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Stable upright stance is achieved through an active postural control process that requires 

the accurate integration of sensory feedback signals from the visual, graviceptive and 

proprioceptive systems.  Previous studies have shown that this integration process may involve 

“reweighting”, whereby the relative contributions of the various sensory signals are dynamically 

altered in order to minimize reliance on unreliable signals.  In addition, evidence suggests that 

feedback control by itself cannot explain experimental observations of postural behavior.  In 

light of these observations, the current study proposed that a predictive mechanism exists within 

the postural control system that can identify the highly repetitive pattern within a predictable 

sensory input, and can use this information to facilitate the sensory reweighting process.  

The objectives of the current work were to: (1) uncover experimental evidence of such a 

predictive mechanism, through examination of postural sway responses in healthy young adults 

exposed to various types of predictable and unpredictable moving visual scenes; (2) examine 

how this predictive mechanism manifested itself in individuals who were particularly reliant on 

visual sensory information; and (3) determine if this predictive mechanism was influenced by 

cognitive tasks, which are thought to interact with the sensory reweighting process. 

Data revealed that in healthy young adults predictable stimuli elicited improved sway 

performance compared to unpredictable stimuli, as indicated by significant decreases in both 

 iv



overall sway magnitude, and the time required for sensory reweighting to occur. This effect was 

enhanced during the performance of a concurrent cognitive task, but was not observed in visually 

dependent individuals, apparently due to an inability to perform sensory reweighting.  Taken 

together, these observations support the existence of a predictive component to postural control 

that can alter the dynamic reweighting of sensory inputs during exposure to predictable stimuli. 

These findings may have implications for the design of experiments involving moving visual 

scenes, as well as for the treatment of individuals suffering from certain balance disorders. 
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1.0       INTRODUCTION 
 

 

The work presented here is part of an ongoing effort to better understand the sensory processing 

mechanisms related to postural control.  Despite a wealth of research in this area, several 

important questions remain unanswered.  The motivation for the current study was to address 

one of these unknowns, namely whether or not the central nervous system (CNS) utilizes sensory 

prediction as part of the postural control process.  We propose that a predictive mechanism exists 

within the postural control system that can identify the highly repetitive pattern within a periodic 

sensory input, and can use this information to facilitate sensory processing by predicting future 

sensory inputs.  The present work describes our attempt to uncover evidence of such a 

mechanism, through examination of postural sway responses in healthy adults exposed to various 

types of periodic (i.e. “predictable”) and non-periodic (i.e. “unpredictable”) moving visual 

scenes.   

A series of three experiments were performed to explore various behaviors that were 

expected to occur as a consequence of the proposed predictive mechanism.  The first experiment 

examined whether or not periodic and non-periodic optic flow elicit significantly different 

postural responses.  Evidence of postural sensitivity to stimulus periodicity would implicate a 

control process that is to some degree predictive in nature.   

The second experiment examined whether or not predictive mechanisms contribute to the 

postural phenomenon of “adaptation”, which is characterized by a within-trial decrease in the 
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amplitude of sway in response to a sinusoidal oscillating visual stimulus.  This adaptive behavior 

has been attributed to sensory re-weighting [Loughlin et al., 1996], a process by which the 

relative contributions of individual sensory inputs change in response to alterations in the 

sensory environment.  Evidence of a link between stimulus periodicity and postural adaptation 

would identify prediction as a contributing factor to sensory re-weighting.   

 The third experiment examined how the aforementioned behaviors (i.e. postural sway and 

sway adaptation in response to periodic and non-periodic optic flow) are influenced, if at all, by 

concurrent cognitive tasks.  Prior studies have reported that cognitive resources are particularly 

important for the maintenance of postural stability when inputs from the various sensory 

pathways are not in agreement with one another [Redfern et al., 2001], which is the case during 

exposure to optic flow.  Moreover, in such “sensory conflict” conditions, sensory re-weighting 

and adaptation have been shown to occur [Loughlin et al., 1996] [Peterka and Loughlin, 2004].  

Therefore, this third experiment attempted to determine whether cognitive tasks interfere with 

this adaptive process. 
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2.0       BACKGROUND 
 

 

2.1     POSTURAL CONTROL 
 

The standing human is inherently unstable, and upright stance is achieved only through an active 

postural control process that counteracts the body’s tendency to fall away from earth vertical.  

Although we perceive this ability to maintain stable upright stance as automatic and effortless, it 

in fact requires a substantial amount of highly coordinated sensory processing and motor control.  

This complex task can be represented as a series of distinct stages, a simple conceptual model of 

which is depicted graphically in Figure 1.   
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Figure 1 Schematic Diagram of Postural Control Feedback Loop. (1) visual, graviceptive 
and proprioceptive sensory channels that detect body motion, as well as environmental 
perturbations; (2) sensory integration component, including a channel weight for the visual 
(Wv), graviceptive (Wg) and proprioceptive (Wp) signals; (3) neural controller that governs 
corrective action ; (4) neuromuscular plant which generates muscle forces, that act upon 
(5) body mechanics (represented here as an inverted pendulum) in order to stabilize 
postural sway. 
 
 
 

Visual, graviceptive, and proprioceptive sensory organs in the peripheral nervous system 

(PNS) can detect movements of the body, as well as any external events that might occur in the 

environment, and transmit this information along specialized pathways to the CNS.  Signals from 

the individual sensory channels must then be combined, or “integrated”, in order to provide the 

control apparatus (i.e. “neural controller”) with a cohesive representation of the current postural 

state, so that the appropriate corrective action can occur.  Evidence suggests that this integration 

process may involve the weighting of visual (Wv), graviceptive (Wg) and propricoeptive (Wp) 

sensory inputs, such that the relative contribution of each signal can be varied [Ernst and 

Bulthoff, 2004; Deneve and Pouget, 2004; Kording and Wolpert, 2004; Battaglia et al., 2003; 
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Zupan et al., 2002].  The neural controller and neuromuscular plant act together to generate 

muscular activity that interacts with body mechanics in order to stabilize sway.  Together these 

stages comprise a feedback control system that utilizes an error-correction strategy to 

continuously drive the body toward earth vertical (which is assumed to be the ideal or preferred 

orientation).  As the body drifts from vertical, the neural controller acts to counteract this 

movement in a manner that is proportional to the deviation from vertical, such that larger 

deviations will induce larger corrections.  Numerous mathematical models of this postural 

feedback control process have been developed over the past two decades, and have provided 

evidence in support of this rather intuitive idea that postural stability requires feedback control 

[Mergner et al., 2003; Mergner et al., 2002; Peterka, 2002; Oie et al., 2002; Kiemel et al., 2002; 

Johansson et al., 2001b; Johansson et al., 2001a; van der Kooij et al., 2001; Winter et al., 2001; 

Maurer et al., 2000; Fukuoka et al., 1999; van der Kooij et al., 1999; Morasso and Schieppati, 

1999; Breniere and Ribreau, 1998; Winter et al., 1998; Kuo, 1995; Pellionisz and Ramos, 1993; 

Collins and De Luca, 1993; Yang et al., 1990; Barin, 1989; Johansson et al., 1988; Maki et al., 

1987; Agarwal and Gottlieb, 1984b; Agarwal and Gottlieb, 1984a; Werness and Anderson, 1984; 

Nashner, 1972]. 

Despite their success both in characterizing various subsystems of the postural control loop, 

and in simulating particular experimental data, such studies have yet to offer a consensus view as 

to whether feedback control by itself is sufficient to produce postural stability, as some have 

suggested [Peterka, 2003; Peterka, 2002], or if instead feed-forward mechanisms are likely 

involved as well [Davidson et al., 2002; Hay and Redon, 1999; Fitzpatrick et al., 1996]. A 

variety of possible roles for feedforward processes have been posited, primarily in the motor 

control literature.  These include the maintenance of stability in the presence of feedback delays, 
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and the facilitation of sensorimotor learning [Blakemore and Sirigu, 2003; van der Kooij et al., 

2001; de Vlugt et al., 2001; van der Kooij et al., 1999].  It remains unclear, though, how the 

underlying mechanisms might operate, and how they interact with feedback processes to achieve 

postural stability.  One possibility that has been suggested is that the CNS contains an internal 

forward model that can predict the consequences of motor commands [Blakemore and Sirigu, 

2003; Wolpert et al., 1998], and can provide timely estimates of new sensory information in the 

absence of actual sensory input due to temporal delays associated with feedback control.  Note 

that the predictive capability of the internal forward model relies solely on the sensorimotor 

mapping that the model contains, and is not influenced by specific properties of the sensory 

stimulus.  The possibility that feedforward mechanisms may play a part in postural stability was 

a motivating factor for the current work. 

 
2.1.1 SENSORY INTEGRATION 
 

A review of the various existing models of postural control reveals that many differ mainly in 

their description of the sensory integration component of the model, with some for example 

describing it as simple linear sum, while others offer some nonlinear characterization.  This 

highlights two points, namely that sensory integration is a vital component of postural control, 

and also that there is no consensus view regarding the integration process.  Not coincidentally, 

sensory integration is a focal point of the current work; not in the sense that it will be 

mathematically modeled, however, but instead from the perspective that certain features of the 

process might be deduced through examination of experimental data.      

Sensory integration refers to the combining of incoming sensory information that the CNS 

performs in order to provide subsequent stages of the signal processing hierarchy with a coherent 
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picture of the current state (e.g. position, velocity, etc.) of the body.  The term “integration” is 

used conceptually, as opposed to mathematically, and merely indicates that visual, graviceptive 

and proprioceptive signals are combined in some manner.  Exactly how or where this process 

occurs is not known, despite attempts to characterize this phenomenon at various scales of 

observation.  For example, neurophysiologic studies have examined sensory integration at the 

neural level, through the use of intracellular recording techniques.  Such studies have identified 

“multisensory neurons” that receive converging inputs from multiple sensory modalities, and 

whose output therefore represents the combined effect of the inputs it receives [Stein, 1998].  At 

the other end of the spectrum, on the larger scale, integration has been modeled in various ways: 

(1) as a simple linear additive process [Peterka, 2002; Jeka et al., 2000; Hlavacka et al., 1996]; 

(2) in a nonlinear fashion [Oie et al., 2002; van der Kooij et al., 2001; Oie et al., 2001; Maurer et 

al., 2000; van der Kooij et al., 1999]; and (3) as a weighted summation wherein sensory inputs 

are weighted in either a task specific manner that favors signals which are more useful for a 

particular task, or a Bayesian manner (i.e. according to reliability) such that signals containing 

large variability contribute less to the output [Ernst and Bulthoff, 2004; Deneve and Pouget, 

2004; Kording and Wolpert, 2004; Battaglia et al., 2003; Zupan et al., 2002]. For purposes of 

this study, we make no assumptions regarding the relative linearity of sensory integration, and 

instead are simply concerned with mechanisms that contribute to sensory re-weighting.       

 
2.1.2 SENSORY REWEIGHTING 
 
 
As mentioned above, sensory integration may involve the weighting of sensory signals, 

presumably as a means of favoring more relevant inputs, or of minimizing the influence of 

unreliable signals.   Sensory reweighting is a term used to describe the process by which the 
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weights of the various sensory channels are dynamically altered, either in response to changes in 

the sensory environment (e.g. an external perturbation of some type), or perhaps as a result of 

some internal influence (e.g. volition or expectation on the part of the subject).  Such reweighting 

would seemingly provide the CNS with a degree of robustness, by offering the ability to 

accurately integrate sensory inputs under a wide variety of conditions.  Findings from both 

experimental and modeling efforts have implicated such sensory re-weighting as a causal 

mechanism for various postural behaviors [Mahboobin et al., 2005; Oie et al., 2002; Day et al., 

2002; van der Kooij et al., 2001; Maurer et al., 2000; Ishida et al., 1997], including resonance in 

sway responses following removal of certain sensory information [Peterka and Loughlin, 2004], 

and sway adaptation during exposure to sinusoidally oscillating optic flow [Loughlin and 

Redfern, 2001; Loughlin et al., 1996].  This latter observation of sway adaptation in response to 

a periodic stimulus was a motivating factor for the current work.  Loughlin et al. suggested that 

this sway adaptation, which is a gradual decrease in sway power during exposure to an optic 

flow stimulus, was the result of a reduction in visual channel weight prompted by sensory 

conflict among the various sensory signals [Loughlin and Redfern, 2001; Loughlin et al., 1996].  

Specifically, head movement induced by optic flow caused the visual system to underestimate 

sway amplitude, and therefore to produce an afferent signal that conflicted with graviceptive and 

proprioceptive signals.  The decrease in visual weight would therefore have been an attempt by 

the CNS to minimize the contribution of this unreliable signal.   
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2.2     PROPOSED PREDICTIVE MECHANISM 
 

In the current study, we offer an explanation for the observed adaptive behavior that is meant to 

complement, rather than replace, the very plausible ‘sensory-conflict’ explanation described 

above.  Namely, we suggest that sway adaptation was the result both of sensory-conflict and of 

the predictable nature of the sinusoidal optic flow. In particular, we propose that postural control 

contains a predictive mechanism that is sensitive to the relative predictability of sensory inputs, 

such that highly predictable stimuli will activate this mechanism, while less predictable stimuli 

will not.  Like the internal forward model described earlier, this predictive mechanism would be 

capable of estimating future sensory states, and of facilitating sensory integration by decreasing 

the time that is required to process information regarding future sensory inputs.  We suggest, 

however, that the proposed mechanism is distinct from (but not necessarily independent of) the 

internal forward model, in that its predictive capability is affected by specific properties of the 

sensory stimulus.  Interestingly, several prior postural studies have assumed that such predictive 

capability exists, and have purposely utilized unpredictable sensory stimuli in order to prevent 

the occurrence of any predictive behavior [Peterka, 2002; Johansson et al., 2001b; Pavlik et al., 

1999].  None of these studies, however, cited existing evidence or provided any rationale to 

support this assumption.  In contrast, the current study aimed specifically to uncover this very 

type of predictive behavior in postural responses.    

With respect to sway adaptation, the predictive mechanism is thought to facilitate the 

sensory re-weighting process, and therefore facilitate sway adaptation as well.  In particular, the 

predictive mechanism might exploit the repetitive nature of the sinusoidal visual stimulus in 

order to readily predict future visual input, which would presumably minimize the need to 

monitor newly arriving visual signals.  One way for the CNS to achieve this would be to lower 
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visual weight beyond that which is already occurring due to sensory conflict.  This would in 

effect further reduce reliance on inaccurate visual afferent signals, and would produce an 

enhanced adaptation characterized by a more pronounced per-stimulus decrease in sway 

amplitude. The purpose of the current study was to uncover evidence of such stimulus-dependent 

predictive behavior.  If indeed this predictive component of postural control exists, then one 

would expect to observe differences in postural responses to external perturbations that vary in 

their degree of predictability.   

 
 

2.3     VISUAL INFLUENCES 
 

Since the proposed predictive mechanism was expected to influence weighting of the visual 

channel in particular, it seemed appropriate to investigate how this process might have 

manifested itself not just in “normal” subjects, but also in a population known to be particularly 

dependent on vision.  Findings from previous studies suggest that postural behavior during 

exposure to visual perturbations may be influenced by this type of sensitivity to visual stimuli 

[Isableu et al., 1998; Isableu et al., 1997; Nyborg, 1974].  As such, sway responses, and 

particularly sway adaptation, were examined in both “visually dependent” and “visually 

independent” subjects, with the dependent group composed of individuals who were thought to 

rely heavily on visual information for postural stability.  Visual dependence was determined 

using the rod-and-frame test, as described by Isableu et al. [Isableu et al., 1998; Isableu et al., 

1997] and Nyborg [Nyborg, 1974].  This procedure examines the subjective visual vertical 

(SVV), which represents a subject’s ability to accurately identify earth vertical in an environment 

containing limited visual information, as described in detail in Isableu et al. [Isableu et al., 1998; 
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Isableu et al., 1997].  Briefly, subjects were seated in a dark room, equipped with a handheld 

device that controls the orientation of an illuminated rod situated directly in front of them, and 

instructed to align the rod with their perceived earth vertical.  The difference (or error), in 

degrees, between the final position of the rod and true earth vertical is recorded and used to 

assess a subject’s relative dependence on visual information, with errors above some threshold 

value being indicative of visual dependence. 

 
 

2.4     COGNITIVE INFLUENCES 
 

Previous studies that examined the influence of cognitive tasks on postural sway have suggested 

that sensory integration requires cognitive resources, or more specifically “attention”, especially 

during challenging postural tasks that might induce sensory conflict [Teasdale and Simoneau, 

2001; Redfern et al., 2001].  Since sensory conflict has been identified as a precursor to sensory 

reweighting, the possibility exists that attention may contribute to this reweighting process.  The 

term “attention” is typically used to refer to a selective process by which attended information is 

processed more efficiently than unattended information [Fernandez-Duque and Johnson, 2002]. 

From this perspective, the increased cognitive demands that would presumably be associated 

with sensory reweighting and the resolution of sensory conflict might require the enhanced 

information processing provided by attending to that task.  If this were true, one might expect 

that performing a cognitive task during exposure to optic flow might interfere with the sensory 

reweighting process, since the cognitive task and postural task might be competing for shared 

resources, as suggested by the ‘limited capacity’ model of “attention” [Tombu and Jolicoeur, 

2002; Fernandez-Duque and Johnson, 2002].  As such, the current study aimed to examine the 
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interaction between “attention” and sensory reweighting, by examining sway responses during 

exposure to predictable and unpredictable optic flow, both with and without a concurrent 

cognitive task.  Because reweighting has been identified as a possible causal mechanism for 

sway adaptation, any cognitive-task effect on sway would likely be observed in measures of 

sway adaptation. 

Also, since “attention” is associated with enhanced processing of attended information, one 

might expect that the effect of a cognitive task on visual channel reweighting would depend on 

the sensory modality of the cognitive task.  For example, attending to a visual task might be 

expected to enhance this reweighting, while attending to an auditory task might not enhance this 

visually-specific process.  For this reason, both auditory and visual cognitive tasks were utilized 

in examining the interaction between “attention” and sensory reweighting. 
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3.0       OBJECTIVES 
 

 

Based on the background information provided in the preceding section, the objectives of the 

current work were to: (1) uncover experimental evidence of a predictive mechanism in postural 

control, through examination of postural sway responses in healthy young adults exposed to 

various types of predictable and unpredictable moving visual scenes; (2) examine how the 

predictive mechanism manifested itself in individuals who were particularly reliant on visual 

sensory information; and (3) determine if the predictive mechanism was influenced by a 

cognitive task, which has been shown to interfere with sensory reweighting. The specific aims 

for each of these objectives are discussed in the next section.   
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4.0       SPECIFIC AIMS AND HYPOTHESES 
 

 

4.1     SPECIFIC AIM #1 
 

To experimentally examine the influence of visual stimulus periodicity on postural sway 

magnitude in healthy young adults.  The hypotheses related to this specific aim were:   

 

H1.1 Sway magnitudes, as measured by average stimulus-band power, would be lower in 

response to periodic stimuli compared to the non-periodic counterpart. 

 

 
4.2     SPECIFIC AIM #2 

 

To experimentally examine the influence of visual stimulus periodicity on postural sway 

magnitude and postural sway adaptation in visually dependent and visually independent healthy 

young adults. The hypotheses related to this specific aim were: 

 

H2.1 Sway magnitudes, as measured by average stimulus-band power, would be lower in 

response to periodic stimuli compared to the non-periodic counterpart. 

H2.2 Sway adaptation, as measured by the time constant of exponential decay, would be faster in 

response to periodic stimuli compared to the non-periodic counterpart. 

14 



 

H2.3 Sway magnitude and adaptation in response to periodic and non-periodic stimuli would be 

different in visually dependent and visually independent subjects. 

 

 
4.3     SPECIFIC AIM #3 

 

To experimentally examine the influence of both a concurrent cognitive task and visual stimulus 

periodicity on postural sway magnitude and postural sway adaptation.  The hypotheses related to 

this specific aim were: 

 

H3.1 Sway magnitudes, as measured by average stimulus-band power, would be lower in 

response to periodic stimuli compared to the non-periodic counterpart. 

H3.2 Sway adaptation, as measured by the time constant of exponential decay, would be faster in 

response to periodic stimuli compared to the non-periodic counterpart. 

H3.3 Sway in response to periodic stimuli would display faster adaptation and lower magnitude 

during a visual concurrent cognitive task, as compared to an auditory task. 

H3.4 A concurrent cognitive task will cause a decrease in sway magnitude. 
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5.0       RESEARCH DESIGN AND METHODS 
 

 

5.1     OVERVIEW 
 

Three experiments were performed in order to accomplish the specific aims described previously 

in section 4.  The various experiments shared a common methodology, namely examining 

postural sway responses in healthy young adults during exposure to spectrally similar periodic 

and non-periodic moving visual scenes.  Differences among the experiments were limited to 

slight variations in the types of scene movements presented to subjects, and to the inclusion of a 

concurrent task in experiment #3.  Other aspects of the experiments, including data collection 

and analysis, were essentially identical.  Detailed descriptions of the methods employed in each 

experiment are included in the Methods section of the respective chapters (see experiments #1, 

#2, and #3). 

Experiment #1 examined the magnitude of postural sway in healthy young adults exposed to 

spectrally similar periodic and non-periodic moving visual scenes.  Experiment #2 expanded on 

the previous work by examining both sway magnitude and sway adaptation, in visually 

dependent and visually independent healthy young adults exposed to spectrally similar periodic 

and non-periodic optic flows.  Experiment #3 was a further extension of these prior studies,  and 

investigated how a concurrent cognitive task influenced the relationship between stimulus 

periodicity and postural sway that had been uncovered in experiments #1 and #2.   
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5.2     SUBJECT POPULATION 
 

Each of the experiments examined healthy young adults between the ages of 21 and 35.  Sample 

size differed among the three experiments.  Experiment #1 was a preliminary study that was 

conducted on n=6 subjects.  A statistical power analysis of this data indicated that at least n=15 

subjects were required to observe significant differences in our chosen metrics, at the established 

statistical criteria levels we had established.  Accordingly, sample sizes for experiments #2 and 

#3 were set at n=20 and n=16, respectively.  

 Subjects were recruited from the University of Pittsburgh and the greater Pittsburgh area, 

and received a comprehensive screening exam prior to entering the study.  Exclusionary criteria 

included: (1) a history of vestibular or neurologic disease; (2) abnormalities on a physician-

administered neurologic examination; (3) difficulties in standing that would prevent completion 

of the study; (4) binocular visual acuity (with corrective lenses) of worse than 20/40; (5) 

abnormal vestibular function (as measured by positional, caloric, and Earth-Vertical-Axis-

Rotation tests); and (6) evidence of significant hearing loss.  Subjects were also excluded from 

participation if they had been previously exposed to the types of visual scene perturbations that 

were used in these experiments. As such, each subject was eligible to participate in only one of 

the three experiments.  All subjects provided informed consent to participate in this study.  

 
 

5.3     EQUIPMENT 
 

Tests were performed in the Balance NAVE Automatic Virtual Environment (BNAVE), a 

custom built virtual environment that creates an immersive visual surround by projecting 

computer generated images onto three adjoining screens [Jacobson J et al., 2001].  The screens 
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measure approximately 183cm x 213cm (width x height), and are arranged in front, to the left, 

and to the right of the viewer, such that they occupy the entire horizontal visual field.  A 

contiguous image is projected onto the screens, and provides a full (180°) horizontal field of 

view.  This visual scene extends onto the floor as well, but not to the ceiling (which is covered in 

black cloth), so the vertical field of view is thus limited to approximately 120°.  A safety harness 

is incorporated into the BNAVE structure, in order to prevent a subject from falling in the event 

of a loss of balance.  Data collection equipment includes a force platform (Neurocom, Inc., 

Clackamas OR) capable of measuring normal and shear forces at the foot-floor interface, via a 

group of four embedded load cells that output a voltage proportional to the force exerted on the 

load cell.  This information is stored digitally, and then post-processed to yield foot center-of-

pressure (COP) displacement values.  In addition, a Fastrak electromagnetic tracking system 

(Polhemus Inc., Colchester VT) is used to collect information on motion of body segments 

during postural tasks.  The system consists of a single stationary “base” that emits a magnetic 

field, as well as several mobile sensors, or “trackers”, each of which contains an inductive coil, 

and is attached to the object whose movement is to be monitored.  Motion between a tracker and 

the base induces a current in the tracker coil that is proportional to the relative displacement 

between the two objects.  This system was used to measure movement of the head. 

