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Objectives Mammographic breast density (MBD) is a strong risk factor for breast cancer. It has 

been hypothesized that breast can cer s usceptibility l oci m ay also be a ssociated with breast 

density. R ecently, t wo ge nome-wide a ssociation s tudies i dentified a s ingle-nucleotide 

polymorphism (SNP), rs2981582, in intron 2 of the FGFR2 gene to be associated with increased 

breast cancer risk. Further research revealed that intron 2 of  FGFR2 contains estrogen receptor 

transcription factor binding s ites. We examined associations of  four FGFR2 SNPs (rs2981582, 

rs3750817, rs17542768 and rs1219643), hormone therapy (HT) use, and their interactions with 

MBD.  

Methods We conduc ted a cr oss-sectional ana lysis us ing a s ubset of  t he M ammograms and  

Masses Study population. Subjects were 370 healthy postmenopausal Caucasian women. General 

linear models adjusted for covariates were used to evaluate the associations.  

Results Overall, no statistically significant associations were observed between the four SNPs in 

FGFR2 and MBD. Duration of estrogen plus progestin use, but not duration of estrogen use, and 

HT s tatus w ere s tatistically s ignificantly associated with MBD in our study popul ation. No 

statistically significant interactions between genotypes and HT use were observed. 
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Conclusions Our results suggest that the effects of the four evaluated FGFR2 polymorphisms on 

breast cancer risk are not mediated through MBD, and that the polymorphisms do not modify the 

effect of HT use on MBD.   

Implications for public health Breast cancer is the most common cancer in women in the U.S. 

Identification of genes that influence MBD may provide insight into the biology of breast density 

and its effect on breast cancer, eventually leading to more effective prevention and treatment. 
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1.0  INTRODUCTION 

Breast can cer i s t he most c ommon c ancer i n w omen, a nd t he s econd l eading cause of  cancer 

death a mong w omen i n t he U .S.1  Based on t he S urveillance E pidemiology and E nd R esult 

(SEER) data, the National Cancer Institute (NCI) estimates that the lifetime risk for a woman to 

develop breast cancer is 12%.2

1.1 MAMMOGRAPHIC BREAST DENSITY, HORMONE THERAPY USE AND 

BREAST CANCER RISK 

 

Extensive research on breast cancer has identified a number of  risk factors, and the risk of the 

disease i s i nfluenced b y genetic, e nvironmental a nd l ife-style f actors. H igh mammographic 

breast de nsity ( MBD) i s a s trong, independent r isk factor for b reast cancer.3-12 Women w ith 

density in more than 75% of the breast have a four to five times greater risk of developing breast 

cancer than women with little or no density in the breast.13 Compared to the frequencies of other 

most recognized risk factors, such as a family history of breast cancer which occurs in only 10% 

of women; about 30% of postmenopausal women have high breast density.14 MBD is influenced 

by a num ber of  factors r elated to br east can cer risk: i ncreasing age and menopause a re 

independent contributors t o a de crease i n breast de nsity15, hi gher bod y mass i ndex ( BMI) i s 

associated with low breast density, whereas increased age at f irst bi rth i s associated with high 
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breast de nsity.11, 1 6-18 In a ddition, pos tmenopausal hor mone t herapies ( HT) t hat i nclude bot h 

estrogen and progestin are associated with an increase i n breast de nsity that d ecreases upon 

discontinuation of  therapy. 19-21 However, all these factors only explain about 20%-30% of the 

variation in MBD. MBD has a strong genetic component. Twin studies indicate that a substantial 

proportion (60%-75%) of the variance in MBD is due to heritability.22-23

There is also strong epidemiologic evidence that postmenopausal HT use, especially the 

use of  estrogen plus progestin (E+P), is associated with increased breast cancer r isk.

 

24-27 It ha s 

been suggested that the observed increase in breast cancer risk may be explained by the effects of 

HT us e on br east d ensity.4-5 The e ffects of  H T on br east t issue, as s een i n m ammography, 

include increases in density (focal, multifocal or diffuse), and increases in the size of cysts and 

fibroadenomas.28-30

However, t he e xact m echanisms b y w hich density con fers t he i ncreased r isk of br east 

cancer remain uncertain. It i s pos sible t hat t he r isk of br east cancer as sociated with increased 

MBD may arise from the combined effects of cell proliferation, in response to mitogens and the 

resulting greater number of susceptible cells, and genetic damage to cells by mutagens.

 

31 It ha s 

been s hown t hat w ithin popul ations of  c ells in vitro and in vivo, high rates of  cellular 

proliferation i ncrease t he r isk of  t ransformation t o t he ne oplastic p henotype.32 Epithelial 

hyperplasia a nd c oncomitant i ncreases i n g rowth f actors ha ve a lso be en s uggested33; s everal 

biopsy studies have shown that high-density areas are associated with epithelial hyperplasia.34-37

Because of the high degree of heritability of MBD and its strong association with breast 

cancer, it is  pos sible tha t br east c ancer s usceptibility loc i m ay a lso be a ssociated w ith br east 

density. Investigating these associations may provide insight into the biology of  breast density 

and its influence on breast cancer.

 

38 
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1.2 FGFR2 

Two genome-wide association studies (GWAS)39-40

FGFR2 be longs t o t he f ibroblast growth factor r eceptor ( FGFR) family, w hich 

contributes to cell

 identified a single-nucleotide polymorphism 

(SNP), rs2981582, i n i ntron 2 of  t he f ibroblast growth factor re ceptor 2  ( FGFR2) ge ne t o be  

associated with an increased risk of breast cancer. 

 growth, invasiveness, motility and angiogenesis.41 The association of FGFR2 

polymorphisms w ith br east c ancer r isk m ay be m ediated t hrough r egulation of  FGFR2 

expression. A recent study described how two SNPs in intron 2 of  FGFR2 alter the binding of 

two transcription factors and cause an increase in FGFR2 gene expression.42 Overexpression of 

FGFR2 is observed in breast cancer cell l ines43, as well as in breast tumor tissues.44 It has also 

been observed that ab errant FGFR2 signaling a ctivation i nduces pr oliferation a nd s urvival of  

tumor cells.45

Differential splicing might provide an alternative mechanism for the association of FGFR2 

and breast cancer risk.

 MBD is largely a reflection of the amount of dense stromal tissue that may provide 

a permissive environment for neoplastic transformation of the epithelial cells, thus it is  possible 

that it could be influenced by variation in FGFR2. 

