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Estrogen metabolites may play an important role in breast carcinogenesis. Animal and in vitro 

studies suggest differing biological effects of the 2-hydroxyestrone (2-OHE1) and 16α-

hydroxyestrone (16α-OHE1) metabolites, lending support to the use of 2:16α-OHE1 as a measure 

of estrogen balance. Although previous studies have evaluated the association between these 

specific metabolites and breast cancer among pre- and postmenopausal women, the results have 

been inconclusive. The sample size of individual studies is often small and lacks the statistical 

power to draw conclusions or to adequately assess the relationships within subgroups. 

Furthermore, the relationship between various lifestyle factors and personal characteristics and 

estrogen metabolites remains unclear. We evaluated the association between the 2-OHE1, 16α-

OHE1 and 2:16α-OHE1 metabolites and breast cancer among premenopausal (183 cases/548 

controls) and postmenopausal (319 cases/647 controls) women using a combined analysis of 

individual level data from previously published research studies. In separate study adjusted 

conditional logistic regression models matched on 5-year age groups, higher levels of 2:16α-

OHE1 were not associated with breast cancer among pre- or postmenopausal women, although 

the premenopausal analyses suggested a reduction in risk [Premenopausal: OR≥2.67 vs. <1.76=0.81 

(95% CI: 0.49, 1.32); Postmenopausal: OR≥2.46 vs. <1.53=0.87 (95% CI: 0.58, 1.29)].  Using 

multivariable regression analyses adjusted for study, we evaluated various predictors of estrogen 
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metabolites among the control populations of the participating studies (544 premenopausal/720 

postmenopausal). Among premenopausal women, BMI was negatively associated with 2-OHE1 

and 2:16α-OHE1 (p < 0.05). Analyses among postmenopausal women revealed significant 

associations (p<0.05) between age, age at menopausal status, and history of benign breast 

disease. In summary, this combined analysis does not support an association between urinary 

estrogen metabolites and breast cancer among pre- or post menopausal women.  However, our 

results do suggest potential differences in factors related to estrogen metabolite levels among 

pre- and postmenopausal women.  Enhancing our knowledge of estrogen metabolites among 

breast cancer patients and among healthy populations of women is a significant contribution to 

public health. By improving our understanding of estrogen metabolites we may be able to 

identify women at higher risk of breast cancer as well as increase our understanding of breast 

cancer etiology.  
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1.0  INTRODUCTION 

Estrogen exposure has been established as a hormonal risk factor for breast cancer yet the 

mechanisms by which estrogen increases breast cancer risk remains unclear. One hypothesis 

implicates estrogens in the proliferation of human breast epithelial cells. Estrogens may 

indirectly influence carcinogenesis by stimulating cell division and thereby increasing the 

probability a mutation will occur.  Many of the known breast cancer risk factors relate to a 

woman’s cumulative lifetime exposure to estrogen; however, the underlying mechanisms are 

also unknown. Furthermore, many of the identified risk factors are not potentially modifiable, 

posing challenges for the implementation of prevention efforts.   Estrogen metabolites may 

provide a measure of energy balance and may also have the potential to be modified. In view of 

these factors and the role of lifetime estrogen exposure in breast cancer development, 

understanding the role of estrogen metabolites in relation to breast cancer risk has become 

increasingly important in recent years. Two specific metabolites, 2-hydroxyestrone (2-OHE1) 

and 16α-hydroxyestrone (16α-OHE1) have been the focus of previous investigations due to their 

opposing estrogenic properties. Moreover, these metabolites are mutually exclusive, rendering 

their ratio a useful measure of estrogen balance.  

Previous studies have evaluated the relationship between these estrogen metabolites and 

breast cancer among pre- and postmenopausal women yet the results have been inconclusive. 

Furthermore, the sample size of individual studies is often too small and lacks the statistical 
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power to draw conclusions or to adequately assess the relationships within subgroups.  The intent 

of this present study is to enhance our understanding of the potential relationship between these 

urinary estrogen metabolites (2-OHE1, 16α-OHE1, and 2:1616α-OHE1) and breast cancer among 

a larger combined sample of pre- and postmenopausal women. 

In this combined analysis of primary data from previously published studies, individual 

level data from eligible and participating studies were used in order to address the following 

specific aims: 1) to assess the relationship between the 2-OHE1, 16α-OHE1 and 2:16α-OHE1 

urinary estrogen metabolites and breast cancer among premenopausal women, 2) to evaluate the 

association between 2-OHE1, 16α-OHE1, and the 2:16α-OHE1 and breast cancer among 

postmenopausal women and 3) to evaluate the association between known breast cancer risk 

factors and each of these estrogen metabolites. In the background and significance section that 

follows, the literature review includes an overview of breast cancer epidemiology and known 

breast cancer risk factors, a description of estrogen and estrogen metabolites, and the potential 

link between estrogen metabolites and breast cancer.   
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2.0  BACKGROUND AND SIGNIFICANCE 

2.1 EPIDEMIOLOGY OF BREAST CANCER 

Breast cancer is the most common cancer diagnosed among women and the second leading cause 

of cancer death in the United States, with approximately 182,460 new cases and 40,480 breast 

cancer deaths expected in 2008 (American Cancer Society 2008). Worldwide, breast cancer is 

the second most common cancer overall with an estimated 1.15 million incident cases in 2002 

(Parkin 2005).  An elevated incidence is reported in both developed and developing countries 

(Figure 1); however, the incidence rates are slightly higher in developed countries with the 

highest age-standardized incidence rates reported in North America, Western Europe, 

Australia/New Zealand, and Northern Europe (Parkin 2005). This high incidence of breast cancer 

as well as the reasonable prognosis due to screening programs and early detection explains, in 

part, the worldwide prevalence of breast cancer (Parkin 2005). Although the incidence of breast 

cancer in the U.S. slightly increased during the period of 1980–2001, the trend has shifted with a 

reported decrease in rates by 3.5% per year during the period of 2001-2004, according to data 

from the American Cancer Society (ACS) (ACS 2007). Possible explanations for this observed 

decrease may include changes in mammography patterns and the decreased use of hormone 

replacement therapy (Ravdin 2007).  
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Breast cancer incidence and mortality rates differ by race, with the highest age-adjusted 

incidence rates reported among white women (130.8 per 100,000) and African American women 

(111.5 per 100,000).  Although the incidence rate of breast cancer among African American 

women is slightly lower than white women, African American women are more likely than white 

women to die from this disease, with a death rate of 34.4 per 100,000 as compared to 25.4 per 

100,000 (Jemal 2007). This racial difference in mortality rate is observed even after adjustment  

 

 

Figure 1 Age Standardized Incidence and Mortality Breast Cancer Rates  

(Parkin et al. 2005)  
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for differences in stage of diagnosis (Chlebowski 2005).  In addition to racial differences, the 

incidence of breast cancer varies by age and menopausal status, with breast cancer rates highest   

among postmenopausal women. The incidence of breast cancer increases with age (until age 80), 

with 95% of breast cancer cases diagnosed in women over the age of 40, according to the 2000-

2004 data from the American Cancer Society. The median age at diagnosis is reported as 61 

years of age, with the highest age-specific incidence rate of 464.8 cases per 100,000 occurring 

among women ages 75-79 (ACS 2007). 

2.1.1 Breast Cancer Risk Factors 

Numerous factors have been implicated with an increase in risk of developing breast cancer, 

such as older age, family history of breast cancer, increased breast density, later age at first 

pregnancy, use of postmenopausal hormones (ACS 2007), and most notably, higher cumulative 

estrogen exposure during a woman’s lifetime (Henderson 1998).  Age, reproductive factors, 

family history and mammographic density are among the strongest risk factors for breast cancer. 

Family history in a first degree relative is associated with increased breast cancer risk, with risk 

increasing with younger age at onset as well as increasing numbers of affected first degree 

relatives (CGFBC 2001). Furthermore, two inherited breast cancer susceptibility genes have 

been identified (BRCA1 and BRCA2), although these genes only account for approximately 7% 

of breast cancer cases (reviewed in Hulka 2001).  

Mammographic density is one of the strongest predictors of breast cancer risk, even after 

adjustment for other known breast cancer risk factors (Boyd 2005).  Increased breast density has 

been associated with an increase in breast cancer risk, in both case-control and cohort studies 

(Boyd 2005).  Women with high levels of breast density appear to have a 2-6 fold increased risk 
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of breast cancer compared to those with lower breast density (increase in fatty tissue) (Boyd 

1998, Byrne 2001, Ursin 2003, Byrne 1995, McCormack 2006). 

Lifestyle factors such as alcohol and physical activity may also affect breast cancer risk. 

Alcohol consumption of two drinks or more per day has consistently been associated with 

increase breast cancer risk by approximately 30% (Smith-Warner 1998, Hamajima 2002, Horn-

Ross 2002, Ellison 2001). Physical activity has been shown to have a protective effect on breast 

cancer risk. Studies have reported modest decreases in breast cancer risk with regular physical 

activity with estimates ranging on average from 15-40% depending on the study population and 

the type of physical activity (Vainio 2002). Additionally, reproductive factors such as 

breastfeeding and increasing parity are associated with decreased breast cancer risk whereas 

early age at menarche and late age at menopause are associated with increased breast cancer risk.   

Exogenous postmenopausal hormone therapy is associated with increased breast cancer 

risk, with levels of risk varying by the duration of use and type of treatment (estrogen versus 

combined estrogen and progestin) (Rossouw 2002, Bernstein 2006). As reviewed by Bernstein, 

the use of combined estrogen and progestin regimens can increase the risk of breast cancer up to 

10% per year of use (Bernstein 2006). While some of the known breast cancer risk factors may 

potentially be modifiable, such as postmenopausal obesity, hormone replacement therapy, 

alcohol use and physical inactivity, others are not (age, family history, age at menarche, age at 

menopause, and parity).  Mammographic density may also be a potentially modifiable factor. 

Although limited studies have been conducted in this area, results from a dietary intervention 

reported a reduction in the area of breast density (Boyd 1997). However, whether these effects 

are sustainable over a long period of time remains unclear. 

 

6 



Table 1 Summary of Breast Cancer Risk Factors 

Known Risk Factors Direction of 
Association 

Age (↑) ↑ 
Family History of Breast Cancer ↑ 
History of Benign Breast Disease ↑ 
Reproductive Factors  
           Parity ↓ 
           Younger age at first birth ↓ 
           Older age at menarche ↓ 
Obesity  
           Premenopausal ↓ 
           Postmenopausal ↑ 
Endogenous Estrogens (↑ levels) ↑ 
Hormone Therapy ↑ 
Breast Density (↑ dense tissue) ↑ 

 

2.1.2 Obesity and Breast Cancer 

The prevalence of overweight and obesity remains elevated in the United States (Ogden 2006). 

According to the National Health and Nutrition Examination Survey (NHANES), 30% of adults 

in the United States were classified as obese in 2003-2004 with a BMI of ≥ 30 kg/m2. More 

specifically, the prevalence of obesity among women ages 40-59 in the US was 36.8% during 

this time period (Ogden 2006). This is of particular importance considering the multiple 

environmental and genetic factors that interact and contribute to the development of obesity 

(Froguel and Boutin, 2001), with more than 430 genes, markers and chromosomal regions linked 

to phenotypes of human obesity (Snyder 2004). Furthermore, obesity has been linked with an 

increased risk of multiple chronic diseases including cancers of the colon and endometrium 

(Calle 2004).  
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The association of obesity with breast cancer risk varies by menopausal status. Obesity is 

associated with an increased risk of postmenopausal breast cancer (EHBCCG 2003, van den 

Brandt 2000, Key 2003); however, among premenopausal women, obesity has been suggested to 

be protective (Ursin 1995, Van Den Brandt 2000).  Furthermore, the association of obesity and 

postmenopausal breast cancer risk may be dependent on the use of hormone therapy.  Studies 

have reported a significant association between obesity and postmenopausal breast cancer among 

those who had never taken hormone therapy, whereas no association was reported among those 

who had ever used hormone therapy (Morimoto 2002, Feigelson 2004). In addition to baseline 

measures of obesity or obesity levels pre-diagnosis, adult weight gain appears to be associated 

with increased postmenopausal breast cancer risk (Eliassen 2006, Morimoto 2002, Feigelson 

2004).   

Potential explanations for the differing associations between obesity and breast cancer by 

menopausal status have been proposed. Although it remains largely unclear why premenopausal 

obese women have a reduced breast cancer risk it may be, in part, due to the impaired ovulatory 

function and the decrease in gonadal steroidogenesis that is associated with abdominal obesity. 

Among postmenopausal women, one possible biological mechanism involves the higher estrogen 

levels associated with increased obesity, resulting from an increase in aromatase activity that 

occurs in adipose tissue (McTiernan 2003, Colditz 1993, Vainio 2002, Sitteri 1987).  The 

aromatization of steroids to estrone is the main source of endogenous estrogen and estrogen 

metabolites among postmenopausal women. Additionally, lower levels of sex hormone-binding 

globulin (SHBG) in obese women may lead to higher levels of unbound estrogen. The increased 

bioavailable estrogen caused by excess body fat is not bound by SHBG but rather is available to 

interact with breast tissue (Rock 2002, Verkasalo 2001). Insulin and insulin growth factors may 
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also play a role in explaining the relationship between obesity and postmenopausal breast cancer 

(Rock 2002). During the menopausal transition, women experience a decrease in ovarian 

function and estradiol levels and an increase in weight, percent body fat, and percent intra-

abdominal fat (Kuller 2000).  The combination of these factors may influence a woman’s risk of 

breast cancer. Although the increase in peripheral levels of estrogens is the primary proposed 

explanation for the observed increase in postmenopausal breast cancer risk amongst obese 

women, other hormones related to body fat may also play a role. 

2.2 ENDOGENOUS ESTROGENS AND BREAST CANCER 

Endogenous estrogen is an important component in the development of breast cancer. 

Cumulative estrogen exposure is affected by normal life events such as age at menopause, age at 

menarche, and reproductive factors, all of which are known to be associated with breast cancer 

risk.  Many of the risk factors identified for breast cancer may directly or indirectly affect the 

levels of endogenous estrogen exposure. Higher levels of endogenous estrogen have been 

associated with an increased breast cancer risk among postmenopausal women (EHBCCG 2002, 

Eliasssen 2006, Cauley 1999, Zeleniuch-Jacquotte (1995), Missmer 2004, Helzlsouer 1994, 

Toniolo 1995, Berrino 1996, Dorgan 1996, Thomas 1997).  In most studies, estrogen levels were 

measured using blood samples collected from healthy women who were then followed until their 

diagnosis of breast cancer. Although the endogenous estrogen levels were likely not affected by 

disease status (as blood samples were collected many years prior to diagnosis), one limitation to 

many of these studies is the use of a single measurement of hormone levels.  
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A reanalysis of nine prospective studies by the endogenous hormones and breast cancer 

collaborative group reported a strong association between endogenous estrogens and breast 

cancer risk (Endogenous Hormones and Breast Cancer Collaborative Group). The results of this 

study reported a significant increasing trend in breast cancer risk with increasing quintiles of 

estradiol concentrations (p<.001). Those in the highest quintile of estradiol concentrations had a 

relative risk two times that of those in the lowest quintile (95% CI: 1.47-2.71). A similar pattern 

was observed when comparing quintiles of free estradiol among those with the highest versus 

lowest levels (RR=2.58, 95% CI: 1.76-2.78). Elevated relative risks were also reported in a 

prospective case-cohort study of breast cancer among women 65 years and older (Cauley 1999). 

Women with the highest concentration of bioavailable estradiol were 3.6 times as likely to 

develop breast cancer as were those with the lowest concentration (95% CI: 1.3-10.0) (Cauley 

1999).  

Few studies have evaluated the association between endogenous estrogen levels and 

breast cancer risk according to estrogen and progesterone receptor status of the tumor (Missmer 

2004, Zeleniuch-Jacquotte 1995). Missimer et al. a reported a strong association between 

estradiol and ER+/PR+ breast cancer tumors but observed weak or no associations for ER+/PR- 

and ER-/PR-. For those in the highest quartile compared to those in the lowest quartile the 

relative risk for ER+/PR+  tumors was 3.3 (95% CI: 2.0-5.4). Although these results suggest a 

stronger association with ER+/PR+ tumors, only one other study has examined this relationship 

and that study reported no difference in the association between endogenous estrogen levels and 

type of estrogen receptor tumor status (Zeleniuch-Jacquotte 1995).  

The relationship between estradiol levels and postmenopausal breast cancer also has been 

evaluated by body mass index. In a reanalysis of individual data from eight prospective studies 
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conducted by the Endogenous Hormones and Breast Cancer Collaborative Group, the observed 

increase in breast cancer risk with increasing levels of BMI was reduced after adjustment for free 

estradiol and other estrogens. These results support the notion that the observed increase in 

postmenopausal breast cancer with increasing obesity may be related to an increase in 

bioavailable estradiol.  

The potential mechanism by which estradiol could affect breast cancer risk may involve 

the process of mitosis in breast epithelial cells. Increased estradiol levels stimulate the mitotic 

process, and thereby increase the mitotic rate in breast epithelial cells. As the mitotic rate 

increases, the chances of a mutation replicating prior to repair also increases (Preston-Martin 

1990, Anderson 1982, Fiegelson and Henderson 1996). An alternative mechanism also has been 

proposed in which estrogen, through the formation of depurinating estrogen adducts, acts as a 

cancer initiator (Cavalieri 2006).  Therefore, endogenous estrogens as well as their metabolites 

are important components of the carcinogenic pathway. 

2.3 ESTROGEN METABOLITES, ESTROGEN QUINONES, AND ADDUCTS 

Estrogen metabolism most often occurs by the oxidation pathway (Lippert 1999). The 

biotransformation of estrogen includes multiple steps, the first of which involves the conversion 

of estradiol to estrone in the C17 position, a reversible process. The breakdown of estrone 

continues via two main pathways involving hydroxylation sites C2, C4 or C-16, leading to the 

formation of either A-ring or D-ring metabolites (Mueck 2002, Lippert 2000).  Main metabolites 

of the A-ring pathway include 2-OHE1 and 4-hydroxyestrone (4-OHE), while 16α-OHE1 and 

estriol result from the D-ring pathway (Figure 2, from Mueck et al. 2002).  2-hydroxylation of 
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estradiol or estrone is a main metabolic pathway in the liver, while 4-hydroxylation represents a 

smaller portion of the metabolic products formed (Kerlan 1992). Although these metabolites are 

the main products from both the A-ring and D-ring pathways, additional metabolites are formed 

both pathways. Table 2 includes a list of estrogen metabolites formed from both the A-ring and 

D-ring pathways. 

 

 

Figure 2 Structures of the Parent Hormone 17β estradiol and its main  
A- and D- ring metabolites.  
 

   [Figure 2 from Mueck et al. 2002. Maturitas. 43: 2]  
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        Table 2 List of Main Metabolites of 17β -estradiol and Estrone* 

Compound Name 
          2-Hydroxyestrone   
          2-Methoxyestrone 
          2-Hydroxyestradiol 
          2-Methoxyestradiol 
          2-Hydroxyestriol 
          2-Methoxyestriol 
          4-Hydroxyestrone 
          4-Methoxyestrone 
          4-Hydroxyestradiol 
          4-Methoxyestradiol 
          16-epiestriol 
          16-ketoesradiol 
          16α-Hydroxyestrone 
          17-epiestriol 
          2-hydroxyestrone-3-methyl ether  
          Estrone 
          Estriol 
          Estetrol  

  *Zhu 1998 
 

All of the estrogen metabolite products are formed with the help of specific enzymes 

mainly within the cytochrome P450 family. The estrogen 2-hydroxylation which occurs in the 

human liver is mostly catalyzed by the cytochrome P450 1A2 and the 3A family of enzymes 

(Kerlan 1992, Yager 2006). Cytochrome P450 1B1 is involved in the 4-hydroxylation of 

estradiol in target tissues such as the breast (Hayes 1996), whereas the cytochrome P450 3A 

family is thought to be involved in the 4-hydroxylation in human liver microsomes (Kerlan 1992, 

Yager 2006). This process of estrone and estradiol metabolism is referred to as Phase I 

metabolism (Yager 2006). 

Among women with high ovarian estradiol secretion, mainly premenopausal women, this 

metabolic process begins with estradiol. However, among postmenopausal women, estrogen 

formation occurs by aromatization of androgens to estrone, the main circulating estrogen which 
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subsequently is released from the body by metabolism into either the A-ring or D-ring 

metabolites. These metabolites are suggested to perform differently, with metabolite 16α-OHE1 

having higher estrogen properties based on its ability to bind to the estrogen receptor (Lippert 

2000), and 2-OHE1 having lower estrogen activity, in part due to the reduced affinity to estrogen 

receptor binding. Additionally, 16α-OHE1 has been shown to have properties similar to those of 

estradiol, an estrogen agonist (Cavalieri 2006). Although both 2-OHE1 and 16-OHE1 have 

estrogenic properties, they vary in regards to their ability to bind to the estrogen receptor.  

Additionally, these metabolites are mutually exclusive, rendering the ratio 2:16α-OHE1 a useful 

measure. An increase in one pathway will lead to a reduction in the product of the competing 

pathway. The 4-OHE metabolite also binds to the estrogen receptor and additionally it may 

undergo redox cycling leading to the formation of reactive oxygen species and potentially 

oxidative damage (Liehr 1990a, Liehr 1990b). Similar to the 4-OHE metabolite, 2-

hydroxyestradiol and 2-OHE1, also can undergo metabolic redox cycling to form reactive oxygen 

species (Liehr 1990a, Liehr 1990b). Further oxidation can then lead to the formation of reactive 

semi-quinone and quinone products, specifically, estradiol-3,4-semiquinone, estradiol-3,4-

quinone, estradiol-2,3-semiquinone, and estradiol-2,3-quinone (Cavalieri 2006). 

As reviewed by Cavalieri et al., the catechol quinones that are formed can react with 

DNA to form depurinating adducts, which are released from DNA to form apurinic sites. These 

DNA adducts can lead to altered forms of DNA which can either be repaired or misrepaired, 

resulting in mutations. An adduct generally forms when a chemical covalently binds to a 

molecule such as DNA, and in this case either a stable adduct or depurinating adduct is formed 

when the catechol quinones bind with DNA. The depurinating adducts that are formed include 2-

OHE2-6-N3Ade which results from the 2-OHE pathway while 4-OHE1(E2)-1-N3Ade and 4-
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OHE1(E2)-1-N7Gua are formed when the catechol estrogen, E1(E2)-3,4-Q reacts with DNA. 

These depurinating adducts comprise more than 99% of the total DNA adducts formed (Zahid 

2006, Cavalieri 2006). The estrogen metabolism pathway and DNA adduct formation, along with 

the genes involved in these processes are depicted in figure 3 (adapted from Cavalieri 2006). The 

activating enzymes and DNA adducts are shown in red while the protective enzymes are shown 

in green. 

Cavalieri and colleagues discuss this model in relation to homeostatic balance (Cavalieri 

2006). The notion behind the proposed role of depurinating adducts as cancer initiators involves 

an imbalance between the activating and deactivating pathways shown in Figure 3.  The 

disruption of estrogen balance may lead to increased levels of estrogen quinones which would 

then be available to react with DNA. Potential causes of this imbalance may be the over 

expression of CYP1B1 or low levels of other substances in the pathway such as quinone 

reductase or glutathione (Cavalieri 2006). 

2.3.1 Studies of estrogen metabolites in healthy populations 

Since the early 1980’s, approximately 45 studies have evaluated the individual estrogen 

metabolites (2-OHE1, 16α-OHE1) , or the 2:16α-OHE1 ratio in relation to various factors 

including dietary and lifestyle factors, race, hormone therapy, genetic polymorphisms and family 

history. A summary list of studies that have evaluated the 2-OHE1 and 16-OHE1 metabolites 

among healthy populations is presented in Table 3. Studies have been conducted among 

populations of both pre- and postmenopausal healthy women, and the majority of studies 

measured estrogen metabolites in urine. 



 

 

Figure 3 Estrogen Metabolism and DNA Adduct Formation  

[Figure from Cavalieri et al. 2006. Biochim Biophys Acta. 1766(1): 66] 
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Some studies have evaluated potential racial differences in estrogen metabolites 

(Aldercruetz 1994, Ursin 2001, Jernstrom 2003, Falk 2005, Taioli 1996), while other studies 

have assessed the role of dietary factors on estrogen metabolite levels. These dietary factors 

include flaxseed consumption (Haggans 2000, McCann 2007, Sowers 2006), Brassica vegetable 

consumption (Fowke 2000), macronutrient intake (Fowke 2001), soya diet (Lu 2000), and 

indole-3-carbinol supplementation (Michnovicz 1997).  Additional studies have evaluated the 

effects of  lifestyle factors such as physical activity on estrogen metabolite levels (Pasagian-

Macaulay 1996, Atkinson 2004, Bentz 2005, Matthews 2004) as well as family history of breast 

cancer (Ursin 2002, Greenlee 2006) and postmenopausal hormone use (Alvarez-Vasquez 2002, 

Mueck 2001).  Factors suggested to increase 2-hydroxyestrone levels include vigorous exercise, 

intake of cruciferous vegetables, indole-3-carbinole, flax, soy, estrogen replacement therapy, 

thyroid hormone medication, and smoking.  Cruciferous vegetables include foods such as 

cabbage, broccoli, kale, otherwise known as Brassica foods which release indole-3-carbinole, a 

possible anticarcinogenic compound suggested to increase levels of 2-hydroxylation (Lord 

2002).  Obesity has been suggested to decrease 2-OHE1 levels, subsequently increasing 16α-

OHE1 levels (Sowers 2006). 

Estrogen metabolite levels vary among populations of healthy women. The mean values 

reported across studies are presented by race, menopausal status or in relation to dietary or 

lifestyle factors; describing the overall mean levels of estrogen metabolites among healthy 

subjects in the population can be difficult. Additionally, some studies may report only the mean 

values of the individual 2-OHE1 and 16α-OHE1 levels and not the ratio. In a small study of 67 

Singapore Chinese and 58 African American women, Ursin et al. reported no significant 

difference in the mean 2:16α ratio for Chinese women (1.63 95%CI: 1.40-1.89) versus African 
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American women (1.48 95% CI: 1.27-1.74).  Taioli et al. reported a significant difference in 

mean 2:16α ratio levels for Caucasian (2.25 ± 0.89) and African American (1.42 ± 0.61) women 

among a study population of 33 healthy women ages 18-73.  These findings suggest that estrogen 

metabolism may differ between some racial groups. 



Table 3 Summary of Studies of Estrogen Metabolites in Healthy Populations of Women   

Author Year Topic N Race Age Menopausal Assay # 2:16 Mean or 2:16 Ratio

      (years) Status measures Median Presented by

Aldercreutz 1986 dietary fiber  23 Finnish 31.7/34.6 Pre GC-MS 2 yes geometric diet groups 

Aldercreutz 1994 multiethnic 25 Asian/Finnish 23.3/31.9 Pre GC-MS 1 no mean 
2 or 16-OHE 
only 

Alvarez-Vasquez 2003 HRT 56 White^ ? Post EIA 1 yes mean
overall and 
by HRT

Armamento-
Villareal 2004 HRT 310 White avg. 60 Post EIA 1 yes mean HRT status

Atkinson 2003 equol excretion 126 White/Asian/AA 25-59 Pre & Post? EIA 1 yes geometric overall 

Atkinson 2004 pa intervention 173 mostly White (86%) 50-75 Post EIA 3 yes geometric intervention 

Bentz 2005 physical activity 77 White  18-51 Pre EIA 1 yes mean overall 

Brooks 2004 flaxseed RCT 46 White 
avg.  

52-54 Post 
EIA

2 yes mean treatment 

Campbell 2007 aerobic fitness 30 White 20-42  Pre 
EIA

2 yes mean 
fitness, 
menstrual 

Chen 1999 methods  10   White 23-58  Pre and Post EIA 8 yes mean No  

Falk 2005 multiethnic 511 Asian women 25-55 Pre & Post EIA 1 yes geometric Too specific  

Fowke* 2000 brassica vegetables 34 White >45 Post EIA 2 yes mean intervention 

Fowke* 2001 dietary factors 37 White^ >45 Post EIA 2 yes Mean 0verall 

Frankenfeld 2004 daidzein  89 White^ 50-75 Post EIA 1 yes geometric equol groups 

Greenlee 2007 family hx of br ca 64 Mostly white (91%) avg 50 Pre & Post 
EIA

1 yes mean 
menopause & 
age 

Haggans 2000 Flaxseed 16 mostly white  20-38 Pre EIA 3 yes mean diet group 

Jernstrom 2003 Multiethnic 513 Asian/AA/White/Indian 17-35 Pre EIA 1 yes geometric  phase 

Lim 1997 osteopenia, BMD 59 Korean 55-60 Post GC-MS 1 no mean  groups 

Lu 2000 soy, isoflavones 85 White? 33 Pre EIA Daily  yes mean  diet 

Leelawattana 2000 bone density 71 ** 47-59 Post ** ** yes ** ** 

Longcope 1987 low vs.high fat diet 64 White? ** Pre RIA 2 ** ** ** 

Martini 1999 soy intake 36 White? 18-40 Pre 
EIA

2 yes Mean 
 diet & OC 
use 

Masi 2006 blood pressure 85 White/AA/Latino 50-67 Post EIA 1 yes mean HRT status 
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Table 3 continued 
 

 
Abbreviations: GC-MS=Gas chromatography mass spectrometry, EIA=Enzyme ImmunoAsssay, RIA=Radiometric ImmunoAssay, Geometric: refers to geometric mean, 
^=requires confirmation,?=not indicated in publication, hx=history, men=menopause status, *Potentially same study populations, **=pending article 

Author Year Topic N Race Age Menopausal Assay # 2:16 Mean or
2:16 Presented

by

      (years) Status measures Median

McCann 2007 Flax, genes 132 mostly white (97%) 45-75 Post EIA 2 yes mean overall 

Matthews 2004 physical activity 157 White/Chinese 
 61.7/ 
47.1 Pre & Post 

EIA
2 yes mean  race 

Michnovicz 1988 smoking 29 White? 21-44 Pre RIA 1 no mean smoking 

Michnovicz 1997 indole3-carbinole 10 women White? 32.3  Pre GC-MS 2 no mean No 

Mueck 2001 OC & HRT 55, 63 White? 26/55 Pr& Post 
EIA

2 yes mean
pre & post HRT 
or OC

Mueck 2004 OC ** ** ** Pre EIA 2 yes mean  pre & post OC 

Napoli 2005 
genes/ bone 
density 156 White 63.5 Post 

EIA
1 yes mean  genotype 

Nettleton 2005 soy intake 40 White? avg 56.2 Post 
EIA

4 yes geometric 
overall  
(controls) 

Pasagian-Macaulay 1996 lifestyle factors 174 White? 44-50 Pre 
EIA baseline &  

6 months yes mean treatment group 

Riza 2001 breast density 140 Greek 40-65 Post EIA 1 yes Mean  breast density 

Sowers* 2006 genes 1340 AA/white/Asian/Hispanic 45-52 Pre & Peri EIA 1 no mean  race 

Sowers* 2006 diet &lifestyle 1881 AA/white/Asian/Hispanic 45-54 Pre &Pero EIA 1 yes mean  race 

Taioli 1996 multiethnic 33 White/AA 18-73 Pre & Post EIA 1 yes mean  race 

Ursin  2001 multiethnic 125 Chinese, US AA & White 45-75 Post EIA 1 yes geometric  race 

Ursin  2002 family hx of br ca 97 White 20-50 Pre EIA 1 yes geometric  family history 

Westerlind 2007 diet & exercise 24 White avg 31.5 Pre EIA 5 yes mean  menstrual phase 

Xu 1999 Menstrual cycle 6 White? avg 27.8 Pre GC-MS 
Daily  

(during cycle) yes mean  menstrual phase 

Xu 1998 soy isoflavones 12 white? avg 26 Pre GC-MS 3 yes mean  diet period 

Xu 2000 soy diets 18 white?  avg 56.9 Post GC-MS 2 yes mean Overall & diet 

 



2.3.2 Measurement of estrogen metabolites 

The 2-OHE1 and16α-OHE1 metabolites are present in low concentrations in the blood, and thus 

detection methods have focused on the measurement of these metabolites in urine. Earlier studies 

have utilized the gas chromatography-mass spectrometry technique to measure estrogen 

metabolites in urine (Aldercreutz 1976). However, this method can be labor intensive (Fotsis 

1987) and more prone to errors. In 1994, Klug et al. developed an Enzyme ImmunoAssay (EIA) 

technique to measure the 2-OHE1 and16α-OHE1 metabolites in urine (Klug 1994). This assay kit 

has been validated against other methods of estrogen metabolite detection, such as the gas 

chromatography-mass spectrometry (Falk 2000).  

In a methodological study by Ziegler et al., the original kit developed by Klug et al. 

(1994) was found to have difficulty with the limit of detection when measuring the metabolite 

levels in urine samples from postmenopausal women (Ziegler 1997).  Concentrations of estrogen 

metabolite levels are lower among postmenopausal women versus premenopausal women due to 

overall lower levels of estrogen in the body.  Subsequently, a modified version of the kit was 

developed with an increased sensitivity level of 0.625 ng/ml (Bradlow 1998). The components of 

the original kits are similar to those of the modified kit, with the exception of the modifications 

to the antibody concentrations, enzyme concentrations and standards.  

2.3.3 Reliability, reproducibility and validity of estrogen metabolites 

Limited research has been conducted in relation to the reliability, reproducibility, and validity of 

estrogen metabolites in urine as well as in other biological samples such as serum, plasma, and 
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tissue. Furthermore, the studies that have been conducted often are based on small sample sizes. 

Falk et al. conducted a study to evaluate the reproducibility, validity and assay performance of 

the modified ELISA kit compared with the gas chromatography-mass spectrometry method (GC-

MS) (Falk 2000). The results of this comparison demonstrated that the absolute values of the 2-

OHE1 and 16α-OHE1 metabolites were lower, and the 2:16α-OHE1 ratio was higher when 

measured with the new ELISA kit compared to the GC-MS. Despite the differences in the 

absolute values, the correlations between both laboratory methods were high. For the 2-OHE1 

metabolite, the Spearman correlation coefficients were 1.00 for both pre and postmenopausal 

women. Similarly, for the 16α-OHE1 metabolite, the Spearman correlation coefficient between 

both methods was 0.70 and 1.00 for pre- and postmenopausal, respectively (Falk 2000).   

In addition to the overall performance of the assay, it is also important to consider 

potential differences in estrogen metabolite levels when measuring these compounds in various 

biological samples. The ELISA kit can be used to measure the 2-OHE1 and 16α-OHE1 

metabolites in both plasma and urine, but few studies have compared the levels in both sample 

types (Bradlow 2006) or in relation to serum or tissue levels. In a study by Bradlow et al., plasma 

and urine samples were collected from 511 nulliparous, multiethnic women, aged 17-35. For the 

estrogen metabolite levels in plasma and urine, the reported correlation coefficient was 0.52 

(p<0.0001) (Bradlow 2006). The correlation between the levels from both sample types also was 

evaluated in relation to various factors such as oral contraceptives, phase of the menstrual cycle 

and ethnicity. The correlation between plasma and urinary levels was higher among those not 

currently taking oral contraceptives (rs=0.58; p<0.0001) compared to those who are currently 

taking oral contraceptives (rs=0.34; p<0.0001) (Bradlow 2006).  In addition to comparisons 

between plasma and urine, 2-OHE1 and 16α-OHE1 metabolites were measured in tissue using gas 
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chromatography-mass spectrometry.  Tissue samples were obtained from mammary fat taken 

from multiple specimens during mammoplasty for breast reduction.  Due to the variability and 

wide range of both the 2-OHE1 and 16α-OHE1 metabolite levels in the tissue samples, tissue 

levels could not be compared with urinary or plasma levels (Bradlow 2006).  Additional studies 

have not compared estrogen metabolite levels in tissue versus plasma or serum. Thus, it remains 

unknown whether urinary levels of estrogen metabolites reflect tissue levels in the breast.  

