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DC-DC conversion circuits are implemented in several electronic devices to achieve higher 

power densities. The switched mode DC-DC converters are known for their higher power 

conversion efficiencies and can transform the energy stored in the passive elements to higher 

voltage levels than the input voltage (boost converter) or even to lower voltage levels (buck 

converter) than the input voltage. All the switched mode DC-DC converters use active elements 

to produce the switching action which consume reasonable amount of power. Hence, the overall 

power requirement of the device is increased and this would be very critical for low power 

applications. The active elements can be replaced by passive electromechanical switches which 

produce electrical switching action by utilizing the energy from the ambient sources. The 

research work focuses on utilizing the vibrations present in the environment to produce the 

electrical switching action in passive elements. The new technique proposed adopts the passive 

motion activated electro-mechanical switch, with a ball bearing making intermittent contacts 

between the inner conductor and the outer conductor. A conducting path is established when the 

ball bearing comes in contact with the inner conductor and the outer conductor simultaneously.  

 The passive DC-DC conversion technique is further analyzed by discussing its 

application in RFID systems which operate on very low power constraints. The improvement in 

the output voltage levels is proved by comparing the output DC voltage levels generated from 
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the radio frequency signal by employing the DC-DC conversion technique with the voltages 

obtained without the DC-DC conversion technique. 
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1.0  INTRODUCTION 

The passive electro-mechanical switch, which produces switching action due to vibrations or 

motion in the switch, provides huge benefits for low power applications by substituting the 

functionalities of an active transistor switch in certain environments subject to motion. The 

switch can be used to transform a low DC voltage to a high DC voltage using different DC-DC 

conversion circuit topologies which are discussed later in this work.  The passive conversion 

technique is of particular interest and can be utilized in the field of low power applications where 

the operation of the devices is strictly limited by the power constraints. RFID systems are one of 

those low power applications where the tags run on the power harvested from the reader 

transmission or internal power supply from on-board batteries. The low voltage level generated 

by the tag can be transformed to a higher DC voltage to power the data processing logic 

embedded in the tag and also the range of tag can be increased by producing higher voltage 

levels for a given field strength.  

1.1 MOTIVATION AND CONTEXT 

The increasing demand of low power applications and proliferation of remotely powered devices 

resulted in continuous growth in demand for devices that operate at voltage levels below 1.2 V 

and a very low load current (< 1uA) [1][2]. In most of the applications, though the power 
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requirement is achieved, sufficient voltage levels are not produced to power the circuitry. In 

addition to that, the voltage requirements will vary for different sections in the circuit. For 

example, the digital section of the circuit can work at very low voltage levels but the analog 

section requires high voltage levels. Multiple voltage sources cannot be placed to produce the 

required voltage levels and at the same time a simple voltage divider circuit with resistors can 

produce lower voltages but are very inefficient. The DC-DC converters offer many advantages 

by eliminating the requirement of multiple voltage sources and at the same time producing the 

desired voltage levels at very high efficiency. The DC-DC converters can generate higher 

voltage level or a lower voltage level depending upon the requirement and also invert the 

polarity of input voltage. Though there are many DC-DC conversion techniques proposed in 

literature for low power applications, most of the techniques utilize active transistor elements 

which suffer from the disadvantage of power overhead as these active elements require power to 

drive the gate-to-source voltages. Though the power consumed by the active elements would not 

be critical when the applications work at higher power levels, it would be a limiting factor for 

low power applications. Hence, the active transistor elements need to be replaced by a passive 

element to avoid the power overhead. The motion activated electro-mechanical switches which 

utilize the vibrations in the environment to produce the desired switching action are a viable 

option to replace the active transistor switches. 

One of the benefits of the proposed passive DC-DC conversion technique is in the field 

of RFID systems where sufficient power levels are harvested by the tags but higher voltage 

levels need to be obtained to power the logic circuitry at the same energy levels. Hence, the 

passive DC-DC conversion yields higher voltages with high power conversion efficiencies and 

eliminates the need of power consuming active elements. Figure 1 shows the block diagram 
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description of the passive RFID tag circuitry where the DC-DC conversion can be implemented 

to boost the voltage levels required for the operation of the logic circuitry. The frequency of the 

energy field is normally too high to allow a DC-DC converter to be used to achieve higher 

voltages. The rectification circuit followed by the switch action essentially provides a “frequency 

downshifting” to take advantage of DC-DC conversion.  

 

 

 

Figure 1. Tag Circuit Block Diagram 

 

The motion-activated passive DC-DC conversion technique is best suited to 

environments like surface of ocean, moving vehicles, human body, etc., which can essentially 

induce constant motion in a ball bearing inside the electro-mechanical switch which provides the 

switching action. Several switches can be placed in parallel or series configurations to obtain 

high frequency switching action and even the dimensions of the switch can be varied to increase 

or decrease the frequency of switching, which is discussed in this thesis.  
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1.2 STATEMENT OF THE PROBLEM 

The initial focus of this work is to prove the feasibility of implementing a passive DC-DC 

conversion circuit that adopts the motion activated electro-mechanical switch, which produces 

switching action when subjected to vibrations. The switching characteristics of the electro-

mechanical switch need to be analyzed by varying the intensity of vibrations. Based on the 

intensity and frequency of vibrations and the physical dimensions of the switch, the dynamics of 

ball bearing inside the switch need to be investigated. For given vibration characteristics of the 

environment, the approach to tune the design of the switch to exhibit efficient switching 

phenomena needs to be analyzed. The implementation of the switch to generate higher voltages 

than the input voltage in different DC-DC conversion circuit topologies should be verified by 

replacing the active elements in the circuits with the motion activated switches. The pros and 

cons of different configurations will be studied. The feasibility of implementing micro-switches 

for on-chip DC-DC conversions will be discussed and a step towards implementing printed 

inductor transformers is analyzed in order to reduce the size of components on board.  

 The remainder of the research is focused on applying the proposed technique in the RFID 

systems. The radio frequency signal will be fed to the rectification circuit which converts the RF 

signal into DC signal and the DC voltage obtained after rectification will be boosted to a higher 

voltage by implementing the proposed technique. 
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1.3 GOALS OF RESEARCH 

 Demonstrate the ability to amplify low DC input voltage to a sufficient voltage to switch 

transistors. 

 Investigate the properties of motion-activated switch to harvest the vibration energy and 

discuss the parameters of the switch to tune the design of switch to perform efficiently at 

a given intensity of vibration.  

 Evaluate traditional DC-DC topologies and demonstrate at least one promising topology 

to implement the motion-activated switch.  

 Integrate all facets of the DC amplification into a working proto-type system.  

