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WAVEFORM DESIGN WITH TIME AND FREQUENCY CONSTRAINTS

FOR OPTIMAL DETECTION OF ELASTIC OBJECTS

Brandon M. Hamschin, M.S.

University of Pittsburgh, 2011

In active sonar, the goal is to learn about an object or environment by transmitting a sound

and processing the echo. The sound we choose to transmit will determine what we learn about

the object, much like the choice of question we ask a person will determine what we learn

from them. Thus, designing the best (i.e. optimal) transmit waveform is a longstanding area

of research that remains active since different environments and ever evolving operational

objectives weigh heavily on how we define optimality.

In this work we extend a recent result by Kay that gives the optimal transmit signal that

maximizes the probability of detecting an elastic object in the presence of Gaussian reverber-

ation and additive Gaussian interference. Kay’s solution specifies the spectral magnitude for

the optimal transmit waveform, and hence there is an unlimited number of “optimal” wave-

forms that can be transmitted, all with the same spectral magnitude but differing in terms

of time domain characteristics such as duration and peak power. We extend Kay’s approach

in order to obtain a unique optimal waveform by incorporating time-domain constraints

into two optimization-based problem formulations. These two problem formulations lead to

new and complementary signal design approaches that impose temporal duration constraints

while preserving, to varying degrees, the optimality inherent in the spectral magnitude.
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1.0 INTRODUCTION

Transmit waveform design for RADAR and SONAR has a long history and is an area that

continues to receive active interest, including biomimetic and optimization-based approaches

(e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]). In this thesis, we consider the design of transmit waveforms

for optimizing the detection of underwater objects, particularly elastic objects 1, for which

the assumption of a point target response is not accurate, in that the received waveform is

not simply a time-delayed and attenuated replica of the transmit waveform. We consider a

further level of complexity by assuming that the receiver must contend with both additive

noise that is independent of the transmit signal, as well as signal-dependent noise, such as

occurs with reverberation and clutter. Accordingly, as we will see, the optimal detector is

not simply a classical matched filter. Rather, the optimal detector and the waveform that

maximizes the probability of detection are coupled, both of which are dependent on the

target response and the statistical properties of the environment.

To incorporate these more complex assumptions into new waveform design approaches,

we utilize and build on some recent developments in the field, particularly those of Kay

[4, 5]. Although these and other approaches [2] consider different criteria for optimizing

detection, a commonality in the solutions is that each specifies only the magnitude spectrum

(the power spectrum or energy density spectrum) of the transmit waveform. The basic result

is to design the magnitude spectrum so that there is energy in frequency bands where the

target response is large relative to the effects of all sources of interference. Accordingly,

because the magnitude spectrum does not uniquely specify the time domain signal, there

is an unlimited number of optimal transmit waveforms with the same magnitude spectrum.

1In contrast to a point refelctor, an elastic object generally has a complicated frequency response whereby
different excitation frequencies result in varying levels of reflected acoustic energy.
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So, in order to uniquely specify an optimal time-domain transmit waveform one must not

only specify the spectral magnitude but also the spectral phase for which, depending on the

application, a number of approaches can be taken. Specifically, in radar applications one is

usually forced, due to hardware constraints, to design signals with constant modulus (i.e.

signals free of amplitude modulation). Consequently, such designs must encode all spectral

magnitude requirements into the temporal phase of the transmit signal [10, 11, 12].

In this work we design signals that possess optimal temporal and spectral properties but

are free of the constant modulus requirement. In particular, we consider transmit waveform

designs based on two problem formulations. In the first formulation [13], we directly design

spectral phase functions based on the desire to minimize or maximize the duration of the

waveform, subject to the optimal spectral magnitude criterion developed by Kay in [4] for

point targets and extended to elastic targets in [5, 13]. The resultant waveforms give the

designer the freedom to choose signals with short duration but also high peak energy or

signals with lower peak energy and longer duration, while maintaining optimal detection

performance. A solution that blends these two extremes is also given.

In the second formulation the goal is to design time domain signals that are maximally

concentrated in a given time interval at the cost of suboptimal detection performance. The

mathematical formulation of the problem is motivated by the work of Slepian, Pollak, and

Landau [14, 15, 16, 17], who in a series of now classic papers first formulated and solved

the so-called concentration problem. In our work we formulate the classical concentration

problem as a constrained nonlinear optimization problem, to which we add constraints that

incorporate the optimal spectral magnitude from [4, 5, 13]. Solving this modified optimiza-

tion problem produces a time-domain signal that is real, maximally concentrated in the

discrete-time interval (0, N − 1), and has a magnitude spectrum that is arbitrarily close, in

the least squares sense, to that which maximizes detection performance. The trade-off is, for

a fixed N that is sufficiently small, the closer we force the spectrum of the designed signal

to that of the optimal spectrum the more energy leakage we find in the samples outside the

(0, N − 1) interval.
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To develop our central ideas, the remainder of this thesis is organized as follows. In

Chapter 2 we overview the main results from [4] and summarize their extension to the elastic

target case. Next, in Chapter 3, we design time domain signals having not only the optimal

magnitude spectrum from Chapter 2 but also optimal duration properties, by designing

the spectral phase. In Chapter 4 we relax, to varying degrees, the spectral magnitude

requirement from Chapter 2 in order to design signals that are maximally concentrated in

a specified time interval. In each of these chapters we motivate the problem formulation

intuitively, derive the optimal waveform mathematically, and analyze system performance

analytically or via simulation. Finally, we conclude with a summary of the main results and

suggest future research directions.
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2.0 OPTIMIZING SPECTRAL MAGNITUDE

2.1 INTRODUCTION

People are uniquely equipped to inquire and process responses, and do so with remarkable

skill. Yet, the real world often poses challenges that confound our efforts to make proper

sense of what we perceive. For example, consider a conversation with a friend near a busy

street. The communication is likely to be subject to vehicular noise or the extraneous

conversations of bystanders, the character of which is independent of the conversation. Fur-

thermore, suppose the conversation is in a location where nearby buildings produce echos of

the conversation. Unlike the vehicular noise, this form of interference is dependent on the

speakers and the characteristics of the surroundings. Each of these interference sources are

likely to degrade the interchange of information between speakers and, consequently, make

it difficult to understand the message. Remarkably, the human brain has an extraordinary

ability to filter out extraneous interference and focus on the desired source.

Interference sources of this nature are not only present in our everyday lives but are also

prevalent in underwater acoustics. In particular, sonar systems are subject to ambient ocean

noise from biologic sources (e.g. whale calls or snapping shrimp), manmade sources (e.g.

merchant ships), and self noise generated by sonar system hardware[18]. These interference

sources, though troublesome, are not usually dependent on the sound pulse transmitted by

the sonar system, similar in kind to street noise from our conversation analogy. Additionally,

sonar receivers must contend with interference that is a result of the transmitted waveform.

Known as reverberation, such interference is analogous to the building echos in the conver-

sation analogy. More specifically, reverberation is energy present at the receiver that is due

to reflections of the transmitted signal from bodies that are not of interest to the sonar task.
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In this chapter we present a signal model that not only accounts for these interference

sources but also incorporates a model of the target we wish to detect. The objective is

then to develop an optimal method for detecting the target of interest and then to derive a

waveform that supports this task in an optimal way.

2.2 THE OPTIMAL SPECTRAL DENSITY

We denote the transmit waveform by s(t), and its Fourier spectrum as S(f) by 1

s(t) =
√
T

W/2
∫

−W/2

S(f)ej2πtdf (2.1)

S(f) =
1√
T

T/2
∫

−T/2

s(t)e−j2πftdt (2.2)

where T is the observation interval of the received signal and −W/2 ≤ f ≤ W/2 is the

effective bandwidth. It is also convenient to express the spectrum in terms of its amplitude

B(f) and phase ψ(f),

S(f) = B(f)ejψ(f) (2.3)

In the remainder of this section we summarize the main results from Kay [4, 5] that are

central to the considerations of this chapter as well as those that follow. In [4], Kay treats the

problem of designing a signal that is optimal for detecting a point target in reverberation.

This development assumes a single transmitter and a single receiver.