Limited research has been conducted in the area of within-person variability and the 

stability of estrogen metabolite levels over time. Chen et al. conducted a study to assess the 

within-person variability of the ratios of urinary 2-OHE1 to 16α-OHE1 (Chen 1999). Ten healthy 

Caucasian women aged 23-58 years provided an overnight fasting morning urine sample once a 

week for eight weeks. Over this two-month period, the 2-OHE1 and 16α-OHE1 metabolites 

measured at any one time point correlated with the average ratio over the eight week study 

period (mean correlation coefficient: 0.85) (Chen 1999). Although this study supports the 

stability of the estrogen metabolites over a two-week period, the results are based on a small 

sample size. 

The temporal reliability of hormone levels and in particular, the 2-OHE1 and 16α-OHE1 

metabolites was measured by Williams et al. in a longitudinal study in which five samples were 

collected over a year (n=34). Twelve analytes were measured and the investigators observed that 

only two analytes, sex hormone binding globulin and estrone sulfate, could be adequately 

estimated by a single measure with the potential to account for 64% of the true variance. This 

study suggests that a single measure of the estrogen metabolites may not adequately account for 

at least 50% of the true variance, and preferably, that 2-4 measures might be adequate 

(accounting for 81% of the true variance). In regards to the overall stability of the five measures 
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of 2-OHE1 and 16α-OHE1, the intraclass correlation coefficients were 0.46 (0.30-0.63) and 0.56 

(0.41-0.71), respectively (Williams 2002). Despite the studies by Chen and Williams, questions 

still remain with regard to the within-person variation of estrogen metabolites over time and the 

validity of a single measure over multiple measures, as well as additional methodological issues 

concerning the measurement of estrogen metabolites. 

2.4 ESTROGEN METABOLITES AND BREAST CANCER 

Lifetime estrogen exposure is a known breast cancer risk factor. Estrogens are involved in the 

proliferation of human breast epithelial cells and may indirectly influence carcinogenesis by 

stimulating cell division (Preston-Martin 1990, Fiegelson 1996). As the rate of mitosis increases, 

the possibility that a mutation will occur also increases (Preston-Martin 1990, Fiegelson 1996).  

Estrogen exposure is affected by normal life events such as age at menarche, age at first 

pregnancy and age at menopause, all of which may impact breast cancer risk but are often not 

modifiable.  Considering the role of lifetime estrogen exposure in breast cancer development, 

along with the possible variation of estrogen metabolism in women, studies have evaluated the 

relationship between estrogen metabolite levels and breast cancer risk (Cauley 2003, Fowke 

2003, Ho 1998, Kabat 1997, Kabat 2006, Meilahn 1998, Modugno 2006, Muti 2000, Ursin 1999, 

Wellejus 2005), however, the results have varied across studies.  

Earlier studies by Schneider et al. (1982) and Fishman et al. (1984) first measured the 

role of 16α-OHE1 using a radiometric assay in a small sample of women with breast and 

endometrial cancer (n=10 controls, n=33 breast cancer patients and n=10 endometrial cancer 

patients). The results of these studies suggested elevated levels of 16α-OHE1 among women with 
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breast and endometrial cancer as compared to the controls. Fishman et al. reported a statistically 

significant difference in the mean (± SE) 16α-hydroxylation values for breast cancer patients 

(14.9 ± 1.5) versus normal women (9.3 ± 0.8), p-value=0.01 (Fishman 1984).  Since the 

publication of these initial studies, twelve studies have evaluated the association between 

estrogen metabolites and breast cancer, including seven case-control, four nested case-control 

and one case-cohort study. The tables below summarize the study characteristics and main 

findings of these 11 published nested case-control and case-cohort studies (Table 4), and case-

control studies (Table 5) (summary of studies current as of July 15, 2008).  

While the results of some studies support an overall association for a reduction in breast 

cancer risk with a higher 2:16α -OHE1 ratio (Kabat 1997, Ho 1998), other studies suggest either 

a modest association or a lack of statistical significance (Meilahn 1998, Muti 2000, Wellejus 

2005), or show no association at all (Ursin 1999, Cauley 2003).  Additionally, the relationship 

between the 2:16α -OHE1 ratio and breast cancer risk may depend on whether the metabolites 

were measured before or after treatment (Fowke 2003) and on factors such as obesity and 

hormone replacement therapy (Modugno 2006).  

Possible explanations for the inconsistent findings across studies include differences in 

the timing of the specimen collection, the covariates included as potential confounders, whether 

subgroups were considered in the analyses, sample size, the type of biological sample (serum vs. 

urine) and potential biases. The few studies that reported significant findings likely detected a 

protective effect with the 2:16α-OHE1 ratio because multiple confounding variables and 

important subgroup analyses also were considered (Modugno 2006, Fowke 2003, Wellejus 

2005).  
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Both BMI and hormone therapy are important breast cancer risk factors that may affect 

endogenous hormone levels. Assessing the role of estrogen metabolites in relation to these 

potential effect modifiers as well as other factors such as menopausal status, stage of disease and 

estrogen receptor status may help elucidate the relationship between estrogen metabolites and 

breast cancer. However, individual study sample sizes are often too small to allow for such 

stratification. The sample sizes of the study populations ranged from approximately 40 to 426 

cases and 60 to 426 controls. The largest study, conducted by Wellejus et al., included 426 cases 

and 426 controls while the study by Kabat et al. (1997) included 42 cases and 64 controls.  

Inconsistent findings have been reported across the studies, regardless of the type of 

study design utilized. Muti et al. conducted a nested case-control study within the Guernsey 

study and reported a non-significant reduction in breast cancer risk among women in the highest 

versus lowest tertiles of 2:16α-OHE1 (premenopausal: OR=0.75, 95% CI: 0.35-1.62; 

postmenopausal: OR=0.71, 95% CI: 0.29-1.75). Another nested case-control study was 

conducted among women ages 35-60 years of age who were participants in the ORDET Study 

(Hormones and Diet in the Etiology of Breast Cancer). Results suggested that a higher ratio of 2-

OHE1 to 16α-OHE1 conferred a protective effect among pre-menopausal women in the highest 

quartile compared to those in the lowest quartile (OR=0.58, 95% CI: 0.25-1.34). However, 

among postmenopausal women, a non-significant increased risk was observed among those in 

the highest versus lowest quartile of 2:16α-OHE1 (OR=1.29, 95% CI: 0.53-3.10) (Muti 2000). 

Both Modugno et al. and Wellujus et al. assessed the association between the estrogen 

metabolites and breast cancer by specific subgroups.  Wellejus et al. reported a statistically 

significant difference in the mean 2:16α-OHE1 values by hormone therapy status (p=0.0001) and 

specifically, higher 2:16α-OHE1 values were observed among hormone therapy users. The case-
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cohort study conducted by Cauley et al. did not detect an association between the estrogen 

metabolite ratio and breast cancer among women ≥ 65 years of age who were participants in the 

Study of Osteoporotic Fractures (SOF) (Cauley 2003).  

Similar variation in study findings was observed among the published case-control 

studies. Ursin et al. reported no significant difference in mean 2:16α-OHE1 values by 

case/control status (p=0.58).  Significant findings were reported by both Ho et al. and Kabat et 

al.; however, the results should be interpreted carefully as these estimates are based on fairly 

small sample sizes. Fowke et al. stratified analyses by the timing of urine collection and 

observed a significant increase in breast cancer risk with an elevated 2:16α-OHE1 among those 

with urine samples collected after treatment (Fowke 2003).  Based on the results of published 

studies to date, the relationship between the 2-OHE1 and 16-OHE1 metabolites and breast cancer 

remains unclear. Conducting a combined analysis of individual data from published studies to 

evaluate this research question will help clarify whether the 2:16α-OHE1 ratio is significantly 

associated with breast cancer among pre- and postmenopausal women. Figures 4 and 5 present a 

graphical summary of the individual published study estimates of the association between the 

2:16α-OHE1 ratio and breast cancer (Tables 6 and 7 indicate the corresponding study estimates). 



Table 4 Nested Case-Control or Case-Cohort Studies of Estrogen Metabolites (2-OHE1/16α -OHE1) and Breast Cancer 

Authors 
(year) 

No.  of  
cases/controls 

Study Population Age 
 

Sample 
Source/ Assay

Major Findings 
OR/RR (95% CI) 

Meilahn  
et al. (1998) 

Postmenopausal: 
42/139 
Premenopausal: 
60/184 
 
 
 

Guernsey III cohort study 
1977-1985 
 
1:3 matching on age (± 2 
years), date of baseline exam 
(± 1 year), menopausal status 
(if premenopausal, matched 
on phase on menstrual cycle) 

 ≥ 35 years 
 
mean age (SD) 
(cases/controls): 
Premenopausal:  
40.5 ± 4.3 / 40.5 ± 4.2  
Postmenopausal: 
59.1 ± 6.6 / 59.0 ± 6.2 

spot urine/  
enzyme 
immunoassay 

highest tertile vs. lowest tertile of 2/16 ratio  
and breast cancer  (unadjusted) 
    Postmenopausal: OR=0.71  
                                (95% CI: 0.29-1.75) 
    Premenopausal:   OR=0.75 
                                (95% CI: 0.35-1.62) 
2:16  median (cases/controls): 
Pre: 2.1 / 2.1            Post: 1.6 / 1.7  

Muti et al. 
(2000) 

Postmenopausal: 
71/274 
Premenopausal: 
67/264 
Italian women,  
 

Residents of Varese 
province, northern Italy,  
enrolled as part of the 
‘Hormones and Diet Etiology 
of Breast Cancer Study’ 
(ORDET) 
1:4 matching on age, 
menopausal status, time of 
blood draw, centers 

35-60 years 
 

urine/ 
 enzyme 
immunoassay 

≥ 3.66 vs. ≤ 1.77 (adjusted) 
     Postmenopausal: OR=1.31 
                                  (95% CI: 0.53-3.18) 
     Premenopausal: OR=0.55 
                                (95% CI: 0.23-1.32) 
*similar unadjusted OR values  
2-OHE1& 16-OHE1 median: 
Pre: 40.3 ng/ml & 17.5 ng/ml 
Post: 9.7 ng/ml & 4 ng/ml 

Cauley 
 et al. (2003) 
 
Case-cohort 

272/291  
Postmenopausal 

Participants from the Study 
of Osteoporotic Fractures  
(Portland, Minneapolis, 
Baltimore, Monongahela Valley) 

≥ 65 years 
 

serum/  
Estramet 2/16 
enzyme 
immunoassay  

>  0.92 vs. ≤ 0.58 (age & bmi adjusted): 
HR:1.17 (0.73-1.87) 
Geometric mean (cases/controls): 
0.74 (0.71-0.77) / 0.73 (0.70-0.77) 

Wellejus  
et al. (2005) 

426/426  
Postmenopausal 
 

Danish women from the Diet, 
Cancer and Health Cohort 
 
matched by age at diagnosis, 
baseline age and HRT use 

50-64 years Spot urine/ 
Estramet  2/16 
enzyme 
immunoassay 

Among HT users: 
2:16 ratio per doubling age adjusted 
                       IRR =1.27 (95% CI: 1.00-1.60) 
 

2:16 median by HRT status (cases/controls): 
HRT users:            2.2 (0.7-5.3) / 1.9 (0.7-5.8)  
HRT nonusers:      1.6 (0.7-32) / 1.6 (0.6-3.5)  
p-value (HRT vs. non) = 0.0001 

Modugno  
et al. (2006) 

200/200  
Postmenopausal  
 
Majority white 
(92% of cases  
& controls) 

Women’s Health Initiative 
(women from 40 US clinical 
centers) 
 
matched by ethnicity, 
enrollment date, clinic site, 
type of HT and years since  
menopause 

50-79 years serum/ 
 Estramet 2/16 
enzyme 
immunoassay  

↑ BMI & ↑ 16α-OHE1 vs. ↓BMI &  
↓16α-OHE1 among Non HT users: 
OR=3.51 (1.34-9.16) 
Median 2:16 levels (cases/ controls):  

No HT        0.43/ 0.46 
ERT            0.97/ 0.93 
PERT          1.03/1.01 
Any HT      1.01/ 0.99 
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Table 5 Case-Control Studies of Estrogen Metabolites (2-OHE1/16α -OHE1) and Breast Cancer 

Authors 
(year) 

No.  of  
cases/controls 

Source of 
Controls 

Study Population Age Sample Source/ 
Assay 

Major Findings 
OR (95% CI) 

Kabat  
et al. (1997) 

Overall: 
42 invasive/64 
Postmenopausal: 
23 invasive/28 
 
 
 

Women 
undergoing 
routine 
mammogram or 
screening 

 Women evaluated or 
treated at Montefiore 
Medical Center (Bronx, 
New York) 
 

mean (SD) 
(cases/controls): 
53.8 ± 15.1 /  
54.2 ± 10.4 
 

spot urine/ enzyme 
immunoassay 

2:16 ratio  < 1.38 vs. >1.91   
                OR=1.95 (0.64-5.97) 
 Postmenopausal only: 
               OR=32.74 (3.36-319.09) 
2:16 mean (cases/controls)  
overall:  1.67 ± 0.80 / 1.72 ± 0.66  
(p=0.7) 
post:       1.41 ± 0.73/ 1.81 ± 0.71 
(p=0.05) 

Zheng  
et al (1998) 

20/20 
Menopausal 
status not listed 

Primarily from 
female employees 
in the Shanghai 
Cancer Institute 

Two hospitals in 
Shanghai and 
Hangzhou, China 

No provided Urine/Estramet 2/16 
enzyme 
immunoassay 

Mean (cases/controls): 
1.16/1.52,  p=0.046 
 
No other information provided 

Ursin  
et al. (1997) 
Pilot study 

25/23 
Postmenopausal 

Eligible 
community 
controls from 
previous case-
control study 

English speaking white 
women (including 
Hispanics)  
Los Angeles county  

55 - 64 years urine/ Estramet 2/16 
enzyme 
immunoassay 

Mean ± SE (cases/controls) 
 
2:16  mean 1.39 ± 0.10 vs. 1.58 ± 
0.20  (p=0.58) 
 

Ursin  
et al. (1999) 

66/76 
Postmenopausal 

Eligible 
community 
controls from 
previous case-
control study 

English speaking white 
women (including 
Hispanics)  
Los Angeles county  
Individual matched by 
age, ethnicity and area 
of residence 

50 - 64 years urine/ Estramet 2/16 
enzyme 
immunoassay 

≥ 1.91 vs. < 1.38 
 
Adj OR=1.13 (0.46-2.78) 
 
2:16 ratio  mean (cases/controls) 
1.78 (1.58-2.01) vs. 1.76 (1.60-
1.93) (p=0.84) 

Ho et al. 
(1998) 

65/ 36  
Pre & 
Postmenopausal 
 
 

Randomly 
selected  women 
who underwent 
breast biopsy 
(national breast 
screening project)  
confirmed to have 
benign breast 
disease 

Cases did not receive 
chemotherapy or 
radiotherapy.  
 
Excluded insulin 
dependent diabetics, 
patients with hepatic 
dysfunction or loss of 
more than 5% 
premorbid weight 

 
Mean Age± SE 
(cases/controls) 
54.0 ± 1.2 
54.8 ± 0.9  
 

urine/ Estramet 2/16 
enzyme 
immunoassay  
 
urine collected after 
overnight fast 

2/16 ratio (continuous variable) 
and breast cancer, adjusted 
OR=0.10 (0.03-0.38) 
 
≤ 0.9 vs. 0.9 
   adjusted OR=6.45 (2.05-20.3) 
2/16 ratio Mean ± SE 
(cases/controls): 
All:   0.7 ± 0.1 / 2.0 ± 0.3 
Post Menopausal:  0.7 ± 0.1 / 2.2 
± 0.5 
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Authors 
(year) 

No.  of  
cases/controls 

Source of 
Controls 

Study Population Age Sample 
Source/ 
Assay 

Major Findings 
OR (95% CI) 

Fowke  
et al. (2003) 

110/110 pairs 
 
 

random controls 
selected from a 
complete registry 
of the Shanghai 
population 

 Incident breast cancer 
cases identified from 
registries (hospital or 
tumor) in Shanghai, 
China  
Individually matched by 
menopausal status, age 
and pre or post treatment 
urine collection 
 

25 - 65 years 
(median = 46 years) 
 

urine/ 
Estramet 2/16 
enzyme 
immunoassay  
 

≥ 1.22 vs. ≤ 0.69 
Urine collection: 
Pre-treatment: adj OR: 0.5 (0.2,1.1) 
Post:                adj OR: 8.1 (1.6,47.1) 
*78 pretreatment pairs,  
32 posttreatment 
 
2:16 median (cases/controls): 
 Pretreatment: 0.9/1.0  
 Posttreatment: 1.3/ 0.8  
 

Kabat 
 et al. 
(2006) 

269 invasive, 
158 in situ/326  
 
Pre & 
postmenopausal  

Random sample 
of Nassau and 
Suffolk county 
residents 
< 65 identified 
from RDD and 
> 65 from Health 
Care Financing 
Administration 
 

The Long Island Breast 
Cancer Study Project, 
Nassau and Suffolk 
Counties, Long Island 
 
Primary invasive & 
insitu cases identified 
through rapid case 
ascertainment 
 

range 20-98 spot urine/ 
Enzyme linked 
immunoassay 

≥ 2.3 vs. ≤ 1.4 
 
Postmenopausal: 
     Invasive     0.78 (0.46-1.33) 
     In situ         0.83 (0.44-1.57) 
 
Premenopausal: 
     Invasive     0.50 (0.25-1.01) 
     In situ        1.45 (0.66-3.19) 
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Table 5 continued 

 



 

Figure 4 Premenopausal Studies: Association between 2:16α-OHE1 and Breast Cancer* 

*Estimates shown reflect those in the original publication. 
 
 
Table 6 Premenopausal Study Specific Published Estimates Corresponding to Figure 3 

Study* 2:16α-OHE1 cutpoints Estimate** Confidence 
 Limits 

Meilahn 1998 <1.72,1.72-2.43, ≥2.44 OR=0.75 
 

(0.35, 1.62) 

Muti 2000 ≤1.80,1.80-2.30, 2.31-2.72, 
2.72-3.29, ≥ 3.29 

OR=0.55 (0.2, 1.32) 

Kabat 2006 ≤ 1.4, 1.5-2.2, ≥ 2.3 OR=0.50 (0.25, 1.01) 
*Studies by Fowke et al. (2003) and Ho et al (1998) which are listed in Table 5 also included 
premenopausal women; however, the published data were not presented stratified by menopausal status. 
**Estimates presented in Figure 4 and Table 6 reflect the highest category vs. lowest category of 2:16α-
OHE1. 
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Figure 5 Postmenopausal Studies:  Association between 2:16α-OHE1 and Breast Cancer 

*Published results in Fowke et al. (2003) were presented by timing of urine collection (pre and post treatment). 
Estimates presented for Fowke et al. and Ho et al. are for all women (including pre-menopausal) as the estimates in 
the publications were not stratified by menopausal status. All estimates presented reflect those in the original 
publications. 
 
 

Table 7  Postmenopausal Study Specific Published Estimates Corresponding to Figure 4 

Study* 2:16α-OHE cutpoints Estimate Confidence Limits 
Cauley 2003 ≤ 0.576, 0.577-0.749, 

0.750-0.923, >0.923 
1.17 (0.73, 1.87) 

Fowke 2003 (Post Tx) ≤ 0.69, 0.70-1.22,  ≥ 1.22 8.70 (1.6, 47.1) 
Fowke2003 (Pre Tx) ≤ 0.69, 0.70-1.22,  ≥ 1.22 0.50 (0.2, 1.1) 
Ho 1998 ≤ 0.9, > 0.9 0.16 (0.49, 0.49) 
Kabat 1997 <1.38, 1.8-1.90, > 1.91 0.31 (0.003, 0.3) 
Kabat 2006  ≤1.5, 1.6-2.2, ≥ 2.3 0.78 (0.46, 1.33) 
Meilahn 1998 <1.39, 1.39-2.08, >2.09 0.71 (0.29, 1.75) 
Muti 2000 ≤1.77, 1.77-2.26, 2.26-

2.80, 2.80-3.66, ≥ 3.66  
1.31 (0.5, 3.18) 

Ursin 1999 ≤ 1.16,  1.17-1.73,  > 1.73 1.13  (0.46, 2.78) 
Wellejus 2005 (No HRT) per doubling of the ratio 0.94 (0.69, 1.26) 
Wellejus 2005 (HRT) per doubling of the ratio 1.25 (1.02, 1.53) 
*Modugno et al. (2005) results are not included in this table as estimates for the ratio were not presented in the 
publication (only median values and estimates for the individual metabolites). Abbreviations: Tx=treatment, 
HRT=Hormone Replacement Therapy 
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2.4.1 Possible mechanisms underlying the association between estrogen metabolites and 

breast cancer 

Estrogen metabolites are thought to influence the growth of estrogenic target cells (Lippert 

2000).  More specifically, the 16α-OHE1 metabolite, due to its high affinity to bind to the 

estrogen receptor, has been associated with cell proliferation and metastasis, whereas the 2-OHE1 

may not have a role in these processes (Seeger 2006).  Estrogens have mainly been considered 

breast cancer promoters due to their ability to stimulate cell proliferation. Estrogens are thought 

to increase the proliferation of breast epithelial cells lending cells susceptible to genetic errors 

which if not repaired, can lead to carcinogenesis (Fiegelson 1996). However, an additional 

carcinogenic model has been proposed suggesting that estrogen may act as a cancer initiator 

(Cavalieri 2006, Yager 2000). The estrogen depurinating adducts which are formed from the 2-

OHE1 and 4-OHE estrogen metabolites may directly lead to the initiation of cancer by inducing 

genetic mutations (Cavalieri 2006). The estrogen metabolites may also indirectly lead to 

genotoxic effects through oxidative damage, which occurs as a result of redox cycling (Yager 

2000).  

2.5 ESTROGEN DEPURINATING ADDUCTS AND BREAST CANCER 

Limited studies have been conducted in the area of estrogen conjugates and depurinating adducts 

in relation to cancer, and specifically breast cancer (Rogan 2003, Markushin 2003). Rogan et al. 

evaluated breast biopsy tissues from 28 breast cancer cases and 49 women without breast cancer. 
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Tissue samples were tested for estrogen metabolite levels as well as catechol estrogen quinone 

conjugates. Higher levels of 4-OHE and catechol estrogen conjugates were detected in breast 

cancer tissue compared to healthy tissue, with levels of the 4-catechol estrogen approximately 

three times higher in breast cancer tissue compared to control tissue (Rogan 2003). The results 

from this study suggest that breast cancer cases have higher levels of catechol estrogen 

conjugates than non-cases. This may result in an increased possibility for the conjugates to react 

with DNA leading to the formation of DNA adducts.   

A study by Markushin et al. (2003) aimed to assess whether the catechol estrogen 

quinone DNA adducts can be detected in human breast tissue extract using tissue samples from 

two women (one woman with breast cancer and one without). Although the focus of the study 

was on detection methods and was conducted on a sample size of n=2, the results of this study 

not only showed that the 4-OHE1-1-N3Ade and 4-OHE2-1-N3Ade adducts can be detected in 

breast tissue extract, but also that the adduct levels may differ by cancer status. The levels of the 

4-OHE1-1-N3Ade adduct in breast tissue extract from a breast cancer patient were 8.40 ± 0.05 

pmol/g of tissue compared to 0.25 ± 0.05 pmol/g in the healthy tissue. Levels of the 4-OHE2-1-

N3Ade adduct were similar for both tissue samples. Although these results would need to be 

replicated in larger studies, they demonstrate the presence of the catechol estrogen quinone DNA 

adducts in breast tissue. In a recent study by Gaikwad et al., estrogen metabolite levels, estrogen 

conjugates and depurinating adducts were measured using urine samples from 46 healthy control 

women, 12 high-risk women and 17 women with breast cancer (Gaikwad 2007).  Higher levels 

of the ratio of depurinating adducts to their relevant estrogen metabolites and conjugates were 

reported among high risk (p <.0001) and breast cancer patients (p<.0001) as compared to healthy 

controls (Gaikwad 2007). 
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In addition to studying the relationship between estrogen adducts and breast cancer, 

recent research has evaluated estrogen DNA adducts in relation to prostate cancer, also a 

hormonally driven cancer. Markushin et al. reported the detection of the depurinating adduct 4-

OHE1(E2)-1-N3Ade in urine samples of prostate cancer patients. Interestingly, this particular 

adduct was not detected in the urine of healthy men (Markushin 2006). The results from these 

studies warrant future investigations of estrogen DNA adducts in relation to breast cancer and in 

relation to breast density, an intermediate marker of breast cancer risk. 



2.6 ESTROGEN METABOLITES AND BREAST DENSITY 

Considering the potential association between estrogen metabolites and breast cancer, as well as 

the strong link between estrogen levels and breast cancer risk, it may be beneficial to evaluate 

the role of estrogen metabolites in relation to breast density, a strong predictor of breast cancer 

risk. To date, only one study has examined the relationship between breast density and estrogen 

metabolites. A cross-sectional study by Riza et al. reported a significant association between a 

higher 2:16α-OHE1 ratio and a P2/DY parenchymal pattern among postmenopausal women 

(Riza 2001). The Wolfe’s mammographic parenchymal patterns classification system was used 

to measure breast density in this study in which the P2/DY parenchymal pattern pertains to high 

breast density. Thus, the results of this study suggest that higher, rather than lower levels of the 

2:16α-OHE1 ratio may be associated with parenchymal patterns known to increase breast cancer 

risk. The results of Riza et al. suggest a different direction of association than what is suggested 

in relation to breast cancer. Additional research is needed in this area in order to gain a better 

understanding of the relationship between estrogen metabolites and breast density, a strong 

predictor of breast cancer risk. Thus, it remains unclear whether estrogen metabolite levels may 

in part explain some of the observed variation in breast density. 
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2.7 EPIDEMIOLOGIC METHODS: COMBINED ANALYSIS 

In epidemiology, existing literature is often reviewed and summarized, but these synopses can 

sometimes be subjective to the reviewer’s opinions. Two methods currently used to 

systematically review literature and to provide a more objective summary are a meta-analysis of 

published results or a pooled analysis of individual level data from published studies. Meta-

analyses combine summary measures whereas pooled analyses combine individual level data. 

Friedenreich discusses the methods and issues that should be considered when combining data 

from epidemiologic studies (Friedenreich 1993). Advantages to conducting a combined analysis 

of individual level data include the ability to better assess confounding and interaction in a large 

sample size of combined studies, as well as the ability to study rare exposures. As discussed by 

Friedenriech, a combined analysis of individual data is more advantageous than a meta-analysis 

due to the ability to re-analyze the raw data using uniform coding, definitions, and cutpoints as 

well as the adjustment for similar confounders.  

Fredenreich discusses eight steps to consider when conducting a combined analysis of 

individual data. Those include (1) identifying and locating all relevant studies, (2) selecting 

eligible studies, (3) requesting and obtaining the primary data from the original investigators, and 

preparing the data, (4) estimating the study-specific effects, (5) assessing the potential 

heterogeneity of the study-specific effects, (6) estimating the combined effect, (7) assessing the 

potential heterogeneity between studies, and (8) performing a sensitivity analysis (Friedenreich 

1993).  

Although methodological approaches to a combined analysis of individual level data 

have been summarized (Friedenrich 1993, Bletnner 1999, Taioli 2002), few studies have 

addressed the statistical issue that arises when trying to combine individual data from studies of 
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different designs. Moreno et al. has discussed methods for the combined analysis of matched and 

unmatched case-control studies (Moreno 1996). Moreno et al. suggest the use of an interaction 

term between the individual risk factors and an indicator variable for study group. The 

interaction term coefficient would estimate the difference for a risk factor between the matched 

and unmatched studies. Despite the analytic challenges of conducting a combined analysis, an 

analysis of individual data has advantages, as noted above.  

2.8 SUMMARY OF BACKGROUND AND SIGNIFICANCE 

Estrogen exposure is an established hormonal risk factor for breast cancer but the mechanism by 

which increased estrogen exposure increases breast cancer risk is not clear. Potential 

mechanisms to explain this estrogen link have been proposed. One potential hypothesis includes 

the notion of estrogen’s proliferative effect on breast cancer cells in which an increase in mitotic 

activity may increase the chances of a mutation occurring. A more recent hypothesis suggests 

that estrogen (and in particular estrogen metabolites) may act as cancer initiators, leading to 

DNA damage through the formation of DNA adducts.  Despite these proposed hypotheses, the 

mechanism by which estrogen affects breast cancer risk, and the role of estrogen metabolites, 

remains to be elucidated. 

Many of the known breast cancer risk factors impact a woman’s cumulative lifetime 

exposure to estrogen. Understanding the potential role of estrogen metabolites in the 

carcinogenic process may contribute insight into the underlying mechanism of estrogen 

exposure. In addition, estrogen metabolites may serve as potential biomarkers of breast cancer, 
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and may help identify high-risk women. The intention of the combined analysis was to clarify 

the association between estrogen metabolites (2-OHE1 and 16α-OHE1) and breast cancer.   
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3.0  URINARY 2:16 ΑLPHA-HYDROXYESTRONE AND BREAST CANCER: 

OVERALL METHODS FOR THE COMBINED ANALYSIS 

3.1 METHODS 

3.1.1 Study design 

We utilized a combined analysis approach, using individual level data from previously published 

studies in order to examine the relationship between urinary estrogen metabolites, specifically 2-

OHE1, 16α-OHE1, and the 2:16α-OHE1 ratio and breast cancer. Although individual studies have 

evaluated the potential association between these urinary estrogen metabolites and breast cancer, 

a combined analysis is advantageous in that it provides an increase in sample size and 

corresponding power which is necessary for the investigation of specific estrogen metabolites 

and breast cancer. This study design also allows for the assessment of potential effect 

modification by factors such as body mass index and tumor characteristics such as estrogen and 

progesterone receptor status. 
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3.1.2 Study Identification and Selection 

Original research studies that evaluated the relationship between estrogen metabolites and breast 

cancer were identified by searching the National Library of Medicine and National Institutes of 

Health Pubmed database. The search strategy (Figure 6) involved the following keyword search 

terms: (1) estrogen metabolites (n=2901 articles) and (2) estrogen metabolites with additional 

limits to females and English language (n=974 articles), (3) estrogen metabolites AND breast 

cancer (n=376 articles). Each of the 376 citations and abstracts were reviewed and 12 articles 

were identified as having examined estrogen metabolites in relation to breast cancer.  The 

remaining articles were considered ineligible for the following reasons: (1) review articles, (2) 

other metabolites such as tamoxifen metabolites, (3) in vitro studies, (4) other cancers, and (5) 

unrelated topics. Reference lists from retrieved articles were also reviewed in order to identify 

additional eligible articles; no additional studies were identified. This search is current as of July 

15, 2008.    

Articles were considered eligible for review if they met the following pre-determined 

inclusion criteria:  (1) an original research study, (2) exposure measured as 16α -OHE1, 2-OHE1, 

and/or the ratio of these two main estrogen metabolites, (3) urine as the sample source, (4) breast 

cancer assessed as the main outcome and (5) sample size of at least 50 subjects. These criteria 

were determined a priori and were selected to maximize the comparability across studies.  

3.1.3 Selection results 

Of the eight eligible published studies, three are nested case-control studies (Meilahn 1998, Muti 

2000, Wellejus 2005, and five are case-control studies (Kabat 1997, Ho 1998, Ursin 1999, 
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Fowke 2003, Kabat 2006). Two studies by Ursin et al. were identified, one of which is a pilot 

study (Ursin et al. 1997) with data on a subset of the study population published in Ursin et al. 

1999. Therefore, the more inclusive study by Ursin et al., published in 1999 will be included in 

this analysis.  

3.1.4 Data collection and extraction 

Study investigators were asked to submit their study specific datafile along with a copy of the 

original questionnaire, a description of the variables and study methods, and a datafile which 

included the main exposures of interest, the 2-hydroxyestrone and 16α-hydroxyestrone 

metabolites, along with important breast cancer covariates. In addition, for each participating 

study, information on the type of study design, the study population, matching variables (when 

appropriate), case and control status, as well as important covariates were collected.  Covariates 

requested include demographics (age, race, education, socioeconomic status), lifestyle factors 

(alcohol consumption and smoking), height, weight, menopausal status, reproductive factors (age 

at menarche, age at first birth, parity, number of live births), timing of urine collection, 

treatment, tumor characteristics, family history of breast cancer, benign breast diasease, oral 

contraceptive and hormone therapy use. Upon receipt of each datafile, the data was checked for 

consistency and uniformity with previously published results. Any identified discrepancies were 

resolved with the study investigators.  Appendix A includes a checklist, which indicates the 

completeness of each datafile received.  The coding for each covariate provided from the study 
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Figure 6 Pubmed Search for Articles Investigating the Relationship between Estrogen Metabolites 

and Breast Cancer 
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 investigators was reviewed and a common definition was created for potential covariates.   

After review of each datafile, less than 5% of observations were missing values for the 2:16α-

OHE1 ratio. Details on the matching, case and control selection and exclusion criteria for each 

participating study are also presented in Appendix A.    

Complete staging information was available for cases in the study by Muti et al. Stage 

categories were provided by Fowke et al.; however, details on the category definitions were not 

provided. Stage was defined as unknown for cases from Guernsey et al. since only information 

on grade and node was available.  Due to the incomplete information on tumor staging, we were 

unable to assess metabolite levels by stage of disease.   

3.1.5 Statistical Analysis 

Listed below are the preliminary descriptive analyses performed for each of the specific aims. 

The additional details on the specific analyses utilized for each aim are included within each 

corresponding chapter. 

Aim I and II: To explore the distribution of each metabolite and the assumption of linearity on 

the logit scale, Lowess smoother plots on the logit scale (and p scale) and normal histograms 

were generated for the combined population and for each study (Appendix B and C). 

Aim III: The distribution of each metabolite among premenopausal and postmenopausal controls, 

by study, were assessed using normal histograms and by kernel density smoother plots. Study 

specific correlations between continuous variables (age, BMI, waist-to-hip ratio, age at 

menarche, and age at first pregnancy) and estrogen metabolites (2-OHE1, 16α-OHE1, and 2:16α-

OHE1) were estimated using the nonparametric Spearman rank correlation coefficient.  Study 

specific differences in median levels of estrogen metabolites by categorical variables (ethnicity, 
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family history of breast cancer, history of benign breast disease, smoking, alcohol consumption, 

BMI, oral contraceptive use and parity) were assessed using the nonparametric Wilcoxon rank 

sum test. These graphs and analyses are presented in Appendix D. 
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4.1 ABSTRACT 

Objective:  Estrogen metabolism may play a role in breast carcinogenesis; however, only a few 

small studies have evaluated this association among premenopausal women. The objective of 

this analysis was to evaluate the role of the two urinary estrogen metabolites, 2-hydroxyestrone 

(2-OHE1) and 16α-hydroxyestrone (16α-OHE1), and their ratio (2:16α-OHE1) in relation to 

breast cancer among premenopausal women by conducting a combined analysis of previously 

published studies.  

Methods: Primary data from three previously published studies yielded a study sample of 731 

premenopausal women, including 183 invasive breast cancer cases and 548 controls.  Urinary 

estrogen metabolite levels were measured using an ELISA assay. Both study-specific and 

combined unadjusted and multivariable adjusted odds ratios (ORs) and 95% confidence intervals 

(CIs) were estimated using conditional logistic regression matching on 5-year age groups. 

Sensitivity analyses were performed combining only the Caucasian studies. All statistical tests 

were two-sided. 

