

n G fov
N

γδ
π

⋅ ⋅ ⋅ ⋅
Δ =

⋅
 (3.47) 

 max
1

(1 )
2

samp

x

TI

Ndt
n

δ πΔ =
⋅

⋅ +
⋅

 (3.48) 
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The highest achievable spectral bandwidth when using temporally interleaved sets of 

trajectories, is the smallest of the ones allowed by the scanner slew rate

TIn

(3.46), scanner maximum 

gradient(3.47), or signal bandwidth/sampling rate(3.48) constrains. 

Figure 3-14 Maximum achievable spectral bandwidth 1H ( 42.576 /MHz Tγ = ),  2TIn =

 

Figure 3-15 Maximum achievable spectral bandwidth 31P ( 17.235 /MHz Tγ = ),  2TIn =
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In Figure 3-14 and Figure 3-15, the maximum achievable spectral bandwidth using two 

( ) temporally interleaved sets of trajectories is presented for proton (2TIn = 1H) and Phosphorous 

(31P) RSI, as a function of spatial resolution xN . The field of view is 18fov cm= , the complex 

data points sampling rate is , the maximum scanner gradient is and 

maximum scanner slew rate is . For the parameters chosen, the signal 

bandwidth constraint (equation 

8dt us= max 4 /HWG G= cm

msmax 15 / /HWS G cm=

(3.42) imposed on the trajectory, requires a maximum gradient 

that is smaller thanmaxG max
HWG , and max

gradδΔ (equation(3.47)) is greater than max
sampδΔ  and max

SRδΔ  at all 

spatial resolutions and was not plotted here. For both proton (1H, gyromagnetic 

ratio 42.576 /MHz Tγ = ) and Phosphorous (31P, 17.235 /MHz Tγ = ), the achievable spectral 

bandwidth is limited at lower spatial resolutions by the slew rate, while at higher spatial 

resolutions it is the sampling rate 1/  that determinesdt maxδΔ . 

At this point, for a field of view fov , desired spatial resolution xN  and spectral 

bandwidth maxδ δΔ ≤ Δ , the highest sampling spatial frequency and the radial oscillation 

frequency 

maxK

1ω  in the trajectory equation (3.1) are determined: 

 max / 2 /xK N fov=  (3.49) 

 1 12 TI/f nω π π δ= ⋅ = ⋅Δ  (3.50) 

To define fully the trajectory, the angular oscillation frequency 2 2 2fω π= ⋅ needs to be 

chosen. In imaging [37], 2ω is chosen such the numbers of radial and angular oscillations are 

prime numbers among themselves. This is to avoid inefficient sampling of K-space where one 

trajectory would have two petals overlapped, sampling the same positions in K-space twice (one 

petal is the portion of trajectory delimited by two successive 0K =  crossings). For example, if 

2 1 / 2ω ω= or 2 1 / 3ω ω= and the trajectory is more than two or respectively three petals long, the 
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petals following the second or the third one would sample the same positions in K-space again 

and again, requiring a larger number of excitations shN to fully cover the rest of K-space. 

However, for spectroscopic imaging using rosette trajectories, this requirement (e.g. prime 

numbers) is not necessary. Even if all the petals of a trajectory would fall on top of each other, as 

they would for 2 1ω ω= , and the trajectory would sample the exact same positions in K-space, 

they would be at different moments in time, which allows the encoding of the spectral 

information.  

We require that data samples collected in the interval 1/dT δ= Δ are sufficient for 

forming an image with the desired spatial resolution xN over a field of view fov  (more on this in 

the following section 3.4), such Nδ images are formed over the entire acquisition at different echo 

times,  apart. As long as, at the most, only one petal is included in a temporal slice of 

thickness , there is no concern this trajectory segment would sample the same K-space 

positions again (except for

dT

dT

2 0ω = , e.g. straight line). For example, for two temporally interleaved 

sets of trajectories ( ), each individual trajectory will have only half a petal in each 

temporal slice. That is because, from equation

2TIn =

(3.50), 11/(4 )dT f= ⋅ , thus the time thickness of a 

temporal slice is equal to a quarter of the radial oscillation period which is the same as the time it 

takes for a trajectory to travel from 0K = to maxK K= -outgoing trajectory segment (or from 

to -incoming). In maxK K= 0K = Figure 3-16, the K-space sampling of one temporal slice is 

depicted with the blue color for the outgoing trajectories corresponding to one of the temporally 

interleaved sets and the red color corresponding to the incoming trajectories from the other 

interleaved set.  
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When, at the most, only one petal is included in a temporal slice of thickness , there is 

a lot of freedom in choosing the angular oscillation frequency

dT

2ω . We can choose 2ω  to be as 

large as possible allowed by the hardware (and this includes values greater than 1ω ). The 

trajectories with more twist (larger 2ω ) will require fewer excitations shN  to cover K-space in 

each temporal slice, and therefore the K-t space. 

For maxδ δΔ ≤ Δ and 1ω  fixed by(3.50), equation(3.17) and max max
HWS S≤ yields the highest 

2ω allowed by the slew rate: 

 2max
2

max

( )
HW

SR S
K

γ 2
1ω ω⋅

= −

1

 (3.51) 

Because we can have 2ω ω> and therefore max max 2 /G K ω γ= ⋅ , max max
HWG G≤ yields: 

 max
2

max

HW
grad G

K
γω ⋅

=  (3.52) 

 Observing the signal bandwidth/sampling rate requirement (equation(3.42)) yields: 

 max

1( )
dtG

fov

δ

γ

− Δ
=

⋅
 (3.53) 

 max
2

max

samp G
K

γω ⋅
=  (3.54) 

The largest angular oscillation frequency 2ω meeting all the imposed requirements: 

  (3.55) max
2 2 2min( , , )SR grad sampω ω ω ω= 2

The slew rate usually dictates the largest 2ω (equation(3.51)) for spectral bandwidths 

δΔ much smaller than maxδΔ  and/or for smaller spatial resolutions xN ; otherwise it is the 

sampling rate (equation(3.54)) that determines 2ω . With the three variables , maxK
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1ω and 2ω determined in the way prescribed above, the rosette trajectory (equation(3.1)) is fully 

defined.  

Figure 3-16 K-space sampling of a temporal slice using two temporally interleaved sets 

 

For lower spatial resolutions xN , as can be seen in Figure 3-14  and Figure 3-15, RSI 

could achieve spectral bandwidths as large as a few . When an acquisition with a spectral 

bandwidth of only a few hundred 

kHz

Hz may be enough to resolve all the resonances of an object, 

the trajectories may have a lot of twist, with 2ω  much larger than 1ω , and only a few shots 

shN may be needed for full K-t space coverage. However the trajectory doesn’t realizes its full 

speed potential for sampling, because the slew rate that increases quadratic with 

2ω (equation(3.17)) is holding it back from achieving the maximum speed allowed by the 

signal bandwidth/sampling rate (equation

maxG

(3.42),(3.54)). There is an alternate way we can 
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generate the trajectories when, for a given field of view fov and spatial resolution xN , the 

targeted spectral bandwidth is much smaller than the maximum achievable 

bandwidth max ( )xNδΔ . Further speedup in data acquisition may be obtained by allowing more 

than one petal from each trajectory in each temporal slice. The more petals from each trajectory 

are used in a temporal slice, the smaller the number of shots required to cover properly each 

individual temporal slice and ultimately the K-t space. An integer number of half petals per 

each trajectory could also be used in each temporal slice, rather than using only whole petals. We 

are looking now for the largest  that can fit in the time

hptlsn

hptlsn 1/dT δ= Δ . Because each half-petal 

segment corresponds to a quarter of the radial oscillation period - 11/ 4 / f , we can write: 

 
1

1
4

hptlsn
dT

fδ
= =
Δ ⋅

 (3.56) 

 14 2
hptls

fn 1ω
δ π δ
⋅ ⋅

= =
Δ ⋅Δ

 (3.57) 

The larger 1ω , the more petals per trajectory will be used in each temporal slice, the 

smaller the number of excitations shN  required. However 1ω is constrained by the hardware 

requirements. Using the notation [  for the closest integer smaller than the real number  

(e.g.[3.72] ), the slew rate, maximum scanner gradient and signal bandwidth constrains can 

be written as: 

]a a

3=

 max max2 /
[

HW
SR
hptls

S K
n

γ
π δ

⋅ ⋅
=

⋅Δ
]  (3.58) 

 max max2 /[
HW

grad
hptls

G Kn γ ]
π δ

⋅ ⋅
=

⋅Δ
 (3.59) 

 4 1[ (samp
hptls

x

n
N dtπ δ

1)]= ⋅ −
⋅ ⋅Δ

 (3.60) 
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  (3.61) min( , , )SR grad samp
hptls hptls hptls hptlsn n n n=

The result in equation(3.61) will be an integer greater or equal to two ( ), if the 

targeted spectral bandwidth

2hptlsn ≥

δΔ is less than the maximum spectral bandwidth maxδΔ calculated for 

one set of trajectories (no time interleaves 1TIn = , equation (3.39), (3.41), (3.44) and (3.45)). 

If , only half of a petal can be used in each temporal slice and two temporally interleaved 

sets of trajectories ( ) are required to achieve the targeted spectral bandwidth

1hptlsn =

2TIn = δΔ ; 

if , more than two temporally interleaved sets are necessary.  0hptlsn =

Once is determined, hptlsn 1ω and 2ω can be calculated. From equation(3.57): 

 1 2 hptlsnπω δ= ⋅ ⋅Δ  (3.62) 

Equations(3.51) through (3.55) will determine 2ω . 

For example, for , 64xN = 18fov cm= , , , the maximum 

achievable bandwidth with one set of trajectories is 

max 15 / /HWS G cm ms= 8dt us=

max 1231HzδΔ = . In Table 1, the number of 

half petals possible per shot in each temporal slice is given for different spectral bandwidths 

maxδ δΔ ≤ Δ . For 100HzδΔ = , as many as twelve whole petals ( 24hptlsn = ) can be used in a 

temporal slice if 1 600f Hz= (equation(3.62)), instead of 1 50f Hz= (equation(3.50), 1TIn = ). In 

both cases, 2 621f Hz=  ((3.51) through(3.55)) is limited by signal bandwidth/sampling rate. The 

number of excitations required for proper K-t space coverage, calculated with a simulation 

program as discussed in Section 3.4, is reduced from 15shN = when one petal/shot is used in 

each temporal slice to when twelve petals/shot/temporal slice are used, effectively 

doubling the speed of the acquisition.  

8shN =
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Table 1 Number of possible half petals ( ) per shot in each temporal slice ( ) hptlsn 64xN =

   ( )HzδΔ    100   200   300   400   500   600   700   800   900 

      hptlsn     24    12     8     6    4    4     3     3     2 

 

In Figure 3-17 (close up in Figure 3-18), the K-space coverage for one temporal slice is 

depicted for this alternative trajectory design method. For 900HzδΔ = , only one whole petal 

( ) per shot can be used in each temporal slice.  2hptlsn =

Figure 3-17 One temporal slice K-space coverage using multiple petals per shot in each temporal slice 
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In Figure 3-18, it can be seen easier that the drawback to this alternative method to design 

trajectories is the increased non-uniformity in sampling, which is also illustrated in Figure 3-19, 

where the 2D Voronoi weights for samples in one temporal slice at 200HzδΔ = , , were 

calculated as described in Section 

12hptlsn =

3.5. 

 

Figure 3-18 Increased non-uniform sampling for more than one petal/shot/temporal slice 
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Figure 3-19 2D Voronoi weights for one temporal slice when 12hptlsn = (six whole petals/shot/slice) 

 

In general, when designing trajectories that include more than one petal per shot in each 

temporal slice, instead of choosing the largest value for 2ω , more uniform sampling can be 

achieved by selecting an adequate value for 2 / 1ω ω  and the number of excitations used shN . 

Rather than choosing the largest 2ω allowed by hardware/sampling requirements as done above 

(equation(3.51) through(3.55)), 2ω can be chosen based on each individual situation. For 

example, when (three petals/shot/temporal slice), we could select6hptlsn = 2 1 / 3ω ω= and a 

number of excitations shN that is not divisible by three (e.g. 7, 8, 10, 11, etc…).  If 7hptlsn = , we 

can choose to use only three petals/shot/slice, setting 6hptlsn = , followed by setting 2 1 / 3ω ω= , 
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and so on. This way, while preserving the benefit of faster data acquisition through using more 

than one petal per shot in each temporal slice, we are not giving up entirely on sampling 

uniformity.  

 

When implementing the gradient waveforms on the scanner, because the theoretical 

gradients do not start at zero at , 0t = 0K =  (equation(3.5), (3.13)), a warping function ( )tη is 

used to ramp up the gradients. The gradient waveforms will evaluate in time as , ( ( ))x yG tη (Figure 

3-20) instead of as (, ( )x yG t Figure 3-3), where: 

 

2

c

max
c

max

c

,         0 t<t
2

2(t)=          t

,         t
2

c

HW

c
AQ

t
t

G
S

tt t T

η

⎧
≤⎪ ⋅⎪ ⋅⎪ =⎨

⎪
⎪ − ≤ ≤
⎪⎩

 (3.63) 

maxG is the maximum gradient along the trajectory and is given by equation(3.8). 

When the trajectory ends at 0K = , the gradient has a non-zero value. To avoid hanging 

the scanner, the gradients ( x and ) are independently decreased to zero at a slew rate smaller 

than , while at the same time rewinding the trajectory back to 

y

max / 2HWS 0K = , to avoid leaving an 

accumulated phase/magnetization in K-space. This is necessary especially when short repetition 

times are used. Spoiler gradients (very large gradients played for a few milliseconds at the end of 

the sequence, after each excitation and collection of data), can also be applied to dephase the 

residual transverse magnetization. We employ both, trajectory rewinding to (concomitant 

with bringing the gradients to zero), followed by spoiler gradients. 