In [5], Kay extends his results to the single transmitter and multiple receiver case. In

addition to extending the results from [4] to account for multiple receivers, this treatment

considers a model of the target that is more general, which in the context of SONAR would

include an elastic target. The optimal detector is derived under these more general as-

sumptions, in the context of the Neyman-Pearson criteria for optimality. Subsequently the

performance of the detector is derived. Unlike the single receiver case, the expression that is

1This definition of the Fourier Transform is chosen for consistency with [4]
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Figure 1: Model of received signal x(t), and associated detector D(x). s(t) is the transmitted
signal; h(t) is the impulse response of a random LTI filter that models channel interference induced
by the transmit signal; g(t) is the deterministic impulse response of the object to be detected; and
n(t) represents ambient noise.
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obtained for the probability of detection, PD, as a function of probability of false alarm, PFA,

does not readily admit a technique for its maximization over all transmit signals. To cir-

cumvent this difficulty, Kay considers an alternative design criterion, divergence, that leads

to fruitful results for this more general case.

For the purposes of this chapter we are interested in the results for the case of a single

transmitter, single receiver, and a single deterministic elastic target with our aim being

obtaining a closed form expression for the optimal magnitude spectrum, Bopt(ω). With

reference to Figure 1, let g(t) be a deterministic LTI model of the elastic target (i.e. the

impulse response), h(t) be a Gaussian random process with power spectral density (PSD)

Ph(f) modeling the reverberation (i.e. signal induced noise), and n(t) be a Gaussian random

process with PSD Pn(f) modeling additive system noise and environmental interference. The

detector that maximizes the probability of detecting g(t) for a fixed false alarm rate PFA is

given by [5]

D(X) =

∣

∣

∣

∣

∣

∣

∣

T

W/2
∫

−W/2

X(f)S∗(f)G∗(f)

Ph(f)T |S(f)|2 + Pn(f)
df

∣

∣

∣

∣

∣

∣

∣

2

(2.4)

where the received signal is x(t) which has Fourier transformX(ω), s(t) is the known transmit

signal with Fourier transform S(f), and G(f) (i.e., the frequency response of the object to

be detected) is the Fourier transform of g(t). The null hypothesis H0 is rejected – i.e., a

decision that the object is present is made – when D(X) exceeds the threshold

γ = −σ2
0 log(PFA) (2.5)

where

σ2
0 =

W/2
∫

−W/2

TB2(f) |G(f)|2
Ph(f)TB2(f) + Pn(f)

df (2.6)

Also, it can be shown that the performance of the detector in (2.4) is given by [4]

PD = P
1

1+σ2
0

FA (2.7)

where PD denotes the probability of detection (i.e. deciding the target is present when it

actually is). This simple but important equation shows that for a fixed PFA one can increase

PD by making σ2
0 large. Finally, it is this observation and by following the point target

7



derivation in [4] that we arrive at the magnitude squared spectrum of s(t) that maximizes

(2.7) for a fixed PFA

TB2
opt(f) = max





λ−1/2

√

Pn(f) |G(f)|2 − Pn(f)

Ph(f)
, 0



 (2.8)

where λ is a constant, typically obtained numerically, that constrains the total energy of

the transmit signal to some specified level,
W/2
∫

−W/2

TB2
opt(f)df = E. As we will see later, the

value of λ directly relates to the spectral regions of the optimal waveform that have nonzero

energy.

The solution given in (2.8) is obtained by noting that, for a fixed PFA, (2.7) is a mono-

tonically increasing function of σ2
0. Since σ

2
0 is a function of B2(f) it becomes clear that one

should choose B2(ω) that maximizes (2.6). Fortunately, since the integrand of (2.6) can be

shown to be a concave functional of B2(f), a unique B2(f) can be found by maximizing σ2
0 .

B2
opt(f) is then obtained by treating the integrand as a scalar function of TB2 and maximiz-

ing it (the integrand) by standard Lagrange multiplier techniques. Though the concavity

of the integrand of (2.6) simplifies the theory necessary to find a solution and ensures its

uniqueness, the analysis to obtain the solution, while imposing the non-negativity and energy

constraints, is not trivial.

Before summarizing what we learned in this chapter, an important trait of the procedure

by which the optimal signal was derived should be highlighted. Specifically, the approach

was to determine how performance (2.7) of the optimal processing structure (2.4) related to

the probing signal. Once this mathematical link was formed (i.e. (2.6) and (2.7)), measures

were taken to determine the signal that maximizes the performance of the already optimal

processing structure. In other words, with or without signal design the detector in D(X)

and its associated threshold γ are optimal in the Neyman-Pearson sense. But using (2.8)

as the spectrum of the transmitted signal allows one to essentially further optimize optimal

performance. This trait is encountered repeatedly in approaches to designing optimal signals

for detection [19, pp. 103, 108-112], [20, 9] or classification [21].
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In summary, if we are able to characterize the spectral properties of the target and

the environment, we maximize the probability of detection by transmitting a signal whose

magnitude spectrum is given by Bopt(f). It is clear, then, that under the above modeling

assumptions, optimal detection performance is independent of the spectral phase of the trans-

mit waveform, and hence there is an unlimited number of possible time domain waveforms

that are “optimal” in this regard – an observation that motivates the content of Chapter 3.

2.3 EXAMPLES

In this section we cover four examples that highlight some interesting characteristics of the

optimal transmit signal spectrum. The examples progress from simplest to most complex.

Before delving into the examples, we derive an interesting result from (2.8) by asking the

simple question: What regions in the optimal spectrum have zero energy? Because of the

max operation in (2.8) the answer is when λ−1/2

√

Pn(f) |G(f)|2−Pn(f) < 0. This condition

corresponds to the following relationship between λ and the ratio of the noise spectrum to

the target spectrum

Pn(f)

|G(f)|2
>

1

λ
(2.9)

This inequality implies that in regions of the frequency spectrum where the ratio of the

noise power to the target energy exceeds a threshold, the optimal transmit waveform has

zero energy. This result is even more interesting since, as stated in the paragraph following

(2.8), λ is a parameter that is dictated by the total energy constraint on s(t). So, loosely

speaking, regions where the noise spectrum is large relative to the responsiveness of the

target are avoided by the optimal design; an intuitively pleasing result. One may then ask

what effect does the reverberation spectrum have on the signal, given that it does not show

up in (2.9)? In contrast to the noise spectrum, Ph(f) contributes only to the strength of

the optimal transmit spectrum in regions where Pn(f)/ |G(f)|2 is small. Specifically, for the

regions where Pn(f)/ |G(f)|2 < 1/λ, the energy in the transmit signal at those frequencies

is scaled by 1/Ph(f). Thus, more energy is placed where channel energy is low.

9



2.3.1 Ex 1: Point Target in White Noise and White Reverberation

This example illustrates how energy is allocated in frequency for the optimal transmit wave-

form when we assume the object to be detected acts as a point reflector (i.e. its impulse

response is a single delta function and therefore G(f) = 1). We also assume that the additive

noise process is white with Pn(f) = 1 and the reverberation process is white with Ph(f) = 1

over −W/2 ≤ f ≤ W/2 with W = 2, T = 1, and E = 1/8. A white noise process is

something familiar to us but perhaps the idea of a white reverberation process is somewhat

less common. A reverberation process that is white corresponds to an environment where,

if there were no target, on average the transmitted waveform would be reflected back to the

receiver with equal attenuation at all frequencies. With respect to reverberation effects, a

white reverberation process represents the worst case scenario since even though there is no

target present to reflect the transmitted signal (under the null hypothesis H0) the received

signal is the transmitted signal plus noise, which is a disastrous situation if a simple matched

filter is employed.

Given the ubiquity of the Linear Frequency Modulated (LFM) signal in sonar applica-

tions, Figure 2 (Top) shows a very interesting result. Specifically, we see that when the noise

Pn(f), reverberation Ph(f), and target |G(f)|, respond uniformly over frequency (i.e. have

flat spectra) the spectrum of the optimal transmit waveform is identical to the spectrum of

a LFM waveform, given by

T |SLFM(f)|2 = E

W
(2.10)

So, the widespread popularity of the LFM signal is justified within the modeling assumptions

represented by Figure 1 in that if nothing is known about the target or the interference

environment, modeling their effects with a white processes is reasonable and results in the

LFM signal being optimal. Fig. 2 (Bottom) compares the ROC curves (on a semi-log scale)

of the optimal signal and an LFM signal. Given that the optimal magnitude spectrum has

an identical spectrum to that of an LFM signal in this case their ROC curves are identical.

