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SEQUENCE VARIATION IN THE APOA1 AND APOA4 GENES AND THEIR 

RELATIONSHIP WITH PLASMA HDL-CHOLESTEROL LEVELS  

Sarah Elizabeth Hill, M.S. 

University of Pittsburgh, 2009 

 

Heart disease continues to be the leading cause of death in the United States, making it one of the 

foremost public health concerns. Many factors influence the risk to develop heart disease, 

including abnormal blood lipid levels. High levels of plasma high-density lipoprotein (HDL)-

cholesterol have been shown to have a protective effect. Recent genome-wide association studies 

(GWAS) and candidate gene studies have identified genes thought to contribute to HDL-

cholesterol levels. Two genes, APOA1 and APOA4, have been associated with HDL-cholesterol 

levels in multiple studies with inconsistent results. The majority of these studies focused on the 

“common variant-common disease” hypothesis whereas only one study by Cohen et al. (2004) 

evaluated APOA1 using the “rare variant-common disease” hypothesis. The aim of this study 

was to further investigate the role of common and rare variation in these two genes by 

sequencing individuals having extremely low and high HDL-cholesterol levels in two 

populations, U.S. Non-Hispanic Whites (NHWs), and African Blacks, and then screening the 

identified variants in the entire sample. In the initial sequence analysis, 54 variants were 

identified in APOA1 (25 of which were new), and 43 in APOA4 (21 of which were new). 

According to preliminary analysis of the sequencing data for APOA1 and APOA4, no striking 

difference was noticed between the distribution of rare variants between high and low HDL 

groups in either population. To date, screening data was compiled for the entire NHWs and 
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Black samples for a total of seven common variants: 2 for APOA1 (rs5070 and rs5072), and 5 in 

APOA4 (rs5092, rs5100, rs5104, rs5106, and rs5109). All 7 variants were present in the Black 

population; five were present in NHWs (rs5070, rs5072, rs5092, rs5100, and rs5104). Modest or 

marginal significant p-values were observed; however, none would maintain significance after 

multiple testing correction in either population. Additional variants identified in sequencing 

remain to be screened in the entire NHWs and Black samples. 
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1.0  BACKGROUND AND SIGNIFICANCE 

1.1 HIGH DENSITY LIPOPROTEIN (HDL) 

1.1.1 The HDL Particle 

High-density lipoproteins (HDL) are spherical particles that transport cholesterol esters and 

triglycerides in the blood. The HDL particle represents one class of lipoprotein; the classes of 

lipoproteins (chylomicrons, very-low-density lipoproteins, and low-density lipoproteins) are 

separated by density, size, and protein content. The core of the HDL particle is made up of 

cholesterol esters and triglycerides, which is encapsulated in an amphipathic layer containing 

free (unesterified) cholesterol and phospholipids (Figure 1). HDL particles also contain several 

proteins, specifically apolipoproteins (apos), which have many roles: they provide structural 

integrity, have enzymatic co-activator functions, are involved in the assembly and secretion of 

the HDL particle, and serve as a ligand for a variety of receptors.1 
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Figure 1. The HDL Particle. Image courtesy of M. Ilyas Kamboh, Ph.D. 

 

1.1.2 HDL-Cholesterol Metabolism 

HDL-cholesterol metabolism (Figure 2) mediates reverse cholesterol transport from the 

peripheral cells to the liver, where cholesterol can be excreted into the bile, or the adrenal glands, 

ovaries, or testes, where cholesterol can be converted into steroid hormones. HDL particles, 

initially containing only phospholipids and apolipoprotein A-I (apoA-I), are synthesized in the 

liver and intestine. They enter into the blood stream and accumulate cholesterol esters, which are 

converted from free cholesterols by lecithin-cholesterol acyltransferase (LCAT), through 

interaction with apoA-I and ATP binding cassette transporter A1 (ABCA1). The HDL particles 

increase in size as they move through the bloodstream accumulating cholesterol esters, and are 

remodeled by cholesterol ester transfer protein (CETP) and endothelial lipase (LIPG). 
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Eventually, the HDL particles return to the liver, where HDL removal is mediated by the 

scavenger receptor B1 (SRB1)2.  

 

Figure 2. Overview of Lipoprotein Metabolism (Hegele, 2009)2  

1.2 ATHEROSCLEROSIS AND HEART DISEASE 

1.2.1 The Public Health Impact of Heart Disease 

Coronary heart disease (CHD) is cause of one in five deaths in the United States, and diseases of 

the heart were the leading cause of death in 2005 according to the Center for Disease Control 

National Vital Statistics Reports.3 Nearly 2,400 American die of cardiovascular disease (CVD) 

each day. One in three American adults, greater than eighty million individuals, have one or 

more types of CVD including:  CHD, high blood pressure, heart failure, and stroke. Of these 

approximately 16 million are affected by CHD. The estimated health care cost of CVD for 2008 

was $448.5 billion.4 
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1.2.2 Risk Factors for Heart Disease 

Many factors influence the risk to develop heart disease. Some of the major risk factors for CHD 

include: abnormal blood lipid levels (or current treatment with cholesterol-lowering drugs), 

hypertension (or current treatment with blood pressure-lowering drugs), diabetes, abdominal 

obesity, cigarette smoking, a lack of physical activity, low daily fruit and vegetable consumption, 

and alcohol over consumption.5,6 

1.2.3 Cholesterol Levels and Heart Disease 

The American Heart Association classifies HDL-cholesterol levels of <40mg/dL for men and 

<50mg/dL for women as low, and considers low HDL-cholesterol to be a major risk factor for 

heart disease (www.americanheart.org). In addition to low HDL-cholesterol levels, high levels of 

low-density lipoprotein (LDL) cholesterol and total cholesterol have also been shown to increase 

the risk for heart disease. LDL cholesterol level of >160-189mg/dL, or a total cholesterol level of  

>240mg/dL is considered high. 

1.2.4 Atherosclerosis and Heart Disease 

The blood vessels form a system of tubes that carry blood away from the heart, through the 

tissues of the body, and back to the heart. The arteries are the vessels through which blood is 

pumped away from the heart. Atherosclerosis, commonly referred to as hardening of arteries, is 

an inflammatory response in the artery walls caused by the formation of plaques within the 

arteries. Plaques buildup in the arteries over a long period of time causing artery enlargement, 
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and atherosclerosis is generally asymptomatic for decades. Eventually plaques can rupture 

leading to stenosis of the artery or blood clot formation which blocks blood flow to the heart 

causing a heart attack. 

1.2.5 Epidemiological Evidence for the Antiatherogenic Properties of HDL-Cholesterol 

There are many different hypotheses for the biological basis of the atheroprotective role of HDL-

cholesterol, including the ability of HDL to promote cholesterol efflux, as well as the antioxidant 

and anti-inflammatory properties of the lipid particle.7 HDL particles have been shown to have 

antiatherogenic properties and HDL-cholesterol concentrations have been inversely correlated 

with the risk for coronary artery disease (CAD) in many studies.8-10 The Framingham Heart 

Study illustrated this inverse relationship: a 1% increase in HDL-cholesterol was associated with 

a 2% reduction in the development of CAD.9 A study by Gordon et al.10 supported this inverse 

relationship as well; an increase of 1mg/dL in HDL-cholesterol levels is associated with a 2% 

decrease in the risk for CAD in men and a 3% decrease in the risk for CAD in women. A strong 

negative association has also been shown with ischemic heart disease mortality; in one meta 

analysis of 900,000 adults an average of approximately 13mg/dL higher HDL-cholesterol was 

correlated with a one third lower risk for ischemic heart disease mortality in men and women 

within every age group.8 Individuals with decreased HDL-cholesterol levels have been shown to 

be at greater risk for heart disease; a HDL-cholesterol level <35mg/dL was associated with a 3 

fold risk for CHD in one study.11 
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1.3 GENETIC STUDIES OF HDL-CHOLESTEROL LEVELS 

Abnormal lipid levels are a major risk factor for heart disease. HDL-cholesterol levels have been 

shown to be under a considerable amount of genetic control, with heritability estimates of up to 

80% and an average heritability estimate of 40-60%.12-15 Research over the past 25 years has 

focused on determining the genetic basis underlying variation in HDL-cholesterol levels. 

1.3.1 Candidate Gene Studies 

The genes that encode the proteins responsible for HDL metabolism, including apos, cellular 

receptors, and enzymes are critical to HDL synthesis, processing, and catabolism. Through the 

elucidation of the biochemical pathway responsible for HDL metabolism candidate genes are 

identified for study. Numerous studies have been carried out over the last 25 years in an attempt 

to correlate variation in these genes with HDL-cholesterol levels.16 Candidate gene studies of 

genetic polymorphisms in the genes encoding lipoprotein lipase (LPL), the major triglyceride-

hydrolyzing enzyme, and apolipoprotein A-I (apoA-I), the major protein of HDL-cholesterol, 

have been correlated with HDL-colesterol levels with inconsistent results.17 

1.3.2 Genome Wide Association Studies (GWAS) 

GWAS utilize single nucleotide polymorphism (SNP) chip technology and a case-control study 

design to identify genes associated with a particular phenotype. Multiple GWAS have been 

carried out and shown statistically significant associations between variation in HDL-cholesterol 

levels and the following genes: cholesteryl ester transfer protein (CETP), lipoprotein lipase 
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(LPL), hepatic lipase (LIPC), endothelial lipase (LIPG), ABCA1, LCAT, the apolipoproteinA-I/C-

3/A-IV/A-V gene cluster (APOA1/C3/A4/A5), apolipoprotein B (APOB), CCCTC-binding factor 

(CTCF), protein arginine N-methyltransferase 8 (PRMT8), MAP kinase-activating death domain 

(MADD), folate hydrolase 1 (FOLH1), acetylgalactosaminyltransferase 2 (GALNT2), mevalonate 

kinase (MVK), cob(I)alamin adenosyltransferase (MMAB), cleft lip- and palate-associated 

transmembrane protein 1 (CLPTM1), glutamate receptor, iontropic, N-methyl-D-asparate 3A 

(GRIN3A), and nuclear receptor subfamily 1, group H, member 3 (NR1H3). 18-25 

1.3.3 Genetic Models for HLD Variation 

1.3.3.1 Common Variant-Common Disease Hypothesis 

 

In the context of a Mendelian disorder a single gene can have a profound impact on a disease. 

This is exemplified in the case of familial hypercholesterolemia (FH), in which individuals 

heterozygous and homozygous for loss of function mutations in the low density lipoprotein 

receptor (LDLR) gene develop premature atherosclerosis.26 In the context of complex disease, 

however, the effect of variation in most single gene candidates is small. One proposed model for 

genetic variation in HDL-cholesterol levels is the theory that many small effects of multiple 

common variants aggregate in an individual to produce disease susceptibility in common 

disease.16 
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1.3.3.2 Rare Variant-Common Disease Hypothesis 

 

Another proposed model for genetic variation in HDL-cholesterol levels that is gaining 

increasing support is the theory that a portion of individuals in the population, those at the 

extremes of the Gaussian distribution, carry dysfunctional variants in genes that have more 

profound effects.16 A study by Cohen et al.27 established a paradigm that multiple rare alleles 

with major phenotypic effects underlie a substantial minority of cases of decreased HDL-

cholesterol levels in the general population. This multiple rare variants model has also been used 

in studies looking at LDL-cholesterol levels and triglyceride levels.28-30 The methodology used in 

this study, known as the ‘missense-accumulation’ analysis, is outlined in Figure 3. 
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Figure 3. ‘Missense-Accumulation’ Analysis. The frequency distribution of HDL-cholesterol 

levels is shown at the top of the figure (A). Individuals at the extremes (5th and 95th percentile) 

are chosen for DNA sequencing, focusing on candidate genes identified based on their biological 

function or in GWAS—APOA1, LCAT, ABCA1 in the case of Cohen et al.27 (B). Individual 

samples are sequenced and the frequency of the identified variants between the two groups is 

compared (C). (Pollex et al., 2007)16  
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1.4 APOLIPOPROTEIN A-I: THE APOA1 GENE 

The apolipoproteinA-I (apoA-I protein; APOA1 gene) has been mapped to chromosome 11q23 in 

humans. The National Center for Biotechnology Information (NCBI) reference nucleotide 

sequence is NC_000011.8 (http://www.ncbi.nlm.gov/sites/entrez). APOA1 gene has four exons 

and three introns; the lengths of the exons are: 18bp, 63bp, 157bp, 659bp, respectively (Figure 

4). The mRNA nucleotide sequence is 804nt in length (NCBI mRNA locus NM_000039.1).  

 

Figure 4. The APOA1 Gene. (http://www.ncbi.nlm.gov/sites/entrez). 

APOA1 encodes a protein, apoA-I; the coding sequence for the apoA-I protein begins in 

exon 2 (NCBI reference protein sequence NP_000030). ApoA-I is the major apolipoprotein of 

HDL.31,32 ApoA-I is also a cofactor for LCAT, which converts free cholesterol into cholesterol 

ester.  

1.4.1 Protein Structure 

The ApoA-I protein is a single polypeptide containing 243 amino acid residues.31 It is 

synthesized as a preprotein (NCBI preprotein reference sequence NP_000030.1) that undergoes 

proteolytic processing to form the mature protein that is present in blood.33 Based on the amino 

acid sequence, the secondary structure is hypothesized to consist of repeating amphipathic 
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helicies of 11 or 22 amino acids in length separated by proline residues.34 The crystal structure of 

apoA-I has been determined and is shown in Figure 5. The overall structure consists of two main 

helical domains, one in the N-terminal region containing a four-helix antiparallel bundle, and 

another in the C-terminal region containing a two-helix bundle.35  

 

Figure 5. Crystal structure of apoA-I. The six helices in the structure are colored blue (A), pink 

(B), yellow (C), lavender (D), cyan (E), and red (F) and labeled. Loops are colored gold, and 

hydrophobic residues are shown as green sticks. (Ajees et al., 2006)35 

1.4.2 Functional Considerations 

Apoa-I is the major apolipoprotein in HDL particles; it is hypothesized to have a protective 

effect against the development of CAD via promoting efflux of cholesterol from cells and 

modulating immune cell activation.36-41 In mice, apoA-I deficiency has been correlated with 

atherosclerosis, and an over expression of apoA-I was shown to be atheroprotective.42,43 ApoA-I 

also has proposed anti-inflammatory properties providing further evidence for its 
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atheroprotective role. These anti-inflammatory properties have been illustrated best in studies of 

D-4F, an apoA-I mimetic. Mice and monkeys given oral doses of D-4F have been shown to 

undergo a marked decrease in atherosclerotic lesions; clinical trials of D-4F safety and efficacy 

in human subjects are underway.44 

1.4.3 APOA1 Variants and Phenotypic Association 

Studies have found a statistically significant correlation between variants in the APOA1 gene and 

HDL-cholesterol levels.45-47 While other studies have been less successful in correlating variation 

in this gene with a clinical phenotype.48 Decreased levels of apoA-I protein have also shown to 

be an independent risk factor for CAD, leading to the conclusion that apoA-I plays an important 

role in the atherogenic process, even in patients with no other risk factors for heart disease.48 The 

heretibility of apoA-I levels have been estimated as high as 90% in multiple studies.49 

A variety of specific sequence variants have been identified in the APOA1 gene and 

correlated with Mendelian disorders. NCBI Online Mendelian Inheritance in Man (OMIM) lists 

26 rare allelic variants that are associated with different Mendelian disorders (Table 1) 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim).  
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Table 1. Allelic Variants in APOA1 

Variant Amino Acid 
Change 

dbSNP Clinical Phenotype 

ApoA-I (Milano)50 ARG173CYS rs28931573 Hypertriglyceridemia and 
decrease in HDL levels without 

clinical signs of atherosclerosis51 
ApoA-I (Marburg)  LYS107TER  Hypertriglyceridemia and 

decrease in HDL levels52 
ApoA-I (Munster4)53 GLU198LYS  No relationship to premature 

atherosclerosis54 
ApoA-I (Norway)53 GLU136LYS   
ApoA-I (Giessen)52 PRO143ARG   

ApoA-I (Munster3C)53 PRO3ARG   
ApoA-I (Munster3B)53 PRO4ARG   

ApoA-I PRO165ARG  Decrease in HDL and ApoA-I 
levels55 

Iowa or Van Allen type 
Amyloid Polyneuropathy-

Nephropathy56,57 

GLY26ARG rs28931574 Autosomal dominant early onset 
amyloidosis and neuropathy and 
variable onset nephropathy with 

peptic ulcer, cataracts, and 
hearing loss56 

Combined Deficiency of 
ApoA-I and ApoC-III; 

Detroit type HDL 
Deficiency 

APOA1/APOC
3 FUSION 

 Autosomal recessive very low 
HDL and heart failure from CAD 

with arcus cornealis and 
xanthoma58  

Absence of ApoA-I due to 
Deletion of  

APOA1/APOC3/APOA4 
Gene Complex 

APOA1 
DELETION 

 Heterozygotes demonstrate 
decrease in HDL and apoA-I with 
CAD; no detectable apoA-I, very 

low HDL, reduced ApoB/C, 
CAD, corneal clouding, and 
diffuse lipid deposits in the 

epithelium seen in homozygous 
individual59 

ApoA-I (Baltimore)  ARG10LEU rs28929476 Decrease in apoA-I levels 
(linkage not demonstrated)60  

Corneal Clouding due to 
ApoA-I Deficiency 

1-BP 
DELETION 
CODON 202 

 Corneal clouding in a 
homozygous individual61 

ApoA-I Deficiency GLN84TER  ApoA-I deficiency and premature 
atherosclerosis in a homozygous 

individual 62 
Systemic Nonneuropathic 

Amyloidosis 
LEU60ARG  Autosomal dominant 

nonneuropathic systemic 
amyloidosis63 

Analphalipoproteinemia GLN2TER  Very low HDL-cholesterol, 
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undetectable apoA-I, 
xanthelasmata, cataracts, and 

cerebellar ataxia in a homozygous 
individual64 

Primary 
Hypoalphalipoproteinemia 

1-BP 
INSERTION IN 

CODON 325 

 Autosomal dominant decreased 
HDL-cholesterol and apoA-I65 

Periorbital Xanthlasmas GLN32TER  Periorbital xanthlasmas without 
CAD or atherosclerosis in a 

homozygous individual66 
Hepatic and Systemic 

Amyloidosis 
12-BP 

DELETION 
AND 2-BP 

INSERTION IN 
EXON 4 

 Autosomal dominant 
nonneuropathic amyloidosis with 
a unique hepatic presentation and 

death from liver failure67 

Systemic Nonneuropathic 
Amyloidosis 

TRP50ARG  Hereditary amyloidosis67 

ApoA-I (Oita) VAL156GLU  Less than 10% normal HDL and 
apoA-I, CAD, and corneal 
opacities in a homozygous 

individual68 
Primary 

Hypoalphalipoproteinemia 
DONOR 

SPLICE SITE 
MUTATION 
IN INTRON 2 

G-C, +1 

 Primary 
Hypoalphalipoproteinemia69 

Cardiac and Cutaneous 
Amyloidosis 

LEU90PRO  Autosomal dominant hereditary 
amyloidosis with unique 

cutaneous and cardiac 
presentation and death from heart 

failure70 
Cardiac and Cutaneous 

Amyloidosis 
ARG173PRO  Hereditary amyloidosis that 

showed expression mainly in the 
skin and heart71 

Systemic Nonneuropathic 
Amyloidosis 

LEU174SER  Amyloid deposits mainly in the 
heart72 

Systemic Nonneuropathic 
Amyloidosis 

ALA175PRO  Renal amyloidosis with renal 
failure, sterility, and hoarseness 

due to laryngeal amyloid 
deposits73 

Table 1 (Continued) 

 

 14 



Additionally, Pisciotta et al.74 reported two siblings with HDL deficiency, no plasma 

apoA-I, corneal opacities, and planar xanthomas who were homozygous for a deletion in exon 3 

(c.85 del C) leading to a premature termination codon; one sibling also had premature CAD. This 

mutation was also reported in unrelated individuals, some of which were heterozygous, while 

others were compound heterozygous for other mutations in APOA1. A novel mutation in APOA1 

was also reported by Hovingh et al.75, a C>T point mutation at nucleotide 643 in exon 4, 

predicting the exchange of a leucine for a proline at codon 178. This change was correlated with 

low levels of apoA-I and HDL in Caucasian Dutch heterozygotes. The heterozygous individuals 

also had endothelial dysfunction, and statistically significant increased arterial wall thickness and 

increased rates of premature artery disease as compared to their unaffected siblings. Another new 

mutation in APOA1, leading to severe HDL-cholesterol deficiency in a group of 54 unrelated 

French Canadian subjects, was reported by Dastani et al.76 The novel mutation in this population 

was a G>T point mutation at nucleotide 478 in exon 4, leading to a substitution of glutamic acid 

for a stop codon. In the study, five out of nine carriers over the age of 35 had developed CAD. 

