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PROBABILITY-BASED SIMULATION OF 2-D VELOCITY DISTRIBUTION AND 
DISCHARGE ESTIMATION IN OPEN CHANNEL FLOW 

 
 

Shih-Meng Hsu, PhD 
 
 

University of Pittsburgh, 2004 
 
 
 

A probability-based method is presented that can be used to simulate 2-D velocity 

distribution in rectangular open channels and to estimate the flow discharge. The method is 

based on Chiu’s velocity distribution equation. A technique for estimating a parameter of 2-D 

velocity equation has been developed, by which the 2-D velocity distribution in rectangular open 

channels can be simulated by using one or several velocity samples, or even without using any 

velocity data.  

The present study also developed an efficient method of discharge estimation in rivers, 

which is applicable regardless of whether flow is steady or unsteady. It only requires a quick 

velocity sampling. The relation between the surface velocity and the vertical mean velocity has 

been studied. It can be used for developing a non-contact method of discharge measurement. 

Under the same framework of analysis, a new slope-area method has been developed to 

determine the flow discharge. It can reduce errors due to the uncertainties in Manning’s n and the 

energy coefficient α  that exist in the widely-used slope-area method. 
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1.0 INTRODUCTION 
 
  
 
 

1.1 BACKGROUND OF STUDY 
 

The velocity distribution in a channel cross section is affected by channel geometry, roughness 

of the channel and the presence of bends(1)* and must be studied and determined prior to solving 

various hydraulic problems in natural rivers. For instance, the discharge measurement is one of 

problems and one of the most important tasks in water resources management. The second 

example is the estimation of the energy and momentum coefficients in open channel flows. 

These two coefficients depend on the velocity distribution. These coefficients are greater than 

one, but assumed to be unity because of the absence of a simple method to estimate them. If the 

velocity distribution can be determined, the energy and momentum coefficients can be evaluated 

at a channel section. Another example related to the velocity distribution is the distribution of 

sediment concentration in open channel flow, which is essential to the control and management 

of reservoir sedimentation, river channels, and pollutant transport. Since the shear stress 

distribution is a main factor affecting the distribution of sediment concentration in open channel 

flow, it needs to be considered in the derivation of sediment concentration. However, the shear 

stress distribution, in turn, depends on the velocity distribution. Therefore, modeling of the 

distribution of sediment concentration depends on how the velocity distribution is modeled.  

                                                 
* Parenthetical references placed superior to the line of text refer to the bibliography. 
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The most popular velocity distribution formulas are the Prantal-von Karman logarithmic 

law and the power law. Nevertheless, these two equations are invalid at or near the channel bed 

and inaccurate near the water surface, typically when the maximum velocity occurs below the 

water surface. Therefore, these two equations can not be used in solving the problems concerned 

with river flows.  

Chiu (1987,1989)(2, 3) derived a velocity distribution equation using the probability 

concept and entropy-maximization principle. Chiu’s velocity distribution equation is capable of 

describing the variation of velocity in both vertical and transverse directions with the maximum 

velocity occurring on or below the water surface. The velocity distribution equation does not 

have the limitations and weakness of other current velocity distribution equations. The new 

velocity distribution equation in physical space corresponds to an exponential probability 

distribution that has a single parameter M called “Entropy Parameter”. The M value is useful as 

an index for characterizing and comparing various patterns of velocity distribution in open-

channel flow systems. The entropy parameter of a channel section can be determined through the 

relation between the mean and maximum velocities. On the other hand, the ratio of the mean and 

maximum velocities at a channel section is a function of M, and tends to stay constant, although 

it may vary from section to section along a channel(4). The ratio being constant at a channel 

section can be viewed as a natural law(5). In order to maintain the constant ratio, nature tends to 

adjust factors that influence flow characteristic at the cross section, such as the velocity 

distribution, discharge, sediment concentration, roughness, slope, and geometrical shape of the 

channel(4, 5). Therefore, the ratio represents the overall characteristics of the flow system and 

controls the flow variables interacting with the channel. Many similar results(6, 7, 8) obtained from 
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various channels in a wide range of flow also show that the ratio is a constant at a given channel 

section.  

In deterministic hydraulics, the importance of the maximum velocity is not mentioned. 

Under the framework of the probability and entropy-based approach, the maximum velocity can 

be clearly linked to the mean velocity and other hydraulic variables(9, 10). Due to the importance 

of the maximum velocity, Chiu and Tung (2002)(8) investigated the location and magnitude of 

maximum velocity in open channel flow. They found that the location of the maximum velocity 

was also a function of the entropy parameter M.   

Chiu’s velocity distribution equation is also capable of describing the velocity 

distributions not only on a vertical axis as depicted above, but also in an entire channel section. 

The velocity distribution in an entire section is two-dimensional. Actually, the flow in open 

channels is a three-dimensional motion. The flow component in the longitudinal direction is 

called the primary flow. Other flow components in the transverse direction are the secondary 

flow that forms a circular motion around an axis parallel to the primary flow. The secondary 

flow has significant effects in open channel flow and has been studied for more than a century. 

The measurements of the primary flow at a channel section can help understand flow properties 

and explain the location and magnitude of maximum velocity as well as the presence of the 

secondary flow. The simulations of the primary flow enable generating velocity data in an entire 

section to supplement the available data.  

In order to simulate the 2-D velocity distribution in a channel section by using Chiu’s 

velocity equation, there are parameters that need to be determined(2, 10, 15).     
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1.2 OBJECTIVES AND SCOPES OF STUDY 
 
 
Based on the Chiu’s velocity distribution equation, the present study has four objectives: The 

first objective is to develop methods that can be used to simulate a two-dimensional velocity 

distribution in open channel flows. The second objective is to develop efficient methods of 

discharge estimation. The third objective is to verify the relation between the surface velocity 

and the vertical mean velocity as the basis of a non-contact method for discharge measurement. 

The fourth objective is to develop a new slope-area method that is based on the probability 

concept that can be used as an efficient method of discharge estimation.        
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1.3 LITERATURE REVIEW 
 

The prediction of velocity field for an open channel flow has been investigated for many years. 

The problem is treated by solving the Navier-Stokes hydrodynamic equations combined with 

turbulent models. These models  depend on the deterministic law of physics that treats fluid flow 

as boundary-value problems and makes predictions with certainty. However, to develop a 

velocity distribution model, Chiu (1987)(2) proposed a new approach to the problem based on a 

probability concept. 

In the late 1970s and the early 1980s(12, 13, 14), Chiu and some researchers derived three-

dimensional mathematical models of open channel flow and used them to determine various 

hydraulic variables and processes, such as the distribution of primary flow velocity, secondary 

flow, shear stress distribution, channel cross section, discharge rate, flow resistance, and 

sediment transport. These contributions made a better understanding of the three-dimensional 

structure of open channel flow. The developed mathematical model used a curvilinear coordinate 

system formed by the isovels of primary flow (lines on which the velocity is everywhere equal). 

Compared to the Cartesian coordinate system, the curvilinear coordinate system is capable of 

describing flows in irregular open channels.     

In 1983 Chiu and Lin(9) used the same framework of a curvilinear coordinate system in 

hydraulic analysis used in earlier papers, however, with a better expression of the coordinate in 

Chiu’s velocity distribution model. His velocity distribution equation became capable of 

simulating various patterns of primary flow velocity distribution that might have the maximum 

velocity on or below water surface. They used actual velocity data in estimating model 

parameters to deal with a nonuniform and nonsymmetrical three-dimensional flow. However, in 

many applications, such data are unavailable. Therefore, in 1986 Chiu and Chiou(10) proposed a 
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parameter estimation method for a system of three-dimensional mathematical model of flow in 

open channels, which does not require velocity data. The method was applied to a study of the 

two-dimensional velocity distribution in rectangular open channels. The interaction among the 

primary and secondary flow and the shear stress distribution was also investigated under various 

values of width-to-depth ratio, Manning’s n, and slope of channels.  

By applying the probability concept, in 1987 Chiu(2) proceeded to model the distributions 

of the velocity, shear stress, and sediment concentration in open channel flow. The new velocity 

distribution equation derived is superior to the well-known Prandtl-von Karman universal 

velocity distribution equation in many aspects.  

Chiu (1987, 1988)(2, 15) derived a two-dimensional velocity distribution equation by 

entropy maximization in a channel cross section, which is valid regardless of the location of 

maximum velocity. A dimensionless parameter named M in the derived equation has been found 

useful as an index for characterizing and comparing various patterns of velocity distribution. 

Subsequently, the state of the art velocity distribution equation became a benchmark for various 

applications in open-channel flow and pipe-flow studies, and he has been using it until now.  

 

Developments of the methods of discharge measurement 

Discharge measurement is always an important task in hydraulic engineering. The flow data are 

needed for multiple purposes, such as flood forecasting, water resources management, 

hydrologic analysis, and water-quality monitoring. The United States Geological Survey is 

responsible for measuring flow in rivers and streams. The procedure they use and technology for 

estimating discharge are widely accepted as the standard. They formalized the procedure for 
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gaging streams, which is still being used today and currently referenced in many textbooks in 

hydrology and open channel hydraulics. 

The U.S. Geological Survey operates a network of about 7,000 streamflow-gaging 

stations that monitor discharges at selected locations throughout the United States(16). The 

traditional method of discharge measurement at these gaging stations has not changed for over 

100 years. A current meter with a heavy lead weight is placed into the river to take velocity 

samples. Multiple depth and velocity measurements are conducted across the channel, and 

computations of discharge over sub-areas are summed up to give the total discharge. The 

discharge requires periodic direct measurements of river width, depth and velocity at a selected 

station. These discharge values are used to establish a relation between the stage and discharge, 

referred to as a stage-discharge rating curve. 

 For accuracy of a rating curve, data need to be collected over the entire range of flow 

conditions. However, during high flows, direct measurements of flows with a current meter or 

any instrument that must be placed in the water could not only pose safety hazards to personnel, 

but also lead to high measurement errors. To improve shortcomings of the conventional method, 

in 1996 the USGS established a committee, Hydro 21, to identify and evaluate techniques that 

might be more cost-effective and safely monitor flow discharge(17). After much thought and 

discussion, they decided to explore a “non-contact method”. 

On April 21, 1999, the USGS and the Applied Physics Laboratory of the University of 

Washington collaborated to carry out the first field experiment on the Skagit River, Mt. Vernon, 

Washington using radar technology that was designed to measure river discharge without any 

instrument having to touch the water(18). Three sets of surface-velocity data at 25 verticals across 

the river section were collected. By assuming the velocity distribution was logarithmic, the mean 
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velocity on a vertical was estimated to be 85% of surface velocity(19). Independent estimations of 

river discharge were also made by using a conventional current meter, a moving boat method 

with an ADCP, and using a stage-discharge rating curve for the site. Comparison of different 

methods indicates that the discharge determined by using non-contact methods falls within the 

accuracy standards of conventional procedures, and thus demonstrate the feasibility of the new 

technology in replacement of conventional methods. 

Between March 15 and May 17, 2002, the USGS conducted an extensive flow 

measurement experiment on the San Joaquin River at Vernalis, California for the purpose of 

evaluating radar technologies for continuous non-contact river discharge measurement (Mason, 

2002)(20).  

Recently, Hydro 21 Committee suggested the use of remotely measured surface velocity 

for determining discharge(21). The validity of this approach depends on a stable relation between 

the vertical mean velocity and the surface mean velocity. However, the ratio of the mean velocity 

to the surface velocity in logarithmic law is 0.85. Cheng (2002)(21) analyzed the detailed velocity 

profiles and surface velocity data, which were obtained from Mason’s measurements on the San 

Joaquin River, and proposed the ratio to be in the range of 0.80 and 0.93 with a mean value of 

0.88. Since the conclusion was only based on a small sample, he also suggested examining a 

large number of case studies.  

Chiu and Said (1995)(4) developed a technique for determining discharge from the 

entropy parameter M of a channel section and a velocity profile on a single vertical where the 

maximum velocity occurs in a channel cross section. The M value of a channel section can be 

determined from the relation between the maximum and mean velocities. It tends to remain 
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constant as the velocity distribution fluctuates. The value of M being constant for a channel 

section can simplify the discharge determination. 

In 1997 Xia(6) explored the relation between the maximum velocity and the cross-

sectional mean velocity by analyzing velocity data on five different straight reaches in the 

Mississippi River. The result confirmed the early finding of Chiu and Said (1995). 

 Later in 2002, Chiu and Tung(8) found a relation between M and the location of 

maximum velocity when the maximum velocity occurs below water surface. This finding gave 

more efficient procedure for estimating the discharge than the earlier method of Chiu and Said 

(1995).  

During high flows, the conventional device of velocity measurement is not applicable. 

The indirect method of discharge measurement is therefore designed to estimate the missing 

peak discharge after flood flows. Dalymple and Beson (1967)(32) developed a technique used to 

determine peak discharges from measurements of high-water marks. This technique is called the 

slope-area method in which peak discharge can be estimated by utilizing the well-known 

Manning’s equation.  

