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Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscle disease. It is caused 

by a large variety of mutations in the dystrophin gene. Studies of new therapies that are based on 

specific genotypes are generating a high level of interest among both researchers and patients. 

This investigation examines the mutations reported in patients with DMD by the large 

international academic research group, the Cooperative International Neuromuscular Research 

Group (CINRG). It also compares the types of mutations reported in two large mutation 

databases, Leiden DMD mutation database and the French Universal Mutation Database-

Duchenne Muscular Dystrophy (UMD-DMD), to those reported in DMD patients from three 

CINRG studies.  

Diagnostic, strength, and medical history data were reviewed retrospectively for 374 

DMD patients from 20 CINRG centers worldwide. The frequency of each type of mutation 

found in the CINRG data was compared with similar information abstracted from the Leiden and 

UMD-DMD mutation databases. On an exploratory basis, the distribution of DMD-causing 

lesions in the CINRG data was also compared to data from the patient registry, 

DuchenneConnect.  

The distribution of dystrophin mutations within the CINRG database is similar to the two 

large published databases and the patient registry data collection. The immediate results improve 

understanding of the many mutations in the dystrophin gene. These results suggest the need for 
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more rigorous and harmonized genetic screening as well as the continued collection of global 

data in easily accessed, searchable databases. The results of this work have a public health 

importance because DMD is the most common form of muscular dystrophy. Furthermore, the 

creation and improvements to existing disease databases can advance the standard of care for all 

patients and families with muscular dystrophy over diverse geographies and cultures. 

Harmonization of mutation data collection for DMD studies will benefit clinical trials and 

ultimately enhance pairing of eligible patients to specific molecular-based treatments.  
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1.0  INTRODUCTION 

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive condition characterized by 

progressive muscle weakness leading to premature death. DMD has an incidence of 1 in 3,500 

newborn males. Two-thirds of dystrophin mutations are inherited and the remaining one-third of 

mutations are caused by de novo mutations. The Cooperative International Neuromuscular 

Research Group (CINRG) was established to conduct clinical research on DMD. This project 

was undertaken to investigate the different mutations reported in patients with DMD in several 

studies carried out by CINRG and to compare the distribution of those mutations to those in two 

published databases and one patient registry. 

While there have been reports of some ethnic or regional variations in the various 

mutations of the dystrophin gene in DMD patients, it is generally accepted that the distribution of 

mutations is approximately the same worldwide. With the establishment of several large 

databases, it is possible to analyze whether the patient population examined by CINRG is 

representative of the DMD patient population at large.  

This investigation will provide information on the types of data collected and stored by 

CINRG as well as that in two large DMD databases, Leiden DMD mutation database, 

abbreviated as Leiden, and the French Universal Mutation Database-Duchenne Muscular 

Dystrophy abbreviated as UMD-DMD. This investigation will highlight the similarities and 

differences found. It will also identify the strengths and weaknesses of each database and 
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identify areas for improvement, cooperation and even future harmonization. This investigation 

will provide information on ways to enhance the collection of demographic and mutation-related 

data as well as identify some of the relevant clinical data that might be included in databases to 

facilitate genotype/phenotype correlations.  

As new treatments for DMD become available, information on the specific mutation 

present in a patient’s dystrophin gene is likely to be required to select or exclude individuals in 

certain clinical trials. Therefore, the way such data are collected and reported will be crucial to 

physicians, genetic counselors, and parents as they make recommendations and decisions on 

patient care. As the quality, quantity, interpretability, and access to large national and 

international databases of genetic and clinical information of DMD patients improves so does 

our understanding of the disease and opportunities to identify new approaches to its treatment 

and care.    
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2.0  HYPOTHESIS AND SPECIFIC AIMS 

2.1 HYPOTHESIS 

If the distribution of mutations causing DMD is similar worldwide, then the distribution of 

mutations in the CINRG database, representing an international DMD clinical trials network, 

will be similar to the distribution of mutations in two large international databases, the Leiden 

and UMD-DMD databases.  

2.2 SPECIFIC AIMS 

• Aim 1:  To characterize the DMD gene mutations in a collection of participants included 

in CINRG DMD treatment and observational studies. 

• Aim 2:  To compare the types of DMD gene mutations carried by CINRG study 

participants to those reported in two large international databases of DMD mutation data. 

Plan:  Plot the distribution of mutations carried by CINRG study participants and 

compare this distribution to the Leiden and UMD-DMD databases. On an exploratory 

basis, compare the distribution of DMD-causing mutations in the CINRG database with 

the distribution of DMD-causing mutations in the Parent Project Muscular Dystrophy 

DuchenneConnect registry generated by patient/parent reporting. 
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• Aim 3:  To compare the muscle strength data to the distribution of mutation type in the 

CINRG population. 

Plan:  Analyze muscle strength data for a subset of CINRG study participants as a 

function of mutation type and other variables, such as treatment with corticosteroids, and 

test for statistical associations.  
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3.0  BACKGROUND AND SIGNIFICANCE 

3.1 DUCHENNE MUSCULAR DYSTROPHY 

Duchenne muscular dystrophy (DMD) is a relentlessly progressive muscular dystrophy causing 

severe disability and ultimately death. Although the disease was named after the French 

neurophysiologist C.B. Duchenne de Boulogne, Edward Meryon presented the first clinical 

description to the Royal Medico-Chirurgical Society on December 9, 1851. The cases he 

presented illustrated a disease involving the muscle with post-mortem granular degeneration 

(Meryon 1851). In January of 1868, in the Archives Generales de Médecine, C.B. Duchenne de 

Boulogne describes the case of a 9-year-old boy who could not walk because of muscle wasting 

and proposed the name ‘paralysie pseudo-hypertrophique’ translated as ‘pseudo-hypertrophic 

paralysis’ (Duchenne 1868). He later described the male predominance, progressive course, 

weakness in the lower limbs, loss of ambulation by adolescence and premature death.  

William Richard Gowers proposed the hereditary basis in 1886 stating:  ‘the disease is 

thus transmitted by women who are not themselves its subjects, thus the congenital tendency is 

exclusively due to the maternal element in the embryo. This is also shown by another fact, that 

the children of the same women, by different husbands, have been affected’ (Gowers 1886). In 

1955, Becker and Kiener described the same disease with a milder clinical course (Becker and 

Kiener 1955). This milder allelic disorder has been named Becker muscular dystrophy (BMD). 
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DMD is the most common form of muscular dystrophy, affecting 1 in 3500 male births 

worldwide. One hundred years after the observations of Duchenne and Gower, the gene was 

identified on the X chromosome (Kunkel, Beggs et al. 1989). The X-linked dystrophin gene 

defect causes absence of the muscle cytoskeletal protein dystrophin (Hoffman, Brown et al. 

1987). A high spontaneous mutation rate of roughly 30% in the large dystrophin gene 

complicates disease eradication.  

Affected boys become symptomatic at 3 to 5 years of age with proximal leg weakness 

that impairs mobility, decreases the ability to get up from a squat, and prevents the normal ability 

to run. By 8 years of age, some affected boys begin to lose the ability to walk and need to resort 

to a wheelchair. This shift from an ambulant to a non-ambulant phase occurs in most boys with a 

diagnosis of DMD by age 12 years (Engel 2004). A pattern of respiratory insufficiency results 

from weakness of the diaphragm and other accessory muscles of respiration and deformities of 

the thorax caused by progressive spinal scoliosis. Pre-clinical cardiac disease is present in 25% 

of DMD patients under 6 years of age with an increase to 59% by age 10. A clinically apparent 

dilated cardiomyopathy develops in an increasing proportion of patients with increasing age 

beginning at age 10 (Nigro, Comi et al. 1990). Treatment strategies to date for DMD have been 

largely restricted to supportive aids and surgical approaches to ameliorate the effects of joint 

contractures and scoliosis (Engel 2004). Corticosteroids are widely used to prolong the period of 

ambulation (Mendell, Moxley et al. 1989). 
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3.2 GENETICS OF DUCHENNE MUSCULAR DYSTROPHY 

3.2.1 Inheritance 

DMD is inherited in an X-linked recessive pattern. The effect of this inheritance pattern is 

different in men and women. If a woman is hemizygous for a mutation, there is a 50% chance of 

transmitting the DMD mutation in each pregnancy. If a son inherits the mutation, he is affected. 

Daughters who inherit the mutation are carriers. There have been no reports of any males with 

DMD reproducing. Males with BMD may reproduce; all of their daughters will be carriers and 

none of their sons will inherit the mutation if the mother is mutation free. 

3.2.2 Dystrophin Gene 

The dystrophin gene is the largest human gene, measuring 2.4 Mb and containing 79 exons. The 

gene represents 0.1% of the entire human genome and is approximately 1.5% of the X-

chromosome.  The gene was identified through positional cloning on the p-arm of chromosome 

X at position Xp21.2 (Monaco, Neve et al. 1986; Koenig, Hoffman et al. 1987). It is transcribed 

into a 14-kb mRNA, and the 11-kB coding sequence encodes a 3,685 amino acid protein of 427 

kDa (Appendix A). The protein represents approximately 0.002% of the total striated muscle 

protein (Hoffman, Brown et al. 1987). Figure 1 is a schematic representation of the human 

muscle narrowing down to the location of the muscle fibers and dystrophin-glycoprotein 

complex.  
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Figure 1:  Schematic of the Human Muscle and Location of the Dystrophin-Glycoprotein Complex  
(ActionDuchenne 2007) Localization diagram of the human muscle, muscle fiber, plasma membrane 
(sarcolemma), and dystrophin-glycoprotein complex.  
 
Ahn and Kunkel determined that the gene has at least five independent promoters that 

specify the transcription of their respective alternative first exons (Ahn and Kunkel 1993). The 

promoters have been named according to their molecular weights. Three tissue-specific 

promoters (Dp427b, Dp427m, and Dp427p) located in the 5’ region of the gene control the 

expression of the full-length dystrophin. Four additional promoters (Dp260, Dp140, Dp116, and 

Dp71) are located further downstream; each is responsible for a unique first exon that splices 

into exons 30, 45, 56, and 63, respectively. Furthermore, this complex gene contains two-polyA 

sites and the dystrophin RNA is differentially spliced. All these events generate further protein 

diversity (Byers, Lidov et al. 1993; Lederfein, Yaffe et al. 1993; D'Souza, Nguyen et al. 1995; 

Lidov, Selig et al. 1995). Figure 2 illustrates the 7 promoters and 4 isoforms.  
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Figure 2:  Dystrophin Gene and Isoforms (Muntoni, Torelli et al. 2003) 
A. Genomic organization of the dystrophin gene, located in Xp21. The black lines represent the 79 exons. 
B. The domain composition of the dystrophin protein and various protein isoforms.    
 
Dystrophin belongs to a large network of proteins called the dystrophin-glycoprotein 

complex. The complex forms a bridge across the skeletal muscle membrane (sarcolemma) and 

basal lamina of the extracellular matrix (Muntoni, Torelli et al. 2003). The role of dystrophin is 

not fully understood. It is thought to play a role in stabilizing the sarcolemma and in protecting 

muscle fibers from contraction-induced damage and necrosis (Davies and Nowak 2006). 

Dystrophin can be separated into four domains:  

1. Actin binding domain, located at the 5’ end covers amino acids 14 through 240 

(exons 2 – 8). This region was discovered due to its homology with chicken 

alpha-actinin (Hammonds 1987). 

2. Central rod domain, which covers amino acids 253 through 3,040 (exons 8 – 61), 

is formed by 24 spectrin-like helical elements with homology to alpha-actinin and 

spectrin (Koenig and Kunkel 1990).  
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3. Cysteine-rich domain, which covers amino acids 3,080 through 3,360 (exons 63 – 

69), was found to be homologous to the C-terminal domain of the slime mold 

alpha-actinin (Bies, Caskey et al. 1992). 

4. Carboxy-terminal domain, which covers amino acids 3,361 through 3,685 (exons 

70 – 79), has not been shown to be homologous to any proteins other than the 

dystrophin related proteins.  

Both the C-terminus and the actin-binding regions of the protein have been found to play 

a critical role in its function. However, the central rod-domain may be shortened and some 

function of the protein is conserved explaining the three distinct allelic diseases:  DMD, BMD, 

and X-linked cardiomyopathy (Muntoni, Cau et al. 1993).   

3.2.3 Animal Models 

Homologues of DMD have been identified in several species including:  dogs, cats, mice, fish, 

and invertebrates (Collins and Morgan 2003). The most commonly studied models are the mdx 

mouse and the golden retriever muscular dystrophic (GRMD) dog. The models are used to study 

potential pharmacological interventions as well as gene and cell replacement therapy.  

3.2.3.1 Mouse Model 

The mdx mouse is the most widely used animal model for DMD. The mdx mouse has a 

nonsense mutation in exon 23 of the dystrophin gene causing premature chain termination of the 

dystrophin protein (Sicinski, Geng et al. 1989). The complete absence of dystrophin protein 

expression in skeletal muscle in this model results in progressive degeneration of the tissue. 
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3.2.3.2 Canine Model 

A canine X-linked muscular dystrophy has been identified in a line of golden retrievers 

(GRMD) (Cooper, Valentine et al. 1988). The GRMD mutation is a point mutation in the splice 

site within intron 6 causing an exon 7 deletion that is out-of-frame (Sharp, Kornegay et al. 1992). 

The GRMD represents the most clinically relevant model for DMD since these dogs lack 

dystrophin and present with a very similar phenotype. It includes severe weakness and muscle 

atrophy at about six to eight weeks of age.  

3.3 MUTATION CATEGORIES  

The mutation rate of the dystrophin gene is higher (1x10-4) than the estimated average gene 

mutation rate (1x10-5 to 1x10-6) in humans (Emery 1991; Tuffery, Chambert et al. 1998). The 

overall dystrophin mutation rate appears to be equal in males and females (Tuffery, Chambert et 

al. 1998). Two-thirds of dystrophin mutations are inherited and the remaining one-third of 

mutations are caused by de novo mutations. The variation of mutations is broad and can be 

divided into several categories based on size and complexity.  

3.3.1 Large Lesions 

Large lesions, which include intragenic deletions and duplications, account for the majority of 

changes in the dystrophin gene ranging from 60-70% (Koenig, Beggs et al. 1989; White, Kalf et 

al. 2002; Muntoni, Torelli et al. 2003). Large lesions are defined as deletions or duplications of 

more than one exon. These mutations are clustered at two hotspots:  30% at the hotspot in the 
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proximal part of the gene and the remaining 70% at a more distal hotspot (Oudet, Hanauer et al. 

1992). The proximal hotspot of the gene spans from exons 2 through 22 and the distal hotspot of 

the gene spans from exons 45 through 55 (Beggs, Koenig et al. 1990; Oudet, Hanauer et al. 

1992; Nobile, Galvagni et al. 1995; Sironi, Pozzoli et al. 2003; Gualandi, Rimessi et al. 2006). 

3.3.2 Small Lesions 

Small lesions, which account for approximately 20-30% of the dystrophin mutations, include 

small mutations and point mutations. Small mutations are changes affecting less than an exon but 

more than a single base pair, whereas point mutations refer to a change affecting a single base 

pair. Point mutations can be further divided into missense and nonsense mutations.     

3.3.3 Other Mutations 

The third subdivision of mutations includes mutations in an intron or complex rearrangements. 

These types of mutations account for approximately 2% of the dystrophin mutations and require 

high density-comparative genomic hybridization array and RNA analysis in order to be 

confirmed (Bovolenta 2008).  

3.4 GENOTYPE AND PHENOTYPE CORRELATIONS 

Monaco et al. were the first to postulate an explanation for the phenotypic differences observed 

between DMD and BMD patients (Monaco, Bertelson et al. 1988). In DMD patients, a disruption 
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of the open reading-frame causes a complete absence of the dystrophin protein, whereas BMD 

patients carry an in-frame mutation that allows a stable expression of dystrophin with a smaller 

molecular size that may be expressed at a lower quantity. The reading-frame rule has been 

confirmed by several additional studies (Baumbach, Chamberlain et al. 1989; Gillard, 

Chamberlain et al. 1989). This reading-frame hypothesis explains over 90% of BMD and DMD 

cases. It is often used for the differential diagnosis of BMD and DMD (Muntoni, Torelli et al. 

2003). 

Figure 3 represents the dystrophin gene exon map. Each numbered block represents an 

exon from exon 1 through exon 79. Rectangular blocks which include exons: 3-5, 9-10, 13-16, 

23-42, 47-49, 60 encompass exons that start and stop at full codons. The deletion of any of these 

exons results in an in-frame mutation. Blocks starting or ending with an arrow which include 

exons: 1-2, 6-8, 11-12, 17-22, 43-46, 50-59, 61-79 represent exons that start and/or stop with 

split codons. Arrows pointing to the left represent codons that are split at the third nucleotide and 

arrows pointing to the right represent codons that are split at the second nucleotide. The deletion 

of any of these exons results in an out-of-frame mutation.  



 14 

 

Figure 3:  Dystrophin Gene Exon Map 
Numbered blocks represent each exon (1 through 79). Rectangular blocks (such as exon 3, 4, and 5) 
represent exons that start and end with full codons. Blocks starting and/or ending in an arrow, pointed to 
the right or left, represent exons that start or end at nucleotide 2 and 3 respectively. For example, the 
deletion of exon 42 alone would cause an in-frame mutation, whereas the deletion of exon 52 would cause 
an out-of-frame mutation. The black arrows indicate the location of the alternative promoters and protein 
isoforms.    
 
There are, however, exceptions to the reading-frame hypothesis in both BMD and DMD 

patients. There exist several well-characterized regions of the dystrophin gene where frameshift 

mutations are associated with some dystrophin production. These patients tend to have a BMD 

phenotype due to the production of dystrophin. It is thought that the most common event that 

allows the production of dystrophin is exon skipping, which occurs via alternative splicing 

(Arahata, Beggs et al. 1991; Muntoni, Torelli et al. 2003). There are also exceptions in which an 

in-frame mutation may result in a DMD phenotype (Arahata, Beggs et al. 1991).  

In a 1993 paper by Hoffman, the complexity of the dystrophin gene highlights the 

challenges faced in studying genotype and phenotype correlations (Hoffman 1993). He stated 

that ‘the plethora of mutations of the massive and complex dystrophin gene are known to cause a 

dramatic range of clinical disorders, and the X-linked recessive expression enables study of 
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solitary loss-of-function or change-of-function mutations in hemizygous males, and in the 

mosaic situation caused by X-inactivation in heterozygous females.’ At the time, it was 

speculated that point mutations, which in 1993 were challenging to identify, would yield critical 

information about genotype and phenotype correlations (Hoffman 1993).  

3.5 RISK ASSESSMENT 

Genetic risk assessment is typically performed in the context of genetic counseling. The Genetic 

Counseling Definition Task Force of the National Society of Genetic Counselors developed a 

new definition in 2006. Fraser published the original definition in 1974 in the American Journal 

of Human Genetics (Fraser 1974). The new definition states:  ‘Genetic Counseling is the process 

of helping people understand and adapt to the medical, psychological and familial implications 

of genetic contributions to disease. This process integrates the following:  

• Interpretation of family and medical histories to assess the chance of disease occurrence 

or recurrence 

• Education about inheritance, testing, management, prevention, resources and research 

• Counseling to promote informed choices and adaptation to the risk or condition.’ (Resta, 

Biesecker et al. 2006). 

It is important for families with a child suspected to have muscular dystrophy to have a 

risk assessment. The risk will depend on the origin of the mutation, as DMD may be inherited or 

occur as a new mutation. The risk is highest for sons of carrier mothers with a 50% risk that each 

son will be affected. The risk may be reduced for sons of mothers with germline mosaicism, 

estimated to be around 15% recurrence. The risk is not increased over the general population risk 
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for children of mothers who have a son with a new mutation. Beyond the risk assessment, 

genetic counseling can also provide psychological support for families with a child affected with 

a progressive and fatal disease. Genetic counselors can offer resources and additional support 

that provide assistance through the difficult times ahead of them.  