Esperon et al.77 recently reported a 2006G>C point mutation in exon 4 leading to an arginine to 

proline substitution in codon 153 in a family with a strong history of premature CAD. They 

named this variant ApoA-IMontevideo.  
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Studies have been done looking at common and rare variants that contribute to complex 

disease. Thirty SNPs in the APOA1 gene, plus the insertion/deletion polymorphism have been 

reported by Fullerton et al.78 and summarized in the SeattleSNPs database 

(http://pga.mbt.washington.edu). Tables 2, 3, and 4 below summarize the variants found in each 

of the three populations: Jackson, MS, North Karelia Finland, and Rochester, MN, respectively. 

Table 2. Allelic Variants in the Jackson, MS Population (25 total) 

Site rs Number nt 
Change 

Minor Allele 
Frequency (MAF) 

206 rs7123454 A>C 0.50 
631 rs7948159 A>G 0.35 
1049 rs1263162 T>A 0.24 
1128 rs11216153 G>T 0.17 
1308 rs12721030 C>T 0.06 
1407 rs127211027 ins 0.03 
1541 rs127211029 C>T 0.03 
1546 rs525028 G>A 0.23 
1620 rs12721028 A>G 0.45 
1749 rs12718462 T>C 0.05 
2077 rs12721025 G>A 0.04 
2198 rs12721026 T>G 0.04 
2373 rs12718463 T>C 0.42 
2376 rs5081 A>T 0.23 
3220 rs5076 G>A 0.27 
3368 rs7116797 G>A 0.31 
3431 rs12718464 G>A 0.04 
3543 rs5073 C>T 0.12 
3766 rs12718465 C>T 0.10 
4050 rs5070 A>G 0.41 
4245 rs12721032 G>A 0.02 
4284 rs5069 G>A 0.27 
4443 rs670 C>T 0.17 
4732 rs12718467 C>A 0.04 
4807 rs12691374 C>T 0.11 
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Table 3. Allelic Variants in the North Karelia, Finland Population (20 total) 

Site rs Number nt 
Change 

Minor Allele 
Frequency (MAF) 

206 rs7123454 A>C 0.25 
533 rs12721031 C>T 0.08 
1128 rs11216153 G>T 0.10 
1308 rs12721030 C>T 0.17 
1546 rs525028 A>G 0.35 
1598 rs10750098 T>G 0.18 
1620 rs12721028 A>G 0.10 
1749 rs12718462 T>C 0.08 
2077 rs12721025 G>A 0.08 
2198 rs12721026 T>C 0.09 
2373 rs12718463 T>C 0.04 
3220 rs5076 G>A 0.06 
3368 rs7116797 G>A 0.23 
3431 rs12718464 G>A 0.08 
3613 rs5072 G>A 0.17 
3714 rs2070665 G>A 0.17 
4050 rs5070 G>A 0.35 
4284 rs5069 G>A 0.06 
4443 rs670 C>T 0.10 
4693 rs12718466 T>G 0.06 
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Table 4. Allelic Variants in the Rochester, MN Population (25 total) 

Site rs Number nt 
Change 

Minor Allele 
Frequency (MAF) 

206 rs7123454 A>C 0.08 
533 rs12721031 C>T 0.02 
1049 rs1263162 T>A 0.02 
1128 rs11216153 G>T 0.31 
1308 rs12721030 C>T 0.33 
1407 rs127211027 ins 0.02 
1546 rs525028 A>G 0.40 
1598 rs10750098 T>G 0.06 
1620 rs12721028 A>G 0.28 
1717 rs12718461 G>C 0.02 
1749 rs12718462 T>C 0.02 
2077 rs12721025 G>A 0.02 
2198 rs12721026 T>G 0.02 
2373 rs12718463 T>C 0.02 
2376 rs5081 A>T 0.02 
3220 rs5076 G>A 0.02 
3368 rs7116797 G>A 0.08 
3431 rs12718464 G>A 0.04 
3613 rs5072 G>A 0.06 
3714 rs2070665 G>A 0.06 
3766 rs12718465 C>T 0.09 
4050 rs5070 G>A 0.35 
4284 rs5069 G>A 0.02 
4443 rs670 C>T 0.31 
4693 rs12718466 T>G 0.02 

 

Both Brown et al.45 and Shioji et al.47 previously identified the T>C change (rs5070); Shioji et 

al.47 correlated this change with a statistically significant increase in HDL-cholesterol levels in 

an Japanese population, but Brown et al.45 did not see this same association in a multi-ethnic 

population. Resequencing of the APOA1 gene in Brown et al.45 identified one variant in APOA1 

(rs5076) that was statistically significant in European-American males and had a consistent 

genotype-phenotype relationship across all populations and gender subgroups. However, Brown 

 18 



et al.45 did not see any statistically significant correlation with APOA1 SNPs (rs5069, rs2070665, 

and rs2073) and HDL levels in a multi-ethnic population of Caucasians and African-Americans. 

Knoblauch et al.79 did not see an association between APOA1 variants (rs525028, rs5081, 

rs5070, rs1799837, and rs5069) and HDL levels.  

1.5 APOLIPOPROTEIN A-IV AND THE APOA4 GENE 

The apolipoproteinA-IV (apoA-IV protein; APOA4 gene) has been mapped to chromosome 

11q23 in humans  (NCBI reference nucleotide sequence NC_000011.8). APOA4 gene has three 

exons and two introns; the length of the exons are: 153bp, 127bp, and 1180bp, respectively 

(Figure 6). The mRNA nucleotide sequence is 1191nt in length (NCBI mRNA locus 

NM_000482.3). 

 

Figure 6. The APOA4 Gene (http://www.ncbi.nlm.gov/sites/entrez). 

 

APOA4 encodes a protein, apoA-IV, that is 396 amino acids in length and has two major 

isoforms (The NCBI reference protein sequences are AAI13597 and AAI13595). It is 

synthesized as a preprotein (NCBI preprotein reference sequence NP_000473.2) and undergoes 

post-translations modifications. While the exact function of apoA-IV is not known, it has a 

number of proposed functions including involvement in the assembly and secretion of 

chylomicrons and the reverse cholesterol transport system. 
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1.5.1 Structure 

The crystalline structure of ApoA-IV has yet to be determined.  A three-dimension homology 

model of the protein has been proposed, and studies have looked at the structure of the protein 

and the possible functional implications.80,81 

 

Figure 7. Homology Model of apoA-IV. The majority of the protein is colored green. The N-

terminal 39 amino acids, encoded by a separate exon, are colored orange with the amino acids 

Trp12 and Phe15 shown as red spheres. The C-terminal 66 amino acids are colored light blue, with 

residues Phe334, Phe335and Phe338 shown as blue spheres. (Tubb, 2008) 81 
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1.5.2 APOA4 Variants and Phenotypic Association 

Many allelic variants in APOA4 have been reported and correlated with a clinical phenotype. In 

1990, Lohse et al.82 reported the molecular basis of a common protein polyprophism (APOA4*1 

and APOA4*2), and demonstrated that a G>T nucleotide substitution leads to the conversion of a 

glutamine to a histidine at codon 360. This change has been categorized further in many studies. 

In the Framingham Offspring Study of 2322 Caucasian men and women, Cendoroglo et al.83 

examined the effect of the APOA4 (G>T) polymorphism on plasma lipid and lipoprotein levels. 

No significant allele effect of the was observed on HDL-cholesterol levels, other lipid levels, or 

Lp(a) levels.  

Another common variant, with a reported allele frequency of 0.20-0.25, is a A>T 

nucleotide substitution which leads to a conversion of a threonine to serine at codon 347.84 One 

study of 2808 healthy individuals correlated this variant with a decreased plasma apoA-IV levels 

and an increased risk for CHD.85 Another study correlated this variant with an increased risk for 

cardiovascular disease in individuals with diabetes.86 However, a third study reported no 

association between this variant and hyperlipidemia in otherwise healthy individuals.87 

Other more rare variants have also been reported in the literature. Lohse et al.88 reported 

a four amino acid insertion (Glu-Gln-Gln-Gln) between codons 361 and 362 which was termed 

APOA4*0. Lohse et al.88 also reported a G>A nucleotide substitution that converted glutamic 

acid to lysine at codon 230, termed APOA4*3. In another study, Lohse et al.89 reported three 

novel variants in APOA4: an A>T point mutation at nucleotide 2346 in exon 3 causing a 

Thr347Ser amino acid substitution, an A>G point mutation at nucleotide 1806 causing a 

Lys167Glu amino acid substitution (this was in cis with an APOA4*2 variant), and a G>A point 

mutation at nucleotide 1800 in exon 3 causing a Glu165Lys amino acid substitution. Deeb et 

 21 



al.90 also reported three novel variants in APOA4 in individuals with familial combined 

hyperlipidemia: a C>T causing a S158L amino acid substitution (termed Seattle-1), a G>A 

change causing a R244Q amino acid subsitution (termed Seattle-2), and a G>T change causing a 

A141S amino acid substitution (termed Seattle-3). Knoblauch et al.79 did not see an association 

between APOA4 variants (rs675, rs5104, rs5092, and rs2542051) and HDL levels.  

Thirty SNPs in the APOA4 gene, plus the deletion polymorphism have been reported by 

Fullerton et al.78 and summarized in the SeattleSNPs database (http://pga.mbt.washington.edu). 

Tables 5, 6, and 7 below summarize the variants found in each of the three populations: Jackson, 

MS, North Karelia Finland, and Rochester, MN, respectively. 

Table 5. Allelic Variants in the Jackson, MS Population (18 total) 

Site rs Number nt 
Change 

Minor Allele 
Frequency 

(MAF) 
165 rs9282602 DEL 0.02 
315 rs675 T>A 0.19 
406 rs5109 C>A 0.11 
568 rs5106 G>A 0.05 
974 rs5104 T>C 0.06 
1183 rs12721042 C>A 0.02 
1198 rs5101 G>A 0.23 
1334 rs5100 A>G 0.35 
1453 rs5098 G>C 0.14 
1735 rs5096 A>G 0.35 
1803 rs5095 A>G 0.20 
1853 rs5094 G>A 0.11 
1993 rs2239013 C>T 0.13 
1994 rs5093 G>A 0.09 
2104 rs5092 T>C 0.02 
2511 rs12721041 C>T 0.05 
2645 rs5091 C>T 0.15 
2981 rs5089 C>T 0.05 
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Table 6. Allelic Variants in the North Karelia, Finland Population (14 total) 

Site rs Number nt 
Change 

Minor Allele 
Frequency 

(MAF) 
120 rs12721040 G>A 0.02 
165 rs9282602 DEL 0.41 
274 rs5110 C>A 0.02 
315 rs675 T>A 0.15 
933 rs12721043 C>A 0.09 
964 rs2234668 G>A 0.04 
974 rs5104 T>C 0.20 
1192 rs5103 A>G 0.12 
1334 rs5100 A>G 0.50 
1735 rs5096 A>G 0.50 
1803 rs5095 A>G 0.15 
1993 rs2239013 C>T 0.08 
2104 rs5092 T>C 0.35 
2695 rs5090 C>G 0.08 

 

Table 7. Allelic Variants in the Rochester, MN Population (15 total) 

Site rs Number nt 
Change 

Minor Allele 
Frequency 

(MAF) 
165 rs9282602 DEL 0.31 
274 rs5110 C>A 0.08 
315 rs675 T>A 0.11 
933 rs12721043 C>A 0.02 
964 rs2234668 G>A 0.04 
974 rs5104 T>C 0.15 
1192 rs5103 A>G 0.02 
1334 rs5100 A>G 0.31 
1735 rs5096 A>G 0.31 
1803 rs5095 A>G 0.15 
1853 rs5094 G>A 0.02 
1993 rs2239013 C>T 0.04 
1994 rs5093 G>A 0.02 
2104 rs5092 T>C 0.17 
2695 rs5090 C>G 0.06 
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1.6 SPECIFIC AIMS 

This study aims to further evaluate the genetic variation in the APOA1 and APOA4 genes, and 

correlate this variation with HDL-cholesterol levels in two well-characterized populations: 

African Blacks from Benin, Nigeria and Non-Hispanic Whites (NHWs) from Colorado, U.S.  

Aim 1: Sequence the APOA1 and APOA4 genes in a subset of individuals with HDL-

cholesterol in the upper 5th percentile (47 NHWs and 48 Blacks) and lower 5th percentile (48 

NHWs and 47 Blacks). 

Aim 2: Identify rare and common variants within the data generated from sequencing the 

APOA1 and APOA4 genes in this population subset. 

Aim 3: Determine the associations of both rare and common APOA1 and APOA4 variants 

on HDL-cholesterol levels in the general population of NHWs and African blacks. 
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2.0  SUBJECTS AND METHODS 

2.1 SUBJECTS 

2.1.1 Study Populations 

The subjects used in this study are summarized in Table 8. Samples from the African Black 

population were obtained as part of a study on coronary heart disease risk factors in blacks. 

Subjects were recruited from junior and senior staff, at a variety of salary grades, in government 

ministries in Sokoto and Benin City, Nigeria. During the initial study demographic and health 

information was gathered from participants; detailed information about the study population is 

available elsewhere.91,92 

Samples from the Non-Hispanic Whites (NHWs) were obtained from the San Luis Valley 

Southern Colorado Diabetes Study. The subjects involved in this study were normoglycemic. A 

detailed description of the sample population is available elsewhere.93,94  

The esterase-oxidase method was used to measure fasting total serum cholesterol.95,96 

Following dextran sulfate magnesium precipitation, total HDL-cholesterol was determined 

enzymatically.95,97 The DNA used for sequencing and TaqMan genotyping was extracted from 

clot sample (Blacks) and from buffy coat (NHWs) using standard DNA extraction procedures. 
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Table 8. Sample populations 

Population Men (%) Women (%) Total (%) 
African Blacks 495 (62.8) 293 (37.2) 788 (55.8) 
U.S. Whites 295 (47.4) 328 (52.6) 623 (44.2) 
Total 790 (56.0) 621 (44.0) 1,411 (100) 

 

2.1.2 Subset of the Study Population Used for Sequencing 

Ninety-five samples (47 NHW and 48 Black) from individuals with HDL-cholesterol levels in 

the upper 5th percentile and 95 samples (48 NWH and 47 Black) from individuals with HDL-

cholesterol levels in the lower 5th percentile were selected for sequencing and screening for 

common and rare variants. The sample characteristics of selected individuals in the high and low 

HDL groups, are summarized in Table 9, including: gender, age, BMI, LDL, HDL, total 

cholesterol, and triglyceride levels. 

Table 9. Biometric and Quantitative Data (mean±SD) of NHWs and Blacks Used for DNA 

Sequencing 
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2.2 DNA SEQUENCING 

APOA1 primers were designed using Primer3 software version 0.4.0 (http://frodo.wi.mit.edu) to 

create nine overlapping PCR amplicons. The area covered by the primers includes the four exons 

and three introns in the gene, plus approximately 940bp of the 5’ flanking region (putative 

promoter region) and approximately 2.5Kb of the 3’ flanking region. Primers for amplicon 5 

were redesigned because the PCR fragment did not amplify using the original primer set. 

Additional primers were also designed to amplify a PCR fragment spanning the amplicon 4 and 

5 junction because of a sequencing gap in this region. Sequencing was performed in both the 

forward and reversed direction of all of the samples except for the PCR fragment spanning the 

amplicon 4 and 5 junction; for this amplicon only forward sequencing was performed. Table 10 

is a comprehensive list of the primers used to sequence APOA1 in this study. 

 

Table 10. APOA1 Polymerase Chain Reaction (PCR) Primers 

PCR 
Amplicons 

Forward Primer Reverse Primer 

1 5’-GCCTTCCTTGACAGCTTTGT-3’ 5’-CTGCACCAACTGAGCAGAAT-3’ 
2 5’-AGAGGCTGCTTCCTTTGTGT-3’ 5’-CCTGGCACTCAAGTTCACAT-3’ 
3 5’-TTCAGACATGAGTGCAAGGAG-3’ 5’-AGAAGCTGGCCTGAGTAAGAA-3’
4 5’-CAGTGTCCTCATCCATGCTC-3’ 5’-GTCTTAGGGCCAAGATCGAC-3’ 

4-5 junction 5’-CCAGCTAAAGCAACCCTGTT-3’ 5’-GTTTCCAAAGTGGGAAGCAG-3’ 
5 5’-TTGGATTGTCTGTGGCTTTG-3’ 5’-AGAAGAAGTGGCAGGAGGAG-3’ 

5-new  5’-TCCGCTGTGACTTCCTTTCT-3’ 5’-ATGAGCAAGGATCTGGAGGA-3’ 
6 5’-AGTGGGCTCAGCTTCTCTTG-3’ 5’-AAGCCCCTTTCCCTTCTTC-3’ 
7 5’-AGTGGCCTAGCATTTCCAGT-3’ 5’-CTAACCTAGGGAGCCAACCA-3’ 
8 5’-GGGAGGGGAGACCCAGAT-3’ 5’-CCCACTGAACCCTTGACC-3’ 
9 5’-GTCCTGGCAATGTGGAACTT-3’ 5’-TAACTTGCCCACGATCTTCC-3’ 
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 Publicly available information from the Seattle SNP database 

(http://pga.mbt.washington.edu) was used to order M13-tagged primers for sequencing of 

APOA4; four overlapping PCR amplicons were created using these primers. The area covered by 

the primers includes the three exons and two introns in the gene, plus approximately 780bp of 

the 5’ flanking region (putative promoter region) and approximately 10bp of the 3’ flanking 

region. Sequencing was performed in both the forward and reversed direction of all of the 

samples. Table 11 is a comprehensive list of the primers used to sequence APOA4 in this study; 

M13-tag sequence is underlined. 

