
ADAPTIVE HYBRID SWITCHING TECHNIQUE

FOR PARALLEL COMPUTING SYSTEM

by

Zhu Ding

Master of Science, Southeast University (Nanjing, China), 2000

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Zhu Ding

It was defended on

March 27, 2006

and approved by

Raymond R. Hoare, Ph.D., Assistant Professor, Electrical and Computer Engineering

Deptartment

James T. Cain, Ph.D., Professor, Electrical and Computer Engineering Department

Ronald G. Hoelzeman, Ph.D., Associate Professor, Electrical and Computer Engineering

Department

Alex K. Jones, Ph.D., Assistant Professor, Electrical and Computer Engineering

Department

Rami Melhem, Ph.D., Professor, Computer Science Department

Dissertation Director: Raymond R. Hoare, Ph.D., Assistant Professor, Electrical and

Computer Engineering Deptartment

ii

ADAPTIVE HYBRID SWITCHING TECHNIQUE FOR PARALLEL

COMPUTING SYSTEM

Zhu Ding, PhD

University of Pittsburgh, 2006

Parallel processing accelerates computations by solving a single problem using multiple com-

pute nodes interconnected by a network. The scalability of a parallel system is limited by

its ability to communicate and coordinate processing. Circuit switching, packet switching

and wormhole routing are dominant switching techniques. Our simulation results show that

wormhole routing and circuit switching each excel under different types of traffic.

This dissertation presents a hybrid switching technique that combines wormhole routing

with circuit switching in a single switch using virtual channels and time division multiplexing.

The performance of this hybrid switch is significantly impacted by the efficiency of traffic

scheduling and thus, this dissertation also explores the design and scalability of hardware

scheduling for the hybrid switch. In particular, we introduce two schedulers for crossbar

networks: a greedy scheduler and an optimal scheduler that improves upon the results

provided by the greedy scheduler. For the time division multiplexing portion of the hybrid

switch, this dissertation presents three allocation methods that combine wormhole switching

with predictive circuit switching.

We further extend this research from crossbar networks to fat tree interconnected net-

works with virtual channels. The global “level-wise” scheduling algorithm is presented and

improves network utilization by 30% when compared to a switch-level algorithm.

The performance of the hybrid switching is evaluated on a cycle-accurate simulation

framework that is also part of this dissertation research. Our experimental results demon-

strate that the hybrid switch is capable of transferring both predictable traffics and un-

iii

predictable traffics successfully. By dynamically selecting the proper switching technique

based on the type of communication traffic, the hybrid switch improves communication for

most types of traffic.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . xiv

1.0 INTRODUCTION . 1

1.1 Motivation . 5

1.1.1 Technology impact on parallel computing systems 5

1.1.2 Communication locality and regularity in parallel computing networks 7

1.1.3 Any single switching technique is not sufficient 7

1.1.4 Prospective of predictive circuit switching 8

1.2 Outline of the dissertation . 10

2.0 BACKGROUND AND PRIOR WORK 12

2.1 Communication locality and regularity . 12

2.1.1 Compiled communication . 12

2.1.2 Run-time traffic prediction . 13

2.2 Switch designs combining analog and digital domain 14

2.2.1 HYPASS: An optoelectronic hybrid packet switching system 14

2.2.2 HFAST: Hybrid flexibly assignable switch topology 15

2.2.3 Optical-electrical-optical and optical-optical networks 15

2.3 Hybrid switch examples . 16

2.3.1 Configure network for certain communication pattern 16

2.3.2 Configuration for large messages . 17

2.3.3 Wave switching . 18

3.0 HYBRID SWITCH ARCHITECTURE . 19

3.1 Current switching techniques . 19

v

3.2 Hybrid switch communication system . 22

3.2.1 Hybrid switch system . 23

3.3 Communication modes . 24

3.3.1 Unpredictable traffic mode . 25

3.3.2 Predictable traffic mode . 26

3.3.3 Preloaded mode . 28

3.4 Network components . 29

3.4.1 Network Interface . 29

3.4.2 Switch node . 32

4.0 OPTIMIZING VIRTUAL CHANNEL ASSIGNMENT 33

4.1 Introduction . 33

4.2 Combine wormhole switched traffic with predictive circuit switched traffic . 34

4.2.1 Virtual channels of the hybrid switch 34

4.2.2 Configure virtual channels for predictive circuit switch 36

4.3 SES: Skip empty slots . 37

4.4 SLA: Slot length adjustment . 40

4.5 PREEMPT: Preempt virtual channels . 41

4.6 Performance evaluation . 44

4.6.1 Mixed traffics . 45

4.6.2 Unknown phases . 46

4.7 Conclusion . 50

5.0 REAL-TIME GREEDY SCHEDULER . 51

5.1 Amortizing the control overhead of connection establishment 51

5.2 Predictive control of networks . 53

5.2.1 Compile-time and load-time prediction of working sets 54

5.2.2 Dynamic prediction of the working set 55

5.2.3 Dynamic reconfiguration with compiler assistance 56

5.3 Hardware architecture of predictive circuit switching scheduler 57

5.3.1 Scheduler architecture . 57

5.3.2 Scheduling logic . 59

vi

5.4 Hardware performance . 62

5.5 System evaluation . 63

5.5.1 Network simulation methodology . 63

5.5.2 Simulation result . 64

5.5.2.1 Preloading . 65

5.5.2.2 Setting phases . 68

5.5.2.3 Partial preloading . 68

6.0 OPTIMIZING SCHEDULER FOR CROSSBAR NETWORKS 70

6.1 Introduction . 71

6.2 Prior work . 72

6.3 Background . 73

6.4 Specialized processors for optimal scheduling 75

6.4.1 Maximum matching algorithm . 76

6.5 Hardware timing and area cost . 83

6.5.1 Pure logic processor . 84

6.5.2 Matrix processor . 86

6.5.3 Vector processor . 87

6.6 Performance evaluation . 88

6.7 Conclusion . 95

7.0 LEVEL-WISE SCHEDULING FOR FAT TREE

INTERCONNECTION NETWORKS . 96

7.1 Introduction . 96

7.2 Background . 98

7.3 Fat-tree construction . 98

7.4 Level-Wise routing algorithm . 104

7.5 Simulation results . 109

7.6 Level-Wise scheduling hardware architecture 113

7.7 Conclusion . 115

8.0 NETWORK SIMULATION FRAMEWORK 116

8.1 Introduction . 116

vii

8.2 Background . 117

8.3 Design and Simulation Methodology . 118

8.3.1 The process element component . 121

8.3.2 Data queues . 122

8.3.3 Wires . 124

8.3.4 Network scheduler . 127

8.3.5 Switch fabric . 128

8.4 System simulation . 129

8.4.1 Wormhole switching . 129

8.4.2 Circuit switching . 131

8.4.3 Predictive circuit switching . 132

8.5 Scaling from 32 to 128 processors using SystemC 133

8.6 Conclusions . 139

9.0 CONCLUSION AND FUTURE DIRECTIONS 140

9.1 Conclusion . 140

9.2 Primary contributions . 140

9.3 Future directions . 141

9.3.1 Intelligent compiler . 142

9.3.2 Hardware prototype . 142

APPENDIX. SELECTED PUBLICATIONS 143

BIBLIOGRAPHY . 144

viii

LIST OF TABLES

1.1 The switch fabric component. 6

5.1 The possible inputs to the pre-scheduling logic 60

5.2 The function of a scheduling logic module, SLu,v 60

5.3 Latency of the scheduling circuit . 63

6.1 Complexity analysis of three maximum matching architectures. N presents the

number of nodes in the system and K represents the number of optimization

steps performed. 85

7.1 Performance evaluation (Design targeting on Altera Stratix II FPGA) 115

8.1 N-Queue hardware synthesis and performance results N=4 to 128, Width=64

bits, FPGA target: Altera EP1S25F1020C-5 125

ix

LIST OF FIGURES

1.1 Switched interconnection network. 2

1.2 Bluegene/L packaging. 6

1.3 Random-to-all communication pattern. 8

1.4 All-to-all communication pattern. 9

1.5 Hybrid switching network. 10

3.1 Message delay in circuit switched network. 20

3.2 Message delay in packet/wormhole switched network. 22

3.3 The hybrid switching system. 23

3.4 Data format in the hybrid switch. 24

3.5 The un-predictable traffic communication mode. 26

3.6 The predictable traffic communication mode. 27

3.7 The network interface card. 30

3.8 Internal architecture of the digital circuit inside the switch node. 31

4.1 Definition of TDM cycle, TDM slot and slot length. 34

4.2 Slots in hybrid switching system. 35

4.3 Traffics combination. 36

4.4 TDM cycle controller implemented as a counter. 38

4.5 Network bandwidth utilization gets improved with SES. 38

4.6 TDM cycle controller with SES capability. 39

4.7 Network bandwidth utilization gets improved with SLA. 42

4.8 TDM cycle controller with SLA capability. 42

4.9 Network bandwidth utilization gets improved with PREEMPT. 44

x

4.10 TDM cycle controller with PREEMPT capability. 45

4.11 Mixed traffic (buffer size = 8 K bytes, message size = 128 bytes). 47

4.12 Mixed traffic (buffer size = 2 K bytes, message size = 128 bytes). 47

4.13 Mixed traffic (buffer size = 128 bytes, message size = 128 bytes). 48

4.14 Unknown phases (buffer size = 8 K bytes, message size = 128 bytes). 49

4.15 Unknown phases (buffer size = 2 K bytes, message size = 128 bytes). 49

4.16 Unknown phases (buffer size = 128 bytes, message size = 128 bytes). 50

5.1 A detailed diagram of the scheduler. 58

5.2 The inputs and outputs to SLu,v. 62

5.3 Performance results for scatter. The Preload and Dynamic TDM utilize a

multiplexing degree of four. 66

5.4 Performance results for random mesh and ordered mesh. The Preload and

Dynamic TDM utilize a multiplexing degree of four. Ordered and random

mesh represents nearest neighbor communications for a 2D mesh. 67

5.5 Performance results for two phases. The Preload and Dynamic TDM utilize a

multiplexing degree of four. 68

5.6 Combining preload of communication patterns with dynamic scheduling. A

multiplexing degree of three was used, with k slots preloaded. k is varied from

0 to 2. 69

6.1 A bipartite graph representing a crossbar schedule. 73

6.2 Original and unfolded bipartite graphs. 77

6.3 Parallel tracing of potential augmenting paths as described in detection of

augmenting paths algorithm . 80

6.4 Isolation of a single path within the augmenting paths. 80

6.5 Matching set update. 81

6.6 Detection of augmenting paths algorithm. 82

6.7 Isolation of a single augmenting path. 83

6.8 Pure Logic Processor to implement the maximum matching algorithm. . . . 85

6.9 Matrix Processor for the maximum matching algorithm. 86

6.10 Detection of augmenting paths algorithm using matrix operations. 87

xi

6.11 Vector Processor for the maximum matching algorithm. 88

6.12 Detection of augmenting paths algorithm using vector operations. 89

6.13 Performance per optimization step. The Pure Hardware performance is based

on estimations. The Vector and Matrix performance numbers are based on

actual hardware synthesis results ranging from 8-128 and estimated for 512

and 1024. 90

6.14 System area cost. The Pure Hardware performance is based on estimations of

a single optimization step. The Vector and Matrix performance numbers are

based on actual hardware synthesis results ranging from 8-128 and estimated

for 512 and 1024. 90

6.15 Estimated memory utilization for various step sizes, K, (with K=2N-1 steps

being provably optimal.) . 91

6.16 Maximum matching for random requests. The different curves represent net-

work load where 0.125 is 12.5% loaded and 8 is 800% overloaded (K = 1

represents the greedy algorithm). 93

6.17 Complete matching. Requests are mixed by randomly generated request at

variable loads with the oversubscribed network loads being randomly generate

permutation (K = 1 represents the greedy algorithm). 94

7.1 Fat-tree construction. 99

7.2 The link selection. 100

7.3 Switch node computation. 102

7.4 Routing example. 105

7.5 Data structure of a communication request. 105

7.6 Level-Wise scheduling Algorithm. 106

7.7 Level-Wise scheduling example. 108

7.8 Level-Wise scheduling Algorithm. (Two-level fat-tree interconnection network.)110

7.9 Level-Wise scheduling Algorithm. (Three-level fat-tree interconnection net-

work.) . 110

7.10 Level-Wise scheduling Algorithm. (Four-level fat-tree interconnection network.)111

7.11 Schedulability comparison based level-Wise scheduling Algorithm. 111

xii

7.12 Level-Wise scheduling Algorithm. 113

7.13 Level-Wise scheduling Algorithm. 114

8.1 Design flow methodology to create cycle accurate simulations for large system

sizes using VHDL and SystemC. 118

8.2 Processing element components. 122

8.3 The single queue and the N-queue components. 123

8.4 Wire delay models. 126

8.5 The scheduler. 127

8.6 Switch Fabric. 128

8.7 Wormhole switching network.. 131

8.8 Circuit switching network. 132

8.9 Predictive switching network. 133

8.10 SystemC simulation vs. VHDL simulation (Random-to-all communication

pattern). 134

8.11 Simulation of buffer size vs. bandwidth (Random-to-all communication pattern).135

8.12 SystemC system simulation for up to 128 processors (All-to-all communication

pattern, 10 foot cable). 136

xiii

ACKNOWLEDGEMENTS

This dissertation is dedicated to my parents, who give me the utmost support and en-

couragement.

Importantly, I thank my advisor, Professor Raymond Hoare, for his guidance and as-

sistance. He is an excellent teacher, researcher and mentor. I am very impressed by his

intelligence. I have enjoyed working with him and learning from him. I would like to thank

him for providing me the great opportunity to be involved in this interesting research project.

I want to express my gratitude to Professor Rami Melhem. He provided me very insight-

ful and knowledgeable advice to my research. I would like to thank Professor Alex Jones.

Without his assistance and his powerful workstation, it would have been impossible to gen-

erate so many simulation results for this dissertation. In addition, I would like to thank

Professor Tom Cain and Professor Ronald Hoelzeman who served as committee members on

my Ph.D program. I appreciate their valuable time to read and provided comments on my

proposal and final dissertation.

For their friendship and constructive discussions, I would like to express my special

thanks to Shenchih Tung, Ying Yu, Dara Kusic, Jeff Schuster, Kshitij Gupta, Johnny Ng,

Dan Li, Jiang Zhen, Shuiyi Shao and other labmates.

Finally but the most importantly, I thank my wonderful husband, Jian Sun. Besides his

love, he has given me invaluable assistance and suggestions on my research. Words can not

convey my appreciation. I also want to thank my two sons, Roy and William. They make

me feel proud. Their love and smiles encourage me.

xiv

1.0 INTRODUCTION

Communications in parallel computing systems limit the computing performance. Parallel

processing solves a single problem by tightly coordinating the efforts of multiple processors

in order to perform a particular computation faster than a single processor. Usually, the

computation power increases when the number of parallel processors grows. In fact, there is a

point when adding an additional processor to a computational problem actually increases the

total execution time as a result of the additional communication and coordination overhead.

This overhead is a function of the network’s performance. The performance of the network

heavily impacts the achievable speedup.

Switched interconnection communication networks used to construct scalable parallel

computers, as shown in Figure 1.1. All processors (PEs) are connected to switch via the

network interface card (NIC). The switch represents either a single crossbar or multiple

interconnected switches. The switch carries out all communications between processors.

Research in the area of switched interconnection communication networks in parallel com-

puting systems has been primarily focused on network routing techniques. Circuit switching,

packet switching, and wormhole switching are three dominant switching methods that have

been used. The first generation of parallel computing systems employed either circuit switch

or packet switch. The Intel iPSC/1 was packet switched, with message packets stored in

their entirety and retransmitted at each intermediate node in a hypercube network. The

Intel iPSC/2 and iPSC/860 [1] use circuit-switched communication that dedicates a path

when two nodes need to communicate. Wormhole routing has been used in a variety of

parallel systems including the Intel Paragon, Cray T3D [2], IBM Power Parallel SP series[3],

and the Quadrics switch [4].

1

����� ��� �

���
	 ��� �

������
 	 ��� �

��� � � � � � � �

� ��� � � ��� � � � � �

��� � ��� � � � �! " �
��� � � � � � � # $�� � � � %! "�& � �

�(' #) � $ � � � � � ' #*� � � � %! "�& � � � +
� # ��+ � ' + � $ � � � ' #%� � � �

Figure 1.1: Switched interconnection network.

Recently, the development in analog switch technologies, including optical switches [5,

6] and LVDS switches [7] require that paths be established without analyzing the packet,

therefore requiring circuit switching.

However, any single switching is not sufficient. The benefit of circuit switching is in the

simple and low latency switch elements. More important, circuit switching does not require

packet analysis and therefore is capable of encapsulating data transparent switches, such as

optical switches and LVDS switches, to achieve high speed throughput. However, circuit

switch has to tolerate the overhead to establish circuit connections. Wormhole switching is

more feasible to transfer data packets, but it has to pay overhead caused by flow control

and data buffering in each switch node. Further more, the communication within parallel

computing has its own characteristics. Communication regularity means the pattern of the

communications is predictable. If some communication nodes are used frequently within a

given period of time, it is said that the communications have locality. Many applications

running on parallel computing systems exhibit temporal and spatial locality and regularity.

The network switch can benefit from the knowledge of communication characteristics.

2

Research has been carried out on developing more efficient switching techniques by ex-

tending current circuit switch scheme [8, 9]. However, in the previous designs, two main

issues that heavily impact the network performance are not well investigated.

1. Efficiency of traffic scheduling

The overhead of establishing connections is a major drawback for circuit switching tech-

nique. A fast scheduler will benefit both wormhole switching and circuit switching as

both methods need to configure the switch elements. Moreover, in a circuit switch, the

circuit connections will be held for a certain amount of time. We call this kind of con-

nections long-lived. The less connections established, the more network bandwidth is

wasted. This penalty becomes significant when it happens on long-lived connections.

Therefore, a network scheduler that can establish connections fast and efficiently is cru-

cial in switched interconnection networks.

2. Combination of circuit switch and wormhole switch

In previous work, which is introduced in detail in Chapter 2, a certain number switches

are dedicated for packet switching and a seperate number of switches are dedicated for

circuit switching. In other words, the network bandwidth assigned for packet switch and

circuit switch is unchangeable. However, the ratio of wormhole switched traffic and circuit

switched traffic is variant in different parallel applications. There is no reason to fix the

partition of network bandwidth in switch designs. Network bandwidth utilization should

be improved if the network bandwidth is assigned adaptive according to communication

requirement.

This dissertation presents a hybrid switching technique that combines wormhole routing

with circuit switching using virtual channel in the time division multiplexing (TDM) domain.

After analyzing message latency in parallel computing networks, we have found that the

network scheduler’s performance is important to reduce message latency. Therefore, we

focus on the design and implementation of schedulers for the hybrid switch. In particular,

we introduce a greedy and a optimizing scheduler for crossbar networks. In addition, we

propose three schemes to allocate network bandwidth for wormhole switching and predictive

circuit switching using TDM. Furthermore, we extend the crossbar networks to fat-tree

3

interconnected networks. The virtual channel assignment schemes is applicable, therefore,

we put our effort to accomplish a level-wise scheduling algorithm for fat tree interconnection

networks. The performance of the hybrid switching is evaluated based on a cycle-accurate

simulation framework that is also part of this dissertation research.

In order to incorporate the collective impact of latency, peak bandwidth and contention,

we show our result in terms of the effective bandwidth utilization that is calculated by

dividing the total number of data bits sent by the total time required for a set of messages.

We normalize this value by dividing it by peak bandwidth.

Our experimental results demonstrate that the hybrid switch is capable of transferring

both predictable traffics and un-predictable traffics successfully. By dynamically selecting

the proper switching technique based on the type of communication traffic, the hybrid switch

improves communication for most types of traffic.

This dissertation makes five contributions.

1. The first contribution (Chapter 3) is the innovative hybrid switch architecture. Specif-

ically, this architecture combines wormhole switch and predictive circuit switch using

virtual channels.

2. The second contribution (Chapter 4) is optimizing virtual channel assignment schemes,

by which network bandwidth can be partitioned according to the traffic statistics in order

to improve network bandwidth utilization.

3. The third contribution (Chapter 5) is a hardware implemented fast greedy scheduler.

4. The fourth contribution is the near-optimal scheduling algorithm for single crossbar

network (Chapter 6) and fat-tree interconnection network (Chapter 7). The proposed

scheduling method provides high schedulability ratio with minimum extra hardware cost.

5. The fifth contribution (Chapter 8) is a cycle-accurate network simulator, which provides a

uniform simulation platform to evaluate the performance of existing switching techniques,

as well as the hybrid switching technique.

4

1.1 MOTIVATION

1.1.1 Technology impact on parallel computing systems

Communications within a high density are very important. The packaging of parallel com-

puting system consists of a number of racks. Currently, one rack is able to contain hundreds

to thousands of processor nodes. As the density of processor package increases; the length

of the link connecting a certain number of processors decreases. As shown in Figure 1.2, in

IBM BlueGene/L, the design calls for 2 nodes per compute card, 16 compute cards per node

board, 16 node boards per 512-node midplane of approximate size 17”x 24”x 34”, and two

midplanes in a 1024-node rack [10]. Ultra high density blade server is able to fit 336 blade

servers into one 42U rack [11].

For short links, it is proposed using copper solutions over optical solutions because of

the density of transistors and low cost [12]. In one of the most popular commercial parallel

computing networks, Quadrics QsNet II, both optical and Low-Voltage Differential Signaling

(LVDS) links are implemented. For links over 13 m in length, a fiber option is advocated;

for links under 13 m in length, LVDS links are used [13]. LVDS offers gigabit data rate while

consuming significantly less power than competing technologies [14]. LVDS uses a dual serial

wire system, running 180 degrees of each other. This enables noise to travel at the same

level, which can be filtered more easily and effectively.

In addition, LVDS provides other benefits, among which the most attractive features

are very short propagation delay and fast configuration. These features greatly facilitate

communications over short links. The propagation latency of an LVDS switch is 1 ns, which

is approximately the delay of one foot of cable. Table 1.1 gives two sets of parameters that

are typical of digital switches, LVDS switches and optical switches [15, 16, 17, 18].

LVDS channels and LVDS switches are inexpensive. LVDS channels provide a low noise

and low amplitude method for gigabit per second data transmission over copper wires [14].

Thus, multiple wires and crossbar switches can be parallelized to achieve higher bandwidth.

With the extremely small latency for LVDS switches, a very fast hardware scheduler,

and short links, the overhead for circuit switch is minimized and the benefits are increased.

5

Figure 1.2: Bluegene/L packaging.

Table 1.1: The switch fabric component.

Performance Digital Electrical (LVDS) Optical

Latency > 10ns 10-50ns 1,000+ns

Propagation Latency 10ns 1ns 1ns

Throughput 100-500Mbps 2.5Gbps 1-10Gbps

6

If the latency for setting up circuit connections can be eliminated, we can expect even more

benefit.

1.1.2 Communication locality and regularity in parallel computing networks

The data traffic in parallel computing systems has its unique characteristics. Messages can

be classified as short messages and long messages. In MPICH, the message size varies from

0 bytes to 30,000 bytes [19]. The 80/80 rule states that 80% of the message on the network

is 256 bytes or less and 80% of the data on a network is 8,000 bytes or greater [20]. For

the NASA Advanced Supercomputing (NAS) parallel benchmark, 80% of the messages are

27,040 bytes or less, and 80% of the data is of a message length of 184,960 bytes or greater.

Although the long messages have a small number, the total data inside the long message

dominate the communication delay.

The communication on parallel computing network can be divided into two main types,

point-to-point communication and collective communication. A point-to-point communica-

tion involves one pair of sending and receiving nodes. Collective communication transmits

data among all processors in a group specified by an intra-communicator object [21]. It has

been found that many parallel applications exhibit communication locality, both in temporal

and long term [22, 23, 24]. Collective communication is very regular and its communication

pattern is highly predicable. The regularity and locality are helpful for generating efficient

network configurations.

1.1.3 Any single switching technique is not sufficient

In order to compare different switching techniques, we have built a uniform simulation

platform to evaluate their performance. The switching techniques that are simulated in-

clude circuit switching, wormhole routing and predictive circuit switching. Predictive circuit

switching is a newly introduced technique, in which the connections are setup before they

are requested.

Wormhole routing and circuit switching both have advantages and drawbacks. In the

first case, we have simulated a communication system of 32 nodes with random traffic. The

7

8 16 32 64 128 256 512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Circuit Switch
Wormhole Switch
Predictive Switch
Circuit Switch Large Buffer
Wormhole Switch Large Buffer
Predictive Switch Large Buffer

Figure 1.3: Random-to-all communication pattern.

scheduler’s working frequency is set to 100MHz. The data generation speed is 1.2Gb/s. The

throughput of the network is set to 6.4Gb/s. The buffer inside a NIC is 240KB. The cable

latency is set to 100 nanoseconds. These latency approximates 10 foot cables between a

NIC and the switch. The performance of the three different networks is shown in Figure

1.3. The dashed line represents the individual system with small buffers, and the solid line

represents the system with large buffers. We have found that for small messages, predictive

circuit switching and wormhole routing are close in performance. However, wormhole routing

is not good for long messages when compared to circuit switching. That is because in

wormhole switching, long messages are broken down into packets, and then transmitted as

flits; connections are established and removed for each packet. The performance of predictive

circuit switching is not satisfactory because the random traffic has very low predictability.

1.1.4 Prospective of predictive circuit switching

Another case shows that predictive circuit switch is capable of making good use of the

regularity in parallel programs. Figure 1.4 shows the simulation results for an All-to-all

8

8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Circuit Switch
Wormhole Switch
Predictive Switch

(a) 512 byte message.

Figure 1.4: All-to-all communication pattern.

traffic pattern. When the number of nodes is small, predictive circuit switching, circuit

switching and wormhole routing have similar performance. The benefit of predictive circuit

switching becomes more pronounced as the system size increases. We suggest building a

new switching architecture to combine the advantages of predictive circuit switching and

wormhole routing. This enables us to pre-configure the network according to the regularity

and locality information extracted from the parallel programs.

This dissertation will focus on a scalable switching architecture to improve network

utilization. Our mechanism is to select proper routing algorithms for different types of

communications. A new switching technique, virtual channel hybrid switching, is proposed.

It takes advantage of both wormhole routing and predictive circuit switching. We propose

to combine predictive circuit switching and wormhole routing by virtual channels. With the

aid of virtual channels, the ratio of switching techniques can be chosen adaptively.

9

�����

��� � 	
 � � �

 �
 �
 � � � �

 �
 � � � � � �

� � �

� � ��� � � � � � � � � � � � � � �� � ��� !

�� !

" #%$ & ' (*) + , - $ '

Figure 1.5: Hybrid switching network.

1.2 OUTLINE OF THE DISSERTATION

This dissertation proposes a hybrid switch technique combining wormhole switch and circuit

switch using virtual channels. The hybrid switching network architecture is shown in Figure

1.5. The wormhole scheduler generates wormhole connections for wormhole traffic and the

predictive circuit switch scheduler establishes circuit connections for predictable traffic. The

circuit connections and wormhole connections are controlled by the TDM cycle controller for

network configuration. Therefore, two critical issues, which are virtual channel assignment

and network scheduling, are investigated. We propose virtual channel assignment schemes

to combine wormhole switched traffic and circuit switched traffic. An greedy scheduler

is designed to make real-time network configuration. Based on the greedy scheduler, an

optimizing scheduler is proposed to make optimal network configuration. We future extend

our research to interconnection networks. A Level-Wise scheduling algorithm is designed to

configure fat tree networks efficiently. Our experiments show that the hybrid switch performs

well under traffic with high predicability as well as under traffic with low predictability. An

outline of each chapter is as follows.

10

Chapter 2 reviews prior research on traffic predictions and current switch technologies.

Work that has been done on switch designs combining analog and digital domains is intro-

duced. Related work on extensions of original circuit switching is also presented.

Chapter 3 describes the innovative hybrid-switch architecture. Network components are

presented. Two schemes, scheduling predictive request and pre-loading configurations, are

used to schedule predicted traffic.

Chapter 4 shows that the performance of hybrid switching is improved by efficiently

assigning virtual channels. Without a proper virtual channel assignment scheme the perfor-

mance of the hybrid switch will decrease under low to moderate predictable traffic. In order

to make the hybrid switch work well without very accurate knowledge of traffic patterns,

three schemes are proposed for virtual channel assignment.

Chapter 5 presents a fast hardware greedy scheduler which facilitates the hybrid switch

architecture. Hardware implementation details are given. A network simulator used to

evaluate network performance for this dissertation is introduced briefly. System performance

is evaluated for a variety of traffic loads.

Chapter 6 describes an optimizing scheduling algorithm that improves the effective band-

width utilization in predictive circuit switching. Specialized processors are presented to

perform the bipartite maximum matching algorithm for crossbar network scheduling.

Chapter 7 introduces a scheduling algorithm, called Level-Wise scheduling algorithm, to

schedule fat tree interconnection networks. Shedulability ratio is defined as the scheduled

requests over total communication requests and is used to evaluate performance of scheduling

algorithms. The Leve-Wise scheduling algorithm provides a scheduling ratio about 30%

higher than general local scheduling algorithms. A hardware implementation architecture

for hardware implementation is proposed.

Chapter 8 introduces a framework for design, synthesis and cycle-accurate simulation

for parallel computing networks. Modular components are built and intergrated to form

networks applying various switching techniques.

This research is concluded in Chapter 9. Future research directions are proposed.

11

2.0 BACKGROUND AND PRIOR WORK

This chapter reviews prior work that are closely related to the dissertation research. Section

2.1 gives background on compiled communication and traffic prediction. It provides a crucial

sumption of the dissertation research. Section 2.2 and Section 2.3 present research and

products that utilize a type of hybrid switching. The contributions and issues that may

exist in prior work are highlighted at the end of each section.

2.1 COMMUNICATION LOCALITY AND REGULARITY

Communication regularity means the pattern of the communications is predictable. If some

communication nodes are used frequently within a given period of time, it is said that the

communications have locality. Some useful research on the prediction of communication

patterns both at compile-time and run-time have been done over the past ten years.

2.1.1 Compiled communication

Yuan, Melhem and Gupta [22, 25] analyzed the communication pattern in parallel computing

applications using compiled communication. They classified communication into three types:

static communication, dynamically analyzable communication and dynamic communication.

Static communications are communications whose pattern can be determined at compile

time; dynamically analyzable communications are communications whose pattern can be

determined at run time without incurring excessive overhead; Dynamic communications are

communications whose information can only be determined at runtime.

12

Static communications and dynamic analyzable communications are a large portion of

all communications.

The authors built the E-SUIF compiler that incorporates necessary algorithms into the

SUIF [26] compiler tools to support compiled communications. E-SUIF performs commu-

nication analysis to get communication patterns on logic processor grids. Then, with the

logical communication patterns, physical communication analysis is able to get communica-

tion patterns on physical processors. The compiler is also capable of partitioning a program

into phases.

