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 BREAST CANCER RISK 

 
Jessica D. Albano, PhD 

University of Pittsburgh, 2009 

Etiologic factors such as vitamin D and estrogen are potentially related to breast cancer 

development, although details of their mechanisms are not completely understood. We 

prospectively investigated correlates of breast cancer risk among postmenopausal women in 

the Study of Osteoporotic Fractures (SOF). First, we undertook a case-cohort study to test the 

hypothesis that low serum 25-hydroxyvitamin D [25(OH)D] will be associated with an increased 

risk of ER+ breast cancer (N=502). Low 25(OH)D levels were not associated with an increased 

risk of breast cancer and do not support an association between 25(OH)D and ER+ breast 

cancer development. Second, we utilized fractional calcium absorption (FCA) as a marker of 

tissue resistance to vitamin D to test the hypothesis that low FCA will be associated with an 

increased risk of breast cancer (N=5035). To the contrary, over a mean 9.6 years, increasing 

rates of FCA were associated with a higher risk of invasive breast cancer. A stronger positive 

relationship was noted among women with low dietary calcium intake. The findings support a 

modestly increased risk of breast cancer with higher FCA rates particularly among those who 

have low calcium intake. Finally, we examined the long-term association of an initial bone 

mineral density (BMD) measure and change in BMD (annual percent change assessed 3.5 

years later) on breast cancer risk (N=5385). Furthermore, we tested the hypothesis that the risk 

associated with an initial BMD measure would be strengthened by the addition of the change 

variable. Over a mean 9.5 years, there was no association between increasing levels of BMD, 

change in BMD, or a combined model and breast cancer. The effect of BMD was found to be 

dependent upon family history of breast cancer. Among women with a positive family history, 

high BMD was associated with a 3-fold higher risk of breast cancer compared to low BMD. 

Through our investigations of two etiologic factors and their association with breast cancer 

development, we have enhanced our knowledge regarding the interdependence of vitamin D, 

calcium, and estrogen. These findings may lead to improved opportunities for prevention and 

early detection and are of significant public health relevance. 
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1.0  INTRODUCTION 

Breast cancer is the most commonly diagnosed cancer, and the second leading cause of cancer 

mortality among women in the United States. Although the rising incidence has recently waned, 

our ability to assess a woman’s risk of developing breast cancer and implement preventive 

measures is limited. The focus of this dissertation is on two potentially etiologic factors for 

breast cancer.  

First, the association of vitamin D in tumor development was investigated. In addition to 

its role in building bone, vitamin D has a separate function in cancer prevention. Specifically, 

1,25-dihydroxyvitamin D [1,25(OH)2D], the biologically active form of vitamin D, is responsible 

for genetic regulation of cellular processes such as controlling proliferation, inhibiting 

angiogenesis, and inducing differentiation and apoptosis. These actions are carried out locally in 

tissues containing the vitamin D receptor (VDR) such as the breast where circulating 25-

hydroxyvitamin D [25(OH)D] is converted to 1,25(OH)2D. Therefore, the serum concentration of 

25(OH)D may be a predictor of breast cancer risk. There is the potential, however, for tissue to 

lose its sensitivity to 1,25(OH)2D with age. This is demonstrated in the gut where fractional 

calcium absorption (FCA), a measure of the rate of calcium uptake, is maintained despite 

increased levels of 1,25(OH)2D. It is not known whether other tissues might also develop 

resistance to 1,25(OH)2D over time. FCA could potentially be used as an indicator of tissue 

sensitivity to 1,25(OH)2D beyond the small intestine and help to clarify the role of vitamin D in 

breast cancer development.  
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Second, we investigate estrogen. Estrogen plays an important role in the development of 

breast cancer. Estrogen, along with growth factors, vitamin D, parathyroid hormone (PTH), and 

calcium are important factors contributing to bone health. Bone mineral density (BMD), a 

measure of bone strength, is hypothesized to be a surrogate marker for cumulative estrogen 

exposure because bone contains estrogen receptors making it sensitive to levels of circulating 

estrogens. BMD may predict future breast cancer occurrence.  

In light of the number of women affected with breast cancer, it becomes increasingly 

important to understand this disease and to identify potentially modifiable risk factors along with 

the women who might benefit from targeted prevention strategies. Established risk factors 

explain little of the variability in breast cancer and therefore there is a need to identify additional 

risk factors. This becomes an increasingly difficult task given the heterogeneity of breast cancer 

risk factors that exists between premenopausal and postmenopausal women, as well as the 

differences in pathologic features of breast tumors in older women. The following literature 

review presents a brief overview of the epidemiology of breast cancer and known risk factors. A 

more detailed background on vitamin D, fractional calcium absorption, and bone mineral 

density, as they relate to breast cancer is also provided. 
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2.0  LITERATURE REVIEW 

2.1 EPIDEMIOLOGY OF BREAST CANCER 

2.1.1 Incidence, Survival and Mortality 

Breast cancer is the most commonly diagnosed cancer, and the second leading cause of cancer 

mortality among women in the United States. The incidence of breast cancer from 2000 to 2004 

in the US was 125.3/100,000 and the mortality rate was 25.5/100,000.1, 2  The number of 

women affected by breast cancer annually is not insignificant, with a projected 182,460 new 

cases of invasive breast cancer and 40,480 deaths expected to occur in the United States in 

2008.2  After increasing for several decades, female breast cancer incidence rates decreased 

between 2001 and 2004.2  Two distinct patterns in recent breast cancer trends have emerged. 

The subtle downturn in incidence rates for all women over age 45 is reflective of the saturation 

of screening mammography utilization, where as the sharp decrease in incidences among 

women aged 50 to 69 years is more likely to be attributed to the reduction in the use of hormone 

therapies (HT), as tumors in women this age are predominantly estrogen receptor positive 

(ER+) and hence sensitive to levels of circulating hormones.3  Overall, mortality due to breast 

cancer has been steadily declining since the early 1990’s.2  The 5-year relative survival from 

breast cancer is 89%, but varies greatly depending upon stage at diagnosis with a range of 98% 

for localized tumors to 27% for metastatic disease.2  Survival is greatest for women diagnosed 
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at age 40 or older with a 5-year survival of 89% compared to 82% for those under age 40.4  

Long-term survival is greater among individuals with a ER+ tumor and a stronger degree of 

positivity for tamoxifen therapy. In quantitative terms, women with estrogen receptor negative 

(ER-) tumors have an 8% to 35% lower 5-year survival rate compared to those with ER+ 

tumors.5  

2.1.2 Age 

The majority of breast cancer cases occur among women over age 50, with a peak in incidence 

at 75-79 years of age.6  Women over the age of 50 have an incidence rate of 375 / 100,000 

compared to 42.5 / 100,000 among women less than 50 years of age.6  For women, the lifetime 

probability of developing invasive breast cancer is 1 in 8; age specific probabilities are 1 in 26 

(40-59 years), 1 in 28 (60-69 years), and 1 in 15 for those over age 70.2  The proportion of 

women diagnosed with distant-stage disease increases with age,7 as does the proportion of 

tumors expressing hormone receptors.5, 8  Figure 1 shows the age-specific invasive breast 

cancer incidence rates overall and by estrogen receptor status. Approximately 75% of breast 

cancers in older women are ER+. Such pathologic differences may reflect unique biologic 

influences on breast cancer occurrence in older women.9 
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Figure 1. Age-specific invasive breast cancer incidence rates, 2004-2005 
National Cancer Institute Surveillance, Epidemiology, and End Results Program (SEER) 

2.1.3 Race and Ethnicity 

Breast cancer is the most common cancer among women of every major ethnic group. 

However, there are differences by race.  Age-adjusted incidence rates are highest among white 

women (133/100,000) and lower among black women (118/100,000), Asian American and 

Pacific Islanders (89/100,000), Hispanic/Latinas (89/100,000), and America Indian and Alaskan 

Natives (70/100,000) for the time period of 2000-2004.2  The distribution of age at onset differs 

by race; black women have earlier age at onset with less frequent postmenopausal breast 

cancer occurrence. With the exception of black women, differences in incidence rates among 
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racial and ethnic groups were shown to be explained by differences in other risk factors.10  

There are also differences in survival and mortality among racial groups. The death rate is 36% 

higher in black women compared to white women in the United States, and the relative 5-year 

survival is 77% and 90% for black and white women respectively.2   

2.2 RISK FACTORS FOR POSTMENOPAUSAL BREAST CANCER 

2.2.1 Reproductive Aspects 

Reproductive factors influencing the risk of breast cancer include age at menarche, age at first 

live birth, age at menopause, parity, and breastfeeding, as these factors are key determinants of 

hormone exposure. Prolonged exposure and higher concentrations of endogenous estrogen 

increases the risk of breast cancer in postmenopausal women.11  Estrogen production is 

controlled by ovarian function, however, after menopause, the main sources of estrogen are 

from peripheral conversion of androtestosterone, an adrenal hormone, to estrone which 

primarily occurs in fat tissue.12  Older age at menarche13 and younger age at menopause11, 13, 14 

are both associated with a lower risk of breast cancer possibly due to a decreased lifetime 

exposure to hormones. Indeed, induced menopause through surgical means (i.e. bilateral 

oophorectomy) decreases the risk of breast cancer.15 

Parous women have a decreased risk of breast cancer compared to nulliparous 

women,11, 13, 16, 17 and the younger a woman is at her first full-term pregnancy, the lower her risk 

of breast cancer.11, 13, 17  The Nurses’ Health Study showed a 20% decreased risk of breast 

cancer in parous versus nulliparous women with a first birth at age 20.17  The benefit is reduced 

to 10% with a first birth is at age 25. The risk however for a first birth at age 35 is actually 
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greater than that of nulliparous women. The protection associated with parity, is proposed to be 

due to pregnancy induced cellular differentiation of breast tissue which guards against 

exposures to cancer initiating events. The extent of the protective effect is greater at younger 

ages of first birth as the tissue maturation process is completed earlier in a woman’s lifespan.18 

The greater the number of subsequent live births incrementally decreases the risk of breast 

cancer, there is however a short-term increased risk of breast cancer following each 

pregnancy.16 

Breastfeeding is weakly protective against breast cancer depending on both the duration 

(4.3% per 12 months) and number of births (7% per child).19, 20  Prolonged lactation offers a 

small amount of decreased risk, although this may be limited to premenopausal breast cancer, 

likely due to the inhibitory effect of breastfeeding on ovulation and reduced estrogen 

production.21 

2.2.2 Hormonal Factors 

Sex hormones play a central role in the etiology of breast cancer as evidenced by the rapid 

increase in breast cancer rates in the premenopausal years followed by a sudden slowing in the 

increasing rates at menopause when endogenous hormone levels decline rapidly. Among 

postmenopausal women, there is a clear increased risk of breast cancer with increasing levels 

of circulating endogenous hormones, including estradiol and testosterone.22-28  Results are even 

stronger for ER+ breast cancers.26  Studies of the relationship in premenopausal women have 

found conflicting results,28-32 and again, differences are seen by estrogen receptor status.29, 32  

Exogenous hormone exposures are typically through oral contraceptives among 

premenopausal women and hormone therapy (HT) among postmenopausal women. Little to no 

increased risk of breast cancer is associated with oral contraceptive use.33, 34  Conversely, HT is 
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related to an increased risk of breast cancer. As demonstrated in the randomized controlled trial 

of the Women’s Health Initiative (WHI), combined estrogen plus progesterone is clearly related 

to an increase in the risk of breast cancer.35, 36  Risk is greater for ER+ cancers,37 and with 

longer duration of use.23, 25  As recently reviewed by Santen et al., the evidence is less clear 

concerning hormone therapies where estrogen is unopposed, typically prescribed for women 

who have undergone a hysterectomy.38  The estrogen-alone arm of the WHI randomized trial 

found no association.39  Other studies have found no association,39, 40 a decreased risk,41-43 or 

an increased risk.41, 44, 45    

2.2.3 Anthropometry 

Obesity is positively related to postmenopausal breast cancer, however, there is an opposite, 

inverse association among premenopausal women.  The higher levels of circulating estrogens 

found in heavier women have been attributed to the greater amount of adipose tissue.46, 47 In 

postmenopausal women, adipose tissue is the major source of estrogen, and obese 

postmenopausal women have both higher levels of endogenous estrogen and a higher risk of 

breast cancer.48, 49  Among postmenopausal women, higher body mass index (BMI) posed a 

greater risk of breast cancer (RR 1.3 for ≥ 25 vs. < 21 kg/m2, 95%CI 1.1-1.5).50  In addition, the 

increased risk among heavier women appears to be greater for never users of HT.51, 52  A study 

of women enrolled in the WHI who never used HT found increased BMI to be a strong predictor 

of breast cancer risk among younger postmenopausal women (50-59 years) but not associated 

among older women (70-79 years).51  This is in contrast to an earlier study reporting a greater 

risk among older postmenopausal women.50  Being obese (BMI ≥ 30 kg/m2) is also associated 

with an increased risk of dying from breast cancer.53  Recently, the effect of BMI on breast 

cancer mortality was shown to be age dependent with an increased risk of death with higher 
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BMI at age 65 yet a decreased risk of death with higher BMI at age 85.54 The relationship 

among premenopausal women on the other hand, is contradictory; high BMI (> 31 kg/m2) is 

protective against breast cancer compared to low BMI (< 21 kg/m2).50  The reduction in breast 

cancer risk among obese premenopausal women may be due in part to suppressed ovulation.55  

Height is positively associated with breast cancer risk. Taller women (≥ 175 cm) have 

been found to be 20% more likely to develop breast cancer than shorter women (< 160 cm).50  

Higher levels of dense breast tissue are associated with increased breast cancer risk.56, 

57   Several factors suggest that the relationship maybe independent of estrogen. Firstly, 

mammographic density is largely an inherited trait,58 secondly, ER+ and ER- tumors are equally 

represented,59 and thirdly, breast density measures have not been found to correlate highly with 

sex hormone levels.60 

2.2.4 Family History / Genetics 

Family history is an important risk factor for breast cancer despite the fact that only 15-20% of 

women with breast cancer report a positive family history. Risk of breast cancer increases with a 

greater number of affected first degree relatives.61  Specific genes such as BRCAI/II, p53, and 

AT convey an increased risk of breast cancer. While the risk to individuals with such a mutation 

is high (approximately 90% for BRCA), the prevalence is low and hence they account for only 

about 5% of breast cancer cases in the general population. 

2.2.5 Benign Breast Disease 

Of the major histologic categories of benign breast disease, atypical hyperplasia, proliferative 

lesions, are most highly associated with increased breast cancer risk (RR 3.9, 95%CI 2.6-5.9) 
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as observed in the Nurses’ Health Study.62  The risk, however, appears to be greater among 

premenopausal (RR 5.3, 95%CI 2.6-10.7) compared to postmenopausal women (RR 3.7, 

95%CI 2.1-6.6).  

2.2.6 Lifestyle 

Physical activity is modestly protective against developing breast cancer, with an estimated 

average risk reduction of 30 to 40%.63-66  This evidence is more consistent for postmenopausal 

women.63, 67-69  The Women’s Health Initiative reported a reduced risk of 37% for normal weight 

women engaging in at least 10 hours of brisk walking per week.68  This may be mediated 

through weight control, or the associated reduction in circulating estrogen concentrations with 

increasing levels of physical activity.47, 70 

Alcohol consumption has been consistently associated with an increased risk of breast 

cancer. Compared with nondrinkers, daily alcohol consumption has been associated with as 

much as a 40% increased risk (RR 1.41 for 2+ drinks/day, 95%CI 1.18-1.69) by a pooled 

analysis of 6 cohort studies,71 and as little as a 6% increased risk (RR 1.06 for 1 drink/day, 

95%CI 1.00-1.11) by a meta-analysis of 5 cohort studies.72  No differences were noted by 

menopausal status.72  The effect is more pronounced for ER+ breast cancer73-75 and when 

combined with HT.73, 74, 76  The combination of 1.5 to 2 drinks daily with current HT use for at 

least five years was associated with a doubling of the risk of breast cancer compared to 

nondrinking, nonusers of HT (RR 1.99, 95%CI 1.42-2.79).76  

The relationship between smoking and breast cancer risk is complex due to interactions 

with other risk factors including alcohol, obesity, and endogenous hormones.77, 78   Despite this, 

most studies have shown a modestly increased risk of breast cancer with smoking (RR 1.17, 

95%CI 1.02-1.34).79  In addition, the risk may differ my menopausal status with a protective 
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effect among postmenopausal women (OR 0.5, 95%CI 0.3-0.9) who experienced increasing 

BMI throughout life and initiated smoking later.78 

2.2.7 Risk Factors among Older Women  

Reports of differences in traditional breast cancer risk factors by both menopausal status and 

older age continue to mount. A study of women 75 years and older, found women with a high 

BMI (HR 1.44 for > 29.5 vs. < 23.5 kg/m2, 95%CI 1.12-1.84), a family history of breast cancer in 

a first degree relative (HR 1.54, 95%CI 1.24-1.93), and an older age at menopause (ptrend=0.07) 

to have an increased risk of breast cancer, while having had five or more children compared to 

one or two was protective (HR 0.67, 95%CI 0.51-0.88).9  Traditional breast cancer risk factors 

not associated with increased risk among the those over 75 years were nulliparity, age at first 

live birth, and age at menarche. A pooled analysis of reproductive risk factors by age at 

diagnosis (premenopausal or < 50 years vs. post-menopausal or > 50 years) found that while 

breast cancer risk decreased with increasing age at menarche for both groups, the decreased 

risk was approximately 9%  per year of later menses onset for the younger women compared to 

4% per year among the older women.80  Similar results were found for age at first birth; risk of 

breast cancer increased 5% per year vs. 3% per year for younger vs. older women. In contrast, 

the risk of breast cancer was decreased by 12% for each live birth among the older women, but 

only 3% among the younger women.81  It has been suggested that risk factors representing 

hormonal exposures of the distant past, will show attenuated risk ratios with rising breast cancer 

incidence with age, where as more recent indicators remain relevant to the risk of breast cancer 

among the elderly.9 
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2.2.8 Risk Factors by Estrogen Receptor Status 

Breast cancer risk factors vary by hormone receptor status. The protective effects of 

reproductive risk factors such as delayed menarche,82 higher parity,82-85 younger age at first 

birth,82-86 and early menopause82, 85 tend to be stronger for ER+ breast cancer. However such 

findings are not entirely consistent as others have reported similar risks for ER+ and ER- tumors 

for older age at menarche,84, 85 and parity.86, 87  A meta-analysis by Ma et al. reported an 11% 

reduction in ER+/PR+ breast cancer risk with each additional birth and a 27% increased risk for 

women in the oldest versus the youngest category of age at first birth.84  

Other breast cancer risk factors that show a greater association with ER+ breast cancer 

include height,88 hormone use,37, 86, 88 body mass index,82, 85, 86, 89 physical activity,67 and  alcohol 

intake.73-75  The Women’s Health Study reported a modest relative risk per 1 drink/day of alcohol 

intake of 1.11 (95%CI 1.03-1.20) for ER+/PR+ tumors, 1.00 (95%CI 0.81-1.24) for ER+/PR- 

tumors, and 0.99 (95%CI 0.82-1.20) for ER-/PR- tumors.74  Similar results were reported by a 

case-control study among a group of women aged 65-79 years who had ever used alcohol.75 

The Swedish Mammography Cohort however, reports an elevated risk of postmenopausal 

breast cancer with ≥ 1 drink/day versus none for both ER+/PR+ (RR 1.35, 95%CI 1.02-1.80) 

and ER+/PR- (RR 2.36, 95%CI 1.56-3.56) but not ER- subtypes.73 

Family history, on the other hand, is one breast cancer risk factor found to be more 

strongly related to ER- breast cancer.82 
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2.2.9 Summary of Risk Factors 

Table 1. Summary of breast cancer risk factors by menopausal status 

Risk Factor Premenopausal Postmenopausal 

Family history of breast cancer +++ +++ 
Benign breast disease ++++ ++++ 
Late age at menarche + + 
Late age at menopause n/a ++ 
Late age at first birth + + 
Higher parity -- -- 
Breastfeeding -- -- 
Exogenous hormone use + ++ 
Height ++ ++ 
Weight -- ++ 
Obesity -- ++ 
Physical activity -- -- 
Alcohol + + 
Smoking ++ + 

Scale: RR < 1.0, --; 1.0-1.25, +; 1.25-1.50, ++; 1.50-2.00, +++; > 2.00, ++++ 

2.3 HORMONE RECEPTOR STATUS DETERMINATION  

13 

Breast cancer is dependent upon estrogen or progesterone for growth. The stimulatory effect is 

mediated through estrogen receptors (ERα and ERβ) and progesterone receptors (PRa and 

PRb), which are over-expressed in most breast tumors.90  Estrogen receptors belong to a 

superfamily of nuclear hormone receptors, including other steroid hormone receptors such as 

vitamin D (VDR), that function as transcription factors when they are bound to their respective 

ligands.90  The majority of breast tumors co-express ERα and ERβ. A study of ER expression 

found 62% of breast tumors to be ERα+/ERβ+, 14% ERα+/ERβ
-, 15% ERα

-/ERβ+, and 9% ERα
-

/ERβ
-.91  

 



 

ER and PR detection and quantification is done by either dextran-coated charcoal 

(DCC), which utilizes competitive binding of radiolabeled steroid ligand, or 

immunohistochemistry (IHC) and enzyme immunoassay (EIA) which are based on recognition 

of the receptor protein by specific antibodies.92  The two ER subtypes (α and β) have similar 

estrogen binding affinity, however, ERα is the predominant isoform used to determine ER status. 