 

Table 11. APOA4 Polymerase Chain Reaction (PCR) Primers 

PCR Amplicons Forward Primer 
1 5’-TGTAAAACGACGGCCAGTCAACCAGTTGAGGCTAGATTCTC-3’ 
2 5’-TGTAAAACGACGGCCAGTTTCTTCTTCATCTGGAAGGTCAG-3’ 
3 5’-TGTAAAACGACGGCCAGTCTCAGGATCTCCCACATAGTTTG-3’ 
4 5’-TGTAAAACGACGGCCAGTTTTCCCTGTCTGAGCTTAGCTTT-3’ 

PCR Amplicons Reverse Primer 
1 5’-CAGGAAACAGCTATGACCTCAAAGTCAAGATTGACCAGACC-3’ 
2 5’-CAGGAAACAGCTATGACCGCAGAGGTCAAGAAGACAACATT-3’ 
3 5’-CAGGAAACAGCTATGACCGGACACTTCTGAGTGCCCAT-3’ 
4 5’-CAGGAAACAGCTATGACCATGGAGACTGAGAGATGACCGTA-3’ 

 

 The polymerase chain reaction (PCR) was performed using the GeneAMP® PCR System 

9700 thermal cycler with a heated lid (Applied Biosystems, Foster City, CA). The PCR reaction 

reagents and cycling conditions used in this study are given in Table 12. PCR conditions were 

optimized through adjusting the MgCl2 or annealing temperature within the range indicated in 

the table. 
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Table 12. PCR Reaction and Cycling Conditions 

PCR Reaction (total volume 25 µL) PCR conditions 

     DNA      3.0 µL 1. 95oC for 5 minutes 

     dH2O      12.25-13.75 µL  

     10x BufferGold      2.5 µL 2. 95oC for 45 seconds 

     MgCl2 (25 mM)      1-2.5 µL 3. 58-60oC for 45 seconds

     dNTPs (1.25mM)      3.8 µL 4. 72oC for 1 minute 

     Forward Primer (20mM)      0.4 µL      -repeat 2-4 39x 

     Reverse Primer (20mM)      0.4 µL 5. 72oC for 10 minutes 

     AmpliTaqGold (5U/µL)      0.15 µL 6. Cool to 4oC 

 

Gel electrophoresis was used to check for successful amplification of each of the PCR 

fragments. For each sample, 7µL of PCR product was combined with 5µL of loading dye and 

8µL distilled water, and loaded into a 96-well pre-cast agarose gel (InvitrogenTM E-Gel® 96 2% 

with SYBR® Safe). The EG program on the electrophoresis base (InvitrogenTM E-BaseTM) was 

used to run the gel for 8 minutes. Reamplification was done for a subset of samples that failed 

the initial amplification. For this subset, confirmation was performed using agarose gels with 

ethidium bromide. The 7µL of PCR product was combined with 5µL of loading dye and loaded 

into a 2% agarose gel in TBE buffer (tris, boric acid, and disodium EDTA dihydrate) and stained 

with ethidium bromide. Electrophoresis was run for 15 minutes at 250V. Both the 96-well and 

hand-poured gels were visualized using a UV transilluminator. 

A commercial sequencing facility (Genomic Services of Agencourt Bioscience 

Corporation, Beverly, MD) performed automated sequencing and capillary electrophoresis. The 

programs used to analyze the sequence results were: Sequencher version 4.8 (Gene Codes 
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Corporation, Ann Arbor, MI), and Variant Reporter version 1.0 (Applied Biosystems, Foster 

City, CA). 

2.3 GENOTYPING WITH TAQMAN 

For common SNPs (MAF≥5%) available pre-made TaqMan SNP genotyping assays were 

ordered. Seven assays were available, two for APOA1 and five for APOA4. Table 13 lists the 

seven TaqMan assays that were used for genotyping in the NHW, Black population, or both. 

Table 13. TaqMan® SNP Genotyping Assays 

Reference SNP ID Gene Assay ID Population 
rs5070 APOA1 C_2679584_10 NHWs, Blacks 
rs5072 APOA1 C_11482715_1_ NHWs, Blacks 
rs5092 APOA4 C_2679569_10 NHWs, Blacks 
rs5100 APOA4 C_2679565_10 NHWs, Blacks 
rs5104 APOA4 C_11482766_10 NHWs, Blacks 
rs5106 APOA4 C_11482768_10 Blacks 
rs5109 APOA4 C_11482772_10 Blacks 

 

 The TaqMan procedure involved DNA amplification and endpoint fluorescent reading 

using the ABI Prism 9700HT Sequence Detection System (Applied Biosystems, Foster City, 

CA). The reagents listed in Table 14 were added to 384-well plates containing dried whole 

genome amplified DNA. The TaqMan genotyping Assay Mix contains: sequence specific 

forward and reverse primers, a TaqMan minor groove binder (MGB) probe labeled with VIC dye 

at the 5’ end and a nonfluorescent quencher (NFQ) at the 3’ end, and a TaqMan MGD labeled 

with FAM dye at the 5’ end and a NFQ at the 3’ end. The GeneAMP® PCR System 9700 

thermal cycler with a heated lid (Applied Biosystems, Foster City, CA) was used for PCR 

amplification; cycling conditions are displayed in Table 14. 
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Table 14. TaqMan Reaction and Cycling Conditions 

TaqMan Reaction (total volume 5 µL) PCR conditions 

     dH2O      2.435 µL 1. 95oC for 10 minutes 

     TaqMan Genotyping   

     Master Mix (2x) 

     2.5 µL 2. 95oC for 15 seconds 

     TaqMan Genotyping 

     Assay Mix (40x) 

     0.065 µL 3. 60oC for 1 minute 

     -repeat 2-3 49x 

 

 Discrimination of alleles is possible because of the selective annealing of the TaqMan 

probes; each MGB probe binds to the target sequence harboring the SNP of interest during the 

annealing step (step 3 in Table 14) AmpliTaq Gold polymerase, which is part of the TaqMan 

Genotyping Master Mix, cleaves the probes that hybridize to the target sequence. The reporter 

dye is separated from the NFQ, releasing a fluorescent signal. Fluorescence is suppressed if the 

probes do not hybridize to the target sequence; the reporter dye does not separate from the NFQ.  

The genotyping call rates for all seven assays are shown in Table 15. The genotyping 

discrepancy rate was <2.2% for each variant based on a 20-30% repeat of the samples. 

Table 15. Genotyping Call Rates for TaqMan 

Reference SNP ID NHWs (%) Blacks (%) 
rs5070 98.56 95.94 
rs5072 99.52 98.22 
rs5092 99.52 96.70 
rs5100 99.68 96.32 
rs5104 99.04 94.92 
rs5106 - 96.57 
rs5109 - 98.22 
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2.4 STATISTICAL METHODS 

Direct allele counting was used to determine allele frequencies in this study. Concordance of the 

genotype distribution to Hardy-Weinberg equilibrium (HWE) was tested for each variant using a 

χ2 goodness-of-fit test. A standard Z-test of two binomial proportions was used to compare the 

allele frequencies. Linkage disequilibrium (LD) pattern and tagSNPs were determined using 

Haploview version 4.3 (http://www.broad.mit.edu/mpg/haploview). All dependant quantitative 

variables were transformed (using a log or square root transformation) when necessary to reduce 

the effects of non-normality. The significant covariates for each dependant variable were 

identified using stepwise regression in both directions. The most parsimonious set of covariats 

was determined separately for males and females within the NWH and Black populations. One-

way analysis of variance (ANOVA) was performed separately for males and females within the 

NHW and Black populations to test for the effects of genotypes on the means of quantitative 

traits (which were transformed and adjusted when necessary). The R statistical software package 

version 2.3.1 (http://www.r-project.org) and Statistical Analysis Software (SAS) was used to 

perform all computations. Two genetic models were used for data analysis, the additive and 

codominant models. A p-value of <0.05 under one of these models was considered as suggestive 

evidence of association. 

 

 

 32 

http://www.broad.mit.edu/mpg/haploview
http://www.r-project.org/


3.0  RESULTS 

3.1 DNA SEQUENCING 

3.1.1 APOA1 

A total of 53 single nucleotide substitutions plus one insertion/deletion (indel) polymorphism 

were identified in APOA1. For the indel variant in 3’ flanking region three different alleles were 

observed; insertion of T (9 T’s) in NHWs, deletion of T (7 T’s) in Blacks, and the wild type of 8 

T’s in both populations (in the reverse strand sequence). The insertion allele was previously 

reported in public databases, whereas the deletion allele was novel. The location of variants were 

as follows: 8 in putative promoter region, 6 in exons, 12 in introns, and the remaining in 3’ 

flanking region.  

Twenty-nine of the identified variant locations had already been reported in publicly 

available databases (SeattleSNPs database, CHIP Bioinformatics database, dbSNP), while 25 

were novel (not previously reported). Seventeen single nucleotide substitutions were observed 

only in NHWs; 20 single nucleotide substitutions were observed only in Blacks. Of a total of 25 

identified new variants, 10 were in NHWs and 15 were in Blacks; thus, none of the novel 

variants were observed in both populations. Of 34 variants identified in NHWs 23 were 

relatively rare, with MAF <5%. Of 37 variants identified in Blacks, 17 were relatively rare with 
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MAF <5%. All newly identified variants in each population had <5% MAF. Table 16 lists all of 

the variants identified in this study. The chromatograms illustrating the 25 novel variants in 

APOA1 are shown in figure 8. The annotated FASTA file and related information is given is 

section 3.1.3. 
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Table 16. APOA1 Sequence Variants.   
APOA1 

Variant*/** rs# (CHIP&GB) Location Amino Acid 
Change Population MAF 

(NHWs) 
MAF 

(Blacks) 
206A>C rs7123454 3'-flanking --- Both 0.174 0.349 
338A>G Novel Variant 3'-flanking --- Blacks --- 0.032 
386G>A Novel Variant 3'-flanking --- Blacks --- 0.005 
477C>T Novel Variant 3'-flanking --- Blacks --- 0.016 
533C>T rs12721031 3'-flanking --- NHWs 0.016 --- 
631A>G rs7948159 3'-flanking --- Blacks --- 0.484 
656C>T Novel Variant 3'-flanking --- Blacks --- 0.005 
689C>T Novel Variant 3'-flanking --- NHWs 0.005 --- 
894G>A Novel Variant 3'-flanking --- Blacks --- 0.016 
959G>C Novel Variant 3'-flanking --- NHWs 0.005 --- 
1049T>A rs1263162 3'-flanking --- Both 0.011 0.128 
1128G>T rs11216153 3'-flanking --- Both 0.191 0.095 
1143G>T Novel Variant 3'-flanking --- Blacks --- 0.005 
1308C>T rs12721030 3'-flanking --- Both 0.234 0.011 

1407del/insT*** rs12721027**** 3'-flanking --- ins(NHWs); 
del(Blacks) 0.005 0.032 

1507T>C Novel Variant 3'-flanking --- NHWs 0.005 --- 
1546A>G rs525028 3'-flanking --- Both 0.372 0.079 
1549C>T Novel Variant 3'-flanking --- NHWs 0.005 --- 
1598T>G rs10750098 3'-flanking --- Both 0.132 0.084 
1620A>G rs12721028 3'-flanking --- Both 0.184 0.300 
1749T>C rs12718462 3'-flanking --- NHWs 0.037 --- 
1965T>C Novel Variant 3'-flanking --- Blacks --- 0.032 
2077G>A rs12721025 3'-flanking --- NHWs 0.037 --- 
2120C>A Novel Variant 3'-flanking --- Blacks --- 0.011 
2198T>G rs12721026 3'-flanking --- NHWs 0.037 --- 
2215C>A Novel Variant 3'-flanking --- Blacks --- 0.005 
2373T>C rs12718436 3'-flanking --- Both 0.042 0.389 
2376A>T rs5081 3'-flanking --- Both 0.011 0.126 
2626G>C rs5080 exon 4 syn Blacks --- 0.016 

2652C>A***** Novel Variant exon 4 Glu>Ter NHWs 0.005 --- 
2880C>G Novel Variant exon 4 Glu>Gln Blacks --- 0.005 
3220G>A rs5076 intron 3 --- Both 0.042 0.437 
3307C>A Novel Variant intron 3 --- NHWs 0.011 --- 
3368G>A rs7116797 intron 3 --- Both 0.147 0.358 
3431G>A rs12718464 intron 3 --- NHWs 0.026 --- 
3543C>T rs5073 intron 3 --- Blacks --- 0.058 
3613G>A rs5072 intron 3 --- Both 0.105 0.100 
3714G>A rs2070665 intron 3 --- Both 0.105 0.096 
3769A>C Novel Variant exon 3 Ser>Ala NHWs 0.005 --- 
3867G>T Novel Variant exon 3 Pro>His Blacks --- 0.005 
3959G>T Novel Variant intron 2 --- NHWs 0.005 --- 
4050G>A rs5070 intron 2 --- Both 0.332 0.436 
4151G>C Novel Variant exon 2 / 5'-UTR --- NHWs 0.005 --- 
4208C>T Novel Variant intron 1 --- Blacks --- 0.005 
4283C>T rs1799837 intron 1 --- NHWs 0.005 --- 
4284G>A rs5069 intron 1 --- Both 0.032 0.437 
4443C>T rs670 5'-flanking / promoter --- Both 0.189 0.121 
4693T>G rs12718466 5'-flanking / promoter --- NHWs 0.042 --- 
4732C>A rs12718467 5'-flanking / promoter --- Blacks --- 0.106 
4807C>T rs12691374 5'-flanking / promoter --- Blacks --- 0.068 
4987T>C Novel Variant 5'-flanking / promoter --- Blacks --- 0.026 
5055A>T Novel Variant 5'-flanking / promoter --- Blacks --- 0.068 
5066G>T Novel Variant 5'-flanking / promoter --- Blacks --- 0.011 
5131C>T Novel Variant 5'-flanking / promoter --- NHWs 0.011 --- 

* The nucleotide change represented in the table is for the minor allele in the NHW population. 
** The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. 
*** Triallelic insertion/deletion polymorphism. 
**** rs number is for the insertion and wild type alleles. 
***** Suspicious variants with low sequence quality. 
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Figure 8. Chromatograms for New Variants in the APOA1 Gene. 
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Figure 8 Continued 
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3.1.2 APOA4 

A total of 41 single nucleotide substitutions were observed in APOA4, plus two indel 

polymorphisms. Both indels were located in exon 3 and included a four nucleotide deletion 

(ACAG) at the 3’ untranslated region (UTR), and a 12 nucleotide insertion (CTGTTCCTGCTG) 

affecting the coding region. Although the latter variant was reported in the literature, it is shown 

as a novel variant in Table 17 because it is not present in the public databases.88  

Twenty-three of the identified variants had already been reported in publicly available 

databases, while 20 were novel (not previously reported). Thirteen variants were observed only 

in NHWs; 20 were observed only in Blacks. Of a total of 20 identified new variants, 7 were in 

NHWs and 13 were in Blacks; thus, none of the novel variants were observed in both 

populations. Of 23 variants identified in NHWs 12 were relatively rare, with MAF <5%. Of 30 

variants identified in Blacks, 17 were relatively rare with MAF <5%. Of the 20 novel variants 

identified in this study, 18 were relatively rare with MAF <5%. Two of the novel variants in 

Blacks had a MAF of 0.053. Table 17 lists all of the variants identified in this study. The 

chromatograms illustrating the 20 novel variants in APOA4 are shown in figure 9. The annotated 

FASTA file and related information is given is section 3.1.3. 
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Table 17. APOA4 Sequence Variants.  

APOA4 
Variant*/** 

rs# 
(CHIP&GB) Location Amino Acid 

Change Population MAF 
(NHWs) 

MAF 
(Blacks)

120G>A rs12721040 exon 3 / 3'-UTR --- NHWs 0.021 --- 
165delACAG rs9282602 exon 3 / 3'-UTR --- Both 0.495 0.058 

274C>A rs5110 exon 3 Gln>His NHWs 0.089 --- 
288ins12 Novel Variant exon 3 --- Blacks --- 0.016 
315T>A rs675 exon 3 Thr>Ser Both 0.195 0.074 
357A>C Novel Variant exon 3 Ser>Ala Blacks --- 0.053 
406C>A rs5109 exon 3 syn Blacks --- 0.126 

422G>T*** Novel Variant exon 3 Pro>His NHWs 0.005 --- 
520C>T Novel Variant exon 3 syn NHWs 0.005 --- 
568G>A rs5106 exon 3 syn Blacks --- 0.042 
634G>A rs5105 exon 3 syn Blacks --- 0.021 
755C>T Novel Variant exon 3 Arg>His Blacks --- 0.005 
945G>A Novel Variant exon 3 syn NHWs 0.005 --- 
952C>T Novel Variant exon 3 syn NHWs 0.005 --- 
964G>A rs2234668 exon 3 syn NHWs 0.058 --- 
974T>C rs5104 exon 3 Asn>Ser Both 0.163 0.106 

1033G>T Novel Variant exon 3 Asn>Lys NHWs 0.005 --- 
1192A>G rs5103 exon 3 syn NHWs 0.053 --- 
1198G>A rs5101 exon 3 syn Blacks --- 0.425 
1274G>A Novel Variant intron 2 --- Blacks --- 0.011 
1326A>G Novel Variant intron 2 --- Blacks --- 0.053 
1334A>G rs5100 intron 2 --- Both 0.411 0.404 
1371C>T Novel Variant intron 2 --- Blacks --- 0.043 
1453G>C rs5098 intron 2 --- Blacks --- 0.012 
1735A>G rs5096 intron 2 --- Both 0.411 0.402 
1743T>G Novel Variant intron 2 --- Blacks --- 0.005 
1803A>G rs5095 intron 2 --- Both 0.195 0.065 
1853G>A rs5094 intron 2 --- Both 0.011 0.081 
1948C>A Novel Variant intron 2 --- Blacks --- 0.021 
1993C>T rs2239013 intron 2 --- Both 0.042 0.043 
1994G>A rs5093 intron 2 --- Both 0.032 0.011 
2104T>C rs5092 exon 2 syn Both 0.216 0.160 
2287G>A Novel Variant intron 1 --- NHWs 0.005 --- 

2327C>A*** Novel Variant intron 1 --- Blacks --- 0.005 
2406C>G*** Novel Variant intron 1 --- Blacks --- 0.005 

2645C>T rs5091 exon 1 / 5'-UTR --- Blacks --- 0.050 
2685C>T*** Novel Variant 5'-flanking / promoter --- Blacks --- 0.005 
2695C>G rs5090 5'-flanking / promoter --- NHWs 0.068 --- 
2705C>T Novel Variant 5'-flanking / promoter --- Blacks --- 0.005 
2978C>A rs7929134 5'-flanking / promoter --- NHWs 0.021 --- 
2981C>T rs5089 5'-flanking / promoter --- Blacks --- 0.037 
2984G>A Novel Variant 5'-flanking / promoter --- NHWs 0.005 --- 
3146G>A Novel Variant 5'-flanking / promoter --- Blacks --- 0.005 

* The nucleotide change represented in the table is for the minor allele in the NHW population. 
** The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database.  
*** Suspicious variants with low sequence quality. 
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Figure 9. Chromatograms for Novel Variants in the APOA4 Gene. 
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Figure 9 Continued 
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3.1.3 APOA1 and APOA4 Annotated Sequence 

Figures 10 and 11 depict the variants identified in APOA1 and APOA4 within a color FASTA 

representation of the annotated reference sequence from the CHIP Bioinformatics database 

(http://snpper.chip.org). The sequences from the CHP Bioinformatics database were used as a 

reference instead of the sequences from the SeattleSNPs database because the SeattleSNPs 

database sequences were not given in the forward direction (forward strand). However, the 

SeattleSNPs database was used as a reference to design and order PCR primers, and for 

comparison with sequencing results in this. Therefore, the SeattleSNPs location nomenclature 

has been used throughout the text, tables, and figures. The variants identified in this study also 

reported in public databases and with rs numbers in GenBank are shown in blue font; rs number 

followed by SeattleSNPs database-based locations using the reverse strand (variants reported in 

SeattleSNPs database are in paranthesis, variants not reported in SeattleSNPs database are in 

brackets). The new variants identified in this study are shown in red font in brackets. The 

suspicious variants with low sequence quality are marked with a *. Variants reported in public 

databases that were not identified in this study are show in purple font. 
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Figure 10. APOA1 Annotated Sequence 

