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In this study, the current state of the art thermal barrier coating (TBC) systems (heavy grit 

blasted Pt aluminide and NiCoCrAlY Bond Coats with EBPVD TBCs) were investigated first 

followed by TBC systems which were modified based upon the results obtained on the failure of 

the state of the art TBC systems. The specimens were subjected to cyclic oxidation testing, 

mostly at 1100°C in a bottom loading furnace in laboratory air. Optical and scanning electron 

microscopy ( SEM) were used for characterization of the as-processed and failed specimens. 

The state of the art TBC systems with NiCoCrAlY bond coats failed in the presence of 

defects which were identified as TBC defects, transient oxides, surface defects and reactive 

element (RE) rich oxide protrusions. On the other hand, the failure of the state of the art TBC 

systems with Pt aluminide bond coats were due to deformation of the bond coat by a mechanism 

known as ratcheting. The stored strain energy in the TGO was also a factor that contributed to 

the failure of both systems.  Most of the modifications performed on the state of the art TBC 

systems improved their lives to some extent. In the case of NiCoCrAlY systems, elimination or 

at least minimization of the identified defects was responsible for the improvements whereas the 

prevention of the ratcheting type of failure was the main reason for the improvement in lives in 

the case of Pt aluminide systems. On the other hand, other issues such as slower growth of the 
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TGO as well as improved interfacial toughnesses with some of the modifications were observed 

to be contributing factors in the improved lives. 

Based on the observations on the failure of both the state of the art as well as the 

modified TBC systems, the surface condition of the bond coats as well as the morphology of the 

TBCs close to the TGO were found to have a first order effect on the failure of TBC systems.  

The characteristics of the TGO, such as composition, growth rate and adherence both to the bond 

coat and the TBC, as well as the characteristics of the bond coats were also observed to have an 

effect on the failures. Recommendations for future work that should be pursued to better define 

the conditions necessary for optimized TBC performances are given . 

 
 

 iv



 
 
 
 
 

TABLE OF CONTENTS 
 

 
 
ACKNOWLEDGEMENTS......................................................................................................... xxi 
 
1.0 INTRODUCTION .................................................................................................................... 1 
 
2.0 BACKGROUND ...................................................................................................................... 5 
 

2.1  THERMAL BARRIER COATINGS................................................................................... 5 
 

2.1.1  Fabrication Procedures.................................................................................................. 7 
 

2.1.1.1  Plasma Sprayed TBCs  .......................................................................................... 7 
 

2.1.1.2  EBPVD TBCs  .................................................................................................... 10 
 

2.2  BOND COATS .................................................................................................................. 11 
 

2.2.1  Diffusion Aluminide Coatings.................................................................................... 11 
 

2.2.1.1  Fabrication Procedures  ....................................................................................... 12 
 

2.2.1.2  Microstructural Evolution  . ................................................................................. 13 
 

2.2.1.3  Performance of Diffusion Aluminide Bond Coats  ............................................. 15 
 

2.2.2  MCrAlY Bond Coats .................................................................................................. 17 
 

2.2.2.1  Fabrication Procedures  ....................................................................................... 17 
 

2.2.2.3  Performance of MCrAlY Bond Coats  ................................................................ 19 
 

2.3  THERMALLY GROWN OXIDE (TGO) ......................................................................... 21 
 

2.3.1  Transient Oxidation .................................................................................................... 22 
 

2.3.2  Growth and Adherence of TGO.................................................................................. 23 
 

2.3.3  Stresses Generated During Oxidation......................................................................... 25 

 v



2.4  FAILURE MECHANISMS OF TBC SYSTEMS ............................................................. 26 
 
3.0  EXPERIMENTAL DETAILS ............................................................................................... 33 
 
4.0  RESULTS AND DISCUSSION............................................................................................ 39 
 

4.1  STUDIES OF BOND COATS WITHOUT TBCS............................................................ 39 
 

4.1.1  NiCoCrAlY Bond Coats ............................................................................................. 39 
 

4.1.2  Platinum Aluminide Bond Coats ................................................................................ 54 
 

4.2  TBC INVESTIGATIONS.................................................................................................. 67 
 

4.2.1  TBC Failure Premises ................................................................................................. 67 
 

4.2.2  Defects in TBC systems.............................................................................................. 71 
 

4.2.2.1  Transient Oxides  . ............................................................................................... 71 
 

4.2.2.2  TBC defects  ....................................................................................................... 76 
 

4.2.2.3  Surface defects .................................................................................................... 97 
 

4.2.2.4  Reactive Element Oxide protrusions  . .............................................................. 100 
 

4.2.2.5  Intermixed zone  ............................................................................................... 100 
 

4.2.2.6  Contamination  .................................................................................................. 114 
 

4.2.2.7  Voids  . ............................................................................................................... 115 
 

4.2.2.8  Grain boundary ridges  ...................................................................................... 116 
 

4.2.2.9  Abnormal Defects  ............................................................................................ 116 
 

4.2.3  Failure of Current State-of-the-Art TBC Systems .................................................... 125 
 

4.2.3.1  NiCoCrAlY Bond Coats  .................................................................................. 126 
 

4.2.3.2  Platinum Modified Aluminide Bond Coats  ..................................................... 140 
 

4.2.4  Modified TBC Systems............................................................................................. 157 
 

4.2.4.1  NiCoCrAlY Bond Coats  . ................................................................................. 157 
 

 vi



4.2.4.2  Platinum Aluminide Bond Coats  ..................................................................... 201 
 

4.2.4.3  No Bond Coat Systems  .................................................................................... 235 
 

4.3  SOME MICROSTRUCTURAL OBSERVATIONS....................................................... 248 
 

4.4  IMPORTANT CONDITIONS NECESSARY FOR OPTIMIZED PERFORMANCES 
AND RECOMMENDATIONS FOR FUTURE WORK........................................................ 264 

 
5.0  CONCLUSIONS ................................................................................................................. 269 
 

5.1  BOND COATS WITH NO TBCS................................................................................... 269 
 

5.2  CURRENT STATE OF THE ART TBC SYSTEMS...................................................... 270 
 

5.3  MODIFIED TBC SYSTEMS .......................................................................................... 270 
 

5.4  NO BOND COAT TBC SYSTEMS................................................................................ 272 
 
BIBLIOGRAPHY....................................................................................................................... 274 
 

 vii



 
 
 
 

 

LIST OF TABLES 
 
 

 
Table 1  Compositions of NiCoCrAlY bond coats (wt %) ........................................................... 36 
 
Table 2  Summary of the development of intermixed zone for various TBC systems............... 103 
 
Table 3  Failure Times for the current state of the art TBC systems .......................................... 126 
 
Table 4  Failure times for the TBC systems with modified NiCoCrAlY Bond Coats................ 158 
 
Table 5  Failure Times for TBC systems with modified Pt Aluminide Bond Coats .................. 202 
 
Table 6  Failure Times for no Bond Coat TBC systems............................................................. 237 
 
 

 viii



 
 
 
 

 

LIST OF FIGURES 
 
 

 
Figure 1  A schematic showing the various layers in a TBC system.............................................. 3 
 
Figure 2  Scanning electron micrographs showing the typical microstructures of ( a ) EBPVD 

and ( b )APS YSZ Thermal Barrier Coatings. ........................................................................ 4 
 
Figure 3  A diagram showing the improvement of temperature capabilities of superalloys by  the 

use of TBCs [1]. ...................................................................................................................... 6 
 
Figure 4  The Zirconia-Yttria phase diagram [3]............................................................................ 8 
 
Figure 5  Schematics illustrating the equipment used for (a) plasma spray, and (b ) EBPVD 

processes. ................................................................................................................................ 9 
 
Figure 6  ( a ) Schematic to show the typical configuration of the specimens used in this study. 37 
 
Figure 7  Macrographs showing the typical TBC failures, ( a ) and ( b ). .................................... 38 
 
Figure 8  The surface, (a), and cross-sectional micrographs, (b), of NiCoCrAlY bond coats 

showing the presence of surface defects as well as porosity and oxide inclusions in the as 
processed condition. The phases present in NiCoCrAlY-A and NiCoCrAlY-B coatings are 
labeled in (c) and (d) respectively......................................................................................... 43 

 
Figure 9  Scanning electron micrographs showing the degradation of NiCoCrAlY-A bond coats 

after 209, (a), 955, (b and c), and 3031, (d), cycles of exposure at 1100°C. ........................ 45 
 
Figure 10  Scanning electron micrographs showing the degradation of NiCoCrAlY-B coatings 

after 209, (a), 955, (b), and 3031 cycles, (c), of exposure at 1100°C................................... 47 
 
Figure 11  Cross sectional micrographs from a NiCoCrAlY-A bond coat in the as processed 

condition, ( a ),  and after 209, ( b ),  and  955, (c ), cycles of exposure at 1100°C showing 
the roughening of the surface. The surface became smoother after 3031 cycles of exposure ( 
d ). ......................................................................................................................................... 49 

 
Figure 12   (a) Surface micrograph of the NiCoCrAlY-A bond coat after exposure at 1080°C for 

2 hrs in air showing the transient oxides developed and the spallation of the oxide scale. (b) 
Surface micrograph showing the purer and more adherent alumina scale developed after the 

 ix



bond coat was preoxidized in an Ar-4%H2 atmosphere at 1100°C for 100 hrs and then 
exposed in air under the same conditions as in (a). .............................................................. 50 

 
Figure 13  (a) Surface micrograph of the NiCoCrAlY-B bond coats after exposure at 1080°C for 

2 hrs in air showing the transient oxides developed and the spallation of the oxide scale. (b) 
Surface micrograph showing the purer and more adherent alumina scale developed after the 
bond coat was preoxidized in an Ar-4%H2 atmosphere at 1100°C for 100 hrs and then 
exposed in air under the same conditions as in (a). .............................................................. 51 

 
Figure 14  Scanning electron micrographs showing the surface of a hand polished NiCoCrAlY-A 

bond coat after exposure at 1100°C for 100 cycles at ( a ) low and ( b ) high magnifications.
............................................................................................................................................... 52 

 
Figure 15  Scanning electron micrographs showing the surface of a heavy grit blasted 

NiCoCrAlY-A bond coat after exposure at 1100°C for 100 cycles at ( a ) low and ( b ) high 
magnifications....................................................................................................................... 53 

 
Figure 16  Optical micrographs of the Pt-Aluminide bond coat  a) in the as processed condition,  

b) after exposure at 1200°C for 20 cycles showing the γ' that nucleated preferentially at the 
β phase grain boundaries, (c) Scanning electron micrograph showing a β phase grain 
boundary enriched in refractory metal rich particles, (d) optical micrograph of the TBC 
system with the Pt aluminide bond coat, which failed at 1200°C after 132 cycles, showing 
the development of a continuous layer of γ' in β phase. ....................................................... 58 

 
Figure 17  Cross-sectional micrographs showing the degradation of Pt aluminide bond coats after 

exposure at 1200°C for 40, (a), 60, (b), 80, (c), 100, (d), 130, (e), and 200 cycles, 
(f),respectively. The arrows point to the large cavities formed at the later stages of oxidation 
in the bond coat, (e), and at the bond coat/oxide interface, (f). ............................................ 61 

 
Figure 18  Scanning electron micrographs from the surface of Pt aluminide bond coats showing  

a) the ridges that developed at the grain boundaries of the bond coat ,  b) the cracks that 
formed on these grain boundary ridges after exposure at 1200°C for 40 cycles,  c) the 
absence of ridges after grit blasting operation, which is generally applied prior to TBC 
deposition.............................................................................................................................. 63 

 
Figure 19  Scanning electron micrographs from the surface of the Pt aluminide bond coat, which 

was exposed at 1200ºC for 15 hours, showing the cracks that developed due to volume 
reduction following the phase transformation from metastable to stable alumina, (a), and the 
oxide ridges developing at these cracks, (b). ........................................................................ 64 

 
Figure 20  a) Scanning electron micrograph from the surface of the Pt-Aluminide bond coat, 

which was highly rumpled after exposure at 1100°C for 955 cycles. Cross sectional 
scanning electron micrographs showing (b) the large cavities formed at the bond coat/oxide 
interface after exposure at 1100°C for 3031 cycles. ( c ) the alumina formed on the surface 
of the large cavities, (arrow), as a result of oxygen diffusion through the cracks present at 

 x



the initially formed alumina,( d ) the spinel phase formed on the alumina scale in these 
cavities. ................................................................................................................................. 66 

 
Figure 21  The plot of inverse of the failure times ( t ) versus reciprocal temperature ( T ) for the 

state of the art TBC systems with NiCoCrAlY and Pt aluminide bond coats. ..................... 69 
 
Figure 22  Scanning electron micrographs showing that dense TBCs can be a source of crack 

initiation ( a ) and / or propagation sites ( b ), probably due to relatively high stored energy 
in the TBC............................................................................................................................. 70 

 
Figure 23  Schematic diagram summarizing the TBC failures based on experimental results. ... 71 
 
Figure 24  Scanning electron micrographs showing the presence of a  dense and uniform TGO 

when it is pure alumina, ( a ),  and  the porous and non uniform TGO when oxides other 
than alumina are present, ( b )............................................................................................... 73 

 
Figure 25  Scanning electron micrographs showing the poor adherence between the transient 

oxides and  the TBC, arrow in (a ), as well as between the transient oxides and the alumina, 
arrow in ( b ). The adherence between the TBC and the TGO is stronger when it is pure 
alumina, arrow in ( c ) and also when the transient oxide is relatively thin, arrow in ( d ). . 75 

 
Figure 26  Scanning electron micrograph showing cracks initiated in the vicinity of defects, 

which were referred to as “points of separation in the TBC”. .............................................. 80 
 
Figure 27  Scanning electron  micrograph showing a corn kernel type of defect in the TBC...... 80 
 
Figure 28  Scanning electron micrographs of a specimen with many TBC defects, which were 

referred to as “points of separation in the TBC”, in the as processed condition, ( a ), and 
after the failure, (b) and (c). .................................................................................................. 82 

 
Figure 29  Scanning electron micrograph showing another example to “points of separation in 

the TBC” in the as processed condition (a). The failure propagated mainly in the TBC in the 
vicinity of these defects as can be seen from the fracture surface (b), and the cross section 
(c) of the failed specimens. ................................................................................................... 84 

 
Figure 30  Scanning electron micrograph of a specimen with small openings in the TBC in the as 

processed condition, (a).These openings enlarged with exposure resulting in the formation 
of so-called “vertical separations” in the TBC, (b)............................................................... 85 

 
Figure 31  Scanning electron micrographs showing the morphology of the TBC in the as-

processed condition for the specimens that did not (a) and that did develop vertical 
separations in the TBC with exposure (b)............................................................................. 86 

 
Figure 32  High magnification scanning electron micrographs from areas (a) close to the 

interface, (b) middle and (c) the top of the TBC of an as processed TBC system which did 
not develop vertical separations in the TBC. ........................................................................ 88 

 xi



 
Figure 33  High magnification micrographs from areas (a) close to the interface, (b) middle and 

(c) the top of the TBC of an as processed TBC system which developed vertical separations 
in the TBC............................................................................................................................. 90 

 
Figure 34  Top views of TBCs in the as-processed condition for the specimens (a) which 

developed vertical separations in the TBC and (b) which did not. The columns in (a), which 
had a fine morphology, got sintered during exposure resulting in the formation of vertical 
separations (c), whereas the denser columns, ( b ), remained almost the same (d). ............. 92 

 
Figure 35  Top views of TBCs for specimens that developed vertical separations after exposure 

at (a) 1000°C for 780 cycles and (b) 1150°C for 15 cycles. The vertical separations were 
more well developed after exposure at 1150°C. ................................................................... 93 

 
Figure 36  Cross sectional micrographs showing vertical separations and cracks in their vicinity 

at (a) low and (b) high magnifications. ................................................................................. 94 
 
Figure 37  Scanning electron  micrograph showing a large number of vertical separations in a 

TBC system which had a significantly long life. .................................................................. 95 
 
Figure 38  Scanning electron micrographs showing (a) spits in the TBC and (b) cracks initiating 

in the vicinity of a spit. ......................................................................................................... 96 
 
Figure 39  Top view of a TBC showing a hole and cracks passing through it. ............................ 97 
 
Figure 40  (a) Scanning electron micrographs showing oxide inclusions that cut the surface at 

various angles. In some areas, the alloy was undercut by these oxide inclusions, (b). ........ 98 
 
Figure 41  Scanning electron micrographs from the fracture surfaces of specimens with surface 

defects showing the development of  a discontinuous oxide in the vicinity of oxide 
inclusions,     ( a ) and voids around some of these oxide inclusions , ( b ).......................... 99 

 
Figure 42  Scanning electron micrograph showing stringers of reactive element rich oxides 

encapsulated in alumina...................................................................................................... 104 
 
Figure 43   (a) Scanning electron micrograph showing the fracture surface of a specimen where 

the failure cut through RE rich oxide protrusions. (b) Cross sectional examination showed 
the presence of cracks in the vicinity of these oxide protrusions. ...................................... 105 

 
Figure 44  Scanning electron micrograph showing the presence of a thick TGO which had 

incorporated RE rich oxides................................................................................................ 106 
 
Figure 45  Scanning electron micrographs showing  a discontinuous, ( a ), and  a continuous 

layer of intermixed zone, ( b )............................................................................................. 107 
 

 xii



Figure 46  Scanning electron micrographs from a specimen in the as-processed condition ( a ), as 
well as after exposure at 1100°C for 10, ( b ) ,  60 ( c ), 100 , ( d ), and  880 cycles, ( e ), 
showing the development of the intermixed zone with time. ............................................. 110 

 
Figure 47  Scanning electron micrographs of the fracture surfaces, (a) and (b) , and cross 

sections, (c) and (d) , of specimens that developed intermixed zones. See text for details.112 
 
Figure 48  Scanning electron micrographs showing  a buckle, (a), and cracking in the vicinity of 

a buckle along the TGO/intermixed zone interface, ( b ). Significant amount of failure was 
sometimes observed to propagate along this TGO/intermixed zone interface, (c)............. 114 

 
Figure 49  Scanning electron micrographs of the fracture surface of a specimen showing an Fe 

rich contamination and re-oxidation around it  at  ( a ) low and (b) high magnifications. 
Accelerated oxidation and penetration of the bond coat was evident in the vicinity of a 
contamination site, (c). Other examples of reoxidation  and accelerated oxidation for 
different specimens in the  vicinity of contamination  sites are given in ( d ) and ( e ), 
respectively. ........................................................................................................................ 119 

 
Figure 50  Scanning electron micrographs (a) from the fracture surface and (b) the cross sections 

of the specimens that developed voids along the TGO/BC and BC/superalloy interface, 
respectively. These voids were usually associated with the grain boundaries, (c), and 
reoxidized areas were present around some of these voids, (d).......................................... 121 

 
Figure 51  Scanning electron micrographs showing the grain boundary ridges on the surface of a 

Pt aluminide bond coat without a TBC, ( a ) and Pt aluminide bond coat with a TBC, ( b ). 
Upon exposure, the surface of a Pt aluminide bond coat without a TBC, (c), and cross 
section of a TBC system, (d), showed cracks in the vicinity of grain boundary ridges. .... 123 

 
Figure 52  Scanning electron micrographs showing examples of abnormal defects, above which 

buckles developed............................................................................................................... 125 
 
Figure 53  Scanning electron micrographs showing the typical state of the art TBC systems with 

NiCoCrAlY bond coats in the as processed condition. The bond coat consisted of porosity 
and oxide inclusions throughout the coating, (a),  and β, γ as well as Cr and RE rich phases, 
(b). Surface defects (c), as well as TBC defects (d), were present. .................................... 131 

 
Figure 54  Scanning electron micrographs showing the fracture surfaces of state of the art 

NiCoCrAlY bond coats. The failure was mainly along the TGO/BC interface with 
numerous excursions into the TGO and TBCs (a). The typical features observed on the 
fracture surfaces were RE rich oxide protrusions (b), oxide inclusions (c), transient oxides 
(d), and TBC segments (e). ................................................................................................. 134 

 
Figure 55  Scanning electron micrograph of a TBC system with state of the art NiCoCrAlY bond 

coat showing a significant amount of separation along the TGO/TBC interface followed by 
buckling............................................................................................................................... 135 

 

 xiii



Figure 56  Optical micrograph of a TBC system with state of the art NiCoCrAlY bond coat after 
failure showing that a significant amount of Al-rich β phase was present at the time of 
failure. ................................................................................................................................. 136 

 
Figure 57  Scanning electron micrographs from the fracture surfaces of the TBC systems with 

the state of the art NiCoCrAlY bond coats after an indentation test has been performed on 
the as-processed specimens (a), as well as on the ones which were exposed at 1100°C for 10 
(b), and 25 cycles (c). The fracture surfaces of the specimens, which failed after 102 cycles 
of exposure is also shown in (d). Dark areas correspond to the TGO and the TBC while 
white areas correspond to the bare bond coat. .................................................................... 138 

 
Figure 58  A simple schematic summarizing the failure behavior of the state of the art TBC 

systems with NiCoCrAlY bond coats. See text for details ................................................. 139 
 
Figure 59  Scanning electron micrographs of typical state of the art TBC systems with Pt 

aluminide bond coats in the as processed condition. The microstructure consisted of only β 
phase with Pt, Cr and Co in solid solution (a). Corn Kernel TBC defects were present (b).
............................................................................................................................................. 145 

 
Figure 60  Scanning electron micrographs from the fracture surface of a state of the art TBC 

system with Pt Aluminide bond coat at (a) low and (b) high magnifications. A significant 
amount of failure was above the TGO/BC interface. ......................................................... 146 

 
Figure 61  Scanning electron micrographs of TBC systems with state of the art Pt aluminide 

bond coats before (a), and after failure (b), both of which give examples to deformation of 
the bond coat with thermal exposure. Cracks initiate in the vicinity of the deformed areas 
(c). ....................................................................................................................................... 148 

 
Figure 62  Scanning electron micrographs of state of the art TBC systems with Pt aluminide 

bond coats showing ( a ) ratcheting in the vicinity of corn kernel defects, ( b ) a TBC 
segment that was pulled from the TBC due to ratcheting at a corn kernel defect, (c ) 
presence of a smooth interface in the absence of corn kernel defects. ............................... 150 

 
Figure 63  Scanning electron micrographs of a state of the art TBC system with Pt aluminide 

bond coat, which failed relatively early compared to its counterparts. There were significant 
amounts of ratcheting, ( a ), which were believed to be associated with the different TBC 
morphologies in the as processed condition, ( b ). This specimen also developed vertical 
separations in the TBC, ( c ). .............................................................................................. 152 

 
Figure 64  Optical micrographs of state of the art TBC systems with Pt aluminide bond coats 

with fine (a, b) and coarser grain size (c, d) at low and high magnifications. The amount of 
ratcheting was more pronounced for the specimens with finer grain size.......................... 154 

 
Figure 65  Scanning electron micrographs of state of the art TBC systems with Pt aliminide bond 

coats showing a marked difference in the amount of ratcheting for specimens which were 
subjected to cyclic, ( a ) and isothermal test, ( b ). ............................................................. 155 

 xiv



 
Figure 66  schematic diagram summarizing the failure behaviour of state of the art Pt Aluminide 

bond coats. See text for details ........................................................................................... 156 
 
Figure 67  Scanning electron micrographs of a TBC system with a Pt overlayer on  NiCoCrAlY 

bond coat in the as processed condition showing ( a ) highly irregular interface with 
associated TBC defects, ( b ) defective areas in the vicinity of large embedded grit blast 
particles, ( c ) very uniform and continuous TGO. ............................................................. 163 

 
Figure 68  Composition profile away from the TGO/TBC  interface for an as processed TBC 

system with Pt overlayer on NiCoCrAlY bond coat........................................................... 164 
 
Figure 69  Fracture surface of the TBC system with Pt overlayer on the NiCoCrAlY bond coat 

showing that the failure was mainly along the TGO/TBC interface, as well as in the TBC 
and in the TGO (a). A higher magnification micrograph from the fracture surface is 
presented in (b). .................................................................................................................. 165 

 
Figure 70  Scanning electron micrographs of the TBC system with Pt overlayer on the 

NiCoCrAlY bond coat after exposure at 1100 °C for 40 cycles showing that the cracks that 
initiated at TBC defects, ( a ), either linked up, (b), or missed each other, (c), causing a 
layered alumina scale, (d). .................................................................................................. 167 

 
Figure 71  Scanning electron micrograph of the TBC system with Pt overlayer on the 

NiCoCrAlY  bond coat after it failed, showing the extensive amount of oxidation along the 
initial bond coat/ Pt overlayer interface .............................................................................. 168 

 
Figure 72  Scanning electron micrographs of the TBC systems with Pt overlayer on the media 

finished NiCoCrAlY bond coats. The interface was highly irregular with associated TBC 
defects, ( a ), from which significant amounts of failure were observed to propagate, ( b ). 
The interface of the specimen that was given  media finish after Pt deposition was still 
irregular, (c ). ...................................................................................................................... 170 

 
Figure 73  The TGO thickness vs square root of time for the TBC systems with Pt overlayer on 

NiCoCrAlY bond coat and state of the art NiCoCrAlY bond coat  at 1100°C showing that 
the growth of the pure alumina underneath the intermixed zone for specimens with Pt 
overlayers was slower compared to the growth of the TGO on the state of the art 
NiCoCrAlY systems. .......................................................................................................... 171 

 
Figure 74  Scanning electron micrographs of the TBC systems on NiCoCrAlY bond coats with 

Pt underlayers in the as processed condition. Surface as well as TBC defects were evident, ( 
a ). The TGO was very non-uniform, ( b ).......................................................................... 174 

 
Figure 75  Scanning electron micrographs of  TBC systems on NiCoCrAlY bond coats with Pt 

underlayers after failure showing the fracture path ( a ), as well as typical features observed 
on the fracture surfaces such as RE rich oxides, ( b ), oxide inclusions, ( c ), transient oxides 
and TBC segments, ( d ). A cross sectional micrograph indicating damage in the vicinity of 

 xv



transient oxides and TBC defects is presented in (e).  It is also possible to get separation 
along the.............................................................................................................................. 177 

 
Figure 76  TGO thickness vs square root of time at 1100°C. The TGO growth rate on the state of 

the art TBC systems with NiCoCrAlY bond coats and the ones with Pt underlayers were 
similar, whereas the TGO growth on TBC systems with aluminized NiCoCrAlY bond coats 
were slower. ........................................................................................................................ 178 