Although ER status is often considered to be a dichotomous factor, i.e. positive or negative, ER 

concentration is actually measured on a continuous scale from 0 to 1,000 femtomoles per 

milligram (fmol/mg) with a positive range between 3 and 20 fmol/mg.92  

While DCC is highly reproducible, variation is greatest between 3 and 10 fmol/mg and 

therefore 10 fmol/mg is the typical cutpoint used to determine ER+ status.92  DCC is also known 

to give false-negative results in instances of high levels of circulating hormones such as 

estrogens due to receptor site saturation unlike IHC which is not affected by steroid hormone 

levels.92  IHC’s simplicity and relatively low cost make it the predominant method utilized in 

clinical practice. One drawback to IHC is that, unlike EIA it is not objectively quantitative. Recent 

studies have reported a bimodal ER status with 90% of tumors being either completely negative 

or very strongly positive with the IHC technology.93  Despite this, comparative studies have 

reported high correlations in ER status reporting for DCC to IHC (80-90%), EIA to DCC (80%), 

and  EIA to IHC (90%).92  

In many observational studies, ER status is mainly determined through review of patient 

medical records. A recent comparison of ER status abstracted from pathology reports (where 

ER status was determined from many different labs, over a long period of time, and by several 

different methods) to corresponding measures by a single method (IHC) at a central laboratory 

found agreement for 87% of specimens (kappa=0.64, p<0.01), indicating that pathology reports 

are a reliable source for determining ER status.94  In addition, the rate of tumors with 
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unspecified ER/PR status has decreased from more than 80/100,000 cases in 1990 to 

approximately 40/100,000 cases in 2003.3   

2.4 VITAMIN D AND BREAST CANCER RISK  

2.4.1 Biologic Plausibility 

Vitamin D is available through exposure to sunlight, supplements, and dietary intake. Vitamin D 

produced in the skin and consumed in fortified foods (vitamin D3, cholecalciferol, technically a 

prosteroid hormone) or consumed in the form of plant sterols (vitamin D2, ergocalciferol) is 

biologically inert and must undergo two enzymatic hydroxylations to become biologically 

active.95  Figure 2 details the synthesis and metabolism of vitamin D. Following absorption, 

vitamin D is first metabolized by the liver into its principal circulating metabolites, 25-

hydroxyvitamin D3 [25(OH)D3], and 25-hydroxyvitamin D2 [25(OH)D2]. 25(OH)D refers to both 

25(OH)D2 and 25(OH)D3 and will be used throughout the text. Because liver production of 

25(OH)D is not highly regulated, measured levels of these metabolites directly reflect cutaneous 

production and dietary intake and therefore is used as a marker to determine vitamin D 

sufficiency status.96, 97  25(OH)D3 is far more abundant in circulation than 25(OH)D2, with a 

normal concentration of 20-100 ng/ml but a preferred range of 30-60 ng/ml.98  Circulating 

concentrations below 20 ng/ml are considered deficient, 21-29 ng/ml insufficient, and above 30 

ng/ml sufficient.98-100  As reviewed by Holick, a high prevalence of inadequate 25(OH)D levels 

has been documented for many different populations: young and old, healthy and ill, white and 

non-white, in the United States and abroad.101  The prevalence of inadequate 25(OH)D levels in 

the United States is estimated to be more than 35% in healthy young adults (18 to 29 years) 
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and as high as 60% in hospitalized patients. Studies of osteoporotic postmenopausal women 

have reported values ranging from 50% to 75%. Among those over age 50 hospitalized with 

non-traumatic fractures, 97% had 25(OH)D levels below 30 ng/ml. Inadequate 25(OH)D is even 

more prevalent among non-white populations where 42% of black women aged 15 to 49 years 

had levels below 15 ng/ml and 84% of elderly black individuals had levels below 20 ng/ml.101 

25(OH)D is subsequently hydroxylized in the kidney, as well as other tissues, into its 

most biologically active form, 1,25(OH)2D.95  Circulating concentrations of 1,25(OH)2D are 1000 

times lower than that of 25(OH)D.102  Renal production of 1,25(OH)2D is tightly regulated by 

PTH through end product inhibition (i.e. a negative feedback loop) by 1,25(OH)2D. PTH increase 

with higher 25(OH)D levels and stabilizes at a 25(OH)D concentration of 30-40 ng/ml.98, 103  

Other regulators include calcium, phosphate, growth hormone, and prolactin.95, 96  

Biological activities of 1,25(OH)2D are mediated by vitamin D receptors in the target 

tissues.104-106  Animal models have shown that normal and cancerous mammary cells have the 

ability to convert 25(OH)D into 1,25(OH)2D.107, 108  Breast cells contain the VDR which becomes 

activated through interaction with 1,25(OH)2D and can inhibit cellular proliferation and induce 

differentiation and apoptosis in normal mammary gland and breast cancer cells.105, 109  A 

possible mechanism for the malignant transformation of breast cells is through insufficient 

25(OH)D levels which limits the synthesis of 1,25(OH)2D, thus preventing activation of the VDR 

to regulate the cell cycle.98   Furthermore, 1,25(OH)2D down regulates inflammatory markers 

which has an anti-proliferative effect.103  Hence, vitamin D has the potential to influence the 

development of breast cancer.  
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Figure 2. Vitamin D metabolism and action in bone, intestine, and breast tissue  
In addition to the kidney, active vitamin D (1,25(OH)2D) is produced locally in the breast where it interacts 
with the VDR to regulating genes that control cellular proliferation, inhibit angiogenesis, and induce 
differentiation and apoptosis. Subsequently, 1,25(OH)2D is rendered biologically inert through catabolism. 
In the small intestine, 1,25(OH)2D enhances intestinal calcium absorption through interaction with the 
VDR which aids in the expression of the calcium binding channel and the calcium-binding protein. In 
bone, along with PTH, 1,25(OH)2D interacts with the VDR on osteoblasts, causing expression of RANKL 
which binds to its receptor RANK on preosteoclasts, and initiates the transition to mature osteoclasts. 
Osteoclasts promote bone mineralization by removing Ca++ and phosphorus from bone in order to 
maintain circulating levels of these minerals.98, 110 
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2.4.2 Ecologic Evidence 

Indeed, ecologic data have shown that vitamin D from UV-B radiation is associated with a 

reduction in breast cancer incidence and mortality. Populations living at sunny lower latitudes 

(regions with higher levels of solar UV-B radiation) have higher circulating levels of 25(OH)D,111 

have decreased breast cancer risk,112, 113 and lower mortality rates114-118 compared with 

populations living at higher latitudes (regions with lower levels of UV-B radiation). These finding 

suggest that part of the relation between sun exposure and breast cancer risk could be 

explained by the vitamin D metabolic pathway. The major limitation of such studies however is 

the potential for ecologic fallacy in which the observed statistical association at the population 

level does not necessarily represent the true association present at the individual level. 

2.4.3 Studies of Dietary Intake 

The potentially protective effects of vitamin D from dietary sources on breast cancer risk were 

investigated by case control119, 120 and cohort studies,121-125 and most recently randomized 

controlled trials.126, 127  Evidence of a role for vitamin D in reducing breast cancer risk is mixed. 

The randomized trial by Lappe et al. found a statistically significant reduced risk of overall 

cancer with combined daily calcium (1500 mg) and vitamin D (1100 IU) supplementation among 

postmenopausal women over age 55.127  The findings of the Women’s Health Initiative 

randomized trial showed no association with breast cancer (HR 0.96, 95%CI 0.85-1.09), 

however the dose of vitamin D (400 IU/day) is not thought to have been high enough.126  The 

Nurses’ Health Study found vitamin D intake to be inversely associated with breast cancer risk, 

but this effect was seen in premenopausal women only (RR 0.66, 95%CI 0.43-1.00).125  Other 

prospective observational studies of dietary intake found no association or a weak association 
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that lacked statistical significance. Such studies are limited in their ability to quantify dietary 

intake and may not translate into physiologic levels. 

2.4.4 Biomarker Studies 

Given the difficulty in accurately estimating vitamin D intake from diet, and the tight physiologic 

control of 1,25(OH)2D, studies measuring circulating levels of 25(OH)D to determine vitamin D 

status are preferred. There has been much debate, however, surrounding the proper method of 

measurement for 25(OH)D, which is complicated further due to its two circulating forms, D2 and 

D3. While HPLC is considered to be the gold standard as it is able to quantify both metabolites, 

it is expensive, time consuming, requires a large sample, and is not readily available. Therefore 

alternatives such as the radio-immune assay (RIA) and enzyme immunoassay (EIA) are widely 

used. Reports from DEQAS (Vitamin D External Quality Assessment Scheme), an international 

laboratory quality control initiative, indicates that some assays routinely over estimate 25(OH)D 

levels.128  Furthermore, while various assay manufactures claim to measure total circulating 

25(OH)D (i.e. 100% cross-reactivity with both 25(OH)D2 and D3) only one assay, the Diasorin 

RIA, was found to accurately measure 25(OH)D by detecting both metabolites in human 

serum.129  Secondary hyperparathyroidism in individuals with low levels of 25(OH)D, leads to 

normal or elevated 1,25(OH)2D levels and hence 1,25(OH)2D should not be used as a measure 

of vitamin D status.101  Because breast tissue acquires 25(OH)D from blood and converts it to 

1,25(OH)2D locally, circulating levels of 25(OH)D is the appropriate measure to study the effect 

of vitamin D on the risk of breast cancer. 

Six studies, including one pooled analysis, have investigated the association of 25(OH)D 

concentration to breast cancer risk and are summarized in Table 2. Important covariates of 

vitamin D status including age, BMI, race, and season of blood draw were adjusted for as 
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appropriate. Most recently, a case-cohort study from the Prostate, Lung, Colorectal, and 

Ovarian Cancer Screening Trial found no association overall among women 55-74 years (RR 

1.04 for < 18.3 vs. ≥ 33.7 ng/ml, 95%CI 0.75-1.45,) or when limited to women aged 60 and older 

(results not reported).130  The only other prospective study, a matched nested case-control from 

the Nurses’ Health Study, found a modest reduction in breast cancer risk with high levels of 

25(OH)D (RR 0.73 for ≥ 42 vs. ≤ 22 ng/ml, 95%CI 0.49-1.07, ptrend=0.06). The association was 

stronger among women 60 and older (283 cases) in the highest (≥ 42 ng/ml) versus the lowest 

(≤ 22 ng/ml) quintile although the results were not statistically significant (RR 0.57, 95%CI 0.31-

1.04, ptrend=0.03).131   

Two case-control studies have reported a positive association between low levels of 

measured 25(OH)D and increased breast cancer risk. A population-based matched case-control 

study among postmenopausal women found an odds ratio (OR) of 0.31 (95%CI 0.24-0.42) for 

the highest (≥ 30 ng/ml) versus the lowest (< 12 ng/ml) category of 25(OH)D.132  A matched 

case-control study with 179 cases found an overall odds ratio of 3.54 (95%CI 1.86-6.61) for 

breast cancer risk among individuals with < 20 ng/ml 25(OH)D compared to > 20 ng/ml.133  The 

study also found a five-fold risk of breast cancer among women in the lowest (< 20 ng/ml) 

versus the highest (> 60 ng/ml) quartile of vitamin D levels (OR 5.83, 95%CI 2.31-14.7). One 

smaller matched case-control study (156 cases) found no difference in 25(OH)D levels between 

cases and controls (μ difference 0.87, 95%CI -0.47-2.21).134  The findings of case-control 

studies are of limited relevance to the development of breast cancer due to the fact that blood 

samples were collected after the cancer was diagnosed. The preventive effect of vitamin D may 

only be applicable during the early stages of carcinogenesis.135  

The only study to investigate estrogen receptor status and breast cancer risk for 

25(OH)D reported a borderline significant inverse association (ptrend=0.08) with ER-/PR-, 

however they had limited power and used a combined population of premenopausal and 
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postmenopausal women.131  This finding is inconsistent with the reported stronger association 

among older women who are far more likely to have ER+ opposed to ER- breast cancer. 

Furthermore, ER+ and ER- tumors likely have different etiologies.8 
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Table 2. Results and characteristics of studies investigating the association between endogenous 25(OH)D levels and 
incident breast cancer 

Author Study Design Case / 
Control /  
Population 

Comparisons Results 
 (95%CI) 

Matched on (M) /  
Adjusted for (A) 

Freedman 2008 
PLCO Cancer 
Screening Trial, 
US 

Frequency 
matched, 
case-cohort 

1005/1005 
 
Multi-racial 
Mixed-
menopausal 

Quintiles  
<18 vs. ≥34 ng/ml 
 
Aged 60+ 

 
RR=1.04 (0.7-1.4) 
 
No association 

M: age, year of study entry, 
season; A: BMI, menarche age, 
menopause age, HT, BBD, FH, 
parity/age first birth, smoking, 
alcohol, calcium intake 

Abbas 2008 
Population-
based, Germany 

Matched case-
control 
 
post-diagnosis 
samples 

1394/1365 
 
 
Post-
menopausal 

Categories = 5 
≥30 vs. <12 ng/ml 

 
OR=0.31 (0.2-0.4) 

M: season, age; A: menopause 
age, FH, BBD, parity, menarche 
age, breastfed, number of 
mammograms, HT, BMI, education, 
smoking   

Garland 2007* Pooled 
analysis 

 Quintiles  
Median ng/ml 
48 vs. 6 

 
OR=0.50 
(ptrend<0.001) 

 

Bertone-
Johnson 2005 
Nurses’ Health 
Study, US 

Nested 
matched case-
control 

701/724 
 
Multi-racial 
Mixed-
menopausal 

Quintiles 
≥42 vs. ≤22 ng/ml 
 
Aged 60+ 

 
RR=0.73 (0.5-1.1) 
 
RR=0.57 (0.3-1.0) 
 

M: age, menopause status, HT, 
season, fasting; A: BMI, parity, age 
first birth, FH, BBD, menarche age, 
menopause age, alcohol, α-
carotene, estradiol, HT duration   

Lowe 2005  
Hospital-based, 
UK 

Matched case-
control 

179/179 
 
Caucasian 
Mixed-
menopausal 

Quartiles 
<20 vs. >60 ng/ml 
 
 

 
OR=5.83 (2.3-14.7) 
 

M: season, age, menopause status 

Janowsky 1999 
Hospital based, 
US  

Case-control 
 
post-diagnosis 
samples 

131/149 
 
Caucasian 
Mixed-
menopausal 

 
Cases vs. 
Controls 

 
Mean difference = 
0.87 (-0.47-2.21) 

M: age, race, clinic, season 

*Pooled analysis included two studies; Berton-Johnson et.al and Lowe et.al.  
Abbreviations used: BBD, benign breast disease; BMI, body mass index; CI, confidence interval; FH, family history; HT, hormone therapy; OR, 
odds ratio; RR, relative risk  



 

2.4.5 Summary 

Vitamin D has been shown to be inversely related to breast cancer through studies of ultraviolet 

radiation,112, 113 dietary intake,119, 121, 125, 127 and circulating concentrations.131-133  In addition, 

postmenopausal women are thought to be at increased risk of vitamin D deficiency and related 

health consequences.136  Insufficient vitamin D intake coupled with low sunlight exposure (the 

source of more than 90% of our vitamin D requirements), and the reduced ability of aged skin to 

synthesize cholecalciferol contributes significantly to vitamin D deficiency in this age group.137-139  

In light of the apparently contradictory findings from the Nurses’ Health Study, and given the 

heterogeneity of risk factors by estrogen receptor status, it becomes increasingly important to 

disentangle these effects. However, the relationship between serum 25(OH)D and breast 

cancer has never been studied solely in postmenopausal women by histological subtype.  
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2.5 FRACTIONAL CALCIUM ABSORPTION AND BREAST CANCER RISK 

2.5.1 Determinants of FCA 

Fractional calcium absorption, a measure of intestinal calcium absorption, varies widely from 

person to person. Among postmenopausal women, FCA values have been reported to range 

from 0.07 to 0.68 with an average of 0.27 ± 0.10 (SD).140  Given the high reproducibility of 

calcium absorption measures (r=0.8 over 8 weeks, r=0.5 over 5 years), the variation is thought 

to be largely due to biological need.141  Indeed, several factors have been shown to effect 

intestinal calcium absorption, including calcium intake, age, estrogen, and serum levels of the 

biologically active 1,25(OH)2D.  

By far, the most significant factor affecting intestinal calcium absorption is its hormonal 

regulator, 1,25(OH)2D.142-145  See Figure 2. Approximately 20% of the variation in calcium 

absorption between individuals can be explained by circulating 1,25(OH)2D.142  Some 

studies,142, 145, 146 but not all,147-153 have reported decreased levels of serum 1,25(OH)2D with 

age. Alternatively, some investigators have reported 25(OH)D, but not 1,25(OH)2D, to be highly 

and positively correlated with calcium absorption.152, 154-156  Serum 25(OH)D concentration was 

estimated to be responsible for 25% of the variation in calcium absorption,154 and has been 

proposed to be more biologically active in intestinal calcium absorption than 1,25(OH)2D.152  

Studies of treatment with 25(OH)D have been shown to increase both 1,25(OH)2D levels and 

calcium absorption.156-158  
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FCA is also affected by other factors. There is overwhelmingly consistent evidence that 

FCA varies inversely with calcium intake (i.e. low absorption values are associated with high 

 



 

calcium intake and high absorption values are associated with low calcium intake).140, 145, 150, 159, 

160  In quantitative terms, with a daily intake of 200 mg of calcium, the mean absorption fraction 

was 0.45 compared to 0.15 at 2000 mg/day among non-estrogen deprived women.160  As much 

as 26% of the variation in calcium absorption among individuals is attributed to calcium intake 

(both dietary and supplemental).160 

It is well established that intestinal calcium absorption declines with increasing age.137, 

143, 145, 151, 160, 161  There is some debate however, as to whether there is a dual phase decrease 

which first occurs at menopause, and then subsequently with older age,160 or if there is a single 

menopause related decrease in calcium absorption that can be counteracted with hormone 

therapy.145  One study reported a decrease in calcium absorption of about 0.21% per year after 

age 40, with menopause itself responsible for a drop of 2.2%.160  A more recent and larger study 

reported a 30% decrease in intestinal calcium absorption among women greater than 75 years 

of age, in addition to the decline that occurs at menopause.143  Not all studies however, have 

reported an age related decrease in intestinal calcium absorption.150, 153  

Studies have not only shown that calcium absorption is lower in postmenopausal 

compared to premenopausal women, but that it can be reversed by estrogen replacement.162, 163  

Researchers are uncertain however, if the exogenous estrogen directly increases calcium 

absorption, or if it works through other mechanisms such as increasing the circulating levels of 

1,25(OH)2D.  

Two additional factors that have been associated with calcium absorption are body size 

and smoking. Height and weight, but not BMI were positively associated with FCA in a study of 

middle aged women even after adjustment for estrogen status.164  In a separate study of elderly 

adults (mean age 70), FCA was significantly (p<0.05) lower among smokers regardless of 

gender, age, and calcium and vitamin D intakes, and among the heaviest smokers (≥ 20 

cigarettes/day, ptrend<0.02).165  There is conflicting evidence regarding the effect of smoking on 
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serum sex hormone levels, with reports of both increased and decreased levels among 

smokers.165  Given that estrogen depletion among postmenopausal women is known to 

decrease calcium absorption, the lower FCA among smokers may be caused by a similar 

mechanism, i.e. altered sex hormone levels.165  Other identified correlates of FCA include 

weight loss and bone mineral density.166 

2.5.2 Evidence of Tissue Resistance 

Intestinal calcium absorption has been considered a marker of tissue responsiveness to vitamin 

D and aging has been associated with reduced sensitivity to 1,25(OH)2D.167  The evidence 

supporting this claim is of varying strength. One study demonstrated unchanging calcium 

absorption with increasing age despite higher levels of 1,25(OH)2D, suggestive of intestinal 

resistance to 1,25(OH)2D with aging.150  Similarly, reduced calcium absorption was reported 

among non-estrogen users over age 75, despite unchanging 1,25(OH)2D or 25(OH)D levels.143  

Perhaps the most compelling findings are from a study by Pattanaungkul et al. which clearly 

shows that in young women (mean 29 years) FCA increases with increasing serum 

concentrations of 1,25(OH)2D, while the increase in FCA among elderly women (mean 73 

years) is significantly diminished (p=0.03) with increasing serum concentrations of 

1,25(OH)2D.168 

The actions of 1,25(OH)2D on the small intestine and other target tissues are mediated 

by the VDR, an intracellular protein, and are ultimately involved with calcium transport.169, 170 

Cellular responsiveness to 1,25(OH)2D is dependent on the concentrations of both the VDR and 

1,25(OH)2D.169  Consequently, changes in the intestinal VDR protein concentration may 

contribute to the decline in calcium absorption with age.151  While there has been a report of 

lower concentrations of intestinal VDR proteins with age, fractional calcium absorption remained 
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unchanged with increasing age among elderly women, thus providing further evidence of an 

impaired intestinal response to 1,25(OH)2D with increasing age.153  Another study did not find 

lower VDR concentrations with age, but did find a decrease in calcium absorption that was only 

partially explained by changes in 1,25(OH)2D serum concentrations indicating some level of 

intestinal resistance to 1,25(OH)2D.151  Indeed, animal models have supported the theory of 

age-related resistance to 1,25(OH)2D. Old rats were not found to have lower VDR counts 

compared to young rats, however they did have significantly lower calcium absorption (46%) 

despite receiving supplemental 1,25(OH)2D to raise plasma levels.171 

Evidence from recent dietary studies of calcium and vitamin D provides additional 

support to the theory of intestinal resistance to vitamin D with age. The Nurses’ Health Study, a 

large prospective cohort study of over 88,000 women found an inverse association between 

breast cancer risk and vitamin D intake among premenopausal but not postmenopausal 

women.125  These findings were confirmed in the Women’s Health Study, which showed a lower 

risk of premenopausal but not postmenopausal breast cancer with higher vitamin D intake.122  

Similarly, the WHI randomized trial of calcium plus vitamin D in postmenopausal women did not 

report any significant influence of supplementation on breast cancer risk.126  

Other investigators have hypothesized that the age-related decline in calcium absorption 

is due to an estrogen deficiency induced decrease in intestinal response to 1,25(OH)2D.151  In 

support of this theory, a placebo controlled clinical trial found that both FCA and serum 

1,25(OH)2D concentration were increased after treatment with estrogen in postmenopausal 

osteoporotic women.172 
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2.5.3 Summary 

Based upon the current evidence suggesting intestinal resistance to vitamin D with age, it is 

conceivable that other vitamin D sensitive tissues, such as breast tissue, may also have 

diminished response to vitamin D with aging. In fact, the decreased ability to absorb calcium 

with age, indicative of reduced gut tissue responsiveness to vitamin D, may be representative of 

other tissue’s impaired responsiveness. This relationship however, has never been studied. 
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2.6 BONE MINERAL DENSITY AND BREAST CANCER RISK  

2.6.1 Biologic Plausibility 

Bone remodeling is the process by which the two types of bone tissue (cancellous or trabecular 

bone and cortical or compact bone) renew themselves. Normal bone turnover involves the 

metabolism of bone-resorbing cells (osteoclasts) followed by bone-forming cells (osteoblasts).173 

Estrogen is integral to bone health, exerting a multitude of actions on bone tissues, with 

estrogen deprivation leading to accelerated bone loss.173  Bone strength is a reflection of both 

density and quality and is measured by several different methods. The assessment of bone 

strength can be either radiologic (i.e. bone mineral density), biochemical (i.e. markers of bone 

turnover), or histologic (i.e. bone biopsy for histomorphometry).173  Measures of bone mineral 

density are the least invasive and the most widely used in clinical practice. Dual-energy x-ray 

absorptiometry (DXA), the standard device used to measure bone mineral density, is highly 

precise with coefficients of variation ranging from 1-3% depending on the skeletal site.174 

Estrogen is thought to play a central role in the development of breast cancer due to its 

ability to stimulate proliferation of breast tissue.175  Factors that increase exposure of breast 

tissue to estrogens, such as early menarche, older age at first birth, or late menopause, are 

associated with breast cancer risk.176  Indeed, prolonged exposure to high levels of endogenous 

estrogens may increase breast cancer risk in postmenopausal women.177  However, it is difficult 

to classify a woman’s long-term exposure to endogenous estrogen by a single measurement 

because serum estrogen levels are highly variable over time.178 
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Bone mineral density, on the other-hand, is hypothesized to be a surrogate measure of 

lifetime estrogen exposure.179  Bone contains estrogen receptors and is sensitive to circulating 

estrogen levels.180  BMD is positively correlated with endogenous estrogen levels,181 early 

menarche, parity, and the length of a woman’s reproductive lifecycle.182  In addition to the 

underlying age related decrease, BMD also decreases in postmenopausal women, mostly due 

to loss of ovarian estrogen beginning around the time of menopause. Even among 

postmenopausal women, however, the rate of bone loss is variable. Factors affecting 

postmenopausal bone loss include sustained estrogen exposure due to exogenous estrogen 

use and/or endogenous estrogen released from fat, age, BMI, calcium and vitamin D intake 

from dietary and supplemental sources, and level of physical activity.183 

2.6.2 Etiologic Studies 

As first proposed by Cauley and colleagues in the Study of Osteoporotic Fractures (SOF), 

increased BMD, reflecting high estrogen exposure throughout life, may be a predictor of future 

breast cancer occurrence.184  Bone mineral density and other related surrogate markers of long-

term estrogen exposure including height loss and history of fractures have been shown to be 

associated with the risk of breast cancer. Lower BMD (RR per 1 SD increase = 1.50, 95%CI 

1.16-1.95), greater height loss (OR 0.67 for -2.5cm vs. 0, 95%CI 0.47-0.96), and more recent 

fracture experience (OR 0.79 for <5yr vs. none, 95%CI 0.65-0.95), are each associated with a 

reduced risk of breast cancer.184, 185  Other studies of women who have experienced bone 

fractures late in life, an indicator of low BMD, have been noted to have a reduced risk of breast 

cancer.185-189  Several prospective studies have sought to confirm the association between high 

BMD and increased breast cancer risk, and found a similar or slightly weaker relationship.190-194   
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 Additionally, the risk of breast cancer related to BMD appears to differ by family history 

of breast cancer,190, 195 stage at diagnosis,196 and estrogen receptor status.197  The more recent 

studies have focused on the effect of circulating sex hormones, particularly estradiol and 

testosterone, on the association between BMD and breast cancer risk. Two studies found that 

the relationship between BMD and breast cancer was attenuated when endogenous hormone 

levels were controlled for.197, 198  However, in one study, when stratified by estradiol level, high 

BMD (> 0.62 g/cm2) was a significant predictor of breast cancer risk in individuals with low 

estradiol concentrations (HR 2.6 for ≤ 10pmol/l, 95%CI 1.2-5.7), but not associated in 

individuals with high estradiol concentrations (HR 0.9 or > 10pmol/l, 95%CI 0.4-1.8).199  Table 3 

provides an overview of the important characteristics of the published studies that have 

investigated the association between BMD and breast cancer risk along with details of the major 

findings.  