 Incorporate air core printed PCB transformers to obtain the necessary AC amplification. 
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2.0  BACKGROUND ON RFID SYSTEMS 

Radio Frequency Identification (RFID) technology is a challenging field which enables wireless 

identification from a distance. RFID technology steadily replaced the earlier bar-code technology 

where unlike bar-code, RFID does not require line of sight for identification. The RFID systems 

primarily consist of readers and a set of tags attached to the objects to be identified. The reader 

initiates the communication with tags and each of the tags responds to the reader’s query for self-

identification. There are several ways to classify RFID devices. Mainly, RFID devices are 

classified into active and passive devices. The active devices need an internal power supply for 

operation which increases the maintenance cost of the overall system. On the other hand, the 

passive devices operate on the power harvested from the reader’s transmission thereby reducing 

the maintenance cost of the overall system by providing indefinite lifetime of operation. The 

most important frequency ranges for RFID systems are 0-135 kHz (North and South America 

and Japan (0- 400 kHz)), ISM frequencies around 6.78 MHz, 13.56 MHz, 27.125 MHz, 40.68 

MHz, 433.92 MHz, 869 MHz, 915 MHz, 2.45 GHz, 5.8 GHz and 24.125 GHz [3]. In the case of 

passive tags, the transfer of power between the reader and the passive tag is accomplished either 

by inductive coupling or electromagnetic propagation. RFID systems that transfer power by 

inductive coupling operate in the near field of the antenna. The reader passes a large alternating 

current through the reader coil which generates a magnetic field in the near-field of the antenna. 

The magnetic field created by the reader induces current in the tag’s antenna coil and the tag 
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transmits the data back by load modulation. The inductive coupling is widely adopted in passive 

RFID systems and hence resulted in standards, ISO 15693 and 14443. The RFID devices 

operating in the far field capture the RF signal from reader and communicate back by using the 

back scattering technique in which the tag’s antenna impedance is changed to vary the reflection 

of the incoming signal due to mismatch. 

2.1 ANTENNAS 

Antenna serves the purpose of transmitting and receiving the radio frequency signal between the 

reader and the tag. The antennas are fundamentally characterized by properties like radiation 

pattern, directivity, gain, impedance and polarization. The antenna’s radiation pattern is defined 

as the graphical representation of radiation properties as a function of space coordinates. 

Radiation properties include power density, field strength and gain. The gain of the antenna is 

defined as the ratio of radiation intensity in a given direction to the radiation intensity from an 

ideal isotropic antenna for the same input power levels. The gain of an antenna is normally 

measured in dBi (decibels referenced to an isotropic antenna). The directivity of the antenna 

defines the directional properties of the antenna. The antenna offers large range, if the maximum 

directivity is in the direction of the incoming wave. Polarization is defined as the orientation of 

the electric field of the electromagnetic wave. Polarization is typically classified as linear and 

circular. The electric field lies in one plane for linear polarization and in circular polarization the 

electric field rotates about the direction of propagation of the electromagnetic wave. If the 

polarization of the receiving antenna is not in the same direction as the incoming wave, then 

there is reduction in the received power because of the polarization loss.  
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The input impedance of the antenna is defined as the ratio of voltage to current at any 

given point or the ratio of appropriate components of electric to magnetic field at a given point. 

From the maximum power transfer theorem, the input impedance of the antenna should be 

matched to the load impedance of the receiving antenna to transfer maximum power. In the case 

of transmitting antenna the source impedance should be matched to the input impedance of the 

antenna to allow maximum transfer of power.  

For the receiving antenna connected to a load shown in Figure 2-(a), the ratio of the 

voltage to current at the terminal A-B with no load connected defines the input impedance of the 

antenna.  

ZA = RA + j XA                                                                                                                                                           (2.1) 

Where RA is antenna resistance and XA is the antenna reactance. The resistive part 

consists of two components 

RA = Rr + RL                                                                                                                   (2.2) 

Where Rr is Radiation resistance and RL is the loss resistance of the antenna 
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Figure 2. Receiving Antenna Equivalent Circuit 

 

In the Thevenin’s equivalent circuit [4], VT is the voltage induced and RT and XT are the 

resistance and reactance of the load. It can be easily shown that the power delivered to ZT is 
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maximized when the load impedance is complex conjugate of the antenna impedance [4]. That is 

when 

RT = RA = Rr + RL                                                                                                           (2.3) 

 XT = - XA                                                                                                                                                                                    (2.4) 

If the antenna impedance is mismatched with the load, then voltage reflection occurs 

which is usually represented by the voltage reflection coefficient Γ. 

Γ = 
ZT −ZA
ZT +ZA

                                                                                        (2.5) 

In addition to the impedance mismatch, the bandwidth of the antenna causes severe 

impedance mismatch for frequencies outside the frequency range. Bandwidth of the antenna is 

defined as the range of frequencies within which the performance of the antenna, with respect to 

some characteristic, conforms to specified standard.  

2.2 FRIIS EQUATION FOR FAR-FIELD TRANSMISSIONS 

The Friis equation relates the power received to the power transmitted between the two antennas 

separated by a distance R > 2D2/λ, where D is the largest dimension of transmitting or receiving 

antenna and R defines the boundary between the near field and the far field. The Friis equation 

can be used to calculate the received power at the tag’s antenna in far field. The Friis equation is 

given by 

 

Pr = Pt Gt(θt, Φt) Gr(θr, Φr) (1-|Γt|2) (1-|Γr|2) (λ/4πR)2|ρt*ρr|2                                           (2.6) 
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Pr is the power received, Pt is the power transmitted, Gt(θt, Φt) and Gr(θr, Φr) are the gain 

of the transmitting and receiving antennas, (1-|Γt|2) and (1-|Γr|2) are the loss factors due to 

impedance mismatch at the transmission and the receiver end. (λ/4πR)2 is the free space loss 

factor and |ρt*ρr|2  is the polarization loss. Figure 3 shows the coordinates system for analysis 

 

 

Figure 3. Coordinate system for antenna analysis 
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3.0  MOTION ACTIVATED ELECTRO-MECHANICAL SWITCH 

The motion activated electro-mechanical switch [5] consists of a ball bearing, a conducting 

circular washer and other conducting traces. The ball bearing is made to move between the inner 

and outer conductors where the inner and outer conductors are electrically isolated. The ball 

bearing moves over the flat circular copper trace which is the inner conductor, and the movement 

is confined by a circular washer which is the outer conductor. Figure 4 indicates the motion-

activated switch.  

 

 

 
Figure 4. Motion-activated switch 

 

An electrical connection is established between the inner conductor and the outer conductor 

when the ball bearing makes contact with the washer. When the switch is subjected to vibrations, 

Ball bearing 

Outer Conductor 

Inner Conductor 
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the ball bearing is confined to move inside the washer making intermittent contact between the 

inner and outer conductors.  When the ball bearing makes contact with both the inner and outer 

conductors, the switch is in closed state. Figure 5 shows the motion activated electro-mechanical 

switch implementation in a circuit and its electrical equivalent is given in Figure 6. 

 

 

 
Figure 5. Motion activated electro-mechanical switch implementation 

 

A DC voltage of 3 volts is applied to the terminals a and b as indicated in the electrical 

equivalent circuit in Figure 6, and the output from the SMA connector is observed from the 

terminal c and d as shown in Figure 6. The switching characteristics exhibited by the switch are 

shown in the Figure 7. 

