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ABSTRACT 
 
 
 

A STUDY OF CURRENT-DEPENDENT RESISTORS IN NONLINEAR CIRCUITS 
 

Nicholas Vaughn Zorn 
 

University of Pittsburgh, 2003 
 
 

Nonlinear electrical circuits can be used to model fluid flow in pipe networks when the 

resistance of any element in the network is assumed to be dependent on the flow rate through 

that element.  This relationship is often assumed in classical models of pressure drops at orifices 

and through valves.  More recently, it has also been used to model blood flow through vessels, 

and may potentially have applications in nano-fluid systems.  Motivated by these applications, in 

this thesis we investigate circuits where the resistors have linear and affine (linear plus offset) 

dependence on current.  Rules for their reduction in series and parallel are derived for the general 

case as well as for special cases of their linear coefficients and offset terms.  Other adapted 

circuit analysis and manipulation techniques are also discussed, including mesh current analysis 

and delta-wye transformation, and avenues for further investigation of this topic are illuminated. 

The methods developed in this thesis may have potential applications in simplifying the analysis 

of complex nonlinear flow networks in cardiovascular systems, especially those at the nano-

scale. 
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1.0  A NONLINEAR CIRCUIT MODEL: MOTIVATIONS AND IMPLICATIONS 

 

 Traditional education in electrical engineering begins with coursework in linear circuits 

and systems, and the behavior of the ordinary linear resistor is usually presented to relate the 

concepts of voltage and current [7], [8].  It is common knowledge that practical resistors display 

near-ideal behavior, that they obey Ohm’s Law and that, for all intents and purposes, the value of 

their resistance is constant.  It is an obvious conclusion to say that, in its simplest form, the 

resistance of a resistor in a typical non-switching direct current circuit is not directly dependent 

on voltage, current or time.  This investigation, motivated by modeling applications in some 

biological and nano-scale fluid flow systems, generalizes this concept and considers several 

cases in which resistance is a function of current.  That is, R=R(I).  The following equation 

assumes a polynomial dependence of resistance on current: 

R = R(I) = c + d1I + d2I2 + … + dnIn.      (1.1) 

The traditional linear resistor can be viewed as a special case of (1.1) with R=c and 

d1=d2=…=dn=0. 

 In a liquid flow network, the pressure drop P∆  across a length of pipe is usually modeled 

as having a nonlinear algebraic relationship with the flow rate Q [4].  To approximate a pressure 

drop at an orifice, through a valve or through a pipe with turbulent flow, the following 

expression is often used [4], [6]: 

  P∆  = kQ2         (1.2) 

where 

  P∆ = pressure difference in newtons per square meter [N/m2], 

  Q = flow rate in cubic meters per second [m3/s], 
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  k = a proportionality constant that depends on the pipe. 

The relationship in (1.2) is typically derived from the Bernoulli equation, and the fluid being 

described is usually assumed to be inviscid and incompressible [5], [13].  Series and parallel pipe 

networks implementing models such as that presented in (1.2) are often linearized around an 

operating point using a Taylor series expansion.  The pursuit in this research is to develop 

methods for dealing with nonlinear models to their manageable limit without linearizing.  Some 

interesting nonlinear networks and useful linearization methods have previously been 

investigated in [2] and [3].  An electric circuit analog to the above model can be created using 

nonlinear resistors, where P∆  is similar to a voltage V and Q is similar to current I, as in 

  V = dI2.         (1.3) 

If we use Ohm’s law V=RI to model these circuits, then clearly the resulting resistor in this case 

would be linearly dependent on the current flowing in it.  That is 

R = dI.          (1.4) 

Simple nonlinear circuit elements obeying laws such as (1.3) are often explored in system 

dynamics textbook problem sets.  A model similar to (1.3) for the pressure drop in a 

percutaneous ventricular assist system has been developed in [12], but it adds a constant offset to 

the resistive element, resulting in an affine dependency on current: 

  R = c + dI.         (1.5) 

The appropriate relationship between pressure drop and flow rate becomes 

  P∆  = cQ + dQ2,        (1.6) 

and the analogous voltage dependence on current becomes 

  V =cI + dI2.         (1.7) 
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 To serve as a realistic model for fluid flow, and to avoid the possibility of encountering a 

negative resistance value, current-dependent resistors must be dependent on the absolute value of 

current.  That is, equations 1.4 and 1.5 should be R=d|I| and R=c+d|I|, respectively.  For 

simplicity, the offset (c) and linear (d) coefficients are assumed to be nonnegative in this thesis.  

The units for the constant coefficient c would clearly be Ohms (Ω ), just like typical linear 

resistors, and the units for the linear coefficient d would be Ohms per amp ( Ω /A).  The results of 

these requirements are graphically summarized in the following two figures. 
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Figure 1.1  Plot of linear and affine current dependent resistance. 
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Figure 1.2  Plot of voltage across resistors with linear and affine current dependence. 
 
 

In this investigation we will assume all series and parallel resistive circuits obey the passive 

convention, and only current flow in the positive direction will be analyzed, allowing for the use 

of the simpler equations 1.4 and 1.5.  Therefore, we will not use the absolute value notation 

throughout the remainder of this thesis, unless the possibility exists of the current reversing its 

direction of flow. 

 Another justification for modeling nonlinear circuit elements that obey laws such as (1.7) 

can be derived by assuming, quite naturally, that the voltage drop across an element is some 

arbitrary function of the current through it.  That is, V=f(I).  This generalization is illustrated in 

Figure 1.3. 
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Figure 1.3  V as an arbitrary function of I. 

 
 
Approximating the function f(I) near I* with a second-order Taylor series expansion gives 

.
!2
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II
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II
dI
d

IfIf
II

−
+−+=     (1.8) 

It is obvious that f(I)-f(I*)= V∆ , and since the derivative terms evaluated at I* are constant 

coefficients, a relationship similar to (1.7) results: 

  ( )2IdIcV ∆+∆=∆  

where 

  
*IdI

df
c =   and  .

!2
1

*
2

2

I
dI

fd
d =  

 When one attempts to solve simple nonlinear electric circuits or reduce networks of 

current-dependent resistors, it quickly becomes apparent that such pursuits can be algebraically 

impossible.  For example, consider the circuit in Figure 1.4, wherein two hypothetical resistors 

exhibiting affine current dependence are connected in parallel.  The goal is to find an equivalent 

resistor that may be affine dependent on the total network current (Itot) in order to reduce the two-

element network down to one.  The element parameters are summarized as follows: 
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,
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R c d I
R c d I
R c d I

 

 
 

 

Figure 1.4  Two current-dependent resistors in parallel. 

 
 
I0 and I1 are the currents that pass through resistors R0 and R1, respectively and thus are the 

currents on which each resistance is dependent.  The total current Itot into the parallel network 

would be given by Itot=I0+I1.  By Kirchoff’s Voltage Law (KVL), the voltage drop (V, given by 

the passive convention) across each resistor is equal. 

1 1 0 0

1 1 1 1 0 0 0 0( ) ( )
= =
= + = +

V R I R I
V c d I I c d I I

 

The next step towards finding Req is to obtain an equation relating V and Itot.  By solving the 

resultant quadratic equations relating I0, I1 and V, the following equation for Itot in terms of V 

results: 

22

0 01 1

1 1 1 0 0 02 2 2 2
          

= − ± + + − ± +          
           

tot
c cc c V V

I
d d d d d d

  (1.9) 

Note this relationship is only valid when d0 ≠ 0 and d1 ≠ 0.  The leftmost network node in Figure 

1.4 must be made to obey Kirchoff’s Current Law (KCL), and in doing so the subtractive cases 
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can be discarded from (1.9).  In other words, if Itot is assumed to enter, the exiting currents I0 and 

I1 must add positively on the right-hand side of the equation.  This results in the following 

equation, the generalized current-voltage relationship between two resistors with affine current 

dependence in parallel. 

22

0 01 1

1 1 1 0 0 02 2 2 2
          

= − + + + − + +          
           

tot
c cc c V V

I
d d d d d d

  (1.10) 

It is now obvious that the pursuit of a direct expression for Req would require the consolidation of 

the variable V, which is present in two radical terms from which it is not necessarily separable.  

So, depending on the values of c1, c0, d1 and d0, this could be an algebraically impossible task.   