 

 
5.4     EXPERIMENTAL DESIGN 

 

The experimental design is illustrated in Table 1 and Table 2.  Experiments #1 and #2 involved 

only postural tasks.  Experiment #3 utilized these same postural tasks, but included a concurrent 

cognitive task as well.  Subjects stood on a fixed floor while viewing optic flow whose motion 
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was driven by either a single sinusoid (TONE), a periodic sum-of-sinusoids (PSUM), or a non-

periodic sum-of-sinusoids (NPSUM).  Subjects also performed a single quiet stance trial without 

visual perturbation (NONE) prior to exposure to the moving visual scenes.   In experiment #3, 

subjects performed a concurrent auditory or visual reaction-time task, and were also exposed to 

an additional visual condition in which a scene appeared on the BNAVE screens but remained 

stationary throughout the trial.  Postural responses were quantified through measurements of foot 

center-of-pressure (COP) and head displacements.  A full-factorial design across stimulus and 

cognitive-task conditions was necessary to address the hypotheses outlined earlier in section 4. 

 

Table 1 Experimental design for experiments #1 and #2. 

able 2 Experimental design for experiments #3. 

 PLATFORM VISUAL STIMULUS 
Fixed None, TONE, PSUM, NPSUM 

  

T

PLATFORM VISUAL STIMULUS COGNITIVE TASK 
Fixed None, Stationary, TONE, PSUM, 

NPSUM 
None, Auditory, Visual 
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6.0       EXPERIMENT 1: SPECTRALLY SIMILAR PERIODIC AND NON-PERIODIC 
OPTIC FLOWS EVOKE DIFFERENT POSTURAL SWAY RESPONSES 

 

 

6.1     ABSTRACT 
 

This study investigated the effect of optic flow periodicity on postural sway.  Head and center-

of-pressure (COP) displacements in response to an oscillating full-field bullseye-and-

checkerboard pattern were recorded in six healthy adults.  Scene movement was driven by one of 

five signals: (1) 0.1Hz sinusoid, (2) 0.3Hz sinusoid, (3) 0.5Hz sinusoid, (4) the periodic sum of 

these three sinusoids (PSUM), or (5) a non-periodic counterpart (NPSUM=0.1 + π/10 + 0.5 Hz). 

Sway response power at the various stimulus frequencies were compared (1) among the three 

single sinusoidal groups, and (2) between the two sum-of-sinusoid groups. Head and COP 

responses displayed similar spectral content, though sway magnitude was larger for the head.  

Sway responses to the moving scenes were significantly larger than those observed during quiet 

stance.  Each sinusoidal moving scene evoked a strong response at the stimulus frequency, as 

well as increased sway at non-stimulus frequencies, primarily below 0.2Hz.  For the sum-of-

sinusoids stimuli, both PSUM and NPSUM signals elicited sway responses at each of their 

component frequencies.  The amplitudes of these responses were similar to one another at 0.1Hz 

and 0.3Hz, but significantly different at 0.5Hz, with PSUM responses on average four times 

larger than those for NPSUM.   
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These findings indicate that spectrally similar periodic and non-periodic stimuli elicit 

quantitatively different sway responses.  The observed behaviors may be due to postural 

sensitivity to the predictability of visual motion, or due to other nonlinear and/or time-varying 

mechanisms in the postural control system.   

 
 

6.2     INTRODUCTION 
 

The control of upright posture involves the continuous integration of afferent signals from the 

visual, vestibular and somatosensory systems.   Despite the importance of this sensory 

integration in providing a sense of spatial orientation, and in contributing to the maintenance of 

balance, a clear picture of precisely how the central nervous system (CNS) actually combines 

and interprets incoming sensory signals has yet to emerge.  This is due in part to an incomplete 

understanding of the feedforward (predictive) elements that may be part of this integration 

process.  Many studies of postural control have focused on the feedback (corrective) mechanisms 

that are known to influence upright stance [Creath et al., 2002; Day and Cole, 2002; Jeka et al., 

2000; Fukuoka et al., 1999; Allum et al., 1998; Bronstein and Buckwell, 1997; Fitzpatrick et al., 

1996; Peterka and Benolken, 1995], presumably because the sensory events that provide such 

feedback to the nervous system are observable, and therefore quantifiable.  Some studies have 

concluded that feedback alone is sufficient to explain experimental observations of postural 

behavior [Peterka, 2003; Peterka, 2002], while others have reached the opposite conclusion 

[Fitzpatrick et al., 1996].   
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Despite the lack of consensus regarding the exclusive role of feedback in postural control, 

such studies have nevertheless succeeded in uncovering a wealth of information regarding 

sensory contributions to postural control, including the characterization of individual sensory 

pathways, and evidence of adaptive phenomena such as sensory re-weighting [Peterka, 2002; 

Peterka and Benolken, 1995].  

 A variety of possible roles for predictive processes have been posited, primarily in the 

motor control literature.  These include the maintenance of stability in the presence of feedback 

delays, and the facilitation of sensorimotor learning [Blakemore and Sirigu, 2003; van der Kooij 

et al., 2001; van der Kooij et al., 1999].  It remains unclear, though, how the underlying 

mechanisms might operate, and how they interact with feedback processes to achieve postural 

stability.  One possibility that has been suggested is that the CNS contains an internal forward 

model that can predict the consequences of motor commands [Blakemore and Sirigu, 2003; 

Wolpert et al., 1998].  The internal model captures the causal relationships between 

neuromuscular inputs and outputs, and is used in combination with an efference copy of the 

motor command in order to simulate subsequent sensory consequences. For example, an internal 

model could predict a future state (e.g. body position and/or velocity), given the current state and 

motor command.  This mechanism would be useful, for instance, in providing timely estimates 

of new sensory information in the absence of actual sensory input due to temporal delays 

associated with feedback control.  Note that the predictive capability of such an internal model 

relies solely on the sensorimotor mapping that the model contains, and is not influenced by 

specific properties of the sensory stimulus.  

 In this study, we proposed that postural control contains a predictive mechanism that is 

sensitive to the relative predictability of sensory inputs, such that highly predictable stimuli will 

22 



 

activate this mechanism, while less predictable stimuli will not.  Like the internal forward model 

described above, this predictive mechanism is capable of estimating future sensory states, and of 

facilitating sensory integration by decreasing the time that is required to process information 

regarding future sensory inputs.  We suggest, however, that the proposed mechanism is distinct 

from (but not necessarily independent of) the internal forward model, in that its predictive 

capability is affected by specific properties of the sensory stimulus.  The motivation for the 

present study was to uncover evidence of such stimulus-dependent predictive behavior.  If indeed 

this predictive component of postural control exists, then we would expect to observe differences 

in postural responses to external perturbations that vary in their degree of predictability.  With 

this in mind, the purpose of this study was to investigate how the relative predictability of a 

moving visual scene influences the magnitude of postural sway.  Note that “predictable” is used 

here not in the statistical versus deterministic sense, but rather in terms of a periodicity or 

repetitive pattern that the CNS can readily discern.   

 Vision was chosen as the stimulus modality because it is easy to manipulate, and it’s 

influence on posture has been extensively studied.  It is well known that visual information 

contributes to posture, even during quiet stance, as evidenced by the fact that both amplitude and 

variability of spontaneous sway increase during eyes closed conditions [Prieto et al., 1996].  The 

moving room paradigm is a useful investigative tool in that it allows the visual environment to be 

manipulated in a controlled manner, and produces a convincing sense of vection for the observer.  

Previous studies have demonstrated that moving visual scenes can elicit postural sway responses 

[Lee and Lishman, 1975; Lee and Aronson, 1974; Gibson, 1958], and that such responses are 

influenced by specific spatial and temporal properties of the optic flow, including geometric 

structure [van Asten et al., 1988; Stoffregen, 1985], amplitude [Peterka, 2002; Dijkstra et al., 
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1994b], velocity [Kiemel et al., 2002; Dijkstra et al., 1994a; Stoffregen, 1986; Lestienne et al., 

1977], frequency [Dijkstra et al., 1994a; Lestienne et al., 1977], and location in the field of view 

[Stoffregen et al., 1987; Stoffregen, 1986; Brandt et al., 1973].  

 Comparisons were made among sway responses to three types of antero-posterior (AP) 

optic flow stimuli: pure sinusoidal motion, a sum of three sinusoids with an obvious periodicity, 

and a sum of three sinusoids that exhibited no periodicity.  It was hypothesized that the periodic 

visual stimuli would elicit lower sway amplitudes compared to the non-periodic stimulus.  The 

rationale for this hypothesis, as alluded to earlier, was that predictive mechanisms in the CNS 

could exploit the repetitive nature of periodic stimuli in order to predict future visual inputs 

and/or subsequent periodic changes in body position and/or velocity, and that this predictive 

behavior could in turn promote postural stability.  For example, reliance on visual afferents 

might be reduced (i.e. by lowering visual gain in the control loop), and/or additional corrective 

torque based on the predicted body motions could be generated, both of which could result in a 

reduction of sway compared to situations in which sensory perturbations and resulting body 

oscillations were not as repetitive and predictable. 

 
 

6.3     METHODS 
 

Postural sway responses to various moving visual scene perturbations were examined in six 

healthy young adults, ranging in age from 22-26 years (mean age = 24.5 yrs).  Subjects had no 

history of neurological or balance-related dysfunction, and no previous exposure to visual scene 

perturbations in an experimental setting.  All subjects provided informed consent to participate in 

this study, and the experimental protocol was approved by the Institutional Review Board at the 
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University of Pittsburgh.  Tests were performed in the BNAVE, a custom built virtual 

environment that creates an immersive visual surround by projecting computer generated images 

onto three adjoining screens [Jacobson J et al., 2001]; see Figure 2.  The screens are 

approximately 183cm x 213cm (width x height), and are arranged in front, to the left, and to the 

right of the viewer.  A contiguous image is projected onto the screens, and provides a full (180°) 

horizontal field of view.  This visual scene extends onto the floor as well, but not to the ceiling 

(which is covered in black cloth), so the vertical field of view is thus limited to approximately 

120°.   

 

 

Figure 2 Subject viewing a bullseye-and-checkerboard pattern in the BNAVE virtual 
environment.  Sway responses were recorded via a single force plate beneath the feet, and 
an electromagnetic tracking device located at the head. Subject is secured to the support 
structure by a safety harness. 
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6.3.1 VISUAL SCENES 
 

The image presented to the subjects consisted of a “bullseye” pattern of six alternating black-

and-white concentric rings (with each ring occupying 5° of visual arc), surrounded by a 

checkerboard of black-and-white squares (15cm per side), as shown in Figure 2.  Previous 

studies have utilized similar patterns in a moving room paradigm to evoke postural responses in 

both healthy and patient populations [Borger et al., 1999; Peterka and Benolken, 1995; 

Stoffregen, 1985]. 

The bullseye-and-checkerboard pattern oscillated toward and away from subjects in either a 

periodic (“predictable”) or non-periodic (“unpredictable”) fashion.  Scene movement was driven 

by one of five signals (Figure 3): (1) ±8cm 0.1Hz sinusoid, (2) ±8cm 0.3Hz sinusoid, (3) ±8cm 

0.5Hz sinusoid, (4) the periodic sum of these three sinusoids (PSUM = 0.1 + 0.3 + 0.5 Hz), or (5) 

a non-periodic counterpart (0.1 + π/10 + 0.5 Hz = NPSUM).  Because the frequencies of the 

PSUM stimulus are integer multiples of each other, the stimulus is periodic, with period given by 

T=1/0.1=10 sec.  For the NPSUM stimulus, component frequencies were chosen in order to 

produce a signal with frequency content nearly identical to that of the PSUM stimulus, but 

lacking a temporal periodicity.  Since π/10 is not an integer multiple of 0.1 Hz, the NPSUM 

stimulus is not periodic and exhibits markedly different temporal characteristics than the PSUM 

stimulus, even though the spectra of the PSUM and NPSUM stimuli are very similar (see Figure 

3).  In addition, the sum-of-sinusoids signals were normalized such that their root-mean-square 

(RMS) was equal to that of the ±8cm single sinusoids; this ensured that peak amplitudes were 

similar among the five stimuli. 
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Figure 3 Time series’ (left) and corresponding power spectra (right) for the five scene 
movements presented to subjects. Shown from top to bottom are 0.1Hz, 0.3Hz, 0.5Hz, 
PSUM (0.1 + 0.3 + 0.5Hz) and NPSUM (0.1 + π/10 + 0.5Hz).  “Start” and “Stop” indicate 
times at which scene movement begins and ends, respectively. The set of three lines in the 
top left-hand corner of the PSUM and NPSUM time series plots represent the period 
(frequency -1), in seconds, of the component sinusoids – 0.1Hz (dashed), 0.3Hz (dotted), and 
0.5Hz (solid). 
 

  

6.3.2 DATA COLLECTION 
  

Subjects stood in an upright position 1.5 meters from the front screen, with arms folded across 

the chest, and with bare feet placed shoulder-width apart on a force platform (NeuroCom Inc., 

Clackamas OR).  Image height was adjusted so that the bullseye center was located at eye level.    

Subjects were secured to the BNAVE support structure with a tether and harness.  This safety 

line was sufficiently loose to afford subjects free range of motion, and did not hinder sway or 
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provide sensory feedback regarding their body sway.  Each of the five scene movements was 

presented once, in random order, to each subject.  Prior to each trial, room lights were dimmed, 

and subjects were instructed to “stand comfortably and look straight ahead at the image on the 

screen.”  Trial duration was 80 seconds, and consisted of 60 seconds of scene movement 

preceded and followed by 10 seconds of no motion. A rest period of 2 minutes was provided 

between successive trials, during which time room lights were switched on, and subjects relaxed 

in a seated position.  In addition, a 30-second quiet stance trial was performed prior to the 

moving scene trials, in order to record “baseline” spontaneous sway in the absence of visual 

perturbation (i.e. subjects viewed a blank screen during these baseline trials).  

 Postural responses were examined through measurements of head and center-of-pressure 

(COP) displacements.  Head data were collected at 20Hz using a Polhemus Fastrak 

electromagnetic tracking system (Polhemus Inc., Colchester VT), with a single sensor located at 

the crown of the head.  Foot force data were sampled at 100Hz via load cells embedded in the 

force platform, and post-processed in Matlab (The Mathworks Inc., Natick MA) to obtain COP 

values. 

 
6.3.3 DATA PROCESSING 
 

Data were high-pass filtered, down-sampled to 5 Hz, and zero-meaned.  High-pass filtering was 

achieved through zero-phase implementation of a fourth order Chebyshev type II filter, with a 

cutoff frequency of 0.025 Hz, and a stop-band attenuation of 20 decibels (a decibel (dB) is a unit 

of measure often used for values that span several orders of magnitude, and is mathematically 

defined as 10*log10(Power)).  The 3dB attenuation point for the high-pass filter occurred at 

approximately 0.03Hz, and frequencies above 0.07Hz were not attenuated at all.  This high-pass 
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filter removed the dominant DC and very low frequencies observed in postural sway position 

data, and facilitated the identification of sway responses to the low frequency (0.1 Hz) 

component of the stimuli.   

 Filtered data were then examined using Fourier analysis, in order to estimate spectral 

densities for head and COP response signals, for both the quiet-stance baseline trial and moving 

scene trials.  This was achieved through the calculation of windowed periodograms using the 

discrete Fourier transform (DFT).  Spectral estimation was performed on only the 60-second 

moving scene portion of each trial (i.e. the first and last 10 seconds of data were removed prior to 

Fourier analysis).  The 60-second data segments were multiplied by a Hanning window (a 

smooth function that tapers gradually to zero [1975]) prior to performing the DFT, in order to 

minimize edge effect artifacts that can arise during the Fourier transform.  The squared-

magnitude of the DFT was computed to produce an estimate of sway response power, at 

frequency intervals of 0.01Hz, spanning DC through 2.5Hz.  Of particular interest was response 

power at each of the stimulus frequencies: 0.1 Hz, 0.3 Hz, and 0.5 Hz.  These were obtained by 

calculating the average power across seven frequency bins (bin size = 0.01Hz) at and around 

each of the stimulus frequencies.  The averaging was performed because subject responses to a 

particular stimulus frequency didn’t necessarily occur exactly at that frequency.  This yielded a 

“stimulus-band” power equal to the average power at a given stimulus frequency ± 0.03Hz.  

These frequency-band power metrics were used as the means of comparison (1) among the three 

single sinusoidal groups (0.1,0.3,0.5Hz), and (2) between the two sum-of-sinusoid groups 

(PSUM, NPSUM).  Responses to moving scenes were compared to those for quiet stance, in 

order to separate contributions of optic flow from those due purely to spontaneous sway.  A full 

factorial repeated measures ANOVA was utilized to test how the main effect of stimulus type 
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(i.e. PSUM, NPSUM, 0.1Hz, 0.3Hz, or 0.5Hz) contributed to the observed differences in 

stimulus-band power.  Data distributions were tested for normality using the Shapiro-Wilk W 

test, and log-transformed to achieve normality when necessary.  The significance level was set at 

p = 0.05 for both primary and post-hoc (Tukey’s HSD) comparisons. Unless otherwise noted, 

any statistical differences described in the text or indicated in figures with an asterisk, 

correspond to a significance level of p<0.05.   

 

 
6.4     RESULTS 

 

6.4.1 GENERAL SWAY RESPONSES 
 

Subjects responded strongly to each of the five visual stimuli. Movements of the head and COP 

were in phase with one another for all trials, as revealed by visual inspection of time series data.  

Response amplitudes were largest at the head (between 1cm and 2cm) and lowest for COP, as 

shown in the time-series plots in Figure 4.  Except for absolute power levels, the corresponding 

spectral densities were very similar up to approximately 0.5Hz.  These findings indicated that 

subjects had swayed predominantly as an inverted pendulum, which is consistent with previous 

findings of postural sway [Peterka, 2003; Peterka, 2002]. 
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Figure 4 Time series’ of Head and COP responses for a single subject (s08).  Shown from 
top to bottom are (a) 0.1Hz, (b) 0.3Hz, (c) 0.5Hz, (d) PSUM (0.1 + 0.3 + 0.5Hz), and (e) 
NPSUM (0.1 + π/10 + 0.5Hz).  Data for the stimuli (dotted line) are included for 
comparison; for clarity, they have been scaled by a factor of 8, and shifted down by 2cm.  
“Start” and “Stop” indicate times at which scene movement begins and ends, respectively. 
  

 

Both the quiet stance and moving scene sway responses displayed power that was highest 

at low frequencies (i.e. below 0.1Hz), and that generally decreased across the spectrum, with 

minimum values occurring at frequencies above 0.5Hz, as shown for head motion in Figure 5 

(COP responses, though not shown, were very similar).  Quiet stance sway power was spread 

across a band of frequencies from DC to approximately 0.3Hz, which is typical for spontaneous 
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sway.  The moving scene responses were characterized by larger sway amplitudes in this same 

frequency range, and substantial power at the stimulus frequency (or frequencies, for the sum-of-

sinusoids) as well.  Both single sinusoid and sum-of-sinusoid motion elicited sway responses that 

were consistently larger than those observed during quiet stance.  This effect was least evident at 

0.1Hz (Figure 5 and Figure 6).  Note that if comparing Figure 5 and Figure 6, keep in mind that 

the bar plot values shown in Figure 6 represent the average power across a narrow range of 

frequencies near the stimulus frequency (as indicated by the arrows shown at the top of Figure 

5a), while the spectral densities in Figure 5 represent raw (i.e. not averaged) power at a given 

frequency.  

 
6.4.2 RESPONSES TO SINGLE SINUSOIDS 
 

Each of the single sinusoids evoked sway not only at the stimulus frequency, but also across a 

band of frequencies ranging from DC to approximately 0.5Hz (Figures 5a-c, Figure 6a).  In all 

cases, frequencies that were not present in the stimulus appeared in the response.  This effect was 

pronounced for the 0.3 and 0.5Hz stimuli, while less apparent for the 0.1Hz stimulus.   

Moving scene responses were larger than those during quiet stance.  The 0.3Hz and 0.5Hz 

stimuli produced sway in the 0.1Hz frequency band (0.07 to 0.13 Hz) that was at least two times 

(3dB) larger than that for quiet stance (Figure. 6a); these differences were significant.  Sway in 

the 0.1Hz band in response to the 0.1Hz stimulus was smaller than sway in the 0.1Hz band in 

response to both the 0.3Hz and 0.5Hz stimuli, though still almost two times (3dB) larger than the 

corresponding quiet stance value. 
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Figure 5 Ensemble power spectra of Head responses to the five scene movements (MS 
Response).  Values are the average across n=6 subjects.  Shown from top to bottom are (a) 
0.1Hz, (b) 0.3Hz, (c) 0.5Hz, (d) PSUM (0.1 + 0.3 + 0.5Hz), and (e) NPSUM (0.1 + π/10 + 
0.5Hz).  Spectra for the stimuli (dotted line) and quiet-stance (QS) baseline response (thin 
solid line) are included for comparison. Stimulus power values have been scaled, for clarity 
(see Figure 2 for actual values).  Note that the absence of power below 0.025Hz is due to the 
data having been high-pass filtered, as represented by the shaded area. Arrows indicate the 
regions over which power values were averaged to yield the “stimulus-band” values that 
are shown in the Figure 6 bar plots (see Data Processing section for details).    

 
 

Sway power in the 0.3Hz band (0.27 to 0.33 Hz) was significantly larger in response to 

the 0.3Hz sinusoid, as compared to that during quiet stance (7dB difference), as well as 

compared to that in response to the 0.1Hz and 0.5Hz stimuli (4dB differences in both cases); see 

Figure 6a. Similarly, sway in the 0.5Hz band (0.47 to 0.53 Hz)  was largest in response to the 
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0.5Hz stimulus, with power significantly larger (by approximately 8dB) than that for responses 

to the 0.1Hz and 0.3Hz sinusoids.  In addition, quiet stance power in the 0.5Hz band was 

significantly lower (by between 7dB and 15dB) than the corresponding response power to any of 

the sinusoids (Figure. 6a). These trends, including significant differences, were observed in the 

COP data as well.    

(a)(a)

 

Figure 6 Ensemble head sway response power at each of the stimulus frequencies for (a) 
the three single sinusoidal stimulus trials, and (b) the two sum-of-sinusoids stimulus trials. 
Quiet stance baseline values are shown for comparison. Values plotted are the mean +/- std 
error (in decibels) for all subjects (n=6).  Asterisks denote statistically significant 
differences (p<0.05). 
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(b)(b)
 

Figure 6 (continued) – part (b) 

 
 
6.4.3 RESPONSES TO SUM-OF-SINUSOIDS 
 

For the sum-of-sinusoids stimuli, both the periodic (PSUM) and non-periodic (NPSUM) signals 

elicited sway at each of their three component frequencies (Figures 5d-e, Figure 6b).  PSUM and 

NPSUM response amplitudes were nearly identical to one another in the 0.1Hz and 0.3Hz bands, 

but significantly different in the 0.5Hz band, with PSUM larger than NPSUM by over 6dB 

(Figure 6b).  These trends in the 0.5Hz band were clearly observed in four of the six subjects 

(Figure 7).  In addition, group mean responses were significantly larger (by at least 3dB) than 

quiet stance values at each of the stimulus frequencies, with the difference being particularly 
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large (10dB or more) in the 0.5Hz band (Figure 6b).  As in the case of the single sinusoidal 

stimuli, these trends, including significant differences, were observed in the COP data as well. 

 

Figure 7 Individual subject head sway response power at 0.5Hz for the sum-of-sinusoids 
stimulus trials (PSUM and NPSUM). Subjects are identified by number, as shown in the 
legend (e.g. ‘s03’ = subject 3).  These individual values, when averaged, yield the group 
means depicted in the corresponding bar plots in Figure 6. 

 
 
 
 

6.5     DISCUSSION 
 

This study investigated the effect of optic flow periodicity on postural sway, in an attempt to 

uncover evidence of the existence of a predictive component to postural control.  The main 

finding was that the PSUM and NPSUM sum-of-sinusoids stimuli elicited sway responses that 

were similar to one another at 0.1Hz and 0.3Hz, but significantly different at 0.5Hz, with PSUM 

36 



 

responses on average four times larger than those for NPSUM.  This effect was observed in four 

of six subjects, and indicates that spectrally similar periodic and non-periodic stimuli can elicit 

quantitatively different sway responses.  This finding was contrary to the original hypothesis that 

PSUM values would be lower than NPSUM values.  Nevertheless, the fact that the PSUM and 

NPSUM stimuli evoked significantly different responses suggests that postural control may 

indeed be sensitive to optic flow periodicity.  However, this sensitivity was not accompanied by 

an attenuation of sway in response to periodic optic flow, as had been expected for the predictive 

process that we proposed.   Further investigation is necessary to fully explore possible 

underlying mechanisms for the current findings, some of which are discussed below.  