Results: Unadjusted median levels of the 2:16α-OHE1 ratio were significantly lower among 

cases (1.8) than among controls (2.2) (p <0.001). Unadjusted median 2-OHE1 levels were also 

elevated among controls (p<0.001) whereas no difference in 16α-OHE1 levels by case/control 

status was observed (p=0.26). The highest tertile of the 2:16α-OHE1 ratio compared to the lowest 

was associated with reduced breast cancer risk (OR=0.51, 95% CI: 0.33, 0.78); although, this 

reduction was attenuated and no longer statistically significant after adjustment for study (OR= 

0.81, 95% CI: 0.49, 1.32). The sensitivity analyses including only the Caucasian studies also 

suggested modest protective association; although the results were not statistically significant 

(study adjusted ORTertile 3 vs. Tertile 1 =. 0.72, 95% CI: 0.43, 1.20). 
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Conclusions: This combined analysis using primary data from three previous studies of 

premenopausal women does not support a significant association between the 2:16α-OHE1 ratio 

and invasive breast cancer; however, the results are suggestive of a reduced risk of breast cancer 

with higher levels of 2:16α-OHE1.  

4.2 INTRODUCTION 

Although breast cancer occurs more often in women after the menopausal transition, the 

occurrence in premenopausal women has a strong public health impact because of issues such as 

impaired reproductive function and long-term management and survival.  However, few relevant 

risk factors have been identified for premenopausal breast cancer. One of the areas of potential 

significance among premenopausal women includes understanding the role of estrogen and 

estrogen metabolites on breast cancer development. Endogenous estrogen exposure throughout a 

woman’s lifetime is one of the recognized factors implicated with breast cancer (Henderson 

2000, Bernstein 2002, Key 2002). The association with circulating estrogens and post-

menopausal breast cancer is well established (Key 2002, Eliassen 2008); however, among 

premenopausal women, measurement issues surrounding the timing of urine collection during 

the menstrual cycle render this association less clear (Bernstein 2002, Eliassen 2006, Sturgeon 

2004).  

Estrogens are involved in the proliferation of human breast epithelial cells and may 

influence carcinogenesis indirectly by stimulating cell division (Preston-Martin 1990, Fiegelson 

1996) or by inducing genotoxic effects as a result of oxidative damage (Yager 2000).  An 

alternative mechanism has also been proposed in which estrogen, through the formation of 
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depurinating estrogen adducts, acts as a cancer initiator (Cavalieri 2006).  Estrogen metabolism 

occurs by the oxidative pathway, and among premenopausal women with high ovarian estradiol 

secretion, this metabolic process begins with the conversion of estradiol to estrone. The 

breakdown of estrone continues via two main pathways involving hydroxylation sites C2, C4 or 

C-16, leading to the formation of either A-ring or D-ring metabolites (Mueck 2002, Lippert 

2000). Main metabolites of the A-ring pathway include 2-hydroxyestrone (2-OHE1) and 4-

hydroxyestrone (4-OHE), while 16-alpha-hydroxyestrone (16α-OHE1) and estriol result from the 

D-ring pathway (Mueck 2002, Yager 2006).  

Although both 2-OHE1 and 16α-OHE1 have estrogenic properties, their ability to bind to 

the estrogen receptor as well as the nature of their estrogenic properties varies.  The 16α-OHE1 

metabolite has been shown to have higher estrogen properties based on its ability to covalently 

bind to the estrogen receptor (Swaneck 1988) while also sharing properties similar to those of 

estradiol (Lippert 2003, Seeger 2006), whereas the 2-OHE1 metabolite exhibits lower estrogen 

activity, in part due to the reduced affinity to estrogen receptor binding as well as less cell 

proliferative activity (Schneider 1984). Furthermore, these metabolites result from mutually 

exclusive pathways (Zhu 1998), rendering the ratio of 2:16α-OHE1 a useful measure of exposure 

to active estrogen metabolites. 

Few studies have evaluated the relationship between premenopausal urinary estrogen 

metabolite levels and breast cancer risk (Fowke 2003, Kabat 1997, Kabat 2006, Ho 1998, 

Meilahn 1998, Muti 2000). Some studies suggest a reduction in premenopausal breast cancer risk 

with higher levels of the urinary 2:16α-OHE1 ratio (Meilahn 1998, Muti 2000, Kabat 2006) while 

others include premenopausal cases but do not present the results separately according to 

menopausal status (Ho 1998, Kabat 1997). In general, the number of premenopausal breast 
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cancer cases included in each study is small, and the individual studies may lack the statistical 

power to detect a significant association.  

The objective of this analysis was to evaluate both the individual levels of the 2-OHE1 

and 16α-OHE1 metabolites, and their ratio, in relation to breast cancer among premenopausal 

women by performing a combined analysis of primary data from three previously published 

studies. We hypothesized that higher levels of the 2-OHE1 metabolite would be associated with a 

reduction in breast cancer risk while higher levels of the 16α-OHE1 metabolite would be 

associated with an increase in the risk of breast cancer among premenopausal women, and that a 

higher 2:16α-OHE1 ratio would be associated with a reduction in premenopausal breast cancer 

risk.  

4.3 METHODS 

4.3.1 Study design 

We conducted a combined analysis of individual level data from three previously published 

studies, including one case-control study conducted in Shanghai, China (Fowke et al.) and two 

nested case-control studies conducted in Northern Italy (Muti et al.) and Guernsey Island 

(Meilahn et al.). Primary data from the participating studies were obtained and potential 

heterogeneity in exposure distributions assessed prior to generating a summary estimate of the 

combined data. Table 8 provides a brief description of the participating studies with additional 

details provided in the original publications (Muti 2000, Meilahn 1998, Fowke 2003). 
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4.3.2 Study Identification and Selection 

Study Identification and Selection Criteria 

Original research studies that evaluated the relationship between estrogen metabolites and 

premenopausal breast cancer were identified by searching the National Library of Medicine and 

National Institutes of Health Pubmed database. The search strategy involved the following 

keyword search terms: (1) estrogen metabolites (n=2901 articles) and (2) estrogen metabolites 

with additional limits to females and English language (n=974 articles), (3) estrogen metabolites 

AND breast cancer (n=376 articles). Each of the 376 citations and abstracts were reviewed, and 

12 articles were identified as having examined estrogen metabolites in relation to breast cancer, 

with six studies including premenopausal women.  Reference lists from retrieved articles were 

also reviewed in search of additional eligible articles; no additional studies were identified. This 

search is current as of July 15, 2008.   

 Articles were considered eligible for review if they met the following pre-determined 

inclusion criteria:  (1) an original research study, (2) inclusion of premenopausal women, (3) 

exposure measured as 16-alpa-hydroxyestrone (16α-OHE1), 2-hydroxyestrone (2-OHE1), and/or 

the ratio of these two main estrogen metabolites, (4) urine as the sample source, (5) breast cancer 

assessed as the main outcome and (6) total sample size of at least 50 subjects. These a priori 

criteria were selected to maximize the comparability across studies.  

4.3.3 Selection results 

Five of the six studies (Fowke 2003, Kabat 1997, Ho 1998, Kabat 2006, Meilahn 1998, Muti 

2000) that included premenopausal cases in their original study fulfilled the above eligibility 
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criteria for inclusion in this combined analysis. Of these, two were nested case-control studies 

(Meilahn 1998, Muti 2000), and three were case-control studies (Fowke 1998, Kabat 1997, 

Kabat 2006), with a total potential sample size of 1,020 premenopausal women (307 cases, 713 

controls).  Investigators from the eligible studies were contacted and invited to participate in this 

combined analysis. Multiple invitations were extended in an attempt to enlist the participation of 

all eligible studies. Three studies contributed data to the present analysis, two nested case-control 

studies (Muti et al., Meilahn et al.) and one case-control study (Fowke et al.), with a combined 

analysis sample size of 731 premenopausal women (183 cases, 548 controls). 

4.3.4 Data Collection and Extraction 

Data Collection and Extraction  

The three participating studies utilized structured questionnaires to ascertain information on 

demographics, lifestyle and anthropometric factors, hormone use, reproductive history, and other 

known breast cancer factors.  Investigators were asked to submit their study-specific datafile 

along with a copy of the original questionnaire, a description of the variables and study methods, 

and an electronic datafile.  Each datafile was checked for consistency and uniformity with 

previously published results. Identified discrepancies were resolved with the study investigators.  

Policies for data publication and authorship were reviewed and accepted by study investigators. 

Completeness of Data 

All variables requested were coded with a common format for this analysis with the 

exception of education and socioeconomic status, due to differences in classification systems. 

Information on waist-to-hip ratio and alcohol consumption was available in two studies (Fowke, 

Muti).  Data on estrogen receptor (ER) and progesterone receptor (PR) status was available for 
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62.8% and 60.3% of cases from all three studies, respectively.  In the Guernsey study, PR data 

was not available and ER status was unknown for the majority of cases. Due to incomplete 

information on tumor staging, we were unable to assess metabolite levels by stage of disease.    

4.3.5 Sample Collection and Laboratory Analysis 

Spot urine samples were collected in the studies by Meilahn et al. and Fowke et al; and an 

overnight spot urine sample was collected in the study by Muti et al. The use of a spot urine 

collection has been shown to be a reliable sample source for the measurement of urinary estrogen 

metabolites (Chen 1999) with no reported significant differences between spot urine samples or 

multiple urine collections over a 24 hour period (Westerlind 1999). Additionally, the potential 

affect of long term sample storage on metabolite levels was assessed in the original study by 

Meilahn et al.; no variations in metabolite levels were reported. All participating studies 

measured urinary 2-OHE1 and 16α-OHE1 using a commercially available competitive, solid-

phase enzyme immunoassay kit (ESTRAMET) produced by Immunacare corp (Bethlehem, PA, 

USA). With this assay kit, the binding of the monoclonal antibodies to estrogen metabolites 

(antigen) is captured directly on the solid phase.  The urinary forms of 2-OHE1 and 16α-OHE1 

are found as glucuronide conjugates and require the removal of sugars before the monoclonal 

antibodies in the assay kit can detect the urinary metabolites.  Studies by Fowke et al. and Muti 

et al. utilized the more recent ELISA kit (Bradlow 1998) whereas Meilahn et al. used the original 

assay developed by Klug (Klug 1994). The sensitivity of the modified assay is reported to be 

0.625ng/ml for the 16α-OHE and 2-OHE metabolites (Bradlow 1998, Falk 2000). The reported 

mean within assay variability of this kit is approximately 4% while the mean between assay 

variability is about 10%.  The main components of the recent kit are similar to the original assay, 
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with the exception of modifications that allow for an increased sensitivity level among 

postmenopausal women (Bradlow 1998, Falk 2000).  

4.3.6 Statistical analysis 

The 2-OHE1 and 16α-OHE1 metabolites (ng/ml) were divided by the urinary creatinine 

concentration (mg/dl) as a means of standardizing the metabolite values by total volume of urine. 

The 2:16α-OHE1 variable in this analysis is based on the ratio of these two individual estrogen 

metabolites. 2-OHE1 and 16α-OHE1 metabolite data was available on 99.3% of this study 

sample.  The estrogen metabolite exposures (2-OHE1, 16α-OHE1 and the 2:16α-OHE1 ratio) 

were all non-normally distributed and were analyzed as categorical variables using common 

categories (tertiles) based on the distribution among the total combined control population.  

The main outcome of this analysis is invasive breast cancer. In situ breast cancer cases 

were excluded from the present analysis due to the limited number of cases (n=7). Current users 

of oral contraceptives from Fowke et al. were excluded from this analysis (2 cases and 1 control) 

to be consistent with the original exclusion criteria from the studies by Muti et al. and Meilahn et 

al..  In the case-control study by Fowke et al., urine samples were collected either before or after 

surgery/ancillary treatment and different effects of the 2:16α-OHE1 on breast cancer by the 

timing of urine collection were reported in the original publication. Thus, cases with post-

treatment urine collection from Fowke et al. were excluded (n=14). After applying these 

additional exclusions, the present combined analysis includes 731 premenopausal women (183 

cases/548 controls). 

The distribution of covariates was compared among cases and controls using either the 

parametric t-test or non-parametric Wilcoxon rank sum for continuous variables, or the chi-
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square test for categorical variables. Additionally, study adjusted p-values for the association 

between individual covariates and case/control status were generated using conditional logistic 

regression models that included dummy variables for the individual studies. 

The original study-specific findings were replicated prior to conducting this combined 

analysis to ensure accurate information in the datafiles. Preliminary analyses comparing the use 

of the original matched sets versus common matching criteria based on 5-year age strata yielded 

similar estimates.  Therefore, study specific and combined unadjusted and adjusted odds ratios 

(ORs) and 95% Confidence Intervals (CIs) were estimated by conditional logistic regression 

(Breslow 1980) matched on 5-year age groups (<35, 35-39, 40-44, 45-49, 50-54, >55).  Four 

different models were performed for each metabolite:  (1) unadjusted, (2) adjusted for known 

breast cancer risk factors, (3) adjusted for study only, and (4) adjusted for known breast cancer 

risk factors in addition to study.  Age at the time of enrollment in the original studies was taken 

into account by stratifying the models by 5-year age groups.   

Multivariable models were adjusted for known breast cancer risk factors including family 

history of breast cancer in a first degree relative (yes/no), history of benign breast disease 

(yes/no), body mass index (kg/m2), smoking (never/former/current), oral contraceptive use 

(never/former/unknown), age at menarche and  a combined pregnancy variable (never pregnant, 

age at first pregnancy <20, age at first pregnancy 20-29, and age at first pregnancy ≥30).  These 

factors were chosen a priori as adjustment variables either due to their established associations 

with breast cancer or because they are important characteristics of the Gail Model (Gail 1989) 

used to assess breast cancer risk. Study adjusted models included separate dummy variables for 

each study, to account for potential differences in overall study design and study populations.  
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Separate trend tests for each estrogen metabolite were performed using the midpoint for each 

metabolite category.  

Urine samples for all premenopausal subjects in the study by Muti et al. were collected 

during the luteal phase of the menstrual cycle (20-24th day).  Cases and controls in the original 

study by Meilahn et al. were matched on phase of menstrual cycle (follicular: within 15 days of 

the start of the last menstrual cycle, or luteal: more than 15 days). Information on menstrual 

phase at urine collection was not available in the study by Fowke et al.. In the present analysis, 

menstrual cycle phase at urine collection was categorized as (follicular ≤ 14 days/luteal ≥ 15 

days/ unknown), based on an assumed average cycle length of 28 days. Additional adjustment 

for menstrual phase at the time of urine collection did not alter estrogen metabolite estimates nor 

was menstrual phase at the time of urine collection a significant predictor in the study adjusted 

models; this variable was not included in the final models.   

Heterogeneity between studies was evaluated graphically by visual examination of study 

specific estimates using a forest plot and by the Cochran’s Q-statistic chi-square test (Petitti 

2000). In addition, the study-specific median levels of each metabolite among the control 

populations were evaluated. The study by Fowke et al. conducted in Shanghai, China was 

significantly different than the studies by Meilahn et al. and Muti et al. The metabolite levels 

among the Shanghai study population were generally in the lowest tertile of the common 

cutpoints, with lower levels of all metabolites occurring in this Asian population. Due the 

observed statistical differences in study specific median levels and estimates, and the potential 

biological differences in estrogen metabolism in Asian versus Caucasian populations, a 

sensitivity analysis was performed in which analyses were repeated without the data from the 

Shanghai study.  In addition, the Fowke et al. study utilized a case-control study design whereas 
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the studies by Muti et al. and Meilahn et al. were nested case-control studies in which the urine 

sample was collected before diagnosis and before treatment for breast cancer.  

Previous research suggests that estrogen metabolism may vary according to levels of 

body mass index (BMI) (Modugno 2006, Fishman 1975, Schneider 1983) and by smoking status 

(Sowers 2006).  Subgroup specific models were conducted to assess whether the association 

between estrogen metabolites and breast cancer varied by BMI (<25, ≥ 25 kg/m2) and smoking 

status (current, non-current).  In a combined model, a dummy variable for BMI and a categorical 

interaction term for both BMI and the metabolite were included. Separate combined models were 

performed for each metabolite exposure. Wald Χ2 tests were used to test the overall effects of the 

interaction. Interactions between smoking status and each metabolite were assessed using a 

similar approach.   

Each metabolite also was evaluated in relation to breast cancer according to hormone 

receptor status by performing separate age-adjusted multinomial logistic regression models. The 

outcome variable for the estrogen receptor models included four categories: controls (reference), 

estrogen receptor positive (ER+) cases, estrogen receptor negative (ER-) cases, and estrogen 

receptor status unknown (ER unk) cases. Similarly, for the progesterone receptor models, the 

outcome variable included four categories: controls (reference), progesterone receptor positive 

(PR+) cases, progesterone receptor negative (PR-) cases, and progesterone receptor status 

unknown (PR unk) cases. These multinomial logistic regression models included adjustment for 

age using three categories (≤ 39, 40-44, ≥ 45), due to the smaller number of cases available to 

evaluate breast cancer by hormone receptor status.  

Potential interactions between the individual metabolite exposures and study were 

assessed by creating separate categorical interaction terms for each metabolite (using dummy 
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variables for both the study and metabolite categorical variables). Multiparameter Wald Χ2 tests 

were used to test the overall effects of study, metabolite and the interaction. Interactions between 

age and the 2-OHE1, 16α-OHE1, and 2:16α-OHE1 metabolites also were assessed using a similar 

approach.  

All analyses were performed using SAS (Version 9.1, Cary, NC, USA) and STATA 10. 

Tests of significance were two-sided.  Data were analyzed in Pittsburgh, PA and the datafiles 

received did not include personal identifiers.  Each study participating in this present analysis 

was approved by the Institutional Review Board or appropriate ethical committee at the 

respective institution, and participants provided informed consent.  

4.4 RESULTS 

Unadjusted study-specific ORs and 95% CIs for the association between tertiles of each 

metabolite and breast cancer are shown in Table 9. Study- specific odds ratio estimates for the 

association between the 2:16α-OHE1 ratio and breast cancer were in a protective direction for the 

two nested case-control studies by Meilahn et al. and Muti et al.; although not statistically 

significant [2:16α-OHE1 ≥ 2.67 vs. < 1.76 (Meilahn: OR=0.76; 95% CI: 0.34, 1.69) and (Muti: 

OR=0.65; 95% CI: 0.33, 1.29)].  However, for the study by Fowke et al., study-specific estimates 

for 2:16α-OHE1 were non-significantly elevated (2:16α-OHE1 ≥ 2.67 vs. < 1.76: OR=1.34; 95% 

CI: 0.19, 9.75). The forest plot shown in Figure 7 depicts the study-specific estimates for the 

association between the 2:16α-OHE1 ratio among premenopausal women and breast cancer.  The 

odds ratio estimate for Fowke et al. is in the opposite direction of the Meilahn et al. and Muti et 

al. studies, however the Cochrane chi-square test of heterogeneity was not statistically significant 
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(Χ 2=0.48; p-value=0.79). Study-specific estimates for the association between the individual 

metabolites 2-OHE1 and 16α-OHE1 also are presented in Table 9. No significant study-specific 

associations were detected with 2-OHE1, 16α-OHE1 or the 2:16α-OHE1 ratio. 

Descriptive characteristics of this combined study population by case/control status are 

summarized in Table 10.  The study sample was mostly Caucasian (68.9% of cases and 86.9% of 

controls), with an average age of 42.8 ± 4.9 years (range, 33-54) for cases and 42.9 ± 4.9 years 

(range, 34-56) for controls.  Median levels of 2-OHE1 and 2:16α-OHE1 were significantly lower 

among cases as compared to controls [(2-OHE1:  17.9 ng/ml vs. 21.7 ng/ml, unadjusted p-value= 

<0.001); 2:16α-OHE: 1.8 vs. 2.2, unadjusted p-value: <0.001)] whereas no difference was 

observed for the 16α-OHE metabolite (unadjusted p-value: 0.26) (Table 11).  

Table 12 summarizes the ORs and corresponding 95% CIs from unadjusted and adjusted 

models estimating the odds of breast cancer in relation to the tertiles of 2-OHE1, 16α-OHE1 and 

the 2:16α-OHE1 ratio (N=183 cases and 548 controls).  Among women in the highest tertile of 

the 2:16α-OHE1 ratio, the unadjusted OR for breast cancer was 0.51 (95% CI: 0.33, 0.78) as 

compared to those in the lowest tertile. This estimate remained relatively unchanged with 

adjustment for known breast cancer risk factors. However, these results attenuated and were no 

longer statistically significant in the models adjusted for study (OR=0.81, 95% CI: 0.49, 1.32) or 

adjusted for both study and known breast cancer risk factors (OR=0.74, 95% CI: 0.44, 1.23). 

Similar findings were observed with the 2-OHE1 metabolite. Associations between 16α-OHE1 

and breast cancer were not statistically significant in any of the models, although study adjusted 

analyses suggested a non-significant increase in breast cancer risk. The tests for trend suggested 

a significant inverse trend with both 2-OHE1 and the 2:16α-OHE1 ratio, but this trend was no 

longer significant after adjustment for study. Although the main effect of study was statistically 
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significant in each of the metabolite main models, no tests for interaction between study and any 

metabolite were statistically significant (p-value > 0.10 for each). No significant interactions 

between age and the 2-OHE1, 16α-OHE1, or 2:16α-OHE1 metabolites were observed, p-value > 

0.10 (data not shown). 

Table 13 summarizes the results from the sensitivity analyses limited to Caucasian 

women (N=126 cases and 476 controls).  None of the individual metabolites 2-OHE1 and 16α-

OHE1 was significantly associated with breast cancer in these models, although the direction of 

the estimated effects was consistent with the study hypotheses.  No significant trends were 

observed with any of the metabolites. There was no significant heterogeneity between the two 

Caucasian studies (p-value > 0.18) nor was there evidence of interaction between study and any 

metabolites (p-value >0.38 for each) or interaction between age and each of the metabolites (p-

value > 0.23 for each) (data not shown).   

The age-adjusted multinomial models estimating the relative risk (RR) of ER status by 

tertile of estrogen metabolites, as compared to controls, are summarized in Table 14.  Separate 

RR estimates compare each ER subtype (ER+, ER- and ER unknown) to the control group, with 

the lowest tertile of each metabolite as the exposure reference group. The only significant 

association of estrogen metabolite and ER subtype was that women in the highest tertile of 

2:16α-OHE1 ratio were less likely to be ER- cases compared to controls (RR=0.33; 95% CI: 

0.13, 0.84); although these findings are based on small numbers. A similar RR=0.40 in the 1.76-

2.66 group was borderline significant. Results for cases with unknown receptor status were 

similar to those from the ER- models. Comparable multinomial models estimating the 

association between 2-OHE1, 16α-OHE1, and 2:16α-OHE1 and breast cancer according to PR 

status yielded no statistically significant associations (data not shown).  
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No significant associations were observed in subgroup specific analyses of BMI  (< 25 

kg/m2 and ≥ 25 kg/m2) and smoking status (current vs. non-current smoker), with the exception 

of a modest non-statistically significant reduction in breast cancer among non-current smokers 

with 2:16α-OHE1 ≥ 2.76 vs. <1.76  (OR=0.57, 95% CI: 0.31-1.06) (data not shown).  Overall 

tests of interaction were not statistically significant (Wald test p-value  > 0.10 for each), with the 

exception of borderline significance for the interaction between 2-OHE1 and BMI (Wald test p-

value=0.08) and 2-OHE1 and smoking status (Wald test p-value=0.07) (data not shown). 

4.5 DISCUSSION 

In this combined analysis we did not observe a significant association between the 2:16α-

OHE1 ratio and invasive breast cancer among premenopausal women. Unadjusted models and 

models adjusted for known breast cancer risk factors suggested that higher levels of the 2:16α-

OHE1 ratio were inversely associated with breast cancer; however, this reduction in risk was 

attenuated with adjustment for study. A similar pattern was observed with the 2-OHE1 

metabolite, in that the apparent protective effect with higher levels of 2-OHE1 was no longer 

observed once the study variable was included as an adjustment factor in the model.   

To date, six studies have included premenopausal cases in their evaluation of estrogen 

metabolites and breast cancer, with varied results reported across the studies (Fowke 2003, Ho 

1998, Kabat 1997, Kabat 2006, Meilahn 1998, Muti 2000). The original studies by Muti et al. 

and Meilahn et al. suggested a reduction in risk of premenopausal breast cancer among women in 

the highest tertile of the 2:16α-OHE1; however, the original findings were not statistically 

significant. More recently, Kabat et al. (2006) reported a strong protective effect on invasive 
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breast cancer among premenopausal women with a 2:16α-OHE1 value ≥ 2.3 as compared to 

those in the category ≤ 1.4 (OR=0.50; 95% CI: 0.25-1.01). Other published studies have included 

premenopausal cases but did not provide estimates separately for premenopausal women (Fowke 

2003, Ho 1998, Kabat 1997).  Overall, this research area has been limited both by the number of 

studies conducted and by the small number of premenopausal cases included in those analyses.  

Although the prior studies suggest a protective effect with increasing levels of 2:16α-OHE, the 

association between estrogen metabolites and premenopausal breast cancer remains unclear.  

The objective of this combined analysis was to improve our understanding of the 

relationship between estrogen metabolites and breast cancer with a larger, combined sample size 

of premenopausal cases. In the original study by Muti et al., the investigators reported a 42% 

reduction in premenopausal breast cancer risk among women in the highest quintile of 2:16α-

OHE as compared to those in the lowest quintile (OR=0.58, 95% CI: 0.25-1.34). Similarly, 

Meilahn et al. reported a protective effect in the original study, albeit not statistically significant 

(ORTertile 3 vs. Tertile 1=0.74, 95% CI: 0.35-1.62).  In this analysis, the direction of the effect 

suggested a modest decrease in breast cancer among women in the highest tertile of the 2:16α-

OHE compared to those in the lowest; however, these results were not statistically significant.  

There are potential explanations for the null findings presented in this analysis including 

the limitation of a fixed sample size based on the overall small number of studies which have 

evaluated this association and the number of studies which agreed to participate in this combined 

analysis. Despite these limitations, one cannot exclude the possibility that a null finding reflects 

the true association between premenopausal urinary estrogen metabolite levels and breast cancer.  

Although hormonally related factors may impact ER+ tumors differently than ER- tumors 

(Huang 2000, Cotterchio 2003, Ma 2006), findings have been inconsistent.  Additionally, breast 
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cancer risk factor profiles may differ by hormone receptor subtype and the overall characteristics 

of the hormone-specific breast tumors also may vary (Althuis 2004).  These findings support the 

notion of different etiologic mechanisms underlying the breast cancer subtypes and emphasize 

the importance of evaluating breast cancer tumor subtypes separately rather than as one 

combined disease. We attempted to investigate the association between each metabolite (2-

OHE1, 16α-OHE1, 2:16α-OHE1) and invasive breast cancer by ER and PR status. To our 

knowledge, only one other study (Kabat 2006) has evaluated the association of estrogen 

metabolites and invasive breast cancer among premenopausal women by ER status. In the case-

control study by Kabat et al. the odds of breast cancer was significantly reduced with increasing 

levels of the 2:16α-OHE1 ratio among ER+ cases (p-trend=0.02). Among women with a 2:16α-

OHE1 value ≥ 2.3, the odds of ER+ breast cancer was 0.32 times that of women with a 2:16α-

OHE1 value of ≤ 1.4 (95% CI: 0.12-0.84). A protective effect was also observed among ER- 

cases; however, the OR of 0.52 did not reach statistical significance.  These results were based 

on a fairly small number of cases and need to be replicated in larger studies, as the authors 

indicated in their original publication. 

 In the present analysis, no significant associations by hormone receptor status were 

detected.  Although results from the multinomial models suggest a reduction in the relative risk 

of ER- breast cancer among those in the highest tertile of 2:16α-OHE1 compared to the lowest 

tertile, this finding was based on a fairly small number of cases and controls and should be 

interpreted with caution. Additionally, the estimates provided in Table 14 are largely driven by 

the ER+ and ER- cases in the study by Muti et al.. The majority of premenopausal cases within 

the Guernsey study were classified as unknown type. This may in part be due to chance, to tumor 

classification policies at the time of the study resulting in a large unknown category, or the lower 
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presence of measurable estrogen receptors among premenopausal women. Overall, the 

interpretation of our results is limited by both the small number of cases when separated by both 

ER status and estrogen metabolite categories, as well as the large number of unknown tumor 

types. Additionally, it is difficult to directly compare our results to those of Kabat 2006 since 

different analytical approaches were employed. In addition to ER status, we also explored 

whether the affects of each metabolite on breast cancer varied by PR status, which has not been 

evaluated in prior studies.  The interpretation of the findings from the PR multinomial logistic 

regression models is also limited by the small number of cases classified by PR status in our 

combined study.  Although it is difficult to draw conclusions from the hormone receptor analyses 

presented in this combined study, our results suggest potential differing effects by ER status and 

warrant further investigation in larger studies with more complete information on hormone 

receptor status. 

Differences in estrogen metabolite levels by study were also assessed. No significant 

interactions between any of the estrogen metabolites and study were observed. However, when 

all three studies were combined, the main effect of study was significant, and in particular, the 

indicator variable for the Fowke et al. study was significantly different when compared to the 

indicator variable for the Muti et al. study. Furthermore, the protective effects observed in the 

unadjusted models attenuated with adjustment for study. Although there was no evidence of 

interaction by study, study appears to be an important confounding factor.  This suggests that 

there are important differences across the studies which are important to consider such as 

differences in study design, laboratory variability, and the distribution of the estrogen 

metabolites among various ethnic populations, in particular Caucasian and Asian women.  
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Metabolite levels have been shown to vary by race (Aldercreutz 1994, Jernstrom 2003, 

Ursin 2001, Taioli 1996, Matthews 2004). The range of the metabolite values in the Shanghai 

study by Fowke et al. overlapped with those in the ORDET and Guernsey studies yet the overall 

median levels were significantly lower among the Shanghai population (Median 2:16α-OHE1 

among controls: Fowke et al. 0.85; Meilahn et al. 2.1; Muti et al. 2.5) (p-value <0.0001).  This is 

not surprising, as higher levels of endogenous estrogens levels have been reported among 

Caucasian women as compared to Asian women (Bernstein 1990, Key 1990, Sowers 2006), and 

estrogen metabolite levels have also been shown to differ by race.  An earlier study by 

Aldercreutz et al. among premenopausal women reported lower 2-OHE1 and 16α-OHE1 levels 

among Asian women compared to Caucasian women (Aldercreutz 1994). Mean values from the 

Aldercreutz study cannot be directly compared to those in our combined analysis due to the 

difference in laboratory methods used to measure the metabolites. Overall, limited research has 

been conducted on racial differences in estrogen metabolites among premenopausal women.  

Studies of hormone levels among premenopausal women are often difficult to carry out 

due to the changes in circulating estrogen levels throughout the menstrual cycle and the 

variability in the length of the cycle (Bernstein 2002).  Whether urinary estrogen metabolite 

levels vary by the timing of urine collection during different phases of the menstrual cycle 

remains unknown. Some studies suggest a potential difference (Xu 1999) while others do not 

(Westerlind 1999). In this analysis, adjustment for menstrual phase at the time of urine collection 

did not alter model estimates in this combined analysis. Given that urine samples in the ORDET 

study were collected during the luteal phase and that in the Guernsey study, menstrual phase was 

an original matching criterion, these original study design features may explain our observed 

lack of variability in estrogen metabolites by menstrual phase. 
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This combined analysis included a total of 183 premenopausal invasive breast cancer 

cases, a larger number than previous studies published on this topic.  Prior to this combined 

analysis, the largest study of estrogen metabolites and premenopausal breast cancer by Kabat et 

al. (2006) included a total of 105 invasive cases. The analysis comprising of the two Caucasian 

studies (N=126) includes a slightly larger sample size of premenopausal cases in relation to the 

Kabat 2006 study. Additional strengths of this analysis include the use of original data to 

evaluate 2-OHE1, 16α-OHE1, and the 2:16α-OHE1 ratio in relation to premenopausal breast 

cancer using common cutpoints, as well as the analysis by ER and PR status and other relevant 

BMI and smoking subgroups, albeit the number of cases and controls were fairly small. 

Although we did not detect significant associations with these analyses, this study identifies a 

need to investigate these potential associations in larger studies of premenopausal women. The 

studies by Muti et al. and Meilahn et al. were nested case-control studies in which the urine 

sample was collected years before the cancer diagnosis, allowing temporal inference to be drawn 

from the results from those combined analyses.  

There are some limitations to this study that should be considered when interpreting our 

findings.  Information was not available on the genotypes involved in estrogen metabolism 

which may affect metabolite levels. Genetic polymorphisms may influence the particular 

estrogen metabolic pathway favored (Taioli 1999); however, this component could not be 

assessed in this combined analysis. The objective of this analysis was to evaluate the 2-OHE1 

and 16α-OHE1 metabolites, but additional estrogen metabolites, such as 4-hydroxyestrone, may 

also contribute to the carcinogenic process. Furthermore, we could not consider the potential 

modifying role of dietary factors on estrogen metabolites (Lord 2002) or changes in the known 

breast cancer risk factors over time. This is particularly relevant for the nested case-control 
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studies in which the exposures could have changed during the study period.  A general limitation 

to the previous published studies in this area includes the use of one urinary measurement of the 

estrogen metabolites. Many of the limitations to this combined analysis and to the original study 

designs are common challenges in studies of estrogen metabolites.  

Despite these limitations, the aim of this analysis was to clarify the role of the 2:16α-

OHE1 metabolite on breast cancer by re-evaluating primary data from existing studies.  Future 

studies addressing this research question should address the above limitations and consider other 

methodological issues, such as racial/ethnic differences in estrogen metabolite levels and 

whether the association between estrogen metabolites and breast cancer differs by race.  

Additionally, it remains unclear whether a single measurement of estrogen metabolites is 

representative of long-term levels, or whether estrogen metabolite levels measured at a particular 

time point, or at multiple time points, may be more informative with regard to breast cancer 

development. To date, no previous studies have assessed estrogen metabolite levels among 

premenopausal women over a long duration or during different periods of life. These issues also 

apply to studies examining this association among postmenopausal women.  

The role of ovarian hormones, particularly estrogen, on breast carcinogenesis is complex. 

Furthermore, the impact of estrogen metabolites on this process has yet to be understood. 

Estrogen metabolites are affected by numerous factors, including lifestyle and dietary factors, 

and genetic polymorphisms involved in estrogen metabolism pathways, thus challenging our 

understanding of the role of these biological factors in breast cancer development. Many of the 

known breast cancer risk factors relate to a woman’s cumulative lifetime exposure to estrogen, 

yet few of these factors may be modified. Understanding the potential role of estrogen 
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metabolites in the carcinogenic process will not only help elucidate the underlying mechanism of 

estrogen exposure but may also offer the potential to identify high-risk premenopausal women. 



4.6 TABLES AND FIGURES 

Table 8 Characteristics of Participating Studies: Combined Analysis of Estrogen Metabolites and Premenopausal Breast Cancer  
  

Study Cases/ 
Controls 

Study Population & 
Location 

Age 
Range 

Case  selection Control  
Selection 

Original  
Matching Criteria 

Meilahn et al. 
(1998) 
 

55/184 Guernsey III cohort, 
Guernsey Island, 
1977-85 

34-54 
years 

 

Primary   
clinically 
diagnosed 

Randomly selected 
from cohort (those 
alive and free of 
breast cancer at end  
of cohort & with 
available urine) 
 
 

Age ± 2 yrs, 
baseline exam ±1yr, 
 menstrual phase   
1:3 matching 
  
 

Muti et al. 
(2000) 
 

71/292 Hormones and Diet 
Etiology of Breast 
Cancer Study 
(ORDET), 1987-1992 
 
Varese Province, 
Northern Italy 
 

35-56 
years 

Linkage with 
Lombardy 
Cancer Registry 

Randomly selected 
from cohort among 
those alive at time of 
diagnosis of matched 
case 

Age ±5 years, time  
of  blood draw, 
recruitment center , 
recruitment date 
  ± 180 days 

11:4 matching 
 

Fowke et al. 
(2003) 
 

59/73 Shanghai, China 
 

33-51 
years 

Incident cases 
from tumor or 
hospital registries 

Randomly selected 
from Shanghai 
population registry 

Age ± 3 years 
and date of sample 
collection ± 30 days 
1:1 matching 
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Table 9 Study Specific Odds Ratio Estimates and 95% Confidence Intervals: Association between Tertiles1 of the 2-OHE1,  
16α-OHE1 and 2:16α-OHE1 Metabolites and Premenopausal Breast Cancer 
  
 Fowke et al. 

