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PURPOSE: Cleft lip with or without cleft palate (CLP) is a common birth defect, with 

phenotypes ranging from overt clefts to minimal microforms. Occult defects of the superior 

orbicularis oris (OO) muscle appear to be a part of this phenotypic spectrum. Analysis of the OO 

phenotype as a clinical tool is hypothesized to improve recurrence risk estimates in families.  

METHODS: Upper lip ultrasound images were collected as a component of the Oral-Facial 

Cleft (OFC) study. Breaks in the continuity of the OO muscle visualized on ultrasound were 

scored as OO defects. Occurrences of CLP were compared between families with ≥ 1 family 

member with an OO defect and families without OO defects. Recurrence risks of CLP and of OO 

muscle defects among siblings and first degree relatives (FDRs) of probands with CLP were 

calculated using empiric proportions. Similar methods were used to calculate the recurrence risks 

of CLP and of OO defects among siblings and FDRs of probands with isolated OO defects.  

RESULTS: The occurrences of CLP in families with and without a history of OO defects are 

0.1863 and 0.1165, respectively (p < 0.01, OR = 1.735). The sibling recurrence risk of CLP in 

this cohort is 9.1%; the FDR risk is 15.7%, which are both significantly different from published 

CLP recurrence risk data. The likelihoods of one or more siblings or FDRs of a proband with 

CLP to have an OO defect are 14.7% and 11.4%, respectively. The sibling recurrence of isolated 

OO muscle defects in this cohort is 17.2%; the FDR recurrence is 16.4%. The chances for one or 

more siblings or FDRs of a proband with an OO defect to have a CLP are 3.3% and 7.3%, 
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respectively, which are similar to the published recurrence risk estimates of nonsyndromic (NS) 

CLP. 

CONCLUSIONS: This study supports OO muscle defects as being part of the CLP spectrum 

and suggests an improvement in the accuracy of recurrence risk estimates of CLP. Carefully 

defining the CLP phenotype has considerable public health relevance, as it is a critical 

component to the enhancement of genetic studies investigating the etiology of CLP. 
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1.0  INTRODUCTION 

This research was conducted through the Center for Craniofacial and Dental Genetics at the 

University of Pittsburgh. The primary goal of the center is to identify genes that contribute to 

complex human phenotypes, primarily those involved in craniofacial and dental disorders. In 

order to reach this goal, the team collects phenotypic and genetic data worldwide, using 

statistical and molecular methods for gene mapping and identification. Investigations into 

phenotype descriptions as well as behavioral and epidemiological factors contributing to these 

disorders are also taking place.  

It has long been appreciated that there is significant familiality of nonsyndromic cleft lip 

with or without cleft palate (CLP); although, for the most part, inheritance patterns are not 

clearly Mendelian. Fogh-Andersen’s 1942 doctoral thesis was the first population-based study to 

suggest that there was a significant amount of heritability involved in the etiology of CLP. He 

proposed that CLP was inherited in a “conditional dominant” fashion (dominant with reduced 

penetrance). He observed a higher incidence of CLP in males than females and found that CLP 

and isolated cleft palate (CP) seemed to act as separate entities with regard to their inheritance 

(Fogh-Andersen 1942).  

Since that time, the mode of inheritance of CLP has been a much debated topic. For over 

thirty years, CLP was considered to follow a multifactorial threshold (MFT) model of 

inheritance, where the accumulation of a number of small genetic and environmental effects is 
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tolerated by a developing fetus until a threshold is reached, beyond which is a risk for CLP 

(Marazita 2002). Theoretically, this model seemed to explain the complex inheritance pattern of 

CLP and early studies were published in support of the MFT model (Bear 1976; Woolf and 

others 1964). However, once investigators began to perform critical statistical tests on the 

predictions and goodness-of-fit of the MFT model, it became clear that the MFT model was 

frequently rejected in favor of a mixed model (major locus plus multifactorial background) 

(Chung and others 1986; Marazita and others 1984) or a major locus alone, with variable 

penetrance (Hecht and others 1991; Marazita and others 1992; Nemana and others 1992). Since 

this clarification has come about, investigators have focused on the quest to identify major genes 

implicated in the CLP phenotype (Marazita 2002).  

The identification of genes that predispose to CLP will assist in the recognition of 

individuals at risk, enhance understanding of the development of orofacial clefting and facilitate 

the study of gene-environment interactions, with the hope of leading toward prevention strategies 

for such birth defects (Yazdy and others 2007). In addition, there have been reports that 

individuals born with clefts have shorter lifespans, increased risk of hospitalizations for 

psychiatric illnesses as adults, abnormal brain development and increased risk for certain types 

of cancers. Clearly, there is plenty of opportunity to improve the counseling for families with an 

increased risk for clefts as well as to gain insight into other areas of research including 

psychiatric genetics and cancer (Vieira 2008).  

The first step in any gene identification or gene mapping process is to know what is to be 

mapped; in other words, to define the precise phenotype (Haines and Pericak-Vance 1998). The 

phenotypic range of visible CLP is very broad, ranging from minimal scars on the upper lip to 

overt clefts of the lip and palate (Eppley and others 2005). There is evidence to suggest that this 
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spectrum should be expanded to include occult defects or discontinuities of the superior 

orbicularis oris (OO) muscle. This suggestion is supported by the significant increase in 

frequency of OO muscle defects in unaffected relatives of CLP probands when compared to 

controls with no family history of clefting (Martin and others 2000; Neiswanger and others 

2007). CLP recurrence risk estimates that consider the OO phenotype have not yet been 

investigated. If the phenotype of CLP is redefined to include OO muscle defects, a clearer 

segregation of the clefting phenotype may be observed within affected families, allowing genetic 

studies to further delineate the genetic factors implicated in the development of cleft lip with or 

without cleft palate.  

The current study examines the recurrence risks of CLP and of OO muscle defects, with 

careful consideration of the OO muscle status of unaffected relatives. The following is a 

literature review to provide a rationale for this research and includes information about the 

epidemiology and development of cleft lip with or without cleft palate, genes that may be 

implicated in the clefting process, phenotypes within the orofacial clefting spectrum and the 

clinical importance of increasing our knowledge toward expanding this phenotypic spectrum.  

1.1 THE MORBIDITY OF CLEFT LIP AND PALATE 

1.1.1 Epidemiology 

The broad diagnosis of “cleft lip and palate” can be divided into two distinct categories: cleft lip 

with or without cleft palate and cleft palate only. These two groups are thought to be 

etiologically distinct, as suggested by analyses of familial segregation of these traits and their 
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embryological origins (Carinci and others 2007; Ferguson 1988; Fraser 1955). Further, CLP can 

be classified into cases that are associated with known clinical syndromes and those that are 

isolated or nonsyndromic (NS). The majority (70%) of cases of CLP are nonsyndromic (Jones 

1988). Of those, males are more frequently affected with CLP than females, unilateral defects are 

more common than bilateral defects and of unilateral defects, CLP on the left side is more 

common than on the right. Although there are no clear explanations for these preferences, a MFT 

model with an underlying continuous liability for CLP with two thresholds that vary, depending 

on sex, has been proposed as a reasonable framework to discuss the sex differences observed in 

NS CLP (Neiswanger and others 2007). In addition, certain genetic variants, discussed later in 

this document, may be involved in sex-dependent susceptibility to clefting (Blanco and others 

2001).  

Syndromes that include CLP as part of their phenotype include over 300 malformation 

syndromes (Trisomy 13, holoprosencephaly), Mendelian disorders (Van der Woude syndrome, 

Waardenburg syndrome) and teratogens (phenytoin, retinoic acid) (Jugessur and Murray 2005). 

Because of the clustering of NS CLP in some families and the increased risk of recurrence for 

siblings of affected individuals, nonsyndromic forms of clefting must involve some genetic 

contribution. Monozygotic twins show a 40 to 60 percent concordance rate for NS CLP (Murray 

2002), suggesting that although genetics do influence the development of orofacial clefts, 

genetics does not appear to be the only etiological factor.  

Various environmental factors have been known to play a role in the development of 

CLP. Maternal smoking during pregnancy provides a moderate increase in risk of CLP (Little 

and others 2004). Maternal folic acid deficiency during pregnancy has also been linked to an 

increased risk of clefts (Munger 2002), leading to the suggestion of a beneficial effect of 
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increased folic acid intake to reduce risk (Botto and others 2004). Epidemiologic studies support 

a role for environmental factors in clefting, especially in regions of low socioeconomic status 

(SES) (Cembrano and others 1995; Lasa and Manalo 1989). Incidences of CLP are lower in 

regions of high SES, and when SES does not change but geographic location does, no change in 

frequency of CLP is noted (Christensen and others 1995). Nutritional or toxic environmental 

exposures of some kind may contribute to as much as one-third of cleft cases, and etiologies may 

be most identifiable in indigent populations (Murray 2002).  

NS cleft lip with or without cleft palate is a significant public health concern, being one 

of the most common birth defects worldwide. The surgical, nutritional, dental, speech, medical 

and behavioral interventions required to treat affected individuals impose a substantial economic 

burden (Strauss 1999). The lifetime health care costs for a single individual with cleft lip and/or 

palate is estimated to be over $100,000, not including out of pocket expenses incurred by 

families (CDC 1995). In the United States alone, approximately 6,800 births each year are 

affected by oral facial clefts (Canfield and others 2006).  

The prevalence of CLP shows ethnic variation; in general, a relatively high prevalence of 

1.19 to 2.0 per 1000 live births has been reported in Asians (Cooper and others 2006) and Native 

Americans (Wyszynski 2002), followed by an average of 1.0 per 1000 live births in Caucasians 

and less than 0.5 per 1000 live births in those of African descent (Gundlach and Maus 2006). 

These differences are most often attributed to racial variations in the timing and coordination of 

cellular morphologic patterns, particularly the development of the median nasal process (Eppley 

and others 2005). There are exceptions to these summaries; however, with some particular 

geographic areas having high frequencies thought to be related to founder effects and/or 

environmental triggers (Murray 2002). 
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1.1.2 Development of the upper lip, the secondary palate and of CLP 

A cleft lip is a unilateral or bilateral opening in the upper lip, which forms during the fourth 

through seventh week of embryonic development. Cleft palate, on the other hand, is an opening 

in the hard or soft palate, which forms from the fifth through twelfth weeks of development. 

Developmental differences in the embryology of CL and CP have considerable significance 

toward their etiological distinctions (Spritz 2001). An appreciation of normal facial development 

is critical to the understanding of how this process may be interrupted to result in a CLP 

phenotype.  