SMA Connector Switch DC Voltage Input 

Outer conductor -washer 
Ball bearing 

Inner conductor – Copper Trace 
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Figure 6. Electrical equivalent of motion activated switch 

 

 

 
Figure 7. Switching characteristics exhibited by the switch 
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3.1 IMPLEMENTATION OF SWITCH 

The motion activated electro-mechanical Switch foot print demonstration prototype is designed 

on a 2-layer PCB using the expressPCB software. The footprint consists of an inner conductor 

which is a round pad via with diameter 0.16 inches and with hole size of 0.020 inches and a ring 

shaped outer conductor which is an arc with radius of 0.153 inches and line width of 0.100 

inches. The inner conductor and the outer conductor are electrically isolated, and the inner 

conductor connects to rest of the circuitry through a via. Figure 8 shows the foot print of the 

switch. 

 

                             

 

Figure 8. PCB foot print of motion activated switch 
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The conducting circular washer is placed on the outer trace, and a conducting ball bearing 

is allowed to move inside the washer. The top surface of the washer is closed with a transparent 

material to contain the ball bearing. The transparent material facilitates in observing the 

dynamics of the ball bearing inside the washer.  

As the ball bearing attains higher velocities, there might be risk of the bearing lifting 

above the surface and hence, an electrical contact is never established with the inner conductor. 

The washer should be designed in such a way that the ball bearing should make contact with the 

bottom surface all the time and at the same time the movement of the ball bearing is not 

obstructed. It is observed that by placing two washers of different sizes with reduced thickness, 

one above the other as shown in the Figure 9 and Figure 10, will perform more efficiently than 

placing a single washer. By placing two different washers one over the other also offers the 

advantage of varying the diameter of the top washer to further investigate the switching action 

based on the physical dimensions of the washer.  
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Figure 9. Two washers of different sizes 

 

 

 
Figure 10. Two washers of different sizes stacked one over the other 
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Figure 11. Electro-mechanical switch with washers placed one over the other 

 

The two different setups for placing the washer are verified by analyzing the free body 

diagrams of the all forces acting on the ball bearing in the two different setups. Figure 12 shows 

the two different setups. 

 

 

Figure 12. (a) Setup 1 - Single washer (b) Setup 2 - Two washers placed one over the other 

 

 

Figure 13.  Free body diagrams (a) Setup 1 (b) Setup 2  
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Figure 13 shows the free body diagrams of all the forces acting on the ball bearing for the 

two different setups. The force F is the centripetal force acting on the ball bearing when the 

bearing attains sufficient velocity. The centripetal force is given by  

F = 
𝑚𝑚 𝑉𝑉2

𝑅𝑅
                                                                                          (3.1) 

where m is the mass of the ball bearing, V is the velocity attained by the ball bearing and 

R is radius of the washer.  

The gravitational force acting on the washer is given by ‘mg’, where g is the gravitational 

constant (g =9.8 m/sec2). The frictional force is given by kF, where k is the frictional constant 

and F is the centripetal force acting on the ball bearing.  

The net force acting on the ball bearing downwards for setup 1 is given by  

Force downward = mg – kF                                                                                           (3.2) 

The net force acting on the ball bearing downwards for setup 2 is given by 

Force downward = mg + Fsin2θ - kFcos2θ                                                                    (3.3) 

Hence, the net force acting downwards for the setup 2 is greater than the net force acting 

downward for the setup 1. In setup 2, the chances for lifting above the bottom surface is less 

compared to setup 1. 

3.2 FREQUENCY RESPONSE OF SWITCH 

The frequency of switching for different vibration intensities is analyzed using the spectrum 

analyzer. The highest frequency peak corresponds to the fundamental switching frequency 
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component for the given intensity of vibration. For different vibration characteristics, the switch 

exhibited different fundamental switching frequencies. The switch is subjected to vibrations 

using the equipment as shown in Figure 14. Figure 14-(a) provides a platform that rotates 

circularly and Figure 14-(b) provides a platform that vibrates linearly.   

 

 

Figure 14.  Vibration Platforms (a) Circular Motion (b) Linear Motion  

3.2.1 Circular Motion 

The vortex genie-2 laboratory equipment is used to cause circular motion in the switch. The 

switch is subjected to different angular velocities (RPM) to analyze the switching frequencies. 

The angular velocity is varied from 600 RPM to 3600 RPM and the peak switching frequency for 

the respective angular velocity is observed on the spectrum analyzer. Table 1 illustrates the peak 

switching frequency observed on the spectrum analyzer for different revolutions per minute 

(RPM). The plot for the peak switching frequency versus the input motion is shown in Figure 15. 
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Table 1. Peak switching frequencies for circular motion 

 

Sl No Approx. RPM Approx. Freq (Hz) Switch Peak Frequency (Hz) 

1 600 10 10.125 

2 900 15 11.25 

3 1200 20 14.125 

4 1500 25 16.75 

5 1800 30 18.25 

6 2100 35 22 

7 2400 40 24.125 

8 2700 45 26.25 

9 3000 50 30.625 

10 3300 55 38.875 

11 3600 60 No Peak Found 

 

 

 

 
Figure 15.  Plot of Peak Switching frequency vs. input motion 
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From Figure 15, the relationship is considered linear based on relative precision of data 

points. Figure 16, illustrates the spike generated when a contact is established. The switching 

period (T) between two successive peaks can be approximated by estimating the dynamics of the 

ball bearing inside the washer. 

 

 

 

Figure 16.  Switching period T between two successive contacts 

 

Consider as one example, the peak switching frequency of 14.125 Hz listed in the Table 

1. Based on this frequency, 1/T, is 1/14.125 or 0.07079 seconds.  At Setting 3, the RPM is 1,200 

RPM.  Thus, from one point of motion, the time to return to the same point is  

 

(1,200 Revolutions/Minute)*(Minute/60 Seconds) = 20 Revolutions/Second              (3.4) 

 

Thus, there should be two contacts by the spherical conductor per revolution (one on each 

side) giving a time between contacts of 0.1 Seconds.  However, the time between contacts as per 

the output frequency is 0.07079 Seconds, which is considerably shorter than the 0.1 Seconds 

TT  
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from the rotational velocity motion input to the system. The rotational motion thus provides both 

X and Y velocity components as shown in Figure 17.  It is assumed the X and Y components are 

equal.  Note that by the Pythagorean Theorem applied to the two sides of the square and the 

diagonal of Figure 17.  

{(0.7079)2 + (0.0709)2}1/2 = 0.1 seconds                                                                       (3.5) 

Therefore, the actual motion pattern of the spherical conductor is as shown by the center 

lines forming the square inside the circle of Figure 17.  Thus, the period, T, of Figure 16, is given 

by: 

(21/2/2)*14.125 = 9.9879 ≈ 10 Hz                                                                                  (3.6) 

 

 

 
Figure 17.  Dynamics of the ball bearing 

 

The primary dynamics of the spherical conductor bounding inside the outer conductor are 

determined by the mass of the spherical conductor and the size of the cavity within the outer 

conductor and gravity.  The path indicated in Figure 17, continues through the increases in RPM 

until the RPM reaches 3000.  At that point, the velocities in the X and Y dimensions are such 

X

Y

X

Y
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that the spherical conductor simply has no stable pattern giving contacts that simply are 

approaching a random pattern. Hence, the linear range shown in Figure 15 provides the 

predictable region of operation of the switch. 