 
Figure 77  Scanning electron micrographs from TBC systems with state of the art NiCoCrAlY 

bond coats, ( a ), and  the NiCoCrAlY bond coats with Pt underlayers, ( b ), after 20 cycles 
of exposure at 1100°C before failure. The absence of separation during metallographic 
preparation for the specimen with Pt underlayer suggests improved interfacial toughness.
............................................................................................................................................. 179 

 
Figure 78  Scanning electron micrograph of a TBC system with aluminized NICoCrAlY bond 

coat in the as processed condition showing the presence of a relatively defect free interface 
with more uniform TGO compared to the state of the art TBC systems. However, the 
interface was still irregular.................................................................................................. 181 

 
Figure 79  Scanning electron micrographs of TBC systems with aluminized NiCoCrAlY bond 

coats after failure. ( a ) The interface became more irregular with time, ( b ) Significant 
amount of failure was along or close to TGO/TBC interface, ( c ) There were indications of 
separation and reformation of the alumina prior to failure, ( d ) Al rich nitrides were 
observed at these sites where separation occurred prior to failure ..................................... 183 

 
Figure 80  Scanning electron micrographs of TBC systems with aluminized NiCoCrAlY bond 

coats after failure showing the development of  ( a ) vertical separations in the TBC, ( b ) 
voids in the bond coat. ........................................................................................................ 184 

 
Figure 81  Scanning electron micrographs of a TBC system with hand polished NiCoCrAlY 

bond coat in the as processed condition,  at ( a ) low and ( b ) high magnifications, showing 
a very smooth interface which is free of many defects identified for the state of the art 
systems except at some localized areas where the continuity of the TGO is interrupted 
above the Cr rich phases,  ( c ), and where the porosity in the bond coat intersected the 
surface, ( d ). ....................................................................................................................... 190 

 
Figure 82  SEM micrographs of a TBC system with hand polished NiCoCrAlY bond coat after 

1520 cycles of exposure at 1100°C before failure showing  the presence of a very thick 
TGO with significant amounts of RE rich oxide protrusions, ( a ). The TGO/TBC interface 
was almost free of defects, ( b ), except at localized areas with transient oxides, ( c ), and 
small buckles along the TGO/intermixed zone interface, ( d ), which seemed to develop by 
linking up of small voids along this interface, ( e ). Cracks were present in the vicinity of 
RE rich oxide protrusions, ( f ) ........................................................................................... 193 

 

 xvi



Figure 83  Scanning electron micrographs of TBC systems on hand polished NiCoCrAlY bond 
coats which failed after 720 cycles of exposure at 1100°C. Spits, ( a ), as well as an 
abnormal defect, ( b ), were observed................................................................................. 194 

 
Figure 84  Scanning electron micrographs of a TBC system on hand polished NiCoCrAlY bond 

coat which failed after 220 cycles of exposure at 1100°C. Significant amount of failure was 
along the TGO/intermixed zone interface as can be seen at ( a ) low and ( b ) high 
magnification micrographs from the fracture surface, as well as cross sectional micrographs, 
( c ) and ( d ). Transient oxides were also present embedded in the intermixed zone, ( e ).197 

 
Figure 85  Scanning electron micrographs of a TBC system with vibro finished NiCoCrAlY 

bond coat in the as processed condition showing large TBC defects, ( a ). There were also 
smooth areas along the interface, ( b ). ............................................................................... 198 

 
Figure 86  Scanning electron micrographs of a TBC system with vibro finished NiCoCrAlY 

bond coat from the fracture surface, ( a ), and cross section, ( b ), showing failure in the 
vicinity of pronounced TBC defects. .................................................................................. 199 

 
Figure 87  Scanning electron micrograph from a TBC systems with media finished NiCoCrAlY 

bond coat in the as processed condition showing the presence of TBC defects................. 200 
 
Figure 88  Optical micrographs of TBC systems with as aluminized  Pt aluminide bond coats 

with varying thicknesses of Pt and Aluminide layers after exposure at 1100°C. The bond 
coat with normal thickness of Pt and aluminide layers consisted of significant amounts of γ’ 
phase after 1080 cycles, ( a ), whereas the specimens with double thickness of aluminide, ( 
b ), and with double thickness of Pt and aluminide layers, ( c ), after 1240 and 860 cycles of 
exposure, respectively, had much less γ’ phase. ................................................................. 204 

 
Figure 89  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 

coats in the as processed condition showing grain boundary ridges, ( a ), dense TBC with 
parallel row of pores, ( b ) and small openings in the TBC above the ridges, ( c ), which 
enlarge with exposure resulting in the formation of vertical separations in the TBC, ( d ).209 

 
Figure 90  Macrographs of a TBC system on as aluminized Pt aluminide bond coat after 

exposure at 1100°C for 360 ( a ), 680 ( b ) and 860 cycles, ( c ), showing propagation of 
failure with time. The SEM micrograph in ( d ) shows the buckles in cross section. ........ 211 

 
Figure 91  Scanning electron micrographs of TBC systems on as aluminized Pt aluminide bond 

coats after failure. The failure was mainly in the TBC, ( a ), and cracks were present at the 
grain boundary ridges as can be seen from the fracture surface, ( b ), as well as cross 
section, ( c ). Cracks at the ridges were also  present in the absence of vertical separations in 
the TBC, ( d ). ..................................................................................................................... 213 

 
Figure 92  Scanning electron micrographs of TBC systems on as aluminized Pt aluminide bond 

coats with TBCs deposited by different companies. There was not any evidence of an 

 xvii



intermixed zone for one set  of  specimens, ( a ), whereas there was a continuous layer of 
intermixed zone for the other set of specimens, ( b ).......................................................... 214 

 
Figure 93  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 

coats after failure showing a highly deformed bond coat surface, ( a ), except at areas where 
the bond coat was still in contact with the TBC at the time of failure, ( b ). ...................... 215 

 
Figure 94  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 

coats showing vertical crack formation at the ridges, ( a ), and their propagation along the 
TGO/bond coat interface, ( b ), followed by reoxidation along this interface, ( c ). 
Preferential oxidation, usually at the grain boundaries, was observed in some areas, ( d ).217 

 
Figure 95  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 

coats after exposure under 15 hr cycles, ( a ), as well as under isothermal conditions, ( b ). 
Separation along the TGO/bond coat interface followed by reoxidation was not observed for 
these specimens. Cracking at the grain boundary ridges was not evident for the isothermally 
tested specimen. .................................................................................................................. 218 

 
Figure 96  Scanning electron micrograph of a TBC system with light grit blasted Pt aluminide 

bond coat in the as processed condition showing a relatively smooth interface compared to 
the interfaces of heavy grit blasted Pt aluminides. ............................................................. 223 

 
Figure 97  Scanning electron micrographs of TBC systems with light grit blasted Pt aluminide 

bond coats after failure showing that the failure was mainly along the TGO/bond coat 
interface,.............................................................................................................................. 225 

 
Figure 98  Scanning electron micrograph of a TBC system with media finished Pt aluminide 

bond coat in the as processed condition showing the presence of remnants of grain boundary 
ridges................................................................................................................................... 226 

 
Figure 99  Scanning electron micrographs of a TBC system with media finished Pt aluminide 

bond coat after failure. The failure was mainly along the TGO/bond coat interface, ( a ), and 
the interface was relatively smooth compared to heavy grit blasted Pt aluminides except at 
areas of preferential oxidation which were usually observed to be along the grain 
boundaries, ( b ) and............................................................................................................ 228 

 
Figure 100  Scanning electron micrographs of a TBC system with media finished Pt aluminide 

bond coat after failure showing buckles above areas with pronounced amounts of 
preferential oxidation, ( a ) and ( b ). The macrograph of this specimen after failure also 
indicated failure initiation at localized areas, ( c ). ............................................................. 230 

 
Figure 101  Macrographs of TBC systems with hand polished Pt aluminide bond coats showing 

buckles formed close to the center of the specimens, ( a ) and ( b ). Examination of the 
fracture surface, ( c ), as well as underside of the TBC, ( d ), under these buckles showed a 
grain boundary network. ..................................................................................................... 232 

 

 xviii



Figure 102  Scanning electron micrographs of TBC systems with hand polished Pt aluminide 
bond coats after failure. The TGO/TBC interface remained smooth, ( a ), whereas the 
TGO/bond coat interface was irregular due to thickness variations in the TGO, ( b ). Small 
pore like openings developed in the TBC, ( c ), which then linked up causing larger 
separations which were followed by deformation of the bond coat underneath, ( d ). ....... 234 

 
Figure 103  Scanning electron micrographs of no bond coat TBC systems in the as processed 

condition. The specimens from the first batch did not develop a continuous layer of TGO, ( 
a ), whereas the ones from the second batch did, ( b ). Some irregularity of the interface was 
evident as a result of grit blasting, ( c )............................................................................... 239 

 
Figure 104  Scanning electron micrographs from no bond coat TBC systems after 140 cycles,242 
Figure 105  Scanning electron micrograph from a no bond coat TBC system after 1840 cycles of 

exposure before failure showing the presence of a very smooth interface. ........................ 243 
 
Figure 106  Scanning electron micrographs of no bond coat TBC systems with Pt overlayers in 

the as processed condition. The specimens from the first batch did not develop a continuous 
layer of TGO, ( a ), whereas the ones from the second batch did, ( b ). ............................. 244 

 
Figure 107  Scanning electron micrographs of no bond coat TBCs with Pt overlayers from the 

first batch showing the presence of voids, ( a ), and transient oxides, ( b ), after failure. .. 245 
 
Figure 108  Scanning electron micrographs of second batch of no bond coat TBCs with Pt 

overlayers  after 2300 cycles of exposure before failure. The TGO was rather pure, ( a ), 
with intermittent areas of transient oxides, (b ). Numerous vertical separations were present 
in the TBC, ( c ). ................................................................................................................. 247 

 
Figure 109  Scanning electron micrograph from the underside of a spalled TBC showing the 

ridge like morphology of the alumina that developed above voids. ................................... 251 
 
Figure 110  Scanning electron micrograph from the fracture surface of a specimen showing a 

ridge like alumina morphology which indicates that the TGO was not in contact with the 
TBC at the time of failure. .................................................................................................. 252 

 
Figure 111  Scanning electron micrographs  showing examples to sintering between the spalled 

and the reformed alumina. The arrows point to the interfaces where sintering occurred... 253 
 
Figure 112  Scanning electron micrograph showing an example to thickness variations in the 

TGO. ................................................................................................................................... 254 
 
Figure 113  Scanning electron micrographs from the fracture surface, ( a ), cross section, ( b ) 

and underside of the spalled TBC of a specimen which developed bond coat protrusions. 
The failure sometimes  cut through these bond coat protrusions leaving them isolated in the 
TGO as can be seen in ( b ) and ( c )................................................................................... 256 

 

 xix



Figure 114  Scanning electron micrographs from a specimen which had a highly irregular 
interface in the as processed condition, ( a ). Upon exposure, thickness variations in the 
TGO developed as a result of the initially irregular interface, ( b ).................................... 257 

 
Figure 115  Scanning electron micrographs from the fracture surface of a specimen showing 

grain imprints of the original TGO, ( a ), as well as the grain imprints of  the reformed and 
then spalled TGO, ( b ). The grain imprints of the original and reformed TGO can be seen 
side by side in ( c ). ............................................................................................................. 259 

 
Figure 116  Optical micrographs showing  the effect of cooling rate on the formation of γ’ phase.

............................................................................................................................................. 261 
 
Figure 117  Scanning electron micrographs showing cracking along the β grain boundaries 

and/or β/γ’ phase boundaries during metallographic sample preparation. ......................... 262 
 
Figure 118  Scanning electron micrograph showing TBC segmentation. .................................. 263 
 
 
 

 xx



 
 
 
 
 

ACKNOWLEDGEMENTS 

 
 

Firstly, I would like to express my sincere gratitudes to my advisors, Dr Pettit and Dr Meier, for 

their continued support, guidance, encouragement and advice throughout my studies. I feel very 

lucky to have a chance to work with them. I also very much appreciate their patience and 

understanding throughout the hard times that I had during this study. 

I would like to thank my committee members, Dr Beuth, Dr Yang and Dr Mao, for their 

participation and guidance in my studies.  

 I would like to express my gratitude to Monica Marissida, Igor Garcia, Matt Stiger, Scott 

Laney, Dave Helmick and Julie Hammer for their friendship and collaboration. And my special 

thanks go to Kivilcim Onal, who always stood by me and made this working place very 

enjoyable with her valuable friendship. 

 I wish to thank Albert Stewart and George McManus for their technical assistance and 

support. The technical support of Earl Hewitt will also not be forgotten. I also would like to 

thank our administrative assistants, Carolynn Wilson, Nora Siewiorek and Carol McFadden, who 

were always willing to help us on any subject. 

 I would like to acknowledge ONR/MURI for their financial support and also Praxair, 

Howmet and GE for supplying the specimens. This work would not be possible without the close 

collaboration and invaluable suggestions of Tom Taylor, Ann Bolcavage and Bruce Warnes. 

  

 

 xxi



My last, but not least, thanks go to my beloved family. Even tough they were so far away 

from me, I was able to feel their endless support and love at every moment of this long process. 

 I also owe a lot to my best friend and love, my husband Cagatay, for giving me the strength and 

encouragement to go through difficult times during this period of my life and for everything 

else… 

 
 

 

 xxii



 

 
 
 

 

1.0 INTRODUCTION 

 
 

Thermal barrier coatings (TBCs) are increasingly used in gas turbine components, which are 

subjected to high temperatures. TBC systems are typically composed of an oxidation resistant 

metallic bond coat and an insulative ceramic coating (TBC). A TBC schematic is presented in 

Figure 1. As a result of its low thermal conductivity, the TBC reduces the temperature to which 

the metal components are subjected. Thus, higher gas temperatures can be used which leads to 

improved efficiency and performance. However, the open and porous structure of the TBC does 

not provide oxidation protection, which necessitates the application of an oxidation resistant 

metallic bond coat beneath it. During deposition of the TBC, a slow growing, thermodynamically 

stable alumina scale develops along the bond coat/TBC interface by reaction of oxygen with the 

aluminum in the bond coat. This oxide scale, which is referred to as thermally grown oxide 

(TGO), provides the oxidation protection by acting as a physical barrier between the substrate 

and the detrimental gaseous environment. It becomes thicker during exposure at high 

temperatures due to easy penetration of oxygen through the open and porous structure of the 

TBC.  

The current state-of-the-art TBC systems consist of yttria stabilized zirconia (YSZ) 

deposited either by air plasma spray (APS) or electron beam physical vapor deposition (EBPVD) 

processes with platinum modified diffusion aluminide or MCrAlY bond coats. Single crystal Ni-

base superalloys, which have high strength at elevated temperatures, are usually used as the 
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substrate. Figures 2a and 2b present typical cross sectional micrographs of EBPVD and APS 

thermal barrier coatings, respectively.  

The substantial improvement obtained in the efficiency and performance of gas turbines 

by the development of TBC systems is limited by the failure of these systems. Thus, there is a 

need for the development of more durable TBC systems to fully utilize the benefits obtained 

from them. However, a thorough understanding of the failure mechanisms of different TBC 

systems under various operating conditions is first necessary in order to improve their 

performance. Even though a substantial amount of research has been performed to understand 

the failure of TBC systems, the exact failure mechanisms are still not clear due to the 

contribution of many factors in their failures. The fact that the type and the fabrication 

procedures of the bond coats as well as the TBCs result in different failure behaviors complicates 

the understanding of TBC failures even more. Therefore, there is still a need for more research 

on the failure of TBC systems. 

The principle objective of this study was to contribute to the understanding of TBC 

failures so that the performance of TBC systems could be improved through making 

modifications. For this purpose, the failure behavior of the state of the art TBC systems were 

investigated first. Based on the tentative failure mechanisms formulated for the state of the art 

TBC systems, modified TBC systems were prepared and then tested. Failure characterization of 

these TBC systems elaborated the findings obtained from the state of the art TBCs. A particular 

emphasis was given to identification of various defects as well as important factors that 

contributed to the failure of TBC systems. Moreover, important conditions necessary for 

optimized performances of TBC systems were determined. 
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Figure 1  A schematic showing the various layers in a TBC system. 
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(a) 

 

(b) 

Figure 2  Scanning electron micrographs showing the typical microstructures of ( a ) EBPVD 
and ( b )APS YSZ Thermal Barrier Coatings. 
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2.0 BACKGROUND 

 

2.1  THERMAL BARRIER COATINGS 

 
Superalloys are usually used in aircraft gas turbine components, which must withstand very 

oxidizing environments and high temperatures resulting from the hot combustion environment. 

They have been developed to obtain high strength and creep resistance at elevated temperatures. 

However, the temperature of the desired combustion gas environment for optimum power and 

efficiency exceeds the melting temperature of these superalloys which causes structural failure of 

these components by melting, creep, oxidation, thermal fatigue and numerous other mechanisms 

[1]. In order to prevent these kinds of structural failures, compressed air had previously been 

used to cool the components. However, the requirement of using higher gas temperatures to 

increase the efficiency and performance of gas turbines has limited the protection provided by air 

cooling [2]. This led to the development of thermal barrier coatings (TBC), which reduce the 

temperature to which the metal components are subjected. Figure 3 is a diagram showing the 

improvement of temperature capabilities of superalloys by the use of TBCs over the years. As 

can be seen from this diagram, temperature differentials as much as 167°C can be obtained by 

the use of TBCs, which are higher than the total improvement obtained by developing more 

advanced superalloys [1] 
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Figure 3  A diagram showing the improvement of temperature capabilities of superalloys by  the 
use of TBCs [1]. 

 
TBCs are ceramic coatings with low thermal conductivity, which makes them appropriate  

coatings  to  be  used  as  thermal  insulators.  They  are  also  thermal  shock resistant, which is 

important for their durability under rapid thermal cyclic conditions as experienced in gas 

turbines. 

Zirconia (ZrO2 ) stabilized with certain other oxides has been used over the years as the 

ceramic material for TBCs. Pure ZrO2 is a polymorphic material showing the following sequence 

of transformations: 

cubic       2370 °C       tetragonal       1170 °C      monoclinic 

 
The polymorphic transformation from tetragonal to monoclinic upon cooling is followed 

by a volume increase which is detrimental to the integrity of these coatings by causing stress 
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build up in the coating during thermal cycling conditions. Thus, certain stabilizers are used in 

order to inhibit the transformation from a tetragonal to a monoclinic phase. Yttria is the most 

widely used stabilizer for ZrO2 . As can be seen from the ZrO2 -Y2O3 phase diagram in Figure 4 

[3], formation of a monoclinic phase is possible by adding around 6.5 - 9 wt % Y2O3 , but the 

actual microstructure consists of cubic and non-transformable tetragonal phase.  For TBC 

applications, 7-9 wt % Y2O3 stabilized zirconias are usually used. Lower amounts of Y2O3 do not 

inhibit the formation of the monoclinic phase whereas higher amounts cause complete 

stabilization of the cubic phase which is known to have poorer thermal shock resistance when 

compared to partially stabilized zirconias containing both cubic and tetragonal phases [4]. 

 
2.1.1  Fabrication Procedures 
 
 
The current state-of-the-art TBCs are deposited either by air plasma spray (APS) or electron 

beam physical vapor deposition (EBPVD) techniques. These processes are suitable for 

deposition of TBCs due to their ability to obtain open and porous structures, which are required 

for low thermal conductivity and high thermal shock resistance. 

2.1.1.1  Plasma Sprayed TBCs  Plasma spraying is a coating process where a high temperature 

plasma gas stream created inside a plasma gun is used to melt prealloyed powder that is injected 

into the gun. The melted powder is then accelerated towards the substrate by use of a high 

velocity plasma and the coating develops as the molten metal or ceramic impacts and spreads out 

over the surface [5]. A simple schematic summarizing the plasma spray process is given in 

Figure 5a. 
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Plasma spray coatings necessitate a rough surface to maintain the initial adhesion of the 

coating to the substrate, which results from mechanical interlocking at the interface. When 

applied on smooth surfaces, plasma sprayed coatings spall easily due to low interface toughness 

[6]. 

The presence of porosity incorporated into the ceramic coating as well as subcritical 

microcracks  make air plasma sprayed YSZ coatings very strain tolerant. 

 

 

 

Figure 4  The Zirconia-Yttria phase diagram [3]. 
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( a ) 

 

 

( b ) 
 

Figure 5  Schematics illustrating the equipment used for (a) plasma spray, and (b ) EBPVD 
processes. 
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2.1.1.2  EBPVD TBCs  EBPVD is an alternative coating process to plasma spray where an ingot 

of the target material is evaporated by use of a high energy electron beam. The resulting vapor  

travels along the line of sight to the preheated substrate whereby the coating develops by the 

condensation of these vapors onto the substrate [5]. A schematic of an EBPVD coater is shown 

in Figure 5b.This process can be used to deposit metallic or ceramic coatings. Zirconia becomes 

oxygen deficient when evaporation and recombination occur at low oxygen pressures. Thus, in 

order to maintain the stoichiometry of the ZrO2, the coating process is performed under low 

partial pressure of oxygen [7]. 

The EBPVD coatings require a smooth surface in contrast to rough surfaces required for 

plasma spray coatings. The adhesion between the coating and the substrate is obtained by 

chemical bonding which necessitates higher deposition temperatures and post coating heat 

treatments [6]. 

The microstructure of EBPVD coatings can vary depending on the nucleation and film 

growth characteristics which can be adjusted by altering the processing conditions such as 

deposition temperature, deposition rate, angle of incidence, gas pressure, etc…[8]. In the initial 

stages of the deposition process, an interfacial boundary first develops in the YSZ at the substrate 

surface. This layer is necessary for the development of the chemical bond between the substrate 

and the coating. As the film grows, the surface roughens due to rapid diffusion along grain 

boundaries and dislocations or preferential growth of some crystallographic planes. When this 

interfacial boundary layer reaches an appreciable thickness, the surface roughness and surface 

mobility of the atoms determine the growth mode. If the surface is rough enough, atoms coming 

from all directions can condense on the projections of the surface shadowing the valley parts. 
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The shadowing effects, combined with the low surface mobility of condensing atoms, results in 

preferential growth on projections leading to development of a columnar structure. Development 

of columnar structures can thus be favored by decreasing the surface mobility of atoms, which is  

possible by using low deposition temperatures and high gas pressures, and also by increasing the 

shadowing effect by using lower angles of incidence of the vapor stream. 

For TBC applications, the microstructure of EBPVD coatings consists of columnar grains 

which are poorly bonded to neighbouring grains. However the bonding between the columnar 

grains and the substrate is strong under proper processing conditions [1]. This type of 

morphology is favored for strain accommodation within the coating, which causes a significant 

reduction in the stress generated during cyclic conditions.  

 
 

2.2  BOND COATS 

 
The open and porous structure of the ceramic coating does not provide oxidation protection 

which necessitates the application of an oxidation resistant metallic bond coat beneath it. 

The current state of the art TBC systems consist of MCrAlY and platinum modified 

diffusion aluminide bond coats, the characteristics of which are summarized below. 

 
2.2.1  Diffusion Aluminide Coatings 

 
 

Diffusion aluminide coatings form by reaction of aluminum with the substrate resulting in 

formation of an oxidation resistant NiAl phase. The adhesion of this coating is provided by 

elemental interdiffusion between the substrate and the coating material. 
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2.2.1.1  Fabrication Procedures  Pack cementation and chemical vapor deposition are the two 

processes which are widely used for the deposition of diffusion aluminide coatings. Both 

processes are essentially similar where aluminum is provided to the alloy surface in the form of 

gaseous aluminum halides. The coating develops by reaction of Al(s) with the substrate surface 

which results from one of the following deposition reactions where X refers to halides: 

3AlX2(g)             Al(s) +2AlX3(g)                     Disproportiation Reaction 

AlX3(g)               Al(s) + 3/2 X2(g)                          Decomposition Reaction 

AlX2(g) + H2 (g)               Al(s) + 2HX(g)                Hydrogen Reduction 

In the case of platinum modified diffusion aluminide coatings, platinum is first 

electroplated or deposited by some other technique on the substrate surface followed by one of 

the aluminizing processes mentioned above. 

 
•Pack Cementation Process - The pack cementation techniques have been described in the 

literature [5, 9, 10] and can be summarized as follows. In such processes, the substrate to be 

coated is placed in the pack, which consists of an inert filler material, metal powder and 

activator. The pack is heated in an inert gas atmosphere. The metal powder consists of aluminum 

and some other elements like Cr and Ni which are added to control the activity of aluminum in 

the pack. The aluminum activity in the pack plays an important role in the microstructural 

development of these coatings as will be discussed later. Ammonium or sodium halides are 

usually used as the activator, which react with aluminum in the pack upon heating to form 

gaseous aluminum halides. The aluminum halides diffuse through the porous pack towards the 

alloy surface as a result of partial pressure gradient between the pack and the substrate surface. 

When they reach the surface, one of the deposition reactions, described above, takes place 

leading to coating formation. 
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It has been indicated by C. Duret and R. Pichoir [10] that transportation of aluminum 

towards the substrate is also possible through a metallic vapor phase, solid state diffusion as a 

result of contact between the pack and the substrate, and by inclusion of metallic particles in the 

coating. 

•Chemical Vapor Deposition (CVD) - In the CVD process, aluminum halides are generated 

separately outside the coating chamber and then introduced into the coating chamber to form the 

coating by a similar mechanism as explained for the pack cementation process. 

The CVD process has been reported to produce cleaner diffusion coatings as compared to 

other aluminizing processes [11] and the better oxidation resistance of these coatings was 

attributed to the removal of impurities which resulted in formation of slower growing, purer 

alumina scales with improved adhesion. 

 Punola et al. [12] also reported several advantages of CVD processes over pack 

cementation processes such as higher ductility coatings, enhanced uniformity and repairability, 

more precise control due to automation of the equipment, capability to coat more complex 

shapes and faster overall processing. 

2.2.1.2  Microstructural Evolution  Goward and Boone [13] classified diffusion aluminide 

coatings as "outward diffusion" or  " inward diffusion" type coatings based on their 

microstructural development. The activity of aluminum in the pack or in the gas phase in case of 

a CVD process as well as temperature determine whether the diffusion aluminide coating is 

"outward diffusion" or  " inward diffusion" type. The details of the development of these 

microstructures, which are summarized below, can also be found elsewhere[9, 10, 14]. 

High temperature low activity (HTLA) and low temperature high activity (LTHA) 

aluminizing are the two methods of pack aluminizing where temperature refers to the 
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temperature at which aluminizing is carried out and activity refers to the aluminum concentration 

in the aluminum-containing powder used in the pack or the activity of aluminum in the gas phase 

for the CVD process. 

