SEQUENCE VARIATION IN THE *APOA1* AND *APOA4* GENES AND THEIR RELATIONSHIP WITH PLASMA HDL-CHOLESTEROL LEVELS

by

Sarah Elizabeth Hill

B.S., Arizona State University, 2006

Submitted to the Graduate Faculty of

the Department of Human Genetics, Genetic Counseling

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2009

UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This thesis was presented

by

Sarah Elizabeth Hill

It was defended on

April 1, 2009

and approved by

Thesis Advisor: M. Ilyas Kamboh, Ph.D. Professor and Department Chair Department of Human Genetics Graduate School of Public Health University of Pittsburgh

Committee Member: F. Yesim Demirci, M.D. Research Assistant Professor Department of Human Genetics Graduate School of Public Health University of Pittsburgh

Committee Member: David N. Finegold, M.D. Professor Department of Pediatrics and Department of Human Genetics School of Medicine and Graduate School of Public Health University of Pittsburgh Copyright © by Sarah Elizabeth Hill

2009

SEQUENCE VARIATION IN THE *APOA1* AND *APOA4* GENES AND THEIR RELATIONSHIP WITH PLASMA HDL-CHOLESTEROL LEVELS

Sarah Elizabeth Hill, M.S.

University of Pittsburgh, 2009

Heart disease continues to be the leading cause of death in the United States, making it one of the foremost public health concerns. Many factors influence the risk to develop heart disease, including abnormal blood lipid levels. High levels of plasma high-density lipoprotein (HDL)cholesterol have been shown to have a protective effect. Recent genome-wide association studies (GWAS) and candidate gene studies have identified genes thought to contribute to HDLcholesterol levels. Two genes, APOA1 and APOA4, have been associated with HDL-cholesterol levels in multiple studies with inconsistent results. The majority of these studies focused on the "common variant-common disease" hypothesis whereas only one study by Cohen et al. (2004) evaluated APOA1 using the "rare variant-common disease" hypothesis. The aim of this study was to further investigate the role of common and rare variation in these two genes by sequencing individuals having extremely low and high HDL-cholesterol levels in two populations, U.S. Non-Hispanic Whites (NHWs), and African Blacks, and then screening the identified variants in the entire sample. In the initial sequence analysis, 54 variants were identified in APOA1 (25 of which were new), and 43 in APOA4 (21 of which were new). According to preliminary analysis of the sequencing data for APOA1 and APOA4, no striking difference was noticed between the distribution of rare variants between high and low HDL groups in either population. To date, screening data was compiled for the entire NHWs and Black samples for a total of seven common variants: 2 for *APOA1* (rs5070 and rs5072), and 5 in *APOA4* (rs5092, rs5100, rs5104, rs5106, and rs5109). All 7 variants were present in the Black population; five were present in NHWs (rs5070, rs5072, rs5092, rs5100, and rs5104). Modest or marginal significant p-values were observed; however, none would maintain significance after multiple testing correction in either population. Additional variants identified in sequencing remain to be screened in the entire NHWs and Black samples.

TABLE OF CONTENTS

PRE	EFAC	CEX
1.0	BA	CKGROUND AND SIGNIFICANCE1
	1.1	HIGH DENSITY LIPOPROTEIN (HDL) 1
		1.1.1 The HDL Particle 1
		1.1.2 HDL-Cholesterol Metabolism 2
	1.2	ATHEROSCLEROSIS AND HEART DISEASE
		1.2.1 The Public Health Impact of Heart Disease
		1.2.2 Risk Factors for Heart Disease 4
		1.2.3 Cholesterol Levels and Heart Disease 4
		1.2.4 Atherosclerosis and Heart Disease 4
		1.2.5 Epidemiological Evidence for the Antiatherogenic Properties of HDL-
		Cholesterol 5
	1.3	GENETIC STUDIES OF HDL-CHOLESTEROL LEVELS
		1.3.1 Candidate Gene Studies
		1.3.2 Genome Wide Association Studies
		1.3.3 Genetic Models for HLD Variation
		1.3.3.1 Common Variant-Common Disease Hypothesis7
		1.3.3.2 Rare Variant-Common Disease Hypothesis
	1.4	APOLIPOPROTEIN A-I: THE APOA1 GENE 10
		1.4.1 Protein Structure
		1.4.2 Functional Considerations 11
		1.4.3 APOA1 Variants and Phenotypic Association 12
	1.5	APOLIPOPROTEIN A-IV AND THE APOA4 GENE 19
		1.5.1 Structure
		1.5.2 APOA4 Variants and Phenotypic Association
	1.6	SPECIFIC AIMS 24
2.0	SUI	BJECTS AND METHODS
	2.1	SUBJECTS
		2.1.1 Study Populations
		2.1.2 Subset of the Study Population Used for Sequencing
	2.2	DNA SEQUENCING
	2.3	GENOTYPING WITH TAQMAN 30
	2.4	STATISTICAL METHODS
3.0	RE	SULTS
	3.1	DNA SEQUENCING
		3.1.1 <i>APOA1</i>
		3.1.2 <i>APOA4</i>

3.1.3 APOA1 and APOA4 Annotated Sequence	42
3.2 DISTRIBUTION OF APOA1 AND APOA4 VARIANTS IN HIGH AN	D LOW
HDL GROUPS	46
3.2.1 APOA1	46
3.2.1.1 Non-Hispanic Whites	46
3.2.1.2 Blacks	52
3.2.2 APOA4	59
3.2.2.1 Non-Hispanic Whites	59
3.2.2.2 Blacks	64
3.3 LD AND TAGGER ANALYSES OF APOA1 AND APOA4 VARIANTS	
3.3.1 Non-Hispanic Whites	
3.3.2 Blacks	73
3.4 GENOTYPING OF ENTIRE NHW AND BLACK SAMPLES	USING
AVALIABLE TAQMAN SNP GENOTYPING ASSAYS	76
3.4.1 LD Analysis of Variants Screened in Entire NWH and Black Samp	oles 76
3.4.2 Association Analysis of the Variants Screened in the Entire NV	WH and
Black Samples for their Effects on Plama HDL levels	77
4.0 DISCUSSION	80
5.0 CONCLUSION	
BIBLIOGRAPHY	88

LIST OF TABLES

Table 1. Allelic Variants in APOA1	13
Table 2. Allelic Variants in the Jackson, MS Population	16
Table 3. Allelic Variants in the North Karelia, Finland Population	17
Table 4. Allelic Variants in the Rochester, MN Population	18
Table 5. Allelic Variants in the Jackson, MS Population	22
Table 6. Allelic Variants in the North Karelia, Finland Population	23
Table 7. Allelic Variants in the Rochester, MN Population	23
Table 8. Sample populations	26
Table 9. Biometric and Quantitative Data of NHWs and Blacks Used for DNA Sequencing	26
Table 10. APOA1 PCR Primers	27
Table 11. APOA4 PCR Primers	28
Table 12. PCR Reaction and Cycling Conditions	29
Table 13. TaqMan® SNP Genotyping Assays	30
Table 14. TaqMan Reaction and Cycling Conditions	31
Table 15. Genotyping Call Rates for TaqMan	31
Table 16. APOA1 Sequence Variants.	35
Table 17. APOA4 Sequence Variants.	39
Table 18. Distribution of APOA1 Variants in High and Low HDL Groups in NHWs	47
Table 19. Allele Frequencies of APOA1 Variants in High and Low HDL Groups in NHWs	48
Table 20. Distribution of APOA1 Variants in High and Low HDL Groups in Blacks	53
Table 21. Allele Frequencies of APOA1 Variants in High and Low HDL Groups in Blacks	54
Table 22. Distribution of APOA4 Variants in High and Low HDL Groups in NHWs	60
Table 23. Allele Frequencies of APOA4 Variants in High and Low HDL Groups in NHWs	61
Table 24. Distribution of APOA4 Variants in High and Low HDL Groups in Blacks	65
Table 25. Allele Frequencies of APOA4 Variants in High and Low HDL Groups in Blacks	66
Table 26. Tagger Results for NHWs	71
Table 27. Tagger Results for Blacks	74
Table 28. Genotype Distribution, Mean HDL Levels, and Adjusted p-values for five	78
Table 29. Genotype Distribution, Mean HDL Levels, and Adjusted p-values for five	79
Table 30. Unique Sequence Variants in the SeattleSNPs Database	83

LIST OF FIGURES

Figure 1. The HDL Particle	
Figure 2. Overview of Lipoprotein Metabolism	
Figure 3. 'Missense-Accumulation' Analysis	9
Figure 4. The APOA1 Gene.	
Figure 5. Crystal structure of apoA-I	
Figure 6. The APOA4 Gene.	
Figure 7. Homology Model of apoA-IV	
Figure 8. Chromatograms for New Variants in the APOA1 Gene	
Figure 9. Chromatograms for Novel Variants in the APOA4 Gene	40
Figure 10. APOA1 Annotated Sequence	
Figure 11. APOA4 Annotated Sequence	
Figure 12. LD Analysis for NHWs.	
Figure 13. LD Analysis for Blacks	
Figure 14. LD Analysis of the Variants Screened in the Entire NHW Samples	
Figure 15. LD Analysis of the Variants Screened in the Entire Black Samples	77

PREFACE

First and foremost I would like to thank Dr. M. Ilyas Kamboh for providing me the opportunity to participate in this exciting research. I have learned so much from working on this project, and I appreciate you allowing me to be a part of it. I am also deeply in debt to Dr. F. Yesim Demirci for her tireless effort teaching and guiding me every step of the way. I have enjoyed working with you very much, and I thank you for being a mentor and role model to me these last two years. I would like to thank Dr. David Finegold who has always been an inspiration to me and showed me what it meant to truly love the science of genetics. Thank you for being such an enthusiastic teacher as well as a support system for me whenever I have needed it. I would also like to thank Amy Dressen for her assistance on the statistical analysis of this project, and for being a great ASHG roommate!

Thank you to my coworkers and fellow students in Dr. Kamboh's lab who I have enjoyed working with over these last few years. I would like to especially thank Sally Hollister who has helped to guide me through my project after doing similar work of her own with *APOA2*. I would also like to thank Ryan Minster for always answering my questions and guiding me, Fahad Waqar and Yuee Wang for their help in my training, and Jessica Figgins for her friendship and guidance.

I would also like to thank the co-directors of the Genetic Counseling Program, Ms. Elizabeth Gettig and Dr. Robin Grubs, for all that they have taught me about genetics as well as their infinite moral support throughout this project. I would also like to thank all of my classmates in the Genetic Counseling Program. The nine of you are the most amazing and inspiring individuals I have ever met, and showed me what true friendship is all about.

Thank you to my Pittsburgh family, Cecilia Rajakaruna, Cherise Klotz, and Sully, for your love and support, especially in these last few months. Cecilia, you never fail to take care of me when I need it most. Cherise, you are my other half, I don't know what I would do without you! Thank you also to Stefanie Frace, who has been like a third roommate and sister to me.

I would also like to thank my mom and dad and sister, Rachel. I love you all very much. Thank you for always supporting my educational pursuits, and being there for me when I need it most. Mom, thank you for being my confidant and advisor. Dad, thank you for being my role model and support system. Rachel, you are my best friend, I am sorry I have missed out on so much of your growing up these last few years.

1.0 BACKGROUND AND SIGNIFICANCE

1.1 HIGH DENSITY LIPOPROTEIN (HDL)

1.1.1 The HDL Particle

High-density lipoproteins (HDL) are spherical particles that transport cholesterol esters and triglycerides in the blood. The HDL particle represents one class of lipoprotein; the classes of lipoproteins (chylomicrons, very-low-density lipoproteins, and low-density lipoproteins) are separated by density, size, and protein content. The core of the HDL particle is made up of cholesterol esters and triglycerides, which is encapsulated in an amphipathic layer containing free (unesterified) cholesterol and phospholipids (Figure 1). HDL particles also contain several proteins, specifically apolipoproteins (apos), which have many roles: they provide structural integrity, have enzymatic co-activator functions, are involved in the assembly and secretion of the HDL particle, and serve as a ligand for a variety of receptors.¹

Figure 1. The HDL Particle. Image courtesy of M. Ilyas Kamboh, Ph.D.

1.1.2 HDL-Cholesterol Metabolism

HDL-cholesterol metabolism (Figure 2) mediates reverse cholesterol transport from the peripheral cells to the liver, where cholesterol can be excreted into the bile, or the adrenal glands, ovaries, or testes, where cholesterol can be converted into steroid hormones. HDL particles, initially containing only phospholipids and apolipoprotein A-I (apoA-I), are synthesized in the liver and intestine. They enter into the blood stream and accumulate cholesterol esters, which are converted from free cholesterols by lecithin-cholesterol acyltransferase (LCAT), through interaction with apoA-I and ATP binding cassette transporter A1 (ABCA1). The HDL particles increase in size as they move through the bloodstream accumulating cholesterol esters, and are remodeled by cholesterol ester transfer protein (CETP) and endothelial lipase (LIPG).

Eventually, the HDL particles return to the liver, where HDL removal is mediated by the scavenger receptor B1 $(SRB1)^2$.

Figure 2. Overview of Lipoprotein Metabolism (Hegele, 2009)²

1.2 ATHEROSCLEROSIS AND HEART DISEASE

1.2.1 The Public Health Impact of Heart Disease

Coronary heart disease (CHD) is cause of one in five deaths in the United States, and diseases of the heart were the leading cause of death in 2005 according to the Center for Disease Control National Vital Statistics Reports.³ Nearly 2,400 American die of cardiovascular disease (CVD) each day. One in three American adults, greater than eighty million individuals, have one or more types of CVD including: CHD, high blood pressure, heart failure, and stroke. Of these approximately 16 million are affected by CHD. The estimated health care cost of CVD for 2008 was \$448.5 billion.⁴

1.2.2 Risk Factors for Heart Disease

Many factors influence the risk to develop heart disease. Some of the major risk factors for CHD include: abnormal blood lipid levels (or current treatment with cholesterol-lowering drugs), hypertension (or current treatment with blood pressure-lowering drugs), diabetes, abdominal obesity, cigarette smoking, a lack of physical activity, low daily fruit and vegetable consumption, and alcohol over consumption.^{5,6}

1.2.3 Cholesterol Levels and Heart Disease

The American Heart Association classifies HDL-cholesterol levels of <40mg/dL for men and <50mg/dL for women as low, and considers low HDL-cholesterol to be a major risk factor for heart disease (www.americanheart.org). In addition to low HDL-cholesterol levels, high levels of low-density lipoprotein (LDL) cholesterol and total cholesterol have also been shown to increase the risk for heart disease. LDL cholesterol level of >160-189mg/dL, or a total cholesterol level of >240mg/dL is considered high.

1.2.4 Atherosclerosis and Heart Disease

The blood vessels form a system of tubes that carry blood away from the heart, through the tissues of the body, and back to the heart. The arteries are the vessels through which blood is pumped away from the heart. Atherosclerosis, commonly referred to as hardening of arteries, is an inflammatory response in the artery walls caused by the formation of plaques within the arteries. Plaques buildup in the arteries over a long period of time causing artery enlargement,

and atherosclerosis is generally asymptomatic for decades. Eventually plaques can rupture leading to stenosis of the artery or blood clot formation which blocks blood flow to the heart causing a heart attack.

1.2.5 Epidemiological Evidence for the Antiatherogenic Properties of HDL-Cholesterol

There are many different hypotheses for the biological basis of the atheroprotective role of HDLcholesterol, including the ability of HDL to promote cholesterol efflux, as well as the antioxidant and anti-inflammatory properties of the lipid particle.⁷ HDL particles have been shown to have antiatherogenic properties and HDL-cholesterol concentrations have been inversely correlated with the risk for coronary artery disease (CAD) in many studies.⁸⁻¹⁰ The Framingham Heart Study illustrated this inverse relationship: a 1% increase in HDL-cholesterol was associated with a 2% reduction in the development of CAD.⁹ A study by Gordon *et al.*¹⁰ supported this inverse relationship as well; an increase of 1mg/dL in HDL-cholesterol levels is associated with a 2% decrease in the risk for CAD in men and a 3% decrease in the risk for CAD in women. A strong negative association has also been shown with ischemic heart disease mortality; in one meta analysis of 900,000 adults an average of approximately 13mg/dL higher HDL-cholesterol was correlated with a one third lower risk for ischemic heart disease mortality in men and women within every age group.⁸ Individuals with decreased HDL-cholesterol levels have been shown to be at greater risk for heart disease; a HDL-cholesterol level <35mg/dL was associated with a 3 fold risk for CHD in one study.¹¹

1.3 GENETIC STUDIES OF HDL-CHOLESTEROL LEVELS

Abnormal lipid levels are a major risk factor for heart disease. HDL-cholesterol levels have been shown to be under a considerable amount of genetic control, with heritability estimates of up to 80% and an average heritability estimate of 40-60%.¹²⁻¹⁵ Research over the past 25 years has focused on determining the genetic basis underlying variation in HDL-cholesterol levels.

1.3.1 Candidate Gene Studies

The genes that encode the proteins responsible for HDL metabolism, including apos, cellular receptors, and enzymes are critical to HDL synthesis, processing, and catabolism. Through the elucidation of the biochemical pathway responsible for HDL metabolism candidate genes are identified for study. Numerous studies have been carried out over the last 25 years in an attempt to correlate variation in these genes with HDL-cholesterol levels.¹⁶ Candidate gene studies of genetic polymorphisms in the genes encoding lipoprotein lipase (LPL), the major triglyceride-hydrolyzing enzyme, and apolipoprotein A-I (apoA-I), the major protein of HDL-cholesterol, have been correlated with HDL-colesterol levels with inconsistent results.¹⁷

1.3.2 Genome Wide Association Studies (GWAS)

GWAS utilize single nucleotide polymorphism (SNP) chip technology and a case-control study design to identify genes associated with a particular phenotype. Multiple GWAS have been carried out and shown statistically significant associations between variation in HDL-cholesterol levels and the following genes: cholesteryl ester transfer protein *(CETP)*, lipoprotein lipase

(*LPL*), hepatic lipase (*LIPC*), endothelial lipase (*LIPG*), *ABCA1*, *LCAT*, the apolipoproteinA-I/C-3/A-IV/A-V gene cluster (*APOA1/C3/A4/A5*), apolipoprotein B (*APOB*), CCCTC-binding factor (*CTCF*), protein arginine N-methyltransferase 8 (*PRMT8*), MAP kinase-activating death domain (*MADD*), folate hydrolase 1 (*FOLH1*), acetylgalactosaminyltransferase 2 (*GALNT2*), mevalonate kinase (*MVK*), cob(I)alamin adenosyltransferase (*MMAB*), cleft lip- and palate-associated transmembrane protein 1 (*CLPTM1*), glutamate receptor, iontropic, N-methyl-D-asparate 3A (*GRIN3A*), and nuclear receptor subfamily 1, group H, member 3 (*NR1H3*). ¹⁸⁻²⁵

1.3.3 Genetic Models for HLD Variation

1.3.3.1 Common Variant-Common Disease Hypothesis

In the context of a Mendelian disorder a single gene can have a profound impact on a disease. This is exemplified in the case of familial hypercholesterolemia (FH), in which individuals heterozygous and homozygous for loss of function mutations in the low density lipoprotein receptor *(LDLR)* gene develop premature atherosclerosis.²⁶ In the context of complex disease, however, the effect of variation in most single gene candidates is small. One proposed model for genetic variation in HDL-cholesterol levels is the theory that many small effects of multiple common variants aggregate in an individual to produce disease susceptibility in common disease.¹⁶

1.3.3.2 Rare Variant-Common Disease Hypothesis

Another proposed model for genetic variation in HDL-cholesterol levels that is gaining increasing support is the theory that a portion of individuals in the population, those at the extremes of the Gaussian distribution, carry dysfunctional variants in genes that have more profound effects.¹⁶ A study by Cohen *et al.*²⁷ established a paradigm that multiple rare alleles with major phenotypic effects underlie a substantial minority of cases of decreased HDL-cholesterol levels in the general population. This multiple rare variants model has also been used in studies looking at LDL-cholesterol levels and triglyceride levels.²⁸⁻³⁰ The methodology used in this study, known as the 'missense-accumulation' analysis, is outlined in Figure 3.

Figure 3. 'Missense-Accumulation' Analysis. The frequency distribution of HDL-cholesterol levels is shown at the top of the figure (A). Individuals at the extremes (5th and 95th percentile) are chosen for DNA sequencing, focusing on candidate genes identified based on their biological function or in GWAS—APOA1, LCAT, ABCA1 in the case of Cohen *et al.*²⁷ (B). Individual samples are sequenced and the frequency of the identified variants between the two groups is compared (C). (Pollex *et al.*, 2007)¹⁶

1.4 APOLIPOPROTEIN A-I: THE APOA1 GENE

The apolipoproteinA-I (apoA-I protein; *APOA1* gene) has been mapped to chromosome 11q23 in humans. The National Center for Biotechnology Information (NCBI) reference nucleotide sequence is NC_000011.8 (<u>http://www.ncbi.nlm.gov/sites/entrez</u>). *APOA1* gene has four exons and three introns; the lengths of the exons are: 18bp, 63bp, 157bp, 659bp, respectively (Figure 4). The mRNA nucleotide sequence is 804nt in length (NCBI mRNA locus NM 000039.1).

Figure 4. The APOA1 Gene. (http://www.ncbi.nlm.gov/sites/entrez).

APOA1 encodes a protein, apoA-I; the coding sequence for the apoA-I protein begins in exon 2 (NCBI reference protein sequence NP_000030). ApoA-I is the major apolipoprotein of HDL.^{31,32} ApoA-I is also a cofactor for LCAT, which converts free cholesterol into cholesterol ester.

1.4.1 Protein Structure

The ApoA-I protein is a single polypeptide containing 243 amino acid residues.³¹ It is synthesized as a preprotein (NCBI preprotein reference sequence NP_000030.1) that undergoes proteolytic processing to form the mature protein that is present in blood.³³ Based on the amino acid sequence, the secondary structure is hypothesized to consist of repeating amphipathic

helicies of 11 or 22 amino acids in length separated by proline residues.³⁴ The crystal structure of apoA-I has been determined and is shown in Figure 5. The overall structure consists of two main helical domains, one in the N-terminal region containing a four-helix antiparallel bundle, and another in the C-terminal region containing a two-helix bundle.³⁵

Figure 5. Crystal structure of apoA-I. The six helices in the structure are colored blue (A), pink
(B), yellow (C), lavender (D), cyan (E), and red (F) and labeled. Loops are colored gold, and hydrophobic residues are shown as green sticks. (Ajees *et al.*, 2006)³⁵

1.4.2 Functional Considerations

Apoa-I is the major apolipoprotein in HDL particles; it is hypothesized to have a protective effect against the development of CAD via promoting efflux of cholesterol from cells and modulating immune cell activation.³⁶⁻⁴¹ In mice, apoA-I deficiency has been correlated with atherosclerosis, and an over expression of apoA-I was shown to be atheroprotective.^{42,43} ApoA-I also has proposed anti-inflammatory properties providing further evidence for its

atheroprotective role. These anti-inflammatory properties have been illustrated best in studies of D-4F, an apoA-I mimetic. Mice and monkeys given oral doses of D-4F have been shown to undergo a marked decrease in atherosclerotic lesions; clinical trials of D-4F safety and efficacy in human subjects are underway.⁴⁴

1.4.3 APOA1 Variants and Phenotypic Association

Studies have found a statistically significant correlation between variants in the *APOA1* gene and HDL-cholesterol levels.⁴⁵⁻⁴⁷ While other studies have been less successful in correlating variation in this gene with a clinical phenotype.⁴⁸ Decreased levels of apoA-I protein have also shown to be an independent risk factor for CAD, leading to the conclusion that apoA-I plays an important role in the atherogenic process, even in patients with no other risk factors for heart disease.⁴⁸ The heretibility of apoA-I levels have been estimated as high as 90% in multiple studies.⁴⁹

A variety of specific sequence variants have been identified in the *APOA1* gene and correlated with Mendelian disorders. NCBI Online Mendelian Inheritance in Man (OMIM) lists 26 rare allelic variants that are associated with different Mendelian disorders (Table 1) (http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim).

Variant	Amino Acid Change	dbSNP	Clinical Phenotype
ApoA-I (Milano) ⁵⁰	ARG173CYS	rs28931573	Hypertriglyceridemia and
			decrease in HDL levels without
			clinical signs of atherosclerosis ⁵¹
ApoA-I (Marburg)	LYS107TER		Hypertriglyceridemia and
			decrease in HDL levels ⁵²
ApoA-I (Munster4) ⁵³	GLU198LYS		No relationship to premature atherosclerosis ⁵⁴
ApoA-I (Norway) ⁵³	GLU136LYS		
ApoA-I (Giessen) ⁵²	PRO143ARG		
ApoA-I (Munster3C) ⁵³	PRO3ARG		
ApoA-I (Munster3B) ⁵³	PRO4ARG		
ApoA-I	PRO165ARG		Decrease in HDL and ApoA-I levels ⁵⁵
Iowa or Van Allen type	GLY26ARG	rs28931574	Autosomal dominant early onset
Amyloid Polyneuropathy-			amyloidosis and neuropathy and
Nephropathy ^{56,57}			variable onset nephropathy with
			peptic ulcer, cataracts, and
			hearing loss ³⁰
Combined Deficiency of	APOA1/APOC		Autosomal recessive very low
ApoA-I and ApoC-III;	3 FUSION		HDL and heart failure from CAD
Detroit type HDL			with arcus cornealis and
Deficiency			xanthoma ³⁸
Absence of ApoA-I due to	APOAL		Heterozygotes demonstrate
Deletion of	DELETION		decrease in HDL and apoA-I with
APOAI/APOC3/APOA4			CAD; no detectable apoA-I, very
Gene Complex			low HDL, reduced ApoB/C,
			CAD, corneal clouding, and
			diffuse lipid deposits in the
			individual ⁵⁹
ApoA-I (Baltimore)	ARG10LEU	rs28929476	Decrease in apoA-I levels
			(linkage not demonstrated) ⁶⁰
Corneal Clouding due to	1 - BP		Corneal clouding in a
ApoA-I Deficiency	DELETION		homozygous individual ⁶¹
	CODON 202		
ApoA-I Deficiency	GLN84TER		ApoA-I deficiency and premature
			atherosclerosis in a homozygous individual ⁶²
Systemic Nonneuropathic	LEU60ARG		Autosomal dominant
Amyloidosis			nonneuropathic systemic
_			amyloidosis ⁶³
Analphalipoproteinemia	GLN2TER		Very low HDL-cholesterol,

Table 1. Allelic Variants in APOA1

Table 1 (Continued)

		undetectable apoA-I,
		xanthelasmata, cataracts, and
		cerebellar ataxia in a homozygous
		individual ⁶⁴
Primary	1-BP	Autosomal dominant decreased
Hypoalphalipoproteinemia	INSERTION IN	HDL-cholesterol and apoA-I ⁶⁵
	CODON 325	
Periorbital Xanthlasmas	GLN32TER	Periorbital xanthlasmas without
		CAD or atherosclerosis in a
		homozygous individual ⁶⁶
Hepatic and Systemic	12-BP	Autosomal dominant
Amyloidosis	DELETION	nonneuropathic amyloidosis with
	AND 2-BP	a unique hepatic presentation and
	INSERTION IN	death from liver failure ⁶⁷
	EXON 4	
Systemic Nonneuropathic	TRP50ARG	Hereditary amyloidosis ⁶⁷
Amyloidosis		
ApoA-I (Oita)	VAL156GLU	Less than 10% normal HDL and
		apoA-I, CAD, and corneal
		opacities in a homozygous
		individual ^{os}
Primary	DONOR	Primary
Hypoalphalipoproteinemia	SPLICE SITE	Hypoalphalipoproteinemia ⁶⁹
	MUTATION	
	IN INTRON 2	
	G-C, +1	
Cardiac and Cutaneous	LEU90PRO	Autosomal dominant hereditary
Amyloidosis		amyloidosis with unique
		cutaneous and cardiac
		presentation and death from heart
		failure'
Cardiac and Cutaneous	ARG173PRO	Hereditary amyloidosis that
Amyloidosis		showed expression mainly in the 71
		skin and heart
Systemic Nonneuropathic	LEU174SER	Amyloid deposits mainly in the
Amyloidosis		heart'2
Systemic Nonneuropathic	ALA175PRO	Renal amyloidosis with renal
Amyloidosis		failure, sterility, and hoarseness
		due to laryngeal amyloid
		deposits'

Additionally, Pisciotta et al.74 reported two siblings with HDL deficiency, no plasma apoA-I, corneal opacities, and planar xanthomas who were homozygous for a deletion in exon 3 (c.85 del C) leading to a premature termination codon; one sibling also had premature CAD. This mutation was also reported in unrelated individuals, some of which were heterozygous, while others were compound heterozygous for other mutations in APOA1. A novel mutation in APOA1 was also reported by Hovingh et al.⁷⁵, a C>T point mutation at nucleotide 643 in exon 4, predicting the exchange of a leucine for a proline at codon 178. This change was correlated with low levels of apoA-I and HDL in Caucasian Dutch heterozygotes. The heterozygous individuals also had endothelial dysfunction, and statistically significant increased arterial wall thickness and increased rates of premature artery disease as compared to their unaffected siblings. Another new mutation in APOA1, leading to severe HDL-cholesterol deficiency in a group of 54 unrelated French Canadian subjects, was reported by Dastani et al.⁷⁶ The novel mutation in this population was a G>T point mutation at nucleotide 478 in exon 4, leading to a substitution of glutamic acid for a stop codon. In the study, five out of nine carriers over the age of 35 had developed CAD. Esperon *et al.*⁷⁷ recently reported a 2006G>C point mutation in exon 4 leading to an arginine to proline substitution in codon 153 in a family with a strong history of premature CAD. They named this variant ApoA-I_{Montevideo}.

Studies have been done looking at common and rare variants that contribute to complex disease. Thirty SNPs in the *APOA1* gene, plus the insertion/deletion polymorphism have been reported by Fullerton *et al.*⁷⁸ and summarized in the SeattleSNPs database (<u>http://pga.mbt.washington.edu</u>). Tables 2, 3, and 4 below summarize the variants found in each of the three populations: Jackson, MS, North Karelia Finland, and Rochester, MN, respectively.

Site	rs Number	nt	Minor Allele
		Change	Frequency (MAF)
206	rs7123454	A>C	0.50
631	rs7948159	A>G	0.35
1049	rs1263162	T>A	0.24
1128	rs11216153	G>T	0.17
1308	rs12721030	C>T	0.06
1407	rs127211027	ins	0.03
1541	rs127211029	C>T	0.03
1546	rs525028	G>A	0.23
1620	rs12721028	A>G	0.45
1749	rs12718462	T>C	0.05
2077	rs12721025	G>A	0.04
2198	rs12721026	T>G	0.04
2373	rs12718463	T>C	0.42
2376	rs5081	A>T	0.23
3220	rs5076	G>A	0.27
3368	rs7116797	G>A	0.31
3431	rs12718464	G>A	0.04
3543	rs5073	C>T	0.12
3766	rs12718465	C>T	0.10
4050	rs5070	A>G	0.41
4245	rs12721032	G>A	0.02
4284	rs5069	G>A	0.27
4443	rs670	C>T	0.17
4732	rs12718467	C>A	0.04
4807	rs12691374	C>T	0.11

Table 2. Allelic Variants in the Jackson, MS Population (25 total)

Site	rs Number	nt	Minor Allele
		Change	Frequency (MAF)
206	rs7123454	A>C	0.25
533	rs12721031	C>T	0.08
1128	rs11216153	G>T	0.10
1308	rs12721030	C>T	0.17
1546	rs525028	A>G	0.35
1598	rs10750098	T>G	0.18
1620	rs12721028	A>G	0.10
1749	rs12718462	T>C	0.08
2077	rs12721025	G>A	0.08
2198	rs12721026	T>C	0.09
2373	rs12718463	T>C	0.04
3220	rs5076	G>A	0.06
3368	rs7116797	G>A	0.23
3431	rs12718464	G>A	0.08
3613	rs5072	G>A	0.17
3714	rs2070665	G>A	0.17
4050	rs5070	G>A	0.35
4284	rs5069	G>A	0.06
4443	rs670	C>T	0.10
4693	rs12718466	T>G	0.06

Table 3. Allelic Variants in the North Karelia, Finland Population (20 total)

Site	rs Number	nt	Minor Allele
		Change	Frequency (MAF)
206	rs7123454	A>C	0.08
533	rs12721031	C>T	0.02
1049	rs1263162	T>A	0.02
1128	rs11216153	G>T	0.31
1308	rs12721030	C>T	0.33
1407	rs127211027	ins	0.02
1546	rs525028	A>G	0.40
1598	rs10750098	T>G	0.06
1620	rs12721028	A>G	0.28
1717	rs12718461	G>C	0.02
1749	rs12718462	T>C	0.02
2077	rs12721025	G>A	0.02
2198	rs12721026	T>G	0.02
2373	rs12718463	T>C	0.02
2376	rs5081	A>T	0.02
3220	rs5076	G>A	0.02
3368	rs7116797	G>A	0.08
3431	rs12718464	G>A	0.04
3613	rs5072	G>A	0.06
3714	rs2070665	G>A	0.06
3766	rs12718465	C>T	0.09
4050	rs5070	G>A	0.35
4284	rs5069	G>A	0.02
4443	rs670	C>T	0.31
4693	rs12718466	T>G	0.02

Table 4. Allelic Variants in the Rochester, MN Population (25 total)

Both Brown *et al.*⁴⁵ and Shioji *et al.*⁴⁷ previously identified the T>C change (rs5070); Shioji *et al.*⁴⁷ correlated this change with a statistically significant increase in HDL-cholesterol levels in an Japanese population, but Brown *et al.*⁴⁵ did not see this same association in a multi-ethnic population. Resequencing of the *APOA1* gene in Brown *et al.*⁴⁵ identified one variant in *APOA1* (rs5076) that was statistically significant in European-American males and had a consistent genotype-phenotype relationship across all populations and gender subgroups. However, Brown

*et al.*⁴⁵ did not see any statistically significant correlation with *APOA1* SNPs (rs5069, rs2070665, and rs2073) and HDL levels in a multi-ethnic population of Caucasians and African-Americans. Knoblauch *et al.*⁷⁹ did not see an association between *APOA1* variants (rs525028, rs5081, rs5070, rs1799837, and rs5069) and HDL levels.