 

3.2.2 Linear Motion 

 The linear electro-dynamic shaker shown in Figure 14 (b) is used for rest of the work. The 

experimental setup for measuring the frequency response is shown in Figure 18. The 

experimental setup utilizes an electro-dynamic linear shaker which is used as a platform to 

produce a linear vibration environment. The shaker’s platform is displaced linearly in one plane 

and the displacement is proportional to the amplitude of the sinusoidal waveform applied from 

the function generator. Hence, for one cycle of sinusoidal waveform, the shaker’s platform is 

displaced to maximum in forward direction and moves in the reverse direction till the maximum 

distance crossing the original position and then returns to the original position. 
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Figure 18. Experimental setup to measure the frequency response of switch 

 

The vibration intensity of the shaker is varied by changing the frequency of a sine wave 

from the function generator serving as the shaker modulation. The amplifier provides the 

required voltage level for the electro-dynamic shaker. The switch is connected to 3 volts DC 

voltage source, and the switch is made to vibrate using the electro-dynamic shaker as shown in 

the experimental setup. The output from the switch is observed on the spectrum analyzer. The 

frequency of vibration of the shaker is varied from 10 Hz to 50 Hz in the function generator. 

Figure 19 to Figure 23 show the frequency response obtained from the spectrum analyzer. 

 

Electro-dynamic shaker 

Switch 
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Spectrum Analyzer 

Function generator 
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Figure 19. Frequency response for 10 Hz input frequency to the shaker 

 

 

Figure 20. Frequency response for 20 Hz input frequency to the shaker 
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Figure 21. Frequency response for 30 Hz input frequency to the shaker 

 

 

Figure 22. Frequency response for 40 Hz input frequency to the shaker 
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Figure 23. Frequency response for 50 Hz input frequency to the shaker 

 

As observed from the frequency responses above, the peak frequency component occurs 

at twice the input frequency from the function generator and the other peaks are observed at the 

harmonics of the input frequency. The output from the switch exhibits some periodicity at the 

harmonics of the fundamental frequency. Hence, in one cycle of input signal from function 

generator, the ball bearing manages to make two contacts most of the time. The strength of each 

frequency component is decreased as the frequency of vibration increases. When the vibration 

frequency is increased beyond 60 Hz, the ball bearing comes to the stationary position and hence 

the switch remains in the off state. At the higher frequencies the displacement of the ball bearing 

is too low to initiate a contact and hence, before the ball bearing makes the contact with the 

washer, the vibrating device pulls the ball bearing in the reverse direction.  When the vibration 

frequency is decreased below 8 Hz the switch comes to the stationary position, as the strength of 
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the vibration is very low to produce motion in the ball bearing and the switch remains in off 

state. This allows us to predict that the maximum and minimum frequency of vibration is 

dependent on the mass of the ball bearing and the diameter of the washer. As the diameter of the 

smaller washer is reduced, the peak frequency component shifts to higher frequency. The 

frequency of contacts made in a single cycle increases with the reduced diameter of the washer 

because of smaller distance that needs to be traveled by the ball bearing to make successive 

contacts. This allows us to describe the switching action exhibited by the switch is a function of 

the diameter of the outer conductor, mass of the ball bearing and the intensity of vibration. 

Hence, depending upon the environment chosen, the intensity of vibrations will determine the 

physical dimensions of the washer and the mass of the ball bearing to achieve the desired 

frequency of switching. 

As observed from the experiments, the ball tends to rotate in the shape of n-sided 

polygons. For a low frequency, the ball makes very few contacts with the washer for one 

complete rotation of 360 degrees. As the frequency increases, the number of contacts increases 

and the ball tends to go in circles around the centre as depicted in Figure 24.  
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Figure 24. Dynamics of the ball bearing inside the washer 

3.3 TUNING THE DESIGN OF SWITCH 

From the discussion above, various parameters of the switch can be varied to tune the switch for 

a particular switching frequency for any given vibration characteristics. Figure 25 illustrates 

various parameters that can be considered for the design of switch. 

 

x 

y 
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Figure 25. Classification of design parameters of switch 

 

The frequency of the switched output, for a given vibration, is a function of the following 

parameters: 

(1) Radius of the sphere, r 

(2) Diameter of the Center Conductor, D 

(3) Height of the Outer Conductor, H 

(4) Mass of the Spherical Element, m 

(5) Dimensions of the Outer Conductor, R 

Given a particular motion, the problem to be solved is described in Figure 26, where a 

switch is to be designed with the above five (5) parameters to produce the desired frequency for 

the input motion. 

 

 
Figure 26. Function block for Tuning the Design of Switch 

Vibration 
Characteristics 

Desired Switching 
Frequency 
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4.0  DC-DC CONVERSION TECHNIQUES 

DC-DC converters are employed in many electronic devices to provide distributed power 

supplies. They are used in variety of applications like laptop computers, spacecraft power 

supplies, telecommunication equipment and even in utility power systems applications like high 

voltage dc transmissions and static VAR compensators. The switching mode converters offer 

higher efficiency than the traditional linear mode devices. The power levels encountered in high-

efficiency switching converters range from less than one watt for low power applications to 

roughly Megawatts used in utility power systems. For low power applications, the operation is 

strictly limited by the amount of power available and hence, the need for eliminating the active 

elements that consume power would be a practical approach to increase the power conversion 

efficiency. The rest of this thesis work focuses on DC-DC conversion techniques in view of its 

operation at very low power.  

A large number of DC-DC converter topologies are available that can increase or 

decrease the magnitude of input voltage at the output and/or invert the polarity. Switching 

converters typically use semiconductor switching devices like MOSFET, BJTs, IGBTs and 

thyristors. The switching frequency of the devices typically varies from 1 kHz to 1 MHz [6]. The 

four standard topologies of DC-DC converters are shown in Figure 27.  
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Figure 27. DC-DC converter topologies 
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Considering the boost converter topology, the conversion factor is obtained by equating 

the average voltage across the inductor over one switching period to zero [6]. When the switch is 

in ON state, the voltage across the inductor is equal to the input voltage Vin. When the switch is 

in OFF state, the voltage across the inductor be Vl.  

So the output voltage Vout is given by: 

Vout = Vin + Vl                                                                                                                                (4.1) 

The average voltage across the inductor over the switching period is equal to zero. 