3.6 TESTING STRATEGIES 

There exist several different methods of diagnosing and confirming DMD. However, there is 

currently no consensus on the route of confirming the diagnosis. The diagnosis of DMD may be 

suspected when a male child presents with abnormal muscle function and elevated muscle 

enzymes in the blood.  

3.6.1 Screening 

Creatine kinase (CK) is an enzyme expressed by various tissue types and is used clinically as a 

marker of myocardial infarction, rhabdomyolysis, and muscular dystrophy. An elevation in 

serum CK indicates muscle damage. Normal values range from 25 to 200 U/L. In individuals 

with DMD, CK levels are greater than 10 times the upper limit of normal (Hoffman, Fischbeck et 

al. 1988; Zatz, Rapaport et al. 1991). This blood test is often performed as a first screening test. 

A review of the CK levels for DMD, BMD, X-linked cardiomyopathy, and female carriers is 

presented in Table 1 (GeneTests 1993-2009).  
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Table 1:  Serum CK Concentrations 

 Phenotype % of Affected 
Individuals 

Serum CK concentrations 

Males 

DMD 100% Greater than 10 times the normal range

BMD 100% Greater than 5 times the normal range 

X-linked 
cardiomyopathy 

Most individuals 2 – 10 times the normal range 

Female Carriers DMD ~ 50% 2 – 10 times the normal range 

 

The discovery of elevated transaminase enzymes, aspartate aminotransferase (AST) and 

alanine aminotransferase (ALT), may also be an indication of the presence of muscle 

degeneration as these enzymes are also produced by the muscle and are released into the 

bloodstream in the setting of muscle destruction. Because AST and ALT are more commonly 

associated with production by the liver, their elevation in the serum may incorrectly lead to 

further testing for liver disease in DMD patients.   

3.6.2 Diagnostic 

Since the discovery of the gene, molecular testing to detect large deletions and duplications has 

been fairly straightforward. It has allowed for nearly two-thirds of the affected patients to have a 

confirmed molecular diagnosis. The remaining third have been more challenging due to the large 

size of the gene and the widespread distribution of small or point mutations across the gene. 

With the more recent availability of complete gene sequencing, a molecular diagnosis can be 

confirmed for nearly all DMD patients. 

Based on information available through the Laboratory Directory page of the online 

GeneTests resource, Deletion/Duplication Analysis, which includes the original Chamberlain 
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PCR methodology (Chamberlain, Gibbs et al. 1988), is currently the testing strategy most widely 

available. Different testing strategies that are performed around the world are summarized in 

Table 2 from the Gene Tests Online resource (GeneTests 1993-2009). 

Table 2:  Summary of Diagnostic Testing Strategies Around the World 
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USA 4 1 2 3 1 16 0 11 11 49 
International 4 1 5 10 0 18 1 19 17 75 
Total 8 2 7 13 1 34 1 30 28 124 

3.6.2.1 DNA Testing 

The most common method used to identify large deletions and duplications in the 

dystrophin gene is multiplex polymerase chain reaction (PCR). The original PCR testing was 

developed by Chamberlain and included probes for 9 exons (Chamberlain, Gibbs et al. 1988). 

Then Beggs et al. added several additional probes (Beggs, Koenig et al. 1990) to be able to detect 

98% of the deletions in the dystrophin gene. Newer versions of the PCR-based dystrophin gene 

deletion test typically include probes for approximately 30 exons. Some laboratories use a 

combination of multiplex PCR and the Southern blot method to be able to determine the exact 

endpoints of the deletion or duplication. Knowledge of the deletion endpoints is important for 

determination of the effect of the deletion on the dystrophin reading frame.  

Southern blot was the first method used for genetic confirmation of a DMD diagnosis. 

This method can directly detect large deletions and duplications by use of full-length dystrophin 
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cDNA clones to generate probes (Prior and Bridgeman 2005).  Each cDNA probe covers 

approximately 10 exons and is used to detect the exact site of the mutation. Since the majority of 

mutations are located in two hotspots, most mutations are detected by four cDNA probes:  cDNA 

1-2a, cDNA 2b-3, cDNA 5b-7, and cDNA 8. The deletions and duplications are detected by 

analyzing the Southern blots for the presence or absence of exon containing genomic restriction 

fragments that hybridize to the cDNA probe. Limitations of the Southern blot technique include 

a high labor requirement, the need for radioactive isotopes and for high molecular weight DNA 

for analysis.  

Newer techniques such as multiplex amplifiable probe hybridization (MAPH) and 

multiplex ligation-dependent probe amplification (MLPA) are able to detect deletions and 

duplications more effectively and efficiently. MAPH is based on the quantitative recovery of 

probes, after their hybridization to immobilized DNA (White, Kalf et al. 2002). The advantage of 

MAPH over Southern blotting and PCR are the relative simplicity, speed, and coverage of all 79 

exons. Although PCR is able to detect up to 98% of deletions, it is not always able to determine 

the exact breakpoints. MLPA is a similar method to MAPH. However, it has the advantage of 

requiring a lower amount of DNA and can be completed as a one-tube assay (Lalic, Vossen et al. 

2005).  

Other methods, including single-condition amplification internal primer sequencing 

(SCAIP) and denaturating gradient gel electrophoresis (DGGE), have been developed with the 

aim of detecting large lesions in a semiautomatic, rapid, accurate and economical fashion 

(Flanigan, von Niederhausern et al. 2003; Hofstra, Mulder et al. 2004).  

The newest method, comparative genomic hybridization (CGH) array, uses a microchip 

technology and can detect large deletions and duplications in all 79 exons in affected patients 
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and carriers. CGH can identify not only deletions and duplications, but also previously 

unidentified deep intronic mutations. It also allows testing for female carriers (Hegde, Chin et al. 

2008).  

Other less common methods have also been studied. These include fluorescence in situ 

hybridization (FISH), single strand conformation polymorphism (SSCP), and denaturing high-

performance liquid chromatography (Calvano, Memeo et al. 1997; Muscarella, Piemontese et al. 

2007). Linkage analysis is also used in cases where no mutations are identified and there is a 

family history of muscular dystrophy (Hodgson, Walker et al. 1987).  

If the routine testing for deletions and duplications yields no detectable deletion or 

duplication, some centers then proceed to test methods that are able to detect small lesions, such 

as gene sequencing or chip-based technology.  

3.6.2.2 Muscle Biopsy 

A muscle biopsy may be performed if the Deletion/Duplication testing is negative. The 

tests performed on the muscle sample for DMD are immunohistochemistry and immunoblotting. 

Table 3 summarizes the typical findings for males with BMD and DMD and female carriers 

(Nicholson, Johnson et al. 1993; Nicholson, Johnson et al. 1993; Nicholson, Johnson et al. 1993; 

Muntoni, Torelli et al. 2003).  
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Table 3:  Muscle Biopsy Findings in the Dystrophin Protein 

 
Phenotype 

Western Blot 
ImmunohistochemistryMolecular Weight 

(normal:  427-kb) 
Dystrophin 
Quantity 

Males 

DMD Non detectable 0-5% Complete absence 

BMD 
Normal 

Abnormal 

20-50% 

20-100% 
Normal appearing or 
reduced intensity 

Females 
Carriers 

DMD random 
X-inactivation 

Normal/ Abnormal >60% Mosaic pattern 

DMD skewed 
X-inactivation 

Normal/ Abnormal <30% on average Mosaic pattern 

3.6.3 Prenatal Testing 

Prenatal testing is available for at-risk pregnancies to determine if a fetus is affected with DMD. 

Fetal cells can be obtained through chorionic villus sampling (CVS) between the 10th and 12th 

week of pregnancy. During the CVS, a small sample of cells from the placenta is removed by 

either inserting a thin catheter through the cervix or by inserting a thin needle into the mother’s 

abdomen. Fetal cells may also be obtained through amniocentesis, a procedure performed during 

or after the 15th week of pregnancy. During this procedure a thin needle is inserted into the 

amniotic sac to remove a sample of the amniotic fluid that surrounds the baby and contains cells 

from the baby. Both CVS and amniocentesis are associated with a similar risk of miscarriage. 

The risk for miscarriage from either procedure is approximately one in every thousand 

procedures performed. The fetal cells obtained from either procedure are then analyzed by one of 

the molecular methods described above. 
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3.6.4 Carrier Testing 

There are carrier tests for women who have a family history of DMD whether or not they exhibit 

symptoms of weakness. Genetic carrier testing is currently the most accurate way to identify 

carriers. Genetic carrier testing allows for family planning and can provide a risk assessment for 

other relatives. The method used for genetic carrier testing will depend on whether a mutation is 

known in the family. If a mutation has been identified in an affected individual, the carrier 

testing should be targeted to the specific known mutation. If testing indicates that the mother is 

not a carrier, there is still a risk of having an affected son and having a carrier daughter due to 

germline mosaicism (Prior and Bridgeman 2005). Muscle biopsy is not typically recommended 

unless a woman is symptomatic; muscle biopsy can detect a mosaic pattern of muscle fibers that 

are both positive and negative for dystrophin expression. Except in the setting of skewed X-

inactivation, carriers generally have sufficient levels of dystrophin in the muscle for normal 

function. In some families with no known mutation, linkage analysis may be an option to 

identify carrier females. This method requires blood samples from multiple family members as 

the method relies on co-inheritance of the disease gene with DNA variations known to be located 

very close to or within the disease gene (Prior and Bridgeman 2005).  

3.7 MANAGEMENT AND TREATMENT RECOMMENDATIONS 

Since there is currently no cure for DMD, the goal of care is to provide the best quality of life 

through all stages of life. To date, the treatments have been aimed at optimizing strength and 
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function through the use of pharmacological interventions, physical therapy and assistive and 

adaptive devices.  

3.7.1 Pharmacological Interventions 

At present, glucocorticoids are the only pharmacological intervention that is able to slow the 

decline of strength and function in DMD patients. The two main corticosteroids used in DMD 

are prednisone and deflazacort. Daily oral administration of prednisone or deflazacort stabilizes 

or improves strength and prolongs ambulation. Drachman et al. first reported this finding in an 

open trial of prednisone at a dose of 2mg/kg/day (Drachman, Toyka et al. 1974). The therapeutic 

benefit of prednisone for the ambulant DMD patient was confirmed in subsequent open design 

trials (Brooke, Fenichel et al. 1987), and then, through the collaboration of the Clinical 

Investigation of Duchenne Dystrophy (CIDD) investigators, in double-blind, placebo-controlled 

trials (Mendell, Moxley et al. 1989; Fenichel, Florence et al. 1991; Griggs, Moxley et al. 1993). 

Doses of 1.5mg/kg/day and 0.75mg/kg/day were equally effective and the lower dose was 

associated with fewer side effects. A beneficial effect was detected by strength measures as early 

as 10 days and peaked at 3 months after initiation of treatment (Griggs, Moxley et al. 1991). The 

mechanism by which prednisone is beneficial in dystrophin deficiency is likely multifactorial, 

and is not solely related to the immunosuppressive effects of prednisone since other 

immunosuppresants have not shown similar benefits (Griggs, Moxley et al. 1993).  

Studies using deflazacort have also shown clinical benefits for patients with DMD (Mesa, 

Dubrovsky et al. 1991). In 2005, the American Academy of Neurology issued a practice 

parameter regarding corticosteroid treatment in DMD and recommended that corticosteroids 

should be offered as treatment (Moxley, Ashwal et al. 2005). However, glucocorticoids are 
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associated with side effects including cushingoid features, adverse behavioral changes, obesity, 

growth retardation, increased risk for bone fractures, gastritis, delayed puberty, cataracts, 

hypertension, glucose intolerance, susceptibility to infection, and masking of response to stress 

(Manzur, Kuntzer et al. 2008). 

In addition to the side effects of glucocorticoids on bone health, it has been reported that 

DMD patients naïve to steroids also have reduced vitamin D levels (Bianchi, Mazzanti et al. 

2003). Therefore, many centers around the world are also placing DMD patients on daily 

supplementation with vitamin D and calcium whether they are placed on corticosteroids or not. 

Many other agents have been studied in the mdx mouse and in DMD patients. To date, 

none have shown any significant ability to improve quantitative or manual strength. These 

include anti-inflammatory drugs, anti-cytokines, nutritional supplements, and angiotensin-

converting enzymes (ACE) inhibitors (Strieter, Remick et al. 1988; Folkers and Simonsen 1995; 

Nguyen, Broussas et al. 1998; Vary, Dardevet et al. 1999; Duboc, Meune et al. 2005; Escolar, 

Buyse et al. 2005; Buyse, Goemans et al. 2007; Duboc, Meune et al. 2007; Escolar 2008; Tesi-

Rocha 2008).  

Studies of new therapies that are based on specific genotypes are generating a high level 

of interest among both researchers and patients. Small molecules that can read through nonsense 

mutations could potentially impact approximately 10% of DMD patients (Hamed 2006). Exon 

skipping, which uses short stretches of DNA-like molecules to alter the splicing pattern of the 

gene, is designed to bring out-of-frame deletions into frame. This new type of treatment could 

potentially correct more than 85% of mutations in DMD patients (Hoffman 2007; van Deutekom, 

Janson et al. 2007; Pennisi 2008). The full characterization of DMD patient mutations will be 

crucial to fully realize these novel therapies as they are developed.  
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3.7.2 Physical Therapy 

The goal of physical therapy is to preserve strength and flexibility. Due to the rapid progression 

of the disease, some therapies may be carried out with the use of assistive devices (Sussman 

2002).  

3.7.3 Assistive Devices 

Ankle-foot orthoses (AFOs) may help prevent plantar flexion contracture (Sussman 2002). Many 

European pediatric orthopedic surgeons have encouraged prophylactic tendon release or 

lengthening to prolong ambulation (Rideau, Duport et al. 1995). Although some studies have 

shown that tendon release surgery prolongs the period of independent walking (up to 1.2 years), 

it is hard to determine whether this surgery is the sole reason for continued ambulation as there 

are many confounding factors (parent motivation, environmental influences, and surgery). Night 

splinting of the ankles in dorsiflexion has also been advocated; however, no studies have been 

performed to demonstrate their efficacy (Sussman 2002).  

Due to the progression of the disease, patients will eventually require a power 

wheelchair, which requires an adapted home and van. The transition to full-time wheelchair use 

is often temporarily correlated with a rapidly worsening spinal deformity. Approximately 90% of 

patients with DMD will develop scoliosis (Kinali, Messina et al. 2006). The spinal curvature 

may be severe enough to require surgery and the placement of rods. Pulmonary function will also 

continue to deteriorate and lead to the use of assistive ventilation devices, which initially 

includes cough-assist and non-invasive night ventilation using bi-level positive airway pressure.  
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As the disease progresses, upper and lower extremity function becomes more limited and 

many patients are no longer able to operate a power wheelchair by using a hand control. To 

maintain independence, computer voice-activated devices and head controls for wheelchairs may 

be used (Sussman 2002). Some patients may also require full-time non-invasive or invasive 

ventilation.  

3.8 CINRG 

CINRG was formed in 1999 as the clinical research arm of the Duchenne Muscular Dystrophy 

Research Center (DMDRC) and the Research Center for Genetic Medicine at the Children’s 

National Medical Center (CNMC) in Washington, DC. As of 2009, CINRG comprised 21 sites 

in 10 countries. Each site has a study site Principal Investigator (PI), clinical coordinator (CC) 

and clinical evaluator (CE) (Appendix B). The CE at each site is a trained physical therapist or 

physician who performs the manual muscle, quantitative muscle, respiratory and timed function 

outcome measures that are integral to muscular dystrophy clinical research. Each center has the 

same quantitative muscle testing equipment, including computer hardware and software, and is 

supported by a central gold standard CINRG CE. Central CE training and inter-rater reliability 

testing is performed initially and re-certified annually.  

The impetus to develop the CINRG network was to fill an unmet need for clinical trials 

that would benefit muscular dystrophy patients. CINRG’s vision is that patients, families and 

parent-led foundations are the true ‘stakeholders’ of this research and; as such, are central to 

CINRG’s mission. This objective was borne out in the method of recruiting study sites to 

CINRG. Highly committed physicians leading large muscular dystrophy clinics, self-selected or 



 27 

identified through interpersonal networks, have demonstrated their commitment to patients with 

muscular dystrophies and their families.  

3.8.1 CINRG Quantitative Measurement System 

CINRG developed a standardized muscle strength testing system called the CINRG Quantitative 

Measurement System (CQMS). CQMS is a modification of the Tufts Quantitative 

Neuromuscular Testing Equipment designed for ALS clinical trials. This quantitative muscle 

testing (QMT) technique collects measurements of force using a load cell while performing a 

maximum voluntary isometric contraction. This set-up measures changes in strength of 0.25 

pounds and thereby provides accurate and sensitive force generation measurement in children. In 

effort dependent tests, it is important to provide motivation to yield the best effort by 

participants. To increase reliability and sensitivity in children, the QMT system is interfaced with 

audiovisual feedback. In essence, the audiovisual feedback turns the strength measurement 

process into a “video game,” leading to increased compliance and effort in DMD children 

providing optimal reliability. The system also integrates timed function tests, manual muscle 

testing, and pulmonary function testing. CINRG showed that both total QMT scores and 

individual QMT assessments were highly reliable (Escolar, Henricson et al. 2001; Mayhew, 

Florence et al. 2007). 



 28 

4.0  EXPERIMENTAL DESIGN AND METHODS 

The University of Pittsburgh Institutional Review Board approved the study reported in this 

thesis (Appendix C). De-identified records from baseline visits of past and ongoing CINRG 

studies were obtained through the CINRG Coordinating Center. The data obtained from CINRG 

was collected from 20 CINRG centers (Appendix B) between January of 2004 and September of 

2008. Two published DMD mutation databases (Aartsma-Rus, Van Deutekom et al. 2006; 

Tuffery-Giraud, Beroud et al. 2009) and one survey compiled by patient/caregiver data were 

reviewed (DuchenneConnect 2007). Information regarding DNA testing was abstracted from 

these three sources and categorized by mutation types described below.  

4.1 DATA 

4.1.1 CNMC0601 Study Data 

The data used from the CNMC0601 study entitled:  A Randomized Study of Daily versus High 

Dose Weekly Prednisone Therapy in Duchenne Muscular Dystrophy was collected between 

January of 2004 and December of 2007. The study was designed to help determine whether a 

high-dose weekly course of prednisone therapy is safer than and at least as effective as daily dose 

therapy for individuals with DMD. In order to be eligible for this study all participants were 
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steroid-naïve and must have received genetic confirmation of DMD by the central CINRG 

genetic counselor. Seventy-seven participants were screened and sixty-four participants between 

the ages of 4 and 10 years old were randomized to either a daily regimen of prednisone of 

0.75mg/kg/day or weekend dose of prednisone of 10mg/kg/weekend. Data collected at the 

screening visits was used for fifty-four participants and includes demographic, diagnostic, and 

strength function data.  

4.1.2 CNMC0705 Study Data 

The data used from the CNMC0705 study entitled:  A Double-Blinded Randomized Placebo 

Controlled Study of Daily Pentoxifylline as a Rescue Therapy in Duchenne Muscular Dystrophy 

was collected between September of 2005 and December of 2007. The study was designed to 

help determine if pentoxifylline when added to patients receiving corticosteroids improves or 

stabilizes strength. In order to be eligible for this study all participants were receiving 

prednisone, prednisolone, or deflazacort for at least 12 months. All participants were required to 

have genetic confirmation of diagnosis in order to be randomized into the study. Seventy-three 

participants were screened and sixty-four participants over the age of 8 years old were 

randomized to either placebo or daily pentoxifylline. Data collected at the screening visits was 

used for sixty-six participants and includes demographic, diagnostic, and strength function data.  