 In this thesis, we consider a dependence of the resistance on current only in the form 

R=c+dI.  In chapter 2, the special case when c=0 is considered. This special case is much 

simpler to treat and provides a stepping-stone for the general case where c ≠ 0, which is 

considered in chapter 3.   Additional considerations of the general case are discussed in chapter 

4, and some concluding remarks are given in chapter 5. 
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2.0  RESISTORS WITH LINEAR CURRENT DEPENDENCE 

 

 A purely linear dependence of resistance on current would be exemplified by equation 

1.1 in the case that c=d2=d3=…=dn=0, and d1 is nonzero.  The current through one such resistor 

can be calculated as shown below, using the passive convention to relate voltage and current.  

Because the current is assumed to be flowing from the positive node to the negative node of the 

resistor, the negative root can be thrown out. 

1

1 )(

d
V

I

IIdV
RIV

=

=
=

 

Such elements will be dubbed “linearly dependent resistors” (or LDRs) for the rest of this thesis.  

In this chapter, we consider adding n such resistors first in series, then in parallel.  Along with 

this, we investigate the resulting voltage and current divider rules.  We also provide several 

examples to illustrate the various steps involved. 

 

2.1  Linearly Dependent Resistors in Series 

 
 

Consider n of these resistors in series, as in Figure 2.1, where each resistor Ri = diI.  The 

equivalent resistance Req for such a network is desired. 
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Figure 2.1  The reduction of n LDRs in series.  Each resistor Ri = diI. 

 
 

Each voltage Vi drop across resistor Ri can be expressed as Vi = diI2, and KVL applied around the 

circuit results in the following relationship: 

  22
2

2
1 ... IdIdIdV ns +++= , 

which yields 

  ( ) ....21 Iddd
I

V
R n

s
eq +++==  

Therefore, the equivalent resistance of n linearly LDRs in series is 

IdR
n

i
ieq 







= ∑

=1

,        (2.1) 

and an equivalent linear coefficient can be expressed as 

∑
=

=
n

i
ieq dd

1

. 

In this case, Req has been found to also be linearly dependent on the current through the series 

network, according to equation 2.1.  A similar result for valves obeying equation 1.2 in series has 

been found before [4]. 
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2.2  Voltage Divider Rule 

 
 

Now we wish to derive a voltage divider rule for LDRs in series as in Figure 2.1.  Again, 

the voltage across resistor Ri is found using Vi = diI2, and an expression for I can be found: 

( )n

s

ddd
V

I
+++

=
...21

2 . 

The resulting form for the voltage divider rule for linearly dependent resistors  is described 

by: 

( ) s
n

i
i V

ddd
d

V
+++

=
...21

.       (2.2) 

Upon examination, this relationship is very similar to the voltage divider rule for current-

independent resistors, in that the source voltage divides as the ratio of each linear coefficient to 

the sum of all coefficients.  Thus, the rule can be stated as follows:   

 

The voltage across n LDRs in series divides proportional to the ratio of each 

coefficient di to the sum of all the coefficients of the series combination. 

  

 To illustrate these ideas, consider the simple series circuit in Figure 2.2.  The current I 

passes through the two LDRs in the clockwise direction and is calculated to be (10/8)1/2, or 

1.118A. 
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Figure 2.2  Example circuit containing LDRs to illustrate the voltage divider rule. 

 
 

The total series resistance in the circuit is (4.5+3.5)I, or 8I. Using the voltage divider rule for 

LDRs, the voltages V1 and V2 are calculated to be: 

  
1

2

4.5
10 5.625V,

4.5 3.5
3.5

10 4.375V.
4.5 3.5

= =
+

= =
+

V

V
 

 

2.3  Linearly Dependent Resistors in Parallel 

 
 
 Now consider n LDRs in parallel, again where Ri = diIi (di nonnegative for simplicity).  

Referring to Figure 2.3, the equivalent resistance Req is desired, as is a generalized current 

divider rule for such a network. 

 
 

 

Figure 2.3  The reduction of n LDRs in parallel.  Each resistor Ri = diIi 
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In order to obtain an equivalent resistance for this network, KCL must be applied at the upper 

node, and an expression directly relating Vs and the total current Itot must be derived. 

2

21

2

21
21

1
...

11

1
...

11
...











+++

=











+++=+++=

=

n

tot
s

n
sntot

i

s
i

ddd

I
V

ddd
VIIII

d
V

I

 

The above equations reveal an expression for the equivalent resistance of n linearly dependent 

resistors in parallel, which follows as 

2

1 2

1
.

1 1 1
...

eq tot

n

R I

d d d

=
 

+ + +  
 

      (2.3) 

The equivalent linear coefficient is therefore 

.
1

1
2

1










=

∑
=

n

i i

eq

d

d  

Again, the equivalent resistance is found to be linearly dependent upon the total current I, but the 

form of its coefficient differs slightly from the current- independent analog.  We mention that in 

the special case of two LDRs in parallel, expression (2.3) simplifies to: 

  ( ) .2

21

21

dd

dd
d eq

+
=  



 

13 

Now consider the example of three LDRs in a parallel network such as that of Figure 2.3.  

Suppose the three resistors, which are dependent on their respective currents, I1, I2 and I3, are 

valued 10I1, 50I2 and 100I3.  Applying expression (2.3), we find the equivalent LDR to be 

  
2

1

1 1 1
...

10 50 100
3.216 .

eq tot

eq tot

R I

R I

=
 

+ + + 
 

=

 

The following figure illustrates the relationship of Req to R1, R2 and R3 as a function of current.   
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Figure 2.4  Equivalent resistance calculated for three example LDRs. 
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2.4  Current Divider Rule 

 
 

The development of a current divider rule for LDRs is now possible.  The current Ii 

through resistor Ri, after disregarding the negative case, can be expressed as 

= eq tot
i

i

R I
I

d
. 

Equation 2.3 is then substituted into the above equation: 

2

2

1

.
1

tot
i

n

i
j j

I
I

d
d=

=
 
 
 
 
∑

 

It is now clear that the following expression can be considered the current divider rule for 

LDRs: 

1

1

1
i tot

n

i
j j

I I

d
d=

=
 
 
 
 
∑

.       (2.4) 

The current divider rule can therefore be stated as follows: 

 

The current through n LDRs in parallel divides proportional to the inverse of the 

product of each coefficient’s square root and the sum of all of the inverted 

coefficients’ square roots. 

 

We mention that in the special case of two LDRs in parallel (2.4) reveals the following 

expressions for the two currents: 
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.

,

21

1
2

21

2
1

tot

tot

I
dd

d
I

I
dd

d
I

+
=

+
=

 

These expressions are similar to those found with current- independent resistors, except that they 

involve the square roots of the linear coefficients.  Other relationships can be deduced for LDRs 

in a similar fashion.  For example, the power consumed by a linearly dependent resistor turns 

out to be cubic in I: 

2
i i i i i iP V I d I I= ⋅ = .        (2.5) 

Maintaining a positive resistor value despite current direction avoids the unwanted situation 

wherein the power consumed is negative. 

The calculations required to derive the rules and relations above were algebraically 

simple, because there was essentially only one quantity left underneath the radicals in equation 

1.3.  The complications that arise when this is no longer the case are the motivation for chapter 4.  

First, a numerical example of the concepts developed above is presented. 

 

2.5  Example Problem 

 
 

To illustrate all the above concepts, let us consider the circuit shown in Figure 2.5.  It is 

desired to determine all the currents and voltages in this circuit. 
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. 

Figure 2.5  Example circuit containing LDRs. 

 
 
To find the equivalent resistance Req for the entire resistive network, one must begin by finding 

R2,3 and R4,5, the equivalent resistances for the two pairs of parallel resistors. Using equation 2.3, 

we have: 

2

2,3
2 3

2

2,3

1 1

1 1 100
.

494 25

R I
d d

R I I

−

−

 
= +  

 

   = + =   
  

 

Similarly, 

  4,5

144
.

49
R I =  

 
 

Then, equation 2.1 must be used to reduce the resulting series network and obtain Req. 

1 2,3 4,5

100 144 489
5

49 49 49

10

eq

eq

eq

R R R R

R I I

R I

= + +

      = + + =            
≈
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The currents I2, I3, I4 and I5 can be found using the current divider rule of LDRs.  First, the total 

source current I must be calculated. 

12 49
1.1A

489

s

eq

V
I

R

I

=

⋅
= =

 

Then equation 2.4 is implemented to find each current.  For example, 

A.31.0
7
2

254
4

3

3

3

=

=

+
=

I

II

II

 

In the same way, I2, I4 and I5 are found to be 0.78A, 0.57A and 0.43A, respectively.  These 

results are intuitive, as we expect smaller portions of the total current to flow through the 

resistors with larger linear dependence. 