Because this method is based on one-dimensional, gradually varied, steady flow equation, 

errors associated with the method, may be large due to the complexity of natural rivers. Jarrett 

(1987)(33) reviewed the results of 70 slope-area measurements from different rivers throughout 

the U.S. and found that the accuracy of the indirect measurement may be affected by Manning’s 

n, energy loss due to expansion or contraction, the condition of unsteady flow, scour near 

channel bed, degree of stream slope, and the number of cross sections.  

In applying the slope-area method, Manning’s n is assumed to be constant. A suitable n 

value at a given section can be selected by the guidelines from many textbooks or reports 
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published by the U.S. Geological Survey. Rantz (1982)(19) stated: “Selection of a friction 

coefficient n remains essentially an “art” that is developed through experience”. However, many 

researchers had investigated variations of n in natural rivers and proposed that the value of n 

varies with the water stage(1).  

The estimation of the energy coefficient α  is another difficult problem in applying the 

slope-area method. In the absence of site-specific information on velocity distribution, the U.S. 

Geological Survey assumed that  1=α  for unsubdivided unit cross sections(32). For compound 

sections, an approximate velocity distribution is obtained by applying Manning’s formula 

independently to each subarea, with the result: ∑= )//()/( 2323 AKAK iiα  , in which  and  

are the conveyance and area of the ith subarea; K and A are the conveyance and area for the 

cross section

iK iA

(32).  

Chow (1959)(1) stated that α  varies in prismatic open channels having straight 

alignments between 1.03 and 1.36. King and Brater (1963)(34) experimentally investigated the 

coefficient α  in open channels of various cross sections. Fox and McDonald (1985)(35) stated 

that α  varies with Reynolds number, in which the result is based on the power law. Chen 

(1992)(36) derived a theoretical energy coefficient that implemented the power law for turbulent 

shear flow in circular pipes and wide channels. 

The values of α  in these earlier studies were obtained from the certain type of flow 

system and the traditional velocity formulas. Therefore, these α  values had limited applications. 

Chiu (1991)(37) applied his velocity distribution equation in deriving a theoretical equation that 

gives α  in terms of the entropy parameter M.  

10 



 

Because there is no reliable method that based on fluid-dynamics principle that is 

applicable for determining α  and n, the slope-area method is still being used by the U.S. 

Geological Survey today.  

 
 
 
 

 

 

 
 

11 



 

2.0 CHIU’S VELOCITY DISTRIBUTION EQUATION 
 
 
 
 

2.1 VELOCITY DISTRIBUTION EQUATION BASED ON PROBABILITY CONCEPT 
 

Well-known velocity distribution models include the Prandtl-von Karman logarithmic law and 

the simple power law. Nevertheless, they cannot describe velocity distribution patterns, in which 

the maximum velocity occurs below the water surface. Velocity distribution should be capable of 

depicting all possible patterns of distribution. By applying the probability concept and the 

principle of maximum information entropy (Shannon 1948, Chiu 1989)(3, 22), Chiu (1989)(3) 

derived a new velocity distribution equation for fluid flows, the general form of which is: 

( ) 







−

−
−+=

0max

0max 11ln
ξξ

ξξMe
M

uu  (2-1) 

in which u = velocity that monotonically increases with ξ ; = maximum velocity in a 

channel cross section. A value of 

maxu

ξ  is assigned to each isovel along which the velocity is 

constant value; maxξ  = the maximum value of ξ  at which maxuu = ; 0ξ  = the minimum value of 

ξ  that occurs along the channel bed, and also an isovel along which u ; 0= M  is an entropy 

parameter. Eq. (2-1) is equivalent to  

∫=
−

− u
duuf

 

0 
0max

0 )(
ξξ

ξξ  (2-2) 

)(uf  in Eq. (2-2) is a probability density function. The simplest form of   that can be 

derived by entropy-maximization

)(uf

(3) is  
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)exp()( 21 uaauf +=  (2-3) 

in which the parameters a  and  are related to 1 2a M  and  in Eq. (2-1) by maxu

( )1max

1

−
= M

a

eu
Me  (2-4) 

max
2 u

Ma =  (2-5) 

)(uf  in Eq. (2-3) satisfies the following constraints: 

∫ =
max 

0 
1 )(

u
duuf  (2-6) 

 ∫  (2-7) ==
max 

0 
 )(

u

A
Quduuuf

Eq. (2-6) is the constraint on  to satisfy the definition of probability density function. Eq. 

(2-7) is the constraint on  to make the mean velocity 

)(uf

)(uf u  in the flow cross section to be Q

where Q  is the discharge, and  is the cross-sectional area of the flow.  

A/  

A

Substitution of Eq. (2-4) and (2-5) into Eq. (2-3) gives 

( ) 







−

=
maxmax

exp
1

)(
u

uM
eu
Muf M  (2-8) 

Since , Eq. (2-8) is equivalent to  )()/( maxmax ufuuuf =

( ) 







−

=








maxmax

exp
1 u

uM
e

M
u

uf M  (2-9) 

Eq. (2-9) shows that  is an exponential distribution characterized by the single 

parameter M as shown in Figure (2.1). It indicates that, as M decreases,  becomes 

more uniform.  

)/( maxuuf

)/( maxuuf
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2.2 DEFININITION AND EXPRESSIONS OF ξ  
 

By defining ξ  in terms of coordinates in the physical plane, Eqs. (2-1) and (2-2) can describe 

one- or two-dimensional velocity distributions. Eq. (2-2) indicates that ( ) ( 0max0 / )ξξξξ −−  is 

equal to the cumulative distribution function, or the probability of velocity being less than or 

equal to u . If a large number of ξ  values are randomly generated within the range ( )max0  ,ξξ  and 

substituted into Eq. (2-1) to obtain a set of velocity samples, the probability of velocity being 

between u  and  is  duu + du( .uf ) ( ) ( )0max0 / ξξξξ −−  is equivalent to the ratio of the area in 

which the velocity is less than or equal to u  to the total cross-sectional area. For a wide 

rectangular channel, ( ) ( max )00 / ξξξξ −−  can be expressed as Dy / /( BDBy )= because isovels can 

be approximated as horizontal lines, in which y = the vertical distance from the channel bed; D = 

the water depth; and B is the channel width.  Similarly, for a pipe flow, the isovels are concentric 

circles, ( ) ( ) ( ) 2)R− 22 /(1/ rRr −=− ππ2R0 = πmax/ −ξ0ξ ξξ where r = radial distance from the 

pipe center at which the velocity is u; and R = pipe radius. For open channel flow, in which u  

may occur on or below the water, a suitable equation for 

max

ξ  has been derived by Chiu and Chiou 

(1986)(10): 

)1exp()1( +−−= YZNZY i
Niξ  (2-10) 

in which 

hD
y

Y
y

y

−+

+
=

δ
δ

 (2-11) 

iiB
z

Z
δ+

=  (2-12) 
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Figures 2.2 (a) and (b) show the chosen coordinate and other variables and parameters that 

appear in Eqs. (2-10)-(2-12), in which D = water depth at y-axis; B (i=1 or 2)= transverse 

distance on the water surface between the y-axis and either the left or right side of a channel 

cross section; z = coordinate in the transverse direction; y = coordinate in the vertical direction; 

and 

i

yδ , iδ , , and h are parameters. iN yδ  and iδ  vary with the geometrical shape of the channel 

cross section (or the shape of the zero-velocity isovel). Both yδ  and iδ  approach zero if the 

channel cross section tends towards a rectangular shape. Both values increase as the cross-

sectional shape deviates from the rectangular. The parameter h controls the shape and slope of 

isovels, in particular, near the water surface and in the vicinity of the point of maximum velocity. 

If ,  occurs below the water surface and h  is the depth of u  below the water 

surface; the velocity increases with y only up to 

0>h maxu max

hy D −= , and decreases with y in the region 

. If ,  occurs on the water surface.  )D D ,h−( 0≤h maxu

The η  curves shown in Figure (2.2) are orthogonal trajectories of ξ  curves, which can be 

derived from Eq. (2-10) as 

( ) ( ) ( )[ ]




















+

−+
+−±= +−+ Y

B
hD

NZZ
Z ii

y
i

BhDN iiyi

2
/ exp11 2

δ
δ

η δδ   (2-13)   

in which η  takes the negative sign only when hDy −>  and . In other cases, 0>h η  takes the 

positive sign. The network of ηξ −  curves can be used as a coordinate system in modeling two-

dimensional velocity and shear-stress distributions and related hydraulic transport processes. 

Substitution of Eq. (2-10) into (2-1), two-dimensional velocity distributions in open 

channel flow can be expressed as shown in Figure (2.2). 
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Figure 2.2 Patterns of Velocity Distribution and Curvilinear Coordinate System: (a) Pattern I: 
umax occurs on the water surface; (b) Pattern II: umax occurs below the water surface 
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For a one-dimensional velocity distribution on “y axis” defined hereafter as the vertical axis on 

which u occurs, max ξ  can be expressed as 









−
−

−
=

hD
y

hD
y 1expξ  (2-14) 

as  and 0=z 0=yδ  in Eq. (2-10). The reason of 0=yδ  is that yδ  on the y axis is not sensitive 

to the present velocity distribution equation and usually too small(2, 7).  

By applying Eq. (2-1) with ξ  defined by Eq. (2-14) to describe a one-dimensional 

velocity distribution, there are three cases: 

(I) The maximum velocity u  occurs at a distance h  ( ) below the water surface, 

or  above the channel bed. In the case, 

max 0>h

1hDy −= max =ξ in Eq. (2-14) so that Eq. (2-

1) with 00 =ξ gives  

            ( ) 















−
−

−
−+=

hD
y

hD
ye

M
uu M 1exp11lnmax  (2-15) 

(II)  occurs on the water surface and maxu 0=h  so that 1max =ξ . Eq. (2-15) becomes 

            ( ) 













 −−+=

D
y

D
ye

M
uu M 1exp11lnmax  (2-16) 

Eq. (2-16) gives du  at the water surface and hence can describe a velocity 

curve is perpendicular to the water surface.   

0/ =dy

(III)  occurs on the water surface and maxu 0<h ( 0 ). In this case, h  no longer has 

the same physical meaning as that in cases (I) and (II). It is only a coefficient that can 

/ >dydu
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fine-tune the curvature of the velocity distribution. The maximum value of ξ  is 









−
−

−
=

hD
D

hD
D 1expmaxξ  , therefore Eq. (2-16) becomes 

( )             















−
−

−+=
hD
yD

D
ye

M
uu M exp11lnmax  (2-17) 

As  approaches to negative infinity, Eq. (2-17) becomes h

( ) 



 −+=

D
ye

M
uu M 11lnmax  (2-18) 

Eq. (2-18) describes the velocity distribution in wide open channels.   

From Eqs. (2-15)-(2-18), it is clear that ( ) ( )0max0 / ξξξξ −−  in Eq. (2-1) can be adjusted to 
describe various patterns of velocity distribution. 
 
 

2.3 PARAMETER M AND RATIO OF MEAN AND MAXIMUM VELOCITIES 
  
 
Substitution of Eq. (2-6) and (2-7) into Eq. (2-3) gives 

Me
e

u
u

M

M 1
1max

−
−

== φ   (2-19) 

Figure 2-3 illustrates the maxu−u  relation based on the U. S. Geological Survey data collected 

from the Skagit River at Mt. Vernon during a fifteen-year period. Most data were collected by 

the current meter during 1986-2000, but some data, which were obtained during an unsteady 

flow period on April 21, 1999, also included measurements by an Acoustic Doppler Current 

Profiler (ADCP). In this Figure, u  was determined as Q , and u  was obtained by 

regression using the velocity samples on the y axis. The linear relation in the figure shows that 

the 

A/ max

φ  value is 0.64, and the corresponding M  obtained by Eq. (2-19) is 1.80. The high value of 

R2 indicates the M value is very stable during various flow over the long time period. This figure 
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and many similar results(4, 6, 7) obtained from both laboratory and field data also illustrate the 

stable relation between u  and , whether the flow is steady or not.  Since these results 

indicate the stability and invariance of 

maxu

φ  or M  at a given channel section, it, in turn, confirms 

the resilience of the probability law  shown in Eq. (2-9), which means that the flow at 

a channel section maintain the same distribution  at any discharges. Thus, Eq. (2-1) is 

applicable under various flow patterns observed at a channel station. 