4.1.3 UCD0305 Study Data 

The data used from the UCD0305 study entitled:  Longitudinal Study of the Relationship between 

Impairment, Activity Limitation, Participation and Quality of Life in Persons with Confirmed 
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Duchenne Muscular Dystrophy is taken from the screening visit only from participants that were 

enrolled between February of 2006 and September of 2008. In order to be eligible for this study 

all participants were required to have a genetic confirmation of DMD by the central CINRG 

genetic counselor. The study is a 5-year observational study that is projected to be completed in 

January of 2014. Data collected at the screening visits was used for two hundred and fifty-four 

participants and includes demographic, diagnostic, and strength function data.  

4.1.4 CINRG General Guidelines for Inclusion and Exclusion 

4.1.4.1 Genetic Confirmation 

In all CINRG studies at least one of the following criteria must be met in order to be 

enrolled or randomized: 

• A muscle biopsy with dystrophin immunofluorescence and/or immunoblot 

showing complete dystrophin deficiency, and clinical picture consistent with 

typical DMD 

• Gene deletion test positive in the central rod domain (exons 25 through 60) of the 

dystrophin gene, where the reading-frame can be predicted as ‘out-of-frame’, and 

clinical picture consistent with typical DMD 

• Complete dystrophin gene sequencing showing an alteration (point mutation, 

duplication, or other mutation resulting in a stop codon mutation) that can be 

definitely associated with DMD, and clinical picture consistent with typical DMD 

• Positive family history of DMD confirmed by one of the criteria listed above in a 

sibling or maternal uncle, and clinical picture consistent with typical DMD.  
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4.1.4.2 Cognitive Aptitude  

The CINRG trials that use muscle strength assessments as primary endpoints exclude 

participants unable to follow simple commands. Participants must be able to reproduce strength 

test values obtained over two consecutive days that lie within 15% of each other. Both the 

CNMC0601 and CNMC0705 studies included quantitative muscle strength assessments as 

primary outcomes. Although the UCD0305 study is a natural history study that is intended to 

enroll any participants with DMD, it may not capture the full spectrum of patients with DMD. 

CINRG studies do not include any IQ testing.   

4.2 METHODS 

4.2.1 Review of Charts from CINRG Studies 

All de-identified data was reviewed and entered into an Excel spreadsheet. The demographic 

information includes:  participant five-digit identifier, participant month and year of birth, and 

participant race and ethnicity. The diagnostic data includes the study case report form as well as 

a de-identified copy of the actual diagnostic report from the laboratory that performed the 

testing. The strength function data includes information on steroid use (1= Yes, the participant 

has or is using steroids and 0= No, the participant has never used steroids), ambulatory status (1= 

Walking or 0= Wheelchair use for greater than 50% of the day), and results obtained from the 

screening CQMS assessment (age at test, time to walk or run 10 meters, time to climb 4 standard 

stairs, time to stand from the lying position, quantitative strength in pounds for leg, arm, and grip 
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muscles as well as the average quantitative strength, and functional evaluation of upper and 

lower body strength).  

The CINRG diagnostic data was sorted according to the mutation categories defined 

below. These categories have been adapted from the ones reported from the literature described 

in Section 3.3. The DNA and muscle biopsy testing was coded as ‘1’ for those who had either 

DNA, muscle biopsy testing or both and ‘0’ for those who had neither DNA nor muscle biopsy 

testing. For those who had DNA testing, the data was further subdivided into those who had 

large lesions versus those who had small lesions. Individuals with small lesions were further 

subdivided into those who had small deletions and those who had point mutations. 

4.2.2 Review of the Published Literature 

Two large DMD mutation databases were reviewed. The Leiden database was created in July of 

1997 as an open-access database in which all mutations that have been reported in the literature 

are stored (Fokkema, den Dunnen et al. 2005). The Leiden database homepage www.dmd.nl 

states that the pages are intended to be used by ‘scientist performing research and/or diagnosis in 

Duchenne and Duchenne-like muscular dystrophies.’ By 2006, more than 4,700 mutations had 

been reported in their databases (Aartsma-Rus, Van Deutekom et al. 2006).  

The Leiden database is divided into two databases:  large lesions that affect one exon or 

more and small lesions that affect less than one exon. In order to determine the number of large 

lesions, an advanced search of the large lesions repository was performed for deletions and 

duplications. To ascertain the number of small lesions, multiple searches were performed for 

each subcategory:  substitutions, insertions, deletions, and duplications. To differentiate between 

the nonsense and missense point mutations, separate searches, which required the addition of 

http://www.dmd.nl/�
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information on the protein change description, were performed. In addition, the publications 

based on the Leiden database were reviewed and data was abstracted into a table format 

(Aartsma-Rus, Van Deutekom et al. 2006). 

The second database used in this project is the Universal Mutation Database-Duchenne 

Muscular Dystrophy (UMD-DMD), which was developed as a joint national effort through the 

network of diagnostic laboratories to provide up-to-date information about mutations of the 

DMD gene identified in patients with dystrophinopathies in France. The UMD-DMD database 

homepage www.umd.be/DMD states that the database has a goal of ‘making the information 

readily accessible to anyone (geneticists, clinicians or researchers) interested in the genetic 

variations of the DMD gene, the clinics of dystrophinopathies, or the development of new 

therapeutic approaches.’ The data presented within the UMD-DMD website was abstracted into 

a table format.  

On an exploratory basis, data was obtained from Parent Project Muscular Dystrophy 

DuchenneConnect www.duchenneconnect.org, which was ‘created to serve as a central hub 

linking the resources and needs of the Duchenne/Becker muscular dystrophy community:  young 

men with Duchenne; their families and caregivers; and the provider community:  clinical care 

providers, policymakers, industry professionals and the medical research fields.’ The 

DuchenneConnect data was abstracted from surveys completed by parent and/or caregiver data 

available through a password protected provider portal.   

4.2.3 Data Analysis 

For specific Aim 1, the data was sorted according to CINRG study participants’ diagnostic 

testing method as follows:  DNA testing alone, muscle biopsy testing alone, DNA testing and 

http://www.umd.be/DMD�
http://www.duchenneconnect.org/�
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muscle biopsy testing, or family history information with no diagnostic test. DNA testing 

information was further divided into the following groups: 

• Large Lesions (greater than one exon) 

o Large deletions 

o Large duplications 

• Small Lesions (less than one exon) 

o Small mutation (greater than one base pair and less than one exon) 

o Point mutation 

 Missense 

 Nonsense 

• No Detected Mutation  

For specific Aim 2, the parent surveys and the mutation information reported by the two 

large DMD databases were sorted accorded to the above groups. Chi-square analysis was used to 

compare the CINRG mutation proportions to the two large databases and parent surveys. Chi-

square tests were performed by hand and verified with an online calculator from the University 

of Kansas (Preacher 2008).  A p-value of 0.05 or higher was considered significant for these 

analyses.  

For specific Aim 3, the CINRG data was divided according to age into two cohorts. The 

first cohort includes CINRG participants ages 7 through 9 when they completed the strength 

assessment and the second cohort includes CINRG participants ages 10 through 20. The first 

cohort, labeled ambulant, represents a cohort in which all CINRG participants were ambulant 

and the second cohort, labeled mixed, includes a mixed population of ambulant and non-

ambulant participants.  
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Three analyses were performed for the ambulant cohort. Two separate ANOVA tests 

were performed using the SPSS® 17.0 statistical software package to look for significant 

differences between time to walk 10 meters and the use of corticosteroids or type of mutation. A 

linear regression was performed using the SPSS® 17.0 statistical software package. The time to 

walk 10 meters was set as the dependent variable and the use of corticosteroids and mutation 

types served as independent variables for this analysis. A p-value of 0.05 or lower was 

considered significant for these analyses.  

One analysis was performed for the mixed cohort. A binary logistic regression was 

performed using the SPSS® 17.0 statistical software package. The ambulation status was set as 

the dependent variable and the use of corticosteroids, mutation types, and age served as 

covariates. A p-value of 0.05 or lower was also considered significant for this analysis.     
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5.0  RESULTS 

5.1 CHARACTERIZATION OF CINRG DATA 

5.1.1 Demographic Analysis 

The CINRG data is summarized in Table 4 by site. A total of 374 participants from 20 CINRG 

sites were included in the Demographic Analysis. The average age of the participants was 11.6 

years with a median age of 9.8 years. Two hundred and forty-seven participants (66%) reported 

the ability to walk at the initial muscle testing visit. The age at the loss of ambulation was not 

available at the time of data request. Two hundred and thirty-nine participants (63.9%) reported 

the use of corticosteroids either at the initial muscle testing visit or at some point prior. Two 

hundred and ninety-four participants (78.6%) had DNA testing. For 161 (54.8%) of these, DNA 

testing was the only method used to confirm diagnosis. Muscle biopsy data was available for 204 

participants (54.5%). For 71 (34.8%) of these, muscle biopsy was the only method used to 

confirm diagnosis.  

Participants who did not undergo DNA or muscle biopsy were included in the three 

CINRG studies on the basis of confirmation testing performed on siblings. A total of 9 

participants fell into this category. Due to the lack of direct patient DNA confirmation testing, 

these participants were not included in the mutation data analysis or genotype-phenotype cohort 
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analyses. All 294 participants who underwent DNA testing were included in the mutation 

analysis (Figure 4).  
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Table 4:  Demographic Analysis of CINRG Data 
The demographic information (average age, ambulation status, steroid use, and diagnostic methodology) 
for all 374 CINRG study participants is presented by CINRG site  
 

Site 
N

um
be

r o
f 

Pa
rti

ci
pa

nt
s 

A
ve

ra
ge

 A
ge

 Number of Participants: 

Ambulant Steroid 
Users 

Biopsy 
Testing 

DNA 
Testing 

DNA 
and 
Biopsy 
Testing 

Large 
Lesion 

Small 
Lesion 

No 
Detected 
Mutation

Buenos 
Aires 22 14.2 16 18 19 4 3 3 0 1 

Calgary 29 11 20 16 14 25 11 17 0 8 
Chennai 31 9.2 18 26 10 31 10 26 0 5 
Edmonton 10 10.2 9 9 3 8 1 5 2 1 
Göteborg 19 12.2 10 14 18 19 18 12 5 2 
Houston 5 14.7 2 1 2 4 1 4 0 0 
Jerusalem 19 9.5 15 12 17 6 4 3 2 1 
Melbourne 24 6.3 24 9 7 19 2 16 2 1 
Memphis 14 12.3 9 7 9 13 8 10 0 3 
Milan 16 10.1 15 14 16 16 16 11 1 4 
Minneapolis 1 8.9 1 1 0 1 0 1 0 0 
Pittsburgh 16 14.6 7 13 10 13 7 12 0 1 
Richmond 7 12.3 4 2 4 3 0 3 0 0 
Rochester 14 10.1 7 7 5 10 2 9 1 0 
Sacramento 49 12.3 25 18 24 43 20 32 7 4 
St. Louis 16 14.5 8 13 10 14 9 10 3 1 
San Juan 5 16.7 0 0 2 5 2 3 0 2 
Sydney 10 8.6 8 9 3 9 2 9 0 0 
Toronto 28 15.2 16 23 8 24 6 22 0 2 
Washington,
D.C. 39 8.9 33 27 23 27 11 19 6 2 

TOTAL 374 11.6 247 239 204 294 133 226 30 38 
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The majority of CINRG study participants (87%) that had DNA testing were found to 

have a mutation that could be classified as either small or large. Figure 4 illustrates the 

proportion of all DNA test results by category, including those who were not found to have an 

identifiable mutation, for the 294 CINRG study participants. Most CINRG study participants 

were found to have a large deletion (72%). The next most common category comprised those 

participants who had muscle biopsy to confirm the diagnosis of DMD, but did not have an 

identifiable mutation by genetic testing and therefore no mutation was reported (13%). The final 

categories were those with point mutations (8%), large duplications (5%), and small deletions 

(2%).  

Point mutation
8%

Small deletion
2%

Large 
duplication

5%

Large deletions
72%

No mutation
13%

 

Figure 4:  Representation of all CINRG Study Participants’ DNA Test Results 
Pie chart representation of the types of dystrophin gene mutations carried by the 294 CINRG study 
participants that had DNA test results. 
 

The cohort of CINRG study participants limited to those found to have an identifiable 

mutation were subdivided into mutation type as shown in Figure 5. CINRG study participants 

found to have point mutations were further divided into nonsense and missense mutations, 
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illustrated in the smaller pie chart of Figure 5. Of the CINRG study participants with point 

mutation, the majority were found to have nonsense mutations (70%). The analysis to generate 

Figure 5 was performed to permit comparison with the data reported by the Leiden and UMD-

DMD databases; their databases only include patients with known mutations.  

Large deletions
83%

Large duplication 
5%

Small deletion 3%

Point mutation
9% Nonsense 

70%

Missense
30%

 

Figure 5:  CINRG Study Participants with Identified Mutations 
Pie chart representation of the types of dystrophin gene mutations carried by the 256 CINRG study 
participants that had an identifiable mutation by DNA testing. The subdivision of point mutations is 
represented in the smaller pie chart.  

5.1.2 Large lesions 

In the analysis of CINRG participants with large lesions, the specific mutations were further 

divided into large duplications and large deletions (Figures 6 – 8). Large duplications (Figure 6) 

and deletions (Figures 7 and 8) are displayed according to their position (shaded area) and their 

frequency (number in the first column). A total of 14 CINRG study participants have a 

duplication of one or more exons. The most common duplicated area is exon 2, with a total of 3 

participants (21.4% of CINRG study participants with duplications). The largest duplication 

reported spans 18 exons (exon 8 through 25). All duplications are out-of-frame mutations. 



 41 

 

Figure 6: Schematic of CINRG Study Participants with Dystrophin Gene Duplications 
The figure illustrates the number of CINRG study participants with large duplications between the 
promoter and exon 79. The blue area indicates the region of exons that are duplicated. For example, three 
CINRG study participants were reported to have a duplication of exon 2.  
 

The representation of CINRG study participants with large deletions are displayed in two 

figures according to the position of the deletion.  The first figure (Figure 7) represents the 

deletions that occur in the proximal region of the gene and the second figure (Figure 8) 

represents the deletions that begin in the distal region of the gene. A total of 92 different 

deletions (43.4%) were reported in the CINRG deletion dataset. The majority of mutations 

cluster in the two reported hotspots. The proximal hotspot, which includes the region of exon 2 

through 20, represents 17.9% of the deletions. The distal hotspot, which includes the region of 

exon 45 through 55, represents 68.4% of CINRG study participants with large deletions.  

Large deletions that include exons from both hotspots were identified in 9 participants 

(4.2%). The deletions affecting the regions outside of these two hotspots are not as common. 

Eight participants (3.7%) have deletions lying in exons 21 through 43 and 3 participants (1.4%) 

have deletions starting after exon 55. 

Forty-eight participants (22.2%) have deletions beginning between the promoter and 

exon 38 (Figure 7). The most common deletion in this region is a deletion of exons 3 through 7, 
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which was reported in 5 participants. In this proximal region 12 CINRG study participants have 

in-frame, large deletions.  
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Figure 7:  Schematic of CINRG Study Participants with Dystrophin Gene Deletions Starting in the 
Proximal Region of the Gene 
The figure illustrates the number of CINRG study participants with large deletions that start in the proximal 
region of the dystrophin gene. The red area indicates the region of exons that are deleted. For example, five 
CINRG study participants were reported to have a deletion of exons 3 through 7. 
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Figure 8 displays the large deletions occurring in the distal region of the gene. One 

hundred and sixty-four participants (77.8%) have deletions beginning at exon 43. The most 

common large deletion is of exon 45, accounting for 7% of all large deletions. The second most 

common large deletion (6.6%) identified spans exons 48 through 50. In this distal region 12 

CINRG study participants have in-frame, large deletions, bringing the total percentage of in-

frame large deletions to 11.3%. In the CINRG dataset the reading-frame rules can be applied in 

88.7% of cases.  
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Figure 8:  Schematic of CINRG Study Participants with Dystrophin Gene Deletions Starting in the 
Distal Region of the Gene 
The figure illustrates the number of CINRG study participants with large deletions that start in the distal 
region of the dystrophin gene. The red area indicates the region of exons that are deleted. For example, ten 
CINRG study participants were reported to have a deletion of exon 52. 
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5.1.3 Small Lesions 

Small lesions were identified in 30 CINRG participants who had DNA testing. The small lesions 

were further divided into small deletions and point mutations. In participants with small lesions 

(11.7% of the participants with identified mutations), nonsense mutations are the most common 

mutation. They represent 53.3% of participants with small lesions and 6.25% of all participants 

with an identified mutation. Frameshift and missense mutations each account for 23.3% of the 

small lesions.  

Six different small deletions leading to a frameshift were identified. The small deletions 

involved 2 to 11 base pairs within 6 different exons. There is no apparent pattern within these 

small deletions. One small deletion was reported in two siblings. The six different mutations lie 

within the following exons:  6, 18, 36, 40, 41, and 68. Both the Leiden and UMD-DMD 

databases were searched to see if these six different small deletions were reported by either or 

both databases. Neither database reported all of the CINRG small lesions. In the CINRG 

database, one small deletion found in exon 4 at nucleotide position 412 was reported in the 

UMD-DMD database and not in the Leiden database. Three other small mutations in the CINRG 

database were found in the Leiden database. The Leiden database also provides information on 

the origin of the reported sequence variant and all three sequence-variants were reported in the 

USA, as were the ones in our dataset. Therefore, these could be the same reported sequence 

variants as the Leiden database is open to the public for reporting.   

Seven different missense mutations were identified. Although a possible hotspot for 

missense mutations has been reported (Tuffery-Giraud, Beroud et al. 2009), the CINRG dataset 

does not suggest a missense mutation hotspot. The missense mutations are reported within exons:  

4, 5, 14, 15, 17, 54, and 56. None of the missense mutations in our dataset are reported in the 
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UMD-DMD database. Two mutations, c.8390 G>C and c.2060 C>T, are also present in the 

Leiden database. The c.8390 is likely to be the same mutation as they are both reported from the 

USA. The other mutation, however, is reported in the USA for our dataset but it is from an 

Indian patient in the Leiden database.  

Nonsense mutations, which account for the majority of the small lesions in the CINRG 

dataset, represent 53.3% of all identified small lesions. All 16 identified nonsense mutations are 

unique and were identified in exons:  13, 14, 20, 21, 29, 30, 31, 33, 35, 45, 54, 55, 56, 59, and 

69. Two nonsense mutations were identified within exon 20 but were located at different 

nucleotides within exon 20. One mutation, c.2611 A>T, was reported in both the Leiden and the 

UMD-DMD databases. Neither database had information on the country of origin for this 

particular mutation. Five other mutations were found in the Leiden database. Based on the 

country of origin, it is likely that one of them is common to our dataset, c.1594C>T. The other 

four mutations are from different countries of origin. The C to T substitution is the most common 

reported event, occurring in 50% of the nonsense mutations.    

The CINRG database does not include any participants with splice site mutations or mid-

intronic lesions.  

5.2 PUBLISHED LITERATURE MUTATION ANALYSIS 

The Leiden database information is summarized in Table 5. Information on a total of 4,939 

mutations was abstracted from the two Leiden databases for large and small lesions. The 

majority of mutations are large lesions (72.8%) and small lesions represent 25.9% of their 
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reported mutations. Information on splice site mutations was not readily available; and therefore, 

is not reported in Table 5.   

Table 5:  Leiden Database Mutation Summary 

Total 4939 100%
Large lesions 3594 72.8%

Large deletions (> 1 exon) 2992 60.6%
Large duplication (>1 exon) 602 12.2%

Small lesions 1277 25.9%
Small deletions (<1 exon) 168 3.4%
Small insertions (<1 exon) 35 0.7%
Splice sites (<10 bp) Not reported Not reported  
Point Mutation 1074 21.7%

Nonsense 955 19.3%
Missense 119 2.4%

Mid-intronic lesions 68 1.4%
 

The UMD-DMD database information is summarized in Table 6. This table was directly 

taken from their database website and includes a total of 2,411 mutations (Leturcq and Tuffery-

Giraud 2009). The majority of mutations are large lesions (78.3%) and small lesions represent 

21.0% of their reported mutations.  