0K =
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Figure 3-20 Gradient Ramp Up using a warping function ( )tη  

           

3.4 RSI: NUMBER OF EXCITATIONS 

The previous section 3.3 addressed the problem of achieving properly sampled K-t space along 

the time axis and choosing all the rosette trajectory parameters ( max 1 2, ,K ω ω ). In this section, we 

will concern ourselves with properly sampling K-space in each temporal slice and therefore with 

choosing the number of excitations shN required to achieve this. Based on the way the temporal 

slices are selected (namely, they are delimited by successive 0K = crossings), because of the 

periodicity of the trajectory, if one temporal slice is properly sampled, all temporal slices will be 

properly sampled.  

 To determine the minimum number of excitations shN  required for proper coverage of K-

space in each temporal slice, we employ a simulation program that generates shN trajectories 
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with 2 / shNπ  angular separation between each other, to obtain uniform angular distribution. The 

trajectories are generated with parameters ,maxK 1ω  and 2ω calculated as described in the previous 

section 3.3, discretely sampled every dt seconds. Because of the discrete sampling, except for the 

start of the trajectory corresponding to 0K = , the closest points in distance to are identified 

and used for defining the temporal slices. In each temporal slice, for all the samples on one 

trajectory, the K-space distance (in

0K =

x and ) to all the points on the other trajectories is 

measured. The smallest of these distances is verified against the inverse of the field of view as 

required by the Nyquist Criterion to avoid aliasing

y 1shN −

1/dK fov≤ . (Note that along each trajectory, 

Nyquist is already observed when designing the trajectory, equation(3.42)). The number of 

excitations shN is increased until 1/dK fov≤ in all temporal slices. At this point, the program 

stops, as this is the minimum number of excitations required for proper K-t space coverage as 

defined by the Nyquist Criterion. 

 

 While, for fastest possible coverage of K-t space, the number of excitations will be 

determined through direct measurement of the distance between the samples, by the above 

simulation program, it is desirable we could use a number of excitations shN that can be 

estimated analytically based on the scanning parameters, even if it is an approximation. The 

following calculations are intended to determine the number shN that provides proper K-space 

coverage for an individual temporal slice and therefore, proper coverage for K-t space. The 

derivation is based on using two temporarily interleaved sets of trajectories with half a 

petal/shot/temporal slice. The same arguments are applicable to one set of trajectories, with one 
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petal per shot in each temporal slice. Note: For two sets of trajectories ( ), the total number 

of excitations required is

2TIn =

2RSI
shN N= ⋅ . 

The number of times one outgoing/incoming shot will intersect the incoming/outgoing 

shots inside a temporal slice is (round down to the closest integer): 

 2 /(2 )cross shN N 1ω ω= ⋅ ⋅  (3.64) 

The crossing points are arranged on concentric circles. On each circle, there are crossN

shN crossings of two trajectories and the angular separation between these crossings is 2 / shNπ⋅ . 

The crossings on the odd numbered circles are aligned along radial lines (angular separation 

between these lines 2 / shNπ⋅ ). Crossings on the even numbered circles are also aligned along 

radial lines 2 / shNπ⋅  apart and shifted by / shNπ  with respect to the radial lines on which the 

odd number circles’ crossings reside.  

The distance to the center of K-space ( 0K = ) for the crossing points is: 

 ( ) 01 1
max

2 2

sin( ( 1))
2 2

n
r

sh

K K n
N

βω ωπ π
ω ω

Δ
= ⋅ − ⋅ − ⋅ ⋅ −  (3.65) 

1,2... crossn N= is the circle on which the crossings reside, 1n = being the circle closest to the edge 

of K-space ( ) and being the circle closest to the center of K-space (maxK K− > crossn N= 0K− > ). 

For one set of trajectories 0 0βΔ =  and the circle with 1n =  corresponds exactly 

to where the outgoing trajectory begins returning to maxK K= 0K = , thus becoming an incoming 

trajectory; for two sets of trajectories 0βΔ  ( 00 2 / shNβ π≤ Δ < ⋅ ) is the angular separation 

measured at , between two trajectories that cross on the circle with (the most 

outward). 

maxK K= 1n =

Equation  (3.65) was derived as follows: 
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The angular separation as measured at maxK K= between trajectories those cross on circle  is: n

 0
2 ( 1

sh

n
N

)πβ β ⋅
Δ = Δ + ⋅ −  (3.66) 

The total angle swapped by a trajectory from 0K = to maxK K= during one quarter of 

radial oscillation period : 1 11/T f=

 1
2

14 2
T 2πωϕ ω

ω
Δ = ⋅ =  (3.67) 

The angle swapped by the trajectory from 0K = to is: ( )n
rK K=

 ( )
2

1
2

ntω ϕ β⋅ = Δ − Δ  (3.68) 

Therefore, 

 ( ) 0

1 2 2

1 ( 1
2 2

n

sh

t
N

)nβπ π
ω ω ω

Δ
= − − ⋅ ⋅ −  (3.69) 

To obtain (3.65) plug in: ( )nt

  (3.70) ( ) ( )
max 1sin( )n

rK K tω= ⋅ ⋅ n

 

The distance between two adjacent trajectories is approximated as: 

 1 2 1 2 3( , ) max(min( , , ))d C C d d d=  (3.71) 

 

1 2 3, ,d d d are defined as in Figure 3-21
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Figure 3-21 Definition of distances  between two adjacent trajectories 1 2 3, ,d d d

 

 

Figure 3-22 Definition of distances (close up) 1 2 3, ,d d d
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The distance  between two crossings at same radial distance from the center of K-

space, situated on a circle of radius is approximated to be equal to the length of the 

circular arc connecting them: 

1d

( )n
rK K=

 1
2

sh

d
N

Kπ
= ⋅  (3.72) 

The distance between two crossings sitting on consecutive circles on adjacent 

trajectories is the hypotenuse for the triangle with one side along the radial direction and the 

other side tangential to the circle

2d

rKΔ

KθΔ  : 

 
( , 2)

( , 1) 2 21
max

22

n n
n n r

r
sh

KK
N

πω
ω

+
+ Δ

Δ ≅ = −K K  (3.73) 

 
sh

K K
Nθ
π

Δ = ⋅  (3.74) 

 

 
2

2 2 21
2 max 2

2 1

(1 )r
sh

d K K K K
Nθ

πω ω
ω ω

= Δ + Δ = ⋅ − − ⋅ 22

2

 (3.75) 

 

The distance between crossings sitting on circles 3d ,n n+  on the same radial axis is: 

 ( , 2) ( ) ( 2) 01 1
3 max

2 2

2 sin( ) cos(
2 2

n n n n
r r r

sh sh

d K K K K n
N N

1

2

)βπω ω ωπ π
ω ω

+ +

ω
Δ

= Δ = − = ⋅ − ⋅ − ⋅ ⋅ (3.76) 

 

From equation(3.65), we can write: 

 
( 1)

20 1 1

2 2 ma

cos( ) 1 ( )
2 2

n
r

sh

Kn
N K

β ω ωπ π
ω ω

+Δ
− ⋅ − ⋅ ⋅ = −

x

 (3.77) 

 21
3 max

2

2

sh

d K
N

2Kπω
ω

≅ ⋅ −  (3.78) 
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Comparing directly and yields  equal to 1 2,d d 3d 1 2 3min( , , )d d d

    in Reg. 1                1d max
12

2
2
1

0
31

KK K
ω
ω

≤ ≤ =
⋅

+

 

 

1 2 3min( , , )d d d =   in Reg. 2               2d max max
1 22 2

2 2
2 2
1 1

31 1
3

K KK K
ω ω
ω ω

= ≤ ≤
⋅

+ +
⋅

K=  

 

    in Reg. 3             3d max
3 m2

2
2

1

1
3

KK K
ω
ω

= ≤ ≤

+
⋅

axK  

  (3.79) 1 2 1 2 3( , ) max( (Re 1), (Re 2), (Re 3))d C C d g d g d g=

 

For 2 1/ 1ω ω ≤  

  (3.80) 1 2 1 1 2 1 3 3( , ) max( ( ), ( ), ( ))d C C d K d K d K=

 

 max
1 2 2 2

2 2
2 2
1 1

2 1 1 1d(C , ) max( , , )
3 31 1 3sh

KC
N 2

2
2
1

π

ω ω ω
ω ω ω
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+ + +

 (3.81) 
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2
2
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2 1d(C , )
31sh

KC
N
π

ω
ω
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+

 (3.82) 
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 2
2

1 2
2

1

( 1)
31

x
sh

NN πω
ω ω

ω

⋅
≤ =

+

 (3.83) 

For 2 1/ 1ω ω >  

  (3.84) 1 2 1 1 2 2 3 3( , ) max( ( ), ( ), ( ))d C C d K d K d K=

 

 max
1 2 2 2

2 2
2 2
1 1

2 1 1 1d(C , ) max( , , )
31 3 3sh
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N 2

2
2
1

π

ω ω ω
ω ω ω
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 (3.85) 
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1 2 2

2
2
1

2 1d(C , )
3sh

KC
N
π

ω
ω

= ⋅

+

 (3.86) 

 

 2
2

1 2
2
1

( 1)
3

x
sh

NN πω
ω ω

ω

⋅
> =

+

 (3.87) 

 

Nyquist: and 1 2( , )dK d C C= / 2 /Nq xdK dK N fov≤ =  

The estimated number of excitations required (equations(3.83), (3.87)) is lower than the 

number required for a projection imaging acquisition ( PIN xNπ= ) and decreases as the 

trajectory twist ( 2 / 1ω ω ratio) increases. Moreover, they represent an overestimate, because the 

true distance between , is smaller than any of the three segments  for which 

approximations also have been made. Segment , for example, is approximated to be equal to 

the length of the circular arc rather than the straight line connecting the points. We have found, 

the estimated number of excitations given be equation

1 2,C C 1 2 3, ,d d d

1d

(3.83) or equation (3.87), can be between 
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10-15% to around a factor of two larger than the minimum number shN required for proper K-t 

space coverage, calculated through direct measurement using the program we described at the 

beginning of this section. In fact, because of the way the requirement for proper sampling was 

imposed in the shN theoretical derivation (the largest K-space separation between adjacent 

trajectories obeys Nyquist), this is equivalent to requiring the outgoing trajectories be 

enough to properly sample one temporal slice. Because the calculations for two adjacent 

incoming trajectories would be the same as the ones that were presented above, this also means 

the incoming trajectories alone properly sample the temporal slice and are sufficient to produce 

an image at the spatial resolution targeted

1 2( , )d C C

xN . 

We decided to investigate how the number of excitations shN affects the sampling 

uniformity η (see also Appendix): 

 1

2

1

1

N

i
i

N

i
i

w

N w
η =

=

= ≤

⋅

∑

∑
 (3.88) 

 For a fixed spatial resolution 64xN = ( 18fov cm= ) and fixed spectral 

bandwidth 1200HzδΔ = , and trajectory twist 2 1/ .9737ω ω = , we calculated with the simulation 

program the minimum number of excitations for proper K-t space coverage to be shots. 

The theoretical number of excitations required is (equation

min 56shN =

(3.83), rounded to the closest integer): 

shots. Keeping everything else the same, we increment in steps of one the number of 

excitation 

103est
shN =

shN (angular separation between trajectories is 2 / shNπ ), measure the 2D Voronoi 

weights in each temporal slice, as described in Step 1D in section iw 3.5, and calculate η in 

equation (3.88) in each of the temporal slices. The number of excitations is increased 74Nδ =
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from min
shN to 1.1 est

shN⋅ . The results are compared to the theoretical sampling efficiency based on 

( ) 2 ( ) 2
max~ (i

i i r rw dA K K K= − )i  (equation(3.93)) and displayed in Figure 3-23.  As shown in the 

Appendix, the theoretical sampling efficiency based on these weights is 2 2 / .90estη π= � (blue 

crosses). The length of the error bars is equal to the standard deviation for η in all 

temporal slices. While74Nδ = η  calculated over all the sampled points closely matches the 

curve displayed in Figure 3-23, we chose to display η as an average (with error bars) of the 

sampling efficiencies calculated in each slice because, as seen in Figure 3-24 and Figure 3-25, 

the 2D Voronoi weights do not match the 3D Voronoi weights for lower shN .  

 

Figure 3-23 Sampling Efficiency η  as a function of number of shots shN used 
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The sampling efficiency goes asymptotically to the the theoretical estimated value estη as 

shN increases. It reaches this value around 85shN = suggesting the number estimated by 

equation(3.82), shots is a ~20% overestimate. 103est
shN =

Figure 3-24 Weights: Analytical (blue) and 2D (green) and 3D (red) Voronoi  min 56shN =

 

At est
sh sN N= h

i

 (Figure 3-25), the 2D Voronoi weights calculated in each temporal slice are 

the same as the 3D Voronoi volumes and they are equal to the weights estimated analytically 

(equationiw dA= (3.93)). This is very beneficial in the reconstruction process as discussed in 

data reconstruction section 3.5. 
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Figure 3-25 Weights: Analytical (blue) and 2D (green) and 3D (red) Voronoi 103est
shN =

 

3.5 DATA RECONSTRUCTION 

3.5.1 Data reconstruction 

Reconstruction of data not falling on a Cartesian grid has been extensively investigated and 

described in the scientific literature. This is a Fourier inversion problem, usually solved using 

convolution interpolation, a process also known as gridding. An overview of the main issues 

(and typical solutions) involved with reconstructing non-Cartesian MRI data can be found in 

John Pauly’s 2005 notes at: http://www.stanford.edu/class/ee369c/notes/non_cart_recon.pdf.  
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Because this is an external link subject to change, where appropriate, references will be 

provided. In this section, we will only present how we implemented the reconstruction and give 

some examples relevant to this work. 