10
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Figure 2: Example 1 – Point target in white noise and white reverberation. (TOP) Spectrum

of optimal signal (red), LFM (dashed black), Target response(solid blue), and Noise spectrum

(solid black), (BOTTOM) ROC curves for optimal design (red) and LFM (black dashed)
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2.3.2 Ex 2: Point Target in Colored Noise and White Reverberation

In this example, which is taken from [4], we again consider a scenario where the target is

a point target and the reverberation is white, but now the interference noise is colored. In

particular, we let PN (f) = PI(f) +N0 where N0 = 1 and

PI(f) =

3
∑

i=0

Pie
−(f−fi)

2

2B (2.11)

where P1 = P2 = 100 and P3 = 1000, the center frequencies are F1 = 1000 Hz, F2 = 500

Hz, and F3 = −250 Hz, B = 104 with W = 5000 and T = 1µs. In particular, Figure 3

(Top) shows that the colored noise is asymmetric about f = 0 and multimodal. Hence, the

spectrum of the optimal transmit signal is more complex and interesting. Here we see effects

predicted by (2.9) for the first time. In particular, when PN(f) falls below 1/λ = 14.3 = 11.55

dB the optimal spectrum shows significant spectral content.

In contrast to the ROC curves in Example 1, the ROC curves for this example indicate

a slight performance advantage for the optimal waveform over the LFM signal. Roughly

speaking, the reason for the increased performance gap between the optimal design and the

LFM signal is due to the increased complexity in the interference spectrum, which allows for

the more complicated optimal design show a benefit when compared to the simplistic LFM

spectrum. As we saw in the previous example, the LFM spectrum essentially assumes that

everything in the environment responds the same over frequency.
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Figure 3: Example 2 – Point target in colored noise and white reverberation. (TOP) Spec-
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2.3.3 Ex 3: Elastic Target in White Noise and White Reverberation

In this and the following example we relax the point target assumption and consider an object

that, when insonified by an acoustic pulse, has a response that is nonuniform over frequency.

Fortunately, for simple geometric structures, such as a sphere or cylinder, one can reasonably

model the response of the object to a given acoustic excitation as a Linear Time Invariant

(LTI) system with frequency response predicted by the theory of resonance scattering (RST)

[22, 23, 24, 25, 26]. For a spherical shell, equation (2.12) gives the mathematical from its

frequency response,

G (f) =
1

j2πfc

∞
∑

i=0

(−1)n (2n+ 1) Tn (f) (2.12)

where c is the speed of sound in water and for each index i and frequency f , Tn(f) is obtained

by calculating the determinant of a matrix that depends of the specific size and material

properties of the shell in question. For the shell considered in this thesis computing the sum

in (2.12) up to i = 75 (inclusive) is sufficient to resolve fine spectral detail in the magnitude

spectrum of the shell.

Thus, determination of the backscatter from a given target is reduced to a simple con-

volution of the inverse Fourier transform of (2.12) with the transmit waveform, making it

extremely convenient to analyze the performance of various waveform designs against a par-

ticular target. Specifically, we consider the spherical shell depicted in Figure 4 with the

associated material properties summarized in Table 1.

The results for this example differ from the previous two in a few very interesting ways. First,

Figure 5 (Top) indicates that the regions where the target responds most strongly are where

the majority of signal energy is placed in the optimal design, which makes intuitive sense.

In other words, the optimal design does not waste energy in regions of the spectrum where

the target is unresponsive but rather saves its limited energy budget for spectral regions in

the target response that exhibit strong resonances.
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Figure 4: Diagram of Spherical Target used in Examples 3 and 4

Table 1: Material properties of the shell and surrounding environment.

Density Sound Speed
(

kg
m3

) (

m
s

)

Water layer 1000 1500

Air 1.0 340

Steel 7800 5880 (dilatational)

3140 (shear)
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The second major difference we observe is in the ROC curves shown in Figure 5 (Bottom).

Here it is quite clear that the optimal design affords a significant performance gain over both

the LFM signal and the optimal signal under the point target assumption. The reason

for the performance gain is due to the complex nature of the target response. Intuitively,

this makes sense in the context of an environment where reverberation is prevalent since a

complex target leads to complex reflections that are specific to the target of interest and

likely differ substantially from the spectrum of the transmitted signal. In other words, a

complicated response from a given target (much like a finger print) helps in the decision

making process. Finally, Figure 6 shows how (2.9) comes into play for this more complicated

scenario. Again, we see that in spectral regions where ratio of noise power to target response

falls below the 1/λ threshold, energy is placed in these bands.

2.3.4 Ex 4: Elastic Target in Colored Noise and White Reverberation

In the final example of the chapter we make a slight modification to the parameters of

Example 3. In particular, rather than a flat noise spectrum Pn(f) we consider a colored

noise spectrum, whose power grows linearly with frequency with Pn(f) = 1000 |f | for |f | ≤
1790.65. The results, shown in Figure 7, indicated that the optimal spectrum tends to

concentrate more of its energy into the lower frequency resonances since the noise power is

smallest in this portion of the spectrum.

In this chapter we saw how an optimal waveform can be derived to improve detection

performance in a reverberant environment. One of the most interesting aspects of the solution

is that it is expressed only in terms of a magnitude spectrum. Thus, in the following chapter

we use spectral phase as a design parameter and derive time domain signals with optimal

duration properties.
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Figure 5: Example 3 – Elastic target in white noise and white reverberation. (TOP) Spec-

trum of optimal signal (red), LFM (dashed black), Spectrum of optimal signal under point

target assumption, Target response (solid blue), and Noise spectrum (solid black), (BOT-

TOM) ROC curves for optimal design based on RST model of the sphere (red), optimal

design based on point target assumption (magenta), and LFM signal(black dashed)

17



0 50 100 150 200 250 300 350 400 450 500
15

20

25

30

35

40

45

50

55

60

Frequency (Hz)

dB

 

 

P
N
(f) / |G(f)| 2

ESD
G
opt

1/λ

Figure 6: Example 3 – Relationship between noise, target, and optimal ESD. Threshold

(Black Dashed) Optimal Spectrum (Red) and Noise Power to Target Response Ratio (Blue).

Spectral regions where the blue curve exceeds the threshold receive energy.
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Figure 7: Example 4 – Elastic target in colored noise and white reverberation. (TOP)

Spectra of Optimal Signal (red), LFM (magenta), Target (solid blue), and Noise (solid

black), (BOTTOM) ROC curves for optimal design based on RST model of the sphere

(red), optimal design based on point target assumption (magenta), and LFM (black dashed)
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Figure 8: Example 4 – Relationship between noise, target, and optimal ESD. Threshold

(Black Dashed) Optimal Spectrum (Red) and Noise Power to Target Response Ratio (Blue).
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3.0 OPTIMIZING SPECTRAL PHASE

3.1 INTRODUCTION

The rate at which a sonar system probes the surrounding environment will impact the

speed with which decisions are made. Accordingly, optimal waveforms with short duration

are desirable since they can be transmitted more frequently, facilitating a prompt decision.

Furthermore, signals with short durations are well known to be desirable for achieving high

range resolution when the sonar task is localization. So, a case can made that one could use

such signals to simultaneously perform detection and active ranging.

In the previous chapter we found that the waveform that maximizes the probability of

detecting a target in reverberation only depends on the spectral magnitude of the transmit

waveform and is uniquely determined by (2.8). Even though the spectral magnitude is

unique, the time domain signal that has this spectral characteristic is not. In fact, there

are an infinity of time domain signals that achieve a given spectral magnitude [27, pg. 788].

Since spectral phase is then essentially a function that we can do with as we please, it is

natural to ask: Does spectral phase relate to any sonar parameters of interest?