The voltage divider rule (equation 2.2) is now utilized across the outside loop which 

consists of R1, R2,3 and R4,5 to find each of the series voltages in the circuit.  For example, 

4,5

4,5

144
49

12
144 100

5
49 49

3.53V.

R

R

V

V

  
    =

    + +        
=

 

Similarly, VR2,3 and VR1 are found to be 2.45V and 6.01V, respectively. 
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3.0  RESISTORS WITH AFFINE CURRENT DEPENDENCE 

 

An affine dependence of resistance on current would be described by (1.5) when the 

values c and d are nonzero.  In a network of n such resistors, each resistance will be of the form 

Ri = ci + diIi.  If the constant ci is zero the resistor is of the type discussed in chapter 2 (linearly 

dependent on current), and if the constant di is zero the resistor is of the normal type found in 

classical linear circuit theory (no dependence on current).  It is anticipated that any rules or 

reduction techniques found for these resistors would be even more general forms of those 

describing the behavior of both linearly dependent and current- independent resistors.  Similarly, 

if a network was composed of a combination of both linearly dependent and current- independent 

resistors, it would be possible to solve using any techniques discovered for these resistors with 

affine (linear plus offset) dependence on current.  The resistors discussed in this chapter will 

intuitively be dubbed “affine dependent resistors” (or ADRs) for the rest of this thesis. 

In this chapter, we consider combining n ADRs first in series, then in parallel.  It is found 

that parallel networks of such resistors cannot be generalized analytically, so specific cases of the 

individual resistor coefficients are investigated for reducibility.  A general voltage divider rule is 

found for these resistors in series, and the rules for parallel current division for each reducible 

case are also found.  We also provide several examples to illustrate the various steps involved. 
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3.1  Affine Dependent Resistors in Series 

 
 Consider n ADRs in series, where each resistor Ri = ci + diIi, as in the following figure.  

Note that all of the individual currents (Ii) through the resistors, upon which they are each 

dependent, are equal to the same single branch current (I). 

 
 

 

Figure 3.1  The reduction of n ADRs in series.  Each resistor Ri = ci+diI. 

 
 
Each voltage drop Vi across resistor Ri can be expressed as Vi = RiI = ciI+diI2, assuming the 

current is flowing in the reference direction indicated in Figure 3.1.  KVL applied around the 

circuit results in the following relationships: 

( ) ( ) .......

,...
2

2121

21

IdddIcccV

VVVV

nns

ns

+++++=

+++=
 

This yields an expression for the equivalent series resistance: 

  ( ) ( ) ....... 2121 Idddccc
I

V
R nn

s
eq +++++==  

Therefore, the equivalent resistance of n affine dependent resistors in series is, in closed 

form, 

,
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i
ieq 








+= ∑∑

==

       (3.1) 
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and the equivalent linear and offset coefficients for Req=ceq+deqI can be expressed as 

  ∑
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i
ieq cc

1
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n

i
ieq dd

1

. 

In this case, Req has been found to also be affine dependent on the current through the series 

network, according to equation 3.1.  This expression is similar to the results obtain for both 

current- independent resistors and LDRs in series, and can be used to compute the equivalent 

resistance of a series network which includes both of those types of resistors. 

 

3.2  Voltage Divider Rule 

 
 As was previously done for linearly dependent resistors, we now consider deriving a 

voltage divider rule for the case of affine dependence.  Any voltage Vi across a particular affine 

dependent resistor Ri should be possible to find by simply using the resistor coefficients and the 

source voltage Vs.  It will be seen that the result is not quite as easy to obtain as that of the 

previously investigated case (equation 2.2).  The first intuitive step is to determine an expression 

for the loop current I. 

0
1

2

1

11

=−







+

















+

=

∑∑

∑∑

==

==

s

n

i
j

n

j
j

n

j
j

n

i
j

s

VIcId

Idc

V
I

 

This is a second-order equation in I, and its two roots are found to be 
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By assuming that the current I flows into the positive node of the voltage Vs in the series network 

of ADRs (as is done with current- independent resistors) the subtractive case above can be 

discarded.  Each resistor voltage Vi can then be calculated by simply multiplying the above result 

for the loop current by the value of the resistor in question, Ri = ci + diI.  It is observed that the 

indirect calculation of the current in such a series circuit is unavoidable, as its substitution into 

Ohm’s Law does not simplify.  This produces the following expression for the voltage divider 

rule for affine dependent resistors : 

( )IIdcV iii +=         (3.2) 

where 
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We can state the rule as follows: 

 

The voltage drop across one resistor of n ADRs in series is found by using Ohm’s 

Law with the total series current, which is determined to be a root of a quadratic 

equation whose constant term is the source voltage.  
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 As an illustrative example of the above concepts, consider the series connection of a DC 

voltage source two ADRs in Figure 3.2.  We wish to determine the equivalent resistance of the 

two series resistors, the loop current I and the voltage drop across each resistor V1 and V2. 

 
 
 

 

Figure 3.2  Circuit for example problem. 

 
 
Using equation 3.1, the equivalent series resistance is found to be (3+2)+(5+7)I=5+12I.  By the 

expression in (3.2), the total current is found to be 

( ) ( ) ( )
( )

A.728.0
752

107542323 2

=
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+++++−
=

I

I  

Again, using equation 3.2, 

  
( )
( )

1

2

3 5 0.728 0.728 4.834V,

2 7 0.728 0.728 5.166V.

= + ⋅ =

= + ⋅ =

V

V
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3.3  Affine Dependent Resistors in Parallel 

 
 In chapter 1 the generalized current-voltage relationship for two ADRs (R0=c0+d0I0 and 

R1=c1+d1I1) in parallel was found to be in the form of the following equation, where Itot is the 

current into their common node and V is the voltage across the parallel network: 

2 2

0 0 1 1

0 0 0 1 1 12 2 2 2tot
c c c cV V

I
d d d d d d

           
= − + + + − + +           

          
.  (3.3) 

Note that if this expression is valid only if d0 ≠ 0 and d1 ≠ 0.  Still, we will attempt to make 

progress toward a generalized solution.  While attempting to extract an expression for Req in this 

situation, one finds that collecting the V  terms can be algebraically complicated, as each is offset 

by different amounts underneath two different radicals.  It is obvious that for n such resistors in 

parallel, the above relationship would involve the addition of n separate radical terms.  

Therefore, the values of the linear and offset coefficients contribute directly to the complexity, or 

the simplicity, of the algebraic reduction.  In the fo llowing investigations of two (and more) 

ADRs in parallel, it will become apparent that an analytic expression for the equivalent parallel 

resistance Req will cannot be obtained and that it will not always be affine dependent.  First, 

characterization of the general case will be pursued, and the limited availability of closed-form 

results will become apparent.  Then, after considering as much as we possibly can in the general 

case, we will examine only three special cases. 

• In Case 1 (equal affine dependency), Req for two equal ADRs is found and generalized to 

n equivalent resistors. 

• In Case 2 (equal linear coefficients), the Req for two ADRs with equal linear coefficients 

and unequal constant terms is found. 
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• In Case 3 (special case involving a proportionality constant a), a scenario is examined 

where the offset and linear coefficients (ci and di) of R1 through Rn-1 are related to those 

of some reference resistor (R0) in some manner by a constant ai. 

Whenever possible, corresponding current divider rules are derived for the various cases under 

investigation. 

 

3.3.1  General Case 

 
 
 A symbolic manipulation software package such as MATLAB© (The MathWorks, Inc.) 

can be used to find a direct expression for V in equation 3.3.  After solving for V and collecting 

terms in Itot, the two following solutions result, V1 being additive and V2 being subtractive (note 

d1 ≠ d0 ≠ 0): 
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1
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2
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c c d c d c

2 -d d
.

+ +
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This expression is not yet entirely simplified as a polynomial in Itot.  One way to simplify the 

expression is to reduce the quantity whose square root appears twice in the polynomial; we name 

this quantity s(Itot) and display it in a collected form by the following equation: 

( ) ( ) ( )[ ]2
1

2
010

2
10110

2
01 244)( ccccIcdcdIddIs tottottot +++++=   (3.4) 
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One way we can exploit s(Itot) to simplify the expressions for V is by setting the discriminant of 

the enclosed quadratic equation to zero.  This yields two real and equal roots, one of which can 

be canceled by the outer square root operation.  It can be shown that the discriminant D can be 

factored in the following way: 

2 2
0 1 1 0 1 0( )( )D d d d c c d= − − + .      (3.5) 

Two conditions then arise that can insure the discriminant in (3.5) is zero: 

(I) 0 1d d= , 

(II) 
2

1 1
2

0 0

d c
d c

= . 