 Previous findings in other sensorimotor systems have shown that the CNS can discern 

sensory stimuli based on periodicity.  For example, Barnes et al. [Barnes et al., 2000], in 

examining ocular pursuit in healthy adults, have observed that exposure to sinusoidal visual 

inputs enhances visual tracking performance during subsequent exposure to similar sinusoidal 

stimuli.  The authors suggested that the CNS is capable of detecting periodicity, and proposed a 

model of predictive control in which velocity information could be sampled, stored and 

subsequently replayed as an anticipatory pattern of movement.  In addition, a number of similar 

studies have reported that the predictability of a moving visual stimulus affects the gain and 

phase of the smooth pursuit component of eye velocity [Larsby et al., 1988; Collewijn and 

Tamminga, 1984; St. Cyr and Fender, 1969; Michael and Melvill Jones, 1966].  For example, 

Larsby et al. [Larsby et al., 1988] exposed subjects to both single-sinusoidal and pseudorandom 

target motion at frequencies ranging from 0.2Hz to 2Hz, and observed significantly higher gain 

in response to single-sinusoidal stimuli, as compared to pseudorandom stimuli, at frequencies 

similar to those used in the current study.  Predictability effects have also been observed outside 
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of the visual domain.  For example, Nelson et al. [Nelson et al., 2004] recently reported that (1) 

motor responses to single sinusoidal vibrotactile perturbations were faster and more accurate 

than responses to random perturbations; and that (2) both the amount and location of activation 

in the cerebral cortex were different between responses to these predictable and unpredictable 

stimuli.  Based on these observations, the authors suggested that exposure to predictable stimuli 

caused subjects to rely less on sensory feedback and more on feedforward control.   These 

findings indicate that the CNS, especially the visual system, is sensitive to stimulus periodicity, 

and provide evidence in support of the current observations. 

 In addition to differences between PSUM and NPSUM responses, we also observed (1) 

sway power at non-stimulus frequencies, and (2) strong responses at 0.5Hz, in both the single-

sinusoid and sum-of-sinusoid data.  Changes in the overall distribution of spectral power in 

response to single-frequency sinusoidal perturbations have been observed previously [van Asten 

et al., 1988; Dichgans and Brandt, 1978; Lestienne et al., 1977].  Two possible explanations for 

increased sway at non-stimulus frequencies are: (1) the system is responding in a nonlinear 

fashion, and (2) the system is not time-invariant, but rather changes in response to external 

perturbations.  Such nonlinearities and time-variations have been observed previously.  For 

example, Lestienne et al. found that sway was proportional to the logarithm of moving scene 

velocity [Lestienne et al., 1977], while Peterka and Benolken reported saturation in postural 

sway responses to increasing amplitude of scene movement [Peterka and Benolken, 1995].  Such 

logarithm-like saturation nonlinearities would generate harmonics of a sinusoidal stimulus 

[Victor and Shapley, 1980].  Our results are partially consistent with this, in that the 0.1 Hz 

single sinusoidal stimulus evoked significantly greater sway at 0.5Hz compared to quiet stance; 

the 0.1Hz stimulus did not, however, produce a similar increase at 0.3 Hz.  In addition, previous 
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studies have uncovered time varying behavior such as “sensory re-weighting”, whereby the 

relative contributions of the various sensory systems change over time in response to external 

perturbations [Peterka and Loughlin, 2004; Peterka, 2002].  Sensory re-weighting can lead to 

increased sway power at lower frequencies, if the sensory gains decrease in response to a 

perturbation [Peterka and Loughlin, 2004].  In the current study, it may be that in response to 

visual perturbations, sensory re-weighting occurred such that the “visual gain” of the system was 

reduced, leading to a change in the overall distribution of spectral power relative to quiet stance.  

The observation of increased sway power below 0.2 Hz in response to sinusoidal perturbations at 

higher frequencies is consistent with this aspect of postural control.  Several studies have 

examined such time-varying postural behavior, using time-frequency methods that quantify how 

spectral power of the sway response changes throughout the duration of a trial [Loughlin et al., 

2003; Loughlin and Redfern, 2001; Loughlin et al., 1996; Schumann et al., 1995].  Preliminary 

application of such methods to the current data uncovered clear evidence of a time-varying 

response in numerous trials, notably a within-trial decrease in the amplitude of sway at the 

stimulus frequency.  This effect has been previously reported by Loughlin et al. [Loughlin et al., 

2003; Loughlin and Redfern, 2001; Loughlin et al., 1996], who implicated the aforementioned 

sensory re-weighting as a possible mechanism for this adaptive behavior.   

 With respect to the strong responses at 0.5Hz, the data show that stimulus-band response 

power generally increased with stimulus frequency.  For example, in response to the single 

sinusoids, the greatest increase in sway relative to quiet stance was at 0.5 Hz, while the smallest 

increase was at 0.1 Hz; the latter being not significantly different from quiet stance power at 0.1 

Hz.  The sum-of-sinusoids data also exhibited the largest response, relative to quiet stance, at 0.5 

Hz.  This noticeable sway at such a high frequency was a surprising observation, considering that 
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it is seldom reported for healthy adults.  One possible explanation is that the virtual testing 

environment utilized in the current study, which presented full-field luminous scenes via 

computer generated images and LCD projection cameras, provided visual stimuli that were much 

more compelling than those used in previous studies.  Moreover, the consistently large responses 

at 0.5Hz suggest that velocity may be a salient feature of the visual stimulus, since the 0.5Hz 

sinusoid had the highest velocity of the three sinusoidal frequencies (amplitudes were identical 

among sinusoids, and therefore velocity increased proportionately to frequency).  Such postural 

sensitivity to visual stimulus velocity has been reported previously [Kiemel et al., 2002; Dijkstra 

et al., 1994a; Lestienne et al., 1977].    

 

 
6.6     CONCLUSION 

 

This study found differences in sway responses to spectrally similar periodic and non-periodic 

moving visual stimuli. Specifically, periodic optic flow evoked larger sway amplitudes compared 

to non-periodic optic flow of equal total power and nearly identical spectral content.  Previous 

findings in other sensorimotor systems suggest that this effect may be due to the visual system’s 

sensitivity to signal periodicity [Barnes et al., 2000; Larsby et al., 1988], and therefore may not 

be unique to postural control.  In addition, we observed increases in low frequency sway relative 

to quiet stance sway in response to sinusoidal moving scene perturbations, regardless of the 

stimulus frequency.  This finding is consistent with time-varying aspects of postural control, in 

particular the sensory re-weighting hypothesis [Peterka and Loughlin, 2004; Peterka, 2002].  

Future studies are planned to more fully investigate these findings and to develop models of the 

underlying mechanisms. 
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7.0       EXPERIMENT 2: POSTURAL SWAY ADAPTATION DURING INITIAL 
EXPOSURE TO PERIODIC AND NON-PERIODIC OPTIC FLOWS 

 

 

7.1     ABSTRACT 
 

We propose that postural control contains a predictive component that is sensitive to stimulus 

periodicity, such that periodic sensory inputs will produce lower sway than will non-periodic 

inputs. Results from an initial study refuted this hypothesis, showing that sway power in a group 

of six healthy adults was significantly larger in response to a periodic sum-of-sinusoids (SOS) 

optic flow stimulus, compared to a spectrally similar non-periodic counterpart, but only at the 

highest component frequency of the SOS stimuli (0.5Hz) [Musolino et al., 2006].  The objective 

of the current study was to determine whether this behavior would be reproduced in a larger 

group of subjects, and for a wider variety of SOS optic flow stimuli. Twenty subjects (13F, 7M ; 

age 21-35) were exposed to ten different full-field bullseye-and-checkerboard optic flow stimuli, 

presented in random order: four single sinusoids (0.1, 0.3, 0.5, 0.7Hz), three different periodic 

combinations of these sinusoids (PSUM), and three non-periodic combinations (spectrally 

similar to the periodic signals) in which the 0.3Hz component was replaced by a sinusoid with a 

frequency of π/10 Hz (NPSUM).  Head and center-of-pressure (COP) sway response power at 

the various stimulus frequencies were compared among the different stimulus groups.  In 

addition, subjects were separated into “visually dependent” (DEP) and “visually independent” 

(INDEP) groups, based on subjective visual vertical (SVV) data collected using the rod-and-

41 



 

frame test.  As had been seen previously, head and COP responses were similar enough in both 

magnitude and phase to suggest that subjects swayed as an inverted pendulum.  Also, we again 

observed strong responses at the stimulus frequency, as well as significant sway power at non-

stimulus frequencies.  With regard to the relationship between responses to PSUM and NPSUM 

stimuli, differences again appeared only at the highest frequency component of the SOS 

stimulus. A new, and unexpected, finding in this study was a strong trial effect, in which sway 

power for trial 1 was significantly larger than that for trials 2 through 10.  Interestingly, 

differences between the PSUM and NPSUM groups existed only during this first trial.  

Moreover, these differences were influenced by subjects’ visual dependence.  Specifically, DEP 

subjects swayed more in response to PSUM stimuli as compared to NPSUM stimuli, while 

INDEP subjects displayed the opposite behavior.  There were no differences between PSUM and 

NPSUM groups for trials 2-10.  Time-frequency analysis revealed evidence of adaptation (i.e. a 

within-trial decline in sway amplitude at the stimulus frequency) in trial 1.  Subjects responded 

strongly during initial exposure to optic flow, but the amplitude of this response decreased 

substantially during trial 1, and remained at an attenuated level for subsequent trials.  Further, the 

rate at which adaptation occurred was fastest for INDEP subjects exposed to PSUM stimuli, and 

slowest for DEP subjects exposed to PSUM stimuli.  These findings suggest that periodic and 

non-periodic optic flow stimuli do indeed evoke quantitatively different sway responses, and that 

this can be attributed to differences in the rate of adaptation during initial exposure to these 

stimuli.  Such behavior is consistent with the existence of a predictive component to postural 

control that is capable of reducing visual gain during exposure to periodic optic flow.   
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7.2     INTRODUCTION 
 

Many previous examinations of postural control have focused on the feedback mechanisms that 

are known to influence upright stance [Peterka, 2003; Peterka, 2002; Day and Cole, 2002; Creath 

et al., 2002; Jeka et al., 2000; Fukuoka et al., 1999; Allum et al., 1998; Bronstein and Buckwell, 

1997; Fitzpatrick et al., 1996; Peterka and Benolken, 1995].  Some of these studies have 

concluded that feedback alone is sufficient to explain experimental observations of postural 

behavior [Peterka, 2003; Peterka, 2002], while others suggest that feedforward mechanisms must 

be involved as well [Fitzpatrick et al., 1996].  A variety of possible roles for predictive processes 

have been posited, primarily in the motor control literature.  These include the maintenance of 

stability in the presence of feedback delays, and the facilitation of sensorimotor learning 

[Blakemore and Sirigu, 2003; van der Kooij et al., 2001; van der Kooij et al., 1999].  It remains 

unclear, though, how the underlying mechanisms might operate, and how they interact with 

feedback processes to achieve postural stability.  One possibility that has been suggested is that 

the CNS contains an internal forward model that can predict the consequences of motor 

commands [Blakemore and Sirigu, 2003; Wolpert et al., 1998].  The internal model captures the 

causal relationships between neuromuscular inputs and outputs, and is used in combination with 

an efference copy of the motor command in order to simulate subsequent sensory consequences. 

For example, an internal model could predict a future state (e.g. body position and/or velocity), 

given the current state and motor command.  This mechanism would be useful, for instance, in 

providing timely estimates of new sensory information in the absence of actual sensory input due 

to temporal delays associated with feedback control.  Note that the predictive capability of such 

an internal model relies solely on the sensorimotor mapping that the model contains, and is not 

influenced by specific properties of the sensory stimulus.  
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In this study, it is proposed that postural control contains a predictive mechanism that is 

sensitive to the relative predictability of sensory inputs, such that highly predictable stimuli will 

activate this mechanism, while less predictable stimuli will not.  Like the internal forward model 

described above, this predictive mechanism would be capable of estimating future sensory states, 

and of facilitating sensory integration by decreasing the time that is required to process 

information regarding future sensory inputs.  It is suggested, however, that the proposed 

mechanism is distinct from (but not necessarily independent of) the internal forward model, in 

that its predictive capability is affected by specific properties of the sensory stimulus.  If indeed 

this predictive component of postural control exists, then one would expect to observe 

differences in postural responses to external perturbations that vary in their degree of 

predictability.  With this in mind, our motivation was to uncover evidence of such stimulus-

dependent predictive behavior. Specifically, this work examined how the relative predictability 

of a moving visual scene influences postural sway.  Note that “predictable” is used here not in 

the statistical versus deterministic sense, but rather in terms of a periodicity or repetitive pattern 

that the central nervous system (CNS) can readily discern.   

In a previous study in our laboratory [Musolino et al., 2006], comparisons were made 

among sway responses to two types of antero-posterior (AP) full-field oscillatory optic flow 

stimuli: a sum of sinusoids (SOS) with an obvious periodicity, and a spectrally similar SOS that 

exhibited no periodicity.  We had hypothesized that the periodic visual stimulus would elicit 

lower sway amplitudes compared to the non-periodic stimulus.  The rationale for this hypothesis, 

as alluded to earlier, was that predictive mechanisms in the CNS could exploit the repetitive 

nature of a periodic stimulus in order to predict future visual inputs, and that this predictive 

behavior could in turn promote postural stability.  For example, reliance on visual afferents 
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might be reduced, perhaps by lowering visual gain in the postural control loop, which would 

effectively attenuate the visual signal that is driving the postural system, and thereby cause a 

reduction in the sway response.  The results of this study did not support our hypothesis, and 

instead showed that sway power in a group of six healthy adults was significantly larger in 

response to the periodic SOS compared to the non-periodic SOS, but only at the highest 

component frequency of the stimuli (0.5Hz). Other findings from this study included: a 

consistently strong response at 0.5Hz, suggesting a sensitivity to stimulus velocity [Kiemel et al., 

2002; Dijkstra et al., 1994a; Lestienne et al., 1977]; sway power at non-stimulus frequencies, 

implying a non-linear response [van Asten et al., 1988; Dichgans and Brandt, 1978; Lestienne et 

al., 1977]; sway amplitudes of approximately ±2cm in response to stimulus amplitudes of ±8cm, 

indicative of a saturation type non-linearity, as described by Peterka and Benolken [Peterka and 

Benolken, 1995]; and evidence of “adaptation”, a within-trial decrease in the amplitude of sway 

at the stimulus frequency, as observed previously by Loughlin et al. [Loughlin et al., 2003; 

Loughlin and Redfern, 2001; Loughlin et al., 1996].  These findings supported the notion of 

postural sensitivity to the predictability of visual motion, but a clear picture of this phenomenon 

was obscured by other findings that implicated various nonlinear and/or time-varying 

mechanisms in the postural control system.  As such, the objective of the current study was to 

determine whether the aforementioned behaviors would be reproduced in a larger group of 

subjects, and for a wider variety of SOS optic flow stimuli.  Specifically, the following questions 

were to be addressed: 

 

1. Would differences again be observed between periodic and non-periodic SOS groups?  If 

so, would they be the same as in our previous study, or instead support our hypothesis? 
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2. Would subjects again respond strongly to the highest component frequency in a SOS 

stimulus, regardless of the whether that frequency is 0.3Hz, 0.5Hz or 0.7Hz? 

3. How would sway amplitudes in response to a ±8cm stimulus compare to those in 

response to the substantially lower stimulus amplitude of ±4cm? 

4. Would adaptation be observed in any of the sway responses? If so, would this adaptation 

be different for responses to periodic stimuli compared to those for non-periodic stimuli?  

 

 
7.3     METHODS 

 

Postural sway responses to various moving visual scene perturbations were examined in twenty 

healthy young adults, ranging in age from 21-35 years (mean age = 26).  Subjects had no history 

of neurological or balance-related dysfunction, and no previous exposure to visual scene 

perturbations in an experimental setting.  All subjects provided informed consent to participate in 

this study, and the experimental protocol was approved by the Institutional Review Board at the 

University of Pittsburgh.  Tests were performed in the Balance Near Automatic Virtual 

Environment (BNAVE), a custom built virtual reality system that creates an immersive visual 

surround by projecting computer generated images onto three adjoining screens [Jacobson J et 

al., 2001].  The screens are approximately 183cm x 213cm (width x height), and are arranged in 

front, to the left, and to the right of the viewer.  A contiguous image is projected onto the 

screens, and provides a full (180°) horizontal field of view.  This visual scene extends onto the 

floor as well, but not to the ceiling (which is covered in black cloth), so the vertical field of view 

is thus limited to approximately 120°.   

 

46 



 

7.3.1 VISUAL SCENES 
 

The image presented to the subjects consisted of a “bullseye” pattern of six alternating black-

and-white concentric rings (with each ring occupying 5° of visual arc), surrounded by a 

checkerboard of black-and-white squares (15cm per side) [Musolino et al., 2006].  Previous 

studies have utilized similar patterns in a moving room paradigm to evoke postural responses in 

both healthy and patient populations [Borger et al., 1999; Peterka and Benolken, 1995; van 

Asten et al., 1988].  The bullseye-and-checkerboard pattern oscillated toward and away from 

subjects in either a periodic (“predictable”) or non-periodic (“unpredictable”) fashion.  Scene 

movement was driven by one of ten signals (Figure 8): (1) 0.1Hz sinusoid, (2) 0.3Hz sinusoid, 

(3) 0.5Hz sinusoid, (4) 0.7Hz sinusoid, (5) three different periodic sums of these three sinusoids 

(PSUM13 = 0.1 + 0.3Hz ; PSUM135 = 0.1 + 0.3 + 0.5Hz;  PSUM1357  = 0.1 + 0.3 + 0.5 + 0.7Hz), 

and (6) three non-periodic counterparts (NPSUM13 = 0.1 + π/10Hz;  NPSUM135 = 0.1 + π/10 + 

0.5Hz; and NPSUM1357 = 0.1 + π/10 + 0.5 + 0.7Hz).  Because the frequencies of the PSUM 

stimuli are integer multiples of each other, these stimuli are periodic, with period given by 

T=1/0.1=10 sec.  For the NPSUM stimuli, component frequencies were chosen in order to 

produce signals with frequency content nearly identical to that of the corresponding PSUM 

stimuli, but lacking a temporal periodicity.  Since π/10 is not an integer multiple of 0.1 Hz, the 

NPSUM stimuli are not periodic and exhibit markedly different temporal characteristics than the 

PSUM stimuli, even though the spectra of corresponding PSUM and NPSUM stimuli are very 

similar (see Figure 8).   

 

47 



 

PO
W

E
R

PO
W

E
R

 

Figure 8 Time series’ (left) and corresponding power spectra (right) for the ten scene 
movements presented to subjects. Shown from top to bottom are 0.1Hz, 0.3Hz, 0.5Hz, 
0.7Hz, PSUM13 (0.1 + 0.3Hz), PSUM135 (0.1 + 0.3 + 0.5Hz), PSUM1357 (0.1 + 0.3 + 0.5 + 
0.7Hz), NPSUM13 (0.1 + π/10Hz), NPSUM135 (0.1 + π/10 + 0.5Hz), and NPSUM1357 (0.1 + 
π/10 + 0.5 + 0.7Hz).  “Start” and “Stop” indicate times at which scene movement begins 
and ends, respectively.  
 

 
In addition, the sum-of-sinusoids signals were normalized such that their root-mean-square 

(RMS) was equal to that of the single sinusoids; this ensured that peak amplitudes and total input 

power were the same among the ten stimuli.  Twelve of the twenty subjects were exposed to 

±8cm amplitude stimuli, as in the previous study, while the remaining subjects viewed stimuli 

with an amplitude of only ±4cm.    
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7.3.2 DATA COLLECTION 
 

Subjects stood in an upright position 1.5 meters from the front screen, with arms folded across 

the chest, and with bare feet placed shoulder-width apart on a force platform (NeuroCom Inc., 

Clackamas OR).  Image height was adjusted so that the bullseye center was located at eye level.    

Subjects were secured to the BNAVE support structure with a tether and harness.  This safety 

line was sufficiently loose to afford subjects free range of motion, and did not hinder sway or 

provide sensory feedback regarding their body sway.  Each of the ten scene movements was 

presented once, in random order, to each subject.  Prior to each trial, room lights were dimmed, 

and subjects were instructed to “stand comfortably and look straight ahead at the image on the 

screen.”  Trial duration was 90 seconds, and consisted of 60 seconds of scene movement 

preceded and followed by 15 seconds of no motion. A rest period of 3 minutes was provided 

between successive trials, during which time room lights were switched on, and subjects relaxed 

in a seated position.  In addition, a 60-second quiet stance trial was performed prior to the 

moving scene trials, in order to record “baseline” spontaneous sway in the absence of visual 

perturbation (i.e. subjects viewed a blank screen during these baseline trials).  

Postural responses were examined through measurements of head and center-of-pressure 

(COP) displacements.  Head data were collected at 20Hz using a Polhemus Fastrack 

electromagnetic tracking system (Polhemus Inc.), with a single sensor located at the crown of the 

head.  Foot force data were sampled at 100Hz via load cells embedded in the force platform, and 

post-processed in Matlab (The Mathworks Inc.) to obtain COP values. 
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7.3.3 DATA PROCESSING 
 

Data were high-pass filtered, down-sampled to 5 Hz, and zero-meaned.  High-pass filtering was 

achieved through zero-phase implementation of a fourth order Chebyshev type II filter, with a 

cutoff frequency of 0.025 Hz, and a stop-band attenuation of 20 decibels (a decibel (dB) is a unit 

of measure often used for values that span several orders of magnitude, and is mathematically 

defined as 10*log10(Power)).  The 3dB attenuation point for the high-pass filter occurred at 

approximately 0.03Hz, so that frequencies above 0.07Hz were not attenuated at all.  This high-

pass filter removed the dominant DC and very low frequencies observed in postural sway 

position data, and facilitated the identification of sway responses to the low frequency (0.1 Hz) 

component of the stimuli.   

Filtered data were then examined using Fourier analysis, in order to estimate spectral 

densities for head and COP response signals, for both the quiet-stance baseline trial and moving 

scene trials.  This was achieved through the calculation of windowed periodograms using the 

discrete Fourier transform (DFT).  Spectral estimation was performed on only the 60-second 

moving scene portion of each trial (i.e. the first and last 15 seconds of data were removed prior to 

Fourier analysis).  The 60-second data segments were multiplied by a Hanning window (a 

smooth function that tapers gradually to zero [1975]) prior to performing the DFT, in order to 

minimize edge effect artifacts that can arise during the Fourier transform.  The squared-

magnitude of the DFT was computed to produce an estimate of sway response power, at 

frequency intervals of 0.01Hz, spanning DC through 2.5Hz.  Of particular interest was response 

power at each of the stimulus frequencies: 0.1 Hz, 0.3 Hz, 0.5 Hz, and 0.7 Hz.  These were 

obtained by calculating the average power across seven frequency bins (bin size = 0.01Hz) at and 

around each of the stimulus frequencies.  This yielded a “stimulus-band” power equal to the 
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average power at a given stimulus frequency ± 0.03Hz.  These frequency-band power metrics 

were used as the means of comparison (1) among the four single sinusoidal groups, and (2) 

among the six sum-of-sinusoid groups.  Responses to moving scenes were compared to those for 

quiet stance, in order to separate contributions of optic flow from those due purely to 

spontaneous sway. 

 
7.3.4 SWAY ADAPTATION ANALYSIS 
 

Changes in sway amplitude throughout each trial were determined by examining the time-

varying spectrum of sway position, as obtained through the use of time-frequency analysis, as 

described by Cohen [Cohen, 1989; Cohen and Posch, 1985] and Loughlin et al. [Loughlin et al., 

1994].  This technique combines the time-frequency information from multiple spectrograms 

(short-time Fourier transforms) computed with various window lengths, to obtain an improved 

estimate of time-varying spectral power, denoted by P(t, ω) where t=time and ω =frequency, 

compared to that provided by a single spectrogram.  Of particular interest was the time-varying 

response power at the stimulus frequency, P(t), which was calculated as shown in equation (1) 

below: 

 

 P(t) = ∑ , where Fs = stimulus frequency     (1) 
+=

−=
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This time series was visually examined for evidence of sway adaptation. Whether or not 

adaptation occurred was determined subjectively on a trial-by-trial basis, as opposed to being 

based on any strict quantitative criteria, statistical or otherwise. This approach was possible 

because there were relatively few adaptation trials, and because it was rather obvious when P(t) 
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displayed adaptive characteristics. For example, the decline in sway power shown in Figure 14 

was typical for an adaptation trial, whereas non-adaptation trials displayed no such drop in sway 

power over time. For cases in which adaptation occurred, the time series, P(t), was fit with an 

exponential curve of the form Ae-t/τ + B, and the following parameters were extracted: 

 

 A = pre-adaptation magnitude of stimulus-band sway response to the moving scene 

 B = post-adaptation magnitude of stimulus-band sway response to the moving scene 

 τ = time constant of the exponential decay 

 

Choosing a region over which the time series would be fit with an exponential curve 

contained a degree of subjectivity.  Responses among subjects were not consistent: there were 

transients, delayed responses, and power did not necessarily decrease monotonically following 

the initial response.  As such, the selection of fit boundaries was done on a trial by trial basis, as 

opposed to applying some automated algorithm to each trial.  The starting point for curve fitting 

was chosen as the point of maximum power within a ten second window following the onset of 

scene movement. If this maximum power corresponded to an obviously transient event that was 

not representative of the overall response, then a more appropriate point in the same ten second 

region was used instead.  The choice of ten seconds was not arbitrary. We had assumed that the 

primary sway response would occur during exposure to the first full cycle of a given stimulus, 

and ten seconds corresponded to the period of the lowest component frequency (0.1 Hz) in any 

of the stimuli.  The end point for the curve fit was chosen as the point at which sway power 

returned to the pre-response magnitude, and remained at that level for at least ten seconds.  Any 

increase in power after ten seconds was considered to be a secondary response.  Fitting an 
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exponential curve to the portion of the power-versus-time data series bounded by these 

beginning and end points provided a means of quantifying the adaptation process, by yielding 

both the time constant of decay, as well as the per-stimulus decline in sway magnitude. 