39 FGFR2 encodes FGFR2b and FGFR2c isoforms.46-49 Class switch from 

FGFR2b to FGFR2c is accom panied by epi thelial-to-mesenchymal tr ansition (EMT) w ith 

increased potential for invasion and metastasis.50-54

However, the precise mechanism how SNPs in the putative enhancer region within intron 2 

of FGFR2 affect FGFR2 upregulation remains unclear. Intron 2 of FGFR2 is highly conservative 

in mammals.

  

55 More i nterestingly, this region contains s everal estrogen receptor ( ER) 

transcription factor binding sites.56 It has been previously reported that FGFR2 effects are more 
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relevant i n ER- and pr ogesterone r eceptor ( PR)- positive t umors t han i n E R- or P R- negative 

tumors57-58, and that FGFR2 is differentially expressed in different breast cancer subtypes.59

Estrogens can influence t he de velopment of  br east can cer t hrough s timulating g ene 

expression and cell proliferation via interaction with the estrogen receptor (ER).

  

60 Studies have 

consistently shown the presence of sex steroid metabolic enzymes and ERs in breast tissue61-78, 

which suggests that local activation of estrogen to potentially reactive metabolites within breast 

tissue may play a  role i n initiating and promoting carcinogenesis.72 In addition, progestins a re 

more potent mitogens for breast tissue than are estrogens.79

In fact, a recent study within the WHI clinical trial reported that two SNPs in intron 2 of 

FGFR2, r s2981582 and rs3750817, showed evidence of  i nteraction with t he HT use on br east 

cancer risk.

 It is likely that functionally relevant 

polymorphisms i n g enes i nvolved i n t he m etabolism of  s ex hor mones may a lter a  w omen’s 

exposure to estrogens and progestins, and thus, affect the risk of developing breast cancer.  

80

1.3 STUDY OBJECTIVES 

 If the effect of FGFR2 on breast cancer is mediated through MBD, then it is likely 

that the effect of HT use on MBD is also influenced by functional SNPs in FGFR2. 

We conducted a  c ross-sectional s tudy to assess associations of  four FGFR2 SNPs ( rs2981582, 

rs3750817, r s17542768, r s1219643), H T us e, and t heir i nteractions with M BD. T he S NP 

rs2981582 was identified in the GWAS39-40; and the other three SNPs (rs3750817, rs17542768, 

rs1219643), which also l ie within intron 2, are identified through subsequent fine mapping and 

are not in linkage disequilibrium (LD) with rs2981582. 
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2.0  MATERIALS AND METHODS 

We used data and samples from women who participated in the Mammograms and Masses Study 

(MAMS) for this analysis. The MAMS was approved by the Institutional Review Board (IRB) at 

the U niversity o f P ittsburgh, a nd a ll pa rticipating w omen pr ovided s igned, w ritten i nformed 

consent. 

2.1 STUDY POPULATION 

MAMS is an unmatched case-control study of hormonal determinants of mammographic breast 

density.81 In brief, women were el igible f or M AMS i f t hey were of  a ge ≥18 years and were 

receiving: (a) a breast biopsy, (b) an initial surgical consultation after breast cancer diagnosis, or 

(c) a routine screening mammogram. Exclusion criteria were prior cancer history other than non-

melanoma skin cancer, alcohol intake ≥5 drinks per day, or weight <110 lbs or >300 lbs. Women 

were enrolled from 2001 to 2005 through mammography and surgical clinics of Magee-Womens 

Hospital, P ittsburgh, P A. In t otal, t he M AMS s tudy popul ation c onsists of  1,133 w omen, 

including 264 c ases w ith i n s itu or  i nvasive br east c ancer, 313  w omen w ith be nign b reast 

disease, and 556 well controls.82

Only pos tmenopausal w omen with a  negative routine s creening m ammogram (N= 444;  

“well controls”) were included in the present study. We only included postmenopausal women, 
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because it is well accepted that some breast cancer risk factors are differentially associated with 

premenopausal a nd postmenopausal br east c ancer.83 Breast density ha s o bserved t o b e l ower 

among postmenopausal women than among premenopausal women13

 

, and it may be the case that 

the specific gene contribution to density may also vary by menopausal status. We subsequently 

excluded a ll w omen w ho ha d no a vailable m ammogram da ta (N=32), di d not  c omplete t he 

questionnaire (N=7), were not Caucasian (N=25), or had no available DNA (N=8), leaving a final 

total of 372 women. The number of women excluded from this study for each exclusion criterion 

is shown in the Figure 1. 

 

Figure 1. Study Population Flowchart  
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2.2 DATA COLLECTION 

2.2.1 Questionnaire-based and anthropometric measures  

At e nrollment, participants c ompleted a s elf-administered questionnaire tha t c ollected data on  

demographic characteristics, medical conditions and procedures, medications including hormone 

therapy (HT) and oral contraceptives (OCs), reproductive history, family cancer history, physical 

activity, smoking and alcohol use histories.81

Height and weight were measured by a s tudy nu rse us ing a s tadiometer and a s tandard 

balance be am s cale w hile pa rticipants w ere w earing l ight c lothing a nd no s hoes. H eight a nd 

weight were used to calculate BMI (weight in kilograms divided by height in meters squared).

 

81

Information obt ained on  hor mone t herapy us e w as s tatus ( never, former, cur rent us er), 

types of  H T us e, a nd dur ation of  us e. Y ears of  E +P us e a nd years of  e strogen-only us e w ere 

computed s eparately. Years o f E +P us e i ncludes onl y t hose pe riods i n which a  woman us ed 

estrogen and pr ogestin, these w omen c ould also ha ve ha d pe riods o f un opposed e strogen but  

these exposures were not counted in years of  E+P use. Likewise, years of E-only use includes 

only t hose pe riods i n w hich a  w oman us ed estrogen onl y, t hese w omen c ould a lso ha ve ha d 

periods of  E +P but  t hese e xposures w ere not  counted i n years of  E -only us e. Women w ho 

reported using estrogen but never used it in combination with progestin were classified as never 

E+P users. Years of E+P was set to missing for women who reported using unopposed progestin 

only. 

 

Studies have shown that the effects of HT on developing denser breasts are different by 

subtypes19-20, 84-88, thus we evaluated two major HT usages: duration of E+P use and duration of 
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E-only us e. D uration of  E +P us e a nd dur ation of E-only us e w ere grouped i nto 4 c ategories 

(Never, ≤ 1year, 1-10 years, ≥10 years). 