These two conditions correspond with two of the cases investigated later in this section.  Case 2 

considers two parallel resistors with equal linear coefficients (d0 and d1) and therefore 

corresponds with the first condition, and Case 3 assumes c1=ac0 and d1=a2d0, corresponding with 

(II).  Regardless of the technique used to make the discriminant zero, when this is done s(Itot) 

becomes  

  1 0 0 1

1 0

( ) .
2tot tot

c d c d
s I I

d d
+

= +  

Substituting this simplified form of s(Itot) in for its original form (as equation 3.4) in the solutions 

for V yields two simplified solutions that are true quadratic functions of Itot.  They are displayed 

in the following equation: 

( )
( )

( ) ( )
( )

( ) ( )
( )

21 0 1 0 1 0 0 1 1 0
1,2 2 2

0 1 0 1
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V I I

d d d d
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d d d d
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− + − +

+ + ± +  +
− +
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Before moving further, one must recall the objective of this investigation is to find an equivalent 

resistance for any two parallel ADRs, which is also affine dependent on the total current Itot 

being divided by the two resistors.  This clearly requires that the constant terms in equation 3.6 

equal zero, in order to be able to factor out Itot and form an instance of Ohm’s Law.  Setting the 

constant term equal zero results in two possibilities: 

 (1) 1 1

0 0

d c
d c

= −  

(2) ( )1 0 1 0 1 0 0 12 ( ) 0d d c c c d c d+ ± + = . 

The first option, which applies to both solutions of V, is irrelevant because the coefficients are 

assumed to be positive.  The second option, for V1, is impossible unless either the linear or the 

offset coefficients are both zero, and it is only possible for V2 if either both linear coefficients are 

zero or d0=d1=1/2.  Putting the expression for (2) above in the following equivalent vector 

product form easily displays these results: 

  ( ) ( )[ ] 022
0

1
101001 =








⋅±±

c
c

dddddd . 

All of the requirements uncovered while forcing the constant term in (3.6) to zero fall under 

cases examined elsewhere in this investigation.  We have exploited the general case for two 

ADRs in parallel to its applicable limits. 

 Next, the equivalent resistance of parallel networks of ADRs with equal linear and 

constant terms will be determined. 
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3.3.2  Case 1: Equal Affine Dependency 

 
 
 Consider the circuit in Figure 3.3, which is composed of two equivalent ADRs in parallel. 

 
 

 

Figure 3.3  Two equal ADRs in parallel (Case 1). 

 
 
Currents I0 and I1 pass through the resistors, and the total current Itot is the sum of those two 

currents, which is expressed using equation 3.3 as: 

0
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0 2
d
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d
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I tot +



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


+−= .       (3.7) 

It is anticipated that an expression for Req will exhibit affine dependence on the total current.  To 

achieve this, both sides of (3.7) are squared, and V is isolated. 

2 2

0 0

0 0 0

4
2tot

c c V
I

d d d

      
 + = +     
       

 

tottot II
dc

V 




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00  

The Req in this case is therefore calculated using the following equation, the equivalent resistance 

for two equal affine dependent resistors in parallel. 
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toteq I
dc

R
42

00 +=         (3.8) 

It is suspected that the above result can be generalized to n equal resistors.  That is, for 

i=1,2,…,n, 
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     = = − + +     
     

∑

 

By algebraic manipulation, the parallel voltage V can again be isolated on the left hand side, 

yielding an instance of Ohm’s Law: 

tottot II
n
d

n
c

V 





 += 2

. 

The reduced expression for Req has been obtained on the right hand side of the above equation, 

and it is given by the following expression to be the equivalent resistance of n equal affine 

dependent resistors in parallel, 

toteq I
n
d

n
c

R
2

+= ,        (3.9) 

where Itot is the total current flowing into the parallel resistor network.  Figure 3.4 demonstrates 

how the Req of such networks varies as the number of equivalent ADRs connected in parallel is 

increased, for the simple case when c=d=1. 
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Figure 3.4  Graph of Req as size of parallel (Case 1) ADR network increases.  c=d=1. 

 
 

It is intuitive to expect each of the n individual branch currents in a network of equally 

affine dependent resistors to be equal the total source current divided by n.  This turns out to be 

true by means of simple algebraic substitution.  Each voltage Vi is equal to the voltage across the 

parallel network, labeled V in Figure 3.3.  Solving for each branch current Ii in terms of the 

network voltage V in the same way equation 3.7 was found,  

2 4
2i

c c dV
I

d
− + +

= . 

Since V = ReqItot, the following expression for Ii in terms of Itot can be found: 
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2 4
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tot tot
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c c d I I
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Bringing the denominator up into the radical, and observing that a perfect square results, one 

observes 

2
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2 2
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c c c
I I I

d dnd n

c c
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This gives the anticipated result, which can be considered a current divider rule for n equal 

ADRs in parallel: 

.
1

toti I
n

I =          (3.10) 

 
 
 
3.3.3  Case 2: Equal Linear Coefficients 

 
 

The I-V relationships of six ADRs with the same linear coefficient (d=1/2) and different 

constant terms (c0,c1,…,c5) are plotted in Figure 3.5.  The objective in this case study is to 

determine an expression for the equivalent resistance, and its corresponding I-V behavior, of two 

or more parallel ADRs with this type of behavior.  It will be seen that the result is not necessarily 

affine. 
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Figure 3.5  Calculated I-V curves for six example (Case 2) ADRs. 

 
 

To begin the analysis of this special case, consider the circuit in Figure 3.6, which is 

composed of two parallel ADRs with equal linear coefficients (both are d0) and different offset 

values (c0 and c1).  Again, the objective here is to obtain a current-dependent expression for 

Req=R(Itot) and to determine the precise type of dependency that results.  The investigation of this 

case was motivated by a result found while solving the general problem of two ADRs in parallel. 
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Figure 3.6  Two parallel ADRs with equal linear coefficients (Case 2). 

 
 
First, expressions relating the branch currents and the network voltage are found to be 
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Using Kirchoff’s Current Law, the total current into the network is the sum of the two branch 

currents, or 

  
2 2

0 0 0 1 1 0
0 1
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4 4
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c c d V c c d V
I I I

d d
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= + = + . 

After some algebraic manipulations, we obtain the following equation: 
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2 8 4 4

4
d I c c c c d V c d V c d V + + − − − = + +  , 

which can be further processed in order to attempt to isolate polynomials purely dependent on V 

and I on either side.  By expanding the square and product in the above equation and collecting 

terms, we then obtain the following first-order polynomial in V: 
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It can be shown that by isolating V on the left-hand side, one can obtain the reduced expression 

by factorization: 

1 0 0 0 0 1 0
2

0 1 0

( )( )( )
.

( 2 )
tot tot tot

tot
tot

c d I c d I c c d I
V I

c c d I
+ + + +

=
+ +

    (3.11) 

Treating equation 3.11 as an instance of Ohm’s Law, it is obvious that the fraction is the 

equivalent resistance for two parallel ADRs with equal linear coefficients.  This is displayed 

in the following equation. 

  1 0 0 0 0 1 0
2

0 1 0

( )( )( )
( 2 )

tot tot tot
eq

tot

c d I c d I c c d I
R

c c d I
+ + + +

=
+ +

    (3.12) 

Its dependence on Itot is not necessarily a purely affine one.  Inspection of expression 3.12 

reveals a polynomial of order n+1 in the numerator, and a polynomial of order n in the 

denominator.  This suggests that for special cases of the linear coefficients and offsets in the 

ADRs, a resulting parallel equivalent resistance Req can be recognized as having affine 

dependence on the total current Itot by polynomial division.  It is a simple exercise to show that if 

all the constant terms ci are equal, (3.12) gives the same result as expression 3.8. 

 Equation 3.12 can be used to compute the I-V curves of equivalent resistances that would 

arise in parallel networks of the example ADRs used to create Figure 3.5.  When (3.12) is used to 

compute the Req for R0=c0+d0I0 and R1=c1+d0I0 in parallel, its resulting I-V characteristic is 

graphed in Figure 3.7 against those of R0 and R1. 
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Figure 3.7  I-V characteristic for Req of R0 and R1 from Figure 3.5. 