1.5 APOLIPOPROTEIN A-IV AND THE APOA4 GENE

The apolipoproteinA-IV (apoA-IV protein; *APOA4* gene) has been mapped to chromosome 11q23 in humans (NCBI reference nucleotide sequence NC_000011.8). *APOA4* gene has three exons and two introns; the length of the exons are: 153bp, 127bp, and 1180bp, respectively (Figure 6). The mRNA nucleotide sequence is 1191nt in length (NCBI mRNA locus NM 000482.3).

Figure 6. The APOA4 Gene (http://www.ncbi.nlm.gov/sites/entrez).

APOA4 encodes a protein, apoA-IV, that is 396 amino acids in length and has two major isoforms (The NCBI reference protein sequences are AAI13597 and AAI13595). It is synthesized as a preprotein (NCBI preprotein reference sequence NP_000473.2) and undergoes post-translations modifications. While the exact function of apoA-IV is not known, it has a number of proposed functions including involvement in the assembly and secretion of chylomicrons and the reverse cholesterol transport system.

1.5.1 Structure

The crystalline structure of ApoA-IV has yet to be determined. A three-dimension homology model of the protein has been proposed, and studies have looked at the structure of the protein and the possible functional implications.^{80,81}

Figure 7. Homology Model of apoA-IV. The majority of the protein is colored green. The Nterminal 39 amino acids, encoded by a separate exon, are colored orange with the amino acids Trp¹² and Phe¹⁵ shown as red spheres. The C-terminal 66 amino acids are colored light blue, with residues Phe³³⁴, Phe³³⁵ and Phe³³⁸ shown as blue spheres. (Tubb, 2008) ⁸¹

1.5.2 APOA4 Variants and Phenotypic Association

Many allelic variants in *APOA4* have been reported and correlated with a clinical phenotype. In 1990, Lohse *et al.*⁸² reported the molecular basis of a common protein polyprophism (APOA4*1 and APOA4*2), and demonstrated that a G>T nucleotide substitution leads to the conversion of a glutamine to a histidine at codon 360. This change has been categorized further in many studies. In the Framingham Offspring Study of 2322 Caucasian men and women, Cendoroglo *et al.*⁸³ examined the effect of the APOA4 (G>T) polymorphism on plasma lipid and lipoprotein levels. No significant allele effect of the was observed on HDL-cholesterol levels, other lipid levels, or Lp(a) levels.

Another common variant, with a reported allele frequency of 0.20-0.25, is a A>T nucleotide substitution which leads to a conversion of a threonine to serine at codon 347.⁸⁴ One study of 2808 healthy individuals correlated this variant with a decreased plasma apoA-IV levels and an increased risk for CHD.⁸⁵ Another study correlated this variant with an increased risk for cardiovascular disease in individuals with diabetes.⁸⁶ However, a third study reported no association between this variant and hyperlipidemia in otherwise healthy individuals.⁸⁷

Other more rare variants have also been reported in the literature. Lohse *et al.*⁸⁸ reported a four amino acid insertion (Glu-Gln-Gln-Gln) between codons 361 and 362 which was termed APOA4*0. Lohse *et al.*⁸⁸ also reported a G>A nucleotide substitution that converted glutamic acid to lysine at codon 230, termed APOA4*3. In another study, Lohse *et al.*⁸⁹ reported three novel variants in APOA4: an A>T point mutation at nucleotide 2346 in exon 3 causing a Thr347Ser amino acid substitution, an A>G point mutation at nucleotide 1806 causing a Lys167Glu amino acid substitution (this was in cis with an APOA4*2 variant), and a G>A point mutation at nucleotide 1800 in exon 3 causing a Glu165Lys amino acid substitution. Deeb *et*

*al.*⁹⁰ also reported three novel variants in *APOA4* in individuals with familial combined hyperlipidemia: a C>T causing a S158L amino acid substitution (termed Seattle-1), a G>A change causing a R244Q amino acid substitution (termed Seattle-2), and a G>T change causing a A141S amino acid substitution (termed Seattle-3). Knoblauch *et al.*⁷⁹ did not see an association between *APOA4* variants (rs675, rs5104, rs5092, and rs2542051) and HDL levels.

Thirty SNPs in the APOA4 gene, plus the deletion polymorphism have been reported by Fullerton *et al.*⁷⁸ and summarized in the SeattleSNPs database (<u>http://pga.mbt.washington.edu</u>). Tables 5, 6, and 7 below summarize the variants found in each of the three populations: Jackson, MS, North Karelia Finland, and Rochester, MN, respectively.

Site	rs Number	nt	Minor Allele
		Change	Frequency
		C	(MAF)
165	rs9282602	DEL	0.02
315	rs675	T>A	0.19
406	rs5109	C>A	0.11
568	rs5106	G>A	0.05
974	rs5104	T>C	0.06
1183	rs12721042	C>A	0.02
1198	rs5101	G>A	0.23
1334	rs5100	A>G	0.35
1453	rs5098	G>C	0.14
1735	rs5096	A>G	0.35
1803	rs5095	A>G	0.20
1853	rs5094	G>A	0.11
1993	rs2239013	C>T	0.13
1994	rs5093	G>A	0.09
2104	rs5092	T>C	0.02
2511	rs12721041	C>T	0.05
2645	rs5091	C>T	0.15
2981	rs5089	C>T	0.05

Table 5. Allelic Variants in the Jackson, MS Population (18 total)

Site	rs Number	nt	Minor Allele
		Change	Frequency
			(MAF)
120	rs12721040	G>A	0.02
165	rs9282602	DEL	0.41
274	rs5110	C>A	0.02
315	rs675	T>A	0.15
933	rs12721043	C>A	0.09
964	rs2234668	G>A	0.04
974	rs5104	T>C	0.20
1192	rs5103	A>G	0.12
1334	rs5100	A>G	0.50
1735	rs5096	A>G	0.50
1803	rs5095	A>G	0.15
1993	rs2239013	C>T	0.08
2104	rs5092	T>C	0.35
2695	rs5090	C>G	0.08

Table 6. Allelic Variants in the North Karelia, Finland Population (14 total)

Table 7. Allelic Variants in the Rochester, MN Population (15 total)

Site	rs Number	nt Change	Minor Allele Frequency (MAF)
165	rs9282602	DEL	0.31
274	rs5110	C>A	0.08
315	rs675	T>A	0.11
933	rs12721043	C>A	0.02
964	rs2234668	G>A	0.04
974	rs5104	T>C	0.15
1192	rs5103	A>G	0.02
1334	rs5100	A>G	0.31
1735	rs5096	A>G	0.31
1803	rs5095	A>G	0.15
1853	rs5094	G>A	0.02
1993	rs2239013	C>T	0.04
1994	rs5093	G>A	0.02
2104	rs5092	T>C	0.17
2695	rs5090	C>G	0.06

1.6 SPECIFIC AIMS

This study aims to further evaluate the genetic variation in the *APOA1* and *APOA4* genes, and correlate this variation with HDL-cholesterol levels in two well-characterized populations: African Blacks from Benin, Nigeria and Non-Hispanic Whites (NHWs) from Colorado, U.S.

Aim 1: Sequence the *APOA1* and *APOA4* genes in a subset of individuals with HDLcholesterol in the upper 5th percentile (47 NHWs and 48 Blacks) and lower 5th percentile (48 NHWs and 47 Blacks).

Aim 2: Identify rare and common variants within the data generated from sequencing the *APOA1* and *APOA4* genes in this population subset.

Aim 3: Determine the associations of both rare and common *APOA1* and *APOA4* variants on HDL-cholesterol levels in the general population of NHWs and African blacks.

2.0 SUBJECTS AND METHODS

2.1 SUBJECTS

2.1.1 Study Populations

The subjects used in this study are summarized in Table 8. Samples from the African Black population were obtained as part of a study on coronary heart disease risk factors in blacks. Subjects were recruited from junior and senior staff, at a variety of salary grades, in government ministries in Sokoto and Benin City, Nigeria. During the initial study demographic and health information was gathered from participants; detailed information about the study population is available elsewhere.^{91,92}

Samples from the Non-Hispanic Whites (NHWs) were obtained from the San Luis Valley Southern Colorado Diabetes Study. The subjects involved in this study were normoglycemic. A detailed description of the sample population is available elsewhere.^{93,94}

The esterase-oxidase method was used to measure fasting total serum cholesterol.^{95,96} Following dextran sulfate magnesium precipitation, total HDL-cholesterol was determined enzymatically.^{95,97} The DNA used for sequencing and TaqMan genotyping was extracted from clot sample (Blacks) and from buffy coat (NHWs) using standard DNA extraction procedures.
Table 8.	Sampl	le popu	lations
----------	-------	---------	---------

Population	Men (%)	Women (%)	Total (%)
African Blacks	495 (62.8)	293 (37.2)	788 (55.8)
U.S. Whites	295 (47.4)	328 (52.6)	623 (44.2)
Total	790 (56.0)	621 (44.0)	1,411 (100)

2.1.2 Subset of the Study Population Used for Sequencing

Ninety-five samples (47 NHW and 48 Black) from individuals with HDL-cholesterol levels in the upper 5th percentile and 95 samples (48 NWH and 47 Black) from individuals with HDL-cholesterol levels in the lower 5th percentile were selected for sequencing and screening for common and rare variants. The sample characteristics of selected individuals in the high and low HDL groups, are summarized in Table 9, including: gender, age, BMI, LDL, HDL, total cholesterol, and triglyceride levels.

Table 9. Biometric and Quantitative Data (mean±SD) of NHWs and Blacks Used for DNA

	NHWs (n=95)			Blacks (n=95)		
Variable	High HDL (n=47)	Low HDL (<i>n</i> =48)	<i>p</i> -value	High HDL (n=48)	Low HDL (<i>n</i> =47)	p-value
Sex (M/F)	24/23	24/24	0.92	24/24	23/24	0.92
Age (years)	55.45 ± 9.80	53.03 ± 10.54	0.25	41.29 ± 8.72	40.87 ± 7.16	0.8
BMI (kg/m2)	23.17 ± 3.17	27.35±3.90	<0.001	22.06 ± 4.71	23.91 ± 5.51	0.08
Total cholesterol (mg/dl)	227.34±51.76	208.81±44.65	0.06	201 ± 39.68	141.68 ± 31.03	<0.001
LDL cholesterol (mg/dl)	126.84±46.95	136.95±41.28	0.28	112.55 ± 39.75	95.04 ± 28.28	0.02
HDL cholesterol (mg/dl)	77.68±13.32	31.81±4.37	<0.001	76.05 ± 7.53	25.51 ± 5.66	<0.001
Triglycerides (mg/dl)	114.09±60.88	240.21±153.22	<0.001	61.98 ± 19.85	95.79 ± 73.21	0.003

Sequencing

2.2 DNA SEQUENCING

APOA1 primers were designed using Primer3 software version 0.4.0 (http://frodo.wi.mit.edu) to create nine overlapping PCR amplicons. The area covered by the primers includes the four exons and three introns in the gene, plus approximately 940bp of the 5' flanking region (putative promoter region) and approximately 2.5Kb of the 3' flanking region. Primers for amplicon 5 were redesigned because the PCR fragment did not amplify using the original primer set. Additional primers were also designed to amplify a PCR fragment spanning the amplicon 4 and 5 junction because of a sequencing gap in this region. Sequencing was performed in both the forward and reversed direction of all of the samples except for the PCR fragment spanning the amplicon 4 and 5 junction; for this amplicon only forward sequencing was performed. Table 10 is a comprehensive list of the primers used to sequence *APOA1* in this study.

PCR	Forward Primer	Reverse Primer
Amplicons		
1	5'-GCCTTCCTTGACAGCTTTGT-3'	5'-CTGCACCAACTGAGCAGAAT-3'
2	5'-AGAGGCTGCTTCCTTTGTGT-3'	5'-CCTGGCACTCAAGTTCACAT-3'
3	5'-TTCAGACATGAGTGCAAGGAG-3'	5'-AGAAGCTGGCCTGAGTAAGAA-3'
4	5'-CAGTGTCCTCATCCATGCTC-3'	5'-GTCTTAGGGCCAAGATCGAC-3'
4-5 junction	5'-CCAGCTAAAGCAACCCTGTT-3'	5'-GTTTCCAAAGTGGGAAGCAG-3'
5	5'-TTGGATTGTCTGTGGCTTTG-3'	5'-AGAAGAAGTGGCAGGAGGAG-3'
5-new	5'-TCCGCTGTGACTTCCTTTCT-3'	5'-ATGAGCAAGGATCTGGAGGA-3'
6	5'-AGTGGGCTCAGCTTCTCTTG-3'	5'-AAGCCCCTTTCCCTTCTTC-3'
7	5'-AGTGGCCTAGCATTTCCAGT-3'	5'-CTAACCTAGGGAGCCAACCA-3'
8	5'-GGGAGGGGAGACCCAGAT-3'	5'-CCCACTGAACCCTTGACC-3'
9	5'-GTCCTGGCAATGTGGAACTT-3'	5'-TAACTTGCCCACGATCTTCC-3'

Table 10. APOA1 Polymerase Chain Reaction (PCR) Primers

Publicly available information from the Seattle SNP database (http://pga.mbt.washington.edu) was used to order M13-tagged primers for sequencing of *APOA4*; four overlapping PCR amplicons were created using these primers. The area covered by the primers includes the three exons and two introns in the gene, plus approximately 780bp of the 5' flanking region (putative promoter region) and approximately 10bp of the 3' flanking region. Sequencing was performed in both the forward and reversed direction of all of the samples. Table 11 is a comprehensive list of the primers used to sequence *APOA4* in this study; M13-tag sequence is <u>underlined</u>.

PCR Amplicons	Forward Primer
1	5'-TGTAAAACGACGGCCAGTCAACCAGTTGAGGCTAGATTCTC-3'
2	5'- <u>TGTAAAACGACGGCCAGT</u> TTCTTCTTCATCTGGAAGGTCAG-3'
3	5'- <u>TGTAAAACGACGGCCAGT</u> CTCAGGATCTCCCACATAGTTTG-3'
4	5'- <u>TGTAAAACGACGGCCAGT</u> TTTCCCTGTCTGAGCTTAGCTT
PCR Amplicons	Reverse Primer
1	5'- <u>CAGGAAACAGCTATGACC</u> TCAAAGTCAAGATTGACCAGACC-3'
2	5'- <u>CAGGAAACAGCTATGACC</u> GCAGAGGTCAAGAAGACAACATT-3'
3	5'- <u>CAGGAAACAGCTATGACC</u> GGACACTTCTGAGTGCCCAT-3'
4	5'-CAGGAAACAGCTATGACCATGGAGACTGAGAGATGACCGTA-3'

Table 11. APOA4 Polymerase Chain Reaction (PCR) Primers

The polymerase chain reaction (PCR) was performed using the GeneAMP® PCR System 9700 thermal cycler with a heated lid (Applied Biosystems, Foster City, CA). The PCR reaction reagents and cycling conditions used in this study are given in Table 12. PCR conditions were optimized through adjusting the MgCl₂ or annealing temperature within the range indicated in the table.

PCR Reaction	(total volume 25 μ L)	PCR conditions
DNA	3.0 µL	1. 95°C for 5 minutes
dH ₂ O	12.25-13.75 μL	
10x BufferGold	2.5 μL	2. 95°C for 45 seconds
MgCl ₂ (25 mM)	1-2.5 μL	3. $58^{\circ}60^{\circ}$ C for 45 seconds
dNTPs (1.25mM)	3.8 µL	4. 72°C for 1 minute
Forward Primer (20mM)	0.4 µL	-repeat 2-4 39x
Reverse Primer (20mM)	0.4 µL	5. 72°C for 10 minutes
AmpliTaqGold (5U/µL)	0.15 μL	6. Cool to 4°C

Table 12. PCR Reaction and Cycling Conditions

Gel electrophoresis was used to check for successful amplification of each of the PCR fragments. For each sample, 7μ L of PCR product was combined with 5μ L of loading dye and 8μ L distilled water, and loaded into a 96-well pre-cast agarose gel (InvitrogenTM E-Gel® 96 2% with SYBR® Safe). The EG program on the electrophoresis base (InvitrogenTM E-BaseTM) was used to run the gel for 8 minutes. Reamplification was done for a subset of samples that failed the initial amplification. For this subset, confirmation was performed using agarose gels with ethidium bromide. The 7µL of PCR product was combined with 5µL of loading dye and loaded into a 2% agarose gel in TBE buffer (tris, boric acid, and disodium EDTA dihydrate) and stained with ethidium bromide. Electrophoresis was run for 15 minutes at 250V. Both the 96-well and hand-poured gels were visualized using a UV transilluminator.

A commercial sequencing facility (Genomic Services of Agencourt Bioscience Corporation, Beverly, MD) performed automated sequencing and capillary electrophoresis. The programs used to analyze the sequence results were: Sequencher version 4.8 (Gene Codes Corporation, Ann Arbor, MI), and Variant Reporter version 1.0 (Applied Biosystems, Foster City, CA).

2.3 GENOTYPING WITH TAQMAN

For common SNPs (MAF \geq 5%) available pre-made TaqMan SNP genotyping assays were ordered. Seven assays were available, two for *APOA1* and five for *APOA4*. Table 13 lists the seven TaqMan assays that were used for genotyping in the NHW, Black population, or both.

Reference SNP ID	Gene	Assay ID	Population
rs5070	APOA1	C_2679584_10	NHWs, Blacks
rs5072	APOA1	C_11482715_1_	NHWs, Blacks
rs5092	APOA4	C_2679569_10	NHWs, Blacks
rs5100	APOA4	C_2679565_10	NHWs, Blacks
rs5104	APOA4	C_11482766_10	NHWs, Blacks
rs5106	APOA4	C_11482768_10	Blacks
rs5109	APOA4	C_11482772_10	Blacks

Table 13. TaqMan[®] SNP Genotyping Assays

The TaqMan procedure involved DNA amplification and endpoint fluorescent reading using the ABI Prism 9700HT Sequence Detection System (Applied Biosystems, Foster City, CA). The reagents listed in Table 14 were added to 384-well plates containing dried whole genome amplified DNA. The TaqMan genotyping Assay Mix contains: sequence specific forward and reverse primers, a TaqMan minor groove binder (MGB) probe labeled with VIC dye at the 5' end and a nonfluorescent quencher (NFQ) at the 3' end, and a TaqMan MGD labeled with FAM dye at the 5' end and a NFQ at the 3' end. The GeneAMP® PCR System 9700 thermal cycler with a heated lid (Applied Biosystems, Foster City, CA) was used for PCR amplification; cycling conditions are displayed in Table 14.

TaqMan Reaction	(total volume 5 μ L)	PCR conditions
dH ₂ O	2.435 μL	1. 95°C for 10 minutes
TaqMan Genotyping	2.5 μL	2. 95°C for 15 seconds
Master Mix (2x)		
TaqMan Genotyping	0.065 µL	3. 60°C for 1 minute
Assay Mix (40x)		-repeat 2-3 49x

Table 14. TaqMan Reaction and Cycling Conditions

Discrimination of alleles is possible because of the selective annealing of the TaqMan probes; each MGB probe binds to the target sequence harboring the SNP of interest during the annealing step (step 3 in Table 14) AmpliTaq Gold polymerase, which is part of the TaqMan Genotyping Master Mix, cleaves the probes that hybridize to the target sequence. The reporter dye is separated from the NFQ, releasing a fluorescent signal. Fluorescence is suppressed if the probes do not hybridize to the target sequence; the reporter dye does not separate from the NFQ.

The genotyping call rates for all seven assays are shown in Table 15. The genotyping discrepancy rate was <2.2% for each variant based on a 20-30% repeat of the samples.

Reference SNP ID	NHWs (%)	Blacks (%)
rs5070	98.56	95.94
rs5072	99.52	98.22
rs5092	99.52	96.70
rs5100	99.68	96.32
rs5104	99.04	94.92
rs5106	-	96.57
rs5109	-	98.22

Table 15. Genotyping Call Rates for TaqMan

2.4 STATISTICAL METHODS

Direct allele counting was used to determine allele frequencies in this study. Concordance of the genotype distribution to Hardy-Weinberg equilibrium (HWE) was tested for each variant using a χ^2 goodness-of-fit test. A standard Z-test of two binomial proportions was used to compare the allele frequencies. Linkage disequilibrium (LD) pattern and tagSNPs were determined using Haploview version 4.3 (http://www.broad.mit.edu/mpg/haploview). All dependent quantitative variables were transformed (using a log or square root transformation) when necessary to reduce the effects of non-normality. The significant covariates for each dependant variable were identified using stepwise regression in both directions. The most parsimonious set of covariats was determined separately for males and females within the NWH and Black populations. Oneway analysis of variance (ANOVA) was performed separately for males and females within the NHW and Black populations to test for the effects of genotypes on the means of quantitative traits (which were transformed and adjusted when necessary). The R statistical software package version 2.3.1 (http://www.r-project.org) and Statistical Analysis Software (SAS) was used to perform all computations. Two genetic models were used for data analysis, the additive and codominant models. A p-value of <0.05 under one of these models was considered as suggestive evidence of association

3.0 **RESULTS**

3.1 DNA SEQUENCING

3.1.1 APOA1

A total of 53 single nucleotide substitutions plus one insertion/deletion (indel) polymorphism were identified in *APOA1*. For the indel variant in 3' flanking region three different alleles were observed; insertion of T (9 T's) in NHWs, deletion of T (7 T's) in Blacks, and the wild type of 8 T's in both populations (in the reverse strand sequence). The insertion allele was previously reported in public databases, whereas the deletion allele was novel. The location of variants were as follows: 8 in putative promoter region, 6 in exons, 12 in introns, and the remaining in 3' flanking region.

Twenty-nine of the identified variant locations had already been reported in publicly available databases (SeattleSNPs database, CHIP Bioinformatics database, dbSNP), while 25 were novel (not previously reported). Seventeen single nucleotide substitutions were observed only in NHWs; 20 single nucleotide substitutions were observed only in Blacks. Of a total of 25 identified new variants, 10 were in NHWs and 15 were in Blacks; thus, none of the novel variants were observed in both populations. Of 34 variants identified in NHWs 23 were relatively rare, with MAF <5%. Of 37 variants identified in Blacks, 17 were relatively rare with

MAF <5%. All newly identified variants in each population had <5% MAF. Table 16 lists all of the variants identified in this study. The chromatograms illustrating the 25 novel variants in *APOA1* are shown in figure 8. The annotated FASTA file and related information is given is section 3.1.3.

Table 16. APOAT Sequence Variants.						
APOA1 Variant*/**	rs# (CHIP&GB)	Location	Amino Acid Change	Population	MAF (NHWs)	MAF (Blacks)
206A>C	rs7123454	3'-flanking		Both	0.174	0.349
338A>G	Novel Variant	3'-flanking		Blacks		0.032
386G>A	Novel Variant	3'-flanking		Blacks		0.005
477C>T	Novel Variant	3'-flanking		Blacks		0.016
533C>T	rs12721031	3'-flanking		NHWs	0.016	
631A>G	rs7948159	3'-flanking		Blacks		0.484
656C>T	Novel Variant	3'-flanking		Blacks		0.005
689C>T	Novel Variant	3'-flanking		NHWs	0.005	
894G>A	Novel Variant	3'-flanking		Blacks		0.016
959G>C	Novel Variant	3'-flanking		NHWs	0.005	
1049T>A	rs1263162	3'-flanking		Both	0.011	0.128
1128G>T	rs11216153	3'-flanking		Both	0.191	0.095
1143G>T	Novel Variant	3'-flanking		Blacks		0.005
1308C>T	rs12721030	3'-flanking		Both	0.234	0.011
		2' flooking		ins(NHWs);		
1407del/insT***	rs12721027****	3-hanking		del(Blacks)	0.005	0.032
1507T>C	Novel Variant	3'-flanking		NHWs	0.005	
1546A>G	rs525028	3'-flanking		Both	0.372	0.079
1549C>T	Novel Variant	3'-flanking		NHWs	0.005	
1598T>G	rs10750098	3'-flanking		Both	0.132	0.084
1620A>G	rs12721028	3'-flanking		Both	0.184	0.300
1749T>C	rs12718462	3'-flanking		NHWs	0.037	
1965T>C	Novel Variant	3'-flanking		Blacks		0.032
2077G>A	rs12721025	3'-flanking		NHWs	0.037	
2120C>A	Novel Variant	3'-flanking		Blacks		0.011
2198T>G	rs12721026	3'-flanking		NHWs	0.037	
2215C>A	Novel Variant	3'-flanking		Blacks		0.005
2373T>C	rs12718436	3'-flanking		Both	0.042	0.389
2376A>T	rs5081	3'-flanking		Both	0.011	0.126
2626G>C	rs5080	exon 4	syn	Blacks		0.016
2652C>A*****	Novel Variant	exon 4	Glu>Ter	NHWs	0.005	
2880C>G	Novel Variant	exon 4	Glu>Gln	Blacks		0.005
3220G>A	rs5076	intron 3		Both	0.042	0.437
3307C>A	Novel Variant	intron 3		NHWs	0.011	
3368G>A	rs7116797	intron 3		Both	0.147	0.358
3431G>A	rs12718464	intron 3		NHWS	0.026	
3543C>1	rs5073	intron 3		Blacks		0.058
3613G>A	rs5072	intron 3		Both	0.105	0.100
3714G>A	rs2070665	intron 3		Both	0.105	0.096
3769A>C	Novel Variant	exon 3	Ser>Ala	NHVVS	0.005	
3867G>1	Novel Variant	exon 3	Pro>His	Blacks		0.005
3959G>1		Intron 2		NHVVS	0.005	
4050G>A	rs5070	1000 2		Both	0.332	0.436
4151G>C	Novel Variant	exoli 2/5-01R			0.005	
42060>1		intron 1			0.005	0.005
42030>1	151799637 ro5060	intron 1		NHVVS Both	0.005	0 427
4204G>A	150009	F' flooking / promotor		Both	0.032	0.437
160322C	13070 re12718766	5'-flanking / promotor		NHWe	0.109	0.121
4033120	13121 10400	5'-flanking / promotor		Blacks	0.042	0.106
413202A 180705T	13121 10401 re12601274	5'-flanking / promotor		Blacks		0.100
4007021	Novel Variant	5'-flanking / promotor		Blacks		0.000
5055ALT	Novel Variant	5'-flanking / promotor		Blacks		0.020
5066G-T	Novel Variant	5'-flanking / promoter		Blacks		0.000
5131C>T	Novel Variant	5'-flanking / promoter		NHWs	0.011	

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. ** Triallelic insertion/deletion polymorphism. **** rs number is for the insertion and wild type alleles. ***** Suspicious variants with low sequence quality.

Figure 8. Chromatograms for New Variants in the APOA1 Gene.

3.1.2 APOA4

A total of 41 single nucleotide substitutions were observed in *APOA4*, plus two indel polymorphisms. Both indels were located in exon 3 and included a four nucleotide deletion (ACAG) at the 3' untranslated region (UTR), and a 12 nucleotide insertion (CTGTTCCTGCTG) affecting the coding region. Although the latter variant was reported in the literature, it is shown as a novel variant in Table 17 because it is not present in the public databases.⁸⁸

Twenty-three of the identified variants had already been reported in publicly available databases, while 20 were novel (not previously reported). Thirteen variants were observed only in NHWs; 20 were observed only in Blacks. Of a total of 20 identified new variants, 7 were in NHWs and 13 were in Blacks; thus, none of the novel variants were observed in both populations. Of 23 variants identified in NHWs 12 were relatively rare, with MAF <5%. Of 30 variants identified in Blacks, 17 were relatively rare with MAF <5%. Of the 20 novel variants identified in this study, 18 were relatively rare with MAF <5%. Two of the novel variants in Blacks had a MAF of 0.053. Table 17 lists all of the variants identified in this study. The chromatograms illustrating the 20 novel variants in *APOA4* are shown in figure 9. The annotated FASTA file and related information is given is section 3.1.3.

APOA4 Variant*/**	rs# (CHIP&GB)	Location	Amino Acid Change	Population	MAF (NHWs)	MAF (Blacks)
120G>A	rs12721040	exon 3/3'-UTR		NHWs	0.021	
165delACAG	rs9282602	exon 3/3'-UTR		Both	0.495	0.058
274C>A	rs5110	exon 3	Gln>His	NHWs	0.089	
288ins12	Novel Variant	exon 3		Blacks		0.016
315T>A	rs675	exon 3	Thr>Ser	Both	0 195	0.074
357A>C	Novel Variant	exon 3	Ser>Ala	Blacks		0.053
406C>A	rs5109	exon 3	svn	Blacks		0 126
422G>T***	Novel Variant	exon 3	Pro>His	NHWs	0.005	
520C>T	Novel Variant	exon 3	svn	NHWs	0.005	
568G>A	rs5106	exon 3	syn	Blacks		0.042
634G>A	rs5105	exon 3	syn	Blacks		0.021
755C>T	Novel Variant	exon 3	Ara>His	Blacks		0.005
945G>A	Novel Variant	exon 3	svn	NHWs	0.005	
952C>T	Novel Variant	exon 3	svn	NHWs	0.005	
964G>A	rs2234668	exon 3	syn	NHWs	0.058	
974T>C	rs5104	exon 3	Asn>Ser	Both	0.163	0.106
1033G>T	Novel Variant	exon 3	Asn>l vs	NHWs	0.005	
1192A>G	rs5103	exon 3	svn	NHWs	0.053	
1198G>A	rs5101	exon 3	svn	Blacks		0.425
1274G>A	Novel Variant	intron 2		Blacks		0.011
1326A>G	Novel Variant	intron 2		Blacks		0.053
1334A>G	rs5100	intron 2		Both	0.411	0.404
1371C>T	Novel Variant	intron 2		Blacks		0.043
1453G>C	rs5098	intron 2		Blacks		0.012
1735A>G	rs5096	intron 2		Both	0.411	0.402
1743T>G	Novel Variant	intron 2		Blacks		0.005
1803A>G	rs5095	intron 2		Both	0.195	0.065
1853G>A	rs5094	intron 2		Both	0.011	0.081
1948C>A	Novel Variant	intron 2		Blacks		0.021
1993C>T	rs2239013	intron 2		Both	0.042	0.043
1994G>A	rs5093	intron 2		Both	0.032	0.011
2104T>C	rs5092	exon 2	syn	Both	0.216	0.160
2287G>A	Novel Variant	intron 1		NHWs	0.005	
2327C>A***	Novel Variant	intron 1		Blacks		0.005
2406C>G***	Novel Variant	intron 1		Blacks		0.005
2645C>T	rs5091	exon 1 / 5'-UTR		Blacks		0.050
2685C>T***	Novel Variant	5'-flanking / promoter		Blacks		0.005
2695C>G	rs5090	5'-flanking / promoter		NHWs	0.068	
2705C>T	Novel Variant	5'-flanking / promoter		Blacks		0.005
2978C>A	rs7929134	5'-flanking / promoter		NHWs	0.021	
2981C>T	rs5089	5'-flanking / promoter		Blacks		0.037
2984G>A	Novel Variant	5'-flanking / promoter		NHWs	0.005	
3146G>A	Novel Variant	5'-flanking / promoter		Blacks		0.005

Table 17. APOA4 Sequence Variants.

* The nucleotide change represented in the table is for the minor allele in the NHW population. ** The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. *** Suspicious variants with low sequence quality.

Figure 9. Chromatograms for Novel Variants in the APOA4 Gene.

Figure 9 Continued

3.1.3 APOA1 and APOA4 Annotated Sequence

Figures 10 and 11 depict the variants identified in *APOA1* and *APOA4* within a color FASTA representation of the annotated reference sequence from the CHIP Bioinformatics database (http://snpper.chip.org). The sequences from the CHP Bioinformatics database were used as a reference instead of the sequences from the SeattleSNPs database because the SeattleSNPs database sequences were not given in the forward direction (forward strand). However, the SeattleSNPs database was used as a reference to design and order PCR primers, and for comparison with sequencing results in this. Therefore, the SeattleSNPs location nomenclature has been used throughout the text, tables, and figures. The variants identified in this study also reported in public database-based locations using the reverse strand (variants reported in SeattleSNPs database are in paranthesis, variants not reported in SeattleSNPs database are in paranthesis, variants not reported in SeattleSNPs database are in brackets). The new variants identified in this study are shown in **red font** in brackets. The suspicious variants with low sequence quality are marked with a *. Variants reported in public databases that were not identified in this study are show in **purple font**.