HTLA is a single step process at which the aluminizing is carried out at a high 

temperature (> 1000°C) for a certain amount of time which is typically  3-4 hours. The coating 

develops by outward diffusion of nickel from the substrate and its subsequent reaction with 

aluminum at the surface. This results in the formation of an outward growing NiAl layer above 

the initial substrate interface. On the other hand , a nickel deficient region develops just below 

the initial substrate interface due to outward nickel diffusion. Various substrate elements that are 

initially-present in solid solution in the substrate precipitate out due to their low solubility in this 

nickel deficient region. This nickel deficient region, which is rich in metal rich precipitates, is 

known as the interdiffusion zone. 

LTHA aluminizing is a 2 step process where the aluminizing is carried out at a low 

temperature (700-850°C) followed by a diffusion heat treatment above 1000 °C. After the first 

step the coating microstructure consists of an aluminum rich phase (Ni2Al3 or Ni2Al3+Al rich 

NiAl), embedded carbides and precipitates of various substrate elements. The development of 

this microstructure results from the inward diffusion of aluminum which causes the formation of 

an inwardly growing layer below the initial substrate interface. After the second step, which is 

the diffusion heat treatment, a NiAl layer forms by outward diffusion of nickel from the substrate 

in a similar way to the HTLA process. The reaction of nickel with Al from the initially formed 

Al rich layer results in Al deficiency in the outer coating layer causing Al rich phases to 

transform into NiAl. The nickel deficiency below the initial coating layer-substrate interface 

causes the formation of the interdiffusion zone as explained before. Thus the final microstructure 
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consists of an outer layer of β(NiAl) with embedded carbides and substrate element precipitates, 

an NiAl layer in the middle that is free of any carbides and substrate element precipitates and an 

interdiffusion zone .  

It has been reported that the presence of a platinum layer on the surface enhances 

aluminum uptake during aluminizing and this is attributed to the Al activity coefficient on the 

surface which is lower in the presence of the platinum layer [15]. However, it has also been 

shown that the aluminum uptake is independent of the amount of platinum unless it is below a 

certain critical value [16]. In this study, the microstructure of the platinum modified diffusion 

aluminide coatings, when the initial Pt layer thickness is between a certain range (2.5-10 µm), 

has been found to consist of a two phase mixture of NiAl and PtAl2 at the outer surface and an 

intermediate NiAl layer followed by an interdiffusion zone. At higher thicknesses of the initial Pt 

layer, the microstructure consisted of a continuous layer of Pt rich phase at the outermost layer  

and a two phase layer (NiAl+PtAl2) underneath followed by a layer of NiAl and the 

interdiffusion zone. The formation of the continuous Pt rich phase at the surface is attributed to 

the excess amount of Pt in which case the two phase mixture of NiAl and PtAl2 is not the 

equilibrium constituent. Below a certain thickness of Pt layer (< 2.5 µm), the microstructure 

consisted of NiAl with Pt in solid solution. It has been concluded that the microstructural 

development in these coatings depends on the Pt concentration in various layers throughout the 

coating, which is determined by the diffusion heat treatment given prior to aluminizing. 

2.2.1.3  Performance of Diffusion Aluminide Bond Coats  Diffusion aluminide coatings are 

oxidation resistant due to the presence of the NiAl phase in their microstructures, which provides 

the aluminum required to form the thermodynamically stable Al2O3 scale at elevated 

temperatures. This oxide scale protects the surface by acting as a barrier between the substrate 

 15



 

and the detrimental gaseous environment. However, due to the stresses generated during 

oxidation, which will be explained later, the oxide layer cannot be maintained as a continuous 

layer for long periods of time. Cracking and spalling of the scale, followed by reformation of 

Al2O3 results in depletion of aluminum in the coating. Interdiffusion with the substrate also plays 

a role in aluminum depletion. When this aluminum depletion becomes so pronounced that the 

continuous alumina scale cannot be formed anymore, the coating starts to degrade rapidly. 

Aluminum levels below about 4-5 wt% have been reported to be insufficient to form continuous 

alumina scales [5]. Thus, the coatings ability to maintain the alumina scale for long periods of 

time becomes a critical issue for their oxidation resistance.  

Straight diffusion aluminides have been known to form a continuous Al2O3 scale but they 

cannot maintain it for long periods of time due to the lack of adequate alumina adherence to the 

coating [17]. However, application of a platinum layer before aluminizing overcomes this 

problem, resulting in a significant improvement in scale adherence. Many other beneficial effects 

of Pt modified aluminide coatings were reported by other investigators [18-22]. These can be 

summarized as follows: 

The high affinity of platinum for aluminum promotes the selective oxidation of aluminum 

resulting in purer alumina scales with slower growth rates. 

Pt acts as a physical barrier restricting the outward transport of substrate elements to the 

surface which may be detrimental to the performance of these coatings. Diffusional stability of 

these coatings is improved as a result of lowered aluminum activity that decreases the driving 

force for diffusion. 

Due to their advantages over straight diffusion aluminides, Pt modified diffusion 

aluminides have been used as the current state of the art bond coats. However, the beneficial 
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effects obtained by platinum modified diffusion aluminides have been shown to be reduced after 

exposure at high temperatures where interdiffusion between the substrate and the coating 

becomes pronounced [20]. The degradation of these coatings was accelerated after a substantial 

reduction in platinum concentration due to interdiffusion. 

 
2.2.2  MCrAlY Bond Coats 
 

 
Binary alloys such as Ni-Al, Fe-Al, Co-Al can form protective alumina scales upon exposure to 

air provided that the aluminum content is above a critical value [23]. However, addition of  

elements like Cr and reactive elements such as Y to these binary alloys has been found to have 

beneficial effects which have led to the development of oxidation resistant MCrAlY (M=Ni, Fe, 

Co..) type bond coats. 

2.2.2.1  Fabrication Procedures  Thermal spray processes are usually used for the deposition of 

MCrAlY bond coats. There are various types of  thermal spray processes. However, the basic 

idea is the same. In each case, any material that can be prepared in the form of powder is fed into 

a torch or a gun and heated close to their melting temperatures by various sources. The coating 

then develops as the molten particles, which are accelerated towards the substrate, impact and 

solidify on the surface. Compositional flexibility is one of the major advantages of thermal spray 

coatings. Moreover, due to very little diffusion at the substrate-coating interface, the 

unacceptable coatings can be stripped and the substrate can be recoated without affecting 

properties  [24]. 

Even though there are various thermal spray processes, only the plasma spray and 

detonation gun techniques, which are widely used for the deposition of MCrAlY bond coats, will 

be explained below. 
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• Plasma Spray - The plasma spraying process has been summarized before for deposition of 

TBCs. In the case of deposition of TBCs, the plasma spraying process is performed in air. 

However, deposition of MCrAlY bond coats is usually done in an inert atmosphere in order to 

minimize the oxidation of the highly reactive constituents. Argon gas is usually used as an inert 

atmosphere and the process is named the argon shrouded plasma spray process. Another type of 

plasma spray process, known as low pressure plasma spray (LPPS), is performed in a low 

pressure chamber. Deposition of plasma sprayed coatings under a low pressure atmosphere 

results in increased particle velocity and minimum oxidation during deposition [25]. Thus, the 

coatings produced by the low pressure plasma spray process exhibit high quality with dense and 

homogeneous structures with minimal oxidation. 

 
• Detonation Gun Technique - The detonation gun is one type of thermal spray process where 

the particle velocity is very high compared to other conventional plasma spray processes [25]. 

Thus, the detonation gun technique can produce very dense microstructures with very high bond 

strengths owing to the high particle velocity. In this process, the powder is heated by a 

detonation wave ,which is produced by detonating a mixture of oxygen and acetylene along with 

a pulse of powder by using a spark. The melted particles are then accelerated onto the substrate 

with a very high velocity. Each detonation produces a circle of coating 25 mm in diameter and 

1µm thick. Thus the process is repeated until the desired coating thickness is obtained. After 

each cycle, the gaseous combustion products are swept out by nitrogen flushing [24]. 
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2.2.2.2  Microstructural Development   As previously mentioned, thermal sprayed coatings 

develop as the molten particles impact on the surface and spread out parallel to the surface. 

Molten particles take a lamellar shape as they hit the surface and they bond to the surface as they 

contract during rapid cooling. Thus the microstructure of thermal sprayed coatings consists of 

overlapped lamellar splats parallel to the surface [24]. Depending on the processing parameters, 

varying amounts of porosity and internal oxide inclusions are observed. The processes performed 

under either inert gas or low pressure atmospheres by using high particle velocity produce the 

densest microstructures with less internal oxidation 

After the post coat heat treatment, the interfaces between the lamellar splats become 

invisible and usually a two phase microstructure develops [5]. The microstructures of MCrAlY 

bond coats usually consist of β (NiAl) and γ (Ni solid solution) or γ' (Ni3Al) phases depending on 

their composition. They may also contain some other phases such as ∝-Cr and yttrides in their 

microstructures.  

2.2.2.3  Performance of MCrAlY Bond Coats  The MCrAlY coatings have less aluminum 

when compared with aluminide coatings. However oxidation protection is provided by the 

presence of Cr which permits the selective oxidation of Al at low aluminum concentrations and 

oxygen active elements such as yttrium that improve the adherence of the alumina scale [5]. The 

effect of Cr in promoting selective oxidation of aluminum has been explained to result from the 

prevention of oxygen entering into the alloy by Cr acting as a getter [26]. However, this 

explanation has been questioned by Stott [27] due to the absence of detectable Cr2O3 above 

alumina scales in most cases. 

MCrAlY bond coats have better mechanical properties compared to diffusion aluminides 

owing to the lower concentration of Al in their composition [28]. Reactive elements are known 

 19



 

to improve oxidation behaviour of these coatings.   Extensive studies have been done in order to 

fully understand the effects of reactive elements [29-31]. However the mechanisms responsible 

for the beneficial effects of reactive elements are not clear and there are still controversial ideas 

on the proposed mechanisms. Some of the proposed mechanisms for the reactive element effects 

can be summarized as below: 

• Reactive element oxides develop close to the oxide-substrate interface and serve as rapid 

oxygen transport paths. Oxygen reacts with aluminum in the substrate around these oxides 

resulting in preferential growth of alumina encapsulating these oxides. The oxide protrusions 

formed this way improve the scale adherence by mechanically keying the oxide to the substrate . 

•They improve the alloy-scale bond strength by preventing the segregation of harmful elements 

such as sulfur to the alloy- scale interface. These elements are known to weaken the bonds at the 

interface. 

•They act as vacancy sinks preventing the formation of voids at the alloy-scale interface. 

•The presence of reactive elements reduces the oxidation rate by altering the scale growth 

mechanism. They diffuse out from the substrate to the scale gas interface in the presence of an 

oxygen potential gradient. They prefer the scale grain boundaries for diffusion. Since the 

diffusion of reactive element ions is slower than the other elements in the alloy (Cr,Al), they 

inhibit the outward transport of cations along grain boundaries causing reduction in the parabolic 

rate constant.They improve the scale plasticity by modifying the scale microstructure. 

The beneficial effects of reactive elements are widely accepted. However, it has also been 

reported that the amount and distribution of reactive elements has a significant effect on the 

performance of MCrAlY coatings[31, 32]. 
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Fabrication procedure is another important factor that affects the performance of these coatings. 

Gupta and Duvall [33] compared the relative performance of NiCoCrAlY bond coats deposited 

by 4 different fabrication procedures, namely air plasma, argon shrouded plasma, low pressure 

plasma spray, and EBPVD. The performance of NiCoCrAlY bond coats deposited by the low 

pressure plasma spray process was better compared to air and argon shrouded plasma sprayed 

coatings. However, the EBPVD NiCoCrAlY coatings performed the best. These results show the 

importance of fabrication procedures on the properties of these coatings.        

 
 

2.3  THERMALLY GROWN OXIDE (TGO) 

 
The oxidation resistance of most bond coats is developed by the selective oxidation of aluminum 

in the bond coat to form a slow growing, thermodynamically stable alumina scale. This oxide 

scale which is referred to as thermally grown oxide (TGO) when present with TBCs, forms along 

the TBC/bond coat interface during TBC deposition and becomes thicker during exposure at 

high temperatures. 

The characteristics of the TGO such as growth mechanism, growth rate and 

microstructure, as well as its adherence to the bond coat and TBC, are critical factors that affect 

the durability of TBC systems. The best oxidation protection is provided in the presence of a 

pure alumina scale with the slowest possible growth rate and good adherence. However, 

establishment of a pure alumina scale is not always possible due to transient oxidation effects, 

which are explained below. 
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2.3.1  Transient Oxidation 
 

When an alloy is exposed to an oxidizing atmosphere, oxides of every element in the alloy can 

form providing that the free energy change for their formation is negative in that environment 

[28]. Formation of more than one type of oxide during the initial stages of oxidation is known as 

transient oxidation and it plays a significant role in the oxidation behavior of alloys. At the later 

stages of oxidation, the more thermodynamically stable oxide usually predominates. However, 

kinetic factors also come into play at this stage and determine whether a continuous scale of 

more thermodynamically stable oxide can be established or not. 

Giggins and Pettit [34] investigated the oxidation behavior of Ni-Cr-Al alloys with 

varying amounts of Cr and Al. At the very early stages of oxidation, the surfaces of all alloys 

were observed to consist of NiO and spinel phases due to rapid uptake of oxygen by the alloy. 

Due to rapid transport of oxygen through these oxides, the oxygen activity established at the 

scale-alloy interface was higher than that required for formation of Cr2O3 and Al2O3. This caused 

diffusion of oxygen into the alloy. Cr2O3 and Al2O3 particles then formed below the outer scale 

where the critical oxygen activity was reached. Due to a lower oxygen activity required for 

Al2O3 formation, the alumina particles extended deeper into the alloy. As the oxidation 

proceeded, the volume fractions of Cr2O3 and Al2O3 , which depend on the amount of Cr and Al 

in the original alloy, determined the steady state oxide. For alloys with high Cr and Al 

concentrations, the volume fraction of Cr2O3 and Al2O3 was sufficient to prevent the further 

diffusion of oxygen into the alloy resulting in formation of a continuous scale of either Cr2O3 or 

Al2O3  as the steady state scale. However, the alloys with lower amounts of Cr and Al were 

unable to form continuous Al2O3 or Cr2O3 scales exhibiting higher oxidation rates. 
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Even though α-Al2O3 is the thermodynamically favored oxide, its establishment as a 

continuous steady state scale depends on some other factors. First of all, the concentration of 

aluminum in the alloy must be larger than a critical value as shown by the study of Giggins and 

Pettit. Conditions which cause rapid transport of aluminum to the surface and restrict inward 

oxygen transport favor the establishment of a steady state alumina scale [23]. Thus, the alloy 

interdiffusion coefficient and oxygen solubility and diffusivity in the alloy become factors 

important for selective oxidation of aluminum. For example, establishment of a continuous layer 

of  α-Al2O3 is easier on a FeCrAl alloy due to its high alloy interdiffusion coefficient, which 

allows rapid transport of aluminum to the surface, and low oxygen solubility in this alloy. The 

comparative growth rates of various oxides formed at the initial stages of oxidation are also 

critical for the ease of establishment of Al2O3 scales. 

Formation of less stable oxides, such as NiO and spinels, is not desirable since they are 

not as protective as alumina scales due to their rapid growth rate. Thus the prevention or at least 

minimization of transient oxidation is a very important issue for the oxidation behavior of alloys. 

 
2.3.2  Growth and Adherence of TGO 
 

Even though the growth and adherence of alumina scales have been recognized as critically 

important to the development of more oxidation resistant superalloys and coatings, including 

thermal barrier coatings, the exact details of alumina growth and adherence are not fully 

understood, or at least not universally accepted. All alloys undergo transient oxidation as 

discussed in the previous section. Alumina scales develop beneath the transient oxides and the 

thickness of the transient layer is greater for MCrAlY bond coats compared to aluminide and 

platinum aluminide bond coats. In some cases the initial alumina that forms is not the stable α-
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Al2O3 but metastable phases. Tolpygo and Clarke [35] studied the transformation from θ-Al2O3 

to α-Al2O3 on platinum modified diffusion aluminide coatings. They observed that the 

temperature and the surface condition are important factors that affect the development of 

metastable aluminas. The transformation from θ-Al2O3 to α-Al2O3 was observed to be much 

faster on rough surfaces compared to smooth surfaces. This faster transformation was attributed 

to more nucleation sites available for α-Al2O3 on rough surfaces. It was also indicated that 

higher temperatures resulted in faster θ-Al2O3 to α-Al2O3 transformation by increasing the 

growth rate of individual α-Al2O3 nuclei. In summary, low temperatures and smooth surfaces 

were observed to favor metastable θ-Al2O3 formation. However, α-Al2O3  eventually develops 

on the surfaces of the bond coats.  

It is well established that the α-Al2O3 grows by the inward diffusion of oxygen along 

grain boundaries. There is some question about the importance of an outward growth component 

involving aluminum diffusion. A number of studies have indicated that there is a small outward 

growth component and that reactive elements can decrease or eliminate this growth [13]. It is not 

clear if the aluminum that participates in the outward growth diffuses through bulk grains or 

along grain boundaries in the α-Al2O3 scales. 

The microstructure of alumina scales also affects the oxidation behavior of the alloys. 

Studies by Felten and Pettit [36] on the development, growth and adhesion of Al2O3 on platinum-

aluminum alloys indicated that the growth rate of alumina is highly dependent on its 

microstructure. They observed that the alumina scale grew faster when its grain size was smaller. 

This observation was consistent with the proposed mechanism that alumina scales grow 

predominantly by inward oxygen transport along grain boundaries. The authors have also shown 
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that the microstructure of alumina scales are dependent on factors such as the phases present 

originally on the alloy surface, temperature and time of oxidation and the oxygen pressure. 

It is very well documented that reactive elements improve the adherence of α-

Al2O3scales. As discussed previously, a number of mechanisms have been proposed to account 

for the improved adherence. It is clear that mechanisms involving removal of sulfur from the α-

Al2O3/bond coat  interface must be important because α-Al2O3 scales are extremely adherent to 

low sulfur alloys with no reactive elements. It is also evident that the reactive element 

concentration and distribution in the bond coat are important factors in optimizing α-Al2O3 

adherence as mentioned previously. Gupta and Duvall [33] investigated the oxidation behavior 

of NiCoCrAlY+Hf+Si bond coats. Hf was added to improve the oxide scale adherence whereas 

Si was added to reduce the oxide scale growth rate.  A substantial improvement in oxide scale 

adherence was observed due to combined beneficial effects of these elements. 

The adherence of α-Al2O3 on platinum aluminide bond coats is significantly better than 

on aluminide bond coats. Platinum does improve α-Al2O3 adherence significantly. The 

mechanism by which platinum improves this adherence is not well established. Some 

investigators have proposed that it removes sulfur from the interface but the arguments are not 

convincing [37]. Others have proposed that residual stresses in the α-Al2O3 may be smaller on 

platinum aluminide bond coats [38] but work is required to substantiate this. 

 
2.3.3  Stresses Generated During Oxidation 
 

 
One of the major causes that leads to spalling of oxides is the generation of stresses during 

oxidation. These stresses can be classified into two types: Growth stresses and thermal stresses. 
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Growth stresses form during isothermal formation of the scale and various mechanisms were 

proposed to explain the origin of these stresses. The important ones are the volume difference 

between the oxide and the metal that is consumed for the formation of oxide, oxide formation 

within an oxide, epitaxial stresses, compositional changes in the alloy or scale, and specimen 

geometry [28]. 

Thermal stresses are generated during cyclic oxidation and they result from differences in 

the thermal expansion coefficients of alloy and the oxide. 

Thermal and growth stresses in the TGO were determined to be compressive. Thermal stresses  

ranged from 3 to 6 GPa [39] whereas the growth stresses were much smaller ranging form 0 to 1 

GPa [40, 41]. However, Evans indicated that imperfections, such as undulations on the surface 

and localized thickness variations in the TGO, cause deviations from these average values [42]. 

The mechanisms for accommodation of these stresses vary depending on the properties of the 

system [28]. When the stored elastic strain energy, which is directly proportional to the scale 

thickness and the residual stress in the scale, exceeds the fracture resistance of the interface, the 

oxide scale spalls following either buckling or wedge crack formation. However, if the alloy is 

not strong enough and the fracture resistance of the interface is high, the compressive stresses 

can be accommodated by plastic deformation of the substrate and the scale .  

 
 

2.4  FAILURE MECHANISMS OF TBC SYSTEMS 

 
The beneficial effects obtained by using TBC systems strongly depend on the durability of these 

systems under various operating conditions. Many studies have been performed to understand 

the failure mechanisms of TBC systems in order to be able to improve their durability. However, 

the fact that many factors contribute to the failure of TBC systems complicates the 
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characterization of possible failure mechanisms. This is why the mechanisms that lead to failure 

of these systems are still not clear. 

The oxidation behavior of the bond coats, which is strongly influenced by the continuity 

of the TGO layer, has been reported to be the most critical factor in TBC failures [43]. Thus both 

the growth of the TGO and its adherence to the TBC and bond coat, play important roles in the 

durability of the TBC system performance. Many other factors can also influence TBC system 

performance. These include: thickness, structure, chemistry, thermal expansion, phase stability 

and creep strength of the ceramic; thermal expansion, phase transformations, thermal fatique, 

creep/stress relaxation of the bond coat and bond coat/substrate interactions [44]. 

There is data in the literature that indicates better performance of EBPVD TBCs 

compared to APS TBCs [1]. The coating spallation mechanisms were reported to be different for 

these coatings.  The APS TBCs fail by cracking in the TBC close to the TGO-TBC interface [45, 

46]whereas EBPVD TBCs fail by cracking along the TGO/bond coat interface or within the 

oxide layer [47, 48]. 

Failure of EBPVD TBCs that occur along the BC-TGO-TBC interfaces and within the 

TGO indicates that the characteristics of the TGO are a critical issue in the durability of these 

TBC systems. However, the influence of oxidation on the failure of APS TBCs is not very clear 

since the fracture occurs within the TBC. De Masi Marcin et al [49] proposed that the ceramic 

spallation may result from progressive link up of subcritical cracks within the APS TBC. 

Although these investigators could not find a direct link between crack initiation and oxidation, 

they agreed that oxidation affects the life of these TBCs by altering the stress state in the TBC as 

previously reported by Miller et al [45]. Bartlett and Manshio [46] attributed the crack 

propagation in the TBC to a  relatively low fracture energy of the coating in planes parallel to the 
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interface. The presence of a rough interface was mentioned as a possible source for crack 

initiation by causing stress concentration at asperity tips. The authors also showed that stresses 

generated during oxidation are not required for crack growth. In a recent study by Rabiei and 

Evans [50], the effects of oxidation on the failure of APS TBCs were observed to become 

important after a critical thickness of the TGO is reached. Once this critical TGO thickness was 

reached (5.5 µm), new cracks were observed to initiate at large undulations in the interface and 

they propagated in the TBC as well as through the TGO and along the interfaces. 

Failure mechanisms of TBC systems also differ, depending on the underlying bond coats. 

Different failure mechanisms have been reported even for the same type of bond coats due to 

pronounced effects of different fabrication procedures and composition on their properties. 

 Mumm and Evans [51] investigated the failure mechanism of a TBC system with an MCrAlY 

bond coat and reported that the failure occurs by the coalescence of interface separations around 

imperfections such as embedded oxides associated with Y2O3/YAG precipitate phases. Large 

oxide protrusions rich in reactive element precipitates have also been reported by other 

investigators [31, 32] to cause failure due to localized high levels of stress concentration at the 

oxide-bond coat interface. However, the effects of these reactive element rich oxide protrusions 

on the failure of MCrAlY bond coats were questioned and the failure of these TBC systems was 

attributed to the delaminations nucleated in the vicinity of the vertical separations in the TBC 

[52]. 

There is also substantial evidence that the formation of oxides other than alumina either 

by transient oxidation effects or by aluminum depletion in the bond coat during exposure results 

in failure of the TBC systems. However, the mechanisms by which they cause failure is not 

clear. Wu et al [53] proposed that the transient oxides that have formed at the TGO/TBC 
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interface might accelerate spalling of the TBC by causing crack initiation at these sites. In 

another study [54], these authors stated that the CTE mismatch stresses cannot be relieved due to 

the presence of oxides other than alumina that protruded into the microcracks of the TBC and, 

therefore, these stresses cause spallation of the TBC. Mutasim et al [2] have also observed 

detrimental effects of spinels and other oxides in the failure of TBC systems and attributed this 

effect to the lower mechanical strengths of these mixed oxides compared  to alumina. In a study 

by Anton et al [55], the contribution of the transient oxides to the failure of TBC systems was 

related to the volumetric changes associated with the transformation of transient oxides to more 

thermodynamically stable phases with continued exposure.  Lih et al studied the effects of 

preoxidation [56], prealuminization [57] and duplex treatment of prealuminization and 

preoxidation [58] on the oxidation behavior of TBC systems with MCrAlY bond coats. For each 

case, they observed an improvement in oxidation resistance and cyclic life of TBC systems. The 

main reason for this improvement was attributed to the formation of purer alumina scales with 

less transient oxidation. Shillington and Clarke [59] suggested that the TBC/spinel and TBC/α-

Cr2O3 interfaces have lower interfacial fracture resistance compared to TBC/ α-Al2O3 interface 

and conversion of α-Al2O3 into other mixed oxides as a result of aluminum depletion in the bond 

coat causes failure of these systems. They explained the stages in the conversion of α-Al2O3 into 

other oxides as follows: Cracking occurs in the alumina on the highly convoluted surfaces with 

the combined effect of the thermal expansion mismatch and the stresses generated due to high 

local curvatures. When the bond coat becomes depleted in aluminum such that it cannot reform 

alumina anymore, the oxygen diffusing through these cracks react with other elements in the 

bond coat leading to formation of other oxides. Volumetric change associated with the formation 

of other oxides causes further cracking in the TGO, accelerating the conversion of α-Al2O3 into 
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other oxides. Formation of the non protective scale allows further diffusion of oxygen into the 

bond coat resulting in internal oxidation of aluminum.   

Haynes et al [60] investigated the fracture behaviour of APS TBCs deposited on both 

VPS and APS NiCrAlY bond coats. The alumina scale that formed on a VPS NiCrAlY bond coat 

was highly damaged, exhibiting variations in thickness and cracking and buckling of the 

alumina, especially on the convex surfaces, even after 25% of TBC lifetime. On the other hand, 

the alumina scale formed on APS NiCrAlY bond coat was less damaged and more adherent. 