The answer to this question is yes and the parameter of interest is duration. It is this

link, the link between temporal duration and spectral phase, that we explore in this chapter.
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3.2 THE OPTIMAL SPECTRAL PHASE

For the purposes of this chapter it convenient to define Fourier Transform pairs by

s(t) =
1√
2π

∫

S(ω)ejωtdω (3.1)

S(ω) =
1√
2π

∫

s(t)e−jωtdt (3.2)

It will also be convenient to express the spectrum S(ω) in terms of its amplitude B(ω) and

phase ψ(ω) in the following form

S(ω) = B(ω)ejψ(ω) (3.3)

Duration, defined in terms of the temporal standard deviation (square root of the variance)

σ2
t =

1

E

∫

(t− 〈t〉)2 |s(t)|2 dt (3.4)

with

〈t〉 = 1

E

∫

t |s(t)|2 dt (3.5)

and can be equivalently expressed in terms of the spectral magnitude, B(ω), and spectral

phase, ψ(ω), as [28]

σ2
t =

∫

B′2(ω)dω +

∫

(ψ′(ω) + 〈t〉)2B2(ω)dω (3.6)

where ′ denotes the derivative of the function. Also, henceforth we assume that
∫

B2(ω)dω =

E = 1 for mathematical convenience.

In the remainder of this chapter we derive the spectral phase ψ(ω) that minimizes dura-

tion, maximizes duration, and blends these two extremes while constraining the time domain

signal to have a specified magnitude spectrum.
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3.2.1 The Minimum Duration Signal

Since the optimal transmit waveform fixes the spectral magnitude, then in order to minimize

the duration, we see from (3.6) that we need to choose the spectral phase so that the second

integral is zero, by which we have the solution,

−ψ′

min(ω) = 〈t〉 = t0 (3.7)

or, in other words, we need to select the signal so that it has constant group delay. Ac-

cordingly, the time domain signal with minimum duration and optimal spectral magnitude

Bopt(ω) is given by,

smin-dur(t) =
1√
2π

∫

Bopt(ω)e
jω(t−to)dω (3.8)

and the minimum duration that is achieved is

σ2
t-min =

∫

B′2
opt(ω)dω (3.9)

The practical utility of this result lies in the fact that signals with short duration can be

transmitted more frequently and allow for high range resolution. The trade-off, however, is

that the peak time domain energy, defined as max
{

|s(t)|2
}

, will generally be higher than an

optimal waveform with the same spectral magnitude but longer duration. Intuitively, this

can be understood by recalling that Parseval’s Theorem states that the energy computed

in the time domain is the same as that computed in the frequency domain. Hence, if the

energy remains fixed in the frequency domain, as it will since B(ω) is fixed, a signal with

this spectral magnitude, compressed in time, must have larger peak values. Thus, since the

peak energy may be a limiting factor for the transmitter, we next consider the maximum

duration solution, and then a combination that allows a blending between the two.
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3.2.2 The Maximum Duration Signal

Returning to (3.6) and recalling that B(ω) is already determined by the optimal detection

criterion of the previous section, our aim is to maximize the duration by solving

max
ψ′(ω)

∫

(ψ′(ω) + 〈t〉)2B2(ω)dω (3.10)

For square-integrable functions (which we will take to be the case), this integral is maximized

when [29]

(ψ′(ω) + 〈t〉)2 ∼ B2(ω)

by which we obtain

ψ′

max(ω) = KBopt(ω)− t0 (3.11)

and therefore the spectral phase is

ψmax(ω) = K

ω
∫

−∞

Bopt(w)dw − t0ω (3.12)

where K is an arbitrary real constant. Thus, the optimal maximum duration signal is

smax-dur(t) =
1√
2π

∫

Bopt(ω)e
j(ψmax(ω)+ωt)dω (3.13)

with duration

σ2
t,max =

∫

B′2
opt(ω)dω +K2

∫

B4
opt(ω)dω (3.14)

Thus, we see that we can make (3.14) arbitrarily large by allowing K to grow without

bound. Although true in theory, practical limitations will restrict our ability to produce

such a signal. Furthermore, as we will see in section 3.3 a discrete time implementation will

exhibit temporal aliasing if K does not satisfy

|K| ≤ T − t0
max(Bopt(ω))

(3.15)

This constraint on K is justified by virtue of the fact that −ψ′(ω) corresponds to the group

delay which, for narrowband signals, corresponds to the amount of time delay at that fre-

quency. Therefore, in a discrete implementation, K must be chosen such that the spectral

component that is delayed the most does not exceed the time interval, T , of the signal, if

temporal aliasing is to be avoided.
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3.2.3 Blending the Maximum and Minimum Duration Solutions

The maximum duration signal will have lower peak power relative to the minimum duration

signal, but so, too, will the transmission rate be lower. A compromise can be obtained

by considering a blending of the two temporal designs presented in the previous sections.

Namely, consider a linear combination of the minimum and maximum duration optimal

signals, with spectral phase given by

ψblend (ω) = α



K

ω
∫

−∞

B2(γ)dγ



− t0ω (3.16)

where 0 ≤ α ≤ 1. In this way we can smoothly transition between the maximum (α = 1)

and the minimum duration (α = 0) signal designs.
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Table 2: Duration and Peak-to-Average Energy Results

σt (sec) Epk−tot

Min 2.22× 10−2 1185.44

Min Phase 6.55× 10−2 199.76

Blend 8.42× 10−2 46.33

Max 16.6× 10−2 33.66

3.3 EXAMPLES

In this section, we summarize numerical results for various waveforms all with the same

optimal magnitude spectrum (obtained from Example 4 in Chapter 2), but with spectral

phases ranging from the minimum to the maximum duration solutions presented in section

3.2. The duration and peak to total energy for each of the three cases are summarized in

Table 2. Also, for the purposes of comparison, we include the minimum phase signal design

which, for a given magnitude spectrum, is the impulse response of a system having all of its

poles and zeros inside the unit circle. The minimum phase signal design, implemented based

on MatLab code given in [30], is relevant since it is well known that minimum phase systems

have impulse responses that maximally concentrate their energy in the lowest samples, a

matter elaborated on in Appendix A.

Figure 9 (main panel) shows spectrograms (with 20dB dynamic range) for each of the

three cases treated in this chapter and the minimum phase design just introduced, along

with the associated temporal (lower panel) and spectral (left panel) representations. As

expected, Figure 9 (a) shows that for the minimum duration solution the signal has its

energy concentrated in the most narrow time interval but has a significant peak energy

located around its temporal average. Figure 9 (b) shows a spectrogram of the maximum

duration signal which has its energy spread out over time, resulting in a significant increase

in duration and a corresponding decrease in peak-to-total energy. In Figure 9 (c) we show
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a blended signal, obtained via (3.16) with α = 0.5. For this signal, the duration and the

peak-to-total energy are seen to lie within the extremes resulting from the aforementioned

two cases. Finally, in Figure 9 (d)1 we take note that while the minimum phase signal tends

to bunch its energy in the lower samples (i.e. those to the right of t = 0) it is still broader

in terms of duration as a measure of its temporal energy spread, an observation confirmed

numerically in Table 2.

1For the sake of uniformity with Figures 9 (a) - Figure 9 (c) we have delayed the minimum phase signal
design shown in Figure 9 (d) by 2 seconds, an operation that does not change duration. In contrast to the
minimum duration signal design discussed in this chapter, there is nothing inherent in the minimum phase
signal design that produces such a delay. With reference to Figure 9 (d), one must think of all samples to
the right of t = 2 as having the minimum-delay property, a property expounded on further in Appendix A.
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(a) Minimum duration solution yielding narrow pulse
width and high peak energy

Maximum Duration Signal Design
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(b) Maximum duration solution yielding a broad pulse
width and low peak energy. Here K was chosen to be
just above the lower bound given in (3.15) with t0 = 0

Blended Duration Signal Design
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(c) Blended duration solution for α = 0.5 which bal-
ances narrow pulse width and low peak energy
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(d) Minimum phase solution

Figure 9: Examples – Spectrograms (20dB dynamic range) showing time-frequency proper-

ties of each spectral phase based signal design
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4.0 OPTIMIZING TEMPORAL CONCENTRATION

4.1 INTRODUCTION

In Chapter 2 we studied the problem of signal design for maximizing the probability of de-

tecting an elastic target in environments where reverberation and ambient noise are present.