Figure 10. APOA1 Annotated Sequence

116,214,548	aacaaccctg	accattcttg	ccccattttg	cagatagaaa	accgaggete	
116,214,498	agagagatta	tataacttgc	ccacgatctt	cctccagcaa	gatggaggcc	
116,214,448	aagtgaaatg	agaaagcagg	tctcctgcca	cttcctttgc	ccagaggtct	
116,214,398	tctccccaca	ccagggcttc	ccaagggctg	agatccagtc	acacctgtgc	
116,214,348	gtgatcaaat	ataaqtqtqa	acaatgcaaa	qqqaqac g tc	ttcaatctaa	[5131]
116,214,298	gggggttcaa	ttctgtaatg	taattctgag	attatgccct	tttttqttaa	
116,214,248	agectttcct	ttt t gaagtg	atggtcactg	tagatggtga	qqqtttttq	[5066];[5055]
116,214,198	gagggggaga	atatettac	atgacaaaat	taaaagttgg	cageteegaa	[4987]
116,214,148	ttgatctctg	gagtgttttg	aaatgcaaga	ggt.ct.ccgaa	acctcagtct	
116,214,098	aggagecacg	gagggetete	ccctctcccc	aggtttacca	atttaggagg	
116,214,048	cttogagaga	aacctaaaaa	acctactaga	gactaaagaa	gagcactogt	
116 213 998	addaddadad	ageocoggagg	aaaaaaaaaa	agtgaagtag	teteetga	rs12691374 (4807)
116 213 948	atactaataa	tagagagaga	agteteeta	atagaagaat	cccagcatcc	rg12718467 (4732)
116 213 898	ctcccctccc	ctecteteee	aacacaaataa	acaatoocaa	ctaccacac	rg12718466 (4693)
116 213 848	actoccator	aggggaaggg	aataaataca	acaaeggeaa	accesace	1312/10400(4055)
116 212 700	acceccatgg	agggggaaggg	acgagegea	gggaaceeeg	atappagatt	
116 212 740	ggagacetge	aageeegeag	acactecee	tatttagaaa	atatatt	ma2727786 - ma2542054
116,213,740	gaeeeeegee	cugcage coo	cycayettye	atattaaatt	ciciatityc	152/2//00;152542054
116,213,696	ccay <u>c</u> cccay	gyacayayet	galeeliyaa	Clellaagel	ceacallyce	152542055
116,213,648	aggaccagug	agcagcaaca	gggcc g gggc	Lgggettate	ageereeag	18670(4443)
116,213,598	cccagaccet	ggetgeagae	ataaatagge	cctgcaagag	etggetgett	
11C 010 E40	agagaataga	agaagagat	aaataataat	aaataaaaaa	atasatataa	Even 1 Intron 1
116,213,340	ayayactycy	agaaggaggt	gegteetget	geergeeeeg	gleactergg	maE0(0(4284), ma1700827[4282]
116 212 440	tagaatatta	taaggeteag	taa	agge <u>eg</u> ggee	tagggtact	rs5009(4204);IS1799037[4203]
116,213,440	Lyayytette	teeegetetg	tge <u>e</u> ettete	cleacelyge	Lycaalyayi	[4200]
116,213,398	gggggggggcac	ggggcttctg	calgelgaag	gcaccccact	agecaggec	[4208] Recent D. [4151]
116,213,348		cccaggt <u>c</u> cc	ccacggccct	LCaggAIGAA	AGCIGCGGIG	EXON 2 [4151]
116,213,298	CIGACCIIIGG	CCGTGCTCTT	CCTGACGGGT	AGGIGICCCC	TAACCTAGGG	Intron 2
116,213,248	AGCCAACCAT	CGGGGGGGC <u>T</u> T	TCTCCCTAAA	TCCCCGTGGC	CCACCOPCOP	rs5070(4050)
116,213,198	GGGCAGAGGC	AGCAGGIIIC	TCACIGGCCC	admadadman	ACCICCAAGC	[2050]
116,213,148		GGCICAGAIC		GCIGGCCIGA		[3959]
116,213,098	CCCCCCCACC	CICAGGGAGC	CAGGCICGGC	CACCTCCCCA	GCAAGAIGAA	EXON 3
116,213,040		GCCCCIGGGA		GACCIGGCCA		[3007];1520929470
116,212,998	GGAIGIGCIC	AAAGACAGC	GCAGAGACIA	IGIGICCCAG		IS289315/4;[3/69]
116 212,940		CCACAGCIA	AAGIAAGGAC	CUTTONACCO	GIIGAGGGCA	TS12/10405(5/00);IS50/1;IS1/40/91/ INCLON 5
116 212 040	CTCCTCA CCT	AATATCTCAT	GIGGGAIGAI	GIIGAAGCCA	TOTOGOCCGA	152070005(3714)
116,212,040	GILLICALLI	MATAICIGAI	GAGCIGGGCC	CCACAGAIGG	TCIGGAIGGA	
116,212,790	GAAAC GGAA	IGGGAICICC	AGGCAGGGIC	ALAGULLAIG	CUCCUGCAA	155072 (3513)
116,212,748	AGGACAGACC	AGGGCIGCCC	GAIGC <mark>G</mark> IGAI	LACAGAGUCA	CATIGIGUUI	185073 (3543)
116,212,698	GCAAGIGIAG		ammagaaaaa	ACCACCI <u>C</u> CI	TIGCICCIGC	rs13306170
116,212,648	CCAGCAAGAC	TGTGGGGCTGT	CTTCGGAGAG	GAGAATG <u>C</u> GC	TGGAGGCATA	rs12/18464(3431)
116,212,598	GAAGCGAGGT	CCTTCAAGGG	CCCACTTTGG	AGACCAACGT	AACTGGGCAC	
116,212,548	TAGTCCCAGC	TCTGTCTCCT	TTTTAGCTCC	TCTCTGTGCC	TCGGTCCAGC	rs/116/97(3368)
116,212,498	TGCACAACGG	G <mark>G</mark> CATGGCCT	GGCGGGGCAG	GGGTGTTGGT	TGAGAGTGTA	[3370]
116,212,448	CTGGAAATGC	TAGGCCACTG	CACCTCCGCG	GACAGGTGTC	ACCCAGG <u>GC</u> T	rs5075;rs5076(3220)
116,212,398	CACCCCTGAT	AGGCTGGGGC	GCTGGGAGGC	CAGCCCTCAA	CCCTTCTGTC	
116,212,348	TCACCCTCCA	GCCTAAAGCT	CCTTGACAAC	TGGGACAGCG	TGACCTCCAC	Exon 4
116,212,298	CTTCAGCAAG	CTGCGCGAAC	AGCTCGGCCC	TGTGACCCAG	GAGTTCTGGG	
116,212,248	ATAACCTGGA	AA <u>A</u> GGAGACA	GAGGGCCTGA	GGCA <mark>G</mark> GAGAT	GAGCAAGGAT	rs17145083;rs2727787
116,212,198	C <u>T</u> GGAGGAGG	TGAAGGCCAA	GGTGCAGCCC	TACCTG <mark>G</mark> ACG	ACTTCCAGAA	rs28931575;rs5077
116,212,148	GA <u>A</u> GTGGCAG	GAGGAGATGG	AGCTCTACCG	CCAGAAGGTG	GAGCCGCTGC	rs4882
116,212,098	GCGCAGAGCT	CCAAGAGGGC	GCGCGCCAGA	AGCTGCAC <mark>G</mark> A	GCTGCAAGAG	[2880]
116,212,048	AAGCTGAGCC	CACTGGGCGA	GGAGATGCGC	GACCGCGCGC	GCGCCCATGT	
116,211,998	GGACGCGCTG	C <u>G</u> CACGCAT <u>C</u>	TGGCCCCCTA	CAGCGACGAG	CTGCGCCAG <u>C</u>	rs5078;rs1052925;rs28931573
116,211,948	GCTTGGCCGC	GCGCCTTGAG	GCTCTCAA <mark>G</mark> G	AGAACGGCGG	CGCCAGACTG	rs5079
116,211,898	GCCGAGTACC	ACG <mark>C</mark> CAAGGC	CACCGAGCAT	CTGAGCACGC	TCAGCGAGAA	rs1053223;rs14081
116,211,848	GGCCAAGCCC	GCGCTC <mark>G</mark> AGG	ACCTCCGCCA	AGGCCTGCTG	CC <u>C</u> GTGCTGG	[2652]*;rs5080[2626]
116,211,798	AGAGCTTCAA	GGTCAGCTTC	CTGAGCGCTC	TCGAGGAGTA	CACTAAGAAG	
116,211,748	CTCAACACCC	AGTGAggcgc	ccgccgccgc	cccccttccc	ggtgctcaga	
116,211,698	ataaacgttt	ccaaagtggg	_		_	

Figure 10 Continued

116,211,678	aagcagcttc	tttcttttgg	gagaatagag	gggggtgcgg	ggacatccgg	
116,211,628	gggagcccgg	g <u>t</u> gggggcctt	tggccctgga	gcagggactt	cctgccggat	rs2849171
116,211,578	ctcaacaact	ccgtgcccag	ac <u>tgga</u> cgtc	ttagggccaa	gatcgacgtt	rs5081(2376);rs12718463(2373)
116,211,528	ggaggacctg	ctggacgcct	ggctgcttac	gagtgaggga	gtagagtctg	
116,211,478	ccttagcaag	gctcaagtag	aaaggaagtc	acagcggacc	aggcaaagcc	
116,211,428	acagacaatc	caaggccagg	tgccctgaaa	ggg g ctcaaa	caaggcctgc	[2215]
116,211,378	<u>agccctgtct</u>	gaggcgggcc	aggaaacagg	gttgctttag	ctgggagcag	rs12721026(2198)
116,211,328	tgggttcccc	gtccccagag	gtgtgtcc <u>g</u> t	atagagcctt	ctccagccca	[2120]
116,211,278	gccgctgtca	gcggggcggg	a <u>c</u> ggagcggg	gcggcctcag	ggagccagcc	rs12721025(2077)
116,211,228	actgggattg	gggtttggtc	ccgggtgcaa	gtgaagcgct	tggagtttgc	
116,211,178	gcctgtcctc	ctttactaat	tcaaaaacct	ctc a aacaqa	cacttccctt	[1965]
116,211,128	ttcttctcac	aaggccagta	tcccctccc	actactccca	tcccgcccag	
116,211,078	aaacaqccqc	ggetteetca	ggcacagcag	tggaagccag	tcctccaccc	
116,211,028	cctgcggctc	catgccatgc	caccccctct	ttctgccage	cctggcagaa	
116,210,978	gctggcctga	gtaagaaaat	tcaccaccac	ctcttqcaqq	tacattttta	rs12718462(1749)
116,210,928	tttccaagat	gctctcatat	ctgtgctctc	actgcatcct	cccttcccca	rs12718461(1717)
116,210,878	catectqqct	agattqccat	cagacqcaqa	qcatqqatqa	ggacactgaa	
116,210,828	gcctggacct	gtgacgtcgc	ttgcccagtg	aacaqcaqqa	tgggctaggc	(1620)
116,210,778	cqcqcttttt	agaccetgea	cccctqqcca	tccatgatta	ttgaaaagag	rs10750098(1598);[1549]
116,210,728	tqtqcqqqtc	qqqtqcqqtq	gctcaagcct	gtaatcccag	cactttqqqa	rs525028(1546);rs12721029(1541);[1507]
116,210,678	aactaaaata	ggcgtatcac	ttcaggccag	gagtttgaga	ccaqcctqqc	
116,210,628	caatatooto	aaaccctqtc	tctactaaaa	atacaaaaaa	aatcagetgg	rs12721027(1407)
116,210,578	gcatggtggc	ttgcacccgt	aatcccagct	actaggaagg	ctgaggcagg	
116,210,528	agaatcoctt	gaacctggga	ggcagaggtc	acagtgagcc	qaaatcatqc	rs12721030(1308)
116,210,478	cactgcactc	cagectogge	gacggagcaa	gactccaget	aaaaaaaaaa	
116,210,428	aaaaaaaaaa	aaaaqaqtqt	qtqqcctqqc	actcaaqttc	acatgggtgt	
116,210,378	gcaggcatgc	ctgtgtattc	tcacatgacc	tccctqctca	caatccctcc	
116,210,328	ttgcactcat	atctgaatgt	ccccacatac	acqcacatqq	cttcacagat	[1143]; rs11216153(1128)
116,210,278	ctgggcagtg	ccttccctac	cctctctctq	cagggccttt	tgcccctca	rs1263162(1049)
116,210,228	tgcaggcccc	tggataatcg	gccccatccc	catqtcccca	tctccaqtqt	
116,210,178	atcttagcta	ccctaqqtaa	aqqaqtqqqc	tttttagttc	ctaaccttcc	[959]
116,210,128	agagetacaa	cagcagtcat	ccaqccaqqt	ctqqqtqqqa	acattttcta	
116,210,078	gatacgggtg	ctgagatete	tcagcccaga	qaqaaqccct	ggggaatttt	[894]
116,210,028	cagagagaaa	gragtetera	aataaaacta	gatgtactga	tgccactgag	
116,209,978	atctgtaaag	gagtccctaa	cacctgacat	aqqaqtqaca	aaactqtttt	
116,209,928	ctqcaccaac	tgagcagaat	acacqcaqct	qacctqqqct	caaqqtctqq	
116,209,878	ccctgccacg	tgetggetet	gtgatgctgg	ccaaqtqcct	tcgcctctcc	[689]; [656]
116,209,828	gggccacagt	tttttga t ct	gaagagtgga	gccctactca	agccatctgc	rs7948159(631)
116,209,778	ageteteggg	ctctctqacc	tgacatettt	caaataataa	qqacacaaaq	
116,209,728	gaagcagcct	ctatt q qqaq	accttqtqct	tctttttqqt	cccaqqacac	rs12721031(533)
116,209,678	tgcccccac	cactccaqtc	cqqqtcccaa	qqqcccaqtc	agetcaactg	[477]
116,209,628	taatcatgac	aacattgatc	aagcatcttt	acqtqcaqqt	gctgtgccaa	
116,209,578	acqqttcqaa	cq c tctctca	tttcaatctc	acqqcaaacc	tacqqtqqaq	[386]
116,209,528	qqqqtacqqt	tgtatccact	ttacatqtaa	qaaactqaqq	ctgatatcaa	[338]
116,209,478	qtqqtqqaqc	caagaatagt	qcctcqttqc	atcttactcc	aacctctage	
116,209,428	ccatccggcc	tectectte	acqtqcqcct	aagagggcta	aataacctaa	rs7123454(206)
116,209,378	ataggggagg	tcagetceac	agttttgagt	aaacacacacac	agtetcaact	
116,209,328	ctgatgacaa	cttaaqtqcc	aggeatagto	gctggcatgg	ggcacacact	
116.209.278	caagtcatgt	tatacageac	ctaacagt+t	atcaaaqtat	cagcaaactt	
116.209.228	attgtcctgt	ttgacettee	gcacaaaget	atcaaggaag	acaggata	
110,200,220	angeouge	egaceree	Jeacadaget	Jeeunggung	2-4222-4	