2.1.2 Run-time traffic prediction

Afsahi [27] investigated a pattern predictor to predict communication patterns of each sepa-

rate node. He proposed and compared two types of predictors, cycle predictors and tagging

predictors. A cycle predictor is based on the assumption that if a sequence of communication

appear once, it may appear later. The communication pattern that happens more frequently

has a higher probability to occur in the future. The tagging predictor is performed with the

help of a compiler. To insert tags into the original parallel program to indicate a particular

section of a code. Each tag is associated with a communication pattern. Once a tag is

executed, a certain communication pattern is predicted.

Sakr, Levitan, Chiarulli, Horne and Giles [28] proposed a machine learning model to pre-

dict memory access pattern for shared memory multiprocessors. They gave three prediction

methods, which are a Markov predictor, a linear predictor and a time delay neural network

predictor.

In the Markov predictor, the conditional probability of accessing memory modules is

calculated. First order and second order Markov predictors are introduced. For a first

order predictor, probability Pij is calculated as the probability of accessing memory i after

accessing memory j. For the second order predictor, probability Pi(jq) is considered as the

probability of accessing memory i if the current processor accesses memory j after accessing

memory q. Probabilities are updated after every memory access.

13

In a linear predictor, memory access vectors are used to present the memory access

status. If the ith memory is accessed, the ith bit in a memory access vector is set to one. The

linear predictor attempts to predict the next memory access based on a linear combination

of all the values of memory access vectors in their history.

A time delay neural predictor predicts the next memory access pattern by taking into

account of memory access vectors. The predictor uses tapped delay lines to learn an access

pattern. In this way, a particular output pattern can be recognized if it has been seen

before, or in response to a specific input pattern. Also, it enables the predictor to generate

a complete pattern when a part of the pattern appears.

From these research, we conclude that:

1. Communication in parallel computing system has locality and regularity.

2. Communication pattern can be predicted at compile-time or run-time.

2.2 SWITCH DESIGNS COMBINING ANALOG AND DIGITAL DOMAIN

Over the past years, technologies in ASIC design, serial interfaces, and the emergence of

high-capacity and cost-effective analog switches have promoted combining analog and digital

technologies into a hybrid switch.

2.2.1 HYPASS: An optoelectronic hybrid packet switching system

Authurs, Goodman, Kobrinski and Vecchi [29] proposed the HYPASS switch architecture.

The HYPASS network is formed by two networks: the internal data transport network and

the internal control network. The basis of the internal control network is an optical crossbar

created from an N ×N passive optical star coupler. This optical switch is configured by the

control network. Data are sent as packets and stored at the input port of the optical switch.

Packets are transmitted through the optical switch when connections are established.

When a packet arrives at an input port, it is converted to electronic signal by an O/E

converter and stored in a buffer at the input port. The packet header is analyzed by the

14

address decoder. Based on the destination address, wave-length transmitter is tuned to

a wavelength that corresponds to the required destination. The internal control network

receives the communication request and makes arbitration according to the information

gathered from the output buffer. If the request is granted, then a ‘send’ signal is used to

inform the input buffer, and the packet is transferred through the internal data transport

network to its destination. After that, a ‘data received’ acknowledgment is sent to the input

port through the internal control network.

2.2.2 HFAST: Hybrid flexibly assignable switch topology

Hybrid Flexibly Assignable Switch Topology (HFAST) [5] provides another solution that

combines optical switches and digital switches. Packet switches are grouped as blocks con-

nected through a large-sized optical crossbar switch. Their idea is to configure the circuit

switch as a simple topology, such as a 3D torus, to reduce the number of packet switch blocks

that need to be traversed.

Unlike HYPASS architecture, the optical switch is placed between nodes and packet

switches. Nodes are connected to a passive optical switch crossbar directly. When a source

node sends out a packet, the data is transmitted through optical switch. As soon as the

data reaches the packet switch blocks, it may be routed to another packet switch block or to

another node depending on the connectivity of the optical switch. After one or more hops,

the data will reach their destination.

2.2.3 Optical-electrical-optical and optical-optical networks

Livas, Hofmeister and Horne [30] proposed to take an optical-switch approach by combining

Optical-electrical-optical (OEO) and optical-optical (OO) switching systems in order to build

optical networks over current technology, since a pure OEO system is expensive while OO

system only works in wave-length transparency domain. In their proposed architecture, data

can be transmitted through either OO system via circuit switching or OEO system via packet

switching.

15

From the above switch designs, we conclude that:

1. Combing digital and analog domain is promising in network design. Electronics com-

ponents are used for memory and logic control; analog switch fabric is used for data

transmission.

2. In the above design examples, packet switching and circuit switching techniques are

performed to configure different parts of the network. In the HYPASS and HFAST

systems, the packet switch sends and receives packets at the port of the optical crossbar;

while circuit switching technique is applied on the data transmission through optical

switches. In Livas and his colleagues’ design, a packet switch works on OEO systems;

while a circuit switch works for the OO system.

3. A potential problem of HFAST system is that a circuit switch configured as a simple

topology may not be able to satisfy all communication requests. Some other way has to

be found to deal with traffic that does not follow the specific topology.

4. Analog switches only provide a inexpensive and high-throughput crossbar fabric. With-

out the support of an efficient network configuration mechanism, the crossbar fabric will

be under-utilized.

2.3 HYBRID SWITCH EXAMPLES

Due to the overhead caused by establishing physical connections in circuit switching, research

has been carried out to improve the circuit switching mechanism.

2.3.1 Configure network for certain communication pattern

The Quadrics interconnect (QsNET) provides special hardware support for multicast [31, 32].

The switch node is able to send a message to any contiguous port in the switch node.

The hardware barrier implemented by Quadrics is based on hardware multicast. The root

processor sends out a ‘test’ broadcast packet. The replies of all other processors are combined

at the root. After all processors have responsed, a packet is broadcasted indicating the event.

16

In the Thinking Machines Corporation. CM-5 network [33], regular communication

patterns are scheduled. The typical communication patterns pre-scheduled in CM5 are linear

exchange, recursive exchange, balanced exchange and pairwise exchange. For example, in

pairwise exchange, if the system size is N , each processor takes N − 1 steps to receive

messages from all other processors. During step i, processor n exchange a message with

processor (n + i)modN .

2.3.2 Configuration for large messages

Related research has been done on applying different switching algorithms for messages of

different sizes. Coll and his colleagues [34] proposed a hybrid algorithm for networks in high

performance clusters. Two algorithms, which are local dynamic allocation algorithms and

dynamic allocation algorithms, are proposed to handle traffic. In the local dynamic allocation

algorithms, the NIC only collects local information and starts sending data depending on the

local transaction requirement. In the dynamic allocation algorithms the local and remote

information are checked. The goal is to guarantee that both the sender and the receiver

are free before sending data. The local dynamic allocation algorithms are used to switch

short messages and the dynamic allocation algorithms are used to transfer long messages.

Specifically, if local NIC is available and requests a connection, a Request To Send(RTS)

is sent to the destination NIC. Upon receiving the RTS signal, the NIC of the destination

replies a Clear To Send (CTS) or Negative Acknowledgment (NACK) to indicate the available

or unavailable status. This is very similar to a circuit switching scheme. Since the rail

reservation using dynamic allocation introduces an overhead for every message, the authors

recommend applying the dynamic allocation on only large messages.

Chen and Liu [35] presented a hybrid network architecture for database and multimedia

systems of hypercube topology. They integrated self-routed wormhole routing and circuit

switching based on virtual channels. They divided the channels into a short message channel

and a long message channel to serve different types of messages. L is set as a threshold of

message length. Messages shorter than L are named as short message; messages longer

than L are long messages. The short messages are routed deterministically using wormhole

17

routing. The routing path for long message is determined globally. To route a long message,

a probing signal is initiated by the source node first. The probing signal propagates through

the network in short message channels following depth-first rule to establish connections. If

the destination node receives the probing signal, a success acknowledging message is sent

back to the source node via short message channels. In this way, a long message path is

established.

2.3.3 Wave switching

Duato, Jose, Lopez and Yalamanchili [8, 9] proposed wave switching that combines wormhole

switching and circuit switching. When two nodes are communicating frequently, the physical

circuit connection will be kept for a certain time. If the router contains switches, S0, ..., SK .

The physical channels on switch S1, ..., SK are used for data transmission through circuit

switching. The physical channels in S0 are split into k + w virtual channels. K channels are

used to transfer control flit, which are used to set up and tear down connections on switches

S1, ..., SK . The remaining w virtual channels are used for wormhole switching.

This design is promising, except that the partition of physical channel for circuit switch

and wormhole switch is fixed. If there are not enough circuit switched traffic, switches S1,

..., SK will be left unused.

From these papers, we conclude that:

1. Researchers have shown that packet/wormhole switching and circuit switching can be

complimentary.

2. Network performance improves when configuring the network as a certain network topol-

ogy or for a regular communication pattern.

3. However, not all predictable traffic follows a certain topology. The scheduling method

to efficiently schedule traffic is crucial.

4. Better schemes need to be investigated to handle both predictable traffic and

un-predictable traffic.

18

3.0 HYBRID SWITCH ARCHITECTURE

A description of the hybrid switch architecture is given in this chapter. Section 3.1 introduces

current switching techniques, including circuit switching, packet switching and wormhole

switching. Message latency in switched interconnection networks is analyzed. Section 3.2

describes the hybrid switch components. In Section 3.3, the communication modes by which

the hybrid switch handles both predictable traffic and un-predictable traffic are discussed in

detail. Section 3.4 provides detailed architecture of network components.

3.1 CURRENT SWITCHING TECHNIQUES

As we have mentioned in Chapter 1, the major switching techniques are circuit switching,

packet switching and wormhole routing. Circuit switching establishes an entire source-to-

destination route before any data are sent [36]. Establishing this route incurs a high latency

cost. Each connection occupies one physical link and once the circuit is established, it may

block other circuits from forming. The benefit is in the simple switching elements, as they do

not need to contain any data buffering and only need enough logic to determine their current

configuration. As soon as the connection is established, the message can be transferred with

low latency. For example, a 4× 4 LVDS switch has a propagation delay of 1 ns.

Figure 3.1 shows a circuit switched network. T w represents delay of wires between

a NIC and a switch. The scheduler latency is denoted as T sch. T setup represents the

delay caused by switch configuration. If a message is sent from PEi to PEj, the message

is buffered in a network interface card (NIC) after it has been generated by PEi. The NIC

sends a request to a network scheduler. After T sch, a grant is sent back to the NIC if

19

�����

����� �	�

���
 � � � � � �

� ��� � �
�� � � � � �

��� � ��� � � � ��� � � ���
 � � � � � !�� � � � ��� ��" �

	# $ � ! � � � � � # �� � � � ��� ��" � � � %
� �&% � # % � ! � � � # �� � � � �

' () * (+ ,

-/. 0 1 ,

23(+ + 0 4 (

' () * (+ ,

�	�

	� � � � � � � �&� � �

Figure 3.1: Message delay in circuit switched network.

a connection is successfully scheduled. The NIC injects the message to the network after

receiving the grant.

The latency, T ckt, of a message transmitted through a circuit switched network is

represented as below, where T message = (size of a message)/(switch’s throughput).

T ckt = T sch + T setup + 4T w + T message (3.1)

Packet switching sends data payloads of limited size through the network by adding

routing information to the front of the payload, thereby creating a data packet. Each data

packet is independent of others [37, 38, 39]. When a large amount of data needs to be

communicated, multiple packets are created and sent through the network. The packet

switch is more flexible than circuit switching because the possible connections are not limited

by the number of the physical links. However, the packet data transmission is based on the

assumption that the entire packet has to be received before forwarding it out. This introduces

buffering latency.

Figure 3.2 depicts the procedure of a packet transmission in a packet switched network.

After PEi generates a message, the NIC connected with PEi breaks down the message into

K packets, where K = (size of a message) / (size of a packet). Each packet is stored in a

buffer inside a switch before being forwarded to its destination. After detecting a complete

20

paacket, the switch port sends out a request to the switch scheduler asking for a connection.

After T sch, a grant is received by the buffer if the connection can be established. The packet

is forwarded to its destination. The connection is torn down after the packet is transferred.

The latency T pkt of a message transmitted through a packet switched network is shown

as below,where T packet = (size of a packet)/(switch’s throughput),

k = (size of a message)/(size of a packet), and T buffering is the time used to store entire

packet.

T pkt = 2T w + k(T sch + T setup) + T buffering + T packet (3.2)

Wormhole switching improves on packet switching by establishing a path through the

network as it is routed. Referring to Quadrics network [40], a well known wormhole switched

network, we define the wormhole routing as to be used in this dissertation. In wormhole

routing network, a packet is broken into several flits, which is the unit for storing and for-

warding. The head of the worm establishes the route though the network and all subsequent

flits take the same path. The intermediate switching node uses less buffer space and does

not wait for the whole packet. Therefore, the big buffering problem in packet switching is

removed. The latency is also illustrated in Figure 3.2.

The procedure of message transmission using wormhole switches is similar to that using

packet switching. The major difference is that a buffer generates a request upon detecting a

flit instead of a complete packet.

The latency T worm of a message transmitted through a wormhole switched network is

represented as the following:

T worm = 2T w + k(T sch + T setup) + T packet (3.3)

Time division multiplexing (TDM) switching [41, 42, 43] is an extension of circuit switch-

ing in which the switch alternates between K configurations, where each configuration es-

tablishes circuits between the inputs and the outputs of the switch. Hence, a particular

connection, is established every K time slots and thus receives 1/K of the bandwidth, where

K is the multiplexing degree. In other words, scheduling a connection on a TDM switch

means scheduling it repeatedly, on any one of the K multiplexed slots. If the circuit con-

nection is established and torn down for each message, the message latency is the same as

21

����� ��� �

����	 ��� �

�� �
 � � �
 �

 ��� � � ��� � � � � �

��� �
��
 � � ��� � �

�� �
 � � � � !��
 � � �"� ��# � �

�%$ & � ! � � � � � $ ��
 � � �"� ��#
 � � '
� ��' � $ ' � ! � � � $ ��
 � � �

(�) * + ,

- * . / 0 ,

1 0 2 3 0 4 ,

�5� � 6
 � 7 �8$ � 9�� $ �
�
 ��� � � �

Figure 3.2: Message delay in packet/wormhole switched network.

that of circuit switching. We incorporate the TDM method into our hybrid switching in a

different way in order to amortize the scheduling overhead, which is discussed in Chapter 5.

The design of a network scheduler is crucial to reduce message latency. It is observed that

the wire delay T w, the switch configuration time T setup and the scheduling delay T sch

impacts the message latency in all switched networks. Tw is determined by the scale of net-

works. T setup, T message and T packet are decided by current switch fabric technologies.

However, it is practical to reduce scheduling latency with innovative hardware design. Ac-

cording to Equation 3.1, 3.2 and 3.3, reducing the scheduling latency T sch benefits circuit

switching, as well as packet switching and wormhole switching.

3.2 HYBRID SWITCH COMMUNICATION SYSTEM

Based on the analysis of message latency in communication networks using various switching

techniques, we propose a predictive circuit switching technique. Predictive circuit switch-

ing amortizes scheduling latency by pre-establishing and re-using connections. Our hybrid

switching combines predictive circuit switching and wormhole switching in order to take

advantage of both switching techniques.

22

��� � � � � � ��� 	
 � � �

��
 � � � ��� � �
 � �
� ��� � � � ���
 � 	 � � �

��
 � � � ��� � �
 � �
� � � � � � ���
 � 	 � � �

� ��� �
 ��
 � � �

� � � ��� 	 �
�
 � � 	 � �
 ���

 	 �
 � ! ! �
 �
" � � #��
 � �

� � � ��� 	 �
�
 � � 	 � �
 ��$

 	 �
 � ! ! �
 �
" � � #��
 � $

��
 � � � ��� � �
 � �
� ��� � � � ���
 � 	 � � �

��� � � � � � � � �
 � �

��
 � � � ����� �
 � �

%'&�(�) * +-,'. * / /�0 (�.

��
 � � � � � ��� � � � � �
��� � � � � � � ��
 � � � �����
 1 � 	 � � 	

Figure 3.3: The hybrid switching system.

The overall hybrid switch architecture and switching mechanism are described in this

section.

3.2.1 Hybrid switch system

Our proposed a hybrid switch systems combines wormhole switch and predictive circuit

switch. Predictive circuit switching is motivated by the observation that a portion of com-

munications within parallel computing has regularity and is highly predictable and thus, can

be deterministically scheduled. This is a variation on circuit switching in which the switch

is scheduled based on the prediction of the communication requirements of the application.

The detailed architecture of the predictive circuit switch is shown in Chapter 5. In this sec-

tion, the overall architecture of the hybrid switch is presented. The proposed hybrid switch

consists of four main components, as shown in Figure 3.3.

23

��� � � � � �

Figure 3.4: Data format in the hybrid switch.

1. Processing elements (PE)

The processing elements are computation nodes in the parallel computing system. Each

processing elements is coordinated with other processing elements through network in-

terface cards to provide powerful computation capability.

2. Network interface (NIC)

Each processing element is connected with a network interface card. Data is injected

into network interface card and stored inside it for network transmission. Control data

that represent traffic patterns, as well as communication requests and grants, are also

input and output signals of the network interface card. Communication data and control

data share the same high-speed link connected between the network interface cards and

the switch node.

3. Switch node (SW)

The switch node is responsible for scheduling and enabling network communications.

The switch node is an analog and digital mixed signal design. A digital circuit is used

for buffering and scheduling wormhole switched traffic. The analog switch is configured

by the digital circuit and its bandwidth is shared by wormhole switched traffic and the

predictive circuit switched traffic.

3.3 COMMUNICATION MODES

The hybrid network architecture supports both predictable traffic and un-predictable traf-

fic and operates in three modes, un-predictable traffic mode, predictable traffic mode and

preloaded mode.

24

In each communication mode, data transmission is initiated by a processing element and

requests a sequence of actions executed by network components.

Figure 3.4 shows the data format used in the hybrid switching system. A ‘Tag’ is used

to indicate the traffic type. If the ‘Tag’ in a message is one, it indicate the message is

a predictive circuit switched message. Otherwise, it is a wormhole switched message. No

matter what switch method will be used to transfer the message, the message will be sent

to both the digital circuit and the analog switch. For a predictive circuit switched message,

its ‘Tag’ bit is ‘0’. A connection has been established for it in the analog switch, so the

message is transferred through the network. Meanwhile, in the digital circuit, the ‘Tag’ bit

is detected. All messages whose ‘Tag’ equals one are discarded. For a wormhole switched

message, its ‘Tag’ bit is ‘1’. Because no connection is established for it, it will be dropped

by the analog switch even it is injected at the input port. The digital circuit detects that its

‘Tag’ equals ‘1’, therefore stores the packet for wormhole switching in the future.

The detailed data transmission process is described in the following.

System variables are defined as below.

K: Number of time slots for predictive circuit switching

N : System size

PEi: The ith processing element

NICi: The ith network interface card

3.3.1 Unpredictable traffic mode

The un-predictive traffic mode is similar to general wormhole switched communication. Data

are stored and forwarded in the switch node. Connections are established and torn down for

each packet. A simplified system architecture is used to illustrate the un-predictable traffic

communication, as shown in Figure 3.5.

1. PEi generates a message to PEj.

2. NICi receives the message and checks the destination of the message in the predictive cir-

cuit switch table. If the required destination is not set for predictive circuit connections,

then the tag bit is set to ‘1’ to indicate the message as wormhole switched traffic.

25

� � � � � � � � �
� � � � � � �	
�� � � � �
 �� � � � �

� ���

� �

� � � � � �

� � � ! � � � �	 � � � � � � � � � � � � � � � � " � � � � � � � �	
 � � � � 	 � � � � � � � �

� � �

� � � � � � � � �
� � � � � � �	
 � � � � �
 �� � � � �

� � �

� �

� � � � � �

$ %

&

'

(
)

* � + ,-� . � � � � �
 � � � � � � �/

Figure 3.5: The un-predictable traffic communication mode.

3. The message is stored into wormhole buffer QW .

4. If the wormhole buffer V QW in the switch node is not full, NICi forwards the message

to switch node and stores it in V QW .

5. V QW generates requests to the wormhole scheduler. The wormhole scheduler arbitrates

in round-robin fashion.

6. If the request from PEi to PEj is granted, the connection is added wormhole connections

W and stored in the wormhole configuration registers.

7. The TDM cycle control generate the time slot ID, if current ID number equals K, the

wormhole connection is selected as the output, and W is sent to V QW .

8. Upon receiving W , the message is output from V QW and sent out through the analog

switch

9. The message arrives NICj.

3.3.2 Predictable traffic mode

Data communication through predictive circuit switching is called the predictable traffic

mode. Circuits are established before predictable traffics come. The pre-established circuit

26

� � � � � � � � �
� � � � � � �
	
 � � � � � �

� � � � �

� ���

� �

� � � � � �

� � �

� � � � � � � � �
� � � � � � �
	
 � � � � � �

� � � � �

��� �

� �

� � � � � �

�
�

!

"$# � % � # � �
	 � � � � � � � �

� � � � � � � � & � � � � � � � �
	
 � � � � 	 � � � � � � � �

� ' (��) � � � � # � � � # � � � �

*

+

,

Figure 3.6: The predictable traffic communication mode.

connections are time multiplexed. The circuits is connected and disconnected according

to predicted communication requests rather than dynamic communication requests. The

predictable traffic communication is divided into seven steps, as shown in Figure 3.6.

1. NICi sends out predicted requests to the switch node requiring a connection from PEi

to PEj.

2. The predictive circuit switch scheduler receives the request and makes scheduling. Let

us assume the connection is scheduled at time slot p.

3. The updated predictive circuit switching connections B∗ are sent back to NICi to update

its predictive circuit switching table. B∗ is defined as the total connections established

for the predictive circuit switching.

27

4. NICi receives a message from PEi to PEj. NICi detects the destination address in the

message that has existed in the predictive circuit switch table. Therefore, the tag bit is

set to ‘0’ to indicate the message as predictive circuit switched traffic.

5. The message is stored in V QPCKT .

6. The TDM cycle controller generates the time slot ID, if the current ID number equals p,

the circuit connections B(p) are be selected, and grant signals G are sent to NICi.

7. Upon receiving G, the message is output from V QPCKT and sent out through the analog

switch.

8. The message arrives NICj.

3.3.3 Preloaded mode

The predictive circuit switch schedule can be preloaded with a set of configurations. The

set of configurations are activated one-by-one to control the network. The connections are

established before real traffic comes and is not effected by either predicted communication

requests or demanding communication requests.

1. NICs send out network configurations for time slot 0, ..., K − 1.

2. Switch node stores the configuration as B(0), ..., B(K−1) in registers.

3. The total grants B∗ are sent to NICs to update their predictive circuit switching tables.

4. NICi receives a message from PEi to PEj. NICi detects the destination address in the

message has existed in the predictive circuit switch table. Therefore, the tag bit is set

to ‘0’ to indicate the message as circuit switched traffic.

5. The message is stored in V QPCKT .

6. TDM cycle control generate time slot ID, and the circuit connections according to the

time slot ID are be selected, and grant signals G are sent to NICi.

7. Upon receiving a G containing the connection from PEi to PEj, the message is output

from V QPCKT and sent out through the analog switch.

8. The message arrives NICj.

The three communication modes work individually or cooperatively to adapt the real

communication requests. Assuming that a network switch system contains K time slots,

28

we can pre-load configurations for P slots, set N slots for scheduling predictive traffic, and

set one slot for scheduling un-predictable traffic, as long as P + N < K. The proposed

hybrid switch architecture is capable of supporting predictive circuit switching and wormhole

switching.

3.4 NETWORK COMPONENTS

The NIC and the switch node are important components, thus are described in detail. In

order to simplify description of components, the control signal and data signal are shown as

separate wires but in reality one physical wire sends both types of data.

3.4.1 Network Interface

We define the following signals for clarity.

D: Message transferred though the network, including DW and DPCKT

Dw: Messages transferred through the network via wormhole switch

DPCKT : Messages transferred through the network via predictive circuit switch

U : Connections established for wormhole switching

B∗: Total connections established for predictive circuit switching

B(i): Connections established for predictive circuit switching in time slot i

Rc: Communication requests for predictive circuit switching

Rw: Communication requests for wormhole switching

P : Traffic prediction

F : Switch fabric configurations

Gi: Grant signals to the ith NIC

In order to support both wormhole and circuit switched traffic, each NIC contains two

buffers as shown in Figure 3.7, one buffer QW for wormhole switch and a virtual queue

for predictive circuit switch, denoted as V QPCKT . The virtual queue is a physical buffer,

but is logically partitioned into N queues corresponding to N destinations so that head-of-

29

� � � � � � � � � � � � � � � �
	
 � � � � � �
 � � � � �

� �

� � � � � � � � � � �
� � � � � � � � � �

� �

� �

� � � � � � � � �

� � � � � � � �
 � � � � !

� � � � � � �
� � � � � � � � � " � � � � �
 � � � � !

�#� � � � �$� % !

�#� � � � �$� % ! �#� � � �
 � � � � !& � ' () *

+ , -

. + , - + , -

Figure 3.7: The network interface card.

line blocking can be avoided. Since there are no buffers for predictive circuit switch in the

switch node, the virtual queue buffer for predictive circuit switching is implemented inside

the network interface card. For wormhole switching, most data is buffered in the switch

node. Therefore the virtual queue buffers are implemented in the switch node for buffering

wormhole traffic following the same idea.

The Predicted Circuit Switching Table inside the network interface decides which buffer

to use for temporal data storage. The value of the Predicted Circuit Switching Table is an

N -bit value. Each entry is an N -bit vector, representing the connections scheduled using

predictive circuit switch. For example, if the 3th entry equals ‘00000101’ in a 8× 8 system,

the vector shows the links from PE3 to PE2 and PE0 have been established in predictive

circuit switch. In this way, all data from PE3 to PE2 to PE0 are stored in virtual queues

for predictive circuit switching and the rest of the data from PE3 are stored in the buffer

for wormhole switching.

In this dissertation, there are two ways to set the values in the Predictive Circuit Switch-

ing Table. The first one is by detecting the grants from the predictive circuit scheduler. By

receiving traffic prediction from compiler or run-time predictor, the predicted requests will

30

����� �����
	 �
��
 � � ����	 ���

��� � �
�
 � � � �������
��
 � � ����	 ���

�

��� � �

� � �

��� ! " �

#�
�$ % � ���'&)(��* +

#
,-$ � . *�� ����* ,/� �
 � +

0�1 2

��3�$ � �/&�(�4* +

�65)78��9
 	 �/�4��. � � ��	 	 ���

��,�� �
 �
:�;
<�� �

�4��. % � =
��� ; � � �
.

> � $ � �/&�(� � +

> $ � �/&�(� +

>�? " $ � �@&)(�)? " +

A�B)C

5�,-$ % � ���-&)(��* +

&

&

&

&

:D$ � �E* ,/� �
 �E% ;�<�� �
 +

&

Figure 3.8: Internal architecture of the digital circuit inside the switch node.

be sent to the predictive circuit scheduler. After scheduling, the predictive circuit scheduler

sends back granted connections. The values in the Predictive Circuit Switching Table are

updated according to the granted connections. The second method is named as pre-loading

in contrast to on-line scheduling. Configurations are preloaded into the switch node. Mean-

while, the network interface gets the same configuration information. Without waiting for

scheduling, the values in the predicted circuit switching table are set instantly. In the former

method, not all predicted requests are get granted, therefore the network interface has to

wait for scheduling results to set up the values in the Predictive Circuit Switching Table.

Grants B(0), ..., B(P−1) are combined together using a ‘or’ logic, where P is the total number

of time slots being pre-loaded. The output B∗ is returned to NIC to updated value in the

predictive circuit switch table.

31

3.4.2 Switch node

The switch node contains analog switch fabric and a digital circuit. The internal architec-

ture of the digital circuit is illustrated in Figure 3.8. Two schedulers, which are wormhole

scheduler and predictive circuit switch scheduler, schedule wormhole traffic and predictive

circuit switched traffic respectively. The wormhole scheduler receives communication re-

quests Rw from buffers inside the switch node, denoted as V QW . The wormhole scheduler

in the hybrid network performs standard wormhole switching. The scheduled connections U

are stored in registers. Predictive circuit switch scheduler receives predicted communication

requests Rc from the network interfaces. It attempts to schedule communication requests

in K time slots, assuming K is the maximum number of time slots that can be scheduled.

The predictive circuit switch scheduler starts to perform scheduling from the first time slot,

namely time slot 0. If failed, the predictive circuit switch scheduler will try the next time

slot until (1) either the request is successfully scheduled (2) or the scheduler reaches the

last time slot. The successfully scheduled connections for time slot i, B(i), are stored in

registers. Registers, which keep the connections of B0, ..., BK−1 and U , are connected to

a multiplexer. A TDM cycle controller generates current time slot ID and selects a set of

connections corresponding to the current time slot. The output of the multiplexer are grant

signals to network interfaces.

Besides storing results getting from the predictive circuit switch scheduler, the registers

are able to set as pre-defined values coming from NICs. In this way, configurations are pre-

loaded instead of being scheduled. This feature is very useful when communication follows

very clear network topology, such as mesh, torus and trees. The network can be configured

just as the network topology by pre-loading different network mappings into different time

slots to satisfy predictable communication requirements.

32

4.0 OPTIMIZING VIRTUAL CHANNEL ASSIGNMENT

Chapter 5 shows the advantage of the hybrid switch, but focuses on traffic that is very

predictable. In this chapter, we introduce virtual channel assignment schemes to loosen the

traffic prediction constraint. In Section 4.1, background information about virtual channels

is introduced and terms are defined for the rest of the chapter. Section 4.2 describes the core

of virtual channel assignment. Section 4.3 describes Skip Empty Slots (SES) scheme that

enables the switch to improve network bandwidth utilization. SES is set as baseline for the

performance analysis. Section 4.4 describes the Slot Length Adjustment (SLA) schemes to

allocate slots according to the the traffic bandwidth requirement. The third scheme described

in Section 4.5, preempt virtual channels (PREEMPT) enables good network performance

for traffics with vague phase boundaries. Performance evaluation is given in Section 4.6.

Conclusions are draw in Section 4.7.

4.1 INTRODUCTION

In the hybrid switching system, virtual channels are used to let wormhole switched traffic and

predictive circuit switched traffic share one physical switch fabric. In our hybrid switching

system, virtual channels are implemented in a Time-Division Multiplexing (TDM) manner.

Data are transferred through switch fabric in a certain period of time, named a time slot.