We found that the waveform that maximizes the probability of detection is specified only

in terms of its spectral magnitude. This observation was exploited in Chapter 3 to design

a signal with specific time-domain duration properties. In particular, for a fixed spectral

magnitude we derived the optimal spectral phase function that minimizes or maximizes

the duration. Blending these two extremes allows for a trade-off between peak power and

duration.

This chapter is concerned with deriving signals that optimize detection while maximally

concentrating the signal energy within a finite discrete-time interval. The solution necessi-

tates a trade-off between concentration and detection performance. The problem formulation

allows indirect control over the degree of performance loss through a scalar design parameter,

ǫ.

We begin by outlining the theory originally set forth by Slepian, Pollak, and Landau

[14, 15, 16, 17] related to the so-called concentration problem, which itself was motivated

by the fundamental limit known as the duration-bandwidth product (a.k.a the uncertainty

principle). Of particular interest to the main results of this chapter is the discrete-time

continuous frequency concentration problem [31, pp. 101-109], which is concerned with

finding the sequence s(n) whose energy is maximally concentrated in the index range (0, N−
1) and is band-limited to (−W,W ) with |W | < π. We modify the classical formulation so

that the spectrum of the optimal s(n) is not only maximally concentrated in (0, N − 1) and
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band-limited to (−W,W ) but is also (1) spectrally similar to a given magnitude spectrum

(such as Bopt), (2) nonnegative, and (3) symmetric in (−W,W ). The problem is subsequently

recast as a constrained nonlinear program with constraints reflecting (1), (2), and (3). We

conclude the theoretical developments of this chapter by connecting the solution to this

modified formulation to the minimum duration solution from Chapter 3.
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4.2 THE CLASSICAL SLEPIAN PROBLEM

The theory that our considerations are based on is due to the work of Slepian, Pollak,

and Landau who, beginning in 1961, wrote a series of papers [14, 15, 16, 17] that studied

various aspects of what they termed the concentration problem. This problem takes on two

dual forms; the duality arises depending on whether the goal is concentration in time or

concentration in frequency.

The most popular form of the discrete-time/continuous frequency concentration problem

seeks to answer the following question: What signal, limited to the discrete-time range (0, N−
1), is maximally concentrated in the frequency interval (−W,W )? This is an interesting

question because as Slepian [32] and others [28, 33] have noted, there is a fundamental limit

on the extent to which a signal can be localized, simultaneously, in time and frequency. The

limit is known as the duration-bandwidth product theorem in the field of signal processing

or the uncertainty principle in physics. Specifically, the theorem states that the product of

the duration and bandwidth of a signal s(t) is always larger than a fixed non-zero constant.

Specifically, if we define duration σt via
1

σ2
t =

∫

(t− 〈t〉)2 |s(t)|2 dt, 〈t〉 =
∫

t |s(t)|2 dt (4.1)

and bandwidth σω via

σ2
ω =

∫

(ω − 〈ω〉)2 |S(ω)|2 dω, 〈ω〉 =
∫

ω |S(ω)|2 dω (4.2)

then the duration-bandwidth product theorem states that

σtσω ≥ 1√
2

(4.3)

1Recall, we assume
∫

|s(t)|2 dt =
∫

B2(ω)dω = E = 1
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Mathematically, Slepian et.al. reformulated the idea of time-frequency localization by

introducing the notion of concentration in frequency (or concentration in time in its dual

form). To do so in the context of discrete time and continuous frequency, the Discrete-Time

Fourier Transform (DTFT) is needed and is defined as follows

(DTFT ) S(ω) =
∞
∑

n=−∞

s(n)e−jωn ω ∈ [−π, π] (4.4)

(IDTFT ) s(n) =
1

2π

π
∫

−π

S(ω)e−jωndω (4.5)

where it is again convenient to represent the spectrum in terms its amplitude B(ω) and

phase ψ(ω)

S(ω) = B(ω)ejψ(ω) (4.6)

The objective is then one of finding s(n) that maximizes

β2 (W ) =

W
∫

−W

|B (ω)|2 dω
π
∫

−π

|B (ω)|2 dω
W ∈ [−π, π] (4.7)

The signals that maximize this ratio are members of the family of functions known

as prolate spheroidal wave functions. Once it was known that these functions solved the

problem as stated, they found their way into some important practical applications. One of

the more notable applications is in the Thomson multitaper method [34, 31] that appears in

the theory of spectral estimation.

A dual form of this problem can also be posed. In particular, suppose we wish to find

the signal that is band limited to (−W,W ) and is maximally concentrated in a predefined

index range (0,N-1). Similar to (4.7), the discrete-time concentration measure is defined as

α2(N) =

N−1
∑

n=0

|s(n)|2

n=∞
∑

n=−∞

|s(n)|2
(4.8)

where the goal is again to find s(n), but this time it is to maximize α2(N). It is this

formulation that we consider throughout the remainder of this chapter.
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4.3 THE MODIFIED SLEPIAN CONCENTRATION PROBLEM

The concentration in time problem as posed at the end of the previous section places no

restriction on the spectrum of the desired signal, other than it is to be band-limited. In this

section we propose a modification to the classical formulation that imposes constraints on

the spectral shape of the signal that maximizes equation (4.8). In particular, we address

the question: What real discrete-time signal, s(n), band-limited to (−W,W ), is maximally

concentrated in the index range (0, N − 1) while simultaneously making S(ω) as close as

possible to a given spectrum.

4.3.1 Mathematical Formulation: Discrete Time/Continuous Frequency

Using (4.4) and (4.5) we can express (4.8) in the frequency domain as

α2(N) =

W
∫

−W

W
∫

−W

H(ω)NDN(ω − ω′)H∗(ω′)dωdω′

π
∫

−π

|H(ω)|2 dω
(4.9)

where

DN =
sin(N

2
(ω − ω′))

sin(1
2
(ω − ω′))

(4.10)

and

H(ω) = S(ω)ej
ω(N−1)

2 (4.11)

The ratio of integrals in (4.9) can be shown [35] to take on its maximum value when the

following integral equation is satisfied

W
∫

−W

NDN (ω − ω′)H (ω)dω = α2 (N)H (ω′) (4.12)

This equation is a continuous form of the ubiquitous eigenvalue problem.
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4.3.2 Mathematical Formulation: Discrete Time/Discrete Frequency

Though convenient for theoretical analysis, the DTFT leads to a solution (i.e. (4.12)) in

terms of continuous variables which cannot be exactly implemented on a digital computer.

Therefore, we discretize (4.12) and recast it in the following vector matrix form of the

eigenvalue problem

AH = α2 (N)H (4.13)

where2

A (p, q) =
sin
(

N
2
(ωp − ωq)

)

sin
(

1
2
(ωp − ωq)

) p, q = 1, ...,M (4.14)

denotes the entries of the matrix A with A ∼M ×M and H ∼M × 1 is given as

H =
[

H (ω1) H (ω2) · · · H (ωM)
]T

(4.15)

where ωp and ωq are discrete frequencies.

4.3.3 Mathematical Formulation: Nonlinear Program

In this section we develop a nonlinear programming approach to solve the modified con-

centration problem. However, before we incorporate the modifications, we first introduce a

simpler nonlinear programming formulation to which the modifications are made. In general,

one can show that the solution to the following constrained nonlinear program

max
H

HTAH

st. HTH = 1

(4.16)

is the eigenvector of A corresponding to its maximum eigenvalue [36, pp. 224-225]. It is to

this formulation that we add three constraints.