Figure 11. APOA4 Annotated Sequence

116,20	0,221	tgtactaaac	atatacagac	tttttggtg	attacctcct	aaacaataca	
116,20	0,171	gtataacaac	cattcacaca	gca <u>t</u> ttccgt	cgtattaggt	attataagta	rs10892035
116,20	0,121	atctagagat	ttaaaqtatq	tgggaggctg	tgcttaggtt	atatgcaaat	rs35781859
116,20	0,071	actatgccat	tttatatcaa	ggacttgaac	atccatqqat	tttqqtatct	
116,20	0,021	gcagagggtc	ctqqaatcaa	tttcccatqq	agactgagag	atgaccgtac	
116,19	9,971	tacccacttc	gcaagcaatg	tcttctttaa	tgtactgaac	catcccattq	
116,19	9,921	ttcagaggag	aaactgaagc	tcagggettt	gaataactag	accaaqqaqq	
116.19	9.871	cacagcatog	gagtgggaga	tgaagcactc	tacaattaac	cctttcagga	
116.19	9.821	caaggccctg	teteccacae	ccatctgccc	aaaggetete	cagggccccc	
116,19	9,771	tectettaaa	tgtaccttga	caagagacct	agattttage	tcactatoct	
116 19	9 721	atctacagte	ctggatggt	ccactccagt	atctaatact	ctgagatgga	[3146]
116,19	9.671	gtcagcatta	ataacaata	tagagactag	aggaacctat	cttcactogo	[0110]
116 19	9 621	gtagacagag	gagatataga	ctttacccc	catgageeege	gcacaaaccc	
116 19	9 571	agagggggg	gagaogogga	g ag g catcag	teccagaete	atgggctccc	[2984] ·rg5089(2981) ·rg7929134[2978]
116 19	9 521	tgaggtgttt	ctcctactot	tttccattcc	cctcctccct	tccatoctoa	rs1263179
116 19	9 471	aattaataaa	atagagatag	agatacccac	gcacggaaca	gccacca c tt	rg7926125 • rg13306180
116 19	9 421	ctaactatco		gatetactat	carcttccac	gtagtetcag	rs1263178
116 19	9 371	ggt cacaaaa	at ccaagaga	cctcttagga	atgtgtgtggg	ttccagcgtg	151203170
116 19	9 3 2 1	gagt cacact	geeeuugugg	aaaaaaaaaa	cagegeedee	antagegeg	[2705]
116 10	0 271	gagecacact	ttaat	gaggggggggggg	agettagggg	ggeggegata	raE000(260E).[260E]*
110,19	<i>J</i> , <i>Z</i> / <i>I</i>	gggaga <mark>g</mark> age	ctadaty	ggerggerer	gagetteage	cagetteetae	133030 (2033), [2003]
116 19	9 221	tacaacacaa	atapactete	ctagaagacat	atatatasaa	teccetaatt	$F_{xon} = 1 re5091(2645)$
116 10	0 171	at aggaaga	tagagetete	assassata	ataaaaaaaa	gaaagaagaat	EXOII 1 185091(2045)
116 10	9,1/1 0 101	gragggagga	CTCAACCCCC	тастаста	CCTCCCCCCCC	Greecrere	ra12721041(2511)
116 10	0 071	Caggardiarie	CIGAAGGCCG	TTCCATCCAC	CCIGGCCCIG	Generation	ISI2/21041(2311)
116,19	9,071	CCGGIGAGIA	GAAGCIGICI	ACCONDICCA	NARCACO	GCIGCICIGA	
116,19	9,021	GIAGIGCAGG	AIGGAGGCIG	AGCCAAAGCA	AAAGGACACI	ICIGA <mark>G</mark> IGCC	[2406]*
116 10	0,9/1	LAILAGUUUU	CAGCIGGACA	I GAGGICIGC	CIGGUIGUCA	AGIGGUICAC	[0007] +
116,19	8,921	AGGAGAGCIG	GUULAGIUUU	AGIG <mark>G</mark> IGGGC	CCATIGGCAT	IGGIGCIAIA	[2327] *
116,19	8,8/1	CLAGIIICAC	ATAT <u>C</u> CCTGT	GGCIICCAAA	AAGCIAAGCI	CAGAC <u>A</u> GGGA	[2287];1813306174
116,19	8,821	AAATGGCAGG	TTGAGGCACC	CCCACCATCA	TCCAGTCTGC	AGCTCAGAGC	
116,19	8,771	TGGAGCAGAG	GGGCCACACA	GGAGACGGGG	CCTCATGAAT	TGCTCTCTGT	From 0, we E000 (0104)
116,19	8,/21	TACCACCCAG	GAGCCAGGGC	TGAGGTCAGT	GCTGACCAGG	TGGCCAC <mark>G</mark> GT	Exon 2 rs5092(2104)
116,19	8,671	GATGTGGGAC	TACTICAGCC	AGCTGAGCAA	CAATGCCAAG	GAGGCCGTGG	Tabara 0
116,19	8,621	AACATCTCCA	GAAATCTGAA	CTCACCCAGC	AACTCAAGTA	AGAGGGACTA	Intron 2
116,19	8,571	CAGTGTGTG <mark>CG</mark> G	TGGTGACGGG	GAA'I''I'C'I''I'AA	AGGCCATGCA	ATGTACTGGC	rs5093(1994);rs2239013(1993)
							the second se
116,19	8,521	AAG <mark>G</mark> GTTGAG	CTTAGAGACA	GGAGCCCTGA	G <u>C</u> TTAGGATA	CCCACTGCCC	[1948];rs13306177
116,19	8,521 8,471	AAG <mark>G</mark> GTTGAG TGCCACTAAC	CTTAGAGACA TGGCCGGGCC	GGAGCCCTGA TCTGAACCTA	G <u>C</u> TTAGGATA GGATCCACAT	CCCACTGCCC ATGTAAAC <mark>C</mark> G	[1948];rs13306177 rs5094(1853)
116,19 116,19 116,19	8,521 8,471 8,421	AAG <mark>G</mark> GTTGAG TGCCACTAAC GAAGTTTGGA	CTTAGAGACA TGGCCGGGCC CCGAATAATC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT	G <u>C</u> TTAGGATA GGATCCACAT CCTTTTGCTT	CCCACTGCCC ATGTAAAC <mark>C</mark> G TGAC <mark>G</mark> TTC T A	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853)
116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371	AAG <mark>G</mark> GTTGAG TGCCACTAAC GAAGTTTGGA GAGTTTGACA	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT	G <u>C</u> TTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG	CCCACTGCCC ATGTAAAC <u>C</u> G TGAC <u>G</u> TTC <u>T</u> A GAAGAGAGGG	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853)
116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321	AAG <u>G</u> GTTGAG TGCCACTAAC GAAGTTTGGA GAGTTTGACA AGGGAGGA <u>A</u> A	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA ATGTCA <u>C</u> GTG	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC	GCTTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT	CCCACTGCCC ATGTAAAC <mark>C</mark> G TGAC <u>G</u> TTC <mark>T</mark> A GAAGAGAGGG CAGAAAGACA	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735)
116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271	AAG <mark>G</mark> GTTGAG TGCCACTAAC GAAGTTTGGA GAGTTTGACA AGGGAGGA <mark>A</mark> A GGCCCCAGTG	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA ATGTCACGTG GAATCAAGGG	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG	G C TTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG	CCCACTGCCC ATGTAAAC <mark>C</mark> TGAC <u>G</u> TTC T A GAAGAGAGGG CAGAAAGACA GGAGGCCCCT	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735)
116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271 8,221	AAG <mark>G</mark> GTTGAG TGCCACTAAC GAAGTTTGGA GAGTTTGACA AGGGAGGA <u>A</u> A GGCCCCAGTG GGGCACAGGC	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA ATGTCACGTG GAATCAAGGG AAGGAAAGCA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG	G C TTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG	CCCACTGCCC ATGTAAAC <mark>C</mark> TGAC <u>G</u> TTC T A GAAGAGAGGG CAGAAAGACA GGAGGCCCCT ACCCCAGCAG	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735)
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271 8,221 8,221 8,171	AAG G GTTGAG TGCCACTAAC GAAGTTTGGA GAGTTTGGAC AGGAGGAGA GGCCCCAGTG GGGCACAGGC AGGTCAAGAA	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA ATGTCA C GTG GAATCAAGGG AAGGAAAGCA GACAACATTG	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA	G C TTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG TGTGATCCTA	CCCACTGCCC ATGTAAACC GAAGAGGG CAGAAGACA GGAGGCCCCT ACCCCAGCAG TGGCCCAGAA	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735)
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271 8,221 8,171 8,121	AAGGCTTGAG TGCCACTAAC GAAGTTTGAA AAGGAGAGAA GGCCCCAGTG GGGCACAGGC AGGTCAAGAA CACTCCCTCT	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA ATGTCA C GTG GAATCAAGGG AAGGAAAGGC GACAACATTG GGGAAGGACC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC	GCTTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA	CCCACTGCCC ATGTAAACCG TGACGTTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCCT ACCCCAGCAG TGGCCCAGAA GACAAGGAGG	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271 8,221 8,271 8,221 8,171 8,121 8,071	AAGGGTTGAG GAGGTTGGA GAGTTTGGA AGGGAGAAA GGCCCAGTG GGGCACAGGG AGGTCAAGAA CA <u>C</u> TCCCTCT GGAAAGCAAA	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGGCCACA ATGTCA <u>C</u> GTG GAATCAAGGG AAGGAAAGGA GACAACATTG GGGAAGGACC CTGCTGGAGG	GGAGCCCTGA TCTGAACCTA CCTGCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT	CCCACTGCCC ATGTAAACCG TGACGTTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCCA ACCCCAGCAG GACAAGGAGG GAGACAAACT	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453)</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271 8,221 8,271 8,171 8,121 8,071 8,021	AAGGGTTGAG GAAGTTTGGA GAGTTTGGA AGGGAGGAA AGGCACCAGTG GGCCCCAGTG GGCACAGGA CAGTCACAGA CAGTCCCTCT GGAAAGCAAA ATGTGGGAGA	CTTAGAGACA TGGCCGGGCC CCGAATAATC AATGCCACA ATGTCACGTG GAATCAAGGG AAGGAAAGCA GACAACATTG GGGAAGGACC CTGCTGGAGGA	GGAGCCCTGA TCTGAACCTA CCTGCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC	GCTTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT ATCGTAACTT	CCCACTGCCC ATGTAAACCG TGACGTTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCCT ACCCCAGCAG TGGCCCAGAA GACAAGGAGG GAGACAAACT AGTCTGTGAC	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453)
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,221 8,271 8,221 8,171 8,121 8,071 8,021 7,971	AAGGGTTGAG GAGTTTGAA GAGTTTGAA AGGCCCAGTA AGGCCCAGGC AGGTCAAGAA CAGTCACCTCT GGAAAGCAAA ATGTGGGAGA ACCCATCCTC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCACA ATGTCA C GTG GAATCAAGGG AAGGAAAGCA GACAACATTG GGGAAGGACC CTGCTGGAGATA TCCTGAGATA TCCAATCTGC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACCACCATAG	GCTTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG GCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT ACGTAACTT GGAGGGTGAA	CCCACTGCCC ATGTAAACGG TGACGTTC T A GAAGAGAGGG CAGAAAGACA GGAGGCCCCT ACCCCAGCAG TGGCCCAGAA GACAAGGAGG GAGACAAAGT AGTCTGTGAC CTCGGTACCT	[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371]
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,221 8,271 8,221 8,171 8,121 8,071 8,021 7,971 7,921	AAGGGTTGAG GAAGTTTGAA GAAGTTTGAA AGGCACAGTA GGCCCCAGTG GGCACAGGC AGGTCACAGA CAGTCACAGA ATGTGGGAGA ATGTGGGAGA ACCATCCTC CTGAGCACTC	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGCCACA ATGTCACGTG GAAACATG GGAAAGACA CGGAAGGACC CTGCTGGAGG TCCTGAGATA TCCAATCTGC ACCTGTCCTA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGT TGTTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACCACCATAG GCACG <u>T</u> GTGC	GCTTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG GAATATGT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT GGAGGGTGAA ATAAGGCGAG	CCCACTGCCC ATGTAAACGG TGACGTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCCT ACCCCAGAA GACAAGGAGG GAGACAAAGT AGTCTGTGAC CTCGGTACCT TGGTATACAA	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326]</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,321 8,221 8,221 8,221 8,121 8,021 7,971 7,921 7,871	AAGGGTTGAG GAGTTTGAC GAGTTTGACA AGGGCCCAGTG GGCCCCAGTG GGCACAGGC AGGTCAAGAA CACTCCCTCT GGAAAGCAAA ATGTGGGAGA ACCCATCCTC CTGAGCACTC GCAGACAAAG	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCACGTG GAATCAAGG AAGGAAAGCA GACAACATTG GGGAAGGAC CTGCTGGAGG TCCTGGAGAG TCCTGAGATA ACCTGTCCGTG ACCTGCCGTG	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGAGGTG GCACCTTGTG TGACATGGTG GAAATTCAGC ACCACCATAG GCACGTGTGC TAAATGCCAA	GCTTAGGATA GGATCCACAT CCTTTTGCTT CAGGCTCATG GGAATATTG GCACTGGAA TGTGATCCTA ACCCTCTGCA GGTAGATTCT GGAGGGTGAA ATAAGGCGAG ATGTAACGTG	CCCACTGCCC ATGTAAACGG TGACGTTCTA GAAGAGAGGG CAGAAAGACA GACACCCAGCAG GACACCAGCAG GACAAAGGAGG GAGACAAAGT AGTCTGTGAC CTCGGTACCT GCTATACAA GCCTCCTTGT	<pre>[1948] ; rs13306177 rs5094 (1853) rs13306179; rs5095 (1853) [1743] ; rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274]</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,471 8,371 8,321 8,271 8,221 8,171 8,121 8,071 8,021 7,971 7,921 7,871 7,821	AAGGGTTGAG GAAGTTTGAA GAAGTTTGAA AGGCCCAGTG GGCACAGTG GGCACAGGC AGGTCACAGA ACTCCCTCT GGAAAGCAAA ATGTGGGAGA ACCCATCCTC CTGAGCACTC GCAGACAAAG GCCCTTCCCC	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAAAGCA GACAACATTG GGGAAGGACC CTCCTGGAGG TCCTGAGATA TCCTGACGTG ACCTGTCCTA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GACATGGTG GAAATTCAGC GCACGTGTGC TAAATGCCAA CTTCCAGGAC	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ACCCTCTGCA ATCGTAACTT GAGGGTGAA ATAAGGCGA AACTTGGAG	CCCACTGCCC ATGTAAACQG TGACQTTCTA GAAGAGAGGG CAGAAAGACA AGCCCAGCAG ACCCCAGCAG GACACAAGACG CACACAGAGAG CACACAAAQT AGTCTGTGAC TGGTATACAA GCCTCCTTGT AACTGAACAC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,471 8,421 8,371 8,321 8,271 8,221 8,121 8,071 8,021 7,971 7,871 7,871 7,821 7,771	AAGGGTTGAG GAGTTTGAAC GAGTTTGAA AGGCACCAGGA AGGCACAGGC AGGTCAAGAA CAGTCACCTCT GGAAAGCAAA ATCTGGGAGAA ACCCATCCTC CTGAGCACTC GCAGACAAAG GCCCTTCCCC TTACGCAGGT	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCACA ATGTCA_GTG GAATCAAGGG AAGGAAAGCA GACAACATTG GGGAAGGACC CTGCTGGAGATA TCCTGACGTG ACCTGCCGTG GACCTGCCGTG GACCTGCAGA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GCACTATCAGC ACCACCATAG GCACCGTGTGC AAATGCCAA AGAAGCTGGT	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATCT GGAGGGTGAA ATAAGGCGAG ATGTAACGTG AACTTGGAG GCCCTTTGCC	CCCACTGCCC ATGTAAACGG TGACGTTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCCT ACCCCAGCAG TGGCCCAGAA GACAAGGAGG GAGACAAAGT AGTCTGTGACC CTCGGTACCT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183)</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,971 7,921 7,821 7,771 7,721	AAGGGTTGAG GAGTTTGAA GAGTTTGAA AGGCACCAGGA AGGCACAGGC AGGTCAAGAA CAGTCACCTCT GGAAAGCAAA ATCTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC TTACGCAGGT ATGAACGCCT	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGCCACA ATGTCACGTG GAATCAAGGG GACAACATTG GGAAGGACC CTGCTGAGATA TCCTGAGATA TCCTGACGTG ACCTGTCCTG ACCTGCCGTG GACCTGCAGA GGCCAAGGACC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GGACCTTGTG TGTTACACAA TCAAAGTCCC GAAATTCAGC AACATCGTG GCACGTGTGC TAAATGCCAA CTTCCAGGAC AGAAGCTGGT TCGGAGAAAC	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG GAATATGTT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT GGAGGGGAGA ATGATACGTG AAACTTGGAG GCCCTTTGCC CCAAGGAGGAGA	CCCACTGCCC ATGTAAACGG TGACGTCTA GAAGAGGGG CAGAAAGACA GGAGGCCCCA ACCCAGCAG GAGACAAAGT AGCCCAGGAA GACAAGGAGG CAGGTATCACA GCCTCCTTGT AAGTGAACAC AACTGGACCC GATTGGAACAC GATTGGAACAC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183)</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,921 7,921 7,871 7,821 7,721 7,721 7,721	AAGGGTTGAG GAAGTTTGACA GAAGTTTGACA AGGCACCAGTG GGGCACAGGC AGGTCACAGGC AGGTCACAGA ATGTGGGAGA ATGTGGGAGA ACCCATCCTC GCAGACAAAG GCCCTTCCCC TTACGCAGCT ATGACGCTGGAGG GAGCTGGAGG	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGGAAAGACA GACAACATTG GGGAAGGACC CTGCTGGAGAG ACCTGCAGATA TCCTGGCGTG ACCTGCAGTG GGCCAAGGAC AGCTGCAGAG AGCTGAGGGC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GAAATTCAGC ACAACGTGTGC TAAATGCCAA GCACGTGCTCA AGAAGCTGGT TCGGAGAAAC CCGGCTGCTG	GCTTAGGATA GGATCCACAT CCTTTGGTT CAGGCTCATG TAATACGTTT GGAATATTG CCCCTGGAAG GTAGATCCTA ACCCTCTGCA ATGAAGCTGA ATAAGGCGAG AACTTGGAG GCCCCTTGGCG CCCCATGCCA	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGACA GGAGGCCCT ACCCCAGCAG TGGCCCAGAA GACAAGGGGCCCAGAA GACAAAGGAG GAGACAAAGT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGC ACCGAGCTGC AATGGGAAG ATGAGGTGAG	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456</pre>
116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19 116,19	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,171 8,021 7,971 7,871 7,821 7,771 7,771 7,621	AAGGGTTGAG GAGTTTGAA GAGTTTGAA AGGCCCAGTG GGCACAGGC AGGTCAAGAA ATGTGGGAGA ACTCCCTCT CTGAGCACTC CTGAGCACTC CTGAGCACTC GCAGACAAAG GCCCTTCCCC TTA <u>G</u> GCAGGG ATGAACGCCT GAGCTGGAGG CCAGAAGATC	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAAAGACA GACAACATTG GGAAAGACA CTGCTGGAGAG TCCTGAGATA TCCGACTGCCGTG ACAGTGCCTG GACCTGCCGTG ACCTGCCGG GGCCAAGGAC AGCTGAGGCC GGCGACAACC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GAAATTCAGC ACCACCATAG GCACCATAG GCACCATAG GCACCATAG CACCCATAG CACCCATAG CACCCATAG CACCCATAG CACCCATAG CACCCACATAG CACCCCATAG CACCCCATAG CACCCCATAG CACCCCATAG CACCCCACATAG CACCCCCATAG CACCCCCATAG CACCCCCCACACCACA	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA AGTAGATCTT GGAGGGTGAA ATAAGCCGA ACCTTGGAG GCCCTTTGCC TGAAGGAGGA TCAGCAGCGC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCT ACCCCAGCAG GACCACAGAG GACACAAGCAG GACACAAGCAG CTCGGTACCT TGGTATACAA ACCTCGTGACCAC ACCGAGCTGC GATTGGGAAC CTGGGAACC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033]</pre>
116,19 116,19	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,171 8,021 7,971 7,921 7,821 7,771 7,721 7,621 7,621 7,571	AAGGGTTGAG GAGTTTGAA GAGTTTGAA AGGCCCAGTG AGGCCCAGGC AGGTCAAGAA CAGTCACCAGC GGAAACCAAA ATCTGGGAGA ACCCATCCTC CTGAGCACTC CCAGACAAAG GCCTTCCCC TTACGCAGGT ATGAACGCCT GAGCTGGAGG CCAGAAGATC ACCGGGACAA	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGCCACA ATGTCA_GTG GAATCAAGGG AAGGAAGACA TGCTGGAGGA TCCTGAGATA TCCTGCCGTG ACCTGCCGTG GACCTGCCGTG ACCTGCGCC AGGTGAGGGC GGGGACAACC GGCGCACACC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GCAACTGGTG AACATCGCAA AGAAGCTGGT TCGGAGAAAC CCCGGCTGCTG CACGTCACCA	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG GCACTGGAAG TGTGATCCTA ACCCTCTGCA ATGTAACTTC GGAGGGTGAA ATAAGGCGAG ATGTAACGTG GAAGGAGGA CCCCATGCCA CCCAGGCCCA	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGGGG CAGAAAGACA GGAGGCCCCT ACCCCAGCAG TGGCCCAGAA GACAAGGAGG GAGACAAAGT AGTCTGTGACC CTCGGTACCT TGGTATACAA GCCTCCTTGT AAGTGACACC AACGAGCTGC GATGGGAG ATGAGGTGGG CTGGAGCCCT GCACTGCGG	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) </pre>
<pre>116,19 116,19</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,071 8,021 7,921 7,921 7,921 7,771 7,721 7,721 7,721 7,521	AAGGGTTGAG GCACTTAAC GAGTTTGACA AGGGCCCAGTG GGCACAGGC AGGTCAAGAA ACACTCCCTCT GGAAAGCAAA ATGTGGGAGA ACCCATCCTC GCAGACAAAG GCCCTTCCCC TTACGCAGGT AAGAACGCT GAGCTGGAGG CCAGAACAAC CCCCAGCCAGC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAAAGA GACAACATTG GGGAAGAAC CTGCTGGAGAG TCCTGGAGAG ACCTGCCGTA AACTGCCGTG AACTGCCGTG GACCTGCAGAC GGCCAAGGAC AGCTGAAGGAC GGGGACAAC GCTGCAGAC CCCCCTACQC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TCTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACACCATAG GCACGTGTGC TAAATGCCAA AGAAGCTGGT TCGGAGAAAC CCGGCTGCTG TGGGAGAGCT CAGGTCAGCA ACAGCGCATG	GCTTAGGATA GGATCCACAT CCTTTGGTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT ATCGTAACTT GAAGGGTGAA ATAAGCGGG GCCCTTTGCG TGAAGGAGGA CCCCATGCCA CCCATGCCA GAGAGAGGGG GACAGCCGA	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAGCCCT ACCCCAGCAG GAGACCCCT ACCCCAGCAG GAGACAAAGT AGTCTGTGAC TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGC GATGGGAACA TGAGGTGAG TGGAGCCCG TGCGGGAGAA	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933)</pre>
<pre>116,19 116,19</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,021 7,971 7,871 7,871 7,721 7,621 7,521 7,521 7,521 7,471	AAG@GTTGAG GAAGTTTGACA GAAGTTTGACA AGGCACAGTG GGCCACAGTG GGCACAGGC AGGTCACAGA ATGTGGGAGA ATGTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC CTGAGCACTC GCAGCACAGC TTACGCA@GT GAGCTGGAGG CCAGAAGATC ACGCCGGCTGA CGCCGGCTGA CGCCGACAGC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAAAGCA GACAACATTG GGAAAGACC CTCCTGAGATA TCCTGCGAGG ACCTGCCGTG GACCTGCCGTG GGCCAAGGCC GGCGACAGCC CCCCCTACGC CTGCCAGCCT	GAGGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GACATGGTG GAAATTCAGC ACCACCATAG GCACGTGTGC TAAATGCCAA CTTCCAGGAC AGAAGCTGGT TCCGAGAAAC CCCGCTGCTG TCCGAGAGCCT CAGGTCAGCC	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATACTTG CCCCTGGAAG TGTGATCCTA ACCCTCTGCA ACCTCTGCA ATGTAACTT GAGGGGGA ATGTAACGTG AAACTTGGAG GCCCCTTTGCC TGAAGGAGGAG CCCCATGCCA CCAGCCGCGAC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGGGGCCTT ACCCCAGCAG GAGACACAGAG GACACCAGAA GACCCAGAAA GACCCAGAAA GACTCGTGTGAC TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGCG GATGGGAAGG ATGAGGTGAG CTGGAGCCCG GCAGCGCGG GCGCGCGG GCCCCAGG GCCCCAGG GCCCCAGG GCCCCAGG CTGGAGCCCAGG GCCCCAGG	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933)</pre>
116,19 116,19	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,171 8,021 7,971 7,821 7,821 7,771 7,621 7,621 7,571 7,421	AAGGGTTGAG GAGTTTGAA GAGTTTGAA AGGCCCAGGA AGGCCCAGGC AGGTCAAGAA CAGTCCCTCT CTGAGCACTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CCAGAAGACC CCAGAAGATCGA CGCCGACAGC CCCAGATCGA	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGGG AAGGAAGAGG GACAACATTG GGGAAGGACC CTGCTGGAGATA TCCTGCCGTG ACCTGCCGTG GACCTGCCGTG GACCTGCCGTG GGCGACAACGC GGGGACAACC CTGCCGCGCC CCCCCTACGC CTGCAGGCCT CCCGAGACGTG	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GAAATTCAGC ACCACCATAG GCACCATAG GCACCATAG CACACCGTGTG CAGAGAGCCGT TGCGAGAAAC CCGGCTGACGC GCGCGAGAGCCC GAGGAGCCCA	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG GCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATCTT GGAGGGTGAA ATGTAACGCGAG AACTTGGAG GCCCTTTGCCA TCAAGCAGCGC CGCAGGCCGAC AGAGAGAGTGC CCCACGCCGAC AGGGACGCCT	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGACA GGAGGCCCTT ACCCCAGCAG TGGCCCAGAA GACAAGAGAG GAGACAAGCTG CTCGGTACCT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGCC GATTGGGAAG CTGGAGCCCT GCAGCTGCGG TGCGGGAGAG TACGCCCTAC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933)</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,271 8,221 8,271 8,271 8,071 8,071 7,921 7,921 7,921 7,921 7,921 7,721 7,721 7,571 7,571 7,571 7,571 7,571 7,571	AAGGGTTGAG GCACTTAAC GAGTTTGACA AGGGACCAGTG GGCCCCAGTG GGCCCCAGTG GGCACAGAC ACCCCCTCT GGAAAGCAAA ACCCATCCTC CTGAGCACTCC CTGAGCACACC TTACGCAGGC TACGCAGCCT GAGCTGACGAACA CCCGACAGCCA CGCCAGCCAAC CCCAGCTGAC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGGAAAGCA GACACATTG GGGAAGACC CTGCTGGAGGG TCCTGGAGAGA ACCTGCCGT GACCTGCCGT GACCTGCCGTG GGCCAAGGGC GGGGACAAGC GGCGACAACGC CCCCCTACGC CCCCCTACGC CCCAGAGCTG TCAAAGTCAA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGAGGTG GCACCTTGTG TGTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACACCATAG GCACGTGTGC CAGACATGGT TCGGAGAAC CCGGCTGCTG TGCGAGAGCTC CAGGTCAGCA GCTGAGAGCTCA GACTGACCAG	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG GAATATTG GCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT GGAGGGTGAA ATGTAACGTG GCCCTTTGCC TGAAGGAGGG GCCCTTTGCC TCAGCAGCCGA CCCAGGCCGA AGGAGAGTGC CCACGCCGAC AGCGTGGAGG	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGCGG CAGAAAGAG GAGAGCCCT ACCCCAGCAG GAGACGACCCT ACCCCAGCAG GAGACAAAGT AGTCTGTGAAC CTCGGTACCT AGTCTCTGTGA ACGCACTGC GATTGGAACAC CTGGAGCTGC GATTGGAGCCCT GCAGCTGCGG TACGCCCTAC AGCTGCGCCG TACGCCCTAC AGCTGCGCCG	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755]</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,971 7,871 7,871 7,721 7,721 7,721 7,721 7,521 7,521 7,471 7,321	AAGGGTTGAG GAGTTTGACA GAGTTTGGAA AGGGCCCAGTG GGGCACAGGC AGGTCACAGGC AGGTCACAGAC AGGTCCCTCT GGAAAGCAAA ATGTGGGAGA ATGTGGGAGA ACCCTTCCCC CTGAGCACACC TTACGCAGCT GAGCTGGAGG CCAGACAGACC ACGCCGACCAC CCAAGATGA CGCCGACGACAC CCAAGATGC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAACATG GGAAGGACACTG CTGCTGGAGAG TCCTGGAGAG ACCTGCAGAG ACCTGCAGAG ACCTGCAGA GGCCAAGGAC AGCTGAGGGC GGGGACAACC CCCCCTACGC CTGCAGGCCT CCAGAACGTC CCAGAACGTC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACCACCATAG GCACGTGTGC TAAATGCCAA CTTCCAGGAC CCGGCTGCTG TGGAGAGACTC CAGGTCAGCA CCGGCTGCTG CGCGGAGAGCTC GACTGACCAG AGGACCCAG AGGACACGCA	GCTTAGGATA GGATCCACAT CCTTTGGTT CAGGCTCATG TAATACGTTT GGAATATTG CCCCTGGAAG TGTGATCCTA ACCCTCTGCA ATCGTAACTT GGAGGGTGAA ATAAGGCGAG ATGTAACGTG AAACTTGGAG GCCCTTTGCA CGCAGGCGCA CGCAGGCCGA CGCAGGCCGAC AGGACAGCTC CACGGCGGAG GGAGAAGCTC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGACA GGAGGCCCT ACCCCAGCAG GGCCCAGAA GACAAGGG GAGACAAAGT AGTCTGTGAC CTCGGTACAT TGGTATACAA GCCTCCTTGT AACTGAACAC ACCGAGCTGC GAATGGGAAG ATGAGGTGAG TGCGGGAGAA GAGCTCAAGG TACGGCCCA ACCACCAGC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [945] ; (s13) [755]</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,971 7,871 7,821 7,771 7,521 7,521 7,521 7,521 7,421 7,321 7,321 7,321	AAGGGTTGAG GAGTTTGAAC GAGTTTGAA AGGCCCAGTG GGCACAGGC AGGTCCAGTG GGCACAGGC AGGTCCCTCT GGAAGCAAA ATGTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC GCAGCAGC CTGAGCACAG CCCAGAGAGG CCAGAAGATCG ACGCCGACCG CCAGAGAGC CCAGAGACAA CGCCGGCCT CGCCGACAGC CCAGACAGC CCAGACAGC CCAGACAGC CCAGACAGC CCAGACAGC CCAGACAGC CCAGCGACCAG CCCAGCTGACCAAC CCAGCCTGGCCT	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAACATTG GGAAAGACA CTGCTGGAGG TCCTGAGATA TCCTGCGTG ACCTGCGTG ACCTGCCGTG GGCCAAGGCC GGCGACACACC GGCGACACACC CTGCCGCACC CTGCAGGCCT CCAGAACGTG CCACAAGTCA CCCTTCCAG	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GCACGTGGTG CACACCATAG GCACGTGTGC TAAATGCCAA AGAAGCTGGT TCCGAGAGACC CCGGCTGAGGCC GAGGAGCCCA GATGACCAG AGACACGCA ACAGCACAGA	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ATGTAACTT GCAGGGTGAA ATAAGGCGAG AAGCTTGGAG GCCCTTTGCC TGAAGGAGGAG CCCATGCCA TCAGCAGCGCA GAGAGAGTGC CCACGCCGAC AGGGACGCCT ACCGTGGAGG	CCCACTGCCC ATGTAAACQG TGACQTTCTA GAAGAGAGGG CAGAAAGACA GGAGGCCCT ACCCCAGCAG TGGCCCAGAA GACACCAGACG GACACAAGCT AGTCTGTGAC CTCGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGACTGCG GATGGGAGCC GATGGGAGCC GCTGCAGCGCG AACCACCAGC GCTCCAGCC AACCACCAGC GCTCAAGGC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755]</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,271 8,221 8,271 8,071 8,071 7,921 7,921 7,771 7,771 7,771 7,771 7,571 7,571 7,421 7,371 7,221	AAGGGTTGAG GCCACTAAC GAAGTTGGA AGGGACGAAA AGGGACCAGGG GGCCCCAGTG GGCCCCAGTG GGCACAGGC AGGTCAAGAA ATGTGGGAGA ACCCTCTC GCAGACAAAG GCCCTTCCCC TTA <u>CGCAGGG</u> ATGAACGCCT GAGCTGGAGAG CCCAGACAAGATC ACGCCGGCCA GCCCAGCTGA GCCCAGCTGA CGCCGACAAT CAGCCTGCC TTGAGGGCCT AGGATCTCGG	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGGCACA ATGTCA_GTG GAATCAAGGG AAGGAAGACA TGCTGGGGGGC CTGCTGGAGATA TCCTGCCGTG ACCTGCCGTG ACCTGCCGTG GGCGACACGGC GGGGACAACGC CTGCAGGCCC CCCCCTACGCC CCCCCTACGCC CCCCAAGGCCT CCAGAACGTG CCAAGGCCAG CCCATCCCG GACCTTCCAG CCCAGTGCCGA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GCACATGGTG GCACGTGTGTG CACACCATAG CTCCAGGACACG CTCCAGGACACG CCGGCGAGACCT CGGCGAGAGCT CGGCGAGGCCC GACGAGCCCA GAGAGCTCA GAGCACCAG AGGACCCGA GGAGCACGA GGAGCTGCGG	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ATGTAACTT GGAGGGTGAA ATAAGGCGAG GCCCTTTGCC TGAAGGAGGGC GCAAGCAGCGC CCCACGCCGAC AGGGACAGCTC ACCCCGAGGACGC AGGGACAGCTG CCACGCCGAGA GGAGAAGCTG	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGGGG CAGAAAGACA GGAGGCCCTT ACCCCAGCAG TGGCCCAGAA GACACAGCAG GAGACAAGT CTCGGTACCT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGC GATTGGGAAG CTGGAGCCCT GCAGCTGCGG ATGAGGCAG TACGCCCTAC AGCTGCGCCG AACCACCAGC GCTCAAGGCC GCTCAAGGCC GCTCCAGGC CGCCCTTGC GCCCAGGCC GCCCTGGC CGCCCTGCG CGCCCTGCGC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933) [755] rs5105[634];rs2238008</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,071 8,021 7,921 7,921 7,921 7,871 7,721 7,721 7,521 7,521 7,521 7,521 7,371 7,321 7,221 7,221 7,221 7,21	AAGGGTTGAG GCACTAAC GAGTTTGACA AGGGCCCAGTG GGCACAGGC AGGTCACAGGC AGGTCACAGAC ACCCCCCTCT GGAAAGCAAA ATGTGGGAGA ACCCATCCTC GCAGACAAAG GCCCTTCCCC CTGAGCACGC TTACGCAGGT AAGAACGCCT GAGCTGGAGG CCAGACAAAG CGCCAGCTGA CGCCAGCTGA CGCCAGCTGA CGCCAGCTGA CGCCAGCTGA CGCCAGCTGGAT TTGAGGCCCT AGGCTGCGT AGGCTGCGT	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAACATTG GGGAAGGAC CTGCTGGAGAG TCCTGGAGAG TCCTGGAGACG TCCTGCAGAGA ACCTGTCCGTA ACCTGTCCGTA GACCTGCAGAG GGCCAAGGAC AGGTGAGGCACC CCCCCTACGC CCCGCTACGC GACCTCCCA CCCATACGTG CCAGAACGTG CCAGAACGTG CCCATACGCACC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TCTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACACGTGTGC TAAATGCCAA AGAAGCTGGT TCGGAGAACC CCGGCTGCTG TGCGAGAGCTCA GACGGAGCACG GACTGACCAG AGGACACGCA ATGAAAAAG TGAAGAGCAA ATGAAGAAG GGACTGCGG TGAGGGCAA	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATCTT ATCGTAACTT GAAGGAGGAG ATGTAACGTG AAACTTGGAG GCCCATGCCA CGCAGGCGAG CACAGCAGCG AAGGAGAGTGC CCACAGCCGAGG GGAGAAGCTCA ACGCGAGGAG CACCGAGGGG CACCGAGGGG CACCGAGGGG CACCGAGGGG CACCGAGGGG	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGAGA GGAGGCCCT ACCCCAGCAG ACCCCAGCAG GAGACAAAGT AGTCTGTGAC CTCGGTACCT TGGTATACAA GCCTCCTTGT AACTGAGACAC ACCGAGCTGC GATTGGGAAGA TGCGGGAGAA GAGCTCAAGG TACGCCTAC AGCGCCTAC AGCTCCAAGCC GCTCCACGC GCTCCAGCCCG GCTCCAGCCCG CTCCAAGGCC CTCCAAGCC CTCCAGGCCTGCC CTCCAAGCC CTCCAGGCCTGCC CTCCAAGCC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755] rs5105 [634] ;rs2238008 rs1042372 ;rs5106 (568)</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,971 7,871 7,871 7,721 7,521 7,521 7,521 7,521 7,521 7,521 7,521 7,271 7,221 7,271 7,271 7,271 7,271 7,271 7,121	AAGGGTTGAG GAGTTTGAAC GAGTTTGAAA AGGCACAGTG GGCACAGTG GGCACAGTG GGCACAGGC AGGTCACAGA ATGTGGGAGA ATGTGGGAGA ATGTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC GCAGCACAGC TTACGCAGCT ATGAACGCT GAGCTGGAGA CCCCGACAGC CCAGAGACTA CGCCGACAGC CAAGACGACT TTGAGGGCTT AGGACGTGGACAAT CAGCCTGGCAGA	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AATCAAGG GAATCAAGG CTGCTGAGAGAC CTGCTGAGAGAC CTCCTGAGATA TCCTGCGTG ACCAGTGCCTA GGCCAAGGGC GGCGCACGGCCC GGCGCACGCC CCCCCTACGC CTGCAGGCCT CCAGAACGTC CCCACTCCAG CCCTTCCAG CCCTTCCAG CCCTTCCAG CCCACTCCAG CCCGCTCCCAG CCCGCTCCCAG CCCGCTCCCAG CCGCGCCACC CCCCCTCCAG CCCGCTCCCAG CCCGCTCCCAG CCGCGCCACC CCCCCTCCAG CCCGCCCCC	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GACATGGTG GAAATTCAGC ACCACCATAG GCACGTGTGC TAAATGCCAA AGAAGCTGGT CCGGCTGCAGACC CCGGCTGCAGGC GAGGCACAGCA GATTGACCAG AGAACACGCA AGAACACGCA ATGAAGAAGA GAGCTCQGG GCACGGCAC	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ATGTAACTT GGAGGGTGAA ATAAGGCGAG ATGTAACTTGGAG GCCCTTTGCC TGAAGGAGGAG CCCCATGCCA TGAAGGAGGAG CCCACGCCGAC AGGGACGCCT ACCGCGAGGG GGAGAAGCTCC ACGCCGAGGG ACACGAGGGGG AGCAGGTGGA	CCCACTGCCC ATGTAAACQG TGACQTTCTA GAAGAGGGGCCT ACCCCAGCAG GAGACACAGAG GACACCAGAAQCT ACCCCAGCAG GACACAAAQCT AGTCTGTGAC CTCGGTACAT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGCG GATGGGACGA GAGTCAAGG TACGGCCCAAG ACCACCAGC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCCAAGGC CTCCAGAGCT	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) rs2234667 rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933) [755] rs5105[634];rs2238008 rs51042372;rs5106(568) rs5107;[520]</pre>
<pre>116, 19 1</pre>	8,521 8,421 8,421 8,371 8,321 8,221 8,221 8,221 8,171 8,021 7,971 7,871 7,821 7,871 7,771 7,671 7,671 7,671 7,571 7,421 7,371 7,271 7,271 7,271 7,271 7,271 7,121 7,071	AAGGGTTGAG GAGTTTGAA GAGTTTGAA AGGCCCAGTG GGCACAGGC AGGTCACAGA AGGTCCCAGTG GGAAGCAAA ATGTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC CTGAGCACTC GCAGCAGAGG CCAGAAGAGC CCAGAAGATCGA GCCCTGACGACA CGCCGACAGC CCAGACAGC CCAGACAGC TTGAGGACCT AGGCCGACAGC CCAGACAGC CAGACGACGA CCCAGCTGACGACA CGCCGGCTGA CGAGCCTAGCCT	CTTAGAGACA TGGCCGGQC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAAGAG GACAACATTG GGAAAGACA TCCTGCGTG ACCTGCGTG ACCTGCCGTG ACAGTGCCCT GACCTGCCGTG ACGTGAGGCC GGGGACAACC GGGGACAACC CCTCCTGCCC CTGCAGGCCC CCCCCTACGC CCCCTACGC GACCTTCCAG CCCAGTGCCGA	GGAGCCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGG GAAATTCAGC ACCACCATAG GCACGTGTG CACGTGCG ACAACCGCA ACAAGCTGCT TCCGGAGAACC CCGGCTGCTG GGCGAGAGCTCA GAAGACCACA ACAAGCGCAA ACAAGCGCAA GAGCACACA ATGAAGAACA GAGCTGCGG GGAGAACTC GGCAAACTC	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG TAATACGTTT GGAATATTG GCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATCT GGAGGGTGAA ATGTAACGTG AACTTGGAG GCCCTTTGCC TGAAGGAGGAG GCCCTTTGCC TGAAGGAGGAG CCCATGCCA AGGAGAGGCCA AGGGACGCCT ACCGCGAGG GGAGAAGCTC ACGCCGAGGA CACGCGAGG CACGGGGGA AACTAAGCCC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGACA GGAGGCCCTT ACCCCAGCAG GACCCAGAA GACCCAGCAG GAGACAAGC CTCGGTACCT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGCG GATTGGGAAG CTGGAGCTCA GCAGCTGCGCG GACTGCGCCG AACCACCAGC GCTCAAGGC CCGCCTTGC AACCACCAGC GCTCAAGGC CTGCAGAAGT GCGCCCTGCG CCCCCTGCGC CTGCAGAAGT GGAGTCCCAGC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) [1743];rs5096(1735) [1743];rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933) [755] rs5105[634];rs2238008 rs1042372;rs5106(568) rs5107;[520] rs5108</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,271 8,221 8,271 8,271 8,071 8,071 7,921 7,921 7,921 7,921 7,921 7,721 7,571 7,571 7,571 7,571 7,571 7,571 7,571 7,571 7,371 7,221 7,221 7,171 7,021	AAGGGTTGAG GCACTTAAC GAGTTTGACA AGGGCCCAGTG GGCCCCAGTG GGCCCAGTG GGCCCAGTG GGCACAGGC AGGTCAAGAA ATGTGGGAGA ATGTGGGAGA ACCCTCCTC GCAGACAAAG GCCCTCCCCC TTACGCAGCC TACGCCAGCC CCAGACAAC CCCGGCAGACCA CGCCGACGACA CGCCGGCCAG CCAGACGACT TTGAGGCCTG CCAGGCCGC CCAGGCCGACA CGCCGCCGC CGAGGACGTG CAGAGCCTGCG CAGAGCCTGCCAG CGCCGCCGCG CAGAGCCTG CGCCGCCGCG CACGACGACACG CACCTGCCAG CCACGCCGCCAG CCACGCCGCCAG CACCTCGCCG CACGACCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCCCGCCAG CACCTCGCCAG CACCTCCCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCGCCAG CACCTCCCCGCCAG CACCTCCCCGCCAG CACCTCCCCGCCAG CACCTCCCCGCCAG CACCTCCCCGCCACA	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAACATTG GGGAAGGAC CTGCTGGAGGG TCCTGGAGAGG TCCTGAGAGG ACCTGTCGTG ACAGTGCCGT GACCTGCAGGC GGGCAAGGAC GGCGACAGC CCCCTACGC CCGCTACGC CCCCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC GCCGCTACGC CCCCTACGCACC CCCCTACGCCGA CCCCTCCAG CCCCTACGCACC CCCCTACGCCGA CCCCCTACGCACC CCCCTACGCACC CCCCTACGCACC CCCCTCCAG CCCCCTACGCACC CCCCTCCCGCACC CCCCCTACGCACC CCCCTACGCCACC CCCCCTACGCACC CCCCCTACGCACC CCCCCCCACCCACC CCCCCCCCACCCCCCACCCCCC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GACGGAGGTG GCACCTTGTG TGACATGGTG GAAATTCAGC ACACATGGTG GAAATTCAGC ACACGTGTGC TAAATGCCA AGAAGCTGCG TGCGAGAGCT CGGGGGGCAG GACGGCTCA GACGGCTCAG GACGGCTCA GACGGCCCG GGAAAACTCCG GGAAAACTCCG GGAAAACTCC GGAAAACTCC GGAAAACTCC AACTGGGCCC AACTGGGCCC	GCTTAGGATA GGATCCACAT CCTTTGGTT CCACTGGAT GGAATATGG CCACTGGAAG TGGATCCTA ACCCTCTGCA GGTAGATCTC ATCGTAACTT GGAGGTGAA ATAAGCGAG ATGTAACGTG AAACTTGGAG GCCCTTTGCC TGAAGGAGGAG CCCAAGCCGAC GGAGAGAGTGC ACCCGAGCCGAC ACGCGAGGGG GAGAGAGCTGG ACCCGAGGGG CACCGAGGGG CACCGAGGGG AQCAGGTGGA ACCATGCGGGG CCCATGCGGG CACGGAGGG CACGGAGGG CCCATGCGGGG CACGGAGGGGGG	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGCGG CAGAAAGAGG GCACACCCT ACCCCAGCAG GAGACCCCT ACCCCAGCAG GAGACAAAGT AGTCTGTGAC TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGC GATTGGAACAC TGCAGGGAGAA GAGCTCAAGG TACGCCCTAC GCACCACCCT GCAGCGCCCT GCACGCCCTAC GCCCCTGCC GCTCCAAGGCC GCTCCAAGGCC GCTCCAAGGCC CGCCCTGGC GCACGAGAAGT	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755] rs5105 [634] ;rs2238008 rs1042372;rs5106 (568) rs5107; [520] rs5108 [422]*;rs5109 (406)</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,971 7,871 7,871 7,721 7,721 7,721 7,521 7,521 7,321 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271 7,271	AAGGGTTGAG GAGTTTGACA GAGTTTGACA AGGGCACAGTG GGGCACAGTG GGGCACAGTG GGGCACAGGC AGGTCACAGA ATGTGGGAGA ATGTGGGAGA ATGTGGGAGA ACCCATCCTC GCAGACAAAA GCCCTTCCCC GAGCTGGAGG CCAGACAGAC CCAAGATCA CGCCAGCTGA CGCCAGCTGA CGCAGCTGGCT TTGAGGGCCT AGGACGACAG CCAAGATCTGG CAAGATCTGG CAAGACGTG CAAGACGTG CAAGACGTG CCAAGATCTGG CACGGCACAG GCCACCGGTGG CACTGGCAGA GCCCGCGTGG CACTGGCAGA GCCCCGGTGG GATGGCACAG GCCACTTGAG GCCACTTGAG	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AACGAACACA GACAACATG GGGAAGGAC ACCTGCAGAGG TCCTGGAGAG ACCTGCAGA GCCTGCAGG GGCGACAGGC GGCGCACG CCCCCTACGC CCCCCTACGC CCCAGACCT CCAAAGTCA CCCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGACCT CCAGCCCACC CCCCCTACGC GCTGGCGCACC CCCGCGCGCG GCTGGCGCACC CCCCCTACGG CCCGCCCACG CCCGCGCAGG CCCGCGCAGC GCTGGCGCACC CCCCCCCCGCA CCCCCCCCGCAC CCCCCCCACG CCCCCCCC	GAGGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GAAATTCAGC ACCACCATAG GCACGTGTGC TAAATGCCAA CATCCAGGAC CCGGCTGCTG TGCGAGAACT CCGGCGCAGCC GAGGACCTCG GAGGACCCG GAACTGGCCC GAACTGGCCC AACTGGGCCC AACGGCCC AACGGCCC AACGGCCC AACGGCCC AACGGCCC AACGGCCC AACGGCCC AACGGCCC AACGGCCC	GCTTAGGATA GGATCCACAT CCTTTGCTT CCACTGCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA GGTAGATTCT ATCGTAACTT GAGGGTGAA ATAAGGCGAG ATGTAACGTG AAACTTGGAG GCCCTTTGCC TGAAGGAGGCG CGCAGGCGAG GGAGAAGTGC CGCAGGCGAGG GGAGAAGCTC ACGCGAGGG GGAGAAGCTC ACGCGAGGG CACCGAGGGG AACAAAGCC CCATGCGGGG GGGACAAGGT	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGACA GGAGGCCCT ACCCCAGCAG GGCCCAGAA GACAAGGG GAGACAAAGT AGTCTGTGAC CTCGGTACAT TGGTATACAA GCCTCCTTGT GAATGGGAGC ATGAGGTGAG ATGAGGTGAG TGCGGGCGAG TACGGCCTAG GCACTCAAGGC GTCCAGGCCCG GCTCAAGGCC GGCCTCAGGC GGCCTCAGGC CTGCAGAAGT GGAGTTCCGA GGGGTCAGGAG CTGCGGCAGCA GCACTGCGCAG	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755] rs5105 [634] ;rs2238008 rs1042372 ;rs5106 (568) rs5107; [520] rs5108 [422] * ;rs5109 (406) [357]</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,221 8,021 7,971 7,871 7,821 7,771 7,521 7,521 7,521 7,521 7,521 7,521 7,271 7,221	AAGGGTTGAG GAGTTTGAAC GAGTTTGAA AGGCCCAGTG GGCACAGGC AGGTCCAGTG GGCACAGGC AGGTCCCTCT GGAAGCAAA ATGTGGGAGA ATGTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CTGAGCACTC CAGCCGGCCG GAGCTGGAGA CCCCGCGACAGC CCAGAGATCGA GCCCGACAGC CAAGATCCAGC CAAGACTCCGC CAAGACCTGGCG CACTGGCAGAT CAGCCGGCTG CACTGGCAGA CCCCGGCGG CACTGGCAGA CCCCGGCTGG CACTGGCAGA CCCCGGCTGG CACTGGCACAC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAACATTG GGAACACATTG GGAAGACACTG CTGCTGAGATA TCCTGCGTG ACCATCTGC TCTTGCCGTG ACCTGCQCT GACCTGCQCC GGGGACAAGCC GGGGACAACC CCCCCTACGC CTGCAGGCCT CCAGAACGTC GACCTTCCAG GCCGCACCC CCCCCAAGCCCA CCCCCTACGC CCCCCTACGC CCCCCCACACC CCCCCCCACACC CCCCCCCACACC CCCCCC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GACATGGG GCACTTGAG ACCACCATAG GCACGTGTGC TAAATGCCAA AGAAGCTGGT TCCGAGAGACC GCGTGAGAGCC GGCTGAGGCC GAGGACCAG AGAACACGCA ATGAAGAAGA GTAGGGCAA CACCTGGGCA CACCTGGACC GGAAAACTTC AACAGCGCAA	GCTTAGGATA GGATCCACAT CCTTTGCTT CCACTGCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ACCTTGCA ATGTAACTT GGAGGGGGA AACTTGGAG GCCCTTTGCC TGAAGGAGGA GCCCATGCCA GGAGAGGCCA AGGAGGCCGA GGACAAGGCTC ACGCCGAGGG CACCGCGAGG CACCGAGGGG AACATGCGAGGG GGACAAGGCTC GGACAAGGCCC	CCCACTGCCC ATGTAAACQG TGACQTTCTA GAAGAGAGGG CAAAAGACA GGAGGCCCT ACCCCAGCAG TGGCCCAGAA GACACCAGAAQCT AGTCTGTGAC CTCGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGACTGCG GATTGGAACAC ACGAGCTGCAG GAGCTCAAGG TACGGCCCTAC GCACGCCCTACC GCTCAAGGCC GCTCAAGGCC GCTCAAGGC GCTCAAGGC CTGCAGAAGT GGAGTTCCGA GCACGCGAAG GCACGTCCACA GCACGCGCAC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) [1743];rs5096(1735) [1743];rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933) [755] rs5105[634];rs2238008 rs1042372;rs5106(568) rs5107;[520] rs5108 [422]*;rs5109(406) [357] rs675(315)</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,271 8,271 8,271 8,271 8,071 8,071 7,921 7,921 7,921 7,771 7,771 7,771 7,771 7,571 7,571 7,571 7,571 7,571 7,571 7,271	AAGGGTTGAG GCACTTAAC GAAGTTTGACA AGGGACCAGTG GGCCCCAGTG GGCCCCAGTG GGCCCCAGTG CACTCCCTCT GGAAAGCAAA ATGTGGGAGA ACCCATCCTC GCAGACAAAG CCCCTCCCCT	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AACGAACACTG GGGAAGACC CTGCTGGAGGG TCCTGGAGAG TCCTGAGATC TCTTGCCGTG ACCTGCCGTG ACCTGCCGTG GGCGACAGC GGGGACAACC GCTGCGGCACC CCCCCTACGC CCCCTACGC GCTGAGGCACC CCCCTATGCTC GACCTCCCG GCTGGCACCC CCCCTATGCTC GACCTCCCG GCTGGCACCC CCCCTATGCCG GCCGCTACGC GCTGGCACCC CCCCTACGCG GCTGGCACCC CCCCTACGCCAC CCCCTACGCG CCCCTCACGCCAC CCCCTCCCG CCCCCTACGCAC CCCCCTCCGC CCCCTACGCCAC CCCCCTCCGCAC CCCCCTCCGC CCCCTCCCGCAC CCCCCTCCGC CCCCCTCCGCAC CCCCCTCCGCAC CCCCCCCCCACGC CCCCCCCCACGC CCCCCCCC	GAGGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGAGGTG GCACCTTGTG TGTACACAA TCAAAGTCCC TGACATGGTG GAAATTCAGC ACACCATAG GCACGTGTGC TCGAGAGATC CAGATCAGGA CTGCGAGAGCT CAGGCGCAGC GAGGAGCTCA GAGTGCAGCA GATTGACCAG AGGAGCTCCG GGAAAACTCC AACAGCCCC AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG AACAGCCCG	GCTTAGGATA GGATCCACAT CCTTTGCTT CAGGCTCATG GAATACTTG GGAATACTTG GGAATACTTG ACCTCTGCA GGTAGATCTA ACCTCTGCA ATGTAACGTG ATGTAACGTG AACTTGGAG GCCCTTTGCC TGAAGGAGGG GGAGAGAGCC CCACGCCGAC AGGGACGCCT ACCCCATGCCA GGAGAGACTCG CACGCGAGG GGACAAGCC CCATGCGAGG AACATAGCCC CCCATGCGGGG AACAAAGCCC CCCATGCGGGG GGACAAGCTC GCACGCGAG GGACAAGCTC GGACAAGCTC GGACAAGCTC GGACAAGCTC GGACAAGCTC GGACAAGCTC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGCGG CAGAAAGAGG GCACAAGCAG ACCCCAGCAG TGCCCAGAA GACAAGCAG GAGACAAAGT AGTCTGTGAC CTCGGTACCT AGTCTGTGAC ACCGAGCTGC GATGGAGCCTG GCAGCTGCGG GCTGCGGAGAA AGCTCCTGC TACGCCCTAC GCTCCTGC CCCCCTCG CTCCAGAGCC GCTCCAGAGC CTGCAGAGCC GCTCCAGAGC GCTCCAGAGC CTGCAGAGC CTGCAGAGC CTGCAGAGC CTGCAGAGC CCCCCTCCG CACGTGCAGCA GACGTGCGAGAG CACGTGCGAGC	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755] rs5105 [634] ;rs2238008 rs1042372 ;rs5106 (568) rs5107; [520] rs5108 [422]*;rs5109 (406) [357] rs675 (315) [288] ;rs5030782 ;rs5110 (274)</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,271 8,221 8,071 8,071 7,921 7,921 7,921 7,871 7,721 7,721 7,521 7,521 7,521 7,221 7,221 7,221 7,221 7,121 7,021 6,971 6,821	AAGGGTTGAG GCACTAAC GAGTTTGACA AGGGCCCAGTG GGGCACAGGC AGGTCACAGA AGGCCCCAGTG GGAACAAGAA ATGTGGGAGA ATGTGGGAGA ATGTGGGAGA CTGAGCACTC GCAGACAAAG GCCCTTCCCC CTGAGCAGCT GAGCTGGAGG CCAAGATCACG CCAAGATCACG CCAAGATCACG CGCAGCTGGCT TTGAGCACGT CACCTGGCAGA CGCCGGGTG CAAGACCTCGG CAAGACACT CACCTGGCAG CCACTGGCAG CCACTGGCAG CCACTGGCAG CCACTGGCAG CCCACTTGAG CCCCCGGTG GCCACCTGGAG TTCAGCACCT TCAGCACCT TCAGCACCT GCCACTTGAG CCCCTTGGAG CCCACTTGAG CCCACTTGAG CCCCCCGGTG CACCGCACT CACCTGGCAG CCCACTTGAG CCCCCCGGTG CCCACTTGAG CCCCCCGGACCAC CCCACTTGAG CCCCCCGGCTG CCCCCCGGCTG CCCCCCGGCTG CCCCCCGGCTG CCCCCCGGCTG CCCCCCGGCTG CCCCCCGGACCCC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AACGAACATG GGCAAGAAGCA GACAACATG GGCAAGGC TCCTGGAGAG TCCTGGAGACC CTGCTGCGTG ACCTGCCGTG GACCTGCAGA GGCCAAGGAC CGTGGCGCACC CCCCCTACGC GGCGCACCC CCCCTACGC GCCCTACGC GCCGCGCACC CCCCTACGC GCCGCGCACC CCCCTACGC GCCGCGCACC CCCCTACGC GCCGCGCACC CCCCTACGC GCCCCTACGC GCCCCTACGC GCCCCTACGC GCCCCCCACG CCCGGGCACC CCCCCCACG CCCGGCGCACC CCCCCCACGC CCCCCCCC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GACGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GAAATTCAGC ACACCATAGG CACGTGCTGC TGCCACCATAG CACGCTGCTG TGCGAGAACC CCGGCTGCTG TGCGAGAGCTCA GACGCAGCA ACAGCGCACA ACAGCGCCC GAAAACTTC AACTGGGCCC AACGGCCCG AACGAGCCAGA ACAGCAGCA ACAGCAGCA ACAGCAGCAG	GCTTAGGATA GGATCCACAT CCTTTGGTT CAGGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ATCGTAACTT GGAGGGGAGA ATGTAACTTG GACCCTTTGCC TGAAGGAGGAG ACCTAGCAGGC CGCAGCCGAG CGCAGCCGAG CGCAGCCGAG GGAGAAGTGC CCACGCGAGG GGAGAAGCTC ACCGCGAGGA CACGGAGGCGG ACACGGCGGG ACACGGCGGG ACACGGCGGG GGCACAAGGTC GACAAGACTC GGACACGGC GGCACAAGGTC GACAAGACTC CCATGCGGGG GGCACAAGGTC GACAAGACTC CCACGCGGGG GGCACAAGGTC GACAAGACTC CCAAGCACCAG CCCCATGCCGGG GGCACAAGGTC CCCATGCCGGG CCCCCAGCCGGC CCCCCCCCCC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGG CAGAAAGACA GGAGGCCCT ACCCCAGCAG GGCCCAGAA GACACAGGG GAGACAAAGT AGTCTGTGAC CTCGGTACTT TGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGC GATTGGAGCCTG GCACTGCGGAGAA GAGCTCAAGG TACGCCTACG GCTCCAAGGC CTGCAGGACAG TACGCCCTACG AGCGCCTACG CTCCAAGGCC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTGGC CGCCCTCCC CGCCCTCCC CGCCCTCCC CCCCCTCCC CCCCAGAAGT	<pre>[1948] ;rs13306177 rs5094 (1853) rs13306179 ;rs5095 (1853) [1743] ;rs5096 (1735) rs2234667 rs5098 (1453) [1371] rs5100 (1334) ; [1326] [1274] Exon 3 rs13306173 rs5101 (1198) ;rs5102 ;rs5103 (1192) ;rs12721042 (1183) rs6413456 [1033] [952] ;rs5104 (974) ;rs2234668 (964) [945] ; (933) [755] rs5105 [634] ;rs2238008 rs1042372 ;rs5106 (568) rs5107; [520] rs5108 [422]* ;rs5109 (406) [357] rs675 (315) [288] ;rs5030782 ;rs5110 (274)</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,221 8,221 8,021 7,971 7,871 7,871 7,721 7,721 7,671 7,521 7,521 7,521 7,271	AAG@GTTGAG GCACTAAC GAGTTTGACA AGGGCACAGTG GGCCACAGTG GGCCACAGTG GGCACAGGC AGGTCACAGA ATGTGGGAGA ATGTGGGAGA ATGTGGGAGA ACCCATCCTC CTGAGCACTC CTGAGCACTC CTGAGCACTC GCAGCTGGAG CCAGCTGGAG CCAGCTGGAG CCAGCTGGAGA CGCCGACAGC CCAAGATCGC CAAGATCTGG CAAGCTGGACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGGCACAG CCACGCACAG TTCAGCACCT TGAGCTCGAG TCCAGCTCGAC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AACCAACATG GGAACGACAC CTGCTGGAGG TCCTGAGAGAC CTCTGCGAG ACCATCTGC ACCTGCCGTG GACCTGCCGTG GGCCACAGGCC GGCGCACGC CCCCCTACGC CCCCCTACGC CCCCCTACGC CCCCCTCCGG CCAGAGCCT CCAGACCTC GACCTTCCAG CCAGTGCCGAC CCCCTCCGG CCGCGCACC GCTGGGTGGG AGCCCTACGG CTCAGGCAAC CTTCCTGGAG CTCAGGCAGAC CTCAGGCAGAC CTCCCGGAG CTCAGGCAGAC CTCCCGGAG CTCAGGCAGAC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC GACATGGTG GAAATTCAGC ACCACCATAG GCACGTGTGC TAAATGCCAA CATCCAGGAC CGGCTGAGGCC GAGAGCTGCT CGGGGAGAGCT CGGCTGAGGCC GAGAGCTGCA GATGACAGCA ACACCGGGCAA CACCTGGGCCA AACAGCACCAG AGAACCTGA CACGCCAGA CACGCCAGA CACCTGGCCCA AGAACCTGA CACGCCAGA CACAGCAGCAGCA CACAGCAGCAGCA CACAGCAGCAGCA CACAGCAGCAGCA CACAGCAGCAGCA	GCTTAGGATA GGATCCACAT CCTTTGCTT CCACGCTCATG TAATACGTTT GGAATATTG CCACTGGAAG TGTGATCCTA ACCCTCTGCA ATGTAACTT GAAGGTGAA ATAAGGCGA ATGTAACTTGGAG GCCCTTTGCC TGAAGGAGGAG CCCCATGCCA CGCAGGCCGAC AGGAGAGTGC CCACGCCGAGG GGAGAAGCTC ACGCCGAGGG GGACAAGGCTG CACGCGAGGG AACAAGCCC CCATGCGGGG AACAAGCCC CCATGCGGGG GGACAAGGTC GGAGCAGCAG CCCATGCCGGG GGACAAGGCTC GGAGCAGCAG CACGCGCGGG CACAGGCGCG CACGCGCGGG CACAGGCGCG CACAGCACCAG CCAAGCCCC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGGGGCCT ACCCCAGCAG GGAGCCAGA GGAGCCAGA GACACCAGAA GACCCAGCAA GACACGAGAC TGGCCCAGAA GACTCGTGTG CTGGTATACAA GCCTCCTTGT AAGTGAACAC ACCGAGCTGCG GATTGGGACG TGCGGGCGAGA ACCACCAGC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCAAGGCC GCTCCAGAAGT GGAGTTCCGA GAGTTCCGA GCACTGCGCG GCTCCAGAGC CTCCAGAGCC CCCCTTGG CCACCACGC CACCTCCCCC CACGCCCTCC CACGCCCCC CACCTCCCCC CCCCCTCC CACGCCCCCC CCACCCCCCC CCACCTCCCC CCCCCCCCC CACCTCCCCCC CCCCCCCC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) [1743];rs5096(1735) [1743];rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933) [755] rs5105[634];rs2238008 rs1042372;rs5106(568) rs5107;[520] rs5108 [422]*;rs5109(406) [357] rs675(315) [288];rs5030782;rs5110(274) [165]</pre>
<pre>116,19 116,</pre>	8,521 8,421 8,421 8,371 8,221 8,271 8,271 8,271 8,071 7,921 7,921 7,921 7,771 7,771 7,771 7,771 7,571 7,571 7,571 7,421 7,221 7,221 7,221 7,221 7,221 7,071 7,221 7,071 7,021 6,921 6,921 6,921	AAG@GTTGAG GCACTAAC GAAGTTGACA AGGGACCAGTG GGCCCCAGTG GGCCCCAGTG GGCCCCAGTG CACTCCCTCT GGAAAGCAAA ATGTGGGAGA ACCCTCTCC CTGAGCACACC CTGAGCACACA GCCCTCCCC TTACGCAGGGT ATGAACGCCT GAGCTGGAGA CCCAGACAAA CGCCGACCAG CCCAGACCAA CGCCGACCAG CCAGACCAG CCAGACCAG CCAGACCAG CCAGACCAG CCAGACCAG CCAGGACCA CGCCGGCTGA GACTGCCAGAT CAGCCTGGCA CGCCGGCTGG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAACGCCTGCA CGCCGGCTG CAACGCCAGC CCAGGACCAG CCACGCAGAC CCACGCAGAC CCACGCAGAC CCACGCAGAC CCACGCACAC CCACGCCGC CAAGACCTG CCACGCACAC CCCCGCCAG CCACCTCGCA CCCCCGC CCACGCCCC CCACGCCCC CCACGCACACC CCACGCCCCC CCACGCCCC CCACGCCCC CCACGCCCC CCACCCCC CCACGCCCC CCACCCCCC CCACCCCCC CCACCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCC CCACCCCCC CCACGCCCC CCACGCCCC CCACGCCCC CCACCCCCC CCACCCCCCC CCACGCCCCC CCACGCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCC CCACGCCCC CCACGCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACGCCCCC CCACCCCCCC CCACGCCCCCC CCACGCCCCCC CCACGCCCCCCC CCACGCCCCCCC CCCCCCCC	CTTAGAGACA TGGCCGGGC CCGAATAATC AATGGCCACA ATGTCA_GTG GAATCAAGG AAGCAACATG GGAACACATG GGCAAGACA TCCTGGCGAGG TCCTGAGATA TCCTGCCGTG ACAGTGCCTG GACCTGCCGTG GGCGACAGGC GGGGACAACC GGCGACAGGC CCCCTACGC CCCCTACGC CCCCTACGC CCCCTACGC CCCCTACGC GCTGGCACC GCTGGCACC GCTGGCACC GCTGGCACC GCTGGCACC GCTGGCACC GCTGGCACC GCTGGCGCGG AGCCTTCCAG GCCCCTTCG GCCCCTTCG GCCCCTTCG GCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTCG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTCG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTCG GGCCCCTTG GCCCCCTTG GCCCCCTTG GCCCCCTTG GCCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GCCCCCTTG GGCCCCTTG GCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCTTG GGCCCCCTTG GGCCCCCTTG GGCCCCTTG GGCCCCTTG GCCCCTTG GCCCCCTCC GCCCCTTG GCCCCCTTG GCCCCCTCC GCCCCCTTG GCCCCCTTG GCCCCCTTG GCCCCCTTG GCCCCCTTG GCCCCCTTG GCCCCCTCCCCCCTCG GCCCCCTTG GCCCCCTTG GCCCCCTCCCCCCCC	GGAGCCTGA TCTGAACCTA CCTGCCATGT TCCTATCATT AGCTGATTTC GAGGGAGGTG GCACCTTGTG TGTTACACAA TCAAAGTCCC TGACATGGTG GCACATGG GCACGTGTGC TAATGCCAA ACAGCGCGGA TCCGAGAGCCGA CCGGCGAGAGCT GCGGAGAGCTCA GAGGGCCAG AGGACACGCA AGGACACGCA CACTGGGCCA CACTGGCCC GGAAAACTTC AAGGACCAGCA AGGACCACGA AAGAGCCAG AACAGCACGA ACAGCCAGC	GCTTAGGATA GGATCCACAT CCTTTGCTT CCACTCTTGCATG TAATACGTTT GGAATATTG GCACTGGAAG TGTGATCCTA ACCCTCTGCA ACCTCTGCA ATCATACTT GGAGGGTGAA ATAAGCCGAG GCCCTTTGCC TGAAGAGAGGC GCCACGCCGAG ACACAGCCCA AGGAGACGCCT ACCCGAGGG CACCGCGAGGA CACCGCGAGGG CACCGCGAGGG AGCAGGTGGA AACATGCCC CCACGCGAGGG CACCGCGAGGG CACCGCGAGGG CACCGCGAGGG GGACAAGCCC GCACAGGCCGA GGACAAGCCC CCACGCGAGGG GGACAAGCCC GCACAGGCGCGA CCCCGAGGGG CACAGGCCGAGGG GGACAAGCCC GCACAGGCCGA CCCCCGAGGG CACAGCCCAGGC CCCCCGAGGG CACAGCCCAGCCC CCACCCCAGCCGA CCCCCCCC	CCCACTGCCC ATGTAAACG TGACGTTCTA GAAGAGAGGG CAAAAGACA GGAGGCCCTT ACCCCAGCAG GACACAAGAG GACACAAGCAG GACACAAGCAG CTCGGTACCT AGTCTGTGAC CTCGGTACCT AGTGAGCAGAG GCTCCTTGT AAGTGAACAC ACCGACTGCG GAGTGCGAGA GACTCCACG GCTCCAAGGC GCTCAAGGC GCTCCAAGGC CTGCAGAAG GCCCCTTGC CCGCCCTGC CCGCCAGAGC GCTCAAGGC CTGCAGAAGT GCAGTGCAGCA GACTCCCACG CCGCCAGCAGC CCGCCAGCAGC GCACTCCACGC CCGCCAGCAGC CCGCCAGCAGC CCGCCCCAGC CCCCCAGCAGC CCCCCCCC	<pre>[1948];rs13306177 rs5094(1853) rs13306179;rs5095(1853) [1743];rs5096(1735) [1743];rs5096(1735) [1743];rs5098(1453) [1371] rs5100(1334);[1326] [1274] Exon 3 rs13306173 rs5101(1198);rs5102;rs5103(1192);rs12721042(1183) rs6413456 [1033] [952];rs5104(974);rs2234668(964) [945];(933) [755] rs5105[634];rs2238008 rs1042372;rs5106(568) rs5107;[520] rs5108 [422]*;rs5109(406) [357] rs675(315) [288];rs5030782;rs5110(274) (165) rs12721040(120)</pre>