Table 6:  UMD-DMD Database Mutation Summary 

Total 2411 100%
Large lesions 1887 78.3%

Large deletions (> 1 exon) 1638 67.9%
Large duplication (>1 exon) 249 10.3%

Small lesions 507 21.0%
Small deletions (<1 exon) 118 4.9%
Small insertions (<1 exon) 44 1.8%
Splice sites (<10 bp) 132 5.5%
Point Mutation 213 8.8%

Nonsense 204 8.5%
Missense 9 0.4%

Mid-intronic lesions 17 0.7%
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The DuchenneConnect data taken from the providers search performed on February 18, 

2009 is summarized in Table 7. Information on a total of 617 mutations was abstracted from the 

search profile. The majority of mutations are large lesions (81.4%) and small lesions represent 

18.6% of their reported mutations. Information on splice site lesions and mid-intronic lesions 

was not readily available and therefore is not reported in Table 7. 

Table 7:  DuchenneConnect Survey Mutation Summary 

Total 617 100%
Large lesions 502 81.4

Large deletions (> 1 exon) 429 69.5
Large duplication (>1 exon) 73 11.8

Small lesions 115 18.6
Small deletions (<1 exon) 19 3.1
Small insertions (<1 exon) 11 1.8
Splice sites (<10 bp) Not reported Not reported  
Point Mutation 85 13.8

Nonsense 80 13.0
Missense 5 0.8

Mid-intronic lesions Not reported Not reported  

5.3 COMPARISON OF MUTATION DATA WITH THE CINRG DATASET 

The comparison analyses for the CINRG dataset with the two published databases are presented 

in Tables 8 and 9. The comparison analysis with the parent report is presented in Table 10. A 

summary bar graph, which includes the data from CINRG, Leiden, UMD-DMD, and 

DuchenneConnect, is presented in Figure 9.  

Although the Leiden database mutation summary (Table 5) includes numbers for mid-

intronic lesions, they were excluded for the purpose of the comparison analysis (Table 8) as the 

CINRG dataset does not contain any study participants with mid-intronic lesions. The 
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contribution of mid-intronic lesions in the Leiden database represented a small proportion (1.4%) 

of the entire Leiden mutation data. 

Table 8:  Comparison of the CINRG Mutation Categories to the Leiden Database 

 Large lesions Small lesions Total 

CINRG 226 (88.3%) 30 (11.7%) 256 

Leiden 3594 (76.9%) 1074 (23.1%) 4668 

Total 3820 1104 4924 

 

A chi-square analysis was carried out to assess the significance of differences between 

the frequency of the mutation categories in the CINRG dataset and the ones reported in the 

Leiden database. Results indicated that the proportion of CINRG study participants with large 

and small lesions was statistically different from those reported in the Leiden database. The chi-

square value is 17.78 with 1 degree of freedom and a p-value of 0.00002. Therefore the null 

hypothesis is rejected and these two databases, the CINRG and Leiden, are statistically different 

with regards to large and small mutations.   

For the comparison of reported mutations between the CINRG dataset and the UMD-

DMD database (Table 9), mid-intronic lesions reported by the UMD-DMD database were 

excluded as the CINRG dataset does not contain any study participants with mid-intronic lesions. 

The contribution of mid-intronic lesions in the UMD-DMD database represented a very small 

proportion (0.7%) of the entire UMD-DMD mutation. 

Table 9:  Comparison of CINRG Mutation Categories to the UMD-DMD Database 

 Large lesions Small lesions Total 

CINRG 226 (88.3%) 30 (11.7%) 256 

UMD-DMD 1887 (78.8%) 507 (21.2%) 2394 

Total 2213 537 2650 
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A chi-square analysis was completed to assess the significance of difference between the 

frequency of the mutation categories in the CINRG dataset and the ones reported in the UMD-

DMD database. Results indicated that the proportion of CINRG study participants with large and 

small lesions was statistically different from those reported in the UMD-DMD database. The chi-

square value is 12.80 with 1 degree of freedom and a p-value of 0.00034. Therefore the null 

hypothesis is rejected and these two databases, the CINRG and UMD-DMD, are statistically 

different with regards to large and small mutations.  

The comparison of mutations between the CINRG dataset and DuchenneConnect is 

presented in Table 10.  

Table 10:  Comparison of CINRG Mutation Categories to DuchenneConnect 

 Large lesions Small lesions Total 

CINRG 226 (88.3%) 30 (11.7%) 256 

DuchenneConnect 502 (81.4%) 115 (18.6%) 617 

Total 728 145 873 

 

A chi-square analysis was completed to assess the significance of difference between the 

frequency of the mutation categories in the CINRG dataset and the ones reported in the 

DuchenneConnect registry. Results indicated that the proportion of CINRG study participants 

with large and small lesions was statistically different from those reported in the 

DuchenneConnect registry. The chi-square value is 6.25 with 1 degree of freedom and a p-value 

of 0.0124. Therefore the null hypothesis is rejected and these two databases, the CINRG and 

DuchenneConnect, are statistically different with regards to large and small mutations.  
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A graphical representation of the percentage of large and small mutations is presented in 

Figure 9. The difference between the CINRG database and the other databases, Leiden, UMD-

DMD and DuchenneConnect is statistically significant. The difference is not very large, with a 

difference of 11.4% with the Leiden database, 9.5% with UMD-DMD, and 6.9% with 

DuchenneConnect.  
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Figure 9:  Comparison of the Percentages of Large and Small Lesions in all Four Datasets 
The percentage of large lesions are represented in the dark purple colored bars and the percentage of small 
lesions are represented in the cream colored bars. All four datasets: CINRG, Leiden, UMD-DMD, and 
DuchenneConnect are included in the bar graph representation with the datasets in the x-axis and 
percentages in the y-axis.   

5.4 GENOTYPE-PHENOTYPE ANALYSIS 

For the genotype-phenotype analysis, the CINRG data was divided into two particular cohorts. 
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5.4.1 Ambulant Cohort Analysis 

The ambulant cohort included 71 participants taken from all three CINRG studies. The 

demographic analysis of this cohort is summarized in Table 11. The average age of the cohort is 

8.4 years. The majority of CINRG study participants in this cohort had large lesions (87.3%). 

The average time to walk 10 meters for all CINRG study participants in this cohort is 7 seconds. 

The average quantitative muscle testing (QMT) total score, which is based on the average of the 

QMT arm, leg and grip measurements, is 10.9 pounds of force for this cohort. Most CINRG 

study participants (90.1%) in this cohort are currently taking or have used corticosteroids.   

Table 11:  CINRG Ambulant Cohort Genotype-Phenotype 

Genotype Total 
number of 

participants 

Average 
age of 

participants

Phenotype 

Number of 
steroid using 
participants 

Average Time 
to walk 10 
meters in 
seconds 

Average 
QMT total 

score 

Large lesions 62 8.4 56 6.8 11.0 

 Deletions 60 8.4 54 6.9 10.9 

 - Out-of-frame 53 8.3 49 6.7 11.0 

 - In-frame 7 9.0 5 9.0 10.5 

 Duplications 
 (all out-of-frame) 

2 8.8 2 4.0 2.2 

Small lesions 9 8.2 8 8.1 9.8 

Small deletions 2 8.4 2 8.6 6.8 

Point mutations 7 8.1 6 7.9 10.7 

 Missense 2 8.2 1 9.9 10.0 

 Nonsense 5 8.1 5 7.2 11 

TOTAL 71 8.4 64 7.0 10.9 
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Two ANOVA tests were performed for this ambulant cohort. The first test was performed 

to look for significant differences between the time to walk 10 meters and the mutation type 

(large versus small lesions). The p-value for this test was not found to be statistically significant 

(p = 0.435, mean time for participants with large lesions: 6.8 seconds and mean time for 

participants with small lesions: 8.1 seconds). The second ANOVA test performed to look for 

significant differences between the time to walk 10 meters and corticosteroid use was also not 

found to be statistically significant (p =0.671, mean time for participants using corticosteroid: 6.9 

seconds and mean time for participants never exposed to corticosteroids: 7.6 seconds).  

The linear regression, which used the time to walk 10 meters as the dependent variable 

and the use of corticosteroids and mutation type as independent variables, confirmed the results 

from the two ANOVA tests. The mutation type did not have an effect on the time to walk 10 

meters in this cohort (p = 0.441 and coefficient value B = -1.209). The use of corticosteroids did 

not have an effect on the time to walk 10 meters (p = 0.681 and coefficient value B = -0.719).  

5.4.2 Mixed Cohort Analysis 

The mixed cohort included 100 participants taken from all three CINRG studies. The 

demographic analysis of this cohort is summarized in Table 12. The average age of the cohort 

was 14.2 years. The majority of CINRG study participants in this cohort had large lesions 

(88.0%). Most CINRG study participants in this cohort were non-ambulatory (62%). The 

average quantitative muscle testing (QMT) total score, which was based on the average of the 

QMT arm, leg, and grip measurements, was 8.9 pounds of force. Most CINRG study participants 

(64.0%) in this cohort were using or had used corticosteroids. 
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Table 12:  CINRG Mixed Cohort Genotype-Phenotype 

Genotype Total 
number of 

participants 

Average 
age of 

participants

Phenotype 
Number of 

steroid using 
participants 

Number of 
ambulant 

participants 

Average 
QMT total 

score 
Large lesions 88 14.1 57 32 8.7 

 Deletions 84 14.2 55 32 8.9 

 - Out-of-frame 71 14.0 46 29 9.4 

 - In-frame 13 15.2 9 3 6.4 

 Duplications 
 (all out-of-frame) 

4 13.8 2 0 5.3 

Small lesions 12 14.8 7 6 9.9 

Small deletions 3 16.8 2 1 13.3 

Point mutations 9 14.2 5 5 8.7 

 Missense 1 14.5 5 0 9.0 

 Nonsense 8 14.1 0 5 8.7 

TOTAL 100 14.2 64 38 8.9 

 

The results of the binary logistic regression, which set the ambulation status as the 

dependent variable and the use of corticosteroids, mutation type, and age at testing as covariates, 

indicated that the use of corticosteroids and the age of the CINRG study participants had a 

statistically significant effect on the ambulation status. The p-values for corticosteroid use and 

age were 0.002 and <0.001, respectively. The mutation type did not have a statistically 

significant effect on the ambulation status for this cohort (p = 0.120).  
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6.0  DISCUSSION 

6.1 CHARACTERIZATION OF CINRG MUTATIONS 

The goal of the first aim was to characterize the dystrophin gene mutations of CINRG study 

participants from one observational and two treatment studies. The majority of CINRG study 

participants (87%) underwent DNA testing for diagnosis confirmation (Result Section 5.1, Table 

4). The data obtained from the analysis of the gene mutations, observed in the CINRG studies, 

illustrates the heterogeneity of the disease-causing mutations in the dystrophin gene. Among 

CINRG study participants with large lesions, 92 unique deletions and 12 unique duplications 

were identified (Result Section 5.1, Figures 6-8). For small lesions, 29 different mutations were 

identified, of which only 11 were previously reported in the Leiden and UMD-DMD databases 

(Aartsma-Rus, Van Deutekom et al. 2006; Tuffery-Giraud, Beroud et al. 2009).  

Two dystrophin gene mutation hotspots have been well characterized in the literature. 

The proximal hotspot spans from exons 2 through 22 and the distal hotspot spans from exons 45 

through 55 (Beggs, Koenig et al. 1990; Oudet, Hanauer et al. 1992; Nobile, Galvagni et al. 1995; 

Sironi, Pozzoli et al. 2003; Gualandi, Rimessi et al. 2006). The majority of the CINRG 

mutations, representing 86.3%, fell into the two dystrophin gene mutation hotspots.  

There is currently no known relationship between the size of the deletion and the clinical 

phenotype. The effects of the phenotype depend on whether or not the reading-frame is disrupted 
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(Muntoni, Torelli et al. 2003). As discussed in Section 3.4, in DMD patients, a disruption of the 

open reading-frame causes a complete absence of the dystrophin protein, whereas BMD patients 

carry an in-frame mutation that allows the stable expression of dystrophin with a smaller 

molecular size that may be expressed in lower quantities than normal. This reading-frame 

hypothesis holds true in approximately 90% of DMD patients (Monaco, Bertelson et al. 1988; 

Koenig, Beggs et al. 1989; Muntoni, Torelli et al. 2003). In the CINRG dataset, the reading-

frame hypothesis is similar with 88.7% to that reported in the literature.  

The demographic data, analyzed while characterizing the mutations reported by CINRG, 

demonstrated that the method of DNA confirmation used varied between CINRG centers. As 

was discussed in Section 3.6.2, the most common diagnostic method used worldwide is 

Deletion/Duplication analysis. By far, this was also the most common method of diagnostic 

testing performed in the different CINRG sites around the world, but the specific technique with 

which it was performed varied between the different CINRG sites. Some centers still perform 

deletion screening by using the original Chamberlain protocol with PCR primers for 9 exons 

(Chamberlain, Gibbs et al. 1988). It is therefore possible that some of the 38 CINRG study 

participants with no detectable mutation may indeed have some form of lesion, (likely small) that 

was not detected by the Deletion/Duplication analysis. The Deletion/Duplication analysis detects 

98% of large deletions and does not detect small lesions (Beggs, Koenig et al. 1990).  

The review of the CINRG demographic data by site suggests that there are differences in 

the way the diagnosis of DMD was confirmed. For instance, DNA and muscle biopsy data was 

obtained for all 16 participants in the site in Milan, Italy; while the site in Rochester, MN, with a 

similar sample size and population age, had only 2 of their participants with diagnostic 

information on both DNA and muscle biopsy. The majority of CINRG participants from the 
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Rochester, MN site had diagnostic confirmation of DMD done by DNA testing alone. Review of 

the CINRG data by study site highlights the variability in the methods used to confirm the 

diagnosis of DMD. The means used for confirmation probably varies based on the individual 

site’s access to rapid and reliable testing. There are currently no published studies that examine 

the clinical utility of the different testing strategies used to confirm diagnoses in affected DMD 

and BMD patients (Taylor, Maroulis et al. 2007). Although CINRG has not established 

guidelines on the ideal way to confirm the diagnosis of DMD within its network, such an 

organization is well suited to carry out the studies required to determine the most clinically 

efficient and scientifically productive means of diagnostic confirmation. 

The variation in the methods used to confirm the diagnosis of DMD is a limitation in the 

attempt to characterize the mutations reported by CINRG. In this characterization of mutations, 

CINRG study participants whose affliction with DMD was confirmed solely by muscle biopsy 

were excluded from the analysis (71 CINRG participants). Since they had no genetic testing, it is 

impossible to determine what type of mutation they might have. Unfortunately, this represents 

nearly 20% of the entire CINRG dataset used in this project. It is likely that if these CINRG 

study participants had also had genetic testing, they may have shifted the proportion of large and 

small mutation categories in the CINRG dataset.  

Another limitation of the CINRG dataset is its more stringent guidelines for the 

information that can be used to confirm the diagnosis of DMD as discussed in the Method 

Section 4.1.4. To ascertain that all participants enrolled in CINRG studies have DMD, CINRG 

has established strict guidelines regarding confirmation of the DMD diagnosis. The guidelines 

restrict study inclusion to participants with a positive gene mutation test result and/or complete 

absence of dystrophin on a muscle biopsy.  
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The results of the investigation of the dystrophin gene mutations in the CINRG study 

participants shows that the mutations observed approximately match the percentages of mutation 

type and mutation location reported in the published literature. Depending on the population 

sample, large lesions are reported anywhere from 60 to 80% (Koenig, Beggs et al. 1989; Haider, 

Bastaki et al. 1998; White, Kalf et al. 2002; Muntoni, Torelli et al. 2003), which matches closely 

to CINRG’s 72%. The number of small lesions in the CINRG dataset seems to be slightly lower 

than those in the published literature. However, unlike the literature reports, CINRG study 

participants with no detectable mutations were included in the DNA testing data analysis (Result 

Section 5.1, Figure 4). The percentage of small lesions may be slightly lower in the CINRG 

dataset than in the general literature due to the kinds of DNA testing methodologies used as was 

discussed above.    

6.2 COMPARABILITY OF CINRG MUTATIONS TO THE PUBLISHED 

DATABASES 

The goal of the second aim was to compare the types of dystrophin gene mutations carried by 

CINRG study participants to those presented in two large international databases. The hypothesis 

was that if the distribution of mutations causing DMD is similar worldwide, then the distribution 

of mutations in the CINRG dataset will be similar to the distribution of mutations in two large 

international databases, the Leiden and UMD-DMD databases. The results obtained from the chi-

square test (Result Section 5.1) showed that the distribution of mutations causing DMD in the 

CINRG database were statistically different from those in the Leiden and UMD-DMD databases, 

with p-values of 0.00002 and 0.00034, respectively. However, the statistically significant 
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differences found are unlikely to be scientifically significant. The rationale for this conclusion is 

discussed further below.  

On an exploratory basis, the distribution of DMD-causing mutations in the CINRG 

dataset was also compared to the distribution of mutations from the Parent Project Muscular 

Dystrophy DuchenneConnect registry, which is generated by parent/caregiver reports. This 

analysis also determined that the distribution of mutations in the DuchenneConnect registry was 

statistically different from the CINRG dataset with a significant p-value of 0.012.  

In the literature, the report of dystrophin causing mutations has largely been presented as 

a percentage of the population under study. Depending on the reports, the range of variations of 

reported percentages for some of the mutation types may be as high as 20% (Koenig, Beggs et al. 

1989; White, Kalf et al. 2002; Muntoni, Torelli et al. 2003). The proportion of CINRG large and 

small mutations is within 10 to 15% of those found in the Leiden and UMD-DMD databases. 

Thus, it is unlikely that the differences observed between the CINRG dataset and the three 

different data sources, Leiden and UMD-DMD databases and the DuchenneConnect registry are 

scientifically significant. In the Leiden and UMD-DMD databases, the reading-frame hypothesis 

is reported as 91% and 96%, respectively (Aartsma-Rus, Van Deutekom et al. 2006; Tuffery-

Giraud, Beroud et al. 2009), which is very similar to the 88.7% found in the CINRG dataset. 

There are several explanations that could explain the statistical differences found.  

6.2.1 Limitations of Chi-Square Test 

Although the chi-square test can determine if two categorical variables (database and mutation 

type) are significantly related, it does not address the meaning of the relationship. The chi-square 

test does not provide us any information about the strength of the relationship or its substantive 
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significance in the population (Bohannon 1986). In addition, the chi-square test is sensitive to 

sample size. The size of the calculated chi-square is directly proportional to the size of the 

sample, independent of the strength of the relationship between the variables (Bohannon 1986; 

Walker 1999). The CINRG dataset contains much smaller numbers (N=256) than the Leiden 

database (N=4,668) or the UMD-DMD database (N=2,394).  

6.2.2 CINRG Inclusion and Exclusion Criteria 

6.2.2.1 Genetic Confirmation 

As previously discussed in Section 4.1.4, CINRG has established guidelines for including 

participants with positive gene mutation test result and/or complete absence of dystrophin on a 

muscle biopsy. This particular inclusion criterion may be a limitation for the CINRG dataset. The 

inclusion criterion specifies that participants with a complete absense of dystrophin on a muscle 

biopsy may be included in CINRG trials without having had DNA testing. In the CINRG dataset 

used in this project, 80 participants (21%) did not have any records that they had any DNA 

testing. Although only CINRG participants with identified mutations were included in the 

comparisons with the Leiden and UMD-DMD databases, the absence of DNA testing results on 

21% of the CINRG participants may have shifted the distribution of large and small lesions in 

the CINRG dataset.  

