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Scaffolds for engineering soft tissue would ideally be mechanically compliant and 

anisotropic while possessing inherent bioactivity and enzyme sensitivity similar to the native 

extracellular matrix.  Biodegradable elastomers, such as cytocompatible poly(ester 

urethane)ureas, represent attractive alternatives to more common biodegradable polyesters 

utilized in tissue engineering.  These materials can be processed by electrospinning into scaffolds 

suitable for in vivo placement and support of cellular adhesion and growth.  This process, where 

an electric field overcomes surface tension to generate and draw nanoscale fibers, can create 

scaffolds with extracellular matrix-like morphologies that retain mechanical strength and 

flexibility while also permitting protein incorporation into spun fibers to impart bioactivity.  

Poly(ester urethane)urea (PEUU) was blended with collagen or urinary bladder matrix 

and processed with electrospinning into nanofibrous scaffolds.  Protein incorporation into the 

matrices resulted in increased cellular adhesion and scaffold degradation rate.  PEUU scaffolds 

were fabricated with various degrees of fiber alignment to more closely mimic soft tissue 

anisotropy such as that of the native pulmonary valve.  The fabrication of mechanically 

anisotropic scaffolds is desired due to their ability to direct cell growth during tissue remodeling.   
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PEUU elastomeric matrices could serve as mechanical support scaffolds for cell adhesion 

and growth but can require long seeding and culture times to achieve high density cellular in-

growth.  Therefore, a microintegration technique was developed where the elastomeric fibers are 

spun concurrently with electrospraying of cells.  This process produced viable, high cell density 

constructs and lessened the time necessary for scaffold fabrication and seeding.   

The functionality of electrospun PEUU was evaluated for its ability to release bioactive 

basic fibroblast growth factor or the antibiotic tetracycline.  These controlled release elastomeric 

matrices might be appropriate for application in wound repair or management.  Electrospun 

PEUU was also evaluated in fabricating a functional tissue engineered blood vessel.  Small 

diameter electrospun PEUU tubular conduits were implanted as rat aorta replacements and 

demonstrated patency and tissue remodeling at 2 wks.  In addition, the cellular microintegration  

technology was extended as a means to incorporate cells into electrospun small diameter tubes in 

vitro.  These materials possessed mechanical compliance similar to native vessels and 

demonstrated great potential for tissue engineering.   
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1.0 INTRODUCTION 
 
 
 
 

1.1 TISSUE ENGINEERING 
 

 
Tissue engineering holds great promise for repair of damaged or diseased tissues and organs.  

Tissue engineering can be defined as “an interdisciplinary field that applies the principles and 

methods of engineering and the life sciences toward the development of biological substitutes to 

restore, maintain, or improve, tissue function [6].”  A goal of tissue engineering is to “restore 

function through the delivery of living elements which become integrated into the patient [6].”  

The three main approaches of this field include implantation of engineered scaffolds alone, 

injection of cells alone, or implantation of engineered scaffolds seeded and cultured with 

appropriate cells.  The theory behind the latter mode of tissue replacement (as shown in Figure 

1-1) is that the scaffold will provide a structural framework on which the seeded cells can adhere 

and proliferate while allowing for adequate nutrient exchange.  The scaffold will support the 

initial mechanical loads and stresses until the tissue is suitably developed.  The stress will later 

be transferred to support by the biological component and the scaffolding material ultimately 

degraded.  Hence, the scaffold supports the desired structure of the developing tissue and the 

seeded cells induce the biological response.   

Appropriate cells for seeding on scaffolds can be derived from primary tissue or 

continuous cell lines.  Cells can be allogenic, xenogenic (different species), or autologous.  They 

should be proliferative, easy to obtain, and not induce immunogenic responses [6].  In the ideal 
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Figure 1-1.  Tissue engineering approach 
where cells are seeded onto scaffolds which 
are then implanted in vivo.   A scaffold is 
necessary because normal cells cannot grow 
into three dimensional shapes in vitro 
without sufficient vascularization.  
Reproduced  from [4]. 

case, a patient’s own cells would be harvested, expanded and cultured in developing tissue 

replacements.  However, most adult cell types possess limited capabilities for expansion and 

regeneration.  Therefore, the isolation of human adult or embryonic stem cells is seen as a 

possible solution to this problem since they can possess the ability to be expanded without limit 

providing a potential clinical cell source.  Stem cells are also attractive to the tissue engineer 

since they can possess the ability to differentiate into the cell type of choice. 
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1.1.1 Clinical relevance 
 

 

Tissue engineering offers a potential solution to many current clinical problems.  Heart disease is 

a leading cause of death in the United States attributing to over 700,000 deaths each year which 

amounts to 30% of the total death rate in the US [7].  Cardiac cells possess a limited capability to 

regenerate such that the injured heart cannot mend itself.   Patients can benefit from heart or 

tissue transplants but the number of available organs are limited.  Even with transplants, lost 

heart function is not always recovered [8].  Instead, patients may benefit more from repair of 

specific non-functional structures such as the area of necrotic cardiac tissue, clogged or damaged 

vessels, or defective valves [8].  Therefore, a large clinical need exists for more specific 

treatment to repair the damaged heart after congestive heart failure or myocardial infarction.   

Myocardial infarction is caused by ischemia from clogged arteries resulting in areas of 

necrotic cardiac tissue that do not function properly.  This chronic disease of the arteries, 

arteriosclerosis, consists of a narrowing of the bore of arteries due to intimal hyperplasia.  The 

primary surgical intervention is coronary artery bypass surgery and approximately 600,000 

bypass surgeries are performed annually in the US alone [7].  This surgery consists of bypassing 

the injured area with a synthetic graft or autologous vessel.  Success with autologous vessel 

replacements has been promising but supply is limited and use can lead to donor site morbidities.  

Synthetic grafts such as ePTFE or Dacron (polyester) are much more readily available and have 

been successful in treating arteries larger than 6-mm in internal diameter due to a low-level 

thromboembolic risk and the inability of thrombus formation to impede the larger blood flow.   

While small beds of capillaries can be treated using molecular level therapies such as 

delivery of growth factors, treatment of smaller diameter vessels (< 6 mm inner diameter) has not 
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been successful using synthetic grafts with thrombosis rates higher than 40% after 6 months [9].  

Autologous vessel replacements mainly using saphenous vein or internal mammary artery have 

done well with patency rates generally ranging between 50 and 70%.  This success is probably 

due to the existence of endothelial cells on the inner surface of the grafts.  Thrombosis and 

neointimal hyperplasia are the most common causes of failure.    A limitation is that many 

patients do not possess suitable vessels because of disease or previous surgeries leading to a 

large clinical demand for developing a better treatment.   

Tissue engineering represents a viable treatment for cardiovascular disease and other 

tissue ailments.  While tissue engineering strategy has been widely applied for the engineering of 

both hard and soft tissues, the effort to develop soft tissues such as cardiovascular tissue is 

perhaps the most demanding and challenging application in tissue engineering.  Cardiovascular 

tissue such as myocardium and blood vessels often possess large volumes, high cell densities and 

can be very mechanically demanding having to undergo large numbers of cyclic loading with 

little deformation.   

 

1.1.2 Functional tissue engineering 

As a result of the difficulties associated with replacement of tissue that functions in a 

biomechanical role, a new sub-discipline entitled “functional tissue engineering” was formed 

[10].  This field seeks to address issues such as measurement of in vivo stresses and which 

mechanical properties are the most important to mimic in engineering functional tissue.  For 

example, is it most important for the tissue engineered construct to match only the failure 

properties of native tissue or its viscoelastic behavior as well [10]?   Is proper anisotropy 

necessary to mimic tissue function?  These are just some of the properties that must be addressed 
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in engineering functional tissue.  These problems have led to increased consideration of tissue 

biomechanics in scaffold design and culture conditions in order to engineer functional tissue 

replacements.   

For example, a critical requirement of blood vessel replacements is accurate replication 

of the original vessel compliance.  Compliance is defined as the quality of yielding to pressure 

without disruption.  Compliance mismatch is very complicated because it involves the host 

artery, anastomosis, and the graft itself [5].  Blood flow can be disturbed causing turbulence and 

low shear stress that favors platelet deposition.  These complications can lead to myointimal 

hyperplasia and graft failure.  Therefore, in developing an ideal vascular graft, it is deemed 

necessary to closely replicate the elastic properties of the vessel wall.  The function of the vessel 

wall in systole (increase circumference) and diastole (contraction) is due to a combination of 

viscous and elastic time dependent properties exhibiting viscoelasticity.  “Vessel compliance, the 

reciprocal value of Young’s elastic modulus, is defined as the ratio in diameter change divided 

by the blood pressure change given by equation (1) where D and P represent diameter and 

pressure and d and s represent diastole and systole respectively [5],”   

( )
( )

410
)(

x
PPD

DDCompliance
dsd

ds

−
−

=    (1-1). 

Table 1-1 displays data from various groups that shows compliance of biological vessels to be 

greater than that for synthetic materials [5].  Graft patency decreases with an increase in 

compliance mismatch.  
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To function in vivo, constructed vessels will most likely need a burst pressure of 

approximately 2000 mmHg, a stress-strain curve similar to the physiological curve with 

stiffening at the higher pressure region, and possess correct cell phenotypes.  In developing the 

ideal blood vessel replacement, not only must the biological requirement of an anti-

thrombogenic surface (endothelial cells produce the only anti-thrombogenic surface known) be 

adhered to but also compliance must be closely matched to that of the native vessel.   

Another facet of functional tissue engineering concerns the roles of in vitro mechanical 

stresses and strain.  Results suggest that scaffolds should be designed to more effectively convey 

mechanical signals to the cells in the construct in developing tissue in a dynamic in vitro or in 

vivo environment [11].   It was shown by Kim et al. that cyclical straining upregulated 

extracellular matrix production in smooth muscle cells leading to increased construct mechanical 

properties [12].  Also for longer culture periods under cyclic strain, a more flexible scaffold 

material than PLLA-bonded PGA fibers would be required [13].  Increased matrix production 

and mechanical strength have been found in tissue engineered cardiac patches having undergone 

mechanical stimulation [14].   More histologically relevant vessels were fabricated after dynamic 

culture under pulsatile flow compared with those cultured under non-pulsed conditions [9]. 

Table 1-1:  Patency of various graft types [5]. 
 
Graft Type Compliance (mmHg) Patency % 
Host artery 590 +/- 50 - 
Saphenous vein 440 +/- 80 75 
Umbilical vein 370 +/- 50 60 
Bovine heterograft 260 +/- 30 59 
Dacron  190 +/- 30 50 
ePTFE 160 +/- 20 40 
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Figure 1-2:  Tissue engineered blood vessel cultured under 
pulsatile flow from smooth muscle cell sheets.  Reproduced 
from [3]. 

 

 

 

 

 

 

 

 

 
 
 
The problem of low burst strength of grafts was also alleviated by the work of L’Heureux 

et. al. who produced a small diameter tissue engineered blood vessel based exclusively on 

wrapped sheets of cultured smooth muscle cells and fibroblasts [3].  The vessel constructs, 

shown in Figure 1-2, featured a well-defined, three-layered organization and numerous 

extracellular matrix proteins including elastin.  While a short-term grafting experiment in a 

canine model demonstrated only a 50% patency rate at 1 week, the burst strengths of the vessels 

(> 2000 mmHg) were comparable to those of native vessels.  A limitation was that long culture 

times (> 13 wk) under mechanical stimulation were necessary to achieve those mechanical 

properties [3].   
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1.2 SCAFFOLD MATERIALS 

 
 

Tissue scaffolding acts as a three dimensional structural support for cells during tissue 

development.  Most scaffolds for tissue engineering are designed to be biodegradable and 

biocompatible and to produce a desired biological response.  Complete scaffold resorption is 

ideal for eliminating the necessity of post-implant surgery.  A well-defined biodegradation rate is 

also ideal so that host tissue can replace the scaffold and that stress can be transferred from the 

support scaffold to the new tissue.  Scaffolds not only serve as a structural support, but can play 

an important role in facilitating cell adhesion, growth, and vascularization throughout the 

scaffold both during in vitro and in vivo tissue regeneration.   

Scaffolds may be produced from natural or synthetic materials.  Natural materials have 

the advantage of closely resembling the bioactivity of the native biological environment with the 

disadvantage of resulting in more frequent immunogenic responses compared with synthetic 

grafts.  The advantage of synthetic polymers is better control over physical properties such as 

tensile strength, breaking strain, degradation rate, porosity, morphology, and surface chemistry.  

Modification of surface properties can lead to improved cell attachment and growth on synthetic 

materials.  Among the limitations and concerns with synthetic materials are the potential toxicity 

of degradation products or remnant synthetic byproducts, material stimulation of inflammatory 

processes, and extra processing or manipulation that is necessary to impart bioactivity. 

The following text will consist of a brief review of natural materials, synthetic polyesters, 

and biodegradable polyurethanes utilized in tissue engineering scaffold fabrication with an 

emphasis on biodegradable elastomers.  Biodegradable elastomers represent more appropriate 

scaffolding materials since they offer attractive mechanical properties for many soft-tissue 
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engineering applications where non-flexible polyesters are currently utilized.  As expected, 

several researchers are aggressively pursuing the development of novel biodegradable elastomers 

for use in biomedical applications [10, 15-21].  A class of novel biodegradable poly(ester 

urethane)ureas has been developed in our laboratory since these thermoplastic elastomers allow 

for great freedom in functionality through the incorporation of various hard and soft segments 

[15, 16].   

 
 

1.2.1  Extracellular matrix based materials 
 
 

A major limitation of synthetic biomaterials is the difficulty to mimic the resident bioactivity of 

the native extracellular matrix (ECM).  ECM is an acellular component of tissue and organs that 

consists of structural and functional proteins and carbohydrates secreted by native cells.  ECM 

provides a framework support for cells with attachment sites and cell signaling factors.  The 

bioactive properties of ECM make it attractive for use as tissue scaffolding.  The major ECM 

proteins utilized in soft tissue engineering include a load bearing structural constituent, collagen, 

and an elastic structural component, elastin.  These will be reviewed in more detail along with 

decellularized ECM.    

Proteins degrade by non-specific hydrolysis of the peptide bond, by thermal denaturation, 

and most importantly in vivo, through enzymatic action. Enzymatic degradation can be extremely 

specific, with a high dependence on the flanking peptide sequence and local protein 

conformation, or it can be more promiscuous with a large array of cleavage sites on numerous 

proteins that can interact with the active region of the enzyme.  The enzymatic activity that a 

peptide-based polymer will face in vivo can vary greatly depending upon the tissue into which it 

is placed and the inflammatory status following implantation.  In an environment with a high 
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concentration of activated phagocytes, the enzymatic degradation processes may be greatly 

accelerated.  The free radicals and low pH that result from active inflammatory processes can 

also accelerate local degradation of peptide based polymers. 

 

1.2.1.1  Collagen   

Collagen is the primary component of the ECM and amounts to approximately 30% of 

the body’s protein content.  It is located in bone, skin, tendon, and most tissue and organs.  To 

date, at least 19 types of collagen have been discovered.  Types I, II, III, and V possess rod-like 

molecules of 300 kDa with a unique triple helix structure consisting of three polypeptides 

wrapped around one another that further associate into fibrils.  Type I collagen is by far the most 

common type and can be found in bone, skin, cornea, vascular tissue, cartilage and tendon.  

Collagen’s unique tight left-handed α-helical structure primarily results from hydrogen bonding 

between glycine and other amino acid residues [22].  Fibrils of collagen occur when collagen 

molecules are aligned and the N-terminus and C-terminus of adjacent strands covalently 

crosslink.  The fibril packing results in a 67-nm banding pattern due to end-to-end separations 

[23]. 

 Collagen is a very useful ECM material for biomaterials applications due to its many 

inherent advantages.  Since it is present in large quantities it can be readily isolated from animal 

sources.  In general, collagen exhibits good biocompatibility and low antigenicity since its amino 

acid structure is conserved among animal species.  Structurally intact collagen is a primary load 

bearing protein and hence possesses a large tensile strength at low elongations.  Collagen also 

has been shown to be beneficial for cell adhesion, wound healing and can act as a haemostatic 

agent by promoting blood coagulation [24, 25].  Relative to other proteins, collagen is more 
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stable due to its tight triple helical structure.  Yet, collagen is still enzyme degradable particularly 

to collagenases.   

 Collagen can be dissolved in dilute acids and processed by various methods into sponges 

and gels for tissue engineering.  A disadvantage of processed collagen is that significant 

mechanical strength and stability are lost.  Porous collagen sponges are typically mechanically 

weak and degrade relatively fast in vitro or in vivo [26].  Therefore, efforts to stabilize the 

collagen sponge have utilized chemical crosslinkers such as glutaraldehyde, carbodiimide, 

amines, and diisocyanates [26].  Physical stabilization methods include UV irradiation and 

thermal methods.  While these methods may increase the material’s resistance to degradation, 

they can also increase the toxicity due to the presence of residual crosslinkers and also mask 

some of the original collagen structure that is attractive for cell adhesion, cell infiltration, and 

wound healing.   

    Collagen scaffolds have found various applications for drug delivery and tissue 

engineering applications.  Some tissue types investigated include cardiovascular, skin, and 

nervous tissue.  For example, L’Heurex et al.  investigated the use of collagen to construct a 

tissue engineered blood vessel [27].  Others have investigated its use in fabrication of a 

myocardium patch for replacement of necrotic myocardium [28, 29].   

 

1.2.1.2 Elastin 

Proteins can perform many roles and functions while exhibiting diverse mechanical 

properties.  The mechanical properties of elastic proteins include high breaking strains, low 

stiffness, and high resilience defined as the ability of a material to quickly return to its original 

shape after being deformed.  Examples of some biopolymers that exhibit elastic properties 
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include silk, resilin, and elastin [30].  Spiders spin silk for both movement and trapping their 

prey.  Resilin exists in specific areas of insects such as the junctions between the wings and the 

body.  The presence of the protein elastin in ECM of human tissues such as blood vessels, lungs, 

skin, sphincter, ligaments and tendons gives these tissues the ability to recover after cyclic and 

non-cyclic deformation.   

Elastin is an insoluble protein composed of a highly crosslinked network of amino acids. 

This protein is secreted as 70 kD single peptide chains termed tropoelastin which assemble with 

other microfibrillar components to form the elastic fibers of the ECM.  This protein consists of 

approximately 750 residues with glycine, alanine, valine, proline and lysine being common 

amino acids present.  Tropoelastin is for the most part separated into two phases.  One phase is 

very hydrophobic and contains high levels of glycine, valine, proline, and alanine frequently 

occurring in the sequences GVGVP, GGVP, and GVGVAP.  The other phase of tropoelastin is 

hydrophilic and rich in Lysine and Alanine frequently occurring as AAKAAKAA.  In particular, 

the lysine residues in elastin are involved in highly interconnected networks of 4-way desmosine 

or isodesmosine crosslinks formed by the enzyme lysyl oxidase.  These crosslinks permit strain 

recovery in the protein.  Elastin from bovine ligament exhibits a modulus of 1.1 MPa, a tensile 

strength of 2 MPa, elongation at break of 150%, and a resilience of 90% [30]. 

Since elastin is composed of such a highly crosslinked network, it is difficult to solubilize 

for processing and application. Therefore, a number of research groups have synthesized elastin-

like polypeptides [30-36].  The polypeptide poly(OrnGlyGlyOrnGly) was synthesized by 

replacing the valine residues in a typical sequence of elastin, -VGGVG-, to impart amine 

functionality into the protein backbone for cross-linking with glutaraldehyde [31].  The resulting 

polypeptides possessed similar structural morphologies to elastin. 
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An extensive study of the biocompatibility and potential of elastin-mimetic peptides with 

the repeating sequence, (GVGVP)x, to alleviate stress urinary incontinence was conducted by 

Urry et al. [36].  Panitch et al. created an elastin-like peptide to support vascular endothelial cell 

adhesion for use in the repair or replacement of vascular tissue.  This polymer was based on a 

repeating peptide sequence (GVPGI)x, related to mammalian elastin, and a cell-binding domain 

derived from fibronectin [35].  Plates coated with polymer containing the sequence, 

MG[LDCS5(GVPGI)20]5LE, where CS5 designates the sequence, -

GEEIQIGHIPREDVDYHLYP- , were found to induce the attachment and spreading of plated 

human umbilical vein endothelial cells at a level similar to control fibronectin coated plates.  

Endothelial cell adhesion was attributed to the presence of the adhesive sequence REDV. In a 

subsequent study, the polymer design was extended by incorporating crosslinkable lysine 

residues near the termini of the previous protein to yield the sequence 

MMASMTGGQQMGRKTMG[LDCS5G(VPGIG)20VP]xLEKAAKLE , where x is 5, 3, or 1 

[37].  The placement of the crosslinking residues near the termini of the polymer chains enabled 

control of the chain length between crosslinks and crosslink density.  After glutaraldehyde 

crosslinking , the mechanical properties of these protein films were similar to those of native 

elastin with an elongation at break in the range of values reported by Abbott and Cambria, 100-

200% [37, 38]. 

A recombinant 90 kDa protein containing the repeating sequence, (VPGVG)4(VPGKG), 

in E.coli was produced [32].  This protein was processed by electrospinning into nanoscale fibers 

that mimic the size and shape of native elastin [39].  Subsequently, the elastin-mimetic protein, 

(VPGVG)4(VPGKG)39, was modified by incorporating methacrylate groups onto the chain ends 

[40].  These proteins were crosslinked by photoirradiation and fiber mats were found to have a 
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fiber diameter range of 300-1500 nm and an average pore size of 78 μm.  Hydration substantially 

increased the elongation at break to 105 ± 8% for crosslinked samples which is comparable to 

the value for native elastin [40]. 

 

1.2.1.3  Decellularized ECM matrices 

As the ECM is a dynamic tissue composed of a myriad of structural and functional 

proteins, glycoproteins, and proteoglycans, present in a complex three dimensional structure, 

many believe it is ideal for scaffolding to mimic these properties as much as possible.  Therefore, 

relatively unmodified and acellular ECM has been isolated and applied as tissue engineering 

scaffolding.  These matrices are isolated and decellularized and are essentially unchanged from 

native ECM.  In contrast to processed and crosslinked collagen and other ECM materials, these 

decellularized ECM matrices promote host responses that exhibit rapid tissue infiltration and 

remodeling for tissue repair and wound healing.    

 The primary feature of decellularized ECM that differentiates it from other ECM based 

materials is the natural diversity and morphology of bioactive and structural proteins present.  

Structural proteins include fibronectin, elastin, and collagen.  In addition, growth factors found in 

these materials include vascular endothelial growth factor (VEGF), basic fibroblast growth factor 

(bFGF), transforming growth factor (TGF-β), hepatocyte growth factor (HGF), and plate derived 

growth factor (PDGF) [41].  These growth factors can have profound impacts on cell growth and 

behavior.  For example, VEGF is a potent initiator of angiogenesis.  While these factors can be 

isolated and loaded into natural or synthetic matrices, the relative concentrations and ratios 

necessary to mimic the in vivo structure is unknown.  Decellularized ECM based materials have 

these proteins and factors already present in their in vivo states and quantities. 
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 Sources for decellularized ECM can include skin dermis, small intestinal submucosa 

(SIS), urinary bladder submucosa (UBS), and liver [42].  These materials are isolated and not 

modified except for decellularization and sterilization.   Decellularization usually involves some 

type of chemical or enzymatic procedures that minimize structural modification.   

These matrices are very attractive for tissue engineering and have been studied in various 

applications.  For example, porcine derived ECM has been studied for reconstruction of the 

urinary tract, dura matter, vascular tissue, and full thickness skin wounds [41].  The characteristic 

in vivo response to all of these materials typically involves intense cellular in-growth of 

leukocytes and mononuclear cells.  After a few days up to two weeks the matrix becomes 

vascularized and degraded.  At two weeks, the presence of parachymal cells such as smooth 

muscle cells, fibroblasts, skeletal muscle cells, and epithelial cells have been observed.  There is 

also typically an absence of scar formation after wound healing with these materials [41].  

ECM based materials as well as other materials that possess a biological basis, hold 

considerable potential for use as biomaterials. The chemical similarities or homology to native 

tissue components endow these materials with bioactivity that can enhance their overall 

performance.  Enzymatic sensitivity allows these materials to be remodeled by natural 

mechanisms with a temporal and spatial variance dictated by the local tissue environment.  These 

materials may also possess the capacity for interacting with cellular and molecular components 

of the host environment to facilitate integration.  The binding of growth factors and other 

extracellular matrix components as well as the provision of cell-specific adhesive ligands 

exemplify this activity. Their degradation products would not appear to present any obvious 

toxicity concerns, although immunogenicity and unwanted bioactivity may be present and prove 

problematic.  For example, degradation that is too susceptible to the enzymatic activity 
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associated with inflammatory processes may result in a very rapid mass loss and loss of 

mechanical properties.  If chemical crosslinking is employed, toxicity concerns may be present 

due to the presence of residual crosslinker.  Calcification often results in vivo with a variety of 

natural materials.  In addition, protein-based materials present inherent challenges in processing 

due to their thermal lability and susceptibility to denaturation in organic solvents. Despite these 

potential disadvantages, there exists a wealth of possibilities in mimicking nature’s materials. 

 

1.2.2 Biodegradable polyesters 
 
 

To date, biodegradable polyesters and hydrogels have been the most commonly studied synthetic 

materials in engineering scaffolds.  Then again, these polyesters such as polyglycolide (PGA), 

polylactide (PLA), and their copolymers (PLGA), are relatively stiff, non-elastomeric polymers 

and are not ideally suited for engineering of soft flexible tissues operating under a mechanically 

demanding environment such as in cardiovascular tissue.  Furthermore, hydrogels most often do 

not possess sufficient mechanical strength.  Therefore, to better mimic the mechanical behavior 

of compliant soft tissues, synthetic biodegradable polyester based elastomers have been 

developed.  These materials are designed to undergo multiple deformations during in vitro and in 

vivo tissue development.  The following sections will review the various synthetic polyester 

based biodegradable elastomers and scaffold processing methods as applied for soft tissue 

engineering.  A sample list of these biodegradable polymers is summarized in Table 1-2 along 

with their representative properties and soft tissue applications.  Chemical structures of the 

repeating units of these polymers are displayed in Figure 1-3.       
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Figure 1-3.  Sample chemical structures of biodegradable polyesters for tissue engineering. 
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Table 1-2.  Physical properties of some soft biodegradable polymers. 
 

    Tensile Modulus Ultimate In Vitro Degradation   

Polymer Tg / °C 
Strength 
(MPa) (MPa) 

Elongation 
(%) % mass loss (time) References 

PLGA 45-55 41.4-55.2 1400-1800 3-10 varies [43] 
PCL -64 20.7-34.5 0.21-.34 300-500 varies [43] 

PGCL -19.3 0.6* - 250* 50% (8wks) [44] 

PLCL -6.3 0.8* - 210* 
1.7% (8wks), 10.7% 

in-vivo (8wks) [45, 46] 

PTMC -17 12 6 830 
negligible change in 2 

years [47] 

P(TMC-CL) -62 40 252 906 
negligible change in 1 

year [48] 
P(TMC-LA) 17 10 16 570 100% (1 year) [47, 48] 

PGS - 0.5 0.282 267 
17% (8.5 wks), 100% 

in-vivo (8.5wks) [49, 50] 
PU (PCL, BDI, 

putrescine) -53.2 29 78 660 10% (8 wks) [15] 
PU (PCL, BDI, lysine 

ethyl ester) -54.3 13 38 841 50% (8wks) [15] 
PU (L-lactide / PCL, 

HDI, BDO) -45 to 53 .09 to 47 1.1-2100 3.7-1000 5% to 80% (10 wks) [17] 
PU (PCL-PEG, HDI, 

BDO) 
-115.7 to -

101.5 4-48.6 7.3-58.8 120-866 1.6% to 76% (1 year) [51] 

* denotes porous scaffold properties    
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1.2.2.1  Polyglycolide, polylactide, poly(ε-caprolactone) and their copolymers 

The most common synthetic materials studied to date in tissue engineering applications 

are aliphatic polyesters such as PGA, PLA, and their copolymers, PLGA.  High molecular 

weight polymers are typically synthesized by ring opening of their respective lactones.  These 

aliphatic esters degrade by hydrolysis of the ester moieties.  These materials can be highly 

crystalline and stiff.  PLGA has been extensively studied in scaffolds for engineering of most 

tissue types such as cardiovascular, esophagus, trachea, neural and musculoskeletal tissue such 

as bone, cartilage, and meniscus [43, 52].  The degradation rate of PLGA can be modified by 

varying the ratio of PLA and PGA in the polymer.  A disadvantage to the use of PGA and PLA 

scaffolds is the generation of acidic degradation products leading to inflammatory responses in 

vivo.   While PLGA is a softer material with tensile strengths and breaking strains appropriate for 

soft tissue engineering, the non-elastomeric character of PLGA does not allow for sufficient 

structure retention after mechanical stimulation during in vitro tissue development [13].    

Poly(ε-caprolactone) (PCL) is an aliphatic polyester synthesized by ring opening 

polymerization of its respective lactone, ε-caprolactone.  PCL is semicrystalline and exhibits a 

low Tg of -64°C and low Tm of 57°C so that it is soft at room temperature [43].  PCL exhibits a 

relatively slow degradation rate compared with PLGA on the order of months to years due to the 

larger number of methylene groups present.  PCL has been copolymerized with PGA or PLA to 

result in softer materials.  In some cases, microphase separated elastomeric poly(glycolide-co-ε-

caprolactone) (PGCL) or poly(lactide-co-ε-caprolactone) (PLCL) have been synthesized by 

random copolymerization [53].  These materials consist of crystalline hard phases and 

amorphous soft phases.  The elastomeric behavior is the result of physical crosslinks between the 

crystalline hard phases and flexibility from the soft phases.   



 

 

 

19

 The mechanical flexibility of PCL copolymers has led some groups to investigate these 

materials for soft tissue engineering applications.  For example, high molecular weight 

amorphous PGCL (approximately 50:50) was synthesized for blood vessel and bladder tissue 

engineering [44].  This polymer possessed a Tg of 19.3°C and exhibited rubber-like mechanical 

properties with scaffolds exhibiting elongations exceeding 250% and recoveries from 

deformation of more than 98%.  This material degraded in vitro for a mass loss of 50% at 6 

weeks [44].   