 

Table 3. Population characteristics and results of studies assessing the association of bone mineral density and incident breast cancer 

Author Study Type / 
Length 

Study Population BMD Measure / Results* Adjustment Factors 
Population 

Proximal radius (SPA):Prospective 
cohort 

97 cases / 6854 cohort 

32 

Cauley 1996 
 
Study of Osteoporotic 
Fractures (SOF) 
 
 

3.2 years mean 
follow-up 
 

 
Postmenopausal, 65+ 
years, Caucasian, no HBC, 
excluded cases within first 
year, not currently on ERT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
RR=1.3 (1.1-1.6) Multivariable adjustment did 

not affect study results. Q1 RR=1.00                Ptrend =.01 
Q2 RR=1.9 (1.0-3.7) 
Q3 RR=2.4 (1.3-4.7) 
Q4 RR=2.3 (1.2-4.5) 
Distal radius (SPA): 
RR=1.4 (1.1-1.7) 
Q1 RR=1.00                 Ptrend =.004 
Q2 RR=1.9 (1.0-3.7) 
Q3 RR=2.1 (1.1-3.9) 
Q4 RR=2.7 (1.4-5.1) 
Calcaneus (SPA): 
RR=1.2 (1.0-1.5) 
Q1 RR=1.00                 Ptrend =.01 
Q2 RR=2.1 (1.1-4.2) 
Q3 RR=2.4 (1.2-4.8) 
Q4 RR=2.5 (1.3-5.0) 
Femoral neck (DXA): 
RR=1.5 (1.2-1.9) 
Q1 RR=1.00                 Ptrend =.001 
Q2 RR=2.1 (0.8-5.6) 
Q3 RR=4.1 (1.6-10.0) 
Q4 RR=4.0 (1.6-9.7) 
Total spine (DXA): 
RR=1.4 (1.1-1.7) 
Q1 RR=1.00                 Ptrend =.01 
Q2 RR=1.8 (0.8-4.1) 
Q3 RR=1.5 (0.6-3.5) 
Q4 RR=3.3 (1.6-7.1) 

Prospective 
cohort  

91 cases / 1373 cohort  Second metacarpal (Radiograph):Zhang 1997 
 
Framingham Study  
 
 

22.1 years median 
follow-up 

 
Postmenopausal,  47-80 
years, no HBC, race 
unknown 

  
Q1 RR=1.0                    Ptrend =.001 Multivariable adjusted rate 

ratios did not affect results. Q2 RR=1.3 (0.6-2.8) 
Q3 RR=1.3 (0.6-2.7) 
Q4 RR=3.5 (1.8-6.8) 

 



 

Table 3. continued 
BMD Site / Results* Author Study Type / 

Length 
Study Population Adjustment Factors 

Population 
Prospective 
cohort 

121 cases / 8065 cohort Proximal radius (SPA):

33 

Kuller 1997 
 
Study of Osteoporotic 
Fractures (SOF) 
 
 

3.2 years mean 
follow-up 

  
Postmenopausal,  65+ 
years, Caucasian, no HBC, 
excluded cases within first 
year 

  
Q1 IR=2.5 (1.5-4.3) Multivariable adjustment did 

not affect study results. Q2 IR=4.1 (2.1-6.2) 
Q3 IR=5.1 (3.5-7.4) 
Q4 IR=5.5 (3.9-7.8) 
Other sites were not presented 

 Prospective 
cohort 

104 cases / 7250 cohort Proximal radius (SPA):Lucas 1998  
35% increase in breast 
cancer relative risk per 1 SD 
increase in radial BMD 
based on multivariable 
adjusted models. 

 T1 RR=1.0  
Study of Osteoporotic 
Fractures (SOF) 

3.2 years mean 
follow-up 

Postmenopausal, 65+ years, 
Caucasian, no HBC, 
excluded cases within first 
year 

T2 RR=1.5 (0.9-2.6) 
T3 RR=1.8 (1.0-3.1) 

      Family history (+/-): 
      RR=4.2 (2.0-9.0) T3+ vs. T1- 

 Distal radius (SPA): 
 T1 RR=1.0 

T2 RR=1.6 (0.9-2.8) 
T3 RR=2.4 (1.4-4.2) 
Calcaneus (SPA): 
T1 RR=1.0 
T2 RR=1.5 (0.8-2.5) 
T3 RR=1.5 (0.9-2.7) 

Nested case-
control 

30 cases / 120 controls Femoral neck (DXA):Nguyen 2000 
 
Dubbo Osteoporosis Epi 
Study (DOES) 
  

Cases self-
reported at 
baseline  

 
Postmenopausal, 60+ years  

 Matched on age and weight 
(±3kg) RR=1.4 (1.0-2.3) 

Lumbar spine (DXA): Years of ovulation, BMI, age 
at menarche, parity, HRT 
use in past 5 years 

RR=2.0 (1.3-3.0) 

Prospective 
cohort  

131 cases / 8203 cohort Proximal femur (DXA):Buista 2001 
 
Fracture Intervention 
Trial (FIT) 
 
 

3.7 years mean 
follow-up 

 
Postmenopausal, 54-80 
years, majority Caucasian, 
no HBC, excluded cases 
within first 6 months 

 Multivariable adjustment 
Q1 RR=1.0  
Q2 RR=1.9 (1.1-3.2) 
Q3 RR=1.5 (0.8-2.6) 
Q4 RR=1.5 (0.8-2.7) 
     Family history (+/-): 
     Q1+ RR=1.8 (0.6-4.8)  
     Q2-4+ RR=2.3 (1.1-4.5) 
     Q1- RR=1.0 
     Q2-4- RR=1.7 (1.0-2.9) 

 



 

Table 3. continued 
BMD Measure / Results* Author Study Type / 

Length 
Study Population Adjustment Factors 

Population 
Case-cohort study 109 cases / 173 controls  Proximal femur (DXA):

34 

Buistb 2001 
 
Fracture Intervention 
Trial (FIT) 
 
  

3.7 years mean 
follow-up 

 
Postmenopausal, 54-80 
years, majority Caucasian, 
no HBC, excluded cases 
within first 6 months 

 The relationship between 
BMD and breast cancer risk 
is truncated when measured 
hormone levels and other 
covariates are controlled for. 

Q1 RR=1.0 
Q2 RR=2.1 (1.0-4.8) 
Q3 RR=1.5 (0.6-3.6) 
Q4 RR=1.4 (0.5-4.0)  
 
 

 Prospective 
cohort  

315 cases / 8905 cohort Proximal radius (SPA):  Zmuda 2001 
Multivariable adjustment did 
not affect study results. 

 Q1 RR=1.0  
Study of Osteoporotic 
Fractures (SOF) 

6.5 years mean 
follow-up 

Postmenopausal women 
aged 65+, Caucasian, no 
HBC, excluded cases within 
first year 

Q2 RR=1.6 (1.1-2.3) 
Q3 RR=1.7 (1.2-2.4) 

 Q4 RR=2.0 (1.4-2.9) 
 Distal radius (SPA): 

Q1 RR=1.0 
Q2 RR=1.4 (1.0-2.1) 
Q3 RR=1.4 (0.9-1.9) 
Q4 RR=2.0 (1.4-2.9) 
Calcaneus (SPA): 
Q1 RR=1.0 
Q2 RR=1.1 (0.8-1.7) 
Q3 RR=1.8 (1.3-2.6) 
Q4 RR=1.8 (1.3-2.6) 
 

Case-control 126 cases / 126 controls Lumbar spine:Ganry 2001 
 
 

 
Postmenopausal, age 
unknown  

 significant  
Femoral neck: NS Limited information based on 

abstract only Trochanter: significant 
Ward’s Triangle: significant 
Q4 vs. Q1 RR range (2.5-4.8) 
 

 

 

 

 



 

Table 3. continued 
BMD Measure / Results* Author Study Type / 

Length 
Study Population Adjustment Factors 

Population 
Prospective 
cohort 

41 cases / 1091 cohort Wrist:

35 

Nelson 2002 
 
NHANES I 
Epidemiologic Followup 
Study 
 
 

19 years follow-up 
 

 
Postmenopausal, 55+ years, 
majority Caucasian, no HBC 

  
Q1 RR=1.0                Ptrend =.04 Age, race, and BMI 
Q2 RR=0.2 (p=0.03) 
Q3 RR=1.6 (p=0.23) 
Q4 RR=1.7 (p=0.26) 

 Prospective 
cohort  

74 cases / 3107 cohort Lumbar spine (DXA):Van der Klift 2003  
Multivariable adjustment did 
not affect study results. 

  T1 RR=1.5 (0.8-2.9)  
Rotterdam Study 6.5 years mean 

follow-up 
Postmenopausal women 
55+ years, no HBC, race not 
addressed 

T2 RR=1.0 
  T3 RR=2.1 (1.1-3.7) 

 Femoral neck (DXA): 
T1 RR 0.8 (0.4-1.4) 
T2 RR=1.0 
T3 RR 1.0 (0.6-1.7) 
Intertrochanteric (DXA): 
T1 RR 0.7 (0.4-1.3) 
T2 RR=1.0 
T3 RR 1.1 (0.6-1.9) 

Hospital based 
matched case-
control 

221 cases / 197 controls Proximal radius (DXA):Nelson 2004 
 
 

 
Caucasian, mixed 
menopausal status, aged 
40-85 years, no HBC, no 
steroids/bisphosphonates 
>1month 

 Matched on ethnicity and 
age OR=2.0 (1.1-3.6)  

Z-score >0 vs. <0  
BMI, menopausal status, 
age, HRT use 

 

 

 

 

 



 

Table 3. continued 
BMD Measure / Results* Author Study Type / 

Length 
Study Population Adjustment Factors 

Population 
Prospective 
cohort  

45 cases / 1504 cohort Femoral neck (DXA):

36 

Ganry 2004 
 
Epidemiologic Study of 
Osteoporosis (EPIDOS)  
 
 

7 years mean 
follow-up 

 
Postmenopausal, 75+ years, 
Caucasian, no HBC, 
excluded cases within first 6 
months, no metabolic bone 
disease 

 Multivariable adjustment 
T1 RR=1.0 
T2 RR=2.6 (1.1-6.8) 
T3 RR=3.1 (1.2-7.8) 
Trochanter (DXA): 
T1 RR=1.0 
T2 RR=1.4 (0.6-3.3) 
T3 RR=2.2 (1.1-4.8) 
Ward’s Triangle (DXA): 
T1 RR=1.0 
T2 RR=1.6 (0.7-3.5) 
T3 RR=2.2 (1.0-4.8) 

Nested case-
control 

208 cases / 436 controls Total hip (DXA):Kerlikowske 2005 
 
San Francisco 
Mammography Registry 
 

2 years mean 
follow-up 

 
Aged 28+ years, no HBC, 
excluded breast 
augmentation/mastectomy  

 Age, family history, age at 
first live birth/nulliparous, 
breast density, race, BMI 

Q1 OR=1.0 
Q2 OR=1.1 (0.7-1.9) 
Q3 OR=1.3 (0.8-2.1) 
Q4 OR=1.2 (0.7-2.1) 

Prospective 
cohort 

87 cases / 3,013 cohort Lumbar spine (DXA):Stewart 2005 
 
 9.7 years mean 

follow-up 

 
Peri/early-menopausal, 45-
54 years, no HBC 

 Age, height, weight, 
menopausal status, HRT 
use 

RR=1.2 (1.0-1.5) / 1 SD decrease 
Femoral neck (DXA): 
RR=1.2 (0.9-1.5) / 1 SD decrease 

Case-cohort 196 cases / 378 controls Distal radius (SPA):Cummings 2005 
 
Study of Osteoporotic 
Fractures (SOF) 
 
 

10.5 years follow-
up 

 
Postmenopausal, 65+ years, 
no ERT,  

 Age, weight, education, 
testosterone, estradiol       Estrogen Receptor Positive 

     RR=1.2 (0.9-1.5)/1SD increase 
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Table 3. continued 
Author 
Population 

Study Type / 
Length 

Study Population BMD Measure / Results* Adjustment Factors 

Cauley 2007 
 
Multiple Outcomes of 
Raloxifene Evaluation 
(MORE) & Continuing 
Outcomes Relevant to 
Evista (CORE) 
 
 

Clinical Trial – 
Placebo arm 
13,698 py follow-
up 

65 cases / 2,511 controls 
 
Postmenopausal, ≤80 years, 
>2 years past menopause, 
osteoporotic, no 
HBC/endometrial 
cancer/stroke/venous 
thromboembolism in past 10 
years  

Femoral neck (DXA): 
     Low estradiol (≤10pmol/l) 
          RR=2.6 (1.2-5.7) 
          >0.62/≤0.62 (g/cm2) 
     High estradiol (>10pmol/l) 
          RR=0.9 (0.4-1.8) 
          >0.62/≤0.62 (g/cm2) 
Lumbar spine (DXA): 
not associated 

Age, family history, estradiol, 
estradiol-BMD interaction 
term 

Hadji 2007 
 
Marburg Breast Cancer 
& Osteoporosis Trial 
(MABOT) 
 
 

Case-control 242 cases / 2250 controls 
(matched analysis = 242 
controls) 
 
Untreated cases, no family 
history, aged 22-88 years 

Calcaneus (Ultrasonometry): 
Q1 OR=1.0                
Q2 OR=1.9 (1.1-3.2) 
Q3 OR=2.3 (1.3-3.9) 
Q4 OR=2.9 (1.7-5.0) 
T-score ptrend = <0.001 

Post-matched (1:1) on age, 
body weight, height, BMI, 
duration of estrogen 
exposure (endogenous and 
exogenous), estrogen use, 
age at menarche, age at 
menopause, parity, and 
breast feeding 

* Includes carcinoma in situ along with invasive breast cancer cases  
Abbreviations used: ERT, estrogen replacement therapy; DXA, dual energy x-ray absorptiometry; HBC, history of breast cancer; 
IR, incident rate = cases/1000 person years; OR, odds ratio; RR, relative risk; SPA, single photon absorptiometry 



 

2.6.3 Variation in BMD Measure 

BMD has been investigated at a number of skeletal sites covering six body regions. These 

regions are the forearm (sites include the proximal radius),184, 195, 196, 200, 201 wrist (distal 

radius),184, 192, 195-197 hand (second metacarpal),194 spine (total spine and lumbar spine),184, 193, 199, 

202-204 hip (total hip, femoral neck, proximal femur, intertrochanteric, trochanter, and Ward’s 

triangle),184, 190, 191, 193, 198, 199, 202-205 and the heel (calcaneus).184, 195, 196, 206  Results of prospective 

studies reporting relative risks for individual skeletal sites are highlighted in Figure 3. 

The literature is fairly consistent in its assessment of the increasing risk of breast cancer 

with higher BMD measurements and these results hold for a variety of skeletal sites. The 

magnitude of the results, however vary by study and by skeletal site and are at best moderate to 

weak in their association. Peripheral skeletal sites and the lumbar spine (which have more 

trabecular bone and may therefore be more sensitive to estrogen) have been proposed to be 

better predictors of breast cancer risk than measurements of the hip, since it is a major load-

bearing site and potentially more affected by lifestyle differences.201  The two studies utilizing 

the Fracture Intervention Trial cohort reported a distinct threshold effect, while the other studies 

showed a more gradual increase with increasing level of BMD.190, 198  The strongest results are 

found when several skeletal sites are assessed in conjunction with one another. Because BMD 

can vary from one skeletal site to another on a single woman, Kuller et al. investigated the effect 

of low BMD at all sites versus high BMD at one or more sites and found that women with low 

BMD at several skeletal locations were highly protected against breast cancer compared to a 

woman with any measure of high BMD (RR=0.23, 95%CI 0.07-0.72).200  Some studies have 

found no association.204, 205  There are study specific issues that may have contributed to the 

inconsistencies in the findings, such as differences in skeletal region measured, bone mass 
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measurement methods, and characteristics of the populations studied, including inclusion 

criteria, sample size, and length of follow-up.  

Although the relationship between higher BMD and an increased risk of breast cancer in 

postmenopausal women has been well studied, the association is moderate at best, and critics 

still question the validity and/or biologic plausibility of these findings.207  One reason that a 

stronger association has not been documented, may be that even among women with low BMD, 

their exposure to estrogen has been sustained in a manner that negates the protective effect of 

having a lower BMD. Or conversely, among women with a higher BMD, their estrogen exposure 

has been diminished so that their increased risk of breast cancer has been attenuated. By 

looking at a women’s change in postmenopausal BMD level, it may be possible to relate BMD to 

risk of breast cancer in a way that accounts for sustained estrogen exposure. The one study to 

have looked at change in BMD over 6.9 years and the risk of breast cancer did so only among 

peri-postmenopausal women aged 45-54.204  They found no relationship with a mean follow-up 

of 9.7 years. The HR (95%CI) for 1 SD change in BMD at the spine was 1.17 (0.80-1.71) and 

1.15 (0.79-1.68) at the femoral neck. Given there were only 34 incident breast cancer cases, 

power was low and likely inadequate to detect a difference. 
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Figure 3. Relative risk of breast cancer for measures of bone mineral density from prospective cohort studies  
Comparisons groups are study specific and between the highest and lowest BMD category. Markers indicate point estimates; symbols designate 
cohorts:●=SOF, ■=EPIDOS, ▲=population based, ▬=Rotterdam, ◊=FIT, x=Framingham. Vertical lines represent 95% confidence intervals. BMD 
skeletal sites: Cal=calcaneus, DR=distal radius, FN=femoral neck, Int=Intertrochanteric, LS=lumbar spine, PF=proximal femur, PR=proximal 
radius, SM=second metacarpal, Tro=trochanter, WT=Ward’s triangle. 



 

2.6.4 Summary 

While the proportion of elderly women with high bone density in the general population is less 

than 5%, the risk of breast cancer attributable to BMD is approximated to be 21%.203  Moreover, 

a recent analysis from the Women’s Health Study found that BMD predicted breast cancer risk 

independently of Gail score.208  There are many risk factors for breast cancer, and bone mineral 

density is just one of them. Because of its close ties to estrogen exposure, BMD may help to 

elucidate the underlying biology linking estrogen and breast cancer. BMD also has the potential 

to be an important and easily measured marker of breast cancer risk, if it is found to be a 

reliable predictor. There is much to be clarified concerning the strength of the relationship 

between BMD and breast cancer including the short-term versus the long-term risk associated 

with elevated BMD and if the rate of bone loss might be a better surrogate of estrogen 

exposure. 
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2.7 SUMMARY 

Figure 2As highlighted in , the role of vitamin D in the body varies widely from building bone to 

regulating gene expression. Aside from its function in calcium homeostasis, the action of vitamin 

D in the breast is completely separate. Maintaining adequate levels of vitamin D has the 

potential to prevent breast cancer through control of cellular processes including differentiation, 

proliferation, and apoptosis. The few existing studies of circulating 25(OH)D and risk of breast 

cancer have produced inconsistent results which are likely due to their inadequate size and/or 

design. Alternatively, lack of findings regarding risk of breast cancer in older women could be a 

result of lost sensitivity to 1,25(OH)2D with age. FCA may be an easily measured surrogate for 

general tissue responsiveness to 1,25(OH)2D.  

Bone mineral density, a marker of lifetime estrogen exposure, has been shown to be a 

moderately weak predictor of breast cancer among postmenopausal women over a relatively 

short period of time. However, the association is not as strong as expected. Additional studies 

are needed to determine if the relationship is maintained/strengthened/weakened with longer 

follow-up, and if other measures of BMD might be better at predicting breast cancer risk.   
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3.0  SPECIFIC AIMS AND HYPOTHESES 

The following specific aims and hypotheses are proposed to address the areas requiring 

additional research identified above. 

1) To examine the association between serum concentrations of 25(OH)D and the 

risk of ER+ breast cancer among postmenopausal women. It is hypothesized 

that postmenopausal women with a low serum concentration of 25(OH)D will have 

an increased risk of breast cancer. 

a. Secondary aims are to test the hypotheses that this association differs by age 

and obesity. Further hypotheses are that the inverse association between low 

serum levels of 25(OH)D and higher breast cancer risk will be stronger 

among older and obese women. 

2) To examine the association between fractional calcium absorption and the risk 

of breast cancer among postmenopausal women. It is hypothesized that 

postmenopausal women with lower fractional calcium absorption are at increased 

risk of breast cancer.  

a. Secondary aims are to test the hypotheses that this association differs for  

ER+ cancers and by calcium intake. Further hypotheses are that the inverse 

association between low FCA and higher breast cancer risk will not differ for 

ER+ cancers, and that by category of calcium intake, women with low FCA 
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will have an increased risk of breast cancer compared to women with high 

FCA. 

3) To assess whether the positive association between higher bone mineral 

density and increased breast cancer risk is maintained over a longer follow-up 

period, and if a measure of BMD change strengthens the association. 

Specifically, does a repeated bone mineral density measure (i.e. annualized percent 

change) enhance the prediction of breast cancer over that of a single measure and 

what is the association between change in BMD and breast cancer risk? It is 

hypothesized that postmenopausal women with a high vs. low BMD will have an 

increased risk of breast cancer. Furthermore, it is hypothesized that a lower rate of 

bone loss will be associated with an increased risk of breast cancer. 

a. Secondary aims are to test the hypotheses that this association differs for 

ER+ cancers and by family history of breast cancer. Further hypotheses are 

that the positive association between high BMD and increased breast cancer 

risk will be stronger for ER+ cancers and those with a positive family history 

of breast cancer.  

 
 

 

 
 
 

44 

 



 

4.0  ARTICLE 1: SERUM 25-HYDROXYVITAMIN D AND RISK OF ER+ BREAST CANCER 

IN POSTMENOPAUSAL WOMEN 

Manuscript in Preparation 

 

Jessica D. Albano, MPH,1 Francesmary Modugno, PhD, MPH,1 Rhobert W. Evans, PhD,1  

Roslyn A. Stone, PhD,2 Douglas C. Bauer, MD,3,4 Steven R. Cummings, MD, FACP,4,5  

Jane A. Cauley, DrPH, MPH1 

 

1Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh,   
Pittsburgh, Pennsylvania 

 
2Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 
Pittsburgh, Pennsylvania 

 
3Departments of Medicine, Epidemiology and Biostatistics, University of California at San 
Francisco, San Francisco, California 

 
4San Francisco Coordinating Center, San Francisco, CA 
 
5Research Institute, California Pacific Medical Center, San Francisco, California 
 

This ancillary study was supported in part by National Institutes of Health grants R25-CA57703, 

K07-CA80668, AG05407, AR35582, AG05394, AR35584, and AR35583 and by National 

Institute on Aging grants AG005407, AG027576, AG005394, and AG027574. Additional support 

was provided by a small grant from the Department of Epidemiology, University of Pittsburgh. 

 
 

 

45 

 



 

4.1 ABSTRACT 

Evidence suggests that vitamin D may reduce the incidence of breast cancer. The few 

epidemiologic studies that have investigated the relationship between circulating levels of 25-

hydroxyvitamin D [25(OH)D] and breast cancer risk have produced inconsistent results. We 

examined the subsequent risk of estrogen receptor positive (ER+) breast cancer related to 

serum levels of 25(OH)D in a case-cohort study within the Study of Osteoporotic Fractures 

(SOF), a prospective cohort of 9,704 postmenopausal, Caucasian women aged 65 and over. 

Serum 25(OH)D level was measured for 170 incident ER+ breast cancer cases and a random 

subcohort (n=332) of SOF participants using serum specimens collected at baseline (1988-

1989). A case-cohort analysis was performed to compute relative risks of breast cancer and 

95% confidence intervals. Mean time between blood draw and diagnosis was 6.0 years. The 

median 25(OH)D level was 27.5 ng/ml and did not differ between cases and non-cases (p=0.5). 

Low levels of 25(OH)D were not associated with an increased risk of breast cancer. Compared 

to women with sufficient levels of 25(OH)D (≥ 30 ng/ml), women with lower levels (20-30 and < 

20 ng/ml) had relative risks (95%CI) of 0.94 (0.61-1.46) and 1.15 (0.63-2.12), respectively 

(ptrend=0.8) in multivariable models adjusted for age (as timescale), clinic site, season of blood 

draw, BMI, smoking history, and estrogen therapy (ET). The findings of this prospective study of 

postmenopausal women are not supportive of an overall association between serum 25(OH)D 

concentration and the development of ER+ breast cancer. 
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4.2 INTRODUCTION 

Evidence of the inverse association between vitamin D and breast cancer incidence and 

mortality has been shown through ecological studies of ultraviolet radiation. Populations living at 

sunny lower latitudes (regions with higher levels of solar UV-B radiation) have higher circulating 

levels of 25(OH)D,111 have decreased breast cancer risk,112, 113 and lower mortality rates114-118 

compared with populations living at higher latitudes (regions with lower levels of UV-B 

radiation). Studies of vitamin D intake from dietary and supplemental sources have reported 

mixed findings.119, 121-125  A recent randomized controlled trial (RCT) of calcium and vitamin D 

supplementation from the Women’s Health Initiative (WHI) reported no association with breast 

cancer, but the low dose of vitamin D used (400 IU) was inadequate to raise vitamin D 

concentrations to a sufficient level.126  

25-hydroxyvitamin D is the principal circulating vitamin D metabolite, directly reflecting 

both cutaneous production and dietary intake and is therefore the measure used to determine 

vitamin D sufficiency status.96  1,25-dihydroxyvitamin D [1,25(OH)2D] is the biologically active 

form of vitamin D95 and its activities are mediated by vitamin D receptors (VDR) in target 

tissues.104-106  Both normal and cancerous mammary cells have the ability to convert 25(OH)D 

into 1,25(OH)2D.107  Breast cells contain the VDR which becomes activated through interaction 

with 1,25(OH)2D and can inhibit cellular proliferation and induce differentiation and apoptosis in 

normal mammary gland and breast cancer cells.105, 109  A possible mechanism for the malignant 

transformation of breast cells is through insufficient 25(OH)D levels which limits the synthesis of 

1,25(OH)2D, thus preventing activation of the VDR to regulate the cell cycle.98   Therefore, 

vitamin D has the potential to influence the development of breast cancer.  
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 More than 50% of women, aged 60+ years, who were surveyed in the Third National 

Health and Nutrition Examination Survey were found to have inadequate serum 25(OH)D levels 

(i.e. < 62.5 nmol/L or 25.0 ng/ml) during the summer months at northern latitudes in the United 

States.209  Despite the high prevalence of low vitamin D status among older women, the 

association between circulating 25(OH)D and breast cancer risk is under-studied. The few prior 

studies have produced inconsistent results and, have been limited by combined premenopausal 

and postmenopausal populations130, 131, 133, 134 and cross-sectional case-control design.132-134  In 

fact, the association has never been investigated prospectively among postmenopausal women 

by histological subtype. This is an important distinction given that the majority of 

postmenopausal cancers are ER+, and that ER+ and ER- tumors likely have different 

etiologies.8  We undertook a case-cohort study to investigate to the risk of ER+ breast cancer 

associated with serum 25(OH)D concentrations among postmenopausal women. Specifically we 

tested the hypothesis that low levels of 25(OH)D will be associated with an increased risk of 

ER+ breast cancer. We also tested whether this association differed by age or obesity as 

secondary aims. 