)/u( maxuf

)/( maxuuf

umax (m/s)
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Current Meter (1986-2000)
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u = φumax
φ = 0.64 (M = 1.8)
R2 = 0.92

Figure 2.3 The Relation Between u  and u  in Skagit River at Mt. Vernon, Washighton max
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2.4 ENERGY AND MOMENTUM COEFFICIENTS 
 
 
The energy and momentum coefficients are the important measures of the rates of energy and 

momentum transport through a channel section. These coefficients are defined as 
33 / uu  and 

22 / uu , respectively, in which 3u  and 2u  are the mean values of u  and , respectively.  3 2u

The estimation of these two mean values is difficult when integrating them over the 

cross-sectional area in the physical plane, especially in natural channels. By using the probability 

density function in Eq. (2-3), these mean values can be expressed and obtained by 

∫ ==
max 

0 

333  )(
u

uuduufu α  (2-20) 

∫ ==
max 

0 

222  )(
u

uuduufu β  (2-21) 

Substitution of Eq. (2-3) into Eq. (2-20) gives the energy coefficient as a function of M (15): 

3

232

]1)1([
]6)663([)1(

+−
+−+−−

=
Me

MMMee
M

MM

α  (2-22) 

Substitution of Eq. (2-3) into Eq. (2-21) gives the momentum coefficient as a function of M : 

2

2

]1)1([
]2)22()[1(

+−
−+−−

=
Me

MMee
M

MM

β  (2-23) 

Therefore, α  and β  can be determined by a single value of M . Since M  is constant at a 

channel section, α  and β  should be constant as well. 
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2.5 LOCATION OF MAXIMUM VELOCITY AND ITS RELATION TO M 
 
 
When the maximum velocity u  occurs below the water surface, let h  denote the location of 

maximum velocity below the water surface. According to the theory and analysis of many sets of 

both laboratory and field data, Chiu and Tung (2002)

max

(8) found a relation between  and h M  as:   

3.58
)(ln2.0)( MGM

D
h

−=  (2-24) 

in which 

φM
eMG

M 1)( −
=  (2-25) 

Eq. (2-24) is only valid in the range of M  between 1.0 and 5.6 and represents the average 

relation between h  and D/ M . If M is greater than 5.6, u occurs on the water surface and max

( ) ( max0 / )0ξξξξ −−  can be approximated as 
D
y . Figure (2.4) illustrates the velocity distributions 

using Eq. (2.15) with the relation of Eq. (2-24) for M  from 1 to 5.6. The locations of u , max u  

and vu  on each of these velocity profiles are also shown in the Figure, in which vu  is the mean 

velocity on the y axis. Figure (2-4) shows that when M is less than 5.6, u  occurs below the 

water surface and the location of u dips deeper into water as 

max

max M  decreases. When M  = 5.6, 

occurs on the water surface, and isovels in a channel section are orthogonal to the water 

surface. From this figure, it is also easy to visualize the variations of velocity distribution at 

various channel cross sections. 

maxu
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 Figure 2.4 Variations of Velocity Distribution and Locations of u , vu  and u  with max M  
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2.6 FUCTIONAL RELATIONS OF Du/u , vu/u , Dy /  AND Dyv /  TO M  
 
 

2.6.1 Relation between u  and   Du
 
 
By substituting Eq. (2-19) into Eq. (2-15), the velocity distribution on y axis can be expressed as 

( ) 















−
−

−
−+=

hD
y

hD
ye

M
uu M 1exp11ln
φ

 (2-26) 

 Eq. (2-26) gives a different expression of the velocity distribution in comparison with Eq. (2-

15). Substituting y  into Eq. (2-26), the velocity on the water surface can be determined. 

Therefore, the ratio of the cross-sectional mean velocity 

D=

u  to the water surface velocity u  on 

the y axis as a function of 

D

M  can be expressed as follows: 

)(
)(

Ma
MK

M
u
u

D

==
φ           1  (2-27) 6.5≤≤ M

where 

( )
( ) ( )
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





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



−
−

−
−+=

M
D
hM

D
heMk M

1

11exp
1

111ln)(  (2-28) 

 
 
2.6.2 Relation between u  and vu  
 
 
The mean velocity along the y axis can be expressed as  

∫=
D

v udy
D

u
 

0 

1  (2-29) 

in which velocity u  can be expressed by either Eq. (2-26) or (2-15). By combining Eq. (2-26) 

and (2-29), the ratio of the cross-sectional mean velocity u  to the vertical mean velocity vu  on 

the y-axis as a function of M  can be expressed as: 
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 (2-31) 

 
2.6.3 Relation between  Dy /  and M  
 
 
Eq. (2-1) can be written for the mean velocity in the channel cross section with 00 =ξ : 

( ) 







−+==

maxmax

11ln1
ξ

ξφ Me
Mu

u  (2-32) 

in which ξ  is ξ  at which uu = . When u  occurs at max hDy −= , 1max =ξ  and hence max/ξξ  

can be expressed on the y axis as: 












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−
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D
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D
y

1
1exp

1maxξ
ξ  (2-33) 

Dy /  in Eq. (2-33) is the location of the point on y axis at which the velocity is equal to u . 

Substitution of Eq. (2-33) into Eq. (2-32) gives the relation among M ,  and Dh / Dy /  when 

 occurs below the water surface. Furthermore, Eqs. (2-32) and (2-33) combined with Eq. (2-

24) yield that 

maxu

Dy /  can be expressed in terms of M . In other words, when u  occurs below 

the water surface,  

max

D/y  and  are constant at a given channel section and hence Dh / M  is 

known. 
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To maintain the two constants at a channel section over various discharges, the point at 

which u  occurs dips deeper below the water surface when the discharge or the water depth  

increases. 

max D

 
2.6.4 Relation between Dyv /  and M  
 
 
Eq. (2-26) is equivalent to: 

( ) 







−+=
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11ln1
ξ
ξ

φ
vMv e

Mu
u  (2-34) 

in which vξ  is ξ  at which vuu = . When u  occurs at max hDy −= , 1max =ξ  and hence max/ξξv  

can be expressed on the y axis as: 
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Dyv /  in Eq. (2-35) is the location of vu  on y axis.  

Substitution of Eq. (2-35) into Eq. (2-34) gives  
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Eq. (2-36) shows the relation among M ,  and Dh / Dyv /  when  occurs below the water 

surface. With the relationship between h  and 

maxu

M  given by Eq. (2-24), uv /u  in Eq. (2-36) is 

equal to 1  and hence a function of )(/ Mb M . Therefore,  Dyv /  in Eq. (2-36) also is a function 

of M . 
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3.0 2-D VELOCITY DISTRIBUTION IN RECTANGULAR CHANNELS 
 
 
 
 

3.1 THE FUNCTION OF  IN 2-D ISOVELS iN
 
 
According to Eq. (2-10), if the channel is rectangular, both iδ  and yδ  are equal to zero. As y 

axis is located at the middle of the channel section, it is symmetric at both sides. Therefore, the 

value of  at each side of y axis is equal to iN N  ( NNN == 21 ). At a given cross section, M  is 

known and h  can be obtained M  from by Eq. (2-24), Thus, Eq. (2-1) only has N  as the 

unknown parameter. Therefore, once N  is determined, a two-dimensional velocity distribution 

can be simulated by Eq. (2-10) and Eq. (2-1). Figure 3.1 shows a simulated two-dimensional 

velocity distribution in a rectangular channel with the channel width = 2 m, the water depth = 1 

m, u  = 1 m/s, max M  = 3,  = 0.377, and h N  = 1. Since N  = 1 is assumed, this isovel pattern 

may not be the exact image when it comes to the practical cases. By using the same condition as 

Figure 3.1 except different values of N, Figures 3.2 (a-b) indicate the variations of velocity 

distribution. Comparing Figure 3.1 with Figure 3.2 (e.g. look at a certain isovel among the three 

figures, says an isovel line of u = 0.2 m/s), it is apparent that in the case of N = 0.6, the location 

of the isovel is closer to the bank of a channel cross section than the one when N = 1.6. The 

smaller values of N, the greater will be velocities near the left or right bank of a channel cross 

section. Thus, it is possible to use a smaller Ni to describe a velocity distribution with greater 

velocities occurring near the boundary.   
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Figure 3.1 Simulated 2-D Velocity Distribution  

28 



 

  

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

z (m)

0.0

0.2

0.4

0.6

0.8

1.0

y 
(m

) umax

 
          (a)  

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

z (m)

0.0

0.2

0.4

0.6

0.8

1.0

y 
(m

) umax

 
           (b)  

 

 Figure 3.2 Comparison of 2-D Velocity Distributions with Different N (a) N = 0.6;(b) N = 1.6  
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3.2 ESTIMATION OF N  
 
 
3.2.1 Relation between N  and M   
 
 
In accordance with analysis in section 3.1, N  is the only parameter left in simulating the two-

dimensional velocity distribution when M is known. Hence as long as a relationship between N  

and M  can be learned, simulation of the two-dimensional velocity distribution will be greatly 

simplified. The following analysis represents such an attempt. 

The procedure of estimating N  at a given cross section is listed below: 

1. Compute the mean velocity u  and the discharge Q at a given cross section by the 

Manning formula with given values of the channel width B, the water depth D, the 

channel slope S, and the roughness coefficient n. 

obs

2. Use Eq. (2-19) with a known M and the computed u  from step 1, to determine u .  max

3. Determine the location of u  from the value of h  as a function of M. max

4. Determine N  from the known values of M , ,  and D by means of Eq. (2-1) to 

generate the velocity data as many as possible in the entire section.  

maxu h

5. Compute the discharge Q  with the computed velocities from step 4, using the 

conventional two-point method (Chow 1959), in which velocities are taken at 0.2 and 0.8 

of the water depth at each vertical.  

est

6.  Compare Q  with Q . est obs

7. If 001.0>− obsest QQ , repeat step 4 to 6 until a reasonable N  may be found.   

Based on the above procedure, different M  (ranging from 1 to 5.6) and the 

corresponding N  are computed and listed in Table 3-1. The simulated MN − relation is plotted 
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in Figure 3.3. Thus, the parameter N  can be estimated through the N-M relation. In engineering 

practice, either Table 3-1 or Figure 3.3 may be used to estimate N. 

 
 

Table 3-1 Summary of N  and M  

 

M N M N M N M N 
1 1.630 2.2 1.715 3.4 1.556 4.6 1.342 

1.1 1.657 2.3 1.709 3.5 1.538 4.7 1.324 

1.2 1.677 2.4 1.700 3.6 1.522 4.8 1.306 

1.3 1.693 2.5 1.689 3.7 1.504 4.9 1.288 

1.4 1.706 2.6 1.677 3.8 1.486 5.0 1.270 

1.5 1.717 2.7 1.665 3.9 1.468 5.1 1.254 

1.6 1.724 2.8 1.651 4.0 1.450 5.2 1.236 

1.7 1.729 2.9 1.637 4.1 1.432 5.3 1.218 

1.8 1.730 3.0 1.622 4.2 1.414 5.4 1.200 

1.9 1.730 3.1 1.606 4.3 1.396 5.5 1.182 

2.0 1.728 3.2 1.590 4.4 1.378 5.6 1.164 

2.1 1.722 3.3 1.572 4.5 1.360   
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Figure 3.3 Relationship between N  and M  (Simulation) 

 
 
 
3.2.2 Relation between N  and B/D, n and S 
 
 
A set of values of B/D, Manning’s n, and channel slope S must be given prior to estimating N  at 

a given cross section. varying one of these three variables while keeping the other two constant, 

its correlation with N can be compared. Table 3-2 shows N  does not vary with the width-to-

depth ratio. Similarly, effects of n and S were also analyzed. Table 3-3 indicates  N  remains 

constant as Manning’s n varies from 0.015 to 0.045. Table 3-4 shows that N  does not vary with 

the channel slope. Therefore, there are no apparent relationships between N  and B/D, n and S. 
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Moreover, the three tables also show that N  does not vary with discharge at a channel section. 

Accordingly,  N  is constant at a given channel section.  