A high molecular weight, elastomeric PLCL (50:50) was synthesized by Jeong et al. for 

vascular applications [54].  This material possessed a Tg of -6.3°C and was flexible with 

elongations exceeding 200% and high recovery after deformation [54].  Degradation of this 

material was relatively slow with a mass loss of 1.7% in vitro and 10.7% in vivo at 8 weeks [45].   

PLCL has also been seeded with vascular smooth muscle cells (SMCs) and cultured under 

pulsatile perfusion to result in aligned cells with a 2.5-fold upregulation of smooth muscle α-

actin compared with static controls [55].  PLCL was surface modified with fibronectin and 

collagen and studied for esophageal tissue engineering as well [46].   

 

1.2.2.2  Poly(trimethylene carbonate) copolymers 

High molecular weight poly(trimethylene carbonate) (PTMC) is an amorphous polymer 

that possesses high tensile strength and flexibility [48].  However, the very slow in vitro and in 

vivo degradation rates of PTMC have led to the necessity of copolymerization of with PLA or 

PCL [48, 56].  Random copolymerization of trimethylene carbonate and ε-caprolactone with a ε-

caprolactone content higher than 70% resulted in elastomeric materials.   For example, 

poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) (10:90) exhibited a tensile 
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strength of 40 MPa and an ultimate elongation of 906%.  Yet, this material also suffered from 

relatively slow degradation with negligible in vitro mass loss up to 1 year [48].  P(TMC-CL) has 

been studied for fabrication of porous nerve guide conduits, with Schwann cells adhering and 

proliferating on the polymer in vitro [48, 57]. 

Poly(trimethylene carbonate-co-lactide) (P(TMC-LA)) (50:50) copolymers were also 

synthesized and found to exhibit elastomeric mechanical properties with a tensile strength of 10 

MPa and an ultimate elongation of 570% [48].  This material exhibited a faster degradation rate 

with greater than 50% mass loss at 6 months and 100% at 12 months in vitro.  These faster 

degradation rates were perhaps due to the greater hydrophilicity of the lactide segment compared 

with the more hydrophobic caprolactone.  P(TMC-LA) has been fabricated into porous scaffolds 

for cardiomyocyte culture in engineering of myocardium [47]. 

 

1.2.2.3  Poly(glycerol sebacate) 

Polycondensation of the non toxic monomers, glycerol and sebacic acid, with a 1:1 molar 

ratio forms a transparent, lightly crosslinked elastomer termed poly(glycerol sebacate) (PGS) 

[50].  Glycerol is a building block for lipids and sebacic acid is a metabolic intermediate.  

Covalent crosslinks and hydrogen bonding between hydroxyl groups present on the polymer 

chain contribute to the elastomeric mechanical behavior of PGS.  Tensile properties of PGS 

include a tensile strength of 0.5 MPa and an ultimate elongation of 267%.  PGS is relatively 

hydrophilic due to its hydroxyl groups with a water-in-air contact angle of 32.0°.  PGS is 

believed to degrade principally by surface erosion as evidenced by an approximately linear 

decrease in mechanical properties with degradation.  PGS degraded in vitro to result in a 17% 

mass loss at 8.5 weeks and completely degraded subcutaneously in vivo during this time [50].  
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Before crosslinking, PGS can be processed in prepolymer form into porous scaffolds for soft 

tissue engineering.  In vitro and in vivo cytocompatibility characterization of PGS has exhibited 

a good biocompatibility with support of cell growth such as endothelial cells, smooth muscle 

cells, cardiomyocytes, Schwann cells, and hepatocytes for applications in cardiovascular, neural, 

and liver tissue engineering [49].   

 

1.2.3 Biodegradable polyurethanes 

 

Polyurethanes are the most economically important elastomers for a variety of commercial 

applications.  Therefore it is not surprising that this class of polymers has been the focus of many 

groups seeking to develop biodegradable elastomers for medical applications. Polyurethane and 

poly(urethane urea) thermoplastic elastomers derive their attractive mechanical properties from 

microphase separation between hard and soft segments.  Selection of hard and soft segments and 

the complexity possible within these segments offers a multitude of options in achieving material 

design objectives. Although urethane and urea linkages are susceptible to degradation in vivo, 

efforts to make biodegradable polyurethanes have incorporated more labile bonds into the 

polymer backbone, usually by introducing polyester segments.  

Polyurethanes are commonly synthesized by one of two methods. The first involves the 

reaction of bischloroformates with diamines. The second and more important method is the 

reaction of diisocyanates with dihydroxy compounds which has the advantage of no undesired 

byproducts.  Diisocyanates can also react with diamines to form polyureas, with carboxylic acids 

to form polyamides and with water to form polyurea foam. Side reactions in polyurethane 

synthesis can occur when unreacted isocyanate groups react with the growing urethane or urea 
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Figure 1-4.  Two step reaction to form polyurethane or polyurethane ureas [1]. 

chains to yield allophanate and biuret groups respectively.  Biodegradable polyurethane 

elastomers can also consist of a network of chemically crosslinked chains.  These elastomers can 

be synthesized by using monomers that are trifunctional or of higher functionalities compared 

with the difunctional monomers used in synthesizing linear (thermoplastic) polyurethanes [58-

60].  Covalently crosslinked polyurethanes have the disadvantage of not being amenable to 

processing by thermal or solvent based techniques.   

Polyurethane elastomers are usually constructed from long chain polyester or polyether 

diols and diisocyanates, with short chain diols or diamines utilized as chain extenders. The 

reaction is commonly carried out in two steps with the initial formation of a prepolymer of the 

polyester and diisocyanate that is subsequently chain extended to a high molecular weight 

(Figure 1-4).  Alternatively, the reaction can occur in one step (one-shot polymerization) when 

the monomers are mixed together at once. The longer chain polyester or polyether in the 

resulting polyurethane is referred to as the soft segment and the diisocyanate and chain extender 
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all of are referred to as the hard segment. Common polyester soft segments used in 

biodegradable polyurethanes include PCL [15, 21, 61], PLA [17], PGA [62], PEG [62], PEG-

PCL copolymers [16, 63], PEG-PLA copolymers [64], and poly(hydroxybutyrate) (PHB) [62, 

65].  Common diisocyanates used in constructing  biodegradable polyurethanes are 1,6-

hexamethylene diisocyanate (HDI) [51, 63], 1,4-butanediisocyanate (BDI) [15, 21, 61, 66], 

lysine diisocyanate (LDI) [67], isophorone diisocyanate, and 2,2,4-trimethyl-1,6-diisocyanate 

(TMDI) [68].  The use of aliphatic diisocyanates facilitates degradation and avoids use of 

potentially carcinogenic aromatic diisocyanates such as methylenediphenyl diisocyanate (MDI) 

and toluene diisocyanate (TDI), commonly employed industrial  
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diisocyanates.  There exists speculation that MDI and TDI degradation products, 4,4’-methylene 

aniline (MDA) and toluene diamine (TDA) are carcinogenic [69-71].  In contrast, LDI and BDI 

are attractive for tissue engineering applications since their primary degradation products, 

ethanol and L-lysine, and putrescine respectively, can be considered non-toxic.  The chemical 

structures of these diisocyanates are shown in Figure 1-5. 

The chemical and physical properties of polyurethanes can be varied by the choice of 

hard and soft segments. Table 1-3 summarizes some different biodegradable polyurethanes that 

have been reported in the literature based on their soft and hard segment composition. The 

majority of these polymers contain PCL in the soft segment.  Gorna et al. bulk polymerized PCL 

with aliphatic HDI and 1,4-butanediol (BDO) as a chain extender [51]. Other studies have 

introduced PEG along with PCL into the soft segment with or without BDO chain extenders [63, 

72].  High molecular weight polyurethanes based on PCL soft segments with BDI were chain 

extended with BDO, BDO-b-BDI-b-BDO blocks, or BDI-b-BDO-b-BDI-b-BDO-b-BDI blocks 

[21, 61].  The larger chain extenders were used to prevent transesterification reactions from 

creating a large size distribution of hard segments.  de Groot et al. synthesized a series of linear 

polyurethane ureas based on a PCL soft segment and hard segments consisting of either LDI, 

HDI or BDI that were chain extended with putrescine [73]. Similar poly(ester-urethane ureas) 

were synthesized by Guan et al. using putrescine and lysine ethyl ester as chain extenders [15].  
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Table 1-3.  Composition and physical properties of linear biodegradable polyurethanes and polyurethane ureas. 
Soft Segment   Hard Segment Composition soft segment Tensile Modulus Ultimate   

Composition Diisocyanate Chain Extender or Other Tg / C 
Strength, 

MPa (MPa) 
Elongation 

(%) Reference 

PCL* HDI BDO -54.4 to -40.6 12-63 13-107 460-760 [51] 
PCL LDI putrescine -45 17 40 800 [67] 
PCL BDI putrescine -45 29 52 1042 [67] 
PCL BDI BDO -54 23.1 23.2 843 [21] 
PCL BDI BDO.BDI.BDO -54 44 70 560 [61] 
PCL BDI BDI.BDO.BDI.BDO.BDI -60.4 35 105 650 [61] 

(50/50) L-lactide / 
PCL BDI BDO.BDI.BDO -5 45 60 560 [73] 

PCL* BDI putrescine -53.2 to -36.5 25-29 54-78 660-686 [15] 
PCL* BDI lysine ethyl ester -54.3 to -39.7 9.2-13 14-38 841-895 [15] 
PCL* LDI p-alanine based diamine* -51.9 to -6.2 12.5-30.8 6.6-81.9 618-676 [20] 

PCL-PEG* HDI BDO 
-115.7 to -

101.5 4-48.6 7.3-58.8 120-866 [63] 
PCL, PGA, PEG* TMDI PHB-co-PHV* -44 to 2 2.6-15.9 50-500 50-1250 [62] 

PCL*  TMDI  poly(p-dioxanone)diol* -51 to -39 17-25 34-90 540-1100 [68] 
* Indicates series of polymers synthesized with different feed concentrations or monomer molecular weights.  

  
 

 

Bioerodible polyurethanes have also been synthesized with L-lactide in the soft segment.   

Kylma and Seppala investigated co-monomers of lactic acid  and caprolactone in poly(ester-

urethanes) based on HDI [17]. Condensation copolymerization of lactide and ε-caprolactone at 

different feed ratios took place with stannous octoate as a catalyst.  High molecular weight 

polyurethanes were produced by chain extending with HDI. Polyurethanes based on a 50/50 

poly(L-lactide-co-ε-caprolactone) prepolymer with BDI were synthesized [73]. Because the 

lactide bond is susceptible to aminolysis, chain extension was not possible with putrescine.  

Furthermore, the use of BDO as a chain extender resulted in transesterification leading to poor 

mechanical properties. For these reasons, an isocyanate terminated chain extender, BDO-b-BDI-

b-BDO, was used.   
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Several research groups have constructed biodegradable polyurethanes and polyurethane 

ureas by introducing biodegradable functionalities into the hard segment as well as the soft 

segment to facilitate hydrolytic degradation. Poly(ester-urethanes) consisting of crystallizable 

poly[(3-R-hydroxybutyrate)-co-(3-R-hydroxyvalerate)] (PHB-co-PHV) hard segments and 

amorphous segments from ε-caprolactone, diglycolide and ethylene glycol homopolymers or 

copolymers have been reported [62, 65].   Elastomeric polyurethanes have also been synthesized 

from poly(ε-caprolactone)diols and poly(p-dioxanone)diols (PDX) reacted with TMDI [62].  

Skarja and Woodhouse synthesized novel polyurethane ureas with either PCL or PEG soft 

segments, HDI or LDI, and with an amino-acid based chain extender based on L-phenylalanine 

[18, 19].   

The soft segments impart polyurethanes with softness, flexibility and low temperature 

properties while the hard segments reinforce or strengthen the soft segment to increase the 

hardness, modulus, tear strength, and high temperature properties of polyurethanes.  The hard 

segments possess a high affinity for hydrogen bonding due to the large number of polar groups 

present. Urea groups provide even more opportunities for hydrogen bonding relative to urethane 

groups. The combination of crystallinity and hydrogen bonding in the phase separation of 

polyurethanes ties together the polymer chains in physical crosslinks. These physical crosslinks 

result in a network of polymer chains that display rubber-like elasticity.  

Similar to multi-phase polyesters, the factors that affect mechanical properties of 

biodegradable polyurethanes include hard and soft segment composition, degree of 

crystallization of the hard segment and amount of microphase separation, and the molecular 

weight of the polymer. A summary of mechanical properties for different monomer compositions 

of biodegradable polyurethanes and polyurethane ureas is provided in Table 1-3.  Gorna et al. 
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showed that the mechanical properties of polyurethanes with similar molecular weights were 

dependent on the hard segment content [51].  Tensile strength and modulus increased with 

increasing hard segment molecular weight or with shorter soft segments, while the breaking 

strain decreased.  In an extensive study, the mechanical properties of polyurethanes based on L-

lactide and ε-caprolactone copolymers were found to be highly dependent on the initial feed ratio 

of the monomers.  Poly(ester-urethanes) containing a high ratio of L-lactide and ε-caprolactone 

were found to be rigid with tensile modulus of 1700-2100 MPa, tensile strengths of 36-47 MPa, 

and breaking strains of 4-7% [17]. Polymers with low L-lactide to ε-caprolactone ratios were 

found to be highly elastomeric with a maximum tensile strength of 9 MPa and breaking strain of 

greater than 1000%.  These properties were found to be direct functions of the glass transition 

temperatures of the polymers. When the glass transition temperatures were above room 

temperature the soft segment was amorphous and mostly immobile which would contribute to 

higher tensile strengths and lower elongation [17].      

Polyurethane biodegradation products and rates can be influenced by the choice of the 

soft and hard segment.  Degradation is influenced by factors such as crystallinity and polymer 

molecular weight.  Degradation of the common soft segment PCL usually occurs first by 

hydrolytic chain scission and then by bulk mass loss of subsequently lower chain lengths [74].   

PCL alone has demonstrated some long degradation times that can extend to the order of years 

due to its hydrophobicity and tendency to crystallize at higher molecular weights.  Since most 

studies are conducted over limited time periods, the time scales for complete resorption of most 

PCL based degradable polyurethanes both in vitro and in vivo are mostly unknown.   

Degradation of PCL based polyurethanes by Gorna et al. exhibited slow degradation times with a 

1-2% mass loss at 48 weeks and a 1.1-3.8% mass loss at 76 weeks [63].  However, poly(ester 
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ether urethanes) composed of PCL-PEG diols exhibited levels of weight loss from 1.6-76% at 48 

weeks and 1.6-96% at 76 weeks.  The weight loss was found to increase with higher levels of the 

more hydrophilic PEG [63].   A similar in vitro degradation trend was observed for amino acid 

chain extended, PCL based polymers which exhibited little mass loss after 56 days compared 

with the PEG based polymers that exhibited high mass loss in this period [75].  

The in vitro degradation of L-lactide / ε-caprolactone copolymer based polyurethanes 

was found to be highly dependent on the comonomer ratio.  Polymers synthesized from high 

ratios of L-lactide to ε-caprolactone exhibited mass losses of more than 80% after 50 days 

compared with higher ε-caprolactone content polymers exhibiting less than 10 % weight losses 

after 50 days [17].  These degradation weights were related to the hydrophilicity of the 

monomers with lactic acid being more hydrophilic than PCL.  

A very thorough investigation of the hydrolytic degradation of copoly(ester urethane)s 

with PHB-co-PHB hard blocks synthesized by Lendlein et al. has shown the degradation rate to 

be dependent on the amount and distribution of the glycolate ester bonds in the soft segments of 

the urethane [74].  Here, the polymer degradation began hydrolytically, decreasing the molecular 

weight and lowering the breaking strain.  Next, weight loss decreased the sample size leaving the 

poly(PHB-PHV) hard segment as the principal remaining material.  Due to the nature of the 

amorphous segment and crystalline segment of physically cross-linked polyurethanes, it is 

common for the soft segment to degrade at a much faster rate than the hard segment resulting in 

a non-linear degradation rate.  However, a linear weight loss in vitro was demonstrated with a 

polyurethane based on PCL/PDX due to the high crystallinity of the polyesters [68].  The use of 

aliphatic diisocyanates in biodegradable polyurethanes facilitates degradation and avoids the 

potentially carcinogenic aromatic diisocyanates, MDI and TDI. The use of LDI and BDI as hard 
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segments is of interest because of their putative non-toxic degradation products, ethanol and L-

lysine, and putrescine respectively. 

Physical crosslinking is reversible with heat treatment or solvation, allowing 

polyurethanes to be processed by such methods as solvent casting, extrusion, and injection. 

Polyurethanes or polyurethane ureas consisting of physical crosslinks are referred to as linear or 

thermoplastic elastomers.   Examples of some techniques to process polymers into porous 

scaffolds for cellular in-growth in tissue engineering applications include particulate leaching 

and phase separation.  The BDO and BDI-b-BDO-b-BDI-b-BDO-b-BDI chain extended 

polyurethanes by Spaans et al. were processed into porous scaffolds by a combination of salt 

leaching and freeze drying in 1,4-dioxane solvent [21].  The scaffolds possessed interconnected 

pores ranging in size from 150-300 μm.  This material showed a high compression modulus and 

was thought suitable for application as a meniscal prosthesis.  Lendlein and Langer designed and 

characterized shape-memory thermoplastic polyurethanes to be used in minimally invasive 

surgical procedures [68].  The elastic polymers were melted and extruded into monofilaments to 

be used as sutures.  The filaments were loosely sutured in dead rats and heated to 41°C.   With 

the increase in temperature came shrinkage of the polymer resulting in a tighter wound closure. 

Different compositions of polymers prepared from poly[glycolide-co-(ε-caprolactone)]-

diol and crystalline poly[(R)-3-hydroxybutric acid-co-(R)-3-hydroxyvaleric acid]-diol with 

TMDI were melt extruded into thin hollow tubes for tissue engineering of nerve guidance 

channels [76].  Nerve guidance channels are polymers tubes onto which severed nerve endings 

can be grafted.  Borkenhagen et al. studied nerve regeneration in rats at 4, 12, and 24 weeks.  23 

out of 26 implants contained regenerated tissue cables composed of myelinated axons and 

Schwann cells within the lumen.  
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The number of research reports published in the area of biodegradable elastomers is 

rapidly rising as appreciation for the role of mechanical properties in tissue-biomaterial 

interactions grows. The negative effects of mechanical property mismatch between an implant 

(e.g. a stiff vascular graft) and the surrounding tissue have been documented and studied for 

some time.  The importance of mechanical training in the appropriate development of tissue 

engineered constructs is more recently being recognized in several systems [10-13].  To create 

new biodegradable elastomeric materials that meet the needs for a variety of clinical 

applications, researchers are working toward solutions from  naturally occurring materials or 

elastomers based on synthetic polymers widely utilized for non-medical applications. The 

synthetic approach advances as biomaterials engineers work from an increasingly assorted array 

of biocompatible starting materials and incorporate specific bioactivity.  There is a trend towards 

convergence whereby materials would be created that possessed the processing and design 

flexibility of synthetic approaches and the inherent bioactivity and biocompatibility of natural 

materials. 

 
 
 
 

1.3 SCAFFOLD PROCESSING 
 

 
Synthetic elastomeric scaffolds utilized by the soft tissue engineer should ideally be designed to 

mimic the structure and function of the natural extracellular matrix.  This structure is believed to 

be appropriate for functional tissue development since it may encourage correct cell spatial 

arrangement and growth as well as allow for sufficient nutrient and waste exchange.  A highly 

porous microstructure is desired to produce a large surface area for cell attachment and to 

encourage effective diffusion.  Also, for conventional in vitro cell scaffold seeding and culture 
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methods, pore sizes of at least 10 μm are believed necessary for adequate cellular in-growth and 

vascularization [77].  Scaffold fabrication methods for soft tissue engineering must also permit 

mechanical strength and flexibility retention since introduction of porosity can greatly reduce the 

mechanical strength relative to the non-porous material.  Care must also be taken to avoid 

introduction of any toxic components and remove any traces of residual processing solvents.  

Some techniques used in fabricating porous scaffolds include solvent casting and particulate 

leaching, phase separation, rapid prototyping and electrospinning [78-80].  A summary of the 

benefits and limitations of these methods is presented below.  In general, materials should not 

possess covalent crosslinking in order to be solubilized in suitable fabrication solvents or 

processed from the melt.  Lightly crosslinked materials may be processable in their respective 

prepolymer forms.      

 

1.3.1 Particulate leaching 

 

The technique of solvent casting and particulate leaching involves dispersing a porogen such as 

sodium chloride into a polymer solution, casting the polymer and subsequently leaching out the 

porogen by dissolution in a polymer non-solvent.  The resulting scaffolds can possess high 

crystallinities and high porosities greater than 90% and macropores greater than 100 μm [80].  

Disadvantages to this method include the production of irregular pore shapes, surface 

irregularities dependent upon the casting method, and the potential for residual toxic solvents.   
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1.3.2 Thermally induced phase separation 

 

Thermally induced phase separation (TIPS) can produce porous scaffolds by liquid-liquid phase 

extraction.  Polymer is dissolved in a solvent, cooled, and then solvent is slowly extracted by 

freeze drying to obtain polymer-rich and polymer-poor phases.  This method allows for 

processing of scaffolds of controlled pore size distributions and high porosities [81].  Scaffold 

macrostructure and microstructure can be manipulated by varying polymer concentration, 

quenching temperature and solvents [78].  Biodegradable polyurethane scaffolds fabricated using 

TIPS were found to have open interconnected pores with sizes ranging from a few micron to 

greater than 150 μm and porosities from 80-97%.  These materials were flexible with tensile 

strengths of 1.0 MPa and elongations at break of 214% [81].  TIPS scaffolds have been shown to 

support cell growth and proliferation.   This technique has the disadvantage of being relatively  

user and material sensitive. 

 

1.3.3  Rapid prototyping 

 

Rapid prototyping or solid freeform fabrication is a more recent technology applied to tissue 

engineering based on computer controlled scaffold fabrication.  This technology has a distinct 

advantage of precise control of scaffold macrostructure and microstructure from computerized 

data.  This control includes defined porosity, pore sizes and shapes to benefit cell in-growth and 

tissue development.  Examples of rapid prototyping techniques applied for tissue engineering 

include stereolithography, selective laser sintering, fused deposition modeling (FDM), and three 

dimensional printing [82].  Some disadvantages of these methods include potential thermal 
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denaturation of proteins as well as limitations on process resolutions and applicable materials.  In 

some instances materials must be specifically designed in order to be processed by these 

techniques.   For instance, FDM requires exact sized filaments to be fed into a thermal extruder.  

FDM can produce honeycomb like scaffolds of precise structures through a computerized layer-

by-layer extrusion processes onto a movable stage.  PCL scaffolds have been fabricated using 

FDM with scaffold channel sizes ranging from 160-700 μm, filament diameters from 260-370 

μm, and porosity from 48-77% [83].  Depending on scaffold structure, these materials possessed 

tensile strengths ranging from 0.4-3.6 MPa and elongations at break from 4-28% [83].    

 

1.3.4 Electrospinning 

 

Electrospinning is a method that can be used to process biodegradable elastomers into matrices 

that resemble in scale and architecture the native extracellular matrix.  Briefly, electrospinning 

occurs when a polymer solution or melt is charged with a high voltage that generates an 

electrical force.  When that force overcomes the surface tension of a hanging drop of polymer 

solution , it can form a conical shape called the Taylor cone and then eject a polymer jet [84].  

This jet undergoes a complex bending and whipping process in conjunction with fiber splaying 

and rapid solvent evaporation.  The result is a non-woven fabric composed of fibers of diameters 

that can range from a few nanometers to microns deposited on a charged or grounded surface.  

Processing variables include voltage magnitude, polymer feed rate, pendant drop-target distance, 

solution viscosity, solution concentration, polymer molecular weight, target geometry and target 

motion.  These variables largely affect the resulting morphology and size of the electrospun 

fibers.  The most significant phenomena is a transition from electrospraying (i.e. spraying drops 
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of polymer opposed to continuous nanofibers) to electrospinning upon increasing solution 

concentration and viscosity.  

While this technique was initially developed in 1914 [85] and under patent by Formhals in 

the 1930’s [86], it has found recent application in construction of scaffolds for tissue engineering 

to more closely mimic the size scale and architecture of the native extracellular matrix [83].  

Many biodegradable polymers including PLGA [83], PCL [87], and natural materials such as 

collagen [2, 88, 89] or engineered elastin proteins [39, 40] have been electrospun for study in 

various tissue engineering applications including cardiovascular and nervous tissue.  Electrospun 

scaffolds are currently under investigation for cardiovascular applications such as cardiac and 

vessel grafts.  Shin et al. have shown that cardiomyocytes can attach, proliferate and 

spontaneously beat on electrospun PCL meshes suspended across wire meshes [87].  Also, 

smooth muscle cells were found to align themselves on scaffolds of poly(L-lactide-co-ε-

caprolactone) with aligned nanofibers for application in blood vessel tissue engineering [90].  

Non-biodegradable medical grade polyurethane was electrospun for vascular graft applications 

[91].  Another group investigated the effects of various processing variables on electrospinning 

non-biodegradable polyurethane [92].  Furthermore, non-biodegradable medical grade 

polyurethane was electrospun by Kidoaki et al. using a multilayering process [93].  However, to 

date there of few reports on electrospinning of an elastomeric biodegradable polyurethane 

suitable for biomedical applications.     
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1.4 SPECIFIC AIMS 
 

 

Ideal soft tissue replacements should mimic the mechanical and bioactive properties of the native 

tissue.  However, to date truly functional engineered soft tissue such as myocardium or a tissue 

engineered blood vessel has not been created.  Many limitations can be attributed to the absence 

of a suitable scaffold that possesses compliant properties necessary for function in a load bearing 

environment.  While most reports in the literature focused on using a series of non-compliant 

biodegradable polyesters, here it was proposed that by utilizing a biodegradable elastomeric 

scaffold processed by innovative fabrication techniques, functional tissue could be developed.   

Cytocompatible, biodegradable poly(ester urethane)ureas (PEUUs) based on 

polycaprolactone diol (PCL), 1,4-diisocyanatobutane, and putrescine were utilized as the base 

materials for scaffold fabrication.  These polyurethanes were processed along with bioactive 

extracellular matrix proteins such as collagen or urinary bladder matrix by an electrospinning 

technique to produce scaffolds consisting of sub-micron scale fibers that resembled in size and 

scale the native extracellular matrix.  The following dissertation set forth to complete the 

following specific aims.        

1) Biodegradable, elastomeric scaffolds were fabricated with biomimetic anisotropy and 

incorporated bioactive compounds. 

Ideal tissue engineering matrices would mimic the structure and properties of the tissue 

they seek to repair.  Tissue biomimetic anisotropy could be introduced into scaffolds through 

fiber alignment from high speed target rotation.  Further, these biomimetic matrices were 

achieved by combining biodegradable PEUU with extracellular matrix proteins such as structural 

proteins (collagen, gelatin, and urinary bladder matrix) or growth factors such as basic fibroblast 

growth factor (bFGF) by blending with the polymer spinning solution or co-spinning from 
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separate nozzles.  These elastomeric matrices possessed bioactive cell signaling capabilities and 

enzyme sensitivity for remodeling to impact current approaches to soft tissue replacement.   

2) A method to microintegrate cells into nanofiber matrices was developed to allow for 

high density cellular in-growth. 

In order to develop working tissue in vitro or in vivo it was necessary to achieve high 

density cell in-growth.  Due to the small size scale of the electrospinning scaffold fibers and 

pores, cell culture times can be long before in-growth occurs.  Therefore, to overcome this 

disadvantage, we hypothesized that it may be possible to incorporate cells into the nanofiber 

matrix concurrent with the electrospinning process.  This dynamic seeding method termed 

“cellular microintegration”, was employed by electrospraying cells directly into the scaffold 

during the fabrication process.  It was hypothesized that this method could achieve high cell 

density in the constructs immediately after fabrication and would greatly facilitate the process of 

tissue development.   

3) Electrospun scaffolds developed in previous aims were utilized to create a controlled 

release vehicle for growth factor or antibiotic delivery for improved fasciotomy 

management and wound healing.      

Electrospun sheets of PEUU were loaded with growth factors and / or antibiotics and 

studied for applications in fasciotomy management and repair.  As stated previously, significant 

means of nutrient diffusion is necessary in creating viable tissue.  It is well known that for 

scaffolds thicker than 100 μm, transport by diffusion alone is insufficient.  Many believe that for 

adequate cellular infiltration of thicker three-dimensional scaffolds, vascularization is necessary.  

Therefore, by loading scaffolds with an angiogenic growth factors such as bFGF, it could be 

possible to induce vascularization.  However, because some electrospinning solvents are rather 
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harsh to proteins, the effects of this process on growth factor bioactivity were examined.  

Furthermore, the release profile was assessed in an attempt to elucidate the effect of the large 

surface area of electrospun nanofibers on drug delivery.  An obvious concern with many 

treatments both in the hospital and on the battlefield is infection.   It was hypothesized that 

electrospun biodegradable polyurethane scaffolds would be ideally suited for the application of 

antibiotic release to reduce bacterial activity at a wound site.  An ideal outcome of this aim was 

to illustrate that these biodegradable elastomerics possess the capability to be loaded with either 

growth factors or drugs and then release active forms of protein or drug in a controlled manner.   

4) Electrospun tubular scaffolds fabricated with technology developed in previous aims 

will be utilized to create a functional tissue engineered blood vessel.      

As an extension of the work completed in the previous aims, the matrices developed were 

directly studied in engineering biomechanically robust vessel replacements.  The elastomeric and 

anisotropic properties of the scaffolds provided sufficient support to allow for development of 

functional tissue in the mechanically demanding environment to which vessel grafts were 

exposed.  Electrospun PEUU small diameter tubular conduits were seeded or micro-integrated 

with appropriate cells such as smooth muscle cells, endothelial cells, or stem cells and examined 

under in vitro pulsatile flow conditions or in vivo small animal models.     