2Here we assume that M is even
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The first constraint is the spectral similarity constraint,

‖H − Bopt‖2 ≤ ǫ (4.17)

which enforces our desire to generate a solution that is arbitrarily close (in the least squares

sense) to a given spectrum, where ‖·‖ denotes the standard Euclidian norm. Here Bopt is a

M×1 vector of frequency domain samples of a desired magnitude spectrum. In the following

we take these samples to be from the optimal spectrum given by (2.8). The parameter ǫ > 0

is a user specified scalar parameter that serves as a means to trade detection performance for

duration. As we will see in the following subsection, as ǫ → 0, PD is maximized for a given

PFA. The second constraint we add serves to ensure that H is a valid (i.e. nonnegative)

magnitude spectrum. Specifically,

H ≥ 0 (4.18)

The last constraint we add is imposed to achieve spectral symmetry, and consequently, leads

to a real-valued time domain signal. The constraint is formulated as

RH = 0 (4.19)

where

R =
[

R1 R2

]

(4.20)

with

R1 = IM
2
×

M
2

R2 =























0 0 · · · 0 −1

0 0 · · · −1 0
...

... . .
. ...

...

0 −1 · · · 0 0

−1 0 · · · 0 0























(4.21)

where IM
2
×

M
2
denotes the M

2
× M

2
identity matrix, R2 is the negative of the reversal matrix

with size M
2
× M

2
, and therefore R has size M

2
×M . This constraint is essentially a set of

M/2 linear equations that force H(ωi) = H(ωM−i+1) for each i ∈ [1, 2, . . . ,M ].
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Thus, the constrained nonlinear program we solve to obtain the solution to the modified

Slepian problem is

max
H

HTAH

subject to HTH =1

‖H −Bopt‖2 ≤ǫ

H ≥0

RH =0

(4.22)

The formulation of and the solution to the nonlinear program given in (4.22) is the first core

result of this chapter; the following subsection presents the second.

4.3.4 Connection to the Minimum Duration Solution

In 3.2.1 we derived the spectral phase function ψ(ω) that minimizes (3.6) and found that

choosing ψ(ω) to be a linear function of ω (c.f. (3.7)) corresponds to a time domain signal

s(t) that has minimum duration. In this chapter we considered the problem of obtaining

an optimal signal that is maximally concentrated in time. In this subsection we show the

connection between solving (4.22) and minimizing (3.6).

In the classical discrete-time concentration problem formulation of subsection 4.3.1,

Hopt(ω) is first obtained by solving the continuous eigenvalue problem in (4.12), then s(n)

is subsequently computed by performing an inverse DTFT. Solving (4.11) for S(ω) and

substituting into (4.5) yields

s(n) =
1

2π

π
∫

−π

Hopt(ω)e
−j ω(N−1)

2 ejωndω (4.23)

=
1

2π

π
∫

−π

Sopt(ω)e
jωndω (4.24)

where Sopt(ω) = Hopt(ω)e
−j

ω(N−1)
2 . By (4.22) it is clear that for each ω as ǫ→ 0, Hopt(ω) →

Bopt(ω) and hence Sopt(ω) → Bopt(ω)e
jψ(ω) with ψ(ω) = ω(N−1)

2
, which is a linear function of

frequency. Hence, as ǫ → 0, Sopt(ω) corresponds to a signal with constant group delay and

(3.7) is satisfied with t0 =
(N−1)

2
. So, we have demonstrated that as ǫ → 0, PD is maximized

for a given PFA since |Sopt(ω)| → Bopt(ω) for that case.
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4.4 EXAMPLES

In the previous sections of this chapter we described the theory behind the classical and

modified Slepian problems. In this section we highlight the main points of the theory with

four examples. In each example the problem in (4.22) must be solved. To do so we use

the MatLab R© Optimization Toolbox [37] to implement the method of sequential quadratic

programing (SQP) [38].

4.4.1 Ex 1: Equivalence of Classical and Modified Formulations as ǫ → ∞
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Figure 10: Example 1 – Equivalence of Classical and Modified Methods for ǫ → ∞. Solu-

tion to concentration in time problem by classical (solid red) and modified (dashed black)

methods.
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The first example is meant illustrate the equivalence of the modified constrained concen-

tration problem with the classical Slepian formulation, by taking ǫ to be sufficiently large.

For N = 32 and W = 1/8, Figure 10 shows that both methods yield the same solution and

exhibit the Gaussian shape, in both time (Left) and frequency (Right), that is characteristic

of low order prolate spheroidal wave-functions resulting from small time-bandwidth prod-

ucts (i.e. NW = 4 as in this example). For the sake of deriving the classical solution from

the modified formulation we let ǫ = 5, a parameter value that is sufficiently large to ignore

the spectral similarity constraint of (4.17). Of course, “large” depends on the magnitude of

Bopt(ω) – i.e. if Bopt(ω) is on the order of 106 vs. 10, then ‖H −Bopt‖ ∼ 100 is not large but

it is large for Bopt(ω) on the order of 10.

4.4.2 Ex 2: Solution to Modified Formulation for ǫ = 0.01

In the second example we incorporate the optimal spectrum from Example 4 in Chapter

3. In order to incorporate the optimal spectrum into (4.22) we normalized the frequency

axis to −0.5 ≤ f ≤ 0.5, sampled the optimal spectrum at 388 equally spaced points in

this interval, specified W = 0.25, and N = 100 samples. At this point it becomes clear

why we chose the Discrete Time/Continuous Frequency formulation of the classical problem

from the outset. This choice allows one to choose an arbitrary number of frequency domain

samples of the optimal spectrum, which is not necessarily the same as the number of time

domain samples to which the optimal signal is maximally concentrated within. In contrast,

the classical Discrete Time/Discrete Frequency formulation requires an equal number of

time and frequency domain samples to be specified. Having independent control over the

number of time and frequency domain samples in the solution is an important property of the

modified formulation since targets of interest in sonar applications exhibit sharp resonances

that could easily be missed if frequency resolution was too coarse.

The upper left plot in Figure 11 shows both the solution to the modified problem and

the minimum duration solution, as determined in 3.2.2. The fact that the two signals closely

match one another supports the results from 4.3.4. However, the consequence of approaching

the optimal solution from 3.2.2 is the existence of significant energy leakage outside of the first
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Figure 11: Example 2 – Signal Design Results for ǫ = 0.01. (UPPER LEFT) Time domain

signal from modified formulation (blue) and minimum duration solution (red). (UPPER

RIGHT) Optimal spectrum (Solid Black) and spectrum from modified solution (Solid Red).

(BOTTOM) ROC curves for optimal spectrum (Solid Black), spectrum from modified solu-

tion (Solid Red) and LFM spectrum (Solid Blue).
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100 samples. This is because choosing ǫ = 0.01 effectively causes the temporal concentration

aspect of the problem to be ignored and tends to match the optimal frequency spectrum very

closely, as indicated in the upper right plot of Figure 11. As a result, and predicted in 4.3.4,

the detection performance of the derived signal is nearly maximized as indicated by the ROC

curves shown in the bottom plot of Figure 11. In general, the upper bound on the detection

performance is given by that of the optimal spectrum from Chapter 2. Accordingly, as ǫ

varies from small to large, the ROC curve associated with the modified solution falls further

and further below that of the optimal signal.

4.4.3 Ex 3: Solution to Modified Formulation for ǫ = 0.3

In the third example all parameters associated with Example 2 remain intact except now we

increase ǫ to 0.3. The result is that the spectrum of the solution to the modified formulation

(solid red in Upper Right plot of Figure 12) is not as closely matched to the optimal spectrum

(solid black). The trade off between detection performance and duration is now clear since

the energy is more concentrated within the first 100 samples while detection performance

begins to fall away from the upper bound set by the optimal spectrum.

4.4.4 Ex 4: Solution to Modified Formulation for ǫ = 3.0

Finally, example 4 shows that allowing ǫ to get large leads to a solution that effectively

ignores the optimal spectrum but is completely confined to the first 100 samples of the

signal. Consequently, detection performance is so severely degraded that the LFM signal

attains better performance in this case.
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Figure 12: Example 3 – Signal Design Results for ǫ = 0.3. (UPPER LEFT) Time domain

signal from modified formulation (blue) and minimum duration solution (red). (UPPER

RIGHT) Optimal spectrum (Solid Black) and spectrum from modified solution (Solid Red).