Development of the human face begins in the fourth week of embryogenesis, with 

migrating neural crest cells (future facial skeleton) combining with the core mesoderm (future 

facial muscles) and the epithelial cover to establish the facial primordia. At this stage, the facial 

primordia consists of five separate prominences surrounding the stomodeum, also called the 

primitive mouth (Figure 1). The frontonasal prominence (also referred to as the globular 

prominence or the medial nasal prominence, at different times in development) is located at the 

rostral side of the primitive mouth; two maxillary prominences are bound bilaterally to the 

stomodeum; and paired mandibular processes are bound caudally. The frontonasal prominence 

then widens as the forebrain gives rise to primitive cerebral hemispheres and the medial ends of 

the mandibular processes gradually merge to form the mandible (lower lip and jaw). A 

thickening of surface ectoderm occurs bilaterally on the ventrolateral surface of the frontonasal 

prominence, giving rise to the nasal placodes and eventually nasal pits and nasal processes  

(Jiang and others 2006).  
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Figure 1. Embryonic lines of fusion, from (Sperber 2002b). 

 

A rotation and advancement of the nasal placode permits the bilateral nasal prominences 

to sweep over the maxillary process to join with the medial nasal process and collectively form 

the basis of the upper lip-nasal unit, including the primary (hard) palate (Figure 2). Virtually all 

cases of overt cleft lip are attributed to the failure of the medial nasal process to either contact or 

maintain contact with the lateral nasal and maxillary processes, which typically occurs around 7 

weeks postconception (Johnston 1990). It is thought that microform cleft lip may result from 

either partial failure in this fusion mechanism, or otherwise from spontaneous late fetal repair of 

an overt cleft lip (Pace and others 2006).  
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Figure 2. Development of the face at 4 weeks (A), 5 weeks (B), 6 weeks (C) and 7 weeks (D) (Sperber 

2001). 

 

The formation of the primary palate and the projection of the two lateral palatal processes 

into the stomodeum from the maxillary prominences are both required for the formation of the 

secondary (soft) definitive palate. The creation of bilateral, vertical palatal shelves occurs during 
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week 7 of human development, on the maxillary processes, lateral to the developing tongue. 

These vertical palatal processes flow quickly into the horizontal plane, enabling them to establish 

contact with each other in the midline, with the primary palate anteriorly and with the lower edge 

of the nasal septum (Figure 3). Fusion of the palatal shelves is dependent on epithelial-

mesenchymal transformation (Sperber 2002a). The requirement of proper primary palate 

formation prior to the formation of the secondary palate is clearly important, as this likely 

contributes to the etiology of a combined cleft lip and cleft palate phenotype. 

 

Figure 3. Development of the secondary palate; coronal sections of the human fetal head at 7 weeks (A) 

and 12 weeks (B) (Sperber 2002a). 
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1.2 THE GENETICS OF OROFACIAL CLEFTING 

Studies have identified a number of genes and loci potentially implicated in orofacial clefting 

based on evidence from animal models, expression analyses, and human linkage and association 

studies. Some of the genes that appear to be associated with NS CLP have also been identified as 

being linked to syndromic forms of the phenotype. The molecular events involved in the proper 

formation of orofacial structures are under the strict control of a variety of genes, including 

fibroblast growth factors, sonic hedgehog, bone morphogenic proteins, members of the 

transforming growth factor β superfamily and a number of transcription factors (Jugessur and 

Murray 2005). Therefore, genes involved in the clefting process typically have functions 

assisting in cell migration, adhesion, growth, differentiation and apoptosis, related to the careful 

embryologic regulation required in order to perform the complex process of facial development. 

A summary of genes and loci linked to NS CLP can be found in Table 1. Many of these 

genetic factors have been confirmed by subsequent analyses and refuted by others. Conflicting 

results seen in the literature are partially caused by differences in both study design and 

populations (Vieira 2006). Below is a short review of some of the associated genes and loci. 

Comprehensive reviews of the human genetic factors associated with NS CLP have been 

published and serve as excellent references for this material (Carinci and others 2007; Murray 

2002; Vieira 2006).  
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Table 1. Genetic Links to NS CLP 

Gene/Locus Function 

TGFα; 2p13 Mammalian growth factor 

BCL3; 19q13 Proto-oncogene 

4q25-4q31.3 Various genes, including SCD5 (key regulator of energy 

metabolism) 

MSX1; 4q16 Growth promoter, inhibits differentiation 

IRF6; 1q32-q41 Interferon regulatory factor 

PVRL1; 11q23 Cell-cell adhesion 

TP63; 3q27 Transcription factor, tumor suppressor 

13q33.1-q34 Multiple genes, including: DP1 (transcription factor), ING1 (tumor 

suppressor) and COL4A1 (α-1 chain of collagen IV) 

SUMO1; 2q32.2-

q33 

Modification of proliferating cell nuclear antigen; regulator of 

MSX1 

MTHFR; 1q36 Folic acid metabolism 

TGFβ3; 14q24 Growth factor; palate seam fusion 

RARα; 17q21.1 Retinoic acid receptor 

6p24 Multiple genes, including EDN1 (endothelin 1; vasoconstrictor) 

GABRB3; 15q11 Subunit of the GABA receptor, necessary for palate formation in 

the mouse 

BMP4;  

14q22-q23 

Bone morphogenetic protein, functions in mesoderm induction, 

tooth development, limb formation, bone induction and fracture 

repair; activates MSX1 
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Transforming Growth Factor Alpha (TGFα) is a well-characterized mammalian growth 

factor. Its role in clefting appears small but significant, as suggested by various case-control and 

linkage studies. TGFα most likely acts as a genetic modifier of clefting, in agreement with the 

oligogenic model suggested for NS orofacial clefts (Vieira 2006).  

 BCL3 is a transcription factor involved in cell-lineage determination and in cell-cycle 

regulation. Linkage data has implicated this gene to be involved with sporadic and familial NS 

CLP (Stein and others 1995; Wyszynski and others 1997). BCL3 has been proposed to be either a 

modifier or an additive gene for CLP etiology (Martinelli and others 1998).  

 Linkage studies have suggested chromosome 4q as a cleft susceptibility locus (Marazita 

and others 2002; Mitchell and others 1995). In addition, individuals with balanced translocations 

interrupting the SCD5 gene at 4q21 have been identified as having a cleft lip phenotype 

(Beiraghi and others 2003). 

 MSX1 may be involved in syndromic as well as NS clefting, within the context of both 

CLP and isolated CP (Carinci and others 2007). Mutations in MSX1 are associated with 

autosomal dominant Cleft lip and palate-oligodontia syndrome; a specific nonsense mutation was 

found to segregate with a CLP plus tooth agenesis phenotype in a large family (van den 

Boogaard and others 2000). It has been proposed that missense mutations in conserved regions 

of the MSX1 gene alone could contribute to as many as 2% of total NS cleft lip and palate cases 

(Jezewski and others 2003). It also appears that interactions between specific MSX1 variants and 

maternal smoking and alcohol consumption increase the risk of CLP (Romitti and others 1999). 

Further, Blacno et al. found a marginally significant “sex-dependent” association between MSX1 

and CLP in male Chilean patients, but not in females, suggesting a role for MSX1 in the 

increased frequency of CLP in males (Blanco and others 2001). 
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 Van der Woude syndrome is a Mendelian disorder that closely resembles NS CLP; pits in 

the lower lip are the only additional remarkable characteristic. The syndrome is caused by 

mutations in the gene for interferon regulatory factor 6 (IRF6) (Kondo and others 2002). Lip pits 

are found in approximately 85% of cases of the syndrome; therefore, 15% of cases may be 

clinically indistinguishable from NS CLP. This phenotypic feature encouraged researchers to 

investigate the potential role of variations in IRF6 related to NS CLP. A study of 1968 families 

with isolated CLP showed highly significant transmission disequilibrium for the V274I variant in 

the IRF6 gene. The group found that IRF6 has an attributable risk of about 12 percent of NS 

CLP, suggesting that IRF6 plays a substantial role in the causation of NS CLP. They modified 

the risk of recurrence of CLP to be approximately 9% among siblings in families with a history 

of CLP whose parents are at risk for having a child with the homozygous risk allele (Zucchero 

and others 2004).  

 Cleft lip/palate-ectodermal dysplasia syndrome (CLPED1) is characterized by CLP, 

hidrotic ectodermal dysplasia, syndactyly and, in some cases, mental retardation. The causative 

gene for this syndrome is PVRL1, an immunoglobulin-related transmembrane cell-cell adhesion 

molecule (Suzuki and others 2000). A highly significant association between heterozygosity for 

a specific nonsense mutation (W185X) and NS CLP has been reported (Sözen and others 2001). 

Conclusions state that PVRL1 variants contribute to nonsyndromic CLP in multiple populations, 

making a minor contribution to the sporadic forms of orofacial clefting (Avila and others 2006) 

  TP63 mutations are implicated in at least four human malformation syndromes, 

including Ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC), Ectrodactyly 

ectodermal dysplasia and facial clefts (EEC), Rapp-Hodgkin syndrome (RHS) and Limb-

mammary syndrome (LMS). Clear syndrome-specific mutation patterns explain the spectrum of 
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features associated with TP63 mutations (van Bokhoven and Brunner 2002). Since mutations in 

the TP63 gene underlie several monogenic malformation syndromes manifesting CLP, mutation 

analysis has been performed in patients with NS CLP, identifying a novel mutation that seems to 

segregate with a NS CLP phenotype. TP63 gene mutations are suggested to play a role in a small 

number of cases with NS CLP (Leoyklang and others 2006). 

 Trisomy 13 is a known malformation syndrome which often includes CLP as part of its 

phenotype. Interestingly, two Indian pedigrees, with NS CLP segregating as an autosomal 

dominant trait, demonstrated linkage to 13q33.1-q34, providing evidence to support the 

involvement of a region on chromosome 13 in some cases of NS CLP (Radhakrishna, 2006).  

 Animal models have confirmed the role of the Small Ubiquitin-like Modifier 1 (SUMO1) 

gene in upper lip and palate formation. SUMO1 is known to modify numerous cellular proteins, 

thereby affecting their metabolism and function. Ubiquitin and SUMO proteins compete for 

modification of proliferating cell nuclear antigen, which is an essential processivity factor for 

DNA replication and repair. Of note, SUMO1 is able to regulate MSX1 gene expression by 

sumoylation (Gupta and Bei 2006), implicating the possible role of both SUMO1 and MSX1 in 

NS orofacial clefting. A case report describes an individual born with  isolated CLP, identified as 

carrying a balanced chromosome translocation in which the SUMO1 gene was disrupted on 

chromosome 2 (Alkuraya and others 2006). In addition, SUMO1 polymorphisms have been 

found to be associated with NS CLP (Song and others 2008).  