 Successful completion of the proposed aims made available novel processing techniques 

that result in mechanically and biologically biomimetic scaffolds to facilitate the development of 

functional tissue.  The technology developed could beneficially impact engineering approaches 

to soft tissue replacement.   
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2.0 SYNTHESIS AND ELECTROSPINNING OF BIODEGRADABLE 
POLYURETHANES 

 
 
 
 

2.1 INTRODUCTION 
 

 
Biodegradable elastomers offer attractive mechanical properties for many soft-tissue engineering 

applications where non-elastomeric biodegradable polymers are currently used.   In order to 

develop functionally compliant and mechanically robust tissue, evidence suggests that scaffolds 

should be designed to effectively transmit mechanical signals to the developing tissue in the 

dynamic in vitro or in vivo environment [9-14].  To date, the majority of tissue engineering 

reports in the literature have focused on a narrow series of biodegradable polyesters that are stiff 

with limited or no elastomeric properties.  Therefore, several groups are actively pursuing the 

development of degradable and cytocompatible elastomeric materials that could find application 

in engineering soft tissues [15-21].  Our laboratory has developed a family of biodegradable 

polyurethanes since this material class allows for great latitude in design through the choice of 

hard and soft segments and also due to its potential to serve as a processable thermoplastic 

elastomer [15, 16].  

Several types of biodegradable elastomers have been reported in the literature, however, 

there are fewer reports wherein these materials are fabricated into three-dimensional scaffolds 

compatible with cell growth.  Techniques to fabricate porous structures for tissue engineering 

include particulate leaching, melt molding, fiber casting, thermally induced phase separation, 
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ink-jet printing, fused deposition modeling, and others [43, 77, 94].  Another technique, 

electrospinning, offers a means to process a polymer into sub-micron diameter fibers [95].  

While this method was originally studied in 1914 and patented in the 1930’s [85, 86], recent 

interest exists in its application towards development of tissue engineering scaffolds in order to 

more closely mimic the size and scale of the natural extracellular matrix [83, 96].  Briefly, 

electrospinning occurs when a polymer solution or melt is charged with a high voltage 

generating an electrical force that can overcome the surface tension of a pendant drop of the 

solution by first forming a conical shape called the Taylor cone and then ejecting a polymer jet 

[84].  The ejected jet experiences a complicated bending and whipping instability combined with 

fiber splaying and rapid solvent evaporation to yield fibers of very narrow diameters which can 

be collected on a grounded or charged collection surface.  The processing variables of 

electrospinning can greatly influence the resulting morphology and size of the fibers.  These 

variables include voltage magnitude, polymer feed rate, pendant drop-collector distance, solution 

viscosity, solution concentration, and polymer molecular weight.     

The objective of this study was to synthesize and process biodegradable, elastomeric 

scaffolds with sub-micron scale fibrillar morphologies using an electrospinning technique.  Two 

families of biodegradable polyurethanes were synthesized.  The first and most extensively 

studied material was a poly(ester urethane)urea based on a soft segment diol of poly(ε-

caprolactone) reacted with 1,4-butanediisocyanate and chain extended with putrescine.  To 

incorporate greater “tunability” in biodegradation rates, a second family of polymers was 

synthesized that utilized a polyester-polyether-polyester triblock copolymer diol as the soft 

segment. By altering the ratio of polyether to polyester lengths in the soft segment, the polymer 

hydrophilicity and biodegradation rate can be altered.  These materials were electrospun into 
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nanofibrillar, porous scaffolds for tissue engineering applications.  The impact of polymer 

concentration in the spinning solution on scaffold morphology was investigated.  Scaffold tensile 

mechanical properties were measured as well. 

 
 
 

 
2.2  METHODS 

 
 
2.2.1 Synthesis of biodegradable poly(ester urethane)urea (PEUU) 
 
 
Stannous octoate (Sigma) and hexafluorisopropanol (HFIP) (Oakwood Products) were used as 

received.  1,4-diisocyanatobutane (BDI) (Fluka) and putrescine (Fluka) were distilled under 

vacuum.  Polycaprolactone diol (MW = 2000, Aldrich) (PCL) was dried under vacuum for 48 h 

to remove residual water.  Solvents dimethyl sulfoxide (DMSO) and N,N-dimethylformamide 

(DMF) were dried over 4-Å molecular sieves. 

 PEUU was synthesized as reported previously as shown in Figure 2-1 [15].  The reaction 

occurred as a two step solution polymerization in a 250-mL three-neck round bottom flask under 

argon purge.  A 2:1:1 molar ratio of BDI:PCL:putrescine was used.  First, a 5 wt% solution of 

BDI in DMSO was reacted with a 15 wt% solution of PCL in DMSO with stannous octoate as 

catalyst for 3 h with continuous stirring at 75°C.  The prepolymer solution was allowed to cool to 

room temperature and then putrescine was added dropwise while stirring.  After 18 h of reaction 

at room temperature, the polymer solution was precipitated in distilled water and then wet 

polymer was incubated in 2-propanol for 48 h to remove unreacted monomer.  The polymer was 

then dried under vacuum at 50°C for 48 h.   
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PEUU transparent films were prepared from a 3 wt% PEUU solution in DMF.  If the 

presence of insoluble crosslinked PEUU was observed, PEUU solution was centrifuged at 3000 

rpm to remove the gel.  Hot polymer solution was cast onto polytetrafluoroethylene dishes and 

solvent was allowed to evaporate at room temperature.  Films were subsequently dried under 

vacuum for 48 h.  Transparent PEUU films obtained were approximately 50 μm thick and were 

utilized in further characterization experiments. 

 

2.2.2 Synthesis of biodegradable poly(ether ester urethane)urea 
 
 

Stannous octoate (Sigma) was used as received.  1,4-diisocyanatobutane (BDI) (Fluka) and 

putrescine (Fluka) were distilled under vacuum.  Poly(ethylene glycol) (MW = 600, Aldrich) was 

dried under vacuum for 48 h to remove residual water.  ε-caprolactone (Aldrich) was dried over 
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Figure 2-1.  Poly(ester urethane)urea (PEUU) synthesis. 
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CaH2.  Solvents dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) were dried 

over 4-Å molecular sieves. 

PCL-PEG-PCL triblock copolymers were synthesized with PEG initiating polymerization 

of ε-caprolactone with a molar ratio of PCL:PEG of 18.0.  The reaction occurred for 24 h at 

120°C under argon gas.  Prepolymer was then washed with ethyl ether and hexane and dried 

under vacuum.    

PEEUU was synthesized as reported previously as shown in Figure 2-2 [16].  The 

reaction occurred as a solution polymerization in a 250-mL three-neck round bottom flask under 

argon purge.  A 2:1:1 molar ratio of BDI:triblock PCL-PEG-PCL:putrescine was used.  First, a 

15 wt% solution of BDI in DMSO was reacted with a 25 wt% solution of triblock prepolymer in 

DMSO with stannous octoate as catalyst for 3 h with continuous stirring at 75°C.  The 

prepolymer solution was allowed to cool to room temperature and then putrescine was added 

dropwise while stirring.  After 18 h of reaction at room temperature, the polymer solution was 

precipitated in distilled water and then wet polymer was incubated in 2-propanol for 48 h to 

remove unreacted monomer.  The polymer was then dried under vacuum at 50°C for 48 h.  

PEEUU cast films were prepared with the same procedure used for PEUU cast films.   
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2.2.3 Polymer characterization 
 
 
 
Polymer molecular weight was determined by gel permeation chromatography (GPC, Waters 

Breeze V3.2, Waters 1515 isocratic HPLC pump, Waters 2414 refractive index detector) using 

monodisperse polystyrene standards for calibration.  Measurements were made at 35°C with 1-

methyl-2-pyrrolidione (NMP) as solvent.  Injection volume was 100 μL and PEUU concentration 

was 10 mg/mL.   

Fourier transform infrared spectra (FTIR) were measured using a Genesis II FTIR 

spectrometer at room temperature.  For FTIR, a 5 wt% PEUU solution in DMF was cast onto 

NaCl crystals.  After evaporation of DMF under vacuum at 50°C for 4 h, spectra were measured.      

 Differential scanning calorimetry (DSC) was performed on a differential scanning 

calorimeter (Shimadzu; DSC 60) under helium and nitrogen purge.  Scanning rates of 20°C/min 
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Figure 2-2.  Poly(ether-ester urethane)urea (PEEUU) synthesis. 
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were used over a temperature range of -100°C to 250°C.  Tensile properties were measured on an 

MTS Tytron™ 250 MicroForce Testing Workstation (10 mm/min crosshead speed) according to 

ASTM D638-98.  Five samples were tested at each condition studied. 

 
 
2.2.4 Surface modification 
 

To modify the PEUU surface for attachment of cell adhesion peptides, it was first treated with 

radiofrequency glow discharge (RFGD) under an ammonia atmosphere as demonstrated 

previously (Figure 2-3) [15].  More specifically, PEUU cast film was inserted into a reaction 

vessel (PLASMOD) at 100 W and 13.6 MHz for 2 min under a vacuum of 3 x 10-3 Torr.  RGDS 

(Sigma) was attached to the modified PEUU surface, PEUU-NH2, via a BDI spacer.  Briefly, 

PEUU-NH2 was incubated in BDI for 10 min followed by toluene and acetone rinses, and then 

placed in RGDS in PBS (20 μg/mL) for 10 h.  PEUU with RGDS was then rinsed multiple times 

with PBS.   

PEUU surface modification was quantified using the ninhydrin reaction [97, 98].  To first 

hydrolyze the spacer,  PEUU-RGDS films were placed in vials with 0.93 mL 4N HCl and 1.57 

mL deionized water at 120°C for 30 min.  Next, 1.0 mL of 3.75 N NaOH  neutralized the 

reaction followed by adding 1 mL of ninhydrin solution.  The vial was heated to 120°C for 10 

min, cooled in an ice bath, and optical density measured at 570 nm.  Optical density was 

calibrated by known concentrations of soluble RGDS.  The quantity of RGDS attached to PEUU 

was calculated by subtraction of the value for PEUU-NH2 modified by BDI spacer alone.   
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2.2.5 Electrospinning 
 
 

PEUU was dissolved in hexafluoroisopropanol (HFIP) at various concentrations (1, 2, 3, 4, 5, 8, 

and 10 wt %) under mechanical stirring at room temperature.  PEEUU was dissolved at 8 wt% 

for electrospinning.  The polymer solution was fed by syringe pump (Harvard Apparatus) into a 

steel capillary (I.D. = 0.047″) suspended vertically over the center of a cylindrical steel mesh 

focusing screen and aluminum collector plate (Figure 2-4).  A combination of three high voltage 

generators (Gamma High Voltage Research) was employed with a high positive voltage (12 kV) 

to charge the steel capillary containing the polymer solution, a negative voltage (–7 kV) to 

charge the aluminum collector plate, and a slightly lower positive voltage (3 kV) to charge a 

steel mesh screen.  The screen acted to control the area of fiber deposition onto the aluminum 

plate.  Preliminary investigations without the control mesh found evidence of unwanted fiber 

deposition on the outer surfaces of the fume hood containing the apparatus.  This set-up was 

RFGD NH2
NH2

NHCONH(CH2)4NCO
NHCONH(CH2)4NCO

NHCONH(CH2)4NHCONH---RGDS
NHCONH(CH2)4NHCONH---RGDS

RGDS

PEUU PEUU-NH2

PEUU immobilized with RGDS

OCN(CH2)4NCO

Ammonia gas

Figure 2-3.  Radio frequency glow discharge with ammonia gas, 
followed by RGDS attachment with a BDI spacer. 
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similar to the multiple field electrospinning apparatus constructed by Deitzel et al [99].  By 

adjusting the voltage magnitude charged to the control mesh, it was possible to minimize outside 

electrical disturbances as well as to electrospin thicker scaffolds more rapidly.  The component 

spacing and applied voltages were optimized to provide controlled deposition of scaffolds up to 

500 μm thick.  PEUU was electrospun at various concentrations to assess the effect of polymer 

concentration on scaffold morphology.  Deposited scaffolds were allowed to dry overnight at 

room temperature and then placed under vacuum for 48 h at 30°C.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 2-4.  Electrospinning setup consisting of a syringe pump to feed polymer solution along with a 
combination of 3 high-voltage generators and a steel mesh screen to control the area of fiber deposition. 
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2.2.6 Scaffold characterization 
 

Samples were sputter coated with Pd/Au and imaged with scanning electron microscopy  (JEOL 

JSM6330F). Fiber diameter as a function of PEUU wt % in HFIP was quantified using digital 

image processing.  Scaffold tensile mechanical properties were measured similar to those of the 

cast polymer films described above with an MTS Tytron™ 250 MicroForce Testing Workstation 

(10 mm/min crosshead speed) according to ASTM D638-98.  Five samples were again tested at 

each condition studied. 

 
 
2.2.7 Endothelial cell adhesion and growth 
 

 

PEUU films were evaluated for their ability to support human umbilical vein endothelial cell 

(HUVEC, Cambrex, passage 5) adhesion and growth.  Samples tested include PEUU, PEUU-

NH2 + BDI spacer, and PEUU with RGDS.  PEUU 6-mm discs were punched and sterilized by 

70% ethanol for 6 h followed by multiple PBS rinses, and exposure to ultraviolet (UV) light for 

16h.  PEUU discs were placed in wells of a 96-well TCPS plate.  HUVECs were subcultured and 

seeded at a density of 20 x 104 cells/mL in culture medium (Cambrex EGM-2).  Cellular 

adhesion 1 day after cell seeding was evaluated using the MTT mitochondrial activity assay (n = 

5 per sample studied) [100].  Data were normalized to tissue culture polystyrene (TCPS).  

HUVEC proliferation was evaluated over at 1, 3, and 5 days after seeding by MTT assay.  

Samples seeded were PEUU cast film, RGDS modified PEUU film, electrospun PEUU, and 

TCPS control.    

 
 
 



 

 

 

48

2.2.8 Statistics 
 

 

Results are displayed as the mean ± standard deviation.  Pearson’s correlation was used to 

evaluate the linearity of the fiber diameter versus concentration plot.  One-way ANOVA testing 

was carried out for quantification of surface modification by RGDS, cell adhesion, and 

mechanical properties and using the Neuman-Keuls test for post hoc assessments of the 

differences between samples 

 
 
 
 

2.3 RESULTS 
 

 
2.3.1 Polymer characterization 

 
 
2.3.1.1  PEUU characterization 
 
 PEUU weight average molecular weight and number average molecular weight as 

determined by GPC were 228700 and 87600 respectively yielding a polydispersity index of 2.61.  

DSC results indicated a glass transition temperature of –54.6°C and soft segment melt 

temperature of 41.0°C.  These results along with mechanical properties are summarized in Table 

2-1.  FTIR spectra of PEUU indicated urethane, urea and ester groups as well as the absence of 

any unreacted isocyanate peaks (at approximately 2267 cm-1) or residual solvent (Figure 2-5).  

PEUU was flexible and found to have a tensile strength of 27 ± 4 MPa and a breaking strain of 

820 ± 70 % (Figure 2-9).      
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2.3.1.2  PEEUU characterization 

NMR results for the PCL-b-PEG-b-PCL prepolymer indicated peaks characteristic of the 

four PEG protons nearest the PCL segment at 4.2 ppm (integration = 1).  A value was found for 

the two PCL protons representative of each PCL segment of 1.6 ppm (integration = 8.7).  Since 

the molecular weight of PEG was known to be 600, the ratio of the integration values for PCL to 

PEG for these peaks multiplied by two times the molecular weight of a PCL segment (MW = 

114) yielded the PCL-b-PEG-b-PCL block lengths of 1000-600-1000 respectively.   

PEEUU weight average molecular weight and number average molecular weight as 

determined by GPC were 119700 and 52000 respectively yielding a polydispersity index of 2.30.  

FTIR spectra of PEEUU indicated urethane, urea and ester groups as well as the absence of any 

unreacted isocyanate peaks (at approximately 2275 cm-1) or residual solvent.  DSC results 

indicated a glass transition temperature of –47.1°C and soft segment melt temperature of 41.0°C.  

PEEUU was flexible and found to have a tensile strength of 16 ± 1 MPa and a breaking strain of 

580 ± 40 %.     A summary of PEEUU properties is also displayed in Table 2-1. 

 

 

 

 

 

 

 

 

 
 

Table 2-1.  Physical property summary of PEUU and PEEUU.

Tensile Breaking 
Polymer Mw Mn Mw/Mn Tg (C) Tm (C) Strength (MPa) strain (%)
PEUU film 228700 87600 2.61 -54.6 41.0 27 ± 4 820 ± 70
PEEUU film 119,700 52000 2.3 -47.1 41.0 16 ± 1 580 ± 40
electrospun PEUU - - - - - 13 ± 4 220 ± 80
electrospun PEEUU - - - - - 6.9 ± 2 190 ± 40
TIPS PEUU - - - - - 1.5 ± 0.2 200 ± 60
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2.3.2 Electrospinning and scaffold characterization 

 

In order to fabricate scaffolds with continuous fibers of sub-micron dimensions, the feed polymer 

concentration was varied and electrospun PEUU morphology was investigated by SEM (Figure 

2-6).  At concentrations below 2%, a “beads on a string” morphology was observed.  At polymer 

concentrations greater than 2%, continuous fibers were spun with diameters in the hundreds of 

nanometers.  A trend of increasing fiber diameter with increasing polymer concentration was 

observed (Figure 2-7).  Pearson’s correlation for linearity revealed r = 0.90 at p < 0.05.  

Scaffolds possessed fiber diameters ranging from 100 nm to 2000 nm as a function of polymer 

concentration ranging from 1% to 10%.   
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Figure 2-5. FTIR spectrum of PEUU.  The spectrum for PEEUU exhibited similar functionalities. 
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Figure 2-6.  Scanning electron micrographs of electrospun PEUU 
as a function of polymer concentration in HFIP (scale bars = 1μm).

Figure 2-7.  Electrospun fiber diameter as a function of PEUU concentration in 
the feed solution (r = 0.90; p < 0.05). 
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PEEUU was processed at 8 wt% in HFIP to produce continuous electrospun fibers.  The 

presence of sparse beads was observed in lower magnification SEMs (Figure 2-8 (a)).  More 

tendency for bead formation can result from the lower molecular weight PEEUU relative to 

PEUU.  Fibers displayed a more gelled and tortuous appearance under qualitative investigation.  

One can observe SEMs of electrospun PEEUU in Figure 2-8. 

Mechanical properties of electrospun scaffolds are summarized in Table 2-1.  

Electrospun PEUU had a tensile strength of 13 ± 4 MPa and a breaking strain of 220 ± 80%.  

Electrospun PEUU had a tensile strength of 6.9 ± 2 MPa and a breaking strain of 190 ± 40%.  

Figure 2-9 displays typical stress-strain curves for PEUU film along with electrospun PEUU and 

thermally induced phase separation (TIPS) PEUU.   

 

 

 

 

 

Figure 2-8.  SEMs demonstrating fibrous scaffold morphology of electrospun PEEUU. 
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2.3.3 Endothelial cell adhesion and proliferation 

 

HUVEC adhesion 1 d after seeding onto cast PEUU films, PEUU films after RFGD and BDI 

treatment, and RGDS modified PEUU was evaluated and normalized to TCPS as illustrated in 

Figure 2-10.  PEUU cast film was found to exhibit an adhesion of 73 ± 2 % TCPS.  A 

significantly higher adhesion value of 124 ± 4% was observed for RGDS modified PEUU in 

comparison with all other samples (p < 0.05).   

 

 

 

 

 

   

Figure 2-9.  Typical stress-strain curves of PEUU cast film, electrospun PEUU 
scaffold, and TIPS PEUU scaffold. 
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HUVEC proliferation on PEUU, RGDS modified PEUU, electrospun PEUU and TCPS  

was evaluated over 5 days (Figure 2-11).  No significant difference was observed between cell 

numbers on TCPS or PEUU at day 5 of culture. RGDS modified PEUU demonstrated 

significantly higher cell numbers than TCPS or PEUU at each timepoint (p < 0.05).  For 

electrospun PEUU scaffolds, significantly higher cell numbers were observed at day 5 relative to 

cast PEUU films (p < 0.05).  The nanofibrous scaffolds also exhibited similar values to RGDS 

modified surfaces.   
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Figure 2-10.  24 h HUVEC adhesion to PEUU and RGDS modified PEUU relative to TCPS. 
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Figure 2-11.   HUVEC growth on TCPS, PEUU cast film,  RGDS modified cast PEUU film and 
electrospun PEUU. 
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2.4 DISCUSSION 
 

 
Biodegradable polyesters have been the most commonly investigated materials in developing 

tissue engineering scaffolds.  For example, poly(glycolic acid) (PGA), poly(lactic acid) (PLA), 

and their copolymers (PLGA), are relatively stiff, non-elastic materials and are not ideally suited 

for engineering of soft flexible tissues under a mechanically demanding environment such as 

cardiovascular tissue, urological, and gastrointestinal tissue.  Mechanical signals are thought 

necessary to develop cell alignment leading to tissue structure exhibiting correct biomechanical 

properties and function [10, 11].  Kim et al. showed that cyclic straining upregulated 

extracellular matrix production in developing smooth muscle tissue resulting in increased 

mechanical properties of the tissue constructs [12].  They also demonstrated that for longer 

culture periods under cyclic strain, a more elastic scaffold than PLLA-bonded PGA fibers would 

be necessary [13].  Reports have also shown that mechanical stimulation can lead to increased 

matrix production and mechanical strength in tissue engineered cardiac muscle grafts [101].  In 

addition, tissue engineered blood vessels cultured under pulsatile flow were found to more 

closely resemble native vessels in both histological appearance and function than vessels 

cultured under non-pulsed conditions [9].  

Electrospinning offers a means to generate polymeric fibers with diameters in the 100-

1000 nm range.  This technique, first patented in the 1930’s by Formhals [86], has seen recent 

interest in the tissue engineering community and for other applications.  Several groups have 

reported on the electrospinning of PLGA [83, 96].  Annis et al. have electrospun non-

biodegradable polyurethane for vascular graft applications [91] and Demir et al. investigated the 

results of various solution properties on electrospinning non-biodegradable polyurethane [92].  

Furthermore, investigators have demonstrated spinning of natural materials such as collagen [88, 
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89, 102] or engineered proteins such as elastin [39, 40].  However, to date no groups have 

reported on the electrospinning of an elastomeric biodegradable polyurethane that might be 

suitable for biomedical applications.     

Electrospinning is influenced by a multitude of process variables.  In general, these 

variables can affect the resulting size and morphology of electrospun fibers [96, 99].  The most 

notable effect is the transition from electrospraying (i.e. spraying droplets of polymer in contrast 

to continuous nanofibers) to electrospinning. We observed a trend of increasing fiber diameter 

with increasing PEUU concentration. This trend was consistent with reports in the literature for 

other electrospun polymers such as poly(ethylene-co-vinyl alcohol) [103].  Preliminary 

investigations into the effect of capillary-to-collector distance on electrospun PEUU revealed 

lower fiber density at distances greater than 30 cm.  Varying polymer feedrate did not appear to 

have a significant effect on fiber diameter or density.  HFIP was found to be an ideal 

electrospinning solvent for PEUU because it evaporates rapidly, is non-flammable, and is 

applicable for solubilization of polyesters or proteins such as collagen.  At PEUU concentrations 

less than 2 wt% and holding the voltage magnitudes constant (+12 kV to polymer solution, +3 

kV to steel cage, and –7 kV to Al collector plate) more of a “beads on a string” morphology 

[104] was observed than continuous fibers.  As the polymer concentration was increased above 

2%, almost entirely continuous fibers were observed.  This trend was thought to be due to the 

increasing polymer concentration resulting in increased solution viscosity and surface tension 

more appropriate for spinning continuous fibers. 

While most porous scaffold processing techniques greatly reduce the mechanical 

properties relative to the bulk polymer, electrospinning retains a great deal of the strength and 

distensibility of the bulk PEUU.  This trend is evident when comparing the stress-strain curves of 
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PEUU film and electrospun PEUU in Figure 2-8.  The fibrillar microstructure of the electrospun 

scaffolds may be responsible for the robust mechanical properties observed.  A single 

electrospun PEUU fiber would be expected to possess a higher tensile strength and lower 

breaking strain compared with the cast PEUU film due to potential molecular alignment.  

However, because the network of fibers is porous, the overall scaffold tensile strength would be 

expected to decrease in comparison to the PEUU film.  The attractive distension observed in the 

scaffolds may result from randomly orientated fibers aligning themselves in the direction of 

stress.  Distension would be expected to approximate the breaking strains measured once fibers 

are aligned.   

Cell adhesion was only slightly less on PEUU cast film compared with TCPS.  As a 

result of attachment of RGDS to the PEUU surface, higher cell adhesion could be achieved.  

Ninhydrin results further confirmed the presence of RGDS peptide with a 65% higher 

absorbance value observed for RGDS modified PEUU compared with PEUU treated with RFGD 

and BDI.  Electrospun scaffolds also resulted in increased cell proliferation at 5 days.  This result 

may be due to both the increased surface area of the nanofibrillar scaffold and a more favorable 

interaction of HUVECs on the surface that mimics actual ECM structure.  These results indicate 

that electrospun PEUU warrants further investigation as a scaffold material for soft tissue 

engineering applications.  
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3.0 ELECTROSPINNING OF COLLAGEN BASED ELASTOMERIC SCAFFOLDS 
 

 
 
 

3.1 INTRODUCTION 
 

 

Since polymers can be electrospun from solution, the potential exists to blend biodegradable 

elastomers with proteins to introduce biomacromolecules into the resulting scaffold.   Elastic 

scaffolds might be modified to incorporate biological activity from proteins found in the 

extracellular matrix such as growth factors, adhesive proteins, and structural proteins as well as 

to introduce enzyme sensitivity for remodeling.  Collagen is an obvious candidate given its 

support of cell adhesion, relatively resilient conformation, and sensitivity to collagenase [25].  

However, fabrication of scaffolds composed of collagen alone can lead to poor mechanical 

strength and the absence of the appropriate flexibility to undergo cyclic mechanical loading [43, 

105].  By blending with a polyurethane, the combined biofunctionality of collagen with the 

mechanical properties of the polyurethane might result in an elastic matrix with potential to 

impact tissue engineering approaches to soft tissue replacement. 

 The objective was to process and characterize biodegradable, elastomeric scaffolds with 

sub-micron scale fibrillar morphologies using an electrospinning technique.  A previously 

reported biodegradable and cytocompatible poly(ester urethane)urea (PEUU) from our 

laboratory based on polycaprolactone diol (PCL) and 1,4-diisocyanatobutane (BDI) was used as 

the base material [15].  Biofunctionality was introduced into scaffolds by blending the 
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polyurethane with type I collagen prior to electrospinning.  The impact of polymer concentration 

in the spinning solution on scaffold morphology as well as scaffold collagen content and 

collagen structure preservation was determined using contact angle, FTIR, picrosirius red 

staining, and circular dichroism (CD) spectroscopy.  Tensile mechanical properties were 

measured of both the cast polymer film and the scaffolds.  Furthermore, human umbilical vein 

endothelial cell adhesion and smooth muscle cell adhesion were evaluated on the electrospun 

PEUU / collagen scaffolds.    

 

 
 
 

3.2 METHODS 
 

 
3.2.1  PEUU / collagen scaffold fabrication 
 

 

PEUU was synthesized as reported previously (Figure 2-1) and cast into transparent films [15].  

PEUU and type I acid soluble bovine collagen (Sigma) (at 0, 2.5, 5, 10, 20, 50, 60, 70, 80, and 90 

final wt% of collagen) were blended in HFIP at 6 wt.% under mechanical stirring at 25°C.  The 

polymer / protein solution was electrospun as described previously and illustrated in Figure 2-4.  

Briefly, solution was fed by syringe pump at 1.0 mL/hr and electrospun over a distance of 13 cm 

with voltages of +12 kV, +3kV, and -7kV applied to the nozzle, screen, and target respectively.   

The component spacing and applied voltages were optimized to provide controlled deposition of 

scaffolds up to 500 μm thick.  Deposited scaffolds were allowed to dry overnight at room 

temperature and then placed under vacuum for 24 h.  
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3.2.2  Scaffold characterization 

 

Samples were sputter coated with Pd/Au and imaged with SEM.  Water contact angles (n = 5) 

were measured by the sessile drop technique using a VCA2000 device (AST Products).    For 

picrosirius red staining [106], samples were cryosectioned and fixed on glass slides with 2% 

formaldehyde for 20 min.  Samples were rinsed with water and then picrosirius red solution (0.3 

g Sirius red F3B and 500 mL saturated aqueous picric acid) was added for 1 h.  Next, the 

samples were washed twice with acetic acid solution, dehydrated with ethanol (50%, 70%, 90%, 

and 100%) and mounted.   To quantify absorbance, 6 mm diameter scaffold discs were weighed 

and stained with picrosirius red as above.  Next, stained scaffolds were incubated in 0.1 N NaOH 

at 37°C for 30 min to transfer the stain from the scaffold to solution.  The absorbance of the 

solutions was read at 540 nm and normalized by dividing by scaffold mass.  

CD spectroscopy was performed to evaluate the preservation of collagen secondary 

structure in the electrospun biohybrid scaffolds.  Collagen was removed from the scaffolds by 

incubation in 0.1M acetic acid for 48 h at 25°C and then lyophilizing the resulting solutions.  CD 

spectra were run on an Aviv 62A DS Circular Dichroism Spectrometer using 1 mg/mL collagen 

solutions in 0.1M acetic acid at 25°C.  Wavelength scans (n = 3) were performed from 280-185 

nm sampling every 1 nm with a 1 s averaging time.  Scaffold uniaxial mechanical properties 

were measured similar to those of the cast polymer films described previously. 

In order to quantify PEUU / collagen scaffold degradation, dry films and scaffolds were 

weighed and immersed in 15 mL of PBS (pH = 7.4) with or without collagenase 

(Clostridiopeptidase A, Sigma, 10 units/mL) and incubated at 37°C.  Samples were removed at 
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the time points studied and vacuumed dried for 48 hours before weighing.  Mass remaining was 

calculated as 

Mass remaining (%) = m3/m1 x 100      (3-1) 

where m1 and m3 are the masses of films before and after degradation, respectively. 