The length of a time slot is called the TDM slot length. A group of time slots form a TDM

cycle, in witch the switch fabric is configured in different ways in different slot. During data

transmission, TDM cycles are repeated. Figure 4.1 shows an example of a TDM cycle. The

TDM cycle contains K time slots, time slot 0, ..., K − 1.

33

� � � ��� � � � � � � � � � � � � �

	
 � �

��� � ����� � �

� � � � �
 � � � ��� �

��� � � ��� � �

	
 � �
��
 � � � ��� �

Figure 4.1: Definition of TDM cycle, TDM slot and slot length.

4.2 COMBINE WORMHOLE SWITCHED TRAFFIC WITH PREDICTIVE

CIRCUIT SWITCHED TRAFFIC

Wormhole switched traffic and predictive circuit switched traffic are combined within a TDM

cycle. Our hybrid switching system contains K + 1 time slots, S
(0)
P , ..., SK

P , allocated for

predictive circuit switching and one time slot SW allocated for wormhole switching.

4.2.1 Virtual channels of the hybrid switch

Network configurations for predictive circuit switching are enabled at time slot S
(0)
P , S

(1)
P ...,

and S
(K−1)
P , as shown in Figure 4.2. At each time slot, one set of network configurations

configures the analog switch for data transmission. Network configurations B(i) for predictive

circuit switching are enabled at time slot S
(i)
P , where i < K. Switches are configured for

predictive circuit switching at the start point of each slot and the configurations are kept

unchanged within a slot. Network configurations for wormhole switching are enabled at time

slot SW . During SW , the analog switch is controlled by the wormhole switch. Different from

the network configurations in S
(0)
P , ..., S

(K−1)
P , the network configurations are based on a

packet, instead of a time slot.

Figure 4.3 depicts the procedure of data transmission through virtual channels. In Figure

4.3, the data from PEi to PEj is represented as ‘i → j’. Assume a processing element PE0

34

� � � � ��� � � � � � � � � � � � � � 	 � �

 � �
 �

� � �
� �

 � �
 ��� � � � � ��� �

� �

� � �
� �

� � �
� �

� �� � �
� �

Figure 4.2: Slots in hybrid switching system.

generate traffics to PE1, PE3, PE4, PE12, PE6, PE7, PE8, and PE9. The data to PE1,

PE3, PE4, and PE12 is predictable. Assume that the connections for predictable traffics have

been established as predictive circuit connections. Assume the connection from PE0 to PE1

is allocated at the first time slot S
(0)
P and stored in the configuration set B(0); the connection

from PE0 to PE3 is allocated at the first time slot S
(1)
P and stored in the configuration set

B(1); the connection from PE0 to PE4 is allocated at the second time slot S
(2)
P and stored in

the configuration set B(2); the connection from PE0 to PE12 is allocated at the third time

slot S
(3)
P and stored in the configuration set B(3). The wormhole switch performs scheduling

by a round robin policy, hence, it establishes connection for the packet to PE6 and tears

down the connection after one packet is transferred. In our example, the connection for the

packet to PE7 is to be established and torn down after the packet is sent. Similarly, the

connect and disconnect loop applies to the rest of wormhole switched packets.

During the first cycle, the sequence of slots is S
(0)
P , S

(1)
P , S

(2)
P , S

(3)
P and SW . The configura-

tions of B(0), ..., B(3), and W are enabled by the sequence of slot numbers. As configurations

B(0) are enabled, predictive circuit switched data from PE0 to PE1 is transferred. The pre-

dictive circuit switched data to PE3, PE4 and PE12 are transferred through the network in

the same way in slot 1, 2 and 3. The time slot following S
(3)
P is SW . During SW , the con-

figurations stored as W are enabled. Configurations W are variational based on the packets

buffered. The connections may change within the same SW slot (but not within SP). Figure

35

��� � � ��� � � ��� � � ��� 	 �

�
���� ��� ��� ��� �

��� � � ��� � � ��� � � ��� 	 �

��� ��� ��� ��� ���� �
� ���

��� � � � ��� � � � ��� � � � ��� � 	 � ��� ��� � � � ��� � � � ��� � � � ��� � 	 � ���
��� !

"# �$ % & '�(*) + ! & �$

,�+ ! +

Figure 4.3: Traffics combination.

4.3 shows that two packets are transferred in SW , one packet is sent to PE6 and the other

packet is sent to PE7.

During the second cycle, the predictive circuit switched data are transferred through the

network following the exact manner as in the first cycle. The wormhole switched traffics are

transferred by continuing the round-robin configurations. As it can be seen in Figure 4.3,

two packets are sent to PE8 and PE9. The destinations of the wormhole switched packet

are different.

The network configurations for SW are decided by the wormhole switch scheduler, while

the network configurations in S
(0)
P , ..., S

(K−1)
P are decided by predictive circuit switch sched-

uler. The way of assigning the virtual channels impacts the network performance. Section

4.3, Section 4.4 and Section 4.5 introduce three methods of virtual channel assignment for

the hybrid switch.

4.2.2 Configure virtual channels for predictive circuit switch

Virtual channels assignment focuses on allocating slots for two different switching approaches.

Before introducing the virtual channel assignment, the methods that are used to configure

virtual channels for predictive circuit switch are reviewed.

1. Assigning virtual channels based on predicted requests

The most straightforward method to configure time slots for predictive circuit switching is

to use the predictive circuit switch scheduler. Predicted request are sent to the scheduler.

The predictive circuit switch scheduler starts to allocate network resources from the first

time slot. The scheduler allocates network resources from time slot 0 to time slot K − 1

36

in order to grant those requests. Each established circuit connections occupies one slot

in a TDM cycle. If the schedule is full, unscheduled requests are dropped. Each NIC

receives a grant vector that describes its portion of the schedule.

2. Pre-load virtual channels

The second method to configure time slots for predictive circuit switching is pre-loading.

In two cases, pre-loading is highly recommended. The first case is when the communica-

tion strictly follows a virtual topology. For example, if a communication strictly follows

a 2-D mesh network topology, then it is possible to use four time slots to configure the

switch to satisfy all communications. The second case is for collective communications.

For example, if the communication is a ‘scatter’, one processing element sends messages

to all other processors. We could configure the switch temporally to fit the commu-

nication pattern without using the predictive circuit switch scheduler. The benefit of

pre-loading to get optimal configurations for predictable communications. That involves

a set of configurations from a group of processors.

The basic TDM cycle controller is implemented by a counter, as shown in Figure 4.4.

The output SLOT is 0, 1, ..., K. The signal TRIG is the output of a clock divider. The

output clock frequency of the clock divider decides the length of each slot. There are many

ways to design a clock divider. Figure 4.4 gives one implementation. A preset value D L is

loader to a LATCH. A COUNTER generates output D C to compare with D L. When the

two values are equal, signal Eq triggers FLIP-FLOP to toggle the output.

4.3 SES: SKIP EMPTY SLOTS

Not all K + 1 slots need to be fully scheduled and some may be entirely unused. Time

slots may be un-used in either configuration method. When the network configurations for

predictive circuit switch occupy j time slots, if j < K + 1, then K + 1− j time slots do not

contain any network configurations. The time slots assigned for predictive circuit switching

or wormhole switch may not contain any network configuration. We define this kind of time

37

� � �����

� � 	
 � � � �

�
� ����
� ��� �
 ���

� ����� � � �

� � � ���

� �

� � 	
 � � � �
�
� �

��� �

���
�

�

�

� � �

� ��	 �� �
� � �

� � �
� �

��� � � 	 � � � �

Figure 4.4: TDM cycle controller implemented as a counter.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � 	 � � �
 �

(a) Network configurations scheduled for predictive circuit
switch.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��� � � 	 �
� � � 	 ��� � � 	 � � �
 	 � � � � 	 � � � � 	 � � � � 	 � � �
 	

�
� � 	 ��� � 	 ��� � 	 ���
 	 ��� � 	 ��� � 	 ��� � 	 ���
 	

(b) Network configurations without SES.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��� � � 	 � � �
 	 ��� � � 	 � � �
 	 � � � � 	 � � �
 	 � � � � 	 � � �
 	

�
� � 	 �
�
 	 ��� � 	 ���
 	 ��� � 	 ���
 	 �
� � 	 �
�
 	

(c) Network configurations with SES.

Figure 4.5: Network bandwidth utilization gets improved with SES.

38

� � �����

� � 	
 � � � �

�
� ����
� ��� �

���

� ����� � �
�

� � � ���

� �

� � 	
 � � � �
�
� �

��� �

���
�

�

�

� � �

� ��	 �
� �

� � �

� � �
� � ��� ���

�
�
�

� �

� � !

� �
 � "

� 	 � �

� � # $ % & '

� !

Figure 4.6: TDM cycle controller with SES capability.

slot to be an empty slot. During empty time slots, no data are transferred through the

network.

Empty slots introduce inefficient network utilization. Figure 4.5 gives a example of

configurations scheduled for predictive circuit switch. In order to simply the explanation, we

ignore SW in the cycle. Configurations of set B(0) and B(1) are fully loaded. However, there

is no configuration in B(2) and B(3), as shown in Figure 4.5(a). If we treat all slots equally,

the TDM cycle controller generates time slot in the normal sequence, which is S
(0)
P , S

(1)
P ...,

and S
(3)
P . Obviously, no data are transferred through the network at S

(2)
P and S

(3)
P because

the network does not contain configurations during the two slots. In this example, 50% of

the network bandwidth is under-utilized.

Moreover, the SW time slot assigned for wormhole switching is not always used. (1) When

the communication is highly predictable, such as collective communications, most of the

network traffic goes through predictive circuit switch channels; (2) When the communication

follows a certain topology strictly, such as a 2-D mesh, all traffics go through predictive circuit

switch channels.

If the TDM cycle controller generates time slot without considering empty time slots,

no data are transferred through the network during some slots and network bandwidth is

wasted. In this context, we propose the SES (skip empty slots) scheme to solve the problem.

39

Each register array that stores network configuration for time slot i generates a one bit

signal, Ei, to indicate if there exists configurations for time slot i. The TDM cycle generator

(see in Chapter 5) detects the Ei signal. The TDM cycle controller will skip the empty time

slot and does not allocate time for it.

With SES, the network bandwidth utilization improves as shown in Figure 4.5(c). The

TDM cycle controller skips the two empty slots and and slots are repeated in the sequence

of S
(0)
P , S

(1)
P , S

(0)
P , S

(1)
P and so on.

The TDM cycle controller with SES capability is based on the basic architecture, as

shown in Figure 4.6. Signal Ei indicates if there are configuration assigned at time slot i.

If the time slot i is empty, Ei equals 0. Signal SLOT represents the number for current

slot. SLOT selects the one bit from E0 to EK − 1. Either it is time for the signal TIME to

toggle or the signal EMPTY is ‘0’, the signal TRIG will switch its current value. Thus, the

value of SLOT is assigned to SLOT PRE and starts computing the next slot number. Let

us assume time slot j is empty, therefore Ej equals ‘0’. If SLOT equals j, signal EMPTY is

‘1’. The TRIG will switch to its opposite value. At the same time, the COUNTER is reset.

SLOT PRE is equal to j, and current SLOT equals time slot (j + 1)modK .

If a time slot does not contain network configurations, the time slot should not be counted

in a TDM cycle.

4.4 SLA: SLOT LENGTH ADJUSTMENT

In SES, empty slots are skipped without occupying virtual channels. However, the length

of time slots is equal. The ratio of the wormhole switched traffic and the predictive circuit

switched may vary in different applications and in different phases of one application.

The fixed slot length introduces another kind of bandwidth waste. Each slot may contain

valid network configurations. However a slot may not be fully utilized due to small amount of

messages. Figure 4.7 shows an example of this scenario. Assume that the length of one slot

is one time unit and that a processing element generates four chunks of data for predictive

circuit switching and six packets for wormhole switching. In the example, the length of a

40

wormhole slot is the same as the length of a predictive circuit slot. During each slot, two

packets or one chunk of data can be transferred. Figure 4.7(a) shows the data transmission

through the network with equal length of slots. After two cycles, four chunks of data and

four packets have been transferred. The rest of the two packets requires another cycle for

transmission. Three cycles, or nine time units, are used for data transmission. In the system

shown in Figure 4.7(b), the length of wormhole slot is 50% longer than the predictive circuit

slot. Under this situation, two chunks of data can be transferred during one predictive circuit

slot or three packets can be during one wormhole slot. Each cycle is 3.5 time units instead

of three time units in previous case. It can be seen that after two cycles four chunks of data

and six packets are transferred. It costs a total of seven time units and saves two time units

compared with the example in Figure 4.7(a).

It can be concluded that the length of virtual channels assigned to predictive circuit

switched traffics and wormhole switched traffics should comparable to their real traffic re-

quirements.

The virtual channels should be assigned according to the real traffic requirements. We

modify the TDM cycle controller to enable the SLA capability. The modified architecture

is shown in Figure 4.8. One more latch is added to the design. The values stored in the two

latches, NUM P and NUM W, decides the length of predictive circuit slot and wormhole

slot respectively. If the current slot number is K, the MUX selects the number stored for the

length of wormhole slot. Otherwise, the number stored for the length of predictive circuit

slot is selected.

4.5 PREEMPT: PREEMPT VIRTUAL CHANNELS

We propose preempt virtual channels (PREEMPT) method to solve the problem where has

been shown in Figure 4.7(a). As apposed to SLA, PREEMPT does not modify channel

assignment by adjusting the slot length. Since the traffic ratio of wormhole switched traffic

and predictive circuit switched traffic may be unknown, PREEMPT handles the issue in

a passive way. The mechanism is that if there exist predictive circuit switched traffic, the

41

� � � � � � � � � � � � � � � � �

��� 	
 � � � 	
 �

�
 � � � � � � � � � � �
 � � � � � � � � � �

�

� � � � � � 	
 � � � 	
 � � � � �

� � � � � � � �

�
 � � � � � � � � � �

�

� � � �

(a) Time slots with equal length.

� � � � � � � � � � � � � � � � �

��� 	
 � � � 	
 �

��
 � � � ��� � � � � � �
 � � � � � � � � � �

�

� � � � ��� 	
 � ��� 	
 � � � � �� � � �

(b) Time slots with different length.

Figure 4.7: Network bandwidth utilization gets improved with SLA.

� � �����

� � 	
 � � � �

�
� ����
� ��� �
 �
�

�
�
�

� � � �

� � �
� � � �

� � � ���

� �

� � 	
 � � � �

��� �

��� �

�
� �
�

� �
� �

�

 �

� �
	 !
� "

� � �

� � �

� � ��� �
�
�
�
�

� � � ���
�
� �
� #
� � ��� ���

� �
 � $

� 	 � �

Figure 4.8: TDM cycle controller with SLA capability.

42

predictive circuit switched slots are counted. If not, the slots will be skipped. Figure 4.9(a)

illustrates the mechanism of the approach. The configurations of B(0) and B(1) are sent to

background if no predictive traffic is detected. After been sent to the background, the slot

is used for wormhole traffic only. If predictable traffics are detected, then the configurations

of B(0) and B(1) are re-activated. The time slots are counted for both predictive circuit slots

and wormhole slots again.

We use the same example shown in Figure 4.7(a). Assume the slots have equal length.

Two chunks of data or two packets are transferred during each slot. After one cycle, two

chucks of data and two packets are transferred. Since there exist predictive traffics, the

predictive slots are kept active. During the second cycle, two chucks of data and two packets

are transferred. After that, all predictive circuit switched traffics are gone. So predictive

configurations are sent to the background. The third cycle contains one wormhole slot.

During that cycle, two packets are transferred. Because there are wormhole packets to be

transferred, one more cycle is required for data transmission. Similarly, the fourth cycle

contains one wormhole slot and the last two packets are transferred. It costs 7 time units

totally, which is the same as that in SLA, but the network does not care about the traffic

ratio information.

The PREEMPT is a good solution for traffic divided into phases. We have shown in

Chapter 5 that if the phase are clearly known, we are able to pre-load configurations for

different phases to achieve good network performance. PREEMPT gives a solution when

the communication phase is not accurately predictable. The predictive circuit connections

can be established for the communication pattern in the predictable phases. Those con-

figurations are sent to background without consuming network bandwidth if the current

communications do not match predictive communication patterns. When the application

arrives at the particular communication phase, the predictive circuit connections wake up

and make the network configured for data transmission. When the phase is complete, the

network revert to wormhole switching. No matter how many times a certain phase appears,

the network can be configured efficiently. In this way, the predictive circuit connections are

used only when necessary.

43

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

	

 �
� � � � � � � � � � ��� � � � � � �

� � � � � � � � � � � � � � � � ��� � � � � � �

(a) Network configuration with PREEMPT.

� � � � � � � � � � � � � � � � �

��� 	
 � � � 	
 �

�
 � � � � � � � � � � �
 � � � � � � � � � �

�

� � � � � � 	
 � ��� 	
 � � � � �

�

� �

� � � �

(b) Time slot assignment with PREEMPT.

Figure 4.9: Network bandwidth utilization gets improved with PREEMPT.

The architecture of TDM cycle controller with PREEMPT capability is shown in Figure

4.10. Predictive traffic indicates the TDM controller with a signal bit Rc v telling if there

exist predictable traffic. The R valid is combined with Ei to decide if the slot i should be

skipped. If no predictive traffics exist, R valid is ‘0’. Then the signals input to MUX all

equal ‘0’. In this way, the predictive circuit slots are skipped.

4.6 PERFORMANCE EVALUATION

We use 64 × 64 multi-processor model to evaluate network performance. The simulations

discussed in this section focus on traffic, part of which is predictable. Data generation is 1

word in 2 ns. The scheduler’s working frequency is set to 50 MHz. The wire in the network

is operating at 6.4 Gb/s. A 64 × 64 crossbar fabric is used. The default length of one time

slot is 200ns. Our simulation include (1) mixed random traffic and ordered-mesh traffic, and

(2)traffic with unknown communication phase boundaries.

44

� � �����

� � 	
 � � � �

�
� ����
� ��� �

���

� ����� � �
�

� � � ���

� �

� � 	
 � � � �
�
� �

��� �

���
�

�

�

� � �

� ��	 �
� �

� � �

� � �
� � ��� ���

�
�
�

� �

� � !

� �
 � "

� 	 � �

� � # $ % & '

� !

Figure 4.10: TDM cycle controller with PREEMPT capability.

4.6.1 Mixed traffics

We perform experiments on mixed traffics. The mixed traffic is generated by mixing random

traffic with ordered-mesh traffic. The predictable traffic ratio is defined as the data that

belongs ordered-mesh traffics over the total amount of data to be transferred. Traffic of

various predictable traffic ratios are tested. SES is set as the baseline of our simulation

results. The network throughput generated by pure wormhole switch, SES, and PREEMPT

are compared.

Figure 4.11, 4.12 and 4.13 show the simulation on the hybrid switch using large, medium

and small sized buffers within the NIC. The definition of the buffer size is based on the size

of messages. In our simulation, the message size is set to 128 bytes. A large sized buffer is

able to store 64 messages to avoid head-of-line completely. A medium size buffer is able to

store 16 messages, thus messages may be blocked. A small sized buffer is able to store only

one message, therefore messages are blocked.

We observed that SES performs better than wormhole switching when the predictable

traffic ratio is higher than 80%. However, when the predictable traffic ratio is low, bandwidth

utilization decreases.

45

Using large sized buffers, PREEMPT outperforms other schemes. This is because the

buffers store a large amount of ordered-mesh traffic. In this way, during the time slot

assigned for predictive circuit switch, the network bandwidth are fully utilized. After the

ordered-mesh traffic is completely transferred, the predictive circuit connections are sent to

background and the network is in pure wormhole switching mode. When the predictable

traffic ratio is higher than 50%, SLA and PREEMPT provides better performance than

wormhole switching.

Small to medium sized buffers introduce message blocking therefore the bandwidth as-

signed for predictive circuit switching is not always fully utilized. Using medium sized

buffers, SLA and PREEMPT have similar performance and both exceed the performance of

wormhole switching when predictable traffic ratio is higher than 70%.

Using small sized buffers, SLA and PREEMPT have performance gains when the pre-

dictable traffic is higher than 80%. When the predictable traffic ratio is lower than 80%.

SLA still provides similar performance to wormhole switching. However, the performance

of PREEMPT drops drastically. In mixed traffic the predictable traffic is spread out and

predictable traffic appears occasionally during the whole communication. The possibility to

preempt predictive circuit connections is low. In this situation, PREEMPT rarely preempts

schemes and thus performs like SES.

4.6.2 Unknown phases

The traffics used in the experiments done for this section contain communication phases. We

also use random traffic and ordered mesh traffic as two basic traffic patterns. Different from

the previous section, random traffic is not mixed with ordered mesh traffic, but in its own

phase. During one phase, ordered mesh traffic exists and during different phase, random

traffic exists. We use the phase traffic to evaluate the capability of the PREEMPT method.

The network throughput generated by SES, wormhole switch, SLA, and PREEMPT are

compared.

We also simulated the network with large, medium and small sized buffers. The simula-

tion results are shown in Figure 4.14, 4.15, and 4.16. As we expected, for all the experiments,

46

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Predictable traffic ratio (%)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

PREEMPT
WORM
SLA(Slot Length Adjustment)
SES(Skip Empty Slots)

Figure 4.11: Mixed traffic (buffer size = 8 K bytes, message size = 128 bytes).

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Predictable traffic ratio (%)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

PREEMPT
WORM
SLA(Slot Length Adjustment)
SES(Skip Empty Slots)

Figure 4.12: Mixed traffic (buffer size = 2 K bytes, message size = 128 bytes).

47

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Predictable traffic ratio (%)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

PREEMPT
WORM
SLA(Slot Length Adjustment)
SES(Skip Empty Slots)

Figure 4.13: Mixed traffic (buffer size = 128 bytes, message size = 128 bytes).

the PREEMPT scheme provides the best performance as long as the predictable traffic ratio

is no less than 10%. Because the predictable traffic is concentrated, the network bandwidth

is highly utilized when the predictive circuit connection are activated.

In the network with medium sized buffers, SES and SLA provides better performance

when the predictable traffic ratio is higher than 80%.

Figure 4.16 shows the performance of the network using small sized buffers. SLA and

SES do not improve the bandwidth utilization. In the ordered-mesh communication phase,

bandwidth assigned for wormhole is not used. In the random communication phase, the

bandwidth assigned for predictive circuit switching is wasted. So SLA and SES perform

even worse than pure wormhole switching.

The performance of wormhole switching is better when using small sized buffers than

when using medium or large sized buffers. Using small sized buffers, messages are blocked if

the previous message is not sent. During the ordered-mesh communication phase, messages

are forced to be sent following ordered-mesh pattern. This helps to resolve communication

conflicts in wormhole switching. Hence, the performance of wormhole switching is improved.

48

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Predictable traffic ratio (%)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

PREEMPT
WORM
SLA(Slot Length Adjustment)
SES(Skip Empty Slots)

Figure 4.14: Unknown phases (buffer size = 8 K bytes, message size = 128 bytes).

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Predictable traffic ratio (%)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

PREEMPT
WORM
SLA(Slot Length Adjustment)
SES(Skip Empty Slots)

Figure 4.15: Unknown phases (buffer size = 2 K bytes, message size = 128 bytes).

49

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Predictable traffic ratio (%)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

PREEMPT
WORM
SLA(Slot Length Adjustment)
SES(Skip Empty Slots)

Figure 4.16: Unknown phases (buffer size = 128 bytes, message size = 128 bytes).

4.7 CONCLUSION

This chapter discussed virtual channels assignment issues. Two observations are made that

network bandwidth are wasted mainly when (1) time slots are not filled with network config-

urations and when (2) network configurations and network traffics does not match. Based on

the observations, we propose three virtual channel assign schemes to improve network per-

formance, which is SES, SLA, PREEMPT. Our experiments show that PREEMPT provides

best performance without clear knowledge of traffic ratio or communication phase boundaries

as long as the NIC buffers are large.

50

5.0 REAL-TIME GREEDY SCHEDULER

In this chapter, we present a real-time greedy scheduler for an N xN crossbar interconnec-

tion system for predictive circuit switching. The main approach to achieve better network

performance is by amortizing the control overhead of connection establishment, as described

in Section 5.1. Three mechanisms are proposed in Section 5.2 for the predictive control of

networks. Section 5.3 gives detailed hardware architecture of the real-time greedy sched-

uler. Hardware performance is evaluated in Section 5.4. The network performance using

circuit switching, packet switching and the predictive circuit switching is compared in Sec-

tion 5.5. Our result shows that with our real-time greedy scheduler, the predictive circuit

switching provides better performance than circuit switching and wormhole switching under

predictable traffic.

5.1 AMORTIZING THE CONTROL OVERHEAD OF CONNECTION

ESTABLISHMENT

A dedicated circuit between a source and a destination is very effective for data transmission

since it simplifies tremendously the communication protocols. Specifically, no congestion

control is needed, no routing or control information has to be included with the data, no

intermediate buffering and routing is needed and only end-to-end flow control is required.

However, circuit switching is only effective when the cost of establishing the circuits is small

compared to the cost of transmitting the data, which is only the case when an established

circuit is extensively used before it is torn down.

51

Circuit switching would be an ideal switching scheme if the capacity of the interconnec-

tion network would be large enough to satisfy all the connections requested during execution

without any conflict. For instance, if C is the set of connections that are used during the

execution of a parallel program and the interconnection network can satisfy all the connec-

tions in C without conflict, then circuit switching will pay the overhead of establishing each

connection only once during the execution of the program. Specifically, the overhead will be

paid only when a connection is requested for the first time. Moreover, if C is known before

the program starts execution, then the network can be configured to satisfy the connections

in C before execution starts, thus removing any run-time overhead to establish the circuits.

Unfortunately, a scalable interconnection network cannot realize all the communication

requirements of real applications without conflict. Due to the limited capacity of networks,

circuits will have to be repeatedly torn down and re-established during execution. Thus, the

resulting overhead may cause a severe bottleneck at the scheduler which will have to resolve

contention among competing requests and establish new circuits at run time.

A possible solution to the problem of limited network capacity is to decompose the set

of connections, C, into a number of subsets, C1 ,..., Ck, such that C = C1 ∪ ... ∪ Ck, and

each Ci, i = 1, ..., k, can be realized in the network without conflict [44]. Time division

multiplexing (TDM) can then be used to realize each set Ci periodically in a separate time

slot. We call any set of connections that can be realized in the network without conflict, a

network configuration set, or simply a configuration. Hence, with TDM, the connections in

each configuration set Ci could be realized in the network every k time slots.

Although using TDM all the connections in C can coexist in the network, each connection

gets only 1/k of the maximum possible connection bandwidth. Hence, it is imperative to

keep k as small as possible. Exploring communication locality can be very useful in that

regard since it implies that only a subset of C is being used at any given time during the

execution of a program.

Specifically, assume that W (1), ..., W (p), is a sequence of sets of connections that represents

the communication requirements during the execution of the program. That is, the program

goes through p phases and during the execution of each phase, j, j = 1, ..., p, it uses the

connections in set W (j). We call each set W (j) a communication working set. Note that the

52

sets W (1), ...,W (p) are not necessarily disjoint, but W (1)∪...∪W (p) = C. During the execution

of phase j, the multiplexing degree is set to kj, where the set W (j) can be decomposed into

kj network configurations.

The partitioning of the communication requirements into phases is not unique, but is

strongly influenced by the communication locality. For programs with strong spacial com-

munication locality, it should be possible to find a partitioning in which the size of each

working set W (j) is small, thus leading to a small multiplexing degree kj. For programs with

strong temporal communication locality, the number of phases, p, should be small leading

to fewer network reconfigurations during execution. This is a desirable property since net-

work reconfiguration and circuit establishment will be performed at the rate of the change

in communication locality, rather than at the rate of communication requests.

In Section 5.2, we will discuss different schemes for identifying communication phases

present during program execution. However, it should be clear that there is a tradeoff

between the number of phases, p, and the size of each working set W (j). At one extreme,

we can consider that p = 1 and that the entire execution is regarded as a single phase,

with W (1) = C, and k1 = k. At the other extreme, p is considered to be as large as it

takes to allow the connections in each working set W (j) to be realizable in the network

without conflict. More phases lead to more frequent reconfigurations and thus to larger

reconfiguration overhead while larger than necessary multiplexing degree leads to inefficient

network utilization. Specifically, if during a phase j, the actual communication traffic utilizes

only s of the kj multiplexed slots needed to establish the working set, then only s/kj of the

available network bandwidth is utilized.

5.2 PREDICTIVE CONTROL OF NETWORKS

Traditional circuit switching falls naturally into the general framework described in Section

5.1. Specifically, circuit switching amounts to TDM with a multiplexing degree of one. Hence,

each realizable active working set is necessarily a configuration that can be established in

the network without conflict. Moreover, the establishment of each new requested circuit

53

represents a change in the active working set. This change may require removing some

existing connections even if these connections must be re-established in the near future. As

discussed in Section 5.1, it is crucial for communication efficiency to track and minimize

the active working of the running application. TDM allows caching larger working sets of

connections, and provides the ability to change the multiplexing degree as required by the

application. In the following, we explore different schemes for identifying, predicting, and

tracking communication working sets.

5.2.1 Compile-time and load-time prediction of working sets

Many parallel applications have regular communication patterns that can be identified ei-

ther at compile time or at load time after the mapping of the application to processors is

determined. In [25], an experimental compiler was developed to determine the communica-

tion requirements of programs written in a shared memory language, such as OpenMP. A

similar concept was applied in [45] to thread level computations and in [24] to programs that

use message passing. In general, it was found that in parallel scientific applications, most

inter-processor communications can be determined at compile or load time [46, 47].

Developing parallel programs using message passing gives application developers explicit

control over inter-processor communications, while many shared memory parallel languages

give the application developer explicit control over the allocation of the address space to

memory modules. Moreover, new languages such as StreamIt [48], assume that communica-

tion patterns between processes are specified and MPI has facilities called communicators for

explicitly specifying the communication working set. In order to obtain efficient programs,

users usually take advantage of the capability to control communications and memory allo-

cation. Hence, it is reasonable to ask the user to give some directives to the compiler about

the active communication working set in different phases of the program, if the user wishes

to increase the efficiency of inter-processor communication.

Compiled communication allows the compiler to statically determine and optimize the

communication requirements in parallel systems [49]. It has been used in combination with

message passing in the iWarp system [50, 51]. In [52], the compiler inserts the commands

54

needed to establish the needed connections in the network before the communication takes

place. However, because circuit switching is used, the overhead of establishing the connection

turned out to be extremely large. In our work, we use TDM to take advantage of compiled

communication for static communication patterns without the significant overhead of circuit

switching. A similar TDM approach is proposed in [45] for adaptive System-On-a-Chip.

In this dissertation we will not elaborate on compiler technology, but we will assume

that the compiler can identify the appropriate communication working sets when such an

identification is possible [45, 53]. Instead, we will present in Section 5.5 the design of a

communication network which can greatly benefit from compiler identification of the com-

munication patterns.

