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Lung cancer and chronic obstructive pulmonary disease (COPD) are the leading causes of 

morbidity and mortality in the US. Despite the appreciation of the central role of smoking in the 

development of both diseases, only a relatively small number of smokers (15%-20%) develops 

lung cancer and/or COPD. This suggests that other factors including inherited genetic variation 

may play a role. Cigarette smoking induces inflammation; therefore, functionally relevant 

polymorphisms in inflammation-related genes may affect risk of smoking-associated lung cancer 

and/or COPD.  

The primary goals of this research were to evaluate eicosanoid pathway (IL1B, COX-2, 

PPARγ) gene polymorphisms and cytokine (TGFB1, IL6, IL10) gene polymorphisms in relation 

to lung cancer risk (484 cases/866 controls); and cytokine (TGFB1, IL6, IL10) gene 

polymorphisms in relation to COPD (airflow obstruction and emphysema) risk (N=866). We 

utilized data and specimens from Project 4 of the University of Pittsburgh Cancer Institute 

Specialized Program of Research Excellence (SPORE) in Lung Cancer. In our study population, 

IL1B rs1143634 minor allele carriers had a decreased risk of lung cancer (OR=0.73, 

95%CI=0.56-0.95) compared to major allele homozygote. There was a strong interaction 

between PPARγ rs1801282 and sex (Pinteraction=0.003), female minor allele carriers were at a 

reduced risk of lung cancer (OR=0.58, 95%CI=0.37-0.91), while male minor allele carriers 

showed a non-significant increased risk (OR=1.45, 95%CI=0.96-2.19) compared to major allele 
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homozygotes. In the analyses of COPD, TGFB1 rs2241712 was found associated with airflow 

obstruction severity as measured by Global Initiative for Obstructive Lung Disease (GOLD) 

(Cochran-Mantel-Haenszel 1degree freedom nonzero correlation P=0.02), minor allele carriers 

were at a decreased risk of developing the disease (any vs. no airflow obstruction, dominant 

model OR=0.73, 95%CI=0.55-0.98).  

Enhancing our knowledge of lung cancer and COPD genetics is a significant contribution 

to public health as it may result in the development of new prevention and treatment strategies.  
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1.0  INTRODUCTION 

Both lung cancer and chronic obstructive pulmonary disease (COPD) are associated with 

cigarette smoking, which induces a chronic inflammatory state in the lung. Interestingly, some 

smokers develop lung cancer, some develop COPD, some develop both diseases, and then there 

are some that stay free of disease all together. The reason for this is currently unclear but genetic 

factors may play an important role. 

1.1 SPECIFIC AIMS 

The goal of this project is to evaluate the role of genetic variability in inflammation-related genes 

in the development of lung cancer and COPD. We will use data and specimen from cases and 

controls from Project 4 of the University of Pittsburgh Cancer Institute (UPCI) Specialized 

Program of Research Excellence (SPORE) in Lung Cancer. We hypothesize that functionally 

relevant polymorphisms in inflammation-related genes may influence the risk of developing 

smoking-associated lung cancer and COPD. Specifically, we propose to: 

Aim 1. Evaluate the association between IL1B, COX-2, and PPARγ gene polymorphisms 

and lung cancer risk. 

Aim 2. Evaluate the association between TGFB1, IL6 and IL10 gene polymorphisms and 

lung cancer risk. 
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Aim 3. Evaluate the association between TGFB1, IL6 and IL10 gene polymorphisms and 

chronic obstructive pulmonary disease (COPD) risk. 
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2.0  LITERATURE REVIEW 

2.1 LUNG CANCER 

Lung cancer is the leading cause of cancer mortality in both men and women in the United 

States. The disease is responsible for more deaths than prostate, colon, pancreas, and breast 

cancer combined. In 2010, about 222,520 people will be diagnosed with lung cancer and about 

157,300 people will die of lung cancer in the United State.1  

Cigarette smoking is a well-established risk factor for lung cancer. Compared with never 

smokers, smokers have a 15-30 fold increased risk of developing lung cancer.2-4 Other major risk 

factors for lung cancer include second-hand smoke5, radon6 and occupational exposures5,7, high 

fat and cholesterol diet, alcohol consumption and family history.8 

Current standard therapies for lung cancer include surgical resection, platinum-based 

doublet chemotherapy, and radiation therapy alone or in combination.9 Unfortunately, these 

therapies rarely cure the disease. The overall 5-year survival rate hasn’t improved much over the 

past three decades, and it is still only about 16%.1  
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2.2 CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) 

COPD is the fourth leading cause of death10 and affects between 10 and 24 million adults in the 

United States.10,11 

COPD is characterized by increased airway inflammation12,13 and an abnormal 

inflammatory response of the lungs to noxious particles or gases, particularly cigarette smoke.13 

The term COPD describes patients with very different clinical phenotypes. The clinical 

presentations of COPD ranges from chronic bronchitis to hyperinflation and severe 

emphysema.14 

Cigarette smoking is the main risk factor for COPD. Smoking accounts for 80%-90% of 

all COPD deaths: female smokers are nearly 13 times as likely to die from COPD as women who 

have never smoked; male smokers are nearly 12 times as likely to die from COPD as men who 

have never smoked.15 Smoking causes two pathophysiologic processes in the lung. The first is 

inflammatory narrowing of peripheral airways, which is characterized by edema, mucus 

hypersecretion and fibrosis of peripheral airways. The second is proteolytic destruction of the 

lung parenchyma, which results in permanent enlargement of airspaces (emphysema) and, as a 

result, loss of lung elastic recoil. Usually, evidence of both pathophysiologic processes is 

observed in an individual COPD patient.16  

Other risk factors for COPD include second-hand smoke, occupational hazards such as 

mineral dust, air pollution and history of childhood respiratory infections and heredity.17  
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2.3 CIGARETTE SMOKING AND INFLAMMATION 

Cigarette smoking is the major cause of both lung cancer and COPD. Cigarette smoke contains a 

high concentration of oxidants in addition to a number of known carcinogens.18 By generating 

reactive oxygen species (ROS), cigarette smoke induces an inflammatory state in the lung. 

Cigarette smoke elicits airway inflammation in all of those who smoke. The cigarette smoking-

induced inflammatory response yields an array of deregulated cells, cytokines, and growth 

factors that are conducive to the development of both lung cancer and COPD. 

A cigarette smoker’s respiratory epithelium often contains multifocal premalignant 

lesions that can occur throughout the bronchial tree19, which has been referred to as the field 

cancerization effect. This phenomenon implicates the capacity of tobacco carcinogens to 

extensively cause genetic mutations in the respiratory epithelium.20 The smoking-induced 

pulmonary cellular network presents a distinctive environment in which carcinogenesis proceeds 

in complicity with surrounding lung inflammatory, structural, and stromal cells.21 

Smoking-induced epithelial abnormalities can serve as targets for abnormal inflammatory 

responses. Alveolar macrophages, lymphocytes, neutrophils, endothelial cells, and fibroblasts 

release cytokines, chemokines, and growth factors, which may act to promote epithelial 

dysfunction and malignant progression.21 

Cigarette smoke causes not only local airway and lung inflammation; but also systemic 

inflammatory responses including cellular and humoral inflammation, striking changes of 

vasomotor and endothelial function, systemic oxidative stress, and enhanced circulating 

concentrations of several procoagulant factors.22,23 
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2.4 ASSOCIATION BETWEEN COPD AND LUNG CANCER 

Several lines of evidence indicate a connection between COPD and lung cancer. COPD and lung 

cancer are both smoking-related diseases that cluster in families and worsen with age. COPD is 

strongly associated with lung cancer risk and lung cancer mortality. Low lung function is an 

established risk factor for lung cancer; and among smokers, those with airflow obstruction have 

the greatest risk of developing lung cancer.24 Studies have consistently reported that the 

prevalence of COPD in lung cancer cohorts is as much as two-fold greater than that reported in a 

cigarette-smoking control population.17,25 Several epidemiological studies have suggested that 

chronic bronchitis and emphysema may increase the risk of lung cancer.26-33 Other studies have 

suggested that the association may be subtype specific.34-36 

Inflammation has been suggested as the potential link between COPD and lung cancer. 

Pulmonary inflammation could play a role in cancer initiation or promotion. For example, 

inflammatory cell-derived reactive nitrogen or oxygen species may bind to DNA and thus lead to 

genomic alterations.37,38 The pulmonary environment of COPD, including ongoing tissue repair 

with enhanced cellular proliferation, could be conducive to both DNA mutation and 

angiogenesis. In addition, the pro-inflammatory cytokines released in this milieu elevate 

epithelial apoptosis resistance.37 

2.5 INFLAMMATION IN CANCER AND COPD 

Abnormal inflammation is related to both lung cancer and COPD.22 Inflammation is an essential 

component of immune-mediated protection against pathogens and tissue damage. Inflammation 
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is a complex process involving a variety of interactions between immune and non-immune cells 

via a group of chemical mediators including eicosanoids, cytokines, nitric oxide (NO), and 

growth factors. 39 

2.5.1 Inflammation and cancer 

There is a renaissance of research into the connection between inflammation and cancer.40-42 

Excessively and chronically produced pro-inflammatory mediators are hypothesized to 

contribute to tumor promotion and progression.41-44 Chronic inflammation that results from 

inadequate pathogen eradication, prolonged inflammatory signaling, and defects in anti-

inflammatory mechanisms can benefit tumor development.45 There is a high rate of cell turnover 

in an inflammatory state, and the microenvironment is often highly oxidative and nitrosative, 

leading to increased opportunities for DNA damage and mutation. Chronic inflammation can 

promote an environment that is conducive to carcinogenesis, and it is involved in tumor initiation, 

promotion, and progression.41,46-49 

The tumor microenvironment (TME) is created by the tumor and dominated by tumor-

induced interactions.50 In the TME, there is a subtle balance between antitumor immunity and 

pro-inflammatory activity, which originates from the tumor and weakens antitumor 

immunity.43,51 The tumor can not only manage to escape from the host immune system (tumor 

escape), but it can also modify the functions of infiltrating cells to create the microenvironment 

favorable to tumor progression.50 The net outcome of a persistent inflammatory 

microenvironment is enhanced tumor promotion, accelerated tumor progression, invasion of the 

surrounding tissues, angiogenesis, and often metastasis.41 
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Lung cancer is characterized by an aggressive clinical course and poor response to 

immunotherapy52, probably because of the ability of lung cancer cells to produce a wide variety 

of immunosuppressive factors that may allow their escape from immune recognition.53,54 

2.5.2 Inflammation and COPD 

The pathology of COPD is that of a chronic inflammatory process with tissue damage 

and repair processes.55 Tissue damage with airway wall remodeling and thickening, 

inflammation and fibrosis of the small airways appear to play an important role in patients with 

COPD. The accompanying emphysema leads to loss of lung elastic recoil, contributing to 

decreased expiratory flow. Many cytokines play a role in this condition. The cytokine profile in 

COPD patients includes lymphokines (e.g. IL6); chemotactic factors for neutrophils, eosinophils, 

monocytes/macrophages, and T cells; pro-inflammatory cytokines (e.g. IL1β); anti-inflammatory 

cytokines (e.g. IL10); and growth factors (e.g. TGFβ).55 

The degree of inflammation increases with the severity of COPD, which is classified by 

the Global Initiative for Chronic Obstructive Lung Disease (GOLD).56 

2.6 PATHWAYS TO LUNG CANCER AND COPD 

Cigarette smoking, the main risk factor for both lung cancer and COPD, causes profound 

pulmonary inflammation in smokers’ lungs. COPD is associated with abnormal inflammatory 

features. Pulmonary inflammation may also mechanistically related to lung cancer because 
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inflammatory cells secrete activated oxygen species, inflammatory mediators, and proteolytic 

enzymes that can both damage DNA and lead to increases in reparative cell proliferation rates.57 

Even though cigarette smoking is the main risk factor for both lung cancer and COPD, 

only a fraction of smokers develop lung cancer58 and / or COPD59. The majority of smokers 

develop neither lung cancer nor COPD. Why some smokers develop lung cancer, some develop 

COPD, some develop both diseases, and some stay disease free is currently unknown but genetic 

factors may play an important role. 

Despite the shared exposure to cigarette smoking, which generates ROS and causes 

inflammation in both lung cancer and COPD, the resulting biological processes differ 

considerably. Cancer is an anti-apoptotic process, and cancer cells are prone to invade tissues 

and are characterized by unlimited cell proliferation and sustained angiogenesis; whereas COPD 

is characterized by increased apoptosis, extracellular matrix degradation, ineffective tissue 

repair, and limited angiogenesis.24 

These different responses to the same exposure may be due to random somatic DNA 

mutations. However, it is also possible that inherited genetic factors determine the disease 

pathway taken. Single nucleotide polymorphisms (SNPs) are the most common form of human 

genetic variation and may contribute to individual susceptibility to lung cancer and COPD. Many 

studies have demonstrated that some variants affect either the expression or activities of 

particular proteins and therefore are associated with disease risk. 
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2.7 GENETIC VARIATION AND RISK OF LUNG CANCER AND COPD 

Existing data support the notion that genetic factors play a role in the development of both lung 

cancer60,61 and COPD.62 Several studies in different populations have shown evidence for a large 

genetic contribution to the variability in pulmonary function63 and for the familiar aggregation of 

lung cancer64,65 and COPD patients66. Lung cancer, like most cancers, often involves the 

overexpression of oncogenes or the inhibition of tumor suppressor genes. Cigarette smoke can 

cause damage to DNA; this initiates a process of cell protection by specific repair mechanisms. It 

has been hypothesized that defective processes in DNA repair efficacy and quality may be a 

cause of lung cancer.67 Recently, genowide-wide association studies (GWAS) have reported 

several specific susceptibility loci which are thought to impact on both smoking behavior and 

carcinogenesis.68,69 Severe α1-Antitrypsin deficiency (α1ATD) is a proven genetic determinant 

of COPD in a small proportion of the population.70 Genetic studies have provided evidence that 

polymorphisms in genes associated with inflammatory pathways can influence the risk of disease 

development.71-74 Where genetic variants are found to be associated with both lung cancer and 

COPD, it is possible that these variants confer susceptibility to both through overlapping 

pathogenic pathways, such as those underlying smoking-induced inflammation.75 Functionally 

relevant SNPs in inflammation-related genes may well modify the inflammatory response to 

cigarette smoking and, thus, risk of smoking-associated lung cancer or COPD. 

Previous genetic epidemiological studies have investigated associations between several 

inflammatory pathway gene polymorphisms and lung cancer or COPD risk, some of them have 

identified genetic variants that are associated with risk of lung cancer (Table 2-1) or COPD 

(Table 2-2).  
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Table 2-1. Evidence from Genetic Association Studies: Selected Significant Results between Inflammatory Pathway Gene 
Polymorphisms and Lung Cancer Risk. 

Studies Setting Cases/Controls Variant Level of Evidence 
Vogel et al., 
(2008) 

Demark Case-cohort: 
403:744 

IL1B -31T>C (rs1143627) 
IL10 -592C>A (rs1800872) 

IRR=1.51 (1.08-2.12), P=0.05a 

IRR=1.60 (1.13-2.27), P=0.001a 

Engels et al., 
(2007) 

Texas, USA 
(non-Hispanic Caucasians) 

1504/1684 IL1B 3954C>T (rs1143634) 
 

OR=1.27 (1.10-1.47), P=0.001a 
 

Hu et al., (2005) China 322/323 COX-2 8473T>C (rs5275) OR=0.64 (0.45-0.92)a 
Shih et al., (2005) Taiwan 154/205 IL10 -1082G>A (rs1800896) OR=5.98 (2.95-12.1)a 
Campa et al., 
(2004) 

Norway 250/214 COX-2 8473T>C (rs5275) TC vs. TT: OR=2.12 (1.25-3.59) 
CC vs. TT: OR=4.28 (2.44-7.49) 
Ptrend<0.0001 

Zienolddiny et al., 
(2004) 

Norway 251/271 IL1B -31T>C (rs1143627) 
 

CT vs.CC: OR=1.89 (1.03-3.46) 
TT vs. CC: OR=2.39 (1.29-4.44) 

a. Dominant model. 
 

Table 2-2. Evidence from Genetic Association Studies: Selected Significant Results between Inflammatory Pathway Gene 
Polymorphisms and COPD Risk. 

Studies Setting Cases/Controls Variant Level of Evidence 
He et al., (2009) USA (Caucasians) 389/420 IL6 -174C>G (rs1800795) 

 
C allele is associated with COPD 
(Padditive=0.01) 

Ito et al., (2008) Japan 70/99 TGFB1 C-509T (rs1800469) 
 

In emphysema, FEV1 after 
bronchodilator was significantly 
associated with the T allele 
(P=0.007). 

Su et al., (2005) China 84/97 TGFB1 C-509T (rs1800469) 
 

The frequency of T allele was 
significantly decreased in COPD 
compared with that in controls 
(P=0.008). 

Celedon et al., 
(2005) 

USA (Caucasians) 304/441 TGFB1 -10807G>A (rs2241712) 
 

Padditive=0.01 
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2.8 SUMMARY 

Lung cancer and COPD are both leading causes of morbidity and mortality in the U.S. and 

worldwide. Cigarette smoking is a well-established risk factor for both diseases. Cigarette smoke 

causes abnormal inflammatory response in those who smoke. Some changes persist long after 

smoking cessation. The risk of lung cancer remains elevated in former smokers and the 

progression of COPD continues in people who quit smoking. Identification of current or former 

smokers who are at the highest risk of developing lung cancer and/or COPD is a priority.  

Despite the shared risk factor of cigarette smoking, only a small proportion of smokers 

develop lung cancer and/or COPD. There are also studies showing the familiar aggregation of 

both diseases. These properties of lung cancer and COPD suggest genetic predispositions to 

disease development. Single nucleotide polymorphisms (SNPs) are the most common form of 

human genetic variation, and studies have demonstrated that some variants can influence either 

expression or activities of inflammatory pathway genes. Thus, it is possible that inflammatory 

pathway gene polymorphisms may play a role in lung cancer and/or COPD development.  

Previous genetic association studies of inflammatory pathway gene polymorphisms and 

lung cancer and/or COPD have yielded inconsistent results, partly due to small sample sizes and 

limited power, inadequate study design, genotyping with a limited number of informative SNPs, 

or population stratification. More studies are warranted to clarify the role of inflammatory 

pathway gene polymorphisms in lung cancer and/or COPD development.  
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Lung cancer and COPD are closely linked to cigarette smoking and inflammation. The 

investigation of these relationships will lead to a more comprehensive picture of the pulmonary 

environment at risk for the development of lung cancer and/or COPD, and eventually result in 

improved prevention strategies and treatments.  
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3.1 ABSTRACT 

Background Lung cancer is one of the leading causes of cancer death in the U.S. Cigarette 

smoking is the main risk factor for lung cancer; smoking induces inflammatory conditions in 

smokers’ lungs. Interestingly, less than 20% of smokers develop lung cancer in their lifetime, 

suggesting that genetic factors may play a role in an individual’s susceptibility to lung cancer. In 

this study, we evaluated associations between polymorphisms in three inflammation-related 

genes and lung cancer risk.  

Methods We evaluated associations of nine polymorphisms in IL1B, COX-2, and PPARγ with 

lung cancer risk in 484 cases and 866 controls from the Pittsburgh metro area. Multiple logistic 

regression models adjusting for age, sex, and smoking pack-years were used to evaluate the 

associations. We further performed stratified analyses and tested gene-environment interactions.  

Results Individuals carrying at least one T allele of IL1B rs1143634 had a lower risk of lung 

cancer (OR=0.73, 95%CI=0.56-0.95, P=0.02) than subjects with the CC genotype. In subgroup 

analyses, this protective effect remained significant in current smokers (OR=0.65, 95%CI=0.46-

0.93, P=0.02), men (OR=0.58, 95%CI=0.40-0.85, P=0.004), and people of 58 years and older 

(OR=0.65, 95%CI=0.48-0.88, P=0.006). For COX-2 rs689466, minor allele homozygotes (GG) 

had an increased risk of lung cancer (OR=2.34, 95%CI=1.15-5.77, P=0.02) compared to subjects 

with the AA genotype. PPARγ rs1801282 showed a significant interaction with sex (P for 

interaction=0.003). Minor allele carriers (CG/GG) had a decreased risk (OR=0.58, 95%CI=0.37-

0.91, P=0.02) of lung cancer among women, but were associated with a non-significant increased 

risk (OR=1.45, 95%CI=0.96-2.19) among men.  

Conclusions Our findings suggest that rs1143634 in IL1B, rs689466 in COX-2 and rs1801282 in 

PPARγ may be related to the risk of smoking-associated lung cancer. 
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Implications for public health The better understanding of genetic factors linking inflammation 

and carcinogenesis will be beneficial to the development of efficacious prevention strategies and 

therapies for lung cancer.  

3.2 INTRODUCTION 

Lung cancer is the leading cause of cancer mortality in both men and women in the United 

States. The disease is responsible for more deaths than prostate, colon, pancreas, and breast 

cancer combined. In 2010, about 222,520 people will be diagnosed with lung cancer and about 

157,300 people will die of lung cancer in the United States.1 The most well established risk 

factor for lung cancer is cigarette smoking.2 Compared with never smokers, smokers have 15-30 

fold increased risk of developing lung cancer.3,4 Cigarette smoke contains a high concentration of 

oxidants in addition to a number of known carcinogens.18 By generating reactive oxygen species 

(ROS), cigarette smoke induces an inflammatory state in the lung. The cigarette smoking-

induced inflammatory response produces a group of deregulated cells, cytokines, and growth 

factors that are favorable to the development of lung cancer.21 There is a renaissance of research 

into the connection between inflammation and cancer.40-42 Chronic inflammation is a cofactor in 

carcinogenesis.41 The microenvironment of lung tumors and surrounding stromal tissue is 

characterized by an increased number of inflammatory cells and higher levels of pro-

inflammatory cytokines. Lungs from smokers show an elevated number of macrophages in the 

alveoli and respiratory bronchiole and a higher level of pro-inflammatory cytokines.40,76-78  

Recent data suggest that cigarette smoke stimulates airway epithelial cells and immune 

cells to release pro-inflammatory cytokines, such as interleukin-1β (IL1B), that lead to up-
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regulation of various inflammation-related genes.76,77,79 IL1B is a pro-inflammatory cytokine 

mainly produced by blood monocytes and tissue macrophages and has been implicated in 

mediating both acute and chronic inflammation. IL1B has both pro- and antiapoptotic effects.80 

Lung epithelial cells produce, as well as respond to IL1B. IL1B triggers a cascade of 

inflammation reactions through the induction of inflammation-related genes and ROS. This is 

known to result in activation of the nuclear factor-κB (NF-κB) signaling pathway, leading to up-

regulation of various inflammation-related genes, including cyclooxygenase-2 (COX-2).81  

COX-2 (PTGS2), also known as prostaglandin G/H synthase-2, is an inducible enzyme 

that catalyzes the rate-limiting step in the production of prostaglandins and plays a key role in 

inflammation.82 Several studies reported that use of non-steroidal anti-inflammatory drugs 

(NSAIDs), of which COX-2 is a major target, was associated with a reduced risk of lung 

cancer83-86, pointing to a chemopreventive effect of NSAIDs.  

The COX-2 gene is on chromosome 1q25.2-25.3, 8.3 kb in size, and has 10 exons.87 

COX-2 is rapidly induced in response to cytokines, growth factors and tumor promoters.82,88 

Expression and activity of COX-2 is thought to contribute to tumor promotion and 

carcinogenesis through stimulation of cell proliferation, inhibition of apoptosis, and promotion of 

angiogenesis and invasiveness.89,90 The suppression of apoptosis associated with COX-2 over-

expression may be an important factor in tumorigenesis. In vitro experiments indicate that 

modulation of COX-2 activity leads to altered apoptotic propensity.91,92 Two products of the 

COX-2 pathway, prostaglandin-E1 (PGE1) and prostaglandin-E2 (PGE2), are reported to 

promote angiogenesis.93 Moreover, COX-2 transfected cells induce expression of vascular 

endothelial growth factor (VEGF), one of the main regulators of angiogenesis.94 COX-2 can 

mediate inhibition of anti-tumor immunity, thus indirectly affects the metastatic potential of 
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tumors.95,96  In addition, several studies support the idea that COX-2 may be involved in matrix 

metalloproteinases (MMP) production and secretion.97-100  

On the other hand, NSAID metabolites which lack COX-2 inhibitory activity still retain 

their chemopreventive potential, thus indicating that COX-2 is not the only target of anti-

inflammatory drugs. Several NSAIDs, for example, can activate peroxisome proliferator-

activated receptor gamma (PPARγ), and lead to inhibition of lung cancer cell growth.101-103 

PPARγ influences inflammatory gene expression, cell division, apoptosis, invasion, release of 

proangiogenic cytokines, and differentiation in many cancer types including lung cancer.101,104-106 

PPARγ is required for normal development of the lung.106 PPARγ regulates cell growth by 

inducing differentiation and apoptosis.101,102 These effects are mediated through inhibition of 

transcription factors, including NF-κB.107 Forced over-expression of PPARγ in a non small cell 

lung cancer (NSCLC) cell line model inhibited the expression of COX-2 protein and promoter 

activity, resulting in decreased PGE2 production. One possible explanation of the inhibition of 

COX-2 expression is the increased activity of the phosphatase and tensin homologue (PTEN) 

causing a decrease in the level of phosphor-AKT and the resulting inhibition of NF-κB.103 These 

properties have prompted extensive research on PPARγ in cancer treatment and prevention.  

The relationship between IL1B, COX-2 and PPARγ genes is shown in the schematic 

figure 3.1.  

Even though cigarette smoking is the main risk factor for lung cancer, only a fraction of 

smokers develop lung cancer during their lifetime. This suggests that genetic variation may play 

a role in lung cancer development. Functionally relevant single nucleotide polymorphisms 

(SNPs) in inflammation-related pathway genes may modify the inflammatory response to 

cigarette smoking and, thus, an individual’s susceptibility to lung cancer. In the present case-
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control analysis, we evaluated associations between lung cancer and nine selected 

polymorphisms in three genes involved in the inflammatory response.  

3.3 MATERIALS AND METHODS 

3.3.1 Study Population  

This study utilized data and specimens from the University of Pittsburgh Cancer Institute (UPCI) 

Specialized Program of Research Excellence (SPORE) in Lung Cancer.  