 

3.2.3  Cell adhesion  on PEUU/collagen scaffolds 

 

PEUU/collagen samples were punched into 6-mm diameter discs and sterilized by immersion in 

90% alcohol for 7 h, rinsed multiple times with PBS, and then placed in media in an incubator 

overnight.  PEUU/collagen discs were placed in wells of a 96-well TCPS plate and human 

umbilical vein endothelial cells (HUVECs) were subcultured and seeded at a density of 20 x 104 

cells/mL in culture medium (Cambrex EGM-2).  Cellular adhesion 1 day after cell seeding was 

evaluated using the MTT mitochondrial activity assay (n = 5 per sample studied) [100].  Data 

were normalized to tissue culture polystyrene (TCPS).   

For smooth muscle culture, media consisted of Dulbecco’s Modified Eagle Medium 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin.  Vascular smooth 

muscle cells isolated from a rat aorta [107] (SMCs, 8th passage) were statically seeded on 

scaffolds at a density of 2 x 106 cells/mL.  Cellular adhesion 1 day after cell seeding was 

evaluated using the MTT mitochondrial activity assay (n = 5 per sample studied).  Data were 

normalized to tissue culture polystyrene (TCPS).  Samples were also rinsed with PBS, fixed with 

2.5% glutaraldehyde and 1% osmium tetraoxide in PBS and subjected to graded ethanol 

dehydrations before being critical point dried, sputter-coated and then imaged by SEM to 

observe cellular morphology. 
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3.2.4  Statistics 

 

Results are displayed as the mean ± standard deviation.  Pearson’s correlation was used to 

evaluate the linearity of the fiber diameter versus concentration plot.  One-way ANOVA testing 

was carried out on contact angle results, picrosirius absorbance, mechanical properties and SMC 

adhesion using the Neuman-Keuls test for post hoc assessments of the differences between 

samples.  

 

 

 

 
3.3  RESULTS 

 
 
 
3.3.1  Scaffold characterization 

 

 
Scanning electron micrographs revealed continuous fiber morphologies spun at all 

concentrations (0, 2.5, 5, 10, 20, 50, 60, 70, 80, 90% type I collagen) examined (Figure 3-1).  

Different diameters and morphologies were observed at the various PEUU/collagen ratios 

studied.  Water in air contact angles were found to decrease as a function of % collagen blended 

with PEUU to give values ranging from 75° for PEUU alone to less than 40° with 50% collagen 

blended (p < 0.05) (Figure 3-2).  FTIR of PEUU/collagen samples revealed peaks characteristic 

of type I collagen.  For example, Figure 3-3 shows the FTIR spectrum of PEUU alone subtracted 

from the spectrum for a 50/50 PEUU/collagen blend to yield a N-H stretch at 3310 cm-1, an 

amide I band at 1650 cm-1, and an amide II band at 1560 cm-1.  Picrosirius red stained 

PEUU/collagen electrospun scaffolds positive and polarization microscopy revealed the presence 
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of birefringence in the electrospun scaffolds containing collagen.  In general, more prominent 

staining and birefringence were observed in samples containing at least 20% electrospun 

collagen.  Figure 3-4a shows picrosirius staining of electrospun PEUU/collagen (50/50) and also 

compares birefringence in pre-processed acid soluble type I collagen (Figure 3-4b), an 

electrospun blend of 50/50 PEUU/collagen (Figure 3-4c), and electrospun collagen (Figure 3-

4d).  Stain leached from scaffolds after the picrosirius staining procedure displayed a trend of 

increasing absorbance with % type I collagen (Figure 3-5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1.  Scanning electron micrographs of electrospun scaffolds composed of varying ratios of 
PEUU and type I collagen. 
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Figure 3-3.  FTIR spectra of (a) blend of 50/50 PEUU/collagen, (b) PEUU, and (c) difference 
spectrum resulting from subtraction of (b) from (a).  Peaks attributable to collagen are noted in 
the difference spectrum. 
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Figure 3-2.  Water-in-air contact angle of PEUU/collagen blends 
as a function of collagen concentration. 
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Figure 3-4.  Picrosirius red staining of electrospun PEUU/collagen blends: (a) optical 
micrograph of 50/50 PEUU/collagen, polarized light micrographs of (b) collagen (c) 50/50 
electrospun PEUU/collagen, and (d) 0/100 electrospun PEUU/collagen.

Figure 3-5.  Absorbance normalized to scaffold mass as a function of 
collagen concentration for picrosirius red stain removed by NaOH. 
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3.3.2  Circular dichroism spectroscopy  

 

CD spectra of collagen removed from the electrospun scaffolds into 0.1M acetic acid were 

compared with spectra of type I collagen before processing and also type I collagen that was 

thermally denatured at 50°C.  Representative spectra of electrospun PEUU/collagen samples 

studied are displayed in Figure 3-6.  Table 3-1 shows the difference in ellipticities between 

electrospun collagen samples relative to the collagen control at different blending ratios.  The 

spectrum of the collagen control exhibits a maxima peak at 221 nm and a minima peak of 197 

nm.  Upon thermal denaturation at 50°C, the collagen spectrum exhibited loss of the peak at 221 

nm along with a difference in ellipticity of 54.36 mdeg from the non-denatured collagen. In 

general, a trend of decreasing difference in ellipticity between the collagen control was exhibited 

at increasing collagen ratios.  This trend indicated more triple helix retention in electrospun 

samples containing 50% or more collagen.  Electrospun samples containing 2.5%, 5%, 10%, and 

20% collagen did not show a peak at 221 nm and had differences in minima ellipticity greater 

than 66 mdeg.  Samples containing 50% and 60% collagen gave small or no peaks at 221 nm 

with minima ellipticity differences from the collagen control at 45.23 mdeg and 33.26 mdeg 

respectively.  Electrospun samples containing 70-100% collagen exhibited peaks at 221 nm and 

minima ellipticity differences at 10.33 mdeg or less indicating greater collagen helix retention.  

All electrospun samples including electrospun collagen alone possessed some secondary 

structure modification as a result of the electrospinning process and exposure to the HFIP 

solvent.  CD signal error consisted of a few hundredths of a mdeg for all samples except near 

185 nm and is not shown for sake of clarity.   
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Figure 3-6.  CD spectra of 1mg/mL collagen removed from scaffolds in 0.1M acetic acid compared 
with spectra of type I collagen control and thermally denatured type I collagen. 
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Table 3-1.  Comparison of ellipticities of ππ* (minima) and nπ* (maxima) transitions between type I collagen 
control and collagen processed into ePEUU/Col scaffolds.  
 

      

 
Ellipticity 

(mdeg) 

Collagen 
Ellipticity 
Difference 

(mdeg)  
Ellipticity 

(mdeg) 

Collagen 
Ellipticity 

Difference (mdeg) 

Sample  ππ* ππ* nπ* nπ* 

Collagen -72.43 - 9.02 - 
Denatured Collagen -18.07 54.36 -2.18 11.20 
ePEUU/Col (0/100)  -65.29 7.14 3.90 5.12 
ePEUU/Col (10/90) -63.62 8.81 3.82 5.20 
ePEUU/Col (20/80) -64.46 7.97 3.96 5.06 
ePEUU/Col (30/70) -62.10 10.33 2.54 6.48 
ePEUU/Col (40/60) -39.17 33.26 -0.55 9.57 
ePEUU/Col (50/50) -27.20 45.23 0.91 8.11 
ePEUU/Col (80/20) -5.62 66.81 0.80 8.22 
ePEUU/Col (90/10) -1.32 71.11 0.60 8.42 

ePEUU/Col (95/5) -2.54 69.89 -0.54 9.56 
ePEUU/Col (97.5/2.5) -2.75 69.68 0.48 8.54 

ePEUU/Col (100/0) - - - - 

e = electrospun scaffold; Col = collagen   
 
 
 
 
3.3.3 Mechanical properties 
 

Mechanical properties of electrospun biohybrid scaffolds are summarized in Table 3-2.  Tensile 

strengths ranged from 2 MPa to 13 MPa and breaking strains from 160% to 280%. Electrospun 

PEUU had a tensile strength of 13 ± 4 MPa and a breaking strain of 220 ± 80%.  Figure 3-7 

displays typical stress-strain curves for PEUU film along with electrospun PEUU and 

electrospun PEUU/collagen (50/50) scaffolds.  Incorporation of collagen lead to a significant 

decrease in tensile strength for samples containing 2.5%, 10%, 50%, 60%, 70%, 80%, and 90% 

collagen (p < 0.05) as well as reductions in initial and 100% modulus for samples containing 5%, 
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10%, 20%, 50%, 60%, 70%, 80%, and 90% collagen (p < 0.05).  No significant correlation 

between increasing collagen content and breaking strain were observed for electrospun scaffolds.   

 
 
 
 
 
 
 Initial 100% Tensile Breaking 
 Modulus Modulus Strength Strain 
Sample (MPa) (MPa) (MPa) (%) 
PEUU(film) 60 ± 10 2 ± 0.4 27 ± 4 820 ± 70 
e-PEUU 8 ± 2 8 ± 2 13 ± 4 220 ± 80 
e-PEUU/Col (97.5/2.5) 7 ± 1 7 ± 1   8 ± 2 160 ± 40 
e-PEUU/Col (95/5) 6 ± 2 6 ± 2 10 ± 4 210 ± 70 
e-PEUU/Col (90/10) 6 ± 2 4 ± 2   7 ± 3 160 ± 60 
e-PEUU/Col (80/20) 9 ± 2 6 ± 3 11 ± 2 170 ± 40 
e-PEUU/Col (50/50) 3 ± 1 3 ± 1   6 ± 1 240 ± 40 
e-PEUU/Col (40/60) 1 ± 0.1  2 ± 0.3   3 ± 1 280 ± 10 
e-PEUU/Col (30/70) 1 ± 0.3 1 ± 0.2   2 ± 1 240 ± 30 
e-PEUU/Col (20/80) 1 ± 0.3 1 ± 0.1   3 ± 0.4 250 ± 30 
e-PEUU/Col (10/90) 2 ± 0.3 1 ± 0.1   2 ± 0.1 270 ± 50 
e = electrospun scaffold; Col = collagen   

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2.  Tensile Properties of Electrospun Scaffolds Compared with Cast PEUU Film. 

Figure 3-7.   Typical stress-strain curves of PEUU cast film, electrospun PEUU scaffold, and 
electrospun PEUU/collagen (50/50). 

PEUU cast film 

electrospun PEUU 

electrospun PEUU/collagen (50/50) 
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3.3.4  Degradation 

 

Results from in vitro degradation studies with electrospun biohybrid scaffolds in PBS with and 

without collagenase are presented in Figure 3-8.  For electrospun PEUU, no significant 

difference was observed in the weight remaining between samples incubated with or without the 

enzyme collagenase at 8 wks and the mass remaining at that time for electrospun PEUU was not 

significantly different from that of the PEUU cast film (results not shown).  For electrospun 

scaffolds containing type I collagen, there was decreased mass remaining at all concentrations as 

a result of incubation with collagenase (p < 0.05) with increasing sensitivity at higher collagen 

content.  Furthermore, enzymatic degradation tended to increase with collagen content (p < 0.05 

except in comparing 2.5% and 5%; or 5%, 10%, and 20% collagen samples).  Electrospun PEUU 

exhibited mass loss of 5% without and 10% with collagenase.  For samples containing 2.5, 5%, 

10%, and 20% collagen relative to PEUU there was 94%, 94%, 92%, and 90% mass remaining 

after 8 weeks in PBS respectively. Addition of collagenase, reduced these values to 85%, 82%, 

81%, and 75% respectively.  Further, with samples containing 50% collagen relative to PEUU 

there was 44% mass remaining after collagenase incubation versus 57% mass remaining without 

enzyme.    Results with 60% and higher collagen relative to PEUU demonstrated even lower 

mass remaining down to 6% and 3% for 90% collagen without or with collagenase.  Results at 8 

wks for all samples are summarized in Table 3-3.   
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Figure 3-8.  Mass remaining of electrospun biohybrid scaffolds as result of incubation time 
in buffer with or without collagenase. (% PEUU / % collagen; + indicates with collagenase) 
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Table 3-3.  Summary of 8 wks in vitro degradation for electrospun PEUU/collagen. 

 

  Mass Remaining Mass Remaining at  

Sample at 8 wks (%) 8 wks w/ collagenase (%) 
e-PEUU 94 ± 3 90 ± 2  
e-PEUU/Col (97.5/2.5) 94 ± 3 85 ± 7 
e-PEUU/Col (95/5) 94 ± 3 82 ± 8 
e-PEUU/Col (90/10) 92 ± 3 81 ± 7 
e-PEUU/Col (80/20) 90 ± 2 75 ± 5 
e-PEUU/Col (50/50) 57 ± 2 44 ± 5 
e-PEUU/Col (40/60) 31 ± 5 25 ± 2  
e-PEUU/Col (30/70) 24 ± 5 19 ± 3 
e-PEUU/Col (20/80) 11 ± 3   8 ± 1 
e-PEUU/Col (10/90)   6 ± 1   3 ± 2 
e = electrospun scaffold; Col = collagen   

 
 
 
 
3.3.5 Cell adhesion on PEUU/collagen scaffolds 

 

HUVECs cultured on PEUU electrospun scaffolds demonstrated cell adhesion at 122 ± 11 % of 

tissue culture polystyrene (TCPS).  The presence of blended collagen demonstrated increased 

cell adhesion relative to TCPS for (p <.05) (Figure 3-9).  For 2.5% collagen added, cell adhesion 

was similar to electrospun PEUU at 120 ± 8 %.  For 10% collagen added relative to PEUU, cell 

adhesion was significantly larger compared with both TCPS, cast PEUU films and electrospun 

PEUU alone (p < 0.05).  HUVECs appeared attached and spread on electrospun PEUU surfaces 

with apparent nuclei visible as imaged by SEM in Figure 3-10.  
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Figure 3-9.  HUVEC adhesion on electrospun PEUU/collagen scaffolds 
compared with cast PEUU film.  Data are normalized to TCPS. (p < 0.05) 

Figure 3-10.  Representative HUVEC morphology on electrospun PEUU. 
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Table 3-4 summarizes rat smooth muscle cell adhesion relative to TCPS after 1 day in 

culture on electrospun PEUU and electrospun PEUU/collagen scaffolds.  Electrospun PEUU 

exhibited increased SMC adhesion as reflected by an MTT absorbance value 118% of TCPS.  

Collagen or gelatin presence led to significant increases in SMC adhesion onto electrospun 

PEUU/collagen for samples containing 5%, 10%, 20%, 50%, and 70% collagen relative to both 

electrospun PEUU alone and TCPS with values ranging 160-200% of TCPS (p < 0.05).  Electron 

micrographs (not shown) qualitatively supported this result showing surfaces more confluent and 

with more spread cells for samples containing collagen versus PEUU alone.  A typical image 

representing SMC morphology 1 day after cell seeding onto electrospun PEUU is shown in 

Figure 10.  The cells appeared spread and attached to the electrospun scaffolds.  No differences 

were observed in the cell morphologies between electrospun PEUU and the various electrospun 

PEUU/collagen samples aside from the relative amount of adherent cells.  It is of note that SMC 

adhesion was greater even on samples containing primarily gelatin as indicated by CD results.   

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3-4.  SMC adhesion on biohybrid scaffolds. 
Sample % TCPS 
e-PEUU 117.9 ± 12.8 
e-PEUU/Col (95/5)* 174.3 ± 16.4 
e-PEUU/Col (90/10)* 158.6 ± 8.8 
e-PEUU/Col (80/20)* 175.5 ± 16.9 
e-PEUU/Col (50/50)* 196.9 ± 63.0 
e-PEUU/Col (40/60) 140.7 ± 18.2 
e-PEUU/Col (30/70)* 161.0 ± 20.7 
e-PEUU/Col (20/80) 123.5 ± 8.5 
e-PEUU/Col (10/90) 107.2 ± 16.2 
e = electrospun scaffold; Col = collagen; * (p < 0.05) 
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Figure 3-11.  Representative SMC morphology on electrospun PEUU. 
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3.4 DISCUSSION 

 

It was desired to incorporate bioactivity to develop scaffolds capable of increased cellular 

interactions as well as enzyme sensitive degradation.  By incorporating these properties into 

polymer scaffolds, scaffolds that degrade at least in part, due to cellular infiltration and enzyme 

secretion might be produced.   To accomplish this design we blended PEUU with type I bovine 

collagen in HFIP.  It was previously shown by Matthews et al. that this type of collagen can be 

electrospun in HFIP and still retain its characteristic banding [89].  Continuous fibers of 

PEUU/collagen blends were spun at all of the polymer / protein ratios examined.  To achieve this 

it was necessary to modify some electrospinning process variables to attain continuous fibers and 

avoid transitioning to electrospraying.  The most common modification was a slight increase in 

voltage magnitude charged to the polymer solutions.  For some of the higher collagen 

concentrations studied, it was necessary to increase the solution feedrate.  This increase in 

feedrate may have contributed to the changes in fiber diameter qualitatively observed in Figure 

3-1 at these concentrations. 

Water in air contact angles were found to decrease as a function of the amount of 

collagen blended with PEUU to give values ranging from 75° for PEUU alone to less than 40° 

with 50% collagen blended.  To illustrate that collagen was present after treatment with HFIP, 

the FTIR spectrum of PEUU was subtracted from the spectrum for a PEUU/collagen (50/50) 

blend.  The resulting spectrum yielded peaks characteristic of collagen as reported previously by 

other groups [108, 109].  The presence of collagen in the electrospun scaffolds was visualized by 

staining with picrosirius red.  This stain, specific for collagen, reacts through its sulphonic acid 

groups with the basic groups of collagen.  The extended dye molecule aligns parallel with 
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structurally intact collagen fibers resulting in increased birefringence under polarized light [106].  

The scaffolds containing blended type I collagen stained positive for picrosirius red with 

increased absorbance as a function of increased collagen content (p < 0.05 for 20%, 50%, and 

80%).  The slight decrease of the 90% collagen sample may have been a result of the lower 

mechanical stability and slight shrinkage of the high collagen sample after staining and NaOH 

treatment.  The picrosirius absorbance trend provides some insight into the morphology of the 

blends indicating the presence of collagen at the fiber surface.  Samples at lower collagen 

contents such as 2.5%, 5%, and 10% collagen may have more PEUU present on the fiber surface 

compared with 20% and greater collagen samples.  In addition to the trend of total picrosirius red 

binding, increased birefringence under polarized light was observed with samples containing at 

least 20% collagen, further suggesting the presence of non-denatured collagen in the scaffolds.  

In processing a triple helical biomacromolecule such as collagen in solution it is 

important to characterize its structure retention in the resulting scaffold.    Structure retention is 

important in providing maximal bioactivity to the scaffold in terms of its ability to influence cell 

adhesion or enzymatic degradation.  Structural information may also provide insight into the 

mechanical property contribution from the electrospun collagen.  Circular dichroism 

spectroscopy is a technique used to compare protein structure upon some pertubation.  When 

circularly polarized light passes through a chiral protein solution it becomes elliptically polarized 

light.  Ellipticity is measured versus wavelength and the various transitions observed give 

valuable information regarding the secondary structure of proteins.  For example, CD can give a 

relative measure of collagen triple-helical content through comparison of the minima (ππ* amide 

transition) at 197 nm and maxima (nπ* transition) at 221 nm of the collagen spectrum [110].  

From the CD results on collagen released from electrospun PEUU/collagen blends, all samples, 
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including electrospun collagen alone, showed signs of some secondary structure modification.  

This slight modification likely resulted from exposure to the HFIP solvent.  These results are 

consistent with those reported by Doillon et al. that HFIP modified the secondary structure of 

collagen [111].   This report also found that cell growth was not impaired on post-HFIP treated 

collagen [111].  Samples with less than 50% collagen appeared to consist mostly of denatured 

collagen or gelatin and PEUU.  This greater loss of triple helix structure was perhaps due to the 

presence of larger amounts of PEUU disrupting the collagen hydrogen bonding.  In general, 

samples with higher collagen content (collagen > 50%) possessed greater evidence of triple 

helical retention with ellipticity difference values lower than that of denatured collagen, 

indicating at least partial collagen structure retention at these concentrations. 

While most porous scaffold processing techniques greatly reduce the mechanical 

properties relative to the bulk polymer, electrospinning retains a great deal of the strength and 

distensibility of the bulk PEUU.  In general, the incorporation of collagen led to slight decreases 

in mechanical properties such as tensile strength in the samples containing 2.5%, 10% and 50% 

collagen.  Larger decreases in tensile strength were observed in samples containing 60% and 

greater collagen.  The collagen molecules may act to reduce hydrogen bonding interactions 

between the polyurethane molecules thus eliminating some of the physical crosslinking that give 

polyurethanes their impressive mechanical properties.  It was unexpected that the high collagen 

content samples would still be distensible with elongations of at least 240% since the electrospun 

collagen sample (without PEUU) was extremely brittle and could not be removed from the 

collection plate for testing.      

In order to develop scaffolds that mimic the function of the native extracellular matrix, 

the incorporation of a biomacromolecule such as collagen would be ideal to guide and support 
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cell adhesion.  The data show increased smooth muscle cell adhesion to samples containing 

collagen and gelatin.  High adhesion values resulted even from samples containing primarily 

gelatin   This trend may result simply from increased fibronectin from the culture medium 

binding to gelatin.  It is well known that denatured collagen possesses greater binding affinity for 

fibronectin than structurally intact collagen because the binding sites on the interior of the triple-

helical collagen may be inaccessible [25].  Further, another factor that may contribute to larger 

cell adhesion may be the greater mechanical stability of the samples with 50% or less collagen 

incorporated.  Samples containing at least 50% collagen experienced some slight contraction 

with time after cell seeding.  This effect was most prominent in the samples with 80% and 90% 

collagen.   

The electrospun PEUU / collagen scaffolds degraded at rates that could be attractive for 

soft tissue engineering applications.  By adjusting the collagen concentration relative to PEUU, it 

was possible to [in the presence of collagenase] accelerate the mass loss.  Slowing of degradation 

rates after 2-3 weeks for most of the collagen blended scaffolds was observed.  This may be 

explained by the loss of the exposed hydrophilic protein on the fiber surfaces, followed by the 

exposure of less rapidly degrading components (PEUU) at time points greater than 3 weeks.  Of 

note, most scaffolds still retained greater than 100% elongation (results not shown) after the 8 

week degradation period.  Furthermore, this degradation study may not accurately portray the 

complex degradation process involved in vivo.  The presence of complex enzyme systems along 

with the potential inflammatory response of a wound bed could lead to even faster degradation 

rates in vivo.   Finally, these materials are designed to be cultured under cyclic loading, which 

would also be expected to result in increased degradation. 
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4.0  ELECTROSPINNING OF URINARY BLADDER MATRIX BASED 
ELASTOMERIC SCAFFOLDS 

 
 
 
 

4.1  INTRODUCTION 
 

 

There exists a need for biodegradable materials that possess bioactive components and also 

exhibit elastomeric mechanical properties similar to native tissue.  These materials may be 

utilized in a large number of applications involving wound healing and tissue regeneration.  

Scaffolds derived from the extracellular matrix (ECM) of tissues have been successfully studied 

in a broad array of clinical arenas.  These applications include constructive remodeling of the 

urinary tract, skin, vascular tissue and musculotendinous structures [41, 112-114].  However, 

they remain limited for some applications by their inherent mechanical properties.  Synthetic 

scaffolds can be molecularly designed for desired mechanical properties, biodegradability, and 

processability, but are limited in terms of the breadth of bioactivity that can be prescribed.  The 

objective was to create a hybrid matrix that imparted the mechanical properties of a 

biodegradable elastomer to ECM and that could be processed into a microporous scaffold format.  

Specifically, we combined a biodegradable poly(ester urethane) urea (PEUU) with porcine 

urinary bladder matrix (UBM) and utilized electrospinning to create elastomeric hybrid scaffolds 

that were characterized for their morphologies, tensile properties, biodegradation rates, and 

cytocompatibility. 
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4.2  METHODS 

 

4.2.1 Electrospinning UBM/PEUU scaffolds 

 

PEUU was synthesized from polycaprolactone diol and 1,4-diisocyanatobutane with chain 

extension by putrescine as previously reported [15].  PEUU transparent films were cast from a 3 

wt% solution in DMF and dried under vacuum for 48 h.  Urinary bladder matrix was obtained 

through collaboration with the laboratory of Professor S.F. Badylak of the University of 

Pittsburgh.   

Briefly, porcine urinary bladders were harvested from pigs immediately following 

euthanasia.  Connective tissue and adipose tissue were removed from the serosal surface and any 

residual urine was removed by multiple water rinses.  The tunica serosa, tunica muscularis 

externa, the tunica submucosa, and most of the tunica muscularis interna were mechanically 

removed and the luminal urothelial cells of the basement membrane were dissociated by soaking 

in 1.0 N saline solution.  After this step, all that remained was the basement membrane plus the 

subjacent tunica propria.  This bi-laminate material was referred to as urinary bladder matrix 

(UBM).  UBM sheets were disinfected for two hours on a shaker in a solution containing 0.1% 

(v/v) peracetic acid, 4% (v/v) ethanol, and 95.9% (v/v) sterile water.  Peracetic acid residue was 

removed by washing twice with sterile PBS (pH=7.4) and twice with sterile water for 15 min 

each time.  UBM sheets were subsequently lyophilized and powdered.  One gram of lyophilized 

UBM powder and 100 mg pepsin were added to 100 mL of 0.01 M HCl under mechanical 

stirring for 48 h at room temperature.  After pepsin digestion, the digest was aliquotted and 
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stored at -20°C until use or at 4°C after initial thawing.  UBM digest was subsequently 

lyophilized before re-dissolving for electrospinning. 

For electrospinning UBM was dissolved in hexafluoroisopropanol at various 

concentrations (6, 9, 10, 12, and 15 wt%).  UBM and PEUU were also blended in 

hexafluoroisopropanol at 6 wt% (0, 25, 50, 75 solute wt% UBM) and then electrospun prior to 

electrospinning.  A similar method to that described previously was utilized for electrospinning 

[115].  The electrospinning process consisted of feeding polymer solution at 1.0 mL/min through 

Teflon tubing to a stainless steel capillary located 15 cm from an aluminum disc.  Samples were 

electrospun by charging the solution at 10 kV and the aluminum target at -10kV.  The target was 

also attached to an x-y stage translating in a square pattern of 5 cm step distances to produce 

scaffolds of uniform thickness.   

 

4.2.2 Electrospun UBM/PEUU scaffold characterization  

 

Samples were sputter coated with Pd/Au and imaged with SEM to characterize scaffold fiber 

morphologies.  Uniaxial tensile testing was completed according to ASTM D638-98.  Rat 

vascular smooth muscle cells (SMCs) were seeded onto scaffolds at a density of 20 x 104 

cells/mL and cell adhesion was quantified 1 day after seeding using the MTT mitochondrial 

activity assay.   For confocal microscopy, cell/scaffold constructs were fixed with 2% 

paraformaldehyde for 2h,  permeabilized with 0.1% Triton x-100 for 45 min, and stained with 

draq-5 nuclear stain (Biostatus Ltd) and  rhodamine phalloidin (Molecular Probes) for 30min.  

Imaging was done on a Leica TCS-SL laser scanning confocal microscope.  Representative 

images were taken as individual scans or as a series of stacked images.   
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 In vitro scaffold mass loss was measured in PBS at 37°C over 2 wks.  Dry scaffolds were 

weighed and immersed in 15 mL of PBS (pH = 7.4) and incubated at 37°C.  Samples were 

removed at the time points studied and lyophilized for 48 hours before weighing.  Mass 

remaining was calculated as 

Mass remaining (%) = m3/m1 x 100     (4-1) 

where m1 and m3 are the masses of films before and after degradation, respectively. 
 

 

 

 

4.3 RESULTS AND DISCUSSION 

 
 
4.3.1  Electrospun UBM scaffolds 
 

The process of electrospinning occurs when a polymer solution is charged with a high voltage 

that generates an electrical force that can extrude a polymer jet.  This jet then breaks down to 

sub-micron scale fibers through a complicated bending and whipping process.  During the 

process, solvent is evaporated and the dry fibers can be collected on a grounded or oppositely 

charged conductive surface in the form of a non-woven fiber scaffold.  The resulting nano-

fibrous scaffold morphology mimics actual native ECM architecture.   

In this study, it was first evaluated whether it was possible to electrospin urinary bladder 

matrix digest alone using an appropriate electrospinning solvent such as HFIP.  Solution 

concentration is an important variable when electrospinning so that we first investigated the 

effect of UBM concentration on resulting scaffold morphologies.  UBM was dissolved in HFIP 

at various concentrations (6, 9, 10, 12, 15 wt%) and electrospun.   At a concentration of 6 wt%, 
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electrospinning of continuous fibers was not achieved and instead electrospraying of UBM 

droplets occurred.  Electrospinning of fibers was possible at concentrations of 9wt% and greater 

but UBM agglomerates were present at all concentrations.  Electron micrographs demonstrating 

the UBM electrospun scaffold microstructure are shown in Figure 4-1.  In addition, electrospun 

UBM was very water soluble and a fragile, brittle material not ideally suited for use as a load 

bearing scaffold.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1.  Morphologies of electrospun UBM at 9 wt% (a), 10 wt% (b), 12 wt% (c), 
and 15 wt% (d) by SEM.   
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4.3.2  Electrospun UBM/PEUU scaffolds 
 

 

To improve on the limited mechanical properties of electrospun UBM alone, PEUU was blended 

into the spinning solution.   With UBM/PEUU blends, continuous fibers could be fabricated at 

concentrations as low as 6 wt%.  Continuous artifact free fibers were observed as UBM/PEUU 

ratios of 25/75, 50/50, and 75/25 as can be observed in Figure 4-2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  SEMs of continuous fiber morphologies of electrospun 
UBM/PEUU at 25, 50, and 75% UBM. 
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4.3.3  Electrospun UBM/PEUU scaffold characterization and cytocompatibility 

 

In contrast to electrospun UBM, electrospun UBM/PEUU blends were both strong and 

distensible with tensile strengths ranging from 2-13 MPa and breaking strains from 38-220% 

with values decreasing with higher UBM content (Table 4-1).   In addition, the scaffold was 

more resistant to degradation compared with electrospun UBM alone.  