 
 

Table 3-2 Relation between N  and B/D (n = 0.03, S = 0.0001) 

 
 

B/D = 2, D = 1 m 

 m/s 21.0=u ,  Q  /sm 42.0 3=

M  maxu  Dh /  N  
2 0.3198 0.4967 1.728 

3 0.292 0.3771 1.622 

4 0.2732 0.2415 1.450 

5 0.2603 0.0934 1.270 

 

B/D = 5, D = 1 m 

 m/s 27.0=u , Q  /sm 33.1 3=

M  maxu  Dh /  N  
2 0.4057 0.4967 1.728 

3 0.3704 0.3771 1.622 

4 0.3465 0.2415 1.450 

5 0.3301 0.0934 1.270 

 

B/D = 10, D = 1 m 

 m/s 30.0=u , Q  /sm 95.2 3=

M  maxu  Dh /  N  
2 0.4496 0.4967 1.728 

3 0.4105 0.3771 1.622 

4 0.384 0.2415 1.450 

5 0.3659 0.0934 1.270 
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Table 3-3 Relation between N  and Manning’s n (B/D = 2, S = 0.0001) 

 
 

n = 0.015 

 m/s 42.0=u ,  Q  /sm 84.0 3=

M  maxu  Dh /  N  
2 0.6397 0.4967 1.728 

3 0.5841 0.3771 1.622 

4 0.5464 0.2415 1.450 

5 0.5206 0.0934 1.270 

 

n = 0.030 

 m/s 21.0=u , Q  /sm 42.0 3=

M  maxu  Dh /  N  
2 0.3198 0.4967 1.728 

3 0.292 0.3771 1.622 

4 0.2732 0.2415 1.450 

5 0.2603 0.0934 1.270 

 

n = 0.045 

 m/s 14.0=u , Q  /sm 28.0 3=

M  maxu  Dh /  N  
2 0.2132 0.4967 1.728 

3 0.1947 0.3771 1.622 

4 0.1821 0.2415 1.450 

5 0.1735 0.0934 1.270 
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Table 3-4 Relation between N  and S (B/D = 2, n = 0.03) 

 
 

S = 0.0001 

 m/s 21.0=u ,  Q  /sm 42.0 3=

M  maxu  Dh /  N  
2 0.3198 0.4967 1.728 

3 0.292 0.3771 1.622 

4 0.2732 0.2415 1.450 

5 0.2603 0.0934 1.270 

 

S = 0.001 

 m/s 66.0=u , Q  /sm 33.1 3=

M  maxu  Dh /  N  
2 1.0115 0.4967 1.728 

3 0.9235 0.3771 1.622 

4 0.8639 0.2415 1.450 

5 0.8231 0.0934 1.270 

 

S = 0.01 

 m/s 10.2=u , Q  /sm 20.4 3=

M  maxu  Dh /  N  
2 3.1985 0.4967 1.728 

3 2.9203 0.3771 1.622 

4 2.7319 0.2415 1.450 

5 2.6028 0.0934 1.270 
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3.2.3 Verification of Relation between N  and M   
 
 
In order to simulate two-dimensional velocity distributions in rectangular channels, some 

parameters such as N , M , , and u  should be obtained in advance when using equation 

(2.1). Once 

h max

M  is given,  can be obtained from Eq. (2-24). u  is determined from h max M , and u   

computed by using Manning’s formula. N  is obtained by a try-and-error method with the 

criterion that the discharge computed with a value of N must be equal to observed one. However, 

values of B/D, Manning’s n, and S must be known prior to estimating N. Manning’s n and S are 

difficult to obtain in natural rivers. The velocity data are easier to obtain. Thus, it is easier to 

estimate M , h  and u  at a channel section from velocity data.  max

 
Description of data 
 
Data for this study were collected from rectangular channels. Velocity data may be collected 

along one or more verticals in a channel section. Four sets of data obtained by Guo (1990)(23), 

Colemen (1990)(24), Bortz (1989)(25) and Guy, et al. (1956-1961)(26) were used. 

 
a. Zhen-Ren Guo(23) of the South China Institute conducted an experiment in supercritical 

flows. The channel, 10 cm wide and 180 cm long, had a constant slope of 0.00156. The 

flow was nonuniform, starting from a head tank and ending at a free fall. All data were 

collected in a steady flow of 669 cm3/s at eleven different sections along the flume. The 

velocity samplers were taken at the middle of each cross section using a laser-Doppler 

velocimeter. 
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b. The second set of data used in the study were provided by Colemen(24). The experiment 

was performed in a flume, 1000 mm wide, and was run under different sediment 

conditions at the channel bed.   

c. The third set of data was obtained by Bortz(25) from 43 runs with three different channel 

slopes. The flume was 65 feet long, with 4 feet wide, and 2 feet deep. The flow rate, 

water depth, and channel bed slope were all easily adjustable.  

d. The last set of data was obtained by Guy, et al.(26) in a recirculating flume, 2 and 8 feet 

wide, 2 feet deep, and 150 feet long. The flow could be adjusted from 0 to 22 cfs by using 

two pumps and a valve control on the discharge line. The channel slope could be adjusted 

from 0 to 1.5 percent. 

  

N value determined from actual data  
 
When using actual data to determine N , u  is given, but M , h  and u  may not be available. 

A method to estimate these parameters from measured data is to estimate u  first by regression 

using Eq. (2-15) with velocity data on y axis.  Once u  is obtained, 

max

max

max M  can be computed by 

Eq. (2-19) with the given value of u . After that, h  can be given by Eq. (2-24). When three 

parameters are all determined, N  can be estimated by following the same steps 4 to 7 of the 

procedure as given in Section 3.2.1. Results can be verified by using laboratory data as shown in 

Figure 3.4.  
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Figure 3.4 Relation between N  and M  
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3.3 MODEL VERIFICATION 
 
 
Figure 3.5 shows velocity samples on y axis and a two-dimensional velocity distribution 

computed at section no. 9 in a rectangular channel 10 cm wide and 2.31 cm deep(23). As shown in 

the figure, the velocities computed by Eq. (2.1) agree with those observed on y axis. Figure 3.6 

shows a one-dimensional velocity distribution on y axis with the same velocity samples, and the 

agreement is as good as those in Figure 3.5. The two figures show the simulated one-dimensional 

velocity distribution on y axis may indicate a two-dimensional velocity distribution.  

Figures 3.7-10 show velocity samples on several verticals and simulated two-dimensional 

velocity distributions in various rectangular flumes(26, 27). The measured two-dimensional 

velocities also indicate the accuracy of the simulated velocities as shown in these figures. The 

performance of this 2-D velocity distribution model can be evaluated from the correlation 

coefficient ( ρ ) and root-mean-square error (RMSE). The correlation coefficient indicates the 

strength of association of observed and estimated velocities and is given by 

( )( )
( ) ( )22

∑∑
∑

−−

−−
=

estestobsobs

estestobsobs

uuuu

uuuu
ρ  (3-1) 

in which  = observed velocity; obsu obsu  = mean of observed velocities; u  =  estimated velocity; 

and 

est

estu  = mean of estimated velocities.  

The root-mean-square error measures the closeness of the observed and estimated velocities and 

is given by 

( )
n

uu
RMSE est∑ −

=
2

obs  (3-2) 

in which n is the number of observation.   
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The correlation coefficients of Figures 3.7, 3.8, 3.9 and 3.10 are approx 0.916, 0.942, 

0.98 and 0.958, respectively, and RMSEs are approx 0.163 ft/s, 0.226 ft/s, 0.11 ft/s and 0.25 ft/s, 

respectively. The correlation coefficients are at least above 0.9, and RMSEs are smaller. The 

results show that the 2-D velocity distribution model can predict velocities quiet well in 

rectangular open channel flow.   
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Figure 3.5 Simulated Two-dimensional Velocity Distribution Based in the Rectangular Channel   

                   Section on Velocity Samples on Y Axis (Guo 1990) 
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Figure 3.6 Velocity Distribution on y axis (Guo 1990) 
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Figure 3.7 Measured and simulated 2D velocities (4-foot wide Flume, Run 41, Bortz 1989) 
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Figure 3.8 Measured and Simulated 2-D Velocities (8-foot Wide Flume with 0.19mm Sand, Run 
14, Guy, et al. 1956-61)  
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Figure 3.9 Measured and Simulated 2-D Velocities (8-foot Wide Flume with 0.28mm Sand, Run 
28, Guy, et al. 1956-61) 
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Figure 3.10 Measured and Simulated 2-D Velocities (2-foot Wide Flume with 0.32 mm Sand, 
Run 7, Guy, et al. 1956-61) 
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3.4 APPLICATION 
 
 
3.4.1 Simulation of 2-D Velocity 
 
 
Since N  can be obtained from the relation between N  and M , if the channel data such as 

Manning’s n, the channel slope S, the channel width B and the water depth D are known, the 

two-dimensional velocity distribution can be simulated with any given M  value without using 

any velocity data. Figures 3.11(a-d) show isovel patterns simulated by using Eq. (2.1) in 

rectangular channels for various parameters M , with the Manning’s n of 0.03, the channel slope 

of 0.0001, the channel width of 2 m and the water depth of 1m, respectively. Various M  may 

represent different sections along a channel. However, flow patterns along a channel can also be 

visualized in the four sections as shown in Figure 3.11. For each of the velocity distributions in 

the figure, the values of , , maxu h M , and N  are also indicated. In addition, the mean velocity u  

for each channel section is 0.21 m/s based on Manning’s equation. As shown in Figures 3.11(a-

d), the value of u  does not change but u  and  vary with max h M . It implies that if M  (or φ ) 

decreases, u  must increase and its location tends to dip deeper below the water surface in 

order to retain the constant 

max

u . This is similar to the following a bend. When the flow enters a 

bend from a straight reach, the value of  u  does not change appreciably but u  increases 

appreciably to reduce 

max

M  value, and the location of the maximum velocity  dips below the water 

surface(5). 

Figures 3.12(a-c) show other simulation results, which show the relation between the 

velocity distribution and width-to-depth ratio at a given section; when M = 3; N  = 1.62; 
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Manning’s n  = 0.03; channel width = 2 m, and channel slope = 0.0001. The values of u , max u , 

Q and D are indicated in the figure for each of the velocity distributions.  
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(a) M = 5.6, h = 0 , umax = 0.255 m/s, Ni = 1.16 
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(b) M = 4, h = 0.242 m, umax = 0.273 m/s, Ni = 1.45 
 

 

49 



 

 

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.

z (m)
00

0.00

0.20

0.40

0.60

0.80

1.00
y 

(m
) 0.292

 
 

(c) M = 3, h = 0.377 m, umax = 0.292 m/s, Ni = 1.62 
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(d) M = 2, h = 0.479 m, umax = 0.320 m/s, Ni = 1.73 
 

Figure 3.11 Simulations of Two-dimensional Velocity Distribution at Channel Sections where 
, , 03.0=n 0001.0=S m 2=B , m1=D /sm 42.0 3=Q , m/s 21.0=u . (a) M = 5.6, h = 0 , umax 

= 0.255 m/s, Ni = 1.16; (b) M = 4, h = 0.242 m, umax = 0.273 m/s, Ni = 1.45; (c) M = 3, h = 0.377 
m, umax = 0.292 m/s, Ni = 1.62; (d) M = 2, h = 0.479 m, umax = 0.320 m/s, Ni = 1.73 
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(a) D = 0.2 m, h = 0.075 m, umax = 0.140 m/s, m/s 10.0=u , Q = 0.04 m3/s 
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(b) D = 1 m, h = 0.377 m, umax = 0.292 m/s, m/s 21.0=u , Q = 0.42 m3/s 
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(c) D = 1.86 m, h = 0.700 m, umax = 0.348 m/s, m/s 25.0=u , Q = 0.93 m3/s 
 
 

Figure 3.12 Simulations of Two-dimensional Velocity Distribution at Channel Sections where 
, h  and . (a) D = 0.2 m, h = 0.075 m, u3=M 376.0/ =D 62.1=N max = 0.140 m/s, m/s 10.0=u , 

Q = 0.04 m3/s; (b) D = 1 m, h = 0.377 m, umax = 0.292 m/s, m/s 21.0=u , Q = 0.42 m3/s; (c) D = 
1.86 m, h = 0.700 m, umax = 0.348 m/s, m/s 25.0=u , Q = 0.93 m3/s 
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3.4.2 Estimation of M  by simulation of 2-D velocity distribution 
 

A possible application of simulation of two-dimensional velocity distribution is to estimate M . 

With velocity distribution parameters other than M determined, two-dimensional velocity 

distributions may be simulated with each assumed value of M. The M value to be chosen is the 

one that gives the minimum variance.  

A concise procedure for the estimation approach is described below. 

1. Assume a value of M  

2. Obtain the corresponding N  from the MN −  relation as shown in Figure 3.3. 

3. Obtain the parameters u and  in Eq (2.1), in which u can be obtained from max h max φ/u  

and  can be determined by Eq. (2-24). h

4. Compute the variance for this M . 

5. Return to step 1 until all possible values of M  have been tried. Select M  that gives the 

smallest variance. 

For example, in the velocity data (Run 7) collected by Guy, et al.(26)  in a 2-foot wide 

flume with 0.32mm sand, M = 3 gives the minimum variance as shown in Table 3.5. Thus, the 

optimal value of M  in the cross section is approximately 3 and ft/s 103.4max =u , which is close 

to the measured maximum velocity. The corresponding values of N, u  and  for each 

selected 

max h

M  are also listed in Table 3-5.  Figures 3.13 (a-f) show velocity data in a cross section 

(Guy, et al. 1956-61) and the computed two-dimensional velocity distribution for each of the 

selected values of M ( M  = 2.5, 2.9, 3.0, 3.1, 3.5, and 5.0, respectively). The estimated u for 

each 

max

M  and its location are also shown in the Figures, which help determine the possible value 

of M .  
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Table 3-5 Comparison of Variance for the Selected Values of M   

(2-foot Wide Flume with 0.32 mm Sand, Run 7, Guy, et al., 1956-61) 

 
 

M N umax  
(ft/s) 

h 
(ft) 

Variance
(ft/s) 

2.0 1.73 4.493 0.298 0.11418

2.5 1.69 4.279 0.263 0.07431

2.7 1.66 4.204 0.249 0.06714

2.8 1.65 4.169 0.241 0.06525

2.9 1.63 4.135 0.234 0.06403

3.0 1.62 4.103 0.226 0.06395

3.1 1.60 4.071 0.219 0.06439

3.2 1.59 4.041 0.211 0.06586

3.5 1.54 3.957 0.187 0.07354

4.0 1.45 3.838 0.145 0.09591

5.0 1.27 3.656 0.056 0.15996
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(a) M = 2.5 
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(b) M = 2.9 
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(c) M = 3 
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(d) M = 3.1 
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(e) M = 3.5 
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(f) M = 5 
 
 

Figure 3.13 Determining Parameter M based on Velocity Samples from Three Verticals (a) M =  
2.5; (b) M = 2.9; (c) M = 3; (d) M = 3.1; (e) M = 3.5; (f) M = 5 
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In the preceding analysis of  M , velocity data were taken from several verticals in a 

cross section. The following study is discussing that the estimation of M  and u  only depends 

on the velocity data of midsection (y-axis). The detailed procedure for estimating 

max

M  and u on 

y-axis is outlined below: 

max

1.  can be determined by the method of least squares. maxu

2. M  can be computed from Eq. (2-19) as u  is known. 

 
Based on this procedure, u = 4.07 ft/s and max M  = 3.1 and hence h  = 0.364 as given 

by Eq. (2-24). With these three parameters, the velocity distribution on y axis can be shown in 

Figure 3.14(a). With the N value corresponding to M = 3.1, the 2-D velocity distribution in the 

rectangular flume can be computed as shown in Figure 3.14(b), which agrees well with the data.  