Cases were newly diagnosed lung cancer patients treated by surgery between 1990 and 

2008 at a University of Pittsburgh Medical Center hospital (Pittsburgh, PA). Eligibility criteria 

included: 1) current or ex-cigarette smoker, 2) cumulative cigarette dose exposure ≥10 pack -

years, 3) 45-85 years old at time of lung cancer diagnosis, 4) entry within 365 days of lung 

cancer diagnosis, and 5) pathologically verified lung cancer diagnosis (excluding carcinoid). 

These selection procedures identified 923 patients, including 588 (63.7% of 923) with DNA 

available and 567 (96.4% of 588) with genotype call rates >90%.  

The control series are a random sample from a restricted set of participants in the 

Pittsburgh Lung Screening Study (PLuSS), a helical computed tomography (CT) lung cancer 

screening study.34 Between 2002 and 2005, PLuSS enrolled 50-79 year-old current and ex-

cigarette smokers of at least one-half pack/day for at least 25 years. Using self-report, PLuSS 

excluded individuals who: 1) quit smoking more than 10 years earlier, 2) had a history of lung 

cancer, or 3) had a chest CT scan within one year of enrollment. Selection as a control was 

restricted to the N=3,463 (92.2% of all PLuSS enrollees) white or black race CT-screened PLuSS 
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participants with buffy coat or whole blood available and no interval lung cancer diagnosis (as of 

9/10/2008). A simple random sample of size n=1000 was selected, of which 929 (92.9%) 

samples had DNA available for the current study, and resulted in 919 (98.9% of 929) with 

genotype call rates >90%. 

Information on smoking history was extracted from medical records for cases and from 

written questionnaires for controls.  

The study was approved by the institutional review board (IRB) at the University of 

Pittsburgh. All participants provided written informed consent. 

3.3.2 SNP Selection and Genotyping  

Ten single nucleotide polymorphisms (SNPs) in three genes (IL1B, COX-2, and PPARγ) were 

genotyped. SNPs meeting the following criteria were given priority: (1) known and putative 

functional SNPs located in the promoter, untranslated region (UTR), or coding region of the 

gene; (2) previous report of an association with lung cancer or another cancer, or an 

inflammatory disorder. In addition, we selected tag SNPs for COX-2 using data from the 

SeattleSNPs (http://pga.gs.washington.edu/), PGA-European-Panel. Using the online program 

LDSelect108,109, we identified SNPs in the region including 5 kb up- and downstream of COX-2 

with minor allele frequencies (MAF) ≥5% and pairwise r2 with untyped SNPs≥0.8.  We forced 

the inclusion of three SNPs: rs5275, the most common COX-2 polymorphism in Caucasians; 

rs20417 and rs689466, which were reported to be associated with inflammation.110  

Six SNPs in COX-2 (rs5275, rs5277, rs4648261, rs20417, rs689466, rs2745559), three 

SNPs in IL1B (rs1143634, rs1143633, rs1143627) and one SNP in PPARγ (rs1801282) were 

selected for genotyping. Information regarding each SNP was presented in Table 3-1. 

http://pga.gs.washington.edu/�
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Genomic DNA was extracted from whole blood samples using standard salt-based 

methods. Genotyping of 588 cases and 929 controls was performed at the University of 

Pittsburgh Genomics and Proteomics Core Laboratories (Pittsburgh, PA). All SNPs were 

genotyped using MassARRAY® iPLEX Gold (Sequenom, Inc., San Diego, CA); the SNP 

specific and mass extend oligonucleotides, and assays were designed using Sequenom RealSNP 

(www.realsnp.com) and MassARRAY Assay Design version 3.1 (Sequenom, Inc., San Diego, 

CA). Genotyping was performed for cases and controls together; laboratory technicians were 

blinded to case-control status. Fifty duplicate samples were included to assess laboratory 

reliability. The duplicates were 100% concordant. 

More than 95% of all DNA samples were successfully genotyped for the 10 SNPs. Of the 

1517 samples genotyped, 31 samples (21 cases and 10 controls) failed (call rate<90%), leaving 

567 cases and 919 controls for analyses. The present study includes only Caucasians, the major 

racial/ethnic subgroup of subjects. 83 cases and 53 controls of black or unknown race were 

excluded. The study population consisted of 484 lung cancer cases and 866 controls. 

3.3.3 Statistical Analysis  

Participant characteristics in the cases and controls were compared by Wilcoxon rank sum test 

for continuous variables and Chi-square test for categorical variables. 

Genotype and allele frequencies were calculated, observed genotype frequencies in the 

control population were tested for deviation from Hardy-Weinberg equilibrium (HWE) with the 

exact test.  

Odds ratios (ORs) for lung cancer risk and the corresponding 95% confidence intervals 

(CIs) were calculated for each SNP using multiple logistic regression models, adjusting for age 

http://www.realsnp.com/�
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(as a continuous variable), sex (male vs. female), and cumulative tobacco exposure (pack-years 

as a continuous variable). We used the genotype-based model for individual SNPs. Common 

allele homozygotes (0 minor alleles) were used as the reference group and the genotype variable 

had three levels (common allele homozygotes, heterozygotes [1 minor allele], rare allele 

homozygotes [2 minor alleles]). 

Linear trend and per allele ORs were assessed using numerical scores assigned to the 

ordered categories (i.e., 0 to the category of major allele homozygotes, 1 to the category of 

heterozygotes, and 2 to the category of minor allele homozygotes) as continuous variable in the 

model.  

In addition, we also tested the dominant model because the number of rare-allele 

homozygotes was relatively small. We combined heterozygotes and rare-allele homozygotes in 

the logistic regression analyses; common-allele homozygotes were used as the reference group.   

We tested interactions with cross product interaction terms of each SNP and 

environmental factors such as sex (male vs. female), smoking status (current vs. former), and 

continuous age and pack-years under the dominant model. For stratified analyses, we created an 

indicator variable of age greater or less than 58 years old (the median in controls), sex (male vs. 

female) and smoking status (current vs. former smoker), pack-years (in tertiles, cut-points 37.5 

and 57.5 based on the distribution in controls). Stratum-specific ORs were obtained under the 

dominant model.  

We repeated the analysis restricting our cases to NSCLC only. We then performed 

subgroup analyses of adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two 

predominant histological types, comparing each subgroup of cases against the entire group of 
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controls. We also performed case-case comparison, comparing SCC against ADC, to see if 

different genes are involved in the etiology of developing lung cancer subtypes. 

Haplotype frequencies and associations were calculated using PLINK (version 1.07) that 

uses the expectation maximization (EM) algorithm. 

All significance tests were two sided; P values <0.05 were considered statistically 

significant. Data analyses were conducted using SAS software (version 9.1.3; SAS Institute, 

Cary, NC) and PLINK (version1.07).  

3.4 RESULTS 

3.4.1 Study Subjects 

Baseline characteristics of the study population are presented in Table 3-2. Sex did not differ 

significantly between cases and controls (P=0.07). Cases were significantly older (median=67 

years, inter quartile range [IQR] =61-74 years) than controls (median=58 years, IQR=54-63 

years) (P<0.0001), and also reported greater cumulative tobacco exposure (median 50 vs. 47.5 

pack-years, P=0.02). The proportion of current smokers among the controls was significantly 

higher than among the cases (59.1% vs. 48.9%, P=0.0004). The most common histological types 

of lung cancer were adenocarcinoma (n=230, 47.5%), followed by squamous cell carcinoma 

(n=173, 35.7%). Most NSCLC presented at the early stage (47.2% stage I, 16.1% stage II). 
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3.4.2 Association of Lung Cancer Risk with Genetic Polymorphisms 

Two SNPs (rs20417, rs689466) were out of HWE in controls (P<0.0001 and P=0.01, 

respectively) (Table 3-3). One SNP, rs20417, deviated significantly from HWE (P<0.0001), 

with no heterozygotes at all. In addition, the minor allele frequency observed (2.7%) was much 

lower than expected (18.1%) in populations of European ancestry (CEU) based on information in 

the International HapMap Project database, suggesting potential genotyping issues. Thus, 

rs20417 was dropped from the analysis. Another SNP, rs689466, had a P value of 0.01; however, 

examination of the cluster plot for this SNP did not reveal any unusual patterns, therefore this 

SNP was included in the subsequent analyses.   

The genotype distributions for each SNP among the cases and controls, and the genotype-

based model and trend test results are shown in Table 3-4. There were no minor allele rs4648261 

homozygote among the cases and only one in controls; therefore, for this SNP, the heterozygotes 

(GA) and minor allele homozygotes (AA) were combined. For SNP rs689466 in COX-2, we 

observed that the minor allele homozygotes (GG genotype) had a significantly increased risk of 

lung cancer (OR=2.34, 95%CI=1.15-5.77) compared to common allele homozygotes (AA 

genotype). Additionally, rs1143634 heterozygotes had a significantly decreased risk of lung 

cancer compared to rs1143634 common allele homozygotes (CT vs. CC: OR=0.76, 

95%CI=0.59-0.96). This association continued to be significant after adjusting for age, sex, and 

pack-years. However, test for trend was not significant for rs1143634. All other SNPs showed no 

significant association with lung cancer risk. (Table 3-4) 

The results under the dominant model are presented in Table 3-5. For IL1B rs1143634, a 

significant decreased risk of lung cancer was observed for carriers of at least one minor allele 
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compared to common allele homozygotes (CT+TT vs. CC: OR=0.73, 95%CI=0.56-0.95). No 

other significant association was observed.  

3.4.3 Subgroup Analysis and Interaction Results 

The results for NSCLC-only were similar to that of the main analysis (Appendix A Table 6-1). 

For histological subtypes, no significant associations between any of the SNPs and ADC 

(Appendix A Table 6-2) or SCC (Appendix A Table 6-3) risk were observed.  

Because of the different features of lung cancer subtypes, we performed subgroup 

analysis of ADC and SCC. ADC is located mostly in the peripheral part of the lung, while SCC 

is located mostly in the central part of the lung. It is postulated that inflammation and irritation, 

particularly from smoke, might exercise different biological features in the central and peripheral 

part of the lung. It may thus be hypothesized that tobacco-induced inflammation is differentially 

associated with ADC and SCC, and that different inflammatory genes are involved in the 

process. However, no significant associations were observed with the case-case comparison 

(SCC vs. ADC). (Appendix A Table 6-4) 

IL1B rs1143634 showed significant associations with lung cancer risk within strata of 

smoking status, sex and binary age. Compared to common allele homozygotes, subjects with at 

least one rare allele had a decreased risk of lung cancer among current smokers (OR=0.65, 

95%CI=0.46-0.93), men (OR=0.58, 95%CI=0.40-0.85), and older (≥58 years) people (OR=0.65, 

95%CI=0.48-0.88). However, there was no significant association between this SNP and lung 

cancer risk within each smoking (tertile pack-years) subgroup. No significant interaction 

between this SNP and any variable was observed (Table 3-6).  
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For SNP rs2745559 in COX-2, evaluating associations with pack-year levels as the 

smoking metric showed that among mild smokers (subjects who smoked <37.5 pack-years) 

subjects with at least one rare allele had a significantly decreased risk of lung cancer compared to 

common allele homozygotes (OR=0.57, 95%CI=0.33-0.99). The overall packyear-genotype 

interaction was not significant (Pinteraction=0.98) (Table 3-6).  

There was a significant interaction between PPARγ rs1801282 and sex (Pinteraction=0.003). 

Female minor allele carriers had a reduced risk of lung cancer (OR=0.58, 95%CI=0.37-0.91), 

while male minor allele carriers were associated with a non-significant increased risk of the 

disease (OR=1.04, 95%CI=0.96-2.19).  No other gene-environment interaction was observed. 

(Table 3-6) 

3.4.4 Haplotype Analysis Results 

In the haplotype analysis, we identified two haplotype block sets, rs5275-rs5277-rs689466-

rs2745559 in COX-2, and rs1143634-rs1143633 in IL1B. For the COX-2 block, TGAA haplotype 

showed a borderline significant reduced risk (OR=0.81, P=0.07) of lung cancer compared to all 

other haplotypes. No IL1B haplotypes showed significant association with lung cancer. Overall, 

the global association was not significant for either block (Table 3-7).  

3.5 DISCUSSION 

In the present case-control study, we evaluated the associations between nine polymorphisms in 

three inflammation-related genes (IL1B, COX-2, and PPARγ) and lung cancer risk. Our study 
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showed that a coding-synonymous polymorphism in IL1B (rs1143634) was significantly 

associated with risk of lung cancer. Although rs1143634 is a coding-synonymous SNP in exon 5 

of IL1B, an allelic dosage effect on secretory capacity was observed after lipopolysaccharide 

stimulation.111 In addition, in vitro studies have shown that the TT genotype of rs1143634 up-

regulates production of IL1B levels.111,112 In the current study, we found that the rare allele (T) of 

rs1143634 was associated with a decreased risk of lung cancer. Several other studies have 

previously investigated IL1B SNP rs1143634 and lung cancer risk in different populations. In a 

study conducted in Boston, Ter-minassian et al.113 did not observe an association between 

rs1143634 and NSCLC risk in the overall Caucasian population (2150 NSCLC cases and 1492 

controls). However, in the subgroup analysis, they reported TT compared with CC genotype 

conferred a significant risk among former smokers (OR=1.74, 95%CI=1.07-2.85) and among 

men (OR=1.80, 95%CI=1.04-3.11). In another study conducted by Engels et al.71 in Houston, 

CT+TT genotypes were reported to be associated with an increased risk of lung cancer 

(OR=1.27, 95%CI=1.10-1.47) compared with CC genotype in Caucasians (1538 cases and 1705 

controls). In a study conducted in a Japanese population of 462 cases and 379 controls, Kiyohara 

et al.114 reported CT+TT genotypes conferred an increased risk of lung cancer in the unadjusted 

analysis (OR=1.53, 95%CI=1.03-2.27), the association was, however, attenuated after 

adjustment for smoking and other confounding variables (OR=1.45, 95%CI=0.93-2.26). They 

subsequently observed a modifying effect of ever smoking on genotype and lung cancer 

association (attributable proportion due to interaction: OR=0.45, 95%CI=0.08-0.83, P=0.02). 

The opposite finding in our study may be due to chance, or it may reflect true biological 

mechanisms and/ or population differences. Our population consists of smokers only, with a 
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relatively intense exposure to cigarette smoking. IL1B has both pro- and anti-apoptotic effects, 

thus it may play a different role in heavy smokers with prominent inflammation in their lungs.  

Another extensively studied IL1B polymorphism is rs1143627 in the promoter region at 

position -31 of the gene. rs1143627 is a TATA-box polymorphism. It has been shown that this 

SNP can affect DNA-protein interactions in vitro, hence modulating the expression of IL1B 

gene.115 Location of a C at this site will disrupt the TATA-box, which may lead to disruption of 

DNA-protein interactions or may change the affinity of regulatory proteins in binding to this 

sequence. As a result, it is likely that presence of a C allele at this site may reduce or abolish the 

TATA-box characteristic of the IL1B gene, thus lead to a reduced inflammatory reaction. 

However, we did not observe any association of this polymorphism with lung cancer risk in the 

current study. Similar to our findings, Engels et al.71 did not find an association in their 

Caucasian population. Another study conducted by Campa et al.81 in central and Eastern Europe 

also reported non-significant results. On the contrary, a nested case-cohort study116 (403 cases, 

744 sub-cohort) within the Danish “Diet, Cancer, and Health” cohort observed that minor allele 

carriers (TC+CC) were at 1.51-fold higher risk of lung cancer (95%CI=1.08-2.12) than major 

allele homozygotes (TT). They also observed an interaction between rs1143627 and NSAID use 

(Pinteraction=0.02). A case-control study conducted in 251 NSCLC and 272 control subjects in 

Norway72 reported that carriers of the T allele were associated with a higher risk of NSCLC, with 

OR of 1.89 (95%CI=1.03-3.46) for heterozygotes (CT) and OR of 2.39 (95%CI=1.29-4.44) for 

homozygotes (TT).  

COXs catalyze the formation of prostaglandins from arachidonic acid. SNPs which 

influence the quantity of prostaglandins produced could be associated with inflammatory 
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diseases and tumor development.117 SNPs in the gene may alter the COX-2 enzyme 

conformation, and therefore alter enzymatic function.118  

COX-2 promoter region contains multiple regulatory elements, such as a NF-κB binding 

site. The regulation of COX-2 gene expression could involve complex interaction among these 

factors.119 It has been reported that the promoter polymorphism COX-2 rs689466 (A1195G) can 

modify the COX-2 transcription levels.110  In vivo studies of esophageal tissues and in luciferase 

reporter assays performed in HeLa cells have shown that the A allele of COX-2 rs689466 

(A1195G) had a much higher transcriptional level than the G allele.110 In this study, we observed 

an increased risk of lung cancer among the minor allele homozygotes (AA). However, because 

the number of minor allele homozygotes is relatively small in the current study, this finding 

needs to be confirmed in the future studies. There is one study in Taiwan120 (358 cases and 716 

controls) that also investigated this SNP, with non-significant results (P=0.82 for genotypic 

model and P=0.52 for allelic association).  

It has been shown that the 3’UTR region of COX-2 is an important determinant of the 

mRNA stability and therefore of the enzyme level.121 The 3’UTR region of COX-2 includes 

highly conserved adenosine- and uridine-rich elements that are constituted of the Shaw-Kamens 

sequence (AUUUA), which is also known as an AU-rich element. Elements in the 3’UTR region 

have an important role in polyadenylation, nuclear export, degradation, stabilization, and 

translation of the transcripts. Therefore, it is reasonable to hypothesize that the COX-2 rs5275 

(T8473C) polymorphism located within the functional region of 3’UTR could partly reduce 

mRNA stability and expression through changing the binding affinity of regulatory elements or 

by modifying the efficiency of polyadenylation signals. This could lead to decreased cellular 

COX-2 activity and reduced inflammatory response, angiogenesis, and tumor growth.122,123 



 

30 

However, we didn’t observe any significant association between rs5275 and lung cancer risk in 

our population. The Danish case-cohort study116 discovered an interaction between rs5275 and 

smoking status, non-smoking minor allele carriers (TC+CC) were at 5.75-fold (95%CI=1.25-

26.43) higher risk of lung cancer compared to major allele homozygotes (TT). In a case-control 

study conducted in 250 case and 214 control subjects of Caucasian origin from the Norwegian 

population, Campa et al.124 found that the minor allele (C) of rs5275 was associated with a 

significantly increased risk of lung cancer, with OR of 2.12 (95%CI=1.25-3.59) for 

heterozygotes (TC) and 4.28 (95%CI=2.44-7.49) for homozygotes (CC) (Ptrend<0.0001).  On the 

contrary, studies in China125 and South Korea126 showed TC+CC genotypes were associated with 

significantly reduced risk of lung cancer. However, both Engels et al.71 and Campa et al.81 

reported non-significant results from their studies of Caucasians and central-eastern European 

populations, respectively. The study conducted in Taiwan120 didn’t find any association between 

this polymorphism and lung cancer risk either. 

The PPARγ rs1801282 (Pro12Ala) is a coding region SNP. PPARγ has an anti-

inflammatory action, and in vitro studies have reported the variant allele (G) of the rs1801282 

polymorphism is related to less transcriptional activation of target genes.127 Therefore, it is 

expected that the minor allele could be associated with an increased lung cancer risk. We 

observed that minor allele carriers had a reduced risk of lung cancer among females, but were at 

a non-significant increased risk among males, with a significant interaction with sex (P 

interaction=0.003). This may be due to chance alone, or may indicate a true sex difference. Sex 

differences have not been found often for most polymorphism-associated lung cancer studies. 

However, one would expect to observe such differences if the mechanism underlying the 

function of the polymorphic site is affected by a sex-related phenomenon. PPARγ is a nuclear 
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hormone receptor, and a regulator of adipocyte differentiation. The observation that the effect 

was detectable only in women may be explained by hormonal factors. It is known that hormones 

can have a role in the carcinogenesis process in many tissues. Genetic polymorphisms may play 

an important role in mediating the hormonal effects. Furthermore, it has also been shown that 

NSAIDs could modify PPARγ activity.101-103 In the Danish case-cohort study116, Vogel et al. 

found a strong interaction between rs1801282 and NSAID use in relation to lung cancer risk (P 

interaction=0.00009). Among non-users, minor allele carriers (CG+GG) were at lowered risk of lung 

cancer compared to homozygous major allele (C) carriers (incidence rate ratio [IRR] =0.62, 

95%CI=0.39-0.99). Among NSAID-users, major allele homozygotes (CC) had a non-significant 

reduced risk of lung cancer (IRR=0.73, 95%CI=0.48-1.11), while minor allele carriers (CG+GG) 

had a non-significant higher risk of lung cancer (IRR=1.27, 95%CI=0.71-2.27), compared to 

non-users with the CC genotype.  

Strengths of our study include that we had a fairly homogenous Caucasian population 

from western Pennsylvania, and population stratification is not likely to be a concern. Certain 

gene-environment interactions were tested. We characterized the COX-2 variation across a large 

area of the gene. Our analysis encompassed more than 80% of the common genetic variants in 

the COX-2 gene. As variation in the flanking region of COX-2 is thought to contribute to gene 

function110,123,128, investigations including these regions are important.  

Like any other study, there are limitations to our study. The present study was not able to 

evaluate the effect of NSAIDs on polymorphism and lung cancer associations, since we didn’t 

collect NSAIDs information. Previous studies116,129  suggest that NSAIDs use may modify risk of 

cancer differently depending on the genotype. As NSAIDs bind with COX-2, it is possible that 
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polymorphisms in COX-2 could alter an individual’s response to NSAIDs and thus modify the 

chemopreventive effect of NSAIDs in lung cancer.  

Second, as for most complex diseases, common genetic polymorphisms may only confer 

a modest effect on disease risk. Thus, the power to detect such associations was limited at the 

present study, especially in the subgroup analyses and tests for interaction. It will be important to 

follow-up on these findings in future studies with larger sample sizes. In our study population 

and with 80% power using log-additive model, for SNPs with MAF=0.05 we can detect ORs 

≥1.6, for SNPs with MAF=0.10 we can detect ORs ≥1.4, for SNPs with MAF=0.25 we can 

detect ORs >1.3.  

At this time, very little is known about the exact function of these variants, and we only 

speculate about their biologic roles. Our understanding of other factors influencing gene 

expression is also limited. It may be that these genetic variations and other factors such as 

epigenetic changes interact with each other in disease development, and that to understand this 

process, we need to know more about those dimensions as well.  

Despite the many advances made in diagnostic and treatment strategies, lung cancer 

remains the leading cause of cancer-related mortality in the United States and its five year 

survival rate is still about 16%.1 This emphasizes the need for novel strategies for early 

detection, prevention, and treatment of lung cancer. A large body of evidence indicates that 

increased PGE2 production contributes to tumorigenesis. COX-2 over-expression is frequently 

observed in lung cancers, and the accompanying increased proliferation, invasion, angiogenesis, 

and resistance to apoptosis have been attributed in part to elevated PGE2 production in the 

vicinity of the tumor. Thus, COX-2 and its related signaling pathways represent potential targets 

for lung cancer chemoprevention and therapy.  
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Further study of the function of these polymorphisms is warranted to better understand 

what may be an important mechanism for lung carcinogenesis. Better understanding of the role 

of inflammation in lung carcinogenesis has potential to inform prevention strategies.  
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3.6 TABLES AND FIGURES 

 

Table 3-1. SNP Information. 

Gene rs Number Chr Chr Position* Allele Location and Presumed Function 

COX-2/PTGS2 rs5275           1q25.2-q25.3 186643058 T-->C 
exon10, 3'UTR, C allele may decrease mRNA 
stability, thereby reducing inflammation 
response 

COX-2/PTGS2 rs5277            1q25.2-q25.3 186648197 G-->C exon3, coding-synonymous, V102V 

COX-2/PTGS2 rs4648261         1q25.2-q25.3 186649004 G-->A intron2  

COX-2/PTGS2 rs20417          1q25.2-q25.3 186650321 G-->C promoter region 

COX-2/PTGS2 rs689466          1q25.2-q25.3 186650751 A-->G promoter region  

COX-2/PTGS2 rs2745559         1q25.2-q25.3 186652002 C-->A promoter region 

IL1B rs1143634        2q14 113590390 C-->T exon5, coding-synonymous, F105F 

IL1B rs1143633        2q14 113590467 G-->A intron4 

IL1B rs1143627        2q14 113594387 T-->C 

promoter region, T/C transversion is 31bp 
upstream of the transcription start site and the 
presence of the C allele causes disruption of a 
TATA box 

PPARG rs1801282         3p25 12393125 C-->G coding-nonsynonymous, missense; Pro12Ala 

*dbSNP Chromosome Report, GRCh37 Sequence  
Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National 
Library of Medicine. (dbSNP Build ID: {build ID). Available from: http://www.ncbi.nlm.nih.gov/SNP/.

http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000001.10?report=graph&v=186642558:186643558&content=5&m=186643058!&mn=rs5275&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000001.10?report=graph&v=186647697:186648697&content=5&m=186648197!&mn=rs5277&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000001.10?report=graph&v=186648504:186649504&content=5&m=186649004!&mn=rs4648261&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000001.10?report=graph&v=186649821:186650821&content=5&m=186650321!&mn=rs20417&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000001.10?report=graph&v=186650251:186651251&content=5&m=186650751!&mn=rs689466&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000001.10?report=graph&v=186651502:186652502&content=5&m=186652002!&mn=rs2745559&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000002.11?report=graph&v=113589890:113590890&content=5&m=113590390!&mn=rs1143634&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000002.11?report=graph&v=113589967:113590967&content=5&m=113590467!&mn=rs1143633&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000002.11?report=graph&v=113593887:113594887&content=5&m=113594387!&mn=rs1143627&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000003.11?report=graph&v=12392625:12393625&content=5&m=12393125!&mn=rs1801282&dispmax=1&currpage=1�
http://www.ncbi.nlm.nih.gov/SNP/�
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Table 3-2. Population Characteristics. 