6.2.2.2 DMD Spectrum of Clinical Symptoms 

The two databases, Leiden and UMD-DMD, and the DuchenneConnect registry are likely 

to include patients with the full spectrum of clinical signs associated with DMD, as these 

databases do not specify any particular inclusion or exclusion criteria. In the CINRG research 
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trials, especially those that investigate pharmacological agents, such as CNMC0601 and 

CNMC0705 described in Section 4.1, participants that are unable to follow simple commands 

during the CQMS testing are excluded. The total number of participants that may have been 

excluded from these two trials because of this criterion is unknown. The only genetic data of 

CINRG participants with mild to moderate mental retardation that could have been included in 

the CINRG dataset are from the CINRG UCD0305 Longitudinal study. The inclusion of these 

participants may also have resulted in a different distribution of DMD-causing mutations in the 

CINRG dataset.  

6.2.3 Ethnic or Regional Differences in Predisposition to Dystrophin Mutations 

The hypothesis for the second aim was that if the distribution of mutations causing DMD is 

similar worldwide, then the distribution of mutations in the CINRG dataset will be similar to the 

distribution of mutations in two large international databases, the Leiden and UMD-DMD 

databases. It is therefore possible to speculate that since the CINRG dataset and the Leiden and 

UMD-DMD databases were not statistically similar, then the distribution of mutations causing 

DMD is not similar worldwide. This possibility has been investigated in smaller ethnically 

diverse groups. Lo et al. reported in a retrospective review of 67 Hong Kong Chinese patients 

that the distribution of DMD large deletions was significantly lower than the literature reports 

(Lo, Lai et al. 2006). In their small cohort, the proportion of mutation type was divided as 

follows: 34.3% had large lesions, 7.5% had large duplications, 34.3% had small mutations, and 

23.9% had no DMD gene mutation. Their findings matched several other Chinese studies of 

DMD gene mutations (Soong, Tsai et al. 1991; Yang 1991; Zeng, Chen et al. 1991; Ko, Tseng et 

al. 1992; Zhang 1993; Yang, Yang et al. 1994). 
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In a small study of 89 Taiwanese patients, 32 (35.9%) were identified with large 

deletions, 22 (24.7%) with large duplications, and 35 (39%) were not found to have a mutation 

by using a combination of MLPA and PCR methodologies (Hwa, Chang et al. 2007). A study in 

South Indian DMD patients identified 41 patients (62.1%) with large deletions. Their study only 

used PCR methodology to detect the DMD-causing mutations (Mallikarjuna Rao, Hussain et al. 

2003). In their discussion, they did however; present a summary table of the deletion frequency 

in different Asian populations. This table has been abstracted and slightly modified from their 

paper and is presented in Table 13. 

Table 13:  Summary of Deletion Frequency in Different Asian Populations (Katayama, Takeshita et al. 
1993; Shomrat, Gluck et al. 1994; Dincer, Topaloglu et al. 1996; Banerjee and Verma 1997; Singh, Sinha 
et al. 1997; Haider, Bastaki et al. 1998; Yuge, Hui et al. 1999; Mallikarjuna Rao, Hussain et al. 2003) 
 

Population 
(n) 

Mode of 
Analysis 

Frequency 
of deletions 
(%) 

Frequency 
of deletions 
at proximal 
region (%) 

Frequency 
of deletions 
at distal 
region (%) 

Most 
frequent 
deletion 
break point 

Reference 
(Year) 

Chinese 
(138) 

PCR and 
Southern blot 62.3 26.7 68.6 Not 

included 
Yuge et al 
(1999) 

Japanese 
(30) 

PCR and 
Southern blot 52 21.3 78 Intron 44 Katayam et al  

(1993) 
Israel  
(62) PCR 37 22 78 Not 

included 
Shomrat et al 
(1994) 

Arab  
(25) PCR 86 8 52 Not 

included 
Haider et al 
(1998) 

Turkey  
(57) PCR 60 31 69 Intron 44 Dincer et al  

(1996) 
North India 
(121) PCR 73 15.9 81.8 Intron 44 Singh et al 

(1997) 
India 
(160) PCR 64.4 30.3 70 Not 

included 
Banerjee et al 
(1997) 

South India 
(66) PCR 62.1 22 78 Intron 44 Mallikarjuna 

(2003) 
  

Upon subsequent analysis, the distribution of large lesions by CINRG sites also appears 

to vary geographically. Figure 10 presents the percentage of large lesions in CINRG study 
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participants from sites located in the United States and Figure 11 presents those found in CINRG 

study participants from International sites.  

 
Figure 10:  Representation of Large Lesions in CINRG Sites from the United States 
Each bar represents the percent of individuals by CINRG site in the United States with large lesions. For 
example, the site in St. Louis has 10 study participants (71%) with large lesions.  
 

 
Figure 11:  Representation of Large Lesions in International CINRG Sites  
Each bar represents the percent of individuals by CINRG site in countries outside of the United States with 
large lesions. For example, the site in Goteborg, Sweden has 12 study participants (63%) with large lesions. 
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Figures 10 and 11 illustrate the range of percentage of large lesions amongst the 20 

different CINRG sites. Although there is a sample size bias for some sites, with less than 5 

CINRG study participants having had DNA testing (sites include: Houston N=4, Minneapolis 

N=1, Richmond N=3, Buenos Aires N=4), the percentage of large lesions ranges from 50%, for 

the site in Jerusalem, to 100% for the sites in Houston, Minneapolis, Richmond, and Sydney. 

This additional finding may strengthen the argument regarding ethnic or regional difference in 

predisposition to dystrophin mutations.       

6.2.4 Strengths and Limitations of the Different Databases 

The Leiden database is the largest DMD database. As of March 5, 2009, a total of 16,630 

variants (large and small) had been entered that include 3,077 unique variants. The Leiden 

database is also the only database to collect information on non-pathogenic variants. As of 

March 5, 2009, the Leiden database included 684 variants with no known phenotype and 102 

variants with unknown pathogenicity. Neither of these groups of variants was included in this 

investigation. With the increased use of complete gene sequencing assays, the reporting of these 

types of variants will help differentiate DMD-causing genetic alterations from those that are not 

associated with disease. The Leiden database is accessible to any individual and allows scientists 

to report their individual mutation findings.  

The French UMD-DMD database contains detailed mutation information for 2,046 male 

patients and 38 manifesting carrier females with a genetic diagnosis of dystrophinopathy. The 

UMD-DMD is the first country-specific database. By having a more controlled environment, the 

UMD-DMD database creates a national resource that may allow researchers to better determine 

the prevalence and incidence of the disease. The UMD-DMD database is also planning to expand 
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by including clinical data. This database creates a model for other countries and may lead to 

international DMD patient registries.  

The Leiden and UMD-DMD databases are the two datasets with the largest sample size 

in this project. To test their comparability, a chi-square test was performed using the abstracted 

data on large and small lesions from Tables 8 and 9, in the Results Section 5.1. The chi-square 

value obtained was 3.049 with a p-value of 0.08. In this exploratory analysis, the null hypothesis 

is not rejected and therefore these two databases are statistically similar. This illustrates the 

importance of the sample size as well as the data content that is contained in these databases. 

They both include information on subjects with identifiable mutations; and, in the case of the 

Leiden database, their data is especially geared to report small or less common mutations.   

The DuchenneConnect registry is the first comprehensive registry in the United States for 

patients and families with DMD. This type of database bridges the gap between the patient 

community and scientists. DuchenneConnect allows for patients and families to report their 

unique experiences with the disease. Demonstrating that the information from patient/parent 

reporting is comparable to a controlled clinical trials group dataset highlights the importance of 

patient/parent reporting and the strength and apparent accuracy of that data. DuchenneConnect is 

able to include phenotype information as well as quality of life assessments. 

There are particular limitations that can be addressed for both the Leiden and UMD-

DMD databases as well as the DuchenneConnect registry. Although all three sources are 

managed by central curators, the curation process is critical for maintaining high-quality data 

(Tuffery-Giraud, Beroud et al. 2009).  In the Leiden database, Dr. Johan den Dunnen is in charge 

of the two databases (large and small lesions). The disclaimer states:  ‘The allelic variants listed 

here are a collection of those we have found in the literature and which were submitted directly 
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to the database. When you notice that we have missed allelic variants or when you detect 

mistakes, please let us know.’ As of March 4, 2009, the website listed a total of 11,588 reported 

variants. It is therefore possible that some of the reported variants may be duplicated or entered 

with errors that have not yet been identified.  

Additionally, because of the manner in which the Leiden database lists its variants, a 

possible limitation associated with the abstraction of the data was that a separate search of each 

category of mutation had to be carried out. The assessment of nonsense and missense mutations 

had to be performed by examining at the protein product described. Therefore, errors leading to 

some differences in mutation category assignments may have occurred. This could be avoided 

had the data been presented or reported directly in the Leiden database as it was in the UMD-

DMD database. This would have avoided possible interpretation errors by this author.  

For the UMD-DMD database, the curation guidelines are more rigorous. Drs. Leturcq 

and Tuffery-Giraud are the two curators in charge of quality control for the database. They have 

established specific guidelines; and also control, to some extent, the diagnostic testing methods 

used to ascertain the DNA lesions presented in their patients (Tuffery-Giraud, Beroud et al. 

2009). All of the diagnostic data entered into the UMD-DMD database comes from 14 specific 

molecular laboratories that are likely to follow similar testing guidelines.  

6.3 GENOTYPE-PHENOTYPE CORRELATIONS 

The goal of the third aim was to compare the strength data in two particular cohorts of CINRG 

study participants to their mutation type. As discussed in Section 3.4, the majority of genotype-

phenotype correlation studies have been focused on BMD vs. DMD and studying the effect on 
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the dystrophin reading-frame (Monaco, Bertelson et al. 1988; Baumbach, Chamberlain et al. 

1989; Gillard, Chamberlain et al. 1989; Muntoni, Torelli et al. 2003). In this study, an analysis of 

two defined age cohorts was examined to evaluate strength measures of DMD patients with large 

and small dystrophin gene mutations. The hypothesis was that CINRG study participants with 

large or small lesions will have different strength data measurements.  

In the first cohort (age 7 through 9 years, as set out in the demographic data presented in 

Table 11), two ANOVA tests and a linear regression test were performed to look for significant 

differences between the time to walk 10 meters and mutation type. The analyses did not show 

any significant difference between the time to walk 10 meters and mutation type; with p-values 

for the ANOVA and linear regression of 0.580 and 0.774, respectively. In the second cohort (age 

10 through 20 years, as set out in the demographic data presented in Table 12), a binary logistic 

regression was performed to look for significant differences between ambulation status and 

mutation type. The analysis did not show any significant difference between the ambulation 

status and mutation type; with a p-value of 0.12.  

There were many limitations to the data from both cohorts that likely contributed to the 

results observed. In the ambulant cohort, the number of participants with small lesions was much 

smaller compared to those with large lesions, 12% vs. 88%. A total of five participants were 

excluded from the ambulant cohort, as they were unable to perform the 10-meter walk test. Three 

of these participants were reported to have never used corticosteroids. Most CINRG study 

participants (90%) reported the use of corticosteroids. Corticosteroid use may present a 

confounding factor as the use of corticosteroids is the only medication to date that has been 

shown to slow the decline in strength in DMD (Drachman, Toyka et al. 1974; Brooke, Fenichel 

et al. 1987; Mendell, Moxley et al. 1989; Fenichel, Florence et al. 1991; Griggs, Moxley et al. 
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1991). In order to take into account the use of corticosteroids, a separate ANOVA test was 

performed on the ambulant cohort to compare the effect of corticosteroid use on the time to walk 

10 meters.  

In this particular cohort of participants, aged 7 through 9 years old, the use of 

corticosteroids was not found to have a statistically significant effect on the time to walk 10 

meters (p = 0.671). This result was also confirmed by including corticosteroids as an independent 

variable in the linear regression analysis (p = 0.681).  

Similar limitations with the data should be noted in the second mixed cohort. The 

proportion of those with small lesions was much smaller as compared to those with large lesions 

12% vs. 88%. The majority of CINRG study participants reported the use of corticosteroids 

(64%). In this broader aged cohort (ages 10 through 20), the use of corticosteroids was shown to 

have a positive effect on the ambulation status with a p-value of 0.002. Due to the mixed age in 

this particular cohort, ranging from 10 to 20 years, age was also included in the binary logistic 

regression as a covariate. Age was also found to have a significant effect, p-value <0.001, on the 

ambulation status, which is expected due to the progressive nature of the disease (Engel 2004).  

A recent publication from a research group in France explored the clinical heterogeneity 

of the presentation of DMD symptoms (Desguerre, Christov et al. 2009).  Their study included 

75 DMD patients with comprehensive clinical data, who had been evaluated longitudinally by 

the same team over a mean follow-up period of greater than 10 years. Their findings clearly 

indicated the presence of clinical heterogeneity among DMD patients. They report four 

distinctive clusters based on intellectual and motor outcomes. The four groups proposed are 

presented in Table 14.  
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Table 14:  Four Distinctive DMD Clinical Subsets (Desguerre, Christov et al. 2009) 

Clinical Clusters Clinical description and selective indicators for patient 

classification 

A: Early infantile DMD Very poor intellectual and motor outcome 

Indicators: psychomotor delay as first symptom,  clinical 

onset < 2 years + mental retardation 

B: Classical DMD Intermediate intellectual and poor motor outcome 

Indicator: no clear indicator 

C: Moderate pure motor DMD Normal intelligence and delayed motor impairment 

Indicators: loss of ambulation >11 years, lower limb manual 

muscle score > 6 at age 8 + normal or borderline cognitive 

status 

D: Severe pure motor DMD Normal intelligence and poor motor outcome 

Indicator: no clear indicator, IQ may be used to differentiate 

between cluster B and D.  

 

The researchers also performed a genotype-phenotype correlation by using the particular 

clusters defined in Table 14. They found that clinical classification partially correlated with 

mutations before exon 30. The proportion of patients with a mutation upstream to exon 30 

increased from group A to D, with group A: 18%, group B: 29%, group C: 40%, and group D: 

55%. The frequency of mutations before exon 30 correlated well (p<0.003) with IQ 

measurements. They did not find any correlation with motor parameters (Desguerre, Christov et 

al. 2009). This study illustrates the importance of looking at the location of the mutation 

(proximal vs. distal) as opposed to the particular mutation type (large vs. small) as well as the 

collection and report of clinically relevant data on DMD symptoms.  

Their study also suggests that the correlation of motor parameters with mutation type 

may be difficult to assess. Even in a very controlled setting, the authors were not able to observe 
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any significant correlation between genotype and phenotype for changes in muscle strength. The 

study used specific diagnostic confirmation protocols that included both DNA and muscle biopsy 

testing. The same medical team carried out consistent clinical assessments and controlled 

corticosteroid use by excluding corticosteroid users. However, their report does raise another 

possible explanation for the observable clinical heterogeneity in DMD patients. Patients in 

cluster A had the most severe striated muscle involvement with the poorest motor, respiratory 

and cardiac outcome. Patients in cluster C had better muscular status than any other cluster 

(Desguerre, Christov et al. 2009). One could therefore speculate that there may be a different 

phenotype effect of DMD mutations on different muscle groups. Cluster A includes the patients 

with the earliest onset of cardiac dysfunction. This research raises the question, could different 

genotypes affect the smooth, skeletal, and cardiac muscles differently, or at different rates?     

Due to the design of the different datasets used in this project, the genotype-phenotype 

analysis could only be performed in the CINRG dataset and, furthermore, in only two small 

subsets of data and using only information on muscle strength. Although the Leiden database 

contains some information on phenotype (BMD vs. DMD), it is not yet set up to report clinical 

classifications of motor, respiratory and cardiac involvement or cognitive issues. The recent 

publication of the UMD-DMD database (Tuffery-Giraud, Beroud et al. 2009) does state that they 

are in a developmental stage for clinical data collection. DuchenneConnect is currently the only 

other dataset in this project that includes some phenotype-related information. The 

DuchenneConnect registry includes general questions on age of onset of symptoms, age of 

diagnosis, age of ambulation loss, and use of ACE inhibitor therapy for cardiac involvement. 

Due to the format of the DuchenneConnect report, a genotype-phenotype analysis was not 

feasible.  
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The genotype-phenotype analysis in the study participants from three CINRG studies was 

also further limited by the heterogeneity of the large lesions and multiple confounding factors of 

the data. As this CINRG data largely represents natural history data, it includes data on CINRG 

study participants that may be on additional pharmaceutical interventions (e.g. nutritional 

supplements, ACE inhibitors), participants with different physical therapy interventions, and 

very different environments due to the diversity of CINRG sites.  

Finally, genotype-phenotype studies may be limited by the observation that apparently 

identical exonic deletions are likely to have different genomic breakpoints (Muntoni, Torelli et 

al. 2003). Genotypes may therefore be different even within patients with the same exon deletion 

due to the theory of different intron splicing. Gene-gene interactions have not yet been proposed 

as an additional limitation to these types of studies. However, with the elucidation of the human 

genome project, it is likely that these types of interactions will play a role in complex diseases, 

such as DMD (Namkung, Elston et al. 2009).   

6.4 FURTHER RESEARCH OPPORTUNITIES 

Given the results and observations of this project, many opportunities for future research exist. It 

would be useful to expand the CINRG dataset and create a database that could be accessible to 

the public. It would be beneficial to create a central repository that could merge the information 

from all the different databases and registries that are forming around the world. The creation of 

the Treat-NMD group (Treat-NMD) enhances the possibility of database consolidation in 

Europe. In addition, it would be advantageous for the various individuals currently involved with 

the databases investigated in this study to explore how they might harmonize various aspects of 
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their data collection, such as DNA testing methods used for confirmation of the DMD diagnosis. 

This group of curators and representative data submitters would be an appropriate group to 

discuss studies of the DNA testing tools used to confirm DMD diagnosis and the clinical 

parameters that might be reported to them to enable better genotype/phenotype correlations. 

While maintaining their independence and unique attributes, improved harmonization would 

improve the applicability of their information in many ways.  

In order to improve and expand the CINRG dataset and create interactions with other 

networks, databases, and registries, it would be useful to have someone in CINRG who would be 

responsible for central data curation. 

Characterizing the different genotypes has become critical in this era of personalized 

medicine. This study suggests that more detailed genetic testing may be recommended for 

individuals without identifiable mutations as these results may allow them to be assigned to and 

participate in more specific clinical trials. For example, identification of the genetic mutation 

type carried by a DMD patient is critical for new trials, such as Phase 2a Extension Study of 

PTC124 in DMD which specifically targets DMD patients with nonsense mutations or Safety and 

Efficacy Study of Antisense Oligonucleotides in DMD, which specifically targets DMD patients 

with large deletions that could alter the reading-frame by skipping a particular exon of interest 

(ClinicalTrials.gov). As new, more genetically-based treatments become available, detailed data 

on mutation type will be invaluable to physicians and counselors in order to provide relevant 

information to patient families.  

The study performed by Desguerre emphasizes the importance of the conduct and report 

of consistent clinical assessments (Desguerre, Christov et al. 2009). In order to further study 

genotype-phenotype correlations, it is critical to establish gold-standard clinical assessment tools 
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that can be applied to multiple age groups. The CINRG network is currently the only research 

group to use the CQMS tool. Furthermore, it is essential to establish practice parameter 

guidelines for the diagnostic methodologies. Tools to assess cardiac, respiratory, nutritional, and 

cognitive parameters are needed. The addition of such data might enable further investigations of 

the genotype effects on the different muscle groups and onset of disease specific symptoms 

(specifically pulmonary and cardiac).  
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7.0  CONCLUSION 

This investigation compared the DMD-causing mutations in the dystrophin gene of patients from 

several CINRG clinical studies with those abstracted from the Leiden and UMD-DMD mutation 

databases. The distribution of dystrophin mutations within the CINRG dataset was found to be 

similar to the Leiden and UMD-DMD databases.  