116,214,548  aacaaccctg accattcttg ccccattttg cagatagaaa accgaggctc 
116,214,498  agagagatta tataacttgc ccacgatctt cctccagcaa gatggaggcc 
116,214,448  aagtgaaatg agaaagcagg tctcctgcca cttcctttgc ccagaggtct 
116,214,398  tctccccaca ccagggcttc ccaagggctg agatccagtc acacctgtgc 
116,214,348  gtgatcaaat ataagtgtga acaatgcaaa gggagacgtc ttcaatctaa [5131] 
116,214,298  ggggcttcaa ttctgtaatg taattctgag attatgccct tttttgttaa 
116,214,248  agcctttcct ttttgaagtg atggtcactg tagatggtga gggttttttg [5066];[5055] 
116,214,198  gaggcggaca atatctttac atgacaaaat taaaagttgg cagctccgaa [4987] 
116,214,148  ttgatctctg gagtgttttg aaatgcaaga ggtctccgaa acctcagtct 
116,214,098  gggagccacg gagggctctc ccctctcccc aggtttacca gtttgggagg 
116,214,048  cttggagaga ggcctggagg acctgctggg gactaaagaa gagcactggt 
116,213,998  gggaggacag ggcgggggaa gggggagggg agtgaagtag tctccctgga rs12691374(4807) 
116,213,948  atgctggtgg tgggggaggc agtctccttg gtggaggagt cccagcgtcc rs12718467(4732) 
116,213,898  ctcccctccc ctcctctgcc aacacaatgg acaatggcaa ctgcccacac rs12718466(4693) 
116,213,848  actcccatgg aggggaaggg gatgagtgca gggaaccccg accccacccg 
116,213,798  ggagacctgc aagcctgcag acactcccct cccgccccca ctgaaccctt 
116,213,748  gacccctgcc ctgcagcccc cgcagcttgc tgtttgccca ctctatttgc rs2727786;rs2542054 
116,213,698  ccagccccag ggacagagct gatccttgaa ctcttaagtt ccacattgcc rs2542053 
116,213,648  aggaccagtg agcagcaaca gggccggggc tgggcttatc agcctcccag rs670(4443) 
116,213,598  cccagaccct ggctgcagac ataaataggc cctgcaagag ctggctgctt 
 
116,213,548  agagactgcg agaaggaggt gcgtcctgct gcctgccccg gtcactctgg Exon 1 Intron 1 
116,213,498  ctccccagct caaggttcag gccttgcccc aggccgggcc tctgggtacc rs5069(4284);rs1799837[4283] 
116,213,448  tgaggtcttc tcccgctctg tgcccttctc ctcacctggc tgcaatgagt rs12721032(4245) 
116,213,398  gggggagcac ggggcttctg catgctgaag gcaccccact cagccaggcc [4208] 
116,213,348  cttcttctcc tccaggtccc ccacggccct tcaggATGAA AGCTGCGGTG Exon 2 [4151] 
116,213,298  CTGACCTTGG CCGTGCTCTT CCTGACGGGT AGGTGTCCCC TAACCTAGGG Intron 2 
116,213,248  AGCCAACCAT CGGGGGGCTT TCTCCCTAAA TCCCCGTGGC CCACCCTCCT rs5070(4050) 
116,213,198  GGGCAGAGGC AGCAGGTTTC TCACTGGCCC CCTCTCCCCC ACCTCCAAGC 
116,213,148  TTGGCCTTTC GGCTCAGATC TCAGCCCACA GCTGGCCTGA TCTGGGTCTC [3959] 
116,213,098  CCCTCCCACC CTCAGGGAGC CAGGCTCGGC ATTTCTGGCA GCAAGATGAA Exon 3 
116,213,048  CCCCCCCAGA GCCCCTGGGA TCGAGTGAAG GACCTGGCCA CTGTGTACGT [3867];rs28929476 
116,212,998  GGATGTGCTC AAAGACAGCG GCAGAGACTA TGTGTCCCAG TTTGAAGGCT rs28931574;[3769] 
116,212,948  CCGCCTTGGG AAAACAGCTA AAGTAAGGAC CCAGCCTGGG GTTGAGGGCA rs12718465(3766);rs5071;rs17407917 Intron 3 
116,212,898  GGGGTAGGGG GCAGAGGCCT GTGGGATGAT GTTGAAGCCA GACTGGCCGA rs2070665(3714) 
116,212,848  GTCCTCACCT AATATCTGAT GAGCTGGGCC CCACAGATGG TCTGGATGGA 
116,212,798  GAAACTGGAA TGGGATCTCC AGGCAGGGTC ACAGCCCATG TCCCCTGCAA rs5072(3613) 
116,212,748  AGGACAGACC AGGGCTGCCC GATGCGTGAT CACAGAGCCA CATTGTGCCT rs5073(3543) 
116,212,698  GCAAGTGTAG CAAGCCCCTT TCCCTTCTTC ACCACCTCCT CTGCTCCTGC rs13306170 
116,212,648  CCAGCAAGAC TGTGGGCTGT CTTCGGAGAG GAGAATGCGC TGGAGGCATA rs12718464(3431) 
116,212,598  GAAGCGAGGT CCTTCAAGGG CCCACTTTGG AGACCAACGT AACTGGGCAC 
116,212,548  TAGTCCCAGC TCTGTCTCCT TTTTAGCTCC TCTCTGTGCC TCGGTCCAGC rs7116797(3368) 
116,212,498  TGCACAACGG GGCATGGCCT GGCGGGGCAG GGGTGTTGGT TGAGAGTGTA [3370] 
116,212,448  CTGGAAATGC TAGGCCACTG CACCTCCGCG GACAGGTGTC ACCCAGGGCT rs5075;rs5076(3220) 
116,212,398  CACCCCTGAT AGGCTGGGGC GCTGGGAGGC CAGCCCTCAA CCCTTCTGTC 
116,212,348  TCACCCTCCA GCCTAAAGCT CCTTGACAAC TGGGACAGCG TGACCTCCAC Exon 4 
116,212,298  CTTCAGCAAG CTGCGCGAAC AGCTCGGCCC TGTGACCCAG GAGTTCTGGG 
116,212,248  ATAACCTGGA AAAGGAGACA GAGGGCCTGA GGCAGGAGAT GAGCAAGGAT rs17145083;rs2727787 
116,212,198  CTGGAGGAGG TGAAGGCCAA GGTGCAGCCC TACCTGGACG ACTTCCAGAA rs28931575;rs5077 
116,212,148  GAAGTGGCAG GAGGAGATGG AGCTCTACCG CCAGAAGGTG GAGCCGCTGC rs4882 
116,212,098  GCGCAGAGCT CCAAGAGGGC GCGCGCCAGA AGCTGCACGA GCTGCAAGAG [2880] 
116,212,048  AAGCTGAGCC CACTGGGCGA GGAGATGCGC GACCGCGCGC GCGCCCATGT 
116,211,998  GGACGCGCTG CGCACGCATC TGGCCCCCTA CAGCGACGAG CTGCGCCAGC rs5078;rs1052925;rs28931573 
116,211,948  GCTTGGCCGC GCGCCTTGAG GCTCTCAAGG AGAACGGCGG CGCCAGACTG rs5079 
116,211,898  GCCGAGTACC ACGCCAAGGC CACCGAGCAT CTGAGCACGC TCAGCGAGAA rs1053223;rs14081 
116,211,848  GGCCAAGCCC GCGCTCGAGG ACCTCCGCCA AGGCCTGCTG CCCGTGCTGG [2652]*;rs5080[2626] 
116,211,798  AGAGCTTCAA GGTCAGCTTC CTGAGCGCTC TCGAGGAGTA CACTAAGAAG 
116,211,748  CTCAACACCC AGTGAggcgc ccgccgccgc cccccttccc ggtgctcaga 
116,211,698  ataaacgttt ccaaagtggg       
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Figure 10 Continued 
 
116,211,678  aagcagcttc tttcttttgg gagaatagag gggggtgcgg ggacatccgg 
116,211,628  gggagcccgg gtggggcctt tggccctgga gcagggactt cctgccggat rs2849171 
116,211,578  ctcaacaact ccgtgcccag actggacgtc ttagggccaa gatcgacgtt rs5081(2376);rs12718463(2373) 
116,211,528  ggaggacctg ctggacgcct ggctgcttac gagtgaggga gtagagtctg 
116,211,478  ccttagcaag gctcaagtag aaaggaagtc acagcggacc aggcaaagcc 
116,211,428  acagacaatc caaggccagg tgccctgaaa ggggctcaaa caaggcctgc [2215] 
116,211,378  agccctgtct gaggcgggcc aggaaacagg gttgctttag ctgggagcag rs12721026(2198) 
116,211,328  tgggttcccc gtccccagag gtgtgtccgt atagagcctt ctccagccca [2120] 
116,211,278  gccgctgtca gcggggcggg acggagcggg gcggcctcag ggagccagcc rs12721025(2077) 
116,211,228  actgggattg gggtttggtc ccgggtgcaa gtgaagcgct tggagtttgc   
116,211,178  gcctgtcctc ctttactaat tcaaaaacct ctcaaacaga cacttccctt [1965] 
116,211,128  ttcttctcac aaggccagta tccccctccc actactccca tcccgcccag 
116,211,078  aaacagccgc ggcttcctca ggcacagcag tggaagccag tcctccaccc   
116,211,028  cctgcggctc catgccatgc caccccctct ttctgccagc cctggcagaa 
116,210,978  gctggcctga gtaagaaaat tcaccaccac ctcttgcagg tacattttta rs12718462(1749) 
116,210,928  tttccaagat gctctcatat ctgtgctctc actgcatcct cccttcccca rs12718461(1717) 
116,210,878  catcctggct agattgccat cagacgcaga gcatggatga ggacactgaa 
116,210,828  gcctggacct gtgacgtcgc ttgcccagtg aacagcagga tgggctaggc (1620) 
116,210,778  cgcgcttttt agaccctgca cccctggcca tccatgatta ttgaaaagag rs10750098(1598);[1549] 
116,210,728  tgtgcgggtc gggtgcggtg gctcaagcct gtaatcccag cactttggga rs525028(1546);rs12721029(1541);[1507] 
116,210,678  ggctgaggtg ggcgtatcac ttcaggccag gagtttgaga ccagcctggc 
116,210,628  caatatggtg aaaccctgtc tctactaaaa atacaaaaaa aatcagctgg rs12721027(1407) 
116,210,578  gcatggtggc ttgcacccgt aatcccagct actaggaagg ctgaggcagg 
116,210,528  agaatcgctt gaacctggga ggcagaggtc acagtgagcc gaaatcatgc rs12721030(1308) 
116,210,478  cactgcactc cagcctgggc gacggagcaa gactccagct aaaaaaaaaa 
116,210,428  aaaaaaaaaa aaaagagtgt gtggcctggc actcaagttc acatgggtgt 
116,210,378  gcaggcatgc ctgtgtattc tcacatgacc tccctgctca cggtccctcc 
116,210,328  ttgcactcat gtctgaatgt ccccgcgtgc acgcacatgg cttcacagat [1143]; rs11216153(1128) 
116,210,278  ctgggcagtg ccttccctac cctctctctg cagggccttt tgccccctca rs1263162(1049) 
116,210,228  tgcaggcccc tggataatcg gccccatccc catgtcccca tctccagtgt 
116,210,178  atcttagcta ccctaggtaa aggagtgggc tttttagttc ctaaccttcc [959] 
116,210,128  agagctacaa cagcagtcat ccagccaggt ctgggtggga acattttcta 
116,210,078  gatacgggtg ctgagatctc tcagcccaga gagaagccct ggggaatttt [894] 
116,210,028  cagagagaaa gcagtctcca ggtggggctg gatgtactga tgccactgag  
116,209,978  atctgtaaag gagtccctaa cacctgacat aggagtgaca aaactgtttt 
116,209,928  ctgcaccaac tgagcagaat acacgcagct gacctgggct caaggtctgg 
116,209,878  ccctgccacg tgctggctct gtgatgctgg ccaagtgcct tcgcctctcc [689]; [656] 
116,209,828  gggccacagt tttttgatct gaagagtgga gccctactca agccatctgc rs7948159(631) 
116,209,778  agctctcggg ctctctgacc tgacatcttt cgggtggtgg ggacacaaag 
116,209,728  gaagcagcct ctattgggag accttgtgct tctttttggt cccaggacac rs12721031(533) 
116,209,678  tgccccccac cactccagtc cgggtcccaa gggcccagtc agctcaactg [477] 
116,209,628  taatcatgac aacattgatc aagcatcttt acgtgcaggt gctgtgccaa 
116,209,578  acggttcgaa cgctctctca tttcaatctc acggcaaacc tacggtggag [386] 
116,209,528  ggggtacggt tgtatccact ttacatgtaa gaaactgagg ctgatatcaa [338] 
116,209,478  gtggtggagc caagaatagt gcctcgttgc atcttactcc aacctctagc 
116,209,428  ccatccggcc tcctcccttc acgtgcgcct aagagggcta ggtggcctgg rs7123454(206) 
116,209,378  ataggggagg tcagctccac agttttgagt aaacacacac agtctcaact 
116,209,328  ctgatgacaa cttaagtgcc aggcatagtg gctggcatgg ggcacacact 
116,209,278  caagtcatgt tgtgcagcac ctaacagttt atcaaagtat cagcaaactt 
116,209,228  attgtcctgt ttgaccttcc gcacaaagct gtcaaggaag gcagggta 
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Figure 11. APOA4 Annotated Sequence 

116,200,221  tgtactaaac atatacagac ttttttggtg attacctcct aaacaataca 
116,200,171  gtataacaac cattcacaca gcatttccgt cgtattaggt attataagta rs10892035 
116,200,121  atctagagat ttaaagtatg tgggaggctg tgcttaggtt atatgcaaat rs35781859 
116,200,071  actatgccat tttatatcaa ggacttgaac atccatggat tttggtatct 
116,200,021  gcagagggtc ctggaatcaa tttcccatgg agactgagag atgaccgtac 
116,199,971  tacccacttc gcaagcaatg tcttctttaa tgtactgaac catcccattg 
116,199,921  ttcagaggag aaactgaagc tcagggcttt gaataactag accaaggagg 
116,199,871  cacagcatgg gagtgggaca tgaagcactc tacaattaac cctttcagga 
116,199,821  caaggccctg tctcccacac ccatctgccc aaaggctctc cagggccccc 
116,199,771  tcctcttggg tgtaccttga caagagacct agattttagc tcactatgct 
116,199,721  gtctgcagtc ctggatggtc ccactccagt gtctggtgct ctgagatgga [3146] 
116,199,671  gtcagcatta gtggcggatg tggagactgg ggggacctgt cttcactggg 
116,199,621  gtagacagag gagatgtgga ctttgccccc catgagcccg gcacaaaccc 
116,199,571  agagccgcca gcagggcctc gaggcatcag tcccgggctc atgggctccc [2984];rs5089(2981);rs7929134[2978] 
116,199,521  tgaggtgttt ctcctactgt tttccgttcc cctcctccct tccatgctga rs1263179 
116,199,471  ggttggtggg gtgggggtgg gggtgcccac gcacggaaca gccaccactt rs7926125;rs13306180 
116,199,421  ctaactatcg cctgagccct gatctgctgt cagcttccac gtagtctcag rs1263178 
116,199,371  ggtcacaaaa gtccaagagg cctcttggga atgtgtcacc ttccagcgtg 
116,199,321  gagtcacact gaggaaggag gaggggaggg cagccagggg ggtggcgata [2705] 
116,199,271  gggagagagt ttaaatgtct ggctggctct gagcttcagt cagttcccac rs5090(2695);[2685]* 
 
116,199,221  tgcagcgcag gtgagctctc ctgaggacct ctctgtcagc tcccctgatt Exon 1 rs5091(2645) 
116,199,171  gtagggagga tccagtgtgg caagaaactc ctccagccca gcaagcagct 
116,199,121  caggATGTTC CTGAAGGCCG TGGTCCTGAC CCTGGCCCTG GTGGCTGTCG rs12721041(2511) 
116,199,071  CCGGTGAGTA GAAGCTGTCT TTGGATGGCA CTCCTGGGCT GCTGCTCTGA Intron 1 
116,199,021  GTAGTGCAGG ATGGAGGCTG AGCCAAAGCA AAAGGACACT TCTGAGTGCC  [2406]* 
116,198,971  CATCAGCCCC CAGCTGGACA TGAGGTCTGC CTGGCTGCCA AGTGGCTCAC 
116,198,921  AGGAGAGCTG GCCCAGTCCC AGTGGTGGGC CCATTGGCAT TGGTGCTATA [2327]* 
116,198,871  CCAGTTTCAC ATATCCCTGT GGCTTCCAAA AAGCTAAGCT CAGACAGGGA [2287];rs13306174 
116,198,821  AAATGGCAGG TTGAGGCACC CCCACCATCA TCCAGTCTGC AGCTCAGAGC 
116,198,771  TGGAGCAGAG GGGCCACACA GGAGACGGGG CCTCATGAAT TGCTCTCTGT 
116,198,721  TACCACCCAG GAGCCAGGGC TGAGGTCAGT GCTGACCAGG TGGCCACGGT Exon 2 rs5092(2104) 
116,198,671  GATGTGGGAC TACTTCAGCC AGCTGAGCAA CAATGCCAAG GAGGCCGTGG 
116,198,621  AACATCTCCA GAAATCTGAA CTCACCCAGC AACTCAAGTA AGAGGGACTA Intron 2 
116,198,571  CAGTGTGCGG TGGTGACGGG GAATTCTTAA AGGCCATGCA ATGTACTGGC rs5093(1994);rs2239013(1993) 
116,198,521  AAGGGTTGAG CTTAGAGACA GGAGCCCTGA GCTTAGGATA CCCACTGCCC [1948];rs13306177 
116,198,471  TGCCACTAAC TGGCCGGGCC TCTGAACCTA GGATCCACAT ATGTAAACCG rs5094(1853) 
116,198,421  GAAGTTTGGA CCGAATAATC CCTGCCATGT CCTTTTGCTT TGACGTTCTA rs13306179;rs5095(1853) 
116,198,371  GAGTTTGACA AATGGCCACA TCCTATCATT CAGGCTCATG GAAGAGAGGG 
116,198,321  AGGGAGGAAA ATGTCACGTG AGCTGATTTC TAATACGTTT CAGAAAGACA [1743];rs5096(1735) 
116,198,271  GGCCCCAGTG GAATCAAGGG GAGGGAGGTG GGAATATTTG GGAGGCCCCT 
116,198,221  GGGCACAGGC AAGGAAAGCA GCACCTTGTG CCACTGGAAG ACCCCAGCAG 
116,198,171  AGGTCAAGAA GACAACATTG TGTTACACAA TGTGATCCTA TGGCCCAGAA 
116,198,121  CACTCCCTCT GGGAAGGACC TCAAAGTCCC ACCCTCTGCA GACAAGGAGG rs2234667 
116,198,071  GGAAAGCAAA CTGCTGGAGG TGACATGGTG GGTAGATTCT GAGACAAACT rs5098(1453) 
116,198,021  ATGTGGGAGA TCCTGAGATA GAAATTCAGC ATCGTAACTT AGTCTGTGAC 
116,197,971  ACCCATCCTC TCCAATCTGC ACCACCATAG GGAGGGTGAA CTCGGTACCT [1371] 
116,197,921  CTGAGCACTC ACCTGTCCTA GCACGTGTGC ATAAGGCGAG TGGTATACAA rs5100(1334);[1326] 
116,197,871  GCAGACAAAG TCTTGCCGTG TAAATGCCAA ATGTAACGTG GCCTCCTTGT [1274] 
116,197,821  GCCCTTCCCC ACAGTGCCCT CTTCCAGGAC AAACTTGGAG AAGTGAACAC Exon 3 rs13306173 
116,197,771  TTACGCAGGT GACCTGCAGA AGAAGCTGGT GCCCTTTGCC ACCGAGCTGC rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) 
116,197,721  ATGAACGCCT GGCCAAGGAC TCGGAGAAAC TGAAGGAGGA GATTGGGAAG 
116,197,671  GAGCTGGAGG AGCTGAGGGC CCGGCTGCTG CCCCATGCCA ATGAGGTGAG rs6413456 
116,197,621  CCAGAAGATC GGGGACAACC TGCGAGAGCT TCAGCAGCGC CTGGAGCCCT [1033] 
116,197,571  ACGCGGACCA GCTGCGCACC CAGGTCAGCA CGCAGGCCGA GCAGCTGCGG [952];rs5104(974);rs2234668(964) 
116,197,521  CGCCAGCTGA CCCCCTACGC ACAGCGCATG GAGAGAGTGC TGCGGGAGAA [945];(933) 
116,197,471  CGCCGACAGC CTGCAGGCCT CGCTGAGGCC CCACGCCGAC GAGCTCAAGG 
116,197,421  CCAAGATCGA CCAGAACGTG GAGGAGCTCA AGGGACGCCT TACGCCCTAC 
116,197,371  GCTGACGAAT TCAAAGTCAA GATTGACCAG ACCGTGGAGG AGCTGCGCCG [755] 
116,197,321  CAGCCTGGCT CCCTATGCTC AGGACACGCA GGAGAAGCTC AACCACCAGC 
116,197,271  TTGAGGGCCT GACCTTCCAG ATGAAGAAGA ACGCCGAGGA GCTCAAGGCC 
116,197,221  AGGATCTCGG CCAGTGCCGA GGAGCTGCGG CAGAGGCTGG CGCCCTTGGC rs5105[634];rs2238008 
116,197,171  CGAGGACGTG CGTGGCAACC TGAGGGGCAA CACCGAGGGG CTGCAGAAGT rs1042372;rs5106(568) 
116,197,121  CACTGGCAGA GCTGGGTGGG CACCTGGACC AGCAGGTGGA GGAGTTCCGA rs5107;[520] 
116,197,071  CGCCGGGTGG AGCCCTACGG GGAAAACTTC AACAAAGCCC TGGTGCAGCA rs5108 
116,197,021  GATGGAACAG CTCAGGCAGA AACTGGGCCC CCATGCGGGG GACGTGGAAG [422]*;rs5109(406) 
116,196,971  GCCACTTGAG CTTCCTGGAG AAGGACCTGA GGGACAAGGT CAACTCCTTC [357] 
116,196,921  TTCAGCACCT TCAAGGAGAA AGAGAGCCAG GACAAGACTC TCTCCCTCCC rs675(315) 
116,196,871  TGAGCTGGAG CAACAGCAGG AACAGCAGCA GGAGCAGCAG CAGGAGCAGG [288];rs5030782;rs5110(274) 
116,196,821  TGCAGATGCT GGCCCCTTTG GAGAGCTGAg ctgcccctgg tgcactggcc 
116,196,771  ccaccctcgt ggacacctgc cctgccctgc cacctgtctg tctgtctgtc (165) 
116,196,721  ccaaagaagt tctggtatga acttgaggac acatgtccag tgggaggtga rs12721040(120) 
116,196,671  gaccacctct caatattcaa taaagctgct gagaatctag cctc 
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Figure 11 Continued 
 

