
INCREMENTAL QUERY PROCESSING IN

INFORMATION FUSION SYSTEMS

by

Xin Li

B.E., Tsinghua University, P. R. China, 1999

M.E., Tsinghua University, P. R. China, 2001

M.S., University of Pittsburgh, USA, 2003

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Xin Li

It was defended on

Feb. 23, 2006

and approved by

Dr. Shi-Kuo Chang

Dr. Alexandros Labrinidis

Dr. Ching-Chung Li

Dr. Janyce Wiebe

Dissertation Director: Dr. Shi-Kuo Chang

ii

Copyright c© by Xin Li

2006

iii

ABSTRACT

INCREMENTAL QUERY PROCESSING IN INFORMATION FUSION

SYSTEMS

Xin Li, PhD

University of Pittsburgh, 2006

This dissertation studies the methodology and techniques of information retrieval in fusion

systems where information referring to same objects is assessed on the basis of data from

multiple heterogeneous data sources. A wide range of important applications can be catego-

rized as information fusion systems e.g. multisensor surveillance system, local search system,

multisource medical diagnose system, and so on. Up to the time of this dissertation, most

information retrieval methods in fusion systems are highly domain specific, and most query

systems do not address fusion problem with enough efforts.

In this dissertation, I describe a broadly applicable query based information retrieval

approach in general fusion systems: user information needs are interpreted as fusion queries,

and the query processing techniques e.g. source dependence graph (SDG), query refinement

and optimization are described. Aiming to remove the query building bottleneck, a novel

incremental query method is proposed, which can eliminate the accumulated complexity in

query building as well as in query execution. Query pattern is defined to capture and reuse

repeated structures in the incremental queries. Several new techniques for query pattern

matching and learning are described in detail. Some important experiments in a real-world

multisensor fusion system, i.e. the intelligent vehicle tracking (IVET) system, have been

presented to validate the proposed methodology and techniques.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Information Fusion System . 2

1.2 Challenges . 4

1.3 State of the Art . 6

1.3.1 The JDL Model . 6

1.3.2 State of the Art . 8

1.4 Overview of Our Approach . 9

1.5 Contributions of the Dissertation . 11

1.6 Related Research Areas . 12

1.6.1 Data Management in Sensor Network 13

1.6.2 Information Integration . 13

1.7 Outline . 14

2.0 PROBLEM DEFINITION . 15

2.1 Information Fusion System . 15

2.2 Query in the Information Fusion System 16

2.3 Evaluation of Query Processing . 19

2.4 Summary . 20

3.0 IVET QUERY SYSTEM . 21

3.1 System Overview . 21

3.2 Ontology Knowledge Base . 23

3.2.1 Role of the Ontology . 24

3.2.2 Related Research on Ontology . 25

v

3.2.3 The Representation of Ontology Knowledge 26

3.2.4 The OKB in the IVET system . 27

3.3 Source Dependency Graph . 30

3.3.1 Definition of the SDG . 30

3.3.2 Query Processing Example . 31

3.4 Query Refinement . 33

3.4.1 Dynamic SOI and TOI . 33

3.4.2 β – Pruning . 34

3.5 Query Optimization . 35

3.6 Experimental System and Experiments . 37

3.6.1 Experimental IVET System V1.0 38

3.6.2 Experiments on System V1.0 . 44

3.7 Summary . 45

4.0 INCREMENTAL QUERY PROCESSING 46

4.1 Motivation . 46

4.2 An Example of Incremental Query . 48

4.3 Formal Definitions . 50

4.4 Incremental Query Processing . 53

4.5 Survey on User Query Manner . 55

4.6 Experimental System and Experiments . 57

4.6.1 Experimental IVET System V2.0 58

4.6.2 Experiments on System V2.0 . 59

4.7 Summary . 62

5.0 QUERY PATTERN . 63

5.1 Motivation . 63

5.2 Definition of Query Pattern . 65

5.3 Observed Query Patterns . 67

5.3.1 Typical Tasks in Information Fusion System 68

5.3.2 Query Pattern for the Typical Tasks 70

5.4 Application of Query Pattern . 84

vi

5.4.1 System Overview . 84

5.4.2 Pattern Matching . 86

5.4.3 Manually Pattern Construction and Learning 88

5.4.4 Automatically Pattern Learning . 89

5.4.5 Dynamic Information Exchange with Ontology Knowledge 91

5.5 Experimental System and Experiments . 94

5.5.1 Experimental IVET System V3.0 94

5.5.2 Query Processing Experiments on System V3.0 97

5.5.3 Pattern Learning Experiments on System V3.0 99

5.6 Summary . 103

6.0 RELATED WORK . 104

6.1 Information Fusion Systems . 104

6.2 Query Systems . 107

6.2.1 Query Approaches on Heterogeneous Information Sources 107

6.2.2 Query Language . 110

6.2.3 Query Pattern . 111

7.0 CONCLUSION . 113

7.1 Key Contributions . 113

7.2 Future Directions . 114

7.2.1 Solution Across Application Areas 114

7.2.2 Statistical Query Pattern Learning 115

7.2.3 Dynamic Exchange of Information from Query Patten and Ontology 115

7.2.4 Efficient User Interaction . 115

7.2.5 Combination with Information Integration 116

BIBLIOGRAPHY . 117

APPENDIX A. BENCHMARK QUERIES IN THE IVET SYSTEM 124

APPENDIX B. SURVEY ON USER QUERY MANNER 127

B.1 Background Survey . 127

B.2 Query Building Experiments . 128

B.2.1 Scenario . 128

vii

B.2.2 Information Retrieval . 128

B.2.3 Query Building Experiments . 129

B.3 Feedbacks . 133

APPENDIX C. VITA . 134

APPENDIX D. PUBLICATIONS OF XIN LI 135

viii

LIST OF TABLES

1 Experimental System V1.0 . 38

2 Experiment 1 . 44

3 Experiment 2 . 56

4 Experimental System V2.0 . 58

5 Experiment 3 . 60

6 Experimental System V3.0 . 94

7 Experiment 4 . 97

8 Experiment 5 . 99

ix

LIST OF FIGURES

1 Multisensor Data Fusion . 2

2 Local Search System . 3

3 JDL Fusion Model . 6

4 Model of Information Fusion System . 15

5 Cluster Clause . 17

6 Sample Sensor Images . 22

7 Diagram of the IVET query system . 23

8 The Ontological Knowledge Base (OKB) . 27

9 Source Dependency Graph . 32

10 Source Dependency Graph (T5) . 33

11 Experimental System V1.0: Main Interface 38

12 Experimental System V1.0: Data Input . 39

13 Experimental System V1.0: Query Construction 40

14 Experimental System V1.0: Visualization . 41

15 Experimental System V1.0: Dependency Graph 42

16 Experimental System V1.0: Dynamically Updated Dependency Graph 43

17 Experimental System V1.0: Query Optimization 43

18 Experiment 1: Result Analysis (Processing Time & Success Rate) 44

19 Experiment Result on the System V1.0 . 47

20 Experiment 2: Result Analysis (Query Building Time) 56

21 Experiment 2: Result Analysis (User Preference) 57

22 Experimental System V2.0: Main Interface 59

x

23 Experimental System V2.0: Query Operators 59

24 Experiment 3: Result Analysis (Processing Time & Success Rate) 61

25 Experiment 3: Result Analysis (CPU & Memory Usage) 61

26 Experimental System V3.0: System Diagram 85

27 Manually Pattern Learning Algorithm . 88

28 Automatically Pattern Learning Algorithm 92

29 Experimental System V3.0: Main Interface 95

30 Experimental System V3.0: Pattern Selection 96

31 Experimental System V3.0: Pattern Construction 96

32 Experiment 4: Result Analysis (Processing Time & Success Rate) 98

33 Sample Images in Our Experimental System 128

xi

ACKNOWLEDGEMENTS

It took me years of hard work to make this dissertation come into being. However, it is not

just the fruit of great efforts of mine. In fact, I can not even start if without the help and

support of my advisor, committee members, colleagues, and my family.

The first person I would like to thank is my advisor – Dr. Chang. He is a superb advisor.

I can not be luckier to work with him for almost five years. It is with him that I first learn

how to do research and how to write a paper. He always blows me away with his amazing

intelligence, knowledge, and vision. At every time I fell down, he always encourages me with

warm and caring words. For me, he really did much more beyond being an advisor.

I owe special debts to my committee members. They are all great professors, and I have

learned a lot from them. Their responsibility ensured the quality of this dissertation. Partic-

ularly I would like to thank Dr. Li for his supports and encourages from the very beginning,

and thank Dr. Wiebe for teaching me all that I know about knowledge representation. I

especially thank Dr. Labrinidis who took tremendous efforts to read the preliminary draft

of my dissertation proposal and correct it word by word.

I am also grateful to Dr. Erland Jungert who is the co-director of our project in Swedish

Defense Agency. Thank him for providing a solid theoretical and experimental basis for my

work.

This dissertation also benefited from the collaboration of many fantastic colleagues.

Thank Weiying Dai, Prasad Lakkavaram, Jianhang Xu, Karin Silvervarg (Sweden), Shuyi

Shao, and too many others to name for their kind help.

Finally, I would like to thank my parents who encourage me all the time, and my wife –

Lihua Fan who gives me the strongest support for every single word I wrote. It is to them I

dedicate this dissertation.

xii

1.0 INTRODUCTION

This dissertation studies the methodology and techniques of information retrieval in fusion

systems where information referring to the same objects is assessed on the basis of data

from multiple heterogeneous sources. For example, in an intelligent surveillance system,

three types of sensors – laser radar (LR), infrared video (IR, similar to video but generated

at 60 frames/sec), and CCD digital camera are all employed to keep track of vehicles in

a ground area. The methodology and techniques utilizing the data from these sources to

retrieve information (e.g. “find a red car followed by a truck in 10 minutes in a given area

and time”) as accurate and complete as possible is the main subject of my research.

I begin this chapter by showing that a wide range of important applications (e.g. mul-

tisensor intelligent surveillance system, information retrieval on the World-Wide Web, and

medical diagnose system) can be categorized as information fusion systems (section 1.1).

Next, the main challenges for the information retrieval in fusion systems are explained in

detail (section 1.2). Then the state of the art of the research on information fusion systems

is discussed under the framework of the well known JDL model, showing that the bottleneck

hindering the usability of fusion systems has been moving from the low-level fusion to the

high-level knowledge based reasoning and HCI (human computer interface). Finally, my

research is overviewed comparing with related research areas (section 1.4 - 1.6), and a road

map is given for the rest of this dissertation (section 1.7).

1

1.1 INFORMATION FUSION SYSTEM

Information fusion system is a system that can retrieve information from multiple heteroge-

neous sources, where data referring to same objects are fused for more complete and accurate

assessments. The needs for information fusion systems have been originally conceived from

military applications. For example, the multi-sensor surveillance system is one of the most

widely investigated information fusion systems.

Figure 1: Multisensor Data Fusion in a Battle Field Surveillance System [SBW98]

Example 1.1.1 An instance of sensor-based information fusion system [SBW98] is illus-

trated in Figure 1. Three types of sensors (i.e. RADAR, EO/IR, and ESM) are applied to

keep track of aircrafts in battle fields. Since individual sensors have their own strength and

weakness, the data from single type of sensors usually yields unsatisfied results. However, it

could get better output by overlapping (fusing) them.

In recent years, information fusion becomes a major need in many nonmilitary applica-

tions as well as military applications. Particularly, with the overwhelming volume of data

available today (e.g. data on the Internet or in large databases), fusion becomes an important

technique to improve the quality of information retrieval.

2

Figure 2: Local Search System

Example 1.1.2 An online local search system [Him05] is a good example of information fu-

sion system in nonmilitary area, which has significant commercial perspectives. Local search

is a specialized search engine which works for the same purpose as traditional Yellow Pages

(Figure 2). Using it, people can search information about local businesses online instead of

reading local newspaper, classified ad circulars, and Yellow Pages directories. To ensure high

search quality, most local search systems (e.g. Yahoo Local [Yah], and Google Local [Goo])

can retrieve data from multiple nation-wide Yellow Pages providers. Because data sources

have their own characteristics in terms of the precision and recall, the data from different

sources are fused to get the maximum accuracy and completeness.

Another important fusion application class is intelligent medical diagnoses systems, where

diseases and abnormalities are identified by the fusion of data from multiple sources (e.g.

X-rays, NMR, temperature, IR, biological data) [GSGN+01].

Recently increasing attention to information fusion techniques has been raised in data

mining community. Information fusion has been used to improve the quality of raw data prior

3

to the application of data mining methods, build combined models from multiple processes,

and extract more precise data [Tor03]. Many data mining systems can be considered as an

extension of information fusion systems.

More applications addressing information fusion problem with considerable attention

are robot vision [HL01], data management in sensor network [YG03], automated control of

industrial manufacture systems [HL01], environmental monitoring [HL01], emergency man-

agement in disaster areas [CDH+02].

To summarize, the explosive growth of information available in the real world has signifi-

cantly increased the needs for information fusion. Nowadays more and more applications can

be categorized as information fusion systems. The information retrieval in fusion systems

turns out to be a core problem with the dramatically increasing importance. Although the

specific information retrieval and fusion techniques could vary on application to application,

there are many fundamental common characteristics for the majority of fusion systems. In

this dissertation, I will present a broadly applicable solution for information retrieval problem

in fusion systems on the basis of these common characteristics.

1.2 CHALLENGES

The complexity of information fusion systems is characterized by the following fundamental

reasons:

• A major challenge in information fusion system is lack of methodology and techniques

to utilize a large amount of (redundant) data from multiple sources.

The data sources (e.g. sensors, and World-Wide Web resources) in fusion systems may

behave quite differently from the traditional databases. They could have a large amount

of data referring to same objects. Frequently, many of them may conflict with each other.

It is often extremely hard to make a good use of all the available data. The systems could

be simply overwhelmed by too much redundant data. In the worst cases, information

retrieved from multiple data sources is even worse than the one from any single data

4

sources.

• Another challenges in information fusion systems is raised by the difficulty in the collab-

oration of heterogonous sources.

Frequently, it could be very cumbersome to build a common understanding among the

data sources which may produce information in quite different semantic formats. In many

fusion systems, different data sources have quite different terminologies. For instance, in

a multisensor fusion system one sensor can classify the detectable mobile ground objects

as car, truck, tank, and bus. Meanwhile, the other one performs the classification with

non-combat vehicle (i.e. car, bus and truck in one category), tank, and IFV. One more

example, in the local search system described in example 1.1.2, Yellow Pages providers

usually have different category systems. A business entity – a pizza shop can be listed

under the category of fast food, restaurant, or even outdoor delivery in different Yellow

Pages. In many cases, it is dramatically complex to build a concrete connection among

these data sources and make them consolidate each other.

• With the large quantities of data and the complicated processing over heterogeneous

data sources, it becomes a difficult problem to understand the user information needs

and present retrieval results properly and efficiently.

The HCI (Human Computer Interface) has been found as a hard problem in fusion

systems. The difficulty comes from two aspects. First, the fusion systems should have

a source-independent interface for end users. In other words, users are not required to

know the detail about data sources. For example, Laser Radar can not detect colors,

and CCD camera does not work at night or in a bad weather. A uniform interface is

needed which can automatically adapt to these kinds of restrictions without any effort

from users. Second, the fusion systems should have a fusion-specific interface for end

users. The systems may be quite different from traditional information retrieval systems,

users may need to know some information such as “Did results from data sources conflict

with each other?”. It requires that the system can present the detail about data sources

in retrieval process. The two aspects seem to be controversial with each other. In some

cases, it is very hard to find a solution which can reconcile the both.

5

1.3 STATE OF THE ART

I begin this section with reviewing the most widely used information fusion model – JDL

(Joint Directors of Laboratories) model (section 1.3.1), where fusion-related functions are

generalized and categorized into several layers. Then state of the art of the research at each

layer is described in detail respectively (section 1.3.2).

1.3.1 The JDL Model

Figure 3: The 1998 Revised JDL Fusion Model [SBW04]

Due to the popularity of fusion applications (section 1.1) and the challenges (section 1.2),

information fusion system has been an active research area since early 1970’s. Aiming at

an overall architecture capable of addressing diverse information fusion systems, F. White

proposed the well known JDL model for general fusion system based on the applications

developed by DOD (Department of Defense) in 1988 [Whi88]. Then the JDL model has

been widely used in the fusion community to categorize the fusion-related functions and

systems. Since the model was originally conceived from the military applications, with the

dramatically increasing popularity of non-military fusion systems, some of terminologies and

concepts (e.g. threat refinement) become not obvious in many applications today. For this

6

reason, the JDL model has been refined recently in 1998 [SBW98]1.

Figure 3 shows the 1998 revised JDL model. It conceptualized the entire fusion system

as three layers: Sources, Data Fusion Domain, and HCI. In the data fusion domain, the

fusion processes are categorized into five levels of sub-processes and database management

system:

• Level 0 – Sub-Object Data Assessment: estimation and prediction of observable

object status on the basis of the attribute-level data association and characterization.

For example, in multisensor surveillance system (example 1.1.1), employing more than

one sensors to assess the color of a aircraft is a Level 0 process. In local search system

(example 1.1.2), a process to determine the address of a business entity from multiple

Yellow Pages is also a Level 0 process.

• Level 1 – Object Assessment: estimation and prediction of the entity states on the

basis of object-level association and characterization.

For example, in multisensor surveillance system (example 1.1.1), employing more than

one sensors to assess a aircraft is a Level 1 process. In local search system (example 1.1.2),

a process to assess a business entity from multiple Yellow Pages is also a Level 1 process.

• Level 2 – Situation Assessment: estimation and prediction of relations among enti-

ties.

For example, in multisensor surveillance system (example 1.1.1), checking with multiple

aircrafts to see if they are in a safe distance is a Level 2 process. In local search system

(example 1.1.2), a process to identify whether a business is embedded in another one (

e.g. a restaurant embedded in a hotel) is also a Level 2 process.

• Level 3 – Impact Assessment: estimation and prediction of the effect of the situation

of planed actions by participators.

For example, in multisensor surveillance system (example 1.1.1), if enemy aircrafts are

found too close to ours, the possible impact could be that it is prohibited to fire at them

from the ground.

1The model is proposed in 1998 [SBW98]. The figure 3 is from [SBW04] by the same authors in 2004.

7

• Level 4 – Process Refinement (an element of Resource Management): adaptive data

acquisition and processing to support information retrieval request. As an element of

resource management, the goal of this level process is to achieve the maximum informative

output using the minimum resource.

• Database Management System: It includes fusion database and support database.

As mentioned by A. N. Stainberg et al in [SBW98], the JDL model should not read as a

processing model e.g. do level 1 fusion first, then level 2, 3, 4. In fact, a fusion system may

or may not contain all these levels of fusion. For example, consider the local search system

described in example 1.1.2, the level 3 fusion is not obvious since the participators simply

don’t have any actions.

1.3.2 State of the Art

The technologies related to information fusion systems are rapidly evolving. There is much

concurrent ongoing research in each level of fusion processes specified in the JDL model.

The most mature area of information fusion is Level 0 and 1 processing - using multi-

source data to determine the features and entity. For example, in intelligent surveillance

systems, determining features such as the position and velocity of an object based on mul-

tiple sensor observations is relatively an old problem. Gauss and Legendre developed the

method of least squares to determine the orbits of asteroids [Sor70]. Generally speaking,

many effective fusion methods have been developed according to the type of information

to be fused, e.g., aggregation functions on numerical and categorical data, combination op-

erations on probability and possibility distributions, fusion operators in fuzzy sets and so

on [Tor03].

Level 2 and 3 fusion (situation assessment and impact assessment) are currently dom-

inated by knowledge-based methods such as rule-based inference systems. These areas are

relatively immature [HL01]: there are numerous prototypes, but few robust, operational

systems. The rules frequently used on these levels are developed on the basis of the voting

method, Bayesian inference, Dempster Shafer’s method, and so on [HM04]. Compared to

human performance, the current approaches can only provide very limited functions and

8

there is still much work to do on these levels.

Level 4 processing, which dynamically controls and improves the performance and op-

eration of an ongoing information fusion process, has the least maturity. Frequently, this

problem is addressed in the scenario with single data sources (e.g., single sensor operation and

control). However, very few feasible approaches are proposed for systems with the multiple

heterogeneous data sources, multiple objects, and complex external constraints [HL01].

Finally, HCI in information fusion systems is immature. As studied by Waltz and Lli-

nas [WL90], the overall effectiveness of an information fusion system is greatly affected by

the efficacy of the HCI. Unfortunately, advances in understanding of human information

needs and how information is processed have not progressed as rapidly. There is still a lot

to learn about interaction between human and computer during in this process [HHT01].

According to what we studied about the maturities of current research on different levels

in the JDL model, the bottleneck hindering the usability of complex fusion systems are

migrating from the low-level fusion processes to the high-level fusion related operations such

as knowledge based reasoning, resource management, and HCI.

1.4 OVERVIEW OF OUR APPROACH

The research discussed in this dissertation mainly focuses on the higher level fusion processes

(i.e. Level 2-4 and HCI in the JDL model) with the assumption that the lower level fusion

algorithms and operations are already available.

Basically, we propose a query-based approach for information retrieval in fusion systems:

user information needs are interpreted as queries; the operations of information retrieval and

fusion are fulfilled by query processing; the retrieval outputs are presented back to user as

query results. Therefore the main subject of my research is to develop a solution to process

the queries effectively and efficiently.

I first narrowed my study area down to a specific information fusion system – the In-

telligent VEhicle Tracking (IVET) System (see chapter 3), where I developed a robust,

operational prototype system on the basis of real sensor data and end users. Similar to the

9

execution plan for query processing and optimization in database theory, Source Dependency

Graph (SDG) is proposed to formulate the queries in the fusion systems. As illustrated by

several examples, the SDG proves to be a powerful tool to generate efficient operation se-

quences in various situations with multiple data sources. Based upon the SDG, the query

refinement and resource management can be performed either by dynamically updating the

space of interest (SOI) and time of interest (TOI) or continuously eliminating the unneces-

sary operation nodes (β – Pruning). Verified by the experiments, the proposed techniques

can effectively get rid of redundant data referring to same objects, and consequently elevate

the system performance. On the basis of all the work described above, the query optimization

problem is formally formulated and proved being a NP hard problem.

In order to achieve the maximum informative results using the minimum time and re-

sources, the response time and resource utilization are analyzed during the entire process of

query handling. Query building is identified as the most time consuming process which dom-

inates the whole response time, because freqently the complexity to construct and process

a query is accumulated while multiple objects are retrieved from multiple sources. Aim-

ing at resolving this kind of accumulated complexity, I propose the incremental query in

which a complex information retrieval request is broken down into several iterations. In

each iteration, the user constructs an elementary query in a simple and uniform format. Us-

ing query operators, multiple elementary queries are composed into a (complex) compound

query. System resource can be utilized much more evenly and efficiently by performing the

query building and query execution in parallel. Query optimization can be carried out once

the final complex query has been developed. Demonstrated by the survey on user query

manner and the experiments on the prototype system, the incremental query proves to be a

promising approach having many obvious advantages over traditional information retrieval

approaches in fusion systems.