Characteristic Cases (N=484) Controls (N=866) P* 
Male, n(%) 266 (55.0) 432 (49.9) 0.07 
Age (y), median (IQR) 67 (61, 74) 58 (54, 63) <0.0001 
Age (y), n (%)   <0.0001 
 <50 10 (2.1) 1 (0.1)  
50-59 83 (17.2) 516 (59.6)  
60-64 87 (18.0) 175 (20.2)  
65-69 112 (23.1) 103 (11.9)  
70+ 192 (39.7) 71 (8.2)  

Smoke Status    
Current 224 (48.9) 511 (59.1) 0.0004 
Former 234 (51.1) 354 (40.9)  

Smoking intensity duration, Pack-
years, median (IQR) 50.00 (35.00, 75.00) 47.50 (33.00, 63.00) 0.02 

Smoking intensity duration, Pack-
years, n(%)   <0.0001 

 <30 77 (15.9) 161 (18.6)  
30-44 109 (22.5) 228 (26.3)  
45-59 112 (23.1) 228 (26.3)  
60-74 64 (13.2) 135 (15.6)  
75+ 122 (25.2) 114 (13.2)  

Lung cancer histology, n(%)    
Adenocarcinoma  230 (47.5) --  
Squamous cell carcinoma  173 (35.7) --  
Large-cell carcinoma  11 (2.3) --  
Other/unspecified non-small cell 
carcinoma  42 (8.7) --  

Small-cell carcinoma  14 (2.9) --  
Neuroendocrine 9 (1.9) --  
Other/unspecified 5 (1.0) --  

Lung cancer stage, n(%)†    
I 217 (47.2) --  
II 74 (16.1) --  
III 144 (31.3) --  
IV 25 (5.4) --  

Abbreviation: IQR, interquartile range.   
* P values are derived by х2 test, except for age and pack-years, where the Wilcoxon rank sum test was 
used. 
† Stage is limited to non-small cell carcinoma     
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Table 3-3. Allele Frequencies and HWE in Controls and the International HapMap Project (CEU Population). 

Gene rs Number N Allele Allele 
Counts 

Allele Frequencies, 
% 

HapMap CEU 
Frequencies, % 

HWE P in controls 
(Exact Test) 

COX-2 rs5275            860 T 1153 67.0 62.9 0.94 
   C 567 33.0 37.1  

COX-2 rs5277            865 G 1458 84.3 79.3 0.92 
   C 272 15.7 20.7  

COX-2 rs4648261         866 G 1691 97.6 94.2 0.45 
   A 41 2.4 5.8  

COX-2 rs689466          866 A 1437 83.0 85.6 0.01 
   G 295 17.0 14.4  

COX-2 rs2745559         862 C 1381 80.1 86.4 0.54 
   A 343 19.9 13.6  

IL1B rs1143634         866 C 1321 76.3 77.7 0.96 
   T 411 23.6 22.3  

IL1B rs1143633         863 G 1098 63.6 60.3 0.53 
   A 628 36.4 39.7  

IL1B rs1143627         866 T 1147 66.2 63.3 0.74 
   C 585 33.8 36.7  

PPARG rs1801282         866 C 1489 86.0 92.4 0.27 
   G 243 14.0 7.6  
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Table 3-4. Unadjusted and Adjusted Results of SNP and Lung Cancer Associations: Genotype-based Model and Trend Test. 

   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype Cases Controls OR (95% CI) P OR (95% CI)* P* 
COX-2 rs5275            T/T 213 (45.4) 386 (44.9) 1.00 (reference)  1.00 (reference)  

  T/C 199 (42.4) 381 (44.3) 0.95 (0.75, 1.20) 0.65 0.99 (0.75, 1.30) 0.93 
  C/C 57 (12.2) 93 (10.8) 1.11 (0.77, 1.61) 0.58 0.94 (0.62, 1.44) 0.78 
  Trenda   1.02 (0.86, 1.20) 0.85 0.98 (0.81, 1.18) 0.80 

COX-2 rs5277            G/G 342 (71.0) 614 (71.0) 1.00 (reference)  1.00 (reference)  
  G/C 130 (26.8) 230 (26.6) 1.02 (0.79, 1.31) 0.91 1.17 (0.88, 1.56) 0.29 
  C/C 10 (2.1) 21 (2.4) 0.86 (0.40, 1.84) 0.69 1.15 (0.49, 2.67) 0.75 
  Trenda   0.99 (0.80, 1.23) 0.93 1.15 (0.90, 1.48) 0.26 

COX-2 rs4648261         G/G 453 (93.6) 826 (95.4) 1.00 (reference)  1.00 (reference)  
  G/A+A/A† 31 (6.4) 40 (4.6) 1.45 (0.89, 2.36) 0.13 1.47 (0.84, 2.55) 0.18 
  Trenda   1.32 (0.82, 2.13) 0.25 1.37 (0.80, 2.34) 0.25 

COX-2 rs689466          A/A 321 (66.5) 585 (67.6) 1.00 (reference)  1.00 (reference)  
  A/G 144 (29.8) 267 (30.8) 0.98 (0.77, 1.26) 0.89 0.93 (0.70, 1.22) 0.60 
  G/G 18 (3.7) 14 (1.6) 2.34 (1.15, 5.77) 0.02 2.15 (0.99, 4.67) 0.05 
  Trenda   1.13 (0.92, 1.40) 0.24 1.08 (0.86, 1.37) 0.50 

COX-2 rs2745559         C/C 330 (68.6) 556 (64.5) 1.00 (reference)  1.00 (reference)  
  C/A 136 (28.3) 269 (31.2) 0.85 (0.67, 1.09) 0.20 0.83 (0.63, 1.10) 0.19 
  A/A 15 (3.1) 37 (4.3) 0.68 (0.37, 1.26) 0.22 0.55 (0.27, 1.10) 0.09 
  Trenda   0.84 (0.70, 1.04) 0.10 0.80 (0.63, 1.00) 0.05 

IL1B rs1143634         C/C 305 (63.4) 504 (58.2) 1.00 (reference)  1.00 (reference)  
  C/T 143 (29.7) 313 (36.1) 0.76 (0.59, 0.96) 0.02 0.70 (0.53, 0.92) 0.01 
  T/T 33 (6.9) 49 (5.7) 1.11 (0.70, 1.77) 0.65 0.96 (0.56, 1.64) 0.89 
  Trenda   0.90 (0.75, 1.08) 0.26 0.83 (0.68, 1.03) 0.09 

IL1B rs1143633         G/G 194 (40.5) 345 (40.0) 1.00 (reference)  1.00 (reference)  
  G/A 210 (43.8) 408 (47.3) 0.92 (0.72, 1.17) 0.47 0.85 (0.64, 1.12) 0.24 
  A/A 75 (15.7) 110 (12.8) 1.21 (0.86, 1.71) 0.27 1.36 (0.93, 2.01) 0.12 
  Trenda   1.04 (0.89, 1.23) 0.61 1.06 (0.88, 1.28) 0.51 
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Table 3-4. (Continued) 

 N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype Cases Controls OR (95%CI) P OR (95%CI)* P* 
IL1B rs1143627         T/T 205 (42.5) 382 (44.1) 1.00 (reference)  1.00 (reference)  

  T/C 222 (46.1) 383 (44.2) 1.08 (0.85, 1.37) 0.52 0.98 (0.75, 1.28) 0.85 
  C/C 55 (11.4) 101 (11.7) 1.02 (0.70, 1.47) 0.94 1.03 (0.67, 1.56) 0.91 
  Trenda   1.03 (0.87, 1.21) 0.74 1.00 (0.82, 1.21) 0.97 

PPARG rs1801282         C/C 373 (77.7) 644 (74.4) 1.00 (reference)  1.00 (reference)  
  C/G 98 (20.4) 201 (23.2) 0.84 (0.64, 1.12) 0.22 0.97 (0.71, 1.32) 0.83 
  G/G 9 (1.9) 21 (2.4) 0.74 (0.34, 1.63) 0.46 0.92 (0.71, 1.20) 0.43 
  Trenda   0.85 (0.67, 1.07) 0.17 0.93 (0.72, 1.21) 0.59 

* Adjusted for age, sex, and pack-years. a. Additive model, dose-response, 1df. 
† GA and AA were combined because there was 0 A/A in cases and 1 A/A in controls. 
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Table 3-5. Adjusted Results of SNP and Lung Cancer Associations: Dominant Model. 

Gene rs Number Subjects with data, N 
Minor allele 

frequency, % 

Dominant Modelb 
Combined heterozygote 
and homozygote minor 

  Cases Controls Cases Controls OR (95% CI) P 
COX-2 rs5275            469 860 33.4 33.0 0.98 (0.76, 1.26) 0.86 
COX-2 rs5277            482 865 15.6 15.7 1.17 (0.88, 1.54) 0.28 
COX-2 rs4648261         484 866 3.2 2.4 1.43 (0.82, 2.47) 0.21 
COX-2 rs689466          483 866 18.6 17.0 1.00 (0.76, 1.30) 0.97 
COX-2 rs2745559         481 862 17.3 19.9 0.79 (0.60, 1.04) 0.09 
IL1B rs1143634         481 866 21.7 23.7 0.73 (0.56, 0.95) 0.02 
IL1B rs1143633         479 863 37.6 36.4 0.95 (0.73, 1.23) 0.70 
IL1B rs1143627         482 866 34.4 33.8 0.99 (0.76, 1.27) 0.91 
PPARG rs1801282         480 866 12.1 14.0 0.94 (0.70, 1.26) 0.68 
Adjusted for age, sex, and pack-years.     
b. Dominant Model: combine heterozygote and homozygote minor    
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Table 3-6. Associations within Subgroups and Interactions. 

 COX-2 rs5275 COX-2 rs5277 COX-2 rs4648261 COX-2 rs689466 COX-2 rs2745559 
 TC+CC vs. TT GC+CC vs. GG GA+AA vs. GG AG+GG vs. AA CA+AA vs. CC 

Current Smoker 1.01 (0.71, 1.42) 1.10 (0.76, 1.60) 1.52 (0.75, 3.07) 1.16 (0.81, 1.66) 0.78 (0.54, 1.13) 
Former Smoker 0.91 (0.61, 1.36) 1.29 (0.83, 2.00) 1.38 (0.53, 3.61) 0.86 (0.57, 1.31) 0.83 (0.54, 1.25) 
P smoking interaction 0.66 0.58 0.69 0.43 0.65 

      
Mild* 0.73 (0.43, 1.22) 1.34 (0.77, 2.33) 1.80 (0.68, 4.76) 1.06 (0.62, 1.83) 0.57 (0.33, 0.99)a 
Moderate 1.36 (0.86, 2.14) 0.94 (0.58, 1.54) 1.26 (0.50, 3.19) 1.06 (0.66, 1.69) 0.94 (0.59, 1.52) 
Heavy 0.91 (0.61, 1.38) 1.35 (0.86, 2.11) 1.17 (0.44, 3.15) 0.99 (0.65, 1.51) 0.83 (0.54, 1.28) 
P pack-years interaction 0.58 0.56 0.41 0.34 0.98 

      
Male 0.92 (0.64, 1.31) 1.43 (0.96, 2.12) 1.83 (0.88, 3.80) 0.95 (0.66, 1.37) 0.76 (0.52, 1.10) 
Female 1.06 (0.73, 1.53) 0.95 (0.64, 1.41) 1.07 (0.46, 2.52) 1.05 (0.71, 1.55) 0.82 (0.55, 1.21) 
P sex interaction 0.58 0.18 0.33 0.73 0.82 

      
Age<58 1.04 (0.62, 1.74) 1.04 (0.60, 1.79) 2.34 (0.94, 5.82) 1.18 (0.69, 2.01) 0.68 (0.39, 1.19) 
Age≥58 0.95 (0.70, 1.28) 1.25 (0.89, 1.74) 1.14 (0.59, 2.22) 0.95 (0.69, 1.29) 0.81 (0.59, 1.11) 
P age interaction 0.38 0.33 0.20 0.98 0.91 
 OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 37.5 pack-years; moderate smoker=37.5 to <57.5; heavy smoker=≥57.5. 

a. P=0.046 
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Table 3-6. (Continued) 

 IL1B rs1143634 IL1B rs1143633 IL1B rs1143627 PPARG rs1801282 
 CT+TT vs. CC GA+AA vs. GG TC+CC vs. TT CG+GG vs. CC 

Current Smoker 0.65 (0.46, 0.93)b 0.76 (0.54, 1.08) 1.17 (0.83, 1.65) 0.98 (0.66, 1.44) 
Former Smoker 0.85 (0.57, 1.27) 1.24 (0.82, 1.85) 0.73 (0.49, 1.10) 0.81 (0.50, 1.32) 
P smoking interaction 0.19 0.11 0.10 0.85 

     
Mild* 0.81 (0.53, 1.24) 0.83 (0.50, 1.39) 1.17 (0.70, 1.96) 0.72 (0.40, 1.29) 
Moderate 0.77 (0.52, 1.15) 0.89 (0.57, 1.41) 0.93 (0.59, 1.47) 1.00 (0.59, 1.67) 
Heavy 0.75 (0.50, 1.12) 1.16 (0.77, 1.77) 0.90 (0.60, 1.35) 0.99 (0.61, 1.62) 
P pack-years interaction 0.16 0.13 0.26 0.38 

     
Male 0.58 (0.40, 0.85)c 1.15 (0.80, 1.64) 0.93 (0.66, 1.33) 1.45 (0.96, 2.19) 
Female 0.92 (0.64, 1.34) 0.77 (0.53, 1.12) 1.05 (0.72, 1.51) 0.58 (0.37, 0.91)d 
P sex interaction 0.10 0.13 0.66 0.003 

     
Age<58 0.95 (0.56, 1.59) 1.00 (0.60, 1.66) 0.88 (0.53, 1.45) 0.58 (0.31, 1.10) 
Age≥58 0.65 (0.48, 0.88)e 0.96 (0.71, 1.31) 1.01 (0.75, 1.37) 1.12 (0.79, 1.59) 
P age interaction 0.94 0.89 0.81 0.63 
OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 37.5 pack-years; moderate smoker=37.5 to <57.5; heavy smoker=≥57.5. 
b. P=0.019 
c. P=0.004 
d. P=0.016 
e. P=0.006 



 

42 

Table 3-7. Haplotype Analysis Results. 

Block Haplotype Case Freq (%) Control Freq (%) OR * P* 
Block 1 rs5275-rs5277-rs689466-rs2745559 (COX-2)  0.28** 

 TGAC 14.6 14.8 1.04 0.77 
 TCAC 15.7 15.6 1.15 0.27 
 TGAA 17.4 19.8 0.81 0.07 
 TGGC 18.8 16.9 1.11 0.40 
 CGAC 33.5 32.8 1.00 0.98 
      

Block 2 rs1143634-rs1143633 (IL1B)  0.24** 
 TG 22.0 23.8 0.84 0.10 
 CA 37.8 36.4 1.09 0.36 
 CG 40.2 39.8 1.05 0.58 

* Adjusted for age, sex, and pack-years.   
** P for global association (H-1 df omnibus test) 
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Figure 3.1. Schematic Figure of Relationship between IL1B, COX-2 and PPARG Genes 

Cigarette smoking stimulates airway epithelial cells and immune cells to release pro-
inflammatory cytokines, such as IL1B. This is known to result in activation of the NF-kB 
signaling pathway, leading to up-regulation of various inflammation-related genes, including 
COX-2. PPARγ expression could lead to decrease in COX-2 expression through a negative 
feedback loop involving NF-kB. 
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4.1 ABSTRACT 

Background Inflammation plays a role in lung carcinogenesis. Cytokines are an important 

component of the inflammatory response. The aim of this study was to determine whether 

common single nucleotide polymorphisms (SNPs) in three cytokine genes were involved in 

predisposing an individual to lung cancer.  

Methods We evaluated associations of seven polymorphisms in TGFB1, IL6, and IL10 with lung 

cancer risk in 484 lung cancer cases and 866 controls from the Pittsburgh metro area. Multiple 

logistic regression models adjusting for age, sex, and pack-years were used to estimate odds 

ratios (ORs) and 95% confidence intervals (CIs). Stratified analyses and gene-environment 

interaction tests were also conducted. 

Results SNP rs1800872 in IL10 was associated with lung cancer risk only in adjusted models. 

The A allele was associated with a decreased risk of lung cancer (per allele OR=0.81, 95%CI= 

0.65-0.995, Ptrend=0.04). In subgroup analysis, this protective effect remained, and was 

significant among mild (<37.5 pack-years) smokers (dominant model OR=0.57, 95%CI=0.33-

0.96). Minor allele carriers (AG/GG) of another IL10 SNP, rs1800896, also showed a protective 

effect in the younger age group (<58 years), with a dominant model OR of 0.56 (95%CI=0.33-

0.95).  No significant associations between lung cancer and other SNPs were identified. 

Conclusions Our study suggests that common variation in IL10 may influence susceptibility to 

lung cancer.  

Implications for public health Valid markers of lung cancer susceptibility may help define 

higher risk groups that would benefit most from an individualized chemoprevention strategy and 

therapy. 
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4.2 INTRODUCTION 

In the United States, lung cancer is the leading cause of cancer mortality in both men and 

women. It is the second leading form of cancer, and is expected to affect 222,520 people in 

2010.1 Smoking is the most well established risk factor for lung cancer.2 However, only a 

fraction of smokers develop lung cancer58, suggesting that other factors such as genetics may 

influence disease susceptibility. There is an increasing recognition of the role that inflammatory 

pathways play in malignant transformation including lung cancer development.130,131 Activated 

inflammatory processes generate reactive oxygen and nitrogen species, secrete growth 

stimulatory cytokines, chemokines and pro-angiogenic factors, in consequence, favor lung 

cancer development.132  

 Cytokines are soluble proteins or glycoproteins that act as mediators of cell-to-cell 

communications, and they are an integral component of the immune response. Cytokines are 

pleiotropic, and the role of cytokines in tumorigenesis is complex. Studies indicate that there are 

differences between lung cancer cases and controls in circulating cytokine expression 

profiles.79,133-137 The expression and functional effects of cytokine genes are influenced by 

genetic variants in these genes; therefore, polymorphisms in such genes might play a role in lung 

cancer development. However, results from genetic epidemiological studies are inconclusive. 

71,81,116,138-141 

The present study includes seven putative functional single-nucleotide polymorphisms 

(SNPs) in three cytokine genes (TGFB1, IL6, and IL10) involved in the inflammatory response.  
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Transforming growth factor beta 1 (TGFB1) is a master regulator of the immune 

system.142 TGFB1 inhibits the proliferation and induces the differentiation of normal bronchial 

epithelial cells.143 Lung cancer patients were found to have higher levels of TGFB1 in the 

bronchoalveolar lavage (BAL) in comparison to BAL of healthy subjects.144 TGFB1 expression 

is often up-regulated in non-small cell lung cancer (NSCLC) tumors, and elevated plasma levels 

of TGFB1 are related to a poorer prognosis for patients.145  

Interleukin-6 (IL6) is a pro-inflammatory cytokine released in response to infection, 

trauma, and neoplasia. It has a key role in immune and acute-phase response, and 

hematopoiesis.146-148 IL6 is a major cytokine that is expressed in tumor-infiltrating cells. Higher 

levels of serum IL6 were detected in lung cancer patients compared with healthy controls.134 

Several studies have demonstrated that anti-inflammatory drugs may inhibit angiogenesis and 

IL6 is one of the pivotal determinants of the angiogenic activity of NSCLC.149,150 

Interleukin-10 (IL10) is mainly an anti-inflammatory cytokine produced by a number of 

cells including normal and neoplastic cells. It has been indicated in autoimmunity, 

transplantation tolerance and tumorigenesis. Elevated serum levels of IL10 were found in 

NSCLC patients when compared to healthy controls.151 Furthermore, amplified production of 

immunosuppressive IL10 by NSCLC and higher serum concentrations of IL10 in NSCLC 

patients have both been shown to correlate with reduced survival.151-153 The promoter region of 

IL10 spans at least 5kb upstream of the transcription start point, and it is known to contain at 

least 27 polymorphic sites. Alterations in IL10 expression have been linked to polymorphisms in 

the promoter region of IL10 gene, such as rs1800896 and rs1800872.154  
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The aim of the current study was to investigate whether common polymorphisms in the 

cytokine genes TGFB1, IL6 and IL10 are associated with lung cancer susceptibility in a 

Caucasian population.   

4.3 MATERIALS AND METHODS 

4.3.1 Study Population 

This study utilized data and specimens from the University of Pittsburgh Cancer Institute (UPCI) 

Specialized Program of Research Excellence (SPORE) in Lung Cancer. The participants were 

recruited at the University of Pittsburgh Medical Center (Pittsburgh, PA). The study was 

approved by the institutional review board (IRB) at the University of Pittsburgh. All participants 

provided written informed consent. 

Briefly, cases were newly diagnosed lung cancer patients treated by surgery between 

1990 and 2008. Eligibility criteria included: 1) current or ex-cigarette smoker, 2) cumulative 

cigarette dose exposure ≥10 pack -years, 3) 45-85 years old at time of lung cancer diagnosis, 4) 

entry within one year of lung cancer diagnosis, and 5) pathologically verified lung cancer 

diagnosis (excluding carcinoid). These selection procedures identified 923 patients, including 

588 (63.7% of 923) with DNA available. 

The control series is a simple random sample from a restricted set of participants in the 

Pittsburgh Lung Screening Study (PLuSS), a helical computed tomography (CT) lung cancer 

screening study. The selection of the study participants has been previously described.34 Briefly, 

between 2002 and 2005, PLuSS enrolled 50-79 year-old current and ex-cigarette smokers of at 
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least one-half pack/day for at least 25 years. Using self-report, PLuSS excluded individuals who: 

1) quit smoking more than 10 years earlier, 2) had a history of lung cancer, or 3) had a chest CT 

scan within one year of enrollment. Selection as a control was restricted to the N=3,463 (92.2% 

of all PLuSS enrollees) white or black race CT-screened PLuSS participants with buffy coat or 

whole blood available and no interval lung cancer diagnosis (as of 9/10/2008). A simple random 

sample of size n=1000 was selected, of which 929 (92.9%) samples had DNA available for the 

current study.  

For controls, a written questionnaire was used to obtain information about demographics 

and smoking history. For cases, information was extracted from medical records.  

4.3.2 SNP Selection and Genotyping  

Seven SNPs in three genes (TGFB1, IL6, and IL10) were genotyped. All SNPs were selected on 

the basis of reported functional or biological relevance; or previous report of an association with 

lung cancer or another cancer, or an inflammatory disorder. Two SNPs in TGFB1 (rs2241712, 

rs1800469), two SNPs in IL6 (rs2069860, rs1800795) and three SNP in IL10 (rs1800896, 

rs1800872, rs3024509) were selected for genotyping. A summary of SNP location and presumed 

function was presented in Table 4-1. 

Genomic DNA was extracted from whole blood samples using standard salt-based 

methods. Genotyping of 588 cases and 929 controls was performed at the University of 

Pittsburgh Genomics and Proteomics Core Laboratories (Pittsburgh, PA). All SNPs were 

genotyped using MassARRAY® iPLEX Gold (Sequenom, Inc., San Diego, CA); the SNP 

specific and mass extend oligonucleotides, and assays were designed using Sequenom RealSNP 

(www.realsnp.com) and MassARRAY Assay Design version 3.1 (Sequenom, Inc., San Diego, 

http://www.realsnp.com/�
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CA). Genotyping was performed for cases and controls together; laboratory technicians were 

blinded to case-control status. Fifty duplicate samples were included to assess laboratory 

reliability.  The concordance rate was 100%. 

More than 95% of all DNA samples were successfully genotyped for all 7 SNPs. Of the 

1517 samples genotyped, 31 samples (21 cases and 10 controls) failed (call rate<90%), leaving 

567 cases and 919 controls for analysis. The present study includes only self-reported 

Caucasians, the major racial/ethnic subgroup. 83 cases and 53 controls of black or unknown race 

were excluded, leaving 484 cases and 866 controls for subsequent analyses.  

4.3.3 Statistical Analysis 

Participant characteristics in the cases and controls were compared by Wilcoxon rank sum test 

for continuous variables and Chi-square test for categorical variables. 

Genotype and allele frequencies were calculated, observed genotype frequencies in the 

control population were tested for deviation from Hardy-Weinberg equilibrium (HWE) using the 

exact test.  

For each SNP, odds ratios (ORs) for lung cancer risk and the corresponding 95% 

confidence intervals (CIs) were calculated using multiple logistic regression models, adjusting 

for known risk factors for lung cancer, i.e., age, sex, and cumulative tobacco exposure (pack-

years). We used the genotype-based genetic model for individual SNPs. The genotype-based 

model is defined as heterozygotes (1 minor allele) versus common allele homozygotes (0 rare 

alleles) or rare allele homozygotes (2 minor alleles) versus common allele homozygotes.  

Linear trend and allelic ORs were assessed using numerical scores assigned to the 

ordered categories (i.e., 0 to the category of major allele homozygotes, 1 to the category of 



 

51 

heterozygotes, and 2 to the category of minor allele homozygotes) as continuous variable in the 

model.  

Additionally, because the number of rare-allele homozygotes was relatively small, we 

then combined heterozygotes and rare-allele homozygotes in the logistic regression analyses; 

common-allele homozygotes were used as the reference group (indicating dominant model).  

We tested interactions with cross product interaction terms of each SNP and 

environmental factors such as sex (males vs. females), smoking status (current vs. former), and 

continuous age and pack-years. For stratified analyses, we created an indicator variable of age 

greater or less than 58 years old (the median in controls), sex (male vs. female) and smoking 

status (current vs. former smoker), pack-years (in tertiles, cut-points 37.5 and 57.5 based on the 

distribution in controls). Stratum-specific ORs were obtained under the dominant model.  

For each SNP, we further evaluated whether sex, age, or smoking pack-years were 

distributed differentially among different genotypes within lung cancer patients and within 

controls.  

We repeated the analysis restricting our cases to NSCLC only. We then performed 

subgroup analyses of adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two 

predominant histological types, comparing each subgroup of cases against the entire group of 

controls. We also performed case-case comparison, comparing SCC against ADC, to assess 

whether any of these SNPs may play a role in a specific disease etiology.   

PLINK (version 1.07) was used to estimate haplotype frequencies and risk estimates.  