However, the life of the TBC on a APS NiCrAlY bond coat was shorter showing that the severe 

alumina damage observed on an VPS NiCrAlY bond coats did not cause rapid failure. 

Depending on these observations, it is proposed that the mechanical integrity of the TGO in 

plasma sprayed TBCs may not be the critical factor. The importance of some other factors such 

as thermal expansion coefficient and bond coat strength has been discussed.  

Failure mechanisms reported for TBC systems with platinum aluminide bond coats are 

different than the ones reported for TBC systems with MCrAlY bond coats. In the case of the 

platinum aluminides, a ratcheting phenomenon was proposed by A.G Evans [42] to explain the 

origin of out of plane tensile strains in the TBC that induce failure. Ratcheting, which refers to 

formation of undulations at the interface between the TGO and the bond coat, was reported to 

occur at sites where initial interface imperfections are present. When the amplitude of these 

initial interface imperfections are above a critical value, they induce stresses higher than the 

cyclic yield strength of the bond coat resulting in distortion of the bond coat. On the other hand, 

the presence of soft orientations on some of the β-NiAl grains close to the TGO promotes 

ratcheting in these locations due to their susceptibility to plastic straining normal to the interface. 

The shear stresses formed during cooling and the growth strain at high temperatures result in 
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plastic flow of the bond coat from the base to the tip of the undulations causing further increase 

in the amplitude of these undulations with each thermal cycle. When their amplitudes become 

large enough, they induce tensile stresses normal to the interface, which then cause cracking at 

locations with the lowest toughness. TBC failure occurs when the separations resulting from the 

coalescence of these cracks become large enough to start either large scale buckling or edge 

delamination. 

  Tolpygo and Clarke [61] proposed a different mechanism for the development of  

undulations on the platinum aluminide bond coats that eventually lead to failure of these 

systems. They proposed that the phase transformation from β to γ’ results in a significant volume 

reduction in the bond coat and they attributed the surface rumpling to the localized volume 

reductions in the bond coat due to localized phase transformations observed in platinum 

aluminide bond coats. Another study on Pt aluminide bond coats by Chen et al. [62] and Zhang 

et al. [63] indicated that a martensitic transformation may take place in the β phase  during 

thermal cycling. The effects of this transformation on strain accumulation in TBC systems as 

well as on surface rumpling, via accompanied volume changes, were discussed. 

In a more recent paper by Darzens et al. [64], β to γ’ phase transformation as well as 

martensitic transformation in the β phase were both suggested to be contributing factors on the 

rumpling of Pt aluminide bond coats. This effect was attributed to local misfit between the 

growing γ’ domains and the volume strain accompanying the martensite transformation. 

Gell et al [65] proposed a different failure mechanism for a TBC system with a platinum 

aluminide bond coat. In this study, the bond coat was not grit blasted prior to TBC deposition 

and consequently ridges were present on the bond coat grain boundaries. They proposed that the 

out of plane tensile stresses formed at the peak of the ridges were large enough to cause cracking 
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in the TGO above the ridges. The rapid transport of oxygen through these cracks resulted in 

preferential oxidation at the grain boundaries. Plastic deformation of the bond coat and tensile 

stresses generated during cooling at the ridges caused widening of these cracks into cavities and 

further grain boundary oxidation. On the other hand, the strain energy increased due to 

thickening of the TGO and the bond strength along TGO/bond coat interface decreased by 

diffusion of elements from the substrate such as S. They concluded that the crack and cavity 

formation around the grain boundary ridges combined with the increase in strain energy and the  

reduction in bond strength along the TGO/bond coat interface resulted in failure of these 

systems. 

Tawancy et al [66] studied the comparative performance of TBC systems with different 

bond coats including MCrAlY, straight aluminide and platinum aluminide bond coats. They 

observed that all TBC systems failed by void formation and coalescence along the TGO/bond 

coat interface. This type of behavior was associated with degradation of bond coats with 

interdiffusion and oxidation. They also mentioned the importance of the superalloy substrate 

composition in the oxidation behaviour of TBC systems by altering the elements diffusing from 

the substrate to the surface of the bond coat. 

Metastable aluminas are known to form prior to stable α-alumina formation as mentioned 

previously. The transformation from metastable alumina to stable α-alumina results in a 

significant volume reduction and it has been observed by Schaeffer [67] and Clarke et al. [68] 

that this volume change results in the failure of TBC systems if the transformation occurs after 

the deposition of the TBC. The authors discussed the importance of the pretreatments that can be 

applied before deposition of the TBC in order to prevent this type of failure. 
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3.0  EXPERIMENTAL DETAILS 

 

The specimens used in this study were circular discs, which were 25.4 mm in diameter and 3.2 

mm in thickness. A sample schematic is shown in Figure 6a. They consisted of a single crystal 

Ni base superalloy Rene N5 (Ni-7.5Co-7.0Cr-1.5Mo-5.0W-3.0Re-6.5Ta-6.2Al-0.15Hf-0.05C-

0.01Y in wt%) as the substrate and an 8wt% YSZ as the TBC. The TBCs  were deposited by the 

EBPVD process using commercial coating equipment operated by Praxair, Howmet and GE. Pt 

Aluminide and NiCoCrAlY coatings were used as bond coats. Some of the specimens had only 

the bond coats without a TBC, whereas some had TBCs deposited directly on the superalloy 

substrates. 

 The state of the art Pt modified aluminide bond coats, which were obtained from 2 

different companies, were prepared by using a high temperature low activity CVD process. The 

superalloy substrates were first electroplated with 5-7µm of Pt and then annealed to permit some 

interdiffusion between the superalloy substrate and the Pt layer. This process was followed by 

chemical vapor deposition of aluminum, usually leading to final coating thicknesses of around 

40-50 µm. These coatings typically contained 40-45 at% Al, 8-10 at% Pt with the remainder 

being Ni and small amounts of other elements from the substrate. They were given a heavy grit  

blasting prior to TBC deposition. Heavy grit blasting was done by using  8 grit (2mm) alumina at 

a pressure of 60-80 psi (Ra~2µm). 
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The modified Pt Aluminide bond coats had varying thickness of Pt and aluminide layers, 

nominal thickness of which were 0.25 mil Pt-1.5 mil aluminide, 0.25 mil Pt-3 mil aluminide, 0.5 

mil Pt-1.5 mil aluminide and 0.5 mil Pt-3 mil aluminide. Moreover, the surface preparation 

techniques were different. Some of these specimens were given a light grit blasting, by using 220 

grit (700µm) alumina at a pressure of 25 psi (Ra~1.3µm). Some were given media finishing, 

where the specimens were tumbled in a certain media (Ra~0.6µm). Some of them were polished 

with a final surface finish of 3 µm (Ra~0.2µm). 

The state of the art NiCoCrAlY bond coats were prepared by two different fabrication 

procedures; namely the argon shrouded plasma spray process (NiCoCrAlY-A), and the 

detonation gun process (NiCoCrAlY-B). The coating thicknesses were around 160 µm. The 

compositions of these bond coats are given in Table 1. After deposition, the coatings were 

vacuum heat treated, peened with stainless steel shot and vibratory finished with alumina media. 

They were also heavy grit blasted prior to TBC deposition by using 8 grit (2mm) alumina at a 

pressure of 60-80 psi 

The modified NiCoCrAlY bond coats had Pt layers applied as an overlayer as well as an 

underlayer. Some of the NiCoCrAlY bond coats were aluminized. Different surface preparation 

techniques (media finish, vibro finish and hand polish with 3 µm surface finish) were also used 

for these coatings.  

The specimens with and without a TBC were subjected to cyclic oxidation testing in a 

bottom-loading furnace in laboratory air. Most of the tests were performed at 1100°C, whereas 

some were performed also at 1000 and 1200°C. The cycles consisted of 10 minutes for heating 

up to temperature, 45 minutes at temperature and 10 minutes for forced air cooling (Figure 6b). 
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Some of the specimens were also subjected to isothermal testing in order to compare the failure 

mechanisms under cyclic and isothermal test conditions. 

The specimens were taken out of the furnace after every 20 cycles and kept in a 

dessicator for several hours. During this time, they were examined by naked eye, if needed, by 

optical and/or stereo microscopy. They were removed from the test when a significant amount of 

TBC spallation was observed. Figures 7a and Figure 7b are two examples that show typical 

failures. Some of the specimens failed in the furnace either during the last cooling cycle, or 

before, whereas some failed in the dessicator. 

Some of the specimens without a TBC were given a preoxidation heat treatment to 

investigate the effects of preoxidation on the characteristics of the oxides formed. The 

preoxidation was performed in a horizantal tube furnace by using an Ar/4%H2 atmosphere at 

1080°C. 

Optical and scanning electron microscopy (SEM) were used for characterization of the 

specimens.  Some of the specimens were indented using a Rockwell C indenter under a load of 

150 kg. The indentation testing, details of which can be found in reference [69], is usually used 

to calculate the interfacial toughness by using the debond radius after indentation. However, in 

this study, it was used just to determine the fracture paths as a function of exposure cycles by 

examining the delaminated areas. 
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Table 1  Compositions of NiCoCrAlY bond coats (wt %) 

Coating Ni Co Al Cr Y O C 

NiCoCrAlY-A 48.0 21.78 12.58 16.45 0.43 0.16 - 

NiCoCrAlY-B 44.4 22.95 13.82 16.59 0.57 0.9 0.58 
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Figure 6  ( a ) Schematic to show the typical configuration of the specimens used in this study. 
(b) Temperature profile of the bottom loading furnace. 
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Figure 7  Macrographs showing the typical TBC failures, ( a ) and ( b ). 
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4.0  RESULTS AND DISCUSSION 

 

4.1  STUDIES OF BOND COATS WITHOUT TBCS 

 
The specimens without a TBC were thermal cycled until severe degradation of the bond coats 

was observed. These specimens were examined as a function of time in order to compare the 

sequence of degradation of the different types of bond coats.  

 
4.1.1  NiCoCrAlY Bond Coats 
 
 
The surfaces of the NiCoCrAlY bond coats deposited either by argon shrouded plasma spray 

(NiCoCrAlY-A) or detonation gun technique (NiCoCrAlY-B) were very irregular (Figure 8a) 

and the as-processed coatings exhibited some porosity and oxide inclusions as shown in Figure 

8b. The microstructures consisted of γ (Ni solid solution), β(NiAl) and Cr rich phases as well as 

Y and/or Hf containing phases (Figure 8c). In the case of the NiCoCrAlY-B coatings, significant 

amount of  yttrium containing oxides encapsulated with alumina were observed throughout the 

cross section (Figure 8d). 

 Photomicrographs showing the degradation of these coatings as a function of time at 

1100 °C are presented in Figure 8 and Figure 9 for NiCoCrAlY-A and NiCoCrAlY-B coatings, 

respectively. After 209 cycles of exposure (Figure 9a and 10a) the β phase was depleted from 

both the surface and the substrate/bond coat interface as a result of oxidation and interdiffusion 

with the substrate, respectively. Oxide protrusions, which developed by rapid transport of 
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oxygen through the Y and Hf containing oxides and its reaction with aluminum in the alloy, were 

observed and they became more pronounced after 955 cycles of exposure (Figure 9b). This is 

shown in a high magnification micrograph of the alumina scale developed on these coatings 

(Figure 9c). However, these stringers of oxides protruding into the bond coat were very rare in 

the case of the NiCoCrAlY-B coatings. This is related to the yttrium being tied up as an oxide in 

the bond coat during processing   (Figure 8d). Comparison of the microstructures of the 

NiCoCrAlY coatings after 955 cycles of exposure (Figure 9b and 10b) shows a difference in the 

amount of aluminum depletion between these two coatings. This difference may be related to the 

excessive oxidation in the NiCoCrAlY-A coatings due to formation of the reactive element rich 

oxides, which were rapid oxygen transport paths through the alumina scale. After 3031 cycles of 

exposure, the β phase was depleted completely from both of the coatings, leaving only the γ 

phase (Figure 9d and 10c) Penetration of oxidation through the thickness of the coating was 

observed in the NiCoCrAlY-A coatings in some localized areas and it propagated along the 

substrate-bond coat interface. Depletion of aluminum in the cyclic test will lead to development 

of less protective oxides and more rapid consumption of the coating. Penetration of the coating 

as in Figure 9d may be caused by the large amounts of reactive element oxides in the scale. 

 The surfaces of these coatings were observed to become wavy with exposure as evident 

by comparing  Figure 11a, in the as-processed condition, with Figures 11b and 11c after 209 and 

955 cycles of exposure at 1100°C, respectively. However, the surfaces became smoother after 

still longer exposure times (such as after 3031 cycles at 1100°C as in Figure 11d). The surfaces 

might have become rougher as a consequence of thicker oxide formation at localized areas due to 

reactive element rich oxides, followed by spallation along the oxide/bond coat interface at these 

sites.  The smoothening of the surface at longer exposure times, then, can be explained by these 
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reactive element rich oxide protrusions which became more uniformly distributed over the 

surface with time as can be seen from the sequence of micrographs given in Figure 11. On the 

other hand, the plastic deformation of the bond coat in the presence of thermal and growth 

stresses is a possibility, but, in this case, it becomes difficult to explain the smoothening of the 

surface with longer exposure times. More work needs to be done to understand the surface 

roughening of the NiCoCrAlY bond coats which appears to be different than the surface 

roughening of the Pt aluminide bond coats, which will be shown later on. 

 Oxides other than alumina developed on the surfaces of these bond coats at the very early 

stages of oxidation due to transient oxidation effects. Figures 12a and Figure 13a show the 

transient oxides formed on the surfaces of NiCoCrAlY-A and NiCoCrAlY-B coatings after 2 

hours of exposure at 1080 °C in air, respectively. Oxidation experiments were performed under 

low partial pressure of oxygen to prevent transient oxidation. The oxide scales formed on these 

preoxidized bond coats were purer which shows that the oxygen partial pressure obtained was 

lower than that required for the oxidation of other elements in the alloy such as Ni, Cr and Co. 

Moreover, the oxide scale was observed to spall from the specimens which were exposed in air, 

whereas it was still adherent on those which were preoxidized under a low partial pressure of 

oxygen and then exposed in air under the same conditions (Figures 12b and  Figure 13b).  

 The adherence of the oxide scales on these bond coats were also affected by the surface 

condition. The alumina scales developed on hand polished NiCoCrAlY bond coats were more 

adherent (Figures 14a and 14b) compared to the alumina scales developed on heavy grit blasted 

NiCoCrAlY bond coats (Figures 15a and 15b). Moreover, the alumina scales had fewer transient 

oxides on hand polished specimens. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 8  The surface, (a), and cross-sectional micrographs, (b), of NiCoCrAlY bond coats 
showing the presence of surface defects as well as porosity and oxide inclusions in the as 
processed condition. The phases present in NiCoCrAlY-A and NiCoCrAlY-B coatings are 
labeled in (c) and (d) respectively. 
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(c) 

 

(d) 
 

Figure 9  Scanning electron micrographs showing the degradation of NiCoCrAlY-A bond coats 
after 209, (a), 955, (b and c), and 3031, (d), cycles of exposure at 1100°C. 
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Figure 10  Scanning electron micrographs showing the degradation of NiCoCrAlY-B coatings 
after 209, (a), 955, (b), and 3031 cycles, (c), of exposure at 1100°C. 
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( c ) 

 

( d ) 

Figure 11  Cross sectional micrographs from a NiCoCrAlY-A bond coat in the as processed 
condition, ( a ),  and after 209, ( b ),  and  955, (c ), cycles of exposure at 1100°C showing the 
roughening of the surface. The surface became smoother after 3031 cycles of exposure ( d ). 
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(a) 

 

(b) 

Figure 12   (a) Surface micrograph of the NiCoCrAlY-A bond coat after exposure at 1080°C for 
2 hrs in air showing the transient oxides developed and the spallation of the oxide scale. (b) 
Surface micrograph showing the purer and more adherent alumina scale developed after the bond 
coat was preoxidized in an Ar-4%H2 atmosphere at 1100°C for 100 hrs and then exposed in air 
under the same conditions as in (a). 
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(a) 

 

(b) 

Figure 13  (a) Surface micrograph of the NiCoCrAlY-B bond coats after exposure at 1080°C for 
2 hrs in air showing the transient oxides developed and the spallation of the oxide scale. (b) 
Surface micrograph showing the purer and more adherent alumina scale developed after the bond 
coat was preoxidized in an Ar-4%H2 atmosphere at 1100°C for 100 hrs and then exposed in air 
under the same conditions as in (a). 
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( a ) 

 

 

( b ) 

Figure 14  Scanning electron micrographs showing the surface of a hand polished NiCoCrAlY-A 
bond coat after exposure at 1100°C for 100 cycles at ( a ) low and ( b ) high magnifications. 
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( a ) 

 

( b ) 

Figure 15  Scanning electron micrographs showing the surface of a heavy grit blasted 
NiCoCrAlY-A bond coat after exposure at 1100°C for 100 cycles at ( a ) low and ( b ) high 
magnifications. 
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4.1.2  Platinum Aluminide Bond Coats 
 
 
The microstructural evolution of Pt modified aluminide bond coats under cyclic oxidation 

conditions was examined as a function of time at both 1100 and 1200°C. In the as-processed 

condition, the coating microstructure consisted of β (NiAl) and Pt rich phases. Refractory metal 

rich precipitates, which form as a result of low solubility of certain substrate elements (W, Ta, 

Re…) in β(NiAl), were observed in the interdiffusion zone (Figure 16a). 

After 20 cycles of exposure at 1200°C, the bond coat consisted of mainly  β phase with 

some γ’(Ni3Al) which nucleated preferentially at the grain boundaries of the β phase (Figure 

16b). The grain boundaries of the bond coat are paths for the outward diffusion of refractory 

elements. Figure 16c shows a β phase grain boundary, which is enriched in refractory elements. 

The presence of these refractory elements may also be enhancing the nucleation of  γ’ at the 

grain boundaries. The grain size of the β phase just below the original alloy surface where 

refractory metal rich precipitates are pronounced, was found to be smaller and the nucleation of 

γ’ at these grain boundaries resulted in the formation of a continuous layer of γ’ in the β phase 

(Fig 16d) 

 The β phase retreated both from the bond coat/oxide interface and the bond coat/substrate 

interface with continued exposure. Figures 17a through 17f show the micrographs after exposure 

at 1200°C for  40, 60, 80, 100, 130 and 200 cycles, respectively. The last traces of β phase after a 

large number of cycles of exposure was close to the bond coat/TGO interface which shows that 

Al depletion of the bond coat due to interdiffusion with the substrate was more pronounced than 

the aluminum depletion at the bond coat/oxide interface (Figure 17f). This may be related to the 
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development of adherent alumina scales, which reduce the aluminum depletion due to oxidation 

at the bond coat/oxide interface.  

 A surface micrograph of the as-processed Pt aluminide bond coat shows the ridges that 

developed at the grain boundaries of the bond coat (Fig 18a). After cyclic exposure, cracks were 

observed in the alumina scale on these grain boundary ridges  (Figure 18b). The formation of 

these cracks is reported to be due to out of plane tensile stresses generated at the peaks of the 

ridges [65].  However, these grain boundary ridges are removed after grit blasting which is 

generally performed prior to TBC deposition (Fig 18c).   

Metastable aluminas are known to form prior to stable α-alumina formation. The 

transformation from metastable alumina to stable α-alumina results in a volume reduction, which 

causes formation of cracks during the initial stages of oxidation. The surface micrograph of the 

Pt modified aluminide bond coat, which was exposed at 1200°C for 15 hours, showed the cracks 

and the oxide ridges developing at these cracks (Figures 19a and 19b). The development of the 

oxide ridges as a result of transformation from metastable to stable α-alumina is also reported 

elsewhere [35]. 

Surface rumpling is one of the basic features of the Pt aluminide bond coats. Figure 20a 

shows the surface of a Pt aluminide bond coat, which was highly rumpled after exposure at 1100 

°C for 955 cycles. After large numbers of exposure cycles, large cavities formed in the bond coat  

(Fig 17e) and at the bond coat/oxide interface (Figure 20b). It appears that alumina formed on 

the surface of these cavities as a result of oxygen diffusion through the cracks present in the 

initially formed alumina (Figure 20c). In some places, spinel formation was observed on the 

alumina scales formed at these cavities (Figure 20d). The gamma phase observed in the bond 
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coat at places where spinel has formed shows that the spinel  formation was related to aluminum 

depletion.  

In summary, the initial oxidation of NiCoCrAlY bond coats was more severe with 

evidence of transient oxidation and spalling. On the other hand, the Pt aluminide bond coats 

developed purer and more adherent alumina scales initially. However, with long exposure times, 

the surfaces of Pt aluminide bond coats became highly irregular and large voids developed along 

the oxide/bond coat interface as well as along the initial superalloy/bond coat interface. Based on 

these observations, the total oxidation lives of NiCoCrAlY and Pt aluminide bond coats can be 

considered to be comparable. 
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(a) 
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(c) 

 

(d) 

Figure 16  Optical micrographs of the Pt-Aluminide bond coat  a) in the as processed condition,  
b) after exposure at 1200°C for 20 cycles showing the γ' that nucleated preferentially at the β 
phase grain boundaries, (c) Scanning electron micrograph showing a β phase grain boundary 
enriched in refractory metal rich particles, (d) optical micrograph of the TBC system with the Pt 
aluminide bond coat, which failed at 1200°C after 132 cycles, showing the development of a 
continuous layer of γ' in β phase. 
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(e) 

 

(f) 

Figure 17  Cross-sectional micrographs showing the degradation of Pt aluminide bond coats after 
exposure at 1200°C for 40, (a), 60, (b), 80, (c), 100, (d), 130, (e), and 200 cycles, (f),respectively. 
The arrows point to the large cavities formed at the later stages of oxidation in the bond coat, (e), 
and at the bond coat/oxide interface, (f). 
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(c) 
 

Figure 18  Scanning electron micrographs from the surface of Pt aluminide bond coats showing  
a) the ridges that developed at the grain boundaries of the bond coat ,  b) the cracks that formed 
on these grain boundary ridges after exposure at 1200°C for 40 cycles,  c) the absence of ridges 
after grit blasting operation, which is generally applied prior to TBC deposition. 
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(a) 

 

( b ) 

Figure 19  Scanning electron micrographs from the surface of the Pt aluminide bond coat, which 
was exposed at 1200ºC for 15 hours, showing the cracks that developed due to volume reduction 
following the phase transformation from metastable to stable alumina, (a), and the oxide ridges 
developing at these cracks, (b). 
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(c) 

 

(d) 

Figure 20  a) Scanning electron micrograph from the surface of the Pt-Aluminide bond coat, 
which was highly rumpled after exposure at 1100°C for 955 cycles. Cross sectional scanning 
electron micrographs showing (b) the large cavities formed at the bond coat/oxide interface after 
exposure at 1100°C for 3031 cycles. ( c ) the alumina formed on the surface of the large cavities, 
(arrow), as a result of oxygen diffusion through the cracks present at the initially formed 
alumina,( d ) the spinel phase formed on the alumina scale in these cavities. 

 66



 

 

 

4.2  TBC INVESTIGATIONS 

 
4.2.1  TBC Failure Premises 
 

The specimens with TBCs were tested until a significant amount of TBC spallation was observed 

on the surfaces. Some of the specimens were also examined prior to failure. After a detailed 

examination of these specimens, various defects have been identified.  Cracks were observed to 

initiate in the vicinity of most of these defects and then they propagated through the weak points 

in the system. The cracks either propagated separately or coalesced with others forming larger  

cracks. Failure eventually occurred when these cracks reached a critical size. 

 All of the defects that were identified in this study, are believed to contribute to the 

failure of these TBC systems. However, none of these defects were observed to cause failure by 

themselves unless they were very pronounced. The failure was usually a result of combination of 

weaknesses in the vicinity of several of these defects as well as other factors such as the stored 

strain energy and/or poor interfacial toughness. 

The strain energy accumulates in the TGO with exposure as a result of growth and 

thermal stresses that develop during oxidation. This energy, which is referred to as “stored strain 

energy in the TGO”, is a strong function of TGO thickness and residual stresses in the TGO. The 

systems usually want to relieve this energy by separation along the TGO/bond coat interface 

since maximum strain energy is relieved this way. Thus, the TGO/bond coat interface becomes 

more susceptible to fracture with exposure time and it is expected to have more failure along the 

TGO/bond coat interface with longer exposure times unless there are weaker points elsewhere in 

the system. The plot of logarithms of the reciprocal of the failure times versus reciprocal of 
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temperature for the state of the art TBC systems with NiCoCrAlY and Pt Aluminide bond coats 

(Figure21) shows a decrease of failure times of these systems by about an order of magnitude 

with 100 °C increase in exposure temperature. An Arrhenius relationship is followed with an 

activation energy of 356 kJ/mole which is close to that obtained from the parabolic rate constants 

for the growth of α-alumina scales on Pt-Al alloys [36]. These results suggest the role of TGO 

growth rate and accordingly, the stored strain energy in the TGO on the failure of these systems. 

However, relatively thick TGOs  could  be attained by minimizing the defects in these systems 

by various modifications. The  data points of the failure times for some of these modified 

systems at 1100°C are also shown in Figure 21.  It is believed that the defects were the crack 

initiation sites and the stored energy in the TGO was the driving force  for the propagation of 

failure. Thus, the systems could withstand larger strain energies in the presence of fewer defects. 

The stored energy in the TBC is usually considered negligible due to the open and porous 

structure of the YSZ. However, it has been observed that a relatively dense TBC can develop 

depending on the surface condition and/or the TBC deposition conditions. There is also the 

sintering factor, which results in densification in the TBC. In these situations, the stored energy 

in the TBC can also become a contributing factor in the failure. Separations can occur along or 

close to the TGO/TBC interface to release this energy (Figure 22a) or cracks that initiated 

elsewhere in the system can propagate in the dense TBC (Figure 22b). 

Interfacial toughness is another property that is important for the failure of these TBC systems. 

Some of the improvements obtained by various modifications are believed to be a result of 

increased interfacial toughness, as will be shown later. 

The mechanical properties of the constituents of the TBC systems, especially the strength 

of the bond coat, have a big influence on the failure behavior of these systems. It is believed that 
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having a stronger bond coat, which does not plastically deform during exposure, may improve 

the lives to some extent. However, it will also be shown that the TBC usually constrains the 

deformation of the bond coat as long as it is in good contact with the bond coat and free of 

defects which may result in areas of weaknesses in the TBC. Thus, under these conditions the 

strength of the bond coat may not be so critical. 