When a complex query is broken down into a chain of simple elementary queries con-

nected by query operators, the repeated structures in query processing become much more

feasible to be detected and reused. In order to describe the reusable templates of the in-

cremental queries (i.e. repeated structures), a broadly applicable concept query pattern is

proposed. First the formal definition of query pattern is described. Then I study the typical

10

tasks in general information fusion systems, and formulate all of them into my query pattern

schema. Finally, a post query reasoner equipped with pattern matching and learning capa-

bility is proposed to apply query patterns into the processing of incremental queries. The

matched query patterns can be detected at each time when users finish an iteration in incre-

mental queries. Meanwhile the most frequently used queries can be abstracted and learned

as query patterns. Studied from the experiments on the prototype system, the proposed

query pattern and its related techniques can effectively facilitate the information retrieval in

fusion systems.

1.5 CONTRIBUTIONS OF THE DISSERTATION

Up to the time of this dissertation, many works has been done on the high level fusion

processes (i.e. level 2-4 and HCI in the JDL model) towards information fusion systems with

a certain degree of intelligence. Several recent approaches advocate the agent based fusion

systems where heterogeneous data sources can be handled by different agents that exchange

information and cooperate with each other to achieve fusion. However, mobile agents are

highly domain-specific and usually depend on ad-hoc, “hardwired” programs to implement

them. In general, although information fusion systems have been widely studied in many

research domains, it is not clear what is a good way to develop a general solution on the

basis of the common characteristics of information fusion process.

• The first contribution of this dissertation is a broadly applicable query-based approach for

information retrieval in fusion systems.

Unique from other approaches, our solution offers a uniform framework to handle di-

verse information needs in various scenarios. Under this framework, a concrete, robust,

and operational multi-sensor information fusion system (i.e. the IVET system) has been

designed and implemented. It is conceivable that the proposed query processing tech-

niques (e.g. SDG, query refinement and optimization) can be easily applied in many

other applications.

11

• The second contribution of this dissertation is a novel incremental query method that can

effectively eliminate the accumulated complexity of query processing in the multi-object

and multi-source situation.

For a long time, the usability of fusion systems has been hindered by the lack of an

efficient way to interpret user information needs with the collaboration of multiple data

sources. The major problem is that the complexity is accumulated and quickly becomes

intractable with respect to the complicated retrieval requests. For this reason, I proposed

the incremental query process where the information retrieval requests are broken down

into serveral simple iterations in a uniform format. The complexity in every phase of

query processing i.e. building, refinement, execution, and visualization has been success-

fully isolated within the single iterations.

• Another major contribution of this dissertation is the techniques to formulate and apply

query patterns.

Query pattern, which is usually introduced to handle the reusable templates of user

information needs, has been investigated in several query-based information retrieval

systems. In our approach, query pattern is a natural extension of the incremental query.

Because the query is formulated into a chain of elementary queries and query operators,

the repeated structures i.e. query patterns are much more feasible to be detected and

reused. A post query reasoner is proposed to match and learn query patterns, which lends

itself to a general solution to achieve a certain degree of intelligence in fusion systems.

1.6 RELATED RESEARCH AREAS

In order to eliminate possible confusions between my research domain and the similar ones,

namely data management in sensor network (section 1.6.1) and information integration (sec-

tion 1.6.2), I briefly clarify their differences as well as commonalities in this section.

12

1.6.1 Data Management in Sensor Network

Our research is different from data management in sensor network, although both deal with

data from multiple sources. A sensor network consists of a large number of sensor nodes,

in which individual sensor nodes are connected to other nodes in their vicinity through a

wireless network [PK00]. While in our research, data sources may or may not be sensors.

Even in the case they are sensors, all these sensors are supposed to be connected with

different sensor analysis systems, and all information will be fused into central computation

nodes. On the contrary, in most sensor networks, there is no assumption for such central

nodes. Besides this, sensor nodes in sensor network often refer to a specific kind of sensors,

which have limited computation and storage capabilities: a node has a general-purpose CPU

to perform computation and a small amount of storage space to save program code and

data [PK00]. However, the sensors in our research could be any types such as radar, sonar,

and so on.

Of course, information fusion is also a problem in sensor network: since sensor data might

contain noise, fusion from several sensors could help to get more accurate and complete result.

However, it is far less important than other problems. For example, since sensors in sensor

network are usually not connected to a fixed infrastructure, data routing and collecting turns

out to be a crucial problem [YG03]. While sensors use batteries as their main power supply,

the preservation of power becomes another important problem [SVGM00]. Obviously in a

sensor network, all above problems have much more significance than fusion problem.

It is worth noting that there also are some query techniques employed in information

retrieval in sensor networks [YG03]. However, these techniques mainly focus on the problems

about data collection from sensor nodes and preservation of energy.

1.6.2 Information Integration

Information integration is an active research topic raised recently both by AI and database

communities, which currently focuses on combining data distributed on the internet. A sim-

ple example is: from hundreds of online book stores, by the information integration approach,

the prices of a specific book can be listed together, and the cheapest one can be marked. Much

13

progress has been made in terms of developing conceptual progress and algorithmic frame

works, query optimization, wrap constructing, and object matching [DM03, GMPDQ+97].

It is not surprising that information fusion shares several common issues with information

integration, since they both retrieve information from heterogeneous sources. However, one

of most significant differences is that the formats of retrieving data and the behaviors of data

collection are much more controllable in information fusion systems. In other words, in the

fusion applications, the semantics of the inputs are usually already known so that it is easy

to be mapped to a central ontology knowledge base. On the contrary, ontology matching

and mapping is the biggest challenge in information integration, since various external data

sources use different ontology schemas [DMD+03].

More about the comparison between information fusion and information integration is

discussed in section of the related work on query system (section 6.2).

1.7 OUTLINE

The rest of this dissertation is organized as follows: the next chapter describes the fusion

system and information retrieval problems (i.e. queries) in it, which I consider in this dis-

sertation. Then my major experimental system – intelligent vehicle tracking (IVET) system

and basic query processing techniques are described in chapter 3. Chapter 4 explains the

incremental query in detail. Next, the query pattern is described in chapter 5. Chapter 6

reviews related research and discuss how our approach advances the state of the art. Finally,

the dissertation is summarized, and the future direction is discussed in chapter 7.

Parts of this dissertation have been published in peer-reviewed conferences and journals.

In particular, basic query processing techniques (Chapter 3) are partially published in DMS

2002 and 2004 [CDH+02, CCC+04]. Incremental query processing (Chapter 4) is partially

published in DMS 2004 [LC04]. Some preliminary work on query pattern and its application

(Chapter 5) is partially described in a journal paper in information fusion [CJL06]. The

application of our approach in a different research domain (i.e. user profiling in e-Learning)

is partially published in DMS 2005 [LC05].

14

2.0 PROBLEM DEFINITION

This chapter defines the information fusion system and query which I consider in this disser-

tation. First, a variety of information fusion systems are generalized into a common model

(section 2.1). Next, the query language that can represent any information retrieval needs

in the model is defined (section 2.2). Finally, the metrics for evaluating the query processing

are described (section 2.3).

2.1 INFORMATION FUSION SYSTEM

Figure 4: Model of Information Fusion System

The key commonality underlying the diverse fusion systems is that they retrieve informa-

15

tion referring to same objects on the basis of data from multiple heterogonous data sources.

Based upon this point, I generalized the information systems by the model shown in figure 4.

It includes the following key components:

• User: the client who needs retrieving information about objects from data sources.

• Objects: the entities in the real world in which users are interested.

• Data Sources: the providers that can supply data about objects. They could be sensors,

databases, web resources, and so on.

• Human Computer Interface: the interface that connects the user and system. It

accepts user information request and presents the retrieval result.

• Information Retrieval/Fusion Processor: the module that performs operations to-

wards the goal of information retrieval. It controls the fusion processes, manages system

resources, and utilizes the knowledge in knowledge base.

• Knowledge Base: the module that stores the supporting knowledge.

The model described above can formulate a variety of fusion systems. For example,

both the multisensor surveillance system in example 1.1.1 and the local search system in

example 1.1.2 are it instances. Because of its popularity and importance, the subsequent

chapters are all discussed under the frame of this model.

2.2 QUERY IN THE INFORMATION FUSION SYSTEM

Under the framework of the fusion system model described in section 2.1, we proposed a

query-based approach: user information needs are interpreted as queries; the operations of

information retrieval and fusion are fulfilled by query processing; the retrieval outputs are

presented back to user as query results.

The query language used here is a SQL-like query language that supports the fusion-

related operations, which is called ΣQL. Compared with SQL, it equips with the following

new features:

16

• Multi-Source Support: A single object can be marked as being retrieved from multiple

data sources by simply putting all the sources in the “FROM” clause. In this case, the

fusion operations will be automatically employed if the same objects are observed by

multiple data sources.

• Clustering Support: A new key word “CLUSTER” is introduced so that the objects

sharing the same characteristics (e.g. having the same time stamp) can be clustered. In

fact, clustering is a technique originally used in pattern classification to form subsets of

similar objects. In information fusion systems, it is employed to eliminate the redundant

data referring to same objects.

Figure 5: Semantics of “CLUSTER”(a. Query in ΣQL; b. the Semantics)

A simple example is illustrated in figure 5 to explain the semantics of the keyword

“CLUSTER”. In figure 5(a) a query proposed to simply retrieve three subsets of objects

which sharing the same time from data source “R”. Shown in figure 5(b), the actual operation

is cutting three slices along the time dimension. Noting that any attributes could be set as

the dimension, it means the objects can be clustered as any way we need. What follows are

two examples of queries in ΣQL:

Example 2.2.1 In the aircraft surveillance system described by example 1.1.1, user wants

to find two F-16 Fighting Falcons which are close enough and both are heading to the north

17

with a speed more than 1000 mph in given time and area of interest (i.e. TOI and AOI).

The request can be formulated in ΣQL as follows:

SELECT object

CLUSTER ALIAS objecti, objectj

FROM

SELECT t

CLUSTER *

FROM RADAR, EO/IR,ESM

WHERE objecti.type = “F16FF” AND objectj.type = “F16FF”

AND Distance(objecti, objectj) < δ

AND objecti.direction = “north” AND objecti.speed > 1000

AND objectj.direction = “north” AND objectj.speed > 1000

AND objecti.t = tgiven AND Inside(objecti, AOI)

AND objectj.t = tgiven AND Inside(objectj, AOI)

This is a typical sensor-based temporal/spatial query. The data from sensors can be

organized by any order such as time or location. First, the data is retrieved by the sequence

of time:

SELECT t

CLUSTER *

FROM RADAR, EO/IR,ESM

Then the data is clustered by objects. Two objects in the time slice of tgiven are retrieved

based on the criteria described in where clause. The fusion operations are employed auto-

matically whenever the observations from different sensors are associated with same objects.

The threshold δ is determined by the knowledge base that interprets the term “close enough”

based on the context.

Example 2.2.2 In the local search system described by example 1.1.2, user wants to find a

Starbucks Cafe within 5 miles of a given address, which has a public parking lot nearby.

18

The request can be formulated in ΣQL as follows:

SELECT object

CLUSTER ALIAS objecti, objectj

FROM Y P1, Y P2, · · · , Y Pn

WHERE objecti.title =“ Starbuck Cafe”

AND objectj.category =“Public Parking Lot”

AND Distance(objecti, addressgiven) < 5

AND Distance(objecti, objectj) < δ

The data is first clustered by objects, which is business entities in this example. Then

the objects are retrieved based on the criteria described in where clause. Similar as the

example 1, fusion operations are evoked automatically, and the threshold δ is determined by

the knowledge base that interprets the term “nearby” based on the context.

2.3 EVALUATION OF QUERY PROCESSING

The main goal of my research is to process queries (described in section 2.1) in the informa-

tion fusion systems (defined in section 2.2) accurately and efficiently. In our approach, the

following metrics are employed to evaluate the performance of the query processing:

• Correctness

The accuracy of information retrieval is a crucial issue in fusion systems. Generally

speaking, the potential errors mainly come from two aspects: the uncertainty caused by

low level recognition/fusion algorithm, and the inappropriate knowledge-based reason-

ing. From the view of the high level fusion processes, the correctness is a fundamental

requirement. In other words, there is no compromise solution on the correctness at this

level. In our approach, we assume that the low level processes are trustworthy. The

correctness of high level processes can be manually verified based upon observation on

the output of low level fusion/recognition operations. In the experiments described in

the following chapters, the correctness of query processing is primarily verified manually.

19

• Processing Time

Processing time is a major metric to evaluate a query processing. In our approach, the

processing time is defined as the time from the users starting to give their requests until

they get the correct results. It is slightly different from the traditional response time,

which is from the time the users submit requests until they get the correct results. The

rationale behind this difference is that unlike the traditional query approaches, we take

the users and HCI as active subjects in our research.

• System Resource

Although our experiments are all simulated on PC, the real fusion systems are frequently

used in the scenarios with various constraints on system resources, e.g., the portable

devices with limited computing power and memory. So the utilization of system resources

is another major metric to evaluate a query processing. The main goal is to achieve the

maximum informative results using the minimum resources. In practice, we monitor the

usage of the system resources i.e. CPU and memory in our query processing experiments.

2.4 SUMMARY

In this chapter, I defined my main research subject – query processing in information fusion

systems. The information fusion systems in which we are interested are described by a

general fusion model. The user queries in the model can be formulated by ΣQL, which is

a SQL-Like query language supporting fusion operations. Several criteria are also discussed

to evaluate performance of the query processing.

20

3.0 IVET QUERY SYSTEM

Intelligent VEhicle Tracking (IVET) System is our major experimental system, not

only because it is a joint project with FOI (Swedish Defense Agency) where the real sensor

data and end users are relatively easy to access, but also it is an intelligent surveillance system

which is one of the most important and widely investigated information fusion systems.

In this chapter, the IVET system is described. Since it is a complex system involving

many aspects of the ongoing work in our research group, I only describe the components

related to my work in detail. First, the system is overviewed (section 3.1). Next, the Ontology

Knowledge Base (OKB), which is closely related to my work, is described (section 3.2).

Then I propose basic query processing techniques (section 3.3 – section 3.5). Finally an

experimental system and the experiments on it are described to demonstrate the usability

of the proposed techniques (section 3.6).

3.1 SYSTEM OVERVIEW

The IVET system is a sensor-based information fusion system where data from different types

of sensors, including laser radar (LR), infrared video (IR, similar to video but generated at

60 frames/sec), and CCD digital camera are fused to keep track of vehicles in a given ground

area. Figure 6 shows some sample images captured by these three kinds of sensors. Although

they were aimed at a same place, the images look quite different (i.e., heterogeneous data

inputs).

In a preliminary analysis of the above described sensor data, it is found that data from

a single sensor always yields poor results in object recognition. For instance, the target

21

Figure 6: Images from Different Types of Sensors Observing Same Ground Area

object may be partially hidden by an occluding object such as tree, rendering certain type of

sensor ineffective. Therefore, it is of great importance to fuse the data from as many types

of sensors as possible.

The diagram of the IVET system is shown in Figure 7. For each source (laser radar,

infrared video, and CCD digital camera), there is a specific image analysis system hosting

recognition algorithms to retrieve object from the raw data. User requests are translated

into queries through user interface. Query is basically interpreted into an operation sequence

(i.e. execution plan), and the result will be returned when all the operations are finished.

As an overview, the IVET system is a typical fusion system following the classic JDL

model (Figure 3). Here I list the main subsystems as well as their counterparts in the JDL

model.

• User Interface accepts the input of users and presents the query results (i.e., HCI in

the JDL model).

• Query Interpreter generates the query execution plans on the basis of the user requests

(i.e., level 4 process in the JDL Model).

• Knowledge System is a logical inference system based on the ontology knowledge base,

which refines the query execution plan (i.e., level 2 and 3 processes in the JDL model).

• Fusion Module performs a pre-installed fusion algorithms which are determined by the

query interpreter and knowledge system (i.e., level 1 process in the JDL model).

22

Figure 7: Diagram of the IVET query system

• Image Analysis System is an image analysis system specialized for each data source

which performs low level object recognition (i.e., level 0 process in the JDL model).

• Ontology Knowledge Base encodes a shared understanding among different subsys-

tems.

3.2 ONTOLOGY KNOWLEDGE BASE

Because the information fusion systems are mainly dealing with heterogeneous data from

multiple sources, the ontology knowledge that encodes a common understanding cross data

sources plays a crucial role in the fusion process. In this section, first I explain why the

ontology is needed (section 3.2.1). Next, the related ontology approaches in information

retrieval systems on heterogeneous data sources are briefly described (section 3.2.2). Finally,

the ontology knowlege base in our system is described in detail (section 3.2.3 – 3.2.4).

23

3.2.1 Role of the Ontology

Generally speaking, the main purpose of ontology knowledge base is encoding a shared

understanding in some specific domains, which can be agreed among different parties (people,

computers or systems). In the fusion systems, the ontology is introduced to resolve the

heterogeneity of data from different sources. For example, a multitude of data sources are

employed in a fusion system which aims at a uniform data access for end users. However, the

sources use different terminologies to describe same objects. Frequently it is very cumbersome

to maintain a common understanding among them unless there is a systematic ontology

schema which can establish an efficient connection with various terminologies and definitions.

Basically, the specification of an ontology comprises a vocabulary of terms, each with

a definition specifying its meaning. As mentioned by D. L. McGuinness in [McG02], on-

tologies can be classified into different categories, ranging from general domain independent

knowledge to domain specific knowledge:

• Representation or meta-ontologies conceptualize the knowledge representation for-

malisms.

• Upper-level ontologies define general-level descriptive terms that form the foundation

for knowledge representation. For example, space, time or object are domain independent

terms that apply to all domains.

• Domain ontologies represent specific knowledge concepts. For example, weapons or

missiles are specific terms of the military domain.

In the IVET system, there are all these three kinds of ontology knowledge. A crucial

point in practice is that we need to strictly keep all the domain specific knowledge into

domain ontology, because for when our approach is applied into different application areas,

the changes on the ontology knowledge should only reside within the domain ontology. In

other words, the knowledge and related techniques for the general fusion process should be

able to keep unchanged across different fusion applications.

24

3.2.2 Related Research on Ontology

The ontology is widely investigated in fusion community to deal with heterogeneous data

sources. In fact, the heterogeneity of data sources can be addressed at the structural, syn-

tactic, and semantic levels. In this context, the ontology is mainly used to construct efficient

mappings among data sources to resolve the potential conflicts at all these levels. Frequently

the data sources are equipped with their own ontology. In this case, the task is to construct

a global ontology which can provide mappings among local ontologies.

In [WVV+01], H. Wache et al. reviewed the ontology solutions of twenty five information

retrieval systems on multiple heterogeneous data sources and categorized them into the

following three groups:

• Single Ontology Approach: a single global ontology provides a shared vocabulary

for the specification of data. In this case, all information sources are directly related

to the global domain ontology. For example, SIMS model proposed by Y. Aren et al.

in [AHK98] employs a single ontology to construct the semantic mapping among data

sources.

• Multiple Ontologies Approach: the semantics of a data source is described by its

own ontology. Because there is no common vocabulary, the inter-ontology mapping is

needed to identify semantically corresponding terms of different source ontologies. For

example, the early version of OBSERVER system proposed by E. Mena et al. in [MIKS00]

manages local ontologies, and provides mechanisms to map different ontologies without

an uniform global schema.

• Hybrid Approach: similar as multiple ontologies approach, information sources are

described by local ontologies. However, a global ontology is constructed to describe

the semantics of the common terminologies among local ontologies. For example, in

the KRAFT system proposed by A. Preece [PHG+99], the data sources are handled by

autonomous agents equipped with various local ontologies, a global shared ontology is

constructed to build an efficient mapping among these local ontologies.

The detail comparison about these three ontology approaches is discussed in [WVV+01].

Generally specking, the single ontology is the simplest one, but with the least flexibility.

25

The multiple ontologies approach could have the most flexibility since there is no need to

maintain a set of common terms. However, in practice, usually it is extremely difficult to

construct an efficient connection without a global agreement among data sources. From this

point of view, the hybrid approach constitutes a good compromise, which is also used in

our IVET system. In our system, the data sources could have their own ontology; however,

they are all mapped to a global, shared ontology knowledge base. What follows is a detail

description of the global ontology knowledge base used in the IVET system.

3.2.3 The Representation of Ontology Knowledge

The ontology knowledge, which describes the basic concepts and their relations in our system,

is represented by a semantic network. In fact, semantic network is used in a wide range of

applications for knowledge representation, the more detail about it can be found in [Rus03].

To keep the reasoning as simple as possible, all concepts are organized in a relative simple

tree based infrastructure instead of a complex graph, which is called Ontology Knowledge

Base (OKB). Each concept is a node in the OKB. The arc in the OKB tree represents subtype

relation between concepts, denoted as IS A. The rules are represented in first order logic.

The formal definitions are described as follows.

Definition 3.2.1 (Ontology Concept) A ontology concept OC is defined as a 3 tuple:

OC =< term, parent, description >

In which,

• term is the name of OC;

• parent is the super concept of OC, i.e. IS A(OC, parent); if parent is empty, denoted

as EMPTY, it means that OC represents the root node of OKB tree;

• description is the description about OC;

Definition 3.2.2 (Ontology Knowledge Base) An ontology knowledge base OKB is a

set of ontology concepts in which the parents of all concepts are either in OKB or empty, i.e.

∀OC ∈ OKB, IS A(OC,P) =⇒ (P ∈ OKB) OR (P ≡ EMPTY)

26

Literally, the ontology knowledge base contains a complete closure of concepts in tree

structures. For more detail about the representation schema of the ontology knowledge in

our system, please refer to [CCC+04, HJF03].

3.2.4 The OKB in the IVET system

Figure 8: A Portion of the OKB

A portion of the OKB in our system is simplified and illustrated in figure 8. All the

concepts are organized in a hierarchical manner known as ontology tree. The hierarchy has

27

the ultimately general concept called thing at the top. All other concepts inherit directly or

indirectly from thing. This means that “everything is a thing”. The concept thing has no

properties and no relations; it just acts as the parent of all other concepts. The hierarchy

is organized so that more specialized concepts appear further down the inheritance chain.

When the ontological structure has been created, it is populated with instances becoming a

knowledge base. The detail about OKB structure is explained as follows:

• Data Source

The concept “Data Source” models a generic entity that can provide data, for example

a database containing information collected from a sensor placed on the territory. A

Data Source has a position, expressed in global coordinates (for example longitude and

latitude), that points the place where the sensor is. Data Source has also an active range

that represents the area where data are acquired and is expressed in relation of the data

source position. Data source produces a sequence of Perception Source (see Figure 8),

which corresponds to a certain sensor data type such as CCD, IR, and LR.

• Context Source

The background or proper context in which an object may occur can be seen as a data

source used to enhance the outcome of the query.

• Dependency Tree

The Dependency Tree that is generated internally to each query can also be used as

a data source in cases where queries about query result are of concern, which will be

explained in detail in section 3.3.

• Perception Source

This concept models data type that a source produces. It is introduced to associate

data sources and algorithms to process data; a data source outputs a particular sensor-

data-type, and an algorithm can work on a particular data type (or a set of them) in

input. A Perception Source has a name and other additional information. As additional

information we consider, for example minimal and maximal rate of data sources that

provide this data type. Examples of Sensor Data Type are IR, CCD, LR, and so on.