 
7.3.5 EXAMINATION OF SUBJECT VISUAL DEPENDENCE 
 

Findings from previous studies suggest that postural behavior during exposure to visual 

perturbations may be influenced by a subject’s relative sensitivity to visual stimuli [Isableu et al., 

1998; Isableu et al., 1997; Nyborg, 1974].  This “visual dependence” was examined in the 

current subject population via the rod-and-frame test, as described by Isableu et al. [Isableu et 

al., 1998; Isableu et al., 1997] and Nyborg [Nyborg, 1974].  This procedure examines the 

subjective visual vertical (SVV), which represents a subject’s ability to accurately identify earth 

vertical in an environment containing limited visual information.  Subjects are seated in a dark 

room, equipped with a handheld device that controls the orientation of a 2.4cm wide illuminated 

rod situated directly in front of them, and instructed to align the rod with their perceived earth 

vertical. The initial orientation of this rod is 40 degrees clockwise (CW) or counterclockwise 

(CCW) from earth vertical.  Subjects perform this alignment under two different conditions. In 

the “Frame” condition, the illuminated rod is surrounded by an illuminated square frame (90cm x 

90cm) oriented 23 degrees CW or CCW from earth vertical. In the “Disc” condition, the 

illuminated rod is surrounded by a randomly arranged field (90cm diameter) of variously sized 

illuminated dots that rotates in the CW or CCW direction at 30 degrees per second.  The 

difference (or error), in degrees, between the final subject-adjusted position of the rod and true 

earth vertical is recorded for these various conditions, and used to assess a subject’s relative 

dependence on visual information. The method used in this study to categorize subjects as 
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visually dependent (DEP) or visually independent (INDEP) based on SVV data was borrowed 

from Isableu et al. [Isableu et al., 1998; Isableu et al., 1997].  For each subject, the mean 

“unsigned” deviation from vertical (in degrees) is calculated for both the Frame and Disc trials.  

The median value of these scores among all subjects is then determined, and subjects with scores 

well above this median are considered visually DEP, while subjects whose scores are well below 

the median are categorized as visually INDEP.  For this study, the DEP and INDEP thresholds 

were 5.29 degrees and 1.28 degrees respectively.   This visual dependence was included as a 

variable in the statistical analysis to determine whether visually DEP and INDEP groups 

exhibited different sway behaviors. 

 
7.3.6 STATISTICAL ANALYSIS 
 

A mixed-factor repeated measures ANOVA was utilized to examine the effects of stimulus type 

(STIM: PSUM, NPSUM, Single Sinusoid), stimulus amplitude (AMP: 4cm, 8cm) and visual 

dependence (VIS: DEP, INDEP) on total sway power, on sway power at each of the stimulus 

frequencies (i.e. “stimulus-band power”) and on the sway adaptation time constant (τ).  Data 

distributions were tested for normality using the Shapiro-Wilk W test, and log-transformed to 

achieve normality when necessary.  The significance level was set at p = 0.05 for both primary 

and post-hoc (Tukey’s HSD) comparisons.   
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7.4     RESULTS 
 

7.4.1 GENERAL SWAY RESPONSES 
 

Subjects responded strongly to each of the ten visual stimuli. Movements of the head and COP 

were in phase with one another for all trials, as revealed by visual inspection of time series data.  

Response amplitudes were in the range of 1cm to 2cm, with values for the head larger than those 

for COP below 0.5Hz, as shown in the time-series plot in Figure 9 (the plots show the responses 

of a single subject during just one trial, but are representative of responses for all subjects).  

Except for absolute power levels, the corresponding spectral densities of head and COP 

responses were very similar up to approximately 0.7Hz.  These findings indicated that subjects 

had swayed predominantly as an inverted pendulum, which is consistent with previous findings 

of postural sway [Peterka, 2003; Peterka, 2002].  Because of the strong similarities among head 

and COP responses, the remaining results presented are limited to head data, with the occasional 

reference to COP when appropriate. Unless stated otherwise, all results presented for the head 

data, including significant differences, were observed in the COP data as well.  In addition, no 

significant differences were observed in total sway power (F1,860=0.670, p=0.4133) between the 

±4cm and ±8cm stimulus amplitude groups, so these data were pooled together for all 

subsequent analyses. 
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Figure 9 Time series, power spectral density, and positive-time frequency distribution 
(PTFD)  of Head responses for one trial (trial #1, 0.7Hz stimulus) for a single subject 
(s204).  Time series and power spectral density data for the COP response is shown for 
comparison.  Time series data for the stimuli (dotted line) are also included for 
comparison; for clarity, they have been scaled by a factor of 8.  “Start” and “Stop” indicate 
times at which scene movement begins and ends, respectively. For the power spectral 
density, the dotted line indicates stimulus frequency.  Note that the absence of power below 
0.05Hz is due to the data having been high-pass filtered, as represented by the shaded area. 
Arrows indicate the regions over which power values were averaged to yield the “stimulus-
band” values that are shown in the Figure 11 bar plots (see Data Processing section for 
details).   

 
 

Both the quiet stance (QS) and moving scene sway responses displayed power that was 

highest at low frequencies (i.e. below 0.1Hz) and that generally decreased across the spectrum, 

as shown for head motion in the power spectral density plot of Figure 9. COP data in this same 

figure was an exception to this trend in that there was a very large response at 0.7Hz.  Quiet 
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stance sway power was spread across a band of frequencies from DC to approximately 0.3Hz, 

which is typical for spontaneous sway.  The moving scene responses were characterized by 

larger sway amplitudes in this same frequency range, and substantial power at the stimulus 

frequency (or frequencies, for the sum-of-sinusoids) as well.  Both single sinusoid and sum-of-

sinusoid stimuli elicited sway responses that were consistently larger than those observed during 

QS (Figure 10).  This difference between moving scene power and QS power was significant for 

each of the ten moving scene stimuli (F10,720=7.55, p<0.0001).  

 

 

Figure 10 Ensemble total head sw
st

ay power responses to the ten optic flow stimuli.  Quiet 
ance baseline values are shown for comparison. Values shown are the mean +/- std error 

(in dB) for all subjects (n=20).  PSUM13 = 0.1 + 0.3Hz ; PSUM135 = 0.1 + 0.3 + 0.5Hz;  
PSUM1357  = 0.1 + 0.3 + 0.5 + 0.7Hz; NPSUM13 = 0.1 + π/10Hz;  NPSUM135 = 0.1 + π/10 + 
0.5Hz; NPSUM1357 = 0.1 + π/10 + 0.5 + 0.7Hz.  Note that the values are averaged across all 
frequencies, and therefore represent total output power. 
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This increase in sway power relative to QS was more pronounced for stimuli with higher 

frequen

7.4.2 PSUM VERSUS NPSUM RESPONSES 

his analysis addressed the hypotheses that (1) PSUM stimuli were expected to produce lower 

onses across the ten trials uncovered an unexpectedly strong trial 

effect in which total sway power for trial 1 was on average 2dB larger than that for trials 2 

cy components.  For example, the 0.1Hz sinusoidal stimuli produced sway responses 

whose total power output was 3dB larger (p=0.019) than that for QS, while the 0.7Hz stimuli 

elicit responses almost 6dB larger (p<0.0001) than that for QS (note that total power is the power 

across all frequencies, and is equal to the area under the power spectral density curve, such as 

that shown in Figure 9).  The same trend was observed in the sum-of-sinusoids trials (PSUM1357 

> QS: p<0.0001; NPSUM1357 > QS: p<0.0001), indicating that total sway power was largest for 

stimuli that contained the highest component frequency (0.7Hz in this case), which is consistent 

with findings from our previous study [Musolino et al., 2006]. 

 

 

T

sway power and faster adaptation rates, as compared to NPSUM stimuli, and that (2) sway power 

and adaptation rates would be different between visual DEP and visual INDEP groups. 

Differences between responses to PSUM and NPSUM stimuli were observed only in a limited 

set of experimental conditions.  As seen in Figure 10, total sway power (i.e. power averaged 

across all frequencies) was not significantly different between spectrally similar PSUM and 

NPSUM groups (i.e. PSUM13 = NPSUM13 , PSUM135 = NPSUM135 , and PSUM1357 = 

NPSUM1357).  Similarly, stimulus-band power (i.e. average power at a given stimulus frequency 

± 0.03Hz) at each of the stimulus frequencies was not significantly different between PSUM and 

NPSUM groups (Figure 11). 

Close inspection of resp
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throu

OS stimuli (PSUM13, PSUM135, and PSUM1357).  Likewise, the NPSUM 
bel represents responses to NPSUM13, NPSUM135, and NPSUM1357. Quiet stance baseline 

gh 10 (Figure 12).  Because this difference was significant (F1,720=60.69, p<0.0001), 

subsequent comparisons among the various stimulus and visual dependence groups were 

performed separately for trial 1 and trials 2 through 10.   

 

 

 

Figure 11 Ensemble head sway response power at each of the stimulus frequencies for both 
the sum-of-sinusoids and single tone stimulus trials. The PSUM group includes responses to 
all three periodic S
la
values are shown for comparison. Values plotted are the mean +/- std error (in dB) for all 
subjects (n=20).   
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Figure 12 Ensemble head sway response power for trials 1 through 10. Values plotted are 
the mean +/- std error (in dB) for all subjects (n=20).  Asterisk denotes a statistically 
significant difference (p<0.05).  Note that the values are averaged across all frequencies 
(0.1, 0.3, 0.5, and 0.7Hz) and all stimulus types (Tones, PSUM, and NPSUM). 
 

Substantial differences between responses to PSUM and NPSUM stimuli were observed 

only in the 0.7Hz frequency band, and only during the first trial.  This was in contrast to response 

power at the other stimulus frequencies (i.e. 0.1Hz, 0.3Hz and 0.5Hz), where values for PSUM 

and NPSUM groups were not significantly different for any trial. The absence of a difference 

between PSUM and NPSUM responses at 0.5Hz was inconsistent with the earlier observation in 

experiment #1, in which sway power at 0.5Hz was significantly larger for the PSUM group 

compared to the NPSUM group.  

The different responses at 0.7Hz to PSUM and NPSUM stimuli during trial 1 were 

influenced by subject visual dependence (Figure 13).  Seventeen of the twenty subjects 
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participated in SVV testing.  Of these, five were determined to be visually INDEP, while the 

remaining twelve were categorized as visually DEP, according to the methods described earlier.  

The interaction between the effects of visual dependence and trial manifested itself as markedly 

different behavior between the DEP and INDEP groups in response to the PSUM and NPSUM 

stimuli.  Specifically, in DEP subjects sway power was close to 10dB larger in response to 

PSUM stimuli compared to NPSUM stimuli (Figure 13), a finding that is similar to what had 

been observed in our previous study.  In contrast, INDEP subjects exhibited response power 

nearly 10dB lower for the PSUM optic flow compared the NPSUM counterpart, a finding that is 

consistent with the hypothesis that periodic stimuli would produce lower sway compared to non-

periodic stimuli.  However, these observations were based on a very limited subset of the data, 

specifically only first trials that involved a PSUM or NPSUM stimulus.  This consisted of only 

eight observations, with a sample size of n=2 in each of the four groups, as shown in Figure 13. 

Because of these very small sample sizes, the significance of differences in sway power among 

the groups could not be statistically determined.   
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Figure 13 Ensemble head sway response power at 0.7Hz for visually dependent (DEP) and 
independent (INDEP) subjects exposed to PSUM and NPSUM stimuli during trial 1 and 
trials 2 through 10. Values plotted are the mean +/- std error (in dB).  Quiet stance baseline 
values are shown for comparison.  Asterisk denotes a statistically significant difference 
(p<0.05).  The number of observations for each group are shown for reference (e.g. n=2).    
 
 
 
7.4.3 SWAY ADAPTATION 
 

Time-frequency analysis revealed evidence of a within-trial decline in sway amplitude at the 

stimulus frequency (i.e. adaptation) during trial 1, an example of which is shown in Figure 9.  

Notice in the time-frequency distribution of Figure 9 that sway power at the stimulus frequency 

(0.7Hz) gradually declines, or adapts, within 25 seconds following the onset of stimulus motion, 

and remains at this lower level for the remainder of the trial.  This example is representative of 
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the adaptation that was observed in numerous trials.  Thus, subjects responded strongly during 

initial exposure to optic flow, but the amplitude of this response decreased substantially during 

trial 1, and remained at an attenuated level for subsequent trials.   

Thirteen of twenty subjects exhibited adaptation during trial 1.  Of these thirteen first 

trials, eight involved a sum-of-sinusoids stimulus that contained a 0.7Hz component, such that 

the primary sway response and subsequent adaptation occurred at this frequency.  The adaptive 

response in these eight trials was quantified by fitting an exponential curve (i.e. Ae-t/τ + B) to the 

power-versus-time data at 0.7Hz, as shown in Figure 14 (and described in the Methods section).  

This process yielded adaptation parameters A (pre-adaptation sway power), B (post-adaptation 

sway power), and τ (time constant of exponential decay), which were then compared among 

DEP, INDEP, PSUM and NPSUM groups.  The exponential curve-fits provided a reasonably 

good approximation of the adaptive response, with R2 values for the curve-fits ranging roughly 

from 0.50 to 0.90. 
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Start StopStart Stop

 

Figure 14 Head sway power versus time for a single adaptation trial, together with the 
corresponding exponential curve fit that was used to determine the adaptation parameters, 
A, B, and τ.  R2 is the ‘goodness-of-fit’ statistic for the exponential curve fit.  Data shown is 
for one subject, but is representative of adaptation seen in many first trials. “Start” and 
“Stop” indicate times at which scene movement begins and ends, respectively   
 

As seen in Figure 15, values for ‘A’ were between 7dB and 10dB higher for trial 1 

compared to trials 2-10.  This difference was significant (F1,79=7.44, p=0.008), indicating that 

initial sway response power dropped significantly following initial exposure to a moving visual 

stimulus.  Further, within both trial 1 and trials 2-10, ‘A’ was very similar among DEP and 

INDEP subjects for both PSUM and NPSUM stimuli. The differences among groups (i.e. DEP 

versus INDEP, and PSUM versus NPSUM) were not statistically significant within trial 1 or 

within trials 2 through 10.  In addition, values for ‘B’ were essentially zero in all responses that 
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exhibited adaptation, meaning that sway power after adaptation had occurred was equal to sway 

power that existed prior to exposure to optic flow. As such, ‘B’ was excluded from subsequent 

analyses.  These observations regarding ‘A’ and ‘B’ indicated that the large differences in 

stimulus-band power between PSUM and NPSUM groups in trial 1 (Figure 24a) could not be 

fully explained by differences in ‘A’ or ‘B’ between the groups, but instead must be at least 

partly the result of differences in the rate of adaptation, as captured by the time constant τ.   

The rate at which adaptation occurred was not the same among groups (Figure 16).  The 

time constant (τ) was fastest for subjects who displayed the lowest stimulus-band sway power 

(INDEP subjects during initial exposure to PSUM stimuli) and slowest for the group that 

exhibited the highest responses (DEP subjects during initial exposure to PSUM stimuli).  Time 

constant values were not significantly different between DEP and INDEP groups, or between 

PSUM and NPSUM groups.  The significance of the interaction between visual dependence and 

visual stimulus could not be statistically examined due to the very small sample sizes involved.  

However, the observation that both stimulus-band power and the adaptation time constant (τ) 

displayed similar trends among the various stimulus and visual dependence groups suggests the 

possibility that a correlation exists between these two parameters.  These findings are 

summarized in Figure 17, which shows exponential curves based on the values for A and τ in 

Figure 15 and Figure 16.  Note that values for the barplots shown in the inset of Figure 17 are 

approximately equal to the area under the corresponding exponential curve. 
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Figure 15 Pre-adaptation head sway power (A) for visually dependent (DEP) and 
independent (INDEP) subjects exposed to PSUM and NPSUM stimuli during trial 1 and 
trials 2 through 10.  Values plotted are the mean +/- std error (in dB). Sample sizes are 
shown for each groups (e.g. n=2).    
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Figure 16 Head sway power adaptation time constant (τ) during trial 1, for visually 
dependent (DEP) and independent (INDEP) subjects exposed to PSUM and NPSUM 
stimuli. Values plotted are the mean +/- std error (in seconds).  Sample sizes are shown for 
each groups (e.g. n=2).     
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Figure 17 Estimates of head sway power versus time during trial 1, for visually dependent 
(DEP) and independent (INDEP) subjects exposed to PSUM and NPSUM stimuli. Curves 
were generated by substituting the appropriate values for the adaptation parameters 
(shown in Figure 15 and Figure 16) into the equation Ae-t/τ + B. Recall that ‘B’ was found to 
equal zero for all trials.  The area under each curve corresponds to the bar plot values in 
Figure 13, which are shown in the inset for comparison.  The point at which sway power 
has decreased by 99% from it’s initial value (i.e. “3τ” ) is shown for reference. 
 

Overall, these data do not provide strong support either for or against the hypothesis of 

lower sway power and faster adaptation rates in response to PSUM stimuli, but the trends in the 

data may be interpreted as favoring the hypothesis.  Likewise, the observed trends are consistent 

with the hypothesis that sway power and adaptation rates would be different among visually DEP 

and INDEP groups, but the data cannot be interpreted as providing strong support either for or 

against this hypothesis. 
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7.5     DISCUSSION 
 
 

7.5.1 MAIN FINDINGS 
 

This study investigated the effect of optic flow periodicity on postural sway, in an attempt to 

uncover evidence of the existence of a predictive component to postural control.  The main 

finding of the current study was that spectrally similar periodic and non-periodic oscillatory optic 

flow elicited quantitatively different sway responses in visually DEP and INDEP subjects during 

initial exposure to these moving stimuli.  Specifically, during trial 1, visually DEP subjects 

swayed more in response to periodic stimuli, while visually INDEP subjects displayed the 

opposite behavior.  Time-frequency analysis revealed evidence of sway adaptation in trial 1, 

indicating that subjects responded strongly during initial exposure to optic flow, but the 

amplitude of this response decreased substantially during trial 1, and remained at an attenuated 

level for subsequent trials.  This notion of reduced sensitivity to subsequent visual stimuli was 

supported by the fact that values for the initial, or "pre-adaptation", sway response power (A) 

were significantly lower in trials 2 through 10, compared to trial 1.  Further, the rate at which 

adaptation occurred was fastest for those who displayed the lowest mean sway power (i.e. 

visually INDEP subjects exposed to periodic stimuli), and slowest for the group that exhibited 

the highest responses (i.e. visually DEP subjects exposed to periodic stimuli).  These findings 

suggest that periodic and non-periodic oscillatory optic flow stimuli do indeed evoke 

quantitatively different sway responses, and that this can be attributed to differences in the rate 

of adaptation during initial exposure to these stimuli.  Such behavior is consistent with the 

existence of a predictive component to postural control that is capable of reducing visual gain 

during exposure to periodic optic flow. 

69 



 

7.5.2 SWAY ADAPTATION 
 
 
The association between the proposed predictive mechanism and sway adaptation can be 

understood within the context of the sensory re-weighting process.  Previous findings indicate 

that this dynamic regulation of sensory channel gains occurs during sensory conflict conditions 

[Peterka and Loughlin, 2004; Loughlin et al., 1996].  For example, during exposure to optic 

flow, visual inputs are inaccurate (as compared to somatosensory and graviceptive inputs) and 

may be attenuated in order to maintain stability by reducing the contribution of erroneous 

information. This concept of weighting input signals according to their reliability has been 

examined previously, most often as a form of Bayesian integration, whereby signals containing 

large variability contribute less to the output  [Ernst and Bulthoff, 2004; Deneve and Pouget, 

2004; Kording and Wolpert, 2004; Battaglia et al., 2003; Zupan et al., 2002].    

Within the context of postural control, sensory re-weighting has been implicated as one 

possible cause of postural sway adaptation [Loughlin et al., 1996].  Specifically, the inaccurate 

visual information produced by exposure to optic flow is thought to yield a decrease in visual 

channel gain, as described above, which in turn acts to attenuate the visual input that is driving 

the system.  The subsequent decrease in postural sway might be considered a baseline adaptation 

that is expected to occur during exposure to optic flow in general, regardless of the specific 

properties (e.g. periodicity) of the visual stimulus.  We have proposed that a predictive 

mechanism in the postural control loop has the ability to facilitate the sensory re-weighting 

process, and therefore the ability to influence sway adaptation as well.  In particular, the 

predictive mechanism would exploit the repetitive nature of periodic visual stimuli in order to 

readily predict future visual input, which would presumably minimize the need to monitor newly 

arriving visual signals.  One way for the CNS to achieve this would be to lower visual gain in the 
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control loop beyond that which has already occurred as part of the baseline adaptation.  This 

would in effect further reduce reliance on inaccurate visual afferent signals, and would produce a 

facilitated adaptation characterized by a more pronounced decrease in sway response.   

As such, we expected that sensory re-weighting and subsequent sway adaptation would 

occur in response to both periodic and non-periodic visual stimuli, but that the effect would be 

larger for periodic inputs.  This facilitated adaptation would have two distinct, but related, 

measurable effects as compared to baseline adaptation. First, adaptation of the sway response 

would begin earlier and/or occur more rapidly in response to the periodic stimuli.  Second, this 

would produce a larger per-stimulus reduction in sway amplitude, which when measured by a 

summary statistic such as root-mean-square (RMS) or mean sway power, would appear as lower 

sway amplitude.  

The findings of the current study are for the most part consistent with this explanation.  

For example, visually INDEP subjects adapted twice as fast to a periodic sum-of-sinusoids 

compared to a non-periodic counterpart, and this produced a significantly lower mean stimulus-

band sway power.   However, differences in the starting time of adaptation were not observed in 

this group, which suggests that the proposed predictive mechanism influences the rate, but not 

the onset time, of adaptation.  Results for the visually DEP subjects are not as easily interpreted.  

Upon initial inspection, it appears that our hypothesis was not supported by the data for visually 

DEP subjects, since their adaptation times were slower for periodic stimuli compared to non-

periodic stimuli.  One possible explanation for this behavior is that the proposed predictive 

mechanism is not active in visually DEP subjects, perhaps because the associated decrease in 

visual channel gain would be detrimental to individuals who rely heavily on visual information 

for postural stability.  As such, the adaptation observed in visually DEP subjects would therefore 

71 



 

be unrelated to visual stimulus periodicity, and instead be the result only of sensory re-weighting 

induced by sensory-conflict.  In other words, visually DEP subjects might exhibit baseline 

adaptation, but not facilitated adaptation.  If this were true, adaptation in visually DEP subjects 

should be similar in response to both the periodic and non-periodic stimuli, since it is 

independent of any predictive mechanism.  It is unclear whether or not the current data support 

this interpretation.  Note in Figure 16 that the adaptation time constant in visually DEP subjects 

was three seconds different between periodic and non-periodic groups.  If this difference were 

significant, it would strongly suggest that the proposed predictive mechanism is active in visually 

DEP subjects.  If, however, the temporal aspects of adaptation were the same for these two 

groups, then we might reasonably conclude that the observed adaptive decay represents only 

baseline adaptation.  Unfortunately, the small sample size for this observation (n=4) did not 

provide enough statistical power to determine if this three second difference was significant. 

Another comparison that may prove insightful would be that of adaptation rate between 

visually DEP and visually INDEP subjects exposed to non-periodic stimuli.  Since non-periodic 

inputs don’t activate the proposed predictive mechanism, subjects exposed to these stimuli 

should exhibit baseline, but not facilitated, adaptation, regardless of relative visual dependence.  

Therefore, these two groups would be expected to have very similar rates of adaptation.  This is 

indeed what the data revealed, as seen in Figure 16.  Again, the difference cannot be shown to be 

statistically significant, but both the mean and standard error in the two groups are similar 

enough to suggest that there is no difference.   
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Overall, these findings indicate that exposure to non-periodic optic flow yields a baseline 

adaptation in all subjects, while exposure to periodic optic flow produces a faster, or facilitated, 

adaptation only in visually INDEP individuals.  Such behavior is consistent with the existence of 

a predictive component to postural control that is capable of reducing visual gain during 

exposure to predictable optic flow.   