All significance tests were two sided; P values <0.05 were considered statistically 

significant. Data analyses were conducted using SAS/Genetics software (version9.1.3; SAS 

Institute, Cary, NC) and PLINK (version 1.07).  
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4.4 RESULTS 

4.4.1 Study Subjects 

Table 4-2 presents characteristics of the lung cancer cases (N=484) and controls (N=866). The 

proportions of males and females were similar in cases and controls (P=0.07). Cases were 

significantly older (median=67 years, inter quartile range [IQR] = 61-74 years) than controls 

(median=58 years, IQR=54-63 years) (P<0.0001). Cases also reported greater cumulative 

tobacco exposure than controls (median 50 vs. 47.5 pack-years, P=0.02). There was a greater 

proportion of current smokers among the controls than among the cases (59.1% vs. 48.9%, 

P=0.0004). The most common histological types of lung cancer were adenocarcinoma (n=230, 

47.5%) and squamous cell carcinoma (n=173, 35.7%). Most NSCLC presented at the early stage 

(47.2% stage I, 16.1% stage II).  

4.4.2 Associations of Lung Cancer with Genetic Polymorphisms 

All SNPs were in HWE in controls (P>0.05) (Table 4-3). The genotype distributions for each 

SNP among the cases and controls, and the genotype-based model and trend test results are 

shown in Table 4-4. There were no rs2069860 minor allele homozygotes among the cases and 

only one among the controls, therefore, AT and TT genotypes were combined. In unadjusted 

results, there was no statistically significant association between any SNP and lung cancer risk 
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from the genotype-based test or trend test.  However, after adjusting for age, sex, and pack-years, 

the A allele of IL10 rs1800872 showed a protective effect against lung cancer, with a per allele 

OR of 0.81 (95%CI=0.65-0.995, Ptrend=0.04). All other SNP and lung cancer associations 

remained non-significant (Table 4-4).  

The results under the dominant model are presented in Table 4-5. No significant 

associations were observed. 

4.4.3 Stratified Analysis and Interaction Results 

Table 4-6 shows results for SNP and lung cancer associations within subgroups and SNP-

environment interaction P-values. The protective effect of IL10 rs1800872 A allele remained 

significant only in mild (smoking exposure<37.5 pack-years) smokers, with an OR of 0.57 

(95%CI=0.33-0.96). Another IL10 SNP, rs1800896, showed a borderline significant interaction 

(Pinteraction=0.05) with continuous age.  CT+TT genotypes showed a significant protective effect 

among people younger than 58 (OR=0.56, 95%CI=0.33-0.95, P=0.03), but a non-significant 

increased risk among people of 58 or older (OR=1.23, 95%CI=0.92-1.65). No other statistically 

significant gene-environment interaction was observed.   

4.4.4 Risk of NSCLS, ADC, and SCC 

When analyses were restricted to NSCLC cases only, results were similar to the main analyses. 

The A allele of IL10 rs1800872 showed a borderline protective effect with an adjusted per allele 

OR=0.80 (95%CI=0.65-0.998, Ptrend=0.048). No significant association between any SNP and 

ADC was found. However, for SCC, the A allele of IL10 rs1800872 again showed a protective 
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effect both in unadjusted (Ptrend=0.03) and adjusted results (Ptrend=0.02). The case-case 

comparison (SCC vs. ADC) also showed that the same SNP, IL10 rs1800872, was associated 

with the differences between SCC and ADC (ADC as the reference group, dominant model 

OR=0.72, 95%CI=0.40-0.94, P=0.03).  

4.4.5 Haplotype Analysis Results 

Two haplotype block sets were identified, rs1800469-rs2241712 in TGFB1, and rs3024509-

rs1800872-rs1800896 in IL10. TAA haplotype of IL10 showed a borderline significant reduced 

risk of lung cancer (OR=0.82, P=0.06) compared to all other haplotypes. No significant 

association was observed for TGFB1 haplotypes. The global association was not significant for 

either block (Table 4-7).  

4.5 DISCUSSION 

In the present case-control study, we evaluated the relationship of seven polymorphisms in three 

cytokine genes with lung cancer susceptibility. We observed that the minor allele (A) of 

rs1800872 in IL10 was associated with a decreased risk of lung cancer (per allele OR=0.81, 

95%CI=0.65-0.995, Ptrend=0.04), after adjustment for age, sex, and pack-years. We also detected 

a borderline significant interaction between IL10 rs1800896 and age, minor allele showed a 

protective effect in the younger age group, but was associated with a non-significant increased 

risk in the older age group.  
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IL10 is a key anti-inflammatory cytokine and is produced by a number of different cells 

including lymphocytes, monocytes/macrophages and various tumor cell lines.155,156 IL10 was 

originally designated as a cytokine synthesis inhibitory factor because of its ability to inhibit 

synthesis of pro-inflammatory cytokines such as TNF-α, IL1, IL6 and IL12.157,158 Studies have 

reported raised levels of serum and peri-tumoral IL10 production in many malignancies159-161, 

including lung cancer,162 which have been inferred in support of a role for IL10 in tumor escape 

from the immune response. IL10 rs1800896 (-1082) AG/GG genotypes and IL10 rs1800872 (-

592) CA/CC genotypes are generally considered to be associated with a higher IL10 

production.154 

Several studies have investigated the role of rs1800872 in lung cancer development. 

Similar to our finding, in a study conducted by Engels et al.71 in a Caucasian population (1538 

cases and 1705 controls), a non-significant reduced risk of lung cancer was observed among 

minor allele carriers of rs1800872 (CA+AA vs. CC: OR=0.93, 95%CI: 0.80-1.07). In a study 

conducted in Taiwan, Shih et al.140 reported an increased risk of NSCLC among their minor 

allele carriers (CA+CC vs. AA, OR=1.70, 95%CI: 1.12-2.60). Contrary to our results, a nested 

case-cohort study (403 cases, 744 sub-cohort)116 within the Danish “Diet, Cancer, and Health” 

cohort observed that minor allele carriers (CA/AA) were at higher risk (IRR=1.60, 95%CI: 1.13-

2.27) of lung cancer than major allele homozygotes (CC), but only in the fully adjusted model. 

The reasons for the discrepancies are unclear. It may be caused by random error, or it may be due 

to different population characteristics. The Shih140 study was conducted in an Asian population 

with a different minor allele (C). The Danish cohort116 included never smokers, while our 

population was consisted of current or former smokers only, with a relatively intense pack-year 

exposure. IL10 has both immunosuppressive and anti-angiogenic functions and consequently has 
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both tumor-promoting and tumor-inhibiting properties. The various overlapping functions of 

cytokines are determined by their local concentration, the type and the maturational stage of the 

responding cell, and the presence of other cytokines and their mediators. IL10 may act differently 

in heavy smokers with more prominent respiratory and systematic inflammation. Thus, the 

conflicting results may reflect the complicated mechanism of IL10 in disease etiology.  

We also looked at confounding. The association observed for the IL10 rs1800872 

polymorphism and lung cancer risk became statistically significant only after adjustment for age, 

sex and smoking pack-years. In further analysis, we observed minor allele of this SNP was 

significantly associated with increased age in the control group (P=0.03). In post-hoc analysis, 

we did forward selection of covariates. We observed that age was the factor that confounded the 

association. Age itself may not be the confounder, since the evaluated genetic polymorphisms 

are unlikely to be associated with age. But age is an index of many other factors in the aging 

process, the adjustment of age may have adjusted for other factors. For example, this cytokine 

SNP may be associated with aging- and inflammation-related proteins.  

The AA genotype of rs1800896 (-1082), causing a lower IL10 expression, has been 

associated with several cancers.154,163,164 We observed a borderline significant interaction 

between this SNP and age: minor allele carriers (AG/GG) had a reduced risk of lung cancer in 

the younger age group, but were at higher risk for people aged 58 or older. The study by Engels 

et al.71 reported a non-significant association (AG+GG vs. AA: OR=0.94, 95%CI=0.80-1.10). 

Another study conducted in a Chinese population141 also reported no association (AG+GG vs. 

AA: OR=1.02, 95%CI=0.49-2.13). However, Shih et al.140 reported AG+GG genotypes were at 

increased risk of NSCLC compared to AA genotype (OR=5.98, 95%CI=2.95-12.1). We can’t 

draw definitive conclusions from our exploratory subgroup analysis due to the small sample size. 
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Nevertheless, the effect observed was statistically significant and follow-up studies are needed to 

clarify the association. 

Lung cancer is characterized by an aggressive clinical course and poor response to 

immunotherapy52, probably because lung cancer cells are capable to produce a wide variety of 

immunosuppressive factors that may allow their escape from immune recognition. 53,54,165  

TGFB1 exerts inhibitory effects on cells of all aspects of the immune system.142 Over-expression 

of TGFB1 has been indicated in immune suppression.143 TGFB1 is involved in the process to 

depress the immune response including T-helper cells, cytotoxic T lymphocytes, dendritic cells, 

macrophages, natural killer cells and B cells.166 Cancer cells acquire the ability to escape the 

immune-surveillance during tumorigenesis. One of the multiple mechanisms by which tumors 

can evade to immune system is the secretion of TGFB1 by cancer and stromal cells.142 The 

therapeutic potential of TGFB1 antagonists and their receptor antagonists in cancer therapy have 

been investigated.167 Several drugs are currently under evaluation to inhibit various stages of 

TGFB1 signaling, and some promising data have been accumulated.167,168 Since functional 

polymorphisms can alter the expression of TGFB1, it is important to know patients’ individual 

genetic profile in order to evaluate which individuals will benefit most from the therapeutic use 

of these molecules. However, we did not observe any significant association between two 

promoter region polymorphisms (rs2241712 and rs1800469) of TGFB1 and lung cancer risk. To 

our knowledge, there is only one study138 that has investigated the association between TGFB1 

rs1800469 and NSCLC risk, and they did not find any association in Caucasian women (CT+TT 

vs. CC: OR=0.98, 95%CI=0.68-1.42), nor in African American women (CT+TT vs. CC: 

OR=1.00, 95%CI=0.49-2.03). 
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IL6 is a major cytokine that is expressed in tumor-infiltrating cells. Significantly higher 

serum levels of IL6 have been observed in lung cancer patients compared with healthy 

controls.134  We studied one coding non-synonymous SNP (rs2069860) and one promoter SNP 

(rs1800795) in IL6, and no significant association was found. Several other studies71,81,116,138,139 

also looked at SNP rs1800795 in Caucasian populations. Similar to our results, they did not 

observe any significant association. IL6 cytokine gene transcription and expression is tightly 

regulated at the level of its promoter, which acts as a sophisticated biosensor for environmental 

stress, thus controlling immunological homeostasis.169 Studies provide evidence that genetic 

polymorphisms in the promoter region influence IL6 transcription not by a simple additive 

mechanism but rather through complex interactions determined by the haplotype.170 Thus, study 

a single polymorphism (rs1800795) in isolation will not reveal the overall functional effect of 

this polymorphism in combination with other functional polymorphisms.  

Because of the different features of lung cancer subtypes, we performed subgroup 

analysis of ADC and SCC. ADC is located mostly in the peripheral part of the lung, while SCC 

is located mostly in the central part of the lung. It is postulated that inflammation and irritation, 

particularly from smoke, might exercise different biological features in the central and peripheral 

part of the lung. It may thus be hypothesized that tobacco-induced inflammation is differentially 

associated with ADC and SCC, and that different inflammatory genes are involved in the 

process. Our result of IL10 rs1800982 is associated with SCC but not ADC has provided some 

evidence to support this theory. However, due to the small sample size in the subgroup analysis, 

no definite conclusion could be drawn and the result needs to be investigated in future studies. 

We have limited power to detect gene-environment interactions and subgroup 

associations. To assess a two-way gene environment interaction in a case-control analysis with 
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80% power, given a 10% frequency of both the genetic polymorphism and the environmental 

factor, a main effect relative risk (RR) of 1.3 for both the genetic and environmental exposure, an 

expected RR associated with interaction=2.0, and an alpha level of 0.05, a minimum of one 

thousand cases is required.171-173  

It is also important to note that the tested SNPs themselves may not necessarily be 

functional, but may be in linkage disequilibrium (LD) with the true functional SNPs. We 

included a few SNPs per gene. However, the SNPs we included are in LD with many other 

SNPs. For example, IL6 rs1800795 is in strong LD with at least eight other SNPs across the gene 

(Seattle SNP database, http://pga.gs.washington.edu/ ). If any of these SNPs is the functional 

one, we would be able to detect an effect.   

We only included three cytokine genes in the current study. Ideally, many genes with 

functional significance should be assessed, especially because it is known that different 

cytokines interact with each other, forming networks that initiate gene activation and 

suppression.174 Future studies should integrate pathway analysis data in larger sample sizes, and 

include environmental risk factor data such as demographic information, smoking behavior, 

comorbidities, and disease status. Understanding how genetic networks are modulated by other 

factors to affect disease risk may help clarify etiologic relationships that are presently confusing 

or inconsistent.  

 

http://pga.gs.washington.edu/�
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4.6 TABLES 

Table 4-1. SNP Information. 

Gene rs Number Chr Chr Position* Nucleotide Allele Locations and Presumed Function 

TGFB1 rs2241712 19q13.1 41869756 -10807G>A AG In the promoter region; alter gene 
expression.  

TGFB1 rs1800469 19q13.1 41860296 -509T>C CT 
In the promoter region; T allele is 
associated with increased circulating 
concentrations of TGF-B1 in plasma.I  

IL6 rs2069860 7p21 22771038 Ex5+14A AT Coding non-synonymous; Val[V] 
Asp[D]. 

IL6 rs1800795 7p21 22766645 -236C>G  
(-174C>G) GC 

In the promoter region; C allele is 
associated with higher levels of IL-6 
protein and the C-reactive protein.II 

IL10 rs1800896 1q31-q32 206946897 -1082G>A 
(-1116A>G) AG 5’ near gene.  

IL10 rs1800872 1q31-q32 206946407 
592C>A   
(-627A>C,  
-6653A>C) 

CA 5’ near gene. 

IL10 rs3024509 1q31-q32 206943297 IVS3-58T>C TC Intron_3. 

*dbSNP Chromosome Report, GRCh37 Sequence  
Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National 
Library of Medicine. (dbSNP Build ID: {build ID}). Available from: http://www.ncbi.nlm.nih.gov/SNP/.  
I. Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type 
beta1. Hum Mol Genet 1999;8:93-7. 
II. Vickers MA, Green FR, Terry C, et al. Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline 
levels of plasma C-reactive protein. Cardiovasc Res 2002;53:1029-34. 

 

http://www.ncbi.nlm.nih.gov/SNP/�
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Table 4-2. Population Characteristics. 

Characteristic Cases (N=484) Controls (N=866) P* 
Male, n(%) 266 (55.0) 432 (49.9) 0.07 
Age (y), median (IQR) 67 (61, 74) 58 (54, 63) <0.0001 
Age (y), n (%)   <0.0001 
<50 10 (2.1) 1 (0.1)  

  50-59 83 (17.2) 516 (59.6)  
  60-64 87 (18.0) 175 (20.2)  
65-69 112 (23.1) 103 (11.9)  
70+ 192 (39.7) 71 (27.0)  

Smoke Status   0.0004 
Current 224 (48.9) 511 (59.1)  
Former 234 (51.1) 354 (40.9)  

Smoking intensity duration, Pack-years, 
median (IQR) 50 (35, 75) 47.5 (33, 63) 0.02 

Smoking intensity duration, Pack-years, 
n(%)   <0.0001 

  <30 77 (15.9) 161 (18.6)  
  30-44 109 (22.5) 228 (26.3)  
45-59 112 (23.1) 228 (26.3)  
60-74 64 (23.1) 135 (15.6)  
75+ 122 (25.2) 114 (13.2)  

Lung cancer histology, n(%)    
Adenocarcinoma  230 (47.5) --  
Squamous cell carcinoma  173 (35.7) --  
Large-cell carcinoma  11 (2.3) --  
Other/unspecified non-small cell 
carcinoma  42 (8.7) --  

Small-cell carcinoma  14 (2.9) --  
Neuroendocrine 9 (1.9) --  

  Other/unspecified  5 (1.0) --  
Lung cancer stage, n(%)†    
 I 217 (47.2) --  
 II 74 (16.1) --  
 III 144 (31.3) --  
 IV 25 (5.4) --  
Abbreviation: IQR, interquartile range.   
* P values are derived by х2 test, except for age and pack-years, where the Wilcoxon rank sum test 
was used. 
† Stage is limited to non-small cell carcinoma     
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Table 4-3. Allele Frequencies and HWE in Controls. 

Gene rs Number N Allele Allele 
Counts 

Allele Frequencies, 
% 

HWE P in controls 
(Exact Test) 

TGFB1 rs2241712 865 A 1128 65.2 0.45 
   G 602 34.8  

TGFB1 rs1800469 865 C 1142 66.0 0.36 
   T 588 34.0  

IL6 rs2069860 866 A 1718 99.2 0.06 
   T 14 0.8  

IL6 rs1800795 866 G 1027 59.3 0.29 
   C 705 40.7  

IL10 rs1800896 866 A 924 53.3 0.38 
   G 808 46.7  

IL10 rs1800872 866 C 1307 75.5 0.71 
   A 425 24.5  

IL10 rs3024509 866 T 1642 94.8 0.50 
   C 90 5.2  
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Table 4-4. Unadjusted and Adjusted Results of SNP and Lung Cancer Associations: Genotype-based Model and Trend Test. 

   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype Lung Cancer Control OR (95% CI) P OR (95% CI)* P* 
TGFB1 rs2241712 AA 210 (44.1) 373 (43.1) 1.00 (reference)  1.00 (reference)  

  AG 209 (43.9) 382 (44.2) 0.97 (0.77, 1.23) 0.81 1.04 (0.80, 1.37) 0.76 
  GG 57 (12.0) 110 (12.7) 0.92 (0.64, 1.32) 0.65 0.93 (0.62, 1.40) 0.73 
  Trenda   0.96 (0.82, 1.14) 0.66 0.99 (0.82, 1.19) 0.90 

TGFB1 rs1800469 CC 216 (45.2) 383 (44.3) 1.00 (reference)  1.00 (reference)  
  CT 210 (43.9) 376 (43.5) 0.99 (0.78, 1.26) 0.94 1.02 (0.78, 1.34) 0.86 
  TT 52 (10.9) 106 (12.2) 0.87 (0.60, 1.26) 0.46 0.91 (0.60, 1.39) 0.66 
  Trenda   0.95 (0.81, 1.12) 0.55 0.98 (0.81, 1.18) 0.80 

IL6 rs2069860 AA 475 (98.1) 853 (98.5) 1.00 (reference)  1.00 (reference)  
  AT+TT† 9 (1.9) 13 (1.5) 1.35 (0.56, 3.22) 0.50 1.58 (0.59, 4.21) 0.36 
  Trenda   1.14 (0.51, 2.56) 0.75 1.35 (0.55, 3.31) 0.52 

IL6 rs1800795 GG 184 (38.3) 312 (36.0) 1.00 (reference)  1.00 (reference)  
  GC 216 (44.9) 403 (46.5) 0.91 (0.71, 1.16) 0.45 0.96 (0.72, 1.26) 0.75 
  CC 81 (16.9) 151 (17.5) 0.91 (0.66, 1.26) 0.57 1.12 (0.78, 1.62) 0.54 
  Trenda   0.95 (0.81, 1.11) 0.48 1.04 (0.87, 1.24) 0.67 

IL10 rs1800896 AA 145 (30.0) 253 (29.2) 1.00 (reference)  1.00 (reference)  
  AG 228 (47.2) 418 (48.3) 0.95 (0.73, 1.24) 0.71 1.06 (0.79, 1.43) 0.68 
  GG 110 (22.8) 195 (22.5) 0.98 (0.72, 1.34) 0.92 1.11 (0.78, 1.57) 0.57 
  Trenda   0.99 (0.85, 1.16) 0.89 1.05 (0.88, 1.25) 0.57 

IL10 rs1800872 CC 288 (60.0) 495 (57.2) 1.00 (reference)  1.00 (reference)  
  CA 170 (35.4) 317 (36.6) 0.92 (0.73, 1.17) 0.50 0.84 (0.64, 1.09) 0.19 
  AA 22 (4.6) 54 (6.2) 0.70 (0.42, 1.17) 0.18 0.59 (0.34, 1.05) 0.07 
  Trenda   0.88 (0.73, 1.06) 0.19 0.81 (0.65, 0.995) 0.04 

IL10 rs3024509 TT 433 (89.7) 779 (90.0) 1.00 (reference)  1.00 (reference)  
  TC 47 (9.7) 84 (9.7) 1.01 (0.69, 1.47) 0.97 1.15 (0.75, 1.76) 0.51 
  CC 3 (0.6) 3 (0.3) 1.80 (0.36, 8.95) 0.47 1.60 (0.26, 10.03) 0.61 
  Trenda   1.06 (0.75, 1.49) 0.75 1.17 (0.80, 1.73) 0.42 

* Adjusted for age, sex, and pack-years.  a. Additive Model, dose-response, 1df. 
† AT and TT were combined because there was 0 TT in cases and 1 TT in controls. 
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Table 4-5. Adjusted Results of SNP and Lung Cancer Associations: Dominant Model. 

Gene rs Number 
Subjects with data, 

N 
Minor allele 

frequency, % 

Dominant Modelb 
Combined heterozygote and 

homozygote minor 
  Cases Controls Cases Controls OR (95% CI) P 

TGFB1 rs2241712 476 865 33.9 34.8 1.02 (0.79, 1.31) 0.89 
TGFB1 rs1800469 478 865 32.9 34.0 1.00 (0.78, 1.29) 1.00 
IL6 rs2069860 484 866 0.9 0.8 1.48 (0.56, 3.87) 0.43 
IL6 rs1800795 481 866 39.3 40.7 1.00 (0.77, 1.30) 0.99 
IL10 rs1800896 483 866 46.4 46.7 1.08 (0.82, 1.42) 0.60 
IL10 rs1800872 483 866 22.3 24.5 0.80 (0.62, 1.03) 0.09 
IL10 rs3024509 480 866 5.5 5.2 1.17 (0.77, 1.77) 0.46 
Adjusted for age, sex and pack-years.     
b. Dominant Model: combine heterozygote and homozygote minor.    
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Table 4-6. Associations within Subgroups and Interactions. 

 N TGFB1 rs2241712 TGFB1rs1800469 IL6 rs2069860 IL6 rs1800795 
 Cases Controls AG+GG vs. AA CT+TT vs. CC AT+TT vs. AA GC+CC vs. GG 

Current Smoker 224 511 1.05 (0.74, 1.48) 0.97  (0.69, 1.37) 1.96 (0.58, 6.62) 0.90 (0.63, 1.29) 
Former Smoker 234 354 1.00 (0.67, 1.50) 1.07 (0.72, 1.60) 1.01 (0.20, 4.99) 1.23 (0.82, 1.85) 
P smoking interaction   0.79 0.78 0.76 0.36 

       
Mild* 133 266 0.98 (0.59, 1.63) 0.92 (0.55, 1.53) 0.55 (0.07, 4.32) 0.98 (0.58, 1.66) 
Moderate 161 307 1.16 (0.74, 1.83) 1.20 (0.77, 1.88) 0.90 (0.21, 3.81) 1.00 (0.62, 1.60) 
Heavy 190 293 0.96 (0.65, 1.43) 0.94 (0.63, 1.40) 8.57 (0.86, 85.53) 0.99 (0.67, 1.48) 
P pack-years 
interaction 

  0.61 0.52 0.07 0.98 

       
Male 266 432 1.09 (0.76, 1.55) 1.10 (0.77, 1.56) 1.73 (0.46, 6.51) 0.89 (0.62, 1.28) 
Female 218 434 0.95 (0.65, 1.37) 0.90 (0.62, 1.30) 1.25 (0.31, 5.05) 1.12 (0.77, 1.65) 
P sex interaction   0.60 0.45 0.74 0.38 

       
Age<58 73 427 1.33 (0.79, 2.24) 1.24 (0.74, 2.07) 1.48 (0.30, 7.19) 1.58 (0.90, 2.78) 
Age≥58 411 439 0.95 (0.73, 1.25) 0.97 (0.74, 1.27) 1.56 (0.49, 4.97) 0.82 (0.62, 1.08) 
P age interaction   0.20 0.27 0.91 0.23 
OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 37.5 pack-years; moderate smoker=37.5 to <57.5; heavy smoker=≥57.5. 
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Table 4-6. (Continued) 

 
 N IL10 rs1800896 IL10 rs1800872 IL10 rs3024509 
 Cases Controls AG+GG vs. AA CA+AA vs. CC TC+CC vs. TT 

Current Smoker 224 511 1.20 (0.83, 1.76) 0.89 (0.63, 1.25) 1.82 (1.07, 3.10) 
Former Smoker 234 354 0.97 (0.63, 1.49) 0.68 (0.45, 1.03) 0.73 (0.37, 1.44) 
P smoking interaction   0.27 0.59 0.35 

      
Mild* 133 266 1.00 (0.58, 1.72) 0.57 (0.33, 0.96)a 0.95 (0.44, 2.05) 
Moderate 161 307 1.11 (0.68, 1.81) 0.94 (0.60, 1.47) 0.80 (0.37, 1.75) 
Heavy 190 293 1.14 (0.74, 1.75) 0.84 (0.56, 1.26) 1.96 (1.00, 3.83)b 
P pack-years interaction   0.33 0.90 0.09 

      
Male 266 432 1.23 (0.84, 1.80) 0.76 (0.53, 1.09) 1.37 (0.78, 2.42) 
Female 218 434 0.93 (0.62, 1.39) 0.85 (0.59, 1.23) 0.99 (0.53, 1.83) 
P sex interaction   0.35 0.71 0.43 

      
Age<58 73 427 0.56 (0.33, 0.95)c 0.76 (0.45, 1.29) 1.62 (0.76, 3.42) 
Age≥58 411 439 1.23 (0.92, 1.65) 0.82 (0.63, 1.08) 0.95 (0.60, 1.49) 
P age interaction   0.05 0.55 0.22 
OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 37.5 pack-years; moderate smoker=37.5 
to <57.5; heavy smoker=≥57.5. 
f. P=0.03 
g. P=0.05 
h. P=0.03 
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Table 4-7. Haplotype Analysis Results. 