• Algorithm

28

The algorithms must have a name that identify them unambiguously, e.g., “FusionAlgo-

rithm12”, or “RecognitionAlgorithm17”. It includes two type of algorithms:

1. Recognition Algorithm

The aim of the recognition algorithms is to detect one or more ’characteristics’

in the data types to be processed. Every characteristic belongs to the concept

“Recognizable Characteristic”.

2. Fusion Algorithm

The aim of a fusion algorithm is to fuse information produced by other algorithms

(fusion and / or recognition algorithms) to obtain better results. Fusion algorithm’s

input is then the output of a set of algorithms. Similar as recognition algorithms,

fusion algorithms have a set of “Recognizable Characteristics” that represent what

the algorithm can recognize from the input data.

• Recognizable Object

The concept of recognizable object models everything that the system can detect. It

includes recognizable entity and recognizable characteristics.

• Recognizable Characteristics

The concept of recognizable characteristics models the set of characteristics (or events)

that the data fusion and recognition algorithms can detect. For example, it includes

characteristic-shape (a car), characteristic-color (red object), characteristic-motion (ob-

jects that move), characteristic-crash (objects that crash), characteristic-text (a partic-

ular sentence in a document or in a image), and so on.

• Recognizable Entity

This concept models the entities that can be recognized by the recognition and fusion

algorithms. In our system, recognizable entities further divided into area, vehicle, gate,

and so on.

A more complete description of the OKB in our system can be found in [CCC+04].

29

3.3 SOURCE DEPENDENCY GRAPH

In this section, the source dependency graph (SDG) is described, which is a basic tool to

facilitate fusion-based query processing and optimization. First, the definition of the SDG

is described (section 3.3.1). Then, a query processing example is presented to illustrate how

the SDG works (section 3.3.2).

3.3.1 Definition of the SDG

In database theory, query processing and optimization are usually formulated with respect

to a query execution plan where the nodes represent the various database operations to be

performed [JC84]. In fusion-based query processing, a concept similar to the query execution

plan is introduced. It is called the source dependency graph, which is a graph in which each

node Pi has the following parameters:

• obj typei is the object type to be recognized

• sourcei is either the information source or an operator for fusion, union or combination

• recog algi is the object recognition/fusion algorithm to be applied

• timei is the estimated computation time of the recognition/fusion algorithm in seconds

• recog cri is the certainty range [min, max] for the recognition of an object

• norecog cri is the certainty range [min, max] for the non-recognition of an object

• soii is the space-of-interest for object recognition/fusion (usually an area of interest)

• toii is the time-of-interest for object recognition/fusion (usually a time-interval of inter-

est)

These parameters provide detailed information on a computation step to be carried out

in fusion-based query processing.

If the computation results of a node P1 are the required input to another node P2, there is

a directed arc from P1 to P2. Usually we are dealing with source dependency trees where the

directed arcs originate from the leave nodes and terminate at the root node. The leave nodes

of the tree are the information sources such as laser radar, infrared camera, CCD camera

and so on. They have parameters such as (none, LR, NONE, 0, (1,1), (1,1), sqoi, tqoi, soiall,

30

toiall). Sometimes we represent such leave nodes by their symbolic names such as LR, IR,

CCD, etc. The intermediate nodes of the tree are the objects to be recognized. For example,

suppose the object type is ‘truck’. An intermediate node may have parameters (truck, LR,

recog315, 10, (0.3, 0.5),(1,1), sqoi, tqoi, soiall, toiall). The root node of the tree is the result

of information fusion, for example, a node with parameters (truck, ALL, fusion7, 2000, (0,1),

(0,1), sqoi, tqoi, soiall, toiall) where the parameter ALL indicates that information is drawn

from all the sources.

3.3.2 Query Processing Example

Query processing in fusion systems can be accomplished by the repeated computation and

updates of the source dependency graph. During the each iteration one or more nodes are

selected for computation. The selected nodes must not be dependent on any other nodes.

After the computation, one ore more nodes are removed from the source dependency graph.

The process then iterates until there is no nodes in the tree. What follows is a simple example

to illustrate how it works.

Example 3.3.1 Query: Find a truck in given time and area from laser radar, infrared

camera, and CCD camera.

The corresponding query can be formulated as follows:

SELECT object

CLUSTER ALIAS OBJ1

FROM

SELECT t

CLUSTER *

FROM LR, IR, CCD

WHERE OBJ1.type = ’truck’ and OBJ1.time = tgiven and Inside(AOI, OBJ1)

By analyzing the initial query, the source dependency graph T1 is constructed (Figure 9),

where the sources are laser radar (LR), infrared (IR) and charged couple device camera

(CCD). Next, we select some of the nodes to compute. For instance, all the three source

31

Figure 9: Source Dependency Graph

nodes can be selected, meaning information will be gathered from all three sources. After this

computation, the processed nodes are dropped and the updated source dependency graph

T2 (Figure 9) is obtained.

We can then select the next node(s) to compute. Since IR has the smallest estimated

computation time, it is selected and recognition algorithm 144 is applied. The source de-

pendency graph T3 is shown in Figure 9.

In the updated graph, the IR node has been removed. We now select the CCD node

because it has much higher certainty range than LR and, after its processing, select the LR

32

node. The source dependency graph T4 is shown in Figure 9.

Figure 10: Source Dependency Graph (T5)

Finally the fusion node is selected. The graph T5 has only a single node shown in

figure 10. After the fusion operation, there are no unprocessed (i.e., unselected) nodes, and

query processing terminates.

3.4 QUERY REFINEMENT

In database research, query refinement is one of the most widely investigated problems, and

many mature techniques can also be used in our system. In this section, I briefly describe

two basic, fusion-based query refinement techniques on the source dependency graph – the

dynamic SOI/TOI (section 3.4.1) and β-Pruning (section 3.4.2).

3.4.1 Dynamic SOI and TOI

Most fusion systems deal with the temporal/spatial data, where user information needs

usually come up with a specific range of space or time. As discussed before, they are

denoted as space of interest (SOI) and time of interest (TOI). Because in fusion systems

multiple data sources describe overlapping sets of objects, frequently there is a large amount

of redundant data. The dynamic SOI/TOI is an important technique which can effectively

get rid of uninterested data. The main idea is: in the source dependency graph, the SOI/TOI

of the unprocessed nodes can be dynamically updated based on the result of processed nodes.

For example, in figure 9 from T2 to T3, the node “recog144” was selected to compute. It

33

applied on the full range of SOI/TOI, and detected that only specific SOI/TOI ranges contain

meaningful objects. When it is finished, using dynamic SOI/TOI technique, the SOI/TOI

of unprocessed nodes in T3 will be updated to these specific ranges at run time. As a result,

the following computation will be performed within the smaller ranges of space and time. In

many cases, this technique can significantly improve the performance of query processing.

3.4.2 β – Pruning

The β-pruning also comes from a straightforward idea. Because in fusion systems information

referring to same objects are retrieved from multiple sources, there is a large mount of

repeated computation. For example, when a query as simple as “find a truck” is applied on

three data sources, the same retrieval process has to be performed for three times on different

sources. In source dependency graph, these repeated computations are represented by nodes

with all the same specifications except the data source. A group of this kind of nodes is

named node cluster. All the nodes in a node cluster are specified to retrieve same objects

but from different sources. The first processed node in a node cluster is named α node, the

rest nodes are β nodes. This could change dynamically: after the α node is computed, it

will be removed from the cluster and the next node to process will become α node again.

The rule of beta-pruning is: if the α node returns the object with a certainty above a

threshold, the rest nodes i.e. β nodes will be pruned from the source dependency graph

without any computation. For example, in figure 9 from T2 to T3, the nodes “recog315”,

“recog144”, and “recog1” are in one node cluster. The node “recog144” was α node since it

is first computed. Suppose that it returns the “truck” objects with a certainty higher than

the pre-defined threshold. According to the rules of β-pruning, the β nodes “recog315” and

“recog1” will be directly remove form the source dependency graph.

Literally, the β-pruning can be interpreted this way: for a arbitrary information retrieval

problem in fusion systems, if one data source can provide some information for sure, there

is no need to use other sources to retrieve the same thing any more. In many cases, this

technique can significantly eliminate unnecessary computations.

34

3.5 QUERY OPTIMIZATION

In the previous sections we explained the query processing steps and query refinement tech-

niques. In this section the optimization problems related to query processing are described.

Suppose that we have the source dependency graph such as T1 of section 3.3. For

the recognition algorithm recog315, we have the following certainty range: P (recog315 =

yes|X = truck, Y = LR) = (0.3, 0.5), and P (recog315 = no|X = truck, Y = LR) =

(0.4, 0.6), where X=truck, Y=LR means that there is a truck in the frame which is ob-

tained by LR. If the input data has certainty range (a,b) and the recognition algorithm

has certainty range (c,d), then the output has certainty range (min(a,c), min(b,d)). The

optimization problem can be stated as follows: Given the source dependency graph, we

want to recognize the object ‘truck’ with the certainty value above a threshold. Our goal is

to minimize the total processing time. In other words, the optimization problem is as follows:

Minimize

∑N
j=1

∑N
i=1 δij · Ti

where

δij =

 1 if algorithem i run at jth oder;

0 otherwise.

Ti= processing time of algorithm i.

subject to∑N
i=1 δij ≤ 1(for jth order, at most one algorithm can run.)∑N
j=1 δij ≤ 1(for every algorithm, it can be at most in one order.)

Max(CN ×∆N) ≥ θ (θ is the certainty threshold.)

where

C1=(c(ALG1, priori certainty),. . .,c(ALGN , priori certainty))

∆1 = (δ11, . . . , δN1).

C2 = (c(ALG1, C
1 ×∆1), . . . , c(ALGN , C1 ×∆1))

∆2 = (δ12, . . . , δN2).

35

· · ·

It is a 0-1 integer linear programming(0-1 ILP) problem, which has been widely inves-

tigated [Sch98, CLRS01]. It has a dual problem – maximize the certainty value for the

object truck under the condition that the total processing time is within the time limit. The

problem can be formulated as follows:

Maximize max(CN ×∆N)

where

δij =

 1 if algorithem i run at jth oder;

0 otherwise.

where

C1=(c(ALG1, priori certainty),. . .,c(ALGN , priori certainty))

∆1 = (δ11, . . . , δN1).

C2 = (c(ALG1, C
1 ×∆1), . . . , c(ALGN , C1 ×∆1))

∆2 = (δ12, . . . , δN2).

· · ·

subject to

∑N
i=1 δij ≤ 1(for jth order, at most one algorithm can run.)∑N
j=1 δij ≤ 1(for every algorithm, it can be at most in one order.)∑N
j=1

∑N
i=1 δijTi < T (T is the maximum time that we can bear.)

where

Ti = processing time of algorithm i.

In the above optimization problems we have not considered the space of interest soi

when we formalize the problem. If we put it in, the formulation of the problem becomes

more complicated:

F 1= (t(ALG1,initial soi),. . . ,t(ALGN , initial soi))

A1 =(a(ALG1,initial soi),. . . ,a(ALGN , initial soi))

∆1 = (δ11, . . . , δN1).

F 2 = (t(ALG1, A
1 ×∆1), . . . , t(ALGN , A1 ×∆1))

36

A2 = (a(ALG1, A
1 ×∆1), . . . , a(ALGN , A1 ×∆1))

∆2 = (δ12, . . . , δN2).

· · ·∑N
k=1 F k ×∆k is the total running time.

Now we need to change the goal function to

Minimize∑N
k=1 F k ×∆k

Note:

a(ALGi, soi) is the output soi after using algorithm i on the input soi.

A1 ×∆1 is the output soi after using the first algorithm.

F k ×∆k is the running time of the kth order algorithm.

t(ALGi, soi) is the running time of the ith algorithm on soi .

The 0-1 integer linear programming (0-1 ILP) problem is a well-known NP-Hard prob-

lem [Sch98, CLRS01]. In other words, there is no polynomial time algorithms so far which

can be guaranteed to find the minimum processing time or maximum certainty value given

the constrains. In practice, we use approximation algorithms with polynomial complexity to

provide some semi-optimized results.

3.6 EXPERIMENTAL SYSTEM AND EXPERIMENTS

To investigate the usability of proposed query processing techniques (i.e. SDG, query re-

finements etc.), an experimental system has been implemented, which can process queries

on real sensor data. To distinguish this system from the following experimental systems, I

name it system V1.0. I begin this section by the introduction of the experimental system

(section 3.6.1). Then the experiment on it is described in detail (section 3.6.2).

37

Table 1: Experimental System V1.0

Item Detail

Title Experimental IVET System V1.0

Goal A system which can work on the real data and fusion algorithms

to process user queries

Challenges Integrate several components (e.g. low level fusion/recognition,

OKB, query interface, etc.) and make them work together.

Designed by Xin Li

Figure 11: Objects recognized by the recognition algorithms have seven attributes

3.6.1 Experimental IVET System V1.0

Table 1 shows serveral important attributes of the system V1.0. It is the first system in

which I have implemented and integrated all components in the system diagram (figure 7).

The system can manage various recognition and fusion algorithms for different sensors. The

38

tree-structured OKB is stored in a database, and a simple knowledge inference system is

created based on it. Users can input the queries using a graphic interface. All the techniques

described in previous sections are implemented in the system.

Figure 12: Recognition algorithms can be applied dynamically

The main interface of system is shown in Figure 11. The sensors used are laser radar

(LR), infrared video (IR), and CCD digital Camera (CCD).

There are separate image analysis systems working for different sensors. Each time after

a recognition algorithm is applied and some objects identified, these objects can be displayed.

Each object has seven attributes: object id, object color, object type, source, recognition

algorithm, estimated processing time and certainty range for object recognition (Figure 11).

There are also hidden attributes including the parameters for the minimum enclosing rect-

angle of that object, the spatial and temporal coordinates of the query originator, the space

of interest and time of interest, and the certainty range for non-recognition of object.

As shown in Figure 12, the recognition algorithms can be applied dynamically to an area

in the image, and the recognized objects are displayed. Figures 13 and Figrue 14 illustrate

the construction of a query and the results of processing the query, respectively.

The main window in Figure 13 illustrates the visual construction of a query. The user

39

Figure 13: Construction of a query. The resultant query is shown in the upper right window

drags and drops objects and enters their attributes, and the constructed query is shown in

the upper right window. The objects in the dependency tree are shown as an object stream

in the middle right window.

In Figure 14 the lower right window shows the query results. When a query is being

executed, its dependency tree will change dynamically. Figure 15 displays the same infor-

mation as that of the object stream, but in a format more familiar to end users. It shows

the dependency tree on the left side of the screen, and the selected node with its attributes

on the right side of the screen. In the next step, both the dependency tree and the query

may be changed, as illustrated in Figure 16. As shown in Figure 17, the information of

optimization can be shown in a pop-up window.

The original query shown in the upper right window of Figure 13 is as follows:

SELECT object

CLUSTER * ALIAS OBJ1 OBJ2

FROM

40

Figure 14: Visualization of Query processing. The result of query was shown on the right

bottom window

SELECT t

CLUSTER *

FROM video source

WHERE OBJ1.type = ‘car’ AND OBJ1.color = ‘red’ AND

OBJ2.type = ‘truck’ AND OBJ1.t < OBJ2.t

The corresponding Object Stream is:

COMBINE

OBJ1,OBJ2

OBJ1.t=OBJ2.t

OBJ2

41

Figure 15: The dependency tree (left) and a selected node (right). We can trace the Query

processing step by step

video source

OBJ2.type = ‘truck’

OBJ1

video source

OBJ1.type = ‘car’

OBJ1.color = ‘red’

The Result Set is:

Car1, Truck3

Car2, Truck4

i.e., either Car1, Truck3 or Car2, Truck 4 is the retrieved result.

42

Figure 16: The next step of query processing after the step shown in Figure 15. Both query

and dependency tree are changing step by step

Figure 17: The information of optimization can be shown in a pop-up window.

43

3.6.2 Experiments on System V1.0

Table 2: Experiment 1

Item Detail

Title Experiments on System V1.0

Goal Verify the usability of the basic query processing techniques

(i.e. SDG, Dynamic SOI/TOI, and β – Pruning).

Description Participators are asked to perform queries expressed in natural

language using the experimental system V1.0. Query is interpreted to

SQL-like Query by users, and the result is visualized on the map

which is easy to be verified.

Designed by Xin Li

Participators Eight End Users

Figure 18: Result Analysis of Experiment 1

In order to analyze the performance of proposed query processing techniques, I designed

an experiment on system V1.0. Table 2 lists some important attributes of this experiment.

Eight end users have kindly participated in this study. Basically, the experiment includes

the following three steps:

44

• Step1: assuming users have some pre-knowledge on SQL language, we give them a very

quick tutorial (30 min) on the query language we are using by showing several examples

using our system.

• Step2: we carefully choose three most frequently issued queries as benchmark queries

(see Appendix A), and tell users the queries in English. Then ask them to perform these

queries one by one using the experimental system.

• Step3: we monitor the time that users spend on each query and the system resource

usage during the process.

A threshold δ of response time (i.e. 15 min) is defined: if users can finish a query (from

formulating a query until getting a satisfied result) within δ time, it is defined as a successful

case, otherwise it is a failure. Figure 18 shows the average processing time and success rate

on each benchmark query and the average of all.

Demonstrated by this experiment, the proposed query processing methodology including

SDG, query refinements, and optimization prove to be a feasible approach in real fusion

systems.

3.7 SUMMARY

In this chapter, I describe our primary experimental system – the IVET system, which is a

typical sensor-based fusion system. In particular, the ontology knowledge base in the system,

which closely relate to my works, is described in detail. Several important, fusion related

query processing techniques such as source dependency graph (SDG), dynamic SOI/TOI,

β-Pruning, and query optimization are discussed in detail. Verified by the experimental

system, the proposed query processing techniques are feasible and effective in the real fusion

system. All these works serve as a solid foundation for our further research.

45

4.0 INCREMENTAL QUERY PROCESSING

I begin this chapter by analyzing the experiment results described in the last chapter, show-

ing that the bottleneck of query processing in the IVET system is query building instead

of query execution (section 4.1). Motivated by this fact, I propose an incremental query

method to eliminate the accumulated complexity in query building as well as query execu-

tion (section 4.2 – section 4.4). Verified by a survey on user query manner, the incremental

query method is more preferable than the direct query method in various scenarios of fusion

systems (section 4.5). An experimental system has been implemented to demonstrate the

usability of the proposed incremental query method (section 4.6).

4.1 MOTIVATION

To investigate usability of the IVET system, the experiment results on system V1.0 are

further analyzed. Figure 19(a) shows the system CPU/memory usage during processing of

a complex spatial/temporal query. Depending on the workload, query processing can be

divided into two phases, marked as Phase A and Phase B:

• Phase A: The characteristics of this phase is low workload on CPU/memory for the

system (CPU Usage < 30%; Memory Usage < 10%). The system is almost idle because

it is accepting users input, checking syntax of query or doing other light-load tasks.

• Phase B: CPU/memory becomes much busier because the system is executing query

and visualizing result.

46

Figure 19: Experiment Result on the System V1.0

Figure 19(b) shows the statistical result from the user’s point of view. The query building

phase begins from inputting a query to submitting a query, followed by the query execution

phase. Results from the view of the system (Figure 19(a)) and the view of the user (Fig-

ure 19(b)) both consistently lead to the following conclusion: for the system the users spend

more time building a query than executing a query. In other words query building is the

more significant phase in the processing of complex spatial/temporal queries. On the other

hand the system is almost idle while the user is composing a complex query.

This explains why the optimization for query execution (section 3.5) does not significantly

improve usability of the system. Query execution is actually just a small part of the entire

query processing task. Query building is the real bottleneck hindering the overall usability

of the fusion system.

To remove the query building bottleneck, query interface plays a crucial role because

it is a tool to help a user build complex queries. In fact, query interface is an active re-

search area evolving fast in recent years. As related research, there are mainly two types

of query interfaces: textual interfaces and non-textual interfaces. The system V1.0 shows

an example of a textual interface, in which a user may input textual queries into the sys-

tem directly. The advantage of the textual interfaces is that it can support very complex

47

spatial/temporal queries. However query languages are difficult to learn for ordinary users.

Query building is also error prone and time consuming if users have to input textual queries

directly. Not surprisingly, there are many non-textual query interface used to decrease users

mental load in various areas. For each non-textual query interface, usually there is a visual

query language supporting it. Many approaches for visual query languages have been pro-

posed [AEG03, NS02, LC95]. In these approaches the picture elements conveying different

meaning are connected together to form a query. For example in [AEG03] a simple query

can be represented by a data input element and a data output element connected by a filter

symbol. A filter also can connect different simple queries to form a more complex query.

In [NS02] iconic symbols that have various meaning are composed by spatial relations (such

as horizontal or vertical concatenation) to form a query.

Mentioned by G. Costagliola in [CDOP02], all these approaches can be classified into two

groups depending on the connecting styles of elements: connection-based such as [AEG03]

and geometric-based such as [NS02]. The foundation of the connection-based query languages

is E-R (Entity-Relation) diagram, which is widely used in database design. But unfortunately

for náıve users who have no knowledge on of databases and query languages, it is not easy

to understand E-R diagrams. The most severe problem for both approaches is: similar to

the text query interface, when a query is getting becomes complex, all these diagrams will

become much more difficult to build and manage, especially in multi-object and multi-source

scenarios.

Aiming to resolve this kind of accumulated complexity in multi-object and multi-source

situations, I propose incremental query in which a complex information retrieval request is

constructed incrementally through several separated iterations. The more about the incre-

mental query is discussed in detail in the following sections.

4.2 AN EXAMPLE OF INCREMENTAL QUERY

Before I introduce the formal definition of incremental query, an example is described here

to illustrate the basic concepts in incremental query such as elementary query, compound

48

query and query operators. For example, we have the following query:

Example 4.2.1 Query: find a red car followed by a truck within 10 minutes from Laser

Radar and CCD camera.

As we discussed before, the above request can be formulated into a query based on the

fusion operations as follows:

SELECT object

CLUSTER ALIAS OBJ1, OBJ2

FROM

SELECT t

CLUSTER *

FROM LR, CCD

WHERE OBJ1.type=’car’ AND OBJ1.color=’red’ AND OBJ2.type=’truck’ AND

OBJ1.time<OBJ2.time AND OBJ1.Time>OBJ2.time-10min

In the above query, the OBJ1 (red car) and OBJ2 (truck) are retrieved from two sources

at same time. For end users, frequently multiple objects/ multiple sources make the query

formulation become complex. However, it will be much easier to construct if we re-organize

the query in the following equivalent way:

(2) SELECT object

(2) CLUSTER t ALIAS OBJ1,

(1) SELECT object

(1) CLUSTER t ALIAS OBJ2

(1) FROM LR, CCD

(1) WHERE OBJ2.type=truck

(2) FROM LR, CCD

(2) WHERE OBJ1.type=car AND OBJ1.color=red AND

(2) OBJ1.time<OBJ2.time AND OBJ1.Time>OBJ2.time-10

49

Through this way, the query could be incrementally built in two iterations. The query

for the first iteration is the statements marked with (1) – selecting all the truck objects from

LR and CCD. The statements with mark (2) are the query for the second iteration. Besides

the object, time, space and some properties needed to be specified as same as first step,

there is another thing to specify for the second step – the relation to the previous one.