 
116,196,627  aactggttgc cggatgaatc ctccttgcag ctggggaggt ggggaggtaa 
116,196,577  ccatgactgg gcagagctta gcagcggcct ggcaggagac acccaggatt 
116,196,527  ggggagatga gactgcagga gaggtaaggg cctggtggac tggaggcgag 
116,196,477  tacatgggga gtcctctaag gggaggcaga aaaagatgtc acacattatc 
116,196,427  ccaagacaaa atatgcaacc tacttatatt catttagcca acaaatatgc 
116,196,377  attgaatgcc tccgatgcgc cagtcattat tctaggcacc ggacaaccag 
116,196,327  caaacagctt ttgtgcagcc atgtgcccga ctctgcctca cactgagggg 
116,196,277  gacacctgga ggcgagcaga acagggtccc tggccctggg gggctcacag 
116,196,227  tacactgggg gagatggttc ctccttgcac gagatcttca gtgcctttaa 
116,196,177  cttattcatg tagtgtcatt taacccaccc caccccagtt ccattatgaa 
116,196,127  agcgattcat gcttatttca gaactttctt gactgctaaa cctgtggtct 
116,196,077  ccatccagaa ttggggattg aggcttgggg accgagacga gtctggggag 
116,196,027  gaggggcaga gcaggtgctg gagcctgcgg ggccctggtc tgctctgtcc 
116,195,977  aggggcctcc tgccaggtgg cctgccagtt tggggctgag tttgcagcca 
116,195,927  ctggggttag gggcagagag tcagggggcc tgagcagtct catcagcaca rs1263177 
116,195,877  gccagctgtg ggcagctgca gccttggagt ggtctttcac cccaccctta 
116,195,827  gagactcgaa aacctcacaa ggaaagagcc agttcaagcg tttgtctcaa rs1268354 
116,195,777  acgactccac agcctgttac ccgtggaccc cagccctgcg agtctagcca 
116,195,727  cctccctttc ctcgccacag ggggatgcag gcccttcagg gctttcctgg 
116,195,677  aagaggcctg gaacatgcta aggaggaggg ggaagtcccc ttggagggtg 

 

 

3.2 DISTRIBUTION OF APOA1 AND APOA4 VARIANTS IN HIGH AND LOW HDL 

GROUPS 

3.2.1 APOA1 

3.2.1.1 Non-Hispanic Whites 

Of 34 variants identified in NHWs, 11 had MAF >5%, 13 had MAF 1-5%, and 10 had MAF 

<1%. All 10 new variants had a MAF of ≤1%. No statistically significant difference was 

identified when comparing the allele frequencies between the high HDL and low HDL groups 

for any of the 34 variants in this small sequencing sample set (Tables 18 and 19). Of 23 rare 

variants, 7 were present only in the high HDL group versus 5 only in the low HDL group. Of 3 

exonic variants identified in NHWs, 2 were present only in the low HDL group versus 1 only in 

the high HDL group. Of 2 nonsynonymous variants identified in NHWs, 1 was present only in 

the low HDL group and 1 only in the high HDL group. Of the 48 individuals with low HDL 
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levels, 5 (10.42%) had rare variants unique to the low HDL group. Of the 47 individuals with 

high HDL levels 7 (14.89%) had rare variants unique to the high HDL group. 

 

Table 18. Distribution of APOA1 Variants in High and Low HDL Groups in NHWs 

  Non-Hispanic 
Whites*   

Rare (MAF<5%) High HDL (n=47) Low HDL (n=48) 

533C>T 0.021 0.010 
689C>T - 0.010 
959G>C 0.011 - 
1049T>A 0.021 - 
1407insT 0.011 - 
1507T>C 0.011 - 
1549C>T - 0.010 
1749T>C 0.043 0.031 
2077G>A 0.043 0.031 
2198T>G 0.043 0.031 
2373T>C 0.053 0.031 
2376A>T 0.021 - 
2652C>A** - 0.010 
3220G>A 0.053 0.031 
3307C>A 0.011 0.010 
3431G>A 0.032 0.021 
3769A>C 0.011 - 
3959G>T 0.011 - 
4151G>C - 0.010 
4283C>T - 0.010 
4284G>A 0.043 0.021 
4693T>G 0.053 0.031 
5131C>T 0.011 0.010 

Common (MAF≥5%)     

206A>C 0.149 0.198 
1128G>T 0.196 0.188 
1308C>T 0.250 0.219 
1546A>G 0.370 0.375 
1598T>G 0.096 0.167 
1620A>G 0.191 0.177 
3368G>A 0.149 0.146 
3613G>A 0.096 0.115 
3714G>A 0.096 0.115 
4050G>A 0.340 0.323 
4443C>T 0.191 0.188 

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database.  
** Suspicious variants with low sequence quality. 
Novel variants are hi-lighted. 
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Table 19. Allele Frequencies of APOA1 Variants in High and Low HDL Groups in NHWs 

206 A>C  533 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

AA 33 (70.21)  31 (64.58) 64 67.37  CC 45 (95.74)  47 (97.92) 92 96.84 
AC 14 (29.79)  15 (31.25) 29 30.53  CT 2 (4.26)  1 (2.08) 3 3.16 
CC 0 (0.00)  2 (4.17) 2 2.11  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
A 0.851   0.802  0.826    C 0.979   0.990  0.984   
C 0.149     0.198   0.174    T 0.021     0.010   0.016   
Z 0.894         Z 0.599        
p 0.371 *test for allele frequencies      p 0.549 *test for allele frequencies     
                 

689 C>T  959 G>C 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 47 (100.00)  47 (97.92) 94 98.95  GG 46 (97.87)  48 (100.00) 94 98.95 
CT 0 (0.00)  1 (2.08) 1 1.05  GC 1 (2.13)  0 (0.00) 1 1.05 
TT 0 (0.00)  0 (0.00) 0 0.00  CC 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
C 1.000   0.990  0.995    G 0.989   1.000  0.995   
T 0.000     0.010   0.005    C 0.011     0.000   0.005   
Z 1.005         Z 1.005        
p 0.315 *test for allele frequencies      p 0.315 *test for allele frequencies     
                 

1049 T>A  1128 G>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

TT 45 (95.74)  48 (100.00) 93 97.89  GG 28 (60.87)  32 (66.67) 60 63.83 
TA 2 (4.26)  0 (0.00) 2 2.11  GT 18 (39.13)  14 (29.17) 32 34.04 
AA 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  2 (4.17) 2 2.13 

  47   48  95      46   48  94   
T 0.979   1.000  0.989    G 0.804   0.813  0.809   
A 0.021     0.000   0.011    T 0.196     0.188   0.191   
Z 1.430         Z 0.142        
p 0.153 *test for allele frequencies      p 0.887 *test for allele frequencies     
                 

1308 C>T  1407 ins T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 24 (52.17)  30 (62.50) 54 57.45  WW 46 (97.87)  48 (100.00) 94 98.95 
CT 21 (45.65)  15 (31.25) 36 38.30  WI 1 (2.13)  0 (0.00) 1 1.05 
TT 1 (2.17)  3 (6.25) 4 4.26  II 0 (0.00)  0 (0.00) 0 0.00 

  46   48  94      47   48  95   
C 0.750   0.781  0.766    W 0.989   1.000  0.995   
T 0.250     0.219   0.234    II 0.011     0.000   0.005   
Z 0.506         Z 1.005        
p 0.613 *test for allele frequencies      p 0.315 *test for allele frequencies     
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Table 19 (Continued) 

1507 T>C  1546 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

TT 46 (97.87)  48 (100.00) 94 98.95  AA 18 (39.13)  19 (39.58) 37 39.36 
TC 1 (2.13)  0 (0.00) 1 1.05  AG 22 (47.83)  22 (45.83) 44 46.81 
CC 0 (0.00)  0 (0.00) 0 0.00  GG 6 (13.04)  7 (14.58) 13 13.83 

  47   48  95      46   48  94   
T 0.989   1.000  0.995    A 0.630   0.625  0.628   
C 0.011     0.000   0.005    G 0.370     0.375   0.372   
Z 1.005         Z 0.077        
p 0.315 *test for allele frequencies      p 0.939 *test for allele frequencies     
                 

1549 C>T  1598 T>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 47 (100.00)  47 (97.92) 94 98.95  TT 38 (80.85)  34 (70.83) 72 75.79 
CT 0 (0.00)  1 (2.08) 1 1.05  TG 9 (19.15)  12 (25.00) 21 22.11 
TT 0 (0.00)  0 (0.00) 0 0.00  GG 0 (0.00)  2 (4.17) 2 2.11 

  47   48  95      47   48  95   
C 1.000   0.990  0.995    T 0.904   0.833  0.868   
T 0.000     0.010   0.005    G 0.096     0.167   0.132   
Z 1.005         Z 1.458        
p 0.315 *test for allele frequencies      p 0.145 *test for allele frequencies     
                 

1620 A>G  1749 T>C 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

AA 29 (61.70)  33 (68.75) 62 65.26  TT 43 (91.49)  45 (93.75) 88 92.63 
AG 18 (38.30)  13 (27.08) 31 32.63  TC 4 (8.51)  3 (6.25) 7 7.37 
GG 0 (0.00)  2 (4.17) 2 2.11  CC 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
A 0.809   0.823  0.816    T 0.957   0.969  0.963   
G 0.191     0.177   0.184    CC 0.043     0.031   0.037   
Z 0.256         Z 0.413        
p 0.798 *test for allele frequencies      p 0.680 *test for allele frequencies     
                 

2077 G>A  2198 T>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 43 (91.49)  45 (93.75) 88 92.63  TT 43 (91.49)  45 (93.75) 88 92.63 
GA 4 (8.51)  3 (6.25) 7 7.37  TG 4 (8.51)  3 (6.25) 7 7.37 
AA 0 (0.00)  0 (0.00) 0 0.00  GG 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
G 0.957   0.969  0.963    T 0.957   0.969  0.963   
A 0.043     0.031   0.037    G 0.043     0.031   0.037   
Z 0.413         Z 0.413        
p 0.680 *test for allele frequencies      p 0.680 *test for allele frequencies     
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Table 19 (Continued) 

2373 T>C  2376 A>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

TT 42 (89.36)  45 (93.75) 87 91.58  AA 45 (95.74)  48 (100.00) 93 97.89 
TC 5 (10.64)  3 (6.25) 8 8.42  AT 2 (4.26)  0 (0.00) 2 2.11 
CC 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
T 0.947   0.969  0.958    A 0.979   1.000  0.989   
C 0.053     0.031   0.042    T 0.021     0.000   0.011   
Z 0.752         Z 1.430        
p 0.452 *test for allele frequencies      p 0.153 *test for allele frequencies     
                 

2652* C>A  3220 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 47 (100.00)  47 (97.92) 94 98.95  GG 42 (89.36)  45 (93.75) 87 91.58 
CA 0 (0.00)  1 (2.08) 1 1.05  GA 5 (10.64)  3 (6.25) 8 8.42 
AA 0 (0.00)  0 (0.00) 0 0.00  AA 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
C 1.000   0.990  0.995    G 0.947   0.969  0.958   
A 0.000     0.010   0.005    A 0.053     0.031   0.042   
Z 1.005         Z 0.752        
p 0.315 *test for allele frequencies      p 0.452 *test for allele frequencies     
                 

3307 C>A  3368 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 46 (97.87)  47 (97.92) 93 97.89  GG 33 (70.21)  36 (75.00) 69 72.63 
CA 1 (2.13)  1 (2.08) 2 2.11  GA 14 (29.79)  10 (20.83) 24 25.26 
AA 0 (0.00)  0 (0.00) 0 0.00  AA 0 (0.00)  2 (4.17) 2 2.11 

  47   48  95      47   48  95   
C 0.989   0.990  0.989    G 0.851   0.854  0.853   
A 0.011     0.010   0.011    A 0.149     0.146   0.147   
Z 0.015         Z 0.060        
p 0.988 *test for allele frequencies      p 0.952 *test for allele frequencies     
                 

3431 G>A  3613 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 44 (93.62)  46 (95.83) 90 94.74  GG 38 (80.85)  39 (81.25) 77 81.05 
GA 3 (6.38)  2 (4.17) 5 5.26  GA 9 (19.15)  7 (14.58) 16 16.84 
AA 0 (0.00)  0 (0.00) 0 0.00  AA 0 (0.00)  2 (4.17) 2 2.11 

  47   48  95      47   48  95   
G 0.968   0.979  0.974    G 0.904   0.885  0.895   
A 0.032     0.021   0.026    A 0.096     0.115   0.105   
Z 0.476         Z 0.424        
p 0.634 *test for allele frequencies      p 0.672 *test for allele frequencies     
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Table 19 (Continued) 

3714 G>A  3769 A>C 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 38 (80.85)  39 (81.25) 77 81.05  AA 46 (97.87)  48 (100.00) 94 98.95 
GA 9 (19.15)  7 (14.58) 16 16.84  AC 1 (2.13)  0 (0.00) 1 1.05 
AA 0 (0.00)  2 (4.17) 2 2.11  CC 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
G 0.904   0.885  0.895    A 0.989   1.000  0.995   
A 0.096     0.115   0.105    C 0.011     0.000   0.005   
Z 0.424         Z 1.005        
p 0.672 *test for allele frequencies      p 0.315 *test for allele frequencies     
                 

3959 G>T  4050 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 46 (97.87)  48 (100.00) 94 98.95  GG 20 (42.55)  24 (50.00) 44 46.32 
GT 1 (2.13)  0 (0.00) 1 1.05  GA 22 (46.81)  17 (35.42) 39 41.05 
TT 0 (0.00)  0 (0.00) 0 0.00  AA 5 (10.64)  7 (14.58) 12 12.63 

  47   48  95      47   48  95   
G 0.989   1.000  0.995    G 0.660   0.677  0.668   
T 0.011     0.000   0.005    A 0.340     0.323   0.332   
Z 1.005         Z 0.256        
p 0.315 *test for allele frequencies      p 0.798 *test for allele frequencies     
                 

4151 G>C  4283 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 47 (100.00)  47 (97.92) 94 98.95  CC 47 (100.00)  47 (97.92) 94 98.95 
GC 0 (0.00)  1 (2.08) 1 1.05  CT 0 (0.00)  1 (2.08) 1 1.05 
CC 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
G 1.000   0.990  0.995    C 1.000   0.990  0.995   
C 0.000     0.010   0.005    T 0.000     0.010   0.005   
Z 1.005         Z 1.005        
p 0.315 *test for allele frequencies      p 0.315 *test for allele frequencies     
                 

4284 G>A  4443 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 43 (91.49)  46 (95.83) 89 93.68  CC 29 (61.70)  32 (66.67) 61 64.21 
GA 4 (8.51)  2 (4.17) 6 6.32  CT 18 (38.30)  14 (29.17) 32 33.68 
AA 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  2 (4.17) 2 2.11 

  47   48  95      47   48  95   
G 0.957   0.979  0.968    C 0.809   0.813  0.811   
A 0.043     0.021   0.032    T 0.191     0.188   0.189   
Z 0.855         Z 0.070        
p 0.393 *test for allele frequencies      p 0.944 *test for allele frequencies     
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Table 19 (Continued) 

4693 T>G  5131 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

TT 42 (89.36)  45 (93.75) 87 91.58  CC 46 (97.87)  47 (97.92) 93 97.89 
TG 5 (10.64)  3 (6.25) 8 8.42  CT 1 (2.13)  1 (2.08) 2 2.11 
GG 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
T 0.947   0.969  0.958    C 0.989   0.990  0.989   
G 0.053     0.031   0.042    T 0.011     0.010   0.011   
Z 0.752         Z 0.015        
p 0.452 *test for allele frequencies      p 0.988 *test for allele frequencies     

 

3.2.1.2 Blacks 

Of 37 variants identified in Blacks, 20 had MAF >5%, 10 had MAF 1-5%, and 7 had MAF <1%. 