 Reduced maternal folic acid intake during pregnancy has been reported to be a risk factor 

for NS CLP and MTHFR, a key enzyme in folic acid metabolism, has been implicated in the 

etiology of NS CLP. The C677T MTHFR polymorphism results in an enzyme with reduced 

activity, leading to elevated plasma homocysteine levels and reduced plasma folate (Frosst and 
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others 1995). A significantly higher MTHFR mutation frequency in mothers of CLP patients 

versus controls has been reported. This is thought to be related to maternal 

hyperhomocysteinemia being a risk factor for having CLP offspring (Martinelli and others 

2001). Homozygosity for the common C677T polymorphism is significantly more frequent in 

patients with CLP, particularly females, lending support to the importance of folate metabolism 

in affected individuals (Mills and others 1999).  

 “Treatment” of mice with TGFβ protein isoforms accelerates palatal fusion, suggesting a 

role of TGFβ in the regulation of palate formation (Brunet and others 1993). Linkage 

disequilibrium was found for TGFβ3 in CLP patients (Maestri and others 1997) and TGFβ3 has 

been found to be associated with CLP and/or isolated CP phenotypes, varying by the study 

(Ichikawa and others 2006; Jugessur and others 2003; Vieira and others 2003). An interaction 

between MSX1 and TGFβ3 has also been suggested as contributing to CLP (Vieira and others 

2003).  

 Certain alleles of the retinoic acid receptor alpha (RARα) gene are reported to be 

significantly different between NS CLP cases and unrelated controls (Chenevix-Trench and 

others 1992). Linkage analysis has shown that particular genetic variants of this gene are 

involved in the formation of CLP. RARα has also been suggested to be a modifier of CLP 

severity (Shaw and others 1993).  

 Some linkage studies have suggested 6p23-6p24 as an important locus implicated in the 

CLP phenotype (Carinci and others 1995; Scapoli and others 1997). Published data implies the 

presence of a CLP locus in this region; however, given the complexity of the condition and the 

limited number of families studied, additional verification is required. Notably, some individuals 
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with CLP have been characterized as having 6p chromosome abnormalities, including 

translocations and deletions (Davies and others 1995). 

GABRB3 encodes one of thirteen subunits that combine to form a receptor for gamma-

aminobutyric acid (GABA), a major inhibitory neurotransmitter. The functional gene also 

appears to be required for normal palate development in the mouse. An analysis of the GABRB3 

locus showed evidence of linkage disequilibrium with CLP, suggesting an etiological role in 

human clefting (Scapoli and others 2002). 

Mouse models have shown that conditional knockouts of BMP4 have an unusual 

“healed” CL phenotype (Liu and others 2005), motivating researchers to look at BMP4 as a CLP 

candidate gene. The frequency of BMP4 mutations in those with microform CLP and OO defects 

is significantly higher than in controls. This data suggests that BMP4 alterations may result in 

delayed lip closure (Suzuki and others 2009).  

1.3 THE PHENOTYPIC SPECTRUM OF CLEFT LIP AND PALATE 

Congenital orofacial clefts show a wide variety of anatomical disruptions extending outward 

from the oral cavity with varying degrees and frequencies. The spectrum of orofacial clefting 

continues far beyond the phenotypes of CLP and CP alone, although CLP and CP are certainly 

the most common of all orofacial clefts (Tolarová and Cervenka 1998). Even within the context 

of CLP, there is a wide spectrum of phenotypes. We typically use descriptions to distinguish a 

particular cleft type; the most common include: unilateral, bilateral, complete, incomplete, 

vermillion notch and microform. A microform or minimal cleft lip may appear as a minor defect 

in the mucocutaneous border, a nostril deformity (Heckler and others 1979) or a faint band of 
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fibrous tissue running from the edge of the red lip to the nostril floor; appearing as a “scar” on 

the upper lip (Thaller and Lee 1995). A vermillion notch can be variable in size; this term is used 

to describe a small cleft, or notch, of the upper lip that typically does not extend far beyond the 

vermillion border (border between the upper lip and philtrum). An incomplete cleft lip may or 

may not involve the entire lip area, a complete cleft lip continues up through the nasal cavity and 

a complete CLP further continues into the palate (Figure 4).  

     A    B    

     C      

Figure 4. The variability of CLP: (A) microform CL; (B) incomplete unilateral CL; (C) complete bilateral 

CL and CP. Adapted from (Eppley and others 2005). 

1.3.1 Other phenotypes associated with the NS CLP spectrum 

In an effort to develop a thorough understanding of the etiology of NS CLP there has been a 

significant focus on finely characterizing and describing associated phenotypic features observed 
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in individuals with CLP and/or family members of those affected with CLP. Some of these 

include dental anomalies, structural brain anomalies, non-right handedness, differences in 

dermatoglyphic patterns, craniofacial morphology and velopharyngeal incompetence. These 

phenotypes have all been reported in the general population, but appear to be more frequently 

associated with families and/or individuals affected with CLP (Weinberg and others 2006).  

A number of dental anomalies have been reported in individuals affected with NS CLP. 

Associated dental anomalies can range from a single malformed tooth in the vicinity of the cleft 

to dentition-wide reductions in tooth size or multiple congenitally missing teeth. The most 

commonly reported anomaly is hypodontia (dental agenesis) with other reported dental 

anomalies including supernumerary teeth, increased oral asymmetry, enamel formation defects 

and delayed dental age. These various dental anomalies are suggested to represent either 

microforms of orofacial clefting or generalized developmental disturbances (Harris 2002). Of 

note, in the case of dental agenesis, it has been shown that as clefting increases in severity, a 

greater number of teeth are missing. Following this finding, it has been proposed that dental 

anomalies could serve as markers for the definition of cleft sub-phenotypes (Menezes and Vieira 

2008).  

In an attempt to gather more information about the expanded CLP phenotype in the 

context of dental anomalies, it would be useful to know whether isolated tooth defects are more 

common in unaffected family members of CLP probands than in the general population. Studies 

of the dentition in unaffected parents and siblings of CLP patients have been inconsistent to date. 

Some have shown no significant differences in dental anomalies between unaffected CLP 

relatives and controls; others have reported higher frequencies of such anomalies in unaffected 

sibling groups (Weinberg and others 2006). 
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With regard to structural brain anomalies, neuroimaging work has shown that, when 

compared with a matched sample of healthy controls, the brains of men with NS CLP and CP 

have regional differences in cerebral and cerebellar tissue volume, a reduction in cerebrospinal 

fluid and an enlargement of certain midline brain structures. Deviations from the normal pattern 

of asymmetry have been observed for temporal lobe gray matter, occipital lobe white matter and 

cerebellar gray matter (Nopoulos and others). These structural anomalies have not yet been 

investigated in unaffected relatives of individuals with CLP, and the etiological factors 

responsible for these anomalies remain unclear. It is plausible that certain structural brain 

anomalies may share a common underlying etiology with CLP. Development of the brain and the 

craniofacial complex are intimately related due to their common tissue origins, overlapping gene 

expression patterns and functional growth dependencies (Weinberg and others 2006).    

Human handedness is often used as an indicator of brain lateralization. The frequency of 

atypical cerebral lateralization is much higher in left-handed individuals than right-handed 

(Warrington and Pratt 1973). Similar to the reason for investigating structural brain differences 

in individuals with CLP, non-right handedness has been suspected to be a feature of individuals 

with NS CLP because of the biological relationship between asymmetrical fusion of the 

embryological facial prominences and abnormal brain lateralization. A higher than normal 

incidence of non-right handedness in NS CLP populations has consistently been reported; 

however, results have been inconsistent when considering the relationship between the side of 

unilateral clefts and handedness. Importantly, unaffected first degree relatives of those with CLP 

are also more likely to be non-right handed than controls, supporting the hypothesis of familial 

effects on handedness and CLP (Weinberg and others 2006).  
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Dermatoglyphic pattern types are suspected to reveal information about the nature of 

prenatal development in general. A preponderance of arches is considered by some researchers to 

be indicative of a developmental delay or disturbance coinciding with the formation of the finger 

print. For example, there is an increased frequency of arch patterns on the finger prints of 

subjects exposed prenatally to teratogens and affected with various disorders involving 

developmental delay (Babler 1991).  Studies show that compared with controls, individuals with 

CLP seem to have an increased frequency of arches and ulnar loops and a decreased frequency of 

whorl patterns (Deshmukh and others 1979). One study also found that unaffected relatives had 

significantly more loops and fewer whorls compared to average, suggesting a pattern of adverse 

developmental events within CLP families (Scott and others 2005).  

Dysmorphology of the craniofacial structure has been noted in some cases with CLP. 

Unrepaired complete bilateral CLP has been associated with numerous major structural 

deviations of the neurocranium and viscerocranium in adults (da Silva Filho and others 1998). 

Facial widths in CLP populations have been reported to be greater than average (Smahel and 

others 1985). Greater interorbital and nasal cavity width are suggested to be the two most 

consistent craniofacial abnormalities associated with CLP; these features may also be observed 

within unaffected relatives, hence the idea that heritable facial morphology may be a 

predisposing factor in the genesis of oral clefts (Ward and others 2002).  

The production of normal speech requires the coordination of several muscle groups of 

the soft palate and the nasopharynx (McWilliams and others 1984). Defects in any aspect of the 

nasopharyngeal anatomy and/or physiology may lead to velopharyngeal incompetence (VPI). 

VPI is characterized by hypernasality, nasal air emission and compensatory articulation disorders 

(Boorman and others 2001). Cleft palate (both syndromic and nonsyndromic forms) is the most 
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common cause of VPI; however VPI has been reported in the absence of CP. In such cases, VPI 

may be due to various submucosal muscular defects, a disproportion between the size of the 

nasopharynx and the length of the palate, or a mechanical disruption due to scarring or 

contracture (Riski 2002). The presence of any one of these features may elevate the risk for 

producing offspring with CLP, particularly if there is a family history of CLP. Some level of VPI 

is present in nearly one quarter of unaffected relatives of those with CLP, supporting the notion 

that occult soft palate defects may be a subclinical marker for clefting (Weinberg and others 

2006). 

1.3.2 The superior orbicularis oris muscle 

The superior orbicularis oris muscle is the upper portion of the sphincter muscle that surrounds 

the mouth. As described earlier, a critical sequence of steps is necessary for the fusion of the 

future upper lip elements. Consideration of the OO muscle is important throughout this 

developmental process. After the fusion of the maxillary prominences with the medial nasal 

prominence, transformation of the epithelial cells into mesenchymal tissue occurs, completing 

the process of lip fusion. At this point, mesoderm migrates across the fused prominences; by 8 

weeks post-conception, a dense, continuous band of mesenchyme (the future OO muscle) can be 

seen and the complete OO muscle architecture is visible by 16 weeks gestation. It is certainly 

possible that a delay in fusion of the maxillary and medial nasal processes could alter the 

migration of mesoderm into the medial upper lip, resulting in a subepithelial OO defect that can 

only be visualized by ultrasound (Marazita 2007).  