 
 
3.3.4  Case 3: Special Case Involving a Proportionality Constant α  

 

As mentioned during the investigation of the general case, another situation which may 

facilitate the reduction of two or more ADRs in parallel is generalized in the following way: 

2
1 1 0 1 1 0

2
2 2 0 2 2 0

2
0 0 .n n n n

c a c d a d

c a c d a d

c a c d a d

= =

= =

↓

= =

       (3.13) 
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To implement this case in parallel ADR circuit design or reduction, one ADR must be chosen 

whose coefficients will serve as the reference c0 and d0.  Then the corresponding ai (i=1,…,n-1) 

for the remaining n-1 resistors must be assigned or computed.  The hypothetical I-V curves of six 

such ADRs, where R0=c0+d0I0 serves as the reference resistor, are shown in Figure 3.8. 
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Figure 3.8  Calculated I-V curves for six example (Case 3) ADRs.  Note a=α . 

 
 
 To begin the analysis of this case, consider the simple circuit of Figure 3.9.  Two Case 3 

ADRs are in parallel, and the objective is again to find an equivalent resistance that is affine 

dependent on the total network current Itot.  The useful results obtained for this circuit will then 
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be generalized to even larger parallel networks of Case 3 ADRs, and an appropriate current 

divider rule will be discovered. 

 
 

 

Figure 3.9  Two parallel ADRs with coefficients related by α  (Case 3). 

 
 
By applying KCL, an equation in a modified form of (3.3) arises to describe this simple circuit: 
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. 

After isolating the simplest form of the radical terms on the right hand side (and before squaring 

both sides), the following is obtained: 
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+
. 

By squaring both sides and isolating only V on one side, an instance of Ohm’s Law is eventually 

obtained in the following fashion: 
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This leads to the following expressions for the equivalent resistance of two Case 3 ADRs in 

parallel: 

  eq eq eq totR c d I= +  

where 

  01eq

a
c c

a
=

+
  or  0 1

0 1

c c
c c+

       (3.14) 

  
2

01eq

a
d d

a
 =  + 

  or  0 1
2

0 1( )

d d

d d+
. 

It is interesting to observe that the constant term of the equivalent ADR is the product of the two 

parallel constant terms divided by their sum.  This shows that if both linear coefficient terms are 

zero, equations 3.14 give the same result as that often used in traditional linear circuit analysis 

for two parallel resistors.  It is also obvious that similar results are obtained when the d terms are 

zero in (3.1), (3.8), (3.9) and (3.12). 

 The same technique which led to (3.14) will now be attempted for larger networks of 

parallel ADRs, in order to pursue a closed-form result for any number of resistors.  Suppose 

three ADRs are in parallel and described by the following equations: 

  
0 0 0 0

1 1 1 1

2 2 2 2

R c d I
R c d I
R c d I

= +
= +
= +

 

where 

2
1 1 0 1 1 0

2
2 2 0 2 2 0 .

c a c d a d

c a c d a d

= =

= =
 

The KCL equation becomes 
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2 2 2
0 0 0 1 1 1 2 2 2

tot
0 1 2

-c 4 c 4 -c 4
I

2 2 2
c d V c d V c d V

d d d
+ + − + + + +

= + + , 

and after substitution it can be rewritten as: 

  
2

0 0 0

0 1 2

4 1 1
1

2tot

c c d V
I

d a a
− + +  

= + + 
 

.     (3.15) 

The form of expression 3.15 is intuitive – the total current turns out to be a scalar multiple of the 

current through the reference ADR, R0.  It is not difficult to conclude that for n of these resistors, 

the result will be: 

  
2

0 0 0

0 1 2 1

4 1 1 1
1

2tot
n

c c d V
I ...

d a a a −

− + +  
= + + + + 

 
.    (3.16) 

After algebraically manipulating (3.15) to retrieve the Req in terms of the constants a1 and a2, the 

results are summarized in following expressions: 

  eq eq eq totR c d I= +  

where 

  1 2
0

1 2 1 2
eq

a a
c c

a a a a
=

+ +
        (3.17) 

2

1 2
0

1 2 1 2
eq

a a
d d

a a a a
 

=  + + 
. 

When these results are compared with equations 3.14, a pattern begins to emerge.  Using (3.16) 

to likewise investigate four of these ADRs in parallel gives the following equations, 

  1 2 3
0

1 2 2 1 2 2 3 1 3
eq

a a a
c c

a a a a a a a a a
=

+ + +
  and 

2

1 2 3
0

1 2 2 1 2 2 3 1 3
eq

a a a
d d

a a a a a a a a a
 

=  + + + 
.     (3.18) 
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The closed form of the equivalent resistance for any size parallel network of this brand of ADR 

is now clear.  For a network of n parallel resistors arranged as in the following figure, 

 
 

 

Figure 3.10  Finding the Req for n (Case 3) ADRs in parallel. 

 
 
the equivalent resistance is always affine dependent on the total current Itot, and its offset and 

linear coefficients are displayed found as: 

  
1

1

0
1

1
1

n

eq
k k

c c
a

−
−

=

 
= + 

 
∑   and  

2
1

0
1

1
1

n

eq
k k

d d
a

−
−

=

 
= + 

 
∑ .    (3.19) 

The expressions in (3.19) can be written in terms of only the ci and di coefficients, and not the 

proportionality constants ai, by substitution of ai = ci/c0 = (di/d0)1/2.  The results are displayed in 

the following manner, which is the equivalent resistance for n (Case 3) ADRs in parallel. 

,toteqeqeq IdcR +=  

where 
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1
1

0

1n

eq
k k

c
c

−
−

=

 
=  

 
∑   and  

2
1

0

1n

eq
k k

d
d

−
−

=

 
=   

 
∑ .     (3.20) 

 It is fairly straightforward to obtain a corresponding current divider rule for this particular 

case of ADRs.  Recall that any individual branch current (Ii) desired can be written as: 

( )
1

2 24

2
i i i

i
i

c c d V
I

d

− + +
= , 

assuming it flows into the positive reference node of the voltage across the network.  Within this 

expression, the network voltage V can be written as a product of the equivalent resistance Req and 

the total current Itot: 

  ( )tot eq eq totV I c d I= + . 

Therefore, the current divider rule for (case 3) ADRs would take the following form, where ceq 

and deq are calculated using (3.20): 

  

1
2 24 ( )

2
i i i tot eq eq tot

i
i

c c d I c d I
I

d

 − + + + = .     (3.21) 

Note that the total current Itot, and therefore the individual branch currents Ii, must follow the 

passive convention with respect to the voltage drop across the ADR network to avoid complex 

results.  An application of the results derived thus far in the chapter can be seen in the following 

example problem. 
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3.4  Example Problem 

 
 
 We wish to solve for all the voltages and currents present in the circuit of Figure 3.11.  

The network is composed of a DC voltage source and a total of six ADRs. 

 
 

 

Figure 3.11  Example circuit containing ADRs. 

 
 
To calculate Req, one must reduce the two parallel networks of ADRs in Figure 3.11 and add the 

total series resistance.  The parallel combination of R1 and R2 will be called R1,2, and it will be 

dependent on the total source current I.  Using (3.8), 

1,2

1
25 .

8
R I= +  

The network of R4, R5 and R6 falls into the third special case of ADRs discussed in this chapter, 

where c6 (=1) and d6 (=1/3) are the reference coefficients, and the corresponding proportionality 
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constants for R4 and R5 are a4 (=6) and a5 (=3), respectively.  Equations 3.19 and/or 3.20 can be 

used to calculate the linear and constant coefficients of R4,5,6. 

4,5,6

1

2

where

1 1 2
1

3 6 3

1 1 1 4
1

3 6 3 27

eq eq

eq

eq

R c d I

c

d

−

−

= +

 = + + = 
 

 = + + = 
 

 

Finally, using (3.1), 

2 1 5 4
25 7 32.67 2.77 .

3 8 2 27eqR I I   = + + + + + = +   
   

 

The voltage drops across R4,5,6, R1,2 and R3 are calculated using (3.2), the voltage divider rule for 

ADRs.  The total current I is found to be 0.27A, and therefore 

V.19.027.027.0
27
4

3
2

6,5,4 =





 +=RV  

Similarly, 

  
V.76.6

V,07.2

2,1

3

=

=

R

R

V

V
 

The currents I1 and I2 are each half of the total current I, that is I1=I2=0.135A.  To directly 

calculate the remaining currents, the current divider rule for case 3 ADRs is needed (3.21).  To 

calculate I5, we must realize that ci and di correspond to the characteristics of R5, and ceq and deq 

correspond to those of R4,5,6. 

1
2 2

5

3 3 4 3 0.27(0.67 0.15 0.27)
0.06A

2 3
I

 − + + ⋅ ⋅ + ⋅ = =
⋅

. 