4.3 METHODS 

4.3.1 Study Population 

The Study of Osteoporotic Fractures is a longitudinal cohort of 9,704 community-dwelling, 

Caucasian, postmenopausal women aged 65 and over who were recruited at 4 US clinical 

centers between 1986 and 1988. Women with a history of bilateral hip replacements and those 

who were unable to walk unassisted were excluded.210  At the baseline examination, women 
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provided informed consent and risk factor and health measures were collected through physical 

measurements, questionnaires, and functional assessments. Serum samples were also 

obtained and immediately frozen at -20oC for no more than two weeks before being stored in 

liquid nitrogen at -190oC. 

4.3.2 Study Design  

The study is a case-cohort design,211 and is a secondary analysis of an existing case-cohort 

within SOF. The original study investigated the relationship of serum sex hormone levels and 

ER+ breast cancer risk.197  The original subcohort was a random sample of the entire SOF 

cohort. The original case group included all incident ER+ breast cancer cases validated through 

December 2000 when the case-cohort study was formed.  

4.3.3 Study Subjects  

Participants in this study were part of a previous case-cohort study. Incident breast cancer 

cases were defined by the diagnosis of estrogen receptor positive breast cancer occurring after 

the baseline examination. All incident cases with sufficient stored serum were included (n=160). 

A random subcohort of 363 women, with available serum, was chosen and formed the 

comparison group (subcohort), which included 15 cases. Twenty individuals reporting a prior 

history of breast cancer at baseline were excluded from this analysis. A single case subject was 

excluded due to a missing 25(OH)D measure. The final study was therefore comprised of 332 

subcohort non-cases, 14 subcohort cases, and 156 cases from outside the subcohort.  
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4.3.4 Serum 25(OH)D Laboratory Measurement 

Serum 25(OH)D was measured by the designated Reproductive Endocrine Research 

Laboratory of the University of Southern California under the direction of Frank Stanczyk, PhD. 

Specimens were shipped via overnight courier in a Styrofoam box packed with dry ice, and 

arrived frozen and undamaged. The laboratory stored the samples at -70°C until they were 

assayed using 25(OH)D RIA kits and reagents from Diasorin (Stillwater, MN). This kit effectively 

detects both the D2 and D3 forms of endogenous 25(OH)D in human serum and has been 

shown to produce more reliable results than other commercially available 25(OH)D kits.129  In 

order to minimize interassay variability, the same kit lot number was used to analyze all the 

samples. In addition, a single highly trained technician was used to carry out all the assays and 

was masked to subject identity and all participant characteristics including case-control status. 

Samples were labeled by number only. Assay methods were identical for cases and the 

subcohort and were completed in a single batch. The performance of the 25(OH)D RIA kit was 

first checked by completing an assay using the manufacturer provided quality control (QC) 

samples and confirming that the obtained values were within the expected range reported in the 

instruction manual. The samples for the assay were thawed by standing at room temperature 

before being mixed thoroughly by inversion. 25(OH)D was extracted from the calibrators, high 

and low level controls and study samples by first aliquoting 50 µl of each into separate tubes 

containing 500 µl of acetonitrile and then vortexing each tube. Following a centrifugation step, 

25 µl aliquots were taken from each of the supernatants and transferred into a new set of 

labeled tubes. RIA was carried out in the usual manner by addition of 125I-25(OH)D and 

25(OH)D antiserum, incubation, and addition of second antibody to separate the antibody-

bound and unbound 25(OH)D.  The tubes were then counted in a gamma counter, and results 

were calculated using an RIA program. The assay sensitivity was 1.5 ng/ml, and the interassay 
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CVs 11.7%, 10.5%, 8.6% and 12.5% at 8.6, 22.7, 33.0 and 49.0 ng/ml, respectively. 

Comparison of the present RIA method with the liquid chromatography mass-spectroscopy (LC-

MS/MS) assay carried out at the Mayo Clinic Endocrine Laboratory (Rochester, MN) showed a 

high correlation (Spearman correlation r=0.92; p=<0.001) between 25(OH)D values measured 

by the two assay methods.212  Furthermore, there was no significant difference in the mean 

25(OH)D levels between the two methods (paired t-test, p=0.73). Approximately 5% of our study 

samples (n=25) were tested in a blinded duplicate fashion. The correlations of assay values 

determined in the duplicate samples were high (R2=0.76) (Appendix A). 

4.3.5 Covariate Information 

At the baseline examination (V1), participants completed a questionnaire and were interviewed. 

Demographic (age, education), reproductive history (menarche age, parity, age at first birth, 

number of live births, breastfeeding), height at age 25, menopausal status (menopause age, 

surgical vs. natural menopause), and breast cancer risk factor (benign breast disease, family 

history of breast cancer) data were collected. Women were asked about smoking status, alcohol 

use (average number of alcoholic drinks/week), and physical activity. Body weight was 

measured using a balance-beam scale. BMI was calculated by dividing the V1 weight (kg) by 

the square of height (m) at age 25 years. Bone mineral density (g/cm2) of the proximal femur 

was measured using dual-energy x-ray absorptiometry (QDR 1000, Hologic, Waltham, 

Massachusetts).210, 213  Exogenous estrogen use (i.e. ET) was defined as currently taking 

estrogen pills. Current supplemental vitamin D use was defined as taking vitamin D or a 

multivitamin containing vitamin D at least once per week. Calcium supplementation was 

determined by asking about current use at least once per week. Dietary calcium intake was 

estimated by using a validated 20-item Block semi-quantitative food-frequency questionnaire 
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developed from the Second National Health and Nutrition Survey (NHANES II).214, 215  Total 

calcium intake was calculated by summing dietary calcium intake (mg/d) and daily dose of 

calcium supplements (mg/d). Month of blood draw was grouped into seasons of winter 

(December-February), spring (March-May), summer (June-August), and fall (September-

November). Variables were categorized based on common cutpoints (e.g. BMI) or the original 

response categories collapsed to prevent small cell counts (e.g. age at first birth). Continuous 

variables were additionally dichotomized at their median and/or divided into quartiles for analytic 

purposes. 

4.3.6 Incident Breast Cancer Ascertainment 

Follow-up occurred every four months by either postcard or telephone (98% complete) in 

addition to clinic visits approximately every 2 years. Breast cancer outcomes were ascertained 

through self-report or death certificate review and were adjudicated by physicians locally and 

centrally at the San Francisco Coordinating Center. Medical records and pathology reports were 

used to record information on date of breast cancer diagnosis, stage at diagnosis, and estrogen- 

and progesterone-receptor status.184 

4.3.7 Statistical Analysis 

Smoothed density plots and kernel density plots of serum 25(OH)D by age at baseline for the 

cases, subcohort cases, and the non-case subcohort were investigated (Appendix A). No 

meaningful differences in the distribution of the subcohort cases and non-subcohort cases were 

found. All subsequent analyses were conducted with a combined case group (n=170).  
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As part of the preliminary data analysis, the distribution of baseline characteristics 

among the cases and the non-cases were compared by t-test for continuous variables and the 

chi-square test for categorical data. The median values of 25(OH)D were also compared by 

age, season of blood draw, vitamin D supplement use, and BMI using either the Wilcoxon rank 

sum test or the Kruskal-Wallis test. Supplemental vitamin D use, defined as taking vitamin D or 

a multivitamin containing vitamin D at least once per week, was assessed at the baseline 

examination and categorized as current/past/never user. The median difference in 25(OH)D 

level was evaluated by category of vitamin D supplementation. The log transformation of 

25(OH)D was investigated, however, it did not significantly improve normality, and therefore 

modeling was pursued with the non-transformed values (Appendix A). 

The main analysis estimated hazard ratios (HR) and 95% confidence intervals (95%CI) 

for the association of serum 25(OH)D level and with the risk of incident ER+ breast cancer using 

multivariable Cox proportional hazard regression models that include robust standard error 

estimates to account for the case-cohort design,211, 216 with age as the underlying time scale.217-

219  The analysis of a case-cohort study differs from that of a traditional cohort in that the 

denominator sums over subjects at risk in the subcohort rather than subjects at risk in the entire 

cohort. Subcohort members (cases and non-cases) contributed to the analysis over their entire 

time in the study whereas the cases outside the subcohort contributed only at their event time. 

At each event (failure), a risk set was formed which consisted of only the subcohort members 

(cases and non-cases) and any non-subcohort cases that failed at that time. The addition of 

non-subcohort cases at their respective event times results in non-nested risk sets. 

The level of the 25(OH)D serum marker was entered as a continuous variable to 

estimate the relative risk (RR) of breast cancer. Levels of vitamin D were also assessed as 

categories of deficient (< 20 ng/ml), insufficient (≥ 20 to < 30 ng/ml), and sufficient (≥ 30 

ng/ml).98  The relative risk of breast cancer, estimated as hazard ratios, was estimated for each 

53 

 



 

category using the highest category as the reference and adjusting for covariates as necessary. 

Because laboratory measured vitamin D is a continuous measure with clinically important 

threshold values, cubic splines were fit to investigate non-linear effects. Restricted cubic splines 

allow continuous data to fit within the Cox model without assuming linearity.220  Cubic splines are 

piecewise polynomial functions that are constrained to join at control points (knots) in the data. 

Forcing the first and second derivatives of the functions to agree at the knots results in smooth 

splines. RCS (restricted cubic splines), a SAS macro, was used to create the cubic splines.221 

Knots were placed at typical clinical cut-points used to assess vitamin D status (15, 20, and 30 

ng/ml).98-100  To ensure that the location of the knots did not influence the results, a spline with 4 

knots placed at standard percentiles (5, 25, 75, 95) was also investigated.221  

All models were adjusted for SOF clinic site and season of blood draw. Preliminary 

multivariable models were fit separately and included potential confounders described above 

based on their significance (p=0.1) in the univariate analyses as well as a priori established 

breast cancer risk factors. In situations where variables are correlated, e.g. various measures of 

body size, variable choice was based on statistical association, scientific knowledge, and/or 

variable distribution. The potential correlation of continuous modeling covariates was 

investigated using a covariance matrix (Appendix A). Dummy variables were created for 

categorical variables as appropriate. Overall model significance was assessed by partial 

likelihood ratio tests comparing each of the fitted models to the univariable model. The final 

model was selected by entering all the covariates from earlier models and using a backward 

elimination strategy.222, 223  Variables were selected for elimination one at a time based on 

univariate Wald tests. After each variable was removed from the model, the partial likelihood 

ratio test was calculated comparing the nested models. Removed variables remained out of the 

models if they made no significant contribution to the model. Likelihood ratio tests were used to 

evaluate the significance of potential interactions by comparing the model including the 
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interaction term to the main effects model. Analyses were repeated among subgroups defined 

by age (<75 and ≥75 years) and BMI (<30 and ≥30 kg/m2). Due to small numbers, 25(OH)D was 

investigated as a continuous variable in subgroup analyses. For the final model, probability 

values < 0.05 were considered statistically significant. All tests were two-tailed.  

Power was calculated a priori using previously reported SOF data (serum 25(OH)D 

mean (SD) = 25.8 (10.7) ng/ml)224 with PASS 2005 software (NCSS, Kaysville, Utah). A two-

sided two-sample t-test with equal variance, an alpha level of 0.05, 175 cases, and a 350 

member subcohort, provides 80% power to detect a mean difference of 2.78 ng/ml (Cohen’s d = 

0.26) in the cases compared to the subcohort. Data descriptions, including graphical 

presentations, were carried out in STATA version 10. Cox proportional hazards modeling was 

performed using SAS software release 9.1.3 (SAS Institute Inc., Cary, NC). 

4.4 RESULTS 

This case-cohort study of postmenopausal women within the Study of Osteoporotic Fractures 

was comprised of 170 incident ER+ breast cancer cases and 332 non-cases. The mean time 

between baseline blood draw and breast cancer diagnosis was 6.0 years. Table 4 presents the 

characteristics, including socio-demographic variables and established breast cancer risk 

factors of the study population at baseline. The mean age of cases and non-cases at baseline 

are 70.4 and 71.2 years, respectively. Compared to non-cases, cases were heavier (weight 

p<0.01; BMI p=0.02), and taller (p=0.03). Cases also had slightly higher bone mineral density 

(p=0.06), and were less likely to have ever smoked (p=0.06), although these differences were of 

borderline statistical significance.  
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Median serum concentrations of 25(OH)D were 27.3 ng/ml and 27.5 ng/ml among cases 

and non-cases, respectively (p=0.51). Table 5 gives details of the median 25(OH)D levels by 

important study characteristics. Median 25(OH)D levels were highest among current vitamin D 

supplement users (31.1 ng/ml) compared to past (23.2 ng/ml) and never (24.5 ng/ml) users 

(p<0.01) and among women with a normal BMI (28.6 ng/ml) compared to those who were 

overweight (25.9 ng/ml) or obese (27.9 ng/ml) (p=0.03). Measurements were highest when 

taken during the summer months (28.9 ng/ml), and lowest during the spring (25.7 ng/ml); this 

difference was of borderline statistical significance (p=0.06). There was no significant difference 

in median 25(OH)D concentration by age group (p=0.69). 

Table 6 shows the multivariable adjusted regression results for the association between 

serum level of 25(OH)D and incident breast cancer. In the simple analysis (model 1) of serum 

25(OH)D categorized at clinically relevant cutpoints, which adjusted for age (as timescale), clinic 

site, and season of blood draw, there was no association with breast cancer (HR 1.13 for < 20 

ng/ml, 95%CI 0.65-1.96; reference level ≥ 30 ng/ml). In model 2, the addition of BMD, weight, 

and smoking status slightly increased the risk estimate from 13% to 22% although it was not 

significant (HR 1.22 for < 20 ng/ml, 95%CI 0.66-2.24; reference level ≥ 30 ng/ml). Adjustment 

for a priori breast cancer risk factors in model 3 attenuated the risk estimate (HR 1.06 for < 20 

ng/ml, 95%CI 0.54-2.10; reference level ≥ 30 ng/ml). In the main analysis (model 4), the lack of 

association between serum concentration of 25(OH)D and risk of postmenopausal ER+ breast 

cancer persisted. Compared with the highest category (≥ 30 ng/ml), the HR’s (95%CI) for lower 

serum concentrations (20-30 and < 20 ng/ml) were 0.94 (0.61-1.46) and 1.15 (0.63-2.12), 

respectively (p=0.68). A test of linear trend was not significant (ptrend=0.69). No significant 

association was found with serum 25(OH)D modeled as a continuous variable (RR 1.01 per 1 

SD decrease, 95%CI 0.80-1.26).  
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An examination of the shape of the risk function using cubic splines, displayed in Figure 

4, showed no significant non-linearity (p=0.65). 

Results of the subgroup analyses addressing the secondary aims are presented in 

Table 7. In multivariable models with 25(OH)D modeled as a continuous variable, no 

association between 25(OH)D and breast cancer was observed among women less than 75 

years of age (RR 1.09 per 1 SD decrease, 95%CI 0.84-1.41). However, among women 75 years 

and older, a significant decrease in the risk of breast cancer was found with lower levels of 

25(OH)D (RR 0.50 per 1 SD decrease, 95%CI 0.27-0.92). The interaction between age and 

25(OH)D was not significant (pinteraction=0.43). There was no difference in the relationship 

between 25(OHD) and breast cancer risk by obesity, RR (95%CI) of breast cancer per 1 SD 

decrease in 25(OH)D was 1.00 (0.79-1.27) and 0.79 (0.27-2.29) for non-obese (BMI < 30 kg/m2) 

and obese (BMI ≥ 30 kg/m2) women, respectively (pinteraction=0.27). 

4.5 DISCUSSION 

This prospective, case cohort study of 502 postmenopausal women from the Study of 

Osteoporotic Fractures, showed little evidence of an association between serum 25(OH)D and 

ER+ breast cancer. A positive relationship was noted among women greater than 75 years of 

age. The association between serum 25(OH)D and ER+ breast cancer did not seem to differ by 

obesity. 

Previous studies reporting on the association between 25(OH)D concentration and 

postmenopausal breast cancer show disparate results; two have found an inverse association, 

while the third shows no association.130-132  Most recently, a case-cohort study from the 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial found no association overall 
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among women 55-74 years (RR 1.04 for < 18.3 vs. ≥ 33.7 ng/ml, 95%CI 0.75-1.45, ptrend=0.81) 

or when limited to women aged 60 and older (results not reported).130  The Nurse’s Health Study 

reported a modest but non-significant decreased risk of breast cancer in women 60 years and 

older (RR 0.57 for ≥ 41.7 vs. ≤ 22.0 ng/ml, 95%CI 0.31-1.04, ptrend=0.03).131  In addition, they 

evaluated the relationship by estrogen and progesterone receptor status, and while they 

reported an inverse association for ER-/PR- (ptrend=0.08) but not for other subtypes (ER+/PR+ 

ptrend=0.30; ER+/PR- ptrend=0.33), statistical significance was not reached. Moreover, these later 

findings were for a combined pre- and post-menopausal population. These two findings appear 

to be contradictory given the observed associations were greater among older women who are 

more likely to have ER+ breast cancer, and for ER- cancers which are more likely to occur 

among younger women. In contrast, a single case-control study, reporting a strong inverse 

association among 1394 postmenopausal cases (OR=0.31 for ≥ 30 vs. < 12  ng/ml, 95%CI=0.2-

0.4), reported no effect modification by ER status.132  These findings are of limited relevance to 

the development of breast cancer as blood samples were collected after the diagnosis of breast 

cancer. Furthermore, as noted by Abbas et al., dietary and behavioral changes, as well as 

cancer therapy have the potential to affect circulating levels of 25(OH)D following a diagnosis.132 

Our findings are noteworthy as they add to the small body of epidemiologic data 

concerning circulating 25(OH)D and breast cancer. The overall lack of association of serum 

25(OH)D and ER+ breast cancer is consistent with the limited information currently known 

regarding the association with different tumor subtypes. One potential explanation is that 

circulating 25(OH)D is not an adequate measure of localized levels in the breast. It is also 

possible, due to the estrogen sensitivity of ER+ tumors, that estrogen plays a greater role in the 

development of breast cancer than the capacity of vitamin D to act as a preventive factor. More 

than 18% of the women in this study reported current estrogen use at baseline. However, 

adding exogenous estrogen use (current/past/never) to our multivariable models had little effect 
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on our 25(OH)D estimates. The body’s reaction to vitamin D also may deteriorate with old age. 

The lack of an association may reflect either a decline in the interaction between 1,25(OH)2D 

and VDRs in breast tissue, or diminished VDR expression. A study of muscle tissue found a 

significant decrease in VDR expression with increasing age (r=0.5, p=0.004) that was not 

correlated to either circulating 25(OH)D or 1,25(OH)2D levels.225  Furthermore, reports of tumors 

developing mechanisms to negate the anti-proliferative effects of 1,25(OH)2D at the cellular 

level, such as enhancing expression of 24-OHase, the enzyme responsible for destroying 

1,25(OH)2D, have been made.226   

Body fat has been shown to negatively impact vitamin D levels; obese individuals have 

lower vitamin D bioavailability,227 and 25(OH)D concentration is inversely associated with 

adiposity.228  While we did see a significant difference in median 25(OH)D level by BMI 

category, the risk of ER+ breast cancer according to 25(OH)D level was not different for obese 

and non-obese women in this study. It has been hypothesized that because older women have 

a lower lean muscle to fat ratio for a given weight compared to younger women, BMI may not be 

an accurate measure of obesity among these women.51 Nevertheless, obesity may be an 

important mediating factor in the association between vitamin D and breast cancer risk. 

 Our positive finding of a 50% reduced risk with lower 25(OH)D concentration among 

women 75 years of age and greater has never been reported. We do not interpret this to mean 

that higher levels of 25(OH)D lead to the development of breast cancer, but rather that there 

may be age related changes in the interaction of vitamin D and breast tissue. This result may 

have occurred by chance and further confirmation of this finding is needed. 

 While there is no established optimal serum 25(OH)D concentration, it is accepted to be 

at least 30 ng/ml which causes a plateau in serum parathyroid hormone level.229  

Recommended levels for cancer prevention are even higher (36-48 ng/ml).100  There has only 

been one randomized controlled trial (RCT) of vitamin D supplementation and breast cancer 
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risk. The findings of the WHI showed no association with incident breast cancer risk.126  

However the dose of vitamin D (400 IU / day) administered in the WHI is not thought to have 

been high enough to adequately raise vitamin D levels. A RCT of  overall incident cancer found 

a statistically significant reduced risk of cancer with combined daily calcium (1500 mg) and 

vitamin D (1100 IU) supplementation among postmenopausal women over age 55.127   

Strengths of this study include its prospective case-cohort design from the large and 

long-standing population-based SOF cohort. We utilized pre-diagnostic serum samples and 

quantitatively measured 25(OH)D with the reliable Diasorin RIA assay. The 25(OH)D metabolite 

integrates all sources of vitamin D from diet, supplement, and sunlight making it a clinically 

relevant indicator of vitamin D status.  

Limitations of this study include our reliance upon a single measure of 25(OH)D, which 

may not reflect long-term status. While our measure of total 25(OH)D was not able to distinguish 

between 25(OH)D2 and 25(OH)D3, this is not of particular concern as both metabolites have 

been shown to have a similar extremely high affinity in our assay (100% cross-reactivity).129  

Furthermore, we lacked a measure of the biologically active vitamin D metabolite 1,25(OH)2D. 

Because our study is comprised of older Caucasian women, our results may not be 

generalizable to other populations. 