5.2.2 Dynamic prediction of the working set

Branch prediction has been proved to be a very powerful technique for improving the perfor-

mance of microarchitectures, and many attempts have been made to apply the same concepts

to improve communication performance. The idea is to predict the communication require-

ment and to establish the corresponding circuits in the network before they are actually

needed, thus eliminating circuit establishment overhead. Using the notation from Section

5.1, the works in [54, 55], for example, attempt to predict the connections in the working

set W (j+1) while W (j) is being used. In order for such prediction to be useful, however, the

processors should be doing useful computational work while the network is being configured

from W (j) to W (j+1).

When TDM is used to increase the size of the set of established connections, the overhead

of adding a new connection is incurred only the first time the connection is used. Once a

connection has been established in the network, there is no overhead for reusing the connec-

tion. The overhead of establishing a connection when it is used for the first time is similar

to the penalty for compulsory misses in caches; if the right cache size is used, then a cache

miss occurs only on the first reference to a memory location, while successive references to

the same location are all hits. In order to keep the multiplexing degree small, however, a

connection which will no longer be used should be removed from the working set. Going

55

back to the cache analogy, trying to keep the multiplexing degrees small is similar to allowing

the cache size to decrease by evicting cache lines before they have to be replaced with other

cache lines.

Hence, instead of trying to predict when to add a new connection to the working set,

the role of dynamic predictions in our network is to predict when to remove a connection

from the working set. The purpose of this dissertation is not to compare the effectiveness

of different predictors but to present a network architecture that will allow such prediction.

For this reason, we will use in our experiments a simple ‘time-out’ predictor in which a

connection is removed if it is not used for a certain period of time. A different predictor

can be implemented by associating a counter with each connection in the working set. This

counter is reset to zero every time that connection is used and is incremented every time

another connection is used. When the counter reaches a certain threshold, the connection is

evicted from the network. In other word, a connection is evicted if it is not used while other

connections are being used, but is not evicted if the application is in a computation phase,

where no communication takes place.

5.2.3 Dynamic reconfiguration with compiler assistance

High-level knowledge of the program’s structure is useful to dynamic prediction discussed

in Section 5.2.1. This information can either be provided by the user as directives or in

many cases discovered by a compiler. For example, consider a compiler that detects different

communication patterns between two consecutive loop structures. Even if the compiler

cannot detect the patterns themselves, it can insert an instruction in the code that flushes

all current connections in the network between the two loops. Thus, when the second loop

executes it will not mis-predict the pattern based on the previous loop, but rather build a

new working set immediately. This idea has been verified by the work in [53]. Other points

that may indicate changes in communication localities include procedure boundaries, “if”

statements, and points of remapping tasks to processors for load balancing.

The compiler can assist a dynamic reconfiguration strategy considerably in more subtle

ways. The compiler might be able to statically determine a portion of the working set,

56

allowing the dynamic reconfiguration strategy to only work on non-predicted communica-

tions. For example, consider the case where a loop contains an embedded “if” statement.

The communication pattern for the loop may now depend on the condition of “if” statement.

The predictor’s knowledge of the conditional can significantly simplify the communication

pattern detection. One way this could be used is to store a second level working set that is

swapped in only when the conditional is true.

If the compiler can predict only a portion of the communication operations statically, the

predicted configurations can be preloaded to the network, while the scheduler can continue

to schedule dynamically requested connections that are not preloaded.

5.3 HARDWARE ARCHITECTURE OF PREDICTIVE CIRCUIT

SWITCHING SCHEDULER

Chapter 3 gives overall architecture of the hybrid switching system. The switching fabric

in the system is a passive fabric with no buffering or control capabilities. The fabric can

represent a crossbar interconnection, a multistage fabric, a fat tree organization, or any other

direct interconnection topology.

5.3.1 Scheduler architecture

The configuration of the fabric is determined by configuration registers. By loading specific

values into the registers, specific mappings between the input ports and the output ports are

realized. In its simplest form, a configuration, C, may be represented by a Boolean matrix, B,

where Bu,v is ‘1’ when input u is connected to output v, and Bu,v is ‘0’, otherwise. For the case

of a crossbar fabric, the only constraints on B are that there is at most one non-zero entry in

each row and at most one non-zero entry in each column. More complicated constraints may

be derived for fabrics that have limited permutation capabilities (e.g. multistage networks)

or multiple-paths from inputs to outputs (e.g. fat tree networks). In the remainder of this

chapter, we will present a detailed design for a system based on a crossbar fabric.

57

��� � � � � � ��� � � � � � ��� � � � � � � �

�	�
 � � ����
 � � ���

 � � � �

��� � � � � ��� � � � ��� � � � � �

��� � � � � � �
�
� � ��� �

����� � � � �
� �

!
"
#
$

%'& � (

%'& � (

%�&) � � (

*,+ *	�

����� - ��� .
� ���
/ ���

"0#'$
%�& 1 (�

����2 3 � ��465,+ 7�8
�

%�9

��� �
� ���
- � / �:- � ��� ��2 ��� 8

�

Figure 5.1: A detailed diagram of the scheduler.

The scheduler receives a request, Ru, 0 ≤ u ≤ N −1, from each of the N NICs indicating

which of the logical queues of that NIC is not empty. Hence, each Ru is an N -bit signal,

Ru,0, ..., Ru,N−1, transmitting to the controller the communication requirements of NICu.

The controller receives requests for connections from all the NICs (a matrix R), schedules

the connections and communicates an N -bit grant signal, Gu , to each NICu. The scheduler

sets the vth signal of Gu, Gu,v, to 1 whenever a circuit is established between the output port

of NICu and the input port of NICv. At most one of Gu,v, v = 0, ..., N −1 can be non-zero at

any given time. Note that the grant signals G0, ..., GN−1 , are the rows of the configuration

matrix B.

In order to support a multiplexing degree of K, the scheduler has to create K configura-

tion matrices, B(0), ..., B(K−1), one for each of the K multiplexed time slots. The scheduler

satisfies requests from NICs in any of the K slots. However, in any given time slot, t, only

the corresponding matrix B(t) is copied to the fabric configuration register and the corre-

sponding grant signals are sent to the NICs. Figure 5.1 shows a detailed diagram of the

58

scheduler, in which a time slot clock controls the copying of the configuration matrix to the

switch fabric. The TDM counter shown in the figure is a counter which counts from 0 to

K -1, but which skips a particular count t, if the corresponding matrix B(t) is all zeros. This

feature skips over empty configurations and allows the scheduler to reduce the multiplexing

degrees by controlling the content of the configuration register.

Note that in the above design, we provide an explicit grant signal from the scheduler

to the NICs, thus giving the scheduler the responsibility of controlling the synchronization

among the NICs. Specifically, the grant signals indicate to each NIC the period in which it

can send data, thus removing the need for the NICs to keep track of the TDM slot boundaries.

However, a guard band should be enforced between consecutive time slots. During that band,

circuits should not be used due to uncertainties in the fabric state. The length of the guard

band depends on the variations of the propagation delays of the grant signals and on the

time needed to change the setting of the switch fabric. For example, when 1 µs time slots

are used, if the time to reconfigure the switch fabric is within 50 ns and the maximum length

of a grant line is 50 feet (50 ns propagation delay), then the length of the guard band is

50 ns, which means that 5% of each time slot cannot be used for data transfer. Note that

during a 1 µs slot, 125 bytes of data can be transmitted per serial Gb/s link.

5.3.2 Scheduling logic

The block designated “scheduling logic” in Figure 5.1 is responsible for generating the sched-

ule for a particular time slot, s. The SL counter selects the time slot, s, 0 ≤ s ≤ K, to which

it will try to insert the pending requests. Assuming that the current multiplexing degree

is k, k ≤ K, a simple scheme to select s is to apply a round robin rotation among the k

currently active configurations. The current configuration matrix for slot s, B(s), is selected

by a multiplexer and fed to a pre-scheduling logic, along with the request matrix R and a

matrix B∗ which is set to B(0) + ... + B(K−1) ,where + is the bit-wise OR operation. The

matrix B∗ represents all the connections that are currently established in the network (in

any of the K time slot). Specifically, B∗
u,v = 1 if and only if the connection from port u to

port v is established during any one of the K time slots. By comparing B∗
u,v, Bs

u,v and Ru,v,

59

Table 5.1: The possible inputs to the pre-scheduling logic

Ru,v B∗
u,v B

(s)
u,v Description of the case Lu,v

0 x 0 Connection not requested and not realized in slot s 0

0 x 1 Connection not requested and realized in slot s 1

(should release)

1 1 x Connection requested and realized in some slot 0

1 0 0 Connection requested and not realized in any slot 1

(should establish)

Table 5.2: The function of a scheduling logic module, SLu,v

Lu,v Au,v Du,v Action Tu,v Au+1,v Du,v+1

0 x x No change in connection 0 Au,v Du,v

1 1 1 Release the connection in slot s 1(B
(s)
u,v1 –> 0) 0 0

1 1 0 Need connection 0 Au,v Du,v

but resources not available

1 0 1 Need connection 0 Au,v Du,v

but resources not available

1 0 0 Establish connection in slot s 1(B
(s)
u,v1 –> 0) 1 1

60

the scheduler can figure out whether it needs to make any change to the value of Bs
u,v (the

state of the connection from u to v in slot s).

In Table 5.1, we describe the possible cases that the pre-scheduling logic has to deal

with. The value of Lu,v shown in the last column of the table is generated to be equal to

0 if no change is to be made in the value of Bs
u,v. The value of Lu,v is equal to 1 either if

a connection is to be released or if a connection is to be established. In order to release

and establish connections, we need to keep track of resource availability. For crossbar switch

fabrics, resources are output and input ports. Hence, two vectors AO and AI are used to

express the availability of ports in the current schedule of slot s. Specifically, AO is obtained

by taking the “or” of the columns of B(s). That is, AOv = B
(s)
0,v + ...+B

(s)
N−1,v, which is equal

to 0 if and only if output port v is unscheduled in slot s (no input is connected to output

v). Similarly, the vector AI is obtained by taking the “or” of the rows of B(s). That is,

AIu = B
(s)
u,0 + ... + B

(s)
u,N−1 which is equal to 0 if and only if input port u is unscheduled in

slot s (input u is not connected to any output).

The scheduling logic for a crossbar switch is composed of an N xN array of identical

modules, SLu,v , u = 0, ..., N − 1, v = 0, ..., N − 1. Each SLu,v receives the signal Lu,v and

is responsible for scheduling or releasing the connection from input port u to output port v.

Two sets of port availability signals propagate in the SL array to carry information about

the availability of input and output ports in slot s. One set of signals, Au,v, propagates

upwards through rows 0, ..., N − 1 of the array and is initialized such that A0,v = AOv for

v = 0, ..., N − 1. The other set of signals, Du,v, propagates rightwards through columns

0, ..., N − 1 and is initialized such that Du,0 = AIu for u = 0, ..., N − 1. At any given

scheduling module, SLu,v, the input Au,v is equal to 0 if and only if output port v is available

(not occupied) and Du,v is equal to 0 if and only if input port u is available (not occupied).

Each SLu,v passes Au,v upward (as Au+1,v) and Du,v rightward (as Du,v+1) unchanged if

Lu,v = 0. However, if Lu,v = 1, then SLu,v sets Au+1,v = Du,v+1 = 0 if it is releasing the

connection between ports u and v, or sets Au+1,v = Du,v+1 = 1 if it is using input ports u

and output port v to establish a connection.

Figure 5.2 and Table 5.2 describe the way the availability signals propagate in the schedul-

ing array. Table 5.2 also specifies the output signal Tu,v generated for each input combina-

61

SLu,v

Au,v

Au+1,v
Tu,v

Lu,v

Du,v Du,v+1

Figure 5.2: The inputs and outputs to SLu,v.

tion. An output Tu,v = 0 means that the value of B
(s)
u,v should not be changed, while an

output Tu,v = 1 means that the value of B
(s)
u,v should be toggled. Note that by initializing

A0,v = AOv, v = 0, ..., N − 1, and Du,0 = AIu, u = 0, ..., N − 1, we make the unused network

ports available to a request Ru,v before they are available to another request Ra,b if u < a

or v < b, thus always giving a higher priority to the former. A more fair schedule can be

obtained by rotating the priority such that Aa,v = AOv, v = 0, ..., N − 1, and Du,b = AIu,

u = 0, ..., N − 1, where a and b are selected randomly or through a round robin scheme.

The output of the scheduling logic, T (Tu,v, u, v = 0, ..., N−1) is then used to update the

configuration matrix B(s) (see Figure 5.1), thus completing the scheduling process for slot

s in one SL clock cycle. Note that the period of the SL clock depends on the propagation

delay in the scheduling logic and is independent of the period of the time slot clock. In

other words, the scheduling for a particular slot, s, is performed while the switch fabric is

configured according to the configuration for a possibly different time slot t.

5.4 HARDWARE PERFORMANCE

Because of the time needed for the signals Au,v and Du,v to propagate in the SL array, the

scheduling delay should be linearly proportional to the system size, N. We have synthesized

the scheduler circuit on an Altera Stratix FPGA (EP1S25F1020C-5), and the latency of

62

the resulting circuit is shown in Table 5.3 for different system sizes. We observe that the

scheduler is salable. The number of scheduled connections per second increases as the system

gets large. ASIC results tend to be 5 to 10 times better than the FPGA results. In the

simulation described in Section 5.5, we conservatively chose the ASIC performance to be 80

ns for a 128x128 scheduler (about 5x better).

Table 5.3: Latency of the scheduling circuit

System size 4 8 16 32 64 128

Latency (ns) 34 49 76 120 213 385

Millions of Possible Scheduled Connections /second 118 167 211 266 300 332

5.5 SYSTEM EVALUATION

For our simulations, we created a multi-processor model that contains a single crossbar for

communications and a single scheduler for arbitration. Other interconnection fabrics are

possible but this represents a baseline topology. We have simulated a 128 processor system

that supports wormhole routing, circuit switching, and multiplexing of the communication

pattern with dynamic scheduling and preloading a set of communication patterns. Predictive

communications utilize the ability to preload the communication pattern into the network.

When prediction is not possible, or in cases of misprediction, dynamic scheduling can be

employed.

5.5.1 Network simulation methodology

The simulations are performed on a cycle-accurate simulation framework. The brief simula-

tion methodology is described in this section to provide background knowledge about network

performance evaluation. If interested, please refer to Chapter 8 for detailed information.

63

The network simulator is built as a common framework for designing, synthesis, and sim-

ulating parallel computing network. We are able to create networks with different switching

technology using modular components. Each components can be designed separately and

characterized in terms of latency and bandwidth. The latency is represented as multiple

cycle latency. The parameters, e.g. cycle and latency, of each components are provided by

hardware synthesis tools. In this way, we can accurately determine the latency down to

nanosecond (10−9) level of accuracy. The components built for network simulation include

processing elements (PE), network interface cards (NIC), wires, network schedulers, and

switch fabrics.

By using the VHDL hardware description language to construct a hardware simulator, we

are able to simulate the entire network to cycle accuracy. This level of simulations enables

us to observe the true behavior of the network with specific switching techniques. The

hardware behavior and performance is then used to create identical modules in SystemC.

SystemC is C++ based system design language that was developed for component to system

level simulations. On one hand, SystemC has inherited flexibility from C++ so that the

simulator development cycle is decreased. On the other hand, the SystemC allows to create

structure that are available in hardware description language, such as bit-vetors, ports,

processes. The network components and systems built in SystemC are validated with those

built in VHDL to guarantee identical functionality. Using SystemC simulator, we are able

to simulate networks with 128+ communication nodes.

5.5.2 Simulation result

Each of the 128 processors is modeled as a packet generator/receiver and contains a command

file that defines the type and sequence of communications. The network interface card(NIC)

was designed using synthesizable VHDL and requires a single-cycle delay of 10ns to send

or receive data. This performance is optimized but represents real hardware that has been

synthesized. The wires in the network assume 10 foot cables using high-speed serial links

operating at 6.4 Gb/s. The latency is modeled as a 30ns delay for parallel-to-serial conversion,

20ns for propagation delay down a ten foot wire and 30ns for serial-to-parallel conversion.

64

For all networks, a 128x128 crossbar fabric is used. For the wormhole routed switch,

the crossbar is digital but for the other networks, the crossbar is a Low-Voltage Differential

Signal (LVDS) switch. The propagation delay through the digital switch is modeled as 10

ns while the propagation delay through the LVDS switch is neglected as it requires less than

2 ns (equivalent to a 1 foot cable) [16]. An 80 ns scheduler is used for all network types, as

described in Section 5.3.

For a wormhole message, the delay through the switch includes the time required to

schedule the first flit of the message, which is 80 ns. All subsequent flits in the same worms

are routed in 10 ns. In order to ensure fairness within the network, worm sizes are limited

and in our simulation we set this limit to 128 bytes. The flit size is 8 bytes. It should be

noted that if a message is broken up into two worms, the cable delay is only seen once as

the second worm is buffered within the crossbar switch.

For circuit switching, however, the delay to schedule a message includes the cable delay

of 80 ns to send the request, 80 ns to schedule the request, and another 80 ns to send the

grant back to the NIC. After that, the point-to-point delay is 30+20+20+30 ns.

We ran four test patterns using message sizes from 8 to 2048 bytes: Scatter, Random

Mesh, Ordered Mesh, Two Phase, and Hybrid. These patterns were selected based on a

study of the NAS benchmarks [20].

5.5.2.1 Preloading The Scatter test sends a unique message from a single processor to

all 128 processors. Random Mesh represents nearest neighbor communications in a 2D mesh

but without any predictability while Ordered Mesh represents an ordered nearest neighbor

communication pattern. The Two Phase test represents those programs that contain global

communication and local communication. In this test, there is one 128-processor all-to-all

communication followed by 16 random nearest neighbor communications.

The simulation results are shown in Figure 5.3. For the Scatter test pattern, there is a

notable increase in bandwidth utilization between 32 and 64 bytes. This is due to the fixed

duration of each of the communication cycles. Each cycle is fixed at 100 ns or 80 bytes.

65

8 16 32 64 128 256 512 1024 2048
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Preload
Dynamic TDM
Circuit
Wormhole

Figure 5.3: Performance results for scatter. The Preload and Dynamic TDM utilize a

multiplexing degree of four.

Messages between 8 and 64 bytes can be transmitted in a single cycle. Messages over

80 bytes are fragmented into multiple cycles and must remain idle when its communication

cycle is not active. This is why the efficiency flattens out form 64 to 2048 bytes.

For Preload versus Dynamic TDM, it can be seen that the Scatter performance is very

similar. For Random Mesh, both Preload and Dynamic TDM outperform Wormhole and

Circuit switching by 10% to 25% but are within 10% of each other, as shown in Figure 5.4.

The performance of Circuit switching improves as the message size increases. The Ordered

Mesh pattern represents communications that are highly predictable. In our experiments,

4 destinations were used per processor and thus, there was still a relatively high hit-rate

for dynamic scheduling of TDM. The Ordered Mesh, as one would expect does very well

with Preload. The regularity of the pattern also shows good efficiency for TDM but is

not exploited for Wormhole or Circuit switching. For a larger number of destinations, the

efficiency of dynamically scheduling TDM is expected to decrease.

66

8 16 32 64 128 256 512 1024 2048
0

5

10

15

20

25

30

35

40

45

50

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Preload
Dynamic TDM
Circuit
Wormhole

(a) Random mesh

8 16 32 64 128 256 512 1024 2048
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Preload
Dynamic TDM
Circuit
Wormhole

(b) Ordered mesh

Figure 5.4: Performance results for random mesh and ordered mesh. The Preload and

Dynamic TDM utilize a multiplexing degree of four. Ordered and random mesh represents

nearest neighbor communications for a 2D mesh.

67

8 16 32 64 128 256 512 1024 2048
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Preload
Dynamic TDM
Circuit
Wormhole

Figure 5.5: Performance results for two phases. The Preload and Dynamic TDM utilize a

multiplexing degree of four.

5.5.2.2 Setting phases For the Two Phased communication test as shown in Figure

5.5, Preload does better than the rest and the performance of dynamically scheduled TDM

drops below Wormhole. This is due to the fairly small set of destinations in the Random

Mesh phase and due to the highly structured nature of the All-to-All phase. For the Random

Mesh phase, we have shown that both Preload and Dynamic TDM do well but the All-to-All

pattern is only exploited by preloading.

5.5.2.3 Partial preloading We also simulated the capability of the switch to deal with

dynamic communications while preloading the statically known communication patterns.

For this experiment, a percentage of the communications are to specific processors and the

remaining are randomly sent to any processor. We select a multiplexing degree and we use

k slots to preload the static patterns, while the other 3-k slots are use to schedule dynamic

communication. We changed k between 0 and 2, and the results are shown in Figure 5.6. The

1-preload/2-dynamic outperforms the pure dynamic scheme even for low determinism (50%).

68

0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of Deterministic Communications

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

K = 0
K = 1
K = 2

Figure 5.6: Combining preload of communication patterns with dynamic scheduling. A

multiplexing degree of three was used, with k slots preloaded. k is varied from 0 to 2.

For 85% or greater determinism, the 2-preload/1-dynamic scheme performed over 10% better

than the 1-preload/2-dynamic. This supports the notion of predictive communications as a

hit-rate of 85% or better shows dramatic improvement in efficiency.

In this chapter, we presented the design of a real-time greedy scheduler that supports

dynamic circuit establishment, compiler directed communication. The design relies on an

adaptive time division multiplexing scheme. The design also allows different prediction

mechanisms for pre-loading connections into the working set before they are actually needed.

69

6.0 OPTIMIZING SCHEDULER FOR CROSSBAR NETWORKS

Reasonable performance results can be achieved using greedy heuristics for crossbar schedul-

ing. However, for optimized scheduling, more complex algorithms are needed. One provably

optimal solution is to implement the maximum matching algorithm for bipartite graphs.

The maximum matching algorithm requires O(N3) time for an N ×N communication sys-

tem, which limits its application to network scheduling. We reformulate this algorithm in

terms of Boolean operations, rather than the original set operations and introduce three

Maximum Matching Processors and show how we can trade processor complexity for perfor-

mance. Specifically, we examine a Pure Logic Processor, a Matrix Processor and a Vector

Processor to show how these architectures reduce the time complexity down to O(1), O(K),

and O(KN), respectively, where K is the number of optimization steps. While an optimal

scheduling algorithm requires K = 2N −1 steps, our simulation results show that the sched-

uler establishes connections 99% close to the optimal schedule when K = 9. We examine

the hardware complexity and the time complexity of these architectures for crossbar sizes of

up to N = 1024. Using FPGA synthesis results, we show that a greedy schedule for various

sized crossbars, ranging from 8 × 8 to 512 × 512, can be optimized in less than 90 ns per

optimization step.

Section 6.1 introduces prior work and research motivation. Related work on maximum

matching algorithms is introduced in Section 6.2. Section 6.3 introduces some general terms

and theorems. Section 6.4 describes the hardware algorithms and architectures that solve

the maximum matching problem. In particular, the tradeoff of hardware timing and area

cost are considered. System simulation is described with the results in Section 6.6. Finally,

we discuss conclusions and future research directions in Section 6.7.

70

6.1 INTRODUCTION

Maximum matching in bipartite graphs is a widely studied problem [56, 57, 58, 59]. Max-

imum matching provides the optimal number of links between a set of sources and a set

of destinations based on the requirements of system. A crossbar interconnect can be rep-

resented as a bipartite graph where each vertex corresponds to a communication node and

each edge represents a link between the two nodes. Because bipartite maximum matching is

optimal, the maximum network utilization is achieved. However, due to its O(N3) running

time, the scalability of switching using this technique is not scalable.

Developments of electrical, analog, and optical network technologies continue to push

the limits of network switches. It is now possible to place large crossbars within single chips

and even larger crossbars within communication racks, as seen in the IBM BlueGene/L [10]

and NEC Earth Simulator [60]. Scheduling these switches to achieve maximum throughput

in the system is increasingly challenging. Currently, many of these systems use a greedy

scheduling approach that results in a fast schedule, but does not achieve optimal results.

If a maximum matching approach could be used, it would improve network utilization and

reduce communication time.

This chapter describes three maximum matching processors. By utilizing fundamental

properties of hardware logic it is possible to detect potential paths for optimization in parallel

and trace back the result. As a result of implementing a Pure Logic Processor, a Matrix

Processor and a Vector Processor, the algorithm run-time complexity can be reduced from

O(KN2) to O(1), O(K) and O(KN), respectively, where K is the number of optimization

steps for an N × N crossbar. Additionally, by using a greedy scheduler to make initial

configurations as discussed in Chapter 5, the bipartite algorithm improves its results and is

able to grant more requests. By examining our simulation results, we find that near-optimal

connections of approximately 99% close to the optimal results can be established in no more

than nine optimization steps (K = 9).

71

6.2 PRIOR WORK

Several researchers have applied bipartite maximum matching to solve network switch con-

figuration [61, 62]. For example, the maximum matching algorithm allows 100% throughput

under uniform traffic for packet switching networks [63]. Weller and Hajek [61] applied a

batch scheduling extension to maximum matching to solve the fairness problem for a cross-

bar network called critical maximum matching. Maximum matching can also be used to

determine and utilize the optimal multiplexing degree for time-division multiplexing (TDM)

networks [62]. While maximum matching provides extremely attractive network character-

istics, the algorithmic complexity makes it impractical for large switches.

The sequential maximum algorithm was first proposed and proved optimal by Edmonds

[64]. It iteratively searches for augmenting paths and increases the cardinality of the match-

ing set. This has been shown to require O(N3) time with a maximum augmenting path

length of 2N − 1.

Subsequently, most sequential algorithms have been derived from the same concept [65].

Additionally, several parallel algorithms have been proposed to solve this problem. Mulmuley

et. al. proposed a parallel version of the algorithm based on the pugilistic lemma requiring

O(N3.5) processors in parallel [59]. Hanckowiak et. al. implemented a parallel algorithm

with computation complexity of O(lg6 N) for approximating the maximum matching with

the matching degree at least 2/3 of the maximum matching degree [66, 67]. However, to

make the algorithm pratical for a scheduler within a switch, the algorithm must execute

quickly and be able to fit within a single silicon device.

Prior works in parallelizing the maximum matching algorithm utilize multiple processors

that execute sequential instructions. In contrast, the underlying algorithm is based on sets,

which can be represented as binary bits. Thus, the algorithm can be implemented as a set

of operates acting in parallel on these bits. Our approach utilizes parallelism amiable in a

single device such as custom hardware.

72

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �
� 	

�

� �

� �

�

� �

� �
� �

� � �

� � �

Figure 6.1: A bipartite graph representing a crossbar schedule.

6.3 BACKGROUND

In this section, we introduce general terminology and fundamental theorems related to the

optimal maximum matching algorithm that will be used in its description. More detailed

definitions and proofs are found in [64]. We utilize these foundational principles to create

an optimizing scheduler.

Definition 1. Bipartite graph

A undirected graph, G, consisting of vertices and edges, G = (V,E), is a Bipartite Graph

if G can be separated into two sets V1 and V2, such that V1 ∩ V2 = θ and V1 ∪ V2 = V and

for any edge e = (vi, vj) ∈ E, then vi ∈ V1, vj ∈ V2.

Figure 6.1 gives a example of bipartite graph. V1 = {x1, x2, x3, x4, x5},
V2 = {y1, y2, y3, y4, y5}, E = {e1, e2, e3, . . . , e11}.

To configure a crossbar, we need to schedule communications between pairs of nodes

such that each node is only involved in sending a single message at any given time. In this

case, the edges of the graph represent a communication connection between a sender and

receiver. In this graph notation, each node is represented as an (x, y) pair that represents

its sending and receiving capability.

Definition 2. Maximum matching

In bipartite graph G = (V, E), for an edges set M , M ⊂ E, and there does not exist an

M ′ such that |M ′| > |M | and M ′ ⊂ E, then M represents a maximum matching.

73

An objective of crossbar scheduling is to maximally utilize the routing resources available

in the crossbar. We examine and optimize the scheduling of the crossbar at a particular

instance in time, based on a set of requests in the system. These requests are represented as

edges in the bipartite graph. Consequently, the largest possible set of edges are scheduled

at each time instance.

Definition 3. Saturated and unsaturated edges

Given a particular matching M ⊂ E, all edges, e ∈ M are considered to be saturated.

All edges e′ ∈ E but e′ 6∈ M are considered to be unsaturated.

For crossbar scheduling, we start with a configuration and apply the maximum matching

algorithm to improve the bandwidth utilization of the crossbar. In this context, an estab-

lished configuration between nodes X and Y is said to be saturated. A communication

request that is not granted is said to be unsaturated.

Definition 4. Saturated and Unsaturated Vertices

Given a particular matching M ⊂ E, all vertices that are part of a saturated edge are

considered to be saturated. Conversely, all vertices that are not part of a saturated edge are

considered to be unsaturated.

Definition 5. Augmenting Path

If a path P in G is constructed by alternating unsaturated edges and saturated edges,

and both ends of the path are unsaturated, then path P is called augmenting path.

Theorem 1. M is a maximum matching of G, iff G does not contain an augmenting path

within M .

Corollary 1. If M is not a maximum matching of G, then there exists a augmenting path

within M .

Corollary 2. Given a matching M of G and an augmenting path P , within M , then there

exists a matching M ′ that does not contain P whose cardinality is larger than M .

Theorem 2. Given a matching M of G and an augmenting path P , a new matching M ′

can be created from M such that |M ′| > |M | by removing all saturated edges in P from M

and by adding all unsaturated edges in P to G.

74

For example, Figure 6.1 shows a matching set using the darkened edges. The augmenting

path in this graph contains edges {e7, e9, e10}. By removing the saturated edge e9, the

unsaturated edges e7 and e10 can be added; thereby increasing the number of edges in the

matching set.

In our hardware implementation, augmenting paths are searched in parallel using spe-

cialized processing. All computation is based on pure hardware logic, matrix or vector

operations. However, asymptotic notation breaks down in this case as our architecture is

comprised of O(N2) gates within a single “processor” rather than O(N2) processors. In

essence, our technique utilizes a custom architecture to exploit the transistor density growth

in the past decades and achieves superior performance while fitting within a single device.

One of the benefits of the maximum matching algorithm is that it continuously improves

an existing matching until optimality is reached. By first utilizing a greedy strategy we

establish a baseline matching. Then, by finding augmenting paths, we utilize the maximum

matching algorithm to further improve the resulting solution either for a fixed amount of

time or until optimality is reached.

6.4 SPECIALIZED PROCESSORS FOR OPTIMAL SCHEDULING

In this section, a parallel maximum matching algorithm is presented that can be realized

with the inherent performance and density of hardware logic. All possible augmenting paths

are detected in parallel. Then one path is traced back for the exact optimization. Using

the algorithm, we propose three hardware designs: (1) Pure Logic Processor, (2) Matrix

Processor, and (3) Vector Processor. The hardware timing and area analysis shows that

based on 90nm FPGA technology, the Pure Logic Processor is feasible for small systems (16

or fewer nodes), the Matrix Processor is appropriate for large systems (32 – 128 nodes), and

the Vector Processor can handle very large systems (128 – 1024 nodes).