Similarly, 
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A.18.0
A,03.0

6

4

=
=

I
I

 

These results obey KVL around each loop and KCL at each node. 
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4.0  TOPICS FOR FUTURE RESEARCH AND CONCLUDING REMARKS 

 

 
 The rules and techniques developed in this study for circuit reduction and signal 

computation in networks of current-dependent resistors can possibly be used to model fluid flow 

in certain pipe networks.  Certain flow resistance characteristics allow some series and parallel 

networks to be greatly simplified; however, just as robust linear electric circuit analysis also 

implements techniques to analyze resistive circuits without the need for reduction (i.e. mesh 

current and node voltage analysis), a few analogous tools are now pursued in the realm of the 

particular nonlinear circuit discussed in this thesis.  In this chapter, we mention possible future 

research problems that involve using tools developed in this thesis to derive solution methods 

such as mesh and node analysis and to perform operations such as delta-wye transformations.  

We conclude this chapter with remarks that highlight the various contributions made in this 

thesis. 

4.1  Possible Topics for Future Research 

 

4.1.1  Mesh and Node Analysis 

 

 Mesh and node analysis methods are very important for solving circuits in general [7], 

[8].  To illustrate some of the issues that arise when one attempts to apply these methods for 

circuits with LDRs and ADRs, let us consider the following example circuit of LDRs in Figure 

4.1.  The circuit-reduction techniques established in chapter 2 will be tested against an adapted 



 

45 

mesh analysis solution.  The resistors are labeled according to their degree of linear dependence 

upon the current, but the specific currents upon which they depend have not yet been selected. 

 
 

 

Figure 4.1  Two-mesh circuit containing LDRs. 

 
 

The mesh currents will first be calculated using rules from chapter 2.  Using (2.3), the 

equivalent resistance of the two equal LDRs in parallel is found to be 

  .
4
5

5
1

5
1

11

2

2,1 IIR =







+=

−

 

By (2.1), the total series resistance is found to be (37/4)I1, and the total source current I1 is then 

computed (using the source voltage and the total resistance) to be I1=1.14A.  Because of the 

equivalence of the parallel LDRs, I2 is clearly I2=I1/2 = 0.57A. 

 In order to construct two mesh equations for this circuit, one must first choose a reference 

direction for the voltage drop across the shared resistor and keep that consistent when writing 

both equations, just as is done in mesh analysis of linear circuits.  The reference direction for the  

net current through the leftmost 5I resistor will be downward, and therefore the voltage drop V1 

will be 

V1 = 5(|I1- I2|)(I1 - I2). 
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The resulting nonlinear system of mesh currents for the circuit is found using traditional 

techniques: 

  8|I1|I1 + 5(|I1- I2|)(I1 - I2) = 12  for mesh 1, and 

  -5(|I1- I2|)(I1 - I2) + 5|I2|I2 = 0  for mesh 2. 

Because of the absolute values in these equations, the solution procedure must take into 

consideration all possible sign variations of the current variables.  In this problem, we know that 

the reference directions for I1 and I2 will yield positive values for these currents.  We also know 

that I1>I2.  So the absolute values in the equations can be removed to yield: 

  8I1
2 + 5(I1 - I2)2 = 12        (4.1a) 

  -5(I1 - I2)2 + 5I22 = 0.        (4.1b) 

In general, however, we may not know the sign of the current variables in all resistors.  For 

example, in this problem, suppose we did not know a priori that I1>I2.  Then in addition to the 

above two equations, the case where I1<I2 must also be considered, which itself yields the 

following two different equations:   

  8I1
2 - 5(I1 - I2)2 = 12        (4.2a) 

  5(I1 - I2)2 + 5I2
2 = 0.        (4.2b) 

Both sets of equations 4.1 and 4.2 must be solved and only the consistent solutions (I1<I2 for 4.1 

and I1>I2 for 4.2) will be valid.  In this case we note that equations 4.2 do not admit any solutions 

since (4.2) requires that I1=I2=0 and (4.2a) cannot be satisfied with these values.  Therefore (4.1) 

are the only valid mesh equations for the circuit, and we should expect the solution to satisfy 

I1>I2.  Because of the nonlinear nature of these relationships, numerical methods must be used to 

solve such equations [1]. 
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 We note, however, that equations 4.1a and 4.1b are coupled quadratic equations of the 

Riccati type, and extensive studies on the numerical solution methods for such equations can be 

found in [9], [10] and [11].  Regarding this example, we realize that equation 4.1b yields 

  I2 = I1/2, 

and when this is substituted into (4.1a) we get 

  37I1
2 = 48 

or I1=1.14 and I2=0.57A.  Note, as a final check, that this solution is consistent with I1>I2. 

 The above example suggests that mesh currents within larger networks of current-

dependent resistors will need to be solved using numerical techniques, but it also exposes the 

following complication: mesh current calculation depends on the initial reference direction 

assumption for currents flowing through resistors that are shared among several meshes.  Similar 

results are expected for node-voltage analysis of such networks as well.  The pursuit of 

mathematical techniques for solving circuits despite this complication could open up avenues for 

future research. 

 

4.1.2  Delta-Wye Transformation of Linearly Dependent Resistors  

 

 Another nonlinear circuit modification technique worthy of consideration is the 

corresponding delta-wye transformation for current-dependent resistors.  The generalized circuit 

is found in Figure 4.2.  The same transformation requirements that govern current- independent 

resistors apply: 
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  RA + RB = R1 || (R2 + R3) 

  RB + RC = R2 || (R1 + R3)       (4.3) 

  RA + RC = R3 || (R1 + R2). 

 
 

 

Figure 4.2  The delta-wye transformation for LDRs. 

 
 
Upon inspection it is clear that the requirements given by equations 4.3 complicate the 

possibility of deriving a delta-wye transformation for the ADRs discussed in chapter 3, so the 

transformation is calculated here only for networks of linearly dependent resistors.  The 

requirements of (4.3) become 

  RA + RB = d1I1 || (d2I2 + d3I3) 

  RB + RC = d2I2 || (d1I1 + d3I3)       (4.4) 

  RA + RC = d2I2 || (d1I1 + d2I2) 

where I1, I2 and I3 are the clockwise currents passing through resistors R1, R2 and R3, 

respectively.  Based on these requirements, it is intuitive to suspect that resistors RA, RB and RC 

will be dependent on one or more of the three major network currents IA, IB and IC.  After 
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calculating the necessary equivalent series and parallel resistances and performing some 

algebraic manipulation, intuition proves correct.  The following relationships result: 

2 2 2

1 2 3 2 1 3 3 1 2

1 1 1 1 1 1 1
2A A B CR I I I

d d d d d d d d d

− − −      
 = + − + + +           + + +      

, 

2 2 2

1 2 3 2 1 3 3 1 2

1 1 1 1 1 1 1
2B A B CR I I I

d d d d d d d d d

− − −      
 = + + + − +           + + +      

, 

2 2 2

1 2 3 2 1 3 3 1 2

1 1 1 1 1 1 1
2C A B CR I I I

d d d d d d d d d

− − −      
 = − + + + + +           + + +      

. 

We observe that each wye resistor is found to be linearly dependent on not only its own current 

but on the currents through the other two wye resistors as well.  Though they represent an 

interesting result, RA, RB and RC cannot be considered LDRs by the definition given in this thesis.  

One avenue for future investigation in this type of circuit transformation can be to pursue  

analogous results for ADRs. 

 

4.2  Concluding Remarks 

 

 Techniques similar to those that govern resistor network reduction and solution in linear 

circuit analysis have been investigated and developed for networks of resistors whose values 

depend on current in a linear or affine manner.  We derived expressions for combining such 

resistors in series and in parallel and obtained the resulting voltage and current divider rules.  It is 

interesting result to note that in the case of affine dependent resistors, some of the results can be 

considered generalizations of those of traditional linear circuit analysis.  The offset term in these 
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resistors represents the same sort of fixed, current- independent behavior that typical resistors 

exhibit, and the inclusion of the linear term takes one step in the direction of generalizing circuit 

reduction for elements whose voltage can be written as a polynomial function of current.  It is 

clear that if the linear coefficients were zero in (3.1), (3.9), (3.12) and (3.20), the same exact 

results for the combination of current- independent resistors in series and parallel are given.  We 

demonstrated that in the most general case of circuits with all ADRs, there are no closed-form 

expressions for combining such resistors in parallel.  Consequently, we derived the expressions 

for various special cases of interest.  Throughout the thesis, we illustrated the concepts with 

simple examples to make it easy for the reader to appreciate the difficulties involved in dealing 

with such nonlinear circuits.  We also pointed out several possible research problems that can 

still be explored as a follow-up to this thesis. 