In conclusion, the findings of this study do not support a protective effect of 25(OH)D on 

ER+ breast cancer risk in postmenopausal women 65 years of age and older. However, the 

positive association among women 75 years and greater is suggestive of a change in the 

interaction of vitamin D in the breast. Further investigations of the role of vitamin D on breast 

cancer development among elderly women are warranted. In particular, it will be important to 

better define the factors influencing 25(OH)D levels in this vulnerable age group. Future studies 

should also include adequate numbers of women with ER- breast cancer. 
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4.6 TABLES AND FIGURES 

Table 4. Baseline characteristics of study population, Study of Osteoporotic Fractures 

 Breast Cancer Cases Subcohort Non-Cases  
  (n=170) (n=332) 
Characteristic 

61 

N % N % p-value* 

0.08† Age, y, mean(SD) 70.44 (4.54) 71.21 (4.70) 

Clinic Site     0.98# 
A 42 24.71 83 25.00  
B 49 28.82 93 28.01  
C 40 23.53 83 25.00  
D 39 22.94 73 21.99  

Education     0.48# 
< High School 31 18.24 73 21.99  
High School 70 41.18 140 42.17  
> High School 69 40.59 119 35.84  

Distal Radius BMD, g/cm2, mean(SD) 0.38 (0.09) 0.37 (0.09) 0.06 

Body Weight, kg, median(IQR) 69.9 (61.1-78.2) 65.5 (59.3-73.6) <0.01‡ 

BMI, kg/m2, median(IQR) 25.8 (23.1-29.2) 24.9 (22.7-27.6) 0.02‡ 

BMI     0.08# 
< 25 78 44.24 164 51.57  
25-29 58 35.15 112 35.22  
> 30 34 20.61 42 13.21  

0.70† Waist/Hip Ratio, mean(SD) 0.81 (0.07) 0.81 (0.06) 

0.03† Height at age 25 y, cm, mean(SD)  163.52 (5.46) 162.39 (5.66) 

0.87# Age at Menarche, y     
< 11 24 15.19 43 14.01  
12-13 85 53.80 162 52.77  
> 14 49 31.01 102 33.22  

Nulliparous 25 14.71 66 19.88 0.15# 

0.29# Number of Live Births     
Never pregnant 25 14.71 66 19.88  
0 4 2.35 6 1.81  
1-2 75 44.12 121 36.45  
3-4 45 26.47 105 31.63  
5+ 21 12.35 34 10.24  

0.76# Age at First Birth, y     
< 20 30 17.65 52 15.66  
> 20 104 61.18 198 59.64  
Never gave birth 27 15.88 65 19.58  
Unknown 9 5.29 17 5.12  

 



 

Table 4. continued 

 Breast Cancer Cases Subcohort Non-Cases 
  (n=170) (n=332) 

Characteristic 
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N % N % p-value* 

0.79# Ever Breastfed 99 68.28 185 69.55 

0.32# Age at Menopause, y     
< 40 10 5.88 27 8.13  
41-45 30 17.65 46 13.86  
46-50 45 26.47 110 33.13  
> 51 55 32.35 89 26.81  
Unknown 30 17.65 60 18.07  

Surgical Menopause 28 16.77 40 12.54 0.20# 

0.31# Walks for Exercise 84 49.41 180 54.22 

0.59# Alcohol, drinks/week   
None 74 43.53 141 42. 47  
≤1 63 37.06 129 38.86  
2-7 19 11.18 44 13.25  
8+ 14 8.24 18 5.42  

Smoking     0.06# 
Never 119 70.00 202 61.03  
Past 36 21.18 103 31.12  
Current 15 8.82 26 7.85  

0.36† Dietary Calcium Intake, mg/d, mean(SD) 726.72 (428.62) 765.81 (458.71) 

0.59† Supplemental Calcium Intake, mg/d, 
mean(SD) 

388.58 (555.43) 360.67 (524.62) 

0.86† Total Calcium Intake, mg/d, mean(SD) 1130.30 (708.80) 1118.60 (683.87) 

0.98# Current Calcium Supplement Use 71 41.76 137 41.64 

History of Osteoporosis 23 13.86 43 13.03 0.80# 

Oral Estrogen Use     0.78# 
Never  86 51.05 171 52.62  
Past 53 31.74 94 28.92  
Current 28 16.77 60 18.46  

0.49# Any Current Estrogen Use 34 20.61 75 23.36 

Benign Breast Disease 35 22.01 51 16.24 0.12# 

Family History of Breast Cancer 
22 13.41 42 13.13 0.93# 

 
*Reported p-values are from tests of significance comparing the combined case-groups (n=170) and the non-case 
subcohort (n=332) 
†T-test 
‡Wilcoxon two sample rank-sum test 
#Chi-square test 
Abbreviations used: BMI, body mass index; IQR, interquartile range; SD, standard deviation 

 



 

Table 5. Median 25-hydroxyvitamin D level by disease status and important study characteristics, 
Study of Osteoporotic Fractures 

 25(OH)D, ng/ml  
 Median (IQR) p-value 
    

   Group 
Cases, n=170  27.26 21.6-32.4 0.51† Non-Cases, n=332 27.49 22.7-33.2 

    
Age*    

65-69, n=147 28.04 23.4-33.6 
70-74, n=105 27.13 22.0-32.5 0.69‡ 75-79, n=58 26.46 21.6-34.2 
80+, n=22 29.67 20.7-31.6 
    

Season*    
Winter, n=64  26.50 20.9-35.9 
Spring, n=79  25.74 21.5-31.3 0.06‡ Summer, n=106 28.92 24.5-33.4 
Fall, n=83 27.56 22.8-34.6 

    
Vitamin D Supplement Use*    

Current, n=144 31.10 26.3-35.9 <0.01‡ Past, n=35 23.21 20.2-31.5 
Never, n=147 24.51 20.7-29.7  

    
BMI*, kg/m2    

< 25, n=164 28.59 23.6-35.3  
0.03‡ 25-29, n=112 25.94 21.7-32.2 

>
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 30, n=42 27.91 21.5-31.4  
    

 
*Comparison is among non-cases only 
†Wilcoxon two-sample rank-sum test 
‡Kruskal-Wallis test 
Abbreviations used: IQR, interquartile range 

 



 

Table 6.  Association of serum 25(OH)D level and ER+ breast cancer, Study of Osteoporotic 
Fractures 

 Model 1 Model 2  
N=487 

Model 3 Model 4 
 N=502 N=437 N=479 
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 HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

Categorical 25(OH)D ng/ml     
<20 1.13 (0.65-1.96) 1.22 (0.66-2.24) 1.06 (0.54-2.10) 1.15 (0.63-2.12) 
≥20 to <30 0.94 (0.62-1.43) 0.90 (0.59-1.38) 0.95 (0.59-1.51) 0.94 (0.61-1.46) 
≥30 1.00 1.00 1.00 1.00 
p-value 0.73 0.42 0.88 0.68 

Continuous 25(OH)D     
RR*  1.01 (0.83-1.23) 1.01 (0.81-1.27) 0.96 (0.75-1.23) 1.01 (0.80-1.26) 
p-value 0.96 0.91 0.75 0.95 

Clinic Site     
A 1.00 1.00 1.00 1.00 
B 1.16 (0.69-1.96) 1.10 (0.63-1.93) 1.09 (0.59-2.02) 1.02 (0.58-1.80) 
C 1.04 (0.61-1.79) 1.05 (0.60-1.83) 1.02 (0.53-1.94) 1.03 (0.59-1.80) 
D 1.14 (0.67-1.95) 1.09 (0.62-1.90) 0.96 (0.50-1.83) 1.07 (0.61-1.89) 

Season     
Winter 0.86 (0.51-1.46) 0.72 (0.41-1.26) 0.76 (0.38-1.53) 0.76 (0.43-1.35) 
Spring 0.99 (0.60-1.63) 0.98 (0.58-1.65) 1.16 (0.62-2.15) 1.01 (0.60-1.70) 
Summer 0.54 (0.33-0.90) 0.51 (0.30-0.85) 0.58 (0.33-1.04) 0.50 (0.29-0.84) 
Fall 1.00 1.00 1.00 1.00 

Distal Radius BMD, g/cm2 ----- 1.44 (0.13-15.45) ----- ----- 

Body Weight, kg ----- 1.03 (1.01-1.05) 1.03 (1.01-1.05) 1.03 (1.01-1.04) 

Smoking     
Never ----- 1.00 ----- 1.00 
Past ----- 0.59 (0.37-0.93) ----- 0.59 (0.37-0.93) 
Current ----- 0.99 (0.49-1.99) ----- 1.06 (0.52-2.18) 

Oral ET Use     
Never  ----- ----- 1.00 1.00 
Past ----- ----- 1.16 (0.70-1.92) 1.06 (0.66-1.70) 
Current ----- ----- 0.96 (0.48-1.93) 1.13 (0.64-2.00) 

Benign Breast Disease ----- ----- 1.45 (0.76-2.74) ----- 

Family History of Breast Cancer ----- ----- 0.97 (0.50-1.85) ----- 

Age at Menarche, y     
< 11 ----- ----- 1.00 ----- 
12-13 ----- ----- 1.18 (0.64-2.18) ----- 
> 14 ----- ----- 1.03 (0.50-2.10) ----- 

Number of Live Births     
No term pregnancy ----- ----- 0.83 (0.16-4.13) ----- 
1-2 ----- ----- 1.00 (0.47-2.14) ----- 
3-4 ----- ----- 0.66 (0.40-1.09) ----- 
5+ ----- ----- 1.00 ----- 

 



 

Table 6. continued 

 Model 1 Model 2  
N=487 

Model 3 Model 4 
 N=502 N=437 N=473 
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 HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

Age at Menopause, y     
       ≤40 ----- ----- 1.00 ----- 
       41-50 ----- ----- 1.29 (0.73-2.29) ----- 
       ≥51 ----- ----- 1.39 (0.77-2.49) ----- 

Walks for Exercise ----- ----- 0.83 (0.53-1.29) ----- 

Current Alcohol Use ----- ----- 0.76 (0.48-1.21) ----- 

 
*Relative risk for a 1 SD (9.2 ng/ml) decrease in serum 25(OH)D; continuous 25(OH)D modeled separately from 
categorical 25(OH)D 
Models 1-4: All models are adjusted for age (as timescale) season of blood draw, and clinic site 
Model 2: Adjusted for baseline characteristics found to be significantly different between cases and the subcohort in 
univariate analyses at p<0.1 
Model 3: Adjusted for a priori established breast cancer risk factors 
Model 4: Adjusted for ET use in addition to covariates in Models 2 and 3 that remained statistically significant at 
p<0.1 via manual backwards elimination strategy 
Abbreviations used: CI, confidence interval; HR, hazard ratio; RR, relative risk 
 
 
 

 

 

Table 7. Estimated relative risk of serum 25(OH)D level and ER+ breast cancer according to risk 
subgroup, Study of Osteoporotic Fractures 

Relative Risk of 
Breast Cancer Risk Subgroup Cases / P value Non-cases RR (95%CI)* 

  0.43† Age   

< 75 years 135 / 234 1.09 (0.84-1.41) 0.52 

≥75 years 27 / 76 0.50 (0.27-0.92) 0.03 

  0.27† BMI   

< 30 kg/m2 128 / 268 1.00 (0.79-1.27) 0.97 

≥ 30 kg/m2 34 / 42 0.79 (0.27-2.29) 0.66 

 
*Relative risk for a 1 SD (9.2 ng/ml) decrease in serum 25(OH)D; adjusted for age (as 
timescale), clinic site, season of blood draw, BMI, smoking history, and oral ET use 
†P-value for interaction between subgroup variable and 25(OH)D   
Abbreviations used: BMI, body mass index; CI, confidence interval; RR, relative risk 

 



 

 
 

 
 
Figure 4. Cubic spline transformation of serum 25(OH)D concentration 
Knot placement indicated by horizontal lines at 15, 20 and 30 ng/ml. Outer bands represent 95% 
confidence intervals. Plinearity=0.65. 
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5.1 ABSTRACT 

Although epidemiologic evidence suggests that vitamin D may reduce the incidence of breast 

cancer, reports in the literature have been inconsistent, particularly in regard to postmenopausal 

women. The possibility that age related tissue resistance to the active vitamin D metabolite 

(1,25-dihydroxyvitamin D) may interrupt the protective mechanism by which vitamin D is thought 

to prevent breast cancer has not been investigated. In this prospective study, we examined the 

association between fractional calcium absorption (FCA), utilized as a marker of tissue 

resistance, and breast cancer risk in the Study of Osteoporotic Fractures (SOF), a cohort of 

9,704 Caucasian, postmenopausal women aged 65 and older. Of these, the rate of FCA was 

obtained by single isotope method for 5035 women, 257 of whom later developed an incident 

case of breast cancer. A Cox proportional hazards analysis was performed to compute hazard 

ratios (HRs) and 95% confidence intervals (95%CIs). Subgroup analyses by calcium intake, 

vitamin D supplementation, age, and estrogen therapy (ET) were also performed. Mean time 

between FCA measure and breast cancer diagnosis was 9.6 years. The mean FCA rate was 

higher among cases compared to non-cases (38.7% vs. 37.6%), although of borderline 

significance (p=0.05). In multivariable models, increasing rates of FCA were associated with a 

slightly higher risk of invasive breast cancer (HR 1.15 per 1 SD increase, 95%CI 1.00-1.32, 

p=0.05). Compared with the lowest quartile of FCA (≤ 0.314), women with higher FCA (0.315-

0.372, 0.373-0.434, ≥ 0.435) had relative risks (HR, 95%CI) of 1.54 (1.01-2.34), 1.50 (0.99-

2.29), and 1.47 (0.96-2.26), respectively (ptrend=0.14). In a subgroup analyses with FCA 

dichotomized at the lowest quartile (0.314), a stronger positive relationship was noted among 

women with low (HR 2.34 ≤ 525 mg/d, 95%CI 1.21-4.52) but not high (HR 1.12 > 525 mg/d, 

95%CI 0.71-1.76) dietary calcium intake (pinteraction=0.06). The findings of this prospective study 
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of postmenopausal women are supportive of a modestly increased risk of breast cancer with 

higher FCA rates particularly among those who have low calcium intake. 
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5.2 INTRODUCTION  

The role of vitamin D in breast cancer etiology has been proposed through ecologic,112, 113 

dietary intake,119, 121-125, 127 and analytic studies.130-134  Both normal and cancerous mammary 

cells have the ability to convert circulating 25-hydroxyvitamin D [25(OH)D] into the biologically 

active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D].95, 107  Breast cells also contain 

the vitamin D receptor (VDR) which is activated through interaction with 1,25(OH)2D to play a 

direct role in growth regulation of both normal mammary gland and breast cancer cells by 

inducing cell differentiation and apoptosis and inhibiting cellular proliferation.105, 109  A possible 

mechanism for the malignant transformation of breast cells is through insufficient 25(OH)D 

levels, which limits the synthesis of 1,25(OH)2D and prevents activation of the VDR to regulate 

the cell cycle.98  Alternatively, decreased sensitivity of breast tissue to 1,25(OH)2D may also 

serve to limit VDR mediated cell cycle regulation.  

Fractional calcium absorption, a measure of intestinal calcium absorption, varies widely 

from person to person. Among postmenopausal women, FCA values have been reported to 

range from 0.07 to 0.68 with an average of 0.27 ± 0.10 (SD).140  It is well established that 

intestinal calcium absorption declines with increasing age.137, 143, 145, 151, 160, 161  By far, the most 

significant factor affecting intestinal calcium absorption is its hormonal regulator, 1,25(OH)2D.142-

145  Approximately 20% of the variation in calcium absorption between individuals can be 

explained by circulating 1,25(OH)2D.142  Some studies,142, 145, 146 but not all,147-153 have reported 

decreased levels of serum 1,25(OH)2D with age. 

Intestinal calcium absorption has been touted as a marker of tissue responsiveness to 

vitamin D, and aging associated with reduced sensitivity to 1,25(OH)2D.167  The evidence 
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supporting this claim is of varying strength. One study demonstrated unchanging calcium 

absorption with increasing age despite higher levels of 1,25(OH)2D, suggestive of intestinal 

resistance to 1,25(OH)2D with aging.150  Similarly, reduced calcium absorption was reported 

among non-estrogen users over age 75, despite unchanging 1,25(OH)2D or 25(OH)D levels.143  

Perhaps the most compelling findings are from a study by Pattanaungkul et al. which clearly 

shows that in young women (mean 29 years) FCA increases with increasing serum 1,25(OH)2D 

concentration, while the increase in FCA among elderly women (mean 73 years) is significantly 

diminished with increasing serum 1,25(OH)2D concentration (p=0.03).168 

Based upon the current knowledge, it is conceivable that other vitamin D sensitive 

tissues, such as breast tissue, may also have diminished response to vitamin D with aging. 

Decreased ability to absorb calcium with age, indicative of reduced gut tissue responsiveness to 

vitamin D, may be representative of other tissue’s responsiveness to vitamin D. In this 

prospective cohort study, we investigated the relationship between FCA, utilized as a marker of 

tissue responsiveness to vitamin D, and breast cancer among postmenopausal women. 

Specifically, we tested the hypothesis that low FCA will be associated with an increased risk of 

invasive and estrogen receptor positive (ER+) breast cancer. We also tested whether this 

relationship differed by calcium intake, vitamin D supplementation, and hormone therapy as 

secondary aims. The association between FCA and breast cancer has never been studied. 
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5.3 METHODS 

5.3.1 Study Population 

The Study of Osteoporotic Fractures is a longitudinal cohort of 9,704 community-dwelling, 

Caucasian, postmenopausal women aged 65 and over who were recruited at 4 US clinical 

centers between 1986 and 1988. Women with a history of bilateral hip replacements and those 

who were unable to walk unassisted were excluded.210  At the baseline examination, women 

provided informed consent and risk factor and health measures were collected through physical 

measurements, questionnaires, and functional assessments. 

Fractional calcium absorption was assessed at the fourth clinic visit (V4) between 1992 

and 1994. All SOF participants with a V4 fractional calcium absorption measure (n=5452) were 

eligible. Individuals reporting a history of breast cancer at enrollment (n=240) and those with an 

incident breast cancer diagnosed prior to V4 (n=116) were excluded from this analysis. 

Additionally, women with missing outcome data (n=71) were excluded. Figure 5 details the 

selection process for the analysis population. Follow-up continued through December 2006 at 

which time the women were censored who did not develop breast cancer, experience death, or 

were not lost to follow-up. This analysis includes 257 cases and 4778 non-cases. 
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   257 Cases 

4778 Noncases 

FCA Measure 
5,452 

878 Excluded 
         85 Ineligible* 
       793 Missing† FCA 

1292 Excluded 
         142 Terminated 
         933 Died 
         213 Postcard only 

 4 Lost to follow-up 

2082 Excluded 
           488 Home visit 
         1309 Questionnaire only 
           285 Minimal data 

Total in SOF Cohort 
9,704 

(1986-1988) 

V4 Clinical Exam 
6,330 

Total in Analysis 
5035 

417 Excluded 
       240 Prior history of breast cancer at baseline 
       116 Incident breast cancer at or before V4 
         71 Missing‡ breast cancer info at follow-up  

Eligible for Clinic V4 
8,412 

(1992-1994) 

Figure 5. Cascade of analysis population determination, Study of Osteoporotic Fractures  
*Women were deemed ineligible for the FCA test if they reported experiencing nausea, vomiting or
diarrhea in the 48 hours preceding the exam. †Missing FCA includes those who refused testing or 
had incomplete tests. ‡Missing values coded as refused to answer (n=54), unable to answer (n=6), 
never had a period (n=11). 
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5.3.2 Fractional Calcium Absorption Measurement 

Details of the FCA assessment have been published previously.166  FCA testing was completed 

in the morning after a 5-hour fast. Participants were instructed not to take any calcium 

supplements for 12 hours before testing. Midway through consumption of a standardized light 

test meal, participants ingested a mixture of 50 grams of radio-labeled apple juice (containing 63 

mg of 45Ca) and 120 grams of unlabeled apple juice (Speas Farm, Sundor Brands, Mt. Dora, 

Florida) for a total calcium load of 215 mg. The mixture was prepared on site at each of the four 

clinics with labeled 45Ca from the Osteoporosis Research Center at Creighton University in 

Omaha Nebraska. Fractional 45Ca absorption was estimated from the appearance of 45Ca in the 

blood. Blood was drawn into a serum separator tube exactly 3 hours after ingestion of the tracer 

and was allowed to clot at room temperature. Within 2 hours of collection, serum was separated 

and frozen at -700C until analysis. Frozen serum samples were later shipped on dry ice by 

overnight delivery to Creighton University, where fractional calcium absorption was estimated by 

a single isotope method.230, 231  

5.3.3 Covariate Information 

At the baseline (V1) and fourth clinic visits (V4), participants completed a questionnaire and 

were interviewed. Demographic (age, education), reproductive history (menarche age, parity, 

age at first birth, number of live births, breastfeeding), height at age 25, menopausal status 

(menopause age, surgical vs. natural menopause), and breast cancer risk factor (benign breast 

disease, family history of breast cancer) data were collected at the baseline examination. At the 

V4 examination, updated smoking status, alcohol use, physical activity, and ET data were 

collected. Body weight was measured using a balance-beam scale. Weight change was 
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calculated by subtracting weight at V1 from V4. Body mass index (BMI) was calculated by 

dividing the V4 weight by the square of height at age 25 years. Bone mineral density (g/cm2) of 

the proximal femur was measured using dual-energy x-ray absorptiometry (QDR 1000, Hologic, 

Waltham, Massachusetts).210, 213  In addition, they were asked to bring current medications 

including vitamins and supplements and the total daily dose of calcium and vitamin D were 

recorded. Current supplemental vitamin D use was defined as taking vitamin D or a multivitamin 

containing vitamin D at least once per week. Calcium supplementation was determined by 

asking questions about dose and frequency of multivitamin use, specific vitamin and mineral 

supplements, and antacids containing calcium. Dietary calcium intake was estimated by using a 

validated 60-item block semi-quantitative food-frequency questionnaire developed from the 

Second National Health and Nutrition Survey (NHANES II).214, 215  Total calcium intake was 

calculated by summing dietary calcium intake (mg/d) and daily dose of calcium supplements 

(mg/d). Month of FCA measure was grouped into seasons of winter (December-February), 

spring (March-May), summer (June-August), and fall (September-November). Variables were 

categorized based on common cutpoints (e.g. BMI) or the original response categories 

collapsed to prevent small cell counts (e.g. age at first birth). Continuous variables were 

additionally dichotomized at their median and/or divided into quartiles for analytic purposes. 

5.3.4 Incident Breast Cancer Ascertainment 

Follow-up occurred every four months by either postcard or telephone (98% complete) in 

addition to clinic visits approximately every 2 years. Breast cancer outcomes were originally 

ascertained through self-report or death certificate review and were adjudicated by physicians 

locally and centrally at the San Francisco Coordinating Center. Medical records and pathology 

reports were used to record information on date of breast cancer diagnosis, stage at diagnosis, 

and estrogen- and progesterone-receptor status.184 
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5.3.5 Statistical Analysis 

As part of the preliminary data analysis the distribution of baseline characteristics (measured at 

V1 or V4) were compared by disease status (cases vs. non-cases) using t-tests for continuous 

measures and chi-square tests for categorical data. Mean FCA also was compared by disease 

status (case/non-case), age (<75/≥75 years), season of blood draw (winter/spring/summer/fall), 

vitamin D supplement use (current/not current), total calcium intake (<775/≥775 mg/d), oral 

estrogen use (current/not current), height at age 25 (<163/≥163 cm), body weight (<65/≥65 kg), 

BMI (<30/≥30 kg/m2), alcohol use (<1/≥1 drink/week), and smoking status (current/not current) 

using either t-tests or ANOVA.  

The Kaplan-Meier method for survival analysis was used to compare time to breast 

cancer diagnosis by quartile of FCA. A log-rank test was used to assess differences by FCA 

quartile. Follow-up time for each woman was calculated in days from V4 to breast cancer 

diagnosis, death, loss to follow-up, or censoring. 

The main analysis estimated hazard ratios and 95% confidence intervals for the 

association between FCA and the risk of breast cancer using Cox proportional hazard 

regression models with age as the underlying time scale.217-219  Age at entry in days, was 

calculated by multiplying age at V4 (time of the FCA measure) by 365.25. Age at exit from the 

study was calculated by adding follow-up time in days from V4 to study end (i.e. time to breast 

cancer diagnosis, death, loss to follow-up or censoring) to entry age. Levels of FCA were 

entered as a continuous variable to estimate the HR of breast cancer per one standard 

deviation (SD) increase in FCA. FCA levels were also assessed as quartiles based on the 

distribution of FCA in the entire cohort and using the lowest category as the reference. All 

models were adjusted for SOF clinic site. The potential confounders described above were 

evaluated for inclusion in the multivariable adjusted model based on their significance (p≤0.1) in 

the univariate and bivariate analyses. In situations where variables are correlated, e.g. various 
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measures of body size, covariates were chosen based on statistical association, scientific 

knowledge, and/or variable distribution. Dummy variables were created for categorical variables 

as appropriate. Variables were selected for elimination one at a time using a backward 

elimination strategy based on individual Wald tests.222, 223  After each variable was removed 

from the model, the partial likelihood ratio test was calculated comparing the nested models. 

Removed variables remained out of the models if no significant contribution to the model was 

determined (p≥0.1). Interactions were evaluated using likelihood ratio tests that compared the 

model with the interaction term to the main effects model (p≥0.05).   

The potential for non-linear effects was investigated using cubic splines. RCS (restricted 

cubic splines), a SAS macro, was used to fit the cubic splines.221  Knot placement was set at the 

FCA quartile cut-points. All breast cancers including in situ and invasive only breast cancers 

were analyzed separately. Although the inclusion of in situ did not substantially impact the 

results, regression results for invasive only and ER+ cancers are presented. The final 

multivariable model was assessed for a linear contrast with FCA quartile 1 vs. quartiles 2-4. 