In cleft lip patients, the OO muscle fibers diverge from their typical horizontal 

organization and orient parallel to the potential cleft line; although, the involvement of the OO 
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muscle in a cleft lip may vary (Figure 5). Histological studies show that microform cleft lip 

defects may also extend to the muscle fibers of the OO muscle (Heckler and others 1979). In the 

context of plastic surgery, it has long been emphasized that the re-orienting of OO muscles 

during cleft lip repair process is critically important to a successful surgery (Randall and others 

1974).  

 

Figure 5. Diagrams of OO muscle fiber orientation in cleft lips of varying severity; from far left: 

minimal/microform CL, two incomplete CLs and complete CL. Taken from (Heckler and others 1979). 

 

In 2000, Martin et al. revealed that discontinuities of the OO muscle are more frequently 

observed in unaffected family members of those with CLP as compared to controls. This 

outcome had been hypothesized, as OO muscle discontinuities reported among individuals with 

CLP have frequently been observed, and it is well known that there are clear developmental 

implications to the failure of upper lip closure. For this study, ultrasound was used as a method 

to evaluate the OO muscle in seemingly unaffected relatives of those with CLP. They examined 

the OO muscles of unaffected first-degree relatives of 21 children seen in a craniofacial clinic 

with CLP and 52 controls. Three raters from the group scored each image as having an OO 

defect or not; the OO muscle for each subject was defined as abnormal if any two of the three 

reviewers scored a scan as positive. When visualized by high-resolution ultrasound, the OO 

muscle typically appears as a single, continuous, smooth strand of dense muscle that is located 
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just above the alveolar ridge. A typical defect in the OO muscle was either an obvious focal 

echogenic area or a considerable thinning of the muscle. A statistically significant increase 

between the presence of OO defects in first-degree relatives versus controls (40% vs. 13%, 

respectively) was noted (p < 0.002). The researchers concluded that defects of the OO muscle 

visualized by ultrasound are more frequently noted in families with a history of CLP. They 

propose that there may be an embryological attempt at repairing the underlying OO defect with a 

deposition of collagen at the edges of the OO muscle, as in a scar that represents the ultrasonic 

defect detected in this study (Martin and others 2000).  

In 2007, Neiswanger et al. provided a new set of data with a larger sample size to support 

Martin’s hypothesis and findings. The study used high-resolution ultrasound to compare the 

frequency of discontinuities in the OO muscle in 525 unaffected relatives of individuals with NS 

CLP versus 257 unaffected controls. OO muscle discontinuities were observed in 10.3% of the 

non-cleft relatives, compared to 5.8% of the controls (p = 0.04). It is noteworthy that this new 

study only considered an OO defect to be present if it contained an obvious focal echogenic area 

(Figure 6). Thinning of the muscle, as long as the muscle was continuous, was not measured as a 

defect. In addition, this study looked at the presence of OO defects in all relatives that were in 

their research database, not only first degree relatives as Martin et. al. had done. These data 

confirmed the hypothesis that sub-epithelial OO muscle defects are a mild manifestation of the 

CL phenotype (Neiswanger and others 2007).  
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Figure 6. A typical OO muscle (A) and an OO muscle with a bilateral defect (B). 

 

In both studies looking at OO muscle defects in families with a history of CLP, families 

with CP only were excluded from analysis, as a discontinuity in the OO muscle is not thought to 

be a microform of the cleft palate only phenotype. A recent study investigated the presence of 

OO defects in families with a history of CLP versus those with a history of isolated CP, and 

found that there is an increase in OO defects observed in unaffected relatives of probands with 

cleft lip only versus cleft palate only. Although the increase is not statistically significant, these 

data support the claim that cleft lip and cleft palate are etiologically distinct and provide further 

evidence that discontinuities in the superior OO muscle are a microform of the CLP phenotype 

only (Klotz and others 2008). 

Although isolated CP and CLP are etiologically distinct, the possibility of an occult CL 

phenotype accompanying an overt CP phenotype should be taken into consideration. It is 

possible that some individuals with seemingly isolated CP may also have a subepithelial OO 

muscle defect, which may increase the risk for future pregnancies to have a CLP phenotype. A 

recent study used high-resolution ultrasound to identify occult discontinuities within the OO 

muscle in a subset of individuals with isolated CP. These findings raised question about the 

accuracy of the isolated CP designation and brought up the possibility that a portion of existing 
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families with seemingly isolated CP may actually fit into a CLP family grouping. It is important 

to specify the type of cleft defect, as genetic counseling and recurrence risk estimates are 

different for CP and CLP (Weinberg and others 2008).  

Histological studies have shown support for the OO phenotype as being a microform of 

CLP. One study identified defects in the OO muscles of two 18-week fetuses with no obvious 

visible clefts, suggesting that the CLP phenotypic spectrum might also include occult 

subepithelial clefts (Martin and others 1993). Another study examined the histology of the OO 

muscle in 32 cadavers unaffected with overt CLP in order to characterize OO muscle defects 

visualized on ultrasound, as there is no way to directly inspect and verify the presence of an OO 

defect visualized by ultrasound in a live individual. The upper lip muscles of the cadavers were 

visualized by ultrasound and rated as being normal or abnormal before being dissected for 

histological sectioning. The family history of all subjects was unknown. One of the 32 subjects 

was identified to have an OO defect by ultrasound; the muscle fibers in the OO sections from 

this individual appeared more disorganized than those from the OO “normal” individuals, with a 

dense band of connective tissue being observed at the site identified as echogenic by ultrasound. 

They concluded that in general, the histological findings of the OO muscle correlated well to the 

ultrasonographic findings (Rogers and others 2008).  

1.4 GENETIC COUNSELING AND PUBLISHED NS CLP RECURRENCE RISKS 

When assessing a family’s risk to have a child with a CLP, the genetic counselor considers many 

factors, such as: the number of individuals in the family affected with CLP, the relationship of 

those individuals to the proband/pregnancy, the presence of other birth defects associated with 
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clefting in that particular family, and the possibility of a syndrome that explains the occurrence 

of the CLP. Recurrence risk estimation for NS CLP is derived from empiric data. In general, the 

genetic counselor typically discusses a broad “multifactorial” inheritance pattern with the family, 

whereby both genetic and environmental factors are involved in the etiology of such defects, 

explaining why we might see more than one CLP in a given family. 

Estimates of the relative risk of CLP for first degree relatives of those affected with CLP 

compared with the population prevalence range from 24-fold to 82-fold (Mitchell and 

Christensen 1996; Sivertsen and others 2008; Skjaerven and others 1999). The term recurrence 

risk is most often used to describe the chance that the same congenital anomaly will occur in a 

subsequent pregnancy born to the same parents; this is purely a sibling recurrence risk. Some 

literature broadens the recurrence risk definition to include other relatives, including first-degree 

(parents, siblings, children), second-degree (grandparents, aunts/uncles) and beyond. In terms of 

percentages, the increases in sibling risk of CLP translate from roughly 0.1% in the general 

population to 3-5% for families with one affected child (Chakravarti 2004).  

The severity of the CLP does not seem to be a variable that is important to the calculation 

of familial recurrence risks. Based on a number of small studies, it was once thought that the 

increased severity of a CLP was related to an increased recurrence risk. Under the MFT model of 

inheritance, individuals with severe CLP phenotypes presumably had a higher number of genetic 

and environmental factors involved in the etiology of their CLP. Given that the MFT model has 

been rejected as an appropriate model of inheritance for CLP and current studies have increased 

statistical power with increased sample sizes, evidence has shown that mild or severe clefting in 

one child does not decrease or increase the risk of a subsequent child being affected (Sivertsen 

and others 2008). This is an important consideration with respect to OO muscle defects. If OO 
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muscle defects are considered a mild or microform cleft lip, an unborn sibling’s risk for an overt 

cleft may be similar to that what it would have been, had the same proband had a CLP.  

The recurrence risk for OO defects alone has not yet been reported. Given the current 

knowledge of the recurrence risk of CLP as well as the strong suggestion of OO defects fitting 

well into the phenotypic spectrum of CLP, recurrence risk estimation of OO defects as well as 

for CLP in the context of OO defects should be investigated. 
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2.0  SPECIFIC AIMS OF THIS STUDY 

The specific aims that will be addressed in this study are threefold: 1. To investigate the 

occurrences of CLP in families with ≥ 1 family member with an OO defect versus those families 

without OO defects; 2. To estimate the recurrence risks of overt CLP and of OO defects in 

relatives of probands with CLP; and 3. To estimate the recurrence risks of overt CLP and of OO 

defects in relatives of probands with OO defects. Recurrence risk is defined as the likelihood that 

a trait or disorder present in one family member will occur again in other family members in the 

same or subsequent generations (NLM 2009) and, for the purposes of this project, will be 

calculated for both siblings and first degree relatives of probands.   
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3.0  METHODS 

This study is funded by various grants awarded to Mary L. Marazita by the National Institutes of 

Health (Appendix A). The OFC study originally received approval by the University of 

Pittsburgh’s Institutional Review Board (IRB) in 1998, with annual renewals and modifications 

as needed (Appendix B).  

3.1 ORAL-FACIAL CLEFT (OFC) STUDY 

Current challenges to clarifying the complexities of CLP include identifying contributory genes, 

investigating gene by gene and gene by environment interactions, and exploring the expression 

and function of etiological genes. A major difficulty in the discovery of genetic risk factors to the 

development of CLP is a poor definition of the phenotype (Weinberg and others 2006). The 

search for the genetic basis of any disease should begin with a concrete definition and 

assessment of the phenotype. In the case of a complex disease such as CLP, phenotype definition 

is especially important, as variability in expression can confound a seemingly straightforward 

trait. Numerous research groups across the world are investigating the genetic contributions to 

CLP. When large data sets and multiple research sites are used to search for genetic components 

to disease, it is critical that each involved research center is using the same precise diagnostic 
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criteria. Even a small margin of error in the phenotypic diagnosis can translate into false 

representation of a data set (Haines and Pericak-Vance 1998). 

The Oral-Facial Cleft (OFC) study was designed to identify and evaluate associated 

phenotypic features in affected CLP families, with the hope of expanding and clarifying the CLP 

phenotype to aid genetic studies. Data collection sites include Pittsburgh, St. Louis, Texas, Ohio, 

Hungary, Guatemala, China, Argentina, and Spain. Notification of IRB approval was obtained 

from each of the foreign sites. When required, the informed consent and questionnaires of the 

OFC protocol are translated to the local language for each site. The complete protocol typically 

requires a one-time visit of 3-6 hours. This time requirement is adjusted by site and situation. For 

example, data from Guatemala is collected during medical and surgical missions with Children 

of the Americas (COTA). Typically, OFC research subjects in Guatemala are seen by the 

research team for less than one hour, as subjects have clinic appointments and surgical times to 

attend to. All subsets of the research procedures are listed in the original IRB document. 