2.2.2 Mammographic breast density measurements 

Mammographic br east de nsity i s conc eptualized as t he pe rcentage of  t he br east ar ea on a 

mammogram ont o w hich r adiologically d ense fibroglandular tis sue ( stroma and epithelium) is  

projected. The components of this percentage, dense breast area and total breast area, can also be 

considered, but only percentage breast density and dense breast area are consistently associated 

with breast c ancer r isk.10, 13 Fibroglandular t issue at tenuates X-rays more t han f at and appears 

light in a mammogram, whereas fat appears dark.89 Copies of original screening mammograms 

were obtained with the participants’ permission and sent to the expert reviewer90-92, to determine 

MBD. Dense br east ar ea was m easured b y out lining areas of  MBD on the cr aniocaudal vi ew, 

excluding bi opsy s cars, C ooper’s l igaments, a nd br east m asses. T otal br east a rea a nd out lined 

dense r egions w ere c omputed us ing a  c ompensating pol ar pl animeter (LASICO). P ercentage 

breast density was calculated by dividing the area of the outlined dense region by the total area 

of t he br east. A  s ubjective m easure of  f ilm qua lity w as a lso r eported. T o de termine 

reproducibility of the readings, a random sample of 28 mammograms was re-evaluated at a later 

time. Measurements w ere ve ry reliable (the i ntraclass cor relation coefficient for i ntra-observer 

agreement was ρ=0.86 for the continuous measurement of dense breast area, ρ=0.99 for total 

area, and ρ=0.89 for percentage breast density 81

In the literature, percentage breast density appears to be the stronger risk factor than the 

absolute area of breast density.

). 

4, 7 However, the absolute amount of dense tissue, which consists 

of conn ective and epithelial t issue, is r egarded as t he t arget t issue f or br east canc er and an 
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important e tiologic va riable.93

2.2.3 Specimen collection, DNA isolation, and genotyping 

 Therefore, w e pr esent r esults on bot h t he r elative a nd absolute 

measures of mammographic density, which referred to as “percentage breast density” and “dense 

breast area” respectively. 

MAMS participants gave a non -fasting, 40 m l sample of  peripheral blood at enrollment.82 The 

sample w as p rocessed immediately after collection. S tudy pa rticipants were genotyped for 4  

SNPs i n FGFR2 (rs2981582, r s3750817, r s17542768, a nd r s1219643). A ll g enotyping w as 

performed a t t he U niversity o f P ittsburgh G enomics a nd P roteomics C ore Laboratories 

(Pittsburgh, PA). All SNPs were genotyped using MassARRAY® iPLEX Gold (Sequenom, Inc., 

San Diego, CA); the SNP specific and mass extend oligonucleotides, and assays were designed 

using S equenom R ealSNP ( www.realsnp.com) and MassARRAY A ssay Design version 3.1 

(Sequenom, Inc., S an Diego, C A). S ample d uplicates ( N=36) w ere i ncluded t o m onitor 

genotyping quality, concordance was >99%. Analyses were restricted to women with genotyping 

call rates of  ≥90%. Two study participants were excluded based on <90% call rates, leaving a 

total of 370 women available for analyses. 

2.3 STATISTICAL ANALYSIS 

Genotype and allele f requencies w ere c alculated. Observed genotype frequencies i n the s tudy 

population were tested for deviation from Hardy-Weinberg Equilibrium (HWE) using the Chi-

square goodness-of-fit test. 

http://www.realsnp.com/�
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General regression analysis (GLM procedure, SAS) was used to examine the relationship 

between FGFR2 SNPs and outcome variables (percentage breast density and dense breast area). 

Outcome va riables w ere s quare r oot t ransformed t o a pproximate a  nor mal di stribution w here 

appropriate. 

Age as a  continuous variable was included as a covariate in all models. Since our goal 

was to investigate i f br east cancer susceptibility loci ar e as sociated with MBD i ndependent of  

factors kno wn t o i nfluence br east d ensity, kno wn pr edictors of  m ammographic d ensity were 

included i n m ultivariate m odels. B ased on publ ished l iterature, t he following c ovariates w ere 

considered: BMI (continuous), age at menarche (≤12, >12 years of age), previous breast biopsies 

(no/yes), family history of breast cancer in first-degree relatives (no/yes), age at the end of first 

pregnancy (<20, 20-24, 25-29, ≥30 years of age), number of live births (none, 1, 2, ≥3), OC use 

(never, former, current user), duration of E+P use (never, ≤ 1year, 1 -10 years, ≥10 years) and HT 

status (never, former, current user), c igarette smoking (never, former, current smoker), alcohol 

intake (none, <12 grams/day, ≥12 grams/day), and physical activity ( 0, 0.1-10 METs/week, ≥10 

METs/week). 11, 94-95

Because t he num ber o f r are-allele hom ozgyotes w as r elatively small, we c ombined 

heterozygotes and r are-allele hom ozygotes i n the g eneral l inear m odel ana lyses ( applying 

dominant model). 

 

To determine if there was a l inear trend with increasing variant alleles, we calculated P-

values including an ordinal variable for genotype (i.e., 0 to the first category, 1 to the second, and 

so on), regressed on square root transformed percentage breast density or dense breast area. 
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Similarly, the association between HT use (duration of E+P use, duration of E-only use, 

HT s tatus) a nd M BD w as t ested b y GLM, a nd dos e-response w as a ssessed us ing num erical 

scores assigned to the ordered categories of HT use as a continuous variable in the model. 

We further tested the interaction of the four FGFR2 SNPs with HT use duration (duration 

of E+P use and duration of  E-only use). Tests for SNP interaction with HT use duration were 

carried out by adding the product term of HT use duration and different genotypes to the general 

linear model. 

All s ignificance te sts were tw o sided; P values <0.05 were cons idered statistically 

significant. Data analysis was conducted using SAS statistical software version9.1.3. 
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3.0  RESULTS 

3.1 CHARACTERISTICS OF SUBJECTS 

This study examined the associations of four FGFR2 SNPs, HT use, and their interactions with 

mammographic breast density in 370 healthy postmenopausal Caucasian women in the MAMS 

study. Table-1 shows s elected characteristics of t his s tudy popul ation. T he m ean a ge of  

participants w as 62.1  ( SD=8.2) years. T heir mean pe rcentage br east de nsity w as 30.2%  

(SD=19.5%) (range: 0% -94.9%). About two thirds of  t he women w ere o verweight (35.4%) or  

obese (31.1%). The majority of the women were former (50.8%) or current (13.2%) users of HT. 
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Table 1. Descriptive characteristics of the study population 

Characteristic Mean (SD) N (%) 
   