Vin * Ton = Vl * Toff                                                                                                                        (4.2) 

Vin * Ton = (Vout – Vin) * Toff                                                                                                       (4.3) 

Vout = Vin * (1 + 𝑇𝑇𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜

)                                                                                                     (4.4) 

Let D be duty cycle of the switching waveform, the conversion factor is given by 

 
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑜𝑜

 = 1
(1−𝐷𝐷)

                                                                                   (4.5) 

where D is given by: 

D = 
𝑇𝑇𝑜𝑜𝑜𝑜

𝑇𝑇𝑜𝑜𝑜𝑜 +𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
                                                                                   (4.6) 

Figure 28 shows the plot of conversion ratios of different DC-DC conversion topologies. 

As observed from the different topologies, the boost converter is used for further study as it 

outputs higher DC voltage level than the input DC voltage level. Though the Buck-boost, Cuk 

and SEPIC converters from Figure 28 - (c), (d) and (e) provide a higher magnitude of output 

voltage, but they run the risk of reducing the output voltage below the input voltage for a very 

low value of duty cycle.  
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Figure 28. Conversion ratios for different DC-DC converters  
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Two different circuit topologies are considered for this research namely; (1) boost 

converter topology and (2) transformer with full wave rectifier topology. The pros and cons of 

both topologies will be discussed. 

4.1 BOOST CONVERTER TOPOLOGY 

The voltage and current waveforms of the boost converter are obtained by using the principle of 

inductor volt-second balance, which states that the average value or DC component of voltage 

applied across the inductor must be zero [6]. On the converse, we have the charge ampere-

second or charge balance principle which states that the average current that flows through the 

ideal capacitor is zero [6]. Hence, the voltages and currents of DC-DC converters are determined 

by calculating the average voltage across the inductor and average current across the capacitor 

and equating them to zero.  Though the conversion efficiency of an ideal boost converter is 

100%, the conversion efficiency is normally less than 100% due to power dissipation in the 

inductor resistance and the forward voltage drop of the semiconductor diode. Figure 29 shows 

the non-ideal boost converter with inductor resistance.  

 

Figure 29. Non ideal boost converter 
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When the switch is in position 1 in Figure 29, the inductor voltage is given by 

vL(t) = Vg – iL(t)*RL                                                                                                                     (4.7) 

By using small ripple approximation 

VL = Vg - ILRL                                                                                                                                 (4.8) 

Likewise the capacitor current can be approximated to  

IC = -V/R                                                                                                                                        (4.9) 

When the switch is in position 2 in Figure 29, the inductor voltage is given by 

vL(t) = Vg – iL(t)RL – v(t) ≈ Vg – ILRL – V                                                                  (4.10) 

and capacitor current is given by 

iC(t) = iL(t) – v(t)/R ≈ IL – V/R                                                                                             (4.11) 

Upon equating the average value of vL(t) to zero we obtain the output voltage 

0 = D(Vg – ILRL) = (1 – D)(Vg – ILRL – V)                                                                            (4.12) 

Likewise applying the principle of charge balance to capacitor current we have 

0 = D(-V/R) + (1 – D)(I – V/R)                                                                                            (4.13) 

From equations (4.12) and (4.13), we have can solve the unknowns V and IL 

𝑉𝑉
𝑉𝑉𝑔𝑔

=  1
(1−𝐷𝐷)

1

(1+ 𝑅𝑅𝐿𝐿
(1−𝐷𝐷)2𝑅𝑅

)
                                                                 (4.14)  

𝐼𝐼𝐿𝐿 =  𝑉𝑉𝑔𝑔

(1−𝐷𝐷)2𝑅𝑅
1

(1+ 𝑅𝑅𝐿𝐿
(1−𝐷𝐷)2𝑅𝑅

)
                                                              (4.15) 

The voltage conversion ratio M(D) is given by equation 4.14, and it is plotted against the 

duty cycle of switching waveform (D) for different values of RL/R. The plot is shown in Figure 

30. As observed from the plot, the voltage conversion gain increases with the duty cycle. The 
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gain increases to a maximum value and rapidly falls to zero for high value of duty cycles. The 

voltage conversion gain is increased with an increase in load resistance.  

 

Figure 30. Output voltage vs. duty cycle for non-ideal boost converter 

 

The boost converter efficiency is given by 

𝜂𝜂 =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑖𝑖𝑜𝑜

=  
(𝑉𝑉2

𝑅𝑅 )

(𝑉𝑉𝑔𝑔 𝐼𝐼𝐿𝐿 )
 =  1

(1+ 𝑅𝑅𝐿𝐿
(1−𝐷𝐷)2𝑅𝑅

)
                                                             (4.16) 

The efficiency is plotted against the duty cycle for several values of RL/R in Figure 31. 

High efficiency is achieved for large values of R as the current flowing through circuit decreases 

and hence, the power dissipation is reduced. The efficiency also decreases with increase in duty 

cycle. The efficiency given by equation 4.16 does not include the power delivered to the active 
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elements as it is considered that the power delivered to active elements is negligible at higher 

power levels of operation. Hence, this measure would be inappropriate to compare the passive 

DC/DC conversion technique proposed in this work with existing DC/DC conversion techniques. 

 

 

Figure 31. Efficiency vs. Duty cycle for the non ideal boost converter 

 

The output voltage ripple and inductor current ripple can be fixed by choosing 

appropriate values of inductance and capacitance. The voltage and current ripples are given by 

the equations below [6]. 

∆𝑖𝑖𝐿𝐿 =  𝑉𝑉𝑔𝑔

2𝐿𝐿
𝐷𝐷𝑇𝑇𝑠𝑠                                                                                        (4.17) 

∆𝑣𝑣 =  𝑉𝑉
2𝑅𝑅𝑅𝑅

𝐷𝐷𝑇𝑇𝑠𝑠                                                                                                        (4.18)  
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The high frequency components and its harmonics present in the DC voltage can be 

further reduced by choosing suitable inductor and capacitor combinations and thereby, reducing 

the ripple in the output DC voltage. The series LC circuit of the boost converter acts as a low 

pass filter with the corner frequency given by [6] 

𝑜𝑜0 =  (1−𝐷𝐷)
√𝐿𝐿𝑅𝑅

                                                                                             (4.19) 

The low pass LC filter will further eliminate the high frequency components without 

any loss of power. 

4.2 TRANSFORMER TOPOLOGIES 

The transformer can be used in DC-DC converters to obtain isolation between the input and the 

output. Whenever a high ratio of step down or step up conversion is required, the transformer can 

provide an optimized solution by choosing appropriate value of turn ratio (n). The size of the 

transformers can be limiting factor for application in low power applications, and this thesis 

work makes an attempt at reducing the size of transformers by using printed PCB transformers.  
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4.2.1 Transformer Flyback Topology 

 

Figure 32. Transformer flyback topology 

 

The transformer flyback converter is similar to operation of the buck-boost converter shown in 

Figure 32. The current doesn’t flow simultaneously between the primary and the secondary 

windings of the transformer. The magnetizing current is switched between the primary and the 

secondary windings. For the transformer flyback topology is shown in Figure 32, when the 

switch ‘SW’ is in closed state, current flows through the primary inductor of the transformer, and 

the diode is reverse biased and no current flows through the secondary winding. Energy is stored 

in the magnetic field of the flyback transformer. When the switch SW is in open state, the 

magnetic field induces current in the secondary coil which forward biases the diode. Energy 

stored in magnetic field is transferred to the DC load. The current conversion ratio of the 

transformer flyback converter is given by: 

 𝑀𝑀(𝐷𝐷)  =  𝑜𝑜 ∗  𝐷𝐷
(1−𝐷𝐷)                                                                                                   (4.20) 
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Where n is the transformer turns ratio and D is the duty cycle of switching waveform. But 

the transformer flyback converter runs the risk of generating output voltages less than the input 

voltage for low values of duty cycle. 