Block Haplotype Case Freq (%) Control Freq (%) OR * P* 
Block 1 rs1800469-rs2241712 (TGFB1)  0.96** 

 CG 1.1 1.0 1.00 0.99 
 TG 32.7 33.8 0.98 0.84 
 CA 66.2 65.2 1.03 0.79 
      

Block 2 rs3024509-rs1800872-rs1800896 (IL10)  0.28** 
 CCG 5.5 5.1 1.19 0.39 
 TAA 22.3 24.5 0.82 0.06 
 TCA 31.3 28.9 1.12 0.27 
 TCG 40.9 41.5 1.03 0.75 

* Adjusted for age, sex, and pack-years.   
** P for global association (H-1 df omnibus test) 
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5.1 ABSTRACT 

Background Chronic obstructive pulmonary disease (COPD) is defined as a disease state 

characterized by the presence of airflow obstruction due to emphysema, chronic bronchitis, 

and/or small airway diseases. Cigarette smoking is the main risk factor of COPD and it induces 

abnormal inflammatory reactions in smokers’ lungs. Therefore, inflammatory mediators such as 

cytokines are postulated to be of distinct importance in COPD development. The expression and 

functional effects of cytokine genes are influenced by genetic variants in these genes.  

Methods In the present study, we evaluated seven single nucleotide polymorphisms (SNPs) in 

TGFB1, IL6, and IL10 in relation to airflow obstruction and emphysema risk in a Caucasian 

population from the Pittsburgh metro area. Cochran-Mantel-Haenszel statistics were used to 

evaluate the relationships between genotypes and airflow obstruction/emphysema severity. 

Logistic regression adjusting for covariates was used to obtain odds ratios (ORs) and 95% 

confidence intervals (CIs) with airflow obstruction or emphysema treated as a two-category 

variable.   

Results SNP rs2241712 in TGFB1 was associated with airflow obstruction severity (P for 

nonzero correlation=0.02), the minor allele was associated with a decreased risk of the disease 

(any vs. no airflow obstruction: per allele OR=0.80, 95%CI=0.65-0.99, P trend=0.04).  No other 

significant association was observed. 

Conclusions Our study suggests that common variation in TGFB1 may be associated with the 

development of COPD. 

Implications for public health It is anticipated that increased understanding of the genetics of 

COPD will improve identification of individuals susceptible to developing this disease, as well 

as result in more effective treatment.  
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5.2 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United 

States.175 COPD is defined as a disease state characterized by the presence of airflow obstruction 

due to emphysema, chronic bronchitis, and/or small airway diseases.176 The Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) severity criteria based on spirometry are used to 

classify COPD into no, mild (GOLD I), moderate (GOLD II), and severe (GOLD III-IV) airflow 

obstruction categories.177 Emphysema is defined anatomically as abnormal permanent 

enlargement of the airspaces distal to the terminal bronchioles, accompanied by destruction of 

their walls without obvious fibrosis.178 Computed tomography (CT) technology has provided a 

non-invasive method of emphysema identification and grading.179 

Smoking is the major environmental risk factor for COPD.180,181 However, the fact that 

only a minority (15%-20%) of smokers develop COPD182, and COPD clusters in families62 

suggest the presence of genetic predisposing factors in its pathogenesis. Constant exposure to 

cigarette smoke is associated with immune inflammatory cells infiltration and tissue remodeling 

to produce bronchial mucus glands enlargement, thickening of the walls and narrowing of the 

lumen of the smaller conducting airways, as well as emphysematous destruction of the alveolar 

surface.56,183  Many cytokines play an important role in this chronic inflammatory process with 

tissue damage and repair. The pattern of cytokines involved depends on the inflammatory stage. 

Cytokine gene polymorphisms have been postulated as one of the possible genetic risk factors 

for COPD because they can affect gene expression and functions, thus alter inflammatory 

response. 

The transforming growth factor beta 1 (TGFB1) is located within the region of 

suggestive linkage to pulmonary function on chromosome 19q.184 It is a multifunctional 
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cytokine, and regulates immune responses, cellular proliferation and differentiation, tissue repair, 

and extracellular matrix (ECM) production.185,186 Some of these functions could protect against 

the development of emphysema. For example, TGFB1 can inhibit matrix metalloproteinase, 

consequently may contribute to the development of emphysema through the digestion of elastic 

fibers.187,188 It is furthermore involved in repair of the ECM after inflammation and tissue injury 

by promoting synthesis of elastin and collagen189,190, and this could help repair damage to the 

lungs of smokers who are at risk of developing emphysema. Although initially TGFB1 may be 

involved in repair as in wound healing, studies also suggest that large amounts of this cytokine 

may ultimately lead to destruction.191 These results suggest that compromised TGFB1 signaling 

may be correlated with the development of emphysema.  

Interleukin-6 (IL6) is a pleiotropic pro-inflammatory and immunomodulatory 

cytokine192,193, and it has been proposed as a marker of systemic inflammation.194 IL6 is a 

potential mediator of inflammation in COPD.195 It has been shown to be increased in serum, 

exhaled breath condensate and sputum during stable conditions and exacerbation195, to predict a 

faster decline in FEV1
192, and to be associated with low exercise capacity.196 In addition, it has 

been found to decline after oral and inhaled corticosteroid therapy.197 Furthermore, IL6 is an 

important mediator of the acute phase response and can up-regulate C-reactive protein (CRP) at 

the transcriptional level.198 CRP has been associated with lung function levels in healthy 

individuals and/or lung function decline in smoking-induced airflow obstruction.199,200 

Interleukin-10 (IL10) is an anti-inflammatory cytokine, and is produced by T cells and 

macrophages.201,202 Conflicting results concerning the modulation of IL10 secretion have been 

reported. It has been observed that there is an increased release of IL10 from the alveolar 

macrophages of cigarette smokers and emphysema patients.203 Other studies have reported 
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significantly lower IL10 levels in induced sputum of airflow obstruction patients compared to 

healthy non-smokers.204 These findings may be ascertained in established disease and may not be 

responsible for the induction of the disease. Nonetheless, differences in the level of IL10 

expression may have effects on COPD pathogenesis: IL10 can induce a non-allergic type of 

airway inflammation through suppressing the Th2 response, and increased IL10 production may 

lead to decreased immunity against bacteria and viruses and in turn support a risk factor in 

COPD—recurrent airway infections.  

In the current study, we investigated single-nucleotide polymorphisms (SNPs) in three 

cytokine genes (TGFB1, IL6, and IL10) in relation to airflow obstruction as measured by GOLD 

stages and radiographic emphysema assessed semi-quantitatively with CT scan in a Caucasian 

population. 

5.3 MATERIALS AND METHODS 

5.3.1 Participants 

The Pittsburgh Lung Screening Study (PLuSS), is a community-based study of lung cancer 

screening with low-dose multidetector helical CT. The recruitment of study participants has been 

described previously.34  Briefly, between 2002 and 2005, PLuSS enrolled 50-79 year-old current 

and ex-cigarette smokers of at least one-half pack/day for at least 25 years. Using self-report, 

PLuSS excluded individuals who: 1) quit smoking more than 10 years earlier, 2) had a history of 

lung cancer, or 3) had a chest CT scan within one year of enrollment. A simple random sample 

of size n=1000 was selected from the N=3,463 (92.2% of all PLuSS enrollees) white or black 
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race CT-screened PLuSS participants with buffy coat or whole blood available and no interval 

lung cancer diagnosis (as of 9/10/2008). There were 929 (92.9%) samples with DNA available 

for the current study. Ten individuals (1.1% of 929) with genotype call rates <90% were 

excluded.  

The present study included only Caucasians, the major racial/ethnic subgroup of subjects. 

All subsequent data analyses used the 866 self-reported white subjects. 

Spirometry Protocol. Enrolled participants underwent a low-dose multidetector helical 

CT, and spirometry for pulmonary function testing (PFT), and also completed a written 

questionnaire. The questionnaire obtained information about medical history, current health 

problems, signs and symptoms of pulmonary disease, and smoking history. 205 A certified 

technician, using an office-based OMI-3000 spirometer (OMI Spirometry System, Houston, TX), 

performed PFT without a bronchodilator in accordance with the American Thoracic Society 

(ATS) criteria.206 FEV1 and forced vital capacity (FVC) were measured, and the FEV1/FVC ratio 

was calculated for each participant. The highest value of at least 3 measurements was used. FEV1 

predicted was calculated using Hankinson’s equations from sex, race, age, and height.207 Severity 

of airflow obstruction was determined according to spirometric classification of GOLD177 as 

follows: Stage I: FEV1/FVC<0.7 and FEV1≥80% predicted; Stage II: FEV1/FVC<0.7 and 

50%≤FEV1<80% predicted; Stage III: FEV1/FVC<0.7 and 30%≤ FEV1<50% predicted; Stage 

IV: FEV1/FVC<0.7 and FEV1<30% predicted or FEV1<50% predicted plus chronic respiratory 

failure. 

Protocol for Primary Interpretation of the Baseline Screening CT. Three readers visually 

scored the baseline CT scan for emphysema presence and severity. Based on National 

Emphysema Treatment Trial criteria, scoring procedures used a five-level semi-quantitative scale 
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to represent no, trace, mild, moderate, and severe emphysema, the latter four categories roughly 

corresponding to emphysema affecting less than 10, 10-25, 25-50%, and greater than 50% of the 

lung, respectively. The inter-reader reliability was high.205  

5.3.2 Genetic Polymorphisms and Genotyping 

Seven SNPs in three genes (TGFB1, IL6, and IL10) were genotyped. Two SNPs in the promoter 

region of TGFB1 (rs2241712, rs1800469), one coding non-synonymous SNP (rs2069860) and 

one promoter region SNP of  IL6 (rs1800795), and two SNPs in 5’ near  IL10 (rs1800896, 

rs1800872) and one SNP (rs3024509) in intron 3 of IL10  were selected. (Table 5-1) 

Genotyping of 929 samples was performed at the University of Pittsburgh Genomics and 

Proteomics Core Laboratories (Pittsburgh, PA). All SNPs were genotyped using MassARRAY® 

iPLEX Gold (Sequenom, Inc., San Diego, CA); the SNP specific and mass extend 

oligonucleotides, and assays were designed using Sequenom RealSNP (www.realsnp.com) and 

MassARRAY Assay Design version 3.1 (Sequenom, Inc., San Diego, CA). Fifty duplicate 

samples were included to assess laboratory reliability. Call rates for these 7 SNPs were ≥95% 

and concordance of duplicates was 100%.  

5.3.3 Statistical Analysis  

We used chi-square tests to evaluate baseline factors and radiographic emphysema severity. 

Analysis of variance (ANOVA) was used to test associations between continuous variables of 

lung function (FEV1, FEV1% predicted, and FEV1/FVC) and emphysema severity. Due to the 

http://www.realsnp.com/�
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small numbers of the moderate (n=68) and severe (n=8) emphysema subgroups, we combined 

these two categories.  

Hardy-Weinberg Equilibrium (HWE) was assessed in the whole population (n=866), the 

no-airflow-obstruction subgroup (n=521), and the no-emphysema subgroup (n=507) using an 

exact test.  

We used a Cochran-Mantel-Haenszel (CMH) test to evaluate genotype (modeled as a 0, 

1, 2 ordinal variable representing major allele homozygotes, heterozygotes, and minor allele 

homozygotes, respectively) relationships with airway obstruction (modeled as either a 0, 1, 2, 3 

categorical or ordinal variable representing no, mild, moderate, and severe obstruction, 

respectively) and with emphysema (modeled as 0, 1, 2, 3 categorical or ordinal variable  

representing no, trace, mild, and moderate-severe emphysema, respectively). 

Logistic regression adjusting for covariates (age, sex, and smoking pack-years) was used 

to obtain ORs and 95%CIs when airflow obstruction or radiographic emphysema was treated as a 

two category variable (any vs. no airflow obstruction, any vs. no emphysema, respectively). 

Genotype-based, additive (test for linear trend), and dominant models were examined. The 

genotype-based model is defined as heterozygotes (1 minor allele) versus common allele 

homozygotes (0 rare alleles), or rare allele homozygotes (2 minor alleles) versus common allele 

homozygotes. Linear trend was assessed using numerical scores assigned to the ordered 

categories (i.e., 0 to the category of major allele homozygotes, 1 to the category of 

heterozygotes, and 2 to the category of minor allele homozygotes) as continuous variable in the 

model. Because the number of rare-allele homozygotes was relatively small, we also combined 

heterozygotes and rare-allele homozygotes in the logistic regression analyses; common-allele 

homozygotes were used as the reference group (indicating dominant model). 
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Interaction between genotypes and any other airflow obstruction/emphysema risk factor 

(age in years, sex, smoking pack-years, smoking status, years of smoking, and number of 

cigarettes per day) was tested using the appropriate cross-product term in logistic regression 

under the dominant model.  

All significance tests were two sided; P values <0.05 were considered statistically 

significant. Data analyses were conducted using SAS/Genetics software (version9.1.3; SAS 

Institute, Cary, NC). 

5.4 RESULTS 

5.4.1 Characteristics of Study Subjects 

Table 5-2 shows the baseline characteristics of the study subjects. Our study population included 

866 self-reported white subjects that fulfilled quality control criteria. Half (50.1%) of the 

population were women, and the majority of subjects (61.1%) were less than 60 years of age. 

The majority (59.1%) were current smokers, with a relatively intense cigarette smoking exposure 

(duration of cigarette use=39.1±7.4 years; dose intensity=25.7±9.8 cigarettes/day; smoking 

intensity duration=50.2±21.6 pack-years). More than one fifth (22.9%) reported a history of 

emphysema, bronchitis, or asthma; and about two-thirds (65.5%) reported symptoms of cough, 

phlegm, or wheezing. There is a high prevalence of airflow obstruction (39.8%) defined as 

GOLD stage I-IV and emphysema (41.5%) based on the CT scan. 

Airflow obstruction (as measured by diminishing FEV1% predicted and FEV1/FVC) 

increased with emphysema severity (both P<0.0001). (Table 5-2) 
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5.4.2 Radiographic Emphysema Risk Factors 

Factors associated with emphysema include age (P=0.0002), smoking status (P=0.03), years of 

cigarette use (P<0.0001), cigarettes per day (P=0.04), pack-years of smoking (P<0.0001), history 

of emphysema, bronchitis, or asthma (P<0.0001), and symptoms of cough, phlegm, or wheezing 

(P=0.03). Emphysema severity did not differ according to sex (P=0.77). (Table 5-2) 

Airflow obstruction and emphysema correlated strongly; moderate or severe emphysema 

was 2.1-, 3.5-, and 2.9-fold more common in persons with mild, moderate, and severe airflow 

obstruction, respectively, than in persons without airflow obstruction. (Table 5-2) 

5.4.3 Association between SNPs and COPD Phenotypes 

The allele frequencies and HWE P values of the examined SNPs are shown in Appendix C 

Table 6-9. All SNPs were in HWE in the whole study population (P>0.05). While in both no-

airflow obstruction and no-emphysema subjects, IL6 rs2069860 was slightly deviated from HWE 

(P=0.04). However, examination of the cluster plot for rs2069860 did not reveal any unusual 

patterns; therefore this SNP was included in the subsequent analyses. We calculated the pairwise 

linkage disequilibrium (LD) values for the SNPs using PLINK (version 1.07). There was a tight 

LD between the two TGFB1 SNPs (rs2241712, rs1800469) in the promoter region (r2=0.95). 

We observed a statistically significant association between TGFB1 rs2241712 and 

airflow obstruction (P=0.02 for both airflow obstruction and SNP genotype as ordinal variables). 

We also observed a borderline significant association between TGFB1 rs1800469 genotype and 

airflow obstruction (P=0.05 for both as ordinal variables). 
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No significant association of any SNP genotypes and emphysema was observed (Table 

5-3B).  

When airflow obstruction and emphysema were treated as a two category variable, we 

obtained similar results. For the airflow obstruction phenotype, we observed that the minor allele 

(G) of TGFB1 rs2241712 was associated with a decreased risk of the disease (per allele 

OR=0.80, 95%CI=0.65-0.98, Ptrend=0.03), and the result remained significant (per allele 

OR=0.80, 95%CI=0.65-0.99, Ptrend=0.04) after adjusting for age, sex and smoking pack-years 

(Table 5-4). Under the dominant model, minor allele carriers of TGFB1 rs2241712 again 

showed a reduced risk of airflow obstruction (OR=0.73, 95%CI=0.55-0.98). 

When comparing subjects with and without emphysema, no significant association of any 

SNP with emphysema was observed. (Appendix C Table 6-12) None of the (seven) SNPs were 

associated with emphysema phenotype under the genotype-based, additive, (Appendix C Table 

6-12) or dominant models (Appendix C Table 6-13).  

We then explored the association of the significant TGFB1 SNP (rs2241712) and COPD 

severity defined by combining both GOLD stages and CT scan emphysema score (Figure 5-1. 

Definition of the new COPD severity classification based on both GOLD stages and emphysema 

score.). Relative to healthy persons without airflow obstruction and CT emphysema no worse 

than trace, TGFB1 rs2241712 G decreased the per allele odds of non-obstructive mild to severe 

emphysema or non-emphysematous (CT emphysema<mild) obstruction by 8% (adjusted 

OR=0.92, 95%CI=0.73-1.15, p=N.S.). Relative to healthy persons without airflow obstruction 

and CT emphysema no worse than trace, TGFB1 rs2241712 G decreased the per allele odds of 

obstructive mild to severe emphysema by 27% (adjusted OR=0.73, 95%CI=0.53-0.996, p<0.05). 
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5.4.4 Interaction between Genotypes and Other COPD Risk Factors 

We observed a statistically significant interaction between IL10 rs1800896 and sex when 

emphysema was treated as a two-category variable (P for interaction=0.004). In men, minor 

allele carriers showed a non-significant protective effect against emphysema (dominant model 

OR=0.66, 95%CI=0.43-1.03); but in women, minor allele carriers were at a higher risk of 

emphysema (dominant model OR=1.51, 95%CI=0.97-2.35).  

5.5 DISCUSSION 

We observed that SNP rs2241712 in TGFB1 was associated with airflow obstruction in our study 

population. Together with previous findings, this study adds evidence to the TGFB1 gene as a 

risk factor for the development of COPD. Associations of COPD with other variants were not 

evident.   

COPD is a pulmonary disease with prominent inflammatory features, and appears to be 

associated with the presence of increased systemic inflammatory markers.208,209 Only some 

people exposed to cigarette smoke develop COPD, suggesting that genetic factors are important 

determinants of susceptibility. Inherited differences in the inflammatory response may contribute 

to COPD by initiating or maintaining airway inflammation. Different cytokines may be part of 

the airway inflammatory response in COPD. It is likely that variations in the phenotypic 

expression of these evaluated cytokines are influenced by polymorphisms in these genes. Thus, 

these polymorphisms may be of particular interest. 
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TGFB1 is produced by epithelial cells and macrophages and can cause fibrotic changes in 

lung tissue. Increased expression of TGFB1 and its mRNA was found in the bronchiolar and 

alveolar epithelium of COPD patients, and correlated with the number of intraepithelial 

macrophages.210 COPD is characterized by inflammation with increased numbers of CD8+ 

lymphocytes and macrophages in the airways.12,194 In emphysema there is disruption and 

fragmentation of elastic fibres in the alveolar walls. The resulting loss of elastic recoil leads to 

premature collapse of the small airways during expiration and this is one explanation of the 

airflow obstruction that occurs in emphysema.211 TGFB1 has anti-inflammatory actions185,212, it 

could plausibly act to prevent the degradation of elastin by inhibiting the expression of matrix 

metalloproteases. It is also possible that TGFB1 may be acting to promote the synthesis of elastin 

188,189 and therefore, it could play a role in repairing the loss of elastic fibres that is due to 

smoking.  

Studies have indicated that SNP rs1800469 in the promoter region of TGFB1 is 

functional. Previous studies have reported that the T allele of rs1800469 (-509T>C) is associated 

with increased TGFB1 circulating concentrations in plasma,213 and with an allele dose effect 

(TT>TC>CC).214 This allele alters a Ying Yang 1 (YY1) transcription-factor consensus-binding 

site, enhances YY1 binding and promoter function, and is associated with higher TGFB1 

circulating concentrations.213,214 Since TGFB1 has anti-inflammatory and pro-repair activities; 

the T allele of this SNP is thought to be protective against the development of COPD.  

In our study and other studies of Caucasians74, rs2241712 and rs1800469 in the promoter 

region are in strong LD. Cross-sectional studies have investigated associations of SNPs in 

TGFB1 with the presence of COPD, and with lower levels of FEV1% predicted and FEV1/FVC 

in several populations. In a family-based association analysis of severe, early-onset COPD 
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pedigrees, Celedon et al.74 found modest evidence for association between rs2241712 G allele 

and decreased airflow obstruction. Furthermore, in a comparison of subjects with severe 

emphysema detected by high resolution CT (HRCT) from the National Emphysema Treatment 

Trial and smoking controls, rs2241712 and rs1800469 minor alleles were associated with 

reduced emphysema risk. Su et al215. also reported the T allele frequency of rs1800469 was 

significantly decreased in airflow obstruction compared with that in controls in a Chinese 

population. In contrast, van Diemen et al.216 failed to find association of rs1800469 with airflow 

obstruction among Caucasians of Dutch descent. In a case-control study conducted in Korea, 

Yoon et al.217 did not find significant association for the two SNPs with airflow obstruction 

either. Ito et al.218 did not detect any association of the two SNPs with the emphysema phenotype 

detected by HRCT in a Japanese population; however, they reported that FEV1 after 

bronchodilator was significantly associated with the T allele of rs1800469 (P=0.007), and that T 

was significantly more prevalent in GOLD stage III-IV vs. GOLD stage I-II (OR=2.86, 

95%CI=1.33-6.14) in emphysema patients. A meta-analysis by Smolonska et al.219 reported the 

minor allele of rs2241712 was protective for COPD (OR=0.73, 95%CI=0.57-0.94); and 

rs1800469 showed borderline significant protective effect for COPD (OR=0.76, 95%CI=0.54-

1.08). One possible contributor to inconsistent results relates to genetic heterogeneity between 

study populations. Different genetic factors might influence the development of COPD in 

different ethnic groups. There is also the possibility that these polymorphisms are not the 

functional variants affecting COPD susceptibility. The effects that we detected may be due to LD 

with nearby functional variants. Even if the same functional genetic variant was involved in each 

population, the LD relationships of this functional variant with neighboring genetic 

polymorphisms could vary between ethnic groups.  
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The polymorphisms in the IL6 gene promoter region appear to be related to cytokine 

levels in plasma.220 There are five previous reports analyzing the IL6 rs1800795 (-174G>C) 

polymorphism and COPD in Caucasian populations. In the study by He et al.73, they reported 

that all SNPs genotyped and in high LD with the IL6 rs1800795 (-174G>C) showed significant 

or borderline association with rapid decline of lung function and with airflow obstruction. 

However, in a German study conducted by Seifart et al.221, 113 patients and 356 controls were 

analyzed, no significant association was found of IL6 rs1800795 (-174G>C) with airflow 

obstruction. In a Dutch study, Broekhuizen el al.222 studied rs1800795 in 99 patients with a 

cachexia phenotype and did not find any association between this SNP and airflow obstruction. 

Studies conducted in Spain223 and the Republic of Bashkortostan224 also reported no significant 

association between this SNP and airflow obstruction. The meta-analyses by Smolonska et al.219 

included the latter four publications221-224 of white populations, and found no significant 

association of rs1800795 and airflow obstruction risk, with an OR of 1.15 (95%CI=0.92-1.43). 

Similarly, no significant association was observed in our study.  

IL10 is hypothesized to inhibit inflammatory response by reducing the production of pro-

inflammatory cytokine.201,202 In addition, IL10 may prevent apoptosis in T225 and B cells by up-

regulating bcl-2 protein226 that may result in the persistence of inflammatory cells, leading to 

ongoing airway inflammation. Furthermore, IL10 was demonstrated to influence airway 

macrophages releasing proteases and anti-proteases203, a balanced system that play an important 

role in emphysema development and progression. However, genetic association studies221,224 

failed to demonstrate relationships between IL10 SNPs and airflow obstruction risk. In 

accordance to previous studies, we did not observe any association either.  
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However, in the current study, we observed that sex modified the association between 

IL10 rs1800896 and emphysema risk. Several studies have shown the existence of sex 

differences in clinical presentation and phenotypes of COPD.227-230 To our knowledge, this is the 

first study reporting a modifying effect of sex on this SNP and emphysema risk. Even though the 

interaction is quite significant (P=0.004), we can’t rule out the possibility of chance finding. 

Follow-up studies with adequate sample sizes are warranted to confirm this finding and both in 

vivo and in vitro studies are needed to investigate the impact of this polymorphism on disease 

pathogenesis.  

Inconsistent results in the associations between genetic variations in candidate genes and 

COPD are quite frequent.231 Besides heterogeneity between study populations, another possible 

contributor to inconsistent genetic association results relates to the phenotypic differences of 

COPD, and published association studies have used different phenotype definitions. For 

example, genetic association studies of COPD have defined cases on the basis of airflow 

obstruction217, emphysema218, decline in lung function73, or chronic bronchitis.232 It is possible 

that a given genetic variant may confer susceptibility to a specific COPD-related phenotype. 

However, it is difficult to define a distinct COPD subtype since different manifestations of 

COPD overlap with each other. Furthermore, patients with COPD may also have co-existent 

asthma even though their predominant problem was COPD. The dissimilarities could also be 

explained by patient characteristics. For instance, our COPD patients had milder airflow 

obstruction (FEV1<80% predicted) than the COPD patients in the Celedon study74 (FEV1<45% 

predicted). 

The strengths of our study include, first, we have a relatively homogeneous population. 

Our study participants are Caucasians from southwestern Pennsylvania, and population 
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stratification is not likely to have a large impact on our findings. Our data were collected for 

epidemiological study purposes, and the dataset is quite complete and has high quality compare 

to other study data that were retrospectively abstracted from medical records. 

There are several limitations to our study. Our sample size is modest, and we did not have 

power to detect genetic determinants of minor effect. Using airflow obstruction (no vs. any) as 

an example, in our study population and with 80% power using log-additive model, for SNPs 

with MAF=0.05 we can detect ORs ≥1.8, for SNPs with MAF=0.10 we can detect ORs >1.5, for 

SNPs with MAF=0.30 we can detect ORs >1.3. We genotyped only two or three SNPs per gene, 

assuming that the variants tested have functional effects on COPD susceptibility. However, if 

another variant in or near the gene not in LD with the studied SNPs were the causal variant, then 

the true association could be easily missed. 