(N=129) 
Meilahn et al. 

(N=239) 
Muti et al. 
(N=363) 

Estrogen 
Metabolite 

Cases/ 
Controls 

Unadjusted 
OR 

(95% CI) 

Cases/ 
Controls 

Unadjusted 
OR 

(95% CI) 

Cases/ 
Controls 

Unadjusted 
OR 

(95% CI) 
2-OHE1        

< 15.33  53/58 1.00 24/82 1.00 9/40 1.00 
15.33-38.75 4/13 0.32  

(0.10, 1.06) 
23/76 1.06  

(0.55, 2.05) 
27/95 1.30  

(0.56, 3.03) 
≥ 38.76  0/0 N/A* 8/26 1.08  

(0.43, 2.74) 
35/153 1.01  

(0.44, 2.29) 
16α-OHE1   

< 7.97 30/33 1.00 22/82 1.00 11/65 1.00 
7.97-17.20 23/31 0.83

(0.39, 1.74) 
19/71 1.04  

(0.52, 2.09) 
24/82 1.71 

(0.77, 3.80) 
≥ 17.21 4/7 0.60 

(0.16, 2.25) 
14/31 1.74  

(0.78, 3.88) 
36/141 1.53 

(0.72, 3.23) 
2:16α-OHE1  

< 1.76 49/66 1.00 20/66 1.00 18/51 1.00 
1.76-2.66 6/4 2.63

(0.64, 10.85) 
23/68 1.06 

(0.53, 2.12) 
24/111 0.63 

(0.31, 1.27) 
≥ 2.67 2/2 1.34

(0.19, 9.75) 
12/50 0.76 

(0.34, 1.69) 
29/126 0.65 

(0.33, 1.29) 
Note: Estimates generated using conditional logistic regression matched on 5-year age groups. Urinary 2-OHE1 and  
16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
1=Common tertile categories based on the distribution of the individual metabolites among all controls in the combined  
study population. 
*NA = unable to calculate estimate.  
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†Unadjusted study specific odds ratio and 95% confidence limits shown refer to the highest tertile category of the 2:16α-OHE1 ratio compared to the 
lowest (reference group):  ≥ 2.67 vs. < 1.76. The common tertile categories were determined based on the distribution of the 2:16α-OHE1 ratio among 
controls from all studies combined. Estimates generated using conditional logistic regression matched on 5 year age strata. 

 
Figure 7 Odds Ratio Estimates: Association of the 2:16α-OHEratio1 (highest tertile vs. lowest tertile) and Breast Cancer† 

71 

**Includes data from all three studies (N=731).  
***Includes data only from Meilahn et al. and Muti et al. (N=602)



 
Table 10 Descriptive Characteristics of the Combined Analysis Study Sample (N=731) 

Variable Cases 
(n=183) 

Controls 
(n=548) 

P-value1 P-value2

(adjusted by
study) 

Study 
     Meilahn et al. 
     Muti et al. 
     Fowke et al. 

 
55 
71 
57 

 
184 
292 
72 

 
- 

 
- 

Age (years)* 42.8 ± 4.9 42.9 ± 4.9 0.92 0.70 
Ethnicity, N (%) 
     Caucasian 
     Asian 

 
126 (68.9) 
  57 (31.1) 

 
476 (86.9) 
72 (13.1) 

 
 

<.0001 

 
- 

 
Family History of Breast Cancer, N (%)  

11 (6.0) 
 

25 (4.6) 
 

0.44 
 

0.22 
History of Benign Breast Disease, N (%)  

46 (25.1) 
 

123 (22.4) 
 

0.37 
 

0.07 
Body Mass Index (kg/m2)* 23.8 ± 3.5 

median: 23.6 
25.4 ± 4.4 

median: 23.8 
 

0.31^ 
 

0.69 
Waist-to-hip ratio ** 0.80 ± 0.06 0.78 ± 0.06 0.02 0.07 
Smoking     
         Never 124 (67.8) 324 (59.1)   
         Former 17 (9.3) 80 (14.6)   
         Current 25 (13.7) 109 (19.9)   
         Unknown 17 (9.2) 35 (6.4) 0.03 0.19 
Alcohol Consumption     
        Yes 83 (45.4) 188 (34.3)   
        No 45 (24.6) 172 (31.4)   
        Unknown 55 (30.0) 188 (34.3) 0.03 - 
Oral Contraceptive Use     
     Yes 76 (41.5) 241 (44.0 )   
     No  120 ( 65.6) 305 (55.7 ) 0.19 0.51 
Age at menarche > 13 years, N (%) 85 (46.4) 220 (40.4) 0.13 0.65 
Nulliparous, N (%) 18 (9.8) 53 (9.7) 0.95 0.53 
Age at First Pregnancy* 26.2 ± 4.3 25.3 ± 4.2 0.02 0.88 
Estrogen Receptor, N (%) 
     Positive 
     Negative 
     Unknown 

 
71 (38.7) 
42 (23.0) 
70 (38.3) 

 
- 

 
- 

 
- 

Progesterone Receptor, N (%) 
     Positive 
     Negative 
     Unknown 

 
80 (43.7) 
29 (15.8) 
74 (40.4) 

 
- 

 
- 

 
- 

 
Note: Percentages may not sum to 100 due to missing values. Estrogen metabolites missing for 5 controls.  
*Mean ± SD  
**Waist to hip ratio and alcohol consumption data only available in Muti et al. and Fowke et al. 
1=t-test p-value for continuous variables or chi-square p-value for categorical variables, unless otherwise 
noted 2=Wald test p-value adjusted for study  
^ Wilcoxon Rank Sum p-value, †Among parous women
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Table 11 Median Estrogen Metabolite Levels by Case/Control Status^, (N=731) 

Estrogen 
Metabolite* 

Cases 
(n=183) 

Controls 
(n=543) 

P-value† 

2-OHE1   17.9 (0.50-309.9) 21.7 (0.5-351.8) <0.001 
16α-OHE1   10.8 (2.2-145.5) 11.3 (0.96-181.8) 0.26 
2:16α-OHE1 1.8 (0.3, 6.5) 2.2 (0.28-7.6) <0.001 
  

Note: Urinary 2-OHE1 and 16α-OHE1 Metabolites (ng/ml) are standardized to urinary  
creatinine levels (mg/dl). 
^Median (Range), *Estrogen metabolite data missing for 5 controls 
† Wilcoxon rank sum p-value 
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Table 12 The Odds of Premenopausal Breast Cancer by Tertiles of Urinary Estrogen Metabolites 
(2-OHE1, 16α-OHE1 and 2:16α-OHE1), (N=731) 
Estrogen Metabolites§ Case/ 

Control 
(183/543)

Unadjusted 
OR  

(95% CI) 

Adjusted* 
OR  

(95% CI) 

Adjusted**  
OR  

(95% CI) 
(by study only) 

Adjusted***
OR 

(95% CI) 

2-OHE1       
< 15.33 86/180 1.00 1.00 1.00 1.00

15.33-38.75 54/184 0.63  
(0.42, 0.94) 

0.64  
(0.42, 0.97)

0.93  
(0.59, 1.47) 

0.94  
(0.58, 1.50) 

≥ 38.76 43/179 0.51  
(0.33, 0.78) 

0.53  
(0.34, 0.84)

0.86  
(0.50, 1.48) 

0.85  
(0.49, 1.48) 

P-values†      
p-trend  0.005 0.013 0.61 0.58 

Study (Main Effect)  - - < 0.001 < 0.001
Interaction (2OHE*Study)  - - 0.28 0.27 
16α-OHE1    

< 7.97 63/180 1.00 1.00 1.00 1.00 
7.97-17.20 66/184 1.06 

(0.71, 1.59) 
1.04 

(0.69, 1.58)
1.15  

(0.76, 1.75) 
1.15 

(0.75, 1.77) 
≥ 17.21 54/179 0.89 

(0.58, 1.36) 
0.92 

(0.59, 1.42)
1.27  

(0.80, 2.04) 
1.29 

(0.80, 2.08) 
P-value†   

p-trend  0.49 0.63 0.34 0.38 
Study (Main Effect)  - - < 0.001 < 0.001

Interaction (16OHE*Study)  - - 0.46 0.52 
2:16α-OHE1   

< 1.76 87/183 1.00 1.00 1.00 1.00 
1.76-2.66 53/183 0.61

(0.41, 0.92) 
0.63

(0.41, 0.96)
0.92 

(0.58, 1.47) 
0.89

(0.55, 1.42) 
≥ 2.67 43/178 0.51  

(0.33, 0.78) 
0.50  

(0.32, 0.78) 
0.81  

(0.49, 1.32) 
0.74  

(0.44, 1.23) 
P-value†      

p-trend  0.001 0.002 0.39 0.25 
Study (Main Effect)  - - < 0.001 < 0.001 

 Note: 2-OHE1 and 16α-OHE1 Metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
Estimates generated using conditional logistic regression matched on 5 year age strata. Data on 2-OHE1 and 
16α-OHE1 missing for 5 controls (2:16α-OHE1 missing for 4 controls). 
 Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
§=Categories based on distribution of 2:16α-OHE1 among the controls  
*Models adjusted for known breast cancer risk factors including: family history of breast cancer (yes/no), 
history of benign breast disease (yes/no/unknown), age at first menstrual period (continuous), body mass index 
(kg/m2, continuous), oral contraceptive use (yes/no), smoking (yes/no/unknown) and pregnancy combined 
variable (never pregnant, age at first pregnancy <20, age at first pregnant 20-29, age at first pregnant ≥ 30 
years).  
**Models adjusted for study only.   
***Models adjusted for study in addition to the known breast cancer risk factors mentioned above. 
† P-values shown: (1) p-value for test of trend using the midpoint of each metabolite category, (2) Wald X2 p-
value for overall effect of study in models shown above and (3) Wald X2 p-value for test for interaction 
between the metabolite and study from the model (not shown) including:  the specific metabolite (categorical), 
study variable (categorical) and the metabolite by study interaction term. 
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Table 13 The Odds of Premenopausal Breast Cancer by Tertiles of Urinary Estrogen Metabolites 
(2-OHE1, 16α-OHE1 and 2:16α-OHE1) for Caucasian Women, (N=602) 
Estrogen Metabolites§ Case/ 

control 
(126/476)

Unadjusted 
OR  

(95% CI) 

Adjusted* 
OR  

(95% CI) 

Adjusted** 
OR  

(95% CI) 
(by study only) 

Adjusted***
OR  

(95% CI) 
 

2-OHE1       
< 15.33 33/122 1.00 1.00 1.00 1.00 

15.33-38.75 50/171 1.11  
(0.67, 1.84) 

1.20 
(0.71, 2.05)

1.15  
(0.69, 1.92) 

1.22 
(0.71, 2.07) 

≥ 38.76 43/179 0.91 
(0.54, 1.53) 

0.94  
(0.54, 1.63)

0.99  
(0.56, 1.74) 

0.98 
(0.55, 1.75) 

P-values†      
p-trend  0.53 0.55 0.77 0.68 

Study (Main Effect)  - - 0.44 0.70 
Interaction (2OHE*Study)  - - 0.81 0.96 
16α-OHE1       

< 7.97 33/147 1.00 1.00 1.00 1.00 
7.97-17.20 43/153 1.28  

(0.77, 2.12) 
1.34 

(0.79, 2.27)
1.32 

(0.79, 2.21) 
1.34  

(0.78, 2.26) 
≥ 17.21 50/172 1.33  

(0.81, 2.18) 
1.43  

(0.85, 2.40)
1.48  

(0.88, 2.50) 
1.54  

(0.90, 2.64) 
P-value†      

p-trend  0.35 0.26 0.19 0.18 
Study (Main Effect)  - - 0.19 0.19 

Interaction (16OHE*Study)  - - 0.39 0.64 
2:16α-OHE1      

< 1.76 38/117 1.00 1.00 1.00 1.00 
1.76-2.66 47/179 0.79  

(0.48, 1.29) 
0.78 

(0.47, 1.30) 
0.80  

(0.48, 1.31) 
0.79  

(0.47, 1.31) 
≥ 2.67 41/176 0.70  

(0.42, 1.17) 
0.64 

(0.38, 1.09)
0.72  

(0.43, 1.20) 
0.65 

(0.38, 1.11) 
P-value†      

p-trend  0.17 0.10 0.21 0.12 
Study (Main Effect)  - - 0.45 0.73 

Note: 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
Estimates generated using conditional logistic regression matched on 5 year age strata. Information on  
2-OHE1 and 16α-OHE1 missing for 4 controls. Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
§=Categories based on distribution of 2:16α-OHE1 among the controls  
*Models adjusted for known breast cancer risk factors including: family history of breast cancer (yes/no), 
history of benign breast disease (yes/no/unknown), age at first menstrual period (continuous), body mass index 
(kg/m2, continuous), oral contraceptive use (yes/no), smoking (yes/no/unknown) and pregnancy combined 
variable (never pregnant, age at first pregnancy <20, age at first pregnant 20-29, age at first pregnant ≥ 30 
years).  
**Models adjusted for study only.   
***Models adjusted for study in addition to the known breast cancer risk factors mentioned above. 
† P-values shown: (1) Wald X2 p-value for test of trend using the midpoint of each metabolite category, (2) 
Wald X2 p-value for overall effect of study in models shown above and (3) Wald X2 p-value for test for 
interaction between the metabolite and study from the model (not shown) including the specific metabolite 
(categorical), study variable (categorical) and the metabolite by study interaction.
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Table 14 Relative Risk of Estrogen Receptor Status by Tertiles of Estrogen Metabolites (2-OHE1, 16α-OHE1 and  
2:16α-OHE1) as compared to controls, (N=602)* 
  ER positive ER negative ER unknown 
 Estrogen 
Metabolites 

Controls 
(N=476) 

Cases 
(N=39) 

RR 
 (95% CI) 

Cases 
(N=31) 

RR  
(95% CI) 

Cases 
(N=56) 

RR 
(95% CI) 

 2-OHE1    
< 15.33 122 6 1.00 4 1.00 23  

15.33-38.75 171 13 0.93  
(0.33, 2.62) 

15 1.89  
(0.59, 6.03) 

22 1.08  
(0.55, 2.10) 

≥ 38.76 179 20 0.87  
(0.33, 2.33) 

12 1.00  
(0.30, 3.36) 

11 1.35  
(0.57, 3.20) 

        
16α-OHE1        

< 7.97 147 8 1.00 4 1.00 21 1.00 
7.97-17.20 153 14 1.42  

(0.56, 3.64) 
12 2.54  

(0.78, 8.22) 
17 0.99  

(0.48, 2.04) 
≥ 17.21 172 17 1.01  

(0.41, 2.49) 
15 2.11  

(0.66, 6.76) 
18 2.31  

(1.07, 4.97) 
        
2:16α-OHE1        

< 1.76 117 6 1.00 12 1.00 20 1.00 
1.76-2.66 179 14 1.06  

(0.33, 3.39) 
10 0.40  

(0.16, 1.00) 
23 1.05 

(0.53, 2.09) 
≥ 2.76 176 19 1.25  

(0.46, 3.38) 
9 0.33  

(0.13, 0.84) 
13 0.78  

(0.36, 1.70) 
 

Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).  Data on  
2-OHE1 and 16α-OHE1 are missing for 4 controls. Odds ratio estimates generated from multinomial models with controls  
as the comparison group. Estimates were generated using data from the Caucasian studies: Meilahn et al. and Muti et al.  
*All multinomial models adjusted for study (categorical) and age (≤ 39, 40-44, ≥ 45) 
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5.1 ABSTRACT 

Objective:  Circulating estrogens among postmenopausal women are associated with breast 

cancer; however, the role of estrogen metabolites, particularly 2-hydroxyestrone (2-OHE1), 16α-

hydroxyestrone (16α-OHE1), and their ratio (2:16α-OHE1), in breast carcinogenesis remains 

unclear. The objective of this analysis was to evaluate urinary 2-OHE1 and 16α-OHE1, and their 

ratio (2:16α-OHE1) in relation to postmenopausal breast cancer by conducting a combined 

analysis of previously published studies.  

Methods: This combined analysis of four previously published studies yielded a study sample of 

966 postmenopausal women, including 319 invasive cases and 647 controls.  Urinary estrogen 

metabolite levels were measured using an ELISA assay. Both study-specific and combined 

unadjusted and multivariable adjusted odds ratios (ORs) and 95% confidence intervals (CIs) 

were estimated using conditional logistic regression matching on 5-year age groups. Sensitivity 

analyses also were conducted combining only the Caucasian nested case-control studies. All 

statistical tests were two-sided. 

Results: Unadjusted median levels of the 2:16α-OHE1 were significantly lower among cases 

(1.8) compared to controls (2.0) (p=0.0010).  The inverse association between higher levels of 

the 2:16α-OHE1 ratio (≥ 2.46 vs. < 1.53) and breast cancer (OR=0.56, 95% CI: 0.39, 0.79) was 

attenuated after adjustment for study ((OR≥ 2.46 vs. < 1.53=0.87, 95% CI: 0.58, 1.29).  Sensitivity 

analyses limited to the Caucasian nested case-control studies yielded similar results. 

Conclusions: The results of this combined analysis do not support a reduction in postmenopausal 

breast cancer risk associated with higher urinary 2:16α-hydroxyestrone metabolite levels.  
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5.2 INTRODUCTION 

Breast cancer remains a significant public health concern as it continues to contribute to both the 

morbidity and mortality of women in the United States, with 182,460 new invasive cases 

estimated in 2008 (ACS 2008).   Among postmenopausal women, known breast cancer risk 

factors include age at natural menopause, prior false-positive mammogram, use of hormone 

therapy, and obesity (Barlow 2006).   Postmenopausal obesity is thought to increase breast 

cancer risk due to the aromatization of androgens to estrone in adipose tissue (McTiernnan 2003, 

Vainio 2002, Colditz 1993), and among postmenopausal women, estrone is the main source of 

endogenous estrogen and estrogen metabolites (Lippert 2000).  Higher levels of circulating 

endogenous estrogen have been associated with an increased breast cancer risk among 

postmenopausal women (EHBCCG 2002, Eliasssen 2006, Cauley 1999, Zeleniuch-Jacquotte, 

Missmer 2004, Helzlsouer 1994, Toniolo 1995, Berrino 1996, Dorgan 1996, Thomas 1997); 

however, whether estrogen metabolites are associated with postmenopausal breast cancer 

remains unclear. Understanding the role of estrogen metabolites among postmenopausal women 

may help elucidate underlying mechanisms of breast cancer and may also offer a means of 

prevention. 

Estrogens are involved in the proliferation of human breast epithelial cells and may 

influence carcinogenesis indirectly through mitotic effects (Preston-Martin 1990, Fiegelson 

1996) or by inducing genotoxic effects as a result of oxidative damage (Yager 2000).  An 

alternative mechanism has also been proposed in which estrogen, through the formation of 

depurinating estrogen adducts, acts as a cancer initiator (Cavalieri 2006).  Estrogen metabolism 

occurs by the oxidation pathway (Lippert 1999). Among postmenopausal women, estrone is 

metabolized via two main pathways involving hydroxylation sites C2, C4 or C-16, leading to the 
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formation of either A-ring or D-ring metabolites (Mueck 2000, Lippert 2000).  Main metabolites 

of the A-ring pathway include 2-hydroxyestrone (2-OHE1) and 4-hydroxyestrone (4-OHE), 

while 16-alpha-hydroxyestrone (16α-OHE1) and estriol result from the D-ring pathway (Mueck 

et al 2002).   

Although both 2-OHE1 and 16α-OHE1 have estrogenic properties, they vary in regard to 

their ability to bind to the estrogen receptor as well as the nature of their estrogenic properties.  

The 16α-OHE1 metabolite has been shown to have higher estrogen properties based on its ability 

to covalently bind to the estrogen receptor (Swaneck 1988) while also sharing properties similar 

to those of estradiol (Lippert 2003, Seeger 2006), whereas the 2-OHE1 metabolite exhibits lower 

estrogen activity, in part due to the reduced affinity to estrogen receptor binding as well as 

reduced cell proliferative activity (Schneider 1984). Furthermore, these metabolites result from 

mutually exclusive pathways (Zhu 1998), rendering the ratio of 2-OHE1:16α-OHE1 a useful 

measure of exposure to active metabolites. 

To date, several studies have evaluated the relationship between estrogen metabolite 

levels and breast cancer risk among postmenopausal women with metabolites measured in either 

urine (Fowke 2003, Ho 1998, Kabat 1997, Kabat 2006, Meilahn 1998, Modugno 2006, Muti 

2000, Ursin 1999, Wellejus 2005), serum (Cauley 2003, Modugno 2006) or plasma (Eliassen 

2008). While the results of some studies support an overall association of a reduction in breast 

cancer risk with a higher 2:16α -OHE1 ratio (Kabat 1997, Ho 1998), other studies suggest either 

a modest association or a lack of statistical significance (Meilahn 1998, Muti 2000, Wellejus 

2005), or show no association at all (Ursin 1999, Cauley 2003, Eliassen).  Due to the varied 

results of published studies to date, the relationship between 2-OHE1, 16α-OHE1 and 2:16α-

OHE1 and postmenopausal breast cancer remains unclear. 
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The aim of this combined analysis of primary data from published studies was to evaluate 

whether the 2-OHE1 and 16α-OHE1 metabolites, and the 2:16α-OHE1 ratio, are associated with 

postmenopausal breast cancer.  We hypothesized that higher levels of the 2-OHE1 metabolite 

would be associated with a protective effect while higher levels of the 16α-OHE1 metabolite 

would be associated with an increase in breast cancer risk among postmenopausal women. We 

also hypothesized that a higher 2:16α-OHE1 ratio would be inversely associated with 

postmenopausal breast cancer risk.  

5.3 METHODS 

5.3.1 Study design 

We conducted a combined analysis of individual level data from four previously published 

studies, including three nested case-control studies conducted in Northern Italy (Muti et al.), 

Guernsey Island (Meilahn et al.) and Denmark (Wellejus et al.), and one case-control study 

conducted in Shanghai, China (Fowke et al.). Primary data from the participating studies were 

obtained and potential heterogeneity in exposure distributions assessed prior to generating a 

summary estimate of the combined data. Table 15 provides a brief description of the 

participating studies with additional details provided in the original publications (Muti 2000, 

Meilahn 1998, Fowke 2003, Wellejus 2005). 
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5.3.2 Study Identification and Selection 

Original research studies that evaluated the relationship between estrogen metabolites and 

postmenopausal breast cancer were identified by searching the National Library of Medicine and 

National Institutes of Health Pubmed database. The search strategy involved the following 

keyword search terms: (1) estrogen metabolites (n=2901 articles) and (2) estrogen metabolites 

with additional limits to females and English language (n=974 articles), (3) estrogen metabolites 

AND breast cancer (n=376 articles). Each of the 376 citations and abstracts were reviewed, and 

12 articles were identified as having examined estrogen metabolites in relation to breast cancer 

with 8 studies including postmenopausal women.  Reference lists from retrieved articles were 

also reviewed in order to identify additional eligible articles; no additional studies were 

identified. This search is current as of July 15, 2008.   

Articles were considered eligible for review if they met the following pre-determined 

inclusion criteria:  (1) an original research study, (2) inclusion of postmenopausal women, (3) 

exposure measured as 16α-hydroxyestrone (16α-OHE), 2-hydroxyestrone (2-OHE), and/or the 

ratio of these two main estrogen metabolites, (4) urine as the sample source, (5) breast cancer 

assessed as the main outcome and (6) sample size of at least 50 subjects. These a priori criteria 

were selected to maximize the comparability across studies.  

5.3.3 Selection results 

Among the twelve published studies, eight studies (Fowke 2003, Kabat 1997, Ho 1998, Kabat 

2006, Meilahn 1998, Muti 2000, Ursin 1999, Wellejus 2005) included postmenopausal cases in 

their original study, and fulfilled the above eligibility criteria for inclusion in this combined 
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analysis of individual data relating to urinary estrogen metabolites and postmenopausal breast 

cancer. Of these eight eligible published studies, three were nested case-control studies (Meilahn, 

Muti, Wellejus), and five were case-control studies (Fowke, Kabat 1997, Kabat 1998, Ho 1998, 

Ursin 1999, Wellejus 2005).  Investigators from the eligible studies were contacted and invited to 

participate in this combined analysis. Multiple invitations were extended in an attempt to enlist 

the participation of all eligible studies.  Of these, five studies, three nested case-control studies 

(Muti et al., Meilahn et al., Wellejus et al.) and two case-control studies (Fowke et al., Ursin et 

al) agreed to participate. Data from the case-control study by Ursin et al. was not included in the 

final combined study sample due to the inclusion of prevalent breast cancer cases.  

5.3.4 Data Collection and Extraction 

The participating studies utilized structured questionnaires to ascertain information on 

demographics, lifestyle and anthropometric factors, hormone use, reproductive history, and other 

known breast cancer factors.  Investigators were asked to submit their study-specific datafile 

along with a copy of the original questionnaire, a description of the variables and study methods, 

and an electronic datafile which included the main exposures of interest, the urinary 2-OHE1 and 

16α-OHE1 metabolites, along with important breast cancer covariates. Definitions of menopausal 

status were provided by each study. In the study by Muti et al., women without menstrual 

bleeding for at least 12 months were considered postmenopausal. Wellejus et al. defined women 

as either known or probable postmenopausal. Known postmenopausal status included women 

with 1) no hysterectomy and no menstruation in the 12 months prior to study entry, or (2) a 

bilateral oophorectomy or (3) age at last menstruation lower than age at hysterectomy.  Probable 

postmenopausal status included women with 1) menstruation during the 12 months prior to study 
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entry and current use of HRT, or 2) hysterectomy with unilateral (or unknown) oophorectomy or 

3) age at last menstruation same as age at hysterectomy.  Women in the study by Meilahn et al. 

were classified as postmenopausal if they reported (1) undergoing natural menopause, or (2) a 

hysterectomy with unilateral oophorectomy.  Each datafile was checked for consistency and 

uniformity with previously published results. Discrepancies identified were resolved with the 

study investigators.  Policies for data publication and authorship were reviewed and accepted by 

study investigators. 

Completeness of Data 

All variables requested were coded with a common format for this analysis with the exception of 

education and socioeconomic status, due to differences in classification systems. Information on 

waist-to-hip ratio and alcohol consumption was available in three studies (Wellejus, Fowke, 

Muti) and family history of breast cancer was not available in the Danish study (Wellejus). Data 

on estrogen receptor (ER) and progesterone receptor (PR) status was available for 90.6 % and 

40.8% of cases, respectively. PR data was not available in the Guernsey data (Meilahn) and was 

classified as missing for 74.7% of cases in the Danish study (Wellejus 2005). Due to  incomplete 

information on tumor staging, we were unable to assess metabolite levels by stage of disease.  

Overall, the proportion of missing values for each covariate is low with the exception of those 

noted above.  

5.3.5 Laboratory measurement of main exposure 

Spot urine samples were collected for Meilahn et al., Fowke et al., and Wellejus et al. and an 

overnight spot urine sample was collected in the study by Muti et al. The use of a spot urine 

collection has been shown to be a reliable sample source for the measurement of urinary estrogen 
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metabolites (Chen 1999) with no reported significant differences between spot urine samples or 

multiple urine collections over a 24-hour period (Westerlind 1999). Additionally, the potential 

affect of long-term sample storage on metabolite levels was assessed in the original studies by 

Meilahn et al. and Wellejus et al.; no variations in metabolite levels were reported. All 

participating studies measured urinary 2-OHE and 16α-OHE using a commercially available 

competitive, solid-phase enzyme immunoassay kit (ESTRAMET) produced by Immunacare 

Corp (Bethlehem, PA, USA). With this assay kit, the binding of the monoclonal antibodies to 

estrogen metabolites (antigen) is captured directly on the solid phase.  The urinary forms of 2-

OHE and 16-OHE are found as glucuronide conjugates and require the removal of sugars before 

the monoclonal antibodies in the assay kit can detect the urinary metabolites.  Studies by Fowke 

et al., Muti et al, and Wellejus et al. utilized the more recent ELISA kit (Bradlow 1998), whereas 

Meilahn et al. used the original assay developed by Klug (Klug 1994). The sensitivity of the 

modified kit is approximately 0.625 ng/ml for the 16α-OHE and 2-OHE metabolites (Bradlow 

1998, Falk 2000). The reported mean within assay variability of this kit is approximately 4% 

while the mean between assay variability is about 10%.  The recent assay kit includes 

modifications to the antibody concentrations, enzyme concentrations and standards that allow for 

an increased sensitivity level among postmenopausal women (Bradlow 1998, Falk 2000).  

5.3.6 Statistical analysis 

The 2-OHE1 and 16α –OHE1 metabolites (ng/ml) were divided by the urinary creatinine 

concentration (mg/dl) as a means of standardizing the metabolite values by total volume of urine. 

The 2:16α-OHE1 variable in this analysis is based on the ratio of these two individual estrogen 

metabolites. 2-OHE1 and 16α-OHE1 metabolite data was available on 98.7% of this study 
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sample.  The estrogen metabolite exposures (2-OHE1, 16α-OHE1 and the 2:16α-OHE1 ratio) 

were all non-normally distributed and were analyzed as categorical variables (tertiles) based on 

the distribution among the total combined control population. 

The main outcome of this analysis is invasive breast cancer. In situ breast cancer cases 

were excluded from the present analysis due to the limited number of cases (n=6). Current users 

of oral contraceptives from Fowke et al. were excluded from this analysis (n=2) to be consistent 

with the original exclusion criteria from the other studies.  In the case-control study by Fowke et 

al., urine samples were collected either before or after surgery/ancillary treatment and different 

effects of the 2:16α-OHE1 on breast cancer by the timing of urine collection were reported in the 

original publication. Thus, cases with post-treatment urine collection from Fowke et al. were 

excluded (n=18).  Additionally, the present analysis was limited to women not currently on 

hormone replacement therapy (HRT) at the time of entry into the original studies due to noted 

differences in the 2:16α-OHE ratio by postmenopausal HRT status (Armamento-Villareal 2004, 

Wellejus 2005).  Participants in the study by Wellejus et al. who were currently on HRT at 

cohort entry were excluded from these analyses (234 cases/234 controls). All other participating 

studies excluded women currently on HRT as part of their original enrollment criteria. Lastly, 

information on estrogen metabolites was missing for 13 women (3 cases/10 controls). After 

applying these additional exclusions, the present combined analysis includes 966 

postmenopausal women (319 cases/647 controls).  

The distribution of covariates was compared among cases and controls using either the 

parametric t-test or non-parametric Wilcoxon rank sum for continuous variables, or the chi-

square test for categorical variables. Additionally, study adjusted p-values for the association 
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between individual covariates and case/control status were generated using conditional logistic 

regression models which included dummy variables for the individual studies. 

The original study-specific findings previously published were replicated prior to 

conducting this combined analysis to ensure accurate information in the datafiles. Additionally, 

preliminary analyses were performed to assess the use of original matched sets versus creating 

common matching criteria using 5-year age strata (<50, 50-54, 55-59, 60-64, 65-69,70-74, ≥ 75). 

Both analytical approaches yielded similar estimates, and thus 5-year age groups were used as 

the matching term in the present analyses. Unadjusted and adjusted odds ratios (ORs) and 95% 

Confidence Intervals (CIs) were estimated by conditional logistic regression (Breslow 1980) 

matched on 5-year age groups. The association between each metabolite and breast cancer was 

assessed using separate conditional logistic regression models. Four different models were 

performed using the combined data:  (1) unadjusted, (2) adjusted for known breast cancer risk 

factors, (3) adjusted for study only, and (4) adjusted for known breast cancer risk factors in 

addition to study.  In all models, age at the time of enrollment in the original studies was taken 

into account by stratifying the models by 5-year age groups.   

Multivariable models included adjustment for known breast cancer risk factors including 

family history of breast cancer in a first degree relative (yes/no), history of benign breast disease 

(yes/no), body mass index (kg/m2), smoking (never/former/current), oral contraceptive use 

(never/former/unknown), age at menarche (<13 years/≥ 13 years/unknown) and a combined 

pregnancy variable (never pregnant, age at first pregnancy <20, age at first pregnancy 20-29, and 

age at first pregnancy ≥30).  These factors were chosen a priori as adjustment variables either 

due to their established associations with breast cancer or because they are important 

characteristics of the Gail Model (Gail 1989) used to assess breast cancer risk. The conditional 
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logistic regression models were adjusted by study using separate dummy variables for each study 

to account for potential differences in overall study design and study populations.  Separate trend 

tests for each estrogen metabolite were performed using the midpoint for each metabolite 

category.  

Heterogeneity between studies was evaluated graphically by visual examination of study 

specific estimates using a forest plot and by the Cochran’s Q-statistic chi-square test (Petitti 

2000). In addition, the study-specific median levels of each metabolite among the control 

populations were evaluated. The study by Fowke et al. conducted in Shanghai, China was 

significantly different than the studies by Meilahn et al. and Muti et al., with lower levels of all 

metabolites among this Asian population. Considering the observed statistical differences in 

study specific median levels and estimates, as well as the potential biological differences in 

estrogen metabolism in Asian versus Caucasian populations, a sensitivity analysis was also 

performed in which the conditional logistic regression models were repeated without the data 

from the Fowke et al. Shanghai study.  Additionally, the Fowke et al. study utilized a case-

control study design whereas the studies by Muti et al., Meilahn et al. and Wellejus et al. were 

nested case-control studies in which the urine sample was collected before breast cancer 

diagnosis. The sensitivity analysis including data from the three nested case control studies 

included 910 postmenopausal women (300 cases/610 controls).  Additionally, using data from 

the nested case-control studies, all models were re-estimated among women ages 50-65 as this 

was a common age group across the studies (N=833). 

Previous research suggests that estrogen metabolism may vary according to levels of 

body mass index (BMI) (Modugno 2006, Fishman 1975, Schneider 1983) and by smoking status 

(Sowers 2006).  Subgroup specific models were conducted to assess whether the association 
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between estrogen metabolites and breast cancer varied by BMI (<25, ≥ 25 kg/m2) and smoking 

status (current, non-current).  In a combined model, a dummy variable for BMI and a categorical 

interaction term for BMI and the metabolite were included. Separate combined models were 

performed for each metabolite exposure. Wald Χ2 tests were used to test the overall effects of the 

interaction. Interactions between smoking status and each metabolite were assessed using a 

similar approach.   

 Each of the individual metabolites 2-OHE1 and 16α-OHE1, and the 2:16α-OHE1 ratio, 

were also evaluated in relation to breast cancer according to hormone receptor status by 

performing separate age-adjusted multinomial logistic regression models. The outcome variable 

for the ER models included four categories: controls (reference), estrogen receptor positive 

(ER+) cases, estrogen receptor negative (ER-) cases, and estrogen receptor status unknown (ER 

unk) cases. Similarly, for the progesterone receptor models, the outcome variable included four 

categories: controls (reference), progesterone receptor positive (PR+) cases, progesterone 

receptor negative (PR-) cases, and progesterone receptor status unknown (PR unk) cases. These 

multinomial logistic regression models included adjustment for age using four categories (≤ 54, 

55-59 60-64, ≥ 65) due to the smaller number of cases when evaluating breast cancer cases by 

hormone receptor status.  

Potential interactions between the individual metabolite exposures and study were 

assessed by creating separate categorical interaction terms for each metabolite (using dummy 

variables for both the study and metabolite categorical variables). Multiparameter Wald Χ2 tests 

were used to test the overall effects of study, metabolite and the interaction. Interactions between 

age (continuous) and the 2-OHE1, 16α-OHE1, and 2:16α-OHE1 metabolites also were assessed 

using a similar approach.  
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All analyses were performed using SAS (Version 9.1, Cary, NC, USA) and STATA 10. 