(BOTTOM) ROC curves for optimal spectrum (Solid Black), spectrum from modified solu-
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Figure 13: Example 4 – Signal Design Results for ǫ = 3.0. (UPPER LEFT) Time domain

signal from modified formulation (blue) and minimum duration solution (red). (UPPER

RIGHT) Optimal spectrum (Solid Black) and spectrum from modified solution (Solid Red).

(BOTTOM) ROC curves for optimal spectrum (Solid Black), spectrum from modified solu-
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5.0 CONCLUSIONS AND FUTURE DIRECTIONS

In this work we considered two new signal design approaches that were based on the optimal

spectral magnitude derived by Kay [4]. Each design exploited the fact that the magnitude

spectrum of a signal does not uniquely define its time domain counterpart. In the first, we

saw that by designing the spectral phase one can derive time domain signals with varying

degrees of temporal duration while maintaining optimal spectral magnitude. We found that

the trade-off for short duration signals was the presence of high peak energy (and vice

versa). In the second approach we reformulated the problem in Chapter 4 to determine

the time domain signal that is maximally concentrated in a predefined discrete-time range,

with a spectral magnitude that is close (in the least-squares sense) to the optimal spectral

magnitude. It was found that the more we concentrate in time, the greater the error in

spectral magnitude, resulting in a loss in detection performance.

From a practical standpoint each of these design approaches has its place. Specifically,

in situations where one needs to simultaneously test for the presence of a particular target

and if present accurately estimate its range, the short duration signals of Chapters 3 and

4 should be considered. In contrast, if range resolution and short blanking times are less

important than having lower peak power, the longer durations signals presented in Chapter

3 are favorable.

Some shortcomings of these and other existing approaches suggest some directions for

further work. First, in each problem formulation we assumed a very specific target model.

Rather than making such restrictive assumptions, it is desirable to design signals that are

robust to target model variations [39, 40, 41]. This suggests the formulation of a signal design

problem whereby the optimal solution is one that maximizes the minimum probability of

detecting a target within an assumed class of potential target models. Along the same lines,
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if one knew a positive detection was made such that the assumed class contains the target

that is present in the environment, one might ask which signal maximizes the probability

of correctly deciding which target in the class is actually present. We consider these two

issues related to designing waveforms that are optimal with respect to a target class further

in Appendix B.

Next, in each formulation we designed signals that maximize the probability of detection

based on the transmission and reception of a single pulse. However, a more practical situa-

tion is one where multiple pings are transmitted. Therefore, methods that accumulate the

information garnered from each return to improve the quality of the decision, or even adapt

the next transmission based on old information are naturally desirable[41, 42].

Finally, in all cases we assumed the noise and reverberation to be stationary and Gaus-

sian. In real world marine settings noise and reverberation are likely to be nonstationary.

Since time-frequency analysis has been shown to capture nonstationary effects a natural idea

is to reformulate the detection problem in terms of some joint-time frequency representation

[43, 44, 45]. Appendix C considers preliminary research directions related to this area in

more detail.
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APPENDIX A

RELATIONSHIP TO LINEAR PHASE AND MINIMUM PHASE SIGNALS

AND SYSTEMS

The linear phase, minimum duration, and maximum concentration signals discussed in Chap-

ters 3 and 4 naturally evoke memories of linear phase and minimum phase systems, which

are two common classes of linear systems, since we found that linear phase signals minimize

duration while minimum phase systems are known to have impulse responses that possess

the so-called minimum-delay property [27, pps. 248-250]. In this appendix we discuss some

of the general properties of linear phase and minimum phase systems and relate them to the

the linear phase, minimum duration, and maximum concentration signals derived in Chap-

ters 3 and 4. To do so we attribute the system property in question to the associated system

impulse response and use it to compare to the signals derived in Chapters 3 and 4.

Since the minimum duration signal design was derived in a continuous setting, the connec-

tions between concepts familiar in discrete time systems are not immediately clear. However,

one way to draw such connections is to discretize (3.8) and treat it as the impulse response

of some discrete-time linear system. It can be shown [27, pps. 297-298] that causal Finite

Impulse Response (FIR) systems have linear phase if they are symmetric or antisymmetric

about the midpoint of the impulse response. With reference to Figure 9 (a), we see that

not all linear phase signals derived according to the methods in 3.2.1 yield signals that are

symmetric or anti-symmetric about the midpoint of the signal. It has also been shown [46]

that causal Infinite Impulse Response (IIR) systems can have linear phase but, when they

do, cannot be expressed as a rational transfer function, thereby making it impossible to
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implement in terms of a difference equation. Thus, we can conclude that the signal derived

in 3.2.1 is not necessarily the impulse response associated with a rational transfer function,

with the one exception being the case when (3.8) yields a discrete sequence that is symmetric

or anti-symmetric about the sequence midpoint. If this is the case then it is also well known

[27, pps. 306-307] that the zeros exist in conjugate reciprocal pairs, making it impossible for

all of the zeros to be inside the unit circle.

Minimum phase is also a concept in DSP that has traits reminiscent of the notions

discussed Chapters 3 and 4. In particular, minimum phase systems – those that have all of

their poles and zeros inside the unit circle – possess a property known as minimum-delay.

Mathematically, this property is described as

K
∑

n=0

|h (n)|2 6
K
∑

n=0

|hmp (n)|2 ∀K ∈ Z (A.1)

where h(n) is a member of the family of all impulse responses having the same magnitude

spectrum, |H (ω)|2, and hmp (n) is the unique [27, pg. 280] member of this class exhibiting

the minimum phase property. Intuitively, this property says that of all systems having the

same magnitude spectrum, constraining the system to be minimum phase yields an impulse

response that maximally concentrates its energy in lowest samples (cf. Figure 14). However,

as shown by example in section 3.3, minimum phase signals do not have duration less than the

the linear phase signal given by (3.8), an observation consistent with the fact that minimum

phase signals cannot have linear phase. Finally, to draw a comparison between a minimum

phase signal with specified magnitude spectrum and the signals designed in Chapter 4 we

must let ǫ→ ∞. But, as shown in section 4.3.4, this situation leads to the minimum duration

solution, which, due to its linear phase, cannot be achieved by a minimum phase signal.
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(Left Panel) of Minimum Phase solution exhibiting minimum delay property
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APPENDIX B

MULTITARGET WAVEFORM DESIGN FOR OPTIMAL DETECTION AND

CLASSIFICATION

Throughout this thesis we assumed that there is only one potential target of interest present

in the environment. In practice, it may be unrealistic to assume precise knowledge of a target

we wish to detect and therefore more desirable to assume that the target present is a member

of a class of potential targets. In this appendix we take this viewpoint and assume that if

a target is present in the environment it is a member of a known set of candidates targets.

From this point of view we develop two approaches that incorporate this target response

uncertainty, but do so with differing assumptions. First, we design a transmit waveform

that maximizes the minimum probability of detecting a target within a user-specified class

of elastic targets based on the modeling assumptions given in Chapter 2 and summarized

in Figure 1. Next, we assume that a positive detection has been made such that one of the

targets within the assumed class is present and design a signal that maximizes the probability

of correctly classifying the true target. In contrast to the first approach, we do not assume

the presence of signal dependent noise. Rather, we assume all undesirable effects can be

modeled as an Additive White Gaussian Noise (AWGN) noise process.
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B.1 MULTITARGET WAVEFORM DESIGN FOR OPTIMAL DETECTION

In Chapter 2 we found the waveform that maximizes the probability of detecting a single,

fixed target for a given probability of false alarm, PFA. The relationship between PD as a

function of PFA and the magnitude spectrum of the transmit waveform, B (f), is given by

PD = P
1

1+d

FA (B.1)

where

d =

W/2
∫

−W/2

TB2(f) |G(f)|2
Ph(f)TB2(f) + Pn(f)

df (B.2)

One way to generalize the target specific waveform design approach given by Kay to the

class specific viewpoint proposed above is to design B (f) that maximizes the minimum di

given as follows

di =

W/2
∫

−W/2

TB2(f) |Gi(f)|2
Ph(f)TB2(f) + Pn(f)

df (B.3)

where |Gi (f)|2 is the magnitude spectrum of the ith target response in the given target class.