 
7.5.3 COMPARISONS TO PREVIOUS STUDY 
 

This study aimed in part to answer several questions prompted by our first experiment.  These 

questions are addressed below. 

 

1. Would differences again be observed between periodic and non-periodic SOS groups?  If 

so, would they be the same as in our previous study, or instead support our hypothesis? 

 

In fact, both of these behaviors were observed, but in distinct subject populations, 

and only during initial exposure to the optic flow stimulus.  Specifically, findings from 

our previous study [Musolino et al., 2006] were reproduced in visually DEP subjects, 

while behaviors consistent with the stated hypothesis were observed in visually INDEP 

subjects.  As explained earlier, these apparently conflicting behaviors have been 

attributed to differences in how the proposed predictive mechanism is manifested in these 

particular subject populations.   

In visually DEP subjects, who are particularly reliant on vision, we suggest that 

the predictive mechanism is not active under any circumstances, because the resulting 

decrease in visual channel weight would adversely affect their postural stability.  We 
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therefore would expect visually DEP subjects to show similar responses to both types of 

optic flow stimuli, regardless of its relative periodicity.  As we have shown already, this 

is not what was observed. Instead, the periodic stimuli produced noticeably larger sway 

as compared to the non-periodic stimulus.  It’s possible that this behavior is a natural 

consequence of the coupled oscillation [Strogatz and Stewart, 1993; Schoner et al., 1992] 

that occurs between the subject and the periodic stimulus, and might have been observed 

in visually INDEP subjects as well if it were not for the influence of the predictive 

mechanism that we believe is active in that population.  From this perspective, findings in 

the visually DEP group are not necessarily at odds with the existence of a predictive 

component to postural control. 

In contrast, in visually INDEP individuals, who are presumably no more 

dependent on vision than on any other sensory information, the predictive mechanism is 

not hindered in an way.  It therefore manifests itself completely during exposure to 

periodic optic flow, producing an enhanced, or facilitated sway adaptation, and a 

corresponding decrease in overall sway power compared to responses to non-periodic 

stimuli.    

 

2. Would subjects again respond strongly to the highest component frequency in a SOS 

stimulus, regardless of the whether that frequency is 0.3Hz, 0.5Hz or 0.7Hz? 

 

As in the previous study, strong responses consistently occurred at the highest 

frequency component for each of the SOS stimulus.  This was particularly true of 

responses to stimuli that contained a 0.7Hz sinusoid.  That is, when the highest stimulus 
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frequency was 0.7Hz, the largest increase in total sway power with respect to quiet stance 

was observed in the 0.7Hz frequency band of the response, while the corresponding 

increase in power above and beyond that for quiet stance was much smaller in the 0.5Hz 

and 0.3Hz frequency bands (see Figure 10).  Since velocity increases with frequency for 

sinusoids of identical amplitude, such strong responses to the 0.7Hz component implies 

that subjects were sensitive to stimulus velocity, as had been suggested in our earlier 

study.  Such postural sensitivity to visual stimulus velocity has been reported previously 

[Kiemel et al., 2002; Dijkstra et al., 1994a; Lestienne et al., 1977].  The relative lack of 

sway power in the 0.3Hz and 0.5Hz frequency bands seems to indicate a masking effect, 

whereby subjects were disproportionately influenced by the 0.7Hz stimulus component, 

even though the energy in the input signal was spread equally across the various 

component frequencies. In addition, this noticeable sway at such a high frequency was a 

surprising observation, considering that it is seldom reported for healthy adults.  One 

possible explanation is that the virtual testing environment utilized in the current study, 

which presented full-field luminous scenes via computer generated images and LCD 

projection cameras, provided visual stimuli that were much more compelling than those 

used in previous studies.   

 

3. How would sway amplitudes in response to a ±8cm stimulus compare to those in 

response to the substantially lower stimulus amplitude of ±4cm? 

 

The decision to utilize two different stimulus amplitudes was motivated by our 

observation in the previous study that sway amplitudes in response to ±8cm stimuli rarely 

75 



 

exceeded ±2cm.  Earlier work by Peterka and Benolken had suggested that such sub-

unity output-to-input gains indicate that the postural control system has exceeded some 

saturation threshold, and is operating in a non-linear fashion [Peterka and Benolken, 

1995].  The addition of ±4cm stimuli to the protocol for the current study was an attempt 

to determine if stimulus amplitudes that were substantially lower than ±8cm would elicit 

similar responses.  As mentioned in the results section, responses for the ±4cm trials were 

not significantly different than those for the ±8cm trials, suggesting that even ±4cm 

stimuli evoked sway responses indicative of a saturation non-linearity.  While it is 

unclear how this ‘amplitude effect’ influences the behaviors that were observed in the 

current study, it would seem prudent to utilize even lower stimulus amplitudes in future 

experiments, in an effort to eliminate such a substantial output-to-input attenuation.   

 

4. Would adaptation be observed in any of the sway responses? If so, would this adaptation 

be different for responses to periodic stimuli compared to those for non-periodic stimuli?  

 

As discussed in detail earlier in this section, sway adaptation was indeed observed 

in numerous trials, primarily during initial exposure to the optic flow stimuli.  The rate of 

adaptation was approximately three seconds different between periodic and non-periodic 

stimulus groups, but the statistical significance of this difference could not be ascertained.  

Moreover, the effect of stimulus periodicity on adaptation rates appeared to interact with 

the relative visual dependence status of the subject population, such that visually INDEP 

individuals displayed lower sway in response to periodic optic flow, while visually DEP 

subjects did not.  
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7.5.4 PREVIOUS STUDIES OF STIMULUS PERIODICITY 
 

The current findings are supported by previous studies of other sensorimotor systems, which 

have reported that the CNS can discern sensory stimuli based on periodicity.  For example, 

Barnes et al. [Barnes et al., 2000], in examining ocular pursuit in healthy adults, have observed 

that exposure to sinusoidal visual inputs enhances visual tracking performance during subsequent 

exposure to similar sinusoidal stimuli.  The authors suggested that the CNS is capable of 

detecting periodicity, and proposed a model of predictive control in which velocity information 

could be sampled, stored and subsequently replayed as an anticipatory pattern of movement.  In 

addition, a number of similar studies have reported that the predictability of a moving visual 

stimulus affects the gain and phase of the smooth pursuit component of eye velocity [Larsby et 

al., 1988; Collewijn and Tamminga, 1984; St. Cyr and Fender, 1969; Michael and Melvill Jones, 

1966].  Larsby et al. [Larsby et al., 1988] exposed subjects to both pure-sinusoidal and 

pseudorandom target motion at frequencies ranging from 0.2Hz to 2Hz, and observed 

significantly higher gain in response to pure-sinusoidal stimuli, as compared to pseudorandom 

stimuli, at frequencies similar to those used in the current study.  Predictability effects have also 

been observed outside of the visual domain.  For example, Nelson et al. [Nelson et al., 2004] 

recently reported that (1) motor responses to pure sinusoidal vibrotactile perturbations were 

faster and more accurate than responses to random perturbations; and that (2) both the amount 

and location of activation in the cerebral cortex were different between responses to these 

predictable and unpredictable stimuli.  Based on these observations, the authors suggested that 

exposure to predictable stimuli caused subjects to rely less on sensory feedback and more on 

feedforward control.   These findings indicate that the CNS, especially the visual system, is 

sensitive to stimulus periodicity, and provide evidence in support of the current observations.   
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7.6     CONCLUSION 
 

The current study reproduced various observations from our previous study [Musolino et al., 

2006], including (1) significantly different sway responses to periodic and non-periodic stimuli;  

(2) consistent responses at the highest component frequency of the stimuli; and (3) significant 

response power at non-stimulus frequencies.  More importantly, several interesting new findings 

were reported, including (1) significantly higher sway responses during trial 1 as compared to 

trials 2 through 10; (2) postural sway adaptation during initial exposure to optic flow; and (3) 

differences in sway responses between visually DEP and INDEP subjects. We conclude that 

periodic and non-periodic optic flow stimuli evoke quantitatively different sway responses, and 

that this can be attributed to differences in the rate of adaptation during initial exposure to these 

stimuli.  Such behavior is consistent with the existence of a predictive component to postural 

control that is capable of reducing visual gain during exposure to periodic optic flow.  Future 

studies are planned to more fully investigate these findings and to develop models of the 

underlying mechanisms. 
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8.0       EXPERIMENT 3: THE INFLUENCE OF CONCURRENT COGNITIVE TASKS 
ON POSTURAL SWAY ADAPTATION DURING EXPOSURE TO PERIODIC 

AND NON-PERIODIC OPTIC FLOWS 
 

 
 

8.1     ABSTRACT 
 

Two previous in-house studies have provided evidence in support of our proposal that the 

postural control system contains a predictive component that can facilitate dynamic re-weighting 

of sensory inputs in response to periodic moving visual stimuli [Musolino et al., ] [Musolino et 

al., 2006].  Specifically, the data have shown that periodic and non-periodic oscillatory full-field 

optic flow stimuli evoke quantitatively different sway responses, and that this can be attributed to 

differences in the rate of sway adaptation during initial exposure to these stimuli.  In addition, 

other studies have suggested that cognitive resources are required for this type of sensory re-

weighting to occur, particularly during the type of sensory conflict condition that exists during 

exposure to optic flow [Redfern et al., 2001].  

In light of this, the purpose of the current study was to examine the influence of 

concurrent cognitive tasks on postural sway during exposure to periodic and non-periodic optic 

flow.  In particular, this study explored the interaction between cognitive task effects and 

predictive-mechanism effects on sway adaptation. We hypothesized that performing a visual 

simple reaction time (RT) task would facilitate processes occurring within the visual system and 

therefore enhance sway adaptation, while an auditory simple RT task would have the opposite 

effect and hinder this adaptive process.   Sixteen subjects (11F, 5M; age 21-35 yrs) performed an 
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auditory or visual simple RT task, during exposure to one of four different full-field bullseye-

and-checkerboard optic flow stimuli: a single sinusoid (0.3 Hz), a periodic sum-of-sinusoids 

(PSUM=0.1+0.3+0.5Hz), a spectrally similar non-periodic counterpart  

(NPSUM=0.1+π/10+0.5Hz), and a fourth condition in which the scene remained stationary for 

the entire 90 second trial. Visual and auditory tasks were performed on separate days.  For each 

visit, the visual stimuli were shown twice, once in combination with a cognitive task, and once 

without a task, yielding a total of 8 randomized trials.  Head and center-of-pressure (COP) sway 

response power at the various stimulus frequencies were compared among the different groups.   

 Results showed that sway responses during a cognitive task were significantly lower 

compared to sway for the no-task condition, regardless of whether the task was auditory or 

visual.  Moreover, cognitive tasks elicited different sway responses among PSUM and NPSUM 

groups.  Specifically, responses to PSUM and NPSUM stimuli were similar during no-task trials, 

but significantly different for trials in which a cognitive task was performed.  Further, PSUM 

sway power was lower than NPSUM sway power for visual task trials, but higher than NPSUM 

values for auditory tasks.  These trends were supported by data from adaptation trials, which 

revealed that adaptation rates were significantly faster in response to PSUM stimuli, as compared 

to NPSUM stimuli.  These findings (1) indicate that concurrent cognitive tasks cause a reduction 

in sway response, and (2) are consistent with the existence of a sensory reweighting process that 

is sensitive to optic flow periodicity, and that can be influenced by cognitive tasks. 
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8.2     INTRODUCTION 
 

Two previous in-house studies have provided evidence in support of our proposal that the 

postural control system contains a predictive component that can facilitate dynamic re-weighting 

of sensory inputs in response to periodic moving visual stimuli [Musolino et al., ] [Musolino et 

al., 2006].  While predictive mechanisms have been examined previously, these discussions have 

been limited to prediction as a means of improving performance of the motor control system.  

For example, it has been suggested that the central nervous system (CNS) contains an internal 

forward model that can predict the consequences of motor commands [Blakemore and Sirigu, 

2003; Wolpert et al., 1998].  This internal model captures the causal relationships between 

neuromuscular inputs and outputs, and is used in combination with an efference copy of the 

motor command in order to simulate subsequent sensory consequences and predict a future state 

(e.g. body position and/or velocity).  This mechanism would be useful, for instance, in providing 

timely estimates of new sensory information in the absence of actual sensory input due to 

temporal delays associated with feedback control.  Another example of prediction in motor 

control has been provided by Barnes et al., who examined ocular pursuit in healthy adults, and 

observed that exposure to sinusoidal visual inputs enhances visual tracking performance during 

subsequent exposure to similar sinusoidal stimuli [Barnes et al., 2000].  The authors suggested 

that the CNS is capable of detecting periodicity, and proposed a model of predictive control in 

which velocity information could be sampled, stored and subsequently replayed as an 

anticipatory pattern of movement.  These studies promote the idea that prediction in the CNS 

exists to enhance performance of some motor task.   

In contrast, the predictive mechanism that we propose is thought to influence only 

sensory processes, namely re-weighting and integration of sensory inputs.  Sensory re-weighting 
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has been explored previously, as a form of Bayesian integration in which the weighting of a 

signal is proportional to the reliability of that signal [Ernst and Bulthoff, 2004; Deneve and 

Pouget, 2004; Kording and Wolpert, 2004; Battaglia et al., 2003; Zupan et al., 2002], and as a 

sensory integration mechanism within postural control [Peterka and Loughlin, 2004; Peterka, 

2002; Jeka et al., 2000] [Oie et al., 2002; van der Kooij et al., 2001; Oie et al., 2001; Maurer et 

al., 2000; van der Kooij et al., 1999].  Within this postural context, sensory reweighting has been 

implicated as a cause of sway adaptation, a phenomenon in which sinusoidal optic flow elicits a 

sway response at the stimulus frequency whose amplitude decreases throughout exposure to this 

stimulus [Loughlin and Redfern, 2001; Loughlin et al., 1996].  This effect has been attributed to 

a decrease in weighting of the visual channel that occurs because visual information during 

exposure to optic flow conflicts with sensory afferent signals from other sensory systems. 

While it is clear that sensory re-weighting is an attempt to minimize the influence of 

unreliable sensory information so that postural stability can be maintained in the face of 

challenging sensory environments, the mechanism by which this occurs is unknown.  One 

possibility is that predictive processes are at least partly responsible for sensory re-weighting and 

subsequent sway adaptation.  We have proposed that postural control contains a predictive 

component that is sensitive to stimulus periodicity, such that periodic sensory inputs will produce 

lower sway than will non-periodic inputs.  Results from previous studies in our laboratory have 

been mostly consistent with this hypothesis, showing that periodic and non-periodic oscillatory 

full-field optic flow stimuli evoked quantitatively different sway responses, and that this may 

have been due to differences in the rate of sway adaptation during initial exposure to these 

stimuli [Musolino et al., ] [Musolino et al., 2006].  That is, a per-stimulus decrease in sway 

power occurred during first exposure to optic flow, and the rate at which this adaptation occurs 
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was faster in response to periodic visual stimuli as compared to the non-periodic case (note: this 

behavior was observed in subjects who were shown to be visually independent, as described by 

[Isableu et al., 1998; Isableu et al., 1997]). In particular, non-periodic optic flow elicited what we 

have termed a baseline adaptation, that was due solely to sensory re-weighting caused by the 

sensory conflict conditions that exist during exposure to optic flow.  In contrast, periodic optic 

flow evoked a facilitated adaptation, characterized by a more pronounced per-stimulus decrease 

in sway power, that reflected the combined effect of baseline adaptation and the proposed 

predictive mechanism.  We attributed both forms of adaptation to decreases in visual channel 

gain in the postural control loop. 

In addition, it has been suggested that the sensory re-weighting process requires cognitive 

resources, particularly during sensory conflict conditions, when inputs from various sensory 

systems are not in agreement [Redfern et al., 2001]. In light of this, it would be useful to 

examine how cognitive tasks influence sway during exposure to optic flow, an environment that 

is known to induce sensory conflict.  As such, the purpose of this study was to explore the 

interaction between the effects of a cognitive task and the effects of the proposed predictive 

mechanism on sensory re-weighting and sway adaptation during exposure to periodic and non-

periodic optic flow.  We hypothesized that performing a visual cognitive task would facilitate 

processes occurring within the visual system and therefore enhance sensory reweighting and 

subsequent sway adaptation, while an auditory cognitive task would have the opposite effect and 

hinder this adaptive process.  
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8.3     METHODS 
 

Postural sway responses to various moving visual scene perturbations were examined in sixteen 

healthy young adults, ranging in age from 21-35 years (mean age = 25 yrs).  Subjects had no 

history of neurological or balance-related dysfunction, and no previous exposure to visual scene 

perturbations in an experimental setting.  All subjects provided informed consent to participate in 

this study, and the experimental protocol was approved by the Institutional Review Board at the 

University of Pittsburgh.  Tests were performed in the Balance Near Automatic Virtual 

Environment (BNAVE), a custom built virtual reality system that creates an immersive visual 

surround by projecting computer generated images onto three adjoining screens [Jacobson J et 

al., 2001].  The screens are approximately 183cm x 213cm (width x height), and are arranged in 

front, to the left, and to the right of the viewer.  A contiguous image is projected onto the 

screens, and provides a full (180°) horizontal field of view.  This visual scene extends onto the 

floor as well, but not to the ceiling (which is covered in black cloth), so the vertical field of view 

is thus limited to approximately 120°.   

 
8.3.1 VISUAL SCENES 
 

The image presented to the subjects consisted of a “bullseye” pattern of six alternating black-

and-white concentric rings (with each ring occupying 5° of visual arc), surrounded by a 

checkerboard of black-and-white squares (15cm per side) [Musolino et al., 2006].  Previous 

studies have utilized similar patterns in a moving room paradigm to evoke postural responses in 

both healthy and patient populations [Borger et al., 1999; Peterka and Benolken, 1995; van 

Asten et al., 1988].  The bullseye-and-checkerboard pattern oscillated toward and away from 

subjects in either a periodic (“predictable”) or non-periodic (“unpredictable”) fashion.  Scene 
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movement was driven by one of three signals (Figure 18): (1) ±4cm 0.3Hz sinusoid, (2) a 

periodic sums of  three ±4cm sinusoids (PSUM = 0.1 + 0.3 + 0.5Hz, and (3)  a spectrally similar 

non-periodic counterpart (NPSUM = 0.1 + π/10 + 0.5Hz.  There was also a fourth visual scene, 

in which the bullseye-and-checkerboard pattern remained stationary throughout the trial.  

Because the frequencies of the PSUM stimulus are integer multiples of each other, this stimulus 

is periodic, with period given by T=1/0.1=10 sec.  For the NPSUM stimulus, component 

frequencies were chosen in order to produce a signal with frequency content nearly identical to 

that of the corresponding PSUM stimulus, but lacking a temporal periodicity.  Since π/10 is not 

an integer multiple of 0.1 Hz, the NPSUM stimulus is not periodic and exhibits markedly 

different temporal characteristics than the PSUM stimulus, even though the spectra of 

corresponding PSUM and NPSUM stimuli are very similar (see Figure 18).  In addition, the 

sum-of-sinusoids signals were normalized such that their root-mean-square (RMS) was equal to 

that of the single sinusoid; this ensured that peak amplitudes were similar and total input power 

identical among the three stimuli.   
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Figure 18 Time series’ (left) and corresponding power spectra (right) for the three scene 
movements presented to subjects. Shown from top to bottom are 0.3Hz, PSUM (0.1 + 0.3 + 
0.5Hz), and NPSUM (0.1 + π/10 + 0.5Hz).  “Start” and “Stop” indicate times at which scene 
movement begins and ends, respectively. 
 

8.3.2 COGNITIVE TASKS 
 

In some trials, subjects performed either an auditory or visual simple reaction time (RT) task 

during exposure to the moving visual stimulus.  Both types of tasks required subjects to respond, 

with the click of a button held in the dominant hand, to transient changes in a task stimulus.  The 

visual task stimulus consisted of a white triangle superimposed on the center of the black 

bullseye, that moved in synchrony with the surrounding scene.  The white-on-black color scheme 

was utilized for maximum contrast.  At randomly timed intervals of between 1 and 3 seconds, the 
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triangle briefly changed to a rectangle, then back to a triangle (Figure 19).  Similar inter-stimulus 

timing has been successfully used in a previous in-house study of the interaction between 

cognitive tasks and posture [Redfern et al., 2001].  The cognitive tasks commenced at time t=0 

seconds, prior to the onset of scene movement at time t=15 seconds, such that subjects engaged 

the reaction time task before the postural task. Subjects were instructed to “Stand comfortably 

and look straight ahead. Respond as quickly as possible when you notice the triangle change to a 

rectangle. We will monitor your reaction time. It’s okay to make mistakes, but please keep errors 

to a minimum.”  Reaction time was not measured, but presenting this impression was necessary 

in order to effectively capture the effect of the cognitive task on postural sway.  For the trials in 

which a visual task was not performed, the triangle object was continuously presented (i.e. it did 

not include any transient changes). 

The auditory task stimulus consisted of a constant tone at 560Hz, that at randomly timed 

intervals of between 1 and 3 seconds was combined with another tone at 1120Hz.  These two 

tones are related harmonically, and have a frequency difference that is highly detectable. The 

superimposed tone at 1120Hz had a duration of 250msec in order to assure a clear sense of 

tonality, while still being a discrete temporal event compared to the constant tone at 560Hz.  

Tones were presented stereophonically at a sound pressure level (SPL) of 80dB, via disposable 

foam ear inserts worn by subjects.  To maintain consistency with visual task trials, the moving 

visual scenes for all auditory trials included an unchanging triangle object at the center of the 

bullseye pattern.  As in the visual task trials, subjects were instructed to respond as quickly as 

possible to a change in the task stimulus, while attempting to keep errors to a minimum.   
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Figure 19 Subject performing a reaction time task while viewing the bullseye-and-
checkerboard pattern in the BNAVE virtual environment. Subject was instructed to 
respond as quickly as possible, with the click of a button held in the dominant hand, to 
randomly-timed transient changes in the centrally located object (i.e. from a triangle to a 
square).  Sway responses were recorded via a single force plate beneath the feet, and an 
electromagnetic tracking device located at the head. Subject was secured to the support 
structure by a safety harness. 
 

8.3.3 DATA COLLECTION 
 

Data were collected on two separate days.  During each visit, subjects were exposed to eight 

different combinations of visual stimulus and cognitive task (4 visual stimuli * 2 task 

conditions), as shown in Table 3.  Visual and auditory cognitive tasks were presented on separate 

days, in a randomized fashion, so that half of the subject population encountered auditory tasks 

on day 1, while the remaining subjects were presented with visual tasks first.   Trial one was a 
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“dummy” trial that consisted of a 0.3Hz sinusoidal moving visual stimulus, with no cognitive 

task.  Exposing every subject to an identical initial stimulus was an attempt to eliminate the 

confounding influence of a “trial effect” that had been observed in our previous study, in which 

sway amplitudes during initial exposure to optic flow were significantly larger than those during 

subsequent exposures [Musolino et al., 2006]. 

 

Table 3 Stimulus-task combinations presented to subjects on each of two testing days 

Trial # Visual Stimulus Cognitive Task (yes/no) 
1 0.3Hz sinusoid no 

Stationary no 
0.3Hz sinusoid no 

PSUM no 
NPSUM no 

Stationary yes 
0.3Hz sinusoid yes 

PSUM yes 

2 – 9 (randomized) 

NPSUM yes 
     

 
Following trial 1, the eight stimulus-task combinations were presented once, in random 

order, in trials 2 through 9.  For each trial, subjects stood in an upright position 1.5 meters from 

the front screen, with arms folded across the chest, and with bare feet placed shoulder-width 

apart on a force platform (NeuroCom Inc., Clackamas OR).  For trials that included a cognitive 

task, subjects held a small cylindrical push-button device in the dominant hand.  Image height 

was adjusted so that the bullseye center was located at eye level.  Subjects were secured to the 

BNAVE support structure with a tether and harness.  This safety line was sufficiently loose to 

afford subjects free range of motion, and did not hinder sway or provide sensory feedback 

regarding their body sway.  Prior to each trial, room lights were dimmed, and subjects were 

instructed to “stand comfortably and look straight ahead at the image on the screen.”  Trial 
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duration was 90 seconds, and consisted of 60 seconds of scene movement preceded and followed 

by 15 seconds of no motion. A rest period of 3 minutes was provided between successive trials, 

during which time room lights were switched on, and subjects relaxed in a seated position.  In 

addition, a 60-second quiet stance (QS) trial was performed prior to the moving scene trials, in 

order to record “baseline” spontaneous sway in the absence of visual perturbation (i.e. subjects 

viewed a blank screen during these baseline trials).  