In addition, the strength data in two particular cohorts of CINRG study participants were 

compared to their mutation type. With no current cure for DMD, corticosteroids are the only 

pharmacological intervention that is able to slow the decline of strength and function in DMD 

patients. Until now, the beneficial effects of corticosteroids have exclusively been demonstrated 

in the setting of controlled clinical trials. While this study was not able to draw any conclusions 

on the effect of specific dystrophin mutation types reported within the CINRG dataset and 

muscle strength, this is the first report that indicates that the use of corticosteroids improves the 

length of ambulation in a non-controlled study environment.  

The results of this study demonstrate that harmonization of means by which mutation 

data is collected from DMD patients and subsequently reported has the potential to benefit 

clinical trials and ultimately enhance pairing of eligible patients to specific molecular-based 

treatments. Some of the limitations encountered while analyzing the data and interpreting the 

results of this study point to the need to develop mutually-agreed standards for diagnosis and 

assessment of the clinical signs of DMD in patients. 
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Through the interaction of international academic research groups like CINRG and 

curators of mutation databases and patient registries, a global repository of genetic and clinical 

information can be created. This will lay the ground for larger genotype/phenotype correlations 

and help us further understand many of the unanswered questions about the natural history of 

Duchenne muscular dystrophy.  
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APPENDIX A: DYSTROPHIN GENE SEQUENCE 

exon 01                                                 tcct       -241 
 
 .         .         .         .         .         .          
 ggcatcagttactgtgttgactcactcagtgttgggatcactcactttccccctacagga       -181 
 
 .         .         .         .         .         .          
 ctcagatctgggaggcaattaccttcggagaaaaacgaataggaaaaactgaagtgttac       -121 
 
 .         .         .         .         .         .          
 tttttttaaagctgctgaagtttgttggtttctcattgtttttaagcctactggagcaat       -61 
 
 .         .         .         .         .         .          
 aaagtttgaagaacttttaccaggttttttttatcgctgccttgatatacacttttcaaa       -1 
 
          .         .         .  | 2       .         .         . 
 ATGCTTTGGTGGGAAGAAGTAGAGGACTGTT | ATGAAAGAGAAGATGTTCAAAAGAAAACA     60 
 M  L  W  W  E  E  V  E  D  C  Y |   E  R  E  D  V  Q  K  K  T       20 
 
          .         .         .    | 3     .         .         . 
 TTCACAAAATGGGTAAATGCACAATTTTCTAAG | TTTGGGAAGCAGCATATTGAGAACCTC     120 
 F  T  K  W  V  N  A  Q  F  S  K   | F  G  K  Q  H  I  E  N  L       40 
 
          .         .         .         .         .         . 
 TTCAGTGACCTACAGGATGGGAGGCGCCTCCTAGACCTCCTCGAAGGCCTGACAGGGCAA        180 
 F  S  D  L  Q  D  G  R  R  L  L  D  L  L  E  G  L  T  G  Q          60 
 
        | 4  .         .         .         .         .         . 
 AAACTG | CCAAAAGAAAAAGGATCCACAAGAGTTCATGCCCTGAACAATGTCAACAAGGCA     240 
 K  L   | P  K  E  K  G  S  T  R  V  H  A  L  N  N  V  N  K  A       80 
 
          .         .     | 5    .         .         .         . 
 CTGCGGGTTTTGCAGAACAATAAT | GTTGATTTAGTGAATATTGGAAGTACTGACATCGTA     300 
 L  R  V  L  Q  N  N  N   | V  D  L  V  N  I  G  S  T  D  I  V       100 
 
          .         .         .         .         .        | 6 . 
 GATGGAAATCATAAACTGACTCTTGGTTTGATTTGGAATATAATCCTCCACTGGCAG | GTC     360 
 D  G  N  H  K  L  T  L  G  L  I  W  N  I  I  L  H  W  Q   | V       120 
 
          .         .         .         .         .         . 
 AAAAATGTAATGAAAAATATCATGGCTGGATTGCAACAAACCAACAGTGAAAAGATTCTC        420 
 K  N  V  M  K  N  I  M  A  G  L  Q  Q  T  N  S  E  K  I  L          140 
 
          .         .         .         .         .         . 
 CTGAGCTGGGTCCGACAATCAACTCGTAATTATCCACAGGTTAATGTAATCAACTTCACC        480 
 L  S  W  V  R  Q  S  T  R  N  Y  P  Q  V  N  V  I  N  F  T          160 
 
          .         .         .         .         . | 7        . 
 ACCAGCTGGTCTGATGGCCTGGCTTTGAATGCTCTCATCCATAGTCATAG | GCCAGACCTA     540 
 T  S  W  S  D  G  L  A  L  N  A  L  I  H  S  H  R  |  P  D  L       180 
 
          .         .         .         .         .         . 
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 TTTGACTGGAATAGTGTGGTTTGCCAGCAGTCAGCCACACAACGACTGGAACATGCATTC        600 
 F  D  W  N  S  V  V  C  Q  Q  S  A  T  Q  R  L  E  H  A  F          200 
 
          .         .         .         .          | 8         . 
 AACATCGCCAGATATCAATTAGGCATAGAGAAACTACTCGATCCTGAAG | ATGTTGATACC     660 
 N  I  A  R  Y  Q  L  G  I  E  K  L  L  D  P  E  D |   V  D  T       220 
 
          .         .         .         .         .         . 
 ACCTATCCAGATAAGAAGTCCATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCT        720 
 T  Y  P  D  K  K  S  I  L  M  Y  I  T  S  L  F  Q  V  L  P          240 
 
          .         .         .         .         .         . 
 CAACAAGTGAGCATTGAAGCCATCCAGGAAGTGGAAATGTTGCCAAGGCCACCTAAAGTG        780 
 Q  Q  V  S  I  E  A  I  Q  E  V  E  M  L  P  R  P  P  K  V          260 
 
          .         .         .         .         .  | 9       . 
 ACTAAAGAAGAACATTTTCAGTTACATCATCAAATGCACTATTCTCAACAG | ATCACGGTC     840 
 T  K  E  E  H  F  Q  L  H  H  Q  M  H  Y  S  Q  Q   | I  T  V       280 
 
          .         .         .         .         .         . 
 AGTCTAGCACAGGGATATGAGAGAACTTCTTCCCCTAAGCCTCGATTCAAGAGCTATGCC        900 
 S  L  A  Q  G  Y  E  R  T  S  S  P  K  P  R  F  K  S  Y  A          300 
 
          .         .         .         .         .         . 
 TACACACAGGCTGCTTATGTCACCACCTCTGACCCTACACGGAGCCCATTTCCTTCACAG        960 
 Y  T  Q  A  A  Y  V  T  T  S  D  P  T  R  S  P  F  P  S  Q          320 
 
  | 10       .         .         .         .         .         . 
  | CATTTGGAAGCTCCTGAAGACAAGTCATTTGGCAGTTCATTGATGGAGAGTGAAGTAAAC     1020 
  | H  L  E  A  P  E  D  K  S  F  G  S  S  L  M  E  S  E  V  N       340 
 
          .         .         .         .         .         . 
 CTGGACCGTTATCAAACAGCTTTAGAAGAAGTATTATCGTGGCTTCTTTCTGCTGAGGAC        1080 
 L  D  R  Y  Q  T  A  L  E  E  V  L  S  W  L  L  S  A  E  D          360 
 
          .         .         .         .         .         . 
 ACATTGCAAGCACAAGGAGAGATTTCTAATGATGTGGAAGTGGTGAAAGACCAGTTTCAT        1140 
 T  L  Q  A  Q  G  E  I  S  N  D  V  E  V  V  K  D  Q  F  H          380 
 
           | 11        .         .         .         .         . 
 ACTCATGAG | GGGTACATGATGGATTTGACAGCCCATCAGGGCCGGGTTGGTAATATTCTA     1200 
 T  H  E   | G  Y  M  M  D  L  T  A  H  Q  G  R  V  G  N  I  L       400 
 
          .         .         .         .         .         . 
 CAATTGGGAAGTAAGCTGATTGGAACAGGAAAATTATCAGAAGATGAAGAAACTGAAGTA        1260 
 Q  L  G  S  K  L  I  G  T  G  K  L  S  E  D  E  E  T  E  V          420 
 
          .         .         .         .         .         . 
 CAAGAGCAGATGAATCTCCTAAATTCAAGATGGGAATGCCTCAGGGTAGCTAGCATGGAA        1320 
 Q  E  Q  M  N  L  L  N  S  R  W  E  C  L  R  V  A  S  M  E          440 
 
          .  | 12      .         .         .         .         . 
 AAACAAAGCAA | TTTACATAGAGTTTTAATGGATCTCCAGAATCAGAAACTGAAAGAGTTG     1380 
 K  Q  S  N  |  L  H  R  V  L  M  D  L  Q  N  Q  K  L  K  E  L       460 
 
          .         .         .         .         .         . 
 AATGACTGGCTAACAAAAACAGAAGAAAGAACAAGGAAAATGGAGGAAGAGCCTCTTGGA        1440 
 N  D  W  L  T  K  T  E  E  R  T  R  K  M  E  E  E  P  L  G          480 
 
          .         .         .         .   | 13     .         . 
 CCTGATCTTGAAGACCTAAAACGCCAAGTACAACAACATAAG | GTGCTTCAAGAAGATCTA     1500 
 P  D  L  E  D  L  K  R  Q  V  Q  Q  H  K   | V  L  Q  E  D  L       500 
 
          .         .         .         .         .         . 
 GAACAAGAACAAGTCAGGGTCAATTCTCTCACTCACATGGTGGTGGTAGTTGATGAATCT        1560 
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 E  Q  E  Q  V  R  V  N  S  L  T  H  M  V  V  V  V  D  E  S          520 
 
          .         .         .         .   | 14     .         . 
 AGTGGAGATCACGCAACTGCTGCTTTGGAAGAACAACTTAAG | GTATTGGGAGATCGATGG     1620 
 S  G  D  H  A  T  A  A  L  E  E  Q  L  K   | V  L  G  D  R  W       540 
 
          .         .         .         .         .         . 
 GCAAACATCTGTAGATGGACAGAAGACCGCTGGGTTCTTTTACAAGACATCCTTCTCAAA        1680 
 A  N  I  C  R  W  T  E  D  R  W  V  L  L  Q  D  I  L  L  K          560 
 
          .         .     | 15   .         .         .         . 
 TGGCAACGTCTTACTGAAGAACAG | TGCCTTTTTAGTGCATGGCTTTCAGAAAAAGAAGAT     1740 
 W  Q  R  L  T  E  E  Q   | C  L  F  S  A  W  L  S  E  K  E  D       580 
 
          .         .         .         .         .         . 
 GCAGTGAACAAGATTCACACAACTGGCTTTAAAGATCAAAATGAAATGTTATCAAGTCTT        1800 
 A  V  N  K  I  H  T  T  G  F  K  D  Q  N  E  M  L  S  S  L          600 
 
          .   | 16     .         .         .         .         . 
 CAAAAACTGGCC | GTTTTAAAAGCGGATCTAGAAAAGAAAAAGCAATCCATGGGCAAACTG     1860 
 Q  K  L  A   | V  L  K  A  D  L  E  K  K  K  Q  S  M  G  K  L       620 
 
          .         .         .         .         .         . 
 TATTCACTCAAACAAGATCTTCTTTCAACACTGAAGAATAAGTCAGTGACCCAGAAGACG        1920 
 Y  S  L  K  Q  D  L  L  S  T  L  K  N  K  S  V  T  Q  K  T          640 
 
          .         .         .         .         .         . 
 GAAGCATGGCTGGATAACTTTGCCCGGTGTTGGGATAATTTAGTCCAAAAACTTGAAAAG        1980 
 E  A  W  L  D  N  F  A  R  C  W  D  N  L  V  Q  K  L  E  K          660 
 
          .   | 17     .         .         .         .         . 
 AGTACAGCACAG | ATTTCACAGGCTGTCACCACCACTCAGCCATCACTAACACAGACAACT     2040 
 S  T  A  Q   | I  S  Q  A  V  T  T  T  Q  P  S  L  T  Q  T  T       680 
 
          .         .         .         .         .         . 
 GTAATGGAAACAGTAACTACGGTGACCACAAGGGAACAGATCCTGGTAAAGCATGCTCAA        2100 
 V  M  E  T  V  T  T  V  T  T  R  E  Q  I  L  V  K  H  A  Q          700 
 
          .         .         .         .         .         . 
 GAGGAACTTCCACCACCACCTCCCCAAAAGAAGAGGCAGATTACTGTGGATTCTGAAATT        2160 
 E  E  L  P  P  P  P  P  Q  K  K  R  Q  I  T  V  D  S  E  I          720 
 
          | 18         .         .         .         .         . 
 AGGAAAAG | GTTGGATGTTGATATAACTGAACTTCACAGCTGGATTACTCGCTCAGAAGCT     2220 
 R  K  R  |  L  D  V  D  I  T  E  L  H  S  W  I  T  R  S  E  A       740 
 
          .         .         .         .         .         . 
 GTGTTGCAGAGTCCTGAATTTGCAATCTTTCGGAAGGAAGGCAACTTCTCAGACTTAAAA        2280 
 V  L  Q  S  P  E  F  A  I  F  R  K  E  G  N  F  S  D  L  K          760 
 
          .   | 19     .         .         .         .         . 
 GAAAAAGTCAAT | GCCATAGAGCGAGAAAAAGCTGAGAAGTTCAGAAAACTGCAAGATGCC     2340 
 E  K  V  N   | A  I  E  R  E  K  A  E  K  F  R  K  L  Q  D  A       780 
 
          .         .         .         . | 20       .         . 
 AGCAGATCAGCTCAGGCCCTGGTGGAACAGATGGTGAATG | AGGGTGTTAATGCAGATAGC     2400 
 S  R  S  A  Q  A  L  V  E  Q  M  V  N  E |   G  V  N  A  D  S       800 
 
          .         .         .         .         .         . 
 ATCAAACAAGCCTCAGAACAACTGAACAGCCGGTGGATCGAATTCTGCCAGTTGCTAAGT        2460 
 I  K  Q  A  S  E  Q  L  N  S  R  W  I  E  F  C  Q  L  L  S          820 
 
          .         .         .         .         .         . 
 GAGAGACTTAACTGGCTGGAGTATCAGAACAACATCATCGCTTTCTATAATCAGCTACAA        2520 
 E  R  L  N  W  L  E  Y  Q  N  N  I  I  A  F  Y  N  Q  L  Q          840 
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          .         .         .         .         .         . 
 CAATTGGAGCAGATGACAACTACTGCTGAAAACTGGTTGAAAATCCAACCCACCACCCCA        2580 
 Q  L  E  Q  M  T  T  T  A  E  N  W  L  K  I  Q  P  T  T  P          860 
 
          .         .         .         .   | 21     .         . 
 TCAGAGCCAACAGCAATTAAAAGTCAGTTAAAAATTTGTAAG | GATGAAGTCAACCGGCTA     2640 
 S  E  P  T  A  I  K  S  Q  L  K  I  C  K   | D  E  V  N  R  L       880 
 
          .         .         .         .         .         . 
 TCAGGTCTTCAACCTCAAATTGAACGATTAAAAATTCAAAGCATAGCCCTGAAAGAGAAA        2700 
 S  G  L  Q  P  Q  I  E  R  L  K  I  Q  S  I  A  L  K  E  K          900 
 
          .         .         .         .         .         . 
 GGACAAGGACCCATGTTCCTGGATGCAGACTTTGTGGCCTTTACAAATCATTTTAAGCAA        2760 
 G  Q  G  P  M  F  L  D  A  D  F  V  A  F  T  N  H  F  K  Q          920 
 
          .         .         .         .    | 22    .         . 
 GTCTTTTCTGATGTGCAGGCCAGAGAGAAAGAGCTACAGACAA | TTTTTGACACTTTGCCA     2820 
 V  F  S  D  V  Q  A  R  E  K  E  L  Q  T  I |   F  D  T  L  P       940 
 
          .         .         .         .         .         . 
 CCAATGCGCTATCAGGAGACCATGAGTGCCATCAGGACATGGGTCCAGCAGTCAGAAACC        2880 
 P  M  R  Y  Q  E  T  M  S  A  I  R  T  W  V  Q  Q  S  E  T          960 
 
          .         .         .         .         .         . 
 AAACTCTCCATACCTCAACTTAGTGTCACCGACTATGAAATCATGGAGCAGAGACTCGGG        2940 
 K  L  S  I  P  Q  L  S  V  T  D  Y  E  I  M  E  Q  R  L  G          980 
 
           | 23        .         .         .         .         . 
 GAATTGCAG | GCTTTACAAAGTTCTCTGCAAGAGCAACAAAGTGGCCTATACTATCTCAGC     3000 
 E  L  Q   | A  L  Q  S  S  L  Q  E  Q  Q  S  G  L  Y  Y  L  S       1000 
 
          .         .         .         .         .         . 
 ACCACTGTGAAAGAGATGTCGAAGAAAGCGCCCTCTGAAATTAGCCGGAAATATCAATCA        3060 
 T  T  V  K  E  M  S  K  K  A  P  S  E  I  S  R  K  Y  Q  S          1020 
 
          .         .         .         .         .         . 
 GAATTTGAAGAAATTGAGGGACGCTGGAAGAAGCTCTCCTCCCAGCTGGTTGAGCATTGT        3120 
 E  F  E  E  I  E  G  R  W  K  K  L  S  S  Q  L  V  E  H  C          1040 
 
          .         .         .         .   | 24     .         . 
 CAAAAGCTAGAGGAGCAAATGAATAAACTCCGAAAAATTCAG | AATCACATACAAACCCTG     3180 
 Q  K  L  E  E  Q  M  N  K  L  R  K  I  Q   | N  H  I  Q  T  L       1060 
 
          .         .         .         .         .         . 
 AAGAAATGGATGGCTGAAGTTGATGTTTTTCTGAAGGAGGAATGGCCTGCCCTTGGGGAT        3240 
 K  K  W  M  A  E  V  D  V  F  L  K  E  E  W  P  A  L  G  D          1080 
 
          .         .         .       | 25 .         .         . 
 TCAGAAATTCTAAAAAAGCAGCTGAAACAGTGCAGA | CTTTTAGTCAGTGATATTCAGACA     3300 
 S  E  I  L  K  K  Q  L  K  Q  C  R   | L  L  V  S  D  I  Q  T       1100 
 
          .         .         .         .         .         . 
 ATTCAGCCCAGTCTAAACAGTGTCAATGAAGGTGGGCAGAAGATAAAGAATGAAGCAGAG        3360 
 I  Q  P  S  L  N  S  V  N  E  G  G  Q  K  I  K  N  E  A  E          1120 
 
          .         .         .         .         .         . 
 CCAGAGTTTGCTTCGAGACTTGAGACAGAACTCAAAGAACTTAACACTCAGTGGGATCAC        3420 
 P  E  F  A  S  R  L  E  T  E  L  K  E  L  N  T  Q  W  D  H          1140 
 
          .   | 26     .         .         .         .         . 
 ATGTGCCAACAG | GTCTATGCCAGAAAGGAGGCCTTGAAGGGAGGTTTGGAGAAAACTGTA     3480 
 M  C  Q  Q   | V  Y  A  R  K  E  A  L  K  G  G  L  E  K  T  V       1160 
 
          .         .         .         .         .         . 
 AGCCTCCAGAAAGATCTATCAGAGATGCACGAATGGATGACACAAGCTGAAGAAGAGTAT        3540 
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 S  L  Q  K  D  L  S  E  M  H  E  W  M  T  Q  A  E  E  E  Y          1180 
 