75

6.4.1 Maximum matching algorithm

The main idea for hardware implementation is to unfold the bipartite graph, as shown in

Figure 6.2. The graph starts with an unsaturated path and then adds multiple pairs of

saturated followed by unsaturated paths.

The source nodes on the left, labeled x1 through x5 and destination nodes on the right,

labeled y1 through y5. Pending communications are shown as connections between X and Y

nodes. Darkened connections represent an existing schedule and darkened nodes represent

nodes that are involved in a communication. These scheduled connections and nodes are

labeled as saturated while the dashed connections and nodes are labeled as unsaturated.

The original maximum matching algorithm uses sets to describe the algorithm and can

be found in [12]. Conceptually, the algorithm removes a K saturated links (i.e., scheduled)

and adds K + 1 links. In Figure 6.1, it can be seen that by removing {x5, y3}, {x4, y3} and

{x5, y4} can be added.

The algorithm for finding this optimization involves following an alternating sequence of

unsaturated and saturated links between X and Y . The starting and ending nodes must be

unsaturated. In the example in Figure 6.1, the path is x4 → y3 → x5 → y4. The length of

the path does not matter but a vertex can only be included once.

Assume that there exists an augmenting path {x4, y3}, {y3, x5}, {x5, y4}. We set the

augmenting path as valid so that signal can pass through. If we inject a high-level signal

(e.g. logic value ‘1’) on x4 on the left side, we should be able to detect the same high-

level signal propagated through to the right side, y4. For small sized bipartite graph, an

augmenting path can be found using combinational logic in a single clock cycle.

In our representation of this algorithm, we split the graph into two graphs, labeled

saturated and unsaturated. The unsaturated graph contains only unsaturated paths and the

saturated graph contains only saturated paths. For the saturated path graph, we place the

Y nodes on the left and the X nodes on the right. We then create a new graph by placing

sequences of unsaturated then saturated graphs next to each other with overlapping vertices.

Finally, an unsaturated graph is added to the far right of the graph. In essence, we flip the

original graph over the Y axis an even number of times and only keep the unsaturated paths

76

��� � � � � � � � � 	�
 � � �

 � � � � � � � 	�
 � � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

(a) Original bipartite braph with matching M

� � �

� � �

� � �

� � �

� � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� � �

� � �

� � �

� � �

� � �

(b) Unfolded bipartite graph with matching M

Figure 6.2: Original and unfolded bipartite graphs.

77

in the odd stages and only keep the saturated paths in the even stages. The optimization

problem is reduced to finding a path from left to right through the graph starting and

ending with an unsaturated vertex. Figure 6.2 shows the new unfolded graph with three

stages. We use x′i and y′i to represent the unfolded vertex of xi and yi respectively, where

0 ≤ i < N . From this new graph, two legitimate paths existing through stages 1 and 2,

namely x4 → y3 → x′5 and x4 → y5 → x′3, but only one of the paths traverses stage three

to end at an unsaturated node, namely x4 → y3 → x′5 → y′4. This path is equivalent to the

path, x4 → y3 → x5 → y4, as shown in the Figure 6.1.

The optimization to the schedule removes the saturated links that exist in the final path

and adds the unsaturated links. In this algorithm, there is always one more unsaturated link

than saturated and thus, the result is always a schedule that contains one additional link.

To determine if any optimizations can be found from a particular unfolded graph, we

can conceptually treat the graph as if it was physically wired system and attach a voltage to

the unsaturated nodes at the far left of the graph and light bulbs to the unsaturated nodes

at the far right side of the graph. If any optimization path exists, then one of the light bulbs

will illuminate. Thus, it can be seen that a single left-to-right pass through the graph is

sufficient to determine if there are optimizations available.

There are three parts to the hardware algorithm, namely: (1) Detection of Augmenting

Paths, (2) Isolation of a Single Augmenting Path and (3) Matching Set Update. Path

detection is the most complex as it requires all possible paths to be checked. This is performed

in parallel to discover all paths. The second pass backtracks through the graph and isolates

a single path. The third step is to update the schedule (i.e., the Matching Set).

The variables used are defined as follows

• The proposed parallel maximum matching algorithm takes an iterative approach and

searches for augmenting paths of increasing length. Let K be the number of steps in the

original algorithm and is the maximum length of the augmenting path.

• N is the system size of an N ×N crossbar.

• F [k] is a matrix, representing the forward path of step k.

• B[k] is a matrix representing the backtrack path of step k.

• UnsaturatedX[i, j] is the mapping of unsaturated vertex i in X set to vertex j in Y set;

78

• SaturatedY [i, j] is the mapping of saturated vertex i in Y set to vertex j in X set.

• XMask[k] and Y Mask[k] are bit-vectors of size N in step k.

Figure 6.3 shows the procedure of detecting augmenting paths. We use a bit-vector

XMask[k] to represent the status of nodes at step k. If xi is unsaturated, the ith bit in

XMask[k] is set as ‘1’; otherwise, it is set as ‘0’. In this example, only x4 is unsaturated

after greedy scheduling, therefore XMask[1] is {0 0 0 0 1 0}. We use XMask[1] to filter

UnsaturatedX. If the ith bit of XMask is ‘1’, the ith row of Unsaturated X is enabled. In

Figure 6.3, only the 4th bit in XMask is ‘1’, therefore only the 4th row of UnsaturatedX

is enabled. This is equavelent to pairwise vector matrix multiplication. The resulting ma-

trix is F [1]. Xmask[2] is constructed by columnwise OR reduce. Similarly, after filtering

SaturatedY using Xmask[2], we get F [2]. By applying OR on each column of F [2], we get

XMask[3], which after a column-wise OR reduce becomes F [3]. We define a vertex as active

if it is traversed during discovery of augmenting paths. y3 and y5 are active after first step.

x3′ and x5′ are active in the second step and y′2, y
′
4, and y′5 in the final step. The algorithm

terminates as y′4 is an unsaturated vertex. The next step in the algorithm is to isolate the

augmenting path and update the matrices. The optimization then begins again with the

next matrices.

Once one or more augmenting paths have been found, exactly one of these paths must

be identified. This requires backtracking through the F matrices and selecting a single path

to isolate along the way. It is possible to isolate multiple paths but for simplicity, we isolate

only a single path. Figure 6.4 shows the backtracking to isolate a single augmenting path.

We use YMask to represent the status of nodes. We start from the most right side for

backtracking. Because y′4 is unsaturated, the 4th bit of YMask[3] is ‘1’. If there are multiple

bits in YMask are ‘1’. We only pick up one bit. In our design, we pick the lowest possible

bit. We use that bit to enable the column of F[3]. B[3] is the result after perform filtering.

After applying ‘or’ logic on each row of B3, we get YMask[2]. YMask[2] are used to filter

F[2] and generate B[2]. Following the same approach, B[1] is generated. In graphical point

of view, x′5 is active after first step. y3 is active in the second step and x4 in the final step.

The augmenting path is isolated, which is y′4 → x′5 → y3 → x4. It is equivalent to the path

y4 → x5 → y3 → x4 in the original graph.

79

� �

� � � � � � � � � �
� �
� �
� �
� �
� �

�

�

� � � ��� � � ��� �
� �
� �
� �
� �
� �

�
�

�
� �
� �

� � � � � � � � � �
	
 � �
 � � �
 � � �

�
�

�

�

� � � ��� ��� � � �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

�

� �

� � � � � � � � � �
� �
� �
� �
� �
� �

�
�

�
�
� �

� � � � � � � ��� �
	
 � �
 � � �
 � � �

� �
� �
� �
� �
� �

�

�
�

�

�

�
�
�
�
�

� � � � � � � �
�
�
�
�
�

�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

��
�

�
� � � � � � � � �

��

� � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
 � � �
 � � !

" #

" $

" %

" &

" '

(#)

($)

(%)

(&)

(')

" #)

" $)

" %)

" &)

" ')

(#

($

(%

(&

('

�

�

�

�

�

�
�
�
�
�

� � � � � � * �
�

Figure 6.3: Parallel tracing of potential augmenting paths as described in detection of

augmenting paths algorithm

�

� � � ��� � � � � �
� �
� �
� �
� �
� �

�

� � � �	� � � � � �
� �
� �
� �
� �
� �

�

� �

� � � �
� ��� ��� �
� �
� �
� �
� �
� �

� � � � �� � � � �� � � � �

�

�

�

� ��� ��� � � ��� �

�

� � � ��� � � � � �
� �
� �
� �
� �
� � �

� �
� ��� � � � � �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �

� � � � � � � � � � � �

� � � �� � � �� � � �

� � � � � � � � �

� �
�

�

�

� � �

� �

� ! �

� " �

� # �

$ �

$

$!

$ "

$ #

� �

�

� !

� "

� #

$ � �

$ �

$! �

$ " �

$ # �

� � � � � � � � � � � � � � �

Figure 6.4: Isolation of a single path within the augmenting paths.

80

�

� � � ��� � � � � �
� �
� �
� �
� �
� � �

� �	� �
� ��� ��� �
� �
� �
� �
� �
� ��

� �	� �
� ��� ��� �
� �
� �
� �
� �
� �

�
� �

� � � �
� � � � � �
�
�

�

�

� � � �
� � � � � �
� �
� �
� �
� �
� �

�
�

�
�

 �

� � � �
� � � � � �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

�
� �

� � � �
� � � � � �
� �
� �
� �
� �
� �

� � � �� � � ��

� �� � � � � �

B[2]

Figure 6.5: Matching set update.

The final step after isolating a single augmenting path is to update the matrices. The

updating of the connection matrices is illustrated in Figure 6.5. All unsaturated edges in the

augmenting path are added to the matching set and all saturated edges in the augmenting

path are removed from the matching set. Thus, all odd steps in the backtracking algorithms

B[1, 3, 5, ..] are added while the even steps are removed. We first generate and store the

augmenting path, which is a matrix P. P is generated by applying ‘and’ logic on B1,transpose

of B2, and B3. Then the optimized matching is achieved by applying XOR logic on P and

the original matching matrix G.

Our proposed algorithm is summarized below. The pseudo code is described in a general

form that can be implemented by pure hardware logic, matrix, or vector operations. We

describe the tradeoffs and performance of each of these three options in the following section.

The detection of Augmenting Paths Algorithm shown in Figure 6.6 is traced forward

through the unfolded graph in parallel. Line 2 creates a vector that contains unsaturated

vertices. The UnsaturatedX matrix is a connection matrix and by using the XMask, we

remove all paths that do not originate from an unsaturated vertex. Line 4 determines which

vertices in second column are active, that is, those vertices that are part of a path. This is

performed by a OR’ing the columns in the matrix. These three lines represent a single step

in the unfolded graph.

81

1. // Start with an unsaturated path

2. XMask[1] = UnsaturatedXVertices

3. i = 1;

4. while Not PathFound and i ≤ K {
5. // Follow a Unsaturated path

6. F[i] = XMask[i]*UnsaturatedX

7. XMask[i+1] = ColumnwiseReduceOR(F[i])

8. // See if any augmenting path is found

9. PathFound = ReduceOr (XMask[i+1] * UnsaturatedYVertices)

10. // Follow an Saturated path

11. F[i+1] = Xmask[i+1]*SaturatedY

12. XMask[i+2] = ColumnwiseReduceOR(F[i+1])

13. i=i+2

14. }

Figure 6.6: Detection of augmenting paths algorithm.

82

15. S = Final step number

16. // Select one of the active unsaturated vertices

17. YMask[s] = SelectOne(XMask[S])

18. for (i = S; i > 1; i−−) {
19. B[i]=YMask[i]*F[i]

20. YMask[i]=SelectOne(RowwiseReduceOR(B[i]))

21. }

Figure 6.7: Isolation of a single augmenting path.

The loop beginning on line 5 represents two steps in the unfolded graph, the first being

through saturated edges and the second being through unsaturated edges. This loop can

iterate multiple times as the graph can be unfolded numerous times.

It can be seen that the operations required for the maximum matching algorithm are

vector are matrix operations. We further observe that the data types required are all Boolean

and are relatively simple when compared to a traditional processor. However, traditional

processors do not perform matrix operations well, even when they are Boolean. Thus, we

will next explore three alternative architectures for acceleration of these algorithms.

6.5 HARDWARE TIMING AND AREA COST

The maximum matching can be processed in one clock cycle using pure combinational logic

or in multiple cycles by using either matrix or vector operations. We first examine the

asymptotic tradeoffs and then describe each of three architectures.

We observe that for small values of N , a purely hardware version of the maximum

matching can be performed in a single cycle. This is the Pure Logic Processor. The Matrix

83

Processor performs each of the steps in the maximum matching and path isolation algorithms

in a single cycle. This requires a register file for storing the intermediary results. The Vector

Processor is focused on large values of N where it is not possible to have an O(N2) register

file. This architecture uses traditional memories for storage.

According to the hardware structure, the hardware cost can be computed approximately

as shown in Table 6.1, where N represents the number of nodes and K represents the number

of optimization steps.

Forward path logic and backtrack logic consumes most of the logic area and running

time. The time delay is mainly caused by the forward path logic and backtrack logic also.

However, the delay for forward path and backtrack path is different. The forward path

propagates high-level signal forward, vector computations such as ‘or’ and ‘and’ are involved.

The backtracking path is responsible to select one augmenting path from all candidates. A

priority selector is used, which add extra delay to the backtrack path. In such condition,

we can detect possible improvement by only applying forward path logic. Then, if potential

improvement is detected, backtrack path logic will keep working, otherwise, we just stop at

the forward path logic and save the rest of the computation time.

6.5.1 Pure logic processor

In the Pure Logic Processor, the maximum matching operation is performed by pure combi-

national logic, as shown in Figure 6.8. A sequence of forward logic blocks is responsible for

detection of the augmenting paths while a sequence of backward logic blocks is responsible

for isolation of a single augmenting path. Both the forward and backward logic blocks are

combined together to form a single block of hardware. This consumes a large amount of

logic and routing resources. However, once signals propagate the circuit, the optimization

result is achieved. Therefore, for relatively small number of optimization steps and graph

sizes, this is effective.

84

Table 6.1: Complexity analysis of three maximum matching architectures. N

presents the number of nodes in the system and K represents the number of

optimization steps performed.

Architecture

Pure logic Matrix processor Vector processor

Wire compexlity O(KN2) O(N2) O(N)

Logic complexity O(KN2) O(N2) O(K)

Memory complexity 0 O(KN2) O(KN2)

Latency in cycles O(1) O(K) O(KN)

Multiple iterations Disable Enable Enable

� � � ��� � � � � � ��� � � � � � ��� � �

� � 	
 ��� � � � � 	
 ��� � � � � 	
 ��� � �

� �
 � � � � �

� �
 � � � � � � �
 � � � � �

��� � � � ���� � � � � ���

� � � � � � � � ���

��� � � � � � � � � ���

Figure 6.8: Pure Logic Processor to implement the maximum matching algorithm.

85

��� ��� � � �	��
�� �
��

��� � � � � � � ������� � � ���

�

�

���	�

���	�

�
� �

�

�

� �

��� � � � "!$#�%

� &
 ��'

Figure 6.9: Matrix Processor for the maximum matching algorithm.

6.5.2 Matrix processor

The Matrix Processor breaks the algorithms down into matrix operations. Each of the steps

in the algorithms is performed by a Matrix ALU in a single cycle. Matrices are stored in

a register array. At each cycle, one matrix is read from the register array. The mask bits

enable outputs of each row in the original matrix by N ‘or’ gates. Each of the ‘or’ gate is

N + 1-bit wide. ReduceOR is performed on the outputs using one NxN-bit ‘or’ gate and

generates an N-bit signal R, as shown in Figure 6.9. R is XMask vector when the Matrix

ALU operates for detection augmenting paths. When performing isolation step, R is filtered

by a selector to generate YMask vector.

With the Matrix ALU, the original algorithm is implemented as matrix operations. Let us

use MatrixALU() to represent the function performed by the Matrix ALU. For example, the

code from line 4 to line 14 in Figure 3 is written as shown in Figure 10 by using MatrixALU().

86

4. while Not PathFound and i < K {
5. // Follow a Unsaturated path

6. (F[i], XMask[i+1]) = MatrixALU(Xmask[i], UnsaturatedX)

7. // See if any augmenting path is found

8. PathFound = ReduceOr (XMask[i+1] * UnsaturatedYVertices)

9. // Follow an Saturated path

10. (F[i+1], XMask[i+2]) = MatrixOp(Xmask[i+1], SaturatedY)

11. i = i + 2

12. }

Figure 6.10: Detection of augmenting paths algorithm using matrix operations.

This is more scalable and only requires O(N2) hardware. For relatively moderately sized

N, this is still reasonable.

6.5.3 Vector processor

The Vector Processor implements N-wide memory reads and vector operations in a single

cycle. This architecture utilizes traditional memory as current ASIC devices contain over

one thousand I/O pins and commercial memories can be width expanded by sharing the

address lines among multiple banks of SRAM. Figure 6.11 gives a block diagram of the

Vector Processor. During each cycle, a vector of a matrix is read from the memory. The

output of the vector is enabled by one bit of a Mask. The bit is retrieved from XMask and

YMask, for detection augmenting paths and isolation an augmenting path respectively. One

mask bit from a Mask vector is output at each cycle. The process for generating XMask and

YMask is similar as that in the Matrix Processor. However, it requires N cycles to process a

complete matrix and then generate a Mask vector, while it only need one cycle in the Matrix

Processor.

87

��������� �

�	�
�� �
 ���

�������
 ���

�

�

�

�

�

�

�

����� � ���������

 �! " ! # $ % &

�

� �

���

�(' ��)

�

Figure 6.11: Vector Processor for the maximum matching algorithm.

We use VectorOp() to represent the function performed by the Vector ALU. The max-

imum matching algorithm from line 4 to line14 in Figure 6.6 is written as shown in Figure

6.12 by using VectorALU().

It requires N cycles to perform one optimization step. However, our performance eval-

uation results in Section 6.6 show that this architecture scales the best for large sizes of

N .

6.6 PERFORMANCE EVALUATION

We built a systems consisting of 16, 32, 64 and 128 nodes and estimated for 512 and 1024

nodes. The hardware cost evaluated based on Altera Stratix ESP1S25F1020C FPGA chip.

The hardware synthesis result may different if different fabric methods are applied. The

maximum number of logic elements and memory bits in ESP1S25F1020C FPGA chip are

shown by dashed lines in Figure 6.14 and Figure 6.15 respectively.

88

4. while Not PathFound and i < K {
5. // Follow a Unsaturated path

6. For(j = 0; j < N ; j + +) {
7. (F[i][j], XMask[i+1][j]) = VectorALU(Xmask[i][j], UnsaturatedX[j])

8. }
9. // See if any augmenting path is found

10. PathFound = ReduceOr (XMask[i+1] * UnsaturatedYVertices)

11. // Follow an Saturated path

12. For(j = 0; j < N ; j + +) {
13. (F[i+1][j], XMask[i+2][j]) = VectorOp(Xmask[i+1][j], SaturatedY[j])

14. }
15. i=i+2

16. }

Figure 6.12: Detection of augmenting paths algorithm using vector operations.

89

Logic Element Utilization

1

10

100

1,000

10,000

100,000

8 16 32 64 128 256 512 1024

System Size

Lo
gi

c
E

le
m

en
t

Pure HW

Matrix

Vector

Figure 6.13: Performance per optimization step. The Pure Hardware performance is based

on estimations. The Vector and Matrix performance numbers are based on actual hardware

synthesis results ranging from 8-128 and estimated for 512 and 1024.

Computation Speed Comparison

1

10

100

1000

10000

8 16 32 64 128 256 512 1024

System Size

La
te

nc
y

(n
s)

Pure HW (est)

Matrix

Vector

Figure 6.14: System area cost. The Pure Hardware performance is based on estimations of a

single optimization step. The Vector and Matrix performance numbers are based on actual

hardware synthesis results ranging from 8-128 and estimated for 512 and 1024.

90

1

100

10,000

1,000,000

8 16 32 64 128 256 512 1024

System Size

M
em

or
y

(b
its

)
K=3

K=7

K=11

K=2N-1

1

100

10,000

1,000,000

8 16 32 64 128 256 512 1024

System Size

M
em

or
y

(b
its

)
K=3

K=7

K=11

K=2N-1

Figure 6.15: Estimated memory utilization for various step sizes, K, (with K=2N-1 steps

being provably optimal.)

If only considering processing delay, it can be seen that pure combinational logic and

register array architecture have similar performance and both outperform memory architec-

ture, as shown in Figure 6.13. Nevertheless, the area cost can not be neglected. Figure 6.14

indicates that register array based architecture consumes less logic elements compared with

pure combinational logic architecture. Memory based architecture requires the least logic

elements, which is fit for large-scaled design. We conclude that combinational logic works

well for system containing less than 64 nodes; for system containing 64-128 nodes, register

array based architecture should be chosen; memory based architecture support system up to

1024 nodes.

The critic process is to find the augmenting path for optimization. This process is

implemented by three main hardware logic blocks as shown earlier, which is forward logic,

backward logic and update logic. All of them are implemented by pure combinational logic.

The data is stored and transferred through wire. The architecture guarantees the logic

is passed through within one cycle. However, when the hardware design is complete, the

number of iterations, in another word, the number of optimization steps is fixed. If system

91

requires more optimization steps, more hardware logic has to be added before processing.

It’s better to make the design more flexible, so that the design is able to support multiple

iterations.

Our solution is to put data storage unit into the design, like register array and memory,

shown in Figure 6.14. The difference between register array and memory is that register

array output complete matrix at one cycle; however, memory is able to output a bit vector

each cycle. The register array based design supports matrix operation while the memory

based design support vector operation only. We call them matrix operation architecture and

vector operation architecture separately. Since one matrix operation invokes N times vector

operation, where N is the size of the matrix. Therefore, the computation time derived by

matrix operation architecture and vector operation architecture is quite different.

We performed system simulations for communication matrices with/without complete

matching based on system containing 16, 32, 64, and 128 nodes. We generated random com-

munication matrices with various densities. For example, in a 8x8 communication system,

if totally four requests are generated randomly, we mark the density as 4/(8x8), which is

0.125. The experiments are repeated 100 times, Figure 6.16 shows the matching performance

corresponding to different optimization steps. Each line represents the results generated by

communication matrices of a certain density. The simulation results show that for random

requests, the matching degree we get is approximately 99% close to the optimal match-

ing degree. In order to verify our hardware implementation is capable of finding complete

matching, we use mixed communication requests to evaluate the system performance. The

mixed communication requests are generated by combining random permutations with ran-

dom requests. Our proposed algorithm is able to optimize matching successfully. The results

show that for mixed requests, our matching degree is approximately 99% of the maximum

matching degree after nine optimization steps, as shown in Figure 6.17.

92

�������

�������

�������

����	

����	�

����	��

����	��

����	��

�

�
 � � � ���

Optimization Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al

���������
�������
�����
�
�
�
�

(a) Maximum matching for 16 nodes.

�������

�������

�������

����	

����	�

����	��

����	��

����	��

�

� �
 � 	 ���

Optimization Steps

A
pp

ro
xi

m
at

io
n

R
at

io

���������
�������
�����
�
�
�
�

(b) Maximum matching for 32 nodes.

�������

�������

�������

����	

����	�

����	��

����	��

����	��

�

� �
 � 	 ���

Optimization Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al

���������
�������
�����
�
�
�
�

(c) Maximum matching for 64 nodes.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 3 5 7 9 1

Optimization Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al

0.125

0.25

0.5

1

2

4

8

(d) Maximum matching for 128 nodes.

Figure 6.16: Maximum matching for random requests. The different curves represent network

load where 0.125 is 12.5% loaded and 8 is 800% overloaded (K = 1 represents the greedy

algorithm).

93

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 3 5 7 9 11

Optimizations Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al

0.125

0.25

0.5

1

2

4

8

(a) Complete matching for 17 nodes.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 3 5 7 9 11

Optimizations Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al

0.125

0.25

0.5

1

2

4

8

(b) Complete matching for 32 nodes.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 3 5 7 9 11

Optimizations Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al 0.125

0.25

0.5

1

2

4

8

(c) Complete matching for 64 nodes.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 3 5 7 9 11

Optimization Steps

P
er

ce
nt

ag
e

of
 O

pt
im

al

0.125

0.25

0.5

1

2

4

8

(d) Complete matching for 128 nodes.

Figure 6.17: Complete matching. Requests are mixed by randomly generated request at

variable loads with the oversubscribed network loads being randomly generate permutation

(K = 1 represents the greedy algorithm).

94

6.7 CONCLUSION

We present a hardware design architecture which solves the maximum matching with low

complexity. In our proposed hardware algorithm, we unfold the bipartite graph, so that the

unsaturated path and saturated path appears alternatively. By using the inherent charac-

teristic of hardware logic, all possible augmenting are detected in parallel. We apply the

hardware algorithm into three maximum matching processors, which are Pure Logic Proces-

sor, Matrix Processor and Vector Processor.

The hardware maximum matching processor can be attached with hardware switch sched-

uler to provide higher network utilization without adding too much latency. With current

FPGA technology, it is possible to handle maximum matching capability for up to 1024

nodes. For small to medium sized system, the processing delay for one optimize step is less

than 10ns. Our current design and simulation is based on single-stage crossbar. Our future

research will apply the algorithm on multiple interconnected switch networks to help make

more efficient scheduling decision.

95

7.0 LEVEL-WISE SCHEDULING FOR FAT TREE

INTERCONNECTION NETWORKS

This chapter presents efficient hardware architectures for scheduling connections on a fat-tree

interconnection network for parallel computing systems. Our technique utilizes global rout-

ing information and selects upward routing paths so that most conflicts can be resolved. Thus

more connections can be successfully scheduled compared with a local scheduler. As a re-

sult of applying our technique to two-level, three-level and four-level fat-tree interconnection

networks of various sizes in the range of 64 to 4096 nodes, we observe that the improvement

of schedulability ratio averages 30% compared with local scheduling. Our technique is also

scalable with increased benefits for large system sizes.

Section 7.1 introduces prior work and motivation. Section 7.2 provides a background

on fat trees and presents formal notation that will be used to describe the algorithms.

Key observations and theorems are also given. Section 7.4 describes the Level-Wise fat-tree

scheduling algorithm in detail. Section 7.5 shows the system simulation results. FPGA-based

hardware that efficiently implements the Level-Wise algorithm is introduced in Section 7.6.

Conclusions are offered in Section 7.7.

7.1 INTRODUCTION

Fat-tree interconnection networks have several good features, including scalability and sim-

ple topology. This network architecture was first proposed by Leiserson [68] as a hardware

efficient and general purpose interconnection network. It has the structure of a tree and

its links have different bandwidth at each level. The closer a link is to the root, the larger

96

the bandwidth. In a fat-tree network, all processing elements are located at the leaf nodes

while the paths are routed through intermediate switching nodes. It has been proven to be

an area-universal interconnection network [69]. Fat-tree interconnect networks can simulate

any other network topology with the same silicon area with at most poly-logarithmic slow-

down [69]. Whereas, other network topologies, including 2-D arrays and simple trees, will

see polynomial slowdown when simulating other networks. Due to those advantages, the

fat-tree topology has become a popular network architecture for massively parallel comput-

ing systems such as the Thinking Machine CM-5 [69, 70], Meiko supercomputer CS-2 [71],

COMPAQ AlphaServer SC [72] and Quadrics QsNetII [73].

By convention, the scheduling approaches for fat-tree interconnection network are devel-

oped for store and forward and wormhole routing. Therefore, almost all of the scheduling

algorithms are based on the local knowledge within switch nodes. Adaptive distributed

scheduling is a widely used scheme for scheduling communications in fat-trees [74, 75]. In

this scheme, each switch selects a routing path randomly from the available local ports.

Based on this scheme, heuristic routing algorithms are developed, such as Turn Back When

Possible (TBWP) algorithm proposed by Kariniemi and Nurmi [76]. They suggest connect-

ing the top-most switches together and keep forwarding a request upward until the top-most

switch if the request can not be forwarded back to its destination.

Scheduling approaches that use local information provide good scalability. However,

the success of routing in a local switch node does not imply the success of routing in the

entire network. We define the schedulability ratio to be the number of successful connections

divided by the number of total requests. It can be seen that when scheduling with local

routing information, the effort put into scheduling one switch node may not help improve the

schedulability ratio of the entire network. schedulability ratio impacts bandwidth utilization.

If the scheduling ratio is far below optimal, the bandwidth utilization is inefficient. Especially

for long-lived connections, the penalty of low bandwidth utilization detrimentally impacts

execution time.

To solve the problem of maximizing the schedulability ratio in fat-tree interconnection

networks, we make a few key observations about the structure of a fat-tree network and

develop the Level-Wise Fat Tree scheduling algorithm. Specifically, we observe that all

97

switch configuration options are set once a message reaches the top of the fat tree; that is

to say that there is only one path between the top of a fat tree and its destination. We also

observe that the upward path from the source switch to the top of the fat tree is symmetrical

with the downward path from the top of the fat tree to the destination. The Level-Wise

Fat Tree scheduling algorithm leverages this symmetry at each level to allocate both the

upward path and downward path simultaneously. Using only local switch information, our

simulation results show schedulability ratio of 45%-70%, depending on the size and depth of

the fat-tree. The Level-Wise Fat Tree scheduling algorithm is able to provide schedulability

ratio of 78%-95%.

7.2 BACKGROUND

A fat-tree interconnected network is denoted by FT(l,m, w), where l is the number of levels

in the tree, m is the number of children in each switch node and w is the number of parents

of each switch node. Fat-tree FT(l, m,w) has l levels of switches. Each level h has wl−1

switch nodes. Each switch is labeled by SW(h, τ), where h = 0, 1, . . . , l − 1 and τ =

0, 1, . . . , wl−1 − 1. We use a bit vector to represent τ in order to more clearly describe

algorithms later. tl−2tl−3 . . . t0 is the base-w representation of the integer τ , 0 ≤ τ < wl−1.

Let ti = τ div wi, then τ =
l−2∑
i=0

tiw
i.

In general fat tree interconnection networks, each switch node is symmetrical, therefore

m equals w. The symmetrical fat tree is detonated as FT(l, w), which is the assumption for

the proof of the Level-Wise scheduling algorithm. However, the algorithm is also applicable

when m and w are not equal.