The data reconstruction process for an RSI acquisition involves the following steps: 

1) Precompensation of K-t space data 

2) Filtering 

3) Convolution Gridding 

4) Post Compensation 

5) Zero Padding and Fourier Transform  

6) Apodization -> Image 

 

Step 1) Precompensation 

Good treatments of the density compensation ( 1/i iwρ = , -precompensation weights) 

are given in [49] and [51]. After density precompensation, the K-space energy should be flat 

[31]. We have tried the following precompensation weights:  

iw

|

A) A ramp filter as used in projection imaging reconstruction and used by Noll [37] was 

first considered. This is a geometrical factor accounting for the fact data is sampled on a disk 

(cylinder in K-t space), and there is more data samples at the center of K-space ( ) than at 

the edge . 

0K =

maxK K=

  (3.89) ( )i
i rw K=

B) Better results are obtained when in addition to the geometrical factor the speed of the 

trajectory ( | , equationG
G

(3.7)) is taken into account. When the trajectory moves faster through 
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K-space, the distance between data samples increases and the sampling density decreases, thus 

larger weights need to be assigned to those samples; the corresponding weights are: 

 
2 ( )

( ) ( ) ( ) max 1 2
2 2
1 max

( )| | 1 (1 )
i

i i i r
i r r

K Kw K G K
K

ω ω
γ ω
⋅

= ⋅ = ⋅ ⋅ − − ⋅
G 2

3

 (3.90) 

However, for increased amounts of trajectory twist (approx. above 2 1/ω ω > ), the 

product between the geometrical factor ( ) and the speed of the trajectory ( ) assigns 

incorrectly too much weight to the high spatial frequency samples (closer to ) which can 

result in inaccurate reconstruction. 

( )i
rK ( )| iG

G
|

maxK

C) The theoretical area associated with each data sample in K-space 

 ( ) ( ) ( ) ( )( ) (i i i i
i i r rw dA dK dK G dt G dtϑ γ γ= = ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ )ϑ  (3.91) 

Using equations (3.11),(3.12) and (3.2) we can rewrite(3.91) as: 

 2 2 ( ) ( ) 2 ( ) 2 ( ) 2
max 1 2 1 1 1 2 maxsin( ) cos( ) ( )i i i

i r rw K dt t t dt K K Kω ω ω ω ω ω= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ − i (3.92) 

Discarding the constant factor 2
1 2 dtω ω⋅ ⋅ : 

 ( ) 2 ( ) 2
max ( )i

i r rw K K K= ⋅ − i  (3.93) 

The result in equation(3.93) performs best when used in conjunction with the theoretical 

number of excitations derived in section 3.4 (equation(3.83),(3.87)). 

D) In each temporal slice, we measure the area associated with each data sample [51] 

using the Matlab functions voronoin and convhulln. The median lines between each neighboring 

pair of points form polygons for which area is calculated. The relevant part of the program is 

listed below ( represent the position vectors for all data points in one temporal slice):  ,kx ky

[vv,vc]=voronoin([kx ky]); 
for i = 1:length(kx) 
    if all(vc{i}~=1) 
        [ktemp, va(i)] = convhulln(vv(vc{i}, :)); 
    end 
end 
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Data points very close in position, as the ones very close to the center of K-space ( 0K = ) 

or where the trajectories cross each other, could pose a problem and result in an error message 

generated by the Matlab program. If are found within a distance ptsN /10k< Δ ( ), we 

replace them with one point. After the Voronoi calculation, the area calculated for the 

problematic point is equally divided between the original , which are reinstated in the data 

set. In addition, at the edge of K-space (

1/k foΔ = v

ptsN

maxK K= ), the median lines between sampled points 

could converge very far away ( ), resulting in polygons with large areas that would 

inaccurately describe the weight of those points. We temporarily add 512 data samples on a 

circle at , calculate the areas for all data points and then remove these temporary 

points. The sampling density (

maxK K�

max1.01K K= ⋅

1/i wiρ = ) and the sampling density profile for one temporal slice 

are shown in Figure 3-26. 

 

Figure 3-26 Sampling density in one temporal slice (2D Voronoi) 
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The reasoning behind using 2D Voronoi weights calculated as described above, or using 

the weights given by equations(3.89), (3.90) or (3.93) in a 3D reconstruction where the volume 

associated with the data samples would be more appropriate, is found analyzing Figure 3-8. 

Regardless of the position in K-space, the time axes (the two vertical red lines positioned at 

arbitrary distances from ) are sampled twice in each temporal slice. The length of the time 

segment associated with each of these two points is equal to half the thickness of a temporal 

slice  and is the same for all data points. The 3D volume in K-t space is equal to the area 

associated with the data point in K-space multiplied by the height .  

0K =

/ 2dT

/ 2dT

 

Step 2) Filtering 

When comparing the SNR performance of RSI vs. CSI in section 3.7, no filters are 

applied. However, especially for objects with sharp edges, to eliminate the Gibbs ringing 

associated with the way the Fourier Transform behaves at a discontinuity jump, filtering the data 

may be indicated. While this step may be applied after the convolution gridding and before the 

inverse FT, we obtained reconstructions that are more accurate if we filtered the data before 

gridding. When filtering is applied, we use the following spatial and temporal Hanning filters: 

 ,
max

(1 cos( )) / 2r
x y

KF
K

π= + ⋅  (3.94) 

 (1 cos( )) / 2t
read

tF
T

π= + ⋅  (3.95) 

These low pass filters attenuate the high spatial/spectral frequencies. Some loss in details 

is to be expected. In general, low-pass filters have the effect of decreasing the effective 

resolution in the final image accompanied by an increase in SNR. 

Step 3) Convolution Gridding 
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Data is convoluted on a two-fold oversampled grid in each dimension ( , ,x y t ) with a 

Kaiser-Bessel kernel [21]: 

 21( ) [ 1 (2 / ) ]oC u I B u W
W

= ⋅ ⋅ −  (3.96) 

0I is the modified Bessel function of the first kind of order zero. | | is the distance 

in K-space between the sampled position (

/ 2u W≤

kα ) and position on the grid ( ):pk , ,x x x pu k . W is 

the kernel width. . is a parameter calculated to minimize the relative amount 

of aliasing energy; the values calculated by Jackson et al. [21] for a two-fold oversampled grid 

and used by us are: 

kα= −

=(| | / 2) 0C u W> B

 

Table 2 Kaiser-Bessel kernel parameters for a two-fold oversampled grid 

      W  1.5 2.0 2.5 3.0 3.5 4.0 

       B 6.6875 9.1375 11.5250 13.9086 16.2734 18.5547 

 

Larger kernel windows produce results that are more accurate but require longer computation 

times. Typical values used by us in reconstruction are 3.5x yW W= = and . We presample 

the kernel in 2048 points between zero and 

2.5tW =

0 ( ) /I B W and use nearest neighbor interpolation to 

determine for each sample position/grid position. This reduces computation time by approx. 

5-10 times compared to calculating the kernel every time.  

( )C u

Before actual 3D gridding of the data points, for each sampled positionα , the sum of the 

gridding kernels is calculated 

  (3.97) ( ) ( ) (p q
p q m

S C u C v Cα α α= ⋅∑∑∑ )mtα⋅
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The data points are gridded on the 3D grid using a normalized kernel  

( ) ( ) ( ) /p q mC u C v C t Sα α α⋅ ⋅ α . This ensures no additional weighting is introduced by the gridding 

process. 

Step 4) Post Compensation 

When the precompensation weights are not accurate, one way to correct for it is to use 

post-compensation. The precompensation weights are gridded in parallel with the 

precompensated data. At the end of the gridding process, the gridded data matrix is divided to the 

matrix on which the precompensated weights alone were gridded. In principle, the 

postcompensation process should work even without precompensation if the density of the 

trajectory does not change significantly over a region of K-space the size of the convolution 

kernel [31]. In section 3.7, when comparing the SNR performance of RSI vs. CSI, no post 

compensation is used.  

Step 5) Zero Padding and Fourier Transform 

Besides filtering, smoother images can be obtained using zero padding, which is similar 

to a digital zoom. For images with a spatial resolution 128xN < , we use a zero filling factor 

128 /x y xzN zN N= = , and for the spectral response function using the 3D reconstruction and 

evaluation method in section 3.2, we use a zero filling factor along the time axis 2 128 /zN Nδ= . 

An inverse Fourier transform (IFT) along each direction (preceded and followed by ifftshift in 

Matlab), generates the reconstructed image.  

Step 6) Apodiziation 

Because data was reconstructed on a two-fold oversampled grid, if the image size after 

IFT is , the central image (2 2 2N N M⋅ ⋅ / 2, / 2N N− ; / 2, / 2N N− ; / 2, / 2M M− ) is subtracted 

and used further. Because of the convolution gridding, the reconstructed data needs to be 
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apodized by dividing to , where is the IFT of the gridding kernel in 

equation

( ) ( ) ( )c x c y c f⋅ ⋅ ( )c x

(3.96): 

 
2 2 2 2

2 2 2 2

sin( ) W x Bc x
W x B
π

π
−

=
−

 (3.98) 

The parameters are the same as the ones used in equation,W B (3.96), and can be found in 

Table 2. 

 

The effect of some of the reconstruction operations described is illustrated in the next 

figures. The same object used in section 3.2 (Figure 3-4) and a trajectory length 36Nδ = are 

used. When no precompensation ( 1iw = ) or postcompensation is performed, the reconstructed 

object in the on-resonance slice looks like the one in Figure 3-27, with a -axis profile through 

 shown in 

y

0K = Figure 3-28 (blue line). The spectral response (section 3.2) through the region of 

interest (Figure 3-29 blue line) shows a lot of leakage in the off-resonance slices. Post 

compensation in this case ( ), greatly improves the reconstruction (1iw = Figure 3-28 green line) 

and reduces the spectral leakage in the off-resonance slices (Figure 3-29 green line) but it does 

not eliminate it. Even without postcompensation, appropriate precompensation weights result in 

a more accurate reconstruction (Figure 3-28 and Figure 3-29, red line). The ringing in object 

profiles in Figure 3-28 is normal Gibbs ringing which is eliminated through filtering. 
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Figure 3-27 Reconstructed RSI image with no precompensation ( 1iw = ) and no postcompensation 

 

 

Figure 3-28 Object Profile Comparison: 1iw = (w/ and w/o postcomp) and for  i iw dA=
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Figure 3-29 Spectral leakage produced by incorrect data weighting 

 

3.5.2 Correcting for B0 inhomogeneities 

Once a field map is available (a self-derived map can be obtained as in section 0B 3.8.3), the 

reconstruction can be adapted to correct for inhomogeneities. We implement the algorithm 

developed by Irarrazabal et al. [19]. This is a linear correction in which only the linear terms of 

the field inhomogeneities 

0B

( , )f x y  are considered. ( , )f x y is approximated as ˆ ( , )f x y , with 

α and β , constants determined through a maximum likelihood fitting procedure: 

 0
ˆ ( , )f x y f x yα β= + ⋅ + ⋅  (3.99) 
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The original K-t space trajectories ( , )x yk k  are substituted in reconstruction by the 

corrected for linear inhomogeneities trajectories ' '( , )x yk k : 

 
'

'

x x

y y

k k t

k k t

α

β

= + ⋅

= + ⋅
 (3.100) 

3.6 RSI PERFORMANCE 

3.6.1 Sensitivity of a CSI experiment 

An extensive analysis [50] compared a number of fast CSI methods to the gold standard 

Cartesian CSI in terms of sensitivity (defined as the ratio of the SNR to the square root of the 

total acquisition time) and minimal duration of the experiment. The study found that, while all 

the techniques provide for a speed-up in data acquisition, their sensitivity per unit time is 

generally lower than for classical CSI acquisition. A short overview of the work presented in the 

above-mentioned analysis follows below. 

Introduced by Parker et al. [42] as an efficiency figure of merit in an imaging context, the 

SNR divided by the square root of the imaging time, the sensitivity of a spectroscopic imaging 

experiment is [50]: 

 1 x y prep

x ytot x y tot

A f f f VSNR
N NT a N N N f

δ

δ T
⋅ ⋅ ⋅ ⋅

Ψ = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅Δ ⋅

 (3.101) 

The first term 1/( )x yN N⋅  describes the voxel size: the higher the spatial resolution, the 

smaller the voxel size and the signal originating in one voxel. 
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When a large number of repetitions are used, the system approaches a steady state and the 

amplitude of the Free Induction Decay (FID) in the time domain represented by the factor A, is 

the same for every excitation: 

 
1

1

/

0 /

1( , ) sin
1 cos

R

R

T T

FID R T T

eA T M
e

α α
α

−

−

−
= ⋅ ⋅

− ⋅
 (3.102) 

For a spin echo experiment, which consists of an 0(180 )α−  excitation pulse followed 

after a time  by a refocusing pulse: / 2ET 0180

 
1 1 1

2

1

/ ( 1/ 2 ) / ( 3/ 2 ) /
/

0 /

1 2 2( , , ) sin
1 cos

R R E R E
E

R

T T T T T T T T
T T

echo R E T T

e e eA T T M e
e

α α
α

− − − − −
−

−

− + −
= ⋅ ⋅ ⋅

− ⋅
 (3.103) 

0M is the magnetization of the sample imaged in thermal equilibrium. 