Postural responses were examined through measurements of head and center-of-pressure 

(COP) displacements.  Head data were collected at 20Hz using a Polhemus Fastrack 

electromagnetic tracking system (Polhemus Inc.), with a single sensor located at the crown of the 

head.  Foot force data were sampled at 100Hz via load cells embedded in the force platform, and 

post-processed in Matlab (The Mathworks Inc.) to obtain COP values. 

 
8.3.4 DATA PROCESSING 
 

Data were high-pass filtered, down-sampled to 5 Hz, and zero-meaned.  High-pass filtering was 

achieved through zero-phase implementation of a fourth order Chebyshev type II filter, with a 

cutoff frequency of 0.025 Hz, and a stop-band attenuation of 20 decibels (a decibel (dB) is a unit 

of measure often used for values that span several orders of magnitude, and is mathematically 

defined as 10*log10(Power)).  The 3dB attenuation point for the high-pass filter occurred at 

approximately 0.03Hz, so that frequencies above 0.07Hz were not attenuated at all.  This high-

pass filter removed the dominant DC and very low frequencies observed in postural sway 

position data, and facilitated the identification of sway responses to the low frequency (0.1 Hz) 

component of the stimuli.   
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Filtered data were then examined using Fourier analysis, in order to estimate spectral 

densities for head and COP response signals, for both the quiet-stance baseline trial and moving 

scene trials.  This was achieved through the calculation of windowed periodograms using the 

discrete Fourier transform (DFT).  Spectral estimation was performed on only the 60-second 

moving scene portion of each trial (i.e. the first and last 15 seconds of data were removed prior to 

Fourier analysis).  The 60-second data segments were multiplied by a Hanning window (a 

smooth function that tapers gradually to zero [1975]) prior to performing the DFT, in order to 

minimize edge effect artifacts that can arise during the Fourier transform.  The squared-

magnitude of the DFT was computed to produce an estimate of sway response power, at 

frequency intervals of 0.01Hz, spanning DC through 2.5Hz.  Of particular interest was response 

power at each of the stimulus frequencies: 0.1 Hz, 0.3 Hz, and 0.5 Hz.  These were obtained by 

calculating the average power across seven frequency bins (bin size = 0.01Hz) at and around 

each of the stimulus frequencies.  This yielded a “stimulus-band” power equal to the average 

power at a given stimulus frequency ± 0.03Hz.  These frequency-band power metrics were used 

as the means of comparison among the various visual stimulus and cognitive task conditions.  

Responses to moving scenes were also compared to those for quiet stance, in order to separate 

contributions of optic flow from those due purely to spontaneous sway. 

 
8.3.5 SWAY ADAPTATION ANALYSIS 
 
 
Changes in sway amplitude throughout each trial were determined by examining the time-

varying spectrum of sway position, obtained through the use of time-frequency analysis, as 

described by Cohen [Cohen, 1989; Cohen and Posch, 1985] and Loughlin et al. [Loughlin et al., 

1994].  This technique combines the time-frequency information from multiple spectrograms 
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(short-time Fourier transforms) computed with various window lengths, to obtain an improved 

estimate of time-varying spectral power, denoted by P(t, ω) where t=time and ω =frequency, 

compared to that provided by a single spectrogram.  Of particular interest was the time-varying 

response power at the stimulus frequency, P(t), which was calculated as shown in equation (1) 

below: 

 

 P(t) = ∑ , where Fs = stimulus frequency     (1) 
+=

−=
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This time series was visually examined for evidence of sway adaptation. Whether or not 

adaptation occurred was determined subjectively on a trial-by-trial basis, as opposed to being 

based on any strict quantitative criteria, statistical or otherwise. This approach was possible 

because there were relatively few adaptation trials, and because it was rather obvious when P(t) 

displayed adaptive characteristics. For example, the decline in sway power shown in Figure 14 

was typical for an adaptation trial, whereas non-adaptation trials displayed no such drop in sway 

power over time. For cases in which adaptation occurred, the time series, P(t), was fit with an 

exponential curve of the form Ae-t/τ + B, and the following parameters were extracted: 

 

 A = pre-adaptation magnitude of stimulus-band sway response to the moving scene 

 B = post-adaptation magnitude of stimulus-band sway response to the moving scene 

 τ = time constant of the exponential decay 

 

Choosing a region over which the time series, P(t), was fit with an exponential curve 

contained a degree of subjectivity.  Sway responses among subjects were not consistent: there 
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were transients, delayed responses, and power did not necessarily decrease monotonically 

following the initial response.  As such, the selection of fit boundaries was done on a trial by trial 

basis, as opposed to applying some automated algorithm to each trial.  The starting point for 

curve fitting was chosen as the point of maximum power within a ten second window following 

the onset of scene movement. If this maximum power corresponded to an obviously transient 

event that was not representative of the overall response, then a more appropriate point in the 

same ten second region was used instead.  The choice of ten seconds was not arbitrary. We had 

assumed that the primary sway response would occur during exposure to the first full cycle of a 

given stimulus, and ten seconds corresponded to the period of the lowest component frequency 

(0.1 Hz) in any of the stimuli.  The end point for the curve fit was chosen as the point at which 

sway power returned to the pre-response magnitude, and remained at that level for at least ten 

seconds.   

Any increase in power after ten seconds was considered to be a secondary response.  Fitting an 

exponential curve to the portion of the power-versus-time data series bounded by these 

beginning and end points provided a means of quantifying the adaptation process, by yielding 

both the time constant of decay, as well as the per-stimulus decline in sway magnitude. 

 
8.3.6 STATISTICAL ANALYSIS 
 

A mixed-factor repeated measures ANOVA was utilized to examine the effects of stimulus type 

(STIM: NPSUM, PSUM, Stationary) and task condition (TASK: No Task, Auditory, Visual) on 

total sway power, on sway power at each of the stimulus frequencies (i.e. “stimulus-band 

power”) and on the sway adaptation time constant (τ).   
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Data distributions were tested for normality using the Shapiro-Wilk W test, and log-transformed 

to achieve normality when necessary.  The significance level was set at p = 0.05 for both primary 

and post-hoc (Tukey’s HSD) comparisons.  

 

 
8.4     RESULTS 

 

8.4.1 GENERAL SWAY RESPONSES 
 

As observed in previous optic flow studies in our laboratory, subjects responded strongly to each 

of the moving visual stimuli.  Peak-to-peak excursions of the head ranged from approximately 

1cm to 4cm, with those for COP slightly lower.   Sway magnitude was generally smallest for 

trials in which the scene appeared but remained stationary, slightly larger during quiet stance 

(QS), and largest during exposure to the moving visual scenes (Figure 20 and Figure 22).  

Among responses to the various moving scenes, sway was largest for the 0.3Hz “dummy” trial 

(i.e. trial #1), and lower for both the sum-of-sinusoids and the remaining 0.3Hz sinusoid trials. 
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Figure 20 Ensemble time-series of Head (red) and COP (black) sway responses for the 
various visual and task conditions.  Values shown are the average of first and second visits 
(i.e. auditory and visual days) for n=16 subjects.  From top to bottom are Stationary scene, 
0.3Hz Trial #1 (for No Task condition only), 0.3Hz sinusoid, PSUM (0.1 + 0.3 + 0.5Hz), and 
NPSUM (0.1 + π/10 + 0.5Hz).  Responses for Task and No Task trials are displayed 
separately, on the right and left hand sides of the figure, respectively. Stimulus values are 
shown for comparison, and have been scaled for clarity. 

 

Movements of the head and COP were in phase with one another for all trials, as revealed 

by visual inspection of time series data (Figure 20 and Figure 21).  Head responses were larger 

than those for COP below 0.5Hz, as shown in the power spectral density plots in Figure 21 and 

Figure 22.  Except for absolute power levels, the corresponding spectral densities of head and 

COP responses were very similar up to approximately 0.7Hz.  These findings indicated that 
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subjects had swayed predominantly as an inverted pendulum, which is consistent with previous 

findings of postural sway [Peterka, 2003; Peterka, 2002].  Because of the strong similarities 

among head and COP responses, the remaining discussion was limited to head data, with the 

occasional reference to COP when appropriate. Unless stated otherwise, all results presented for 

the head data, including significant differences, were observed in COP data as well. 

96 



 

 

 

Figure 21 Time series, power spectral density, and positive-time frequency distribution 
(PTFD)  of head responses of a single subject (s245) for two separate trials: (a) trial #1, 
0.3Hz stimulus, auditory task day, no task;  and (b) trial #2, PSUM stimulus, auditory task 
day, no task.  Time series and power spectral density data for the COP response is shown 
for comparison.  Time series data for the stimuli (dotted line) are also included for 
comparison; for clarity, they have been scaled by a factor of 2.  “Start” and “Stop” indicate 
times at which scene movement begins and ends, respectively. For the power spectral 
density, the dotted line indicates stimulus frequency.  Note that the absence of power below 
0.05Hz is due to the data having been high-pass filtered, as represented by the shaded area. 
Arrows indicate the regions over which power was averaged to yield “stimulus-band” 
values, such as those shown in the bar plots in Figure 23b, Figure 24a, Figure 25a-b, and 
Figure 26a-c (see Data Processing section for details).  Data shown is representative of 
responses for most subjects.    
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Figure 21 (continued) – part (b) 

 

Both the quiet stance and moving scene sway responses displayed power that was usually 

largest at low frequencies (i.e. below 0.1Hz) and that generally decreased across the spectrum, as 

shown for head and COP motion in the power spectral density plots of Figure 22.  Note that the 

data shown in Figure 21a was an exception to this rule, in that responses at the 0.3Hz stimulus 

frequency were particularly large for that subject, and therefore much larger than power at lower 

frequencies.  The data in Figure 21a has been included to highlight the salient features of sway 

adaptation, which was particularly apparent in this case.  Quiet stance sway power was spread 

across a band of frequencies from DC to approximately 0.4Hz, which is typical for spontaneous 

sway.  The moving scene responses were characterized by larger sway amplitudes in this same 
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frequency range, and substantial power at the stimulus frequencies as well.  As expected, both 

single sinusoid and sum-of-sinusoid motion elicited sway responses that were consistently larger 

than those observed during quiet stance. These gains in power relative to quiet stance increased 

with frequency, with the smallest relative increase occurring at 0.1Hz, and the largest relative 

increase occurring at 0.5Hz.  Also, sway during exposure to the stationary scene was generally 

lower than that for quiet stance (Figure 22). 
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Figure 22 Ensemble power spectral densities of Head (left) and COP (right) sway responses 
for the various stimulus and task conditions.  Values shown are the average across n=16 
subjects. Values for Quiet Stance baseline and Stationary scene are shown in (a) through 
(d) for comparison.  PLOTS (a) and (b): Values for Task (red line) versus No Task (blue 
line) conditions during (a) auditory and (b) visual trials in response to the various optic 
flow stimuli -- from top to bottom are Stationary scene, 0.3Hz sinusoid, PSUM (0.1 + 0.3 + 
0.5Hz), and NPSUM (0.1 + π/10 + 0.5Hz). The bottom plot in (a) and (b) represents the 
average across all optic flow stimulus types.  PLOTS (c) and (d): Responses to PSUM and 
NPSUM stimuli for (c) auditory and (d) visual Task and No Task trials. “All Tasks” 
represents both Task and No Task conditions.   
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8.4.2 TRIAL EFFECT 
 

As expected, total sway power for trial 1 was significantly larger than that for each of trials 2 

through 9 (F8,718=8.63, p<0.001)(Figure 23a).  Based on findings from the previous experiment, 

this trial effect was thought to be the result of sway adaptation. Since adaptation in the current 

study was observed at both 0.3Hz and 0.5Hz, we therefore examined the effect of trial on sway 

power at each of the stimulus frequencies.  When viewed in this way, the trial effect displayed a 

different trend at each frequency (Figure 23b).  The strongest effect existed at 0.3Hz, with values 

for stimulus-band power during trial 1 between 1.5 dB and 3.5 dB larger than those for 
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subsequent trials. Values for trial 1 were significantly larger than those for trials 2 through 9 

(F1,143=10.11, p=0.002).  A similar, but smaller, effect was observed at 0.5Hz, with decreases in 

power of no more than 2.5 dB; note that this decrease occurred after trial 2, not trial 1, since 

stimuli containing a 0.5Hz sinusoid were not presented until trial 2.  Stimulus-band power at 

0.5Hz for trial 2 was not significantly different than stimulus-band power at 0.5Hz averaged 

across trials 3 through 9.  In terms of individual pair-wise comparisons between trial 2 and each 

of trials 3 through 9, a significant difference was observed only for trial 8 (p=0.036).  No trial 

effect was seen at 0.1Hz. 
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Figure 23 Ensemble head sway response power for trials 1 through 9.  (a) Total power, 
averaged across all frequencies (0.1, 0.3 and 0.5Hz).  (b) Stimulus-band power at each 
stimulus frequency. Values plotted are the mean +/- std error (in dB) for all subjects 
(n=16).  Asterisk denotes a statistically significant difference (p<0.05) between the 
highlighted value and all subsequent values at that frequency.  Note that the values are 
averaged across all optic flow stimuli (Stationary, PSUM, and NPSUM). 
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Figure 23 (continued) – part (b) 

 

8.4.3 SWAY ADAPTATION 
 

Time-frequency analysis revealed sway adaptation, as evidenced by within-trial decreases in 

sway amplitude at the stimulus frequency (Figure 21).  Notice in the time-frequency distribution 

of Figure 21a that sway power at the stimulus frequency (0.3Hz in this case) gradually declined 

following the onset of stimulus motion.  In contrast to our previous study, in which adaptation 

occurred at a single frequency (0.7Hz) and only during trial #1, adaptation in this study was 

observed at multiple frequencies and in numerous trials, but always at the highest frequency for a 

given stimulus.  That is, for the 0.3Hz sinusoid, adaptation was seen in the 0.3Hz frequency band 
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of the response, while for the sum-of-sinusoids stimuli, subjects displayed adaptive responses at 

0.5Hz instead.  Adaptation was not observed in the 0.1Hz frequency band of any response.  

The incidence of adaptation was not the same for all subjects.  Four of the sixteen subjects 

did not display adaptation in any of the eighteen trials they performed over two separate visits.  

Of the remaining twelve subjects, two adapted just once, eight adapted twice, and two adapted 

more than two times (Table 4b).  These trends in adaptation were mostly consistent with the 

observed trial effects, in that adaptation was followed by decreased sway power in subsequent 

trials.  For example, eight of the fourteen cases of adaptation at 0.3Hz occurred during trial #1 

(Table 4a), after which point sway power at 0.3Hz decreased for four consecutive trials (Figure 

23b).  The remaining six cases of adaptation at 0.3Hz were spread across trials 3 through 8, but 

were not accompanied by a noticeable drop in sway power in any subsequent trials.  As for 

adaptation at 0.5Hz (i.e. in response to the SOS stimuli), there were sixteen total occurrences.  

Four of these were observed during initial exposure to SOS stimuli in trial #2.  This was 

followed by lower sway power at 0.5Hz in all of the remaining trials (Figure 23b)  Another six 

cases of adaptation at 0.5Hz occurred during trial #5, and this also corresponded to a noticeable 

decrease in sway power at 0.5Hz in subsequent trials (Figure 23b).  

 

Table 4a Incidence of Sway Adaptation at 0.3Hz and 0.5Hz, Across All Subjects (notation 
represents # of actual adaptation trials / # of possible adaptation trials) 

Trial 1 2 3 4 5 6 7 8 9 Total 

Incidence of Adaptation at 

0.3Hz 
8/32 0/32 2/32 1/32 2/32 0/32 0/32 1/32 0/32 14/288

Incidence of Adaptation at 

0.5Hz 
0/32 4/32 2/32 0/32 6/32 0/32 3/32 0/32 1/32 16/28 

Total 8/32 4/32 4/32 1/32 8/32 0/32 3/32 1/32 1/32 30/288
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Table 4b Incidence of sway adaptation at different frequencies and in multiple trials 

Trials in which adaptation 
occurred 

on auditory task day 

Trials in which adaptation 
occurred 

on visual task day  

No Task Task No Task Task 

 

Subject  0.3Hz 0.5Hz 0.3Hz 0.5Hz 0.3Hz 0.5Hz 0.3Hz 0.5Hz 
Total # 

of 
trials 

230 - - - 5 - - - 2 2/18 
231 - - - - - - - - 0/18 
232 - - - - - - - - 0/18 
233 - - - - - - - 5 1/18 
234 - - - - 1 3 - - 2/18 
235 1 - - 5 - - - - 2/18 
236 - - - - 1 9 - - 2/18 
237 - 5 - - - 2 - - 2/18 
238 - 7 - - 1 - - - 2/18 
239 8 - - - 3 - - - 2/18 
240 - - 5 - 1 2 - 3 4/18 
241 - - - 7 - - - - 1/18 
242 - - - - - - - - 0/18 
243 1 - - - 1 - - - 2/18 
244 - - - - - - - - 0/18 
245 1,4 5 3 2,7 1 - - 5 8/18 

5/48 3/32 2/32 5/32 7/48 4/32 0/32 4/32 30/288 
8/80 7/64 11/80 4/64 

Total #  
of 

trials 15/144 15/144  

 

 

With the exception of subject #245, no subject adapted at 0.3Hz more than once during a 

single visit (Table 4b).  This is consistent with our previous finding, in which adaptation 

occurred only once for a given series of a trials [Musolino et al., ].  However, there were cases in 

which adaptation was observed multiple times in a single testing session.  In four of the six 

instances of such multiple adaptation (subjects 234, 235 236, and 245 [visual]), the adaptive 

behavior was observed two times: first at 0.3Hz, then at 0.5Hz (Table 4b).  Another subject (240 
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[visual]) displayed adaptive behavior in three trials, first at 0.3Hz, followed by two instances at 

0.5Hz.  In the remaining case of multiple adaptation (subject 245 [auditory]), adaptation occurred 

numerous times at both 0.3Hz and 0.5Hz. So, for cases in which adaptation was observed more 

than once, adaptation occurred first at 0.3Hz, then at 0.5Hz.   

Due to what appears to be a frequency specificity to adaptation, the use of a 0.3Hz 

“dummy” trial #1 did not have the intended effect of eliminating adaptation during subsequent 

trials.  Since adaptation was not limited to trial #1, it was no longer useful to compare ‘trial 1’ to 

‘non-trial 1’ data, as had been done in the previous study (see experiment #2).  A more 

appropriate comparison to make instead was between ‘adaptation’ trials and ‘non-adaptation’ 

trials. Because adaptation occurred at a specific frequency, these comparisons were made based 

on measures of stimulus-band sway power (as opposed to total sway power).  This provided a 

means of examining the effect of adaptation on sway responses during post-adaptation trials. 

In addition, the adaptive responses were quantified by fitting an exponential curve to the 

power-versus-time data at 0.5Hz, as shown in Figure 14 (and described in section 8.3.5) for 

curve-fits to stimulus-band power at 0.7Hz. The exponential curve-fits provided a reasonably 

good approximation of the adaptive response, with r2 values for the curve-fits ranging roughly 

from 0.50 to 0.90.  This process yielded adaptation parameters A (pre-adaptation sway power), B 

(post-adaptation sway power), and τ (time constant of exponential decay).  Values for A were 

compared between PSUM and NPSUM groups for adaptation versus non-adaptation trials, while 

values for τ (which existed only for adaptation trials) were compared between PSUM and 

NPSUM groups for each of the task conditions (No Task, Auditory and Visual).   
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8.4.4 PSUM VERSUS NPSUM RESPONSES 
 

This analysis addressed the hypotheses that PSUM stimuli were expected to produce faster 

adaptation rates and lower sway power, as compared to NPSUM stimuli. Since the largest sway 

responses relative to quiet stance occurred at 0.5Hz, as did sway adaptation, comparisons 

between PSUM and NPSUM groups focused on differences in sway measures at this frequency.  

Stimulus-band sway power at 0.5Hz was lower in the PSUM group compared to the NPSUM 

group, for both adaptation and non-adaptation trials (Figure 24a).  The difference of 

approximately 1dB in non-adaptation trials was not significant.  Likewise, the near 3dB 

difference between the PSUM and NPSUM groups during adaptation trials was not significant.  

With respect to adaptation parameters, pre-adaptation power (A) at 0.5Hz showed similar 

trends as that for stimulus-band power at 0.5Hz. Namely, lower values for the PSUM group 

compared to the NPSUM group in adaptation trials (Figure 24b), but overall no significant 

differences between PSUM and NPSUM groups for both adaptation and non-adaptation trials.  In 

addition, values for ‘B’ were essentially zero in all responses that exhibited adaptation, meaning 

that sway power after adaptation had occurred was equal to sway power that existed prior to 

exposure to optic flow. As such, ‘B’ was excluded from subsequent analyses.  These 

observations regarding ‘A’ and ‘B’ indicated that the 3dB difference in stimulus-band power 

between PSUM and NPSUM groups during adaptation trials (Figure 24a) could not be fully 

explained by differences in ‘A’ or ‘B’ between the groups, but instead must be at least partly the 

result of differences in the rate of adaptation, as captured by the time constant τ.   

The rate at which adaptation occurred was not the same between these PSUM and NPSUM 

groups; it was over 3 seconds faster in subjects who had displayed adaptation during exposure to 

the PSUM stimuli (Figure 24c). As in the case of both stimulus-band power and pre-adaptation 
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power at 0.5Hz for adaptation trials, this difference was not significant. However, the 

observation that both stimulus-band power and the adaptation time constant (τ) trended lower for 

the PSUM group compared to the NPSUM group suggests the possibility that a correlation exists 

between these two parameters.  As such, the data do not provide strong support either for or 

against the hypothesis of lower sway power and faster adaptation rates in response to PSUM 

stimuli, but the trends in the data may be interpreted as favoring the hypothesis.   
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Figure 24 Head sway responses to PSUM and NPSUM stimuli: (a) Stimulus-band power at 
0.5Hz, compared among adaptation and non-adaptation trials;  (b) Pre-adaptation power 
(A) at 0.5Hz, compared among adaptation and non-adaptation trials; (c) Adaptation time 
constant (τ) for adaptation trials. Values plotted are the mean +/- std error.  
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Adaptation Time Constant (τ) at 0.5Hz
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8.4.5 INFLUENCE OF COGNITIVE TASKS 
 

This analysis addressed the hypotheses that concurrent cognitive tasks would cause reductions in 

overall sway response power, and that visual tasks would enhance sway adaptation, while 

auditory tasks would not.  Total sway power for the head was significantly lower (F1,750=18.29, 

p<0.001) for trials involving a cognitive task (38.95 ± 0.30 dB), compared to trials without a task 

(38.47 ± 0.32 dB).  Note that this total sway power represents the average across the optic flow 

stimuli of interest, namely Stationary, PSUM and NPSUM.  When the Task versus No Task 

comparison was performed separately for each stimulus type, the same significant difference 

stated above (i.e. Task < No Task) was observed for both PSUM (38.76 ± 0.30 dB < 39.61 ± 
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0.35 dB, p=0.003) and NPSUM (38.91 ± 0.40 dB < 39.90 ± 0.33 dB, p<0.001) groups, while the 

Stationary group displayed the opposite behavior, with sway power for the Task condition larger 

than those for the No Task condition (36.67 ± 0.35 dB > 36.20 ± 0.28 dB). This difference 

approached significance (p=0.08).     

Data in Figure 22 suggest that the influence of cognitive tasks was a function of frequency, 

cognitive task type, and optic flow stimulus type.  For example, decreases in sway that were 

observed in cognitive task trials seemed to occur primarily at low frequencies, typically below 

0.2Hz, as seen in the spectral density plots of Figure 22a and Figure 22b.  A significant 

difference (F1,186=7.16, p=0.008)  in stimulus-band sway power between Task and No Task trials 

was observed at 0.1Hz (Figure 25a), indicating that the significant task effect noted above was 

due mainly to task-induced decreases in sway power at low frequencies. In some instances, this 

low frequency decrease was accompanied by increases in sway power at higher frequencies for 

cognitive task trials, but no significant differences in stimulus-band sway power at 0.3Hz or 

0.5Hz were observed (Figure 25a).   

Note that the data in Figure 25a represents values that have been averaged across optic flow 

stimulus groups (i.e. PSUM and NPSUM) and across cognitive task modalities (i.e. auditory and 

visual).  When the task modalities were considered separately, both the auditory (p=0.036) and 

visual (p=0.028) groups exhibited the aforementioned significant decrease in stimulus-band 

power at 0.1Hz (Figure 25b).  Differences in stimulus-band sway power were also observed at 

0.5Hz, with visual task values larger than those for both auditory task and no task groups. This 

difference was not significant for either comparison, but approached significance (p=0.09) in the 

case of the No Task condition (Figure 25b).  Together, these findings support the hypothesis that 

concurrent cognitive tasks would cause reductions in overall sway response power. 
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Figure 25 Stimulus-band power for head sway responses during Task and No-task trials: 
(a) auditory and visual task values combined; (b) auditory and visual task values shown 
separately.  Values plotted are the mean +/- std error (in dB).  Note that these values 
represent responses across visual stimulus type (i.e.  PSUM and NPSUM).    
 