7.3 FAT-TREE CONSTRUCTION

The fat-tree architecture is constructed recursively as introduced by Ohring [16]. Let FT(l, w)

be a fat-tree with l levels, and each switch node has w children and w parents. FT(l + 1, w)

98

������

� � ��

���
	

���
	

 ����� �����
� �����

� � � � �

� ��� ��� �
���	�

� ��� �
� �
���
�

� �	��� ������� �����

� � � � ��� � � � ��� � � � ��� � � �

� � � � ��� � � � �!� � � � ��� � � �

� ��� ��� �
���	�

� ��� ���

����

� ��� ��� �
�����

� �	
���������� �����

� �

Figure 7.1: Fat-tree construction.

is built from w copies of FT(l, w) and wl additional switch nodes. The top switch nodes

in each copy of FT(l, w) are connected with the wl additional switch nodes. The SW(l, τ)

is connected with SW(l + 1, (τ × w) mod wl), SW(l + 1, (τ × w) mod wl + 1), . . . , SW(l +

1, (τ × w) mod wl + w − 1).

Each switch node has w bi-directional links connected with the adjacent upper level

and w bi-directional links connected with the adjacent lower level. The selection of ports

decide the link between two levels, hence we use Ulink(h, τ, i) to represent upward link

connected through port i in switch (h, τ) and Dlink(h, τ, i) to represent downward link con-

nected through port i in switch (h, τ), as shown in Figure 7.2. We use a pair of vectors,

Ulink(h, τ)[i] and Dlink(h, τ)[i], to represent the availability of upward and downward links,

where i = 0, 1, . . . , w − 1. If Ulink(h, τ)[i] equals one, upward link connected via port i of

switch (h, τ) is available; otherwise, it is occupied. We use Ph to represent the upper port

number selected at level h. When performing routing inside a switch node, a communica-

tion request from the source will be routed upward through one of the upward links until it

reaches a switch which is a common ancestor of both the source and destination; then, the

request will be routed downward through a downward link toward the destination [74, 75].

99

� ��� � �
��� 	
�� �
�� � � ��������� � �

�������
�� �

���� � ��� ���
���!�
 "
�#

��� 	
�� �
�� � � ��������� � �
�������
�� �

���� � ��!�� ��
���!�
 "
�#

��# � ��$ % &�' () * +

� # � ��$ % &�' () , +
-�# � ��$ % &�' () , + � # � ��$ % &�' () .�/ , +

-�# � ��$ % &�' () . / , +-�# � ��$ % &�' () * +

� ��� ��� �
���	�

� � � �
� �
�����

� ��� ���

����

� � � � � � � � � �

��� � ��� � ��� ��� � � ��� � ��� � ��� ��� � �

Figure 7.2: The link selection.

Theorem 3. For switch (h, τh), τh =
l−2∑
i=0

tiw
i, if the ports Ph for level h(h > 0) is chosen,

then the switch at level h + 1 that connected with switch (h, τh) is switch (h + 1,
l−2∑

i=h+1

tiw
i +

h∑
i=1

ti−1w
i + Ph).

Proof:

Assume the switch at level h is SW(h, τh), and the SW(h + 1, τh+1) at level h + 1 is

connected with it. According to the fat tree construction rule, SW(h, τh) is connected with

SW(h + 1, τh+1) within one FT(h + 1, w). Therefore the value of τh consists of two parts,

Γh and ∆h. Γh is counted from the most left till the beginning of the FT(h + 1, w). ∆h is

calculated as in the FT(h + 1, w). The value of Γh+1 is not affected by the selection of Ph,

while the value of ∆h+1 is determined by Ph.

τh = Γh + ∆h (7.1)

Γh =
(
τh div wh+1

)
, ∆h = τh mod wh+1 (7.2)

100

τh+1 = Γh+1 + ∆h+1 = Γh + ∆h+1 (7.3)

∆h+1 = [∆hw + Ph] mod wh+1 =
[(

τh mod wh+1
)
w + Ph

]
mod wh+1. (7.4)

Therefore

τh+1 =
(
τ div wh+1

)
wh+1 +

[(
τh mod wh+1

)
w + Ph

]
mod wh+1

=
l−2∑

i=h+1

tiw
i +

(
h∑

i=0

tiw
i+1 + Ph

)
mod wh+1

=
l−2∑

i=h+1

tiw
i +

h∑
i=1

thi−1w
i + Ph (7.5)

Q.E.D.

The selection of the upward link determines the downward link. Specially, it will be

proven in Theorem 4 that if a request is routed upward using Ulink(h, σh, Ph)at level h,

it will reach its destination switch using Dlink(h, δh, Ph) at the same level. In the example

shown in Figure 7.2, we show a FT(3, 4) and consider a communication request from SW(0,0)

to SW(0,6). The communication request can be routed through Ulink(0, 0, 0), Ulink(0, 0, 1),

Ulink(0, 0, 2), or Ulink(0, 0, 3). If P0 = 1, then Ulink(0, 0, 1) is selected at switch (0,0) for

upward routing, the request will be routed back to level 0 using the same port number,

which is 1, no matter what routing path is selected above level 0. The downward link is

Dlink(0, 6, 1). This phenomenon is explained and proved in Theorem 4.

Theorem 4. Given a source SW(0, σ0) and a destination SW(0, δ0),assume that the common

ancestor of both switches is at level H, where H < l. If P0, P1, . . . , PH−1 are the upper port

numbers selected at level 0, level 1, . . . and level H − 1 for upward path from SW(0, σ0) to

SW(H, σH), then the backward path from SW(H, σH) to SW(0, δ0) uses the same upper port

numbers P0, P1, . . . , PH−1, but in different switches.

101

� � � ��� �
���	�

��
 � ��� �
 � �

� � � ��� �
�����

� � � ��� �
�����

� � � ��� �
���	�

Figure 7.3: Switch node computation.

Proof:

According to theorem 1, as

τ0 =
l−2∑
i=0

tiw
i (7.6)

Let h = 0, substitute (7.6) into (7.5), we obtain

τ1 =
l−2∑
i=1

tiw
i + P0 (7.7)

Let h = 1, substitute (7.7) into (7.5), we get

τ2 =
l−2∑

i=h+1

tiw
i +

((
t1w

1 + P0

)
w + Ph

)
mod w2

=
l−2∑
i=2

tiw
i + P0w + P1 (7.8)

Similarly, we get

τh+1 =
l−2∑

i=h+1

tiw
i + P0w

h + P1w
h−1 + · · ·+ Ph =

l−2∑

i=h+1

tiw
i +

h∑
i=0

Phw
h−i (7.9)

102

Let SW(0, σ0) be the source switch and SW(0, δ0) be the destination, where σ0 =
l−2∑
i=0

siw
i

and δ0 =
l−2∑
i=0

diw
i. As we assume that the communication ancestor of both switches is at

level H, where H < l, switch (H, σH) equals switch (H, δh).

Since σ0 =
l−2∑
i=0

siw
i, and P0, P1, . . . , PH−1 are the port numbers selected at level 0, level

1, . . . , and level H − 1 for upward path,

σH =
l−2∑
i=H

siw
i +

H−1∑
i=0

Piw
H−1−i (7.10)

Assume a message is forwarded upward from (0, δ0) to (H, σH), where δ0 =
l−2∑
i=0

diw
i. We

also assume P ′
0, P

′
1, . . . , P

′
H−1 are the port numbers selected at level 0, level 1, . . . , and level

H − 1 for upward path.

δH =
l−2∑
i=H

diw
i +

H−1∑
i=0

P ′
iw

H−1−i. (7.11)

Because σH = δH ,

l−2∑
i=H

siw
i +

H−1∑
i=0

Piw
H−1−i =

l−2∑
i=H

diwi +
H−1∑
i=0

P ′
iw

H−1−i. (7.12)

We get

l−2∑
i=H

(si − di) wi +
H−1∑
i=0

(Pi − P ′
i) wH−1−i = 0. (7.13)

Therefore Pi = P ′
i , where i = 0, 1, . . . , H − 1. By reversing the path from (0, δ0) to (H, σH),

we get the exclusive backward path from (H, σH) to (0, δ0). Thus the request from switch

(0, σ0) to switch (0, δ0) has to be routed backward using P0, P1, . . . , PH−1 ports.

Q.E.D.

103

7.4 LEVEL-WISE ROUTING ALGORITHM

We find that if the upward path is carefully selected, then the number of conflicts can be

reduced. We have shown in Section 7.2 that a request will be routed upward and downward

by the same number of upper port at the same level, but may use different switch nodes. A

conflict occurs when two requests are routed through same physical path. In conventional

adaptive routing, the conflicts occur at downward paths, but are caused by improper selection

of upward paths. Figure 7.4 gives an example. Assume that switch (0,0) and switch (0,1)

both request a connection to switch (0,8). With local routing information, request from

switch (0,0) and switch (0,1) can be routed upward using Ulink(0, 0, 0) and Ulink(0, 1, 0).

They do not notice conflicts until they are routed back to level 0. In this case, only one

of the two requests can pass through to establish a connection. However, if we know the

conflict ahead of time, the conflict can be resolved. Since the request from switch (0,0) is

forwarded using Ulink(0, 0, 0), it can be predicted that it must be routed back to switch (0,8)

using Dlink(0, 8, 0). We modify the global routing information to indicate Dlink(0, 8, 0) is

occupied. Thus, when we schedule request from switch (0,1) to switch (0,8), Ulink(0, 1, 1)

and Dlink(0, 8, 1) will be chosen. By this method, both requests can be granted.

The idea of our centralized routing algorithm is to select upper ports carefully so that

the requests can be successfully forwarded both upward and downward at each level with

knowledge of the global routing information. A port number is selected only when both

the port on the upward port and the port on the downward port are available. For each

communication request for a connection between a pair of source node and destination node,

we define the data structure shown in Figure 7.5.

In order to grant a communication request, we need to set a path from a source switch

to a destination switch. For instance, a connection from source switch (0, σ0) to destination

switch (0, δ0) is to be established. The common ancestor of both switches is at level H, where

H < l. In Figure 7.6, a complete path is set, which is switch(0, σ0) → Ulink(0, σ0, P0) →
switch(1, σ1) → Ulink(1, σ1, P1) → · · · → switch(H−1, σH−1) → Ulink(H−1, σH−1, PH−1) →
switch(H, σH) → Dlink(H − 1, δH−1, PH−1) → switch(H − 1, δH−1) → · · · → Dlink(1, δ1, P1)

→ switch(1, δ1) → Dlink(0, δ0, P0) → switch(0, δ0).

104

� � � � � � � � � � � � � � �
��� 	
��
 ��� ��� � �

��� 	
��
 ��� ��� � �

��� 	
��
 ��� ��� � �

(a) Routing without local information.

� � � � ��� � � � � � � � � �
�	�
 �
� � ��� ��� � �

�	�
 ��� � ��� ��� � � � �
 ��� � ��� ��� ���

� �
 �
� � ��� ��� � �

(b) Routing with global information.

Figure 7.4: Routing example.

(0, σ0) (0, δ0) P0 P1 . . . Pl−2

Figure 7.5: Data structure of a communication request.

105

��� � ����� 	�
 ��
�
 ��
 �

� ��
 �����

� ��
 ��� �

� 	�
 ��
 �

� ��
 ��� �

� 	�
 �
 �

��� � ����� ��
 ���
 ��� � � � � ��� � ��
 ���
 ��� �

� � � ����� 	�
 ��
�
 ��
 �

��� � ����� �"!#��
 ��$&% �
 ��$&% � �
� � � ����� �"!#��
 ��$&% �
 ��$&% � �

� �"! ��
 �"$'% � � � �"!���
 � $&% � �

Figure 7.6: Level-Wise scheduling Algorithm.

By representing all links at a given level, h, as a single bit-vector, we can perform simple

Boolean operations to determine which port is available on both the upward and downward

paths. Specifically, the w bits, Ulink(h, σh)[i], can be AND’ed with the w-bits Dlink(h, δh)[i],

where i = 0, . . . , w− 1 to form a w-bit long available port vector that represents the upward

ports from the source switch that do not contain a conflict at level h in the fat tree.

All source switches at level h whose available port bit vector contains all ‘0’ values cannot

be scheduled. For all schedulable switches, one of the bits in the vector is selected for

allocation. For efficiency, we select the first available port and allocate the upward and

downward paths. This is performed sequentially on a per source basis. Once level h has

been scheduled, a new set of sources for level h + 1 are created from the set of scheduled

sources at level h. The algorithm iterates until all levels are scheduled.

The following is the pseudo-code for scheduling requests that will be routed through level

H. We assume switch (0, σ0) is the source switch and switch (0, δ0) is the destination switch,

where σ0 =
l−2∑
i=0

siw
i and δ0 =

l−2∑
i=0

diw
i.

106

The complexity of a conventional algorithm is O (2l logl N), while the complexity of our

algorithm is O (l logl N), where N is the system size and l is the greatest number of levels.

1. for h = 0 to H − 1 {
2. for a source switch and destination switch pair at level h {
3. avail links = Ulink(h, σh)[0 : w − 1] Bit-Wise-AND Dlink(h, σh)[0 : w − 1]

4. if not(avail links = “000. . . 0”) {
5. select i such that avail links[i] = ‘1’

6. Ph = i

7. Ulink(h, σh)[i] = ‘0’;

8. Dlink(h, δh)[i] = ‘0’;

σh+1 = sl−2sl−3 . . . sh+1P0 . . . Ph;

δh+1 = dl−2dl−3 . . . dh+1P0 . . . Ph;

9. }
10. }
11. }

Figure 7.7 gives a fat tree FT(4, 4, 4), which has four levels. Each switch node is a 4 × 4

crossbar switch. At each level, one of four ports will be selected for upward routing.

It is assumed that a connection is requested from node 3 to node 95. source switch =

switch (0, σ0) = switch (0, s2s1s0) = switch (0,000); destination switch = switch (0, δ0) =

switch (0, d2d1d0) = switch (0,113) The initial request is

(0, σ0) = (0, 000) (0, δ0) = (0, 113) P0 P1 . . . Pl−2

Step 1: select P0

Level = 0
source switch = SW(0, σ0) = SW(0, 000);
destination switch = SW(0, δ0) = SW(0, 113).
We assume that Ulink(0, σ0)[0] is ‘1’ and Dlink(0, δ0)[0] is ‘1’. Therefore P0 = 0.

Step 2: select P1

Level = 1
source switch = SW(1, σ1) = SW(1, s2s1P0) = SW(1, 000)
destination switch = SW(1, δ1) = SW(1, d2d1P0) = SW(1, 110)

107

(a) P0 Selection.

(b) P1 Selection.

Figure 7.7: Level-Wise scheduling example.

108

We assume that Ulink(1, σ1)[0] is ‘0’ and Dlink(1, δ1)[0] is ‘1’, which indicates port
0 is not available. Port 1 is checked.
Let us assume Ulink(1, σ1)[0] is ‘1’ and Dlink(1, δ1)[0] is ‘1’, then P1 = 1.

Step 3: select P2

Level = 2
source switch = SW(2, σ2) = SW(2, s2P0P1) = SW(2, 001)
destination switch = SW(2, δ2) = SW(2, d2P0P1) = SW(2, 101)

We assume that Ulink(2, σ2)[0] is ‘1’ and Dlink(2, δ2)[0] is ‘1’

Therefore, P2 = 0

(0, σ0) = (0, 000) (0, δ0) = (0, 113) P0 = 0 P1 = 1 P2 = 0

All ports are allocated successfully so the request from switch (0,000) to switch (0,113)

is granted.

7.5 SIMULATION RESULTS

The purpose of the simulation is to compare the performance of our Level-Wise scheduling

algorithm with local scheduling algorithm. We have performed system level simulation for

randomly generated communication permutation based on two-level, three-level and four

level fat-tree interconnected networks.

The experiments are based on SystemC based simulator to simulate scheduling proce-

dures. We have built switch nodes and connected them in fat-tree topology. Each switch

node has bidirectional input and bidirectional output. Network control signals, e.g. commu-

nication grants and requests, are passed through each switch node in parallel.

We generate random communication permutations as requested connections. Those com-

munication requests are assigned as inputs of each source switch node. The requests are

scheduled by our Level-Wised scheduler and general adaptive fat-tree scheduler with local

routing information. If a requested connection is successfully established, the request will be

forwarded to the destination node. By checking the control signals received at destination

109

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

64(42) 256(162) 1024(322) 2304(482) 4096(642)

System Size

S
ch

ed
u

la
b

ili
ty

R
at

io

Local

Global

Figure 7.8: Level-Wise scheduling Algorithm. (Two-level fat-tree interconnection network.)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

64(43) 216(63) 512(83) 1728(123) 4096(163)

System Size

S
ch

ed
u

la
b

ili
ty

R
at

io

Local

Global

Figure 7.9: Level-Wise scheduling Algorithm. (Three-level fat-tree interconnection network.)

110

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

System Size

S
ch

ed
u

la
b

ili
ty

R
at

io

Local

Global

81(34) 256(44) 625(54) 1296(64) 2401(74)

Figure 7.10: Level-Wise scheduling Algorithm. (Four-level fat-tree interconnection network.)

Average Schedulability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500

System Size

S
ch

ed
ul

ab
ili

ty
 R

at
io G 2-level

G 3-level

G 4-level

L 2-level

L 3-level

L 4-level

Level-Wise

Local

Figure 7.11: Schedulability comparison based level-Wise scheduling Algorithm.

111

nodes, we are able to compute the number of scheduled connections. We generate a set of

100 random permutations for each test point. We use schedulability ratio to evaluate the

scheduling capability, which is defined as the number of successful connections divided by

the number of total requests.

Figure 7.12, 7.13, and 7.10 compares the schedulability ratio in two-level, three-level and

four-level fat-tree communication networks. Each bar represents the average schedulability

ratio in our experiments. The upper line and lower line at the top of each bar shows the

maximum and minimum schedulability ratio respectively.

It can be observed that the Level-Wise scheduling method provides higher schedulability

ratio than the convention local scheduler. The deviation of the schedulability ratio become

less as the system size increases. This is because in either scheduling algorithms, the selection

of upper port for upward routing is flexible and the path for downward routing is fixed. In

the large-scaled system, communication requests has more upper ports to select when they

are forwarded upward, which increases the possibility for successful routing. The minimum

schedulability ratio of the Level-Wise scheduler is higher than the maximum schedulability

ratio of the convention scheduler. That is to say the Level-Wise scheduler is able to schedule

more connections even in its worst case than the convention scheduler.

It can also be observed that the schedulability ratio decrease as the number of levels

increase as shown in Figure 7.11 because for a high-level system, more levels need to be

adjusted to configure a connection. A communication request may be successfully routed

for most levels, but a failure routing in one level will destroy all previous routing for this

request. However, our scheduler using global information always outperforms the convention

scheduler using local information. As the system size increases, the improvement becomes

more significant. In a network more than 500 communication nodes, the improvement is

over 30%. Note that only systems of size wl are used for l-level systems.

112

��������� � � 	�
 ��������� � � 	�

	��

� ��� ����� ��������� � � � � ��� � � ��� � �

!�������� "

� ��� ����� �#���$��� � � � � ��� ��� ��� � �

!$���%��� "

�����&��� � �

��� � ��' ()�� � ��' �#* � ��' ()#* � � '

	
$+ * ��, ' 	 ��+ * � , '

Figure 7.12: Level-Wise scheduling Algorithm.

7.6 LEVEL-WISE SCHEDULING HARDWARE ARCHITECTURE

Our scheduling algorithm can be implemented by software or hardware. We give pipelined

hardware implementation architecture that is to be used as a centralized scheduler. Our

hardware design is targeted on FPGA.

In order to introduce the hardware design more clearly, we describe the scheduling pro-

cedure from a system’s level. With the knowledge of the system, the detailed hardware

function blocks are illustrated.

Figure 7.12 shows a hardware system for scheduling a three-level fat-tree interconnection

network. For a three-level fat-tree, each communication request associates with no more

than two upward ports, which are P0, and P1. Two main function blocks, P0 Block and

P1 Block process the value of P0 and P1 individually. When one request comes, P0 Block

computes the value of P0 and the value will be used in P1 Block to compute the value of P1.

While P1 Block processing Request 1, the P0 Block can process in pipe for second request,

Request 2.

P0 Block and P1 Block have similar hardware structure, so we just pick P0 Block to

describe the hardware design in detail. It consists of three function blocks, ‘Load’, ‘Com-

pute’, and ‘Update’. In load stage, the source switch and destination switch are computed

and current Ulink and Dlink vector are read from the two memories. Compute stage is

113

Figure 7.13: Level-Wise scheduling Algorithm.

pure combinational logic, which computes valid port number and updated Ulink and Dlink

vectors. In update stage, the updated Ulink and Dlink vectors are written back to the two

memories. Figure 7.13 illustrates the hardware architecture of P0 block. We use white,

grey, and shaded blocks to indicate ‘Load’, ‘Compute’, and ‘Update’ function blocks indi-

vidually. Two memories are used to store Ulink and Dlink vectors. During a scheduling

procedure, the current Ulink and Dlink vectors are output corresponding to the memory

address, which are source switch and destination switch. A port i can be picked up only

when both Ulink(h, σh)[i] and Dlink(h, δh)[i] equal ‘1’. We first combine Ulink and Dlink

vectors by logic ‘and’, then select one available port using a priority selector.

Based on the pipeline hardware architecture, we have developed synthesizable hardware

components and target our design on Altera Stratix II FPGA. Hardware for scheduling three-

level fat-tree interconnection network has been designed, with system size varying from 64

to 4096. Table 7.1 gives the post place and route synthesis results.

The result shows that for a communication system with 4096 communication nodes, our

centralized scheduler is able to schedule an individual communication request within 20ns.

Using less than 40 µs, 4096 communication requests can be scheduled.

114

Table 7.1: Performance evaluation (Design targeting on Altera Stratix II FPGA)

Processing Time

System Size
Schedule one request schedule all requests

64 (4× 4 switch) 15 ns 480 ns

512 (8× 8 switch) 17 ns 4 352 ns

4096 (16× 16 switch) 19 ns 38 912 ns

7.7 CONCLUSION

By using global routing information, our scheduler is capable of configuring a fat-tree inter-

connected network in a close-to-optimal fashion. This is especially beneficial to setup long-

lived connections. We have developed pipelined hardware architecture to evaluate complexity

and processing capability of the scheduler. Our simulation results show the Level-Wise al-

gorithm improves schedulability efficiently without adding extra complexity compared with

a convention scheduler.

115

8.0 NETWORK SIMULATION FRAMEWORK

This chapter introduces a framework for the design, synthesis and cycle-accurate simulation

for parallel computing networks of 128+ processors. In order to accurately characterize the

network, we present a bottom-up design methodology in which each of the components are

designed using a hardware description language and synthesized to an FPGA for perfor-

mance estimation of the final ASIC implementation. The components are then integrated

to form a parallel computing network and simulated using a cycle-accurate simulator with

network traffic described by command files. This enabled us to simulate various switch-

ing techniques. Our results show that this hardware design, synthesis, and cycle-accurate

simulation methodology provides a useful method for evaluating design tradeoffs in parallel

networks.

In Section 8.2, we provide background information about the network simulation. A

description of our design, synthesis, and simulation methodology is described in Section 8.3,

along with a description of each of the components in our design and simulation framework.

In Section 8.4, we show how these different components can be assembled to form four

different types of networks, and how they can be simulated with cycle-level accuracy. The

validation of our simulations are described in Section 8.5, and conclusions are offered in

Section 8.6.

8.1 INTRODUCTION

A network’s design is not only dependent on the topology and routing algorithms but is

also dependent on the design of each of the different components. For clusters, a network

116

includes the network interface cards, the cabling, the switches and the overall topology. The

performance of the entire system is also dependent on the interactions of these components

when they are being used by different traffic patterns. In order to gain insight into both

of these areas we introduce a modular approach that decomposes the network into its indi-

vidual hardware components for accurate characterization and we introduce two methods of

interconnecting these components to simulate the dynamic behavior of large parallel systems.

In this chapter, we present a unified framework and bottom-up methodology for hardware

design, synthesis, and cycle-accurate simulation of parallel computing networks. A major

objective of this effort is to build a modular design and simulation framework in which

components can easily be assembled and modified to build different systems.

For evaluation, we utilized a cycle-accurate hardware simulator, available for ASIC and

FPGA hardware design, providing the ability to inspect different signals down to the nano-

second level of detail. The modular simulator Simple Scalar [77], which has been built

for computer architecture research, and Network Simulator [78], for network simulation,

are similar examples. Using this methodology in our simulation, each of the components is

designed using a hardware description language and synthesized to an FPGA for performance

estimation of the final ASIC implementation. These components are then integrated to form

an entire network of N processors capable of sending and receiving data as specified in

command files. This uniform design and simulation framework enables direct comparison of

various switching techniques for parallel computing networks.

8.2 BACKGROUND

In order to facilitate new designs, a variety of simulators have been created. As early as

1976, CEGRELL built a simulation model to study a full-duplex message switched computer

network [79]. A lot of research has been performed on building specific simulation models

to evaluate network performance. As indicated by Mars [80], four general approaches are

normally used to simulate a communication network: using a general purpose simulation

language (e.g. SIMSCRIPT [81]), using a communication oriented simulation language (e.g.

117

��� � � � ���
	 � �
 � � � � � � � � � � � � �
� � � � ��� � ����� ��� � � � � � � ���
�
�
�

� � � � � � � � � ����� ��� � � � � � ��� � � �
� !#"$!#� � � �#� ��%'& � � � �'"
� � �

� � ��(� ��� � �

��� ��& � � �)� � � � ��� � �
��� ��� � � � � � �#� �*�
� � � � ��� � �*+
, ���

� � ��� � �*� ��� � � � � �

, � � � � � � � � � � � - � � � � � � � � � . � � �
- � ��� � � � � � . � ���
� ��/ 	 � � ��� ��� 	 	 � �
0�� � � / �1 � � � 	 	 � 	 � � � � � � � � �

+
� � ��� �
 ��2 3 � 4 5 6

7 � � 	 � � �*� � � 	 � � "�� � / � � � ��8 � � � 9 � � � � �
�
� � � � ����� � � � � ���$� � � � � � ��� :
� � � � ��� � ����� ��� � � � � � �

��� ��& � � ����� ��� � � � � � �#� ���
� � � � �
� � � � � � � � � � � �1��� ��� � � � � � �

� � � � : �'� � �*� � � � � ���$� � ��/ 	 � � � � � �
� � ��� �#"�� � / � � � ��� ��� � � � ��� � �
� � ��/ 	 � � � � � �': � � � ��� 	 	 � ��0'� � � / �
 � � � 	 	 � 	 � � � � � � � � �*+ � � ��� �
 �

, � � � � � � ��� � ��� � � 	 ��� : � � ��� � � � � �
� � ��/ 	 � � � � ��� �*� � � � �) � � � 	 	 � 	
 � � � � � � � � ��+ � � ��� �
 ��2 ; 5 < = 6

� � � � ��� � � � & � � � �
� � � � � ��� � �*� � ��/ 	 � � � � �

� � � � � ���
� & � � � �
� � � � � �>��� � � � �'� � ����� ��/ 	 � � � � �

?

Figure 8.1: Design flow methodology to create cycle accurate simulations for large system

sizes using VHDL and SystemC.

OPNET [82]), using a communication oriented simulator (e.g. BONES [83]), and using

a general purpose language (e.g. C/C++). Rexford and his colleagues [84] presented an

object-oriented discrete-event simulation for evaluating network designs. Liu and Dickey

[85] studied buffered and un-buffered switch networks by changing the configuration of the

buffers in their simulation. Gorton, Kerirdge and Jervis built a simulator, called Occam, to

simulate microprocessor system at component level [86].

8.3 DESIGN AND SIMULATION METHODOLOGY

The objective of our methodology is to provide a rigorous design flow for high-

performance parallel processing networks that scale to hundreds or even thousands of nodes.

This presents design and simulation problems as simulators are typically software-based

while ASICs are utilize hardware description languages (e.g., VHDL, Verilog) that requires

118

a complex set of design and simulation tools. By combining these design and simulation

methodologies, we ensure that the simulation components have the exact behavior as their

ASICs counterpart. Figure 8.1 shows the combined hardware and software design flows.

The left column shows a traditional hardware design and simulation flow for ASICs and

FPGAs while the right column shows the transformation of the results from the hardware

design flow into software components. Integration and interconnection of these software

components can form larger components and/or systems. Verification between the hardware

and software systems is possible for small to medium scaled networks.

For accuracy, we have designed and implemented our components using the VHDL hard-

ware description language to prove that our components represent real hardware. To gain

nano-second level performance data, we have synthesized our VHDL into FPGA gates us-

ing Mentor Graphics Precision Synthesis software [87]. This enables the extraction of both

latency (i.e., cycles of delay for the first result) and bandwidth (i.e. number of results per

cycle under steady state conditions). The synthesis tool performs a detailed timing analysis

and reports a maximum clock frequency. From our functional simulations, we can determine

the number of cycles required for any given operation. By multiplying this cycle count by

the nanosecond duration of the cycle, which is one over the maximum frequency, the compo-

nent latency can be determined. The end design is expected to target ASIC technology, but

FPGA timing results can be more easily obtained and compared with published results. We

conservatively estimate that the ASIC performance will be five times faster than the FPGA

results. We could incorporate ASIC synthesis tools into this flow to improve accuracy to

the sub-nanosecond level but this fine-tuning is not necessary for even moderately different

networks as long as all systems utilize the same hardware estimations.

The hardware behavior and performance is then used to create an identical module in

SystemC, a C++ variant that enables cycle-accurate simulations. These SystemC modules

can be interconnected and compiled to produce an executable that simulates the behavior

of the entire network. Thus, this framework provides a methodology for designing entire

parallel networks that are as accurate as hardware simulations but enable large systems to

simulated in reasonable amounts of time on a single workstation.

119

SystemC is a C++ based hardware design language that was developed to promote

system-level simulation and to enable hardware-software cosimulation [88, 89]. Fundamen-

tally, SystemC is a set of parameterized template classes built in C++ that allow the creation

of hardware structures available in other languages such as bit-vectors, processes, and ports.

Like other hardware languages, such as VHDL and Verilog, it is possible to describe a Sys-

temC design behaviorally, at the register-transfer level, and structurally. The advantage

of SystemC is most highly visible in the fact that it essentially C++ code. As a result,

SystemC designs, along with their corresponding test benches, may be compiled directly

into a software binary that becomes a custom simulator for that particular hardware de-

sign. Similarly, for system-level simulations designed in SystemC, combining software and

hardware portions becomes much easier as they can be combined and built using a single

program. For traditional hardware simulation techniques such as using ModelSim [90] for

VHDL or Verilog, a foreign language interface is required to communicate between hardware

and software components. The most important advantage of SystemC for our simulation

environment is its increase in capacity over more traditional hardware simulation methods.

Because ModelSim must be able to simulate every VHDL construct, even those rarely used,

it incurs significant overhead. For the equivalent SystemC simulation, a custom simulator is

built and only the components required for the application are incorporated into the simu-

lator. From our experience, this results in accelerated performance by a factor of three and

results in a factor of five for memory utilization. In fact, we found that our VHDL simula-

tions using ModelSim only scaled to 32 processors while our SystemC simulations scaled to

over 128.