Figure 11 Continued

aactggttgc	cggatgaatc	ctccttgcag	ctggggaggt	ggggaggtaa	
ccatgactgg	gcagagetta	gcagcggcct	ggcaggagac	acccaggatt	
ggggagatga	gactgcagga	gaggtaaggg	cctggtggac	tggaggcgag	
tacatgggga	gtcctctaag	gggaggcaga	aaaagatgtc	acacattatc	
ccaagacaaa	atatgcaacc	tacttatatt	catttagcca	acaaatatgc	
attgaatgcc	tccgatgcgc	cagtcattat	tctaggcacc	ggacaaccag	
caaacagctt	ttgtgcagcc	atgtgcccga	ctctgcctca	cactgagggg	
gacacctgga	ggcgagcaga	acagggtccc	tggccctggg	gggctcacag	
tacactgggg	gagatggttc	ctccttgcac	gagatettea	gtgcctttaa	
cttattcatg	tagtgtcatt	taacccaccc	caccccagtt	ccattatgaa	
agcgattcat	gcttatttca	gaactttctt	gactgctaaa	cctgtggtct	
ccatccagaa	ttggggattg	aggcttgggg	accgagacga	gtctggggag	
gaggggcaga	gcaggtgctg	gagcctgcgg	ggccctggtc	tgctctgtcc	
aggggcctcc	tgccaggtgg	cctgccagtt	tggggctgag	tttgcagcca	
ctggg g ttag	gggcagagag	tcagggggcc	tgagcagtct	catcagcaca	rs1263177
gccagctgtg	ggcagctgca	gccttggagt	ggtctttcac	cccaccctta	
gagactcgaa	aacctcacaa	ggaaagagcc	agttcaagc g	tttgtctcaa	rs1268354
acgactccac	agcctgttac	ccgtggaccc	cagccctgcg	agtctagcca	
cctccctttc	ctcgccacag	ggggatgcag	gcccttcagg	gctttcctgg	
aagaggcctg	gaacatgcta	aggaggaggg	ggaagtcccc	ttggagggtg	
	aactggttgc ccatgactgg ggggagatga tacatgggga ccaagacaaa attgaatgcc caaacagctt gacactggg ttacatgggg cttattcatg agcggttcat ccatccagaa gaggggcaga aggggcctcc ctggggttag gccagctgtg gagactcgaa acgactcgaa ccatccagaa	aactggttgc cggatgaatc ccatgactgg gcagagtta ggggagatga gactgcagga tacatgggga gtcctctaag ccaagacaaa atatgcaacc attgaatgcc tccgatgcgc caaacagctt ttgtgcagcc gacacctggg gacgatggttc cttattcatg tagtgcatt agcgatcat gcttattca ccatccagaa ttgggattg gagggccaga gcaggtgctg aggggcctcc tgccaggtg ctggggttag ggcagcagga gccagctgtg ggcagcaga gagactcgaa aacctcacaa acgatccac agctgtac cctcccttc tcgccacag aagaggcctg gacctgca	aactggttge eggatgaate etecttgeag ceatgactgg geagagetta geageggeet ggggagatga gactgeagga gaggaggag ceaagacaaa atatgeaace taettatt attgaatgee teegatgee eagteatatt caacaegett ttgtgeagee atggeeega gacaectggg gagatggtte etectgeag deactggg gagatggtte etectgeag ctaattatg tagtgeeat taaceeega gagggeeag geaggtget gagettegg gagggeeag geaggtget gagettegg gagggeeag geaggtget etgeegg gagggeeag geaggtget etgeegg gagggeete tgeeaggg etgeegg geagetteg ggeagagg etgeegg gegggetee tgeeaggg etgeegg gegggetea aceetgeeg etgeegg gagategg ggeagetge ggeaggee etgeggttag ggeagetge geaggeeg geagetega aceeteae ggaaaggee aeggatee ageetgtae etgegaee ecgeetee ageetgtae etgegaeeg aagaggeetg gaaeatgeta aggaggeg	aactggttge eggatgaate etecttgeag etggggagat ceatgactgg geagagetta geagegeet ggeaggagae ggggagatga gactgeagga gagtaaggg ectggtggae tacatggggg gteetetaag gggaggeaga aaagatgte ceaagacaaa atatgeaace taettatatt eattageea attgaatgee teegatgege eagteattat tetaggeac gaeacetggg ggeageaga acagggtee tggeeetga tacatgggg gagatggte etectgeae gagatettea gtaatetag eggeageaga acagggtee tggeeetga tacatgggg gagatggte etectgeae gagatettea ettatteatg tagtgeatt taeceaee eaceeagt ageggeeta getggetg gageetggg geeetgge gagggeega geaggtget gageetggg geeetgge eaggggeete tgeeaggg etggegge tgggeageag etggggttag ggeageagg teaggegge tgggeagetg geageteg ggeagetga geettggag ggeetgg etggggttg ggeagetge etggeeget geggeteg aceetgagg eetggag ggeettee geagetega aceetgaa ggaaggee ggeette gagaeetega aceetgata eggaggee etggeagetg aagageee ageetgta eetgggaee etgeegeg etteeette etegeeaeg gggatgee eetgeeg eeteette etegeeaeg gggatgeeg geeetteagg aagaggeetg gaacatgeta aggaggagg geettesgag etgggateg ggeagetge etggeage geetteageg etegegette etegeeaeg gggatgeeg geetteagg eetgegetg gaacatgeta aggaggagg geagteeet	aactggttge eggatgaate eteettgeag etgggaggt ggggaggtaa ceatgactgg geagagetta geagegeet ggeaggagae aceaggatt ggggagatga gactgeagg ggggaggae etggggagae aceagtatte ceaagacaaa atatgeace taettatt eattageea aceaatatge atgatgatgee teegatgee eagteattat tetaggeae ggeagaegg caacaeggt ttggeagee aggegeegg etggeegg gggeteaeag gaeacetggg ggeageaga acaggtee tggeeegg gggeteaeag taeaetgggg gagatggte eteettgee eageettea etggeegg gaeaettgggg gagatggte eteettgeegg gggeteaeag taeaetgggg gagatggte eteettgeeg gggeteaeag taeaetgggg gagatggte eteettgeeg gggeteaeag taeaetgggg gagatggte eteettgeeg gggeteaeag taeaetgggg gagatggte eteettgeegg gggeteaeag taeaetgggg gagatggte eteettgeeg gggeteaeag taeaetgggg gagatggte eteettgeegg ggeetteae eteettea ettggggatg gageteggg gaeettee gaegggeegg gagggeeag geeggteeg gaeetteeg ggeettee etggggttag ggeaggagg teaggggee tgageagte eteettgee etggggttgg ggeagetge geettgeg ggeettee etggggttgg ggeagetge geettgeg ggeettee etggggetga aaceteaea ggaaaggee agtteaageg taggateea aaceteaea ggaaaggee agtteageeg ettgeettee etgegette etgeeagg gggaggeeg geetteegg geettageea etteette etgeeaegg ggggatgeg geetteeg geettageea etteette etgeeaeg ggggatgeag geetteeg geettageea etteette etgeeaeg ggggatgeag geetteeg geettageea etteette etgeeaeg ggggatgeag geetteegg geettageea

3.2 DISTRIBUTION OF *APOA1* AND *APOA4* VARIANTS IN HIGH AND LOW HDL GROUPS

3.2.1 APOA1

3.2.1.1 Non-Hispanic Whites

Of 34 variants identified in NHWs, 11 had MAF >5%, 13 had MAF 1-5%, and 10 had MAF <1%. All 10 new variants had a MAF of \leq 1%. No statistically significant difference was identified when comparing the allele frequencies between the high HDL and low HDL groups for any of the 34 variants in this small sequencing sample set (Tables 18 and 19). Of 23 rare variants, 7 were present only in the high HDL group versus 5 only in the low HDL group. Of 3 exonic variants identified in NHWs, 2 were present only in the low HDL group versus 1 only in the high HDL group. Of 2 nonsynonymous variants identified in NHWs, 1 was present only in the low HDL group and 1 only in the high HDL group. Of the 48 individuals with low HDL

levels, 5 (10.42%) had rare variants unique to the low HDL group. Of the 47 individuals with high HDL levels 7 (14.89%) had rare variants unique to the high HDL group.

	Non-Hispanic Whites*	
Rare (MAF<5%)	High HDL (n=47)	Low HDL (n=48)
533C>T	0.021	0.010
689C>T	-	0.010
959G>C	0.011	-
1049T>A	0.021	-
1407insT	0.011	-
1507T>C	0.011	-
1549C>T		0.010
1749T>C	0.043	0.031
2077G>A	0.043	0.031
2198T>G	0.043	0.031
2373T>C	0.053	0.031
2376A>T	0.021	-
2652C>A**	-	0.010
3220G>A	0.053	0.031
3307C>A	0.011	0.010
3431G>A	0.032	0.021
3769A>C	0.011	-
3959G>T	0.011	-
4151G>C	-	0.010
4283C>T	-	0.010
4284G>A	0.043	0.021
4693T>G	0.053	0.031
5131C>T	0.011	0.010
Common (MAF≥5%	b)	
206A>C	0.149	0.198
1128G>T	0.196	0.188
1308C>T	0.250	0.219
1546A>G	0.370	0.375
1598T>G	0.096	0.167
1620A>G	0.191	0.177
3368G>A	0.149	0.146
3613G>A	0.096	0.115
3714G>A	0.096	0.115
4050G>A	0.340	0.323
4443C>T	0.191	0.188

Table 18. Distribution of APOA1 Variants in High and Low HDL Groups in NHWs

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. ** Suspicious variants with low sequence quality.

Novel variants are hi-lighted.