Age 62.1 (8.2)  
Height (m) 1.6 (0.1)  
Weight (kg) 74.1 (16.0)  
BMI (kg/m2 28.1 (5.9) )  
BMI Category    
≤25  124 (33.5) 
25-30  131 (35.4) 
≥30  115 (31.1) 
Age at menarche   
 ≤12  186 (50.3) 
 >12  184 (49.7) 
Age at menopause (N=363) 48.6 (5.2)  
Family History of Breast Cancer   
 No  314 (84.9) 
 ≥1 first-degree relatives   56 (15.1) 
Previous Breast Biopsy    
No  315 (85.1) 
 Yes  55 (14.9) 
Ever Pregnant   
 No  61 (16.5) 
 Yes  309 (83.5) 
Age at the end of first pregnancy   
< 20   29 (7.9) 
20-24  131 (35.4) 
25-29  88 (23.8) 
≥30   50 (13.5) 
NA  72 (19.5) 
Number of Live Births   
 None  73 (19.7) 
1  45 (12.2) 
2  112 (30.3) 
≥3  140 (37.8) 
Oral contraceptive use    
 No  154 (41.6) 
 Yes  216 (58.4) 
Surgical menopause (N=368)   
 No  318 (86.4) 
 Yes  50 (13.6) 
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*Total number for each variable is not always 370, due to missing data in some variables. 
 

 

(Table 1. Cont’d)  
HT Use Status    
 Never  133 (36.0) 
 Former  188 (50.8) 
 Current   49 (13.2) 
Years of E+P use (N=366)   
 Never  200 (54.6) 
 ≤1 yr   29 (7.9) 
 1-10 years  93 (25.4) 
 ≥10 years  44 (12.0) 
Years of E use   
 Never  281 (76.0) 
 ≤1 yr   7 (1.9) 
 1-10 years  45 (12.2) 
 ≥10 years  37 (10.0) 
Alcohol consumption in year prior to enrollment (N=363)   
 None   254 (70.0) 
 < 12 grams/day  68 (18.7) 
 ≥12 grams/day   41 (11.3) 
Smoking status    
 Never  212 (57.3) 
 Former  138 (37.3) 
 Current   20 (5.4) 
Physical Activity in METs/week   
0  47 (12.7) 
0.1-10   126 (34.1) 
≥10   197 (53.2) 

   
Involved Area of Breast/Dense Breast Area (cm2 41.2 (26.8) )  
Percentage Breast Density  30.2 (19.5)  
Total Area of Breast (cm2 159.4 (74.2) )  
None Dense Area (cm2 118.2 (75.2) )  
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3.2 ALLELE FREQUENCIES AND HWE 

None of  t he f our S NPs de viated s ignificantly from H WE. ( Table-2) A mong our  s tudy 

population, m inor a llele f requencies f or e ach of  t he f our S NPs w ere s imilar t o t hose of  t he 

Caucasian population (CEU) from the International HapMap Project. 
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Table 2. SNP Information and HWE 

rs Number n Chr position Allele Allele Counts 
Estimated 

Frequencies 
Allele Frequencies 

in HapMap-CEU HWE p-value* 

rs2981582 355 123342307 C 440 62.0% 58.3% 

     T 270 38.0% 41.7% 0.35 

rs3750817 362 123322567 C 403 55.7% 59.5% 

     T 321 44.3% 40.5% 0.03 

rs17542768 364 123327804 A 629 86.4% 88.3% 

     G 99 13.6% 11.7% 0.71 

rs1219643 361 123338345 G 540 74.8% 85.7% 

     T 182 25.2% 14.3% 0.01 

 

*Goodness-of-fit Test 
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3.3 FGFR2 GENOTYPE AND MAMMOGRAPHIC BREAST DENSITY 

Overall, no a ssociation w as obs erved be tween t he f our FGFR2 SNPs and percentage br east 

density in our study population. (Table-3, Table-4, Table-5) 

 We al so examined association between these S NPs w ith the abs olute ar ea o f 

mammographic de nsity (dense br east ar ea), but be cause r esults w ere s imilar and percentage 

breast density has been a stronger predictor of breast cancer risk than absolute dense breast area 

in many4, 7 , 9,  11 but not  a ll s tudies96

 

, we present the results of  pe rcentage breast density as ou r 

primary analyses, and i nclude t he a ssociation w ith de nse br east a rea i n s upplementary t ables. 

(Supplementary Table-1) 
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Table 3. Mean of Percentage Breast Density according to FGFR2 SNPs-Additive Model 

rs number Genotype n(%) Percentage Breast Density†  
   Model-1 Model-2 Model-3* 
   Mean p Mean p Mean p 

rs2981582 C/C 130 (36.6) 25.40  26.63  27.56  
(N=355) C/T 180 (50.7) 26.83 0.78 (2 df) 26.11 0.98 (2 df) 27.46 0.78 (2 df) 

 T/T 45 (12.7) 27.04 0.52 (1 df) 26.32 0.88 (1 df) 29.59 0.64 (1 df) 
 

rs3750817 C/C 100 (27.6) 25.10  24.70  26.83  
(N=362) C/T 203 (56.1) 27.35 0.60 (2 df) 26.83 0.48 (2 df) 27.56 0.89 (2 df) 

 T/T 59 (16.3) 25.40 0.77 (1 df) 27.88 0.24 (1 df) 28.30 0.62 (1 df) 
 

rs17542768 A/A 270 (74.2) 26.73  26.42  28.20  
(N=364) A/G 89 (24.4) 24.80 0.61 (2 df) 25.60 0.90 (2 df) 27.04 0.85 (2 df) 

 G/G 5 (1.4) 21.53 0.33 (1 df) 24.50 0.64 (1 df) 27.25 0.59 (1 df) 
 

rs1219643 G/G 191 (52.9) 27.25  27.14  28.30  
(N=361) G/T 158 (43.8) 25.50 0.73 (2 df) 25.60 0.70 (2 df) 26.73 0.66 (2 df) 

 T/T 12 (3.3) 26.01 0.47 (1 df) 25.91 0.44 (1 df) 25.00 0.37 (1 df) 
  

Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at the 
End of First Pregnancy, Number of Live Birth, OC Use, Duration of E+P Use, HT Status, Smoking Status, Alcohol Intake, Physical 
Activity. 
†Results are square transformed back for easy interpretation. 
*Numbers in Model-3 (345,351,353,350) are slightly lower because of missing values in additional adjustment variables.  
2 df  p va lue t est f or he terogeneity b etween t he m eans of  pe rcentage m ammographic br east d ensity, 1df  p va lue t est for dos e-

response. 
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Table 4. Mean of Percentage Breast Density according to FGFR2 SNPs-Dominant Model 

rs number Genotype n(%) Percentage Breast Density† 
   Model-1 Model-2 Model-3* 

   Mean p Mean p Mean p 
rs2981582 C/C 130 (36.6) 25.40  26.63  27.56  
(N=355) C/T or T/T 225 (63.4) 26.94 0.48 (1 df) 26.21 0.83 (1 df) 27.88 0.87 (1 df) 

 
rs3750817 C/C 100 (27.6) 25.10  24.70  26.83  
(N=362) C/T or T/T 262 (72.4) 26.94 0.44 (1 df) 27.04 0.24 (1 df) 27.67 0.69 (1 df) 

 
rs17542768 A/A 270 (74.2) 26.73  26.42  28.20  
(N=364) A/G or G/G 94 (25.8) 24.60 0.36 (1 df) 25.50 0.66 (1 df) 26.94 0.57 (1 df) 

 
rs1219643 G/G 191 (52.9) 27.25  27.14  28.20  
(N=361) G/T or T/T 170 (47.1) 25.50 0.43 (1 df) 25.60 0.40 (1 df) 26.52 0.40 (1 df) 

  
Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at the 
End of First Pregnancy, Number of Live Birth, OC Use, Duration of E+P Use, HT Status, Smoking Status, Alcohol Intake, Physical 
Activity. 
†Results are square transformed back for easy interpretation. 
*Numbers in Model-3 (345,351,353,350) are slightly lower because of missing values in additional adjustment variables.  
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Table 5. Mean of Percentage Breast Density according to FGFR2 SNPs-Recessive Model 

rs number Genotype n(%) Percentage Breast Density† 
   Model-1 Model-2 Model-3* 

   Mean p Mean p Mean p 
rs2981582 C/C or C/T 310 (87.3) 26.21  26.32  27.56  
(N=355) T/T 45 (12.7) 27.04 0.79 (1 df) 26.42 0.99 (1 df) 29.70 0.48 (1 df) 

 
rs3750817 C/C or C/T 303 (83.7) 26.63  26.11  27.25  
(N=362) T/T 59 (16.3) 25.40 0.68 (1 df) 27.88 0.50 (1 df) 28.30 0.70 (1 df) 

 
rs17542768 A/A or A/G 359 (98.6) 26.32  26.21  27.98  
(N=364) G/G 5 (1.4) 21.53 0.58 (1 df) 24.50 0.82 (1 df) 27.46 0.95 (1 df) 

 
rs1219643 G/G or G/T 349 (96.7) 26.42  26.42  27.56  
(N=361) T/T 12 (3.3) 26.01 0.95 (1 df) 26.01 0.93 (1 df) 25.10 0.65 (1 df) 

 
Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at the 
End of First Pregnancy, Number of Live Birth, OC Use, Duration of E+P Use, HT Status, Smoking Status, Alcohol Intake, Physical 
Activity. 
†Results are square transformed back for easy interpretation. 
*Numbers in Model-3 (345,351,353,350) are slightly lower because of missing values in additional adjustment variables.  
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3.4 HT USE AND MAMMOGRAPHIC BREAST DENSITY 

We obs erved a l inear t rend between dur ation of  E+P use and pe rcentage breast density i n our  

age-adjusted model. Women with a longer duration of E+P use had increased percentage breast 

density. However, the association became borderline significant after further adjustment of BMI 

(P=0.05). (Table-6) In a ddition, w e a lso obs erved a  s tatistically s ignificant t rend be tween H T 

status (never, former, current user) and percentage breast density. (Table-8) However, we didn’t 

find any statistically significant association between duration of E-only use and MBD. (Table-7) 
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Table 6. Mean of Percentage Breast Density according to Duration of E+P use 

Duration of E+P use n(%) Percentage Breast Density† 
(N=366)  Model-1 Model-2 Model-3* 
  Mean p Mean p Mean p 
Never 200 (54.6) 23.81  24.60  25.50  
 ≤1 yr  29 (7.9) 27.98  26.73  26.83  
 1-10 years 93 (25.4) 29.81 0.07 (3 df) 28.94 0.22 (3 df) 28.09 0.68 (3 df) 
 ≥10 years 44 (12.0) 29.38 0.01 (1 df) 28.09 0.05 (1 df) 26.52 0.34 (1 df) 

 
Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at First 
Pregnancy, Number of Live Birth, OC Use, HT Status, Smoking Status, Alcohol Intake, Physical Activity. 
†Results are square transformed back for easy interpretation. 
*The number in Model-3 (359) is slightly lower because of missing values in additional adjustment variables.  
3 df  p va lue t est f or he terogeneity b etween t he m eans of  pe rcentage m ammographic br east d ensity, 1df  p  value test for dose-

response. 
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Table 7. Mean of Percentage Breast Density according to Duration of E-only use 

Duration of E use n(%) Percentage Breast Density†  
(N=370)  Model-1 Model-2 Model-3* 
  Mean p Mean p Mean p 
Never 281 (76.0) 26.21  26.21  27.46  
 ≤1 yr  7 (1.9) 27.67  29.05  26.63  
 1-10 years 45 (12.1) 26.32 0.99 (3 df) 25.00 0.80 (3 df) 24.11 0.67 (3 df) 
 ≥10 years 37 (10.0) 27.04 0.84 (1 df) 28.52 0.70 (1 df) 28.52 0.79 (1 df) 

 
Abbreviation: df, degrees of freedom.  P values based on square root transformed percentage breast density. 
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at First 
Pregnancy, Number of Live Birth, OC Use, HT Status, Smoking Status, Alcohol Intake, Physical Activity. 
†Results are square transformed back for easy interpretation. 
*The number in Model-3 (363) is slightly lower because of missing values in additional adjustment variables.  
3 df  p va lue t est f or he terogeneity b etween t he m eans of  pe rcentage m ammographic br east d ensity, 1df  p va lue t est for dose-

response. 
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Table 8. Mean of Percentage Breast Density according to HT status 

HT status n(%) Percentage Breast Density†  
  Model-1 Model-2 Model-3* 
  Mean p Mean p Mean p 

Never 133 (36.0) 23.33  24.21  25.40  
Former 188 (50.8) 27.35 0.05 (2 df) 27.04 0.13 (2 df) 26.42 0.32 (2 df) 
Current  49 (13.2) 30.91 0.01 (1 df) 29.81 0.04 (1 df) 30.25 0.16 (1 df) 

  
Abbreviation: df, degrees of freedom. P values based on square root transformed percentage breast density. 
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at First 
Pregnancy, Number of Live Birth, OC Uses, Duration of E+P Use, Smoking Status, Alcohol Intake, Physical Activity. 
†Results are square transformed back for easy interpretation. 
*The numbers in Model-3 (359) is slightly lower because of missing values in additional adjustment variables.  
2 df  p va lue t est f or he terogeneity b etween t he m eans of  pe rcentage m ammographic br east d ensity, 1df  p va lue t est for dose-

response. 
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3.5 INTERACTION BETWEEN GENETIC VARIANTS AND HT USE DURATION 