          .         .         .         .         .         . 
 CTTGAGAGAGATTTTGAATATAAAACTCCAGATGAATTACAGAAAGCAGTTGAAGAGATG        3600 
 L  E  R  D  F  E  Y  K  T  P  D  E  L  Q  K  A  V  E  E  M          1200 
 
     | 27    .         .         .         .         .         . 
 AAG | AGAGCTAAAGAAGAGGCCCAACAAAAAGAAGCGAAAGTGAAACTCCTTACTGAGTCT     3660 
 K   | R  A  K  E  E  A  Q  Q  K  E  A  K  V  K  L  L  T  E  S       1220 
 
          .         .         .         .         .         . 
 GTAAATAGTGTCATAGCTCAAGCTCCACCTGTAGCACAAGAGGCCTTAAAAAAGGAACTT        3720 
 V  N  S  V  I  A  Q  A  P  P  V  A  Q  E  A  L  K  K  E  L          1240 
 
          .         .         .         .         .         . 
 GAAACTCTAACCACCAACTACCAGTGGCTCTGCACTAGGCTGAATGGGAAATGCAAGACT        3780 
 E  T  L  T  T  N  Y  Q  W  L  C  T  R  L  N  G  K  C  K  T          1260 
 
        | 28 .         .         .         .         .         . 
 TTGGAA | GAAGTTTGGGCATGTTGGCATGAGTTATTGTCATACTTGGAGAAAGCAAACAAG     3840 
 L  E   | E  V  W  A  C  W  H  E  L  L  S  Y  L  E  K  A  N  K       1280 
 
          .         .         .         .         .         . 
 TGGCTAAATGAAGTAGAATTTAAACTTAAAACCACTGAAAACATTCCTGGCGGAGCTGAG        3900 
 W  L  N  E  V  E  F  K  L  K  T  T  E  N  I  P  G  G  A  E          1300 
 
          .         .  | 29      .         .         .         . 
 GAAATCTCTGAGGTGCTAGAT | TCACTTGAAAATTTGATGCGACATTCAGAGGATAACCCA     3960 
 E  I  S  E  V  L  D   | S  L  E  N  L  M  R  H  S  E  D  N  P       1320 
 
          .         .         .         .         .         . 
 AATCAGATTCGCATATTGGCACAGACCCTAACAGATGGCGGAGTCATGGATGAGCTAATC        4020 
 N  Q  I  R  I  L  A  Q  T  L  T  D  G  G  V  M  D  E  L  I          1340 
 
          .         .         .         .         .  | 30      . 
 AATGAGGAACTTGAGACATTTAATTCTCGTTGGAGGGAACTACATGAAGAG | GCTGTAAGG     4080 
 N  E  E  L  E  T  F  N  S  R  W  R  E  L  H  E  E   | A  V  R       1360 
 
          .         .         .         .         .         . 
 AGGCAAAAGTTGCTTGAACAGAGCATCCAGTCTGCCCAGGAGACTGAAAAATCCTTACAC        4140 
 R  Q  K  L  L  E  Q  S  I  Q  S  A  Q  E  T  E  K  S  L  H          1380 
 
          .         .         .         .         .         . 
 TTAATCCAGGAGTCCCTCACATTCATTGACAAGCAGTTGGCAGCTTATATTGCAGACAAG        4200 
 L  I  Q  E  S  L  T  F  I  D  K  Q  L  A  A  Y  I  A  D  K          1400 
 
          .         .         .    | 31    .         .         . 
 GTGGACGCAGCTCAAATGCCTCAGGAAGCCCAG | AAAATCCAATCTGATTTGACAAGTCAT     4260 
 V  D  A  A  Q  M  P  Q  E  A  Q   | K  I  Q  S  D  L  T  S  H       1420 
 
          .         .         .         .         .         . 
 GAGATCAGTTTAGAAGAAATGAAGAAACATAATCAGGGGAAGGAGGCTGCCCAAAGAGTC        4320 
 E  I  S  L  E  E  M  K  K  H  N  Q  G  K  E  A  A  Q  R  V          1440 
 
          .         .     | 32   .         .         .         . 
 CTGTCTCAGATTGATGTTGCACAG | AAAAAATTACAAGATGTCTCCATGAAGTTTCGATTA     4380 
 L  S  Q  I  D  V  A  Q   | K  K  L  Q  D  V  S  M  K  F  R  L       1460 
 
          .         .         .         .         .         . 
 TTCCAGAAACCAGCCAATTTTGAGCAGCGTCTACAAGAAAGTAAGATGATTTTAGATGAA        4440 
 F  Q  K  P  A  N  F  E  Q  R  L  Q  E  S  K  M  I  L  D  E          1480 
 
          .         .         .         .         .         . 
 GTGAAGATGCACTTGCCTGCATTGGAAACAAAGAGTGTGGAACAGGAAGTAGTACAGTCA        4500 
 V  K  M  H  L  P  A  L  E  T  K  S  V  E  Q  E  V  V  Q  S          1500 
 

http://www.dmd.nl/seqs/murefDMD_intron_26.html�
http://www.dmd.nl/seqs/murefDMD_intron_27.html�
http://www.dmd.nl/seqs/murefDMD_intron_28.html�
http://www.dmd.nl/seqs/murefDMD_intron_29.html�
http://www.dmd.nl/seqs/murefDMD_intron_30.html�
http://www.dmd.nl/seqs/murefDMD_intron_31.html�


 82 

          .         | 33         .         .         .         . 
 CAGCTAAATCATTGTGTG | AACTTGTATAAAAGTCTGAGTGAAGTGAAGTCTGAAGTGGAA     4560 
 Q  L  N  H  C  V   | N  L  Y  K  S  L  S  E  V  K  S  E  V  E       1520 
 
          .         .         .         .         .         . 
 ATGGTGATAAAGACTGGACGTCAGATTGTACAGAAAAAGCAGACGGAAAATCCCAAAGAA        4620 
 M  V  I  K  T  G  R  Q  I  V  Q  K  K  Q  T  E  N  P  K  E          1540 
 
          .         .         .         .         .     | 34   . 
 CTTGATGAAAGAGTAACAGCTTTGAAATTGCATTATAATGAGCTGGGAGCAAAG | GTAACA     4680 
 L  D  E  R  V  T  A  L  K  L  H  Y  N  E  L  G  A  K   | V  T       1560 
 
          .         .         .         .         .         . 
 GAAAGAAAGCAACAGTTGGAGAAATGCTTGAAATTGTCCCGTAAGATGCGAAAGGAAATG        4740 
 E  R  K  Q  Q  L  E  K  C  L  K  L  S  R  K  M  R  K  E  M          1580 
 
          .         .         .         .         .         . 
 AATGTCTTGACAGAATGGCTGGCAGCTACAGATATGGAATTGACAAAGAGATCAGCAGTT        4800 
 N  V  L  T  E  W  L  A  A  T  D  M  E  L  T  K  R  S  A  V          1600 
 
          .         .         .         .      | 35  .         . 
 GAAGGAATGCCTAGTAATTTGGATTCTGAAGTTGCCTGGGGAAAG | GCTACTCAAAAAGAG     4860 
 E  G  M  P  S  N  L  D  S  E  V  A  W  G  K   | A  T  Q  K  E       1620 
 
          .         .         .         .         .         . 
 ATTGAGAAACAGAAGGTGCACCTGAAGAGTATCACAGAGGTAGGAGAGGCCTTGAAAACA        4920 
 I  E  K  Q  K  V  H  L  K  S  I  T  E  V  G  E  A  L  K  T          1640 
 
          .         .         .         .         .         . 
 GTTTTGGGCAAGAAGGAGACGTTGGTGGAAGATAAACTCAGTCTTCTGAATAGTAACTGG        4980 
 V  L  G  K  K  E  T  L  V  E  D  K  L  S  L  L  N  S  N  W          1660 
 
          .         .         .         .      | 36  .         . 
 ATAGCTGTCACCTCCCGAGCAGAAGAGTGGTTAAATCTTTTGTTG | GAATACCAGAAACAC     5040 
 I  A  V  T  S  R  A  E  E  W  L  N  L  L  L   | E  Y  Q  K  H       1680 
 
          .         .         .         .         .         . 
 ATGGAAACTTTTGACCAGAATGTGGACCACATCACAAAGTGGATCATTCAGGCTGACACA        5100 
 M  E  T  F  D  Q  N  V  D  H  I  T  K  W  I  I  Q  A  D  T          1700 
 
          .         .         .         .         .     | 37   . 
 CTTTTGGATGAATCAGAGAAAAAGAAACCCCAGCAAAAAGAAGACGTGCTTAAG | CGTTTA     5160 
 L  L  D  E  S  E  K  K  K  P  Q  Q  K  E  D  V  L  K   | R  L       1720 
 
          .         .         .         .         .         . 
 AAGGCAGAACTGAATGACATACGCCCAAAGGTGGACTCTACACGTGACCAAGCAGCAAAC        5220 
 K  A  E  L  N  D  I  R  P  K  V  D  S  T  R  D  Q  A  A  N          1740 
 
          .         .         .         .         .         . 
 TTGATGGCAAACCGCGGTGACCACTGCAGGAAATTAGTAGAGCCCCAAATCTCAGAGCTC        5280 
 L  M  A  N  R  G  D  H  C  R  K  L  V  E  P  Q  I  S  E  L          1760 
 
          .         .         .         .      | 38  .         . 
 AACCATCGATTTGCAGCCATTTCACACAGAATTAAGACTGGAAAG | GCCTCCATTCCTTTG     5340 
 N  H  R  F  A  A  I  S  H  R  I  K  T  G  K   | A  S  I  P  L       1780 
 
          .         .         .         .         .         . 
 AAGGAATTGGAGCAGTTTAACTCAGATATACAAAAATTGCTTGAACCACTGGAGGCTGAA        5400 
 K  E  L  E  Q  F  N  S  D  I  Q  K  L  L  E  P  L  E  A  E          1800 
 
          .         .         .         .         | 39         . 
 ATTCAGCAGGGGGTGAATCTGAAAGAGGAAGACTTCAATAAAGATATG | AATGAAGACAAT     5460 
 I  Q  Q  G  V  N  L  K  E  E  D  F  N  K  D  M   | N  E  D  N       1820 
 
          .         .         .         .         .         . 
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 GAGGGTACTGTAAAAGAATTGTTGCAAAGAGGAGACAACTTACAACAAAGAATCACAGAT        5520 
 E  G  T  V  K  E  L  L  Q  R  G  D  N  L  Q  Q  R  I  T  D          1840 
 
          .         .         .         .         .         . 
 GAGAGAAAGCGAGAGGAAATAAAGATAAAACAGCAGCTGTTACAGACAAAACATAATGCT        5580 
 E  R  K  R  E  E  I  K  I  K  Q  Q  L  L  Q  T  K  H  N  A          1860 
 
        | 40 .         .         .         .         .         . 
 CTCAAG | GATTTGAGGTCTCAAAGAAGAAAAAAGGCTCTAGAAATTTCTCATCAGTGGTAT     5640 
 L  K   | D  L  R  S  Q  R  R  K  K  A  L  E  I  S  H  Q  W  Y       1880 
 
          .         .         .         .         .         . 
 CAGTACAAGAGGCAGGCTGATGATCTCCTGAAATGCTTGGATGACATTGAAAAAAAATTA        5700 
 Q  Y  K  R  Q  A  D  D  L  L  K  C  L  D  D  I  E  K  K  L          1900 
 
          .         .         .          | 41        .         . 
 GCCAGCCTACCTGAGCCCAGAGATGAAAGGAAAATAAAG | GAAATTGATCGGGAATTGCAG     5760 
 A  S  L  P  E  P  R  D  E  R  K  I  K   | E  I  D  R  E  L  Q       1920 
 
          .         .         .         .         .         . 
 AAGAAGAAAGAGGAGCTGAATGCAGTGCGTAGGCAAGCTGAGGGCTTGTCTGAGGATGGG        5820 
 K  K  K  E  E  L  N  A  V  R  R  Q  A  E  G  L  S  E  D  G          1940 
 
          .         .         .         .         .         . 
 GCCGCAATGGCAGTGGAGCCAACTCAGATCCAGCTCAGCAAGCGCTGGCGGGAAATTGAG        5880 
 A  A  M  A  V  E  P  T  Q  I  Q  L  S  K  R  W  R  E  I  E          1960 
 
          .         .         .         .   | 42     .         . 
 AGCAAATTTGCTCAGTTTCGAAGACTCAACTTTGCACAAATT | CACACTGTCCGTGAAGAA     5940 
 S  K  F  A  Q  F  R  R  L  N  F  A  Q  I   | H  T  V  R  E  E       1980 
 
          .         .         .         .         .         . 
 ACGATGATGGTGATGACTGAAGACATGCCTTTGGAAATTTCTTATGTGCCTTCTACTTAT        6000 
 T  M  M  V  M  T  E  D  M  P  L  E  I  S  Y  V  P  S  T  Y          2000 
 
          .         .         .         .         .         . 
 TTGACTGAAATCACTCATGTCTCACAAGCCCTATTAGAAGTGGAACAACTTCTCAATGCT        6060 
 L  T  E  I  T  H  V  S  Q  A  L  L  E  V  E  Q  L  L  N  A          2020 
 
          .         .         .         .         .        | 43. 
 CCTGACCTCTGTGCTAAGGACTTTGAAGATCTCTTTAAGCAAGAGGAGTCTCTGAAG | AAT     6120 
 P  D  L  C  A  K  D  F  E  D  L  F  K  Q  E  E  S  L  K   | N       2040 
 
          .         .         .         .         .         . 
 ATAAAAGATAGTCTACAACAAAGCTCAGGTCGGATTGACATTATTCATAGCAAGAAGACA        6180 
 I  K  D  S  L  Q  Q  S  S  G  R  I  D  I  I  H  S  K  K  T          2060 
 
          .         .         .         .         .         . 
 GCAGCATTGCAAAGTGCAACGCCTGTGGAAAGGGTGAAGCTACAGGAAGCTCTCTCCCAG        6240 
 A  A  L  Q  S  A  T  P  V  E  R  V  K  L  Q  E  A  L  S  Q          2080 
 
          .         .         .         .         . | 44       . 
 CTTGATTTCCAATGGGAAAAAGTTAACAAAATGTACAAGGACCGACAAGG | GCGATTTGAC     6300 
 L  D  F  Q  W  E  K  V  N  K  M  Y  K  D  R  Q  G  |  R  F  D       2100 
 
          .         .         .         .         .         . 
 AGATCTGTTGAGAAATGGCGGCGTTTTCATTATGATATAAAGATATTTAATCAGTGGCTA        6360 
 R  S  V  E  K  W  R  R  F  H  Y  D  I  K  I  F  N  Q  W  L          2120 
 
          .         .         .         .         .         . 
 ACAGAAGCTGAACAGTTTCTCAGAAAGACACAAATTCCTGAGAATTGGGAACATGCTAAA        6420 
 T  E  A  E  Q  F  L  R  K  T  Q  I  P  E  N  W  E  H  A  K          2140 
 
          .         | 45         .         .         .         . 
 TACAAATGGTATCTTAAG | GAACTCCAGGATGGCATTGGGCAGCGGCAAACTGTTGTCAGA     6480 
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 Y  K  W  Y  L  K   | E  L  Q  D  G  I  G  Q  R  Q  T  V  V  R       2160 
 
          .         .         .         .         .         . 
 ACATTGAATGCAACTGGGGAAGAAATAATTCAGCAATCCTCAAAAACAGATGCCAGTATT        6540 
 T  L  N  A  T  G  E  E  I  I  Q  Q  S  S  K  T  D  A  S  I          2180 
 
          .         .         .         .         .         . 
 CTACAGGAAAAATTGGGAAGCCTGAATCTGCGGTGGCAGGAGGTCTGCAAACAGCTGTCA        6600 
 L  Q  E  K  L  G  S  L  N  L  R  W  Q  E  V  C  K  Q  L  S          2200 
 
          .     | 46   .         .         .         .         . 
 GACAGAAAAAAGAG | GCTAGAAGAACAAAAGAATATCTTGTCAGAATTTCAAAGAGATTTA     6660 
 D  R  K  K  R  |  L  E  E  Q  K  N  I  L  S  E  F  Q  R  D  L       2220 
 
          .         .         .         .         .         . 
 AATGAATTTGTTTTATGGTTGGAGGAAGCAGATAACATTGCTAGTATCCCACTTGAACCT        6720 
 N  E  F  V  L  W  L  E  E  A  D  N  I  A  S  I  P  L  E  P          2240 
 
          .         .         .         .   | 47     .         . 
 GGAAAAGAGCAGCAACTAAAAGAAAAGCTTGAGCAAGTCAAG | TTACTGGTGGAAGAGTTG     6780 
 G  K  E  Q  Q  L  K  E  K  L  E  Q  V  K   | L  L  V  E  E  L       2260 
 
          .         .         .         .         .         . 
 CCCCTGCGCCAGGGAATTCTCAAACAATTAAATGAAACTGGAGGACCCGTGCTTGTAAGT        6840 
 P  L  R  Q  G  I  L  K  Q  L  N  E  T  G  G  P  V  L  V  S          2280 
 
          .         .         .         .         .         . 
 GCTCCCATAAGCCCAGAAGAGCAAGATAAACTTGAAAATAAGCTCAAGCAGACAAATCTC        6900 
 A  P  I  S  P  E  E  Q  D  K  L  E  N  K  L  K  Q  T  N  L          2300 
 
          .   | 48     .         .         .         .         . 
 CAGTGGATAAAG | GTTTCCAGAGCTTTACCTGAGAAACAAGGAGAAATTGAAGCTCAAATA     6960 
 Q  W  I  K   | V  S  R  A  L  P  E  K  Q  G  E  I  E  A  Q  I       2320 
 
          .         .         .         .         .         . 
 AAAGACCTTGGGCAGCTTGAAAAAAAGCTTGAAGACCTTGAAGAGCAGTTAAATCATCTG        7020 
 K  D  L  G  Q  L  E  K  K  L  E  D  L  E  E  Q  L  N  H  L          2340 
 
          .         .         .         .         .         . 
 CTGCTGTGGTTATCTCCTATTAGGAATCAGTTGGAAATTTATAACCAACCAAACCAAGAA        7080 
 L  L  W  L  S  P  I  R  N  Q  L  E  I  Y  N  Q  P  N  Q  E          2360 
 
          .         | 49         .         .         .         . 
 GGACCATTTGACGTTCAG | GAAACTGAAATAGCAGTTCAAGCTAAACAACCGGATGTGGAA     7140 
 G  P  F  D  V  Q   | E  T  E  I  A  V  Q  A  K  Q  P  D  V  E       2380 
 
          .         .         .         .         .         . 
 GAGATTTTGTCTAAAGGGCAGCATTTGTACAAGGAAAAACCAGCCACTCAGCCAGTGAAG        7200 
 E  I  L  S  K  G  Q  H  L  Y  K  E  K  P  A  T  Q  P  V  K          2400 
 
  | 50       .         .         .         .         .         . 
  | AGGAAGTTAGAAGATCTGAGCTCTGAGTGGAAGGCGGTAAACCGTTTACTTCAAGAGCTG     7260 
  | R  K  L  E  D  L  S  S  E  W  K  A  V  N  R  L  L  Q  E  L       2420 
 
          .         .         .         .          | 51        . 
 AGGGCAAAGCAGCCTGACCTAGCTCCTGGACTGACCACTATTGGAGCCT | CTCCTACTCAG     7320 
 R  A  K  Q  P  D  L  A  P  G  L  T  T  I  G  A  S |   P  T  Q       2440 
 
          .         .         .         .         .         . 
 ACTGTTACTCTGGTGACACAACCTGTGGTTACTAAGGAAACTGCCATCTCCAAACTAGAA        7380 
 T  V  T  L  V  T  Q  P  V  V  T  K  E  T  A  I  S  K  L  E          2460 
 