Tests of significance were two-sided.  Data were analyzed in Pittsburgh, PA and the datafiles 

received did not include personal identifiers.  Each study participating in this present analysis 

was approved by the Institutional Review Board or appropriate ethical committee at the 

respective institutions, and participants provided informed consent.  

5.4 RESULTS 

Table 16 summarizes the unadjusted study specific odds ratio estimates and 95% confidence 

intervals for the association between tertiles of each metabolite and postmenopausal breast 

cancer.  Higher levels of the 2:16α-OHE1 ratio (≥ 2.46 vs. < 1.53) were associated with a 

reduction in breast cancer risk in the studies by Fowke et al. (OR=0.38, 95% CI: 0.04, 3.50), 

Meilahn et al. (OR=0.66, 95% CI: 0.23, 1.88), and Wellejus et al. (OR=0.76, 95% CI: 0.42, 

1.39); albeit these results were not statistically significant. The study-specific estimates for Muti 

et al. were in the positive direction, suggesting an increased risk with higher levels of the 2:16α-

OHE1 ratio (OR≥2.46 vs. < 1.53=1.63, 95% CI: 0.64, 4.12). These study specific estimates are 

depicted in the forest plot shown in Figure 8.  Despite the apparent difference in the direction of 

effect, the Cochrane chi-square test of heterogeneity was not statistically significant  

(Χ 2=02.73, p-value=0.44). 

Characteristics of the combined study population by case/control status are summarized 

in Table 17. The majority of the study sample was Caucasian (94.0% of cases and 94.3% of 

controls), with an average age of 57.7 ± .48 years for cases and 57.8 ± 5.1 years for controls. 

Unadjusted median estrogen metabolite levels differed between cases and controls, with cases 
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having lower levels of the 2-OHE1, 16α-OHE1, and the 2:16α-OHE1 metabolites compared with 

controls (Table 18; p-value <0.001 for each).  

Table 19 presents the ORs and corresponding 95% CIs estimating the odds of breast 

cancer in relation to the individual 2-OHE1 and 16α-OHE1 metabolites and the 2:16α-OHE1 ratio 

(319 cases/647 controls).  Among women in the highest tertile of the 2:16α-OHE1 ratio, the odds 

of breast cancer was significantly reduced (OR=0.56, 95% CI: 0.39, 0.79) as compared to those 

in the lowest tertile; however this reduction in risk attenuated with adjustment for study 

(OR=0.87, 95% CI: 0.58, 1.29) or adjustment for both study and known breast cancer risk factors 

(OR=0.98, 95% CI: 0.66, 1.98). A similar pattern was observed with the 2-OHE1 metabolite. 

Although the protective effect observed with higher levels of the 2-OHE1 metabolite (OR ≥ 8.50 vs.< 

2.99=0.28, 95% CI: 0.20, 0.41) was no longer statistically significant with adjustment for study 

(OR ≥ 8.50 vs.< 2.99= 0.69, 95% CI: 0.40, 1.19) and/or known breast cancer risk factors.  Results 

from the tests for trend from the unadjusted models suggested a significant inverse trend 

(p<.0001) with 2-OHE1, 16α-OHE1, and the 2:16α-OHE1 ratio but this trend was no longer 

apparent after adjustment for study (p>0.10).  The main effect of study in each of the metabolite 

main models was statistically significant as indicated by the Wald test p-values. None of the 

interactions between study and metabolite were statistically significant, p-value >0.10. None of 

the interactions between age and each of the metabolites were statistically significant, p-value > 

0.10 (data not shown). 

Table 20 summarizes the results from the sensitivity analyses which includes data from 

the three Caucasian nested case-control studies (300 cases/610 controls). Results from both the 

unadjusted and adjusted models were similar to those presented in Table 19.  The observed 

inverse relationship with higher levels of the 2:16α-OHE1 in unadjusted models attenuated with 
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adjustment for either study or both study and known breast cancer risk factors.  No significant 

associations with either the 2-OHE1, 16α-OHE1, or their ratio were observed in the subgroup 

specific analyses of BMI (< 25 kg/m2 and ≥ 25 kg/m2) or smoking status (current vs. non-current 

smoker) (data not shown).  Overall tests of interaction were not statistically significant (Wald 

test p-value ≥ 0.15 for each) (data not shown). Additionally, results from the models repeated 

among women ages 50-65 were relatively similar to those presented in Table 19 (data not 

shown). 

The relative risk of ER status by tertiles of estrogen metabolites as compared to controls, 

are summarized in Table 21.  No significant differences were observed in the relative risk (RR) 

of ER+ or ER- tumors by tertiles of 2:16α-OHE1, with observed estimates in the same direction 

(ER+: RRTertile 3 vs Tertile 1=0.67, 95% CI: 0.43, 1.04; ER-: RRTertile 3 vs. Tertile 1=0.59, 95% CI: 0.31, 

1.12).  No significant associations were observed with the 16α-OHE1 metabolite, although the 

direction of the estimate suggests a negative association for ER- cases.  No significant 

associations were observed for the analyses by PR status (data not shown).  

5.5 DISCUSSION 

In this combined analysis of urinary 2-OHE1 and 16α-OHE1 metabolites and breast cancer, we 

did not observe significant associations with either of the individual metabolites or their ratio and 

breast cancer. Unadjusted models suggested that higher levels of the 2-OHE1 metabolite and the 

2:16α-OHE1 ratio might be protective; however this apparent inverse relationship attenuated with 

adjustment for study.  
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To date, 12 studies have evaluated estrogen metabolites in relation to breast cancer 

among postmenopausal women, of which seven have been nested case-control studies (Meilahn 

1998, Modugno 2006, Muti 2000, Cauley 2003, Modugno 2006, Wellejus 2005, Eliassen 2008) 

and five were case-control studies (Fowke 2003, Ho 1998, Kabat 1997, Kabat 2006, Ursin 1999). 

Previous case-control studies have either suggested a potential reduction (Kabat 1997, Ho 1998, 

Kabat 2006) in breast cancer risk with a higher 2:16α -OHE1 ratio or no association (Ursin 

1999), while results from most nested case-control studies suggest no association. Differences in 

the inconsistency of results between case-control and nested-case control studies may be due to 

the inability to establish temporal inference in case-control studies.  Furthermore, nested case-

control studies have evaluated this association with estrogen metabolites measured in urine (Muti 

2000, Meilahn 1998 Wellejus 2005), serum (Cauley 1999) and plasma (Eliassen 2008), and 

despite the difference in biological specimen, the results from these studies have mostly been 

null among women not currently on HRT. 

The objective of this analysis was to improve our understanding of the association 

between urinary estrogen metabolites and breast cancer among postmenopausal women not 

currently on HRT, with the use of a larger combined sample size. The original results from the 

participating nested case-control studies indicated either no association with higher levels of 2-

OHE1 or 16α-OHE1 among non-users of HRT in the study by Wellejus et al. (Wellejus 2005), or 

a potential decrease in breast cancer risk with higher levels of the 2:16α-OHE1 ratio in the 

Guernsey study by Meilahn et al. (unadjusted ORtertile 3 vs. 1=0.71, 95% CI: 0.29-1.75), or no 

association with 2:16α-OHE1 indicated by OR values above 1 in the study by Muti et al. 

(unadjusted ORquantile 5 vs. quantile 1)=1.17, 95% CI: 0.49-2.75).  In our analyses limited to nested 

case-control studies (300 cases, 610 controls), we did not observe a statistical significant 
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association with higher levels of the 2:16α-OHE1 ratio. Furthermore, the odds ratio estimates in 

both study adjusted and multivariable adjusted models surrounded 1 and thus do not lend 

evidence in support of an inverse relationship between 2:16α-OHE1 and breast cancer.  

Hormonally related factors are suggested to impact ER+ tumors differently than ER- 

tumors (Huang 2000, Cotterchio 2003), with estrogens suggested to have a stronger association 

with ER+ tumors compared to ER- tumors (Missmer 2004), though findings across studies have 

been inconsistent.  Furthermore, the association with estrogen metabolites and ER specific 

subtypes remains unclear. Previous studies of estrogen metabolites have observed significant 

associations with either ER+ or ER- tumors, with differences in the direction of effect.  Although 

higher levels of the 2-OHE1 metabolite were significantly associated with a reduced relative risk 

of both ER+ and ER- tumors in this combined analysis and results for the 2:16α:OHE1 ratio 

followed a similar pattern, the direction and magnitude of effect were similar for both ER 

subtypes, suggesting no difference in the overall effect of metabolites on ER specific tumors.   

Few studies have evaluated the association between estrogen metabolites and breast cancer by 

ER or PR status, of which two were nested case-controls (Wellejus 2005, Eliassen 2008) and two 

were retrospective case-control studies (Kabat 1997, Kabat 2006).  In the original study by 

Wellejus et al., no significant associations were observed between 2-OHE1, 16α-OHE1, or the 

2:16α-OHE1 and ER specific breast cancer among women not currently on hormone replacement 

therapy, although the direction of the estimates suggested a reduction in ER- breast cancer with 

higher levels of the 2:16α-OHE1 ratio (Wellejus 2005).  Results from a recent nested case-control 

study within the Nurses Health Study suggested significant positive associations with both the 2-

OHE1 metabolite and 2:16α-OHE1 (measured in plasma) and ER-/PR- tumors (Eliassen 2008).  

Results from a small case-control study of both pre- and postmenopausal women (n=106) 
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reported higher mean levels of the 2:16α-OHE1 ratio among those with ER+ tumors compared to 

ER- tumors (Kabat 1997).  A larger case-control study including 164 postmenopausal breast 

cancer cases observed a moderately statistically significant inverse association between the 

2:16α-OHE1 ratio and ER negative breast cancer (OR=0.38, 95% CI: 0.15-1.01) and no 

association among ER- cases (OR=1.05, 95% CI: 0.53-1.06) (Kabat 2006).  The results from the 

previous studies cannot be directly compared due to differences in analytical methods as well as 

type of biological sample (plasma vs. urinary measures), but nonetheless, the inconsistent 

findings across the studies demonstrates the need for more research in this area, particularly in 

studies with a larger number of postmenopausal breast cancer cases.  Furthermore, in this 

combined study, we were unable to assess combinations of ER and PR status due to the large 

number of cases with unknown PR status.  Future studies should include more complete 

information on PR status. 

Few studies have reported significant differences in the association between estrogen 

metabolites and breast cancer among subgroups and results often vary across studies, partly due 

to differences in subgroup definitions. In this combined analysis, no significant associations were 

detected among subgroups of BMI and smoking, and furthermore, the direction of effect was not 

consistent within subgroups. Postmenopausal obesity has been associated with an increase in 

breast cancer risk (EHBCCG 2003, van den Brandt 2000, Key 2003) due to the aromatization of 

steroids to estrone in adipose tissue (McTiernan 2003, Vainio 2002, Colditz 1993) and estrogen 

metabolites have been suggested to differ by body mass index (Sowers 2006); however, in this 

combined analysis no significant associations were observed in either subgroup of BMI (< 25 

kg/m2 or ≥ 25 kg/m2).  
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In this combined analysis, no significant interactions were observed between any of the 

estrogen metabolites and study.  However, the main effect of study was significant, and 

furthermore, adjustment for study attenuated the protective effects observed in the unadjusted 

models. Although study may not modify the association between estrogen metabolites and breast 

cancer, it appears to confound the relationship. This is likely due to differences in study 

characteristics, study populations or the differences in the distribution of metabolites.  

Estrogen metabolite levels in both the studies by Fowke et al. and Wellejus et al. were 

mostly distributed among the lowest tertile of common cutpoints. The lower estrogen metabolite 

levels among the Shanghai population are not unexpected as lower levels of circulating estrogens 

have been reported among Asian populations compared with Caucasian women (Aldercreutz 

1994).  Estrogen metabolite levels among the Danish study were also lower as compared to the 

other two Caucasian studies (Muti, Meilahn), suggesting that the normal range of the metabolites 

are unknown. In general, the range of metabolite values overlapped across studies yet the overall 

median levels were significantly different.  Although few studies have evaluated racial 

differences in estrogen metabolites (Ursin 2001, Jernstrom 2003, Falk 2005, Taioli 1996), this 

combined analysis highlights observed variability in the metabolite levels both across and within 

racial/ethnic populations and emphasizes the complexity in studying these metabolites.  

There are several strengths to this combined analysis including the use of primary 

individual level data, the ability to assess the relationship between the estrogen metabolites and 

breast cancer using common cutpoints, the large number of postmenopausal breast cancer cases, 

the completeness of information on estrogen receptor status (90.6%), and the ability to adjust for 

most known breast cancer risk factors. Additionally, the nested case-control studies measured 
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estrogen metabolite levels at study entry and thus levels were not affected by disease status or by 

treatment.   

Limitations to this combined analysis include the inability to consider additional factors 

which may affect estrogen metabolite levels such as genetic polymorphisms (Taioli 1999) and 

dietary factors (Lord 2002). Although the focus of this analysis was to assess the role of the 2-

OHE1 and 16α-OHE1 metabolites, additional metabolites such as 4-hydroxyestrone and the 

adducts which form from the quinone by-products, may also be important factors in breast 

carcinogenesis (Cavalieri 2006, Yager 2000).  Despite multiple attempts to include all previously 

published eligible studies, we were not able to obtain data from three previous case-control 

studies of estrogen metabolites and postmenopausal breast cancer. While we did not have 

information on mammography screening practices, we were able to adjust for benign breast 

disease in the multivariable models.  General limitations to the original studies included in this 

combined analysis include the measurement of estrogen metabolites during one time point, and 

the inability to assess changes in known breast cancer risk factors over time due to the nested 

case-control design. Urinary estrogen metabolites measured at a single point in time may not 

accurately reflect a woman’s normal levels. Within the study by Eliassen et al., a reproducibility 

study of metabolite levels among postmenopausal women indicated that metabolite levels were 

comparable over a three year period (Eliassen 2008). However, more research is needed to better 

understand estrogen metabolites levels during different time periods.  

This combined analysis of previously published studies does not support an association 

between urinary estrogen metabolites and postmenopausal breast cancer. Future studies should 

investigate estrogen metabolites measured at multiple time points or during different periods of 

life, and whether this affects the association between estrogen metabolites and breast cancer risk. 
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Additionally, future studies should address the limitations of the existing studies and aim to 

include information on genetic polymorphisms, dietary factors, and race, all of which may affect 

estrogen metabolite levels.  Improving our understanding of estrogen metabolites and their 

influence on breast cancer risk may offer a means of prevention or early detection, and may also 

provide additional insight in regards to the role of estrogen in breast cancer development.   



5.6 TABLES AND FIGURES 

Table 15 Characteristics of Participating Studies: Combined Analysis of Estrogen Metabolites and Postmenopausal Breast Cancer 

Study Cases/ 
Controls 

Study Population & 
Location 

Age 
Range 

Case  selection Control  
Selection 

Original  
Matching Criteria 

Nested Case-
Control  

      

Meilahn et al. 
(1998) 
 
 
 

39/139 Guernsey III cohort, 
Guernsey Island, 
1977-85 

48-79 
years 

Primary  clinically 
diagnosed 

Randomly selected from 
cohort (those alive and  
free of breast cancer at  
end of cohort & with 
available urine) 
 

Age ± 2 yrs, 
baseline exam ±1yr, 
 menstrual phase   

Muti et al. 
(2000) 
 
 
 
 
 
 

Wellejus et al. 
(2005) 

71/282 
 
 
 
 
 
 
 

193/199 

Hormones and Diet 
Etiology of Breast 
Cancer Study 
(ORDET), 1987-1992 
 
Varese Province, 
Northern Italy 
 

Greater Copenhagen 
or Aarhus areas 
1993-2000 

42-69 
years 

 
 
 
 
 

 

50-65 
years 

Linkage with 
Lombardy Cancer 
Registry 
 
 
 
 
 

Linkage with the 
Danish Cancer 
Registry and the 
Danish Breast 
Cancer Cooperative 
Group Registry 

Randomly selected from 
cohort among those alive  
at time of diagnosis of 
matched case 
 
 
 
 

Cancer free at exact  
age at diagnosis of case 

Age ±5 year, time  
of  blood draw, 
recruitment center , 
recruitment date 
 ± 180 days 

 
 

Age at entry (6 month 
intervals), HRT status 
postmenopausal status 
(known/probably) 
1:1 matching 

Case-control      
Ursin et al. 
(1999) 

66/76 Los Angeles, Ca 
USA 

53-70 
Years 

LA County Cancer 
Surveillance 
Program (SEER) 
Diagnosed 1987-
1989, or in 1992  
*prevalent cases in 
this ancillary study 

Population based  
Neighborhood controls  
from the same area as the 
cases 
 

Age ± 3 years,  
ethnicity, & 
neighborhood  
1:1 matching 
*Matching not retained 
in this ancillary study 

      

Fowke et al. 
(2003) 

19/37 Shanghai China 
 

47-64 
Years 

Incident cases from 
tumor or hospital 
registries 

Randomly selected from 
Shanghai population 
registry 

Age ± 3 years 
and date of sample 
collection ± 30 days 
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Table 16 Study Specific Unadjusted Odds Ratio Estimates and 95% Confidence Intervals: Association between  
Tertiles1 of the 2-OHE1, 16α-OHE1 and 2:16α-OHE1 Metabolites and Postmenopausal Breast Cancer (N=966) 
 
Estrogen 
Metabolite 

Fowke et al. 
(N=19/37) 

Meilahn et al.  
(N=39/139) 

Muti et al. 
(N=71/282) 

Wellejus et al. 
(N=193/199) 

 Cases/ 
Controls 

OR  
(95%CI) 

Cases/ 
Controls 

OR  
(95%CI) 

Cases/ 
Controls 

OR  
(95%CI) 

Cases/ 
Controls 

OR  
(95%CI) 

2-OHE1         
< 2.99 9/6 1.00 3/6 1.00 5/27 1.00 167/174 1.00 

2.99-8.49 9/25 0.30 
(0.09, 1.07) 

25/82 0.59 
(0.14, 2.50) 

28/90 1.68 
(0.59, 4.77)

21/24 0.91 
(0.49, 1.69) 

≥ 8.50 1/6 0.13 
(0.01, 1.32) 

11/51 0.38 
(0.08, 1.77) 

38/155 1.33 
(0.48, 3.70)

2/1 2.08  
(0.19, 23.09) 

         
16α-OHE1          

< 1.50 1/1 1.00 4/7 1.00 8/37 1.00 144/169 1.00 
1.50 – 4.47 12/22 0.68 

(0.04, 11.71) 
16/60 0.42 

(0.11, 1.63) 
30/109 1.26 

(0.53, 2.99)
43/27 1.86 

(1.10, 3.16) 
≥ 4.48 6/14 0.61 

(0.03, 11.67) 
19/72 0.41 

(0.11, 1.59) 
33/126 1.22 

(0.52, 2.88)
3/3 1.17 

(0.23, 5.86) 
         
2:16α-OHE1         

< 1.53 14/29 1.00 16/58 1.00 6/37 1.00 90/85 1.00 
1.53-2.45 4/3 2.23 

(0.43, 11.50) 
17/48 1.24  

(0.57, 2.69) 
26/87 1.79 

(0.68, 4.69)
75/83 0.85 

(0.55, 1.31) 
≥ 2.46 1/5 0.38 

(0.04, 3.50) 
6/33 0.66 

(0.23, 1.88) 
39/146 1.63 

(0.64, 4.12)
25/31 0.76 

(0.42, 1.39) 
 
Note: Estimates generated using conditional logistic regression matched on 5-year age groups. Urinary 2-OHE1 and 16α-OHE1 
metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).  
1=Common tertile categories based on the distribution of the individual metabolites among all controls in the combined study 
population. 
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†Unadjusted study specific odds ratio and 95% confidence limits shown refer to the highest tertile category of the 2:16α-OHE1 ratio compared to 
the lowest (reference group):  ≥ 2.46 vs. < 1.53. The common tertile categories were determined based on the distribution of the 2:16α-OHE1 ratio 
among controls from all studies combined. Estimates generated using conditional logistic regression matched on 5 year age strata. 
**Includes data from all four studies (N=966).  
***Includes data only from the nested case-control studies (Wellejus et al., Meilahn et al. and Muti et al. (N=910) 

Figure 8 Odds Ratio Estimates: Association of the 2:16α-OHE ratio1 (highest tertile vs. lowest tertile) and Breast Cancer† 
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Table 17 Descriptive Characteristics of the Combined Analysis Study Sample (N=966) 

Variable Cases 
(n=319) 

Controls 
(n=647) 

P-value1 P-value2

(adjusted 
 by study) 

Study 
     Fowke et al. 
     Meilahn et al. 
     Muti et al. 
     Wellejus et al. 

 
19 
39 
71 
190 

 
37 

139 
272 
199 

 
 
- 

 
 
- 

Age (years)* 57.7 ± 4.8 57.8 ± 5.1 0.90 0.60 
Age at menopause 49.0 ± 4.8 48.6 ± 4.6 0.24 0.16 
Ethnicity, N (%) 
     Caucasian 
     Asian 

 
300 (94.0) 
19 (6.0) 

 
610 (94.3) 
37 (5.7) 

 
0.88 

 

 
- 

Family History of Breast Cancer,  
N (%)^ 

8 (2.5) 
 

42 (6.5) 
 

0.26 0.62 

History of Benign Breast Disease, 
N (%) 

70 (21.7) 
 

96 (14.8) 
 

0.0123 

 
0.004 

 
Body Mass Index (kg/m2)* 26.3 ± 4.5 

median: 26.0 
26.1 ± 4.2 

median:  25.0 
 

0.804 
 

0.52 
Waist-to-hip ratio ** 0.81 ± 0.07 0.82 ± 0.07 0.15 0.15 
Smoking     
         Never 164 (51.4) 392 (60.6)   
         Former 64 (20.1) 104 (16.1)   
         Current 76 (23.8) 123 (19.0)   
         Unknown 15 (4.7) 28 (4.3) 0.06 0.13 
Alcohol Consumption    
        Yes 235 (73.7) 349 (53.9)   
        No 44 (13.8) 150 (23.2)   
        Unknown 40 (12.5) 142 (21.9) <0.001 0.42 
Oral Contraceptive Use     
     Never  202 (63.3) 479 (74.0)   
     Former  114 (35.7) 161 (24.9) 0.02 0.58 
Age at menarche > 13 years,  N (%) 155 (48.6) 314 (48.5) 0.10 0.75 
Nulliparous, N (% 50 (15.5) 86 (13.1) 0.28 0.35 
Age at First Pregnancy*† 25.0 ± 4.7 25.2 ± 4.7 0.56 0.16 
Estrogen Receptor, N (%) 
     Positive 
     Negative 
     Unknown 

 
210 (65.8) 
79 (24.8) 
30 (9.4) 

 
- 

 
- 

 
- 

Progesterone Receptor, N (%) 
     Positive 
     Negative 
     Unknown 

 
66 (20.7) 
64 (20.1) 
189 (59.2) 

 
- 

 
- 

 
- 

       Note: Percentages may not sum to 100 due to missing values. *Mean ± SD or Median (Range) 
       **Waist to hip ratio data only available in Wellejus et al., Muti et al. and Fowke et al. 
       1=t-test p-value for continuous variables or chi-square p-value for categorical variables, unless otherwise noted      
       2=Wald test p-value adjusted for study, 3=Exact chi-square p-value, 4=Wilcoxon Rank Sum p-value    
      ^=Information on family history of breast cancer missing in Wellejus et al. 
     †Among parous women 
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Table 18 Median Estrogen Metabolite Levels^ by Case/Control Status 

Estrogen 
Metabolite 

Cases 
 

Controls 
 

P-value† 

(N=966) (N=319) (N=319)  
2-OHE1   2.3 (0.20-97.0) 5.2 (0.14-115.4) <0.0001 
16α-OHE1   1.6 (0.18-27.3) 2.7 (0.19-38.3) <0.0001 
2:16α-OHE1 1.7 (0.04–6.9) 2.0 (0.21-13.9) 0.0001 
(N=910)*  (N=300)  (N=610)  
2-OHE1   2.3 (0.20-97.02) 5.2 (0.14-115.4) <0.0001 
16α-OHE1   1.4 (0.18-27.3) 2.6 (0.19-38.3) <0.0001 
2:16α-OHE1 1.8 (0.04-6.9) 2.0 (0.21-13.9) 0.0010 
Urinary 2-OHE1 and 16α-OHE1 Metabolites (ng/ml) are standardized to urinary  
creatinine levels (mg/dl). 
*Includes data from only the Caucasian nested case-control studies 
^Median (Range) 
† Wilcoxon rank sum p-value  
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Table 19 Association between Tertiles of Urinary Estrogen Metabolites (2-OHE1, 16α-OHE1 and 2:16α-
OHE1) and Postmenopausal Breast Cancer, (N=966) 

Estrogen Metabolites§ Case/ 
control 

(319/647) 

Unadjusted 
OR  

(95% CI) 
 

Adjusted* 
OR  

(95% CI) 

Adjusted**  
OR  

(95% CI) 
(by study only) 

Adjusted*** 
OR  

(95% CI) 

2-OHE1      
< 2.99 184/213 1.00 1.00 1.00 1.00 

2.99 - 8.49 83/221 0.44  
(0.32, 0.61) 

0.81  
(0.51, 1.28) 

0.87  
(0.55, 1.36) 

0.86 
(0.54, 1.36) 

≥ 8.50 52/213 0.28  
(0.20, 0.41) 

0.58  
(0.34, 1.00) 

0.69  
(0.40, 1.19) 

0.67 
(0.38,1.18) 

P-values†      
p-trend  <0.001 0.05 0.17 0.16 

Study (Main Effect)  - - < 0.001 0.05 
Interaction (2OHE*Study)  - - 0.27 0.25 
16α-OHE1      

< 1.50 157/214 1.00 1.00 1.00 1.00 
1.50 - 4.47 101/218 0.65  

(0.48, 0.90) 
1.48  

(0.97, 2.28) 
1.48  

(0.97, 2.25) 
1.46  

(0.94, 2.26) 
≥ 4.48 61/215 0.39  

(0.28, 0.56) 
1.16  

(0.68, 1.96) 
1.27  

(0.76, 2.14) 
1.19  

(0.70, 2.03) 
P-values†      

p-trend  <0.001 0.88 0.74 0.99 
Study (Main Effect)  - - <0.001 0.03 

Interaction (16OHE*Study)  - - 0.62 0.42 
2:16α-OHE1      

< 1.53 126/209 1.00 1.00 1.00 1.00 
1.53-2.45 122/223 0.91  

(0.66, 1.24) 
1.02  

(0.73, 1.42) 
1.03  

(0.74, 1.44) 
1.13  

(0.80, 1.60) 
≥ 2.46 71/215 0.56  

(0.39, 0.79) 
0.86  

(0.59, 1.27) 
0.87  

(0.58, 1.29) 
0.98  

(0.66, 1.98) 
P-values†      

p-trend  0.0009 0.45 0.47 0.92 
Study (Main Effect)  - - <0.001 0.04 

Interaction (2:16OHE*Study)  - - 0.48 0.34 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
Estimates generated using conditional logistic regression matched on 5 year age strata.  
Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
§=Categories based on distribution of 2:16α-OHE1 among all the controls  
*Models adjusted for breast cancer risk factors including: family history of breast cancer (yes/no), history of 
benign breast disease (yes/no/unknown), age at first menstrual period (< 13/ ≥ 13/unknown), BMI (kg/m2, 
continuous), oral contraceptive use (yes/no), smoking (yes/no/unknown) and pregnancy combined variable 
(never pregnant, age at first pregnancy <20, age at first pregnancy 20-29, age at first pregnancy ≥ 30 years).  
**Models adjusted for study only.  
***Models adjusted for study in addition to the known breast cancer risk factors mentioned above. 
 † P-values shown: (1) p-value for test of trend using the midpoint of each metabolite category, (2) Wald X2  

p-value for overall effect of study in models shown above and (3) Wald X2 p-value for test for interaction 
between the metabolite and study from the model (not shown) including:  the specific metabolite (categorical), 
study variable (categorical) and the metabolite by study interaction term.   
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Table 20 Association between Tertiles of Urinary Estrogen Metabolites (2-OHE1, 16α-OHE1 and 2:16α-
OHE1) and Postmenopausal Breast Cancer, (N=910, Nested case-control studies) 

Estrogen Metabolites§ Case/ 
control 

(300/610) 
 

Unadjusted 
OR  

(95% CI) 
 

Adjusted* 
OR  

(95% CI) 

Adjusted**  
OR  

(95% CI) 
(by study only) 

Adjusted*** 
OR  

(95% CI) 

2-OHE1      
< 2.99 175/207 1.00 1.00 1.00 1.00 

2.99 - 8.49 74/196 0.45  
(0.32, 0.64) 

1.02  
(0.62, 1.68) 

1.06  
(0.65, 1.72) 

1.05  
(0.64, 1.74) 

≥ 8.50 51/207 0.29  
(0.20, 0.43) 

0.82  
(0.45, 1.48) 

0.85  
(0.47, 1.51) 

0.82  
(0.42, 1.50) 

P-values†      
p-trend  <0.001 0.35 0.39 0.35 

Study (Main Effect)  - - <0.001 0.47 
Interaction (2OHE*Study)  - - 0.62 0.58 
16α-OHE1      

< 1.50 156/213 1.00 1.00 1.00 1.00 
1.50 – 4.47 89/196 0.65  

(0.46, 0.90) 
1.46  

(0.94, 2.26) 
1.50  

(0.98, 2.30) 
1.46  

(0.94, 2.25) 
≥ 4.48 55/201 0.38  

(0.26, 0.55) 
1.19  

(0.69, 2.06) 
1.31  

(0.77, 2.23) 
1.19  

(0.69, 2.06) 
P-values†      

p-trend  <0.0001 0.92 0.63 0.90 
Study (Main Effect)  - - <0.001 0.53 

Interaction (16OHE*Study)  - - 0.41 0.35 
2:16α-OHE1      

< 1.53 112/180 1.00 1.00 1.00 1.00 
1.53-2.45 118/220 0.87  

(0.63, 1.21) 
1.09  

(0.76, 1.54) 
1.00  

(0.71, 1.41) 
1.09  

(0.77, 1.55) 
≥ 2.46 70/210 0.55  

(0.38, 0.79) 
0.99 

(0.66, 1.50) 
0.88  

(0.59, 1.32) 
0.99  

(0.65, 1.51) 
P-values†      

p-trend  <0.001 0.98 0.52 0.96 
Study (Main Effect)  - - <0.001 0.52 

Interaction (2:16OHE*Study)  - - 0.49 0.33 
Note: Urinary 2-OHE1 and 16α-OHE1 Metabolites (ng/ml) are standardized to urinary creatinine levels 
(mg/dl).  Estimates generated using conditional logistic regression matched on 5 year age strata. 
Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
§=Categories based on distribution of 2:16α-OHE1 among all the controls  
*Models adjusted for breast cancer risk factors: family history of breast cancer (yes/no), history of benign 
breast disease (yes/no/unknown), age at first menstrual period (< 13/ ≥ 13/unknown), BMI (kg/m2 continuous), 
oral contraceptive use (yes/no), smoking (yes/no/unknown) and pregnancy combined variable (never pregnant, 
age at first pregnancy <20, age at first pregnant 20-29, age at first pregnant ≥ 30 years).  
**Models adjusted for study only.   
***Models adjusted for study in addition to the known breast cancer risk factors mentioned above. 
 † P-values shown: (1) p-value for test of trend using the midpoint of each metabolite category, (2) Wald X2  

p-value for overall effect of study in models shown above and (3) Wald X2 p-value for test for interaction 
between the metabolite and study from the model (not shown) including:  the specific metabolite (categorical), 
study variable (categorical) and the metabolite by study interaction term.
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Table 21 Relative Risk of Estrogen Receptor Status by Tertiles of Estrogen Metabolites (2-OHE1, 16α-OHE1  
and 2:16α-OHE1) as compared to controls, (N=910)* 

  ER positive ER negative ER unknown 
 Estrogen 
Metabolites 

Controls 
(N=610) 

Cases 
(N=201) 

RR 
 (95% CI) 

Cases 
(N=76) 

RR  
(95% CI) 

Cases 
(N=23) 

RR 
(95% CI) 

 2-OHE1         
< 2.99 207 116 1.00 44 1.00 15 1.00 

2.99 - 8.49 196 52  1.01 
(0.61, 1.68) 

14 0.36 
(0.15, 0.85) 

8 0.89 
(0.27, 2.92) 

≥ 8.50 207 33 0.64  
(0.36, 1.12) 

18 0.45  
(0.20, 0.98) 

0 n/a 

        
16α-OHE1        

< 1.50 213 104 1.00 41 1.00 11 1.00 
1.50 – 4.47 196 61 1.29  

(0.82, 2.01) 
16 0.57  

(0.28, 1.17) 
12 2.17  

(0.81, 5.85) 
≥ 4.48 201 36 1.04  

(0.59, 1.81) 
19 0.68  

(0.31, 1.51) 
  

        
2:16α-OHE1        

< 1.53 180 75 1.00 29 1.00 8 1.00 
1.53-2.45 220 80 0.92  

(0.63, 1.35) 
30 0.88  

(0.51, 1.54) 
8 0.88  

(0.32, 2.42) 
≥ 2.46 210 46 0.67  

(0.43, 1.04) 
17 0.59 

(0.31, 1.12) 
7 1.00  

(0.34, 2.96) 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).   
Odds ratio estimates generated from multinomial models with controls as the comparison group. Estimates were generated  
using data from the Caucasian studies: Wellejus et al., Meilahn et al. and Muti et al.  
*All multinomial models adjusted for study (categorical) and age using the following categories: ≤ 54, 55-59, 60-64, ≥ 65. 
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6.1 ABSTRACT 

Objective:  Most known breast cancer risk factors are thought to influence the carcinogenic 

process through cumulative estrogen exposure yet little is known about their potential effects on 

estrogen metabolites.  Estrogen metabolism mainly occurs by two mutually exclusive pathways 

resulting in the formation of the 2-hydroxyestrone (2-OHE1) and 16α-hydroxyestrone (16α-

OHE1) metabolites. A higher ratio (2:16α-OHE1) favoring the 2-hydroxylation pathway is 

hypothesized to reduce breast cancer risk. We assessed the relationship between the urinary 

estrogen metabolites, 2-OHE1, 16α-OHE1, and their ratio 2:16α-OHE1 with various lifestyle and 

behavioral risk factors by conducting a combined analysis of previously published studies.   

Methods: This combined analysis included primary data from the control populations of five 

previously published studies yielding a study sample consisting of 544 premenopausal and 720 

postmenopausal women.   Urinary estrogen metabolite levels were measured using an ELISA 

assay. Univariate and multivariable linear regression analyses were performed to assess the 

relationships between each metabolite and the various factors among pre- and postmenopausal 

women separately. All models were adjusted for age and study.  All statistical tests were two 

sided. 

Results: Univariate and multivariable regression analyses among premenopausal women 

identified significant associations between the 2-OHE1 and 2:16α-OHE1 metabolites and body 

mass index (BMI) (p ≤ 0.05). No significant associations were observed with 16α-OHE1 and any 

of the factors among premenopausal women. Multivariable analyses among postmenopausal 

women revealed the following significant associations: age at first menstrual period (p-

value=0.04), BMI (p=0.09) and alcohol consumption (p=<.01) with 2-OHE1; age (p=-0.03), 

former smoking (p=0.04), alcohol consumption (p <.004) and history of benign breast disease 
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(p=0.01) with 16α-OHE1; age (p=0.007), age at menopause (p=0.049), and history of benign 

breast disease (p=0.04) with the 2:16α-OHE1 ratio.  

Conclusions: These findings indicate potential relationships between various breast cancer risk 

factors and urinary estrogen metabolites.  