Misclassification of airflow obstruction may have occurred since spirometry data were 

collected at one point of time, and without administration of any pulmonary function improving 

medications (e.g., bronchodilator). However, participants were asked to come in for the 

measurement during their usual health state, thus the day-to-day variation of the pulmonary 

function was assumed to be minimal.  

We did not adjust for multiple comparisons in this study. False positive associations may 

arise from multiple testing in studies that assess many genes, markers, and phenotypes.233 There 

is no consensus on the optimal method to adjust for multiple comparisons in case-control genetic 

association studies, though replication in an independent study may provide the strongest 

evidence for true association. Our results of TGFB1 SNPs are similar to previous studies 

provided additional support that this gene may play an important role in COPD development. 



 

85 

Future candidate gene association studies need to employ strict genetic epidemiology 

criteria, including adequate sample sizes, adjustment for multiple testing, and control for 

population stratification. Genome-wide linkage analysis will be required to identify genomic 

regions that likely contain COPD susceptibility genes, and positional candidate gene association 

testing and/or SNP-based fine mapping will likely be required to identify novel COPD 

susceptibility genes within these regions. A more systematic approach to COPD genetics may 

lead to more consistent results in the search for genetic determinants of COPD. Functional 

studies are necessary to pinpoint the exact role of such SNPs in genes.  

In summary, evaluating associations of seven cytokine polymorphisms with COPD, we 

found rs2241712 in the promoter region of TGFB1 gene is associated with airflow obstruction. 

Our findings need to be validated in large, prospectively accrued populations and incorporating 

additional genetic markers in the cytokine pathway.  
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5.6 TABLES AND FIGURES 

 

Table 5-1. SNP Information. 

Gene rs Number Chr Chr Position* Nucleotide Allele Location and Presumed Function 

TGFB1 rs2241712 19q13.1 41869756 -10807G>A AG In the promoter region; alter gene expression.  

TGFB1 rs1800469 19q13.1 41860296 -509T>C CT 
In the promoter region; T allele is associated 
with increased circulating concentrations of 
TGF-B1 in plasma.I  

IL6 rs2069860 7p21 22771038 Ex5+14A AT Coding non-synonymous; Val[V] Asp[D]. 

IL6 rs1800795 7p21 22766645 -236C>G  
(-174C>G) GC In the promoter region; associated with levels of 

IL-6 protein and the C-reactive protein.II 

IL10 rs1800896 1q31-q32 206946897 -1082G>A 
(-1116A>G) AG 5’ near gene. 

IL10 rs1800872 1q31-q32 206946407 
-592C>A   
(-627A>C, -
6653A>C) 

CA 5’ near gene. 

IL10 rs3024509 1q31-q32 206943297 IVS3-58T>C TC Intron_3. 

*dbSNP Chromosome Report, GRCh37 Sequence  
Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National 
Library of Medicine. (dbSNP Build ID: {build ID}). Available from: HUhttp://www.ncbi.nlm.nih.gov/SNP/U 
I. Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type 
beta1. Hum Mol Genet 1999;8:93-7. 
II. Vickers MA, Green FR, Terry C, et al. Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline 
levels of plasma C-reactive protein. Cardiovasc Res 2002;53:1029-34. 

http://www.ncbi.nlm.nih.gov/SNP/�
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Table 5-2. Study Population Characteristics by Emphysema Severity Status. 

   Radiographic Emphysema Severity (Row %)†  

Characteristic n Total (%) None 
(n=507) 

Trace 
(n=179) 

Mild 
(n=104) 

Moderate + Severe 
(n=76) P Value* 

Sex       0.77 
 Men  432 49.9 251 (49.5) 95 (53.1) 49 (47.1) 37 (48.7)  
 Women 434 50.1 256 (50.5) 84 (46.9) 55 (52.9) 39 (51.3)  
Age, yr       0.0002 
 49-59 517 61.1 332 (67.3) 101 (57.1) 50 (49.5) 34 (45.3)  
 60-69 258 30.5 132 (26.8) 59 (33.3) 38 (37.6) 29 (38.7)  
 70+ 71 16.9 29 (5.9) 17 (9.6) 13 (12.9) 12 (16.0)  
Smoking status       0.03 
 Current smoker 511 59.1 281 (55.4) 116 (64.8) 71 (68.3) 43 (57.3)  
 Former smoker 354 40.9 226 (44.6) 63 (35.2) 33 (31.7) 32 (42.7)  
Duration of cigarette 
use, yr       <0.0001 

 <40 482 55.7 317 (62.5) 98 (54.8) 38 (36.5) 29 (38.7)  
 40+ 383 44.3 190 (37.5) 81 (45.3) 66 (63.5) 46 (61.3)  
Dose intensity, 
cigarettes/d       0.04 

 <20 264 30.5 175 (34.5) 53 (29.6) 25 (24.0) 11 (14.7)  
 20-29 354 40.9 201 (39.6) 74 (41.4) 45 (43.3) 34 (45.3)  
 30-39 156 18.0 79 (15.6) 33 (18.4) 24 (23.1) 20 (26.7)  
 40+ 91 10.5 52 (10.3) 19 (10.6) 10 (9.6) 10 (13.3)  
Smoking intensity 
duration, pack-years       <0.0001 

 <30 161 18.6 120 (23.7) 28 (15.6) 10 (9.6) 3 (4.00)  
 30-44 228 26.3 138 (27.2) 52 (29.1) 20 (19.2) 18 (23.6)  
 45-59 228 26.3 131 (25.8) 41 (22.9) 35 (33.7) 21 (27.6)  
 60-74 135 15.4 63 (12.4) 35 (19.6) 20 (19.2) 17 (22.4)  
 75+ 114 13.2 55 (10.9) 23 (12.8) 19 (18.3) 17 (22.4)  
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Table 5-2. (Continued) 
        
History of emphysema, 
bronchitis, or asthma       <0.0001 

 No 668 77.1 412 (81.3) 141 (78.8) 77 (74.0) 38 (50.0)  
 Yes 198 22.9 95 (18.7) 38 (21.2) 27 (26.0) 38 (50.0)  
Cough, phlegm, or 
wheeze       0.03 

 No 299 34.5 192 (37.9) 55 (30.7) 35 (33.6) 17 (22.4)  
 Yes 567 65.5 315 (62.1) 124 (69.3) 69 (66.4) 59 (77.6)  
Airflow obstruction       <0.0001 
 None 521 60.2 365 (72.0) 107 (60.1) 41 (39.4) 8 (10.5)  
 GOLD I 127 14.7 56 (11.0) 27 (15.2) 27 (26.0) 17 (22.4)  
 GOLD II 171 19.8 74 (14.6) 39 (21.9) 30 (28.8) 28 (36.9)  
 GOLD III-IV 46 5.3 12 (2.4) 5 (2.8) 6 (5.8) 23 (30.2)  
   Radiographic Emphysema Severity  

Characteristic Mean ± SD of Total 
(N=866) 

None 
(n=507) 

Trace 
(n=179) 

Mild 
(n=104) 

Moderate + Severe 
(n=76) P Value‡ 

FEV1obs (liters) 2.56 ± 0.81 2.70 (0.03) 2.59 (0.06) 2.35 (0.08) 1.93 (0.09) <0.0001 
FEV1% Predicted 83.52 ±18.75 86.60 (0.80) 83.72 (1.34) 80.62 (1.76) 66.48 (2.05) <0.0001 
FEV1/FVC 70.32 ± 10.44 73.49 (0.39) 70.73 (0.66) 66.33 (0.86) 53.64 (1.01) <0.0001 

*Independence between characteristic and radiographic emphysema severity, level of statistical significance (chi-square test). 
†Row % is the percentage of the study subgroup total (n) with the indicated characteristic. 
‡GLM (3df) to compare the mean of 4 radiographic emphysema severity categories. Characteristics within each category are 
presented as mean (SE). 
FEV1obs: Forced expiratory volume in first second, liters. 
FEV1% Predicted: Forced expiratory volume in first second as percent of expected. 
FEV1/FVC: 100×FEV1/FVC. 
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Table 5-3A. Genotype Distribution by GOLD Stage (Airflow Obstruction Severity). 

   GOLD Stage†   

Gene rs Number Genotype 0 
(n=521) 

I 
(n=127) 

II 
(n=171) 

III + IV 
(n=46) 

II-IV 
(n=217) P * 

TGFB1 rs2241712 AA 208 (55.8) 58 (15.6) 83 (22.3) 24 (6.4) 107 (28.7) 0.02 (1df) 
  AG 241 (63.3) 51 (13.4) 73 (19.2) 16 (4.2) 89 (23.4) 0.049 (2df) 
  GG 71 (64.6) 18 (13.4) 15 (13.6) 6 (5.5) 21 (19.1) 0.23 (6df) 

TGFB1 rs1800469 CC 217 (56.7) 58 (15.1) 84 (21.9) 24 (6.3) 108 (28.2) 0.05 (1df) 
  CT 235 (62.7) 53 (14.1) 71 (18.9) 16 (4.3) 87 (23.2) 0.12 (2df) 
  TT 68 (64.2) 16 (15.1) 16 (15.1) 6 (5.7) 22 (20.8) 0.51 (6df) 

IL6 rs2069860‡ AA 513 (60.2) 124 (14.6) 169 (19.8) 46 (5.4) 215 (25.2) 0.54 (1df) 
  AT 7 (58.3) 3 (25.0) 2 (16.7) 0 (0.0) 2 (16.7) 0.54 (1df) 
  TT 1 (100) 0 (0.0) 0 (0.00) 0 (0.0) 0 (0.0) 0.69 (3df) 

IL6 rs1800795 GG 188 (60.5) 43 (13.8) 64 (20.6) 16 (5.1) 80 (25.7) 0.93 (1df) 
  CG 245 (60.8) 58 (14.4) 75 (18.6) 25 (6.2) 100 (24.8) 1.00 (2df) 
  CC 88 (58.3) 26 (17.2) 32 (21.2) 5 (3.3) 37 (24.5) 0.78 (6df) 

IL10 rs1800896 AA 152 (60.1) 39 (15.4) 49 (19.4) 13 (5.1) 62 (24.5) 0.98 (1df) 
  AG 248 (59.3) 62 (14.8) 90 (21.5) 18 (4.3) 108 (25.8) 0.98 (2df) 
  GG 121 (62.4) 26 (13.4) 32 (16.5) 15 (7.7) 47 (24.2) 0.52 (6df) 

IL10 rs1800872 CC 297 (60.1) 74 (15.0) 91 (18.4) 32 (6.5) 123 (24.9) 0.90 (1df) 
  CA 193 (60.9) 47 (14.8) 64 (20.2) 13 (4.1) 77 (24.3) 0.78 (2df) 
  AA 31 (57.4) 6 (11.1) 16 (29.6) 1 (1.9) 17 (31.5) 0.31 (6df) 

IL10 rs3024509‡ TT 467 (60.0) 113 (14.5) 157 (20.2) 42 (5.4) 199 (25.6) 0.45 (1df) 
  TC 54 (64.3) 12 (14.3) 14 (16.7) 4 (4.8) 18 (21.5) 0.45 (1df) 
  CC 0 (0.0) 2 (100) 0 (0.0) 0 (0.0) 0 (0.0) 0.82 (3df) 

*P values are for 1df nonzero correlation statistic, 2df row mean score differ statistic, 6df general association statistic. 
†Row percentages 
‡When calculated P-values from CMH, IL6 rs2069860 AT/ TT genotypes were combined, and IL10 rs3024509 TC/CC genotypes 
were combined, due to small cell counts.  
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Table 5-3B. Genotype Distributions by Radiographic Emphysema Severity. 

   Radiographic Emphysema Severity (Row %)†   

Gene rs Number Genotype None 
(n=507) 

Trace 
(n=179) 

Mild 
(n=104) 

Moderate + Severe 
(n=76) 

Mild+ 
(n=180) P * 

TGFB1 rs2241712 AA 214 (57.4) 74 (19.8) 44 (11.8) 41 (11.0) 85 (22.8) 0.13 (1df) 
  AG 227 (59.4) 79 (20.7) 45 (11.8) 31 (8.1) 76 (19.9) 0.32 (2df) 
  GG 65 (59.1) 26 (23.6) 15 (13.6) 4 (3.6) 19 (17.2) 0.36 (6df) 

TGFB1 rs1800469 CC 218 (56.9) 78 (20.4) 44 (11.5) 43 (11.2) 87 (22.7) 0.14 (1df) 
  CT 226 (60.1) 77 (20.5) 45 (12.0) 28 (7.5) 73 (19.5) 0.29 (2df) 
  TT 62 (58.5) 24 (22.6) 15 (14.2) 5 (4.7) 20 (18.9) 0.38 (6df) 

IL6 rs2069860‡ AA 499 (58.5) 178 (20.9) 103 (12.1) 73 (8.6) 176 (20.7) 0.43 (1df) 
  AT 7 (58.3) 1 (8.3) 1 (8.3) 3 (25.0) 4 (33.3) 0.43 (1df) 
  TT 1 (100) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0.22 (3df) 

IL6 rs1800795 GG 183 (58.7) 69 (22.1) 35 (11.2) 25 (8.0) 60 (19.2) 0.76 (1df) 
  CG 234 (58.1) 83 (20.6) 46 (11.4) 40 (9.9) 86 (21.3) 0.82 (2df) 
  CC 90 (59.6) 27 (17.9) 23 (15.2) 11 (7.3) 34 (22.5) 0.72 (6df) 

IL10 rs1800896 AA 145 (57.3) 63 (24.9) 28 (11.1) 17 (6.7) 45 (17.8) 0.24 (1df) 
  AG 251 (60.1) 78 (18.7) 53 (12.7) 36 (8.6) 89 (21.3) 0.46 (2df) 
  GG 111 (56.9) 38 (19.5) 23 (11.8) 23 (11.8) 46 (23.6) 0.32 (6df) 

IL10 rs1800872 CC 288 (58.2) 107 (21.6) 53 (10.7) 47 (9.5) 100 (20.2) 0.87 (1df) 
  CA 188 (59.3) 59 (18.6) 46 (14.5) 24 (7.6) 70 (22.1) 0.99 (2df) 
  AA 31 (57.4) 13 (24.1) 5 (9.3) 5 (9.3) 10 (18.6) 0.58 (6df) 

IL10 rs3024509‡ TT 455 (58.4) 165 (21.2) 91 (11.7) 68 (8.7) 159 (20.4) 0.80 (1df) 
  TC 52 (61.9) 12 (14.3) 12 (14.3) 8 (9.5) 20 (23.8) 0.80 (1df) 
  CC 0 (0.0) 2 (66.7) 1 (33.3) 0 (0.0) 1 (33.3) 0.63 (3df) 

* P values are for 1df nonzero correlation statistic, 2df row mean score differ statistic, 6df general association statistic.  
†Row percentages 
‡ When calculated P-values from CMH, IL6 rs2069860 AT/ TT genotypes were combined, and IL10 rs3024509 TC/CC genotypes 
were combined, due to small cell counts.  
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Table 5-4. Unadjusted and Adjusted Results of SNP and Airflow Obstruction Associations: Genotype-based Model and Trend Test 
   N (%) Genotype-based Model Genotype-based Model* 

Gene rs Number Genotype GOLDI-IV Control OR (95% CI) P OR (95% CI)* P* 
TGFB1 rs2241712 AA 165 (48.0) 208 (40.0) 1.00 (reference)  1.00 (reference)  

  AG 140 (40.7) 241 (46.3) 0.73 (0.55, 0.98) 0.04 0.75 (0.55, 1.01) 0.06 
  GG 39 (11.3) 71 (13.7) 0.69 (0.45, 1.08) 0.10 0.69 (0.43, 1.09) 0.11 
  Trenda   0.80 (0.65, 0.98) 0.03 0.80 (0.65, 0.99) 0.04 

TGFB1 rs1800469 CC 166 (48.3) 217 (41.7) 1.00 (reference)  1.00 (reference)  
  CT 140 (40.7) 235 (45.2) 0.78 (0.58, 1.04) 0.09 0.79 (0.58, 1.06) 0.12 
  TT 38 (11.0) 68 (13.1) 0.73 (0.47, 1.14) 0.17 0.74 (0.47, 1.18) 0.21 
  Trenda   0.83 (0.68, 1.02) 0.07 0.84 (0.68, 1.03) 0.10 

IL6 rs2069860 AA 339 (98.5) 513 (98.5) 1.00 (reference)  1.00 (reference)  
  AT 5 (1.5) 7 (1.3) 1.08 (0.34, 3.43) 0.90 1.32 (0.40, 4.28) 0.65 
  TT 0 (0.0) 1 (0.2) --- -- --- -- 
  Trenda   0.86 (0.31, 2.41) 0.77 0.99 (0.35, 2.82) 0.99 

IL6 rs1800795 GG 123 (35.8) 188 (36.1) 1.00 (reference)  1.00 (reference)  
  GC 158 (45.9) 245 (47.0) 0.99 (0.73, 1.33) 0.93 1.01 (0.73, 1.38) 0.98 
  CC 63 (18.3) 88 (16.9) 1.09 (0.74, 1.63) 0.66 1.16 (0.77, 1.75) 0.48 
  Trenda   1.04 (0.85, 1.26) 0.72 1.07 (0.87, 1.30) 0.54 

IL10 rs1800896 AA 101 (29.4) 152 (29.2) 1.00 (reference)  1.00 (reference)  
  AG 170 (49.4) 248 (47.6) 1.03 (0.75, 1.42) 0.85 1.14 (0.82, 1.60) 0.43 
  GG 73 (21.2) 121 (23.2) 0.91 (0.62, 1.33) 0.62 1.00 (0.67, 1.49) 0.99 
  Trenda   0.96 ().79, 1.16) 0.66 1.01 (0.83, 1.23) 0.94 

IL10 rs1800872 CC 197 (57.3) 297 (57.0) 1.00 (reference)  1.00 (reference)  
  CA 124 (36.0) 193 (37.0) 0.97 (0.73, 1.29) 0.83 0.96 (0.71, 1.30) 0.80 
  AA 23 (6.7) 31 (6.0) 1.12 (0.63, 1.98) 0.70 0.97 (0.54, 1.76) 0.92 
  Trenda   1.01 (0.81, 1.27) 0.91 0.97 (0.77, 1.23) 0.82 

IL10 rs3024509 TT 312 (90.7) 467 (89.6) 1.00 (reference)  1.00 (reference)  
  TC 30 (8.7) 54 (10.4) 0.83 (0.52, 1.33) 0.44 0.93 (0.57, 1.52) 0.78 
  CC 2 (0.6) 0 (0.0) --- -- --- -- 
  Trenda   0.95 (0.61, 1.48) 0.82 1.07 (0.67, 1.68) 0.79 

* Adjusted for age, sex and pack-years. a. Additive Model, dose-response, 1df. 
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Table 5-5. Adjusted Results of SNP and Airflow Obstruction Associations: Dominant 
Model 

 

Gene rs Number Subjects with data, N 
Minor allele frequency, 

% 

Dominant Modelb 
Combined heterozygote 
and homozygote minor 

  Cases Controls Cases Controls OR (95% CI) P 
TGFB1 rs2241712 344 520 31.7 36.8 0.73 (0.55, 0.98) 0.03 
TGFB1 rs1800469 344 520 31.4 35.7 0.78 (0.58, 1.03) 0.08 
IL6 rs2069860 344 521 0.7 0.9 1.13 (0.36, 3.57) 0.83 
IL6 rs1800795 344 521 41.3 40.4 1.05 (0.78, 1.41) 0.77 
IL10 rs1800896 344 521 45.9 47.0 1.10 (0.80, 1.50) 0.57 
IL10 rs1800872 344 521 24.7 24.5 0.96 (0.72, 1.28) 0.80 
IL10 rs3024509 344 521 4.9 5.2 1.00 (0.62, 1.61) 0.99 
Adjusted for age, sex, pack-years.     
b. Dominant Model: combine heterozygote and homozygote minor.    
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  Emphysema Score 

GOLD 
Stages 

 None Trace Mild Moderate + Severe 
0 1 (n=471) 2 (n=49) 
I  

2 (n=214) 
 

3 (n=131) II 
III-IV 

Figure 5.1. Definition of the new COPD severity classification based on both GOLD stages 
and emphysema score. 
1 [Normal]: GOLD(0)&Emphy(None), GOLD(0)&Emphy(Trace) 
2 [Moderate]: GOLD(I)&Emphy(None), GOLD(I)&Emphy(Trace), GOLD(II-
IV)&Emphy(None), GOLD(II-IV)&Emphy(Trace), GOLD(0)&Emphy(Mild), 
GOLD(0)&Emphy(Moderate+Severe) 
3 [Severe]: GOLD(I)&Emphy(Mild), GOLD(I)&Emphy(Moderate-Severe), GOLD(II-
IV)&Emphy(Mild), GOLD(II-IV)&Emphy(Moderate+Severe) 
 

 

 

Figure 5.2. Association between TGFB1 rs2241712 and COPD severity (per allele odds 
ratio and 95% confidence interval), adjusting for age, sex, and smoking pack-years. 
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6.0  DISCUSSION 

6.1 SUMMARY OF FINDINGS 

Lung cancer is the leading cause of cancer mortality in the U.S. The 5-year survival for the 

disease is approximately 16%, and despite therapeutic advances there has been little 

improvement over the past three decades.1 COPD is the fourth leading cause of death in the 

US.10 Despite the availability of effective treatments for COPD, no existing therapy halts or 

reverses the progressive and accelerated decline in lung function that is characteristic of this 

condition. Both diseases are associated with cigarette smoking, which causes abnormal 

inflammatory changes. However, only a fraction of smokers develop lung cancer58 and/or 

COPD59, suggesting genetic predispositions to both diseases. While the relationship between 

inflammation and lung cancer or COPD is becoming better understood, the effects of 

inflammatory pathway genes in disease development and prevention have not been extensively 

studied. 

In this study we utilized data and specimens from Project 4 of the UPCI SPORE in Lung 

Cancer and were able to examine several inflammatory pathway genes and smoking-related lung 

cancer and/or lung disease risk, including: 1) polymorphisms in eicosanoid pathway genes (IL1B, 

COX2, PPARG) and lung cancer risk; 2) polymorphisms in cytokine genes (TGFB1, IL6, IL10) 
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and lung cancer risk; and 3) polymorphisms in cytokine genes (TGFB1, IL6, IL10) and COPD 

risk. 

Our findings suggest that IL1B rs1143634 may be associated with lung cancer risk. 

However, our study showed that the minor allele had a protective effect against disease 

development, which is contradictory to previous findings. One possible explanation is that IL1B 

has both pro- and anti-apoptotic effects, thus it may play a different role in heavy smokers (such 

as our population) with chronic and persistent inflammation. We also observed an interaction 

between PPARγ rs1801282 and sex. This may be explained by hormonal effects. PPARγ is a 

nuclear hormone receptor, and a regulator of adipocyte differentiation. It is known that hormones 

can have a role in the progression of tumors in many tissues. Results from genetic association 

studies of lung cancer are inconclusive. One probable explanation is that most study sample sizes 

have limited power to detect SNPs with moderate effects, which is usual for complex disease. 

Nevertheless, our study results point out potential areas for further investigation.  

The pathology of COPD is that of a chronic inflammatory process with tissue damage 

and repair, many cytokines play a role in this condition. We investigated associations between 

several cytokine gene polymorphisms and COPD risk in PLuSS participants. We found that 

TGFB1 rs2241712 was associated with COPD, especially with the airflow obstruction phenotype. 

This result is consistent with previous studies. Together with other findings, our study suggests 

the important role of TGFB1 in COPD, and TGFB1 is a promising gene for future COPD 

research.  

Our findings support the need for further research on inflammatory pathway genes and 

smoking-related lung cancer and lung disease.  
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6.2 FUTURE RESEARCH  

Further functional studies for inflammatory pathway gene polymorphisms are needed to 

elucidate the mechanisms behind lung cancer and COPD development. Developing and using 

animal and other preclinical models are needed to investigate the pathogenetic mechanisms and 

to disentangle the complex associations of the two diseases.  

Because associations of disease and genetic variations in inflammatory genes are often 

relatively modest, it is likely that polymorphisms in multiple inflammatory genes cooperate in an 

additive or synergistic manner to impact disease risk. Pathway analyses may help to reveal gene-

gene interactions or risks imparted independently from other genes in the pathway.  

Gene-gene and gene-environment interactions have a significant influence on 

susceptibility to lung cancer or COPD development. However, our current knowledge of these 

interactions is limited, and continued research efforts in this area will be important for a full 

understanding of predisposition to both diseases. Well-designed follow-up studies with adequate 

sample sizes are needed to investigate these associations.  

New knowledge about the genome may discover variation that is more relevant to 

common disease, such as lung cancer and COPD, than the common polymorphisms. One type of 

variation that is frequent but has not been well evaluated with respect to both diseases is copy 

number variation (CNV). Another possibility is that the risk of common disease is caused by rare 

variants at lock with alleles of large effect. These rare alleles are not readily detected by common 

polymorphisms because they have arisen independently and have no common haplotype. This 

hypothesis remains to be generally tested because it required resequencing of genes in many 

people.  
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More specific for our project, there are several follow-up studies could be conducted. To 

better understand the role of TGFB1 gene in COPD development, we can evaluate the 

association between TGFB1 SNPs and measurements of bronchial thickening. The ongoing 

PLuSS also collects yearly follow-up PFT data and CT measurements, thus we can test whether 

inflammatory pathway genes are associated with progression of COPD and/or lung function 

decline. With more complete COPD information in cases, we can also evaluate whether the 

association between inflammatory pathway genes and lung cancer is mediated by COPD.  

Future research will make it possible to create new tools involving genetics, genomics, 

proteomics, metabolomics, and molecular imaging. These will aid better risk determination, 

identification of specific therapeutic targets, and personalized treatments for lung cancer and 

COPD. 

6.3 PUBLIC HEALTH SIGNIFICANCE  

Lung cancer and COPD are significant causes of morbidity and mortality in the U.S. and 

worldwide. One shared risk factor is cigarette smoking, an avoidable behavior. Despite the 

smoking rate is declining in western world, the incidence is rising in developing countries, such 

as China and India. Moreover, elevated lung cancer risk remains a long term in heavily exposed 

former smokers. In people who develop COPD, the inflammatory process is amplified and 

persists long after smoking cessation. Lung cancer and COPD will continue to pose huge public 

health burdens in the foreseeable future. Great efforts are still needed: 1) to understand the 

common processes/molecules that are central to chronic inflammation and lung cancer/COPD; 2) 
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to identify current and former smokers at the highest risk of developing lung cancer/COPD; 3) to 

discover novel therapeutic strategies to prevent and treat lung cancer/COPD.  