Electrospun PEUU/UBM scaffolds at all concentrations supported cell attachment.  A 

fluorescent image of smooth muscle cells cultured on electrospun PEUU/UBM after 1 wk is 

shown in Figure 4-3.  The cells appear spread and healthy near the scaffold surface.  Cell 

adhesion was similar to tissue culture polystyrene for all samples except those containing 75% 

UBM, which had significantly higher adhesion (151% of TCPS, p<0.05).  (Table 4-1).  Mass 

loss increased at higher UBM content with values ranging from 18% to 66% at 2wks for UBM 

based electrospun samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3.  Confocal micrograph of SMCs cultured on electrospun UBM / 
PEUU (50/50) for 10 days.  (red = f-actin, blue = nuclei) 
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Further efforts to characterize the bioactivity of electrospun PEUU/UBM matrices are 

ongoing.  SMC growth will be evaluated over 1 week of static culture on electrospun 

PEUU/UBM.  Circular dichroism spectroscopy will be used to study the retention of secondary 

structure of the proteins in these materials.  Lastly, subcutaneous implantation of these biohybrid 

scaffolds will occur to better evaluate their ability to generate a healing response.   

This method of combining synthetic and biological materials into nanoscale fibers can be 

applied to a broad variety of material combinations provided that appropriate solvents are 

available for the electrospinning process.  Materials can be blended into one electrospinning 

stream as performed here or also electrospun from multiple nozzles to produce a composite 

scaffold.  Multiple nozzles can be utilized when a common benign processing solvent can not be 

found for multiple materials.   Some other ECM extracts that may be utilized as the biological 

component include but are not limited to small intestinal submucosa or liver extract.     

  Urinary bladder matrix extract was combined with a biodegradable and 

cytocompatible polyurethane through electrospinning to create elastomeric nanofiber scaffolds. 

This hybrid material combination resulted in increased mechanical robustness and flexibility 

from the synthetic component and increased cell adhesion and degradation rates from the natural 

component. These hybrid scaffolds have potential to be utilized in soft tissue engineering 

applications were increased strength and elasticity may be required.   

Table 4-1.  Electrospun UBM/PEUU scaffold properties. 
 

  Tensile  Breaking  SMC Adhesion  Mass Loss 
% UBM / % PEUU Strength (MPa) Strain (%) (% TCPS) 2wks (%) 

0/100 13 ± 4 220 ± 80 111 ± 14   5 ± 3 
25/75 12 ± 1 141 ± 11 104 ± 14 18 ± 2 
50/50  5 ± 2  85 ± 28  127 ± 25 42 ± 1 
75/25     2 ± 0.1 38 ± 1 151 ± 20 66 ± 1 
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5.0 FABRICATION OF BIOMIMETIC ALIGNED NANOFIBER MATRICES 
 
 
 
 

5.1 INTRODUCTION 
 

 

Scaffolds for engineering mechanically robust tissue such as cardiovascular tissue would ideally 

be mechanically compliant and anisotropic to imitate the complex mechanical behavior of the 

native tissue.  Anisotropy is of interest in creating oriented cellular structures and to control 

stress translation during tissue mechanical conditioning.  Most load bearing soft tissues exhibit 

an exponential-like stress-strain response, “the J-curve”, with the initial compliance as a result of 

stretching of coiled and flexible elastin fibers followed by a stiffening response from the high 

tensile strength collagen fiber component [116].  This type of mechanical response would be 

ideal to mimic in biodegradable, porous scaffolding for functional tissue engineering.   

Biodegradable elastomers, like the cytocompatible polyurethanes developed in our 

laboratory, represent attractive alternatives to the more common stiff biodegradable polyesters 

utilized in tissue engineering.  These materials can be processed into scaffolds suitable for in vivo 

placement or for support of in vitro cellular adhesion and growth by various processing 

techniques.  These materials can also be exposed to cyclic straining with little plastic 

deformation.    

Engineered tissues should ideally mimic the actual mechanical behavior of the original 

healthy tissue sought to replace.  Actual tissues can be considered sophisticated nanofibrous 

composites with varying degrees of mechanical anisotropy.  Therefore, a method to fabricate 
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nanofibrous scaffolds will controlled levels of anisotropy is warranted.  This type of process 

would allow fabrication based control of mechanical properties appropriate for each specific 

tissue type.      

One process, electrospinning, where an electric field overcomes surface tension to 

generate and draw nanoscale fibers, can produce scaffolds with extracellular matrix-like 

morphologies that retain mechanical strength and flexibility while also permitting protein 

incorporation into spun fibers to impart bioactivity [83, 115, 117].  Furthermore, electrospun 

scaffolds of random or aligned fiber morphologies can be fabricated by utilization of high speed 

rotating targets.  This method suggests that varying degrees of fiber alignment may be achieved 

by modifying the rotational speed of the target [118].  Another attractive facet of this type of 

nanoscale fiber alignment is that it has been shown to influence cell growth, morphology, and 

extracellular matrix production.  For example, smooth muscle cells have been demonstrated to 

align themselves on aligned PLCL electrospun fibers [90].   

The objective was to fabricate biodegradable elastomeric scaffolds that approximate soft 

tissue mechanical anisotropy.  This objective was achieved by electrospinning biodegradable 

polyurethanes onto a high speed rotating target.  The scaffold morphologies, mechanical 

properties and smooth muscle cell response have been characterized as a function of target 

rotation velocity.   
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Figure  5-1.  Rotating aluminum barrel target (4.5″ diameter) utilized to produce 
anisotropic electrospun PEUU scaffolds at speeds from 0 to 2300 rpm. 

5.2  METHODS 

 

5.2.1 Aligned scaffold fabrication 

 

Cytocompatible poly (ester urethane) urea (PEUU) was synthesized from polycaprolactone diol 

and 1,4-diisocyanatobutane with subsequent chain extension by putrescine as described 

previously [15].  PEUU transparent films were cast from a 3 wt% solution in DMF and dried 

under vacuum for 48 h.  5 wt% PEUU in hexafluoroisopropanol (HFIP) was fed at 1.0 ml/hr by 

syringe pump into a Type 316 stainless steel capillary (Small Parts) suspended 13 cm vertically 

over a 4.5″ diameter aluminum mandrel (Figure 5-1). PEUU was charged with +12 kV and the 

aluminum target with -7 kV using high voltage generators (Gamma High Voltage Research).  

Aligned PEUU fibers were formed by electrospinning onto the target rotating at speeds of 0 to 

2300 rpm or linear velocities from 0.0 to 13.8 m/s.  Scaffolds were allowed to dry overnight at 

room temperature and then placed under vacuum for 48 h at 30°C.   
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5.2.2  Aligned scaffold characterization 

 

For scaffold morphology, electrospun samples were sputter coated with Pd/Au and imaged with 

scanning electron microscopy (SEM, JEOL JSM6330F) to characterize fiber morphologies. 

These samples were cut while keeping the known preferred axis of fiber alignment parallel to the 

y-axis of the SEM.  Six images were taken from random locations of each sample to minimize 

local orientation effects.  

 To quantify fiber orientation from SEM images, custom image analysis software was 

designed in collaboration with the Biomechanics Laboratory of Professor M.S. Sacks of the 

University of Pittsburgh.  Briefly, fiber alignment was measured using an algorithm developed 

by Chaudhuri [119], modified by Karlon [120] and coded in MATLAB software (MathWorks) 

[121].  The data acquired from each image were then placed into a histogram. The histograms 

were then averaged to result in the orientation data.   

For X-ray diffraction (XRD) to characterize scaffold crystallinity, samples were mounted 

onto a standard XRD specimen holder for analysis so that the fiber orientation was parallel to the 

X-ray beam. Samples were analyzed on a PANalytical X’Pert Pro diffractometer utilizing copper 

radiation.  Porosity was measured by comparing the densities of electrospun scaffolds and cast 

PEUU films in the following equation, 

100)/1( ×−= fePorosity ρρ      (5-1) 

where ρe is the density of the electrospun scaffold and ρf is the density of the cast PEUU film. 

 In further collaboration with Professor M.S. Sacks, biaxial mechanical properties were 

characterized under cyclic loading in perpendicular axes.  This method has been described 

previously [2].  Briefly, square 2-cm by 2-cm samples are attached to the carriages of the device 
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using surgical staples at the end of two sutures.  Samples were marked in four spots (1-mm 

diameter) in the central 4-mm by 4-mm area of the sample using tissue dye (Cancer Diagnostics).  

These spots were employed to calculate local strains using established methods established by 

Sacks [2].  Load is measured in perpendicular directions by utilizing two load cells. Diagrams of 

the biaxial testing device and testing sample are shown in Figure 5-2.   

 Stress along the longitudinal and circumferential axes was measured as force 

divided by unloaded cross-sectional area.  All testing was performed in phosphate buffered saline 

at room temperature.  Elongation was determined from the displacement of 4 marks on the 

surface of the specimen.  The axial stretches λPD=F11 and λXD=F22 were measured, from the 

deformation gradient tensor where PD and XD refer to the preferred (more aligned) and cross-

preferred (less aligned) fiber directions, respectively.  For all tests, the maximum membrane 

tension was chosen as 90 N/m.  This value was chosen to compare with previous studies on 

valve tissues [122].  All test protocols maintained a constant ratio of membrane tension of 

PD:XD during cycling.  Runs started with tensions of each axis equal to 90 N/m. The next 7 runs 

used ratios of tension PD:XD of 9:90, 45:90, 67.5:90, 90:90, 90:67.5, 90:45, and 90:9 N/m, 

respectively.  Data were presented as mean ± standard deviation and group differences. 

 

 

 

 

 

 

Figure  5-2.  Schematic of biaxial mechanical testing device (left panel) and 
sample preparation (right panel).  Reproduced from Sacks et al. [2]  
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5.2.3  Smooth muscle cell growth and morphology 

 

PEUU scaffolds of random (target linear velocity = 0 m/s) or aligned (target linear velocity = 

13.8 m/s) morphologies were evaluated for their ability to support smooth muscle cell (SMC) 

growth.  Samples were punched into 6-mm discs and sterilized by 70% ethanol for 6h, rinsed 

multiple times with PBS, placed under UV light for 16 h and placed in SMC media overnight in 

an incubator.  PEUU discs were then placed in wells of a 96-well TCPS plate for cell seeding.   

For smooth muscle culture, media consisted of DMEM supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin.  Vascular smooth muscle cells isolated from a rat 

aorta [107] (SMCs, 8th passage) were statically seeded on scaffolds at a density of 20 x 104 

cells/mL.  SMC proliferation was evaluated at days 1, 3, 5, and 7 using the MTT assay (n = 5 per 

sample studied).  Samples were also rinsed with PBS, fixed with 2.5% glutaraldehyde and 1% 

osmium tetraoxide in PBS and subjected to graded ethanol dehydrations before being critical 

point dried, sputter-coated and then imaged by SEM to observe cellular morphology. 

 
 
 
 

5.3 RESULTS 

 

5.3.1  Aligned scaffold fabrication and analysis 

 

Continuous electrospun fibers were fabricated and various degrees of fiber alignment were made 

possible by adjusting the rotation speed of the mandrel.  Fiber alignments ranged from random 

(target linear velocity 0.0 m/s) to highly aligned (13.8 m/s) as shown in Figure 5-3.  No obvious 
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Figure 5-3.  Fiber morphologies of PEUU electrospun onto a mandrel rotating at 0 to 2300 rpm (linear 
velocities of  0 to 13.8 m/s) as imaged by SEM. 

degrees of alignment were obvious at mandrel velocities of 1.5 m/s or less and the fiber matrices 

could be considered isotropic.  At linear velocities of 3.0 m/s or greater, various degrees of fiber 

alignment were obtained.  This alignment became increasingly visible up to 13.8 m/s (Figure    

5-3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The custom image analysis software enabled accurate quantification and characterization 

of fiber alignment from SEMs of electrospun PEUU samples (Figure 5-4).  Alignment 

histograms mimicked what could be observed qualitatively by exhibiting increased fiber 

alignment at target velocities of 3.0 m/s or greater.  Values shown in Figure 5-4 further illustrate 

that by holding all electrospinning process variables constant except target mandrel velocity, 

aligned and anisotropic matrices may be fabricated.   
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XRD was utilized to measure crystallinity of PEUU samples electrospun at 0, 250, 750, 

and 2300 rpm, which correspond to linear velocities of 0.0, 1.5, 4.5, and 13.8 m/s (Figure 5-5).  

Percent crystallinity values were relative and the 2500 rpm sample exhibited the largest intensity 

maxima peak so was assumed 100% crystalline.  Percent crystallinity of samples from other 

speeds was measured as a percentage of the 2500 rpm sample.  As evidenced in Figure 5-5 and 

summarized in Table 5-1, crystallinity increased as a function of mandrel velocity.  In contrast, 

scaffold porosity, decreased with mandrel velocity (Table 5-1) from values of 82% to 72% at 

speeds ranging from 0.0 m/s to 13.8 m/s. 

Figure 5-4.  Fiber alignment as a function of mandrel linear velocity from 0 to 13.8 m/s using 
custom analysis program.  (Data courtesy of T.Courtney) 
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Figure 5-5.  XRD spectra of PEUU electrospun at various rpm speeds.  
 

 

 

 

 

 

 

Table 5-1.  Summary of aligned scaffold properties and morphologies. 
  

Mandrel Mandrel     Fiber 

rpm Linear Velocity (m/s)  Porosity (%)  Crystallinity (%) Morphology 
0 0.0 82 ± 5 37 Random 

50 0.3 - - Random 
250 1.5 78 ± 4 58 Random 
500 3.0 - - Aligned 
750 4.5 72 ± 4 72 Aligned 

1500 9.0 - - Aligned 
2300 13.8 72 ± 2 100 Aligned 
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5.3.2  Biaxial mechanical properties 

 

Biaxial mechanical testing of PEUU electrospun at all mandrel velocities was conducted in the 

preferred and cross-preferred scaffold directions and results are displayed in Figure 5-6.  For 

PEUU samples electrospun at 1.5 m/s and lower speeds, there was no apparent difference 

between the stress-strain curves of either the preferred or cross-preferred directions (maximum 

stretch, λ≅1.2).  At mandrel velocities greater than 1.5 m/s, the scaffolds became increasingly 

anisotropic.  Highly aligned scaffolds like that fabricated at 13.8 m/s exhibited a stiff fiber-like 

mechanical behavior for the preferred axis and a more flexible, compliant behavior along the 

cross-preferred axis.  Upon comparing this sample to previously reported planar biaxial 

mechanical property results from the native pulmonary heart valve, a strong similarity was 

observed in mechanical behavior [123].   One can notice the similar stiff behavior of both the 

preferred direction of PEUU and the circumferential (circ) direction of the pulmonary valve 

(PV).  The cross-preferred direction also mimics the mechanical response of the radial direction 

of the PV.  This initial compliant response followed by a later stiffening effect, “the J-curve,” as 

seen in the XD direction is difficult to achieve with synthetic materials [124]. 
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Figure 5-6.  Biaxial mechanical properties of electrospun PEUU scaffolds as a function of fiber 
direction and mandrel velocity. (Data courtesy of T. Courtney) 

Figure 5-7.  Comparison of biaxial tensile properties of PD and XD of aligned 
electrospun PEUU (2300 rpm) versus the circ and radial axes of a bioprosthetic heart 
valve.  (Data courtesy of T. Courtney) 
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5.3.3 Smooth muscle cell growth and morphology 
 

 
Smooth muscle proliferation was measured on random or highly aligned electrospun PEUU at 1, 

3, 5, and 7 days (Figure 5-8).  At either 1 day or 7 days of culture no significant difference was 

observed between cell numbers on TCPS, random, or aligned PEUU.  However, when examining 

SMC morphology on these materials, it was observed that SMCs cultured on random scaffolds 

exhibited random spread morphologies while those on the aligned scaffolds exhibited high 

degrees of alignment parallel to the fiber direction (Figure 5-9).      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-8.  Smooth muscle cell growth on random and aligned electrospun 
PEUU compared with TCPS. 
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Figure 5-9.  Morphologies of random (top) and aligned (bottom) electrospun 
PEUU before (left panels) and after (right panels) cell culture. 
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5.4 DISCUSSION 

 

Due to its ability to mimic the scale and architecture of the native extracellular matrix, 

electrospinning has become more frequently employed by the tissue engineering community [93, 

113, 117, 125, 126].  However, there are fewer examples in the literature describing methods to 

fabricate highly aligned electrospun scaffolds.  Matsuda et al. fabricated tubular constructs onto 

mandrels at low or high rotation and quantified the different uniaxial mechanical response [127].  

Here, we have developed a method to fabricate scaffolds of controlled fiber alignment, 

characterized the mechanical response with more physiologically relevant biaxial testing, and 

produced biodegradable elastomeric scaffolds more appropriate for functional engineering of soft 

tissue.   

 From results seen here and other results obtained by Professor M.S. Sacks, fiber 

orientation seems to begin with step-function behavior at a target linear velocities of 2 m/s [121].  

This phenomenon may be explained when considering the fabrication process in more detail.  In 

the electrospinning process, the fiber is first “electrically extruded” as a straight polymer jet that 

approaches the mandrel but at some point becomes curved and more complicated.  This curved 

path results from an electrically-driven bending instability within the charged jet.  The trajectory 

of a typical segment can move in and out towards the direction of the applied electric field 

between the nozzle and mandrel.  This segment may also be influenced from distant segments of 

the jet.  The curved segment is bent and elongated by self-repulsion of electrical charges within 

that segment.  When utilizing a moving mandrel as the target, the surface velocity of the mandrel 

would be expected to exceed fiber delivery rate in order for mandrel rotations to induce fiber 

orientation.   



 

 

 

103

For example, using a flow rate of the 5% PEUU solution of 1.0 mL/hr through a 1.19 mm 

inner diameter capillary, the velocity of the feed solution at the nozzle would be 9.4x10-6 m/s. 

Assuming a single fabricated fiber being delivered at 0.05 mL / hr (5% of 1 mL/hr for 5% PEUU 

in HFIP), the fiber diameter would have to be approximately 940 nm in diameter so that fiber  

velocity would approximate 2 m/s.  Thus, it appears there can be 3 to 5 fibers depositing 

concurrently to achieve a 2 m/s velocity.  Random scaffolds electrospun onto target linear 

velocities below 2m/s could then result from the solution flow rate exceeding the 2m/s threshold. 

 In the scaffold approach to tissue engineering, it is the role of the scaffold to provide 

mechanical and structural support for cells until they develop into tissue that can bear the 

mechanical load.  The structural and mechanical features of the scaffold can also interact with 

cells to influence cell morphology and ECM production.  For example, Xu et al. have 

demonstrated smooth muscle cell alignment on aligned fiber scaffold [90].  Others have shown 

that aligned nanofiber scaffolds are appropriate for mechanical stimulation and can result in 

increased ECM production by fibroblasts [128].  The aligned elastomeric scaffolds developed 

here possess properties that mimic actual tissue mechanical anisotropy as well as directly 

influence cell morphology.  These materials would be expected to be ideal candidates for cyclic 

mechanical straining during culture in future studies aimed at developing functional tissue such 

as a tissue engineered heart valve.  
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6.0  CELLULAR MICROINTEGRATION 
 

 

6.1  INTRODUCTION 

 

Highly cellularized and mechanically functional engineered tissue constructs are desired to repair 

or replace diseased cardiovascular and other soft tissues.  A typical method to create such 

constructs involves fabricating biodegradable porous scaffolds that are subsequently seeded with 

cells, cultured in vitro, and then implanted.  While synthetic or processed natural material 

scaffolds can provide some mechanical support, the use of load bearing scaffolds often is 

coupled with long cell seeding and culture times to achieve high cellular densities in the scaffold 

and adequate mechanical properties for in vivo transplantation [3, 9].  Mechanically robust, 

contractile muscle or cardiovascular tissues consist of high densities of aligned cell 

morphologies.  To fabricate functional tissue, it is also desired that scaffolds are designed to both 

support cell-cell interactions as well as to direct cell alignment in mimicking this tissue structure.           

The method of electrospinning, originally patented in the 1930’s, has recently 

experienced renewed interest for tissue engineering applications [74, 83, 86, 87].  

Electrospinning is attractive to the tissue engineering community in that it permits fabrication of 

scaffolds that resemble the scale and fibrous nature of the native extracellular matrix (ECM).  

The ECM is composed of fibers, pores, and other surface features at the sub-micron and 

nanometer size scale.  Many believe that such nanoscale features directly impact cellular 
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interactions with synthetic materials such as migration and orientation [129, 130].  

Electrospinning also permits fabrication of oriented fibers to result in scaffolds with inherent 

anisotropy.  These aligned scaffolds can influence cellular growth, morphology and ECM 

production.  For example, Xu et al. found smooth muscle cell (SMC) alignment with poly(L-

lactide-co-ε-caprolactone) fibers [90] and Lee et al. submitted aligned non-biodegradable 

polyurethane to mechanical stimulation and found cells cultured on aligned scaffolds produced 

more ECM than those on randomly organized scaffolds [128].   

While electrospinning can fabricate scaffolds that possess an ECM-like fibrous structure, 

this morphology also results in pore sizes that are generally smaller (< 50 μm) and more tortuous 

than those produced by other scaffold methods such as salt leaching and thermally induced phase 

separation [81] .  Therefore, methods to seed high densities of cells into scaffolds such as 

vacuum filtration [131] are not effective in achieving a uniform distribution throughout a thick 

construct.  It has been suggested that cells statically seeded on electrospun matrices can migrate 

into the interior by displacing or enzymatically degrading individual fibers in the process [83].  

While this may be possible, an extended culture period and appropriate signals for cell migration 

into thick construct interiors might also be required.  To overcome this problem and achieve a 

highly cellularized tissue engineered construct while also providing elastomeric mechanical 

support, we have developed a microintegration approach wherein a meshwork of sub-micron 

elastomeric fibers is electrospun concurrent with cellular placement.  The constructs fabricated 

by this method were characterized for fiber and cell morphologies, mechanical properties, and 

cell viability and proliferation. 

After seeding scaffolds with high cell densities it is important to provide sufficient 

nutrient and waste transfer to preserve cell viability and support proliferation.   Reports have 
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shown that nutrient transport is often limited to diffusion alone [132].  Diffusion usually proves 

sufficient for relatively thin scaffolds of 100-200 μm.  However, with thicker scaffolds (> 200 

μm) tissue development can be limited.   Transmural perfusion has been shown to result in 

increased cell density and uniformity within cultured scaffolds [133].  Therefore, we have 

employed a perfusion bioreactor similar in design to that reported by Radisic et al. [133] to 

provide significant media convection for high density SMC growth in our microintegrated 

constructs.   

The process of SMC microintegration into electrospun poly(ester urethane)urea (PEUU) 

or PEUU and type I bovine collagen blends was investigated.  Biodegradable and cytocompatible 

PEUU based on polycaprolactone diol, 1,4-diisocyanatobutane, and putrescine was utilized as 

the elastomeric fiber material.  Cellular viability as a function of the cellular incorporation 

method was studied using trypan blue staining.  An electrospinning apparatus previously 

described was modified to produce mechanically robust cell microintegrated scaffolds that were 

cultured statically or in a trans-mural perfusion bioreactor.   Cell growth and morphology within 

the elastomeric fiber matrices were evaluated.  Tensile mechanical properties were measured 

following the microintegration process.   More recently, we have extended and reproduced this 

process to illustrate the validity of producing muscle derived stem cell (MSDC) and endothelial 

progenitor cell (EPC) microintegrated constructs 
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6.2  MATERIALS AND METHODS 

 

6.2.1   Polymer synthesis and characterization 

 

1,4-diisocyanatobutane (BDI, Fluka) and putrescine (Sigma) were distilled under vacuum.  

Polycaprolactone diol (PCL, MW = 2000, Aldrich) was vacuum dried for 48 h.  Dimethyl 

sulfoxide (DMSO) and N,N–dimethylformamide (DMF) were dried over 4-A molecular sieves.  

Stannous octoate (Sigma) and hexafluoroisopropanol (HFIP, Oakwood Products) were used as 

obtained.   

 Cytocompatible and biodegradable PEUU was synthesized from PCL and BDI with 

subsequent chain extension by putrescine as reported previously [15].  The reaction consisted of 

a two-step solution polymerization in DMSO using a 2:1:1 BDI: PCL: putrescine mole ratio.  

PEUU cast films were prepared from a 3-wt% solution in DMF and dried under vacuum for 48 h.  

PEUU was characterized for molecular weight, thermal transitions and uniaxial tensile properties 

as described previously [115]. 

  

6.2.2 Electrospinning 
 

PEUU was electrospun using a technique similar to that previously described.  In brief, PEUU 

was dissolved in HFIP under mechanical stirring at 12-wt%.  For  PEUU/collagen 

electrospinning, PEUU and type I bovine collagen (Sigma) were dissolved in HFIP under 

mechanical stirring at a ratio of PEUU/collagen of 75/25 by mass.  The polymer solution was fed 

at 1.5 mL/hr using a syringe pump (Harvard Apparatus PhD) through Teflon tubing and then into 

a stainless steel capillary (I.D. = 0.047″) located 23-cm from a conductive target.  High voltage 
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generators (Gamma High Voltage Research) were utilized to charge the polymer solution at 10 

kV and the respective target at -10 kV.     

 

6.2.3  SMC spraying / electrospraying 
 

Vascular smooth muscle cells (SMCs) isolated from rat aorta were expanded on tissue culture 

polystyrene (TCPS) culture plates under Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin [107].  SMCs were 

sprayed from a sterile air pressurized polypropylene bottle with an attached spray nozzle (Fisher) 

or electrosprayed from a sterile stainless steel capillary (I.D. = 0.047″) at 10 kV over a distance 

of 20 cm onto glass slides placed on an aluminum plate charged at -15 kV.   To shield cells from 

processing effects and in an effort to maximize viability, some cell suspensions were 

supplemented with 3-wt% bovine skin gelatin (Sigma) before spraying or electrospraying.  For 

assessment of cell viability, 50 μL of sprayed or electrosprayed SMCs in culture medium were 

added to 50 μL of 0.4% trypan blue (Gibco).  After 5 min incubation, viability was calculated as:    

% cell viability = [# unstained cells (living) / # total cells (dead + living)] x 100%. 
 
 
 
6.2.4 SMC Microintegration 
 

 
The first microintegration technique evaluated consisted of simultaneously electrospraying cells 

and electrospinning polymer with a side-by-side capillary configuration located 23-cm from the 

target as depicted in Figure 6-1 (a).  5 x 106 SMCs/mL in media were fed at 0.25 mL/min with a 

syringe pump (Harvard Apparatus) through sterile tubing into a sterile capillary charged at 5 kV.  

5-wt.%  PEUU or PEUU/collagen (75/25) was fed at 1.5 mL/hr into a capillary charged at 10 kV.  
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The target was a sterile aluminum plate charged at -10 kV located on an x-y stage (Velmex) 

translating 8-cm along each axis at a speed of 8 cm/s.   

 In order to fabricate thicker constructs with more uniform cell incorporation, a 

subsequent microintegration technique was utilized as shown in Figure 6-1 (b).  In this case, 

SMCs were electrosprayed concurrently with polymer electrospinning using a perpendicular 

nozzle configuration.   7.5 x 106 SMCs/mL were fed at 0.25 mL/min into a sterile capillary 

charged at 8 kV and located 5-cm from the target.  12 wt% PEUU was fed at 1.5 mL/hr into a 

capillary charged at 10 kV and located 23-cm from the target.  The target consisted of a sterile 

stainless steel rod (3/4″ diameter) charged at -10 kV and rotating at 200 rpm while translating 8-

cm along its axis at 8 cm/s.  5-cm by 5-cm constructs were filleted off the mandrel using a sterile 

blade by first trimming 1.5-cm off each end before removal.  A fabrication time of 45 min was 

used with both microintegration techniques.     
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Figure 6-1.  Approaches to cellular microintegration.  (a) Microintegration using a side-by-side capillary 
configuration for electrospinning polymer and electrospraying cells onto a flat target moving on an x-y stage.  
(b) Microintegration using a perpendicular capillary configuration for electrospinning polymer and 
electrospraying cells onto a rotating mandrel moving on a linear stage to result in the construct shown in (c). 
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6.2.5 Muscle derived stem cell microintegration 
 

 
Murine muscle derived stem cells (MDSCs) were obtained through collaboration with the 

laboratory of Professor J. Huard of the University of Pittsburgh.  MDSCs were isolated from 

normal newborn mice through a collagenase based enzymatic digestion method followed by 

separation based on adhesion characteristics to collagen modified tissue culture flasks (pre-plate 

method) as described previously [134].   Specifically, MDSCs were clonal colonies of cells that 

adhered at pre-plate number six.  Each pre-plate time consisted of 24 h to allow for cell 

attachment.  These cells have been demonstrated to maintain their phenotype for over thirty 

subculture periods as well as exhibit the potential to differentiate into muscle, neural, and 

endothelial cells either in vitro or in vivo.   MSDCs were cultured in media that consisted of 

DMEM supplemented with 10% FBS, 10% horse serum, and 1% penicillin/streptomycin.  

MSDCs were expanded and microintegrated using the same process variables as described above 

for SMCs. 

 

6.2.6 Endothelial progenitor cell microintegration 
 

 
Endothelial progenitor cells (EPCs) were isolated from juvenile ovine peripheral blood by a 

histopaque gradient / pre-plate method and cultured in EBM-2 medium supplemented with 

EGM-2 SingleQuots without hydrocortisone and 20% fetal bovine serum on 1% gelatin-coated 

plates.  Following 4 to 6 wks expansion and prior to seeding, EPCs were characterized by 

indirect immunofluorescence as CD31 and vWF positive and α-SMA negative.  EPCs were 

subcultured and microintegrated using identical processing conditions as described above for 

SMCs.   
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6.2.7 Scaffold / cell culture 
 

 
After fabrication, samples were immediately removed from their respective microintegration 

targets and placed in a sterile polystyrene dish with a minimal amount of culture medium to 

cover the sample.   Areas of the thin SMC microintegrated sheets fabricated on the flat target that 

appeared to possess uniform cell integration with electrospun PEUU were punched into 6-mm 

discs.  These discs were cultured statically in poly-2-hydroxyethyl methacrylate (poly-HEMA) 

coated TCPS 96-well plates with 200 μL of media in each well.  As a control, TCPS wells were 

seeded with SMCs.  Media was changed every day.   