In other words, the second iteration can be divided into two parts: one part is building a

simple query – selecting all the red cars from LR and CCD ; the other one is choosing a

relation operation to combine these two queries. For users, the relation between different

queries could be treated as an operator that connects two queries. In this example, the query

operator formulates a temporal relation – Objects in query (1) appears before Objects in (2)

within 10 minutes.

To summarize, as shown by this example, the incremental query can break a complex

query into several iterations. In the each iteration, user only needs to construct a simple

query, which is called elementary query. Elementary queries can be connected by various

relations such as temporal, spatial, and so on. This kind of relation is described by query

operator. A complex query can be represented by a chain of elementary queries connected by

query operators, which is called compound query. The formal definitions of these concepts

are described in the following section.

4.3 FORMAL DEFINITIONS

In this section, I formally define the concepts of elementary query, query operator, and

compound query.

Definition 4.3.1 (Elementary Query) An elementary query EQ is a basic form of spa-

tial/temporal query, which can be defined as a 5 tuple: EQ:= < OBJ, SOURCE, AOI, TOI,

PREDICATE >

• OBJ is type of object to be retrieved, such as car, hurricane and so on.

• SOURCE is data source, such as a video camera.

50

• TOI is time of interest, which is represented by a range of time.

• TOI is time of interest, which is represented by a range of time.

• PREDICATE is a unary predicate on the objects which specifies constraints on the prop-

erties of the objects to be retrieved, such as a cars direction of movement.

Example 4.3.1 A simple spatial/temporal query-“find red cars which passed toll gate A from

4:00am to 6:00am from surveillance video“ can be represent by an elementary query Q:

Q=<“car” , surveillance video, toll gate A, 4:00am-6:00am, (object.color = “red”) AND

(object.moving = TRUE)>

However, a complex query may involve more than one object, so it cannot be simply

represented as an elementary query. For example, a query – “find a red car followed by a

truck within 10 minutes from a video source given AOI and TOI” cannot be described in

terms of an elementary query. But it can be represented as a compound query composed

from two elementary queries. What follows are definitions towards a formal description of

compound query.

Definition 4.3.2 (Query Operator) A query operator QO is a binary predicate P on two

objects X and Y.

QO :=P(X, Y)

Query operators can specify relations between objects. With respect to the predicate P,

Query operators are categorized into three groups:

1. Temporal query operator if P describes a temporal relation between X and Y.

2. Spatial query operator if P describes a spatial relation between X and Y.

3. Direction query operator, otherwise.

Example 4.3.2 Query operator τ : τ(object1,object2) = (object1.time > object2.time) AND

(object1.time < object2.time + 10min)

τ is a temporal query operator, which is literally explained as “Object1 appears before

object2 within 10 minutes”.

51

Definition 4.3.3 (Compound Query) A compound query CQ is a form of complex spa-

tial/temporal query which could include multiple objects. It can be defined as a three tuple

recursively: CQ :=<q, τ , c> In which,

• q is an elementary query.

• τ is a query operator.

• c is either an elementary query or a compound query.

Example 4.3.3 The complex query mentioned before – “find a red car followed by a truck

within 10 minutes from a video source by given AOI and TOI”can be represent by a compound

query CQ:

CQ = < q1, τ , q0 >

In which,

q1=<“car”, video, AOI, TOI, (object.color=“red”) AND (object.moving = TRUE) >

τ(object1, object2) = (object1.time > object2.time) AND (object1.time < object2.time +

10min)

q0=<“truck”, video, AOI, TOI, object.moving = TRUE >

Using elementary query and compound query, a complex query can be represented as

a nested compound query which composed by a chain of elementary queries and query

operators. The following function ResultSet reveals the semantic this kind of composition:

Definition 4.3.4 (ResultSet) A ResultSet is a function on either an elementary query or

a compound query to a set of objects:

ResultSet(Q) :=



{object|(object.type = obj)AND(object.source = source)

AND(object.location ∈ AOI)AND(object.time ⊂ TOI)}

if Q is an elementary query,Q=<obj,source,AOI,TOI,direction>;

{object|(object ∈ ResultSet(q0)AND

(∃X ∈ ResultSet(q1), τ(object, X))}

if Q is a Compound Query, Q=< q0, τ, q1 >.

52

Example 4.3.4 Query: Did any sensor (data source) contribute to the result in any extreme

way?

Q0 = <“truck”, PerceptionSource, AOI, objecti.tgiven, TRUE >

τ(objectj, objectk) =

(OR (qualitative-difference(objectk.belief-value,

objectj.belief-value) = “large”

AND objectk.position = objectj.position

AND objectk.t = objectj.t),

(objectk.t = objectj.t

AND objectk.position = objectj.position

AND objectk.type 6= objectj.type))

Q1 = <“truck”, Source Dependency Graph (SDG), AOI, objectk.t = tgiven, TRUE >

In the above expressions, “TRUE” means that the PREDICATE in Q0 is always satisfied

because no attribute value has been asked for. In Q1 truck is part of the query. In this case

this means there is no change in object type.

4.4 INCREMENTAL QUERY PROCESSING

As discussed above, a crucial problem for information retrieval in multi-object, multi-source

scenarios is that information needs are often too complex to be formulated by users. The

reason is that complexity of a query is usually accumulated when multiple object types are

retrieved from multiple sources in a single query. Using the incremental query schema, every

query by users is considered a compound query that can be constructed in several iterations.

In the each iteration, the user constructs an elementary query. Using query operators,

multiple elementary queries can be composed into a nested query. The composition rule is

implicit, and the user does not need to know the underlying query language for the nested

query. What is required is an understanding of the meaning of different query operators.

53

The main purpose of the user interface is therefore to provide a visual interface for the user

to compose compound queries from elementary queries using query operators.

Compared to other query approaches, our incremental query method has several evident

advantages for fusion systems:

1. Accumulated complexity is reduced because the query building steps are isolated from

each other. Each step is concerned only with one object. The query operators are the

only connections between consecutive steps.

2. Visualization of the interface becomes much easier because there is no need to display a

whole complex query at one time, but just the elementary queries and the query operators

separately.

3. System resources such as CPU and memory can be utilized evenly because query building

and query execution are divided into small pieces and could be processed in pipeline style.

4. Some repeated structures in a query become easier to detect and reuse, because a complex

query turns out to be a long chain of elementary queries and query operators.

5. Query optimization can be carried out once the final complex query has been developed.

Using incremental query, every query issued by users is uniquely identified by sequences

of elementary queries and query operators, which is formally defined as query path.

Definition 4.4.1 (Query Path) A query path QP is a sequence of queries

QP := (Q0, Q1, . . . , Qn)

In which,

Qi =< q, τ,Qi−1 >, q is an elementary query and τ is query operator.

Query Path QP := (Q0, Q1, . . . , Qn) describes the track of an incremental query building

from Q0 to Qn. In each step, a query operator and an elementary query are applied on the

previous one.

Definition 4.4.2 (Complete) The predicate Complete is a unary predicate on Query Path

QP := (Q0, Q1, , Qn),

54

Complete(p) ⇐⇒ Q0 is an Elementary Query, and each Qi+1 is constructed from the

previous Qi by applying a query operator.

A complete query path is a history of incremental query building from an elementary

query to a complex query.

Definition 4.4.3 (SubPath) The predicate SubPath is a binary predicate on Query Path

QP1 = (Q0, Q1, Q2, . . . , Qn) and QP2 = (Q′
0, Q

′
1, Q

′
2, . . . , Q

′
m), n < m

SubPath(QP1, QP2) ⇐⇒ ∃s, 0 ≤ s ≤ m− n, ∀i = 0, 1, . . . ,m,Qi = Q′
s + i

Literally, QP1 = (Q0, Q1, Q2, · · · , Qn) is a subpath of QP2 = (Q′
0, Q

′
1, Q

′
2, , Q

′
m) if only if

(Q0, Q1, Q2, · · · , Qn) is a subsequence of (Q′
0, Q

′
1, Q

′
2, · · · , Q′

m).

The following rules hold with SubPath relation:

SubPath(X, Y) ∩ SubPath(Y, Z) =⇒ SubPath(X, Z)(transitivity)

SubPath(X, Y) ∩ SubPath(Y,X) =⇒ X ≡ Y (anti− symmetry)

Observed from the definitions of the query operator and compound query, some restric-

tions are applied to our query representation because the query operator is limited to the

binary predicate and no memory manipulation capacity is provided along the query path.

However, noting the well known trade off between the expressiveness and computational

tractability in knowledge representation [LB85], with these restrictions the queries become

much easier to handle. Furthermore, this trade-off makes it possible to apply more advanced

techniques such as query pattern matching and retrieving into our method.

4.5 SURVEY ON USER QUERY MANNER

With incremental query, now users have two options to create a query: 1) directly input a

SQL-like query (e.g. the method used in system V1.0); 2) incrementally build a query using

elementary queries and query operators. In order to find out which one is more preferable

for users, I have designed an experiment based on the user survey shown in Appendix B.

The important attributes of this experiment are listed in Table 3.

55

Table 3: Experiment 2

Item Detail

Title User Query Manner Survey

Goal Assess the user preference on incremental query and compound query.

Description Participators are asked to finish a survey shown in Appendix B.

Several queries are provided in natural language. Participators are

required to formulate them into incremental query (i.e. elementary

queries and query operations) and compound query. Time spent on

each method is recorded and the preference is surveyed.

Designed by Xin Li

Participators Twenty Three Graduate Students in CS3650, University of Pittsburgh.

In the experiment, surveyees are asked to create three queries in fusion systems using

the both methods. The time they spent on each one is recorded, and their preferences are

explicitly collected.

Figure 20: Query Building Time (Direct Query vs. Incremental Query)

Figure 20 shows the average time on three sample queries, it consistently shows that

56

the incremental query building costs less time than the direct query building. Meanwhile,

shown in figure 21(a) the majority of surveyees (52%) also explicitly prefers the incremental

query method. As a conclusion, the incremental query proves to be a better way for users

to formulate a query in fusion systems.

Figure 21: User Preference Survey((a): overall preference; (b): preference vs. proficiency)

The relation between the preference and the proficient on query language (i.e. SQL

language) is also studied in this experiment. As shown in figure 21(b): the more proficient

on SQL query language (and related concepts) users are, the more preferable on the direct

query method they indicate. It is conceivable that for the users who know nothing about

query languages the incremental query will be much more preferable than the direct query.

4.6 EXPERIMENTAL SYSTEM AND EXPERIMENTS

To investigate the usability of the proposed incremental query method, an experimental

system named V2.0 has been designed and implemented on the basis of system V1.0 (see

section 3.6.1). The new system can support the incremental query building (i.e. elementary

query and query operator) through a visual query interface. I begin this section by the

57

introduction of the system (section 4.6.1). Then the experiment on it is described in detail

(section 4.6.2).

4.6.1 Experimental IVET System V2.0

Table 4: Experimental System V2.0

Item Detail

Title Experimental IVET System V2.0

Goal An incremental query system based on the experimental system V1.0

(shown in Table 1)

Challenges Query Interfrace that visualizes elementary query and query operators.

Designed by Xin Li

Table 4 lists some important attributes of the system V2.0. The main challenge is to

design a query interface for the incremental query. The incremental query makes query

visualization feasible because the complexity of a query is separated within single iterations.

However, it is still a difficult problem to visualize the elementary query and query operators.

The main user interface of system V2.0 is shown in Figure 22. Similar as the system V1.0,

on the left of main window there are some objects shown on a map. The red rectangle on

the map shows the AOI (Area of Interest) for the current query. As defined in section 4.3,

an elementary query has five variables needed to specify: Object, Source, Time (TOI),

Space (AOI) and Direction. The Space (AOI) is shown on the map; other four items are

on the panel. For the right part of main window, from top to bottom there are elementary

query, query operator, and four functional buttons. The buttons are back, query, restart and

forward. User can switch between different iterations using back and forward button. The

result of current query will be displayed on the map if button query is pressed.

When a query operator button (i.e. temporal, spatial, and direction) is pressed, a separate

window will be shown to let user create a new query operator. Figure 23 shows the interfaces

for temporal and spatial query operators. And also, users can input text to create these

operators directly.

58

Figure 22: Query Interface of the System V2.0

Figure 23: Query Operators

4.6.2 Experiments on System V2.0

In order to analyze performance of the proposed incremental query method, I designed an

experiment on system V2.0. Table 5 lists some important attributes of this experiment.

Eight end users have kindly participated in this study. Similar as the experiment on system

59

Table 5: Experiment 3

Item Detail

Title Experiments on System V2.0

Goal Verify the usability of the incremental query processing techniques

(i.e. complex query is composed by elmentary queries and query

operator).

Description Participators are asked to perform queries expressed in natural

language using the experimental system V2.0. Users are required to

input queries incrementally using elementary queries and query

operators. The result is visualized on the map which is easy to

be verified.

Designed by Xin Li

Participators Eight End Users

V1.0 (see section 3.6.2), the experiment includes the following three steps:

• Step1: assuming users have no pre-knowledge on incremental query, we give them a very

quick tutorial (30 min) by showing several examples using our system.

• Step2: we carefully choose three most frequently issued queries as benchmark queries

(see Appendix A), and tell users the queries in English. Then ask them to perform these

queries one by one using our system.

• Step3: we monitor the time that users spend on each query and the system resource

usage during this period.

A threshold δ of response time (i.e. 15 min) is defined: if users can finish a query (from

formulating a query until getting a satisfied result) within δ time, it is defined as a successful

case, otherwise it is a failure. To compare with the performance of the direct query, I plot

the time and success rate of this experiment together with the experiment 1 (see table 2)

in figure 24. Compared to the direct query method, the average query processing time and

60

Figure 24: Result Analysis of Experiment 3 (Processing Time and Success Rate)

Figure 25: Result Analysis of Experiment 3 (CPU and Memory Usage)

system failure rate in the incremental query have improved 35.3% and 15.6% respectively.

Figure 25 shows the system CPU/Memory usage of the incremental query method on

the same query as the one in figure 19(a). It is evident that the system resources are utilized

more efficiently by the incremental query. The rationale is that using incremental query

61

system can execute previous query iterations at the same time when users input the current

one. In other words, query execution and query building can be performed in parallel. More

important, the maximum needs for CPU and memory dramatically decreased comparing to

the direct query. This could have significant value when the fusion system is used on the

portable devices which have limited system resources.

4.7 SUMMARY

In this chapter, a new method of incremental query is proposed. It is motivated by the query

building bottleneck found through result analysis of the experiment described in chapter

3. Using the incremental query, a query is broken down into several simple and uniform

elementary queries connected by query operators to resolve the accumulated complexity.

The incremental query language, interface, and processing techniques are described in detail,

which have been verified by two experiments, i.e., user query manner survey (Experiment 2)

and query processing experiments on the system V2.0 (Experiment 3). The results of both

experiments consistently indicate that the incremental query has evident advantages over

the direct query in fusion systems.

62

5.0 QUERY PATTERN

Query Pattern is important, not only because it can capture and reuse the repeated

structures in complex queries, and hence make them easy to build and process, but also it

can help our approach make a significant progress towards a broadly applicable solution for

query processing in general fusion systems.

I begin this chapter by describing several repeated structures in user queries which have

been spotted in practice (section 5.1). It is conceivable that it could significantly improve

system performance and lower user mental load if they can be retrieved and reused by

any means. Based on these observations, the formal definition of query pattern in our

system is described (section 5.2). Then some important query patterns are presented using

the proposed schema – the observed typical tasks in general fusion systems are studied,

and formulated as the query patterns (section 5.3). Next, in order to apply the query

pattern into our incremental query processing, I design a post query reasoner equipped with

the capability of pattern matching and learning. Several important techniques for pattern

matching and learning are described in detail (section 5.4). Finally, the experiments have

been done to demonstrate that the proposed techniques on query pattern can effectively

improve the system usability and lower user mental load in the process of query handling

(section 5.5).

5.1 MOTIVATION

Due to the diversity of the fusion applications, there is a wide range of information needs in

fusion systems. However, in practice we observe that many information requests from users

63

come up with very similar structures. What follows are some examples of queries which have

similar structures as the benchmark queries described in Appendix A.

Example 5.1.1 The benchmark query–“Find a red car followed by a truck within 10 min-

utes” has the following similar queries:

• Find a bus followed by a car within 5 minutes.

• Search for a car which follows a red truck in 1 minute.

• Search for a red truck entered the parking lot within 3 minutes before the gate closed.

• · · ·

Despite of some minor variations, the commonality among these queries is: they all have

two object variables X and Y and a time variable T, and the corresponding relation is that

X follows Y within time T.

Example 5.1.2 The benchmark query–“ Find a black car in the area 1 which entered the

parking lot through Gate A during 6:00pm – 9:00pm.” has the following similar queries:

• Find a truck currently in area B which was spotted in area A at 7:00am today.

• Search for a moving bus which parked in area A during the night.

• Search for a car in area A which previously parked in area B for three consecutive days.

• · · ·

Despite of some minor variations, the commonality among these queries is: they all have

two object variables X and Y, and the corresponding relation is that X is associated with Y,

i.e., X and Y are same object in different observations.

Example 5.1.3 The benchmark query–“ Did the results of some sensors conflict with each

other (i.e. different types referring to same object) while finding a truck passed Gate B at

7:00pm? ” has the following similar queries:

• Did the results of some sensors conflict with each other while finding a red car in the

area B?

• Did the results of some sensors conflict with each other while finding a truck currently

in area B which was spotted in area A at 7:00am today?

64

• Check for the conflicts among the data sources while searching for a red car followed by

a truck within 10 minutes.

• · · ·

Despite of some minor variations, the commonality among these queries is: they all have

a object variable X, and the corresponding query is whether or not there are conflictions

among different data sources while retrieving the information about object X.

Because in incremental query schema a complex query is broken down into a chain

elementary queries connected by query operators, the repeated structures become much more

obvious to detect and reuse. It is conceivable that it could significantly improve the system

performance and lower the user mental load if these repeated structures can be learned and

reused by any means. Query pattern, which is proposed to capture and reuse these repeated

structures, is discussed in detail in the following sections.

5.2 DEFINITION OF QUERY PATTERN

On the basis of the incremental query, query patterns can be easily generalized from a set of

similar query paths in which some constants are marked as variables with appropriate scope.

Through this way, a single pattern can cover a group of similar queries by instantiating the

variables according to the scope and context. Formally, a query pattern is defined as follows.

Definition 5.2.1 (Query Pattern) A query pattern QPN is defined as a triple: QPN:=

< QP, S, L > where

• QP = (Q0, Q1, . . . , Qn) is a query path;

• S = {var1 : type1, . . . , varm : typem} is a set of variables with the corresponding types,

var1, . . . , varm are variables in the query Qi(i = 0, 1, . . . , n), type1, . . . , typem are ontol-

ogy concepts in OKB, where typei describes the scope of variable vari(i = 0, 1, . . . ,m).

• L is a linguistic label.

The detail about the ontology concepts in OKB is discussed in section 3.2.

65

Definition 5.2.2 (SubPattern) A SubPattern is a binary predicate on query patterns

QPN1 = < QP1, S1, L1 > and QPN2 = < QP2, S2, L2 >,

SubPattern(QPN1, QPN2) ⇐⇒ (S1 ⊂ S2) AND SubPath(QP1, QP2)

The following rules hold with SubPattern relations:

SubPattern(X, Y) AND SubPattern(Y, Z) =⇒ SubPattern(X, Z) (transitivity)

SubPattern(X, Y) AND SubPattern(Y, X) =⇒ X ≡ Y (anti-symmetry)

What follows are the examples of query patterns generalized form the benchmark queries

described in Appendix A.

Example 5.2.1 From the benchmark query–“Find a red car followed by a truck within 10

minutes”, the following query pattern can be generated :

Query Patten QPN = (QP, S, L);

• QP is a query path, QP = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1=“truck”, LR/IR/CCD, AOI, TOI, object.moving = TRUE >

τ1(objectj, objectk) = (objectj.t > objectk.t) AND

(objectj.time < objectk.time + TimeInterval)

q1 = <type2=“car”, LR/IR/CCD, AOI, TOI, (object.color=color1,i.e. “red”) AND (ob-

ject.moving = TRUE)>

• S is a set of variables, S = { type1 : Recognizable Object, type2 : Recognizable Object,

TimeInterval : Constant, color1 : Color };

• L is a linguistic label, L = “Object of type1 follows object of type2 within time t”;

Example 5.2.2 From the benchmark query–“Find a black car in the area 1 which entered

the parking lot through Gate A during 6:00pm – 9:00pm.”, the following query pattern can

be generated:

Query Patten QPN = (QP, S, L);

• QP is a query path, QP = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

66

Q1 = <type1=“car”, LR/IR/CCD, location1=Area 1, time1=NOW, object.color=color1,

i.e., black)>

τ1(objectj, objectk) = associate(objectj, objectk)

q1 = <type1, LR/IR/CCD, location2 = Gate A, time2 = 6:00pm – 9:00pm, TRUE>

• S is a set of variables, S = {type1: Recognizable Object, location : Recognizable Object,

location2 : Recognizable Object , time1 : TimeConstant, time2 : TimeConstant, color1

: Color};

• L is a linguistic label, L = “Has Object in type1 been spotted before? ”;

Example 5.2.3 From the benchmark query–“Did the results of some sensors conflict with

each other (i.e. different types referring to the same object) while finding a truck passed Gate

B at 7:00pm?”, the following query pattern can be generated:

Query Patten QPN = (QP, S, L);

• QP is a query path, QP = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1=“truck”, LR/IR/CCD, location1= Gate B, time1 = 7:00pm, TRUE>

τ1(objectk, objectj) = objectk.time = objectj.time

AND objectk.position = objectj.position

AND objectk.type 6= objectj.type

q1 = <type1, DependencyGraph, location1, time1, TRUE>

• S is a set of variables, S = {type1 : Recognizable Object, location1 : Recognizable Object

, time1: TimeConstant};

• L is a linguistic label, L = “Check the conflictions among data sources”;

5.3 OBSERVED QUERY PATTERNS

In this section, several important query patterns are described, which can cover most fre-

quently used queries observed in previous research. First I study the typical tasks in fusion

67

systems (section 5.3.1) – these tasks are proposed by S.K. Chang and E. Jungert in [CJ04],

which summarize the common information needs in various fusion systems. Next, I formu-

late them into the incremental queries, and finally abstract them into the query patterns

(section 5.3.2). In fact, these typical tasks are studied here for the following two major

purposes:

1. They provide a complete and accurate description about typical information needs in

general fusion systems, which will help readers have a better understanding on the in-

formation retrieval problems discussed in this dissertation.

2. They are some excellent examples to demonstrate expressiveness of the proposed query

method, because all these tasks can be easily formulated into the incremental queries

and query patterns.

5.3.1 Typical Tasks in Information Fusion System

In what follows we describe the typical tasks in information fusion system, which can be

grouped into three types. The first type of tasks, is concerned with how to improve the

result of the original query by considering other aspects of the data sources. The second

type is concerned with how to associate different object instances with each other, and the

third group is concerned with queries that need to inspect the dependency tree from the last

user query.