Analyses were also repeated among subgroups defined by age, dietary calcium intake, use of 

calcium supplements, total calcium intake, vitamin D supplementation (current/not current), and 

oral estrogen use (current/not current). FCA was split at quartile 1 vs. quartiles 2-4 for subgroup 

analyses; continuous variables were dichotomized at the median value. Additionally, in 

response to the recent WHI report of an interaction between calcium and vitamin D 

supplementation and hormone therapy (HT),232 FCA was investigated by total calcium intake 

and oral estrogen use simultaneously. Likelihood ratio tests were used to evaluate possible 

interactions between the subgroup variable and FCA by comparing a multivariable model with 

and without the interaction term expressed as the product of the variable and dichotomous FCA. 

For the final models, probability values <0.05 were considered statistically significant. All tests 

were two-tailed. Schoenfeld residuals were used to test the proportional hazards assumption. 
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 Power was calculated a priori using previously reported SOF data and PASS 2005 

software (NCSS, Kaysville, Utah).  With a mean fractional calcium absorption level of 0.38 and a 

standard deviation of 0.09,166 we have a minimum of 80% power to detect a mean difference of 

0.02. A two-sided two-sample t-test was conducted using an alpha level of 0.05. Calculations 

were based on 250 cases and 4775 controls. Data descriptions, including graphical 

presentations, were carried out in STATA version 10. Kaplan-Meier survival analysis and Cox 

proportional hazards modeling was performed using SAS software release 9.1.3 (SAS Institute 

Inc., Cary, NC). 

5.4 RESULTS 

This prospective cohort study investigated the relationship between fractional calcium 

absorption, utilized as a marker of tissue responsiveness to vitamin D, and breast cancer 

among 5035 postmenopausal women in the Study of Osteoporotic Fractures. Table 8 presents 

the characteristics, including socio-demographic variables and established breast cancer risk 

factors of the analysis population at baseline or V4.  

The mean age of cases and non-cases at V4 are 75.5 and 76.5 years, respectively. 

Compared to non-cases, cases weighed more (p<0.001), had higher BMI (p=0.004), had higher 

hip BMD (p=<0.0001), were older at menopause (p=0.007), took more supplemental calcium 

(p=0.03), had a greater total daily calcium intake (p=0.02), took ET more frequently (25.7% vs. 

18.6%, p=0.005), and were more likely to have a positive family history of breast cancer (19.4% 

vs. 12.8%, p=0.002).  

Mean FCA rates were 38.7% and 37.6% for cases and non-cases, respectively (p=0.05). 

Table 9 gives details of the mean FCA rate by important study characteristics. Mean FCA was 

highest among women under 75 years of age (39.5% vs. 36.3%, p=<0.0001), those consuming 
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less than 775 mg of calcium per day (38.6% vs. 36.8%, p<0.0001), and those not currently 

taking a vitamin D supplement (38.2% vs. 37%, p<0.0001). Mean FCA did not differ according 

to the season the measure was taken (p=0.16), or current ET use (p=0.51).  

Over a mean 9.6 years of follow-up, 257 women were diagnosed with incident breast 

cancer. Invasive breast cancers accounted for 222 cases while 35 were in situ. Estrogen 

receptor status was obtained for 206 cases and was positive in 175 (85%). Results of the 

Kaplan-Meier survival analysis did not show a significant difference by quartile of FCA, 

plogrank=0.30 (Appendix B). 

In the Cox PH regression analyses, there was a significant positive association between 

FCA and risk of invasive breast cancer in the age adjusted models that persisted in the 

multivariable adjusted models, albeit borderline significant (Table 10). Adjusted for age (as 

timescale), clinic site, weight, menopause age, average total daily calcium intake, ET, and 

family history of breast cancer, FCA was significantly positively related to breast cancer (HR 

1.15 per 1 SD increase in FCA, 95%CI 1.01-1.32, p=0.05). Compared with the lowest quartile of 

FCA, the HR (95%CI) for Q2-Q4 were 1.54 (1.01-2.34), 1.50 (0.99-2.29), and 1.47 (0.96-2.26), 

respectively (ptrend=0.14). A linear contrast for FCA quartile 1 vs. quartiles 2-4 was significant 

(HR 1.50, 95%CI 1.04-2.17, p=0.03). 

An examination of the shape of the risk function using cubic splines did not indicate a 

deviation from a linear relationship (p=0.67) (Appendix B). 

Table 10 Results of the subgroup analyses are presented in . In multivariable models 

comparing dichotomous FCA (quartile 1 vs. quartiles 2-4), there was an increased risk of breast 

cancer associated with higher FCA among women with low (HR 2.34 ≤ 525 mg/d, 95%CI 1.21-

4.52) but not high (HR 1.12 > 525 mg/d, 95%CI 0.71-1.76) dietary calcium intake, although of 

borderline statistical significance (pinteraction=0.06). Investigated individually using likelihood ratio 

tests, there was no interaction between dichotomous FCA and the other subgroup variables 

(i.e., vitamin D supplementation, calcium supplementation, estrogen therapy, total calcium 
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intake, age) in a multivariable model. In the analysis of FCA by both total calcium intake and 

estrogen therapy, there was no interaction between FCA, calcium and ET in the multivariable 

model of FCA dichotomized at the median (pinteraction=0.23; results not shown). 

Results were similar in multivariable regressions including estrogen receptor positive 

cancer only (HR 1.12 per 1 SD increase in FCA, 95%CI 0.96-1.31) (Table 11). Compared with 

the lowest quartile of FCA, the HR (95%CI) for Q2-Q4 were 1.43 (0.88-2.30), 1.57 (0.99-2.51), 

and 1.39 (0.85-2.25), respectively (ptrend=0.20).  A linear contrast for FCA quartile 1 vs. quartiles 

2-4 was borderline significant (HR 1.46, 95%CI 0.97-2.21, p=0.07).  

5.5 DISCUSSION 

This prospective cohort study of 5035 postmenopausal women from the Study of Osteoporotic 

Fractures showed a modestly significant increased risk of invasive breast cancer with higher 

fractional calcium absorption. A stronger positive association was found among women with low 

dietary calcium intake. However, there was no difference in the magnitude of the association 

between current and not current users of vitamin D supplements, calcium supplements, 

estrogen therapy, by total calcium intake or age. Results were similar for estrogen receptor 

positive tumors.  

Indeed, the hypothesized relationship between calcium and breast cancer prevention is 

not new. Direct effects on cell proliferation and differentiation have been reported in vitro.233, 234 

Furthermore, calcium has been shown to reduce fat-induced cell proliferation in a rodent model 

by maintaining intracellular calcium concentrations.235  The literature is limited regarding calcium 

intake and breast cancer among postmenopausal women and the findings are inconsistent. The 

prospective Cancer Prevention Study II Nutrition Cohort reported a lower risk of breast cancer 

among women with the highest dietary calcium intake, > 1,250 mg/d compared to ≤ 500 mg/d 
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(p=0.02).123  Two other prospective cohorts, the Women’s Health Study and the Nurses’ Health 

Study, failed to find an association between total calcium intake and postmenopausal breast 

cancer.122, 125 

Likewise, the relationship between vitamin D intake and breast cancer has been 

investigated recently. Vitamin D is hypothesized to reduce breast cancer risk via mechanisms 

similar to, but independent of, calcium. Vitamin D regulates the cell cycle through 

antiproliferative actions and by promoting differentiation.105, 233, 236  Breast tissue can directly 

convert 25(OH)D to 1,25(OH)2D,109 and has also been shown to inhibit mammary 

tumorigenesis.237  Prospective cohort studies of vitamin D intake have not shown an association 

with postmenopausal breast cancer risk.122-125, 238 

It is well documented that intestinal calcium absorption is most efficient when calcium 

intakes are low and decreases with increasing amounts of calcium intake.160  The mechanism 

by which low calcium intake raises fractional calcium absorption is complex. In response to low 

levels of circulating extracellular calcium, the parathyroid gland releases parathyroid hormone 

(PTH). In-turn, PTH up-regulates 25-hydroxy 1-alpha hydroxylase in the kidney, an enzyme 

responsible for converting 25(OH)D to its active form, 1,25(OH)2D.239  In the intestine, 

1,25(OH)2D serves as the hormonal regulator of calcium absorption mediated by the vitamin D 

receptor. The VDR is an intracellular protein, which regulates the expression of vitamin D-

dependent genes, such as calbindin D, a cytosolic protein believed to be the rate-limiting 

molecule in vitamin D-induced intestinal calcium transport.240  Therefore, lower calcium intake, 

resulting in elevated calcium transport, may be the link between higher FCA and increased 

breast cancer risk.  

Recently, the Women’s Health Initiative (WHI) published results of a re-analysis of their 

randomized trial of calcium and vitamin D supplementation on colorectal cancer risk in 

postmenopausal women in which they found a previously unreported interaction with hormone 

therapy. Among women assigned to the placebo HT arms, calcium and vitamin D 
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supplementation are protective (HR 0.71, 95%CI 0.46-1.09), whereas the opposite was found 

among women assigned to the active HT arms (HR 1.50, 95%CI 0.96-2.33) (pinteraction=0.018).232  

The WHI proposed several mechanisms by which estrogen may interfere with the effect of 

calcium and vitamin D on cancer prevention including increasing intestinal calbindin expression 

independent of vitamin D which would lead to decreased circulating calcium levels and inhibit 

calcium and vitamin D dependent apoptosis, and activating osteoblast formation resulting in 

increased calcium mineralization in bone and reduced bioavailability of systemic calcium.232  

The WHI randomized trial of calcium plus vitamin D on breast cancer risk in postmenopausal 

women did not report any significant effect of supplementation.126  However, these results may 

also be influenced by an unrecognized interaction with hormone therapy and should be re-

analyzed. 

We found a statistically significant difference in mean FCA by age in a bivariate analysis, 

but no difference in the association between FCA and breast cancer risk according to age in a 

multivariable regression. Studies have shown that calcium absorption is lower in 

postmenopausal compared to premenopausal women,162 and that it can be reversed by 

estrogen replacement.162, 163  However, we did not find a difference in mean FCA by ET use in a 

bivariate analysis, a multivariable regression, or in an analysis of FCA by both total calcium 

intake and ET. These findings may have lacked significance due to reduced power for subgroup 

analyses. 

Strengths of this study include its prospective cohort design from the large and long-

standing population-based SOF cohort. We utilized FCA rates measured using a widely 

accepted single isotope method and were able control for a number of factors related to breast 

cancer and FCA. Limitations of this study include our reliance upon a single measure of FCA, 

which may not reflect long-term status. Measurements of potentially mediating factors such as 

level of 25(OH)D, and endogenous estrogen levels were also not available. Most notably, our 
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study is comprised of elderly, community-dwelling white volunteers and therefore our results 

may not be generalizable to other populations. 

In conclusion, our results suggest that high FCA, particularly among those with a low 

dietary calcium intake, is associated with an increased risk of postmenopausal breast cancer. 

Correlates of FCA, including calcium, vitamin D, and estrogen have been investigated 

individually as etiologic factors for breast cancer. However, with the exception of estrogen, the 

reported associations have been inconsistent. Further investigations into the role of estrogen in 

conjunction with calcium and vitamin D levels on FCA may help to clarify their interdependence. 

Confirmation of the association between FCA and postmenopausal breast cancer is necessary.  
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5.6 TABLES 

Table 8. Descriptive characteristics and risk factors for breast cancer among cases and non-
cases, fourth examination, Study of Osteoporotic Fractures 
 Cases Non-Cases  
 (n=257) (n=4778)  
Characteristic N % N % p-value* 

Clinic Site     0.10 
A 85 33.1 1452 30.4  
B 67 26.1 1017 21.3  
C 39 15.2 924 19.3  
D 66 25.7 1385 29.0  

Age, y, mean(SD) 75.52 (3.85) 76.51 (4.70) <0.0001 

Education     0.29 
< High School 41 16.0 951 19.9  
High School 107 41.6 1924 40.3  
> High School 109 42.4 1899 39.8  

Total Hip BMD, g/cm2, mean(SD) 0.77 (0.12) 0.73 (0.13) <0.0001 

Body Weight, kg, mean(SD) 68.68 (11.78) 66.21 (11.84) 0.001 

Weight Change† -0.50 (4.67) -0.86 (4.97) 0.26 

BMI, kg/m2, mean(SD)‡ 25.83 (4.34) 25.03 (4.27) 0.004 

BMI     0.02 
< 18 1 0.4 81 1.8  
18-24 112 45.0 2421 52.6  
25-29 94 37.8 1505 32.7  
> 30 42 16.9 596 13.0  

Height at age 25 y, cm, mean(SD) 163.12 (5.69) 162.64 (5.82) 0.20 

Age at Menarche, y     0.74 
< 11 27 11.2 569 12.5  
12-13 130 53.7 2464 54.3  
> 14 85 35.1 1508 33.2  

Nulliparous 40 15.6 741 15.5 0.98 

Number of Live Births     0.97 
Never pregnant 40 15.7 741 15.6  
0 8 3.1 117 2.5  
1-2 100 39.2 1914 40.2  
3-4 82 32.2 1533 32.2  
5+ 25 9.8 459 9.6  
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Table 8. continued 

 Cases Non-Cases  
 (n=257)  (n=4778) 
Characteristic N % N % p-value* 

Age at Menopause, y, mean(SD)  49.06 (4.86) 48.11 (5.71) 0.007 

Age at First Birth, y     0.88 
Never gave birth 31 12.5 555 12.0  
< 20 171 68.7 3261 70.2  
> 20 47 18.9 830 17.9  

Ever Breastfed 64 29.5 1255 31.1 0.62 

Age at Menopause, y     0.15 
< 40 15 7.3 404 10.3  
41-50 113 54.6 2245 57.1  
> 51 79 38.2 1282 32.6  

Surgical Menopause 34 13.8 544 11.8 0.36 

Walks for Exercise 141 54.9 2436 51.1 0.24 

Alcohol, drinks/week, mean(SD) 1.24 (2.50) 1.29 (3.04) 0.76 

Current Alcohol Use  128 49.8 2160 45.3 0.15 

Smoking     0.54 
Never 167 65.0 2931 61.6  
Past 77 30.0 1576 33.1  
Current 13 5.1 252 5.3  

Calcium Intake, mg/d, mean(SD)    

Dietary Calcium  615.08 (363.00) 597.91 (359.98) 0.46 

Supplement Calcium  501.43 (773.80) 392.64 (677.0) 0.03 

Total Calcium 1116.51 (853.18) 990.55 (778.57) 0.02 

Current Calcium Supplement Use 125 48.6 2149 45.0 0.25 

Vitamin D Supplement Use 111 43.2 2010 42.1 0.72 

Current Oral Estrogen Use 66 25.7 887 18.6 0.005 

Benign Breast Disease 40 16.1 678 14.6 0.51 

Family History of Breast Cancer 49 19.4 596 12.8 0.002 

*P-values from t-tests for continuous variables, and chi-square tests for categorical variables 
†Weight change since baseline 
Abbreviations used: BMI, body mass index; SD, standard deviation 
 

 

 85 



 

 
Table 9. Mean fractional calcium absorption by disease status, personal and behavioral 
characteristics, Study of Osteoporotic Fractures 

 Fractional Calcium Absorption  
Characteristic* Mean SD p-value 
Group    

Cases, n=257  0.387 0.092 0.05† Non-Cases, n=4778 0.376 0.088 
   Age, y 

< 75, n=2128 0.395 0.088 <0.0001† ≥ 75, n=2907 0.363 0.086 
   Total Calcium Intake, mg/d 

≤ 775, n=2512 0.386 0.089 <0.0001† > 775, n=2523 0.368 0.086 

Dietary Calcium Intake, mg/d    
<0.0001† ≤ 525, n=2503 0.382 0.089 

> 525, n=2532 0.371 0.087  
   Season 

Winter, n=1138  0.372 0.088 
Spring, n=1269  0.377 0.087 0.16‡ Summer, n=1068 0.379 0.089 
Fall, n=1560 0.378 0.088 

   Vitamin D Supplement Use 
Current, n=2121 0.370 0.086 <0.0001† Not Current, n=2913 0.382 0.089 

   Oral Estrogen Use 
Current, n=953 0.370 0.083 0.51† Not Current, n=4081 0.377 0.089 

   Height at age 25 y, cm 
0.05† < 163, n=2958 0.379 0.090 

≥ 163, n=2077 0.374 0.090  
   Body Weight, kg 

<0.0001† < 65, n=2549 0.363 0.087 
≥ 65, n=2486 0.391 0.087  

   BMI, kg/m2 
<0.001† <30, n=4395 0.373 0.087 

≥30, n=640 0.403 0.088  
   Alcohol, drinks/week 

0.54† < 1, n=3881 0.377 0.089 
≥ 1, n=1154 0.375 0.085  

   Smoking 
0.97† Current, n=265 0.377 0.093 

Not Current, n=4751 0.377 0.088  

*Comparisons are among the entire analysis population  
†T-test 
‡ANOVA 
Abbreviations used: BMI, body mass index; SD, standard deviation 
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Table 10. Results of multivariable Cox proportional hazards regressions for association 
between fractional calcium absorption and invasive breast cancer, Study of Osteoporotic 
Fractures 

 Invasive Breast Cancer 

 Age Adjusted Multivariable* Adjusted  

FCA N HR (95%CI) P value N HR (95%CI) P value 

Continuous†  5000 1.14 (1.00-1.30) 0.048 4759 1.15 (1.00-1.32) 0.050 

Categorical‡ 5000   4759   
≤ 0.314  1.00   1.00  
0.315-0.372  1.53 (1.01-2.30) 0.043  1.54 (1.01-2.34) 0.046 
0.373-0.434  1.51 (1.01-2.28) 0.046  1.50 (0.99-2.29) 0.057 
≥ 0.435  1.46 (0.97-2.20) 0.073  1.47 (0.96-2.26) 0.079 

ptrend   0.124   0.138 

Dichotomous§ Cases /   Cases /  
 Non-cases  Non-cases  
Age      0.86** 

<75 years 112/1997 1.01 (0.61-1.65) 0.97 107/1904 1.15 (0.68-1.95) 0.60 
≥75 years 110/2781 2.09 (1.26-3.47) 0.004 107/2641 1.86 (1.12-3.11) 0.02 

Dietary Calcium Intake      0.06** 
≤ 525 mg/d 108/2380 2.30 (1.23-4.30) 0.009 103/2269 2.34 (1.21-4.52) 0.01 
> 525 mg/d 114/2398 1.15 (0.74-1.79) 0.53 111/2276 1.12 (0.71-1.76) 0.64 

Calcium Supplement      0.44** 
Not Current  121/2628 1.33 (0.80-2.20) 0.27 117/2500 1.31 (0.78-2.21) 0.30 
Current 101/2149 1.67 (1.01-2.76) 0.04 97/2045 1.63 (0.97-2.75) 0.06 

Total Calcium Intake      0.66** 
≤ 775 mg/d 102/2402 1.63 (1.91-2.92) 0.10 100/2284 1.70 (0.92-3.12) 0.09 
> 775 mg/d 120/2376 1.46 (0.93-2.30) 0.10 114/2261 1.38 (1.86-2.19) 0.18 

Vitamin D Supplement      0.56** 
Not Current  127/2767 1.43 (0.88-2.31) 0.15 123/2629 1.37 (0.83-2.26) 0.21 
Current 95/2010 1.57 (0.93-2.66) 0.09 91/1916 1.61 (0.93-2.79) 0.09 

Oral Estrogen Use      0.23** 
Not Current 166/3890 1.52 (1.01-2.31) 0.05 159/3701 1.50 (0.98-2.30) 0.06 
Current 56/887 1.42 (0.71-2.82) 0.32 55/844 1.54 (0.74-3.17) 0.24 

*Adjusted for age (as timescale), clinic site, weight, menopause age, calcium intake, vitamin D 
supplementation, estrogen therapy, and family history of breast cancer 
†Hazards ratios in this row are for a 1 SD (8.8%) increase in fractional calcium absorption 
‡Quartile distribution among entire cohort; range 0.11-0.74 
§Hazard ratios comparing FCA dichotomized at quartile 1 (0.314) 
**P-value for interaction between subgroup variable and FCA 
Abbreviations used: CI, confidence interval; FCA, fractional calcium absorption; HR, hazard ratio; SD, 
standard deviation  
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Table 11. Results of multivariable Cox proportional hazards regressions for association between 
fractional calcium absorption and estrogen receptor positive breast cancer, Study of Osteoporotic 
Fractures 

 Estrogen Receptor Positive 

 Age Adjusted Multivariable* Adjusted 
FCA N HR (95%CI) P value N HR (95%CI) P value 
       
Continuous†  4953 1.12 (0.97-1.30) 0.14 4713 1.12 (0.96-1.31) 0.15 

       
Categorical‡ 4953   4713   

≤ 0.314  1.00   1.00  
0.315-0.372  1.38 (0.87-2.20) 0.17  1.43 (0.88-2.30) 0.15 
0.373-0.434  1.56 (0.99-2.44) 0.05  1.57 (0.99-2.51) 0.06 
≥ 0.435  1.37 (0.87-2.17) 0.18  1.39 (0.85-2.25) 0.19 

ptrend   0.18   0.20 
       

*Adjusted for age (as timescale), clinic site, weight, menopause age, average total daily calcium intake, 
oral estrogen use, and family history of breast cancer 
†Hazards ratios in this row are for a 1 SD (8.8%) increase in fractional calcium absorption 
‡ Quartile distribution among entire cohort; range 0.11-0.74 
Abbreviations used: CI, confidence interval; FCA, fractional calcium absorption; HR, hazard ratio; SD, 
standard deviation  
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6.1 ABSTRACT 

Breast cancer occurrence is positively related to bone mineral density (BMD), but previous 

studies have been limited to short follow-up durations and have not accounted for recurrent 

BMD measures. In this prospective study, we examined the association of an initial BMD 

measure and change in BMD on breast cancer risk in the Study of Osteoporotic Fractures 

(SOF), a cohort of 9,704 Caucasian, postmenopausal women. Total hip BMD was measured 

twice, a mean 3.5 years apart in 5383 women, 263 of whom later developed an incident case of 

breast cancer. A Cox proportional hazards analysis was performed to compute hazard ratios 

(HRs) and 95% confidence intervals (95%CIs). Mean time between the repeat BMD measure 

and breast cancer diagnosis was 9.5 years. Mean BMD was significantly higher among cases 

compared to non-cases for both the initial and repeat measures (p<0.0001). In multivariable 

models, there was no association between increasing levels of BMD and invasive breast cancer 

(HR 1.06 per 1 SD increase, 95%CI 0.88-1.20). Compared with the lowest category of BMD T-

score (≤ -2.5), women with higher T-Scores (-2.5 to -1.0, and ≥ -1.0) had relative risks (HR, 

95%CI) of 1.99 (1.03-3.85), and 2.01 (1.00-4.01), respectively (p=0.07). Change in BMD 

(annualized % change between initial and repeat measure) was not associated with a significant 

increased risk of breast cancer (HR 1.09 per 1 SD increase, 95%CI 0.93-1.26). Similar results 

were obtained in a combined model with initial BMD and change in BMD. In a subgroup analysis 

of initial BMD dichotomized at the median, the effect of BMD was dependent upon family history 

(pinteraction=0.01). Women with a positive family history and high BMD had a 3 times higher risk of 

breast cancer (95%CI 1.25-7.12) compared to women with low BMD. In this prospective study 

of postmenopausal women, the effect of higher BMD on breast cancer risk varied by family 
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history of breast cancer. These results support an increased risk of breast cancer over a long 

follow-up period among women with low to normal T-scores compared to osteoporotic women. 
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6.2 INTRODUCTION 

Estrogen is thought to play a central role in the development of breast cancer due to its ability to 

stimulate proliferation of breast tissue.175  Factors that increase exposure of breast tissue to 

estrogens, such as early menarche, older age at first birth, or late menopause, are associated 

with breast cancer risk.176  Indeed, prolonged exposure to high levels of endogenous estrogens 

may increase breast cancer risk in postmenopausal women.177  However, it is difficult to classify 

a woman’s long-term exposure to endogenous estrogen by a single measurement because 

serum estrogen levels are highly variable over time.178 

Bone mineral density, on the other-hand, is thought to be a surrogate measure of lifetime 

estrogen exposure.179  Bone contains estrogen receptors and is sensitive to circulating estrogen 

levels.180  BMD is positively correlated with endogenous estrogen levels,181 early menarche, 

parity, and the length of a woman’s reproductive lifecycle.182  In addition to the underlying age 

related decrease, BMD also decreases in postmenopausal women, mostly due to estrogen 

deprivation beginning at the time of menopause. Even among postmenopausal women, 

however, the rate of bone loss is variable. Factors affecting postmenopausal bone loss include 

sustained estrogen exposure due to exogenous estrogen use and/or endogenous estrogen 

released from fat, calcium and vitamin D intake from dietary and supplemental sources, and 

level of physical activity. 