A simple schematic summarizing the preceding discussion on TBC failures is given in 

Figure 23. In the following section, the defects in TBC systems will be described in general 

regardless of the system, followed by the failure characteristics of these TBC systems where the 

defects specific to each system will be given.  

 

 
 

Figure 21  The plot of inverse of the failure times ( t ) versus reciprocal temperature ( T ) for the 
state of the art TBC systems with NiCoCrAlY and Pt aluminide bond coats. 
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( a ) 

 

( b ) 

Figure 22  Scanning electron micrographs showing that dense TBCs can be a source of crack 
initiation ( a ) and / or propagation sites ( b ), probably due to relatively high stored energy in the 
TBC. 
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Figure 23  Schematic diagram summarizing the TBC failures based on experimental results. 

 
 
4.2.2  Defects in TBC systems 
 

4.2.2.1  Transient Oxides  When the TGO is pure alumina, it usually forms as a dense and 

continuous layer as in Figure 24a. However, when oxides other than alumina are present (e.g. 

Cr2O3, NiAl2O4), the TGO is porous and non-uniform (Figure 24b). Moreover, the adherence 

between the transient oxides and the TBC, as well as the alumina, seems to be weaker (Figures 

25a and 25b,respectively) compared to adherence between the alumina and the TBC. The arrow 

in Figure 25c points to a part of a TGO where it is pure alumina and in good contact with the 

TBC, in contrast to the neighboring parts with significant amounts of transient oxides. It has also 

been observed that the thickness of the transient oxide is important for adherence. The interface 

between the transient oxide and the TBC seemed to become weaker as the thickness of the 

transient oxide increased. The arrow in. Figure 25d points to a relatively thin transient oxide, 
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which appears to have a better bond to the TBC, compared to the other areas with thicker 

transient oxides. 

 Formation of oxides other than alumina results in extra interfaces. Every interface can be 

a source of weakness in these TBC systems, especially if there is a CTE (coefficient of thermal 

expansion) difference between the layers, which may be the source of poor adherence in the 

presence of transient oxides in these systems. The porous and non-uniform morphology also 

makes them susceptible sites for crack initiation since the stress is concentrated in their vicinity. 
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( a ) 

 

( b ) 

Figure 24  Scanning electron micrographs showing the presence of a  dense and uniform TGO 
when it is pure alumina, ( a ),  and  the porous and non uniform TGO when oxides other than 
alumina are present, ( b ). 
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( b ) 
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( c ) 

 

( d ) 

Figure 25  Scanning electron micrographs showing the poor adherence between the transient 
oxides and  the TBC, arrow in (a ), as well as between the transient oxides and the alumina, 
arrow in ( b ). The adherence between the TBC and the TGO is stronger when it is pure alumina, 
arrow in ( c ) and also when the transient oxide is relatively thin, arrow in ( d ). 
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4.2.2.2  TBC defects  Various defects can be present in the TBC depending on the surface 

condition of the bond coat, as well as the TBC deposition conditions. Some of these defects 

which were identified in this study are : 

• regions of separation in the TBC - This is a very general classification which refers to any 

kind of discontinuities in the TBC, especially close to the TGO/TBC interface. These type of 

defects can act as stress concentration sites in the TBC where cracks can nucleate (Figure 26). 

Corn Kernel defects are specific cases of regions of separation in the TBC which appear as 

conical shaped TBC segments close to the TGO (Figure 27) These conical shaped TBC segments 

are poorly bonded to the rest of the TBC, resulting in the development of points of weakness in 

the TBC.  

Depending on the surface condition and/or TBC deposition conditions, regions of 

separation in the TBC can form so frequently that weaknesses, which are continuous over 

relatively long distances, develop in the TBC in the vicinity of these defects  (Figure 28a) The 

failure can easily initiate and/or propagate in the vicinity of these defects (Figure 28b) In this 

case, the development of these defects seems to be a function of an initially very irregular 

interface. Figure 28c shows failure propagating along these weak points until a stronger 

TGO/TBC interface, which lacks these TBC defects, has been encountered. The failure, then, 

changed its direction towards the TGO/bond coat interface.  

Figure 29a is   another example showing similar TBC defects with a much finer scale, 

which developed on a smoother interface. Closer examination of this interface showed a 

significant amount of very small conical shaped TBC segments that seemed to be poorly bonded 

to the rest of the TBC. The TBC deposition conditions are believed to result in such a 
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morphology.  This specimen also had a significant amount of failure along this weak interface as 

can be seen from the fracture surface as well as cross sectional micrographs given in Figures 29b 

and 29c. 

• vertical separations - These defects usually form on initially irregular surfaces. Due to 

shadowing effects during TBC deposition, small openings develop between the columns above 

the surface irregularities (Figure 30a). Upon exposure at high temperatures, these openings can 

enlarge resulting in the formation of so called “vertical separations” (Figure 30b) The sintering 

between the columns, which are already in contact, as well as the sintering within columns 

appear to be responsible for the enlargement of the openings that were already present between 

the columns in the as-processed condition. 

The reasons that lead to formation of vertical separations for some systems but not for the 

others with similar initial surface roughness have been investigated and it has been found that the 

TBC morphology also plays a role in their formation. The TBCs that did not develop vertical 

separations, had well defined, dense and relatively larger columns in the as-processed condition 

(Figure 31a) compared to the ones that developed vertical separations (Figure 31b).  On the other 

hand, the column width increased with distance away from the interface. Figures 32a through 

32c show high magnification micrographs from areas close to the interface, middle and then the 

top of the TBC, respectively. For systems which developed vertical separations, the column 

width did not change much with distance away from the interface as can be seen from Figures 

33a through 33c.The widening of the columns away from the interface seems to fill in the gaps 

preventing the formation of openings that go all the way through the TBC in the as-processed 

condition as observed for the TBCs that developed vertical separations (Figure 30a) 
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The marked difference in the morphology of these TBCs can  also be seen by comparing 

the top views of the TBCs. Figure 34a and Figure 34b show the TBCs in the as-processed 

condition for the specimens which developed vertical separations and which did not, 

respectively. The columns that had a fine morphology sintered during exposure whereas the ones 

with denser columns remained almost the same (Figures 34c and 34d respectively). This is 

believed to be one of the reasons which leads to formation of  vertical separations  for the TBCs 

with a finer structure. The already present openings enlarge as the columns get sintered with 

exposure. The vertical separations being more well developed with exposure at higher 

temperatures (compare Figures 35a and 35b after exposure at 1000°C and 1150°C,respectively)  

is also  consistent with sintering being an important factor for their formation.  

These vertical separations may also contribute to the failure of TBC systems by acting as 

crack initiation sites (Figures 36a and 36b) The importance of these vertical separations on the 

failure was also explained by Evans [52]. However, it is also worth mentioning that long lives 

were obtained despite a large number of vertical separations for some TBC systems (Figure 37) 

which shows that the presence of these defects alone is not sufficient to cause failure of these 

systems. More work is required to better define the role of these defects on the failure of TBC 

systems. 

• spits - This is another type of TBC defect that may form during TBC processing (Figure 38a). 

In some cases, cracks have been observed to initiate in the vicinity of these spits as in Figure 

38b. 

• holes in the TBC - These defects were observed during examination of  the top surface of 

some TBCs. However, they could not be observed by cross sectional examination. Accordingly, 

the depth of these holes is not known. Observation of the top surfaces of the TBCs with this type 
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of defect almost always showed cracks passing through the holes as in Figure 39. These 

observations may suggest the role of these defects also as crack initiation and/or propagation 

sites. 
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Figure 26  Scanning electron micrograph showing cracks initiated in the vicinity of defects, 
which were referred to as “points of separation in the TBC”. 

 

 

 

 

Figure 27  Scanning electron  micrograph showing a corn kernel type of defect in the TBC. 
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(b) 
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(c) 

Figure 28  Scanning electron micrographs of a specimen with many TBC defects, which were 
referred to as “points of separation in the TBC”, in the as processed condition, ( a ), and after the 
failure, (b) and (c). 
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(b) 
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(c) 

Figure 29  Scanning electron micrograph showing another example to “points of separation in 
the TBC” in the as processed condition (a). The failure propagated mainly in the TBC in the 
vicinity of these defects as can be seen from the fracture surface (b), and the cross section (c) of 
the failed specimens. 
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(a) 

 

(b) 

Figure 30  Scanning electron micrograph of a specimen with small openings in the TBC in the as 
processed condition, (a).These openings enlarged with exposure resulting in the formation of so-
called “vertical separations” in the TBC, (b). 
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(a) 

 

(b) 

Figure 31  Scanning electron micrographs showing the morphology of the TBC in the as-
processed condition for the specimens that did not (a) and that did develop vertical separations in 
the TBC with exposure (b). 
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(a) 

 

(b) 
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(c) 

Figure 32  High magnification scanning electron micrographs from areas (a) close to the 
interface, (b) middle and (c) the top of the TBC of an as processed TBC system which did not 
develop vertical separations in the TBC. 
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(a) 

 

(b) 
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(c) 

Figure 33  High magnification micrographs from areas (a) close to the interface, (b) middle and 
(c) the top of the TBC of an as processed TBC system which developed vertical separations in 
the TBC. 
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(a) 

 

(b) 
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(c) 

 

( d ) 

Figure 34  Top views of TBCs in the as-processed condition for the specimens (a) which 
developed vertical separations in the TBC and (b) which did not. The columns in (a), which had 
a fine morphology, got sintered during exposure resulting in the formation of vertical separations 
(c), whereas the denser columns, ( b ), remained almost the same (d). 
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(a) 

 

(b) 

Figure 35  Top views of TBCs for specimens that developed vertical separations after exposure 
at (a) 1000°C for 780 cycles and (b) 1150°C for 15 cycles. The vertical separations were more 
well developed after exposure at 1150°C. 
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(a) 

 

(b) 

Figure 36  Cross sectional micrographs showing vertical separations and cracks in their vicinity 
at (a) low and (b) high magnifications. 
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Figure 37  Scanning electron  micrograph showing a large number of vertical separations in a 
TBC system which had a significantly long life. 
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(a) 

 

 

(b) 

Figure 38  Scanning electron micrographs showing (a) spits in the TBC and (b) cracks initiating 
in the vicinity of a spit. 
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Figure 39  Top view of a TBC showing a hole and cracks passing through it. 

4.2.2.3  Surface defects  The features that are referred to as surface defects in this study are the 

embedded grit blast particles and oxide inclusions, that cut the surface at various angles (Figure 

40a). These oxide inclusions may have formed by cracking of the bond coat during surface 

preparation and then oxidation during subsequent heat treatment or TBC deposition. In some 

areas, the alloy was undercut by these surface defects (Figure 40b), which is believed to cause 

formation of oxides other than alumina with subsequent exposure. 

 The presence of oxide particles on the surface makes it more difficult to form an adherent 

TGO. Figure 41a is from a fracture surface, which was reoxidized after TBC spallation. The 

arrow points to these oxide inclusions and the discontinuous oxide that formed around these 

oxide inclusions. In some cases, voids were also observed to develop around these oxide 

inclusions (Figure 41b) 
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(a) 

 

(b) 

Figure 40  (a) Scanning electron micrographs showing oxide inclusions that cut the surface at 
various angles. In some areas, the alloy was undercut by these oxide inclusions, (b). 
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(a) 

 

(b) 

Figure 41  Scanning electron micrographs from the fracture surfaces of specimens with surface 
defects showing the development of  a discontinuous oxide in the vicinity of oxide inclusions,     
( a ) and voids around some of these oxide inclusions , ( b ). 
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4.2.2.4  Reactive Element Oxide Protrusions  Rapid transport of oxygen through reactive 

element rich oxides and its reaction with aluminum in the alloy results in formation of stringers 

of reactive element rich oxides encapsulated in alumina (Figure 42) The amount and distribution 

of these oxides vary depending on the composition of the alloy and deposition technique, as well 

as the preoxidation conditions.  

 When TBC systems with NiCoCrAlY bond coats fail, a significant amount of failure usually 

propagates along the TGO/bond coat interface, cutting through RE rich oxide protrusions (Figure 

43a). Even though clear evidence that suggests crack initiation in the vicinity of these oxide 

protrusions could not be found, the presence of cracks in the TGO where excessive amounts of 

these oxide protrusions are present (Figure 43b), is believed to be partly due to stress 

concentration in the vicinity of these oxide protrusions. The importance of these reactive element  

rich oxide protrusions for the failure of TBC systems was also discussed by other investigators 

[31, 32, 51]. 

Incorporation of these reactive element rich oxides into the TGO is also believed to result in the 

formation of thick TGOs by acting as fast diffusion paths for oxygen (Figure 44) Therefore, 

these reactive elements can also contribute to failure this way by increasing the stored strain 

energy in the TGO, which is a strong function of TGO thickness. 

4.2.2.5  Intermixed zone  The intermixed zone is usually a mixture of alumina and zirconia plus 

yttria [70] which forms along the TGO/TBC interface. It may form discontinuously at localized 

areas (Figure 45a) as well as a uniform continuous layer (Figure 45b) Examination of one set of 

specimens as a function of exposure time at 1100°C showed that a continuous layer of 

intermixed zone increased in thickness with exposure time after TBC deposition and it stopped 

growing after a short amount of time. Figures 46a through 46e show the SEM micrographs from 
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these specimens in the as-processed condition as well as after exposure at 1100°C for 10, 60, 100 

and 880cycles, respectively. The formation of this intermixed zone seems to involve outward 

transport of Al as proposed by Stiger et al. [70]. Figures 47a and 47b are high magnification 

micrographs from the fracture surface of a specimen that developed a continuous intermixed 

zone.  As can be seen from these tapered sections from the TGO/TBC interface, the TBC 

consists of nanosized equiaxed grains as well as porosity close to TGO/TBC interface and the 

alumina seems to incorporate these grains and porosity by outward diffusion. In some cases, the 

intermixed zone consisted of whiskers of alumina penetrating into the zirconia (Figure 47c). 

Metastable aluminas, which are known to grow by outward aluminum diffusion,  also have a 

whisker like morphology, which looks similar to whiskers of alumina observed to penetrate into 

the TBC for some of these systems. Therefore, it is possible that the intermixed zone in these 

specimens formed as a result of formation of outward growing metastable aluminas. However, 

the TEM study of a specific system by Stiger et al. [70] did not show any evidence of metastable 

aluminas in the intermixed zone. In some specimens, the intermixed zone was observed to 

consist of zirconia and transient oxides (Figure 47d). 

 All these results suggest that there may be various ways for the formation of intermixed 

zones, all of which involve outward diffusion into the TBC. One possibility may be the 

development of outward growing metastable aluminas as well as transient oxides. Another 

possibility may be the outward growth component of  α-alumina, especially when the TGO is 

thin. 

 Table 2 is a summary of the development of this intermixed zone for various TBC 

systems. Based on these observations, preoxidation, TBC deposition conditions and composition 

appear to affect the development of the intermixed zone. These effects are believed to be a 
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consequence of a change in the initial oxidation characteristics. However, there is still a need for 

more detailed studies on this intermixed zone issue to be able to reach conclusive results. 

 Examination of some specimens which developed a continuous layer of intermixed zone 

showed small buckles along the TGO/intermixed zone interface (Figure 48a) and cracks 

emanating from these buckles (Figure 48b) In some areas a significant amount of failure was 

observed to propagate along this interface (Figure 48c). These observations indicate that the 

intermixed zone can also contribute to failure through acting as crack initiation and/or 

propagation sites. 
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Table 2  Summary of the development of intermixed zone for various TBC systems 

 
 

BOND COAT- 
PREPARATION 

 

 
Continuous 
Intermixed 

Zone 

 
Discontinuous 

Intermixed 
Zone 

 
None 

/ very few 
Intermixed 

Zone 
 

NiCoCrAlY- 
HGB 

 √  

NiCoCrAlY- 
MF 

 √  

NiCoCrAlY- 
VF 

 √  

NiCoCrAlY- 
Pt underlayer 

 √  

NiCoCrAlY- 
Aluminized 

 √  

NiCoCrAlY- 
Hand polish 

√   

NiCoCrAlY- 
Hand polish-preoxidation 

  √ 

NiCoCrAlY- 
Pt Overlayer 

√   

NiCoCrAlY- 
MF-Pt Overlayer 

√   

NiCoCrAlY- 
MF-Pt Overlayer-MF 

√   

NiCoCrAlY- 
MF-Pt Overlayer-MF-preoxidation 

√   

Pt Aluminide- 
As Aluminized 

√  √ 

Pt Aluminide- 
HGB 

 √  

Pt Aluminide- 
Hand polish 

  √ 

Pt Aluminide- 
LGB-preoxidation 

  √ 

Pt Aluminide- 
MF-preoxidation 

  √ 
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Figure 42  Scanning electron micrograph showing stringers of reactive element rich oxides 
encapsulated in alumina. 
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(a) 

 

(b) 

Figure 43   (a) Scanning electron micrograph showing the fracture surface of a specimen where 
the failure cut through RE rich oxide protrusions. (b) Cross sectional examination showed the 
presence of cracks in the vicinity of these oxide protrusions. 
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Figure 44  Scanning electron micrograph showing the presence of a thick TGO which had 
incorporated RE rich oxides 
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(a) 

 

(b) 

Figure 45  Scanning electron micrographs showing  a discontinuous, ( a ), and  a continuous 
layer of intermixed zone, ( b ). 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 46  Scanning electron micrographs from a specimen in the as-processed condition ( a ), as 
well as after exposure at 1100°C for 10, ( b ) ,  60 ( c ), 100 , ( d ), and  880 cycles, ( e ), showing 
the development of the intermixed zone with time. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 47  Scanning electron micrographs of the fracture surfaces, (a) and (b) , and cross 
sections, (c) and (d) , of specimens that developed intermixed zones. See text for details. 
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(a) 

 

(b) 
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(c) 

Figure 48  Scanning electron micrographs showing  a buckle, (a), and cracking in the vicinity of 
a buckle along the TGO/intermixed zone interface, ( b ). Significant amount of failure was 
sometimes observed to propagate along this TGO/intermixed zone interface, (c). 

 

4.2.2.6  Contamination  Contamination during processing of the TBC, especially with Fe, 

provides  another area where cracks can initiate. Figure 49a shows a large Fe rich oxide 

contamination close to the center of a region where the specimen failed. It is possible to 

determine whether the alumina was in contact with the TBC during exposure or it separated and 

reformed before final failure by examining the morphology of the TGO as will be explained later 

on in the microstructural observations section. This is important because it gives clues about 

where the separations occurred before final failure. In Figure 49b, the light gray areas are where 

the bond coat surface was reoxidized after failure whereas the dark gray areas around the 

contamination correspond to thicker alumina where the bond coat was reoxidized before final 

failure.  Cross sectional examination of this specimen showed accelerated oxidation and 

penetration of the bond coat in the vicinity of these defects (Figure 49c). Figures 49d and 49e are 
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from different specimens also showing reoxidized areas and accelerated oxidation in the vicinity 

of contamination sites, respectively. All these results indicate that separations occurred in the 

vicinity of these defects followed by accelerated oxidation. 

Contamination is believed to be responsible for some of the early failures. However, 

there are some long lived specimens which were also contaminated. Thus, it is believed that the 

size of the separation in the vicinity of the contamination as well as its interaction with the other 

weaknesses in the system determines its effect on the final failure. 

4.2.2.7  Voids  Voids were observed to develop in some TBC systems along the TGO/bond coat 

interface (Figure 50a) and/or along the initial bond coat / superalloy interface (Figure 50b). Most 

of these voids are believed to form as a function of exposure time and diffusion in the bond coat 

seems to be responsible for their development. They were usually associated with the grain 

boundaries in the bond coat (Figure 50c), which are known to be fast diffusion paths as well as 

sinks for vacancies.  On the other hand, fewer voids were observed to develop in the Pt 

aluminide specimens with thicker Pt as well as aluminide layers. This change in void density 

seems to be related to diffusion kinetics, which are affected by the presence of different 

thicknesses of Pt and aluminide layers. However, systematic diffusion studies are needed to be 

able to give a detailed description of diffusion phenomena for these systems. 

Areas of reoxidation before final failure were also observed around some of these voids, 

which are indications of separations in the vicinity of voids prior to final failure (Figure 50d) as 

explained previously. Therefore, they are believed to act as stress concentration sites as in the 

case of many other defects, causing cracks to initiate in their vicinity. They also reduce the area 

of contact between the TGO and the bond coat, which is believed to be another important 

undesirable effect of having too many voids. 
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4.2.2.8  Grain boundary ridges  Ridges develop on Pt aluminide bond coats at locations where 

the grain boundaries intersect the outer surface of the bond coat. These so called “grain boundary 

ridges” develop as a result of faster diffusion along grain boundaries during the aluminizing 

process. Figure 51a is from the top surface of a Pt aluminide bond coat without a TBC, whereas 

Figure 51b is from the cross section of a Pt aluminide bond coat with a TBC, showing the grain 

boundary ridges in both cases 

It has been reported earlier that cracks initiate in the vicinity of these ridges due to tensile 

stresses generated at the peak of these ridges [65]. The results obtained in this study with as 

aluminized Pt aluminide bond coats  with and without TBCs also confirmed crack initiation at 

these sites (Figures 51c and  51d, respectively) 

4.2.2.9  Abnormal Defects  These are defects of undetermined origin, which are believed to 

cause premature failures (failures that occur earlier compared to systems that are all prepared 

under the same conditions). Figure 52a is an example of such a defect. Numerous voids along the 

bond coat/superalloy interface as well as some voids along the TGO/bond coat interface were 

present in a localized area only where a buckle has formed. 

Figure 52b is from a different specimen that also developed a buckle above a localized 

defective area. In this case, the TBC had a strange morphology in a localized area (Figure 52c), 

which is believed to be present in the as-processed condition. These types of defective areas may 

have developed as a result of some  processing defects that remain to be identified. Upon 

exposure, accelerated oxidation might have occurred in these areas followed by buckling and 

premature failure. Whatever the causes of these abnormal defects are, it is very important to 

minimize these kinds of defects in order to establish the durability and reliability of these 

systems. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 49  Scanning electron micrographs of the fracture surface of a specimen showing an Fe 
rich contamination and re-oxidation around it  at  ( a ) low and (b) high magnifications. 
Accelerated oxidation and penetration of the bond coat was evident in the vicinity of a 
contamination site, (c). Other examples of reoxidation  and accelerated oxidation for different 
specimens in the  vicinity of contamination  sites are given in ( d ) and ( e ), respectively. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 50  Scanning electron micrographs (a) from the fracture surface and (b) the cross sections 
of the specimens that developed voids along the TGO/BC and BC/superalloy interface, 
respectively. These voids were usually associated with the grain boundaries, (c), and reoxidized 
areas were present around some of these voids, (d). 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 51  Scanning electron micrographs showing the grain boundary ridges on the surface of a 
Pt aluminide bond coat without a TBC, ( a ) and Pt aluminide bond coat with a TBC, ( b ). Upon 
exposure, the surface of a Pt aluminide bond coat without a TBC, (c), and cross section of a TBC 
system, (d), showed cracks in the vicinity of grain boundary ridges. 
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(a) 

 

(b) 
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(c) 

Figure 52  Scanning electron micrographs showing examples of abnormal defects, above which 
buckles developed. 

 
4.2.3  Failure of Current State-of-the-Art TBC Systems 

 

 
In Table 3 a summary of the failure times of the current state-of-the-art TBCs with different bond 

coats, which were given heavy grit blasting prior to TBC deposition, is presented. It is clear from 

the failure times that the specimens with platinum aluminide bond coats outperformed those with 

NiCoCrAlY bond coats. However, it should also be mentioned here that the relative performance 

of these systems was reversed in rapid cycling [71]. In this section, the general failure behavior 

of these TBC systems during 1 hour cycles will be given. 
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Table 3  Failure Times for the current state of the art TBC systems 

 
BOND COAT 

 

 
Failure Time at 1100°C  (# of 1 hr cycles to failure) 

 
 

Pt Aluminide 
 

 
840, 1005, 1040, 1100, 1120, 1220, 1280 

 
NiCoCrAlY 

 

 
40, 40, 40, 60, 60, 60, 76, 102, 102, 139 

 
 

4.2.3.1  NiCoCrAlY Bond Coats  The NiCoCrAlY bond coats were deposited by two different 

fabrication procedures as mentioned in the experimental details section. The general failure 

characteristics of TBC systems with these two different NiCoCrAlY bond coats were similar, 

even though there were some microstructural differences. Therefore, the failure characteristics 

for these systems will be given in general regardless of the fabrication procedure.  

Figure 53a shows a typical cross sectional micrograph from a NiCoCrAlY bond coat with 

a TBC in the as-processed condition. As can be seen from this low magnification micrograph, 

some oxide inclusions as well as porosity, which are common for the plasma sprayed coatings, 

were present throughout the coating The microstructure of the bond coat consisted of γ (Ni solid 

solution), β(NiAl) and Cr rich phases as well as Y and/or Hf rich phases (Figure 53b).  

The TGO was not uniform, exhibiting variations in thickness and also it was not always 

pure alumina. The interface was highly irregular. Surface defects (Figure 53c) as well as TBC 

defects (Figure 53d), which were referred to as “regions of separation in the TBC”, were present 

as described before.  
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These specimens were subjected to cyclic oxidation testing at 1100°C and they failed 

after significantly shorter times compared to TBC systems with platinum aluminide bond coats 

as mentioned previously. The failure occurred mainly along the TGO/bond coat interface with 

numerous excursions into the TGO and TBC (Figure 54a). Examination of the fracture surfaces 

of these coatings after spalling of the TBC showed the presence of Y and sometimes Hf rich 

oxides encapsulated in alumina (Figure 54b), oxide inclusions (Figure 54c), oxides other than 

alumina (Figure 54d) and TBC segments (Figure 54e). It should be mentioned here that the 

proportions of these features observed on the fracture surfaces varied from batch to batch. 

However, the failure times did not change much. Figure 55 is an example showing a buckle 

formed following a significant amount of separation along the TGO/TBC interface in contrast to 

some other samples where the failure was more along the TGO/bond coat interface. Moreover, 

some batches of specimens developed vertical separations in the TBC, whereas some did not. 

This difference seems to be a consequence of different TBC morphologies, as mentioned 

previously. 

Cross sectional examination of the failed specimens showed that the Al depletion was not 

the cause of failure since there was still a significant amount of Al rich β phase left at the time of 

failure (Figure 56). 