  

114 



 

Head Stimulus-band Power for (Auditory/Visual) Task versus 
No Task Trials 

0

4

8

12

16

20

24

0.1Hz 0.3Hz 0.5Hz

Frequency

St
im

ul
us

-b
an

d 
Po

w
er

 (d
B

Visual Task
Auditory Task
No Task

*

(b)

Head Stimulus-band Power for (Auditory/Visual) Task versus 
No Task Trials 

0

4

8

12

16

20

24

0.1Hz 0.3Hz 0.5Hz

Frequency

St
im

ul
us

-b
an

d 
Po

w
er

 (d
B

Visual Task
Auditory Task
No Task

*

(b)

 

In addition, an interaction between cognitive task modality and optic flow stimulus type 

was observed, in which the effect of the auditory and visual cognitive tasks was different for the 

PSUM and NPSUM stimuli.  For instance, the bottom two plots in Figure 22d clearly show that 

performing a visual cognitive task produced noticeably lower sway power across the entire 

frequency spectrum during exposure to PSUM optic flow, as compared to NPSUM stimuli.  This 

difference was significant (F1,185=3.80, p=0.05) only at 0.5Hz (Figure 26d). In contrast, the 

corresponding plots in Figure 22c reveal the opposite behavior for auditory cognitive task trials, 

in that PSUM responses were larger than those for the NPSUM group.  
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This difference approached significance (F1,185=2.95, p=0.088) at 0.3Hz (Figure 26c).  Note that 

PSUM and NPSUM responses during the No Task condition were not significantly different 

from one another at any of the frequency bands (Figure 26). 

With respect to the Stationary visual scene condition, performing a concurrent cognitive 

task caused an increase in total sway power compared to the No Task condition. This difference 

was significant (p=0.04) only in the case of the visual task (Figure 26a).  When viewed at the 

level of stimulus-band sway power at each of the stimulus frequencies, the relationship among 

the auditory task, visual task and No Task groups during exposure to the Stationary stimulus was 

different at each frequency.  At 0.1Hz, values for the auditory task groups were large than those 

for the No Task and visual task groups (Figure 26b). At 0.3Hz, both auditory task and visual task 

values were lower compared to No Task values (Figure 26c). At 0.5Hz, both auditory task and 

visual task groups displayed larger sway than the No task group (Figure 26d), which was 

consistent with the trend observed for total sway power. None of these differences were 

significant.  
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Figure 26 Head (a) total sway power, and stimulus-band power at (b) 0.1Hz,  (c) 0.3Hz, and 
(d) 0.5Hz in response to PSUM and NPSUM stimuli for the various cognitive task 
conditions.  Values plotted are the mean +/- std error.  Values for Stationary scene are 
shown for comparison. 
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Stimulus-band Power at 0.3Hz of Head Sway Response to 
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The incidence of adaptation was roughly equal between Task and No Task trials, and also 

among auditory-task and visual-task trials (Table 4b). This relative equity among Task and No 

Task groups suggested that cognitive tasks did not contribute to adaptation.  At the same time, 

however, the fact that the PSUM group displayed adaptation and was also influenced by the 

visual cognitive task suggested that the cognitive task may indeed have contributed to adaptation 

in the PSUM group.  The data in Figure 27 show that the rate of adaptation at 0.5Hz among 

PSUM and NPSUM groups was nearly identical for both No Task and auditory Task conditions, 

but was faster in the PSUM group for visual Task.  
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At the same time, however, time constant values were lowest for the No Task condition and 

highest for the visual Task condition. Note, however, that this data represents only a handful of 

observations (i.e. n=1 or n=2 per group), so the statistical significance of these differences could 

not be determined.  

Overall, these data indicate that cognitive tasks generally produced lower sway in 

response to PSUM stimuli compared to NPSUM stimuli, but offer limited insight into whether or 

not this behavior was due to differences in adaptation rates between the groups.  As such, the 

findings only partially support the hypothesis that an interaction would exist between cognitive 

task modality and optic flow stimulus type, such that visual tasks would enhance the differences 

in sway power and adaptation rates that were observed between PSUM and NPSUM groups. 
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Figure 27 Sway adaptation time constants for head responses to PSUM and NPSUM 
stimuli during the various task conditions. Values plotted are the mean +/- std error.  Bars 
without a std error value represent just a single observation (i.e. n=1). 
 
 
 

8.5     DISCUSSION 
 

8.5.1 MAIN FINDINGS 
 

This study investigated the influence of a concurrent cognitive task on postural sway, during 

exposure to periodic and non-periodic oscillating optic flow.  The objective was to determine 

whether or not a cognitive task modulates the previously observed effects of optic flow 

periodicity on postural sway [Musolino et al., 2006].  The main finding of this study was that 
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performing a cognitive task evoked lower sway responses compared to the no-task condition.  

This effect was observed for both auditory and visual cognitive tasks.  This finding is in 

agreement with previous studies which have shown that performing cognitive tasks produces 

lower sway responses [Ehrenfried et al., 2003; Dault et al., 2001b; Dault et al., 2001a; Teasdale 

and Simoneau, 2001; Vuillerme et al., 2000; Fearing, 1924].  

  In addition, performance of a cognitive task while viewing oscillating optic flow caused 

subjects to respond differently as compared to viewing optic flow alone.  Moreover, sway 

responses were affected not only by the presence or absence of a task, but also by the sensory 

modality of the task, as well as by the relative periodicity of the moving visual scene.  For 

instance, as had been observed previously, periodic optic flow evoked lower sway amplitudes 

than non-periodic optic flow in the absence of a cognitive task.  In the presence of a visual 

concurrent cognitive task, however, this effect was more pronounced.  In contrast, an auditory 

cognitive task produced the opposite behavior, in which responses to periodic optic flow were 

larger than those to non-periodic stimuli.  

Note that a task-induced decrease in sway is at odds with the ‘limited capacity’ model of 

attention [Fernandez-Duque and Johnson, 2002; Sanders, 1997], which argues that concurrent 

attention tasks would interfere with postural performance and cause a decrease in postural 

stability, which is typically associated with an increase in postural sway. The alternate view is 

that the decreases in sway observed in many studies of the cognitive influences on posture may 

in fact be indicative of increased postural stability that reflects a change in control strategy.  In 

particular, the postural system might employ increased stiffness as a means of ensuring postural 

stability in the presence of the increased demands associated with a concurrent cognitive task 

[Dault et al., 2001b; Dault et al., 2001a].  An increase in stiffness, which physiologically may be 
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achieved through increased co-contraction of gastrocnemius and anterior tibialis musculature, 

would be expected to cause a decrease in sway magnitude, but an increase in the frequency of 

sway oscillation [Winter et al., 1998].  Findings in the current study are partly consistent with 

this.  For example, as seen in Figure 22a, Figure 22b and Figure 25b, cognitive tasks were 

associated with decreases in sway power at low frequencies (which accounts for 95% of overall 

sway power), but with increases in sway power at some higher frequencies.  Taken together, 

these observations provide some support for the idea that an increased stiffness control strategy 

is responsible for the observed decreases in sway while performing concurrent cognitive tasks. 

 
8.5.2 ADAPTATION IN MULTIPLE TRIALS AND VARIOUS FREQUENCIES 
 
 
In a previous study, we observed adaptation in a single trial (trial #1) and at a single frequency 

(0.7Hz).  In contrast, the current study uncovered adaptation in multiple trials (including trial #1) 

and at two different frequencies (0.3Hz and 0.5Hz).  The occurrence of adaptation in multiple 

trials throughout the experiment was likely the result of two separate, but related, factors: (1) the 

ineffectiveness of the 0.3Hz dummy trial, and (2) an apparent frequency specificity of the 

adaptation process.  Adaptation during trial #1 occurred in only eight of thirty-two possible cases 

(16 subjects * 2 testing days), meaning that in the remaining twenty-four cases adaptation was 

possible in subsequent trials.  Adaptation indeed occurred in subsequent trials, but at 0.5Hz 

instead of 0.3Hz.  As such, adaptation in response to the 0.3Hz sinusoid occurred during initial 

exposure to this stimulus, but not after.  This is consistent with previous findings [Musolino et 

al., ].  Adaptation at 0.5Hz was observed in numerous trials, primarily during trials #2 and trial 

#5, together with decreases in mean sway power in subsequent trials.  The adaptation during trial 

#2, which in this case corresponded to initial exposure to a 0.5Hz sinusoidal frequency 
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component, was also consistent with findings from our previous study [Musolino et al., ].  

Adaptation during trial #5, however, was an unexpected observation.  At first it was thought that 

this behavior perhaps reflected a second wave of adaptation that occurred after the effects of the 

initial adaptation had subsided, with the time between the two adaptive responses representing 

something akin to a refractory period.  Closer inspection, though, revealed that adaptation at 

0.5Hz in both trial #2 and trial #5 was observed not in any single subject, but rather only in 

behavior for the entire subject population.  Therefore, this dual adaptation appears to simply 

indicate that some subjects did not adapt until trial #5.  This in itself is intriguing, as it indicates 

that adaptation does not necessarily occur during initial exposure to optic flow.  The data in 

Table 4b support this, revealing several cases of subjects adapting for the first time well after 

initial exposure.       

Despite the fact that adaptation at one frequency did not necessarily prevent subsequent 

adaptation at a different frequency, there appeared to be a “directionality” to this phenomenon, 

such that the subsequent adaptation occurred only at a higher frequency.  That is, adaptation at 

0.3Hz was in some cases followed by adaptation at 0.5Hz, whereas adaptation at 0.5Hz was 

never followed by adaptation at 0.3Hz.  This may be related to what we have termed a “velocity 

sensitivity” to oscillating optic flow, whereby subjects who are exposed to a stimulus that 

contains multiple frequencies respond primarily to the highest frequency component of that 

stimulus.  This is considered a velocity effect because velocity increases with frequency for 

sinusoids of equal amplitude (such as those used in our experiments), so that the highest 

frequency corresponds to the highest velocity.  This “directionality” might explain why 

adaptation in the current study occurred at two separate frequencies, while adaptation in our 

previous study was observed at only a single frequency.  The current study had purposely 
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exposed all subjects to a 0.3Hz sinusoidal stimulus in trial #1, in hopes of limiting adaptation to 

this trial.  This “dummy” trial did not have the intended effect, as evidenced by the occurrence of 

adaptation in later trials.  This subsequent adaptation, however, occurred more often than not at 

the higher frequency of 0.5Hz, and was never observed at the lower frequency of 0.1Hz.  In 

contrast, in the earlier experiment, a majority of first trials had by chance included a stimulus that 

contained the highest frequency component used in the study, a 0.7Hz sinusoidal component.  

Sway responses and adaptation during trial #1 therefore occurred at 0.7Hz.  The “directionality” 

of adaptation may have then prevented subsequent adaptation from occurring at any of the other 

frequencies, all of which were lower than 0.7Hz. 

 
8.5.3 RATES OF ADAPTATION 
 

Adaptation rates observed at 0.3Hz were slower than those at 0.5Hz, which themselves were 

slow compared to the rates seen at 0.7Hz in our previous experiment (Figure 28). This raises the 

possibility that adaptation rates are a function of the frequency at which adaptation is occurring.  

If adaptation is the result of prediction, as we hypothesize, then this frequency dependent 

behavior may be related to the temporal aspect of the predictive process.  For example, if the 

predictive mechanism requires N number of cycles of a periodic stimulus to occur in order to 

produce a predictive estimate, then the time required for prediction (and therefore presumably for 

adaptation as well) would decrease with increases in stimulus frequency.  That is, a 0.7Hz 

sinusoid, with a period of T = 1/0.7 = 1.43 seconds would require 1.43*N seconds for prediction, 

whereas 0.5Hz and 0.3Hz sinusoids would require 2*N and 3.33*N cycles, respectively.  That 

predictive behavior may be linked to the temporal aspect of a sinusoidal stimulus has been 

reported previously by Bahill and McDonald, who showed that accurate tracking of sinusoidal 
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moving targets occurs within the first  ½ cycle of exposure [Bahill and McDonald, 1983]. This, 

however, might have implications more for the onset time of adaptation than for the rate of 

adaptation once that process has begun.  Another possibility is that lower frequencies are perhaps 

associated with longer adaptation times because sway power is larger at lower frequencies, so 

that it simply takes more time for power to decrease to pre-response levels (i.e. for B to reach a 

value of zero).  However, if the purpose of adaptation is assumedly to ensure postural stability, 

then this explanation does not make sense. Instead, one would expect rates of adaptation to be 

faster at  low frequencies,  which contain more power, such that sway magnitude would be 

lowered more quickly.  From this perspective, the “N-cycle” paradigm is a more plausible 

explanation for the decrease in adaptation rates with frequency. 
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Figure 28 Adaptation time constant (Tau) versus frequency.  Values at 0.7Hz are from a 
previous experiment.  Note that these values represent responses across stimulus type, task 
type, task condition, and trial. Values plotted are the mean +/- std error (in dB).   

 
 

In addition, note that the adaptation time constant (τ) represents the time at which stimulus-

band sway power has decreased by approximately 67% from the initial, pre-adaptation value (i.e. 

“A”).  Values for τ can be misleading if they are mistakenly interpreted as the total time required 

for adaptation to occur.  A more accurate metric of the time at which sway power has been 

reduced to post-adaptation level (i.e. “B”) is the “3τ” point, which corresponds to a 99% 

reduction in sway power.  For example, based on the values for τ shown in Figure 16, the total 

time required for adaptation at 0.7Hz to occur ranged from approximately twelve to twenty-

seven seconds.  For a sixty second optic flow trial, this fifteen second difference represents a full 
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25% of the trial duration.  With respect to the period of oscillation of a 0.7Hz sinusoidal 

component (T = 1/0.7Hz ~ 1.43 sec), which is the frequency at which this adaptation occurred, 

fifteen seconds represents over ten full cycles of oscillation.  From this perspective, differences 

in τ of just several seconds may in fact represent substantial differences in adaptation rates.  

Comparisons to adaptation rates reported by others is difficult because of a scarcity of data. 

Only one such report has been uncovered thus far, and that involved postural sway adaptation in 

response to galvanic stimulation [Johansson et al., 2001b]. Values for the time constant of decay 

in that case were in the range of 40-50ms, which is several times larger than those observed in 

the current study.  It is worth noting that the authors in that study chose to use pseudorandom 

stimuli, specifically in order to avoid, in their words, “anticipative (i.e. feedforward) responses”.  

Based on the findings presented in the current study, the noticeably slower adaptation rates in the 

Johansson paper are probably due in part to the use of unpredictable stimuli. 

   
8.5.4 CONCEPTUAL MODEL 
 

The results presented here are thought to reflect the interaction between two separate processes: 

(1) a predictive mechanism that is sensitive to visual stimulus periodicity, and (2) a cognitive 

task effect that can modulate visual information processing.  Recall that the proposed predictive 

mechanism is believed to produce a facilitated adaptation in response to periodic stimuli, which 

represents an enhancement of the baseline adaptation that occurs during exposure to any type of 

optic flow, regardless of periodicity. A conceptual model of the influences of both cognitive 

tasks and the proposed predictive mechanism on sensory reweighting and sway behavior is 

shown in Figure 29a.  Though this has not been explicitly stated thus far, note that optic flow 

produces an increase in sway compared to quiet stance (represented by thick black arrow in 
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Figure 29a), such that any reductions in sway caused by sensory reweighting (due to either 

sensory conflict (green arrow in Figure 29a), prediction (blue arrow in Figure 29a) or cognitive 

tasks (red arrow in Figure 29a)),  are counteracted in part by this optic-flow induced increase in 

sway. 

Performing a visual attention task is thought to enhance the effects of the predictive 

mechanism, because of an increase in resources devoted to visual processes during the visual 

attention task.  That is, attending to a visual task will enhance processing of visual information.  

Several previous reports provide evidence to support this, showing that attention to a visual task 

modulates neural activity in various locations throughout the visual cortex, and can influence 

visual processing that is specific to motion detection [Felisberti and Zanker, 2005; Ress et al., 

2000; Alais and Blake, 1999; Treue and Maunsell, 1996; Lankheet and Verstraten, 1995].  This 

interaction between the predictive mechanism and the cognitive task is expected to have similar, 

but not equal, effects for periodic and non-periodic visual stimuli.  In the case of periodic optic 

flow, in which the predictive mechanism is expected to produce facilitated adaptation, the 

increased visual processing associated with a visual attention task will act to further accelerate 

sway adaptation, yielding even faster adaptation times and lower mean sway power.  For non-

periodic optic flow, when the predictive mechanism is not active, and only baseline adaptation 

occurs, the effects of the visual task will again accelerate the adaptation process.  Because the 

starting point in this case is only baseline adaptation, though, the overall effect will not be as 

great as that for periodic stimuli.   

In contrast, performing an auditory attention task is thought to reduce the effects of the 

predictive mechanism, because of a decrease in resources devoted to visual processes during the 

auditory attention task.  That is, attending to an auditory task would impair the processing of 
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visual information, which in this case should slow any reduction in visual channel weight that is 

occurring, whether it were associated with either baseline adaptation or facilitated adaptation.       

The data are consistent with this conceptual model, as most readily seen in the COP plots in 

Figure 22c and Figure 22d.  Figure 29b presents the data from Figure 26a in a format appropriate 

for comparison to the expected behaviors displayed in Figure 29a.  Though significant 

differences were not observed in the Figure 29b data, the trends in PSUM versus NPSUM values 

for the various cognitive task conditions are consistent with those expected based on the 

conceptual model shown in Figure 29a.  These findings indicate that cognitive tasks do indeed 

influence postural responses to periodic and non-periodic optic flow, and that this may be related 

to differences in the rates of sway adaptation in the various stimulus and task conditions. 
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Figure 29 (a) Conceptual diagram of the interaction among the effects of optic flow, sensory 
prediction and cognitive tasks, and their influence on both visual channel weight and 
overall sway power.  (b) Head response data from Figure 26a, in a format for comparison 
to Figure 29a. Values plotted in (b) are the mean +/- std error (in dB).  Direction of arrow 
indicates change in power caused by the respective mechanism.  Green arrow represents 
decrease in visual weight caused by optic-flow induced sensory conflict.  Blue arrow 
represents decrease in visual weight caused by predictive mechanism in response to 
predictable stimuli.  Red arrow represents effect of cognitive task on information 
processing in the visual stream: up/down signifies increases/decreases in visual weight (thin 
arrow) or sway power (thick arrow).  Black arrow represents increase in sway power, 
compared to quiet stance condition, caused by exposure to optic flow; arrow is thicker to 
indicate that this optic flow effect on sway power outweighs the effect of any other single 
mechanism.  Dotted arrow-lines next to PSUM bar for visual and auditory tasks indicates 
that the value for this bar depends on the relative strength of each of the various 
counteracting effects. See body text for a detailed description. 
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8.6     CONCLUSIONS 
 

The current study reproduced various observations from previous studies [Musolino et al., 2006], 

including (1) postural sway adaptation during exposure to optic flow; (2) significantly different 

sway responses to periodic and non-periodic stimuli; and (3) consistent responses at the highest 

component frequency of the stimuli.  More importantly, several interesting new findings were 

reported, including (1) decreases in sway magnitude during cognitive tasks; (2) modulation of 

stimulus periodicity effects on sway by concurrent cognitive tasks; and (3) sway adaptation in 

multiple trials and at multiple frequencies. These findings provide further evidence that 

differences in sway responses to periodic and non-periodic optic flow stimuli are due to 

differences in rates of sway adaptation during exposure to these stimuli.  Such behavior is 
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consistent with the existence of a predictive component to postural control that is capable of 

reducing visual gain during exposure to periodic optic flow.  Moreover, these predictive effects 

on visual channel gain can apparently be modulated by the influence of cognitive tasks.  Future 

studies are planned to more fully investigate these findings and to develop models of the 

underlying mechanisms. 

 

133 



 

 
 

 

9.0       CLOSING DISCUSSION 
 

 

9.1     SUMMARY OF FINDINGS 
 

The series of experiments presented in this work have shown that periodic and non-periodic full-

field oscillating optic flow evoke quantitatively different postural sway responses in healthy 

young adults, as observed in measures of both sway magnitude and sway adaptation. This effect 

was due primarily to a difference in the rate at which the sway response adapted during initial 

exposure to these stimuli, a behavior which has been attributed to a sensory reweighting process 

aimed at reducing visual channel weight.  Specifically, non-periodic stimuli produced what has 

been termed a baseline adaptation, while periodic stimuli evoked a faster, facilitated adaptation.  

Moreover, this effect was observed in visually independent subjects, but not in visually 

dependent subjects, who presumably were particularly reliant on visual information. The absence 

of a predictive effect in the visually dependent group was attributed to an inability of these 

subjects to reduce visual channel weight, presumably because such reductions would adversely 

affect postural stability in this population. 

In addition, the performance of a cognitive task during exposure to optic flow caused a 

general decrease in postural sway magnitude, regardless of whether that task was auditory or 

visual. However, an interaction existed between this cognitive task effect and the predictive 

mechanism effect, such that visual tasks enhanced the reductions in sway and adaptation elicited 

by periodic stimuli, while auditory tasks did not.  
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Overall, these findings have provided evidence to support the existence of a predictive 

component to postural control that can promote sensory reweighting during exposure to periodic 

optic flow.  The following sections will discuss possible mechanisms for the observed behaviors, 

as well as limitations of this study, and ideas for future work. 

 

 
9.2     POSSIBLE MECHANISMS FOR OBSERVED BEHAVIORS 

 
 
It is difficult to say with certainty that reductions in visual channel weight were responsible for 

the sway adaptation and reductions in overall sway power that have been observed in response to 

periodic stimuli.  The results thus far provide only indirect evidence in support of our claim that 

a predictive mechanism in the postural control system can induce changes in visual channel 

weight. As will be discussed later in the Future Work section, we plan to perform computer 

simulations based on a linearized inverted pendulum feedback control model developed by 

Peterka [Peterka, 2002]. The purpose of these simulations will be to quantify changes in visual 

channel weight for the various stimulus-response combinations in this study.  Decreases in visual 

channel weight for trials involving periodic stimuli would implicate sensory re-weighting as a 

causal mechanism for sway adaptation.  

 Previous findings, mainly from studies of the visual system, provide ample evidence in 

support of the notion that predictive mechanisms influence behavior during exposure to moving 

visual stimuli.  For instance, Barnes et al. have amassed a wealth of data over the past two 

decades that demonstrate rather convincingly that the visual smooth pursuit system can generate 

predictive eye movements in response to sinusoidal moving targets.  These authors have 

suggested that the CNS is capable of detecting periodicity, and have proposed a model of 
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predictive control in which velocity information can be sampled, stored and subsequently 

replayed as an anticipatory pattern of movement [Barnes and Paige, 2004; Barnes et al., 2004; 

Bennett and Barnes, 2004; Barnes et al., 2002; Barnes et al., 2000; Barnes and Donelan, 1999; 

Wells and Barnes, 1999; Barnes and Grealy, 1992a; Barnes and Grealy, 1992b; Barnes and 

Asselman, 1991b; Barnes and Asselman, 1991a; Barnes and Ruddock, 1989; Barnes et al., 1987; 

Barnes and Gresty, 1973].   

Bahill and McDonald have offered similar insight, but employed a slightly different 

approach than Barnes et al., in that they incorporated non-sinusoidal periodic waveforms into 

their smooth pursuit tracking experiments. The main finding of their work is that subjects tracked 

target movement with near zero-latency and minimal position error within a ¼ cycle of initial 

exposure to sinusoidal and parabolic stimuli [Bahill and McDonald, 1983].  Performance on 

tracking tasks that involved target movement which had been generated by a cubic function, a 

sawtooth curve, or a pseudo-random sequence was noticeably worse.  The authors claimed that 

subjects must have used some type of prediction in order to so quickly and accurately track the 

sinusoidal and parabolic movements – indeed, subjects hadn’t even seen one half-cycle of these 

stimuli, but performed very well – and that this predictive capability was understandable since 

sinusoidal and parabolic motion are common in nature.  Similarly, the authors argued that poor 

performance while tracking cubic, sawtooth, and pseudorandom waveforms was likely due to the 

fact that such movements are uncommon enough in the natural environment that our visual 

system lacked the opportunity or necessity to develop relevant predictive mechanisms. 

In addition, a variety of similar studies have reported that the predictability of a moving 

visual stimulus affects the gain and phase of the smooth pursuit component of eye velocity 

[Larsby et al., 1988; Collewijn and Tamminga, 1984; St. Cyr and Fender, 1969; Michael and 
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Melvill Jones, 1966].  Overall, there is ample evidence that the visual pursuit system utilizes 

prediction while tracking a target that is moving across the visual field.  It is unclear, though, 

whether or not this mechanism, or something similar to it, might exist for visual motion detection 

that is unrelated to a pursuit task, such as the full-field oscillating optic flow visual stimulus that 

was utilized in the current study.  