Of the 15 new variants, 1 had MAF >5%, 7 had MAF 1-5%, and 7 had MAF <1%. No 

statistically significant difference was identified when comparing the allele frequencies between 

the high HDL and low HDL groups for any of the 37 variants in this small sequencing sample set 

(Tables 20 and 21). Of 17 rare variants, 5 were present only in the high HDL group versus 4 only 

in the low HDL group. Of 3 exonic variants identified in Blacks, 1 was present only in the low 

HDL group versus 1 only in the high HDL group. Of 2 nonsynonymous variants identified in 

Blacks, 1 was present only in the low HDL group and 1 only in the high HDL group. Of the 47 

individuals with low HDL levels, 2 (4.26%) had rare variants unique to the low HDL group. Of 

the 48 individuals with high HDL levels 6 (12.5%) had rare variants unique to the high HDL 

group. 
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Table 20. Distribution of APOA1 Variants in High and Low HDL Groups in Blacks 

  Blacks*   

Rare (MAF<5%) High HDL (n=47) Low HDL 
(n=48) 

338A>G 0.021 0.043 
386G>A 0.010 - 
477C>T 0.010 0.021 
656C>T - 0.011 
894G>A 0.021 0.011 
1143G>T 0.010 - 
1308C>T 0.022 - 
1407delT 0.031 0.032 
1965T>C 0.031 0.032 
2120C>A 0.021 - 
2215C>A - 0.011 
2626G>C 0.010 0.021 
2880C>G - 0.011 
3867G>T 0.010 - 
4208C>T - 0.011 
4987T>C 0.042 0.011 
5066G>T 0.010 0.011 
Common 
(MAF≥5%)     

206C>A 0.351 0.348 
631A>G 0.490 0.478 
1049T>A 0.128 0.128 
1128G>T 0.104 0.085 
1546G>A 0.073 0.085 
1598T>G 0.104 0.064 
1620G>A 0.302 0.298 
2373C>T 0.406 0.372 
2376A>T 0.125 0.128 
3220G>A 0.448 0.426 
3368A>G 0.344 0.372 
3543C>T 0.052 0.064 
3613G>A 0.125 0.074 
3714G>A 0.117 0.074 
4050G>A 0.448 0.424 
4284G>A 0.448 0.426 
4443C>T 0.125 0.117 
4732C>A 0.096 0.117 
4807C>T 0.073 0.064 
5055A>T 0.073 0.064 

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database.  
Novel variants are hi-lighted. 
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Table 21. Allele Frequencies of APOA1 Variants in High and Low HDL Groups in Blacks 

206 C>A  338 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 20 (42.55)  19 (41.30) 39 41.94  AA 45 (95.74)  43 (91.49) 88 93.62 
AC 21 (44.68)  22 (47.83) 43 46.24  AG 2 (4.26)  4 (8.51) 6 6.38 
AA 6 (12.77)  5 (10.87) 11 11.83  GG 0 (0.00)  0 (0.00) 0 0.00 

  47   46  93      47   47  94   
C 0.649   0.652  0.651    A 0.979   0.957  0.968   
A 0.351     0.348   0.349    G 0.021     0.043   0.032   
Z 0.046         Z 0.831        
p 0.963 *test for allele frequencies    p 0.406 *test for allele frequencies     
                 

386 G>A  477 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 47 (97.92)  47 (100.00) 94 98.95  CC 47 (97.92)  45 (95.74) 92 96.84 
GA 1 (2.08)  0 (0.00) 1 1.05  CT 1 (2.08)  2 (4.26) 3 3.16 
AA 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
G 0.990   1.000  0.995    C 0.990   0.979  0.984   
A 0.010     0.000   0.005    T 0.010     0.021   0.016   
Z 1.005         Z 0.599        
p 0.315 *test for allele frequencies    p 0.549 *test for allele frequencies     
                 

631 A>G  656 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
AA 13 (27.08)  10 (21.74) 23 24.47  CC 48 (100.00)  46 (97.87) 94 98.95 
AG 23 (47.92)  28 (60.87) 51 54.26  CT 0 (0.00)  1 (2.13) 1 1.05 
GG 12 (25.00)  8 (17.39) 20 21.28  TT 0 (0.00)  0 (0.00) 0 0.00 

  48   46  94      48   47  95   
A 0.510   0.522  0.516    C 1.000   0.989  0.995   
G 0.490     0.478   0.484    T 0.000     0.011   0.005   

Z 0.155         Z 1.005        
p 0.877 *test for allele frequencies    p 0.315 *test for allele frequencies     

   
894 G>A  1049 T>A 

  
High 
HDL     

Low 
HDL   TOTAL      

High 
HDL     

Low 
HDL   TOTAL   

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 46 (95.83)  46 (97.87) 92 96.84  TT 36 (76.60)  35 (74.47) 71 75.53 
GA 2 (4.17)  1 (2.13) 3 3.16  TA 10 (21.28)  12 (25.53) 22 23.40 
AA 0 (0.00)  0 (0.00) 0 0.00  AA 1 (2.13)  0 (0.00) 1 1.06 

  48   47  95      47   47  94   
G 0.979   0.989  0.984    T 0.872   0.872  0.872   
A 0.021     0.011   0.016    A 0.128     0.128   0.128   
Z 0.566         Z 0.000        
p 0.571 *test for allele frequencies    p 1.000 *test for allele frequencies     
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Table 21 (Continued) 

1128 G>T  1143 G>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 38 (79.17)  39 (82.98) 77 81.05  GG 47 (97.92)  47 (100.00) 94 98.95 
GT 10 (20.83)  8 (17.02) 18 18.95  GT 1 (2.08)  0 (0.00) 1 1.05 
TT 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
G 0.896   0.915  0.905    G 0.990   1.000  0.995   
T 0.104     0.085   0.095    T 0.010     0.000   0.005   
Z 0.449         Z 1.005        
p 0.653 *test for allele frequencies    p 0.315 *test for allele frequencies     
                 

1308 C>T  1407 del T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 44 (95.65)  44 (100.00) 88 97.78  WW 45 (93.75)  44 (93.62) 89 93.68 
CT 2 (4.35)  0 (0.00) 2 2.22  WD 3 (6.25)  3 (6.38) 6 6.32 
TT 0 (0.00)  0 (0.00) 0 0.00  DD 0 (0.00)  0 (0.00) 0 0.00 

  46   44  90      48   47  95   
C 0.978   1.000  0.989    W 0.969   0.968  0.968   
T 0.022     0.000   0.011    D 0.031     0.032   0.032   
Z 1.430         Z 0.026        
p 0.153 *test for allele frequencies    p 0.979 *test for allele frequencies     
                 

1546 G>A  1598 T>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 41 (85.42)  39 (82.98) 80 84.21  TT 38 (79.17)  41 (87.23) 79 83.16 
AG 7 (14.58)  8 (17.02) 15 15.79  TG 10 (20.83)  6 (12.77) 16 16.84 
AA 0 (0.00)  0 (0.00) 0 0.00  GG 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
G 0.927   0.915  0.921    T 0.896   0.936  0.916   
A 0.073     0.085   0.079    G 0.104     0.064   0.084   
Z 0.311         Z 1.006        
p 0.756 *test for allele frequencies    p 0.314 *test for allele frequencies     
                 

1620 G>A  1965 T>C 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 22 (45.83)  22 (46.81) 44 46.32  TT 45 (93.75)  44 (93.62) 89 93.68 
AG 23 (47.92)  22 (46.81) 45 47.37  TC 3 (6.25)  3 (6.38) 6 6.32 
AA 3 (6.25)  3 (6.38) 6 6.32  CC 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
G 0.698   0.702  0.700    T 0.969   0.968  0.968   
A 0.302     0.298   0.300    C 0.031     0.032   0.032   
Z 0.063         Z 0.026        
p 0.950 *test for allele frequencies    p 0.979 *test for allele frequencies     
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Table 21 (Continued) 

2120 C>A  2215 C>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 46 (95.83)  47 (100.00) 93 97.89  CC 48 (100.00)  46 (97.87) 94 98.95 
CA 2 (4.17)  0 (0.00) 2 2.11  CA 0 (0.00)  1 (2.13) 1 1.05 
AA 0 (0.00)  0 (0.00) 0 0.00  AA 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
C 0.979   1.000  0.989    C 1.000   0.989  0.995   
A 0.021     0.000   0.011    A 0.000     0.011   0.005   
Z 1.429         Z 1.005        
p 0.153 *test for allele frequencies    p 0.315 *test for allele frequencies     
                 

2373 C>T  2376 A>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 18 (37.50)  15 (31.91) 33 34.74  AA 37 (77.08)  35 (74.47) 72 75.79 
TC 21 (43.75)  29 (61.70) 50 52.63  AT 10 (20.83)  12 (25.53) 22 23.16 
TT 9 (18.75)  3 (6.38) 12 12.63  TT 1 (2.08)  0 (0.00) 1 1.05 

  48   47  95      48   47  95   
C 0.594   0.628  0.611    A 0.875   0.872  0.874   
T 0.406     0.372   0.389    T 0.125     0.128   0.126   
Z 0.480         Z 0.055        
p 0.632 *test for allele frequencies    p 0.956 *test for allele frequencies     
                 

2626 G>C  2880 C>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 47 (97.92)  45 (95.74) 92 96.84  CC 48 (100.00)  46 (97.87) 94 98.95 
GC 1 (2.08)  2 (4.26) 3 3.16  CG 0 (0.00)  1 (2.13) 1 1.05 
CC 0 (0.00)  0 (0.00) 0 0.00  GG 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
G 0.990   0.979  0.984    C 1.000   0.989  0.995   
C 0.010     0.021   0.016    G 0.000     0.011   0.005   
Z 0.599         Z 1.005        
p 0.549 *test for allele frequencies    p 0.315 *test for allele frequencies     
                 

3220 G>A  3368 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 16 (33.33)  13 (27.66) 29 30.53  AA 22 (45.83)  16 (34.04) 38 40.00 
GA 21 (43.75)  28 (59.57) 49 51.58  AG 19 (39.58)  27 (57.45) 46 48.42 
AA 11 (22.92)  6 (12.77) 17 17.89  GG 7 (14.58)  4 (8.51) 11 11.58 

  48   47  95      48   47  95   
G 0.552   0.574  0.563    A 0.656   0.628  0.642   
A 0.448     0.426   0.437    G 0.344     0.372   0.358   
Z 0.311         Z 0.411        
p 0.756 *test for allele frequencies    p 0.681 *test for allele frequencies     
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Table 21 (Continued) 

3543 C>T  3613 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 43 (89.58)  41 (87.23) 84 88.42  GG 37 (77.08)  40 (85.11) 77 81.05 
CT 5 (10.42)  6 (12.77) 11 11.58  GA 10 (20.83)  7 (14.89) 17 17.89 
TT 0 (0.00)  0 (0.00) 0 0.00  AA 1 (2.08)  0 (0.00) 1 1.05 

  48   47  95      48   47  95   
C 0.948   0.936  0.942    G 0.875   0.926  0.900   
T 0.052     0.064   0.058    A 0.125     0.074   0.100   
Z 0.346         Z 1.168        
p 0.729 *test for allele frequencies    p 0.243 *test for allele frequencies     
                 

3714 G>A  3867 G>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 37 (78.72)  40 (85.11) 77 81.91  GG 47 (97.92)  47 (100.00) 94 98.95 
GA 9 (19.15)  7 (14.89) 16 17.02  GT 1 (2.08)  0 (0.00) 1 1.05 
AA 1 (2.13)   (0.00) 1 1.06  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   47  94      48   47  95   
G 0.883   0.926  0.904    G 0.990   1.000  0.995   
A 0.117     0.074   0.096    T 0.010     0.000   0.005   
Z 0.994         Z 1.005        
p 0.320 *test for allele frequencies    p 0.315 *test for allele frequencies     
                 

4050 G>A  4208 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 15 (31.25)  13 (28.26) 28 29.79  CC 48 (100.00)  46 (97.87) 94 98.95 
GA 23 (47.92)  27 (58.70) 50 53.19  CT 0 (0.00)  1 (2.13) 1 1.05 
AA 10 (20.83)  6 (13.04) 16 17.02  TT 0 (0.00)  0 (0.00) 0 0.00 

  48   46  94      48   47  95   
G 0.552   0.576  0.564    C 1.000   0.989  0.995   
A 0.448     0.424   0.436    T 0.000     0.011   0.005   
Z 0.332         Z 1.005        
p 0.740 *test for allele frequencies    p 0.315 *test for allele frequencies     
                 

4284 G>A  4443 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 16 (33.33)  13 (27.66) 29 30.53  CC 37 (77.08)  36 (76.60) 73 76.84 
GA 21 (43.75)  28 (59.57) 49 51.58  CT 10 (20.83)  11 (23.40) 21 22.11 
AA 11 (22.92)  6 (12.77) 17 17.89  TT 1 (2.08)  0 (0.00) 1 1.05 

  48   47  95      48   47  95   
G 0.552   0.574  0.563    C 0.875   0.883  0.879   
A 0.448     0.426   0.437    T 0.125     0.117   0.121   
Z 0.311         Z 0.169        
p 0.756 *test for allele frequencies    p 0.866 *test for allele frequencies     
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Table 21 (Continued) 

4732 C>A  4807 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 39 (82.98)  36 (76.60) 75 79.79  CC 41 (85.42)  41 (87.23) 82 86.32 
CA 7 (14.89)  11 (23.40) 18 19.15  CT 7 (14.58)  6 (12.77) 13 13.68 
AA 1 (2.13)  0 (0.00) 1 1.06  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   47  94      48   47  95   
C 0.904   0.883  0.894    C 0.927   0.936  0.932   
A 0.096     0.117   0.106    T 0.073     0.064   0.068   
Z 0.473         Z 0.248        
p 0.636 *test for allele frequencies    p 0.804 *test for allele frequencies     
                 

4987 T>C  5055 A>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
TT 44 (91.67)  46 (97.87) 90 94.74  AA 41 (85.42)  41 (87.23) 82 86.32 
TC 4 (8.33)  1 (2.13) 5 5.26  AT 7 (14.58)  6 (12.77) 13 13.68 
CC 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  48   47  95      48   47  95   
T 0.958   0.989  0.974    A 0.927   0.936  0.932   
C 0.042     0.011   0.026    T 0.073     0.064   0.068   
Z 1.350         Z 0.248        
p 0.177 *test for allele frequencies    p 0.804 *test for allele frequencies     
                 

5066 G>T          
  High HDL   Low HDL TOTAL          

  n (%)   n (%) n (%)          
GG 47 (97.92)  46 (97.87) 93 97.89          
GT 1 (2.08)  1 (2.13) 2 2.11          
TT 0 (0.00)  0 (0.00) 0 0.00          

  48   47  95            
G 0.990   0.989  0.989            
T 0.010     0.011   0.011            
Z 0.015                 
p 0.988 *test for allele frequencies            
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3.2.2 APOA4 

3.2.2.1 Non-Hispanic Whites 

Of 23 variants identified in NHWs, 11 had MAF >5%, 5 had MAF 1-5%, and 7 had MAF <1%. 

All 7 of the new variants had MAF MAF <1%. No statistically significant difference was 

identified when comparing the allele frequencies between the high HDL and low HDL groups 

for any of the 23 variants in this small sequence sample set (Tables 22 and 23). Of 12 rare 

variants, 4 were present only in the high HDL versus 4 only in the low HDL group. Of 13 exonic 

variants identified in NHWs, 3 were present only in the low HDL group versus 2 only in the high 

HDL group. Of 5 nonsynonymous variants identified in NHWs, 2 were present only in the low 

HDL group versus none only in the high HDL group. Of the 48 individuals with low HDL levels, 

3 (6.25%) had rare variants unique to the low HDL group. Of the 47 individuals with high HDL 

levels 5 (10.64%) had rare variants unique to the high HDL group. 
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Table 22. Distribution of APOA4 Variants in High and Low HDL Groups in NHWs 

  Non-Hispanic 
Whites*   

Rare (MAF<5%) High HDL (n=47) Low HDL (n=48) 

120G>A 0.011 0.031 
422G>T** 0.011 - 
520C>T - 0.010 
945G>A - 0.010 
952C>T 0.011 - 
1033G>T - 0.010 
1853G>A 0.021 - 
1993C>T 0.053 0.031 
1994G>A 0.022 0.042 
2287G>A 0.011 - 
2978C>A 0.021 0.021 
2984G>A - 0.010 

Common (MAF≥5%)     

165delACAG 0.511 0.479 
274C>A 0.085 0.094 
315T>A 0.202 0.188 
964G>A 0.043 0.073 
974T>C 0.149 0.177 
1192A>G 0.064 0.042 
1334A>G 0.415 0.406 
1735A>G 0.415 0.406 
1803A>G 0.202 0.188 
2104T>C 0.213 0.219 
2695C>G 0.085 0.052 

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database.  
** Suspicious variants with low sequence quality. 
Novel variants are hi-lighted. 
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Table 23. Allele Frequencies of APOA4 Variants in High and Low HDL Groups in NHWs 

120 G>A  165 del ACAG 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 46 (97.87)  45 (93.75) 91 95.79  DD 11 (23.40)  14 (29.17) 25 26.32 
GA 1 (2.13)  3 (6.25) 4 4.21  DW 24 (51.06)  22 (45.83) 46 48.42 
AA 0 (0.00)  0 (0.00) 0 0.00  WW 12 (25.53)  12 (25.00) 24 25.26 

  47   48  95      47   48  95   
G 0.989   0.969  0.979      0.489   0.521  0.505   
A 0.011     0.031   0.021      0.511     0.479   0.495   
Z 0.997         Z 0.434        
p 0.319 *test for allele frequencies      p 0.664 *test for allele frequencies     
                 

274 C>A  315 T>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 39 (82.98)  39 (81.25) 78 82.11  TT 29 (61.70)  31 (64.58) 60 63.16 
CA 8 (17.02)  9 (18.75) 17 17.89  TA 17 (36.17)  16 (33.33) 33 34.74 
AA 0 (0.00)  0 (0.00) 0 0.00  AA 1 (2.13)  1 (2.08) 2 2.11 

  47   48  95      47   48  95   
C 0.915   0.906  0.911      0.798   0.813  0.805   
A 0.085     0.094   0.089      0.202     0.188   0.195   
Z 0.209         Z 0.255        
p 0.835 *test for allele frequencies      p 0.799 *test for allele frequencies     
                 

422* G>T  520 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 46 (97.87)  48 (100.00) 94 98.95  CC 47 (100.00)  47 (97.92) 94 98.95 
GT 1 (2.13)  0 (0.00) 1 1.05  CT 0 (0.00)  1 (2.08) 1 1.05 
TT 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
G 0.989   1.000  0.995    C 1.000   0.990  0.995   
T 0.011     0.000   0.005    T 0.000     0.010   0.005   
Z 1.005         Z 1.005        
p 0.315 *test for allele frequencies      p 0.315 *test for allele frequencies     
                 

945 G>A  952 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 47 (100.00)  47 (97.92) 94 98.95  CC 46 (97.87)  48 (100.00) 94 98.95 
GA 0 (0.00)  1 (2.08) 1 1.05  CT 1 (2.13)  0 (0.00) 1 1.05 
AA 0 (0.00)  0 (0.00) 0 0.00  TT 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
G 1.000   0.990  0.995    C 0.989   1.000  0.995   
A 0.000     0.010   0.005    T 0.011     0.000   0.005   
Z 1.005         Z 1.005        
p 0.315 *test for allele frequencies      p 0.315 *test for allele frequencies     
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Table 23 (Continued) 

964 G>A  974 T>C 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 43 (91.49)  41 (85.42) 84 88.42  TT 33 (70.21)  33 (68.75) 66 69.47 
GA 4 (8.51)  7 (14.58) 11 11.58  TC 14 (29.79)  13 (27.08) 27 28.42 
AA 0 (0.00)  0 (0.00) 0 0.00  CC 0 (0.00)  2 (4.17) 2 2.11 

  47   48  95      47   48  95   
G 0.957   0.927  0.942    T 0.851   0.823  0.837   
A 0.043     0.073   0.058    C 0.149     0.177   0.163   
Z 0.900         Z 0.526        
p 0.368 *test for allele frequencies      p 0.599 *test for allele frequencies     
                 

1033 G>T  1192 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 47 (100.00)  47 (97.92) 94 98.95  AA 41 (87.23)  44 (91.67) 85 89.47 
GT 0 (0.00)  1 (2.08) 1 1.05  AG 6 (12.77)  4 (8.33) 10 10.53 
TT 0 (0.00)  0 (0.00) 0 0.00  GG 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
G 1.000   0.990  0.995    A 0.936   0.958  0.947   
T 0.000     0.010   0.005    G 0.064     0.042   0.053   
Z 1.005         Z 0.683        
p 0.315 *test for allele frequencies      p 0.494 *test for allele frequencies     
                 