Subsequently, we investigated whether the different genetic variants modified the relationship 

between duration of HT (E+P or E-only) use and MBD. No interaction was observed between 

genetic variants and HT use duration in our study population. (Table-9) 
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Table 9. Duration of HT use (Never, ≤1 yr, 1-10 yrs, ≥10 yrs) and genotype interaction 

  Percentage Breast Density  

 P Interaction (Duration of E+P Use) 

 Model-1 Model-2 Model-3 

rs2981582 0.16 0.21 0.24 
rs3750817 0.98 0.97 0.98 
rs17542768 0.66 0.57 0.58 
rs1219643 0.71 0.70 0.73 

 

 

 

  Percentage Breast Density  

 P Interaction (Duration of E-only Use) 

 Model-1 Model-2 Model-3 

rs2981582 0.48 0.21 0.20 
rs3750817 0.72 0.78 0.92 
rs17542768 0.97 0.95 0.87 
rs1219643 0.65 0.73 0.38 

 
Model-1: Adjusted for Age (continuous) 
Model-2: Adjusted for Age, BMI (continuous) 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-
degree Relatives, Age at  First Pregnancy, Number of  Live Birth, OC Use, HT Status, Smoking Status, 
Alcohol Intake, Physical Activity. 
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4.0  DISCUSSION 

The r ationale f or thi s s tudy was th at br east c ancer s usceptibility loc i ma y also be r elated to 

another strong risk factor, mammographic breast density. So far, mammographic breast density 

is t he onl y kno wn r isk factor f or br east c ancer t hat i s pr esent i n t he ve ry organ i n which t he 

disease will eventually develop. Mammographic breast density r eflects the relative amounts of  

fibroglandular t issue a s oppos ed t o nonde nse f atty t issue. F ibroglandular t issue c ontains a  

mixture of fibrous connective tissue (stroma) and glandular tissue (epithelial cells). Breast cancer 

originates in epithelial cells, so greater areas of f ibroglandular tis sue ma y r eflect a  greater 

number of  cel ls t hat ar e at  r isk of car cinogenesis and / or  an increased rate of  epi thelial 

proliferation. It is hypothesized that many of the genetic and environmental factors that influence 

risk of breast cancer affect the proliferative activity and quantity of stromal and epithelial tissue 

in the br east, and t hat t hese effects a re r eflected in differences i n MBD among women of t he 

same a ge.97 High MBD is  a ssociated with greater tot al n uclear area of bot h e pithelial a nd 

nonepithelial c ells.98 A greater pe rcentage of  epithelium i n be nign t issue bi opsies h as be en 

associated with an increased r isk of  hyperplasia (with or  without atypia) and /  or  carcinoma in 

situ, and these hi stology findings ar e associated with increased risk of br east can cer.99-102 

Mammographic breast density may be an intermediate end point for the development of breast 

cancer. 
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Studies have shown the implication of FGFR2 in mammary carcinogenesis. FGFR2 is a 

receptor tyrosine kinase; it is involved in cell proliferation, migration, and differentiation.103-105

In t his s tudy, w e found that ove rall none  of  t he f our FGFR2 SNPs w ere as sociated with 

MBD in healthy postmenopausal Caucasian women. There are several other studies

 It 

is plausible that FGFR2 influences breast cancer development through breast density.  

38, 106-107 that 

also looked at rs2981582 in FGFR2 and MBD, but their study populations are different. None of 

them looked at healthy postmenopausal women in a homogenous Caucasian population. Tamimi 

et al.38 conducted the study in the Nurses’ Health Study with a sample size of 1121 women, both 

pre- and post-menopause. They found no s tatistically significant association between rs2981582 

and M BD f or t he w hole popul ation, nor  a fter s tratifying b y m enopausal s tatus. L ee et al.106 

included 516 pr emenopausal br east c ancer cases; t he s tudy popul ation w as pr edominantly 

Caucasian w omen. T hey also f ound no association. W oolcott et al.107

Homozygous variants of rs2981582 or other SNPs in high LD are estimated to confer about 

a 60%  i ncrease i n br east c ancer r isk r elative t o hom ozygous w ildtypes.

 investigated the s ame 

FGFR2 polymorphism within t he Multiethnic Cohort s tudy; t hey included both pre- and pos t-

menopausal w omen. S imilarly, no a ssociation w as obs erved be tween r s2981582 a nd M BD i n 

their study population of 262 w hite women. In contrast to our study, none of the above studies 

further explored the possible gene and HT use duration interactions. 

39-40

Consistent with previous studies

 The l ack of 

association of t he b reast canc er l oci i n FGFR2 with br east d ensity s uggests t hat FGFR2 

influences breast cancer risk independent of breast density.  

19-21, 30, 85-88, 108-109, we observed a trend between duration 

of E +P us e and percentage br east de nsity; we a lso observed the s tatistically s ignificant t rend 

between HT status and percentage breast density. However, we found no statistically significant 
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association between duration of E-only use and percentage breast density in our study. Previous 

studies have shown that combined E+P use has a greater risk of developing denser breasts than 

E-only t herapy.19-20, 8 4-88 It h as be en s hown t hat i n pos tmenopausal w omen, br east epithelial 

proliferation was more pronounced by combined estrogen + progestin treatment than by estrogen 

alone.110

The ef fect of  HT us e on M BD m ay result i n a  r educed s ensitivity a nd s pecificity of  

mammographic br east cancer s creening.

  

111-112 High m ammographic density can obscure subtle 

breast abnormalities, making it not  only more difficult to diagnose small-volume breast cancer 

but also more likely to have a false positive mammogram reading.113 However, the increased risk 

associated with greater mammographic density persists for up to 9 years after screening114; this 

argues strongly against detection bias (“masking”) as the sole cause of the observed increase in 

breast c ancer.115 Furthermore, r ecent da ta i ndicate t hat br east de nsity du ring H T i s d ynamic, 

increasing w ith initiation and decreasing w ith discontinuation.21 It m ay also be tha t thi s r isk 

factor can be changed by intervention.116 Intervention trails have shown that decreases in breast 

density are associated with tamoxifen treatment117-119, a therapy proven to decrease breast cancer 

risk.120-121

We observed no s tatistically significant gene-environment interactions between the four 

SNPs a nd H T us e du ration. W e e valuated t he genetic v ariants and e nvironmental i nteraction 

because t here i s s ubstantial evi dence t hat pol ymorphisms i n c andidate hor mone m etabolism 

genes may influence the disposition of exogenous hormones found in HT.