Predictability effects have also been observed outside of the visual domain.  For example, 

Nelson et al. [Nelson et al., 2004] reported that (1) motor responses to pure sinusoidal 

vibrotactile perturbations were faster and more accurate than responses to random perturbations; 

and that (2) both the amount and location of activation in the cerebral cortex were different 

between responses to these predictable and unpredictable stimuli.  Based on these observations, 

the authors suggested that exposure to predictable stimuli caused subjects to rely less on sensory 

feedback and more on feedforward control.    

In addition, it has already been suggested that the proposed predictive mechanism is distinct 

from the internal forward model that others have promoted [Blakemore and Sirigu, 2003; 

Wolpert et al., 1998], in that the predictive capability of the proposed predictive mechanism is 

dependent on the particular characteristics of a stimulus, whereas the internal forward model 

instead uses a pre-existing (i.e. previously learned) input-output mapping for prediction.  From 

this perspective, its plausible that these two mechanisms provide different functions for 

sensorimotor control.  For example, the internal forward model affords the CNS a means of 

learning new sensory-motor mappings that can improve long-term sensorimotor performance.   
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In contrast, the proposed predictive mechanism cannot provide this learning benefit, and instead 

may serve the purpose of predicting future sensory inputs in order to improve short-term 

performance on sensorimotor tasks.  As such, the internal forward model and the proposed 

predictive mechanism might provide complementary functionality to the CNS.  

 

 
9.3     LIMITATIONS OF STUDY 

 

9.3.1 SCENE MOVEMENT 
 
 
Sum-of-sinusoids (SOS) may not have been the ideal stimulus choice for the current 

experimental paradigm.  The SOS stimuli were chosen in order to expose subjects to spectrally 

similar optic flow that had different temporal characteristics.  The potential problem with such 

stimuli, which contained component frequencies that are integer multiples of one another, is that 

they may evoke responses at harmonic frequencies due to nonlinear interactions among the 

sinusoidal components of the input [Victor and Shapley, 1980].  The current sway responses did 

in fact display behaviors which indicate that this type of harmonic response had occurred.  For 

instance, there were numerous cases in which an optic flow stimulus containing multiple 

sinusoids (e.g. at 0.1Hz, 0.3Hz, and 0.5Hz) produced output power at non-stimulus harmonic 

frequencies outside the spectral range of typical postural responses (e.g. at 0.6Hz, 0.9Hz and 

1.2Hz).  Examples of this can be seen in Figure 9 (at 1.2Hz) and in Figure 21a (at 0.6Hz and 

0.9Hz).  

In seeking an alternative to the SOS signals, we had in fact attempted to create 

“predictable” and “unpredictable” scene movement in another way, but with only limited success 

[Musolino et al., ].  Specifically, scene motions were driven by “tone-in-noise” (TIN) time 
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series’ consisting of a ± 8cm single sinusoid (0.3Hz) combined with band-passed Gaussian white 

noise, at various signal-to-noise ratios (SNR): (1) single sinusoid, (2) 12 dB, (3) 6 dB, (4) 3 dB, 

(5) 0 dB, and (6) pure noise.  We hypothesized that sway magnitude would decrease with SNR 

of the visual stimulus. The rationale was that as the sinusoidal component in the moving scene 

decreased (relative to noise), so too would the response elicited by the sinusoid.  We also 

believed that a SNR threshold existed, below which subjects would no longer respond to the 

sinusoid.  The results did not support this hypothesis.  Subjects responded strongly to the 

sinusoid when presented in isolation, as expected, and in agreement with previous findings 

[Loughlin et al., 1996; van Asten et al., 1988].  However, the presence of noise in the visual 

stimulus, even when its relative power was 16 times less than that in the sinusoid (i.e. SNR of 

12dB), produced sway responses that were significantly lower in magnitude and noticeably 

lacking a component at the stimulus frequency.  In the absence of consistent and strong sway 

responses, it was not possible to draw conclusions regarding the influence of stimulus periodicity 

on postural sway responses.  We therefore ruled out using such TIN stimuli, and instead utilized 

the SOS approach.   

 

9.3.2 BNAVE ENVIRONMENT 
 
 
Technical limitations limited the spatial resolution that could be achieved with the LCD 

projection system, and this caused jitter in some scene movements, particularly in the peripheral 

portion of the visual field during low frequency scene oscillations (i.e. 0.1Hz).  In light of 

findings that have indicated postural sensitivity to peripheral optic flow [Stoffregen et al., 1987; 

Jasko et al., ], this jitter may have influenced subjects in unintended ways.   
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Further, for trials in experiment #3 that included an object superimposed on the center of 

the bullseye, the object and bullseye did not move in perfect synchrony, such that there existed 

some amount of relative motion between the two.  This too was the result of technical limitations 

in the BNAVE system.  This may have provided useful feedback to subjects regarding relative 

motion between them and the scene, which has been identified as an important means by which 

the postural control system receives information regarding self-motion [Kelly et al., 2005; 

Bronstein and Buckwell, 1997]. In this way, the slight lack of synchrony between the object and 

surrounding scene may have acted as an unintended source of useful visual information, that 

allowed subjects to minimize the destabilizing effects of oscillating optic flow field.  

 
9.3.3 SMALL SAMPLE SIZES 
 

We must take care in interpreting some of the current results, since they have been derived from 

relatively small sample sizes.  For example, the significant differences observed between PSUM 

and NPSUM groups in experiment #1 were based on two trials of data for each of six subjects – 

that’s a total of just twelve samples.  Indeed, statistical power for this observation was 

approximately 0.45, well below the commonly accepted standard of 0.8.  To remedy this, sample 

sizes for experiment #2 and experiment #3 were determined via a power analysis of the data 

from experiment #1.  The results suggested that a sample size of at least n=15 was necessary to 

observe a 3db difference in stimulus-band power at 0.5Hz between the PSUM and NPSUM 

groups, at the p=0.05 level with statistical power of 0.8.  Despite having met this recommended 

subject quota (i.e. n=20 for experiment #2, and n=16 for experiment #3), we were nevertheless 

still faced with issues of inadequate sample sizes because some of the key comparisons were 

carried out on a subset of the total subject pool.  For example, the observation in experiment #2 
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that PSUM and NPSUM stimuli evoked different responses in visually DEP and INDEP subjects 

during initial exposure to optic flow, was based on data from only six of twenty total subjects. 

Moreover, the related findings regarding the sway adaptation parameters ‘A’ and ‘τ’ were 

likewise based on data for these same six subjects.  To remedy this problem in future work, we 

must make an effort to design our experiment more appropriately.  

 
9.3.4 ACCURACY OF ADAPTATION CURVE FITTING 
 

The adaptation curve-fitting procedure that was performed in experiments #2 and #3 contained a 

certain level of subjectivity.  The portion of the power-versus-time data series that was fit with 

an exponential decay curve was chosen manually.  While it was relatively easy to determine 

where the maximal initial response occurred, it was not always clear when adaptation began.  

Likewise, choosing a point that accurately reflected the end of adaptation was challenging, 

especially in cases in which there appeared to be a secondary response (albeit often a transient 

one) following adaptation. 

In addition, an exponential decay did not always accurately represent the experimental data, 

as evidenced by R2 values as low as 0.5 (values on the high end approached 0.9).  This 

information was not used to exclude parameters that had been obtained from poorly fit data, so 

even when R2 indicated a poor fit, values for A and Τ were still extracted and included in group 

averages.  We chose to use exponential decay for fitting purposes because it is a behavior 

commonly observed in natural processes.  This, of course, does not guarantee that it was the right 

choice.  Though our results suggest that adaptation is not necessarily accurately modeled as an 

exponential decay, it is important to note that the low R2 values were due in large part to what 

were essentially transient outliers in the data.  We attempted to circumvent this problem by 
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utilizing power-versus-time data that had been smoothed via low pass filtering, but abandoned 

this approach once it became clear that the filtering process removed transients in the data that 

were in fact useful in determining beginning and ending points for the curve-fit.    

 
 

9.4     FUTURE WORK 
 

The series of experiments presented in this work have been a first attempt at uncovering 

experimental evidence of a predictive mechanism in the postural control system.  While some 

interesting findings have been observed, they have often been based on only a small subset of the 

subject population.  This has happened because during the course of testing we have discovered 

confounding factors that were unknown prior to the experiments, and therefore unaccounted for 

in the experimental design.  From this perspective, this set of experiments has served as a useful 

first step in developing a more sound methodology for future experiments.  Of primary 

importance for future work will be the accurate classification of subjects prior to data collection.  

For instance, the a priori separation of subjects based on visual dependency will make it easier to 

manipulate sample sizes to achieve a balanced experimental design, and will ensure that the 

effect of visual dependence does not confound the data.  In addition, larger sample sizes will be 

required for studies that examine sway adaptation, as this behavior has been observed in only 

about 75% of the subject populations involved in this study. 

Moreover, despite several interesting findings in this study, numerous questions remain 

unanswered.  To list just a few examples: might sway adaptation be due to some mechanism 

other than sensory reweighting?  Are the different responses to predictable and unpredictable 

stimuli necessarily due to a predictive mechanism in the CNS?  Are the behaviors observed in 
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this study unique to postural responses to visual stimuli, or might they be observed in other 

activities or evoked by stimuli in other sensory modalities?  Such unknowns suggest potential 

areas of future inquiry, some of which are discussed below. 

 
9.4.1 SWAY ADAPTATION DURING SWAY REFERENCED CONDITIONS 
 

Sway referencing the floor on which a subject stands is a common method that is employed in 

postural studies aimed at examining sensory reweighting and its effects on postural stability.  

Sway referencing is thought to maintain the ankle angle at roughly 90 degrees during sway, and 

therefore to eliminate any proprioceptive feedback to the CNS that would normally occur when a 

subjects sways in the A-P direction.  In the context of this study, the ability to remove 

proprioceptive feedback will allow us to examine sway adaptation during this altered condition.  

Since sensory reweighting has been implicated as a possible source of sway adaptation, 

especially during conditions of sensory conflict, it will useful to see how the lack of 

proprioceptive inputs influences sensory reweighting and subsequent adaptation.  This type of 

data has in fact already been collected, during both experiments #1 and #2, but not yet analyzed. 

 
9.4.2 STIMULUS-RESPONSE PHASE RELATIONSHIPS 
 

Examination of the time-series data in this study clearly showed that when subjects responded to 

an optic flow stimulus, sway occurred predominantly at the driving frequency. In the case of the 

SOS stimuli, the increase in sway above quiet stance values was largest at the frequency 

corresponding to the highest frequency component of the stimulus.  However, subjects exhibited 

various behaviors that suggested they were not phase-locked with the stimulus. Responses 

appeared to come in-and-out of phase throughout the trial, and in some cases exhibited abrupt 
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reversals in phase.  Also, there were transient responses in which subjects appeared to follow a 

stimulus closely for just a few seconds, as well as delayed responses in which sway responses 

first occurred many seconds after stimulus onset.  Further, there was no apparent pattern to the 

phase behavior, which implies that there is a random aspect to the sway response, in the sense 

that it may never quite reach a steady state.  An investigation of these phase relationships would 

be useful for several reasons.  First, it may provide insight into the underlying processes 

governing postural control, in a manner similar to the work of Dijkstra et al. [Dijkstra et al., 

1994b; Dijkstra et al., 1994a]. Second, it may offer another means of examining whether or not 

the proposed predictive mechanism behaves as we have suggested. For instance, it has already 

been shown that the temporal aspects of sway adaptation are different in response to periodic and 

non-periodic stimuli.  Perhaps a similar difference exists in the timing of sway responses in 

general, such as smaller phase differences between response and stimulus during exposure to 

periodic optic flow.  Examining sway responses in this manner would be useful in determining 

the validity of our hypotheses. 

 
9.4.3 PREDICTION IN OTHER SENSORY MODALITIES 
 

The current study reported per-stimulus declines in the amplitude of postural sway during 

exposure to predictable and unpredictable visual stimuli. To the best of our knowledge, similar 

findings have not yet appeared in the literature. However, others have provided evidence of 

adaptive postural responses to stimuli presented in non-visual sensory modalities, including the 

vestibular system via galvanic stimulation [Fransson et al., 2003b; Johansson et al., 2001b], and 

the proprioceptive system via vibratory stimulation of lower leg musculature [Fransson et al., 

2003b; Fransson et al., 2003a; Fransson et al., 2000].  Interestingly, these studies utilized 
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unpredictable stimuli specifically in order to avoid predictive behavior on the part of subjects, 

but provided no evidence or rationale for this decision.  These findings suggest that postural 

sway adaptation is not necessarily a visually-evoked phenomenon, and provide an impetus for 

future work aimed at exposing subjects to both predictable and unpredictable non-visual stimuli. 

One possibility would be to stimulate the proprioceptive system through active platform rotations 

(as opposed to passive platform rotations associated with sway-referencing).  Peterka has utilized 

this approach in examining sway responses to pseudorandom (i.e. unpredictable) stimuli, but did 

not report any evidence of sway adaptation [Peterka, 2002].  Overall, these findings indicate that 

it would be useful to examine postural sway and sway adaptation during exposure to both 

predictable and unpredictable platform rotations, perhaps even in combination with the various 

visual perturbations and cognitive tasks that were utilized in the current study. 

   
9.4.4 MATHEMATICAL MODEL SIMULATIONS 
 

The work presented here was purely experimental in scope.  Considering that the focal point of 

this study is a biologically-rooted sensorimotor process, it makes sense to have examined real 

world behaviors produced by this process.  However, despite experimental observation having 

uncovered some intriguing findings,  this approach is nevertheless limited in it’s ability to 

identify causal mechanisms.  Mathematical model simulations, on the other hand, are better 

suited to this task, and are a useful complement to experimentation.  For this reason, we plan to 

utilize model simulations in order to quantitatively examine sensory reweighting in a manner that 

is not possible through experimentation.  These simulations will use experimentally collected 

postural sway data to calculate values for the weight of the visual channel, a parameter which we 

have suggested is responsible for numerous experimentally observed behaviors.   
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We hope to determine whether or not the changes in visual channel weight that have been 

implicated as a contributing factor to sway adaptation can be accurately simulated by the model.     

The simulations are based on the linearized inverted-pendulum postural feedback control 

model developed by Peterka [Peterka, 2002].   This model has been used to successfully simulate 

a wide variety of experimentally observed behaviors, including the stabilogram diffusion 

analysis of Collins & DeLuca [Peterka, 2000; Collins and De Luca, 1993], and sensory-

reweighting [Peterka and Loughlin, 2004]. Based on these successful implementations, we are 

confident that Peterka’s model is suitable for the current objective.  This model was developed to 

produce system outputs (e.g. sway position as indicated by ankle angle in degrees), typically for 

comparison to experimentally observed sway.  This process would help determine if the 

underlying model was accurate.  For purposes of the current study, the model would be operate 

in an inverse sense, in that estimates of model parameters will be determined based on inputs and 

outputs fed to the model.  That is, the model will be used to determine a set of model parameter 

values that best explains the observed input-output relationship.  Parameters in the Peterka model 

include a channel weight for the graviceptive (Wg), proprioceptive (Wp), and visual (Wv) 

systems; values for the proportional (KP), integral (KI), and derivative (KD) components of the 

neural PID controller; and a system time delay (Td). 

Of particular interest for the current study is the value of the visual channel weight, Wv.  

The goal of the simulation process will be to calculate Wv based on the stimulus and response 

signals from each of the 288 trials (16 subjects x 9 trials/day x 2 days) that were performed, and 

to determine if these values for Wv are consistent with our hypotheses.  
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For example, if values for Wv turn out to be significantly lower for trials involving predictable 

stimuli compared to unpredictable stimuli, this would support the notion that a predictive 

mechanism contributed to reductions in visual channel weight. 

 
9.4.5 SEATED TRACKING TASKS 
 

The postural behaviors displayed in this study have been attributed to sensory re-weighting 

induced by a predictive mechanism within the CNS.  However, the possibility exists that the 

current observations may instead have been the result of some learning effect, whereby subjects 

learned or memorized a stimulus pattern over time, and adapted their behavior accordingly.  In 

order to investigate this possibility, a third testing visit was included in the experiment #3 

protocol, during which subjects performed a seated tracking task that required them to mirror the 

same visual motions that they had seen previously while standing (see section 8.3.1 Visual 

Scenes for details), using a mouse controlled with their dominant hand. Subjects were not 

provided with real-time visual feedback regarding their tracking performance, and at the 

conclusion of the testing session were queried about their ability to identify patterns in the 

moving scenes.  This experiment was designed to examine whether or not any type of learning 

was occurring during exposure to periodic and non-periodic oscillating optic flow.  For example, 

improved tracking performance in response to periodic stimuli compared to non-periodic stimuli, 

especially during trials in which subjects claimed to have noticed a pattern in the visual scene 

movement, might be interpreted as evidence that subjects had learned this pattern and were 

therefore able to predict the movements that they had been asked to track.  Improved tracking 

performance in cases when a subject was aware of the patterned movement would be considered 

an example of explicit learning, while improvements in the absence of such subject awareness 
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might indicate implicit learning [Aizenstein et al., 2004; Thornton and Fernandez-Duque, 2000]. 

Tracking task data has been collected for each of the sixteen subjects that participated in 

experiment #3.  These data have not yet been analyzed, but in the future will be examined using 

the stimulus-response phase relationships described earlier in section 9.4.2.  

Further, findings from this tracking task may help determine if the predictive effect that 

was observed during postural trials is unique to posture, or if instead it is a mechanism common 

to all visual sensorimotor control processes.  For example, if predictive effects were also 

observed on the seated tracking task, this would suggest that prediction is a property of the visual 

system in general, and was observed within a postural context likely because standing subjects 

had been exposed to a visual stimulus. 

In addition, Collins and Barnes have shown that working memory plays a role in storing 

velocity information about a moving visual stimulus, for use in subsequent prediction of that 

stimulus [Collins and Barnes, 2005].  A similar effect was reported in a non-visual capacity by 

Dave and Margolish, who found that sensorimotor vocal learning was guided by neural activity 

that uses long sensory memories for predictive purposes [Dave and Margoliash, 2000].  This 

raises the question of whether prediction, as it is believed to occur in the current experimental 

paradigm, is related to memory or simply to perception instead.  For example, if the proposed 

predictive mechanism utilizes working memory in order to identify a pattern in a periodic 

stimulus (i.e. by storing several cycles of the stimulus), then we might expect a memory task to 

interfere with this process.  If this were the case, then decrements in the effect of the proposed 

mechanism (e.g. slower adaptation rates) while performing a memory task would suggest that the 

predictive mechanism utilizes memory, and that the observed effects were the result of 

interference between the memory task and the postural task.   
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In general, the concept that memory may be required for sensory prediction suggests a potential 

future direction to pursue, namely to incorporate a memory task into the current experimental 

protocol.    

 
9.4.6 EXAMINATIONS OF OLDER ADULTS AND PATIENT POPULATIONS 
 
 
This study examined postural sway behaviors related to sensory reweighting in healthy young 

adults.  There is evidence, however, that sensory reweighting may be influenced by both aging 

and disease, particularly during the performance of a concurrent cognitive task [Teasdale and 

Simoneau, 2001; Redfern et al., 2001; Marsh and Geel, 2000; Shumway-Cook and Woollacott, 

2000].  As such, it would be useful to perform the experiments described in this work on older 

adults and on individuals with certain sensory impairments, in order to determine if the 

influences of cognitive tasks and of the proposed predictive mechanism are manifested 

differently in these populations, compared to healthy young adults.  For example, we might 

expect that sway adaptation would be slower in individuals with an impaired capacity for sensory 

reweighting.       

 

 
9.5      KEY CONTRIBUTIONS 

 

This study has provided several novel findings which are valuable from both research and 

clinical perspectives. First, the data have clearly shown that healthy young adults respond 

differently to periodic and non-periodic moving visual scenes. This finding provides evidence in 

support of the existence of a predictive component to postural control that can facilitate 

reweighting of sensory inputs during exposure to predictable moving visual scenes.  While 
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sensitivity to stimulus periodicity has been previously observed in studies of visual sensorimotor 

control [Kiemel et al., 2002; Dijkstra et al., 1994a; Lestienne et al., 1977], the current 

observation that this phenomenon can apparently manifest itself in postural sway responses is a 

new and potentially useful finding (as discussed below in the final paragraph of this section).     

Second, this study has revealed for the first time that the performance of a cognitive task 

during exposure to oscillating optic flow causes a reduction in postural sway responses, 

regardless of whether the task is presented in the auditory or visual modality.  This observation is 

similar to that seen previously for the case of unperturbed spontaneous sway [Ehrenfried et al., 

2003; Dault et al., 2001b; Dault et al., 2001a; Teasdale and Simoneau, 2001; Vuillerme et al., 

2000; Fearing, 1924].  That such decreases in sway occur during concurrent cognitive tasks, 

regardless of whether or not a sensory perturbation exists, suggests that this postural behavior 

reflects a basic change in postural control to a strategy that is “tighter” [Dault et al., 2001b; Dault 

et al., 2001a] and perhaps less reliant on sensory feedback.  Moreover, an interaction existed 

between this cognitive task effect and the aforementioned predictive effect, such that visual tasks 

produced lower sway in response to predictable visual stimuli, while auditory tasks had the 

opposite effect.  Considering that visual cognitive tasks are known to enhance information 

processing in the visual system, this finding provides even further evidence that decreases in 

sway during exposure to predictable scenes is likely the result of a facilitated reduction in visual 

channel weight that is driven by the proposed predictive mechanism.   

 Third, a trial effect among responses to optic flow was observed, in which sway 

magnitude during initial exposure to optic flow was significantly larger than that during 

subsequent exposure to comparable stimuli.  This effect was determined to be the result of a per-

stimulus reduction in sway amplitude at the primary response frequency (i.e. “adaptation”).  
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Moreover, the rate at which this adaptive behavior occurred was faster when the visual stimulus 

was predictable, indicating the adaptive process was likely being affected by the proposed 

predictive mechanism. Though such sway adaptation had been observed in a previous in-house 

study [Loughlin et al., 1996], neither the trial effect nor it’s connection to adaptation and/or 

predictive mechanisms have yet been reported in the literature.  

Fourth, the relationship among prediction, adaptation and the trial effect discussed above 

was not the same in visually dependent and visually independent populations.  Dependent 

subjects, who presumably are particularly reliant on visual information, exhibited markedly 

slower adaptation rates as compared to their independent counterparts. This behavior implied 

that the ability to reduce visual channel weight was impaired in individuals who depend heavily 

on vision for postural stability. This too was a finding that has not been reported previously.     

These latter two findings have implications for the design of experiments involving 

exposure to optic flow.  For example, the observation that visually dependent and visually 

independent subjects displayed markedly different behaviors suggests that classifying individuals 

according to visual dependency is necessary in order to eliminate the confounding influence of 

this effect.  Similarly, experimenters who utilize the optic flow paradigm should take care to 

account for the type of trial effect that was observed in both experiment #2 and experiment #3, 

either through appropriate experimental design or through data analysis.   

From a clinical perspective, some of the current findings may offer insight into treatment 

methods for patients suffering from specific balance disorders. One example is that of visual 

vertigo, a condition in which individuals who have increased visual dependence and difficulty in 

resolving conflict among visual, graviceptive and proprioceptive information experience 

dizziness in the presence of visual perturbations [Guerraz et al., 2001].  Findings from a portion 
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of the current study that examined sway behavior in such visually dependent subjects, under 

conditions that are known to induce sensory conflict, indicate that moving visual environments 

which contain a strong temporal pattern may have a potentially destabilizing effect in this 

population, while visual movements without such patterns may not be destabilizing.  This 

observation may provide a means of improving clinical desensitization therapy which is aimed at 

mitigating the effects of visual vertigo. 
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10.0       CONCLUSIONS  
 

 

This study examined postural sway responses in healthy young adults during exposure to 

periodic and non-periodic oscillating optic flow, in some cases coupled with a concurrent 

cognitive task, in an attempt to uncover experimental evidence of a predictive component to 

postural control.  A series of three experiments produced several novel findings, including: (1) 

sway adaptation during initial exposure to oscillating optic flow; (2) improved sway performance 

in response to periodic stimuli compared to non-periodic stimuli, as indicated by significant 

decreases in both overall sway magnitude, and the time required for sway adaptation to occur; 

(3) a general reduction in sway during exposure to optic flow while performing a concurrent 

cognitive task; and (4) an interaction between the predictive mechanism and the cognitive task, 

such that visual tasks enhanced the influence of the predictive mechanism.  Overall, these 

observations support the existence of a predictive component to postural control that can alter the 

dynamic reweighting of sensory inputs during exposure to predictable stimuli.  These findings 

may have implications for the design of experiments involving optic flow stimuli, as well as for 

the treatment of individuals suffering from certain balance disorders.    
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