An indentation test was performed on the as-processed specimens as well as on 

specimens exposed to cyclic oxidation conditions and the fracture surfaces have been examined 

as a function of exposure cycle. In the as-processed condition, the failure was along the TGO/ 

TBC interface with some excursions into the TGO and TBC (Figure 57a). After 10 cycles of 

exposure at 1100°C, the failure was still mainly along the TGO/TBC interface and in the TGO 

and TBC with some spallation along the TGO/bond coat interface (Figure 57b). With continued 
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exposure (after 25 cycles and failure) , the dominant fracture path changed from the TGO/TBC 

interface to the TGO/bond coat interface (Figures 57c and 57d).  

Significant amounts of failure taking place along or close to TGO/TBC interface after 

indentation for the as-processed specimen and the one subjected to 10 cycles show that this 

interface was weak, however, the stored energy in the TBC was not large enough to cause 

failure. The weakness of this interface at short exposure times can be explained by the presence 

of defects along and/or close to this interface such as TBC defects and transient oxides. With 

continued exposure, strain energy accumulated in the TGO. The change in the dominant fracture 

path with time seems to be a result of weakening of the TGO/bond coat interface due to stored 

strain energy in the TGO as well as weaknesses in the vicinity of defects along this interface 

which were identified as reactive element rich oxide protrusions and surface defects. All these 

defects and their role in the failures of TBC systems were described previously in the section 

“Defects in TBC systems”. 

Based on these observations, a tentative failure mechanism for the state of the art TBC 

systems with NiCoCrAlY bond coats can be summarized  with the help of a very simple 

schematic diagram given in Figure 58 as follows:  

 -Certain “defects” are present in these TBC systems, some of which are present in the as-

processed condition, whereas some develop with time. The ones that are present along and/or 

close to the TGO/TBC interface can be described as oxides other than alumina and TBC defects 

usually associated with the initially irregular interface whereas the ones along the TGO/bond 

coat interface are reactive element rich oxide protrusions as well as initially-present surface 

defects (Figure58a). Depending on the concentration and frequency of these defects, the 

following failure processes can take place: 
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 - When the defects along and/or close to the TGO/TBC interface are frequent, the cracks 

that initiated in the vicinity of these defects may link up causing failure mainly along or close to 

TGO/TBC interface as shown in Figure58b. 

 -When the defects along the TGO/TBC interface are not so frequent, the cracks that 

initiate in their vicinity propagates through the TGO and then along the TGO/bond coat interface 

as the stored energy in the TGO increases (Figure 58c) 

 -The cracks can also initiate in the vicinity of the defects along the TGO/bond coat 

interface. These cracks, once initiated, can propagate along the TGO/bond coat interface (Figure 

58d) 

 -The failure can occur by a mixture of the above-mentioned failure processes, which is 

usually the case for the specimens used in this study.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 53  Scanning electron micrographs showing the typical state of the art TBC systems with 
NiCoCrAlY bond coats in the as processed condition. The bond coat consisted of porosity and 
oxide inclusions throughout the coating, (a),  and β, γ as well as Cr and RE rich phases, (b). 
Surface defects (c), as well as TBC defects (d), were present. 
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(b) 
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(c) 

 

(d) 
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(e) 

Figure 54  Scanning electron micrographs showing the fracture surfaces of state of the art 
NiCoCrAlY bond coats. The failure was mainly along the TGO/BC interface with numerous 
excursions into the TGO and TBCs (a). The typical features observed on the fracture surfaces 
were RE rich oxide protrusions (b), oxide inclusions (c), transient oxides (d), and TBC segments 
(e). 
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Figure 55  Scanning electron micrograph of a TBC system with state of the art NiCoCrAlY bond 
coat showing a significant amount of separation along the TGO/TBC interface followed by 
buckling 
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Figure 56  Optical micrograph of a TBC system with state of the art NiCoCrAlY bond coat after 
failure showing that a significant amount of Al-rich β phase was present at the time of failure. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 57  Scanning electron micrographs from the fracture surfaces of the TBC systems with 
the state of the art NiCoCrAlY bond coats after an indentation test has been performed on the as-
processed specimens (a), as well as on the ones which were exposed at 1100°C for 10 (b), and 25 
cycles (c). The fracture surfaces of the specimens, which failed after 102 cycles of exposure is 
also shown in (d). Dark areas correspond to the TGO and the TBC while white areas correspond 
to the bare bond coat. 
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(b) 

(c) 

(a) 

(d) 

Figure 58  A simple schematic summarizing the failure behavior of the state of the art TBC 
systems with NiCoCrAlY bond coats. See text for details 
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4.2.3.2  Platinum Modified Aluminide Bond Coats  The platinum modified aluminide bond 

coats were prepared by 2 different companies and some minor differences were present in terms 

of composition and thickness of the bond coats. There was also a difference in the grain size of 

the bond coats. However, the general failure behavior of these systems was similar. As in the 

case of TBC systems with NiCoCrAlY bond coats, the general failure behavior will be given for 

these systems first, regardless of the processing differences. The early failure of one set of 

specimens which had TBCs deposited by a different company will be discussed next, followed 

by the effects of grain size and thermal cycles on the failure of these systems. A tentative failure 

mechanism will be given at the end based on these observations. 

 The microstructure of the platinum modified aluminide bond coats with a TBC in the as-

processed condition consisted of only β(NiAl) phase with Pt, Cr and Co in solid solution (Figure 

59a). The interface was irregular due to heavy grit blasting and corn kernel type TBC defects, 

which were discussed previously, were present in the TBC (Figure 59b) above the surface 

irregularities. This type of defect is believed to make a big contribution to the failure of these 

TBC systems as will be explained in the following paragraphs. 

 The failures have been observed to be mainly along the TGO/TBC interface and in the 

TBC and TGO. However, there was also spallation along the TGO/bond coat interface (Figures 

60a and 60b). Examination of cross sections of these TBC systems before and after failure 

indicated that the bond coat surfaces deformed resulting in an increase in the initial surface 

roughness. (Figures 61a and 61b, respectively) Cracks were observed to develop in the TBC in 

the vicinity of these deformed areas (Figure 61c).  This is known as a ratcheting mechanism, 

which was explained in detail in the background section, and it dominates the failure of the state 

of the art Pt aluminide systems.  
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In the following sections, it will be shown that the TBC constrains the deformation of the 

bond coat. Based on this observation, it is believed that the ratcheting occurred first at areas that 

were referred to as corn kernel TBC defects. The reason behind this idea is the weaker TBC 

constraint to deformation of the bond coat in the vicinity of these defects. Accordingly, the bond 

coat could deform more easily with less constraint given by the TBC (Figure 62a). The stresses 

are also higher at these initial interface imperfections, which drives the deformation of the bond 

coat at these sites as proposed by Evans et al. [42] Figure 62b is from the fracture surface 

showing a TBC segment that was pulled from the TBC due to ratcheting at a corn kernel type 

TBC defect. In other areas, where the interface was initially smoother, the TBC constraint to 

deformation of the bond coat was larger as a result of a more well-developed columnar TBC 

morphology. Thus, the resistance to ratcheting was stronger in these areas and the interface 

remained relatively smooth (Figure 62c).  

 As the amplitude of the ratchets increases by the deformation of the bond coat, the cracks 

that initiated in the vicinity of these ratchets propagate away from the ratchets. This results in 

new separations along the TGO/TBC interface and accordingly, weak areas where there is no 

more TBC constraint to deformation of the bond coat. New ratchets, then, may form at these 

sites resulting in additional crack formation and propagation. This process continues until these 

cracks in the vicinity of ratchets link up reaching a critical size, causing final failure. If the 

ratcheting is not pronounced enough, which is determined by the frequency, size and amplitude 

of the ratchets, the cracks initiated in the vicinity of the ratchets can propagate through the TGO 

and then along the TGO/bond coat interface as the stored strain energy in the TGO increases. 

However, if the ratcheting is severe, the cracks initiated in the vicinity of these ratchets link up 

before the failure can propagate through the TGO, causing more failure along the TGO/TBC 
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interface. Some variation in the fracture paths was also observed in this study for specimens from 

different batches.  

A different batch of TBC systems with heavy grit blasted Pt aluminides, which had TBCs 

deposited by a different company, failed at relatively shorter times at 1100°C after 500 and 760 

cycles of exposure. Cross sectional examination of this specimen showed very significant 

amounts of ratcheting even after a fewer number of cycles to failure compared to other batches 

(Figure 63a).  Examination of the as-processed specimen indicated the presence of a different 

TBC morphology close to the TGO even though the surface roughnesses were similar. The TBC 

close to the TGO consisted of small corn kernel type TBC defects lined up side by side in the as-

processed condition (Figure 63b) and it also developed vertical separations with time (Figure 

63c). This different type of morphology is believed to be a function of TBC deposition 

conditions. Based on the argument given previously, the TBC constraint to deformation of the 

bond coat must be less for these specimens, which can explain the early failure and the 

significant amount of ratcheting for these specimens. The vertical separations may also be a 

contributing factor in their early failure. These results show that the TBC deposition conditions 

also can have an effect on the TBC morphology, and accordingly on the failure, besides the 

surface condition.  

 There are various proposed mechanisms for ratcheting as mentioned in the background 

section.  Plastic deformation of the bond coat, as well as the volume reductions as a result of 

phase transformations in the bond coat may be all playing a role in the ratcheting type of failure.  

Our results also indicate the importance of grain boundaries for ratcheting.  Specimens obtained 

from one of the companies had comparatively smaller grain size. Cross sectional examination of 

this specimen showed more pronounced ratcheting (Figures 64a and 64b) compared to other 
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specimens with larger grain size (Figures 64c and 64d). The failure was more along the 

TGO/TBC interface as a result of this significant amount of ratcheting. Also, the ratchets were 

usually associated with the grain boundaries (Figure 64b). These observations may suggest the 

importance of grain boundaries in ratcheting. One explanation may be the role of grain boundary 

sliding in the plastic deformation of the bond coat. However, more work has to be done to make 

this argument stronger. 

 Thermal cycling also has a significant effect on the amount of ratcheting and accordingly 

on the fracture path. Examination of specimens after cyclic (Figure 65a) and isothermal tests 

(Figure 65b) showed smaller amounts of ratcheting for the isothermally tested specimen. This 

observation indicates the role of thermal stresses on the ratcheting type of failure. 

 Based on these observations, a tentative failure mechanism for these TBC systems can be 

summarized as follows with the help a simple schematic diagram given in Figure 66: 

 -The state of the art Pt Aluminide bond coats have irregular interfaces in the as-processed 

condition due to heavy grit blasting (Figure 66a). TBC defects, which are referred to as “Corn 

Kernel TBC defects”, develop at these surface irregularities, most probably due to shadowing 

effects during TBC deposition. The TBC constraint to deformation of the bond coat is weaker in 

the areas where these defects are present due to poorer bonding of the TBC segments to the rest 

of the TBC.  

 -With thermal exposure, the bond coat deforms plastically by the well known ratcheting 

mechanism. The ratcheting originates at the initial interface irregularities, which were usually 

associated with TBC defects, due to the combined effects of high stresses and the weaker TBC 

constraint at these sites (Figure 66b). The cracks, which initiated at these sites, propagate away  
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from these ratchets causing separations along the TGO/TBC interface. The TBC constraint also 

becomes weaker at these separated areas, which may lead to formation of new ratchets (Figure 

66c). 

 -The failure occurs when these cracks in the vicinity of the ratcheted areas link up 

reaching a critical size. In this case, the failure is more along or close to the TGO/TBC interface 

(Figure 66d). 

 -On the other hand, the TGO/bond coat interface also becomes more susceptible to 

fracture due to stored strain energy in the TGO. If the amount of ratcheting is not very 

significant, the cracks that initiated in the vicinity of the ratchets can propagate through the TGO 

and then along the TGO/bond coat interface as the stored energy in the TGO increases (Figure 

66e).  
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(a) 

] 

( b ) 

Figure 59  Scanning electron micrographs of typical state of the art TBC systems with Pt 
aluminide bond coats in the as processed condition. The microstructure consisted of only β phase 
with Pt, Cr and Co in solid solution (a). Corn Kernel TBC defects were present (b). 

 145



 

 
(a) 

 

(b) 

Figure 60  Scanning electron micrographs from the fracture surface of a state of the art TBC 
system with Pt Aluminide bond coat at (a) low and (b) high magnifications. A significant amount 
of failure was above the TGO/BC interface. 
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(c) 

Figure 61  Scanning electron micrographs of TBC systems with state of the art Pt aluminide 
bond coats before (a), and after failure (b), both of which give examples to deformation of the 
bond coat with thermal exposure. Cracks initiate in the vicinity of the deformed areas (c). 
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(c) 

Figure 62  Scanning electron micrographs of state of the art TBC systems with Pt aluminide 
bond coats showing ( a ) ratcheting in the vicinity of corn kernel defects, ( b ) a TBC segment 
that was pulled from the TBC due to ratcheting at a corn kernel defect, (c ) presence of a smooth 
interface in the absence of corn kernel defects. 
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(c) 

Figure 63  Scanning electron micrographs of a state of the art TBC system with Pt aluminide 
bond coat, which failed relatively early compared to its counterparts. There were significant 
amounts of ratcheting, ( a ), which were believed to be associated with the different TBC 
morphologies in the as processed condition, ( b ). This specimen also developed vertical 
separations in the TBC, ( c ). 
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(b) 
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(c) 

 

(d) 

Figure 64  Optical micrographs of state of the art TBC systems with Pt aluminide bond coats 
with fine (a, b) and coarser grain size (c, d) at low and high magnifications. The amount of 
ratcheting was more pronounced for the specimens with finer grain size. 
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(a) 

 

(b) 

Figure 65  Scanning electron micrographs of state of the art TBC systems with Pt aliminide bond 
coats showing a marked difference in the amount of ratcheting for specimens which were 
subjected to cyclic, ( a ) and isothermal test, ( b ).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

Figure 66  schematic diagram summarizing the failure behaviour of state of the art Pt Aluminide 
bond coats. See text for details 
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4.2.4  Modified TBC Systems 
 

Based upon the tentative failure mechanisms formulated for the current state of the art TBC 

systems, some modifications were made to attempt to improve their lives. The failure 

characteristics of the modified TBC systems as well as the effects of modifications on their 

failure will be discussed in this section. 

4.2.4.1  NiCoCrAlY Bond Coats  TBC systems with NiCoCrAlY bond coats had various 

defects that contributed to their failures, as mentioned previously. Most of the modifications 

performed on these TBC systems minimized the defects to a certain degree, resulting in 

improvements. These modifications included: deposition of a Pt layer on the bond coat (Pt 

overlayer) and also on the superalloy substrate surface prior to deposition of the NiCoCrAlY 

bond coat (Pt underlayer), aluminizing the bond coat surface and performing different surface 

preparation techniques on the bond coats. Failure times for the modified TBC systems are given 

in Table 4. Again, the general characteristics of these modified systems will be given regardless 

of the different techniques used for the deposition of NiCoCrAlY bond coats.  
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Table 4  Failure times for the TBC systems with modified NiCoCrAlY Bond Coats 

 
 

 
Failure Time at 1100°C  (# of 1 hr cycles to failure) 

 
NiCoCrAlY- 

state of the art 
 

40, 40, 40, 60, 60, 60, 76, 102, 102, 139 
 

NiCoCrAlY 
Pt Underlayer 

 
160, 160, 160, 560 

 
NiCoCrAlY 
Aluminized 

 
160, 220, 280, 380, 460 

 
NiCoCrAlY 
Pt Overlayer 

 
600, 880, 980, 1240, 1700 

 
NiCoCrAlY 

MF-Pt Overlayer 
 

520, 540 
 

NiCoCrAlY 
MF-Pt Overlayer-MF 

 
500, 620 

 
NiCoCrAlY 

MF-Pt Overlayer-MF-preoxidation 
 

500, 600 
 

NiCoCrAlY 
Vibro Finish 

 
40, 80 

 
NiCoCrAlY 

Media Finish 
 

80, 80 
 

NiCoCrAlY 
Hand Polish 

 
220, 720, 740, 1520+ 
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• NiCoCrAlY Bond Coats with Pt Overlayer - The surfaces of the as-processed TBC systems 

with Pt overlayers on NiCoCrAlY bond coats were highly irregular and numerous defects in the 

TBC were present as a result of this irregular interface (Figure 67a). In some localized areas, 

where large pieces of grit blast particles were embedded on the surface, the Pt layer did not 

develop continuity resulting in a defective area such as is evident in Figure 67b. On the other 

hand, a very uniform, continuous TGO, which was pure alumina, developed on the surface 

(Figure 67c). Moreover, the interface was free of the oxide inclusions, which were referred to as 

surface defects previously. Figure 68 gives the composition profile away from the interface. As 

can be seen from this profile, the bright layer is rich in Pt with small amounts of other elements 

(Ni, Al, Cr, Co), which diffused into the Pt layer during subsequent heat treatment as well as 

TBC deposition. An attempt was made to identify the platinum rich phase from Pt-Al-Ni ternary 

phase diagram [72]. However, the presence of Cr and Co complicated the identification. 

Therefore, transmission electron microscopy (TEM) and/or X-ray diffraction (XRD) analyses are 

required to determine this phase.  

These specimens were also subjected to cyclic oxidation testing at 1100°C. Significant 

improvements in the lives of these TBC systems have been obtained in the presence of platinum 

overlayers as can be seen from Table 4. The failure was observed to be along the TGO/TBC 

interface as well as in the TGO and TBC (Figure 69a and 69b). Examination of these specimens 

prior to failure showed cracks initiating in the vicinity of the TBC defects (Figure 70a) and then 

they usually propagated in the TBC laterally, cutting through the TGO where the surface had a 

convex shape. These cracks, while they were propagating through the TGO, either linked-up 

(Figure 70b) or missed each other (Figure 70c) resulting in a fractured, layered alumina scale 

(Figure 70d). These cracks almost never propagated along the TGO/Pt overlayer interface, which 
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suggests a high interfacial toughness. A substantial amount of oxidation was also observed at the 

initial bond coat/Pt overlayer interface (Figure 71). This may be the combined result of rapid 

oxygen transport through the large surface defects present in the as-processed condition  (Figure 

67b) and the lack of adequate adhesion at the initial bond coat/ Pt overlayer interface due to 

surface defects present in the bond coats. All these results led to the idea of even greater 

improvements that might be obtained by applying proper surface preparation techniques before 

and after the deposition of the Pt overlayers. On the other hand, the initially irregular interface 

might have had beneficial effects due to reduced strain energy in the presence of parallel cracks 

that run in the TGO. This possibility was also considered. To clarify these uncertainties, new 

samples with surface modifications were prepared. These modifications included: deposition of 

Pt overlayers onto media finished NiCoCrAlY bond coats, media finishing the Pt overlayers that 

were deposited onto media finished NiCoCrAlY bond coats and preoxidizing the media finished 

Pt overlayers deposited onto media finished NiCoCrAlY bond coats. The failure times for these 

specimens were relatively short compared to the first batch of NiCoCrAlYs with Pt overlayers 

(Table 4). Unfortunately, these specimens had even more irregular interfaces with many 

associated defects in the TBC (Figure 72a) from which significant amounts of failure were 

observed to propagate (Figure 72b). These results showed that the surface irregularities might 

also develop during electro-plating of Pt itself, probably due to the dendritic growth of Pt. Media  

finishing performed after the deposition of the Pt layer was not very effective for smoothening 

the surface (Figure 72c), resulting in similar failure behavior. 

The alumina scales developed on these systems were rather pure in contrast to the 

alumina scales developed on the state of the art NiCoCrAlY systems. It seems that the presence 

of a platinum overlayer on the surface promoted the selective oxidation of aluminum preventing 
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the formation of transient oxides. Moreover, the alumina scale was still adherent to the bond coat 

in most places even after much longer exposure times compared to the failure times of the state 

of the art NiCoCrAlY systems. The strong adherence of the TGO on these bond coats may be a 

result of improved inherent interfacial toughness in the presence of Pt as well as the lack of 

defects along the TGO/bond coat interface that were identified for the state of the art TBC 

systems. In summary, the improved performance of TBC systems with Pt overlayers seems to 

result from the development of pure and adherent alumina scales. If we disregard the thickness of 

the continuous layer of intermixed zone that developed at the early stages of oxidation, the 

growth rate of the pure alumina underneath was slower compared to the growth rate of the 

aluminas that developed on the state of the art NiCoCrAlY systems as can be seen from the 

diagram given in Figure 73. Therefore, the slower TGO growth rate can also be another 

contributing factor in their improved performance. On the other hand, the effects of smooth 

interfaces with Pt overlayers still need to be examined to see whether more significant 

improvements can be obtained by minimizing the TBC defects. 
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(a) 

 

(b) 
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(c) 

Figure 67  Scanning electron micrographs of a TBC system with a Pt overlayer on  NiCoCrAlY 
bond coat in the as processed condition showing ( a ) highly irregular interface with associated 
TBC defects, ( b ) defective areas in the vicinity of large embedded grit blast particles, ( c ) very 
uniform and continuous TGO. 
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Figure 68  Composition profile away from the TGO/TBC  interface for an as processed TBC 
system with Pt overlayer on NiCoCrAlY bond coat 
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(a) 

 

(b) 

Figure 69  Fracture surface of the TBC system with Pt overlayer on the NiCoCrAlY bond coat 
showing that the failure was mainly along the TGO/TBC interface, as well as in the TBC and in 
the TGO (a). A higher magnification micrograph from the fracture surface is presented in (b). 
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(c) 

 

(d) 

Figure 70  Scanning electron micrographs of the TBC system with Pt overlayer on the 
NiCoCrAlY bond coat after exposure at 1100 °C for 40 cycles showing that the cracks that 
initiated at TBC defects, ( a ), either linked up, (b), or missed each other, (c), causing a layered 
alumina scale, (d). 
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Figure 71  Scanning electron micrograph of the TBC system with Pt overlayer on the 
NiCoCrAlY  bond coat after it failed, showing the extensive amount of oxidation along the initial 
bond coat/ Pt overlayer interface 

 
 
 
 
 
 
 
 
 
 
 
 
 

 168
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(b) 
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(c) 

Figure 72  Scanning electron micrographs of the TBC systems with Pt overlayer on the media 
finished NiCoCrAlY bond coats. The interface was highly irregular with associated TBC defects, 
( a ), from which significant amounts of failure were observed to propagate, ( b ). The interface 
of the specimen that was given  media finish after Pt deposition was still irregular, (c ). 
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Figure 73  The TGO thickness vs square root of time for the TBC systems with Pt overlayer on 
NiCoCrAlY bond coat and state of the art NiCoCrAlY bond coat  at 1100°C showing that the 
growth of the pure alumina underneath the intermixed zone for specimens with Pt overlayers was 
slower compared to the growth of the TGO on the state of the art NiCoCrAlY systems. 

 

 

 

 

 

 

 

 

 

 171



 

• NiCoCrAlY Bond Coats with Pt Underlayer - Pt has been known to inhibit the outward 

diffusion of substrate elements to the surface in the case of Pt aluminide diffusion coatings [73]. 

The fact that  substrate elements have also been observed close to the TGO-NiCoCrAlY bond 

coat interface led to the idea of performing this modification for these TBC systems also. The 

objective was to see whether these elements contributed to the failure of these TBC systems. 

Even though there was some improvement in the lives of NiCoCrAlY systems in the 

presence of Pt underlayers, it was not significant compared to improvements achieved with other 

modifications. Cross sectional examination of these TBC systems in the as-processed condition 

did not show any difference in terms of the as-processed defects observed for the current state of 

the art TBCs. Figure 74a shows the surface defects and the highly irregular interface with 

associated TBC defects whereas Figure 74b shows the very non-uniform TGO, which is not 

always pure alumina. 

The general failure behaviour of these systems was also very similar to those without any 

modification. The failure was mainly along the TGO/bond coat interface with numerous 

excursions into the TGO and TBC (Figure 75a). The typical features observed on the fracture 

surfaces were reactive element rich oxide protrusions (Figure 75b), oxide inclusions (Figure 

75c), transient oxides and TBC segments (Figure75d). Figure 75e is a cross sectional micrograph 

from the failed specimen showing damage in the vicinity of transient oxides and TBC defects. 

Some localized separation along the initial Pt underlayer / superalloy interface was also observed 

(Figure 75f), which is not believed to have contributed to failure in this case.  However, this 

observation shows the likelihood of separations along this interface, which may result in 

complete detachment of the bond coat. 
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Substrate elements in solid solution were observed close to the TGO/bond coat interface 

for these systems. This observation rules out the role of substrate elements in the slight 

improvement obtained with a Pt underlayer. TGO growth rate can also be ruled out since a 

difference in the TGO thickness could not be observed (Figure 76). Pt was found in solid 

solution near the interface. One possible explanation for the longer lives of these systems may be 

the effect of Pt in improved adherence along the TGO/bond coat interface. Figures 77a and  77b 

are cross sectional micrographs from the state of the art NiCoCrAlY systems and the 

NiCoCrAlY systems with Pt underlayer, respectively, after 20 cycles of exposure at 1100°C and 

before failure. There was separation along the TGO/bond coat interface for the state of the art 

NiCoCrAlY systems due to metallographic preparation whereas it was still adherent for the ones 

with a Pt underlayer. If the separation during metallographic preparation can be considered as a 

simple adhesion test, assuming that every single step in sample preparation is the same, the lack 

of separation in the presence of the Pt underlayer shows improvement in adherence. In summary, 

the slight improvement obtained by using Pt underlayers is believed to be a result of improved 

inherent interfacial toughness. However, more work is required to fully understand the Pt effect 

on the improved interfacial toughness in these systems. 
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(a) 

 

(b) 

Figure 74  Scanning electron micrographs of the TBC systems on NiCoCrAlY bond coats with 
Pt underlayers in the as processed condition. Surface as well as TBC defects were evident, ( a ). 
The TGO was very non-uniform, ( b ). 
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(d) 
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(e) 
 

 
 

(f) 

Figure 75  Scanning electron micrographs of  TBC systems on NiCoCrAlY bond coats with Pt 
underlayers after failure showing the fracture path ( a ), as well as typical features observed on 
the fracture surfaces such as RE rich oxides, ( b ), oxide inclusions, ( c ), transient oxides and 
TBC segments, ( d ). A cross sectional micrograph indicating damage in the vicinity of transient 
oxides and TBC defects is presented in (e).  It is also possible to get separation along the Pt 
underlayer- superalloy interface ( f ). 
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Figure 76  TGO thickness vs square root of time at 1100°C. The TGO growth rate on the state of 
the art TBC systems with NiCoCrAlY bond coats and the ones with Pt underlayers were similar, 
whereas the TGO growth on TBC systems with aluminized NiCoCrAlY bond coats were slower. 
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(a) 

 

(b) 

Figure 77  Scanning electron micrographs from TBC systems with state of the art NiCoCrAlY 
bond coats, ( a ), and  the NiCoCrAlY bond coats with Pt underlayers, ( b ), after 20 cycles of 
exposure at 1100°C before failure. The absence of separation during metallographic preparation 
for the specimen with Pt underlayer suggests improved interfacial toughness. 
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• Aluminized NiCoCrAlY Bond Coats - Aluminizing the NiCoCrAlY bond coats also 

improved the lives, but not to the extent obtained by Pt overlayers and surface polishing. In the 

as-processed condition, fewer defects were present along the interfaces compared to the ones 

identified for the state of the art NiCoCrAlY systems. The TGO was pure and more uniform and 

the interface was free of the surface defects. However, the interface was still irregular with 

associated TBC defects (Figure 78).  