1334 A>G  1735 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

AA 16 (34.04)  18 (37.50) 34 35.79  AA 16 (34.04)  18 (37.50) 34 35.79 
AG 23 (48.94)  21 (43.75) 44 46.32  AG 23 (48.94)  21 (43.75) 44 46.32 
GG 8 (17.02)  9 (18.75) 17 17.89  GG 8 (17.02)  9 (18.75) 17 17.89 

  47   48  95      47   48  95   
A 0.585   0.594  0.589    A 0.585   0.594  0.589   
G 0.415     0.406   0.411    G 0.415     0.406   0.411   
Z 0.121         Z 0.121        
p 0.904 *test for allele frequencies      p 0.904 *test for allele frequencies     
                 

1803 A>G  1853 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

AA 29 (61.70)  31 (64.58) 60 63.16  GG 45 (95.74)  48 (100.00) 93 97.89 
AG 17 (36.17)  16 (33.33) 33 34.74  GA 2 (4.26)  0 (0.00) 2 2.11 
GG 1 (2.13)  1 (2.08) 2 2.11  AA 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
A 0.798   0.813  0.805    G 0.979   1.000  0.989   
G 0.202     0.188   0.195    A 0.021     0.000   0.011   
Z 0.255         Z 1.430        
p 0.799 *test for allele frequencies      p 0.153 *test for allele frequencies     
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Table 23 (Continued) 

1993 C>T  1994 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 42 (89.36)  45 (93.75) 87 91.58  GG 44 (95.65)  44 (91.67) 88 93.62 
CT 5 (10.64)  3 (6.25) 8 8.42  GA 2 (4.35)  4 (8.33) 6 6.38 
TT 0 (0.00)  0 (0.00) 0 0.00  AA 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      46   48  94   
C 0.947   0.969  0.958    G 0.978   0.958  0.968   
T 0.053     0.031   0.042    A 0.022     0.042   0.032   
Z 0.752         Z 0.783        
p 0.452 *test for allele frequencies      p 0.433 *test for allele frequencies     
                 

2104 T>C  2287 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

TT 28 (59.57)  30 (62.50) 58 61.05  GG 46 (97.87)  48 (100.00) 94 98.95 
TC 18 (38.30)  15 (31.25) 33 34.74  GA 1 (2.13)  0 (0.00) 1 1.05 
CC 1 (2.13)  3 (6.25) 4 4.21  AA 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
T 0.787   0.781  0.784    G 0.989   1.000  0.995   
C 0.213     0.219   0.216    A 0.011     0.000   0.005   
Z 0.100         Z 1.005        
p 0.920 *test for allele frequencies      p 0.315 *test for allele frequencies     
                 

2695 C>G  2978 C>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 39 (82.98)  43 (89.58) 82 86.32  CC 45 (95.74)  46 (95.83) 91 95.79 
CG 8 (17.02)  5 (10.42) 13 13.68  CA 2 (4.26)  2 (4.17) 4 4.21 
GG 0 (0.00)  0 (0.00) 0 0.00  AA 0 (0.00)  0 (0.00) 0 0.00 

  47   48  95      47   48  95   
C 0.915   0.948  0.932    C 0.979   0.979  0.979   
G 0.085     0.052   0.068    A 0.021     0.021   0.021   
Z 0.901         Z 0.021        
p 0.367 *test for allele frequencies      p 0.983 *test for allele frequencies     
                 

2984 G>A          
  High HDL   Low HDL TOTAL          
  n (%)   n (%) n (%)          

GG 47 (100.00)  47 (97.92) 94 98.95          
GA 0 (0.00)  1 (2.08) 1 1.05          
AA 0 (0.00)  0 (0.00) 0 0.00          

  47   48  95            
G 1.000   0.990  0.995            
A 0.000     0.010   0.005            
Z 1.005                 
p 0.315 *test for allele frequencies              
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3.2.2.2 Blacks 

Of 30 variants identified in Blacks, 12 had MAF >5%, 11 had MAF 1-5%, and 7 had MAF <1%. 

Of the 13 new variants, 2 had MAF >5%, 4 had MAF 1-5%, and 7 had MAF <1%. No 

statistically significant difference was identified when comparing the allele frequencies between 

the high HDL and low HDL groups for any of the 30 variants in this small sequence sample set 

(Tables 24 and 25). Of 17 rare variants, 3 were present only in the high HDL versus 5 only in the 

low HDL group. Of 12 exonic variants identified in Blacks 1 was present only in the high HDL 

group, and there was no low HDL group unique exonic variant. Of 4 nonsynonymous variants 

identified in Blacks, 1 was present only in the high HDL group versus none only in the low HDL 

group. Of the 47 individuals with low HDL levels, 4 (8.51%) had rare variants unique to the low 

HDL group. Of the 48 individuals with high HDL levels 4 (8.33%) had rare variants unique to 

the high HDL group. 
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Table 24. Distribution of APOA4 Variants in High and Low HDL Groups in Blacks 

  Blacks*   

Rare (MAF<5%) High HDL (n=47) Low HDL (n=48) 

288ins12 0.021 0.011 
568G>A 0.042 0.043 
634G>A 0.010 0.032 
755C>T 0.010 - 
1274G>A 0.010 0.011 
1371C>T 0.031 0.054 
1453G>C 0.012 0.012 
1743T>G - 0.011 
1948C>A 0.031 0.011 
1993C>T 0.031 0.054 
1994G>A 0.021 - 
2327C>A** 0.011 - 
2406C>G** - 0.011 
2685C>T** - 0.011 
2705C>T - 0.011 
2981C>T 0.031 0.043 
3146G>A - 0.011 
Common 
(MAF≥5%)     

165delACAG 0.052 0.064 
315T>A 0.073 0.074 
357A>C 0.063 0.043 
406C>A 0.135 0.117 
974T>C 0.115 0.098 
1198G>A 0.372 0.478 
1326A>G 0.063 0.043 
1334A>G 0.448 0.359 
1735A>G 0.448 0.352 
1803A>G 0.073 0.056 
1853G>A 0.085 0.076 
2104T>C 0.177 0.141 
2645C>T 0.054 0.045 

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database.  
** Suspicious variants with low sequence quality. 
Novel variants are hi-lighted. 
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Table 25. Allele Frequencies of APOA4 Variants in High and Low HDL Groups in Blacks 

165 del ACAG  288 ins CTGTTCCTGCTG 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
WW 43 (89.58)  41 (87.23) 84 88.42  WW 46 (95.83)  46 (97.87) 92 96.84 
WD 5 (10.42)  6 (12.77) 11 11.58  WI 2 (4.17)  1 (2.13) 3 3.16 
DD   (0.00)   (0.00) 0 0.00  II   (0.00)   (0.00) 0 0.00 

  48   47  95      48   47  95   
W 0.948   0.936  0.942    W 0.979   0.989  0.984   
D 0.052     0.064   0.058    I 0.021     0.011   0.016   

Z 0.346         Z 0.566        
p 0.729 *test for allele frequencies    p 0.571 *test for allele frequencies     

                 
315 T>A  357 A>C 

  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

TT 41 (85.42)  40 (85.11) 81 85.26  AA 43 (89.58)  43 (91.49) 86 90.53 
TA 7 (14.58)  7 (14.89) 14 14.74  AC 4 (8.33)  4 (8.51) 8 8.42 
AA   (0.00)   (0.00) 0 0.00  CC 1 (2.08)   (0.00) 1 1.05 

  48   47  95      48   47  95   
T 0.927   0.926  0.926    A 0.938   0.957  0.947   
A 0.073     0.074   0.074    C 0.063     0.043   0.053   

Z 0.041         Z 0.617        
p 0.967 *test for allele frequencies      p 0.537 *test for allele frequencies     

                 
406 C>A  568 G>A 

  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

CC 35 (72.92)  36 (76.60) 71 74.74  GG 44 (91.67)  43 (91.49) 87 91.58 
CA 13 (27.08)  11 (23.40) 24 25.26  GA 4 (8.33)  4 (8.51) 8 8.42 
AA   (0.00)   (0.00) 0 0.00  AA   (0.00)   (0.00) 0 0.00 

  48   47  95      48   47  95   
C 0.865   0.883  0.874    G 0.958   0.957  0.958   
A 0.135     0.117   0.126    A 0.042     0.043   0.042   

Z 0.382         Z 0.030        
p 0.702 *test for allele frequencies      p 0.976 *test for allele frequencies     

                                 
634 G>A  755 C>T 

  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 
  n (%)   n (%) n (%)    n (%)   n (%) n (%) 

GG 47 (97.92)  44 (93.62) 91 95.79  CC 47 (97.92)  47 (100.00) 94 98.95 
GA 1 (2.08)  3 (6.38) 4 4.21  CT 1 (2.08)   (0.00) 1 1.05 
AA   (0.00)   (0.00) 0 0.00  TT   (0.00)   (0.00) 0 0.00 

  48   47  95      48   47  95   
G 0.990   0.968  0.979    C 0.990   1.000  0.995   
A 0.010     0.032   0.021    T 0.010     0.000   0.005   

Z 1.030         Z 1.005        
p 0.303 *test for allele frequencies      p 0.315 *test for allele frequencies     
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Table 25 (Continued) 

974 T>C  1198 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
TT 37 (77.08)  37 (80.43) 74 78.72  GG 20 (42.55)  11 (23.91) 31 33.33 
TC 11 (22.92)  9 (19.57) 20 21.28  GA 19 (40.43)  26 (56.52) 45 48.39 
CC   (0.00)   (0.00) 0 0.00  AA 8 (17.02)  9 (19.57) 17 18.28 

  48   46  94      47   46  93   
T 0.885   0.902  0.894    G 0.628   0.522  0.575   
C 0.115     0.098   0.106    A 0.372     0.478   0.425   
Z 0.373         Z 1.469        
p 0.709 *test for allele frequencies      p 0.142 *test for allele frequencies     
                 

1274 G>A  1326 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 47 (97.92)  45 (97.83) 92 97.87  AA 43 (89.58)  42 (91.30) 85 90.43 
GA 1 (2.08)  1 (2.17) 2 2.13  AG 4 (8.33)  4 (8.70) 8 8.51 
AA   (0.00)   (0.00) 0 0.00  GG 1 (2.08)   (0.00) 1 1.06 

  48   46  94      48   46  94   
G 0.990   0.989  0.989    A 0.938   0.957  0.947   
A 0.010     0.011   0.011    G 0.063     0.043   0.053   
Z 0.030         Z 0.584        
p 0.976 *test for allele frequencies      p 0.559 *test for allele frequencies     
                 

1334 A>G  1371 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
AA 16 (33.33)  18 (39.13) 34 36.17  CC 45 (93.75)  41 (89.13) 86 91.49 
AG 21 (43.75)  23 (50.00) 44 46.81  CT 3 (6.25)  5 (10.87) 8 8.51 
GG 11 (22.92)  5 (10.87) 16 17.02  TT   (0.00)   (0.00) 0 0.00 

  48   46  94      48   46  94   
A 0.552   0.641  0.596    C 0.969   0.946  0.957   
G 0.448     0.359   0.404    T 0.031     0.054   0.043   

Z 1.252         Z 0.781        
p 0.210 *test for allele frequencies      p 0.435 *test for allele frequencies     
                 

1453 G>C  1735 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 42 (97.67)  42 (97.67) 84 97.67  AA 16 (33.33)  18 (40.91) 34 36.96 
GC 1 (2.33)  1 (2.33) 2 2.33  AG 21 (43.75)  21 (47.73) 42 45.65 
CC   (0.00)   (0.00) 0 0.00  GG 11 (22.92)  5 (11.36) 16 17.39 

  43   43  86      48   44  92   
G 0.988   0.988  0.988    A 0.552   0.648  0.598   
C 0.012     0.012   0.012    G 0.448     0.352   0.402   
Z 0.000         Z 1.330        
p 1.000 *test for allele frequencies      p 0.183 *test for allele frequencies     
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Table 25 (Continued) 

1743 T>G  1803 A>G 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
TT 48 (100.00)  45 (97.83) 93 98.94  AA 41 (85.42)  40 (88.89) 81 87.10 
TG   (0.00)  1 (2.17) 1 1.06  AG 7 (14.58)  5 (11.11) 12 12.90 
GG   (0.00)   (0.00) 0 0.00  GG   (0.00)   (0.00) 0 0.00 

  48   46  94      48   45  93   
T 1.000   0.989  0.995    A 0.927   0.944  0.935   
G 0.000     0.011   0.005    G 0.073     0.056   0.065   

Z 1.005         Z 0.484        
p 0.315 *test for allele frequencies      p 0.628 *test for allele frequencies     
                 

1853 G>A  1948 C>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
GG 39 (82.98)  39 (84.78) 78 83.87  CC 45 (93.75)  45 (97.83) 90 95.74 
GA 8 (17.02)  7 (15.22) 15 16.13  CA 3 (6.25)  1 (2.17) 4 4.26 
AA   (0.00)   (0.00) 0 0.00  AA   (0.00)   (0.00) 0 0.00 

  47   46  93      48   46  94   
G 0.915   0.924  0.919    C 0.969   0.989  0.979   
A 0.085     0.076   0.081    A 0.031     0.011   0.021   
Z 0.226         Z 0.980        
p 0.821 *test for allele frequencies      p 0.327 *test for allele frequencies     
                 

1993 C>T  1994 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 45 (93.75)  41 (89.13) 86 91.49  GG 46 (95.83)  46 (100.00) 92 97.87 
CT 3 (6.25)  5 (10.87) 8 8.51  GA 2 (4.17)   (0.00) 2 2.13 
TT   (0.00)   (0.00) 0 0.00  AA   (0.00)   (0.00) 0 0.00 

  48   46  94      48   46  94   
C 0.969   0.946  0.957    G 0.979   1.000  0.989   
T 0.031     0.054   0.043    A 0.021     0.000   0.011   
Z 0.781         Z 1.429        
p 0.435 *test for allele frequencies      p 0.153 *test for allele frequencies     
                 

2104 T>C  2327* C>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
TT 32 (66.67)  33 (71.74) 65 69.15  CC 46 (97.87)  46 (100.00) 92 98.92 
TC 15 (31.25)  13 (28.26) 28 29.79  CA 1 (2.13)   (0.00) 1 1.08 
CC 1 (2.08)   (0.00) 1 1.06  AA   (0.00)   (0.00) 0 0.00 

  48   46  94      47   46  93   
T 0.823   0.859  0.840    C 0.989   1.000  0.995   
C 0.177     0.141   0.160    A 0.011     0.000   0.005   
Z 0.672         Z 1.005        
p 0.502 *test for allele frequencies      p 0.315 *test for allele frequencies     
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Table 25 (Continued) 

2406* C>G  2645 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 48 (100.00)  46 (97.87) 94 98.95  CC 41 (89.13)  40 (90.91) 81 90.00 
CG   (0.00)  1 (2.13) 1 1.05  CT 5 (10.87)  4 (9.09) 9 10.00 
GG   (0.00)   (0.00) 0 0.00  TT   (0.00)   (0.00) 0 0.00 

  48   47  95      46   44  90   
C 1.000   0.989  0.995    C 0.946   0.955  0.950   
G 0.000     0.011   0.005    T 0.054     0.045   0.050   

Z 1.005         Z 0.274        
p 0.315 *test for allele frequencies      p 0.784 *test for allele frequencies     
                 

2685* C>T  2705 C>T 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 48 (100.00)  45 (97.83) 93 98.94  CC 48 (100.00)  45 (97.83) 93 98.94 
CT   (0.00)  1 (2.17) 1 1.06  CT   (0.00)  1 (2.17) 1 1.06 
TT   (0.00)   (0.00) 0 0.00  TT   (0.00)   (0.00) 0 0.00 

  48   46  94      48   46  94   
C 1.000   0.989  0.995    C 1.000   0.989  0.995   
T 0.000     0.011   0.005    T 0.000     0.011   0.005   
Z 1.005         Z 1.005        
p 0.315 *test for allele frequencies      p 0.315 *test for allele frequencies     
                 

2981 C>T  3146 G>A 
  High HDL   Low HDL TOTAL    High HDL   Low HDL TOTAL 

  n (%)   n (%) n (%)    n (%)   n (%) n (%) 
CC 45 (93.75)  42 (91.30) 87 92.55  GG 47 (100.00)  45 (97.83) 92 98.92 
CT 3 (6.25)  4 (8.70) 7 7.45  GA   (0.00)  1 (2.17) 1 1.08 
TT   (0.00)   (0.00) 0 0.00  AA   (0.00)   (0.00) 0 0.00 

  48   46  94      47   46  93   
C 0.969   0.957  0.963    G 1.000   0.989  0.995   
T 0.031     0.043   0.037    A 0.000     0.011   0.005   
Z 0.441         Z 1.005        
p 0.659 *test for allele frequencies      p 0.315 *test for allele frequencies     
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3.3 LD AND TAGGER ANALYSES OF APOA1 AND APOA4 VARIANTS 

SNPs that are in close proximity to one another along the chromosome can be inherited together, 

or in linkage disequilibrium (LD). SNPs in LD are compiled into haplotypes, which are 

identified by TagSNPs. TagSNPs can be identified within a group of SNPs using Tagger 

analysis. Identifying TagSNPs for a given haplotype reduces the number of SNPs needed for 

genotype screening by eliminating redundant analysis. LD and Tagger analysis was used to 

identify TagSNPs amongst the variants in APOA1 and APOA4.  

The APOA1 and APOA4 genes located in close vicinity on chromosome 11, within 

12.5Kb distance. Therefore, pairwise LD and Tagger analysis was done for the APOA1 and 

APOA4 genes together to assess both intergenic and intragenic correlations. LD and Tagger 

analysis was limited to variants with a MAF >5%. A r2 cutoff of 0.9 was used to assess high LD. 

A striking difference in LD was observed between the two populations.  

3.3.1 Non-Hispanic Whites 

High correlation between APOA1 and APOA4 variants was not observed (the highest observed r2 

was 0.64 for any APOA1/APOA4 variant pairs), although some strong correlations were present 

within each gene. Tagger analysis identified a total of 8 Bins for APOA1 and 9 Bins for APOA4. 

A total of 22 common variants were captured in 17 Bins, 11 from APOA1 and 11 from APOA4. 

Of the total 17 Bins from the two genes, pre-made TaqMan assays (Applied Biosystems) were 
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available for at least one variant in 5 Bins (Underlined in Table 26). Of those 5 available 

TaqMan assays two were for intronic APOA1 variants (rs5070 and rs5072), two for exonic 

APOA4 variants (rs5104, rs5092), and 1 for intronic APOA4 variant (rs5100). The remaining 

Bins will be evaluated using either custom TaqMan assays or the Sequenome® iPLEX 

genotyping array. 

Table 26. Tagger Results for NHWs 

BIN Gene 
Location of Variants 

Captured rs Numbers 
1 APOA1 4443, 1620, 1128 rs670, rs12721028, rs11216153 
2 APOA1 3613, 3714 rs5072, rs2070665 
3 APOA1 4050 rs5070 

4 APOA1 3368 rs7116797 
5 APOA1 206 rs7123454 
6 APOA1 1598 rs10750098 
7 APOA1 1308 rs12721030 
8 APOA1 1546 rs525028 
9 APOA4 1735, 1334 rs5096, rs5100 

10 APOA4 315, 1803 rs675, rs5095 
11 APOA4 2104 rs5092 

12 APOA4 2695 rs5090 
13 APOA4 964 rs2234668 
14 APOA4 165 rs9282602 
15 APOA4 1192 rs5103 
16 APOA4 274 rs5110 
17 APOA4 974 rs5104 
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Figure 12. LD Analysis for NHWs. 
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3.3.2 Blacks 

High correlation between APOA1 and APOA4 variants was not observed (the highest observed r2 

was 0.59 for any APOA1/APOA4 variant pairs), although some strong correlations were present 

within each gene. Tagger analysis identified a total of 16 Bins for APOA1 and 9 Bins for 

APOA4. A total of 33 common variants were captured in 25 Bins, 20 from APOA1 and 13 from 

APOA4. Of the total 25 Bins from the two genes, pre-made TaqMan assays (Applied 

Biosystems) were available for at least one variant in 6 Bins (Underlined in Table 27). 