 We believe that as the field of nanotechnology evolves, circuits with current-dependent 

resistors may become very important components in modeling many nano-scale systems that 

involve fluid flow.  The tools and techniques developed in this thesis may provide a theoretical 

basis for the analysis of such systems. 



 

 

APPENDIX 
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Appendix A 
 
 
 

MATLAB M-files Investigating Affine Dependent Resistors  
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% Two affine-dependent resistors in parallel, general case 
 
clear all;close all;clc; 
 
syms d0 d1 c0 c1 It V; 
 
solve('It=-c1/(2*d1)+((c1/(2*d1))^2+(V/d1))^(1/2)-
c0/(2*d0)+((c0/(2*d0))^2+(V/d0))^(1/2)','V'); 
 
% 2 roots are output for the above task. 
%    first try to simplify & collect terms of [1,1] 
 
[V1,how]=simple(-1/2*(d1*c0^2-1/(-d0+d1)*(4*It*d1*d0+2*c1*d0+2*c0*d1+... 
     2*(c1^2*d0^2+c0^2*d0^2+4*It^2*d1*d0^3+4*It*d0^3*c1+4*It*d1*d0^2*c0+... 
     2*c1*d0^2*c0)^(1/2))*d0*It*d1-1/2/(-
d0+d1)*(4*It*d1*d0+2*c1*d0+2*c0*d1+... 
     2*(c1^2*d0^2+c0^2*d0^2+4*It^2*d1*d0^3+4*It*d0^3*c1+4*It*d1*d0^2*c0+... 
     2*c1*d0^2*c0)^(1/2))*c0*d1-1/2/(-d0+d1)*(4*It*d1*d0+2*c1*d0+2*c0*d1+... 
     2*(c1^2*d0^2+c0^2*d0^2+4*It^2*d1*d0^3+4*It*d0^3*c1+4*It*d1*d0^2*c0+... 
     2*c1*d0^2*c0)^(1/2))*d0*c1+2*It^2*d1*d0^2+2*It*d0^2*c1+2*It*d1*d0*c0+... 
     c1*d0*c0)/d0/(-d0+d1)); 
 
[V2,how]=simple([ -1/2*(d1*c0^2-1/(-d0+d1)*(4*It*d1*d0+2*c1*d0+2*c0*d1-... 
          
2*(c1^2*d0^2+c0^2*d0^2+4*It^2*d1*d0^3+4*It*d0^3*c1+4*It*d1*d0^2*c0+... 
          2*c1*d0^2*c0)^(1/2))*d0*It*d1-1/2/(-d0+d1)*(4*It*d1*d0+2*c1*d0+... 
          2*c0*d1-2*(c1^2*d0^2+c0^2*d0^2+4*It^2*d1*d0^3+4*It*d0^3*c1+... 
          4*It*d1*d0^2*c0+2*c1*d0^2*c0)^(1/2))*c0*d1-1/2/(-
d0+d1)*(4*It*d1*d0+... 
          2*c1*d0+2*c0*d1-
2*(c1^2*d0^2+c0^2*d0^2+4*It^2*d1*d0^3+4*It*d0^3*c1+... 
          4*It*d1*d0^2*c0+2*c1*d0^2*c0)^(1/2))*d0*c1+2*It^2*d1*d0^2+... 
          2*It*d0^2*c1+2*It*d1*d0*c0+c1*d0*c0)/d0/(-d0+d1)]); 
 
V1 = collect(1/2*(d1*c0^2+2*It^2*d1^2*d0+2*It*d1*d0*c1+2*It*d1^2*c0+... 
     2*It*d1*d0*(c1^2+c0^2+4*It^2*d1*d0+4*It*d0*c1+4*It*d1*c0+... 
     2*c0*c1)^(1/2)+c0*d1*c1+c0*d1*(c1^2+c0^2+4*It^2*d1*d0+4*It*d0*c1+... 
     4*It*d1*c0+2*c0*c1)^(1/2)+c1^2*d0+c1*d0*(c1^2+c0^2+4*It^2*d1*d0+... 
     4*It*d0*c1+4*It*d1*c0+2*c0*c1)^(1/2)+2*It^2*d1*d0^2+2*It*d0^2*c1+... 
     2*It*d1*d0*c0+c1*d0*c0)/(-d0+d1)^2,It); 
 
V2 = collect(1/2*(d1*c0^2+2*It^2*d1^2*d0+2*It*d1*d0*c1+2*It*d1^2*c0-... 
     2*It*d1*d0*(c1^2+c0^2+4*It^2*d1*d0+4*It*d0*c1+4*It*d1*c0+... 
     2*c1*c0)^(1/2)+c0*d1*c1-c0*d1*(c1^2+c0^2+4*It^2*d1*d0+4*It*d0*c1+... 
     4*It*d1*c0+2*c1*c0)^(1/2)+c1^2*d0-c1*d0*(c1^2+c0^2+4*It^2*d1*d0+... 
     4*It*d0*c1+4*It*d1*c0+2*c1*c0)^(1/2)+2*It^2*d1*d0^2+2*It*d0^2*c1+... 
     2*It*d1*d0*c0+c1*d0*c0)/(-d0+d1)^2,It); 
 
% In the resulting solutions for V, there appears a polynomial in 
%    It, which I will call s(It).  The polynomial is ((4*d1*d0)*It^2+ 
%    4*(d0*c1+d1*c0)*It+(c1^2+2*c0*c1+c0^2))^(1/2). 
%    Now I will simplify this... 
 
roots_s = 
solve('(4*d1*d0)*It^2+4*(d0*c1+d1*c0)*It+(c1^2+2*c0*c1+c0^2)=0','It'); 
 
[root_s,how]=simple(1/8/d1/d0*(-4*c1*d0-4*c0*d1+4*(c1^2*d0^2+d1^2*c0^2-... 
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     d1*d0*c1^2-d0*d1*c0^2)^(1/2))); 
 
% Taking the condition for two real & equal roots by setting the 
discriminant=0, 
%    s(It) has become (It+(c1*d0+c0*d1)/(2*d1*d0)). 
%    This only happens for two conditions:  d0=d1 and (c1^2/c0^2)=(d1/d0). 
%    The results of these two conditions are examined in other m-files. 
%    V# can be simplified further, first by re-collecting It terms... 
 
V1 = collect((d1^2*d0+d1*d0^2)/(-d0+d1)^2*It^2+(d1*d0*c1+d1^2*c0+... 
     c1*d0^2+c0*d1*d0+d1*d0*(It+(c1*d0+c0*d1)/(2*d1*d0)))/(-d0+... 
     d1)^2*It+(1/2*d1*c0^2+1/2*c0*d1*c1+1/2*c0*d1*(It+... 
     (c1*d0+c0*d1)/(2*d1*d0))+1/2*c1^2*d0+1/2*c1*d0*(It+... 
     (c1*d0+c0*d1)/(2*d1*d0))+1/2*c1*d0*c0)/(-d0+d1)^2,It); 
 
V2 = collect((d1^2*d0+d1*d0^2)/(-d0+d1)^2*It^2+(d1*d0*c1+d1^2*c0+... 
     c1*d0^2+c0*d1*d0-d1*d0*(It+(c1*d0+c0*d1)/(2*d1*d0)))/(-d0+d1)^2*It+... 
     (1/2*d1*c0^2+1/2*c0*d1*c1-1/2*c0*d1*(It+(c1*d0+c0*d1)/(2*d1*d0))+... 
     1/2*c1^2*d0-1/2*c1*d0*(It+(c1*d0+c0*d1)/(2*d1*d0))+... 
     1/2*c1*d0*c0)/(-d0+d1)^2,It); 
 
% Simplifying the resulting coefficients of the 2nd order polynomial in It 
 
V1_sq = factor((d1*d0/(-d0+d1)^2+(d1^2*d0+d1*d0^2)/(-d0+d1)^2)) 
V1_lin = factor(((1/2*c0*d1+1/2*c1*d0)/(-d0+d1)^2+(d1*d0*c1+... 
     d1^2*c0+c1*d0^2+c0*d1*d0+1/2*c0*d1+1/2*c1*d0)/(-d0+d1)^2)) 
V1_con = factor((1/2*d1*c0^2+1/2*c0*d1*c1+1/4*c0*(c0*d1+... 
     c1*d0)/d0+1/2*c1*d0*c0+1/2*c1^2*d0+1/4*c1*(c0*d1+c1*d0)/d1)/(-d0+d1)^2) 
 