D/

As compared in Figures 3.13 (c) and 3.14(b), M  = 3.1 obtained from velocity samples 

on y axis is close to that of M  = 3 determined by using velocity samples on several verticals, but 

for u , first approach is better. This implies that if more velocity data on other verticals were 

available, estimated  

max

M  data would be more accurate than that depending on velocity sampler 

on only one vertical. However, the M value estimated by the second approach can still be 

acceptable even if velocity data are available only on y axis.  
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(a) Velocity Distribution on Y Axis 
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(b) Simulated Two-dimensional Velocity Distribution  

 

Figure 3.14 Estimation of M from Velocity Samples on Y Axis(a) Velocity distribution on y 
axis; (b) Simulated two-dimensional velocity distribution 
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4.0 EFFICIENT METHODS OF DISCHARGE ESTIMATION 
 
 
 
 
The conventional methods in estimating discharge are time-consuming and cannot be used 

during high or unsteady flows. By applying the probability concept to derivation of velocity 

distribution equation, regularities in open channels were determined(5). This generates a new 

hydraulic parameter called M, which is a constant at a channel section and related to various 

observed phenomena in open channel flow. One of its applications is to simplify the discharge 

measurement and overcome the weakness of the conventional method so that the discharge 

during high flows may become measurable.  

 

 

4.1 SPECIAL FEATURES OF Y-AXIS 
 

As defined in Section 2.2, y axis is the vertical axis in a channel section on which u  occurs. 

All information about a channel cross section needed in the efficient method of discharge 

measurement may be taken on the y axis. Thus, y axis may have some features in the flow 

system at a cross section, such as the stability on space and time and the high correlation with 

other selected verticals. The stability and correlation in a cross section can be tested as below.  

max
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4.1.1 Stability of Y Axis 
 
 
Before verifying the stability of y axis, the location of y axis must be determined. Y axis can be 

detected from the pattern of isovels in a channel section as shown in Figure 4.1(b), in which u  

is approximately 1.30 m/s and y axis is near 160 m from the reference point. If detailed velocity 

samples below the water surface are unavailable, it can be detected from the velocity distribution 

on the water surface as shown in Figure 4.1(a) since the location of the maximum surface 

velocity tends to coincide with that of . 

max

maxu
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Figure 4.1 Determining the Location of Y Axis: (a) Velocity distribution on water surface; (b) 
Velocity distribution below water surface 

 
 
 

Figure 4.2 shows the locations of y axis in Skagit River at Mt. Vernon during 1986-2000. 

This at a fifteen-year record indicates that the mean location of y axis from the reference point is 

165.8 m. The standard deviation of the y axis is  6.7 m while the channel width is 214 m. As 

shown in the figure, most of the locations of y axis are within a small range so that the location 

of the y axis is fairly stable and invariant with time and discharge. Similar other results were 

obtained from channels(7, 27). 

In addition, the velocity data at Mt. Vernon were collected by current meter during the 

fifteen years. At the same station, velocity data in Figure 4.1(b) were collected by ADCP. A 

comparison of the mean location of y axis between Figure 4.1(b) and 4.2 shows that two values 

are almost the same.    
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Figure 4.2 Analysis of Location of Y Axis, Skagit River at Mt. Vernon 
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4.1.2 Concept of Maximum Correlation in Selection of Y Axis as Sampling Site 
 

Figure 4.3 shows a flume section with the unvegetated plain (Tu et al. 1995)(28). Three sampling 

stations including y axis are also indicated.  Figure 4-4 shows the correlation between vu  and 

u at each of the three sample stations. The correlation coefficient and relation equation for each 

vertical are listed in Table 4-1. The results indicate the maximum correlation coefficient occurs 

at y axis.  

In the second example, data were collected from South Esk River at Bridge 2 over the 

five-month period from December 14, 1978 through April 14, 1979 (Bridge and Jarvis 1985)(29). 

Figure 4.5 shows a sketch of the channel section, in which the locations of sampling stations are 

numbered from 1 to 8. The velocity samples were taken at the stations 2-6 on March 3, 1979.  

The correlation between vu  and u at each of the sample stations from the stations 2-5 is shown 

in Figure 4.6 and listed in Table 4-2. The sampling station No. 3 (y axis) has the maximum value 

of the correlation coefficient, which is as high as 0.96. It should also be noted that the correlation 

is higher near y axis but decreases toward the banks. Based on these results, the cross-sectional 

mean velocity u  can be estimated accurately from vu  on y axis without using velocity samples 

on other verticals. Further, u  can also be estimated accurately from u because  is taken 

from y axis as well. These are the bases of velocity sampling on y axis in the efficient methods of 

estimating the mean velocity.            

max maxu
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Figure 4.3 A sketch of Flume Section (Tu et al. 1995)
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Table 4-1 Comparison of the Correlation Between Vertical and Cross-sectional Mean Velocities, 
Unsteady Flow in Flume with Unvegetated Plain (Tu et al. 1995) 

 
 

The position of z 
u - vu  

Relation 

Correlation Coefficient 
2ρ̂  

65 
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95 

61.0)(91.0 65 += vuu  
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Figure 4.4 Correlations Between Vertical and Cross-sectional Mean Velocity, Unsteady Flow in 
Flume with Unvegetated Plain (Tu et al. 1995) 
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Figure 4.5 Sketch of Channel Cross Section in River South Esk at Bridge 2 

 
 
 

Table 4-2 Comparison of the Correlation Between Vertical and Cross-sectional Mean Velocity, 
River South Esk at bridge 2 (Bridge and Jarvis 1985) 

 
 

Station No. 
u - vu  

Relation 

Correlation Coefficient 
2ρ̂  
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Figure 4.6 Correlation Between Vertical and Cross-sectional Mean Velocity, River South Esk at 
Bridge 2 (Bridge and Jarvis 1985) 

 
 

69 



 

4.2 DEVELOPMENT OF EFFICIENT METHODS OF DISCHARGE MEASUREMENT 
 
 
4.2.1 Regularities in Open Channel Flows and Their Applications in Discharge 

Measurements 
 

There are regularities in open-channel flow(8). The regularities are natural laws deduced through 

a perpetual process of observation, perception and conception. As derived in the foregoing 

sections, some variables and quantities such as max/ uu , h , , D/ N α , β , Du/ ,u  vuu / , Dy / , 

and Dyv /  in open-channel flow can be expressed as functions of M . M  is the parameter of the 

probability distribution as shown in Eq. (2-9) and remains constant at a given channel section.  

Since these quantities are functions of M , they are also constants and can characterize 

regularities that exist in various flow at a channel section. These regularities form a network in 

which they are capable of supporting each other as shown in Figure 4.7.  If one is known, the 

others can be determined from it.  
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Figure 4.7 Network of Regularities in Open Channel Flows 
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These regularities in flows can be used in the development of efficient methods of the 

discharge measurements. For example, if M  is available, the cross-sectional mean velocity can 

be estimated from φmaxu  , )(Mbuv  and u  or directly measured at the point of the location 

of 

)M(aD

Dy / . Therefore, u  can be determined by only taking one or a few velocity samples on y axis. 

Energy coefficient α and momentum coefficient β  can be also estimated from the 

figure. If the value of M  varies from section to section along a channel, α  and β  also will 

vary.  

 
 
4.2.2 Estimations of M  
 
 
If the M value of a channel section is unknown, there are three methods for obtaining it: 

  
Method 1: Estimation using historical records of discharge 
 

Figure 2.3 illustrates the maxu−u  relation, in which u  is determined as Q  and 

can be obtained by regression when velocity samples are taken on y axis. The slope of the 

straight line in the figure is 

A/

maxu

φ  and hence M  is calculated from Eq. (2-9). Since those points in 

the figure are based on a long term period (15 years), the historical records of u  and u  give 

the average value of 

max

max/ uu . Therefore, M  represents an average value and is constant at a 

given channel section.  

 
Method 2: Estimation from velocity samples on y axis 
 

If long  records of discharge such as the U. S. Geological Survey’s data are unavailable, 

M  can be estimated from velocity samples taken on y axis and the network of regularities in 
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Figure (4.7). When  u , h , u  and max D/ D vu   are obtained on y axis, the relationships in Figure 

(4.7) can be used to estimate M . The estimations of u  and max vu  will be discussed in the next 

section. The location of the maximum velocity h  can be determined from taking a set of 

detailed velocity samples on y axis. u  can be obtained by taking a velocity sample on y axis at 

the water surface. 

D/

D

max vu

M h M

 
Method 3: Estimation from velocity samples on more than one vertical  

 

If velocity samples on more than one vertical are taken, M  can be estimated from the 

MN − relation with a parameter estimation technique as described in section 3.4.2.  

 
 
4.2.3 Estimations of u  and  
 
 
Eq. (2-15) has three parameters ,  and . If maxu is known and h is given by Eq. (2.24), the 

three parameters in Eq. (2-15) can be reduced to only one ( ). Once u  is obtained, the 

velocity distribution on y axis can be described. Moreover, in using Eq. (2-19) to estimate 

maxu max

u ,  

 is also needed.  There are three methods to estimate u : maxu max

Method 1: Velocity sampling on y axis 
 

maxu  can be determined by taking a number of velocity samples on y axis. If the time and 

budget allow, detailed sampling may be taken and used to estimate u . The techniques of 

determining u  using Eq. (2-15) with one, two or more velocity samples on the y axis are: 

max

max

With one velocity sample: 
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If only one velocity sample is taken, u  can be determined by substituting u and  

into Eq. (2-15). u  is the velocity at the single sampling point which is situated at distance  

above the channel bed. 

max 1 1y

1y1

With two velocity samples: 

The two velocity samples may be taken at Dy 8.0=  and 0 , respectively. The U. S. 

Geological Survey usually takes the two points at each vertical in a channel section in order to 

estimate the discharge. For this type of data, u  can be estimated from the following three 

equations: 

D2.

max
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in which  and u  are the velocities at 2.0u 8.0 Dy 8.0=  and , respectively. D2.0

 

With more than two velocity samples: 

If more than two velocity samples on y axis are available, u  can be estimated by 

regression analysis of velocity data using Eq. (2-15).    

max

 
Method 2: Velocity sampling at a single point on water surface 
 

74 



 

In high flow, strong currents make subsurface velocity measurements difficult or 

impossible. In such a situation, a single sample  may be taken on the water surface by using a 

modern device such as radar.   can be estimated by the following equation:  

Du

maxu
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Method 3: Velocity samples taken within 95% confidence interval of h/D 
 

According to the results obtained by Chiu and Tung (2002)(8) from a study of the  

 relation, the 95% upper and lower confidence limits of h  at a given value of M are 

the values given by the regression line (Eq. (2-24)) plus and minus 0.11, respectively. If velocity 

samples are only taken within this interval, the estimated u  from regression analysis using Eq. 

(2-15) may be closer to the real u  than the one obtained from the entire water depth because 

 occurs more likely in the specific interval.  Therefore, u  can be estimated by regression 

analysis of velocity data using Eq. (2-15) with samples taken within the interval. 

MDh −/

maxu

D/

max

max

max

The estimation of vu  is also very important in the development of efficient methods of 

discharge measurements. The cross-sectional mean velocity u  can be determined from vu  as 

)(Mbuu v=  given by Eq. (2-30), where the value of b(M) at a given M can  also be obtained 

from Figure 4.7. 

vu  can be obtained by taking one, two or more velocity samples on y axis. If only one 

velocity sample on y axis is taken, it should be taken at the location of vy  which can be obtained 
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from the MDyv −/  relation shown in Figure 4.7 for a given M. If two velocity samples are to 

be taken, they should be   and u . Thus, 2.0u 8.0 vu  can be estimated by averaging these two points. 

If several velocity samples on y axis can be taken,  vu  can be estimated by averaging all the 

velocity samples. 