• Type I Tasks

These tasks require the generation of new and elaborate queries that basically depends

on certain conditions among the spatial objects normally found in sensor data. This type

of tasks requires retrieving similar objects to get more accurate and complete result, for

example:

1. Are there any other objects in the proximity of the retrieved object that are of similar

or of equal type as the retrieved object?

Proximity refers to the AOI and similarity to the ontology; New elaborate queries

are created from the templates.

68

2. Have there been any other objects in the proximity of the retrieved object that are

of similar or of equal type as the retrieved object?

New elaborate queries are created from the templates.

3. Is the present background (context) information of the proper type relative to the

type of the retrieved object?

Context refers to the geographical background in the AOI and new elaborate queries

are created from the templates. As a consequence the query processor responds to

the question whether it is possible that the primary object can be found in an area

with the actual geographic background.

4. Has the object type been previously observed in this background context?

This query is similar to 3 but requires involvement of earlier output instances, i.e.

the IOI must be involved as well.

5. Is the retrieved object partly hidden by some other object that is part of the context?

The context refers to the local background that must be in high resolution. This

allows the Reasoner to create a new elaborate query.

6. Are there any other object types in the proximity of the retrieved object that may

have any impact of some kind on the found object?

This query is similar to task type 6 but here the object may have a location that is

too close to some other object which will have some more or less serious consequences

on the primary object.

• Type II Tasks

This task type requires generally the invocation of a particular function that basically is

concerned with the resolution of the association problem that may occur in single cases,

that is between a pair of registered objects, or as a part of a tracking task, including a

time sequence of the registered objects.

7. Can the retrieved object be associated to an earlier single observation?

This query type requires the solution of the association problem.

8. Can the retrieved object be part of an existing track?

This task type is a recursive variation of query type 8 that includes the application

of the association problem.

69

• Type III Tasks

This task type requires only investigation of the result of the various sub-queries of user

defined queries, that corresponds, in most cases, to an inspection of the content of the

dependency tree.

9. Is it possible that the quality of the background information may have influenced

the query result?

For instance, the question could be whether there are any missing data in the AOI.

This could be determined from a particular query. For a lot of missing data the risks

of not finding a particular object increases.

10. Did the result of some of the sensors (data sources) contradict each other?

Does not require any new query; only an inspection of the dependency tree.

11. Did any sensor (data sources) contribute to the result in any extreme way?

This refers to the single belief values from the various sensor related sub-queries;

only a check of the dependency tree is required.

12. Which sensors (data sources) were used to answer the query?

Does not require any new query; only an inspection of the dependency tree.

13. Are there any attributes or status values of the retrieved object that in particular

could have diverted the outcome of the primary query?

This means that the attribute did not in any case contribute to the query result On

the contrary it could have contributed to another outcome of the query.

For more detail about these typical tasks, please refer to [CJ04, CJL06].

5.3.2 Query Pattern for the Typical Tasks

In this section, every typical task described in section 5.3.1 is expressed by a (nested) incre-

mental queries where the elementary queries are marked with their processing order1. Then

the corresponding query pattern is formulated using the definition in section 5.2.

1For the details about the query language, please refer to [CJC04].

70

Query 1: Are there any other objects in the proximity of the retrieved object that are of

similar or of equal type as the retrieved object?

Incremental Query

(2) SELECT objectk.type, objectk.position, objectj.type, objectj.position

(2) CLUSTER * ALIAS objectk

(2) FROM PerceptionSource

(2) WHERE Inside(AOI, objectk)

(2) AND objectj.t = objectk.t

(2) AND distance(objectk, objectj) < δ

(2) AND similar(objectk, objectj)

(2) AND objectj in

(1) SELECT objecti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP1 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectj, objectk) = objectj.t = objectk.t

and distance(objectk, objectj) < δ

and similar(objectk, objectj)

q1 = <OBJECT, PerceptionSource, AOI, tgiven, TRUE >

Query Patten QPN1 = (QP1, S, L);

in which,

S = { type1 : Recognizable Object, δ : Constant}

71

L = “Are there any other objects in the proximity of the retrieved object that are of

similar or of equal type as the retrieved object?”

In the above similar function, the similarity is determined by means of the ontology.

That is, an object similar to a given object can be defined either as the parent or a sibling of

the given object considering the structure of the object part of the ontology. The distance

function is simply defined as the Euclidean distance between the objects.

Query 2: Have there been any other objects in the proximity of the retrieved object that are

of similar or of equal type as the retrieved object?

Incremental Query

(2) SELECT objectk.type, objectk.position, objectk.t, objectj.type, objectj.position

(2) CLUSTER * ALIAS objectk

(2) FROM PerceptionSource

(2) WHERE Inside(AOI, objectk)

(2) AND tstart < objecti.t < objectk.tgiven

(2) AND distance(objectk.position, objectj.position) < δ

(2) AND similar(objectk.type, objectj.type)

(2) AND objectj in

(1) SELECT objedcti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP2 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

72

τ1(objectj, objectk) = tstart < objecti.t < objectk.t

and distance(objectk, objectj) < δ

and similar(objectk, objectj)

q1 = <OBJECT, PerceptionSource, AOI, tgiven, TRUE >

Query Patten QPN2 = (QP2, S, L);

in which,

S = { type1 : Recognizable Object, δ : Constant}

L = “Have there been any other objects in the proximity of the retrieved object that are

of similar or of equal type as the retrieved object?”

Query 3: Is the present background (context) information of proper type relative to the type

of the retrieved object?

Incremental Query

(2) SELECT objectj.type, objectj.position, objectp.type

(2) CLUSTER * ALIAS objectp

(2) FROM ContextSource

(2) WHERE Inside(objectp, objectj)

(2) AND properbackground(objectp.type, objectj.type)

(2) AND objectj in

(1) SELECT objedcti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP3 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

73

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectp, objectj) = Inside(objectp, objectj)

and properbackground(objectp.type, objectj.type)

q1 = <OBJECT, ContextSource, AOI, tgiven, TRUE >

Query Patten QPN3 = (QP3, S, L);

in which,

S = {type1 : Recognizable Object }

L = “Is the present background (context) information of proper type relative to the type

of the retrieved object?”

Query 4: Has this object type been previously observed in this background context?

Incremental Query

(4) SELECT objectp.type, objecti.type, objecti.position, objecti.t

(4) CLUSTER * ALIAS objectp

(4) FROM ContextSource

(4) WHERE objectj.type = objectp.type

(4) AND objecti.type = objectk.type

(4) AND tstart < objecti.t < objectk.t

(4) AND objecti in

(3) SELECT objectm.type, objectm.t, objectm.position

(3) CLUSTER * ALIAS objectm

(3) FROM PerceptionSource

(3) WHERE Inside(AOI, objectm)

(3) AND tstart < objectm.t < tgiven

(3) AND objectm.type = type1

(3) AND objectj in

(2) SELECT objectl.type

(2) CLUSTER * ALIAS objectl

74

(2) FROM ContextSource

(2) WHERE Overlap(objectl, objectk)

(2) AND objectk in

(1) SELECT objedctn.type, objectn.position

(1) CLUSTER * ALIAS objectn

(1) FROM PerceptionSource

(1) WHERE Overlap(AOI, objectn)

(1) and objectn.t = tgiven

(1) and objectn.type = type1

Query Path QP3 = (Q1, Q2, Q3, Q4);

in which,

Q2 =< q1, τ1, Q1 >;

Q3 =< q2, τ2, Q2 >;

Q4 =< q3, τ3, Q3 >;

Q0 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectl, objectk) = Overlap(objectl, objectk)

q1 = <OBJECT alias type2, ContextSource, AOI, tgiven, TRUE >

τ2(objectl, objectk) = tstart < objectm.t < objectk.t

Q2 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ3(objecti, objectj) = Overlap(objectl, objectk)

Q3 = <type2, ContextSource, AOI, tgiven, TRUE >

Query Patten QPN4 = (QP4, S, L);

in which,

S = {type1 : Recognizable Object }

L = “Has this object type been previously observed in this background context?”

75

Query 5: Is the retrieved object partly hidden by some other object that is part of the context?

Incremental Query

(2) SELECT objectp.type, objectp.position, objectj.type, objectj.position

(2) CLUSTER * ALIAS objectp

(2) FROM PerseptionSource

(2) WHERE Partlyoverlap(AOI, objectp)

(2) AND ((objectp.type = “terrain− feature”)

(2) OR (objectp.type = “building”)

(2) OR (objectp.type = “natural − object”))

(2) AND ((Partlyoverlap(objectp, objectj))

(2) OR (Beside(objectp, objectj)))

(2) AND objectp.t = objectj.t

(2) AND objectj in

(1) SELECT type

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP5 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectp, objectj) = ((objectp.type = “terrain− feature”)

or (objectp.type = “building”)

or (objectp.type = “natural − object”))

and ((Partlyoverlap(objectp, objectj))

or (Beside(objectp, objectj)))

q1 = <OBJECT, PerceptionSource, AOI, tgiven, TRUE >

76

Query Patten QPN5 = (QP5, S, L);

in which,

S = {type1 : Recognizable Object }

L = “Is the retrieved object partly hidden by some other object that is part of the

context?”

Query 6: Are there any other object types in the proximity of the retrieved object that may

have any impact of some kind on the found object?

Incremental Query

(2) SELECT objectk.type, objectk.position, objectj.type, objectj.position

(2) CLUSTER * ALIAS objectk

(2) FROM PerceptionSource

(2) WHERE Inside(AOI, objectk)

(2) AND distance(objectk.position, objectj.position) < δ

(2) AND impact(objectk, objectj)

(2) AND objectk.t = objectj.t

(2) AND objectj in

(1) SELECT type

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.type = type1

(1) AND objecti.t = tgiven

Query Path QP6 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectk, objectj) = distance(objectk.position, objectj.position) < δ

and impact(objectk, objectj)

77

and objectk.t = objectj.t

q1 = <OBJECT, PerceptionSource, AOI, tgiven, TRUE >

Query Patten QPN6 = (QP6, S, L);

in which,

S = {type1 : Recognizable Object, δ : Constant}

L = “Are there any other object types in the proximity of the retrieved object that may

have any impact of some kind on the found object?”

An example of this query in military application is a bus (objectj) with refugees close to

a tank (objectk). The possible impact could be that it is prohibited to fire at a tank that is

close to a bus.

Query 7: Can the retrieved object be associated to an earlier single observation?

Incremental Query

(2) SELECT objectk.type, objectk.t, objectk.position, objectj.type,

(2) objectj.t, objectj.position

(2) CLUSTER * ALIAS objectk

(2) FROM PerceptionSource

(2) WHERE Inside(AOI, objectk)

(2) AND distance(objectk.position, objectj.position) < δ

(2) AND tstart < objectk.t < objectj.t

(2) AND associate(objectk, objectj)

(2) AND objectj in

(1) SELECT objecti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

78

(1) AND objecti.type = type1

Query Path QP7 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectk, objectj) = distance(objectk.position, objectj.position) < δ

and tstart < objectk.t < objectj.t

and associate(objectk, objectj)

q1 = <OBJECT, PerceptionSource, AOI, tgiven, TRUE >

Query Patten QPN7 = (QP7, S, L);

in which,

S = {type1 : Recognizable Object, δ : Constant}

L = “Can the retrieved object be associated to an earlier single observation?”

In this query it is assumed that the function associate associates two objects to each

other, i.e. the two object observations are the same although observed at different positions

and at different times.

Query 8:Can the retrieved object be part of an existing object?

Since it is a recursive variation of query 7, so it will not be further elaborated.

Query 9: Is it possible that the quality of the background information may have influenced

the query result?

Incremental Query

(2) SELECT objectk.sensor, objectk.background, objectj.type, objectj.position

(2) CLUSTER * ALIAS objectk

(2) FROM DependencyTree

(2) WHERE missingdata(objectk.background)

79

(2) AND objectj in

(1) SELECT objecti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP9 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectk, objectj) = missingdata(objectk.background)

q1 = <OBJECT, DependencyTree, AOI, tgiven, TRUE >

Query Patten QPN9 = (QP9, S, L);

in which,

S = {type1 : Recognizable Object }

L = “Is it possible that the quality of the background information may have influenced

the query result?”

The measure of data quality here is based on the level of missing data. However, other

definitions of quality can be thought of.

Query 10: Did the final result contradict the result from any of the sensors (data sources)?

Incremental Query

(2) SELECT objectk.type, objectk.sensor, objectj.type, objectj.position

(2) CLUSTER * ALIAS objectk

(2) FROM DependencyTree

80

(2) WHERE objectk.position = objectj.position

(2) AND objectk.type 6= objectj.type

(2) AND objectk.t = objectj.t

(2) AND objectj in

(1) SELECT objecti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP10 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectk, objectj) = objectk.position = objectj.position

and objectk.type 6= objectj.type

and objectk.t = objectj.t

q1 = <OBJECT, DependencyTree, AOI, tgiven, TRUE >

Query Patten QPN10 = (QP10, S, L);

in which,

S = {type1 : Recognizable Object }

L = “Did the final result contradict the result from any of the sensors (data sources)?”

Query 11: Did any sensor (data source) contribute to the result in any extreme way?

Incremental Query

(2) SELECT objectk.type, objectk.sensor

(2) CLUSTER * ALIAS objectk

(2) FROM DependencyTree

81

(2) WHERE (OR(qualitative difference(objectk.belief value, objectj.belief value) = ‘large′

(2) AND objectk.position = objectj.position

(2) AND objectk.t = objectj.t),

(2) (objectk.t 6= objectj.t

(2) AND objectk.position = objectj.position

(2) AND objectk.type 6= objectj.type))

(2) AND objectj in

(1) SELECT objecti.type, objecti.position

(1) CLUSTER * ALIAS objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP11 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ(objectj, objectk) =

(OR (qualitative-difference(objectk.belief-value,

objectj.belief-value) = “large”

AND objectk.position = objectj.position

AND objectk.t = objectj.t),

(objectk.t = objectj.t

AND objectk.position = objectj.position

AND objectk.type 6= objectj.type))

q1 = <OBJECT, DependencyTree, AOI, tgiven, TRUE >

Query Patten QPN11 = (QP11, S, L);

in which,

82

S = {type1 : Recognizable Object }

L = “Did any sensor (data source) contribute to the result in any extreme way?”

Query 12: Which sensors (data sources) where used to answer the query?

Incremental Query

(2) SELECT objectk.sensor

(2) CLUSTER * ALIAS objectk

(2) FROM DependencyTree

(2) WHERE objectk.position = objectj.position

(2) AND objectk.type = objectj.type

(2) AND objectk.t = objectj.t

(2) AND objectj in

(1) SELECT type

(1) CLUSTER * alias objecti

(1) FROM PerceptionSource

(1) WHERE Inside(AOI, objecti)

(1) AND objecti.t = tgiven

(1) AND objecti.type = type1

Query Path QP12 = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1, PerceptionSource, AOI, tgiven, TRUE >

τ1(objectk, objectj) = objectk.position = objectj.position

and objectk.type = objectj.type

and objectk.t = objectj.t

q1 = <OBJECT.sensor, DependencyTree, AOI, tgiven, TRUE >

Query Patten QPN12 = (QP12, S, L);

in which,

83

S = {type1 : Recognizable Object }

L = “Which sensors (data sources) where used to answer the query?”

5.4 APPLICATION OF QUERY PATTERN

In order to apply the propose query pattern schema into increment query processing, a post

query reasoner is introduced to perform the pattern matching and learning. With the post

query reasoner, the pattern can be matched and reused at anytime based upon the query

that users currently construct; at the same time, new patterns can be retrieved from user’s

query history.

This section begins with an overview of the system with the post query reasoner (sec-

tion 5.4.1). Next, the pattern matching techniques is described which can apply the observed

patterns to the query processing and make it simple (section 5.4.2). Then the manually query

pattern retrieval (section 5.4.3) and automatically query pattern learning (section 5.4.4) are

discussed in detail respectively. Finally, the interoperability between query pattern and

ontology knowledge is discussed (section 5.4.5), which provides a novel way to construct

ontology from query patterns.

5.4.1 System Overview

The fusion system with the post query reasoner is illustrated in figure 26. At the first level,

the system consists of five fundamental components: incremental query system, post query

reasoner, pattern database, query history, and ontology knowledge base. The query history

includes all the incremental queries that users have issued. The pattern database stores the

query patterns that are either pre-defined or learned from the query history by the post

query reasoner. The ontology knowledge base contains the knowledge related to the data

sources and retrieved objects, which is described in section 3.2.

The incremental query system has been described in detail in chapter 4. It includes the

query interface, source data analysis, and incremental query processor. The query interface

84

Figure 26: The System Diagram with Post Query Reasoner

interacts with users to retrieve user requests and present the results. The source data analysis

performs the preliminary recognition and retrieval operations on the input data. The query

execution plan is generated in the query processor which collects user request from the query

interface and input data from the source data analysis. The query processor performs the

retrieval and fusion operations according to the execution plan. Finally, it returns the query

results to users through the query interface.

Initially there are no query patterns in the pattern database. The query patterns are

retrieved dynamically by the post query reasoner that performs the rule based reasoning on

the query plan feed by the query processor. The post query reasoner consists of two major

components: pattern matcher and pattern learner. Because a query is usually processed

in serveral iterations, the preliminary query plan and results are sent to the post query

reasoner each time an iteration is done. The pattern matcher matches the current query

with the query patterns stored in the pattern database, and returns the refined query plans

85

according to the matched patterns. It is up to users to decide whether to apply the matched

query pattern and which one to apply if multiple patterns are applicable. Meanwhile the

queries accumulated in the system are the valuable assets to learn new query patterns. The

system can either ask users to manually formulate query patterns based on the query paths

or automatically learn query patterns from the query history. The query pattern matching

and learning algorithms are described in the following sections.

As discussed in previous sections, ontology knowledge base plays an important role in

query pattern learning and matching. New query patterns can be generated from the previous

patterns simply by adding or modifying ontology concepts. On the other hand, query pattern

provides very valuable information describing ontology. It is also possible to construct new

ontology from a group of query patterns. The interoperability with ontology is one of the

main functions of the post query reasoner.

5.4.2 Pattern Matching

The method to match query pattern is proposed on the basis of unification. In fact, unifica-

tion is an important process widely used in Prolog, resolution, term rewriting, and natural

language understanding. In our method, unification is employed to determine whether a

query path can match a query pattern.

Definition 5.4.1 Two queries Q1 and Q2 are unifiable on S – a set of variables in Q2 if

only if a substitution on the variables in S can be found to make Q2 identical to Q1, that is:

Unifiable(Q1, Q2, S) ⇐⇒ ∃ substitution α on S, Q1 ≡ Q2 with α

What follows is an example of unifiable queries:

Example 5.4.1 There are two elementary queries Q1 and Q2, and S – a set of variables in

Q2:

• Q1 = <“car”, LR/IR/CCD, Area 1, NOW, object.moving = TRUE AND object.color =

black >

86

• Q2 = <type1 = “truck”, LR/IR/CCD, location1=Gate A, time1 = 7:00 – 9:00pm, ob-

ject.moving = TRUE AND object.color = color1, i.e. red)>

• S = { type1 : Vehicle, location1 : Recognizable Object, time1 : Constant, color1: Color

}

Q1 and Q2 are unifiable because there is a substitution α on S,

α = { type1/“car”, location1/ “Area 1”, time1/“NOW”, color1/“black” }

which makes:

Q1 ≡ Q2 with α

It is worth noting that the substitution in unification process must be performed between

the variables with compatible types. For instance, in the example describe above, if the

variable “location1” is marked with type “Gate” instead of “Recognizable Object”, Q2 will

not be unifiable with Q1 because the “location1” can not be substituted by “Area 1”.

On the basis of the unifiable queries, the unifiable query paths are defined as follows:

Definition 5.4.2 Two query paths QP1 = {Q1, Q2, · · · , Qn} and QP2 = {Q′
1, Q

′
2, · · · , Q′

n}

are unifiable on S – a set of variables in QP2 if only if a substitution on the variables in S

can be found to make Qi unifiable with Q′
i (i = 1, 2, · · · , n), that is :

Unifiable(QP1, QP2, S) ⇐⇒ ∃ substitution α on S, ∀ i = 1, 2, · · ·, n, Qi ≡ Q′
i with α

Literally, two query paths are unifiable if and only if every pair of corresponding queries

in the both paths can be unified with a single uniform substitution. Based on the unification

of query paths, the definition of emphpattern matching is described as follows:

Definition 5.4.3 A query pattern QPN =< QP, S, L > can match a query path QP1 if only

if QP1 is unifiable with any subpath of QP on S, that is:

Match(QPN,QP1) ⇐⇒ ∃QP2 SubPath(QP2, QP) AND Unifiable(QP1, QP2, S)

If QP1 is the current query path and Match(QP1, QPN) is true, QP1 could be automat-

ically extended to QP by the query matcher on the basis of unification. For more details

87

about the techniques of unification, please refer to [Vad88, Kni89]. If multiple query pat-

terns are matched with the current query, all candidates will be listed by the linguistic labels

for users to choose. In this way, users could build a complex query quickly by referring to

previous experience recorded as a query pattern.

5.4.3 Manually Pattern Construction and Learning

Query patterns are important because they could cover most of the frequently used queries

and make them easy to construct and process. In our method, a set of query patterns Spattern

is stored in the pattern database and maintained during the query processing. Particularly,

the patterns formulating the common tasks in section 5.3 are preinstalled in Spattern.

PROCEDURE addPattern(QPN : pattern; Spattern: set of patterns)

var QPN1:pattern;

begin

1: for i:=0 to Spattern.size()-1 do

2: begin

/*get the pattern in the set one by one. */

3: QPN1:= Spattern.Item(i);

/* If QPN is sub-pattern of QPN1, no need to add QPN , quit. */

4: if SubPattern(QPN,QPN1) then return ;

/* If QPN1 is sub-pattern of QPN , delete QPN1 from the set. */

5: if SubPattern(QPN1, QPN) then Spattern.delete(QPN1);

6: end;

/* If QPN is not the sub-pattern of any pattern in the set , add it. */

7: Spattern.add(QPN);

end;

Figure 27: Add a Query Pattern QPN into Spattern

Every time users finish a query, the complete query path is recorded, and then stored into

88

the query history. As we discussed above, the primary difference between a query path and

a query pattern is that query pattern has a set of variables which can be substituted during

pattern matching. In other words, a query pattern can represent a group of similar query

paths by introducing a set of variables. Therefore, the determination of the variable set is

the core problem to generate query patterns from query paths. The simplest solution is to

let users decide the variables – a user interface (see section 5.5.1) is designed to ask users to

input variables and their scope/type in the OKB for the query path every time they finish a

query. As a result, query patterns can be manually defined by users. However, the patterns

created by users frequently are repeated or redundant patterns comparing with the ones in

pattern database. For this reason, I proposed a learning algorithm to filter the patterns

input by users. As shown by the pseudo code in figure 27, when a query pattern QPN input

by users is added into the pattern set Spattern, we need to check whether or not it is a useful

pattern. First QPN is compared with every pattern in Spattern, which is implemented by

the for loop in line 1– 6. If QPN is the sub-pattern of any patterns in Spattern, it means

that it is a repeated pattern so no need to continue. Meanwhile, if any pattern QPN1 in

Spattern is a sub-pattern of QPN , it means QPN is a better pattern candidate than QPN1

– so QPN1 is deleted from Spattern. Finally, by the end of the loop QPN is ensured to be

a new pattern, it is added to Spattern in line 7. Verified by experiments, the algorithm can

effectively maintain a set of high quality patterns.