          .         .         .         .         .         . 
 ATGCCATCTTCCTTGATGTTGGAGGTACCTGCTCTGGCAGATTTCAACCGGGCTTGGACA        7440 
 M  P  S  S  L  M  L  E  V  P  A  L  A  D  F  N  R  A  W  T          2480 
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          .         .         .         .         .         . 
 GAACTTACCGACTGGCTTTCTCTGCTTGATCAAGTTATAAAATCACAGAGGGTGATGGTG        7500 
 E  L  T  D  W  L  S  L  L  D  Q  V  I  K  S  Q  R  V  M  V          2500 
 
          .         .         .         .   | 52     .         . 
 GGTGACCTTGAGGATATCAACGAGATGATCATCAAGCAGAAG | GCAACAATGCAGGATTTG     7560 
 G  D  L  E  D  I  N  E  M  I  I  K  Q  K   | A  T  M  Q  D  L       2520 
 
          .         .         .         .         .         . 
 GAACAGAGGCGTCCCCAGTTGGAAGAACTCATTACCGCTGCCCAAAATTTGAAAAACAAG        7620 
 E  Q  R  R  P  Q  L  E  E  L  I  T  A  A  Q  N  L  K  N  K          2540 
 
          .         .         .         . | 53       .         . 
 ACCAGCAATCAAGAGGCTAGAACAATCATTACGGATCGAA | TTGAAAGAATTCAGAATCAG     7680 
 T  S  N  Q  E  A  R  T  I  I  T  D  R  I |   E  R  I  Q  N  Q       2560 
 
          .         .         .         .         .         . 
 TGGGATGAAGTACAAGAACACCTTCAGAACCGGAGGCAACAGTTGAATGAAATGTTAAAG        7740 
 W  D  E  V  Q  E  H  L  Q  N  R  R  Q  Q  L  N  E  M  L  K          2580 
 
          .         .         .         .         .         . 
 GATTCAACACAATGGCTGGAAGCTAAGGAAGAAGCTGAGCAGGTCTTAGGACAGGCCAGA        7800 
 D  S  T  Q  W  L  E  A  K  E  E  A  E  Q  V  L  G  Q  A  R          2600 
 
          .         .         .         .         .         . 
 GCCAAGCTTGAGTCATGGAAGGAGGGTCCCTATACAGTAGATGCAATCCAAAAGAAAATC        7860 
 A  K  L  E  S  W  K  E  G  P  Y  T  V  D  A  I  Q  K  K  I          2620 
 
          .   | 54     .         .         .         .         . 
 ACAGAAACCAAG | CAGTTGGCCAAAGACCTCCGCCAGTGGCAGACAAATGTAGATGTGGCA     7920 
 T  E  T  K   | Q  L  A  K  D  L  R  Q  W  Q  T  N  V  D  V  A       2640 
 
          .         .         .         .         .         . 
 AATGACTTGGCCCTGAAACTTCTCCGGGATTATTCTGCAGATGATACCAGAAAAGTCCAC        7980 
 N  D  L  A  L  K  L  L  R  D  Y  S  A  D  D  T  R  K  V  H          2660 
 
          .         .         .         .        | 55.         . 
 ATGATAACAGAGAATATCAATGCCTCTTGGAGAAGCATTCATAAAAG | GGTGAGTGAGCGA     8040 
 M  I  T  E  N  I  N  A  S  W  R  S  I  H  K  R  |  V  S  E  R       2680 
 
          .         .         .         .         .         . 
 GAGGCTGCTTTGGAAGAAACTCATAGATTACTGCAACAGTTCCCCCTGGACCTGGAAAAG        8100 
 E  A  A  L  E  E  T  H  R  L  L  Q  Q  F  P  L  D  L  E  K          2700 
 
          .         .         .         .         .         . 
 TTTCTTGCCTGGCTTACAGAAGCTGAAACAACTGCCAATGTCCTACAGGATGCTACCCGT        8160 
 F  L  A  W  L  T  E  A  E  T  T  A  N  V  L  Q  D  A  T  R          2720 
 
          .         .         .         .         .        | 56. 
 AAGGAAAGGCTCCTAGAAGACTCCAAGGGAGTAAAAGAGCTGATGAAACAATGGCAA | GAC     8220 
 K  E  R  L  L  E  D  S  K  G  V  K  E  L  M  K  Q  W  Q   | D       2740 
 
          .         .         .         .         .         . 
 CTCCAAGGTGAAATTGAAGCTCACACAGATGTTTATCACAACCTGGATGAAAACAGCCAA        8280 
 L  Q  G  E  I  E  A  H  T  D  V  Y  H  N  L  D  E  N  S  Q          2760 
 
          .         .         .         .         .         . 
 AAAATCCTGAGATCCCTGGAAGGTTCCGATGATGCAGTCCTGTTACAAAGACGTTTGGAT        8340 
 K  I  L  R  S  L  E  G  S  D  D  A  V  L  L  Q  R  R  L  D          2780 
 
          .         .         .         .         . | 57       . 
 AACATGAACTTCAAGTGGAGTGAACTTCGGAAAAAGTCTCTCAACATTAG | GTCCCATTTG     8400 
 N  M  N  F  K  W  S  E  L  R  K  K  S  L  N  I  R  |  S  H  L       2800 
 
          .         .         .         .         .         . 
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 GAAGCCAGTTCTGACCAGTGGAAGCGTCTGCACCTTTCTCTGCAGGAACTTCTGGTGTGG        8460 
 E  A  S  S  D  Q  W  K  R  L  H  L  S  L  Q  E  L  L  V  W          2820 
 
          .         .         .         .         .         . 
 CTACAGCTGAAAGATGATGAATTAAGCCGGCAGGCACCTATTGGAGGCGACTTTCCAGCA        8520 
 L  Q  L  K  D  D  E  L  S  R  Q  A  P  I  G  G  D  F  P  A          2840 
 
          .         .        | 58.         .         .         . 
 GTTCAGAAGCAGAACGATGTACATAGG | GCCTTCAAGAGGGAATTGAAAACTAAAGAACCT     8580 
 V  Q  K  Q  N  D  V  H  R   | A  F  K  R  E  L  K  T  K  E  P       2860 
 
          .         .         .         .         .         . 
 GTAATCATGAGTACTCTTGAGACTGTACGAATATTTCTGACAGAGCAGCCTTTGGAAGGA        8640 
 V  I  M  S  T  L  E  T  V  R  I  F  L  T  E  Q  P  L  E  G          2880 
 
          .         .         | 59         .         .         . 
 CTAGAGAAACTCTACCAGGAGCCCAGAG | AGCTGCCTCCTGAGGAGAGAGCCCAGAATGTC     8700 
 L  E  K  L  Y  Q  E  P  R  E |   L  P  P  E  E  R  A  Q  N  V       2900 
 
          .         .         .         .         .         . 
 ACTCGGCTTCTACGAAAGCAGGCTGAGGAGGTCAATACTGAGTGGGAAAAATTGAACCTG        8760 
 T  R  L  L  R  K  Q  A  E  E  V  N  T  E  W  E  K  L  N  L          2920 
 
          .         .         .         .         .         . 
 CACTCCGCTGACTGGCAGAGAAAAATAGATGAGACCCTTGAAAGACTCCAGGAACTTCAA        8820 
 H  S  A  D  W  Q  R  K  I  D  E  T  L  E  R  L  Q  E  L  Q          2940 
 
          .         .         .         .         .         . 
 GAGGCCACGGATGAGCTGGACCTCAAGCTGCGCCAAGCTGAGGTGATCAAGGGATCCTGG        8880 
 E  A  T  D  E  L  D  L  K  L  R  Q  A  E  V  I  K  G  S  W          2960 
 
          .         .         .         .         .        | 60. 
 CAGCCCGTGGGCGATCTCCTCATTGACTCTCTCCAAGATCACCTCGAGAAAGTCAAG | GCA     8940 
 Q  P  V  G  D  L  L  I  D  S  L  Q  D  H  L  E  K  V  K   | A       2980 
 
          .         .         .         .         .         . 
 CTTCGAGGAGAAATTGCGCCTCTGAAAGAGAACGTGAGCCACGTCAATGACCTTGCTCGC        9000 
 L  R  G  E  I  A  P  L  K  E  N  V  S  H  V  N  D  L  A  R          3000 
 
          .         .         .         .         .         . 
 CAGCTTACCACTTTGGGCATTCAGCTCTCACCGTATAACCTCAGCACTCTGGAAGACCTG        9060 
 Q  L  T  T  L  G  I  Q  L  S  P  Y  N  L  S  T  L  E  D  L          3020 
 
          .         .     | 61   .         .         .         . 
 AACACCAGATGGAAGCTTCTGCAG | GTGGCCGTCGAGGACCGAGTCAGGCAGCTGCATGAA     9120 
 N  T  R  W  K  L  L  Q   | V  A  V  E  D  R  V  R  Q  L  H  E       3040 
 
          .         .         .         .    | 62    .         . 
 GCCCACAGGGACTTTGGTCCAGCATCTCAGCACTTTCTTTCCA | CGTCTGTCCAGGGTCCC     9180 
 A  H  R  D  F  G  P  A  S  Q  H  F  L  S  T |   S  V  Q  G  P       3060 
 
          .         .         .         .     | 63   .         . 
 TGGGAGAGAGCCATCTCGCCAAACAAAGTGCCCTACTATATCAA | CCACGAGACTCAAACA     9240 
 W  E  R  A  I  S  P  N  K  V  P  Y  Y  I  N  |  H  E  T  Q  T       3080 
 
          .         .         .         .       | 64 .         . 
 ACTTGCTGGGACCATCCCAAAATGACAGAGCTCTACCAGTCTTTAG | CTGACCTGAATAAT     9300 
 T  C  W  D  H  P  K  M  T  E  L  Y  Q  S  L  A |   D  L  N  N       3100 
 
          .         .         .         .         .         . 
 GTCAGATTCTCAGCTTATAGGACTGCCATGAAACTCCGAAGACTGCAGAAGGCCCTTTGC        9360 
 V  R  F  S  A  Y  R  T  A  M  K  L  R  R  L  Q  K  A  L  C          3120 
 
   | 65      .         .         .         .         .         . 
 T | TGGATCTCTTGAGCCTGTCAGCTGCATGTGATGCCTTGGACCAGCACAACCTCAAGCAA     9420 
 L |   D  L  L  S  L  S  A  A  C  D  A  L  D  Q  H  N  L  K  Q       3140 
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          .         .         .         .         .         . 
 AATGACCAGCCCATGGATATCCTGCAGATTATTAATTGTTTGACCACTATTTATGACCGC        9480 
 N  D  Q  P  M  D  I  L  Q  I  I  N  C  L  T  T  I  Y  D  R          3160 
 
          .         .         .         .         .         . 
 CTGGAGCAAGAGCACAACAATTTGGTCAACGTCCCTCTCTGCGTGGATATGTGTCTGAAC        9540 
 L  E  Q  E  H  N  N  L  V  N  V  P  L  C  V  D  M  C  L  N          3180 
 
          .         .    | 66    .         .         .         . 
 TGGCTGCTGAATGTTTATGATAC | GGGACGAACAGGGAGGATCCGTGTCCTGTCTTTTAAA     9600 
 W  L  L  N  V  Y  D  T  |  G  R  T  G  R  I  R  V  L  S  F  K       3200 
 
          .         .         .         .          | 67        . 
 ACTGGCATCATTTCCCTGTGTAAAGCACATTTGGAAGACAAGTACAGAT | ACCTTTTCAAG     9660 
 T  G  I  I  S  L  C  K  A  H  L  E  D  K  Y  R  Y |   L  F  K       3220 
 
          .         .         .         .         .         . 
 CAAGTGGCAAGTTCAACAGGATTTTGTGACCAGCGCAGGCTGGGCCTCCTTCTGCATGAT        9720 
 Q  V  A  S  S  T  G  F  C  D  Q  R  R  L  G  L  L  L  H  D          3240 
 
          .         .         .         .         .         . 
 TCTATCCAAATTCCAAGACAGTTGGGTGAAGTTGCATCCTTTGGGGGCAGTAACATTGAG        9780 
 S  I  Q  I  P  R  Q  L  G  E  V  A  S  F  G  G  S  N  I  E          3260 
 
          .         .        | 68.         .         .         . 
 CCAAGTGTCCGGAGCTGCTTCCAATTT | GCTAATAATAAGCCAGAGATCGAAGCGGCCCTC     9840 
 P  S  V  R  S  C  F  Q  F   | A  N  N  K  P  E  I  E  A  A  L       3280 
 
          .         .         .         .         .         . 
 TTCCTAGACTGGATGAGACTGGAACCCCAGTCCATGGTGTGGCTGCCCGTCCTGCACAGA        9900 
 F  L  D  W  M  R  L  E  P  Q  S  M  V  W  L  P  V  L  H  R          3300 
 
          .         .         .         .         .         . 
 GTGGCTGCTGCAGAAACTGCCAAGCATCAGGCCAAATGTAACATCTGCAAAGAGTGTCCA        9960 
 V  A  A  A  E  T  A  K  H  Q  A  K  C  N  I  C  K  E  C  P          3320 
 
          .     | 69   .         .         .         .         . 
 ATCATTGGATTCAG | GTACAGGAGTCTAAAGCACTTTAATTATGACATCTGCCAAAGCTGC     10020 
 I  I  G  F  R  |  Y  R  S  L  K  H  F  N  Y  D  I  C  Q  S  C       3340 
 
          .         .         .         .         .         . 
 TTTTTTTCTGGTCGAGTTGCAAAAGGCCATAAAATGCACTATCCCATGGTGGAATATTGC        10080 
 F  F  S  G  R  V  A  K  G  H  K  M  H  Y  P  M  V  E  Y  C          3360 
 
        | 70 .         .         .         .         .         . 
 ACTCCG | ACTACATCAGGAGAAGATGTTCGAGACTTTGCCAAGGTACTAAAAAACAAATTT     10140 
 T  P   | T  T  S  G  E  D  V  R  D  F  A  K  V  L  K  N  K  F       3380 
 
          .         .         .         .         .         . 
 CGAACCAAAAGGTATTTTGCGAAGCATCCCCGAATGGGCTACCTGCCAGTGCAGACTGTC        10200 
 R  T  K  R  Y  F  A  K  H  P  R  M  G  Y  L  P  V  Q  T  V          3400 
 
          .         .    | 71    .         .         .         . 
 TTAGAGGGGGACAACATGGAAAC | TCCCGTTACTCTGATCAACTTCTGGCCAGTAGATTCT     10260 
 L  E  G  D  N  M  E  T  |  P  V  T  L  I  N  F  W  P  V  D  S       3420 
 
    | 72     .         .         .         .         .         . 
 GC | GCCTGCCTCGTCCCCTCAGCTTTCACACGATGATACTCATTCACGCATTGAACATTAT     10320 
 A  |  P  A  S  S  P  Q  L  S  H  D  D  T  H  S  R  I  E  H  Y       3440 
 
          | 73         .         .         .         .         . 
 GCTAGCAG | GCTAGCAGAAATGGAAAACAGCAATGGATCTTATCTAAATGATAGCATCTCT     10380 
 A  S  R  |  L  A  E  M  E  N  S  N  G  S  Y  L  N  D  S  I  S       3460 
 
          .     | 74   .         .         .         .         . 
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 CCTAATGAGAGCAT | AGATGATGAACATTTGTTAATCCAGCATTACTGCCAAAGTTTGAAC     10440 
 P  N  E  S  I  |  D  D  E  H  L  L  I  Q  H  Y  C  Q  S  L  N       3480 
 
          .         .         .         .         .         . 
 CAGGACTCCCCCCTGAGCCAGCCTCGTAGTCCTGCCCAGATCTTGATTTCCTTAGAGAGT        10500 
 Q  D  S  P  L  S  Q  P  R  S  P  A  Q  I  L  I  S  L  E  S          3500 
 
          .         .         .         .         .    | 75    . 
 GAGGAAAGAGGGGAGCTAGAGAGAATCCTAGCAGATCTTGAGGAAGAAAACAG | GAATCTG     10560 
 E  E  R  G  E  L  E  R  I  L  A  D  L  E  E  E  N  R  |  N  L       3520 
 
          .         .         .         .         .         . 
 CAAGCAGAATATGACCGTCTAAAGCAGCAGCACGAACATAAAGGCCTGTCCCCACTGCCG        10620 
 Q  A  E  Y  D  R  L  K  Q  Q  H  E  H  K  G  L  S  P  L  P          3540 
 
          .         .         .         .         .         . 
 TCCCCTCCTGAAATGATGCCCACCTCTCCCCAGAGTCCCCGGGATGCTGAGCTCATTGCT        10680 
 S  P  P  E  M  M  P  T  S  P  Q  S  P  R  D  A  E  L  I  A          3560 
 
          .         .         .         .         .         . 
 GAGGCCAAGCTACTGCGTCAACACAAAGGCCGCCTGGAAGCCAGGATGCAAATCCTGGAA        10740 
 E  A  K  L  L  R  Q  H  K  G  R  L  E  A  R  M  Q  I  L  E          3580 
 
          .         .         .         .         .        | 76. 
 GACCACAATAAACAGCTGGAGTCACAGTTACACAGGCTAAGGCAGCTGCTGGAGCAA | CCC     10800 
 D  H  N  K  Q  L  E  S  Q  L  H  R  L  R  Q  L  L  E  Q   | P       3600 
 
          .         .         .         .         .         . 
 CAGGCAGAGGCCAAAGTGAATGGCACAACGGTGTCCTCTCCTTCTACCTCTCTACAGAGG        10860 
 Q  A  E  A  K  V  N  G  T  T  V  S  S  P  S  T  S  L  Q  R          3620 
 
          .         .         .         .         .         . 
 TCCGACAGCAGTCAGCCTATGCTGCTCCGAGTGGTTGGCAGTCAAACTTCGGACTCCATG        10920 
 S  D  S  S  Q  P  M  L  L  R  V  V  G  S  Q  T  S  D  S  M          3640 
 
   | 77      .         .         .         .         .         . 
 G | GTGAGGAAGATCTTCTCAGTCCTCCCCAGGACACAAGCACAGGGTTAGAGGAGGTGATG     10980 
 G |   E  E  D  L  L  S  P  P  Q  D  T  S  T  G  L  E  E  V  M       3660 
 
          .         .         .     | 78   .         .         . 
 GAGCAACTCAACAACTCCTTCCCTAGTTCAAGAG | GAAGAAATACCCCTGGAAAGCCAATG     11040 
 E  Q  L  N  N  S  F  P  S  S  R  G |   R  N  T  P  G  K  P  M       3680 
 
        | 79 .   
 AGAGAG | GACACAATGTAG      11058 
 R  E   | D  T  M  *         3685 
            H  N  V  G 
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APPENDIX B: CINRG SITES 

National CINRG Sites 
Children’s National Medical Center 
Washington, DC 

University of Puerto Rico 
San Juan, PR 

Children’s Hospital of Virginia 
Richmond, VA 

Mayo Clinic 
Rochester, MN 

Children’s Hospital of Pittsburgh 
Pittsburgh, PA 

University of Minnesota 
Minneapolis, MN 

University of Tennessee 
Memphis, TN 

Washington University 
St. Louis, MO 

Texas Children’s Hospital 
Houston, TX 

University of California, Davis 
Sacramento, CA 

International CINRG Sites 
Children’s Hospital University Hospitals 
K.U. Leuven 
Leuven, Belgium 

University of Alberta 
Edmonton, Alberta, Canada 

Hadassah, Hebrew University Hospital 
Jerusalem, Israel 

Bloorview MacMillan Medical Center 
Toronto, Canada 

Centro Clinico NeMO Hospital Niguarda 
Cà Granda 
Milano, Italy 

Royal Children’s Hospital 
Melbourne, Australia 

Queen Silvia Children’s Hospital 
Goteborg, Sweden 

The Children’s Hospital of Westmead 
Sydney, Australia 

Alberta Children’s Hospital 
Calgary, Alberta, Canada 

Dr. Rangarajan Memorial Hospital 
Chennai, India 

Unidad de Enfermedades 
Neuromusculares 
Buenos Aires, Argentina 
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