D −/

D

obs =

 
 
 

4.3 MODEL VERIFICATION 
 
 
4.3.1 MDy −/  and Myv  Relations 

 

If M  is known, the location of the cross-sectional mean velocity Dy /  can be obtained from the 

My −D/  relation in Figure 4.7. Once the location is determined, u  can be obtained by taking a 

velocity sample at the position. Similarly, If M  is available, the location of the mean velocity 

along y axis can be obtained from the Myv / D −  relation in Figure 4.7. Once the location is 

determined, vu  can be obtained by taking a velocity sample at the position, and then u  can be 

calculated as )(Mbuv . 

In order to determine the locations of u  and vu  using laboratory and field data(28, 29, 30, 31), 

a velocity distribution along y axis must be provided first. The velocity distribution can be 

described by using Eq. (2-15) with three parameters M ,  and u . Since h max M  is known, Eq. 

(2-24) gives h . u  can be estimated by regression with several velocity samples along y axis. 

With the velocity distribution, 

max

y /  and Dyv / can be computed by using Eq. (2-15) with  obsu  

and vu , respectively, in which AQ /u  is the observed mean velocity in a cross section; vu  
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can be estimated by averaging all the velocity samples or by using Eq. (2-29). At last, the 

computed Dy /  and Dyv / were compared in Figure 4.7. 

Each of Figures 4.8-10 show both velocity samples and velocity distribution along y axis. 

The locations of u , vu  and  are also indicated in each of these figures. Each velocity 

distribution has a good agreement with the velocity samples. This can confirm the reliability of 

the computed locations of 

maxu

u  and vu .  Figure (4.11) shows the accuracy of the  MD −y nd /  a

MDyv −/  relations for M from 1.0 to 5.6. 
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Figure 4.8 Determining the Locations of u  and vu  , and Velocity Distribution on Y Axis in 
Laboratory Flume 
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Figure 4.9 Determining the Locations of u  and vu  , and Velocity Distribution on Y Axis in 
Trapezoidal Flume at Section  8/3Π
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Figure 4.10 Determining the Locations of u  and vu  , and Velocity Distribution on Y Axis in 
Ohio River at Sewickely 
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Figure 4.11 Accuracy of  MDy −/  and MDyv −/  Relations 
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4.3.2 Comparison of u Obtained from Velocity Sampling max

 

maxu  can be estimated by velocity sampling as mentioned in the preceding section. In this section 

compared is the difference in results obtained by different methods of sampling. 

Figures 4.12 (a-d) show velocity samples and velocity distribution profiles at different 

discharges in the Ohio River at Sewickly. These data were collected by USGS during 1942-44. 

The M  value is determined by the average ratio of u  to over two years and the 

corresponding  value is given by Eq. (2-24). u is obtained from all velocity samples by 

regression using Eq. (2-15) with the constant values of 

maxu

h max

M  and h . The measured value of Q  and 

the estimated value of and maxu u  are also indicated in each figure.  Figures 4.13(a-d) are similar 

to Figures 4.12 (a-d), except that u  was obtained from velocity sampling within 95% 

confidence interval of . Each of Figures 4.13(a-d) indicates the confidence interval so that it 

is clear to see the number of velocity samples.  

max

Dh /

Between Figures 4.12 and 4.13,  u  in Figure 4.13 tends to be higher than that of 

Figure 4.12 and approximates the u  value determined from velocity samples. On the other 

hand, each estimated u  in Figure 4.12 is underestimated in comparison with the measured. 

This result is expected because u is from velocity samples within the confidence interval. 

Table 4-3 shows a comparison of discharges obtained by two different methods of velocity 

sampling. The discharge obtained by velocity samples from the confidence interval is more 

accurate than that obtained from all velocity samples. The average errors of discharge obtained 

by the two methods are 7.09% and 5.69%, respectively. Table 4.4 shows a similar comparison at 

different channel sections, which is in South Esk River at Bridge 4 (Bridge and Jarvis 1985)

max

max

max

max

(29). 
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The average errors in discharge estimated by the two methods are 8.29% and 3.65%, 

respectively. Therefore, these two results show that the velocity samples obtained within the 

95% confidence interval of h  are more accurate and efficient in discharge estimation. The 

former also can reduce the costs because less velocity data are taken. 

D/
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Ohio River at Sewickley (USGS Data, 1942-1944)
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Figure 4.12 Velocity Distribution Profile (  from all velocity samples) maxu
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Ohio River at Sewickley (USGS Data, 1942-1944)

Velocity Data

Computed with M = 3.7, h/D = 0.28, and umax  from velocity samples within 95% confidence 
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Table 4-3 Comparison of Discharge Obtained by Different Methods, Ohio River at Sewickley 
(USGS data, 1942-1944) 

 

 

Date Qobs(m3/s) (Qest)1(m3/s) (Qest)2(m3/s)  (Error)1(%) (Error)2(%)
12/11/1942 674 657 669 2.52 0.74 

1/06/1944 1192 1148 1241 3.69 4.11 

11/04/1942 2180 1890 1912 13.30 12.29 

2/26/1943 2464 2246 2326 8.85 5.60 

 

100(%) ×
−

=
obs

obsest

Q
QQ

Error  

Notes: 

(Error)ave= 7.09% 5.69% 

1. Computed with umax from all velocity samples 
2. Computed with umax from velocity samples 

within 95% confidence interval of  h/D 
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Table 4-4 Comparison of Discharge Obtained by Different Methods, South Esk River at Bridge 4 
(Bridge and Jarvis 1985) 

 

 

Date Qobs(m3/s) (Qest)1(m3/s) (Qest)2(m3/s)  (Error)1(%) (Error)2(%)
12/14/78 13.5 14.92 13.48 10.55 0.15 

12/16/78 7.3 7.85 7.86 7.54 7.67 

12/18/78 4.31 4.79 4.64 11.21 7.66 

3/1/79 2.81 2.98 2.88 5.95 2.49 

3/3/79 27.99 27.77 27.04 0.78 3.39 

3/4/79 7.98 8.77 8.13 9.91 1.88 

3/7/79 6.83 7.66 6.67 12.08 2.34 

 

100(%) ×
−

=
obs

obsest

Q
QQ

Error  

Notes: 

(Error)ave= 8.29% 3.65% 

1. Computed with umax from all velocity samples 
2. Computed with umax from velocity samples 

within 95% confidence interval of  h/D 
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4.3.3 Verification of Efficient Methods of Discharge Estimation 
 

By taking advantage of the regularities in open channel system, discharge measurements only 

require velocity samples at one, two or several points on y axis. Since the measurements can be 

quick and economical, these methods can be said to be efficient.  

Two efficient methods of discharge measurements are presented in the present study.  

Efficient Method 1: The method uses several velocity samples along y axis to determine u  

by regression in which 

max

M  and  are kept constant. Dh /

Efficient Method 2: The method uses the velocity u  sampled on the water surface to estimate 

 in which 

D

maxu M  and h  kept constant. D/

To illustrate the efficient methods, velocity data collected at four different cross sections 

in a curved flume were used as shown in Figure 4.18(b) (Yen 1965)(30). Figures 4.14-17 show 

velocity samples obtained at section S , 0 0ΠC , 4/Π , and 2/Π , respectively. The velocity 

distributions determined by efficient methods 1 and 2 at each section are shown by the curves in 

solid line and dashed line, respectively. Each figure also indicates a single velocity sample u  

on the water surface. The discharges estimated by the two different methods are shown in each 

figure, and the results by both agree with the observed discharge, Q . The error is 

only about 3.4 percent.   

D

/sm 29.0 3=

The values of M  from to 0S 2/Π  are 5.97, 4.8, 3.7, and 6.0, respectively. When flow 

enters the bend, the cross-sectional mean velocity does not change but the bend reduces the M  

value and hence increases the information entropy by adjusting the magnitude and location of 

. For instance, as flow moves from  to maxu 0S 4/Π , M  decreases from 5.97 to 3.7. Conversely, 

when the flow leaves the bend, the M  value increases along the channel in order to keep the 
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same u  at different sections. For instance, as flow leaves from 4/Π  to 2/Π , M  increases from 

3.7 to 6.6. 

In order to compare the efficient methods of discharge measurements with other existing 

methods, three conventional methods of discharge measurements are selected. Figure 4.18(a) 

compares five different methods. The results show these methods except the floats method are 

quiet good. As shown in Figure 4.18(a), floats method underestimated the discharge. Therefore, 

without considering the cost and time, all methods except the floats method can be used in 

discharge estimation. If the time and budget are considered, the two efficient methods are 

superior to the conventional methods. However, in high or unsteady flow efficient method 2 

would be the best.   
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Figure 4.14 Comparison of Efficient Methods 1 and 2 of Discharge Estimation at Section  0S
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Figure 4.15 Comparison of Efficient Methods 1 and 2 of Discharge Estimation at Section 0ΠC  
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Figure 4.16 Comparison of Efficient Methods 1 and 2 of Discharge Estimation at Section 4/Π  
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Figure 4.17 Comparison of Efficient Methods 1 and 2 of Discharge Estimation at Section 2/Π  

 

93 



 

Section

(Q
es

t/Q
ob

s)

0.8

0.9

1.0

1.1

1.2

1.3

+
+

+ +
X

X

X
X

CΠ0S0

Data from Trapezoidal Flume (Yen 1965)

Efficient method 1- umax based on all velocitiy samples on y-axis
                                (M and h/D fixed)

_
uv = (u0.8+u0.2)/2 (conventional method)
_
uv based on all velocity samples on each vertical
_                                                                             _
uv = 0.85uD (conventional method of determining uv from uD)

Qobs = 0.29 m3/sec

Efficient method 2- umax estimated from uD(M and h/D known)X

+

Π/4 Π/2

(a)  
Π/2

S0

CΠ0

Π/4

B = 6'

14'

r = 28'

(b)  
Figure 4.18 Comparison of Different Methods of Estimating Discharge: (a) Ratios of estimated 
discharges to the known; (b) Locations of the four sections 

 

94 



 

5.0 RELATION BETWEEN SURFACE AND VERTICAL MEAN VELOCITIES 
 
 
 
 

5.1 BACKGROUND 
 
 
Recently, the non-contact method by using a radar device became popular in discharge 

measurement. This method is to collect the surface velocity, then convert the surface velocity 

into the vertical mean velocity by multiplying a coefficient, and then calculate the flow 

discharge. The coefficient is a ratio of the vertical mean velocity to the surface velocity. If the 

velocity distribution follows the Prandtl-von Karman Logarithmic law, the theoretical ratio of the 

vertical mean velocity to the surface velocity is 0.85(1).   

According to the latest USGS research, the ratio is not a constant of 0.85 for all channel 

sections and rivers(21). For instance, the measured ratio varies between 0.8 and 0.93 in San 

Josquin River at Vernalis, Californaia(21). These findings indicate that the estimation of flow 

discharge may not be accurate if the coefficient of 0.85 is universally adapted. The ratio is very 

important factor to the non-contact method. This gives a motivation to verify the relation by 

using Chiu’s velocity equation. As discussed in the preceding sections, Chiu’s velocity equation 

works well in predicting the velocity distribution.  
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5.2 COMPUTATION AND STABILITY OF Dv uu /  IN A CHANNEL SECTION 
 
 
Based on Chiu’s velocity equation, the procedure for computing Dv u/u  at a vertical is as 

follows: 

1. With a set of velocity data at any vertical, estimating three parameters M, h, and u  of 

Chiu’s velocity equation by the method of least squares for using Eq. (2-15) if u  

occurs below the water surface, or Eq. (2-17) if  occurs on the water surface. 

max

max

maxu

2. Compute the surface velocity using the velocity equation from the step 1. 

3. Compute the vertical mean velocity using Eq. (2-29). 

4. Compute Dv u/u . 

 

Dv uu /  of each vertical tends to be different in a channel section. It is difficult to estimate 

the discharge if  Dv u/u  in the section is not constant. For simplicity, the ratio is generally treated 

as a constant for estimating the discharge in practice. Therefore, the present study examined 

whether the ratio may be treated as a constant.  

Figures 5.1 shows the values of Dv u/u  across the width of the channel section and 

estimation of the overall section average of Duv /u  in the Ohio River at Sewickley. A similar 

analysis was made for data from different natural rivers as shown in Figures 5.2-4. Figures 5.1-4 

show that Dv u/u  varies along a channel, but the variation at each section is small. Moreover, 

there is no tendency of variation from the right bank to the left bank in any section. It may 

conclude that one can utilize a constant ratio of Duv /u  for converting the surface velocity into 
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the vertical mean velocity for each vertical in a channel section. In addition, the overall section 

mean of Dv uu /  determined in each figure is more reliable. 
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Figure 5.1 Values of Dv uu /  in  Channel Section and Estimation of  Overall Average in Ohio 
River at Sewickley 
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Figure 5.2 Values of Dv uu /  in Channel Section and Estimation of  Overall Average in Rio 
Grande Conveyance Channel at Section 250 
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Figure 5.3 Values of Dv uu /  in Channel Section and Estimation of Overall average in River 
South Esk at Bridge 2 
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Figure 5.4 Values of Dv uu /  in Channel Section and Estimation of  Overall Average in River 
South Esk at Bridge 4 

 
  
 

5.3 RELATION BETWEEN Dv uu /  AND DISCHARGE AND B/D 
 
 
In light of the results in section 5.2, the ratio of Dv u/u  can be assumed to be constant in a 

channel section. Hydraulic variables tend to interact. The ratio Dv u/u  is related to other 

variables. This can help predict Dv u/u  from other variables. The present study tried to find its 
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relations with discharge and B/D. Analyses of data from different rivers show that  Dv u/u  does 

not vary neither discharge nor B/D as shown in Figures 5.5-8.  
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Figure 5.5 Relations between Dv uu /  and Q and B/D in River South Esk at Bridge 2 
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Figure 5.6 Relations between Dv uu /  and Q and B/D in River South Esk at Bridge 4 
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Figure 5.7 Relations between Dv uu /  and Q and B/D in Rio Grande Conveyance Channel at 
Section 250 
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Figure 5.8 Relations between Dv uu /  and Q and B/D in Ohio River at Sewickley 

 
 
 
 

5.4 RELATION BETWEEN Dv u/u  AND M 
 
The parameter M characterizes a channel section. Many hydraulic variables or parameters can be 

expressed in terms of M. Since M is constant at a given section, these variables or parameters 

also become constant at the section. Once M is determined at a given channel section, Dv u/u  can 

be obtained from its relation to M.  