5.4.4 Automatically Pattern Learning

The method described in section 5.4.3 proves to be a effective method to generate new query

patterns. Nevertheless, it still needs users to select the variables in query paths, which

puts some extra work for them in addition to query building. It is conceivable that it will

be much more convenient if the system can find a way to determine the variables without

human guidelines, i.e., the query patterns can be learned automatically. However, for a

feasible automatically pattern learning method, it has to solve the following two problems:

1. How to select the variables from query paths to generate new query patterns?

2. How to determine the scope/type of these variables?

89

The simplest solution for the first problem is to randomly mark the constants in query

paths as variables and then add them into pattern database using the same way as we

described in section 5.4.3. However, in practice the random selection of variables has been

found extremely unpredictable and error-prone. The risk for choosing variables in query

paths comes from the following two aspects:

1. If too few or inappropriate constants in a query path are marked as variables, the corre-

sponding pattern could be too specific that it can only match very few query paths. In

most cases, this kind of query patterns are useless. Furthermore, it is even worse that

they could increase the workload of pattern matching and maintaining.

2. If too many or inappropriate constants are marked as variables, the corresponding pattern

could be too general that it can cover a large number of query paths. In this case, users

still have to specify many variables even if their queries got matched with this kind of

patterns. In other words, it is not obvious to see any advantage of query patterns in this

scenario.

Generally speaking, it could be extremely cumbersome to find the right variables in query

paths in the pattern learning process. Recall the way how humans recognize query patterns,

they identify the repeated structures on the basis of their experience. Following the same

way, I proposed a heuristics function based on query history to choose variables from query

paths. First, I add constraints on the number of variables in query patterns. A threshold

θ is introduced for the number of variables. Only the patterns with less than θ variables

are considered to be absorbed into the pattern database. The rationale behind this rule is

that we are not interested in the patterns with too many variables because they are usually

too general to be useful. Then under this restriction, the quality of a query pattern can be

assessed by the number of the query paths it can cover in query history. The more query

paths it covers, the more useful it could be in practice. For this reason, the coverage of a

query path is defined as follows:

Definition 5.4.4 Given a query pattern QPN and a query history, i.e., a set of query paths

Hpath, the coverage of QPN on Hpath is the number of the query paths in Hpath which can

be matched with QPN .

90

coverage(QPN,Hpath) = #{∀QP ∈ Hpath, Match(QPN,QP)}

With the help of the threshold θ and the heuristic function coverage, the system can find

a appropriate set of variables in query paths, and then generate new query patterns based

on them.

For the second problem, we are also facing a similar dilemma as the first one. If the

variables are abstracted by some concepts with too narrow ranges in the OKB, the corre-

sponding query patterns could be too specific. On the contrary, if they are abstracted by the

ones with too wide ranges, the corresponding query patterns could be too general. Generally

speaking, it is an extremely difficult problem to find the right scope/type of the variables in

query patterns. In practice, we apply a simple rule to solve this problem: the scope of every

variable in query patterns is set as the parent concept of the variable’s type in the OKB. For

example, given a variable “type1” with the type as “Car” in the OKB, when a query path

containing “type1” is learned to generate a new query pattern, the scope of “type1” will be

set as the parent concept of “Car” in the OKB –“Vehicle”. The rational behind this rule

is: it can effectively eliminate some variables with too narrow or too wide ranges in query

patterns, although it may hurt some degree of flexibility in query pattern learning.

With these two problems resolved, an automatically pattern learning algorithm is pro-

posed on the basis of the algorithm described in figure 27. When users finish a query, the

corresponding query path is added into query history; meanwhile a query pattern is generated

and added into the pattern database. The detail is shown by the pseudo code in figure 28:

First, QP is directly added into Hpath in line 1. Next, the subset of variables Smaxcoverage

which can reach the maximum coverage for QP on Hpath is identified in line 2 – 3. Then

a new query pattern QPN is constructed form the QP with the variable set Smaxcoverage in

line 4 – 6. Finally, the QPN is added into Spattern using the algorithm described in figure 27.

5.4.5 Dynamic Information Exchange with Ontology Knowledge

Ontology knowledge provides a crucial support for query pattern matching and learning. At

the same time, query pattern is among the most valuable assets which describe the ontology

knowledge. By adding/modifying the ontology, new query patterns can be generated. On

91

PROCEDURE addPath (QP : query path; Hpath: query history;

Spattern: set of patterns)

var QPN :pattern;

begin

/* Add the query path into query history. */

1: Hpath.add (QP);

/* Get the set containing all the variables in QP . */

2: Sall = set of all variables in QP ;

/* Find the subset with the maximum coverage on query history;

θ is the maximum number of varibles. */

3: Smaxcoverage = max coverage(S, Hpath) {S | S ⊂ Sall AND |S| ≤ θ}

/* Create a a new query pattern QPN .*/

4: QPN.QP = QP ;

5: QPN.S = Smaxcoverage;

/* Set the label of the pattern as the description of Smaxcoverage.*/

6: QPN.L = description of Smaxcoverage;

/* Add the pattern QPN into Spattern by calling the algorithm in figure 27*/

7: addPattern(QPN , Spattern);

end;

Figure 28: Add a Query Path QPN into Hpath, and update Spattern

the other hand, the new ontology knowledge can also be constructed from query patterns

which are accumulated from user query experiences.

We believe that the dynamic exchange of information between ontology knowledge and

query pattern has significant importance, because for a long time the construction of ontology

knowledge remains a difficult problem [McG02]. Particularly, it is extremely cumbersome for

end users to construct and maintain ontology knowledge by themselves. However, it is much

92

easier for them to specify query patterns based on the issued queries. It will be of great value

if we can propose a methodology to automatically construct and update ontology knowledge

through query pattern retrieving. Here I present some preliminary works in this direction

by the following two examples. The further works along this line will be the subject of our

future research.

Example 5.4.2 Suppose several recognition and fusion algorithms are available to detect

new object “Motorcycle”. In order to generate query patterns about the new object, users can

specify it in the OKB by adding new concept “Motorcycle” and the relation IS A (“Motorcy-

cle”, “Vehicle”). As a result, all previous query patterns on Vehicle and its super concepts

in the OKB will be applicable on the new object “Motorcycle”.

Alternatively, if users know nothing about the ontology, they still can construct the ontol-

ogy knowledge by specifying query patterns on the new object. Given a query path containing

the new object, users can manually mark “Motorcycle” as variable with the scope “Vehicle”

during the query pattern retrieving process. Based on the user’s inputs, the system can auto-

matically add the new concept “Motorcycle” and the relation IS A (“Motorcycle”, “Vehicle”)

into the OKB.

Obviously the two methods in the above example have the same result, however, the

second method is much more feasible in practice.

Example 5.4.3 Suppose there are two concepts C1 and C2 in the OKB, but the relation

between these two concepts remains unknown. Assuming that plenty of query patterns have

been accumulated on these two concepts through user query experience, we can infer their

relation from the related query patterns. For instance, we could have the following rule:

(∀QPN ∈ Spattern QPN is applicable on C1 ⇒ QPN is applicable on C2) ⇒ IS A(C1, C2)

Literally, it means that if all query patterns on C1 can also be applied on C2, C1 is a

subtype of C2.

More rules similar as the above one can be developed. Obviously, this kind of rules are

not always correct, however, with the accumulation of query patterns, the rules based on

them will be more and more accurate. Therefore, eventually we can construct a reasonable

93

ontology knowledge base through the process of query pattern retrieving. In fact, the query

pattern represents experience, while the ontology represents knowledge. The rational is that

it is always possible to retrieve knowledge from experience.

5.5 EXPERIMENTAL SYSTEM AND EXPERIMENTS

In order to verify the proposed methodology which applies query pattern into the incremental

query processing, an experimental system named V3.0 has been designed and implemented

on the basis of system V2.0 (see section 4.6.1). The system V3.0 includes a fully functioning

post query reasoner that can match and learn query patterns. I begin this section by the

introduction of the experimental system (section 5.5.1). Then the experiments on it are

described in detail (section 5.5.2–5.5.3).

5.5.1 Experimental IVET System V3.0

Table 6: Experimental System V3.0

Item Detail

Title Experimental IVET System V3.0

Goal An incremental query system with a post query reasoner

that can match and learn query patterns, on the basis of

system V2.0 (table 4 in section 4.6.1)

Challenges Query pattern matching and learning

Designed by Xin Li

The experimental IVET system V3.0 has been implemented followed by the system

diagram shown in figure 26. Some important attributes of the system are listed in table 6.

The user input goes through the query interface to the query processor. After the query

is executed, the query results go through a fusion stage, and the final results together with

94

the query are sent to the post query reasoner. The reasoner will match the query patterns in

Spattern with the current query. The matched query patterns are sent to the query processor

as well as the query result. At the end of the query, the query pattern annotated by user is

sent back to the reasoner. New query patterns are synthesized by pattern learner and saved

in the pattern database using the algorithm described in figure 27.

Figure 29: The Query Interface of the System V3.0

The main user interface is shown in figure 29. On the left-hand side of the main window

there are some objects shown on an image that is the background. The red rectangle on the

image shows the area of interest (AOI) of the current query. As we discussed in the previous

sections, an elementary query has five variables to be specified: Object, Source, Time (TOI),

Space (AOI) and Direction. The AOI is shown on the image. The other four items, together

with other information, are shown on the right hand side: (from top to bottom) elementary

query, query operator, query patterns and four functional buttons. Query patterns are shown

by their linguistic labels.

Every time an elementary query is completed, query pattern matching is performed.

For example, the current query path is QP1 = (Q1, Q2, · · · , Qi). When the query Qi+1 is

completed, the query path becomes QP2 = (Q1, Q2, · · · , Qi, Qi+1). All the query patterns

QPN =< QP, S, L > in Spattern with Match(QPN,QP1) are shown to the user to choose

95

Figure 30: The User Interface to Select Matched Patterns

Figure 31: The User Interface to Specify Query Patterns

from. They are listed by their linguistic labels as shown in figure 30. A result preview is

also shown to let the user know what the result will look like if this query pattern is chosen.

As we discussed before, the query patterns are retrieved dynamically. Initially there are

96

only predefined query patterns in the query pattern set Spattern. When a query is completed,

the query path will be shown and the user is asked to choose the variables and input a

linguistic tag for each variable. The interface for users to specify query patterns is shown in

figure 31. The query path is shown on the top, and the constans in the path are listed blow

it. Using the buttons “–>Set as Variable” and “Set as Constant<–” in the middle, users

can set any constant as a variable with any type/scope or vice versa. Once users finish and

click the “input” button, a new query pattern is generated and added to the query pattern

set Spattern using the algorithm described in figure 27.

5.5.2 Query Processing Experiments on System V3.0

Table 7: Experiment 4

Item Detail

Title Experiments on System V3.0

Goal Verify the usability of the incremental query method with

the post query reasoner (i.e. utilizing predefined query patterns

and learning new patterns from user inputs.)

Description Participators are asked to perform queries expressed in natural

language using the experimental system V3.0. Users input queries by

either building a new query or using query patterns. When done,

users are asked to manually input the query patterns, and the result

is visualized on the map which is easy to be verified.

Designed by Xin Li

Participators 8 graduate students, University of Pittsburgh

In order to analyze performance of the proposed incremental query with the post query

reasoner, I designed an query processing experiment on system V3.0. Table 7 lists some

important attributes of this experiment. Eight end users have kindly participated in this

study. Similar as the experiments on system V1.0 (see section 3.6.2) and system V2.0 (see

section 4.6.2), the experiment includes the following three steps:

97

• Step1: assuming users have no pre-knowledge on incremental query and query pattern,

we give them a very quick tutorial (30 min) by showing several examples on our system.

• Step2: we carefully choose three most frequently issued queries as benchmark queries

(see Appendix A), and tell users the queries in English. Then ask them to perform these

queries one by one using our system. Note that the query patterns that can match these

queries are stored in the pattern database beforehand; however, users can choose whether

or not to use query patterns by themselves.

• Step3: we monitor the time that users spend on each query and the system resource

usage during this period.

Figure 32: Result Analysis of Experiment 4

A threshold δ of response time (i.e. 15 min) is defined: if users can finish a query (from

formulating a query until getting a satisfied result) within δ time, it is defined as a successful

case, otherwise it is a failure. To compare with the performances of the direct query and the

incremental query without query patterns, I plot the time and failure rate of this experiment

together with the experiment 1 (see table 2) and experiment 3 (see table 5) in figure 32.

As shown in figure 32, the incremental query can save 35.3% of processing time compared

to the direct query. Furthermore, with the post query reasoner that can utilize the query

patterns, it can save 45.6% of processing time compared to the direct query. At the same

time, the success rate also has a significant improvement while applying query patterns into

the incremental queries.

98

It also proves to be an efficient way for users to input new query patterns using the

interface shown in figure 31. It is convenient that users can define some customized query

patterns for their personal needs.

5.5.3 Pattern Learning Experiments on System V3.0

Table 8: Experiment 5

Item Detail

Title Automatically Pattern Learning

Goal Verify the usability of the query pattern auto-learning algorithm

(i.e. learn query patterns without user efforts)

Description Participators are asked to perform queries whatever they are

interested in using the experimental system V3.0. Users input

queries by either building a new query from the scratch or

using pre-defined query patterns. Query history is recorded for

learning new query patterns using the proposed algorithm.

Designed by Xin Li

Participators 8 graduate students, University of Pittsburgh

An experiment has been designed to verify the proposed the pattern auto-learning algo-

rithm described in section 5.4.4. Some important attributes of this experiments are listed in

table 8.

Because the primary goal of this experiment is to testify whether or not the reasoner can

identify new patterns form user query history, the participators are not requested to issue

any predefined queries. Instead, they are asked to query anything that they feel interested.

A variety of queries are input into the reasoner, and then query patterns are generated using

the auto-learning algorithm described in figure 28. To summarize, the experiment includes

the following steps:

• Step1: assuming users have no pre-knowledge on incremental query, we give them a very

99

quick tutorial (30 min) by showing several examples using our system.

• Step2: asking users to query whatever they are interested in based on the given scenario,

i.e., a secure parking lot with a variety of vehicles. Users are also encouraged to compose

complex queries, e.g. multiple objects with many constraints.

• Step3: sending the queries into the post query reasoner that can generate new query

patterns. Manually check the new patterns in the pattern database to evaluate the

learning algorithm.

Because our query learning algorithm (figure 28) depends on the coverage function on

query history Hpath to determine the variables, when Hpath is empty the algorithm chooses

the variables almost as same as random selection. As a result, the pattern learning process

is extremely unpredictable and error-prone at the very beginning of the experiments. In

fact, this problem can be categorized as a bootstrap problem which has also been identified in

many other learning processes [Mit97]. To resolve this problem, I simply defer the learning

process until a minimum number of query paths get accumulated in Hpath. The results turn

out to be very promising. Many reasonable patterns are successfully learned and added into

the pattern database in our experiment. What follows are examples of the patterns learned

in the experiment.

Example 5.5.1 The following pattern is learned from the query history in the experiment.

Query Patten QPN = (QP, S, L);

• QP is a query path, QP = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1=“car”, LR/IR/CCD, AOI, NOW, object.color=color1, i.e. “black” >

τ1(objectj, objectk) = Beside(objectj, objectk)

q1 = <type2=“truck”, LR/IR/CCD, AOI, NOW, object.color=color2, i.e. “red” >

• S is a set of variables, S = { type1 : Vehicle , type2: Vehicle, color1 : Color, color2 :

Color};

• L is a linguistic label, L = “ type1 : Vehicle , type2: Vehicle, color1 : Color, color2 :

Color”;

100

Literally the query in this example is “find a red truck beside a black car in given area

AOI now”. The corresponding pattern learned from it is “find an vehicle with a color beside

another vehicle with another color in given area AOI now”. Obviously, it is a meaningful

pattern, which could be frequently repeated in the described scenario.

Example 5.5.2 The following pattern is learned from the query history in the experiment.

Query Patten QPN = (QP, S, L);

• QP is a query path, QP = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1=“car”, LR/IR/CCD, location1 = “Area 1”, NOW, object.color =color1,

i.e. “red” >

τ1(objectj, objectk) = InFrontOf(objectj, objectk)

q1 = <type2=“truck”, LR/IR/CCD, AOI, NOW, object.moving = TRUE >

• S is a set of variables, S = { type1 : Vehicle, type2 : Vehicle , color1 : Vehicle , location1

: Area};

• L is a linguistic label, L = “ type1 : Vehicle, type2 : Vehicle , color1 : Vehicle , location1

: Area”;

Literally the query in this example is “find a moving truck in front of a red car in area

1 now”. The corresponding pattern learned from it is “find a moving vehicle in front of

another vehicle with a color in any given area now”. Obviously, it is a meaningful pattern,

which could be frequently repeated in the described scenario.

Example 5.5.3 The following pattern is learned from the query history in the experiment.

Query Patten QPN = (QP, S, L);

• QP is a query path, QP = (Q1, Q2); Q2 =< q1, τ1, Q1 >;

in which,

Q1 = <type1=“car”, LR/IR/CCD, location1 = “Gate A”, time1 = 9:00am – 10:00am,

object.moving = TRUE >

τ1(objectj, objectk) = associate(objectj, objectk)

101

q1 = <type1=“car”, LR/IR/CCD, location2 = “Area 1”, NOW, object.moving = FALSE

>

• S is a set of variables, S = { type1 : Vehicle, time1 : TimeConstant, location1 : Gate ,

location2 : Area};

• L is a linguistic label, L = “ type1 : Vehicle, time1 : TimeConstant, location1 : Gate ,

location2 : Area”;

Literally the query in this example is “find a car currently parked in area 1 which passed

through Gate A during 9:00am – 10:00am”. The corresponding pattern learned from it is

“find a static vehicle in any given area which was spot to move through a given gate during

a given time”. Obviously, it is also a meaningful pattern, which could be frequently repeated

in the described scenario.

Although the proposed algorithm proves to be able to learn reasonable query patterns

automatically, it is still hindered by the bootstrap problem discussed above. For this reason,

in practice I use a hybrid method which combines the manually pattern input and automati-

cally pattern retrieving. A coverage threshold β is defined for any query path QP that users

construct: if any query pattern generated from QP can cover more than β query paths in

the query history, it is qualified to be learned as a query pattern automatically; otherwise,

the users will be asked to select variables and their types, i.e. the query pattern is generated

manually.

5.6 SUMMARY

In this chapter, several novel techniques are proposed to identify and utilize the query pat-

terns, which are reusable templates in the incremental queries. Particularly, query pattern

is defined as a domain independent concept so that it can formulate the general fusion tasks.

A post query reasoner equipped with pattern matching and learning capability is designed

to apply query patterns into the processing of incremental queries. The knowledge based

pattern matching and learning techniques are described in detail. Demonstrated by the

102

experiments, the query pattern and related techniques can effectively elevate the system

performance and lower the user mental load.

103

6.0 RELATED WORK

In this chapter, I review the works that relate to our query-based information retrieval

approach in fusion systems, and discuss in detail how our solution advances the state of the

art. Because our works mainly span the research areas of both information fusion and query

system, I review the related work from fusion research community (section 6.1) and database

research community (section 6.2) respectively, and compare them with our solution.

6.1 INFORMATION FUSION SYSTEMS

There are numerous works in the literature that address information retrieval problem in

fusion systems from various perspectives e.g. fusion model, fusion system, and fusion tech-

niques, here I only focus on the system level methodology and techniques, and describe

several important approaches on fusion system that closely relate to our works.

Back to the early stage of information fusion research, fusion systems were all designed as

specialized systems where a variety of fusion-related functions were tightly coupled together.

Frequently this kind of systems dedicatedly aims at problems in a specific domain, and

the fusion processes are only conceptually classified into different levels, but implemented

together in a single procedure. M. Nichols has briefly surveyed 76 fusion systems for DoD

applications such as multisensor battlefield surveillance system and missile tracking system

in [Nic01]. The overall architectures and the types of fusion processing of these systems are

assessed. From the descriptions, we can see that they are all designed as specialized systems.

One of the most important advantages of specialized fusion systems is: they can achieve

the maximum efficiency for some specific fusion problems if they are well designed. For this

104

reason, nowadays there are still some fusion applications implemented as specialized systems.

However, frequently it is a hard problem to design a specialized fusion system, because the

methodology and techniques used in one system usually can not be simply reused into others.

With the increasing needs for various fusion systems, a more flexible and reusable framework

becomes extremely important.

Due to the increasing complexity of fusion applications in recent years, many researchers

apply the software engineering techniques into the design and implementation of fusion

system. C. Bowman et al. proposed a systematic process to develop a fusion system using

engineering methodology in [BS01]. A standard model is described for representing the

requirement, design, and performance of a fusion system. Particularly, a fusion process is

interpreted as a network of processing nodes, which is called fusion tree. Similar to the

source dependency graph (SDG) in our approach, the fusion tree serves as a basic tool for

the fusion process refinement and optimization, and resource management. However, unlike

the source dependency graph (SDG), the fusion tree is not dynamically constructed based

upon user information requests, but predefined either manually or automatically through

some engineering techniques according to the system requirements. As a result, the fusion

systems designed through this way can only handle one kind of information retrieval requests

with only minor variations – it is enough for some fusion applications e.g. in a multisensor

missile tracking system, the only target is missile and the only interested attributes are speed

and position. However, in general it is still not a broadly applicable approach yet.

As the fruit of rapid developments on the techniques of both information fusion and

software engineering, the component-based approach on the design of fusion systems has

been widely investigated. In a component-based fusion system, fusion-related functions are

encapsulated into different components, and the interfaces between components are carefully

designed to achieve the maximum flexibility and reliability. In [WSX01], J. Wang et al.

described a component framework for constructing flexible, robust and efficient software

applications for multisensor fusion system. The whole fusion system is divided into three

parts: man/machine interface, logic part and database. These parts are specified using

component object model (COM), and further broken down into four layers: sensor driver

level (SDL), logical sensor level (LSL), fusion unit level (FUL), and task unit level (TUL).

105

At each level, there are some components with different functions. Similar approaches that

apply the concept of software components into the design of fusion systems can be found

in [LOdlCD+98, ZS04, Ant97]. These systems prove to be able to achieve a certain degree of

flexibility. However, in most cases the fusion component itself is still highly domain specific

– it has to be modified or replaced while applying the system into different applications.

In recent years, the agent-based technology has been intensively studied in a broad range

of application areas. Mobile agent technology is beginning to be applied to information

retrieval from multimedia databases [KDB01]. Meanwhile more and more fusion systems

employ agents to handle heterogeneous data sources [PHG+99, AKSss, DLSssa, DLSssb,

RJX03]. Compared to component, agent is much more autonomous which lends itself to

being more flexible and intelligent. Multiple agents can exchange information and cooperate

with each other to achieve fusion. For example, in [AKSss], H. Alex et al. proposed a

Hierarchical Collective Agent Network (HCAN) in the fusion system with a set of networked

distributive data sources (i.e. sensors), where an anatomy of the agent modules for enabling

intelligent data fusion and management is presented in detail. There is no doubt that agent

techniques can contribute the fusion processes with a certain degree of intelligence and

flexibility. However, the mobile agents in these systems are still highly domain-specific and

usually depend on ad-hoc, ‘hardwired’ programs to implement them.