Families with a history of nonsyndromic cleft lip and/or palate are recruited through a 

local cleft craniofacial center, a registry, or word of mouth, depending on the site. Multiplex as 

well as simplex families are recruited into the OFC study; however, until approximately one year 

ago, the majority of families recruited were multiplex, with more than one individual in the 

family being affected with a CLP. As information is gathered about each family, case families 

are further stratified, depending on the type of cleft(s) that are observed. Individuals with CLP 

are examined and questioned regarding associated birth defects and/or syndromic features in 

order to ensure each participant has a NS form of CLP. Control families are recruited from the 

general population at each research site, typically via advertisements or word of mouth. It is 

certainly a goal of the OFC project for the controls to be case-matched based on age, gender, 
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race and ethnicity. Controls should not have a personal nor family history of cleft lip or cleft 

palate, genetic syndromes, or severe birth defects. For the purposes of this current set of 

analyses, it is important to note that families are not ascertained based on the status of their OO 

muscle phenotype.  

Upon obtaining informed consent, each subject’s personal information is de-identified 

with a family identification number (given to all members of the same family), an individual 

identification number (indicating the degree of relationship to the proband), as well as a study 

identification number (with no indication of family number nor degree of relatedness). Parents or 

legal guardians are required to give consent for subjects who are less than 18 years of age. 

Subjects typically complete at least a core protocol, including medical history and pedigree 

information, collection of DNA samples via saliva or blood, and basic demographic information. 

When appropriate, psychosocial and behavioral traits as well as pregnancy histories are assessed 

with questionnaires. Physical assessments vary by the location of data collection, as some 

research sites do not allow the time for the entire protocol to be completed with each subject. 

Assessments may include a videotaped speech sample, 3-D image craniofacial measurements, a 

high-resolution ultrasound of the upper lip, dermatoglyphics, minor physical variants, dental 

phenotype and lip prints.  

Data collected in all sites is returned to Pittsburgh. All teleforms from the questionnaires, 

including information regarding family history, cleft types, etc., are scanned, verified and entered 

into a Progeny database. DNA is extracted from saliva and blood samples and stored for use in 

genetic studies investigating genes and polymorphisms that contribute to the cleft phenotype. 

With regard to physical assessments, only the protocol for obtaining and rating the upper lip 

ultrasound will be further discussed in this document.  
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3.1.1 Ultrasounds of the superior orbicularis oris muscle 

High resolution ultrasound of the upper lip is performed on OFC study subjects in an effort to 

identify subclinical muscular variations that may be informative for orofacial clefting. 

Technicians and research assistants who perform such ultrasounds have been trained to perform 

the standard ultrasound procedure (outlined below) and to readily identify the OO muscle. The 

ultrasound machinery varies, depending on the data collection site. In general, each participant’s 

study identification number is recorded along with the ultrasound video. The technician may 

make notes, referring to the subject’s study ID number. Notes may only include comments that 

affect the quality of the ultrasound image, such as the presence of a mustache, a screaming child, 

etc. No notes are recorded regarding the cleft affection status of each participant or their family 

members.  

Each ultrasound is performed while the subject is in the supine position, with the lips and 

mouth relaxed. Gel is applied to the transducer, such that there is a gel pad between the probe 

and the skin of the upper lip. The transducer is placed perpendicular to each patient’s upper lip; 

location is central on the upper lip and minimal pressure is applied. Once the technician has 

successfully located the OO muscle, the transducer is moved slowly across both sides of the 

upper lip, in order to obtain a complete picture of the OO muscle. Images are generally one 

minute long. The images are stored internally on the ultrasound machine and subsequently 

transferred onto a USB drive until they are assessed by our research team.  
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3.1.2 Rating and assessment of ultrasound images 

Continuous video ultrasound images are rated independently by three raters who have been 

trained to recognize discontinuities in the superior OO muscle. All raters are blinded to the CLP 

affection status of all participants and their family members. Rating scores are: 1 = no 

discontinuity of the OO muscle identified; 4 = clear discontinuity in the OO muscle identified; or 

9 = unratable image. All ratings of 4 are further assessed in order to record the precise location of 

the OO defect on the upper lip; for example, a unilateral defect on the right or left, or a bilateral 

defect. Ratings of 9 are avoided when possible, but those images that are given a final score of 9 

are typically very poor and unclear. No individual with a rating of 9 was used in the analysis of 

this study.  

After each image is rated independently, the same three raters discuss their ratings until a 

single consensus rating is reached for each image. The consensus rating is recorded and entered 

into the same Progeny database where the remainder of the OFC data is pooled.  

3.2 DATASET 

Data used for these analyses are extrapolated from the complete OFC dataset. The variables that 

were required for the analysis of this particular study were: “famid” (the family identification 

number), “indid” (the individual identification numbers), “folder” (the site at which the data was 

collected), “aff” (the affection status of each participant), “cleftpix” (the type of cleft that each 

affected individual has), and “finalrating” (the final OO rating for each participant).  
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Since this study is looking specifically at recurrence, multiple new family variables were 

created and utilized (rather than using variables to describe each individual study subject). Each 

new family variable that was created is described below, within the context of that particular 

study objective. 

3.3 DATA MANAGEMENT AND STATISTICAL METHODS FOR SPECIFIC AIM 1 

The goal of specific aim 1 is to investigate the occurrences of CLP in families with ≥ 1 family 

member with an OO defect versus those families without OO defects. Given that sub-epithelial 

OO muscle defects appear to be a mild manifestation of the CLP phenotype (Neiswanger and 

others 2007), the hypothesis for specific aim 1 was that the occurrence of CLP would be higher 

in families with OO defects than those without. For this aim, both CLP case and control families 

were included, as long as our database included OO data on at least one member of the family 

who was unaffected with a CLP. 

From the original OFC data set, an “OOMFamStatus” variable was created. This variable 

is binary and scores either 0 or 1, depending on the OO muscle status of the family as a whole. 

An OOMFamStatus score of 0 was given to families in which all members who are unaffected 

with a CLP have an OO rating of 1 (no defect). A score of 1 was given to families in which at 

least one member who is unaffected with a CLP has an OO rating of 4 (defect noted). An 

additional family variable called “clpstatus” was created. Similarly, this variable is binary (0, 1) 

and a family’s score depends on whether there is a family history of CLP (1), or the family is a 

control family (0).  
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Using the statistical program R (http://www.r-project.org/), a 2 x 2 table was created 

using the OOMFamStatus variable versus the clpstatus family variable. From the 2 x 2 table, the 

occurrences of CLP in the two family groups (all OOM = 1 and at least one OOM = 4) were 

calculated, based on proportions. The sensitivity, specificity, positive and negative predictive 

values were calculated using the values from the 2 x 2 table (Haines and others 2006). A logistic 

regression was performed in order to compare the proportions of CLP in OOM+ vs. OOM- 

families. Logistic regression was chosen over the option of a chi square test in order to allow for 

adjustments to be made with any confounding variables (although no adjustments were 

subsequently made).  Using R, the results of a logistic regression analysis provide a 2-sided p 

value, indicating whether or not the proportions compared are statistically different from each 

other, and a β coefficient, which provides an indication of the strength of the association. eβ = 

OR is the equation used to calculate an odds ratio. 

3.4 DATA MANAGEMENT AND STATISTICAL METHODS FOR SPECIFIC AIM 2 

The goal of specific aim 2 was to calculate the risk of recurrence of CLP and of OO defects 

among probands with CLP. For each recurrence (CLP or OO defect), the risk was calculated for 

siblings of the proband as well as first degree relatives. Published data quote a 3-5% risk of CLP 

recurrence for siblings and first degree relatives (FDR) (Chakravarti 2004; Sivertsen and others 

2008); therefore, our hypothesis for the CLP recurrence risk was that our cohort would have 

similar recurrence risks as previously published data. The frequency of OO muscle defects 

specifically among siblings and FDRs of probands with CLP has not previously been reported, 
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although Neiswanger’s study found that 10.3% of unaffected relatives of CLP probands had an 

OO defect. Note that a first degree relative is defined as a parent, sibling or child of the proband.  

No control families were included in this particular analysis. Families included in specific 

aim 2 were those in which the proband is affected with a CLP. To analyze the recurrence among 

siblings of those probands, families were included if at least one sibling of the proband was in 

our database. To analyze the recurrence among first degree relatives (FDRs) of probands, 

families were included if at least one FDR of the proband was in our database. Depending on 

whether the recurrence of CLP or OO defects was being investigated, the family was only 

included if we had the relevant data for the appropriate family member(s) (CLP and/or OO 

status). 

A “CSiblings” binary variable was created; this was coded as 0 if none of the proband’s 

siblings had a CLP and 1 if there was a recurrence of CLP in at least one of the proband’s 

siblings. Similarly, “CRelatives” was created and coded as 0 if none of the proband’s FDRs had 

a CLP and 1 if there was at least one recurrence of CLP in the proband’s FDRs. An 

“OOSiblings” variable was coded as 0 if none of the CLP proband’s siblings who were 

unaffected with a CLP had an OO muscle defect, and as 1 if at least one sibling unaffected with a 

CLP had an OO muscle defect. An “OORelatives” variable was coded as 0 if none of the CLP 

proband’s FDRs who were unaffected with CLP had an OO muscle defect, and as 1 if at least 

one FDR unaffected with a CLP did have an OO muscle defect. The new family variables 

created for specific aim 2 are summarized below in Table 2.  
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Table 2. Key of binary family variables created for specific aim 2 – all probands have CLP 

Variable name Code = 0 Code = 1 

CSiblings Proband has no siblings with CLP Proband has at least one sibling with 

CLP 

CRelatives Proband has no FDRs with CLP Proband has at least one FDR with 

CLP 

OOSiblings Proband has no siblings with OO 

defects 

Proband has at least one sibling with 

an OO defect 

OORelatives Proband has no FDRs with OO defects Proband has at least one FDR with an 

OO defect 

 

Separate tables were created in R to estimate a) the proportion of siblings of CLP 

probands who had a recurrence of CLP; b) the proportion of FDRs of CLP probands with a 

recurrence of CLP; c) the proportion OO muscle defects among unaffected siblings of probands 

with CLP; and d) the proportion of OO muscle defects among unaffected FDRs of probands with 

CLP. These proportions were used as empiric estimates of the recurrence risks in our cohort. 