The mean value of Dv u/u  in a channel section can be determined by using the procedure 

in section 5.2; estimation of M is given in section 4.2.2. 
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There is a tendency for Dv u/u  to increase with M. When M is between 2 and 5, their 

relationship is shown in Figure 5.9. The regression line (solid line) in the figure can be expressed 

as the following formula: 

5M2     7842.00361.0/ ≤≤+= Muu Dv  (5-1) 

for which r . The 95% confidence interval of 774.02 = Dv u/u  is  plotted as two dash lines in the 

figure. Eq. (5-1) may be used for rivers in the United States. The reason is that the maximum 

velocity is generally between about 1.25 u  and 1.50 u  in natural rivers of the United States (5).   
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Figure 5.9 Relation between Dv u/u  and M 
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6.0 A MODIFIED SLOPE-AREA METHOD FOR DISCHARGE ESTIMATION  
 
 
 
 

6.1 BACKGROUND and OVERVIEW  
 

The direct measurement is not feasible during high or rapid flows because the conventional 

device used to measure the velocity cannot be put in water, and because the personnel are often 

subjected to dangerous conditions. In order to estimate the discharge during such periods, an 

indirect method of measurement is often used after the high flows have passed. This indirect 

method is the so-called “slope-area method”, which the discharge is estimated by using the well-

known Manning’s equation. Although Manning’s equation was originally derived for uniform 

flows, it is widely used in river flows. 

Generally, errors within 25% of peak discharge in applying the slope-area method are 

assumed to be acceptable(33). However, the errors may reach as much as 100% or more due to the 

complexity of natural rivers. A large error may lead to overestimating or underestimating the 

peak discharge. Manning’s n and energy losses are main sources of errors in applying the slope-

area method.  

Manning’s n in the slope-area method is customarily treated as a constant and is selected 

by the user under uncertainties. Generally, Manning’s n is not a constant and changes during 

unsteady flows. The energy coefficient α  reflects the effect of non-uniformity of velocity 

distribution. When the velocity distribution is uniform, the coefficient is equal to unity. 
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However, velocity distribution in rivers is non-uniform. If the coefficient is assumed to be unity, 

it cannot reflect reality.   

The reason why Manning’s n and the energy coefficient α  are assumed to be constants is 

that there is no reliable method to estimate them. In 1991, Chiu(37) introduced a probability-based  

approach to hydraulics that can be used to estimate n and α (37). 

One of the objectives of the present study is to make improvements on the conventional 

slope-area method by using the new techniques of estimating Manning’s n and the energy 

coefficient α . The modified slope-area method will be verified by a set of flume data to 

demonstrate its improved performance in discharge estimation. 

 

 
6.2 NEW SLOPE-AREA METHOD 

 
 
6.2.1 Manning’s n Based on Probability Concept 
 
 
As described in the previous section, Manning’s n tends to vary with discharge and water depth.  

Consider that the velocity distribution near a channel bed is in the viscous sublayer; then, 

the shear stress at the channel bed in the ηξ − curvilinear coordinate system is 

0

0
1











=

ξ
µτ

ξ d
du

h
      (6-1) 

in which =µ  the fluid viscosity; and ( )o = ( ) evaluated at 0ξξ = . The mean boundary shear can 

be expressed as  

00
0

1








=

ξ
µτ

d
du

h
 (6-2) 

in which 0h  = the mean value of h  along the channel boundary. ξ
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According to Eqs. (2-2) and (2-3), 

( ) ([ ] 1
210max exp −+−= uaa

d
du ξξ
ξ

)   (6-3) 

which (at 0ξξ = , where u = 0) is 

( ) ([ 1
10max

0

exp −−=






 a
d
du ξξ
ξ

)]  (6-4) 

Therefore, substitution of Eq. (6-4) into Eq. (6-1) with  and 2
*0 uρτ = ρµν /=  gives 

( ) 








−
= 2

*00max
1 ln

uh
a

ξξ
ν  (6-5) 

in which =ρ  the density of the fluid; =ν  the kinematic viscosity of the fluid; and u the 

shear velocity. 

=2
*

By combing Eqs. (2-2)-(2-7), the parameter  can be derived another following form:  1a

( )( 2111
−

−+−= MMMa eeMeeu )  (6-6) 

Eqs. (6-5) and (6-6) give 

( )
)(

2
*00max

MF
uhu

ν
ξξ −

=  (6-7) 

in which 

( ) ( )[ 11 111)(
−−

−−−= MMM eMeeMF ]  (6-8) 

Comparison of Eq. (6-7) with the Manning equation yields(37) 

( ) 2/13/1
00max

)(
SgRh

MFn
ξξ

ν
−

=  (6-9) 

in which n = Manning’s n; g = the gravity; R = the hydraulic radius; and S = the energy slope. 

If ξ is represented by Eq. (2-14), 00 =ξ , and D=0h  for the simplification, Eq. (6-9) gives 
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2/13/1
)(
SDgR

MFn ν
=   (6-10) 

If the channel is wide, Dy /=ξ ; Dh =0 ; 00 =ξ ; 1max =ξ ; and DR ≈ . Eq. (6-9) gives 

2/13/4
)(

SgD
MFn ν

=  (6-11)  

It is worth to note that n in Eqs. (6-10) and (6-11) varies with the water stage. 

 
 
6.2.2 New Slope-Area Method with Two Selected Channel Sections 
 
 
The Manning equation for discharge is: 

2/13/21
fSAR

n
Q =  (6-12) 

in which  = energy slope. fS

Substitution of Eq. (6-10) into Eq. (6-12) gives 

ff SKS
MF

ARgDQ ′==
ν)(

  (6-13) 

in which  

ν)(MF
ARgDK =′  (6-14) 

which is similar to the conveyance  used in the slope-area method.  nAR /3/2

A comparison of Eq. (6-13) with Manning’s equation shows that Manning’s n and the 

uncertainty resulting from it no longer exist.  

Based on the Eq. (6-13), the discharge can be estimated by iteration: 

1. With the known values of A, R, D, M, and ν , the value of K ′  at the upstream ( uK ′ ) and 

downstream ( ) sections of the channel reach can be computed.   dK ′

110 



 

2. The average value of K ′  of the reach can be computed as the geometric mean of Ku′  and 

. dK ′

3. The energy slope Sf at the first iteration can be approximated as the fall h of water 

surface in the reach divided by the length L of the reach. Thus, the corresponding 

discharge is computed by Eq. (6-13), which gives the first approximation of the 

discharge. 

w

4. Computing the velocity heads at the upstream and downstream sections using the first 

approximation of discharge. The energy slope is, thus, equal to  

L
h

S f
f =  (6-15) 

in which  

( )gVgVkhh dduuwf 2/2/ 22 αα −+=  (6-16) 

where uα  and dα  can be computed by Eq. (2-22), and k is a coefficient. When the reach 

is contracting, k = 1. When the reach is expanding, k = 0.5. The corresponding discharge 

is then computed by Eq. (6-13) using the revised energy slope by Eq. (6-15). This gives 

the second approximation of the discharge.  

5. Repeating step 4 until the computed discharges converge to a value. 

 

The slope-area method by iteration has some restrictions. Bad selections for the length of a reach 

and the fall of the water surface between two sections result in obtaining a negative h  in the 

step 4.  Mathematically, h (the first term in Eq. (6-16)) should dominate the total head loss h . 

If  h  is incorrect, the computed discharges during iterations cannot converge to a discharge.  To 

f

w f

f
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avoid obtaining a negative value of  h in computation, one can choose either a long reach or a 

small fall of water surface between two sections.  

f

      
6.2.3 New Slope-Area Method with Multiple Channel Sections 
  
 
Beson and Dalrymple (1967)(32) suggested that the discharge estimation by the slope-area method 

should be made with at least three cross sections. More cross sections and greater spacing 

generally reduce some of the errors associated with the method, particularly the definition of 

energy slope. To minimize the errors associated with the number of cross sections, a new slope-

area method with multiple channel sections also needs to be developed. Thus, the new method 

can be developed by using the energy equation and  Eq. (6-13) as follows: 

According to Section 6.2.2, the value of K ′  of a channel section with the probability and entropy 

concept can be expressed as 

ν)(MF
ARgDKi =′  (6-17) 

in which  is iK ′ K ′  at the ith channel section. 

The geometric mean of K ′  between section 0 and section 1 of a reach (see Figure 6.1) is 

10 KKK ′′=′  (6-18) 

Therefore, the discharge with the new method is 

L
h

KKSKKQ f
f 1010 ′′=′′=  (6-19) 

which gives the friction loss as: 

10 KK
LQh f ′′

=  (6-20) 

In addition, the energy equation may be written for sections 0 and 1 as: 
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feVVo hhhhhh +++=+ 110  (6-21) 

in which h  and  =  elevations of the water surface at sections 0 and 1, respectively, as shown 

in Figure 6.1;  and  =  velocity heads at sections 0 and 1, respectively; h  =  head loss due 

to friction; and  =  head loss due to expansion or contraction of the channel. 

0 1h

0

e

Vh

h

1Vh f

Independently, the difference of the velocity heads between sections 0 and 1 is  









−=− 2

0

0
2

1

1
2

1 2 AAg
Qhh VoV

αα  (6-22) 

The head loss due to an expansion or a contraction of the channel can be expressed as 

)( 1 VoVe hhkh −=  (6-23) 

in which  





>
<−

=
g)contractin( hh if         0

expanding)( hh if  5.0

VoV1

VoV1k  

Substitution of Eqs. (6-20), (6-22) and (6-23) into (6-21) gives 









−++

′′
=−= 2

0

0
2

1

1
2

10
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)1(
AAg

Qk
KK

LQhhhw
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 (6-24) 

The above equation can be applied to each of the M subreaches, i = 1, 2, …, M 
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−
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in which is the sum of the falls in water surface elevation.  wh

Since Eq. (6-25) is a quadratic equation, it can be solved to give 

A
AhBB

Q w

2
42 ++−

=  (6-26) 

in which  
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Figure 6.1 Definition sketch for new slope-area formula 
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6.3 MODEL VERIFICATION 
 
 
The new slope-area method assumes the M value of each channel section is given, and only 

measurement required is the water level of each section. Since M is constant at a given channel 

section, discharge can be estimated by using Eq. (6-26) with the water level data. A set of non-

uniform flow data(23) was used to verify the accuracy of the ”New Slope-Area Method”. There 

are eleven sections in the rectangular flume. Only seven of these sections (No. 2-8) in the middle 

reach were used during verification because flow was fully developed among these sections.  

To estimate the discharge using the new slope-area method, M was obtained in advance. 

Only the water levels at these seven sections were measured. Comparisons were made on the 

influence of energy coefficient α  in the slope-area method; accuracy of the new slope-area 

method with two sections; and accuracy of the new slope-area method with more than two 

sections. 

Table 6-1 shows a comparison of the influence of α  on the slope-area method at two 

sections. In the slope-area method, Manning’s n is a constant and must be given prior to using 

the method. A reasonable value of n in the channel can be obtained from a uniform reach of the 

channel with Manning’s equation. The estimated n value in this study is 0.0089. The water depth 

and M value at each section and the length of each subreach are also shown in Table 6-1, in 

which the difference between Q1 and Q2 is the energy coefficient α . Q1 was estimated with α = 

1, and Q2 was computed with α obtained from Eq. (2-22). Therefore, α  in method 1 is always 

equal to unity at any section, and α  in method 2 may vary with cross sections. The average 

errors for method 1 and method 2 are 17.10% and 13.28%, respectively (see table 6-1). Thus, the 

result indicates that the discharge estimated by the slope-area method with α  obtained from Eq. 
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(2-22) is more accurate than that estimated by the slope-area method with 1=α  and that the 

errors in Table 6-1 are within 25%. 

When using the new slope-area method, the kinematic viscosity of the fluid ν  must be 

given. ν  varies with temperature. However, the flume data used did not provide this information. 