Higher BMD, reflecting higher estrogen exposure throughout life, has been shown to 

predict future breast cancer in older women.184  Data supporting the BMD-breast cancer link 

were initially published by SOF investigators more than a decade ago. To update the early SOF 

reports which had fewer than 4 years of follow-up,184, 195 we investigated the relationship 

between BMD and breast cancer among postmenopausal women after 13 years of follow-up 
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(mean 9.5 years). Specifically we studied the long-term association of BMD and risk of invasive 

and estrogen receptor (ER+) positive breast cancer. Furthermore, we tested the hypothesis that 

the risk associated with an initial BMD measure would be strengthened by the addition of a 

repeat BMD measure (annual percent change) assessed 3.5 years later. We also tested 

whether this association differed by body mass index (BMI), hormone therapy, and family 

history of breast cancer as secondary aims. 

6.3 METHODS 

6.3.1 Study Population 

The Study of Osteoporotic Fractures (SOF) is a longitudinal cohort of 9,704 Caucasian, 

community-dwelling postmenopausal women aged 65 and older who were recruited at 4 US 

clinical centers between 1986 and 1988.  At the baseline (V1) examination, women provided 

informed consent and risk factor and health measures were collected through physical 

measurements, questionnaires, and functional assessments. Women with a history of bilateral 

hip replacements and those who were unable to walk unassisted were excluded.210 

Total hip bone mineral density was measured at the second (V2) and fourth (V4) clinic 

visits, approximately 2 and 6 years after enrollment. All SOF participants with matching V2 and 

V4 hip BMD measures were eligible for the current analysis. Individuals reporting a history of 

breast cancer at enrollment (n=269) and those with missing outcome data (n=336) were 

excluded. In order to compare the same breast cancer outcomes, only incident cases diagnosed 

after the V4 repeat measure are included. The 136 incident cases diagnosed prior to V4 were 

excluded. Follow-up for incident breast cancer cases begins after the V4 repeated hip BMD 

measure and continued through December 2006 at which time the women were censored who 
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did not develop breast cancer, experience death, or were not lost to follow-up. The analysis 

population was therefore comprised of 263 cases and 5120 non-cases. The study timeline is 

detailed in Figure 6 and the selection process in Figure 7. 

 

  

 
        

Figure 6. Timeline of total hip bone mineral density measurements and follow-up period, Study of 
Osteoporotic Fractures  
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263 Cases 
5120 Non-Cases 

Hip BMD Measure 
8074 

Between Baseline and V4 
142 Terminated 

933 Died 
213 Postcard only 
4 Lost to follow-up 

488 Home visit 
1309 Questionnaire only 

285 Minimal data 

Total in SOF Cohort 
9,704 

(1986-1988) 

V2 Clinical Exam 
8,098 

Total in Analysis 
5383 

2417 V2 or V4 BMD measure only  
93 Miss-matched hip measure 

269 History of breast cancer at enrollment 
136 Incident breast cancer diagnosed before V4 

336 Missing* outcome 

Eligible for Clinic V4 
8,412 

(1992-1994) 

Between Baseline and V2 
39 Terminated 

253 Died 
72 Postcard only 

1 Lost to follow-up 

Eligible for Clinic V2 
9,339 

(1989-1990) 

V4 Clinical Exam 
6,330 

1021 Questionnaire only 
  220 Minimal data 

Hip BMD Measure 
6211

 
Figure 7. Cascade of analysis population determination, Study of Osteoporotic Fractures 

 *Missing values coded as refused to answer (n=63), unable to answer (n=8), never had a period 
(n=265). 
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6.3.2 Bone Mineral Density Measurements 

Details of the BMD measures have been published previously.210, 213  Briefly, total hip BMD 

(bone mineral density, g/cm2, of the proximal femur) was measured at V2 and V4 using dual-

energy x-ray absorptiometry (DXA) (QDR 1000, Hologic Inc., Bedford, Massachusetts). The 

mean coefficient of variation was 1.2% for the femoral neck. BMD was categorized into quintiles 

based in on the distribution in the SOF cohort with cutpoints at 0.648, 0.721, 0.782, and 0.86. T-

scores were calculated using the National Health and Nutrition Examination Survey reference 

values,241 and categorized based on the World Health Organization Criteria for the Diagnosis of 

Osteoporosis in Caucasian Women; normal bone mass is less than or equal to 1 SD below the 

young-adult mean, low bone mass is between 1 and 2.5 SD below the young-adult mean, 

osteoporosis is greater than or equal to 2.5 SD below the young-adult mean.242  The rate of 

change in BMD was calculated using the total hip BMD measures taken at V2 and V4, and 

expressed as the annualized percent change over a mean 3.5 years. 

6.3.3 Covariate Information 

At the baseline and V2 examinations, participants completed a questionnaire and were 

interviewed. Demographic (age, education), reproductive history (menarche age, parity, age at 

first birth, number of live births, breastfeeding), height at age 25, menopausal status 

(menopause age, surgical vs. natural menopause), and breast cancer risk factor (benign breast 

disease, family history of breast cancer) data were collected at the baseline examination. At the 

V2 examination, updated data concerning smoking status, alcohol use, and physical activity 

were collected. Body weight was measured using a balance-beam scale. BMI was calculated by 

dividing the V2 weight by the square of height at age 25 years. Estrogen therapy (ET) was 

defined as currently taking estrogen pills. Current supplemental vitamin D use was defined as 
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taking vitamin D or a multivitamin containing vitamin D at least once per week. Calcium 

supplementation was determined by asking about current use at least once per week. Variables 

were categorized based on common cutpoints (e.g. BMI) or the original response categories 

collapsed to prevent small cell counts (e.g. age at first birth).  

6.3.4 Incident Breast Cancer Ascertainment 

Follow-up occurred every four months by either postcard or telephone (98% complete) in 

addition to clinic visits approximately every 2 years. Breast cancer outcomes were ascertained 

through self-report or death certificate review and were adjudicated by physicians locally and 

centrally at the San Francisco Coordinating Center. Medical records and pathology reports were 

used to record information on date of breast cancer diagnosis, stage at diagnosis, and estrogen- 

and progesterone-receptor status.184 

6.3.5 Statistical Analyses 

As part of the preliminary data analysis, baseline characteristics of the analysis population and 

the remainder of the SOF cohort were compared using t-tests for continuous measures and chi-

square tests for categorical data. Additionally, change in important characteristics between V2 

and V4 were assessed for the analysis population. Mean T-score per quintile of initial BMD also 

was calculated. Finally, the distribution of baseline characteristics (measured at V1 or V2) of the 

analysis population were compared for cases and non-cases.  

 The main analysis used Cox proportional hazard regression models with age as the 

underlying time scale to estimate hazard ratios and 95% confidence intervals for the association 

between bone mineral density and the risk of breast cancer.217-219  Entry time was defined as 

age at V4 in days (calculated by multiplying V4 age by 365.25). Exit time was defined as age at 
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breast cancer diagnosis, death, loss to follow-up, or censoring (calculated by adding follow-up 

time in days from V4 to entry age). BMD was assessed 3 ways: 1) initial V2 BMD alone, 2) 

change in BMD between the initial and repeated measure, and 3) a combined model of initial 

BMD plus the change in BMD. Continuous BMD measures were expressed per one standard 

deviation (SD) increase in BMD. Initial BMD levels also were assessed as quintiles based on 

the distribution of BMD in the entire SOF cohort; the lowest category served as the reference. 

BMD was further assessed by T-score category with the osteoporotic group as the reference. 

Potential confounders, described above, were evaluated for inclusion in the multivariable 

adjusted models based on their significance (p<0.25) in the bivariate analyses. Correlated 

variables, e.g. multiple measures of body size, were chosen as covariates based upon statistical 

association, scientific knowledge, and/or variable distribution. Dummy variables were created for 

categorical variables as appropriate. Variables were selected for elimination one at a time using 

a backward elimination strategy based on individual Wald tests.222, 223  After each variable was 

removed from the model, the partial likelihood ratio test was calculated comparing the nested 

models. Removed variables remained out of the models if no significant contribution to the 

model was determined (p≥0.1). Interactions were evaluated using likelihood ratio tests that 

compared the model with the interaction term to the main effects model (p≤0.05). 

 The potential for non-linear effects was investigated using cubic splines. RCS (restricted 

cubic splines), a SAS macro, was used to fit the cubic splines.221  Knot placement was set at the 

BMD quintile cut-points. All breast cancers including in situ and invasive only breast cancers 

were analyzed separately. While the inclusion of in situ did not affect the results, regression 

results for invasive only cancers are presented. Analyses are also repeated among subgroups 

defined by age (split at median < 75 vs. ≥ 75 years), BMI (< 30 and ≥ 30 kg/m2), ET (current/not 

current), and family history of breast cancer (negative/positive). Likelihood ratio tests were used 

to evaluate possible interactions between the subgroup variable and BMD by comparing a 

multivariable model with and without the interaction term expressed as the product of the 
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variable and dichotomous BMD.  For the final models, probability values <0.05 were considered 

statistically significant. All tests were two-tailed. Schoenfeld residuals were used to test the 

proportional hazards assumption. SAS software release 9.2 (SAS Institute Inc., Cary, NC) was 

used for all analyses. 

6.4 RESULTS 

This prospective cohort study investigated the relationship between bone mineral density and 

breast cancer among 5383 postmenopausal women enrolled in the study of osteoporotic 

fractures. Baseline characteristics of the analysis population and the remainder of the SOF 

cohort (i.e. non-participants) are provided in Table 12. Meaningful differences were that the 

analysis population tended to be younger at enrollment and experience menopause later, were 

less likely to be current smokers or have a positive family history of breast cancer, and were 

more likely to be current users of calcium supplements, vitamin D supplements, and estrogen 

therapy and to walk for exercise.  

The mean age of women at V2 was 72.7 years. The mean total hip BMD was 0.76 g/cm2 

(T-score of -1.34). Changes in important participant characteristics between V2 and V4 for the 

analysis population are provided in Table 13. At V4 a smaller proportion of women were current 

smokers, and a greater proportion of women were current users of calcium supplements, 

vitamin D supplements, and estrogen therapy. Mean T-scores by quintile of BMD at V2 are 

displayed in Table 14.  

After a mean 9.52 years of follow-up after V4, 263 incident breast cancer cases were 

identified. Invasive breast cancers accounted for 224 cases while 39 were in situ. Estrogen 

receptor status was obtained for 206 cases and was positive in 178 (86%). 
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Table 15 presents the characteristics of the analysis population at baseline or V2. 

Women with breast cancer were slightly younger and more likely to be heavier, taller, and walk 

for exercise. As expected, breast cancer risk factors including older age at menopause, 

estrogen therapy use, and family history of breast cancer were found to be more prevalent in 

the incident cases than the non-case group. 

Results of the Cox proportional hazards regression analyses are presented in Table 16. 

In Model 1, the initial BMD measure was a significant predictor of incident breast cancer risk in 

the age adjusted models. The positive association persisted in multivariable models, but was 

attenuated with the addition of weight as a covariate. Adjusted for age (as time scale), clinic site, 

weight, vitamin D supplement use, ET, and family history of breast cancer, initial BMD was not 

associated with and increased risk of invasive breast cancer (HR 1.06 per 1 SD increase in 

BMD, 95%CI 0.88-1.20). By quintile, with the lowest BMD level serving as the reference, the HR 

(95%CI) for increasing categories were 1.09 (0.64-1.85), 1.39 (0.84-2.31), 1.44 (0.87-2.39), and 

1.13 (0.66-1.95), respectively (p=0.43). Compared to the lowest T-score category (≤ 2.5 

corresponding to the WHO designation of osteoporosis), the HR (95%CI) for increasing 

categories were 1.99 (1.03-3.85) and 2.01 (1.00-4.01), respectively (p=0.07).  In Model 2, 

change in BMD was not a significant predictor of incident breast cancer risk in the age adjusted, 

or either of the multivariable adjusted models (HR 1.09 per 1 SD increase, 95%CI 0.93-1.27). In 

Model 3, the risk estimates were similar to those in the earlier models with initial BMD or change 

in BMD alone.  

Results were similar in multivariable regressions including estrogen receptor positive 

cancer only (Table 17). In Model 1, initial BMD was not associated with and increased risk of 

ER+ breast cancer (HR 1.04 per 1 SD increase, 95%CI 0.878-1.24). Compared to the lowest T-

score category, the HR (95%CI) for increasing categories were 2.75 (1.19-6.33) and 2.45 (1.02-

5.86), respectively (p=0.02). In Model 2, change in BMD was not a significant predictor (HR 1.06 
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per 1 SD increase, 95%CI 0.90-1.26). In Model 3, containing both initial BMD and BMD change, 

the risk estimates were similar.  

Results of the subgroup analyses are presented in Table 18. In multivariable models 

with initial BMD dichotomized at the median, higher BMD was associated with an increased risk 

of invasive breast cancer among women with a positive (HR 2.99, 95%CI 1.25-7.12) but not a 

negative (HR 1.07, 95%CI 0.77-1.50) family history of breast cancer (pinteraction=0.01). There was 

no difference in the magnitude of the association by age, ET, or BMI. Investigated individually 

using likelihood ratio tests, no other interactions between dichotomous BMD and the subgroup 

variable in a multivariable model were found. 

An examination of the shape of the risk function using cubic splines did not indicate a 

deviation from a linear relationship for BMD overall (p=0.11), or by family history of breast 

cancer (negative family history p=0.20, positive family history p=0.17) (Appendix C). 

6.5 DISCUSSION 

In this large, prospective, cohort study of 5383 postmenopausal women from the Study of 

Osteoporotic Fractures, we examined the association between BMD and the development of 

breast cancer over an average of 9.5 years. Overall a continuous BMD measure was not 

associated with breast cancer risk after adjusting for known breast cancer risk factors including 

weight, ET, and family history. Furthermore, there was no improvement in the overall predictive 

value with a second measure of BMD, obtained over a mean 3.5 years later, in the 

determination of breast cancer risk. Results were similar for estrogen receptor positive breast 

cancer. We found a significantly increased risk of invasive breast cancer with total hip T-score 

measures in the normal (≥ -1.0) and low (-1.0 to -2.5) ranges compared to osteoporotic (≥ -2.5) 
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based on WHO criteria. Having a positive family history of breast cancer was associated with a 

significant 3-fold increase in breast cancer risk among women with high compared to low BMD. 

Data supporting the BMD-breast cancer link were initially published by SOF investigators 

between 1996 and 2001 with follow-up ranging from 3 to 6 years.184, 195, 196, 200  Several other 

prospective studies have sought to confirm this association, and found a similar or slightly 

weaker relationship,190-194 while other still found no association.204, 205  Furthermore, a recent 

analysis from the Women’s Health Study found that BMD predicted breast cancer risk 

independent of Gail score.208  The fact that we did not find an overall association between BMD 

and breast cancer risk, indicates that BMD may be a stronger predictor of early opposed to later 

breast cancer risk as we did not include incident cancers that occurred within approximately 4 

years following the initial hip BMD scan. Nevertheless, we are using BMD as a measure of long-

term exposure. 

While the relationship between higher BMD and an increased risk of breast cancer in 

postmenopausal women has been well studied, the association is moderate at best. One reason 

that a stronger association has not been documented, may be that among women with higher 

BMD, their estrogen exposure has diminished resulting in an attenuated increased risk of breast 

cancer. Or conversely, among women with low BMD, their exposure to estrogen has been 

sustained essentially negating the protective effect of having a lower BMD.  

To our knowledge, this is the first study to investigate the predictive value of a repeat 

BMD measurement compared with the initial BMD among postmenopausal women. We found 

change in BMD not to be a risk factor for breast cancer. The one study to have looked at 

change in BMD over 6.9 years and the risk of breast cancer did so only among peri-menopausal 

women aged 45-54.204  With only 34 incident breast cancer cases, they too found no 

relationship with a mean follow-up of 9.7 years. The HR (95%CI) for 1 SD change in BMD at the 

femoral neck was 1.15 (0.79-1.68). Our results also suggest that a repeat BMD measure does 

not add value in determining future breast cancer risk. 
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The risk of breast cancer related to BMD has been reported to differ by estrogen 

receptor status197 and family history of breast cancer. Results regarding family history come 

from a separate cohort study190 and from an early SOF report which utilized cases that were 

diagnosed within the first 3.5 years of follow-up and that do not overlap with the cases in this 

analysis.195  While our results were similar for invasive and estrogen receptor positive breast 

cancers, we did find a significant dependence on family history in the relationship between BMD 

and breast cancer. Indeed, these women may be more sensitive to cumulative estrogen 

exposure as reflected by their BMD measurements. Genetic differences in estrogen synthesis, 

metabolism, and the enzymes involved could account for the association due to altered 

bioavailability and/or biologic activity of steroid hormones such as estrogen.243   

Our study has several important strengths in that it is a large prospective study of 

postmenopausal women, with repeated and rigorously controlled BMD measurements. The 3.5 

year interval present in this analysis reflects the time between repeat BMD measurements 

common in clinical practice. Additionally, incident breast cancer diagnoses were confirmed by 

pathology records and adjudicated by a physician and detailed covariate information was 

collected. 

Limitations of our study include the fact that women who were able to attend the follow-

up examination to have their BMD measurement were healthier than those who did not attend 

the follow-up examination. Those who did not attend, were likely to have been older, weaker, 

and possibly may have had greater BMD loss. Thus, our results are relevant to healthy 

postmenopausal white women aged 65 and greater, and may not be generalizable to other 

populations. Furthermore, we lacked data regarding disease history in more distant relatives, 

aunts and grandmothers for instance, as well as paternal family history.    

In conclusion, BMD was not found to be a significant long-term predictor of breast 

cancer risk after multivariable adjustment. Furthermore, a repeat BMD measure does not 

appreciably enhance the predictive value. However, our results do indicate that the association 

 103 



 

between bone mineral density and invasive breast cancer is modified by family history of breast 

cancer. Women with a positive family history coupled with high BMD are at increased risk. 

Identifying women at elevated risk is a critical step towards breast cancer risk reduction. 

Because preventive interventions are limited, continued vigilance in breast cancer screening is 

recommended for these women into old age. Routine screening can result in earlier detection of 

breast carcinomas, less invasive treatment options, better outcomes, and increased survival.  
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6.6 TABLES 

Table 12. Baseline characteristics of the analysis population and non-participants, Study of 
Osteoporotic Fractures 

Analysis 
Population 

Non- 
  Participants 

(n=5383) (n=4321) 
Characteristic Mean SD Mean SD p-value 

Age, y 70.69 4.64 72.80 5.66 <0.0001 

Education, y 12.81 2.73 12.30 2.79 <0.001 

Body Weight, kg 67.15 11.83 66.82 12.26 0.19 

BMI, kg/m2 26.39 4.38 26.42 4.59 0.72 

Height at Age 25 y, cm 162.60 15.82 162.50 5.65 0.75 

Age at Menopause, y 48.11 45.75 47.71 5.79 <0.01 

Age at Menarche, y 13.02 1.44 13.06 1.50 0.23 

Number of Live Births 2.72 1.53 2.54 1.48 <0.001 

Alcohol Use, drinks/week 1.90 3.90 1.93 4.3 0.72 
  N % N % 

Clinic Site      
A 1524 28.31 934 21.62 
B 1211 22.50 1210 28.00 
C 1171 21.75 1253 29.00 0.42 

D 1477 27.44 924 21.38 

Nulliparous 843 15.67 731 16.93 0.10 

Age at First Birth, y      
< 20 633 14.63 562 19.00 
21-30 3040 70.24 1973 66.70 
31-40 633 14.63 408 13.79 <0.001 

> 40 22 0.51 15 0.51 

Ever Breastfed 3108 68.52 2468 68.88 0.73 

Surgical Menopause 645 12.44 512 12.40 0.95 

Walks for Exercise 2951 54.83 1915 44.33 <0.0001 

Current Smoker  450 8.38 517 12.01 <0.0001 

Current Calcium Supplement Use 2356 43.85 1776 41.20 <0.01 

Current Vitamin D Supplement Use 2441 46.14 1832 43.25 <0.01 

Current Oral Estrogen Use 818 15.37 513 12.08 <0.0001 

Family History of Breast Cancer 689 13.17 605 15.14 <0.01 

Abbreviations used: BMD, bone mineral density; BMI, body mass index; SD, standard deviation 
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Table 13. Change in important participant characteristics between the second and fourth clinic 
visits, analysis population (N=5383), Study of Osteoporotic Fractures 

 V2 V4  
Characteristic Mean SD Mean SD p-value* 

Age, y 72.71 4.62 76.45 4.63 <0.01 

Body Weight, kg 66.60 11.77 66.26 11.97 0.14 

BMI, kg/m2, mean(SD) 26.21 4.37 26.44 4.52 0.01 

Total Hip BMD, g/cm2 0.76 0.13 0.74 0.13 <0.01 
  N % N % 

Current Smoker  372 6.95 296 5.50 <0.001 

Current Calcium Supplement Use 2034 38.65 2401 44.61 <0.001 

Current Vitamin D Supplement Use 2137 40.53 2247 41.75 <0.001 

Current Oral Estrogen Use 8584 16.24 1046 19.44 <0.001 

*P-values from paired t-tests for continuous variables, and two-dependent proportion chi-square tests for 
categorical variables 
Abbreviations used: BMD, bone mineral density; BMI, body mass index; SD, standard deviation 
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Table 14. Mean T-score by quintile of BMD at V2, analysis population, Study of Osteoporotic 
Fractures 

 T-score 
BMD Quintile, g/cm2 N Mean SD 

≤ 0.648 975 -2.72 0.41 

0.649-0.721 1065 -1.95 0.16 

0.722-0.782 1094 -1.44 0.13 

0.783-0.860 1110 -0.91 0.17 

≥ 0.861 1139 0.08 0.62 

Abbreviations used: BMD, bone mineral density; SD, standard deviation 
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Table 15. Descriptive characteristics and risk factors for breast cancer among cases and non-
cases, analysis population, Study of Osteoporotic Fractures  

 Cases Non-cases  
(N=263) (N=5120) 

Characteristic N % N % p-value* 
     Clinic Site 

A 82 31.18 1442 28.16 
B 66 25.10 1145 22.36 
C 48 18.25 1123 21.93 0.31 

D 67 25.48 1410 27.54 
71.79 3.77 72.75 4.66 <0.0001 Age, y, mean(SD) 

     Education 
< High School 39 14.83 1001 19.57 

0.16 High School 113 42.97 2067 40.42 
> High School 111 42.21 2049 40.01 

Body Weight, kg, mean(SD) 68.98 11.63 66.48 11.76 0.001 
26.83 4.54 26.18 4.36 0.02 BMI, kg/m2, mean(SD) 

163.26 5.62 162.54 5.83 0.05 Height at age 25 y, cm, mean(SD) 
     Age at Menarche, y 

< 11 24 9.72 602 12.29 
12-13 138 55.87 2691 54.95 0.47 
> 14 85 34.41 1604 32.75 

42 15.97 801 15.65 0.89 Nulliparous 
     Age at First Birth, y 

Never gave birth 30 11.76 603 12.06 
0.98 < 20 178 69.80 3495 69.89 

> 20 47 18.43 903 18.06 
     Number of Live Births, mean(SD) 

Never pregnant 42 16.09 801 15.69 
0 6 2.30 130 2.55 
1-2 99 37.93 2079 40.73 
3-4 91 34.87 1603 31.41 

0.79 

5+ 23 8.81 491 9.62 

Ever Breastfed 64 28.96 1364 31.61 0.41 
48.88 4.93 48.07 5.78 0.02 Age at Menopause, y, mean(SD)  

38 14.90 607 12.31 0.22 Surgical Menopause 
158 60.08 2793 54.56 0.08 Walks for Exercise 
1.89 3.65 1.90 3.91 0.97 Alcohol, drinks/week, mean(SD) 
15 5.75 357 7.01 0.43 Current Smoker 

103 40.55 1931 38.56 0.52 Current Calcium Supplement Use 
93 36.47 2044 40.74 0.17 Current Vitamin D Supplement Use 
56 21.88 802 15.96 Current Oral Estrogen Use 0.01 

Benign Breast Disease 45 17.72 743 14.90 0.23 

Family History of Breast Cancer† 49 18.92 640 12.87 0.005 
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Table 15. continued 

 Cases Non-cases  
(N=263) (N=5120) 