3.5 DATA MANAGEMENT AND STATISTICAL METHODS FOR SPECIFIC AIM 3 

The goal of specific aim 3 was to calculate the rate of recurrence of CLP and of OO defects 

among probands with OO muscle defects. Both CLP case and control families were included in 

this particular analysis. For each recurrence (CLP or OO defect), the risk was calculated for 

siblings of the proband as well as first degree relatives. At this time, there has been no published 
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data reporting CLP or OO muscle defect recurrence risks for probands who have OO muscle 

defects.  

To analyze the recurrence among siblings of probands with OO muscle defects, families 

were included if at least one sibling of the proband was in our database. To analyze the 

recurrence among first degree relatives (FDRs) of probands, families were included if at least 

one FDR of the proband was in our database. Depending on whether the recurrence of CLP or 

OO defects was being investigated, the family was only included if we had the relevant data for 

the appropriate family member(s) (CLP and/or OO status). Note that all probands included in the 

analysis of specific aim 3 were not affected with CLP, but had an isolated OO defect. This is 

important to keep in mind, since it is well known that OO defects are usually present in 

individuals with overt CLP (Heckler and others 1979).  

A “SiblingsOO” binary variable was created; this was coded as 0 if none of the proband’s 

unaffected siblings had an OO defect and 1 if there was at least one recurrence of OO defects in 

the proband’s unaffected siblings. Similarly, “RelativesOO” was created and coded as 0 if none 

of the proband’s unaffected FDRs had an OO defect and 1 if there was at least one recurrence of 

OO defects in the unaffected FDRs. A “SiblingsCleft” variable was coded as 0 if none of the OO 

proband’s siblings had an overt a CLP, and as 1 if at least one sibling was affected with CLP. A 

“RelativesCleft” variable was coded as 0 if none of the OO proband’s FDRs were affected with 

CLP and as 1 if at least one FDR was affected with a CLP. The new family variables created for 

specific aim 3 are summarized below in Table 3. 

 

 

 

 38 



Table 3. Key of binary family variables created for specific aim 3 – all probands have OO defects 

Variable name Code = 0 Code = 1 

SiblingsOO Proband has no siblings with OO 

defects 

Proband has at least one sibling 

with an OO defect 

RelativesOO Proband has no FDRs with OO defects Proband has at least one FDR with 

an OO defect 

SiblingsCleft Proband has no siblings with CLP Proband has at least one sibling 

with CLP 

RelativesCleft Proband has no FDRs with CLP Proband has at least one FDR with 

CLP 

 

Separate tables were created in R to estimate a) the proportion of isolated OO defects in 

siblings of probands with OO defects; b) the proportion of isolated OO defects in FDRs of 

probands with OO defects; c) the proportion of siblings affected with CLP of probands with OO 

defects; and d) the proportion of FDRs affected with CLP of probands with OO defects. These 

proportions were used as an empiric estimate of the recurrence risks in our cohort. 

3.6 FURTHER COMPARISONS 

Some of the results obtained in specific aims 1 through 3 were compared to those from published 

literature and/or to each other. Proportions were compared using chi square and Fisher’s exact 

tests (using R); the specific test used in each case depends on the sample size of that particular 

proportion. Any value in a 2 x 2 table less than 5 required the use of a Fisher’s exact test.  

 39 



4.0  RESULTS 

The following results are separated by specific aim under which they were investigated. In 

general, a total of 2616 individuals had OO muscle ultrasounds performed, rated and used for 

these analyses, with 2033 (77.71%) of them having a rating of 1, 438 (16.75%) having a rating of 

4 and 145 (5.54%) with a rating of 9.  

4.1 SPECIFIC AIM 1 

The goal of specific aim 1 was to investigate the frequency of CLP in families with OO muscle 

defects versus families without OO muscle defects. A total of 718 families were used in this 

analysis.  

Table 4. Occurrences of CLP in families with OO muscle defects (OOM+) versus families without OO 

muscle defects (OOM-) 

 Yes family history of CLP No family history of CLP Total 

OOM+ families 65 (18.6%)* 284 (81.4%) 349 

OOM- families 43 (11.7%)* 326 (88.3%) 369 

Total 108 610 718 

* p < 0.01, OR = 1.74 
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The occurrence (proportion) of CLP in OOM+ families is 0.1863, corresponding to the 

positive predictive value of using the OO muscle defect as a screen for CLP in the family. The 

occurrence (proportion) of CLP in OOM- families is 0.1165. The negative predictive value of 

using the OO muscle defect as a predictor for CLP in the family is 0.8835. The sensitivity of 

using the OO muscle defect as a predictor for CLP in the family is 60.19%; the specificity is 

53.44%.  

   The comparison between the proportions of CLP in OOM+ versus OOM- families is 

significant, with a p value < 0.01. The odds of having an individual affected with CLP in the 

family are increased by 1.74-fold if a relative is identified as having an OO muscle defect. 

4.2 SPECIFIC AIM 2 

Specific aim 2 investigated the recurrence risks of CLP and of OO muscle defects among 

siblings and FDRs of probands with CLP. The following results are summarized below in Table 

5. A total of 176 families were included in the analysis of sibling recurrence of CLP (Appendix 

C, Table 8, Calculation A). 16 of the 176 families (9.1%) had a recurrence of CLP among one or 

more siblings of the proband. 382 families were included in the analysis of FDR recurrence of 

CLP (Appendix C, Table 8, Calculation B). 60 of the 382 families (15.7%) had a recurrence of 

CLP among one or more FDRs of the proband. 129 families were included to calculate the 

proportion of isolated OO muscle defects among siblings of probands with CLP (Appendix C, 

Table 8, Calculation C). 19 of the 129 CLP probands (14.7%) had at least one sibling with an 

OO defect. 379 families were included to calculate the proportion of isolated OO muscle defects 
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among FDRs of probands with CLP (Appendix C, Table 8, Calculation D). 43 of the 379 CLP 

probands (11.4%) had at least one FDR with an OO defect. 

Table 5. Summary of results from specific aim 2 

A) Sibling recurrence of CLP 

Yes, sibling recurrence of CLP No sibling recurrence of CLP Total families 

16 (9.1%) 160 (90.9%) 176 

B) FDR recurrence of CLP 

Yes, FDR recurrence of CLP No FDR recurrence of CLP Total families 

60 (15.7%) 322 (84.3%) 382 

C) Proportion of families with OO muscle defects among siblings of probands with CLP 

Yes, sibling(s) with OO defects No sibling(s) with OO defects Total families 

19 (14.7%) 110 (85.3%) 129 

D) Proportion of families with OO muscle defects among FDRs of probands with CLP 

Yes, FDR(s) with OO defects No FDR(s) with OO defects Total families 

43 (11.4%) 336 (88.6%) 379 

 

4.3 SPECIFIC AIM 3 

Specific aim 3 investigated the recurrence risks of CLP and of OO muscle defects among 

siblings and FDRs of probands with OO muscle defects. The following results are summarized in 

Table 6. A total of 29 families were included in the analysis of sibling recurrence of OO defects 

(Appendix C, Table 9, Calculation A). 5 of the 29 families (17.2%) had a recurrence of OO 
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muscle defects among one or more siblings of the proband. 67 families were included in the 

analysis of FDR recurrence of OO defects (Appendix C, Table 9, Calculation B). 11 of the 67 

families (16.4%) had a recurrence of OO muscle defects among one or more FDRs of the 

proband. 30 families were included to calculate the proportion of CLP among siblings of 

probands with OO muscle defects (Appendix C, Table 9, Calculation C). 1 of the 30 probands 

(3.3%) with OO muscle defects had at least one sibling with an overt CLP. 82 families were 

included in calculating the proportion of CLP among FDRs of probands with OO muscle defects 

(Appendix C, Table 9, Calculation D). 6 of the 82 probands (7.3%) with OO muscle defects had 

at least one FDR with an overt CLP.  

Table 6. Summary of results from specific aim 3 

A) Sibling recurrence of OO defects 

Yes, sibling recurrence of OO defect No sibling recurrence of OO defect Total families 

5 (17.2%) 24 (82.8%) 29 

B) FDR recurrence of OO defects 

Yes, FDR recurrence of OO defect No FDR recurrence of OO defect Total families 

11 (16.4%) 56 (83.6%) 67 

C) Proportion of families with CLP among siblings of probands with OO defects 

Yes, sibling(s) with CLP No sibling(s) with CLP Total families 

1 (3.3%) 29 (96.7%) 30 

D) Proportion of families with CLP among FDRs of probands with OO defects 

Yes, FDR(s) with CLP No FDR(s) with CLP Total families 

6 (7.3%) 76 (92.7%) 82 
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5.0  DISCUSSION 

These data provide a step toward improving recurrence risk estimates for families affected by 

CLP. This study is the first of its kind to calculate recurrence risks of superior orbicularis oris 

muscle defects, and is also unique by including the OO defect status within the context of 

familial CLP recurrence risk estimates. The data used for these analyses are an outcome of 

multiple years of international data collection performed by the Oral-Facial Cleft (OFC) study, 

based out of Pittsburgh, PA. The main goal of this particular project was to support and 

encourage the utility of the OO phenotype with regard to future recurrence risk estimation and 

genetic counseling of CLP. These data suggest that sub-epithelial OO defects are associated with 

an increased risk of CLP among family members of probands with OO defects and attempt to 

delineate a quantitative value for that increase.  

5.1 CLP AMONG FAMILIES WITH AND WITHOUT OO DEFECTS 

It has previously been noted that the occurrence of OO defects among relatives of probands with 

CLP is significantly higher than control families without a history of CLP (Neiswanger and 

others 2007). The current study has found that the occurrence of CLP is significantly higher 

among families with unaffected relatives that have isolated OO defects than families without OO 

defects (p < 0.01). This result certainly strengthens the finding of occult OO defects being within 
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the spectrum of CLP, as the two phenotypes appear to segregate together, whether families are 

ascertained for analysis based on their prior CLP status or their prior OO defect status.  

5.2 RECURRENCE RISK CALCULATIONS 

5.2.1 Recurrence risks of CLP among siblings and FDRs in our cohort 

The recurrence risks for CLP among siblings and FDRs in this data set were calculated to be 

9.09% and 15.71%, respectively. These are important calculations for multiple reasons. First, it 

is important to investigate whether the data collected and the families included within the broad 

OFC cohort are consistent with published recurrence risk values. Next, these CLP recurrence risk 

values could ideally be used as “baseline” quantitative figures to be compared with the other 

risks and proportions calculated throughout the current study.  

The 9.09% sibling recurrence risk of CLP was compared to a published sibling 

recurrence risk value of 4.55% using a chi square test, resulting in a significant p value of < 0.01.  