The thicker constructs fabricated using the mandrel target were characterized initially for 

uniformity of cellular integration.  Samples for subsequent study were first cultured with a 

minimal amount of media to cover the sample for 4 h to encourage cell adhesion.  At this point, 

cells were considered adherent and an additional 15 mL of media was added to support the cells 

for 16 h of static culture.  Next, samples were either cultured statically as 6-mm discs in poly-

HEMA coated TCPS 96-well plates or under transmural perfusion in a custom designed 

bioreactor.  For perfusion culture, samples were cut into 13-mm discs and placed into 

polypropylene in-line filter holders (VWR) between silicone and Teflon o-rings and a support 

screen.   A schematic of the bioreactor as adapted from a previously reported design is shown in 

Figure 6-2 [133].  Each sample was placed in its own flow loop containing a 32-mL media bag 

(American Fluoroseal Corp), a 2.5-m length of platinum silicone tubing (Cole Parmer, 1/16″ 

I.D.) to serve as a gas exchanger, and two syringes for adding or removing media or bubbles.   A 

multi-channel peristaltic pump (Harvard Apparatus) was utilized to perfuse the loops at 0.5 mL / 

min.  50% of the media was changed every 2 days.   
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6.2.8 Characterization 
 

 
Quantification of cell viability was achieved using the MTT mitochondrial activity assay (n = 5 

per sample studied) [100].  Regions exposed to flow from samples removed from the bioreactor 

were punched into 6-mm discs for MTT.  For scanning electron microscopy (SEM) to observe 

cellular and construct morphologies, samples were rinsed with PBS, fixed with 2.5% 

glutaraldehyde and 1% osmium tetraoxide in PBS and subjected to graded ethanol dehydrations 

before being critical point dried, sputter-coated and imaged.   

Thin SMC microintegrated samples immediately and 1 day after fabrication, were stained 

with TUNEL to identify apoptotic cells as follows.  Samples were rinsed with PBS, fixed in 2% 

paraformaldehyde for 30 min then placed in PBS overnight.  Samples were then permeabilized 

Figure 6-2.  Schematic of the perfusion bioreactor employed with microintegrated  constructs.  13-mm diameter 
construct discs (a) were placed between O-rings (b) and a support screen (c) of in-line filter holders (d) 
followed by perfusion at 0.5 mL/min with a multi-channel peristaltic pump (e).  Each construct was placed in its 
own loop consisting of a 32 mL media bag (f), silicone tubing gas exchanger (g) and syringes for media 
exchange.   
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with 0.1% Triton x-100 for 45 min, and then incubated in TUNEL solution for 1 h at 37°C.  

TUNEL solution (terminal transferase, Roche) consisted of 45 μL deionized water, 20 μL cobalt, 

32 μL buffer, 2 μL biotin, and 1 μL TdT buffer (25 mM Tris-HCl, pH = 6.6, 0.2 M potassium 

cacodylate, 0.25 mg/mL BSA,).  Samples were then rinsed multiple times in PBS and then 

placed in rhodamine phalloidin (1:250, Molecular Probes) and draq5 (1:1000, Biostatus) and 

streptavidin Alexa 488 (1:200) for 1 h at room temperature.  Samples were placed on slides with 

coverslips mounted with gelvatol 1 h before imaging.     

Samples at later timepoints were rinsed with PBS, fixed with 2% paraformaldehyde, 

permeabilized with 0.1% Triton x-100 and stained with rhodamine phalloidin (1:250, Molecular 

Probes) for f-actin and draq-5 (1:1000, Biostatus Ltd) for nuclei.  Imaging was done on a Leica 

TCS-SL laser scanning confocal microscope.  Representative images were taken as individual 

scans or as a series of stacked images.   

For sectional histology, samples were fixed in 10% neutral buffered formalin, embedded 

in paraffin, cross sectioned at 10 μm and stained with Hematoxylin and Eosin or Masson’s 

Trichrome.  Construct tensile mechanical properties immediately after fabrication using the 

method shown in Figure 6-1 (b) were measured on an ATS 1101 Universal Testing Machine (10 

mm/min crosshead speed) according to ASTM D638-98 while wetted with media and 

immediately after removal from a 37°C incubator. 
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6.2.9 Statistics 
 

 
Results are displayed as the mean ± standard deviation.  One-factor analysis of variance 

(ANOVA) was utilized to evaluate cell viability, cell growth and mechanical properties using the 

Neuman-Keuls test for post hoc assessments of the differences between samples.  

 

 

 
 

6.3  RESULTS AND DISCUSSION 
 
 
 
6.3.1  Polymer characterization 
 

 
PEUU number average molecular weight was 88000 and weight average molecular weight was 

230000 as determined by GPC to give a polydispersity of 2.6.  DSC values reported a glass 

transition temperature of –55.0°C and soft segment melt temperature of 41.0°C.  Cast PEUU film 

was strong and distensible with a tensile strength of 27 ± 4 MPa and a breaking strain of 820 ± 

70 %.      

 

 
6.3.2 SMC spraying / electrospraying 
 

 
Electrospinning occurs when a polymer solution is charged to high voltage that generates an 

electrical force that can extrude out a polymer jet, which then breaks down to sub-micron scale 

fibers through a complicated bending and whipping process [87].  As stated in an earlier chapter, 

when solution parameters such as polymer molecular weight, concentration and viscosity are not 
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appropriate to fabricate continuous fibers, electrospraying occurs whereby polymer droplets are 

deposited on the target [135].  This phenomenon has been investigated for some drug delivery 

applications [136, 137] and some researchers have even electrosprayed cells encapsulated within 

hydrogels and reported no viability loss after exposure to high electrostatic potentials [138].   

To evaluate the potential cytotoxic effect of different methods to incorporate cells into 

electrospun matrices, SMCs were either sprayed from a nozzle under pressure or electrosprayed 

and SMC viability was assessed as a function of each processing variable as shown in Figure 6-

3.  These variables included spraying alone, spraying onto a target charged at -15 kV, spraying 

onto a target charged at -15 kV with PEUU electrospinning, electrospraying at 10 kV onto a 

target charged at -15 kV, and electrospraying at 10 kV onto a target charged at -15 kV with 

PEUU electrospinning.  A significant reduction in SMC viability resulted from spraying cells 

through the nozzle.   The physical forces of the pressurized spray in combination with exposure 

of cells to processing solvents may have caused this result since viability was lost both from 

spraying alone and even more so by spraying during e-PEUU fabrication.  Decreased viability 

from cell aerosol spraying has been reported by others and found to depend largely on nozzle 

diameter, spray pressure, and solution viscosity [139].   Therefore, cells were also sprayed from 

media supplemented with gelatin to increase viscosity and help protect the cells from mechanical 

and chemical stresses.  Viability was recovered yet the mechanical integrity of the PEUU 

matrices was disrupted because of gelation within the fiber network.   

In contrast to pressurized spraying, electrospraying cells did not affect cell viability or 

proliferation.  This result was significant since it was expected that the high voltage would cause 

some disruption or permeabilization of the cell membrane similar to electroporation.  With 

electroporation, when an electric field external to the cell surpasses the cell membrane 
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capacitance, a reversible membrane permeabilization occurs [140].  This technique is exploited 

as a means to deliver drugs and genes to cells.  Initial viability reports with trypan blue and 

propidium iodide staining indicated intact cell membranes after electrospraying.  Therefore, the 

cell membranes do not appear to be permanently comprised as an effect of electrospraying.  In 

fact, these results were consistent with reports by others that cells can survive exposure to the 

high voltage electric fields of electrospraying [138, 141].  Even in the presence of PEUU 

electrospinning, SMC electrospraying viability was not reduced, perhaps because the positively 

charged electrospinning and electrospraying streams repelled each other and avoided exposing 

cells to solvent prior to deposition.  Also, due to the relatively large electrospinning distance of 

23-cm, PEUU fibers were likely free of solvent by the time they were deposited.  

Electrospraying from media supplemented with gelatin resulted in reduced construct mechanical 

properties such that electrospraying from media alone was the preferred cellular incorporation 

method.   

 

6.3.3 Microintegration 
 

 
Initial attempts to microintegrate SMCs into electrospun PEUU consisted of side-by-side 

electrospraying and electrospinning capillaries and a flat conductive target moving on an x-y 

stage (Figure 6-1 (a)).  This technique yielded an approximately 100 μm thick construct after 45 

min of fabrication.  However, the area of electrospraying and electrospinning stream 

convergence was relatively small such that non-uniformity of cellular integration was an issue.  

This effect was most likely due to a stream repulsion effect from Coulombic forces [118].   
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To limit charged stream interactions the apparatus was modified such that the nozzles 

were located perpendicular to one another and the target was a rotating mandrel translating on its 

axis (Figure 6-1 (b)).  Since the electrospun polymer and electrosprayed SMC streams were 

arriving from different directions stream repulsion was minimized and the combination of 

rotation and translation of the mandrel target induced component mixing even further.  This 

electrospinning nozzle and target configuration may find other applications as a means to 

fabricate more uniform composite scaffolds by electrospinning multiple materials or introducing 

drug laden microspheres between fibers.  SMC microintegration using this configuration allowed 

fabrication of approximately 5-cm by 5-cm construct sheets of thickness ranging from 300-500 

μm as shown in Figure 6-1(c).  Scaffold thickness could be controlled by adjusting polymer 

feedrate or fabrication time.  In addition, a more uniform cellular integration was qualitatively 

visible by observing the overlap of the electrosprayed media and electrospun fibers.     

Figure 6-3.  Trypan blue staining results for SMC viability after various processing treatments.  (Spraying = SMCs 
sprayed from spray nozzle, Spraying -15 kV = SMCs sprayed from spray nozzle onto -15 kV charged target, 
Spraying -15 kV + e-PEUU = SMCs sprayed from spray nozzle onto -15 kV charged target during PEUU 
electrospinning,  Electrospraying -15kV = SMCs electrosprayed at 10kV onto -15 kV charged target, 
Electrospraying -15 kV + e-PEUU = SMCs electrosprayed SMCs electrosprayed at 10kV onto -15kV charged target 
during PEUU electrospinning. 
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6.3.4  SMC growth and morphology 
 

SMC growth in thin constructs fabricated as in Figure 6-1 (a) is summarized in Figure. 6-4 (a).  

Cell numbers for both sample types increased significantly from 1 day until 1 week in static 

culture (p < 0.05).  SMCs on TCPS increased approximately 40% from 1 day until 1 week while 

those integrated in electrospun PEUU increased by 122% during this period. Fluorescent 

imaging of SMC microintegrated PEUU indicated that cells remained spherical in shape at 1 h 

but exhibited a spread morphology after 1 day of static culture with little or no presence of 

apoptotic cells (Figure 6-5).  SEM micrographs of fixed samples at 1 week exhibited confluent 

cellular layers present beneath sub-micron diameter PEUU fibers as shown in Figure 6-6.  
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Figure 6-4.  Cell growth in thin SMC microintegrated e-PEUU constructs 
fabricated on a flat target versus TCPS over 1 week in static culture. (* p < 0.05 
increase from 1 day to 1 week) 
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Figure 6-5.  Confocal imaging of SMC integrated thin PEUU constructs immediately after fabrication (left 
panel) and 1 day after static culture (right panel).  (red = f-actin, blue = nuclei, and green = apoptotic cells) 
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Figure 6-6.  Representative electron micrographs of thin 
flat sheet SMC microintegrated samples after 1 wk of 
static culture. 
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When thicker SMC microintegrated PEUU scaffolds were submitted to this same static 

culture method, cells did not proliferate within the construct interior.  This effect was attributed 

to poor exchange of nutrients, waste, and oxygen due to diffusional limitations.  Also, cells that 

followed apoptotic or necrotic pathways remaining in the matrix could detrimentally affect the 

viability of neighboring healthy cells.  Thus, a transmural perfusion bioreactor was constructed 

to allow for increased convective and diffusive transport.  This bioreactor was adapted from a 

report by Radisic et al. who engineered contractile cardiac tissue by exposing neonatal 

cardiomyocytes seeded into collagen sponges to perfusion culture [133].  We hypothesized that 

this type of culture system would encourage SMC proliferation in our microintegrated constructs 

and the elastomeric fibers would help retain adherent cells during flow.   

Initial SMC densities in thicker microintegrated PEUU constructs fabricated as in Figure 

6-1 (b) and (c) are presented in Figure 6-7 (a).  Cell numbers as measured by MTT immediately 

after construct fabrication ranged from 8.9 x 104 to 1.6 x 105 cells / well as a function of position.  

Although no statistically significant difference was found in cell number with position, 

constructs were trimmed of 1.5-cm from each edge of the mandrel axis prior to further study.  

Cellular growth over one week with static or perfusion culture is summarized in Figure 6-7 (b).  

No significant differences in SMC number was found between days 1, 4 or 7 in static culture.  

However, for samples cultured under transmural perfusion, significantly higher SMC numbers 

were measured at day 4 and day 7 relative to day 1 (p < 0.05).   These results translate to a 131% 

and 98% increase in cellular density for perfusion culture versus static culture at day 4 and day 7 

respectively.    

A representative confocal fluorescent image of cellular morphology within the thicker 

PEUU fabricated constructs after 1 day of static culture is shown in Figure 6-8 (a).  SMCs 
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appeared spread and healthy as well as uniformly distributed within the scaffold.  In addition, 

constructs cultured under perfusion exhibited high numbers of spread, healthy appearing cells 

uniformly located throughout the samples as demonstrated in representative images of Figure 6-

8 (b, c, d).  With perfusion, SMCs were found distributed in greater abundance throughout the 

fiber matrix as well as deeper beneath the fibers.  However, at days 4 and 7 of static culture, as 

displayed representatively in Figure 6-8 (e) and (g), the SMCs appeared less abundant as well as 

exhibited less f-actin staining.  Patches of higher cell densities were found at both days 4 and 7 

of static culture near the construct surface and not deeper in the fiber network as shown in 

Figure 6-8 (f) and (h).  The morphology of SMCs at day 7 of static culture did improve slightly 

in appearance in comparison with day 4.   
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Figure 6-7.  (a) Initial cellular uniformity in SMC microintegrated e-PEUU 
fabricated on a mandrel target.  (b) Cell growth in thick SMC microintegrated e-
PEUU constructs with static versus perfusion culture.  Perfusion was initiated after 1 
day in static culture.  (* p < 0.05 increase with perfusion versus static culture)  
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Hematoxylin and eosin stains of PEUU construct cross-sections in Figure 6-9 further 

illustrated the trend of higher cellular density achieved with perfusion culture.  One can observe 

high numbers of layered cells after 1 day of static culture in Figure 6-9 (a, d).  Yet, after 4 days 

of static culture, the cells appear less spread and healthy in Figure 6-9 (b, e).  High densities of 

SMCs microintegrated within the elastomeric fiber network can be observed in Figure 6-9 (c, f) 

after 4 days of perfusion culture.   

As a result of the electrospinning set-up that we employed it was possible to induce fiber 

orientation to influence the cells to organize themselves in an aligned manner.  SMCs within the 

PEUU elastomeric fiber matrices qualitatively exhibited an aligned morphology, as seen in 

Figure 6-8 (b) for instance.  The estimated shear stress to which the SMCs integrated into e-

PEUU matrices (at approximately 80% porosity) were exposed in perfusion culture was on the 

Figure 6-8. Fluorescent micrographs of SMC microintegrated e-PEUU constructs after one day of static culture (a), 
day 4 of perfusion culture (b), day 4 of perfusion culture (c), day 7 of perfusion culture (d), day 4 of static culture 
(e), high cell number surface image of day 4 of static culture (f), day 7 of static culture (g), and day 7 of static 
culture (h).  (scale bar = 40 μm, red = f-actin and e-PEUU, blue = nuclei). 
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order of 1 dyne/cm2 [142].  This shear stress is relatively low and would not be expected to 

significantly influence cell morphology or decrease viability [143].  We observed SMC 

orientation to be parallel to the direction of scaffold fiber orientation instead of aligned with the 

perfusion flow direction. 

 
 
 

 
 

 

Cell alignment seemed even more qualitatively pronounced in the SMC microintegrated 

PEUU/collagen (75/25) samples.   One can observe the high numbers of microintegrated cells 

after 1 days of static culture in Figure 6-10 (a).  The cells are in high density but do not appear 

very spread or elongated.  This may be due to cells aligning themselves into the plane of the 

image.  For example, when observing the SMCs integrated into electrospun PEUU/collagen after 

Figure 6-9.  Hematoxylin and eosin stained sections of SMC microintegrated e-PEUU constructs after one day of 
static culture (a, c), day 4 of static culture (b, e), and day 4 of perfusion culture (c, f). 



 

 

 

127

13 days of perfusion culture (0.5 mL/min) one can observe the same cell morphology in Figure 

6-10 (c).  However, whenever the sample is sectioned along its other axis (preferred direction of 

fiber alignment), one can observe high numbers of elongated SMCs aligned with this material 

axis in Figure 6-10 (d).  Also, near the surface of the SMC microintegrated PEUU/collagen are 

aligned at 14 days after fabrication as well (Figure 6-10 (b)).   

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-10. H&E staining or SEM of SMC microintegrated PEUU/collagen (75/25). 
(a) SMCs are aligned into the plane of the sample after 1 day of static culture.  (b) 
SEM illustrates SMC alignment near the surface of PEUU/collagen after 13 days of 
perfusion culture (scale bar = 10 μm).  (c) H&E stain after 13 days of perfusion 
culture indicating cells aligned into the plane of the image.  (d) H&E stain after 13 
days of perfusion culture indicating high density cell alignment.  Note that perfusion 
was initiated at 0.5 mL/min after 1 day of static culture. 
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6.3.5 Mechanical Properties 
 

 
Tensile mechanical properties of SMC microintegrated PEUU and PEUU/collagen (75/25) 

measured immediately after fabrication are summarized in Table 6-1 and compared with 

electrospun PEUU.  Electrospun PEUU (e-PEUU) was found to retain much of the mechanical 

strength and flexibility of the cast film (reported in Chapter 2.0).  SMC microintegrated PEUU 

was found to retain a portion of the mechanical strength and distensibility of e-PEUU, with lower 

tensile strengths and higher breaking strains.  SMC microintegrated PEUU/collagen possessed 

even lower values for these parameters.  These results may be due to microintegrated SMCs and 

media disrupting the PEUU fiber network and replacing elastic fiber volume with cellular 

volume.  Yet, the measured properties are still more than sufficient for the SMC microintegrated 

PEUU or PEUU/collagen to serve as support structures for soft tissue growth and mechanical 

training.   

As a result of the fabrication process, SMC microintegrated PEUU and PEUU/collagen 

were found to have tensile properties that differed as a function of the material axis.  The axis 

orientated with the mandrel axis (preferred axis) possessed a significantly higher tensile strength 

and 100% modulus and a lower breaking strain than the axis orientated with the circumference of 

the mandrel (cross-preferred axis) (p < 0.05).  Some degree of fiber alignment in the matrices 

was induced by a combination of the stage translation speed of 8 cm/s and the mandrel length to 

diameter ratio of 8.  It was believed that this ratio provided more opportunity for the fibers to 

deposit parallel to the mandrel axis.  Since the mandrel rotation velocity was less (3 cm/s at 200 

rpm) than the translation speed, it was not expected to greatly influence fiber alignment.  As 

would be expected, the preferred fiber axis possessed a higher tensile strength and lower 

breaking strain from a more direct influence on the stretching of the fibrous microstructure of the 
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PEUU.  The cross-preferred material axis would be expected to allow more elongation at lower 

stresses since the mechanical properties would be more influenced by PEUU fiber bending than 

stretching.  By manipulating mandrel rotation and translation rates it should be possible to alter 

the direction and degree of construct anisotropy.  This inherent construct anisotropy and fiber 

orientation appeared to induce the previously mentioned SMC alignment within the matrices.   

 

 

 Initial 100% Tensile Breaking 
 Modulus Modulus Strength Strain 
Sample (MPa) (MPa) (MPa) (%) 
e-PEUU (random) 2.5 ± 1.2 2.8 ± 1.1   7.8 ± 2.3  280 ± 40 
μSMC-e-PEUU (preferred) 1.7 ± 0.2 1.4 ± 0.2   6.5 ± 1.6   850 ± 200 
μSMC-e-PEUU (cross-preferred) - 0.3 ± 0.1   2.0 ± 0.5 1700 ± 100 
μSMC-e-PEUU/collagen (75/25) (preferred) - -   3.9 ± 0.9 160 ± 40 
μSMC-e-PEUU/collagen (75/25) (cross-prefer) - -   0.7 ± 0.1 170 ± 40 
e = electrospun scaffold; μSMC = SMC microintegrated  

 
  
 
   
6.3.6 MDSC microintegration, culture and characterization 
 

 
Using identical processing conditions as described above for SMC microintegration, MDSCs 

were microintegrated into electrospun PEUU at high density.  These constructs were also 

mechanically thick and robust with an almost identical appearance to SMC integrated constructs.  

These MDSC samples were also subjected to one day of static culture and then 5 days of 

perfusion culture.  MTT data indicated viable cells present 1 day after fabrication (Figure 6-11).  

Significantly higher cell numbers were present at day 3 and day 6 after fabrication with both 

static and perfusion samples compared with day 1 (p < 0.05).  These values were different from 

Table 6-1.  Tensile properties of SMC microintegrated PEUU and PEUU/collagen blends. 
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the trend seen with static culture of SMC microintegrated constructs that did not increase in cell 

number after 1 day.  These results may have been due to the more highly proliferative nature of 

the MDSCs.  In addition, significantly higher cell numbers were observed with perfusion culture 

in comparison to static culture.  This trend was consistent with that observed with SMC culture 

under perfusion.  MTT results were summarized in Figure 6-11.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confocal micrographs taken after 5 days of perfusion culture indicated a high density of 

aligned cells within the MDSC microintegrated construct (Figure 6-12 (a)).  These samples 

appeared even higher in cell density than the SMC microintegrated confocal micrographs after 6 

days of perfusion culture.  This image together with the relative values for cell numbers from the 

MTT data for both MDSC and SMC microintegrated constructs (Figures 6-7 and 6-11) generally 
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Figure 6-11.  MTT data for MDSC microintegrated PEUU after 6 days of culture.  Samples were 
cultured statically for 1 day and then subjected to either perfusion (0.5 mL/min) or static culture 
for an additional 5 days. 
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indicated a higher proliferative capacity for the MDSCs.  Masson’s Trichrome stained samples 

from 5 days of MDSC perfusion culture indicated production within the elastomeric PEUU fiber 

network (Figure 6-12 (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.7 EPC microintegration, culture and characterization 
 

 
Using identical processing conditions as described above for SMC microintegration, EPCs were 

microintegrated into electrospun PEUU.  These constructs were also mechanically robust and 

possessed a similar appearance to SMC integrated constructs.  These EPC samples were 

subjected to one day of static culture and then 3 days of perfusion culture at 0.5 mL/min.  MTT 

data indicated viable cells present for both static and perfusion culture 4 days after fabrication 

Figure 6-12.  (Left panel) Confocal micrograph of MDSC microintegrated PEUU demonstrating 
high density of aligned cells (red = f-actin, blue = nuclei, scale bar = 40 μm).  (Right panel) 
Masson's Trichrome stained MDSC sample indicating collagen production.  Both samples are 
after 5 days of perfusion culture at 0.5 mL/min. 
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(Figure 6-13 (a)).  Spread EPCs were observed in confocal micrographs after 4 days of static 

culture and perfusion culture (Figure 6-13 (b, c)).  However, Figure 6-13 (c) is representative of 

higher numbers of cells located deeper within the EPC microintegrated fiber networks after 

perfusion.   

 

 

 

 

The relatively rapid creation of a hybrid tissue engineered construct that is primarily 

cellular and reinforced with an elastomeric fiber matrix, may offer a meaningful advancement 

over current tissue engineering approaches.  The advantage of high cell densities achieved over 

short time periods could facilitate the development of functional connections between cells and 

provide a construct with appropriate cellularity and mechanical properties for soft tissue 

replacement.  The ability to incorporate anisotropy to direct cell morphology is important in both 

forming functional tissue and mimicking the biomechanics of native aligned tissue structures.  

This technique might find future application in the engineering of tubular structures, such as a 

tissue engineered blood vessel, and sheets of elastic tissues for other soft tissue replacement 

needs.   

Figure 6-13.  Microintegrated EPC viability.  (a)  MTT results after 3 days of static or perfusion culture.                
(b) Confocal micrograph of day 4 static culture sample.   (c) Confocal micrograph of day 4 perfusion sample.  
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7.0 CONTROLLED RELEASE NANOFIBER MATRICES FOR  
FASCIA AND ABDOMINAL REPAIR 

 

 

 

 
7.1  INTRODUCTION 

 
 

 

Trauma to the extremities, including fracture, crush injury, and vascular damage can lead to the 

morbidity and mortality associated with compartment syndrome.  Compartment syndrome results 

when rising interstitial pressure in a compartment overwhelms capillary perfusion pressure.  The 

result is tissue hypoxia, which can lead to further increases in vascular wall permeability, and 

thus a cycle of further elevations in compartmental pressure and vascular stasis.  Untreated, 

compartment syndrome can lead to tissue necrosis and permanent loss of function, and, in severe 

cases, can trigger multi-organ failure and death. The preferred treatment method for 

compartment syndrome of the extremities is fasciotomy, wherein the compartmental pressure is 

“released”, at the expense of an open injury. In a field setting, fasciotomy may be done 

prophylactically when careful monitoring and management of the patient may not be practical. 

However, an obvious concern with fasciotomy, particularly in a setting where the surgical field 

may readily become contaminated or where there are other wounds, is infection. In considering 

the temporary closure fasciotomy procedure for compartment syndrome and a follow-up 

treatment that would be both desirable and practical, it is the central hypothesis of this study that 
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there would exist value in developing a scaffold patch for abdominal wall repair fasciotomy 

coverage that would: 

 

• serve as a selective barrier to the external environment, while still allowing adequate gas 

transfer, 

• possess superior surgical handling characteristics compatible with rapid sizing and 

placement, 

• be flexible, to allow distension of the patch over the field, thus allowing for further 

expansion of the field without transferring this complete force to the surrounding fascia, 

and while maintaining the barrier function, 

• be capable of being loaded with antibiotics, for controlled release to the wound bed to 

control the infection risk, 

• be capable of being loaded with drugs and/or growth factors, for controlled release to the 

wound bed to facilitate tissue healing and angiogenesis, 

• be biodegradable, so that no permanent foreign body exists and so that subsequent barrier 

removal is not required and it could avoid enteric fistula and persistent infection 

frequently caused by using non-biodegradable materials. 

 
 

In an effort to meet such requirements, the development of a thin, microporous elastic 

sheet with high tensile strength and distensibility made from a biodegradable poly(ester 

urethane)urea (PEUU) loaded with the angiogenic basic fibroblast growth factor (bFGF) or the 

antibiotic, tetracycline, and processed with electrospinning is reported.  bFGF loaded scaffolds 

were evaluated for their morphology, tensile properties, bFGF release and bioactivity, cell 
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adhesiveness, and preliminary subcutaneous implantation response.  Tetracycline loaded 

scaffolds were characterized for their morphology, drug release, antimicrobial ability, and tensile 

properties. 

 
 
 

7.2 BASIC FIBROBLAST GROWTH FACTOR DELIVERY FROM 
NANOFIBER MATRICES  

 
 

7.2.1 Methods 
 

 
7.2.1.1 bFGF loading and scaffold fabrication 
 

PEUU was synthesized from polycaprolactone diol and 1,4-diisocyanatobutane with 

chain extension by putrescine as previously reported [15].  bFGF with  100:1 bovine serum 

albumin (BSA, Sigma) to bFGF (human, Peprotech) was dissolved in PBS, frozen and 

subsequently lyophilized.  For radiolabeled release studies, a small quantity of I-125 labeled 

bFGF (Perkin Elmer) was also added to this solution with the ratio of BSA:bFGF remaining 

100:1.  PEUU was then dissolved with BSA:bFGF under mechanical stirring to make a  6 wt% 

PEUU solution in hexafluoroisopropanol (HFIP) at 1000 ng bFGF / mg PEUU.  After 

solubilization the solution was loaded into a 10mL polypropylene syringe and electrospun over a 

15-cm distance using a 1.0 mL/min solution flowrate and by charging the polymer/BSA/bFGF 

solution at 10kV and an aluminum disc target at -10kV in a manner similar to that previously 

reported [1].   The target was also attached to an x-y stage translating in a square pattern of 5 cm 

step distances to produce scaffolds of uniform thickness.   Scanning electron microscopy (SEM) 

was utilized to characterize fiber morphologies and tensile testing was used to characterize 

mechanical properties as described previously.   
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7.2.1.2  bFGF release and mitogenicity 

Pre-weighed strips of bFGF loaded electrospun PEUU were incubated in DMEM with 

0.5% fetal bovine serum and 1% penicillin /streptomycin at 37°C for bFGF release studies. 

Radiolabelled release over time was quantified with a gamma counter by measuring the scaffold 

activity at each timepoint.  Release medium at various timepoints over 4 wks was removed and 

frozen until analyzed.  A bFGF immunoassay (R&D Systems) was used to quantify bFGF 

concentration in the release medium.  This ELISA procedure was performed as follows: 

 Frozen bFGF release media was thawed in a water batch and then 100 µL of medium 

added to 100 µL of a protein buffered blue dye (diluent RD1-43) in each well of a 96-well 

custom assay plate.  This plate was covered with an adhesive strip and incubated for 2 h at room 

temperature.  After 2 h, sample wells were aspirated and rinsed four times with wash buffer, 

blotted dry and then 200 µL of mouse monoclonal antibody against FGF basic conjugated to 

horseradish peroxidase (FGF basic Conjugate) was added to each well.  The plate was again 

covered with an adhesive strip and incubated for 2 h at room temperature.  After 2h, sample 

wells were again aspirated, washed four times with wash buffer, and blotted dry.   Equal volumes 

of stabilized hydrogen peroxide (Color Reagent A) and chromogen (tetramethylbenzidine, Color 

Reagent B) were mixed and 200 μL added to each well in the dark.  After 30 min, 50 μL of 2 N 

sulfuric acid was added as a stop solution.   Optical density was measured on a plate reader at 

450 nm with a 570 nm reference filter.  Calibration of absorbance to bFGF concentration was 

performed with known standards.   