Only a small proportion of smokers develop lung cancer and/or COPD, and the familiar 

clustering of both diseases suggest the genetic predisposition to lung cancer and COPD. 

Improved understanding of lung cancer and COPD genetics may aid in the early identification of 

higher risk groups. Screening high-risk populations will permit timely intervention and education.  

Interventions based on an understanding of inflammatory processes are particularly promising 

because inflammatory processes are modifiable through behavioral changes and medical 

treatments.  

Smoking-related lung cancer and COPD are problems with an enormous public health 

burden that will require a matching effort and commitment from all stakeholders to achieve 

tangible progress in reducing morbidity, mortality, and health care utilization. Further insight 

into the genetic factors involved may eventually result in: 1) effective genetic-based methods for 

selecting current or former cigarette smokers for more intensive screening, surveillance, or 

chemoprevention, and 2) effective genetic-based methods for selecting biologically targeted 

treatments of lung cancer and/or COPD.  
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Table 6-1. Unadjusted and Adjusted Results of SNP and NSCLC associations: Genotype-based Model and Trend Test. 

   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype NSCLC Controls OR (95% CI) P OR (95% CI)* P* 
COX-2 rs5275            T/T 199 (45.2) 386 (44.9) 1.00 (reference)  1.00 (reference)  

  T/C 187 (42.5) 381 (44.3) 0.95 (0.75, 1.22) 0.69 0.98 (0.74, 1.29) 0.88 
  C/C 54 (12.3) 93 (10.8) 1.13 (0.77, 1.64) 0.54 0.98 (0.64, 1.52) 0.93 
  Trenda   1.03 (0.86, 1.22) 0.78 0.99 (0.81, 1.20) 0.89 

COX-2 rs5277            G/G 325 (71.7) 614 (71.08) 1.00 (reference)  1.00 (reference)  
  G/C 120 (26.5) 230 (26.6) 0.99 (0.76, 1.28) 0.91 1.13 (0.84, 1.52) 0.43 
  C/C 8 (1.8) 21 (2.4) 0.72 (0.32, 1.64) 0.43 1.04 (0.42, 2.60) 0.93 
  Trenda   0.95 (0.76, 1.19) 0.63 1.10 (0.85, 1.42) 0.48 

COX-2 rs4648261         G/G 426 (93.6) 826 (95.4) 1.00 (reference)  1.00 (reference)  
  G/A+A/A† 29 (6.4) 40 (4.6) 1.44 (0.88, 2.36) 0.15 1.52 (0.87, 2.68) 0.14 
  Trenda   1.36 (0.84, 2.20) 0.22 1.42 (0.82, 2.46) 0.21 

COX-2 rs689466          A/A 302 (66.5) 585 (67.6) 1.00 (reference)  1.00 (reference)  
  A/G 136 (30.0) 267 (30.8) 0.99 (0.77, 1.27) 0.92 0.93 (0.70, 1.23) 0.60 
  G/G 16 (3.5) 14 (1.6) 2.21 (1.07, 4.60) 0.03 2.04 (0.91, 4.56) 0.08 
  Trenda   1.11 (0.90, 1.38) 0.33 1.06 (0.83, 1.35) 0.64 

COX-2 rs2745559         C/C 305 (67.5) 556 (64.5) 1.00 (reference)  1.00 (reference)  
  C/A 133 (29.4) 269 (31.2) 0.90 (0.70, 1.16) 0.42 0.88 (0.66, 1.17) 0.39 
  A/A 14 (3.1) 37 (4.3) 0.69 (0.37, 1.30) 0.25 0.54 (0.26, 1.13) 0.10 
  Trenda   0.87 (0.71, 1.07) 0.20 0.83 (0.65, 1.05) 0.11 

IL1B rs1143634         C/C 285 (63.0) 504 (58.2) 1.00 (reference)  1.00 (reference)  
  C/T 136 (30.1) 313 (36.1) 0.77 (0.60, 0.99) 0.04 0.71 (0.53, 0.95) 0.02 
  T/T 31 (6.9) 49 (5.7) 1.12 (0.70, 1.80) 0.64 1.01 (0.58, 1.74) 0.98 
  Trenda   0.91 (0.75, 1.09) 0.30 0.85 (0.68, 1.05) 0.14 

IL1B rs1143633         G/G 186 (41.1) 345 (40.0) 1.00 (reference)  1.00 (reference)  
  G/A 200 (44.2) 408 (47.3) 0.91 (0.71, 1.16) 0.45 0.83 (0.63, 1.10) 0.20 
  A/A 67 (15.0) 110 (12.7) 1.13 (0.79, 1.61) 0.50 1.20 (0.80, 1.79) 0.38 
  Trenda   1.02 (0.86, 1.21) 0.81 1.02 (0.84, 1.23) 0.84 
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Table 6-1. (Continued)       
       
 N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype NSCLC Controls OR (95%CI) P OR (95%CI)* P* 
IL1B rs1143627         T/T 188 (41.5) 382 (44.1) 1.00 (reference)  1.00 (reference)  

  T/C 211 (46.6) 383 (44.2) 1.12 (0.88, 1.43) 0.36 1.01 (0.77, 1.34) 0.93 
  C/C 54 (11.9) 101 (11.7) 1.09 (0.75, 1.58) 0.66 1.12 (0.73, 1.72) 0.59 
  Trenda   1.07 (0.90, 1.26) 0.46 1.05 (0.86, 1.27) 0.66 

PPARG rs1801282         C/C 348 (77.2) 644 (74.4) 1.00 (reference)  1.00 (reference)  
  C/G 94 (20.8) 201 (23.2) 0.87 (0.66, 1.14) 0.31 1.02 (0.74, 1.40) 0.92 
  G/G 9 (2.0) 21 (2.4) 0.79 (0.36, 1.75) 0.57 0.76 (0.31, 1.85) 0.55 
  Trenda   0.87 (0.69, 1.11) 0.26 0.97 (0.74, 1.26) 0.80 

* Adjusted for age, sex, and pack-years. a. Additive model, dose-response, 1df. 
† GA and AA were combined because there was 0 A/A in NSCLC cases and 1 A/A in controls. 
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Table 6-2. Unadjusted and Adjusted Results of SNP and ADC Associations: Genotype-based Model and Trend Test. 

   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype ADC Controls OR (95% CI) P OR (95% CI)* P* 
COX-2 rs5275            T/T 107 (47.6) 386 (44.9) 1.00 (reference)  1.00 (reference)  

  T/C 95 (42.2) 381 (44.3) 0.90 (0.66, 1.23) 0.50 0.90 (0.63, 1.27) 0.54 
  C/C 23 (10.2) 93 (10.8) 0.89 (0.54, 1.48) 0.66 0.75 (0.43, 1.33) 0.33 
  Trenda   0.93 (0.74, 1.16) 0.51 0.88 (0.69, 1.13) 0.30 

COX-2 rs5277            G/G 165 (71.7) 614 (71.0) 1.00 (reference)  1.00 (reference)  
  G/C 59 (25.7) 230 (26.6) 0.96 (0.68, 1.33) 0.78 1.14 (0.79, 1.66) 0.48 
  C/C 6 (2.6) 21 (2.4) 1.06 (0.42, 2.68) 0.90 1.45 (0.52, 4.08) 0.48 
  Trenda   0.98 (0.74, 1.30) 0.88 1.16 (0.85, 1.60) 0.35 

COX-2 rs4648261         G/G 215 (93.5) 826 (95.4) 1.00 (reference)  1.00 (reference)  
  G/A+A/A† 15 (6.5) 40 (4.6) 1.48 (0.80, 2.73) 0.21 1.46 (0.73, 2.92) 0.28 
  Trenda   1.39 (0.76, 2.52) 0.28 1.35 (0.69, 2.62) 0.38 

COX-2 rs689466          A/A 147 (63.9) 585 (67.6) 1.00 (reference)  1.00 (reference)  
  A/G 74 (32.2) 267 (30.8) 1.10 (0.81, 1.51) 0.54 1.07 (0.75, 1.52) 0.70 
  G/G 9 (3.9) 14 (1.6) 2.56 (1.09, 6.03) 0.03 2.01 (0.79, 5.11) 0.14 
  Trenda   1.24 (0.94, 1.62) 0.12 1.18 (0.87, 1.58) 0.29 

COX-2 rs2745559         C/C 154 (67.3) 556 (64.5) 1.00 (reference)  1.00 (reference)  
  C/A 66 (28.8) 269 (31.2) 0.89 (0.64, 1.22) 0.46 0.87 (0.61, 1.25) 0.45 
  A/A 9 (3.9) 37 (4.3) 0.88 (0.42, 1.86) 0.73 0.62 (0.26, 1.48) 0.28 
  Trenda   0.91 (0.70, 1.18) 0.46 0.84 (0.62, 1.12) 0.23 

IL1B rs1143634         C/C 142 (62.0) 504 (58.2) 1.00 (reference)  1.00 (reference)  
  C/T 67 (29.3) 313 (36.1) 0.76 (0.55, 1.05) 0.10 0.70 (0.49, 1.00) 0.05 
  T/T 20 (8.7) 49 (5.7) 1.45 (0.83, 2.52) 0.19 1.30 (0.70, 2.43) 0.41 
  Trenda   0.98 (0.77, 1.25) 0.87 0.92 (0.70, 1.20) 0.52 

IL1B rs1143633         G/G 98 (42.8) 345 (40.0) 1.00 (reference)  1.00 (reference)  
  G/A 98 (42.8) 408 (47.3) 0.85 (0.62, 1.16) 0.30 0.73 (0.51, 1.03) 0.08 
  A/A 33 (14.4) 110 (12.7) 1.06 (0.67, 1.66) 0.81 1.13 (0.68, 1.86) 0.64 
  Trenda   0.98 (0.79, 1.21) 0.82 0.96 (0.75, 1.22) 0.73 
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Table 6-2. (Continued)       
       
 N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype ADC Controls OR (95%CI) P OR (95%CI)* P* 
IL1B rs1143627         T/T 98 (42.8) 382 (44.1) 1.00 (reference)  1.00 (reference)  

  T/C 109 (47.6) 383 (44.2) 1.11 (0.82, 1.51) 0.51 1.01 (0.72, 1.43) 0.95 
  C/C 22 (9.6) 101 (11.7) 0.85 (0.51, 1.42) 0.53 1.01 (0.58, 1.77) 0.98 
  Trenda   0.98 (0.79, 1.22) 0.88 1.01 (0.79, 1.29) 0.96 

PPARG rs1801282         C/C 180 (78.3) 644 (74.4) 1.00 (reference)  1.00 (reference)  
  C/G 48 (20.9) 201 (23.2) 0.85 (0.60, 1.22) 0.39 0.99 (0.67, 1.47) 0.96 
  G/G 2 (0.9) 21 (2.4) 0.34, 0.08 (1.47) 0.15 0.30 (0.07, 1.41) 0.13 
  Trenda   0.79 (0.57, 1.08) 0.13 0.86 (0.61, 1.21) 0.37 

* Adjusted for age, sex, and pack-years. a. Additive model, dose-response, 1df. 
† GA and AA were combined because there was 0 A/A in ADC cases and 1 A/A in controls. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

104 

Table 6-3. Unadjusted and Adjusted Results of SNP and SCC Associations: Genotype-based Model and Trend Test. 

   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype SCC Controls OR (95% CI) P OR (95% CI)* P* 
COX-2 rs5275            T/T 67 (41.1) 386 (44.9) 1.00 (reference)  1.00 (reference)  

  T/C 72 (44.2) 381 (44.3) 1.09 (0.76, 1.56) 0.64 1.13 (0.75, 1.68) 0.56 
  C/C 24 (14.7) 93 (10.8) 1.49 (0.89, 2.50) 0.13 1.19 (0.66, 2.15) 0.57 
  Trenda   1.18 (0.93, 1.51) 0.18 1.10 (0.84, 1.45) 0.50 

COX-2 rs5277            G/G 119 (70.0) 614 (71.0) 1.00 (reference)  1.00 (reference)  
  G/C 49 (28.8) 230 (26.6) 1.10 (0.76, 1.58) 0.61 1.29 (0.85, 1.95) 0.23 
  C/C 2 (1.2) 21 (2.4) 0.49 (0.11, 2.12) 0.34 0.98 (0.22, 4.47) 0.98 
  Trenda   0.99 (0.72, 1.37) 0.95 1.21 (0.84, 1.75) 0.31 

COX-2 rs4648261         G/G 162 (94.2) 826 (95.4) 1.00 (reference)  1.00 (reference)  
  G/A+A/A† 10 (5.8) 40 (4.6) 1.31 (0.64, 2.67) 0.46 1.19 (0.53, 2.70) 0.99 
  Trenda   1.23 (0.61, 2.47) 0.56 1.15 (0.52, 2.55) 0.73 

COX-2 rs689466          A/A 121 (70.8) 585 (67.6) 1.00 (reference)  1.00 (reference)  
  A/G 46 (26.9) 267 (30.8) 0.83 (0.58, 1.21) 0.33 0.82 (0.54, 1.24) 0.34 
  G/G 4 (2.3) 14 (1.6) 1.38 (0.45, 4.27) 0.57 1.28 (0.38, 4.25) 0.69 
  Trenda   0.91 (0.65, 1.26) 0.56 0.89 (0.62, 1.28) 0.54 

COX-2 rs2745559         C/C 117 (68.8) 556 (64.5) 1.00 (reference)  1.00 (reference)  
  C/A 51 (30.0) 269 (31.2) 0.90 (0.63, 1.29) 0.57 0.92 (0.61, 1.37) 0.67 
  A/A 2 (1.2) 37 (4.3) 0.26 (0.06, 1.08) 0.06 0.17 (0.04, 0.80) 0.02 
  Trenda   0.78 (0.57, 1.06) 0.11 0.74 (0.52, 1.05) 0.09 

IL1B rs1143634         C/C 111 (65.3) 504 (58.2) 1.00 (reference)  1.00 (reference)  
  C/T 51 (30.0) 313 (36.1) 0.74 (0.52, 1.06) 0.10 0.70 (0.47, 1.05) 0.08 
  T/T 8 (4.7) 49 (5.7) 0.74 (0.34, 1.61) 0.45 0.68 (0.29, 1.60) 0.37 
  Trenda   0.79 (0.59, 1.06) 0.11 0.75 (0.54, 1.04) 0.08 

IL1B rs1143633         G/G 65 (38.0) 345 (40.0) 1.00 (reference)  1.00 (reference)  
  G/A 77 (45.0) 408 (47.3) 1.00 (0.70, 1.44) 0.99 1.01 (0.68, 1.51) 0.96 
  A/A 29 (17.0) 110 (12.7) 1.40 (0.86, 2.28) 0.18 1.49 (0.86, 2.59) 0.16 
  Trenda   1.14 (0.90, 1.45) 0.28 1.17 (0.90, 1.53) 0.25 
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Table 6-3. (Continued)       
       
 N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype SCC Controls OR (95%CI) P OR (95%CI)* P* 
IL1B rs1143627         T/T 70 (40.9) 382 (44.1) 1.00 (reference)  1.00 (reference)  

  T/C 78 (45.6) 383 (44.2) 1.11 (0.78, 1.58) 0.56 0.93 (0.63, 1.38) 0.71 
  C/C 23 (13.5) 101 (11.7) 1.24 (0.74, 2.09) 0.41 1.19 (0.66, 2.15) 0.57 
  Trenda   1.11 (0.88, 1.42) 0.38 1.04 (0.79, 1.37) 0.79 

PPARG rs1801282         C/C 126 (75.0) 644 (74.4) 1.00 (reference)  1.00 (reference)  
  C/G 38 (22.6) 201 (23.2) 0.97 (0.65, 1.44) 0.87 1.20 (0.77, 1.87) 0.43 
  G/G 4 (2.4) 21 (2.4) 0.97 (0.33, 2.89) 0.96 0.85 (0.26, 2.79) 0.79 
  Trenda   0.97 (0.70, 1.36) 0.87 1.09 (0.76, 1.57) 0.65 

* Adjusted for age, sex, and pack-years.  a. Additive model, dose-response, 1df. 
† GA and AA were combined because there was 0 A/A in SCC cases and 1 A/A in controls. 
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Table 6-4. Unadjusted and Adjusted Results of Case-Case Comparison: Genotype-based Model and Trend Test. 

   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype SCC ADC OR (95% CI) P OR (95% CI) R * P* 
COX-2 rs5275            T/T 67 (41.1) 107 (47.6) 1.00 (reference)  1.00 (reference)  

  T/C 72 (44.2) 95 (42.2) 1.21 (0.79, 1.87) 0.39 1.23 (0.79, 1.91) 0.37 
  C/C 24 (14.7) 23 (10.2) 1.67 (0.87, 3.19) 0.12 1.50 (0.76, 2.93) 0.24 
  Trenda   1.27 (0.94, 1.70) 0.12 1.22 (0.90, 1.66) 0.19 

COX-2 rs5277            G/G 119 (70.0) 165 (71.7) 1.00 (reference)  1.00 (reference)  
  G/C 49 (28.8) 59 (25.7) 1.15 (0.74, 1.80) 0.54 1.16 (0.73, 1.84) 0.52 
  C/C 2 (1.2) 6 (2.6) 0.46 (0.09, 2.33) 0.35 0.50 (0.10, 2.61) 0.41 
  Trenda   1.01 (0.68, 1.50) 0.95 1.03 (0.69, 1.54) 0.89 

COX-2 rs4648261         G/G 162 (94.2) 215 (93.5) 1.00 (reference)  1.00 (reference)  
  G/A+A/A† 10 (5.8) 15 (6.5) 0.89 (0.39, 2.02) 0.77 0.96 (0.41, 2.27) 0.93 
  Trenda   0.89 (0.39, 2.02) 0.77 0.96 (0.41, 2.27) 0.93 

COX-2 rs689466          A/A 121 (70.8) 147 (63.9) 1.00 (reference)  1.00 (reference)  
  A/G 46 (26.9) 74 (32.2) 0.76 (0.49, 1.17) 0.21 0.74 (0.47, 1.16) 0.19 
  G/G 4 (2.3) 9 (3.9) 0.54 (0.16, 1.80) 0.32 0.56 (0.17, 1.91) 0.36 
  Trenda   0.75 (0.52, 1.09) 0.13 0.74 (0.51, 1.09) 0.13 

COX-2 rs2745559         C/C 117 (68.8) 154 (67.3) 1.00 (reference)  1.00 (reference)  
  C/A 51 (30.0) 66 (28.8) 1.02 (0.66, 1.58) 0.94 1.04 (0.66, 1.63) 0.87 
  A/A 2 (1.2) 9 (3.9) 0.29 (0.06, 1.38) 0.12 0.32 (0.06, 1.54) 0.15 
  Trenda   0.86 (0.59, 1.25) 0.42 0.88 (0.60, 1.30) 0.52 

IL1B rs1143634         C/C 111 (65.3) 142 (62.0) 1.00 (reference)  1.00 (reference)  
  C/T 51 (30.0) 67 (29.3) 0.97 (0.63, 1.51) 0.91 1.07 (0.68, 1.68) 0.79 
  T/T 8 (4.7) 20 (8.7) 0.51 (0.22, 1.21) 0.13 0.48 (0.20, 1.16) 0.10 
  Trenda   0.83 (0.60, 1.14) 0.25 0.84 (0.60, 1.18) 0.32 

IL1B rs1143633         G/G 65 (38.0) 98 (42.8) 1.00 (reference)  1.00 (reference)  
  G/A 77 (45.0) 98 (42.8) 1.19 (0.77, 1.83) 0.44 1.12 (0.72, 1.75) 0.63 
  A/A 29 (17.0) 33 (14.4) 1.33 (0.74, 2.39) 0.35 1.21 (0.66, 2.22) 0.55 
  Trenda   1.16 (0.88, 1.53) 0.30 1.10 (0.83, 1.47) 0.51 
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Table 6-4. (Continued)       
       
 N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype SCC ADC OR (95%CI) P OR (95%CI)R* P* 
IL1B rs1143627         T/T 70 (40.9) 98 (42.8) 1.00 (reference)  1.00 (reference)  

  T/C 78 (45.6) 109 (47.6) 1.00 (0.66, 1.53) 0.99 1.01 (0.65, 1.56) 0.97 
  C/C 23 (13.5) 22 (9.6) 1.46 (0.76, 2.83) 0.26 1.48 (0.75, 2.92) 0.27 
  Trenda   1.14 (0.84, 1.54) 0.39 1.14 (0.84, 1.56) 0.40 

PPARG rs1801282         C/C 126 (75.0) 180 (78.2) 1.00 (reference)  1.00 (reference)  
  C/G 38 (22.6) 48 (20.9) 1.13 (0.70, 1.83) 0.62 1.18 (0.72, 1.94) 0.52 
  G/G 4 (2.4) 2 (0.9) 2.86 (0.52, 15.84) 0.23 2.86 (0.50, 16.26) 0.24 
  Trenda   1.25 (0.81, 1.91) 0.31 1.29 (0.83, 2.00) 0.26 

* Adjusted for age, sex, and pack-years. a. Additive model, dose-response, 1df.  R. Reference group: Adenocarcinoma. 
† GA and AA were combined because there was 0 A/A in ADC and 0 A/A in SCC. 
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Table 6-5. Unadjusted and Adjusted Results of SNP and NSCLC Associations: Genotype-based Model and Trend Test. 
   N (%) Genotype-based Model Genotype-based Model* 
Gene rs Number Genotype NSCLC Control OR (95% CI) P OR (95%CI)* P * 
TGFB1 rs2241712 AA 197 (44.0) 373 (43.1) 1.00 (reference)  1.00 (reference)  

  AG 197 (44.0) 382 (44.2) 0.98 (0.77, 1.15) 0.85 1.06 (0.80, 1.40) 0.68 
  GG 54 (12.0) 110 (12.7) 0.93 (0.64, 1.34) 0.70 0.93 (0.61, 1.42) 0.75 
  Trenda   0.97 (0.82, 1.15) 0.70 0.99 (0.82, 1.20) 0.95 

TGFB1 rs1800469 CC 203 (45.1) 383 (44.3) 1.00 (reference)  1.00 (reference)  
  CT 198 (44.0) 376 (43.5) 0.99 (0.78, 1.27) 0.96 1.04 (0.79, 1.36) 0.80 
  TT 49 (10.9) 106 (12.2) 0.87 (0.60, 1.27) 0.48 0.91 (0.59, 1.40) 0.66 
  Trenda   0.95 (0.81, 1.13) 0.58 0.98 (0.81, 1.19) 0.83 

IL6 rs2069860 AA 447 (98.0) 853 (98.5) 1.00 (reference)  1.00 (reference)  
  AT 9 (2.0) 12 (1.4) 1.43 (0.60, 3.42) 0.42 1.69 (0.63, 4.55) 0.30 
  TT 0 (0.0) 1 (0.1) --- -- --- -- 
  Trenda   1.21 (0.54, 2.71) 0.65 1.44 (0.58, 3.55) 0.43 

IL6 rs1800795 GG 172 (38.0) 312 (36.1) 1.00 (reference)  1.00 (reference)  
  GC 203 (44.8) 403 (46.5) 0.91 (0.71, 1.18) 0.48 0.97 (0.73, 1.29) 0.84 
  CC 78 (17.2) 151 (17.4) 0.94 (0.67, 1.30) 0.70 1.16 (0.80, 1.69) 0.44 
  Trenda   0.96 (0.82, 1.13) 0.60 1.06 (0.88, 1.27) 0.54 

IL10 rs1800896 AA 136 (29.9) 253 (29.2) 1.00 (reference)  1.00 (reference)  
  AG 217 (47.7) 418 (48.3) 0.97 (0.74, 1.26) 0.80 1.09 (0.80, 1.47) 0.59 
  GG 102 (22.4) 195 (22.5) 0.97 (0.71, 1.34) 0.87 1.12 (0.78, 1.60) 0.55 
  Trenda   0.99 (0.84, 1.15) 0.85 1.06 (0.88, 1.27) 0.54 

IL10 rs1800872 CC 272 (60.2) 495 (57.2) 1.00 (reference)  1.00 (reference)  
  CA 159 (35.2) 317 (36.6) 0.91 (0.72, 1.16) 0.46 0.82 (0.62, 1.08) 0.17 
  AA 21 (4.6) 54 (6.2) 0.71 (0.42, 1.20) 0.20 0.61 (0.34, 1.09) 0.10 
  Trenda   0.88 (0.73, 1.07) 0.19 0.80 (0.65, 0.998) 0.048 

IL10 rs3024509 TT 411 (90.3) 779 (90.0) 1.00 (reference)  1.00 (reference)  
  TC 41 (9.0) 84 (9.7) 0.93 (0.63, 1.37) 0.70 1.06 (0.68, 1.65) 0.80 
  CC 3 (0.7) 3 (0.3) 1.90 (0.38, 9.43) 0.43 1.70 (0.27, 10.77) 0.58 
  Trenda   0.99 (0.70, 1.42) 0.97 1.10 (0.74, 1.64) 0.65 

* Adjusted for age, sex and pack-years. a. Additive Model, dose-response, 1df. 
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Table 6-6. Unadjusted and Adjusted Results of SNP and ADC Associations: Genotype-based Model and Trend Test. 
   N (%) Genotype-based Model Genotype-based Model* 

Gene rs Number Genotype ADC Control OR (95% CI) P OR (95% CI)* P* 
TGFB1 rs2241712 AA 98 (43.8) 373 (43.1) 1.00 (reference)  1.00 (reference)  

  AG 102 (45.5) 382 (44.2) 1.02 (0.74, 1.39) 0.92 1.11 (0.78, 1.56) 0.57 
  GG 24 (10.7) 110 (12.7) 0.83 (0.51, 1.36) 0.46 0.91 (0.53, 1.56) 0.72 
  Trenda   0.94 (0.76, 1.17) 0.60 1.00 (0.78, 1.27) 0.99 