Additionally, a pre-made TaqMan assay was available and ordered for one rare variant in 

APOA4 (not shown in Table 27: rs5106). Of those 7 available TaqMan assays two were for 

intronic APOA1 variants (rs5070 and rs5072), four for exonic APOA4 variants (rs5104, rs5092, 

rs5106, rs5109), and 1 for intronic APOA4 variant (rs5100). The remaining Bins will be 

evaluated using either custom TaqMan assays or the Sequenome® iPLEX genotyping array. 
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Table 27. Tagger Results for Blacks 

BIN Gene 
Location of Variants 

Captured rs Numbers 
1 APOA1 3714, 3613 rs2070665, rs5072 

2 APOA1 2376, 1049 rs5081, rs1263162 
3 APOA1 3220, 4284 rs5076, rs5069 
4 APOA1 4807, 5055 rs12691374, - 
5 APOA1 631 rs7948159 
6 APOA1 206 rs7123454 
7 APOA1 3543 rs5073 
8 APOA1 1620 rs12721028 
9 APOA1 1128 rs11216153 
10 APOA1 3368 rs7116797 
11 APOA1 4050 rs5070 

12 APOA1 1598 rs10750098 
13 APOA1 4732 rs12718467 
14 APOA1 4443 rs670 
15 APOA1 2373 rs12718436 
16 APOA1 1546 rs525028 
17 APOA4 315, 2645, 1803 rs675, rs5091, rs5095 
18 APOA4 357, 1326 -, - 
19 APOA4 1334, 1735 rs5100, rs5096 
20 APOA4 1853 rs5094 
21 APOA4 974 rs5104 

22 APOA4 165 rs9282602 
23 APOA4 1198 rs5101 
24 APOA4 406 rs5109 

25 APOA4 2104 rs5092 
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 Figure 13. LD Analysis for Blacks  
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3.4       GENOTYPING OF ENTIRE NHW AND BLACK SAMPLES USING 

            AVALIABLE TAQMAN SNP GENOTYPING ASSAYS 

3.4.1    LD Analysis of the Variants Screened in Entire NWH and Black Samples 

For the variants that were screened using the available TaqMan assays in the entire samples, the 

LD analysis was repeated (Figures 14 an 15) and the LD patterns were found to be similar to 

those observed in the subsets of the populations used for sequencing. A striking difference in LD 

was not observed between the two populations. 

 

Color Scheme for r2 
r2 = 0 White 

0 < r2 < 1 Shades of Grey 
r2 = 1 Black 

 

Figure 14. LD Analysis of the Variants Screened in the Entire NHW Samples.  
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Color Scheme for r2 
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Figure 15. LD Analysis of the Variants Screened in the Entire Black Samples. 

 

3.4.2    Association Analysis of the Variants Screened in the Entire NWH and Black 

Samples for their Effects on Plasma HDL levels 

A total of 7 variants screened in entire NHW and Black samples (only 5 were present in NHWs, 

all 7 were present in Blacks) were analyzed for their relation to plasma HDL levels separately in 

males and females within each ethnic group. The Tables 28 and 29 show the genotype counts, 

adjusted mean HDL levels (fore each genotype) and adjusted p-values (under the additive model) 

for each variant. 

 



Although some modest or marginal p-values were observed, the associations were not 

consistent or strong enough to survive multiple testing correction in either of the populations.  

 

Table 28. Genotype Distribution, Mean HDL Levels, and Adjusted p-values for five 

 APOA1 and APOA4 Variants in NHWs 

  NHW Males NWH Females 

APOA1- rs5070 G/G[138] G/A[127] A/A[25] G/G[167] G/A[129] A/A[28] 

HDL-C 44.02±0.87 43.84±0.91 43.41±2.05 56.90±1.07 57.24±1.21 54.68±2.60 

  pa=0.56 pb=0.56 

APOA1- rs5072 G/G[252] G/A[39] A/A[3] G/G[284] G/A[41] A/A[0] 

HDL-C 44.07±0.64 44.47±1.62 30.01±5.86 56.98±0.81 55.98±2.14 n/a 

  pa=0.16 pb=0.53 

APOA4- rs5092 T/T[213] T/C[76] C/C[4] T/T[226] T/C[94] C/C[6] 

HDL-C 44.44±0.70 43.31±1.17 36.43±5.10 56.14±0.91 57.79±1.41 67.23±5.61 

  pa=0.08 pb=0.12 

APOA4- rs5100 A/A[123] A/G[128] G/G[43] A/A[142] A/G[143] G/G[42] 

HDL-C 44.95±0.92 43.83±0.90 41.67±1.55 55.67±1.14 56.95±1.14 60.74±2.10 

  pa=0.04 pb=0.05 

APOA4- rs5104 T/T[222] T/C[68] C/C[2] T/T[248] T/C[75] C/C[3] 

HDL-C 44.43±0.68 43.04±1.24 34.26±7.22 56.73±0.87 56.93±1.58 58.01±7.96 

  pa=0.12 pb=0.96 
 pa-values for log transformed HDL levels, adjusted for “BMI” under the additive model 
 pb-values for log transformed HDL levels, adjusted for “age, smoking status, and BMI” under the additive model 
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Table 29. Genotype Distribution, Mean HDL Levels, and Adjusted p-values for five 

APOA1 and APOA4 Variants in Blacks 

  Black Males Black Females 

APOA1- rs5070 G/G[92] G/A[193] A/A[89] G/G[72] G/A[136] A/A[66] 

HDL-C 47.57±1.23 45.35±0.85 47.74±1.25 48.56±1.48 52.20±1.08 52.24±1.54 

  pa=0.88 pb=0.05 

APOA1- rs5072 G/G[309] G/A[71] A/A[1] G/G[220] G/A[58] A/A[4] 

HDL-C 46.08±0.68 46.60±1.41 43.22±11.91 50.63±0.84 52.51±1.65 58.56±6.25 

  pa=0.77 pb=0.12 

APOA4- rs5092 T/T[297] T/C[75] C/C[6] T/T[210] T/C[64] C/C[2] 

HDL-C 45.66±0.69 48.11±1.38 45.95±4.86 51.49±0.85 50.71±1.56 45.36±8.76 

  pa=0.15 pb=0.51 

APOA4- rs5100 A/A[154] A/G[169] G/G[51] A/A[120] A/G[127] G/G[29] 

HDL-C 45.55±0.96 45.76±0.92 48.83±1.67 51.73±1.13 50.80±1.10 50.04±2.35 

  pa=0.15 pb=0.47 

APOA4- rs5104 T/T[317] T/C[54] C/C[4] T/T[227] T/C[41] C/C[1] 

HDL-C 45.78±0.66 48.25±1.61 48.53±5.93 51.08±0.83 52.95±1.98 44.99±12.55 

  pa=0.13 pb=0.48 

APOA4- rs5106 G/G[353] G/A[25] A/A[0] G/G[262] G/A[16] A/A[0] 

HDL-C 46.31±0.63 44.75±2.37 n/a 51.38±0.77 47.49±3.12 n/a 

  pa=0.48 pb=0.24 

APOA4- rs5109 C/C[310] C/A[72] A/A[1] C/C[233] C/A[45] A/A[3] 

HDL-C 46.43±0.67 45.06±1.40 32.25±11.88 51.17±0.82 51.54±1.87 45.36±7.25 

  pa=0.25 pb=0.79 
 pa-values for log transformed HDL levels, adjusted for “BMI” under the additive model 
 pb-values for log transformed HDL levels, adjusted for “age, smoking status, and BMI” under the additive model 
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4.0  DISCUSSION 

Apoa-I is the major apolipoprotein in HDL particles; many studies have provided evidence of the 

athroprotective role of ApoA-I.32 APOA1 mutations have been correlated with Mendelian 

disease, however further study is needed to associate common and rare variants in APOA1 with 

complex genetic disease.16 

 While the exact function of apoA-IV is not known, it has a number of proposed 

functions, including involvement in the assembly and secretion of chylomicrons and the reverse 

cholesterol transport system.81 Some studies have associated variation of the APOA4 gene with 

changes in lipid levels, while others have not observed this same pattern.79,83,90 The APOA4 gene 

clearly requires further study due to the lack of consensus about its biological function and the 

correlation of variation within this gene with lipid levels.  

 This study aimed to evaluate the role of APOA1 and APOA4 genetic variation by 

sequencing a subset of samples from healthy individuals with HDL levels in the 5th and 95th 

percentiles. The purpose of this was to detect both the rare and common variants in both genes in 

NHW and Black populations.  Through sequence analysis and detection of these variants both 

the “common variant-common disease” and “rare variant-common disease” hypotheses were 

tested.  

The common variant hypothesis has been extensively evaluated through the candidate 

gene approach and GWAS. The earlier candidate gene studies reported association of the 
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APOA1/APOC3/APOA4/APOA5 gene cluster with HDL and triglyceride levels, however the 

results were not consistent.45,79 In recent GWAS this gene cluster showed some association with 

triglyceride levels; most of the genetic variants with significance were in APOA5, intergenic 

regions, or other genes residing near this cluster.18-25 The two GWAS that reported association 

with HDL levels and this gene cluster again included SNPs from neighboring genes (ZNF259 

and BUD13), but not SNPs from APOA1 or APOA4.21,23 

The rare variant hypothesis was less frequently addressed in the literature, although it is 

more likely to be addressed in the near future with the advent of Next Gen sequencing, and the 

decreasing cost of sequencing technology. Cohen et al.27 used sequencing to analyze the coding 

regions of three genes (APOA1, ABCA1, and LCAT), and reported that individuals with low HDL 

had significantly more nonsynonymous variants than individuals with high HDL levels. 

However, most of the variants they identified were from ABCA1 or LCAT, and only a few were 

from APOA1. This study used the same approach for sample population selection (sequencing 

individuals with HDL levels in the 5th and 95th percentile), however, in this study the genes were 

completely sequenced to document all variants and their association with HDL levels, rather than 

just the coding regions as in Cohen et al.27  

SeattleSNPs also completely sequenced both APOA1 and APOA4; however, there are 

some inherent reasons for differences between sequence variants reported in the SeattleSNPs 

database and sequence variants identified in this study. A total of 24 African-American 

individuals, 24 European individuals, and 24 non-Hispanic European-American individuals, 

unselected for HDL-cholesterol levels, were sequenced in the SeattleSNPs study.78 A total of 95 

African individuals and 95 NHWs, who were selected based on their extreme HDL-cholesterol 

levels, were sequenced in this study. The SeattleSNPs study sequenced African-American 
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individuals, whereas African samples were sequenced in this study. In African-American 

samples there is a greater likelihood of admixture from other ethnic groups as compared to 

African samples. Different software tools were used to analyze the sequence data in the 

SeattleSNPs study versus this study. Also, different primers were used for sequencing (APOA1). 

For sequence analysis the data collected in this study was compared with the data from 

the SeattleSNPs database, published in Fullerton et al.78 A total of 31 sequence variants in 

APOA1 were reported in the SeattleSNPs database (Tables 2-4, section 1.4.3). A total of 54 

sequence variants in APOA1 were identified in this study (Table 16, section 3.1.1). A total of 24 

sequence variants in APOA4 were reported in the SeattleSNPs database (Tables 5-6, section 

1.5.2). A total of 43 sequence variants were identified in this study (Table 17, section 3.1.2). 

A total of 25 sequence variants in APOA1 were reported in the SeattleSNPs database for 

the two European populations (Tables 3&4, section 1.4.3). A total of 34 sequence variants in 

APOA1 were identified in this study in NHWs (Table 16, section 3.1.1). A total of 25 sequence 

variants in APOA1 were reported in the SeattleSNPs database for the African American 

population (Table 2, section 1.4.3). A total of 37 sequence variants in APOA1 were identified in 

this study in Blacks (Table 16, section 3.1.1). A total of 18 sequence variants in APOA4 were 

reported in the SeattleSNPs database for the two European populations (Tables 6&7, section 

1.5.2). A total of 23 sequence variants were identified in this study in NHWs (Table 17, section 

3.1.2). A total of 18 sequence variants in APOA4 were reported in the SeattleSNPs database for 

the African American population (Table 5, section 1.5.2). A total of 30 sequence variants were 

identified in this study in Blacks (Table 17, section 3.1.2). 

One coding variant in APOA1 was reported by Fullerton et al. and the SeattleSNPs 

database data. This variant was present in both the African-American and European-American 
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populations. The sequence variant was nonsynonymous (Ala>Thr).78 Five coding variants in 

APOA1 were identified in this study (Table 16, section 3.1.1). Two of the 5 variants were present 

in NHWs and 3 of the 5 in Blacks. Four of the 5 variants were nonsynonymous. Twelve coding 

variants in APOA4 were reported by Fullerton et al.78 and the SeattleSNPs database data. Eight 

of the 12 variants were present in the African-American population and 7 of the 12 variants were 

reported in the European populations. Six of the 12 variants were nonsynonomous. Seventeen 

coding variants in APOA4 were identified in this study (Table 17, section 3.1.2). Eleven of the 17 

variants were present in NHWs and 11 of the 17 in Blacks. Seven of the 17 variants were 

nonsynonymous.  

Table 30 is a list of sequence variants in APOA1 and APOA4 reported in the SeattleSNPs 

database that were not identified in this study. Identification of these variants would be expected 

given the fact that the NHW and Black sample sizes are 2-4 times larger in this study than in the 

SeattleSNPs study. Therefore, it is possible that those variants listed below that were seen in only 

a single individual in one population represent sequence artifacts as they have not been 

confirmed using another technology. Variants that were reported in more than one individual or 

population may have been absent in this study due to differences in selection criteria (sequencing 

of only individuals with HDL levels in the 5th and 95th percentile in this study). 

Table 30. Unique Sequence Variants in the SeattleSNPs Database 

Gene SeattleSNP 
Location 

rs Number MAF 
JD-Pop 

MAF 
ND-Pop 

MAF 
RD-Pop 

APOA1 1541 rs127211029 0.03 - - 
APOA1 1717 rs12718461 - - 0.02 
APOA1 3766 rs12718465 0.10 - 0.09 
APOA1 4245 rs12712032 0.02 - - 
APOA4 933 rs12721043 - 0.09 0.02 
APOA4 1183 rs12721042 0.02 - - 
APOA4 2511 rs12721041 0.05 - - 
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Novel variants identified in this study (not previously reported in publicly available 

databases) are listed in Tables 16 and 17 in sections 3.1.1 and 3.1.2, respectively. Suspicious 

variants with low sequence quality (denoted in each table) are to be confirmed in future analysis. 

This study had a larger sequencing sample size than the SeattleSNPs study which may have 

contributed to the number of sequencing variants. Additionally, this study sequenced individuals 

with HDL levels in the 5th and 95th percentile whereas the SeattleSNPs database did not select for 

any risk-factor trait. It is possible that some of the novel variants seen in this study are unique to 

this group. 

Fullerton et al.78 reported a higher variability among African Americans as compared to 

Europeans for both APOA1 and APOA4. In this study, a higher number of sequence variants 

were also identified in Blacks versus NHWs for both genes. 

Fullerton et al.78 observed that APOA4 had many more coding region variants than the 

other genes in the APOA1/APOC3/APOA4/APOA5 gene cluster. This same conclusion can be 

made when comparing the number of coding variants observed in APOA4 versus APOA1 in this 

study:  5 coding variants were identified in APOA1 versus 17 in APOA4  (Tables 16 and 17 in 

sections 3.1.1&3.1.2, respectively). 

According to preliminary analysis of sequence data for APOA1 and APOA4, no striking 

difference was noticed between the distribution of rare variants between high and low HDL 

groups in either population. For sequencing variants in APOA1: for NHWs, 5 out of 48 (10.42%) 

individuals with low HDL levels had rare variants unique to the low group versus 7 out of 47 

(14.89%) individuals with high HDL levels with rare variants unique to the high group; for 

Blacks, 2 out of 47 (4.26%) individuals with low HDL levels had rare variants unique to the low 

group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to 
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the high group. For sequencing variants in APOA4: for NHWs, 3 out of 48 (6.25%) individuals 

with low HDL levels had rare variants unique to the low group versus 5 out of 47 (10.64%) 

individuals with high HDL levels with rare variants unique to the high group; for Blacks, 4 out of 

47 (8.51%) individuals with low HDL levels had rare variants unique to the low group versus 4 

out of 48 (8.33%) individuals with high HDL levels with rare variants unique to the high group. 

Overall, when individuals with rare variants are compared between high and low HDL groups 

the numbers were similar or slightly higher in the high HDL group. 

Differences in MAF between low and high HDL groups have been observed for some 

common variants in the sequencing data and have not yet been confirmed by genotyping in the 

entire population. These variants include: 206 (rs7123454) and 1598 (rs10750098) in NHWs in 

APOA1 (in bold in Table 18); 964 (rs2234668) in NHWs in APOA4 (in bold in Table 22); 1198 

(rs5101) and 1735 (rs5096) in Blacks in APOA4 (in bold in Table 24). None of these variants 

have been previously associated with variation in HDL-cholesterol levels in the literature. 

APOA4 variant 1334 (rs5100) showed a difference in MAF between low and high HDL groups 

in Blacks in the sequencing data (in bold in Table 24). This variant had not been previously 

associated with variation in HDL-cholesterol levels in the literature. This variant was genotyped 

in the entire NHW and Black population in this study. 

Thus far screening data has been compiled for the entire NHW and Black population for 

a total of seven variants: 2 for APOA1 (rs5070 and rs5072), and 5 in APOA4 (rs5092, rs5100, 

rs5104, rs5106, and rs5109). All 7 variants were present in the Black population; five were 

present in NHWs (rs5070, rs5072, rs5092, rs5100, and rs5104). Modest or marginal p-values 

were observed, however, none would maintain significance after multiple testing correction in 

either population. Some of the variants were investigated in the literature with inconsistent 
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results including: rs5070, rs5092, and rs5104.45,79 Inconsistencies in the literature and a lack of 

statistically significant association with HDL levels in this study may be due to population size; 

variants associated with a small effect on HDL levels may only be statistically significant with a 

larger population size. Furthermore, additional variants identified in sequencing (both novel and 

those previously reported in the publicly available databases) remain to be screened in the entire 

NHW and Black population. 
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5.0  CONCLUSION 

Heart disease is a major public health concern, and decreased HDL-cholesterol levels are a major 

risk factor for heart disease. In previous candidate gene studies and GWAS, APOA1 and APOA4 

have been associated with variation in HDL-cholesterol levels with inconsistent results. This 

study supported this paradigm. The common variants that were genotyped in the entire 

population had only modest or marginal p-values that would not maintain significance after 

multiple testing correction. However, additional common variants remain to be screened in the 

entire population; in some of these variants differences were observed between high and low 

HDL groups in preliminary sequence data. 

Further data collection and analysis is necessary to better understand the significance of 

these variants. Additional studies of APOA1and APOA4 with larger population sizes are needed 

to analyze variants that may only have a small effect on HDL-cholesterol levels. Further studies 

of rare variation in this and other genes are also required to better understand genetics of HDL-

cholesterol in relation to the rare allele hypothesis. 
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