Released bFGF bioactivity was measured by mitogenic assay.  Briefly, rat vascular 

smooth muscle cells (SMCs) were seeded at 200 μL of 1.5 x 105 cells/mL in each well of a 96-

well plate.  Medium was replaced at 4 h with the appropriate bFGF containing degradation 
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medium and cell number was measured 48 h later using the MTT mitochondrial activity assay.  

For cell adhesion studies, SMCs were seeded onto sheets at a density of 2.0 x 105 cells/mL and 

cell adhesion was quantified 1 day after seeding using MTT.   

 
 
7.2.1.3 Rat hindlimb implantation 

As a preliminary investigation into the in vivo behavior of electrospun PEUU and bFGF 

loaded electrospun PEUU, samples were implanted in the rat hindlimb in 10 wk old female 

Lewis rats.  All animals were treated humanely according to an approved IUCAC protocol.  Rats 

were anesthetized with an intramuscular injection of ketamine hydrochloride (22 mg/kg), 

followed by an intraperitoneal injection of sodium pentobarbital (30 mg/kg).  The rats were then 

endotracheally intubated and mechanically ventilated with a small animal respirator (Harvard) at 

a frequency of 60-70 breaths/min.  Tidal volume was set at 0.6 to 2.0 mL depending on the body 

weight of the rat.  The rat was placed on a warming pad (37°C) in the supine position.  The hair 

on the hind limb was trimmed with an electrical clipper.  The skin leads for electrocardiography 

were attached to both fore-limbs on the left hind limb and the electrocardiogram was monitored.  

Before skin incision, one dose of cefuroxime antibiotic (100 mg/kg) was administered 

intramuscularly for prophylaxis of surgical infection. 

The skin of the left hindlimb was then sterilized with providone-iodine solution.  All 

surgeries were performed using aseptic techniques with sterile instruments.  6-mm diameter 

electrospun PEUU or bFGF loaded PEUU patches were placed underneath the skin and sutured 

to the exposed gastrocnemius muscle of the hindlimb using a non-absorbable suture.  The skin 

was then closed with 4-0 Vicryl suture and the rats were observed in the surgical suite until fully 

recovered from the anesthesia.  The first 3 days after surgery, buprenorpine (1 mg/kg) as 
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analgesic and cefuroxime (100 mg/kg) as antibiotic was administered intramuscularly twice 

daily. 

Rats were sacrificed with an overdose of pentobarbital (100 mg/kg) at 4 wks and 12 wks 

after implantation and the patches explanted.  Samples were fixed in 2% paraformaldehyde for 2 

h, 30% sucrose overnight, and then frozen at -80°C in 2-methylpentane prior to histology. The 

healing response was evaluated by standard cellular and matrix staining (Hematoxylin and Eosin, 

Masson’s Trichrome) and immunofluorescent labeling of endothelial markers (anti-CD31, anti-

vWF) and smooth muscle α-actin for assessment of vascularity.  Blood vessels were quantified 

by the number per field. The inflammatory response was scored in a blinded manner. 

 

7.2.2 Results 
 

 
7.2.2.1 Scaffold characterization 
 

Electrospun sheets of PEUU and PEUU with bFGF consisted of continuous, bead-free 

sub-micron diameter fibers as observed by SEM in Figure 7-1.  Furthermore, no significant 

difference in tensile properties was found between PEUU and PEUU loaded with growth factor.  

Electrospun PEUU possessed a tensile strength of 11.4 ± 2.1 MPa and a breaking strain of 230 ± 

40 %.  bFGF loaded electrospun PEUU had a tensile strength of 12.1 ± 1.7 MPa and a breaking 

strain of 210 ± 30 %.   
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7.2.2.2  bFGF release and mitogenicity 

bFGF radiolabelled release from electrospun PEUU consisted of an initial 25% burst 

followed by slower release up to 50% by 3 wks (Figure 7-2).  These values were based on the 

total initial measurement of radiolabelled bFGF in the scaffolds.  In contrast, ELISA 

demonstrated a higher initial burst release of approximately 75% of the 3 wk value of 200 ng 

bFGF (Figure 7-3).  When the ELISA values are converted to a percentage of total bFGF 

incorporated the total release by 4 wks was less than 10% of initial bFGF loaded.  These values 

indicated that radiolabelled bFGF release was more indicative of either active or inactive 

(denatured) bFGF release.  ELISA results, on the other hand, suggested that a substantial amount 

of growth factor may have lost bioactivity after scaffold processing.   

 

 

Figure 7-1.  SEMs of bFGF loaded electrospun.  No beads visible as a result of protein incorporation.  (left scale 
bar = 10 μm, right scale bar = 1 μm) 
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Figure 7-2.  Release profile of I-125 radiolabelled bFGF from electrospun 
PEUU. 

Figure 7-3.  bFGF release profile for bFGF loaded electrospun PEUU scaffold 
degradation media as measured by ELISA.
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Mitogenic SMC bioactivity assay was performed on bFGF release media from 2 wks of 

release and compared with that of controls consisting of electrospun PEUU, medium, and 1 

ng/mg bFGF in medium.  Results indicated a statistically similar SMC number or mitogenic 

effect between bFGF loaded PEUU release media from the 1st week and bFGF control (Figure 

7-4).  Both values were significantly higher in relative cell number than either media control or 

electrospun PEUU control with values of 162 ± 17% medium for bFGF released from PEUU  

and 173 ± 30 for control bFGF (p < 0.05).   At 2 wks of release, only the bFGF control was 

significantly larger than the relative cell number for the medium control.  Also, a lower cell 

number was observed for the PEUU control relative to the medium control at 1 wk with no 

difference noted at 2 wks of release (p < 0.05)  Cell adhesion values one day after seeding were 

evaluated by MTT assay to be 148 ± 5% of tissue culture polystyrene (TCPS) for PEUU loaded 

with bFGF.  This value was significantly higher relative to adhesion on both TCPS and 

electrospun PEUU alone (p<0.05).  
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Figure 7-4.   Released bFGF bioactivity at 1 and 2 wks using a SMC mitogenic assay with comparison to 
a 1 ng/mL bFGF control . (*p < 0.05 greater than medium control, #p < 0.05 less than medium control).
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7.2.2.3 Scaffold explantation and histology 

A preliminary investigation into the in vivo response of bFGF loaded PEUU was 

conducted in a rat hindlimb model.  Of particular interest was the ability of released growth 

factor to encourage cell proliferation and capillary formation.  For this investigation, scaffold 

discs were sutured to the hindlimb muscle of the rat and explanted at 4 or 12 wks.  The explants 

appearances at 12 wks are illustrated in Figure 7-5.  Electrospun PEUU controls appeared to 

have a slightly yellow tint with some capillaries clearly visible across the scaffold surface 

(Figure 7-5, left panels).  In contrast, bFGF releasing PEUU were much redder in color possibly 

due to increased vascularization.  These growth factor loaded patches also qualitatively were 

more adhered to the underlying muscle layer compared with electrospun PEUU controls.  At 

explantation, degradation of both sample types did not seem to be substantial at either timepoint.   

Histological analysis was utilized to qualitatively and quantitatively assess differences in 

capillary numbers present near the patch periphery.  Representative images of 12 wk explants are 

shown in Figure 7-6.  H&E stains of the electrospun PEUU control indicated an inflammatory 

response with the presence of macrophages, fibrous encapsulation and slow PEUU degradation 

at 12 wks (Figure 7-6 (a)).  H&E staining of 12 wk explants of bFGF loaded PEUU showed 

slighter more degradation with PEUU fragments visible (Figure 7-6 (b)).  Immunostaining of 

SMC α-actin and the endothelial marker, CD31, was also utilized to evaluate 12 wk explants.  

The electrospun PEUU control demonstrated little or sparse CD31 or SMC α-actin staining 

indicating little capillary formation (Figure 7-6 (c)).  In contrast, bFGF releasing PEUU 

demonstrated rich capillary formation from the significantly higher number of CD31 and SMC 

α-actin visible (Figure 7-6 (d)).  These capillaries were primarily located in the loose connective 

tissue near the patch but not in the muscle tissue. 
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Figure 7-5.  Appearance of electrospun patch explants at 12 wks.  (left panels = PEUU control, right panels 
= bFGF loaded specimen) 
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Figure 7-6.  Representative histology of electrospun patch explants at 12 wks.  (a)  H&E stain of electrospun 
PEUU control exhibiting fibrous encapsulation.  (b) H&E stain showing more apparent degradation and patch 
fragmentation of bFGF loaded PEUU.  (c) Immunostaining of PEUU control indicating sparse capillary 
development.  (d) Immunostaining of bFGF loaded PEUU  with evidence of several capillaries in patch 
periphery.  (green = SMC α-actin, blue = nuclei, and red = CD31, data courtesy of K.Fujimoto) 
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7.2.3  Discussion 
 

 
For wound healing applications in which the underlying traumatized tissue will experience 

substantial volumetric changes due to edema, it would be attractive to have a barrier dressing that 

could be sutured to the healthy wound periphery, but readily distend and contract to meet the 

mechanical demands imposed by the underlying tissue. Controlled release of a growth factor to 

facilitate wound healing from this material could provide added benefit. In an effort to meet such 

requirements we report here on the development of a thin, microporous elastic sheet with high 

tensile strength made from a biodegradable poly(ester urethane)urea loaded with the angiogenic 

basic fibroblast growth factor and processed with electrospinning.  

With the electrospinning technique it is possible to introduce proteins into the scaffold in 

several ways. The most straightforward technique is to electrospin a blended protein and polymer 

solution using a single-nozzle technique from a single syringe, as performed in this work.  We 

have previously used this technique by combining collagen and poly(ester urethane)urea and 

have verified the retention of the secondary helical structure in collagen (Chapter 3.0) [115].  It 

was also demonstrated in Chapter 4.0 that UBM could be combined with PEUU and electrospun.  

When spinning these protein/polymer scaffolds we have found that the elastomeric mechanical 

properties reflect that of the synthetic PEUU even at low (20%) mass fractions of polymer [115].  

Through the previous examples mentioned above bioactivity was introduced into a 

synthetic scaffold.  However these methods incorporated large proteins or protein extracts that 

may perform a variety of functions.  The objective of this work was to evaluate the ability to 

incorporate specific bioactive elements such as purified growth factors into the synthetic scaffold 

to induce a specific biological response.  Therefore, basic fibroblast growth factor, bFGF, was 

examined since this factor has been demonstrated in numerous reports to induce angiogenesis in 
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a variety of tissue beds [144, 145].  We also possessed previous expertise in loading this factor in 

PEUU by a different processing method, thermally induced phase separation [146].  The release 

of this growth factor was shown to be well characterized by protein radiolabelling or ELISA and 

the resulting activity by a mitogenic cell growth assay.   

The results of this work illustrated that bioactive bFGF could be released from 

electrospun PEUU for up to one week in medium.  This bioactivity did result at the cost of some  

bFGF loss of activity.  While this result was not ideal, it was also not entirely unexpected as the 

electrospinning processing solvent, HFIP, is known to be a strong hydrogen bond promoter and 

has been demonstrated to modify the secondary structures of proteins.  In Chapter 3.0, it was 

discovered that by increasing protein load, some retention of protein secondary structure was 

evident [115].  Therefore, we utilized a relatively high bFGF load of 1000 ng bFGF to 1 mg 

PEUU.   Furthermore, after subcutaneous implantation of the electrospun patches in a rat model, 

at 12 wks significantly higher numbers of rich capillaries were observed near the bFGF patch 

periphery in contrast to the PEUU control.  This result further indicated retention of bFGF 

bioactivity after electrospraying.   

As the single-nozzle electrospinning technique resulted in a scaffold with some loss of 

released bFGF bioactivity, a core-shell electrospinning technique is under development wherein 

the core material would be a carrier polymer loaded with growth factor in a mild solvent and the 

shell would be the elastomeric polymer and its preferred solvent (likely HFIP).  This technique is 

possible by keeping each solution separate until introducing one inside the other at the outlet of a 

co-axial syringe.  By preventing extensive interaction between the different solvent systems of 

the core and shell material, growth factor activity may be preserved.   
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7.3 TETRACYCLINE DELIVERY FROM NANOFIBER MATRICES 
 

 
7.3.1 Methods 
 
 
7.3.1.1 Tetracycline loading and scaffold fabrication  
 

PEUU was synthesized from polycaprolactone diol and 1,4-diisocyanatobutane with 

chain extension by putrescine as previously reported [15].  Tetracycline hydrochloride (tet, 

Fisher) was dissolved in HFIP and loaded at 1, 5, and 10% PEUU by weight to yield a 

transparent, viscous solution of yellow tint.  The chemical structure of tetracycline is displayed in 

Figure 7-7.  PEUU concentration in the electrospinning solutions were 6 wt%.  These PEUU/tet 

solutions were then electrospun from a 10 mL polypropylene syringe over a 15-cm distance 

using a 1.0 mL/min solution flowrate and by charging the polymer/tet solution at 10 kV and an 

aluminum disc target at -10 kV in a manner similar to that previously reported [1].   The target 

was also attached to an x-y stage translating in a square pattern of 5 cm step distances to produce 

scaffolds of uniform thickness.   Scanning electron microscopy (SEM) was utilized to 

characterize fiber morphologies and tensile testing was used to characterize mechanical 

properties as described previously. 

   

 

 

 

 

 

 Figure 7-7.  Chemical structure of tetracycline 
hydrochloride. 
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7.3.1.2 Tetracycline release measurement  
 

Preweighed samples of electrospun PEUU/tet were placed in PBS buffer at 37°C in order 

to characterize the drug release profile.  At timepoints of 1 h, 1 day, 3 days, and 1 wk, release 

buffer was changed and samples frozen until analysis.  Tetracycline concentration in the 

degradation buffers was then quantified by measuring UV absorbance at 350 nm minus buffer 

absorbance and comparing values with those of known tetracycline concentrations.   

 
 
7.3.1.3 Bacteria culture and antimicrobial activity assays  
 

Activity of released tetracycline in the degradation medium was quantified using an 

antimicrobial activity assay utilizing E.coli (clinical isolate, ATCC 25922) and S.aureus (wound 

isolate, ATCC 29213) similar to a previously described method [147].  Bacteria culture was 

initiated as follows.  First tryptic soy broth liquid medium was prepared by adding 30 g of tryptic 

soy broth (BD) to 1 L of deionized water in a 1000 mL beaker under mixing.  This medium was 

autoclaved at 121°C for 20 min and subsequently stored at 4°C until use.  For either E.coli or 

S.aureus growth and expansion, the bacteria pellet was rehydrated with 0.5 mL of tryptic soy 

broth and transferred to a conical tube containing 4.5 mL tryptic soy broth and mixed well.  5mL 

additional volume of tryptic soy broth was added to make a total volume of 10 mL.  Tubes 

containing E.coli or S.aureus were then incubated overnight at 37°C with vigorous shaking.   

For the antimicrobial assay, all degradation medium samples were then thawed at 37°C.  

Overnight bacteria cultures were then diluted to approximately 5 x 105 CFU/mL in tryptic soy 

broth medium.  More specifically, 10 μL of overnight culture suspension was diluted to 36 mL in 

order to measure an optical density of 0.1 at 570 nm.  Diluted bacteria were then dispensed at 

100 μL into each well of a 96 well microplate.  To this suspension was added 11 μL of the 
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appropriate degradation buffer or sample control.  Samples included the following:  (1) soy broth 

liquid medium (negative control) (2) tetracycline antibiotic (final concentration = 8 μg/mL),(3) 

electrospun PEUU/tetracycline (ePEUU/tet) 10% 1 hr release, (4) ePEUU/tet 10% 1 d release, 

(5) ePEUU/tet 10% 2 d release, (6) electrospun PEUU/UBM (50/50) 1 d release, (7) electrospun 

PEUU/collagen (50/50) 1 d release, (8) electrospun PEUU control 1 d release, and (9) 

tetracycline control solution at 80 μg/mL in PBS.    Immediately after adding samples to the 

wells, plates were gently mixed and optical density read at 570 nm for a zero hour reading.  

Subsequent readings were then recorded at timepoints of 2, 4, 6, 8, 12, 20, and 24 h.   

In order to further characterize the microbial resistance of antibiotic loaded electrospun 

PEUU, scaffold discs were assessed for their inhibitory zone diameters.  Briefly, Brain Heart 

Infusion agar plates (Difco Laboratories) were streaked with either E.coli or S.aureus using 

sterile inoculation loops.  6-mm scaffold samples or 6-mm tetracycline disc controls were then 

plated on the agar and allowed to incubate for 24 h at 37°C.  Samples studied were ePEUU/tet 

10%, ePEUU/tet 5%, ePEUU/tet 1%, electrospun PEUU/UBM, electrospun PEUU/collagen, and 

electrospun PEUU.  Zone diameters were measured after 24 h with a micrometer.   

 

 

7.3.2 Results 
 

 
7.3.2.1 Tetracycline loaded scaffold characterization 
 

Tetracycline was dissolved in HFIP and loaded at 1%, 5%, and 10% PEUU by weight.  

These solutions were then electrospun into fibrous scaffolds.  As can be observed in Figure 7-8, 

scaffolds contained continuous fibers with no polymer beads or drug crystals present.  As similar 

to bFGF loading, no significant difference was observed in tensile properties with or without 
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tetracycline loading.  For example, electrospun PEUU possessed a tensile strength of 11.4 ± 2.1 

MPa and a breaking strain of 230 ± 40 %.  Tetracycline loaded electrospun PEUU had a tensile 

strength of 13.4 ± 2.4 MPa and a breaking strain of 210 ± 40 %.   

 

 
 

7.3.1.4 Tetracycline release 
 

 

 

Tetracycline release from the scaffolds was quantified over 1 wk by measuring the UV 

absorbance of the degradation solution at 350 nm and comparing with known standards.  These 

results are summarized in Figure 7-9.  For all concentrations a rapid release of the hydrophilic 

antibiotic occurred initially followed by a more sustained release over time.  Approximate 1h 

burst releases of 37 ± 4 %, 58 ± 2 %, and 64 ± 18 % for Tet loading of 1%, 5%, and 10% of 

PEUU mass respectively.  After 24 h, drug release seemed was negligible.   

(a) 

(f)(e)(d) 

(c)(b)

Figure 7-8.  Scaffold morphologies of tetracycline loaded scaffolds at 1% (a, d), 5% (b, e) and 10% (c, f) of PEUU 
by weight as imaged with SEM.  (scale bars = 10 μm (a, b, c) or 1 μm (d, e, f)) 
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7.3.2.2 Bacteria culture and antimicrobial activity assays  
 

Antibiotic bioactivity in degradation buffer was assessed using an antimicrobial activity 

assay [147].  Degradation solution in buffer was added to E.coli or S.aureus cultures in 96-well 

plates and absorbance at 570 nm was measured as a function of time.  The results of this assay 

over 24 h are displayed in Figure 7-10.  While no antimicrobial activity was found from 

degradation buffer from PEUU alone, inhibition of both E.coli and S.aureus growth occurred 

from 1 hr and 1 day degradation solutions from 10% tetracycline loaded scaffolds along with the 

tetracycline controls.  Degradation buffer from 2 d release buffer from ePEUU/tet 10% did not 

inhibit bacteria growth.  Furthermore, degradation buffer from either UBM or collagen blended 

scaffolds resulted in no measurable antimicrobial activity.     
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Figure 7-9.  Tetracycline release from electrospun PEUU scaffolds into 
buffer as measured at 350 nm. 
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The antimicrobial activity of the scaffold structure itself was assessed by measuring its 

inhibition zone diameter.  6-mm scaffold discs were plated on agar cultures of E.coli and 

S.aureus.  Bacterial growth was significantly inhibited at 24 h for electrospun PEUU discs 

containing 1%, 5%, and 10% tetracycline as well as for tetracycline control discs.  Respective 

inhibition zone diameters were 20.7 ± 0.2 mm, 21.1 ± 0.7 mm, 14.0 ± 1.1 mm, and 11.2 ± 0.2 for 

E.coli and 23.0 ± 0.1 mm, 22.1 ± 1.2 mm, 17.5 ± 1.0 mm, and 14.0 ± 1.4 mm for S.aureus.  

Therefore, scaffolds were effective in inhibiting either E.coli or S.aureus.  Similar to results 

found from degradation buffer, bacteria growth was not inhibited by electrospun PEUU alone or 

PEUU samples blended with UBM or collagen.  Results of inhibition zone diameter are 

summarized in Figure 7-11.   
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Figure 7-10.  Antibacterial activity of degradation solutions from 10% tetracycline loaded electrospun 
PEUU (PEUU/Tet) and controls of PEUU alone and tetracycline. 
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7.3.3 Discussion  
 

 
Abdominal trauma accounts for approximately 20% of all combat wounds (varying from 5% to 

22% during the Vietnam conflict [148], up to 30% during the Iran Iraq war [149].  Battlefield 

trauma can commonly lead to compartment syndrome. Further, since it may not be feasible to 

promptly remove or monitor injured personnel, prophylactic fasciotomy may be employed.  The 

patterns of abdominal injury are also altered by the mechanisms of injury and the personal 

protection measures used. Military wounds can be caused by crush injuries (e.g. armored vehicle 

accidents), blast injuries (e.g. rocket propelled grenades, mortar injuries) or, most commonly, by 

projectile penetration. The military use of body armour has been shown to result in a lower 

Figure 7-11.  Inhibition zone diameters for 6-mm electrospun scaffold discs plated on agar 
growths of E.coli and S.aureus as measured at 24 h.  (* p < 0.05) 
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percentage of bullet injuries to the chest, paradoxically increasing the number of casualties that 

survive with abdominal wounds. 

The aims of initial damage control laparotomy (DCL) are to obtain haemorrhage control, 

perform a rapid exploration, control any contamination, pack the abdomen and perform a 

temporary abdominal closure. Temporary abdominal closure prevents the development of intra-

abdominal compartment syndrome and facilitates the planned re-operation. The intraperitoneal 

cavity has high risk of bacterial contamination from injured intestine and also the field setting or 

the injured person may have concurrent wounds that are infection risks.  

Given this situation it would be of military significance to develop an elastomeric 

scaffold that could serve as a barrier and patch over the abdominal wall fasciotomy to facilitate 

healing, minimize infection risk, provide the capacity for further compartmental expansion, and 

be readily placed with minimal surgical expertise. 

We believe that electrospun biodegradable elastomeric scaffolds could be ideally suited 

for the use of an abdominal wall fasciotomy patch in that they are exceptionally strong and 

elastic, while having a low profile. In this study, these scaffolds were processed to incorporate 

the broad spectrum antibiotic, tetracycline.  Tetracycline acts as a bacteriostatic agent by 

inhibiting bacterial protein synthesis at the ribosomal level.  By halting bacterial growth, 

tetracycline allows the immune system more time to destroy the bacteria.   

It can be observed in Figure 7-9 that the initial percent of tetracycline released is lower 

for higher concentrations of drug loaded in the polymer (10% versus 5% and 1% tet loaded 

relative to PEUU).  This effect may be explained by rapid loss drug loss at or near the fiber 

surface and a greater amount of drug being trapped inside the fibers for the higher loaded 

samples.  Therefore a higher ratio of surface tetracycline to bulk tetracycline can occur at lower 
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tetracycline loading concentrations.  After the initial burst from tetracycline near the fiber 

surface, the semi-crystalline nature of the PEUU may cause a slower release of the trapped drug 

farther inside the fibers.   

In general, a burst release is observed with release of the hydrophilic antibiotic, 

tetracycline.  This trend is consistent with other reports in the literature for drug release from 

electrospun matrices [150, 151].  The high surface to volume ratio of the nanofibrous scaffolds 

allows rapid surface loss and diffusion of loaded drugs.  Future work with more advanced 

encapsulation methods such as core-shell processing or covalent drug to polymer attachment 

could lead to more sustained release profiles.   
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8.0 ELECTROSPUN TUBULAR CONSTRUCTS FOR  
BLOOD VESSEL TISSUE ENGINEERING 

 

 

 

 
8.1 INTRODUCTION 

 
 

 
Given the incidence of coronary and peripheral arterial disease and the complications associated 

with treating this condition the need for engineered tissue replacements for small diameter blood 

vessels is clear. A wide variety of groups are pursuing research aimed at creating a blood vessel 

tissue equivalent based upon cells alone (cultured into sheets and rolled) [3, 27], cells combined 

with natural matrices (e.g. fibrin and collagen) [152, 153], and cells combined with synthetic 

matrices (e.g. hydrolytically labile polyesters) [9, 154]. Common to many of these approaches, 

particularly those that possess higher cell densities, are inadequate vessel mechanical properties. 

Although a synthetic or processed natural matrix can provide mechanical support, this usually 

comes at the expense of long culture times which can be on the order of months [3, 9].   

 A critical requirement of blood vessel replacements is accurate replication of the original 

vessel compliance.  Compliance mismatch is a complex phenomenon because it involves the host 

artery, anastomosis, and the graft itself [5].  Blood flow can be traumatized causing turbulence 

and low shear stress that favors platelet deposition.  These complications can further lead to 

myointimal hyperplasia and graft failure.  Therefore, in developing an ideal blood vessel 

replacement, it is necessary to not only create a non-thrombogenic luminal surface but to also 
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closely replicate the elastic properties of the vessel wall.  To maintain a highly cellularized blood 

vessel construct, but to also provide substantial elastomeric mechanical support, we have 

developed a micro-integrated approach wherein a meshwork of submicron elastomeric fibers is 

built into a vessel wall with or without the cellular placement process.  Cellularity can be 

developed through in vitro culture methods or in vivo.  We have developed a method to 

luminally surface seed small diameter electrospun polyurethane conduits and also studied their 

behavior as rat aorta replacements in vivo.  We have also extended the electrospinning 

technology to incorporate cells during scaffold fabrication to better encourage tissue 

development.  These constructs were characterized for their cellularity and mechanical 

properties.  

 

 

 

  

8.2  ELECTROSPUN POLYURETHANE TUBULAR  CONDUITS 

 

 
8.2.1 Methods 
 

 
8.2.1.1 Tubular electrospinning and scaffold characterization  
 

Poly(ester urethane)urea was synthesized from poly(ε-caprolactone)diol and 1,4-

diisocyanatobutane with putrescine chain extension as described previously [15].  PEUU was 

dissolved at 6 wt% in hexafluoroisopropanol and electrospun [115].  Electrospinning conditions 

included a solution volumetric flowrate of 1.0 mL/hr, a distance between nozzle and target of 

13.5 cm, and voltages of +12 kV to the nozzle and -3 kV to the target.  The target used for 

fabrication of small diameter tubes for implantation was a Type 316 stainless steel mandrel of 
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1.3 mm diameter that was rotating at 250 rpm.  An image of this custom designed and 

constructed target is displayed in Figure 8-1.  This mandrel was also translating along its axis 8 

cm on a linear stage at a speed of approximately 8 cm/s to produce a more uniform conduit 

thickness.  Samples were electrospun for 15 min to produce porous tubular constructs with wall 

thicknesses on the order of 150 to 200 μm.   For endothelialization studies a 4.7 mm stainless 

mandrel was instead utilized with the same process conditions. 

After fabrication, the mandrel was dipped in 70% ethanol in order to more easily remove 

it from the steel mandrel.  The conduit is then rinsed in deionized water multiple times, blotted 

dry and then dried under vacuum at room temperature 24 to 48h.  Conduits were then examined 

for their gross structure with a dissecting microscope or their fibrous morphologies with 

scanning electron microscopy.  In order to view an uninterrupted fibrous cross-section, samples 

were dipped in liquid N2 for 1 min and then fractured before sputtercoating for SEM.   

 

 

 

 

 

 

 

 

 

 

 Figure 8-1.  Target used to electrospin 1.3 mm inner diameter porous conduits for 
blood vessel tissue engineering.  The mandrel is rotated at 250 rpm and charged at        
-3kV. 
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8.2.1.2 Surface seeding  of conduit lumen  
 

PEUU conduits (4.7 mm) were positioned inside a custom designed rotational vacuum 

seeding device in collaboration with Prof. D.Vorp and L.Soletti of the University of Pittsburgh 

and seeded with 20 x 106 muscle derived stem cells (MDSCs).  More specifically, the 

electrospun conduit was placed on metal stubs and a light vacuum was applied to the exterior of 

the conduit.  Subcultured MSDCs were then perfused through the lumen of the conduit and 

forced into the fibrous lumen side wall of the tube by vacuum.  Constructs were cultured under 

static conditions in Petri dishes for 24 h.    Samples were then fixed in 2% paraformaldehyde 

before permeabilization with 0.1% triton-x 100 and staining with DAPI or draq 5 nuclear stain 

and rhodamine phallodin for f-actin and imaged with fluorescence microscopy.       

 
 
8.2.1.3 In vivo implantation as a rat aorta replacement  
 

Porous 1.3 mm inner diameter tubular electrospun scaffolds were implanted as 

interposition grafts in the abdominal aorta of rats with collaboration from Prof. D.Vorp and A. 