 Mammographic de nsity ha s t he po tential t o be  us ed t o m onitor r isk-lowering 

interventions of breast cancer.  

122-123  FGFR2 contains 

at least one putative ER transcription factor binding site56, thus it may relate HT effects on breast 

cancer a nd/or br east de nsity. O ne pos sible e xplanation f or t he nul l r esult of  i nteraction i s t hat 
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maybe the effects of HT on breast density are more related to progesterone receptor (PR) than to 

estrogen receptor (ER). It has been consistently shown that the combined E+P therapy has a more 

pronounced effect in increasing breast density than E-only therapy.19-20, 84-88 In the WHI study, 

Prentice et al.80

The m ajor s trength of  our s tudy is  the  r eliability o f br east de nsity measurements. 

Furthermore, percentage density reading is a continuous value, a more refined measure compared 

to c ategorically m easurements. In a ddition, po pulation s tratification i s not  a  m ajor c oncern 

because our population was composed of 100% self-reported postmenopausal Caucasian women. 

Another advantage of our study is the availability of information, for example, we have a very 

complete database of type and duration of HT use. However, the ascertainment of HT use relies 

on s elf-report a nd t he misclassification c an oc cur. T his m ay i nfluence our  r esults t o a ssess 

genetic modification. It is also possible that the effect modification is mainly present in a specific 

type of  hor mone t herapy use. W e ha ve i nformation a vailable on di fferent t ypes of  hor mone 

therapy pr eparation, but  we chose not  t o make a di stinction because t hen the sample s ize will 

become too small. Finally, we only studied four SNPs in intron 2 of FGFR2. It is possible that 

 evaluated variation in the FGFR2 gene and the effects of postmenopausal HT on 

invasive breast cancer. They reported that SNP rs3750817 showed evidence of interaction with 

both t he E +P ( P=0.033) a nd E -only ( P=0.046) odds r atio, w hereas S NP r s2981582 s howed 

evidence (P=0.045) of interaction with the E-only odds ratio. They further reported that the odd 

ratios f or bot h E +P and E -only i n t he W HI hormone t herapy t rials depended s ignificantly 

(P<0.05) on genotype for SNP 3750817, and concluded that postmenopausal women having TT 

genotype f or S NP 375 0817 ha ve a  reduced breast cancer risk a nd s eem t o experience 

comparatively favorable effects of HT.  
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the causal variants are not in LD with any of the four SNPs, thus we were unable to detect the 

association. 

In conclusion, our findings support the notion that the effects of these FGFR2 SNPs on 

breast cancer ar e not  mediated by m ammographic de nsity. We di d observe a s tatistically 

significant t rend be tween dur ation of  E +P us e, HT s tatus a nd pe rcentage br east de nsity. A nd 

there i s no e vidence of  i nteraction be tween t hese g enetic va riants i n i ntron 2 of  FGFR2 and 

duration of HT usage.  

Breast c ancer h as be en r ecognized as a he terogeneous diagnosis, di fferent m edical 

interventions124-126 are effective primarily in subgroups with specific biological profiles.127-128

 

 It 

is important to identify markers that may assist in primary prevention of breast cancer as well as 

in selecting high risk individuals (e.g., women who are most susceptible to the effect of HT on 

MBD) of  br east canc er. F urther s tudies ar e ne eded to clarify t he r ole of  how  cer tain factors 

influence the risk of breast cancer. 
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APPENDIX  

SUPPLEMENTARY TABLES 
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S Table 1a. Mean of Dense Breast Area according to FGFR2 SNPs- Additive Model  
 

rs number Genotype n(%) Dense Breast Area† 
   Model-1 Model-2 Model-3* 
   Mean p Mean p Mean p 

rs2981582 C/C 130 (36.6) 36.60  37.09  38.56  
(N=355) C/T 180 (50.7) 36.24 0.82 (2 df) 36.00 0.73 (2 df) 38.32 0.96 (2 df) 

 T/T 45 (12.7) 33.76 0.60 (1 df) 33.52 0.45 (1 df) 37.09 0.80 (1 df) 
 

rs3750817 C/C 100 (27.6) 33.64  33.52  36.60  
(N=362) C/T 203 (56.1) 37.82 0.43 (2 df) 37.58 0.43 (2 df) 38.56 0.84 (2 df) 

 T/T 59 (16.3) 36.00 0.44 (1 df) 36.72 0.34 (1 df) 37.70 0.72 (1 df) 
 

rs17542768  A/A 270 (74.2) 36.84  36.72  40.07  
(N=364) A/G 89 (24.4) 34.57 0.56 (2 df) 34.81 0.64 (2 df) 37.58 0.71 (2 df) 

 G/G 5 (1.4) 27.46 0.32 (1 df) 28.30 0.39 (1 df) 34.34 0.41 (1 df) 
 

rs1219643  G/G 191 (52.9) 37.95  37.95  39.44  
(N=361) G/T 158 (43.8) 34.46 0.48 (2 df) 34.46 0.48 (2 df) 36.48 0.53 (2 df) 

 T/T 12 (3.3) 35.88 0.28 (1 df) 35.76 0.28 (1 df) 33.52 0.26 (1 df) 
Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at the 
End of First Pregnancy, Number of Live Birth, OC Use, Duration of E+P Use, HT Status, Smoking Status, Alcohol Intake, Physical 
Activity. 
†Results are square transformed back for easy interpretation. 
*Numbers in Model-3 (345,351,353,350) are slightly lower because of missing values in additional adjustment variables. 
2 df p value test for heterogeneity between the means of mammographic breast density, 1df p value test for genotype dosage.  
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S Table 1b. Mean of Dense Breast Area according to FGFR2 SNPs-Dominant Model  
 

rs number Genotype n(%) Dense Breast Area† 
   Model-1 Model-2 Model-3* 

   Mean p Mean p Mean p 
rs2981582 C/C 130 (36.6) 36.60  37.09  38.56  
(N=355) C/T or T/T 225 (63.4) 35.76 0.78 (1 df) 35.52 0.59 (1 df) 38.07 0.88 (1 df) 

 
rs3750817 C/C 100 (27.6) 33.64  33.52  36.60  
(N=362) C/T or T/T 262 (72.4) 37.33 0.22 (1 df) 37.45 0.20 (1 df) 38.44 0.57 (1 df) 

 
rs17542768 A/A 270 (74.2) 36.84  36.72  40.07  
(N=364) A/G or G/G 94 (25.8) 34.22 0.39 (1 df) 34.46 0.46 (1 df) 37.45 0.43 (1 df) 