,FID echoA A are maximized by Ernst angle: . For an FID experiment, the 

optimum acquisition time is 

1/cos RT T
Ernst eα −=

*
21.26AQT T⋅� and optimum repetition time is between 

and . For spin-echo experiments, the optimum acquisition time is and 

the optimum is between and , depending on both  and . 

RT

*
21.2 T⋅ *

21.3 T⋅ *
22.52AQT T= ⋅

RT 1T 12 T⋅ 1T ET

, ,x yf f fδ describe the effect of the Fourier transformation on the signal in the two spatial 

and one spectral dimension. 

prepV is a method-dependent factor, which describes processes during the preparation 

period (phase encoding, etc.). 

tot rep RT N T= ⋅ is total acquisition time with being the total number of repetitions. repN

The standard deviation of the noise caused by electron fluctuations in coil and sample is 

given by the Johnson noise formula [50]: 

 4t B ck T R f a fσ< >= ⋅ Δ = ⋅ Δ  (3.104) 
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 4 B ca k T= R  (3.105) 

a is a constant that depends on the temperature of the coil and the coil resistance 

and

cT

fΔ is the bandwidth of the filter used to avoid aliasing. 

An FID is sampled in discrete time intervals according to the Shannon criterion: 

 1/t fΔ = Δ  (3.106) 

The standard deviation of the noise in the frequency domain is: 

  (3.107) 2 2

1

N

t
n

Nνσ σ
=

< > = < > = < >∑ 2
tσ

 a N fνσ< >= ⋅ ⋅Δ  (3.108) 

This generates the x ya N N N fδ⋅ ⋅ ⋅ ⋅Δ factors in the denominator in Equation(3.101). 

The sensitivity of the classical CSI experiment is: 

 
*
2/( , ) ( ,

G T
FID R

CSI FID AQ
x y R

A T e f T
aN N N T

τ

δ

α )δ
δ

−⋅
Ψ = ⋅ Δ

⋅Δ ⋅
 (3.109) 

The amplitude right after the excitation pulse is ( , )FID RA A Tα=  (Equation(3.102)). 

This is reduced by a factor due to the decay during the time
*
2/G T

prepV e τ−= *
2T Gτ needed for 

phase encoding. 

The effect of xN phase encoding steps is a signal enhancement by xN , giving rise to the 

factors x xf N= and y yf N= . 

The Fourier transform in the spectral dimension causes a factor 

 
** *
22 2

1
// / *

20
0

1( , ) (1AQ AQ

N T T Tn t T t T
FID AQ

n
f f T e e dt T e

t

δ

δ δ δ
−

−− Δ −

=

= Δ = ≈ ⋅ = ⋅Δ ⋅ −
Δ∑ ∫ )  (3.110) 

The transition from sum to an integral is possible in the approximation the dwell 

time is much shorter than , condition that is fulfilled in most CSI experiments. tΔ *
2T
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A quality factorΩ , which relates the sensitivity of all fast methods to the classical CSI 

sequence as a function of the relevant experimental parameters, is defined: 

 sequence
sequence

CSI

Ψ
Ω =

Ψ
 (3.111) 

 

In the work of Pohmann et al. it is determined that the sensitivity of the fast CSI 

experiments is lower than the sensitivity for classical CSI or spin echo CSI (SE-CSI) in all cases, 

with a few exceptions. We will investigate one of the claimed exceptions here because it can 

shed some light into how to design an efficient acquisition scheme and set the groundwork for 

comparing the RSI performance to CSI. It is claimed SPLASH (spectroscopic FLASH – Hasse et 

al. 1987) can achieve a sensitivity greater than CSI at very high spatial resolution xN and very 

low spectral resolutions Nδ . 

SPLASH consists of a gradient echo, the position of which is shifted with reference to the 

excitation pulse by a variable delay tδ  in Nδ subsequent repetitions. (A gradient echo is formed 

when the phase accumulated due to gradient encoding becomes zero ( ) 0G t dt⋅ =∫ ). Similar to 

echo-time encoding, one spectral point is sampled per repetition, already resolved in one spatial 

dimension. The second spatial dimension is phase encoded by a gradient between excitations and 

acquisition. For an entire experiment, yN Nδ ⋅ repetitions are needed, and in each of them, a 

gradient echo with xN points is acquired. The repetition time is equal to that of optimized CSI 

sequence (called FLASH-CSI) with  

 R AQ G AT T T Qτ= + ≈  (3.112) 
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and Ernstα α= , resulting in a difference in the total duration of /CSI SPLASH xT T N N/ δ= . The factor 

xf in Equation (3.101) is replaced by the signal of the gradient echo. Since the acquisition in the 

presence of a read gradient usually is much shorter than  even for quite small gradients, this 

factor is approximately equal to

*
2T

xN , which is the same as for phase encoding: 

 
*
2/* *

2 2 *
2

1( , ) (1 )AQT T AQ AQ
x FID AQ x

x x

T T
f f T f T f e T N

t T t
−= Δ = ⋅Δ ⋅ − ≅ ⋅ ⋅ = =

Δ Δ
 (3.113) 

1/xtΔ = Δf is the spatial dwell time. 

The total difference in sensitivity of these two experiments thus is 

 CSI x
SPLASH

SPLASH

T N
f T f Nδ

δ δΔ ⋅ Δ ⋅
Ω = =

Δ ⋅ Δ ⋅
 (3.114) 

It is claimed SPLASH can achieve a higher sensitivity than CSI for a very small spectral 

and high spatial resolution, and from the expression in equation(3.114), it appears it may be so. 

However, based only on equation(3.114), we claim this is not the case. 

Using  and 1/xt fΔ = Δ 1/tδ δΔ = Δ (spectral dwell time), we rewrite Equation (3.114) as: 

 
spatial

x x x read
SPLASH spectral

read

N t N T
f N t N Tδ δ δ

δΔ ⋅ Δ ⋅
Ω = = =

Δ ⋅ Δ ⋅
 (3.115) 

SPLASH spatial
AQ read xT T N= = ⋅ xtΔ

t

is the gradient echo readout or the time during which data is 

collected for one SPLASH repetition and CSI spectral
AQ readT T Nδ δ= = ⋅Δ is the FID readout or the time 

during which data is collected for one CSI repetition.  

While the claim made in [50] is correct for spectral spatial
read readT T< it involves using an FID readout that 

is shorter than (the assumption*
2T *

2
spatial

readT T< was used to estimate xf in Equation(3.113)). More 

importantly for the comparison of the two methods, since both sequences use the same repetition 

time , it implies that the CSI readout is shorter than (neglecting the gradient encoding RT RT
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time Gτ required by both sequences). This corresponds to an artificial shortening/truncation of the 

CSI readout and contradicts the initial assumption/setting that the repetition time is 

approximately equal to the acquisition time (Equation(3.112)). If the setting in Equation(3.112) 

is observed, while for small spectral bandwidths SPLASH sensitivity can approach CSI 

sensitivity, however its performance is always sub unitary 1SPLASHΩ <  since spectral spatial
read readT T>  and 

it falls rapidly as the spectral resolution increases, approximately as1/ Nδ . In fact, 

because , the only time the sensitivity of the SPLASH 

experiment equals the one for CSI is for imaging (

( 1)SPLASH spatial
AQ G readT N tδ δτ= + − ⋅Δ +T

1Nδ = ). The delays tδ  (and the time from the 

end of the gradient echo acquisition to the beginning of the next excitation for that matter) during 

which the receiver is closed and no data is collected make the SPLASH sequence less efficient 

than CSI.  

Allowing for more general sampling schemes, Cartesian and uniform, we propose a 

demonstration for the result of equation (3.115) as follows: 

 

Theorem: The quality factor (SNR performance) of a fast CSI method using the same 

experimental setup, same flip angle (the same initial transversal magnetization) and the same 

repetition time as classical CSI is proportional to the square root of the ratio of the method’s 

readout time to the CSI readout. For a fast CSI method with uniform K-t space coverage and 

square/cubic support, if the noise is white and uncorrelated, the quality factor is equal 

to /read read
method CSIT T . 

 

Proof: 
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Let total
pts x y zN N N N Nδ= ⋅ ⋅ ⋅ be the total number of points that properly sample the K-t 

space and let (1)
CSIN Nδ= and the number of points sampled during one repetition time, with 

corresponding dwell times 

(1)
methodN

1/tδ δΔ = Δ  and 1/methodt fΔ = Δ . The number of repetitions required 

for full coverage of K-t space are  and . 

Note that this implies uniform K-t space coverage; the method fully samples K-t without 

acquiring a point twice (non-uniform coverage will be considered later).  

(1)/rep total
CSI x y z pts CSIN N N N N N= ⋅ ⋅ = (1)/rep total

method pts methodN N N=

The signal at sampled point in K-t space is (from equation P (2.17) updated to include 

relaxation): *
2T

 
*
2/ 2( , 0) P Pt T i k r

P xy
V

S M r t e e π− − ⋅ ⋅ ⋅= = ⋅ ⋅∫∫∫ dr⋅
G GG G  (3.116) 

( , , , )P m n l p= is a discrete position in K-t, sampled at time Pt p tδ= ⋅Δ  and 

,( , ) ( , , )P x y z x y zk k k k m k n k l k= = ⋅Δ ⋅Δ ⋅Δ
G

, with integer numbers. , , ,m n l p

Both methods compared have the same initial magnetization profile ( , 0)xyM r t =G , the 

relaxation effect is the same , if the time position *
2T

*
2/Pt Te−

Pt is the same, and the phase 

accumulated is the same for a position ( ) 2Pk kϕ π= − ⋅
G G G

P r pk
G

in K-space, regardless of how 

position  was reached (regardless of the shape of the trajectory). Therefore, the signal at each 

point on the K-t grid is the same for the two methods: 

P

  (3.117) ( , , , ) ( , , , )
method CSI
m n l p m n l pS S=

However, ( , , , )
CSI
m n l p CSI aσ σ δ= = ⋅ Δ and ( , , , )

method
m n l p method aσ σ f= = ⋅ Δ for any position in K-t 

space; we can write: 

 
/
/

method method method CSI

CSI CSI CSI method

SNR S
SNR S f

σ σ δ
σ σ

Δ
= = =

Δ
 (3.118) 
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(1) (1)

(1)

/

/

total rep
method method CSI method method method

method reptotal
method CSICSI CSI

SNR T N N t N
f N f N t NSNR T δ δ

δδ Δ ⋅ Δ ⋅Δ
Ω = = ⋅ = =

Δ Δ ⋅ Δ ⋅
(3.119) 

 
read

method
method read

CSI

T
T

Ω =  (3.120) 

For a fast spin-echo CSI method, when using the same echo time  as for classical spin-

echo CSI (SE-CSI), the result in equation

ET

(3.120) becomes: 

 
read

SE method SE CSI SE method SE method
SE method SE CSI read

CSI CSI SE CSI SE CSI

T
T

− − − −
− −

− −

Ψ Ψ Ψ
Ω = = ⋅ = Ω ⋅

Ψ Ψ Ψ
 (3.121) 

  

It appears from the arguments and results presented above, an efficient acquisition 

scheme should try to acquire as much data as possible during one repetition.  A pulse sequence 

that does that is PREP (projection-reconstruction echo planar imaging). An oscillating read 

gradient generates a train of Nδ gradient echoes with an echo spacing equal to the spectral dwell 

time tδΔ , scanning a plane in K-t space in the spectral and one spatial dimension at each 

repetition. The gradient is rotated in each subsequent repetition in a projection imaging (PI) 

fashion, allowing for a reconstruction with a back-projection algorithm. The sensitivity of the 

experiment is optimized by using short repetition times and the Ernst angle. The acquisition time 

is as long as in classical CSI so, in principle, it could reach the same sensitivity. However 

because a finite time sτ is needed for gradient switching at the edge of K-space, when the 

gradient is optimized such that only one spectral dwell time is used up with the gradient 

switching and acquisition of xN points, Pohmann et al. [50] calculate the relative sensitivity of 

the PREP acquisition to CSI to be: 

 1PREP sτ δΩ = − ⋅Δ  (3.122) 
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We can rewrite equation (3.122) as: 

 
USED

read
PREP

read

T
T

Ω =  (3.123) 

In this form, it is apparent again that the SNR performance of a fast CSI experiment is 

proportional to the square root of the length of the (useful) readout compared to the readout of 

the classical CSI experiment.  

 

Different acquisition schemes could use different spectral ( tδΔ ) and spatial ( xtΔ ) dwell 

times corresponding to different spectral δΔ and signal bandwidths fΔ . We can explain the 

results obtained for the performance of the fast CSI methods in terms of “elementary” data 

samples collected by the scanner - the data samples collected at the fastest sampling rate 

corresponding to the fixed receiver bandwidthdt 1/MAX RCVf BW dtΔ = = . 