Discharge estimation with different values of ν  may lead to different results. Table 6-2 shows 

the accuracy of the new slope-area method with two sections and a comparison of discharges 

obtained at different temperatures. The average errors for T = 20oC, T = 15oC, and T = 10oC are 

14.63%, 12.38%, and 10.50%, respectively. The results show that the new slope-area method is 

reliable and errors are within the 25%. The temperature may affect the results of the estimated 

discharge.   

Table 6-3 compares discharges obtained by the slope-area method and the new slope-area 

method with multiple cross sections. The new slope-area method with seven cross sections is 

more accurate than the traditional method with the same number of sections. The errors in Table 

6-3 are smaller than those in Tables 6-1 and 6-2. This implies that the number of cross sections 

for discharge estimation is an important factor. With more information from more channel 

sections, errors associated with these two methods can be reduced.   
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Table 6-1 Comparison of Discharges Obtained by Different Methods by  Slope-Area Method 
with Two Sections (Guo 1990) 

 
Section No. Du Dd L (cm) Mu Md Q1 x 10e-4  

(cms) 
Q2 x 10-4  

(cms) 
Error1 (%) Error2 (%)

8 and 7 2.37 2.33 20 4.45 4.48 8.3278 8.1897 24.48 22.42 

7 and 6 2.33 2.3 20 4.48 4.37 7.8598 8.2715 17.49 23.64 

6 and 5 2.3 2.16 20 4.73 3.74 8.985 7.5021 34.30 12.14 

5 and 4 2.16 1.96 20 3.74 4.61 8.253 8.632 23.36 29.03 

4 and 3 1.96 1.75 20 4.61 4.66 7.0809 6.7524 5.84 0.93 

3 and 2 1.75 1.57 20 4.66 5.03 5.9161 5.8076 11.57 13.19 

8 and 6 2.37 2.3 40 4.45 4.73 8.1107 8.2369 21.24 23.12 

8 and 5 2.37 2.16 60 4.45 3.74 8.4645 7.7176 26.52 15.36 

8 and 4 2.37 1.96 80 4.45 4.61 8.2456 7.9629 23.25 19.03 

8 and 3 2.37 1.75 100 4.45 4.66 7.7257 7.432 15.48 11.09 

8 and 2 2.37 1.57 120 4.45 5.03 7.1564 6.9307 6.97 3.60 

7 and 5 2.33 2.16 40 4.48 3.74 8.5659 7.6297 28.04 14.05 

7 and 4 2.33 1.96 60 4.48 4.61 8.3164 8.0043 24.31 19.65 

7 and 3 2.33 1.75 80 4.48 4.66 7.7582 7.443 15.97 11.26 

7 and 2 2.33 1.57 100 4.48 5.03 7.1649 6.9281 7.10 3.56 

6 and 4 2.3 1.96 40 4.73 4.61 8.5144 8.0691 27.27 20.61 

6 and 3 2.3 1.75 60 4.73 4.66 7.8618 7.4739 17.52 11.72 

6 and 2 2.3 1.57 80 4.73 5.03 7.2227 6.9449 7.96 3.81 

5 and 3 2.16 1.75 40 3.74 4.66 7.5871 7.5017 13.41 12.13 

5 and 2 2.16 1.57 60 3.74 5.03 6.9516 6.8517 3.91 2.42 

4 and 2 1.96 1.57 40 4.61 5.03 6.4755 6.2732 3.21 6.23 

100(%) ×
−

=
obs

obsi

Q
QQ

Error  

41069.6 −×=obsQ cms 

Notes: 
1: Computed with α  = 1 (method 1).  
2: Computed with α  obtained by Eq. (2-22) (method 2). 

Average 
Error 17.10% 13.28%
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Table 6-2 Accuracy of New Slope-Area Method with Two Channel Sections at Different 
Temperatures (Guo 1990) 

 

Section No. 
410−×Q (cms) 

(T = 20oC) 

410−×Q (cms)
(T = 15oC) 

410−×Q (cms)
(T = 10oC) 

Error (%) 
(T = 20oC) 

Error (%) 
(T = 15oC) 

Error (%) 
(T = 10oC) 

8 and 7 8.3275 7.7819 7.2002 24.48 16.32 7.63 

7 and 6 7.9348 7.1886 6.4482 18.61 7.45 3.61 

6 and 5 7.6371 7.4882 7.315 14.16 11.93 9.34 

5 and 4 9.135 8.9466 8.7278 36.55 33.73 30.46 

4 and 3 6.4849 6.3098 6.1084 3.07 5.68 8.69 

3 and 2 5.1239 4.9096 4.6695 23.41 26.61 30.20 

8 and 6 7.98 7.3406 6.6825 19.28 9.72 0.11 

8 and 5 8.2602 7.9852 7.6722 23.47 19.36 14.68 

8 and 4 7.9122 7.6054 7.2596 18.27 13.68 8.51 

8 and 3 7.2539 6.9935 6.6986 8.43 4.54 0.13 

8 and 2 6.4144 6.151 5.8555 4.12 8.06 12.47 

7 and 5 8.0424 7.8135 7.5508 20.22 16.79 12.87 

7 and 4 7.952 7.6813 7.3736 18.86 14.82 10.22 

7 and 3 7.2717 7.0379 6.7713 8.70 5.20 1.22 

7 and 2 6.4424 6.1998 5.9259 3.70 7.33 11.42 

6 and 4 7.8982 7.6761 7.4213 18.06 14.74 10.93 

6 and 3 7.2054 6.9987 6.7616 7.70 4.61 1.07 

6 and 2 6.3824 6.1571 5.9016 4.60 7.97 11.78 

5 and 3 7.7181 7.5619 7.3804 15.37 13.03 10.32 

5 and 2 6.8032 6.6301 6.4307 1.69 0.90 3.88 

4 and 2 5.7234 5.52 5.2896 14.45 17.49 20.93 

100(%) ×
−

=
obs

obsi

Q
QQ

Error  

41069.6 −×=obsQ cms 

Average 
Error 14.63%  12.38% 10.50% 
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Table 6-3 Comparison of Discharges Obtained by Different Methods with Seven Channel 
Sections (Guo 1990) 

 

Methods SAM 
(α =1) 

SAM 
(α  obtained by Eq. (2-22)) 

NSAM 
(T = 20oC) 

NSAM 
(T = 15oC) 

NSAM 
(T = 10oC) 

Estimated Discharge 
(Q (cms) ) 410−× 7.329 7.088 6.852 6.626 6.369 

 
Error (%) 

 
9.56 5.94 2.42 0.96 4.8 

100(%) ×
−

=
obs

obs

Q
QQError  

41069.6 −×=obsQ cms 
Note: 
SAM: Slope-area method 
NSAM: New slope-area method 
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7.0 CONCLUSION AND FUTURE WORK  
 
 
 
 

7.1 CONCLUSION 
 
 
Regularities in open channel flow have been found. The regularities can be represented by a set 

of constants in terms of entropy parameter M, which is a probability distribution that remains 

stable and resilient under various flow conditions, and forms a network that they are able to 

connect each other. The results can be used to ease not only discharge measurements in hydraulic 

engineering but also determination of two-dimensional velocity distribution in rectangular 

channel flow.  

A technique for estimating the model parameter N has been developed. It can be used to 

simulate or predict a primary or two-dimensional velocity distribution in a rectangular channel 

section for various types of flow. The two-dimensional velocity distribution can be determined 

by using one or several velocity data, or even without using any velocity data, which depends on 

the given conditions. Without using velocity data, the two-dimensional velocity distribution can 

be determined by using any given set of values of width-to-depth ratio, channel slope, and 

roughness at a given channel section. If the above hydraulic variables are unknown, the two-

dimensional velocity distribution can be determined by taking velocity samples at one or several 

points. The simulation technique is useful when studying the two-dimensional velocity 

distribution in a channel section. Besides the various velocity distributions help understand flow 

properties, existence of maximum velocity, the location of maximum velocity, and presence of 
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secondary flow. The technique can also be used to generate velocity data in an entire section so 

that it supplements the available experimental data.  

In order to ease the use in engineering practice, the relation between entropy parameter M 

and N has been established and verified by a great amount of laboratory data. The discovery of 

the M-N relation also provides an alternative method for determining entropy parameter M. It 

can be used in the development of discharge measurements. Since the determined parameter M is 

estimated from velocity samples at several verticals, its accuracy could be better than that 

depending on only one vertical (y axis).    

Two inimitable features of y axis including stability and maximum information content in 

a channel section have been demonstrated. The results imply it is reliable for velocity sampling 

at  y axis and give the basis for development of discharge measurements. 

 According to equation (2-19), the cross-sectional velocity is determined by parameters 

M and u . Three approaches for estimation of M have been presented. Meanwhile, u  also 

can be determined from three velocity-sampling techniques. These methods for estimation of M 

and  can compose various efficient methods of discharge measurements. Depending on a 

practical situation in a channel section, a suitable efficient method can be selected to estimate 

river discharges from the above methods of parameter estimation.  It is worth to note that these 

efficient methods can be used to estimate river discharges whether the flow is steady or not, or 

whether historical velocity data is available or not. Therefore, various methods of discharge 

estimation in rivers and streams have been developed. It only requires a quick velocity sampling 

on  y axis. 

max

max

max

u
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The present study also compares different velocity sampling techniques that affect the 

accuracy of u  and discharge. It turns out that an efficient and economic method in discharge 

measurements needs to take velocity samples within the 95% confidence interval of h/D. 

max

By utilizing the advantages of regularity in open channel flow, discharge measurements 

require taking velocity samples at one specific axis with one or several points. The proposed 

study illustrated two efficient methods in discharge measurements in a bend with four different 

channel sections, in which efficient method 1 can determine discharge by taking several velocity 

samples on the vertical that the maximum velocity occurs and efficient method 2 can determine 

discharge by taking only a single velocity sample on water surface. In order to elucidate 

advantages of the developed efficient methods, three conventional methods, which are the two-

point, several-point, and floats methods, respectively, are compared with the two efficient 

methods. The results show the floats method greatly underestimates discharge, however the 

others can determine discharge with reasonable accuracy. From the viewpoint of accuracy of 

discharge, all of them except the floats method can be used to estimate discharge. From the 

viewpoint of cost and time, the two efficient methods in discharge measurements are superior to 

the traditional methods because they only require that velocity samples be taken at one specific 

vertical with one or several points. In contrast, the conventional methods need to take velocity 

samples from verticals as many as possible in a channel section in order to estimate more 

accurate discharge.  

Based on Chiu’s velocity distribution model, the relationship between surface and 

vertical mean velocities has been studied. Results show that (1) the ratio of Dv u/u  differs from 

0.85, which is based on the velocity distribution obeying the Prandtl-von Karman logarithmic 

law; (2) the ratio of Dv u/u  does not change with discharge or B/D; (3) there is a linear relation 
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between Dv u/u  and the entropy parameter M in which the data range of M is between 2 and 5. 

These results can provide references to developing a non-contact method in discharge 

measurement. 

A novel method called the modified slope-area method for determining peak discharge is 

derived in the present study. The method is developed by making a modification to eliminate the 

weaknesses of the traditional slope-area method that occur when 1=α  and Manning’s n is a 

constant. Alternatively, Chiu’s mathematical models for estimating these two coefficients are 

used in the modified slope-area method. In his models, Manning’s n is able to vary with the 

water depth and discharge, and α  at a given section can easily be determined by Eq. (3). Thus, 

the behavior of these two coefficients more closely approaches reality in natural rivers. The 

performance of the modified slope-area method is verified by using a set of non-uniform flow 

data in a rectangular flume(23). Results demonstrate that the influence of α  and n in the slope-

area method is apparent for improving the accuracy of discharge measurement. Thus, the 

modified slope-area method for determining discharge is more accurate than the traditional one. 

Meanwhile, one of the results indicates that the more cross sections are used in the slope-area 

method or the modified slope-area method, the better the performance will be in determining 

discharge. Therefore, the number of cross sections, Manning’s n, and the energy coefficient α  

are capable of minimizing estimation errors.  

    

123 



 

7.2 FUTURE WORK 
 
 
Although the present study has done a lot for discharge measurements and simulation of 2-D 

velocity distribution in rectangular open channel flow, studies that based on the present models 

can still be enhanced in the future. Therefore, the present study recommends the following topics 

for improving the current models.  

 

1. To enhance the reliability of the relation between the parameter M and N as well as the 

relation between Dv uu /  and the parameter M by analyzing more data. 

2. The modified slope-area method must be verified by the field data in order to estimate 

discharge from measurements of high-water marks in natural rivers.  

3. In the modified slope-area method, the result shows that the kinematic viscosity of the 

fluid ν  is a factor to affect the accuracy of estimated discharge. In clear water, ν  is a 

function of temperature. However, the kinematic viscosity of a sediment-laden flow in 

natural rivers is not just a function of temperature. It may affect by the concentration of 

sediment because water and sediment together make up the fluid. Thus, developing a 

method to estimate the kinematic viscosity of a sediment-laden flow is an important issue 

when using the modified slope-area method
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