 
rs1219643 G/G 191 (52.9) 37.95  37.95  39.44  
(N=361) G/T or T/T 170 (47.1) 34.57 0.23 (1 df) 34.57 0.23 (1 df) 36.24 0.28 (1 df) 
Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at the 
End of First Pregnancy, Number of Live Birth, OC Use, Duration of E+P Use, HT Status, Smoking Status, Alcohol Intake, Physical 
Activity. 
†Results are square transformed back for easy interpretation. 
*Numbers in Model-3 (345,351,353,350) are slightly lower because of missing values in additional adjustment variables.  
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S Table 1c. Mean of Dense Breast Area according to FGFR2 SNPs-Recessive Model  
 

rs number Genotype n(%) Dense Breast Area† 
   Model-1 Model-2 Model-3* 

   Mean p Mean p Mean p 
rs2981582 C/C or C/T 310 (87.3) 36.36  36.48  38.44  
(N=355) T/T 45 (12.7) 33.76 0.53 (1 df) 33.52 0.48 (1 df) 37.09 0.77 (1 df) 

 
rs3750817 C/C or C/T 303 (83.7) 36.36  36.24  37.95  
(N=362) T/T 59 (16.3) 36.00 0.91 (1 df) 36.72 0.89 (1 df) 37.82 0.97 (1 df) 

 
rs17542768 A/A or A/G 359 (98.6) 36.36  36.24  39.56  
(N=364) G/G 5 (1.4) 27.46 0.42 (1 df) 28.30 0.47 (1 df) 34.69 0.68 (1 df) 

 
rs1219643 G/G or G/T 349 (96.7) 36.36  36.36  38.07  
(N=361) T/T 12 (3.3) 35.88 0.96 (1 df) 35.88 0.95 (1 df) 33.64 0.58 (1 df) 
 Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at the 
End of First Pregnancy, Number of Live Birth, OC Use, Duration of E+P Use, HT Status, Smoking Status, Alcohol Intake, Physical 
Activity. 
†Results are square transformed back for easy interpretation. 
*Numbers in Model-3 (345,351,353,350) are slightly lower because of missing values in additional adjustment variables.  
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S Table 2a. Mean of Dense Breast Area according to Duration of E+P use.  
 
Duration of E+P use n(%) Dense Breast Area†  
(N=366)  Model-1 Model-2 Model-3* 
  Mean p Mean p Mean p 
Never 200 (54.6) 34.11  34.34  37.82  
 ≤1 yr  29 (7.9) 41.47  41.09  41.47  
 1-10 years 93 (25.4) 38.81 0.36 (3 df) 38.44 0.47 (3 df) 38.44 0.80 (3 df) 
 ≥10 years 44 (12.0) 36.24 0.24 (1 df) 35.76 0.34 (1 df) 34.93 0.65 (1 df) 

Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at First 
Pregnancy, Number of Live Birth, OC Use, HT Status, Smoking Status, Alcohol Intake, Physical Activity. 
†Results are square transformed back for easy interpretation. 
*The number in Model-3 (359) is slightly lower because of missing values in additional adjustment variables.  
3 df  p va lue t est f or he terogeneity b etween t he m eans of  pe rcentage m ammographic br east d ensity, 1df  p va lue t est for dose-

response. 
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S Table 2b. Mean of Dense Breast Area according to Duration of E-only use.  
 

Duration of E use n(%) Dense Breast Area†  
(N=370)  Model-1 Model-2 Model-3* 
  Mean p Mean p Mean p 
Never 281 (76.0) 36.00  36.00  37.58  
 ≤1 yr  7 (1.9) 35.16  35.64  33.87  
 1-10 years 45 (12.1) 38.44 0.95 (3 df) 38.07 0.97 (3 df) 39.31 0.95 (3 df) 
 ≥10 years 37 (10.0) 36.48 0.71 (1 df) 36.97 0.68 (1 df) 39.19 0.70 (1 df) 

Abbreviation: df, degrees of freedom. P values based on square root transformed dense breast area. 
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at First 
Pregnancy, Number of Live Birth, OC Use, HT Status, Smoking Status, Alcohol Intake, Physical Activity. 
†Results are square transformed back for easy interpretation. 
*The number in Model-3 (363) is slightly lower because of missing values in additional adjustment variables.  
3 df  p va lue t est f or he terogeneity b etween the m eans of  pe rcentage m ammographic br east d ensity, 1df p value t est for dose-

response. 
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S Table 2c. Mean of Dense Breast Area according to HT status  
 

HT status n(%) Dense Breast Area†  
  Model-1 Model-2 Model-3* 
  Mean p Mean p Mean p 

Never 133 (36.0) 33.18  33.52  34.93  
Former 188 (50.8) 37.70 0.19 (2 df) 37.58 0.25 (2 df) 38.69 0.48 (2 df) 
Current  49 (13.2) 40.07 0.07 (1 df) 39.69 0.10 (1 df) 40.83 0.24 (1 df) 
Abbreviation: df, degrees of freedom  
Model-1: Adjusted for Age(continuous). 
Model-2: Adjusted for Age, BMI(continuous). 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-degree Relatives, Age at First 
Pregnancy, Number of Live Birth, OC Uses, Duration of E+P Use, Smoking Status, Alcohol Intake, Physical Activity. 
†Results are square transformed back for easy interpretation. 
*The number in Model-3 (359) is slightly lower because of missing values in additional adjustment variables.  
2 df p value test for heterogeneity between the means of percentage mammographic breast density, 1df p value test for dose-response
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S Table 3. Duration of HT use (Never, ≤1yr, 1-10yrs, ≥10yrs) and genotype interaction: 

  Dense Breast Area  

 P Interaction (Duration of E+P Use) 

 Model-1 Model-2 Model-3 

rs2981582 0.21 0.26 0.30 
rs3750817 0.51 0.50 0.44 
rs17542768 0.29 0.28 0.19 
rs1219643 0.97 0.97 0.95 

 

 

 

  Dense Breast Area  

 P Interaction (Duration of E Use) 

 Model-1 Model-2 Model-3 

rs2981582 0.38 0.33 0.27 
rs3750817 0.82 0.81 0.80 
rs17542768 0.83 0.86 0.86 
rs1219643 0.99 0.98 0.77 

 
Model-1: Adjusted for Age (continuous) 
Model-2: Adjusted for Age, BMI (continuous) 
Model-3: Model2+ Age at Menarche, Previous Breast Biopsy, Family History of Breast Cancer in First-
degree Relatives, Age a t F irst Pregnancy, Number of  Live Birth, OC Use, HT Status, Smoking Status, 
Alcohol Intake, Physical Activity. 
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