In order to accurately build and simulate a high-performance multi-processor network,

the network interface controller (NIC) hardware and the switch element(s) must all be de-

signed in hardware for maximum performance. To simulate the entire system, the processing

elements, the wires and the topology must be accurately modeled but do not need to be de-

signed using a hardware description language. However, to validate our designs, we built a

32 processor system entirely in VHDL and then built an equivalent system in SystemC using

equivalent components. In the next section, we show the system-level results but in this sec-

tion, we focus on the fundamental components that we created and reused throughout the

120

different systems that we built. The Processing Element component reads data transmission

commands from a file and sends data into the NIC. The Processing Element component

also receives data from the NIC and records it to a different file with a timestamp. The

NIC, however, was designed in hardware using three different components: a Single-Wide

Data Queue component, a N-Wide Data Queue component and custom control logic. The

two different types of data queues are described in more detail in this section. The Wire

component emulated the behavior of a high-speed network cable. The switch is comprised

of a Scheduler component and a Switch Fabric component. The Scheduler determines the

configuration of the switch and as a result, its performance and design is central to the net-

work’s performance. Thus, the Schedule component was designed in hardware. The Switch

Fabric can be an analog, digital or optical device and, as such, only its behavior is described.

All buffers within the switch were modeled using the data queue components. The reminder

of this section describes each of the individual components while the next section describes

different systems that we constructed from these components.

8.3.1 The process element component

A significant portion of a communication’s delay is in software overhead and in moving

data from the processor, or from memory, to the network interface card. The literature

supports the benefit of innovative approaches in this area. However, this paper focuses

on the performance of the network and does not consider the delays associated with the

processor/memory to NIC interface. We are doing this for two reasons. First, the only

modifiable components within a processing node in a cluster are the network interface cards

and the software executing on the processor, with a fixed processor-to-NIC interface. Second,

the network design and the processor interface are not tightly coupled. Improvement on the

processor interface will help all networks and improvements on the network will benefit all

types of processor interfaces. Thus, we virtualize the processor as an outgoing queue that

contains data to be sent out onto the network, and as an incoming queue that receives

packets from the network.

121

� � � � �
� � � �

	
� � � � �
� � � �

� �
 � �

Figure 8.2: Processing element components.

Each processor has its own input file that contains a number of predefined commands,

shown in Figure 8.2. The command send tells a processor element (PE) to generate data with

a specific message size and destination. The command wait emulates a period in which the

PE is performing computation and thus, no traffic is generated. In addition to these basic

commands, advanced commands can be grouped to perform more complex MPI functions,

like broadcast, blocking send, blocking receive, and barrier, among others. The amount of

data that is sent is described in the input file, but the actual data that is sent is not important

to the network operation, as the network does not inspect the data payload of the packets.

For debugging purposes, however, the payload of the packet is used to send the source and

a timestamp the packet was created. At the destination PE, this information along with its

arrival time is stored in the output file for post processing and performance summary. This

processor model allows us to test a variety of traffic models by simply creating a set of input

files.

8.3.2 Data queues

One of the fundamental components in a network is the data queue. Anywhere data is being

sent or received, there is a need to buffer data. Functionally, a queue receives a stream of

data and outputs the stream in the same order. We have created two different data queues,

a Single Queue and an non-blocking N-Queue, shown in Figure 8.3. The Single Queue is

simply a first-in, first-out queue, while the N-Queue is a single component that represents N

different queues grouped together with a single write port and a single read port.

122

� � � � � � � � � � 	
 � �
 � � � � � � 	
 � � � �
� � � � � � � ��� � � � � �

� � � �

� � � �

 ! " !

$ % " &

� � � �

 ! " !

(a) Parallel to serial.

� � � � � � � � �
� � � 	 � �
 � �
 � � � � � � � � � � � � � � � � �

� � � �
 � �
�� � � � � �

� �
! � " #

$ % & % $ % & %

' () & *
! �

$ + " & , - % & , . - / . � 0 1 +

(b) High speed to serial.

Figure 8.3: The single queue and the N-queue components.

The Full and Empty status lines indicate the availability of the queue for writing and

reading, respectively. For the Single Queue, these status lines are a single bit wide and for

the N-Queue they are N -bits wide to indicate the status of each of the N internal queues.

Writing data into the Single Queue simply requires holding the Push signal high for a single

cycle, but for the N-Queue the Destination queue must also be specified. Likewise, holding

the Pull signal high for a single cycle will read data from the Single Queue, but with the

N-Queue the Source must also be specified.

The performance of queue can also vary. If the Pull signal is active (i.e., a ‘1’), the

queue outputs a data value every cycle. The frequency of data movement into or out of the

queue is one word per cycle. This frequency along with the width of the queue determines

its bandwidth. The latency of the queue is the amount of time between placing a data value

in an empty queue and the time it can be removed.

The Single Queue was already designed within the Mentor Graphics HDL Designer sys-

tem in their ModuleWare library [91]. Similarly, both major FPGA manufactures, Xilinx

[92] and Altera [93], have wizards for configuring FIFOs that automatically generate synthe-

sizable hardware components. The Simple Queue has a single clock cycle of latency through

the queue, with the cycle frequency of 108MHz for the Altera FPGA, EP1S25F1020C-5.

Thus, its throughput is 108 million words per second where the width of the queue is the

word size that can be arbitrarily configured. The latency is one cycle or 1/108MHz = 9.2ns.

123

The N-Queue can be designed in numerous ways, depending on the objective sought. The

simplest implementation is to replicate the Single Queue N times and multiplex the Head

and Tail of the queues using the Source and Destination as select lines, respectively. While

this is appealing from a rapid design perspective, it suffers from inefficiency, as N dual-ported

RAMs and N comparators are needed. We observe that during any given instance at most

one queue will have data placed into it and at most one queue will have data retrieved from

it. The same queue can have both read and write access simultaneously but this means that

only a one dual-ported memory is needed to buffer the packet data. There will need to be N

head pointers and N tail pointers to addresses in data RAM. The problem is keeping track

of the head and tail pointers for each of the N internal queues, as well as updating the Full

and Empty status lines.

For our design, we implemented the Head and Tail pointers using two small register files

that have three address ports. For a Pull operation, the Head pointer is used to specify the

address in the data RAM for reading, and for a Push operation, the Tail pointer is used to

specify the write address in the RAM. The second port is used to write back the incremented

pointer after the read, or write, is performed. The third port is used to update the Full and

Empty flags. On a Pull operation, the head-of-queue is incremented, if the Head and the

Tail pointers are the same, then the queue is Full. On a Push operation, if the incremented

Tail and Head pointers are the same, then the queue is Empty. Thus, each register file must

have two read ports and one write port. We obtained hardware area and performance results

by synthesizing our VHDL to an FPGA. There is negligible decrease in performance as it

scales to 128 queues but a proportional increase in circuit size (i.e. logic cells) which is due

to the 3-ported register file. ASIC results are expected to be five to ten times faster.

8.3.3 Wires

The physical layer interconnection of a system can have a drastic and dynamic impact on

the entire system [94]. Early in the system design, the characteristics of the communica-

tion channels are specified in general terms. This may include the functionality, latency,

bandwidth, and bit-error rate of each network link.

124

Table 8.1: N-Queue hardware synthesis and performance results N=4 to 128, Width=64

bits, FPGA target: Altera EP1S25F1020C-5

N 4 8 16 32 64 128

Logic Cells 361 480 1,439 1,988 3,939 8,010

(1.4%) (1.9%) (5.6%) (7.8%) (15.4%) (31.2%)

Memory (bits) 16,386 32,768 65,536 131,072 262,144 524,288

(0.8%) (1.7%) (3.4%) (6.7%) (13.5%) (27.0%)

Clock Constraint (MHz) 78 88 69 67 63 59

Throughput (Gbps) 4.9 5.6 4.4 4.3 4.0 3.8

Latency (ns) 13 11 14 15 16 17

125

� �
��

�� �
��

�
� �

�� �
�

	
 � �
 �
� � � � � � � � � � � � � � �

(a) Parallel to serial.

��� � ����� 	 	
�� 	 � �
 � ��
 � � 	

� � � � � � � � � � � � � � � � ! � " # � � $
% & ' � � � � � � � � � � (�

(b) High speed to se-

rial.

� �
�� �

��
�

� �
���

�� �
�

	
 � �
 �
� � � � � � � � � � � � � � �

(c) Serial to parallel.

� � � � � � � � ��� � �	�
� � � �

�
 � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

(d) Parallel wires.

Figure 8.4: Wire delay models.

In complex systems, these characteristics alone can significantly alter a system’s per-

formance and guide the underlying system design. Optical switches may combine these

performance characteristics with unique topologies such as multicasting and time/wave-

length division multiplexing. In order to design a system effectively, these communication

characteristics must be simulated along with the entire system.

At a high-level of abstraction, physical interconnections can be modeled as parallel wires

that contain a specific delay. This is easily achieved using the VHDL command A<=B after

5ns, which assigns the value of B to the output A after a delay of 5ns. This command can

be used for busses as well as wires, but causes a latency delay and a bandwidth of the same

value. For example, changing B from low to high and then back to low within a 5ns period

will not cause a corresponding change in A. However, using the VHDL statement: A <=

transport B after 5ns will enable changes smaller than 5ns to be seen on A. When the

source of the signal is generated by a clock edge, or is regulated by some other portion of

the circuit, then the simple delay is sufficient for modeling and more complex mechanisms

are not required.

For our simulations, we have defined four components as shown in Figure 8.4. The First

component is a Parallel-to-Serial converter, the second is a High-Speed Serial Cable, the

third is a Serial-to-Parallel converter, and the last is a Parallel Wire. For the Parallel-to-

Serial component, there will be a one-clock cycle delay associated with this component at

the clock cycle frequency of the sender. The High Speed Serial Cable has a latency that is

126

� � � � � � � � � � 	
 � �
 � � �
 �
� � � � � � � � �
 � � � � �

� � � � � � �

� � � � �

� � � � � � �

� � � � �

 ! � " # $ � � � � # ! �
% & ' � (�) � �

Figure 8.5: The scheduler.

proportional to the length of the cable being simulated and can be conservatively estimated

as one to two ns per foot. The bandwidth for this cable must also be specified, as this

will determine its throughput. The Serial-to-Parallel converter must wait until all of its

bits have been serially shifted into the register, thus, there is a latency associated with this

component. This latency is its Width / Serial Frequency, which must be equal to its Parallel

Frequency. Lastly, the Parallel Wire component is used to define delays that are within a

chip. It should be noted that the Parallel Wire component can also be used to simulate a

sequence of Parallel to Serial, High Speed Serial and Serial to Parallel components.

8.3.4 Network scheduler

One of the critical components of a network is its arbitration logic. If multiple processors

send data to a single destination, there will be a conflict within the network that needs to

be resolved. Within a packet switched network, this would be seen as multiple packets in

different input ports that have the same output port. For circuit switching, multiple NICs

would request a circuit to the same destination. Irrespective of the network type, there must

be some arbitration logic that determines which processor, or port, gets priority.

To handle arbitration, we created a component called a Scheduler that receives up to N

requests for N destinations as shown in Figure 8.5. Each Request input is an N -bit bit-vector,

which specifies the destinations to which it needs to send the data. For PEj, if Request[i] =

‘1’ then PEj has data that it needs to send to PEi. The output of the Scheduler is a Grant

127

� ��� � � ��� 	
 � � �

�
 �
 ! " � � � � �$# � � � % �

& ' () * + , * ,

& ' () * + , * ,

-) * () * + , * ,

-) * () * + , * ,

. / ' 0 1 2) 3 , * 1 / '

Figure 8.6: Switch Fabric.

signal for each of the N Requests, in which each PE is granted at most one destination that

was requested. A Configuration is output from the Scheduler to the Switch Fabric indicating

its configuration.

8.3.5 Switch fabric

Switching fabrics have been around since the early days of parallel computing with a mature

research field in multi-stage interconnection networks. In this paper, we have separated the

control portion of the switch, which we refer to as the scheduler, from the data path portion

of the switch. The switch fabric can be a single crossbar, a multistage interconnect switch,

or any kind of topology as shown in Figure 8.6.

Depending on the type of technology used to create the switch, the configuration time

and the propagation time, i.e. the configuration and data latency, respectively, can change

by orders of magnitude. Digital switches have faster switching latency, but have a longer

propagation delay and a lower per-pin throughput than low voltage differential signal (LVDS)

switches and optical switches.

128

8.4 SYSTEM SIMULATION

This section illustrates the design methodology for large systems using the proposed design

and simulation framework. In the prior section, we described the individual components

that were created using a hardware description language and characterized by their FPGA

performance. We examine the characteristics of three networks and show how different net-

works, with different characteristics, can be compared using the common set of components

and simulation framework. The three different types of networks we created are packet

switching, circuit switching, and predictive circuit switching. In this section, we show the

various parameters that can be set for the different components.

The behavior of each module is predefined but the performance can be modified. Each

module is given a frequency and a latency parameter. Recall that the inverse of the frequency

of a hardware device is duration of one clock cycle and that this duration is determined by the

target technology. As the density of transistors increases, the clock frequency also increases.

This parameter is therefore technology dependent. The latency of a particular component

is specified as the number of cycles required to achieve the result. This parameter is design-

dependent and can be derived from the architecture of the component. The internal storage

of a component, if applicable, is also design-dependent. Thus, by specifying the frequency,

the latency and the buffer size of each component we can characterize an entire system.

Many components utilize the same frequency as will be shown.

8.4.1 Wormhole switching

Wormhole switching networks decompose all communication into small point-to-point mes-

sages that are routed through the network independently. At the destination, the original

message is reassembled from the individual packets.

To simulate a wormhole switching network we represent the processor as a data-sender

and as a data-receiver and do not consider the overhead associated with the processor inter-

face or the creation of network packets. As such, we expect that there will be an additional

latency, for a “real” network, that is not considered here. However, our goal was to be able

129

to compare and contrast different networks and, as such, the processor and bus interface

circuitry would be the same.

The network interface card/controller is shown in Figure 8.7 as two Simple Queues, one

for output traffic and one for inbound traffic. For clarity, only one NIC for sending and

receiving data is shown. In our simulation, data can be sent and received by NICs simul-

taneously. A small amount of control logic was added to the NIC to handle backpressure,

not shown in the figure. For the switch, we implement an input buffered switch and a single

scheduler to perform the routing/arbitration. We simulate this using an N-Queue compo-

nent for inbound traffic, a Scheduler component for routing/arbitration and a Switch Fabric

component for the crossbar. Data coming from the switch into the NIC is buffered into a

Simple Queue and written to a file with a time stamp by the processing element. Each worm

was created with using 64-bit words, a one word header, a one word flit, a ten flit payload,

and a one word tail.

By using input buffering, we enabled the scheduler to improve the switch utilization,

since it has knowledge of all destinations for each of the N ports. As described earlier, we

have implemented these N-Queues in hardware and have shown that head-of-line blocking

can be avoided even for a large N by using hardware, as long as there is only one word

written and one word read per cycle. This assumption is realistic for a switch, as each port

has a single cable receiving inputs and a single switch fabric interface. This, however, is

not true for all designs and must be taken into consideration. The Scheduler component

receives an N -bit vector from each N-Queue specifying which of its internal queues have

data. It then allocates the bandwidth using the round-robin priority scheme described in

Section 8.3 but schedules all destination ports within a cycle. This enables a single-cycle

allocation of bandwidth and enables out-of-order routing from each port, both of which

increase network utilization. Other schemes can be implemented by simply changing the

design of the Scheduler and re-running the traffic traces.

130

� � � � �
� � � �

	
� � � � �
� � � �

� �
 � � � � � �
�
 � � � � � �

� � � � � � � � � � � � � ! "
$ % � � � � � � � � � � & �

� �
 � � � � � �
�
 � � � � � �

� � � � � � � � � � � � � ! "
$ % � � � � � � � � � � & �

' ()� � * +,� - . / � *

� � � � � � � � � � � 0 � 1 " 2 3 ! " 4
$ % � � � � � � 0 � � � & �

5 6 � 7 � � � � 8
� � � � � � � � � � � 9 4 : � " 0 0 : 4 ; � � � ! "
$ % � � � � �=< � � � & �

� � � � � � � � � � � 0 � 1 " 2 3 ! " 4
$ % � � � � � � 0 � � � & �

> ? @ � A B � �
C
 D E
F G @ �

H D A � I

J � K B � I G
L
 � M G

J � K B � I G
L
 � M G

H N O B � B �

> � M P � � O B � B �

> � M P � � O B � B �

C
 D E)F G @ �

H D A � I

Q=� R

S D M T � P B
 � G � D M

UV/ W X)+ W � �)' ()� � * +

� � � � � � � � � � � 9 4 : � " 0 0 : 4 ; � � � ! "
$ % � � � � �=< � � � & �

� � � � � � � � � � � 9 4 : � " 0 0 : 4 ; � � � ! "
$ % � � � � �=< � � � & �

Figure 8.7: Wormhole switching network..

8.4.2 Circuit switching

Circuit switching utilizes the same components as wormhole routing even though these are

very different networks. Surprisingly, the major difference is the location of the buffers and

the corresponding distance between these buffers and the schedule, shown in Figure 8.8. For

wormhole routing, the N-Queue was next to the switch fabric, but in circuit switching, this

buffer is located within the NIC. Thus, each time a packet needs to be sent, a request must

first be sent to the scheduler, the scheduler must determine if the request can be granted, the

circuit is established and an acknowledgement is sent to the NIC. The circuit is maintained

until the NIC’s buffer is empty for that particular source-destination connection.

Some switch fabrics, like all optical switches, cannot buffer data and thus, circuit switch-

ing is required. By having a central scheduler that has knowledge of all of the data that

needs to be sent in any given cycle, there is a greater chance to improve network utilization.

For large networks, a wormhole routing switch only sees data that are in its queues while a

circuit switch with centralized scheduler has complete knowledge of all pending traffic. For

131

� � � � �
� � � �

	
� � � � �
� � � �

� �
 � � � � � �
�
 � � � � � �

� � � � � � � � � � � � � ! "
$ % � � � � � � � � � � & �

� �
 � � � � � �
�
 � � � � � �

� � � � � � � � � � � � � ! "
$ % � � � � � � � � � � & �

' ()� � * +,� - . / � *

� � � � � � � � � � � 0 � 1 " 2 3 ! " 4
$ % � � � � � � 0 � � � & �

� � � � � � � � � � � 0 � 1 " 2 3 ! " 4
$ % � � � � � � 0 � � � & �

5 6 7 � 8 9 � �

:
 ; <
= > 7 �

? ; 8 � @

A � B 9 � @ >

C
 � D >

A � B 9 � @ >

C
 � D >

? E F 9 � 9 �

5 � D G � � F 9 � 9 �

:
 ; <)= > 7 �

? ; 8 � @

HI� J

K ; D L � G 9
 � > � ; D

JI� / * � � � ' ()� � * +

M N � O � � � � P
� � � � � � � � � � � Q 4 R � " 0 0 R 4 S � � � ! "
$ % � � � � �IT � � � & �

� � � � � � � � � � � Q 4 R � " 0 0 R 4 S � � � ! "
$ % � � � � �IT � � � & �

� �
 � � � � � �U�
 � � � � � �

� � � � � � � � � � � � � ! "
$ % � � � � � � � � � � & �

� �
 � � � � � �U�
 � � � � � �

� � � � � � � � � � � � � ! "
$ % � � � � � � � � � � & �

Figure 8.8: Circuit switching network.

networks with multiple stages, the wormhole routed switch will only have local knowledge

and not global knowledge of the pending data traffic.

8.4.3 Predictive circuit switching

In order to avoid the overhead of circuit switching, we introduce predictive circuit switching,

shown in Figure 8.9. In this type of network, the circuits are setup before they are re-

quested. This concept is analogous to cache prediction, but rather than fetching data before

it is requested, predictive circuit switching configures the network before it is needed. If the

network predicts accurately, namely a “hit”, then there is no setup latency and the network

appears as if each source is directly connected to its destination. Circuit switching removes

the buffers from the switch and reduces its latency of a switch to that of a small segment of

cable because data can stay in the optical or analog domain. By predicting the next con-

nection, the scheduler delay is hidden because it is pre-computed. The switch configuration

still exists, but is minimal for LVDS switch elements and other similar technologies.

132

� � � � �
� � � �

	
� � � � �
� � � �

� �
 � � � � � ���
 � � � � � �

� � � � � � � � � � � � ! " #
$ % & � � � � � � � � � � ' �

� �
 � � � � � ���
 � � � � � �

� � � � � � � � � � � � ! " #
$ % & � � � � � � � � � � ' �

()*� � + ,-� . / 0 � +

� � � � � � � � � � � 1 � 2 # 3 4 " # 5
$ % & � � � � � � 1 � � � ' �

� � � � � � � � � � � 1 � 2 # 3 4 " # 5
$ % & � � � � � � 1 � � � ' �

6 7 8 � 9 : � �

;
 < =
> ? 8 �

@ < 9 � A

B � C : � A ?
D
 � E ?

B � C : � A ?
D
 � E ?

@ F G : � : �

6 � E H � � G : � : �

;
 < =I> ? 8 �

@ < 9 � A

JK� L

M < E N � H :
 � ? � < E

O 0 � P � + � � Q �*LK� 0 + � � � ()R� � + ,

S T � U � � � � V
� � � � � � � � � � � W 5 X � # 1 1 X 5 Y � � ! " #
$ % & � � � � �[Z � � � ' �

� � � � � � � � � � � W 5 X � # 1 1 X 5 Y � � ! " #
$ % & � � � � �[Z � � � ' �

� �
 � � � � � �
�
 � � � � � �

� � � � � � � � � � � � ! " #
$ % & � � � � � � � � � � ' �

� �
 � � � � � �
�
 � � � � � �

� � � � � � � � � � � � ! " #
$ % & � � � � � � � � � � ' �

\]
^

�
 � 9 � 7 ? � _ �
M < E N � H :
 � ? � < E

Figure 8.9: Predictive switching network.

However, when the switch predicts incorrectly, there is a miss penalty that can be sub-

stantial. If the network supports preemption, the penalty can be little more than that of

circuit switching, but if the predictive circuit switch has a complete, predefined set of con-

figurations, then an unpredicted communication may have to wait for a few communication

cycles before it can sent its data. This paper introduces the concept of predictive circuit

switching, affirms its benefits during predictable traffic, and examines its drawbacks dur-

ing unpredictable traffic. For this initial discussion and simulation, we use a round-robin

prediction method that cycles a fixed set of destinations. We have demonstrated through

simulation that this scheme is better than packet and circuit switching when there is a high

degree of predictability, and that this scheme has a high cost for missed predictions.

8.5 SCALING FROM 32 TO 128 PROCESSORS USING SYSTEMC

Our experiments are based on wormhole switching network, circuit switching network, and

predictive switching network. All parameters in our simulation are configurable and in the

133

8 16 32 64 128 256 512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

SystemC Circuit Switch
SystemC Wormhole Switch
SystemC Predictive Switch
Circuit Switch
Wormhole Switch
Predictive Switch

(a) 10 foot cable.

8 16 32 64 128 256 512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

SystemC Circuit Switch
SystemC Wormhole Switch
SystemC Predictive Switch
Circuit Switch
Wormhole Switch
Predictive Switch

(b) 100 foot cable.

Figure 8.10: SystemC simulation vs. VHDL simulation (Random-to-all communication pat-

tern).

134

8 16 32 64 128 256 512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Circuit Switch
Wormhole Switch
Predictive Switch
Circuit Switch Large Buffer
Wormhole Switch Large Buffer
Predictive Switch Large Buffer

(a) 10 foot cable.

8 16 32 64 128 256 512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

80

90

100

Message Size (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Circuit Switch
Wormhole Switch
Predictive Switch
Circuit Switch Large Buffer
Wormhole Switch Large Buffer
Predictive Switch Large Buffer

(b) 100 foot cable.

Figure 8.11: Simulation of buffer size vs. bandwidth (Random-to-all communication pat-

tern).

135

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Nodes

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Circuit Switch
Wormhole Switch
Predictive Switch

(a) 16 byte message.

8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

B
an

dw
id

th
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
(%

)

Circuit Switch
Wormhole Switch
Predictive Switch

(b) 512 byte message.

Figure 8.12: SystemC system simulation for up to 128 processors (All-to-all communication

pattern, 10 foot cable).

136

experiments performed, we set these parameters to values that match our hardware synthesis

results. Our initial experiments utilized ModelSim to execute our VHDL simulations for 32

processors. We found that scaling beyond this level exceeded the 1.5 GB memory capacity

but did not fully utilized the processor. By converting to our SystemC modules and executing

the software version, we validate that our two models are nearly identical and that our

SystemC framework scales to 128 processors. Using SystemC, the bottleneck was processing

and not memory capacity.

The frequency of the processor, f pe, determines the data generation speed, and was set

to 500MHz to approximate a fast processor/NIC interface. The buffer size for the N-Queue

component is small at 128 bytes, which is 16 64-bit words. In our “large buffer” simulations,

this is increased to 240KB or 30K words but this is only shown for SystemC as this was

not possible for our VHDL simulations. The clock frequency for cable f cable was set to

100MHz to emulate a 6.4 Gb/s throughput as our wire simulator actually passes 64-bit

words. All tests were simulated twice with short cables and with long cables. For systems

using short cables, the cable latency, l cable, was set to 10 nanoseconds, while for systems

using moderately long cables, the cable latency was set to 100 nanoseconds. These latencies

approximate 10 foot and 100 foot cables. The scheduler’s working frequency, f scheduler, was

set to 100MHz, with a latency, l scheduler, of 2 cycles. The clock frequency of the switch

fabric, f switch, was also set to 100MHz with a latency, l switch, of 1 cycle as this fabric does

not contain any buffers and could be in the analog domain.

We show our results in terms of the effective bandwidth which we calculate by dividing

the total number of data bits sent by the total time requires for a set of messages. We

normalize this value by dividing it by peak bandwidth of the cable.

In our design and simulation framework, we propose that the modules be designed using

a hardware design flow to extract performance characteristics. To avoid the scaling problem

that is inherent to VHDL simulations, we utilize the performance characteristics of the VHDL

module design to create equivalent SystemC components that are then integrated into a

larger system. To verify that this methodology is accurate, we have simulated the random-to-

all traffic pattern in both VHDL and in SystemC. As can be seen from the performance curves

in Figure 8.10, the solid curves are generated from SystemC simulation results and the dashed

137

curves are generated from VHDL simulation results. The SystemC and VHDL simulations

are nearly identical. We find that for small messages, predictive circuit switing and wormhole

routing are close in performace. However, for long cables, the performance of circuit switching

drops because the distance of the control path between the NIC and the switching node

increases. Therefore, it takes more time to establish circuit connections. Because the random

traffic has very low predicability, in the predictive switching technique all 32-destination

configurations are preloaded for each processor. All 32-destination configurations are rotated

sequentially in round-robin manner. If there is one message to be sent, it must wait for the

average of 16 communciation cycles, which drastically increases the message latency. Each

communication cycle can send 80 bytes, so message that requires more than one cycle, it must

wait for 31 cycles before it can continue to send its data. Hence, the hit ratio is very low. This

describes the worst-case scenario for predictive circuit switching. The overall performance

of the predictive switching, circuit switching and wormhole routing drops considerably when

the message size over 128 bytes. This is due to the limited buffer size. After the buffer is

full, the scheduler within the switching node will have fewer options to route packets.

One of the benefits of using SystemC is more efficient use of memory. We tried to increase

the buffer size of the N-Queue in our VHDL simulations but we ran out of physical memory.

We expanded the buffer size for each destination to 240 Kbytes in SystemC simulation and

noticed the expected performance improvement. Figure 8.11 shows the bandwidth utilization

for both small (128 byte) and large (240 kilobyte) buffers.

To illustrate the benefit of the scaling our simulations to 128 processors, we simulated

the all-to-all communications pattern for all three networks using ten foot cabling. When

the number of nodes is small, predictive switching, circuit switching and wormhole switching

have similar performance. However, when the number of nodes increases to 128 for small

messages (16 bytes), predictive switching significantly outperforms the others, shown in

Figure 12(a). For medium sized messages, the benefits of predictive switching become more

pronounced as the system size increases, shown in Figure 12(b).

138

8.6 CONCLUSIONS

This chapter has presented a common framework for designing, synthesizing, and simulating

parallel computing networks. By using a hardware design flow, each component can be

designed separately and characterized in terms of latency and bandwidth. By using FPGAs

as the target technology, we are able to present performance results that can be compared

against, and give insight into, ASIC performance. The hardware synthesis tools provide a

maximum frequency of the device, and from simulations we can determine the latency in

terms of clock cycles. By multiplying the cycle latency and the device frequency, we can

accurately determine the latency down to the nanosecond (10−9) level of accuracy.

By making our framework modular, we are able to create different networks using compo-

nents. The input and output files provide the network traffic. By using the VHDL hardware

description language with a hardware simulator, we are able to simulate the entire network

to cycle accuracy using communication traces. The network performs the actual routing and

contention arbitration necessary to route data through a large parallel computing network.

This level of system simulation enables us to examine the true behavior of the network with

a specific set of parameters, and with specific switching techniques.

139

9.0 CONCLUSION AND FUTURE DIRECTIONS

This dissertation proposes a new network switch architecture, the hybrid switch, by com-

bining the predictive circuit switch and the wormhole switch in a single switch using virtual

channels.

9.1 CONCLUSION

The hybrid switch takes advantage of both wormhole switching and predictive circuit switch-

ing. Small and un-predictable traffic is transferred through wormhole switch to achieve flexi-

bility. Predictable traffic is transferred through predictive circuit switching, therefore avoid-

ing control and buffering overhead. The overhead of predictive circuit switching caused by

connection establishment is amortized by reusing established connections in a time-division

multiplexing approach. By dynamically selecting the proper switching technique based on

the type of communication traffic, the hybrid switch improves effective bandwidth utilization

for most types of traffic.

9.2 PRIMARY CONTRIBUTIONS

The dissertation proposed a hybrid switching technique. Scheduling and virtual channel

assignment issues are investigated. A cycle-accurate simulation framework has been built to

evaluate the proposed hybrid switching technique. The contributions of the dissertation are

listed as below.

140

1. A hybrid switch architecture.

The dissertation proposes a hybrid switch architecture combining predictive circuit

switching and wormhole switching methods. Data are transferred through

high-throughput and low-cost analog switch fabrics.

2. Optimizing virtual channel assignment schemes

Three virtual channel assignment schemes are introduced, which are SES (skip empty

slots), SLA (slot length adjustment) and PREEMPT (preempt slots). With the vir-

tual channel assignment scheme, the hybrid switch successfully handles both predictable

traffic and un-predictable traffic.