Likewise, the 15.71% FDR recurrence risk of CLP was compared to a published risk value of 

4.17%, with a p value of << 0.001. The significance of these results is an important detail for our 

research group to be aware of. There is an ascertainment bias in the OFC data with regard to 

multiplex families. Until approximately one year ago, data for the OFC study was primarily 

collected from multiplex families. Since that time, simplex families have been included; 

however, it is now clear that the data collection is still skewed toward multiplex families. That 

being said, the OFC dataset should perhaps not be used at this time for CLP recurrence risk 

estimates, since we are not considered to have a broad representation of families with CLP. 
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 Another interpretation of the increased CLP recurrence risks could be that simply the 

recurrence risk from our dataset is higher than that which has been previously calculated in other 

cohorts. This dataset includes families from multiple countries, and since an effort was made to 

maximize our sample size, the dataset was not stratified by location. Therefore, it is possible that 

a higher incidence of CLP and potentially higher CLP recurrence risks in various populations 

(Guatemala and Argentina, for example) may be contributing to the CLP recurrence risk results 

we obtained. 

5.2.2 OO defects among siblings and FDRs of probands with CLP in our cohort 

If OO muscle defects and CLP segregate together in affected families, we would anticipate a 

higher than expected number of OO defects among siblings and FDRs of probands with CLP. 

Earlier studies using OFC data investigating OO muscle defects in association with clefting have 

reported values of a 10.3% prevalence of OO defects among unaffected relatives of probands 

with CLP and a 5.8% prevalence of OO defects among relatives of probands without a personal 

or family history of CLP (Neiswanger and others 2007). 

The current study is the first to stratify the OFC data by relation (siblings, FDRs). The 

proportions of OO defects in siblings and FDRs of those with CLP (14.73% and 11.35%, 

respectively) were compared to 10.3%. Both p values (p = 0.2727 and p = 0.5584) were not 

significant. The majority of families included in the OFC cohort are nuclear families; 

therefore, the 10.3% originally reported with this cohort primarily reflected the proportion of OO 

defects observed in close family members of probands with CLP. The results reported in specific 

aim 2 stratify the occurrence of OO muscle defects to siblings and FDRs of probands with CLP, 

and it is not surprising that these values are not significantly different from 10.3%. Still, with 
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regard to recurrence risk estimates, there may be an importance of the specific degree of relation 

among those with OO defects and/or CLP and hopefully an increase in sample size will help 

clarify this matter. 

We are unable to compare the OO recurrence risk estimates to a “general population” 

prevalence of OO defects, as this information has not been reported. To our knowledge, OO data 

has only been collected in the context of CLP analysis, whereby families have already been 

stratified into those with or without a history of CLP.  

5.2.3 Recurrence risks of OO muscle defects among siblings and FDRs in our cohort 

The recurrence risk of isolated OO defects has not previously been reported. It is important to 

note that the individuals considered in this data set have isolated OO defects and individuals with 

overt CLP were not included in these analyses. In addition, the ascertainment criteria for the 

entire OFC study is based on whether or not the family being recruited has a history of CLP, 

rather than their OO muscle status. In this study, we report an OO defect recurrence of 17.24% 

among siblings and 16.42% among FDRs. Of note, it was difficult to capture families with an 

individual who had an OO defect, where we also had data collected on his or her siblings and/or 

FDRs, explaining why the sample sizes were lower for these specific analyses.  

If OO muscle defects are on the spectrum of the CLP phenotype and if CLP is inherited 

in an autosomal dominant or autosomal recessive fashion, we would expect recurrence risk 

estimates of OO defects to approach 50% or 25%, respectively. The calculated recurrences of 

OO defects alone are certainly higher than the 3-5% recurrence risk for CLP reported in the 

literature. An OO defect recurrence of 16-17% approaches values that are in accordance with 

autosomal dominant or recessive forms of inheritance, with reduced penetrance. These results 
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suggest a heritable component to the OO defect as a phenotype on its own, transcending more 

than one generation, and also perhaps give some insight with regard to the inheritance pattern of 

the CLP phenotype.  

5.2.4 CLP among siblings and FDRs of probands with OO defects in our cohort 

Examining the incidence of CLP among siblings and FDRs of probands with OO defects was a 

very important component of this study. These data provide us with estimates of the chance to 

have a sibling or FDR with a CLP if a proband is identified by ultrasound as having an OO 

defect. These results offer a first step toward suggesting quantitative values that may be used to 

create an additive recurrence risk estimate clinically, whereby CLP statuses as well as OO 

statuses of family members are included in the risk estimate.  

In our data set, the chances for a sibling or FDR to have a CLP if a proband is found to 

have an OO defect are 3.33% and 7.3%, respectively. These numbers are not significantly 

different from published recurrence risk estimates of CLP among siblings and FDRs when the 

probands have an overt cleft (p = 1 and 0.25, respectively), suggesting that the OO muscle defect 

imposes a CLP risk that is very similar to the risk imposed by a prior CLP in the family. These 

results are consistent with the hypothesis that OO defects are on the spectrum of CLP.  

The results from this specific analysis were also compared to the average population 

incidence of CLP (1/1000, or 0.1%). A 3.33% CLP frequency among siblings of those with OO 

defects is significantly different from 0.1% (p = 0.03). Similarly, a 7.3% CLP frequency among 

FDRs of those with OO defects is also significantly different from 0.1% (p << 0.001). We 

recognize that our dataset does not represent a typical population-based sample, as we have 

ascertained our families based on whether or not they fit a certain phenotype description (CLP). 
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Still, the risks of CLP for both siblings and FDRs of probands with OO defects are significantly 

greater than for the general population, further suggesting important counseling implications of 

being aware of one or more OO defect(s) in the family. 

We also compared the CLP frequencies among siblings and FDRs of probands with OO 

muscle defects to the CLP recurrence risks that were calculated in our sample (from specific aim 

2). A 3.33% CLP frequency among siblings of those with OO defects is not significantly 

different from our calculated sibling CLP recurrence risk of 9.09% (p = 0.518). This lack of 

significance is surprising, given that our calculated sibling CLP recurrence risk is over twice the 

CLP frequency among siblings of those with OO defects. It is important to note that the method 

to compare these two values used a Fisher’s exact test looking specifically at the proportion of 

sibling CLP (1/30). The test obviously accounted for the 1/30; recognizing that a bold conclusion 

cannot be made with such a small sample size. The results of these calculations could perhaps be 

better interpreted if the sample sizes were greater. A similar comparison was made between the 

7.3% CLP frequency among FDRs of probands with OO defects and the 15.71% calculated FDR 

CLP recurrence risk (p = 0.05). The difference between these two values is significant and this 

interpretation is likely to be more accurate, given that the sample size used for the FDR CLP 

frequency was higher (6/82).  

5.3 LIMITATIONS OF THE STUDY 

Careful consideration has gone into the processing and analysis of this data. Still, there are a 

number of limitations to this study.  
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First, the dataset that was used for these analyses only includes family members that have 

been enrolled in the OFC study. There are certainly instances where a family reports additional 

relatives with CLP; however, we do not have data on those reported individuals unless they have 

been recruited and consented into the study. The Center for Craniofacial and Dental Genetics 

makes an effort to recruit and include data from as many family members as possible; however, 

this is not always feasible.  

Our methods of obtaining ultrasound images of the superior OO muscle and the rating of 

such images are still imperfect. For roughly 5% of individuals who participate in the OFC study 

and who have their OO muscle visualized by ultrasound, the research team is not able to come to 

a consensus regarding whether or not that individual has an OO defect. These ratings of 

“unratable, or 9” were excluded from analysis for the purpose of the current study; however, if 

we are able to rate them appropriately as being either “1” or “4”, perhaps this would strengthen 

any OO family analyses.  

The variable for specific aim 1 was created by identifying families in the OFC dataset 

(both case and control families) where one or more relatives who is not affected with a CLP has 

an isolated OO defect. In some cases, this variable has identified a family as OOM+ if a second- 

or third-degree relative of the proband was the only individual with an OO defect. We might 

expect the probands of these families to be at a lesser risk for CLP than if the relative with the 

OO defect was a first-degree relative.  

These analyses have not yet been stratified into male and female family members with 

CLP or OO muscle defects.  Sex differences with regard to OO defects have been reported; there 

is a significant increase of OO defects in unaffected male relatives of individuals with CLP over 

male controls (Neiswanger and others 2007). Of note, in general, there is also an increased 
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incidence of NS CLP in males over females worldwide, and the discovery of sex differences of 

OO defects seems to fit the CLP phenotypic observation.  

Due to an attempt to maximize the number of families included in this study, the analyses 

were not stratified by geographical location. Families included were from all over the world 

(Appendix C), and it is possible that the OO muscle phenotype, the prevalence of CLP and 

environmental factors vary between sites.  

The recurrence risks calculated for “first degree relatives” were done so in order to 

include CLP and OO muscle data from parents and children of probands, in addition to their 

siblings. It would be appropriate to stratify this FDR variable in order to have more accurate 

estimates, depending on the precise relation of the affected relative(s). The recurrence risk 

estimates also did not take into consideration the number of siblings or FDRs affected with either 

OO defects or CLP, they simply accounted for the fact that there was at least one sibling or FDR 

affected with the appropriate phenotype. It may be required that more precise recurrence risk 

analyses are performed, so that such risks could be additive. Ideally, precise recurrence of CLP 

should be given, depending on if one or both parents has a CLP combined with the information 

relating to if one or both parents has an OO defect, combined with the number of siblings 

affected with CLP and the number of siblings affected with OO defects. The current study gives 

more general data regarding recurrence risks and does not delve into particular phenotypes in 

specific relatives. Performing these stratifications for the current project would have substantially 

reduced our sample size, decreasing the power of this study. 

In order for the upper lip ultrasound to have clinical utility, it must be clear that our 

interpretation of an OO defect visualized by ultrasound is the correct interpretation. Histological 

studies already mentioned in this document (Heckler and others 1979; Martin and others 1993; 
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Rogers and others 2008) have been the first step at confirming OO ultrasound interpretations. 

These types of studies are in need of a reliable method for the analyzing and rating of OO muscle 

ultrasound images. Our method of using three independent, blinded raters seems adequate in the 

research setting, but there is no way of verifying our final rating in live study subjects. Therefore, 

at this point, we cannot be fully confident in the clinical utility of our current rating system. 

Improvements in higher resolution imaging may help clarify all images, particularly those in 

which are labeled as “unratable”.  

Although this study includes a large number of families, certainly the inclusion of more 

families will assist in the interpretation of recurrence risk results. In particular, it would be highly 

beneficial to confirm these results with more families in which data is available on OO muscle 

defects for first degree relatives. Within our data collection, it will also be useful to continue to 

attempt to collect both multiplex and simplex families as well as controls – as we have seen with 

specific aim 2, in order to calculate accurate recurrence risks, the data set must not be biased 

toward one type of family over another.  