TGFB1 rs1800469 CC 102 (45.1) 383 (44.3) 1.00 (reference)  1.00 (reference)  
  CT 105 (46.5) 376 (43.5) 1.05 (0.77, 1.43) 0.76 1.11 (0.79, 1.56) 0.57 
  TT 19 (8.4) 106 (12.2) 0.67 (0.39, 1.15) 0.15 0.78 (0.44, 1.40) 0.41 
  Trenda   0.90 (0.72, 1.12) 0.35 0.96 (0.75, 1.23) 0.74 

IL6 rs2069860 AA 227 (98.7) 853 (98.5) 1.00 (reference)  1.00 (reference)  
  AT 3 (1.3) 12 (1.4) 0.94 (0.26, 3.36) 0.92 0.93 (0.22, 3.83) 0.91 
  TT 0 (0.0) 1 (0.1) --- -- --- -- 
  Trenda   0.82 (0.25, 2.71) 0.75 0.85 (0.22, 3.23) 0.81 

IL6 rs1800795 GG 87 (38.3) 312 (36.0) 1.00 (reference)  1.00 (reference)  
  GC 103 (45.4) 403 (46.5) 0.92 (0.67, 1.26) 0.60 0.96 (0.67, 1.38) 0.83 
  CC 37 (16.3) 151 (17.5) 0.88 (0.57, 1.35) 0.56 1.09 (0.68, 1.76) 0.72 
  Trenda   0.93 (0.76, 1.15) 0.51 1.03 (0.82, 1.30) 0.82 

IL10 rs1800896 AA 74 (32.3) 253 (29.2) 1.00 (reference)  1.00 (reference)  
  AG 109 (47.6) 418 (48.3) 0.89 (0.65, 1.25) 0.50 1.09 (0.75, 1.58) 0.67 
  GG 46 (20.1) 195 (22.5) 0.81 (0.53, 1.22) 0.31 0.93 (0.59, 1.48) 0.77 
  Trenda   0.90 (0.73, 1.10) 0.30 0.98 (0.78, 1.22) 0.84 

IL10 rs1800872 CC 128 (55.9) 495 (57.2) 1.00 (reference)  1.00 (reference)  
  CA 91 (39.7) 317 (36.6) 1.11 (0.82, 1.50) 0.50 1.01 (0.72, 1.42) 0.94 
  AA 10 (4.4) 54 (6.2) 0.72 (0.36, 1.45) 0.35 0.58 (0.27, 1.24) 0.16 
  Trenda   0.98 (0.77, 1.25) 0.89 0.89 (0.68, 1.16) 0.39 

IL10 rs3024509 TT 205 (89.5) 779 (90.0) 1.00 (reference)  1.00 (reference)  
  TC 24 (10.5) 84 (9.7) 1.09 (0.67, 1.75) 0.74 1.15 (0.68, 1.96) 0.60 
  CC 0 (0.0) 3 (0.3) --- -- --- -- 
  Trenda   1.01 (0.64, 1.60) 0.97 1.03 (0.62, 1.72) 0.91 

* Adjusted for age, sex and pack-years. a. Additive Model, dose-response, 1df. 
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Table 6-7. Unadjusted and Adjusted Results of SNP and SCC Associations: Genotype-based Model and Trend Test. 
   N (%) Genotype-based Model Genotype-based Model* 

Gene rs Number Genotype SCC Control OR (95% CI) P OR (95% CI)* P* 
TGFB1 rs2241712 AA 75 (43.9) 373 (43.1) 1.00 (reference)  1.00 (reference)  

  AG 72 (42.1) 382 (44.2) 0.94 (0.66, 1.34) 0.72 0.96 (0.65, 1.42) 0.83 
  GG 24 (14.0) 110 (12.7) 1.09 (0.65, 1.80) 0.75 0.94 (0.53, 1.68) 0.83 
  Trenda   1.01 (0.80, 1.29) 0.92 0.97 (0.74, 1.26) 0.80 

TGFB1 rs1800469 CC 77 (45.0) 383 (44.3) 1.00 (reference)  1.00 (reference)  
  CT 70 (40.9) 376 (43.5) 0.93 (0.65, 1.32) 0.67 0.91 (0.61, 1.34) 0.63 
  TT 24 (14.1) 106 (12.2) 1.13 (0.68, 1.87) 0.65 1.01 (0.56, 1.80) 0.98 
  Trenda   1.02 (0.81, 1.30) 0.86 0.97 (0.75, 1.27) 0.85 

IL6 rs2069860 AA 167 (96.5) 853 (98.5) 1.00 (reference)  1.00 (reference)  
  AT 6 (3.5) 12 (1.4) 2.55 (0.95, 6.90) 0.06 3.42 (1.09, 10.76) 0.04 
  TT 0 (0.0) 1 (0.1) --- -- --- -- 
  Trenda   2.02 (0.80, 5.07) 0.13 2.70 (0.96, 7.58) 0.06 

IL6 rs1800795 GG 61 (35.3) 312 (36.0) 1.00 (reference)  1.00 (reference)  
  GC 79 (45.6) 403 (46.5) 1.00 (0.70, 1.45) 0.99 1.02 (0.68, 1.53) 0.94 
  CC 33 (19.1) 151 (17.5) 1.12 (0.70, 1.78) 0.64 1.20 (0.71, 2.02) 0.50 
  Trenda   1.05 (0.83, 1.32) 0.68 1.08 (0.84, 1.40) 0.55 

IL10 rs1800896 AA 44 (25.4) 253 (29.2) 1.00 (reference)  1.00 (reference)  
  AG 84 (48.6) 418 (48.3) 1.16 (0.78, 1.72) 0.48 1.37 (0.88, 2.14) 0.16 
  GG 45 (26.0) 195 (22.5) 1.33 (0.84, 2.09) 0.22 1.63 (0.98, 2.71) 0.06 
  Trenda   1.15 (0.92, 1.45) 0.22 1.28 (0.99, 1.64) 0.06 

IL10 rs1800872 CC 115 (67.2) 495 (57.2) 1.00 (reference)  1.00 (reference)  
  CA 47 (27.5) 317 (36.6) 0.64 (0.44, 0.92) 0.02 0.59 (0.39, 0.89) 0.01 
  AA 9 (5.3) 54 (6.2) 0.72 (0.34, 1.50) 0.38 0.62 (0.28, 1.37) 0.24 
  Trenda   0.73 (0.55, 0.97) 0.03 0.68 (0.50, 0.93) 0.02 

IL10 rs3024509 TT 161 (93.0) 779 (90.0) 1.00 (reference)  1.00 (reference)  
  TC 10 (5.8) 84 (9.7) 0.58 (0.29, 1.13) 0.11 0.72 (0.35, 1.50) 0.38 
  CC 2 (1.2) 3 (0.3) 3.23 (0.54, 19.46) 0.20 4.19 (0.58, 30.35) 0.16 
  Trenda   0.78 (0.44, 1.37) 0.38 0.98 (0.54, 1.78) 0.94 

* Adjusted for age, sex and pack-years. a. Additive Model, dose-response, 1df. 
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Table 6-8. Unadjusted and Adjusted Results of Case-Case Comparison: Genotype-based Model and Trend Test. 
   N (%) Genotype-based Model Genotype-based Model* 

Gene rs Number Genotype SCC ADC OR (95% CI) R P OR (95% CI) R* P* 
TGFB1 rs2241712 AA 75 (43.9) 98 (43.8) 1.00 (reference)  1.00 (reference)  

  AG 72 (42.1) 102 (45.5) 0.92 (0.60, 1.41) 0.71 0.92 (0.59, 1.43) 0.71 
  GG 24 (14.0) 24 (10.7) 1.31 (0.69, 2.48) 0.41 1.23 (0.63, 2.38) 0.54 
  Trenda   1.07 (0.80, 1.44) 0.64 1.05 (0.78, 1.42) 0.76 

TGFB1 rs1800469 CC 77 (45.0) 102 (45.1) 1.00 (reference)  1.00 (reference)  
  CT 70 (41.0) 105 (46.5) 0.88 (0.58, 1.35) 0.56 0.86 (0.56, 1.33) 0.49 
  TT 24 (14.0) 19 (8.4) 1.67 (0.86, 3.27) 0.13 1.60 (0.80, 3.20) 0.18 
  Trenda   1.14 (0.84, 1.53) 0.40 1.11 (0.82, 1.51) 0.50 

IL6 rs2069860 AA 167 (96.5) 227 (98.7) 1.00 (reference)  1.00 (reference)  
  AT 6 (3.5) 3 (1.3) 2.72 (0.67, 11.03) 0.16 2.99 (0.72, 12.38) 0.13 
  TT 0 (0.0) 0 (0.0) --- -- --- -- 
  Trenda   2.72 (0.67, 11.03) 0.16 2.99 (0.72, 12.38) 0.13 

IL6 rs1800795 GG 61 (35.3) 87 (38.3) 1.00 (reference)  1.00 (reference)  
  GC 79 (45.7) 103 (45.4) 1.09 (0.71, 1.70) 0.69 1.17 (0.74, 1.84) 0.50 
  CC 33 (19.0) 37 (16.3) 1.27 (0.72, 2.25) 0.41 1.43 (0.79, 2.60) 0.24 
  Trenda   1.12 (0.85, 1.48) 0.42 1.19 (0.89, 1.59) 0.24 

IL10 rs1800896 AA 44 (25.4) 74 (32.3) 1.00 (reference)  1.00 (reference)  
  AG 84 (48.6) 109 (47.6) 1.30 (0.81, 2.07) 0.28 1.26 (0.78, 2.04) 0.35 
  GG 45 (26.0) 46 (20.1) 1.65 (0.94, 2.87) 0.08 1.65 (0.93, 2.91) 0.09 
  Trenda   1.28 (0.97, 1.69) 0.08 1.28 (0.97, 1.70) 0.09 

IL10 rs1800872 CC 115 (67.2) 128 (55.9) 1.00 (reference)  1.00 (reference)  
  CA 47 (27.5) 91 (39.7) 0.58 (0.37, 0.89) 0.01 0.57 (0.37, 0.89) 0.01 
  AA 9 (5.3) 10 (4.4) 1.00 (0.39, 2.55) 1.00 1.01 (0.39, 2.63) 0.98 
  Trenda   0.73 (0.52, 1.04) 0.08 0.73 (0.52, 1.05) 0.09 

IL10 rs3024509 TT 161 (93.0) 205 (89.5) 1.00 (reference)  1.00 (reference)  
  TC 10 (5.8) 24 (10.5) 0.53 (0.25, 1.14) 0.10 0.48 (0.22, 1.07) 0.07 
  CC 2 (1.2) 0 (0.0) --- -- --- -- 
  Trenda   0.77 (0.40, 1.49) 0.44 0.73 (0.37, 1.44) 0.36 

* Adjusted for age, sex and pack-years. a. Additive Model, dose-response, 1df.  R. Reference group: Adenocarcinoma. 
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   Table 6-9. Allele Frequencies and HWE in the Whole Population (N=866). 

Gene rs Number N Allele Allele 
Counts 

Allele Frequencies, 
% 

HWE P in controls 
(Exact Test) 

TGFB1 rs2241712 865 A 1128 65.2 0.45 
   G 602 34.8  

TGFB1 rs1800469 865 C 1142 66.0 0.36 
   T 588 34.0  

IL6 rs2069860 866 A 1718 99.2 0.06 
   T 14 0.8  

IL6 rs1800795 866 G 1027 59.3 0.29 
   C 705 40.7  

IL10 rs1800896 866 A 924 53.4 0.38 
   G 808 46.6  

IL10 rs1800872 866 C 1307 75.5 0.71 
   A 425 24.5  

IL10 rs3024509 866 T 1642 94.8 0.50 
   C 90 5.2  
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   Table 6-10. Allele Frequencies and HWE in No-Emphysema Subgroup (Emphysema Score=No). 

Gene rs Number N Allele Allele 
Counts 

Allele Frequencies, 
% 

HWE P in controls 
(Exact Test) 

TGFB1 rs2241712 506 A 655 64.7 0.70 
   G 357 35.3  

TGFB1 rs1800469 506 C 662 65.4 0.76 
   T 350 34.6  

IL6 rs2069860 507 A 1005 99.1 0.04 
   T 9 0.9  

IL6 rs1800795 507 G 600 59.2 0.32 
   C 414 40.8  

IL10 rs1800896 507 A 541 53.4 0.93 
   G 473 46.6  

IL10 rs1800872 507 C 764 75.4 1.00 
   A 250 24.6  

IL10 rs3024509 507 T 962 94.9 0.64 
   C 52 5.1  
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   Table 6-11. Allele Frequencies and HWE in No-Airway Obstruction Subgroup (GOLD=0). 

Gene rs Number N Allele Allele 
Counts 

Allele Frequencies, 
% 

HWE P in controls 
(Exact Test) 

TGFB1 rs2241712 520 A 657 63.2 0.92 
   G 383 36.8  

TGFB1 rs1800469 520 C 669 64.3 0.77 
   T 371 35.7  

IL6 rs2069860 521 A 1033 99.1 0.04 
   T 9 0.9  

IL6 rs1800795 521 G 621 59.6 0.60 
   C 421 40.4  

IL10 rs1800896 521 A 552 53.0 0.34 
   G 490 47.0  

IL10 rs1800872 521 C 787 75.5 1.00 
   A 255 24.5  

IL10 rs3024509 521 T 988 94.8 0.39 
   C 54 5.2  
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Table 6-12. Unadjusted and Adjusted Results of SNP and Emphysema Associations: Genotype-based Model and Trend Test. 
   N (%) Genotype-based Model Genotype-based Model* 

Gene rs Number Genotype Emphysema Control OR (95% CI) P OR (95% CI)* P* 
TGFB1 rs2241712 AA 159 (44.3) 214 (42.3) 1.00 (reference)  1.00 (reference)  

  AG 155 (43.2) 227 (44.9) 0.92 (0.69, 1.23) 0.57 0.95 (0.71, 1.28) 0.74 
  GG 45 (12.5) 65 (12.8) 0.93 (0.61, 1.44) 0.75 0.96 (0.61, 1.49) 0.84 
  Trenda   0.95 (0.78, 1.16) 0.62 0.97 (0.79, 1.19) 0.76 

TGFB1 rs1800469 CC 165 (46.0) 218 (43.1) 1.00 (reference)  1.00 (reference)  
  CT 150 (41.8) 226 (44.7) 0.88 (0.66, 1.17) 0.37 0.89 (0.66, 1.20) 0.46 
  TT 44 (12.2) 62 (12.2) 0.94 (0.61, 1.45) 0.77 0.98 (0.62, 1.53) 0.91 
  Trenda   0.94 (0.77, 1.15) 0.54 0.96 (0.78, 1.18) 0.68 

IL6 rs2069860 AA 354 (98.6) 499 (98.4) 1.00 (reference)  1.00 (reference)  
  AT 5 (1.4) 7 (1.4) 1.01 (0.32, 3.20) 0.99 1.18 (0.37, 3.80) 0.78 
  TT 0 (0.0) 1 (0.2) --- -- --- -- 
  Trenda   0.81 (0.29, 2.27) 0.68 0.90 (0.32, 2.54) 0.84 

IL6 rs1800795 GG 129 (35.9) 183 (36.1) 1.00 (reference)  1.00 (reference)  
  GC 169 (47.1) 234 (46.5) 1.03 (0.76, 1.38) 0.87 1.04 (0.77, 1.42) 0.80 
  CC 61 (17.0) 90 (17.8) 0.96 (0.65, 1.43) 0.85 1.00 (0.67, 1.50) 1.00 
  Trenda   0.99 (0.82, 1.20) 0.90 1.01 (0.83, 1.23) 0.95 

IL10 rs1800896 AA 108 (30.1) 145 (28.6) 1.00 (reference)  1.00 (reference)  
  AG 167 (46.5) 251 (49.5) 0.89 (0.65, 1.23) 0.49 0.95 (0.69, 1.32) 0.76 
  GG 84 (23.4) 111 (21.9) 1.02 (0.70, 1.48) 0.93 1.10 (0.75, 1.63) 0.62 
  Trenda   1.00 (0.83, 1.21) 1.00 1.04 (0.86, 1.27) 0.66 

IL10 rs1800872 CC 207 (57.7) 288 (56.8) 1.00 (reference)  1.00 (reference)  
  CA 129 (35.9) 188 (37.1) 0.96 (0.72, 1.27) 0.75 0.95 (0.71, 1.27) 0.72 
  AA 23 (6.4) 31 (6.1) 1.03 (0.59, 1.82) 0.91 0.91 (0.51, 1.63) 0.74 
  Trenda   0.99 (0.79, 1.23) 0.89 0.95 (0.76, 1.19) 0.66 

IL10 rs3024509 TT 324 (90.3) 455 (89.7) 1.00 (reference)  1.00 (reference)  
  TC 32 (8.9) 52 (10.3) 0.86 (0.54, 1.37) 0.54 0.95 (0.59, 1.53) 0.83 
  CC†† 3 (0.8) 0 (0.0) --- -- --- -- 
  Trenda   1.03 (0.68, 1.58) 0.88 1.13 (0.73, 1.75) 0.59 

* Adjusted for age, sex and pack-years. a. Additive Model, dose-response, 1df. 
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Table 6-13. Adjusted Results of SNP and Emphysema Associations: Dominant Model. 

Gene rs Number Subjects with data, N 
Minor allele frequency, 

% 

Dominant Modelb 
Combined heterozygote 
and homozygote minor 

  Cases Controls Cases Controls OR (95% CI) P 
TGFB1 rs2241712 359 506 34.1 35.3 0.95 (0.72, 1.26) 0.73 
TGFB1 rs1800469 359 506 33.2 34.6 0.91 (0.69, 1.20) 0.51 
IL6 rs2069860 359 507 0.7 0.9 1.01 (0.32, 3.17) 0.98 
IL6 rs1800795 359 507 40.5 40.8 1.03 (0.77, 1.37) 0.85 
IL10 rs1800896 359 507 46.7 46.7 1.00 (0.74, 1.35) 0.98 
IL10 rs1800872 359 507 24.4 24.7 0.94 (0.71, 1.25) 0.67 
IL10 rs3024509 359 507 5.3 5.1 1.04 (0.65, 1.65) 0.87 
Adjusted for age, sex, pack-years.     
b. Dominant Model: combine heterozygote and homozygote minor.    
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   Table 6-14. Associations within Subgroups and Interaction [Airflow Obstruction GOLD=I-IV vs. GOLD=0]. 

 TGFB1 rs2241712 TGFB1rs1800469 IL6 rs2069860 IL6 rs1800795 
 AG+GG vs. AA CT+TT vs. CC AT+TT vs. AA GC+CC vs. GG 

Current Smoker 0.72 (0.50, 1.03) 0.73 (0.50, 1.05) 1.30 (0.28, 5.90) 1.35 (0.92, 2.00) 
Former Smoker 0.77 (0.48, 1.23) 0.88 (0.55, 1.40) 0.97 (0.16, 5.83) 0.63 (0.39, 1.01) 
P smoke status interaction 0.86 0.57 0.70 0.02 

     
Mild* 1.08 (0.57, 2.05) 1.03 (0.55, 1.93) --- 1.06 (0.56, 2.02) 
Moderate 0.63 (0.37, 1.06) 0.66 (0.39, 1.10) 1.79 (0.43, 7.51) 1.87 (1.04, 3.35)b 
Heavy 0.65 (0.43, 0.99)a 0.74 (0.49, 1.13) 0.52 (0.05, 5.94) 0.74 (0.49, 1.13) 
P pack-years interaction 0.46 0.65 0.86 0.48 

     
P years of smoke interaction 0.97 0.92 0.54 0.65 
P number of cig/d interaction 0.37 0.58 0.79 0.70 

     
Male 0.73 (0.48, 1.09) 0.79 (0.53, 1.19) 0.29 (0.03, 2.55) 0.93 (0.61, 1.42) 
Female 0.74 (0.49, 1.11) 0.76 (0.51, 1.14) 3.65 (0.65, 20.44) 1.16 (0.76, 1.76) 
P sex interaction 0.98 0.87 0.07 0.47 

     
Age<56 0.63 (0.38, 1.05) 0.70 (0.42, 1.15) 1.96 (0.32, 12.04) 1.58 (0.91, 2.73) 
Age≥56 0.80 (0.57, 1.14) 0.84 (0.60, 1.19) 0.88 (0.21, 3.80) 0.89 (0.62, 1.28) 
P age interaction 0.96 0.98 0.57 0.30 
^ OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 33 pack-years; moderate smoker=33 to <51.25; heavy smoker=≥51.25. 
a. P=0.04 
b. P=0.04 
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Table 6-14. (Continued) 
 

 IL10 rs1800896 IL10 rs1800872 IL10 rs3024509 
 AG+GG vs. AA CA+AA vs. CC TC+CC vs. TT 

Current Smoker 0.95 (0.64, 1.42) 1.08 (0.75, 1.56) 1.27 (0.67, 2.41) 
Former Smoker 1.36 (0.81, 2.28) 0.75 (0.46, 1.21) 0.87 (0.41, 1.83) 
P smoke status interaction 0.32 0.25 0.30 

    
Mild* 1.13 (0.56, 2.28) 1.14 (0.61, 2.13) 1.30 (0.53, 3.18) 
Moderate 0.76 (0.44, 1.31) 1.32 (0.79, 2.19) 1.36 (0.61, 3.05) 
Heavy 1.35 (0.86, 2.12) 0.74 (0.48, 1.12) 0.57 (0.27, 1.23) 
P pack-years interaction 0.17 0.04 0.43 

    
P years of smoke interaction 0.89 0.29 0.09 
P number of cig/d interaction 0.31 0.23 0.71 

    
Male 1.09 (0.70, 1.69) 0.95 (0.63, 1.43) 0.88 (0.44, 1.75) 
Female 1.10 (0.70, 1.73) 0.98 (0.65, 1.46) 1.14 (0.59, 2.21) 
P sex interaction 0.91 0.95 0.58 

    
Age<56 1.68 (0.91, 3.09) 1.29 (0.78, 2.12) 1.83 (0.84, 3.96) 
Age≥56 0.87 (0.60, 1.26) 0.85 (0.60, 1.20) 0.75 (0.41, 1.35) 
P age interaction 0.60 0.17 0.06 
^ OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 33 pack-years; moderate smoker=33 to <51.25; heavy smoker=≥51.25. 
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Table 6-15. Associations within Subgroups and Interaction [any vs. no emphysema]. 

 TGFB1 rs2241712 TGFB1rs1800469 IL6 rs2069860 IL6 rs1800795 
 AG+GG vs. AA CT+TT vs. CC AT+TT vs. AA GC+CC vs. GG 

Current Smoker 1.18 (0.83, 1.69) 1.13 (0.79, 1.61) 1.04 (0.23, 4.73) 1.01 (0.69, 1.46) 
Former Smoker 0.69 (0.44, 1.09) 0.66 (0.42, 1.05) 1.05 (0.18, 6.25) 0.95 (0.59, 1.52) 
P smoke status interaction 0.06 0.06 0.92 0.86 

     
Mild* 1.42 (0.80, 2.52) 1.36 (0.77, 2.41) 2.20 (0.29, 16.45) 1.10 (0.62, 1.94) 
Moderate 0.82 (0.50, 1.35) 0.78 (0.47, 1.27) 0.80 (0.14, 4.55) 1.40 (0.82, 2.39) 
Heavy 0.87 (0.56, 1.34) 0.83 (0.54, 1.28) 0.57 (0.05, 6.41) 0.81 (0.52, 1.26) 
P pack-years interaction 0.28 0.21 0.97 0.40 

     
P years of smoke interaction 0.90 0.94 0.15 0.67 
P number of cig/d interaction 0.08 0.05 0.21 0.80 

     
Male 1.17 (0.77, 1.78) 1.11 (0.73, 1.68) 1.56 (0.32, 7.59) 0.90 (0.59, 1.38) 
Female 0.82 (0.56, 1.21) 0.79 (0.5, 1.16) 0.73 (0.13, 4.04) 1.10 (0.74, 1.65) 
P sex interaction 0.26 0.26 0.61 0.48 

     
Age<57 1.02 (0.65, 1.60) 1.01 (0.65, 1.58) 2.88 (0.55, 14.98) 1.28 (0.81, 2.04) 
Age≥57 0.98 (0.68, 1.41) 0.93 (0.65, 1.33) 0.55 (0.10, 2.88) 0.85 (0.58, 1.23) 
P age interaction 0.50 0.41 0.15 0.51 
^ OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 34.5 pack-years; moderate smoker=34.5 to <53.75; heavy smoker=≥53.75. 
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Table 6-15. (Continued) 
 

 IL10 rs1800896 IL10 rs1800872 IL10 rs3024509 
 AG+GG vs. AA CA+AA vs. CC TC+CC vs. TT 

Current Smoker 0.91 (0.62, 1.34) 1.03 (0.72, 1.48) 1.32 (0.70, 2.50) 
Former Smoker 1.16 (0.70, 1.92) 0.74 (0.46, 1.18) 0.93 (0.45, 1.92) 
P smoke status interaction 0.51 0.31 0.35 

    
Mild* 1.67 (0.88, 3.20) 1.12 (0.64, 1.95) 0.83 (0.36, 1.90) 
Moderate 0.65 (0.38, 1.11) 0.80 (0.49, 1.31) 1.77 (0.78, 4.02) 
Heavy 1.02 (0.64, 1.64) 0.95 (0.61, 1.46) 0.71 (0.32, 1.57) 
P pack-years interaction 0.66 0.40 0.61 

    
P years of smoke interaction 0.25 0.68 0.72 
P number of cig/d interaction 0.27 0.64 0.38 

    
Male 0.66 (0.43, 1.03) 1.04 (0.69, 1.58) 0.69 (0.34, 1.43) 
Female 1.51 (0.97, 2.35) 0.84 (0.57, 1.23) 1.49 (0.80, 2.79) 
P sex interaction 0.004 0.37 0.09 

    
Age<57 0.83 (0.51, 1.37) 1.20 (0.77, 1.88) 1.06 (0.51, 2.23) 
Age≥57 1.06 (0.72, 1.56) 0.80 (0.56, 1.15) 1.12 (0.61, 2.05) 
P age interaction 0.15 0.29 0.60 
^ OR (95%CI) is adjusted for age, sex, and pack-years.  
* Based on tertiles of pack-years in controls: mild smoker < 34.5 pack-years; moderate smoker=34.5 to <53.75; heavy smoker=≥53.75. 
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