Characteristic N % N % p-value* 

Initial BMD at V2      

Total Hip, g/cm2, mean(SD) 0.79 0.12 0.76 0.13 <0.0001 
 T-score        

≤ -2.5 13 4.94 622 12.15 
<0.0001 > -2.5 to -1.0 135 51.33 2755 53.81 

≥ -1.0  115 43.73 1743 34.04 

Repeat BMD at V4      

Total Hip, g/cm2, mean(SD) 0.77 0.12 0.73 0.13 <0.0001 

T-score      
≤ -2.5 21 7.98 904 17.66 

<0.0001 > -2.5 to -1.0 146 55.51 2835 55.37 
≥ -1.0  96 36.50 1381 26.97 

Annual % BMD change, mean(SD)‡  -0.43 1.29 -0.58 1.43 0.07 

*P-values from t-tests for continuous variables, and chi-square tests for categorical variables 
†Self-reported breast cancer diagnosis in a first degree female relative (i.e. mother or sister) 
‡Over a mean (SD) 3.54 (0.30) years between measurements 
Abbreviations used: BMD, bone mineral density; BMI, body mass index; SD, standard deviation 
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Table 16. Results of multivariable Cox proportional hazards regression to predict risk of 
invasive breast cancer with initial and change in total hip BMD measures, Study of 
Osteoporotic Fractures 

 Invasive Breast Cancer 
 Age  Multivariable 

Adjusted‡  
Multivariable 

Adjusted‡  Adjusted 
Cases / Non-Cases 224 / 5119 214 / 4872 210 / 4769 

HR HR HR P valueP value P value Model (95%CI) (95%CI) (95%CI) 
       

 1: Initial BMD      
1.19 1.14 1.06 Continuous* 0.01 0.06 0.75 (1.04-1.35) (0.99-1.30) (0.88-1.20) 

Quintiles       
≤ 0.648 1.00 1.00 1.00 
0.649-0.721 1.18 1.19 1.09  

(0.70-1.97) (0.70-2.01) (0.64-1.85) 
0.722-0.782 1.62 1.56 1.39 0.01§ 0.04§ 0.49§ 

(1.00-2.63) (0.95-2.57) (0.84-2.31) 
0.783-0.860 1.75 

 0.06**  0.15**  0.43** 
1.72 1.44 

(1.09-2.81) (1.06-2.80) (0.87-2.39) 
≥ 0.861 1.68 1.52 1.13 

(1.04-2.70) (0.93-2.49) (0.66-1.95) 

T-score       
1.00 ≤ -2.5 1.00 1.00 

2.09 2.21 1.99 <0.01§ 0.01§ 0.19§ > -2.5 to -1.0 (1.12-3.88) (1.15-4.24) (1.03-3.85) <0.01** <0.01**  0.07** 
2.56 2.54 2.01 ≥ -1.0 (1.36-4.81) (1.31-4.93) (1.00-4.01) 

       
2: Change in BMD† 1.09 1.10 1.09 0.28 0.19 0.70  (0.93-1.26) (0.95-1.28) (0.94-1.25) 
       
3: Initial BMD 1.18 1.13 1.03 0.01 0.07 0.75 (1.04-1.35) (0.99-1.30) (0.88-1.20) 
    Change in BMD 1.08 1.10 1.09 0.33 0.23 0.28 (0.93-1.25) (0.94-1.28) (0.93-1.27) 
       

*Per 1 SD (0.13 g/cm2) increase in BMD 
†Per 1 SD (1.42%) increase in BMD 

‡Adjusted for age (as time scale), clinic site, vitamin D supplement use, estrogen therapy use, and family 
history of breast cancer; the final multivariable model additionally includes an adjustment for weight 
§P value for trend 
**Overall p value 
Abbreviations used: BMD, bone mineral density; CI, confidence interval; HR, hazard ratio; SD, standard 
deviation 
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Table 17. Results of multivariable Cox proportional hazards regression to predict risk of ER+ 
breast cancer with initial and change in total hip BMD measures, Study of Osteoporotic Fractures 

 Estrogen Receptor Positive 
 Age  Multivariable 

Adjusted‡ 
Multivariable 

Adjusted‡ Adjusted 
Cases / Non-Cases 178 / 5119 172 / 4872 168 / 4769 

HR HR HR Model P value P value P value (95%CI) (95%CI) (95%CI) 
       

 1: Initial BMD      
1.22  1.16 1.04  Continuous* 0.008 0.07 0.66 (1.05-1.40) (1.00-1.34) (0.87-1.24) 

Quintiles       
≤ 0.648 1.00 1.00 1.00 
0.649-0.721 1.09 1.06 0.97 

(0.60-1.98) (0.58-1.93) (0.53-1.78) 
0.722-0.782 1.93   0.02§   0.59§ 1.84 1.63   0.06§ 

(1.13-3.31) (1.07-3.17) (0.94-2.84) 
0.783-0.860 1.70 

  0.04**   0.16** 0.07**   1.65 1.36 
(0.98-2.93) (0.96-2.86) (0.77-2.41) 

≥ 0.861 1.72 1.09 1.52 
(1.00-2.96) (0.59-2.01) (0.87-2.63) 

T-score       
1.00 ≤-2.5 1.00 1.00 

3.15 3.08 2.75    0.01§    0.03§ 0.37§ >-2.5 to -1.0 (1.38-7.21) (1.34-7.05) (1.19-6.33) <0.01** <0.01** 0.02** 
3.50  3.21 2.45  ≥-1.0 (1.52-8.08) (1.38-7.44) (1.02-5.86) 

       
2: Change in BMD† 1.07  1.08 1.06  0.42 0.36 0.47  (0.91-1.25) (0.91-1.28) (0.90-1.26) 
       
3: Initial BMD 1.21  1.15 1.04  0.01 0.06 0.66 (1.05-1.40) (0.99-1.34) (0.87-1.24) 
    Change in BMD 1.06  1.07 1.06  0.52 0.42 0.48 (0.90-1.24) (0.90-1.27) (0.90-1.26) 
       

*Per 1 SD (0.13 g/cm2) increase in BMD 
†Per 1 SD (1.42%) increase in BMD 

‡Adjusted for age (as time scale), clinic site, weight, vitamin D supplement use, estrogen therapy use, and 
family history of breast cancer 
§P value for trend 
**Overall p value  
Abbreviations used: BMD, bone mineral density; HR, hazard ratio; SD, standard deviation 
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Table 18. Results of subgroup analyses to assess the association between BMD and risk 
of invasive breast cancer, Study of Osteoporotic Fractures 

 Invasive Breast Cancer 
 Age Adjusted Multivariable Adjusted† 

Cases / 
Non-
cases 

Cases / 
Non-
cases 

P 
value 

P 
value HR (95%CI) Initial BMD* HR (95%CI) 

       
Age      0.76‡ 

<75 years 111/2139 1.59 (1.05-2.39) 0.03 103/1972 1.49 (0.94-2.36) 0.09 
≥75 years 113/2980 1.51 (1.04-2.19) 0.03 107/2797 1.05 (0.69-1.59) 0.83 

       
BMI      0.60‡ 

<30 171/4204 160/3891 1.28 (0.91-1.79) 1.53 (1.13-2.08) 0.007 0.15 
≥30 53/915 50/878 1.13 (0.58-2.21) 0.73 0.97 (0.48-1.96) 0.93 

       
ET      0.97‡ 

Not current 172/4223 165/4012 1.51 (1.11-2.06) 0.009 1.30 (0.92-1.82) 0.14 
Current 46/802 45/757 1.50 (0.76-2.96) 0.24 1.13 (0.55-2.32) 0.73 

       
Family History      0.01‡ 

Negative 183/4330   172/4153   
Low BMD   0.77 (0.57-1.04) 0.09 0.94 (0.67-1.31) 0.69 
High BMD   1.30 (0.96-1.75) 0.09 1.07 (0.77-1.50) 0.69 

Positive 38/640 38/616     
Low BMD   0.28 (0.12-0.65) 0.003 0.34 (0.14-0.80) 0.01 
High BMD   3.52 (1.53-8.11) 0.003 2.99 (1.25-7.12) 0.01 

       

*Hazard ratios comparing BMD dichotomized at median (0.751) 
†Adjusted for age (as time scale), clinic site, weight, vitamin D supplement use, estrogen therapy 
use, and family history of breast cancer 

‡P value for interaction between subgroup variable and BMD 

 Abbreviations used: BMD, bone mineral density; HR, hazard ratio; SD, standard deviation 
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7.0  GENERAL DISCUSSION 

Osteoporosis and breast cancer are two diseases that predominantly affect postmenopausal 

women. Osteoporosis, characterized by low bone mass, is the most common bone disease and 

a leading cause of fractures among the aging.14  Among women over age 50 in the United 

States, the prevalence of osteoporosis is between 13 and 18 percent.241  Breast cancer is the 

most commonly diagnosed cancer, and the second leading cause of cancer mortality among 

women in the United States.1  During 2008 alone, more than 182,000 new cases of invasive 

breast cancer and approximately 40,500 deaths were expected to occur.2   

Notwithstanding their different pathophysiologies, breast cancer and osteoporosis share 

several etiologic factors including estrogen. Estrogen is thought to play a central role in the 

development of breast cancer, due to its ability to stimulate proliferation of breast tissue,175 and 

osteoporosis, as evidenced by the rapid decrease in bone density following menopause.244  As 

the number of women with low bone mass increases with age (approximately 30% over age 50 

and more than 50% over age 80),245 so does the incidence of osteoporosis. However, the 

incidence of breast cancer also continues to increase with age, peaking at 75-79 years,6  

despite the dramatic drop in endogenous estrogen levels at menopause.  

The mechanisms by which breast cancer develops are not well understood, thus limiting 

opportunities for disease prevention. Therefore, it is extremely important to pursue research 

focused on breast cancer etiology. Only through the identification of modifiable factors 

associated with this disease can effective breast cancer prevention be realized. We undertook 

investigations of two factors of potential etiologic importance to breast cancer: vitamin D level 
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and endogenous estrogen exposure. We sought to examine the association between three 

physiologic measures related to bone metabolism and calcium homeostasis, vitamin D, 

fractional calcium absorption, and bone mineral density, and breast cancer risk.  

7.1 ARTICLE 1: SERUM 25-HYDROXYVITAMIN D AND RISK OF ER+ BREAST CANCER 

IN POSTMENOPAUSAL WOMEN 

We used a case-cohort design to study the association between serum 25(OH)D and ER+ 

breast cancer in 502 women within the Study of Osteoporotic Fractures (SOF). 25(OH)D was 

measured using serum specimens collected at baseline. Low 25(OH)D was not associated with 

an increased risk of ER+ breast cancer overall. However, a protective effect was noted with 

lower 25(OH)D levels among women over 75 years of age.   

 The results of our prospective analysis are in agreement with a previous study which 

demonstrated no association among postmenopausal women.130  Two other studies reported an 

inverse association.131, 132  However, the comparability of our results with these later studies are 

limited due to methodological differences. A reduced tissue response to vitamin D with greater 

age is possible. Our observed association may be reflective of either a decline in the interaction 

between 1,25(OH)2D and VDRs in breast tissue, or diminished VDR expression with old age. 

Alternatively, tumors may develop mechanisms to negate anti-proliferative effects of 1,25(OH)2D 

at the cellular level.226 The positive association of a 50% reduction in risk among women 75 

years and older has not been reported previously and may indicate a change in the interaction 

between vitamin D and breast tissue.  
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7.2 ARTICLE 2: RISK OF BREAST CANCER USING FRACTIONAL CALCIUM 

ABSORPTION AS A MARKER OF VITAMIN D RESISTANCE 

In this prospective study, we examined the association of between fractional calcium absorption, 

utilized as a marker tissue resistance to vitamin D, and breast cancer risk in SOF.  

Epidemiologic evidence suggests that vitamin D may reduce the incidence of breast cancer. 

However, reports in the literature have been inconsistent, particularly in regard to 

postmenopausal women. The possibility that age related tissue resistance to 1,25(OH)2D, the 

active vitamin D metabolite, may interrupt the protective mechanism by which vitamin D is 

thought to prevent breast cancer has not been investigated previously.  

Contrary to our hypothesis, we found a modestly significant increased risk of invasive 

breast cancer with increasing FCA. A stronger positive association was obtained among women 

over age 75 and those with low dietary calcium intakes (≤ 525 mg/d). Both calcium and vitamin 

D are thought to prevent breast cancer development through similar but independent effects on 

cell proliferation and differentiation.105, 233, 234, 236  The rate of FCA is inversely proportional to 

calcium intake and is also regulated by 1,25(OH)2D and potentially estrogen.160, 162, 163, 239 

Estrogen may interfere with the effect of calcium and vitamin D on cancer prevention by 

increasing intestinal calbindin D expression independent of vitamin D.232  Calbindin D is a 

cytosolic protein and the rate-limiting molecule in vitamin D-induced intestinal calcium 

transport.240  Increased calbindin D expression would lead to decreased circulating calcium 

levels, limiting calcium and vitamin D dependent apoptosis, and activate osteoblast formation 

resulting in increased calcium mineralization in bone and reduced bioavailability of systemic 

calcium.232  We did not find an interaction with estrogen therapy use, however small numbers 

may have been prohibitive.  
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7.3 ARTICLE 3: LONG-TERM PREDICTION OF BREAST CANCER RISK IN 

POSTMENOPAUSAL WOMEN BY BONE MINERAL DENSITY 

In this prospective study, we investigated the association between BMD and the development of 

breast cancer over an average of 9.5 years in SOF. Overall a continuous BMD measure was not 

associated with breast cancer risk after adjusting for known breast cancer risk factors. We found 

a significantly increased risk of invasive breast cancer with total hip T-score measures in the 

normal (≥ -1.0) and low (-1.0 to -2.5) ranges compared to osteoporotic (≤ -2.5) based on WHO 

criteria. Furthermore, there was no improvement in the overall predictive value in a second 

measure of BMD, obtained over a mean 3.5 years later, in the determination of breast cancer 

risk. However, having a positive family history of breast cancer was associated with a significant 

3-fold increase in breast cancer risk among women with high compared to low BMD. 

The lack of an overall association, indicates that BMD may be a stronger predictor of 

early opposed to later breast cancer risk. Our results are consistent with a small study of peri-

menopausal women which also found no association between change in BMD and breast 

cancer risk.204  The significant interaction with family history of breast cancer is in-line with 

previous reports.190, 195  These women may be more sensitive to cumulative estrogen exposure 

as reflected in their BMD measurements. Genetic differences in estrogen synthesis, 

metabolism, and enzymes involved could enhance the bioavailability and/or biologic activity of 

steroid hormones such as estrogen.243 
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7.4 SUMMARY & FUTURE DIRECTIONS 

These research studies explored the association between vitamin D level and estrogen, two 

potentially etiologic factors for breast cancer. Our findings do not support a protective effect of 

25(OH)D level on ER+ breast cancer risk in postmenopausal women 65 years of age and older. 

The positive association among women 75 years and greater is suggestive of a change in the 

interaction of vitamin D in the breast; confirmation of this association in other populations is 

needed. Further investigations of the role of vitamin D on breast cancer development among 

elderly women are warranted. In particular, it will be important to better define the factors 

influencing 25(OH)D levels in this vulnerable age group. An important next step will be to 

measure localized levels of 1,25(OH)2D and 25(OH)D in both healthy and malignant breast 

tissues and to compare them as the correlations between these two metabolites are currently 

unknown. Future studies should also include adequate numbers of women with ER- breast 

cancer.  

We are the first to investigate the association between FCA and breast cancer risk. Our 

results suggest that high FCA, particularly among those with a low dietary calcium intake, is 

associated with an increased risk of postmenopausal breast cancer. More research is needed to 

fully understand the association between FCA and breast cancer risk. Accounting for other 

physiological measures such as sex steroid hormone levels, calcium, 1,25(OH)2D, 25(OH)D, 

and PTH in multivariable models may be useful. Correlates of FCA, including calcium, vitamin 

D, and estrogen have been investigated individually as etiologic factors for breast cancer. 

However, with the exception of estrogen, the reported associations have been inconsistent. 

Further investigations into the role of estrogen in conjunction with calcium and vitamin D levels 
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on FCA may help to clarify their interdependence. Additionally, replication of these findings in 

other populations will be important.  

BMD was not found to be a significant long-term predictor of breast cancer risk after 

multivariable adjustment. Furthermore, a repeat BMD measure does not appreciably enhance 

the predictive value. However, our results do indicate that the association between bone mineral 

density and invasive breast cancer is modified by family history of breast cancer. Women with a 

positive family history coupled with high BMD are at increased risk. The extent to which BMD 

can be used to further elucidate the risk of postmenopausal breast cancer among women 

already at higher risk due to a positive family history should be studied. Identifying women at 

elevated risk is a critical step towards breast cancer risk reduction. Moreover, the research in 

these areas has not addressed the association among other racial groups, in particular those 

with darker skin pigmentation for whom inadequate circulating vitamin D levels are more 

prevalent and baseline BMD measurements are higher on average.  
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8.0  PUBLIC HEALTH SIGNIFICANCE 

The public health burden of breast cancer and osteoporosis is substantial. These two diseases 

predominantly affect postmenopausal women, and due to our rapidly aging population, their 

impact is expected to worsen. While primary prevention of both these diseases is a desirable 

and sought-after goal, shared risk factors in opposing directions complicates such efforts. For 

instance, estrogen is thought to play a central role in the development of breast cancer, due to 

its ability to stimulate proliferation of breast tissue,175 and osteoporosis, as evidenced by the 

rapid decrease in bone density following menopause.244   Increased understanding of the 

etiologic factors and their underlying mechanisms are needed in order to identify potentially 

modifiable risk factors along with the women who might benefit from targeted prevention 

strategies. Established risk factors explain little of the variability in breast cancer and therefore 

there is a need to identify additional risk factors. This becomes an increasingly difficult task 

given the heterogeneity of breast cancer risk factors that exists between premenopausal and 

postmenopausal women, as well as the differences in pathologic features of breast tumors in 

older women. We therefore focused on how vitamin D, fractional calcium absorption, and bone 

mineral density relate to breast cancer risk.  

More than 50% of women over age 60 are reported to have inadequate summer serum 

25(OH)D levels,209 however the association with breast cancer risk has been understudied. Our 

investigation of the association between 25(OH)D and ER+ breast cancer adds to the small 

body of epidemiologic evidence. It is not known yet whether FCA rates will be useful in 

distinguishing between women with an increased breast cancer risk, however, our findings may 
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help to clarify the inconsistent associations seen with studies of calcium and vitamin D to date. 

Finally, we have demonstrated a significant interaction in the relationship between bone mineral 

density and breast cancer by family history. Approximately 30% of women over age 50 have low 

bone mass as do more than 50% of women over age 80,245 potentially indicating that they have 

a reduced breast cancer risk. While routine screening can result in earlier detection of breast 

carcinomas, less invasive treatment options, better outcomes, and increased survival, screening 

recommendations for older women are severely lacking. The ability to better pinpoint a woman’s 

risk of postmenopausal breast cancer will allow for the establishment of solid screening 

guidelines.  

Through our investigations of these potentially etiologic factors and their association with 

breast cancer development, we have enhanced our knowledge regarding the interdependence 

of vitamin D, calcium, and estrogen. These results, along with those of future studies expanding 

upon our findings, may lead to improved opportunities for prevention and early detection of 

breast cancer. 
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APPENDIX A 

SERUM 25-HYDROXYVITAMIN D AND RISK OF ER+ BREAST CANCER IN 

POSTMENOPAUSAL WOMEN 

A.1 CASE-COHORT SELECTION 

 

Figure 8. Case-cohort participant selection, Study of Osteoporotic Fractures 
The subcohort includes all individuals from the original subcohort (a random sample of the entire 
cohort, represented by a dashed - - - outline) with available serum. Fifteen cases were selected into 
the subcohort. The case group includes all incident ER+ breast cancer cases from the original case 
group (all ER+ cases diagnosed through 2000, represented by a dotted . . . outline) with available 
serum.  
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A.2 ASSAY RELIABILTY SUBSTUDY 

 

 
 

Figure 9. Diasorin RIA 25(OH)D assay reliability, Study of Osteoporotic Fractures 
Masked duplicate serum 25(OH)D samples (n=25).  
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A.3 KERNEL DENSITY PLOT OF 25(OH)D BY CASE COHORT STATUS 
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Figure 10. Kernel density plots of serum 25(OH)D by case-cohort status 
Breast cancer cases (n=156), subcohort cases (n=14), and subcohort non-cases (n=332). 
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Figure 11. Kernel density plots of log transformed serum 25(OH)D by case-cohort status 
Breast cancer cases (n=156), subcohort cases (n=14), and subcohort non-cases (n=332). 
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A.4 LOWESS SMOOTHER OF 25(OH)D BY AGE AND CASE COHORT STATUS 
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Figure 12. Serum 25(OH)D distribution by age at baseline and case-cohort status 
Breast cancer cases (n=156), subcohort cases (n=14), and subcohort non-cases (n=332). 
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Figure 13. Serum log(25(OH)D) distribution by age at baseline and case-cohort status 
Breast cancer cases (n=156), subcohort cases (n=14), subcohort non-cases (n=332). 
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A.5 LOG 25(OH)D BY AGE, SEASON, SUPPLEMENT USE, BMI AND DISEASE STATUS 

Table 19. Median serum log (25(OH)D) by disease status and important study characteristics, 
Study of Osteoporotic Fractures 

 Log Transformed 25(OH)D  
 Median (IQR) p-value 
    

   Group 
Cases, n=170  3.31 3.1-3.5 0.51† Subcohort Non-Cases, n=332 3.31 3.1-3.5 

    
Age*    

65-69, n=147 3.33 3.2-3.5 
70-74, n=105 3.30 3.1-3.5 0.69‡ 75-79, n=58 3.28 3.1-3.5 
80+, n=22 3.39 3.0-3.5 
    

Season*    
Winter, n=64  3.28 3.0-3.6 
Spring, n=79  3.25 3.1-3.4 0.06‡ Summer, n=106 3.36 3.2-3.5 
Fall, n=83 3.32 3.1-3.5 

    
Vitamin D Supplement Use*    

Current, n=144 3.44 3.3-3.6 <0.01‡ Past, n=35 3.14 3.0-3.5 
Never, n=147 3.20 3.0-3.4  
    

BMI*, kg/m2    
< 25, n=164 3.35 3.2-3.6  

0.03‡ 25-29, n=112 3.26 3.1-3.5 
> 30, n=42 3.33 3.1-3.5  

    

*Comparison is among non-cases only 
†Wilcoxon two-sample rank-sum test 
‡Kruskal-Wallis test 
Abbreviations used: IQR, interquartile range 
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A.6 COVARIANCE MATRIX OF POTENTIAL MODEL COVARIATES 
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0.26 0.23 
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0.15 
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Figure 14. Covariance matrix of continuous model covariates 
Spearman rank correlation: rho (p-value). 
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APPENDIX B 

RISK OF BREAST CANCER USING FRACTIONAL CALCIUM ABSORPTION AS A MARKER 

OF VITAMIN D RESISTANCE  

B.1 LOWESS SMOOTHER OF FCA AND AGE BY DISEASE STATUS 
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Figure 15. Fractional calcium absorption distribution by age and disease status 
FCA measure at study baseline (SOF clinic visit 4). Breast cancer cases (n=257), non-cases 
(n=4778). 
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B.2 KERNEL DENSITY OF FCA BY CALCIUM INTAKE AND DISEASE STATUS 
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Figure 16. Kernel density plots of FCA distribution for cases and non-cases by quartile of 
calcium intake 
Calcium quartile cutpoints: 25%=455, 50%=775, 75%=1321. 
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B.3 KAPLAN-MEIER SURVIVAL CURVE 

 

Figure 17. Kaplan-Meier survival curve of time to breast cancer diagnosis by FCA quartile 
Plogrank = 0.30. Follow-up in days from study baseline (i.e. clinic visit 4).  
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B.4 CUBIC SPLINE OF FCA 

 
 

Figure 18. Cubic spline transformation of fractional calcium absorption 
Knot placement indicated by horizontal lines at quartile cutpoints (0.31420, 0.37175, 0.43370). Outer 
bands represent 95% confidence intervals. Plinearity=0.67. 
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APPENDIX C 

LONG-TERM PREDICTION OF BREAST CANCER RISK IN POSTMENOPAUSAL WOMEN 

BY BONE MINERAL DENSITY  

C.1 CUBIC SPLINES OF BMD 
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Figure 19. Cubic spline transformation of bone mineral density 
Knot placement indicated by horizontal lines at quintile cutpoints (0.648, 0.721, 0.782, 0.860). Outer 
bands represent 95% confidence intervals. Plinearity=0.11. 
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Figure 20. Cubic spline transformation of bone mineral density among women with a negative 
family history of breast cancer 
Knot placement indicated by horizontal lines at quintile cutpoints (0.648, 0.721, 0.782, 0.860). Outer 
bands represent 95% confidence intervals. Plinearity=0.20. 
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Figure 21. Cubic spline transformation of bone mineral density among women with a positive 
family history of breast cancer 
Knot placement indicated by horizontal lines at quintile cutpoints (0.648, 0.721, 0.782, 0.860). Outer 
bands represent 95% confidence intervals. Plinearity=0.17. 
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