 

4.2.2 Transformer with Full Wave Rectifier Topology 

 

Figure 33. Transformer topology with full wave rectifier 

 

The DC-DC conversion circuit shown in Figure 33 consists of a switch, a transformer and 

a full wave rectifier. The principle of this method is to convert the DC signal to AC signal using 

the switch. The AC signal is then applied to the transformer primary windings which induce 

voltage across the secondary windings. Unlike the flyback converter, the current flows 

simultaneously in both the windings. The output from the secondary windings is full wave 

rectified, and a capacitor placed across the output terminals outputs the DC voltage by reducing 

the ripple in the rectified signal.  

The size of the transformer is a concern in achieving higher power densities. In aiming to 

reduce the size of the transformer, printed coreless PCB transformers are created [7]. The printed 

PCB transformers are shown in Figure 34 and Figure 35. 
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Figure 34. PCB printed transformers- Primary coil (left) and Secondary coil (right) 

 

 

 
Figure 35. PCB printed transformers- Coils placed one over the other 
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The primary coil of the printed PCB transformers shown in Figure 34 and Figure 35 has 9 

turns and the secondary coil has 18 turns. The inductance of the primary coil (Lp) is 3.9 uH and 

inductance of the secondary coil (Ls) is 10.6 uH. 

4.3 MOTION ACTIVATED SWITCH IMPLEMENTATION 

Boost converter topology is now considered for further study and the active transistor switch is 

replaced with the passive electro-mechanical switch. The switch is subjected to vibrations using 

the electro-dynamic shaker. DC voltage from the DC power supply is provided to the circuit. The 

voltage gain obtained from the boost converter is compared with the transformer topology with a 

full-wave rectifier.  

4.3.1 Boost converter implementation 

The schematic of boost converter circuit is shown in Figure 36, where the switch SW is replaced 

with the previously discussed electro-mechanical switch. The values of the inductance (L1) and 

capacitance (C1) are chosen as 27uH and 10uF. The input voltage from the DC supply (Vin) is 3 

volts. The frequency of vibration of the shaker is varied from 10 Hz to 40 Hz and the output 

across the load resistor R1 is measured. The load resistance is varied from 10 kOhm to 500 

kOhm. Figure 37 shows the graph for the output voltage against load resistance (R1) for different 

values of vibration frequencies. 
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Figure 36. Schematic of boost converter 

 

Table 2. Output voltage measured across varying load for different vibration frequencies 

 

Resistance (R1)-

kOhms 

Voltage (Vout) – volts 

Frequency = 

10Hz 

Frequency = 

20Hz 

Frequency = 

30Hz 

Frequency = 

40Hz 

10 5 v 3 v 2.7 v 2.7 v 

50 10 v 4 v 2.7 v 2.7 v 

100 15 v 6 v 3 v 2.7 v 

200 22 v 10 v 3 v 2.7 v 

500 32 v 20 v 4 v 2.7 v 
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Figure 37. Output voltage vs. load resistance for different vibration frequencies 

 

As the frequency of vibration increases, the gain of the boost converter decreases. At a 

frequency of 40 Hz and beyond, the output voltage is almost constant. The output voltage is less 

than the input voltage due to the voltage drop across the diode.  

By choosing appropriate values of inductance, load resistance and the capacitance values 

with L1 = 27 uH, R1 = 200 kOhm and C1 = 10 uF, the input voltage DC voltage is varied from 1 

volt to 4 volts and readings are plotted for different vibration frequencies. Figure 38 shows the 

graph of the output voltage plotted against the varying input for different vibration frequencies. 
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Table 3. Output voltage measured for varying input voltage for different frequencies 

 

Input Voltage  

(Vin) - volts 

Output Voltage (Vout) - volts 

Frequency = 10 Hz Frequency = 20 Hz Frequency = 30 Hz 

1.00 V 3.5 V 2.7 V 1.50 V 

2.00 V 11.0 V 6.0 V 2.3 V 

3.0 V 21.0 V 10.0 V 2.6 V 

4.0 V 32.0 V 22.0 V 3.6 V 

 

 

 

 
Figure 38. Output voltage vs. input voltage for different vibration frequencies 

 

The output voltage increases linearly with the increase in input voltage. With an increase 

in frequency, the output falls below the input voltage. Hence, depending upon the physical 

properties of the switch, the switch tunes to a specific vibration frequency where the boost 
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converter circuit exhibits the highest conversion ratio. For the electro-mechanical switch, at 10 

Hz vibration frequency, the boost converter circuit achieves a higher conversion factor.  

4.3.2 Transformer topology with full wave rectifier implementation 

The switch SW in Figure 33 is replaced with the passive motion activated switch and the 

transformer chosen is a ferrite core transformer with turn ratio 1:100. The switch is excited by 

vibrations at 10 Hz frequency from the function generator and 3 volts of input DC signal is 

applied to the primary circuit of the transformer. The value of the capacitor across the primary 

winding C1 = 1 nF, resistor R1 = 10 kOhm and capacitance C2 = 22 uF. Figure 39 and Figure 40 

indicate the voltages at the primary and secondary windings of the transformer.  

 

 

 
Figure 39. Voltage at the primary winding of the transformer 
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Figure 40. Voltage at the secondary winding of the transformer 

 

The DC voltage obtained after rectification is 20 volts across the load resistance R1 with 

a negligible amount of ripple. When the input frequency is increased beyond 30 hz, the voltage 

induced on the secondary coil decreases. Figure 41 illustrates the voltage at the secondary coil 

for input vibration frequency of 40 Hz from the function generator.  
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Figure 41. Voltage at the secondary winding of the transformer 

 

The DC voltage obtained at the output after rectification is less than one volt with large 

ripple factor. Further increase in vibration frequency from the function generator will lead to 

zero output voltage across the load and thereby completely zeroing the power available at the 

output though there is sufficient power available at the input terminals. This would be a limiting 

factor when the vibrations in environment are not consistent and can lead to drop in the power 

available to rest of the circuit.  

The air core printed PCB transformer is used by placing the primary and secondary coils 

one over the other in lieu of ferrite core transformer. The output voltage induced at the secondary 

windings is analyzed with the input DC voltage fixed at 3 volts, and the value of resistor and 

capacitances are the same as those used in Figure 36 (C1 = 1nF, R1 = 10 kOhm and C2 = 22 uF). 