Nieponice.  Lewis female rats weighing 250-300 g were anesthetized with 1% isofluorane and 

2.5 mg/100 g ketamine.  A mid-abdominal incision was performed and the retroperitoneal cavity 

exposed.  The descending aorta below renal level was dissected, clamped proximally and distally 

sectioned to make a 1 cm gap.  The electrospun conduit was then implanted in an end-to-end 

manner using prolene 10.0 sutures.  Intravenous heparin was administered before clamping with 

200 Units/kg.  The abdominal wall was closed in two layers with Vycril 2.0 sutures.  Rats were 

sacrificed at 2 wks and sample explants fixed in 10% neutral buffered formalin at room 

temperature.  Samples were then embedded in paraffin and sectioned before staining with 

Hematoxylin and Eosin or Masson’s Trichrome.   
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8.2.2 Results 
 

 
8.2.2.1  Scaffold morphology and mechanical characterization  
 

PEUU at 6 wt% in HFIP was electrospun onto a negatively charged rotating mandrel at 

250 rpm to produce a tubular construct.  Figure 8-2 demonstrates the gross appearance of the 

conduit.  The electrospun tubes possessed 1.3 mm inner diameters, lengths up to 8 cm and wall 

thicknesses of 150-200 μm.  The fibrous structures of the scaffold tubes are shown by SEM in 

Figure 8-3.  One can observe fiber sizes approximately in the range of 1000 m.   In addition, 

these constructs were suturable and retained their lumens.   

 

 
 
 

 Figure 8-2.  Macroscale appearance of electrospun tube.  (bottom = higher magnification) 
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Figure 8-3.  SEMs of  PEUU electrospun conduits.   Bottom left image displays conduit exterior and bottom right 
image displays the conduit cross-section (scale bars = 10 μm). 
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8.2.2.2 Surface seeding of conduit lumen 
 

Porous electrospun PEUU was mounted inside a custom developed vacuum seeding 

device designed by D. Vorp and L.Soletti.  Subcultured MDSCs were then seeded or pulled into 

the fibrous lumen of these tubes.  This seeding device allowed the cells to uniformly cover the 

conduit lumens immediately after seeding.  After 24 h of static culture, cells were viable, adhered 

to the lumen and formed a monolayer.  An image depicting the cells lining the construct interior 

is shown in Figure 8-4.  This image was a fluorescent micrograph depicting the cell nuclei and f-

actin staining. 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 8-4.  Fluorescent micrograph of MDSCs lining the interior of an electrospun tubular conduit.   (Left 
panel)  Nuclear (blue, Dapi) and f-actin (green, rhodamine phalloidin) staining indicating cell attachment on 
polymer lumen (red, autofluorescence) after 24 h of static culture. (Right panel)  Confocal image stack 
demonstrating nuclear (blue, draq5) and f-actin (red, rhodamine phalloidin) staining of the PEUU lumen.  (data 
courtesy of L.Soletti) 



 

 

 

163

8.2.2.3 Graft function and explant histology in a rat model 
 

Porous electrospun 1.3 mm inner diameter tubular constructs were utilized as vascular 

grafts to replace the aorta of rats.  Constructs were suturable and easily retained their lumens in 

vivo.  An image of the graft immediately after implantation is shown in Figure 8-5.  Rats were 

able to recover from the surgeries with limb function.  At 2 wks after implantation, grafts 

remained patent and functional.  Hematoxylin and eosin staining demonstrated external capsule 

formation around the explanted grafts.  Masson’s Trichrome staining indicated the capsule was 

composed of aligned collagen together with the presence of newly developed capillary vessels.  

Cell and tissue in-growth was observed throughout the constructs with the presence of collagen 

development.  Cells were also demonstrated to have formed a monolayer  in locations around the 

construct lumens.  Images representative of histological examination of the 2 wk explants are 

displayed in Figure 8-6.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-5.  Image of electrospun vascular graft immediately after implantation 
to replace a section of the rat aorta. (image courtesy of A. Nieponice) 
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Figure 8-6.   H&E / Trichrome stains of 2 wk explants of electrospun 
vascular grafts.  Notice the presence of collagenous capsule and neovessels 
in graft exterior (bottom image) and luminal cell growth (top image). 
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8.3 SMC MICROINTEGRATED POLYURETHANE CONDUITS 
 

 

8.3.1 Methods 
 

 
8.3.1.1 Conduit microintegration technique  
 

Vascular smooth muscle cells (SMCs) isolated from rat aortas were expanded on tissue 

culture polystyrene (TCPS) culture plates under Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin [107].  

Microintegration was performed similar to described previously with some modifications to 

allow for a smaller diameter electrospraying / electrospinning mandrel [155].     

7.5 x 106 SMCs/mL were subcultured in medium and fed at 0.1 mL/min into a sterile 

Type 316 stainless steel capillary charged at 8.5 kV and located 4.5 cm from the target.  6 wt% 

PEUU or 6 wt% PEUU/collagen (75/25) in HFIP was fed at 1.5 mL/min into a capillary charged 

at 12 kV and located 23 cm from the target.  The target consisted of a sterile stainless steel 

mandrel (4.7 mm diameter) charged at -3 kV and rotating at 250 rpm while translating 8-cm 

along its axis at 1.6 mm/s.  A fabrication time of 30 min was used to produce each 

microintegrated conduit.  After fabrication the conduit and mandrel were gently placed with 

aseptic technique into a roller bottle and cultured statically for 16 h.  After 16 h, samples were 

gently removed from the mandrel for culture.   Samples were then cut into 15 mm lengths and 

sutured to metal stubs and perfused media with pulsatile flow for 3 days.   Images depicting the  

perfusion sample and reactor are shown in Figure 8-7. 
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8.3.1.2 Conduit characterization  
 

At timepoints of 1 day and 4 days after fabrication, samples were characterized.  The 

MTT mitochondrial assay was used to measure cell viability.  For histological investigation, 

samples were fixed in 10% neutral buffered formalin at room temperature.  Samples were then 

embedded in paraffin, sectioned and stained with hematoxylin and eosin.   

Samples were analyzed for their biomechanical properties immediately after fabrication.  

Properties measured included ring strength, dynamic compliance, and burst pressure.    In order 

to measure ring strength, stainless steel staples were inserted into 5mm long tubular sections and 

then into the grips of a uniaxial tensile tester (ATS).  An image of this set-up is shown in Figure 

8-8.  Using a 10 lb load cell and a displacement rate of 10.05 mm/min samples were strained 

until break.   

For dynamic compliance and burst strength, 15 mm long tubular samples were mounted 

in a flow loop driven by a centrifugal pump (Biomedicus) and submerged in PBS at 37°C.  The 

Figure 8-7.  Images of SMC microintegrated PEUU conduit (left) prepared for insertion into perfusion 
bioreactor (right). 
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pressure was monitored and recorded at 30 Hz using a standard in-line strain-gage pressure 

transducer and a PC acquisition board.  The vessel construct was perfused with a pulsatile flow 

(110-70 mmHg, 1.2 Hz) and the dynamic compliance, C, was measured by recording the external 

diameter of the sample with a He-Ne laser micrometer (Lasermike).    Compliance was 

calculated as  

     
)(

)(

minmaxmin

minmax

PPD
DD

C
−

−
=     (8-1) 

for each pulse (D = maximum or minimum diameter, P = maximum or minimum pressure).  A 

porcine mammary artery was used as a control for comparison with microintegrated PEUU in 

compliance studies.  For measuring burst pressure, the sample outlet was sealed and flow was 

increased until tube rupture.  The maximum pressure before rupture was taken as the burst 

pressure.   

 
 
8.3.2 Results 
 

 
8.3.2.1 Scaffold structure  
 

In order to extend the technology of cellular microintegration to small diameter tubes, a 

4.7 mm diameter stainless steel mandrel was used in the place of the previously employed 19 

mm diameter mandrel for sheet microintegration [155].  In order to microintegrate highly cellular 

and defect free tubular constructs, it was necessary to slightly decrease electrospraying distance 

0.5 cm and lower the mandrel negative charge from -10kV to -3 kV from previous methods.  

During fabrication, PEUU appeared pink and glistening on the mandrel indicative of uniform 

cellular electrospray.  After removal from the mandrel, samples of either PEUU or PEUU / 

collagen (75/25) were found to be mechanically robust in that they were suturable and could 
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retain their lumens after compression.  Images depicting the suturability and gross appearance of 

SMC microintegrated PEUU conduits are illustrated in Figure 8-8.  

 
 
 

 
 
 
 
 
8.3.2.2 Cell growth and histology  
 

Cell placement and viability in the SMC microintegrated constructs was investigated 

initially and after 4 days of static or perfusion culture.   After perfusion, samples were gently 

removed and then sectioned into representative slices for MTT and histology.  MTT results 

indicated viable cells 1 day after fabrication.  Furthermore, cells remained viable at day 4 with 

either static or perfusion culture with cell number values reported slightly higher for perfusion 

culture.  MTT data are summarized in Figure 8-9.  Samples were fixed and stained with 

hematoxylin and eosin staining.  A representative H&E stain of uniform initial cell integration 

within the tubular construct is shown in Figure 8-10.  This half-tube image consists of multiple 

images taken from the tube periphery grouped together to create a representative image.   

Figure 8-8.  Gross appearance of SMC microintegrated PEUU tubular constructs after removal from the fabrication 
mandrel. 
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8.3.2.3 Mechanical properties 
 

Ring strength, burst pressure, and suture retention strength were assessed in the 

microintegrated constructs after fabrication under collaboration with Prof. D.Vorp.  The stress-

strain response from subjecting a small tube section to uniaxial tensile testing is displayed in 

Figure 8-11 below.  These rings were mechanically robust and flexible with maximum stress 

and strain values of 6.3 MPa and 170% respectively.  The ring samples did not break cleanly in 

each case and seemed to pull apart or delaminate past the ultimate stress value.   

 
 

Figure 8-9.  MTT SMC viability data for microintegrated conduits of either PEUU or PEUU/collagen.  
Perfusion was initiated after 1 day of static culture for cell attachment. 

0

2

4

6

8

10

12

14

C
el

ls
 x

 1
0-4

 / 
W

el
l 

1 day static
3 day non-perfused
3 day perfused

PEUU PEUU/collagen (75/25)



 

 

 

170

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-10.  Uniform SMC placement after 1 day of static culture for 
microintegrated PEUU conduit. 
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 In order to calculate the dynamic compliance of the microintegrated constructs, samples 

were exposed to pulsatile flow and the pressure / diameter relationship was evaluated.  This 

relationship was compared with a porcine mammary artery (pMA) exposed to the same pulsatile 

flow.  As one can observe in Figure 8-12, the mechanical response of both the pMA and 

microintegrated PEUU was very similar with values falling for both samples falling between one 

another.  Compliance values were 1.02 ± 0.33 x 10-3 mmHg-1 for pMA and 0.71 ± 0.13 x 10-3 

mmHg-1 for SMC microintegrated PEUU.  Burst pressure values for all samples were greater 

than 1500 mmHg.  It must be noted that burst pressure values were approximations due to the 

porous nature of the microintegrated tubes.   
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Figure 8-11.  Averaged stress-strain curve for ring test of SMC microintegrated 4.7 mm electrospun 
PEUU tube. (Data courtesy of L.Soletti) 
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Figure 8-12.  Pressure / diameter relationship comparison between porcine mammary artery (pMA) and 
SMC microintegrated PEUU tubular constructs (μSMC-PEUU).  (Data courtesy of L.Soletti) 
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8.3.3 Discussion 
 

 
Efforts have been extensive in the tissue engineering community for development of a highly 

cellular and functional blood vessel replacement [91, 152].  Central to this theme of functionality 

is development of grafts that have adequate burst strength and compliance to function in an in 

vivo environment.  Electrospinning technology in particular has been studied for its ability to 

fabricate small diameter tubular constructs with fibers sizes and architectures that mimic the 

extracellular matrix.  For example, Inoguchi et al. demonstrated the electrospinning of tubular 

and elastic poly(L-lactide-co-caprolactone) (PLCL) conduits [156].  The mechanical properties 

of these conduits were investigated in depth and they were shown to pulsate under pulsatile flow 

in vitro.  Also, work by Vaz et al. demonstrated a multi-layering electrospinning technique to 

fabricate PCL and PLA composite scaffold conduits [157].  They also seeded fibroblasts on the 

surface of these materials.  However, to date there have been no reports of a method to produce 

highly cellularized electrospun conduits that possess compliance values similar to native vessels.   

The objective of this work was to successfully fabricate a highly cellularized blood vessel 

construct that also provides substantial elastomeric mechanical support.  Two methods were 

pursued for this goal, an in vivo approach or in vitro approach.  For the in vivo approach, a 

biodegradable and cytocompatible, elastomeric poly(ester urethane)urea was electrospun into 

small diameter tubes appropriate for implantation in a rat model.  For the in vitro approach, 

SMCs were seeded into electrospun nanofibers concurrently with scaffold fabrication using a 

microintegration technique [155].   

Previous results in achieving cellular infiltration in electrospun synthetics have been time  

difficult [158].  While some believe cells can slowly migrate and “push” their way through fibers 

in vitro this has not been adequately demonstrated in the literature.  Furthermore, there is not 
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much incentive for cells to migrate into regions of synthetic materials in vitro that would make 

diffusion of cell nutrients and waste more difficult.  However, it would be expected that when 

implanted in vivo electrospun scaffolds would be more quickly infiltrated with cells as a result of 

the highly dynamic environment including potential inflammatory responses.  To assess this 

concept, Telemeco et al. subcutaneous implanted synthetic electrospun materials and compared 

with electrospun collagen and gelatin [158].  The most rapid cellular infiltration was observed 

for electrospun collagen.  Slow infiltration and some fibrous encapsulation occurred on the 

synthetic PGA and PLA electrospun materials.  While the study by Telemeco et al. was only for 

1 wk, it does demonstrate that cellular infiltration is relatively slow in vivo as well for 

electrospun synthetics.  We have also demonstrated a slow cell infiltration with subcutaneous 

implantation of electrospun PEUU after 12 wks in rats in Chapter 7.0. 

However, in this chapter we have discovered rapid and high density cellular infiltration 

into electrospun PEUU constructs when implanted as interposition grafts in the aorta of rats.  At 

2 wks after implantation constructs were patent.  After explant, H&E staining indicted 

approximately 80% tissue infiltration and the presence of collagen deposition throughout the 

constructs.  Small capillaries were also forming on the construct periphery.  This significant 

result may be attributed to the placement of the construct in a highly functional environment with 

blood flow and mechanical stimulation.  Results are on-going in improving construct properties 

and characterizing the tissue development at longer timepoints       

Since the ability to seed cells into electrospun synthetics in vitro is limited by the small 

pore sizes we have previously developed a microintegrated approach wherein cells are seeded 

into the submicron fibers concurrent with the electrospinning process [155].  This method 

produced highly cellularized elastomeric scaffolds.  Cells were viable after fabrication and 
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proliferated under perfusion culture.  In order to extend this technology to microintegrate cells 

into small diameter tubular constructs as a blood vessel prototype, we had to slightly modify 

some process variables.   

For example, in order to adequately target and electrospray cells onto the smaller 

diameter mandrel it was necessary to decrease the distance between electrospray nozzle and 

mandrel.  Also, using a high negative charge to the rotating mandrel target resulted in polymer 

protrusion defects, or “spikes,” in the tube which could disrupt conduit integrity and cell 

viability.  Therefore, we decreased mandrel charge to result in homogenously cellular and 

fibrous tubular conduits.  These constructs were then cultured under a perfusion bioreactor to 

encourage better exchange of nutrients, waste, and oxygen to the cells in the tube interior.  H&E 

and MTT results indicated viable cells present within the constructs after fabrication and 

perfusion culture.  Further work is in progress to assess the optimal culture conditions to 

encourage SMC proliferation and ECM deposition.    

The mechanical properties of electrospun tubes fabricated by either method were 

mechanically assessed and found to have compliances and burst strengths appropriate for vessel 

replacement and similar to native vessels.  These constructs also seem appropriate for function in 

a mechanically demanding environment.  As the next stage for this project, it is possible that 

mechanical training may be required to better develop ECM production in the blood vessel 

constructs.  

In summary, a significant advance in developing a method to fabricate a hybrid tissue 

engineered blood vessel construct that is primarily cellular and reinforced with an elastomeric 

fiber matrix has been developed.  These constructs are cytocompatible, suturable and possess 

compliance values similar to native vessels.  Current and future studies consist of investigating 
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the optimal fiber material composition as well as characterizing cell phenotype and ECM 

production over longer in vitro culture periods.  Our expectation is that the results from these 

studies will provide the motivation to study the fabricated vessel constructs in a larger animal 

model.   
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9.0 CONCLUSIONS AND FUTURE WORK 
 

 

 

 
9.1 CONCLUSIONS 

 
 
 
In this dissertation, novel biodegradable elastomers were synthesized and fabricated into 

scaffolds appropriate for engineering of cardiovascular or other soft tissue.  These materials 

represent attractive alternatives to currently available biodegradable polyesters utilized in tissue 

engineering.  Biodegradable and cytocompatible poly(ester urethane)ureas were synthesized to 

high molecular weight and processed into scaffolds suitable for in vivo placement or for support 

of cellular adhesion and growth by an electrospinning technique.  This process, where an electric 

field overcomes surface tension to generate and draw nanoscale fibers, produced scaffolds with 

extracellular matrix-like morphologies that retained mechanical strength and flexibility while 

also permitting protein incorporation into spun fibers to impart bioactivity.   

PEUU was processed with electrospinning to create scaffolds using a novel method of 

physically blending collagen or urinary bladder matrix as bioactive components.  The 

incorporation of collagen was useful as a means to increase cell adhesion and scaffold 

degradation rates.  While at low concentrations of collagen the protein appeared to lose its helical 

structure, it still imparted increased cell adhesion.  Urinary bladder matrix was also blended with 

PEUU and electrospun to produce scaffolds with even more potential bioactive character as 

UBM is known to possess bioactive peptide components in addition to collagen.   These hybrid 
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material combinations resulted in increased mechanical robustness and flexibility from the 

synthetic component and increased cell recognition and degradation from the natural 

components. 

Scaffolds with mechanical anisotropy were of interest in creating oriented cellular 

structures and to control stress translation during tissue mechanical conditioning.  Therefore a 

method was developed to fabricate nanofibrous scaffolds of controlled fiber orientation and 

mechanical anisotropy by electrospinning onto a high speed rotating mandrel.  These scaffolds 

were demonstrated to direct oriented smooth muscle cell growth.  In addition, these materials 

were shown to possess mechanical properties and exhibit stress-strain curves that mimic those of 

the native pulmonary valve.   

 These elastomeric matrices could provide mechanical support, but typically required long 

seeding and culture times to achieve high density cellular in-growth.  Therefore, we developed a 

microintegrated method during which a mesh of submicron elastomeric fibers was built into the 

scaffold wall during the cellular placement process.  Cells such as smooth muscle cells, muscle 

derived stem cells, and endothelial progenitor cells were electrosprayed during the 

electrospinning of a synthetic elastomer, which expedited the time required for scaffold 

construction and cell seeding.  In vitro culture of these microintegrated constructs under 

transmural perfusion resulted in a tissue engineered construct that was largely cellular and 

supported with an elastomeric fiber net.  Such a construct could be appropriate for soft tissue 

replacement including the engineering of conduit structures such as a tissue engineered blood 

vessel. 

 Electrospun PEUU was also studied as a means to develop porous and elastomeric 

scaffolds for controlled release of growth factors or antibiotics to encourage wound healing and 
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repair during fasciotomy management.  PEUU was loaded with bFGF and processed into 

microporous sheets comprised of sub-micron scale fibers.  These elastomeric sheets were 

capable of bioactive bFGF release for at least 1 week and facilitated increased SMC adhesion.   

In addition, PEUU was loaded with the antibiotic, tetracycline, and electrospun.  These scaffolds 

were capable of inhibiting the growth of E.coli and S.aureus.  In wound healing applications 

where material flexibility and growth factor or drug release from a barrier would be desirable, 

these growth factor or antibiotic loaded sheets may provide attractive functionality.   

 In order to develop a more mechanically appropriate tissue engineered blood vessel, 

PEUU was electrospun into small diameter tubular conduits.  Two approaches for achieving 

cellularity and functionality were pursued, an in vivo approach and an in vitro approach.  More 

specifically, the in vivo approach involved implanting an electrospun, elastomeric PEUU conduit 

as an interposition graft in a rat aorta.  The graft was patent at 2 wks and exhibited cell 

infiltration.  Produced extracellular matrix was present throughout the constructs.  The in vitro 

approach involved the extending of cellular microintegration technology towards the 

construction of highly cellularized small diameter tubular conduits.  By modifying some process 

variables, microintegrated small diameter tubes were fabricated with uniform cell placement and 

mechanical properties including a compliance and burst pressure similar to native vessels.   

 The research conducted in this dissertation was foremost directed toward the objective of 

fabricating more biomimetic scaffolding for use in development of functional engineered 

cardiovascular tissue replacements.  As ischemic heart disease is a leading cause of death in this 

country, it is the hope of this author that some outcome of this work may be further expanded 

and utilized in the near or future to ultimately improve patient care and suffering regarding this 

terrible disease.    
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9.2 FUTURE WORK 
 

 

9.2.1  Multi-nozzle electrospinning for elastomeric synthetic ECM development 
 

 
In order to develop materials that more closely mimic the actual extracellular matrix, a 

combination of polymer synthesis and processing may be pursued.  Biodegradable polyurethanes 

with enzyme specific degradable sequences have been previously developed [159].  By utilizing 

a multi-nozzle electrospinning technique, a composite scaffold can be constructed with fiber 

components consisting of individual enzyme sensitive degradable polymers.  It will be necessary 

to develop a method to overcome the inherent limitation of stream repulsion of multiple 

electrospinning streams.  Preliminary investigation in this work has demonstrated the usefulness 

of target rotational motion and perpendicular nozzle placement.  More specifically, the 

experimental set-up utilized in microintegration may be successfully translated or modified to 

minimize multi-nozzle stream repulsion.   These biomimetics will further take advantage of the 

mechanical robustness of synthetic elastomers together with the bioactivity of natural 

components to result in constructs that act as synthetic versions of the extracellular matrix.  

 
 
9.2.2 Coaxial electrospinning for controlled drug release 
 

 
A more advanced electrospinning technique that can be beneficial for single or multiple drug 

delivery is coaxial electrospinning [160, 161].  This technology consists of electrospinning one 

or more materials inside the core of an outer electrospun fiber using a specialized feed device as 

shown in Figure 9-1.  The coaxial electrospinning process occurs at a fast enough rate that 

mixing of the core and shell material is minimal.  This process provides greater flexibility than 
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Figure 9-1.  Coaxial electrospinning 
feed chamber consisting of concentric 
polymer solution chambers. 

Core and shell
polymer solutions

Plunger

Feed from 
syringe pump

Core and shell
polymer solutions

Plunger

Feed from 
syringe pump

what is possible with traditional single solution electrospinning.  For example, some 

biomacromolecules that cannot be electrospun alone from appropriate solvents may be stabilized 

within the core of more spinnable components such as biodegradable polyurethanes.  Specific 

growth factors can be loaded into each material with the faster degrading component yielding an 

increased release rate.  Furthermore, growth factor activity can be better preserved by loading in 

a benign core solvent that would not be possible to electrospin as stable fibers in the shell layer.  

Processing variables such as feed rate and electrostatic potential may also be modulated to 

control the thickness of the shell and core layer to influence release kinetics.     
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9.2.3 Co-microintegration for development of functional vascularized tissue 
 

 
Previously developed cellular microintegration technology can be extended for integration of 

multiple cell types either concurrently or sequentially.  For example, a functional small-diameter 

tissue engineered blood vessel may be developed by utilizing advanced cell co-culture methods 

in fabricating biodegradable tubular conduits.  These conduits can be fabricated by 

electrospraying sequential cell streams of first endothelial cells (ECs) and then smooth muscle 

cells (SMCs) onto a rotating small diameter mandrel while concurrently electrospinning of 

synthetic extracellular matrix to create a mechanically robust vessel conduit as illustrated in 

Figure 9-2.   The polymer and cellular deposition rates can be altered to created specific lamina, 

such as one separating an EC rich region and SMC region. It is expected that high cell densities 

will facilitate the development of functional connections between cells and provide a construct 

that has mechanical properties appropriate for arterial placement.  This technology can also be 

studied as a means to generate and study vascularized tissue development in vitro through 

simultaneously microintegrated ECs and SMCs [162].    
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Figure 9-2.  Sequential EC and SMC integration with electrospinning of a synthetic extracellular matrix conduit. 
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APPENDIX A 
 
 
 
 

REPRESENTATIVE DIFFERENTIAL SCANNING CALORIMETRY SPECTRUM 
FOR CAST PEUU FILM 
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APPENDIX B 
 
 
 
 

HUVEC SUBCULTURING METHOD 
 

Materials: 
  25 mL serological pipettes 
  175 cm2 TCPS flasks 
  50 mL conical tubes 

Endothelial Basal Medium-2 (EBM-2, Cambrex) 
  Hepes-buffered saline solution (HBSS) 
  Trypsin/EDTA (T-E) 
  Trypsin neutralizing solution (TNS) 
 
 

1. Warm all reagents to 37°C in water bath. 

2. In a sterile biologic hood, remove old medium from each culture flask. 

3. Add 10 mL HBSS to each flask, rinse the cell surface, then remove. 

4. Add 10 mL T-E to each flask and place in 37°C incubator for 10 min. 

5. Add 10 mL TNS to each flask and wash off cells from flask surface. 

6. Transfer 20 mL of cell solution to 50 mL conical tube. 

7. Centrifuge tube for 5 min at 1000 rpm. 

8. Remove and discard supernatant. 

9. Resuspend HUVEC pellet in desired volume EBM-2. 

10. Seed cells onto scaffolds or new plates typically at 1:3 or 1:4 ratio.   
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APPENDIX C 
 
 
 
 

SMC SUBCULTURING METHOD 
 

Materials: 
  25 mL serological pipettes 
  175 cm2 TCPS flasks 
  50 mL conical tubes 

DMEM with 10% fetal bovine serum and 1% penicillin/streptomycin 
  Trypsin/EDTA (T-E) 
 
 

1. Warm all reagents to 37°C in water bath. 

2. In a sterile biologic hood, remove old medium from each culture flask. 

3. Add 4 mL T-E to each flask, rinse the cell surface, then remove. 

4. Add 6 mL T-E to each flask and place in 37°C incubator for 10 min. 

5. Add 14 mL medium to each flask and wash off cells from flask surface. 

6. Transfer 20 mL of cell solution to 50 mL conical tube. 

7. Centrifuge tube for 5 min at 125 x g. 

8. Remove and discard supernatant. 

9. Resuspend SMC pellet in desired volume medium. 

10. Seed cells onto scaffolds or new plates typically at 1:3 or 1:4 ratio.   
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APPENDIX D 
 
 
 
 

MTT MITOCHONDRIAL ACTIVITY ASSAY   
 

Materials: 
  MTT (thiazoyl blue, Sigma) 
  PBS 
  2-propanol 
  10 M HCl 
  96 well TCPS plate 
  200 μL pipettor 
 

1. Place samples in wells of a 96 well plate. 

2. Add 200 μL medium. 

3. Add 20 μL of a 5 mg/mL solution of MTT in PBS. 

4. Place at 37°C in an incubator for 3-5 h. 

5. Remove media and MTT solution. 

6. Add 200 μL of 0.04 N HCl in 2-propanol. 

7. Cover plate, seal with tape and place at 0°C for 24-48 h. 

8. Measure solution optical density at 570 nm with a 650 nm reference. 

9. Convert optical density to cell number using calibration curve from known cell densities. 
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APPENDIX E 
 
 
 
 

SEM FIXATION AND DEHYDRATION FOR CELL SEEDED SAMPLES 
 
 
Materials: 
 2.5% glutaraldehyde in PBS 
 PBS 
 1% osmium tetraoxide (OsO4) 
 Ethanol 
 

1. Fix samples in 2.5% glutaraldehyde in PBS for 1 h to overnight. 

2. Wash with PBS for 10 min (repeat 3 times). 

3. Fix samples in 1% osmium tetraoxide for 1 h at 4 °C. 

4. Wash with PBS for 10 min (repeat 3 times). 

5. Immerse in 30% ethanol for 10 min. 

6. Immerse in 50% ethanol for 10 min. 

7. Immerse in 70% ethanol for 10 min. 

8. Immerse in 90% ethanol for 10 min. 

9. Immerse in 100% ethanol for 15 min (repeat 4 times). 
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APPENDIX F 
 
 
 
 

HEMATOXYLIN AND EOSIN STAINING 
 
 

Materials: 
 Xylene 
 Harris’ acidified Hematoxylin (Thermo Electron Corp) 
 Alcoholic Eosin Y (Thermo Electron Corp) 
 Ammonia water 

 

1. Immerse in xylene for 3 min (repeat 3 times). 

2. Immerse in 100% ethanol for 1 min. 

3. Immerse in 95% ethanol for 1 min. 

4. Wash with water for 2 min. 

5. Stain with Harris’ acidified Hematoxylin for 7 min. 

6. Wash with water for 2 min then repeat for 1 min. 

7. Immerse in ammonia water for 30 s.   

8. Wash with water for 1 min. 

9. Immerse in 95% ethanol for 30 s.  

10. Stain with alcoholic Eosin for 30 s. 

11. Immerse in 95% ethanol for 30 s (repeat twice). 

12. Immerse in 100% ethanol for 30 s (repeat 3 times). 

13. Immerse in xylene for 30 s (repeat 3 times) 

14. Coverslip samples. 
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APPENDIX G 
 
 
 
 

TRICHROME STAINING 
 
 
Materials: 
 Xylene 
 Weigert’s Hematoxylin 
 Beibrich Scarlet 
 Phosphotungstic/phosphomolbdic acid solution 

Aniline Blue 
 Alcoholic Eosin Y (Thermo Electron Corp) 
 Ammonia water and acid water 
 Acid water 
 

1. Wash with water for 10 min. 

2. Stain with Weigert’s Hematoxylin for 10 min. 

3. Wash with water for 10 min. 

4. Stain with Biebrich for 2 min. 

5. Wash with water for 30 s. 

6. Immerse in phosphotungstic/phosphomolbdic acid solution for 15 min. 

7. Stain with aniline blue for 5 min. 

8. Wash with water for 30 s. 

9. Immerse in acid water for 1 min. 

10. Wash with water for 30 s. 

11. Immerse in 95% ethanol for 30 s. 
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12. Immerse in 100% ethanol for 30 s (repeat twice). 

13. Immerse in xylene for 30 s (repeat 3 times). 

14. Coverslip samples.  
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