206 A>C									
	Hig	h HDL	Low	v HDL	TOTAL				
	n	(%)	n	(%)	п	(%)			
AA	33	(70.21)	31	(64.58)	64	67.37			
AC	14	(29.79)	15	(31.25)	29	30.53			
CC	0	(0.00)	2	(4.17)	2	2.11			
	47		48		95				
Α	0.851		0.802		0.826				
С	0.149		0.198		0.174				
Ζ	0.894								
D	0.371	*test for al	lele freque	ncies					

Table 19. Allele Frequencies of APOA1 Variants in High and Low HDL Groups in NHWs

689 C>T									
	Hig	h HDL	Lov	v HDL	TOTAL				
	n	(%)	n	(%)	n	(%)			
CC	47	(100.00)	47	(97.92)	94	98.95			
СТ	0	(0.00)	1	(2.08)	1	1.05			
ТТ	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
С	1.000		0.990		0.995				
Т	0.000		0.010		0.005				
Z	1.005								
р	0.315	*test for al	lele freque	ncies					

	1049 T>A									
	Hig	h HDL	Lov	w HDL	TOTAL					
	n	(%)	n	(%)	п	(%)				
TT	45	(95.74)	48	(100.00)	93	97.89				
ТА	2	(4.26)	0	(0.00)	2	2.11				
AA	0	(0.00)	0	(0.00)	0	0.00				
	47		48		95					
Т	0.979		1.000		0.989					
Α	0.021		0.000		0.011					
Ζ	1.430									
D	0.153	*test for al	lele freque	ncies						

1308 C>T									
	Hig	h HDL	Lov	v HDL	TOTAL				
	п	(%)	n	(%)	п	(%)			
CC	24	(52.17)	30	(62.50)	54	57.45			
СТ	21	(45.65)	15	(31.25)	36	38.30			
ТТ	1	(2.17)	3	(6.25)	4	4.26			
	46		48		94				
С	0.750		0.781		0.766				
Т	0.250		0.219		0.234				
Z	0.506								
р	0.613	*test for al	lele freque	ncies					

533 C>T								
	High	h HDL	Low	W HDL	TOTAL			
	п	(%)	n	(%)	п	(%)		
CC	45	(95.74)	47	(97.92)	92	96.84		
СТ	2	(4.26)	1	(2.08)	3	3.16		
TT	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
С	0.979		0.990		0.984			
Т	0.021		0.010		0.016			
Z	0.599							
n	0.549	*test for a	allele frequ	encies				

	050 C>C									
939 G>C										
	High	n HDL	Lov	v HDL	TOTAL					
	п	(%)	п	(%)	n	(%)				
GG	46	(97.87)	48	(100.00)	94	98.95				
GC	1	(2.13)	0	(0.00)	1	1.05				
CC	0	(0.00)	0	(0.00)	0	0.00				
	47		48		95					
G	0.989		1.000		0.995					
С	0.011		0.000		0.005					
Z	1.005									
р	0.315	*test for	allele frequ	encies						

1128 G>T								
	High	n HDL	Low	V HDL	TOTAL			
	п	(%)	n	(%)	п	(%)		
GG	28	(60.87)	32	(66.67)	60	63.83		
GT	18	(39.13)	14	(29.17)	32	34.04		
TT	0	(0.00)	2	(4.17)	2	2.13		
	46		48		94			
G	0.804		0.813		0.809			
Т	0.196		0.188		0.191			
Z	0.142							

p 0.887 *test for allele frequencies

1407 ins T						
	High	h HDL	Lov	Low HDL		ГAL
	n	(%)	n	(%)	n	(%)
WW	46	(97.87)	48	(100.00)	94	98.95
WI	1	(2.13)	0	(0.00)	1	1.05
II	0	(0.00)	0	(0.00)	0	0.00
	47		48		95	
W	0.989		1.000		0.995	
II	0.011		0.000		0.005	
Z	1.005					
р	0.315	*test for	allele frequ	iencies		

Table 19	(Continued)
----------	-------------

			1507 T>C	l ,		
	Hig	h HDL	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)
TT	46	(97.87)	48	(100.00)	94	98.95
TC	1	(2.13)	0	(0.00)	1	1.05
CC	0	(0.00)	0	(0.00)	0	0.00
	47		48		95	
Т	0.989		1.000		0.995	
С	0.011		0.000		0.005	
Z	1.005					
D	0.315	*test for al	lele freque	ncies		

1549 C>T							
	Hig	h HDL	Low HDL		TOTAL		
	n	(%)	n	(%)	n	(%)	
CC	47	(100.00)	47	(97.92)	94	98.95	
СТ	0	(0.00)	1	(2.08)	1	1.05	
TT	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
С	1.000		0.990		0.995		
Т	0.000		0.010		0.005		
Z	1.005						
р	0.315	*test for al	lele freque	ncies			

1620 A>G						
	Hig	h HDL	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)
AA	29	(61.70)	33	(68.75)	62	65.26
AG	18	(38.30)	13	(27.08)	31	32.63
GG	0	(0.00)	2	(4.17)	2	2.11
	47		48		95	
Α	0.809		0.823		0.816	
G	0.191		0.177		0.184	
Ζ	0.256					
р	0.798	*test for al	lele freque	ncies		

			2077 G>A			
	Hig	h HDL	Low HDL		TOTAL	
	n	(%)	n	(%)	n	(%)
GG	43	(91.49)	45	(93.75)	88	92.63
GA	4	(8.51)	3	(6.25)	7	7.37
AA	0	(0.00)	0	(0.00)	0	0.00
	47		48		95	
G	0.957		0.969		0.963	
Α	0.043		0.031		0.037	
Ζ	0.413					
р	0.680	*test for al	lele freque	ncies		

			1546 A>G	r		
	Higł	n HDL	Low HDL		TOTAL	
	n	(%)	п	(%)	п	(%)
AA	18	(39.13)	19	(39.58)	37	39.36
AG	22	(47.83)	22	(45.83)	44	46.81
GG	6	(13.04)	7	(14.58)	13	13.83
	46		48		94	
Α	0.630		0.625		0.628	
G	0.370		0.375		0.372	
Z	0.077					
р	0.939	*test for a	llele frequ	encies		

1	1598 T>G						
	Higł	n HDL	Low	Low HDL		ГAL	
	п	(%)	n	(%)	п	(%)	
ТТ	38	(80.85)	34	(70.83)	72	75.79	
TG	9	(19.15)	12	(25.00)	21	22.11	
GG	0	(0.00)	2	(4.17)	2	2.11	
	47		48		95		
Т	0.904		0.833		0.868		
G	0.096		0.167		0.132		
Z	1.458						
р	0.145	*test for a	allele frequ	encies			

	1749 T>C					
	Higł	n HDL	Low HDL		TOTAL	
	n	(%)	п	(%)	n	(%)
ТТ	43	(91.49)	45	(93.75)	88	92.63
TC	4	(8.51)	3	(6.25)	7	7.37
CC	0	(0.00)	0	(0.00)	0	0.00
	47		48		95	
Т	0.957		0.969		0.963	
CC	0.043		0.031		0.037	
Z	0.413					
р	0.680	*test for	allele frequ	encies		

р	0.680	*test for allele frequencies	
			Ì

	2198 T>G						
	Higł	n HDL	Low	Low HDL		ГAL	
	n	(%)	п	(%)	n	(%)	
TT	43	(91.49)	45	(93.75)	88	92.63	
TG	4	(8.51)	3	(6.25)	7	7.37	
GG	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
Т	0.957		0.969		0.963		
G	0.043		0.031		0.037		
Z	0.413						
р	0.680	*test for a	allele frequ	encies			

Table 19	(Continued)
----------	-------------

		:	2373 T>C				
	High HDL		Low	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)	
TT	42	(89.36)	45	(93.75)	87	91.58	
TC	5	(10.64)	3	(6.25)	8	8.42	
CC	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
Т	0.947		0.969		0.958		
С	0.053		0.031		0.042		
Ζ	0.752						
n	0.452	*test for all	ele freque	ncies			

	2652* C>A								
	Hig	High HDL		Low HDL		TOTAL			
	n	(%)	п	(%)	n	(%)			
CC	47	(100.00)	47	(97.92)	94	98.95			
CA	0	(0.00)	1	(2.08)	1	1.05			
AA	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
С	1.000		0.990		0.995				
Α	0.000		0.010		0.005				
Ζ	1.005								
р	0.315	*test for all	lele freque	ncies					

	3307 C>A							
	Hig	High HDL		Low HDL		TOTAL		
	n	(%)	n	(%)	п	(%)		
CC	46	(97.87)	47	(97.92)	93	97.89		
CA	1	(2.13)	1	(2.08)	2	2.11		
AA	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
С	0.989		0.990		0.989			
Α	0.011		0.010		0.011			
Ζ	0.015							
n	0.988	*test for al	lele freque	ncies				

3431 G>A							
	High HDL		Low	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)	
GG	44	(93.62)	46	(95.83)	90	94.74	
GA	3	(6.38)	2	(4.17)	5	5.26	
AA	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
G	0.968		0.979		0.974		
Α	0.032		0.021		0.026		
Ζ	0.476						
р	0.634	*test for all	lele freque	ncies			

	2376 A>T							
	High HDL		Lov	Low HDL		TOTAL		
	n	(%)	n	(%)	n	(%)		
AA	45	(95.74)	48	(100.00)	93	97.89		
AT	2	(4.26)	0	(0.00)	2	2.11		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
Α	0.979		1.000		0.989			
Т	0.021		0.000		0.011			
Z	1.430							
р	0.153	*test for a	allele frequ	iencies				

	3220 G>A							
	High HDL		Lov	Low HDL		TOTAL		
	n	(%)	n	(%)	п	(%)		
GG	42	(89.36)	45	(93.75)	87	91.58		
GA	5	(10.64)	3	(6.25)	8	8.42		
AA	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
G	0.947		0.969		0.958			
Α	0.053		0.031		0.042			
Z	0.752							
р	0.452	*test for a	allele frequ	encies				

	3368 G>A							
	Higł	High HDL		Low HDL		ГAL		
	n	(%)	n	(%)	п	(%)		
GG	33	(70.21)	36	(75.00)	69	72.63		
GA	14	(29.79)	10	(20.83)	24	25.26		
AA	0	(0.00)	2	(4.17)	2	2.11		
	47		48		95			
G	0.851		0.854		0.853			
Α	0.149		0.146		0.147			
Ζ	0.060							
р	0.952	*test for a	allele frequ	encies				

3613 G>A								
	Higł	h HDL	Low	Low HDL		ГAL		
	n	(%)	п	(%)	n	(%)		
GG	38	(80.85)	39	(81.25)	77	81.05		
GA	9	(19.15)	7	(14.58)	16	16.84		
AA	0	(0.00)	2	(4.17)	2	2.11		
	47		48		95			
G	0.904		0.885		0.895			
Α	0.096		0.115		0.105			
Ζ	0.424							
р	0.672	*test for a	allele frequ	encies				

Table 19	(Continued)
----------	-------------

			3714 G>A			
	High HDL		Low HDL		TOTAL	
	п	(%)	n	(%)	п	(%)
GG	38	(80.85)	39	(81.25)	77	81.05
GA	9	(19.15)	7	(14.58)	16	16.84
AA	0	(0.00)	2	(4.17)	2	2.11
	47		48		95	
G	0.904		0.885		0.895	
Α	0.096		0.115		0.105	
Ζ	0.424					
D	0.672	*test for al	lele freque	ncies		

3959 G>T							
	High HDL		Lov	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)	
GG	46	(97.87)	48	(100.00)	94	98.95	
GT	1	(2.13)	0	(0.00)	1	1.05	
ТТ	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
G	0.989		1.000		0.995		
Т	0.011		0.000		0.005		
Z	1.005						
р	0.315	*test for a	llele freque	ncies			

	4151 G>C								
	High HDL		Low HDL		TOTAL				
	n	(%)	п	(%)	п	(%)			
GG	47	(100.00)	47	(97.92)	94	98.95			
GC	0	(0.00)	1	(2.08)	1	1.05			
CC	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
G	1.000		0.990		0.995				
С	0.000		0.010		0.005				
Z	1.005								
D	0.315	*test for al	lele freque	ncies					

	4284 G>A								
	Hig	High HDL		Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)			
GG	43	(91.49)	46	(95.83)	89	93.68			
GA	4	(8.51)	2	(4.17)	6	6.32			
AA	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
G	0.957		0.979		0.968				
Α	0.043		0.021		0.032				
Ζ	0.855								
р	0.393	*test for al	lele freque	ncies					

			3769 A>C				
	High HDL		Lov	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)	
AA	46	(97.87)	48	(100.00)	94	98.95	
AC	1	(2.13)	0	(0.00)	1	1.05	
CC	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
Α	0.989		1.000		0.995		
С	0.011		0.000		0.005		
Z	1.005						
p	0.315	*test for al	lele freque	encies			

	4050 G>A								
	High HDL		Low	Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)			
GG	20	(42.55)	24	(50.00)	44	46.32			
GA	22	(46.81)	17	(35.42)	39	41.05			
AA	5	(10.64)	7	(14.58)	12	12.63			
	47		48		95				
G	0.660		0.677		0.668				
Α	0.340		0.323		0.332				
Z	0.256								
р	0.798	*test for a	lele freque	ncies					

4283 C>T							
	High HDL		Low	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)	
CC	47	(100.00)	47	(97.92)	94	98.95	
СТ	0	(0.00)	1	(2.08)	1	1.05	
TT	0	(0.00)	0	(0.00)	0	0.00	
	47		48		95		
С	1.000		0.990		0.995		
Т	0.000		0.010		0.005		
Z	1.005						

p 0.315 *test for allele frequencies

	4443 C>T							
	Hig	High HDL		Low HDL		ГAL		
	n	(%)	п	(%)	п	(%)		
CC	29	(61.70)	32	(66.67)	61	64.21		
СТ	18	(38.30)	14	(29.17)	32	33.68		
ТТ	0	(0.00)	2	(4.17)	2	2.11		
	47		48		95			
С	0.809		0.813		0.811			
Т	0.191		0.188		0.189			
Z	0.070							
р	0.944	*test for a	llele freque	ncies				

	4693 T>G							
	High HDL		Low	Low HDL		TOTAL		
	n	(%)	n	(%)	п	(%)		
TT	42	(89.36)	45	(93.75)	87	91.58		
TG	5	(10.64)	3	(6.25)	8	8.42		
GG	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
Т	0.947		0.969		0.958			
G	0.053		0.031		0.042			
Z	0.752							
р	0.452	*test for a	llele frequ	encies				

Table 19 (Continued)

	5131 C>T								
	Higł	n HDL	Low	Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)			
CC	46	(97.87)	47	(97.92)	93	97.89			
СТ	1	(2.13)	1	(2.08)	2	2.11			
TT	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
С	0.989		0.990		0.989				
Т	0.011		0.010		0.011				
Z	0.015								
р	0.988	*test for	allele frequ	encies					

3.2.1.2 Blacks

Of 37 variants identified in Blacks, 20 had MAF >5%, 10 had MAF 1-5%, and 7 had MAF <1%. Of the 15 new variants, 1 had MAF >5%, 7 had MAF 1-5%, and 7 had MAF <1%. No statistically significant difference was identified when comparing the allele frequencies between the high HDL and low HDL groups for any of the 37 variants in this small sequencing sample set (Tables 20 and 21). Of 17 rare variants, 5 were present only in the high HDL group versus 4 only in the low HDL group. Of 3 exonic variants identified in Blacks, 1 was present only in the low HDL group versus 1 only in the high HDL group. Of 2 nonsynonymous variants identified in Blacks, 1 was present only in the low HDL group. Of the 47 individuals with low HDL levels, 2 (4.26%) had rare variants unique to the low HDL group. Of the 48 individuals with high HDL levels 6 (12.5%) had rare variants unique to the high HDL group.

	Blacks*	
Rare (MAF<5%)	High HDL (n=47)	Low HDL (n=48)
338A>G	0.021	0.043
386G>A	0.010	-
477C>T	0.010	0.021
656C>T	-	0.011
894G>A	0.021	0.011
1143G>T	0.010	-
1308C>T	0.022	-
1407delT	0.031	0.032
1965T>C	0.031	0.032
2120C>A	0.021	-
2215C>A	-	0.011
2626G>C	0.010	0.021
2880C>G	-	0.011
3867G>T	0.010	-
4208C>T	-	0.011
4987T>C	0.042	0.011
5066G>T	0.010	0.011
Common (MAF≥5%)		
206C>A	0.351	0.348
631A>G	0.490	0.478
1049T>A	0,128	0.128
1128G>T	0.104	0.085
1546G>A	0.073	0.085
1598T>G	0.104	0.064
1620G>A	0.302	0.298
2373C>T	0.406	0.372
2376A>T	0.125	0.128
3220G>A	0.448	0.426
3368A>G	0.344	0.372
3543C>T	0.052	0.064
3613G>A	0.125	0.074
3714G>A	0.117	0.074
4050G>A	0.448	0.424
4284G>A	0 448	0 426
4443C>T	0 125	0 117
4732C>A	0.096	0 117
4807C>T	0.030	0.064
5055A>T	0.073	0.004

Table 20. Distribution of APOA1 Variants in High and Low HDL Groups in Blacks

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. Novel variants are hi-lighted.

Table 21. Allele Frequencies of APOA1 Variants in High and Low HDL Groups in Blacks

	206 C>A							
	High HDL		Low I	HDL	ТОТ	AL		
	п	(%)	п	(%)	п	(%)		
CC	20	(42.55)	19	(41.30)	39	41.94		
AC	21	(44.68)	22	(47.83)	43	46.24		
AA	6	(12.77)	5	(10.87)	11	11.83		
	47		46		93			
С	0.649		0.652		0.651			
Α	0.351		0.348		0.349			
	0.046							
р	0.963	*test for a	ullele frequenci	ies				

			386 G>A				
	High HDL		Low	Low HDL		TOTAL	
	п	(%)	n	(%)	п	(%)	
GG	47	(97.92)	47	(100.00)	94	98.95	
GA	1	(2.08)	0	(0.00)	1	1.05	
AA	0	(0.00)	0	(0.00)	0	0.00	
	48		47		95		
G	0.990		1.000		0.995		
Α	0.010		0.000		0.005		
Z	1.005						
р	0.315	*test for a	llele frequen	cies			

			631 A>G				
	High HDL		Low I	Low HDL		TOTAL	
	п	(%)	п	(%)	п	(%)	
AA	13	(27.08)	10	(21.74)	23	24.47	
AG	23	(47.92)	28	(60.87)	51	54.26	
GG	12	(25.00)	8	(17.39)	20	21.28	
	48		46		94		
Α	0.510		0.522		0.516		
G	0.490		0.478		0.484		
Z	0.155						
р	0.877	*test for a	allele frequenc	ies			

			894 G>A			
	High		Low			
	HDL		HDL		TOTAL	
	п	(%)	n	(%)	n	(%)
GG	46	(95.83)	46	(97.87)	92	96.84
GA	2	(4.17)	1	(2.13)	3	3.16
AA	0	(0.00)	0	(0.00)	0	0.00
	48		47		95	
G	0.979		0.989		0.984	
Α	0.021		0.011		0.016	
Z	0.566					
р	0.571	*test for a	allele frequen	cies		

338 A>G								
	High HDL		Low HDL		TOTAL			
	п	(%)	n	(%)	п	(%)		
AA	45	(95.74)	43	(91.49)	88	93.62		
AG	2	(4.26)	4	(8.51)	6	6.38		
GG	0	(0.00)	0	(0.00)	0	0.00		
	47		47		94			
Α	0.979		0.957		0.968			
G	0.021		0.043		0.032			
Z	0.831							
D	0.406	*test for all	lele frequenci	es				

			477 C>T			
	High HDL		Low HDL		TOTAL	
	п	(%)	n	(%)	n	(%)
CC	47	(97.92)	45	(95.74)	92	96.84
СТ	1	(2.08)	2	(4.26)	3	3.16
ΤТ	0	(0.00)	0	(0.00)	0	0.00
	48		47		95	
С	0.990		0.979		0.984	
Т	0.010		0.021		0.016	
Z	0.599					
n	0 549	*test for al	lele frequencia	P S		

656 C>T								
	High	High HDL		Low HDL		AL		
	п	(%)	n	(%)	п	(%)		
CC	48	(100.00)	46	(97.87)	94	98.95		
СТ	0	(0.00)	1	(2.13)	1	1.05		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
С	1.000		0.989		0.995			
Т	0.000		0.011		0.005			
Z	1.005							
D	0.315	*test for all	ele frequenc	ies				

			1049 T>A			
	High		Low			
	HDL		HDL		TOTAL	
	п	(%)	п	(%)	п	(%)
TT	36	(76.60)	35	(74.47)	71	75.53
TA	10	(21.28)	12	(25.53)	22	23.40
AA	1	(2.13)	0	(0.00)	1	1.06
	47		47		94	
Т	0.872		0.872		0.872	
Α	0.128		0.128		0.128	
Z	0.000					
р	1.000	*test for a	allele frequencio	es		

|--|

1128 G>T								
	High HDL		Low HDL		TOTAL			
	n	(%)	п	(%)	п	(%)		
GG	38	(79.17)	39	(82.98)	77	81.05		
GT	10	(20.83)	8	(17.02)	18	18.95		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
G	0.896		0.915		0.905			
Т	0.104		0.085		0.095			
Z	0.449							
p	0.653	*test for a	llele frequ	encies				

1308 C>T								
	High HDL		Lov	Low HDL		TOTAL		
	n	(%)	n	(%)	n	(%)		
CC	44	(95.65)	44	(100.00)	88	97.78		
СТ	2	(4.35)	0	(0.00)	2	2.22		
ΤТ	0	(0.00)	0	(0.00)	0	0.00		
	46		44		90			
С	0.978		1.000		0.989			
Т	0.022		0.000		0.011			
Z	1.430							
р	0.153	*test for a	allele frequ	iencies				

1546 G>A								
	High HDL		Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)		
GG	41	(85.42)	39	(82.98)	80	84.21		
AG	7	(14.58)	8	(17.02)	15	15.79		
AA	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
G	0.927		0.915		0.921			
Α	0.073		0.085		0.079			
Z	0.311							
р	0.756	*test for a	allele frequ	encies				

1620 G>A								
	High HDL		Low	Low HDL		TOTAL		
	n	(%)	n	(%)	п	(%)		
GG	22	(45.83)	22	(46.81)	44	46.32		
AG	23	(47.92)	22	(46.81)	45	47.37		
AA	3	(6.25)	3	(6.38)	6	6.32		
	48		47		95			
G	0.698		0.702		0.700			
Α	0.302		0.298		0.300			
Z	0.063							
р	0.950	*test for	allele frequ	encies				

			1143 G>T	1			
	High HDL		Lov	Low HDL		TOTAL	
	n	(%)	n	(%)	п	(%)	
GG	47	(97.92)	47	(100.00)	94	98.95	
GT	1	(2.08)	0	(0.00)	1	1.05	
ТТ	0	(0.00)	0	(0.00)	0	0.00	
	48		47		95		
G	0.990		1.000		0.995		
Т	0.010		0.000		0.005		
Z	1.005						
р	0.315	*test for	allele frequ	iencies			

1407 del T								
	Higł	n HDL	Low	Low HDL		ГAL		
	n	(%)	п	(%)	п	(%)		
WW	45	(93.75)	44	(93.62)	89	93.68		
WD	3	(6.25)	3	(6.38)	6	6.32		
DD	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
W	0.969		0.968		0.968			
D	0.031		0.032		0.032			
	0.026							
р	0.979	*test for	allele frequ	encies				

1598 T>G								
	High HDL		Low HDL		TOTAL			
	n	(%)	п	(%)	п	(%)		
ТТ	38	(79.17)	41	(87.23)	79	83.16		
TG	10	(20.83)	6	(12.77)	16	16.84		
GG	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
Т	0.896		0.936		0.916			
G	0.104		0.064		0.084			
Z	1.006							
n	0 314	*test for a	llolo froqu	ancies				

1965 T>C										
	High	HDL	Low	Low HDL		ΓAL				
	п	(%)	п	(%)	n	(%)				
ТТ	45	(93.75)	44	(93.62)	89	93.68				
ТС	3	(6.25)	3	(6.38)	6	6.32				
CC	0	(0.00)	0	(0.00)	0	0.00				
	48		47		95					
Т	0.969		0.968		0.968					
С	0.031		0.032		0.032					
Z	0.026									
р	0.979	*test for a	allele frequ	encies						

Table 21	(Continued)
----------	-------------

	2120 C>A										
	Higł	n HDL	Low HDL		TOTAL						
	n	(%)	n	(%)	п	(%)					
CC	46	(95.83)	47	(100.00)	93	97.89					
CA	2	(4.17)	0	(0.00)	2	2.11					
AA	0	(0.00)	0	(0.00)	0	0.00					
	48		47		95						
С	0.979		1.000		0.989						
Α	0.021		0.000		0.011						
Z	1.429										
р	0.153	*test for a	llele frequ	iencies							

2373 C>T											
	Higł	n HDL	Low	Low HDL		ГAL					
	n	(%)	n	(%)	п	(%)					
CC	18	(37.50)	15	(31.91)	33	34.74					
ТС	21	(43.75)	29	(61.70)	50	52.63					
ТТ	9	(18.75)	3	(6.38)	12	12.63					
	48		47		95						
С	0.594		0.628		0.611						
Т	0.406		0.372		0.389						
Z	0.480										
р	0.632	*test for	allele frequ	encies							

2215 C>A										
	Hig	h HDL	Low	Low HDL		ГAL				
	n	(%)	п	(%)	n	(%)				
CC	48	(100.00)	46	(97.87)	94	98.95				
CA	0	(0.00)	1	(2.13)	1	1.05				
AA	0	(0.00)	0	(0.00)	0	0.00				
	48		47		95					
С	1.000		0.989		0.995					
Α	0.000		0.011		0.005					
Z	1.005									
р	0.315	*test for al	llele freque	encies						

2376 A>T										
	Hig	h HDL	Low	Low HDL		ГAL				
	n	(%)	n	(%)	n	(%)				
AA	37	(77.08)	35	(74.47)	72	75.79				
AT	10	(20.83)	12	(25.53)	22	23.16				
TT	1	(2.08)	0	(0.00)	1	1.05				
l	48		47		95					
Α	0.875		0.872		0.874					
Т	0.125		0.128		0.126					
	0.055									
n	0.956	*test for a	allele freque	encies						

2626 G>C										
	Higl	n HDL	Low	Low HDL		ГAL				
	n	(%)	n	(%)	п	(%)				
GG	47	(97.92)	45	(95.74)	92	96.84				
GC	1	(2.08)	2	(4.26)	3	3.16				
CC	0	(0.00)	0	(0.00)	0	0.00				
	48		47		95					
G	0.990		0.979		0.984					
С	0.010		0.021		0.016					
Z	0.599									
n	0.549	*test for a	allele frequ	encies						

3220 G>A										
	Higł	n HDL	Low	Low HDL		ГAL				
	n	(%)	n	(%)	п	(%)				
GG	16	(33.33)	13	(27.66)	29	30.53				
GA	21	(43.75)	28	(59.57)	49	51.58				
AA	11	(22.92)	6	(12.77)	17	17.89				
	48		47		95					
G	0.552		0.574		0.563					
Α	0.448		0.426		0.437					
Z	0.311									
р	0.756	*test for a	allele frequ	encies						

2880 C>G										
	Hig	h HDL	Low	Low HDL		ГAL				
	п	(%)	n	(%)	п	(%)				
CC	48	(100.00)	46	(97.87)	94	98.95				
CG	0	(0.00)	1	(2.13)	1	1.05				
GG	0	(0.00)	0	(0.00)	0	0.00				
	48		47		95					
С	1.000		0.989		0.995					
G	0.000		0.011		0.005					
\overline{Z}	1.005									
р	0.315	*test for a	llele freque	encies						

3368 A>G										
	Hig	h HDL	Low	Low HDL		ГAL				
	п	(%)	п	(%)	п	(%)				
AA	22	(45.83)	16	(34.04)	38	40.00				
AG	19	(39.58)	27	(57.45)	46	48.42				
GG	7	(14.58)	4	(8.51)	11	11.58				
	48		47		95					
Α	0.656		0.628		0.642					
G	0.344		0.372		0.358					
\overline{Z}	0.411									
р	0.681	*test for a	llele freque	encies						

Table 21	(Continued)
----------	-------------

	3543 C>T										
	Higł	n HDL	Low	Low HDL		ГAL					
	n	(%)	п	(%)	п	(%)					
CC	43	(89.58)	41	(87.23)	84	88.42					
СТ	5	(10.42)	6	(12.77)	11	11.58					
ТТ	0	(0.00)	0	(0.00)	0	0.00					
	48		47		95						
С	0.948		0.936		0.942						
Т	0.052		0.064		0.058						
Z	0.346										
р	0.729	*test for a	allele frequ	iencies							

	3714 G>A									
	Higł	n HDL	Low	HDL	TOTAL					
	n	(%)	n	(%)	n	(%)				
GG	37	(78.72)	40	(85.11)	77	81.91				
GA	9	(19.15)	7	(14.89)	16	17.02				
AA	1	(2.13)		(0.00)	1	1.06				
	47		47		94					
G	0.883		0.926		0.904					
Α	0.117		0.074		0.096					
Z	0.994									
р	0.320	*test for	allele frequ	iencies						

	4050 G>A								
	Higł	n HDL	Low	Low HDL		ГAL			
	n	(%)	n	(%)	п	(%)			
GG	15	(31.25)	13	(28.26)	28	29.79			
GA	23	(47.92)	27	(58.70)	50	53.19			
AA	10	(20.83)	6	(13.04)	16	17.02			
	48		46		94				
G	0.552		0.576		0.564				
Α	0.448		0.424		0.436				
Z	0.332								
p	0.740	*test for a	allele frequ	iencies					

4284 G>A								
	Higł	High HDL		HDL	TO	ГAL		
	n	(%)	п	(%)	n	(%)		
GG	16	(33.33)	13	(27.66)	29	30.53		
GA	21	(43.75)	28	(59.57)	49	51.58		
AA	11	(22.92)	6	(12.77)	17	17.89		
	48		47		95			
G	0.552		0.574		0.563			
Α	0.448		0.426		0.437			
Z	0.311							
р	0.756	*test for a	allele frequ	iencies				

3613 G>A								
	Hig	h HDL	Low	v HDL	TO	ГAL		
	n	(%)	n	(%)	п	(%)		
GG	37	(77.08)	40	(85.11)	77	81.05		
GA	10	(20.83)	7	(14.89)	17	17.89		
AA	1	(2.08)	0	(0.00)	1	1.05		
	48		47		95			
G	0.875		0.926		0.900			
Α	0.125		0.074		0.100			
Z	1.168							
р	0.243	*test for al	llele freque	encies				

3867 G>T								
	Hig	h HDL	Lov	v HDL	TO	ГAL		
	n	(%)	n	(%)	п	(%)		
GG	47	(97.92)	47	(100.00)	94	98.95		
GT	1	(2.08)	0	(0.00)	1	1.05		
TT	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
G	0.990		1.000		0.995			
Т	0.010		0.000		0.005			
Z	1.005							
p	0.315	*test for a	llele freque	encies				

4208 C>T								
	Hig	h HDL	Low	W HDL	TO	ГAL		
	n	(%)	п	(%)	n	(%)		
CC	48	(100.00)	46	(97.87)	94	98.95		
СТ	0	(0.00)	1	(2.13)	1	1.05		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
С	1.000		0.989		0.995			
Т	0.000		0.011		0.005			
Z	1.005							
n	0 315	*tost for al	lolo froquo	neios				

4443 C>T								
	Hig	High HDL		HDL	TO	ГAL		
	п	(%)	п	(%)	n	(%)		
CC	37	(77.08)	36	(76.60)	73	76.84		
СТ	10	(20.83)	11	(23.40)	21	22.11		
TT	1	(2.08)	0	(0.00)	1	1.05		
	48		47		95			
С	0.875		0.883		0.879			
Т	0.125		0.117		0.121			
Z	0.169							
р	0.866	*test for a	llele freque	ncies				

	Table 2	1 (Cor	ntinueo	1)
--	---------	--------	---------	----

4732 C>A								
	Higł	1 HDL	Low	HDL	DL TO			
	n	(%)	n	(%)	n	(%)		
CC	39	(82.98)	36	(76.60)	75	79.79		
CA	7	(14.89)	11	(23.40)	18	19.15		
AA	1	(2.13)	0	(0.00)	1	1.06		
	47		47		94			
С	0.904		0.883		0.894			
Α	0.096		0.117		0.106			
	0.473							
р	0.636	*test for a	allele frequ	iencies				

4807 C>T								
	Higł	High HDL		HDL	TO	ГAL		
	n	(%)	n	(%)	п	(%)		
CC	41	(85.42)	41	(87.23)	82	86.32		
СТ	7	(14.58)	6	(12.77)	13	13.68		
ΤТ	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
С	0.927		0.936		0.932			
Т	0.073		0.064		0.068			
Z	0.248							
р	0.804	*test for	allele frequ	iencies				

4987 T>C								
	Higł	High HDL		HDL	TO	ГAL		
	n	(%)	n	(%)	n	(%)		
TT	44	(91.67)	46	(97.87)	90	94.74		
тс	4	(8.33)	1	(2.13)	5	5.26		
CC	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
Т	0.958		0.989		0.974			
С	0.042		0.011		0.026			
Z	1.350							
р	0.177	*test for	allele frequ	iencies				

5055 A>T								
	High	h HDL	Low	HDL	TO	ГAL		
	n	(%)	n	(%)	n	(%)		
AA	41	(85.42)	41	(87.23)	82	86.32		
AT	7	(14.58)	6	(12.77)	13	13.68		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
Α	0.927		0.936		0.932			
Т	0.073		0.064		0.068			
Z	0.248							
р	0.804	*test for a	allele frequ	iencies				

5066 G>T								
	High HDL		Low	Low HDL		ГAL		
	п	(%)	п	(%)	п	(%)		
GG	47	(97.92)	46	(97.87)	93	97.89		
GT	1	(2.08)	1	(2.13)	2	2.11		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	48		47		95			
G	0.990		0.989		0.989			
Т	0.010		0.011		0.011			
Z	0.015							
р	0.988	*test for allele frequencies						

3.2.2 APOA4

3.2.2.1 Non-Hispanic Whites

Of 23 variants identified in NHWs, 11 had MAF >5%, 5 had MAF 1-5%, and 7 had MAF <1%. All 7 of the new variants had MAF MAF <1%. No statistically significant difference was identified when comparing the allele frequencies between the high HDL and low HDL groups for any of the 23 variants in this small sequence sample set (Tables 22 and 23). Of 12 rare variants, 4 were present only in the high HDL versus 4 only in the low HDL group. Of 13 exonic variants identified in NHWs, 3 were present only in the low HDL group versus 2 only in the high HDL group. Of 5 nonsynonymous variants identified in NHWs, 2 were present only in the low HDL group versus 1 only in the low HDL group versus 1 only in the low HDL group versus 3 (6.25%) had rare variants unique to the low HDL group. Of the 47 individuals with high HDL levels, 5 (10.64%) had rare variants unique to the high HDL group.

	Non-Hispanic Whites*	
Rare (MAF<5%)	High HDL (n=47)	Low HDL (n=48)
120G>A	0.011	0.031
422G>T**	0.011	-
520C>T	-	0.010
945G>A	-	0.010
952C>T	0.011	-
1033G>T	-	0.010
1853G>A	0.021	-
1993C>T	0.053	0.031
1994G>A	0.022	0.042
2287G>A	0.011	-
2978C>A	0.021	0.021
2984G>A	-	0.010
Common (MAF≥5%)		
165delACAG	0.511	0.479
274C>A	0.085	0.094
315T>A	0.202	0.188
964G>A	0.043	0.073
974T>C	0.149	0.177
1192A>G	0.064	0.042
1334A>G	0.415	0.406
1735A>G	0.415	0.406
1803A>G	0.202	0.188
2104T>C	0.213	0.219
2695C>G	0.085	0.052

Table 22. Distribution of APOA4 Variants in High and Low HDL Groups in NHWs

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. ** Suspicious variants with low sequence quality.

Novel variants are hi-lighted.