Examination of these specimens as a function of exposure cycle showed that the interface 

became more irregular with time, similar to the behavior of the state of the art Pt aluminides 

(Figure 79a). The failure was more along or close to the TGO/TBC interface with some 

spallation also along the TGO/bond coat interface (Figure 79b). There were indications of 

separations along the TGO/bond coat interface prior to failure (Figure 79c). Al-rich nitrides were 

observed in these areas, which appear to have formed following the interface separation (Figure 

79d).  

The failure of the aluminized NiCoCrAlY systems are believed to be similar to the failure 

of the state of the art Pt aluminides which failed by the ratcheting mechanism. However, in 

addition to the ratcheting type of failure, aluminized bond coats also developed vertical 

separations in the TBC (Figure 80a) as well as voids along the TGO/bond coat interface (Figure 

80b), both of which are also believed to contribute to the failure.  These observations explain the 

relatively shorter lives of these systems compared to the state of the art Pt aluminides. The 

absence of Pt in the aluminized coatings is another factor that is believed to be important also in 

the performance difference. 

Comparison of the TGO thickness with state of the art NiCoCrAlY systems and the ones 

with a Pt underlayer showed that the TGO growth rate was slower for the aluminized 
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NiCoCrAlY systems (Figure 76). Thus, the presence of fewer defects as well as the slower TGO 

growth seems to be responsible for the improvement in the lives of these systems compared to 

the state of the art NiCoCrAlYs.  

 

 

Figure 78  Scanning electron micrograph of a TBC system with aluminized NICoCrAlY bond 
coat in the as processed condition showing the presence of a relatively defect free interface with 
more uniform TGO compared to the state of the art TBC systems. However, the interface was 
still irregular. 
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(b) 
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(c) 

 

(d) 

Figure 79  Scanning electron micrographs of TBC systems with aluminized NiCoCrAlY bond 
coats after failure. ( a ) The interface became more irregular with time, ( b ) Significant amount 
of failure was along or close to TGO/TBC interface, ( c ) There were indications of separation 
and reformation of the alumina prior to failure, ( d ) Al rich nitrides were observed at these sites 
where separation occurred prior to failure 
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(a) 

 

(b) 

Figure 80  Scanning electron micrographs of TBC systems with aluminized NiCoCrAlY bond 
coats after failure showing the development of  ( a ) vertical separations in the TBC, ( b ) voids 
in the bond coat. 
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• Surface Modified NiCoCrAlY Bond Coats - Vibro finishing, media finishing and hand 

polishing are the 3 surface preparation techniques that have been applied to NiCoCrAlY bond 

coats. The failure times of these systems with different surface preparation techniques are given 

in Table 4. Hand polishing resulted in significant improvements whereas media finishing and 

vibrofinishing did not improve the lives at all. 

  
Hand polished NiCoCrAlY Bond Coats:  These specimens were hand polished resulting in a 

surface finish with an approximate Ra value of 0.2µm. The cross sectional examination of these 

specimens in the as-processed condition showed that the interface was very smooth and free of 

the surface defects as well as the TBC defects (Figure 81a). Closer examination of the interface 

area showed the presence of a very uniform and continuous TGO ( Figure 81b) except in some 

localized areas where the continuity of the TGO was interrupted above Cr rich phases along the 

interface (Figure 81c). A few TBC defects were also observed above the areas where the porosity 

in the bond  coat intersected the surface (Figure 81d). 

 These specimens were also subjected to cyclic oxidation testing at 1100°C. One of the 

specimens did not fail even after 1520 cycles, which is a significantly long time compared to 

failure times of the state of the art NiCoCrAlY systems. Cross sectional examination of this 

specimen showed that a very thick TGO with significant amounts of RE rich oxide protrusions 

developed during exposure (Figure 82a) Closer examination of the interface area showed the 

presence of an almost defect free TGO/TBC interface (Figure 82b). Nevertheless, in some 

localized areas, there were still some transient oxides as well as cracks initiating in their vicinity 

(Figure 82c). There were also some small, localized buckles along the TGO/intermixed zone 

interface (Figure 82d), which might have formed by linking up of small voids along this interface 

(Figure 82e). However, the amount of these types of defects was too small to cause early failure 
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of these TBC systems. Cracks were also present along and/or close to the original TGO/bond 

coat interface above the reactive element rich oxide protrusions (Figure 82f). This cracking  may 

be due to the combined effect of stress concentration in the vicinity of these oxide protrusions as 

well as stored strain energy in the TGO.  If this specimen had not been taken out of the furnace 

before failure, it could have been expected to fail along the TGO/bond coat interface as the 

cracking along this interface became more extensive. The long life of this specimen, even in the 

presence of a very thick TGO and significant amounts of RE rich oxide protrusions, both of 

which drive cracking along the TGO/bond coat interface, indicates the importance of defects 

along or close to the TGO/TBC interface for the early failure of the state of the art TBC systems. 

 Two other specimens failed mainly along the TGO/bond coat interface with some 

spallation also along the TGO/TBC interface after 720 and 740 cycles of exposure. These 

specimens were from different batches than the other two. Accordingly, there were some 

variations in the TBC morphologies as well as amounts of reactive element rich oxide 

protrusions. They had some TBC defects such as spits from which cracks were observed to 

initiate (Figure 83a). One of them was observed to have an abnormal defect where accelerated 

oxidation occurred (Figure 83b). Some transient oxides were also observed. The relatively early 

failure of these specimens compared to 1520 cycles may be related to these defects. One other 

specimen, which was also hand polished, failed after 220 cycles which was a very early failure 

time compared to the failure times of the other specimens with the same conditions. Examination 

of the fracture surface (Figure 84a and 84b) as well as the cross section of this specimen (Figure 

84c and 84d) revealed significant amounts of failure along the TGO/intermixed zone interface in 

contrast to the failure of the other hand polished NiCoCrAlY bond coats. Transient oxides 

embedded in the intermixed zone were observed on the fracture surface (Figure 84e). Cracks 
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might have initiated in the vicinity of these transient oxides and/or voids along the 

TGO/intermixed zone interface and then might have propagated along this weak interface. Once 

cracks have initiated, their propagation may be relatively easy in the presence of very smooth 

interfaces due to lack of obstacles in their paths. This may result in premature failures in the 

presence of defects in more than a critical amount, which may be the case for the early failure of 

this specimen. However, more work is required to reach a conclusive result on this issue.  

 
Vibro Finished NiCoCrAlY Bond Coats: Vibro finishing the surfaces of the NiCoCrAY bond 

coats did not improve the lives at all. Cross sectional examination of the as-processed specimens 

showed that the interface was still highly irregular at localized areas with associated TBC defects 

(Figure 85a) These defects in the TBC were even larger than the ones on heavy grit blasted 

samples. However, there were also rather smooth areas through the interface (Figure 85b), which 

were not observed for the heavy grit blasted specimens. 

 The failure was mainly along the TGO/bond coat interface with numerous excursions into 

the TGO and TBC in the vicinity of the pronounced TBC defects as evident from the fracture 

surface as well as cross sectional micrographs given in Figures 86a and 86b, respectively. The 

cracks initiating in the vicinity of these, occasional but pronounced defects, were sufficient to 

cause early failure of these specimens despite the presence of smooth areas along the interface. 

Therefore, these results indicate the importance of a uniformly smooth interface to get improved 

lives. 

 
Media Finished NiCoCrAlY Bond Coats: Media and vibro finish are two different names given 

to basically the same processes performed at two different companies. Therefore, media finish 
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operation was also not successful in providing a uniformly smooth interface.(Figure 87) 

Accordingly, these specimens also failed at relatively short times as can be seen from Table 4  

and their failure behavior was similar to the failure of the state of the art and the vibro finished 

specimens. 
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( b ) 
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( c ) 

 

( d ) 

Figure 81  Scanning electron micrographs of a TBC system with hand polished NiCoCrAlY 
bond coat in the as processed condition,  at ( a ) low and ( b ) high magnifications, showing a 
very smooth interface which is free of many defects identified for the state of the art systems 
except at some localized areas where the continuity of the TGO is interrupted above the Cr rich 
phases,  ( c ), and where the porosity in the bond coat intersected the surface, ( d ). 
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure 82  SEM micrographs of a TBC system with hand polished NiCoCrAlY bond coat after 
1520 cycles of exposure at 1100°C before failure showing  the presence of a very thick TGO 
with significant amounts of RE rich oxide protrusions, ( a ). The TGO/TBC interface was almost 
free of defects, ( b ), except at localized areas with transient oxides, ( c ), and small buckles along 
the TGO/intermixed zone interface, ( d ), which seemed to develop by linking up of small voids 
along this interface, ( e ). Cracks were present in the vicinity of RE rich oxide protrusions, ( f ) 
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(a) 

 

(b) 

Figure 83  Scanning electron micrographs of TBC systems on hand polished NiCoCrAlY bond 
coats which failed after 720 cycles of exposure at 1100°C. Spits, ( a ), as well as an abnormal 
defect, ( b ), were observed. 
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(d) 

 196



 

 

(e) 

Figure 84  Scanning electron micrographs of a TBC system on hand polished NiCoCrAlY bond 
coat which failed after 220 cycles of exposure at 1100°C. Significant amount of failure was 
along the TGO/intermixed zone interface as can be seen at ( a ) low and ( b ) high magnification 
micrographs from the fracture surface, as well as cross sectional micrographs, ( c ) and ( d ). 
Transient oxides were also present embedded in the intermixed zone, ( e ). 
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(a) 

 

(b) 

Figure 85  Scanning electron micrographs of a TBC system with vibro finished NiCoCrAlY 
bond coat in the as processed condition showing large TBC defects, ( a ). There were also 
smooth areas along the interface, ( b ). 
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(a) 

 

(b) 

Figure 86  Scanning electron micrographs of a TBC system with vibro finished NiCoCrAlY 
bond coat from the fracture surface, ( a ), and cross section, ( b ), showing failure in the vicinity 
of pronounced TBC defects. 
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Figure 87  Scanning electron micrograph from a TBC systems with media finished NiCoCrAlY 
bond coat in the as processed condition showing the presence of TBC defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 200



 

4.2.4.2  Platinum Aluminide Bond Coats  Based upon the results obtained on the failure of the 

state of the art Pt aluminide systems, various modifications were performed. These modifications 

included: deposition of different thicknesses of Pt and aluminide layers as well as utilizing 

various surface preparation techniques. The general characteristics of these modified systems 

will be given next. 

 
• Pt and Aluminide Thickness Variations - The failure times for the TBCs on Pt aluminide 

bond coats with different thicknesses of Pt and aluminide layers did not show any trend as can be 

seen from Table 5. It has also been observed that for some specimens the actual thicknesses of 

the bond coats as well as the TBCs were different than the nominal values given in Table 5. 

Moreover, some of the specimens had premature failures due to some abnormal defects and/or 

contamination. All these factors made the analysis of thickness effects complicated. On the other 

hand, surface preparation was found to have a pronounced effect on the failure times as well as 

the failure characteristics, which will be explained in more detail. 

One general observation that could be obtained on the thickness variations was less Al 

depletion for the specimens with thicker layers of Pt as well as aluminides. Figure 88a is from a 

specimen with normal thickness of Pt and aluminide layers ( 6.35µm Pt, 38.1µm aluminide) after 

1080 cycles of exposure and the microstructure consisted of mainly γ’ phase with small amounts 

of β phase left whereas the specimens with double thickness of aluminide (Figure 88b) as well as 

double thickness of Pt and aluminide layers (Figure 88c), after 1240 and 860 cycles of exposures 

at 1100°C, respectively, consisted of mainly β phase with some γ’ phase at the grain boundaries. 

These microstructural differences are expected to cause a marked difference in failure for longer 

lives where Al depletion becomes a major issue. However, Al depletion of the bond coats 

examined under this study did not seem to be the major factor for their failures.  
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One other observation was the reduced void density for the specimens with thicker Pt and 

aluminide layers, which were light grit blasted. This seems to be a result of diffusion kinetics 

which was effected by varying thicknesses of Pt and aluminide layers, as also mentioned before. 

 

 

Table 5  Failure Times for TBC systems with modified Pt Aluminide Bond Coats 

 
Failure Time at 1100°C  (# of 1 hr cycles to failure) 
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Aluminide 
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--- 
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( b ) 
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( c ) 

Figure 88  Optical micrographs of TBC systems with as aluminized  Pt aluminide bond coats 
with varying thicknesses of Pt and Aluminide layers after exposure at 1100°C. The bond coat 
with normal thickness of Pt and aluminide layers consisted of significant amounts of γ’ phase 
after 1080 cycles, ( a ), whereas the specimens with double thickness of aluminide, ( b ), and 
with double thickness of Pt and aluminide layers, ( c ), after 1240 and 860 cycles of exposure, 
respectively, had much less γ’ phase. 
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 •Surface Modified Platinum Aluminide Bond Coats - In this part, the specimens will not be 

differentiated in terms of the various thicknesses of Pt and aluminide layers, instead, the general 

behavior, which is believed to be surface condition related, will be presented. 

As  Aluminized Platinum Aluminide Bond Coats: The Pt aluminide bond coats without 

any surface modification have ridges at the grain boundaries. It has been shown previously that 

these grain boundary ridges act as crack initiation sites due to tensile stresses generated at the 

peak of these ridges. 

Figure 89a shows a typical cross section of TBC systems on as-aluminized Pt aluminide 

bond coats. The TBC was very dense close to TGO (~10 µm) with parallel rows of pores (Figure 

89b). This morphology is probably a result of an initially very flat interface except at the ridges. 

TBC deposition conditions may also be playing a role for the development of this dense TBC. 

Small openings developed in the TBC above these ridges (Figure 89c), and then they enlarged 

with exposure resulting in the formation of vertical separations in the TBC (Figure 89d). 

When these specimens were exposed to cyclic exposure conditions, small buckles, which 

were visible even by the naked eye, formed on the surface at early stages of their lives. Figures 

90a through 90c are macrographs taken from the same specimen as a function of time. As can be 

seen from this sequence of macrographs, the specimens did not fail until the small localized 

buckles got larger and then linked together forming a critical sized buckle. Figure 90d is a cross 

sectional micrograph  showing these buckles. 

Examination of the fracture surface showed that the failure was mainly in the TBC 

(Figure 91a). Higher magnification micrographs of the fracture surface (Figure 91b) as well as 

the cross sections (Figure 91c) clearly showed the cracks that developed at these grain boundary 

ridges. These cracks, once initiated, propagated along the weak points, which were the row of 
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pores in the TBC just above the TGO for these samples. Thus, the formation of buckles at 

localized areas at early stages of their lives seems to be related to crack formation at the ridges 

and their propagation in the TBC. In these specimens, vertical separationss also developed in the 

TBC above the ridges. The presence of these vertical separations might also have contributed to 

crack initiation and/or propagation. However, examination of another set of as-aluminized 

specimens which developed smaller amounts of vertical separations, also showed crack initiation 

at the ridges that were not associated with vertical separations (Figure 91d). This set of 

specimens did not develop a continuous layer of intermixed zone either (Figure 92a) as the first 

set of specimens did (Figure 92b). These observations also confirm the role of TBC deposition 

conditions on both development of vertical separations and the intermixed zone. 

Cross sectional examination of these specimens showed a highly deformed bond coat 

surface (Figure 93a) except at areas where the bond coat was still in contact with the TBC at the 

time of failure (Figure 93b) This observation can be explained by the presence of a TBC 

constraint to deformation of the bond coat. Therefore, once the TBC separated from the TGO as 

a result of crack initiation at the ridges and their propagation in the TBC, the bond coat beneath it 

could deform freely without the constraint given by the TBC. In other areas where the TBC was 

in contact with the bond coat, the interface remained smooth. Similar observations on TBC 

constraint to the deformation of the bond coats were also reported by Tolpygo and Clarke [74]. 

The TGO on top of the ridges also cracked vertically (Figure 94a) and then with 

continued exposure, the cracks propagated along the TGO/bond coat interface (Figure 94b) 

followed by reoxidation along this interface (Figure 94c) Preferential oxidation, probably at the 

grain boundaries, was observed in some areas (Figure 94d). 
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Some of the specimens were also tested under 15 hour cycles. Cracks, that initiated at the grain 

boundary ridges, were also observed for these specimens (Figure 95a) However, the cracking 

along the TGO/bond coat interface and then reoxidation was not present in contrast to specimens 

exposed to 1 hour cycles. Thus, the failure of this specimen under 15 hour cycles, even after 

shorter hot times, without separation along the TGO/bond coat interface may indicate that the 

failure of these specimens were mainly due to linking up of the cracks in the TBC.  

One other specimen was exposed to an isothermal test at 1100°C for 1125 hours, which is 

a little bit longer than the time at  temperature for the cyclically tested specimens. This specimen 

did not fail. Examination of the cross section showed that there was not much cracking in the 

TBC and the separation during metallographic preparation was mainly along the TGO/bond coat 

interface (Figure 95b). These results also show the importance of thermal cycles on crack 

formation at the ridges. In the absence of these cracks, the failure is expected to be more along 

the TGO/bond coat interface as the stored energy in the TGO increases.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 89  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 
coats in the as processed condition showing grain boundary ridges, ( a ), dense TBC with parallel 
row of pores, ( b ) and small openings in the TBC above the ridges, ( c ), which enlarge with 
exposure resulting in the formation of vertical separations in the TBC, ( d ). 
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(b) 
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(c) 

 

(d) 

Figure 90  Macrographs of a TBC system on as aluminized Pt aluminide bond coat after 
exposure at 1100°C for 360 ( a ), 680 ( b ) and 860 cycles, ( c ), showing propagation of failure 
with time. The SEM micrograph in ( d ) shows the buckles in cross section. 
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(c) 

 

(d) 

Figure 91  Scanning electron micrographs of TBC systems on as aluminized Pt aluminide bond 
coats after failure. The failure was mainly in the TBC, ( a ), and cracks were present at the grain 
boundary ridges as can be seen from the fracture surface, ( b ), as well as cross section, ( c ). 
Cracks at the ridges were also  present in the absence of vertical separations in the TBC, ( d ). 
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(a) 

 

(b) 

Figure 92  Scanning electron micrographs of TBC systems on as aluminized Pt aluminide bond 
coats with TBCs deposited by different companies. There was not any evidence of an intermixed 
zone for one set  of  specimens, ( a ), whereas there was a continuous layer of intermixed zone 
for the other set of specimens, ( b ) 
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(a) 

 

(b) 

Figure 93  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 
coats after failure showing a highly deformed bond coat surface, ( a ), except at areas where the 
bond coat was still in contact with the TBC at the time of failure, ( b ). 
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(c) 

 

(d) 

Figure 94  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 
coats showing vertical crack formation at the ridges, ( a ), and their propagation along the 
TGO/bond coat interface, ( b ), followed by reoxidation along this interface, ( c ). Preferential 
oxidation, usually at the grain boundaries, was observed in some areas, ( d ). 
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(a) 
 

 
 

(b) 

Figure 95  Scanning electron micrographs of TBC systems with as aluminized Pt aluminide bond 
coats after exposure under 15 hr cycles, ( a ), as well as under isothermal conditions, ( b ). 
Separation along the TGO/bond coat interface followed by reoxidation was not observed for 
these specimens. Cracking at the grain boundary ridges was not evident for the isothermally 
tested specimen. 
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Heavy Grit Blasted Platinum Aluminide Bond Coats: The failure behavior of the heavy grit 

blasted Pt aluminide bond coats were explained previously in subsection 4.2.3.2.  

 
Light Grit Blasted Platinum Aluminide Bond Coats: The Pt aluminide bond coats that were given 

light grit blasting and preoxidation prior to TBC deposition outperformed the others. The 

interface in the as-processed condition was smooth compared to the ones that were given heavy 

grit blasting (Figure 96) Accordingly, the morphology of the TBC close to the TGO was also 

more uniform and columnar with much fewer “Corn Kernel TBC defects” commonly observed 

with the heavy grit blasted specimens. 

 When these specimens failed after relatively long amounts of time compared to the 

failure of other Pt aluminides, the failure was mainly along the TGO/bond coat interface (Figure 

97a). The interface remained relatively smooth with few ratchets (Figure 97b). Examination of 

the fracture surface as well as the cross section revealed the presence of a large amount of voids, 

many of which seemed to develop at the grain boundaries (Figure 97c). In some localized areas, 

the voids as well as the flat bond coat surfaces around them were reoxidized before final failure 

(Figure 97d). This indicates that some separation along the TGO/bond coat interface prior to 

failure occurred in the vicinity of these voids. However, it should be mentioned here that the void 

density changed for specimens with thicker Pt and aluminide layers as mentioned previously. 

Void formation in bond coats must be due to vacancy condensation at preferred sites such as 

grain boundaries in the bond coat. It also appears that some voids may also be caused by phase 

transformations whereby volume changes arise. 

 Since these specimens had thick TGOs as a result of their relatively long lives, the stored 

energy in the TGO is expected to have a significant contribution on the failure. Therefore, void 

development as well as the stored strain energy in the TGO is believed to interact to cause failure 
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of these systems. In the presence of abnormal defects and/or contamination, some specimens 

were observed to fail earlier.  

 The most significant factor that improves the lives of these systems compared to state of 

the art heavy grit blasted Pt aluminide systems seems to be the prevention of the ratcheting type 

of failure due to stronger constraint of the TBC in the absence of “TBC defects” in the as-

processed condition. 

 
Media Finished Platinum Aluminide Bond Coats: Another conventional surface preparation 

technique used was media finishing. The media finished specimens were also preoxidized prior 

to TBC deposition. In the as-processed condition, the interface was smooth, nevertheless, there 

was some evidence of grain boundary ridges, which could not be removed completely as evident 

in Figure 98. 

 When they failed, the failure was mainly along the TGO/bond coat interface as in the 

case of light grit blasted specimens (Figure 99a). The interface was relatively smooth except at 

areas of preferential oxidation, most of which are believed to be along the grain boundaries 

(Figures 99b and 99c). 

 The buckles seemed to be associated with the areas that had pronounced amounts of 

preferential oxidation as evident in Figures 100a and 100b. Therefore, it is possible that the 

failure initiated in the vicinity of these localized areas of preferential oxidation. The macrograph  

taken after the specimen failed also indicated failure initiation at localized areas. In other areas, 

the TBC was still adherent (Figure 100c). 
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The preferential oxidation may be a consequence of cracking in the vicinity of the 

remnants of the grain boundary ridges. Preferential oxidation along the grain boundaries has also 

been shown to follow cracking at the grain boundary ridges for the as aluminized systems by 

Gell et al. [65].  

 The TGOs that developed on these specimens were thinner compared to the TGOs that 

developed on the grit blasted specimens. The slower TGO growth rate in addition to inhibition of 

the ratcheting type of failure appear to be contributing factors to the improved lives of these 

systems. The comparatively faster TGO growth on grit blasted samples may be due to 

incorporation of impurities during grit blasting as proposed by Tolypgo and Clarke [75]. Another 

possible explanation can be the effect of surface condition on the microstructure of the TGO 

which can directly affect the TGO growth rate.  

   
Hand Polished Platinum Aluminide Bond Coats: The specimens were hand polished with a final 

surface finish of 3 microns. Some difficulties were encountered during polishing due to coating 

build up at the edges of the specimens. This unevenness of the surface resulted in more material 

removal at the edges, whereas some remnants of the grain boundary ridges were still present 

close to center of the specimen. There were only 2 hand polished platinum aluminide bond coats 

that were tested and both of them failed by formation of a  buckle close to the center of the 

specimen exactly where the remnants of the grain boundary ridges were present (Figures 101a 

and 101b) . Other areas away from the buckles still looked adherent. Examination of the fracture 

surface below the buckles (Figure 101c) as well as the underside of the TBC (Figure 101d) also 

showed some areas with grain boundary networks, which may be another indication of failure in 

the vicinity of grain boundaries. The lives of these 2 specimens were still relatively long 

compared to the lives of heavy grit blasted specimens even in the presence of defects. These 
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observations also show the importance of the smooth surface in the improved lives of these 

systems 

 The cross sectional examination showed that the TGO/TBC interface remained relatively 

flat (Figure 102a). However, the TGO/bond coat interface was irregular as a result of thickness 

variations in the TGO (Figure 102b). Small pores were present in the TBC close to the TGO 

(Figure 102c). In localized areas, these pores linked up causing separations in the TBC. The bond 

coat underneath deformed as evident in Figure 102d. This is consistent with the proposed 

mechanism about TBC constraint where the bond coat deforms as long as it loses contact with 

the TBC. However, it is not clear why these separations formed in the TBC in the first place. The 

relatively high stored energy in the TBC due to its denser microstructure on smooth surfaces may 

be responsible for the initiation and then propagation of these defects.  