6.2 INTRODUCTION 

Various studies of estrogen metabolites have been conducted among populations of healthy 

women yet questions still remain with regard to potential modifying factors of estrogen 

metabolite levels. The normal range of urinary 2-OHE1, 16α-OHE1, and 2:16α-OHE1 among 

healthy women remains unknown, in part, because of potential variation with ethnicity, 

menstrual cycle, and menopausal status, as well as individual characteristics (such as age and 

lifestyle factors) that also may contribute to intra-individual variability.  The majority of previous 

studies have focused on dietary factors or physical activity (Lord 2002), and little is known about 

the relationship between other characteristics and urinary estrogen metabolite levels. 

Additionally, few studies have been conducted among healthy populations of premenopausal 

women and predictors of estrogen metabolites may vary by menopausal status.   

Estrogen metabolites have been evaluated in relation to breast cancer due to their 

potential effects on the carcinogenic process. The 16α-OHE1 metabolite is thought to have 

genotoxic and mitogenic effects (Telang 1992, Cavalieri 2006) while the 2-OHE1 metabolite 

may act as either a weak estrogen or possibly an anti-estrogen (Schneider 1984).  Moreover, the 

ratio of these specific metabolites (2:16α-OHE1) has been used in research studies to evaluate the 

balance between the two estrogen metabolism pathways (Bradlow 1998), and may serve as a 

109 



potential biomarker of breast cancer. Many of the known breast cancer risk factors are related to 

a woman’s cumulative lifetime exposure to estrogen; however, the underlying mechanism 

remains unclear. Understanding the association between known risk factors and the urinary 

estrogen metabolites 2-OHE1 and 16α-OHE1 among healthy populations of women may 

contribute insight into the underlying mechanism of estrogen exposure and estrogen metabolites, 

and may also offer an alternative strategy for prevention.   

The aim of this analysis is to evaluate relationships between known breast cancer risk 

factors and urinary estrogen metabolites (2-OHE1, 16α-OHE1) and their ratio (2:16α-OHE1), 

among healthy women using the control populations from five previously conducted research 

studies.  

6.3 METHODS 

6.3.1 Study design 

The study population for this combined analysis is comprised of healthy controls who originally 

participated in studies of urinary estrogen metabolites and breast cancer.  Table 6.1 provides a 

brief description of the participating studies with additional details provided in the original 

publications (Muti 2000, Meilahn 1998, Fowke 2003, Wellejus 2005, Ursin 1999). 
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6.3.2 Study Identification and Selection 

Original research studies that evaluated the relationship between estrogen metabolites and breast 

cancer were identified by searching the National Library of Medicine and National Institutes of 

Health Pubmed database. The search strategy involved the following keyword search terms: (1) 

estrogen metabolites (n=2901 articles) and (2) estrogen metabolites with additional limits to 

females and English language (n=974 articles), (3) estrogen metabolites AND breast cancer 

(n=376 articles). Each of the 376 citations and abstracts were reviewed, and 12 articles were 

identified as having examined estrogen metabolites in relation to breast cancer.  Reference lists 

from retrieved articles were also reviewed; no additional studies were identified. This search is 

current as of July 15, 2008.   

Articles were considered eligible for potential inclusion in the overall combined analysis 

if they met the following pre-determined inclusion criteria:  (1) an original research study, (2) 

measurement of 16α-OHE1, 2-OHE1, and/or the ratio of these two main estrogen metabolites, (4) 

urine as the sample source, (5) breast cancer assessed as the main outcome and (6) sample size of 

at least 50 subjects.  

6.3.3 Selection results 

Two studies by Ursin et al. were identified, one of which was an earlier pilot study (Ursin et al. 

1997).  The control population from the more inclusive study by Ursin et al., published in 1999 

was included in this analysis. Eight studies were eligible for participation and fulfilled the above 

eligibility criteria (Fowke 2003, Kabat 1997, Ho 1998, Kabat 2006, Meilahn 1998, Muti 2000, 

Ursin 1999, Wellejus 2005). Investigators from the eligible studies were contacted and invited to 
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participate in this combined analysis. Multiple invitations were extended in an attempt to enlist 

the participation of all eligible studies.  Five studies, three nested case-control studies (Muti et 

al., Meilahn et al., Wellejus et al.) and two case-control studies (Fowke et al., Ursin et al), agreed 

to participate.  

6.3.4 Data Collection and Extraction 

The participating studies utilized structured questionnaires to ascertain information on 

demographics, lifestyle and anthropometric factors, hormone use, reproductive history, and other 

known breast cancer factors.  Study investigators were asked to submit their study-specific 

datafile along with a copy of the original questionnaire, a description of the variables and study 

methods, and an electronic datafile.  For all premenopausal subjects in the study by Muti et al., 

urine samples were collected during the luteal phase of the menstrual cycle (20-24th day).  Cases 

and controls in the original study by Meilahn et al. were matched on phase of menstrual cycle 

(follicular: within 15 days of the start of the last menstrual cycle, or luteal: more than 15 days).  

Menstrual phase at the time of urine collection was not available in Fowke et al. Definitions of 

menopausal status were provided by each study.  In the study by Muti et al. women without 

menstrual bleeding for at least 12 months were considered postmenopausal. Wellejus et al. 

defined women as either known or probable postmenopausal. Known postmenopausal status 

included women with 1) no hysterectomy and no menstruation in the 12 months prior to study 

entry, or (2) a bilateral oophorectomy or (3) age at last menstruation lower than age at 

hysterectomy.  Probable postmenopausal status included women with 1) menstruation during the 

12 months prior to study entry and current use of HRT, or 2) hysterectomy with unilateral (or 

unknown) oophorectomy or 3) age at last menstruation same as age at hysterectomy.  Women in 
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the study by Meilahn et al. were classified as postmenopausal if they reported (1) undergoing 

natural menopause, or (2) a hysterectomy with unilateral oophorectomy.  Each datafile was 

checked for consistency and uniformity with previously published results. Discrepancies 

identified were resolved with the study investigators.  Policies for data publication and 

authorship were reviewed and accepted by study investigators. 

Completeness of Data 

All variables requested were coded with a common format for this analysis. Information on 

waist-to-hip ratio and alcohol consumption was available in three studies (Wellejus, Fowke, 

Muti) and family history of breast cancer was not available in the Danish study (Wellejus). The 

datafile by Ursin et al. was missing the following variables: history of benign breast disease, 

alcohol consumption and smoking status (although current smokers were excluded from parent 

study).  Otherwise, the proportion of missing values for each covariate was low with the 

exception of those noted above.  

6.3.5 Laboratory measurement of main exposure 

Spot urine samples were collected for Meilahn et al., Fowke et al, Ursin et al. and Wellejus et al. 

and an overnight spot urine sample was collected in the study by Muti et al. The use of a spot 

urine collection has been shown to be a reliable sample source for the measurement of urinary 

estrogen metabolites (Chen 1999) with no reported significant differences between spot urine 

samples or multiple urine collections over a 24 hour period (Westerlind 1999). Additionally, the 

potential affect of long term sample storage on metabolite levels was assessed in the original 

studies by Meilahn et al and Wellejus et al.; no effect on metabolite levels was reported. All 

participating studies measured urinary 2-OHE and 16α-OHE using a commercially available 
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competitive, solid-phase enzyme immunoassay kit (ESTRAMET) produced by Immunacare 

Corp (Bethlehem, PA, USA). With this assay kit, the binding of the monoclonal antibodies to 

estrogen metabolites (antigen) is captured directly on the solid phase.  The urinary forms of 2-

OHE and 16-OHE are found as glucuronide conjugates and require the removal of sugars before 

the monoclonal antibodies in the assay kit can detect the urinary metabolites.  Studies by Fowke 

et al., Muti et al, and Wellejus et al. utilized the more recent ELISA kit (Bradlow 1998) whereas 

Meilahn et al. used the original assay developed by Klug (Klug 1994). The sensitivity of the 

modified kit is approximately 0.625 ng/ml for the 16α-OHE and 2-OHE metabolites (Bradlow 

1998, Falk 2000). The reported mean within assay variability of this kit is approximately 4% 

while the mean between assay variability is about 10%.  The components of the original kit are 

similar to those of the modified kit, with the exception of modifications that allow for an 

increased sensitivity level among postmenopausal women (Bradlow 1998, Falk 2000).  

6.3.6 Statistical analysis 

The 2-OHE1 and 16α –OHE1 metabolites (ng/ml) were divided by the urinary creatinine 

concentration (mg/dl) as a means of standardizing the metabolite values by total volume of urine.  

The 2:16α-OHE1 variable is based on the ratio of these two individual estrogen metabolites.  2-

OHE1 and 16α-OHE1 metabolite data was available on 98.7% of the study sample. The estrogen 

metabolite exposures (2-OHE1, 16α-OHE1 and the 2:16α-OHE1 ratio) were non-normally 

distributed.   

Additional exclusion criteria were implemented for the present analysis.  Current users of 

oral contraceptives from Fowke et al. were excluded from this analysis (n=9) to be consistent 

with the original exclusion criteria from the other studies. Additionally, the analysis among 
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postmenopausal women was limited to women not currently on hormone replacement therapy 

(HRT) at the time of entry into the original studies due to noted differences in the 2:16α-OHE 

ratio by postmenopausal HRT status (Armamento-Villareal 2004, Wellejus 2005).  Participants 

in the study by Wellejus et al. who were currently on HRT at cohort entry were excluded from 

these analyses (n=234 controls). All other participating studies excluded women currently on 

HRT as part of their exclusion criteria.  Latina participants in the study by Ursin et al. were 

excluded due to the small number of women in this group (n=3).  Lastly, information on estrogen 

metabolites was missing for 10 postmenopausal and 4 premenopausal women. After applying 

these additional exclusions, the present combined analysis includes 544 premenopausal and 720 

postmenopausal women.  

Linear regression analyses were used to assess the relationships between each of the 

metabolites (2-OHE1, 16α-OHE1 and 2:16α-OHE1) and the individual breast cancer factors in 

separate models adjusted for age and study. A natural log transformation was applied to the 

values of the 2-OHE1, 16α-OHE1 and the 2:16α-OHE1 metabolites to improve normality.  The 

following covariates were assessed:  age (years), age at menopause (years), family history of 

breast cancer in a first degree relative (yes/no), history of benign breast disease (yes/no), body 

mass index (kg/m2), waist-to-hip ratio, smoking (never/former/current/unknown), alcohol 

consumption (ever/never/unknown), age at first pregnancy and age at menarche (<13 years/≥ 13 

years/unknown).  These factors were chosen based on the characteristics of the Gail Model (Gail 

1989) and due to their established associations with breast cancer. Separate analyses were 

performed by menopausal status.  Due to noted differences in estrogen metabolites between 

Caucasian and Asian populations (Aldercruetz 1994, Sowers 2006), analyses were repeated 

among Caucasian women only.   Additional adjustment for menstrual phase at urine collection 
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(follicular ≤ 14 days/luteal ≥ 15 days/ unknown) did not alter the results, and thus this variable 

was not included in the base models.   

Variables with a p-value < 0.15 in the univariate analyses were considered for potential 

inclusion in the multivariable models. All significant variables from the univariate analyses were 

evaluated for inclusion in the final multivariable models using a backwards selection strategy. 

Variables with a p-value ≤ 0.10 were retained for inclusion in the final multivariable models. 

Normality of residuals was assessed for all final models using quantile normal plots of the 

residuals. Potentially influential observations were identified using Cook’s distance.  

All analyses were performed using SAS (Version 9.1, Cary, NC, USA) and STATA 10. 

Tests of significance were two-sided.  Data were analyzed in Pittsburgh, PA and these datafiles 

did not include personal identifiers.  Each study participating in this present analysis was 

approved by the Institutional Review Board or appropriate ethical committee at the respective 

institution, and participants provided informed consent.  

6.4 RESULTS 

The total sample of 1264 women included 544 premenopausal and 720 postmenopausal women, 

of which 13.2% and 5.1% of pre- and postmenopausal women were Asian, respectively.  The 

mean age was approximately 42 years (range 34-56) for premenopausal women and 58 years 

(range 42-79) for postmenopausal women. Descriptive characteristics of the combined study 

sample by menopausal status are summarized in Table 23.   

Significant differences in median metabolite levels by study were observed with each 

metabolite among pre- and postmenopausal women (p<0.0001) (Table 24).  Overall, estrogen 
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metabolite levels were significantly lower among the Shanghai population as compared to the 

Caucasian populations.  

Among premenopausal women, regression analyses adjusted for age and study indicated 

a significant inverse association between BMI and log 2-OHE1 (p-value=0.026) (Table 25). In a 

subset of the premenopausal population with data available on waist to hip ratio (N=358), a 

significant inverse association was also observed with the waist to hip ratio (p=0.018) after 

adjustment for age and study (Table 25). Both BMI and WHR were also significantly associated 

with a decrease in log 2:16α-OHE1 (p=0.0026 and p=0.027, respectively). In models adjusted for 

age, study and both BMI and WHR, WHR was significantly associated with a decrease in log 2-

OHE1 but not with 2:16α-OHE1 (p-value=0.21).  Age was positively associated with 2:16α-

OHE1 (p=0.05) but not with either of the individual metabolites (p > 0.10).  No other factors were 

associated with 2-OHE1 and 16α-OHE1. Additionally, no significant associations were observed 

between any of the characteristics and log 16α-OHE1 among premenopausal women.   

Analyses restricted to Caucasian premenopausal women yielded results similar to those 

presented in Table 25. However, when analyses were performed in the Shanghai population, 

BMI was not significantly associated with log 2-OHE1 among Asian premenopausal women 

(p=0.90) or with log 2:16α-OHE1 (p=0.75) (data not shown). The mean BMI was significantly 

higher among Caucasian premenopausal women (mean ± SD:  24.7 ± 4.5) as compared to Asian 

premenopausal women (mean ± SD:  22.0 ± 2.9) (data not shown). 

Separate univariate analyses adjusted for age and study among postmenopausal women 

revealed modest significant associations between log 2-OHE1 and age at first menstrual period 

(p=0.069), age at first pregnancy among parous women (p=0.049), BMI (p=0.095), current 

smokers (p=0.085) and alcohol use (p=0.0004).  History of benign breast disease (p=0.023), 
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former smoking status (p=0.09) and alcohol use (p=0.005) were significantly associated with 

16α-OHE1. Characteristics significantly associated with the log 2:16α-OHE in univariate 

regression models adjusted for age and study included: age at menopause (p=0.039), age at first 

pregnancy among parous women (p=0.0046), waist to hip ratio (p=0.042) and history of benign 

breast disease (p=0.048) (data not shown). 

Table 26 summarizes the final multivariable models for 2-OHE1, 16α-OHE1 and 2:16α-

OHE1 among postmenopausal women.   Age at first menstrual period (p=0.04) and BMI (p=0.09) 

remained inversely associated with log 2-OHE1 while alcohol use remained positively associated 

with log 2-OHE1 (p<.0001) in a multivariable model adjusted for age and study.  Age at first 

pregnancy (combination variable) and smoking status did not remain statistically significant (p-

value >.10) and were not included in the final multivariable model.  In the multivariable 16α-

OHE1 model, independent associations were observed with age (p=0.03), former smoking status 

(p=0.04), alcohol use (p=0.004) and history of benign breast disease (p=0.01). Results from the 

multivariable analyses of log 2:16α-OHE1 are also summarized in Table 26; age at menopause 

was the only characteristic that remained statistically significant at the p<.05 level.  The 

multivariable analysis for 2:16α-OHE1 was repeated among the subset of women with available 

WHR data. The overall findings were similar to those presented in Table 26 and WHR was not 

statistically significant in the multivariable models (data not shown). 

Postmenopausal analyses were repeated among Caucasian women (excluding the 

Shanghai population) and the results were similar (data not shown) to those presented for the 

total combined population. Additionally, no significant associations were observed when the 

analyses were performed among only the Asian population (37 premenopausal and 73 

postmenopausal women) (data not shown). 
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6.5 DISCUSSION 

The primary objective of this analysis was to assess the relationship between various lifestyle 

and behavioral characteristics and urinary 2-OHE1, 16α-OHE1 and 2:16α-OHE1 metabolites 

among healthy women.  The results of this study suggest potential relationships between select 

factors and the 2-OHE1, 16α-OHE1 and 2:16α-OHE1 metabolites and furthermore, that the 

particular factors associated with estrogen metabolite levels may vary among pre- and 

postmenopausal women. 

Previous studies have evaluated the urinary estrogen metabolites, 2-hydroxyestrone and 

16α-hydroxyestrone, in relation to diet and lifestyle factors, racial differences, hormone therapy, 

genetic polymorphisms and family history.  The majority of studies have focused on dietary 

factors such as flaxseed consumption (Haggans 2000, McCann 2007, Sowers 2006), Brassica 

vegetable consumption (Fowke 2000), macronutrient intake (Fowke 2001), soya diet (Lu 2000), 

indole-3-carbinol supplementation (Michnovicz 1997) or physical activity (Pasagian-Macaulay 

1996, Atkinson 2004, Bentz 2005, Matthews 2004).  Some studies have assessed potential racial 

differences in estrogen metabolites, mainly between Caucasian and Asian populations 

(Aldercruetz 1994, Ursin 2001, Jernstrom 2003, Falk 2005, Sowers 2006) or between Caucasian 

and African American women (Sowers 2006, Taioli 1996), while others have evaluated potential 

variations in estrogen metabolites by family history of breast cancer (Ursin 2002) or 

postmenopausal hormone use (Alvarez-Vasquez 2002, Mueck 2001).  However, questions still 

remain with regard to which breast cancer related factors may modify estrogen metabolite levels 

among both pre- and postmenopausal women as well as the corresponding magnitude. 

Few studies have assessed the relationship between body composition and estrogen 

metabolites among healthy populations (Schneider 1983, Fishman 1975, Matthews 2004, Sowers 
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2006, Pasagian-Macaulay 1996) with results from most studies suggesting that adiposity, 

measured by higher BMI levels, is associated with a decrease in levels of 2-OHE1 and 

subsequently the 2:16α-OHE ratio (Schneider 1983, Fishman 1975).  Alternatively, a previous 

study among premenopausal women observed a modest increase in the 2:1 ratio with increases in 

weight, BMI and WHR (Pasagian-Macaulay 1996). Among premenopausal women in our study, 

we observed an inverse association between BMI and 2-OHE1 and 2:16α-OHE1 which is 

consistent with findings from some of the previous studies of BMI and/or weight (Sowers 2006). 

However, our finding is inconsistent with the observed protective effect of obesity on 

premenopausal breast cancer risk (Ursin 1995, Van den Brandt 2000). Considering the 

hypothesized protective effect of a higher 2:16α-OHE1 ratio on breast cancer risk, one would 

expect increased BMI to be associated with increased 2-OHE1 levels among premenopausal 

women, if the underlying mechanism is estrogen related.   

A limited number of studies have evaluated the association between estrogen metabolites 

and smoking status (Michnovicz 1986, Sowers 2006, Jernstrom 2003) or alcohol consumption 

(Sowers 2006).  In a study of premenopausal women, Jernstrom et al. reported no difference in 

estrogen metabolite levels by smoking status (Jernstrom 2003) while lower 2-OHE1 and 16α-

OHE1 levels were observed among nonsmokers compared to smokers in a multiethnic population 

of premenopausal women (Sowers 2006). This is in contrast to our findings from our analyses of 

postmenopausal women in which we observed a reduction in 16α-OHE1 among former smokers 

compared to nonsmokers; however, the difference between our results and those of Jernstrom et 

al. or Sowers et al. may in part be due to the difference in menopausal status of the study 

populations.  Alcohol use was positively associated with both 16α-OHE1 and 2-OHE1 among 

postmenopausal women. Alcohol is metabolized in the liver and increased alcohol consumption 
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may lead to elevated estrogen levels (Gill 2000). Among premenopausal women, Sowers et al. 

(2006) reported a modest association between wine consumption and 2-OHE1. However, higher 

mean levels of 2-OHE1 were observed in the middle category and their findings do not support a 

dose response relationship (Sowers 2006).  It remains unclear whether smoking status and/or 

alcohol consumption is related to estrogen metabolite levels and whether this relationship varies 

by menopausal status.  

The overall prevalence of family history among both premenopausal and postmenopausal 

women in this study was fairly low and furthermore, family history was not significantly 

associated with either of the urinary estrogen metabolites or their ratio among pre- or 

postmenopausal women.  To our knowledge, only one other study has evaluated estrogen 

metabolite levels by family history of breast cancer.  Ursin et al. reported no difference in the 

2:16α-OHE1 ratio between premenopausal women with a positive family history of breast cancer 

(n=70) compared to women with a negative family history (n=27) (Ursin 2002).  Whether or not 

urinary estrogen metabolites may be useful in predicting breast cancer risk among high risk 

women remains unclear. Further investigations among larger samples of high risk women with 

estrogen metabolites measured over time may better address this particular research question. 

Interestingly, history of benign breast disease was negatively associated with 2:16α-

OHE1 and positively associated with 16α-OHE1. To our knowledge, previous studies have not 

evaluated estrogen metabolite levels by history of benign breast disease. Explanations for this 

potential association are unknown as this has not been previously evaluated but may involve 

mechanisms related to cell proliferation in the breast tissue. The positive association between 

16α-OHE1 and history of benign breast disease may be biologically plausible given that results 
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from cell studies have suggested that 16α-OHE1 may be associated with increased proliferation 

(Telang 2002). This finding warrants further investigation. 

In this combined analysis, we were able to assess various factors in relation to urinary 

estrogen metabolites among healthy populations of both pre- and postmenopausal women. 

Primary level data from previously published studies of urinary estrogen metabolites and breast 

cancer were obtained and allowed us to not only create a larger study sample of healthy women 

and to create common categories of exposure, but this approach also provided information on 

both estrogen metabolite levels and a range of lifestyle and behavioral factors.  This study also 

highlights the variability in estrogen metabolite levels in different populations of healthy women. 

There are some limitations that should be considered when interpreting the results from 

this study. Estrogen metabolites may potentially be modified through dietary and lifestyle 

factors, such as physical activity (Matthews 2004, Bentz 2005, Campbell 2007), brassica foods 

(Fowke 2000) or caffeine consumption (Sowers 2006, Jernstrom), which have been shown to 

alter 2:16α-OHE levels. Information on these factors was not available in this combined study 

population.  Additionally, Matthews et al. reported a significant interaction between BMI and 

physical activity (Matthews 2004) among North American and Chinese women. This same 

Shanghai population (Fowke 2001) was included in this combined analysis. Physical activity 

data was not requested from the Shanghai Study as this information was not available in the 

other participating studies. Thus, we were unable to account for possible interactions with levels 

of physical activity and this limitation should be considered when interpreting the observed 

significant association with BMI among premenopausal women. Additionally, we could not 

assess the potential influence of genetic polymorphisms which may alter the favored estrogen 

metabolism pathway.  Furthermore, many of the categorical variables were based on crude 
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variable definitions.  It is possible that additional details (ie. type of alcohol and duration, 

changes in body weight) would be more informative and would help clarify relationships 

between the studied factors and urinary estrogen metabolites. 

In summary, this study furthers our understanding of the relationships between urinary 

estrogen metabolites and a range of factors among healthy women.  Results of the multivariable 

analyses revealed different significant factors for premenopausal women than postmenopausal 

women suggesting that predictors of estrogen metabolites may vary by menopausal status. Future 

studies may consider longitudinal assessment of estrogen metabolite levels as well as more 

detailed information on potential predictors among both pre- and postmenopausal women.  



6.6 TABLES AND FIGURES 

Table 22 Characteristics of Participating Studies: Combined Analysis of Estrogen Metabolites  
Study Premenopausal 

Controls 
Postmenopausal 

Controls 
Study Population 

& 
Location 

Age 
Range 

Control  
Selection 

Original  
Matching Criteria 

Nested  
Case-Control 

      

Meilahn et al. 
(1998) 
 

184 
 
 

139 Guernsey III cohort, 
Guernsey Island, 
1977-85 

34-79 
years 

 

Randomly selected from 
cohort (those alive and free 
of breast cancer at end  
of cohort & with available 
urine) 
 

Age ± 2 yrs, 
baseline exam ±1yr, 
 menstrual phase   
1:3 matching 
  
 

Muti et al. 
(2000) 
 
 
 
 
 
 
Wellejus et al.   
(2005) 
 
 

288 
 
 
 
 

 
 
 

n/a 

272 
 
 
 
 
 
 
 

434 
HRT+: 234 
HRT-: 200 

 

Hormones and Diet 
Etiology of Breast 
Cancer Study 
(ORDET),  
1987-1992 
Varese Province, 
Northern Italy 
 
Greater Copenhagen 
or Aarhus areas 
1993-2000 

35-69 
years 

 
 
 
 
 
 

50 -65 
years 

Randomly selected from 
cohort among those alive  
at time of diagnosis of 
matched case 
 
 
 
 
Cancer free at exact  
age at diagnosis of case 

Age ±5 years, time  
of  blood draw, 
recruitment center , 
recruitment date 
  ± 180 days 

11:4 matching 
 
 
Age at entry (6 month 
intervals), HRT status 
postmenopausal status 
(known/probably) 
1:1 matching 

Case-Control       
Ursin et al. 
(1999) 
 
 
 
 
Fowke et al. 
(2003) 
 

 
 

n/a 
 
 
  

 

 
 

72 
 

73 
 
 
 
 

 
 

37 

Los Angeles, Ca 
USA 
 
 
 

 
 
Shanghai, China 
 

53-70 
years 

 
 
 
 

34-63 
years 

 

Population based  
Neighborhood controls  
from the same area as the 
cases 
 
 
Randomly selected from 
Shanghai population 
registry 
 
 

Age ± 3 years,  
ethnicity, & 
neighborhood  
1:1 matching 
*Matching not retained 
 
Age ± 3 years and date 
of sample collection ± 
30 days 
1:1 matching 
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Table 23 Descriptive Characteristics of the Combined Study Sample by Menopausal Status, 
(N=1264) 

 
Percentages may not sum to 100 due to missing values.  
*Mean ± SD  
Note: Waist to hip ratio data only available in Wellejus et al., Muti et al. and Fowke et al. History of 
alcohol consumption and smoking missing in the study by Ursin et al.  
^=Information on family history of breast cancer missing in Wellejus et al. 
†Among parous women 
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 Table 24 Median Estrogen Metabolite Levels by Study and Menopausal Status 
  PREMENOPAUSAL WOMEN (N=544) 
   Estrogen Metabolites* 
Study N^  2-OHE 

(ng/ml) 
16α-OHE 
(ng/ml) 

2:16α-OHE 

Muti et al. 288 Median 
25th,75th 
Range 

40.9   
22.5, 74.7 
2.5 - 351.8 

16.9  
8.9, 29.8 

0.96 - 181.8 

2.5  
1.94, 3.2  
0.42 - 7.6 

Meilahn et al. 184 Median 
25th,75th 
Range 

17.5  
11.4, 28.8 
2.0 - 173.0 

8.5  
5.2, 14.0 
1.2 - 91.0 

2.1  
1.5, 2.8 

0.28 - 6.1 
Fowke et al. 72 Median 

25th,75th 
Range 

6.9  
4.4, 13.3 
1.9 - 31.3 

8.6  
5.0, 13.3 
1.6 - 40.2 

0.85  
0.59, 1.4 
0.29 - 3.9  

p-value†   <0.0001 <0.0001 <0.0001 
      
   POSTMENOPAUSAL WOMEN (N=720) 
   Estrogen Metabolites* 

Study N^  2-OHE 
(ng/ml) 

16α-OHE 
(ng/ml) 

2:16α-OHE 

Wellejus et al.      
Overall 433 Median 

25th,75th 
Range 

2.8  
1.4, 18.6 

0.1 - 178.9 

1.6  
0.9, 8.7 

0.2 - 118.4 

1.8  
1.2, 2.4 
0.3 - 9.1 

               HRT + 233 Median 
25th,75th 
Range 

17.1  
4.1, 29.9 

0.3 – 178.9 

7.8  
2.8, 15.5 

0.3 - 118.4 

1.9  
1.2, 2.8 
0.3 - 9.1 

               HRT - 200 Median 
25th,75th 
Range 

1.5 
1.1, 2.3 

0.1 – 8.5 

0.9  
0.7, 1.3 
0.2 - 8.2 

1.6 
1.2, 2.1 
0.3 - 6.8 

Muti et al. 282 Median 
25th,75th 
Range 

10.3  
5.3, 17.8 

0.7 - 115.4 

3.9  
2.1, 6.9 

0.19 - 38.3 

2.6  
1.9, 3.3 

0.38 - 13.9 
Meilahn et al. 139 Median 

25th,75th 
Range 

7.1  
5.0, 10.5 
1.8 - 42.6 

4.5 
3.1, 6.7 

 0.9 - 15.1 

1.7  
1.2, 2.4 

0.2 - 11.3 
Fowke et al. 37 Median 

25th,75th 
Range 

3.7  
3.2, 5.5 

1.03 - 23.1 

3.6  
2.9, 4.7 

1.5 - 30.2 

0.95  
0.7, 1.5 
0.4 - 7.3 

Ursin et al. 73 Median 
25th,75th 
Range 

6.5  
4.4, 8.3 

2.0 - 24.5 

3.7  
2.6, 4.7 

0.90 - 10.3 

1.8  
1.4, 2.3 

0.71 - 9.4 
p-value†   <0.0001 <0.0001 <0.0001 

*Urinary 2-OHE and 16α-OHE Metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
†= Wilcoxon rank sum p-value 
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 Table 25 Results from separate linear regression models estimating the relationship between log (2-
OHE1), log(16α-OHE1) and log(2:16α-OHE1) and BMI among premenopausal women. Each model 
includes terms for age and separate intercepts for all studies 
 
Terms in 
model 

log (2-OHE1) log (16α-OHE1) log (2:16α-OHE1) 

(N=540) B (SE) p-value B (SE) p-value B (SE) p-value 
Intercept 

Age  
BMI 

Meilahn Study 
Fowke Study 

4.05 (0.37) 
0.0011 (0.0078) 
-0.018 (0.0081) 
-0.79 (0.082) 
-1.67 (0.11) 

<0.001 
0.89 
0.03 

<0.001 
<0.001 

3.30 (0.36) 
-0.0097 (0.0074) 
-0.0041 (0.0078) 

-0.62 (0.079) 
-0.68 (0.11) 

<0.001 
0.19 
0.60 

<0.001 
<0.001 

0.75 (0.21) 
0.011 (0.0044) 
-0.014 (0.0047) 
-0.17 (0.047) 
-1.00 (0.063) 

< 0.001 
0.02 

0.003 
<0.001 
<0.001 

Terms in 
model 

log (2-OHE1) log (16α-OHE1) log (2:16α-OHE1) 

(N=356)* B (SE) p-value   B (SE) p-value 
Intercept 

Age  
BMI 

Fowke Study 

4.5 (0.46) 
-0.012 (0.0095) 
-0.015 (0.010) 
-1.69 (0.12) 

<0.001 
0.23 
0.14 

<0.001 

3.95 (0.44) 
-0.027 (0.009) 

0.000041 (0.0096) 
-0.66 (0.11) 

<.0001 
0.004 
0.99 

<.0001 

0.58 (0.25) 
0.015 (0.0051) 
-0.015 (0.0054) 
-1.00 (0.061) 

0.02 
0.003 
0.005 
<.001 

Intercept 
Age  
BMI 

WHR 
Fowke Study 

5.51 (0.68) 
-0.0094 (0.0095) 
-0.0072 (0.011) 

-1.62 (0.83) 
-1.66 (0.12) 

<0.001 
0.32 
0.51 
0.05 

<0.001 

4.59 (0.65) 
-0.025 (0.009) 
0.0053 (0.01) 
-1.07 (0.79) 
-0.68(0.11) 

<0.001 
0.006 
0.61 
0.18 

<0.001 

0.92 (0.36) 
0.016 (0.0051) 
-0.012 (0.0058) 

0.56 (0.44) 
-0.99 (0.062) 

0.01 
0.002 
0.03 
0.21 

<.001 
Note: Metabolite outcomes are on the natural log scale. Urinary 2-OHE (ng/ml) standardized to 
urinary creatinine levels (mg/dl). 
*WHR data available in Muti et al. and Fowke et al., but not in Meilahn et al. 
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Table 26 Results from separate multivariable linear regression models estimating the relationship 
between 2-OHE1, 16α-OHE1 and 2:16α-OHE1 and various factors among postmenopausal women. 
Each model includes terms for age and separate intercepts for all five studies (N=720) 

 log (2-OHE1) 
Terms in model B (SE) p-value 

Intercept 
Age 

First menstrual period  
BMI 

Alcohol Yes 
Unknown 

Wellejus Study 
Meilahn Study 

Fowke Study 
Ursin Study 

2.91 (0.37)   
-0.0051 (0.0055)   

-0.035 (0.017)  
-0.012 (0.0068) 

0.29 (0.086)  
-0.39 (0.42) 

-1.98 (0.076)  
0.23 (0.42)  
-0.70 (0.14)   
0.087 (0.42) 

<0.001 
0.36 
0.04 
0.09 

<0.001 
0.35 

<.0001 
0.58 

<0.001 
0.84 

 log (16α-OHE1) 
Terms in model B (SE) p-value 

Intercept 
Age 

Former Smoker 
Current Smoker 

Unknown 
        Alcohol  Yes 

Unknown 
        History of benign       
        breast disease  

Yes 
Unknown 

Wellejus Study 
Meilahn Study 

Fowke Study 
Ursin Study 

1.82 (0.31) 
-0.011 (0.0052) 

-0.16 (0.079) 
0.092 (0.076) 

0.22 (0.15) 
0.24 (0.082) 
-0.35 (0.40) 

 
 

0.20 (0.078) 
-0.19 (0.26) 

-1.47 (0.076) 
0.59 (0.40) 
0.14 (0.13) 
0.44 (0.50) 

<0.001 
0.03 
0.04 
0.22 
0.14 
0.004 
0.38 

 
 

0.01 
0.45 

<0.001 
0.14 
0.27 
0.38 

 log (2:16α-OHE1) 
 B (SE) p-value 

Intercept 
Age 

Age at menopause 
        History of benign       
        breast disease  

Yes 
Unknown 

Wellejus Study 
Meilahn Study 

Fowke Study 
Ursin Study 

0.90 (0.28) 
0.0074 (0.0041) 
-0.008 (0.004) 

 
 

-0.10 (0.06) 
0.07 (0.20) 
-0.47 (0.05) 

-0.43 (0.056) 
-0.84 (0.094) 
-0.47 (0.21) 

0.001 
0.07 
0.05 

 
 

0.09 
0.72 

<0.001 
<0.001 
<0.001 

0.03 
 Note:  Metabolite outcomes are on the natural log scale.  Urinary 2-OHE1 and 16α-OHE1 (ng/ml)  
are standardized to urinary creatinine levels (mg/dl). 
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7.0  GENERAL DISCUSSION 

In 2008, an estimated 182,460 new invasive breast cancer cases were diagnosed among women 

in the United States (ACS 2008). While progress in early detection and breast cancer treatment 

has improved breast cancer survival, the incidence of this disease remains elevated.  Advances in 

biomarker research have been made in relation to markers of breast cancer progression and 

treatment; however, biomarkers of breast cancer risk have yet to be identified.  Prevention 

strategies have included the use of improved risk models among high risk women as well as the 

recommendation of lifestyle modifications for all women, such as reducing alcohol consumption, 

increasing exercise, and maintaining a healthy weight (Cummings 2009). However, despite these 

efforts, progress in breast cancer prevention has been limited in part because the underlying 

mechanisms leading to the development of breast cancer remain to be elucidated.  

A large body of evidence implicates estrogen in the etiology of breast cancer yet various 

questions remain regarding the role of estrogen metabolites in carcinogenesis.  Estrogen 

metabolites, and in particular 2:16α-OHE1, have been evaluated in relation to breast cancer risk 

among pre and postmenopausal women with the anticipation that this ratio of metabolites may 

serve as a potential predictor of breast cancer risk. However, the findings from studies which 

evaluated the association between estrogen metabolites and breast cancer have been 

inconclusive. Among premenopausal women in particular, results from previous studies have 

suggested a protective association with higher 2:16α-OHE1 levels but these findings have mostly 
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been based on studies of relatively small sample sizes. The intent of this combined analysis was 

to create a larger sample size of pre- and postmenopausal women in an effort to clarify the 

association between estrogen metabolites (2-OHE1, 16α-OHE1, and 2: 16α-OHE1) and pre-and 

postmenopausal breast cancer, to identify potential predictors of estrogen metabolites among 

healthy women, and to increase our overall understanding of urinary 2-OHE1 and 16α-OHE1 

metabolites.  