120 G>A								
	Hig	h HDL	Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)		
GG	46	(97.87)	45	(93.75)	91	95.79		
GA	1	(2.13)	3	(6.25)	4	4.21		
AA	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
G	0.989		0.969		0.979			
Α	0.011		0.031		0.021			
Z	0.997							
D	0.319	*test for al	lele freque	ncies				

274 C>A								
	Hig	h HDL	Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)		
CC	39	(82.98)	39	(81.25)	78	82.11		
CA	8	(17.02)	9	(18.75)	17	17.89		
AA	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
С	0.915		0.906		0.911			
Α	0.085		0.094		0.089			
Z	0.209							
р	0.835	*test for al	lele freque	ncies				

422* G>T								
	High HDL		Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)		
GG	46	(97.87)	48	(100.00)	94	98.95		
GT	1	(2.13)	0	(0.00)	1	1.05		
ΤТ	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
G	0.989		1.000		0.995			
Т	0.011		0.000		0.005			
Ζ	1.005							
D	0.315	*test for a	llele freque	encies				

945 G>A								
	Hig	h HDL	Low HDL		TOTAL			
	n	(%)	п	(%)	п	(%)		
GG	47	(100.00)	47	(97.92)	94	98.95		
GA	0	(0.00)	1	(2.08)	1	1.05		
AA	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
G	1.000		0.990		0.995			
Α	0.000		0.010		0.005			
Ζ	1.005							
р	0.315	*test for al	lele freque	ncies				

165 del ACAG							
	High HDL		Low HDL		ТО	ГAL	
	n	(%)	n	(%)	п	(%)	
DD	11	(23.40)	14	(29.17)	25	26.32	
DW	24	(51.06)	22	(45.83)	46	48.42	
WW	12	(25.53)	12	(25.00)	24	25.26	
	47		48		95		
	0.489		0.521		0.505		
	0.511		0.479		0.495		
Z	0.434						
n	0 664	*test for al	lolo froquo	ncies			

315 T>A								
	High HDL		Low	Low HDL		ГAL		
	n	(%)	п	(%)	п	(%)		
ТТ	29	(61.70)	31	(64.58)	60	63.16		
ТА	17	(36.17)	16	(33.33)	33	34.74		
AA	1	(2.13)	1	(2.08)	2	2.11		
	47		48		95			
	0.798		0.813		0.805			
	0.202		0.188		0.195			
Z	0.255							
р	0.799	*test for allele frequencies						

520 C>T								
	High HDL		Low	Low HDL		TOTAL		
	n	(%)	n	(%)	п	(%)		
CC	47	(100.00)	47	(97.92)	94	98.95		
СТ	0	(0.00)	1	(2.08)	1	1.05		
ТТ	0	(0.00)	0	(0.00)	0	0.00		
	47		48		95			
С	1.000		0.990		0.995			
Т	0.000		0.010		0.005			
Z	1.005							

p 0.315 *test for allele frequencies

			952 C>T			
	High HDL		Lov	Low HDL		ГAL
	n	(%)	п	(%)	n	(%)
CC	46	(97.87)	48	(100.00)	94	98.95
СТ	1	(2.13)	0	(0.00)	1	1.05
ТТ	0	(0.00)	0	(0.00)	0	0.00
	47		48		95	
С	0.989		1.000		0.995	
Т	0.011		0.000		0.005	
Z	1.005					
р	0.315	*test for allele frequencies				

Table 23. Allele Frequencies of APOA4 Variants in High and Low HDL Groups in NHWs
Table 23 (Continued)
------------	------------

964 G>A										
	High HDL		Low HDL		TOTAL					
	n	(%)	п	(%)	n	(%)				
GG	43	(91.49)	41	(85.42)	84	88.42				
GA	4	(8.51)	7	(14.58)	11	11.58				
AA	0	(0.00)	0	(0.00)	0	0.00				
	47		48		95					
G	0.957		0.927		0.942					
Α	0.043		0.073		0.058					
Z	0.900									
р	0.368	*test for al	lele freque	ncies						

1033 G>T									
	High HDL		Low	Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)			
GG	47	(100.00)	47	(97.92)	94	98.95			
GT	0	(0.00)	1	(2.08)	1	1.05			
TT	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
G	1.000		0.990		0.995				
Т	0.000		0.010		0.005				
Ζ	1.005								
р	0.315	*test for al	lele freque	ncies					

1334 A>G									
	High HDL		Low	Low HDL		TOTAL			
	n	(%)	п	(%)	n	(%)			
AA	16	(34.04)	18	(37.50)	34	35.79			
AG	23	(48.94)	21	(43.75)	44	46.32			
GG	8	(17.02)	9	(18.75)	17	17.89			
	47		48		95				
Α	0.585		0.594		0.589				
G	0.415		0.406		0.411				
Ζ	0.121								
D	0.904	*test for al	lele freque	ncies					

1803 A>G										
	High HDL		Low	Low HDL		TOTAL				
	n	(%)	п	(%)	n	(%)				
AA	29	(61.70)	31	(64.58)	60	63.16				
AG	17	(36.17)	16	(33.33)	33	34.74				
GG	1	(2.13)	1	(2.08)	2	2.11				
	47		48		95					
Α	0.798		0.813		0.805					
G	0.202		0.188		0.195					
Ζ	0.255									
р	0.799	*test for al	lele freque	ncies						

974 T>C										
	High HDL		Low HDL		TOTAL					
	n	(%)	n	(%)	п	(%)				
ТТ	33	(70.21)	33	(68.75)	66	69.47				
TC	14	(29.79)	13	(27.08)	27	28.42				
CC	0	(0.00)	2	(4.17)	2	2.11				
	47		48		95					
Т	0.851		0.823		0.837					
С	0.149		0.177		0.163					
Ζ	0.526									
n	0.599	*test for a	allele frequ	encies						

1192 A>G										
	High HDL		Low	Low HDL		ГAL				
	n	(%)	п	(%)	п	(%)				
AA	41	(87.23)	44	(91.67)	85	89.47				
AG	6	(12.77)	4	(8.33)	10	10.53				
GG	0	(0.00)	0	(0.00)	0	0.00				
	47		48		95					
Α	0.936		0.958		0.947					
G	0.064		0.042		0.053					
Z	0.683									
р	0.494	*test for	allele frequ	encies						

1735 A>G										
	High HDL		Low	v HDL	TO	TOTAL				
	n	(%)	n	(%)	n	(%)				
AA	16	(34.04)	18	(37.50)	34	35.79				
AG	23	(48.94)	21	(43.75)	44	46.32				
GG	8	(17.02)	9	(18.75)	17	17.89				
	47		48		95					
Α	0.585		0.594		0.589					
G	0.415		0.406		0.411					
Z	0.121									
n	0.004	*tost for s	llolo froqu	oncios						

1853 G>A										
	High HDL		Low HDL		TO	ГAL				
	п	(%)	п	(%)	n	(%)				
GG	45	(95.74)	48	(100.00)	93	97.89				
GA	2	(4.26)	0	(0.00)	2	2.11				
AA	0	(0.00)	0	(0.00)	0	0.00				
	47		48		95					
G	0.979		1.000		0.989					
Α	0.021		0.000		0.011					
Ζ	1.430									
р	0.153	*test for a	allele frequ	iencies						

Table 23 (Col	ntinuea)
---------------	----------

1993 C>T										
	High HDL		Low HDL		TOTAL					
	n	(%)	n	(%)	n	(%)				
CC	42	(89.36)	45	(93.75)	87	91.58				
СТ	5	(10.64)	3	(6.25)	8	8.42				
TT	0	(0.00)	0	(0.00)	0	0.00				
	47		48		95					
С	0.947		0.969		0.958					
Т	0.053		0.031		0.042					
Z	0.752									
D	0.452	*test for all	lele freque	ncies						

2104 T>C									
	High HDL		Low	Low HDL		ГAL			
	n	(%)	n	(%)	n	(%)			
TT	28	(59.57)	30	(62.50)	58	61.05			
TC	18	(38.30)	15	(31.25)	33	34.74			
CC	1	(2.13)	3	(6.25)	4	4.21			
	47		48		95				
Т	0.787		0.781		0.784				
С	0.213		0.219		0.216				
Ζ	0.100								
р	0.920	*test for a	llele freque	ncies					

	2695 C>G								
	Hig	h HDL	Low	Low HDL		TOTAL			
	n	(%)	п	(%)	n	(%)			
CC	39	(82.98)	43	(89.58)	82	86.32			
CG	8	(17.02)	5	(10.42)	13	13.68			
GG	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
С	0.915		0.948		0.932				
G	0.085		0.052		0.068				
Ζ	0.901								
n	0.367	*test for a	llele freque	ncies					

	2984 G>A								
	Hig	h HDL	Low	Low HDL		TOTAL			
	п	(%)	п	(%)	п	(%)			
GG	47	(100.00)	47	(97.92)	94	98.95			
GA	0	(0.00)	1	(2.08)	1	1.05			
AA	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
G	1.000		0.990		0.995				
Α	0.000		0.010		0.005				
Ζ	1.005								
р	0.315	*test for al	lele freque	ncies					

1994 G>A									
	Higł	High HDL		Low HDL		TOTAL			
	n	(%)	n	(%)	п	(%)			
GG	44	(95.65)	44	(91.67)	88	93.62			
GA	2	(4.35)	4	(8.33)	6	6.38			
AA	0	(0.00)	0	(0.00)	0	0.00			
	46		48		94				
G	0.978		0.958		0.968				
Α	0.022		0.042		0.032				
Ζ	0.783								
n	0 4 3 3	*test for a	llele frequ	encies					

	2287 G>A								
	High	High HDL		Low HDL		ΓAL			
	n	(%)	n	(%)	n	(%)			
GG	46	(97.87)	48	(100.00)	94	98.95			
GA	1	(2.13)	0	(0.00)	1	1.05			
AA	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
G	0.989		1.000		0.995				
Α	0.011		0.000		0.005				
Z	1.005								
р	0.315	*test for a	allele frequ	iencies					

2978 C>A									
	High HDL		Low	W HDL	TOTAL				
	n	(%)	п	(%)	п	(%)			
CC	45	(95.74)	46	(95.83)	91	95.79			
CA	2	(4.26)	2	(4.17)	4	4.21			
AA	0	(0.00)	0	(0.00)	0	0.00			
	47		48		95				
С	0.979		0.979		0.979				
Α	0.021		0.021		0.021				
Ζ	0.021								
р	0.983	*test for a	allele frequ	encies					

3.2.2.2 Blacks

Of 30 variants identified in Blacks, 12 had MAF >5%, 11 had MAF 1-5%, and 7 had MAF <1%. Of the 13 new variants, 2 had MAF >5%, 4 had MAF 1-5%, and 7 had MAF <1%. No statistically significant difference was identified when comparing the allele frequencies between the high HDL and low HDL groups for any of the 30 variants in this small sequence sample set (Tables 24 and 25). Of 17 rare variants, 3 were present only in the high HDL versus 5 only in the low HDL group. Of 12 exonic variants identified in Blacks 1 was present only in the high HDL group, and there was no low HDL group unique exonic variant. Of 4 nonsynonymous variants identified in Blacks, 1 was present only in the low HDL group. Of the 47 individuals with low HDL levels, 4 (8.51%) had rare variants unique to the low HDL group. Of the 48 individuals with high HDL levels 4 (8.33%) had rare variants unique to the high HDL group.

	Blacks*	
Rare (MAF<5%)	High HDL (n=47)	Low HDL (n=48)
288ins12	0.021	0.011
568G>A	0.042	0.043
634G>A	0.010	0.032
755C>T	0.010	-
1274G>A	0.010	0.011
1371C>T	0.031	0.054
1453G>C	0.012	0.012
1743T>G	-	0.011
1948C>A	0.031	0.011
1993C>T	0.031	0.054
1994G>A	0.021	-
2327C>A**	0.011	-
2406C>G**	-	0.011
2685C>T**	-	0.011
2705C>T	·	0.011
2981C>T	0.031	0.043
3146G>A	-	0.011
Common (MAF≥5%)		
165delACAG	0.052	0.064
315T>A	0.073	0.074
357A>C	0.063	0.043
406C>A	0.135	0.117
974T>C	0.115	0.098
1198G>A	0.372	0.478
1326A>G	0.063	0.043
1334A>G	0.448	0.359
1735A>G	0.448	0.352
1803A>G	0.073	0.056
1853G>A	0.085	0.076
2104T>C	0.177	0.141
2645C>T	0.054	0.045

Table 24. Distribution of APOA4 Variants in High and Low HDL Groups in Blacks

* The locations and nucleotide changes are based on the reverse strand sequence used in the SeattleSNPs database. ** Suspicious variants with low sequence quality. Novel variants are hi-lighted.

	165 del ACAG							
	High HDL		Low	Low HDL		TOTAL		
	n	(%)	n	(%)	n	(%)		
WW	43	(89.58)	41	(87.23)	84	88.42		
WD	5	(10.42)	6	(12.77)	11	11.58		
DD		(0.00)		(0.00)	0	0.00		
	48		47		95			
W	0.948		0.936		0.942			
D	0.052		0.064		0.058			
Z	0.346							
n	0.729	*test for a	llele frequ	encies				

ľ	000		mere n equ	eneres					
315 T>A									
	High	1 HDL	Low	HDL	TO	ГAL			
	п	(%)	n	(%)	n	(%)			
ТТ	41	(85.42)	40	(85.11)	81	85.26			
ТА	7	(14.58)	7	(14.89)	14	14.74			
AA		(0.00)		(0.00)	0	0.00			
	48		47		95				
Т	0.927		0.926		0.926				
Α	0.073		0.074		0.074				
Z	0.041								
р	0.967	*test for a	llele frequ	encies					

406 C>A								
	High HDL		Low	HDL	TO	ГAL		
	n	(%)	n	(%)	n	(%)		
CC	35	(72.92)	36	(76.60)	71	74.74		
CA	13	(27.08)	11	(23.40)	24	25.26		
AA		(0.00)		(0.00)	0	0.00		
	48		47		95			
С	0.865		0.883		0.874			
Α	0.135		0.117		0.126			
Z	0.382							
n	0.702	*test for	allele frequ	encies				

634 G>A								
	High HDL		Low	Low HDL		ГAL		
	п	(%)	п	(%)	n	(%)		
GG	47	(97.92)	44	(93.62)	91	95.79		
GA	1	(2.08)	3	(6.38)	4	4.21		
AA		(0.00)		(0.00)	0	0.00		
	48		47		95			
G	0.990		0.968		0.979			
Α	0.010		0.032		0.021			
Z	1.030							
р	0.303	*test for	allele frequ	encies				

	288 ins CTGTTCCTGCTG								
	High HDL		Low	v HDL	TO	ГAL			
	n	(%)	n	(%)	n	(%)			
WW	46	(95.83)	46	(97.87)	92	96.84			
WI	2	(4.17)	1	(2.13)	3	3.16			
II		(0.00)		(0.00)	0	0.00			
1	48		47		95				
W	0.979		0.989		0.984				
Ι	0.021		0.011		0.016				
	0.566								
n	0.571	*test for	allele frequ	encies					

	357 A>C								
	Higł	n HDL	Lov	v HDL	TOTAL				
	n	(%)	n	(%)	п	(%)			
AA	43	(89.58)	43	(91.49)	86	90.53			
AC	4	(8.33)	4	(8.51)	8	8.42			
CC	1	(2.08)		(0.00)	1	1.05			
	48		47		95				
Α	0.938		0.957		0.947				
С	0.063		0.043		0.053				
Z	0.617								
<i>p</i> 0.537 *test for allele frequencies									

			568 G>A			
	Higł	n HDL	Low	W HDL	TOTAL	
	п	(%)	п	(%)	п	(%)
GG	44	(91.67)	43	(91.49)	87	91.58
GA	4	(8.33)	4	(8.51)	8	8.42
AA		(0.00)		(0.00)	0	0.00
	48		47		95	
G	0.958		0.957		0.958	
Α	0.042		0.043		0.042	
Z	0.030					
р	0.976	*test for a	llele frequ	encies		

755 C>T						
	High	HDL	Lov	Low HDL		ГAL
	п	(%)	п	(%)	n	(%)
CC	47	(97.92)	47	(100.00)	94	98.95
СТ	1	(2.08)		(0.00)	1	1.05
TT		(0.00)		(0.00)	0	0.00
	48		47		95	
С	0.990		1.000		0.995	
Т	0.010		0.000		0.005	
\boldsymbol{Z}	1.005					
р	0.315	*test for	allele frequ	encies		

Table 25. Allele Frequencies of APOA4 Variants in High and Low HDL Groups in Blacks

Table 25 ((Continued)
------------	-------------

			974 T>C			
	Higł	n HDL	Low	Low HDL		ГAL
	n	(%)	n	(%)	п	(%)
TT	37	(77.08)	37	(80.43)	74	78.72
TC	11	(22.92)	9	(19.57)	20	21.28
CC		(0.00)		(0.00)	0	0.00
	48		46		94	
Т	0.885		0.902		0.894	
С	0.115		0.098		0.106	
Z	0.373					
D	0.709	*test for a	allele frequ	iencies		

			1274 G>A	<u>.</u>		
	Higł	n HDL	Low	Low HDL		ГAL
	n	(%)	п	(%)	п	(%)
GG	47	(97.92)	45	(97.83)	92	97.87
GA	1	(2.08)	1	(2.17)	2	2.13
AA		(0.00)		(0.00)	0	0.00
	48		46		94	
G	0.990		0.989		0.989	
Α	0.010		0.011		0.011	
Z	0.030					
р	0.976	*test for a	allele frequ	encies		

Z	0.030					
р	0.976	*test for a	llele frequ	encies		
			1334 A>G			
	Higł	n HDL	Low	HDL	TO	ГAL
	n	(%)	n	(%)	n	(%)
AA	16	(33.33)	18	(39.13)	34	36.17
AG	21	(43.75)	23	(50.00)	44	46.81
GG	11	(22.92)	5	(10.87)	16	17.02
	48		46		94	
Α	0.552		0.641		0.596	
G	0.448		0.359		0.404	
Z	1.252					
р	0.210	*test for a	llele frequ	encies		

			1453 G>C	,		
	Higł	n HDL	Low	HDL	TOTAL	
	n	(%)	n	(%)	n	(%)
GG	42	(97.67)	42	(97.67)	84	97.67
GC	1	(2.33)	1	(2.33)	2	2.33
CC		(0.00)		(0.00)	0	0.00
	43		43		86	
G	0.988		0.988		0.988	
С	0.012		0.012		0.012	
Z	0.000					
р	1.000	*test for	allele frequ	iencies		

			1198 G>A	L		
	Higł	n HDL	Low	Low HDL		ГAL
	п	(%)	п	(%)	п	(%)
GG	20	(42.55)	11	(23.91)	31	33.33
GA	19	(40.43)	26	(56.52)	45	48.39
AA	8	(17.02)	9	(19.57)	17	18.28
	47		46		93	
G	0.628		0.522		0.575	
Α	0.372		0.478		0.425	
Z	1.469					
D	0.142	*test for a	llele freau	encies		

	1326 A>G					
	Higł	n HDL	Low	Low HDL		ГAL
	п	(%)	n	(%)	п	(%)
AA	43	(89.58)	42	(91.30)	85	90.43
AG	4	(8.33)	4	(8.70)	8	8.51
GG	1	(2.08)		(0.00)	1	1.06
	48		46		94	
Α	0.938		0.957		0.947	
G	0.063		0.043		0.053	
Z	0.584					
р	0.559	*test for a	llele frequ	encies		

	1371 C>T					
	Higł	n HDL	Low	Low HDL		ГAL
	п	(%)	п	(%)	n	(%)
CC	45	(93.75)	41	(89.13)	86	91.49
СТ	3	(6.25)	5	(10.87)	8	8.51
ТТ		(0.00)		(0.00)	0	0.00
	48		46		94	
С	0.969		0.946		0.957	
Т	0.031		0.054		0.043	
\overline{Z}	0.781					
р	0.435	*test for	allele frequ	encies		

	1735 A>G					
	Higł	n HDL	Low	Low HDL		ΓAL
	п	(%)	n	(%)	п	(%)
AA	16	(33.33)	18	(40.91)	34	36.96
AG	21	(43.75)	21	(47.73)	42	45.65
GG	11	(22.92)	5	(11.36)	16	17.39
	48		44		92	
Α	0.552		0.648		0.598	
G	0.448		0.352		0.402	
Z	1.330					
р	0.183	*test for a	allele frequ	encies		

Table 25	(Continued)
----------	-------------

		1	1743 T>G			
	Hig	h HDL	Low	7 HDL	TOTAL	
	n	(%)	n	(%)	n	(%)
TT	48	(100.00)	45	(97.83)	93	98.94
TG		(0.00)	1	(2.17)	1	1.06
GG		(0.00)		(0.00)	0	0.00
	48		46		94	
Т	1.000		0.989		0.995	
G	0.000		0.011		0.005	_
\overline{Z}	1.005					
D	0.315	*test for all	lele freque	encies		

1853 G>A								
	Hig	h HDL	Low	Low HDL		ГAL		
	n	(%)	n	(%)	п	(%)		
GG	39	(82.98)	39	(84.78)	78	83.87		
GA	8	(17.02)	7	(15.22)	15	16.13		
AA		(0.00)		(0.00)	0	0.00		
	47		46		93			
G	0.915		0.924		0.919			
Α	0.085		0.076		0.081			
Z	0.226							
р	0.821	*test for a	llele freque	encies				

	1993 C>T								
	Hig	h HDL	Low HDL		TOTAL				
	n	(%)	n	(%)	п	(%)			
CC	45	(93.75)	41	(89.13)	86	91.49			
СТ	3	(6.25)	5	(10.87)	8	8.51			
TT		(0.00)		(0.00)	0	0.00			
	48		46		94				
С	0.969		0.946		0.957				
Т	0.031		0.054		0.043				
Z	0.781								
n	0.435	*test for al	lele freque	encies					

2104 T>C								
	Hig	h HDL	Low	Low HDL		TOTAL		
	п	(%)	n	(%)	п	(%)		
TT	32	(66.67)	33	(71.74)	65	69.15		
TC	15	(31.25)	13	(28.26)	28	29.79		
CC	1	(2.08)		(0.00)	1	1.06		
	48		46		94			
Т	0.823		0.859		0.840			
С	0.177		0.141		0.160			
Z	0.672							
р	0.502	*test for a	llele freque	ncies				

			1803 A>0	J J		
	Higł	n HDL	Lov	v HDL	TO	ГAL
	n	(%)	n	(%)	n	(%)
AA	41	(85.42)	40	(88.89)	81	87.10
AG	7	(14.58)	5	(11.11)	12	12.90
GG		(0.00)		(0.00)	0	0.00
	48		45		93	
Α	0.927		0.944		0.935	
G	0.073		0.056		0.065	
Z	0.484					
D	0.628	*test for a	llele frequ	encies		

1948 C>A								
	High	h HDL	Low	Low HDL		ГAL		
	n	(%)	n	(%)	п	(%)		
CC	45	(93.75)	45	(97.83)	90	95.74		
CA	3	(6.25)	1	(2.17)	4	4.26		
AA		(0.00)		(0.00)	0	0.00		
	48		46		94			
С	0.969		0.989		0.979			
Α	0.031		0.011		0.021			
Z	0.980							
р	0.327	*test for	allele frequ	encies				

			1994 G>A	ł		
	High	1 HDL	Lov	v HDL	TO	ΓAL
L	n	(%)	n	(%)	n	(%)
GG	46	(95.83)	46	(100.00)	92	97.87
GA	2	(4.17)		(0.00)	2	2.13
AA		(0.00)		(0.00)	0	0.00
1	48		46		94	
G	0.979		1.000		0.989	
Α	0.021		0.000		0.011	
\overline{Z}	1.429					
	0 153	*tost for a	llolo frogr	ioneios		

2327* C>A								
	High	HDL	Lov	v HDL	TOTAL			
	п	(%)	n	(%)	n	(%)		
CC	46	(97.87)	46	(100.00)	92	98.92		
CA	1	(2.13)		(0.00)	1	1.08		
AA		(0.00)		(0.00)	0	0.00		
	47		46		93			
С	0.989		1.000		0.995			
Α	0.011		0.000		0.005			
\overline{Z}	1.005							
р	0.315	*test for a	allele frequ	encies				

|--|

		2	406* C>G	ŗ		
	Hig	h HDL	Low HDL		TOTAL	
	n	(%)	n	(%)	n	(%)
CC	48	(100.00)	46	(97.87)	94	98.95
CG		(0.00)	1	(2.13)	1	1.05
GG		(0.00)		(0.00)	0	0.00
	48		47		95	
С	1.000		0.989		0.995	
G	0.000		0.011		0.005	
	1.005					
D	0.315	*test for all	lele freque	ncies		

	2645 C>T							
	Hig	h HDL	Low	Low HDL		TOTAL		
	n	(%)	п	(%)	п	(%)		
CC	41	(89.13)	40	(90.91)	81	90.00		
СТ	5	(10.87)	4	(9.09)	9	10.00		
ТТ		(0.00)		(0.00)	0	0.00		
	46		44		90			
С	0.946		0.955		0.950			
Т	0.054		0.045		0.050			
Z	0.274							
p	0.784	*test for a	llele freque	ncies				

2685* C>T								
	Hig	h HDL	Low	Low HDL		ГAL		
	n	(%)	n	(%)	п	(%)		
CC	48	(100.00)	45	(97.83)	93	98.94		
СТ		(0.00)	1	(2.17)	1	1.06		
TT		(0.00)		(0.00)	0	0.00		
	48		46		94			
С	1.000		0.989		0.995			
Т	0.000		0.011		0.005			
Z	1.005							
р	0.315	*test for al	lele freque	ncies				

2705 C>T									
	Hig	h HDL	Low	HDL	TOTAL				
	n	(%)	п	(%)	n	(%)			
CC	48	(100.00)	45	(97.83)	93	98.94			
СТ		(0.00)	1	(2.17)	1	1.06			
ТТ		(0.00)		(0.00)	0	0.00			
	48		46		94				
С	1.000		0.989		0.995				
Т	0.000		0.011		0.005				
Z	1.005								
р	0.315	*test for a	llele freque	ncies					

	2981 C>T							3146 G>A						
	Hig	h HDL	Low	HDL	TO	ГAL			Hig	h HDL	Low	HDL	TO	ГAL
	n	(%)	n	(%)	n	(%)			п	(%)	п	(%)	n	(%)
CC	45	(93.75)	42	(91.30)	87	92.55		GG	47	(100.00)	45	(97.83)	92	98.92
СТ	3	(6.25)	4	(8.70)	7	7.45		GA		(0.00)	1	(2.17)	1	1.08
ТТ		(0.00)		(0.00)	0	0.00		AA		(0.00)		(0.00)	0	0.00
	48		46		94				47		46		93	
С	0.969		0.957		0.963			G	1.000		0.989		0.995	
Т	0.031		0.043		0.037			Α	0.000		0.011		0.005	
Z	0.441							\boldsymbol{Z}	1.005					
р	0.659	*test for a	llele freque	ncies				р	0.315	*test for all	ele freque	ncies		

3.3 LD AND TAGGER ANALYSES OF APOA1 AND APOA4 VARIANTS

SNPs that are in close proximity to one another along the chromosome can be inherited together, or in linkage disequilibrium (LD). SNPs in LD are compiled into haplotypes, which are identified by TagSNPs. TagSNPs can be identified within a group of SNPs using Tagger analysis. Identifying TagSNPs for a given haplotype reduces the number of SNPs needed for genotype screening by eliminating redundant analysis. LD and Tagger analysis was used to identify TagSNPs amongst the variants in *APOA1* and *APOA4*.

The *APOA1* and *APOA4* genes located in close vicinity on chromosome 11, within 12.5Kb distance. Therefore, pairwise LD and Tagger analysis was done for the *APOA1* and *APOA4* genes together to assess both intergenic and intragenic correlations. LD and Tagger analysis was limited to variants with a MAF >5%. A r^2 cutoff of 0.9 was used to assess high LD. A striking difference in LD was observed between the two populations.

3.3.1 Non-Hispanic Whites

High correlation between *APOA1* and *APOA4* variants was not observed (the highest observed r^2 was 0.64 for any *APOA1/APOA4* variant pairs), although some strong correlations were present within each gene. Tagger analysis identified a total of 8 Bins for *APOA1* and 9 Bins for *APOA4*. A total of 22 common variants were captured in 17 Bins, 11 from *APOA1* and 11 from *APOA4*. Of the total 17 Bins from the two genes, pre-made TaqMan assays (Applied Biosystems) were

available for at least one variant in 5 Bins (<u>Underlined</u> in Table 26). Of those 5 available TaqMan assays two were for intronic *APOA1* variants (rs5070 and rs5072), two for exonic *APOA4* variants (rs5104, rs5092), and 1 for intronic *APOA4* variant (rs5100). The remaining Bins will be evaluated using either custom TaqMan assays or the Sequenome® iPLEX genotyping array.

		Location of Variants	
BIN	Gene	Captured	rs Numbers
1	APOA1	4443, 1620, 1128	rs670, rs12721028, rs11216153
2	APOA1	3613, 3714	<u>rs5072</u> , rs2070665
3	APOA1	4050	<u>rs5070</u>
4	APOA1	3368	rs7116797
5	APOA1	206	rs7123454
6	APOA1	1598	rs10750098
7	APOA1	1308	rs12721030
8	APOA1	1546	rs525028
9	APOA4	1735, 1334	rs5096, r <u>s5100</u>
10	APOA4	315, 1803	rs675, rs5095
11	APOA4	2104	<u>rs5092</u>
12	APOA4	2695	rs5090
13	APOA4	964	rs2234668
14	APOA4	165	rs9282602
15	APOA4	1192	rs5103
16	APOA4	274	rs5110
17	APOA4	974	rs5104

Table 26. Tagger Results for NHWs

Color Scheme for r^2				
$r^2 = 0$	White			
$0 < r^2 < 1$	Shades of Grey			
$r^2 = 1$	Black			

Figure 12. LD Analysis for NHWs.

3.3.2 Blacks

High correlation between *APOA1* and *APOA4* variants was not observed (the highest observed r^2 was 0.59 for any *APOA1/APOA4* variant pairs), although some strong correlations were present within each gene. Tagger analysis identified a total of 16 Bins for *APOA1* and 9 Bins for *APOA4*. A total of 33 common variants were captured in 25 Bins, 20 from *APOA1* and 13 from *APOA4*. Of the total 25 Bins from the two genes, pre-made TaqMan assays (Applied Biosystems) were available for at least one variant in 6 Bins (<u>Underlined</u> in Table 27). Additionally, a pre-made TaqMan assay was available and ordered for one rare variant in *APOA4* (not shown in Table 27: rs5106). Of those 7 available TaqMan assays two were for intronic *APOA1* variants (rs5070 and rs5072), four for exonic *APOA4* variants (rs5104, rs5092, rs5106, rs5109), and 1 for intronic *APOA4* variant (rs5100). The remaining Bins will be evaluated using either custom TaqMan assays or the Sequenome® iPLEX genotyping array.

		Location of Variants	
BIN	Gene	Captured	rs Numbers
1	APOA1	3714, 3613	rs2070665, <u>rs5072</u>
2	APOA1	2376, 1049	rs5081, rs1263162
3	APOA1	3220, 4284	rs5076, rs5069
4	APOA1	4807, 5055	rs12691374, -
5	APOA1	631	rs7948159
6	APOA1	206	rs7123454
7	APOA1	3543	rs5073
8	APOA1	1620	rs12721028
9	APOA1	1128	rs11216153
10	APOA1	3368	rs7116797
11	APOA1	4050	<u>rs5070</u>
12	APOA1	1598	rs10750098
13	APOA1	4732	rs12718467
14	APOA1	4443	rs670
15	APOA1	2373	rs12718436
16	APOA1	1546	rs525028
17	APOA4	315, 2645, 1803	rs675, rs5091, rs5095
18	APOA4	357, 1326	-, -
19	APOA4	1334, 1735	<u>rs5100,</u> rs5096
20	APOA4	1853	rs5094
21	APOA4	974	<u>rs5104</u>
22	APOA4	165	rs9282602
23	APOA4	1198	rs5101
24	APOA4	406	<u>rs5109</u>
25	APOA4	2104	<u>rs5092</u>

Table 27	Tagger	Reculte	for	Blacks
	ragger	Results	101	DIACKS

Color Scheme for r^2					
$r^2 = 0$	White				
$0 < r^2 < 1$	Shades of Grey				
$r^2 = 1$	Black				

Figure 13. LD Analysis for Blacks

3.4 GENOTYPING OF ENTIRE NHW AND BLACK SAMPLES USING AVALIABLE TAQMAN SNP GENOTYPING ASSAYS

3.4.1 LD Analysis of the Variants Screened in Entire NWH and Black Samples

For the variants that were screened using the available TaqMan assays in the entire samples, the LD analysis was repeated (Figures 14 an 15) and the LD patterns were found to be similar to those observed in the subsets of the populations used for sequencing. A striking difference in LD was not observed between the two populations.

Figure 14. LD Analysis of the Variants Screened in the Entire NHW Samples.

Color Scheme for r^2						
$r^2 = 0$	White					
$0 < r^2 < 1$	Shades of Grey					
$r^2 = 1$	Black					

Figure 15. LD Analysis of the Variants Screened in the Entire Black Samples.

3.4.2 Association Analysis of the Variants Screened in the Entire NWH and Black Samples for their Effects on Plasma HDL levels

A total of 7 variants screened in entire NHW and Black samples (only 5 were present in NHWs, all 7 were present in Blacks) were analyzed for their relation to plasma HDL levels separately in males and females within each ethnic group. The Tables 28 and 29 show the genotype counts, adjusted mean HDL levels (fore each genotype) and adjusted p-values (under the additive model) for each variant.