 The TGO growth rates were also slower compared to grit blasted samples as observed for 

the media finished specimens. Possible explanations for this difference were given previously. 
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Figure 96  Scanning electron micrograph of a TBC system with light grit blasted Pt aluminide 
bond coat in the as processed condition showing a relatively smooth interface compared to the 
interfaces of heavy grit blasted Pt aluminides. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 97  Scanning electron micrographs of TBC systems with light grit blasted Pt aluminide 
bond coats after failure showing that the failure was mainly along the TGO/bond coat interface, 
(a). The interface remained smooth with very few ratchets, ( b ), and voids, which were usually 
at the grain boundaries of the bond coat, were evident ( c ). There were indications of separations 
along the TGO/bond coat interface in the vicinity of the voids prior to failure, ( d ). 
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Figure 98  Scanning electron micrograph of a TBC system with media finished Pt aluminide 
bond coat in the as processed condition showing the presence of remnants of grain boundary 
ridges. 
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(b) 
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(c) 

Figure 99  Scanning electron micrographs of a TBC system with media finished Pt aluminide 
bond coat after failure. The failure was mainly along the TGO/bond coat interface, ( a ), and the 
interface was relatively smooth compared to heavy grit blasted Pt aluminides except at areas of 
preferential oxidation which were usually observed to be along the grain boundaries, ( b ) and 
(c). 
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(b) 
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(c) 

Figure 100  Scanning electron micrographs of a TBC system with media finished Pt aluminide 
bond coat after failure showing buckles above areas with pronounced amounts of preferential 
oxidation, ( a ) and ( b ). The macrograph of this specimen after failure also indicated failure 
initiation at localized areas, ( c ). 
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(b) 
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(c) 

 

(d) 

Figure 101  Macrographs of TBC systems with hand polished Pt aluminide bond coats showing 
buckles formed close to the center of the specimens, ( a ) and ( b ). Examination of the fracture 
surface, ( c ), as well as underside of the TBC, ( d ), under these buckles showed a grain 
boundary network. 
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(c) 

 

(d) 

Figure 102  Scanning electron micrographs of TBC systems with hand polished Pt aluminide 
bond coats after failure. The TGO/TBC interface remained smooth, ( a ), whereas the TGO/bond 
coat interface was irregular due to thickness variations in the TGO, ( b ). Small pore like 
openings developed in the TBC, ( c ), which then linked up causing larger separations which 
were followed by deformation of the bond coat underneath, ( d ). 
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4.2.4.3  No Bond Coat Systems  The lives of no bond coat TBC systems were surprisingly long 

as can be seen from the failure times given in Table 6. They were not expected to perform well 

due to poor oxidation resistance of the superalloys. However, it has been observed that the poor  

oxidation resistance could be offset by some other characteristics for TBC performance, which 

will be discussed next. 

There were two different batches of no bond coat TBCs. The first batch was given a 

preoxidation heat treatment prior to TBC deposition whereas the second batch was just heavy 

grit blasted without any preoxidation. The cross sectional examination of these specimens in the 

as-processed condition showed that the specimens from the first batch did not develop a 

continuous layer of TGO (Figure 103a) whereas the ones from the second batch did (Figure 

103b). Some irregularity of the interface was evident as a result of grit blasting, which also left 

numerous grit particles embedded at the interface (Figure 103c).   

The first batch of specimens had relatively shorter failure times compared to the second 

batch of specimens. The failure of one of the specimens from the first batch after 140 cycles at 

1100°C was entirely along the TGO/TBC interface. Significant amounts of transient oxides were 

observed at this interface (Figure 104a). Cross sectional examination of this specimen  showed 

that the transient oxides formed as a thick and continuous layer and were poorly bonded to the 

TBC (Figure 104b). This observation explains the early failure of this specimen all along this 

interface. There was a good trend showing improvements in lives with decreased amounts of 

transient oxides. Figure 104c is a cross sectional micrograph from one of the specimens, also 

from the first batch, showing fewer amounts of transient oxides which did not develop as a 

continuous layer. This specimen failed after 1280 cycles and the failure was more along the 

TGO/superalloy interface (Figure 104d). The specimens from the second batch had even longer 
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lives, the shortest being 1580 cycles. One of these specimens was examined after 1840 cycles 

before failure and this one had even fewer transient oxides compared to the longest lived 

specimen from the first batch (Figure 104e). This observation also confirms the improved lives  

of no bond coat TBC systems with smaller amounts of transient oxides. The other specimens 

from the second batch had lives longer than 3500 cycles. The test was stopped before they failed. 

 The surfaces remained smooth after long exposure times such as after 1840 cycles as 

evident in Figure 105. The high strength of the superalloy, which did not let the surface deform, 

seems to play a crucial role for the significantly long lives of these specimens. However, our 

results also showed that premature failures could occur if significant amounts of transient oxides 

were present. Therefore, it is very important to determine the optimized processing conditions 

that result in the formation of as few transient oxides as possible for the expected durability and 

the reliability of these systems.  

 Some of the superalloys were electroplated with Pt prior to TBC deposition. There were 

also two different batches of these systems. The cross sectional examination of the as-processed 

specimens from the first batch showed the presence of a non-continuous TGO (Figure 106a) as 

in the case of the first batch of no bond coat TBCs. On the other hand, the specimens from the 

second batch had a continuous layer of  TGO as evident in Figure 106b. The interfaces were 

irregular, probably due to electroplating of Pt as mentioned earlier. 

The first batch of specimens had relatively shorter lives compared to the very long lives 

of the second batch of specimens (Table 6) Figure107a is from the fracture surface of a specimen 

from the first batch, showing significant amounts of voids. Transient oxides in addition to voids 

were also present  (Figure 107b). The significant amounts of voids seem to be responsible for the 

relatively early failure of these specimens, mainly along the TGO/Pt overlayer interface 
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compared to the second batch. None of the specimens from the second batch failed up to date. 

However, examination of one specimen after 2300 cycles of exposure before failure indicated the 

presence of a rather pure TGO (Figure 108a) with intermittent areas of transient oxides (Figure 

108b) Separation along the TGO/Pt overlayer interface occurred during metallographic 

preparation, however, the TGO/TBC interface looked quiet adherent, except at localized areas of 

transient oxides, despite the presence of numerous vertical separations (Figure 108c).  

The significantly improved lives of these specimens, despite the initially irregular interface 

and numerous vertical separations in the TBC, as well as some transient oxides might be a 

consequence of a very high interfacial toughness, which still remains to be validated. 

 

Table 6  Failure Times for no Bond Coat TBC systems 

  
Failure Time at 1100°C   

(# of 1 hr cycles to failure) 
 

 
N5 (first batch) 

 

 
140, 1280, 700+ 

 
N5 (second batch) 

 

 
1580, 4100, 1840+, 3660+ 

 
N5-Pt Overlayer (first batch) 

 

 
500, 660 

 
N5-Pt Overlayer (second batch) 

 

 
2300+, 4300+ 
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(b) 
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(c) 

Figure 103  Scanning electron micrographs of no bond coat TBC systems in the as processed 
condition. The specimens from the first batch did not develop a continuous layer of TGO, ( a ), 
whereas the ones from the second batch did, ( b ). Some irregularity of the interface was evident 
as a result of grit blasting, ( c ). 
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(e) 

Figure 104  Scanning electron micrographs from no bond coat TBC systems after 140 cycles, (a) 
and ( b ), 1280 cycles, ( c ) and ( d ), as well as after 1840 cycles  before failure, ( e ). There was 
a good trend showing improvement in lives with less transient oxides.   
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Figure 105  Scanning electron micrograph from a no bond coat TBC system after 1840 cycles of 
exposure before failure showing the presence of a very smooth interface. 
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(a) 

 

(b) 

Figure 106  Scanning electron micrographs of no bond coat TBC systems with Pt overlayers in 
the as processed condition. The specimens from the first batch did not develop a continuous layer 
of TGO, ( a ), whereas the ones from the second batch did, ( b ). 
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(a) 

 

(b) 

Figure 107  Scanning electron micrographs of no bond coat TBCs with Pt overlayers from the 
first batch showing the presence of voids, ( a ), and transient oxides, ( b ), after failure. 

 245



 

 

(a) 

 

(b) 

 246



 

 

(c) 

Figure 108  Scanning electron micrographs of second batch of no bond coat TBCs with Pt 
overlayers  after 2300 cycles of exposure before failure. The TGO was rather pure, ( a ), with 
intermittent areas of transient oxides, (b ). Numerous vertical separations were present in the 
TBC, ( c ). 
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4.3  SOME MICROSTRUCTURAL OBSERVATIONS 

 
This sections involves some general microstructural observations which are not directly related 

with the failure of these systems, however, may be important for other reasons.  

The morphology of the TGO underside of the spalled TBC is different depending on 

whether it was in contact with the bond coat during exposure or not as evident from Figure 109. 

The ridge like TGO morphology observed above a void seems to develop by the reaction of 

incoming oxygen through the TGO with Al available from the vapor phase or surface diffusion 

above the void.  

It is also possible to determine if the TGO had spalled and reformed before the final 

failure by examining the morphology of the TGO on the fracture surface. If it has a ridge like 

morphology, it was not in contact with the TBC at the time of failure (Figure 110). These 

observations may give important clues on where the separations occurred before final failure. 

However, it is also important to know the history of the specimen, since similar morphologies 

may develop if the TBC spalls in the furnace and the exposed bond coat reoxidizes. 

For some of the specimens there was evidence of sintering between the spalled and the reformed 

alumina. (Figure 111a and 111b).  

The TGO developed on some of the specimens was observed to be non-uniform in 

thickness (Figure112). The origin of these thickness variations is not clear. However, one 

possible explanation may be the more rapid transport of oxygen through the grain boundaries of 

the TGO resulting in the formation of thicker oxides at these sites. These thickness variations in 

the TGO  became less apparent as the TGO grew, probably due to conversion of small bond coat 

protrusions into oxides . 
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When the specimens with thickness variations in the TGO failed along the TGO/bond 

coat interface, the fracture surface consisted of small protrusions of bond coat (Figure113a). 

Cross sectional examination as well as examination of the underside of the spalled TBC showed 

that  the failure could sometimes cut through these protrusions of bond coats leaving them 

isolated in the TGO (Figures 113b  and 113c, respectively).  

Thickness variations in the TGO can sometimes be a consequence of an initially highly 

irregular interface such as is evident in Figure 114a. The protrusions of bond coat into the TBC, 

due to the irregularity of the interface, are converted into oxide quickly as a result of increased 

surface/volume ratio. This results in thickness variations in the TGO. The TGO/bond coat  

interface gradually becomes smoother as a result of this process whereas the TGO/TBC interface 

tries to retain the initial surface roughness (Figure114b). 

Grain imprints of the TGO were observed on the bond coat surfaces if the TGO was in 

contact with the bond coat during exposure (Figure115a). It is an effective way to determine the 

grain size of the alumina at the bond coat interface by measuring the size of the grain imprints. It 

is also sometimes possible to observe the grain growth if the reformed alumina also spalls, 

leaving new grain imprints. Figure115b shows the grain imprints of the reformed alumina that 

developed on the previous grain imprints of the spalled alumina. The difference in the grain size 

showed a significant amount of grain growth that took place in the TGO upon exposure. Figure 

115c is another example showing the grain imprints of both original and reformed alumina side 

by side. 

The γ’ phase was usually observed to form at the grain boundaries of the β-phase of Pt 

Aluminide bond coats (Figure 116a). One set of specimens cooled slowly in the furnace due to 

some problems that developed during a cyclic test. The γ’ was then observed to form not only at 
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the grain boundaries but also in the β-phase (Figure 116b). Another observation was the absence 

of γ’ phase after 15 hours of exposure at 1200°C followed by quenching the specimen in cold 

water (compare Figures 116c and 116d where the former was quenched and the latter was not) 

All these results indicate the importance of cooling rate on γ’ formation. 

During metallographic sample preparation, separation along the interfaces as well as 

cracking  in the bond coat may occur. The cracking along the β grain boundaries and/or β /γ’ 

interfaces, as evident in Figures 117a and 117b, may be an indication of weaknesses at these 

sites. 

Segmentation can take place in the TBC upon exposure (Figure 118) This seems to be an 

undesirable situation since the TBC segments, which are not connected to the rest of the TBC, 

can come off leading to localized failure of TBCs. These segments are believed to have formed 

by a mechanism similar to the development of vertical separations in the TBC, where small 

separations present in the as-processed condition enlarge with exposure as a consequence of 

sintering. 
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Figure 109  Scanning electron micrograph from the underside of a spalled TBC showing the 
ridge like morphology of the alumina that developed above voids. 
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Figure 110  Scanning electron micrograph from the fracture surface of a specimen showing a 
ridge like alumina morphology which indicates that the TGO was not in contact with the TBC at 
the time of failure. 
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(a) 

 

(b) 

Figure 111  Scanning electron micrographs  showing examples to sintering between the spalled 
and the reformed alumina. The arrows point to the interfaces where sintering occurred. 
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Figure 112  Scanning electron micrograph showing an example to thickness variations in the 
TGO. 
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(a) 

 

(b) 

 255



 

 

(c) 

Figure 113  Scanning electron micrographs from the fracture surface, ( a ), cross section, ( b ) 
and underside of the spalled TBC of a specimen which developed bond coat protrusions. The 
failure sometimes  cut through these bond coat protrusions leaving them isolated in the TGO as 
can be seen in ( b ) and ( c ). 
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(a) 

 

(b) 

Figure 114  Scanning electron micrographs from a specimen which had a highly irregular 
interface in the as processed condition, ( a ). Upon exposure, thickness variations in the TGO 
developed as a result of the initially irregular interface, ( b ). 
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(c) 

Figure 115  Scanning electron micrographs from the fracture surface of a specimen showing 
grain imprints of the original TGO, ( a ), as well as the grain imprints of  the reformed and then 
spalled TGO, ( b ). The grain imprints of the original and reformed TGO can be seen side by side 
in ( c ). 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 116  Optical micrographs showing  the effect of cooling rate on the formation of γ’ phase. 
The γ’ phase usually developed along the grain boundaries after air cooling, ( a ), whereas it 
developed in the β phase as well as along the grain boundaries after furnace cooling, ( b ). One of 
the specimens that was air cooled after 15 hrs of exposure at 1200°C developed γ’ phase along 
the grain boundaries, ( c ), whereas the other specimen which was quenched after same exposure 
did not develop γ’ phase , ( d ). 
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(a) 

 

( b ) 

Figure 117  Scanning electron micrographs showing cracking along the β grain boundaries 
and/or β/γ’ phase boundaries during metallographic sample preparation. 
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Figure 118  Scanning electron micrograph showing TBC segmentation. 
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4.4  IMPORTANT CONDITIONS NECESSARY FOR OPTIMIZED 

PERFORMANCES AND RECOMMENDATIONS FOR FUTURE WORK 

 Based upon the results obtained by examining a variety of TBC systems, the defects as well as 

the important factors in the failure of TBC systems were determined. The findings from this 

study opened another area of research on how to control the processing conditions to fabricate 

the TBC systems with optimized performances. Moreover, some important issues that still need 

more in depth studies for elucidation have been defined. 

The surface condition of the bond coats as well as the morphology of the TBC close to 

the TGO, which may be a function of both surface condition and TBC deposition parameters, 

have been found to be very important factors that determine the performance of these TBC 

systems. Based upon the observations from this study, the surface preparation techniques for 

improved performance should result in surfaces which are smooth enough to prevent the 

development of TBC defects but not so smooth that they result in the development of less strain 

tolerant, dense TBCs. In addition to leading to formation of less strain tolerant dense TBCs, very 

smooth interfaces might also have the disadvantage of acting as fast propagation sites for cracks 

due to lack of obstacles in their paths. Therefore, the critical defect density, above which the 

system fails, might be less in the case of very smooth interfaces. One experiment to test this 

hypothesis may be performed by having a controlled amount of defects, if possible, in systems 

with a very smooth and a rough interface, and examine the damage in the vicinity of these 

defects upon exposure. Results from such a test would be very valuable to understand the 

reliability of the systems with very smooth interfaces. However, it should also be mentioned here 

that a significant number of defects is eliminated only by having smooth surfaces. Therefore, 
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even if the hypothesis given above is correct, the specimens with very smooth surfaces may still 

perform better than the ones with rough surfaces. 

Light grit blasting (followed by preoxidation) was found to be an effective surface 

preparation technique that meets the two criteria, which were mentioned in the above paragraph, 

in the case of Pt aluminide bond coats and resulted in improvements in the lives of these systems 

compared to the current state of the art heavy grit blasted TBC systems. Media finishing also 

improved their lives despite the presence of remnants of grain boundary ridges. The TGO growth 

was slower on the media finished specimens compared to the grit blasted ones. Slower TGO 

growth rate can make this surface preparation technique a better candidate for the future 

applications. However, it still needs to be examined whether complete removal of the grain 

boundary ridges, which may be possible by varying the processing parameters, will result in 

more improvement in lives. Moreover, the effects of very smooth interfaces on premature 

failures, if any, still need to be ascertained. Hand polishing also resulted in the development of 

slow growing TGOs. However, it is not a practical surface preparation technique that can be used 

in industry, and its use was limited only to laboratory studies to help understand the surface 

condition effects. Unfortunately, hand polishing was the only surface preparation technique that 

resulted in improvement in the lives of TBC systems with NiCoCrAlY bond coats in this study. 

Since their surfaces were highly irregular in the as-processed condition, the techniques such as 

media finishing and vibrofinishing were not effective in smoothening the surface. Developing 

practical surface preparation techniques that will result in improved performance of these 

systems seems to be a very important area for future work if the very significant improvements 

obtained with smooth surfaces for these systems are to be utilized.  
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The TBC defects as well as the unfavorable TBC morphologies did not develop as a 

consequence of surface condition only, but also the TBC deposition conditions were important. 

Substantial variations in TBC morphologies and TBC defects were observed for specimens from 

different companies as well as for specimens from the same company but from different batches. 

Some examples of the undesirable TBC morphologies and/or defects identified in this study were 

given throughout the text.  More work can be performed on specimens with the only difference 

being the TBC deposition conditions. Such a study would be important to better understand the 

role of different TBC morphologies on the performance of these systems. Moreover, it would 

also help to determine the optimized TBC processing parameters for improved lives. If the TBC 

deposition conditions can be standardized for optimum performance, this would also increase the 

reproducibility and reliability.  

Once improved lives are obtained by optimizing the surfaces as well as the TBC 

deposition conditions, which are believed to have a first order effect on the failure of TBC 

systems, then other issues also become important to get more significant improvements 

The characteristics of the TGO, such as growth rate and composition, have also been 

found to have a pronounced effect on the performance of the TBC systems as mentioned 

previously. Preoxidation of the bond coats prior to TBC deposition may be one possible way to 

control the TGO characteristics as also reported elsewhere [56, 58]. However, our results showed 

that even shorter lives can be obtained as a result of preoxidation treatments given prior to TBC 

deposition.  Therefore, it is important to define the correct preoxidation conditions. It would be 

very valuable if preoxidation conditions that result in the development of slow growing pure 

TGOs (i.e. α-alumina) could be defined. It should also be kept in mind that each system may 

need different preoxidation treatments for improved performance. Therefore, extensive studies 
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on this issue seem to be essential to be able to get beneficial effects from preoxidation 

treatments.  

 The temperature dependence of the state of the art TBC failures, which suggests the role 

of TGO growth on the failures, was mentioned previously. In this study the modified systems 

were tested only at 1100°C, data points of which were also shown in  Figure 21. Therefore, more 

testing of the modified systems (i.e. hand polished specimens) at different temperatures would be 

very important to see whether a similar temperature dependence holds or not. 

The failures of the TBC systems with Pt aluminide bond coats used in this study have 

also been shown to be affected by the bond coat properties. Deformation of the bond coat by 

ratcheting was observed to be less pronounced for the specimens with larger grain size. 

Consequently,  the failure times were relatively longer. However, the fact that the specimens 

with different grain sizes were from different companies with some other minor differences and 

the number of samples tested was limited, more work must be performed to confirm these 

observations by using specimens with the only difference being the bond coat grain size.  

Another important issue related to bond coat properties is the void development, which is 

believed to be diffusion related. Therefore, it is also important to optimize the bond coat 

compositions in order to eliminate or at least minimize the void development. Based upon the 

observations in this study, increasing the thickness of Pt and aluminide layers was found to 

minimize void development. Nevertheless, diffusional studies are required for the fundamental 

understanding of void development. 

 Pt is believed to improve the interfacial toughness. Better understanding of this effect 

may lead to new ideas for further improvements in interfacial toughness, which is believed to be 

a very important parameter in the failure of TBC systems.  
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 In the case of NiCoCrAlY bond coats, further studies are required to optimize the 

reactive element effect. It would be very valuable if the processing conditions as well as the 

compositions of the bond coats could be adjusted to result in the development of a fine and  

uniform distribution of reactive element oxide protrusions.  

Very significant TBC lives have been obtained without a bond coat, however, the results 

were not reproducible. Development of significant amounts of transient oxides for some of the 

specimens was believed to cause premature failures for these systems. Therefore, further studies 

to define the processing conditions that result in the development of as few transient oxides as 

possible may be very important to increase the reliability of no bond coat TBC systems. No bond 

coat TBCs are important. First, because they provide information on factors that affect TBC 

failures. Secondly, no bond coat TBCs could be cheaper. However, designers may never be 

willing to go without a bond coat due to corrosion problems upon TBC failure. 

High strength of the superalloys is believed to be the key factor in the improved lives of 

no bond coat TBC systems. Then, strengthening the bond coats may be an alternative choice to 

get the beneficial effects of  no bond coat systems without the rapid oxidation problems upon 

TBC failure. 
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5.0  CONCLUSIONS 

 

5.1  BOND COATS WITH NO TBCS 

 
• The NiCoCrAlY bond coats without TBCs developed transient oxides during cyclic oxidation 

sooner than Pt aluminides.  Spalling of the oxide was evident. The depletion of the bond coat 

was due to both oxidation and interdiffusion with the substrate. The surfaces became wavy 

during early exposure times, but then became more smooth with longer exposure times. Surface 

polishing as well as preoxidation resulted in the development of more adherent and purer 

alumina scales.  

• On the other hand, the Pt aluminide bond coats without TBCs developed more adherent and 

pure alumina scales. The coating depletion due to interdiffusion with the substrate was more 

pronounced as a result of more adherent alumina scales. With long exposure times, the surfaces 

became highly irregular, and large voids developed along the oxide/bond coat interface as well 

as along the initial superalloy/bond coat interface. 

• The surfaces of the NiCoCrAlY bond coats that remained relatively smooth as well as the 

absence of large voids after long exposure times seems to compensate for the initially poor 

oxidation characteristics of NiCoCrAlY bond coats making them comparable to Pt aluminide 

bond coats in terms of the total oxidation lives. 
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5.2  CURRENT STATE OF THE ART TBC SYSTEMS 

 
• The current state of the art TBC systems with Pt aluminide bond coats outperformed those with 

NiCoCrAlY bond coats. 

• TBC defects associated with the initially highly irregular interface, transient oxides, reactive 

element rich oxide protrusions and surface defects as well as stored strain energy in the TGO 

were found to contribute to the failure of TBC systems with NiCoCrAlY bond coats. 

• The state of the art TBC systems with Pt aluminide bond coats failed by propagation and then 

linking up of cracks that initiated in the TBC at areas where the bond coat underneath deformed. 

This is known as the ratcheting mechanism. The stored energy in the TGO was also a 

contributing factor in the failure of these systems. The initial interface irregularities and 

associated TBC defects were found to be prerequisites for ratcheting to occur. Grain size of the 

bond coat, type of thermal exposure and TBC deposition conditions were observed to affect the 

amount of ratcheting.   

5.3  MODIFIED TBC SYSTEMS 

 
• The surface condition of the bond coats was found to have a first order effect on the failure of 

TBC systems with both NiCoCrAlY and Pt aluminide bond coats.  

• Having smooth surfaces minimized the TBC defects, which were found to play very important 

roles in the failure of TBC systems with NiCoCrAlY bond coats. Moreover, the surface defects 

in the bond coat were also eliminated. Therefore, significant improvements in lives were 

obtained with hand polishing the bond coat surfaces 

• The failure times of the TBC systems with hand polished NiCoCrAlY bond coats varied 

significantly among the specimens tested, the shortest still being longer than the average failure 
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times of the state of the art TBCs. Examination of these specimens suggested that the failure 

occurred mainly along and/or close to the TGO/bond coat interface due to cracking in the 

vicinity of RE rich oxide protrusions as well as stored strain energy in the TGO, unless there 

were some other defects in the systems, which seemed to contribute to relatively early failures. 

• Surface preparation techniques such as vibrofinish and media finish did not improve the lives 

due to the fact that these techniques could not produce a uniformly smooth surface. 

• All the other modifications performed on  NiCoCrAlY bond coats (depositing Pt overlayers 

and Pt underlayers, aluminizing the bond coat surfaces)  improved the lives to some extent,  with 

Pt overlayers having the most significant effect.  The improvement in lives in the presence of Pt 

overlayers and aluminizing the surfaces was attributed to the development of pure and adherent 

alumina scales with fewer defects compared to the state of the art systems. On the other hand, the 

slight improvement in lives in the presence of Pt underlayers is attributed to the improved 

inherent TGO/ bond coat interfacial toughness. 

• None of these modifications eliminated the TBC defects, which are believed to play significant 

roles in the failure of TBC systems. Therefore, cracking in the vicinity of the TBC defects 

contributed significantly to the failure of these systems. Void development in the case of 

aluminized NiCoCrAlY systems and the presence of all other defects ( surface defects, transient 

oxides, RE  

rich oxide protrusions) in the case of NiCoCrAlY systems with Pt underlayers were other 

contributing factors in the failure of these modified systems. 

• The amount of Al depletion as well as void density was less pronounced for Pt aluminide bond 

coats with thicker layers of Pt and aluminide layers. 
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• The grain boundary ridges, which are present on the as aluminized Pt aluminide bond coats, 

acted as crack initiation sites. The cracks that initiated at these sites propagated in the TBC 

followed by formation of localized buckles at the early stages of their lives. Failure occurred 

when these localized buckles progressively got larger with time and coalesced to form a critical 

sized buckle. 

 • The surface of the bond coat beneath the localized buckles deformed whereas it remained 

smooth at areas where the TBC was still in contact with the bond coat at the time of failure. 

These observations indicated the presence of TBC constraint to deformation of the bond coat.  

 • All surface preparation techniques used in this study for Pt aluminide bond coats (light grit 

blast, media finish and hand polish) resulted in relatively smooth surfaces compared to the state 

of the art Pt aluminide systems. The improvement in lives was attributed mainly to the 

prevention of the ratcheting type of failure. Moreover, the TGO growth was found to be slower 

on media finished and hand polished specimens.  

• Void development as well as the stored strain energy in the TGO are believed to be the main 

factors in the failure of light grit blasted and preoxidized Pt aluminide bond coats. On the other 

hand, the media finished as well as hand polished Pt aluminide bond coats failed in the presence 

of remnants of grain boundary ridges, which were shown to act as crack initiation sites. 

 

5.4  NO BOND COAT TBC SYSTEMS 

 
• The significantly long lives of no bond coat TBCs was attributed to the high strength of the 

superalloy, which did not permit the surface deform. 
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• A trend was observed whereby earlier failures could be associated with the presence of 

substantial amounts of transient oxides. 
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	4.2.4  Modified TBC Systems
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