5.4 FUTURE DIRECTIONS 

Many of the limitations described above may be addressed in future studies to further strengthen 

the utility of the OO muscle phenotype being used as a clinical tool. The ultimate goal of this 

research is to provide additional evidence that the determination of subepithelial OO defects may 

eventually become important in a clinical setting, as a means of providing more accurate 

recurrence risk estimates to relatives of CLP families. The upper lip ultrasound is readily 
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available, non-invasive, simple to learn and not time-consuming or expensive, lending it to be a 

reasonable means of assessment.  

In the future, once more families are recruited and more OO data is obtained and rated, 

the analyses from the current study should be stratified into sex, geographic location, specific 

relation of relatives affected with CLP and/or OO defects, as well as the number of relatives with 

such defects. In accordance with this, family-specific recurrence risks for CLP may be 

calculated, depending on the OO status and CLP status of each relative ascertained in the 

assessment.  

Genome wide analyses are underway in order to identify genomic locations associated 

with the OO muscle defect phenotype. The hope is that these genetic analyses give additional 

insight into genes that are specifically associated with the OO muscle phenotype and/or the CLP 

phenotype. Similar studies could be performed with other associated phenotypes discussed 

earlier (non-right handedness, dermatoglyphics, etc.) to provide more clues toward the complex 

etiology of CLP. 

Additional studies to consider could be centered on the utility of the ultrasound as a 

clinical tool and patients’ perceptions of that tool as well as of CLP risk assessment. For 

example, it might be helpful to ask families in the CLP clinic what they think of using an 

ultrasound to modify their risk and if they would be likely to participate in such an opportunity. 

Family input regarding their views on recurrence risk modification would be extremely valuable. 

It has been suggested that a change in risk for CLP from 5% to 9% might not provide any 

difference in risk perception (Chakravarti 2004); however, families themselves have never been 

asked this question. The perception of risk involves numerous factors and may be very different 

for different families. It would be interesting to survey families and invite them to voice their 
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thoughts on modifying recurrence risk estimates and what effect will be made, if any, by 

including information about OO muscle defects in a genetic counseling risk assessment. 
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6.0  CONCLUSIONS 

 

Discontinuities of the superior orbicularis oris muscle appear to be a part of the CLP spectrum. 

In order to use this information clinically, it is necessary to calculate quantitative values that 

suggest how we might integrate OO data into CLP recurrence risk calculation and genetic 

counseling for families.  

In conclusion, the prevalence of CLP is significantly higher in families who have a 

history of OO defects when compared to families who do not have OO defects, supporting the 

notion that OO muscle defects are on the mild end of the CLP spectrum. The sibling and FDR 

recurrence risks of CLP in the cohort studied are increased above what has previously been 

reported in the literature, suggesting either an ascertainment bias, or a higher recurrence risk in 

our specific cohort. For the first time, we report the sibling and FDR recurrence risks of isolated 

OO defects, with both being roughly 16-17%. We also reported the risk for OO defects in 

siblings and FDRs if a proband has a CLP, as well as the risk for a CLP in siblings and FDRs if a 

proband has an OO muscle defect. The quantitative values reported for the risk of CLP in 

siblings and FDRs if a proband has an OO muscle defect are especially important, as they 

perhaps have more clinical efficacy. Although the sample sizes used for these studies are smaller 

than ideal, we have data to show that risk estimates for CLP in a sibling or FDR of a proband 

may be very similar if the proband has either an OO defect or an overt CLP. This data is 
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consistent with studies suggesting that recurrence risk for CLP is not altered with severity of the 

phenotype (Sivertsen and others 2008).  

We anticipate that further directions will include recruiting more families into the OFC 

studies and stratifying the OO data into specific relatedness, countries and genders with regard to 

CLP risk. In addition, it must be made a priority to continue to study the utility of the upper lip 

ultrasound as a predictor of CLP recurrence such that we can move forward to using the 

ultrasound as a clinical tool.  
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APPENDIX A 

OFC STUDY GRANT FUNDING RELEVANT TO THE CURRENT STUDY, 

PROVIDED BY THE NIH 

Table 7. NIH grant funding 

Award # Title 

2 R37 DE008559 Molecular Genetic Epidemiology of Cleft Lip and Palate 

5 P50 DE016215 Genetics of Orofacial Cleft Families – Project 2 

5 P50 DE016215 Genetics of Orofacial Cleft Families – Biostatistical Core 

2 R01 DE014667 Cleft Lip Genetics: A Multicenter International Consortium 

1 R21 DE016930 Planning International Orofacial Cleft Genetic Studies 

3 P50 DE016215 Genetics of Orofacial Cleft Families – Iowa Supplement 

1 R01 DE16148 Extending the Phenotype of Nonsyndromic Orofacial Clefts 
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APPENDIX B 

INSTITUTIONAL REVIEW BOARD APPROVAL PROCESS 

This research is conducted primarily under IRB0405013, titled “University of Pittsburgh: 

Coordinating Center for Oral-Facial Cleft Families: Phenotype and Genetics”. Because this 

particular thesis project is using data that already existed under IRB0405013 and did not involve 

collecting new data, a new IRB and/or an amendment to the previous IRB was not required. As 

per Teri Reiche, IRB Program Manager at the University of Pittsburgh, graduate students are 

considered part of the research team and special IRB approval for them to work with the data 

under the direction of the PI is not necessary unless they are functioning at a co-investigator 

level. 

Administrative coordination for the following research sites is covered under Pitt 

IRB0405013: Pittsburgh, PA; St. Louis, MO; West Virginia, Guatemala, Hungary, Madrid, 

Texas, Denmark, China and Argentina. All sites have their own local IRB approval at their 

respective institutions. Local IRB approval for Pittsburgh, PA is covered under Pitt IRB0607057, 

titled “Oral-Facial Cleft Families: Phenotype and Genetics (Pittsburgh Site)”. IRB0607057 also 

covers the local IRB approval for Guatemala, as the organization we collaborate with in order to 

collect our data (Children of the Americas) does not have an IRB; thus, our institution absorbed 
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the Guatemala IRB requirements. In addition, the de-identified data from the Philippines, Texas 

and Argentina is covered under Pitt exempt IRB0402037, titled “Statistical Genetic Analysis of 

Data on Orofacial Anomalies”. All IRBs are renewed on an annual basis, with the exclusion of 

the exempt studies, which no longer expire. Modifications are made as needed in between yearly 

approval times.  
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B.1 MOST RECENT APPROVAL LETTER FOR IRB0405013 
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B.2  MOST RECENT APPROVAL LETTER FOR IRB0607057 
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B.3  MOST RECENT APPROVAL LETTER FOR IRB0402037 
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APPENDIX C 

ASCERTAINMENT LOCATIONS OF STUDY PARTICIPANTS 

Table 8. Locations of ascertainment of families included in calculations for specific aim 2 

Location Number of families from location 

 Calculation A  Calculation B Calculation C Calculation D

Pittsburgh 56 (31.8%) 97 (25.4%) 40 (31.0%) 95 (25.1%) 

St. Louis 14 (8.0%) 23 (6.0%) 6 (4.6%) 22 (5.8%) 

Texas 0 (0.0%) 1 (0.3%) 1 (0.8%) 1 (0.3%) 

Hungary 22 (12.5%) 33 (8.6%) 13 (10.1%) 33 (8.7%) 

Beijing 0 (0.0%) 60 (15.7%) 0 (0.0%) 60 (15.8%) 

Guatemala 53 (30.1%) 92 (24.1%) 41 (31.8%) 92 (24.3%) 

Spain 18 (10.2%) 35 (9.2%) 15 (11.6%) 35 (9.2%) 

Argentina 13 (7.4%) 41 (10.7%) 13 (10.1%) 41 (10.8%) 

Total 176 382 129 379 

  

Of the 16 families that had a sibling recurrence of CLP (Table 5; Calculation A), 3 (18.8%) were 

from Pittsburgh, 4 (25.0%) from St. Louis, 4 (25.0%) from Hungary and 5 (31.2%) from 

Guatemala. Of the 60 families that had a FDR recurrence of CLP (Calculation B), 17 (28.3%) 

were from Pittsburgh, 9 (15.0%) from St. Louis, 16 (26.7%) from Hungary, 11 (18.3%) from 
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Guatemala, 6 (10.0%) from Spain and 1 (1.7%) from Texas. Of the 19 families with OO muscle 

defects among siblings of probands with CLP (Calculation C), 4 (21.1%) were from Pittsburgh, 3 

(15.8%) from Hungary, 10 (52.6%) from Guatemala, 1 (5.3%) from Texas and 1 (5.3%) from 

Argentina. Of the 43 families with OO muscle defects among FDRs of probands with CLP 

(Calculation D), 15 (34.9%) were from Pittsburgh, 1 (2.3%) from St. Louis, 3 (7.0%) from 

Hungary, 17 (39.5%) from Guatemala, 5 (11.6%) from Spain, 1 (2.3%) from Texas and 1 (2.3%) 

from Argentina.  

 

Table 9. Locations of ascertainment of families included in calculations for specific aim 3 

Location Number of families from location 

 Calculation A  Calculation B Calculation C Calculation D

Pittsburgh 10 (34.5%) 21 (31.3%) 10 (33.3%) 27 (32.9%) 

St. Louis 1 (3.4%) 2 (3.0%) 1 (3.3%) 3 (3.7%) 

Texas 1 (3.5%) 1 (1.5%) 1 (3.3%) 1 (1.2%) 

Ohio 2 (6.9%) 6 (8.9%) 2 (6.7%) 6 (7.3%) 

Hungary 1 (3.5%) 4 (6.0%) 0 (0.0%) 6 (7.3%) 

Guatemala 13 (44.8%) 27 (40.3%) 14 (46.7%) 33 (40.2%) 

Spain 0 (0.0%) 4 (6.0%) 0 (0.0%) 4 (4.9%) 

Argentina 1 (3.4%) 2 (3.0%) 2 (6.7%) 2 (2.5%) 

Total 29 67 30 82 

 

 Of the 5 families that had a sibling recurrence of an OO muscle defect (Table 6; 

Calculation A), 3 (60%) were from Pittsburgh and 2 (40%) from Guatemala. Of the 11 families 

that had a FDR recurrence of an OO muscle defect (Calculation B), 7 (63.6%) were from 
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Pittsburgh and 4 (36.3%) from Guatemala. The single family with CLP among siblings of the 

proband with an OO defect (Calculation C) was ascertained from Texas. Of the 6 families with 

CLP among FDRs of probands with OO defects (Calculation D), 3 (50%) were from Pittsburgh, 

2 (33.3%) from Hungary and 1 (16.7%) from Texas.  
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