Equation (3.104) expresses the standard deviation of the noise as a function of the sampling 

bandwidth. For an elementary data sample: 

 0 MAX RCVa f a BWσ< >= ⋅ Δ = ⋅  (3.124) 

When a spectral dwell time 1/tmpt N dtδ δΔ = ⋅ = Δ is used, the signal from each K-t space 

cell can be envisioned as a simple average of elementary data points. The effective standard 

deviation of the noise for the averaged data is: 

tmpN

 0 0/ /tmp tmp tmp tmpN N Nσ σ σ< >=< > ⋅ =< >  (3.125) 

It can be easily seen this is the same as: 

 0 / / / /tmp tmp RCV tmp tmpN a BW N a dt N a t aδσ σ δ< >=< > = ⋅ = ⋅ = Δ = ⋅ Δ (3.126) 
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For the spatial dimension, using a dwell time 1/x spatialt N dt fΔ = ⋅ = Δ , spatialN elementary 

data points are averaged in each K-t space cell, resulting in: 

 0 / /spatial spatial RCV spatialN a BW N aσ σ< >=< > = ⋅ = ⋅ fΔ  (3.127) 

For the purpose of data reconstruction, K-t space is made up of total
pts x y zN N N N Nδ= ⋅ ⋅ ⋅  

unit cells. Each cell, or voxel, has a volume x y zV k k k tδΔ = Δ ⋅Δ ⋅Δ ⋅Δ . While a fast CSI method 

covers K-t space in a shorter time than classical CSI, sampling more unit cells during one 

repetition, it deposits in each cell only 2
0( / ) /spatialN aσ f= Δ (equation(3.127)) elementary points 

vs. classical CSI that deposits 2
0( / ) /tmpN aσ δ= Δ (equation (3.126)). 

sincetmp spatialN N> fδΔ < Δ . While the noise in each grid cell is proportional to 0 spatialNσ ⋅ and 

0 tmpNσ ⋅ respectively, the signal is proportional to the number of points andspatialN S⋅ tmpN S⋅ , 

therefore /SNR S σ= is proportional to spatialN and tmpN . The  faster the acquisition method, 

the greater the signal bandwidth fΔ , the smaller the number of points deposited in one cell 

during one repetition, the larger the number of averages necessary to match the number of points 

(thus, the SNR) deposited in a K-t space cell by classical CSI. The number of averages required 

to match the SNR is /tmp spatialNEX N N f / δ= = Δ Δ . The assumption we made here is all 

elementary data points within one cell are equal to each other: not only is the noise the same for 

every point sampled, but in addition, the signal for all the points within a cell of K-t space is the 

same. This is a reasonable assumption if the volume of the cell is sufficiently small, the signal 

variation will be relatively small. However, when the volume of the cell becomes large, if a large 

spectral dwell time tδΔ , or a large is used, there could be large variations in signal amplitude 

and phase within one voxel. 

kΔ
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Consider the Echo-Time Encoding experiment, which is similar to SPLASH described 

above, but spin echoes are used this time. yN Nδ ⋅ repetitions are needed instead of x yN N⋅ for 

classical CSI. A read gradient is used for spatial encoding in one direction. The position of this 

gradient is shifted in subsequent repetitions by a variable time tδ with respect to the maximum of 

the spin echo, thus encoding the spectral information. The second spatial dimension is resolved 

using a phase gradient. Pohmann et al., calculate the total sensitivity of this experiment to be: 

 x
echo time SE CSI

N
f Nδ

δ
−

Δ ⋅
Ω = ⋅Ω

Δ ⋅ −  (3.128) 

Using the same arguments we used when we analyzed the SPLASH experiment 

( 1/ tδδΔ = Δ , 1/ xf tΔ = Δ ), the result in equation(3.128) is the same as the result of our derivation 

in equation(3.121). In addition, observing the conditions set for comparing the performance of 

the two experiments, because spectral spatial
read readT T≥ (equality when 1Nδ = ), from equation(3.121), we 

obtain . Based on the result derived, the two experiments have the same 

sensitivity only for imaging ( ), otherwise, for , the sensitivity of the spin-echo 

variant of classical CSI is always greater. 

echo time SE CSI−Ω ≤ Ω −

1Nδ = 1Nδ >

The Dixon method [14] to resolve water and fat, is an echo-time encoding experiment 

where the spectral resolution . For the first spectral point, the gradient echo takes place at 

the same time as the spin echo. The second spectral point is collected by positioning the gradient 

echo after or before the maximum of the spin echo by a time interval: 

2Nδ =

 2
1

2 ( )Water Fat

t
f fδ = = ±

⋅ −
 (3.129) 

 For the first spectral point, the water and fat spins are in-phase and the image created is a 

sum of the water and fat images. The second spectral image, acquired at the time given by 
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(3.129), has the transversal magnetization of water and fat opposed (in anti-phase), and the 

image generated is the difference of the water and fat images. We have already shown based on 

the arguments presented above that the SNR performance of the Dixon method is lower than for 

a spin-echo variant of the classical CSI experiment ( echo time SE CSI− −Ω < Ω for ). However, the 

demonstration was based on the assumption the signal within a voxel in K-t space is 

approximately the same. For a CSI experiment with two spectral points , that uses a 

spectral dwell time as large as the one in equation

2Nδ =

2Nδ =

(3.129), the assumption of homogenous cells in 

K-t space is not correct anymore. During one spectral dwell time, the magnitude of the signal 

changes from a sum to a difference of two components of comparable strength. While classical 

CSI achieves a lower standard deviation for the noise by averaging more elementary points 

( 2
0( / ) /tmpN aσ δ= Δ σ) than the Dixon method ( 2

0( / ) /spatialN a f fδΔ= Δ ; < Δ ), it does so at the 

expense of averaging data points with largely different signal strengths, which decreases its 

spectral resolving power, making the Dixon method more suitable in this kind of experiment 

with very low spectral resolution ( 2Nδ = ).  

 

The arguments we used to explain why the performance of the classical CSI acquisition 

in this situation ( ) is lower than when using the Dixon method (namely, averaging the 

elementary data samples with widely different amplitudes is detrimental to spectral resolving 

power), can be applied to spatial encoding for both imaging and spectroscopic imaging. When 

using spatial dwell times larger than (the dwell time corresponding to the highest sampling rate 

available), it appears that for gradient echoes, multiple elementary data points are combined and 

assigned one position in K-space while they belong to slightly shifted positions along the echo. 

This suggests that, whenever possible, sampling the trajectories as often as possible, using a 

2Nδ =

dt
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sampling rate matching or as close as possible to the highest rate available on the scanner, 

provides a benefit trough better assignment of data to positions in K-space. This agrees with 

Parker et al. [42] who demonstrated that as long as the voxel size is maintained constant, one 

could image as many pixels in the readout direction as desired with no loss in SNR. However, 

this is done at the cost of higher computational time in data processing, which in the case of 3D 

imaging or spectroscopic imaging can become significant since data sets are already large. 

 

So far, the SNR discussions have assumed only white thermal Johnson noise 

(equation(3.104)).  The total noise in an MR image consists of at least three different noise 

sources [24]: 

 2 2 2 2
0T S P

2
Pσ σ σ σ σ σ= + + = +  (3.130) 

The thermal noise Tσ (equation(3.104)) and the systematic noise Sσ  can be treated 

together as 0σ (equation(3.124), different value for constant ). The physiological noise includes 

contributions from fluctuations in the basal brain metabolism and thus is signal dependent: 

a

P Sσ λ= ⋅ . In a neuroimaging study at 1.5T and 3T, Kruger et al. [24] showed that, the 

increasing influence of the physiological noise would limit the achievable SNR at higher 

magnetic fields. They also argued that writing /SNR S σ= , one obtains: 

 0
2

01
SNRSNR

SNRλ
=

+ ⋅ 2

0

 (3.131) 

0 /SNR S σ= is the SNR when no physiological noise is present and λ  is a system-

independent constant. 

Using equation(3.131) and the result in equation(3.120), when physiological noise is 

considered in comparing the SNR performance of a fast CSI method to classical CSI: 
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 (3.132) 

Thus, a fast CSI method will perform somewhat better than /read read
method CSIT T when the used 

acquisition time is shorter than the one for classical CSI ( ) and signal dependant 

noise is present. 

read read
method CSIT T<

Kruger’s study found that the physiological noise is of increasing influence at higher flip 

angles (larger signals), in fully relaxed images (long ’s). Therefore, while the physiological 

noise might play a larger role in spin-echo experiments that use longer repetition times and larger 

flip angles, its effect on the SNR performance of a fast CSI method compared to classical CSI, 

will be less relevant for experiments optimized to use short ’s and Ernst angle. 

RT

RT

3.6.2  RSI Performance 

As described in the introductory section, the Rosette trajectories consist of a radial and angular 

oscillation and they generate a train of Nδ gradient echoes with an echo spacing equal to the 

spectral dwell time tδΔ  (section3.3), encoding simultaneously the two spatial and the spectral 

dimension. The gradient radial component becomes null at the edge of K-space ( ) and 

they return to the center of K-space (

maxK K=

0K = ) in a periodic fashion and no time is spent for 

gradient switching that would be unusable in data reconstruction. The acquisition time can be as 

long as for CSI. Furthermore, the acquisition can start immediately after the end of the excitation 

pulse, unlike CSI where phase encoding gradients are required. 
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The first obvious difference between RSI and CSI is the rosettes encode a disk of radius 

in K-space (cylinder in K-t space) while in the case of CSI a square is encoded with the 

side equal to ; the second obvious difference is data encoded with CSI is laying on a 

Cartesian grid while for RSI it is not. 

maxR K=

max2L K= ⋅

Because RSI has circular support it is more appropriate to compare it to a disk supported 

CSI which encodes only the K-space positions inside a circle of radius maxR K= rather than the 

whole square and thus, the total acquisition time for the disk supported CSI is only / 4π of the 

square supported CSI. As noted by Bernstein et al. [4], techniques covering a disk rather than a 

square in x yK K− space may have an intrinsic SNR advantage. In fact, our results (Section 3.7) 

show an increase in SNR of 4 /π≅ for a disk supported CSI vs. the square supported CSI 

acquisition, which suggest the high-frequency information in the corners of K-space contribute 

little power to the measured signal. Since the time required for a CSI acquisition with K-space 

disk support is / 4π shorter than for a CSI with square support, 

 4 / / / 4 4 / 1.27diskCSI π π πΩ = = �  (3.133) 

Equation (3.133) is valid when no spatial filters are applied. However, spatial filters are 

typically used in the reconstruction process and for a filter that completely removes the corners 

of K-space of a square supported CSI acquisition, the SNR will become the same as for the disk 

supported CSI acquisition. The advantage provided by a faster total acquisition due to a lower 

number of phases encoded remains: 

 1/ / 4 4 / 1.13diskCSI π πΩ = = �  (3.134) 

In general, for a filter that does not completely remove the corners of K-space (e.g. Fermi 

filter, etc.):  
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 diskCSI bΩ =  (3.135) 

b will have a value in between the ones given by equations (3.133) and (3.134): 

 [ 4 / ;4 / ]b π π∈  (3.136) 

The second difference between RSI and CSI is that in the case of RSI the data is collected 

using non-Cartesian trajectories. More importantly, unlike CSI, the sampling is not uniform. To 

understand how non-uniform sampling affects the SNR, please see Pipe et al. 1995 [48]. For the 

same acquisition time, the trajectory with non-uniform sampling will have lower SNR than the 

one sampling uniformly. 

Thus, the RSI performance relative sensitivity to the disk supported CSI is: 

 RSI diskCSIηΩ = ⋅Ω  (3.137) 

As shown in section 3.4, when the number of excitations approaches the number given by 

equations (3.83) and(3.87), the rosette trajectories achieve their highest sampling 

efficiency 21/ / 8 .90RSIη π= = . 

In addition to the two main differences between RSI and CSI discussed above, the rosette 

acquisition can start immediately after the end of the RF excitation pulse, unlike CSI where 

encoding gradients of duration Gτ are necessary for encoding the K-space positions before an 

FID is collected. During this time Gτ , because of the relaxation, the CSI signal becomes 

smaller by a factor . 

*
2T

*
2/G Teτ

In conclusion: 

  (3.138) 
*
2/G T

RSI RSI b eτηΩ = ⋅ ⋅

The SNR performance of RSI compared to CSI is affected by four factors. Since the 

rosette trajectories do not spend time covering the corners of K-space, gives RSI an advantage of 

up to 27% ( factor). Secondly, this advantage is reduced by the non-uniform sampling by ~10% b
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( RSIη factor). Third, because the RSI acquisition, unlike CSI, can start right after the end of the 

RF pulse, there is potential signal to be gained ( factor). Finally, the same acquisition time 

( ) puts the two methods on the same footing. Because the acquisitions are already 

optimized for a readout time equal to 

*
2/G Teτ

RSI CSI
read readT T=

*
21.26 T⋅  that maximizes the SNR [50], the possible longer 

readout for RSI ( RSI CSI
read read GT T τ= + ), can only help in slightly increasing the spectral 

resolution . Readouts longer than 1/ readdf T= *
21.26 T⋅ result in lower SNR for an unfiltered FID. 

However, the SNR lost because of the longer acquisition time can be completely recovered using 

a matched temporal filter . 
*
2/t Te−

In the light of the arguments presented, we also update the relation for the performance of 

the PREP technique: 

 1PREP PI sbη τ δΩ = ⋅ ⋅ − ⋅Δ  (3.139) 

3 / 2 .87PIη = � is the sampling efficiency of the PI acquisition technique. 

3.7 SIMULATION STUDIES 

For all the simulation studies (spectral response-section3.2, etc…), we used synthetically 

generated ellipses and disks. The analytical expression for an on-resonance ellipse of major semi 

axes with the center at , sampled in K-space at position (,a b 0 0,a b ,x yk k ) can be shown to be: 

 0 02 ( )2 2
12 2

( , ) (2 ( ) ( ) )
( ) ( )

x yi a k b k
x y x y

x y

a bE k k J a k b k e
a k b k

ππ − ⋅ ⋅ ⋅ + ⋅⋅
= ⋅ ⋅ ⋅ + ⋅ ⋅

⋅ + ⋅
 (3.140) 

1( )J ⋅ is the Bessel function of the first kind, of order one, with the limit at the center of K-

space ( ): 0, 0x yk k= =
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 1
0

(2 )lim( )
x

J x
x
π π

→

⋅
=  (3.141) 

An elliptical object at off-resonance frequencyω , with relaxation , will be described by 

a time dependent function: 

*
2T

  (3.142) 
*
2/*

2( , , , , ) ( , ) t Ti t
x y x yE k k t T E k k e eωω −⋅ ⋅= ⋅ ⋅

Multiple objects with different spatial and spectral positions were generated and 

reconstructed in order to verify the fidelity of the reconstruction program. 