7.1 ARTICLE 1: ESTROGEN METABOLITES AND BREAST CANCER AMONG 

PREMENOPAUSAL WOMEN 

We utilized a combined analysis approach to evaluate the association between 2-OHE1, 16α-

OHE1 and 2:16α-OHE1 and breast cancer among 731 premenopausal women (183 cases/548 

controls). Primary data from previously published studies were re-evaluated in this larger 

combined sample using common estrogen metabolite cutpoints. Although estrogen metabolites 

have been investigated in relation to breast cancer, only six studies have assessed this 

relationship among premenopausal studies (Fowke 2003, Kabat 1997, Kabat 2006, Ho 1998, 

Meilahn 1998, Muti 2000) with sample sizes ranging from 19 to 105 cases and 12 to 264  

controls. Thus, we investigated whether higher levels of 2:16α-OHE1 would be associated with a 

reduction in breast cancer risk among premenopausal women using a larger combined sample of 

premenopausal women. 

 The unadjusted median 2:16α-OHE1 values were significantly lower among cases (1.8) as 

compared to controls (2.2), suggesting a potential difference by case/control status. However, the 

apparent reduction in breast cancer risk in unadjusted models (ORTertile 3 vs. Tertile 1=0.51, 95% CI: 
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0.33, 0.78) was attenuated and no longer statistically significant when models included 

adjustment for study (ORTertile 3 vs. Tertile 1=0.81, 95% CI: 0.49, 1.32).  The original studies by 

Meilahn et al. and Muti et al. suggested protective effects of estrogen metabolites but did not 

reach statistical significance. The results of this combined analysis may be due to insufficient 

power to detect a small effect or may reflect the true association between estrogen metabolites 

and breast cancer among premenopausal women.  In unadjusted analyses, we had sufficient 

approximate post hoc power to detect an OR=0.6; however, we did not have sufficient power to 

detect a smaller effect size (OR=0.80) in study adjusted models.  Although results from study 

adjusted models did not reach statistical significance, the direction and magnitude of effect were 

suggestive of a modest reduction in breast cancer risk with higher levels of 2:16α-OHE1.  

Furthermore, Kabat et al. (2006) reported a significant reduction in breast cancer risk with higher 

2:16α-OHE1 levels in a case-control study which included 105 premenopausal invasive cases 

(data not included in this combined analysis), which is smaller than our combined sample of 

premenopausal cases (n=183).  

There was no statistical evidence of interaction by study; however, study appears to be an 

important confounding factor.  This suggests that there are potential differences across the 

studies which may be important to consider such as differences in study design, laboratory 

variability and the distribution of the estrogen metabolites among various ethnic populations, in 

particular Caucasian and Asian women.  Although all studies used a commercially available kit 

to measure the estrogen metabolites, the possibility of inter- and intra-laboratory variability 

cannot be dismissed. We adjusted the conditional logistic regression models by study to account 

for these potential differences as well as other unknown sources of variability.  
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Although adjustment for various covariates did not alter the direction, magnitude or 

statistical significance of the observed effects, the estimates were attenuated and no longer 

statistically significant after adjustment for study.  This was likely driven by differences in the 

Fowke et al. study. The indicator variable for the Fowke et al. study (compared to Muti et al.) 

was statistically significant, and is essentially a proxy for race and study design. The study by 

Fowke et al. utilized a case-control design and was conducted among an Asian population, 

whereas the studies by Muti et al. and Meilahn et al. were nested case-control studies conducted 

within Caucasian populations. The exposure measure differs within these two study designs in 

that estrogen metabolites were measured either before or after breast cancer diagnosis depending 

on the particular study design, and it remains unclear whether estrogen metabolite levels are 

affected by disease status. Additionally, metabolite levels have been shown to vary by race 

(Aldercreutz 1994, Jernstrom 2003, Ursin 2001, Taioli 1996, Matthews 2004); however, research 

in this area is relatively limited, particularly among premenopausal women. The observed 

differences in the overall distribution of estrogen metabolites among Asian women compared to 

Caucasian women may be explained by differences in diet, lifestyle factors as well as genetic 

polymorphisms, all of which have been suggested to differ by race and to alter estrogen 

metabolite levels. 

 We attempted to evaluate the relationship between estrogen metabolites and breast cancer 

by various factors (including hormone receptor status, BMI, and smoking status); however, no 

significant associations were detected. Although our combined sample size was larger than 

previous individual studies, our interpretation of these additional analyses was limited by the 

small number of cases and controls in the various subgroups. Larger studies of premenopausal 
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women, as well as studies with more complete ER and PR information, may better address this 

research question.  

 Adjustment for menstrual phase at the time of urine collection (luteal vs. follicular) did 

not alter the results in this combined analysis. Whether metabolite levels vary during different 

phases of the menstrual cycle is not fully understood.  The limited number of studies which have 

evaluated the association between estrogen metabolites and breast cancer among premenopausal 

women may partly be due to the measurement issues surrounding the timing of urine collection 

during the menstrual cycle.   

Although we did not observe a significant association in this study, our results suggest a 

reduction in breast cancer risk with higher levels of the 2:16 ratio among premenopausal women.  

Furthermore, this combined analysis highlights the limited research that has evaluated the 

association between estrogen metabolites and breast cancer among premenopausal women and 

also emphasizes the variability in estrogen metabolite levels across different populations. 

7.2 ARTICLE 2: ESTROGEN METABOLITES AND BREAST CANCER AMONG 

POSTMENOPAUSAL WOMEN 

Estrogen metabolites were first considered as a potential component in breast carcinogenesis in 

the early 1970’s, yet since then, only 12 studies have been conducted in this area, including 5 

case-control (Fowke 2003, Ursin 1999, Ho 1998, Kabat 1997, Kabat 2006) and 7 nested case-

control or case-cohort studies (Meilahn 1998, Modugno 2006, Muti 2000, Cauley 2003, 

Modugno 2006, Wellejus 2005, Eliassen 2008). This number is surprisingly small considering 

the importance of estrogen in breast cancer development.  Possible explanations for the relative 
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dearth of studies in this research area include difficulties in measuring estrogen metabolite levels, 

intra-individual variation, and potential concerns with establishing temporal inference in case 

control studies.  

 In this combined analysis among postmenopausal women, we did not observe a 

significant association between either 2:16α-OHE1 or the individual metabolites and breast 

cancer.  Our null findings are consistent with those from individual studies among 

postmenopausal women not currently on HRT, particularly those of nested case-control or case-

cohort studies (Meilahn 1998, Muti 2000, Cauley 2003, Wellejus 2005, Eliassen 2008). In 

addition, findings from previous nested case-control studies have reported no association 

between 2:16α-OHE1 and breast cancer irrespective of the type of biological specimen (urine, 

serum, plasma). 

Our analyses investigating potential differences in the association between estrogen 

metabolites and breast cancer by hormone receptor status, BMI, and smoking did not reveal 

heterogeneity by these factors. However, this combined analysis highlights the variation in the 

distribution of estrogen metabolites both within and across ethnic populations. In our analyses, 

we utilized common cutpoints of the estrogen metabolites based on the distribution in the control 

population. Median levels in both the Danish and Shanghai populations were mostly distributed 

among the lowest tertile. Lower estrogen metabolite levels among the Shanghai population are 

not unexpected as lower levels of circulating estrogen and estrogen metabolites have been 

reported among Asian populations (Alderceutz 1994, Sowers 2006). However, the observed 

variation within Caucasian populations underscores differences within similar ethnic 

populations. Although all studies measured urinary estrogen metabolites using the commercially 

available kit (ESTRAMET), it is important to note that the possibility for inter- and intra-
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laboratory variation cannot be excluded.   Final models were adjusted for the main effect of 

study in an attempt to account for this potential laboratory variation as well as other unknown 

sources of variation not accounted for by the known breast cancer factors. 

In addition to differences in the distribution of estrogen metabolites by study, there 

appeared to be some variation in the study specific estimates; although the Chi-Square test of 

heterogeneity was not statistically significant.  Study specific odds ratio estimates for the 

association of the 2:16α-OHE1 (Tertile 3:  ≥ 2.46 vs. Tertile 1: < 1.53) and postmenopausal 

breast cancer were below one for all studies (although near 1) with the exception of the study by 

Muti et al. The study specific estimates for Muti et al. suggest an increase in postmenopausal 

breast cancer risk with higher 2:1616α-OHE1 levels, which is in contrast to our hypothesis. The 

original findings by Muti et al. also suggest an increase risk although the magnitude of the effect 

is lower, most likely due to the use of quintile cutpoints rather than the tertile cutpoints used in 

this combined analysis.  Within the same study by Muti et al. study specific estimates among 

premenopausal women suggested a protective effect with higher levels of the 2:16 ratio and this 

finding is consistent with the proposed hypothesis. Potential explanations for this observed 

difference by menopausal status remain unclear but may include changes in breast cancer risk 

factors during the time between exposure measurement at baseline and breast cancer diagnosis 

(as was discussed in the original publication by Muti et al.). The authors mention the possibility 

of weight gain or changes in breast cancer factors such as use of hormone therapy after urine 

collection as additional possible explanations for the observed increase in risk, as well as the 

potential for increased laboratory variability due to the lower estrogen metabolite levels observed 

among postmenopausal women. However, the potential for laboratory variability is not specific 

only to the study by Muti et al., and thus is not a likely explanation. Despite these proposed 
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explanations, it remains unclear why the Muti et al. study specific estimates would suggest an 

increase in breast cancer risk for postmenopausal women but a protective association among 

premenopausal women. 

In summary, the results from this combined analysis indicate no relationship between 

estrogen metabolites measured at one time point and postmenopausal breast cancer.  Whether 

estrogen metabolites measured at one time point reflect a woman’s typical level or whether they 

differ over the duration of many years, remains unknown. Among a subgroup of women within a 

nested case-control study (Nurse’s Health Study), baseline estrogen metabolite levels measured 

in serum were fairly correlated with levels measured three years later (correlation coefficient = 

0.73 for 2:16α-OHE1) (Eliassen 2008). With the exception of this reproducibility study 

conducted by Eliassen et al., studies have not assessed the reproducibility of estrogen metabolites 

over a long duration.  Future studies examining the role of estrogen metabolites in relation to 

postmenopausal breast cancer should consider estrogen metabolite levels measured at multiple 

time points. Furthermore, methodological concerns regarding the use of one measurement of 

estrogen metabolite levels vs. multiple measurements as well as sources of intra-individual 

variability should also be considered prior to conducting future studies. 

7.3 ARTICLE 3: URINARY ESTROGEN METABOLITES AND BREAST CANCER 

RELATED FACTORS AMONG HEALTHY WOMEN 

Several studies have evaluated estrogen metabolites among populations of healthy women with 

the majority of studies having focused on dietary factors or physical activity (Lord 2002). 

Variation in estrogen metabolite levels by characteristics such as age, race, obesity, family 
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history of breast cancer, smoking status, and alcohol use remains largely unknown. Findings 

from previous studies which have investigated these potential associations have been 

inconsistent. In this combined analysis, we utilized the control populations from five previous 

studies of estrogen metabolites and breast cancer in an attempt to identify potential associations 

between various breast cancer related characteristics and levels of 2-OHE1, 16α-OHE1 and 

2:16α-OHE1.   

Analyses among premenopausal women identified an inverse association between BMI 

and 2-OHE1 and 2:16α-OHE1 whereas among postmenopausal women a different set of 

characteristics remained statistically significant in multivariable regression analyses. Among 

postmenopausal women, age was positively associated with 2:16α-OHE1 while a negative 

association was observed between 2:16α-OHE1 and age at menopause and history of benign 

breast disease. The association with history of benign breast disease is interesting considering 

that 16α-OHE1 has been suggested to increase proliferation in cell studies (Telang 1992) and it is 

possible that the observed association may be related to mechanisms of cell proliferation in 

breast tissue. Furthermore, history of benign breast disease was positively associated with 16α-

OHE1 which supports this potential explanation.  To our knowledge this association with history 

of benign breast disease has not been evaluated in previous studies. Our findings are based on 

cross-sectional associations and warrant further investigation. 

Our results suggest that estrogen metabolite levels among pre- and postmenopausal 

women may be associated with different factors. This is not unexpected as levels of circulating 

estrogens and estrogen metabolites are lower among postmenopausal women compared to 

premenopausal women.  In addition, the main source of circulating estrogens varies by 

menopausal status.  Although questions still remain with regard to important predictors of 
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estrogen metabolites, our findings contribute to the existing body of knowledge regarding 

urinary estrogen metabolites and warrant further investigation.  

7.4 SUMMARY 

Estrogen plays an important role in the development of breast cancer. Previous studies of 

circulating estrogens have reported an increase in breast cancer risk with higher circulating 

estrogen levels among postmenopausal women (EHBCCG 2002, Eliasssen 2006, Cauley 1999, 

Zeleniuch-Jacquotte (1995), Missmer 2004, Helzlsouer 1994, Toniolo 1995, Berrino 1996, 

Dorgan 1996, Thomas 1997). Although estrogen is an integral factor for reproductive 

development and is beneficial for brain and cardiovascular function, estrogen may also stimulate 

cell proliferation and thus, indirectly influence carcinogenesis. Among premenopausal women 

the main circulating estrogen is estradiol, secreted by the ovaries, while among postmenopausal 

women the main source of circulating estrogen is estrone, which results from the aromatization 

of androgens to estrogens. Although the ovarian production of estrogen is higher among 

premenopausal women, the incidence of breast cancer is highest among postmenopausal women. 

Considering the estrogen hypothesis, the higher incidence among postmenopausal women may 

be considered counter intuitive. Potential explanations include increased aromatase activity in 

breast tissue (Jefcoate 2000) or the role of non-estrogen related pathways.  

The metabolism of estrogen has been suggested as a possible mechanism of 

carcinogenesis due to the genotoxic and mutagenic effects of specific estrogen metabolites. In 

addition to the observed differences in circulating estrogen levels among pre- and 

postmenopausal women, estrogen metabolite levels also differ by menopausal status. Estrogen 
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metabolites are generally higher among premenopausal women compared to postmenopausal 

women.  The 2-OHE1 and 16α-OHE1 metabolites, and their ratio, have been evaluated in relation 

to pre-and postmenopausal breast cancer risk due to their differing biological properties. The 

results of this combined analysis suggested a protective association with higher levels of 2:16α-

OHE1 among premenopausal women, albeit this finding was not statistically significant. 

However, among postmenopausal women, our results do not support a reduction in breast cancer 

with higher 2:1616α-OHE1 levels. 

There are potential explanations for the observed differences in the association between 

2:16α-OHE1 and breast cancer by menopausal status. These may include the observed lower 

levels of estrogen metabolites among postmenopausal women, differences in the definition of 

menopause by study, whether women underwent natural or surgical menopause as well as the 

primary source of estrogen (ovarian vs. nonovarian). Despite the potential differences in 

definitions of menopausal status, the original findings from the studies included in our combined 

analyses did not support a reduction in postmenopausal breast cancer risk with higher 2:16α-

OHE1 levels, and thus differences in definitions of menopausal status is an unlikely explanation. 

Furthermore, the null findings from our combined analysis among postmenopausal women are 

consistent with results from other nested case-control studies of postmenopausal women which 

measured metabolites in serum (Cauley 1999) or plasma (Eliassen 2008). Thus, it is possible that 

the 2:16α-OHE1 is not associated with breast cancer among postmenopausal women.    

 Predictors of estrogen metabolite levels may also vary by menopausal status.  The results 

from the combined analysis among the control populations suggest different significant 

associations among pre- and postmenopausal women and highlight the importance of assessing 

estrogen metabolites separately by menopausal status. Although the findings from the combined 
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analysis among the control population were based on cross-sectional associations, our results 

contribute to the overall literature surrounding estrogen metabolites among healthy populations 

of women and suggest that future studies evaluate the association between estrogen metabolites 

and factors such as BMI, smoking status, alcohol consumption and history of benign breast 

disease using more detailed exposure measures among populations of both pre- and 

postmenopausal women. To date, the majority of studies have focused on dietary and nutritional 

factors and the few studies which have evaluated a range of breast cancer factors in relation to 

estrogen metabolite levels have been among premenopausal women (Jernstrom 2003, Sowers 

2006).  Evaluating estrogen metabolites among populations of healthy women may give insight 

into the normal function of estrogen metabolites, the underlying mechanisms for the potential 

association between estrogen metabolites and breast cancer, and furthermore, we may gain 

insight into the mechanisms by which specific factors affect a woman’s cumulative estrogen 

exposure, and subsequently breast cancer risk. 

 Few of the known breast cancer risk factors can be potentially modified and these include 

lifestyle factors such as physical activity, weight management and alcohol consumption. 

Estrogen metabolite levels may potentially be modified through dietary intervention or 

supplementation (Lord 2002), and the possibility of altering the favored metabolic pathway may 

offer an alternative means of prevention. If the observed associations in our combined analysis 

among the control populations are in fact true associations, and additional studies confirm our 

findings with more detailed measures of exposure, altering factors such as BMI or alcohol 

consumption may offer an alternative method of improving estrogen metabolism and potentially 

reducing breast cancer risk. It is important to note, however, that to our knowledge no studies 
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have evaluated whether modifications in estrogen metabolism directly leads to changes in breast 

cancer risk.   

 In summary, the use of a combined analysis approach offered numerous benefits 

including the use of existing data to create a larger sample size and to increase the overall power 

to detect an association. This approach also provided an opportunity to synthesize the existing 

literature as the majority of eligible pre- and postmenopausal studies participated in this 

combined analysis and thus, we were able to identify gaps and to suggest potential future 

directions in this research area. Furthermore, the results from this combined analysis highlight 

the variability in estrogen metabolite levels, the observed differences by menopausal status, and 

also emphasize the importance of addressing methodological issues pertaining to the 

measurement of estrogen metabolites. Additional opportunities for research are discussed in the 

next section. 

7.5 FUTURE DIRECTIONS 

Previous studies have investigated the association between estrogen metabolites and breast 

cancer using estrogen metabolite levels measured at one time point. Although the results from 

this combined analysis do not support an association between higher levels of the 2:16α-OHE1 

and breast cancer, our null findings, particularly those observed in the analysis among 

postmenopausal women, suggest that future studies attempt to address this research question 

from an alternative perspective. Although the results from the analysis among premenopausal 

women suggest a reduction in breast cancer risk with higher levels of 2:16α-OHE1, it remains 
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unknown whether estrogen metabolites measured at one time point is the most appropriate 

measure of usual levels. 

As mentioned in the individual articles, future studies should consider variation in 

estrogen metabolite levels over time. Intra-individual variability during different periods of life is 

one area of research which may help clarify the function of estrogen metabolites both in healthy 

populations of women as well as among breast cancer patients. In general, few studies have 

addressed the methodological concerns with measuring estrogen metabolites, and furthermore, 

the limited studies which have assessed the reproducibility or validity of the measurements, have 

focused on short time periods.  Thus, numerous methodological questions remain to be 

answered. 

Additional opportunities for future research include understanding the distribution of 

estrogen metabolites among different ethnic populations. As shown in our analysis, estrogen 

metabolite levels can vary between Caucasian and Asian populations, and previous studies have 

also reported differences between Caucasian and African American women. Overall, very few 

studies have included multi-ethnic populations in their evaluation of estrogen metabolites. This is 

an important area for future research in consideration of the racial differences in breast cancer 

incidence and mortality as well as the observed differences in metabolite levels by race.   

Future studies should also investigate the role of additional estrogen metabolites. The 4-

hydroxyestrone (4-OHE) metabolite has been evaluated in relation to breast cancer. Both 4-OHE 

and 2-OHE1 can undergo additional redox cycling leading to the formation of estrogen by-

products which may then react with DNA, resulting in the formation of either stable or 

depurinating adducts.  It is hypothesized that estrogen quinone metabolites may serve as 
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endogenous chemical carcinogens, and ultimately lead to cancer initiation. However, limited 

research has been conducted in this area, especially in regards to breast cancer.  

An additional important consideration is the influence of dietary macronutrients on 

estrogen metabolites as some research suggests that estrogen metabolites may potentially be 

modified through dietary intervention (Lord 2002). In our combined analysis, we were unable to 

assess the influence of dietary factors.  Future studies aimed at evaluating the relationship 

between estrogen metabolites and breast cancer should account for the role of lifestyle factors, 

such as dietary intake and physical activity, on estrogen metabolite levels.  

 Lastly, the relationship between estrogen metabolites and breast cancer may vary 

according to risk of breast cancer. Limited research has been conducted among women 

considered at high risk, including women with a strong family history of breast cancer or women 

with a history of benign breast disease.  More research, particularly among subgroups, is needed 

to better understand the association between estrogen metabolites and breast cancer.  

7.6 PUBLIC HEALTH SIGNIFICANCE 

Among women in the United States, breast cancer is the most common cancer diagnosed and is 

the second leading cause of cancer death (ACS 2008).  A key factor in breast carcinogenesis is 

cumulative estrogen exposure; however the mechanism by which estrogen affects breast cancer 

remains unclear. Various risk factors have been identified, including reproductive, lifestyle, and 

hormonal factors, yet many of these are not potentially modifiable.  Estrogen metabolites, 

however, may potentially be modified through dietary intervention or supplementation and 

modification of estrogen metabolite levels may be an alternative mode of prevention. Additionally, 
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the utility of the 2:16 ratio as a potential biomarker may offer a means of identifying women at 

increased risk and for whom prevention strategies may be useful.   

This research enhances our knowledge of estrogen metabolites and makes a significant 

contribution to public health.  Although we did not observe significant associations between 

metabolite levels measured at one time point and breast cancer, our findings among 

premenopausal women suggest a reduction in breast cancer with higher levels of the 2:16α-

OHE1, which is consistent with our hypothesis. Furthermore, we were able to identify important 

areas of future research in relation to breast cancer and in relation to future studies of healthy 

populations. In summary, the results of our combined analysis confirm previous findings and 

suggest that alternative approaches be employed in future studies aimed at addressing this 

research question.  Whether estrogen metabolite levels may serve as potential biomarkers of 

breast cancer remains to be determined. Nonetheless, our findings have contributed to the overall 

body of knowledge pertaining to estrogen metabolites and breast cancer. 
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APPENDIX A:  OVERALL METHODS OF THE COMBINED ANALYSIS 

.



A.1 SUMMARY OF DATA COLLECTION  

Table 27 Summary of Variables Requested and Received from Investigators 
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Table 27 continued. 
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Table 28 Characteristics of Nested Case-Control Studies Participating in the Combined Analysis of Estrogen Metabolites 

 

148 



 

Table 29 Characteristics of Case-Control Studies Participating in the Combined Analysis of Estrogen Metabolites 
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APPENDIX B:  URINARY ESTROGEN METABOLITES AND 

PREMENOPAUSAL BREAST CANCER 

B.1 ADDITIONAL ANALYSES 

Table 30 Main Effect of Study on Premenopausal Breast Cancer (N=731) 

Study Cases/Controls† Adjusted* 
OR (95% CI) 
(by study only) 

Adjusted** 
OR (95% CI) 

 
2-OHE1    

Muti et al. 71/292 1.00 1.00 
Meilahn et al. 55/184 1.13 (0.71, 1.82) 1.07 (0.62, 1.84) 
Fowke et al. 57/72 2.95 (1.69, 5.16) 3.21 (1.69, 6.09) 

16α-OHE1    
Muti et al. 71/292 1.00 1.00 

Meilahn et al. 55/184 1.28 (0.81, 2.00) 1.30 (0.78, 2.17) 
Fowke et al. 57/72 3.52 (2.17, 5.71) 4.16 (2.45, 7.07) 

2:16α-OHE1    
Muti et al. 71/292 1.00 1.00 

Meilahn et al. 55/184 1.16 (0.75, 1.79) 1.08 (0.65, 1.81) 
Fowke et al. 57/72 2.88 (1.71, 4.86) 3.02 (1.66, 5.50) 

Note: This table corresponds to Table 4 and includes details on the main effects of study on the breast cancer 
models. Estimates generated using conditional logistic regression matched on 5 year age strata. Information on 
2-OHE1 and 16α-OHE1 missing for 5 controls. Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
*Models adjusted for study only. 
**Each model is adjusted for the specific estrogen metabolite (categorical variable) and known breast cancer 
risk factors including: family history of breast cancer (yes/no), history of benign breast disease 
(yes/no/unknown), age at first menstrual period (continuous), body mass index (kg/m2, continuous), oral 
contraceptive use (yes/no), smoking (yes/no/unknown) and pregnancy combined variable (never pregnant, age 
at first pregnancy <20, age at first pregnant 20-29, age at first pregnant ≥ 30 years), and study.  
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Table 31 Main Effect of Study on Premenopausal Breast Cancer among Caucasian Women (N=602) 

Study Cases/Controls†

 
Adjusted* 

OR (95% CI) 
(by study only) 

Adjusted** 
OR (95% CI) 

 
2-OHE1    

Muti et al. 71/292 1.00 1.00 
Meilahn et al. 55/184 1.21 (0.75, 1.95) 1.12 (0.64, 1.95) 

16α-OHE1    
Muti et al. 71/292 1.00 1.00 

Meilahn et al. 55/184 1.36 (0.86, 2.17) 1.43 (0.84, 2.41) 
2:16α-OHE1    

Muti et al. 71/292 1.00 1.00 
Meilahn et al. 55/184 1.19 (0.76, 1.85) 1.10 (0.65, 1.85) 

Note: This table corresponds to Table 4.5 and includes details on the main effects of study on the breast cancer 
models. Estimates generated using conditional logistic regression matched on 5 year age strata. Information on 
2-OHE1 and 16α-OHE1 missing for 4 controls. Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
*Models adjusted for study only. 
**Each model is adjusted for the specific estrogen metabolite (categorical variable) and known breast cancer 
risk factors including: family history of breast cancer (yes/no), history of benign breast disease 
(yes/no/unknown), age at first menstrual period (continuous), body mass index (kg/m2, continuous), oral 
contraceptive use (yes/no), smoking (yes/no/unknown) and pregnancy combined variable (never pregnant, age 
at first pregnancy <20, age at first pregnant 20-29, age at first pregnant ≥ 30 years), and study. 

 

Table 32 Tertiles of 2-OHE1, 16α-OHE1, and 2:16α-OHE1 and their Association with Breast Cancer 
among Premenopausal Women by Subgroups of Smoking Status (N=602)  
(Caucasian Women Only) 

Estrogen 
Metabolites 

Current Smokers 
(N=133)

 Non-Current Smokers 
(N=430) 

 Cases/Controls 
(24/109) 

OR (95% CI)  Cases/Controls 
(89/341) 

OR (95% CI) 

      
2-OHE1       

< 15.33 10/30 1.00  14/77 1.00 
15.33-38.75 10/32 1.26 (0.41, 3.84)   37/133 1.52 (0.77, 3.00) 
≥ 38.76 4/46 0.28 (0.07, 1.11)  38/128 1.62 (0.79, 3.32) 

16α-OHE1      
< 7.97 9/35 1.00  18/96 1.00 

7.97-17.20 9/28 1.35 (0.44, 4.12)  29/120 1.29 (0.68, 2.47) 
≥ 17.21 6/45 0.61 (0.17, 2.12)  42/122 1.87 (0.99, 3.54) 

2:16α-OHE1      
< 1.76 7/28 1.00  27/78 1.00 

1.76-2.66 7/41 0.66 (0.20, 2.19)  34/130 0.71 (0.39, 1.28) 
≥ 2.76 10/39 0.98 (0.31, 3.06)  28/130 0.57 (0.31, 1.06) 

Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).  
OR estimates generated using conditional logistic regression matched on 5 year age strata, adjusted for study 

 

151 



Table 33 Tertiles of 2-OHE1, 16α-OHE1, and 2:16α-OHE1 and their Association with Breast Cancer 
among Premenopausal Women by Subgroups of Body Mass Index (N=602)  
(Caucasian Women Only) 

Estrogen 
Metabolites 

BMI < 25  kg/m2

(N=377)
 BMI ≥ 25 kg/m2

(N=222) 
 Cases/Controls 

(87/290) 
OR (95% CI)  Cases/Controls 

(39/183) 
OR (95% CI) 

      
2-OHE1       

< 15.33 26/70 1.00  7/52 1.00 
15.33-38.75 30/110 0.80 (0.43, 1.49)  20/60 2.28 (0.87, 5.95) 
≥ 38.76 31/106 0.92 (0.47, 1.81)  12/71 1.18 (0.40, 3.47) 

16α-OHE1      
< 7.97 23/89 1.00  10/57 1.00 

7.97-17.20 32/95 1.34 (0.72, 2.47)  11/57 1.09 (0.42, 2.81) 
≥ 17.21 32/102 1.43 (0.75, 2.75)  18/69 1.46 (0.60, 3.55) 

2:16α-OHE1      
< 1.76 26/67 1.00  12/50 1.00 

1.76-2.66 32/114 0.69 (0.37, 1.26)  15/65 1.00 (0.42, 2.39) 
≥ 2.76 29/105 0.71 (0.38, 1.34)  12/68 0.70 (0.28, 1.73) 

Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels 
(mg/dl).  Data on 2-OHE1 and 16α-OHE1 missing for 4 controls. OR estimates generated using 
conditional logistic regression matched on 5 year age strata, adjusted for study. 
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Table 34 Relative Risk of Progesterone Receptor Status by Tertiles of Estrogen Metabolites (2-OHE1, 16α-OHE1 
and 2:16α-OHE1) as compared to controls among Caucasian Women (N=602)* 
 

  PR positive PR negative PR unknown 
Estrogen 
Metabolites 

Controls 
(N=476) 

Cases 
(N=50) 

RR 
(95% CI) 

 Cases 
(N=16) 

RR 
(95% CI) 

Cases 
(N=60) 

RR 
(95% CI) 

 2-OHE1         
< 15.33 122 6 1.00 3 1.00 24 1.00 

15.33-38.75 171 19 1.30  
(0.48, 3.52) 

7 1.00  
(0.24, 4.09) 

24 1.08  
(0.56, 2.08) 

≥ 38.76 179 25 1.03  
(0.39, 2.71) 

6 0.52  
(0.12, 2.20) 

12 1.36  
(0.59, 3.14) 

        
16α-OHE1        

< 7.97 147 9 1.00 2 1.00 22 1.00 
7.97-17.20 153 17 1.42  

(0.59, 3.43)  
6 2.44  

(0.47, 12.72) 
20 1.10  

(0.55, 2.19) 
≥ 17.21 172 24 1.19  

(0.52, 2.75) 
8 2.00  

(0.40, 9.84) 
18 2.03 

(0.95, 4.32) 
        
2:16α-OHE1        

< 1.76 117 7 1.00 4 1.00 22 1.00 
1.76-2.66 179 21 0.72 

(0.32, 1.62) 
5 0.55  

(0.14, 2.18) 
24 0.96  

(0.50, 1.87) 
≥ 2.76 176 22 0.71  

(0.31, 1.59) 
7 0.65  

(0.18, 2.43) 
14 0.74  

(0.35, 1.59) 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).  Data on  
2-OHE1 and 16α-OHE1 are missing for 4 controls. Odds ratio estimates generated from multinomial models with controls  
as the comparison group. Estimates were generated using data from the Caucasian studies: Meilahn et al. and Muti et al.  
*All multinomial models adjusted for study (categorical) and age using the following categories: ≤ 39, 40-44, ≥ 45. 
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 Study 
Cases/Controls 
Median (range) 

Estrogen* 
Metabolite 

Fowke 
73/72 

Fowke** 
57/72

Meilahn 
55/184

Muti 
73/288

2-OHE1  6.9 (0.5-49.6)/ 
6.9 (1.9-31.3) 

5.9 (0.5, 24.0)/ 
6.9 (1.9-31.3) 

17.9 (4.0-85.7)/ 
17.5 (2.0-173.2) 

37.9 (7.1-309.9)/ 
40.9 (2.5-351.8) 

16-OHE1  8.0 (2.1-29.3)/ 
8.6 (1.6-40.2) 

7.7 (2.4, 29.3)/ 
8.6 (1.6-40.2) 

9.5 (2.3-44.7)/ 
8.5 (1.2-91.0) 

17.5 (2.2-145.5)/ 
16.9 (0.96-181.8) 

2:16α-OHE1 0.94 (0.03/6/5)/ 
0.85 (0.3-3.9) 

0.88 (0.03, 6.5)/ 
0.85 (0.3-3.9) 

2.1 (0.42-4.3)/ 
2.1 (0.3-6.1) 

2.5 (0.95-5.55)/ 
2.5 (0.43-7.6) 

*Median metabolite values (range), **Excludes cases with post-treatment urine collection (N=14) 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).  Data on 2-OHE1 and 
16α-OHE1 missing for 5 subjects. 
 

 
Age Estrogen Receptor 

N (%) 
 Progesterone Receptor 

N (%) 
 Positive Negative Unknown  Positive Negative Unknown 

<35 2 (2.8) 0 (0) 0 (0)  2 (2.5) 0 (0) 0 (0) 
35-39 12 (16.9) 12 (28.6) 33 (47.1)  17 (21.3) 6 (20.7) 34 (46.0) 
40-44 17 (23.9) 9 (21.4) 26 (37.1)  19 (23.7) 7 (24.1) 26 (35.1) 
45-49 28 (39.5) 20 (47.6) 9 (12.9)  34 (42.5) 12 (41.4) 11 (14.8) 
50-54 12 (16.9) 1 (2.4) 2 (2.9)  8 (10.0) 4 (13.8) 3 (4.1) 
Total 71 42 70  80 29 74 

 
 
 
 
  

Table 35 Estrogen and Progesterone Receptor Status by Age (N=183 premenopausal cases) 
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Table 36 Median Estrogen Metabolite Levels, by Study 



Table 37 Descriptive Characteristics of Cases by Estrogen Receptor Status 

Variable Estrogen  
Receptor 
Positive 
(N=71) 

 

N (%) 

Estrogen 
Receptor 
Negative 
(N=42) 

 

N (%) 

Estrogen 
Receptor 
Unknown 

(N=70) 
 

N (%) 
Study 
     Muti et al. 
     Meilahn et al. 
     Fowke et al. 

 
39 (54.9) 

0 (0) 
32 (45.1) 

 
28 (66.7) 

3 (7.1) 
11 (26.2) 

 
4 (5.7) 

52 (74.3) 
14 (20.0) 

Age (years)* 44.8 ± 5.2 43 ± 4.1 40.8 ± 4.2  
Family History of Breast Cancer, N (%)           

         3 (4.2) 
 
         1 (2.4) 

          
         7 (10.0) 

History of Benign Breast Disease, N (%)  
25 (35.2) 

 
11 (26.2) 

 
10 (14.3) 

Body Mass Index (kg/m2)* 23.9 ± 3.8 23.4 ± 2.9 23.9  ± 3.5 
 

Smoking    
         Never 61 (85.9) 30 (71.4) 33 (47.1) 
         Former 4 (5.6) 4 (9.5) 9 (12.9) 
         Current 6 (8.5) 8 (19.1) 11 (15.7) 
         Unknown 0 (0) 0 (0) 17 (24.3) 
Alcohol Consumption    
        Yes 24 (33.8) 16 (38.1) 5 (7.1) 
        No 47 (66.2) 23 (54.8) 13 (18.6) 
        Unknown 0 (0) 3 (7.1) 52 (74.3) 
Oral Contraceptive Use    
     Yes 19 (27.1) 15 (35.7) 41 (58.6) 
     No 51 (72.9) 27 (64.3)  29 ( 41.4) 
Age at menarche > 13 years, N (%)   

34 (47.9) 
 

19 (46.3) 
 

32 (45.7) 
Nulliparous, N (%) 6 (8.6) 3 (7.1) 8 (11.4) 
Age at First Pregnancy* 27.2 ± 4.0 25 ± 3.8 25.0 ± 9.2 

Note: Percentages may not sum to 100 due to missing values. *Mean ± SD or Median (Range).  
†Among parous women  
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Table 38 Descriptive Characteristics of Cases by Progesterone Receptor Status 

Variable Progesterone 
Receptor 
Positive 
(N=80) 

 

N (%) 

Progesterone 
Receptor 
Negative 

(n=29) 
 

N (%) 

Progesterone 
Receptor 
Unknown 

(n=74) 
 

N (%) 
Study 
     Muti et al. 
     Meilahn et al. 
     Fowke et al. 