The switch is subjected to vibration frequency of 10 Hz from the function generator. Figure 42 

indicates the voltage induced on the secondary coil of the printed PCB transformer. 
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Figure 42. Voltage at the secondary winding of the printed PCB transformer 

 

The DC voltage across the load resistance after rectification is 2.4 volts which is less than 

the input voltage 3 volts. Proper design of the printed PCB transformer would achieve high 

voltage and also reduce the size of the transformer. Multiple printed PCB transformers can be 

placed in series to achieve high voltage gains. This experiment above demonstrates that higher 

power densities can be achieved using the printed PCB transformers. 
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5.0  APPLICATION IN RFID SYSTEMS 

 The DC-DC conversion technique can be applied to RFID devices to boost the DC 

voltage to higher voltages required by the data processing unit when there is sufficient power 

available at the input terminals. The RFID devices operate on low power constraints where 

power is supplied by on-board batteries or from the energy harvested by the device from the 

reader’s transmission. Passive tags draw the power required for their operation from the 

electromagnetic field transmitted by the reader. The RF energy radiated by the reader induces RF 

voltage in the passive tag’s antenna which is rectified by an N-stage charge pump to provide DC 

voltage supply for the transponder. The power available to the tag is used by the digital section to 

perform data processing and to transmit back the modulated signal to the reader.  Hence, the 

operating range of the tag is strictly dependent upon the power available. To maximize the 

operating range, the power-matching network must be tuned to allow maximum power transfer 

and the RF to DC conversion circuit should be highly efficient to reduce the conversion losses.  

The problem becomes much more challenging at very low levels of power consumption around 1 

μWatt. Though, most of the previous work focuses on the tuning the receiving circuit to allow 

maximum power transfer [8][9] , this thesis focuses on implementing the DC-DC conversion 

techniques to output higher voltage levels at very low power levels. By employing the passive 

DC-DC conversion technique, high voltage levels are achieved at very low conversion losses.  
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5.1 IMPLEMENTATION OF DC-DC CONVERSION TECHNIQUE 

The passive DC-DC conversion circuit implementing the boost converter topology is 

used for step-up conversion of DC voltage generated after the rectification of the radio frequency 

signal – the initial DC input. Figure 44 shows the block diagram description for implementing 

the passive DC-DC conversion technique. Figure 44-(a) indicates the implementation using an 

antenna and matching circuit. The impedance matching of the antenna with the rest of the circuit 

would be very challenging due to the non-linear nature of the circuit elements. Initially, the 

matching can be done by an annealing approach given in [9], where different combinations of 

tuning circuit elements are implemented until high voltages are recorded. As the focus of the 

thesis is improving the output voltage levels after rectification of RF signal from the antenna, in 

lieu of antenna and the matching circuit, a signal generator is substituted to input the RF signal to 

the rectification circuitry. Figure 44-(b) indicates the implementation using the signal generator. 

The RF signal at 125 kHz is applied to the rectification circuitry. The voltage doubler circuit uses 

a HSMS-280x series Schottky diode as shown in the Figure 43. 

 

 

Figure 43. Series Schottky diode 
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Figure 44. DC-DC conversion technique Implementation in RFID devices 

 (a) Antenna with matching network (b) Vector Signal generator  

 

The antenna followed by the matching network shown in Figure 44-(a) is replaced by a 

vector signal generator (Rohdes & Schwarz) as shown in Figure 44-(b). Using the signal 

generator would allow varying the power of the signal and also the frequency of the transmitted 

signal. Figure 45 shows the schematic of the circuit implementing the DC-DC conversion 

technique where the input RF signal is fed from the signal generator and the value of the load 

resistance (R1) is varied to observe the voltage conversion ratio for different loads.  
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Figure 45. DC-DC Conversion implementation - Schematic 

 

The RF signal of 125 kHz frequency is applied to the circuit at 18 dBm power level. The 

DC voltage obtained after rectification is 3 Volts. The values of the circuit elements chosen are 

capacitance C1= 10 uF, C2 = 20 uF and inductor L1 = 22 uH. The diode D3 is a schottky diode 

with 0.4 Volts forward voltage drop. The output voltage is measured across the resistance R1. 

The voltage observed for different values of R1 are listed in Table 4. 

 

Table 4. Output Voltage for different resistance values 

 

Serial 

No 

Power Level DC voltage after 

rectification 

Load Resistance 

(R1) 

Output Voltage  

( Vout(t) ) 

1 18 dBm 3 Volts 13.6 K 3 Volts 

2 18 dBm 3 Volts 27.2 K 3.2 Volts 

3 18 dBm 3 Volts 75 K 4.4 Volts 

4 18 dBm 3 Volts 155 K 5.1 Volts 
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As the frequency of the radio frequency signal increases beyond 10 MHz, the voltage 

observed at the output terminals is very low due to losses in the circuitry as the circuit elements 

are not optimized for high frequency operations. As a result, sufficient input voltages were not 

generated across the resistor. The circuit must be optimized for high frequency radio signal to 

reduce the losses. From results in Table 4, higher voltages are realized by employing the 

proposed DC/DC conversion technique. 
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6.0  CONCLUSION AND FUTURE WORK 

In this work, a new technique for DC-DC conversion is proposed which utilizes the passive 

motion-activated electro-mechanical switch by replacing the active transistor element. The 

functionality of the proposed technique is proved by implementing the motion activated switches 

in different DC-DC conversion topologies. The pros and cons of different configurations are 

verified. The switching characteristics of the switch for different intensities of vibrations are 

studied which would assist in tuning the design of switch based on the vibration characteristics 

of the environment. In view of reducing the size of the onboard components and to achieve high 

power densities, printed PCB transformers are used for the study to prove the feasibility of 

replacing the ferrite core transformers. The benefit of the proposed technique in low-power 

applications is demonstrated by implementing the technique in RFID devices which operate on 

low power constraints. The DC-DC conversion can be used to generate higher voltages required 

by the data processing circuitry at the same power levels, and at the same time reducing the 

power conversion losses by eliminating the power consuming transistor elements.   

Miniaturization of the proposed technique by implementing micro-switches would be a 

topic of interest for low power applications where many micro-switches can be placed in parallel 

and/or series configurations to achieve efficient switching phenomena. Hence, the active 

elements in the circuit can be replaced by the passive switching elements for the environments 

which can induce constant motion in each of the individual switching elements. As the 
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practicality of the approach has been proven, the future work should focus on implementing a 

on-chip passive DC-DC conversion technique to generate higher voltages for data processing 

logic. Hence, realizing efficient data processing systems even at lower power levels (<1μWatt). 

6.1 CONTRIBUTION OF THE RESEARCH 

 The ability to amplify low DC input voltage to a sufficient voltage capable of switching 

transistors, using the passive motion-activated switch has been researched and 

demonstrated. 

 The properties of motion-activated switch to harvest the vibration energy have been 

classified and the parameters of the switch to tune the design of switch to perform 

efficiently at a given intensity of vibration have been discussed.  