Since PD in ( B.1) is a monotonically increasing function of d for each PFA ∈ (0, 1), the B (f)

that maximizes the minimum di will also maximize the minimum PD among all targets in

the class for each PFA. Mathematically, we can pose the problem in the form of the following

constrained nonlinear program

max
B(f)

min
i

{di
(

B (f) ; |Gi (f)|2
)

}

subject to

W/2
∫

−W/2

B2 (f) df ≤E

B (f) ≥0

(B.4)

where i = 1, . . . ,M and M is the number of elements in the assumed class.
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B.1.1 Initialization

In order to solve the nonlinear program above we must first discretize all continuous compo-

nents so that vector matrix notation can be used and the problem can be implemented on a

digital computer. Following this step one must construct an initial solution that can be used

to initialize an iterative algorithm, such as sequential quadratic programming (SQP), that

solves ( B.4). One initialization approach that has been found to be efficient is to first deter-

mine the individual optimal solution for each potential target based on the theory presented

in Chapter 2,

y1 = T
(

Bopt
1 (f)

)2
= max





λ
−1/2
1

√

Pn (f) |G1 (f)|2 − Pn (f)

Ph (f)
, 0





y2 = T
(

Bopt
2 (f)

)2
= max





λ
−1/2
2

√

Pn (f) |G2 (f)|2 − Pn (f)

Ph (f)
, 0





...

yM = T
(

Bopt
M (f)

)2
= max





λ
−1/2
M

√

Pn (f) |GM (f)|2 − Pn (f)

Ph (f)
, 0





(B.5)

then find the scalar weights a1, . . . , aM that solve the following constrained nonlinear program

max
a1,...,am

min
i

{di
(

B0 (f) ; |Gi (f)|2
)

}

subject to

W/2
∫

−W/2

B2
0 (f) df ≤E

B0 (f) ≥0

(B.6)

where B0 (f) is a linear combination of individual solutions, defined as follows

B0 (f) = a1y1 + a2y2 + · · ·+ aMym (B.7)

So, given a set of transmit waveforms, y1, . . . , yM , that are each optimal for detecting a

specific target in the class, solving ( B.6) amounts to finding the best linear combination of

these waveforms that maximizes the minimum probability of detecting a target within the

class. The utility of this problem formulation is that we reduce the dimensionality of the
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problem posed in ( B.4), which is equal to the potentially large number of frequency points

used for discretization, to a problem whose dimension is equal to the total number of targets

assumed to be in the class, M . Though suboptimal, the hope is that the solution is close

enough to the optimal solution to lead to rapid convergence of an algorithm solving ( B.4).

B.1.2 Simulation Results

In this section we present some preliminary simulation results that test the approach outlined

in the previous section. In Figures 15 and 16 we show the optimal solution that results from

solving ( B.4) (black) and from solving ( B.6) (magenta) in terms of the optimal magnitude

spectra and the associated detection performance for each of the M = 6 targets in the

assumed class. For comparison we also include the optimal transmit signal associated with

each individual target in the class (red). In Figure 16 we see that the the approach appears

to allocate energy in a way that seeks to maximize worst case performance.

We also point out that it appears that the M-dimensional initialization approach given

by ( B.6) tends to perform almost just as well as the full solution obtained from ( B.4).

Thus, we have a suboptimal solution ( B.6) that almost achieves the optimal solution ( B.4)

for a fraction of the computational burden.
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Figure 15: Spectra of Multitarget Waveform Design Approach
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Figure 16: Performance of Multitarget Waveform Design Approach
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B.2 MULTITARGET WAVEFORM DESIGN FOR OPTIMAL

CLASSIFICATION

In contrast to B.1, this section makes two different assumptions. First, we assume that all

noise can be modeled as AWGN and therefore all interference is signal independent. Second,

we assume that we know that a positive detection has been made which signals that we know

that the environment contains a target that is a member of our assumed class. The goal is

now to design a waveform that maximizes the probability of correctly deciding which of the

targets from the class is actually present.

To design this waveform we adopt the Minimum Probability of Error (MPE) classifier

(a/k/a Minimum Distance Receiver) [19, pps. 80-82, 119-121] structure and design signals

that maximize the minimum deflection between classifier branch outputs. Each classifier

branch output is given by

Di (x) = ‖x−Mis‖2 (B.8)

where x is a vector of received data samples, Mi is a convolution matrix constructed from the

impulse response of the ith target, and s is a vector of time-domain samples of the transmitted

waveform. Thus, the deflection coefficient associated with branches j and k assuming target

i is present is defined as

diik =
(E {Di |Target i} −E {Dj |Target i})2
var {Di |Target i}+ var {Dj |Target i}

(B.9)

where E{} and var{} denote the statistical expectation and variance operators, respectively,

conditioned on the ith target. After some lengthy calculations we arrive at the following

E {Di |Target i} = Nσ2
w (B.10)

E {Dj |Target i} = sTQijs+Nσ2
w (B.11)

var {Di |Target i} = 2Nσ4
w (B.12)

var {Dj |Target i} = 4σ2
ws

TQijs + 2Nσ4
w (B.13)
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Thus, ( B.9) simplifies to

diij =

(

sTQijs
)2

4Nσ4
w + sTQijs

(B.14)

< sTQijs (B.15)

where N is the total number of samples in the transmitted signal and received data vectors,

σ2
w is the AWGN variance, and Qij = (Mi −Mj)

T (Mi −Mj). Thus the signal design relevant

to the classification problem in this section is given as the solution to the following nonlinear

program

max
s

min
i

diij (s)

subject to sT s ≤E
(B.16)

As mentioned in Chapter 5, a number of other authors have considered similar approaches

leading to ( B.16) or its variants. However, to the authors knowledge the literature is devoid

of results ( B.10)-( B.13), which, combined with the definition of deflection given in ( B.9),

gives a simple statistical justification for the objective function of ( B.16) within the context

of the optimal MPE classifier architecture.
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APPENDIX C

EXTENSIONS TO NONSTATIONARY ENVIRONMENTS

In Chapter 2 we overviewed the main results of [4] wherein, under the assumption that all

random processes are stationary and Gaussian, the optimal detector was derived. Based on

this detector Kay determined how the detection performance was related to the transmit

signal, which, strictly speaking, has nothing to do with the optimality of the detector. The

mathematical link that allowed for the derivation of the optimal signal that maximizes

probability of detection is

σ2
0 =

W/2
∫

−W/2

TB2(f) |G(f)|2
Ph(f)TB2(f) + Pn(f)

df (C.1)

since probability of detection is related to this quantity in the following way

PD = P
1

1+σ2
0

FA (C.2)

So, choosing |S (f)|2 to maximize ( C.1) will make ( C.2) as close as possible to 1 for a given

probability of false alarm.

In a similar spirit as [4], but at this point without the same rigorous mathematical sup-

port, in future research we plan to consider the derivation of the Time-Frequency Distribution

(TFD), Css(t, f), that maximizes the following function

σ2
0 =

T/2
∫

−T/2

W/2
∫

−W/2

Css(t, f)Cgg(t, f)

C̄hh(t, f)Css(t, f) + C̄nn(t, f)
dtdf (C.3)
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subject to the constraint that
T/2
∫

−T/2

W/2
∫

−W/2

Css(t, f) = E where Css(t, f) and Cgg(t, f) are

TFDs associated with the transmitted waveform and the target response, respectively, while

C̄hh(t, f) and C̄nn(t, f) are the Time-Frequency Spectra 1 of the channel and additive noise

random processes, respectively. Based on very cursory and preliminary analyses it seems

that an expression close to the following

Copt(t, f) = max

(

λ−1/2
√

C̄nn(t, f)− C̄nn(t, f)

C̄hh(t, f)
, 0

)

(C.4)

will maximize ( C.3) if we assume that each TF Spectrum is non-negative. It is thought

that such a solution will yield an transmit signal design that optima for detection in a

non-stationary environment. Clearly, this expression bears a striking resemblance to ( C.1)

and the derivation that leads to it is what motivates our belief that ( C.4) will maximize

( C.3). Related work in the are of optimal detection in nonstationary environments appears

in [47, 44, 43, 48, 45]

1defined as the expected value of the TFD of the associated random process
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