 
50 (62.5) 

- 
30 (37.5) 

 
16 (55.2) 

- 
13 (44.8) 

 
5 (6.8) 

55 (74.3) 
14 (18.9) 

Age (years)* 44.0 ± 5.1 44.2 ± 4.2 41.0 ± 4.4  
Family History of Breast Cancer, N (%)  

2 (2.5) 
 

1 (3.5) 
 

8 (10.8) 
History of Benign Breast Disease, N (%)  

28 (35.0) 
 

7 (24.1) 
 

11 (14.9) 
Body Mass Index (kg/m2)* 24.0 ± 3.6 23.0 ± 3.1 24.0 ± 3.5  

 
Smoking    
         Never 65 (81.3) 24 (82.8) 35 (47.3) 
         Former 7 (8.8) 1 (3.5) 9 (12.1) 
         Current 8 (10.0) 4 (13.8) 13 (17.6) 
         Unknown 0 (0) 0 (0) 17 (23.0 
Alcohol Consumption    
        Yes 30 (37.5) 9 (31.0) 13 (17.6) 
        No 50 (62.5) 20 (69.0) 6 (8.1) 
        Unknown 0 (0) 0 (0) 55 (74.3) 
Oral Contraceptive Use    
     Yes 22 (27.9) 8 (27.6) 29 (39.2) 
     No 57 (72.2) 21 (72.4) 45 (60.8) 
Age at menarche > 13 years, N (%)   

38 (48.1) 
 

12 (41.4) 
 

35 (47.3) 
Nulliparous, N (%) 5 (6.3) 4 (13.8) 53 (9.7) 
Age at First Pregnancy* 26.8 ± 4.2 26.3 ± 3.3 25.3 ± 4.2 

Note: Percentages may not sum to 100 due to missing values. *Mean ± SD or Median (Range).  
†Among parous women 
 

  

Table 39 Median Estrogen Metabolite Levels by Menstrual Phase at the Time of Urine Collection 

Estrogen Metabolites Menstrual Cycle* 
 Follicular,  ≤ 14 days 

case/control 
26/81 

Luteal , ≥ 15 days 
case/control 

100/391 

Unknown 
case/control 

57/71 
2-OHE1  13.4/14.8 33.9/30.7 5.9/6.9 

16α-OHE1  9.10/7.6 16.2/14.4 7.7/8.7 
2:16α-OHE1 2.09/2.07 2.3/2.4 0.89/0.84 

Note: Urinary estrogen metabolites (ng/ml) divided by urinary creatinine (mg/dl).  
*Menstrual phase determined based on an average cycle length of 28 days. 
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B.2 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE, 

LOGIT SCALE 
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Figure 9 Lowess Smoother Plot for 2-OHE1, Logit Scale (Premenopausal Studies) 
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Figure 10 Lowess smoother plot for 16α-OHE1, Logit Scale (Premenopausal Studies) 
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Figure 11 Lowess Smoother Plot for 2:16α-OHE1, Logit Scale (Premenopausal Studies) 

B.3 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE BY 

STUDY (LOGIT SCALE) 

 

Figure 12 Lowess Smoother for 2-OHE1 by Study, Logit Scale (Premenopausal Studies) 
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Figure 13 Lowess Smoother for 16α-OHE1 by Study, Logit Scale (Premenopausal Studies) 

 

 

 

Figure 14 Lowess Smoother for 2:16α-OHE1 by Study, Logit Scale (Premenopausal Studies) 
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B.4 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE  

BY STUDY (P SCALE)  
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Figure 15 Lowess Smoother Plots for 2-OHE1 by Study, P Scale (Premenopausal Studies) 
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16α-OHE1   (ng/ml per mg/dl creatinine) 
 
Fowke et al. 
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Figure 16 Lowess Smoother Plots for 16α-OHE1 by Study, P Scale (Premenopausal Studies) 
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2:16α-OHE1 
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Figure 17 Lowess Smoother Plots for 2:16α-OHE1 by Study, P Scale (Premenopausal Studies) 
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APPENDIX C:  URINARY ESTROGEN METABOLITES AND 

POSTMENOPAUSAL BREAST CANCER 

C.1 ADDITIONAL ANALYSES 

Table 40 Tertiles of 2-OHE1, 16α-OHE1, and 2:16α-OHE1 and their Association with Breast Cancer 
among Postmenopausal Women by Subgroups of Body Mass Index (N=910) 
 

Estrogen 
Metabolites 

BMI < 25  kg/m2

(N=336) 
 BMI ≥ 25 kg/m2 

(N=572) 
 Cases/Control 

(113/223) 
OR  

(95% CI) 
 Cases/Controls 

(186/386) 
OR  

(95% CI) 
      
2-OHE1       

< 2.99 63/78 1.00  112/129 1.00 
2.99 - 8.49 25/71 1.31 (0.60, 2.88)  49/124 0.97 (0.51, 1.83) 
≥ 8.50 25/74 1.39 (0.53, 3.66)  25/133 0.60 (0.28, 1.28) 

16α-OHE1      
< 1.50 57/82 1.00  99/131 1.00 

1.50 – 4.47 34/70 1.86 (0.93, 3.72)  55/125 1.39 (0.80, 2.42) 
≥ 4.48 22/71 1.40 (0.59, 3.34)  32/130 1.10 (0.55, 2.22) 

2:16α-OHE1      
< 1.53 37/59 1.00  75/121 1.00 

1.53-2.45 46/83 1.04 (0.58, 1.85)  72/137 0.99 (0.64, 1.53) 
≥ 2.46 30/81 1.07 (0.53, 2.17)  39/128 0.80 (0.48, 1.33) 

Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels 
(mg/dl).  OR estimates generated using conditional logistic regression matched on 5 year age strata, 
adjusted for study. 
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Table 41 Tertiles of 2-OHE1, 16α-OHE1, and 2:16α-OHE1 and their Association with Breast Cancer 
among Postmenopausal Women by Subgroups of Smoking Status (N=910) 

Estrogen 
Metabolites 

Current Smokers 
(N=) 

 Non-Current Smokers 
(N=685) 

 Cases/Controls 
(75/123) 

OR  (95% CI)  Cases/Controls 
(216/469) 

OR  (95% CI) 

      
2-OHE1       

< 2.99 48/64 1.00  127/143 1.00 
2.99 - 8.49 18/35 1.40 (0.60, 3.23)  49/149 1.00 (0.54, 1.84) 
≥ 8.50 9/24 1.22 (0.27, 5.50)  40/177 0.79 (0.40, 1.55) 

16α-OHE1      
< 1.50 39/61 1.00  117/152 1.00 

1.50 – 4.47 25/36 2.06 (0.96, 4.43)  59/153 1.36 (0.80, 2.31) 
≥ 4.48 11/26 3.17 (0.84, 12.03)  40/164 1.12 (0.60, 2.08) 

2:16α-OHE1      
< 1.53 33/44 1.00  76/123 1.00 

1.53-2.45 25/45 0.77 (0.38, 1.56)  88/171 1.04 (0.69, 1.57) 
≥ 2.46 17/34 0.75 (0.32, 1.74)  52/175 0.90 (0.55, 1.45) 

Abbreviations: OR=Odds Ratio, 95% CI=Confidence Intervals 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels 
(mg/dl).  OR estimates generated using conditional logistic regression matched on 5 year age strata, 
adjusted for study. 
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Table 42 Relative Risk of Progesterone Receptor Status by Tertiles of Estrogen Metabolites (2-OHE1, 16α-OHE1  
and 2:16α-OHE1) as compared to controls among Caucasian Women, (N=910)* 
 

  PR positive PR negative PR unknown 
 Estrogen 
Metabolites 

Controls 
(N=610) 

Cases 
(N=59) 

RR 
 (95% CI) 

Cases 
(N=58) 

RR  
(95% CI) 

Cases 
(N=183) 

RR 
(95% CI) 

 2-OHE1         
< 2.99 207 19 1.00 29 1.00 127  

2.99 - 8.49 196 18  2.33 
(1.01, 5.36) 

14 1.51  
(0.66, 3.47) 

42 0.47 
(0.27, 0.82) 

≥ 8.50 207 22 2.83  
(1.18, 6.80) 

15 1.79  
(0.70, 4.60) 

14 0.15  
(0.07, 0.30) 

        
16α-OHE1        

< 1.50 213 18 1.00 29 1.00 109 1.00 
1.50 – 4.47 196 24 2.51  

(1.20, 5.24) 
14 1.18  

(0.55, 2.52) 
51 0.88  

(0.55, 1.40) 
≥ 4.48 201 17 2.22  

(0.92, 5.36) 
15 1.75  

(0.70, 4.39) 
23 0.49  

(0.27, 0.91) 
        
2:16α-OHE1        

< 1.53 180 13 1.00 19 1.00 80 1.00 
1.53-2.45 220 22 1.46  

(0.71, 3.00) 
20 0.93  

(0.47, 1.81) 
76 0.80  

(0.55, 1.18) 
≥ 2.46 210 24 1.73  

(0.84, 3.55) 
19 1.16  

(0.58, 2.33) 
27 0.36  

(0.22, 0.60) 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).   
Odds ratio estimates generated from multinomial models with controls as the comparison group. Estimates were generated  
using data from the Caucasian studies: Wellejus et al., Meilahn et al. and Muti et al.  
*All multinomial models adjusted for study (categorical) and age using the following categories: ≤ 54, 55-59, 60-64, ≥ 65. 
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  Study 
Cases/Controls 

Median  
 (Range)

 

Estrogen* 
Metabolite 

Fowke 
(19/37) 

Meilahn 
(39/139) 

Muti 
(71/282) 

Wellejus 
(193/199) 

Ursin 
(66/76) 

2-OHE1  3.0 (0.5-15.8)/ 
3.7 (1.0-12.3) 

6.4 (1.1-16.3)/ 
7.1 (5.0, 10.5) 

9.0 (1.3-97.0)/ 
10.3 (0.7-115.4) 

1.5 (0.2-22.6)/ 
1.5 (0.1-8.5) 

7.0 (1.5-30.5)/ 
6.5 (2.0-24.5) 

16α-OHE1 4.0 (1.1-8.5)/ 
3.6 (1.5-30.20 

4.4 (0.75-13.6)/ 
4.5 (0.9-15.1) 

4.1 (0.7-27.3)/ 
3.9 (0.19-38.3) 

0.99 (0.2-6.2)/ 
0.94 (0.2-8.2) 

3.7 (1.1-20.0)/ 
3.7 (0.9-10.3) 

2:16α-OHE1 0.87 (0.16-3.2)/ 
0.95 (0.4-7.3) 

1.6 (0.2-4.6)/ 
1.7 (0.2-11.3) 

2.6 (0.6-6.9)/ 
2.6 (0.4-13.9) 

1.6 (0.04-5.7)/ 
1.6 (0.3-6.8) 

1.8 (0.4-4.8)/ 
1.7 (0.7-9.4) 

Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl).  
Estrogen metabolite data missing for 13 subjects. 
*Median metabolite values (range) 
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Table 43 Median Estrogen Metabolite Levels, by Study 



Table 44 Median Estrogen Metabolite Levels by 5 year groups 

Estrogen 
Metabolite 

Age Categories 
(years) 

 < 50 
(N=30) 

50-54 
(N=231) 

55-59 
(N=414) 

60-64 
(N=333) 

65-69 
(N=88) 

70-74 
(N=7) 

≥ 75 
(N=5) 

2-OHE1 7.0 3.4 4.1 3.7 7.3 7.4 12.9 
16α-OHE1 4.8 2.0 2.3 2.3 4.0 4.2 6.0 
2:16α-OHE1 1.8 1.8 1.9 1.8 2.1 1.6 1.7 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels 
(mg/dl). 

  
 

Table 45 Estrogen and Progesterone Receptor Status by Age (n=300 postmenopausal cases) 

Age Estrogen Receptor 
N (%) 

 Progesterone Receptor 
N (%) 

 Positive Negative Unknown  Positive Negative Unknown 
<50 2 3 0  1 2 2 

50-55 44 24 5  9 19 45 
55-60 88 25 9  22 19 81 
60-65 55 23 6  21 17 46 
65-70 11 0 2  6 1 6 
70-75 0 0 1  0 0 1 
≥ 75 1 1 0  0 0 2 
Total 201 76 23  59 58 183 

 

 

 

 

 

 

 

 

 

 

167 



C.2 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE, LOGIT 

SCALE: including all postmenopausal studies  
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Figure 18 Lowess Smoother Plot for 2-OHE1, Logit Scale (All Postmenopausal Studies) 
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Figure 19 Lowess Smoother Plot for 16α-OHE1, Logit Scale (All Postmenopausal Studies) 
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Figure 20 Lowess Smoother Plot for 2:16α-OHE1, Logit Scale (All Postmenopausal Studies) 
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C.3 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE, LOGIT 

SCALE: INCLUDING 3 NESTED CASE CONTROL STUDIES 

 

-1
.5

-1
-.5

0
.5

1

cc
st
at
us

0 50 100 150
ohe2cr

bandwidth = .8

Logit transformed smooth
Lowess smoother

 
Figure 21 Lowess Smoother Plot for 2-OHE1, Logit Scale (only nested case-control studies) 
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Figure 22 Lowess Smoother Plot for 16α-OHE1, Logit Scale (only nested case-control studies) 
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Figure 23 Lowess Smoother Plot for 2:16α-OHE1, Logit Scale (only nested case-control studies) 
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C.4 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE BY 

STUDY, LOGIT SCALE 

 
Figure 24 Lowess Smoother Plot for 2-OHE1 by Study, Logit Scale (Postmenopausal Studies) 

 

 
Figure 25 Lowess Smoother Plot for 16α-OHE1 by Study, Logit Scale (Postmenopausal Studies) 
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Figure 26 Lowess Smoother Plot for 2:16α-OHE1 by Study, Logit Scale (Postmenopausal Studies) 
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C.5 LOWESS SMOOTHER PLOTS FOR EACH ESTROGEN METABOLITE BY 

STUDY, P SCALE 

 

Figure 27 Lowess Smoother Plots for 2-OHE1 by Study, P Scale (Postmenopausal Studies) 
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Figure 27 continued. 
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Figure 28 Lowess Smoother Plots for 16α-OHE1 by Study, P Scale (Postmenopausal Studies) 
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Ursin et al. 
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Figure 28 continued. 
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Figure 29 Lowess Smoother Plots for 2:16α-OHE1 by Study, P Scale (Postmenopausal Studies) 
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Figure 29 continued 
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APPENDIX D:  URINARY ESTROGEN METABOLITES IN RELATION 

TO BREAST CANCER FACTORS AMONG HEALTHY WOMEN 

D.1 RESULTS FROM ADDITIONAL ANALYSES 
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Table 46 Results from separate linear regression models estimating the relationship between 2-OHE1, 16α-OHE1 and 2:16-OHE1 and 
each listed characteristic among premenopausal women. 

Variable 2-OHE1  16α-OHE1  2:16α-OHE1 
 B (SE) p-value  B (SE) p-value  B (SE) p-value 
Age -0.0011 

(0.0077) 
0.89  -0.0097 

(0.0073) 
0.19  0.0087 (0.0044) 0.05 

Age at first menstrual 
period 

-0.0037 
(0.0053) 

0.49  -0.0075 
(0.0084) 

0.14  -0.014 (0.0047) 0.003 

Age at first pregnancy 0.0033 
(0.0087) 

0.70  -0.0037 
(0.0084) 

0.66  0.0070 (0.0051) 0.17 

BMI (kg/m2) -0.018 
(0.0081) 

0.03  -0.0042 
(0.0077) 

0.58  0.0038 (0.0031) 0.21 

Waist to hip ratio -1.85  
(0.77) 

0.02  -0.92 
(0.73) 

0.21  -0.92 
(0.41) 

0.03 

Family history of 
breast cancer                 

Yes 

 
 

0.17 
(0.17) 

 
 

0.30 

  
 

0.0202 
(0.16) 

 
 

0.90 

  
 

0.15 
(0.96) 

 
 

0.11 

History of benign 
breast disease 

Yes 

 
 

0.026 
(0.090) 

 
 
 

0.77 

  
 

0.023 
(0.85) 

 
 

0.79 

  
 

0.0041 
(0.051) 

 
 

0.94 

Smoking 
Former 

 
Current 

 
Unknown 

 
-0.11  

(0.104) 
0.081  

(0.094) 
-0.038 
(0.154) 

 
0.28 

 
0.39 

 
0.80 

  
-0.11 

(0.089) 
-0.097 
(0.089) 
-0.0905 
(0.15) 

 
0.27 

 
0.27 

 
0.54 

  
-0.0045 
(0.60) 
-0.016 
(0.054) 
0.052 

(0.089) 

 
0.94 

 
0.76 

 
0.56 

Alcohol use 
Yes 

 
Unknown 

 
-0.056 
(0.098) 
-0.428 
(0.413) 

 
0.57 

 
0.30 

  
-0.018 
(0.093) 
-0.44 
(0.39) 

 
0.85 

 
0.26 

  
-0.038 
(0.057) 
0.012 

(0.238) 

 
0.50 

 
0.96 

Note: Metabolite outcomes on log scale 
1=Among parous women (N=489), 2= waist to hip ratio available in studies by Muti and Fowke et al., not in Meilahn study (N=360) 
Each model includes terms for age and separate intercepts for the studies 
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Table 47 Results from separate linear regression models estimating the relationship between 2-OHE1, 16α-OHE1 and 2:16-OHE1 

180 

 and each listed characteristic among postmenopausal women. 
 Variable 2-OHE1  16α-OHE1  2:16α-OHE1 
 B (SE) p-value  B (SE) p-value  B (SE) p-value 
Age -0.073 

(0.0055) 
0.19  -0.013 

(0.0052) 
0.0096  0.0062 

(0.0040) 
0.12 

Age at first menstrual 
period 

-0.014 
(0.0076) 

0.07  -0.0074 
(0.0072) 

0.31  -0.018 
(0.012) 

0.15 

Age at menopause -0.0075 
(0.0056) 

0.18  0.00084 
(0.0053) 

0.87  -0.0083 
(0.0040) 

0.04 

Age at first 
pregnancy1 

-0.013 
(0.0065) 

0.05  0.00064 
(0.00620 

0.92  -0.013 
(0.0047) 

0.005 

BMI (kg/m2) -0.011 
(0.0068) 

0.10  -0.0062 
(0.0065) 

0.34  -0.0052 
(0.0050) 

0.29 

Waist to hip ratio2 -0.58  
(0.50) 

0.25  0.097 
(0.46) 

0.83  -0.67 
(0.33) 

0.04 

Family history of 
breast cancer                

Yes 

 
 

0.076 
 (0.11) 

 
 

0.50 

  
 

-0.039 
(0.11) 

 
 

0.71 

  
 

0.12 
(0.078) 

 
 

0.14 

History of benign 
breast disease 

Yes 

 
 

0.050  
(0.078) 

 
 

0.52 

  
 

0.18 
(0.080) 

 
 

0.023 

  
 

-0.12 (0.061) 
 

 
 

0.05 

Smoking 
Former 

 
Current 

 
Unknown 

 
-0.070 
(0.083) 

0.14 
(0.81) 

0.000082 
(0.16) 

 
0.40 

 
0.09 

 
1.00 

  
-0.13 

(0.079) 
0.102 

(0.076) 
0.22 

(0.15) 

 
0.091 

 
0.18 

 
0.14 

  
0.063 

(0.061) 
0.037 

(0.059) 
-0.22 
(0.11) 

 
0.30 

 
0.52 

 
0.06 

Alcohol use 
Yes 

Unknown 

 
0.31 

(0.086) 
-0.402  
(0.42) 

 
0.0004 

 
(0.34) 

  
0.24 

(0.083) 
-0.38 
(0.40) 

 
0.0045 

 
0.35 

  
0.070 

(0.063) 
-0.026 
(0.31) 

 
0.27 

 
0.93 

Note: metabolite outcomes on log scale 
1=Among parous women, 2= waist to hip ratio available in studies by Muti et al. and Fowke et al., not in Meilahn study  
Each model includes terms for age and separate intercepts for the studies. 



D.2 DISTRIBUTION OF ESTROGEN METABOLITES BY STUDY 
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Figure 30 Distribution of 2-OHE1* among Premenopausal Women by Study  
*ng/ml adjusted for creatinine (mg/dl)  
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Figure 31 Distribution of 16α-OHE1* among Premenopausal Women by Study 
*ng/ml adjusted for creatinine (mg/dl) 
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Figure 32 Distribution of 2:16α-OHE1 among Premenopausal Women by Study 
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Figure 33 Distribution of 2-OHE1* among Postmenopausal Women by Study 
*ng/ml adjusted for creatinine (mg/dl) 

 

182 



0
.2

.4
.6

.8
1

kd
en

si
ty

 1
6-

O
H
E

0 10 20 30 40
16-OHE

Wellejus Muti
Meilahn Fowke
Ursin

 

Figure 34 Distribution of 16α-OHE1* among Postmenopausal Women by Study 
*ng/ml adjusted for creatinine (mg/dl) 
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Figure 35 Distribution of 2:16α-OHE1* among Postmenopausal Women by Study 
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D.3 STUDY SPECIFIC CORRELATIONS 

Table 48 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Premenopausal Women (Fowke et al.) (N=72) 
 
Variable 

Estrogen Metabolites 
Correlation Coefficient*  

(p-value) 
 2-OHE 16α-OHE 2:16α-OHE 
Age (years) 0.029 

(0.81) 
-0.050 
(0.68) 

0.066 
(0.58) 

Body Mass Index 
(kg/m2) 

-0.042 
(0.73) 

-0.032 
(0.79) 

-0.10 
(0.40) 

Waist-to-hip ratio  -0.090 
(0.46) 

-0.0082 
(0.95) 

-0.19 
(0.12) 

Age at menarche -0.043 
(0.72) 

0.22 
(0.067) 

-0.25 
(0.033) 

Age at First Pregnancy† -0.080 
(0.52) 

-0.068 
(0.59) 

-0.013 
(0.91) 

 
 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary 
creatinine levels (mg/dl).  
*Spearman correlation coefficients and corresponding p-value 
†Among women ever pregnant 
 

Table 49 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Postmenopausal Women (Fowke et al.) (N=37)† 

  
Variable 

Estrogen Metabolites 
Correlation Coefficient*  

(p-value) 
 2-OHE 16α-OHE 2:16α-OHE 
Age (years) -0.09  

(0.58) 
-0.17 
(0.30) 

0.12 
(0.48) 

Age at menopause 
 

-0.26 
(0.12) 

0.03  
(0.86) 

-0.15 
(0.37) 

Body Mass Index 
(kg/m2) 

0.15 
(0.36) 

-0.11 
(0.53) 

0.16 
(0.34) 

Waist-to-hip ratio  -0.086 
(0.61) 

-0.20 
(0.24) 

0.051 
(0.77) 

Age at menarche -0.033 
(0.85) 

0.044 
(0.79) 

-0.049 
(0.77) 

Age at First Pregnancy† -0.25 
(0.14) 

-0.059 
(0.74) 

-0.22 
(0.20) 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary 
creatinine levels (mg/dl).*Spearman correlation coefficients and corresponding p-value 
†Among women ever pregnant 
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Table 50 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Premenopausal Women (Meilahn et al.) (N=184) 

 

 

Table 51 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Postmenopausal Women (Meilahn et al.) (N=139)† 

 
Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary 
creatinine levels (mg/dl). 
*Spearman correlation coefficients 
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Table 52 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Premenopausal Women (Muti et al.) (N=292) 
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Table 53 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Postmenopausal Women (Muti et al.) (N=139)† 
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Table 54 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Postmenopausal Women (Ursin et al.) (N=76)† 
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Table 55 Correlation between Estrogen Metabolite Levels and Various Factors Among 
Postmenopausal Women (Wellejus et al.) (N=200)† 
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D.4 STUDY SPECIFIC MEDIAN ESTROGEN METABOLITE LEVELS BY 

CATEGORIES OF BREAST CANCER RISK FACTORS 

Table 56 Median Estrogen Metabolite Levels by Selected Factors: Premenopausal (Fowke et al.) 
(N=72) 
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
Family History of 
Breast Cancer 

      

         Yes 0 -  -  - 
         No 72 6.9  8.7  0.84 

p-value  n/a  n/a  n/a 
History of Benign 
Breast Disease 

      

        Yes 6 6.9  5.1  0.98 
        No 66 7.0  9.1  0.83 

p-value  0.57  0.56  0.58 
Smoking       
         Never 70 6.9  8.6  0.83 
         Former 2 13.3  11.0  1.2 
         Current 0 -  -  - 

p-value  0.31  0.55  0.47 
Alcohol Consumption       
        Yes 72 6.9  8.7  0 
        No 0 n/a  n/a  n/a 

p-value       
BMI (kg/m2)       
        < 25 61 6.5  8.5  0.84 
        ≥ 25  11 9.0  9.1  0.68 

p-value  0.51  0.68  0.83 
Oral Contraceptive 
Use 

      

      Yes 12 9.0  9.6  1.1 
      No 60 6.9  8.4  0.81 

p-value  0.35  0.77  0.39 
Parity       
      Yes 68 7.0  9.1  0.88 
      No 4 4.0  7.1  0.57 

p-value  0.19  1.00  0.04 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 57 Median Estrogen Metabolite Levels by Selected Factors: Postmenopausal (Fowke et al.) 
(N=37) 
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1
Family History of 
Breast Cancer 

      

         Yes 1 -  -  - 
         No 36 3.6  3.5  0.98 

p-value  n/a  n/a  n/a 
History of Benign 
Breast Disease 

      

        Yes 1 -  -  - 
        No 36 3.6  3.5  0.94 

p-value  0.11  0.85  0.13 
Smoking       
         Never 36 3.6  3.7  0.94 
         Former 1 -  -  - 
         Current 0 -  -  - 

p-value  n/a  n/a  n/a 
Alcohol Consumption       
        Yes 37 3.7  3.6  0.95 
        No 0 -  -  - 

p-value  n/a  n/a  n/a 
BMI (kg/m2)       
        < 25 25 3.6  4.1  0.90 
        ≥ 25  12 3.9  3.1  1.2 

p-value  0.80  0.13  0.21 
Oral Contraceptive 
Use 

      

      Yes 16 3.8  3.3  1.1 
      No 21 3.6  3.7  0.90 

p-value  0.78  0.33  0.50 
Parity       
      Yes 35 3.7  3.4  0.95 
      No 2 -  -  - 

p-value  n/a  n/a  n/a 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 58 Median Estrogen Metabolite Levels by Selected Factors: Premenopausal (Meilahn et al.) 
(N=184)  
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
Family History of 
Breast Cancer 

      

         Yes 7 24.0  9.8  2.1 
         No 177 16.7  8.4  2.1 

p-value  0.43  0.56  0.93 
History of Benign 
Breast Disease 

      

        Yes 12 27.7  10.9  2.2 
        No 172 17.1  8.5  2.1 

p-value  0.18  0.18  0.99 
Smoking       
         Never 24 18.7  7.9  2.1 
         Former 41 18.1  10.0  2.0 
         Current 86 14.9  7.9  2.2 

p-value  0.89  0.22  0.44 
BMI (kg/m2)       
        < 25 117 18.4  8.8  2.2 
        ≥ 25  67 15.9  8.3  2.0 

p-value  0.37  0.82  0.51 
Oral Contraceptive 
Use 

      

      Yes 118 15.8  8.0  2.2 
      No 66 19.9  10.3  2.0 

p-value  0.12  0.031  0.19 
Parity       
      Yes 167 16.6  8.4  2.1 
      No 17 26.6  10.6  2.2 

p-value  0.15  0.34  0.28 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 59 Median Estrogen Metabolite Levels by Selected Factors: Postmenopausal (Meilahn et al.) 
(N=139) 
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
Family History of 
Breast Cancer 

      

         Yes 14 7.2  3.7  2.1 
         No 124 7.1  4.6  1.6 

p-value  0.65  0.45  0.15 
History of Benign 
Breast Disease 

      

        Yes 10 6.8  3.7  1.4 
        No 129 7.1  4.5  1.7 

p-value  0.52  0.61  0.55 
Smoking       
         Never 64 7.1  4.6  1.8 
         Former 26 7.6  3.5  2.0 
         Current 21 6.7  3.8  1.8 

p-value  0.48  0.37  0.75 
BMI (kg/m2)       
        < 25 70 6.3  3.7  1.8 
        ≥ 25  69 8.0  4.9  1.6 

p-value  0.02  0.02  0.44 
Oral Contraceptive 
Use 

      

      Yes 15 6.9  3.4  1.8 
      No 124 7.1  4.5  1.7 

p-value  0.61  0.09  0.44 
Parity       
      Yes 120 7.1  4.5  1.7 
      No 19 7.8  4.2  1.7 

p-value  0.65  0.48  0.50 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 60 Median Estrogen Metabolite Levels by Selected Factors: Premenopausal (Muti et al.)  
(N=288)  
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
Family History of 
Breast Cancer 

      

         Yes 18 34.0  12.5  3.0 
         No 268 41.1  17.3  2.5 

p-value  0.89  0.43  0.02 
History of Benign 
Breast Disease 

      

        Yes 103 37.3  17.8  2.5 
        No 182 41.4  16.9  2.5 

p-value  0.74  0.94  0.76 
Smoking       
         Never 166 41.0  16.3  2.6 
         Former 53 27.8  12.3  2.4 
         Current 67 43.8  19.0  2.4 

p-value  0.17  0.14  0.18 
Alcohol Consumption       
        Yes 171 44.1  17.4  2.5 
        No 113 39.2  17.1  2.5 

p-value  0.38  0.98  0.52 
BMI (kg/m2)       
        < 25 172 40.6  16.5  2.6 
        ≥ 25  116 41.1  17.2  2.4 

p-value  0.82  0.98  0.27 
Oral Contraceptive 
Use 

      

      Yes 107 43.8  17.5  2.6 
      No 179 39.2  16.3  2.5 

p-value  0.24  0.35  0.45 
Parity       
      Yes 257 41.5  17.1  2.5 
      No 31 37.9  16.1  2.2 

p-value  0.32  0.67  0.04 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 61 Median Estrogen Metabolite Levels by Selected Factors: Postmenopausal (Muti et al.) 
(N=272) 
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
Family History of 
Breast Cancer 

      

         Yes 27 8.9  3.3  2.8 
         No 245 10.4  4.3  2.5 

p-value  0.81  0.19  0.16 
History of Benign 
Breast Disease 

      

        Yes 59 10.3  4.9  2.3 
        No 210 10.4  3.9  2.6 

p-value  0.34  0.08  0.13 
Smoking       
         Never 214 10.2  4.1  2.5 
         Former 29 8.1  2.8  2.6 
         Current 29 14.8  5.1  2.7 

p-value  0.02  0.03  0.82 
Alcohol Consumption       
        Yes 109 7.3  3.6  2.5 
        No 160 11.7  4.6  2.6 

p-value  0.006  0.03  0.32 
BMI (kg/m2)       
        < 25 103 12.5  4.7  2.7 
        ≥ 25  169 8.9  3.6  2.4 

p-value  0.008  0.03  0.03 
Oral Contraceptive 
Use 

      

      Yes 31 12.4  5.0  2.6 
      No 241 10.1  3.9  2.6 

p-value  0.05  0.04  0.87 
Parity       
      Yes 237 10.3  3.9  2.6 
      No 35 10.3  4.9  2.5 

p-value  0.43  0.23  0.63 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 62 Median Estrogen Metabolite Levels by Selected Factors: Postmenopausal (Ursin et al.) 
(N=76)  
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
Family History of 
Breast Cancer 

      

         Yes 11 7.3  4.0  1.8 
         No 65 6.4  3.6  1.7 

p-value  0.56  0.46  0.70 
BMI (kg/m2)       
        < 25 56 6.3  3.5  1.8 
        ≥ 25  20 7.0  4.0  1.6 

p-value  0.42  0.18  0.28 
Parity       
      Yes 68 6.5  3.7  1.8 
      No 8 6.3  3.7  1.6 

p-value  0.38  0.64  0.62 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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Table 63 Median Estrogen Metabolite Levels by Selected Factors: Postmenopausal (Wellejus et al.) 
(N=200) 
Variable N 2-OHE1  16α-OHE1  2:16α-OHE1 
History of Benign 
Breast Disease 

      

        Yes 26 1.4  0.91  1.4 
        No 169 1.6  0.94  1.7 

p-value  0.67  0.35  0.05 
Smoking       
         Never 78 1.4  0.85  1.7 
         Former 48 1.5  0.92  1.6 
         Current 73 1.81  1.10  1.6 

p-value  0.15  0.15  0.77 
Alcohol Consumption       
        Yes 189 1.6  0.93  1.7 
        No 4 0.91  1.20  0.94 

p-value  0.027  0.59  0.01 
BMI (kg/m2)       
        < 25 78 1.5  0.92  1.6 
        ≥ 25  120 1.5  0.94  1.6 

p-value  0.88  0.77  0.86 
Oral Contraceptive 
Use 

      

      Yes 99 1.5  0.94  1.6 
      No 93 1.5  0.94  1.6 

p-value  0.83  0.78  0.70 
Parity       
      Yes 170 1.5  0.91  1.6 
      No 29 1.5  1.10  1.6 

p-value  0.86  0.34  0.66 
 

 Note: Urinary 2-OHE1 and 16α-OHE1 metabolites (ng/ml) are standardized to urinary creatinine levels (mg/dl). 
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D.5 HISTOGRAMS BY VARIOUS TRANSFORMATIONS AMONG ALL 

PREMENOPAUSAL CONTROLS (N=544) 
0
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Figure 36 Metabolite: 2-OHE1: Histograms by Various Transformations Among All 
Premenopausal Controls (N=544)  
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Figure 37 Metabolite: 16α-OHE1: Histograms by Various Transformations Among All 
Premenopausal Controls (N=544) 
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Figure 38 Metabolite: 2:16α-OHE1: Histograms by Various Transformations Among All 
Premenopausal Controls (N=544) 
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D.6 HISTOGRAMS BY VARIOUS TRANSFORMATIONS AMONG ALL 

POSTMENOPAUSAL CONTROLS (N=720) 
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Figure 39 Metabolite: 2-OHE1: Histograms by Various Transformations Among All 
Postmenopausal Controls (N=720) 
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Figure 40 Metabolite: 16α-OHE1: Histograms by Various Transformations Among All 
Postmenopausal Controls (N=720) 
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Figure 41 Metabolite:  2:16α-OHE1: Histograms by Various Transformations Among All 
Postmenopausal Controls (N=720) 
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D.7 MODEL DIAGNOSTICS 
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Figure 42 Normal Quantile Plot for the final multivariable model for 2-OHE1: 
Premenopausal Women 
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Figure 43 Normal Quantile Plot for the final multivariable model for 2-OHE1 including 
both BMI and WHR: Premenopausal Women 
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Figure 44 Normal Quantile Plot for the final multivariable model for 2:16α-OHE1: 
Premenopausal Women 
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Figure 45 Normal Quantile Plot for the final multivariable model for 2:16α-OHE1 including 
both BMI and WHR: Premenopausal Women 
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Figure 46 Normal Quantile Plot for the final multivariable model for 2-OHE1: 
Postmenopausal Women 
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Figure 47 Normal Quantile Plot for the final multivariable model for 16α-OHE1: 
Postmenopausal Women 
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Figure 48  Normal Quantile Plot for the final multivariable model for 2:16α-OHE1: 
Postmenopausal Women 
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