Compared to all the approaches described above, our method on the design of fusion

systems is based upon the commonalities underlying various fusion applications (i.e., the

general fusion system model described in chapter 2), and hence it can be applied into a much

broader range of applications. No matter what kind of data sources (e.g. sensors or non-

sensors), and what kind of user information requests (e.g. any query with any contraints),

they can be handled uniformly by the proposed techniques e.g. source dependence graph,

query refinement and optimization, incremental query, and query pattern. A good example is

that our method, which is basically developed from the IVET system, can be easily employed

into different application areas, such as the local search system (example 1.1.2). From this

point of view, it is indeed a broadly applicable approach.

106

6.2 QUERY SYSTEMS

Query processing is one of the most important topics in database research. In this section,

I review some important related works from database research community – query systems

(section 6.2.1) and query language (section 6.2.2) on heterogeneous information sources, and

query pattern (section 6.2.3). Our approach is also compared to them respectively.

6.2.1 Query Approaches on Heterogeneous Information Sources

The needs for information retrieval on the basis of multiple information sources have been

dramatically increasing in recent years, especially with the explosive growth of the online

information. Several important query approaches from the perspective of database research

have been proposed to resolve the heterogeneity of data sources, which lends themselves to

a uniform information access for end users. What follows is a brief review of some typical

systems.

In [SSKT95, SSKS95], L. Shklar et al. proposed an information retrieval system named

InfoHarness, which constructs a uniform access to a large amount of heterogeneous online

data. The different data schemas are reconciled by the metadata automatically extracted

from the original data sources. The metadata is defined by a stable hierarchy of abstract

classes and an extensible hierarchy of terminal classes, and hence they can be applied to the

new data sources without major modifications. For the end users, they can simply query

cross the data sources using general web browsers.

A. Levy et al. described a query system named Information Manifold in [LRO96],

which retrieves the information from over a hundred of WWW sources into databases, and

provides a uniform query interface to answer user complex queries which could be far beyond

the keyword-based search. The query execution plan is generated based on the descriptions

of the contents and capability of sources (which is similar as the ontology knowledge about

data sources in our approach). However, the descriptions about sources are mainly obtained

manually. It means that users have to create the description when they extend the query

system to cover any new data sources.

107

M. Genesereth et al. presented Infomaster in [GKD97, DG97], which is a information

retrieval system over multiple distributed heterogeneous information sources on the Internet.

For end users, it works as exactly same as a centralized, homogeneous information retrieval

system. The data heterogeneity is harmonized by a global data schema created through

the rule-based reasoning. However, all the rules are created and maintained manually. The

performance of the system largely depends on the quality of the rules defined.

The LED system, which is described by A. Doan et al. in [DDH01, Doa03], constructs

a uniform access to a multitude of data sources through a single mediated schema. Multiple

learners on the basis of different machine learning techniques are employed to match the data

schema from the heterogeneous data sources to a global mediated schema. Because basically

it is a supervised learning approach, a reasonable amount of training data is needed. Some

parts of the schema (e.g. tags) could not be able to get matched simply because none of

them appeared in the training data set.

Compared to the systems described above, our solution possesses some unique features

with significant value, although we are all addressing the information retrieval problem

from multiple heterogeneous data sources. As mentioned by P. Anokhin [Ano01], one of

most important issues for information retrieval from heterogeneous sources is to resolve the

potential information conflicts among different data sources. These conflicts primarily come

from the following three levels from high to low:

1. Schema Level: the conflicts are caused by the different schemas of data sources.

2. Representation Level: the conflicts are caused by the different natural language and

measurement system used by data sources.

3. Data Level: the conflicts are caused by the different data values about the same objects

from data sources.

A crucial point is that the lower level conflicts can be only observed when all higher

level conflicts are resolved. For example, the data level conflicts will not appear until the

data sources get matched on schema and representation levels. In other words, we can not

determine whether or not data values conflict each other until they are identified to be about

same objects and under comparable measurement systems.

108

The resolutions of the conflicts at these three levels are of potentially equal importance

because system can not work without any of them. However, various works have different

emphases: most current works from database research community are focusing on the first

two levels of conflicts. As the systems described above, numerous approaches is proposed to

resolve the conflicts at the schema level by various means [SSKT95, SSKS95, LRO96, GKD97,

DG97, DDH01]. A good number of approaches are described to resolve the conflicts at the

representation level [LRO96, Doa03]. However, as far as we studied, very few approaches

from database research community explicitly address the possible conflicts at the data level.

Our solution is just the work that aims to fill this blank. Unique from the previous

approaches, our system can generate the practical query execution plan to resolve the data

level conflicts based on the description of data sources and fusion algorithms (i.e. ontology

knowledge base).

As a matter of fact, the works proposed to resolve the conflicts at schema and repre-

sentation levels are widely recognized as the research about information integration. At the

same time, the resolution of the data level conflicts belongs to the techniques of informa-

tion fusion. As briefly discussed in section 1.6.2, a major difference between information

integration and information fusion is that the data sources are much more controllable in

fusion systems. More precisely, although they are both addressing the problem of informa-

tion retrieval from heterogeneous data sources, fusion systems usually emphasize on the data

level conflicts while assuming that it is a relatively trivial problem to resolve the conflicts

at schema and representation levels or these kinds of conflicts are already resolved; on the

contrary integration systems mainly focus on the conflicts at the schema and representation

levels and frequently ignore the data level inconsistences.

From this point of view, our solution serves as a novel approach with significant value,

which uniquely addresses the fusion problem in query system over multiple heterogeneous

data sources.

109

6.2.2 Query Language

Heterogeneous data sources pose some unique challenges for query systems – query language

is one of them. Back to 1989, W. Litwin proposed MSQL [LAZ+89] – an extension of

standard query language SQL, which is designed for a nonprocedural manipulation of data

in different and nonintegrated relational databases. Besides the concept of table, sets of

tables called multitables and multirelations are introduced to manipulate the tables referring

same entities from different databases. Using MSQL, user query over multiple autonomous

databases is expressed in a single statement. Inspired by MSQL, in [GLRS93] J. Grant et al.

proposed a theoretical foundation for such languages by presenting a multirelational algebra

and caculus based upon the relational algebra and calculus.

On the basis of these works, in recent years many query languages have been proposed

aiming at effective and flexible interoperability in multi-database systems. For example,

SchemaSQL proposed by L. Lakshmanan et al. in [LSS96, LSS99, LSS01], offers the capa-

bility of uniform manipulation of data and meta-data in relational multi-database systems.

In [GL98], F. Gingras proposed a multi-dimensional language called nD-SQL, which supports

queries that interoperate amongst multiple heterogeneous relational sources.

Compare the query languages mentioned above to the query language used in our

system – ΣQL which is proposed by S. K. Chang et al in [CJC04], there are several com-

monalities: all languages are designed for information retrieval on multiple heterogeneous

data sources, and they all retain the flavor of SQL; all of them emphasize the interoperability

among multiple data sources. However, ΣQL possesses some unique features which other

query languages are not equipped with.

1. Unlike the other languages, ΣQL explicitly supports fusion operations.

2. ΣQL are not restricted for only relational data sources, it can be applied to the non-

database sources.

3. Using the clause “CLUSTER”, ΣQL offers a natural way to express spatial/temporal

queries.

For the detail about ΣQL, readers can refer to [CJC04].

110

Furthermore, the incremental query proposed in this dissertation can also be

envisioned as a new query language on the basis of ΣQL. It retains the advantages of ΣQL

because every incremental query will be eventually interpreted into ΣQL. Meanwhile it can

break a complex query into several uniform, simple iterations, which can greatly lower the

workload of query building as well as query execution.

6.2.3 Query Pattern

The patterns of user information needs are widely investigated in many information retrieval

systems. Particularly in recent years, with the blooming of web search engines such as

Google, Yahoo and so on, numerous approaches have been proposed to identify the query

pattern in web search process.

In [JSBS98], M. Jason et al. presented a in-depth analysis of user queries based upon the

transaction logs created during online keywords-based search. The user information needs

are analyzed at three levels: 1) Query Level: every keywords-based query is recorded in

a simple and uniform format, which is similar as the elementary query in our approach;

2) Session Level: it includes multiple queries in one session that shows the process of

query refinement by users, which is similar as the query path in our approach; 3) Term

Level: it computes the rank and distribution of frequently searched terms. The report

described a real slice of life on the web, and presented a large-scale, quantitative study on

user information needs. More similar research based on the analysis of query logs can be

found in [SMHM99, SWJS01]. By different means, these approaches can identify various

patterns in user information needs. However, another important problem – how to utilize

these patterns to improve the query perfermance, is not addressed with enough efforts yet.

In [LL03], R.L. Liu et al. described implicit query pattern approach in a query system

on a hierarchical information space, which can identify user information needs progressively

through the interactions with users. The user query patterns are retrieved by text mining

on the documents that user searched. The system does not record these patterns directly,

but updates the user’s category profile based on them. Through the category profile, system

can map the user information needs to suitable nodes in the hierarchical information space

111

without requiring users to enter long queries, conduct many interactions, and suffer heavy

cognitive load – which is similar as the goal of the query pattern in our approach.

Compared to all the approaches described above, our query pattern schema is pro-

posed in a much simpler way. The simplicity is its major strength – it is a natural extension

of the incremental query, which is defined as an abstract query from a group of similar query

paths. Even end users can directly construct and modify query patterns by themselves.

With the support of ontology knowledge base, query patterns in our approach can cover the

most frequently used queries and make them easy to construct and process. From this point

of view, it describes not only the pattern of user information needs, but also the pattern of

the entire process of query handling.

112

7.0 CONCLUSION

Given the rapid proliferation and the growing size of applications today, the information

retrieval on the basis of fusion operations becomes a crucial problem with dramatically

increasing interests from both practical and theoretical perspectives. Our method provides

a concrete, broadly applicable solution for the problem, which has been fully verified in

the experimental systems. In this chapter, first I briefly recap the contributions of this

dissertation (section 7.1), and then discuss the future directions (section 7.2).

7.1 KEY CONTRIBUTIONS

This dissertation makes three major contributions:

• First of all, this dissertation contributes a broadly applicable approach for information

retrieval in fusion systems. As the related works discussed in chapter 6, up to the

time of this dissertation, most previous fusion systems are highly domain-specific, and

most existed query systems do not address the fusion problem with enough efforts. Our

solution describes a domain-independent approach on general query systems supporting

information fusion. As shown in figure 26 in chapter 5, the overall system architecture

consists of query processor, query interface, post query reasoner, ontology knowledge base

and so on. The techniques for these components are described in detail and verified by

the experiments, which can be applied in a wide range of information fusion applications.

• The second major contribution of this dissertation is a novel incremental query method

113

(chapter 4), which successfully resolves the accumulated complexity of information re-

trieval in multi-object and multi-source scenarios. The incremental query is originally

motivated by resolving the query building bottleneck; however, it is not just a new query

interface, but indeed a novel query processing method including query interface, query

language, and processing techniques. Demonstrated by the experiments, it can signifi-

cantly improve the system usability and lower the user mental load.

• The third major contribution of this dissertation is the techniques to retrieve and utilize

query pattern (chapter 5). With these techniques, the fusion systems can achieve a

significant degree of intelligence. The system can keep improving by referring the previous

experiences formulated as query patterns using the post query reasoner that can learn

and match query patterns. Although in our method the query pattern is envisioned as a

natural extension of the incremental query, it is indeed a concept which does not depend

on any query schemas. Moreover, query pattern can also serve as an informative data

source to retrieve the ontology knowledge. There is no doubt that the query pattern

and related techniques lead a promising direction for further research towards intelligent

fusion systems.

7.2 FUTURE DIRECTIONS

We have made some significant progress in developing a solid frame work and effective tech-

niques for information retrieval on multiple heterogeneous data sources, but still substantial

works remains towards a broadly applicable intelligent fusion system. In what follows I

briefly describe some interesting directions of our future work.

7.2.1 Solution Across Application Areas

The best way to demonstrate that our approach is a broadly applicable solution is to employ

it into different application areas. In fact, we have successfully applied the incremental

query approach into several non-sensor-based fusion systems. For example, we applied fusion

114

query into user profiling in e-learning system and local search system. The works in these

application areas will eventually benefit the current solution which is originally motivated

by the IVET system.

7.2.2 Statistical Query Pattern Learning

Query pattern learning is a crucial process by which system can keep improving over the

previous experience. Currently we employ a heuristic function (see coverage function de-

fined in section 5.4.4) as the guideline for the automatic pattern learning. It works fine

on a moderate-size set of query paths. However, it is conceivable that for the accurate as-

sessments of patterns on large set of query experiments, some advanced statistical learning

techniques such as Bayesian network and Dempster-Shafer’s method will be more suitable.

More research will be done along this line.

7.2.3 Dynamic Exchange of Information from Query Patten and Ontology

As we discussed in section 5.4.5, it is a promising direction to construct ontology knowledge

from query patterns. Generally speaking, it could be extremely cumbersome for end users to

construct and maintain ontology knowledge. However, users can easily create query patterns

with our incremental query schema. Definitely it is worth the further investigation to build a

feasible connection from query patterns to ontology knowledge, so that users can eventually

construct and update ontology knowledge by manipulating query patterns.

7.2.4 Efficient User Interaction

Our incremental query approach mainly depends on the interactions with end users to re-

trieval right information from right data sources. Even if the system can automatically

generate the query based on the matched query patterns, it still needs users to verify it.

Therefore, an efficient user interaction solution is of great importance to our approach. As

described in the experimental systems, much effort has been done towards an efficient visual

user interface, e.g. visual query interface (see figure 12, 22, and 29), the visualization of

115

query processing (see figure 14), the selection of query patterns (see figure 30), and so on.

However, there are still a lot of works to do. The key is to discover how to minimize the user

mental load but maximize the impact of the user feedback at the same time.

7.2.5 Combination with Information Integration

As we discussed in section 6.2.1, the research on information fusion and information in-

tegration are both mainly addressing information retrieval problem on heterogeneous data

sources, but focus on different perspectives. However, within applications in the real world,

frequently both fusion and integration problems are raised at the same time. It will be of

great value if we can make them consolidate with each other.

116

BIBLIOGRAPHY

[AEG03] A. Abdelmoty and B. El-Geresy. Qualitative tools to support visual querying
in large spatial databases. In Proceeding of the Ninth International Conference
on Distributed Multimedia Systems (DMS), pages 300–305, Miami,FL, Sep.
2003.

[AHK98] Yigal Arens, Chun-Nan Hsu, and Craig A. Knoblock. Query processing in
the sims information mediator. In Readings in agents, pages 82–90. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[AKSss] Hitha Alex, Mohan Kumar, and Behrooz Shirazi. Midfusion: An adaptive
middleware for information fusion in sensor network applications. Information
Fusion, In Press.

[Ano01] Philipp Anokhin. Data Inconsistency Detection and Resolution in the Inte-
gration of Heterogeneous Information Sources. PhD thesis, George Mason
University, 2001.

[Ant97] R.T. Antony. Database support to data fusion automation. Proceedings of
the IEEE, 85:39–53, Jan. 1997.

[BS01] Christopher L. Bowman and Alan N. Stainberg. A systems engineering ap-
proach for implementing data fusion systems. In Hall and Llinas [HL01],
pages 16.1–16.38.

[CCC+04] G. Casella, S.K. Chang, G. Costagliola, E. Jungert, Xin Li, and T. Horney.
An architecture for interactive query refinement in sensor-based information
fusion systems. In Proceeding of the Tenth International Conference on Dis-
tributed Multimedia Systems (DMS), pages 315–321, San Francisco Bay,CA,
Sep. 2004.

[CDH+02] S.K. Chang, W.Y. Dai, S. Hughes, P. Lakkavaram, and Xin Li. Evolutionary
query processing, fusion and visualization. In Proceeding of the Eighth In-
ternational Conference on Distributed Multimedia Systems (DMS), San Fran-
cisco Bay, CA, Sep. 2002.

117

[CDOP02] G. Costagliola, A. Delucia, S. Orefice, and G. Polese. A classification frame-
work to support the design of visual languages. Journal of Visual Languages
and Computing, 13(6):573–600, Dec. 2002.

[CJ04] S.K. Chang and E. Jungert. Iterative information fusion using a reasoner for
objects with uninformative belief values. In Proceeding of the International
Conference on Information Fusion (Fusion), Stockholm, Sweden, Jun. 2004.

[CJC04] S.K. Chang, E. Jungert, and G. Costagliola. Querying distributed multimedia
databases and data sources for sensor data fusion. IEEE Transactions on
Multimedia, 6(5):672–687, Oct. 2004.

[CJL06] S.K. Chang, Erland Jungert, and Xin Li. A progressive query language and
an interactive reasoner for information fusion support. Journal of Information
Fusion, 2006.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, editors. Introduction to Algorithms (Second Edition). The MIT Press,
Boston, NY, 2001.

[DDH01] A. Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of
disparate data sources: a machine-learning approach. In Proceedings of the
2001 ACM SIGMOD, pages 509–520, 2001.

[DG97] Oliver M. Duschka and Michael R. Genesereth. Query planning in infomaster.
In Proceedings of the 1997 ACM symposium on Applied computing (SAC),
pages 109–111, 1997.

[DLSssa] Patrick Dohertya, Witold Lukaszewicza, and Andrzej Szalasa. Communica-
tion between agents with heterogeneous perceptual capabilities. Information
Fusion, In Press.

[DLSssb] Patrick Dohertya, Witold Lukaszewicza, and Andrzej Szalasa. Hierarchical
Collective Agent Network (HCAN) for efficient fusion and management of
multiple networked sensors. Information Fusion, In Press.

[DM03] A. Doan and R. McCann. Building data integration systems: A mass collab-
oration approach. In Proceeding of the Sixth International Workshop on the
Web and Databases, pages 25–30, San Diego, CA, Jun. 2003.

[DMD+03] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning
to match ontologies on the semantic web. VLDB Journal, Special Issue on
the Semantic Web, 12(4):303–319, 2003.

[Doa03] A. Doan. Learning to Map between Structured Representations of Data. PhD
thesis, University of Washington, 2003.

118

[GKD97] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster:
an information integration system. In Proceedings of ACM SIGMOD, pages
539–542, 1997.

[GL98] Frederic Gingras and Laks V. S. Lakshmanan. nD-SQL: A Multi-Dimensional
Language for Interoperability and OLAP. In Proceedings of the 24th Inter-
national Conference on Very Large Databases (VLDB), pages 134–145, San
Francisco, CA, USA, 1998.

[GLRS93] John Grant, Witold Litwin, Nick Roussopoulos, and Timos Sellis. Query
languages for relational multidatabases. The VLDB Journal, 2(2):153–172,
1993.

[GMPDQ+97] H. Garcia-Molina, Y. Papakonstantinou, A. Rajaraman D. Quass, J Ullman
Y. Sagiv, and J. Widom. The TSIMMIS project: Integration of heterogeneous
Information sources. Journal of Intelligent Information System, 8(2), 1997.

[Goo] Google Local. http://local.google.com/, accessed on Nov. 11, 2005.

[GSGN+01] C. A. Goble, R. Stevens, S. Bechhofer G. Ng, N. W. Paton, P. G. Baker,
M. Peim, and A. Brass. Transparent access to multiple bioinformatics infor-
mation sources. IBM Systems Journal, 40(2), 2001.

[HHT01] Mary Jane Hall, Capt. Sonya A. Hall, and Timothy Tate. Removing the hci
bottle neck: How the human-computer interface affects the performance of
data fusion systems. In Hall and Llinas [HL01], pages 19.1–19.12.

[Him05] M. Himmelstein. Local search: the internet is the yellow pages. Computer,
38:26–34, Feb. 2005.

[HJF03] T. Horney, E. Jungert, and M. Folkesson. An ontology controlled data fusion
process for query language. In Proceeding of the International Conference on
Information Fusion, Cairns, Australia, Jul. 2003.

[HL01] D. L. Hall and J. Llinas, editors. Handbook of Multisensor Data Fusion. CRC
Press, New York, 2001.

[HM04] D. L. Hall and S. A. H. McMullen, editors. Mathematical Techniques in
Multisensor Data Fusion. Artech House Publishers, 2004.

[JC84] M. Jarke and J. Cohen. Query optimization in database systems. ACM
Computing Surveys, 16(2):111–152, Jun. 1984.

[JSBS98] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real
life information retrieval: a study of user queries on the web. SIGIR Forum,
32(1):5–17, 1998.

119

[KDB01] H. Kosch, M. Doller, and L. Boszormenyi. Content-based indexing and re-
trieval supported by mobile agent technology. In M. Tucci, editor, Multime-
dia Databases and Image Communication, pages 152–166. Springer-Verlag,
Berlin, 2001.

[Kni89] K. Knight. Unification: A multidisciplinary survey. ACM Computer Surveys,
21:93–121, 1989.

[LAZ+89] W. Litwin, V. Abdellatif, A. Zeroual, B. Nicolas, and Ph. Vigier. Msql. a
multidatabase language. Information sciences, 49:59–101, 1989.

[LB85] Hector J. Levesque and Ronald J. Brachman. A fundamental tradeoff in
knowledge representation and reasoning (revised version). In Hector J.
Levesque and Ronald J. Brachman, editors, Readings in Knowledge Repre-
sentation, pages 45–70. Morgan Kaufman Pub, 1985.

[LC95] Y. Lee and F. Chin. An iconic query language for topological relationships in
gis. International Journal of Geographical information Systems, 9(1):24–46,
1995.

[LC04] Xin Li and S.K. Chang. An interactive visual query interface on spa-
tial/temporal data. In Proceeding of the Tenth International Conference on
Distributed Multimedia Systems (DMS), pages 257–262, San Francisco Bay,
CA, Sep. 2004.

[LC05] Xin Li and S.K. Chang. A personalized e-learning system based on user
profile constructed using information fusion. In Proceeding of the Eleventh
International Conference on Distributed Multimedia Systems (DMS), pages
109–114, Banff, Canada, Sep. 2005.

[LL03] Rey-Long Liu and Wan-Jung Lin. Mining for interactive identification of
users’ information needs. Inf. Syst., 28(7):815–833, 2003.

[LOdlCD+98] J.A. Lopez-Orozco, J.M. de la Cruz, E. Doninguez, E. Besada, and O.R. Polo.
An open sensing architecture to autonomous mobile robots. In Intelligent
Control (ISIC), pages 610–615, San Francisco Bay, CA, Sep. 1998.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying hetero-
geneous information sources using source descriptions. In Proceedings of the
22nd International Conference on Very Large Databases (VLDB), pages 251–
262, Bombay, India, 1996.

[LSS96] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian.
Schemasql - a language for interoperability in relational multi-database sys-
tems. In Proceedings of the 22nd International Conference on Very Large
Databases (VLDB), pages 239–251, Bombay, India, 1996.