3. A real-time greedy scheduler.

The predictive circuit switching scheduler facilitates the hybrid switching system. Pre-

dictive circuit connections are established before traffic comes and reused multiple times

to amortize the control overhead caused by establishing circuit connections.

4. Optimizing scheduling algorithms.

Two optimizing scheduling algorithms are described. One is an optimizing scheduling

method for crossbar networks. The other is a Level-Wise scheduling algorithm for fat

tree interconnection network. In predictive circuit switching, connections are kept for a

long time, called long-lived connections. The optimized scheduling algorithms are able

to improve the effective bandwidth utilization.

5. A uniform network simulation framework

SystemC based network simulator provides a flexible and uniform simulation framework

to evaluate our new switching technique.

9.3 FUTURE DIRECTIONS

Future directions of this research include compiler design, multiple crossbar architecture and

prototype implementation.

141

9.3.1 Intelligent compiler

Compiled communication is the basis of the hybrid switch. An intelligent compiler will boost

the network performance based on a hybrid switching. Commands should be inserted into

parallel programs to indicate communication patterns, starting and ending points of a phase.

As indicated in our simulation result, the rough traffic ratio computed as predictable traffic

over total traffic is also helpful.

9.3.2 Hardware prototype

The dissertation proposes a hybrid switch architecture. Most dissertation research is based

on architecture designs and simulations. A proof-of-concept hardware prototype targeted on

FPGA evaluation board is an interesting direction. Four Xilinx Vertex evalaution boards

can be stacked together with LVDS cables to build a fundamental network.

142

APPENDIX

SELECTED PUBLICATIONS

1. Z. Ding, R. Hoare, A. Jones, D. Li, S. Shao, S. Tung, J. Zheng, and R. Melhem, “Switch

design to enable predictive multiplexed switching in multiprocessor networks,” in Proc.

of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS

2005), (Denver, CO), Apr. 2005.

2. R. Hoare, Z. Ding, S. Tung, A. Jones, and R. Melhem, “A framework for the design,

synthesis and cycle-accurate simulation of multiprocessor networks,” Journal of Parallel

and Distributed Computing (JPDC), 2004.

3. R. Hoare, S. Tung, B. Farren, and Z. Ding, “Incorporation of physical layer characteristics

into system level modeling of large digital systems,” in Proc. Int. Conf. on Applied

Modeling and Simulation, IASTED2002, 2002.

143

BIBLIOGRAPHY

[1] S. F. Nugent, “The iPSC/2 direct-connect communications technology,” in Proceedings
of the third conference on Hypercube concurrent computers and applications: Architec-
ture, software, computer systems, and general issues, vol. 1, pp. 51–60, ACM Press,
1988.

[2] W. Oed, “The Cray research massively parallel processing system: Cray:T3D.” Cray
Research, 1993.

[3] IBM, “IBM eserver pSeries SP switch and SP switch2 performance.” http://www-
1.ibm.com/servers/eserver/pseries/hardware/whitepapers/, February 2003.

[4] F. Petrini, W. chun Feng, A. Hoisie, and S. Chaudhury, “The Quadrics network: high-
performance clustering technology,” Micro, IEEE, vol. 22, no. 1, pp. 46 – 57, 2001.

[5] J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application com-
munication requirement for a reconfigurable hybrid interconnect,” in IEEE Conference
on Supercomputing, 2005.

[6] K.J.Barker, A. Benner, R. Hoare, A. Hoisie, A. Jones, D.J.Kerbyson, D.Li, R. Melhem,
R.Rajamony, E. Schenfeld, and C.Stunkel, “On the feasibility of optical circuit switching
for high performance computing system,” in IEEE conference on Supercomputing, 2005.

[7] National Semiconductor Co., “SCAN50C400 1.25/2.5/5.0 GBPS quad multi-rate back-
plane transceiver.” Data Sheet, Jan. 2004.

[8] J. Duato, P. Lopez, and S. Yalamanchili, “Deadlock- and livelick-free routing protocols
for wave switching,” in 11th International Parallel Processing Symposium, pp. 570–577,
1997.

[9] J. Duato, P. Lopez, F. Silla, and S. Yalamanchili, “A high performance router archi-
tecture for interconnection networks,” in in Proc. 1996 Int. Conf. Parallel Processing,
vol. 1, 1996.

[10] The BlueGene/L Team, “An overview of the BlueGene/L supercomputer,” in Conf. on
High Performance Networking and Computing, 2002.

[11] PLX Technologies, “RLX ultra high desnsity balde servers.” http://www.nasi.com.

144

[12] C. B. Stunkel, “Commercial MPP networks: Time for optics,” in 4th Int. Conf. on
Massively Parallel Processing Using Optical Interconnections (MPPOI’97), pp. 90–95,
1997.

[13] D. Addison, J. Beecroft, D. Hewson, M. McLaren, and F. Petrini,
“Quadrics QsNet II: a network for supercomputing applications.”
http://www.hotchips.org/archive/hc15/pdf/2.quadrics.pdf.

[14] National Semiconductor Co., “National LVDS products.” http://www.national.com,
2004.

[15] National Semiconductor Co., “SCAN90CP02 1.5 Gbps 2x2 LVDS crosspoint switch with
pre-emphasis sand IEEE 1149.6.” Data Sheet, Feb. 2004.

[16] National Semiconductor Co., “DS90CP04 4x4 low power 2.5 Gb/s LVDS digital cross-
point switch.” Data Sheet, Jan. 2004.

[17] EXFO Co., “Optical switch IQ-9100.” http://documents.exfo.com/specsheets/IQ-
9100an.pdf, 2001. Data Sheet.

[18] J. Lee and S.-T. Ho, “Ultra-high-capacity optical communications and networking.”
http://oclab.usc.edu/nsf/oct2002/pdf/lee-lisos.pdf, 2002. Northwestern University.

[19] B. VanVoorst and S. Seidel, “Comparison of MPI implementations on a shared mem-
ory machine,” in in Proceedings of the 15th IPDPS 2000 Workshops on Parallel and
Distributed Processing, no. 847-854, 2000.

[20] T. Tabe and Q. F. Stout, “The use of the mpi communication library in the nas parallel
benchmarks.” http://citeseer.ist.psu.edu/tabe99use.html.

[21] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI the
complete reference. The MIT Press, 1996.

[22] X. Yuan, Dynamic and Compiled Communication in Optical Time Division Multiplexing
Point-to-Point Networks. PhD thesis, University of Pittsburgh, 1998.

[23] A. Afsahi and N. Dimopoulos, “Collective communication on a reconfigurable opitcal
interconnect,” in Proceedings of the OPODIS’97, International Conference on Principles
of Distributed Systems, pp. 167–181, 1997.

[24] A. Afsahi, Design and Evaluation of Communication Latency Hiding/Reduction Tech-
niques for Message-Passing Enviroments. PhD thesis, University of Victoria, Canada,
2000.

[25] X. Yuan, R. Melhem, and R. Gupta, “Algorithms for supporting compiled communica-
tion,” Trans. on Parallel and Distributed Systems, IEEE, pp. 107–118, 2003.

145

[26] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng, “The SUIF com-
piler for scalable parallel machines,” in 7th SIAM Confernece on Parallel Processing for
Scientific Computing, 1995.

[27] A. Afsahi and N. J. Dimopoulos, “Hiding communication latency in reconfigurable
Message-Passing enviroments,” Tech. Rep. ECE-99-3, Victoria, B.C., Canada, 1999.

[28] M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G. Horne, and C. L. Giles, “Predicting
multiprocessor memory access patterns with learning models,” in Proceedings of the
Fourteenth International Conference on Machine Learning, pp. 305–312, 1997.

[29] E. Authurs, M. S. Goodman, H. Kobrinski, and M. Vecchi, “HYPASS: An optoelectronic
hybrid packet switching system,” IEEE Journal on Selected Area in Communications,
vol. 6, no. 9, pp. 1500–1510, 1988.

[30] J. Livas, T. Hofmeister, and K. Horne, “Taking a hybrid optical-switch ap-
proach.” http://www.eetimes.com/article/showArticle.jhtml?articleId=18310898, 2004.
EE Times.

[31] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, “Hardware- and software-based
collective communication on the quadrics network,” in IEEE International Symposium
on Network Computing and Applications, Feb 2001.

[32] S. Coll, J. Duato, F. Mora, F. Petrini, and A. Hoisie, “Collective communication patterns
on the quadrics network,” Performance Analysis and Grid Computing, 2003.

[33] R. Ponnusamy, R. Thakur, A. Choudhary, and G. Fox, “Scheduling regular and irregular
communication patterns on the cm-5,” in Proceedings of Supercomputing 92, pp. 394–
402, November 1992.

[34] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L. Gurvits, “Using multirail networks
in high-performance clusters,” in Proceedings of the 2001 IEEE International Conference
on Cluster Computing, pp. 15–24, Oct. 2001.

[35] Y.-L. Chen and J.-C. Liu, “A hybrid interconnection network for integrated commu-
nication services,” in 11th International Parallel Processing Symposium (IPPS ’97),
pp. 341–345, 1997.

[36] C. Salisbury and R. Melhem, “A high speed scheduler/controller for unbuffered banyan
networks,” in Proceedings of the IEEE International Conference on Communications,
vol. 1, pp. 645–650, 1998.

[37] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz, “Tiny Tera:
A packet switch core,” IEEE Micro, vol. 17, no. 1, pp. 26–33, 1997.

[38] N. McKeown, Scheduling algorithms for input-queued cell switches. PhD thesis, Univer-
sity of California at Berkeley, 1995.

146

[39] F. M. Chiussi and A. Francini, “Scalable electronic packet switches,” IEEE Journal on
Selected Areas in Communications, vol. 21, pp. 486–500, May 2003.

[40] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The QuadricsNetwork
(QsNet): high-performance clusting technology,” in the 9th IEEE Hot Interconnects
(HotI’01), 2001.

[41] A. Ganz and Y. Gao, “Tdma communication for ss/tdma satellites with optical inter-
satellite links,” in IEEE International Conference on Commutations, vol. 3, pp. 1081–
1085, 1990.

[42] C. Qiao and R. Melhem, “Dynamic reconfiguration of optically interconnected networks
with time division multiplexing,” Journal of Parallel and Distributed Computing, vol. 22,
no. 2, pp. 268–278, 1994.

[43] K. L. Yeung, “Efficient time slot assignment algorithms for tdm hierarchical and non-
hierarchical switch systems,” IEEE Transactions on Computers, vol. 49, February 2001.

[44] R. Melhem, “Time-multiplexing optical interconnection networks; why does it pay off?,”
in In Proc. of the ICPP workshop on Challenges for Parallel Processing, 1995.

[45] J. Liang, S. Swaminathan, and R. Tessier, “ASOC: a scalable, single-chip communica-
tions architecture,” in International Proceedings on Parallel Architectures and Compi-
lation Techniques, pp. 37–46, Oct. 2000.

[46] A. Faraj and X. Yuan, “Communication characteristics in the nas parallel benchmarks,”
in Proc. 14th IASTED Int. Conf. on Parallel and Distributed Computing and Systems,
IPDCS 2002, (Cambridge, MA), pp. 729–734, November 2002.

[47] D. Lahaut and C. Germain, “Static communications in parallel scientific programs,” in
In Proc. of PARLE, 1994.

[48] W. Thies, M. Karczmarek, and S. Amarsinghe, “StreamIt: a language for streaming
applications,” in In Proc. og the Int. Cpmf. on Compiler Construction, 2002.

[49] S. Hinrichs, Compiler directed architecture-dependent communication optimization. PhD
thesis, Carnegie Mellon University, 1995.

[50] T. Gross, “Communication in iWarp ssytems,” in In Proc. of Supercomputing, 1989.

[51] T. Gross, A. Hasegawa, S. Hinrichs, D. O’Hallaron, and T. Stricker, “Communication
styles for parallel systems,” IEEE Computer, 1994.

[52] F. Cappello and C. Germain, “Toward high communication performance through com-
piled communications on a circuit switched interconnection network,” in in Proc. of
First IEEE Symposium on High-Performance Computer Architecture, 1995.

147

[53] G. Viswanathan and J. Larus, “Compiler-directed sharedmemory communication for
iterative parallel applications,” in in Proc. of the 1996 ACM/IEEE Conf. on Supercom-
puting, 1996.

[54] M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G. Horne, and C. L. Giles, “Predicting
multiprocessor memory access patterns with learning models,” in Proc. 14th Int. Conf.
on Machine Learning, pp. 305–312, 1997.

[55] S. Kaxiras and C. Young, “Coherence communication prediction in shared-memory mul-
tiprocessors,” in in Proc. of the 16th Int. High Performance Computer Architecture,
2000.

[56] F. Glover, “Maximum matching in a convex bipartite graph,” Naval research Logistics
Quarterly, 1967.

[57] A. L. Dulmag and N. S. Mendelsohn, “Actrices associated with the hitchcock problem,”
Journal of the ACM, 1962.

[58] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,” ACM Com-
puting Surveys (CSUR), vol. 18, no. 1, pp. 23–38, 1986.

[59] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, “Matching is as easy as matrix
inversion,” in STOC ’87: Proceedings of the nineteenth annual ACM conference on
Theory of computing, (New York, New York, United States), pp. 345–354, 1987.

[60] S.Habata, M. Yokokawa, and S.Kitawaki, “The Earth simulator system,” tech. rep.,
NEC Res. and Develop. http://www.owlnet.rice.edu/ elec526/handouts / papers/earth-
sim-nec.pdf.

[61] T. Weller and B. Hajek, “Scheduling nonuniform traffic in a packet-switching system
with small propagation delay,” IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 813–823,
1997.

[62] K. L. Yeung, “Efficent time slot assignment algorithms for TDM hierarchical and non-
hierarchical switch systems,” IEEE Trans. on Communications, vol. 49, pp. 351–359,
Feb. 2001.

[63] N. Mckeown, “Crossbar switch scheduling,” SNRC Talk, 2001.

[64] L.Lovasz and M.Plummer, Matching Theory. Academic Press, 1986.

[65] H. N. Gabow, “An efficient implementation of edmonds’ algorithm for maximum match-
ing on graphs,” Journal of the ACM (JACM), vol. 23, no. 2, pp. 221 – 234, 1976.

[66] M. A. Czygrinow and E.Szymanska, “Distributed algorithm for approximating the max-
imum matching,” Elservier Science, 2003.

148

[67] M. Hanckowiak and M. K. A. Panconesi, “On the distributed complexity of computing
maximal matchings,” in SODA ’98: Proceedings of the ninth annual ACM-SIAM sym-
posium on Discrete algorithms, (San Francisco, California, United States), pp. 219–225,
1998.

[68] C.E.Leiserson, “Fat trees: universal networks for hardware-efficient supercomputing,”
IEEE Trans. on Computers, vol. 34, no. 10, pp. 892–901, 1985.

[69] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,
and et al., “The network architecture of the connection machine CM-5,” in Proceedings
of the fourth annual ACM symposium on Parallel algorithms and architectures, pp. 272–
285, 1992.

[70] Z.Bozkus, S.Ranka, and G.Fox, “Benchmarking the CM-5 multicomputer,” in Fourth
Symposium on the Frontiers of Massively Parallel Computation, pp. 100–107, 1992.

[71] K.E.Schauser and C.J.Scheiman, “Experience with active messages on the Meiko CS-2,”
in 9th International Parallel Processing Smposium, pp. 140–149.

[72] “AlphaServer SC:terascale single-system-image supercomputing,” tech. rep., COMPAQ
Inspiration Technology, 2002. http://h18002.www1.hp.com/alphaserver/download/.

[73] J. Beecroft, D. Addison, F. Petrini, and M. McLaren, “QsNetII: an interconnect for
supercomputing applications,” IEEE Micro, 2003.

[74] L. M. Ni, Y. Gui, and S. Moore, “Performance evaluation of switch-based wormhole
networks,” IEEE transaction on parallel and distributed ssytems, vol. 8, no. 5, pp. 462–
474, 1997.

[75] Y. Aydogan, C. B. Stunkel, C. Aykana, and B. Abali, “Adaptive source routing in mul-
tistage interconnection networks,” in 10th International Parallel Processing Symposium
(IPPS ’96), pp. 258–267, 1996.

[76] H.Kariniemi and J. Nurmi, “New adaptive routing algorithm for extended generalized
fat trees on-chip,” in International Symposium on System-on-Chip (IEEE, ed.), pp. 113–
118, 2003.

[77] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrstructure of computer system
modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67, 2002.

[78] L. Breslau, D. Estrin, K. F. adn Sally Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in network simulation,” IEEE
Computer, vol. 33, no. 5, pp. 59–67, 2000.

[79] T. Cegrell, “A simulation model of the TIDAS computer network,” IEEE Transactions
on Communications, vol. 24, no. 3, pp. 355–358, 1976.

149

[80] P. Mars, “Some aspects of simulation in telecommunication networks,” in Twelfth UK
Tele-traffic Symposium, Performance Engineering in Telecommunications Networks (Di-
gest No. 1995/054), pp. 1/1–1/4, IEE, 1995.

[81] E. C. Russell, Building Simulation Models with Simscript II.5. CACI Products Company,
1999.

[82] OPNET Technologies, Inc., “Modeler: Acelerating network R&D,” whitepaper, 2004.

[83] A. D. George, R. B. Fogarty, J. S. Markwell, and M. D. Miars, “An integrated simula-
tion environment for parallel and distributed system prototyping,” Simulation, vol. 72,
pp. 283–294, May 1999.

[84] J. Rexford, W. Feng, J. Dolter, and K. G. Shin, “PP-MESS-SIM: a flexible and exten-
sible simulator for evaluating multicomputer networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no. 1, 1997.

[85] Y. Liu and S. Dickey, “Simulation and analysis of enhanced switch architecture for
interconnection networks in massively parallel shared memory machines,” in Proceedings
of 2nd Symposium on the Frontiers of Massively Parallel Computation, pp. 487–490,
1988.

[86] I. Gorton, J. Kerridge, and B. Jervis, “Simulating microprocessor systems using occam
and a network of transporter,” in IEE Proceedings on Computers and Digital Techniques,
vol. 136, pp. 22–28, 1989.

[87] K. Wilson and J. Glodoveza, “Mentor gaphics unveil powerful synthesis tool to meet re-
quirements of next-generation programmable logic design,” tech. rep., Mentor Graphics,
2002.

[88] A. Ki, B.-I. Park, J.-G. Lee, and C.-M. Kyung, “Transaction level modeling of SoC with
SystemC 2.0,” in SOC Design Conf., 2003.

[89] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and E. Carara, “From VHDL
register transfer level to systemc transaction level modeling: a comparative case study,”
in Proc. 16th Int. Symposium on Intergrated Circuits and Systems Design, 2003.

[90] Mentor Graphics, “ModelSim,” tech. rep., Mentor Graphics, 2000.

[91] Mentor Graphics, “Design exploration tutorial,” tech. rep., Mentor Graphics, 2001.

[92] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete data sheet,”
tech. rep., Xilinx Inc., 2004.

[93] Altera, “Stratix II device handbook,” tech. rep., Altera Inc., 2004.

150

[94] R. Hoare, S. Tung, B. Farren, and Z. Ding, “Incorporation of physical layer characteris-
tics into system level modeling of large digital systems,” in Proc. Int. Conf. on Applied
Modeling and Simulation, IASTED2002, 2002.

[95] R. Hoare, Z. Ding, S. Tung, A. Jones, and R. Melhem, “A framework for the design,
synthesis and cycle-accurate simulation of multiprocessor networks,” Journal of Parallel
and Distributed Computing, 2004.

[96] Z. Ding, R. Hoare, A. Jones, D. Li, S. Shao, S. Tung, J. Zheng, and R. Melhem, “Switch
design to enable predictive multiplexed switching in multiprocessor networks,” in Proc.
of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2005), (Denver, CO), Apr. 2005.

151

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. The switch fabric component.
	5.1. The possible inputs to the pre-scheduling logic
	5.2. The function of a scheduling logic module, SLu,v
	5.3. Latency of the scheduling circuit
	6.1. Complexity analysis of three maximum matching architectures. N presents the number of nodes in the system and K represents the number of optimization steps performed.
	7.1. Performance evaluation (Design targeting on Altera Stratix II FPGA)
	8.1. N-Queue hardware synthesis and performance results N=4 to 128, Width=64 bits, FPGA target: Altera EP1S25F1020C-5

	LIST OF FIGURES
	1.1. Switched interconnection network.
	1.2. Bluegene/L packaging.
	1.3. Random-to-all communication pattern.
	1.4. All-to-all communication pattern.
	(a). 512 byte message.
	1.5. Hybrid switching network.
	3.1. Message delay in circuit switched network.
	3.2. Message delay in packet/wormhole switched network.
	3.3. The hybrid switching system.
	3.4. Data format in the hybrid switch.
	3.5. The un-predictable traffic communication mode.
	3.6. The predictable traffic communication mode.
	3.7. The network interface card.
	3.8. Internal architecture of the digital circuit inside the switch node.
	4.1. Definition of TDM cycle, TDM slot and slot length.
	4.2. Slots in hybrid switching system.
	4.3. Traffics combination.
	4.4. TDM cycle controller implemented as a counter.
	4.5. Network bandwidth utilization gets improved with SES.
	(a). Network configurations scheduled for predictive circuit switch.
	(b). Network configurations without SES.
	(c). Network configurations with SES.
	4.6. TDM cycle controller with SES capability.
	4.7. Network bandwidth utilization gets improved with SLA.
	(a). Time slots with equal length.
	(b). Time slots with different length.
	4.8. TDM cycle controller with SLA capability.
	4.9. Network bandwidth utilization gets improved with PREEMPT.
	(a). Network configuration with PREEMPT.
	(b). Time slot assignment with PREEMPT.
	4.10. TDM cycle controller with PREEMPT capability.
	4.11. Mixed traffic (buffer size = 8 K bytes, message size = 128 bytes).
	4.12. Mixed traffic (buffer size = 2 K bytes, message size = 128 bytes).
	4.13. Mixed traffic (buffer size = 128 bytes, message size = 128 bytes).
	4.14. Unknown phases (buffer size = 8 K bytes, message size = 128 bytes).
	4.15. Unknown phases (buffer size = 2 K bytes, message size = 128 bytes).
	4.16. Unknown phases (buffer size = 128 bytes, message size = 128 bytes).
	5.1. A detailed diagram of the scheduler.
	5.2. The inputs and outputs to SLu,v.
	5.3. Performance results for scatter. The Preload and Dynamic TDM utilize a multiplexing degree of four.
	5.4. Performance results for random mesh and ordered mesh. The Preload and Dynamic TDM utilize a multiplexing degree of four. Ordered and random mesh represents nearest neighbor communications for a 2D mesh.
	(a). Random mesh
	(b). Ordered mesh
	5.5. Performance results for two phases. The Preload and Dynamic TDM utilize a multiplexing degree of four.
	5.6. Combining preload of communication patterns with dynamic scheduling. A multiplexing degree of three was used, with k slots preloaded. k is varied from 0 to 2.
	6.1. A bipartite graph representing a crossbar schedule.
	6.2. Original and unfolded bipartite graphs.
	(a). Original bipartite braph with matching M
	(b). Unfolded bipartite graph with matching M
	6.3. Parallel tracing of potential augmenting paths as described in detection of augmenting paths algorithm
	6.4. Isolation of a single path within the augmenting paths.
	6.5. Matching set update.
	6.6. Detection of augmenting paths algorithm.
	6.7. Isolation of a single augmenting path.
	6.8. Pure Logic Processor to implement the maximum matching algorithm.
	6.9. Matrix Processor for the maximum matching algorithm.
	6.10. Detection of augmenting paths algorithm using matrix operations.
	6.11. Vector Processor for the maximum matching algorithm.
	6.12. Detection of augmenting paths algorithm using vector operations.
	6.13. Performance per optimization step. The Pure Hardware performance is based on estimations. The Vector and Matrix performance numbers are based on actual hardware synthesis results ranging from 8-128 and estimated for 512 and 1024.
	6.14. System area cost. The Pure Hardware performance is based on estimations of a single optimization step. The Vector and Matrix performance numbers are based on actual hardware synthesis results ranging from 8-128 and estimated for 512 and 1024.
	6.15. Estimated memory utilization for various step sizes, K, (with K=2N-1 steps being provably optimal.)
	6.16. Maximum matching for random requests. The different curves represent network load where 0.125 is 12.5% loaded and 8 is 800% overloaded (K=1 represents the greedy algorithm).
	(a). Maximum matching for 16 nodes.
	(b). Maximum matching for 32 nodes.
	(c). Maximum matching for 64 nodes.
	(d). Maximum matching for 128 nodes.
	6.17. Complete matching. Requests are mixed by randomly generated request at variable loads with the oversubscribed network loads being randomly generate permutation (K=1 represents the greedy algorithm).
	(a). Complete matching for 17 nodes.
	(b). Complete matching for 32 nodes.
	(c). Complete matching for 64 nodes.
	(d). Complete matching for 128 nodes.
	7.1. Fat-tree construction.
	7.2. The link selection.
	7.3. Switch node computation.
	7.4. Routing example.
	(a). Routing without local information.
	(b). Routing with global information.
	7.5. Data structure of a communication request.
	7.6. Level-Wise scheduling Algorithm.
	7.7. Level-Wise scheduling example.
	(a). P0 Selection.
	(b). P1 Selection.
	7.8. Level-Wise scheduling Algorithm. (Two-level fat-tree interconnection network.)
	7.9. Level-Wise scheduling Algorithm. (Three-level fat-tree interconnection network.)
	7.10. Level-Wise scheduling Algorithm. (Four-level fat-tree interconnection network.)
	7.11. Schedulability comparison based level-Wise scheduling Algorithm.
	7.12. Level-Wise scheduling Algorithm.
	7.13. Level-Wise scheduling Algorithm.
	8.1. Design flow methodology to create cycle accurate simulations for large system sizes using VHDL and SystemC.
	8.2. Processing element components.
	8.3. The single queue and the N-queue components.
	(a). 1Parallel to serial.
	(b). High speed to serial.
	8.4. Wire delay models.
	(a). 1Parallel to serial.
	(b). 1High speed to serial.
	(c). 1Serial to parallel.
	(d). 1Parallel wires.
	8.5. The scheduler.
	8.6. Switch Fabric.
	8.7. Wormhole switching network..
	8.8. Circuit switching network.
	8.9. Predictive switching network.
	8.10. SystemC simulation vs. VHDL simulation (Random-to-all communication pattern).
	(a). 10 foot cable.
	(b). 100 foot cable.
	8.11. Simulation of buffer size vs. bandwidth (Random-to-all communication pattern).
	(a). 10 foot cable.
	(b). 100 foot cable.
	8.12. SystemC system simulation for up to 128 processors (All-to-all communication pattern, 10 foot cable).
	(a). 16 byte message.
	(b). 512 byte message.

	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	1.1 Motivation
	1.1.1 Technology impact on parallel computing systems
	1.1.2 Communication locality and regularity in parallel computing networks
	1.1.3 Any single switching technique is not sufficient
	1.1.4 Prospective of predictive circuit switching

	1.2 Outline of the dissertation

	2.0 BACKGROUND AND PRIOR WORK
	2.1 Communication locality and regularity
	2.1.1 Compiled communication
	2.1.2 Run-time traffic prediction

	2.2 Switch designs combining analog and digital domain
	2.2.1 HYPASS: An optoelectronic hybrid packet switching system
	2.2.2 HFAST: Hybrid flexibly assignable switch topology
	2.2.3 Optical-electrical-optical and optical-optical networks

	2.3 Hybrid switch examples
	2.3.1 Configure network for certain communication pattern
	2.3.2 Configuration for large messages
	2.3.3 Wave switching

	3.0 HYBRID SWITCH ARCHITECTURE
	3.1 Current switching techniques
	3.2 Hybrid switch communication system
	3.2.1 Hybrid switch system

	3.3 Communication modes
	3.3.1 Unpredictable traffic mode
	3.3.2 Predictable traffic mode
	3.3.3 Preloaded mode

	3.4 Network components
	3.4.1 Network Interface
	3.4.2 Switch node

	4.0 OPTIMIZING VIRTUAL CHANNEL ASSIGNMENT
	4.1 Introduction
	4.2 Combine wormhole switched traffic with predictive circuit switched traffic
	4.2.1 Virtual channels of the hybrid switch
	4.2.2 Configure virtual channels for predictive circuit switch

	4.3 SES: Skip empty slots
	4.4 SLA: Slot length adjustment
	4.5 PREEMPT: Preempt virtual channels
	4.6 Performance evaluation
	4.6.1 Mixed traffics
	4.6.2 Unknown phases

	4.7 Conclusion

	5.0 REAL-TIME GREEDY SCHEDULER
	5.1 Amortizing the control overhead of connection establishment
	5.2 Predictive control of networks
	5.2.1 Compile-time and load-time prediction of working sets
	5.2.2 Dynamic prediction of the working set
	5.2.3 Dynamic reconfiguration with compiler assistance

	5.3 Hardware architecture of predictive circuit switching scheduler
	5.3.1 Scheduler architecture
	5.3.2 Scheduling logic

	5.4 Hardware performance
	5.5 System evaluation
	5.5.1 Network simulation methodology
	5.5.2 Simulation result
	5.5.2.1 Preloading
	5.5.2.2 Setting phases
	5.5.2.3 Partial preloading

	6.0 OPTIMIZING SCHEDULER FOR CROSSBAR NETWORKS
	6.1 Introduction
	6.2 Prior work
	6.3 Background
	6.4 Specialized processors for optimal scheduling
	6.4.1 Maximum matching algorithm

	6.5 Hardware timing and area cost
	6.5.1 Pure logic processor
	6.5.2 Matrix processor
	6.5.3 Vector processor

	6.6 Performance evaluation
	6.7 Conclusion

	7.0 LEVEL-WISE SCHEDULING FOR FAT TREE INTERCONNECTION NETWORKS
	7.1 Introduction
	7.2 Background
	7.3 Fat-tree construction
	7.4 Level-Wise routing algorithm
	7.5 Simulation results
	7.6 Level-Wise scheduling hardware architecture
	7.7 Conclusion

	8.0 NETWORK SIMULATION FRAMEWORK
	8.1 Introduction
	8.2 Background
	8.3 Design and Simulation Methodology
	8.3.1 The process element component
	8.3.2 Data queues
	8.3.3 Wires
	8.3.4 Network scheduler
	8.3.5 Switch fabric

	8.4 System simulation
	8.4.1 Wormhole switching
	8.4.2 Circuit switching
	8.4.3 Predictive circuit switching

	8.5 Scaling from 32 to 128 processors using SystemC
	8.6 Conclusions

	9.0 CONCLUSION AND FUTURE DIRECTIONS
	9.1 Conclusion
	9.2 Primary contributions
	9.3 Future directions
	9.3.1 Intelligent compiler
	9.3.2 Hardware prototype

	APPENDIX. SELECTED PUBLICATIONS
	BIBLIOGRAPHY