 

We proceed to verify the predictions made for the RSI sensitivity performance in section 

3.6.2, equation(3.138). The factor was neglected and the readout for the CSI and RSI 

acquisitions was set the same for a given spatial resolution 

*
2/G Teτ

xN  and spectral bandwidth δΔ . The 

spatial resolution was first fixed to 64xN = and the spectral bandwidth δΔ was allowed to take 

values between 100 Hz and 900 Hz in steps of 50 Hz . The trajectories were designed as in section 

3.3, for one set of trajectories (no temporal interleaves, 1TIn = ), and one petal per trajectory per 

temporal slice (two half petals, 2hptlsn = ). Maximum twist (greatest 2 / 1ω ω ) allowed by hardware 

constraints ( max
HWG , max

HWS ) and signal bandwidth/sampling rate (equation(3.42)) was used. One disk 

at the center of the field of view with a diameter .6D fov= ⋅ , was generated on-resonance using 

the minimum number of excitations calc
shN determined using the simulation program described at 

the beginning of section 3.4 and also the theoretically estimated number est
shN  given by 

equations(3.83), (3.87). Uncorrelated white noise with the same standard deviation was added to 

the imaginary ( ) and real data ( ). The precompensation weights were taken to be 

equal to the 2D Voronoi weights calculated in each temporal slice as described in section 

2
0 / 2σ 2

0 / 2σ

3.5.1, 
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step 1D. The simulated object and the regions inside the on-resonance frequency slice used to 

measure the SNR are shown in Figure 3-30. 

Figure 3-30 Simulated Object and Signal and Noise regions used to measure the SNR 

 

Before proceeding to compare the RSI results to the CSI results, we realized that, while 

for the theoretically estimated number of excitations est
shN , the reconstructions using 

postcompensation produce barely different SNR results compared to when no postcompensation 

is used (approx. 2-6% increase), for the minimum number of excitations calc
shN , the increase in 

SNR when using postcompensation was up to 40%. We conclude the postcompensation process, 

while indispensable when precompensation is not used (section 3.5.1) or the precompensation 

weights are not correctly calculated (Figure 3-24), should be regarded as filtering (that is, in 

addition to explicit filters typically applied during reconstruction (section 3.5.1, step 2). Our 

conclusion is supported not only by the increased in SNR observed by us when using 

postcompensation, but also by observations made by others that noted a reconstruction 

performed with appropriate precompensation weights produces a better image than the same 

reconstruction when in addition, postcompensation is used [31]. The “better” image refers to 
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more detail, which is lost when postcompensation is applied, an effect similar to filtering. The 

effect of approx. 30-40% increase in SNR is small compared to the increase obtained when 

applying the Hanning filters discussed in data reconstruction section, equations(3.94), (3.95) 

(approx. 350% increase in SNR for the object/geometry considered). However, it is comparable 

in size to the SNR advantage (~14%) we expect the RSI acquisition will have vs. CSI. For this 

reason, we will compare only RSI acquisitions using the theoretically estimated number of 

excitations est
shN , for which the analytically estimated precompensation weights are the same as 

the 3D Voronoi weights (Figure 3-25) and no postcompensation will be used. 

For spatial resolution , , spectral bandwidth 64xN = 130AQT � ms δΔ from 100 to 900 Hz , 

in steps of 50 Hz , we simulate and reconstruct the RSI data, the CSI data with K-space square 

and disk support, a number of . Noise is added to the simulated data using the randn function 

in Matlab, each time with a different starting seed. The sensitivity (

310

/ totSNR TΨ = ), the ratio of 

the SNR measured to the square root of the total acquisition is calculated for RSI 

( ( ) (RSI RSIS e )δ δΔ ± Δ ), CSI ( ( ) (CSI CSIS e )δ δΔ ± Δ ) and disk CSI ( ( ) (dCSI dCSIS e )δ δΔ ± Δ ), where 

(S )δΔ and (e )δΔ represent the mean and standard deviation of the sensitivity for 

the measurements. In 310 Figure 3-31, we plot the results normalized to the CSI sensitivity, which 

is assigned a unitary value (for all δΔ ’s). The relative sensitivity displayed for RSI is: 

 ( ) ( ) ( )
( ) ( )

RSI RSI CSI

CSI CSI

S e e
S S

δ δ
δ δ

Δ Δ +
±

Δ Δ
δΔ

)

 (3.143) 

Thus, the mean value displayed is ( ) / (RSI CSIS Sδ δΔ Δ with the size of the error bars equal 

to ( ( ) ( )) / (RSI CSI CSIe e S )δ δ δΔ + Δ Δ . 

The relative sensitivity displayed for CSI with K-space disk support is 
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 ( ) ( ) ( )
( ) ( )

dCSI dCSI CSI

CSI CSI

S e e
S S

δ δ
δ δ
Δ Δ +

±
Δ Δ

δΔ  (3.144) 

Figure 3-31 RSI relative SNR sensitivity 64xN = ( noise seeds) 310

 

Neglecting again , keeping spectral bandwidth fix at
*
2/G Teτ 600HzδΔ = , 34Nδ = , 

18fov cm=  we verify the prediction of equation(3.138) for spatial resolutions from 20xN = to 

(in increments of two). A thousand ( ) different seeds are used for noise added to 

RSI, CSI (disk and square supported) data. Normalizing again the CSI sensitivity to unity, the 

relative RSI and disk CSI sensitivity (and error bars) displayed in 

128xN = 310

Figure 3-32 are defined as in 

equations(3.143), (3.144), but now they are functions of the spatial resolution xN . At lower 

spatial resolutions xN , the error bars are larger than at higher since fewer points are used in 'xN s
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reconstruction. In addition, for disk CSI, due to the discrete nature of K-space sampling, at small 

a slightly smaller or larger number of points than the theoretical will make it into 

the reconstruction. The RSI relative sensitivity to square supported CSI closely approaches the 

theoretical value for unfiltered reconstruction: 

'xN s 2 / 4xNπ ⋅

1.14RSIΩ ≈ . In addition, the disk supported CSI 

relative sensitivity: .  1.27dCSIΩ ≈

Figure 3-32 RSI relative SNR sensitivity 600δΔ = ( noise seeds) 310
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3.8 EXPERIMENTAL RESULTS 

To demonstrate experimentally the RSI technique, we wrote a pulse sequence in EPIC 

(Environment for Pulse programming In C) and implemented on a General Electric 3Tesla whole 

body MRI scanner. For this machine, the peak gradient can reach and the slew 

rate .  A slice selection pulse with an RF waveform and gradient identical 

to the one used in the standard CSI sequence available on the scanner was implemented in the 

sequence. The magnetization flip angle was optimized such a maximum signal from the excited 

slice is obtained. This was done before actual acquisition, by varying the transmission gain (TG) 

and collecting a number of FIDs for each TG value, with the readout/encoding gradients 

amplitude set to zero and the repetition time the same as the one used for data collection. 

Because the RF slice selection pulse is the same as the one used in the standard FIDCSI 

sequence, an approach to obtaining a better excitation slice profile would be to use custom 

designed RF composite spin-echo pulses tailored for the flip angle used [26].  The gradient 

waveforms, tailored for each spatial resolution and spectral bandwidth, designed as in section 

max 4 /HWG G= cm

msmax 15 / /HWS G cm= zG

3.3, are loaded as external waveforms at run time. 

3.8.1 Phantom experiments 

A plastic bottle filled with commercial Canola oil was used to determine the technique’s ability 

to resolve multiple spectral resonances. Two ( 2TIn = ) temporally interleaved sets of trajectories 

with 1 2300 , 584f Hz f Hz= = were used to achieve a spatial resolution and a spectral 

bandwidth

64xN =

1200HzδΔ = . The number of shots to cover K-t space was chosen 2 64RSI
shN = ⋅  
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which is greater than the minimum number of excitations determined using the simulation 

program , but about 20% less than the theoretical number calculated using 

equation

min 2 34N = ⋅

(3.87), . Slice thickness wasI 2 77RS
thN = ⋅ 2mmzΔ = , repetition time  and the 

readout (acquisition) time . Data was sampled every . The spectral 

resolution, after discarding during reconstruction the data collected in the first temporal slice for 

the first set of trajectories and data in last temporal slice for the second time-interleaved set, 

was . An enhancement in spatial resolution by a factor of two was used by zeropadding 

the data in the x, y directions. Only the central 64 spectral slices (out of 74) are displayed in 

285RT = ms

ms62.5AQT = 8dt us=

74Nδ =

Figure 3-33 covering a range of 1038Hz (out of 1200Hz). 

 

Figure 3-33 RSI: Spectroscopic Image of an oil bottle phantom, RSI acquisition 
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While a self-derived map can be obtained as in section 0B 3.8.3 and the correction performed 

as in 

0B

3.5.2, in this case, because of the simplicity of the phantom, we chose the easier approach 

of aligning the spectra. For each spatial position, the location of the strongest resonance is 

determined and over the entire phantom, a median position for this resonance is calculated, with 

the difference between the two giving also a self-derived map Figure 3-34. Next, spectra in each 

spatial voxel are shifted in frequency such the new location for the strongest resonance is the 

same for each voxel and equal to the median position calculated (Figure 3-35). 

 

Figure 3-34 Oil bottle 0B map ( Hz ) 
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Figure 3-35 RSI: Oil bottle with correction 0B

 

 

The spectral profile for the RSI acquisition (Figure 3-36), which we calculated (after 

correcting for ) as intensity of the signal over the entire FOV in each spectral slice, is 

compared to the spectral profile for a standard CSI acquisition (

0B

Figure 3-37). The same 

experimental setup (same phantom, excitation pulse, ) was used and the spatial/spectral 

resolution were the same as for RSI (

RT

64,  74,  1200xN Nδ Hzδ= = Δ = ).   
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Figure 3-36 Spectral Profile, RSI Acquisition Oil Bottle with correction  0B

 

Figure 3-37 Spectral Profile, FIDCSI Acquisition Oil Bottle with correction 0B

 

3.8.2 In Vivo Experiments 

In the early stages of the technique’s development, 31P data was collected from a leg of a healthy 

human volunteer. One multishot set of 32shN =  rosette trajectories was employed, with 
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1 1196f Hz= and 2 372f Hz= . Two averages 2NEX =  were used. Spatial resolution was 14xN =  

and spectral bandwidth 12 2392f HzδΔ = ⋅ = . Slice thickness was 2cmzΔ = , 20cmfov = , 

repetition time  and the readout (acquisition) time4secondsRT = 50.2AQT ms= . Data was sampled 

every . Out of the  reconstructed slices, only the ones in the range -1000Hz to 

400Hz are displayed in 

8dt us= 120Nδ =

Figure 3-38, with a 20Hz separation between them. Spatial resolution 

was digitally enhanced to , through zeropadding the data in the x, y directions. Besides 

the central resonance, one can identify three other resonances at -800Hz, -400Hz and at 200Hz 

(

64xN =

Figure 3-38 and Figure 3-39). 

Because of hardware problems with the MRI scanner’s broadband multinuclei channel 

that occurred a few months after this 31P data set was collected, we were not able to acquire at a 

later time new 31P data using optimized parameters for higher spatial resolution images and/or 

shorter repetition times. 
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Figure 3-38 RSI: Leg 31P Spectroscopic Image 14xN = , 2.4kHzδΔ = . Displayed -1 kHz to 400Hz 

 

 

Figure 3-39 Leg 31P RSI: Spectral Profile through all slices (image intensity in each spectral slice) 
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Proton 1H in vivo spectroscopic images in a leg of a healthy human volunteer were 

acquired using two temporally interleaved sets of trajectories ( ) with 2TIn =

1 300f Hz= and 2 284f Hz= . The number of shots for each set was  for a total 

of , which is somewhat greater than the minimum required for proper K-t 

space coverage as determined by the simulation program described at the beginning of Section 

128shN =

2 128 256RSI
shN = ⋅ =

3.4, . Spatial resolution was min 2 107 214N = ⋅ = 128xN =  and spectral 

bandwidth 1(2 ) 1200TIn f HzδΔ = ⋅ ⋅ = . Slice thickness 2mmzΔ = , 18cmfov = , sampling rate 

and repetition time was 8dt us= 100RT ms= . No averages were used ( ), which resulted 

in a total scan time (including the 

1NEX =

4dda =  equilibrium excitations at the beginning of the scan) 

of . Spectral resolution was26scanT = s 74Nδ = , given by the useable readout time 

for each excitation, with a separation of 161.67readT = ms Hz/ 16.2readT = between spectral slices. 

In Figure 3-40, the spectral images of lipid (top) and water (bottom) resonances are displayed, 

with a separation between the central top image and central bottom image of 420Hz. The 

magnitude sum of the lipid (top) and water (bottom) images is shown in Figure 3-41. 