 Different traditional DC-DC conversion topologies have been studied and the boost-

converter has been chosen over other topologies to develop a custom DC-DC conversion 

circuit.  

 From the research above, a working proto-type system has been developed capable of DC 

amplification.  

 Sufficient time has been spent in determining the effectiveness of using air core printed 

PCB transformers to obtain the necessary AC amplification.   

 Practical application of the research in the field of RFID has been demonstrated. 

 

 

 



 59 

BIBLIOGRAPHY 

[1] Michael T. Zhang, Milan M. Jovanovic and Fred C. Lee, “Design consideration for low-
voltage on-board DC/DC modules for next generations of data processing circuits", IEEE 
Trans. on Power electronics, Vol. II, No. 2,1996. 
 

[2] Giuseppe De Vita and Giuseppe Iannaccone, “Design criteria for the RF section of UHF 
and microwave passive RFID transponders”, IEEE trans. on microwave theory and 
techniques, Vol. 53, No. 9, 2005. 

 

[3] K. Finkenzeller, “RFID handbook, radio-frequency identification fundamentals and 
applications,” John Wiley & Sons, Chichester, 1999. 
 

[4] C.A. Balanis, “Antenna Theory: Analysis and Design”, John Wiley & Sons. 1997. 
 

[5] Motion activated electrical switch, US patent No. 7,315,004 B1, Dawar technologies, 
Pittsburgh, PA, Peter W. Jarzynka and H. Gene Baumgarten, Filed August 24, 2006(29 
claims). 
 

[6] Robert W. Erickson, Dragan Maksimovic. “Fundamentals of Power Electronics”, by 
Springer. (2006). 
 

[7] S.C. Tang, S.Y. Hui and Henry Shu-Hung Chung,”Coreless Planar Printed-Circuit-Board 
(PCB) Transformers – A fundamental concept for signal and energy transfer”, IEEE Trans. 
on power electronics, Vol. 15, No. 5, 2000. 
 

[8] K.V. Seshagiri Rao, Pavel V. Nikitin and Sander F. Lam, “Antenna design for UHF RFID 
tags: A review and a practical application”, IEEE trans. on antennas and propagation, Vol. 
53, No. 12, 2005. 
 



 60 

[9] Minhong Mi, Marlin H. Mickle, Chris Capelli and Harold Swift, “RF energy harvesting 
with multiple antennas in the same space”, IEEE antennas and propagation magazine, Vol. 
47, No. 5, 2005. 
  


	TITLE
	COMMITTEE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Peak switching frequencies for circular motion
	Table 2. Output voltage measured across varying load for different vibration frequencies
	Table 3. Output voltage measured for varying input voltage for different frequencies
	Table 4. Output Voltage for different resistance values

	LIST OF FIGURES
	Figure 1. Tag Circuit Block Diagram
	Figure 2. Receiving Antenna Equivalent Circuit
	Figure 3. Coordinate system for antenna analysis
	Figure 4. Motion-activated switch
	Figure 5. Motion activated electro-mechanical switch implementation
	Figure 6. Electrical equivalent of motion activated switch
	Figure 7. Switching characteristics exhibited by the switch
	Figure 8. PCB foot print of motion activated switch
	Figure 9. Two washers of different sizes
	Figure 10. Two washers of different sizes stacked one over the other
	Figure 11. Electro-mechanical switch with washers placed one over the other
	Figure 12. (a) Setup 1 - Single washer (b) Setup 2 - Two washers placed one over the other
	Figure 13. Free body diagrams (a) Setup 1 (b) Setup 2
	Figure 14. Vibration Platforms (a) Circular Motion (b) Linear Motion
	Figure 15. Plot of Peak Switching frequency vs. input motion
	Figure 16. Switching period T between two successive contacts
	Figure 17. Dynamics of the ball bearing
	Figure 18. Experimental setup to measure the frequency response of switch
	Figure 19. Frequency response for 10 Hz input frequency to the shaker
	Figure 20. Frequency response for 20 Hz input frequency to the shaker
	Figure 21. Frequency response for 30 Hz input frequency to the shaker
	Figure 22. Frequency response for 40 Hz input frequency to the shaker
	Figure 23. Frequency response for 50 Hz input frequency to the shaker
	Figure 24. Dynamics of the ball bearing inside the washer
	Figure 25. Classification of design parameters of switch
	Figure 26. Function block for Tuning the Design of Switch
	Figure 27. DC-DC converter topologies
	Figure 28. Conversion ratios for different DC-DC converters
	Figure 29. Non ideal boost converter
	Figure 30. Output voltage vs. duty cycle for non-ideal boost converter
	Figure 31. Efficiency vs. Duty cycle for the non ideal boost converter
	Figure 32. Transformer flyback topology
	Figure 33. Transformer topology with full wave rectifier
	Figure 34. PCB printed transformers- Primary coil (left) and Secondary coil (right)
	Figure 35. PCB printed transformers- Coils placed one over the other
	Figure 36. Schematic of boost converter
	Figure 37. Output voltage vs. load resistance for different vibration frequencies
	Figure 38. Output voltage vs. input voltage for different vibration frequencies
	Figure 39. Voltage at the primary winding of the transformer
	Figure 40. Voltage at the secondary winding of the transformer
	Figure 41. Voltage at the secondary winding of the transformer
	Figure 42. Voltage at the secondary winding of the printed PCB transformer
	Figure 43. Series Schottky diode
	Figure 44. DC-DC conversion technique Implementation in RFID devices
	Figure 45. DC-DC Conversion implementation - Schematic

	PREFACE
	1.0 INTRODUCTION
	1.1 MOTIVATION AND CONTEXT
	1.2 STATEMENT OF THE PROBLEM
	1.3 GOALS OF RESEARCH

	2.0 BACKGROUND ON RFID SYSTEMS
	2.1 ANTENNAS
	2.2 FRIIS EQUATION FOR FAR-FIELD TRANSMISSIONS

	3.0 MOTION ACTIVATED ELECTRO-MECHANICAL SWITCH
	3.1 IMPLEMENTATION OF SWITCH
	3.2 FREQUENCY RESPONSE OF SWITCH
	3.2.1 Circular Motion
	3.2.2 Linear Motion

	3.3 TUNING THE DESIGN OF SWITCH

	4.0 DC-DC CONVERSION TECHNIQUES
	4.1 BOOST CONVERTER TOPOLOGY
	4.2 TRANSFORMER TOPOLOGIES
	4.3 MOTION ACTIVATED SWITCH IMPLEMENTATION
	4.3.1 Boost Converter Implementation
	4.3.2 Transformer Topology with Full-wave Rectifier Implementation


	5.0 APPLICATION IN RFID SYSTEMS
	5.1 IMPLEMENTATION OF DC-DC CONVERSION TECHNIQUE

	6.0 CONCLUSION AND FUTURE WORK
	6.1 CONTRIBUTION OF THE RESEARCH

	BIBLIOGRAPHY