120

[LSS99] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian. On
efficiently implementing schemasql on an sql database system. In Proceedings
of the 25th International Conference on Very Large Databases (VLDB), pages
471–483, Edinburgh, Scotland, 1999.

[LSS01] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian.
Schemasql: An extension to sql for multidatabase interoperability. ACM
Trans. Database Syst., 26(4):476–519, 2001.

[McG02] Deborah L. McGuinness. Ontologies come of age. In Dieter Fensel, Jim
Hendler, Henry Lieberman, and Wolfgang Wahlster, editors, Spinning the
Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT
Press, Boston, NY, 2002.

[MIKS00] E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER : An
approach for query processing in global information systems based on opera-
tion across pre-existing ontologies. International Journal on Distributed and
Parallel Databases, 8(2):223–271, 2000.

[Mit97] Tom M. Mitchell, editor. Machine Learning. McGraw-Hill Sci-
ence/Engineering/Math, New York, 1997.

[Nic01] Mary L. Nichols. A survey of multisensor data fusion systems. In Hall and
Llinas [HL01], pages 22.1–22.7.

[NS02] A. Narayanan and T. Shaman. Iconic SQL: Practical Issues in the Querying of
Database through Structured Iconic Expressions. Journal of Visual Languages
and Computing, 13(6):623–647, Dec. 2002.

[PHG+99] A. Preece, K. Hui, P. Gray, P. Marti, T. Bench-Capon, D. Jones, and Z. Cui.
The kraft architecture for knowledge fusion and transformation. In Proceeding
of the Conference of Expert System, pages 294–299, Miami,FL, Sep. 1999.

[PK00] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commu-
nication of the ACM, 43(5):51–58, 2000.

[RJX03] L. Ronnie, M. Johansson, and Ning Xiong. Perception management: an
emerging concept for information fusion. Information Fusion, 4:231–234, Sep.
2003.

[Rus03] Stuart J. Russell, editor. Artificial intelligence : a modern approach. Prentice
Hall/Pearson Education, Upper Saddle River, N.J., 2003.

[SBW98] Alan N. Steinberg, Christopher L. Bowman, and Franklin E. White. Revisions
to the JDL data fusion model. Proceedings of SPIE, 3719, 1998.

[SBW04] A.N. Steinberg, C.L. Bowman, and F.E. White. Rethinking the JDL data
fusion model. In Proceeding of the NSSDF Conference, JHAPL, Jun. 2004.

121

[Sch98] Alexander Schrijver, editor. Theory of Linear and Integer Programming. John
Wiley and Sons, 1998.

[SMHM99] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz.
Analysis of a very large web search engine query log. SIGIR Forum, 33(1):6–
12, 1999.

[Sor70] H. W. Sorenson. Least-squares estimation: from gauss to kalman. IEEE
SPECTRUM, 7:63–68, Jul. 1970.

[SSKS95] L. Shklar, A. Sheth, V. Kashyap, and K. Shah. InfoHarness: Use of Au-
tomatically Generated Metadata for Search and Retrieval of Heterogenous
Information. In J. Iivari, K. Lyytinen, and M. Rossi, editors, Proceedings
of the Seventh International Conference CAiSE’95 on Advanced Information
Systems Engineering, volume 932, pages 217–230, Jyväskylä, Finland, 1995.
Springer-Verlag.

[SSKT95] Leon Shklar, Amit Sheth, Vipul Kashyap, and Satish Thatte. InfoHarness: a
system for search and retrieval of heterogeneous information. In Proceedings
of ACM SIGMOD, pages 478–478, 1995.

[SVGM00] Tajana Simunic, Haris Vikalo, Peter Glynn, and Giovanni De Micheli. Energy
efficient design of portable wireless systems. In Proceeding of the international
symposium on Low power electronics and design, pages 49–54, Rapallo,Italy,
Aug. 2000.

[SWJS01] Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Saracevic.
Searching the web: The public and their queries. Journal of the American
Society for Information Science and Technology, 52(3):226–234, 2001.

[Tor03] Vicenc Torra, editor. Information Fusion in Data Mining. Springer, New
York, 2003.

[Vad88] S. Vadera. A theory of unification. Software Engineering Journal, 3:149–160,
Sep. 1988.

[Whi88] F.E. White. A model for data fusion. In Proceeding of the First National
Symposium on Sensor Fusion, 1988.

[WL90] E. Waltz and J. Llinas, editors. Multisensor data fusion. Artect House,
Boston, NY, 1990.

[WSX01] Jun Wang, Jianbo Su, and Yugeng Xi. COM-based software architecture for
multisensor fusion system. Information Fusion, 2:261–270, Dec. 2001.

[WVV+01] H. Wache, T. Voele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Huner. Ontology-based integration of information-a survey of existing

122

approaches. In Proceeding of the Seventeenth International Joint Conference
on Artificial Intelligence, Seattle,WA, Aug. 2001.

[Yah] Yahoo Local. http://local.yahoo.com/, accessed on Nov. 11, 2005.

[YG03] Yong Yao and Johannes Gehrke. Query processing for sensor networks. In
Proceeding of the Conference on Innovative Data Systems Research (CIDR),
Asilomar,CA, Jan. 2003.

[ZS04] Kejun Zhang and Jianbo Su. RTOS-based software architecture for mul-
tisensor fusion system. In The 5th Asian Control Conference, Melbourne,
Australia, Jul. 2004.

123

APPENDIX A

BENCHMARK QUERIES IN THE IVET SYSTEM

I choose the following three queries as the benchmark queries to evaluate the system perfor-

mance because they represent three typical kinds of queries in information fusion systems1.

Query1: Find a red car followed by a truck within 10 minutes.

Direct Query:

SELECT object

CLUSTER ALIAS OBJ1, OBJ2

FROM

SELECT t

CLUSTER *

FROM LR, IR, CCD

WHERE OBJ1.type=“car” AND OBJ1.color=“red” AND OBJ2.type=“truck” AND

OBJ1.time<OBJ2.time AND OBJ1.Time>OBJ2.time-10min

Incremental Query: Q =< q1, τ1, Q1 >;

in which,

Q1 = <“truck”, LR/IR/CCD, AOI, TOI, object.moving = TRUE >

τ1(objectj, objectk) = (objectj.t > objectk.t)

1See section 5.3.1 for detail about the common tasks in information fusion systems.

124

AND (objectj.time < objectk.time + 10min)

q1 = <“car”, LR/IR/CCD, AOI, TOI, (object.color=“red”) AND (object.moving =

TRUE)>

Query2: Find a black car in the area 1 which entered the parking lot through Gate A during

6:00pm – 9:00pm.

Direct Query:

SELECT objectk,

CLUSTER * alias objectk

FROM LR, IR, CCD

WHERE Inside(GateA, objectk)

AND 6 : 00pm < objectk.time < 9 : 00pm

AND associate(objectj, objectk)

AND objectj in

SELECT objecti

CLUSTER * alias objecti

FROM LR, IR, CCD

WHERE Inside(Area1, objecti)

AND objecti.time = now

AND objecti.type = “car”

AND objecti.color = “black”

Incremental Query Q =< q1, τ1, Q1 >;

in which,

Q1 = <“car”, LR/IR/CCD, Area 1, NOW, object.color=“black”>

τ1(objectj, objectk) = associate(objectj, objectk)

q1 = <“car”, LR/IR/CCD, Gate A, 6:00pm – 9:00pm, TRUE>

125

Query3: Did the results of some sensors conflict with each other (i.e. different types referring

to the same object) while finding a truck passed Gate B at 7:00pm?

Direct Query

SELECT objectk.type, objectk.sensor

CLUSTER * alias objectk

FROM DependencyTree

WHERE objectk.time = objectj.time

AND objectk.position = objectj.position

AND objectk.type 6= objectj.type

AND objectj in

SELECT objecti.type, objecti.position

CLUSTER * alias objecti

FROM LR, IR, CCD

WHERE Inside(GateB, objecti)

AND objecti.time = 7 : 00pm

AND objecti.type = “truck”

Incremental Query Q =< q1, τ1, Q1 >;

in which,

Q1 = <“truck”, LR/IR/CCD, Gate B, 7:00pm, TRUE>

τ1(objectk, objectj) = objectk.time = objectj.time

AND objectk.position = objectj.position

AND objectk.type 6= objectj.type

q1 = <“truck”, DependencyGraph, Gate B, 7:00pm, TRUE>

126

APPENDIX B

SURVEY ON USER QUERY MANNER

Name: Date:

B.1 BACKGROUND SURVEY

Please rate your knowledge on the following topics from 1 to 5:

1 don’t know

2 know a little

3 know some

4 experienced

5 proficient

Database Design © 1 © 2 © 3 © 4 © 5

SQL Query Language © 1 © 2 © 3 © 4 © 5

Entity Relation Diagram © 1 © 2 © 3 © 4 © 5

Temporal/Spatial Query © 1 © 2 © 3 © 4 © 5

Information Fusion © 1 © 2 © 3 © 4 © 5

127

B.2 QUERY BUILDING EXPERIMENTS

B.2.1 Scenario

In our experiments, three kinds of sensors are used to keep track of the vehicles on the ground

area (a parking lot with high security need), including laser radar (LR), infrared video (IR,

similar to video but generated at 60 frames/sec) and CCD digital camera. Figure 33 shows

the sample images taken by LR and CCD camera.

B.2.2 Information Retrieval

In our experiments, users information needs are interpreted as temporal/spatial queries. The

following two methods are available to build this kind of queries:

1. Using a SQL-like temporal/spatial query language (e.g. ΣQL)

2. Incrementally construct query by elementary queries and query operators.

Figure 33: Sample Images in Our Experimental System

128

B.2.3 Query Building Experiments

For the following user study, you will be asked to specify the give query in natural language

using the two methods mentioned above. Please mark your start time and finish time for

EACH of them. Please indicate your preference.

Example B.2.1 Query: Find a red car which passed toll gate A.

Solution 1: SQL-Like Query

Start Time: 04:05:23; Finish Time: 04:25:45

SELECT object

CLUSTER object ALIAS OBJ1

FROM

SELECT t

CLUSTER *

FROM LR, IR, CCD

WHERE OBJ1.type = ‘car’ AND OBJ1.color = ‘red’ AND

Inside(OBJ1,‘gate A’)

Solution 2: Incremental Query

Start Time: 04:35:27; Finish Time: 04:40:45

Object1=<OBJ=‘car’, SOURCE=LR/IR/CCD,AOI=‘gate A’,

TOI=all, PREDICATE = (object.color=‘red’)>

Example B.2.2 Query: Find a red car which passed toll gate A between 6:00pm–9:00pm.

Solution 1: SQL-Like Query

Start Time: 04:05:23; Finish Time: 04:25:45

SELECT object

CLUSTER object ALIAS OBJ1

129

FROM

SELECT t

CLUSTER *

FROM LR, IR, CCD

WHERE OBJ1.type = ‘car’ AND OBJ1.color = ‘red’ AND

AND Inside(OBJ1,‘gate A’) AND OBJ1.t > 6:00pm

AND OBJ1.t < 9:00pm

Solution 2: Incremental Query

Start Time: 04:35:27; Finish Time: 04:40:45

Object1=<OBJ=‘car’, SOURCE=LR/IR/CCD,AOI=‘gate A’,

TOI=‘6:00pm–9:00pm’, PREDICATE = (object.color=‘red’)>

Example B.2.3 Query: Find a truck which passed toll gate A between 6:00pm–9:00pm

Solution 1: SQL-Like Query

Start Time: 04:05:23; Finish Time: 04:25:45

SELECT object

CLUSTER object ALIAS OBJ1

FROM

SELECT t

CLUSTER *

FROM LR, IR, CCD

WHERE OBJ1.type = ‘truck’ AND

AND Inside(OBJ1,‘gate A’) AND OBJ1.t > 6:00pm

AND OBJ1.t < 9:00pm

Solution 2: Incremental Query

Start Time: 04:35:27; Finish Time: 04:40:45

130

Object1=<OBJ=‘car’, SOURCE=LR/IR/CCD,AOI=‘gate A’,

TOI=‘6:00pm–9:00pm’, PREDICATE = TRUE >

Example B.2.4 Query: Find a red car followed by a truck within 10 minutes which both

passed toll gate A between 6:00pm–9:00pm.

Solution 1: SQL-Like Query

Start Time: 04:05:23; Finish Time: 04:25:45

SELECT object

CLUSTER * ALIAS OBJ1 OBJ2

FROM

SELECT t

CLUSTER *

FROM LR, IR, CCD

WHERE OBJ1.type = ‘car’ AND OBJ1.color = ‘red’ AND

OBJ2.type = ‘truck’ AND OBJ1.t < OBJ2.t AND

OBJ1.t > OBJ2.t-10 AND Inside(OBJ1,‘gate A’) AND

Inside(OBJ2,‘gate A’) AND OBJ1.t > 6:00pm

AND OBJ1.t < 9:00pm AND OBJ2.t > 6:00pm

AND OBJ2.t < 9:00pm

Solution 2: Incremental Query

Start Time: 04:35:27; Finish Time: 04:40:45

Object1=<OBJ=‘car’, SOURCE=LR/IR/CCD,AOI=‘gate A’,

TOI=‘6:00pm–9:00pm’, PREDICATE = (object.color=‘red’)>

Object2=<OBJ=‘truck’, SOURCE=LR/IR/CCD, AOI=‘gate A’,

TOI=‘6:00pm–9:00pm’, PREDICATE = TRUE>

Query Operator τ={object1.t ≤ object2.t AND object1.t ≥ object2.t-10}

Please follow the example to construct the following queries:

131

Query 1 Is there any simlar car beside a white car in the parking lot?.

Solution 1: SQL-Like Query

Start Time:___:___:___ Finish Time:___:___:___ (hh:mm:ss)

Solution 2: Incremental Query

Start Time:___:___:___ Finish Time:___:___:___ (hh:mm:ss)

Which way do you prefer to specify this query?

© SQL-like Query; © Incremental Query;

Query 2 Find a blue truck which has been previously observed in the toll gate A.

Solution 1: SQL-Like Query

Start Time:___:___:___ Finish Time:___:___:___ (hh:mm:ss)

Solution 2: Incremental Query

Start Time:___:___:___ Finish Time:___:___:___ (hh:mm:ss)

Which way do you prefer to specify this query?

© SQL-like Query; © Incremental Query;

Query 3 Is there any area (100 feet × 100 feet) in the parking lot where the number of cars

is increasing between 8:00pm–9:00pm?

Solution 1: SQL-Like Query

Start Time:___:___:___ Finish Time:___:___:___ (hh:mm:ss)

Solution 2: Incremental Query

132

Start Time:___:___:___ Finish Time:___:___:___ (hh:mm:ss)

Which way do you prefer to specify this query?

© SQL-like Query; © Incremental Query;

B.3 FEEDBACKS

Do you have any query which you think is interesting in this scenario? Any comments about

our research topics and experiments? Thank you!

133

APPENDIX C

VITA

Xin Li received his B.E. and M.E. degrees from Tsinghua University, China in 1999 and 2001

respectively. He became a PhD student in Department of Computer Science, University of

Pittsburgh in 2001, and has been working with Prof. Shi-Kuo Chang since then. His

research interests include information retrieval, visual language, and software engineering.

He has been a summer research intern in ITRI, Taiwan (2004) and Google Inc., USA (2005).

134

APPENDIX D

PUBLICATIONS OF XIN LI

(10 papers in total, up to April 2006)

Journal Papers:

• [J2] Xin Li, Chieh-Chih Chang, and S. K. Chang. Face Alive Icons. Journal of Visual

Language and Computing.

• [J1] S. K. Chang, Erland Jungert and X. Li. A Progressive Query Language and an

Interactive Reasoner for Information Fusion Support. Journal of Information Fusion.

Conference Papers:

• [C7] S. K. Chang, Xin Li, Ricardo Villamarin, Dan Lyker, Chris Bryant. The Design

and Implementation of the Chronobot/Virtual Classroom (CVC) System. The Twelfth

International Conference on Distributed Multimedia Systems (DMS’06), Grand Canyon,

USA.

• [C6] Xin Li and S. K. Chang. User Profiling in the Chronobot/Virtual Classroom Sys-

tem. The Eighteenth International Conference on Software Engineering and Knowledge

Engineering (SEKE’06), San Francisco, USA.

• [C5] Xin Li and S. K. Chang. A Personalized E-Learning System Based on User Pro-

file Constructed Using Information Fusion. The Eleventh International Conference on

Distributed Multimedia Systems (DMS’05), Banff, Canada. Sep. 5 7, 2005, pp. 109-114.

135

• [C4] Xin Li, Chieh-Chih Chang, and S. K. Chang. Face Alive Icons. The Seven-

teenth International Conference on Software Engineering and Knowledge Engineering

(SEKE’05), Taipei, Taiwan, July 14-16, 2005, pp. 29-36.

• [C3] Xin Li and S. K. Chang. An Interactive Visual Query Interface on Spatial/temporal

Data. Proc. of Int’l Conf. on Distributed Multimedia Systems(DMS’04), San Francisco

Bay, CA, Sep. 8-10, 2004, pp. 257-262.

• [C2] Giovanni Casella, S. K. Chang, Gennaro Costagliola, Erland Jungert, Xin Li

and Tobias Horney. An Architecture for Interactive Query Refinement in Sensor-based

Information Fusion Systems. Proc. of Int’l Conf. on Distributed Multimedia Sys-

tems(DMS’04), San Francisco Bay, CA, Sep. 8-10, 2004, pp. 315-321.

• [C1] S. K. Chang, W. Dai, S. Hughes, P. Lakkavaram and Xin Li. Evolutionary Query

Processing, Fusion and Visualization. Proc. of Int’l Conf. on Distributed Multimedia

Systems(DMS’02), San Francisco Bay, CA, Sep. 2002.

Workshop Papers:

• [W1] Xin Li and Weimin Yan. An Internet Based Examination Platform (IBEP)—

TH-IBEP. Proceeding of the International Workshop on Distance Learning and Virtual

Campus, Beijing, China, Nov. 2000.

136

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Experimental System V1.0
	2. Experiment 1
	3. Experiment 2
	4. Experimental System V2.0
	5. Experiment 3
	6. Experimental System V3.0
	7. Experiment 4
	8. Experiment 5

	LIST OF FIGURES
	1. Multisensor Data Fusion
	2. Local Search System
	3. JDL Fusion Model
	4. Model of Information Fusion System
	5. Cluster Clause
	6. Sample Sensor Images
	7. Diagram of the IVET query system
	8. The Ontological Knowledge Base (OKB)
	9. Source Dependency Graph
	10. Source Dependency Graph (T5)
	11. Experimental System V1.0: Main Interface
	12. Experimental System V1.0: Data Input
	13. Experimental System V1.0: Query Construction
	14. Experimental System V1.0: Visualization
	15. Experimental System V1.0: Dependency Graph
	16. Experimental System V1.0: Dynamically Updated Dependency Graph
	17. Experimental System V1.0: Query Optimization
	18. Experiment 1: Result Analysis (Processing Time & Success Rate)
	19. Experiment Result on the System V1.0
	20. Experiment 2: Result Analysis (Query Building Time)
	21. Experiment 2: Result Analysis (User Preference)
	22. Experimental System V2.0: Main Interface
	23. Experimental System V2.0: Query Operators
	24. Experiment 3: Result Analysis (Processing Time & Success Rate)
	25. Experiment 3: Result Analysis (CPU & Memory Usage)
	26. Experimental System V3.0: System Diagram
	27. Manually Pattern Learning Algorithm
	28. Automatically Pattern Learning Algorithm
	29. Experimental System V3.0: Main Interface
	30. Experimental System V3.0: Pattern Selection
	31. Experimental System V3.0: Pattern Construction
	32. Experiment 4: Result Analysis (Processing Time & Success Rate)
	33. Sample Images in Our Experimental System

	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	1.1 Information Fusion System
	1.2 Challenges
	1.3 State of the Art
	1.3.1 The JDL Model
	1.3.2 State of the Art

	1.4 Overview of Our Approach
	1.5 Contributions of the Dissertation
	1.6 Related Research Areas
	1.6.1 Data Management in Sensor Network
	1.6.2 Information Integration

	1.7 Outline

	2.0 PROBLEM DEFINITION
	2.1 Information Fusion System
	2.2 Query in the Information Fusion System
	2.3 Evaluation of Query Processing
	2.4 Summary

	3.0 IVET QUERY SYSTEM
	3.1 System Overview
	3.2 Ontology Knowledge Base
	3.2.1 Role of the Ontology
	3.2.2 Related Research on Ontology
	3.2.3 The Representation of Ontology Knowledge
	3.2.4 The OKB in the IVET system

	3.3 Source Dependency Graph
	3.3.1 Definition of the SDG
	3.3.2 Query Processing Example

	3.4 Query Refinement
	3.4.1 Dynamic SOI and TOI
	3.4.2 -- Pruning

	3.5 Query Optimization
	3.6 Experimental System and Experiments
	3.6.1 Experimental IVET System V1.0
	3.6.2 Experiments on System V1.0

	3.7 Summary

	4.0 INCREMENTAL QUERY PROCESSING
	4.1 Motivation
	4.2 An Example of Incremental Query
	4.3 Formal Definitions
	4.4 Incremental Query Processing
	4.5 Survey on User Query Manner
	4.6 Experimental System and Experiments
	4.6.1 Experimental IVET System V2.0
	4.6.2 Experiments on System V2.0

	4.7 Summary

	5.0 QUERY PATTERN
	5.1 Motivation
	5.2 Definition of Query Pattern
	5.3 Observed Query Patterns
	5.3.1 Typical Tasks in Information Fusion System
	5.3.2 Query Pattern for the Typical Tasks

	5.4 Application of Query Pattern
	5.4.1 System Overview
	5.4.2 Pattern Matching
	5.4.3 Manually Pattern Construction and Learning
	5.4.4 Automatically Pattern Learning
	5.4.5 Dynamic Information Exchange with Ontology Knowledge

	5.5 Experimental System and Experiments
	5.5.1 Experimental IVET System V3.0
	5.5.2 Query Processing Experiments on System V3.0
	5.5.3 Pattern Learning Experiments on System V3.0

	5.6 Summary

	6.0 RELATED WORK
	6.1 Information Fusion Systems
	6.2 Query Systems
	6.2.1 Query Approaches on Heterogeneous Information Sources
	6.2.2 Query Language
	6.2.3 Query Pattern

	7.0 CONCLUSION
	7.1 Key Contributions
	7.2 Future Directions
	7.2.1 Solution Across Application Areas
	7.2.2 Statistical Query Pattern Learning
	7.2.3 Dynamic Exchange of Information from Query Patten and Ontology
	7.2.4 Efficient User Interaction
	7.2.5 Combination with Information Integration

	BIBLIOGRAPHY
	APPENDIX A. BENCHMARK QUERIES IN THE IVET SYSTEM
	APPENDIX B. SURVEY ON USER QUERY MANNER
	 B.1 Background Survey
	 B.2 Query Building Experiments
	 B.2.1 Scenario
	 B.2.2 Information Retrieval
	 B.2.3 Query Building Experiments

	 B.3 Feedbacks

	APPENDIX C. VITA
	APPENDIX D. PUBLICATIONS OF XIN LI