 

Figure 3-40 Leg 1H RSI: spectral images lipid (top) and water (bottom) 128xN = , 18fov cm= , 26scanT s=  
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Figure 3-41 RSI: Sum of lipid images (top) and water (bottom) same intensity scale  

 

3.8.3 Self-Derived B0 Map 

Up to this point, we barely mentioned the main field inhomogeneities. The object inside the 

magnet bore modifies the field locally and this causes the resonant frequency 

0B

0 B 0ω γ= ⋅ to vary 

as a function of position. This change is in addition to the one induced by the gradients played 

during the acquisition and, if not accounted for, during reconstruction will result in an 

assignment of information to spatial/spectral positions different than the real positions in space 

or spectrum. Especially for acquisitions with long readout times, as is the case with RSI, the 

0B inhomogeneities have an increased effect. Gradients on the scanner, called shimming 

gradients, are used preceding the actual data acquisition to minimize this problem; however, they 

do not eliminate it. 
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To determine the local resonant frequency map ( , )f x y , two images are typically 

acquired at different echo times. The first image can be expressed as 

and the second image acquired at an echo time later, can be 

expressed as . The field map is given by: 

1 ( , )
1 1( , ) ( , ) i x yM x y m x y e ϕ⋅= ⋅ tΔ

2 ( , )
2 2( , ) ( , ) i x yM x y m x y e ϕ⋅= ⋅

 2 1( , ) ( , )( , )
2

x y xf x y
t

yϕ ϕ
π
−

=
⋅Δ

 (3.145) 

This can also be computed as ( *
1M complex conjugate of 1M ) [19]: 

 
*
1 2( ( , ) ( , )( , )
2

angle M x y M x yf x y
t

)
π

⋅
=

⋅Δ
 (3.146) 

This expression is computationally more robust to angles of 1M , 2M wrapping around 2π . 

The K-t space data can be segmented [37, 38] in groups defined by the crossings. 

In fact, we can have as many as 

0K =

Nδ groups (the number of temporal slices, section 3.3) that 

would generate as many full resolution images. However, because of the problematic spectral 

response function for very low Nδ , we choose to group the data in larger sets that include more 

temporal slices. The first group will include the first through mapsN Nδ − temporal slices; the 

second group will include the second temporal slice through 1mapsN Nδ − + , and so on, with last 

set including temporal slices through1mapsN + Nδ . Each set generates a 2D image for a total of 

images acquired at echo times1mapsN + t m dTΔ = ⋅ , 0,1,... mapsm N= . Reconstructing data at the 

water resonance (if not already on-resonance, data is modulated to the water resonance frequency 

first), phase maps are calculated usingmapsN *
1 2( , , ) ( ( , ) ( , , ))x y t angle M x y M x y tϕΔ Δ = ⋅ Δ , 

where *
1M is the complex conjugate of the first image acquired at 0tΔ = and 2M is the image 

acquired at , . On a pixel-by-pixel basis, the phase maps are unwrapped t m dTΔ = ⋅ 1,... mapsm N=
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(Matlab function unwrap), and a linear regression fit is used to calculate the slope 2 ( , )f x yπ of 

the function ( , , ) 2 ( , )x y t f x y tϕ πΔ Δ = ⋅Δ . For our acquisition ( 74Nδ = ), we chose 7mapsN = . 

The result is the field map in Figure 3-42, left. The map in the skin area presents too much 

jerkiness, while smooth in all other regions. This is due to the water signal being weaker in the 

problematic area, which produces an inaccurate result. We repeat the map derivation 

procedure described above, but this time data is modulated to the lipid resonance. The result is 

the field map in 

0B

Figure 3-42, center. Because there is only one field map, but the two maps look 

very different, we need to conciliate the two results. The explanation to the different appearance 

of the two maps is that they reflect the regions for which there was enough signal intensity to 

calculate the local frequency map. A combined map, that assigns for each position the value 

calculated in the water map if the water signal intensity is stronger than the lipid signal at that 

position, and the lipid map value if the lipid signal is stronger than the water, is calculated. 

The result is shown in 

0B

0B

0B

Figure 3-42, right. Alternatively, this could be done by using a weighted 

(proportional to the signal intensity) contribution and the method is applicable when multiple 

resonances are present. 

 

Figure 3-42 Leg 0B Map: Color bar scales indicates amount of off-resonance in Hz . 
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3.9 DISCUSSIONS AND CONCLUSIONS 

In the spectrally selective imaging technique, using a multishot rosette trajectory acquisition 

developed by Noll [37], the random or irregular sampling in time of the k-space positions leads 

to off-resonance contributions canceling to noise distributed over the whole image. This 

background noise is in addition to other types of noise present in an MR image (thermal, 

systematic, physiological noise). In the 2D spectroscopic imaging technique we developed - RSI, 

we also employ the rosette trajectories but, by fully encoding the spatial-spectral information, 

this background noise can be eliminated and the greatest SNR sensitivity for these trajectories 

can be achieved. The off-resonance behavior of these trajectories (determined in our encoding 

approach by the regular sampling and phase accumulation at each K-space position) is 

investigated and we derive an analytical expression for the spectral response function. Using this 

expression, the position of the maxima and minima is derived and the width of the spectral 

passband in which there is very little degradation of the signal is shown to be equal to the inverse 

of the trajectory readout. In addition, it can be shown that the off-resonance behavior for a given 

frequency location improves when the trajectory readout increases. The spectral response 

behavior described by the function we derived is typical for all 2D spectroscopic imaging 

techniques using self-rewinding trajectories that periodically sample the center and edges of K-

space thus, techniques like Out-and-In spiral spectroscopic imaging, PREP or spectroscopic 

TWIRL (Chapter 4.0 ) will have the same kind of off-resonance behavior as RSI. 

Based on scanner hardware constraints (maximum gradient/slew rate/sampling rate), we 

derive the conditions for optimal rosette trajectories that provide the fastest K-t space coverage 

for a given spatial resolution and spectral bandwidth. There are three ways the trajectories can be 

designed. The most common way is to design the trajectory such a whole petal per each 
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trajectory will be contained in a temporal slice (within a spectral dwell time). For lower spectral 

bandwidth and/or lower spatial resolutions, it is possible to increase further the speed of the 

acquisition by allowing more than one petal per trajectory in each temporal slice (second way to 

design the trajectories). This case, usually results in an increase in sampling non-uniformity. 

However, by appropriately tweaking the trajectory parameters and the number of excitations 

used, this drawback (increased non-uniformity) can be partially eliminated while the gain in 

acquisition speed is preserved. The third way to design the trajectories, addresses the case where 

the spectral bandwidth targeted for the acquisition is larger than the one achievable with one set 

of trajectories and a number of temporally interleaved trajectory sets are used. 

The problem of the number of excitations to be used in an RSI experiment is addressed in 

two ways. For fastest K-t space coverage, we wrote a simulation program that measures the 

distance between data samples and finds the minimum number of excitations such Nyquist 

sampling criterion is observed. More convenient would be to be able to use an analytical 

expression for the number of excitations to be used (second way). We derive such an expression. 

While the estimated number of excitations is an overestimate, we show that for this number the 

highest sampling uniformity for the RSI acquisition is achieved. In addition, an analytical 

expression correctly estimates the precompensation weights required when reconstructing the 

data. 

We investigate the performance of the RSI acquisition technique. While RSI can achieve 

a speedup in data acquisition of one or two orders of magnitude compared to CSI, the SNR 

efficiency gain is approximately 15%. We first show that the quality factor of a fast CSI 

technique compared to classical CSI is proportional to the square root of the ratio between the 

readout (acquisition time) of the fast technique to the CSI readout. We derive the quality factors 
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for a few techniques that were calculated in a different way by Pohmann et al.. Based on this 

result, we demonstrate SPLASH cannot achieve a greater sensitivity than CSI at low spectral 

resolution, and offer an alternative explanation why methods like the Dixon method (spectral 

resolution ), besides speedup in data acquisition, may be more suitable than CSI for lower 

spectral resolutions. Secondly, we measure the SNR advantage of an acquisition technique with 

K-space disk support versus one with square support. This advantage was noted by Bernstein et 

al. [4], and we found a CSI acquisition with K-space disk support can achieve a SNR sensitivity 

gain of up to 27% over a CSI with square support. Because of the rosette trajectories non-

uniform sampling, RSI incurs a SNR penalty of approximately 10%. These predictions are 

verified with extensive simulations for a wide range of spectral bandwidths and spatial 

resolutions. We also conclude the sampling density postcompensation indispensable when 

precompensation weights are not properly calculated or known, and widely used in gridding 

reconstruction of non-Cartesian data, should be regarded as an additional filter (in addition to 

explicitly applied smoothing filters). This conclusion is supported by the increase in SNR 

(observed by us) and detail loss [31] for reconstructions using postcompensation versus the ones 

that only use precompensation.  

2Nδ =

The RSI technique is demonstrated experimentally on phantoms and in vivo. A full 

resolution field map is derived from the acquired data using linear regression and the spatial 

information found for each spectral resonance. The inhomogeneities are corrected for in the 

reconstructed data using an algorithm developed by Irarrazabal et al. [19]. 

0B
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4.0  SPECTROSCOPIC IMAGING WITH TWISTED RADIAL LINES 

TRAJECTORIES (STWIRL) 

4.1 TRAJECTORY DESIGN 

We have shown in the previous chapter that the periodic sampling of the center and edges of K-

space of the rosette trajectories previously used in an imaging fashion (spectrally selective 

imaging is modulation plus 2D reconstruction), allowed us to use them for spectroscopic 

imaging, simultaneously resolving the spatial and spectral information. We also showed that the 

non-uniform sampling associated with the rosette trajectories reduces by ~10% the SNR 

efficiency of the RSI technique. Further gains in SNR efficiency can be obtained if we adapt for 

spectroscopic imaging a fast data acquisition imaging technique that maintains uniform 

sampling. 

A two dimensional imaging technique that achieves uniform sampling over most of K-

space is TWIRL [22]. The Twisted Radial Lines (TWIRL) method has been introduced for 

magnetic resonance angiograms that are susceptible to flow-induced dephasing associated with 

irregular flow in vessels.  While the flow-induced dephasing is minimized by using radial lines to 

cover K-space, radial lines provide a non-uniform, hence inefficient coverage. The K-space 

trajectories (Figure 4-1) start at the center of K-space ( 0K = ) as radial lines that begin twisting 
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at a position  where0K p K= ⋅ max 1p <  represents the fraction of imaging trajectories required 

compared to using radial lines ( xNπ ⋅ ). Thus, the number of excitations: 

 shN p Nxπ= ⋅ ⋅  (4.1) 

The speed along the trajectory is constant G and the constant sampling density 

requirement is equivalent mathematically to: 

 1( )
( )

r t
r t

� ∼  (4.2) 

The solution to equation(4.2) is: 

 2
0( ) 2K t G K t Kγ= ⋅ ⋅ ⋅ ⋅ + 0  (4.3) 

 0
0 0

2( ) arctanG t G tt
K K
γ γϑ ϑ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + −
2  (4.4) 

 

Figure 4-1 Twisted Radial Lines (TWIRL) imaging trajectories 
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Due to slew rate limitations ( max
HWS S≤ ), when implemented, there are four different 

regions. In the first region from to , the gradient is ramped up (along a straight line). An 

optional second region, from to , consists of a straight-line constant gradient. Over a third 

transitional region the trajectory starts twisting on a circle of radius

0K = 1K

1K 2K

sK , between radial positions 

and . Fourth region, from a radius to , is the constant sampling density region where 

equations

2K 3K 3K maxK

(4.3) and (4.4) are observed.  

 
2 2

2 2 2
1 2 0 3;  = ;  ;  

2
2

0s s
G G

sK K K K K K K
S S

γ γ⋅ ⋅
= = − K= +  (4.5) 

The durations the trajectory spends in each region are: 

 
2 2

0 max1 2 1
1 2 3 4

0

arcsin( / )2 ;  ;  ;  
2

s sK K K KK K Kt t t t
G G G Gγ γ γ γ

⋅ −⋅ −
= = = =

⋅ ⋅ ⋅ ⋅ ⋅
3K

K⋅
 (4.6) 

The requirement to have a second region nonnegative duration ( ) yields: 2 0t ≥

 
2

max
5

2
Gp K

S
γ⋅ ⋅

⋅ ≥
⋅

 (4.7) 

Satisfying equation (4.7) also insures the existence of the in the  

expression. 

0arcsin( / )sK K 3t

It can be shown that in the fourth region the radial component of the trajectory gradient as 

a function of the distance K  to the center of K-space is: 

 0( )r
KG K G
K

= ⋅  (4.8) 

This means that at the edge of K-space ( maxK K= ), the gradient has a nonzero radial 

component: 

 0
max

max

( )r
KG K K G G p

K
= = ⋅ = ⋅  (4.9) 
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For spectroscopic imaging, to rewind smoothly the trajectory back to the center of K-

space is equivalent to making sure the radial component of the gradient becomes null as is the 

case with the rosette trajectories (equation(3.11) at a time equal to a quarter of the radial 

oscillation period 1/ 2 /t π ω= ). This could be accomplished in two ways. After 

reaching , we could decrease the radial component to zero, allowing for uniform 

sampling over the entire fourth region of K-space, but the extra time spent outside of the useable  

K-space ( ) would be wasted resulting in a lower useable readout time.  This would 

translate into a lower SNR efficiency, similar to the effect observed for the PREP acquisition 

(equation

maxK K=

maxK K>

(3.123)), as discussed in section 3.6.1. The second way to bring the gradient radial 

component to zero is to start decreasing it before it reaches maxK K= and alter the uniform 

sampling over the region where this is done. We note that the loss in SNR efficiency associated 

with rewinding the gradients in the PREP acquisition calculated by Pohmann et al. is ~17%. The 

time to rewind the TWIRL gradients relative to their readout time will be shorter than for PREP 

where the full strength gradients ( rG G= ) have to be rewound. However, we still expect the 

SNR efficiency loss to be greater when gradients are rewinded at (first way) compared 

to the loss induced by the sampling non-uniformity when rewinding starts before the edge of K-

space ( ). We choose the second modality and introduce a fifth region starting at 

 (the forth region extends now from a radius to instead of to ). If a slew 

rate  is used to bring the radial component of the gradient equal to  at 

, to zero at , can be determined by solving the equation: 

maxK K>

maxK K<

4 mK K< ax

4

3K 4K 3K maxK

dS 4 max( ) /rG K G p K K= ⋅ ⋅

4K maxK K= 4K

 
2 2 2

max
max 4 2

42 d

G p KK K
K S

γ ⋅ ⋅ ⋅
− =

⋅ ⋅
 (4.10) 
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This is a cubic equation, which has analytical solutions. If a real positive solution, smaller 

than  and greater than is not found, the slew rate chosen to bring the radial component 

of the gradient to zero may be too small. Because, during the process of rewinding the gradient 

in region five, we choose to maintain the speed along the trajectory as close as possible to the 

original speed , through accordingly increasing the tangential component of the gradient, the 

slew rate has to be smaller than the maximum hardware slew rate

maxK 3K dS

G

dS max
HWS . We found values in 

between max.5 HW
dS S= ⋅ to max.7 HW

dS S= ⋅  to be good choices. 