Although some modest or marginal p-values were observed, the associations were not consistent or strong enough to survive multiple testing correction in either of the populations.

	NHW Males			NWH Females			
APOA1- rs5070	G/G[138]	G/A[127]	A/A[25]	G/G[167]	G/A[129]	A/A[28]	
HDL-C	44.02±0.87	43.84±0.91	43.41±2.05	56.90±1.07	57.24±1.21	54.68±2.60	
		p ^a =0.56			p ^b =0.56		
APOA1- rs5072	G/G[252]	G/A[39]	A/A[3]	G/G[284]	G/A[41]	A/A[0]	
HDL-C	44.07±0.64	44.47±1.62	30.01±5.86	56.98±0.81	55.98±2.14	n/a	
		p ^a =0.16		p ^b =0.53			
APOA4- rs5092	T/T[213]	T/C[76]	C/C[4]	T/T[226]	T/C[94]	C/C[6]	
HDL-C	44.44±0.70	43.31±1.17	36.43±5.10	56.14±0.91	57.79±1.41	67.23±5.61	
		p ^a =0.08	•		p ^b =0.12	•	
APOA4- rs5100	A/A[123]	A/G[128]	G/G[43]	A/A[142]	A/G[143]	G/G[42]	
HDL-C	44.95±0.92	43.83±0.90	41.67±1.55	55.67±1.14	56.95±1.14	60.74±2.10	
		p ^a =0.04		p ^b =0.05			
<i>APOA4-</i> rs5104	T/T[222]	T/C[68]	C/C[2]	T/T[248]	T/C[75]	C/C[3]	
HDL-C	44.43±0.68	43.04±1.24	34.26±7.22	56.73±0.87	56.93±1.58	58.01±7.96	
		p ^a =0.12	•	p ^b =0.96			

Table 28. Genotype Distribution, Mean HDL Levels, and Adjusted p-values for five APOA1 and APOA4 Variants in NHWs

p^a-values for log transformed HDL levels, adjusted for "BMI" under the additive model p^b-values for log transformed HDL levels, adjusted for "age, smoking status, and BMI" under the additive model

	Black Males			Black Females				
APOA1- rs5070	G/G[92]	G/A[193]	A/A[89]	G/G[72]	G/A[136]	A/A[66]		
HDL-C	47.57±1.23	45.35±0.85	47.74±1.25	48.56±1.48	52.20±1.08	52.24±1.54		
		p ^a =0.88			p ^b =0.05			
APOA1- rs5072	G/G[309]	G/A[71]	A/A[1]	G/G[220]	G/A[58]	A/A[4]		
HDL-C	46.08±0.68	46.60±1.41	43.22±11.91	50.63±0.84	52.51±1.65	58.56±6.25		
		p ^a =0.77			p ^b =0.12			
APOA4- rs5092	T/T[297]	T/C[75]	C/C[6]	T/T[210]	T/C[64]	C/C[2]		
HDL-C	45.66±0.69	48.11±1.38	45.95±4.86	51.49±0.85	50.71±1.56	45.36±8.76		
		p ^a =0.15	-	p ^b =0.51				
APOA4- rs5100	A/A[154]	A/G[169]	G/G[51]	A/A[120]	A/G[127]	G/G[29]		
HDL-C	45.55±0.96	45.76±0.92	48.83±1.67	51.73±1.13	50.80±1.10	50.04±2.35		
		p ^a =0.15		p ^b =0.47				
APOA4- rs5104	T/T[317]	T/C[54]	C/C[4]	T/T[227]	T/C[41]	C/C[1]		
HDL-C	45.78±0.66	48.25±1.61	48.53±5.93	51.08±0.83	52.95±1.98	44.99±12.55		
		p ^a =0.13			p ^b =0.48			
APOA4- rs5106	G/G[353]	G/A[25]	A/A[0]	G/G[262]	G/A[16]	A/A[0]		
HDL-C	46.31±0.63	44.75±2.37	n/a	51.38±0.77	47.49±3.12	n/a		
	p ^a =0.48		p ^b =0.24					
APOA4- rs5109	C/C[310]	C/A[72]	A/A[1]	C/C[233]	C/A[45]	A/A[3]		
HDL-C	46.43±0.67	45.06±1.40	32.25±11.88	51.17±0.82	51.54±1.87	45.36±7.25		
		p ^a =0.25		p ^b =0.79				

Table 29. Genotype Distribution, Mean HDL Levels, and Adjusted p-values for five

p^a-values for log transformed HDL levels, adjusted for "BMI" under the additive model p^b-values for log transformed HDL levels, adjusted for "age, smoking status, and BMI" under the additive model

4.0 **DISCUSSION**

Apoa-I is the major apolipoprotein in HDL particles; many studies have provided evidence of the athroprotective role of ApoA-I.³² *APOA1* mutations have been correlated with Mendelian disease, however further study is needed to associate common and rare variants in *APOA1* with complex genetic disease.¹⁶

While the exact function of apoA-IV is not known, it has a number of proposed functions, including involvement in the assembly and secretion of chylomicrons and the reverse cholesterol transport system.⁸¹ Some studies have associated variation of the *APOA4* gene with changes in lipid levels, while others have not observed this same pattern.^{79,83,90} The *APOA4* gene clearly requires further study due to the lack of consensus about its biological function and the correlation of variation within this gene with lipid levels.

This study aimed to evaluate the role of *APOA1* and *APOA4* genetic variation by sequencing a subset of samples from healthy individuals with HDL levels in the 5th and 95th percentiles. The purpose of this was to detect both the rare and common variants in both genes in NHW and Black populations. Through sequence analysis and detection of these variants both the "common variant-common disease" and "rare variant-common disease" hypotheses were tested.

The common variant hypothesis has been extensively evaluated through the candidate gene approach and GWAS. The earlier candidate gene studies reported association of the

APOA1/APOC3/APOA4/APOA5 gene cluster with HDL and triglyceride levels, however the results were not consistent.^{45,79} In recent GWAS this gene cluster showed some association with triglyceride levels; most of the genetic variants with significance were in *APOA5*, intergenic regions, or other genes residing near this cluster.¹⁸⁻²⁵ The two GWAS that reported association with HDL levels and this gene cluster again included SNPs from neighboring genes (*ZNF259* and *BUD13*), but not SNPs from *APOA1* or *APOA4*.^{21,23}

The rare variant hypothesis was less frequently addressed in the literature, although it is more likely to be addressed in the near future with the advent of Next Gen sequencing, and the decreasing cost of sequencing technology. Cohen *et al.*²⁷ used sequencing to analyze the coding regions of three genes (*APOA1*, *ABCA1*, and *LCAT*), and reported that individuals with low HDL had significantly more nonsynonymous variants than individuals with high HDL levels. However, most of the variants they identified were from *ABCA1* or *LCAT*, and only a few were from *APOA1*. This study used the same approach for sample population selection (sequencing individuals with HDL levels in the 5th and 95th percentile), however, in this study the genes were completely sequenced to document all variants and their association with HDL levels, rather than just the coding regions as in Cohen *et al.*²⁷

SeattleSNPs also completely sequenced both *APOA1* and *APOA4*; however, there are some inherent reasons for differences between sequence variants reported in the SeattleSNPs database and sequence variants identified in this study. A total of 24 African-American individuals, 24 European individuals, and 24 non-Hispanic European-American individuals, unselected for HDL-cholesterol levels, were sequenced in the SeattleSNPs study.⁷⁸ A total of 95 African individuals and 95 NHWs, who were selected based on their extreme HDL-cholesterol levels, were sequenced in this study sequenced African-American

individuals, whereas African samples were sequenced in this study. In African-American samples there is a greater likelihood of admixture from other ethnic groups as compared to African samples. Different software tools were used to analyze the sequence data in the SeattleSNPs study versus this study. Also, different primers were used for sequencing (*APOA1*).

For sequence analysis the data collected in this study was compared with the data from the SeattleSNPs database, published in Fullerton *et al.*⁷⁸ A total of 31 sequence variants in *APOA1* were reported in the SeattleSNPs database (Tables 2-4, section 1.4.3). A total of 54 sequence variants in *APOA1* were identified in this study (Table 16, section 3.1.1). A total of 24 sequence variants in *APOA4* were reported in the SeattleSNPs database (Tables 5-6, section 1.5.2). A total of 43 sequence variants were identified in this study (Table 17, section 3.1.2).

A total of 25 sequence variants in *APOA1* were reported in the SeattleSNPs database for the two European populations (Tables 3&4, section 1.4.3). A total of 34 sequence variants in *APOA1* were identified in this study in NHWs (Table 16, section 3.1.1). A total of 25 sequence variants in *APOA1* were reported in the SeattleSNPs database for the African American population (Table 2, section 1.4.3). A total of 37 sequence variants in *APOA1* were identified in this study in Blacks (Table 16, section 3.1.1). A total of 18 sequence variants in *APOA4* were reported in the SeattleSNPs database for the two European populations (Tables 6&7, section 1.5.2). A total of 23 sequence variants were identified in this study in NHWs (Table 17, section 3.1.2). A total of 18 sequence variants in *APOA4* were reported in the SeattleSNPs database for the African American population (Table 5, section 1.5.2). A total of 30 sequence variants were identified in this study in Blacks (Table 17, section 3.1.2).

One coding variant in *APOA1* was reported by Fullerton *et al.* and the SeattleSNPs database data. This variant was present in both the African-American and European-American

82

populations. The sequence variant was nonsynonymous (Ala>Thr).⁷⁸ Five coding variants in *APOA1* were identified in this study (Table 16, section 3.1.1). Two of the 5 variants were present in NHWs and 3 of the 5 in Blacks. Four of the 5 variants were nonsynonymous. Twelve coding variants in *APOA4* were reported by Fullerton *et al.*⁷⁸ and the SeattleSNPs database data. Eight of the 12 variants were present in the African-American population and 7 of the 12 variants were reported in the European populations. Six of the 12 variants were nonsynonomous. Seventeen coding variants in *APOA4* were identified in this study (Table 17, section 3.1.2). Eleven of the 17 variants were present in NHWs and 11 of the 17 in Blacks. Seven of the 17 variants were nonsynonymous.

Table 30 is a list of sequence variants in *APOA1* and *APOA4* reported in the SeattleSNPs database that were not identified in this study. Identification of these variants would be expected given the fact that the NHW and Black sample sizes are 2-4 times larger in this study than in the SeattleSNPs study. Therefore, it is possible that those variants listed below that were seen in only a single individual in one population represent sequence artifacts as they have not been confirmed using another technology. Variants that were reported in more than one individual or population may have been absent in this study due to differences in selection criteria (sequencing of only individuals with HDL levels in the 5^{th} and 95^{th} percentile in this study).

Gene	SeattleSNP	rs Number	MAF	MAF	MAF
	Location		JD-Pop	ND-Pop	RD-Pop
APOA1	1541	rs127211029	0.03	-	-
APOA1	1717	rs12718461	-	-	0.02
APOA1	3766	rs12718465	0.10	-	0.09
APOA1	4245	rs12712032	0.02	-	-
APOA4	933	rs12721043	-	0.09	0.02
APOA4	1183	rs12721042	0.02	_	-
APOA4	2511	rs12721041	0.05	-	_

Table 30. Unique Sequence Variants in the SeattleSNPs Database

Novel variants identified in this study (not previously reported in publicly available databases) are listed in Tables 16 and 17 in sections 3.1.1 and 3.1.2, respectively. Suspicious variants with low sequence quality (denoted in each table) are to be confirmed in future analysis. This study had a larger sequencing sample size than the SeattleSNPs study which may have contributed to the number of sequencing variants. Additionally, this study sequenced individuals with HDL levels in the 5th and 95th percentile whereas the SeattleSNPs database did not select for any risk-factor trait. It is possible that some of the novel variants seen in this study are unique to this group.

Fullerton *et al.*⁷⁸ reported a higher variability among African Americans as compared to Europeans for both *APOA1* and *APOA4*. In this study, a higher number of sequence variants were also identified in Blacks versus NHWs for both genes.

Fullerton *et al.*⁷⁸ observed that *APOA4* had many more coding region variants than the other genes in the *APOA1/APOC3/APOA4/APOA5* gene cluster. This same conclusion can be made when comparing the number of coding variants observed in *APOA4* versus *APOA1* in this study: 5 coding variants were identified in *APOA1* versus 17 in *APOA4* (Tables 16 and 17 in sections 3.1.1&3.1.2, respectively).

According to preliminary analysis of sequence data for *APOA1* and *APOA4*, no striking difference was noticed between the distribution of rare variants between high and low HDL groups in either population. For sequencing variants in *APOA1*: for NHWs, 5 out of 48 (10.42%) individuals with low HDL levels had rare variants unique to the low group versus 7 out of 47 (14.89%) individuals with high HDL levels with rare variants unique to the high group; for Blacks, 2 out of 47 (4.26%) individuals with low HDL levels had rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to the low group versus 6 out of 48 (12.5%) individuals with high HDL levels with rare variants unique to

the high group. For sequencing variants in *APOA4*: for NHWs, 3 out of 48 (6.25%) individuals with low HDL levels had rare variants unique to the low group versus 5 out of 47 (10.64%) individuals with high HDL levels with rare variants unique to the high group; for Blacks, 4 out of 47 (8.51%) individuals with low HDL levels had rare variants unique to the low group versus 4 out of 48 (8.33%) individuals with high HDL levels with rare variants unique to the high group. Overall, when individuals with rare variants are compared between high and low HDL groups the numbers were similar or slightly higher in the high HDL group.

Differences in MAF between low and high HDL groups have been observed for some common variants in the sequencing data and have not yet been confirmed by genotyping in the entire population. These variants include: 206 (rs7123454) and 1598 (rs10750098) in NHWs in *APOA1* (in bold in Table 18); 964 (rs2234668) in NHWs in *APOA4* (in bold in Table 22); 1198 (rs5101) and 1735 (rs5096) in Blacks in *APOA4* (in bold in Table 24). None of these variants have been previously associated with variation in HDL-cholesterol levels in the literature. *APOA4* variant 1334 (rs5100) showed a difference in MAF between low and high HDL groups in Blacks in the sequencing data (in bold in Table 24). This variant had not been previously associated with variation in HDL-cholesterol levels in the literature in the entire NHW and Black population in this study.

Thus far screening data has been compiled for the entire NHW and Black population for a total of seven variants: 2 for *APOA1* (rs5070 and rs5072), and 5 in *APOA4* (rs5092, rs5100, rs5104, rs5106, and rs5109). All 7 variants were present in the Black population; five were present in NHWs (rs5070, rs5072, rs5092, rs5100, and rs5104). Modest or marginal p-values were observed, however, none would maintain significance after multiple testing correction in either population. Some of the variants were investigated in the literature with inconsistent results including: rs5070, rs5092, and rs5104.^{45,79} Inconsistencies in the literature and a lack of statistically significant association with HDL levels in this study may be due to population size; variants associated with a small effect on HDL levels may only be statistically significant with a larger population size. Furthermore, additional variants identified in sequencing (both novel and those previously reported in the publicly available databases) remain to be screened in the entire NHW and Black population.

5.0 CONCLUSION

Heart disease is a major public health concern, and decreased HDL-cholesterol levels are a major risk factor for heart disease. In previous candidate gene studies and GWAS, *APOA1* and *APOA4* have been associated with variation in HDL-cholesterol levels with inconsistent results. This study supported this paradigm. The common variants that were genotyped in the entire population had only modest or marginal p-values that would not maintain significance after multiple testing correction. However, additional common variants remain to be screened in the entire population; in some of these variants differences were observed between high and low HDL groups in preliminary sequence data.

Further data collection and analysis is necessary to better understand the significance of these variants. Additional studies of *APOA1* and *APOA4* with larger population sizes are needed to analyze variants that may only have a small effect on HDL-cholesterol levels. Further studies of rare variation in this and other genes are also required to better understand genetics of HDL-cholesterol in relation to the rare allele hypothesis.

BIBLIOGRAPHY

- 1. Dastani, Z., Engert, J.C., Genest, J. & Marcil, M. Genetics of high-density lipoproteins. *Curr Opin Cardiol* **21**, 329-35 (2006).
- 2. Hegele, R.A. Plasma lipoproteins: genetic influences and clinical implications. *Nat Rev Genet* **10**, 109-21 (2009).
- 3. Kung, H.-C., Hoyert, D.L., Xu, J. & Murphy, S.L. Deaths: Final Data for 2005. *National Vital Statistics Reports* **56**(2008).
- 4. Rosamond, W. et al. Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. *Circulation* **117**, e25-146 (2008).
- 5. Greenland, P. et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. *JAMA* **290**, 891-897 (2003).
- 6. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet* **364**, 937-52 (2004).
- 7. Barter, P.J. et al. Antiinflammatory properties of HDL. Circ Res 95, 764-72 (2004).
- 8. Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. *Lancet* **370**, 1829-39 (2007).
- 9. Castelli, W.P. et al. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. *JAMA* **256**, 2835-8 (1986).
- 10. Gordon, D.J. et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. *Circulation* **79**, 8-15 (1989).
- 11. Assmann, G., Cullen, P. & Schulte, H. The Munster Heart Study (PROCAM). Results of follow-up at 8 years. *Eur Heart J* **19 Suppl A**, A2-11 (1998).
- 12. Goode, E.L., Cherny, S.S., Christian, J.C., Jarvik, G.P. & de Andrade, M. Heritability of longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins. *Twin Res Hum Genet* **10**, 703-11 (2007).
- 13. Kronenberg, F. et al. Segregation analysis of HDL cholesterol in the NHLBI Family Heart Study and in Utah pedigrees. *Eur J Hum Genet* **10**, 367-74 (2002).
- 14. Perusse, L. et al. Familial resemblance of plasma lipids, lipoproteins and postheparin lipoprotein and hepatic lipases in the HERITAGE Family Study. *Arterioscler Thromb Vasc Biol* **17**, 3263-9 (1997).
- 15. Wang, X. & Paigen, B. Genetics of variation in HDL cholesterol in humans and mice. *Circ Res* **96**, 27-42 (2005).

- 16. Pollex, R.L. & Hegele, R.A. Genetic determinants of plasma lipoproteins. *Nat Clin Pract Cardiovasc Med* **4**, 600-9 (2007).
- 17. Talmud, P.J. & Humphries, S.E. Genetic polymorphisms, lipoproteins and coronary artery disease risk. *Curr Opin Lipidol* **12**, 405-9 (2001).
- 18. Aulchenko, Y. et al. Genome-wide association study in 16 European population cohorts: Major loci influencing lipid levels and coronary heart risk. *Nat. Genet.* (2008).
- 19. Chasman, D. et al. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein AI, and apolipoprotein B among 6382 white women in genome-wide analysis with replication. *Circulation: Cardiovascular Genetics* **1**, 21-30 (2008).
- 20. Heid, I. et al. A genome-wide association analysis of HDL-cholesterol in the populationbased KORA Study sheds new light on intergenic regions. *Circulation: Cardiovascular Genetics* **1**, 10-20 (2008).
- 21. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. *Nat Genet* **40**, 189-97 (2008).
- 22. Kooner, J.S. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. *Nat Genet* **40**, 149-51 (2008).
- 23. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. *Nat Genet* **41**, 35-46 (2009).
- 24. Wallace, C. et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. *Am J Hum Genet* **82**, 139-49 (2008).
- 25. Willer, C.J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. *Nat Genet* **40**, 161-9 (2008).
- 26. Yuan, G., Wang, J. & Hegele, R.A. Heterozygous familial hypercholesterolemia: an underrecognized cause of early cardiovascular disease. *CMAJ* **174**, 1124-9 (2006).
- 27. Cohen, J.C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. *Science* **305**, 869-72 (2004).
- 28. Benn, M. et al. Common and rare alleles in apolipoprotein B contribute to plasma levels of low-density lipoprotein cholesterol in the general population. *J Clin Endocrinol Metab* **93**, 1038-45 (2008).
- 29. Cohen, J.C. et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. *Proc Natl Acad Sci U S A* **103**, 1810-5 (2006).
- 30. Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. *J Clin Invest* **119**, 70-9 (2009).
- 31. Brewer, H.B., Jr. et al. The amino acid sequence of human APOA-I, an apolipoprotein isolated from high density lipoproteins. *Biochem Biophys Res Commun* **80**, 623-30 (1978).
- 32. Scanu, A.M. & Edelstein, C. HDL: bridging past and present with a look at the future. *FASEB J* 22, 4044-54 (2008).
- 33. Scanu, A.M., Edelstein, C. & Gordon, J.I. Apolipoproteins of human plasma high density lipoproteins. Biology, biochemistry and clinical significance. *Clin Physiol Biochem* **2**, 111-22 (1984).

- 34. Segrest, J.P. et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. *J Lipid Res* **33**, 141-66 (1992).
- 35. Ajees, A.A., Anantharamaiah, G.M., Mishra, V.K., Hussain, M.M. & Murthy, H.M. Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. *Proc Natl Acad Sci U S A* **103**, 2126-31 (2006).
- 36. Binder, C.J. et al. Innate and acquired immunity in atherogenesis. *Nat Med* **8**, 1218-26 (2002).
- 37. Gotsman, I., Gupta, R. & Lichtman, A.H. The influence of the regulatory T lymphocytes on atherosclerosis. *Arterioscler Thromb Vasc Biol* **27**, 2493-5 (2007).
- 38. Luoma, P.V. Gene activation, apolipoprotein A-I/high density lipoprotein, atherosclerosis prevention and longevity. *Pharmacol Toxicol* **81**, 57-64 (1997).
- 39. Rader, D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. *J Clin Invest* **116**, 3090-100 (2006).
- 40. Yancey, P.G. et al. Importance of different pathways of cellular cholesterol efflux. *Arterioscler Thromb Vasc Biol* 23, 712-9 (2003).
- 41. Zannis, V.I., Chroni, A. & Krieger, M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. *J Mol Med* **84**, 276-94 (2006).
- 42. Benoit, P. et al. Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. *Circulation* **99**, 105-10 (1999).
- 43. Moore, R.E. et al. Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. *Arterioscler Thromb Vasc Biol* 23, 1914-20 (2003).
- 44. Navab, M., Anantharamaiah, G.M., Reddy, S.T. & Fogelman, A.M. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. *Nat Clin Pract Cardiovasc Med* **3**, 540-7 (2006).
- 45. Brown, C.M. et al. The contribution of individual and pairwise combinations of SNPs in the APOA1 and APOC3 genes to interindividual HDL-C variability. *J Mol Med* **84**, 561-72 (2006).
- 46. Kamboh, M.I., Aston, C.E., Nestlerode, C.M., McAllister, A.E. & Hamman, R.F. Haplotype analysis of two APOA1/MspI polymorphisms in relation to plasma levels of apo A-I and HDL-cholesterol. *Atherosclerosis* **127**, 255-62 (1996).
- 47. Shioji, K. et al. An association analysis between ApoA1 polymorphisms and the highdensity lipoprotein (HDL) cholesterol level and myocardial infarction (MI) in Japanese. *J Hum Genet* **49**, 433-9 (2004).
- 48. Francis, M.C. & Frohlich, J.J. Coronary artery disease in patients at low risk-apolipoprotein AI as an independent risk factor. *Atherosclerosis* **155**, 165-70 (2001).
- 49. Lusis, A.J., Mar, R. & Pajukanta, P. Genetics of atherosclerosis. *Annu Rev Genomics Hum Genet* **5**, 189-218 (2004).
- 50. Weisgraber, K.H., Bersot, T.P., Mahley, R.W., Franceschini, G. & Sirtori, C.R. A-Imilano apoprotein. Isolation and characterization of a cysteine-containing variant of the A-I apoprotein from human high density lipoproteins. *J Clin Invest* **66**, 901-7 (1980).
- 51. Franceschini, G., Sirtori, C.R., Capurso, A., 2nd, Weisgraber, K.H. & Mahley, R.W. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. *J Clin Invest* **66**, 892-900 (1980).

- 52. Utermann, G., Feussner, G., Franceschini, G., Haas, J. & Steinmetz, A. Genetic variants of group A apolipoproteins. Rapid methods for screening and characterization without ultracentrifugation. *J Biol Chem* **257**, 501-7 (1982).
- 53. Breslow, J.L. Apolipoprotein genetic variation and human disease. *Physiol Rev* 68, 85-132 (1988).
- 54. Strobl, W. et al. Apolipoprotein A-I (Glu 198----Lys): a mutant of the major apolipoprotein of high-density lipoproteins occurring in a family with dyslipoproteinemia. *Pediatr Res* 24, 222-8 (1988).
- 55. von Eckardstein, A. et al. Apolipoprotein A-I variants. Naturally occurring substitutions of proline residues affect plasma concentration of apolipoprotein A-I. *J Clin Invest* **84**, 1722-30 (1989).
- 56. Van Allen, M.W., Frohlich, J.A. & Davis, J.R. Inherited predisposition to generalized amyloidosis. Clinical and pathological study of a family with neuropathy, nephropathy, and peptic ulcer. *Neurology* **19**, 10-25 (1969).
- 57. Nichols, W.C., Gregg, R.E., Brewer, H.B., Jr. & Benson, M.D. A mutation in apolipoprotein A-I in the Iowa type of familial amyloidotic polyneuropathy. *Genomics* **8**, 318-23 (1990).
- 58. Norum, R.A. et al. Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease. *N Engl J Med* **306**, 1513-9 (1982).
- 59. Schaefer, E.J., Heaton, W.H., Wetzel, M.G. & Brewer, H.B., Jr. Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. *Arteriosclerosis* **2**, 16-26 (1982).
- 60. Ladias, J.A., Kwiterovich, P.O., Jr., Smith, H.H., Karathanasis, S.K. & Antonarakis, S.E. Apolipoprotein A1 Baltimore (Arg10----Leu), a new ApoA1 variant. *Hum Genet* **84**, 439-45 (1990).
- 61. Funke, H. et al. A frameshift mutation in the human apolipoprotein A-I gene causes high density lipoprotein deficiency, partial lecithin: cholesterol-acyltransferase deficiency, and corneal opacities. *J Clin Invest* **87**, 371-6 (1991).
- 62. Matsunaga, T. et al. Apolipoprotein A-I deficiency due to a codon 84 nonsense mutation of the apolipoprotein A-I gene. *Proc Natl Acad Sci* **88**, 2793-2797 (1991).
- 63. Soutar, A.K. et al. Apolipoprotein AI mutation Arg-60 causes autosomal dominant amyloidosis. *Proc Natl Acad Sci U S A* **89**, 7389-93 (1992).
- 64. Ng, D.S., Leiter, L.A., Vezina, C., Connelly, P.W. & Hegele, R.A. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. *J Clin Invest* **93**, 223-9 (1994).
- 65. Nakata, K. et al. Autosomal dominant hypoalphalipoproteinemia due to a completely defective apolipoprotein A-I gene. *Biochem Biophys Res Commun* **196**, 950-5 (1993).
- 66. Romling, R. et al. A nonsense mutation in the apolipoprotein A-I gene is associated with high-density lipoprotein deficiency and periorbital xanthelasmas. *Atherosclerosis Thromb* **14**(1994).
- 67. Booth, D.R. et al. Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. *J Clin Invest* **97**, 2714-21 (1996).
- 68. Huang, W. et al. A novel homozygous missense mutation in the apo A-I gene with apo A-I deficiency. *Arterioscler Thromb Vasc Biol* **18**, 389-96 (1998).

- 69. Yamakawa-Kobayashi, K. et al. Frequent occurrence of hypoalphalipoproteinemia due to mutant apolipoprotein A-I gene in the population: a population-based survey. *Hum Molec Genet* **8**, 331-336 (1999).
- 70. Hamidi Asl, L. et al. Hereditary amyloid cardiomyopathy caused by a variant apolipoprotein A1. *Am J Pathol* **154**, 221-7 (1999).
- 71. Hamidi Asl, K., Liepnieks, J.J., Nakamura, M., Parker, F. & Benson, M.D. A novel apolipoprotein A-1 variant, Arg173Pro, associated with cardiac and cutaneous amyloidosis. *Biochem Biophys Res Commun* **257**, 584-8 (1999).
- 72. Obici, L. et al. The new apolipoprotein A-I variant leu(174) --> Ser causes hereditary cardiac amyloidosis, and the amyloid fibrils are constituted by the 93-residue N-terminal polypeptide. *Am J Pathol* **155**, 695-702 (1999).
- 73. Lachmann, H.J. et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. *N Engl J Med* **346**, 1786-91 (2002).
- 74. Pisciotta, L. et al. Recurrent mutations of the apolipoprotein A-I gene in three kindreds with severe HDL deficiency. *Atherosclerosis* **167**, 335-45 (2003).
- 75. Hovingh, G.K. et al. A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. *J Am Coll Cardiol* **44**, 1429-35 (2004).
- 76. Dastani, Z. et al. A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians. *Atherosclerosis* **185**, 127-36 (2006).
- 77. Esperon, P., Raggio, V., Stoll, M., Vital, M. & Alallon, W. A new APOA1 mutation with severe HDL-cholesterol deficiency and premature coronary artery disease. *Clin Chim Acta* **388**, 222-4 (2008).
- 78. Fullerton, S.M. et al. The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster. *Hum Genet* **115**, 36-56 (2004).
- 79. Knoblauch, H. et al. Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol. *Hum Mol Genet* **13**, 993-1004 (2004).
- Pearson, K. et al. Structure of human apolipoprotein A-IV: a distinct domain architecture among exchangeable apolipoproteins with potential functional implications. *Biochemistry* 43, 10719-29 (2004).
- 81. Tubb, M.R., Silva, R.G.D., Fang, J., Tso, P. & Davidson, W.S. A Three-dimensional Homology Model of Lipid-free Apolipoprotein A-IV Using Cross-linking and Mass Spectrometry. *The Journal of Biological Chemestry* **283**, 17314-17323 (2008).
- 82. Lohse, P., Kindt, M.R., Rader, D.J. & Brewer, H.B., Jr. Genetic polymorphism of human plasma apolipoprotein A-IV is due to nucleotide substitutions in the apolipoprotein A-IV gene. *J Biol Chem* **265**, 10061-4 (1990).
- 83. Cendoroglo, M.S. et al. Association of apo A-IV 360 (Gln --> His) polymorphism with plasma lipids and lipoproteins: the Framingham Offspring Study. *Atherosclerosis* **179**, 169-75 (2005).
- 84. Boerwinkle, E., Visvikis, S. & Chan, L. Two polymorphisms for amino acid substitutions in the APOA4 gene. *Nucleic Acids Res* **18**, 4966 (1990).
- 85. Wong, W.M. et al. Apolipoprotein AIV gene variant S347 is associated with increased risk of coronary heart disease and lower plasma apolipoprotein AIV levels. *Circ Res* **92**, 969-75 (2003).

- 86. Wong, W.M. et al. The APOA4 T347S variant is associated with reduced plasma TAOS in subjects with diabetes mellitus and cardiovascular disease. *J Lipid Res* **45**, 1565-71 (2004).
- 87. Miltiadous, G. et al. Genetic polymorphisms of the apolipoprotein A-IV in a Greek population and their relation to plasma lipid and lipoprotein levels. *Clin Genet* **62**, 208-13 (2002).
- 88. Lohse, P., Kindt, M.R., Rader, D.J. & Brewer, H.B., Jr. Human plasma apolipoproteins A-IV-0 and A-IV-3. Molecular basis for two rare variants of apolipoprotein A-IV-1. *J Biol Chem* **265**, 12734-9 (1990).
- 89. Lohse, P., Kindt, M.R., Rader, D.J. & Brewer, H.B., Jr. Three genetic variants of human plasma apolipoprotein A-IV. apoA-IV-1(Thr347----Ser), apoA-IV-0(Lys167----Glu,Gln360----His), and apoA-IV-3(Glu165----Lys). *J Biol Chem* **266**, 13513-8 (1991).
- 90. Deeb, S.S., Nevin, D.N., Iwasaki, L. & Brunzell, J.D. Two novel apolipoprotein A-IV variants in individuals with familial combined hyperlipidemia and diminished levels of lipoprotein lipase activity. *Hum Mutat* **8**, 319-25 (1996).
- 91. Bunker, C.H. et al. Weight threshold and blood pressure in a lean black population. *Hypertension* **26**, 616-23 (1995).
- 92. Bunker, C.H. et al. Correlates of serum lipids in a lean black population. *Atherosclerosis* **123**, 215-25 (1996).
- 93. Hamman, R.F. et al. Methods and prevalence of non-insulin-dependent diabetes mellitus in a biethnic Colorado population. The San Luis Valley Diabetes Study. *Am J Epidemiol* **129**, 295-311 (1989).
- 94. Rewers, M. et al. Is the risk of coronary heart disease lower in Hispanics than in non-Hispanic whites? The San Luis Valley Diabetes Study. *Ethnicity Dis* **3**, 44-54 (1993).
- 95. Harris, M.R. et al. Racial differences in the distribution of a low density lipoprotein receptor-related protein (LRP) polymorphism and its association with serum lipoprotein, lipid and apolipoprotein levels. *Atherosclerosis* **137**, 187-95 (1998).
- 96. Richmond, W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. *Clin Chem* **19**, 1350-6 (1973).
- Warnick, G., Benderson, J. & Albers, J. Quantitation of high density lipoprotein subclasses after separation by dextran sulfate and magnesium precipitation. *Clin Chem* 28, 1574 (1982).