V2_sq = factor((-d1*d0/(-d0+d1)^2+(d1^2*d0+d1*d0^2)/(-d0+d1)^2)) 
V2_lin = factor(((-1/2*c1*d0-1/2*c0*d1)/(-d0+d1)^2+(d1*d0*c1+d1^2*c0+... 
    c1*d0^2+c0*d1*d0-1/2*c1*d0-1/2*c0*d1)/(-d0+d1)^2)) 
V2_con = factor((1/2*d1*c0^2+1/2*c0*d1*c1-1/4*c0*(c1*d0+c0*d1)/d0+... 
    1/2*c1*d0*c0+1/2*c1^2*d0-1/4*c1*(c1*d0+c0*d1)/d1)/(-d0+d1)^2) 
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% Two affine-dependent resistors in parallel 
% Investigate consequence of linear coefficients being equal 
%  d0 = d1 = d; 
 
clear all;close all;clc; 
 
syms c0 c1 d0 d1 d It; 
 
solve('It=-c1/(2*d)+((c1/(2*d))^2+(V/d))^(1/2)-
c0/(2*d)+((c0/(2*d))^2+(V/d))^(1/2)','V'); 
 
collect(It*(c0^2*It*d+c0^2*c1+It*d*c1^2+2*It^2*d^2*c1+2*It^2*d^2*c0+... 
     c1^2*c0+3*It*d*c1*c0+It^3*d^3)/(2*It*d+c1+c0)^2,It); 
 
% The result of the above collection is a product of It and the resulting 
Req(It), 
%    which is an (n+1) order polynomial divided by a nth order polynomial, 
resulting 
%    (in some cases) in an affine Req as a function of It. 
 
% This is the numerator of the Req function, factored: 
factor(It^3*d^3+(2*d^2*c0+2*d^2*c1)*It^2+... 
     (c0^2*d+3*d*c1*c0+d*c1^2)*It+c0^2*c1+c1^2*c0); 
 
% The result, for two resistors is 
 
%        (It*d+c0)*(It*d+c1)*(It*d+c1+c0) 
%  Req = -------------------------------- 
%               (2*It*d+c1+c0)^2 
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% Two affine-dependent resistors in parallel 
% Investigate case # 3 
% c1=(a*c0), d1=(a^2*d0); 
 
clear all;close all;clc; 
 
syms c0 c1 d0 d1 d It a; 
 
solve('It=-(a*c0)/(2*(a^2*d0))+(((a*c0)/(2*(a^2*d0)))^2+(V/(a^2*d0)))^(1/2)-
c0/(2*d0)+((c0/(2*d0))^2+(V/d0))^(1/2)','V'); 
 
% Two roots result for V; their It terms will be collected below: 
 
collect(It*a*(It*a*d0+c0+c0*a)/(a+1)^2,It) 
collect(a*(c0^2+It^2*a*d0^2+It*d0*c0+It*a*d0*c0)/(a-1)^2/d0,It) 
 
% The result of the first collection is a product of It and the resulting 
Req(It), 
%    which is an affine Req as a function of It. 
% The result of the second collection above requires c0=0 for an affine-
dependent 
%    equivalent resistance, so it will be ignored. 
 
% The result, for two resistors is 
% 
%        (a*c0)    (a^2*d0) 
%  Req = ------ +  --------It  
%        (a+1)     (a+1)^2  
 
 



 

 

BIBLIOGRAPHY 
 



 

58 

 
 
 
 
 

BIBLIOGRAPHY 
 
 
 
[1] Bandler, J. W. and Chen, S. H., “Circuit Optimization: The State of the Art,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 36, no. 2, pp. 424-443, Feb. 
1998. 

[2] Chua, L. O., Introduction to Nonlinear Network Theory, New York: McGraw Hill, 1969. 

[3] Clay, R., Nonlinear Networks and Systems, New York: Wiley-Interscience, 1971. 

[4] Close, C. M. and Frederick, D. K., Modeling and Analysis of Dynamic Systems, Boston: 
Houghton Mifflin Company, 1978, pp. 290-310, 510-525. 

[5] Crowe, C. T., Roberson, J. A. and Elger, D. F., Engineering Fluid Mechanics, 7th ed., New 
York: John Wiley & Sons, Inc., 2001, pp. 583-631. 

[6] Doebelin, E. O., System Dynamics: Modeling, Analysis, Simulation, Design, New York: 
Marcel Dekker, Inc., 1998, pp. 216-234. 

[7] Dorf, R. C. and Svoboda, J. A., Introduction to Electric Circuits, 3rd ed., New York: John 
Wiley & Sons, Inc., 1996, pp. 1-68. 

[8] Hayt, W. H. and Kemmerly, J. E., Engineering Circuit Analysis, 5th ed., New York: McGraw-
Hill, Inc., 1993, pp. 1-99. 

[9] Kucera, V., “On Nonnegative Definite Solutions to Matrix Quadratic Equations,” Automatic, 
vol. 8, pp. 413-423, 1972. 

[10] Martennson, K., “On the Matrix Riccati Equation,” Information Science, vol. 3, pp. 17-49, 
1971. 

[11] Reid, W. T., Riccati Differential Equations, New York: Academic Press, 1972. 

[12] Yu, Y. and Simaan, M. A., “Performance Prediction of a Percutaneous Ventricular Assist 
System—a Nonlinear Circuit Analysis Approach,” Proceedings of the IEEE 28th Annual 
Northeast Bioengineering Conference, Philadelphia, PA, pp. 19-20, April 2002. 

[13] Yuan, S. W., Foundations of Fluid Mechanics, Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1967, pp. 143-177. 

 


	A STUDY OF CURRENT-DEPENDENT RESISTORS IN NONLINEAR CIRCUITS
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	1.0 A NONLINEAR CIRCUIT MODEL: MOTIVATIONS AND IMPLICATIONS
	Figure 1.1 Plot of linear and affine current dependent resistance.
	Figure 1.2 Plot of voltage across resistors with linear and affine current dependence.
	Figure 1.3 V as an arbitrary function of I.
	Figure 1.4 Two current-dependent resistors in parallel.
	2.0 RESISTORS WITH LINEAR CURRENT DEPENDENCE
	2.1 Linearly Dependent Resistors in Series
	Figure 2.1 The reduction of n LDRs in series. Each resistor Ri = diI.
	2.2 Voltage Divider Rule
	Figure 2.2 Example circuit containing LDRs to illustrate the voltage divider rule.
	2.3 Linearly Dependent Resistors in Parallel
	Figure 2.3 The reduction of n LDRs in parallel. Each resistor Ri = diIi
	Figure 2.4 Equivalent resistance calculated for three example LDRs.
	2.4 Current Divider Rule
	2.5 Example Problem
	Figure 2.5 Example circuit containing LDRs.
	3.0 RESISTORS WITH AFFINE CURRENT DEPENDENCE
	3.1 Affine Dependent Resistors in Series
	Figure 3.1 The reduction of n ADRs in series. Each resistor Ri = ci+diI.
	3.2 Voltage Divider Rule
	Figure 3.2 Circuit for example problem.
	3.3 Affine Dependent Resistors in Parallel
	3.3.1 General Case
	3.3.2 Case 1: Equal Affine Dependency
	Figure 3.3 Two equal ADRs in parallel (Case 1).
	Figure 3.4 Graph of Req as size of parallel (Case 1) ADR network increases. c=d=1.
	3.3.3 Case 2: Equal Linear Coefficients
	Figure 3.5 Calculated I-V curves for six example (Case 2) ADRs.
	Figure 3.6 Two parallel ADRs with equal linear coefficients (Case 2).
	Figure 3.7 I-V characteristic for Req of R0 and R1 from Figure 3.5.
	3.3.4 Case 3: Special Case Involving a Proportionality Constant a
	Figure 3.8 Calculated I-V curves for six example (Case 3) ADRs. Note a=a .
	Figure 3.9 Two parallel ADRs with coefficients related by a (Case 3).
	Figure 3.10 Finding the Req for n (Case 3) ADRs in parallel.
	3.4 Example Problem
	Figure 3.11 Example circuit containing ADRs.
	4.0 TOPICS FOR FUTURE RESEARCH AND CONCLUDING REMARKS
	4.1 Possible Topics for Future Research
	4.1.1 Mesh and Node Analysis
	Figure 4.1 Two-mesh circuit containing LDRs.
	4.1.2 Delta-Wye Transformation of Linearly Dependent Resistors
	Figure 4.2 The delta-wye transformation for LDRs.
	4.2 Concluding Remarks
	APPENDIX
	Appendix A
	BIBLIOGRAPHY
	BIBLIOGRAPHY