The gradient value G is chosen to obey the signal bandwidth/sampling requirement 

(equation(2.41)). To minimize the number of excitations required (equation(4.1)), the value for 

is chosen to be the minimum value allowed by the inequalityp (4.7): 

 
2

min
max

5
2

Gp p
S K
γ⋅ ⋅

= =
⋅ ⋅

 (4.11) 

Because the ramp up, region one, is necessary only to bring the gradient to the desired 

value, in addition to the trajectory designed as above, we design a trajectory that has a constant 

gradient from  to . Thus, for this second trajectory, region one is eliminated and 

the original region two extends now from 

G 0K = 2K K=

0K = to 2K K= . The corresponding times spent in 

each region by the second trajectory are: 

 
2 2

' '0 4 32
2 3 4 5

0 4

arcsin( / );  ;  ;  
2

s s

d

K K K K K G p KKt t t t
G G G K Sγ γ γ

⋅ −
= = = =

⋅ ⋅ ⋅ ⋅ ⋅
max

K
⋅ ⋅
⋅

5t

 (4.12) 

The readout for this second trajectory is: 

 ' '
2 3 4readT t t t= + + +  (4.13) 

The two designed trajectories are used to obtain the spectroscopic imaging trajectory 

through concatenation. The second trajectory with no ramp-up is mirrored with respect to the 
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line that connects and the point at the end of the first trajectory at . The mirrored 

trajectory with no ramp up region is added at the end of the first trajectory. Thus, the 

0K = maxK K=

maxK K=  

point on the trajectory with no ramp up region marks the beginning of the second segment in the 

spectroscopic trajectory. Because this point is identical to the last point on the first segment (the 

trajectory with ramp up), it is discarded. At the end of the second segment, another trajectory 

with no ramp up region is added and the last point on the second segment, identical to the first 

point on the third segment, is removed and so on. One can choose to form figure-eight 

spectroscopic trajectories or keep rotating the trajectories in a counter-clockwise direction. We 

chose the later. To bring the gradients to zero, and end the trajectory at the center of K-space 

( ), the last segment used in the spectroscopic trajectory is a trajectory with ramp up region, 

which now becomes a ramp down region. The trajectories have a pear-like appearance. In 

0K =

Figure 

4-2, three different spectroscopic trajectories (shots), two segments (a petal) from each trajectory 

are shown. 

Figure 4-2 Modified TWIRL (three different shots shown; two concatenated segments in each shot) 
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The time separation between two successive 0K = crossings for a spectroscopic 

trajectory is where is given by equations2 readdT T= ⋅ readT (4.12), (4.13). Therefore, the spectral 

bandwidth is: 

 1
2 readT

δΔ =
⋅

 (4.14) 

The K-t space sampling for three temporal slices is shown in Figure 4-3. 

 

Figure 4-3 Spectroscopic TWIRL trajectories depicted in K-t space look similar to RSI trajectories 
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4.2 RESULTS 

4.2.1 Simulation Results 

Generating synthetic data (ellipses, disks (equations(3.140),(3.142)) at different spatial positions 

and resonances), we verified the reconstruction program properly resolves the spatial and 

spectral information. 

To measure the SNR efficiency of the sTWIRL acquisition technique and to verify the 

theoretical predictions made in section 3.6, we used the same simulated object as for RSI 

(section3.7). The trajectories were designed for a spatial resolution , 128xN = 18fov cm= . A 

spectral bandwidth 850HzδΔ = is achieved by using two temporarily interleaved sets of 

trajectories . The acquisition for the second set starts later than the first set, 

corresponding to a time when the first set of trajectories set reaches (see the RSI 

example for two temporarily interleaved sets 

2TIn = readT

maxK K=

Figure 3-13). The maximum gradient is 

,  and the number of excitations for each trajectory set is , thus 

the total number of excitations . Spectral resolution is

1.61 /G G cm= .23p = 94shN =

( 2) 2 188sTWIRL
sh TI shN n N= = ⋅ = 53Nδ = . 

The precompensation weights (Figure 4-4) are calculated as 2D Voronoi areas in each temporal 

slice (see section 3.5.1 step 1D on data reconstruction). The two interleaved trajectory sets result 

in slight variations in sampling density in region four supposed to have constant sampling 

density. The areas of non-uniform sampling near 0K = and maxK K= can easily be identified. 

We measured a sampling efficiency factor (see Appendix for definition) for these trajectories 

equal to .97sTWIRLη = . As for the RSI measurements, no post compensation was used in 
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reconstructing the data. Running simulations with different noise seeds, we measured a SNR 

efficiency relative to CSI of . 

310

1.2157 .0154sTWIRLΩ = ±

Figure 4-4 sTWIRL precompensation weights for two temporarily interleaved sets 

 

 

4.2.2 Experimental Results 

To demonstrate experimentally the sTWIRL technique, we used the same vegetable oil phantom 

used to demonstrate RSI (Section 3.8.1). We chose to use a longer readout time , for 

a spectral resolution of 1/ . The sampling rate was

125AQT m= s

z8AQT H= 16dt us= , field of view 18cmfov = , 
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repetition time and a gradient value along the constant sampling density region  

. Trajectories were designed for a spatial resolution

160RT = ms

max .8 /G G G cm= = ⋅ 64xN = . 

With , was chosen to be twice the minimum value allowed by max 15 / /HWS S G cm ms= = p (4.11), 

. Two temporally interleaved sets of trajectories ( ) with 

(for a total of 94 excitations), were used to achieve a spectral bandwidth 

min2 .2318p p= ⋅ = 2TIn =

( ) 4sh xN ceil p N= ⋅ = 7

856HzδΔ = . In Figure 4-5,  out of 100N = 107Nδ = spectral (frequency) reconstructed slices 

are displayed, (800Hz out of 856Hz), after a field map (0B Figure 4-6) correction was applied. 

Figure 4-5 sTWIRL acquisition; two temporally interleaved sets, 64xN = , 856HzδΔ =   
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Figure 4-6 sTWIRL acquisition map 0B

 

The spectral profile of the phantom, before (thin line) and after (bold line) correction, 

is shown in 

0B

Figure 4-7.  

Figure 4-7 sTWIRL oil bottle spectral profile before and after correction 0B
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5.0  CONCLUDING REMARKS 

We introduce an MRSI imaging technique using the rosette trajectories - RSI, which can provide 

a speed up in data acquisition of up to two orders of magnitude compared to classical CSI. While 

the SNR performance of the technique is affected by the non-uniform sampling, because the 

trajectories do not spend time collecting data in the corners of K-space, RSI can offer an overall 

SNR advantage compared to classical CSI, providing great flexibility in choosing the total 

duration scan (based on the level of SNR desired). We investigate theoretically (and confirm 

through numerical simulations) how the regular patterns of phase accumulation in a rosette 

acquisition generate the spectral response function for which we derive an analytical expression. 

The same kind of spectral response is to be expected from all spectroscopic imaging techniques 

using trajectories that periodically sample the center and edges of K-space. The width of the 

spectral passband, the positions of the minima and maxima, and the fact the spectral response 

improves with the increase in trajectory duration, can be derived from this function. We derive 

an analytical expression for the number of excitations (shots) to be used in an RSI experiment 

that will provide the highest SNR performance when using these trajectories. An added benefit to 

using this number of shots is the analytical precompensation weights used in data reconstruction 

process are correctly estimated. This saves time in the reconstruction process and is important 

because non-uniformly sampled data weighted incorrectly can result in significant spectral 

leakage. Extensive simulations are employed to demonstrate the SNR efficiency of the RSI 
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acquisition over the classical CSI. The technique is demonstrated experimentally on phantoms 

and in vivo. 

A second spectroscopic imaging technique (sTWIRL) that addresses the SNR 

performance penalty incurred by RSI due to non-uniform sampling is introduced and 

implemented experimentally. The uniform sampling density TWIRL trajectory introduced for 

imaging is modified and adapted for this method. A phantom is used for experimental 

demonstration. 

An algorithm to generate a more accurate self-derived B0 map for objects with multiple 

resonances corresponding to different spatial distributions is offered. 

From a more general perspective, our work complements and updates some of the results 

of an extensive theoretical study of the SNR performance of different fast CSI techniques. 

Namely, we analyze the performance of spectroscopic imaging techniques using non-Cartesian 

trajectories. While previously noted in an imaging context, that methods with K-space disk 

support could have an intrinsic SNR advantage over square supported methods, we demonstrate 

for 2D spectroscopic imaging this advantage can be of up to 27%. This result also suggests 3D 

spectroscopic imaging techniques with spherical support have a sensitivity of up to 91% greater 

than the ones with cubic K-space support. Therefore, for a spectroscopic imaging experiment, a 

disk or sphere supported CSI is more appropriate to be considered as reference when comparing 

the SNR efficiency of a technique. Moreover, disk/sphere supported CSI unlike their 

square/cubic counterparts provide for isotropic image resolution, a feature desirable in medical 

applications. As in imaging, the less uniform the sampling of K-t space, the higher the penalty in 

SNR for that technique. However, trajectories with uniform sampling density used in imaging 

like Twisted Radial Lines (TWIRL) for 2D or Twisted Projection Imaging (TPI) for 3D may be 
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adapted for spectroscopic imaging, closing the gap in SNR efficiency vs. rectilinear CSI. In 

addition, because of the time spent on phase encoding in CSI, there is potential SNR to be gained 

in RSI by starting the acquisition earlier, immediately following the excitation. As the total 

acquisition time of an experiment increases, the likelihood of patient moving increases and 

image artifacts could occur. By oversampling the low-frequency high-energy information at the 

center of K-space, self-rewinding trajectories are less sensitive to motion.  

Finally, the longer reconstruction times involved with non-Cartesian trajectories could be 

soon reduced to insignificant. The most computationally demanding operations are calculating 

the sampling densities if an analytical formula does not estimate them correctly and the gridding 

process. For a given set of imaging parameters, the sampling densities can be pre-calculated and 

stored.  The gridding algorithm is a prime candidate for parallelization. In computing, Moore’s 

Law has been fulfilled over the past four decades, the computing power of a processor 

approximately doubled every 18-24 months, and the trend is expected to continue for at least 

another ten years through an increase in the number of CPU cores and execution units combined 

with smaller size transistors. An alternative also explored by scientists and programmers, is 

taking advantage of the extremely powerful parallel architecture of the graphical processing units 

(GPU) which, presently, could execute five to ten times more floating-point instructions per 

second than the CPUs. In the very near future, with appropriate optimizations, a small 

workstation should be able to achieve almost real time data reconstruction for 2D (and possible 

3D) spectroscopic imaging techniques using non-Cartesian trajectories.  
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APPENDIX  

THEORETICAL SAMPLING EFFICENCY OF ROSETTE TRAJECTORIES 

Pipe et al. [48], showed that the relative SNR for a non-uniform sampling technique is reduced 

by a factor that is inverse proportional to the square root of the variance of that acquisition, 

variance that can be expressed as:  

 

2 2

1 1

2

1 1

( ( , ))
var

( ( , ))

N M

n m
N M

n m

M w m n

T w m n

σ
= =

= =

⋅
=

⋅

∑∑

∑∑
 (A.1)

M is the number of samples per readout and is the number of “read” periods (shots) of 

duration T . 

N

σ is the standard deviation of the white, uncorrelated noise. is the weighting 

function, which is the same as the relative area/volume for the corresponding data point. The 

double summation in the denominator is equal to the entire area/volume of the K-space covered. 

Since this is fixed, the summation in the numerator is minimized when is constant, for a 

variance . 

( , )w m n

( , )w m n

2var /Tσ=

Therefore, for non-uniform sampling, the quantity that measures by how much the SNR 

is reduced with respect to a uniform acquisition ( ), is: 2var /Tσ=

 129 



 

2

1 1

2

1 1

( ( , ))

( ( ( , ))

N M

n m
N M

n m

w m n

M w m n
η = =

= =

=
⋅

∑∑

∑∑ )
 (A.2) 

In section 3.5.1, it was argued that 2D K-space weights could be used instead of 3D K-t 

volumes. Further, because of the periodicity of the rosette trajectory and because the shots are 

angularly uniform distributed, the expression in (A.2), can be calculated over one trajectory arm, 

from  to , over a quarter period of the radial oscillation 0K = maxK K= 1 1/ 4 /(2 )T π ω= . Thus, 

the sampling uniformity/efficiency factor RSIη can be written as: 
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M is the number of samples between 0K =  and maxK K= , is given by iw (3.93): 

 ( ) 2 ( ) 2 2 ( )
max max 1( ) sin(2i i

i r rw K K K K tω= ⋅ − = ⋅ ⋅ ⋅ )i  (A.4) 

For sampling rates sufficiently high (small ), the sums in dt (A.3) can be converted to 

integrals (with 1( / 4) /M T d= t ): 
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